forked from broadinstitute/cytominer_scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotate.R
executable file
·162 lines (102 loc) · 5.44 KB
/
annotate.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env Rscript
'annotate
Usage:
annotate.R -b <id> -p <id> [-c <str> -d -j <file> -m <str>]
Options:
-b <id> --batch_id=<id> Batch ID.
-p <id> --plate_id=<id> Plate ID.
-c <str> --cell_id=<str> Cell ID [default: unknown]
-d --format_broad_cmap Add columns to make compatible with Broad CMap naming conventions.
-j <file> --external_metadata=<file> External metadata to join with.
-m <str> --perturbation_mode=<str> Mode of perturbation - chemical or genetic [default: chemical]' -> doc
suppressWarnings(suppressMessages(library(docopt)))
suppressWarnings(suppressMessages(library(dplyr)))
suppressWarnings(suppressMessages(library(magrittr)))
suppressWarnings(suppressMessages(library(readr)))
opts <- docopt(doc)
batch_id <- opts[["batch_id"]]
external_metadata <- opts[["external_metadata"]]
cell_id <- opts[["cell_id"]]
format_broad_cmap <- opts[["format_broad_cmap"]]
plate_id <- opts[["plate_id"]]
perturbation_mode <- opts[["perturbation_mode"]]
metadata_dir <- paste("../..", "metadata", batch_id, sep = "/")
backend_dir <- paste("../..", "backend", batch_id, plate_id, sep = "/")
# read profiles and rename column names
profiles <- suppressMessages(readr::read_csv(paste(backend_dir, paste0(plate_id, ".csv"), sep = "/")))
# read and join metadata map
metadata_map <- suppressMessages(readr::read_csv(paste(metadata_dir, "barcode_platemap.csv", sep = "/"),
col_types = cols(Assay_Plate_Barcode = col_character(),
Plate_Map_Name = col_character())))
testthat::expect_true("Assay_Plate_Barcode" %in% colnames(metadata_map))
metadata_map %<>% setNames(names(metadata_map) %>% stringr::str_replace_all("^", "Metadata_"))
profiles %<>% mutate(Metadata_Assay_Plate_Barcode = as.character(Metadata_Plate))
profiles %<>% inner_join(metadata_map, by = c("Metadata_Assay_Plate_Barcode"))
# read and join platemap
platemap_name <- profiles %>% select(Metadata_Plate_Map_Name) %>% distinct() %>% extract2("Metadata_Plate_Map_Name")
testthat::expect_equal(length(platemap_name), 1)
platemap <- suppressMessages(readr::read_tsv(paste(metadata_dir, "platemap", paste0(platemap_name, ".txt"), sep = "/")))
testthat::expect_true("well_position" %in% colnames(platemap))
if ('plate_map_name' %in% colnames(platemap)) {
platemap %<>% select(-plate_map_name)
}
platemap %<>% setNames(names(platemap) %>% stringr::str_replace_all("^", "Metadata_"))
profiles %<>% mutate(Metadata_well_position = Metadata_Well)
profiles %<>% inner_join(platemap, by = c("Metadata_well_position"))
# format_broad_cmap
if (format_broad_cmap) {
profiles %<>%
mutate(Metadata_pert_id = stringr::str_extract(Metadata_broad_sample, "(BRD[-N][A-Z0-9]+)"),
Metadata_pert_mfc_id = Metadata_broad_sample,
Metadata_pert_well = Metadata_Well,
Metadata_pert_id_vendor = "")
if ('Metadata_cell_id' %in% names(profiles)) {
message('`cell_id` column present in metadata, will not override.')
} else {
profiles %<>% mutate(Metadata_cell_id = cell_id)
}
if (perturbation_mode == "chemical") {
profiles %<>%
mutate(Metadata_broad_sample_type = ifelse(is.na(Metadata_broad_sample) | Metadata_broad_sample == "DMSO", "control", "trt"),
Metadata_broad_sample = ifelse(Metadata_broad_sample_type =="control", "DMSO", Metadata_broad_sample),
Metadata_mmoles_per_liter = ifelse(Metadata_broad_sample_type =="control", 0, Metadata_mmoles_per_liter),
Metadata_pert_vehicle = Metadata_solvent) %>%
mutate(Metadata_broad_sample_type = ifelse(Metadata_broad_sample == "empty", "empty", Metadata_broad_sample_type))
if ("Metadata_mg_per_ml" %in% names(profiles)) {
profiles %<>% mutate(Metadata_mg_per_ml = ifelse(Metadata_broad_sample_type =="control", 0, Metadata_mg_per_ml))
}
}
if (perturbation_mode == "genetic") {
profiles %<>%
mutate(Metadata_broad_sample_type = ifelse(Metadata_pert_name == "EMPTY", "control", "trt"))
}
profiles %<>%
mutate(Metadata_pert_type = Metadata_broad_sample_type)
}
# external_metadata
if(!is.null(external_metadata)) {
external_metadata_df <- suppressMessages(readr::read_csv(external_metadata))
# Check whether the columns have "Metadata" prefix; if not, assume that all columns need the suffix
if (length(grep("Metadata_", colnames(external_metadata_df))) == 0) {
external_metadata_df %<>% setNames(names(external_metadata_df) %>% stringr::str_replace_all("^", "Metadata_"))
}
profiles %<>%
left_join(
external_metadata_df %>%
distinct()
)
}
# format_broad_cmap: columns that may be added after joining with external metadata
if (format_broad_cmap) {
if ("Metadata_pert_iname" %in% colnames(profiles)) {
profiles %<>%
mutate(Metadata_pert_mfc_desc = Metadata_pert_iname,
Metadata_pert_name = Metadata_pert_iname)
}
}
# save
profiles_augmented <- paste(backend_dir, paste0(plate_id, "_augmented.csv"), sep = "/")
metadata_cols <- stringr::str_subset(names(profiles), "^Metadata_")
feature_cols <- stringr::str_subset(names(profiles), "^Cells_|^Cytoplasm_|^Nuclei_")
all_cols <- c(metadata_cols, feature_cols)
profiles[all_cols] %>% readr::write_csv(profiles_augmented)