-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconcatenate_all_PPine_soil_data.m
341 lines (279 loc) · 12.7 KB
/
concatenate_all_PPine_soil_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
function tbl = concatenate_all_PPine_soil_data()
% CONCATENATE_ALL_PPINE_SOIL_DATA - parses soil data for PPine from several
% different sources and combines into one tab-delimited file.
%
% The files read and combined are:
% PP_Site_2008_2009_soil112.csv
% PP_Site_2009_2010_soil111.csv
% all .DAT files in the directory from which this code is run. These are
% generally named in the format VLMMDDYY, with MM the month, DD the day, and
% YY the year.
%
% These files are all the PPine soil data that Marcy was able to round up as of
% 14 Aug 2012.
%
% USAGE:
% ds = concatenate_all_PPine_soil_data()
%
% OUTPUT
% ds: matlab dataset object containing the combined soil data,
% interpolated to 30-minute timesteps (from one hour), with missing
% timestamps filled in with NaN.
%
% Timothy W. Hilton
dataPath = fullfile( get_site_directory( UNM_sites.PPine ), ...
'secondary_loggers', 'DRI_logger', 'PPine_DRI_raw_soil_data' );
outPath = fullfile( get_site_directory( UNM_sites.PPine ), ...
'secondary_loggers', 'DRI_logger' );
[ t111, t112 ] = parse_PPine_soil_all_DAT_files( dataPath );
t111_0910 = parse_PPine_soil_csv( ...
fullfile( dataPath, 'PP_Site_2009_2010_soil111.csv' ));
t112_0809 = parse_PPine_soil_csv( ...
fullfile( dataPath, 'PP_Site_2008_2009_soil112.csv' ));
tbl = combine_data( t111, t112, t111_0910, t112_0809 );
t_start = datestr( min( tbl.timestamp ), 'yyyymmdd' );
t_end = datestr( max( tbl.timestamp ), 'yyyymmdd' );
outfile = fullfile( outPath, sprintf( 'PPine_soil_data_%s_%s.dat', ...
t_start, t_end ));
fprintf( 'writing %s\n', outfile );
write_table_std( outfile, tbl, 'precision', 15 );
%======================================================================
function t = combine_data( t111, t112, t111_0910, t112_0809 )
data_vars = not( ismember( t111.Properties.VariableNames, ...
{ 'Array_ID', 'Year', 'Day', ...
'Time', 'timestamp' } ) );
t = horzcat( t112, t111( :, data_vars ) );
t_0810 = outerjoin( t111_0910, t112_0809, 'MergeKeys', true );
discard_idx = t_0810.timestamp > min( t.timestamp );
t_0810( discard_idx, : ) = [];
% New
t_0810 = t_0810( find_unique( t_0810.timestamp ), : );
t = vertcat( t_0810, t );
%======================================================================
function [ t111, t112 ] = parse_PPine_soil_all_DAT_files( path )
% PARSE_PPINE_SOIL_ALL_DAT_FILES - parses all PPine soil data .DAT files from
% the working directory. Each .DAT file contains data from at least three separate
% "arrays" of observations. The arrays have the IDs 110, 111, and 112. We
% are currently ignoring array 110, so this function returns two matlab
% dataset objects: one for array 110, one for array 112.
file_info = dir([ path '\*.DAT' ]);
% initialize cell arrays to contain parsed datasets
t111 = cell( 1, numel( file_info ) );
t112 = cell( 1, numel( file_info ) );
headers111 = PPine_array_headers( 111 );
headers112 = PPine_array_headers( 112 );
for i = 1:numel( file_info )
fprintf( 'parsing %s\n', file_info( i ).name );
[ data111, data112 ] = parse_PPine_soil_DAT_file( ...
fullfile( path, file_info( i ).name ));
t111{ i } = array2table( data111, 'VariableNames', headers111 );
t112{ i } = array2table( data112, 'VariableNames', headers112 );
t111{ i }.timestamp = mcconnel_times_2_datenum( t111{ i } );
t112{ i }.timestamp = mcconnel_times_2_datenum( t112{ i } );
end
t111 = vertcat( t111{ : } );
t112 = vertcat( t112{ : } );
% discard duplicate timestamps
t111 = t111( find_unique( t111.timestamp ), : );
t112 = t112( find_unique( t112.timestamp ), : );
% fill in any missing hourly timestamps
t_min = min( [ t111.timestamp; t112.timestamp ] );
t_max = max( [ t111.timestamp; t112.timestamp ] );
one_hour = 1 / 24; % one hour in units of days
t111 = table_fill_timestamps( t111, 'timestamp', ...
'delta_t', one_hour, ...
't_min', t_min, ...
't_max', t_max );
t112 = table_fill_timestamps( t112, 'timestamp', ...
'delta_t', one_hour, ...
't_min', t_min, ...
't_max', t_max );
% interpolate from hourly to 30 minutes
t111 = hourly_2_30min( t111 );
t112 = hourly_2_30min( t112 );
% t_start = min( [ t111.timestamp; t112.timestamp ] );
% t_end = max( [ t111.timestamp; t112.timestamp ] );
% two_mins = 2 / ( 24 * 60 ); % two minutes in units of days
% [ t111, t112 ] = merge_datasets_by_datenum( t111, t112, ...
% 'timestamp', 'timestamp', ...
% two_mins, ...
% t_start, t_end );
%======================================================================
function dn = mcconnel_times_2_datenum( t )
% the timestamps in Joe McConnel's PPine soil data are give as year, day of
% year, and time in HHMM format. Convert these to matlab datenums
mins_per_day = 24 * 60;
hours_per_day = 24;
hh = floor( t.Time / 100 );
mm = mod( t.Time, 100 );
dn = datenum( t.Year, 1, 0 ) + ...
t.Day + ...
( hh / hours_per_day ) + ...
( mm / mins_per_day );
%======================================================================
function [ data111, data112 ] = parse_PPine_soil_DAT_file( fname )
% PARSE_PPINE_SOIL_DAT_FILE - parse a single PPine soil met .DAT file into a
% matlab dataset object. Each file contains data from at least three separate
% "arrays" of observations. The arrays have the IDs 110, 111, and 112.
%
% INPUTS
% fname: full path to the file to be parsed
%
% OUTPUTS
% data111: Nx35 array containing data from array 111
% data112: Nx58 array containing data from array 112
% some of the data files contain garbled lines. Therefore parse the file
% into a string, filter the string with a regular expression, and parse the
% filtered strings into a numeric array.
data_str = fileread( fname );
% split data_str into lines
data_str = regexp( data_str, '\n', 'split' );
% remove quotations -- some files have each line contained in quotations
data_str = regexprep( data_str, '"', '' );
% valid floating point characters are 0-9, ., -, e, and E. Keep only lines
% containing these characters.
bad_idx = cellfun( @isempty, ...
regexp( data_str, '[0-9\.-eE]', 'match' ) );
data_str = data_str( not( bad_idx ) );
% scan the strings to numeric arrays
data = cellfun( @(x) textscan( x, '%f', 'delimiter', ',' ), data_str );
% pull out the arrayID (first element of each line) -- this determines how
% many observations should be in the line
arrayID = cellfun( @(x) x(1), data );
% array 111 should have 34 observations per line and array 112 should have
% 58. There are two or three lines labeled 112 that have a different
% number. Therefore filter each array to only accept lines with the correct
% number of observations.
data111 = data( arrayID == 111 );
data112 = data( arrayID == 112 );
n_obs111 = cellfun( @numel, data111 );
n_obs112 = cellfun( @numel, data112 );
data111( n_obs111 ~= 34 ) = [];
data112( n_obs112 ~= 58 ) = [];
data111 = horzcat( data111{ : } )';
data112 = horzcat( data112{ : } )';
%======================================================================
function t = parse_PPine_soil_csv( fname )
dlm = ','; %files are comma-delimited
start_row = 1; % skip first row (header)
start_col = 0; % do not skip any columns
data = dlmread( fname, ',', start_row, start_col );
arrayID = unique( data( 1 ) );
headers = PPine_array_headers( arrayID );
% New
data = replace_badvals( data, [ -6999 ], 1e-6 );
t = array2table( data, 'VariableNames', headers );
t.timestamp = mcconnel_times_2_datenum( t );
% remove duplicate timestamps
t = t( find_unique( t.timestamp ), : );
one_hour = 1 / 24; % one hour in units of days
t = table_fill_timestamps( t, 'timestamp', ...
'delta_t', one_hour, ...
't_min', min( t.timestamp ), ...
't_max', max( t.timestamp ) );
t = hourly_2_30min( t );
%======================================================================
function t = parse_Sarah_PPine_soil_xls( fname)
% PARSE_SARAH_PPINE_SOIL_XLS - parse a single PPine soil met .xls file compiled
% by Sarah into a matlab dataset object.
% INPUTS
% fname: full path to the file to be parsed
%
% OUTPUTS
% ds: matlab dataset object containing the data with column labels and
% units.
sheet_name = 'VWCandWP';
T_range = 'C8:F17527';
VWC_range = 'J8:J17527';
time_range = 'A8:A17527';
fprintf( 'parsing %s...', fname );
Tdata = xlsread( fname, sheet_name, T_range );
VWCdata = xlsread( fname, sheet_name, VWC_range );
[ ~, timestamps ] = xlsread( fname, sheet_name, time_range );
fprintf( 'done\n' );
timestamps = datenum( timestamps );
data = [ timestamps, Tdata, VWCdata ];
% replace -9999 with NaN
data = replace_badvals( data, [ -9999 ], 1e-6 );
% name the temperature variables with convention soilT_cover_pit_depth
var_names = { 'timestamp', ...
'soilT_ponderosa_1_2', 'soilT_ponderosa_1_6', ...
'soilT_ponderosa_2_2', 'soilT_ponderosa_2_6', ...
'VWC_ponderosa_1_6' };
var_units = { 'time', 'C', 'C', 'C', 'C', '%' };
t = array2table( data, 'VariableNames', var_names );
t.Properties.VariableUnits = var_units;
%======================================================================
function headers = PPine_array_headers( arrayID )
% PPINE_ARRAY_111_HEADERS - defines the headers for soil data array 111 and 112
% at PPine. The headers were taken from the files PP_Site_2009_soil111.csv
% and PP_Site_2009_soil112.csv on 10 Aug 2012.
logistical_vars = { 'Array_ID', 'Year', 'Day', 'Time' };
switch arrayID
case 111
pit_vars = { 'SoilT_C', 'SoilT_F', 'VWC', ...
'Soil_Conductivity', 'Dielectric_Loss_Tangent' };
case 112
pit_vars = { 'VWC', 'Soil_Conductivity_Tcorrected', ...
'SoilT_C', 'SoilT_F', ...
'Soil_Conductivity_raw', ...
'Real_Dielectric_Permittivity_raw', ...
'Imaginary_Dielectric_Permittivity_raw', ...
'Real_Dielectric_Permittivity_Tcorrected', ...
'Imaginary_Dielectric_Permittivity_Tcorrected'};
otherwise
error( 'array ID must be either 111 or 112' );
end
% anonymous function to append _N to each string in pit_vars, with
% integer argument N
append_pit = @( n ) cellfun( @(str) strcat( str, sprintf( '_obs%d', n ) ), ...
pit_vars, ...
'UniformOutput', false );
headers = [ logistical_vars, ...
append_pit( 1 ), append_pit( 2 ), ...
append_pit( 3 ), append_pit( 4 ), ...
append_pit( 5 ), append_pit( 6 ) ];
% replace "pitN" with the actual depth (format: Covertype_PitNumber_Depth)
headers = regexprep( headers, 'obs1', ...
sprintf( 'ponderosa_%d1_5', arrayID ) );
headers = regexprep( headers, 'obs2', ...
sprintf( 'ponderosa_%d1_20', arrayID ) );
headers = regexprep( headers, 'obs3', ...
sprintf( 'ponderosa_%d1_50', arrayID ) );
headers = regexprep( headers, 'obs4', ...
sprintf( 'ponderosa_%d2_5', arrayID ) );
headers = regexprep( headers, 'obs5', ...
sprintf( 'ponderosa_%d2_20', arrayID ) );
headers = regexprep( headers, 'obs6', ...
sprintf( 'ponderosa_%d2_50', arrayID ) );
%==================================================
function t = hourly_2_30min( t )
% HOURLY_2_30MIN - interpolate the data from hourly to 30-minute
%
thirty_mins = 30 / ( 60 * 24 ); % thirty minutes in units of days
ts_30 = t.timestamp + thirty_mins;
non_time_vars = setdiff( t.Properties.VariableNames, ...
{ 'timestamp', 'Array_ID', ...
'Year', 'Day', 'Time' } );
data_interp = interp1( t.timestamp, ...
table2array( t( :, non_time_vars ) ), ...
ts_30 );
data_interp = array2table( data_interp, 'VariableNames', non_time_vars );
data_interp.timestamp = ts_30;
[ yyyy, ~, ~, ~, ~, ~ ] = datevec( ts_30 );
data_interp.Year = yyyy;
data_interp.Day = floor( ts_30 - datenum( yyyy, 1, 0 ) );
data_interp.Time = str2num( datestr( ts_30, 'HHMM' ) );
data_interp.Array_ID = t.Array_ID;
% % debugging plot -- make sure the interpolated data look like the originals
% h = figure();
% subplot( 1, 2, 1 );
% plot( ds.Soil_1_1, '.' );
% title( 'Soil_1_1 original' );
% subplot( 1, 2, 2 );
% plot( ds.Soil_1_1, '.' );
% title( 'Soil_1_1 interpolated' );
% combine the hourly data with the interpolated data and sort by timestamp
t = vertcat( t, data_interp );
[ ~, idx ] = sort( t.timestamp );
t = t( idx, : );