-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
189 lines (161 loc) · 7.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import warnings
warnings.simplefilter("ignore", UserWarning)
import os
import argparse
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from dataset import PreprocessDataset, denorm
from model import VGGEncoder, Decoder
from style_swap import style_swap
def TVloss(img, tv_weight):
"""
Compute total variation loss.
Inputs:
- img: PyTorch Variable of shape (1, 3, H, W) holding an input image.
- tv_weight: Scalar giving the weight w_t to use for the TV loss.
Returns:
- loss: PyTorch Variable holding a scalar giving the total variation loss
for img weighted by tv_weight.
"""
w_variance = torch.sum(torch.pow(img[:, :, :, :-1] - img[:, :, :, 1:], 2))
h_variance = torch.sum(torch.pow(img[:, :, :-1, :] - img[:, :, 1:, :], 2))
loss = tv_weight * (h_variance + w_variance)
return loss
def main():
parser = argparse.ArgumentParser(description='Style Swap by Pytorch')
parser.add_argument('--batch_size', '-b', type=int, default=4,
help='Number of images in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=3,
help='Number of sweeps over the dataset to train')
parser.add_argument('--patch_size', '-p', type=int, default=5,
help='Size of extracted patches from style features')
parser.add_argument('--gpu', '-g', type=int, default=0,
help='GPU ID(nagative value indicate CPU)')
parser.add_argument('--learning_rate', '-lr', type=int, default=1e-4,
help='learning rate for Adam')
parser.add_argument('--tv_weight', type=int, default=1e-6,
help='weight for total variation loss')
parser.add_argument('--snapshot_interval', type=int, default=500,
help='Interval of snapshot to generate image')
parser.add_argument('--train_content_dir', type=str, default='/data/chen/content',
help='content images directory for train')
parser.add_argument('--train_style_dir', type=str, default='/data/chen/style',
help='style images directory for train')
parser.add_argument('--test_content_dir', type=str, default='/data/chen/content',
help='content images directory for test')
parser.add_argument('--test_style_dir', type=str, default='/data/chen/style',
help='style images directory for test')
parser.add_argument('--save_dir', type=str, default='result',
help='save directory for result and loss')
args = parser.parse_args()
# create directory to save
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
loss_dir = f'{args.save_dir}/loss'
model_state_dir = f'{args.save_dir}/model_state'
image_dir = f'{args.save_dir}/image'
if not os.path.exists(loss_dir):
os.mkdir(loss_dir)
os.mkdir(model_state_dir)
os.mkdir(image_dir)
# set device on GPU if available, else CPU
if torch.cuda.is_available() and args.gpu >= 0:
device = torch.device(f'cuda:{args.gpu}')
print(f'# CUDA available: {torch.cuda.get_device_name(0)}')
else:
device = 'cpu'
print(f'# Minibatch-size: {args.batch_size}')
print(f'# epoch: {args.epoch}')
print('')
# prepare dataset and dataLoader
train_dataset = PreprocessDataset(args.train_content_dir, args.train_style_dir)
test_dataset = PreprocessDataset(args.test_content_dir, args.test_style_dir)
iters = len(train_dataset)
print(f'Length of train image pairs: {iters}')
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=True)
test_iter = iter(test_loader)
# set model and optimizer
encoder = VGGEncoder().to(device)
decoder = Decoder().to(device)
optimizer = Adam(decoder.parameters(), lr=args.learning_rate)
# start training
criterion = nn.MSELoss()
loss_list = []
for e in range(1, args.epoch + 1):
print(f'Start {e} epoch')
for i, (content, style) in tqdm(enumerate(train_loader, 1)):
content = content.to(device)
style = style.to(device)
content_feature = encoder(content)
style_feature = encoder(style)
style_swap_res = []
for b in range(content_feature.shape[0]):
c = content_feature[b].unsqueeze(0)
s = style_feature[b].unsqueeze(0)
cs = style_swap(c, s, args.patch_size, 1)
style_swap_res.append(cs)
style_swap_res = torch.cat(style_swap_res, 0)
out_style_swap = decoder(style_swap_res)
out_content = decoder(content_feature)
out_style = decoder(style_feature)
out_style_swap_latent = encoder(out_style_swap)
out_content_latent = encoder(out_content)
out_style_latent = encoder(out_style)
image_reconstruction_loss = criterion(content, out_content) + criterion(style, out_style)
feature_reconstruction_loss = criterion(style_feature, out_style_latent) +\
criterion(content_feature, out_content_latent) +\
criterion(style_swap_res, out_style_swap_latent)
tv_loss = TVloss(out_style_swap, args.tv_weight) + TVloss(out_content, args.tv_weight) \
+ TVloss(out_style, args.tv_weight)
loss = image_reconstruction_loss + feature_reconstruction_loss + tv_loss
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(f'[{e}/total {args.epoch} epoch],[{i} /'
f'total {round(iters/args.batch_size)} iteration]: {loss.item()}')
if i % args.snapshot_interval == 0:
content, style = next(test_iter)
content = content.to(device)
style = style.to(device)
with torch.no_grad():
content_feature = encoder(content)
style_feature = encoder(style)
style_swap_res = []
for b in range(content_feature.shape[0]):
c = content_feature[b].unsqueeze(0)
s = style_feature[b].unsqueeze(0)
cs = style_swap(c, s, args.patch_size, 1)
style_swap_res.append(cs)
style_swap_res = torch.cat(style_swap_res, 0)
out_style_swap = decoder(style_swap_res)
out_content = decoder(content_feature)
out_style = decoder(style_feature)
content = denorm(content, device)
style = denorm(style, device)
out_style_swap = denorm(out_style_swap, device)
out_content = denorm(out_content, device)
out_style = denorm(out_style, device)
res = torch.cat([content, style, out_content, out_style, out_style_swap], dim=0)
res = res.to('cpu')
save_image(res, f'{image_dir}/{e}_epoch_{i}_iteration.png', nrow=content_feature.shape[0])
torch.save(decoder.state_dict(), f'{model_state_dir}/{e}_epoch.pth')
plt.plot(range(len(loss_list)), loss_list)
plt.xlabel('iteration')
plt.ylabel('loss')
plt.title('train loss')
plt.savefig(f'{loss_dir}/train_loss.png')
with open(f'{loss_dir}/loss_log.txt', 'w') as f:
for l in loss_list:
f.write(f'{l}\n')
print(f'Loss saved in {loss_dir}')
if __name__ == '__main__':
main()