-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathhelpers.go
286 lines (222 loc) · 5.46 KB
/
helpers.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
package passtor
import (
"crypto/rand"
"encoding/base64"
"fmt"
"math/big"
"net"
"sort"
"strings"
"time"
)
func checkErr(err error) {
if err != nil {
panic(err)
}
}
// ParsePeers parse peer list in string format to udp addresses
func ParsePeers(peerList string) []net.UDPAddr {
addresses := make([]net.UDPAddr, 0)
if peerList == "" {
return addresses
}
// split up the different addresses
peers := strings.Split(peerList, ",")
// parse the addresses and add them to the slice
for _, p := range peers {
udpAddr, err := net.ResolveUDPAddr("udp4", p)
checkErrMsg(err, "invalid address \""+p+"\"")
addresses = append(addresses, *udpAddr)
}
return addresses
}
// Timeout creates a clock that writes to the returned channel after the
// time value given as argument
func Timeout(timeout time.Duration) *chan bool {
c := make(chan bool)
go func() {
time.Sleep(timeout)
c <- true
}()
return &c
}
// NewLookupStatus returns new lookup status structure for given nodeaddr
func NewLookupStatus(nodeAddr NodeAddr) *LookupStatus {
return &LookupStatus{
NodeAddr: nodeAddr,
Failed: false,
Tested: false,
}
}
// RandomBytes generates an array of random bytes of the given size
func RandomBytes(size uint) ([]byte, error) {
bytes := make([]byte, size)
_, err := rand.Read(bytes)
if err != nil {
return nil, err
}
return bytes, nil
}
func BytesToSalt(array []byte) Salt {
if len(array) != SALTLENGTH {
panic("Array is expected to have size " + fmt.Sprint(SALTLENGTH))
}
var salt = Salt{}
for i, b := range array {
salt[i] = b
}
return salt
}
func SaltToBytes(salt Salt) []byte {
array := make([]byte, len(salt))
for i, b := range salt {
array[i] = b
}
return array
}
// BytesToNonce converts a byte array to a Nonce type.
func BytesToNonce(array []byte) Nonce {
if len(array) != NONCESIZE {
panic("Array is expected to have size " + fmt.Sprint(NONCESIZE))
}
var nonce = Nonce{}
for i, b := range array {
nonce[i] = b
}
return nonce
}
func NonceToBytes(nonce Nonce) []byte {
array := make([]byte, len(nonce))
for i, b := range nonce {
array[i] = b
}
return array
}
// BytesToSymmetricKey creates a symmetric key from an array of bytes
func BytesToSymmetricKey(array []byte) SymmetricKey {
if len(array) != SYMMKEYSIZE {
panic("Array is expected to have size " + fmt.Sprint(SYMMKEYSIZE))
}
var symmKey = [SYMMKEYSIZE]byte{}
for i, b := range array {
symmKey[i] = b
}
return symmKey
}
// SymmetricKeyToBytes converts a symmetric key to a raw array of bytes
func SymmetricKeyToBytes(symmK SymmetricKey) []byte {
array := make([]byte, len(symmK))
for i, b := range symmK {
array[i] = b
}
return array
}
func BytesToSignature(array []byte) Signature {
if len(array) != SIGNATURESIZE {
panic("Array is expected to have size " + fmt.Sprint(SIGNATURESIZE))
}
var sig = Signature{}
for i, b := range array {
sig[i] = b
}
return sig
}
func SignatureToBytes(signature Signature) []byte {
array := make([]byte, len(signature))
for i, b := range signature {
array[i] = b
}
return array
}
func KDFToSecret(array []byte) Secret {
if len(array) != SECRETLENGTH {
panic("Array is expected to have size " + fmt.Sprint(SECRETLENGTH))
}
var secret = Secret{}
for i, b := range array {
secret[i] = b
}
return secret
}
func HashToBytes(h Hash) []byte {
array := make([]byte, len(h))
for i, b := range h {
array[i] = b
}
return array
}
func BytesToHash(array []byte) Hash {
if len(array) != HASHSIZE {
panic("Array is expected to have size " + fmt.Sprint(HASHSIZE))
}
var h = Hash{}
for i, b := range array {
h[i] = b
}
return h
}
func GetKeysSorted(data map[Hash]Login) []Hash {
keysString := make([]string, len(data))
i := 0
for k := range data {
keysString[i] = base64.StdEncoding.EncodeToString(HashToBytes(k))
i++
}
sort.Strings(keysString)
keysHash := make([]Hash, len(data))
i = 0
for _, s := range keysString {
h, err := base64.StdEncoding.DecodeString(s)
if err != nil {
panic("base64 decoding failed")
}
keysHash[i] = BytesToHash(h)
i++
}
return keysHash
}
func DuplicateMap(data map[Hash]Login) map[Hash]Login {
newMap := make(map[Hash]Login, len(data))
for k, v := range data {
newMap[k] = v
}
return newMap
}
// MostRepresented returns the most represented verified (in the sense of signature equality)
func MostRepresented(accounts []Account, min int) (*Account, bool) {
verified := make([]Account, 0)
for _, account := range accounts {
if account.Verify() {
verified = append(verified, account)
}
}
if len(verified) == 0 {
return nil, false
}
signatureCounts := make(map[Signature]accountCountPair)
for _, account := range verified {
if count, alreadyExists := signatureCounts[account.Signature]; alreadyExists {
signatureCounts[account.Signature] = accountCountPair{Account: count.Account, Count: count.Count + 1}
} else {
signatureCounts[account.Signature] = accountCountPair{Account: account, Count: 1}
}
}
var mostRepresentedAccount Account
mostRepresentedOccurences := 0
for _, count := range signatureCounts {
if count.Count > mostRepresentedOccurences {
mostRepresentedOccurences = count.Count
mostRepresentedAccount = count.Account
}
}
threshIsMet := mostRepresentedOccurences >= min
return &mostRepresentedAccount, threshIsMet
}
// RandInt generate a random int64 between 0 and given n
func RandInt(n int64) int64 {
nBig, err := rand.Int(rand.Reader, big.NewInt(n))
if err != nil {
panic(err)
}
return nBig.Int64()
}