-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfig.py
141 lines (120 loc) · 8.08 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configargparse
def config_parser():
parser = configargparse.ArgumentParser()
# general
parser.add_argument('--config', is_config_file=True, help='config file path')
parser.add_argument('--rootdir', type=str,
default='/home/qw246/S7/code/IBRNet/',
help='the path to the project root directory. Replace this path with yours!')
parser.add_argument("--expname", type=str, help='experiment name')
parser.add_argument('--distributed', action='store_true', help='if use distributed training')
parser.add_argument("--local_rank", type=int, default=0, help='rank for distributed training')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
########## dataset options ##########
## train and eval dataset
parser.add_argument("--train_dataset", type=str, default='ibrnet_collected',
help='the training dataset, should either be a single dataset, '
'or multiple datasets connected with "+", for example, ibrnet_collected+llff+spaces')
parser.add_argument("--dataset_weights", nargs='+', type=float, default=[],
help='the weights for training datasets, valid when multiple datasets are used.')
parser.add_argument("--train_scenes", nargs='+', default=[],
help='optional, specify a subset of training scenes from training dataset')
parser.add_argument('--eval_dataset', type=str, default='llff_test', help='the dataset to evaluate')
parser.add_argument('--eval_scenes', nargs='+', default=[],
help='optional, specify a subset of scenes from eval_dataset to evaluate')
## others
# parser.add_argument("--testskip", type=int, default=8,
# help='will load 1/N images from test/val sets, '
# 'useful for large datasets like deepvoxels or nerf_synthetic')
########## model options ##########
## ray sampling options
parser.add_argument('--sample_mode', type=str, default='uniform',
help='how to sample pixels from images for training:'
'uniform|center')
parser.add_argument('--center_ratio', type=float, default=0.8, help='the ratio of center crop to keep')
parser.add_argument("--N_rand", type=int, default=32 * 16,
help='batch size (number of random rays per gradient step)')
parser.add_argument("--chunk_size", type=int, default=1024 * 4,
help='number of rays processed in parallel, decrease if running out of memory')
## model options
parser.add_argument('--coarse_feat_dim', type=int, default=32, help="2D feature dimension for coarse level")
parser.add_argument('--fine_feat_dim', type=int, default=32, help="2D feature dimension for fine level")
parser.add_argument('--num_source_views', type=int, default=10,
help='the number of input source views for each target view')
parser.add_argument('--rectify_inplane_rotation', action='store_true', help='if rectify inplane rotation')
parser.add_argument('--coarse_only', action='store_true', help='use coarse network only')
parser.add_argument("--anti_alias_pooling", type=int, default=1, help='if use anti-alias pooling')
########## checkpoints ##########
parser.add_argument("--no_reload", action='store_true',
help='do not reload weights from saved ckpt')
parser.add_argument("--ckpt_path", type=str, default="",
help='specific weights npy file to reload for coarse network')
parser.add_argument("--no_load_opt", action='store_true',
help='do not load optimizer when reloading')
parser.add_argument("--no_load_scheduler", action='store_true',
help='do not load scheduler when reloading')
########### iterations & learning rate options ##########
parser.add_argument("--n_iters", type=int, default=250000, help='num of iterations')
parser.add_argument("--lrate_feature", type=float, default=1e-3, help='learning rate for feature extractor')
parser.add_argument("--lrate_mlp", type=float, default=5e-4, help='learning rate for mlp')
parser.add_argument("--lrate_decay_factor", type=float, default=0.5,
help='decay learning rate by a factor every specified number of steps')
parser.add_argument("--lrate_decay_steps", type=int, default=50000,
help='decay learning rate by a factor every specified number of steps')
########## rendering options ##########
parser.add_argument("--N_samples", type=int, default=64, help='number of coarse samples per ray')
parser.add_argument("--N_importance", type=int, default=64, help='number of important samples per ray')
parser.add_argument("--inv_uniform", action='store_true',
help='if True, will uniformly sample inverse depths')
parser.add_argument("--det", action='store_true', help='deterministic sampling for coarse and fine samples')
parser.add_argument("--white_bkgd", action='store_true',
help='apply the trick to avoid fitting to white background')
parser.add_argument("--render_stride", type=int, default=1,
help='render with large stride for validation to save time')
########## logging/saving options ##########
parser.add_argument("--i_print", type=int, default=100, help='frequency of terminal printout')
parser.add_argument("--i_weights", type=int, default=10000, help='frequency of weight ckpt saving')
# ########## evaluation options ##########
# parser.add_argument("--llffhold", type=int, default=8,
# help='will take every 1/N images as LLFF test set, paper uses 8')
# dataset options
parser.add_argument('--datadir', type=str,
default='/home/lab-chen.huajun/gjf/dataset')
parser.add_argument('--factor', type=int,
default=4)
parser.add_argument("--holdout", type=int, default=16,
help='will take every 1/N images as test set')
# network options
parser.add_argument("--skips", type=int, nargs='+', default=[4],
help='layers in network')
parser.add_argument("--netdepth", type=int, default=8,
help='layers in network')
parser.add_argument("--netwidth", type=int, default=256,
help='channels per layer')
parser.add_argument("--netdepth_fine", type=int, default=8,
help='layers in fine network')
parser.add_argument("--netwidth_fine", type=int, default=256,
help='channels per layer in fine network')
parser.add_argument("--transformerdepth", type=int, default=2,
help='layers in network')
parser.add_argument("--raw_noise_std", type=float, default=0.,
help='std dev of noise added to regularize sigma_a output, 1e0 recommended')
parser.add_argument("--multires", type=int, default=10,
help='log2 of max freq for positional encoding (3D location)')
parser.add_argument("--multires_views", type=int, default=4,
help='log2 of max freq for positional encoding (2D direction)')
return parser