-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmodel.py
160 lines (135 loc) · 6.06 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
"""
Copyright 2017 Bernard Giroux, Elie Dumas-Lefebvre, Jerome Simon
email: [email protected]
This file is part of BhTomoPy.
BhTomoPy is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
import numpy as np
class Model:
def __init__(self, name=''):
self.name = name
self.grid = None
self.tt_covar = None
self.amp_covar = None
self.mogs = []
self.inv_res = [] # TODO: use DbList for this attribute
self.tlinv_res = None
self.modified = True
@property
def boreholes(self):
"""
Returns a list of all the boreholes contained in the mogs of a model, without duplicates.
"""
boreholes = []
for mog in self.mogs:
for borehole in mog.Tx, mog.Rx:
if borehole is not None:
if borehole not in boreholes: # guarantees there is no duplicate
boreholes.append(borehole)
return boreholes
@staticmethod
def getModelData(model, selected_mogs, type1, vlim=0, type2=''):
data = np.array([])
ind = np.array([])
tt = np.array([])
et = np.array([])
in_vect = np.array([])
mogs = []
for i in selected_mogs:
mogs.append(model.mogs[i])
if type1 == 'tt':
fac_dt = 1
mog = mogs[0]
ind = np.not_equal(mog.tt, -1).T
tt, t0 = mog.getCorrectedTravelTimes()
tt = tt.T
et = fac_dt * mog.f_et * mog.et.T
in_vect = mog.in_vect.T
no = np.arange(mog.data.ntrace).T
if len(mogs) > 1:
for n in range(1, len(model.mogs)):
mog = mogs[n]
ind = np.concatenate((ind, np.not_equal(mog.tt, -1).T), axis=0)
tt = np.concatenate((tt, mog.getCorrectedTravelTimes()[0].T), axis=0)
et = np.concatenate((et, fac_dt * mog.et * mog.f_et.T), axis=0)
in_vect = np.concatenate((in_vect, mog.in_vect.T), axis=0)
no = np.concatenate((no, np.arange(mog.ntrace + 1).T), axis=0)
elif type1 == "amp":
mog = mogs[0]
ind = np.not_equal(mog.tauApp, -1).T
tt = mog.tauApp.T
et = mog.tauApp_et.T * mog.f_et
in_vect = mog.in_vect.T
no = np.arange(mog.data.ntrace).T
if len(mogs) > 1:
for n in range(1, len(model.mogs)):
mog = mogs[n]
ind = np.concatenate((ind, np.not_equal(mog.tauApp, -1).T), axis=0)
tt = np.concatenate((tt, mog.tauApp.T), axis=0)
et = np.concatenate((et, mog.tauApp_et.T * mog.f_et), axis=0)
in_vect = np.concatenate((in_vect, mog.in_vect.T), axis=0)
no = np.concatenate((no, np.arange(mog.ntrace + 1).T), axis=0)
elif type1 == "fce":
mog = mogs[0]
ind = np.not_equal(mog.tauFce, -1).T
tt = mog.tauFce.T
et = mog.tauFce_et.T * mog.f_et
in_vect = mog.in_vect.T
no = np.arange(mog.data.ntrace).T
if len(mogs) > 1:
for n in range(1, len(model.mogs)):
mog = mogs[n]
ind = np.concatenate((ind, np.not_equal(mog.tauFce, -1).T), axis=0)
tt = np.concatenate((tt, mog.tauFce.T), axis=0)
et = np.concatenate((et, mog.tauFce_et.T * mog.f_et), axis=0)
in_vect = np.concatenate((in_vect, mog.in_vect.T), axis=0)
no = np.concatenate((no, np.arange(mog.ntrace + 1).T), axis=0)
elif type1 == "hyb":
mog = mogs[0]
ind = np.not_equal(mog.tauHyb, -1).T
tt = mog.tauHyb.T
et = mog.tauHyb_et.T * mog.f_et
in_vect = mog.in_vect.T
no = np.arange(mog.data.ntrace).T
if len(mogs) > 1:
for n in range(1, len(model.mogs)):
mog = mogs[n]
ind = np.concatenate((ind, np.not_equal(mog.tauHyb, -1).T), axis=0)
tt = np.concatenate((tt, mog.tauHyb.T), axis=0)
et = np.concatenate((et, mog.tauHyb_et.T * mog.f_et), axis=0)
in_vect = np.concatenate((in_vect, mog.in_vect.T), axis=0)
no = np.concatenate((no, np.arange(mog.ntrace + 1).T), axis=0)
elif type1 == 'depth':
if type2 == '':
return data, ind
_, ind = Model.getModelData(model, selected_mogs, type2) # @UndefinedVariable
mog = mogs[0]
tt = mog.Tx_z_orig.T
et = mog.Rx_z_orig.T
in_vect = mog.in_vect.T
if len(mogs) > 1:
for n in (1, len(mogs)):
tt = np.concatenate((tt, mogs[n].Tx_z_orig.T), axis=0)
et = np.concatenate((et, mogs[n].Rx_z_orig.T), axis=0)
in_vect = np.concatenate((in_vect, mogs[n].in_vect.T), axis=0)
else:
raise ValueError
if vlim != 0:
l = np.sqrt(np.sum((model.grid.Tx-model.grid.Rx)**2, axis=1)).T
vapp = l/tt
in2 = vapp<vlim
print(str(np.sum(~in2&ind)) + " rays with apparent velocity above " + str(vlim))
ind = ind & in2
ind = np.equal((ind.astype(int) + in_vect.astype(int)), 2)
data = np.array([tt[ind], et[ind], no[ind]]).T
return data, ind