-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder.py
258 lines (180 loc) · 7.45 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# %% Import modules
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.utils import shuffle
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
import pickle
from util import get_data, show_numbers, show_latent_space, linear_interp, sample_latent_space
# %%
# %% Get MNIST training data
X_train, y_train, unique_x = get_data()
# Show unique numbers from the dataset
print("\nUnique numbers:")
show_numbers(unique_x)
# %%
# %% Build the model
n_latent = 32
# Arguments used for tf.truncated_normal, the weights and biases initializer
mu_init = 0
sigma_init = 0.1
c1_strides = [1, 2, 2, 1]
padding = 'SAME'
c1_W = tf.Variable(tf.truncated_normal([3, 3, 1, 16], mean=mu_init, stddev=sigma_init))
c1_b = tf.Variable(tf.zeros(16))
c2_W = tf.Variable(tf.truncated_normal([3, 3, 16, 32], mean=mu_init, stddev=sigma_init))
c2_b = tf.Variable(tf.zeros(32))
c3_W = tf.Variable(tf.truncated_normal([3, 3, 32, 64], mean=mu_init, stddev=sigma_init))
c3_b = tf.Variable(tf.zeros(64))
de_W = tf.Variable(tf.truncated_normal(shape = (3*3*64, n_latent), mean=mu_init, stddev=sigma_init))
de_b = tf.Variable(tf.zeros(n_latent))
def aencoder(x):
# Layer 1: Convolutional. Input = 28x28x1. Output = 28x28x5.
conv1 = tf.nn.conv2d(x, c1_W, c1_strides, padding) + c1_b
# Activation.
conv1 = tf.nn.tanh(conv1)
# Layer 2: Convolutional. Output = 10x10x10.
conv2 = tf.nn.conv2d(conv1, c2_W, c1_strides, padding) + c2_b
# Activation.
conv2 = tf.nn.tanh(conv2)
# Layer 3: Convolutional. Output = 10x10x10.
conv3 = tf.nn.conv2d(conv2, c3_W, [1, 2, 2, 1], 'VALID') + c3_b
conv3 = tf.nn.tanh(conv3)
# Dense layer
conv3_f = tf.contrib.layers.flatten(conv3)
latent_space = tf.matmul(conv3_f, de_W) + de_b
return latent_space
ct1_W = tf.Variable(tf.truncated_normal([3, 3, 32, 64], mean=mu_init, stddev=sigma_init))
ct1_b = tf.Variable(tf.zeros(32))
ct2_W = tf.Variable(tf.truncated_normal([3, 3, 16, 32], mean=mu_init, stddev=sigma_init))
ct2_b = tf.Variable(tf.zeros(16))
ct3_W = tf.Variable(tf.truncated_normal([3, 3, 1, 16], mean=mu_init, stddev=sigma_init))
ct3_b = tf.Variable(tf.zeros(1))
dd_W = tf.Variable(tf.truncated_normal(shape = (n_latent, 3*3*64), mean=mu_init, stddev=sigma_init))
dd_b = tf.Variable(tf.zeros(3*3*64))
def adecoder(ls):
# Up-sampling
batch_internal = tf.shape(ls)[0]
# Dense
ls = tf.matmul(ls, dd_W) + dd_b
ls = tf.reshape(ls, [batch_internal, 3, 3, 64])
ls = tf.nn.tanh(ls)
conv_t_1 = tf.nn.conv2d_transpose(ls, ct1_W, [batch_internal, 7, 7, 32], [1, 2, 2, 1], 'VALID') + ct1_b
# Activation.
conv_t_1 = tf.nn.tanh(conv_t_1)
# Up-sampling
conv_t_2 = tf.nn.conv2d_transpose(conv_t_1, ct2_W, [batch_internal, 14, 14, 16], c1_strides, padding) + ct2_b
# Activation.
conv_t_2 = tf.nn.tanh(conv_t_2)
# Up-sampling
conv_t_3 = tf.nn.conv2d_transpose(conv_t_2, ct3_W, [batch_internal, 28, 28, 1], c1_strides, padding) + ct3_b
out = tf.nn.sigmoid(conv_t_3)
return out
x = tf.placeholder(tf.float32, (None, 28, 28, 1))
lsp = aencoder(x)
dec_image = adecoder(lsp)
cost = tf.reduce_sum(tf.pow(dec_image - x, 2)) # minimize squared error
learning_rate = tf.placeholder(tf.float32)
train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost) # construct an optimizer
sess = tf.Session()
saver = tf.train.Saver()
num_examples = len(X_train)
print("Model built!")
# %%
# Load model
saver.restore(sess, "./model/ae/model.ckpt")
# %% Train the model
EPOCHS = 64
BATCH_SIZE = 256
# sess.run(tf.global_variables_initializer())
print("Training...")
for i in range(EPOCHS):
X_train, y_train = shuffle(X_train, y_train)
loss_per_epoch = 0
for offset in range(0, num_examples, BATCH_SIZE):
end = offset + BATCH_SIZE
batch_x, batch_y = X_train[offset:end], y_train[offset:end]
l, _ = sess.run([cost, train_op], feed_dict={x: batch_x, learning_rate: 0.0001})
loss_per_epoch += l / (float(num_examples)/BATCH_SIZE)
m = sess.run(dec_image, feed_dict={x: unique_x})
show_numbers(m)
print("EPOCH {} ...".format(i+1))
print("Loss = {:.3f}".format(loss_per_epoch))
print()
# %%
# %% Save tf model
save_path = saver.save(sess, "./model/ae/model.ckpt")
print("Model saved in file: %s" % save_path)
# %%
# %% Latent space visualization
lspace = sess.run(lsp, feed_dict={x: unique_x})
print(" latent space: 0")
show_latent_space(lspace[0])
print(" latent space: 3")
show_latent_space(lspace[3])
print(" latent space: 9")
show_latent_space(lspace[9])
# %%
# %% Latent space linear interpolation
lin_intrp = linear_interp(lspace[0], lspace[5], 10)
show_numbers(sess.run(dec_image, feed_dict={lsp: lin_intrp}))
lin_intrp = linear_interp(lspace[3], lspace[7], 10)
show_numbers(sess.run(dec_image, feed_dict={lsp: lin_intrp}))
lin_intrp = linear_interp(lspace[2], lspace[8], 10)
show_numbers(sess.run(dec_image, feed_dict={lsp: lin_intrp}))
lin_intrp = linear_interp(lspace[9], lspace[6], 10)
show_numbers(sess.run(dec_image, feed_dict={lsp: lin_intrp}))
# %%
# %% Latent space arithmetics
show_numbers(sess.run(dec_image, feed_dict={lsp: np.stack((lspace[0],lspace[4], lspace[9], lspace[6], lspace[7], lspace[5]))}))
show_numbers(sess.run(dec_image, feed_dict={lsp: np.stack((lspace[0] + lspace[4] - lspace[9], lspace[6] - lspace[7] + lspace[5]))}))
# %%
# %% Random sample new images
print(" samples: 1")
show_numbers(sess.run(dec_image, feed_dict={lsp: sample_latent_space(n_latent)}))
print(" samples: 2")
show_numbers(sess.run(dec_image, feed_dict={lsp: sample_latent_space(n_latent)}))
print(" samples: 3")
show_numbers(sess.run(dec_image, feed_dict={lsp: sample_latent_space(n_latent)}))
# %%
rndperm = np.random.permutation(10000)
decomp_x = X_train[rndperm].squeeze().reshape(len(rndperm), 28*28)
decomp_y = y_train[rndperm]
decomp_x.shape
decomp_y.shape
tsne = TSNE(n_components=2, perplexity=32, n_iter=750)
tsne_results = tsne.fit_transform(decomp_x)
pca_results = PCA().fit_transform(decomp_x)
# Save TSNE and PCA
with open('decomposition-data/ae-tsne-pca.pkl', 'wb') as handle:
pickle.dump((tsne_results, pca_results, decomp_x, decomp_y), handle, protocol=pickle.HIGHEST_PROTOCOL)
# Load TSNE and PCA
with open('decomposition-data/ae-tsne-pca.pkl', 'rb') as handle:
tsne_results, pca_results, decomp_x, decomp_y = pickle.load(handle)
# %%
f, ax = plt.subplots(1, 2, figsize=(15,5))
ax[0].scatter(tsne_results[:, 0], tsne_results[:, 1], c=decomp_y, cmap='Spectral', s=8)
sp2 = ax[1].scatter(pca_results[:, 0], pca_results[:, 1], c=decomp_y, cmap='Spectral', s=8)
f.colorbar(sp2)
plt.show()
# %%
# Run it through the autoencoder
decomp_x = decomp_x.reshape(len(decomp_x), 28, 28, 1)
x_encoded = sess.run(lsp, feed_dict={x: decomp_x})
decomp_x = x_encoded.reshape(len(x_encoded), n_latent)
tsne_results_2 = tsne.fit_transform(decomp_x)
pca_results_2 = PCA().fit_transform(decomp_x)
# Save TSNE_2 and PCA_2
with open('decomposition-data/ae-tsne-pca-2.pkl', 'wb') as handle:
pickle.dump((tsne_results_2, pca_results_2, decomp_x, decomp_y), handle, protocol=pickle.HIGHEST_PROTOCOL)
# Load TSNE_2 and PCA_2
with open('decomposition-data/ae-tsne-pca-2.pkl', 'rb') as handle:
tsne_results_2, pca_results_2, decomp_x, decomp_y = pickle.load(handle)
# %%
f, ax = plt.subplots(1, 2, figsize=(15,5))
ax[0].scatter(tsne_results_2[:, 0], tsne_results_2[:, 1], c=decomp_y, cmap='Spectral', s=8)
sp2 = ax[1].scatter(pca_results_2[:, 0], pca_results_2[:, 1], c=decomp_y, cmap='Spectral', s=8)
f.colorbar(sp2)
plt.show()
# %%