Skip to content

Latest commit

 

History

History
159 lines (139 loc) · 6.58 KB

Simulation_Execution.md

File metadata and controls

159 lines (139 loc) · 6.58 KB

Simulation Execution

System Simulations are executed with the execution engine executor (cadCAD.engine.Executor) given System Model Configurations. There are multiple simulation Execution Modes and Execution Contexts.

Steps:

  1. Choose Execution Mode:

    • Simulation Execution Modes:
      cadCAD executes a process per System Model Configuration and a thread per System Simulation.
    Class: cadCAD.engine.ExecutionMode
    Attributes:
    • Local Mode (Default): Automatically selects Single Threaded or Multi-Process/Threaded Modes (Example: cadCAD.engine.ExecutionMode().local_mode).
    • Single Threaded Mode: A single threaded Execution Mode for a single System Model Configuration (Example: cadCAD.engine.ExecutionMode().single_mode).
    • Multi-Process/Threaded Mode: Execution Mode for System Model Simulations which executes Multiple threads within multiple processes per given System Model Configuration (Example: cadCAD.engine.ExecutionMode().multi_mode).
  2. Create Execution Context using Execution Mode:

from cadCAD.engine import ExecutionMode, ExecutionContext
exec_mode = ExecutionMode()
local_mode_ctx = ExecutionContext(context=exec_mode.local_mode)
  1. Create Simulation Executor

from cadCAD.engine import Executor
from cadCAD import configs
simulation = Executor(exec_context=local_mode_ctx, configs=configs)
  1. Execute Simulation: Produce System Event Dataset

A Simulation execution produces a System Event Dataset and the Tensor Field applied to initial states used to create it.

import pandas as pd
raw_system_events, tensor_field, sessions = simulation.execute()

# Simulation Result Types:
# raw_system_events: List[dict] 
# tensor_field: pd.DataFrame

# Result System Events DataFrame
simulation_result = pd.DataFrame(raw_system_events)
Example Tensor Field
+----+-----+--------------------------------+--------------------------------+
|    |   m | b1                             | s1                             |
|----+-----+--------------------------------+--------------------------------|
|  0 |   1 | <function p1m1 at 0x10c458ea0> | <function s1m1 at 0x10c464510> |
|  1 |   2 | <function p1m2 at 0x10c464048> | <function s1m2 at 0x10c464620> |
|  2 |   3 | <function p1m3 at 0x10c464400> | <function s1m3 at 0x10c464730> |
+----+-----+--------------------------------+--------------------------------+
Example Result: System Events DataFrame
+----+-------+------------+-----------+------+-----------+
|    |   run |   timestep |   substep |   s1 | s2        |
|----+-------+------------+-----------+------+-----------|
|  0 |     1 |          0 |         0 |    0 | 0.0       |
|  1 |     1 |          1 |         1 |    1 | 4         |
|  2 |     1 |          1 |         2 |    2 | 6         |
|  3 |     1 |          1 |         3 |    3 | [ 30 300] |
|  4 |     2 |          0 |         0 |    0 | 0.0       |
|  5 |     2 |          1 |         1 |    1 | 4         |
|  6 |     2 |          1 |         2 |    2 | 6         |
|  7 |     2 |          1 |         3 |    3 | [ 30 300] |
+----+-------+------------+-----------+------+-----------+

Execution Examples:

Single Simulation Execution (Single Threaded Execution)

Example System Model Configurations:

import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A
from cadCAD import configs

exec_mode = ExecutionMode()

# Single Process Execution using a Single System Model Configuration:
# sys_model_A
local_mode_ctx = ExecutionContext(context=exec_mode.local_mode)
sys_model_A_simulation = Executor(exec_context=local_mode_ctx, configs=configs)

sys_model_A_raw_result, sys_model_A_tensor_field, sessions = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: sys_model_A")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
print()
Multiple Simulation Execution
  • Multi-Process / Threaded Execution

Documentation: Simulation Execution Example Simulation Executions:: /documentation/examples/sys_model_AB_exec.py Example System Model Configurations:

import pandas as pd
from tabulate import tabulate

from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A, sys_model_B
from cadCAD import configs

exec_mode = ExecutionMode()

# # Multiple Processes Execution using Multiple System Model Configurations:
# # sys_model_A & sys_model_B
local_mode_ctx = ExecutionContext(context=exec_mode.local_mode)
sys_model_AB_simulation = Executor(exec_context=local_mode_ctx, configs=configs)

sys_model_AB_raw_result, sys_model_AB_tensor_field, sessions = sys_model_AB_simulation.execute()
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
print()
print(f"Tensor Field:")
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame:")
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
print()

Example: /documentation/examples/param_sweep.py

import pandas as pd
from tabulate import tabulate

from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import param_sweep
from cadCAD import configs

exec_mode = ExecutionMode()
local_mode_ctx = ExecutionContext(context=exec_mode.local_mode)
run = Executor(exec_context=local_mode_ctx, configs=configs)

raw_result, tensor_field, sessions = run.execute()
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()