-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathmain.py
50 lines (36 loc) · 2.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from trainers.train import Trainer
import argparse
parser = argparse.ArgumentParser()
if __name__ == "__main__":
# ======== Experiments Phase ================
parser.add_argument('--phase', default='train', type=str, help='train, test')
# ======== Experiments Name ================
parser.add_argument('--save_dir', default='experiments_logs', type=str, help='Directory containing all experiments')
parser.add_argument('--exp_name', default='EXP1', type=str, help='experiment name')
# ========= Select the DA methods ============
parser.add_argument('--da_method', default='MCD', type=str, help='NO_ADAPT, Deep_Coral, MMDA, DANN, CDAN, DIRT, DSAN, HoMM, CoDATS, AdvSKM, SASA, CoTMix, TARGET_ONLY')
# ========= Select the DATASET ==============
parser.add_argument('--data_path', default=r'../ADATIME_data', type=str, help='Path containing datase2t')
parser.add_argument('--dataset', default='HAR', type=str, help='Dataset of choice: (WISDM - EEG - HAR - HHAR_SA)')
# ========= Select the BACKBONE ==============
parser.add_argument('--backbone', default='CNN', type=str, help='Backbone of choice: (CNN - RESNET18 - TCN)')
# ========= Experiment settings ===============
parser.add_argument('--num_runs', default=1, type=int, help='Number of consecutive run with different seeds')
parser.add_argument('--device', default= "cuda", type=str, help='cpu or cuda')
# arguments
args = parser.parse_args()
# create trainier object
trainer = Trainer(args)
# train and test
if args.phase == 'train':
trainer.fit()
elif args.phase == 'test':
trainer.test()
#TODO:
# 1- Change the naming of the functions ---> ( Done)
# 2- Change the algorithms following DCORAL --> (Done)
# 3- Keep one trainer for both train and test -->(Done)
# 4- Create the new joint loader that consider the all possible batches --> Done
# 5- Implement Lower/Upper Bound Approach --> Done
# 6- Add the best hparams --> Done
# 7- Add pretrain based methods (ADDA, MCD, MDD)