-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCutnFill_LSTM_train.py
329 lines (270 loc) · 11.6 KB
/
CutnFill_LSTM_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import numpy as np
import socket
import pickle
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.distributions import Categorical
import wandb
# Define Socket
HOST = '127.0.0.1'
timeout = 20
def done_from_gh_client(socket):
socket.listen()
conn, _ = socket.accept()
with conn:
return_byt = conn.recv(5000)
return_str = return_byt.decode()
return eval(return_str)
def reward_from_gh_client(socket):
socket.listen()
conn, _ = socket.accept()
with conn:
return_byt = conn.recv(5000)
return_str = return_byt.decode()
if return_str == 'None':
return_float = 0
else:
return_float = float(return_str)
return return_float
def obs_from_gh_client(socket):
socket.listen()
conn, _ = socket.accept()
with conn:
return_byt = conn.recv(5000)
# observation = return_byt.decode()
observation = pickle.loads(return_byt)
return observation
def send_ep_count_to_gh_client(socket, message):
message_str = str(message)
message_byt = message_str.encode()
socket.listen()
conn, _ = socket.accept()
with conn:
conn.send(message_byt)
def send_to_gh_client(socket, message):
message_str = ''
for item in message:
listToStr = ' '.join(map(str, item))
message_str = message_str + listToStr + '\n'
message_byt = message_str.encode()
socket.listen()
conn, _ = socket.accept()
with conn:
conn.send(message_byt)
# Set device
is_cuda = torch.cuda.is_available()
device = torch.device('cuda' if is_cuda else 'cpu')
print(f'Used Device: {device}')
# Actor Critic Model Architecture
class LSTMpolicy(nn.Module):
def __init__(self, n_critic_layers, n_actor_layers, input_size, hidden_size, lin_size1):
super(LSTMpolicy, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
#critic
self.critic_lstm = nn.LSTM(input_size, hidden_size, n_critic_layers, batch_first=True)
self.critic_linear1 = nn.Linear(hidden_size, lin_size1)
self.critic_linear2 = nn.Linear(lin_size1, 1)
# actor
self.actor_lstm1 = nn.LSTM(input_size, hidden_size, n_actor_layers, batch_first=True)
self.actor_lstm2 = nn.LSTM(input_size, hidden_size, n_actor_layers, batch_first=True)
self.actor_lstm3 = nn.LSTM(input_size, hidden_size, n_actor_layers, batch_first=True)
self.actor_linear = nn.Linear(hidden_size, 17)
self.relu = nn.ReLU()
def forward(self, state, steps):
state = Variable(torch.reshape(state, (1, steps, self.input_size)))
# critic
out, (hn, cn) = self.critic_lstm(state)
hn = torch.squeeze(hn[-1, :, :])
value = self.relu(hn)
value = self.critic_linear1(value)
value = self.relu(value)
value = self.critic_linear2(value)
# actor
out1, (h1, c1) = self.actor_lstm1(state)
out_l1 = torch.squeeze(h1[-1, :, :])
out_l1 = self.relu(out_l1)
out_l1 = self.actor_linear(out_l1)
prob1 = F.softmax(out_l1, dim=-1)
dist1 = Categorical(prob1)
out2, (h2, c2) = self.actor_lstm2(state, (h1, c1))
out_l2 = torch.squeeze(h2[-1, :, :])
out_l2 = self.relu(out_l2)
out_l2 = self.actor_linear(out_l2)
prob2 = F.softmax(out_l2, dim=-1)
dist2 = Categorical(prob2)
out3, (h3, c3) = self.actor_lstm3(state, (h2, c2))
out_l3 = torch.squeeze(h3[-1, :, :])
out_l3 = self.relu(out_l3)
out_l3 = self.actor_linear(out_l3)
prob3 = F.softmax(out_l3, dim=-1)
dist3 = Categorical(prob3)
return value, dist1, dist2, dist3
def train():
# hyperparameters
hyperparameters = dict(n_steps = 10, # number of buildings per episode
n_episodes = 5000,
obs_len = 24,
gamma = 0.99,
beta = 0.001,
lr = 3e-4,
lr_decay = 0.1,
n_critic_layers = 10,
n_actor_layers = 3,
hidden_size = 256,
lin_size1 = 128,
lin_size2 = 64
)
wandb.init(config=hyperparameters, entity='', project='') #Replace with your wandb entity & project
# Save model inputs and hyperparameters
config = wandb.config
# Initialize DRL model
actorcritic = LSTMpolicy(config.n_critic_layers, config.n_actor_layers, config.obs_len, config.hidden_size,
config.lin_size1).to(device)
ac_optimizer = optim.Adam(actorcritic.parameters(), lr=config.lr, weight_decay = 1e-6)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(ac_optimizer, mode='min', factor=config.lr_decay, patience=1000,
threshold=1e-5, threshold_mode='rel', cooldown=0,
min_lr=0, eps=1e-4, verbose=True)
# Log gradients and model parameters wandb
wandb.watch(actorcritic, log="all", log_freq=10)
# Define action space
param1_space = torch.from_numpy(np.linspace(start=0.1, stop=0.9, num=17))
param2_space = torch.from_numpy(np.linspace(start=0.1, stop=0.9, num=17))
param3_space = torch.from_numpy(np.linspace(start=0, stop=160, num=17))
all_lengths = []
average_lengths = []
for episode in range(config.n_episodes):
init_state = torch.zeros(1, config.n_steps, config.obs_len)
param1L, param2L, param3L= [], [], []
log_probs = []
values = []
rewards = []
entropy = 0
if episode == 0:
print('\nStart Loop in GH Client...\n')
for steps in range(config.n_steps):
if steps == 0:
state = init_state.to(device)
# forward pass
value, dist1, dist2, dist3 = actorcritic.forward(state, config.n_steps)
param1_idx = dist1.sample()
param2_idx = dist2.sample()
param3_idx = dist3.sample()
param1 = param1_space[param1_idx]
param2 = param2_space[param2_idx]
param3 = param3_space[param3_idx]
log_prob = dist1.log_prob(param1_idx) + dist2.log_prob(param2_idx) + dist3.log_prob(param3_idx) # log(a*b) = log(a) + log(b)
smoothed_entropy = dist1.entropy().mean() + dist2.entropy().mean() + dist3.entropy().mean()
param1L.append(param1.item())
param2L.append(param2.item())
param3L.append(param3.item())
action = [param1L, param2L, param3L]
# Send action through socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, 8080))
s.settimeout(timeout)
send_to_gh_client(s, action)
# Send episode count through socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, 8083))
s.settimeout(timeout)
send_ep_count_to_gh_client(s, episode)
######### In between GH script #########################################################
# Receive observation from gh Client
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, 8084))
s.settimeout(timeout)
observation = obs_from_gh_client(s)
# Receive Reward from gh Client
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, 8081))
s.settimeout(timeout)
reward = reward_from_gh_client(s)
# Receive done from Client
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind((HOST, 8082))
s.settimeout(timeout)
done = done_from_gh_client(s)
# next state
observation = torch.tensor(observation).to(device)
next_state = state.clone()
next_state[:, steps, :] = observation
state = next_state
rewards.append(torch.tensor(reward).unsqueeze(-1).to(device))
values.append(value)
log_probs.append(log_prob.unsqueeze(-1))
entropy += smoothed_entropy.unsqueeze(-1)
print(f"step {steps}, reward: {reward}, value: {value.item()}, log_prob: {log_prob}, entropy: {entropy.item()}")
if done or steps == config.n_steps-1:
Qval = 0
all_lengths.append(steps + 1)
average_lengths.append(np.mean(all_lengths))
eps_reward = torch.sum(torch.cat(rewards)).item()
print(f"episode {episode}, eps_reward: {eps_reward}, total length: {steps + 1}, average length: {average_lengths[-1]}")
break
# compute loss functions
returns = []
for t in reversed(range(len(rewards))):
Qval = rewards[t] + config.gamma * Qval
returns.insert(0, Qval)
returns = torch.cat(returns)
print(returns)
values = torch.cat(values)
log_probs = torch.cat(log_probs)
advantage = returns - values
actor_loss = -(log_probs * advantage.detach()).mean()
critic_loss = 0.5 * advantage.pow(2).mean()
ac_loss = actor_loss + critic_loss - config.beta * entropy
# update actor critic
ac_optimizer.zero_grad()
ac_loss.backward()
ac_optimizer.step()
print(f"episode {episode}, actor_loss: {actor_loss.item()}, critic_loss: {critic_loss.item()}, ac_loss: {ac_loss.item()} \n")
# Log metrics to visualize performance wandb
wandb.log({
'episode': episode,
'learning_rate': ac_optimizer.param_groups[0]['lr'],
'reward': eps_reward,
'actor_loss': actor_loss.item(),
'critic_loss': critic_loss.item(),
'ac_loss': ac_loss.item()
})
# update learning rate
scheduler.step(critic_loss)
print(f"current_lr: {ac_optimizer.param_groups[0]['lr']}")
if __name__ == "__main__":
# Log in to W&B account
wandb.login(key='') # place wandb key here!
sweep = False
if sweep:
sweep_config = {
'method': 'bayes', #grid, random, bayes
'metric': {
'name': 'reward',
'goal': 'maximize'
},
'parameters': {
'lr': {
'values':[1e-2, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6]
},
'n_critic_layers':{
'values':[1, 2, 4]
},
'n_actor_layers':{
'values':[1, 2]
},
'hidden_size':{
'values':[64, 128, 256, 512]
},
'lin_size1':{
'values':[64, 128, 256, 512]
}
}
}
sweep_id = wandb.sweep(sweep_config, project='CutnFill_TDA2C')
wandb.agent(sweep_id, train)
else:
train()