Skip to content

Latest commit

 

History

History
119 lines (82 loc) · 3.84 KB

README.md

File metadata and controls

119 lines (82 loc) · 3.84 KB

BERT-CRF

序列标注序列分类训练以及评估流程。

PyTorch Transformers pytorch-crf NumPy Matplotlib scikit-learn joblib

序列标注任务

NER

序列标注任务可以认为是token级别的分类任务,需要将句子中的不同token分为不同类别。不同于普通的分类任务,句子中的序列元素之间并不具有独立性,因此不能通过传统的分类器独立地处理每个token并预测类别。我们采用条件随机场(CRF)处理序列标签之间的天然的相关关系,达到更加准确的序列标注。

序列标注任务举例:

  • 命名实体识别(NER)

    命名实体识别(NER,Named Entity Recognition)是自然语言处理中的一项基础任务,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织名等。这里提供我在NLP课程中编写的命名实体识别的实验报告

  • 句子分割(Text Split)

    将句子分为若干个部分,比如分词任务,每个部分可以有一个标签。

句子分类任务举例:

  • 句子情感分类 将句子按照情感分为两个类或多个类别

使用方法

1. 安装依赖库:

pip install torch transformers pytorch-crf numpy matplotlib scikit-learn prettytable joblib tqdm pyyaml loguru

2. 下载预训练模型和分词器:

从huggingface下载bert-base-chinese预训练模型以及分词器。

3. 准备训练数据:

标签和文本均采用空格隔开,一一对应,且分开保存。每个空格隔开的部分不强制要求是一个token。

示例数据: 解压缩data.rar到项目目录。

4. 配置训练设置:

示例:

# model structure:
bert_model_path: "./bert-base-chinese"
num_hidden_layers: 12  # pretrained model is 12 layers, don't change this
device: "cuda"
num_workers: 14  # num_workers of dataloader

# train progress
num_epochs: 10
batch_size: 280
lr: 5e-5
lr_crf: 5e-3
use_fgm: False

# train results:
load_from_checkpoint_path: "./models/model_trained.pth"  # (Optional)
save_path: "./models/model_trained.pth"  # save_path: (Optional)
save_every: 1  # save every 1 epoch, (Optional)
save_interval: 60  # save every 60s, (Optional)
log_path: "./logs/my_log.log"  # log file path (Optional)

5. 配置数据集配置:

这个模型既可以用作序列标注模型,也可以用于句子分类,因为还有一个分类头。 你可以只用它序列标注或句子分类,也可以同时用作两个用途。其余的标签文件设置为空即可。

示例:

# data labels:
tags: ['B-BANK', 'I-BANK','O', 'B-COMMENTS_N', 'I-COMMENTS_N', 'B-COMMENTS_ADJ', 'I-COMMENTS_ADJ', 'B-PRODUCT', 'I-PRODUCT']
special_tag: "O"

num_cls: 3

# data paths
dataset_dir: "./data/dataset1"
tag_sep: "\\"

data:
  train:
    corpus_file: "./train.txt"
    tags_file: "train_TAG.txt"  # (Optional)
    cls_file: "train_CLS.txt"  # (Optional)
  dev:
    corpus_file: "dev.txt"
    tags_file: "dev_TAG.txt"  # (Optional)
    cls_file: "dev_CLS.txt"  # (Optional)

# data pre-process
max_seq_len: 96
overlap: 0

6. 开始训练:

python train.py --train_config path/to/your/train/config --data_config path/to/your/data/config

7. 预测:

训练完成后,可以使用训练好的模型进行预测。请参考test.py脚本。