forked from eXtremeGravityInstitute/LISA_Sensitivity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLISA.py
263 lines (185 loc) · 7.15 KB
/
LISA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
from scipy import interpolate
import matplotlib.pyplot as plt
import PhenomA as pa
# constants
fm = 3.168753575e-8 # LISA modulation frequency
YEAR = 3.15581497632e7 # year in seconds
AU = 1.49597870660e11 # Astronomical unit (meters)
Clight = 299792458. # speed of light (m/s)
##########################################################
################# Noise Curve Methods ####################
##########################################################
def LoadTransfer(self, file_name):
"""
Load the data file containing the numerically calculate transfer function
(sky and polarization averaged)
"""
try: # try to read in the data file
transfer_data = np.genfromtxt(file_name) # read in the data
except: # If file isn't successfully read in, use approximate transfer function
print("Warning: Could not find transfer function file!")
print(" \tApproximation will be used...")
self.FLAG_R_APPROX = True
return
f = transfer_data[:,0]*self.fstar # convert to frequency
R = transfer_data[:,1]*self.NC # response gets improved by more data channels
# create an interpolation function; attach to LISA object
self.R_INTERP = interpolate.splrep(f, R, s=0)
self.FLAG_R_APPROX = False
return
def Pn(self, f):
"""
Caclulate the Strain Power Spectral Density
"""
# single-link optical metrology noise (Hz^{-1}), Equation (10)
P_oms = (1.5e-11)**2*(1. + (2.0e-3/f)**4)
# single test mass acceleration noise, Equation (11)
P_acc = (3.0e-15)**2*(1. + (0.4e-3/f)**2)*(1. + (f/(8.0e-3))**4)
# total noise in Michelson-style LISA data channel, Equation (12)
Pn = (P_oms + 2.*(1. + np.cos(f/self.fstar)**2)*P_acc/(2.*np.pi*f)**4)/self.Larm**2
return Pn
def SnC(self, f):
"""
Get an estimation of the galactic binary confusion noise are available for
Tobs = {0.5 yr, 1 yr, 2 yr, 4yr}
Enter Tobs as a year or fraction of a year
"""
Tobs = self.Tobs
NC = self.NC
# Fix the parameters of the confusion noise fit
if (Tobs < .75*YEAR):
est = 1
elif (0.75*YEAR < Tobs and Tobs < 1.5*YEAR):
est = 2
elif (1.5*YEAR < Tobs and Tobs < 3.0*YEAR):
est = 3
else:
est = 4
if (est==1):
alpha = 0.133
beta = 243.
kappa = 482.
gamma = 917.
f_knee = 2.58e-3
elif (est==2):
alpha = 0.171
beta = 292.
kappa = 1020.
gamma = 1680.
f_knee = 2.15e-3
elif (est==3):
alpha = 0.165
beta = 299.
kappa = 611.
gamma = 1340.
f_knee = 1.73e-3
else:
alpha = 0.138
beta = -221.
kappa = 521.
gamma = 1680.
f_knee = 1.13e-3
A = 1.8e-44/NC
Sc = 1. + np.tanh(gamma*(f_knee - f))
Sc *= np.exp(-f**alpha + beta*f*np.sin(kappa*f))
Sc *= A*f**(-7./3.)
return Sc
def Sn(self, f):
""" Calculate the sensitivity curve """
if (self.FLAG_R_APPROX == False): # if sensitivity curve file is provided use it
R = interpolate.splev(f, self.R_INTERP, der=0)
else:
R = 3./20./(1. + 6./10.*(f/self.fstar)**2)*self.NC
Sn = self.Pn(f)/R + self.SnC(f)
return Sn
def Pn_WC(self, f):
""" Calculate Power Spectral Density with confusion (WC) noise estimate """
if (self.FLAG_R_APPROX == False):
R = interpolate.splev(f, self.R_INTERP, der=0)
else:
R = 3./20./(1. + 6./10.*(f/self.fstar)**2)*self.NC
PnC = self.Pn(f) + self.SnC(f)*R
return PnC
##########################################################
################# LISA's Orbit Methods ###################
##########################################################
def SC_Orbits(self, t):
""" Calculate the analytic (leading order in eccentricity) LISA orbits """
N = len(t)
kappa = 0.0 # initial phase of LISA orbits
Lambda = 0.0 # initial phase of spacecraft in their quasi-triangle configuration
alpha = (2.*np.pi*fm*t + kappa).reshape((1,N))
sa = np.sin(alpha)
ca = np.cos(alpha)
beta = (np.array([0.0, 2.*np.pi/3., 4.*np.pi/3.]) + Lambda).reshape((3,1))
sb = np.sin(beta)
cb = np.cos(beta) # (S/C, len(t))
x = np.zeros((3, 3, N)) # dim, S/C, time
x[0] = AU*ca + AU*self.ecc*(sa*ca*sb - (1. + sa*sa)*cb)
x[1] = AU*sa + AU*self.ecc*(sa*ca*cb - (1. + ca*ca)*sb)
x[2] = -np.sqrt(3.)*AU*self.ecc*(ca*cb + sa*sb)
return x
def SC_Seps(self, t, x):
""" Calculate S/C unit-separation vectors """
N = len(t)
rij = np.zeros((3,3,3,N))
rij[:,0,1,:] = x[:,1,:] - x[:,0,:]
rij[:,1,0,:] = -rij[:,0,1,:]
rij[:,0,2,:] = x[:,2,:] - x[:,0,:]
rij[:,2,0,:] = -rij[:,0,2,:]
rij[:,1,2,:] = x[:,2,:] - x[:,1,:]
rij[:,2,1,:] = -rij[:,1,2,:]
return rij/self.Larm
class LISA():
"""
LISA class
-----------------------
Handles LISA's orbit and detector noise quantities
Methods:
LoadTranfer - read in, and store, transfer function data file
SC_Orbit - return calculate spacecraft (S/C) positions
SC_Seps - return unit-separation vectors between LISA S/C
Pn - return LISA's strain power spectral density
Pn_WC - return LISA's strain power spectral density with confusion noise estimate
SnC - return confusion noise estimate
Sn - return LISA's sensitivity curve
"""
def __init__(self, Tobs=4*YEAR, Larm=2.5e9, NC=2, transfer_file='R.txt'):
"""
Tobs - LISA observation period (4 years is nominal mission lifetime)
Larm = 2.5e9 LISA's arm length, current design arm length,
constant to 1st order in eccentricity
NC - Number of data channels
"""
self.Tobs = Tobs
self.Larm = Larm
self.NC = NC
self.ecc = self.Larm/(2*np.sqrt(3.)*AU) # to maintain quasi-equilateral triangle configuration
self.fstar = Clight/(2*np.pi*self.Larm) # transfer frequency, design value ~ 19.1 mHz
self.LoadTransfer(transfer_file) # load the transfer function
# Methods
LoadTransfer = LoadTransfer
Pn = Pn
Pn_WC = Pn_WC
Sn = Sn
SnC = SnC
SC_Orbits = SC_Orbits
SC_Seps = SC_Seps
def PlotSensitivityCurve(f, Sn, figure_file=None):
"""
Plot the characteristic strain the sensitivity curve
If figure_file is provided, the figure will be saved
"""
fig, ax = plt.subplots(1, figsize=(8,6))
plt.tight_layout()
ax.set_xlabel(r'f [Hz]', fontsize=20, labelpad=10)
ax.set_ylabel(r'Characteristic Strain', fontsize=20, labelpad=10)
ax.tick_params(axis='both', which='major', labelsize=20)
ax.set_xlim(1.0e-5, 1.0e0)
ax.set_ylim(3.0e-22, 1.0e-15)
ax.loglog(f, np.sqrt(f*Sn)) # plot the characteristic strain
plt.show()
if (figure_file != None):
plt.savefig(figure_file)
return