-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutilities.py
57 lines (45 loc) · 1.6 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from __future__ import print_function
from __future__ import division
import math
import random
import os
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.utils import shuffle
def mkdirp(path):
try:
os.makedirs(path)
except OSError:
pass
def calc_geom(scores, num_predictions):
result = scores[0]
for i in range(1, num_predictions):
result *= scores[i]
result = math.pow(result, 1.0 / num_predictions)
return result
def calc_geom_arr(predictions_total, num_predictions):
results = np.array(predictions_total[0])
for i in range(1, num_predictions):
results *= np.array(predictions_total[i])
results = np.power(results, 1.0 / num_predictions)
return results.tolist()
def weight_bias(shape, stddev, bias_init=0.1):
W = tf.Variable(tf.truncated_normal(shape, stddev=stddev), name='weight')
b = tf.Variable(tf.constant(bias_init, shape=shape[-1:]), name='bias')
return W, b
def batch_iterator(X, y, batch_size=None, shuffle_batch=False):
length = len(X)
if batch_size is None:
batch_size = length
if shuffle_batch:
X, y = shuffle(X, y)
for batch_start in range(0, length, batch_size):
batch_end = batch_start + batch_size
if batch_end > length:
continue
yield X[batch_start:batch_end], y[batch_start:batch_end]
def write_submission(predictions, ids, dest):
df = pd.DataFrame(predictions, columns=['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9'])
df.insert(0, 'img', pd.Series(ids, index=df.index))
df.to_csv(dest, index=False)