-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
329 lines (254 loc) · 15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# -*- coding:utf-8 -*-
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import argparse
import torch
import torch.nn as nn
from tensorboardX import SummaryWriter
import sys
import numpy as np
# Append root directory to system path for imports
repo_path, _ = os.path.split(os.path.realpath(__file__))
repo_path, _ = os.path.split(repo_path)
sys.path.append(repo_path)
from utils.seed import seed_all
from utils.config import CFG
from utils.dataset import get_dataset
from utils.model import get_model
from utils.logger import get_logger
from utils.optimizer import build_optimizer, build_scheduler
from utils.io_tools import dict_to
from utils.metrics import Metrics
import utils.checkpoint as checkpoint
def parse_args():
parser = argparse.ArgumentParser(description='OccRWKV training')
parser.add_argument(
'--cfg',
dest='config_file',
default='cfgs/OccRWKV.yaml',
metavar='FILE',
help='path to config file',
type=str,
)
parser.add_argument(
'--dset_root',
dest='dataset_root',
default=None,
metavar='DATASET',
help='path to dataset root folder',
type=str,
)
args = parser.parse_args()
return args
def fast_hist_crop(output, target, unique_label):
hist = fast_hist(output.flatten(), target.flatten(),
np.max(unique_label) + 1) # 19*19
hist = hist[unique_label, :]
hist = hist[:, unique_label]
return hist
def fast_hist(pred, label, n): # n==19
k = (label >= 0) & (label < n)
bin_count = np.bincount(
n * label[k].astype(int) + pred[k],
minlength=n**2)
return bin_count[:n**2].reshape(n, n)
def per_class_iu(hist):
return np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist))
def train(model, optimizer, scheduler, dataset, _cfg, start_epoch, logger, tbwriter):
"""
Train a model using the PyTorch Module API.
Inputs:
- model: A PyTorch Module giving the model to train.
- optimizer: An Optimizer object we will use to train the model
- scheduler: Scheduler for learning rate decay if used
- dataset: The dataset to load files
- _cfg: The configuration dictionary read from config file
- start_epoch: The epoch at which start the training (checkpoint)
- logger: The logger to save info
- tbwriter: The tensorboard writer to save plots
Returns: Nothing, but prints model accuracies during training.
"""
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# Moving optimizer and model to used device
model = model.to(device=device)
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
dset = dataset['train']
nbr_epochs = _cfg._dict['TRAIN']['EPOCHS']
nbr_iterations = len(dset) # number of iterations depends on batchs size
# Defining metrics class and initializing them..
metrics = Metrics(_cfg._dict['DATASET']['NCLASS'], nbr_iterations, model.get_scales())
metrics.reset_evaluator()
metrics.losses_track.set_validation_losses(model.get_validation_loss_keys())
metrics.losses_track.set_train_losses(model.get_train_loss_keys())
for epoch in range(start_epoch, nbr_epochs + 1):
logger.info('=> =============== Epoch [{}/{}] ==============='.format(epoch, nbr_epochs))
logger.info('=> Reminder - Output of routine on {}'.format(_cfg._dict['OUTPUT']['OUTPUT_PATH']))
# Print learning rate
# for param_group in optimizer.param_groups:
logger.info('=> Learning rate: {}'.format(scheduler.get_last_lr()[0]))
model.train() # put model to training mode
# for t, (data, indices) in enumerate(dataset['train']):
for t, (data, indices) in enumerate(dset):
data = dict_to(data, device)
scores, loss = model(data) # [b,20,256,256,32]
# Zero out the gradients.
optimizer.zero_grad()
# Backward pass: gradient of loss wr. each model parameter.
loss['total'].backward()
# update parameters of model by gradients.
optimizer.step()
if _cfg._dict['SCHEDULER']['FREQUENCY'] == 'iteration':
scheduler.step()
for l_key in loss:
tbwriter.add_scalar('train_loss_batch/{}'.format(l_key), loss[l_key].item(), len(dset) * (epoch - 1) + t)
# Updating batch losses to then get mean for epoch loss
metrics.losses_track.update_train_losses(loss)
if (t + 1) % _cfg._dict['TRAIN']['SUMMARY_PERIOD'] == 0:
loss_print = '=> Epoch [{}/{}], Iteration [{}/{}], Learn Rate: {}, Train Losses: '\
.format(epoch, nbr_epochs, t+1, len(dset), scheduler.get_lr()[0])
for key in loss.keys():
loss_print += '{} = {:.6f}, '.format(key, loss[key])
logger.info(loss_print[:-3])
metrics.add_batch(prediction=scores, target=model.get_target(data))
for l_key in metrics.losses_track.train_losses:
tbwriter.add_scalar('train_loss_epoch/{}'.format(l_key), metrics.losses_track.train_losses[l_key].item() / metrics.losses_track.train_iteration_counts, epoch - 1)
tbwriter.add_scalar('lr/lr', scheduler.get_lr()[0], epoch - 1)
epoch_loss = metrics.losses_track.train_losses['total'] / metrics.losses_track.train_iteration_counts
for scale in metrics.evaluator.keys():
tbwriter.add_scalar('train_performance/{}/mIoU'.format(scale), metrics.get_semantics_mIoU(scale).item(), epoch - 1)
tbwriter.add_scalar('train_performance/{}/IoU'.format(scale), metrics.get_occupancy_IoU(scale).item(), epoch - 1)
tbwriter.add_scalar('train_performance/{}/Precision'.format(scale), metrics.get_occupancy_Precision(scale).item(), epoch-1)
tbwriter.add_scalar('train_performance/{}/Recall'.format(scale), metrics.get_occupancy_Recall(scale).item(), epoch-1)
tbwriter.add_scalar('train_performance/{}/F1'.format(scale), metrics.get_occupancy_F1(scale).item(), epoch-1)
logger.info('=> [Epoch {} - Total Train Loss = {}]'.format(epoch, epoch_loss))
for scale in metrics.evaluator.keys():
loss_scale = metrics.losses_track.train_losses['semantic_{}'.format(scale)].item() / metrics.losses_track.train_iteration_counts
logger.info('=> [Epoch {} - Scale {}: Loss = {:.6f} - mIoU = {:.6f} - IoU = {:.6f} - Seg_mIoU = {:.6f}'
' - P = {:.6f} - R = {:.6f} - F1 = {:.6f}]'.format(epoch, scale, loss_scale,
metrics.get_semantics_mIoU(scale).item(),
metrics.get_occupancy_IoU(scale).item(),
0,
metrics.get_occupancy_Precision(scale).item(),
metrics.get_occupancy_Recall(scale).item(),
metrics.get_occupancy_F1(scale).item(),
))
logger.info('=> Epoch {} - Training set class-wise IoU:'.format(epoch))
for i in range(1, metrics.nbr_classes):
class_name = dset.dataset.get_xentropy_class_string(i)
class_score = metrics.evaluator['1_1'].getIoU()[1][i]
logger.info(' => IoU {}: {:.6f}'.format(class_name, class_score))
# Reset evaluator for validation...
metrics.reset_evaluator()
checkpoint_info = validate(model, dataset['val'], _cfg, epoch, logger, tbwriter, metrics)
# Save checkpoints
for k in checkpoint_info.keys():
checkpoint_path = os.path.join(_cfg._dict['OUTPUT']['OUTPUT_PATH'], 'chkpt', k)
_cfg._dict['STATUS'][checkpoint_info[k]] = checkpoint_path
checkpoint.save(checkpoint_path, model, optimizer, scheduler, epoch, _cfg._dict)
# Save checkpoint if current epoch matches checkpoint period
if epoch % _cfg._dict['TRAIN']['CHECKPOINT_PERIOD'] == 0:
checkpoint_path = os.path.join(_cfg._dict['OUTPUT']['OUTPUT_PATH'], 'chkpt', str(epoch).zfill(2))
checkpoint.save(checkpoint_path, model, optimizer, scheduler, epoch, _cfg._dict)
# Reset evaluator and losses for next epoch...
metrics.reset_evaluator()
metrics.losses_track.restart_train_losses()
metrics.losses_track.restart_validation_losses()
if _cfg._dict['SCHEDULER']['FREQUENCY'] == 'epoch':
scheduler.step()
# Update config file
_cfg.update_config(resume=True)
return metrics.best_metric_record
def validate(model, dset, _cfg, epoch, logger, tbwriter, metrics):
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
nbr_epochs = _cfg._dict['TRAIN']['EPOCHS']
logger.info('=> Passing the network on the validation set...')
model.eval()
with torch.no_grad():
for t, (data, indices) in enumerate(dset):
data = dict_to(data, device)
scores, loss = model(data)
for l_key in loss:
tbwriter.add_scalar('validation_loss_batch/{}'.format(l_key), loss[l_key].item(), len(dset) * (epoch - 1) + t)
# Updating batch losses to then get mean for epoch loss
metrics.losses_track.update_validaiton_losses(loss)
if (t + 1) % _cfg._dict['VAL']['SUMMARY_PERIOD'] == 0:
loss_print = '=> Epoch [{}/{}], Iteration [{}/{}], Validation Losses: '.format(epoch, nbr_epochs, t + 1, len(dset))
for key in loss.keys():
loss_print += '{} = {:.6f}, '.format(key, loss[key])
logger.info(loss_print[:-3])
metrics.add_batch(prediction=scores, target=model.get_target(data))
for l_key in metrics.losses_track.validation_losses:
tbwriter.add_scalar('validation_loss_epoch/{}'.format(l_key), metrics.losses_track.validation_losses[l_key].item() / metrics.losses_track.validation_iteration_counts, epoch - 1)
epoch_loss = metrics.losses_track.validation_losses['total'] / metrics.losses_track.validation_iteration_counts
for scale in metrics.evaluator.keys():
tbwriter.add_scalar('validation_performance/{}/mIoU'.format(scale), metrics.get_semantics_mIoU(scale).item(), epoch - 1)
tbwriter.add_scalar('validation_performance/{}/IoU'.format(scale), metrics.get_occupancy_IoU(scale).item(), epoch - 1)
logger.info('=> [Epoch {} - Total Validation Loss = {}]'.format(epoch, epoch_loss))
for scale in metrics.evaluator.keys():
loss_scale = metrics.losses_track.validation_losses['semantic_{}'.format(scale)].item() / metrics.losses_track.train_iteration_counts
logger.info('=> [Epoch {} - Scale {}: Loss = {:.6f} - mIoU = {:.6f} - IoU = {:.6f} - Seg_mIoU = {:.6f}'
' - P = {:.6f} - R = {:.6f} - F1 = {:.6f}]'.format(epoch, scale, loss_scale,
metrics.get_semantics_mIoU(scale).item(),
metrics.get_occupancy_IoU(scale).item(),
0,
metrics.get_occupancy_Precision(scale).item(),
metrics.get_occupancy_Recall(scale).item(),
metrics.get_occupancy_F1(scale).item(),
))
logger.info('=> Epoch {} - Validation set class-wise IoU:'.format(epoch))
for i in range(1, metrics.nbr_classes):
class_name = dset.dataset.get_xentropy_class_string(i)
class_score = metrics.evaluator['1_1'].getIoU()[1][i]
logger.info(' => {}: {:.6f}'.format(class_name, class_score))
checkpoint_info = {}
# if epoch_loss < _cfg._dict['OUTPUT']['BEST_LOSS']:
# logger.info('=> Best loss on validation set encountered: ({} < {})'.format(epoch_loss, _cfg._dict['OUTPUT']['BEST_LOSS']))
# _cfg._dict['OUTPUT']['BEST_LOSS'] = epoch_loss.item()
# checkpoint_info['best-loss'] = 'BEST_LOSS'
mIoU_1_1 = metrics.get_semantics_mIoU('1_1')
IoU_1_1 = metrics.get_occupancy_IoU('1_1')
if mIoU_1_1 > _cfg._dict['OUTPUT']['BEST_METRIC']:
logger.info('=> Best metric on validation set encountered: ({} > {})'.format(mIoU_1_1, _cfg._dict['OUTPUT']['BEST_METRIC']))
_cfg._dict['OUTPUT']['BEST_METRIC'] = mIoU_1_1.item()
checkpoint_info['best-metric'] = 'BEST_METRIC'
metrics.update_best_metric_record(mIoU_1_1, IoU_1_1, epoch_loss.item(), epoch)
checkpoint_info['last'] = 'LAST'
return checkpoint_info
def main():
# https://github.com/pytorch/pytorch/issues/27588
torch.backends.cudnn.enabled = True
seed_all(42)
args = parse_args()
train_f = args.config_file
dataset_f = args.dataset_root
# Read train configuration file
_cfg = CFG()
_cfg.from_config_yaml(train_f)
# Replace dataset path in config file by the one passed by argument
if dataset_f is not None:
_cfg._dict['DATASET']['DATA_ROOT'] = dataset_f
# Create writer for Tensorboard
tbwriter = SummaryWriter(logdir=os.path.join(_cfg._dict['OUTPUT']['OUTPUT_PATH'], 'metrics'))
# Setting the logger to print statements and also save them into logs file
logger = get_logger(_cfg._dict['OUTPUT']['OUTPUT_PATH'], 'logs_train.log')
logger.info('============ Training routine: "%s" ============\n' % train_f)
dataset = get_dataset(_cfg._dict)
logger.info('=> Loading network architecture...')
model = get_model(_cfg._dict, phase='trainval')
logger.info(f'=> Model Parameters: {sum(p.numel() for p in model.parameters())/1000000.0} M')
logger.info('=> Loading optimizer...')
optimizer = build_optimizer(_cfg, model)
scheduler = build_scheduler(_cfg, optimizer)
model, optimizer, scheduler, epoch = checkpoint.load(model, optimizer, scheduler, _cfg._dict['STATUS']['RESUME'], _cfg._dict['STATUS']['LAST'], logger)
best_record = train(model, optimizer, scheduler, dataset, _cfg, epoch, logger, tbwriter)
logger.info('=> ============ Network trained - all epochs passed... ============')
logger.info('=> [Best performance: Epoch {} - mIoU = {} - IoU {}]'.format(best_record['epoch'], best_record['mIoU'], best_record['IoU']))
logger.info('=> Writing config file in output folder - deleting from config files folder')
_cfg.finish_config()
logger.info('=> Training routine completed...')
exit()
if __name__ == '__main__':
main()