-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_autodr.py
370 lines (295 loc) · 20.2 KB
/
train_autodr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""Train a policy with Automatic Domain Randomization
(https://arxiv.org/abs/1910.07113)
Examples:
(DEBUG)
python train_autodr.py --wandb disabled --env RandomContinuousInvertedCartPoleEasy-v0 -t 2000 --eval_episodes 1 --test_episodes 1 --seed 42 --dr_percentage 0.2 --algo sac --delta 0.1 --buffer_size 1 --check_update_freq 500 --verbose 2 --debug
(See readme.md for reproducing paper results)
"""
from pprint import pprint
import argparse
import pdb
import sys
import socket
import os
import pickle
import gc
import matplotlib.pyplot as plt
import numpy as np
import gym
import torch
import wandb
from stable_baselines3.common.env_util import make_vec_env
import dr_envs
from customwrappers.RandomVecEnv import RandomSubprocVecEnv
from utils.utils import *
from utils.gym_utils import *
from policy.policy import Policy
from autodr.autodr import TrainingSubRtn, UniformDistribution, BetaDistribution, AutoDR
def main():
# args.eval_freq = max(args.eval_freq // args.now, 1) # Making eval_freq behave w.r.t. global timesteps, so it follows --timesteps convention
torch.set_num_threads(max(5, args.now)) # hard-coded for now. Avoids taking up all CPUs when parallelizing with multiple environments and processes on hephaestus
assert args.dr_percentage <= 1 and args.dr_percentage >= 0
assert args.env is not None
assert args.test_env is None, 'source and target domains should be the same. As of right now, test_env is used to test the policy on the final target DR distribution'
if args.test_env is None:
args.test_env = args.env
assert args.threshold_low < args.threshold_high
assert args.bound_sampling_prob > 0 and args.bound_sampling_prob < 1
assert args.delta > 0. and args.delta <= 0.5, 'Update step for each dimension should be below 50\% of the whole maximum width the distribution can reach.'
assert args.check_update_freq / args.now >= gym.make(args.env, **env_kwargs)._max_episode_steps, f'The subroutine is stopped before each worker can reach the max episode timesteps ({gym.make(args.env, **env_kwargs)._max_episode_steps}), potentially preventing montecarlo returns to be saved. Is this desired?'
init_task = gym.make(args.env, **env_kwargs).get_task() # initial dynamics parameters (static vector)
if args.rand_all_but is not None: # args.rand_all_but overwrites args.rand_only
args.rand_only = np.arange(len(init_task)).tolist()
del args.rand_only[args.rand_all_but]
### Configs and Wandb
random_string = get_random_string(5)
run_name = "AutoDR_"+ args.algo +'_seed'+str(args.seed)+'_'+random_string
print(f'========== RUN_NAME: {run_name} ==========')
pprint(vars(args))
set_seed(args.seed)
wandb.init(config=vars(args),
project="DORAEMON-dev",
group="AutoDR_"+str(args.env if args.group is None else args.group),
name=run_name,
save_code=True,
tags=None,
notes=args.notes,
mode=args.wandb)
run_path = "runs/"+str(args.env)+"/"+get_run_name(args)+"_"+random_string+"/"
print('Run path:', run_path)
create_dirs(run_path)
save_config(vars(args), run_path)
wandb.config.path = run_path
wandb.config.hostname = socket.gethostname()
### Get init and bounds for AutoDR
print('Ground truth task:', init_task)
lower_bounds = np.zeros(len(init_task)) if is_locomotion_env(args.env) else None # use zeros as lower_bounds for locomotion envs params
bounds = gym.make(args.env, **env_kwargs).get_uniform_dr_by_percentage(percentage=args.dr_percentage,
nominal_values=init_task,
lower_bounds=lower_bounds,
dyn_mask=args.rand_only)
print('Maximum bounds:', bounds)
bounds_low, bounds_high = bounds[::2], bounds[1::2]
init_distr = []
uniform_bounds = []
# Get starting point in dynamics space
if args.start_from_id is not None:
# center in space `start_from_id`
assert 'DMPandaPush-' in args.env, 'This function is for PandaPush envs only for now.'
assert args.original, 'start_from_id without original has not been implemented yet.' \
'To do it, you also need to change the get_init_distr_width_percentage' \
'function such that the entropy is the same and also such that you dont' \
'set the initial bounds to be outside of the boundaries'
starting_task = get_starting_task(start_from_id=args.start_from_id,
args=args)
else:
# center of target search space `search_space_id`
starting_task = init_task
# Get initial uniform width such that initial entropy is the same as doraemon (if not args.original)
init_distr_width_percentage = get_init_distr_width_percentage(desired_entropy=get_init_entropy(args.env), bounds=list(zip(bounds_low, bounds_high)))
for i, (m, M) in enumerate(zip(bounds_low, bounds_high)):
if args.original:
init_distr.append({'m': starting_task[i]-1e-5, 'M': starting_task[i]+1e-5})
else:
init_distr.append({'m': starting_task[i]-(M-m)*init_distr_width_percentage/2, 'M': starting_task[i]+(M-m)*init_distr_width_percentage/2})
uniform_bounds.append({'m': m, 'M': M})
assert init_distr[-1]['m'] > m and init_distr[-1]['M'] < M, 'The initial distribution cannot be set beyond the boundaries.'
init_distribution = UniformDistribution(distr=init_distr)
uniform_bounds = UniformDistribution(distr=uniform_bounds)
print('init distr:')
init_distribution.print()
print('target distr:')
uniform_bounds.print()
### Actor & Critic input observation masks for asymmetric information
actor_obs_mask, critic_obs_mask = get_actor_critic_obs_masks(args)
### Set up training
env = make_vec_env(args.env, n_envs=args.now, seed=args.seed, vec_env_cls=RandomSubprocVecEnv, wrapper_class=make_wrapped_environment, wrapper_kwargs={'args': args, 'wrapper': 'autodr'}, env_kwargs=env_kwargs)
eff_lr = get_learning_rate(args, env)
# eval_freq is not used for AutoDR
# eval_freq = min(int(args.check_update_freq/args.now/2), args.eval_freq) # make sure you at least evaluate the policy 2 times per iteration
# Evaluation transitions are not used for AutoDR (boundary sampling, etc.)
eval_env = make_vec_env(args.env, n_envs=args.now, seed=args.seed, vec_env_cls=RandomSubprocVecEnv, wrapper_class=make_wrapped_environment, wrapper_kwargs={'args': args, 'wrapper': 'returnTracker'}, env_kwargs=env_kwargs)
training_subrtn = TrainingSubRtn(env,
eval_env=eval_env,
algo=args.algo,
lr=eff_lr,
gamma=args.gamma,
device=args.device,
seed=args.seed,
actor_obs_mask=actor_obs_mask,
critic_obs_mask=critic_obs_mask,
n_eval_episodes=args.eval_episodes,
run_path=run_path,
gradient_steps=args.gradient_steps,
verbose=args.verbose)
### Launch AutoDR
autoDR = AutoDR(training_subrtn=training_subrtn,
budget=args.timesteps,
init_distr=init_distribution,
boundaries=uniform_bounds,
performance_threshold_low=args.threshold_low,
performance_threshold_high=args.threshold_high,
check_update_freq=args.check_update_freq,
delta=args.delta,
buffer_size=args.buffer_size,
test_episodes=(args.test_episodes if not args.debug else 1),
train_until=args.train_until_lb,
force_success_with_returns=args.force_success_with_returns,
verbose=args.verbose)
autoDR.learn(ckpt_dir=run_path)
final_policy = autoDR.final_policy
n_iters = len(autoDR.distr_history)
print('Number of iterations:', n_iters)
### Save distributions to disk
distr_dir = os.path.join(run_path, 'distributions')
create_dir(distr_dir)
save_object(autoDR.distr_history, save_dir=distr_dir, filename='distr_history')
### Free up some memory
del training_subrtn
del autoDR
del env
gc.collect()
### Evaluation on target environment
test_env = make_vec_env(args.test_env, n_envs=args.now, seed=args.seed, vec_env_cls=RandomSubprocVecEnv, wrapper_class=make_wrapped_environment, wrapper_kwargs={'args': args}, env_kwargs=env_kwargs)
test_env.set_dr_distribution(dr_type='uniform', distr=uniform_bounds.get_params())
test_env.set_dr_training(True)
policy = Policy(algo=args.algo, env=test_env, device=args.device, seed=args.seed, actor_obs_mask=actor_obs_mask, critic_obs_mask=critic_obs_mask)
policy.load_state_dict(final_policy)
mean_reward, std_reward = policy.eval(n_eval_episodes=args.test_episodes)
print(f'Test reward: {mean_reward} +- {std_reward}')
wandb.run.summary["test_mean_reward"] = mean_reward
wandb.run.summary["test_std_reward"] = std_reward
### Compute joint 2D heatmap values
del test_env
if args.compute_final_heatmap:
print('\n--- Computing joint 2D heatmap values')
compute_joint_2dheatmap_data(final_policy, run_path)
wandb.finish()
def get_init_entropy(env):
"""Return initial entropy as in DORAEMON with a beta distribution"""
gt_task = gym.make(args.env, **env_kwargs).get_task()
lower_bounds = np.zeros(len(gt_task)) if is_locomotion_env(env) else None # use zeros as lower_bounds for locomotion envs params
target_training_bounds = gym.make(env, **env_kwargs).get_uniform_dr_by_percentage(percentage=args.dr_percentage,
nominal_values=gt_task,
lower_bounds=lower_bounds,
dyn_mask=args.rand_only)
bounds_low, bounds_high = target_training_bounds[::2], target_training_bounds[1::2]
a_start, b_start = 100, 100
a_target, b_target = 1, 1
init_distr = []
target_distr = []
for m, M in zip(bounds_low, bounds_high):
init_distr.append({'m': m, 'M': M, 'a': a_start, 'b': b_start})
target_distr.append({'m': m, 'M': M, 'a': a_target, 'b': b_target})
init_doraemon_distribution = BetaDistribution(distr=init_distr)
return init_doraemon_distribution.entropy().item()
def get_init_distr_width_percentage(desired_entropy, bounds):
"""Return the initial uniform width in % for each dimension around
the initial value such that the entropy is = desired_entropy
"""
# solve for L: desired_entropy = sum log( (M[i] - m[i])*L )
sum_log = 0
n = 0
for i, (m, M) in enumerate(bounds):
# init_distr.append({'m': init_task[i]-1e-5, 'M': init_task[i]+1e-5})
# uniform_bounds.append({'m': m, 'M': M})
sum_log += np.log(M-m)
n += 1
L = np.exp( (desired_entropy - sum_log) / n )
return L
def get_starting_task(start_from_id, args):
"""Get initial location if start_from_id is specified.
This function is for PandaPush envs only for now.
"""
assert 'DMPandaPush-' in args.env, 'This function is for PandaPush envs only for now.'
starting_env = gym.make(args.env, **{**args.env_kwargs, 'search_space_id': start_from_id}) # env with starting space
starting_task = starting_env.get_task()
return starting_task
def compute_joint_2dheatmap_data(test_policy, run_path):
"""Compute data for joint 2d-heatmap visualization"""
dyn_pair = list(get_dyn_pair_indexes_per_env(args.test_env))
save_dir = os.path.join(run_path, 'joint_avg_return_per_dyn')
create_dirs(save_dir)
target_filename = os.path.join(save_dir, f'joint_return_per_dyns_{dyn_pair[0]}_{dyn_pair[1]}.npy')
test_env = make_vec_env(args.test_env, n_envs=args.now, seed=args.seed, vec_env_cls=RandomSubprocVecEnv, wrapper_class=make_wrapped_environment, wrapper_kwargs={'args': args}, env_kwargs=env_kwargs)
actor_obs_mask, critic_obs_mask = get_actor_critic_obs_masks(args)
policy = Policy(algo=args.algo, env=test_env, device=args.device, seed=args.seed, actor_obs_mask=actor_obs_mask, critic_obs_mask=critic_obs_mask)
policy.load_state_dict(test_policy)
n_points_per_task_dim = 50 if not args.debug else 5
return_per_dyn = np.empty((n_points_per_task_dim, n_points_per_task_dim))
init_task = gym.make(args.test_env, **env_kwargs).get_task()
lower_bounds = np.zeros(len(init_task)) if is_locomotion_env(args.test_env) else None # use zeros as lower_bounds for locomotion envs params
test_bounds = gym.make(args.test_env, **env_kwargs).get_uniform_dr_by_percentage(percentage=args.dr_percentage,
nominal_values=init_task,
lower_bounds=lower_bounds)
bounds_low, bounds_high = test_bounds[::2], test_bounds[1::2]
test_tasks_1 = np.linspace(bounds_low[dyn_pair[0]], bounds_high[dyn_pair[0]], n_points_per_task_dim) # (50,)
test_tasks_2 = np.linspace(bounds_low[dyn_pair[1]], bounds_high[dyn_pair[1]], n_points_per_task_dim) # (50,)
curr_task = init_task.copy()
for j, test_task_1 in enumerate(test_tasks_1):
for k, test_task_2 in enumerate(test_tasks_2):
curr_task[dyn_pair] = [test_task_1, test_task_2] # Change two params at a time, and keep others to the nominal values
repeated_curr_task = np.repeat(curr_task[np.newaxis, :], args.now, axis=0) # duplicate task args.now times to handle vec envs
test_env.set_task(repeated_curr_task)
mean_reward, std_reward = policy.eval(n_eval_episodes=(10 if not args.debug else 1))
return_per_dyn[j, k] = mean_reward
# Show progress
print(f'[{j+1}/{n_points_per_task_dim}, {k+1}/{n_points_per_task_dim}]: {round(mean_reward, 2)} +- {round(std_reward,2)}', end="\r")
# Print a new line after the loop finishes
print()
# Create dir and save matrix
np.save(target_filename, return_per_dyn)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--timesteps', '-t',default=1000, type=int, help='Budget. Global training timesteps (will be spread out across all parallel envs)')
parser.add_argument('--env', default=None, type=str, help='Train gym env')
parser.add_argument('--test_env', default=None, type=str, help='Test gym env')
parser.add_argument('--group', default=None, type=str, help='Wandb run group')
parser.add_argument('--algo', default='sac', type=str, help='RL Algo (ppo, lstmppo, sac)')
parser.add_argument('--lr', default=None, type=float, help='Learning rate')
parser.add_argument('--gamma', default=0.99, type=float, help='gamma discount factor')
parser.add_argument('--now', default=1, type=int, help='Number of cpus for parallelization')
parser.add_argument('--eval_freq', default=10000, type=int, help='Global timesteps frequency for training evaluations')
parser.add_argument('--eval_episodes', default=50, type=int, help='# episodes for training evaluations')
parser.add_argument('--test_episodes', default=100, type=int, help='# episodes for test evaluations')
parser.add_argument('--seed', default=0, type=int, help='Random seed')
parser.add_argument('--device', default='cpu', type=str, help='<cpu,cuda>')
parser.add_argument('--notes', default=None, type=str, help='Wandb notes')
parser.add_argument('--wandb', default='online', type=str, help='Wandb mode. [online, offline, disabled]')
parser.add_argument('--verbose', default=1, type=int, help='Verbose integer value')
parser.add_argument('--stack_history', default=None, type=int, help='Stack a number of previous (obs, actions) into the current obs vector. If > 1, it allows for implicit online systId, hence adaptive behavior.')
parser.add_argument('--dr_percentage', default=0.1, type=float, help='Percentage of values used to build the DR distribution bounds. mean +- mean*percentage')
parser.add_argument('--rand_only', default=None, type=int, nargs='+', help='Index of dynamics parameter to randomize, instead of randomizing all possible parameters.')
parser.add_argument('--rand_all_but', default=None, type=int, help='Helper parameter that sets --rand_only [] to all indexes except for the one specified by --rand_all_but.')
parser.add_argument('--dyn_in_obs', default=False, action='store_true', help='If True, concatenate the dynamics of the environment in the observation vector, for task-aware policies.')
parser.add_argument('--gradient_steps', default=-1, type=int, help='Number of gradient steps when policy is updated in sb3 using SAC. -1 means as many as --args.now')
parser.add_argument('--debug', default=False, action='store_true', help='Debug flag. Used to speed up some steps when they are just being tested.')
parser.add_argument('--compute_final_heatmap', default=False, action='store_true', help='If set, compute 2D heatmap at the end of training and save results to file.')
# Params for asymmetric information
parser.add_argument('--actor_state_only', default=False, action='store_true', help='History or dynamics are filtered out from the actor input')
parser.add_argument('--actor_history_only', default=False, action='store_true', help='Dynamics are filtered out from the actor input')
parser.add_argument('--critic_dyn_only', default=False, action='store_true', help='History is filtered out from the critic input')
# AutoDR-specific params
parser.add_argument('--original', default=False, action='store_true', help='Original implementation: collapsed initial distribution')
parser.add_argument('--delta', default=0.1, type=float, help='Relative Update step size normalized in [0, 1]')
parser.add_argument('--threshold_low', default=0., type=float, help='Performance threshold low')
parser.add_argument('--threshold_high', default=1., type=float, help='Performance threshold high')
parser.add_argument('--bound_sampling_prob', default=0.5, type=float, help='Boundary sampling probability')
parser.add_argument('--buffer_size', default=240, type=int, help='Performance data buffer size')
parser.add_argument('--check_update_freq', default=100, type=int, help='Check performance buffers frequency in timesteps')
parser.add_argument('--train_until_lb', default=False, action='store_true', help='Train on initial distribution until performance lower bound is reached')
parser.add_argument('--force_success_with_returns', default=False, action='store_true', help='If set, force using returns as to measure average performance even if env.success_metric is defined. Proper corresponding thresholds need to be defined.')
# Panda gym specific parameters
parser.add_argument('--qacc_factor', default=0.3, type=float, help='PandaGym envs kwarg')
parser.add_argument('--control_penalty_coeff', default=1.0, type=float, help='PandaGym envs kwarg')
parser.add_argument('--task_reward', default='target', type=str, help='PandaGym envs kwarg')
parser.add_argument('--search_space_id', default=1, type=str, help='PandaGym envs kwarg')
parser.add_argument('--start_from_id', default=None, type=int, help='PandaGym envs kwarg (start at center of this space instead of at the center of search_space_id)')
parser.add_argument('--absolute_acc_pen', default=False, action='store_true', help='PandaGym envs kwarg')
return parser.parse_args()
args = parse_args()
# Get environment kwargs
env_kwargs = get_env_kwargs(args.env, args)
args.env_kwargs = env_kwargs
if __name__ == '__main__':
main()