-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathL2_tools.py
175 lines (156 loc) · 5.6 KB
/
L2_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python
#
# Copyright 2018 California Institute of Technology
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Author: Christian Frankenberg, [email protected]
import numpy as np
import h5py
#from netCDF4 import Dataset
import glob
import traceback
from netCDF4 import num2date
from scipy.interpolate import interp1d
shape_scope = np.loadtxt('sif_shape_scope.dat')
shape_walz = np.loadtxt('PC1_SIFSpectra_allSpecies.dat')
# This dictionary basically determines which data to read in (this can be changed!):
dict_oco2 = {
#'variable_name': 'standard_name_from_netcdf',
'lat': 'latitude',
'lon': 'longitude',
'sza': 'solar_zenith_angle',
'vza': 'sensor_zenith_angle',
'saa': 'solar_azimuth_angle',
'vaa': 'sensor_azimuth_angle',
'biome': 'IGBP_index',
'mode': 'measurement_mode',
'sif_757': 'SIF_757nm',
'sif_771': 'SIF_771nm',
'sif_757_sigma': 'SIF_757nm_uncert',
'sif_771_sigma': 'SIF_771nm_uncert',
'dcCorr': 'daily_correction_factor',
'time': 'time'
}
dict_tropomi = {
#'variable_name': 'standard_name_from_netcdf',
'lat': 'lat',
'lon': 'lon',
'sza': 'sza',
'vza': 'vza',
'phaseAngle': 'phase_angle',
'sif': 'sif',
'sif_sigma': 'sif_err',
'dcCorr': 'daily_correction_factor',
'time': 'TIME'
}
# A more generic class to read in desired HDF5 files (doesn't have to be SIF, can be anything):
# Could add more pre-filters later but lat/lon boxes are as generic as it can be.
class L2:
def __init__(self, path, dictionary=dict_oco2, latMin=-90, latMax=90,lonMin=-180,lonMax=180):
files = glob.glob(path)
# Check whether data has been initialized
nini = True
# How many soundings read
counter = 0
for file in files:
#print(file)
h = h5py.File(file,'r')
#h = Dataset("file, "r", format="NETCDF4")
try:
lat = h[dictionary['lat']][:]
lon = h[dictionary['lon']][:]
# find right indices:
wo = (lat>=latMin)&(lat<=latMax)&(lon>=lonMin)&(lon<=lonMax)
n = len(np.where(wo)[0])
counter+=n
print('opening ', file, ', # soundings: ', n,', Total #: ', counter, ' ', end='\r')
if nini and n>0:
# For some reason, this doesn't work yet with my OCO-2 files, something is wrong with the files.
#try:
# self.t_unit = h[dictionary['time']].attrs.get('unit')
#except:
# self.t_unit = h[dictionary['time']].attrs.get('units')
for k,v in dictionary.items():
setattr(self, k, h[v][wo])
nini = False
elif n>0:
for k,v in dictionary.items():
# This could be improved, right now it might resize these variable all the time
temp = np.hstack((getattr(self, k), h[v][wo]))
setattr(self, k, temp)
h.close()
except:
print(traceback.format_exc())
print('Error opening file ', file)
h.close()
# Compute Phase angle from SZA, SAA, VZA, VAA (via Philipp):
def compPhase(sza, saa, vza, vaa):
p = 180./np.pi
phase = np.zeros(len(sza))
phase[vaa>saa]=-1
phase[vaa<saa]=1
# relative azimuth:
raa = vaa-saa
raa[raa<-180]+=360
raa[raa>180]-=360
raa = np.abs(raa)
cos_theta = np.cos(vza/p)*np.cos(sza/p) + np.sin(vza/p)*np.sin(sza/p)*np.cos(raa/p);
return np.arccos(cos_theta)*p*phase
# Converts times in t_unit (string) and calendar t_cal (string) to a python datetime
def convert_time(nctime, t_unit, t_cal):
datevar = []
datevar.append(num2date(nctime,units = t_unit,calendar = t_cal))
return datevar[0]
# Empty class (mimics Matlab structure capabilities)
class Timeseries:
pass
# Creates a running mean of data
def sif_rMean(time_in, var_in, time_out, dTime):
# Am lazy here, just creating an ordinal timestamp first (units of days)
time_in_ord = np.asarray([x.toordinal() for x in time_in])
time_out_ord = np.asarray([x.toordinal() for x in time_out])
var_out = Timeseries()
var_out.time = time_out
# save a couple of statistics here:
var_out.mean = np.zeros((len(time_out),))
var_out.median = np.zeros((len(time_out),))
var_out.perc90 = np.zeros((len(time_out),))
var_out.perc10 =np.zeros((len(time_out),))
var_out.std =np.zeros((len(time_out),))
var_out.n =np.zeros((len(time_out),))
var_out.standard_error =np.zeros((len(time_out),))
for it in range(len(time_out_ord)):
t = time_out_ord[it]
wo = np.where(np.abs(time_in_ord-t)<dTime)[0]
if len(wo)>1:
var_out.mean[it]=np.mean(var_in[wo])
var_out.median[it] =np.median(var_in[wo])
var_out.perc90[it] =np.percentile(var_in[wo],90)
var_out.perc10[it] =np.percentile(var_in[wo],10)
var_out.std[it] =np.std(var_in[wo])
var_out.n[it] =len(wo)
# This is trained on data, not the theoretical one:
var_out.standard_error[it] = np.std(var_in[wo])/np.sqrt(len(wo))
else:
var_out.mean[it]=np.nan
var_out.median[it] =np.nan
var_out.perc90[it] =np.nan
var_out.perc10[it] =np.nan
var_out.std[it] =np.nan
var_out.n[it] =len(wo)
# This is trained on data, not the theoretical one:
var_out.standard_error[it] = np.nan
return var_out
def convertWL(wl_in,wl_out,shape):
f = interp1d(shape[:,0], shape[:,1],kind='cubic')
return f(wl_out)/f(wl_in)