-
Notifications
You must be signed in to change notification settings - Fork 288
/
Copy pathtrain.py
287 lines (250 loc) · 14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import argparse
import ast
import pprint
import mxnet as mx
from mxnet.module import Module
from symdata.loader import AnchorGenerator, AnchorSampler, AnchorLoader
from symnet.logger import logger
from symnet.model import load_param, infer_data_shape, check_shape, initialize_frcnn, get_fixed_params
from symnet.metric import RPNAccMetric, RPNLogLossMetric, RPNL1LossMetric, RCNNAccMetric, RCNNLogLossMetric, RCNNL1LossMetric
def train_net(sym, roidb, args):
# print config
logger.info('called with args\n{}'.format(pprint.pformat(vars(args))))
# setup multi-gpu
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
batch_size = args.rcnn_batch_size * len(ctx)
# load training data
feat_sym = sym.get_internals()['rpn_cls_score_output']
ag = AnchorGenerator(feat_stride=args.rpn_feat_stride,
anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios)
asp = AnchorSampler(allowed_border=args.rpn_allowed_border, batch_rois=args.rpn_batch_rois,
fg_fraction=args.rpn_fg_fraction, fg_overlap=args.rpn_fg_overlap,
bg_overlap=args.rpn_bg_overlap)
train_data = AnchorLoader(roidb, batch_size, args.img_short_side, args.img_long_side,
args.img_pixel_means, args.img_pixel_stds, feat_sym, ag, asp, shuffle=True)
# produce shape max possible
_, out_shape, _ = feat_sym.infer_shape(data=(1, 3, args.img_long_side, args.img_long_side))
feat_height, feat_width = out_shape[0][-2:]
rpn_num_anchors = len(args.rpn_anchor_scales) * len(args.rpn_anchor_ratios)
data_names = ['data', 'im_info', 'gt_boxes']
label_names = ['label', 'bbox_target', 'bbox_weight']
data_shapes = [('data', (batch_size, 3, args.img_long_side, args.img_long_side)),
('im_info', (batch_size, 3)),
('gt_boxes', (batch_size, 100, 5))]
label_shapes = [('label', (batch_size, 1, rpn_num_anchors * feat_height, feat_width)),
('bbox_target', (batch_size, 4 * rpn_num_anchors, feat_height, feat_width)),
('bbox_weight', (batch_size, 4 * rpn_num_anchors, feat_height, feat_width))]
# print shapes
data_shape_dict, out_shape_dict = infer_data_shape(sym, data_shapes + label_shapes)
logger.info('max input shape\n%s' % pprint.pformat(data_shape_dict))
logger.info('max output shape\n%s' % pprint.pformat(out_shape_dict))
# load and initialize params
if args.resume:
arg_params, aux_params = load_param(args.resume)
else:
arg_params, aux_params = load_param(args.pretrained)
arg_params, aux_params = initialize_frcnn(sym, data_shapes, arg_params, aux_params)
# check parameter shapes
check_shape(sym, data_shapes + label_shapes, arg_params, aux_params)
# check fixed params
fixed_param_names = get_fixed_params(sym, args.net_fixed_params)
logger.info('locking params\n%s' % pprint.pformat(fixed_param_names))
# metric
rpn_eval_metric = RPNAccMetric()
rpn_cls_metric = RPNLogLossMetric()
rpn_bbox_metric = RPNL1LossMetric()
eval_metric = RCNNAccMetric()
cls_metric = RCNNLogLossMetric()
bbox_metric = RCNNL1LossMetric()
eval_metrics = mx.metric.CompositeEvalMetric()
for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
eval_metrics.add(child_metric)
# callback
batch_end_callback = mx.callback.Speedometer(batch_size, frequent=args.log_interval, auto_reset=False)
epoch_end_callback = mx.callback.do_checkpoint(args.save_prefix)
# learning schedule
base_lr = args.lr
lr_factor = 0.1
lr_epoch = [int(epoch) for epoch in args.lr_decay_epoch.split(',')]
lr_epoch_diff = [epoch - args.start_epoch for epoch in lr_epoch if epoch > args.start_epoch]
lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
lr_iters = [int(epoch * len(roidb) / batch_size) for epoch in lr_epoch_diff]
logger.info('lr %f lr_epoch_diff %s lr_iters %s' % (lr, lr_epoch_diff, lr_iters))
lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
# optimizer
optimizer_params = {'momentum': 0.9,
'wd': 0.0005,
'learning_rate': lr,
'lr_scheduler': lr_scheduler,
'rescale_grad': (1.0 / batch_size),
'clip_gradient': 5}
# train
mod = Module(sym, data_names=data_names, label_names=label_names,
logger=logger, context=ctx, work_load_list=None,
fixed_param_names=fixed_param_names)
mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
batch_end_callback=batch_end_callback, kvstore='device',
optimizer='sgd', optimizer_params=optimizer_params,
arg_params=arg_params, aux_params=aux_params, begin_epoch=args.start_epoch, num_epoch=args.epochs)
def parse_args():
parser = argparse.ArgumentParser(description='Train Faster R-CNN network',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--network', type=str, default='vgg16', help='base network')
parser.add_argument('--pretrained', type=str, default='', help='path to pretrained model')
parser.add_argument('--dataset', type=str, default='voc', help='training dataset')
parser.add_argument('--imageset', type=str, default='', help='imageset splits')
parser.add_argument('--gpus', type=str, default='0', help='gpu devices eg. 0,1')
parser.add_argument('--epochs', type=int, default=10, help='training epochs')
parser.add_argument('--lr', type=float, default=0.001, help='base learning rate')
parser.add_argument('--lr-decay-epoch', type=str, default='7', help='epoch to decay lr')
parser.add_argument('--resume', type=str, default='', help='path to last saved model')
parser.add_argument('--start-epoch', type=int, default=0, help='start epoch for resuming')
parser.add_argument('--log-interval', type=int, default=100, help='logging mini batch interval')
parser.add_argument('--save-prefix', type=str, default='', help='saving params prefix')
# faster rcnn params
parser.add_argument('--img-short-side', type=int, default=600)
parser.add_argument('--img-long-side', type=int, default=1000)
parser.add_argument('--img-pixel-means', type=str, default='(0.0, 0.0, 0.0)')
parser.add_argument('--img-pixel-stds', type=str, default='(1.0, 1.0, 1.0)')
parser.add_argument('--net-fixed-params', type=str, default='["conv0", "stage1", "gamma", "beta"]')
parser.add_argument('--rpn-feat-stride', type=int, default=16)
parser.add_argument('--rpn-anchor-scales', type=str, default='(8, 16, 32)')
parser.add_argument('--rpn-anchor-ratios', type=str, default='(0.5, 1, 2)')
parser.add_argument('--rpn-pre-nms-topk', type=int, default=12000)
parser.add_argument('--rpn-post-nms-topk', type=int, default=2000)
parser.add_argument('--rpn-nms-thresh', type=float, default=0.7)
parser.add_argument('--rpn-min-size', type=int, default=16)
parser.add_argument('--rpn-batch-rois', type=int, default=256)
parser.add_argument('--rpn-allowed-border', type=int, default=0)
parser.add_argument('--rpn-fg-fraction', type=float, default=0.5)
parser.add_argument('--rpn-fg-overlap', type=float, default=0.7)
parser.add_argument('--rpn-bg-overlap', type=float, default=0.3)
parser.add_argument('--rcnn-num-classes', type=int, default=21)
parser.add_argument('--rcnn-feat-stride', type=int, default=16)
parser.add_argument('--rcnn-pooled-size', type=str, default='(14, 14)')
parser.add_argument('--rcnn-batch-size', type=int, default=1)
parser.add_argument('--rcnn-batch-rois', type=int, default=128)
parser.add_argument('--rcnn-fg-fraction', type=float, default=0.25)
parser.add_argument('--rcnn-fg-overlap', type=float, default=0.5)
parser.add_argument('--rcnn-bbox-stds', type=str, default='(0.1, 0.1, 0.2, 0.2)')
args = parser.parse_args()
args.img_pixel_means = ast.literal_eval(args.img_pixel_means)
args.img_pixel_stds = ast.literal_eval(args.img_pixel_stds)
args.net_fixed_params = ast.literal_eval(args.net_fixed_params)
args.rpn_anchor_scales = ast.literal_eval(args.rpn_anchor_scales)
args.rpn_anchor_ratios = ast.literal_eval(args.rpn_anchor_ratios)
args.rcnn_pooled_size = ast.literal_eval(args.rcnn_pooled_size)
args.rcnn_bbox_stds = ast.literal_eval(args.rcnn_bbox_stds)
return args
def get_voc(args):
from symimdb.pascal_voc import PascalVOC
if not args.imageset:
args.imageset = '2007_trainval'
args.rcnn_num_classes = len(PascalVOC.classes)
isets = args.imageset.split('+')
roidb = []
for iset in isets:
imdb = PascalVOC(iset, 'data', 'data/VOCdevkit')
imdb.filter_roidb()
imdb.append_flipped_images()
roidb.extend(imdb.roidb)
return roidb
def get_coco(args):
from symimdb.coco import coco
if not args.imageset:
args.imageset = 'train2017'
args.rcnn_num_classes = len(coco.classes)
isets = args.imageset.split('+')
roidb = []
for iset in isets:
imdb = coco(iset, 'data', 'data/coco')
imdb.filter_roidb()
imdb.append_flipped_images()
roidb.extend(imdb.roidb)
return roidb
def get_vgg16_train(args):
from symnet.symbol_vgg import get_vgg_train
if not args.pretrained:
args.pretrained = 'model/vgg16-0000.params'
if not args.save_prefix:
args.save_prefix = 'model/vgg16'
args.img_pixel_means = (123.68, 116.779, 103.939)
args.img_pixel_stds = (1.0, 1.0, 1.0)
args.net_fixed_params = ['conv1', 'conv2']
args.rpn_feat_stride = 16
args.rcnn_feat_stride = 16
args.rcnn_pooled_size = (7, 7)
return get_vgg_train(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios,
rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk,
rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh,
rpn_min_size=args.rpn_min_size, rpn_batch_rois=args.rpn_batch_rois,
num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride,
rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size,
rcnn_batch_rois=args.rcnn_batch_rois, rcnn_fg_fraction=args.rcnn_fg_fraction,
rcnn_fg_overlap=args.rcnn_fg_overlap, rcnn_bbox_stds=args.rcnn_bbox_stds)
def get_resnet50_train(args):
from symnet.symbol_resnet import get_resnet_train
if not args.pretrained:
args.pretrained = 'model/resnet-50-0000.params'
if not args.save_prefix:
args.save_prefix = 'model/resnet50'
args.img_pixel_means = (0.0, 0.0, 0.0)
args.img_pixel_stds = (1.0, 1.0, 1.0)
args.net_fixed_params = ['conv0', 'stage1', 'gamma', 'beta']
args.rpn_feat_stride = 16
args.rcnn_feat_stride = 16
args.rcnn_pooled_size = (14, 14)
return get_resnet_train(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios,
rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk,
rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh,
rpn_min_size=args.rpn_min_size, rpn_batch_rois=args.rpn_batch_rois,
num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride,
rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size,
rcnn_batch_rois=args.rcnn_batch_rois, rcnn_fg_fraction=args.rcnn_fg_fraction,
rcnn_fg_overlap=args.rcnn_fg_overlap, rcnn_bbox_stds=args.rcnn_bbox_stds,
units=(3, 4, 6, 3), filter_list=(256, 512, 1024, 2048))
def get_resnet101_train(args):
from symnet.symbol_resnet import get_resnet_train
if not args.pretrained:
args.pretrained = 'model/resnet-101-0000.params'
if not args.save_prefix:
args.save_prefix = 'model/resnet101'
args.img_pixel_means = (0.0, 0.0, 0.0)
args.img_pixel_stds = (1.0, 1.0, 1.0)
args.net_fixed_params = ['conv0', 'stage1', 'gamma', 'beta']
args.rpn_feat_stride = 16
args.rcnn_feat_stride = 16
args.rcnn_pooled_size = (14, 14)
return get_resnet_train(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios,
rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk,
rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh,
rpn_min_size=args.rpn_min_size, rpn_batch_rois=args.rpn_batch_rois,
num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride,
rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size,
rcnn_batch_rois=args.rcnn_batch_rois, rcnn_fg_fraction=args.rcnn_fg_fraction,
rcnn_fg_overlap=args.rcnn_fg_overlap, rcnn_bbox_stds=args.rcnn_bbox_stds,
units=(3, 4, 23, 3), filter_list=(256, 512, 1024, 2048))
def get_dataset(dataset, args):
datasets = {
'voc': get_voc,
'coco': get_coco
}
if dataset not in datasets:
raise ValueError("dataset {} not supported".format(dataset))
return datasets[dataset](args)
def get_network(network, args):
networks = {
'vgg16': get_vgg16_train,
'resnet50': get_resnet50_train,
'resnet101': get_resnet101_train
}
if network not in networks:
raise ValueError("network {} not supported".format(network))
return networks[network](args)
def main():
args = parse_args()
roidb = get_dataset(args.dataset, args)
sym = get_network(args.network, args)
train_net(sym, roidb, args)
if __name__ == '__main__':
main()