forked from TheAlgorithms/Go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfibonacci.go
57 lines (48 loc) · 1.6 KB
/
fibonacci.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// fibonacci.go
// description: Get the nth Fibonacci Number
// details:
// In mathematics, the Fibonacci numbers, commonly denoted Fn, form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. [Fibonacci number](https://en.wikipedia.org/wiki/Fibonacci_number)
// author(s) [red_byte](https://github.com/i-redbyte)
// see fibonacci_test.go
package fibonacci
import (
"math"
)
// Matrix This function calculates the n-th fibonacci number using the matrix method. [See](https://en.wikipedia.org/wiki/Fibonacci_number#Matrix_form)
func Matrix(n uint) uint {
a, b := 1, 1
c, rc, tc := 1, 0, 0
d, rd := 0, 1
for n != 0 {
if n&1 == 1 {
tc = rc
rc = rc*a + rd*c
rd = tc*b + rd*d
}
ta := a
tb := b
tc = c
a = a*a + b*c
b = ta*b + b*d
c = c*ta + d*c
d = tc*tb + d*d
n >>= 1
}
return uint(rc)
}
// Formula This function calculates the n-th fibonacci number using the [formula](https://en.wikipedia.org/wiki/Fibonacci_number#Relation_to_the_golden_ratio)
// Attention! Tests for large values fall due to rounding error of floating point numbers, works well, only on small numbers
func Formula(n uint) uint {
sqrt5 := math.Sqrt(5)
phi := (sqrt5 + 1) / 2
powPhi := math.Pow(phi, float64(n))
return uint(powPhi/sqrt5 + 0.5)
}
// Recursive calculates the n-th fibonacci number recursively by adding the previous two Fibonacci numbers.
// This algorithm is extremely slow for bigger numbers, but provides a simpler implementation.
func Recursive(n uint) uint {
if n <= 1 {
return n
}
return Recursive(n-1) + Recursive(n-2)
}