-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathauto_validator.py
164 lines (135 loc) · 6 KB
/
auto_validator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import io
import numpy as np
import tensorflow as tf
import sys
import matplotlib
backend = 'Agg' if sys.platform == 'linux' else 'TkAgg'
matplotlib.use(backend)
import matplotlib.pyplot as plt
from rllab.envs.normalized_env import NormalizedEnv
from rllab.sampler.utils import rollout
from hgail.envs.vectorized_normalized_env import VectorizedNormalizedEnv
from hgail.misc.validator import Validator
from hgail.misc.rollout import vectorized_render_rollout
import hgail.misc.utils
from julia_env.julia_env import JuliaEnv
def plt2imgsum():
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_sum = tf.Summary.Image(encoded_image_string=buf.getvalue())
plt.clf()
return img_sum
class AutoValidator(Validator):
def __init__(
self,
writer,
obs_mean,
obs_std,
render=True,
render_every=25,
flat_recurrent=False):
super(AutoValidator, self).__init__(writer)
self.obs_mean = obs_mean
self.obs_std = obs_std
self.render = render
self.render_every = render_every
self.flat_recurrent = flat_recurrent
def _summarize_env_infos(self, env_infos):
summaries = []
# means
mean_keys = ['rmse_pos', 'rmse_vel', 'rmse_t', 'is_colliding']
for key in mean_keys:
mean = np.mean(env_infos[key])
tag = 'validation/mean_{}'.format(key)
summaries += [tf.Summary.Value(tag=tag, simple_value=mean)]
# hist
hist_keys = ['rmse_pos', 'rmse_vel', 'rmse_t']
for key in hist_keys:
plt.hist(np.reshape(env_infos[key], -1), 50)
img_sum = plt2imgsum()
tag = 'validation/hist_{}'.format(key)
summaries += [tf.Summary.Value(tag=tag, image=img_sum)]
return summaries
def _summarize_actions(self, actions):
summaries = []
_, act_dim = actions.shape
for i in range(act_dim):
plt.hist(actions[:,i], 50)
img_sum = plt2imgsum()
tag = 'validation/hist_action_{}'.format(i)
summaries += [tf.Summary.Value(tag=tag, image=img_sum)]
return summaries
def _summarize_latent(self, samples_data):
summaries = []
latent = samples_data['agent_infos']['latent']
actions = hgail.misc.utils.flatten(samples_data['actions'])
if len(latent.shape) == 3:
latent = np.reshape(latent, (-1, latent.shape[-1]))
n_samples, latent_dim = latent.shape
action_dim = actions.shape[1]
# histogram actions, distringuishing based on latent value
# assumes discrete latent space
for l in range(latent_dim):
idxs = np.where(latent[:,l] == 1.)[0]
cur_actions = actions[idxs]
for a in range(action_dim):
plt.hist(cur_actions[:,a], 50)
img_sum = plt2imgsum()
tag = 'validation/hist_action_{}_latent_{}'.format(a, l)
summaries += [tf.Summary.Value(tag=tag, image=img_sum)]
tag = 'validation/mean_action_{}_latent_{}'.format(a, l)
mean = np.mean(cur_actions[:,a])
summaries += [tf.Summary.Value(tag=tag, simple_value=mean)]
return summaries
def _summarize_samples_data(self, samples_data):
summaries = []
if 'env_infos' in samples_data.keys():
summaries += self._summarize_env_infos(samples_data['env_infos'])
if self.flat_recurrent:
actions = hgail.misc.utils.flatten(samples_data['actions'])
else:
actions = samples_data['actions']
summaries += self._summarize_actions(actions)
if 'agent_infos' in samples_data.keys() and 'latent' in samples_data['agent_infos'].keys():
summaries += self._summarize_latent(samples_data)
return summaries
def _summarize_obs_mean_std(self, env_mean, env_std, true_mean, true_std, labels):
summaries = []
mean_diff = np.reshape(env_mean, -1) - np.reshape(true_mean, -1)
std_diff = np.reshape(env_std, -1) - np.reshape(true_std, -1)
for i, label in enumerate(labels):
tag = 'comparison/mean_diff_{}'.format(label)
summaries += [tf.Summary.Value(tag=tag, simple_value=mean_diff[i])]
tag = 'comparison/std_diff_{}'.format(label)
summaries += [tf.Summary.Value(tag=tag, simple_value=std_diff[i])]
tag = 'comparison/overall_abs_mean_diff'
summaries += [tf.Summary.Value(tag=tag, simple_value=np.mean(np.abs(mean_diff)))]
tag = 'comparison/overall_abs_std_diff'
summaries += [tf.Summary.Value(tag=tag, simple_value=np.mean(np.abs(std_diff)))]
return summaries
def validate(self, itr, objs):
summaries = []
keys = objs.keys()
if 'samples_data' in keys:
summaries += self._summarize_samples_data(objs['samples_data'])
if 'env' in keys:
# extract some relevant, wrapped environments
normalized_env = hgail.misc.utils.extract_wrapped_env(objs['env'], NormalizedEnv)
if normalized_env is None:
normalized_env = hgail.misc.utils.extract_wrapped_env(objs['env'], VectorizedNormalizedEnv)
julia_env = hgail.misc.utils.extract_wrapped_env(objs['env'], JuliaEnv)
summaries += self._summarize_obs_mean_std(
normalized_env._obs_mean,
np.sqrt(normalized_env._obs_var),
self.obs_mean,
self.obs_std,
julia_env.obs_names()
)
# render a trajectory, this must save to file on its own
if self.render and 'env' in keys and 'policy' in keys and (itr % self.render_every) == 0:
if objs['env'].vectorized:
vectorized_render_rollout(objs['env'], objs['policy'], max_path_length=200)
else:
rollout(objs['env'], objs['policy'], animated=True, max_path_length=200)
self.write_summaries(itr, summaries)