For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.
A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.
Given the roots of two binary trees root1
and root2
, return true
if the two trees are flip equivelent or false
otherwise.
Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7] Output: true Explanation: We flipped at nodes with values 1, 3, and 5.
Input: root1 = [], root2 = [] Output: true
Input: root1 = [], root2 = [1] Output: false
Input: root1 = [0,null,1], root2 = [] Output: false
Input: root1 = [0,null,1], root2 = [0,1] Output: true
- The number of nodes in each tree is in the range
[0, 100]
. - Each tree will have unique node values in the range
[0, 99]
.
# Definition for a binary tree node.
# class TreeNode
# attr_accessor :val, :left, :right
# def initialize(val = 0, left = nil, right = nil)
# @val = val
# @left = left
# @right = right
# end
# end
# @param {TreeNode} root1
# @param {TreeNode} root2
# @return {Boolean}
def flip_equiv(root1, root2)
return true if root1.nil? and root2.nil?
return false if root1.nil? or root2.nil? or root1.val != root2.val
return true if flip_equiv(root1.left, root2.left) and flip_equiv(root1.right, root2.right)
return true if flip_equiv(root1.left, root2.right) and flip_equiv(root1.right, root2.left)
return false
end