-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer.py
executable file
·263 lines (216 loc) · 13.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import time
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import os
import math
import ipdb
import numpy as np
def train(train_loader_source, train_loader_source_batch, train_loader_target, train_loader_target_batch, model, criterion, criterion_domainAdv, criterion_inter, criterion_emp, criterion_mec, optimizer, itern, current_epoch, reverse_grad_layer_index, train_records, args):
model.train() # turn to training mode
lam = 2 / (1 + math.exp(-1 * 10 * current_epoch / args.epochs)) - 1 # penalty parameter
end = time.time()
# prepare data for model forward and backward
try:
(input_source, target_source) = train_loader_source_batch.__next__()[1]
except StopIteration:
train_loader_source_batch = enumerate(train_loader_source)
(input_source, target_source) = train_loader_source_batch.__next__()[1]
target_source = target_source.cuda(non_blocking=True)
input_source_var = Variable(input_source)
target_source_var = Variable(target_source)
target_source_var2 = Variable(target_source + args.num_classes)
try:
data = train_loader_target_batch.__next__()[1]
except StopIteration:
train_loader_target_batch = enumerate(train_loader_target)
data = train_loader_target_batch.__next__()[1]
input_target = data[0]
input_target_var = Variable(input_target)
train_records['data_time'].update(time.time() - end)
# model forward for source/target data
_, output_s = model(input_source_var)
_, output_t = model(input_target_var)
# loss computation
if args.vda:
alpha = np.random.beta(args.alpha, args.alpha) # sample the convex combination coefficient from a Beta distribution
input_mix_st_var = Variable(alpha * input_source + (1 - alpha) * input_target) # vicinal domain generation
_, output_mix_st = model(input_mix_st_var) # model forward for vicinal data
# vicatda objective
loss_min_temp = alpha * criterion_domainAdv(output_mix_st, classifier='S') + (1 - alpha) * criterion_domainAdv(output_mix_st) + lam * (alpha * criterion(output_mix_st, target_source_var) + (1 - alpha) * criterion_inter(output_mix_st, output_t, args.eps, consistent=args.consistent)) + criterion(output_s[:, :args.num_classes], target_source_var) + criterion(output_s[:, args.num_classes:], target_source_var)
loss_max_temp = lam * (alpha * criterion_domainAdv(output_mix_st) + (1 - alpha) * criterion_domainAdv(output_mix_st, classifier='S') + alpha * criterion(output_mix_st, target_source_var2) + (1 - alpha) * criterion_inter(output_mix_st, output_t, args.eps, consistent=args.consistent, classifier='S')) + 0.5 * (criterion(output_s[:, :args.num_classes], target_source_var) + criterion(output_s[:, args.num_classes:], target_source_var))
else:
# catda objective
loss_min_temp = criterion_domainAdv(output_s, classifier='S') + criterion_domainAdv(output_t) + lam * (criterion(output_s, target_source_var) + criterion_inter(output_t, output_t, args.eps, consistent=args.consistent)) + criterion(output_s[:, :args.num_classes], target_source_var) + criterion(output_s[:, args.num_classes:], target_source_var)
loss_max_temp = lam * (criterion_domainAdv(output_t, classifier='S') + criterion_domainAdv(output_s) + criterion(output_s, target_source_var2) + criterion_inter(output_t, output_t, args.eps, consistent=args.consistent, classifier='S')) + 0.5 * (criterion(output_s[:, :args.num_classes], target_source_var) + criterion(output_s[:, args.num_classes:], target_source_var))
loss_min = loss_min_temp + math.log(1 / args.num_classes) - F.softmax(torch.cat([output_t[:, :args.num_classes], output_t[:, args.num_classes:]], dim=0), dim=1).mean(0).log().mean() if args.cls_blc else loss_min_temp # whether adding class balance loss
loss_max = loss_max_temp + lam * criterion_emp(output_t, args.eps, separate=False) if args.emp else loss_max_temp # whether following entropy minimization principle
if args.aug_tar_agree: # consistency loss
input_target_dup = data[1]
input_target_dup_var = Variable(input_target_dup)
_, output_t_dup = model(input_target_dup_var) # model forward for strongly augmented target data
if not args.two_consistency:
loss_min = loss_min + lam * criterion_mec(output_t, output_t_dup)
loss_max = loss_max + lam * criterion_mec(output_t, output_t_dup)
else:
loss_min = loss_min + lam * (criterion_mec(output_t[:, :args.num_classes], output_t_dup[:, :args.num_classes]) + criterion_mec(output_t[:, args.num_classes:], output_t_dup[:, args.num_classes:]))
loss_max = loss_max + lam * (criterion_mec(output_t[:, :args.num_classes], output_t_dup[:, :args.num_classes]) + criterion_mec(output_t[:, args.num_classes:], output_t_dup[:, args.num_classes:]))
if args.gray_tar_agree: # consistency loss
input_target_gray = data[-2]
input_target_gray_var = Variable(input_target_gray)
_, output_t_gray = model(input_target_gray_var) # model forward for grayscale target data
if not args.two_consistency:
loss_min = loss_min + lam * criterion_mec(output_t, output_t_gray)
loss_max = loss_max + lam * criterion_mec(output_t, output_t_gray)
else:
loss_min = loss_min + lam * (criterion_mec(output_t[:, :args.num_classes], output_t_gray[:, :args.num_classes]) + criterion_mec(output_t[:, args.num_classes:], output_t_gray[:, args.num_classes:]))
loss_max = loss_max + lam * (criterion_mec(output_t[:, :args.num_classes], output_t_gray[:, :args.num_classes]) + criterion_mec(output_t[:, args.num_classes:], output_t_gray[:, args.num_classes:]))
# record losses and accuracies on source data
train_records['losses_min'].update(loss_min.item(), input_source.size(0))
train_records['losses_max'].update(loss_max.item(), input_source.size(0))
prec1 = accuracy(output_s[:, :args.num_classes], target_source, topk=(1,))[0]
train_records['top1_source'].update(prec1.item(), input_source.size(0))
prec1 = accuracy(output_s[:, args.num_classes:], target_source, topk=(1,))[0]
train_records['top1_target'].update(prec1.item(), input_source.size(0))
model.zero_grad()
loss_min.backward(retain_graph=True)
temp_grad = []
for param in model.parameters():
temp_grad.append(param.grad.data.clone())
grad_for_classifier = temp_grad
model.zero_grad()
loss_max.backward()
count = 0
for param in model.parameters():
if count >= reverse_grad_layer_index:
temp_grad = param.grad.data.clone()
temp_grad.zero_()
temp_grad = temp_grad + grad_for_classifier[count]
temp_grad = temp_grad
param.grad.data = temp_grad
count = count + 1
optimizer.step()
model.zero_grad()
train_records['batch_time'].update(time.time() - end)
if itern % args.print_freq == 0:
display = 'Train - epoch [{0}/{1}]({2})'.format(current_epoch, args.epochs, itern)
for k in train_records.keys():
display += '\t' + k + ': {ph.avg:.3f}'.format(ph=train_records[k])
print(display)
log = open(os.path.join(args.log, 'log.txt'), 'a')
log.write('\n' + display.replace('\t', ', '))
log.close()
return train_loader_source_batch, train_loader_target_batch
def validate(val_loader_target, model, criterion, epoch, args):
batch_time = AverageMeter()
data_time = AverageMeter()
losses_s = AverageMeter()
top1_s = AverageMeter()
losses_t = AverageMeter()
top1_t = AverageMeter()
losses_avg = AverageMeter()
top1_avg = AverageMeter()
mcp_s = MeanClassPrecision(args.num_classes)
mcp_t = MeanClassPrecision(args.num_classes)
mcp_avg = MeanClassPrecision(args.num_classes)
model.eval() # turn to eval mode
end = time.time()
for i, (input, target) in enumerate(val_loader_target): # iterarion on the target dataset
data_time.update(time.time() - end)
target = target.cuda(non_blocking=True)
input_var = Variable(input)
target_var = Variable(target)
with torch.no_grad():
_, output = model(input_var)
loss_s = criterion(output[:, :args.num_classes], target_var)
prec1 = accuracy(output.data[:, :args.num_classes], target, topk=(1,))[0]
losses_s.update(loss_s.item(), input.size(0))
top1_s.update(prec1.item(), input.size(0))
mcp_s.update(output.data[:, :args.num_classes], target)
loss_t = criterion(output[:, args.num_classes:], target_var)
prec1 = accuracy(output.data[:, args.num_classes:], target, topk=(1,))[0]
losses_t.update(loss_t.item(), input.size(0))
top1_t.update(prec1.item(), input.size(0))
mcp_t.update(output.data[:, args.num_classes:], target)
loss_avg = criterion(output[:, :args.num_classes]+output[:, args.num_classes:], target_var)
prec1 = accuracy(output.data[:, :args.num_classes]+output.data[:, args.num_classes:], target, topk=(1,))[0]
losses_avg.update(loss_avg.item(), input.size(0))
top1_avg.update(prec1.item(), input.size(0))
mcp_avg.update(output.data[:, :args.num_classes]+output.data[:, args.num_classes:], target)
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Eval - epoch [{0}][{1}/{2}]\t'
'batch time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'data time {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss (F^s) {sc_loss.val:.3f} ({sc_loss.avg:.3f})\t'
'acc@1 (F^s) {sc_top1.val:.3f} ({sc_top1.avg:.3f})\t'
'loss (F^t) {tc_loss.val:.3f} ({tc_loss.avg:.3f})\t'
'acc@1 (F^t) {tc_top1.val:.3f} ({tc_top1.avg:.3f})\t'
'loss (F^s+F^t) {avg_loss.val:.3f} ({avg_loss.avg:.3f})\t'
'acc@1 (F^s+F^t) {avg_top1.val:.3f} ({avg_top1.avg:.3f})'.format(
epoch, i, len(val_loader_target),
batch_time=batch_time, data_time=data_time,
sc_loss=losses_s, sc_top1=top1_s,
tc_loss=losses_t, tc_top1=top1_t,
avg_loss=losses_avg, avg_top1=top1_avg,
))
print(' * Prec@1 (F^s) {sc_top1.avg:.3f} \n * Prec@1 (F^t) {tc_top1.avg:.3f} \n * Prec@1 (F^s+F^t) {avg_top1.avg:.3f}'
.format(sc_top1=top1_s, tc_top1=top1_t, avg_top1=top1_avg))
print('F^s - ' + str(mcp_s) + '\nF^t - ' + str(mcp_t) + '\nF^s+F^t - ' + str(mcp_avg))
log = open(os.path.join(args.log, 'log.txt'), 'a')
log.write("\nEval on target data - epoch: %d, loss (F^s): %3f, top1 acc (F^s): %3f, loss (F^t): %3f, top1 acc (F^t): %3f, loss (F^s+F^t): %3f, top1 acc (F^s+F^t): %3f" %\
(epoch, losses_s.avg, top1_s.avg, losses_t.avg, top1_t.avg, losses_avg.avg, top1_avg.avg))
log.write('\nF^s - ' + str(mcp_s) + '\nF^t - ' + str(mcp_t) + '\nF^s+F^t - ' + str(mcp_avg))
return top1_t.avg if args.src.find('visda') == -1 else mcp_t.mean_class_prec #max(top1_t.avg, top1_s.avg, top1_avg.avg)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class MeanClassPrecision(object):
"""Computes and stores the mean class precision"""
def __init__(self, num_classes, fmt=':.3f'):
self.num_classes = num_classes
self.fmt = fmt
self.reset()
def reset(self):
self.total_vector = torch.zeros(self.num_classes)
self.correct_vector = torch.zeros(self.num_classes)
self.per_class_prec = torch.zeros(self.num_classes)
self.mean_class_prec = 0
def update(self, output, target):
pred = output.max(1)[1]
correct = pred.eq(target).float().cpu()
for i in range(target.size(0)):
self.total_vector[target[i]] += 1
self.correct_vector[target[i]] += correct[i]
temp = torch.zeros(self.total_vector.size())
temp[self.total_vector == 0] = 1e-6
self.per_class_prec = self.correct_vector / (self.total_vector + temp) * 100
self.mean_class_prec = self.per_class_prec.mean().item()
def __str__(self):
fmtstr = 'per-class prec: ' + '|'.join([str(i) for i in list(np.around(np.array(self.per_class_prec), int(self.fmt[-2])))])
fmtstr = 'Mean class prec: {mean_class_prec' + self.fmt + '}, ' + fmtstr
return fmtstr.format(**self.__dict__)