forked from klapo/CalRad
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCR.GrobsCompare.py
443 lines (370 loc) · 16.3 KB
/
CR.GrobsCompare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
####################################################################################################
# CR.GrobsCompare.ipynb
# Karl Lapo July/2015
####################################################################################################
# Plots comparisons between ground observations and radiation products
####################################################################################################
## Import statements
# netcdf/numpy/xray
import numpy as np
from datetime import datetime, timedelta
import pandas as pd
import xray
# OS interaction
import sys, pickle, os
from sys import platform as _platform
# import subplots function for plotting
import matplotlib
# Don't let matplotlib display to the screen
matplotlib.use('Agg')
from matplotlib.pyplot import subplots
import matplotlib.pyplot as plt
from matplotlib import cm
from mpl_toolkits.basemap import Basemap
import seaborn as sns
## Directory listing
if _platform == "linux" or _platform == "linux2":
dir_sys = '/home/disk/p/lapok/proj/CloudClimatology/'
elif _platform == "darwin":
dir_sys = '/Users/karllapo/gdrive/SnowHydrology/proj/CloudClimatology/'
dir_data = dir_sys+'data'
dir_print = dir_sys+'Graphics'
# List of sub-directory names for each data set
dir_NLDAS = '/NLDAS'
dir_SYN = '/CERES_SYN'
dir_grobs = '/GroundObs'
dir_VIC = '/VIC_MTCLIM'
dir_MODIS = '/MODIS.IRRAD'
# Directory for basemap pickle files
dir_bmap = dir_sys+'data/basemap'
####################################################################################################
# Functions
####################################################################################################
##### Discrete colorbar -- from Joe Hamman (https://github.com/jhamman/tonic/blob/master/tonic/plot_utils.py#L66-L94)
def cmap_discretize(cmap, n_colors=10):
"""Return discretized colormap.
Parameters
----------
cmap : str or colormap object
Colormap to discretize.
n_colors : int
Number of discrete colors to divide `cmap` into.
Returns
----------
disc_cmap : LinearSegmentedColormap
Discretized colormap.
"""
try:
cmap = cm.get_cmap(cmap)
except:
cmap = cm.get_cmap(eval(cmap))
colors_i = np.concatenate((np.linspace(0, 1., n_colors), (0., 0., 0., 0.)))
colors_rgba = cmap(colors_i)
indices = np.linspace(0, 1., n_colors + 1)
cdict = {}
for ki, key in enumerate(('red', 'green', 'blue')):
cdict[key] = [(indices[i], colors_rgba[i - 1, ki], colors_rgba[i, ki])
for i in range(n_colors + 1)]
return matplotlib.colors.LinearSegmentedColormap(cmap.name + "_%d" % n_colors,
cdict, 1024)
##### Basemap
def build_basemap(lon,lat,dir_bmap,bmap_name='basemap.pickle',rewrite=False):
# Lat/Lon handling - map extent
bmap_dict = {}
bmap_dict['lat_i'] = np.min(lat)
bmap_dict['lon_i'] = np.min(lon)
bmap_dict['lat_j'] = np.max(lat)
bmap_dict['lon_j'] = np.max(lon)
bmap_dict['lat_mid'] = lat[np.round(lat.size/2)]
bmap_dict['lon_mid'] = lon[np.round(lon.size/2)]
bmap_dict['lat_labels'] = np.arange(np.round(bmap_dict['lat_i']), np.round(bmap_dict['lat_j']), 2)
bmap_dict['lon_labels'] = np.arange(np.round(bmap_dict['lon_i']), np.round(bmap_dict['lon_j']), 2)
os.chdir(dir_bmap)
# Force rewriting basemap pickle file
if rewrite:
bmap = Basemap(llcrnrlon=bmap_dict['lon_i'],llcrnrlat=bmap_dict['lat_i'],\
urcrnrlon=bmap_dict['lon_j'],urcrnrlat=bmap_dict['lat_j'],\
rsphere=(6378137.00,6356752.3142),resolution='l',area_thresh=1000.,projection='lcc',\
lat_1=bmap_dict['lat_mid'],lon_0=bmap_dict['lon_mid'])
pickle.dump(bmap,open(bmap_name,'wb'),-1)
else:
try:
bmap = pickle.load(open(bmap_name,'rb'))
except IOError as e:
bmap = Basemap(llcrnrlon=bmap_dict['lon_i'],llcrnrlat=bmap_dict['lat_i'],\
urcrnrlon=bmap_dict['lon_j'],urcrnrlat=bmap_dict['lat_j'],\
rsphere=(6378137.00,6356752.3142),resolution='l',area_thresh=1000.,projection='lcc',\
lat_1=bmap_dict['lat_mid'],lon_0=bmap_dict['lon_mid'])
pickle.dump(bmap,open(bmap_name,'wb'),-1)
return bmap,bmap_dict
####################################
## Read previously processed data ##
####################################
# ///// See CC.CA.StatisticsMaps.Master for details on creation of xray data
###########
## NLDAS ##
os.chdir(dir_data+dir_NLDAS)
nldas = xray.open_dataset('CA.NLDAS.irrad.monthly.nc')
nldas = nldas.rename({'DLWRF_110_SFC':'LWdwn','DSWRF_110_SFC':'SWdwn'})
#########
## SYN ##
os.chdir(dir_data+dir_SYN)
syn = xray.open_dataset('CA.SYN.irrad.monthly.nc')
syn.longitude.values = syn.longitude.values-360
syn.latitude.values = syn.latitude.values[::-1]
# Flip the syn array spatially
for d in np.arange(syn.time.size):
syn.SWdwn.values[d-1,:,:] = np.flipud(syn.SWdwn.values[d-1,:,:])
syn.LWdwn.values[d-1,:,:] = np.flipud(syn.LWdwn.values[d-1,:,:])
############
## MTCLIM ##
os.chdir(dir_data+dir_VIC)
mtclim = xray.open_dataset('CA.MTCLIM.irrad.monthly.nc')
#########################
## Ground Observations ##
os.chdir(dir_data+dir_grobs)
grobs = xray.open_dataset('CA.grobs.irrad.monthly.nc')
grobs.SWdwn.values[grobs.SWdwn.values == 0] = np.nan
grobs = grobs.rename({'lon':'longitude','lat':'latitude'})
grobs.longitude.values = -grobs.longitude.values
###########
## MODIS ##
os.chdir(dir_data+dir_MODIS)
modis = xray.open_dataset('CA.MODIS.irrad.monthly.nc')
modis.SWdwn.values[modis.SWdwn.values == 0] = np.nan
modis = modis.rename({'lon':'longitude','lat':'latitude'})
## List w/ all irradiance datasets
monthly_mean = {}
monthly_mean['syn'] = syn
monthly_mean['nldas'] = nldas
monthly_mean['mtclim'] = mtclim
monthly_mean['modis'] = modis
monthly_mean['grobs'] = grobs
####################################################
## Find grid point containing each ground station ##
####################################################
pr_names = ['mtclim','syn','nldas','modis']
# Station lat and lon
lon_stat = grobs.longitude.values
lat_stat = grobs.latitude.values
for pr in pr_names:
# lat/lon for product
lon_rad = monthly_mean[pr].longitude.values
lat_rad = monthly_mean[pr].latitude.values
# mesh
lonm, latm = np.meshgrid(lon_rad,lat_rad)
# Empty numpy array
to_merge = np.empty((monthly_mean[pr].time.size,grobs.station.size))
## Product values in each grid containing station
for stat in grobs.station.values:
# Station index
stat_ind = np.where(stat == grobs.station.values)
# Distance to product grid lat-lon
d = (latm-lat_stat[stat_ind])**2 + (lonm-lon_stat[stat_ind])**2
# Index of closest product grid
dind = np.where(d==np.amin(d))
# Grad grid values at the station, put into xray dataset
to_merge[:,stat_ind[0]] = monthly_mean[pr].SWdwn.values[:,dind[0][0],dind[1][0],np.newaxis]
## Merge products w/ grobs xray structure
to_merge_ds = xray.Dataset({pr:(('time','station'),to_merge), \
'time':monthly_mean[pr].time.values,\
'station':grobs.station.values})
grobs = grobs.merge(to_merge_ds)
#########################################
## Ground Observation Comparison Plots ##
#########################################
## product names, plotting variables, coordinates etc
# Product names
pr_names = ['grobs','mtclim','nldas','syn','modis']
# colors
SWmin_delta = -50
SWmax_delta = 50
cmap = cmap_discretize(cm.gnuplot2,15)
cmap_delta = cmap_discretize(cm.RdBu_r,11)
# Build basemap
lat = monthly_mean['mtclim'].latitude.values
lon = monthly_mean['mtclim'].longitude.values
bmp,bmd = build_basemap(lon,lat,dir_bmap,'CA.Domain.bmp.pickle',rewrite=True)
lat_labels = bmd['lat_labels']
lon_labels = bmd['lon_labels']
# Station lat and lon
lon_stat = grobs.longitude.values
lat_stat = grobs.latitude.values
## Loop through dates
for d in pd.date_range(start='2002-10-01',end='2012-10-01',freq='M'):
print('Full domain: '+str(d))
fig = plt.figure(figsize=(12,6))
gs = matplotlib.gridspec.GridSpec(2,6,width_ratios=[16,16,16,16,16,1])
## Color range
SWmax = 0
SWmin = 500
for pr in pr_names:
if monthly_mean[pr].SWdwn.loc[d:d].any() \
and not np.isnan(np.nanmax(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values))).any():
SWmax = max(np.nanmax(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)),SWmax)
SWmax = np.round(SWmax/10)*10
if monthly_mean[pr].SWdwn.loc[d:d].any() \
and np.nanmin(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)) > 0 \
and not np.isnan(np.nanmin(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values))).any():
SWmin = min(np.nanmin(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)),SWmin)
SWmin = np.round(SWmin/10)*10
dSW = 10
## Monthly averages
for ind,pr in enumerate(pr_names):
ax = plt.subplot(gs[0,ind])
# Lat/Lon handling - product coords
lon_rad,lat_rad = np.meshgrid(monthly_mean[pr].longitude.values,monthly_mean[pr].latitude.values)
## Monthly value for each product
if monthly_mean[pr].SWdwn.loc[d:d].any() and not pr == 'grobs' :
SW_for_plot = np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)
SW_for_plot = np.ma.masked_where(np.isnan(SW_for_plot),SW_for_plot)
im_avg = bmp.pcolormesh(lon_rad,lat_rad,SW_for_plot,\
cmap=cmap,vmin=SWmin,vmax=SWmax,shading='flat',latlon=True)
elif monthly_mean[pr].SWdwn.loc[d:d].any() and pr == 'grobs':
im_avg = bmp.scatter(lon_stat,lat_stat,c=monthly_mean[pr].SWdwn.loc[d:d].values, \
s=75, cmap=cmap, vmin=SWmin, vmax=SWmax, linewidths=.25,latlon=True)
ax.set_title((pr))
## Format
if ind == 0:
bmp.drawparallels(lat_labels,labels=[1,0,0,0])
else:
bmp.drawparallels(lat_labels)
bmp.drawmeridians(lon_labels,labels=[0,0,0,1])
# political boundaries.
bmp.drawstates()
bmp.drawcoastlines()
bmp.drawcounties()
## Difference from ground observation values
if not pr == 'grobs':
ax = plt.subplot(gs[1,ind])
im_dif = bmp.scatter(lon_stat,lat_stat, c=grobs[pr].loc[d:d].values-grobs.SWdwn.loc[d:d].values,\
s=75,cmap=cmap_delta,vmin=SWmin_delta,vmax=SWmax_delta,linewidths=.25,latlon=True)
## Format
# Title
ax.set_title((pr+"- ground obs"))
# Axis
if ind == 1:
bmp.drawparallels(lat_labels,labels=[1,0,0,0])
else:
bmp.drawparallels(lat_labels)
bmp.drawmeridians(lon_labels,labels=[0,0,0,1])
# political boundaries.
bmp.drawstates()
bmp.drawcoastlines()
bmp.drawcounties()
## Final formatting
plt.tight_layout
# Colorbar - monthly values
caxi=plt.subplot(gs[0,-1])
cbar=plt.colorbar(im_avg, cax=caxi, orientation = "vertical",\
ticks=np.arange(SWmin,SWmax+dSW,dSW),spacing='proportional')
cbar.ax.set_ylabel(('Irradiance (Wm$^{-2}$)'))
# Colorbar - difference
caxi=plt.subplot(gs[1,-1])
cbar = plt.colorbar(im_dif, cax=caxi, orientation = "vertical",spacing='proportional')
cbar.ax.set_ylabel(('Difference (Wm$^{-2}$)'))
fig.tight_layout()
os.chdir(dir_print)
outdate = pd.to_datetime(d)
outdate = outdate.strftime('%Y_%m')
fname = 'GrObs.MonthlyDiff.'+str(outdate)+'.png'
fig.savefig(fname)
plt.close(fig)
##################################################################
## Ground Observation Comparison Plots -- Mountain Observations ##
##################################################################
## product names, plotting variables, coordinates etc
# Product names
pr_names = ['grobs','mtclim','nldas','syn','modis']
# colors
SWmin_delta = -50
SWmax_delta = 50
# Station lat and lon
lon_stat = grobs.longitude.values
lat_stat = grobs.latitude.values
# Lat/Lon handling - map extent
lat = np.array((36,38))
lon = np.array((-120,-118))
bmp,bmd = build_basemap(lon,lat,dir_bmap,'CAMnt.Domain.bmp.pickle',rewrite=True)
lat_labels = bmd['lat_labels']
lon_labels = bmd['lon_labels']
## Loop through dates
for d in pd.date_range(start='2002-10-01',end='2002-11-01',freq='M'):
print('Mountain domain: '+str(d))
fig = plt.figure(figsize=(12,6))
gs = matplotlib.gridspec.GridSpec(2,6,width_ratios=[16,16,16,16,16,1])
## Color range
SWmax = 0
SWmin = 500
for pr in pr_names:
if monthly_mean[pr].SWdwn.loc[d:d].any() \
and not np.isnan(np.nanmax(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values))).any():
SWmax = max(np.nanmax(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)),SWmax)
SWmax = np.round(SWmax/10)*10
if monthly_mean[pr].SWdwn.loc[d:d].any() \
and np.nanmin(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)) > 0 \
and not np.isnan(np.nanmin(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values))).any():
SWmin = min(np.nanmin(np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)),SWmin)
SWmin = np.round(SWmin/10)*10
dSW = 10
## Monthly averages
for ind,pr in enumerate(pr_names):
ax = plt.subplot(gs[0,ind])
# Lat/Lon handling - product coords
lon_rad,lat_rad = np.meshgrid(monthly_mean[pr].longitude.values,monthly_mean[pr].latitude.values)
## Monthly value for each product
if monthly_mean[pr].SWdwn.loc[d:d].any() and not pr == 'grobs' :
SW_for_plot = np.squeeze(monthly_mean[pr].SWdwn.loc[d:d].values)
SW_for_plot = np.ma.masked_where(np.isnan(SW_for_plot),SW_for_plot)
im_avg = bmp.pcolormesh(lon_rad,lat_rad,SW_for_plot,\
cmap=cm.gnuplot2,vmin=SWmin,vmax=SWmax,shading='flat',latlon=True)
elif monthly_mean[pr].SWdwn.loc[d:d].any() and pr == 'grobs':
im_avg = bmp.scatter(lon_stat,lat_stat,c=monthly_mean[pr].SWdwn.loc[d:d].values, \
s=75, cmap= cm.gnuplot2, vmin=SWmin, vmax=SWmax, linewidths=.25,latlon=True)
ax.set_title((pr))
## Format
if ind == 0:
bmp.drawparallels(lat_labels,labels=[1,0,0,0])
else:
bmp.drawparallels(lat_labels)
bmp.drawmeridians(lon_labels,labels=[0,0,0,1])
# political boundaries.
bmp.drawstates()
bmp.drawcoastlines()
bmp.drawcounties()
## Difference from ground observation values
if not pr == 'grobs':
ax = plt.subplot(gs[1,ind])
im_dif = bmp.scatter(lon_stat,lat_stat, c=grobs[pr].loc[d:d].values-grobs.SWdwn.loc[d:d].values,\
s=75,cmap= cm.RdBu_r,vmin=SWmin_delta,vmax=SWmax_delta,linewidths=.25,latlon=True)
## Format
# Title
ax.set_title((pr+"- ground obs"))
# Axis
if ind == 1:
bmp.drawparallels(lat_labels,labels=[1,0,0,0])
else:
bmp.drawparallels(lat_labels)
bmp.drawmeridians(lon_labels,labels=[0,0,0,1])
# political boundaries.
bmp.drawstates()
bmp.drawcoastlines()
bmp.drawcounties()
## Final formatting
plt.tight_layout
# Colorbar - monthly values
caxi=plt.subplot(gs[0,-1])
cbar=plt.colorbar(im_avg, cax=caxi, orientation = "vertical",\
ticks=np.arange(SWmin,SWmax+dSW,dSW),spacing='proportional')
cbar.ax.set_ylabel(('Irradiance (Wm$^{-2}$)'))
# Colorbar - difference
caxi=plt.subplot(gs[1,-1])
cbar = plt.colorbar(im_dif, cax=caxi, orientation = "vertical",spacing='proportional')
cbar.ax.set_ylabel(('Difference (Wm$^{-2}$)'))
fig.tight_layout()
os.chdir(dir_print)
outdate = pd.to_datetime(d)
outdate = outdate.strftime('%Y_%m')
fname = 'GrObs_Mountain.MonthlyDiff.'+str(outdate)+'.png'
fig.savefig(fname)
plt.close(fig)