-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathproteinfer.py
425 lines (337 loc) · 15 KB
/
proteinfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functionally annotate a fasta file.
Write functional predictions as a TSV with columns
- sequence_name (string)
- predicted_label (string)
- confidence (float); number between 0 and 1. An estimate of the model's
confidence that the label is true.
- label_description (string); a human-readable label description.
"""
import decimal
import io
import logging
import os
from typing import Dict, List, Text, Tuple
from absl import app
from absl import flags
from Bio.SeqIO import FastaIO
import numpy as np
import pandas as pd
import inference
import utils
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # TF c++ logging set to ERROR
import tensorflow.compat.v1 as tf # pylint: disable=g-import-not-at-top
import tqdm
_logger = logging.getLogger('proteinfer')
FLAGS = flags.FLAGS
flags.DEFINE_string('i', None, 'Input fasta file path.')
flags.DEFINE_string('o', None, 'Output write path.')
flags.DEFINE_integer(
'num_ensemble_elements', 1,
'In order to run with more than one ensemble element, you will need to run '
'install_models.py --install_ensemble=true. '
'More ensemble elements takes more time, but tends to be more accurate. '
'Run-time scales linearly with the number of ensemble elements. '
'Maximum value of this flag is {}.'.format(
utils.MAX_NUM_ENSEMBLE_ELS_FOR_INFERENCE))
flags.DEFINE_float(
'reporting_threshold',
.5,
'Number between 0 (exclusive) and 1 (inclusive). Predicted labels with '
'confidence at least resporting_threshold will be included in the output.',
lower_bound=0.,
upper_bound=1.)
flags.DEFINE_string('model_cache_path', 'cached_models',
'Path from which to use downloaded models and metadata.')
# A list of inferrers that all have the same label set.
_InferrerEnsemble = List[inference.Inferrer]
# (list_of_pfam_inferrers, list_of_ec_inferrers, list_of_go_inferrers)
_Models = Tuple[_InferrerEnsemble, _InferrerEnsemble, _InferrerEnsemble]
def _num_decimal_places(f):
"""Get the number of decimal places in a float."""
# https://stackoverflow.com/a/6190291/1445296
return abs(decimal.Decimal('{}'.format(f)).as_tuple().exponent)
def _gcs_path_to_relative_unzipped_path(p):
"""Parses GCS path, to gets the last part, and removes .tar.gz."""
return os.path.join(
os.path.basename(os.path.normpath(p)).replace('.tar.gz', ''))
def _get_inferrer_paths(model_urls,
model_cache_path):
"""Convert list of model GCS urls to a list of locally cached paths."""
return [
os.path.join(model_cache_path, _gcs_path_to_relative_unzipped_path(p))
for p in model_urls
]
def load_models(model_cache_path, num_ensemble_elements):
"""Load models from cache path into inferrerLists.
Args:
model_cache_path: path that contains downloaded SavedModels and associated
metadata. Same path that was used when installing the models via
install_models.
num_ensemble_elements: number of ensemble elements of each type to load.
Returns:
(list_of_pfam_inferrers, list_of_ec_inferrers, list_of_go_inferrers)
Raises:
ValueError if the models were not found. The exception message describes
that install_models.py needs to be rerun.
"""
try:
pfam_inferrer_paths = _get_inferrer_paths(utils.OSS_PFAM_ZIPPED_MODELS_URLS,
model_cache_path)
ec_inferrer_paths = _get_inferrer_paths(utils.OSS_EC_ZIPPED_MODELS_URLS,
model_cache_path)
go_inferrer_paths = _get_inferrer_paths(utils.OSS_GO_ZIPPED_MODELS_URLS,
model_cache_path)
to_return = []
inferrer_list_paths_for_all_models = [
pfam_inferrer_paths, ec_inferrer_paths, go_inferrer_paths
]
pbar = tqdm.tqdm(
desc='Loading models',
position=0,
total=len(inferrer_list_paths_for_all_models) * num_ensemble_elements,
leave=True,
dynamic_ncols=True)
for inferrer_list_paths in inferrer_list_paths_for_all_models:
inner_itr = inferrer_list_paths[:num_ensemble_elements]
inferrer_list = []
for p in inner_itr:
inferrer_list.append(inference.Inferrer(p, use_tqdm=True))
pbar.update()
to_return.append(inferrer_list)
pfam_inferrers = to_return[0]
ec_inferrers = to_return[1]
go_inferrers = to_return[2]
return pfam_inferrers, ec_inferrers, go_inferrers
except tf.errors.NotFoundError as exc:
err_msg = 'Unable to find cached models in {}.'.format(model_cache_path)
if num_ensemble_elements > 1:
err_msg += (
' Make sure you have installed the entire ensemble of models by '
'running\n install_models.py --install_ensemble '
'--model_cache_path={}'.format(model_cache_path))
else:
err_msg += (
' Make sure you have installed the models by running\n '
'install_models.py --model_cache_path={}'.format(model_cache_path))
err_msg += '\nThen try rerunning this script.'
raise ValueError(err_msg, exc)
def _assert_fasta_parsable(input_text):
with io.StringIO(initial_value=input_text) as f:
fasta_itr = FastaIO.FastaIterator(f)
end_iteration_sentinel = object()
# Avoid parsing the entire FASTA contents by using `next`.
# A malformed FASTA file will have no entries in its FastaIterator.
# This is unfortunate (instead of it throwing an error).
if next(fasta_itr, end_iteration_sentinel) is end_iteration_sentinel:
raise ValueError('Failed to parse any input from fasta file. '
'Consider checking the formatting of your fasta file. '
'First bit of contents from the fasta file was\n'
'{}'.format(input_text.splitlines()[:3]))
def parse_input_to_text(input_fasta_path):
"""Parses input fasta file.
Args:
input_fasta_path: path to FASTA file.
Returns:
Contents of file as a string.
Raises:
ValueError if parsing the FASTA file gives no records.
"""
_logger.info('Parsing input from %s', input_fasta_path)
with tf.io.gfile.GFile(input_fasta_path, 'r') as input_file:
input_text = input_file.read()
_assert_fasta_parsable(input_text=input_text)
return input_text
def input_text_to_df(input_text):
"""Converts fasta contents to a df with columns sequence_name and sequence."""
with io.StringIO(initial_value=input_text) as f:
fasta_records = list(FastaIO.FastaIterator(f))
fasta_df = pd.DataFrame([(f.name, str(f.seq)) for f in fasta_records],
columns=['sequence_name', 'sequence'])
return fasta_df
def perform_inference(input_df, models,
reporting_threshold):
"""Perform inference for Pfam, EC, and GO using given models.
Args:
input_df: pd.DataFrame with columns sequence_name (str) and sequence (str).
models: (list_of_pfam_inferrers, list_of_ec_inferrers,
list_of_go_inferrers).
reporting_threshold: report labels with mean confidence across ensemble
elements that exceeds this threshold.
Returns:
pd.DataFrame with columns sequence_name (str), label (str), confidence
(float).
"""
predictions = []
for inferrer_list in tqdm.tqdm(
models, position=1, desc='Progress', leave=True):
predictions.append(
inference.get_preds_at_or_above_threshold(input_df, inferrer_list,
reporting_threshold))
print('\n') # Because the tqdm bar is position 1, we need to print a newline.
predictions = pd.concat(predictions)
return predictions
def _sort_df_multiple_columns(df, key):
"""Sort df based on callable key.
Args:
df: pd.DataFrame.
key: function from rows of df (namedtuples) to tuple. This is used in the
builtin `sorted` method as the key.
Returns:
A sorted copy of df.
"""
# Unpack into list to take advantage of builtin sorted function.
# Note that pd.DataFrame.sort_values will not work because sort_values'
# sorting function is applied to each column at a time, whereas we need to
# consider multiple fields at once.
df_rows_sorted = sorted(df.itertuples(index=False), key=key)
return pd.DataFrame(df_rows_sorted, columns=df.columns)
def order_df_for_output(predictions_df):
"""Semantically group/sort predictions df for output.
Sort order:
Sort by query sequence name as they are in `predictions_df`.
Put all Pfam labels first, then EC labels, then GO labels.
Given that,
- if it's an EC label, sort by label alphabetically.
- else, sort by confidence descending.
Given that, sort by description alphabetically.
The reason to sort EC differently is that the alphabetic ordering of EC labels
is meaningful, while the alphabetic orering of Pfam and GO labels is not.
Args:
predictions_df: df with columns sequence_name (str), predicted_label (str),
confidence (float), description (str).
Returns:
df with columns sequence_name (str), predicted_label (str), confidence
(float), description (str).
"""
seq_name_to_original_order = {
item: idx for idx, item in enumerate(predictions_df.sequence_name)
}
def filter_by_label_type(df, label_type):
return df[df.predicted_label.apply(lambda x: x.startswith(label_type))]
def _orderer_pfam_and_go(df_row):
"""See outer function doctsring."""
confidence_sort_key = -1 * df_row.confidence
return (seq_name_to_original_order[df_row.sequence_name],
confidence_sort_key, df_row.description)
def _orderer_ec(df_row):
"""See outer function doctsring."""
confidence_sort_key = -1 * df_row.confidence
return (seq_name_to_original_order[df_row.sequence_name],
df_row.predicted_label)
pfam_df = filter_by_label_type(predictions_df, 'Pfam')
ec_df = filter_by_label_type(predictions_df, 'EC')
go_df = filter_by_label_type(predictions_df, 'GO')
pfam_df_sorted = _sort_df_multiple_columns(pfam_df, _orderer_pfam_and_go)
ec_df_sorted = _sort_df_multiple_columns(ec_df, _orderer_ec)
go_df_sorted = _sort_df_multiple_columns(go_df, _orderer_pfam_and_go)
return pd.concat([pfam_df_sorted, ec_df_sorted, go_df_sorted])
def _format_float_confidence_for_output(input_float,
num_decimal_places):
# Create a separate function so as to test it against our expectations.
return np.around(input_float, num_decimal_places)
def format_df_for_output(predictions_df,
label_to_description,
num_decimal_places):
"""Formats df for outputting.
Args:
predictions_df: df with columns sequence_name (str), predicted_label (str),
confidence (float).
label_to_description: contents of label_descriptions.json.gz. Map from label
to a human-readable description.
num_decimal_places: number of decimal places to display in the confidence
output column.
Returns:
df with columns sequence_name (str), predicted_label (str), confidence
(float), description (str).
"""
predictions_df = predictions_df.copy()
predictions_df['description'] = predictions_df.predicted_label.apply(
label_to_description.__getitem__)
predictions_df['confidence'] = predictions_df.confidence.apply(
lambda x: _format_float_confidence_for_output(x, num_decimal_places))
return order_df_for_output(predictions_df)
def write_output(predictions_df, output_path):
"""Write predictions_df to tsv file."""
_logger.info('Writing output to %s', output_path)
with tf.io.gfile.GFile(output_path, 'w') as f:
predictions_df.to_csv(f, sep='\t', index=False)
def run(input_text, models, reporting_threshold,
label_to_description):
"""Runs inference and returns output as a pd.DataFrame.
Args:
input_text: contents of a fasta file.
models: (list_of_pfam_inferrers, list_of_ec_inferrers,
list_of_go_inferrers).
reporting_threshold: report labels with mean confidence across ensemble
elements that exceeds this threshold.
label_to_description: contents of label_descriptions.json.gz. Map from label
to a human-readable description.
Returns:
pd.DataFrame with columns sequence_name (str), label (str), confidence
(float).
"""
input_df = input_text_to_df(input_text)
predictions_df = perform_inference(
input_df=input_df,
models=models,
reporting_threshold=reporting_threshold)
predictions_df = format_df_for_output(
predictions_df=predictions_df,
label_to_description=label_to_description,
num_decimal_places=max(2, _num_decimal_places(reporting_threshold)))
return predictions_df
def load_assets_and_run(input_fasta_path, output_path,
num_ensemble_elements, model_cache_path,
reporting_threshold):
"""Loads models/metadata, runs inference, and writes output to tsv file.
Args:
input_fasta_path: path to FASTA file.
output_path: path to which to write a tsv of inference results.
num_ensemble_elements: Number of ensemble elements to load and perform
inference with.
model_cache_path: path that contains downloaded SavedModels and associated
metadata. Same path that was used when installing the models via
install_models.
reporting_threshold: report labels with mean confidence across ensemble
elements that exceeds this threshold.
"""
_logger.info('Running with %d ensemble elements', num_ensemble_elements)
input_text = parse_input_to_text(input_fasta_path)
models = load_models(model_cache_path, num_ensemble_elements)
label_to_description = utils.load_gz_json(
os.path.join(model_cache_path,
utils.INSTALLED_LABEL_DESCRIPTION_FILE_NAME))
predictions_df = run(input_text, models, reporting_threshold,
label_to_description)
write_output(predictions_df, output_path)
def main(_):
# TF logging is too noisy otherwise.
tf.get_logger().setLevel(tf.logging.ERROR)
if FLAGS.reporting_threshold == 0.:
raise ValueError('The reporting_threshold flag was 0. Please supply a '
'value between 0 (exclusive) and 1 (inclusive). A value '
'of zero will report every label for every protein.')
load_assets_and_run(
input_fasta_path=FLAGS.i,
output_path=FLAGS.o,
num_ensemble_elements=FLAGS.num_ensemble_elements,
model_cache_path=FLAGS.model_cache_path,
reporting_threshold=FLAGS.reporting_threshold)
if __name__ == '__main__':
_logger.info('Process started.')
flags.mark_flags_as_required(['i', 'o'])
app.run(main)