-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
453 lines (374 loc) · 18.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import nn
import utils
import torch
from torch.nn import functional as F
from torch.nn import init, Linear
import numpy as np
from cnnseq.utils_models import flatten_audio_with_params
from cnnseq.CNNSeq2Seq2 import load_cnnseq2seq, get_hidden_state
from cnnseq.CNNSeq2Seq2_main import feats_tensor_input, feats_tensor_audio
class CNNSeq2SampleRNN(torch.nn.Module):
def __init__(self, params, trim_model_name=False):
super(CNNSeq2SampleRNN, self).__init__()
# Load pre-trained CNN-Seq2Seq
self.params = params
self.cnnseq2seq_model, self.cnnseq2seq_params = load_cnnseq2seq(params['cnn_pretrain'],
params['cnn_seq2seq_pretrain'],
trim_model_name=trim_model_name)
self.hidden_size = self.cnnseq2seq_params['hidden_size'] # 128
self.num_layers = self.cnnseq2seq_params['num_layers']
self.batch_size = 1 # self.samplernn_model.model.batch_size
#self.fc = Linear(self.num_layers*1*self.hidden_size,
# self.num_layers*self.samplernn_model.batch_size*self.samplernn_model.dim)
#self.fc = Linear(self.num_layers * 1 * self.hidden_size,
# self.num_layers * self.hidden_size * 1024) # 2, 128, 1024
self.fc = Linear(self.num_layers * self.batch_size * self.hidden_size,
self.num_layers * self.batch_size * 1024) # 2, 128, 1024
def forward(self, x, y):
# Assume batch_size = 1
# print("batch_hsl: {}, batch_audio: {}".format(np.shape(x), np.shape(y)))
batch_hsl_tensor = feats_tensor_input(x, data_type='HSL')
batch_audio_tensor = feats_tensor_audio(y)
hidden_enc_arr, out_arr = get_hidden_state(self.cnnseq2seq_model, batch_hsl_tensor, batch_audio_tensor, self.cnnseq2seq_params)
if self.params['seq2seq_model_type'] == 'seq2seq_gru':
hidden_from_CNNSeq = hidden_enc_arr[0]
# Considers n_rnn = 2 (self.num_layers in CNNSeq2Seq)
hidden_from_CNNSeq_proj = self.fc(hidden_from_CNNSeq.view(-1))
hidden_from_CNNSeq_0_proj = hidden_from_CNNSeq_proj.view(self.num_layers, 1, 1024)
else: # 'seq2seq' (lstm)
hidden_from_CNNSeq = hidden_enc_arr[0]
hidden_from_CNNSeq = hidden_from_CNNSeq
# Considers n_rnn = 2 (self.num_layers in CNNSeq2Seq)
# hidden_from_CNNSeq_proj = self.fc(hidden_from_CNNSeq)
hidden_from_CNNSeq_0_proj_cpu = hidden_from_CNNSeq[0] # torch.tensor().device(torch.device('cpu'))
hidden_0_flatten = hidden_from_CNNSeq_0_proj_cpu.view(-1)
hidden_from_CNNSeq_0_proj = self.fc(hidden_0_flatten)
hidden_from_CNNSeq_0_proj = hidden_from_CNNSeq_0_proj.view(self.num_layers, 1, 1024)
hidden_from_CNNSeq_1_proj_cpu = hidden_from_CNNSeq[1] # torch.tensor().device(torch.device('cpu'))
hidden_1_flatten = hidden_from_CNNSeq_1_proj_cpu.view(-1)
hidden_from_CNNSeq_1_proj = self.fc(hidden_1_flatten)
hidden_from_CNNSeq_1_proj = hidden_from_CNNSeq_1_proj.view(self.num_layers, 1, 1024)
# hidden_from_CNNSeq_1_proj = self.fc(torch.FloatTensor(hidden_from_CNNSeq[1]).detach().cpu())
# hidden_from_CNNSeq_1_proj = hidden_from_CNNSeq_1_proj.view(1, 1024)
hidden_from_CNNSeq_tensor = []
hidden_from_CNNSeq_tensor.append(hidden_from_CNNSeq_0_proj)
hidden_from_CNNSeq_tensor.append(hidden_from_CNNSeq_1_proj)
# hidden_from_CNNSeq_tensor = torch.cat([torch.LongTensor(hidden_from_CNNSeq_0_proj), hidden_from_CNNSeq_1_proj])
# hidden_cnn = torch.LongTensor(self.model.n_rnn, self.model.batch_size, self.model.dim).fill_(0)
return hidden_from_CNNSeq_0_proj, out_arr
@property
def lookback(self):
return self.samplernn_model.frame_level_rnns[-1].n_frame_samples
class SampleRNN(torch.nn.Module):
def __init__(self, frame_sizes, n_rnn, dim, learn_h0, q_levels,
weight_norm, batch_size):
super().__init__()
self.dim = dim
self.q_levels = q_levels
self.batch_size = batch_size
self.n_rnn = n_rnn
# Add CNN and RNN encoder -> (2, 128, 1024)
# hidden0 = torch.LongTensor((n_rnn, batch_size, self.dim)).fill_(utils.q_zero(self.q_levels))
# hidden0 = torch.LongTensor(n_rnn, batch_size, self.dim).fill_(0)
# self.hidden_cnn = torch.LongTensor(n_rnn, batch_size, self.dim).fill_(0)
ns_frame_samples = map(int, np.cumprod(frame_sizes))
self.frame_level_rnns = torch.nn.ModuleList([
FrameLevelRNN(
frame_size, n_frame_samples, n_rnn, dim, learn_h0, weight_norm
)
for (frame_size, n_frame_samples) in zip(
frame_sizes, ns_frame_samples
)
])
self.sample_level_mlp = SampleLevelMLP(
frame_sizes[0], dim, q_levels, weight_norm
)
@property
def lookback(self):
return self.frame_level_rnns[-1].n_frame_samples
class FrameLevelRNN(torch.nn.Module):
def __init__(self, frame_size, n_frame_samples, n_rnn, dim,
learn_h0, weight_norm):
super().__init__()
self.frame_size = frame_size
self.n_frame_samples = n_frame_samples
self.dim = dim
h0 = torch.zeros(n_rnn, dim)
if learn_h0:
self.h0 = torch.nn.Parameter(h0)
else:
self.register_buffer('h0', torch.autograd.Variable(h0))
self.input_expand = torch.nn.Conv1d(
in_channels=n_frame_samples,
out_channels=dim,
kernel_size=1
)
init.kaiming_uniform_(self.input_expand.weight)
init.constant_(self.input_expand.bias, 0)
if weight_norm:
self.input_expand = torch.nn.utils.weight_norm(self.input_expand)
self.rnn = torch.nn.GRU(
input_size=dim,
hidden_size=dim,
num_layers=n_rnn,
batch_first=True
)
for i in range(n_rnn):
nn.concat_init(
getattr(self.rnn, 'weight_ih_l{}'.format(i)),
[nn.lecun_uniform, nn.lecun_uniform, nn.lecun_uniform]
)
init.constant_(getattr(self.rnn, 'bias_ih_l{}'.format(i)), 0)
nn.concat_init(
getattr(self.rnn, 'weight_hh_l{}'.format(i)),
[nn.lecun_uniform, nn.lecun_uniform, init.orthogonal]
)
init.constant_(getattr(self.rnn, 'bias_hh_l{}'.format(i)), 0)
self.upsampling = nn.LearnedUpsampling1d(
in_channels=dim,
out_channels=dim,
kernel_size=frame_size
)
init.uniform_(
self.upsampling.conv_t.weight, -np.sqrt(6 / dim), np.sqrt(6 / dim)
)
init.constant_(self.upsampling.bias, 0)
if weight_norm:
self.upsampling.conv_t = torch.nn.utils.weight_norm(
self.upsampling.conv_t
)
def forward(self, prev_samples, upper_tier_conditioning, hidden):
(batch_size, _, _) = prev_samples.size()
input = self.input_expand(
prev_samples.permute(0, 2, 1)
).permute(0, 2, 1)
if upper_tier_conditioning is not None:
input += upper_tier_conditioning
reset = hidden is None
if hidden is None:
(n_rnn, _) = self.h0.size()
hidden = self.h0.unsqueeze(1) \
.expand(n_rnn, batch_size, self.dim) \
.contiguous()
# RNN (in this case GRU running)
#hidden = hidden.detach()
#hidden = hidden.cpu().long()
(output, hidden) = self.rnn(input, hidden)
output = self.upsampling(
output.permute(0, 2, 1)
).permute(0, 2, 1)
return (output, hidden)
class SampleLevelMLP(torch.nn.Module):
def __init__(self, frame_size, dim, q_levels, weight_norm):
super().__init__()
self.q_levels = q_levels
self.embedding = torch.nn.Embedding(
self.q_levels,
self.q_levels
)
self.input = torch.nn.Conv1d(
in_channels=q_levels,
out_channels=dim,
kernel_size=frame_size,
bias=False
)
init.kaiming_uniform_(self.input.weight)
if weight_norm:
self.input = torch.nn.utils.weight_norm(self.input)
self.hidden = torch.nn.Conv1d(
in_channels=dim,
out_channels=dim,
kernel_size=1
)
init.kaiming_uniform_(self.hidden.weight)
init.constant_(self.hidden.bias, 0)
if weight_norm:
self.hidden = torch.nn.utils.weight_norm(self.hidden)
self.output = torch.nn.Conv1d(
in_channels=dim,
out_channels=q_levels,
kernel_size=1
)
nn.lecun_uniform(self.output.weight)
init.constant_(self.output.bias, 0)
if weight_norm:
self.output = torch.nn.utils.weight_norm(self.output)
def forward(self, prev_samples, upper_tier_conditioning):
(batch_size, _, _) = upper_tier_conditioning.size()
prev_samples = self.embedding(
prev_samples.contiguous().view(-1)
).view(
batch_size, -1, self.q_levels
)
prev_samples = prev_samples.permute(0, 2, 1)
upper_tier_conditioning = upper_tier_conditioning.permute(0, 2, 1)
x = F.relu(self.input(prev_samples) + upper_tier_conditioning)
x = F.relu(self.hidden(x))
x = self.output(x).permute(0, 2, 1).contiguous()
return F.log_softmax(x.view(-1, self.q_levels)) \
.view(batch_size, -1, self.q_levels)
class Runner:
def __init__(self, model):
super().__init__()
self.model = model
self.reset_hidden_states()
# Make it conditional on a specific hidden state
def reset_hidden_states(self, hidden=None):
# self.hidden_states = {rnn: hidden for rnn in self.model.frame_level_rnns}
# hidden_cnn = torch.LongTensor(self.model.n_rnn, self.model.batch_size, self.model.dim).fill_(0)
self.hidden_states = {rnn: hidden for rnn in self.model.frame_level_rnns}
# print("hidden states shape: {}".format(np.shape(self.hidden_states)))
# self.hidden_states <- condition
def run_rnn(self, rnn, prev_samples, upper_tier_conditioning):
(output, new_hidden) = rnn(
prev_samples, upper_tier_conditioning, self.hidden_states[rnn]
)
self.hidden_states[rnn] = new_hidden.detach()
return output
class Predictor(Runner, torch.nn.Module):
def __init__(self, model):
super().__init__(model)
def forward(self, input_sequences, reset, hidden=None):
if reset:
self.reset_hidden_states(hidden=hidden)
(batch_size, _) = input_sequences.size()
upper_tier_conditioning = None
for rnn in reversed(self.model.frame_level_rnns):
from_index = self.model.lookback - rnn.n_frame_samples
to_index = -rnn.n_frame_samples + 1
prev_samples = 2 * utils.linear_dequantize(
input_sequences[:, from_index : to_index],
self.model.q_levels
)
prev_samples = prev_samples.contiguous().view(
batch_size, -1, rnn.n_frame_samples
)
upper_tier_conditioning = self.run_rnn(
rnn, prev_samples, upper_tier_conditioning
)
bottom_frame_size = self.model.frame_level_rnns[0].frame_size
mlp_input_sequences = input_sequences \
[:, self.model.lookback - bottom_frame_size :]
return self.model.sample_level_mlp(
mlp_input_sequences, upper_tier_conditioning
)
class Generator(Runner):
def __init__(self, model, cuda=False):
super().__init__(model)
self.cuda = cuda
def __call__(self, n_seqs, seq_len, initial_seq=None, hidden=None, verbose=False):
# generation doesn't work with CUDNN for some reason
torch.backends.cudnn.enabled = False
# CNN gives hidden state
self.reset_hidden_states(hidden=hidden)
bottom_frame_size = self.model.frame_level_rnns[0].n_frame_samples
sequences = torch.LongTensor(n_seqs, self.model.lookback + seq_len) \
.fill_(utils.q_zero(self.model.q_levels))
if initial_seq is None:
initial_i = self.model.lookback
final_i = initial_i + seq_len
else: # CONDITIONAL
sequences[:, 0:np.shape(initial_seq)[1]] = initial_seq
initial_i = np.shape(initial_seq)[1] - self.model.lookback
# initial_i = np.shape(initial_seq)[1] + self.model.lookback
final_i = self.model.lookback + seq_len
frame_level_outputs = [None for _ in self.model.frame_level_rnns]
for i in range(initial_i, final_i):
for (tier_index, rnn) in \
reversed(list(enumerate(self.model.frame_level_rnns))):
if i % rnn.n_frame_samples != 0:
continue
prev_samples = torch.autograd.Variable(
2 * utils.linear_dequantize(
sequences[:, i - rnn.n_frame_samples : i],
self.model.q_levels
).unsqueeze(1),
volatile=True
)
# print("Tier {}: prev_samples from {} to {}, shape {}: {}".format(tier_index, i - rnn.n_frame_samples, i, np.shape(prev_samples), prev_samples))
if self.cuda:
prev_samples = prev_samples.cuda()
l = len(self.model.frame_level_rnns) - 1
if tier_index == l:
if verbose:
print("No upper tier conditioning")
upper_tier_conditioning = None
else:
frame_index = (i // rnn.n_frame_samples) % \
self.model.frame_level_rnns[tier_index + 1].frame_size
upper_tier_conditioning = \
frame_level_outputs[tier_index + 1][:, frame_index, :] \
.unsqueeze(1)
if verbose:
print("Frame index {}, upper_tier_conditioning shape {}".format(frame_index, np.shape(upper_tier_conditioning)))
frame_level_outputs[tier_index] = self.run_rnn(
rnn, prev_samples, upper_tier_conditioning
)
if verbose:
print("Tier {} frame level outputs shape {}".format(tier_index, np.shape(frame_level_outputs[tier_index])))
# print(sequences[:, i - bottom_frame_size : i])
prev_samples = torch.autograd.Variable(
sequences[:, i - bottom_frame_size : i],
volatile=True
)
# print("Tier {}: prev_samples from {} to {}, shape {}: {}".format(tier_index, i - bottom_frame_size, i, np.shape(prev_samples), prev_samples))
if self.cuda:
prev_samples = prev_samples.cuda()
upper_tier_conditioning = \
frame_level_outputs[0][:, i % bottom_frame_size, :] \
.unsqueeze(1)
sample_dist = self.model.sample_level_mlp(prev_samples, upper_tier_conditioning)
sample_dist = sample_dist.squeeze(1).exp_().data
if verbose:
print("Sample dist {}".format(np.shape(sample_dist)))
print("Before: {}".format(sequences[:, i]))
sequences[:, i] = sample_dist.multinomial(1).squeeze(1)
if verbose:
print("After {}".format(sequences[:, i]))
torch.backends.cudnn.enabled = True
return sequences[:, self.model.lookback :]
class GeneratorCNNSeq2Sample:
def __init__(self, generator, model_cnnseq2sample, cuda=False):
self.generator = generator
self.cuda = cuda
self.model_cnnseq2sample = model_cnnseq2sample
def __call__(self, test_data_loader, n_seqs, seq_len):
for e, data in enumerate(test_data_loader):
batch_hsl = data[0]
batch_audio = data[1]
batch_emotion = data[2]
batch_text = data[3]
batch_inputs = data[4: -1]
batch_target = data[-1]
break
# CNN-Seq2Sample here
input, target_audio, emotion, out_cnnseq2seq_arr = [], [], [], []
for e, (b, a, em) in enumerate(zip(batch_hsl, batch_audio, batch_emotion)):
if e >= n_seqs:
break
b = np.expand_dims(b, 0) # b.unsqueeze(0)
a = np.expand_dims(a, 0) # a.unsqueeze(0)
# print("b: {}, a: {}, i: {}".format(np.shape(b), np.shape(a), np.shape(i)))
# Return projection of h for using with SampleRNN and original h for using with vanilla RNN decoder
h_proj, out_cnnseq2seq = self.model_cnnseq2sample(b, a)
if e == 0:
batch_hidden = h_proj
else:
batch_hidden = torch.cat((batch_hidden, h_proj), 1) # concat on position 1
# print(np.shape(batch_output))
# batch_output = model(*batch_inputs, hidden=batch_hidden)
input.append(b)
# a_flatten = flatten_audio_with_params(a, seq_len)
a_flatten = np.array(np.reshape(a, [-1, seq_len])).squeeze()
target_audio.append(a_flatten)
emotion.append(em)
# out_flatten = flatten_audio_with_params(out_cnnseq2seq, seq_len)
out_flatten = np.array(np.reshape(out_cnnseq2seq, [-1, seq_len])).squeeze()
out_cnnseq2seq_arr.append(out_flatten)
# TODO: self.generator should be in the for loop
print(np.shape(out_cnnseq2seq_arr))
print(np.shape(out_cnnseq2seq_arr))
print(np.shape(input))
# Generator is SampleRNN conditioned on new hidden states (see Generator class)
samples = self.generator(n_seqs, seq_len, hidden=batch_hidden).cpu().float().numpy()
return samples, input, target_audio, emotion, out_cnnseq2seq_arr