Skip to content

Latest commit

 

History

History
150 lines (124 loc) · 3.11 KB

quantum-1-2.md

File metadata and controls

150 lines (124 loc) · 3.11 KB
title description date
量子力学 科恩 第一卷 (下)
别来春半, 触目愁肠断. 砌下落梅如雪乱, 拂了一身还满.
2022-10-31

自旋 1/2 和二能级体系

  • 我们将会看到, 一个顺磁性中性原子的角动量 (或磁矩) 沿 $$ O_z $$ 方向的分量只能取某一离散集合中的若干个数值.
    • 例如, 就一个基态的银原子而言, 其角动量的分量 $$ S_z $$ 只有两个可能值 ($$ + \frac{\hbar}{2} $$ 和 $$ - \frac{\hbar}{2} $$).
    • 因此, 我们说一个基态银原子是自旋为 $$ \frac{1}{2} $$ 的粒子.

自旋为 1/2 的粒子: 角动量的量子化

  • 自旋态空间 $$ \mathcal{E}_S $$ 中的最一般的 (归一化的) 右矢, 是 $$ \mid + \rangle $$ 和 $$ \mid - \rangle $$ 的某种线性叠加:
    • $$ \mid ψ \rangle = α \mid + \rangle + β \mid - \rangle $$
    • 其中 $$ α $$ 与 $$ β $$ 应满足下列关系式:
    • $$ |α|^2 + |β|^2 = 1 $$
  • 在基 $$ { \mid + \rangle, \mid - \rangle } $$ 中, 表示可观察量 $$ S_z $$ 的矩阵显然是对角的, 可将它写作:
    • $$ (S_z) = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} $$

  • 观察算符 $$ S_x $$ 和 $$ S_y $$ 分别与 $$ \mathcal{L} $$ 的分量 $$ \mathcal{L}_x $$ 和 $$ \mathcal{L}_y $$ 相联系. 在基 $$ { \mid + \rangle, \mid - \rangle } $$ 中, 算符 $$ S_x $$ 和 $$ S_y $$ 应该用 $$ 2 \times 2 $$ 的厄米矩阵来表示.

$$ \mathcal{L} $$ 貌似并不是原书采用的符号, 但我也没找到相似的~

  • 量子力学中角动量的普遍性质一章我们将会看到, 在量子力学中, 一个角动量的三个分量并不互相对易, 而是满足完全确定的对易关系式. 根据这一点, 我们可以证明, 在目前所研究的自旋 $$ \frac{1}{2} $$ 的情况下, 在 $$ S_z $$ 的本征矢 $$ \mid + \rangle $$ 和 $$ \mid - \rangle $$ 所构成的基中, $$ S_x $$ 和 $$ S_y $$ 的矩阵是:

    • $$ (S_x) = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} $$
    • $$ (S_y) = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \ i & 0 \end{pmatrix} $$
  • 算符 $$ S_x $$, $$ S_y $$ 和 $$ S_u $$ 的本征值都与 $$ S_z $$ 的相同, 即 $$ + \frac{\hbar}{2} $$, $$ - \frac{\hbar}{2} $$. 从物理上看, 这个结果是可以预期的; 由于空间的一切方向的性质都相同.

就自旋为 1/2 的情况说明量子力学的假定

二能级体系的一般研究

一维谐振子

哈密顿算符的本征值

哈密顿算符的本征态

讨论

量子力学中角动量的普遍性质

角动量的重要性

角动量所特有的对易关系式

角动量的普遍理论

应用于轨道角动量

中心势场中的粒子; 氢原子

中心势场中粒子的定态

在有相互作用的双粒子体系中质心的运动和相对运动

氢原子