-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathCAD.py
394 lines (302 loc) · 12.2 KB
/
CAD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import pickle
import numpy as np
from API import *
from randomSolver import *
from pointerNetwork import *
from programGraph import *
from SMC import *
from ForwardSample import *
from MCTS import MCTS
from CNN import *
import time
import random
RESOLUTION = 32
import torch
import torch.nn as nn
class CSG(Program):
lexicon = ['+','-','t','c','r'] + list(range(RESOLUTION))
def __init__(self):
self._rendering = None
def __repr__(self):
return str(self)
def __ne__(self, o): return not (self == o)
def execute(self):
if self._rendering is None: self._rendering = self.render()
return self._rendering
def IoU(self, other):
if isinstance(other, CSG): other = other.execute()
return (self.execute()*other).sum()/(self.execute() + other - self.execute()*other).sum()
def render(self, w=None, h=None):
w = w or RESOLUTION
h = h or RESOLUTION
a = np.zeros((w,h))
for x in range(w):
for y in range(h):
if (x,y) in self:
a[x,y] = 1
return a
# The type of CSG's
tCSG = BaseType(CSG)
class Rectangle(CSG):
token = 'r'
type = arrow(integer(0, RESOLUTION - 1), integer(0, RESOLUTION - 1), tCSG)
def __init__(self, w, h):
super(Rectangle, self).__init__()
self.w = w
self.h = h
def toTrace(self): return [self]
def __str__(self):
return f"(r {self.w} {self.h})"
def children(self): return []
def __eq__(self, o):
return isinstance(o, Rectangle) and o.w == self.w and o.h == self.h
def __hash__(self):
return hash(('r',self.w,self.h))
def serialize(self):
return (self.__class__.token, self.w, self.h)
def __contains__(self, p):
return p[0] >= 0 and p[1] >= 0 and \
p[0] < self.w and p[1] < self.h
class Circle(CSG):
token = 'c'
type = arrow(integer(0, RESOLUTION - 1), tCSG)
def __init__(self, r):
super(Circle, self).__init__()
self.r = r
def toTrace(self): return [self]
def __str__(self):
return f"(c {self.r})"
def children(self): return []
def __eq__(self, o):
return isinstance(o, Circle) and o.r == self.r
def __hash__(self):
return hash(('c', str(self.r)))
def serialize(self):
return (self.__class__.token, self.r)
def __contains__(self, p):
return p[0]*p[0] + p[1]*p[1] <= self.r*self.r
class Translation(CSG):
token = 't'
type = arrow(integer(0, RESOLUTION - 1), integer(0, RESOLUTION - 1), tCSG, tCSG)
def __init__(self, x, y, child):
super(Translation, self).__init__()
self.v = (x, y)
self.child = child
def toTrace(self): return self.child.toTrace() + [self]
def __str__(self):
return f"(t {self.v} {self.child})"
def children(self): return [self.child]
def serialize(self):
return ('t', self.v[0], self.v[1], self.child)
def __eq__(self, o):
return isinstance(o, Translation) and o.v == self.v and self.child == o.child
def __hash__(self):
return hash(('t', self.v, self.child))
def __contains__(self, p):
p = (p[0] - self.v[0],
p[1] - self.v[1])
return p in self.child
class Union(CSG):
token = '+'
type = arrow(tCSG, tCSG, tCSG)
def __init__(self, a, b):
super(Union, self).__init__()
self.elements = [a,b]
def toTrace(self):
return self.elements[0].toTrace() + self.elements[1].toTrace() + [self]
def __str__(self):
return f"(+ {str(self.elements[0])} {str(self.elements[1])})"
def children(self): return self.elements
def serialize(self):
return ('+',list(self.elements)[0],list(self.elements)[1])
def __eq__(self, o):
return isinstance(o, Union) and tuple(o.elements) == tuple(self.elements)
def __hash__(self):
return hash(('u', tuple(self.elements)))
def __contains__(self, p):
return any( p in e for e in self.elements )
class Difference(CSG):
token = '-'
type = arrow(tCSG, tCSG, tCSG)
def __init__(self, a, b):
super(Difference, self).__init__()
self.a, self.b = a, b
def toTrace(self):
return self.a.toTrace() + self.b.toTrace() + [self]
def __str__(self):
return f"(- {self.a} {self.b})"
def children(self): return [self.a, self.b]
def serialize(self):
return ('-',self.a,self.b)
def __eq__(self, o):
return isinstance(o, Difference) and self.a == o.a and self.b == o.b
def __hash__(self):
return hash(('-', hash(self.a), hash(self.b)))
def __contains__(self, p):
return p in self.a and (not (p in self.b))
dsl = DSL([Rectangle, Circle, Translation, Union, Difference],
lexicon=CSG.lexicon)
"""Neural networks"""
class ObjectEncoder(CNN):
def __init__(self):
super(ObjectEncoder, self).__init__(channels=2,
inputImageDimension=RESOLUTION)
def forward(self, spec, obj):
if isinstance(obj, list): # batched - expect a single spec and multiple objects
spec = np.repeat(spec[np.newaxis,:,:],len(obj),axis=0)
obj = np.stack(obj)
return super(ObjectEncoder, self).forward(np.stack([spec, obj],1))
else: # not batched
return super(ObjectEncoder, self).forward(np.stack([spec, obj]))
class SpecEncoder(CNN):
def __init__(self):
super(SpecEncoder, self).__init__(channels=1,
inputImageDimension=RESOLUTION)
"""Training"""
def randomScene(resolution=32, maxShapes=3, minShapes=1, verbose=False, export=None):
dc = 8 # number of distinct coordinates
def quadrilateral():
choices = [c
for c in range(resolution//(dc*2), resolution, resolution//dc) ]
w = random.choice([2,5])
h = random.choice([2,5])
x = random.choice(choices)
y = random.choice(choices)
return Translation(x,y,
Rectangle(w,h))
def circular():
r = random.choice([2,4])
choices = [c
for c in range(resolution//(dc*2), resolution, resolution//dc) ]
x = random.choice(choices)
y = random.choice(choices)
return Translation(x,y,
Circle(r))
s = None
numberOfShapes = 0
desiredShapes = random.choice(range(minShapes, 1 + maxShapes))
for _ in range(desiredShapes):
o = quadrilateral() if random.choice([True,False]) else circular()
if s is None: s = o
else:
if (s.execute()*o.execute()).sum() > 0.5: continue
s = Union(s,o)
numberOfShapes += 1
if verbose:
print(s)
print(ProgramGraph.fromRoot(s, oneParent=True).prettyPrint())
import matplotlib.pyplot as plot
plot.imshow(s.execute())
plot.show()
if export:
import matplotlib.pyplot as plot
plot.imshow(s.execute())
plot.savefig(export)
return s
def trainCSG(m, getProgram, trainTime=None, checkpoint=None):
print("cuda?",m.use_cuda)
assert checkpoint is not None, "must provide a checkpoint path to export to"
optimizer = torch.optim.Adam(m.parameters(), lr=0.001, eps=1e-3, amsgrad=True)
startTime = time.time()
reportingFrequency = 100
totalLosses = []
movedLosses = []
iteration = 0
while trainTime is None or time.time() - startTime < trainTime:
s = getProgram()
l = m.gradientStepTrace(optimizer, s.execute(), s.toTrace())
totalLosses.append(sum(l))
movedLosses.append(sum(l)/len(l))
if iteration%reportingFrequency == 0:
print(f"\n\nAfter {iteration} gradient steps...\n\tTrace loss {sum(totalLosses)/len(totalLosses)}\t\tMove loss {sum(movedLosses)/len(movedLosses)}\n{iteration/(time.time() - startTime)} grad steps/sec")
totalLosses = []
movedLosses = []
with open(checkpoint,"wb") as handle:
pickle.dump(m, handle)
iteration += 1
def testCSG(m, getProgram, timeout, export):
oneParent = m.oneParent
solvers = [# RandomSolver(dsl),
# MCTS(m, reward=lambda l: 1. - l),
# SMC(m),
ForwardSample(m, maximumLength=18)]
loss = lambda spec, program: 1-max( o.IoU(spec) for o in program.objects() ) if len(program) > 0 else 1.
testResults = [[] for _ in solvers]
for _ in range(30):
spec = getProgram()
print("Trying to explain the program:")
print(ProgramGraph.fromRoot(spec, oneParent=oneParent).prettyPrint())
print()
for n, solver in enumerate(solvers):
testSequence = solver.infer(spec.execute(), loss, timeout)
testResults[n].append(testSequence)
for result in testSequence:
print(f"After time {result.time}, achieved loss {result.loss} w/")
print(result.program.prettyPrint())
print()
plotTestResults(testResults, timeout,
defaultLoss=1.,
names=[# "MCTS","SMC",
"FS"],
export=export)
def plotTestResults(testResults, timeout, defaultLoss=None,
names=None, export=None):
import matplotlib.pyplot as plot
def averageLoss(n, T):
results = testResults[n] # list of list of results, one for each test case
# Filter out results that occurred after time T
results = [ [r for r in rs if r.time <= T]
for rs in results ]
losses = [ min([defaultLoss] + [r.loss for r in rs]) for rs in results ]
return sum(losses)/len(losses)
plot.figure()
plot.xlabel('Time')
plot.ylabel('Average Loss')
for n in range(len(testResults)):
xs = list(np.arange(0,timeout,0.1))
plot.plot(xs, [averageLoss(n,x) for x in xs],
label=names[n])
plot.legend()
if export:
plot.savefig(export)
else:
plot.show()
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description = "")
parser.add_argument("mode", choices=["train","test","demo"])
parser.add_argument("--checkpoint", default="checkpoints/CSG.pickle")
parser.add_argument("--maxShapes", default=2,
type=int)
parser.add_argument("--trainTime", default=None, type=float,
help="Time in hours to train the network")
parser.add_argument("--attention", default=1, type=int,
help="Number of rounds of self attention to perform upon objects in scope")
parser.add_argument("--heads", default=2, type=int,
help="Number of attention heads")
parser.add_argument("--hidden", "-H", type=int, default=256,
help="Size of hidden layers")
parser.add_argument("--timeout", default=5, type=float,
help="Test time maximum timeout")
parser.add_argument("--oneParent", default=False, action='store_true')
arguments = parser.parse_args()
if arguments.mode == "demo":
for n in range(100):
randomScene(export=f"/tmp/CAD_{n}.png",maxShapes=arguments.maxShapes)
import sys
sys.exit(0)
if arguments.mode == "train":
m = ProgramPointerNetwork(ObjectEncoder(), SpecEncoder(), dsl,
oneParent=arguments.oneParent,
attentionRounds=arguments.attention,
heads=arguments.heads,
H=arguments.hidden)
trainCSG(m, lambda: randomScene(maxShapes=arguments.maxShapes),
trainTime=arguments.trainTime*60*60 if arguments.trainTime else None,
checkpoint=arguments.checkpoint)
elif arguments.mode == "test":
with open(arguments.checkpoint,"rb") as handle:
m = pickle.load(handle)
testCSG(m,
lambda: randomScene(maxShapes=arguments.maxShapes, minShapes=arguments.maxShapes), arguments.timeout,
export=f"figures/CAD_{arguments.maxShapes}_shapes.png")