-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptomizeConn.m
95 lines (86 loc) · 3.78 KB
/
optomizeConn.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
function [bw, loc]= optomizeConn(gray, ~, NoValues, bias)
% [bw, loc]= optomizeConn(gray, ~, NoValues, bias)
% Binaroization function baased on O'Gorman's (1994)
% connectivity-preserving algoprithm for document image scanning.
% bias moves thresh in the direction of bias (negative values move thresh
% down)
% Revised to measure connectivity with greycomatrix no. of water regions
% connected
% Gray is grayscale image and should be superpixilated and uint8. NoValues
% is image mask, where 1 corresponds to no data.
% Function decreases binary threshold until connectivity is maximized
% output binary classified image
% tune smoothing value and prominence value and minPeakDistance
%%%%%%%%%%%%%%%%%%%%%for testing
% % gray=cir_index;
% gray=outputImage;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% addpath D:\Dropbox\Matlab\DownloadedCode\RosinThreshold
otsu_thresh=im2uint8(graythresh(gray(~NoValues))); % convert to DN
global f
if 1==1 % branch to use this algorithm
disp('Calculating global threshold by connectivity')
figure;fig=get(gcf); %record orig figure
h=histogram(gray(gray>min(gray(:))& gray<max(gray(:))), 'BinWidth',...
1, 'BinLimits', [0, max(gray(:))]);
% a=15; b=175; % bounds to test-
level=[f.aConn:f.cConn:f.bConn]; % vector of levels to test
[eul,per,ar]=deal(zeros(length(level),1)); % init
for i=length(level):-1:1 % ramp down from bounds [a,b]
disp(level(i))
bwt=gray>=level(i); % temp binary image
eul(i) = bweuler(bwt, 8);
% per(i)=sum(sum(bwperim(bwt)));
% ar(i)=sum(sum(bwt));
end
%compute edge/corner/unimodal hist change pt:
try
rosin_thresh = level(RosinThreshold(eul));
catch rosin_thresh = 256; % in case RosinThresh fails
warning('RosinThresh failed.')
end
% compute thresh using O'Gorman method. Compute dynamic range as input
% to function.
dyn_range=quantile(gray(:),0.99)-quantile(gray(:),0.01);
gormin_thresh = level(GorminThreshold(eul,f.wp,f.df, dyn_range))
loc=gormin_thresh; loc=loc+bias;
bw=gray>=loc; bw(NoValues)=0;
%plotting
if f.plot
figure; plot(level, eul/max(eul), level, eul.*per/max(eul.*per),...
level, eul.*ar/max(eul.*ar))
% legend({'Euler No.', 'E*Per', 'E*Ar'}, 'Location', 'best')
title('Connectivity Metrics')
xlabel('DN threshold'); ylabel('Normalized value');
hold on;
% plot(gormin_thresh, 1.0, 'gV'); hold off
plot(rosin_thresh, 1, 'gV');
text(rosin_thresh, 0.9*1,...
{'Rosin', 'threshold'}, 'color', 'g')
plot(otsu_thresh,1.0*1, 'bV');
text(double(otsu_thresh),0.8*1,...
{'Otsu', 'threshold'}, 'Color', 'b')
plot(gormin_thresh,1.0*1, 'rV'); hold off
text(double(gormin_thresh),0.75*1,...
{'O''Gormin', 'threshold'}, 'Color', 'r')
figure; imagesc(bw); axis image;
title(['Initial Mask. Bias=', num2str(bias),...
' Level=', num2str(gormin_thresh)])
hold off
figure(fig.Number); hold on;
plot(rosin_thresh, max(h.Values(:)), 'gV');
text(rosin_thresh, 0.9*max(h.Values(:)),...
{'Rosin', 'threshold'}, 'color', 'g')
plot(otsu_thresh,1.0*max(h.Values(:)), 'bV');
text(double(otsu_thresh),0.8*max(h.Values(:)),...
{'Otsu', 'threshold'}, 'Color', 'b')
plot(gormin_thresh,1.0*max(h.Values(:)), 'rV'); hold off
text(double(gormin_thresh),0.75*max(h.Values(:)),...
{'O''Gormin', 'threshold'}, 'Color', 'r')
title('Image histogram')
end
else % bypass algorithm and just use otsu thresh!
bw=gray>=otsu_thresh;
loc=otsu_thresh;
loc=loc+bias;
end