-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUNM_soil_data_smoother.m
91 lines (80 loc) · 2.95 KB
/
UNM_soil_data_smoother.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
function data_out = UNM_soil_data_smoother( data_in, ...
win, ...
debug_plots )
%
% Smooths its input data by removing outliers and applying a running
% average, ignoring NaNs in input.
%
% USAGE
% data_out = UNM_soil_data_smoother( data_in, win, debug_plots )
%
% INPUTS
% data_in: input data; matrix or dataset object. If data_in is
% two-dimensional, operates on each column separately.
% win: scalar. 1/2 the moving average window (number of elements on
% either side to consider when calculating average) for smoothing.
% debug_plots: true|false: if true, draws plots after pass one and pass three.
%
% OUTPUTS
% data_out: data with outlier elements removed. Has same type as data_in
% (dataset array or numeric array)
%
% SEE ALSO
% dataset
%
% author: Timothy W. Hilton, UNM, Sep 2012
input_is_dataset = isa( data_in, 'dataset' );
if input_is_dataset
data_input = data_in;
data_in = double( data_in );
end
data_out = repmat( NaN, size( data_in ) );
for i = 1:size( data_in, 2 )
% if i == 6
% keyboard
% end
if all( isnan( data_in( :, i ) ) )
% if no valid data, there is nothing to do
data_out( :, i ) = data_in( :, i );
else
this_in = data_in( :, i );
% valid data exist -- smooth them
% d = [ NaN; diff( this_in ) ];
% idx = find( abs( d ) > 0.01 );
% this_in( idx ) = NaN;
nan_idx = isnan( this_in );
this_in = inpaint_nans( this_in, 4 );
in_filtered = medfilt1( this_in, 500 );
this_in( abs( this_in - in_filtered ) > 0.005 ) = NaN;
this_in = inpaint_nans( this_in, 4 );
this_out = supsmu( 1:numel( this_in ), ...
this_in, ...
'Span', 150 / numel ( this_in ) );
% this_out = smooth( this_in, ...
% ( win / size( this_in, 1 ) ), ...
% 'loess' );
%this_out( nan_idx ) = NaN;
data_out( :, i ) = this_out;
last_valid_data_in = max( find( not( nan_idx ) ) );
data_out( (last_valid_data_in + 1):end, i ) = NaN;
first_valid_data_in = min( find( not( nan_idx ) ) );
if first_valid_data_in > 0
data_out( 1:(first_valid_data_in - 1), i ) = NaN;
end
end
if debug_plots
figure( 'Name', data_input.Properties.VarNames{ i } )
h_in = plot( data_in( :, i ), 'ok' );
hold on;
h_filt = plot( this_in( : ), '.' );
h_out = plot( data_out( :, i ), '-g', 'LineWidth', 2 );
idx = find( isnan( data_in( :, i ) ) );
h_nan = plot( idx, data_out( idx, i ), 'or' );
legend( [ h_in, h_out, h_nan ], ...
'unsmoothed', 'smoothed', 'NaN', ...
'Location', 'best' );
end
end
if input_is_dataset
data_out = replacedata( data_input, data_out );
end