-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_append_common_vars.m
89 lines (80 loc) · 2.85 KB
/
dataset_append_common_vars.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
function ds = dataset_append_common_vars( varargin )
% DATASET_APPEND_COMMON_VARS - vertically concatenates input dataset arrays,
% ignoring variables that are not common to all inputs.
%
% FIXME - Deprecated. This function is being superseded by
% 'table_append_common_vars.m'
%
% USAGE
% ds = dataset_append_common_vars( ds1, ds2, ds3, ... )
%
% INPUTS
% ds1, ds2, ...: dataset arrays to be concatenated. Any number of inputs
% may be passed. ALL inputs must be dataset arrays.
%
% OUTPUTS
% ds: dataset array; concatenated input datasets with variables not common
% to all inputs removed.
%
% SEE ALSO
% dataset
%
% author: Timothy W. Hilton, UNM, Oct 2012
warning( 'This function ( dataset_append_common_vars.m ) is deprecated' );
fill_vars = true;
if nargin == 0
error( 'at least two input arguments are required' );
end
% make sure all inputs are dataset arrays
inputs_are_datasets = cellfun( @( x ) isa( x, 'dataset' ), varargin );
if not( inputs_are_datasets )
error( 'all inputs must be dataset arrays' );
end
if fill_vars
% keep all variables that exist in *any* input dataset; where a variable
% does not exist, fill with NaN
all_vars = cellfun( @(x) x.Properties.VarNames, ...
varargin, ...
'UniformOutput', false );
all_vars = unique( horzcat( all_vars{ : } ) );
for i = 1:nargin
this_missing_vars = setdiff( all_vars, varargin{ i }.Properties.VarNames );
nan_array = repmat( NaN, size( varargin{ i }, 1 ), 1 );
for j = 1:numel( this_missing_vars );
fprintf( 'filling %s\n', this_missing_vars{ i } );
varargin{ i }.( this_missing_vars{ j } ) = nan_array;
end
end
else
% identify and remove variables not common to all datasets
% identify variables common to all datasets
common_vars = varargin{ 1 }.Properties.VarNames;
for i = 2:nargin
[ ~, ia, ib ] = ...
intersect( common_vars, varargin{ i }.Properties.VarNames );
% intersect sorts its output -- put the columns back in their original
% order
common_vars = common_vars( sort( ia ) );
end
unique_vars = cell( 1, nargin );
for i = 1:nargin
unique_vars{ i } = setdiff( varargin{ i }.Properties.VarNames, common_vars );
varargin{ i } = varargin{ i }( :, common_vars );
end
end
% concatenate into single dataset array
save( 'data.mat' );
ds = vertcat( varargin{ : } );
if not( fill_vars )
% write a message noting the variables that were ignored
for i = 1:nargin
these_vars = replace_hex_chars( unique_vars{ i } );
if not( isempty( these_vars ) )
fprintf( 'ignored from input %d: ', i );
for j = 1:numel( these_vars )
fprintf( '%s ', these_vars{ j } );
end
fprintf( '\n' );
end
end
end