-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfusion_matrix.py
49 lines (39 loc) · 1.51 KB
/
confusion_matrix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import stats
from scipy import io
import itertools
def plot_confusion_matrix(cm, cm_std, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues, **kwarg):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
cm_std = cm_std.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
cm = cm*100
cm_std = cm_std*100
cm = np.round(cm, decimals = 2)
cm_std = np.round(cm_std, decimals = 2)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, size=20)
#plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45, weight='bold')
plt.yticks(tick_marks, classes, weight='bold')
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",size = 5, fontdict={'weight':'bold'},
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label', size=15)
plt.xlabel('Predicted label', size=15)