The bitwise AND of an array nums
is the bitwise AND of all integers in nums
.
- For example, for
nums = [1, 5, 3]
, the bitwise AND is equal to1 & 5 & 3 = 1
. - Also, for
nums = [7]
, the bitwise AND is7
.
You are given an array of positive integers candidates
. Evaluate the bitwise AND of every combination of numbers of candidates
. Each number in candidates
may only be used once in each combination.
Return the size of the largest combination of candidates
with a bitwise AND greater than 0
.
Input: candidates = [16,17,71,62,12,24,14] Output: 4 Explanation: The combination [16,17,62,24] has a bitwise AND of 16 & 17 & 62 & 24 = 16 > 0. The size of the combination is 4. It can be shown that no combination with a size greater than 4 has a bitwise AND greater than 0. Note that more than one combination may have the largest size. For example, the combination [62,12,24,14] has a bitwise AND of 62 & 12 & 24 & 14 = 8 > 0.
Input: candidates = [8,8] Output: 2 Explanation: The largest combination [8,8] has a bitwise AND of 8 & 8 = 8 > 0. The size of the combination is 2, so we return 2.
1 <= candidates.length <= 105
1 <= candidates[i] <= 107
impl Solution {
pub fn largest_combination(candidates: Vec<i32>) -> i32 {
let mut count = [0; 24];
for &x in &candidates {
for i in 0..24 {
if x & (1 << i) != 0 {
count[i] += 1;
}
}
}
*count.iter().max().unwrap()
}
}