forked from qraleq/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_ctl_imagenet_main.py
195 lines (158 loc) · 6.8 KB
/
resnet_ctl_imagenet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a ResNet model on the ImageNet dataset using custom training loops."""
import math
import os
from absl import app
from absl import flags
from absl import logging
import orbit
import tensorflow as tf
from official.modeling import performance
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import imagenet_preprocessing
from official.vision.image_classification.resnet import resnet_runnable
flags.DEFINE_boolean(name='use_tf_function', default=True,
help='Wrap the train and test step inside a '
'tf.function.')
flags.DEFINE_boolean(name='single_l2_loss_op', default=False,
help='Calculate L2_loss on concatenated weights, '
'instead of using Keras per-layer L2 loss.')
def build_stats(runnable, time_callback):
"""Normalizes and returns dictionary of stats.
Args:
runnable: The module containing all the training and evaluation metrics.
time_callback: Time tracking callback instance.
Returns:
Dictionary of normalized results.
"""
stats = {}
if not runnable.flags_obj.skip_eval:
stats['eval_loss'] = runnable.test_loss.result().numpy()
stats['eval_acc'] = runnable.test_accuracy.result().numpy()
stats['train_loss'] = runnable.train_loss.result().numpy()
stats['train_acc'] = runnable.train_accuracy.result().numpy()
if time_callback:
timestamp_log = time_callback.timestamp_log
stats['step_timestamp_log'] = timestamp_log
stats['train_finish_time'] = time_callback.train_finish_time
if time_callback.epoch_runtime_log:
stats['avg_exp_per_second'] = time_callback.average_examples_per_second
return stats
def get_num_train_iterations(flags_obj):
"""Returns the number of training steps, train and test epochs."""
train_steps = (
imagenet_preprocessing.NUM_IMAGES['train'] // flags_obj.batch_size)
train_epochs = flags_obj.train_epochs
if flags_obj.train_steps:
train_steps = min(flags_obj.train_steps, train_steps)
train_epochs = 1
eval_steps = math.ceil(1.0 * imagenet_preprocessing.NUM_IMAGES['validation'] /
flags_obj.batch_size)
return train_steps, train_epochs, eval_steps
def run(flags_obj):
"""Run ResNet ImageNet training and eval loop using custom training loops.
Args:
flags_obj: An object containing parsed flag values.
Raises:
ValueError: If fp16 is passed as it is not currently supported.
Returns:
Dictionary of training and eval stats.
"""
keras_utils.set_session_config(
enable_xla=flags_obj.enable_xla)
performance.set_mixed_precision_policy(flags_core.get_tf_dtype(flags_obj))
if tf.config.list_physical_devices('GPU'):
if flags_obj.tf_gpu_thread_mode:
keras_utils.set_gpu_thread_mode_and_count(
per_gpu_thread_count=flags_obj.per_gpu_thread_count,
gpu_thread_mode=flags_obj.tf_gpu_thread_mode,
num_gpus=flags_obj.num_gpus,
datasets_num_private_threads=flags_obj.datasets_num_private_threads)
common.set_cudnn_batchnorm_mode()
data_format = flags_obj.data_format
if data_format is None:
data_format = ('channels_first' if tf.config.list_physical_devices('GPU')
else 'channels_last')
tf.keras.backend.set_image_data_format(data_format)
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=flags_obj.num_gpus,
all_reduce_alg=flags_obj.all_reduce_alg,
num_packs=flags_obj.num_packs,
tpu_address=flags_obj.tpu)
per_epoch_steps, train_epochs, eval_steps = get_num_train_iterations(
flags_obj)
if flags_obj.steps_per_loop is None:
steps_per_loop = per_epoch_steps
elif flags_obj.steps_per_loop > per_epoch_steps:
steps_per_loop = per_epoch_steps
logging.warn('Setting steps_per_loop to %d to respect epoch boundary.',
steps_per_loop)
else:
steps_per_loop = flags_obj.steps_per_loop
logging.info(
'Training %d epochs, each epoch has %d steps, '
'total steps: %d; Eval %d steps', train_epochs, per_epoch_steps,
train_epochs * per_epoch_steps, eval_steps)
time_callback = keras_utils.TimeHistory(
flags_obj.batch_size,
flags_obj.log_steps,
logdir=flags_obj.model_dir if flags_obj.enable_tensorboard else None)
with distribution_utils.get_strategy_scope(strategy):
runnable = resnet_runnable.ResnetRunnable(flags_obj, time_callback,
per_epoch_steps)
eval_interval = flags_obj.epochs_between_evals * per_epoch_steps
checkpoint_interval = (
steps_per_loop * 5 if flags_obj.enable_checkpoint_and_export else None)
summary_interval = steps_per_loop if flags_obj.enable_tensorboard else None
checkpoint_manager = tf.train.CheckpointManager(
runnable.checkpoint,
directory=flags_obj.model_dir,
max_to_keep=10,
step_counter=runnable.global_step,
checkpoint_interval=checkpoint_interval)
resnet_controller = orbit.Controller(
strategy,
runnable,
runnable if not flags_obj.skip_eval else None,
global_step=runnable.global_step,
steps_per_loop=steps_per_loop,
checkpoint_manager=checkpoint_manager,
summary_interval=summary_interval,
eval_summary_dir=os.path.join(flags_obj.model_dir, 'eval'))
time_callback.on_train_begin()
if not flags_obj.skip_eval:
resnet_controller.train_and_evaluate(
train_steps=per_epoch_steps * train_epochs,
eval_steps=eval_steps,
eval_interval=eval_interval)
else:
resnet_controller.train(steps=per_epoch_steps * train_epochs)
time_callback.on_train_end()
stats = build_stats(runnable, time_callback)
return stats
def main(_):
model_helpers.apply_clean(flags.FLAGS)
stats = run(flags.FLAGS)
logging.info('Run stats:\n%s', stats)
if __name__ == '__main__':
logging.set_verbosity(logging.INFO)
common.define_keras_flags()
app.run(main)