-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathstringMLST.py
executable file
·1568 lines (1541 loc) · 68.7 KB
/
stringMLST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import getopt
import sys
import logging
import os
import time
import ast
import gzip
import re
import tempfile
import shutil
import xml.etree.ElementTree as ET
try:
from urllib.request import urlopen, urlretrieve
except ImportError:
from urllib import urlopen, urlretrieve
import argparse
version = """ stringMLST v0.6.3 (updated : September 02, 2020) """
"""
stringMLST free for academic users and requires permission before any commercial
use for any version of this code/algorithm. If you are a commercial user, please
contact [email protected] for permissions
LICENSE TERMS FOR stringMLST
Adopted from: https://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public
License
By exercising the Licensed Rights (defined below), You accept and agree to be
bound by the terms and conditions of this Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Public License ("Public License"). To
the extent this Public License may be interpreted as a contract, You are granted
the Licensed Rights in consideration of Your acceptance of these terms and
conditions, and the Licensor grants You such rights in consideration of benefits
the Licensor receives from making the Licensed Material available under these
terms and conditions.
Section 1 - Definitions.
Adapted Material means material subject to Copyright and Similar Rights that is
derived from or based upon the Licensed Material and in which the Licensed
Material is translated, altered, arranged, transformed, or otherwise modified in
a manner requiring permission under the Copyright and Similar Rights held by the
Licensor. For purposes of this Public License, where the Licensed Material is a
musical work, performance, or sound recording, Adapted Material is always
produced where the Licensed Material is synched in timed relation with a moving
image. Adapter's License means the license You apply to Your Copyright and
Similar Rights in Your contributions to Adapted Material in accordance with the
terms and conditions of this Public License. BY-NC-SA Compatible License means a
license listed at creativecommons.org/compatiblelicenses, approved by Creative
Commons as essentially the equivalent of this Public License. Copyright and
Similar Rights means copyright and/or similar rights closely related to
copyright including, without limitation, performance, broadcast, sound
recording, and Sui Generis Database Rights, without regard to how the rights are
labeled or categorized. For purposes of this Public License, the rights
specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. Effective
Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under
Article 11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or
similar international agreements. Exceptions and Limitations means fair use,
fair dealing, and/or any other exception or limitation to Copyright and Similar
Rights that applies to Your use of the Licensed Material. License Elements means
the license attributes listed in the name of a Creative Commons Public License.
The License Elements of this Public License are Attribution, NonCommercial, and
ShareAlike. Licensed Material means the artistic or literary work, database, or
other material to which the Licensor applied this Public License. Licensed
Rights means the rights granted to You subject to the terms and conditions of
this Public License, which are limited to all Copyright and Similar Rights that
apply to Your use of the Licensed Material and that the Licensor has authority
to license. Licensor means the individual(s) or entity(ies) granting rights
under this Public License. NonCommercial means not primarily intended for or
directed towards commercial advantage or monetary compensation. For purposes of
this Public License, the exchange of the Licensed Material for other material
subject to Copyright and Similar Rights by digital file-sharing or similar means
is NonCommercial provided there is no payment of monetary compensation in
connection with the exchange. Share means to provide material to the public by
any means or process that requires permission under the Licensed Rights, such as
reproduction, public display, public performance, distribution, dissemination,
communication, or importation, and to make material available to the public
including in ways that members of the public may access the material from a
place and at a time individually chosen by them. Sui Generis Database Rights
means rights other than copyright resulting from Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal protection
of databases, as amended and/or succeeded, as well as other essentially
equivalent rights anywhere in the world. You means the individual or entity
exercising the Licensed Rights under this Public License. Your has a
corresponding meaning. Section 2 - Scope.
License grant. Subject to the terms and conditions of this Public License, the
Licensor hereby grants You a worldwide, royalty-free, non-sublicensable, non-
exclusive, irrevocable license to exercise the Licensed Rights in the Licensed
Material to: reproduce and Share the Licensed Material, in whole or in part, for
NonCommercial purposes only; and produce, reproduce, and Share Adapted Material
for NonCommercial purposes only. Exceptions and Limitations. For the avoidance
of doubt, where Exceptions and Limitations apply to Your use, this Public
License does not apply, and You do not need to comply with its terms and
conditions. Term. The term of this Public License is specified in Section 6(a).
Media and formats; technical modifications allowed. The Licensor authorizes You
to exercise the Licensed Rights in all media and formats whether now known or
hereafter created, and to make technical modifications necessary to do so. The
Licensor waives and/or agrees not to assert any right or authority to forbid You
from making technical modifications necessary to exercise the Licensed Rights,
including technical modifications necessary to circumvent Effective
Technological Measures. For purposes of this Public License, simply making
modifications authorized by this Section 2(a)(4) never produces Adapted
Material. Downstream recipients. Offer from the Licensor - Licensed Material.
Every recipient of the Licensed Material automatically receives an offer from
the Licensor to exercise the Licensed Rights under the terms and conditions of
this Public License. Additional offer from the Licensor - Adapted Material.
Every recipient of Adapted Material from You automatically receives an offer
from the Licensor to exercise the Licensed Rights in the Adapted Material under
the conditions of the Adapter's License You apply. No downstream restrictions.
You may not offer or impose any additional or different terms or conditions on,
or apply any Effective Technological Measures to, the Licensed Material if doing
so restricts exercise of the Licensed Rights by any recipient of the Licensed
Material. No endorsement. Nothing in this Public License constitutes or may be
construed as permission to assert or imply that You are, or that Your use of the
Licensed Material is, connected with, or sponsored, endorsed, or granted
official status by, the Licensor or others designated to receive attribution as
provided in Section 3(a)(1)(A)(i). Other rights.
Moral rights, such as the right of integrity, are not licensed under this Public
License, nor are publicity, privacy, and/or other similar personality rights;
however, to the extent possible, the Licensor waives and/or agrees not to assert
any such rights held by the Licensor to the limited extent necessary to allow
You to exercise the Licensed Rights, but not otherwise. Patent and trademark
rights are not licensed under this Public License. To the extent possible, the
Licensor waives any right to collect royalties from You for the exercise of the
Licensed Rights, whether directly or through a collecting society under any
voluntary or waivable statutory or compulsory licensing scheme. In all other
cases the Licensor expressly reserves any right to collect such royalties,
including when the Licensed Material is used other than for NonCommercial
purposes. Section 3 - License Conditions.
Your exercise of the Licensed Rights is expressly made subject to the following
conditions.
Attribution.
If You Share the Licensed Material (including in modified form), You must:
retain the following if it is supplied by the Licensor with the Licensed
Material: identification of the creator(s) of the Licensed Material and any
others designated to receive attribution, in any reasonable manner requested by
the Licensor (including by pseudonym if designated); a copyright notice; a
notice that refers to this Public License; a notice that refers to the
disclaimer of warranties; a URI or hyperlink to the Licensed Material to the
extent reasonably practicable; indicate if You modified the Licensed Material
and retain an indication of any previous modifications; and indicate the
Licensed Material is licensed under this Public License, and include the text
of, or the URI or hyperlink to, this Public License. You may satisfy the
conditions in Section 3(a)(1) in any reasonable manner based on the medium,
means, and context in which You Share the Licensed Material. For example, it may
be reasonable to satisfy the conditions by providing a URI or hyperlink to a
resource that includes the required information. If requested by the Licensor,
You must remove any of the information required by Section 3(a)(1)(A) to the
extent reasonably practicable. ShareAlike. In addition to the conditions in
Section 3(a), if You Share Adapted Material You produce, the following
conditions also apply.
The Adapter's License You apply must be a Creative Commons license with the same
License Elements, this version or later, or a BY-NC-SA Compatible License. You
must include the text of, or the URI or hyperlink to, the Adapter's License You
apply. You may satisfy this condition in any reasonable manner based on the
medium, means, and context in which You Share Adapted Material. You may not
offer or impose any additional or different terms or conditions on, or apply any
Effective Technological Measures to, Adapted Material that restrict exercise of
the rights granted under the Adapter's License You apply. Section 4 - Sui
Generis Database Rights.
Where the Licensed Rights include Sui Generis Database Rights that apply to Your
use of the Licensed Material:
for the avoidance of doubt, Section 2(a)(1) grants You the right to extract,
reuse, reproduce, and Share all or a substantial portion of the contents of the
database for NonCommercial purposes only; if You include all or a substantial
portion of the database contents in a database in which You have Sui Generis
Database Rights, then the database in which You have Sui Generis Database Rights
(but not its individual contents) is Adapted Material, including for purposes of
Section 3(b); and You must comply with the conditions in Section 3(a) if You
Share all or a substantial portion of the contents of the database. For the
avoidance of doubt, this Section 4 supplements and does not replace Your
obligations under this Public License where the Licensed Rights include other
Copyright and Similar Rights. Section 5 - Disclaimer of Warranties and
Limitation of Liability.
Unless otherwise separately undertaken by the Licensor, to the extent possible,
the Licensor offers the Licensed Material as-is and as-available, and makes no
representations or warranties of any kind concerning the Licensed Material,
whether express, implied, statutory, or other. This includes, without
limitation, warranties of title, merchantability, fitness for a particular
purpose, non-infringement, absence of latent or other defects, accuracy, or the
presence or absence of errors, whether or not known or discoverable. Where
disclaimers of warranties are not allowed in full or in part, this disclaimer
may not apply to You. To the extent possible, in no event will the Licensor be
liable to You on any legal theory (including, without limitation, negligence) or
otherwise for any direct, special, indirect, incidental, consequential,
punitive, exemplary, or other losses, costs, expenses, or damages arising out of
this Public License or use of the Licensed Material, even if the Licensor has
been advised of the possibility of such losses, costs, expenses, or damages.
Where a limitation of liability is not allowed in full or in part, this
limitation may not apply to You. The disclaimer of warranties and limitation of
liability provided above shall be interpreted in a manner that, to the extent
possible, most closely approximates an absolute disclaimer and waiver of all
liability. Section 6 - Term and Termination.
This Public License applies for the term of the Copyright and Similar Rights
licensed here. However, if You fail to comply with this Public License, then
Your rights under this Public License terminate automatically. Where Your right
to use the Licensed Material has terminated under Section 6(a), it reinstates:
automatically as of the date the violation is cured, provided it is cured within
30 days of Your discovery of the violation; or upon express reinstatement by the
Licensor. For the avoidance of doubt, this Section 6(b) does not affect any
right the Licensor may have to seek remedies for Your violations of this Public
License. For the avoidance of doubt, the Licensor may also offer the Licensed
Material under separate terms or conditions or stop distributing the Licensed
Material at any time; however, doing so will not terminate this Public License.
Sections 1, 5, 6, 7, and 8 survive termination of this Public License. Section 7
- Other Terms and Conditions.
The Licensor shall not be bound by any additional or different terms or
conditions communicated by You unless expressly agreed. Any arrangements,
understandings, or agreements regarding the Licensed Material not stated herein
are separate from and independent of the terms and conditions of this Public
License. Section 8 - Interpretation.
For the avoidance of doubt, this Public License does not, and shall not be
interpreted to, reduce, limit, restrict, or impose conditions on any use of the
Licensed Material that could lawfully be made without permission under this
Public License. To the extent possible, if any provision of this Public License
is deemed unenforceable, it shall be automatically reformed to the minimum
extent necessary to make it enforceable. If the provision cannot be reformed, it
shall be severed from this Public License without affecting the enforceability
of the remaining terms and conditions. No term or condition of this Public
License will be waived and no failure to comply consented to unless expressly
agreed to by the Licensor. Nothing in this Public License constitutes or may be
interpreted as a limitation upon, or waiver of, any privileges and immunities
that apply to the Licensor or You, including from the legal processes of any
jurisdiction or authority.
The program has 3 basic modes :
mainTool: for single sample (both single and paired end)
batchTool: for multiple samples stored at a common location (both single and paired end samples)
listTool: for multiple samples with location information stored in a list (both single and paired end samples)
predict part starts here
"""
#############################################################
# Function : get_links
# Input : speciesName and schemes dict
# Output : Dict containing links to alleles and profile
# Description: Gets the URLs from pubMLST for the required
# files (alleles, profile)
#############################################################
def get_links(xmlData, savePath, speciesName):
lociList = {}
profileURL = None
for species in xmlData:
if re.search(re.escape(speciesName), species.text, re.IGNORECASE, ):
for mlst in species:
for database in mlst:
for child in database:
if child.tag == "profiles":
profileURL = child[0].text
if child.tag == "loci":
for locus in child:
lociList[locus.text.rstrip()] = locus[0].text
if profileURL is None:
profileError = "Parsing failed: could not find profiles file"
print(profileError)
print("This usually means the provided species, '{}', does not exist on PubMLST".format(speciesName))
print("Use `{} --getMLST --species list` to list available species".format(sys.argv[0]))
print("Or visit PubMLST for more information:\nhttps://pubmlst.org/data/")
logging.debug(profileError)
sys.exit(1)
elif lociList == {}:
lociError = "Parsing failed: could not find allele sequences"
logging.debug(lociError)
print(lociError)
sys.exit(1)
else:
return profileURL, lociList
#############################################################
# Function : get_files
# Input : URLs from get_links
# Output : Downloads files and builds database
#############################################################
def get_files(filePrefix, loci, profileURL, speciesName):
with open(config, "w") as configFile:
configFile.write("[loci]\n")
for file in loci:
localFile = filePrefix + "_" + file + ".tfa"
try:
localFile, headers = urlretrieve(loci[file], localFile)
except:
print('\033[91m' + "There was an error downloading " + file + '\033[0m')
pass
configFile.write(file + "\t" + filePrefix + "_" + file + ".tfa\n")
localFile = filePrefix + "_profile.txt"
localFile, headers = urlretrieve(profileURL, localFile)
configFile.write("[profile]\n")
configFile.write("profile\t" + filePrefix + "_profile.txt\n")
configFile.close()
try:
makeCustomDB(config, k, filePrefix)
except:
print('\033[91m' + "Failed to create database " + speciesName + '\033[0m')
pass
else:
print("\t" + '\033[92m' + "Database ready for " + speciesName + '\033[0m')
print("\t" + filePrefix)
############################################################
# Function : batchTool
# Input : Directory name, paired or single, k value
# Output : STs and allelic profiles for each FASTQ file
# Description: Processes all FASTQ files present in the input
# directory
#############################################################
def batchTool(fdir, paired, k):
fileList = []
if not dir.endswith('/'):
fdir += '/'
for inputFile in os.listdir(fdir):
if paired is True:
if inputFile.endswith('1.fastq') or inputFile.endswith('1.fq') or inputFile.endswith('1.fq.gz') or inputFile.endswith('1.fastq.gz'):
fastq1 = fdir+inputFile
fastq2 = fdir+inputFile.replace('1.', '2.')
fileList.append((fastq1, fastq2))
else:
if inputFile.endswith('.fastq') or inputFile.endswith('.fq') or inputFile.endswith('.fq.gz') or inputFile.endswith('.fastq.gz'):
fastq1 = fdir + inputFile
fileList.append(fastq1)
results = multiSampleTool(fileList, paired, k)
return results
#############################################################
# Function : listTool
# Input : List file, paired or single, k value
# Output : STs and allelic profiles for each FASTQ file
# Description: Processes all FASTQ files present in the input
# list file
#############################################################
def listTool(fList, paired, k):
fileList = []
listf = open(fList, 'r')
samples = listf.readlines()
for sample in samples:
if paired is True:
s = sample.strip().split()
fastq1 = s[0]
try:
fastq2 = s[1]
except IndexError:
print("Error: Paired end files should be whitespace/tab seperated")
exit(0)
fileList.append((fastq1, fastq2))
else:
fastq1 = sample.rstrip()
fileList.append(fastq1)
results = multiSampleTool(fileList, paired, k)
return results
#############################################################
# Function : multiSampleTool
# Input : List of files to process, paired or single, k value
# Output : STs and allelic profiles for each FASTQ file
# Description: Processes all FASTQ files present in the input list
#############################################################
def multiSampleTool(fileList, paired, k):
results = {}
for sample in fileList:
if paired is True:
fastq1 = sample[0]
fastq2 = sample[1]
else:
fastq1 = sample
fastq2 = None
results = singleSampleTool(fastq1, fastq2, paired, k, results)
return results
#############################################################
# Function : singleSampleTool
# Input : fastq file 1 and 2, paired or single, k value, output dictionary
# Output : STs and allelic profiles for each FASTQ file
# Description: Processes both FASTQ files passed to the function
#############################################################
def singleSampleTool(fastq1, fastq2, paired, k, results):
if paired is True:
fileName = fastq1.split('/')[-1].split('.')[0][:-1]
else:
fileName = fastq1.split('/')[-1].split('.')[0]
if reads is True:
readFileName = fileName + '_reads.fq'
global readFile
readFile = open(readFileName, 'w+')
if paired is True:
msg = "singleSampleTool : " + fastq1 + ' and ' + fastq2
else:
msg = "singleSampleTool : " + fastq1
logging.debug(msg)
global alleleCount
alleleCount = {}
t1 = time.time()
if paired is True:
logging.debug("singleSampleTool : paired True")
logging.debug("singleSampleTool : fastq1 start")
singleFileTool(fastq1, k)
logging.debug("singleSampleTool : fastq1 done")
logging.debug("singleSampleTool : fastq2 start")
singleFileTool(fastq2, k)
logging.debug("singleSampleTool : fastq2 done")
if alleleCount == {}:
string = "No k-mer matches were found for the sample " + fastq1 + " and "+ fastq2 + ". Probable cause of the error: low quality data/too many N's in the data"
logging.error("singleSampleTool : " + string)
print(string)
# exit(0)
profileCount = alleleCount
else:
logging.debug("singleSampleTool : paired False")
logging.debug("singleSampleTool : fastq start")
singleFileTool(fastq1, k)
profileCount = alleleCount
logging.debug("singleSampleTool : fastq done")
if alleleCount == 0:
string = "No k-mer matches were found for the sample " + fastq1 + ". Probable cause of the error: low quality data/too many N's in the data"
logging.error("singleSampleTool : " + string)
print(string)
logging.debug("singleSampleTool : weightedProfile start")
weightedProfile = weightedProf(profileCount, weightDict)
logging.debug("singleSampleTool : weightedProfile finished")
logging.debug("singleSampleTool : getMaxCount start")
finalProfile = getMaxCount(weightedProfile, fileName)
logging.debug("singleSampleTool : getMaxCount end")
st = 0
if profileFile != '':
logging.debug("singleSampleTool : findST start")
st = findST(finalProfile, stProfile)
logging.debug("singleSampleTool : findST end")
if reads is True:
readFile.close()
t3 = time.time()
finalProfile['ST'] = st
finalProfile['t'] = t3-t1
results[fileName] = finalProfile
return results
#############################################################
# Function : singleFileTool
# Input : fastq file, k value
# Output : Edits a global dictionary - results
# Description: Processes the single fastq file
#############################################################
def singleFileTool(fastq, k):
msg = "singleFileTool :" + fastq
logging.debug(msg)
if os.path.isfile(fastq):
logging.debug("singleFileTool : fastq")
non_overlapping_window = 1
finalProfile = {}
t1 = time.time()
fileExplorer(fastq, k, non_overlapping_window)
t3 = time.time()
else:
msg = "File does not exist: " + fastq
logging.error("singleFileTool : msg")
print(msg)
def fileExplorer(file, k, non_overlapping_window):
if file.endswith('.gz'):
if sys.version_info[0] == 3:
f = gzip.open(file, 'rt')
else:
f = gzip.open(file, 'rb')
else:
f = open(file)
msg = "fileExplorer :" + file
logging.debug(msg)
lines = f.readlines()
i = 1
n_reads = 0
try:
if len(lines[1]) < k:
m1 = "Read length " + len(lines[1])+" for file " + file + " smaller than " + k
print(m1)
print("Skipping to next file.")
logging.debug(m1)
return 0
except Exception:
m2 = "Check fastq file " + file
print(m2)
logging.debug(m2)
return 0
start = int((len(lines[1])-k)//2)
end = int((len(lines[1])-k)//2)
yesRead = False
for line in lines:
if i % 4 == 0 and yesRead:
readFile.write(line)
if i % 4 != 3:
yesRead = False
if i%4 == 1:
head = line
if i%4 == 2:
s1 = str(line[start:k+start])
sn_1 = str(line[-k-end:-end]).rstrip()
if s1 in kmerDict[k]:
n_reads += 1
goodReads(line, k, non_overlapping_window)
if reads is True:
readFile.write(head)
readFile.write(line)
readFile.write('+\n')
yesRead = True
i += 1
#############################################################
# Function : goodReads
# Input : sequence read, k, step size
# Output : Edits the count of global variable alleleCount
# Description: Increment the count for each k-mer match
#############################################################
def goodReads(read, k, non_overlapping_window):
n = 0
line = read.rstrip()
while n+k <= len(line):
s = str(line[n:n+k])
if s in kmerDict[k]:
for probLoc in kmerDict[k][s]:
if probLoc not in alleleCount:
alleleCount[probLoc] = {}
a = kmerDict[k][s][probLoc]
for allele in a:
allele = allele.rstrip()
if allele in alleleCount[probLoc]:
alleleCount[probLoc][allele] += 1
else:
alleleCount[probLoc][allele] = 1
n += non_overlapping_window
#############################################################
# Function : weightedProf
# Input : allele count global var, weight factors
# Output/Desc: Normalizes alleleCount by weight factor
#############################################################
def weightedProf(alleleCount, weightDict):
logging.debug("weightedProf")
weightedDict = {}
for loc in alleleCount:
weightedDict[loc] = {}
for allele in alleleCount[loc]:
if loc in weightDict:
if allele in weightDict[loc]:
weightedDict[loc][allele] = (alleleCount[loc][allele] / weightDict[loc][allele])
else:
weightedDict[loc][allele] = alleleCount[loc][allele]
else:
weightedDict[loc][allele] = alleleCount[loc][allele]
return weightedDict
#############################################################
# Function : getMaxCount
# Input : allele counts
# Output : allelic profile and ST
# Description: Finds the alleles with maximum counts and
# generates the allelic profile and ST
#############################################################
def getMaxCount(alleleCount, fileName):
logging.debug("getMaxCount")
max_n = {}
secondMax = {}
maxSupport = {}
secondSupport = {}
finalProfileCount = {}
for locus in alleleNames:
finalProfileCount[locus] = {}
num = ''
for loc in alleleCount:
n = 0
m = 0
for num in alleleCount[loc]:
if alleleCount[loc][num] >= n:
m = n
n = alleleCount[loc][num]
if n-m < fuzzy:
try:
alleleCount[loc][num]
except:
pass
else:
alleleCount[loc][num] = str(alleleCount[loc][num])+'*'
max_n[loc] = str(n)+'*'
else:
max_n[loc] = n
secondMax[loc] = m
for loc in alleleCount:
try:
max_n[loc]
except:
pass
else:
maxSupport[loc] = {}
secondSupport[loc] = {}
num_max = []
num_max2 = []
compare = float(re.sub("\*$", "", str(max_n[loc])))
for num in alleleCount[loc]:
if float(re.sub("\*$", "", str(alleleCount[loc][num]))) == compare:
if "\*" in str(max_n[loc]):
insert = num + '*'
num_max.append(insert)
else:
num_max.append(num)
maxSupport[loc][num] = max_n[loc]
if alleleCount[loc][num] == secondMax[loc]:
num_max2.append(num)
secondSupport[loc][num] = secondMax[loc]
try:
finalProfileCount[loc] = num_max[0]
except LookupError:
finalProfileCount[loc] = 'NA'
msgs = "Max Support :" + fileName + " : " + str(maxSupport)
logging.debug(msgs)
msgs = "Second Max Support :" + fileName + " : " + str(secondSupport)
logging.debug(msgs)
return finalProfileCount
#############################################################
# Function : findST
# Input : allelic profile for one sample and profiles for all STs
# Output : ST number, or 0 if no ST match was found
# Description: Finds the ST number which best matches the given sample profile.
#############################################################
def findST(finalProfile, stProfile):
if not stProfile:
return 0
oneProfile = next(iter(stProfile.values()))
# The gene names in finalProfile may not exactly match those in stProfile. To deal with this,
# each finalProfile gene is associated with the best matching gene in the ST profiles.
finalGeneToSTGene = {}
profileGenes = list(oneProfile.keys())
for finalGene in list(finalProfile.keys()):
if finalGene in profileGenes: # exact match is preferable
finalGeneToSTGene[finalGene] = finalGene
else: # failing an exact match, look for a case-sensitive containment
for profileGene in profileGenes:
if finalGene in profileGene:
finalGeneToSTGene[finalGene] = profileGene
break
if finalGene not in finalGeneToSTGene: # if there's still no match, try a case-insensitive containment
for profileGene in profileGenes:
if finalGene.lower() in profileGene.lower():
finalGeneToSTGene[finalGene] = profileGene
break
if finalGene not in finalGeneToSTGene:
print("ERROR: gene names in config file do not match gene names in profile file")
exit(0)
transformedFinalProfile = {}
for gene, allele in finalProfile.items():
if allele:
allele = re.sub("\*", "", allele)
transformedFinalProfile[finalGeneToSTGene[gene]] = allele
# Check to see if the dictionary is empty, if so then means no allele were found at all
if bool(transformedFinalProfile) is False:
return 0
# Find the best matching ST, considering only the genes in the sample's profile. This is to
# allow for superfluous columns in the ST profile.
logging.debug("findST")
for stNum, profile in stProfile.items():
if all(x in list(profile.items()) for x in list(transformedFinalProfile.items())):
return stNum
return 0
#############################################################
# Function : loadModule
# Input : k value and prefix of the DB file
# Output : Updates the DB dictionary variables
# Description: Used in loading the DB as set of variables
# by calling other functions
#############################################################
def loadModule(k, dbPrefix):
global dbFile
dbFile = dbPrefix+'_'+str(k)+'.txt'
global weightFile
weightFile = dbPrefix+'_weight.txt'
global profileFile
profileFile = dbPrefix+'_profile.txt'
global kmerDict
kmerDict = {}
kmerDict[k] = loadKmerDict(dbFile)
global weightDict
weightDict = loadWeightDict(weightFile)
global stProfile
stProfile = loadSTfromFile(profileFile)
#############################################################
# Function : loadSTfromFile
# Input : profile definition file
# Output : Updates the DB dictionary variables
# Description: Used in loading the DB as set of variables
#############################################################
def loadSTfromFile(profileF):
with open(profileF, 'r') as definitionFile:
st = {}
index = {}
lines = definitionFile.readlines()
heads = lines[0].rstrip().split('\t')
for locus in heads:
index[locus] = heads.index(locus)
for line in lines:
pro = line.rstrip().split('\t')
l = {}
for locus in heads[1:]:
try:
l[locus] = pro[index[locus]]
except LookupError:
logging.debug("ERROR while loading ST")
pass
st[pro[0]] = l
return st
#############################################################
# Function : loadKmerDict
# Input : DB prefix
# Output : Updates the DB dictionary variables
# Description: Used in loading the DB as set of variables
#############################################################
def loadKmerDict(dbFile):
kmerTableDict = {}
with open(dbFile, 'r') as kmerTableFile:
lines = kmerTableFile.readlines()
global alleleNames
alleleNames = set()
for line in lines:
array = line.rstrip().rsplit('\t')
kmerTableDict[array[0]] = {}
kmerTableDict[array[0]][array[1]] = array[2][1:-1].rsplit(',')
alleleNames.add(array[1])
return kmerTableDict
#############################################################
# Function : loadWeightDict
# Input : Weight file prefix
# Output : Updates the DB dictionary variables
# Description: Used in loading the DB as set of variables
#############################################################
def loadWeightDict(weightFile):
weightDict = {}
with open(weightFile, 'r') as weightTableFile:
lines = weightTableFile.readlines()
for line in lines:
array = line.rstrip().rsplit('\t')
try:
(loc, allele) = array[0].replace('-', '_').rsplit('_', 1)
except ValueError:
print("Error : Allele name in locus file should be seperated by '_' or '-'")
exit(0)
if loc not in weightDict:
weightDict[loc] = {}
weightDict[loc][allele] = float(array[1])
return weightDict
#############################################################
# Function : loadConfig
# Input : config file path from getopts
# Output : Updates configDict
# Description: Used to find allele fasta files for getCoverage
#############################################################
def loadConfig(config):
global configDict
configDict = {}
with open(config) as configFile:
lines = configFile.readlines()
head = ''
for line in lines:
if line.rstrip() == '':
continue
if line.rstrip() == '[loci]':
head = 'loci'
configDict[head] = {}
elif line.rstrip() == '[profile]':
head = 'profile'
configDict[head] = {}
else:
arr = line.strip().split()
configDict[head][arr[0]] = arr[1]
for head in configDict:
for element in configDict[head]:
if not os.path.isfile(configDict[head][element]):
print("ERROR: %s file does not exist at %s" % (element, configDict[head][element]))
exit(0)
return configDict
#############################################################
# Function : getCoverage
# Input : results dictionary
# Output : Updates results to include coverage info
#############################################################
def getCoverage(results):
tmpdir = tempfile.mkdtemp()
for sample in results:
file = tmpdir +'/'+ sample + '.fasta'
bed = tmpdir +'/'+ sample + '.bed'
sortedFile = tmpdir +'/'+ sample + '.sorted'
covOut = tmpdir +'/'+ sample + '.out'
with open(file, 'w') as tmpFasta:
with open(bed, 'w') as bedFile:
for gene in configDict['loci']:
genes = Fasta(configDict['loci'][gene])
allele = gene+'_'+re.sub('\*', "", str(results[sample][gene]))
tmpFasta.write('>'+gene+'\n')
bedFile.write(gene+'\t0\t'+str(len(genes[allele]))+'\n')
for line in genes[allele]:
tmpFasta.write(str(line)+'\n')
cmdIndex = "bwa index %s 2>/dev/null"%(file)
os.system(cmdIndex)
readBWA = sample+'_reads.fq'
cmdBwaMem = "bwa mem %s %s 2>/dev/null| samtools view -uS - | samtools sort - -o %s"%(file, readBWA, sortedFile)
os.system(cmdBwaMem)
cmdCov = "bedtools coverage -a %s -b %s > %s"%(bed, sortedFile, covOut)
os.system(cmdCov)
with open(covOut, 'r') as cov:
for line in cov.readlines():
records = line.rstrip().rsplit('\t')
gene = records[0]
geneCov = float(records[6]) * 100
results[sample][gene] = results[sample][gene] + " (" + str("%.2f" % geneCov) + ")"
shutil.rmtree(tmpdir)
"""Prints the results in the format asked by the user."""
#############################################################
# Function : printResults
# Input : results, output file, overwrite?
# Output : Prints on the screen or in a file
# Description: Prints the results in the format asked by the user
#############################################################
def printResults(results, output_filename, overwrite, timeDisp):
if output_filename != None:
if overwrite is False:
outfile = open(output_filename, "a")
else:
outfile = open(output_filename, "w")
heading = "Sample"
for head in sorted(results[list(results.keys())[0]]):
if head == 'ST' or head == 't':
continue
heading += '\t' + head
heading += '\tST'
if timeDisp is True:
heading += '\tTime'
if output_filename != None:
outfile.write(heading)
outfile.write('\n')
else:
print(heading)
for s in results:
sample = s.split("_")[0]
for l in sorted(results[s]):
if l == 'ST' or l == 't':
continue
if results[s][l]:
sample += '\t'+results[s][l]
else:
sample += '\tNA'
if timeDisp is True:
sample += '\t' + str(results[s]['ST']) + '\t%.2f ' %results[s]['t']
else:
sample += '\t' + str(results[s]['ST'])
if output_filename != None:
outfile.write(sample)
outfile.write('\n')
else:
print(sample)
"""Predict part ends here"""
"""Build DB part starts"""
"""Returns the reverse complement of the sequence"""
def reverseComplement(seq):
seqU = seq.upper()
seq_dict = {'A':'T', 'T':'A', 'G':'C', 'C':'G', 'Y':'R', 'R':'Y', 'S':'S', 'W':'W', 'K':'M', 'M':'K', 'N':'N'}
try:
return "".join([seq_dict[base] for base in reversed(seqU)])
except Exception:
strn = "Reverse Complement Error:" + seqU
logging.debug(strn)
pass
#############################################################
# Function : getFastaDict
# Input : locus file name
# Output : dictionary with all the allele sequences
# Description: Stores each allele sequence in a dictionary
#############################################################
def getFastaDict(fullLocusFile):
logging.debug("Create Fasta Dict")
logging.debug(fullLocusFile)
fastaFile = open(fullLocusFile, 'r').read()
entries = [x for x in fastaFile.split('>') if len(x) != 0]
fastaDict = {}
for entry in entries:
key = [x for x in entry.split('\n')[0].split() if len(x) != 0][0]
sequence = ''.join(entry.split('\n')[1:]).rstrip()
fastaDict[key] = {'sequence':sequence}
return fastaDict
#############################################################
# Function : formKmerDB
# Input : configuration file, k value, output prefix
# Output : stringMLST DB
# Description: Constructs the k-mer DB in both strand orientation
#############################################################
def formKmerDB(configDict, k, output_filename):
dbFileName = output_filename+'_'+str(k)+'.txt'
weightFileName = output_filename+'_weight.txt'
kmerDict = {}
mean = {}
for locus in configDict['loci']:
msgs = "formKmerDB :" +locus
logging.debug(msgs)
fastaDict = getFastaDict(configDict['loci'][locus])
sum = 0
n = 0
for allele in list(fastaDict.keys()):
seq = fastaDict[allele]['sequence'].strip()
l = len(seq)
sum += l
n += 1
try:
(loc, num) = allele.replace('-', '_').rsplit('_', 1)
except ValueError:
print("Error : Allele name in locus file should be seperated by '_' or '-'")
exit(0)
splitId = allele.replace('-', '_').rsplit('_', 1)
i = 0
while i+k <= l:
kmer = seq[i:i+k]
revCompKmer = reverseComplement(kmer)
if kmer not in kmerDict:
kmerDict[kmer] = {}
kmerDict[kmer][splitId[0]] = []
kmerDict[kmer][splitId[0]].append(int(splitId[1]))
else:
if splitId[0] not in kmerDict[kmer]:
kmerDict[kmer][splitId[0]] = []
kmerDict[kmer][splitId[0]].append(int(splitId[1]))
else:
kmerDict[kmer][splitId[0]].append(int(splitId[1]))
if revCompKmer not in kmerDict:
kmerDict[revCompKmer] = {}
kmerDict[revCompKmer][splitId[0]] = []
kmerDict[revCompKmer][splitId[0]].append(int(splitId[1]))
else:
if splitId[0] not in kmerDict[revCompKmer]:
kmerDict[revCompKmer][splitId[0]] = []
kmerDict[revCompKmer][splitId[0]].append(int(splitId[1]))
else:
kmerDict[revCompKmer][splitId[0]].append(int(splitId[1]))
i += 1
mean[locus] = sum/n*1.0
with open(dbFileName, 'w') as kfile:
for key in kmerDict:
for key1 in kmerDict[key]:
string = key+'\t'+key1+'\t'+str(kmerDict[key][key1]).replace(" ", "")+'\n'
kfile.write(string)
with open(weightFileName, 'w') as wfile:
for locus in configDict['loci']:
fastaDict = getFastaDict(configDict['loci'][locus])
for allele in list(fastaDict.keys()):
splitId = allele.split('_')
seq = fastaDict[allele]['sequence']
l = len(seq)
fac = (l/mean[locus])
s = allele + '\t' + str(fac) + '\n'
if fac > 1.05 or fac < 0.95:
wfile.write(s)
"""Copies the profile definition file as a new file"""
def copyProfileFile(profileDict, output_filename):
profileFileName = output_filename+'_profile.txt'
with open(profileDict['profile']) as f:
lines = f.readlines()
with open(profileFileName, "w") as f1:
f1.writelines(lines)
#############################################################
# Function : makeCustomDB
# Input : configuration file, k value, output prefix
# Output : None
# Description: Processes the config file and calls the relevant
# function
#############################################################
def makeCustomDB(config, k, output_filename):
configDict = {}
if output_filename == None:
output_filename = 'kmerDB'
with open(config, 'r') as configFile:
lines = configFile.readlines()
head = ''
for line in lines:
if line.rstrip() == '':
continue
if line.rstrip() == '[loci]':
head = 'loci'
configDict[head] = {}
elif line.rstrip() == '[profile]':
head = 'profile'
configDict[head] = {}
else:
arr = line.strip().split()
configDict[head][arr[0]] = arr[1]
for head in configDict:
for element in configDict[head]:
if not os.path.isfile(configDict[head][element]):
print("ERROR: %s file does not exist at %s" % (element, configDict[head][element]))
exit(0)
formKmerDB(configDict, k, output_filename)
copyProfileFile(configDict['profile'], output_filename)