forked from leptonai/search_with_lepton
-
-
Notifications
You must be signed in to change notification settings - Fork 74
/
Copy pathsearch4all.py
1001 lines (894 loc) · 40.1 KB
/
search4all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import concurrent.futures
import json
import os
import re
import requests
import traceback
import httpx
from typing import AsyncGenerator
from openai import AsyncOpenAI
import asyncio
from anthropic import AsyncAnthropic
from loguru import logger
from dotenv import load_dotenv
import urllib.parse
import trafilatura
from trafilatura import bare_extraction
import tldextract
from concurrent.futures import ThreadPoolExecutor
from urllib.parse import urlparse
load_dotenv()
import sanic
from sanic import Sanic
import sanic.exceptions
from sanic.exceptions import HTTPException, InvalidUsage
from sqlitedict import SqliteDict
app = Sanic("search")
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
################################################################################
# Constant values for the RAG model.
################################################################################
# Search engine related. You don't really need to change this.
BING_SEARCH_V7_ENDPOINT = "https://api.bing.microsoft.com/v7.0/search"
BING_MKT = "en-US"
GOOGLE_SEARCH_ENDPOINT = "https://customsearch.googleapis.com/customsearch/v1"
SERPER_SEARCH_ENDPOINT = "https://google.serper.dev/search"
SEARCHAPI_SEARCH_ENDPOINT = "https://www.searchapi.io/api/v1/search"
SEARCH1API_SEARCH_ENDPOINT = "https://api.search1api.com/search/"
# Specify the number of references from the search engine you want to use.
# 8 is usually a good number.
REFERENCE_COUNT = 8
# Specify the default timeout for the search engine. If the search engine
# does not respond within this time, we will return an error.
DEFAULT_SEARCH_ENGINE_TIMEOUT = 5
# 默认记录的对话历史长度
MAX_HISTORY_LEN = 10
# If the user did not provide a query, we will use this default query.
_default_query = "Who said 'live long and prosper'?"
# This is really the most important part of the rag model. It gives instructions
# to the model on how to generate the answer. Of course, different models may
# behave differently, and we haven't tuned the prompt to make it optimal - this
# is left to you, application creators, as an open problem.
_rag_query_text = """
You are a large language AI assistant built by AI. You are given a user question, and please write clean, concise and accurate answer to the question. You will be given a set of related contexts to the question, each starting with a reference number like [[citation:x]], where x is a number. Please use the context and cite the context at the end of each sentence if applicable.
Your answer must be correct, accurate and written by an expert using an unbiased and professional tone. Please limit to 1024 tokens. Do not give any information that is not related to the question, and do not repeat. Say "information is missing on" followed by the related topic, if the given context do not provide sufficient information.
Please cite the contexts with the reference numbers, in the format [citation:x]. If a sentence comes from multiple contexts, please list all applicable citations, like [citation:3][citation:5]. Other than code and specific names and citations, your answer must be written in the same language as the question.
Here are the set of contexts:
{context}
Remember, don't blindly repeat the contexts verbatim. And here is the user question:
"""
# A set of stop words to use - this is not a complete set, and you may want to
# add more given your observation.
stop_words = [
"<|im_end|>",
"[End]",
"[end]",
"\nReferences:\n",
"\nSources:\n",
"End.",
]
# This is the prompt that asks the model to generate related questions to the
# original question and the contexts.
# Ideally, one want to include both the original question and the answer from the
# model, but we are not doing that here: if we need to wait for the answer, then
# the generation of the related questions will usually have to start only after
# the whole answer is generated. This creates a noticeable delay in the response
# time. As a result, and as you will see in the code, we will be sending out two
# consecutive requests to the model: one for the answer, and one for the related
# questions. This is not ideal, but it is a good tradeoff between response time
# and quality.
class KVWrapper(object):
def __init__(self, kv_name):
self._db = SqliteDict(filename=kv_name)
def get(self, key: str):
v = self._db[key]
if v is None:
raise KeyError(key)
return v
def put(self, key: str, value: str):
self._db[key] = value
self._db.commit()
def append(self, key: str, value):
""" 记录聊天历史 """
self._db[key] = self._db.get(key, [])
# 最长记录的对话轮数 MAX_HISTORY_LEN
_ = self._db[key][-MAX_HISTORY_LEN:]
_.append(value)
self._db[key] = _
self._db.commit()
# 格式化输出部分
def extract_all_sections(text: str):
# 定义正则表达式模式以匹配各部分
sections_pattern = r"(.*?)__LLM_RESPONSE__(.*?)(__RELATED_QUESTIONS__(.*))?$"
# 使用正则表达式查找各部分内容
match = re.search(sections_pattern, text, re.DOTALL)
# 从匹配结果中提取文本,如果没有匹配则返回None
if match:
search_results = match.group(1).strip() # 前置文本作为搜索结果
llm_response = match.group(2).strip() # 问题回答部分
related_questions = match.group(4).strip() if match.group(4) else "" # 相关问题文本,如果不存在则返回空字符串
else:
search_results, llm_response, related_questions = None, None, None
return search_results, llm_response, related_questions
def search_with_search1api(query: str, search1api_key: str):
"""Search with bing and return the contexts."""
payload = {
"max_results": 10,
"query": query,
"search_service": "google"
}
headers = {
"Authorization": f"Bearer {search1api_key}",
"Content-Type": "application/json"
}
response = requests.request("POST", SEARCH1API_SEARCH_ENDPOINT, json=payload, headers=headers)
if not response.ok:
logger.error(f"{response.status_code} {response.text}")
raise HTTPException("Search engine error.")
json_content = response.json()
try:
contexts = json_content["results"][:REFERENCE_COUNT]
for item in contexts:
item["name"] = item["title"]
item["url"] = item["link"]
except KeyError:
logger.error(f"Error encountered: {json_content}")
return []
return contexts
def search_with_bing(query: str, subscription_key: str):
"""
Search with bing and return the contexts.
"""
params = {"q": query, "mkt": BING_MKT}
response = requests.get(
BING_SEARCH_V7_ENDPOINT,
headers={"Ocp-Apim-Subscription-Key": subscription_key},
params=params,
timeout=DEFAULT_SEARCH_ENGINE_TIMEOUT,
)
if not response.ok:
logger.error(f"{response.status_code} {response.text}")
raise HTTPException("Search engine error.")
json_content = response.json()
try:
contexts = json_content["webPages"]["value"][:REFERENCE_COUNT]
except KeyError:
logger.error(f"Error encountered: {json_content}")
return []
return contexts
def search_with_google(query: str, subscription_key: str, cx: str):
"""
Search with google and return the contexts.
"""
params = {
"key": subscription_key,
"cx": cx,
"q": query,
"num": REFERENCE_COUNT,
}
response = requests.get(
GOOGLE_SEARCH_ENDPOINT, params=params, timeout=DEFAULT_SEARCH_ENGINE_TIMEOUT
)
if not response.ok:
logger.error(f"{response.status_code} {response.text}")
raise HTTPException("Search engine error.")
json_content = response.json()
try:
contexts = json_content["items"][:REFERENCE_COUNT]
for item in contexts:
item["name"] = item["title"]
item["url"] = item["link"]
except KeyError:
logger.error(f"Error encountered: {json_content}")
return []
return contexts
def search_with_serper(query: str, subscription_key: str):
"""
Search with serper and return the contexts.
"""
payload = json.dumps(
{
"q": query,
"num": (
REFERENCE_COUNT
if REFERENCE_COUNT % 10 == 0
else (REFERENCE_COUNT // 10 + 1) * 10
),
}
)
headers = {"X-API-KEY": subscription_key, "Content-Type": "application/json"}
logger.info(
f"{payload} {headers} {subscription_key} {query} {SERPER_SEARCH_ENDPOINT}"
)
response = requests.post(
SERPER_SEARCH_ENDPOINT,
headers=headers,
data=payload,
timeout=DEFAULT_SEARCH_ENGINE_TIMEOUT,
)
if not response.ok:
logger.error(f"{response.status_code} {response.text}")
raise HTTPException("Search engine error.")
json_content = response.json()
try:
# convert to the same format as bing/google
contexts = []
if json_content.get("knowledgeGraph"):
url = json_content["knowledgeGraph"].get("descriptionUrl") or json_content[
"knowledgeGraph"
].get("website")
snippet = json_content["knowledgeGraph"].get("description")
if url and snippet:
contexts.append(
{
"name": json_content["knowledgeGraph"].get("title", ""),
"url": url,
"snippet": snippet,
}
)
if json_content.get("answerBox"):
url = json_content["answerBox"].get("url")
snippet = json_content["answerBox"].get("snippet") or json_content[
"answerBox"
].get("answer")
if url and snippet:
contexts.append(
{
"name": json_content["answerBox"].get("title", ""),
"url": url,
"snippet": snippet,
}
)
contexts += [
{"name": c["title"], "url": c["link"], "snippet": c.get("snippet", "")}
for c in json_content["organic"]
]
return contexts[:REFERENCE_COUNT]
except KeyError:
logger.error(f"Error encountered: {json_content}")
return []
def search_with_searchapi(query: str, subscription_key: str):
"""
Search with SearchApi.io and return the contexts.
"""
payload = {
"q": query,
"engine": "google",
"num": (
REFERENCE_COUNT
if REFERENCE_COUNT % 10 == 0
else (REFERENCE_COUNT // 10 + 1) * 10
),
}
headers = {
"Authorization": f"Bearer {subscription_key}",
"Content-Type": "application/json",
}
logger.info(
f"{payload} {headers} {subscription_key} {query} {SEARCHAPI_SEARCH_ENDPOINT}"
)
response = requests.get(
SEARCHAPI_SEARCH_ENDPOINT,
headers=headers,
params=payload,
timeout=30,
)
if not response.ok:
logger.error(f"{response.status_code} {response.text}")
raise HTTPException("Search engine error.")
json_content = response.json()
try:
# convert to the same format as bing/google
contexts = []
if json_content.get("answer_box"):
if json_content["answer_box"].get("organic_result"):
title = (
json_content["answer_box"].get("organic_result").get("title", "")
)
url = json_content["answer_box"].get("organic_result").get("link", "")
if json_content["answer_box"].get("type") == "population_graph":
title = json_content["answer_box"].get("place", "")
url = json_content["answer_box"].get("explore_more_link", "")
title = json_content["answer_box"].get("title", "")
url = json_content["answer_box"].get("link")
snippet = json_content["answer_box"].get("answer") or json_content[
"answer_box"
].get("snippet")
if url and snippet:
contexts.append({"name": title, "url": url, "snippet": snippet})
if json_content.get("knowledge_graph"):
if json_content["knowledge_graph"].get("source"):
url = json_content["knowledge_graph"].get("source").get("link", "")
url = json_content["knowledge_graph"].get("website", "")
snippet = json_content["knowledge_graph"].get("description")
if url and snippet:
contexts.append(
{
"name": json_content["knowledge_graph"].get("title", ""),
"url": url,
"snippet": snippet,
}
)
contexts += [
{"name": c["title"], "url": c["link"], "snippet": c.get("snippet", "")}
for c in json_content["organic_results"]
]
if json_content.get("related_questions"):
for question in json_content["related_questions"]:
if question.get("source"):
url = question.get("source").get("link", "")
else:
url = ""
snippet = question.get("answer", "")
if url and snippet:
contexts.append(
{
"name": question.get("question", ""),
"url": url,
"snippet": snippet,
}
)
return contexts[:REFERENCE_COUNT]
except KeyError:
logger.error(f"Error encountered: {json_content}")
return []
def extract_url_content(url):
logger.info(url)
downloaded = trafilatura.fetch_url(url)
content = trafilatura.extract(downloaded)
logger.info(url +"______"+ content)
return {"url":url, "content":content}
def search_with_searXNG(query:str,url:str):
content_list = []
try:
safe_string = urllib.parse.quote_plus(":auto " + query)
response = requests.get(url+'?q=' + safe_string + '&category=general&format=json&engines=bing%2Cgoogle')
response.raise_for_status()
search_results = response.json()
pedding_urls = []
conv_links = []
if search_results.get('results'):
for item in search_results.get('results')[0:9]:
name = item.get('title')
snippet = item.get('content')
url = item.get('url')
pedding_urls.append(url)
if url:
url_parsed = urlparse(url)
domain = url_parsed.netloc
icon_url = url_parsed.scheme + '://' + url_parsed.netloc + '/favicon.ico'
site_name = tldextract.extract(url).domain
conv_links.append({
'site_name':site_name,
'icon_url':icon_url,
'title':name,
'name':name,
'url':url,
'snippet':snippet
})
results = []
futures = []
# executor = ThreadPoolExecutor(max_workers=10)
# for url in pedding_urls:
# futures.append(executor.submit(extract_url_content,url))
# try:
# for future in futures:
# res = future.result(timeout=5)
# results.append(res)
# except concurrent.futures.TimeoutError:
# logger.error("任务执行超时")
# executor.shutdown(wait=False,cancel_futures=True)
# logger.info(results)
# for content in results:
# if content and content.get('content'):
# item_dict = {
# "url":content.get('url'),
# "name":content.get('url'),
# "snippet":content.get('content'),
# "content": content.get('content'),
# "length":len(content.get('content'))
# }
# content_list.append(item_dict)
# logger.info("URL: {}".format(url))
# logger.info("=================")
if len(results)== 0 :
content_list = conv_links
return content_list
except Exception as ex:
logger.error(ex)
raise ex
def new_async_client(_app):
if "claude-3" in _app.ctx.model.lower():
return AsyncAnthropic(
api_key=os.getenv("ANTHROPIC_API_KEY")
)
else:
return AsyncOpenAI(
api_key=os.getenv("OPENAI_API_KEY") or os.getenv("GROQ_API_KEY"),
base_url=os.getenv("OPENAI_BASE_URL"),
http_client=_app.ctx.http_session,
)
@app.before_server_start
async def server_init(_app):
"""
Initializes global configs.
"""
_app.ctx.backend = os.getenv("BACKEND").upper()
# if _app.ctx.backend == "LEPTON":
# from leptonai import Client
# _app.ctx.leptonsearch_client = Client(
# "https://search-api.lepton.run/",
# token=os.getenv.get("LEPTON_WORKSPACE_TOKEN"),
# stream=True,
# timeout=httpx.Timeout(connect=10, read=120, write=120, pool=10),
# )
if _app.ctx.backend == "BING":
_app.ctx.search_api_key = os.getenv("BING_SEARCH_V7_SUBSCRIPTION_KEY")
_app.ctx.search_function = lambda query: search_with_bing(
query,
_app.ctx.search_api_key,
)
elif _app.ctx.backend == "GOOGLE":
_app.ctx.search_api_key = os.getenv("GOOGLE_SEARCH_API_KEY")
_app.ctx.search_function = lambda query: search_with_google(
query,
_app.ctx.search_api_key,
os.getenv("GOOGLE_SEARCH_CX"),
)
elif _app.ctx.backend == "SERPER":
_app.ctx.search_api_key = os.getenv("SERPER_SEARCH_API_KEY")
_app.ctx.search_function = lambda query: search_with_serper(
query,
_app.ctx.search_api_key,
)
elif _app.ctx.backend == "SEARCHAPI":
_app.ctx.search_api_key = os.getenv("SEARCHAPI_API_KEY")
_app.ctx.search_function = lambda query: search_with_searchapi(
query,
_app.ctx.search_api_key,
)
elif _app.ctx.backend == "SEARCH1API":
_app.ctx.search1api_key = os.getenv("SEARCH1API_KEY")
_app.ctx.search_function = lambda query: search_with_search1api(
query,
_app.ctx.search1api_key,
)
elif _app.ctx.backend == "SEARXNG":
logger.info(os.getenv("SEARXNG_BASE_URL"))
_app.ctx.search_function = lambda query: search_with_searXNG(
query,
os.getenv("SEARXNG_BASE_URL"),
)
else:
raise RuntimeError("Backend must be BING, GOOGLE, SERPER or SEARCHAPI or SEARCH1API.")
_app.ctx.model = os.getenv("LLM_MODEL")
_app.ctx.handler_max_concurrency = 16
# An executor to carry out async tasks, such as uploading to KV.
_app.ctx.executor = concurrent.futures.ThreadPoolExecutor(
max_workers=_app.ctx.handler_max_concurrency * 2
)
# Create the KV to store the search results.
logger.info("Creating KV. May take a while for the first time.")
_app.ctx.kv = KVWrapper(os.getenv("KV_NAME") or "search.db")
# whether we should generate related questions.
_app.ctx.should_do_related_questions = bool(
os.getenv("RELATED_QUESTIONS") in ("1", "yes", "true")
)
_app.ctx.should_do_chat_history = bool(
os.getenv("CHAT_HISTORY") in ("1", "yes", "true")
)
# Create httpx Session
_app.ctx.http_session = httpx.AsyncClient(
timeout=httpx.Timeout(connect=10, read=120, write=120, pool=10),
)
async def get_related_questions(_app, query, contexts):
"""
Gets related questions based on the query and context.
"""
_more_questions_prompt = r"""
You are a helpful assistant that helps the user to ask related questions, based on user's original question and the related contexts. Please identify worthwhile topics that can be follow-ups, and write questions no longer than 20 words each. Please make sure that specifics, like events, names, locations, are included in follow up questions so they can be asked standalone. For example, if the original question asks about "the Manhattan project", in the follow up question, do not just say "the project", but use the full name "the Manhattan project". Your related questions must be in the same language as the original question.
Here are the contexts of the question:
{context}
Remember, based on the original question and related contexts, suggest three such further questions. Do NOT repeat the original question. Each related question should be no longer than 20 words. Here is the original question:
""".format(
context="\n\n".join([c["snippet"] for c in contexts])
)
try:
logger.info('Start getting related questions')
if "claude-3" in _app.ctx.model.lower():
logger.info('Using Claude-3 model')
client = new_async_client(_app)
tools = [
{
"name": "ask_related_questions",
"description": "Get a list of questions related to the original question and context.",
"input_schema": {
"type": "object",
"properties": {
"questions": {
"type": "array",
"items": {
"type": "string",
"description": "A related question to the original question and context.",
}
}
},
"required": ["questions"]
}
}
]
response = await client.beta.tools.messages.create(
model=_app.ctx.model,
system=_more_questions_prompt,
max_tokens=1000,
tools=tools,
messages=[
{"role": "user", "content": query},
]
)
logger.info('Response received from Claude-3 model')
if response.content and len(response.content) > 0:
related = []
for block in response.content:
if block.type == "tool_use" and block.name == "ask_related_questions":
related = block.input["questions"]
break
else:
related = []
if related and isinstance(related, str):
try:
related = json.loads(related)
except json.JSONDecodeError:
logger.error("Failed to parse related questions as JSON")
return []
logger.info('Successfully got related questions')
return [{"question": question} for question in related[:5]]
else:
logger.info('Using OpenAI model')
openai_client = new_async_client(_app)
tools = [
{
"type": "function",
"function": {
"name": "ask_related_questions",
"description": "Get a list of questions related to the original question and context.",
"parameters": {
"type": "object",
"properties": {
"questions": {
"type": "array",
"items": {
"type": "string",
"description": "A related question to the original question and context.",
}
}
},
"required": ["questions"]
}
}
}
]
messages=[
{"role": "system", "content": _more_questions_prompt},
{"role": "user", "content": query},
]
request_body = {
"model": _app.ctx.model,
"messages": messages,
"max_tokens": 1000,
"tools": tools,
"tool_choice": {
"type": "function",
"function": {
"name": "ask_related_questions"
}
},
}
try:
llm_response = await openai_client.chat.completions.create(**request_body)
if llm_response.choices and llm_response.choices[0].message:
message = llm_response.choices[0].message
if message.tool_calls:
related = message.tool_calls[0].function.arguments
if isinstance(related, str):
related = json.loads(related)
logger.trace(f"Related questions: {related}")
return [{"question": question} for question in related["questions"][:5]]
elif message.content:
# 如果不存在 tool_calls 字段,但存在 content 字段,从 content 中提取相关问题
content = message.content
related_questions = content.split('\n')
related_questions = [q.strip() for q in related_questions if q.strip()]
# 提取带有序号的问题
cleaned_questions = []
for question in related_questions:
if question.startswith('1.') or question.startswith('2.') or question.startswith('3.'):
question = question[3:].strip() # 去除问题编号和空格
if question.startswith('"') and question.endswith('"'):
question = question[1:-1] # 去除首尾的双引号
elif question.startswith('"'):
question = question[1:] # 去除开头的双引号
elif question.endswith('"'):
question = question[:-1] # 去除结尾的双引号
cleaned_questions.append(question)
logger.trace(f"Related questions: {cleaned_questions}")
return [{"question": question} for question in cleaned_questions[:5]]
except Exception as e:
logger.error(f"Error occurred while sending request to OpenAI model: {str(e)}")
return []
except Exception as e:
logger.error(
f"Encountered error while generating related questions: {str(e)}"
)
return []
async def _raw_stream_response(
_app, contexts, llm_response, related_questions_future
) -> AsyncGenerator[str, None]:
"""
A generator that yields the raw stream response. You do not need to call
this directly. Instead, use the stream_and_upload_to_kv which will also
upload the response to KV.
"""
# First, yield the contexts.
yield json.dumps(contexts)
yield "\n\n__LLM_RESPONSE__\n\n"
# Second, yield the llm response.
if not contexts:
# Prepend a warning to the user
yield (
"(The search engine returned nothing for this query. Please take the"
" answer with a grain of salt.)\n\n"
)
if "claude-3" in _app.ctx.model.lower():
# Process Claude's stream response
async for text in llm_response:
yield text
else:
# Process OpenAI's stream response
async for chunk in llm_response:
if chunk.choices:
yield chunk.choices[0].delta.content or ""
# Third, yield the related questions. If any error happens, we will just
# return an empty list.
if related_questions_future is not None:
related_questions = await related_questions_future
try:
result = json.dumps(related_questions)
except Exception as e:
logger.error(f"encountered error: {e}\n{traceback.format_exc()}")
result = "[]"
yield "\n\n__RELATED_QUESTIONS__\n\n"
yield result
def get_query_object(request):
params = {k: v[0] for k, v in request.args.items()}
if request.method == "POST":
if "form" in request.content_type:
params.update({k: v[0] for k, v in request.form.items()})
else:
try:
if request.json:
params.update(request.json)
except InvalidUsage:
pass
return params
@app.route("/query", methods=["POST"])
async def query_function(request: sanic.Request):
"""
Query the search engine and returns the response.
The query can have the following fields:
- query: the user query.
- search_uuid: a uuid that is used to store or retrieve the search result. If
the uuid does not exist, generate and write to the kv. If the kv
fails, we generate regardless, in favor of availability. If the uuid
exists, return the stored result.
- generate_related_questions: if set to false, will not generate related
questions. Otherwise, will depend on the environment variable
RELATED_QUESTIONS. Default: true.
"""
_app = request.app
params = get_query_object(request)
query = params.get("query", None)
search_uuid = params.get("search_uuid", None)
generate_related_questions = params.get("generate_related_questions", True)
if not query:
raise HTTPException("query must be provided.")
# 定义传递给生成答案的聊天历史 以及搜索结果
chat_history = []
contexts = ""
# Note that, if uuid exists, we don't check if the stored query is the same
# as the current query, and simply return the stored result. This is to enable
# the user to share a searched link to others and have others see the same result.
if search_uuid:
if _app.ctx.should_do_chat_history:
# 开启了历史记录,读取历史记录
history = []
try:
history = await _app.loop.run_in_executor(
_app.ctx.executor, lambda sid: _app.ctx.kv.get(sid), f"{search_uuid}_history"
)
result = await _app.loop.run_in_executor(
_app.ctx.executor, lambda sid: _app.ctx.kv.get(sid), search_uuid
)
# return sanic.text(result)
except KeyError:
logger.info(f"Key {search_uuid} not found, will generate again.")
except Exception as e:
logger.error(
f"KV error: {e}\n{traceback.format_exc()}, will generate again."
)
# 如果存在历史记录
if history:
# 获取最后一次记录
last_entry = history[-1]
# 确定最后一次记录的数据完整性
old_query, search_results, llm_response = last_entry.get("query", ""), last_entry.get("search_results", ""), last_entry.get("llm_response", "")
# 如果存在旧查询和搜索结果
if old_query and search_results:
if old_query != query:
# 从历史记录中获取搜索结果(最后一条)
contexts = history[-1]["search_results"]
# 将历史聊天的提问和回答提取
chat_history = []
for entry in history:
if "query" in entry and "llm_response" in entry:
chat_history.append({"role": "user", "content": entry["query"]})
chat_history.append({"role": "assistant", "content": entry["llm_response"]})
else:
return sanic.text(result["txt"]) # 查询未改变,直接返回结果
else:
try:
result = await _app.loop.run_in_executor(
_app.ctx.executor, lambda sid: _app.ctx.kv.get(sid), search_uuid
)
# debug
if isinstance(result, dict):
# 只有相同的查询才返回同一个结果, 兼容多轮对话。
if result["query"] == query:
return sanic.text(result["txt"])
else:
# TODO: 兼容旧数据代码 之后删除
# 旧数据强制刷新
# return sanic.text(result)
pass
except KeyError:
logger.info(f"Key {search_uuid} not found, will generate again.")
except Exception as e:
logger.error(
f"KV error: {e}\n{traceback.format_exc()}, will generate again."
)
else:
raise HTTPException("search_uuid must be provided.")
# if _app.ctx.backend == "LEPTON":
# # delegate to the lepton search api.
# result = _app.ctx.leptonsearch_client.query(
# query=query,
# search_uuid=search_uuid,
# generate_related_questions=generate_related_questions,
# )
# return StreamingResponse(content=result, media_type="text/html")
# First, do a search query.
# query = query or _default_query
# Basic attack protection: remove "[INST]" or "[/INST]" from the query
query = re.sub(r"\[/?INST\]", "", query)
# 开启聊天历史并且有有效数据 则不再重新请求搜索
if not _app.ctx.should_do_chat_history or contexts in ("", None):
contexts = await _app.loop.run_in_executor(
_app.ctx.executor, _app.ctx.search_function, query
)
system_prompt = _rag_query_text.format(
context="\n\n".join(
[f"[[citation:{i+1}]] {c['snippet']}" for i, c in enumerate(contexts)]
)
)
try:
if _app.ctx.should_do_related_questions and generate_related_questions:
# While the answer is being generated, we can start generating
# related questions as a future.
related_questions_future = get_related_questions(_app, query, contexts)
if "claude-3" in _app.ctx.model.lower():
logger.info("Using Claude for generating LLM response")
client = new_async_client(_app)
messages=[
{"role": "user", "content": query},
]
messages = []
if chat_history:
messages.extend(chat_history) # 将历史记录添加到列表开头
# 然后添加当前查询消息
messages.append({"role": "user", "content": query})
response = await request.respond(content_type="text/html")
all_yielded_results = []
# First, yield the contexts.
logger.info("Sending initial context and LLM response marker.")
context_str = json.dumps(contexts)
await response.send(context_str)
all_yielded_results.append(context_str)
await response.send("\n\n__LLM_RESPONSE__\n\n")
all_yielded_results.append("\n\n__LLM_RESPONSE__\n\n")
# Second, yield the llm response.
if not contexts:
warning = "(The search engine returned nothing for this query. Please take the answer with a grain of salt.)\n\n"
await response.send(warning)
all_yielded_results.append(warning)
if related_questions_future is not None:
related_questions_task = asyncio.create_task(related_questions_future)
async with client.messages.stream(
model=_app.ctx.model,
max_tokens=1024,
system=system_prompt,
messages=messages
)as stream:
async for text in stream.text_stream:
all_yielded_results.append(text)
await response.send(text)
logger.info("Finished streaming LLM response")
# 在生成回复的同时异步等待相关问题任务完成
if related_questions_future is not None:
try:
logger.info("About to send related questions.")
related_questions = await related_questions_task
logger.info("Related questions sent.")
result = json.dumps(related_questions)
await response.send("\n\n__RELATED_QUESTIONS__\n\n")
all_yielded_results.append("\n\n__RELATED_QUESTIONS__\n\n")
await response.send(result)
all_yielded_results.append(result)
except Exception as e:
logger.error(f"Error during related questions generation: {e}")
else:
logger.info("Using OpenAI for generating LLM response")
openai_client = new_async_client(_app)
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": query},
]
if chat_history and len(chat_history) % 2 == 0:
# 将历史插入到消息中 index = 1 的位置
messages[1:1] = chat_history
llm_response = await openai_client.chat.completions.create(
model=_app.ctx.model,
messages=messages,
max_tokens=1024,
stream=True,
temperature=0.9,
)
response = await request.respond(content_type="text/html")
# First, stream and yield the results.
all_yielded_results = []
async for result in _raw_stream_response(
_app, contexts, llm_response, related_questions_future
):
all_yielded_results.append(result)
await response.send(result)
logger.info("Finished streaming LLM response")
except Exception as e:
logger.error(f"encountered error: {e}\n{traceback.format_exc()}")
return sanic.json({"message": "Internal server error."}, 503)
# Second, upload to KV. Note that if uploading to KV fails, we will silently
# ignore it, because we don't want to affect the user experience.
await response.eof()
if _app.ctx.should_do_chat_history:
# 保存聊天历史
_search_results, _llm_response, _related_questions = await _app.loop.run_in_executor(
_app.ctx.executor, extract_all_sections, "".join(all_yielded_results)
)
if _search_results:
_search_results = json.loads(_search_results)
if _related_questions:
_related_questions = json.loads(_related_questions)
_ = _app.ctx.executor.submit(
_app.ctx.kv.append, f"{search_uuid}_history", {
"query": query,
"search_results": _search_results,
"llm_response": _llm_response,
"related_questions": _related_questions
})
_ = _app.ctx.executor.submit(
_app.ctx.kv.put, search_uuid, {"query": query, "txt": "".join(all_yielded_results)} # 原来的缓存是直接根据sid返回结果,开启聊天历史后 同一个sid存储多轮对话,因此需要存储 query 兼容多轮对话
)
app.static("/ui", os.path.join(BASE_DIR, "ui/"), name="/")
app.static("/", os.path.join(BASE_DIR, "ui/index.html"), name="ui")
if __name__ == "__main__":
port = int(os.getenv("PORT") or 8800)
workers = int(os.getenv("WORKERS") or 1)