forked from qraleq/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_test.py
87 lines (70 loc) · 2.63 KB
/
mnist_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test the Keras MNIST model on GPU."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl.testing import parameterized
import tensorflow as tf
from tensorflow.python.distribute import combinations
from tensorflow.python.distribute import strategy_combinations
from official.utils.testing import integration
from official.vision.image_classification import mnist_main
def eager_strategy_combinations():
return combinations.combine(
distribution=[
strategy_combinations.default_strategy,
strategy_combinations.tpu_strategy,
strategy_combinations.one_device_strategy_gpu,
],
mode="eager",
)
class KerasMnistTest(tf.test.TestCase, parameterized.TestCase):
"""Unit tests for sample Keras MNIST model."""
_tempdir = None
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(KerasMnistTest, cls).setUpClass()
mnist_main.define_mnist_flags()
def tearDown(self):
super(KerasMnistTest, self).tearDown()
tf.io.gfile.rmtree(self.get_temp_dir())
@combinations.generate(eager_strategy_combinations())
def test_end_to_end(self, distribution):
"""Test Keras MNIST model with `strategy`."""
extra_flags = [
"-train_epochs", "1",
# Let TFDS find the metadata folder automatically
"--data_dir="
]
dummy_data = (
tf.ones(shape=(10, 28, 28, 1), dtype=tf.int32),
tf.range(10),
)
datasets = (
tf.data.Dataset.from_tensor_slices(dummy_data),
tf.data.Dataset.from_tensor_slices(dummy_data),
)
run = functools.partial(mnist_main.run,
datasets_override=datasets,
strategy_override=distribution)
integration.run_synthetic(
main=run,
synth=False,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags)
if __name__ == "__main__":
tf.test.main()