-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathhelper.py
236 lines (183 loc) · 9.94 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
from sklearn.cluster import KMeans
from sklearn.metrics import mean_squared_error
import itertools
from sklearn.metrics import silhouette_samples, silhouette_score
def draw_scatterplot(x_data, x_label, y_data, y_label):
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
plt.xlim(0, 5)
plt.ylim(0, 5)
ax.set_xlabel(x_label)
ax.set_ylabel(y_label)
ax.scatter(x_data, y_data, s=30)
def draw_clusters(biased_dataset, predictions, cmap='viridis'):
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
plt.xlim(0, 5)
plt.ylim(0, 5)
ax.set_xlabel('Avg scifi rating')
ax.set_ylabel('Avg romance rating')
clustered = pd.concat([biased_dataset.reset_index(), pd.DataFrame({'group':predictions})], axis=1)
plt.scatter(clustered['avg_scifi_rating'], clustered['avg_romance_rating'], c=clustered['group'], s=20, cmap=cmap)
def clustering_errors(k, data):
kmeans = KMeans(n_clusters=k).fit(data)
predictions = kmeans.predict(data)
#cluster_centers = kmeans.cluster_centers_
# errors = [mean_squared_error(row, cluster_centers[cluster]) for row, cluster in zip(data.values, predictions)]
# return sum(errors)
silhouette_avg = silhouette_score(data, predictions)
return silhouette_avg
def sparse_clustering_errors(k, data):
kmeans = KMeans(n_clusters=k).fit(data)
predictions = kmeans.predict(data)
cluster_centers = kmeans.cluster_centers_
errors = [mean_squared_error(row, cluster_centers[cluster]) for row, cluster in zip(data, predictions)]
return sum(errors)
def get_genre_ratings(ratings, movies, genres, column_names):
genre_ratings = pd.DataFrame()
for genre in genres:
genre_movies = movies[movies['genres'].str.contains(genre) ]
avg_genre_votes_per_user = ratings[ratings['movieId'].isin(genre_movies['movieId'])].loc[:, ['userId', 'rating']].groupby(['userId'])['rating'].mean().round(2)
genre_ratings = pd.concat([genre_ratings, avg_genre_votes_per_user], axis=1)
print(genre_ratings)
genre_ratings.columns = column_names
return genre_ratings
def get_dataset_3(movies, ratings, genre_ratings):
# Extract action ratings from dataset
action_movies = movies[movies['genres'].str.contains('Action') ]
# Get average vote on action movies per user
avg_action_votes_per_user = ratings[ratings['movieId'].isin(action_movies['movieId'])].loc[:, ['userId', 'rating']].groupby(['userId'])['rating'].mean().round(2)
# Add action ratings to romance and scifi in dataframe
genre_ratings_3 = pd.concat([genre_ratings, avg_action_votes_per_user], axis=1)
genre_ratings_3.columns = ['avg_romance_rating', 'avg_scifi_rating', 'avg_action_rating']
# Let's bias the dataset a little so our clusters can separate scifi vs romance more easily
b1 = 3.2
b2 = 2.5
biased_dataset_3 = genre_ratings_3[((genre_ratings_3['avg_romance_rating'] < b1 - 0.2) & (genre_ratings_3['avg_scifi_rating'] > b2)) | ((genre_ratings_3['avg_scifi_rating'] < b1) & (genre_ratings_3['avg_romance_rating'] > b2))]
biased_dataset_3 = pd.concat([biased_dataset_3[:300], genre_ratings_3[:2]])
biased_dataset_3 = pd.DataFrame(biased_dataset_3.to_records())
return biased_dataset_3
def draw_clusters_3d(biased_dataset_3, predictions):
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
plt.xlim(0, 5)
plt.ylim(0, 5)
ax.set_xlabel('Avg scifi rating')
ax.set_ylabel('Avg romance rating')
clustered = pd.concat([biased_dataset_3.reset_index(), pd.DataFrame({'group':predictions})], axis=1)
colors = itertools.cycle(plt.rcParams["axes.prop_cycle"].by_key()["color"])
for g in clustered.group.unique():
color = next(colors)
for index, point in clustered[clustered.group == g].iterrows():
if point['avg_action_rating'].astype(float) > 3:
size = 50
else:
size = 15
plt.scatter(point['avg_scifi_rating'],
point['avg_romance_rating'],
s=size,
color=color)
def draw_movie_clusters(clustered, max_users, max_movies):
c=1
for cluster_id in clustered.group.unique():
# To improve visibility, we're showing at most max_users users and max_movies movies per cluster.
# You can change these values to see more users & movies per cluster
d = clustered[clustered.group == cluster_id].drop(['index', 'group'], axis=1)
n_users_in_cluster = d.shape[0]
d = sort_by_rating_density(d, max_movies, max_users)
d = d.reindex_axis(d.mean().sort_values(ascending=False).index, axis=1)
d = d.reindex_axis(d.count(axis=1).sort_values(ascending=False).index)
d = d.iloc[:max_users, :max_movies]
n_users_in_plot = d.shape[0]
# We're only selecting to show clusters that have more than 9 users, otherwise, they're less interesting
if len(d) > 9:
print('cluster # {}'.format(cluster_id))
print('# of users in cluster: {}.'.format(n_users_in_cluster), '# of users in plot: {}'.format(n_users_in_plot))
fig = plt.figure(figsize=(15,4))
ax = plt.gca()
ax.invert_yaxis()
ax.xaxis.tick_top()
labels = d.columns.str[:40]
ax.set_yticks(np.arange(d.shape[0]) , minor=False)
ax.set_xticks(np.arange(d.shape[1]) , minor=False)
ax.set_xticklabels(labels, minor=False)
ax.get_yaxis().set_visible(False)
# Heatmap
heatmap = plt.imshow(d, vmin=0, vmax=5, aspect='auto')
ax.set_xlabel('movies')
ax.set_ylabel('User id')
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
# Color bar
cbar = fig.colorbar(heatmap, ticks=[5, 4, 3, 2, 1, 0], cax=cax)
cbar.ax.set_yticklabels(['5 stars', '4 stars','3 stars','2 stars','1 stars','0 stars'])
plt.setp(ax.get_xticklabels(), rotation=90, fontsize=9)
plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', labelbottom='off', labelleft='off')
#print('cluster # {} \n(Showing at most {} users and {} movies)'.format(cluster_id, max_users, max_movies))
plt.show()
# Let's only show 5 clusters
# Remove the next three lines if you want to see all the clusters
# Contribution welcomed: Pythonic way of achieving this
# c = c+1
# if c > 6:
# break
def get_most_rated_movies(user_movie_ratings, max_number_of_movies):
# 1- Count
user_movie_ratings = user_movie_ratings.append(user_movie_ratings.count(), ignore_index=True)
# 2- sort
user_movie_ratings_sorted = user_movie_ratings.sort_values(len(user_movie_ratings)-1, axis=1, ascending=False)
user_movie_ratings_sorted = user_movie_ratings_sorted.drop(user_movie_ratings_sorted.tail(1).index)
# 3- slice
most_rated_movies = user_movie_ratings_sorted.iloc[:, :max_number_of_movies]
return most_rated_movies
def get_users_who_rate_the_most(most_rated_movies, max_number_of_movies):
# Get most voting users
# 1- Count
most_rated_movies['counts'] = pd.Series(most_rated_movies.count(axis=1))
# 2- Sort
most_rated_movies_users = most_rated_movies.sort_values('counts', ascending=False)
# 3- Slice
most_rated_movies_users_selection = most_rated_movies_users.iloc[:max_number_of_movies, :]
most_rated_movies_users_selection = most_rated_movies_users_selection.drop(['counts'], axis=1)
return most_rated_movies_users_selection
def sort_by_rating_density(user_movie_ratings, n_movies, n_users):
most_rated_movies = get_most_rated_movies(user_movie_ratings, n_movies)
most_rated_movies = get_users_who_rate_the_most(most_rated_movies, n_users)
return most_rated_movies
def draw_movies_heatmap(most_rated_movies_users_selection, axis_labels=True):
# Reverse to match the order of the printed dataframe
#most_rated_movies_users_selection = most_rated_movies_users_selection.iloc[::-1]
fig = plt.figure(figsize=(15,4))
ax = plt.gca()
# Draw heatmap
heatmap = ax.imshow(most_rated_movies_users_selection, interpolation='nearest', vmin=0, vmax=5, aspect='auto')
if axis_labels:
ax.set_yticks(np.arange(most_rated_movies_users_selection.shape[0]) , minor=False)
ax.set_xticks(np.arange(most_rated_movies_users_selection.shape[1]) , minor=False)
ax.invert_yaxis()
ax.xaxis.tick_top()
labels = most_rated_movies_users_selection.columns.str[:40]
ax.set_xticklabels(labels, minor=False)
ax.set_yticklabels(most_rated_movies_users_selection.index, minor=False)
plt.setp(ax.get_xticklabels(), rotation=90)
else:
ax.get_xaxis().set_visible(False)
ax.get_yaxis().set_visible(False)
ax.grid(False)
ax.set_ylabel('User id')
# Separate heatmap from color bar
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
# Color bar
cbar = fig.colorbar(heatmap, ticks=[5, 4, 3, 2, 1, 0], cax=cax)
cbar.ax.set_yticklabels(['5 stars', '4 stars','3 stars','2 stars','1 stars','0 stars'])
plt.show()
def bias_genre_rating_dataset(genre_ratings, score_limit_1, score_limit_2):
biased_dataset = genre_ratings[((genre_ratings['avg_romance_rating'] < score_limit_1 - 0.2) & (genre_ratings['avg_scifi_rating'] > score_limit_2)) | ((genre_ratings['avg_scifi_rating'] < score_limit_1) & (genre_ratings['avg_romance_rating'] > score_limit_2))]
biased_dataset = pd.concat([biased_dataset[:300], genre_ratings[:2]])
biased_dataset = pd.DataFrame(biased_dataset.to_records())
return biased_dataset