forked from ntadmin/xword
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcodeword.py
261 lines (200 loc) · 9.54 KB
/
codeword.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
#!/usr/bin/python3
# codeword.py
# Solve the the codeword puzzle
#
#
# John Clarke, [email protected]
# V0.1 2021-03-30
import re, os
def setPuzzle():
"""
Returns a tuple of tuples containing the puzzle to be solved
:return: matrix: tuple
"""
matrix = tuple() # This will be a tuple of tuples to hold the original puzzle set
matrix += ((0, 25, 0, 21, 0, 4, 0, 8, 0, 17, 0),)
matrix += ((12, 22, 13, 8, 18, 8, 0, 18, 2, 13, 8),)
matrix += ((0, 14, 0, 24, 0, 21, 0, 22, 0, 22, 0),)
matrix += ((5, 13, 26, 20, 0, 16, 20, 9, 13, 7, 13),)
matrix += ((0, 7, 0, 5, 0, 20, 0, 3, 0, 0, 9),)
matrix += ((20, 16, 22, 0, 0, 0, 0, 0, 21, 17, 3),)
matrix += ((17, 0, 0, 8, 0, 23, 0, 1, 0, 21, 0),)
matrix += ((9, 21, 10, 11, 4, 20, 0, 10, 21, 3, 18),)
matrix += ((0, 18, 0, 4, 0, 8, 0, 13, 0, 3, 0),)
matrix += ((7, 22, 6, 21, 0, 18, 21, 25, 17, 20, 18),)
matrix += ((0, 9, 0, 18, 0, 19, 0, 8, 0, 15, 0),)
return matrix
# =============== Extract words ===============
# Horizontal words: Have a word list. This will be a list of lists. First two elements
# are the position of the first letter.
# For each row, start at [0] and test if non-zero.
# If it's non-zero, test whether next element is non-zero. If it is, this is becoming a word.
# Add the first two letters to a tentative word, then progress until we hit a zero. Add
# the word to the word list - also need to store the location of the word (or at least of
# the first letter).
def showPuzzle(matrix, knownLetters):
for row in matrix:
print("+--"*len(row),end="+\n")
print(end="|")
for element in row:
if element == 0:
print("XX", end="|")
else:
print(f"{element:2d}", end="|")
print()
print(end="|")
for element in row:
if element == 0:
print("XX", end="|")
else:
letter = knownLetters.get(element)
if letter != None:
print(letter.capitalize(),end=" |")
else:
print(" ", end="|")
print()
print("+--"*len(row),end="+\n")
def showAwcList(wcList):
for word_candidates in wcList:
print("Word %s has %s possible solutions" % (word_candidates[0], "{:,}".format(len(word_candidates) - 1)))
def parse(m: tuple):
"""
Parse the puzzle matrix both across and down to find words to solve.
Return results as a list of lists. Each inner list represents one word and is structured:
[(direction, row, col), n1, n2, n3,...] where n1... is the code for the letter
:param m:
:return: word_list: list
"""
directions = ['across', 'down']
word = list() # Used to store the word we're working on
word_list = list() # Stores the growing list of words
for direction in directions:
for y in range(len(m)): # number of rows (size of outer tuple)
# word = list() # todo: can probably be deleted as word is reset at end of row already
for x in range(len(m[0])): # number of columns (size of inner tuple)
if direction == 'down': # flips so x is rows and y is columns if we are reading down
x, y = y, x
square = matrix[y][x]
if square != 0: # Encountered a letter
if len(word) == 0:
word.append((direction, y, x), ) # If start of a word, start with direction & coordinates
word.append(square) # First letter
if direction == 'down': # flips x and y back before we reach the loop tests
x, y = y, x
if square == 0 or x == 10: # Encountered a blank space
if len(word) > 3: # Then we collected a word and have come to the end of it
word_list.append(word) # Add it to the list of words
word = list() # Reset word
word = list()
return word_list
def extractWord(word: list):
"""
Strip out the actual word from the combination list object [(direction, row, col), n1, n2, n3,...]
So select index [2] onward
:param word: list
:return: list
"""
return word[2:]
def findMatch(codes: list, rubric: dict, my_dictionary : list):
"""
Return a list of possible matches for a given partial string. The input (codes) is a list of integers,
each corresponding to a letter. Only some of the codes are known: these are defined by the input dict dictionary.
The function will construct a RegEx string and apply it to
:param codes: list # The code list
:param rubric: dict # The set of known codes and corresponding letters
:param my_dictionary: # Master word list to search
:return: list # The set of matches based on the pattern
"""
# Build the ReEx string
r = '^' # Regex for start of string
anyclue = False # Indicates whether we know any letters yet
for code in codes: # Each code number in the codes list
letter = rubric.get(code) # Return any matches from the rubric dictionary (if we know the code)
if letter != None:
r += letter
anyclue = True
else:
r += '.' # Regex for any single character
r += "$" # Regex for end of string
if anyclue == True:
return list(filter(lambda x : re.match(r, x) != None, my_dictionary))
def candidatesNumOptions(candidates):
return len(candidates) - 1
def createPotentialLetterList(startingList, word, codes):
newList = startingList
i = 0;
for code in codes:
newList[code] = word[i]
i = i + 1
return newList
def createNewWClist(startingWClist, rubric, depth):
newWClist = list()
for word_candidates in startingWClist:
newWC = findMatch(word_candidates[0][1:], rubric, word_candidates[1:])
if newWC != None:
newWC.insert(0, word_candidates[0])
else:
newWC = list()
newWClist.append(newWC)
return newWClist
if __name__ == "__main__":
matrix = setPuzzle()
word_list = parse(matrix)
rubric = {22 : 'o', 10 : 'r', 3 : 'p'} # Note to add to a dictionary, use rubric[n] = 'x'
# Show starting position
showPuzzle(matrix, rubric)
dir_path = os.path.dirname(os.path.realpath(__file__))
with open(dir_path + "/ukenglish.txt", "r", encoding="latin-1") as myfile:
my_dictionary = myfile.read().splitlines()
# breakpoint()
# For each word in word_list, generate a list of all possible matches, based on the letters we know so far
# What's the best way to store them?
all_word_candidates = list()
for word in word_list:
word_candidates = findMatch(word[1:], rubric, my_dictionary)
if word_candidates != None:
word_candidates.insert(0,word) # Changed so that the code sequence remains associated with the potential answers
all_word_candidates.append(word_candidates)
# print(*candidates)
# breakpoint()
# print("=== First list ===")
# for word_candidates in all_word_candidates:
# print("Word %s has %s possible solutions" % (word_candidates[0], "{:,}".format(len(word_candidates) - 1)))
# order by number of possible solutions
all_word_candidates.sort(key=candidatesNumOptions)
print("=== Ordered list ===")
showAwcList(all_word_candidates)
# And now try some solutions starting with the word with the least possiblities ...
# This is fundamentally the wrong way, but it will get us going. It should really be a
# recursive function.
letterListToDate = rubric
# how deep into the word list (ie how far into all_word_candidates have we fixed
# (potentially) a candidate word
depth = 0
for word_candidates in all_word_candidates:
depth = depth + 1
for candidate in word_candidates[1:]:
print("\nTrying %s for word %s\nGives:" % (candidate, word_candidates[0]))
potentialLetterList = createPotentialLetterList(letterListToDate, candidate, word_candidates[0][1:])
# Now, that list should be applied to all the words (one at a time) that are after this one.
# If any of them give a zero option, it has failed. If one of them gives one option, it has
# succeeded. If neither, either try antoher top level option, or go down to the next word.
# Create a fresh word_list using the new potential letters
all_wc_test = createNewWClist(all_word_candidates, potentialLetterList, depth)
showAwcList(all_wc_test)
failed = False
soloOption = False
for wc in all_wc_test[depth:]:
numCandidatesHere = len(wc[1:])
if numCandidatesHere == 0:
print("That's a fail - at least one zero option results")
failed = True
break
elif numCandidatesHere == 1:
print("This has a one option outcome, and so should positively be recursed into (but that's not coded yet")
soloOption = True
# don't break out of loop - failed trumps soloOption (I think, but they should never happen together. hmmm)
print("No code to do cleverer stuff, so just trying the next option for this level.")
# Complete hack to stop it after trying all the options for the first word at the moment.
if depth == 1:
exit()