MANUAL

INL/EXT-15-34123
Revision 10
Printed April 22, 2024

RAVEN User Manual

Cristian Rabiti, Andrea Alfonsi, Joshua Cogliati, Diego Mandelli, Congjian Wang,
Paul W. Talbot, Mohammad G. Abdo, Dylan J. McDowell, Ramon K. Yoshiura,
Daniel P. Maljovec, Jun Chen, Jia Zhou, Junyung Kim, Robert Kinoshita, Sonat
Sen

Prepared by
Idaho National Laboratory
Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by
Battelle Energy Alliance for the United States Department of Energy
under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for unlimited release.

ldaho National Laboratory

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

INL/EXT-15-34123
Revision 10
Printed April 22, 2024

RAVEN User Manual

Project Manager:
Diego Mandelli
Principal Investigator and Technical Leader:
Congjian Wang
Main Developers:
Andrea Alfonsi
Diego Mandelli
Joshua Cogliati
Congjian Wang
Paul W. Talbot
Mohammad G. Abdo
Dylan J. McDowell
Ramon K. Yoshiura
Junyung Kim
Former Developers:
Cristian Rabiti
Daniel P. Maljovec
Sonat Sen
Robert Kinoshita
Jun Chen
Jia Zhou
Daniel Garrett
Contributors:

Alessandro Bandini (Post-Processor)
Ivan Rinaldi (documentation)
Claudia Picoco (new external code interface)
James B. Tompkins (new external code interface)
Matteo Donorio (new external code interface)
Fabio Giannetti (new external code interface)
Alp Tezbasaran (new external code interface)
Anthoney A. Griffith (Bayesian optimization)
Jacob A. Bryan (TSA module)

Haoyu Wang (DMDc)

Khang Nguyen (new external code interface)

Contents

1
2
3

o0

INtroducCtiono e 19
Manual FOrmats e 20
Installation 21
3.1 OVEIVIEW .ottt et e e e e 21
3.2 Linux Ubuntu Installation i 21
3.2.0.1 Optional LateX installation. 21

3.3 Mac OSX Installationt e 22
3.3.1 Installing XCode Command Line Tools 22

332 Installing XQuUartzot e 22

3.4 Microsoft WINdOWS e 22
341 AVisual Guide 23

342 GITSCM for WIndowsottt e 23

3.4.3 Install Python Language and Package Support 23

3.4.4 Compiler Installation and Configuration. 24

3.5 Conda: Python Dependenciesuuuiiuiirenneneennennenn.. 24
3.6 Installing RAVEN 24
3.6.1 Obtaining RAVEN Source Code 25

3.6.2 Getting Plugins 25

3.6.3 Installing Python Libraries i, 25

3.6.4 Compiling RAVEN 27

3.6.5 Testing RAVEN e 27

3.6.6 Updating RAVEN 28

3.6.7 In-use TeStiNgottt e 28
Running RAVEN ... 29
Raven Input SIructuret e 30
5.1 COMMENES ..ot e e 30
5.2 Verbosity . ..o 31
5.3 External Input Files 32
Runlnfo. ... 34
6.1 Runlnfo: Input of Calculation Flow 34
6.2 Runlnfo: Input of Queue Modes i 39
6.3 Runlnfo: Example Cluster Usage 40
6.4 Runlnfo: Advanced Userst 42
6.5 Runlnfo: Examples 44
Fales . . 46
VariableGroUPsottt ettt e 47
DISIIDULIONS e e 49
9.1 1-Dimensional Probability Distributions 49
9.1.1 1-Dimensional Continuous Distributions 49
9.1.1.1 BetaDistribution. i 50

9.1.1.2 Exponential Distribution 51

9.1.1.3 Gamma Distribution 52

9.1.1.4 Laplace Distribution, 53

9.1.1.5 Logistic Distribution 53

9.1.1.6 LogNormal Distribution 54

9.1.1.7 LogUniform Distribution 55

9.1.1.8 Normal Distribution 56

9.1.1.9 Triangular Distribution 57

9.1.1.10 Uniform Distribution 58

9.1.1.11 Weibull Distribution 58

9.1.1.12 CustomlD Distribution 59

9.1.2 1-Dimensional Discrete Distributions. 61
9.1.2.1 Bernoulli Distribution 61

9.1.2.2 Binomial Distribution 62

9.1.2.3 Geometric Distribution 62

9.1.2.4 Poisson Distribution i 63

9.1.2.5 Categorical Distribution 64

9.1.2.6 Uniform Discrete Distribution 65

9.1.2.7 Markov Categorical Distribution 66

9.2 N-Dimensional Probability Distributions, 67
9.2.1 MultivariateNormal Distribution. i 68
9.2.2 NDInverseWeight Distribution 70
9.2.3 NDCartesianSpline Distribution 72

TO SamMPIeTS . . oo 74
10.1 Forward Samplerst e 77
10.1.1 Monte Carlo 78
T0.1.2 Grid . ..o 82
10.1.3 Sparse Grid Collocationttt .. 88
10.1.4 Sobol . .o 94
10.1.5 Stratified 98
10.1.6 Response Surface Design 105
10.1.7 Factorial Design 111
10.1.8 Ensemble Forward Sampling strategy 117
10.1.9 Custom Sampling Strategyc.uiutentee e, 120

10.2 Dynamic Event Tree (DET) Samplers 123
10.2.1 Dynamic EventTreeotiitui i, 124
10.2.2 Hybrid Dynamic Event Tree 128

10.3 Adaptive Samplers 135
10.3.1 Limit Surface Search....... 136
10.3.2 Adaptive Monte Carlo i 141
10.3.3 Adaptive Dynamic EventTree, 146
10.3.4 Adaptive Hybrid Dynamic Event Tree 152

10.3.5 Adaptive Sparse Grid 160

10.3.6 Adaptive Sobol Decomposition.ouv ittt 167

10.4 Markov Chain Monte Carlo i e 172
10.4.1 Metropolis (Metropolis-Hastings Sampler) 172
10.4.2 Adaptive Metropolis Sampler i 177

LT OPHIMIZETS . . .o oottt e e e et e e e e e e et e 183
I1.1 GradientDesCent.t e e e e 183
11.2 SimulatedAnnealing. e 193
11.3 GeneticAlgorithm e 201
11.4 BayesianOptimiZer.ottt ettt e e et e ettt 212
12 DataObjeCtso vttt ittt e 222
I3 Databaseso oottt ittt e 226
13.1 NetCDF . .o 226
13,2 HDES . . 227
I4 OutStream SYSTeIM oottt ittt ettt ettt et e e e 229
14.1 Defaults 229
14.2 Default Printing Systemttt e 229
14.2.1 DataObjects Printing 230
1422 ROMPrintingot e e e 231

14.3 Default Plotting SYyStemttt e e 232
14.3.1 PlotInput SIrUCTUTEttt e e e e e e 233
14.3.1.1 “Actions” inputblock 233

14.3.1.2 “plotSettings” inputblock 239

14.3.1.2.1 Specifying What ValuestoPlot 243

14.3.1.3 Predefined Plotting System: 2D/3D 244

14.3.2 2D & 3D Scatter plot.ot 245
1433 2D & 3D LINe plot 246
1434 2D & 3D Histogram plot. 246
1435 2D &3D Stemploto 248
14.3.6 2D Step plot . .o ot 249
14.3.7 2D Pseudocolor plot 249
14.3.8 2D Contour or filledContour plots i, 250
14.3.9 3D Surface Plot 251
14.3.103D Wireframe Plot 252
14.3.113D Tri-surface Plot 253
14.3.12 3D Contour or filledContour plots, 254
14.3.13 DataMining plotS.o vttt 255
143.14 Example XML input 256

14.4 Specific PIOts o 257
14.4.1 SamplePlot 257
14.42 OptPath 258
14.4.3 PopulationPlot. 259

14.4.4 OptParallelCoordinatePlot oo .. 260

IS MoOdels. . ..o e 261
I5.1 Code . ..o 262
15.2 DUMIMY . ..ot e e e e e 265
15.3 ROM .. 266

15.3.1 NDspline 267
1532 pickledROM 272
15.3.3 GaussPolynomialRom 278
1534 HDMRRoOmM 285
15.3.5 M SR .. 291
15.3.6 NDinvDistWeight 298
15.3.7 SyntheticHistory 302
15.3.8 ARMA . . 319
15.3.9 PolyExponential i 329
I53.10DMD . . 336
I5.3. 11 DMDC . . . 342
15.3.12 LinearDiscriminantAnalysisClassifier 350
15.3.13 QuadraticDiscriminantAnalysisClassifier 355
15.3.14 ARDREEIESSIONt vttt ettt et e e 359
15.3.15BayesianRidge. 364
15316 ElasticNet 370
15317 ElasticNetCVo 375
I5. 3 08 Lars ..o 380
153,19 LarsCV .o 384
15320 LS80 . .ottt 389
15.3.21 LassoCV ..o 394
15.3.22 Lassolars 399
15.3.23 LassoLarsCVo 404
15.3.24 LassoLarsIC 409
15.3.25 LinearRegression.o vttt e e 414
15.3.26 LOgiStiICREZIeSSIONottt et 418
15.3.27 MultiTaskElasticNet i 424
15.3.28 MultiTaskElasticNetCV i 429
15329 MultiTaskLassoot e 434
15.3.30 MultiTaskLassoCV 438
15.3.31 OrthogonalMatchingPursuit i, 443
15.3.32 OrthogonalMatchingPursuitCV 448
15.3.33 PassiveAggressiveClassifier 452
15.3.34 Passive AggressiveRegressoro v vt 457
15.3.35Perceptronottt e 463
I5336RiIdge . ..o 468
15337 RidgeCV ..o 473

15.3.38 RidgeClassifier oottt 478

15.3.39 RidgeClassifierCV 483
15340 SGDCIaSSIfIET oottt 488
15.3.41 SGDREEIESSOT . . o o v vttt e e e e 495
15342 ComplementNB e 501
15.3.43 CategoricalNB 505
15.3.44BernoulliNB 510
15345MultinomialNB 515
15346 GaussianNB L 519
15.3. 47 MLPCIaSSIfierot e 524
15.3. 48 MLPREEIESSOT. . . o .ottt e e e e 530
15.3.49 GaussianProcessClassifier. i 537
15.3.50 GaussianProcessRegressor 544
15.3.51 OneVsOneClassifier, 552
15.3.52 0neVsRestClassifieruiuiieii i 556
15.3.53 OutputCodeClassifiert 560
15.3.54 KNeighborsClassifier 565
15.3.55 NearestCentroid.ottt 570
15.3.56 RadiusNeighborsRegressor 574
15.3.57 KNeighborsRegressor e 579
15.3.58 RadiusNeighborsClassifier 585
15.3.59 LinearSVC 590
15.3.60 LinearSVR 595
15.3.61 NuSVC .o 600
15.3.62 NUSVR ..o 606
15.3.63 SVC . oo 610
15.3.64 SV R ..o 616
15.3.65 DecisionTreeClassifier 621
15.3.66 DecisionTreeRegressor 626
15.3.67 ExtraTreeClassifier 632
15.3.68 ExtraTreeRegressor i 637
15.3.69 VotingRegressorottt 643
15.3.70 BaggingRegressorot 647
15.3.71 AdaBoostRegressor. 652
15.3.72 StackingRegressor oo v vt e 657
15.3.73 TensorFlow-Keras Deep Neural Networks 661

15.3.73.1 Activation Functions 666

15.3.73.2 Initializer Functions i, 666

15.3.73.3 Regularizer Functions, 667

15.3.73.4 Constraint Functions 668

15.3.73.5 KerasMLPClassifier and KerasMLPRegression 668

15.3.73.6 KerasConvNetClassifier, 672

15.3.73.7 KerasLSTMClassifier and KerasLSTMRegression 684

15.3.74 SerializePyomo 690
15.4 External Model e 692
15.4.1 Generic External Model 694
15.4.1.1 Method: def _readMoreXMLccuuiiuiuiueennnn.. 695
154.1.2 def Initialize.....uouiiiiiiiiennn 696
15.4.1.3 Method: def createNewInput...........coviiiunnn... 697
15.4.1.4 Method: def run........ ..., 698
15.4.2 pickledModel. 698
15.5 POStPIOCESSOT . . . o ot 699
15.5.1 BasiCStatiStiCs . .« oo vttt e e e e e 701
15.5.2 SubdomainBasicStatiSticsuit it 708
15.5.3 ComparisonStatiStiCs . . . o vt vttt et e e e 715
15.5.4 ImportanceRank 717
15.5.5 SafestPoint 720
15.5.6 LimitSurfaceo 722
15.5.7 LimitSurfacelntegral 724
15.5.8 External 727
15.5.9 TopologicalDecompositionvut ittt 729
15510 DataMiningottt 731
15.5.10.1 SciKithearno e 732
15.5.10.2 Gaussian mixture models 733
15.5.10.2.1 GMMclassifier. 733
15.5.10.2.2 Variational GMM Classifier (VBGMM) 735
15.5.10.3 CIUSteringo vttt e e e 735
15.5.10.3.1 K-Means Clusteringccvuuueon... 737
15.5.10.3.2 Mini BatchK-Means 738
15.5.10.3.3 Affinity Propagation 740
15.5.10.3.4 Mean Shift 741
15.5.10.3.5 Spectralclustering, 742
15.5.10.3.6 DBSCAN Clusteringt 744
15.5.10.3.7 Agglomerative Clustering 744
15.5.10.3.8 Clustering performance evaluation 746

15.5.10.4 Decomposing signals in components (matrix factorization prob-
JeIMS) . . e 746
15.5.10.4.1 Principal component analysis (PCA) 746
15.5.10.4.2 Truncated singular value decomposition 752
15.5.10.4.3 FastICA e 752
15.5.10.5 Manifold learning 754
155.10.5.1 Isomap ... ovv e it 754
15.5.10.5.2 Locally Linear Embedding 755
15.5.10.5.3 Spectral Embedding 757

10

15.5.10.5.4 Multi-dimensional Scaling (MDS) 758

[5.5.10.6 SCIPY o vttt 759

15.5.11 ParetoFrontier 761

IS5 02 METIC .« vt 763
15.5.13 CrossValidation ettt et 765
155.13.1 SciKitLearn. 767

155132 K-fold . ..o 767

15.5.13.3 Stratified k-fold 768

15.5.13.4 Label k-fold i 768

15.5.13.5 Leave-One-Out-LOO 769

15.5.13.6 Leave-P-Out-LPO 769

15.5.13.7 Leave-One-Label-Out -LOLO 769

15.5.13.8 Leave-P-Label-Out 770

15.5.13.9 ShuffleSplit 770
15.5.13.10Label-Shuffle-Split 771

15.5.14 ValueDuration 771
15.5.15 FastFourierTransform 772
15.5.16 SampleSelectort e 773
15.5.17 Validation POStProcessorscouiii i T74
15.5.17.1 Probabilistic 775

15.5.17.2 PPDSS . . e 776

15.5.17.3 PCM ..o 781

155,18 EconomicRatio i 784
15.5.19 HistorySetDelay i e 786
15.5.20 HStoPSOperatort e e 788
15.5.21 HistorySetSampling e 790
I15.522 HistorySetSyncC . . .« oottt 791
15.5.23 HistorySetSnapShot i 792

15.5. 24 HS2PS . . . 794
15.5.25 TypicalHistoryFromHistorySet 795
15.5.26 dataObjectLabelFilter 796
15.5.27 TSACRAracterizerttt ettt 797
15.5.28 SparseSensingottt 801

15.6 EnsembleModel e 803
15.7 HybridModel 807
15.8 LogicalModel e 812
16 FUNCHIONS ..ottt e e e e e e e e e e 816
A Y/ (< 5 1o A 818
17.1 Paired Distance MEIiC.ttt it e e e e e e 819
17.1.1 Euclidean. 819
17.1.2 COSINE . .ttt et e 819
17.1.3 Manhattan e e e e e 820

11

I7.1.4 BrayCurtiSottt e e 820

17.1.5 Canberra 821
17.1.6 Correlation i e 821
17.1.7 MInKOWSKI.o 822

17.2 Regression MEMIiCov ittt e e e e et 823
17.2.1 Explained variance SCOTEottt 823
17.2.2 Mean absolute €ITOr.ottt e e e 824
17.2.3 Mean squared €ITOTo\ttt ittt e et ettt 824
1724 R2 SCOTE. . .ottt e e 825

17.3 Boolean Metric 826
17.3.1 DICE . oo 826
1732 Hamming.ottt e e e 826
17.3.3 Jaccard. 827
17.3.4 KulsinsKi 827
17.3.5 ROEErstanimotottt e e 828
17.3.6 RUSSEIrao e e e e e 828
17.3.7 Sokalmichener. e 829
17.3.8 Sokalsneath i 829
17.3.9 Yule . ..o 830

17.4 Dynamic Time Warpingottt e et 831
17.5 CDFAreaDifference 832
17.6 PDFCOMMONATCA . . . oottt ettt et e e e e e e e e 833
17.77 Pairwise MEIIICottt e e e e e 833
17.7.1 Polynomial e 833
17.7.2 additive_chi2 834
17.7.3 Chi2 .o 834
17.7.4 cosine_similarity 835
17.7.5 laplacian 835
17.7.6 lNear 836

17 7.7 1 836
17.7.8 Sigmoido e 836
17.7.9 Distance Based Metricuuiiiiieiieannn. 837

17.8 Dynamical System Scaling i 837
L SO PS e 838
18.1 SingleRun. o 839
182 MultiRUno 841
I8.3 TOS OD - oottt it 844
18.3.1 FIMU NOES . . . vt e e e e e e e e e e e e e e e et 849

18.4 RomTrainer e e e e e 849
18.5 PoOStProCess 850
19 EXisting INterfacesttt et 853
19.1 GenericInterface 853

12

19.2 RAVEN Interfaceot e e e e 856

19.2.1 ExternalXML and RAVEN interface 861

19.3 RELAPS Interface e 862

19.3.1 SeqUENCEottt 862

19.3.2 batchSizeandmode. e 862

19.3.3 Runlnfo 862

1934 Files . ..o 862

1935 Models. . ..o 864

19.3.6 Distributions« 866

19.3.7 Samplers 866

19.3.8 SePS .ttt 870

19.3.9 Databasesiii e 871
19.3.10 Modified Version of the Institute of Nuclear Safety System Incorporated

(Japan) 871

19.4 RELAP7 Interfacet e e 872

19.4.1 Files . ..o 872

19.42 ModelS. . ..o 873

19.4.3 Distributionst 873

19.4.4 Samplersot 874

19.5 MooseBasedApp Interface. i 874

19.5.1 Files . ..o 874

19.52 ModelS. . .ot 875

19.5.3 Distributionsot 875

19.5.4 Samplersot 876

1.5, S DS oottt 879

19.5.6 Databasesiii e 881

19.5.7 DataObjects oottt 881

19.5.8 OULSIIEAMSottt ettt e e e e 882

19.6 MooseVPP Interface 883

19.7 Mesh Generation Coupled Interfaces. 884

19.7.1 MooseBasedApp and Cubit Interface 884

19.7.1.1 Files. ..o o 885

19.7.1.2 Models 885

19.7.1.3 Distributionsttt 886

19.7.1.4 Samplerst 886

19.7.1.5 Steps,OutStreams,DataObjects 887

19.7.1.6 FileCleanup i 887

19.7.2 MooseBasedApp and Bison Mesh Script Interface. 888

19721 Files. ... 888

19722 Models 888

19.7.2.3 Distributionsc.tutti e 889

19.7.2.4 Samplers 889

13

19.7.2.5 Steps,OutStreams,DataObjects 890

19.72.6 FileCleanupt 890

19.8 OpenModelica Interface. i 891
19.8.1 Files . ..o 892
19.8.2 Models. 892
19.8.3 CSV OUPUL . . ottt e e e e 893

19.9 Dymolalnterface e 894
19.9.1 Files . ..o 895
19.92 Models. 895
19.10Rattlesnake Interfaceso 897
190101 Fileso 898
19.10.1.1 Perturb Yak Multigroup Cross Section Libraries 898

19.10.1.2 Perturb Instant format Cross Section Libraries. 899
19.10.2ModelS . ..o 901
19.10.3 DisStribUtiONS . ..o oo 901
19.10.3.1 Samplers 901

19.10.4 StePS . .ottt 902
19.11MAAPS Interfaceo 903
19.11.1 RAVEN Inputfile e 903
191111 Files. ..o e 903

19.11. 1.2 Models 903

19.11.1.3 Other blocks e 904
19.11.2MAAPS Inputfiles 904
19.11.2.1 MAAPS includefile 905

19.11.2.2 MAAPS inputfile i 905

19.11.2.3 MAAPS PLOTFIL blocks 907
19.12MAMMOTH (Griffin) Interface 907
1012, 1 Files . . . oo 908
19122 MOdeIS . . . vt 909
19.12.3 DiStribUtiONSot 909
19.12.3.1 Samplerso 909

19,12, 4 SHePS . .ot 911
19.13MELCOR Interface 912
T9.13.1 SEqUENCE . . . oottt et 912
19.13.2batchSize and mode. i 912
19.133RunInfo 912
1013 4 FIleso 913
19.13.5Models.o 914
19.13.6 Distributionsottt e 914
19.13.7 Samplersot 915
10,13, 8 S O PS « ottt 916
19.13.9Databases 917

14

19.13.1MataObJeCTS ottt e 918

I9.14SCALE Interfacettt e e 919
19.14. 1 Modelso 919
TOT42Fles . o oo 921

19.14.2.1 Output Files conversion, 921
19.14.3 Samplers or Optimizersttt 924

19.15COBRA-TF (CTF) Interface i 925
T9.15.1 SeqUENCE . . . oottt e 926
19.15.2batchSize and mode. 926
19153 Runlnfo . ..o 926
19.15.4Models . . . oo 926
L1915 5 Fles . ..o 927

19.15.5.1 Output Files Conversiont 928
19.15.6 Distributionsottt e 932
19157 Samplerso 933
10,15 8 StePS .ottt 934

19.16SAPHIRE Interface e e 936
19061 Files . ..o 936
19.16.2Modelso 936
19.16.3 Distributionsottt 938
19.16.4 Samplers 938
19.16.5 StePS . .ot 941

19.17PHISICS Interface e e 942
19.17.1 General Information 942
TOAT.2FIes . . oo 942
19.17.3Models . . . oo 944
19.17. 4 DIStribUtIONS . . . oo\ttt e e 945
19.17.5Samplers 945

19.17.5.1 Decay constant variable 945
19.17.5.2 Fission yield variable 946
19.17.5.3 Number density variable 946
19.17.5.4 Fission Q-values variables 946
19.17.5.5 adecay variable 946
19.17.5.6 ST decay variable, 947
19.17.5.7 Bt* decay variable it 947
19.17.5.8 fdecay variablettt 947
19.17.5.9 B*decay variable i 947
19.17.5.10Internal transition decay variable 947
19.17.5.11Cross section scaling factors, 947
TO17.6 StEPS . .ottt 949
19.17.7 Additional Input 949
19.17.8 Output Files Conversiontiuiuiiiinnnnenenn .. 951

15

19.18PHISICS/RELAPS Interface e 953

19.18.1 General Information 953
TO08.2Fles . . .o 953
19183 Models . . . oo 954
19.18.4 DIStributionSo vttt e 954
19.18.5Samplers 954
TO.18.6 StEPS . . ittt 955
19.18.7 Additional Input 956
19.18.8 Output Files Conversionouuiitiiuenennnennen.. 956
19.19Neutrino Interface i e 957
L9091 Fles . . .o 957
19.19.2ModelS . . . oot 957
19.19.3 Distributionsot 958
19.19.4 Samplersot 958
19.10.5 StePS . . ittt 958
19.19.6 Output File Conversionttt 959
19.19.7 Additional Information 959
19.20Prescient Interface 959
19.20.1 General Information 959
19.20.28amplero 959
19.20.3 Fles . . .o 960
19.20.4ModelS . . . oot 960
19.20.5 Output Files Conversion, 961
19.20.6 Installation of Librariest 961
19.21 AccelerateCFD Interface e 962
L9211 Fles . . .o 962
19.21.2ModelS . . .o 963
19.21.3 DIStributionS . . . oottt ettt e e e 963
19.21.4 Samplersot 964
19,20, StePS o et 964
19.21.6 Output File Conversion 965
19.22SERPENT Interfaceot e et 966
19221 MoOdelS . . . oot 966
19222 Fles . o .o 967
19.22.3 Samplers / Optimizerso vttt et et 968
19.22.4 Output Files Conversion, 969
19.22.5 SERPENT/RAVEN variable generation through script 971
19.23PARCS Interface i e e e e 972
19.23.1 Interface componentso .ttt 972
19.23.2Models . . . oo 972
19.23 3 FHles . . .o 973
19.23.4 Sampler/Optimizerttt 976

16

19.24SIMULATE-3 Interface oo e i 976

19.24.1 Interface componentsiuiiii i 977
19.242Modelso 977
19243 Fles . . .o 977
19.24.4 Sampler/Optimizerttt e 979
1925ABCE Interfacet 980
19.25.1 General Information i 980
19252 Samplerot 980
19253 Fles . . .o 980
19.254Models . . . oot 981
19.25.5 Output Files Conversionttt .. 982
19.25.6 Installation of Libraries i 982
20 Advanced Users: How to couple anew codeoooiiiiiiiiiiiiiiiiiiee... 984
20.1 Pre-TeqUiSItES. . .o vttt ettt e e e e e e e e 985
20.2 Code Interface Creationttt e e 987
20.2.1 Method: generateCommandouiiiiemiutennnennnnnnnn 988
20.2.2 Method: createNewINPUL ..ttt it et e e 990
20.2.3 Method: get INPULEXEENSION & vt vttt it e 991
20.2.4 Method: initialize ... e 991
20.2.5 Method: finalizeCodeOQutputottt 991
20.2.6 Method: checkForOutputFailureoouiiiiininnnnnann. 992
20.2.7 Method: setRUNONShellttt 992
20.2.8 Method: setCsvLoadUtil ...ttt 993
20.3 Tools for Developing Code Interfaces 993
20.3.1 File ObJECtS . . oottt e 993
21 Advanced Users: How and When to create a RAVEN Template 996
21.1 Whentousea RAVEN Template. 996
21.2 How tocreatea RAVEN Template iiiiiion.. 996
21.2.1 Templated Workflows 997
21.2.2 Template CIassttt e e 998
21.2.3 Template Interface. 999
213 Bxampleo 999
21.3.1 Example Templated Workflow 1000
21.3.2 Example Template Classttt 1000
21.3.3 Example Template Interface i, 1001
Appendix
A Appendix: Example Primer i 1003
Al Example L. ..o 1003
A2 Example 2. ... 1006
ReferenCeso 1014

17

18

1 Introduction

RAVEN is a software framework able to perform parametric and stochastic analysis based on the
response of complex system codes. The initial development was aimed at providing dynamic risk
analysis capabilities to the thermal hydraulic code RELAP-7, currently under development at Idaho
National Laboratory (INL). Although the initial goal has been fully accomplished, RAVEN is now
a multi-purpose stochastic and uncertainty quantification platform, capable of communicating with
any system code.

In fact, the provided Application Programming Interfaces (APIs) allow RAVEN to interact with
any code as long as all the parameters that need to be perturbed are accessible by input files or via
python interfaces. RAVEN is capable of investigating system response and explore input space us-
ing various sampling schemes such as Monte Carlo, grid, or Latin hypercube. However, RAVEN
strength lies in its system feature discovery capabilities such as: constructing limit surfaces, sepa-
rating regions of the input space leading to system failure, and using dynamic supervised learning
techniques.

The development of RAVEN started in 2012 when, within the Nuclear Energy Advanced Mod-
eling and Simulation (NEAMS) program, the need to provide a modern risk evaluation framework
arose. RAVEN’s principal assignment is to provide the necessary software and algorithms in order
to employ the concepts developed by the Risk Informed Safety Margin Characterization (RISMC)
program. RISMC is one of the pathways defined within the Light Water Reactor Sustainability
(LWRS) program.

In the RISMC approach, the goal is not just to identify the frequency of an event potentially
leading to a system failure, but the proximity (or lack thereof) to key safety-related events. Hence,
the approach is interested in identifying and increasing the safety margins related to those events.
A safety margin is a numerical value quantifying the probability that a safety metric (e.g. peak
pressure in a pipe) is exceeded under certain conditions.

Most of the capabilities, implemented having RELAP-7 as a principal focus, are easily de-
ployable to other system codes. For this reason, several side activates have been employed (e.g.,
RELAPS-3D, any MOOSE-based App, etc.) or are currently ongoing for coupling RAVEN with
several different software. The aim of this document is to detail the input requirements for RAVEN
focusing on the input structure.

19

2 Manual Formats

In order to highlight some parts of the Manual having a particular meaning (e.g., input structure,
examples, terminal commands, etc.), specific formats have been used. In this sections all the
formats with a specific meaning are reported:

e Python Coding:

class AClass():
def aMethodImplementation (self) :
pass

o XML input example:

<MainXMLBlock>

<anXMLnode name='anObjectName' anAttribute='aValue'>
<aSubNode>body</aSubNode>
</anXMLnode>

</MainXMLBlock>

e Bash Commands:

cd trunk/raven/
./raven_libs_script.sh
ed ../../

20

3 Installation

3.1 Overview

The installation of the RAVEN code is a straightforward procedure; depending on the usage pur-
pose and machine architecture, the installation process slightly differs.

In the following sections, the recommended installation procedure is outlined. For alternatives,
we encourage checking the RAVEN wiki. The machines on which RAVEN is tested and developed,
however, use the standard installation procedures outlined below.

The installation process will involve three steps:

e Installing prerequisites, which depends on your operating system;

e Installing conda;

e Installing RAVEN.

Depending on your operating system (Windows in section 3.4, MacOSX in section 3.3, Ubuntu

Linux in section 3.2), follow the instructions for installing prerequisites, then continue with in-
stalling conda (section 3.5), and then installing RAVEN (section 3.6).

3.2 Linux Ubuntu Installation

The following instructions are for installing RAVEN on a Linux machine running Ubuntu 16.04
or greater. Some explanations of alternatives for other Linux distributions may be provided on the
RAVEN wiki.

To install the prerequisite packages, the following terminal command should be executed (note
this requires administrative privileges):

sudo apt-get install libtool git python3-dev swig g++

3.2.0.1 Optional LateX installation

Optionally, if you want to be able to edit and rebuild the manuals, you can install TgX Live and its
related packages:

21

https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki

sudo apt—-get install texlive-latex—-base \
texlive—extra-utils texlive-latex—-extra texlive—-math-extra

Once the above are installed, proceed with installing conda (see section 3.5).

3.3 Mac OSX Installation

When using an Apple Macintosh computer, software dependencies are met by following steps:

e Install the XCode command line tools from Apple,

e Install the XQuartz X-Window system server,

3.3.1 Installing XCode Command Line Tools

The XCode command line tools package from Apple Computer provides the C++ compilers and
git source code control tools needed to obtain and build RAVEN. It is freely available from the
Apple store. In order to obtain it the following command should be launched in an open terminal:

xcode—select ——-install

3.3.2 Installing XQuartz

XQuartz is an implementation of the X Server for the Mac OSX operating system. XQuartz is
freely available on the web and can be downloaded from the link https://dl.bintray.
com/xquartz/downloads/XQuartz-2.7.9.dmg.

After downloaded, install the package.

With XCode and XQuartz installed, continue on to install conda (see section 3.5).

Note: While gcc and git are also required, they are installed by default in the OSX system.

3.4 Microsoft Windows

The process of establishing the required environment for Windows is notably more involved than
the other two systems; however, it is straightforward. First, RAVEN has the following prerequisites
on Windows:

22

https://dl.bintray.com/xquartz/downloads/XQuartz-2.7.9.dmg
https://dl.bintray.com/xquartz/downloads/XQuartz-2.7.9.dmg

e A system running a 64-bit version of Microsoft Windows. Installation and operation has
been verified on Windows 7, 10, and Windows Server 2012 R2 Standard.

o Atleast 9 Gigabytes of available disk space:

e (0.5 GB for GIT SCM, including supporting tools and git source code control
e 1.5 GB for Python language and supporting packages

e 1 GB for RAVEN framework

e 5.0 GB for the Visual Studio compiler needed to build RAVEN

3.4.1 A Visual Guide

Note: An illustrated version of this procedure may be found on the RAVEN wiki.

3.4.2 GIT SCM for Windows

RAVEN currently works on Windows using basic tools freely available online. The first software
to be downloaded and installed is Git SCM available at https://gitforwindows.org/.

1. Obtain the latest Git SCM for Windows installer from https://gitforwindows.
org/ and install it. Install Git Bash and have the installer add Git Bash to your Windows
PATH environment variables. The PATH can be updated either automatically (allowing the
Git SCM installer to update it for you) or manually (Systems Properties - Environment Vari-
ables - Edit Environment Variables).

3.4.3 Install Python Language and Package Support

1. Download the latest 64-bit installer for Windows Python 3 from https://conda.io/
miniconda.html and install it.

2. The installer will ask whether Python should be installed for only the logged in user or for
all users. Either option will work for RAVEN.

3. have the installer add conda to your Windows PATH environment variables. The PATH
can be updated either automatically (allowing the conda installer to update it for you) or
manually (Systems Properties - Environment Variables - Edit Environment Variables).

4. Check the installation of Python and coda locating and testing the Python installation. Open
a Windows command prompt and enter the command “where python”, which attempts to
locate a the Python language interpreter in the current system path. This looks like:

23

https://github.com/idaholab/raven/wiki
https://gitforwindows.org/
https://gitforwindows.org/
https://gitforwindows.org/
https://conda.io/miniconda.html
https://conda.io/miniconda.html

C:\ Users\USERID> where python
C:\ Users \USERID\ AppData\ Local\Continuum\ Miniconda3\python.exe

3.4.4 Compiler Installation and Configuration

1. Download and install Visual Studio. A C++ language compiler that supports C++11 features
is needed to perform this step. Microsoft’s Visual Studio Community Edition is free and
available from https://www.visualstudio.com/downloads/.

The current version (as of this writing) is 2017. The 2015 and 2017 versions have been
successfully used to build RAVEN. Professional and Enterprise versions of these will also
work. If one of these is already present on your system, it is not necessary to obtain another
one. Note that because C++11 language features are required, the "Microsoft Visual C++
Compiler for Python 2.7 or 3.x” often used for building Python add-ons will not work.

After downloading and running the Visual Studio installer, it will ask what features to in-
stall. For building RAVEN, "Desktop development with C++” is needed at a minimum.
Installation of other Visual Studio features should be fine.

Once the compiler installation and configuration is complete, you are prepared to install the
RAVEN libraries (see section 3.5).

3.5 Conda: Python Dependencies

The standard installation procedure for RAVEN includes using Miniconda (often simply referred to
as conda) to install the Python libraries required to run RAVEN. If conda cannot be made available
on an operating system, refer to the wiki (listed above) for alternatives. To install miniconda, follow
the instructions for your operating system at https://conda.io/miniconda.html.

Note: RAVEN only works with Python 3, we recommend installing the 64 bit Python 3 version
of miniconda.

Once conda is installed, proceed to installing RAVEN itself (section 3.6).

3.6 Installing RAVEN

Once the RAVEN dependencies have been installed and conda is present (see section 3.1), the rest
of RAVEN can be installed.

24

https://www.visualstudio.com/downloads/
https://conda.io/miniconda.html

The installation of RAVEN involves the following steps:

e Obtain the source code,
o Install the prerequisite Python libraries using conda,

e Compile

3.6.1 Obtaining RAVEN Source Code

RAVEN is hosted publicly as a Git repo on GitHub and can be viewed at https://github.
com/idaholab/raven/wiki. In the event that access to GitHub is impossible, contact the
user list and other arrangements may be possible. In general, however, using the git repository
assures the most consistent usage and update process.

To clone RAVEN, navigate in a terminal to the desired destination, for example /projects.
Then run the commands

git clone https://github.com/idaholab/raven.git
cd raven

3.6.2 Getting Plugins

Individual plugins can be gotten with a command like (from the raven directory):

git submodule update —--init plugins/TEAL/
python scripts/install_plugins.py —-s plugins/TEAL

All the plugins can be gotten, but this may throw errors if there are non-open source ones
currently:

git submodule update —--init
python scripts/install_plugins.py —-a

This will obtain RAVEN as well as other submodules that RAVEN uses. In the future, whenever
we declare a path starting with raven/, we refer to the cloned directory.

3.6.3 Installing Python Libraries

RAVEN depends heavily on Python, and uses conda to maintain a separate environment to
prevent conflicts with other Python library installations. This separate environment is called

25

https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki

raven_libraries.

In order to establish this environment, navigate to raven, then

¢ Any unix-based systems (e.g. Macintosh, Linux, etc.):

cd scripts
./establish _conda_env.sh —-—-install

e Windows:

cd scripts
bash.exe establish_conda_env.sh —--install

Assure that there are no errors in this process, then continue to compiling RAVEN.

Note: If conda is not installed in the default location, then the path to the conda definitions
needs to be provided, for example

e Any unix-based systems (e.g. Macintosh, Linux, etc.):

cd scripts
./establish conda_env.sh —--install
——conda-defs /path/to/miniconda3/etc/profile.d/conda.sh

o Windows:

cd scripts
bash.exe establish_conda_env.sh —--install
——conda-defs \path/\to\miniconda3\etc\profile.d\conda.sh

replacing /path/to with the install path for conda.

Note: Various options exist for establish_conda_-env.sh, which can be found

by using the --help option. These options include --mamba which uses the
mamba instead of conda for resolving dependencies, ——load which can be used with
source ./scripts/establish_conda_env.sh —-load to switch to the raven envi-

ronment in a shell, -——installation-manager PIP which uses pip instead of conda.

26

3.6.4 Compiling RAVEN

Once Python libraries are established and the source code present, navigate to raven and run

e Any unix-based systems (e.g. Macintosh, Linux, etc.):

./build_raven

o Windows:

bash.exe build_raven

This will compile several dependent libraries. This step has the highest potential for revealing
problems in the operating system setup, particularly for Windows. See troubleshooting on the
RAVEN wikifor help sorting out difficulties.

3.6.5 Testing RAVEN

To test the installation of RAVEN, navigate to raven, then run the command

e Any unix-based systems (e.g. Macintosh, Linux, etc.):

../run_tests —-j2

e Windows:

bash.exe ./run_tests —72

where —3j2 signifies running with 2 processors. If more processors are available, this can
be increased, but using all or more than all of the available processes can slow down the testing
dramatically. This command runs RAVEN’s regression tests, analytic tests, and unit tests. The
number of tests changes frequently as the code’s needs change, and the time taken to run the tests
depends strongly on the number of processors and processor speed.

At the end of the tests, a number passed, skipped, and failing will be reported. Having some
skipped tests is expected; RAVEN has many tests that apply only to particular configurations or
codes that are not present on all machines. However, no tests should fail; if there are problems,
consult the troubleshooting section on the RAVEN wiki.

27

https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki

3.6.6 Updating RAVEN

RAVEN updates frequently, and new features are added while bugs are fixed on a regular basis. To
update RAVEN, navigate to raven, then run the commands

e Any unix-based systems (e.g. Macintosh, Linux, etc.):

git pull
./scripts/establish_conda_env.sh —-—-install
./build_raven

o Windows:

git pull
bash.exe scripts/establish_conda_env.sh —--install
bash.exe build_raven

3.6.7 In-use Testing

Whenever RAVEN is installed on a new computer or whenever there is a significant change to the
operating system, in-use tests shall be conducted. Acceptable performance of RAVEN shall be
confirmed by running the installation tests as described in 3.6.5.

28

4 Running RAVEN

The RAVEN code is a blend of C++, C, and Python software. The entry point resides on the Python
side and is accessible via a command line interface. After following the instructions in the previous
Section, RAVEN is ready to be used. The raven_framework script is in the raven folder. To
run RAVEN, open a terminal and use the following command (replace <inputFileName.xml>
with your RAVEN input file):

¢ Any unix-based systems (e.g. Macintosh, Linux, etc.):

raven_framework <inputFileName.xml>

o Windows:

bash.exe raven_framework <inputFileName.xml>

Using raven_framework is the recommended way to run RAVEN. In the event by-
passing the typical environment loading and checks is desired, it can also be run via the
raven_framework.py script using python, with the input file as argument. However, this is not
recommended, as it will use whatever default versions of Python and other libraries are discovered,
rather than the matching libraries set up during installation.

Note: For Windows systems, we provided a convenient Batch script (
raven_framework.bat) for running RAVEN avoiding to interact with the Windows com-
mand line terminal. More info on how to use it can be found in the RAVEN RAVEN wiki, section
Running RAVEN (https://github.com/idaholab/raven/wiki/runningRAVEN).

29

https://github.com/idaholab/raven/wiki
https://github.com/idaholab/raven/wiki/runningRAVEN

5 Raven Input Structure

The RAVEN code does not have a fixed calculation flow, since all of its basic objects can be
combined in order to create a user-defined calculation flow. Thus, its input (XML format) is
organized in different XML blocks, each with a different functionality. The main input blocks are
as follows:

e <Simulation>: The root node containing the entire input, all of the following blocks fit
inside the Simulation block.

e <RunInfo>: Specifies the calculation settings (number of parallel simulations, etc.).

e <Files>: Specifies the files to be used in the calculation.

e <Distributions>: Defines distributions needed for describing parameters, etc.

e <Samplers>: Sets up the strategies used for exploring an uncertain domain.

e <Optimizers>: Sets up the strategies used for minimizing/maximizing an objective func-
tion.

e <DataObijects>: Specifies internal data objects used by RAVEN.

e <Databases>: Lists the HDF5 databases used as input/output to a RAVEN run.
e <OutStreams>: Visualization and Printing system block.

e <Models>: Specifies codes, ROMs, post-processing analysis, etc.

e <Functions>: Details interfaces to external user-defined functions and modules. the user
will be building and/or running.

e <Steps>: Combines other blocks to detail a step in the RAVEN workflow including I/0
and computations to be performed.

Each of these blocks are explained in dedicated sections in the following chapters.

5.1 Comments

Comments may be included in the RAVEN input using standard XML comments, using <! —— and
——> as shown in the example below.

30

<Simulation>

<!-— An Example Comment -->
<Samplers>

Comments may be placed anywhere except before the <Simulation> node or after the
</Simulation> node. Comments outside the root node will cause errors in maintaining input
file compatability. Additionally, comments must completely surround any nodes they comment
out. Comments are intended to completely remove blocks of code, or to add readability. For
instance, the following is INCORRECT usage:

<!-—<Assembler> ——>
<!—-—</Assembler> ——>

and the following is compatible usage for a code block:

<!-—<Samplers>
<Monte Carlo name='mc'>

</Monte Carlo>

</Samplers> ——>

5.2 Verbosity

Each block within RAVEN also makes use of a verbosity system, which allows a user to control
the level of output to the user interface. These settings are declared globally as attributes in the
<Simulation> node, and locally in each block. The verbosity levels are

e 'silent’ - Only simulation-breaking errors are displayed.

e 'quiet’ - Errors as well as warnings are displayed.

e "all’ (default) - Errors, warnings, and messages are displayed.

e "debug’ - For developers. All errors, warnings, messages, and debug messages are dis-

played.

Examples of verbosity usage are included in many examples throughout this manual.

At the <Simulation> node, the following global variables can be set:

31

e verbosity, optional string, determines the global verbosity level. Defaults to “all’.

e printTimeStamps, optional boolean, determines whether time stamps will be added to
printed messages. Defaults to true.

e color, optional boolean, determines whether ANSI color tags will be used in printed mes-
sages. Defaults to false.

e profile, optional comma-separated list, enables time profiling of parts of RAVEN. Op-
tions include ’ jobs’ . Default is no profiling.

5.3 External Input Files

The <ExternalXML> node defines external input file (XML format) that can be used to replace
any XML nodes under <Simulation> in the RAVEN input file. This node allows a user to load
any external input file that contains the required XML nodes into the RAVEN input file. Each
<ExternalXML> node has the following attributes:

e node, required string attribute, user-defined XML node of RAVEN input file.
e xmlToLoad, required string attribute, file name with its absolute or relative path. Note: if

a relative path is specified, it must be relative with respect to the RAVEN input file.

For example, if the file Models.xml contain the required RAVEN input XML node <Models>,
the RAVEN input file might appear as:

<Simulation>
;ééeps>
</é£éps>
;ééternalXML node="'Models'

xmlToLoad="'external_input/Models.xml'/>

</Simulation>

Another example, if the file Mult iRun.xml contain the required RAVEN input XML node
<MultiRun> under node <Steps>, the RAVEN input file might appear as:

<Simulation>
<Steps>

32

<ExternalXML node="'MultiRun'
xmlToLoad="'external_ input/MultiRun.xml'/>

</Steps>

</Simulation>

33

6 Runlnfo

In the Runlnfo block, the user specifies how the overall computation should be run. This block
accepts several input settings that define how to drive the calculation and set up, when needed,
particular settings for the machine the code needs to run on (e.g., queueing system, if not PBS,
etc.). In the following subsections, we explain all the keywords and how to use them in detail.

6.1 RunlInfo: Input of Calculation Flow

This sub-section contains the information regarding the XML nodes used to define the settings of
the calculation flow that is being performed through RAVEN:

e <WorkingDir>, string, required field, specifies the absolute or relative (with respect to
the location where the xml file is located) path to a directory that will store all the results of
the calculations and where RAVEN looks for the files specified in the block <Files>. If
runRelative=’True’ is used as an attribute, then it will be relative to where raven is
run.

Default: None

e <RemoteRunCommand>, string, optional field, specifies the absolute or relative (with re-
spect to the framework directory) path to a command that can be used on a remote machine to
execute a command. The command is passed in as the environmental variable COMMAND.

Default: raven_ec_qsub_command.sh

e <NodeParameter>, string, optional field, specifies the flag used to specify a node file for
the MPIExec command. This will be followed by a file with the nodes that a single batch
will run on.

Default: —hostfile

e <MPIExec>, string, optional field, specifies the command used to run mpi. This will be
followed by the <NodeParameter> and then the node file and then the code command.
Default: mpiexec

e <threadParameter>, string, optional field, specifies the command used to set
the number of threads. The “specified in the node <NumThreads>. In this way
for commands that require the number of threads to be inputted without a blank
space after this command, the user can specify the command attaching the wildcard

above to the string reporting the command. For example, — — my — nthreads =
inputtedexplicetelyaddingtheblankspace. Forexample,-omp If the wild card is not
present, a blank space is always added after the command (e.g., — — mycommand =>

34

— — mycommandl0).
Default: —n-threads=%NUM_CPUS%

<batchSize>, integer, optional field, specifies the number of parallel runs executed si-
multaneously (e.g., the number of driven code instances, e.g. RELAPS5-3D, that RAVEN
will spawn at the same time). Each parallel run will use NumThreads * NumMP I cores.
Default: 1

<maxQueueSize>, integer, optional field, specifies the number of parallel runs that can
be staged for running simultaneously. The RAVEN architecture is inherently multi-threaded
where a job queue is continuously monitored by a job handling thread. New jobs are added
to this queue as they become available from the main thread of execution. Since the main
thread is also responsible for collecting the results of previously finished jobs, it is pos-
sible that faster jobs may complete before the main thread can replenish the queue. By
increasing this value, you are allowing RAVEN to consume more memory in order to stage
more jobs, placing them in a pending job queue, with the benefit that slower job collection
times will be masked as the job handler will flush the complete jobs and run whatever is
available on the pending queue. With smaller values, RAVEN will consume less memory
staging jobs, but there is potential that the job processing thread may be starved of jobs
and waste parallel cycles as the code degrades to serially waiting for the main thread to
complete collecting finished jobs. Where <batchSize> represents the number of jobs
running, <maxQueueSize> represents the total number of jobs running plus the queued
jobs. Values of <maxQueueSize> less than <batchSize> will be ignored. By default,
<maxQueueSize> will be equal to <batchSize>.

<Sequence>, comma separated string, required field, is an ordered list of the step names
that RAVEN will run (see Section 18).

<JobName>, string, optional field, specifies the name to use for the job when submitting
to a pbs queue. Acceptable characters include alphanumerics as well as “-” and “_”. If more
than 15 characters are provided, RAVEN will truncate it using a hyphen between the first 10
and last 4 character, i.e., “1234567890abcdefgh” will be truncated to “1234567890-efgh”.
Default: raven_qsub

<printInput>, string, optional field, if provided, indicates RAVEN should print out
a duplicate of the input file. If the provided text is ' false’, or the node is not pro-
vided, then no duplicate will be printed. If the node is provided but no name specified,
it will use the default name. Otherwise, the file will be written in the working directory as
name_provided.xml.

Default: duplicated_input.xml

<NumThreads>, integer, optional field, can be used to specify the number of threads
RAVEN should associate when running the driven software. For example, if RAVEN
is driving a code named “FOO,” and this code has multi-threading support, this block
is used to specify how many threads each instance of FOO should use (e.g., “FOO

35

—-—n-threads=N" where N is the number of threads). The command to specify the num-
ber of threads can be customized via the node <threadParameter>.
Default: 1 (or None when the driven code does not have multi-threading support)

<NumMP I>, integer, optional field, can be used to specify the number of MPI CPUs RAVEN
should associate when running the driven software. For example, if RAVEN is driving a code
named “FOQ,” and this code has MPI support, this block specifies how many MPI CPUs
each instance of FOO should use (e.g., “mpiexec FOO -np N” where N is the number
of CPUs).

Default: 1 (or None when the driven code does not have MPI support)

<totalNumCoresUsed>, integer, optional field, is the global number of CPUs RAVEN
i1s going to use for performing the calculation. When the driven code has MPI and/or
multi-threading support and the user specifies NumThreads > 1 and NumMPI > 1, then
totalNumCoresUsed is set according to the following formula:
totalNumCoresUsed =NumThreads * NumMPI * batchSize.

Default: 1

<parallelMethod>, string, optional field, is a string that specifies which parallel-
Method should be used for internal objects (e.g., ROMs, External Models, PostProcessors,
etc.). The number of threads or processes is <batchSize>. If this flag is set to:

shared, default value, which uses shared memory threading for running tasks.

distributed, automatically chooses a distributed library from the following li-
braries.

dask, use Dask for distributed running tasks.

e ray, use Ray for distributed running tasks.

Default: shared

<internalParallel>, boolean, optional field, is a boolean flag that controls the type of
parallel implementation needs to be used for Internal Objects (e.g., ROMs, External Models,
PostProcessors, etc.). It is recommended that parallelMethod be used instead of this flag. If
this flag is set to:

e False, the internal parallelism is employed using multi-threading (i.e. 1 processor,
multiple threads equal to the <batchSize>).
Note: This “parallelism mode” runs multiple instances of the Model in a single pro-
cessor. If the evaluation of the model is memory intensive (i.e. it uses a lot of mem-
ory) or computational intensive (i.e. a lot of computation operations evolving in a
CPUt ~> 0.1_<-—) the single processor might get over-loaded determining a

degradation of performance. In such cases, the internal parallelism needs to be used
(see the following);

36

e True, the internal parallelism is employed using a internally-developed multi-
processor approach (i.e. <batchSize> processors, 1 single thread). This approach
works for both Shared Memory Systems (e.g., PC, laptops, workstations, etc.) and Dis-
tributed Memory Machines (e.g., High Performance Computing Systems, etc.).

Note: This “parallelism mode” runs multiple instances of the Model in multiple pro-
cessors. Since the parallelism is employed in Python, some overhead is present. This
“mode” needs to be used when:

e the Model evaluation is memory intensive (i.e. the multi-threading approach will
cause the over-load of a single processor);

e the Model evaluation is computation intensive (i.e. CPUt ~> 0.1 —2—),

evaluation

This XML node might contain contain the following attribute:)
e dashboard, optional bool attribute, this atiribute enable or disable the RAY Dash-

board support. By default, it is disabled.
Default: False

Default: False

<precommand>, string, optional field, specifies a command that needs to be inserted
before the actual command that is used to run the external model (e.g., mpiexec -n 8
precommand ./externalModel.exe (...)). Note that the precommand as well
as the postcommand are ONLY applied to execution commands flagged as “parallel” within
the code interface.

Default: None

<postcommand>, string, optional field, specifies a command that needs to be appended
after the actual command that is used to run the external model (e.g., mpiexec -n 8
./externalModel.exe (...) postcommand). Note that the postcommand as
well as the precommand are ONLY applied to execution commands flagged as “parallel”
within the code interface.

Default: None

<clusterParameters>, string, optional field, specifies extra parameters to be used
with the cluster submission command. For example, if gsub is used to submit a command,
then these parameters will be used as extra parameters with the qsub command. This can
be repeated multiple times as needed and they will all be passed to the cluster submission
command.

Default: None

<MaxLogFileSize>, integer, optional field. specifies the maximum size of the log file
in bytes. Every time RAVEN drives a code/software, it creates a logfile of the code’s screen
output.

Default: oo

(Note: This flag is not implemtend yet.)

37

e <deleteOutExtension>, comma separated string, optional field, specifies, if a run
of an external model has not failed, which output files should be deleted by their extension
(e.g., <deleteOutExtension>txt,pdf</deleteOutExtension> will delete all
generated txt and pdf files). Note: This flag is only active for Models of type “Code”.
Default: None

e <delSucLogFiles>, boolean, optional field, when True and the run of an external model
has not failed (return code = 0), deletes the associated log files. Note: This flag is only active
for Models of type “Code”.

Default: False

e <headNode>, string, optional field, specifies, if <internalParallel> is set to true,
the IP (and port) of the head node in which raven is running. If specified, the RAVEN in-
ternal parallelization will try to link to an already established parallel environment (without
re-instanciating another). Note: This option is generally used when multiple instances of
RAVEN are run in the same HPC clusters (e.g. RAVEN running RAVEN, which automati-
cally sets this option)

Default: None - Automatic detection

e <remoteNodes>, comma separated string, optional field, specifies, if
<internalParallel> is set to true, the list of nodes (IPs) that should be used by the
RAVEN to deploy its internal parallelization. If set, in conjunction with <headNode>, the
RAVEN internal parallelization will try to link to an already established parallel enviroment
(without re-instanciating another). Note: This option is generally used when multiple
instances of RAVEN are run in the same HPC clusters (e.g. RAVEN running RAVEN,
which automatically sets this option)

Default: None - Automatic detection

e <PYTHONPATH>, string, optional field, specifies additional PATH that should be added in
the PY T HON P AT H before executing models. In this node the user can specify additional
path that will be added to the PYTHONPATH (e.g. path of python scripts that are used in
driven models, etc.)

Default: None

e <schedulerFile>, string, option field, specifies the path to an existing Dask json
scheduler file that can be use to run dask tasks. This allows RAVEN to use an already
started dask scheduler. The scheduler file is created by running dask scheduler
—-—scheduler-file schedulerFile which is also how RAVEN starts dask if this
node is not provided.

Default: None

38

6.2 RunlInfo: Input of Queue Modes

In this sub-section, all of the keywords (XML nodes) for setting the queue system are reported.

e <mode>, string, optional field, can specify which kind of protocol the parallel enviroment
should use. RAVEN currently supports one pre-defined “mode”:

e mpi: this “mode” uses <MPIExec> command (default: mpiexec) to distribute the
running program; more information regarding this protocol can be found in [1].

Mode “MPI” can either generate a gsub command or can execute on selected nodes.
Parameters to be given to the mpi command can be specified with the <MPIParam>
node. These will be given after the <MPIExec> command so that needed mpi param-
eters can be specified (such as ——nooversubscribe).

In order to make the “mpi” mode generate a gsub command, an additional keyword
(xml sub-node) needs to be specified:

e If RAVEN is executed in the HEAD node of an HPC system using [2], the user
needs to input a sub-node, <runQSUB>, right after the specification of the mpi
mode (i.e.,
<mode>mpi<runQSUB/></mode>). If the keyword is provided, RAVEN gen-
erates a gsub command, instantiates itself, and submits itself to the queue system.

e If the user decides to execute RAVEN from an “interactive node” (a certain num-
ber of nodes that have been reserved in interactive PBS mode), RAVEN, using
the “mpi” system, is going to utilize the reserved resources (CPUs and nodes) to
distribute the jobs, but, will not generate a gsub command.

When the user decides to run in “mpi” mode without making RAVEN generate a gsub
command, different options are available:

o If the user decides to run on the local machine (either in local desktop/workstation
or a remote machine), no additional keywords are needed (i.e.
<mode>mpi</mode>).

e [f the user is running on multiple nodes, the node ids have to be specified:

e the node ids can be specified in an external text file (node ids separated by
blank space). This file needs to be provided in the XML node <mode>, intro-
ducing a sub-node named <nodefile> (e.g.
<mode>mpi<nodefile>/tmp/nodes</nodefile></mode>).

e the node ids can be contained in an enviromental variable (node ids separated
by blank space). This variable needs to be provided in the <mode> XML
node, introducing a sub-node named <nodefileenv> (e.g.
<mode>mpi<nodefileenv>NODEFILE</nodefileenv></mode>>).

e [f none of the above options are used, RAVEN will attempt to find the nodes’
information in the enviroment variable PBS_NODEF ILE.

39

The cores needed can be specified manually with the <coresneeded>. This is
directly used in the gsub command select statement.

The max memory needed can be specified with the <memory> XML node. This
will be used in the gsub command select statement.

The placement can be specified with the <place> XML node. This will be used
in the gsub place statement.

’

There is a “mpilegacy” mode. This probably will be removed in the future.
In this mode exec can be forced to run on one shared memory node with the
<NoSplitNode>. If this is present, the splitting apart of the batches will
put each batch on one shared memory node. Without <NoSplitNode>, they
can be split across nodes. There is an option maxOnNode which puts at most
maxOnNode number of mpi processes on one node. <NoSplitNode> can
cause processes to not be placed, so <NoSplitNode> should not be used un-
less needed. If limiting the number of mpi processes on one node is desired with-
out forcing them to only run on one node, <LimitNode> can be used. Both
<NoSplitNode> and <LimitNode> can have a noOverlap which prevents
multiple batches from running on a single node.

In addition, this flag activates the remote (PBS) execution of internal Models (e.g.
ROMs, ExternalModels, PostProcessors, etc.). If this node is not present, the inter-
nal Models are run using a multi-threading approach (i.e., master processor, multiple
parallel threads)

e <CustomMode>, xml node, optional field, is an xml node where “advanced” users can
implement newer “modes.” Please refer to sub-section 6.4 for advanced users.

e <queueingSoftware>, string, optional field. RAVEN has support for the PBS queueing
system. If the platform provides a different queueing system, the user can specify its name
here (e.g., PBS PROFESSIONAL, etc.).

Default: PBS PROFESSIONAL

e <expectedTime>, colum separated string, optional field (mpi or custom mode), spec-
ifies the time the whole calculation is expected to last. The syntax of this node is
hours:minutes:seconds (e.g. 40:10:30 equals 40 hours, 10 minutes, 30 seconds). Af-
ter this period of time, the HPC system will automatically stop the simulation (even if the
simulation is not completed). It is preferable to rationally overestimate the needed time.
Default: 10:00:00 (10 hours.)

6.3 Runlnfo: Example Cluster Usage

For this example, we have a PBSPro cluster, and there are thousands of node, and each node has 4
processors that share memory. There are a couple different ways this can be used. One way is to
use interactive mode and have a RunInfo block:

40

<RunInfo>
<WorkingDir>.</WorkingDir>
<Sequence>FirstMRun</Sequence>
<batchSize>3</batchSize>
<NumThreads>4</NumThreads>
<mode>mpi</mode>
<NumMPI>2</NumMPI>

</RunInfo>

Then the commands can be used:

#Note: select=NumMPIx*batchSize, ncpus=NumThreads
gsub -1 select=6:ncpus=4:mpiprocs=1 -1 walltime=10:00:00 -I
#wait for processes to be allocated and interactive shell to start

#Switch to the correct directory
cd SPBS_O_WORKDIR

#Load the module with the raven libraries
module load raven—-devel-gcc

#Start Raven
python ../../raven_framework.py test_mpi.xml

Alternatively, RAVEN can be asked to submit the qsub directory. With this, the RunInfo is:

<RunInfo>
<WorkingDir>.</WorkingDir>
<Sequence>FirstMQRun</Sequence>
<batchSize>3</batchSize>
<NumThreads>4</NumThreads>
<mode>
mpi
<runQSUB/>
</mode>
<NumMPI>2</NumMPI>
<expectedTime>10:00:00</expectedTime>
</RunInfo>

In this case, the command run from the cluster submit node:

python ../../raven_framework.py test_mpigsub_local.xml

41

6.4 Runlnfo: Advanced Users

This sub-section addresses some customizations of the running environment that
are possible in RAVEN. Firstly, all the keywords reported in the previous sec-
tions can be pre-defined by the user in an auxiliary XML input file. Every time
RAVEN gets instantiated (i.e., the code is run), it looks for an optional file, named
“default_runinfo.XML” contained in the “\home\username\.raven\” directory
(i.e. “\home\username\.raven\default_runinfo.XML”). This file (same syntax as the
Runlnfo block defined in the general input file) will be used for defining default values for the
data in the RunInfo block. In addition to the keywords defined in the previous sections, in the
<RunInfo> node, an additional keyword can be defined:

e <DefaultInputFile>, string, optional field. In this block, the user can change the
default xml input file RAVEN is going to look for if none have been provided as a command-
line argument.

Default: “test.xml”.

As already mentioned, this file is read to define default data for the RunInfo block. This means
that all the keywords defined here will be overridden by any values specified in the actual RAVEN
input file.

In section 6.2, it is explained how RAVEN can handle the queue and parallel systems. If the
currently available “modes” are not suitable for the user’s system (workstation, HPC system, etc.),
it is possible to define a custom “mode” modifying the <RunInfo> block as follows:

<RunInfo>

<CustomMode file="newMode.py" class="NewMode">
aNewMode

</CustomMode>

<mode>aNewMode</mode>

</RunInfo>

The file field can use %2BASE_WORKING_DIR% and %FRAMEWORK _DIR% to specify the
location of the file with respect to the base working directory or the framework directory.

The python file should define a class that inherits from Simulation.SimulationMode of
the RAVEN framework and overrides the necessary functions. Generally, modifySimulation
will be overridden to change the precommand or postcommand parts which will be added before
and after the executable command. An example Python class is given below with the functions
that can and should be overridden:

from ravenframework import Simulation

42

class NewMode (Simulation.SimulationMode) :
def remoteRunCommand (self, runInfoDict):
If it returns a dictionary, then run the command in args
Example: {"args":["ssh", "remotehost", "raven framework"]}
Note that this command needs to be able to tell when it
1s running remotely, and then return None at that point
return None

def modifyInfo(self, runInfoDict):

modifyInfo is called after the runInfoDict has been

setup and allows the mode to change any parameters that
need changing. This typically modifies the precommand and
the postcommand that are put before/after the command.

In order to change them, return a dictionary with new values.
Those new values will be used.
return {}

F H R H H K

def XMLread (self, XMLNode) :
XMLread 1is called with the mode node, and can be used to
get extra parameters needed for the simulation mode.
pass

RAVEN’s Job Handler module controls the creation and execution of individual code runs. Es-
sentially, the SimulationMode class may be used when it is necessary to customize that behavior.
First, it allows providing a remote command for running RAVEN. This first method can be used
if for example RAVEN needs to be run on a different machine such as a head node of a computer
cluster. In such a case, a remoteRunCommand function can be created that causes RAVEN to be
instantiated on the cluster head node (in cases where that is different than the computer where the
user is currently working). Secondly, (and usually easier when this is sufficient) the Simulation-
Mode class allows modifying the various run info parameters before the code is run.

For modification of the run info parameters, generally the two most important are precommand
and postcommand. They are placed in front and back before running the code. So for example if
precommand is ‘mpiexec -n 3’ and postcommand is ‘—number-threads=4’ and the code command is
‘runlt’ then the full command would be: ‘mpiexec -n 3 runlt —-number-threads=4" The precommand
and postcommand are used for any run type that is “parallel’, but not for ‘serial’ codes. They can
be modified by overriding the modifyInfo method and returning a new dictionary with new
values. The runInfoDict in the simulation is passed in.

To help with these commands, there are several variables that are substituted in before running
the command. These are:

%INDEX % Contains the zero-based index in list of running jobs. Note that this is stable for the

43

life of the job. After the job finishes, this is reused. An example use would be if there were
four cpus and the batch size was four, the %INDEX% could be used to determine which cpu
to run on.

%INDEX1% Contains the one-based index in the list of running jobs, same as %INDEX%+1

% CURRENT ID% zero-based id for the job handler. This starts as 0, and increases for each job
the job handler starts.

% CURRENT ID1% one-based id for the job handler, same as %CURRENT _ID%-+1
% SCRIPT _DIR% Expands to the full path of the script directory (raven/scripts)

%9 FRAMEWORK DIR% Expands to the full path of the framework directory (raven/frame-
work)

% WORKING _DIR% Expands to the working directory where the input is

%BASE_WORKING DIR% Expands to the base working directory given in RunInfo. This will
likely be a parent of WORKING_DIR

%METHOD % Expands to the environmental variable SMETHOD

% NUM_CPUS % Expands to the number of cpus to use per single batch. This is NumThreads in
the XML file.

%PYTHON% Expands to the python that is used to run RAVEN.

The final joining of the commands and substituting the variables is done in the JobHandler
class.

6.5 RunInfo: Examples

Here we present a few examples using different components of the RunInfo node:

<RunInfo>
<WorkingDir>externalModel</WorkingDir>
<Sequence>MonteCarlo</Sequence>
<batchSize>100</batchSize>
<NumThreads>4</NumThreads>
<mode>mpi</mode>
<NumMPI>2</NumMPI>

</RunInfo>

44

<Files>
<Input name='lorentzAttractor.py'
type="''>lorentzAttractor.py</Input>
</Files>

This examples specifies the working directory (WorkingDir) where the necessary file (Files)
is located and to run a series of 100 (batchSize) Monte-Carlo calculations (Sequence).
MPI mode (mode) is used along with 4 threads (NumThreads) and 2 MPI processes per run
(NumMPI).

45

7 Files

The <Files> block defines any files that might be needed within the RAVEN run. This could
include inputs to the Model, pickled ROM files, or CSV files for PostProcessors, to name a few.
Each entry in the <Files> block is a tag with the file type. Files given through the input XML at
this point are all <Input> type. Each <Input> node has the following attributes:

e name, required string attribute, user-defined name of the file. This does not need to be the
actual filename; this is the name by which RAVEN will identify the file. Note: As with
other objects, this name can be used to refer to this specific entity from other input blocks in
the XML.

e type, optional string attribute, a type label for this file. While RAVEN does not directly
make use of file types, they are available in the Codelnterface as identifiers. If not provided,
the type will be stored as python None type.

e perturbable, optional boolean attribute, flag to indicate whether a file can be perturbed
or not. RAVEN does not directly use this attribute, but it is available in the Codelnterface. If
not provided, defaults to True.

e subDirectory, optional string attribute, sub-directory that should be created in the per-
turbation process. The file specified in the body of the XML node should be located in the
subDirectory under the workingDir specified in the <RunInfo> XML block (i.e.
workingDir /subDirectory). If specified, the file will be placed in the sub-directory. For
example, in a MultiRun step, the file will be copied into
workingDir [stepName/%counter%/subDirectory, where workingDir is the work-
ing directory specified in the Runlnfo XML block, stepName is the name of the step,
/%counter% is the realization identifier (e.g. 1,2, etc.) and subDirectory is the sub-
directory here specified. If not provided, defaults to an empty string.

For example, if the files templateInput.i, materials.i, history.i, mesh.eare
required to run a Model, the <Files> block might appear as:

<Files>
<Input name='main' type='maininput'>templatelInput.i</Input>
<Input name='mat' type='mtlinput' >materials.i</Input>
<Input name='hist' type='histinput'>history.i</Input>
<Input name='mesh' type='mesh'
perturbable='false'>mesh.e</Input>
<Input name='fileInSubDir' type='"'
subDirectory="theSubDirectory">theFileInTheSubDir.inp</Inpu
</Files>

</Simulation>

46

t>

8 VariableGroups

The <VariableGroups> block is an optional input for the convenience of the user. It allows
the possibility of creating a collection of variables instead of re-listing all the variables in places
throughout the input file, such as DataObjects, ROMs, and ExternalModels. Each entry in the
<VariableGroups> block has a distinct name and list of each constituent variable in the group.
Additionally, set operations can be used to construct variable groups from other variable groups, by
listing them in node text along with the operation to perform. The following types of set operations
are included in RAVEN:

e +, Union, the combination of all variables in the ' base’ set and listed set,
e —, Complement, the relative complement of the listed set in the ' base’ set,
e ~, Intersection, the variables common to both the " base’ and listed set,

¢ %, Symmetric Difference, the variables in only either the ' base’ or listed set, but not both.

Multiple set operations can be performed by separating them with commas in the text of the group
node, whether they be variable groups or single variables. In the event a circular dependency loop
is detected, an error will be raised. VariableGroups are evaluated in the order of entries listed in
their node text.

When using the variable groups in a node, they can be listed alone or as part of a comma-
separated list. The variable group name will only be substituted in the text of nodes, not attributes
or tags.

Each <Group> node has the following attributes:

e name, required string attribute, user-defined name of the group. This is the identifier that
will be used elsewhere in the RAVEN input.

An example of constructing and using variable groups is listed here. The variable groups
"x odd’,"x even’,’x first’, and 'y group’ are constructed independently, and the re-
mainder are examples of other operations.

<VariableGroups>

<Group name="x_odd" >x1,x3,x5</Group>

<Group name="x_even" >x2,x4,x6</Group>

<Group name="x_first" >x1,x2,x3</Group>

<Group name="y_group" >y1l,y2</Group>

<Group name="add_remove">x_first,-x1,+ x4,+x5</Group>
<Group name="union" >x_odd, +x_even</Group>

47

<Group name="complement">x_odd, -x_first</Group>

<Group name="intersect" >x_even, "x_first</Group>

<Group name="sym diff" >x_odd,% x_first</Group>
</VariableGroups>

<DataObjects>
<PointSet name="dataset">
<Input>union</Input>
<Output>y_group</Output>
</PointSet>
</DataObjects>

</Simulation>

48

9 Distributions

RAVEN provides support for several probability distributions. Currently, the user can choose
among several 1-dimensional distributions and /NV-dimensional ones, either custom or multidimen-
sional normal.

The user will specify the probability distributions, that need to be used during the simulation,
within the <Distributions> XML block:

<Simulation>
<Distributions>
<!-— All the necessary distributions will be listed here —-—>

</Distributions>

</Simulation>

In the next two sub-sections, the input requirements for all of the distributions are reported.

9.1 1-Dimensional Probability Distributions

This sub-section is organized in two different parts: 1) continuous 1-D distributions and 2) dis-
crete 1-D distributions. These two paragraphs cover all the requirements for using the different
distribution entities.

9.1.1 1-Dimensional Continuous Distributions

In this paragraph all the 1-D distributions currently available in RAVEN are reported.

Firstly, all the probability distributions functions in the code can be truncated by using the
following keywords:

<Distributions>
<aDistributionType>

<lowerBound>aFloatValue</lowerBound>
<upperBound>aFloatValue</upperBound>

</aDistributionType>

49

</Distributions>

Each distribution has a pre-defined, default support (domain) based on its definition, however these
domains can be shifted/stretched using the appropriate <low> and <high> parameters where
applicable, and/or truncated using the nodes in the example above, namely <lowerBound> and
<upperBound>. For example, the Normal distribution domain is [—00, +00], and thus cannot be
shifted or stretched, as it is already unbounded, but can be truncated. RAVEN currently provides
support for 13 1-Dimensional distributions. In the following paragraphs, all the input requirements
are reported and commented.

9.1.1.1 Beta Distribution

The Beta distribution is parameterized by two positive shape parameters, denoted by « and £,
that appear as exponents of the random variable. Its default support (domain) is « € [0, 1]. The
distribution domain can be changed, specifying new boundaries, to fit the user’s needs. The user
can specify a Beta distribution in two ways. The standard is to provide the parameters <low>,
<high>, <alpha>, and <beta>. Alternatively, to approximate a normal distribution that falls to
0 at the endpoints, the user may provide the parameters <low>, <high>, and <peakFactor>.
The peak factor is a value between 0 and 1 that determines the peakedness of the distribution. At 0
it is dome-like (0« = 8 = 4) and at 1 it is very strongly peaked around the mean (o = § = 100). A
reasonable approximation to a Gaussian normal is a peak factor of 0.5.

The specifications of this distribution must be defined within a <Beta> XML block. This
XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e Standard initialization:
e <alpha>, float, conditional required parameter, first shape parameter. If specified,
<beta> must also be inputted and <peakFactor> can not be specified.

e <beta>, float, conditional required parameter, second shape parameter. If specified,
<alpha> must also be inputted and <peakFactor> can not be specified.

e <low>, float, optional parameter, lower domain boundary.
Default: 0.0

e <high>, float, optional parameter, upper domain, boundary.
Default: 1.0

50

e Alternative initialization:
e <peakFactor>, float, optional parameter, alternative to specifying <alpha> and
<beta>. Acceptable values range from O to 1.

e <low>, float, optional parameter, lower domain boundary.
Default: 0.0

e <high>, float, optional parameter, upper domain, boundary.
Default: 1.0

Example:

<Distributions>

<Beta name='aUserDefinedName'>
<low>aFloatValue</low>
<high>aFloatValue</high>
<alpha>aFloatValue</alpha>
<beta>aFloatValue</beta>

</Beta>

<Beta name='aUserDefinedName2'>
<low>aFloatValue</low>
<high>aFloatValue</high>
<peakFactor>aFloatValue</peakFactor>

</Beta>

</Distributions>

9.1.1.2 Exponential Distribution

The Exponential distribution has a default support of = € [0, +00).

The specifications of this distribution must be defined within an <Exponential> XML
block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

e <lambda>, float, required parameter, rate parameter.

51

e <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Example:

<Distributions>

<Exponential name='aUserDefinedName'>
<lambda>aFloatValue</lambda>
<low>aFloatValue</low>
</Exponential>

</Distributions>

9.1.1.3 Gamma Distribution

The Gamma distribution is a two-parameter family of continuous probability distributions. The
common exponential distribution and y-squared distribution are special cases of the gamma distri-
bution. Its default support is x € [0, +0o0].

The specifications of this distribution must be defined within a <Gamma> XML block. This
XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <alpha>, float, required parameter, shape parameter.

e <beta>, float, optional parameter, 1/scale or the inverse scale parameter.
Default: 1.0

e <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Example:

<Distributions>

<Gamma name='aUserDefinedName'>
<alpha>aFloatValue</alpha>

52

<beta>aFloatValue</beta>
<low>aFloatValue</low>
</Gamma>

</Distributions>

9.1.1.4 Laplace Distribution

The Laplace distribution is a two-parameter continuous probability distribution. It is the distri-
bution of the differences between two independent random variables with identical exponential
distributions. Its default support is x € (—o0, +00).

The specifications of this distribution must be defined within a <Laplace> XML block. This
XML node accepts one attribute:
e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <location>, float, required parameter, determines the location or shift of the distribu-
tion.
e <scale>, float, required parameter, must be greater than 0, and determines how spread

out the distribution is.

Example:

<Distributions>

<Laplace name='aUserDefinedName'>
<location>aFloatValue</location>
<scale>aFloatValue</scale>
</Laplace>

</Distributions>

9.1.1.5 Logistic Distribution

The Logistic distribution is similar to the normal distribution with a CDF that is an instance of a

logistic function (C'df (z) = W) It resembles the normal distribution in shape but has

1+e scale

53

heavier tails (higher kurtosis). Its default support is = € [—o00, +00].
The specifications of this distribution must be defined within a <Logistic> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <location>, float, required parameter, the distribution mean.

e <scale>, float, required parameter, scale parameter that is proportional to the standard
1

deviation (0% = 37*scale?).

Example:

<Distributions>

<Logistic name='aUserDefinedName'>
<location>aFloatValue</location>
<scale>aFloatValue</scale>
</Logistic>

</Distributions>

9.1.1.6 LogNormal Distribution

The LogNormal distribution is a distribution with the logarithm of the random variable being
normally distributed. Its default support is = € [0, +00].

The specifications of this distribution must be defined within a <LogNormal> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <mean>, float, required parameter, the log of the distribution mean or expected value.

e <sigma>, float, required parameter, standard deviation.

54

e <low>, float, optional parameter, lower domain boundary.
Default: 0.0

Note: The <mean> and <sigma> listed above are NOT the mean and standard deviation of the
distribution; they are the mean and standard deviation of the log of the distribution. Using the
following notation:

e ,i: the p parameter of the lognormal distribution, which RAVEN expects in the <mean>
node;

e 0y: the o parameter of the lognormal distribution, which RAVEN expects in the <sigma>
node;

o M : the user-desired mean value of the distribution;

e S: the user-desired standard deviation of the distribution;

a conversion is defined to translate from mean M and standard deviation S into the parameters
RAVEN expects:

M

pre = log | ———
V1+ 2z

/ 92
oy = logl—i—m. 2)

&)

Example:

<Distributions>

<LogNormal name='aUserDefinedName'>
<mean>aFloatValue</mean>
<sigma>aFloatValue</sigma>
<low>aFloatValue</low>
</LogNormal>

</Distributions>

9.1.1.7 LogUniform Distribution

The LogNormal distribution is a distribution associated to a variable y = h(x) = e* where
variable x is uniform distributed. This distribution supports not only the case y = h(z) = €*
(natural case) but also the case where y = h(z) = 10” (decimal case).

55

Its default support is = € [h(lower Bound), h(upper Bound)].

The specifications of this distribution must be defined within a <LogUniform> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <lowerBound>, float, required parameter, domain lower boundary.
e <upperBound>, float, required parameter, domain upper boundary.

o <base>, string, required parameter, case type (decimal or natural).

Example:

<Distributions>

<LogUniform name="x_dist">
<upperBound>1.0</upperBound>
<lowerBound>3.0</lowerBound>
<base>natural</base>
</LogUniform>

</Distributions>

9.1.1.8 Normal Distribution

The Normal distribution is an extremely useful continuous distribution. Its utility is due to the
central limit theorem, which states that, under mild conditions, the mean of many random variables
independently drawn from the same distribution is distributed approximately normally, irrespective
of the form of the original distribution. Its default support is x € [—o00, +00].

The specifications of this distribution must be defined within a <Normal> XML block. This
XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

56

e <mean>, float, required parameter, the distribution mean or expected value.

e <sigma>, float, required parameter, the standard deviation.

Example:

<Distributions>

<Normal name='aUserDefinedName'>
<mean>aFloatValue</mean>
<sigma>aFloatValue</sigma>
</Normal>

</Distributions>

9.1.1.9 Triangular Distribution

The Triangular distribution is a continuous distribution that has a triangular shape for its PDF.
Like the uniform distribution, upper and lower limits are “known,” but a “best guess,” of the mode
or center point is also added. It has been recommended as a “proxy” for the beta distribution. Its
default support is x € [min, mazx].

The specifications of this distribution must be defined within a <Triangular> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <apex>, float, required parameter, peak location
e <min>, float, required parameter, domain lower boundary.

e <max>, float, required parameter, domain upper boundary.

Example:

<Distributions>

<Triangular name='aUserDefinedName'>
<apex>aFloatValue</apex>

57

<min>aFloatValue</min>
<max>aFloatValue</max>
</Triangular>

</Distributions>

9.1.1.10 Uniform Distribution

The Uniform distribution is a continuous distribution with a rectangular-shaped PDF. It is often
used where the distribution is only vaguely known, but upper and lower limits are known. Its
default support is x € [lower, upper].

The specifications of this distribution must be defined within a <Uniform> XML block. This
XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <lowerBound>, float, required parameter, domain lower boundary.
e <upperBound>, float, required parameter, domain upper boundary.
Note: Since the Uniform distribution is a rectangular-shaped PDF, the truncation does not have

any effect; this is the reason why the children nodes are the ones generally used for truncated
distributions. Example:

<Distributions>

<Uniform name='aUserDefinedName'>
<lowerBound>aFloatValue</lowerBound>
<upperBound>aFloatValue</upperBound>
</Uniform>

</Distributions>

9.1.1.11 Weibull Distribution

The Weibull distribution is a continuous distribution that is often used in the field of failure anal-
ysis; in particular, it can mimic distributions where the failure rate varies over time. If the failure

58

rate is:
e constant over time, then k£ = 1, suggests that items are failing from random events;
e decreases over time, then £ < 1, suggesting “infant mortality”;

e increases over time, then & > 1, suggesting “wear out” - more likely to fail as time goes by.

Its default support is 2 € [0, +00).

The specifications of this distribution must be defined within a <Weibull> XML block. This
XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

o <k>, float, required parameter, shape parameter.
e <lambda>, float, required parameter, scale parameter.
e <low>, float, optional parameter, lower domain boundary.

Default: 0.0

Example:

<Distributions>

<Weibull name='aUserDefinedName'>
<lambda>aFloatValue</lambda>
<k>aFloatValue</k>
<low>aFloatValue</low>
</Weibull>

</Distributions>

9.1.1.12 Custom1D Distribution

The Customl1D distribution is a custom continuous distribution that can be initialized from a
dataObject generated by RAVEN. This distribution cannot be initialized from a dataObject directly
but through a .csv file. This file must contain the values of either cdf or pdf of the random variable
sampled along the range of the desired random variable. In the distribution block of the RAVEN
input file, the user needs to specify which file (including its working directory) needs to be used

59

to initialize the distribution. In addition, the user is required to specify which type (cdf or pdf) or
values are contained in the file and also the IDs of both the random variable and cdf/pdf. Thus the
csv file contains a set of points that samples the function pdf (z) or cdf (z) for several values of the
stochastic variable x. The user needs to specify which variable IDs correspond to = and pdf (x) (or
cdf (x)). The distribution create a fourth order spline interpolation from the provided input points.
Note that the support of this distribution is set between the minimum and maximum values of the
random variable which are specified in the distribution input file.

Refer to the test example (tests/framework [testqistributionCustomlD.xml) for more
clarification.

The specifications of this distribution must be defined within a <CustomlD> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:
e <dataFilename>, string, required parameter, file name to be used to initialize the dis-
tribution.

e <workingDir>, string, optional parameter, relative working directory that contains the
input file.

e <functionType>, string, required parameter, type of initialization values specified in
the input file (pdf or cdf).

e <variablelID>, string, required parameter, ID of the variable contained in the input file.

e <functionID>, string, required parameter, ID of the function associated to the vari-
ableID contained in the input file.

Example:

<Distributions>

<CustomlD name="pdf_ custom">
<dataFilename>PointSetFile2_dump.csv</dataFilename>
<functionID>pdf_values</functionID>
<variableID>x</variableID>
<functionType>pdf</functionType>
<workingDir>customlD/</workingDir>

</CustomlD>

<CustomlD name="cdf custom">

60

<dataFilename>PointSetFile3_dump.csv</dataFilename>
<functionID>cdf_values</functionID>
<variableID>x</variableID>
<functionType>cdf</functionType>
<workingDir>customlD/</workingDir>

</CustomlD>

</Distributions>

The example above initializes two distributions from two .csv files. For example, the first dis-
tribution retrieves the pdf values, located in the column with label pdf,alues, for several locations
of the variable located in the column with label z in the file PointSetFile2gump.csv.

9.1.2 1-Dimensional Discrete Distributions.

RAVEN currently supports 3 discrete distributions. In the following paragraphs, the input require-
ments are reported.

9.1.2.1 Bernoulli Distribution

The Bernoulli distribution is a discrete distribution of the outcome of a single trial with only
two results, O (failure) or 1 (success), with a probability of success p. It is the simplest building
block on which other discrete distributions of sequences of independent Bernoulli trials can be
based. Basically, it is the binomial distribution (k = 1, p) with only one trial. Its default support is
keo,]1.

The specifications of this distribution must be defined within a <Bernoulli> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

e <p>, float, required parameter, probability of success.

Example:

<Distributions>

61

<Bernoulli name='aUserDefinedName'>
<p>aFloatValue</p>
</Bernoulli>

</Distributions>

9.1.2.2 Binomial Distribution

The Binomial distribution is the discrete probability distribution of the number of successes in a
sequence of n independent yes/no experiments, each of which yields success with probability p.
Its default supportis £ € 0,1, 2, ..., n.

The specifications of this distribution must be defined within a <Binomial> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

e <p>, float, required parameter, probability of success.

e <n>, integer, required parameter, number of experiments.

Example:

<Distributions>

<Binomial name='aUserDefinedName'>
<n>alntegerValue</n>
<p>aFloatValue</p>

</Binomial>

</Distributions>

9.1.2.3 Geometric Distribution

The Geometric distribution is a one-parameter discrete probability distribution. The distribution
uses the probability p that trial will be successful. The geometric distribution gives the probability
of observing k trials before the first success. Its supportis k € 0,1,2, ..., n.

62

The specifications of this distribution must be defined within a <Geomet ric> XML block.

This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following children nodes:

o <p>, float, required parameter, the success fraction for the trials.

Example:

<Distributions>
<Geometric name='aUserDefinedName'>
<p>aFloatValue</p>

</Geometric>

</Distributions>

9.1.2.4 Poisson Distribution

The Poisson distribution is a discrete probability distribution that expresses the probability of a
given number of events occurring in a fixed interval of time and/or space if these events occur
with a known average rate and independently of the time since the last event. Its default support is
kel 23.4,...

The specifications of this distribution must be defined within a <Poisson> XML block. This
XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.
This distribution can be initialized with the following child node:

e <mu>, float, required parameter, mean rate of events/time.

Example:

63

<Distributions>
<Poisson name='aUserDefinedName'>
<mu>aFloatValue</mu>

</Poisson>

</Distributions>

9.1.2.5 Categorical Distribution

The Categorical distribution is a discrete distribution that describes the result of a random variable
that can have K possible outcomes. The probability of each outcome is separately specified. The
possible outcomes can be numerical values (either integer or float numbers) or strings. There is
not necessarily an underlying ordering of these outcomes, but labels are assigned in describing the
distribution (in the range 1 to K). The specifications of this distribution must be defined within a
<Categorical> XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

<state>, float, required parameter, probability for outcome 1

e outcome, float, required parameter, outcome value.

<state>, float, required parameter, probability for outcome 2

e outcome, float, required parameter, outcome value.

<state>, float, required parameter, probability for outcome K

e outcome, float, required parameter, outcome value.

Example:

<Distributions>

<Categorical name='testCategoricalFloat'>
<state outcome="10">0.1</state>

64

<state outcome="20">0.2</state>
<state outcome="50">0.15</state>
<state outcome="60">0.4</state>
<state outcome="90">0.15</state>

</Categorical>

<Categorical name='testCategoricalString'>
<state outcome="A">(0.l</state>
<state outcome="B">0.2</state>
<state outcome="C">0.15</state>
<state outcome="D">(0.4</state>
<state outcome="E">0.15</state>

</Categorical>

</Distributions>

9.1.2.6 Uniform Discrete Distribution

The UniformDiscrete distribution is a discrete distribution which describes a random variable that
can have N values having equal probability value. This distribution allows the user to choose two
kinds of sampling strategies: with or without replacement. In case the “without replacement” strat-
egy is used, the distribution samples from the set of specified /V values reduced by the previously
sampled values. After, the sampler has generated values for all variables, the distribution is reset-
ted (i.e., the set of values that can be sampled is returned to V). In case the “with replacement”
strategy is used, the distribution samples always from the complete set of specified N values.

The specifications of this distribution must be defined within a <Uniform Discrete>
XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

This distribution can be initialized with the following child node:

e <lowerBound>, float, required parameter, lower bound.
e <upperBound>, float, required parameter, upper bound.

e <nPoints>, integer, optional parameter, number of points between lower and upper
bound

e <strategy>, string, required parameter, type of sampling strategy (withReplacement or
withoutReplacement).

65

Example:

<Distributions>

<UniformDiscrete name="UD_dist">
<lowerBound>3</lowerBound>
<upperBound>8</upperBound>
<strategy>orderedWithReplacement</strategy>
</UniformDiscrete>

</Distributions>

9.1.2.7 Markov Categorical Distribution

The MarkovCategorical distribution is a specific discrete categorical distribution describes a ran-
dom variable that can have K possible outcomes, based on the steady state probabilities provided
by Markov model.

e <transition>, float, optional field, the transition matrix of given Markov model.

e <dataFile>, string, optional xml node. The path for the given data file, i.e. the transition
matrix. In this node, the following attribute should be specified:

e fileType, string, optional field, the type of given data file, default is ‘csv’.

Note: Either <transition> or <dataFile> is required to provide the transition ma-
trix.

e <workingDir>, string, optional field, the path of working directory

e <state>, required xml node. The output from this state indicates the probability for out-
come 1. In this node, the following attribute should be specified:
e outcome, float, required field, outcome value.
e index, integer, required field, the index of steady state probabilities corresponding to

the transition matrix.

e <state>, required xml node. The output from this state indicates the probability for out-
come 2. In this node, the following attribute should be specified:

e outcome, float, required field, outcome value.

e index, integer, required field, the index of steady state probabilities corresponding to
the transition matrix.

66

e <state>, required xml node. The output from this state indicates the probability for out-
come K. In this node, the following attribute should be specified:

e outcome, float, required field, outcome value.

e index, integer, required field, the index of steady state probabilities corresponding to
the transition matrix.

Example:

<Simulation>
<Distributions>

<MarkovCategorical name="x_dist">

<!—--dataFile fileType='csv'>transitionFile</dataFile—-—>
<transition>

-1.1 0.8 0.7

0.8 -1.4 0.2

0.3 0.6 -0.9
</transition>

<state outcome='l' index='1l'/>

<state outcome='2' index='2'/>

<state outcome='4' index='3"'/>
</MarkovCategorical>

</Distributions>

</Simulation>

9.2 N-Dimensional Probability Distributions

The group of N-Dimensional distributions allow the user to model stochastic dependencies be-
tween parameters. Thus instead of using N distributions for /N parameters, the user can define
a single distribution lying in a N-Dimensional space. The following N-Dimensional Probability
Distributions are available within RAVEN:

e MultivariateNormal: Multivariate normal distribution (see Section 9.2.1)

e NDInverseWeight: ND Inverse Weight interpolation distribution (see Section 9.2.2)

67

e NDCartesianSpline: ND spline interpolation distribution (see Section 9.2.3)

For NDInverseWeight and NDCartesianSpline distributions, the user provides the sampled values
of either CDF or PDF of the distribution. The sampled values can be scattered distributed (for
NDInverseWeight) or over a Cartesian grid (for NDCartesianSpline).

The user could specify, for each N-Dimensional distribution, the parameters of the random
number generator function:

e <initialGridDisc>, positive integer, optional field, user-defined initial grid discretiza-
tion. This parameter specifies the number of discretizations that need to be performed, ini-
tially, for each Dimension in order to find N-Dimensional coordinate that corresponds to the
CDF represented by a random number (0-1);

e <tolerance>, float, optional field, user-defined tolerance in order to find the N-D coor-

dinates corresponding to a random number. This tolerance is expressed in terms of CDF.

in the <samplerInit> block defined in sampler block <samplerInit> (see Section 10).

9.2.1 MultivariateNormal Distribution

the multivariate normal distribution or multivariate Gaussian distribution, is a generalization of the
one-dimensional (univariate) normal distribution to higher dimensions. The multivariate normal
distribution is often used to describe, at least approximately, any set of (possibly) correlated real-
valued random variables each of which clusters around a mean value. The multivariate normal
distribution of a k-dimensional random vector X = [xy, Zo, ...,] can be written in the following
notation: x ~ N(p, ¥) with with k-dimensional mean vector

p = [Elxi], Elrs), .., Elzy]]

and k£ x k covariance matrix

Y =[Covlz;,z]]l,i=1,2,... k;j=1,2,...k

The probability distribution function for this distribution is the following:

fx(xla B 7xk) = mexp (_%(X - M)T2_1<X - l"")))

The specifications of this distribution must be defined within the xml block

<MultivariateNormal>. This XML node needs to contain the attributes:

e name, required string attribute, user-defined identifier of this multivariate normal distribu-
tion. Note: As with other objects, this is the name that can be used to refer to this specific
entity from other input XML blocks.

68

e method, required string attribute, defines which method is used to generate the multivari-
ate normal distribution. The only allowable methods are * spline’ and ' pca’.

In RAVEN the MultivariateNormal distribution can be initialized through the following key-
words:

e <mu>, list of mean values of each dimension

e <covariance>, list of element values in the covariance matrix. There are two types of
<covariance>, based on the type:

e type, string, optional field, specifies the type of covariance, the default type is
"abs’. Possible values for type are ' abs’ and " rel’. Note: ' abs’ indicates
the covariance is a normal covariance matrix, while ’ rel’ indicates the covariance is
a relative covariance matrix. In addition, method ' pca’ can be combined with both
types, and method ' spline’ only accept the type ' abs’

e <transformation>, XML node, optional field, option to enable input parameter trans-
formation using principal component analysis (PCA) approach. If this node is provided,
PCA will be used to compute the principal components of input covariance matrix. The
subnode <rank> is used to indicate the number of principal components that will be used
for the input transformation. The content will specify one attribute:

e <rank>, positive integer, required field, user-defined dimensionality reduction.

Example:

<Distributions>

<MultivariateNormal name='MultivariateNormal_ test'
method="'spline'>
<mu>0.0 60.0</mu>
<covariance>
1.0 0.7
0.7 1.0
</covariance>
</MultivariateNormal>
<MultivariateNormal name='MultivariateNormal abs'
method="'pca'>
<mu>0.0 60.0</mu>
<covariance type='abs'>
1.0 0.7
0.7 1.0
</covariance>

69

</MultivariateNormal>
<MultivariateNormal name='MultivariateNormal rel'
method="'pca'>
<mu>0.0 60.0</mu>
<covariance type='rel'>
1.0 0.7
0.7 1.0
</covariance>
</MultivariateNormal>

</Distributions>

In the following, we defined a distribution with a transformation node using PCA method. The
number of principal components is defined in <rank>. In this distribution, PCA is employed to
restructure the multivariate normal distribution. In addition, the size of uncorrelated variables is
also determined by <rank>.

<Distributions>

<MultivariateNormal name='MultivariateNormal_ test'
method="'pca'>
<mu>0.0 10.0 20.0</mu>
<covariance type="abs">
1.0 0.7 -0.2
0.7 1.0 0.4
-0.2 0.4 1.0
</covariance>
<transformation>
<rank>2</rank>
</transformation>
</MultivariateNormal>

</Distributions>

9.2.2 NDInverseWeight Distribution

The NDInverseWeight distribution creates a /N-Dimensional distribution given a set of points scat-
tered distributed. These points sample the PDF of the original distribution. Distribution values
(PDF or CDF) are calculated using the inverse weight interpolation scheme.

The specifications of this distribution must be defined within a <NDInverseWeight> XML

70

block. This XML node accepts the following attributes:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In RAVEN the NDInverseWeight distribution can be initialized through the following nodes:
o <p>, float, required parameter, power parameter. Greater values of p assign greater influ-
ence to values closest to the interpolated point.

e <data filename>, string, required parameter, name of the data file containing scattered
values (file type ’.txt’).

e type, required string attribute, indicates if the data in indicated file is PDF or CDF.

e <working dir>, string, required parameter, folder location of the data file

Example:

<Distributions>

<NDInverseWeight name='...'>
<p>...</p>
<dataFilename type='...'>...</dataFilename>
<workingDir>...</workingDir>
</NDInverseWeight>

</Distributions>

Each data entry contained in data_filename is listed row by row and must be listed as follows:

number of dimensions

number of sampled points

ND coordinate of each sampled point

value of each sampled point

As an example, the following shows the data entries contained in data_filename for a 3-
dimensional data set that contained two sampled CDF values: ([0.0,0.0,0.0], 0.1) and ([1.0,
1.0,0.0], 0.8)

Example scattered data file:

71

O OO, P OO OoONW

O P OO OO oo

9.2.3 NDCartesianSpline Distribution

The NDCartesianSpline distribution creates a /N-Dimensional distribution given a set of points
regularly distributed on a Cartesian grid. These points sample the PDF of the original distribution.
Distribution values (PDF or CDF) are calculated using the ND spline interpolation scheme.

The specifications of this distribution must be defined within a <NDCartesianSpline>
XML block. This XML node accepts the following attributes:

e name, required string attribute, user-defined name of this distribution. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In RAVEN the NDCartesianSpline distribution can be initialized through the following nodes:
e <data filename>, string, required parameter, name of the data file containing scattered
values (file type ’.txt’).
e type, required string attribute, indicates if the data in indicated file is PDF or CDF.

e <working dir>, string, required parameter, folder location of the data file

Example:
<Distributions>
<NDCartesianSpline name='...'>
<dataFilename type='...'>...</dataFilename>

<workingDir></workingDir>
</NDCartesianSpline>

</Distributions>

72

Each data entry contained in data _filename is listed row by row and must be listed as follows:

number of dimensions

number of discretization for each dimension

discretization values for each dimension

value of each sampled point

As an example, the following shows the data entries contained in data _filename for a 2-
dimensional CDF data set on the following grid (z, y):

e first dimension (x): -0.5, 0.5

e first dimension (y): 1.0 2.0 3.0

Example scattered data file:

w NN

0.5

w N = O
O O O U

CDF wvalue of
CDF wvalue of
CDF value of
CDF value of
CDF wvalue of
CDF wvalue of

~

~

~
w w NN

~

+ |
O O O O o O
o o o1 01 01 O
~
O O O O O O

+

~

73

10 Samplers

The sampler is probably the most important entity in the RAVEN framework. It performs the driv-
ing of the specific sampling strategy and, hence, determines the effectiveness of the analysis, from
both an accuracy and computational point of view. The samplers, that are available in RAVEN,
can be categorized into three main classes:

o Forward (see Section 10.1)

¢ Dynamic Event Tree (DET) (see Section 10.2)

e Adaptive (see Section 10.3)
Before analyzing each sampler in detail, it is important to mention that each type has a similar syn-
tax to input the variables to be “sampled”. In the example below, the variable ’ variableName’

is going to be sampled by the Sampler whatever’ using the distribution named
"aDistribution’.

<Simulation>

;é;mplers>
;ﬁﬁatEverSampler name="'whatever'>
<;5£iable name='variableName'>

;éistribution>aDistribution</distribution>

</;;;iable>
</ﬁ£;tEverSampler>

</é;ﬁplers>

</Simulation>

As reported in section 19, the variable naming syntax, for external driven codes, de-
pends on the way the “code interface” has been implemented. For example, if the code
has an input structure like the one reported below (YAML), the variable name might
be’ I-Level | II-Level |variable’. In this way, the relative code interface (and input
parser) will know which variable needs to be perturbed and the “recipe” to access it. As reported in

74

19, its syntax is chosen by the developer of the “code interface” and is implemented in the interface
only (no modifications are needed in the RAVEN code).

Example YAML based Input:

[I-Level]
[./II-Level]
variable = xxx
[../]
[]

Example XML block to define the variables and associated distributions:

<variable name='I-Level|II-Level|variable'>
<distribution>exampleDistribution</distribution>
</variable>

If the variable is associated to a multi-dimensional ND distribution, it is needed to specify
which dimension of the ND distribution is associated to such variable. An example is shown
below: the variable “variableX” is associated to the third dimension of the ND distribution “ND-
distribution”.

<variable name='variableX'>
<distribution dim='3'>NDdistribution</distribution>
</variable>

For most codes, it is prudent that there are no redundant inputs; however there are cases
where this is not reality. For example, if there is a variable ' inner radius’ and a vari-
able ' outer _radius’, there may be a third variable ' thickness’ that is actually de-
rived from the previous two, as ' thickness’ = 'outer radius’ - 'inner radius’.
RAVEN supports this type of redundant input through a Function entity. In this case, instead of a
<distribution> node in the <variable> block, there is a <function> node, specifying
the name of the function (defined in the <Functions> block). In order to work properly, this
function must have a method named “evaluate” that returns a single python float object. In this
way, multiple variables can be associated with the same function. For example,

<Functions>
<External name='torus_calcs' file='torus_calcs.py'>
<variable>outer_radius</variable>
<variable>inner_ radius</variable>
</External>
<Functions>

75

<Samplers>
<WhatEverSampler name='myExampleSampler'>
<variable name='inner radius'>
<distribution>inner_ dist</distribution>
</variable>
<variable name='outer radius'>
<distribution>outer_dist</distribution>
</variable>
<variable name='thickness'>
<function>torus_calcs</function>
</variable>
</WhatEverSampler>
</Samplers>

The corresponding function file ' torus_calcs.py’ needs the following method:

def evaluate(self):
return self.outer_ radius - self.inner_ radius

The ’'thickness’ parameter will still be treated as an input for the sake of csv printing and
DataObjects storage.

Note: It is important to notice that if the user use variables with no-Python compatible names (e.g.
parenthesis, etc.), the <alias> system needs to be used to alias the variables.

In the sampler class a special node exists: the <sampler_init> node. This node contains
specific parameters that characterize each particular sampler. In addition, <sampler init>
might contain the information regarding the random generator function for each /N-Dimensional
distribution (specified in the <dist_init> node):

e initial_grid_disc

e tolerance

An example of <dist_init> node is provided below:

<distInit>
<distribution name= 'ND _dist_ name'>
<initialGridDisc>5</initialGridDisc>
<tolerance>(0.2</tolerance>
</distribution>
</distInit>

76

In the <sampler_init> node it is possible to add also the subnode <globalGrid>. The
<globalGrid> can be used in two cases:
e 1D distributions: an identical grid that is associated to several distributions

e ND distribution: a grid associated to a single ND distribution. This is the case when a
stratified sampling is performed on the CDF of an ND distribution: the <globalGrid> is
shared among the variables associated to the Nd distribution

10.1 Forward Samplers

The Forward sampler category collects all the strategies that perform the sampling of the input
space without exploiting, through dynamic learning approaches, the information made available
from the outcomes of calculations previously performed (adaptive sampling) and the common sys-
tem evolution (patterns) that different sampled calculations can generate in the phase space (dy-
namic event tree). In the RAVEN framework, several different “Forward” samplers are available:

e Monte Carlo (MC)

e Stratified

e Grid Based

e Sparse Grid Collocation

e Sobol Decomposition

e Response Surface Design of Experiment

e Factorial Design of Experiment

e Ensemble Forward Sampling strategy

e Custom Sampling strategy

From a practical point of view, these sampling strategies represent different ways to explore

the input space. In the following paragraphs, the input requirements and a small explanation of the
different sampling methodologies are reported.

77

10.1.1 Monte Carlo

The Monte-Carlo sampling approach is one of the most well-known and widely used approaches
to perform exploration of the input space. The main idea behind MonteCarlo sampling is to ran-
domly perturb the input space according to uniform or parameter-based probability density func-
tions.

The specifications of this sampler must be defined within a <MonteCarlo> XML block.
This XML node accepts the following attributes:

e name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the MonteCarlo input block, the user needs to specify the variables need to be sam-
pled. As already mentioned, these variables are inputted within consecutive xml blocks
called <variable>. In addition, the settings for this sampler need to be specified in the
<samplerInit> XML block:

e <samplerInit>, XML node, required parameter. In this xml-node,the following xml
sub-nodes need to be specified:

e <limit>, integer,required field, number of MonteCarlo samples needs to be gener-
ated;

e <initialSeed>,integer, optional field, initial seeding of random number generator

e <reseedEachlIteration>, boolean/string(case insensitive), optional field, per-
form a re-seeding for each sample generated (True values = True, yes, y, t).
Default: False;

e <distInit>, integer, optional field, in this node the user specifies the initialization
of the random number generator function for each N-Dimensional Probability Distri-
butions (see Section 9.2).

e <samplingType>, string, optional field, sub-type of sampling
Default: None. the user can choose to perform a Monte-Carlo sampling where the
location of the samples in the input space is uniformly distributed and not gener-
ated accordingly to the specific set of distributions. This can be specificed in the
<samplingType> with the kewyword “uniform”. This option works only if all
the distributions have an upper and lower bound specified (i.e., <lowerBound> and
<upperBound>). Allowed fields for this node are “None” and “uniform”.

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

78

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

79

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

If the input parameters are correlated, the MonteCarlo sampling approach can be also used
if the user specified a multivariate distributions inside the <Distributions> (see Section
9.2). Furthermore, if the covariance matrix is provided and the input parameters is assumed
to have the multivariate normal distribution, one can also use MonteCarlo approach to sam-
ple the input parameters in the transformed space (aka subspace, reduced space). If this is the
case, the user needs to provide additional information, i.e. the <transformation> under
<MultivariateNormal> of <Distributions> (more information can be found in Section
9.2). In addition, the node <variablesTransformation> is also required for MonteCarlo
sampling. This node is used to transform the variables specified by <latentVariables> in
the transformed space of input into variables specified by <manifestVariables> in the input
space. The variables listed in <latentVariables> should be predefined in <variable>,
and the variables listed in <manifestVariables> are used by the <Models>.

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

80

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is "pca’.

Assembler Objects These objects are either required or optional depending on the functionality
of the MonteCarlo Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it can
be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can be
"ROM’, ' External’, etc.

The MonteCarlo approach requires or optionally accepts the following object types:

e <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

e <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.

Default: le-14

e <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

81

Example:

<Samplers>

<MonteCarlo name='MCname'>
<samplerInit>
<1limit>10</limit>
<initialSeed>200286</initialSeed>
<reseedEachIteration>false</reseedEachIteration>
<distInit>
<distribution name= 'ND_InverseWeight_ P'>
<initialGridDisc>10</initialGridDisc>
<tolerance>0.2</tolerance>
</distribution>
</distInit>
</samplerInit>
<variable name='varl'>
<distribution>aDistributionNameDefinedInDistributionBlock
</distribution>
</variable>
<Restart class='DataObjects' type='PointSet'>data</Restart>
</MonteCarlo>

</Samplers>

<PointSet name="data">
<Input>varl</Input>
<Output>ans</Output>

</PointSet>

10.1.2 Grid

The Grid sampling approach is probably the simplest exploration approach that can be employed
to explore an uncertain domain. The idea is to construct an /N-dimensional grid where each dimen-
sion is represented by one uncertain variable. This approach performs the sampling at each node
of the grid. The sampling of the grid consists in evaluating the answer of the system under all pos-
sible combinations among the different variables’ values with respect to a predefined discretization
metric. In RAVEN two discretization metrics are available: 1) cumulative distribution function,
and 2) value. Thus, the grid meshing can be input via probability or variable values. Regarding the
N-dimensional distributions, the user can specify for each dimension the type of grid to be used

82

(i.e., value or CDF). Note the discretization of the CDF, only for the grid sampler, is performed on
the marginal distribution for the specific variable considered.

The specifications of this sampler must be defined within a <Grid> XML block. This XML
node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Grid> input block, the user needs to specify the variables to sample. As already men-
tioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF’, the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ’ value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

83

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction='equal’. The grid is going to be constructed equally-spaced
(type='value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound) / steps

e construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds
(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
i1s the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

84

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

If the input parameters are correlated, the Grid sampling approach can be also used if the
user specified a multivariate distributions inside the <Distributions> (see Section 9.2). Fur-
thermore, if the covariance matrix is provided and the input parameters is assumed to have
the multivariate normal distribution, one can also use Grid approach to sample the input pa-
rameters in the transformed space (aka subspace, reduced space). This means one creates the
grids of variables listed by <latentVariables> in the transformed space. If this is the
case, the user needs to provide additional information, i.e. the <transformation> under
<MultivariateNormal> of <Distributions> (more information can be found in Sec-
tion 9.2). In addition, the node <variablesTransformation> is also required for Grid
sampling. This node is used to transform the variables specified by <latentVariables> in
the transformed space of input into variables specified by <manifestVariables> in the input
space. The variables listed in <latentVariables> should be predefined in <variable>,
and the variables listed in <manifestVariables> are used by the <Models>.

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

85

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

Assembler Objects These objects are either required or optional depending on the functional-
ity of the Grid Sampler. The objects must be listed with a rigorous syntax that, except for the XML
node tag, is common among all the objects. Each of these nodes must contain 2 attributes that are
used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it can
be "Models’, 'Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can be
"ROM’, 'External’, etc.

The Grid approach requires or optionally accepts the following object types:

e <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

e <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.

Default: le-14

86

e <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:

<Samplers>

<Grid name='Gridname'>
<variable name='wvarl'>
<distribution>aDistributionNameDefinedInDistributionBlockl
</distribution>
<grid type='value' construction='equal' steps='100' >0.2
10</grid>
</variable>
<variable name='var2'>
<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type='CDF' construction='equal' steps='5' >0.2
0.8</grid>
</variable>
<variable name='var3'>
<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='wvalue' construction='equal' steps='100' >0.2
21.0</grid>
</variable>
<variable name='vard'>
<distribution>aDistributionNameDefinedInDistributionBlock4
</distribution>
<grid type='CDF' construction='equal' steps='5' >0.2
1.0</grid>
</variable>
<variable name='var5'>
<distribution>aDistributionNameDefinedInDistributionBlockb
</distribution>
<grid type='value' construction='custom'>0.2 0.5
10.0</grid>
</variable>
<variable name='wvar6'>
<distribution>aDistributionNameDefinedInDistributionBlock®6
</distribution>
<grid type='CDF' construction='custom'>0.2 0.5 1.0</grid>

87

</variable>
<Restart class='DataObjects' type='PointSet'>data</Restart>
<restartTolerance>le-6</restartTolerance>

</Grid>

</Samplers>

<PointSet name="data">
<Input>varl,var2,var3,vard,var5,var6</Input>
<Output>ans</Output>

</PointSet>

Note: A restart example is included here but is not necessary in general.

10.1.3 Sparse Grid Collocation

Sparse Grid Collocation builds on generic Grid sampling by selecting evaluation points based
on characteristic quadratures as part of stochastic collocation for generalized polynomial chaos
uncertainty quantification. In collocation you construct an N-dimensional grid, with each uncer-
tain variable providing an axis. Along each axis, the points of evaluation correspond to quadra-
ture points necessary to integrate polynomials (see ??). In the simplest (and most naive) case,
a N-Dimensional tensor product of all possible combinations of points from each dimension’s
quadrature is constructed as sampling points. The number of necessary samples can be reduced by
employing Smolyak-like sparse grid algorithms, which use reduced combinations of polynomial
orders to reduce the necessary sampling space. The specifications of this sampler must be defined
within a <SparseGridCollocation> XML block. .

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

e parallel, optional string attribute, option to disable parallel construction of the sparse
grid. Because of increasing computational expense with increasing input space dimension,
RAVEN will default to parallel construction of the sparse grid.

e outfile, optional string attribute, option to allow the generated sparse grid points and
weights to be printed to a file with the given name.
Default: True

In the <SparseGridCollocation> input block, the user needs to specify the variables to

88

sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

In the variable node, the following xml-node needs to be specified:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

89

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

Because of the tight coupling between the Sampler and the ROM in stochastic collocation for gen-
eralized polynomial chaos, the Sampler needs access to the ROM via the assembler do determine
the polynomials, quadratures, and importance weights to use in each dimension (see 2?).

Assembler Objects These objects are either required or optional depending on the functional-
ity of the SparseGridCollocation Sampler. The objects must be listed with a rigorous syntax that,
except for the XML node tag, is common among all the objects. Each of these nodes must contain
2 attributes that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it can
be "Models’, 'Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can be
"ROM’, ' External’, etc.

The SparseGridCollocation approach requires or optionally accepts the following object types:

e <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

90

e <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

e <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.

Default: le-14

e <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:
<Samplers>

<SparseGridCollocation name="mySG" parallel="0">
<variable name="x1">
<distribution>myDistl</distribution>
</variable>
<variable name="x2">
<distribution>myDist2</distribution>

</variable>
<ROM class = 'Models' type = 'ROM' >SCROM</ROM>
<Restart class = 'DataObjects' type = 'PointSet' >solns</Restart>

</SparseGridCollocation>
</Samplers>

<PointSet name="solns">
<Input>x1, x2</Input>
<Output>y</Output>
</PointSet>

In general, SparseGridCollocation requires uncorrelated input parameters. If the input pa-
rameters are correlated, one can transform the correlated parameters into uncorrelated parameters;
the SparseGridCollocation can also be used with the uncorrelated parameters in the transformed
space. Like in the Grid sampler, if the covariance matrix is provided and the input parameters

91

are assumed to have the multivariate normal distribution, the SparseGridCollocation can be used.
This means one creates the sparse grids of variables listed by <latentVariables> in the
transformed space. If this is the case, the user needs to provide additional information, i.e. the
<transformation> under <MultivariateNormal> of <Distributions> (more in-
formation can be found in Section 9.2). In addition, the node <variablesTransformation>
is also required for SparseGridCollocation sampler. This node is used to transform the variables
specified by <latentVariables> in the transformed space of input into variables specified by
<manifestVariables> in the input space. The variables listed in <latentVariables>
should be predefined in <variable>, and the variables listed in <manifestVariables> are
used by the <Models>.

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

<Models>
<ExternalModel ModuleToLoad="lorentzAttractor_ noK"
name="PythonModule" subType="">
<variables>sigma, rho, beta, x,vy, z,time, z0,y0, z0</variables>
</ExternalModel>

<ROM name="SCROM" subType="GaussPolynomialRom">
<Target>and</Target>

92

<Features>x1l,yl, z1</Features>

<IndexSet>TensorProduct</IndexSet>

<PolynomialOrder>1</PolynomialOrder>
</ROM>

</Models>
<Distributions>

<MultivariateNormal name='MVNDist' method='pca'>
<transformation>
<rank>3</rank>
</transformation>
<mu>0.0 1.0 2.0</mu>
<covariance type="abs">

1.0 0.6 -0.4

0.6 1.0 0.2

-0.4 0.2 0.8
</covariance>

</MultivariateNormal>
</Distributions>
<Samplers>

<SparseGridCollocation name='SC'>
<variable name='x0'>
<distribution dim='1l'>MVNDist</distribution>
</variable>
<variable name='y0'>
<distribution dim='2'>MVNDist</distribution>
</variable>
<variable name='z0'>
<distribution dim='3'>MVNDist</distribution>
</variable>
<variablesTransformation model="PythonModule">
<latentVariables>x1,yl, z1</latentVariables>
<manifestVariables>x0,y0, z0</manifestVariables>
<method>pca</method>
</variablesTransformation>
<ROM class = 'Models' type = 'ROM' >SCROM</ROM>
<Restart class="DataObjects"

93

type="PointSet">solns</Restart>
</SparseGridCollocation>

</Samplers>

<PointSet name="solns">
<Input>x0,y0,z0</Input>
<Output>ans</Output>
</PointSet>

10.1.4 Sobol

The Sobol sampler uses high-density model reduction (HDMR) a.k.a. Sobol decomposition to
approximate a function as the sum of increasing-complexity interactions. At its lowest level (order
1), it treats the function as a sum of the reference case plus a functional of each input dimension
separately. At order 2, it adds functionals to consider the pairing of each dimension with each other
dimension. The benefit to this approach is considering several functions of small input cardinality
instead of a single function with large input cardinality. This allows reduced order models like
generalized polynomial chaos (see ??) to approximate the functionals accurately with few com-
putations runs. This Sobol sampler uses the associated HDMRRom (see ??) to determine at what
points the input space need be evaluated. Since Sobol sampler relies on SparseGridCollocation, it
is also compatible with multivariate normal distribution objects. The <Sobol> node supports the
following attributes:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

e parallel, optional string attribute, option to disable parallel construction of the sparse
grid. Because of increasing computational expense with increasing input space dimension,
RAVEN will default to parallel construction of the sparse grid.

Default: True

In the <Sobol> input block, the user needs to specify the variables to sample. As already men-
tioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

94

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

In the variable node, the following xml-node needs to be specified:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=“2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

95

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index="'3'>A</constant>
</WhatEverSampler>
</Samplers>

Like the SparseGridCollocation, if multivariate normal distribution is provided, the following
node need to be specified:

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is *pca’.

Because of the tight coupling between the Sobol sampler and the HDMRRom, the Sampler
needs access to the ROM via the assembler do determine the polynomials, quadratures, Sobol
order, and importance weights to use in each dimension (see ??).

96

Assembler Objects These objects are either required or optional depending on the function-
ality of the Sobol Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it can
be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can be
"ROM’, 'External’, etc.

The Sobol approach requires or optionally accepts the following object types:

e <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

e <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

e <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.

Default: le-14

e <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:
<Samplers>

<Sobol name="mySobol" parallel="0">

<variable name="x1l">
<distribution>myDistl</distribution>

97

</variable>
<variable name="x2">
<distribution>myDist2</distribution>
</variable>
<ROM class = 'Models' type = 'ROM' >myHDMR</ROM>
<Restart class="DataObjects" type="PointSet">solns</Restart>
</Sobol>

</Samplers>

<PointSet name="solns">
<Input>x1, y2</Input>
<Output>ans</Output>
</PointSet>

10.1.5 Stratified

The Stratified sampling approach is a method for the exploration of the input space that consists of
dividing the uncertain domain into subgroups before sampling. In the “stratified” sampling, these
subgroups must be:

e mutually exclusive: every element in the population must be assigned to only one stratum
(subgroup);

e collectively exhaustive: no population element can be excluded.

Then simple random sampling or systematic sampling is applied within each stratum. It is

worthwhile to note that the well-known Latin hypercube sampling represents a specialized version
of the stratified approach, when the domain strata are constructed in equally-probable CDF bins.

The specifications of this sampler must be defined within a <Stratified> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Stratified> input block, the user needs to specify the variables to sample. As already
mentioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

98

name, required string attribute, user-defined name of this variable.

shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

<distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

<function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

<grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF’, the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ’ value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction=’'equal’. The grid is going to be constructed equally-spaced
(type='wvalue’) or equally probable (type='CDF'). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound)/steps

99

e construction='custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds
(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape="10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>

100

<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In addition, the settings for this sampler need to be specified in the <samplerInit> XML block:

e <samplerInit>, XML node, required parameter. In this xml-node,the following xml
sub-nodes need to be specified:

e <initialSeed>,integer, optional field, initial seeding of random number generator

e <distInit>, integer, optional field, in this node the user specifies the initialization
of the random number generator function for each N-Dimensional Probability Distri-
butions (see Section 9.2).

As one can see, the input specifications for the Stratified sampler are similar to that of the Grid
sampler. It is important to mention again that for each zone (grid mesh) only a point, randomly
selected, is picked and not all the nodal combinations (like in the Grid sampling).

Assembler Objects These objects are either required or optional depending on the functional-
ity of the Stratified Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it can
be 'Models’, ' Functions’, etc.
e type, required string attribute, the object identifier or sub-type. For example, it can be

"ROM’, 'External’, etc.

The Stratified approach requires or optionally accepts the following object types:

e <Restart>, string, optional field, the body of this XML node must contain the name of
an appropriate DataObject defined in the <DataObjects> block (see Section 12). It is
used as a “restart” tool, where it accepts pre-existing solutions in the PointSet instead of
recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

101

e <restartTolerance>, float, optional field, the body of this XML node must contain
a valid floating point value. If a <Restart> node is supplied for this <Sampler>, this
node offers a way to determine how strictly matching points are determined. Given a point
in the input space, if that point is within a relative Euclidean distance (equal to the tolerance)
of a restart point, the nearest restart point will be used.

Default: le-14

e <ConstantSource>, string, optional field, the body of this XML node must contain
the name of an appropriate DataObject defined in the <DataObjects> block (see Sec-
tion 12). It is used as a source from which constants can take values.

Example:

<Samplers>

<Stratified name='StratifiedName'>
<variable name='varl'>
<distribution>aDistributionNameDefinedInDistributionBlockl
</distribution>
<grid type='CDF' construction='equal' steps='5' >0.2
0.8</grid>
</variable>
<variable name='var2'>
<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type='value' construction='equal' steps='100' >0.2
21.0</grid>
</variable>
<variable name='var3'>
<distribution>aDistributionNameDefinedInDistributionBlock3

</distribution>
<grid type='CDF' construction='custom'>0.2 0.5 1.0</grid>
</variable>
</Stratified>
</Samplers>

For N-dimensional (ND) distributions, there are two different approaches to perform the strat-
ified sampling. In the first approach, the subgroups is determined by the joint CDF of given multi-
variate distributions. If this approach is used, the sampling is performed on a grid on a CDF, while
the user is required to specify the same CDF grid for all the dimensions of the ND distribution.
This is possible by defining a <globalGrid> node and associate such <globalGrid> to each
variable belonging to the ND distribution as follows.

102

<Samplers>

<Stratified name='StratifiedName'>
<variable name='x0'>
<distribution
dim='1'>ND_InverseWeight_P</distribution>
<grid type='globalGrid'>name_gridl</grid>

</variable>
<variable name='y0,z0'>
<distribution

dim='2'>ND_InverseWeight_P</distribution>
<grid type='globalGrid'>name_gridl</grid>
</variable>
<globalGrid>
<grid name='name_gridl' type='CDF'
construction='custom'>0.1 1.0 0.2</grid>
</globalGrid>
</Stratified>

</Samplers>

The second approach is different than the first approach. Like in the Grid sampling, if the
covariance matrix is provided and the input parameters is assumed to have the multivariate normal
distribution, one can also use Stratified approach to sample the input parameters in the trans-
formed space (aka subspace, reduced space). This means one creates the grids of variables listed
by <latentVariables> in the transformed space. If this is the case, the user needs to pro-
vide additional information, i.e. the <transformation> under <MultivariateNormal>
of <Distributions> (more information can be found in Section 9.2). In addition, the node
<variablesTransformation> is also required for Stratified sampler. This node is used to
transform the variables specified by <latentVariables> in the transformed space of input
into variables specified by <manifestVariables> in the input space. The variables listed
in <latentVariables> should be predefined in <variable>, and the variables listed in
<manifestVariables> are used by the <Models>. In addition, <globalGrid> will be
not used for approach.

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

103

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is *pca’.

<Models>
<ExternalModel ModuleToload="lorentzAttractor noK"
name="PythonModule" subType="">

<variables>sigma, rho, beta, x,y, z, time, z0,y0, z0</variables>
</ExternalModel>

</Models>
<Distributions>

<MultivariateNormal name='MVNDist' method='pca'>
<transformation>
<rank>3</rank>
</transformation>
<mu>0.0 1.0 2.0</mu>
<covariance type="abs">

1.0 0.6 -0.4

0.6 1.0 0.2

-0.4 0.2 0.8
</covariance>

</MultivariateNormal>

</Distributions>

104

<Samplers>

<Stratified name='StratifiedName'>
<variable name='x0'>
<distribution dim='1l'>MVNDist</distribution>
<grid type='CDF' construction='equal' steps='3'>0.1
0.9</grid>
</variable>
<variable name='y0'>
<distribution dim='2'>MVNDist</distribution>
<grid type='value' construction='equal'
steps='3'>0.1 0.9</grid>
</variable>
<variable name='z0'>
<distribution dim='3'>MVNDist</distribution>
<grid type='CDF' construction='equal' steps='3'>0.2
0.8</grid>
</wvariable>
<variablesTransformation model="PythonModule">
<latentVariables>x1,yl, z1</latentVariables>
<manifestVariables>x0,y0, z0</manifestVariables>
<method>pca</method>
</variablesTransformation>
</Stratified>

</Samplers>

10.1.6 Response Surface Design

The Response Surface Design, or Response Surface Modeling (RSM), approach is one of the most
common Design of Experiment (DOE) methodologies currently in use. It explores the relationships
between several explanatory variables and one or more response variables. The main idea of RSM
is to use a sequence of designed experiments to obtain an optimal response. RAVEN currently
employs two different algorithms that can be classified within this family of methods:

e Box-Behnken: This methodology aims to achieve the following goals:

e Each factor, or independent variable, is placed at one of three equally spaced values,
usually coded as -1, 0, +1. (At least three levels are needed for the following goal);

105

e The design should be sufficient to fit a quadratic model, that is, one squared term per
factor and the products of any two factors;

e The ratio of the number of experimental points to the number of coefficients in the
quadratic model should be reasonable (in fact, their designs keep it in the range of 1.5
to 2.6);

e The estimation variance should more or less depend only on the distance from the
center (this is achieved exactly for the designs with 4 and 7 factors), and should not
vary too much inside the smallest (hyper)cube containing the experimental points.

Each design can be thought of as a combination of a two-level (full or fractional) factorial
design with an incomplete block design. In each block, a certain number of factors are
put through all combinations for the factorial design, while the other factors are kept at the
central values.

e Central Composite: This design consists of three distinct sets of experimental runs:

o A factorial (perhaps fractional) design in the factors are studied, each having two levels;

e A set of center points, experimental runs whose values of each factor are the medians
of the values used in the factorial portion. This point is often replicated in order to
improve the precision of the experiment;

e A set of axial points, experimental runs identical to the center points except for one
factor, which will take on values both below and above the median of the two factorial
levels, and typically both outside their range. All factors are varied in this way.

This methodology is useful for building a second order (quadratic) model for the response

variable without needing to use a complete three-level factorial experiment.

All the parameters, needed for setting up the algorithms reported above, must be defined within a
<ResponseSurfaceDesign> block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <ResponseSurfaceDesign> input block, the user needs to specify the variables
to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

106

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF’, the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ’ value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e., ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change. In this case, only the following is available:

e construction='custom’. The grid will be directly specified by the user.
This construction type requires that the <grid> node contains the actual mesh
bins. For example, if the grid type is ' CDF’, in the body of <grid>, the user
will specify the CDF probability thresholds (nodalization in probability). All the
bins are checked against the associated <distribution> bounds. If one or
more of them falls outside the distribution’s bounds, the code will raise an error.
No additional attributes are needed.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested. Note: Only
the construction “custom” is available. In the <grid> body only the lower and upper
bounds can be inputted (2 numbers only).

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.

107

There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=*“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

e <ResponseSurfaceDesignSettings>, required, In this sub-node, the user needs to
specify different settings depending on the algorithm being used:

e <algorithmType>, string, required field, this XML node will contain the name
of the algorithm to be used. Based on the chosen algorithm, other nodes need to be
defined:

108

e <algorithmType>BoxBehnken<algorithmType/>. If Box-Behnken is
specified, the following additional node is recognized:

e <ncenters>, integer, optional field, the number of center points to include
in the box. If this parameter is not specified, then a pre-determined number of
points are automatically included.

Default: Automatic Generation.
Note: In order to employ the “Box-Behnken” design, at least 3 variables must be
used.

e <algorithmType>CentralComposite<algorithmType/>. If Central
Composite is specified, the following additional nodes will be recognized:

e <centers>, comma separated integers, optional field, the number of center
points to be included. This block needs to contain 2 integers values separated
by a comma. The first entry represents the number of centers to be added for
the factorial block; the second one is the one for the star block.

Default: 4,4.

e <alpha>, string, optional field, in this node, the user decides how an « factor

needs to be determined. Two options are available:

orthogonal for orthogonal design.
rotatable for rotatable design.

Default: orthogonal.

e <face>, string, optional field, in this node, the user defines how faces should
be constructed. Three options are available:

circumscribed for circumscribed facing
inscribed for inscribed facing
faced for faced facing.

Default: circumscribed.

Note: In order to employ the “Central Composite” design, at least 2 variables must be
used.

Furthermore, if the covariance matrix is provided and the input parameters are assumed
to have a multivariate normal distribution, one can use ResponseSurfaceDesign approach to
sample the input parameters in the transformed space (aka subspace, reduced space). In this
case, the user needs to provide additional information, i.e. the <transformation> un-
der <MultivariateNormal> of <Distributions> (more information can be found
in Section 9.2). In addition, the node <variablesTransformation> is also required
for ResponseSurfaceDesign sampling. This node is used to transform the variables speci-
fied by <latentVariables> in the transformed space of input into variables specified by
<manifestVariables> in the input space. The variables listed in <latentVariables>

109

should be predefined in <variable>, and the variables listed in <manifestVariables> are
used by the <Models>.

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is ’pca’.

Example:

<Samplers>

<ResponseSurfaceDesign name='BoxBehnkenRespDesign'>
<ResponseSurfaceDesignSettings>
<algorithmType>BoxBehnken</algorithmType>
<ncenters>l</ncenters>
</ResponseSurfaceDesignSettings>
<variable name='varl' >
<distribution >Gaussl</distribution>
<grid type='CDF' construction='custom' >0.2

0.8</grid>
</variable>
<!-— N.B. at least 3 variables need to inputted

in order to employ this algorithm

110

</ResponseSurfaceDesign>
<ResponseSurfaceDesign name='CentralCompositeRespDesign'>
<ResponseSurfaceDesignSettings>
<algorithmType>CentralComposite</algorithmType>
<centers>1, 2</centers>
<alpha>orthogonal</alpha>
<face>circumscribed</face>
</ResponseSurfaceDesignSettings>
<variable name='var4' >
<distribution >Gaussl</distribution>
<grid type='CDF' construction='custom' >0.2

0.8</grid>
</variable>
<!-— N.B. at least 2 variables need to inputted

in order to employ this algorithm
——>
</ResponseSurfaceDesign>
<ResponseSurfaceDesign name='transformedSpaceSampling'>
<ResponseSurfaceDesignSettings>
<algorithmType>BoxBehnken</algorithmType>
<ncenters>1l</ncenters>
</ResponseSurfaceDesignSettings>
<variable name='varl' >
<distribution >Gaussl</distribution>
<grid type='CDF' construction='custom' >0.2
0.8</grid>
</variable>

<variablesTransformation model="givenModel">
<latentVariables>varl, ...</latentVariables>
<manifestVariables>...</manifestVariables>
<method>pca</method>
</variablesTransformation>
</ResponseSurfaceDesign>

</Samplers>

10.1.7 Factorial Design

The Factorial Design method is an important method to determine the effects of multiple vari-
ables on a response. A factorial design can reduce the number of samples one has to perform by

111

studying multiple factors simultaneously. Additionally, it can be used to find both main effects
(from each independent factor) and interaction effects (when both factors must be used to explain
the outcome). A factorial design tests all possible conditions. Because factorial designs can lead to
a large number of trials, which can become expensive and time-consuming, they are best used for
small numbers of variables with only a few domain discretizations (1 to 3). Factorial designs work
well when interactions between variables are strong and important and where every variable con-
tributes significantly. RAVEN currently employs three different algorithms that can be classified
within this family of techniques:

e General Full Factorial explores the input space by investigating all possible combinations
of a set of factors (variables).

e 2-Level Fractional-Factorial consists of a carefully chosen subset (fraction) of the exper-
imental runs of a full factorial design. The subset is chosen so as to exploit the sparsity-
of-effects principle exposing information about the most important features of the problem
studied, while using a fraction of the effort of a full factorial design in terms of experimental
runs and resources.

e Plackett-Burman identifies the most important factors early in the experimentation phase
when complete knowledge about the system is usually unavailable. It is an efficient screening
method for identifying the active factors (variables) using as few samples as possible. In
Plackett-Burman designs, main effects have a complicated confounding relationship with
two-factor interactions. Therefore, these designs should be used to study main effects when
it can be assumed that two-way interactions are negligible.

All the parameters needed for setting up the algorithms reported above must be defined within a
<FactorialDesign> block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <FactorialDesign> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="10" will produce a vector of 10 values. Omitting this

112

optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

<distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

<function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

<grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF', the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ’ value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction=’"equal’. The grid is going to be constructed equally-spaced
(type='value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound) /steps

e construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds

113

(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=*2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>

114

</Samplers>

The main <FactorialDesign> block needs to contain an additional sub-node called
<FactorialSettings>. In this sub-node, the user needs to specify different settings depend-
ing on the algorithm being used:

e <algorithmType>, string, required field, specifies the algorithm to be used. Based on
the chosen algorithm, other nodes may be defined:

e <algorithmType>full<algorithmType/>. Full factorial design. If full is

Example:

specified, no additional nodes are necessary.

Note: The full factorial design does not have any limitations on the number of dis-
cretization bins that can be used in the <grid> XML node for each <variable>
specified.

<algorithmType>2levelFract<algorithmType/>. Two-level Fractional-
Factorial design. If
2levelFract is specified, the following additional nodes must be specified:

e <gen>, space separated strings, required field, specifies the confounding map-
ping. For instance, in this block the user defines the decisions on a fraction of the
full-factorial by allowing some of the factor main effects to be compounded with
other factor interaction effects. This is done by defining an alias structure that de-
fines, symbolically, these interactions. These alias structures are written like “C =
AB” or “I = ABC”, or “AB = CD”, etc. These define how a column is related to
the others.

e <genMap>, space separated strings, required field, defines the mapping be-
tween the <gen> symbolic aliases and the variables that have been inputted in
the <FactorialDesign> main block.

Note: The Two-levels Fractional-Factorial design is limited to 2 discretization bins in
the <grid> node for each <variable>.

<algorithmType>pb<algorithmType/>. Plackett-Burman design. If pb is
specified, no additional nodes are necessary.

Note: The Plackett-Burman design does not have any limitations on the number of
discretization bins allowed in the <grid> node for each <variable>.

<Samplers>

<FactorialDesign name='fullFactorial'>
<FactorialSettings>

115

<algorithmType>full</algorithmType>

</FactorialSettings>

<variable name='varl' >
<distribution>aDistributionNameDefinedInDistributionBlockl
</distribution>
<grid type='value' construction='custom' >0.02 0.03

0.5</grid>

</variable>

<variable name='var2' >
<distribution>aDistributionNameDefinedInDistributionBlock2
</distribution>
<grid type='CDF' construction='custom'>0.5 0.7 1.0</grid>

</variable>

</FactorialDesign>
<FactorialDesign name='2levelFractFactorial'>

<FactorialSettings>
<algorithmType>2levelFract</algorithmType>
<gen>a, b, ab</gen>
<genMap>varl,var2, var3</genMap>

</FactorialSettings>

<variable name='varl' >
<distribution>aDistributionNameDefinedInDistributionBlock3

</distribution>
<grid type='value' construction='custom' >0.02 0.5</grid>
</variable>

<variable name='wvar2' >
<distribution>aDistributionNameDefinedInDistributionBlock

</distribution>
<grid type='CDF' construction='custom'>0.5 1.0</grid>
</variable>

<variable name='var3'>
<distribution>aDistributionNameDefinedInDistributionBlockb5
</distribution>
<grid type='value' upperBound='4' construction='equal'
steps='1'>0.5</grid>
</variable>
</FactorialDesign>
<FactorialDesign name='pbFactorial'>
<FactorialSettings>
<algorithmType>pb</algorithmType>
</FactorialSettings>
<variable name='varl' >

116

<distribution>aDistributionNameDefinedInDistributionBlock®6

</distribution>
<grid type='value' construction='custom' >0.02 0.5</grid>
</variable>

<variable name='VarGauss2' >
<distribution>aDistributionNameDefinedInDistributionBlock7

</distribution>
<grid type='CDF' construction='custom'>0.5 1.0</grid>
</variable>

</FactorialDesign>

</Samplers>

10.1.8 Ensemble Forward Sampling strategy

The Ensemble Forward sampling approach allows the user to combine multiple Forward sampling
strategies into one single strategy. For example, it can happen that a variable is more suitable for
a particular sampling strategy (e.g., a stochastic event modeled with a Monte Carlo approach) and
a second variable is more suitable for another sampling method (e.g., because part of a parametric
space modeled with a Grid-based approach). The specifications of this sampler must be defined
within a <EnsembleForward> XML block. This XML node accepts the following attributes:

e name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the EnsembleForward input block, the user needs to specify the sampling strategies that he
wants to combine together.
Currently, only the following strategies can be combined:

e <MonteCarlo>

e <Grid>

e <Stratiefied>

e <FactorialDesign>

e <ResponseSurfaceDesign>

e <CustomSampler>

117

For each of the above samplers, the input specifications can be found in the relative sections.

Example:

<Samplers>

<EnsembleForward name="testEnsembleForward">
<MonteCarlo name = "theMC">
<samplerInit> <limit>4</limit> </samplerInit>
<variable name="sigma">
<distribution>norm</distribution>
</variable>
</MonteCarlo>
<Grid name = "theGrid">
<variable name="x0">
<distribution>unif</distribution>
<grid construction="custom" type="value">0.02
0.5 0.6</grid>
</variable>
</Grid>
<Stratified name = "theStratified">
<variable name="z0">
<distribution>tri</distribution>
<grid construction="equal" steps="2"
type="CDF">0.2 0.8</grid>
</variable>
<variable name="y0">
<distribution>unif</distribution>
<grid construction="equal" steps="2"
type="value">0.5 0.8</grid>
</variable>
</Stratified>
<ResponseSurfaceDesign name = "theRSD">
<ResponseSurfaceDesignSettings>
<algorithmType>CentralComposite</algorithmType>
<centers>1, 2</centers>
<alpha>orthogonal</alpha>
<face>circumscribed</face>
</ResponseSurfaceDesignSettings>
<variable name="rho">
<distribution>unif</distribution>
<grid construction="custom" type="CDF">0.0
1.0</grid>

118

</variable>

<variable name="beta">
<distribution>tri</distribution>
<grid construction="custom" type="value">0.1

1.5</grid>
</variable>
</ResponseSurfaceDesign>
</EnsembleForward>

</Samplers>

Care should be used when using deterministic random seeds for EnsembleForward sampling.
The EnsembleForward sample will ignore any seeds set in any of its subset samplers; however, the
global random seed can be set by adding a <samplerInit> block with the <initialSeed>
block therein, with an integer value providing the seed. For example,

<Samplers>
<EnsembleForward name='testEnsembleForward'>
<samplerInit>
<initialSeed>42</initialSeed>
</samplerInit>

</EnsembleForward>

</Samplers>

Because RAVEN has a single global random number generator, this will set the seed for the full
calculation when the Step containing a run using this ForwardSampler is begun.

Note also variables that are defined from functions, as well as constants, need to be defined
outside the samplers of the ensemble sampler. An example is shown below.

Example:

<Samplers>
<EnsembleForward name='testEnsembleForward'>

<variable name='x3'>
<function>functl</function>

</variable>

<variable name='x4,x5'>
<function>funct2</function>

</variable>

<constant name='pi'>3.14159</constant>

119

<MonteCarlo name='notNeeded'>
<samplerInit>
<limit>3</limit>
</samplerInit>
<variable name='xl'>
<distribution>norm</distribution>
</wvariable>
</MonteCarlo>
<Grid name='notNeeded'>
<variable name='x2'>
<distribution>unif</distribution>
<grid construction='custom' type='value'>0.02
0.6</grid>
</variable>
</Grid>
</EnsembleForward>
</Samplers>

In this example note that:

e variables x1 and x2 are generated by the two samplers (Monte-Carlo and Grid respectively)
e variable x3 is generated from the function functl
e variables x4 and x5 are generated from the function funct2

e variables 23, x4 and x5 are defined outside the Monte-Carlo and Grid

10.1.9 Custom Sampling strategy

The Custom sampling approach allows the user to specify a predefined set of coordinates (in the
input space) that RAVEN should use to inquire the model. For example, the user can provide a CSV
file containing a list of samples that RAVEN should use. The specifications of this sampler must
be defined within a <CustomSampler> XML block. This XML node accepts the following
attributes:

e name, required string attribute, user-defined name of this Sampler. N.B. As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks (xml);

In the CustomSampler input block, the user needs to specify the variables need to be sam-
pled. As already mentioned, these variables are inputted within consecutive XML blocks called

120

<variable>. Note that if any variables are dependent on other dimensions (e.g. “time”), the
dependent dimensions need to be listed as variables as well.

In addition, the <Source> from which the samples need to be retrieved needs to be specified:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e nameInSource, optional string attribute, name of the variable to read from in
<Source>.
Default: Same as name.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

e <Source>, XML node, required parameter will specify the following attributes:

e class, required string attribute, class entity of the source where the samples need to
be retrieved from. It can be either Files or DataObjects.

e type, required string attribute, type of the source withing the previously explained
“class”. If class is Files, this attribute needs to be kept empty; otherwise it must be
one of the DataSet objects: PointSet, HistorySet, or DataSet.

Note: If the <Source> class is Files, the File needs to be a standard CSV file,
specified in the <Files> XML block in the RAVEN input.
In addition, it is important to notice that if in the <Source> the PointProbability and
ProbabilityWeight quantities are not found, the samples are assumed to come from a
MonteCarlo (from a statistical post-processing prospective).

e <index>, comma-separated integer, optional parameter indexes to use from the
<Source>. If provided, then only the listed indexes will be used. Indexes are zero-based;
that is, the first realization is indexed at O, the second at 1, and so forth. Default is for all
indices in the source to be used.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

121

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=*2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

Example:

<Samplers>

<Samplers>
<CustomSampler name="customSamplerDataObject'">
<Source class="DataObjects"
type="PointSet">outCustomSamplerFromFile</Source>
<variable name="x"/>
<variable name="y"/>

122

Table 1: samples.csv

y X zZ PointProbability ProbabilityWeight
0.725675246 0.031099304 0.984988317 0.1 0.2
0.565949127 0.028589754 1.13186372 0.1 0.2

0.72567754 0.031099304 0.967209238 0.1 0.2
0.565951633 0.028589754 1.111431662 0.1 0.2
0.725968307 0.031100307 0.98498835 0.1 0.2

<variable name="z"/>
</CustomSampler>
</Samplers>
<Samplers>
<CustomSampler name="customSamplerFile">
<Source class="Files" type="">samples.csv</Source>
<variable name="x"/>
<variable name="y"/>
<variable name="z"/>
</CustomSampler>
</Samplers>

</Samplers>

10.2 Dynamic Event Tree (DET) Samplers

The Dynamic Event Tree methodologies are designed to take the timing of events explicitly into
account, which can become very important especially when uncertainties in complex phenomena
are considered. Hence, the main idea of this methodology is to let a system code determine the
pathway of an accident scenario within a probabilistic environment. In this family of methods, a
continuous monitoring of the system evolution in the phase space is needed. In order to use the
DET-based methods, the generic driven code needs to have, at least, an internal trigger system
and, consequently, a “restart” capability. In the RAVEN framework, 4 different DET samplers are

available:

e Dynamic Event Tree (DET)

e Hybrid Dynamic Event Tree (HDET)

e Adaptive Dynamic Event Tree (ADET)

e Adaptive Hybrid Dynamic Event Tree (AHDET)

123

The ADET and the AHDET methodologies represent a hybrid between the DET/HDET and
adaptive sampling approaches. For this reason, its input requirements are reported in the Adaptive
Samplers’ section (10.3).

10.2.1 Dynamic Event Tree

The Dynamic Event Tree sampling approach is a sampling strategy that is designed to take the
timing of events, in transient/accident scenarios, explicitly into account. From an application point
of view, an N-Dimensional grid is built on the CDF space. A single simulation is spawned and a
set of triggers is added to the system code control logic. Every time a trigger is activated (one of
the CDF thresholds in the grid is exceeded), a new set of simulations (branches) is spawned. Each
branch carries its conditional probability. In the RAVEN code, the triggers are defined by specify-
ing a grid using a predefined discretization metric in the mode input space. RAVEN provides two
discretization metrics: 1) CDF, and 2) value. Thus, the trigger thresholds can be entered either in
probability or value space.

The specifications of this sampler must be defined within a <DynamicEventTree> XML
block. This XML node accepts the following attributes:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

e printEndXmlSummary, optional string/boolean attribute, controls the dumping of a
“summary” of the DET performed into an external XML.
Default: False.

e maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

In the <DynamicEventTree> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

124

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF', the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ’ value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction=’"equal’. The grid is going to be constructed equally-spaced
(type='value’) or equally probable (type='CDF’). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound) /steps

e construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds
(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

125

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=*“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

Example:

126

<Samplers>

<DynamicEventTree name='DETname'>
<variable name='varl'>
<distribution>aDistributionNameDefinedInDistributionBlockl
</distribution>
<grid type='value' construction='equal' steps='100' >1.0
201.0</grid>
</variable>
<variable name='var2'>
<distribution>aDistributionNameDefinedInDistributionBlock?2

</distribution>
<grid type='CDF' construction='equal' steps='5'>0 1</grid>
</variable>

<variable name='var3'>
<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='value' construction='equal' steps='10' >11.0
21.0</grid>
</variable>
<variable name='wvar4'>
<distribution>aDistributionNameDefinedInDistributionBlock4

</distribution>
<grid type='CDF' construction='equal' steps='5' >0.0
1.0</grid>
</variable>

<variable name='wvar5'>
<distribution>aDistributionNameDefinedInDistributionBlockb5
</distribution>
<grid type='value' construction='custom'>0.2 0.5
10.0</grid>
</variable>
<variable name='var6'>
<distribution>aDistributionNameDefinedInDistributionBlock®6

</distribution>
<grid type='CDF' construction='custom'>0.2 0.5 1.0</grid>
</variable>

</DynamicEventTree>

</Samplers>

127

10.2.2 Hybrid Dynamic Event Tree

The Hybrid Dynamic Event Tree sampling approach is a sampling strategy that represents an evo-
lution of the Dynamic Event Tree method for the simultaneous exploration of the epistemic and
aleatory uncertain space. In similar approaches, the uncertainties are generally treated by employ-
ing a Monte-Carlo sampling approach (epistemic) and DET methodology (aleatory). The HDET
methodology, developed within the RAVEN code, can reproduce the capabilities employed by this
approach, but provides additional sampling strategies to the user. The epistemic or epistemic-like
uncertainties can be sampled through the following strategies:

e Monte-Carlo;
e Grid sampling;
e Stratified (e.g., Latin Hyper Cube).

From a practical point of view, the user defines the parameters that need to be sampled by
one or more different approaches. The HDET module samples those parameters creating an N-
dimensional grid characterized by all the possible combinations of the input space coordinates
coming from the different sampling strategies. Each coordinate in the input space represents a
separate and parallel standard DET exploration of the uncertain domain. The HDET methodology
allows the user to explore the uncertain domain employing the best approach for each variable
kind. The addition of a grid sampling strategy among the usable approaches allows the user to
perform a discrete parametric study under aleatory and epistemic uncertainties.

Regarding the input requirements, the HDET sampler is a “sub-type” of the
<DynamicEventTree> sampler. For this reason, its specifications must be defined within a
<DynamicEventTree> block. This XML node accepts the following attributes:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

e printEndXmlSummary, optional string/boolean attribute, controls the dumping of a
“summary” of the DET performed into an external XML.
Default: False.

e maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

In the <DynamicEventTree> input block, the user needs to specify the variables to sam-
ple. As already mentioned, these variables are specified within consecutive <variable> XML
blocks:

128

e <variable>, XML node, required parameter can specify the following attribute:

name, required string attribute, user-defined name of this variable.

shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

<distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

<function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named ‘“evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

<grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
" CDF’, the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ' value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction=’'equal’. The grid is going to be constructed equally-spaced
(type='value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the [ower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s

129

bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound) / steps

e construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds
(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape="“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

130

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In order to activate the Hybrid Dynamic Event Tree sampler, the main
<DynamicEventTree> block needs to contain, at least, an additional sub-node called
<HybridSampler>. As already mentioned, the user can combine the Monte-Carlo, Stratified,
and Grid approaches in order to create a “pre-sampling” N-dimensional grid, from whose nodes
a standard DET method is employed. For this reason, the user can specify a maximum of three
<HybridSampler> sub-nodes (i.e. one for each of the available Forward samplers). This
sub-node needs to contain the following attribute:

e type, required string attribute, type of pre-sampling strategy to be used. Available options
are 'MonteCarlo’, 'Grid’,and ' Stratified’.

Independent of the type of “pre-sampler” that has been specified, the <HybridSampler>
must contain the variables that need to be sampled. As already mentioned, these variables are
specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape=“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

131

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index " 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>

132

</Samplers>

If a pre-sampling strategy type is either 'Grid’ or ’'Stratified’, within the
<variable> blocks, the user needs to specify the sub-node <grid>. As with the standard
DET, the content of this XML node depends on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type:

e 'CDF', the grid is going to be specified based on the cumulative distribution function
probability thresholds

e 'value’, the grid is going to be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed, indepen-
dent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the requirements
for other attributes change:

e construction="equal’. The grid is going to be constructed equally-spaced
(type='wvalue’) or equally probable (type='CDF’). This construction type requires
the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable discretization
steps.

This construction type requires that the content of the <grid> node represents the lower and
upper bounds (either in probability or value). Two values need to be specified; the lowest one
will be considered as the lower Bound, the largest, the upper Bound. The lower and upper
bounds are checked against the associated <distribution> bounds. If one or both of
them falls outside the distribution’s bounds, the code will raise an error. The stepSize is
determined as follows:

stepSize = (upper Bound — lower Bound) / steps

e construction=’custom’. The grid will be directly specified by the user. No addi-
tional attributes are needed. This construction type requires that the <grid> node contains
the actual mesh bins. For example, if the grid type is ' CDF’, in the body of <grid>, the
user will specify the CDF probability thresholds (nodalization in probability). All the bins
are checked against the associated <distribution> bounds. If one or more of them falls
outside the distribution’s bounds, the code will raise an error.

Example:

133

<Samplers>

<DynamicEventTree name='HybridDETname' print_end XML="True">
<HybridSampler type='MonteCarlo' limit='2'>
<variable name='varl' >
<distribution>aDistributionNameDefinedInDistributionBlock]
</distribution>
</variable>
<variable name='var2' >
<distribution>aDistributionNameDefinedInDistributionBlockZ
</distribution>
<grid type='CDF' construction='equal' steps='1l"
lowerBound='0.1'>0.1</grid>

</variable>
</HybridSampler>
<HybridSampler type='Grid'>
<!—-— Point sampler way (directly sampling the wvariable) -->

<variable name='wvar3' >
<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='CDF' construction='equal' steps='1l"
lowerBound='0.1'>0.1</grid>
</variable>
<variable name='wvar4d' >
<distribution>aDistributionNameDefinedInDistributionBlock4
</distribution>
<grid type='CDF' construction='equal' steps='1l"
lowerBound='0.1'>0.1</grid>

</variable>
</HybridSampler>
<HybridSampler type='Stratified'>
<!-— Point sampler way (directly sampling the wvariable)
——>

<variable name='varb5' >
<distribution>aDistributionNameDefinedInDistributionBlock]j
</distribution>
<grid type='CDF' construction='equal' steps='1l"
lowerBound='0.1'>0.1</grid>
</variable>
<variable name='varé6' >
<distribution>aDistributionNameDefinedInDistributionBlockd
</distribution>

134

<grid type='CDF' construction='equal' steps='1l"
lowerBound='0.1'>0.1</grid>

</variable>

</HybridSampler>

<!-—— DYNAMIC EVENT TREE INPUT (it goes outside an inner
block like HybridSamplerSettings) —-—>

<Distribution name='dist7'>
<distribution>aDistributionNameDefinedInDistributionBlock’

</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>
</Distribution>

</DynamicEventTree>

</Samplers>

10.3 Adaptive Samplers

The Adaptive Samplers family provides the possibility to perform smart sampling (also known
as adaptive sampling) as an alternative to classical “Forward” techniques. The motivation is that
system simulations are often computationally expensive, time-consuming, and high dimensional
with respect to the number of input parameters. Thus, exploring the space of all possible simulation
outcomes is unfeasible using finite computing resources. During simulation-based probabilistic
risk analysis, it is important to discover the relationship between a potentially large number of
input parameters and the output of a simulation using as few simulation trials as possible.

The description above characterizes a typical context for performing adaptive sampling where
a few observations are obtained from the simulation, a reduced order model (ROM) is built to
represent the simulation space, and new samples are selected based on the model constructed.
The reduced order model (see section 15.3) is then updated based on the simulation results of
the sampled points. In this way, an attempt is made to gain the most information possible with a
small number of carefully selected sample points, limiting the number of expensive trials needed
to understand features of the system space.

Currently, RAVEN provides support for the following adaptive algorithms:

Limit Surface Search

Adaptive Monte Carlo

Adaptive Dynamic Event Tree

Adaptive Hybrid Dynamic Event Tree

135

e Adaptive Sparse Grid

e Adaptive Sobol Decomposition

In the following paragraphs, the input requirements and a small explanation of the different
sampling methods are reported.

10.3.1 Limit Surface Search

The Limit Surface Search approach is an advanced methodology that employs a smart sampling
around transition zones that determine a change in the status of the system (limit surface). To
perform such sampling, RAVEN uses ROMs for predicting, in the input space, the location(s) of
these transitions, in order to accelerate the exploration of the input space in proximity of the limit
surface.

The specifications of this sampler must be defined within an <LimitSurfaceSearch>
XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <LimitSurfaceSearch> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

e This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

In addition to the <variable> nodes, the main XML node <Adaptive> needs to contain
two supplementary sub-nodes:

136

e <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

e limit, optional integer attribute, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

e forcelteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

e weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

e 'CDF’, the convergence is checked in terms of probability (Cumulative Distri-
bution Function). From a practical point of view, this means that full uncertain
domain is discretized in a way that the probability volume of each cell is going to
be equal to the tolerance specified in the body of the node <Convergence>

e 'value’, the convergence is checked on the hyper-volume in terms of variable
values.From a practical point of view, this means that full uncertain domain is
discretized in a way that the “volume” fraction of each cell is going to be equal to
the tolerance specified in the body of the node <Convergence>. In other words,
each cell volume is going to be equal to the total volume times the tolerance.

Default: CDF.

e persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted

tolerance before convergence is reported.
Default: 5.

e subGridTol, optional float attribute, this attribute is used to activate the multi-grid
approach (adaptive meshing) of the constructed evaluation grid (see attribute weight).
In case this attribute is specified, the final grid discretization (cell’s “volume content”
aka convergence confidence) is represented by the value here specified. The sampler
converges on the initial coarse grid, defined by the tolerance specified in the body of
the node <Convergence>. When the Limit Surface has been identified on the coarse
grid, the sampler starts refining the grid until the “volume content” of each cell is equal
to the value specified in this attribute (Multi-grid approach).

Default: None.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

e <batchStrategy>, string, optional field, defines how points should be selected within a
batch of size n where n is given by the <maxBatchSize> parameter below. Four options
are available:

137

"none’ If this is specified then the <maxBatchSize> parameter below will be
ignored and the functionality will replicate the LimitSurfaceSearch, in that the limit
surface will be rebuilt and the points will be re-scored after each trial is completed.

e '"naive’ The top n candidates will be queued for adaptive sampling before retraining
the limit surface and re-scoring the new candidate set.

e 'maxP’ The topology of the limit surface given the scoring function values will be
decomposed and the top n highest topologically persistent features (local maxima) will
be queued for adaptive sampling before retraining and re-scoring the new candidate set.

e "maxV’ The topology of the limit surface given the scoring function values will be
decomposed and the top n highest topological features (local maxima) will be queued
for adaptive sampling before retraining and re-scoring the new candidate set.

Default: none.

<maxBatchSize>, integer, optional field, specifies the number of points to select for
adaptive sampling before retraining the limit surface and re-scoring the candidates. This is
the equivalent of the n parameter used in the <batchStrategy> description.

Default: 1.

<scoring>, string, optional field, defines the scoring function to use on the candidate
limit surface points in order to select the next adaptive point. Two options are available:

e 'distance’ will scoring the candidate points by their distance to the closest realized
point, in this way preference is given to unexplored regions of the limit surface.

e 'distancePersistence’ augments the distance above by multiplying it with the
inverse persistence of a candidate point which measures how many times the label of
the candidate point has changed throughout the lifespan of the algorithm.

Default: distancePersistence.

<simplification>, float in the range [0,1], optional field, specifies the percent of the
scoring function range (on the candidate set) as the amount of topological simplification to
do before extracting the topological features from the candidate set (local maxima). This
only applies when the <batchStrategy> is set to 'maxP’ or 'maxV’. Thus, one may
end up with a batch size less than that specified by <maxBatchSize>.

Default: 0.

<thickness>, positive integer, optional field, specifies how much the limit surface should
be expanded (in terms of grid distance) when constructing a candidate set. A value of 1
implies only the points bounding the limit surface.

Default: 1.

138

e <threshold>, float in the range [0,1], optional field, once the candidates have been
ranked and selected, before queueing them for adaptive sampling, this value is used to
threshold any points whose score is less than this percentage of the scoring function range
(on the candidate set). Thus, one may end up with a batch size less than that specified by
<maxBatchSize>.

Default: 0

e Assembler Objects These objects are either required or optional depending on the function-
ality of the LimitSurfaceSearch Sampler. The objects must be listed with a rigorous syntax
that, except for the XML node tag, is common among all the objects. Each of these nodes
must contain 2 attributes that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it
can be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can
be ' ROM’, ' External’, etc.

The LimitSurfaceSearch approach requires or optionally accepts the following object types:

e <Function>, string, required field, the body of this XML block needs to con-
tain the name of an external function object defined within the <Functions>
main block (see Section 16). This object represents the boolean function that de-
fines the transition boundaries. This function must implement a method called
__residuumSign (self), that returns either -1 or 1, depending on the system con-
ditions (see Section 16.

e <ROM>,, string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 15.3). The ROM here
specified is going to be used as “acceleration model” to speed up the convergence of
the sampling strategy. The <Target> XML node in the ROM input block (within
the <Models> section) needs to match the name of the goal <Function> (e.g. if
the goal function is named “transitionldentifier”, the <Target> of the ROM needs to
report the same name: <Target>transitionldentifier<Target>).

e <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObject s> block (see Section 12).
The object here specified must be input as <Output> in the Steps that employ this
sampling strategy. The Limit Surface Search sampling accepts “DataObjects” of type
“PointSet” only.

Example:

<Samplers>

139

<LimitSurfaceSearch name='LSSName'>
<ROM class='Models' type='ROM'>ROMname</ROM>
<Function class='Functions' type='External'
>FunctionName</Function>
<TargetEvaluation class='DataObjects'
type='PointSet'>DataName</TargetEvaluation>

<Convergence limit='3000' forcelteration='False'
weight="'CDF' subGridTol='le—-4' persistence='5"'>
le-2

</Convergence>

<variable name='varl'>
<distribution>aDistributionNameDefinedInDistributionBlockl
</distribution>
</variable>
<variable name='var2'>
<distribution>aDistributionNameDefinedInDistributionBlock?2
</distribution>
</variable>
<variable name='wvar3'>
<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
</variable>
</LimitSurfaceSearch>

</Samplers>

Batch sampling Example:

<Samplers>

<LimitSurfaceSearch name='LSBSName'>
<ROM class='Models' type='ROM'>ROMname</ROM>
<Function class='Functions' type='External'
>FunctionName</Function>
<TargetEvaluation class='DataObjects'
type='PointSet'>DataName</TargetEvaluation>

<Convergence 1limit='3000' forcelteration='False'
weight="'CDF' subGridTol='le-4' persistence='5"'>
le-2

</Convergence>

<scoring>distancePersistence</scoring>
<batchStrategy>maxP</batchStrategy>
<thickness>1</thickness>

140

<maxBatchSize>4</maxBatchSize>
<variable name='varl'>
<distribution>aDistributionNameDefinedInDistributionBlockl
</distribution>
</variable>
<variable name='var2'>
<distribution>aDistributionNameDefinedInDistributionBlock?2
</distribution>
</variable>
<variable name='var3'>
<distribution>aDistributionNameDefinedInDistributionBlock3
</distribution>
</variable>
</LimitSurfaceSearch>

</Samplers>

Associated External Python Module:

def _ residuumSign (self):
if self.whatEverValue < self.OtherValue
return 1
else:
return -1

10.3.2 Adaptive Monte Carlo

The <AdaptiveMonteCarlo> approach is an extension of the <MonteCarlo> sampler.
However, instead of having a predefined number of samples, the <AdaptiveMonteCarlo>
sampler continues sampling until the standard error of all the desired metrics are less than the
specified tolerance.

The specifications of this sampler must be defined within an <AdaptiveMonteCarlo>
XML block.

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <AdaptiveMonteCarlo> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>

141

XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

name, required string attribute, user-defined name of this variable.

shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

<distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

<function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

name, required string attribute, user-defined name of this constant.

shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=*“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

142

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In addition to the <variable> nodes, the main <AdaptiveMonteCarlo> node needs to
contain the following supplementary sub-nodes:

e <Convergence> recognizes the following child nodes:

e <limit>, integer required field, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

e <forcelteration>, boolean optional field, this attribute controls if at least a num-
ber of iterations equal to limit must be performed.
Default: False.

e <persistence>, integer optional field, offers an additional convergence check. It
represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.

Default: 5.

e <"metric">, comma separated string list, required field, specifications for the ag-
gregate metrics on which <AdaptiveMonteCarlo> will attempt to converge. The
name of each node is the requested metric. The text of the node is a comma-separated

143

list of the parameters for which the metric should be calculated. See the example below.

<AdaptiveMonteCarlo> will attempt to converge the standard errors of the re-
quested metrics. Currently the metrics available are:

e expectedValue: expected value or mean

e median: median

e variance: variance

e sigma: standard deviation

e skewness: skewness

e Kkurtosis: excess kurtosis (also known as Fisher’s kurtosis)

The nodes containing metrics need to contain the following attributes:

o prefix, required string attribute, user-defined prefix for the given metric. For
scalar quantifies, RAVEN will define a variable with name defined as: “prefix”

(134l

+ “.” + “parameter name”. For example, if we define “mean” as the prefix for
expectedValue, and parameter “x”, then variable “mean x” will be defined by
RAVEN. For matrix quantities, RAVEN will define a variable with name defined

[T [T

as: “prefix” + “.” + “target parameter name” + “_” + “feature parameter name”.
For example, if we define “sen” as the prefix for sensitivity, target “’y” and feature
“x”, then variable “sen_y _x” will be defined by RAVEN. Note: These variable will
be used by RAVEN for the internal calculations. It is also accessible by the user
through DataObjects and OutStreams.

e tol, required float attribute, convergence tolerance for the standard error of the

metric.

RAVEN will define a variable with name defined as: “prefix for given metric”
+ “.ste.” + “parameter name” to store the standard error of the given metric
with respect to the given parameter. This variable needs to be included in the
<TargetEvaluation> <DataObject> which is an output of the <Step> in
which the <AdaptiveMonteCarlo> is used. This variable is also available for
output to the <SolutionExport> <DataObjec>.

Note: When defining the metrics to use, it is possible to have multiple nodes with
the same name. For example, if a problem has inputs X1, and X2, and the responses
are Y1, Y2, it is possible that the desired metrics are the <sigma> of Y'1,and Y2 on
same tolerance, and <expectedValue> of Y1,and Y2 on different tolerance. The
first has the parameters Y'1, Y2 in the same node with one tolerance attribute, while
the second need to divide into two nodes. One has target Y1 and another one has
target Y2 instead. This could reduce some computation effort in problems with many
responses or inputs. An example of this is shown below.

144

In summary, the <convergence> node contains the information that is needed in order to
control the <AdaptiveMonteCarlo> sampler’s convergence criteria.

e <initialSeed>, integer, optional field, initial seeding of random number generator for
Monte Carlo sampler. By default, RAVEN uses an internal static seed.
Default: 20021986

e Assembler Objects These objects are either required or optional depending on the function-
ality of the AdaptiveMonteCarlo Sampler. The objects must be listed with a rigorous syntax
that, except for the XML node tag, is common among all the objects. Each of these nodes
must contain 2 attributes that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it
can be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can
be 'ROM’, ' External’, etc.

The AdaptiveMonteCarlo approach requires or optionally accepts the following object
types:

e <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObject s> block (see Section 12).
The adaptive sampling accepts “DataObjects” of type “PointSet” only.

Example:
<Samplers>
<AdaptiveMonteCarlo name = 'AdaptiveName'>
<TargetEvaluation class = 'DataObjects' type =
'PointSet'>DataName</TargetEvaluation>
<Convergence>

<forcelteration>False</forceIteration>
<limit>30</1limit>
<persistence>6</persistence>
<expectedValue prefix="mean"
tol="1le-1">yl, y2</expectedvValue>
<sigma prefix="sigma" tol="6e-2">yl</sigma>
<sigma prefix="sigma" tol="5e-2">y2</sigma>
</Convergence>
<variable name = 'varl'>
<distribution>
aDistributionNameDefinedInDistributionBlockl

145

</distribution>
</variable>
<variable name = 'var2'>
<distribution>
aDistributionNameDefinedInDistributionBlock?2
</distribution>
</wvariable>
<variable name = 'var3'>
<distribution>
aDistributionNameDefinedInDistributionBlock3
</distribution>
</variable>
</AdaptiveMonteCarlo>

</Samplers>

10.3.3 Adaptive Dynamic Event Tree

The Adaptive Dynamic Event Tree approach is an advanced methodology employing a smart
sampling around transition zones that determine a change in the status of the system (limit surface),
using the support of a Dynamic Event Tree methodology. The main idea of the application of the
previously explained adaptive sampling approach to the DET comes from the observation that the
DET, when evaluated from a limit surface perspective, is intrinsically adaptive. For this reason, it
appears natural to use the DET approach to perform a goal-function oriented pre-sampling of the
input space.

RAVEN uses ROMs for predicting, in the input space, the location(s) of these transitions, in
order to accelerate the exploration of the input space in proximity of the limit surface.

The specifications of this sampler must be defined within an
<AdaptiveDynamicEventTree> XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

e printEndXmlSummary, optional string/boolean attribute, this attribute controls the
dumping of a “summary” of the DET performed in to an external XML.
Default: False.

e maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

146

e mode, optional string attribute, controls when the adaptive search needs to begin. Two
options are available:

’post’, if this option is activated, the sampler first performs a standard Dynamic
Event Tree analysis. At end of it, it uses the outcomes to start the adaptive search in
conjunction with the DET support.

"online’, if this option is activated, the adaptive search starts at the beginning, dur-
ing the initial standard Dynamic Event Tree analysis. Whenever a transition is detected,
the Adaptive Dynamic Event Tree starts its goal-oriented search using the DET as
support;

Default: post.

e updateGrid, optional boolean attribute, if true, each adaptive request is going to update
the meshing of the initial DET grid.
Default: True.

In the <AdaptiveDynamicEventTree> input block, the user needs to specify the variables
to sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

name, required string attribute, user-defined name of this variable.

shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

<distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

<function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

147

e <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF', the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ’ value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction=’'equal’. The grid is going to be constructed equally-spaced
(type='wvalue’) or equally probable (type=’CDF'). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the lower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound) /steps

e construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds
(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="“2,3" will shape the values into a 2
by 3 matrix, while shape=“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required

148

values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In addition to the <variable> nodes, the main <AdaptiveDynamicEventTree> node
needs to contain two supplementary sub-nodes:

e <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

e limit, optional integer attribute, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

e forcelteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

149

e weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

e 'CDF'’, the convergence is checked in terms of probability (Cumulative Distri-
bution Function). From a practical point of view, this means that full uncertain
domain is discretized in a way that the probability volume of each cell is going to
be equal to the tolerance specified in the body of the node <Convergence>

e 'value’, the convergence is checked on the hyper-volume in terms of variable
values.From a practical point of view, this means that full uncertain domain is
discretized in a way that the “volume” fraction of each cell is going to be equal to
the tolerance specified in the body of the node <Convergence>. In other words,
each cell volume is going to be equal to the total volume times the tolerance.

Default: CDF.

e persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.

Default: 5.

e subGridTol, optional float attribute, this attribute is used to activate the multi-grid
approach (adaptive meshing) of the constructed evaluation grid (see attribute weight).
In case this attribute is specified, the final grid discretization (cell’s “volume content”
aka convergence confidence) is represented by the value here specified. The sampler
converges on the initial coarse grid, defined by the tolerance specified in the body of
the node <Convergence>. When the Limit Surface has been identified on the coarse
grid, the sampler starts refining the grid until the “volume content” of each cell is equal
to the value specified in this attribute (Multi-grid approach).

Default: None.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

Assembler Objects These objects are either required or optional depending on the function-
ality of the AdaptiveDynamicEventTree Sampler. The objects must be listed with a rigorous
syntax that, except for the XML node tag, is common among all the objects. Each of these
nodes must contain 2 attributes that are used to identify them within the simulation frame-
work:

e class, required string attribute, the main “class” of the listed object. For example, it
can be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can
be "ROM’, 'External’, etc.

The AdaptiveDynamicEventTree approach requires or optionally accepts the following ob-
ject types:

150

e <Function>, string, required field, the body of this XML block needs to con-
tain the name of an external function object defined within the <Functions>
main block (see Section 16). This object represents the boolean function that de-
fines the transition boundaries. This function must implement a method called
__residuumSign (self), that returns either -1 or 1, depending on the system con-
ditions (see Section 16.

e <ROM>,, string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 15.3). The ROM here
specified is going to be used as “acceleration model” to speed up the convergence of
the sampling strategy. The <Target> XML node in the ROM input block (within
the <Models> section) needs to match the name of the goal <Function> (e.g. if
the goal function is named “transitionldentifier”, the <Target> of the ROM needs to
report the same name: <Target>transitionldentifier<Target>).

e <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObject s> block (see Section 12).
The adaptive sampling accepts “DataObjects” of type “PointSet” only.

Example:
<Samplers>
<AdaptiveDynamicEventTree name = 'AdaptiveName'>
<ROM class = 'Models' type = 'ROM'ROMname</ROM>
<Function class = 'Functions' type =
'External'>FunctionName</Function>
<TargetEvaluation class = 'DataObjects' type =
'PointSet '>DataName</TargetEvaluation>
<Convergence limit = '3000' subGridTol= '0.001'
forceIteration = 'False' weight = 'CDF'
subGriTol="'"'"'le-5' persistence = '5'>
le-2
</Convergence>
<variable name = 'wvarl'>
<distribution>
aDistributionNameDefinedInDistributionBlockl
</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>
<variable name = 'var2'>
<distribution>

aDistributionNameDefinedInDistributionBlock?2

151

</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>

</variable>
<variable name = 'var3'>
<distribution>
aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>

</AdaptiveDynamicEventTree>

</Samplers>

Associated External Python Module:

def _ residuumSign (self) :
if self.whatEverValue < self.OtherValue:
return 1
else:
return -1

10.3.4 Adaptive Hybrid Dynamic Event Tree

The Adaptive Hybrid Dynamic Event Tree approach is an advanced methodology employing
a smart sampling around transition zones that determine a change in the status of the system
(limit surface), using the support of the Hybrid Dynamic Event Tree methodology. Practically,
this methodology represents a conjunction between the previously described Adaptive DET and
the Hybrid DET method for the treatment of the epistemic variables.

Regarding the input requirements, the AHDET sampler is a “sub-type” of the
<AdaptiveDynamicEventTree> sampler. For this reason, its specifications must be defined
within a <AdaptiveDynamicEventTree> block.

The specifications of this sampler must be defined within an
<AdaptiveDynamicEventTree> XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

e printEndXmlSummary, optional string/boolean attribute, this attribute controls the
dumping of a “summary” of the DET performed in to an external XML.

152

Default: False.

e maxSimulationTime, optional float attribute, this attribute controls the maximum “mis-
sion” time of the simulation underneath.
Default: None.

e mode, optional string attribute, controls when the adaptive search needs to begin. Two
options are available:

e 'post’, if this option is activated, the sampler first performs a standard Dynamic
Event Tree analysis. At end of it, it uses the outcomes to start the adaptive search in
conjunction with the DET support.

e 'online’, if this option is activated, the adaptive search starts at the beginning, dur-
ing the initial standard Dynamic Event Tree analysis. Whenever a transition is detected,
the Adaptive Dynamic Event Tree starts its goal-oriented search using the DET as
support;

Default: post.

e updateGrid, optional boolean attribute, if true, each adaptive request is going to update
the meshing of the initial DET grid.
Default: True.

In the <AdaptiveDynamicEventTree> input block, the user needs to specify the
variables to sample. As already mentioned, these variables are specified within consecutive
<variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape=*10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

153

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <grid>, space separated floats, required field, the content of this XML node depends
on the definition of the associated attributes:

e type, required string attribute, user-defined discretization metric type: 1)
' CDF' , the grid will be specified based on cumulative distribution function proba-
bility thresholds, and 2) ' value’, the grid will be provided using variable values.

e construction, required string attribute, how the grid needs to be constructed,
independent of its type (i.e. ' CDF’ or ' value’).

Based on the construction type, the content of the <grid> XML node and the
requirements for other attributes change:

e construction=’'equal’. The grid is going to be constructed equally-spaced
(type='value’) or equally probable (type=’CDF’). This construction type
requires the definition of additional attributes:

e steps, required integer attribute, number of equally spaced/probable dis-
cretization steps.

This construction type requires that the content of the <grid> node represents
the lower and upper bounds (either in probability or value). Two values need to
be specified; the lowest one will be considered as the [ower Bound, the largest,
the upper Bound. The lower and upper bounds are checked against the associated
<distribution> bounds. If one or both of them falls outside the distribution’s
bounds, the code will raise an error. The stepSize is determined as follows:
stepSize = (upper Bound — lower Bound) /steps

e construction=’custom’. The grid will be directly specified by the user. No
additional attributes are needed. This construction type requires that the <grid>
node contains the actual mesh bins. For example, if the grid type is ' CDF’,
in the body of <grid>, the user will specify the CDF probability thresholds
(nodalization in probability). All the bins are checked against the associated
<distribution> bounds. If one or more of them falls outside the distribu-
tion’s bounds, the code will raise an error.

Note: The <grid> node is only required if a <distribution> node is supplied.
In the case of a <function> node, no grid information is requested.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

154

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=*2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In addition to the <variable> nodes, the main <AdaptiveDynamicEventTree> node
needs to contain two supplementary sub-nodes:

e <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the definition of other attributes that might be defined in this XML node:

e limit, optional integer attribute, the maximum number of adaptive samples (itera-
tions).
Default: infinite.

155

e forcelteration, optional boolean attribute, this attribute controls if at least a
number of iterations equal to limit must be performed.
Default: False.

e weight, optional string attribute (case insensitive), defines on what the convergence
check needs to be performed.

e 'CDF’, the convergence is checked in terms of probability (Cumulative Distri-
bution Function). From a practical point of view, this means that full uncertain
domain is discretized in a way that the probability volume of each cell is going to
be equal to the tolerance specified in the body of the node <Convergence>

e 'value’, the convergence is checked on the hyper-volume in terms of variable
values.From a practical point of view, this means that full uncertain domain is
discretized in a way that the “volume” fraction of each cell is going to be equal to
the tolerance specified in the body of the node <Convergence>. In other words,
each cell volume is going to be equal to the total volume times the tolerance.

Default: CDF.

e persistence, optional integer attribute, offers an additional convergence check.
It represents the number of times the computed error needs to be below the inputted
tolerance before convergence is reported.

Default: 5.

e subGridTol, optional float attribute, this attribute is used to activate the multi-grid
approach (adaptive meshing) of the constructed evaluation grid (see attribute weight).
In case this attribute is specified, the final grid discretization (cell’s “volume content”
aka convergence confidence) is represented by the value here specified. The sampler
converges on the initial coarse grid, defined by the tolerance specified in the body of
the node <Convergence>. When the Limit Surface has been identified on the coarse
grid, the sampler starts refining the grid until the “volume content” of each cell is equal
to the value specified in this attribute (Multi-grid approach).

Default: None.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

e Assembler Objects These objects are either required or optional depending on the function-
ality of the AdaptiveDynamicEventTree Sampler. The objects must be listed with a rigorous
syntax that, except for the XML node tag, is common among all the objects. Each of these
nodes must contain 2 attributes that are used to identify them within the simulation frame-
work:

e class, required string attribute, the main “class” of the listed object. For example, it
can be 'Models’, ' Functions’, etc.

156

e type, required string attribute, the object identifier or sub-type. For example, it can
be 'ROM’, ' External’, etc.

The AdaptiveDynamicEventTree approach requires or optionally accepts the following ob-
ject types:

e <Function>, string, required field, the body of this XML block needs to con-
tain the name of an external function object defined within the <Functions>
main block (see Section 16). This object represents the boolean function that de-
fines the transition boundaries. This function must implement a method called
__residuumSign (self), that returns either -1 or 1, depending on the system con-
ditions (see Section 16.

e <ROM>,, string, optional field, if used, the body of this XML node must contain the
name of a ROM defined in the <Models> block (see Section 15.3). The ROM here
specified is going to be used as “acceleration model” to speed up the convergence of
the sampling strategy. The <Target> XML node in the ROM input block (within
the <Models> section) needs to match the name of the goal <Function> (e.g. if
the goal function is named “transitionldentifier”, the <Target> of the ROM needs to
report the same name: <Target>transitionldentifier<Target>).

e <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObject s> block (see Section 12).
The adaptive sampling accepts “DataObjects” of type “PointSet” only.

As it can be noticed, the basic specifications of the Adaptive Hybrid Dynamic Event Tree
method are consistent with the ones for the ADET methodology. In order to activate the Adap-
tive Hybrid Dynamic Event Tree sampler, the main <Adapt iveDynamicEventTree> block
needs to contain an additional sub-node called <HybridSampler>. This sub-node needs to con-
tain the following attribute:

e type, required string attribute, type of pre-sampling strategy to be used. Up to now only
one option is available:

e 'LimitSurface’. With this option, the epistemic variables here listed are going
to be part of the LS search. This means that the discretization of the domain of these
variables is determined by the <Convergece> node.

Independent of the type of HybridSampler that has been specified, the <HybridSampler> must
contain the variables that need to be sampled. As already mentioned, these variables are specified
within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

157

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape=“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
i1s the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

158

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in

"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

Example:

<Samplers>

<AdaptiveDynamicEventTree name = 'AdaptiveName'>
<ROM class = 'Models' type = 'ROM'ROMname</ROM>
<Function class = 'Functions' type =
'External'>FunctionName</Function>
<TargetEvaluation class = 'DataObjects' type =
'PointSet'>DataName</TargetEvaluation>
<Convergence limit = '3000' subGridTol= '0.001'
forcelteration = 'False' weight = 'CDF'
subGriTol='"'"'le-5' persistence = '5'>
le-2
</Convergence>
<HybridSampler type='LimitSurface'>
<variable name = 'epistemicVarl'>
<distribution>
aDistributionNameDefinedInDistributionBlockl
</distribution>
</variable>
<variable name = 'epistemicVar2'>
<distribution>
aDistributionNameDefinedInDistributionBlock?2

159

</distribution>
</variable>
</HybridSampler>
<variable name = 'varl'>
<distribution>
aDistributionNameDefinedInDistributionBlock3
</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>
<variable name = 'var2'>
<distribution>
aDistributionNameDefinedInDistributionBlock4
</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>
<variable name = 'var3'>
<distribution>
aDistributionNameDefinedInDistributionBlockb
</distribution>
<grid type='CDF' construction='custom'>0.1 0.8</grid>
</variable>

</AdaptiveDynamicEventTree>

</Samplers>

Associated External Python Module:

def _ residuumSign(self):
if self.whatEverValue < self.OtherValue:

return 1

else:

return -1

10.3.5 Adaptive Sparse Grid

The Adaptive Sparse Grid approach is an advanced methodology that employs an intelligent
search for the most suitable sparse grid quadrature to characterize a model. To perform such
sampling, RAVEN adaptively builds an index set and generates sparse grids in a similar manner to
Sparse Grid Collocation samplers. In each iterative step, the adaptive index set determines the next
possible quadrature orders to add in each dimension, and determines the index set point that would

160

offer the largest impact to one of the convergence metrics. This process continues until the total
impact of all the potential index set points is less than tolerance. For many models, this function
converges after fewer runs than a traditional Sparse Grid Collocation sampling. However, it should
be noted that this algorithm fails in the event that the partial derivative of the response surface with
respect to any single input dimension is zero at the origin of the input domain. For example, the
adaptive algorithm fails for the model f(z) = z - y.

The specifications of this sampler must be defined within an <Adaptive Sparse Grid>
XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Adaptive Sparse Grid> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

name, required string attribute, user-defined name of this variable.

shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

<distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

<function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

161

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape="2,3" will shape the values into a 2
by 3 matrix, while shape="10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In addition to the <variable> nodes, the main XML node <AdaptiveSparseGrid>
needs to contain the following supplementary sub-nodes:

162

e <Convergence>, float, required field, Convergence tolerance. The meaning of this toler-
ance depends on the target attribute of this node.

e target, required string attribute, the metric for convergence. The following metrics
are available: ' variance’, which converges the sparse quadrature integration of the
second moment of the model.

e maxPolyOrder, optional integer attribute, limits the maximum size equivalent poly-
nomial for any one dimension.
Default: 10.

e persistence, optional integer attribute, defines the number of index set points that
are required to be found before calculation can exit. Setting this to a higher value can
help if the adaptive process is not finding significant indices on its own.

Default: 2.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

e <convergenceStudy>, optional node, if included, triggers writing state points at partic-
ular numbers of model solves for the purpose of a convergence study. The study is performed
by writing XML output files as described in the OutStreams for ROMs at the state points re-
quested, using “all’ as the requested <what> values. The state points are identified when
a certain number of model runs is passed, as specified by the <runStatePoints> node.
This node has the following sub-nodes to define its parameters:

e <runStatePoints>, list of integers, required node, lists the number of model runs
at which state points should be written. Note that these will be written when the re-
quested number of runs is met or passed, so the actual value is often somewhat more
than the requested value, and the exact value will be listed in the XML output.

e <baseFilename>, string, optional node, if specified determines the base file name
for the state point outputs. If not specified, defaults to " out _’ .

e <pickle>, no text, optional node, if this node is included, serialized (pickled) ver-
sions of the ROM at each of the run states is also created in the working directory, with
the format <baseFilename><numRuns>.pk, such as out _100.pk.

e <logFile>, optional node, if included, the log file onto which the adaptive step progress
can be printed. The log includes the values of included polynomial coefficients as well as
the expected impacts of polynomial coefficients not yet included. This is different from the
convergenceStudy print, which will give statistical moments at certain steps.

e <maxRuns>, optional node, if included, the adaptive sampler will track the number of
computational solves necessary to construct the associated GaussPolynomialROM. If at any
point the number of solves exceeds the value given, it will not initiate any additional solves,
and will exit when existing solves finish.

163

Assembler Objects These objects are either required or optional depending on the functionality of
the Adaptive Sparse Grid Sampler. The objects must be listed with a rigorous syntax that, except
for the XML node tag, is common among all the objects. Each of these nodes must contain 2
attributes that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it can
be 'Models’, 'Functions’, etc.
e type, required string attribute, the object identifier or sub-type. For example, it can be

"ROM’, 'External’, etc.

The Adaptive Sparse Grid approach requires or optionally accepts the following object types:

e <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

e <TargetEvaluation>, string, required field, represents the container where the system
evaluations are stored. From a practical point of view, this XML node must contain the name
of a data object defined in the <DataObjects> block (see Section 12). The Adaptive
Sparse Grid sampling accepts “DataObjects” of type “PointSet” only.

Example:

<Samplers>

<AdaptiveSparseGrid name="ASG" verbosity='debug'>
<Convergence target='coeffs'>le-2</Convergence>
<variable name="x1">
<distribution>UniDist</distribution>
</variable>
<variable name="x2">
<distribution>UniDist</distribution>

</variable>
<ROM class = 'Models' type = 'ROM'>gausspolyrom</ROM>
<TargetEvaluation class = 'DataObjects' type =

'PointSet'>solns</TargetEvaluation>
</AdaptiveSparseGrid>

</Samplers>

164

Like in the SparseGridCollocation sampler, if the covariance matrix is provided and the
input parameters are assumed to have the multivariate normal distribution, the AdaptiveS-
parseGrid can be also used. This means one creates the sparse grids of variables listed by
<latentVariables> in the transformed space. If this is the case, the user needs to provide
additional information, i.e. the <transformation> under <MultivariateNormal> of
<Distributions> (more information can be found in Section 9.2). In addition, the node
<variablesTransformation> is also required for AdaptiveSparseGrid sampler. This
node is used to transform the variables specified by <latentVariables> in the transformed
space of input into variables specified by <manifestVariables> in the input space. The vari-
ables listed in <latentVariables> should be predefined in <variable>, and the variables
listed in <manifestVariables> are used by the <Models>.

e <variablesTransformation>, optional field. this XML node accepts one attribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined latent
variables that are used for the variables transformation. All the variables listed under
this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-defined
manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field, user-
defined manifest variables indices paired with <manifestVariables>. These in-
dices indicate the position of manifest variables associated with multivariate normal
distribution defined in the XML node <Distributions>. The indices should be
postive integer. If not provided, the code will use the positions of manifest variables
listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables transfor-
mation. The currently available method is "pea’.

<Models>
<ExternalModel ModuleTolLoad="lorentzAttractor_ noK"
name="PythonModule" subType="">
<variables>sigma, rho, beta, x,v, z,time, x0,y0, z0</variables>

</ExternalModel>
<ROM name="gausspolyrom" subType="GaussPolynomialRom">

165

<Target>ans</Target>

<Features>x1l,yl, z1</Features>

<IndexSet>TensorProduct</IndexSet>

<PolynomialOrder>1</PolynomialOrder>
</ROM>

</Models>
<Distributions>

<MultivariateNormal name='MVNDist' method='pca'>
<transformation>
<rank>3</rank>
</transformation>
<mu>0.0 1.0 2.0</mu>
<covariance type="abs">

1.0 0.6 -0.4

0.6 1.0 0.2

-0.4 0.2 0.8
</covariance>

</MultivariateNormal>
</Distributions>
<Samplers>

<AdaptiveSparseGrid name='ASC'>
<variable name='x0'>
<distribution dim='1l'>MVNDist</distribution>
</variable>
<variable name='y0'>
<distribution dim='2'>MVNDist</distribution>
</variable>
<variable name='z0'>
<distribution dim='3'>MVNDist</distribution>
</variable>
<variablesTransformation model="PythonModule">
<latentVariables>x1,yl, z1</latentVariables>
<manifestVariables>x0, y0, z0</manifestVariables>
<method>pca</method>
</variablesTransformation>
<ROM class = 'Models' type = 'ROM'>gausspolyrom</ROM>

166

<TargetEvaluation class = 'DataObjects' type =
'PointSet'>solns</TargetEvaluation>
</AdaptiveSparseGrid>

</Samplers>

10.3.6 Adaptive Sobol Decomposition

The Adaptive Sobol Decomposition approach is an advanced methodology that decomposes an
uncertainty space into subsets and adaptively includes the most influential ones. For example, for a
response function f(a, b, ¢), the full list of subsets include (a), (b), (¢), (a,b), (a,c), (b, c), (a, b, c).
A Gauss Polynomial ROM is constructed for each included subset using the Adaptive Sparse Grid
sampler. The importance of each subset is estimated based on the importance of preceding subsets;
that is, the impact of (a, b) on the representation of f is estimated using the impact of (a) and (b).
Because of the excellent performance of Gauss Polynomial ROMs for small-dimension spaces,
this sampler used to construct an HDMR ROM can be very efficient. Note that the ROM specified
for this sampler must be an HDMRRom specified in the Models block.

The specifications of this sampler must be defined within an <Adaptive Sobol> XML
block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

Inthe <Adaptive Sobol> inputblock, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

167

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=*2,3" will shape the values into a 2
by 3 matrix, while shape=“10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ 1in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable " A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>

168

<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In addition to the <variable> nodes, the main XML node <AdaptiveSobol> needs to
contain the following supplementary sub-nodes:

e <Convergence>, required node, Convergence properties. This node contains the follow-
ing properties that can be set by sub-nodes:

<relTolerance>, required float, the relative tolerance to converge. This will com-
pare to the estimate of subset polynomial errors and additional subset polynomials over
the variance of the expansion so far to determine convergence.

<maxRuns>, optional integer field, a limit for the number of model calls. Once this
limit is reached, no additional subsets will be generated or considered; however, exist-
ing subsets will continue to be trained. If not specified, no limit on solves is imposed.

<maxSobolOrder>, optional integer field, the largest polynomials orders to use in
subset GaussPolynomialRom objects. If specified, polynomial indices with a value
larger than the value given will be rejected during adaptive construction.

<progressParam>, optional float field, a favoritism parameter ranging between 0
and 2. At 0, the algorithm will always prefer adding polynomials to adding new subsets
in the HDMR expansion. At 2, the opposite is true. Default is 1.

<logFile>, optional string field, a file to which adaptive progress is recorded. If
specified, each adaptive step will trigger printing progress to the file given, including
the estimated error at the step, the next adaptive step to take, the coefficient of each
polynomial within each gPC expansion, and the actual and expected Sobol sensitivities
of each HDMR subset. Default is no printing.

<subsetVerbosity>, optional string field, the verbosity for components con-
structed during the adaptive HDMR process. Options are silent, quiet, all, or debug,
in order of verbosity. If an invalid entry is provided, will resort to default. Default is
quiet.

In summary, this XML node contains the information that is needed in order to control this
sampler’s convergence criterion.

e <convergenceStudy>, optional node, if included, triggers writing state points at partic-
ular numbers of model solves for the purpose of a convergence study. The study is performed

169

by writing XML output files as described in the OutStreams for ROMs at the state points re-
quested, using “all’ as the requested <what> values. The state points are identified when
a certain number of model runs is passed, as specified by the <runStatePoints> node.
This node has the following sub-nodes to define its parameters:

e <runStatePoints>, list of integers, required node, lists the number of model runs
at which state points should be written. Note that these will be written when the re-
quested number of runs is met or passed, so the actual value is often somewhat more
than the requested value, and the exact value will be listed in the XML output.

e <baseFilename>, string, optional node, if specified determines the base file name
for the state point outputs. If not specified, defaults to " out _’ .

e <pickle>, no text, optional node, if this node is included, serialized (pickled) ver-
sions of the ROM at each of the run states is also created in the working directory, with
the format <baseFilename><numRuns>.pk, such as out 100 . pk.

Like the Sobol, if multivariate normal distribution is provided, the following node need to
be specified:

e e <variablesTransformation>, optional field. this XML node accepts one at-
tribute:

e distribution, required string attribute, the name for the distribution defined
in the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

In addition, this XML node also accepts three children nodes:

e <latentVariables>, comma separated string, required field, user-defined
latent variables that are used for the variables transformation. All the variables
listed under this node should be also mentioned in <variable>.

e <manifestVariables>, comma separated string, required field, user-
defined manifest variables that can be used by the model.

e <manifestVariablesIndex>, comma separated string, optional field,
user-defined manifest variables indices paired with <manifestVariables>.
These indices indicate the position of manifest variables associated with multi-
variate normal distribution defined in the XML node <Distributions>. The
indices should be postive integer. If not provided, the code will use the positions
of manifest variables listed in <manifestVariables> as the indices.

e <method>, string, required field, the method that is used for the variables trans-
formation. The currently available method is ’peca’.

Assembler Objects These objects are either required or optional depending on the functionality of
the AdaptiveSobol Sampler. The objects must be listed with a rigorous syntax that, except for the
XML node tag, is common among all the objects. Each of these nodes must contain 2 attributes
that are used to identify them within the simulation framework:

170

e class, required string attribute, the main “class” of the listed object. For example, it can
be 'Models’, 'Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can be

"ROM’, 'External’, etc.

The AdaptiveSobol approach requires or optionally accepts the following object types:

e <ROM>, string, required field, the body of this XML node must contain the name of an
appropriate ROM defined in the <Models> block (see Section 15.3).

e <TargetEvaluation>, string, required field, represents the container where the system
evaluations are stored. From a practical point of view, this XML node must contain the name
of a data object defined in the <DataObjects> block (see Section 12). The Adaptive
Sobol sampling accepts “DataObjects” of type “PointSet” only.

Example:

<Samplers>

<AdaptiveSobol name="AS" verbosity='debug'>

<Convergence>
<relTolerance>le-5</relTolerance>
<maxRuns>150</maxRuns>
<maxSobolOrder>3</maxSobolOrder>
<progressParam>1</progressParam>
<logFile>progress.txt</logFile>
<subsetVerbosity>silent</subsetVerbosity>

</Convergence>

<variable name="x1">
<distribution>UniDist</distribution>

</variable>

<variable name="x2">
<distribution>UniDist</distribution>

</variable>
<ROM class = 'Models' type = 'ROM'>hdmrrom</ROM>
<TargetEvaluation class = 'DataObjects' type =
'PointSet'>solns</TargetEvaluation>
</AdaptiveSobol>
</Samplers>

171

10.4 Markov Chain Monte Carlo

The Markov chain Monte Carlo (MCMC) is a Sampler entity in the RAVEN framework. It provides
enormous scope for realistic statistical modeling. MCMC is essentially Monte Carlo integration
using Markov chain. Bayesians, and sometimes also frequentists, need to integrate over possibly
high-dimensional probability distributions to make inference about model parameters or to make
predictions. Bayesians need to integrate over the posterior distributions of model parameters given
the data, and frequentists may need to integrate over the distribution of observables given parameter
values. Monte Carlo integration draws samples from the required distribution, and then forms
samples averages to approximate expectations. MCMC draws these samples by running a cleverly
constructed Markov chain for a long time. There are a large number of MCMC algorithms, and
popular families include Gibbs sampling, Metropolis-Hastings, slice sampling, Hamiltonian Monte
Carlo, and many others. Regardless of the algorithm, the goal in Bayesian inference is to maximize
the unnormalized joint posterior distribution and collect samples of the target distributions, which
are marginal posterior distributions, later to be used for inference.

10.4.1 Metropolis (Metropolis-Hastings Sampler)

The Metropolis-Hastings (MH) algorithm is a MCMC method for obtaining a sequence of random
samples from a probability distribution from which direct sampling is difficult. This sequence can
be used to approximate the distribution or to compute an integral. It simulates from a probability
distribution by making use of the full joint density function and (independent) proposal distribu-
tions for each of the variables of interest.

The specifications of this sampler must be defined within an <Metropolis> XML block.
This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <Metropolis> input block, the user needs to specify the variables to sample. As
already mentioned, these variables are specified within consecutive <variable> XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape="“10" will produce a vector of 10 values. Omitting this

172

optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <initial>, float, optional field, specified the initial value for given variable.

e <proposal>, Assembler Object, specifies the proposal distribution for this variable.
Note: We only allow one-dimensional symmetric distribution to be the proposal dis-
tribution. This node must contain the following two attributes:

e class, required string attribute, the main “class” of the listed object. Only “Dis-
tributions” is allowed.

e type, required string attribute, the object identifier or sub-type.

e <probabilityFunction>, Assembler Object, specifies the prior distribution
function.. This node must contain the following two attributes:

e class, required string attribute, the main “class” of the listed object. Only
“Functions” is allowed.

e type, required string attribute, the object identifier or sub-type. Only “External”
is allowed.

Note: For MCMC sampler, we only allow “continuous” distributions as input to
<variable>. In addition, we allow the user to provide their defined prior distribution
through the <probabilityFunction>. In this case, the “pdf” method needs to be de-
fined in the external function. For example:

def pdf (self):

mmn

.

Method required for "probabilityFunction" used by MCM(
that is used to define the prior probability function
@ In, None

@ Out, priorPDF, float, the prior pdf value

mmn

sampler

173

priorPDF = 1/ (l-self.rho**2)*%(3/2)
return priorPDF

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=*2,3" will shape the values into a 2
by 3 matrix, while shape="10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
"C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet '>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index="'3'>A</constant>
</WhatEverSampler>
</Samplers>

174

In the Metropolis input block, the user needs to specify the variables need to be sampled. As al-
ready mentioned, these variables are inputted within consecutive xml blocks called <variable>.
In addition, the settings for this sampler need to be specified in the <samplerInit> XML block:

e <samplerInit>, required field. In this xml-node, the following xml sub-nodes need to
be specified:

e <limit>, integer, required field, number of Metropolis samples needs to be gener-
ated;

e <initialSeed>, integer, optional field, initial seeding of random number genera-
tor;

e <burnIn>,integer, optional field, specifies the number of initial samples that would
be discarded.
Default: 0

e <tune>, bool, optional field, indicates whether to tune the scaling parameter of pro-
posal distributions or not;
Default: ‘True’

e <tunelnterval>,integer, optional field, the number of sample steps for each tun-
ing of scaling parameter;
Default: 100

In addition to the <variable> nodes, the main XML node <Metropolis> needs to con-
tain the following supplementary sub-nodes:

e <likelihood>, string, required node, the output from the user provided likelihood func-
tion This node accept one attribute:

e log, bool, optional field, indicates whether the the log likelihood value is provided or
not. When True, the code expects to receive the log likelihood value.
Default: ‘False’

e Assembler Objects These objects are either required or optional depending on the func-
tionality of the Metropolis Sampler. The objects must be listed with a rigorous syntax that,
except for the XML node tag, is common among all the objects. Each of these nodes must
contain 2 attributes that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it
can be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can
be "ROM’, 'External’, etc.

The Metropolis approach requires or optionally accepts the following object types:

175

e <ConstantSource>, string, optional field, the body of this XML node must con-
tain the name of an appropriate DataObject defined in the <DataObjects> block
(see Section 12). It is used as a source from which constants can take values.

e <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObject s> block (see Section 12).
The object here specified must be input as <Output> in the Steps that employ this
sampling strategy. The Metropolis sampling accepts “DataObjects” of type “PointSet”
only.

e <Restart>, string, optional field, the body of this XML node must contain the name
of an appropriate DataObject defined in the <DataObject s> block (see Section 12).
It 1s used as a “restart” tool, where it accepts pre-existing solutions in the PointSet
instead of recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

e <restartTolerance>, float, optional field, the body of this XML node must
contain a valid floating point value. If a <Restart> node is supplied for this
<Sampler>, this node offers a way to determine how strictly matching points are
determined. Given a point in the input space, if that point is within a relative Euclidean
distance (equal to the tolerance) of a restart point, the nearest restart point will be used.

Default: le-14

Example:

<Samplers>

<Metropolis name="Metropolis">
<samplerInit>
<1limit>1000</1limit>
<initialSeed>070419</initialSeed>
<tune>10</tune>
</samplerInit>
<likelihood log="False">zout</likelihood>
<variable name="xin">
<distribution>normal</distribution>
<initial>0</initial>
<proposal class="Distributions"
type="Normal">normal</proposal>
</variable>

176

<variable name="yin">
<distribution>normal</distribution>
<initial>0</initial>
<proposal class="Distributions"
type="Normal">normal</proposal>
<!-- <proposal>normal</proposal> —-—>
</wvariable>
<TargetEvaluation class="DataObjects"
type="PointSet">outSet</TargetEvaluation>
</Metropolis>

</Samplers>

10.4.2 Adaptive Metropolis Sampler

The search for improved proposal distributions of Metropolis sampler is often done manually,
through trial and error, though this can be difficult especially in high dimensions. An alternative
approach is adaptive Metropolis, which asks the computer to automatically “learn” better parame-
ter values “on the fly”.

The specifications of this sampler must be defined within an <AdaptiveMetropolis>
XML block. This XML node accepts one attribute:

e name, required string attribute, user-defined name of this sampler. Note: As with other
objects, this identifier can be used to reference this specific entity from other input blocks in
the XML.

In the <AdaptiveMetropolis> input block, the user needs to specify the variables to
sample. As already mentioned, these variables are specified within consecutive <variable>
XML blocks:

e <variable>, XML node, required parameter can specify the following attribute:

e name, required string attribute, user-defined name of this variable.

e shape, comma-separated integers, optional field, determines the number of samples
and shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3
matrix of values, while shape=*10" will produce a vector of 10 values. Omitting this
optional attribute will result in a single scalar value instead. Each of the values in the
matrix or vector will be the same as the single sampled value. Note: A model interface
must be prepared to handle non-scalar inputs to use this option.

177

This <variable> recognizes the following child nodes:

e <distribution>, string, required field, name of the distribution that is associated
to this variable. Its name needs to be contained in the <Distributions> block
explained in Section 9. In addition, if NDDistribution is used, the attribute dim is
required. Note: Alternatively, this node must be omitted if the <function> node is
supplied.

e <function>, string, required field, name of the function that defines the calculation
of this variable from other distributed variables. Its name needs to be contained in
the <Functions> block explained in Section 16. This function must implement
a method named “evaluate”. Note: Alternatively, this node must be omitted if the
<distribution> node is supplied.

e <initial>, float, optional field, specified the initial value for given variable.

e <proposal>, Assembler Object, specifies the proposal distribution for this variable.
Note: We only allow one-dimensional symmetric distribution to be the proposal dis-
tribution. This node must contain the following two attributes:

e class, required string attribute, the main “class” of the listed object. Only “Dis-
tributions” is allowed.
e type, required string attribute, the object identifier or sub-type.

e dim, positive integer, optional attribute, required for multivariate normal proposal
distribution, indicates the dimension within the multivariate normal distribution
that corresponds to this variable.

e <probabilityFunction>, Assembler Object, specifies the prior distribution
function.. This node must contain the following two attributes:

e class, required string attribute, the main ‘“class” of the listed object. Only
“Functions” is allowed.

e type, required string attribute, the object identifier or sub-type. Only “External”
is allowed.

THIS NODE IS CURRENTLY NOT ALLOWED FOR ADAPTIVE METROPO-
LIS SAMPLER.
Note: For this sampler, we only allow “continuous” distributions as input to <variable>.

e <constant>, XML node, optional parameter the user is able to input variables that need
to be kept constant. For doing this, as many <constant> nodes as needed can be input.
There are options for setting a constant. To simply set the constant’s value, the body of the
node contains the constant value, and the <constant> node has the following attributes:

e name, required string attribute, user-defined name of this constant.

178

e shape, comma-separated integers, optional field, determines the shape of samples
of the constant value. For example, shape=*2,3" will shape the values into a 2
by 3 matrix, while shape=*10" will shape into a vector of 10 values. Unlike the
<variable>, the constant requires each value be entered; the number of required
values is equal to the product of the shape. Note: A model interface must be pre-
pared to handle non-scalar inputs to use this option.

Alternatively, the constant value can be read from a DataObject that has been identified as a
<ConstantSource> for this Sampler. In this case, the body of the <constant> node
is the name of the variable that needs to be read from the <ConstantSource>, and the
<constant> node has the following additional attributes in addition to the those above:

e source, required string attribute, the name of the DataObject containing the value to
be used for this constant. This must be the name of one of the <ConstantSource>
DataObjects.

e index, optional integer attribute, the index of the realization in the source DataObject
that contains the value to use for the constant.
Default: the last entry

By way of example, consider the following Sampler definition. The constant will be named
’C’ in the Sampler, and its value is taken from the DataObject ' MyConstant’, which
is identified in the <ConstantSource> node. To find the value of the constant in
"MyConstant’, the Sampler will look at the realization with index ’ 3’ for the value
of variable ' A’ to use as the constant value.

<Samplers>
<WhatEverSampler name='whatever'>
<ConstantSource class='DataObjects'
type='PointSet'>MyConstants</ConstantSource>
<constant name='C' source='MyConstants'
index='3'>A</constant>
</WhatEverSampler>
</Samplers>

In the AdaptiveMetropolis input block, the user needs to specify the variables need to be
sampled. As already mentioned, these variables are inputted within consecutive xml blocks
called <variable>. In addition, the settings for this sampler need to be specified in the
<samplerInit> XML block:

e <samplerInit>, required field. In this xml-node, the following xml sub-nodes need to
be specified:

179

e <limit>, integer, required field, number of Metropolis samples needs to be gener-
ated;

e <initialSeed>, integer, optional field, initial seeding of random number genera-
tor;

e <burnIn>, integer, optional field, specifies the number of initial samples that would
be discarded.
Default: 0

e <tune>, bool, optional field, indicates whether to tune the scaling parameter of pro-
posal distributions or not;
Default: ‘True’

e <tunelnterval>,integer, optional field, the number of sample steps for each tun-
ing of scaling parameter;
Default: 100

e <adaptiveInterval>,integer, optional field, the number of sample steps for each
proposal parameters update;
Default: 20

In addition to the <variable> nodes, the main XML node <AdaptiveMetropolis>
needs to contain the following supplementary sub-nodes:

e <likelihood>, string, required node, the output from the user provided likelihood func-
tion This node accept one attribute:

e log, bool, optional field, indicates whether the the log likelihood value is provided or
not. When True, the code expects to receive the log likelihood value.
Default: ‘False’

e Assembler Objects These objects are either required or optional depending on the func-
tionality of the Metropolis Sampler. The objects must be listed with a rigorous syntax that,
except for the XML node tag, is common among all the objects. Each of these nodes must
contain 2 attributes that are used to identify them within the simulation framework:

e class, required string attribute, the main “class” of the listed object. For example, it
can be 'Models’, ' Functions’, etc.

e type, required string attribute, the object identifier or sub-type. For example, it can
be "ROM’, ' External’, etc.

The Metropolis approach requires or optionally accepts the following object types:

e <ConstantSource>, string, optional field, the body of this XML node must con-
tain the name of an appropriate DataObject defined in the <DataObjects> block
(see Section 12). It is used as a source from which constants can take values.

180

e <TargetEvaluation>, string, required field, represents the container where the
system evaluations are stored. From a practical point of view, this XML node must con-
tain the name of a data object defined in the <DataObject s> block (see Section 12).
The object here specified must be input as <Output> in the Steps that employ this
sampling strategy. The Adaptive Metropolis sampling accepts “DataObjects” of type
“PointSet” only.

e <Restart>, string, optional field, the body of this XML node must contain the name
of an appropriate DataObject defined in the <DataObject s> block (see Section 12).
It is used as a “restart” tool, where it accepts pre-existing solutions in the PointSet
instead of recalculating solutions.

The following node is an additional option when a restart DataObject is provided:

e <restartTolerance>, float, optional field, the body of this XML node must
contain a valid floating point value. If a <Restart> node is supplied for this
<Sampler>, this node offers a way to determine how strictly matching points are
determined. Given a point in the input space, if that point is within a relative Euclidean
distance (equal to the tolerance) of a restart point, the nearest restart point will be used.

Default: le-14

Example:

<Samplers>

<AdaptiveMetropolis name="AdaptiveMetropolis">

<samplerInit>
<1imit>1000</1limit>
<initialSeed>070419</initialSeed>
<burnIn>500</burnIn>

</samplerInit>

<likelihood log="False">zout</likelihood>

<variable name="xin">
<distribution>normal</distribution>
<initial>2</initial>

</variable>

<variable name="yin">
<distribution>normal</distribution>
<initial>2</initial>

</variable>

<TargetEvaluation class="DataObjects"
type="PointSet">outSet</TargetEvaluation>

181

</AdaptiveMetropolis>

</Samplers>

182

11 Optimizers

The optimizer is another important entity in the RAVEN framework. It performs the driving of
a specific “goal function” or “objective function” over the model for value optimization. The
Optimizer can be used almost anywhere a Sampler can be used, and is only distinguished from
other AdaptiveSampler strategies for clarity.

11.1 GradientDescent

The <GradientDescent> optimizer represents an a la carte option for performing gradient-
based optimization with a variety of gradient estimation techniques, stepping strategies, and ac-
ceptance criteria. Gradient descent optimization generally behaves as a ball rolling down a hill;
the algorithm estimates the local gradient at a point, and attempts to move “downhill” in the op-
posite direction of the gradient (if minimizing; the opposite if maximizing). Once the lowest point
along the iterative gradient search is discovered, the algorithm is considered converged. Note
that gradient descent algorithms are particularly prone to being trapped in local minima; for this
reason, depending on the model, multiple trajectories may be needed to obtain the global solution.

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

e trajID: integer identifier for different optimization starting locations and paths

e iteration: integer identifying which iteration (or step, or generation) a trajectory is on

e accepted: string acceptance status of the potential optimal point (algorithm dependent)

e rejectReason: description of reject reason, ‘'nolmprovement’ means rejected the new
optimization point for no improvement from last point, ’implicitConstraints Violation’ means
rejected by implicit constraints violation, return None if the point is accepted

e {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

e modelRuns: integer identifying the number of times the model is evaluated up to the cur-
rent step

e stepSize: the size of step taken in the normalized input space to arrive at each optimal
point

e conv_{CONV}: status of each given convergence criteria

183

e CG_task: for ConjugateGradient, current task of line search. FD suggests continuing the
search, and CONV indicates the line search converged and will pivot.

The <GradientDescent> node recognizes the following parameters:

e name: string, required, User-defined name to designate this entity in the RAVEN input file.

e verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

The <GradientDescent> node recognizes the following subnodes:

e <obijective>: string, Name of the response variable (or “objective function”) that should
be optimized (minimized or maximized).

e <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

e name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

e shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3 matrix
of values, while shape="“10" will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:

e <distribution>: string, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.
The <distribution> node recognizes the following parameters:

e dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

e <grid>: string, — no description yet — The <grid> node recognizes the following
parameters:

e type: string, optional, — no description yet —
e construction: string, optional, — no description yet —

184

e steps: integer, optional, — no description yet —

e <function>: string, name of the function that defines the calculation of this variable
from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named
“evaluate”. Note: Each <variable> must contain only one <Function> or
<Distribution>, but not both.

e <initial>: comma-separated floats, indicates the initial values where indepen-
dent trajectories for this optimization effort should begin. The number of entries
should be the same for all variables, unless a variable is initialized with a sampler (see
<samplerInit> below). Note these entries are ordered; that is, if the optimization
variables are x and y, and the initial values for x are 1, 2, 3, 4’ and initial val-
ues fory are 5, 6, 7, 8’, then there will be four starting trajectories beginning
at the locations (1, 5), (2, 6), (3, 7), and (4, 8).

e <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

e <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.

The <samplerInit> node recognizes the following subnodes:

e <limit>: integer, limits the number of Model evaluations that may be performed as
part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.

e <writeSteps>: [final, every], delineates when the <SolutionExport>
DataObject should be written to. In case of ' £inal’, only the final optimal solution
for each trajectory will be written. In case of ' every’, the <SolutionExport>
will be updated with each iteration of the Optimizer.

e <initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.

Default: RAVEN-determined

e <type>: [min, max], the type of optimization to perform. 'min’ will search for the
lowest <objective> value, while “max’ will search for the highest value.

185

e <gradient>: a required node containing the information about which gradient approxi-
mation algorithm to use, and its settings if applicable. Exactly one of the gradient approxi-
mation algorithms below may be selected for this Optimizer.

The <gradient> node recognizes the following subnodes:

e <FiniteDifference>: if node is present, indicates that gradient approximation
should be performed using Finite Difference approximation. Finite difference makes
use of orthogonal perturbations in each dimension of the input space to estimate the
local gradient, requiring a total of N perturbations, where NV is dimensionality of the
input space. For example, if the input space i = (x,y, z) for objective function f(i),
then FiniteDifference chooses three perturbations («, /3, v) and evaluates the following
perturbation points:

o fz+a,y,2),
o flz,y+5,2),
e flz,y,2+7)
and evaluates the gradient Vf = (V@ f, VW) f, V&) f) as

VO £~ f(fv+a7y,2)—f(x,y,z)’
e

and so on for V¥ f and V*) f.
The <FiniteDifference> node recognizes the following subnodes:

e <gradDistanceScalar>: float, a scalar for the distance away from an opti-
mal point candidate in the optimization search at which points should be evaluated
to estimate the local gradient. This scalar is a multiplier for the step size used to
reach this optimal point candidate from the previous optimal point, so this scalar
should generally be a small percent.

Default: 0.01

e <CentralDifference>: if node is present, indicates that gradient approxima-
tion should be performed using Central Difference approximation. Central difference
makes use of pairs of orthogonal perturbations in each dimension of the input space to
estimate the local gradient, requiring a total of 2N perturbations, where /N is dimen-
sionality of the input space. For example, if the input space i = (z,y, z) for objective
function f(i), then CentralDifference chooses three perturbations («, /3,) and evalu-
ates the following perturbation points:

o flxEta,y,2),
o flz,y=xp,2),
o flz,y,z£7)
and evaluates the gradient Vf = (V@ f, VW) f, V) f) as

f(I—i—Oé,y,Z)—f(l’—Oé,y,Z)

A 20 ’

186

and so on for V¥ f and V&) f.
The <CentralDifference> node recognizes the following subnodes:

e <gradDistanceScalar>: float, a scalar for the distance away from an opti-
mal point candidate in the optimization search at which points should be evaluated
to estimate the local gradient. This scalar is a multiplier for the step size used to
reach this optimal point candidate from the previous optimal point, so this scalar
should generally be a small percent.

Default: 0.01

e <SPSA>: if node is present, indicates that gradient approximation should be performed
using the Simultaneous Perturbation Stochastic Approximation (SPSA). SPSA makes
use of a single perturbation as a zeroth-order gradient approximation, requiring exactly
1 perturbation regardless of the dimensionality of the input space. For example, if
the input space i = (z,y, z) for objective function f(i), then SPSA chooses a single
perturbation point (e(*), ¢ ¢(#)) and evaluates the following perturbation point:

o f(z+ @ y+e® 24)
and evaluates the gradient Vf = (V@ f, VW f V) f) as

e(l’)

\ARE N

Y

and so on for V) f and V) f. This approximation is much less robust than FiniteDif-
ference or CentralDifference, but has the benefit of being dimension agnostic.

The <SPSA> node recognizes the following subnodes:

e <gradDistanceScalar>: float, a scalar for the distance away from an opti-
mal point candidate in the optimization search at which points should be evaluated
to estimate the local gradient. This scalar is a multiplier for the step size used to
reach this optimal point candidate from the previous optimal point, so this scalar
should generally be a small percent.

Default: 0.01

e <stepSize>: a required node containing the information about which iterative stepping
algorithm to use, and its settings if applicable. Exactly one of the stepping algorithms below
may be selected for this Optimizer.

The <stepSize> node recognizes the following subnodes:

e <GradientHistory>: if this node is present, indicates that the iterative steps in the
gradient descent algorithm should be determined by the sequential change in gradient.
In particular, rather than using the magnitude of the gradient to determine step size, the
directional change of the gradient versor determines whether to take larger or smaller
steps. If the gradient in two successive steps changes direction, the step size shrinks.
If the gradient instead continues in the same direction, the step size grows. The rate of
shrink and growth are controlled by the <shrinkFactor> and <growthFactor>.

187

Note these values have a large impact on the optimization path taken. Large growth fac-
tors converge slowly but explore more of the input space; large shrink factors converge
quickly but might converge before arriving at a local minimum.

The <GradientHistory> node recognizes the following subnodes:

e <initialStepScale>: float, specifies the scale of the initial step in the opti-
mization, in percent of the size of the problem. The size of the problem is defined
as the hyperdiagonal of the input space, composed of the input variables. A value
of 1 indicates the first step can reach from the lowest value of all inputs to the
highest point of all inputs, which is too large for all problems with more than one
optimization variable. In general this should be smaller as the number of optimiza-
tion variables increases, but large enough that the first step is meaningful for the
problem. This scaling factor should always be less than 1/v/N, where N is the
number of optimization variables.

Default: 0.05

e <growthFactor>: float, specifies the rate at which the step size should grow
if the gradient continues in same direction through multiple iterative steps. For
example, a growth factor of 2 means that if the gradient is identical twice, the step
size is doubled.

Default: 1.25

e <shrinkFactor>: float, specifies the rate at which the step size should shrink
if the gradient changes direction through multiple iterative steps. For example, a
shrink factor of 2 means that if the gradient completely flips direction, the step size
is halved. Note that for stochastic surfaces or low-order gradient approximations
such as SPSA, a small value for the shrink factor is recommended. If an opti-
mization path appears to be converging early, increasing the shrink factor might
improve the search.

Default: 1.15

e <window>: integer, the number of previous gradient evaluations to include when
determining a new step direction. Modifying this allows past gradient evaluations
to influence future steps, with a decaying influence. Setting this to 1 means only
the local gradient evaluation will be used.

Default: 1.

e <decay>: float, if including more than one gradient history terms when determin-
ing a new step direction, specifies the rate of decay for previous terms to influence
the current direction. The decay factor has the form el — At), where ¢ counts the
gradient terms starting with the most recent as 0 and moving towards the past, and
A is this decay factor. This should generally be a small decimal number.

Default: 0.2

e <ConjugateGradient>: Base class for Step Manipulation algorithms in the Gra-
dientDescent Optimizer.

The <ConjugateGradient> node recognizes the following subnodes:

188

e <initialStepScale>: float, specifies the scale of the initial step in the opti-
mization, in percent of the size of the problem. The size of the problem is defined
as the hyperdiagonal of the input space, composed of the input variables. A value
of 1 indicates the first step can reach from the lowest value of all inputs to the
highest point of all inputs, which is too large for all problems with more than one
optimization variable. In general this should be smaller as the number of optimiza-
tion variables increases, but large enough that the first step is meaningful for the
problem. This scaling factor should always be less than 1/ VN, where N is the
number of optimization variables.

Default: 0.05

e <acceptance>: a required node containing the information about the acceptability cri-
terion for iterative optimization steps, i.e. when a potential new optimal point should be
rejected and when it can be accepted. Exactly one of the acceptance criteria below may be
selected for this Optimizer.

The <acceptance> node recognizes the following subnodes:

e <Strict>: if this node is present, indicates that a Strict acceptance policy for po-
tential new optimal points should be enforced; that is, for a potential optimal point to
become the new point from which to take another iterative optimizer step, the new re-
sponse value must be improved over the old response value. Otherwise, the potential
opt point is rejected and the search continues with the previously-discovered optimal
point.

e <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given, then nominal convergence on gradient value is used.

The <convergence> node recognizes the following subnodes:

e <gradient>: float, provides the desired value for the local estimated of the gradient
for convergence.
Default: 1e-6, if no criteria specified

e <objective>: float, provides the maximum relative change in the objective function
for convergence.

e <stepSize>: float, provides the maximum size in relative step size for convergence.

e <terminateFollowers>: [True, Yes, 1, False, No, 0, t, y, 1, f, n, 0], indicates
whether a trajectory should be terminated when it begins following the path of another
trajectory. The <terminateFollowers> node recognizes the following parame-
ters:

e proximity: float, optional, provides the normalized distance at which a trajec-
tory’s head should be proximal to another trajectory’s path before terminating the
following trajectory.

189

e <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence.

e <constraintExplorationLimit>: integer, provides the number of consecu-
tive times a functional constraint boundary can be explored for an acceptable sampling
point before aborting search. Only apples if using a <Constraint>.

Default: 500

e <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:

e name: string, required, variable name for this constant, which will be provided to the
Model.

e shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape="“2,3” will shape the values into a 2 by 3 matrix,
while shape=“10" will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

e source: Sstring, optional, the name of the DataObject containing the value to be
used for this constant. Requires <Constant Source> node with a <DataObject>
identified for this Sampler/Optimizer.

e index: integer, optional, the index of the realization in the <ConstantSource>

<DataObject> containing the value for this constant. Requires
<ConstantSource> node with a <DataObject> identified for this Sam-
pler/Optimizer.

e <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <ConstantSource> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <ConstantSource> node recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
must contain the name of a function defined in the <Functions> block (see Section 16).

190

This external function must contain a method called “constrain”, which returns True for in-
puts satisfying the explicit constraints and False otherwise. Note: Currently this accepts any
number of constraints from the user. The <Constraint> node recognizes the following
parameters:

e class: string, required, RAVEN class for this source. Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

<ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

e class: string, required, RAVEN class for this source. @ Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

<ROM>: string, Name of a Model that optimizers may want to use during optimization. For
example, the Bayesian Optimizer requires a ROM to select points during optimization. The
model is defined in detail with in the <Models> as in other uses. This node should be
provided a string referencing the model definition’s name. The <ROM> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

<Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

191

e <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents
including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <restartTolerance>: float, specifies how strictly a matching point from a
<Restart> DataObject must match the desired sample point in order to be used. If a
potential restart point is within a relative Euclidean distance (as specified by the value in this
node) of a desired sample point, the restart point will be used instead of sampling the Model.

Default: le-15

e <variablesTransformation>: Allows transformation of variables via trans-
lation matrices. This defines two spaces, a “latent” transformed space sam-
pled by RAVEN and a “manifest” original space understood by the Model. The
<variablesTransformation> node recognizes the following parameters:

e distribution: string, optional, the name for the distribution defined in
the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

e <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.

e <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

e <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution de-
fined in the XML node <Distributions>. The indices should be postive inte-
ger. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

e <method>: string, the method that is used for the variables transformation. The
currently available method is " pca’.

192

Gradient Descent Example:

<Optimizers>

<GradientDescent name="opter">

<objective>ans</objective>

<variable name="x">
<distribution>x_dist</distribution>
<initial>-2</initial>

</variable>

<variable name="y">
<distribution>y_ dist</distribution>
<initial>2</initial>

</variable>

<samplerInit>
<1limit>100</1limit>

</samplerInit>

<gradient>
<FiniteDifference/>

</gradient>

<stepSize>
<GradientHistory/>

</stepSize>

<acceptance>
<Strict/>

</acceptance>

<TargetEvaluation class="DataObjects"

type="PointSet">optOut</TargetEvaluation>
</GradientDescent>

</Optimizers>

11.2 SimulatedAnnealing

The <SimulatedAnnealing> optimizer is a metaheuristic approach to perform a global search
in large design spaces. The methodology rose from statistical physics and was inspired by met-
allurgy where it was found that fast cooling might lead to smaller and defected crystals, and that
reheating and slowly controlling cooling will lead to better states. This allows climbing to avoid
being stuck in local minima and hence facilitates finding the global minima for non-convex prob-
lems. More information can be found in: Kirkpatrick, S.; Gelatt Jr, C. D.; Vecchi, M. P. (1983).
“Optimization by Simulated Annealing”. Science. 220 (4598): 671-680.

193

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

e trajID: integer identifier for different optimization starting locations and paths

e iteration: integer identifying which iteration (or step, or generation) a trajectory is on

e accepted: string acceptance status of the potential optimal point (algorithm dependent)

e rejectReason: description of reject reason, ‘nolmprovement’ means rejected the new
optimization point for no improvement from last point, ’implicitConstraints Violation’ means
rejected by implicit constraints violation, return None if the point is accepted

e {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

e modelRuns: integer identifying the number of times the model is evaluated up to the cur-
rent step

e conv_{CONV}: status of each given convergence criteria

e amp_{VAR}: amplitude associated to each variable used to compute step size based on cool-
ing method and the corresponding next neighbor

e delta {VAR}: step size associated to each variable
e Temp: temperature at current state

e fraction: current fraction of the max iteration limit
The <SimulatedAnnealing> node recognizes the following parameters:

e name: string, required, User-defined name to designate this entity in the RAVEN input file.

e verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

The <SimulatedAnnealing> node recognizes the following subnodes:

e <obijective>: string, Name of the response variable (or “objective function) that should
be optimized (minimized or maximized).

e <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

194

e name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

e shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3 matrix
of values, while shape="“10" will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:

e <distribution>: sfring, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.
The <distribution> node recognizes the following parameters:

e dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

e <grid>: string, — no description yet — The <grid> node recognizes the following
parameters:

e type: string, optional, — no description yet —
e construction: string, optional, — no description yet —
e steps: integer, optional, — no description yet —

e <function>: string, name of the function that defines the calculation of this variable
from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named
“evaluate”. Note: Each <variable> must contain only one <Function> or
<Distribution>, but not both.

e <initial>: comma-separated floats, indicates the initial values where indepen-
dent trajectories for this optimization effort should begin. The number of entries
should be the same for all variables, unless a variable is initialized with a sampler (see
<samplerInit> below). Note these entries are ordered; that is, if the optimization
variables are x and y, and the initial values for x are 1, 2, 3, 4’ and initial val-
ues for y are 5, 6, 7, 8’, then there will be four starting trajectories beginning
at the locations (1, 5), (2, 6), (3, 7), and (4, 8).

e <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

195

class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

e <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.

The <samplerInit> node recognizes the following subnodes:

<limit>: integer, limits the number of Model evaluations that may be performed as
part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.

<writeSteps>: [final, every], delincates when the <SolutionExport>
DataObject should be written to. In case of ' £inal’, only the final optimal solution
for each trajectory will be written. In case of ' every’, the <SolutionExport>
will be updated with each iteration of the Optimizer.

<initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.

Default: RAVEN-determined

<type>: [min, max], the type of optimization to perform. 'min’ will search for the
lowest <objective> value, while "max’ will search for the highest value.

e <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given, then the defaults are used.

The <convergence> node recognizes the following subnodes:

<objective>: float, provides the desired value for the convergence criterion of the
objective function (e°%), i.e., convergence is reached when:

[newObjevtive — oldObjective| <

Default: 1e-6, if no criteria specified

e <temperature>: float, provides the desired value for the convergence creiteron of

the system temperature, (¢/“'P), i.e., convergence is reached when:

T < Etemp

Default: 1e-10, if no criteria specified

196

e <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence.

e <coolingSchedule>: The function governing the cooling process. Currently, user can
select between,”’ exponential’, ' cauchy’, 'boltzmann’ or ' veryfast’.

In case of ' exponential’ is provided, The cooling process will be governed by:
TF =T+ aF
In case of " boltzmann’ is provided, The cooling process will be governed by:
k _ T°
~ log(k +d)

In case of ' cauchy’ is provided, The cooling process will be governed by:

k T°

 k+d

In case of ' veryfast’ is provided, The cooling process will be governed by:

TF = T° % exp(—ck'/P),

where D is the dimentionality of the problem (i.e., number of optimized variables), k is the
number of the current iteration 7° = max (0.01,1 — <lirliit>) is the initial temperature, and

T* is the current temperature according to the specified cooling schedule.
Default: exponential.

The <coolingSchedule> node recognizes the following subnodes:

e <exponential>: string, exponential cooling schedule
The <exponential> node recognizes the following subnodes:

e <alpha>: float, slowing down constant, should be between 0,1 and preferable

very close to 1.
Default: 0.94

e <veryfast>: string, veryfast cooling schedule
The <veryfast> node recognizes the following subnodes:

e <c>: float, decay constant,
Default: 1.0

e <cauchy>: string, cauchy cooling schedule
The <cauchy> node recognizes the following subnodes:

e <d>: float, bias,
Default: 1.0

197

e <boltzmann>: string, boltzmann cooling schedule
The <boltzmann> node recognizes the following subnodes:

e <d>: float, bias,
Default: 1.0

e <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:

e name: string, required, variable name for this constant, which will be provided to the
Model.

e shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape="2,3" will shape the values into a 2 by 3 matrix,
while shape="“10" will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

e source: String, optional, the name of the DataObject containing the value to be
used for this constant. Requires <Constant Source> node with a <DataObject>
identified for this Sampler/Optimizer.

e index: integer, optional, the index of the realization in the <ConstantSource>

<DataObject> containing the value for this constant. Requires
<ConstantSource> node with a <DataObject> identified for this Sam-
pler/Optimizer.

e <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <ConstantSource> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <ConstantSource> node recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
must contain the name of a function defined in the <Functions> block (see Section 16).
This external function must contain a method called “constrain”, which returns True for in-
puts satisfying the explicit constraints and False otherwise. Note: Currently this accepts any
number of constraints from the user. The <Constraint> node recognizes the following
parameters:

198

e class: string, required, RAVEN class for this source. Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

e <ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

e class: string, required, RAVEN class for this source. = Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

e <ROM>: string, Name of a Model that optimizers may want to use during optimization. For
example, the Bayesian Optimizer requires a ROM to select points during optimization. The
model is defined in detail with in the <Models> as in other uses. This node should be
provided a string referencing the model definition’s name. The <ROM> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

e <Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

e <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents

199

including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

<restartTolerance>: float, specifies how strictly a matching point from a
<Restart> DataObject must match the desired sample point in order to be used. If a
potential restart point is within a relative Euclidean distance (as specified by the value in this
node) of a desired sample point, the restart point will be used instead of sampling the Model.

Default: le-15

<variablesTransformation>: Allows transformation of variables via trans-
lation matrices. This defines two spaces, a “latent” transformed space sam-
pled by RAVEN and a “manifest” original space understood by the Model. The
<variablesTransformation> node recognizes the following parameters:

e distribution: string, optional, the name for the distribution defined in
the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

e <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.

e <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

e <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution de-
fined in the XML node <Distributions>. The indices should be postive inte-
ger. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

e <method>: string, the method that is used for the variables transformation. The
currently available method is ' pca’.

Simulated Annealing Example:

200

<Optimizers>

<SimulatedAnnealing name="simOpt">

<samplerInit>
<1imit>2000</1limit>
<initialSeed>42</initialSeed>
<writeSteps>every</writeSteps>
<type>min</type>

</samplerInit>

<convergence>
<objective>le-6</objective>
<temperature>le-20</temperature>
<persistence>1</persistence>

</convergence>

<coolingSchedule>
<exponential>

<alpha>0.94</alpha>

</exponential>

</coolingSchedule>

<variable name="x">
<distribution>beale_dist</distribution>
<initial>-2.5</initial>

</variable>

<variable name="y">
<distribution>beale_dist</distribution>
<initial>3.5</initial>

</variable>

<objective>ans</objective>

<TargetEvaluation class="DataObjects"
type="PointSet">optOut</TargetEvaluation>

</SimulatedAnnealing>

</Optimizers>

11.3 GeneticAlgorithm

The <GeneticAlgorithm> optimizer is a metaheuristic approach to perform a global search
in large design spaces. The methodology rose from the process of natural selection, and like others
in the large class of the evolutionary algorithms, it utilizes genetic operations such as selection,
crossover, and mutations to avoid being stuck in local minima and hence facilitates finding the

201

global minima. More information can be found in: Holland, John H. ”Genetic algorithms.” Scien-
tific American 267.1 (1992): 66-73.

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

e trajID: integer identifier for different optimization starting locations and paths

e iteration: integer identifying which iteration (or step, or generation) a trajectory is on

e accepted: string acceptance status of the potential optimal point (algorithm dependent)

e rejectReason: description of reject reason, ‘nolmprovement’ means rejected the new
optimization point for no improvement from last point, *implicitConstraints Violation’ means
rejected by implicit constraints violation, return None if the point is accepted

e {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

e modelRuns: integer identifying the number of times the model is evaluated up to the cur-
rent step

e conv_{CONV}: status of each given convergence criteria

e fitness: fitness of the current chromosome

e age: age of current chromosome

e batchId: Id of the batch to whom the chromosome belongs

e AHDp: p-Average Hausdorff Distance between populations

e AHD: Hausdorff Distance between populations

e HDSM: Hausdorff Distance Similarity Measure between populations

e ConstraintEvaluation {CONSTRAINT}: Constraint function evaluation (negative if
violating and positive otherwise)

The <GeneticAlgorithm> node recognizes the following parameters:

e name: string, required, User-defined name to designate this entity in the RAVEN input file.

e verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

202

The <GeneticAlgorithm> node recognizes the following subnodes:

e <obijective>: string, Name of the response variable (or “objective function”) that should
be optimized (minimized or maximized).

e <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

e name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

e shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3 matrix
of values, while shape="“10" will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:

e <distribution>: string, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.
The <distribution> node recognizes the following parameters:

e dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

e <grid>: string, — no description yet — The <grid> node recognizes the following
parameters:

e type: string, optional, — no description yet —
e construction: string, optional, — no description yet —
e steps: integer, optional, — no description yet —
e <function>: string, name of the function that defines the calculation of this variable
from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named

“evaluate”. Note: Each <variable> must contain only one <Function> or
<Distribution>, but not both.

e <initial>: comma-separated floats, indicates the initial values where indepen-
dent trajectories for this optimization effort should begin. The number of entries
should be the same for all variables, unless a variable is initialized with a sampler (see
<samplerInit> below). Note these entries are ordered; that is, if the optimization

203

variables are x and y, and the initial values for x are 1, 2, 3, 4’ and initial val-
ues fory are 5, 6, 7, 8’, then there will be four starting trajectories beginning
at the locations (1, 5), (2, 6), (3, 7), and (4, 8).

e <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)
e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)
e <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.
The <samplerInit> node recognizes the following subnodes:
e <limit>: integer, limits the number of Model evaluations that may be performed as

part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.

e <writeSteps>: [final, every], delineates when the <SolutionExport>
DataObject should be written to. In case of * £inal’, only the final optimal solution
for each trajectory will be written. In case of ' every’, the <SolutionExport>
will be updated with each iteration of the Optimizer.

e <initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.

Default: RAVEN-determined
e <type>: [min, max], the type of optimization to perform. "min’ will search for the
lowest <objective> value, while "max’ will search for the highest value.

e <GAparams>: Genetic Algorithm Parameters:

e populationSize.
e parentSelectors:

e rouletteWheel.
e tournamentSelection.
e rankSelection.

e Reproduction:

204

® Crossover:
e onePointCrossover.
e twoPointsCrossover.
e uniformCrossover
e mutators:
e swapMutator.
e scrambleMutator.
e inversionMutator.
e bitFlipMutator.
e randomMutator.

e survivorSelectors:

e ageBased.
e fitnessBased.

The <GAparams> node recognizes the following subnodes:

e <populationSize>: integer, The number of chromosomes in each population.

e <parentSelection>: string, A node containing the criterion based on which the
parents are selected. This can be a fitness proportional selection such as: a. roulet-
teWheel, b. tournamentSelection, c. rankSelection for all methods nParents is com-
puted such that the population size is kept constant. nChildren = 2 x ("7") =

nParents x (nParents — 1) = popSize solving for nParents we get: nParents =

ceil (H—W) This will result in a popSize a little larger than the initial one,
these excessive children will be later thrawn away and only the first popSize child will

be kept
e <reproduction>: a node containing the reproduction methods. This accepts subn-
odes that specifies the types of crossover and mutation.
The <reproduction> node recognizes the following subnodes:
e <crossover>: string, a subnode containing the implemented crossover mech-

anisms. This includes: a. onePointCrossover, b. twoPointsCrossover, c. uniform-
Crossover. The <crossover> node recognizes the following parameters:

e type: string, required, type of crossover operation to be used (e.g., OnePoint,
MultiPoint, or Uniform)

The <crossover> node recognizes the following subnodes:

e <points>: comma-separated integers, point/gene(s) at which crossover
will occur.

e <crossoverProb>: float, The probability governing the crossover step,
i.e., the probability that if exceeded crossover will occur.

205

e <mutation>: string, a subnode containing the implemented mutation mecha-
nisms. This includes: a. bitFlipMutation, b. swapMutation, c. scrambleMutation,
d. inversionMutation, or e. randomMutator. The <mutation> node recognizes
the following parameters:

e type: string, required, type of mutation operation to be used (e.g., bit, swap,
or scramble)

The <mutation> node recognizes the following subnodes:
e <locs>: comma-separated integers, locations at which mutation will occur.
e <mutationProb>: float, The probability governing the mutation step, i.e.,
the probability that if exceeded mutation will occur.

e <survivorSelection>: string, a subnode containing the implemented survivor
selection mechanisms. This includes: a. ageBased, or b. fitnessBased.

e <fitness>: string, a subnode containing the implemented fitness functions. This
includes:

e invLinear:

fitness = —a x obj — b X Z?:Cfmtmmtmax((), —penalty;)

e logistic:
" B 1
fZ ness = W

e feasibleFirst:

fitness = —obj for g;(z) >0V

J
and
fitness = —0bjworst — 23]:1 < gj(x) > otherwise

. The <fitness> node recognizes the following parameters:
e type: string, required, [invLin, logistic, feasibleFirst]
The <f£itness> node recognizes the following subnodes:

e <a>: float, a: coefficient of objective function.
e : float, b: coefficient of constraint penalty.

e <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given, then the defaults are used.

The <convergence> node recognizes the following subnodes:

206

e <objective>: float, provides the desired value for the convergence criterion of the
objective function (e°*/). In essence this is solving the inverse problem of finding the
design variable at a given objective value, i.e., convergence is reached when:

Objective = €%

Default: 1e-6, if no criteria specified

e <AHDp>: float, provides the desired value for the Average Hausdorff Distance between
populations

e <AHD>: float, provides the desired value for the Hausdorff Distance between popula-
tions

e <HDSM>: float, provides the desired value for the Hausdorff Distance Similarity Mea-
sure between populations. This convergence criterion is based on a normalized similar-
ity metric that can be summurized as the normalized Hausdorff distance (with respect
the domain of to population/iterations). The metric is normalized between O and 1,
which implies that values closer to 1.0 represents a tighter convergence criterion.

e <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence.

e <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:

e name: string, required, variable name for this constant, which will be provided to the
Model.

e shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape="“2,3" will shape the values into a 2 by 3 matrix,
while shape=“10" will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

e source: string, optional, the name of the DataObject containing the value to be
used for this constant. Requires <Constant Source> node with a <DataObject>
identified for this Sampler/Optimizer.

e index: integer, optional, the index of the realization in the <ConstantSource>

<DataObject> containing the value for this constant. Requires
<ConstantSource> node with a <DataObject> identified for this Sam-
pler/Optimizer.

207

e <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <Constant Source> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <Constant Source> node recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
must contain the name of a function defined in the <Functions> block (see Section 16).
This external function must contain a method called “constrain”, which returns True for in-
puts satisfying the explicit constraints and False otherwise. Note: Currently this accepts any
number of constraints from the user. The <Constraint> node recognizes the following
parameters:

e class: string, required, RAVEN class for this source. Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

e <ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

e class: string, required, RAVEN class for this source. = Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

e <ROM>: string, Name of a Model that optimizers may want to use during optimization. For
example, the Bayesian Optimizer requires a ROM to select points during optimization. The
model is defined in detail with in the <Models> as in other uses. This node should be
provided a string referencing the model definition’s name. The <ROM> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

208

e <Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

e <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents
including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <restartTolerance>: float, specifies how strictly a matching point from a
<Restart> DataObject must match the desired sample point in order to be used. If a
potential restart point is within a relative Euclidean distance (as specified by the value in this
node) of a desired sample point, the restart point will be used instead of sampling the Model.

Default: le-15

e <variablesTransformation>: Allows transformation of variables via trans-
lation matrices. This defines two spaces, a “latent” transformed space sam-
pled by RAVEN and a “manifest” original space understood by the Model. The
<variablesTransformation> node recognizes the following parameters:

e distribution: string, optional, the name for the distribution defined in
the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

e <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.

209

e <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

e <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution de-
fined in the XML node <Distributions>. The indices should be postive inte-
ger. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

e <method>: string, the method that is used for the variables transformation. The
currently available method is ' pca’.

Genetic Algorithm Example:

<Optimizers>

<GeneticAlgorithm name="GAopt">
<samplerInit>
<limit>50</1limit>
<initialSeed>42</initialSeed>
<writeSteps>every</writeSteps>
</samplerInit>

<GAparams>
<populationSize>20</populationSize>
<parentSelection>rouletteWheel</parentSelection>
<reproduction>
<crossover type="onePointCrossover">
<points>3</points>
<crossoverProb>0.8</crossoverProb>
</crossover>
<mutation type="swapMutator">
<loecs>2, 5</locs>
<mutationProb>0.9</mutationProb>
</mutation>
</reproduction>
<fitness type="invLinear">
<a>2.0
1.0
</fitness>
<survivorSelection>fitnessBased</survivorSelection>
</GAparams>

210

<convergence>
<objective>56</objective>
</convergence>

<variable name="x1">
<distribution>uniform_dist_woRepl_1l</distribution>
<initial>1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 4
</variable>

<variable name="x2">
<distribution>uniform_dist_woRepl_1l</distribution>
<initial>»2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19, 20,
</variable>

<variable name="x3">
<distribution>uniform_dist_woRepl_1l</distribution>
<initial>3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,
</variable>

<variable name="x4">
<distribution>uniform_dist_woRepl_1l</distribution>
<initial>»4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1, 2,
</variable>

<variable name="x5">
<distribution>uniform_dist_woRepl_1</distribution>
<initial»5,s6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,
</variable>

<variable name="x6">
<distribution>uniform_dist_woRepl_1l</distribution>
<initial»es, 7,8,9,10,11,12,13,14,15,16,17,18,19,20,1,2,3,4,
</variable>

<objective>ans</objective>
<TargetEvaluation class="DataObjects"
type="PointSet">optOut</TargetEvaluation>

</GeneticAlgorithm>

</Optimizers>

211

0</initia.

1</initia.

2</initia.

3</initia.

4</initia.

5</initia.

11.4 BayesianOptimizer

The <BayesianOptimizer> optimizer is a method for black-box optimization. This approach
utilizes a surrogate model, in the form of a Gaussian Process Regression, to find the global op-
tima of expensive functions. Furthermore, this approach easily incorporates noisy observations of
the function. This approach tends to offer the tradeoff of additional backend calculation (training
regressions and selecting samples) in favor of reducing the number of function or 'model’ evalua-
tions.

When used as part of a <MultiRun> step, this entity provides additional information through
the <SolutionExport> DataObject. The following variables can be requested within the
<SolutionExport>:

e trajID: integer identifier for different optimization starting locations and paths

e iteration: integer identifying which iteration (or step, or generation) a trajectory is on

e accepted: string acceptance status of the potential optimal point (algorithm dependent)

e rejectReason: description of reject reason, ‘'nolmprovement’ means rejected the new
optimization point for no improvement from last point, *implicitConstraints Violation’ means
rejected by implicit constraints violation, return None if the point is accepted

e {VAR}: any variable from the <TargetEvaluation> input or output; gives the value of
that variable at the optimal candidate for this iteration.

e modelRuns: integer identifying the number of times the model is evaluated up to the cur-
rent step

e conv_{CONV}: status of each given convergence criteria

e acquisition: value of acquisition at each iteration

e radiusFromBest: radius of current point from current best point

e radiusFromLast: radius of current point from previous point

e solutionValue: Expected value of objective var at recommended solution point

e solutionDeviation: Standard deviation of recommended solution
The <BayesianOptimizer> node recognizes the following parameters:

e name: string, required, User-defined name to designate this entity in the RAVEN input file.

212

e verbosity: [silent, quiet, all, debug], optional, Desired verbosity of messages coming
from this entity

The <BayesianOptimizer> node recognizes the following subnodes:

e <obijective>: string, Name of the response variable (or “objective function”) that should
be optimized (minimized or maximized).

e <variable>: defines the input space variables to be sampled through various means. The
<variable> node recognizes the following parameters:

e name: string, optional, user-defined name of this Sampler. Note: As for the other
objects, this is the name that can be used to refer to this specific entity from other input
blocks

e shape: comma-separated integers, optional, determines the number of samples and
shape of samples to be taken. For example, shape="2,3" will provide a 2 by 3 matrix
of values, while shape="“10" will produce a vector of 10 values. Omitting this optional
attribute will result in a single scalar value instead. Each of the values in the matrix or
vector will be the same as the single sampled value. Note: A model interface must be
prepared to handle non-scalar inputs to use this option.

The <variable> node recognizes the following subnodes:

e <distribution>: string, name of the distribution that is associated to this vari-
able. Its name needs to be contained in the <Distributions> block explained
in Section 9. In addition, if NDDistribution is used, the attribute dim is required.
Note: Alternatively, this node must be omitted if the <function> node is supplied.
The <distribution> node recognizes the following parameters:

e dim: integer, optional, for an NDDistribution, indicates the dimension within the
NDDistribution that corresponds to this variable.

e <grid>: string, — no description yet — The <grid> node recognizes the following
parameters:
e type: string, optional, — no description yet —
e construction: string, optional, — no description yet —
e steps: integer, optional, — no description yet —
e <function>: string, name of the function that defines the calculation of this variable
from other distributed variables. Its name needs to be contained in the <Functions>
block explained in Section 16. This function must implement a method named

“evaluate”. Note: Each <variable> must contain only one <Function> or
<Distribution>, but not both.

213

e <initial>: comma-separated floats, indicates the initial values where indepen-
dent trajectories for this optimization effort should begin. The number of entries
should be the same for all variables, unless a variable is initialized with a sampler (see
<samplerInit> below). Note these entries are ordered; that is, if the optimization
variables are x and y, and the initial values for x are *1, 2, 3, 4’ and initial val-
ues fory are 5, 6, 7, 8’, then there will be four starting trajectories beginning
at the locations (1, 5), (2, 6), (3, 7), and (4, 8).

e <TargetEvaluation>: string, name of the DataObject where the sampled outputs of
the Model will be collected. This DataObject is the means by which the sampling entity
obtains the results of requested samples, and so should require all the input and output vari-
ables needed for adaptive sampling. The <TargetEvaluation> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

e <samplerInit>: collection of nodes that describe the initialization of the optimization
algorithm.

The <samplerInit> node recognizes the following subnodes:

e <limit>: integer, limits the number of Model evaluations that may be performed as
part of this optimization. For example, a limit of 100 means at most 100 total Model
evaluations may be performed.

e <writeSteps>: [final, every], delineates when the <SolutionExport>
DataObject should be written to. In case of * £inal’, only the final optimal solution
for each trajectory will be written. In case of ' every’, the <SolutionExport>
will be updated with each iteration of the Optimizer.

e <initialSeed>: integer, seed for random number generation. Note that by default
RAVEN uses an internal seed, so this seed must be changed to observe changed behav-
ior.

Default: RAVEN-determined

e <type>: [min, max], the type of optimization to perform. 'min’ will search for the
lowest <objective> value, while "max’ will search for the highest value.

e <Acquisition>: Arequired node for specifying the details about the acquisition function
used in the policy of Bayesian Optimization.

The <Acquisition> node recognizes the following subnodes:

214

e <ExpectedImprovement>: If this node is present within the acquisition node, the
expected improvement acqusition function is utilized. This function is derived by ap-
plying Bayesian optimal decision making (Bellman’s Principle of Optimality) with a
local reward utility function in conjunction with a one-step lookahead. The approach
weighs both expected reward and likely reward with the following expression (for min-
imization): EI(z) = (f* — p)¢(L=4) + sO (L)

The <ExpectedImprovement> node recognizes the following subnodes:

e <optimizationMethod>: [differentialEvolution, slsqp], String to specify
routine used for the optimization of the acquisition function. Acceptable options
include: (’differentialEvolution’, ’slsqp’).

Default: ’differential Evolution’.
e Differential Evolution: A style of evolutionary algorithm, which specializes in
floating point representations of decision variables. Works similar to its parent
algorithm Genetic Algorithm

e SLSQP: A Sequential Least Squares algorithm, which uses an BFGS update
and Lawson and Hanson’s NNLS nonlinear least-squares solver.

Default: differentialEvolution

e <seedingCount>: infeger, If the method is gradient based or typically handled
with singular decisions (ex. slsqp approximates a quadratic program using the
gradient), this number represents the number of trajectories for a multi-start variant
(default=2N). N is the dimension of the input space. If the method works on
populations (ex. differential evolution simulates natural selection on a population),
the number represents the population size (default=10N).

e <ProbabilityOfImprovement>: If this node is present within the acquisition
node, the probability of improvement acqusition function is utilized. This function is
derived by applying Bayesian optimal decision making (Bellman’s Principle of Op-
timality) with the probability of local reward utility function in conjunction with a
one-step lookahead. The approach weighs values the probability of improving the
solution past some thresh-hold and has the following expression (for minimization):
Pol(x) = =+
The <ProbabilityOfImprovement> node recognizes the following subnodes:

e <optimizationMethod>: [differentialEvolution, slsqp], String to specify
routine used for the optimization of the acquisition function. Acceptable options
include: ("differentialEvolution’, ’slsqp’).

Default: ’differential Evolution’.

e Differential Evolution: A style of evolutionary algorithm, which specializes in
floating point representations of decision variables. Works similar to its parent
algorithm Genetic Algorithm

e SLSQP: A Sequential Least Squares algorithm, which uses an BEFGS update
and Lawson and Hanson’s NNLS nonlinear least-squares solver.

215

Default: differential Evolution

e <seedingCount>: infeger, If the method is gradient based or typically handled
with singular decisions (ex. slsqp approximates a quadratic program using the
gradient), this number represents the number of trajectories for a multi-start variant
(default=2N). N is the dimension of the input space. If the method works on
populations (ex. differential evolution simulates natural selection on a population),
the number represents the population size (default=10N).

e <epsilon>: float, Defines the threshold for Pol via the equation: 7 =
minu(X) — e. The larger € is, the more exploratory the algorithm and vice versa.
Default: 1.0

e <rho>: float, Provides a ’time-constant’ for the Exploit and Explore transient
settings. Provides the period for the oscillate transient setting.
Default: 1.0

e <transient>: [Constant, Exploit, Explore, Oscillate, DecayingOscillate], De-
termines how the threshold 7 changes as optimization progresses.

e Constant: ¢ remains the provided value.

Exploit: € exponentially decays to 0 encouraging exploitation.

Explore: € exponentially grows from O to provided value.

Oscillate: e varies between 0 and provided value.

DecayingOscillate: € oscillates and decays, driving to exploitation.

Default: Constant

e <LowerConfidenceBound>: If this node is present within the acquisition node,
the lower confidence bound acqusition function is utilized. This function is derived
by applying optimistic decision making in the infinite-armed bandit problem. The ap-
proach assumes the model is conservative and values optimism through the following
equation (for minimization): LC'B(z) = p — o, where § = &~ (7r)

The <LowerConfidenceBound> node recognizes the following subnodes:

e <optimizationMethod>: [differentialEvolution, slsqp], String to specify
routine used for the optimization of the acquisition function. Acceptable options
include: ("differentialEvolution’, ’slsqp’).

Default: ’differential Evolution’.

e Differential Evolution: A style of evolutionary algorithm, which specializes in
floating point representations of decision variables. Works similar to its parent
algorithm Genetic Algorithm

e SLSQP: A Sequential Least Squares algorithm, which uses an BFGS update
and Lawson and Hanson’s NNLS nonlinear least-squares solver.

Default: differential Evolution

216

e <seedingCount>: integer, If the method is gradient based or typically handled
with singular decisions (ex. slsqp approximates a quadratic program using the
gradient), this number represents the number of trajectories for a multi-start variant
(default=2N). N is the dimension of the input space. If the method works on
populations (ex. differential evolution simulates natural selection on a population),
the number represents the population size (default=10N).

e <pi>: float, Parameter that determines the lower confidence bound. Must be
between 0 and 1.
Default: 0.98

e <rho>: float, Provides a ’time-constant’ for the Exploit and Explore transient

settings. Provides the period for the oscillate transient settings.
Default: 1.0

e <transient>: [Constant, Exploit, Explore, Oscillate, DecayingOscillate], De-
termines how the threshold 7 changes as optimization progresses.

e Constant: € remains the provided value.

e Exploit: € exponentially decays to 0 encouraging exploitation.

e Explore: € exponentially grows from O to provided value.

e Oscillate: € varies between 0 and provided value.

e DecayingOscillate: € oscillates and decays, driving to exploitation.

Default: Constant

e <ModelSelection>: An optional node allowing the user to specify the details of model
selection. For example, the manner in which hyperparameters are selected for the GPR
model.

The <ModelSelection> node recognizes the following subnodes:
e <Duration>: integer, Number of iterations between each reselection of the model.
Defaultis 1

e <Method>: [External, Internal, Average], Determines methodology for selecting the
model. This methodology is applied after every duration length.

e External, uses whatever method the model has internal to itself
e Internal, selects the MAP point of the model using slsqp
e Average, Approximate marginalization over model space

. Default is Internal
Default: Internal

e <convergence>: a node containing the desired convergence criteria for the optimization
algorithm. Note that convergence is met when any one of the convergence criteria is met. If
no convergence criteria are given.

The <convergence> node recognizes the following subnodes:

217

e <acquisition>: float, Provides convergence criteria in terms of the value of the
acquisition function at a given iteration. If the value falls below a provided threshhold,
the optimizer is considered converged; however, it is recommended to pair this criteria
with persistance. Default is le-8

e <persistence>: integer, provides the number of consecutive times convergence
should be reached before a trajectory is considered fully converged. This helps in
preventing early false convergence. Default is 5 (BO specific)

Default: 5

e <constant>: comma-separated strings, integers, and floats, allows variables that do not
change value to be part of the input space. The <constant> node recognizes the following
parameters:

e name: string, required, variable name for this constant, which will be provided to the
Model.

e shape: comma-separated integers, optional, determines the shape of samples of the
constant value. For example, shape="“2,3” will shape the values into a 2 by 3 matrix,
while shape=“10" will shape into a vector of 10 values. Unlike the <variable>,
the constant requires each value be entered; the number of required values is equal to
the product of the shape values, e.g. 6 entries for shape “2,3”). Note: A model
interface must be prepared to handle non- scalar inputs to use this option.

e source: string, optional, the name of the DataObject containing the value to be
used for this constant. Requires <ConstantSource> node with a <DataObject>
identified for this Sampler/Optimizer.

e index: integer, optional, the index of the realization in the <ConstantSource>

<DataObject> containing the value for this constant. Requires
<ConstantSource> node with a <DataObject> identified for this Sam-
pler/Optimizer.

e <ConstantSource>: string, identifies a <DataObject> to provide <constant>
values to the input space of this entity while sampling. As an alternative to providing prede-
fined values for constants, the <ConstantSource> provides a dynamic means of always
providing the same value for a constant. This is often used as part of a larger multi-workflow
calculation. The <ConstantSource> node recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <Constraint>: string, name of <Function> which contains explicit constraints for
the sampling of the input space of the Model. From a practical point of view, this XML node
must contain the name of a function defined in the <Functions> block (see Section 16).

218

This external function must contain a method called “constrain”, which returns True for in-
puts satisfying the explicit constraints and False otherwise. Note: Currently this accepts any
number of constraints from the user. The <Constraint> node recognizes the following
parameters:

e class: string, required, RAVEN class for this source. Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

<ImplicitConstraint>: string, name of <Function> which contains implicit con-
straints of the Model. From a practical point of view, this XML node must contain the name
of a function defined in the <Functions> block (see Section 16). This external function
must contain a method called “implicitConstrain”, which returns True for outputs satisfy-
ing the implicit constraints and False otherwise. The <ImplicitConstraint> node
recognizes the following parameters:

e class: string, required, RAVEN class for this source. @ Options include
"Functions’.

e type: string, required, RAVEN type for this source. Options include <External>.

<ROM>: string, Name of a Model that optimizers may want to use during optimization. For
example, the Bayesian Optimizer requires a ROM to select points during optimization. The
model is defined in detail with in the <Models> as in other uses. This node should be
provided a string referencing the model definition’s name. The <ROM> node recognizes the
following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

<Sampler>: string, name of a Sampler that can be used to initialize the starting points
for the trajectories of some of the variables. From a practical point of view, this XML node
must contain the name of a Sampler defined in the <Samplers> block (see Section 10.1).
The Sampler will be used to initialize the trajectories’ initial points for some or all of the
variables. For example, if the Sampler selected samples only 2 of the 5 optimization vari-
ables, the <initial> XML node is required only for the remaining 3 variables. The
<Sampler> node recognizes the following parameters:

e class: string, required, RAVEN class for this entity (e.g. Samplers, Models,
DataObjects)

e type: string, required, RAVEN type for this entity; a subtype of the class (e.g. Mon-
teCarlo, Code, PointSet)

219

e <Restart>: string, name of a DataObject. Used to leverage existing data when sampling
a model. For example, if a Model has already been sampled, but some samples were not
collected, the successful samples can be stored and used instead of rerunning the model for
those specific samples. This RAVEN entity definition must be a DataObject with contents
including the input and output spaces of the Model being sampled. The <Restart> node
recognizes the following parameters:

e class: string, optional, The RAVEN class for this source. Options include
"DataObject’.

e type: string, optional, The RAVEN type for this source. Options include any valid
<DataObject> type, such as HistorySet or PointSet.

e <restartTolerance>: float, specifies how strictly a matching point from a
<Restart> DataObject must match the desired sample point in order to be used. If a
potential restart point is within a relative Euclidean distance (as specified by the value in this
node) of a desired sample point, the restart point will be used instead of sampling the Model.

Default: le-15

e <variablesTransformation>: Allows transformation of variables via trans-
lation matrices. This defines two spaces, a “latent” transformed space sam-
pled by RAVEN and a “manifest” original space understood by the Model. The
<variablesTransformation> node recognizes the following parameters:

e distribution: string, optional, the name for the distribution defined in
the XML node <Distributions>. This attribute indicates the values of
<manifestVariables> are drawn from distribution.

The <variablesTransformation> node recognizes the following subnodes:

e <latentVariables>: comma-separated strings, user-defined latent variables that
are used for the variables transformation. All the variables listed under this node should
be also mentioned in <variable>.

e <manifestVariables>: comma-separated strings, user-defined manifest vari-
ables that can be used by the <Model>.

e <manifestVariablesIndex>: comma-separated strings, user-defined manifest
variables indices paired with <manifestVariables>. These indices indicate the
position of manifest variables associated with multivariate normal distribution de-
fined in the XML node <Distributions>. The indices should be postive inte-
ger. If not provided, the code will use the positions of manifest variables listed in
<manifestVariables> as the indices.

e <method>: string, the method that is used for the variables transformation. The
currently available method is " pca’.

220

Bayesian Optimizer Example:

<Optimizers>
<BayesianOptimizer name="opter">

<objective>ans</objective>

<variable name="x">
<distribution>egg_dist</distribution>
</variable>

<variable name="y">
<distribution>egg_dist</distribution>
</variable>

<TargetEvaluation class="DataObjects"
type="PointSet">optOut</TargetEvaluation>

<samplerInit>
<limit>50</1limit>
<initialSeed>42</initialSeed>
<writeSteps>every</writeSteps>
</samplerInit>

<Sampler class="Samplers" type="Stratified"
>LHS_samp</Sampler>

<ROM class="Models" type="ROM">gpROM</ROM>

<Acquisition>
<ExpectedImprovement>
<optimizationMethod>differentialEvolution</optimizationN
<seedingCount>30</seedingCount>
</ExpectedImprovement>
</Acquisition>

</BayesianOptimizer>
</Optimizers>

lethod>

221

12 DataObjects

As seen in the previous chapters, different entities in the RAVEN code interact with each other in
order to create, ideally, an infinite number of different calculation flows. These interactions are
made possible through a data handling system that each entity understands. This system is called
the “DataObjects” framework.

The <DataObjects> tag is a container of data objects of various types that can be con-
structed during the execution of a particular calculation flow. These data objects can be used as
input or output for a particular Model (see Roles’ meaning in section 15), etc. Currently, RAVEN
supports 3 different data types, each with a particular conceptual meaning. These data types are
instantiated as sub-nodes in the <DataObjects> block of an input file:

e <PointSet> is a collection of individual objects, each describing the state of the system
at a certain point (e.g. in time). It can be considered a mapping between multiple sets of
parameters in the input space and the resulting sets of outcomes in the output space at a
particular point (e.g. in time).

e <HistorySet> is acollection of individual objects each describing the temporal evolution
of the state of the system within a certain input domain. It can be considered a mapping
between multiple sets of parameters in the input space and the resulting sets of temporal
evolution in the output space.

e <DataSet> is a generalization of the previously described DataObject, aimed to con-
tain a mixture of data (scalars, arrays, etc.). The variables here stored can be independent
(i.e. scalars) or dependent (arrays) on certain dimensions (e.g. time, coordinates, etc.).
It can be considered a mapping between multiple sets of parameters in the input space
(both dependent and/or independent) and the resulting sets of evolution in the output space
(both dependent and/or independent). Note: The <DataSet> is currently usable in the
<EnsembleModel> only (see 15.6)

In summary, the DataObjects accept the following data in their input/output spaces:

Table 2: DataObjects’ accepted data formats.

DataObject | Input Space | Output Space
PointSet scalars scalars
HistorySet scalars vectors
DataSet any any

As noted above, each data object represents a mapping between a set of parameters and
the resulting outcomes. The data objects are defined within the main XML block called
<DataObjects>:

222

<Simulation>

<DataObjects>
<PointSet name='x%x%x'>...</PointSet>
<HistorySet name='*xx'>...</HistorySet>
<DataSet name='#*%xx'>...</DataSet>
</DataObjects>

</Simulation>

Independently on the type of data, the respective XML node has the following available at-
tributes:

e name, required string attribute, is a user-defined identifier for this data object. Note: As
with other objects, this name can be used to refer to this specific entity from other input
blocks in the XML.

e hierarchical, optional boolean attribute, This flag is going to “control” the printing/-
plotting of the DataObject in case a hierarchical structure is determined (e.g. data coming
from Dynamic Event Tree-like approaches):

e if True all the branches of the tree are going to be printed/plotted independently (i.e.
all the branches are going to be exposed independently)

o if False all the branches are going to be walked back and reconstructed in order to
create independent histories

Default: False

In each XML node (e.g. <PointSet>, <HistorySet> or <DataSet>), the user specifies the
following sub-nodes:

e <Input>, comma separated string, required field, lists the input parameters to which this
data is connected.

e <Output>, comma separated string, required field, lists the output parameters to which
this data is connected.

e <Index>, comma separated string, required for <DataSet>, lists the dependent vari-
ables that depend on this index (specified through the attribute var). This XML node re-
quires the following attribute:

e var, required string attribute, the dimension name of this index (e.g. time)

This XML node allows the following attribute:

223

e autogenerate, optional boolean attribute, if this index should be generated auto-
matically if it does not exist. This will generate integer numbers from O to the maximum
needed. This can be used for reading CSV files that do not have an otherwise use-able
index.

e <options>, optional node, contains additional option nodes for data objects. This node
contains the following subnodes:

e <pivotParameter>, optional, string, specifies the pivotParameter for a
<HistorySet>. The pivot parameter is the shared index of the output variables
in the data object.

Default: time

e <inputRow>, integer, optional field, used to specify the row (in a CSV file or HDF5
table) from which the input space needs to be retrieved (e.g. the time-step);

e <outputRow>, integer, optional field, used to specify the row (in the CSV file or
HDFS5 table) from which the output space needs to be retrieved (e.g. the time-step). If
this node is inputted, the nodes <operator> and <outputPivotValue> can not
be inputted (mutually exclusive).

Note: This XML node is available for DataObjects of type <PointSet> only;

e <operator>, string, optional field, is aimed to perform simple operations on the
data to be stored. The 3 options currently available are:
e 'max’
e 'min’
e 'average’
If this node is inputted, the nodes <outputRow> and <outputPivotValue> can

not be inputted (mutually exclusive).
Note: This XML node is available for DataObjects of type <PointSet> only;

The <PointSet> and <HistorySet> objects are a specialization of the <DataSet>. In
the <PointSet>, the input and output space are all exclusively scalar values. These values might
be extracted from a vector of values for each entry using the <options> node, but the end result
is a single scalar per input or output variable.

For the <HistorySet>, all inputs must be scalar, and all outputs must share an index (the
pivotParameter. There cannot be scalars in any of the outputs. The pivotParameter can be changed
through the corresponding node in the <options> node.

RAVEN automatically creates a pre fix in the output space that is used to generate the direc-
tory name for sampling and other purposes. A user can also add pre fix explicitly to the variables
in the object if it is useful to keep this information.

Note that if the optional nodes in the block <opt ions> are not inputted, the following default
are applied:

224

e the Input space (scalars) is retrieved from the first row in the CSVs files or HDFS tables (if
the parameters specified are not among the variables sampled by RAVEN); In case of the
<DatasSet>, if any of the input space variables depend on an <Index>, they are going to
be linked to the <Index> variable

e the output space defaults are as follows:

e if <PointSet>, the output space is retrieved from the last row in the CSVs files or
HDFS5 tables;

e if <HistorySet>, the output space is represented by all the rows found in the CSVs
or HDFS tables.

e if <DataSet>, the output space of the variables that do not depends on any index is
retrieved from the last row in the CSVs files or HDF5 tables; on the contrary, the output
space of the variables that depends on indexes is represented by all the rows found in
the CSVs or HDFS5 tables (if they match with the indexes’ dimension)

<DataObjects>
<PointSet name='outTPS1'>
<options>
<inputRow>1</inputRow>
<outputRow>-1</outputRow>
</options>
<Input>pipe_Area,pipe_Dh,Dummyl</Input>
<Output>pipe_Hw, pipe_Tw, time</Output>
</PointSet>
<HistorySet name='storiesl'>
<options>
<pivotParameter>TIME</pivotParameter>
<inputRow>1</inputRow>
<outputRow>-1</outputRow>
</options>
<Input>pipe_Area,pipe_Dh</Input>
<Output>pipe_Hw, pipe_Tw, time</Output>
</HistorySet>
<DataSet name='aDataSet'>
<Input>pipe_Area,pipe_Dh</Input>
<Output>pipe_Hw, pipe_Tw</Output>
<Index var="time">pipe_Hw, pipe_Tw</Index>
</DataSet>
</DataObjects>

225

13 Databases

The RAVEN framework provides the capability to store and retrieve data to/from an external
database. Currently RAVEN has support for netCDF4 and HDFS formats. NetCDF shares native
format with RAVEN’s DataObjects, but HDFS is also included for convenience. This database,
depending on the data format it is receiving, will organize itself in a “parallel” or “hierarchical”
fashion. The user can create as many database objects as needed. The Database objects are defined
within the main XML block called <Databases>:

<Simulation>
<Databases>

<NetCDF name="aDatabaseNamel" readMode="overwrite"/>
<HDF5 name="aDatabaseName2" readMode="overwrite"/>

</Databases>

</Simulation>

The specifications for these two formats are listed below.

13.1 NetCDF

The specifications of each Database of type NetCDF needs to be defined within the XML block
<NetCDF>, that recognizes the following attributes:

e name, required string attribute, a user-defined identifier of this object. Note: As with other
objects, this is name can be used to reference this specific entity from other input blocks in
the XML.

e readMode, required string attribute, defines whether an existing database should be read
when loaded (' read’) or overwritten (' overwrite’). Note: if in ' read’ mode and
the database is not found, RAVEN will read in the data as empty and raise a warning, NOT
an error.

e directory, optional string attribute, this attribute can be used to specify a particular
directory path where the database will be created or read from. If an absolute path is
given, RAVEN will respect it; otherwise, the path will be assumed to be relative to the
<WorkingDir> from the <RunInfo> block. RAVEN recognizes path expansion tools
such as tildes (user dir), single dots (current dir), and double dots (parent dir).

Default: workingDir/DatabaseStorage. The <workingDir> is the one defined within the
<RunInfo> XML block (see Section 6).

226

filename, optional string attribute, specifies the filename of the database that will be
created in the directory. Note: When this attribute is not specified, the newer database
filename will be named name . nc, where name corresponds to the name attribute of this
object.

Default: None

Example:

<Databases>
<NetCDF name="namel" directory=''path _to_a dir''

readMode="'overwrite'/>

<HDF5 name="name2" filename=''Name2.nc'' readMode='read'/>
</Databases>

13.2 HDF5

The specifications of each Database of type HDF5 needs to be defined within the XML block
<HDF 5>, that recognizes the following attributes:

name, required string attribute, a user-defined identifier of this object. Note: As with other
objects, this is name can be used to reference this specific entity from other input blocks in
the XML.

readMode, required string attribute, defines whether an existing database should be read
when loaded (' read’) or overwritten (' overwrite’). Note: if in ' read’ mode and
the database is not found, RAVEN will read in the data as empty and raise a warning, NOT
an error.

directory, optional string attribute, this attribute can be used to specify a particular
directory path where the database will be created or read from. If an absolute path is
given, RAVEN will respect it; otherwise, the path will be assumed to be relative to the
<WorkingDir> from the <RunInfo> block. RAVEN recognizes path expansion tools
such as tildes (user dir), single dots (current dir), and double dots (parent dir).

Default: workingDir/DatabaseStorage. The <workingDir> is the one defined within the
<RunInfo> XML block (see Section 6).

filename, optional string attribute, specifies the filename of the HDF5 that will be created
in the directory. Note: When this attribute is not specified, the newer database filename
will be named name.hS, where name corresponds to the name attribute of this object.
Default: None

compression, optional string attribute, compression algorithm to be used. Available are:

e 'gzip’, best where portability is required. Good compression, moderate speed.

227

e "1zf’, Low to moderate compression, very fast.

Default: None

In addition, the <HDF 5> recognizes the following subnodes:

e <variables>, optional, comma-separated string, allows only a pre-specified set of vari-
ables to be included in the HDF5 when it is written to. If this node is not included, by default
the HDF5 will include ALL of the input/output variables as a result of the step it is part of.
If included, only the comma-separated variable names will be included if found.

Note: RAVEN will not error if one of the requested variables is not found; instead, it will
silently pass. It is recommended that a small trial run is performed, loading the HDF5 back
into a data object, to check that the correct variables are saved to the HDF5 before performing
large-scale calculations.

Example:

<Databases>
<HDF5 name="aDatabaseNamel" directory=''path_to_a_ dir''
compression='"'1lzf'' readMode='overwrite'/>
<HDF5 name="aDatabaseName2" filename=''aDatabaseName2.h5''
readMode="'read'/>
</Databases>

228

14 OutStream system

The RAVEN framework provides the capabilities to visualize and print out the data generated,
imported, and post-processed during RAVEN workflows. These capabilities are contained in the
“OutStream” system. OutStream capabilities can be broadly classified into specific categories:

e <Print>, which allows data in memory to be saved to disk;
e <Plot>, which allows plotting data according to a variety of strategies.

Default implementations exist for <Print> and <Plot>, described in Sections 14.2 and 14.3.
Other plotting strategies are described in section “Specific Plots” [14.4] below.

14.1 Defaults

Actually, two different default OutStream types are available:

e Print, module that lets the user dump the data contained in the internal objects;

e Plot, module, based on MatPlotLib [3], aimed to provide advanced plotting capabilities.

Both the types listed above accept as “input” a DataObjects object type. This choice is due to the
“DataObjects” system (see section 12) having the main advantage of ensuring a standardized ap-
proach for exchanging the data/meta-data among the different framework entities. Every module
can project its outcomes into a DataObjects object. This provides the user with the capability to
visualize/dump all the modules’ results. Additionally, the Print system can accept a ROM and
inquire some of its specialized methods. As already mentioned, the RAVEN framework input is
based on the eXtensible Markup Language (XML) format. Thus, in order to activate the “Out-
Stream” system, the input needs to contain a block identified by the <OutStreams> tag (as
shown below).

<OutStreams>
<!—-— "OutStream" objects that need to be created-—>
</OutStreams>

In the “OutStreams” block an unlimited number of “Plot” and “Print” sub-blocks can be speci-
fied. The input specifications and the main capabilities for both types are reported in the following
sections.

14.2 Default Printing system

The Printing system has been created in order to let the user dump the data, contained in the
internal data objects (see Section 12), out at anytime during the calculation. Additionally, the user

229

can inquire special methods of a ROM after training it, through a printing step. Currently, the
only available output is a Comma Separated Value (CSV) file for DataObjects, and XML for
ROM objects. This will facilitate the exchanging of results and provide the possibility to dump the
solution of an analysis and “restart” another one constructing a data object from scratch, as well as
access advanced features of particular reduced order models.

14.2.1 DataObjects Printing

The XML code, that is reported below, shows different ways to request a Print OutStream for
DataObjects. The user needs to provide a name for each sub-block (XML attribute). These names
are then used in the Step blocks to activate the Printing keywords at any time. The XML node has
the following available attributes:

e name, required string attribute, is a user-defined identifier for this data object. Note: As
with other objects, this name can be used to refer to this specific entity from other input
blocks in the XML.

e dir, optional string attribute, is a user-defined directory in which the data are going to be
streamed (i.e. printed). The directory can be either inputted with an relative (with respect
the <workingDir> specified in the <RunInfo> XML node) or absolute path
Default: <workingDir>

As shown in the examples below, every <Print> block must contain, at least, the two required
tags:

e <type>, the output file type (csv or xml). Note: Only csv is currently available for
<DataObjects>

e <source>, the Data name (one of the Data items defined in the <DataObjects> block.

An optional tag <£ilename> can be used to specify the filename for the output. If this is not
defined, then the default name will be the name identifier of the tag.

If only these two tags are provided (as in the “first-example” below), the output file will be
filled with the whole content of the “d-name” Data object.

<OutStreams>
<Print name='first-example'>
<type>csv</type>
<source>d-name</source>
</Print>
<Print name='second-example'>
<type>csv</type>

<source>d-name</source>

230

<what>Output</what>

</Print>

<Print name='third-example'>
<type>csv</type>
<source>d-name</source>
<what>Input</what>

</Print>

<Print name='fourth-example'>
<type>csv</type>
<source>d-name</source>
<what>Input | var—-name—-in, Output | var—-name-out</what>

</Print>

<Print name='fifth-example'>
<type>csv</type>
<source>d-name</source>
<filename>example5</filename>

</Print>

</OutStreams>

If just part of the <source> is important for a particular analysis, the additional XML tag
<what> can be provided. In this block, the variables that need to be dumped must be specified, in
comma separated format. The available options, for the <what> sub-block, are listed below:

e Output, the output space will be saved to user defined output file (see “second-example”)
e Input, the input space will be saved to user defined output file (see “third-example”)

e metadata, the metadata will be saved to user defined output file. This information depends
on analysis workflow. If the data stored in the DataObject comes from Sampler, the meta-
data will include “ProbabilityWeight, PointProbability”. If the data comes from clustering
PostProcessor, the metadata will include “labels”.

¢ Input|var-name-in/Output|var-name-out/metadata|meta-var-name, only the particular
variables “var-name-in” and “var-name-out” will be reported in the output file (see “fourth-
example”)

Note all of the XML tags are case-sensitive but not their content.

14.2.2 ROM Printing

While all ROMs in RAVEN are designed to be used as surrogate models, some ROMs addition-
ally offer information about the original model that isn’t accessible through another means. For
instance, HDMRRom objects can calculate sensitivity coefficients f