-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathDNN_sgd_lps.py
285 lines (206 loc) · 8.11 KB
/
DNN_sgd_lps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import numpy as np
import tensorflow as tf
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
import scipy.io as scio
import h5py
import time
LOG = open("/home/hyli/Data/InternData/log_full_sgd_lr0002.txt", "w")
rng = np.random.RandomState(1234)
random_state = 42
par = scio.loadmat('/home/hyli/Data/InternData/mvn_store.mat')
mean_noisy = np.array(par['global_mean'], dtype='float32')
std_noisy = np.array(par['global_std'], dtype='float32')
mean_noisy = mean_noisy[0, :]
std_noisy = std_noisy[0, :]
def make_window_buffer(x, neighbor=3):
m, n = x.shape
tmp = np.zeros(m * n * (neighbor * 2 + 1), dtype='float32').reshape(m, -1)
for i in range(2 * neighbor + 1):
if (i <= neighbor):
shift = neighbor - i
tmp[shift:m, i * n: (i + 1) * n] = x[:m - shift]
for j in range(shift):
tmp[j, i * n: (i + 1) * n] = x[0, :]
else:
shift = i - neighbor
tmp[:m-shift, i * n: (i+1) * n] = x[shift:m]
for j in range(shift):
tmp[m-(j + 1), i * n: (i + 1) * n] = x[m-1, :]
return tmp
def Normalize_data(x, mean_noisy, std_noisy):
mean_noisy_10 = np.tile(mean_noisy, [1, 8])[0, :]
std_noisy_10 = np.tile(std_noisy, [1, 8])[0, :]
tmp = (x-mean_noisy_10)/std_noisy_10[np.newaxis, :]
return np.array(tmp, dtype='float32')
def Normalize_label(x, mean_noisy, std_noisy):
mean_noisy_2 = np.tile(mean_noisy, [1, 2])[0, :]
std_noisy_2 = np.tile(std_noisy, [1, 2])[0, :]
tmp = (x-mean_noisy_2)/std_noisy_2[np.newaxis, :]
return np.array(tmp, dtype='float32')
def gen_context(x, nat, sentence_id, neighbor, global_mean, global_std):
m = x.shape[0]
data = np.zeros([m, 257*8])
#sentence_id = np.r_[np.zeros([1,1]),sentence_id]
for ind in range(len(sentence_id)-1):
tmp_data = make_window_buffer(
x[sentence_id[ind]:sentence_id[ind+1], :], neighbor)
tmp_data = np.c_[tmp_data, nat[sentence_id[ind]:sentence_id[ind+1]]]
tmp_data = Normalize_data(tmp_data, global_mean, global_std)
data[sentence_id[ind]:sentence_id[ind+1]] = tmp_data
return data
class Autoencoder:
def __init__(self, vis_dim, hid_dim, W, function=lambda x: x):
self.W = W
self.a = tf.Variable(np.zeros(vis_dim).astype('float32'), name='a')
self.b = tf.Variable(np.zeros(hid_dim).astype('float32'), name='b')
self.function = function
self.params = [self.W, self.a, self.b]
def encode(self, x):
u = tf.matmul(x, self.W) + self.b
return self.function(u)
def decode(self, x):
u = tf.matmul(x, tf.transpose(self.W)) + self.a
return self.function(u)
def f_prop(self, x):
y = self.encode(x)
return self.decode(y)
def reconst_error(self, x, noise):
tilde_x = x * noise
reconst_x = self.f_prop(tilde_x)
error = tf.reduce_mean(tf.reduce_sum((x - reconst_x)**2, 1))
return error, reconst_x
class Dense:
def __init__(self, in_dim, out_dim, function=lambda x: x):
self.W = tf.Variable(rng.uniform(low = -0.1,
high = 0.1, size=(in_dim, out_dim)).astype('float32'), name='W')
self.b = tf.Variable(np.zeros([out_dim]).astype('float32'))
self.function = function
self.params = [self.W, self.b]
self.ae = Autoencoder(in_dim, out_dim, self.W, self.function)
def f_prop(self, x):
u = tf.matmul(x, self.W) + self.b
self.z = self.function(u)
return self.z
def pretrain(self, x, noise):
cost, reconst_x = self.ae.reconst_error(x, noise)
return cost, reconst_x
layers = [
Dense(257*8, 2048, tf.nn.sigmoid),
Dense(2048, 2048, tf.nn.sigmoid),
Dense(2048, 2048, tf.nn.sigmoid),
Dense(2048, 257)
]
keep_prob = tf.placeholder(tf.float32)
x = tf.placeholder(tf.float32, [None, 257*8])
t = tf.placeholder(tf.float32, [None, 257])
def f_props(layers, x):
for i, layer in enumerate(layers):
x = layer.f_prop(x)
if(i != len(layers)-1):
x = tf.nn.dropout(x, keep_prob)
return x
y = f_props(layers, x)
cost_fine = tf.reduce_mean(tf.reduce_sum((y - t)**2, 1))
lrate_p = tf.placeholder(tf.float32)
mt_p = tf.placeholder(tf.float32)
train_fine = tf.train.MomentumOptimizer(
learning_rate=lrate_p, momentum=mt_p).minimize(cost_fine)
saver = tf.train.Saver()
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
n_epochs = 50
batch_size = 128
part_num_total = 230
data_file = h5py.File(
'/home/hyli/Data/InternData/trainDB_lps/RawData_Part888.mat')
data_valid = np.array(data_file['data'], dtype='float32').transpose()
nat = np.array(data_file['nat'], dtype='float32').transpose()
sentence_id = np.array(data_file['sentence_id'], dtype='int32').transpose()
sentence_id = sentence_id[:,0]
data_valid = gen_context(data_valid, nat, sentence_id,
3, mean_noisy, std_noisy)
label_valid = np.array(data_file['label'], dtype='float32').transpose()
label_valid = Normalize_label(label_valid, mean_noisy, std_noisy)
label_valid = label_valid[:,:257]
del data_file
del nat
del sentence_id
#saver.restore(sess,'/home/hyli/Data/InterData/DNN_full_sgd_lr0002_model')
print("FineTuning begin")
Cost_validation = sess.run(cost_fine,
feed_dict={x: data_valid, t: label_valid, keep_prob: 1.0})
print('EPOCH: 0, Validation cost: %.3f ' % (Cost_validation))
cost_valid_best = 1000000
for epoch in range(n_epochs):
lrate = 0.001
#if(epoch>3):
# lrate = 0.0005
#if(epoch>10):
# lrate = 0.0002
# if(epoch>20):
# lrate = 0.0001
if(epoch>10):
lrate = 0.0005
mt = 0.9
time_start = time.time()
part_num_list = shuffle(range(part_num_total))
for part_num in part_num_list:
try:
del data_part
del _data
del _label
del _nat
del sentence_id
except:
pass
data_part = scio.loadmat(
'/home/hyli/Data/InternData/trainDB_lps_shuffle/NormContextData_Part'+str(part_num+1)+'.mat')
_data = np.array(data_part['data'], dtype='float32')
_label = np.array(data_part['label'], dtype='float32')
del data_part
# doing normalization
_label = _label[:,:257]
_data, _label = shuffle(_data, _label)
n_batches = _data.shape[0] // batch_size
for i in range(n_batches):
start = i * batch_size
end = start + batch_size
sess.run(train_fine,
feed_dict={x: _data[start:end],
t: _label[start:end],
keep_prob: 0.8,
lrate_p : lrate,
mt_p: mt})
#print('part %i finished'%(part_num+1))
Cost_validation = sess.run(cost_fine,
feed_dict={x: data_valid, t: label_valid, keep_prob: 1.0})
time_end = time.time()
print('EPOCH: %i, Validation cost: %.3f ' % (epoch + 1, Cost_validation))
print('Elapsed time for one epoch is %.3f' % (time_end-time_start))
LOG.write('EPOCH: %i, Validation cost: %.3f \n' %
(epoch + 1, Cost_validation))
LOG.flush()
if(Cost_validation < cost_valid_best):
save_dict = {}
save_dict['W1'] = sess.run(layers[0].W)
save_dict['b1'] = sess.run(layers[0].b)
save_dict['W2'] = sess.run(layers[1].W)
save_dict['b2'] = sess.run(layers[1].b)
save_dict['W3'] = sess.run(layers[2].W)
save_dict['b3'] = sess.run(layers[2].b)
save_dict['W4'] = sess.run(layers[3].W)
save_dict['b4'] = sess.run(layers[3].b)
MATFILE = '/home/hyli/Data/InternData/DNN_full_sgd_lr0002.mat'
scio.savemat(MATFILE, save_dict)
cost_valid_best = Cost_validation
print('Model in EPOCH:%d is saved' % (epoch+1))
LOG.write('Model in EPOCH:%d is saved' % (epoch+1))
saver.save(sess,'/home/hyli/Data/InterData/DNN_full_sgd_lr0002_next_model')
LOG.close()
del data_valid
del label_valid
del _data
del _label
sess.close()