-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathnew-developments.html
631 lines (607 loc) · 68 KB
/
new-developments.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
<!DOCTYPE html>
<!--[if IEMobile 7]><html class="iem7" lang="en" dir="ltr"><![endif]-->
<!--[if lte IE 6]><html class="lt-ie9 lt-ie8 lt-ie7" lang="en" dir="ltr"><![endif]-->
<!--[if (IE 7)&(!IEMobile)]><html class="lt-ie9 lt-ie8" lang="en" dir="ltr"><![endif]-->
<!--[if IE 8]><html class="lt-ie9" lang="en" dir="ltr"><![endif]-->
<!--[if (gte IE 9)|(gt IEMobile 7)]><!--><html lang="en" dir="ltr"><!--<![endif]-->
<head>
<meta charset="utf-8" />
<!--<base href="/new-developments" />-->
<link rel="shortcut icon" href="img/geos-chem-logo-favicon.png" />
<link rel="canonical" href="new-developments.html" />
<link rel="shortlink" href="new-developments.html" />
<meta property="og:type" content="article" />
<meta property="og:title" content="New GEOS-Chem Developments" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="New GEOS-Chem Developments" />
<meta name="twitter:image" content="https://geos-chem.org" />
<title>New GEOS-Chem Developments</title>
<meta http-equiv="x-ua-compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link type="text/css" rel="stylesheet" href="css/css_xE-rWrJf-fncB6ztZfd2huxqgxu4WO-qwma6Xer30m4%EF%B9%96m=1675397288.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/css_1kR8T1_c-l5pBT6ZwbDT7BFda-4fyqW9Jjum29_2IY8%EF%B9%96m=1675397312.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/css_YnlUIvHP13qgpYEqubzE8JyDwlSxUnVibfnVkSoSDb0%EF%B9%96m=1675397273.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/css_Ku-3OcT9qU9h7dnGig5e23q6EVryY8orK4wzVDxsweE%EF%B9%96m=1675397367.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/css_vprtFTrWyg23GbY50_zJZHWGYMNfS8vsrRS26i4-ISk%EF%B9%96m=1675397406.css" media="screen" />
<link type="text/css" rel="stylesheet" href="css/css_dW-aNNrctRhQNc-KECjtQd0PxuW-h19IEum-TX2MeEk%EF%B9%96m=1675397301.css" media="print" />
<link type="text/css" rel="stylesheet" href="css/css_SH2Lx3Qprh0GZo_9xRp85U9NsWfkSXn_Bi-rJoMY1sw%EF%B9%96m=1675397273.css" media="screen" />
<link type="text/css" rel="stylesheet" href="css/css_uaIDKcYMUK5osSQXuirpr3ZleXtnnpBN-eiECm7N0M0%EF%B9%96m=1675397395.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/blue_sky.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/responsive.blue_sky.css" media="all" />
<link type="text/css" rel="stylesheet" href="css/geos-chem.css" media="all"/>
<script type="text/javascript" src="dropdown-menu.js"></script>
<!--[if lte IE 8]>
<script type="text/javascript">
var os_c = document.createElement;os_c('header');os_c('nav');os_c('section');os_c('article');os_c('aside');os_c('footer');os_c('hgroup');os_c('figure');
</script>
<![endif]-->
</head>
<body class="html not-front not-logged-in no-sidebars page-node page-node- page-node-1585687 node-type-page og-context og-context-node og-context-node-1585652 navbar-on">
<div id="skip-link">
<a href="#main-content" class="element-invisible element-focusable" tabindex="1">Skip to main content</a>
</div>
<div id="page_wrap" class="page_wrap">
<div id="page" class="container page header-main content-top footer-none">
<div id="page-wrapper">
<!--header regions beg-->
<header id="header" class="clearfix" role="banner">
<div id="header-container">
<div id="header-panels" class="at-panel gpanel panel-display three-col clearfix">
<div class="region region-header-second"><div class="region-inner clearfix">
<section id="block-boxes-1630413211" class="block block-boxes block-boxes-os_boxes_html" module="boxes" delta="1630413211">
<div class="block-inner clearfix">
<h2 class="block-title" ng-non-bindable="">Site-Logo</h2>
<div class="block-content content" ng-non-bindable="">
<div id='boxes-box-1630413211' class='boxes-box'>
<div class="boxes-box-content">
<p style="text-align:center"><a href="index.html" title=""><img alt="Welcome to the GEOS-Chem website" src="img/geos-chem-logo.png" style="width:420px" /></a></p>
</div>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
</div>
</header>
<!--header regions end-->
<!--main menu region beg-->
<div id="menu-bar" class="nav region-menu-bar clearfix">
<nav id="block-os-primary-menu" class="block block-os no-title menu-wrapper menu-bar-wrapper clearfix" module="os" delta="primary-menu">
<script>inlineDropDownMenu();</script>
</nav>
</div>
<!--main menu region end-->
<div id="columns" class="clearfix">
<div class="hg-container">
<div id="content-column" role="main">
<div class="content-inner">
<a name="main-content"></a>
<header id="main-content-header">
<a name="main-content"></a>
<h1 id="page-title" align="center">New GEOS-Chem Developments</h1>
</header>
<!--front panel regions beg-->
<div id="content-panels" class="at-panel gpanel panel-display content clearfix">
<div class="region region-content-top">
<div class="region-inner clearfix">
<div id="block-os-pages-main-content" class="block block-os-pages no-title" module="os_pages" delta="main_content">
<div class="block-inner clearfix">
<div class="block-content content" ng-non-bindable="">
<article id="node-1585687" class="node node-page article clearfix" role="article">
<div class="node-content" ng-non-bindable="">
<div class="field field-name-body field-type-text-with-summary field-label-hidden view-mode-full">
<div class="field-items">
<div class="field-item even">
<p style="text-align:center">
<em>Last Updated November 8, 2024 (version 14.5.0)</em>
</p>
<p align="center">
<a href="#new">New developments (versions 13.2.0 - 14.5.0)</a> | <a href="#older">Older developments</a>
</p>
<p>
We list below the major new GEOS-Chem developments and their developers from version 13.2.0 (released September 2021) to version 14.5.0 (released November 2024). If these developments have benefited your work we strongly encourage you to offer co-authorship on publications to the relevant developers. This page is reviewed by the <a href="steering-committee.html">GEOS-Chem Steering Committee</a> at every new X.Y version release. <a href="#older">Older developments</a> are adequately credited by citation following the guidelines in the <a href="narrative.html">Narrative GEOS-Chem Description page</a>. A full version history of GEOS-Chem development can be found on the <a href="http://wiki.geos-chem.org/GEOS-Chem_versions">GEOS-Chem versions wiki page</a>. For questions or guidance please contact the relevant <a href="working-groups.html">Working Group Chair</a> or Model Scientist. For new developments in the adjoint model see the<em> </em><a href="http://wiki.geos-chem.org/GEOS-Chem_Adjoint" target="_blank"><em>adjoint wiki page</em></a><em>.</em>
</p>
<h2>
<a name="new" id="new"></a>New developments in GEOS-Chem versions 13.2.0 - 14.5.0
</h2>
<ul>
<li>
(14.5.0) <strong>Chemistry for RCOOH, monoterpenes, new PNs and ANs.</strong> Developers: Katie Travis (NASA Langley) and Kelvin Bates (CU Boulder). Reference: Travis, K. R., Nault, B. A., Crawford, J. H., Bates, K. H., Blake, D. R., Cohen, R. C., Fried, A., Hall, S. R., Huey, L. G., Lee, Y. R., Meinardi, S., Min, K.-E., Simpson, I. J., and Ullman, K.: Impact of improved representation of volatile organic compound emissions and production of NOx reservoirs on modeled urban ozone production, Atmos. Chem. Phys., 24, 9555–9572, <a href="https://doi.org/10.5194/acp-24-9555-2024">https://doi.org/10.5194/acp-24-9555-2024</a>, 2024.
<br/><br/></li>
<li>
(14.5.0) <strong>Update to ALK4 and R4N2 chemistry.</strong> Developer: Jered Brewer (UMN). Reference: Brewer, J. F., Jacob, D. J., Jathar, S. H., He, Y., Akherati, A., Zhai, S., et al. A scheme for representing aromatic secondary organic aerosols in chemical transport models: Application to source attribution of organic aerosols over South Korea during the KORUS-AQ campaign. Journal of Geophysical Research: Atmospheres, 128, e2022JD037257, <a href="https://doi.org/10.1029/2022JD037257">https://doi.org/10.1029/2022JD037257</a>, 2023.
<br/><br/></li>
<li>
(14.5.0) <strong>Adding PPN photolysis.</strong> Developer: Bex Horner (UCL). Reference: Horner, R. P., Marais, E. A., Wei, N., Ryan, R. G., and Shah, V.: Vertical profiles of global tropospheric nitrogen dioxide (NO2) obtained by cloud-slicing TROPOMI, EGUsphere [preprint], <a href="https://doi.org/10.5194/egusphere-2024-1541">https://doi.org/10.5194/egusphere-2024-1541</a>, 2024.
<br/><br/></li>
<li>
(14.5.0) <strong>Adding emission factors for ALK6, C4H6, EBZ, STYR, TMB emissions in GFED and FINN biomass burning.</strong> Developer: Kelvin Bates (Colorado).
<br/><br/></li>
<li>
(14.5.0) <strong>Pass non-zero Ca2, Mg, and K cations to HETP.</strong> Developers: Becky Alexander (UW) and Lizzie Lundgren (Harvard).
<br/><br/></li>
<li>
(14.5.0) <strong>Allow per-species definition of KPP absolute and relative solver tolerances.</strong> Developers: Obin Sturm (USC) and Bob Yantosca (Harvard).
<br/><br/></li>
<li>
(14.5.0) <strong>Cloud-J v8.0 including UV H2O absorption.</strong> Developers: Lizzie Lundgren (Harvard) and Michael Prather (UCI). Reference:
Prather, M. J., and Zhu, L. Resetting tropospheric OH and CH4 lifetime with ultraviolet H2O absorption. Science 385, 201–204, 2024.
<br/><br/></li>
<li>
(14.4.0) <strong>Replace ISORROPIA II with HETP aerosol thermodynamics.</strong> Developers: Lizzie Lundgren (Harvard) and Seb Eastham (ICL). Reference: Miller, S. J., Makar, P. A., and Lee, C. J.: HETerogeneous vectorized or Parallel (HETPv1.0): an updated inorganic heterogeneous chemistry solver for the metastable-state NH4+–Na+–Ca2+–K+–Mg2+–SO42−–NO3−–Cl−–H2O system based on ISORROPIA II, Geosci. Model Dev., 17, 2197–2219, <a href="https://doi.org/10.5194/gmd-17-2197-2024">https://doi.org/10.5194/gmd-17-2197-2024</a>, 2024.
<br/><br/></li>
<li>
(14.4.0) <strong>Parameterized effective radius for SNA and OM aerosols.</strong> Developer: Haihui Zhu (WashU). Reference: Zhu, H., Martin, R. V., Croft, B., Zhai, S., Li, C., Bindle, L., Pierce, J. R., Chang, R. Y.-W., Anderson, B. E., Ziemba, L. D., Hair, J. W., Ferrare, R. A., Hostetler, C. A., Singh, I., Chatterjee, D., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Dibb, J. E., Schwarz, J. S., and Weinheimer, A.: Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., 23, 5023–5042, <a href="https://doi.org/10.5194/acp-23-5023-2023">https://doi.org/10.5194/acp-23-5023-2023</a>, 2023.
<br/><br/></li>
<li>
(14.4.0) <strong>Updated gravitational settling and hygroscopic growth in aerosol dry deposition.</strong> Developer: Yanshun Li (WashU). Reference: Li, Y., Martin, R. V., Li, C., Boys, B. L., van Donkelaar, A., Meng, J., and Pierce, J. R.: Development and evaluation of processes affecting simulation of diel fine particulate matter variation in the GEOS-Chem model, Atmospheric Chemistry and Physics, 23(19), 12525–12543. <a href="https://doi.org/10.5194/acp-23-12525-2023">https://doi.org/10.5194/acp-23-12525-2023</a>, 2023.
<br/><br/></li>
<li>
(14.4.0) <strong>Global continental chlorine (pCl and HCl) emissions.</strong> Developers: Bingqing Zhang (Georgia Tech) and Pengfei Liu (Georgia Tech). Reference: Zhang, B., Shen, H., Yun, X., Zhong, Q., Henderson, B. H., Wang, X., Shi, L., Gunthe, S. S., Huey, L. G., Tao, S., Russell, A. G., & Liu, P. (2022). Global Emissions of Hydrogen Chloride and Particulate Chloride from Continental Sources. Environmental Science & Technology, 56(7), 3894-3904. <a href="https://doi.org/10.1021/acs.est.1c05634">https://doi.org/10.1021/acs.est.1c05634</a>, 2022.
<br/><br/></li>
<li>
(14.4.0) <strong>Add diel and day-of-week scale factors for global anthropogenic emissions.</strong> Developers: Barron Henderson (EPA) and Dandan Zhang (WashU). Reference: Vukovich, J. and A. Eyth, Technical Support Document on Preparation of Emissions Inventories for the Version 7.1 2016 Hemispheric Emissions Modeling Platform, <a href="https://www.epa.gov/sites/default/files/2019-12/documents/2016fe_hemispheric_tsd.pdf">https://www.epa.gov/sites/default/files/2019-12/documents/2016fe_hemispheric_tsd.pdf</a>
<br/><br/></li>
<li>
(14.4.0) <strong>Updated 0.1x0.1 degree timezone file accounting for daylight savings.</strong> Developer: Karn Vohra (UCL).
<br/><br/></li>
<li>
(14.4.0) <strong>Updated volcano emissions through 2023.</strong> Developer: Melissa Sulprizio (Harvard).
<br/><br/></li>
<li>
(14.4.0) <strong>Update surface methane boundary condition using NOAA flask data.</strong> Developer: Lee Murray (U Rochester).
<br/><br/></li>
<li>
(14.4.0) <strong>GCHP carbon simulation.</strong> Developers: Melissa Sulprizio (Harvard) and Bob Yantosca (Harvard).
<br/><br/></li>
<li>
(14.3.1) <strong>Update CH4 emissions from EDGARv7 to EDGARv8.</strong> Developer: Nicholas Balasus (Harvard).
<br/><br/></li>
<li>
(14.3.0) <strong>Update reactions with new JPL & IUPAC recommendations.</strong> Developer: Kelvin Bates (NOAA CSL). Reference: Bates, K., Evans, M., Henderson, B., and Jacob, D.: Impacts of updated reaction kinetics on the global GEOS-Chem simulation of atmospheric chemistry, EGUsphere [preprint], <a href="https://doi.org/10.5194/egusphere-2023-1374">https://doi.org/10.5194/egusphere-2023-1374</a>, 2024.
<br/><br/></li>
<li>
(14.3.0) <strong>Cloud-J for computing photolysis rates.</strong> Developer: Lizzie Lundgren (Harvard). Reference: Prather, M. J.: Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c, Geosci. Model Dev., 8, 2587–2595, <a href="https://doi.org/10.5194/gmd-8-2587-2015">https://doi.org/10.5194/gmd-8-2587-2015</a>, 2015.
<br/><br/></li>
<li>
(14.3.0) <strong>TOMAS in GCHP.</strong> Developer: Betty Croft (Dalhousie). Reference: Croft, B., R.V. Martin, R. Y.-W. Chang, L. Bindle, S.D. Eastham, L.A. Estrada, B. Ford, C. Li, M.S. Long, E.W. Lundgren, S. Sinha, M.P. Sulprizio, Y. Tang, A. van Donkelaar, R.M. Yantosca, D. Zhang, H. Zhu, and J.R. Pierce Towards fine horizontal resolution global simulations of aerosol sectional microphysics: Advances enabled by GCHP-TOMAS. J. Advances in Modeling Earth Systems, submitted.
<br/><br/></li>
<li>
(14.3.0) <strong>GEOS-IT meteorology.</strong> Developer: Lizzie Lundgren (Harvard).
<br/><br/></li>
<li>
(14.2.1) <strong>Update Hg0 emission factors.</strong> Developer: Eric Roy (MIT).
<br/><br/></li>
<li>
(14.2.0) <strong>Nitrate photolysis.</strong> Developer: Viral Shah (NASA GMAO). Reference: Shah, V., Jacob, D. J., Dang, R., Lamsal, L. N., Strode, S. A., Steenrod, S. D., Boersma, K. F., Eastham, S. D., Fritz, T. M., Thompson, C., Peischl, J., Bourgeois, I., Pollack, I. B., Nault, B. A., Cohen, R. C., Campuzano-Jost, P., Jimenez, J. L., Andersen, S. T., Carpenter, L. J., Sherwen, T., and Evans, M. J.: Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., 23, 1227–1257, <a href="https://doi.org/10.5194/acp-23-1227-2023">https://doi.org/10.5194/acp-23-1227-2023</a>, 2023.
<br/><br/></li>
<li>
(14.2.0) <strong>Update VOC fire emissions and adding lumped furan.</strong> Developers: Colette Heald (MIT) and Tess Carter (MIT). Reference: Carter, T. S., Heald, C. L., Kroll, J. H., Apel, E. C., Blake, D., Coggon, M., Edtbauer, A., Gkatzelis, G., Hornbrook, R. S., Peischl, J., Pfannerstill, E. Y., Piel, F., Reijrink, N. G., Ringsdorf, A., Warneke, C., Williams, J., Wisthaler, A., and Xu, L.: An improved representation of fire non-methane organic gases (NMOGs) in models: emissions to reactivity, Atmos. Chem. Phys., 22, 12093–12111, <a href="https://doi.org/10.5194/acp-22-12093-2022">https://doi.org/10.5194/acp-22-12093-2022</a>, 2022.
<br/><br/></li>
<li>
(14.2.0) <strong>Methane emissions from hydropower reservoirs.</strong> Developer: Kyle Delwiche (UC Berkeley). Reference: Delwiche, K. B., Harrison, J. A., Maasakkers, J. D., Sulprizio, M. P., Worden, J., Jacob, D. J., & Sunderland, E. M. (2022). Estimating drivers and pathways for hydroelectric reservoir methane emissions using a new mechanistic model. Journal of Geophysical Research: Biogeosciences, 127, e2022JG006908. <a href="https://doi.org/10.1029/2022JG006908">https://doi.org/10.1029/2022JG006908</a>, 2022.
<br/><br/></li>
<li>
(14.2.0) <strong>Restore sea-salt debromination and Iy sink reactions on alkaline sea-salt aerosol</strong> Developer: Becky Alexander (UW).
<br/><br/></li>
<li>
(14.2.0) <strong>Climatology option for lightning NOx.</strong> Developer: Lee Murray (Rochester).
<br/><br/></li>
<li>
(14.2.0) <strong>Climatology option for GFED4 biomass burning emissions.</strong> Developer: Melissa Sulprizio (Harvard). Reference: Giglio, L., Randerson, J. T., and van der Werf, G. R., (2013), Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4) J. Geophys. Res. Biogeosci., 118, 317–328, doi:10.1002/jgrg.20042, 2013.
<br/><br/></li>
<li>
(14.2.0) <strong>Extend GFED4 biomass burning data through Oct 2022.</strong> Developer: Makoto Kelp (Harvard). Reference: Giglio, L., Randerson, J. T., and van der Werf, G. R., (2013), Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4) J. Geophys. Res. Biogeosci., 118, 317–328, doi:10.1002/jgrg.20042, 2013.
<br/><br/></li>
<li>
(14.2.0) <strong>Update global anthropogenic CH4 emissions to EDGARv7.0.</strong> Developer: Melissa Sulprizio (Harvard). Reference: EDGAR 7.0 website <a href="https://edgar.jrc.ec.europa.eu/dataset_ghg70">https://edgar.jrc.ec.europa.eu/dataset_ghg70</a>. EDGAR (Emissions Database for Global Atmospheric Research) Community GHG Database (a collaboration between the European Commission, Joint Research Centre (JRC), the International Energy Agency (IEA), and comprising IEA-EDGAR CO2, EDGAR CH4, EDGAR N2O, EDGAR F-GASES version 7.0, (2022) European Commission, JRC (Datasets).
<br/><br/></li>
<li>
(14.2.0) <strong>Restore and update GCHP functionality on the cloud.</strong> Developer: Yidan Tang (WashU).
<br/><br/></li>
<li>
(14.1.0) <strong>KPP 3.0 including adaptive solver option</strong><strong>.</strong> Developer: Haipeng Lin (Harvard). Reference: Lin, H., M.S. Long, R. Sander, R.M. Yantosca, L.A. Estrada, L. Shen, and D.J. Jacob, An adaptive auto-reduction solver for speeding up integration of chemical kinetics in atmospheric chemistry models: implementation and evaluation in the Kinetic Pre-Processor (KPP) version 3.0.0, submitted to JAMES, <a href="https://doi.org/10.31223/X5505V">https://doi.org/10.31223/X5505V</a>, 2023.
<br/><br/></li>
<li>
(14.1.0) <strong>HTAPv3 at 0.1 deg. </strong>Developer: Dandan Zhang (WashU). Reference: Crippa, M., Guizzardi, D., Butler, T., Keating, T., Wu, R., Kaminski, J., Kuenen, J., Kurokawa, J., Chatani, S., Morikawa, T., Pouliot, G., Racine, J., Moran, M. D., Klimont, Z., Manseau, P. M., Mashayekhi, R., Henderson, B. H., Smith, S. J., Suchyta, H., Muntean, M., Solazzo, E., Banja, M., Schaaf, E., Pagani, F., Woo, J. H., Kim, J., Monforti-Ferrario, F., Pisoni, E., Zhang, J., Niemi, D., Sassi, M., Ansari, T., and Foley, K.: HTAP_v3 emission mosaic: a global effort to tackle air quality issues by quantifying global anthropogenic air pollutant sources, Earth Syst. Sci. Data Discuss., 2023, 1-34, 10.5194/essd-2022-442, 2023.
<br/><br/></li>
<li>
(14.1.0) <strong>Improvements in modelled Hg0 dry deposition to land. </strong>Developer: Ari Feinberg (MIT). Reference: Feinberg, A., T. Dlamini, M. Jiskra, V. Shah and N.E. Selin, Evaluating atmospheric mercury (Hg) uptake by vegetation in a chemistry-transport model. Environmental Science: Processes and Impacts, 24, 1303-1318, doi: 10.1039/D2EM00032F, 2022.
<br/><br/></li>
<li>
(14.1.0) <strong>AMAP 2015 emissions from GMA2018. </strong>Developer: Helene Angot (MIT). Reference: Steenhuisen, F.; Wilson, S.J., 2022, "Geospatially distributed (gridded) global mercury emissions to air from anthropogenic sources in 2015", <a href="https://doi.org/10.34894/SZ2KOI">https://doi.org/10.34894/SZ2KOI</a>, DataverseNL, V1.
<br/><br/></li>
<li>
(14.1.0) <strong>Carbon simulation (CO2-CO-CH4-OCS) via KPP. </strong>Developer: Beata Bukosa (NIWA). Reference: Bukosa B, Fisher JA, Deutscher NM, Jones DBA. <em>A Coupled CH4, CO and CO2 Simulation for Improved Chemical Source Modelling</em>. Atmosphere. 2023; 14(5):764. <a href="https://doi.org/10.3390/atmos14050764>doi: 10.3390/atmos14050764</a>.
<br/><br/></li>
<li>
(14.0.0) <strong>Updated offline biogenic VOC and soil NOx emissions.</strong> Developer: Hongjian Weng (PKU)
<br/><br/></li>
<li>
(13.4.0) <b>GEOS-FP c720 advection archive starting in March 2021. </b>Developers: Liam Bindle (WashU) and Sebastian Eastham (MIT)
<br/><br/></li>
<li>
(13.4.0) <strong>Capability to run GEOS-Chem with GEOS meteorological fields without pre-processing. </strong>Developer: Liam Bindle (WashU)
<br/><br/></li>
<li>
(13.4.0) <strong>Integration of sulfur cloud/aerosol chemistry into KPP. </strong>Developer: Michael Long (Harvard)
<br/><br/></li>
<li>
(13.4.0) <strong>AEIC 2019 aircraft emissions inventory. </strong>Developer: Sebastian Eastham (MIT). Reference: Simone, N. W., Stettler, M. E. J., and Barrett, S. R. H.: Rapid estimation of global civil aviation emissions with uncertainty quantification, Transportation Research Part D: Transport and Environment, 25, 33–41, <a href="https://doi.org/10.1016/j.trd.2013.07.001">https://doi.org/10.1016/j.trd.2013.07.001</a>, 2013.
<br/><br/></li>
<li>
(13.4.0) <strong>Updated ozone dry deposition to ice and snow. </strong>Developer: Ryan Pound (U. York). Reference: Barten, J.M.G., L.N. Ganzeveld, J.-G. Steeneveld, and M.C. Krol, Role of oceanic ozone deposition in explaining temporal variability in surface ozone at High Arctic sites, Atmos. Chem. Phys., 21, 10229–10248, 2021.
<br/><br/></li>
<li>
(13.4.0) <strong>New </strong><strong>PM10 diagnostic. </strong>Developers: Fangqun Yu (SUNY Albany) and Shixian Zhai (Harvard). Reference: Zhai, S., et al., Interpretation of geostationary satellite aerosol optical depth (AOD) over East Asia in relation to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and seasonality, Atmos. Chem. Phys., 21, 16775-16791, 2021.
<br/><br/></li>
<li>
(13.4.0) <strong>Updated Hg chemistry. </strong>Developer: Viral Shah (Harvard). Reference: Shah, V., D.J. Jacob, C.P. Thackray, X. Wang, E.M. Sunderland, T.S. Dibble, A. Saiz-Lopez, I. Cernusak, V. Kello, P.J. Castro, R. Wu, and C. Wang, Improved mechanistic model of the atmospheric redox chemistry of mercury, Environ. Sci. Technol., 55, 14445-14456, 2021.
<br/><br/></li>
<li>
(13.4.0) <strong>GFEI v2 inventory of methane emissions from fuel exploitation. </strong>Developer: Tia Scarpelli (Harvard). Reference: Scarpelli, T.R., D.J. Jacob, S. Grossman, X. Lu, Z. Qu, M.P. Sulprizio, Y. Zhang, F. Reuland, D. Gordon, and J.R. Worden, Updated Global Fuel Exploitation Inventory (GFEI) for methane emissions from the oil, gas, and coal sectors: evaluation with inversions of atmospheric methane observations, <i> </i>Atmos. Chem. Phys., 22, 3235-3249, 2022.
<br/><br/></li>
<li>
(13.4.0) <strong>Anthropogenic methane emission inventory for Canada. </strong>Developer: Tia Scarpelli (Harvard). Reference: Scarpelli, T.R., D.J. Jacob, M. Moran, F. Reuland, and D. Gordon, A gridded inventory of Canada's anthropogenic methane emissions, Environ. Res. Lett., 17, 014007, 2022.
<br/><br/></li>
<li>
(13.4.0) <strong>Updated radon-222 emission inventory. </strong>Developer: Bo Zhang (NIA). Reference: Zhang, B., H. Liu, et al., Simulation of radon-222 with the GEOS-Chem global model: emissions, seasonality, and convective transport, Atmos. Chem. Phys., 21, 1861–1887, 2021.
<br/><br/></li>
<li>
(13.3.0) <b>Extended AeroCom volcanic emissions to May 2020.</b> Developer: Christoph A. Keller (NASA/GSFC)
<br/><br/></li>
<li>
(13.3.0) <strong>New size-dependent aerosol dry deposition. </strong>Developer: Jeff Pierce (CSU). Reference: Emerson, E.W., A.L. Hodshire, H.M. DeBolt, K.R. Bilsback, J.R. Pierce, G.R. McMeeking, and D.K. Farmer, Revisiting particle dry deposition and its role in radiative effect estimates, PNAS, 117, 26076-26082, 2020.
<br/><br/></li>
<li>
(13.3.0) <strong>Aromatics chemistry. </strong>Developers: Kelvin Bates and Ke Li (Harvard). Reference: Bates, K.H., D.J. Jacob, K. Li, P. Ivatt, M.J. Evans, Y. Yan, and J. Lin, Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models [preprint], Atmos. Chem. Phys. Discuss., <a href="https://doi.org/10.5194/acp-2021-605" rel="nofollow">https://doi.org/10.5194/acp-2021-605</a>, in review, 2021.
<br/><br/></li>
<li>
(13.3.0) <strong>Ethylene and acetylene chemistry. </strong>Developer: Kelvin Bates and Ke Li (Harvard). Reference: Kwon, H.-A., R.J. Park, Y.J. Oak, .C..R. Nowland, S.J. Janz, M. Kowalewski, A. Fried, J. Walega, K.H. Bates, J. Choi, D.R. Blake, A, Wisthaler, J.-H. Woo, Top-down estimates of anthropogenic VOC emissions in South Korea using formaldehyde vertical column densities from aircraft during the KORUS-AQ campaign, Elementa, 9, 00109, 2021.
<br/><br/></li>
<li>
(13.3.0) <strong>CH3O2 + OH reaction. </strong>Developer: Kelvin Bates (Harvard). Reference: Bates, K.H., Jacob, D.J., Wang, S., Hornbrook, R.S., Apel, E.C., Kim, M.J., Millet, D.B., Wells, K.C., Chen, X., Brewer, J.F., Ray, E.A., Diskin, G.S., Commane, R., Daube, B.C. and Wofsy, S.C., <a href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2020JD033439" title="">The global budget of atmospheric methanol: new constraints on secondary, oceanic, and terrestrial source</a>, <u>J. Geophys. Res., 126,</u> e2020JD033439, 2021.
<br/><br/></li>
<li>
(13.3.0) <strong>Hydroxymethanesulfonate (HMS) chemistry. </strong>Developer: Jonathan Moch (Harvard). Reference: Moch, J.M., E. Dovrou, L.J. Mickley, F.N. Keutsch, Z. Liu, Y. Wang, T.L. Dombek, M. Kuwata, S.H. Budisulistiorini, L. Yang, S. Decesari, M. Paglione, B. Alexander, J. Shao, J.W. Munger, D.J. Jacob, Global importance of hydroxymethanesulfonate in ambient particulate matter: Implications for air quality, J. Geophys. Res., 125, e2020JD032706, <a href="https://doi.org/10.1029/2020JD032706" rel="nofollow">https://doi.org/10.1029/2020JD032706</a>, 2020.
<br/><br/></li>
<li>
(13.3.0) <strong>Bug fix to cloud entrainment for nitrogen oxides and halogens uptake. </strong>The entrainment limitation was not correctly implemented in older versions. The bug was fixed by Viral Shah (Harvard).
<br/><br/></li>
<li>
(13.2.0)<b> Trace metals simulation. </b>Developer: Jun-Wei Xu (Dalhousie U.). Reference: Xu, J.-W., R.V. Martin, B.H. Henderson, J. Meng, Y.B. Oztaner, J.L. Hand, A. Hakami, M. Strum, and S.B. Phillips, Simulation of airborne trace metals in fine particulate matter over North America, Atmos. Environ., 214, 116883, 2019.
<br/><br/></li>
<li>
(13.2.0) <strong>Blowing snow emissions of sea salt aerosols and bromide. </strong>Developers: Jiayue Huang and Lyatt Jaegle (U. Washington). Reference: Huang, J. and Jaeglé, L.: Wintertime enhancements of sea salt aerosol in polar regions consistent with a sea ice source from blowing snow, Atmos. Chem. Phys., 17, 3699–3712, <a href="https://doi.org/10.5194/acp-17-3699-2017">https://doi.org/10.5194/acp-17-3699-2017</a>, 2017.
<br/><br/></li>
<li>
(13.2.0) <strong>Improved wet scavenging (as option). </strong>Developers: Gan Luo and Fangqun Yu (SUNY Albany) Reference: Luo, G., Yu, F., and Moch, J. M.: Further improvement of wet process treatments in GEOS-Chem v12.6.0: impact on global distributions of aerosols and aerosol precursors, Geosci. Model Dev., 13, 2879–2903, <a href="https://doi.org/10.5194/gmd-13-2879-2020">https://doi.org/10.5194/gmd-13-2879-2020</a>, 2020.
<br/><br/></li>
</ul>
<h2>
<a name="older" id="older"></a>Older developments
</h2>
<ul>
<li>
(13.1.0) <b>HEMCO 3.0 emission module.</b> Developer: Haipeng Lin (Harvard U.)<br />Reference:Lin, H., D.J. Jacob, E.W. Lundgren, M.P. Sulprizio, C.A. Keller, T.M. Fritz, S.D. Eastham, L.K. Emmons, P.C. Campbell, B. Baker, R.D. Saylor, and R. Montuoro, Harmonized Emissions Component (HEMCO) 3.0 as a versatile emissions component for atmospheric models: application in the GEOS-Chem, NASA GEOS, WRF-GC, CESM2, NOAA GEFS-Aerosol, and NOAA UFS models , Geosci. Model Dev. Discuss. [preprint], <a href="https://doi.org/10.5194/gmd-2021-130">https://doi.org/10.5194/gmd-2021-130</a>, in review, 2021.
<br/><br/></li>
<li>
(13.1.0) <b>Methane emission inventory for Mexico. </b>Developer: Tia Scarpelli (Harvard U.)<br />Reference: Scarpelli, T.R., D.J. Jacob, C.A. Octaviano Villasana, I.F. Ramirez Hernandez, P.R. Cardenas Moreno, E.A. Cortes Alfaro, M.A. Garcia Garcia, and D. Zavala-Araiza, A gridded inventory of anthropogenic methane emissions from Mexico based on Mexico's National Inventory of Greenhouse Gases and Compounds, Environ. Res. Lett., 15, 105015, 2020.
<br/><br/></li>
<li>
(13.1.0) <b>GCAP 2.0. </b>Developer: Lee Murray (U. Rochester)<br />Reference: Murray, L. T., Leibensperger, E. M., Orbe, C., Mickley, L. J., and Sulprizio, M.: GCAP 2.0: A global 3-D chemical-transport model framework for past, present, and future climate scenarios, Geosci. Model Dev. Discuss. [preprint], <a href="https://doi.org/10.5194/gmd-2021-144">https://doi.org/10.5194/gmd-2021-144</a>, in review, 2021.
<br/><br/></li>
<li>
(13.1.0) <b>Diurnal variation of emissions from Chinese power plants. </b>Developers: Hongjian Weng and Jintai Lin (Peking U.)<br />Reference: Xiao Liu, Xing Gao, Xinbin Wu, Weilin Yu, Lulu Chen, Ruijing Ni, Yu Zhao, Hongwei Duan, Fuming Zhao, Lilin Chen, Shengming Gao, Ke Xu, Jintai Lin, and Anthony Y. Ku, Updated Hourly Emissions Factors for Chinese Power Plants Showing the Impact of Widespread Ultralow Emissions Technology Deployment, Environ. Sci. Technol., 53, 2570-2578, 2019.
<br/><br/></li>
<li>
(13.1.0) <b>Vertical allocation of CEDS emissions by sector. </b>Developer: Barron Henderson (US EPA)<br />Reference: US EPA, Preparation of Emissions Inventories for the Version 7.1 2016 Hemispheric Emissions Modeling Platform. U.S. Environmental Protection Agency, Research Triangle Park, NC, 2019. <a href="https://www.epa.gov/sites/production/files/2019-12/documents/2016fe_hemispheric_tsd.pdf">https://www.epa.gov/sites/production/files/2019-12/documents/2016fe_hemi...</a> (see Section 2.1.4)
<br/><br/></li>
<li>
(13.0.0) <b> Streets et al. (2019) mercury emissions inventory </b> Developer: Colin Thackray (Harvard U.)<br />Reference: Streets, D.G., et al., Global and regional trends of mercury emissions and concentrations, 2010-2015, Atmos. Environ., 417-427, 2019.
<br/><br/></li>
<li>
(13.0.0) <b> EDGARv4.2 mercury emissions inventory </b> Developer: Amanda Giang (U. British Columbia)<br />Reference: Muntean M, Janssens-Maenhout G, Song S, Giang A, Selin NE, Zhong H, Zhao Y, Olivier JG, Guizzardi D, Crippa M, Schaaf E. Evaluating EDGARv4.tox2 speciated mercury emissions ex-post scenarios and their impacts on modelled global and regional wet deposition patterns. Atmospheric Environment. 2018; 184:56-68.
<br/><br/></li>
<li>
(13.0.0) <b> Stretched-grid capability in GCHP </b> Developer: Liam Bindle (Washington U.)<br />Reference: Bindle, L., R.V. Martin, M.J. Cooper, E.W. Lundgren, S.D. Eastham, B.M. Auer, T.L. Clune, H. Weng, J. Lin, L.T. Murray, J. Meng, C.A. Keller, S. Pawson, and D.J. Jacob, Grid-stretching capability for the GEOS-Chem 13.0.0 atmospheric chemistry model , Geophys. Model Dev. Discuss, [preprint], <a href="https://doi.org/10.5194/gmd-2020-398">https://doi.org/10.5194/gmd-2020-398</a>, in review, 2021.
<br/><br/></li>
<li>
(13.0.0) <b> GFEI inventory of methane emissions from fuel exploitation </b> Developer: Tia Scarpelli (Harvard)<br />Reference: Scarpelli, T.R., D.J. Jacob, J.D. Maasakkers, M.P. Sulprizio, J.-X. Sheng, K. Rose, L. Romeo, J.R. Worden, and G. Janssens-Maenhout, A global gridded (0.1<sup>o</sup> x (0.1<sup>o</sup> ) inventory of methane emissions from fuel exploitation based on national reports to the United Nations Framework Convention on Climate Change, Earth System Sci. Data, 12, 563-575, 2020.
<br/><br/></li>
<li>
(13.0.0) <b> Updated CEDS anthropogenic emission iventory, 1970-2017. </b> Developer: Erin McDuffie (Dalhousie U., now at EPA)<br />Reference: McDuffie, E. E., S. J. Smith, P. O'Rourke, K. Tibrewal, C. Venkataraman, E. A. Marais, B. Zheng, M. Crippa, M. Brauer, R. V. Martin, A global anthropogenic emission inventory of atmospheric pollutants from sector- and fuel- specific sources (1970- 2017): An application of the Community Emissions Data System (CEDS), Earth System Science Data, 12, 3413-3442, 2020.
<br/><br/></li>
<li>
(13.0.0) <b> Updated ODIAC CO2 emissions to 2019. </b> Implementer: Yi Cao (U. Wollongong)<br />References:<br />Oda, T., Maksyutov, S., and Andres, R. J.: The Open-source Data Inventory for Anthropogenic CO2, version 2016 (ODIAC2016): a global monthly fossil fuel CO2 gridded emissions data product for tracer transport simulations and surface flux inversions, Earth Syst. Sci. Data, doi:10.5194/essd-10-87-2018, 2018.<br />Oda, T. and Maksyutov, S.: A very high-resolution (1 km×1 km) global fossil fuel CO2 emission inventory derived using a point source database and satellite observations of nighttime lights, Atmos. Chem. Phys., 11, 543-556, doi:10.5194/acp-11-543-2011, 2011.
<br/><br/></li>
<li>
(12.9.0) <b>Halogen chemistry [Wang et al., 2021]. </b>Developers: Xuan Wang (City U. of Hong Kong) and Tomas Sherwen (U. York)<br />Reference: Wang, X., D.J. Jacob, W. Downs, S. Zhai, L. Zhu, V. Shah, C.D. Holmes, T. Sherwen, B. Alexander, M.J. Evans, S.D. Eastham, J.A. Neuman, P. Veres, T.K Koenig, R. Volkamer, L.G. Huey, T.J. Bannan, C.J. Percival, B.H. Lee, and J.A. Thornton, <a href="https://acp.copernicus.org/articles/21/13973/2021/" title="">Global tropospheric halogen (Cl, Br, I) chemistry and its impact on oxidants,</a> Atmos. Chem. Phys., 21, 13973-13996, 2021.
<br/><br/></li>
<li>
(12.9.0) <b>New calculation of cloudwater pH. </b> Developer: Viral Shah (Harvard)<br />Reference: Shah, V., D.J. Jacob, J.M. Moch, X. Wang, and S. Zhai, Global modeling of cloudwater acidity, rainwater acidity, and acid inputs to ecosystems, Atmos. Chem. Phys. Discuss., <a href="https://doi.org/10.5194/acp-2020-485">https://doi.org/10.5194/acp-2020-485</a>, 2020.
<br/><br/></li>
<li>
(12.9.0) <b>Updated lightning climatology to the end of 2019. </b> Developer: Lee Murray (U. Rochester)<br />Reference: <a href="http://www.sas.rochester.edu/ees/atmos/data/">Lee Murray's lightning data site</a>
<br/><br/></li>
<li>
(12.8.0) <b>New isoprene chemistry mechanism and updated wet deposition of secondary organics </b> Developer: Kelvin Bates (Harvard)<br />References: <b>(1)</b> Bates, K.H., and D.J. Jacob, A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol, Atmos. Chem. Phys., 19, 9613-9640, 2019. <b>(2)</b> Safieddine, S.A., and C.L. Heald, A global assessment of dissolved organic carbon in precipitation, Geophys. Res. Lett., 44, 11,672-11,681, 2017.
<br/><br/></li>
<li>
(12.8.0) <b>Ozone deposition to ocean </b> Developer: Ryan Pound (U. York)<br />Reference: Pound, R.J., T. Sherwen, D. Helmig, L.J. Carpenter, and M.J. Evans, Influences of oceanic ozone deposition on tropospheric photochemistry, Atmos. Chem. Phys., 20, 4227-4239, 2020.
<br/><br/></li>
<li>
(12.7.0) <b>Updated wet deposition (option). </b> Developers: Gan Luo and Fangqun Yu (SUNY Albany)<br />Reference: G. Luo, F. Yu, J. Schwab, Revised treatment of wet scavenging processes dramatically improves GEOS-Chem 12.0.0 simulations of nitric acid, nitrate, and ammonium over the United States, Geosci. Model Dev., 12, 3439-3447, 2019.
<br/><br/></li>
<li>
(12.7.0) <b>Methyl, ethyl, and propyl nitrate chemistry. </b> Developer: Jenny Fisher (U. Wollongong)<br />Reference: Fisher, J.A., E.L. Atlas, B. Barletta, S. Meinardi, D.R. Blake, C.R. Thompson, T.B. Ryerson, J. Peischl, Z.A. Tzompa-Sosa, and L.T. Murray, Methyl, Ethyl, and Propyl Nitrates: Global Distribution and Impacts on Reactive Nitrogen in Remote Marine Environments, J. Geophys. Res., 123, 12,429-12,451, 2018.
<br/><br/></li>
<li>
(12.7.0) <b>Methanol as part of the standard GEOS-Chem chemical mechanism. </b> Developers: Xin Chen and Dylan Millet (U. Minnesota), Katie Travis (NASA Langley)<br />Reference: Chen, X., Millet, D. B., Singh, H. B., Wisthaler, A., Apel, E. C., Atlas, E. L., Blake, D. R., Bourgeois, I., Brown, S. S., Crounse, J. D., de Gouw, J. A., Flocke, F. M., Fried, A., Heikes, B. G., Hornbrook, R. S., Mikoviny, T., Min, K.-E., Müller, M., Neuman, J. A., O'Sullivan, D. W., Peischl, J., Pfister, G. G., Richter, D., Roberts, J. M., Ryerson, T. B., Shertz, S. R., Thompson, C. R., Treadaway, V., Veres, P. R., Walega, J., Warneke, C., Washenfelder, R. A., Weibring, P., and Yuan, B.: On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America, Atmos. Chem. Phys., 19, 9097-9123, <a href="https://doi.org/10.5194/acp-19-9097-2019">https://doi.org/10.5194/acp-19-9097-2019</a>, 2019.
<br/><br/></li>
<li>
(12.7.0) <b>MeMo v1.0 soil sink of methane. </b> Implementer: Melissa Sulprizio (Harvard)<br />Reference: Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., and Hornibrook, E. R. C.: Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil, Geosci. Model Dev., 11, 2009-2032, <a href="https://doi.org/10.5194/gmd-11-2009-2018">https://doi.org/10.5194/gmd-11-2009-2018</a>, 2018.
<br/><br/></li>
<li>
(12.6.0) <b>Update of APM aerosol microphysics to current model version. </b> Developers: Gan Luo and Fangqun Yu (SUNY Albany)
<br/><br/></li>
<li>
(12.6.0) <b>Diagnosing surface ozone and HNO3 concentrations below lowest model gridpoint.</b> Developer: Katherine Travis (NASA Langley)
<br/><br/></li>
<li>
(12.6.0) <b>BB4CMIP historical biomass burning emissions for 1750-2014.</b> Developer: Pengfei Liu (Harvard)
<br/><br/></li>
<li>
(12.6.0) <b>Aerosol nitrate photolysis (optional).</b> Developer: Prasad Kasibhatla (Duke)
<br/><br/></li>
<li>
(12.6.0) <b>Dependence of stomatal conductance on CO2 (optional).</b> Developer: Amos Tai (Chinese U. Hong Kong)
<br/><br/></li>
<li>
(12.6.0) <b>New aerosol hygroscopicity tables for chemistry and photolysis.</b> Developer: Robyn Latimer (Dalhousie)
<br/><br/></li>
<li>
(12.6.0) <b>HNO3 dry deposition at cold temperatures.</b> Developer: Lyatt Jaegle (U. Washington)
<br/><br/></li>
<li>
(12.6.0) <b>Updated treatment of heterogeneous NO2, NO3, and N2O5 chemistry in aerosols and clouds.</b> Developers: Christopher Holmes (Florida State U.), Erin McDuffie (Dalhousie)
<br/><br/></li>
<li>
(12.5.0) <b>Updated AeroCom volcanic emissions for 1978-2019.</b> Developer: Christoph A. Keller (NASA/GSFC)
<br/><br/></li>
<li>
(12.4.0) <b>Off-line emissions for dust, lightning, biogenic VOCs, soil NOx, sea salt aerosol.</b> Developers: Chi Li (Dalhousie) for overall development; David Ridley (MIT) and Jun Meng (Dalhousie) for dust; Lee Murray (U. Rochester) for lightning; Jintai Lin and Hongjian Meng (PKU) for biogenic VOCs, soil NOx, and sea salt aerosol.<br />Reference: Weng, H.-J., Lin, J.-T. *, Martin, R., Millet, D. B., Jaeglé, L., Ridley, D., Keller, C., Li, C., Du, M.-X., and Meng, J.: Global high-resolution emissions of soil NOx, sea salt aerosols, and biogenic volatile organic compounds, Scientific Data, 7, 148, doi:10.1038/s41597-020-0488-5, 2020.
<br/><br/></li>
<li>
(12.4.0) <b>FlexGrid capability for users to select custom nested domains at run time.</b> Developers: Melissa Sulprizio and Jiawei Zhuang (Harvard), Jintai Lin (Peking U.). See <a href="http://wiki.geos-chem.org/FlexGrid">FlexGrid wiki page.</a>
<br/><br/></li>
<li>
(12.3.0) <b>Updated ISORROPIA from version 2.0 to version 2.2.</b> Developer: Sebastian Eastham (MIT)
<br/><br/></li>
<li>
(12.2.1) <b>TOMAS updates.</b> Developers: Emily Ramnarine and Jeff Pierce (CSU), Betty Croft (Dalhousie). See <a href="http://wiki.geos-chem.org/TOMAS_aerosol_microphysics">TOMAS in GEOS-Chem wiki page</a>.
<br/><br/></li>
<li>
(12.2.0) <b>GFAS biomass burning emissions.</b> Developers: Killian Murphy and Mathew Evans (U. York). See <a href="http://wiki.geos-chem.org/GFAS_biomass_burning_emissions">GFAS in GEOS-Chem wiki page</a>.
<br/><br/></li>
<li>
(12.2.0) <b>Obspack diagnostics package</b>. Developers: Andrew Jacobson (NOAA) and Robert Yantosca (Harvard) See <a href="http://wiki.geos-chem.org/Guide_to_GEOS-Chem_History_diagnostics">Model diagnostics wiki page</a>.
<br/><br/></li>
<li>
(12.1.0) <b>Budget diagnostics.</b> Developers: Christopher Holmes (FSU) and Elizabeth Lundgren (Harvard). See <a href="http://wiki.geos-chem.org/Guide_to_GEOS-Chem_History_diagnostics">Model diagnostics wiki page</a>.
<br/><br/></li>
<li>
(12.1.0) <strong>Anthropogenic dust emissions</strong>. Developer: Sajeev Philip (Dalhousie). Reference: Philip, S., R.V. Martin, G. Snider, C. Weagle, A. van Donkelaar, M. Brauer, D. Henze, Z. Klimont, C. Venkataraman, S. Guttikunda, and Q. Zhang, <em>Anthropogenic fugitive, combustion and industrial dust is a significant, underrepresented fine particulate matter source in global atmospheric models</em>, <u>Environ. Res. Lett., 12</u>, 044018, 2017.
<br/><br/></li>
<li>
(11-02) <strong>High-performance GEOS-Chem (GCHP)</strong>. Developers: Seb Eastham (MIT), Lizzie Lundgren (Harvard), Jiawei Zhuang (Harvard). Reference: Eastham, S.D., M.S. Long, C.A. Keller, E. Lundgren, R.M. Yantosca, J. Zhuang, C. Li, C.J. Lee, M. Yannetti, B.M. Auer, T.L. Clune, J. Kouatchou, W.M. Putman, M.A. Thompson, A.L. Trayanov, A.M. Molod, R.V. Martin, and D.J. Jacob, <em>GEOS-Chem High Performance (GCHP): A next-generation implementation of the GEOS-Chem chemical transport model for massively parallel applications </em>, <u>Geosci. Mod. Dev. Discuss.</u>, <a href="https://doi.org/10.5194/gmd-2018-55">https://doi.org/10.5194/gmd-2018-55</a>, 2018.
<br/><br/></li>
0 <li>
(11-02) <strong>Updated black carbon absorption properties. </strong>Developers: Xuan Wang (Harvard) and Colette Heald (MIT). Reference: Wang, X., Heald, C. L., Ridley, D. A., Schwarz, J. P., Spackman, J. R., Perring, A. E., Coe, H., Liu, D., and Clarke, A. D.: <em>Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon</em>, <u>Atmos. Chem. Phys.</u>, <strong>14</strong>, 10989-11010, doi:10.5194/acp-14-10989-2014, 2014.
<br/><br/></li>
<li>
(11-02) <strong>CEDS global anthropogenic emission inventory. </strong>Implementer: Lu Shen (Harvard)
<br/><br/></li>
<li>
(11-02) <strong>EDGAR v4.3.1 global anthropogenic emission inventory. </strong>Implementer: Chi Li (Dalhousie)
<br/><br/></li>
<li>
(11-02) <strong>New global ethane emissions</strong>. Developer: Zitely Tzompa-Sosa and Emily Fischer (Colorado State U.). Reference: Tzompa-Sosa, Z. A., Mahieu, E., Franco, B., Keller, C. A., Turner, A. J., Helmig, D., et al. (2017). Revisiting global fossil fuel and biofuel emissions of ethane. <em>Journal of Geophysical Research: Atmospheres</em>, <em>122</em>(4), 2493–2512. <a href="http://doi.org/10.1002/2016JD025767">http://doi.org/10.1002/2016JD025767</a>
<br/><br/></li>
<li>
(11-02) <strong>DICE-Africa emission inventory for Africa. </strong>Developers: Eloise Marais (U. Birmingham) and Christine Wiedinmyer (NCAR). Reference: Marais, E. and C. Wiedinmyer, <em>Air quality impact of Diffuse and Inefficient Combustion Emissions in Africa (DICE-Africa</em>), <u>Environ. Sci. Technol., 50(19)</u>, 10739–10745, doi:10.1021/acs.est.6b02602, 2016.
<br/><br/></li>
<li>
(11-02) <strong>Acetaldehyde emissions from vegetation and the ocean. </strong>Developer: Dylan Millet (U. Minnesota). Reference: Millet, D.B., et al., <em>Global atmospheric budget of acetaldehyde: 3D model analysis and constraints from in-situ and satellite observations, </em><u>Atmos. Chem. Phys., 10, </u>3405-3425, 2010.
<br/><br/></li>
<li>
(11-02) <strong>Ammonia emissions from Arctic seabirds. </strong>Developers: Betty Croft and Randall Martin (Dalhousie). Reference: Croft, B., G. R. Wentworth, R. V. Martin, W. R. Leaitch, J. G. Murphy, B. N. Murphy, J. K. Kodros, J. P. D. Abbatt and J. R. Pierce, <strong><em>Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect</em></strong><em>,</em><em> <u>Nat. Commun.</u></em><u>, 7</u>:13444, doi:10.1038/ncomms13444, 2016.
<br/><br/></li>
<li>
(11-02) <strong>Natural ammonia emissions. </strong>GEIA inventory. Implementer: Eleanor Morris (U. York)
<br/><br/></li>
<li>
(11-02) <strong>Lightning emission updates. </strong>Developer: Lee Murray (U. Rochester). Reference: lightning wiki page /p>
<br/><br/></li>
<li>
(11-02) <strong>PAN chemistry. </strong>Developer: Emily Fischer (Colorado Sate U.). Reference: Fischer, E.V., D.J. Jacob, R.M. Yantosca, M.P. Sulprizio, D.B. Millet, J. Mao, F. Paulot, H.B. Singh, A.-E. Roiger, L. Ries, R.W. Talbot, K. Dzepina, and S. Pandey Deolal, <em>Atmospheric peroxyacetylnitrate (PAN): a global budget and source attribution</em>, <u>Atmos. Chem. Phys.</u>, 14, 2679-2698, 2014.
<br/><br/></li>
<li>
(11-02) <strong>New isoprene oxidation mechanism. </strong>Developers: Katie Travis (MIT), Jenny Fisher (U. Wollongong), Eloise Marais (U. Birmingham), Chris Chan Miller (Harvard-SAO), Kelvin Bates (Harvard), Becky Schwantes (Caltech). References:<br/><br/>
<ul>
<li>
Travis, K. R., D. J. Jacob, J. A. Fisher, P. S. Kim, E. A. Marais, L. Zhu, K. Yu, C. C. Miller, R. M. Yantosca, M. P. Sulprizio, A. M. Thompson, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, R. C. Cohen, J. L. Laughner, J. E. Dibb, S. R. Hall, K. Ullmann, G. M. Wolfe, J. A. Neuman, and X. Zhou,<em> Why do models overestimate surface ozone in the Southeast United States</em>, <u>Atmos. Chem. Phys.</u>, 16, 13561-13577, doi:10.5194/acp-16-13561-2016, 2016.
<br/><br/></li>
<li>
Fisher, J.A., D.J. Jacob, K.R. Travis, P.S. Kim, E.A. Marais, C. Chan Miller, K. Yu, L. Zhu, R.M. Yantosca, M.P. Sulprizio, J. Mao, P.O. Wennberg, J.D. Crounse, A.P. Teng, T.B. Nguyen, J.M. St. Clair, R.C. Cohen, P. Romer, B.A. Nault, P.J. Wooldridge, J.L. Jimenez, P. Campuzano-Jost, D.A. Day, P.B. Shepson, F. Xiong, D.R. Blake, A.H. Goldstein, P.K. Misztal, T.F. Hanisco, G.M. Wolfe, T.B. Ryerson, A. Wisthaler, and T. Mikoviny. <em>Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US.</em> <u>Atmos. Chem. Phys., 16</u>, 2961-2990, 2016
<br/><br/></li>
<li>
Marais, E. A., D. J. Jacob, J. L. Jimenez, P. Campuzano-Jost, D. A. Day, W. Hu, J. Krechmer, L. Zhu, P. S. Kim, C. C. Miller, J. A. Fisher, K. Travis, K. Yu, T. F. Hanisco, G. M. Wolfe, H. L. Arkinson, H. O. T. Pye, K. D. Froyd, J. Liao, V. F. McNeill, <em>Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls</em>, <u>Atmos. Chem. Phys.</u>, 16, 1603-1618, 2016.
<br/><br/></li>
<li>
Chan Miller, C., D.J.Jacob, E.A. Marais, K. Yu, K.R. Travis, P.S. Kim, J.A. Fisher, L. Zhu, G.M. Wolfe, F.N. Keutsch, J. Kaiser, K.-E. Min, S.S. Brown, R.A. Washenfelder, G. Gonzalez Abad, and K. Chance, <em>Glyoxal yield from isoprene oxidation and relation to formaldehyde: chemical mechanism, constraints from SENEX aircraft observations, and interpretation of OMI satellite data</em>, <u>Atmos. Chem. Phys., 17</u>, 8725-8738, 2017.
<br/><br/></li>
</ul>
</li>
<li>
(11-02) <strong>Integrated halogen (Cl-Br-I) chemistry. </strong>Developers: Tomas Sherwen and Mat Evans (U. York), Seb Eastham (MIT), Lei Zhu (Harvard). Reference: Sherwen, T.,J.A. Schmidt, M.J. Evans, L.J. Carpenter, K. Grossmann, S.D. Eastham, D.J. Jacob, B. Dix, T.K. Koenig, R. Sinreich, I. Ortega, R. Volkamer, A. Saiz-Lopez, C. Prados-Roman, A.S. Mahajan, and C. Ordonez, <em>Global impacts of tropospheric halogens (Cl, Br, I) on oxidants and composition in GEOS-Chem</em>, <u>Atmos. Chem. Phys., 16</u>, 12239-12271, 2016.
<br/><br/></li>
<li>
(11-02) <strong>HOBr + S(IV) chemistry. </strong>Developers: Qianjie Chen and Becky Alexander (U. Washington). Reference: Chen, Q., J.A. Schmidt, V. Shah, L. Jaegle, T. Sherwen, and B. Alexander, <em>Sulfate production by reactive bromine: Implications for the global sulfur and reactive bromine budgets, </em><u>Geophys. Res. Lett., 44, 7069-7078, 2017.</u>
<br/><br/></li>
<li>
(11-02) <strong>In-cloud SO2 oxidation by transition metals. </strong>Developers: Becky Alexander and Viral Shah (U. Washington). Reference: Alexander, B., Park, R.J., Jacob, D.J., and Gong, S., <em>Transition metal catalyzed oxidation of atmospheric sulfur: Global implications for the sulfur budget</em>, <u>J. Geophys. Res.</u>, <strong>114</strong>, D02309, 2009.
<br/><br/></li>
<li>
(11-02) <strong>Aqueous-phase isoprene SOA. </strong>Developer: Eloise Marais (U. Birmingham). Reference: <strong> </strong>Marais, E. A., D. J. Jacob, J. L. Jimenez, P. Campuzano-Jost, D. A. Day, W. Hu, J. Krechmer, L. Zhu, P. S. Kim, C. C. Miller, J. A. Fisher, K. Travis, K. Yu, T. F. Hanisco, G. M. Wolfe, H. L. Arkinson, H. O. T. Pye, K. D. Froyd, J. Liao, V. F. McNeill, <em>Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO2 emission controls</em>, <u>Atmos. Chem. Phys.</u>, 16, 1603-1618, 2016.
<br/><br/></li>
<li>
(11-02) <strong>Simple organic aerosol. </strong>Implementers: Sal Farina and Jeff Pierce (Colorado State U.), Patrick Kim and Daniel Jacob (Harvard), Jenny Fisher (U. Wollongong). Reference: Kim, P.S., D.J. Jacob, J.A. Fisher, K. Travis, K. Yu, L. Zhu, R.M. Yantosca, M.P. Sulprizio, J.L. Jimenez, P. Campuzano-Jost, K.D. Froyd, J. Liao, J.W. Hair, M.A. Fenn, C.F. Butler, N.L. Wagner, T.D. Gordon, A. Welti, P.O. Wennberg, J.D. Crounse, J.M. St. Clair, A.P. Teng, D.B. Millet, J.P. Schwarz, M.Z. Markovic, and A.E. Perring, <em>Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem model</em>, <u>Atmos. Chem. Phys.</u>, <strong>15</strong>, 10,411-10,433, 2015.
<br/><br/></li>
<li>
(11-02) <strong>Methane emissions. </strong>Developer/implementer: Bram Maasakkers (Harvard).
<br/><br/></li>
<li>
(11-02) <strong>New atmospheric chemistry of mercury. </strong>Developer: Hannah Horowitz (U. Washington) and Colin Thackray (Harvard). Reference: Horowitz, H.M., D.J. Jacob, Y. Zhang, T.S. Dibble, F. Slemr, H.M. Amos, J.A. Schmidt, E.S. Corbitt, E.A. Marais, and E.M. Sunderland, <em>A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget</em>, <u>Atmos. Chem. Phys., 17</u>, 6353-6371, 2017.
<br/><br/></li>
<li>
(11-02) <strong>New treatment of chemistry in tagged CO simulation</strong>. Developer: Jenny Fisher (U. Wollongong). Reference: Fisher, J.A., L.T. Murray, D.B.A. Jones, and N.M. Deutscher, <em>Improved method for linear carbon monoxide simulation and source attribution in atmospheric chemistry models illustrated using GEOS-Chem v9</em>, Geoscientific Model Development, 10, 4129–4144, 2017.
<br/><br/></li>
<li>
(11-01) <strong>FlexChem.</strong> Developers: <a href="http://people.seas.harvard.edu/~mlong/" target="_blank">Mike Long</a> (Harvard), <a href="http://www.env.leeds.ac.uk/people/m.evans" target="_blank">Mat Evans</a> (York), <a href="http://msulprizio.github.io" target="_blank">Melissa Sulprizio</a> (Harvard), <a href="http://people.seas.harvard.edu/~yantosca/" target="_blank">Bob Yantosca</a> (Harvard), Lizzie Lundgren (Harvard).
<br/><br/></li>
<li>
(11-01) <strong>Optimal timesteps.</strong> Developers: Sajeev Philip (Dalhousie), Randall Martin (Dalhoisie). Reference: Philip, S., R.V. Martin, and C.A. Keller, <em>Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: a case study with GEOS-Chem v10-01</em>, <u>Geosci. Model Dev.</u>, 9, 1683-1695, doi:10.5194/gmd-9-1683-2016, 2016.
<br/><br/></li>
<li>
(11-01) <strong>Lana DMS climatology.</strong> Implementer: <a href="http://people.seas.harvard.edu/~tbreider/" target="_blank">Tom Breider</a> (Harvard). Reference: Breider, T.J., L.J. Mickley, D.J. Jacob, C. Ge, J. Wang, M.P. Sulprizio, B. Croft, D.A. Ridley, J.R. McConnell, S. Sharma, L. Husain, V.A. Dutkiewicz, K. Eleftheriadis, H. Skov, and P.K. Hopke, <em>Multi-decadal trends in aerosol radiative forcing over the Arctic: contribution of changes in anthropogenic aerosol to Arctic warming since 1980</em>, <u>J. Geophys. Res.</u>, 122(6), 3573–3594, doi:10.1002/2016JD025321, 2017.
<br/><br/></li>
<li>
(11-01) <strong>Impaction scavenging for hydrophobic BC and homogeneous IN removal.</strong> Developer: <a href="http://www.mpic.de/en/research/biogeochemistry/biogeo/mitglieder/qiaoqiao-wang.html" target="_blank">Qiaoqiao Wang</a> (Max Planck Institute). Reference: Wang, Q., D.J. Jacob, J.R Spackman, A.E. Perring, J.P. Schwarz, N. Moteki, E.A. Marais, C. Ge, J. Wang, and S.R.H. Barrett, <em>Global budget and radiative forcing of black carbon aerosol: constraints from pole-to-pole (HIPPO) observations across the Pacific</em>, <u>J. Geophys. Res.</u>, 119, 195-206, 2014.
<br/><br/></li>
<li>
(11-01) <strong>Improved dust size distribution scheme.</strong> Developer: <a href="http://spot.colorado.edu/~lizh1245/" target="_blank">Li Zhang</a> (CU Boulder). Reference: Zhang, L., J. F. Kok, D. K. Henze, Q. Li, and C. Zhao, <em>Improving simulations of fine dust surface concentrations over the western United States by optimizing the particle size distribution</em>, <u>Geophys. Res. Lett.</u>, 40, 3270–3275, doi:10.1002/grl.50591, 2013.
<br/><br/></li>
<li>
(11-01) <strong>Brown carbon UV absorption.</strong> Developer: Melanie Hammer (Dalhoisie). Reference: Hammer M.S., R.V. Martin, A van Donkelaar, V. Buchard, O. Torres, D.A. Ridley, and R.J.D. Spurr, <em>Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: Implications for atmospheric oxidation and direct radiative effects</em>, <u>Atmos. Chem. Phys.</u>, 16, 2507-2523, doi:10.5194/acp-16-2507-2016, 2016.
<br/><br/></li>
<li>
(11-01) <strong>Acid uptake on dust aerosols.</strong> Developer: <a href="https://science.larc.nasa.gov/profiles/T_Duncan_Fairlie" target="_blank">T. Duncan Fairlie</a> (NASA/LARC). Reference: Fairlie, T. D., D.J. Jacob, J.E. Dibb, B. Alexander, M.A. Avery, A. van Donkelaar, and L. Zhang, <em>Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes</em>, <u>Atmos. Chem. Phys.</u>, 10, 3999-4012, doi:10.5194/acp-10-3999-2010, 2010.
<br/><br/></li>
<li>
(11-01) <strong>Online emission of marine POA.</strong> Developers: Brett Gantt (NCSU), Matthew Johnson (NASA Ames). Reference: Gantt, B., M.S. Johnson, M. Crippa, A.S.H. Prévôt, and N. Meskhidze, <em>Implementing marine organic aerosols into the GEOS-Chem model</em>, <u>Geosci. Model Dev.</u>, 8, 619-629, doi:10.5194/gmd-8-619-2015, 2015.
<br/><br/></li>
<li>
(11-01) <strong>Updated PAH model.</strong> Developer: <a href="http://mainemaritime.edu/academics/academic-leadership-and-faculty/faculty-bio/?username=carey.friedman" target="_blank">Carey Friedman</a> (MIT). Reference: Friedman, C. L., Y. Zhang, and N.E. Selin, <em>Climate change and emissions impacts on atmospheric PAH transport to the Arctic</em>, <u>Environ. Sci. Technol.</u>, 48 (1), 429-437, 2014
<br/><br/></li>
<li>
(11-01) <strong>Hg ocean rate coefficients.</strong> Developer: Shaojie Song (MIT). Reference: Song, S., N.E. Selin, A.L. Soerensen, H. Angot, R. Artz, S. Brooks, E.-G. Brunke, G. Conley, A. Dommergue, R. Ebinghaus, T.M. Holsen, D.A. Jaffe, S. Kang, P. Kelley, W.T. Luke, O. Magand, K. Marumoto, K.A. Pfaffhuber, X. Ren, G.-R. Sheu, F. Slemr, T. Warneke, A. Weigelt, P. Weiss-Penzias, D.C. Wip, and Q. Zhang, <em>Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling</em>, <u>Atmos. Chem. Phys.</u>, 15, 7103-7125, doi:10.5194/acp-15-7103-2015, 2015.
<br/><br/></li>
<li>
(11-01) <strong>Arctic Hg processes.</strong> Developer: <a href="http://www.uow.edu.au/~jennyf/" target="_blank">Jenny Fisher</a> (Wollongong). References: Fisher, J.A., D.J. Jacob, A.L. Soerensen, H.M. Amos, A. Steffen, and E.M. Sunderland, <em>Riverine source of Arctic Ocean mercury inferred from atmospheric observations</em>, <u>Nature Geoscience</u>, 5, 499-504, 2012; Fisher, J.A., D.J. Jacob, A.L. Soerensen, H.M. Amos, E.S. Corbitt, D.G. Streets, Q. Wang, R.M. Yantosca, and E.M. Sunderland, <em>Factors driving mercury variability in the Arctic atmosphere and ocean over the past thirty years</em>, <u>Global Biogeochem. Cycles</u>, 27, 1226-1235, 2013.
<br/><br/></li>
<li>
(11-01) <strong>Updated Hg emissions.</strong> Developer: Yanxu Zhang (Harvard). Reference: Zhang, Y., D.J. Jacob, H.M. Horowitz, L. Chen, H.M. Amos, D.P. Krabbenhoft, F. Slemr, V. St. Louis, and E.M. Sunderland, <em>Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions</em>, <u>PNAS</u>, doi:10.1073/pnas.1516312113, 2016.
<br/><br/></li>
<li>
(11-01) <strong>Updated Hg emissions (cont'd).</strong> Developers: Amanda Giang (MIT), Shaojie Song (MIT). Reference: AMAP/UNEP, 2013. AMAP/UNEP geospatially distributed mercury emissions dataset 2010v1.
<br/><br/></li>
<li>
(11-01) <strong>Updated CO2 data: CDIAC fossil fuel emissions and CASA balanced biosphere fluxes.</strong> Developer: <a href="http://www.ec.gc.ca/scitech/default.asp?lang=En&n=F97AE834-1&xsl=scitechprofile&xml=F97AE834-A762-47A6-A2D9-9C397FD72F37&formid=6706100A-4FFF-4926-B415-6D10BA6A9F51" target="_blank">Ray Nassar</a> (Environment Canada).
<br/><br/></li>
<li>
(11-01) <strong>CO2 direct effect on isoprene emissions.</strong> Developer: <a href="http://www.cuhk.edu.hk/sci/essc/people/tai_pk-Amos.html" target="_blank">Amos Tai</a> (CUHK). Reference: Tai, A.P.K., L.J. Mickley, C.L. Heald, and S. Wu, <em>Effect of CO2 inhibition on biogenic isoprene emission: Implications for air quality under 2000-to-2050 changes in climate, vegetation, and land use</em>, <u>Geophys. Res. Let.</u>, 40, 3479-3483, 2013.
<br/><br/></li>
<li>
(11-01) <strong>Criegee intermediates.</strong> Developers: <a href="http://atmoschem.umn.edu/people" target="_blank">Dylan Millet</a> (U. Minnesota), <a href="http://www.people.fas.harvard.edu/~emarais/" target="_blank">Eloise Marais</a> (Harvard). Reference: Millet, D.B., M. Baasandorj, D. K. Farmer, J.A. Thornton, K. Baumann, P. Brophy, S. Chaliyakunnel, J.A. de Gouw, M. Graus, L. Hu, A. Koss, B.H. Lee, F.D. Lopez-Hilfiker, J.A. Neuman, F. Paulot, J. Peischl, I.B. Pollack, T.B. Ryerson, C. Warneke, B.J. Williams, and J. Xu, <em>A large and ubiquitous source of atmospheric formic acid</em>, <u>Atmos. Chem. Phys.</u>, 15, 6283-6304, doi:10.5194/acp-15-6283-2015, 2015.
<br/><br/></li>
<li>
(11-01) <strong>GFED 4.1.</strong> Developers: <a href="http://nicholas.duke.edu/people/faculty/kasibhatla" target="_blank">Prasad Kasibhatla</a> (Duke), <a href="http://gestar.usra.edu/index.cfm/about-gestar/directory/?uname=CKeller" target="_blank">Christoph Keller</a> (NASA/GSFC).
<br/><br/></li>
<li>
(11-01) <strong>0.1° x 0.1° CAC emissions.</strong> Implementer: <a href="http://fizz.phys.dal.ca/~atmos/vanDonkelaar/" target="_blank">Aaron van Donkelaar</a> (Dalhousie).
<br/><br/></li>
<li>
(11-01) <strong>TOMAS Jeagle sea salt extension</strong> Developer: Jack Kodros (Colorado State).
<br/><br/></li>
<li>
(11-01) <strong>QFED and FINN emissions for Hg simulation</strong> Implementer: <a href="http://www.uow.edu.au/~jennyf/" target="_blank">Jenny Fisher</a> (Wollongong).
<br/><br/></li>
</ul>
</div>
</div>
</div>
</div>
</article>
</div>
</div>
</div>
</div>
</div>
</div>
<!--front panel regions end-->
</div>
</div>
</div>
</div>
<!--footer region beg-->
<footer id="footer" class="clearfix" role="contentinfo">
<!-- Three column 3x33 Gpanel -->
<div class="at-panel gpanel panel-display footer clearfix">
<div class="region region-footer-bottom">
<div class="region-inner clearfix">
<div id="block-boxes-1616879798" class="block block-boxes block-boxes-os_boxes_media no-title" module="boxes" delta="1616879798">
<div class="block-inner clearfix">
<div class="block-content content">
<div id='boxes-box-1616879798' class='boxes-box'>
<div class="boxes-box-content">
<div id="file-3900146" class="file file-html file-html-embed">
<h2 class="element-invisible"><a href="">css-brand</a></h2>
<div class="content">
<div class="file-info">
</div>
<div class="field field-name-field-html-code field-type-text-long field-label-hidden view-mode-full">
<div class="field-items">
<div class="field-item even">
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<!--footer region end-->
</footer>
</div>
</div>
<!--page area ends-->
<div id="extradiv"></div>
</div>
<!-- /page_wrap -->
<script src="https://static.projects.iq.harvard.edu/profiles/openscholar/libraries/respondjs/respond.min.js?rpidw0"></script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_s7yA-hwRxnKty__ED6DuqmTMKG39xvpRyrtyCrbWH4M.js?m=1675397499"></script>
<script>jQuery.extend(Drupal.settings, {"basePath":"\/","pathPrefix":"","setHasJsCookie":0,"ajaxPageState":{"theme":"hwpi_classic","theme_token":"vGLG_eHoyPYk9bZ1DH2VsbEmZO_2YWbNQ9KEsxD3b54"},"colorbox":{"opacity":"0.85","current":"{current} of {total}","previous":"\u00ab Prev","next":"Next \u00bb","close":"Close","maxWidth":"98%","maxHeight":"98%","fixed":true,"mobiledetect":true,"mobiledevicewidth":"480px"},"jcarousel":{"ajaxPath":"https:\/\/geos-chem.seas.harvard.edu\/jcarousel\/ajax\/views"},"spaces":{"id":"1585652","path":"Welcome to the GEOS-Chem Web Site"},"os_ga":{"trackOutbound":1,"trackMailto":1,"trackDownload":1,"trackDownloadExtensions":"7z|aac|arc|arj|asf|asx|avi|bin|csv|docx?|exe|flv|gif|gz|gzip|hqx|jar|jpe?g|js|mp(2|3|4|e?g)|mov(ie)?|msi|msp|pdf|phps|png|ppt|qtm?|ra(m|r)?|sea|sit|tar|tgz|torrent|txt|wav|wma|wmv|wpd|xlsx?|xml|z|zip","trackNavigation":1},"paths":{"api":"\/api","siteCreationForm":"\/profiles\/openscholar\/modules\/frontend\/os_site_creation\/templates","siteCreationModuleRoot":"\/profiles\/openscholar\/modules\/frontend\/os_site_creation","hasOsId":false},"user":{"uid":0,"name":null},"admin_panel":{"purl_base_domain":"https:\/\/projects.iq.harvard.edu","base_domain":"https:\/\/geos-chem.seas.harvard.edu"},"version":{"siteCreationForm":"1.0.4"},"site_creation":{"subsite_types":{"personal":"personal","project":"project","department":"department"},"privacy_levels":{"0":"Public on the web. \u003Cbr\u003E\u003Cspan class=\u0022description\u0022\u003EAnyone on the Internet can view your site. Your site will show in search results. No sign-in required.\u003C\/span\u003E","2":"Anyone with the link. \u003Cbr\u003E\u003Cspan class=\u0022description\u0022\u003EAnyone who has the URL to your site can view your site. Your site will not be indexed by search engines.\u003C\/span\u003E","1":"Site members only. \u003Cbr\u003E\u003Cspan class=\u0022description\u0022\u003EThis setting can be useful during site creation. Your site will not be indexed by search engines.\u003C\/span\u003E","presets":{"os_department_minimal":{"name":"os_department_minimal","title":"Minimal","description":"Blank site with no pre-set menu links or pages.","site_type":"department"},"os_department":{"name":"os_department","title":"Academic","description":"Pre-set menu links and pages: Academics, Research, Activities, People, Resources, News \u0026amp; Events, About","site_type":"department"},"os_project":{"name":"os_project","title":"Minimal","description":"Blank site with no pre-set menu links or pages.","site_type":"project"},"os_scholar":{"name":"os_scholar","title":"Minimal","description":"Blank site with no pre-set menu links or pages.","site_type":"personal"},"osllc_preset_gradstudent":{"name":"osllc_preset_gradstudent","title":"Grad Student\/Adjunct","description":"A site for grad students or adjuncts currently in the job market","site_type":"personal"},"osllc_preset_medical_professional":{"name":"osllc_preset_medical_professional","title":"Medical Professional","description":"A site for doctors and other medical professionals.","site_type":"personal"},"osllc_preset_project":{"name":"osllc_preset_project","title":"Project Site","description":"A site for a project, separate from any individual involved.","site_type":"personal"},"hwp_administrative":{"name":"hwp_administrative","title":"Administrative","description":"The Harvard Web Publishing standard Adminstrative Department site.","site_type":"department"},"hwp_lab_research_group":{"name":"hwp_lab_research_group","title":"Lab\/Research Group","description":"The Harvard Web Publishing standard Lab and Research Group site.","site_type":"project"},"hwp_project":{"name":"hwp_project","title":"Project","description":"The Harvard Web Publishing standard Project site.","site_type":"project"},"hwp_personal":{"name":"hwp_personal","title":"Personal","description":"The Harvard Web Publishing standard Personal site.","site_type":"personal"},"hwp_event_conference":{"name":"hwp_event_conference","title":"Event\/Conference","description":"The Harvard Web Publishing standard Event or Conference site.","site_type":"project"}},"default_individual_scholar":"os_scholar","default_project_lab_small_group":"os_project","default_department_school":"os_department_minimal"},"urlIsAjaxTrusted":{"https:\/\/geos-chem.seas.harvard.edu\/search\/site":true},"nice_menus_options":{"delay":800,"speed":"slow"},"ogContext":{"groupType":"node","gid":"1585652"},"password":{"strengthTitle":"Password compliance:"},"type":"setting"});</script>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.6/angular.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.6/angular-sanitize.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.4.6/angular-cookies.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/ngStorage/0.3.9/ngStorage.min.js"></script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_0NmK99JLIjRqsIlFqFNNbx8Ujgexpza5nVIcHEw_ZTg.js?m=1675397495"></script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_Y1FBKf83E3J9MQtFPjbc5aPABrOfDhLHCFnDQJdtDSk.js?m=1675397528"></script>
<script>window.CKEDITOR_BASEPATH = '/profiles/openscholar/libraries/ckeditor/'</script>
<script>var _gaq = _gaq || [];_gaq.push(["_setAccount", "UA-17689007-1"]);_gaq.push(["_gat._anonymizeIp"]);_gaq.push(["_trackPageview"]);_gaq.push(['_setCustomVar',1,'Site homepage','https://geos-chem.seas.harvard.edu/',3]);(function() {var ga = document.createElement("script");ga.type = "text/javascript";ga.async = true;ga.src = ("https:" == document.location.protocol ? "https://ssl" : "http://www") + ".google-analytics.com/ga.js";var s = document.getElementsByTagName("script")[0];s.parentNode.insertBefore(ga, s);})();var addthis_config = {data_ga_social: true, data_ga_property: {"addthis_default":false}};</script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_LiusrpwJT3Sg0H0ZmGojUVryUYFnHLCv1UjzLbWcgsw.js?m=1675397537"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML"></script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_Gn6CPUOXDTurT1_dttEf_0ILEDturfDpbAqZFd3d6g4.js?m=1675397512"></script>
<script>(function ($) { angular.module('openscholar', ['SiteCreationForm']); })();</script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_TF0j_xSQPq-6QP1Il7NFw8ppuW60PTAxM0BwHtQXBsA.js?m=1675397525"></script>
<script src="https://static.projects.iq.harvard.edu/files/js/js_qluyoBMkmyevXrrhnKB_2ie6cLJ7DL5g_0nHm6hyXwA.js?m=1675397503"></script>
</body>
</html>