-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgetData.R
193 lines (169 loc) · 8.83 KB
/
getData.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# ==============================================
# Election night at Aftonbladet,
# by Jens Finnäs, Journalism++ Stockholm
# ==============================================
# PART I: GET THE DATA
# ==============================================
## Libraries
require(stringr)
require(httr)
require(rjson)
require(gdata)
require(xlsx)
require(data.table)
# Open the xlsx file with socio-economic data about the municipalities
kommunDB <- read.xlsx("data/kommundata.xlsx", sheetIndex=1)
# This function fetches the results of a given election at municipality and district level from
# the result API of Aftonbladet.
# electionID follows this pattern: "val{YEAR}{ELECTION}" where ELECTION is R for "riksdagsval" (national),
# K is "kommunval" (municipality) and L is "landstingsval" (regional).
# Results are stored in the global "res" environment.
# If overwrite is set to FALSE only non-existing municipalites are fetched.
getResultDataFromAPI <- function(electionID, overwrite) {
# If overwrite, create an empty data frame for municpality results and district results
if (overwrite) {
res$kommun[[electionID]] <<- data.frame(ID=character())
res$distrikt[[electionID]] <<- data.frame(ID=character())
}
# Iterate municipalities
for (kommunID in kommunDB$code) {
# Make sure that the municiplaity does not already exist in database
if (nrow(subset(res$kommun[[electionID]], ID == kommunID)) == 0 ) {
# Generate URL
baseUrl <- "http://valnatt.aftonbladet.se/api/election/ELECTIONID/KOMMUN"
kommunUrl <- str_replace_all(baseUrl, "KOMMUN", formatC(kommunID, width=2, digits=4, flag="0"))
kommunUrl <- str_replace_all(kommunUrl, "ELECTIONID", electionID)
print(kommunUrl)
# Open and read JSON from API
kommunDataJSON <- fromJSON(file=kommunUrl)
# We'll store the data of the municipality in a temporary list.
kommunRow = list()
# Get some meta data about the municipality
kommunRow$ID <- kommunDataJSON$ID
kommunRow$largest_party <- kommunDataJSON$largest_party
kommunRow$largest_party_percent = kommunDataJSON$largest_party
kommunRow$valdeltagande = kommunDataJSON[['valdeltagande']]$PROCENT
kommunRow$KLARA_VALDISTRIKT = kommunDataJSON$KLARA_VALDISTRIKT
kommunRow$ALLA_VALDISTRIKT = kommunDataJSON$ALLA_VALDISTRIKT
# Iterate all parties to get the number and share of votes at municipality level
for (party in names(kommunDataJSON$parties)) {
d <- kommunDataJSON$parties[[party]]
kommunRow[ paste(c("MANDAT", party), collapse="_") ] <- d$MANDAT
kommunRow[ paste(c("MANDAT_ANDRING", party), collapse="_") ] <- d$MANDAT_ANDRING
kommunRow[ paste(c("ROSTER", party), collapse="_") ] <- d$ROSTER
kommunRow[ paste(c("PROCENT", party), collapse="_") ] <- d$PROCENT
kommunRow[ paste(c("PROCENT_ANDRING", party), collapse="_") ] <- d$PROCENT_ANDRING
}
# Add the temporary municipality data list to the database
# First make sure that the row has the same number of columns as the database
# If new local parties appear we won't be able to merge.
if (nrow(res$kommun[[electionID]]) == 0) {
res$kommun[[electionID]] <<- as.data.frame(kommunRow, stringsAsFactors=FALSE)
}
else {
# Check if there are new cols in the row list, or missing cols compared to the database
newCols <- names(kommunRow)[!(names(kommunRow) %in% names(res$kommun[[electionID]]))]
missingCols <- names(res$kommun[[electionID]])[!(names(res$kommun[[electionID]]) %in% names(kommunRow))]
# Add missing cols to the row list and the database
if (length(newCols) > 0 || length(missingCols) > 0) {
for (newCol in newCols) {
res$kommun[[electionID]][[newCol]] <<- NA
}
for (missingCol in missingCols) {
kommunRow[missingCol] <- NA
}
}
res$kommun[[electionID]] <<- rbind(res$kommun[[electionID]], kommunRow)
}
# Iterate districts to get the results from them as well
for (kkID in names(kommunDataJSON$kommun_kretsar)) {
kommun_krets <- kommunDataJSON$kommun_kretsar[[kkID]]
for (vdID in names(kommun_krets$valdistrikt)) {
valdistrikt <- kommun_krets$valdistrikt[[vdID]]
# Just as with the municipalities, store the district row data in a temporary list
distriktRow <- list()
# Get meta data
distriktRow$ID = valdistrikt$ID
distriktRow$NAMN = valdistrikt$NAMN
distriktRow$valdeltagande = valdistrikt[['valdeltagande']]$PROCENT
distriktRow$largest_party = valdistrikt$largest_party
distriktRow$largest_party_percent = valdistrikt$largest_party_percent
distriktRow$KOMMUN_NAMN = kommunRow$NAMN
distriktRow$KOMMUN_ID = kommunRow$ID
# Get votes for each party
for (party in names(valdistrikt$parties)) {
d <- valdistrikt$parties[[party]]
distriktRow[ paste(c("ROSTER", party), collapse="_") ] <- d$ROSTER
distriktRow[ paste(c("PROCENT", party), collapse="_") ] <- d$PROCENT
distriktRow[ paste(c("PROCENT_ANDRING", party), collapse="_") ] <- d$PROCENT_ANDRING
}
distriktRow <- as.data.frame(distriktRow)
# Merge row with database
if (nrow(res$distrikt[[electionID]]) == 0) {
res$distrikt[[electionID]] <<- as.data.frame(distriktRow, stringsAsFactors=FALSE)
}
else {
# Add missing columns so that we can merge
newCols <- names(distriktRow)[!(names(distriktRow) %in% names(res$distrikt[[electionID]]))]
missingCols <- names(res$distrikt[[electionID]])[!(names(res$distrikt[[electionID]]) %in% names(distriktRow))]
if (length(newCols) > 0 || length(missingCols) > 0) {
for (newCol in newCols) {
res$distrikt[[electionID]][[newCol]] <<- NA
}
for (missingCol in missingCols) {
distriktRow[missingCol] <- NA
}
}
res$distrikt[[electionID]] <<- rbind(res$distrikt[[electionID]], distriktRow)
}
}
}
}
}
print("Done!")
}
# This is the global data object that we'll use to store the data
res <- new.env()
# ...it'll consists of municipalty results and district results
res$kommun <- new.env()
res$distrikt <- new.env()
# Example: how to use the function, get national ("R") and local election ("K") results from API and overwrite
# any previous data from these elections
getResultDataFromAPI("val2014R", TRUE)
getResultDataFromAPI("val2014K", TRUE)
# Save the results file
save(res, file="valresultat.Rdata")
# Merge the socio-economic data with the parliament results data at municipality level
kommunDB <- merge(kommunDB, res$kommun$val2014R, by.x="code", by.y="ID", all.x=TRUE)
# Next step: merge the results from the local elections
# In the local elections there are tons of small local parties. We manually select the
# most interesting parties to avoid column overflow.
kommunParties <- c("V", "S", "MP", "C", "FP", "M","KD", "SD", "FI", "PP", "SP")
kRes <- res$kommun$val2014K[,1:6]
dRes <- res$distrikt$val2014K[,1:6]
for (party in kommunParties) {
procentCol <- paste(c("PROCENT",party), collapse="_")
procentChangeCol <- paste(c("PROCENT_ANDRING",party), collapse="_")
mandatCol <- paste(c("MANDAT",party), collapse="_")
mandatChangeCol <- paste(c("MANDAT_ANDRING",party), collapse="_")
votesCol <- paste(c("ROSTER",party), collapse="_")
kRes[[procentCol]] <- res$kommun$val2014K[[procentCol]]
kRes[[procentChangeCol]] <- res$kommun$val2014K[[procentChangeCol]]
kRes[[mandatCol]] <- res$kommun$val2014K[[mandatCol]]
kRes[[mandatChangeCol]] <- res$kommun$val2014K[[mandatChangeCol]]
kRes[[votesCol]] <- res$kommun$val2014K[[votesCol]]
dRes[[procentCol]] <- res$distrikt$val2014K[[procentCol]]
dRes[[procentChangeCol]] <- res$distrikt$val2014K[[procentChangeCol]]
dRes[[mandatCol]] <- res$distrikt$val2014K[[mandatCol]]
dRes[[mandatChangeCol]] <- res$distrikt$val2014K[[mandatChangeCol]]
dRes[[votesCol]] <- res$distrikt$val2014K[[votesCol]]
}
# Add a "KV_" prefix to the columns so that we can keep national and local results separate
colnames(kRes) <- lapply(colnames(kRes), function(d) paste(c("KV", d), collapse="_"))
colnames(dRes) <- lapply(colnames(dRes), function(d) paste(c("KV", d), collapse="_"))
# Merge!
kommunDB <- merge(kommunDB, kRes, by.x="code", by.y="KV_ID", all.x=TRUE)
distriktDB <- merge(res$distrikt$val2014R, dRes, by.x="ID", by.y="KV_ID", all.x=TRUE)
# Export to Excel - for non-R reporters :)
write.xlsx(x = kommunDB, file = "data/2014_resultat_kommun.xlsx", sheetName = "data", row.names = TRUE)
write.table(distriktDB, "data/2014_resultat_distrikt.csv", sep="\t", row.names=TRUE, col.names=TRUE)