From 637d1921ae9595dbc68244746e589466c32155ca Mon Sep 17 00:00:00 2001 From: keyes-timothy Date: Tue, 12 Mar 2024 02:23:58 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20keyes-ti?= =?UTF-8?q?mothy/tidytof@772950fc41812e95095377956caf2d0b11b49ba5=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- .../figure-html/unnamed-chunk-9-1.png | Bin 103524 -> 105944 bytes articles/dimensionality-reduction.html | 60 +- .../figure-html/unnamed-chunk-7-1.png | Bin 486034 -> 497604 bytes .../figure-html/unnamed-chunk-7-2.png | Bin 555759 -> 565349 bytes articles/preprocessing.html | 12 +- index.html | 848 +- pkgdown.yml | 2 +- .../figures/README-unnamed-chunk-17-1.png | Bin 85808 -> 87905 bytes .../figures/README-unnamed-chunk-24-1.png | Bin 215143 -> 225004 bytes .../figures/README-unnamed-chunk-24-2.png | Bin 207977 -> 218690 bytes .../figures/README-unnamed-chunk-30-1.png | Bin 66780 -> 66765 bytes .../figures/README-unnamed-chunk-32-1.png | Bin 62236 -> 62129 bytes .../figures/README-unnamed-chunk-55-1.png | Bin 65241 -> 64907 bytes reference/tof_cluster_kmeans.html | 36 +- reference/tof_cluster_phenograph.html | 40 +- reference/tof_downsample.html | 76 +- reference/tof_downsample_constant.html | 48 +- reference/tof_downsample_density.html | 84 +- reference/tof_downsample_prop.html | 48 +- reference/tof_estimate_density.html | 48 +- reference/tof_extract_central_tendency.html | 24 +- reference/tof_extract_emd.html | 40 +- reference/tof_extract_features.html | 8 +- reference/tof_extract_jsd.html | 36 +- reference/tof_extract_proportion.html | 28 +- reference/tof_extract_threshold.html | 16 +- reference/tof_find_knn.html | 12000 ++++++++-------- reference/tof_get_model_penalty.html | 2 +- reference/tof_get_model_training_data.html | 24 +- reference/tof_get_model_x.html | 202 +- reference/tof_get_model_y.html | 34 +- reference/tof_metacluster.html | 48 +- reference/tof_metacluster_consensus.html | 18 +- reference/tof_metacluster_flowsom.html | 32 +- reference/tof_metacluster_hierarchical.html | 18 +- reference/tof_metacluster_kmeans.html | 20 +- reference/tof_metacluster_phenograph.html | 16 +- reference/tof_predict.html | 40 +- reference/tof_reduce_dimensions.html | 72 +- reference/tof_reduce_pca.html | 48 +- reference/tof_reduce_tsne.html | 40 +- reference/tof_reduce_umap.html | 68 +- reference/tof_spade_density.html | 30 +- reference/tof_split_data.html | 20 +- reference/tof_train_model.html | 30 +- reference/tof_upsample.html | 48 +- reference/tof_upsample_distance.html | 28 +- reference/tof_upsample_neighbor.html | 16 +- search.json | 2 +- 49 files changed, 7158 insertions(+), 7152 deletions(-) diff --git a/articles/differential-discovery-analysis_files/figure-html/unnamed-chunk-9-1.png b/articles/differential-discovery-analysis_files/figure-html/unnamed-chunk-9-1.png index d786609599592cce9c145d4febfa0ab3029cce81..dfed507f8d86689d8564d0aa5760e21fac67ce31 100644 GIT binary patch literal 105944 zcmd432|U(qyEb}PPa23cQ5lLT4T#LsQ)xme4TeMsB{I)KrJ@uGNv2AX6q(5!GKFNy zJiE>FJnrLC@4MFe)_TA1+w0qV|Mvg)_V!e_`~Kh8|GdugIFI8vuZO2k9b2<{%W4XR zvgX8bStSZ(xiy8d?8-_S{LQ7MWg7U6Moa#fEPlr|bvW4(zpXMpu4+c1usV}pOWfOs zbSRW;55r?{kgcnsF^KH5N@_ zm5X~5KVZ-8d7`R8UV+MGGaU`zv2&@+ zPma>jI7wTjyy~r4)@@~bP&NJR&Bl@P@jbc%zWjbg4fKa)Q~qA1!C)%NvSGsp>o)aG zuJ>=>rchSX((>%xJDO+HzS}AD@8ic;E?>S}J?&O?ZS%Q3+@24cnl4iwxw=Y?i|kxj z$HJmuVzS?d_tLQCu8LCu;ug2V^Xo^bC3a#jyLa;QuXW0NRl>?Q+3d_NYB#=@g2%71e2$OS^RG(!sH@<=bRr*!_w++Fd^QMB7EsGV$)p?7VUzd}DaU>Wmy$ zCMn^k-40YLHT18@<3jKLigdwsPVevoIumY-5`VGQ_UnsJUQ*s{@Dcg9#p~P|x&L?m zbUZHJv|aA&*RTFE9v&W}1C2pXwu*eQf1I5y`|ZhAs^wH&ow{z(%OeH`d+~*1Z&W<0 z(y)6{pKR55aLqO`G2g_*M2VUS2jjle$ zQEH#GuU+#D2q^O4JZ9bcM1)z?cw3|WM1XuXgUswxWlj6Iy8UwU^7W^Va_`(JcsYZj zmS9-aT@fy3JG!ej!HAl}q}itEIK7_p=;K#!-?qi~T#l(W)MvMlS4_q}B1=H_L7y)vBaq9|wnNx|t};$4kl29pe&N##Q4@|_cXmEyVId*! zhE%)tn>Xh_-F{fqviH{-_wW_P5xg2HdCu$(d6ABD`dbcM&oFYFxhQPZ(A)PJU#sp7 zp4vG(8mG*uB5?zxcY6;s>i_569mkj*Au^}L8n$-fd!I1x!-8ynf3 zGH+KKgqXB`+p%+JS;QrY2lT9uvYHcHN6tM@{xlH4&rDYysTuTe{Z0X+2FWKa8yP)r z7*&2$Rd{*eVRg(kv&q3LxVy|BuMbZ(IWeeD)2`onY6lO`!?rf<`Kb~|0jqv>y!veO z{;`atl-Gxyp9KaMYt9cd(X)zY-&?hQvVOoJmr3)M$?qje@M_xVv7&OctL&k>`?aB# zoYN+QeHY^s zSp+#botQMN?{s!v*V58bi8rWTv`IXny{&DqU{B*1qE9NgRwu%D8%N9Jb+*0Zyh{Cp>`*O(@S zw@^aRhhHb8VX-zRD(yjPa=Cs|W>ASC>vq*!r)BE?k6u8$* zOG_Ux`1SPd+a1&e&#tbn??Ey_I)%@N@;Kcu^E1D{lx%tb;Tb98h+hMa3w9kve#iQ1 z;`VQO5_`S$?*6Oa_-%&U>>Lak89kE8j+Xq4FjkGyS{`~TfMegjC*Qv-u-T8E5x45U zm34-P-q|VDZeqCIM^nIh@G^BAPsJml!PfQ8vK8W?>pQC=HIwG}E`7Xu>2^WjadwPvUJL{80K3z=UmXZpvpBdk8-g&w* zQq!?;y1y>T(~VU^;QEhk0)m3opRX(n3ky^56aG{e$G3a879JLM@p@)vl_8mO3sW;Q zUjd!fXG0Xu+*OvXd*I4_8A zAA+1BA{DxmUDU~rAz+|=88uqJw|E)#TA)oxU3^By-^Ko7W@Y-jv3q4sAFIloA zWq!IxW$&iFn`m(p!Jj`rjZB}fQRSAAX|yR@yJd@9Rm3GrNQPsm1|+J3q& zI?cqyBs(W(=(}J^Q)}zt%a^yAQH#0u?=Q7EeBpvSBj?eko}Qiy3Zb!XA2y z4Dy&w>Saobq>pLfttPqzht69vGRD07_UX*ePSI^SkoRdAV4>kH3B(_^qn*vqt_v~K zWqr*2XZmg+8WQ;n1O_Qg-9onRl1>Hl+Hs zw6t98S3Y+xyE)5wGymn=h2uYdoW4={@r15!h}lJK2*W)gPAeEpr$_aEmX(QF_A)P9 zL0^7cl9AEoRno||FK2>}_SPr+M5awYLh5?@@}*piZV|JHq5sH2es8ZqgX4nz|tNhIB>zu0^4ggFX zI(*od|H@KSbt~VPaov{(^bVomt3+#`xL+o7@BV!gAQuW&FE208*v4^Tey+GN!Kks{ z^s1TtW2-lBWV`zs_Vy^fGH$BLXhyXZyZtDm{PVq6=BCFI{KpT;%Cn_d zzdIG-$}vWb(iCiV)!6Hd!hTOiN6j1T2BcbATbF!R`*hFQ+4K4H4$FXLOP3ZDF^zmXsu~>If?@kdBpW*Cg=C&E%+6LU>bNl8i6 zW_SlBR53{R`-}bU5rxOt?c3Dza&%*&Zq^DTz*-ax8{em~J4|jL8X95|H_!8>D=sYL zL~8hSMx<(HFpEJ9Z$R(7%sK1esZ;c;R;`NFD|;|K*3&pX1hDa8wH2FeM$$1X3GI%!;!XS*NhilkIW5cOp$8G;5fO=abc!W zuP$+jmGv;zZ|mavsUfbz&IHrktch(dJ;vV7zA(AsV!VOL<|30m4tDE&A(xQF?#iu1v#4efBfcDFjOTE?GwNBkb%>Y74i!)Hw5{FXmSe7r*)}UkcwW zNN9ABx3m-n^40$J`ATn1oNLt8+%G$GjDuV3Y+C_Qyg zuPlU-mGz_(%^GGwT{=anv2xavg@Z;5<3_VxijHsa&m^{}L5_ij^>#Mn zlzMO!fos$ADZ!sXhnAL>#1#62*<8oj6%^FOoEve^{QVyn=>{hzzSu0NOKME68*4!B zFcvy->@anv>&^(Uz-D0sW=)4FuA-Mh$$fK2WMxzGn|`boX1khDTlh)aE)q2ht-UZG`?=bHMaIEjQD)A|vahDz+}z~++QptFs&MJfmdzI3u8X?AL)f&N_$K_W>>NtBe?;X+_E(ojv#%v_C9k*qASKmFZb%o6}5(7I*S{47<* z3=6Dv^{Vgws}Ibyc{9S!hE8ImqZM0o%$@BW+9DK^VP~1yJKQHxJMo`fDYD@6LvvqT4KRuW_#5ibcwHLwH32fXNFy zCA>`tqF}Z|B)!?)aW*(cMp;SetDjL?J_==`dDlAHO?zKyraMq(XGcn~EuD^@8SS6g?I()4yV>)%#PC5tOYz74#<+2TFzCzasVhMw~eN z-|8vWQFWu&E4+h(f;ygT3JdXS8r#NY9nQdIol12$HTYZ%7#MlEIXp70CF9Przm_jA z{bHd%J>DlDsgXK3F)?B3Vs&Jd#=x1oRmu2SHvF9Yss;%&iTvEHt5&Ww=C&Rg8HuVk zNT>__B56GS7ykX&s)k2s^p)(?9Phg_72w_~k9@DH3TkS3QE{$wt5jO2E?V{f3MpU3X#tJDd)$(!gsO z!+w6T8tC_b-V9Kz;dV4zs*3M6uos7EC=v!^(lI>AsUFRRf(L81lIMN@{{3GD!a&XF zvcFjL{EWYOae87vQAOpK)Dte`{W$%qVW0{RPfw?c8|_iKY{ANr8ne??>6I=bc*0vXwo`36jnzyM7{)`*DVP= ziGJk14(TRSY(}mlC%yAO>-y2geUs`4FWy-Sg?CG4&k;54BD;QVkGKyVU+>crusJ*7 zxL|dEU@ILB&6+LQNPv=QiC*}jzycNRqIw5Y)D*0#)yBxs>mEWL-SV8)M`U-Sl#jeP zptp{qcwb6(AkX^MznbiCOt_>py>1F0d*9SRF^XSGT zDYbmA?MoT`DUW7#Q%q@I#(P`y@QJl!v-+pC_q6B6P*qJjMS*;_#a~mr5TTZ{UQzN4 z4|Nk+(Tg@VHnSm$>;jJSn?2*Wmwftiy0tWSzv?oceJOvJdYJR}H)IdD7fuc3O3k+O zEwtYH!DlLn^#L&btXs5&j+=d{nq~Gv)P>3N)tMT%?(eB~PWr6B9v}AVT8Rp_8tIx- zSmRyt*695exkB$Rqp{bFDGjZCj49|2=-4EgW!Tr3)z02^V{ksF($9BHQNX6EB?7Y_%epHPi*}z?8?nQ0d@-@rm3cYzOL|=@QZC9daYX!qX zFjINNrJ0E0aC}TKe!cs5zmIHlZ?X_&k({VAd;9KPGgIk{AC0p+kILvLnT{9U_n$8e zO1jlcLG9Pcd9;yjMlSW}plwOLTT=j12i`bqC;y8d^L(urL+^I|WU(9;{?z`p*y#Pm z1YXp2t9r$>ssneG-%bnIlAX8WevvK#Vw98-ZO^UTR!gR3rN4$3z1bC2I~D1a`=aqR z*Ssz}atUdAF6EjIx1CtGe*KWpW}_E%%lS9c?TB>=xn{kKbb>rQT@i$k;4n=f*y88U zpZrx3^4HTFmB~w|Raf;*tm|lUMtqW%i_PuahnL8J`|ZXJ@O--IUBX3^XfN|CCCfX` z`pu#;v2+v%^i=nXv2TD@*D;^W&pqo=4i!LI6mQb4>v& zE$Q6M_DDjL?!aa`^EJuS-qY;G{$||wMT{EM^`b^sI-*Z`EwopXaa}eT2LSHGo)K5z zf;t}OtV}=%*UVn|Cp78C`t17W1nH!8udyF*J6cfVvT#-L%lU?Lf-B`yAGA@ao`Hc5 ze23RFCS4^A*|}#}u_dP)(;w8%ltSX#}lj?J`M8E89r@ymss zX}xhb_I+%5pFMAFFJ;pAu{uv&G7HtvYoEBu#i(;FQzSq4dj&OCI5*JO_U-d;-^G)8 znIA2n9pBeyD`ZtQtIo7I%tY5dx-^dT+DQ0ar4w(0gO^O^R?`{|jGS$-p>QnwILkS3 zx6oww&gUbB-d5^oyb8fy@S#= zVTBYD%=5p4*%lxs42#{UO&u65GF<$dR`a!Yfs z2l9CDWz&k{II=Lh6R=I?sly9B8C}!Yzl4UGDQSgbg`b~Dh?z~T24XdJn?+~DI22+# z*1aEu4vVFPSU8h0R*=QAigDWQrxI^(O9wz9oMYB`L0*YE--kxvP2A;c)aZT2IL{tNSaW;xihwAZ|f9pvzdaR`b1ObIT{^9n;JX#F|i@bleoY(_fX zzI{6g%x30LlCYt-_JOAC)$eiLm-*7ZdiQ2|wY5_Q>&!|#Uc7kk5baV|MZigzHhQ0? zp2&1v5D=hNV@4F%BuczAx3wLLTH~7YHDi9xW^SzNp^MA=Q5EoDvNat=1QB}gQI4J} zSM`~29CFp<*Zs~MXg{uMp@yB?mNtTZkWjQCC;h(RS7NMV=!g`0$OOZBW*G-burQ-q zUP>D+dVhHoRgHSO(hs!P3^WLV)Ip>3A!skh`Ma6TiTOJ`l)`!~B~Y5##C&qJwr|@; zx&8I)q1CjJ3k47B@G z=elyA`-Ptkr8kbN50J1bE-XDKbLY+-P$9)ZG6Q|5KLmice(L8(tA3IOoydRa4ZIxz zPBXNkC{Kfe+>0!Gj%b8OgLZP5?%Ij&@EA~Ak)KE?dJzrR(B8nF-s+gn_?j5B%P|c0 zLoG*8Urd#AlTF)Kqg8E{8ra#W@8IB2{!z88_KJ%O({<$1JSlAf-|N-U?e_aWkX;Gp z(pG|QF~KP%Tiyg=+S|w9wnRHhrCf27$L^D^AMqUjT>ooH#1+qY-KI?)vkxCXehV_k zpf0iW)7<*?>oRHXk zpDp{;(9KhOl}Ue#4#Q`UA6Tt{hE&{^cHYzNEI?Tga#NY+W&NS56hbd--n@AS7gtiRrkdKL zdPA!ob(Ffjm%bo7hwy7aGCkGKY31XhuOFb)G6(vKl$c~VHSxFb>HCQ4LP6mHMs>C?aEeXLlK22(_;Gl z@nbp->*nPEB@Z7yyn=fb>D%G9RV1R$a|$^Cg5j>cd(90C^Yfd%l{H@DekHNVQ|88N z)xVf`Js+!2ca$N*4~WtiFPJy+X{hrCM)#zfcPZ5*7@<>SX5v*hZY{{NYP3Ig;>0Sj zEf(Rk0f~O&CO2y-FJv60jZ%h=dS7R^sugakbYw`l!Jbeij09K66&SRn#N$oH)CXMHD|}@QGmLBT<8qa z>!Xc(L@l~E0QY0po%~77_=gu@xHH)OXOh{qYg(T;{-a<+(YQ5qq`|gl9}PXranM}V z)zzatRgraRAQxJyuLW_T+#Ye=B$oat4&nDd(`;gb#r~I?jYXFDufFls5)oCEwavyq zlC6x;#-7C9n;GxB+WF)4N6qy4kg@tCvz@FGmfAmF9mMyDzLG_wboQ*T@J+S*Rq2q6 z5bw_d0#07O+_dIuS|wN^;Ja&eypB8j-`bxm7p5Sxd?js6|15WhBSU|zd#&Eq^qKmB zUvc_OjgAXaSc5ljIJgx9zc*z%ty;bMgE2eObeKk6UlkC73j)9N^OeII_G9P4i00+z zn}}UdQ`?e0nZtKnPVNnqG<5ba@H9Mqe5gwO4n2*HJ@d73Ra2*?Cje1SuF~+hv18k| z+u-h5U32c{XkDpGG=UH}Jcd~IDl93nlFp}Jv*sOC2g1&xAr%9a72xqw-T=FVuB&mABYX;@gbB_L&l!Cx^nXJx~Cz;^y0+QG>SJZ&)Wv zy1e>| zRVSH+$|n*1$FsLARFSa$sDD|=yFHaQ!Z&MVp#hP$9K_td35WkJ38?@4q%am~-MV$1 z)iFCsR-5Rr=MAWQv|-~$6G+xHbj(fBQU?xrA!|PK_3esIMSVV6hYXen$q7+p-u1IRgmVZe?X9gz zLZcBs^YyyK{Xo(!0P(u04tq6Heu>>bbo%sKpq$4nV(Wna0m5HE^Z^btsEN(D@$dfS z=p@ne&owfmae7^MOQ}jaUznK=1Q{v59VI~n0(@Oh4(R>72Nd;LJO9~g&r_hriz|xJ z9sdvV(D2*2>B;_cN6c)Wu*(GE=_4f_KXHO&MKB#5&vUUjp=Rgws}&C(JeVYwXgHCd z_M73&&dt3l;A^PgSYT?uxC9f9Gw&bAoAjB~>5)aieh2_3{NwG3^$0{ra!sH+IZ;8( zl9GDSWXeXIKa;*-3+9;BQTUK3@qAc{t7B<8AJB^Zzs#o5IY$T!Cc)g+;)Lyi9{yJ!8U9}03F)_;A!otrX z4p9(q8SrHg0g>YC>$_JicBNm@Q6!~-)Co4I92CG5^lK2xl0Vt5`0Fp@j_;d&Ztgtg z|NgT96m4Yb1A@BWNdY8JD7jwaihW^=YJy?F;u;wm@&c)*eG-kdYRXvR#x7Hwj?S#H z!lce3w6AqK{!IL*-LdWk*SCs%7)ZU&j3Uv z-MdHm0nrP+Nvr9{XV2E*{Z1iX{A*K6(`D?ZV+-RSO&d=fUN|Y6y&nBU*iqo(66`CK z%-3(<-UBtUR5|^tg&?9w!B^luK*m`V*QRcNB#yo>%~fBY9OXpqgplf=y9`@$y&LGyLca92cRm^%d-pyD-zR`B4;d1#;G66YkA%KfY)>r-DycO}FT#6A zE&4~EJ%9cUorEE?BXmW)c{89V#b4U~B|^a~Sr{^)hnd9{zoKuz%l@2PM&}xdfo5{j z8j5LK@7|8~cC<*=RjU$6J%m1|1R6S7+%5S}y5AyVsLoY$Oec0t;!xvZodkFMq;9c) zK3pTW!%x(UnRT2FKDvhVfAxzJR9j}-sdU4(Jdc#I%8SL)*aq7nYlggfbsJfX{x5c#?k7bcPvG@Ll5vBu@<0%|4_iQz7B+heTWI$Rvt$G{N1o2g{3X zG+3xP{|tDg@xZDYu-V+F{EuVJfH1ag-+qUvS6--j#Bh?BC`yd#hZx(zI8fe=ckrs`5_!R>0W+Y-(_EyWJGU+WSPF9UcAai^U!x{mPWS*2TJzAK*}r$Gwt{?yc28LwUHe zyXIWCG6@Q77NyWrtWDkKbV%SFf`R~$FCo{RMU$3`M&=TjoOuAOK4KiY4ucE|+L*g-wYSJ0z9#dM%R$@0diY{t>Shd=n)^LeA0u z(?-Xud2u2H5iPEqnab`}#FuPXFOCI23PlXsb(U_7$?T+w^xWuK^e9$^r8!lCz6yV> zSg}m`n23gq;`4JK1!_qP2`0b&!sayAi4XRYodt&9Kv4#8UdT2>b%oUEFXPxy`}&*& z`r_g)`G_FPBmGi{wY{5MbElJr`CtkGOm6BvtnzP$JA`I~so_P%;S1@Fo^vAM72OIO zG>L-arMal!uuZ$3J1gBl|F`Uio&TeP0t*iPT1bv4OGtTqeYFV_mM>bkZm@HhO2Fz8 zkiU_gJxEUV<1txTL-%PTxGV@GXnh`yko8EBhz)+FvOcPFE|-?gW<_vth=?%V_JKC| zz?JclOI~W|yq}8;mFPMr)ny{z=f&ZLxY+2rK~S8NksGvq0Xr72O?AO5opihI6w~w7 z%7-obqy}ovT%>V2Sk*`i8)QwIPgtLwbLQnAap??T`_M=`dymq&@=*1_erfgCIaDJ-mK=53>`V9;_;3SNk&whdkNnLXa zupe7>*i^Pc5q24f`M?Y|5?(h#_a-}MO&a{%T?91v3{{)t-SVTPnm)+s26 zJuNM5x^8G`c*Ud0NInV^pT^tR*z!Wg^L+RRR3IesNX8U4%f4;gxKmfWMmMHeS+15Rqv__uF{33k0?p^tN1vMWiBH|sMNHJ?k(Xf}ow)fZpc%YMGI#?Gfm_w1XT ztn%?xYE8U`n%W1)Wej_gsXwW1)apJ<>cEYeg*RclWk2wp{DCs`=lbt^b@d(|0lbDT z7iiZnMqNFAH251I;XTmtBH(bH(}UidsV%UC)K=17<7!de(z5LzpUv^#|M35=!FW-s zB;-xD5k=!4*Z)_4vbx@0;0+g$m?OxXuEunkts;iz`U`)&u;Ww2?IxtZiS*5~vOhkY z-=ksICuBL$VDBt+8$L`l+x^xHGx?yMu9v=9jw*!?##VxbacCPh1>z5J`CGe{&2GJw z!g|}~_<5a0Uo4BH^^YlAFdn1b6|N9QiK&SqJv(?9v4ax5UgQA-WCMln9!pFZ&Xt+> zfZy>{pk!C+$Rn4DIjZCQPHxXtw*{{iTZ?TWA;(zqbEO6zAzY9C>06&1CGDm=o0LkF z)_t?&dc)Az*ipBVsQ+8UitF2I@3Z@d$8`qF9iHHc#7cY+Ax+MwO zB?RP#?9rnFpsP^4sFm}uWiBT8yxM=7P`$GjO{gXRG@&XYkx&3GFHa4(fA_Y$Qx2gMvz{HwwZYvdnRh*lNh4lWF0OZ9r~4sc!{WAnHibY757PSSMk8H2Yu3C+~N^h2H3A` zMoW)%)g{FU4yiFh0|WI-j7ea}`6% z=7_8R*?oJ}6Q3eFE(`eX+P(XY-9$fWm*KY)xHW0~&5gCkzvBuZ7Z7`%&37zz>8Fb# z59l@@I(n3bbot0B+xP70d0+vmapS42XD%4QGy$ekul|b={9?Ve3GM)i(J&-lvxlNt z;0UjbSNH&)70@0hU^PJ>Xxw1iD*zhWoicyq$Pv)49=Kr?bR%XnJZCUFG=LzfS2q8S z0*@8mWIZ;nT)DCd?LN%(@Rh*v#{vX+3)DStI|@qx=lR3Hlr?dC2*Cik{Ad>i3_*eXz5vPzzxU>jW7Cg=2GOQ zlO`rZ`zH46-rWLan2wo0L&xs=^<4m#I|K#GbnJ*B)8;z~qnXBqz!K@1@9m9pBwHg- ziI zc^HBM(&6f;*V)lGHdG(h(|Pk0Bbr@q9-#(s@PF#MmoA1yDA(IYzHj^V96*rNM^-+#0;E+cMukk%Gi%WJ>}{D0YXCaU|mOHaGN)4W8P+J;7C>&ce~Ot|Cy z4(NSF?|C}nzcx7PvDKZ~

7?d$`G?`;b)zHhL#2E2xZD2y)5k&fwWr_JzyH!R;aR ziIyI5pFi{4PV}EdF;q>pjf+vhe{}tPM~fG8A*-S|K9>l}ynGq`5~BGw3~3%dJ}WZ* zcN@R_ONrtw6aTsKJBxO2Yi06(=|W6n{}(RA_Pu53`O)WvnU3A8ieL@8HM|P`5>9dP zmoN-1ii)<~JP9G%e}=m}hUs8TR`#+3=#=mjo_P6N6ioc`>zRbv9l3S@UGNpBPoHj@ zeVJzcAYYq9RFpaKOXsgKv*a(tncCLY#((wO;{y5tH?TIae-whFc_Dmr3vxnkNeKfe z0cbZlq^=DCi#1&DFe>dR7_;8XJL7quf24a zNYUduJ18YYei$=r*MxKNv&!C#3g==VW&*BtCe-20+n1nwr|u#YNU_9bw72acV&M_s z+1{(hgd}949~d06gpb-3+}a(mVEc`m{(in!71q_IE9hCa?b_u+#2U~tU~UKc_>ah@ za0>}lO#K~+MD#L*fJE638wob};DUyD2(tsj_+=}x0WRVKR3HK#6N8Uz{ryUTMHFGy z=O6PYGjL1@lD|snMFT>r4?1L1z+@zs>kTPl7+%`BYgb-v^B*lS&t8GJ;P^~LS%_SQ zL~I7O$aLW1rwc%I%u==ofZH@&PLsRB)o(?1to1=XJsz0UccXC@qXe*p9nN(=Z2kVh z{SjrkU*LArS!IflE~bEV!335*O8j$cN^T@+Y4F=mn@fYmJEX5N`Rbz*6A zP9ermI}Uj87q75GL|7mCj6zNs^vgR|x4Uu5L%jUJ%wT;&qmsJ%E#kLXygYUvB}>Nu z1(O*rsP4+oiRT+~uWySE@m}Zm#NXfFjwN8RTUieMfZ*ClO_@JBDa`t9Fw<{*u6Xj~ zJ1`mq_G#y>g~8J@>ngRQLqNZBFF0#FqgSZ*DdRQzm@b%c(>i(T6gMw#zuS0fP+hUm z2F4+H1Gza`t{e?!bS^TvI3sE-Istg8jQbl++B(qD>3>ZSYL_DZOM1#9U%&MOy$bNh?9`B8$R?MQsK(-=A7Z*lO5O%OW(z8o{ z2gd_h?+TfFD$<3EyteO`LA+epL>vrCvl?;2ojatDh1y#T*C zB8|74>J8Joq6pQ4&DyS@(2$2IHlo&o3d+(JFae88o+N5MkO>4}_`jK@Z;67_F{qBt z(OLLUQllu#Mo0ad1dp#P1@DTE?2L*^XWjGv5|po_;A2|jsx+KwzhY&FH zpAfp`!_eL>n5-hBH|z1L`?O5`-CMAiUCEwg8%IX~ixjAu6=mbMo_?~?Hj$hvxmQxs zpN!45C`oXp*Jp)zUVDGtAS=y`X>y^=(rnyxKbnmYu#If)=Sj9q;rth>-XfS8@2@Y! zsM8U|@o}U9xXd4K6)Dzvdjo?IPzW+$55JmAk8Df^svw2EN=*Ev3I)v~)}VUbZA`EI z3{_;uAR+(nNjz*1vBC$=&N22gmed|lwID)ep{?)tE5aVdDAYl1?Kak`MsSm(oo7%w zA7DW6`hj(510fXp>nL!ayQ!1n+NA8-KFl}*vMkD2!`)zobC z`_}SrYm%}Jq9A5kO{21peyt2*j=!?gv3PQ){({Z3cfP9G_Q}q#w_2LEC^6#kkVd_M z9(HW(yZ2BTd1-sM{8OAOjQ`J*L6<@lL7s8&^FPHWwDk12g7{j`t*{L;BOsAjp^lEu znc!~~W82+W#13I6Txv-gw}2REW>Wai#z6mFWut+xCxm|J2_$bMTMbz5@m2euOlj3U z%Bk1i#nG~FvDn?gFhPJ-!xan>k?AyhD(~Q#Z;adnHHtqQ4jV`W?8 z?8D#W>#^OUacX`rQnU1ce&u6~mLi}!>ni`KQvyFL41~|7JJ=%;ch_ygW&~+MLAu$- z$(hyuYi44=YCa85(Z?fJC#wF*qi&)9x^XBYjYD0Ejtu5Dct?7_)aF`F{BuWZltVv& zo8c=Ah9V??W9N~91mH>`yYb%U`%D_fo0GPa8d;HrjdJN(Aj(vE`MJPb!%;egq5tp# zoM`IyT3vAO^&pkU#b^q!xo&uJ=!;`DX9QunDbd8+?B5L<2<7V*-g!q58=SHE}r zgGZ|$EnWS7#rwfxTFNR=Ss4fcFfELmWVz6?pt!Jgj!3+U!U_{lGE0H z8|M(|yoA;=MhUK1u|h5OdM5li zg@h)NmHi8>NAC3lH4+C1Fo^O*r?4L*An4rlOG>U`&hqaoT{O25281#L*Ky~o(jrtw zKEf!GN-j~~`}_MLqk+1}!+aFD8#vy6q}ki)Cu3jl$Mc7C$I#G_sOKPFS_cM7Fx?5w zUx19nK>@|I484emh<+o|$bL9<;A+6e2XnlZiRl<5CbFI`Py1YvWV^<;!ED(12MK#sB0p88)_IoCi1Ymv`*4o)7A!OWPe!5Ox_Md z7`+(kAYT`yq4s;QyY!>*@I6RMA!tg7G7l|FrEs-DZTuQOK0eaZ{QWltsapna6TCaE zjEqc=C=5l|#>9gI@mjC^JtOo~gNBsq5ZQwmdn2wTs5zMbEko;Hiv4D;xmWBDb0mqBAn6oN-C(nenzXuv0)c?{~Xo^T}1Fb|Rppbnr3q^P7 zi+R%PpV!_=IdgD~YkgJ^zwKV9q#NV=`0-=YYM+=G!N9=4znevp#KgqfqcwT7`I&Jx z0v8@PAbz!kzg$jfDK-Q9E8`*OJ^BVGrhuik^YNAF-q+$`Kf>MtA@yU-rMI)zHa3`- z61D30PdyxF4%?csx%pqaEDIyOq^zv0`~w0C`^1&!bIZ!sU%PgV0v?3lSHaTly(!Q1 zcMH@F{mPtFMleQPLPBwMOf_*Tdokb|@avZf(!n9Dtg(p+NOY5y>{YNRDIfqo#kln4 z6crV{)J}r{5oc+vLv3lf>+I~DimpcD2i>3N%?LX;KdH_b^M^)%5@#QPQfb2uZ?90+ ze24gv9L!iYPJdQb)*&~)VF^J}E_IKAI84WTRVg$KYz6^EIMhRg8|87;dTxGr4(za! z9Ph|LC$4kXK^p9)<>avPYOD$dpiSE3ef>`xiFgZpb-+nk){qAVSNQETVX4ap&nv5| z%MCwXFf3l=BnM|U+m%k4mj}>a;o7|q#3+r}w~sl>y5ow4EW$)x9r{a5=u5 zs9ALa@C{1N^u`c&>Pu1SCCdH~#~PoHK$6_!JU`ihxxgT%Fbd`?zYP9EDOi3y%p!f&p=M6+`xbwzUmc$Y6lWxh-T^#(lKsSaFW4=!|nyy*P_c z&6x4~7KMYSgvE|IG}l!w3^y*!`ykv2vBYJAc^pawjymvr9u!0@LgYgkR#a)5Q2DEc`QE2y4dzYpBTplhnG{fBWkV> zm|5lK%an35?>OEQdh6l7lUM=wT==+)di?hz3WeRkbh@0UuDjk@aVE{!+hRXH=5*=+ zzkiDT)O1he6wGXeVoC@H4HV|QlNW)qDIOCKnkHA!zTeEs;&Oe%(hSTxYIH;`cDLs& zafpL$QGeMyV^d94Fa3G-_cif52h;WK@fP-^DG`DDDF$v*$tR}{OpNiK54uocZ){?& z4GC0b?{fjS#kTjYsRR}dhNCQ%KHkUD74j9iWBuPK290T{d(jJeT*TQcj7dDIs;ZFo zZX}Ag4z7r?aupS09yAL(1V0CofDQ}VAgpHl^T0s*+n&mCN)smLV;N1_u^55ysP*wo zUAETaQBhXbvfH#%AxaZbvy~0``Ky$bs{|e?AbMTl5+FY1+poPeg)!*Cjr>A+!RPH@ zdOyd@9sf(1xTLf3Id&Px;>v_6y<0ujQ?(N~TFIqXw2^$Bw-k6xK%BLZ`VeB{kesy6>-!!X#1Ag(0Dtck7*(B*N%WAddbx=|sUt zm%NibI6HyDzLSOT{LC9m6#9KJFUS^?eGA=SJ;dN_E#9Wth&AszuQb=WjZq|L2eWjx z`s3aX07JKhJOPO0Q&habDv|T@ZMlB@z8kHrtyvh2tulS|XT9x)a+pj^O z9iKek6x~u~!ozb1s8!%{#%)vAGti(Pqj51U`*1$|Td$ZIP7q0nH)AgwXW`z%*BEm0 zTf1b#6we(IOZJS+%sYszmiBg?P?z74=7aYcE|wU$yx;G{MKR}(lR_^>c&lUg2b65H zFFF(*Kf40+{=bp6wf4S;}PRCENacW zH6{nSas`V2JNz2|jdR~BElLi~I z4K`(Bof+s@MAs@>iSUN9aES~l5C2qL2aJU|Nf&qbQ1nLQ^yo|EP6(23GdwXt#i}zw zO(PZ?SSOV}sR@DcGB*BUCAY|(jBkRp0{JYjq=Xp2{UxmEQMZ4K(&O}sFkpG&87OhH zu(A?|2zaH2#W;64z6umA=(Z>;X7FI12LetlM#y56+*JY_^N;K8U8RRK7N( z5U;ZL13U3DadWw%Vj}Y$I(;&o3Wte?Z5NjV=%pUFsJtg^t$oB! zD2Yl?+1QHjnO{^CXQhH0r`>xoe$lsN)}ioSHzqZU+$kfEGWM7{aSj$@@}d}0&v69> z@(!2;eBn6PqY3tq0=UNQ+4Y5t{tClQCG3vw^>mExN%;Qs%Ep5hW_O~++Xhb!CcXEA z4?_`CHTVvAJx#gf8GPhoTzwp!zPXp z8SII6O1dz#b~vhs97} z;s11iC&Rp8x!x>hx&zycFyzoI1tEt5GT*GZk5d=$6fafv1;Ud`7&FWUf?-Sxcbl`5 znH^jPZv?TF3)jL7p#VmEaBwj3Mk6dzYDS6{=H_kClE?`N7&|%Y&Q|n{Oa8_Ft2F3W za&mJCTHUbqDvk!gfT-hkST;e#qcgCrkR8NCEnfJbC>~4=LLc}b%258~$#$?%p(wQ& z$&n(n4G=+>-j8{*Fy!ty2qUzr{MnCcaRoIK7>TB175BoY0&|iHgOid+(zD1qXDnlA z0*(g-E&sTxzMgf(idq?~BQnZiO6?!0i~IqeTbm`0$~q^9#)R0{VO+)J#W6fxY_8V` z9bqmyxHU`2oDLqO4Z1oU=dlU{l<&4kKw|qi&H&8?0Ujk$(?eFg~e;N<9XI{xIrgQO7#Z24%LO9Ie+NH_5qK2*xO@0S!RE@0f0+&A^E> zWZ;Cz%b&P*W6!S00EaVs#32c7}0119Nzp9YdG#l@l$5`yp%qZ=Xz z@_f7rJeZ49bP7-nu0z0pAvBbnFSAvo|D_JSq?8mHox7b3|m{{|>h( z$h@y8Dj;hIaST*zd;1YM>(I6>+Xjm$7|A7T+1VAbCs)zZX5n>sIE38ou?Cw0&`_^S z%;RLj+PuGRb8x8(4$?tK+|<%bNhW8-azMQ{OXwW8wU&sDmy zPwu+7ti<5nLlj#L4Gn_mah_BUUDKPZoA+yFvlo9&?TJWMiMz3J84cYlh>S>iCctnF z_7nA6rKSHYjz{gCbty`E_nn<<>*8S~CZ!EuB3kbnOvOK5Ex}W0Lr#N9aGQvx_d_&}88aJG^sAg{=QKB#46)E7DVnEs(@HF!FI{@Uq{HPW+0iZVOo}F>G3$m)(p@aznKrm|3Fwc4FfO* zCmIwZY$znIfw3>c#z4WLWc-fvw=igjuhEL55wziIt&FOxtAnp{2V{j0xg&M}mYD1L zrdyluxl`T%$2Q5s{{qEY3o;~fu3FE8xTq*Zy31v0y8_Wl>fda5L#Cmy8TMNEAHmUa zDq6!VyDC0v{WH>Fa8S~N3Pn!y@W6ow4i3`DV=Gn{?%9ALur`p_oPvVuckR8#56&by zCI$y5WeDXu;ORz+S$g1*vof5T16(4<5)RHVF*zASY)+5|QLez>+$ev45Z~v{*X4!Z z+}Yj1X%-bd!DA$z52R~foQXwTvLNpOWF7zmHFtFA#<>40nq)s-@q|nMIhm}WK&;2H zDhg3%gBa9ODGB&ZlT@n4o>pnKMt_%6umdueGpW06d5ro3qBwD^v$J!nTpk#cXCPY0 zU%%oHn?Y;b+}&L;hdNkK9IcC29j{lDw_Fbnp~lgje(H%>;2q8hQPK6wScnRi5h{}-;eYJw?xsesH?7AR6SV6@RaVF)_lxggi+|5P{nZwQ4Oha~`tHG0eU!%ul3$x+!ki zdmJ8%>tJ?(&`=Lo--e4f`uF7YAviIx*gD{$pt!s%*V!C#0MD$!x^)dyG7Mk7I^oHU zOaY?A-Pt+U!u{X2HowaJ`=V_I!=gv=BF&eXeOqGT}8i@1V^>F2)2 zV<#TnnELkZn}ANi2IQu@uCBD0FU7w3jH45Y{kdgti^Rj=U`{mde>W@C@6jKZ`@_$; zqsG@rc*%u!x`x8q)YEIjBZDVI#z_Mtt__^t9f0Y9i}LeGeGTT9Y?7qG>7nNM)LKN$ zx}yxC1W|Cz4F=G9SL(3NQHYfNS{$8Trq}gF^%4-i^-KMkUx9)Ndh2o-AJN2miyQ>1jfO|KmFM z|InXKjl+UW;EgWv#bKt7^4s!k>2{p__1oD$r@n5ifha(Tc*%3eG|6RbZOeZ@}2xYuiJ zAwa;WbL0@CD6O2;WcUhf6m(5OC`Mg9h6br{a-|_3A`NFr`jeBJkPx+m{g!|ie21(i zxiC9YhrMIzrbNC!x!w+c30{{XVb$OEM5JL?eCn?KQ^#<^WClhm49Xmk(8)=0zsbD2 zF)<_iTqi7_KYR9-oRJ9`bjhHJaLYhP=DWK~-E_4FahgH2LA3xu-q3LoP?m1!YkyyF zhm-I@Zf$}#8Y@DF*_?)F#%bXjB~_Pf4{wCnKi8c#+H`wD|n+mkYhOk zZoZ*l7EbQ!jEd^u^JM_&jAz%bS3r*FD1LoOMYbaoma~lubL?;j z;OrB4E1q23GSSxoa*mt^dMa-A#m^3n52C-G-x&X(rLB@B9{Zs`%dBzXJGwfULRfLo zPW0JqM7feLXo#2^2*`sg)?@@7(r@h;&2=pp3qR}1FwUw2T@2BD zntb=)Uqen0F1B0H`k7e*1`Ws7vOTHQ8cm|TJ^Q#!eUdAXRwic%(>dgjLd1(Ub&)h_ zv(=;FGbZ#cj4mG&CgwCsZ|Y zXF+;dGNbJl(O+(R5z2cfOo-mHu{g|3X0>h&R zObGGkEQwIH`(9D8kz@&Ulo2mi&XW`CaB!L2tq3%w#3d=Rxo^zO%q**@=+n8IF)=Yq z-mB%PbPt7#D=&c&pp{Csnp@J4DJdz5p7663v-bt>-RDPN#;#XZR_WINx9zL- zC{DHSnq?{|DM`@qoE~!kRkQq3+$Xb7;*(=r4%HMekTHkN=$Ot&T0|b9Hl%&H@ae|D z+THswW@qPoI?Tq_wxz2}Z-C#B7QN^={XyAYSwZWmM)rf(u2I9|lZH8}41_h~0&=u6 z@%xxba=1pSIHk*n*XN6(t>Kl6m&zB9fMJ922A#Qli4 zZ(qAevDEE;nMo@uwlVO*8}Sq_Y?ROQwar^--IM+=#@+)Q>%RRTzf@W(w}vRABr+?N zNTnsKC<#fFS=nSOjawN}2#K^vB_vsyl@UTT?3JAvB3b{}srz}p>-YWte%Eny^xVfI z*L8h9@6Y>vp09PLrNN@rv-sZN(9kQ+C{dUnO~d3A+sjX5K>^lmzV?Z;wyXK)wVw6M zZ&&$+dm_UZby=&u>#|EY^o$dZu>{>pSb4suD5kli?4W>b;_jLh{(37Z6mFHg%z2xGDUi2c2W43 zeTAkMGKQz*+jmC{s9j#(KRi6U5ipmgc>sXTr2<#t?25F(Bs4WOt=(xN8Crl$98U%1 zQaFsALzVu(sFB|*;Blu4A&5u%&Bedmo=s?6Xga%7`ql?`*CmL-LayA!4<9~+`c9}o z!cClupy0Lt%(>iqyP_QT=IdfnwF}@=(6lv!wH;m*SuXTCV2|64o_9q>EHK8PJL%?D ziUcxgkg@ZVY1T(n2n?$s(FyZ0m2mgIdq4py?0D+x>a6YUzosV7R8>{&I^h8?TfU)0 zmGr~H$c{~#8X7^1Ogw6Uq`r3i?&y0 z$5uVzy5MmJb5^3*o$+Y{#4-dTEfrTdG$f`8Ii;t0l4Zl9U0`>L@XP73ISs$Qi$uwf z&ki!j&W|sx8g)-#63uQJT<&y!gelK_Y*|7sxw+5=UOInedXJ9AAw1JcNczF&^Ip}G zsJIX4BQ=7}@8yG8>)n$-0epGKaD~%8H@vjCxK(y)l$F7{^ViALJY!bkEOk=-5ff{* zt$p!St=&ZxJ#&F^S=o=L?6_uTRh0zit2Fhr<{~&UXIj5HjQ)(eR{(iy5afZ{brVX~ zF7vAlBv|50>x@+5tb;3Yaa|D5@jf20|fCW z3Y}I;FNb$+$HsbbilFLBU5LI1tvAa3C*qL+#HArX--M#Ag@0V(g2r#&q*7UzJ7Mo! z`iBM{0&MyBqo>qA`4|CvDEz?dzXwEyqG2WpWKm=>1r+Rqp7SZRfOpr3@uHt{g|Z#B z?{xikC-JObpyg%Z64C`gt(ah2Ar5}nR(XVMAp;;efOKs}hE`R)!5oN5+JMjoC&mU= znPoostq*sX0Ax(l^*Rc@W8EXa5h)x%>5NO3yaPZ(jjf1gtf-_h(9wypktksL&$Z$& zqg5qY2%?QR!Os>_4&}gLoNn8892aSWp;&5cFu&C$} zIvvX1p+Ml*6QI5*>lGb;V^foLu@oKBuzVgfYsz>i_Z2d86(qufM~{!S(pi!Gox`mU zjhYDnob;*5vE*~L<-c&1-=VOAtWfMzMOh#|O>65Jzb!II%$^{0}?!8ySuiK9~~Mr#OSG|XQ{lSBmDfZC=(k1e>^!3ClV}`WQO}DKq)}?F^C}WN;CKfHv;8&-L|qB z#ow_cvyd&RE+~Y7HK;%ljy#h#IG0&@KPc4V(S=24 zO6L2l%twQ1mSkjT2o%&ZARSW3|AwiS-7)m`^lYMpRwxof5?$Y7#XUdIiXs>{13m6) zXrh@}*ei36oD0Wwc|VhN`^BuRDZ90*fO61nRRnfm|MFX@8L6~vTA?@8aY?9a!I|hb z|M52>VUuRtqJmWgok|?bHQYQpYmebce202BP9}AFE#6f&8kgyzu{ecR4V!tR}9)O-r#R-SH zp~|eS&|?yS7aSa1JPe%{qB02{qTCNy0v{qRk_4aX(HaZag`FDvuXrr5ocmbp zl^WuqR6w=ew2oVcTRS@oum@a+h5|PbSgbEHA2LVVR+@&A7#f7jOIU3oam)v3jBMYH zVAj&w%vB>f$CQu(gnJQ~a`V{Pv%*Ndl#-Hq0R`QK$x)N^^mIUBcM~OT@u)*CGjr9> zo#FVlNJzR0-48H8BjkyE{ejB53L)slJMobmQCQM}0C6n{4o62v&w{#giT^)*_E!_W z%Ks6c4Xx>(Iddie+I>$0((oXt$LZb$I`ab@zy{!ee}LK4ji6aTDg3|@Pv$jrm*DLL zac`gxD~H&AtpgqV!W)1T)}phlx#fgTjyMef@l~%jaV#J-ANH>SU`p}GL17owI;0Wb==yav1*ZgGj69!@~@T%+SN-@sw48XAd*x|NQJM}>2f#V*$Um3 zR&gZg0kVYeW9eZCfDe|5Us#xHox#6A0fhoUcs7Hu*;n(g6=P?iS_BWuS9AEAa({;u z8-vtD6`Juh-W%c99zdD;k?xjS?Qekum~GMp8VdW~eE{GLx|3*knLZ+Y4aYWl z;FuH?6o@56^!0^_pPKcqg9nlFdWIYET|US@G0kW!?;jd!LFpk`17qVc{p09GNb9Mt zz7%yYvXaWRvnoJB0Iv!imivLcF9?wJ2NhIRqfpUA`VMMe$kIbWHT_C;0wR=33UD%V z08Yl+;&@!NG)QyZVoV7!jmy{%T;q^d$;s+hXD|r?b4o6Tu1I^28u|>XO2ABOeZQbY zudS=Y5`ee}_7r)16f(Tvn=y#W#Qj0wjJ2&T30&Y39kUScRg``-#lv(sXF zhq0OfYMLiVt;|M&!vR)N-j^$0;L0Wm2_zMW9}T(I5DI-c0Lr)1t~-cuDf{Z52z9*? zN9w%kr3Q~hWG%UMP|1`d-1z(Fr|&@QR=zayE;gS+X^pPInT}HTU`k*?y|z-gsK3(S#t&$4NRCHO8czFzI2{lX7RheyXA=m8 zIz9{)?+vblK1zRksPBPLEfxY zM^BG6fcSw2XrLiH7ZqRnv?n{XEN+2*$0;dUkqQRH0Esdrc>t@fcIZ$xx^p+>5fOKz z^su{knV^<``|r-Q0wZ-2Z(2zMF-cH~psWGA^S261a&wtM&bwS&&1ZifB9yJ~|2LH% znII|A3LcV=^{2elx6!tT-Q9J#%0w!JrK6=UA0X7Httsq@J9I{Im~m`A{TIqZagA7< zUIKXDfv(M4v?yuxn=wE(QtQ#k4`NPMq&>N%rieN|AH7=@<_D2#0Ngm{2LY%+xClkf z0HglMLJL{e2Hq=s3kZC0FkZOf4HQq7!D32U87rw5O^>4 zm@{2X9KPz~#%q@r+L*CDl^Pfr@VI`RA6GQe_@`sM;**0m%d;8hp10=b-_<_!rRqJk z`GAbOm%Q-MNyeEJv|g_So-2%LlJTI8`q2B;veyZQoOPfARz(LyT~V@yi-pTkXEwo~~+Krb!Z%spZAW71ynLT^< zOF#o%r8pq|PojjCJBhUbfbc2NR1?h&{_USpDh;yRAvm0i^AQ1Gfzl{FXe$UX4i8ooC#9tV%NHIw&W<4xFRCaW>=Q@9T(WX zy;gw96nX??Y2scaTFAIfZpVSw`ZOy1rG@FI#|sbLzMfHzB}8~8tyq90;&xpBO>i(c z{%^qnG}bkLN>-ik=L4@IIu2(%*@>_T4r1A`A2)o-54kZo&hjibx6mHcD%tPeT|st2 zXb*Oult^nrW#1Q*iEv-cn}ZI7oUPgk~CPbk8@Pd+=gNsf^D|?x*n)HMPnF z6IQ4yAa?##Jsg|XOP}vC`V-PqeT^_@1Bd|V-7B{YO$a{ToLwky2-Sz8j+sKD@F*e4 ztrC%FmYJgh*t=$B|0z%bWyf}GaPCmQ9@U>B z_yVV_e(OSHhfxv*L4-KCK@TxLf~KT|Xq=|#o=hORWKcZ$|AS<}+&}G*RPzYtf9S*C zMG8xJ{QzNt!cX~boeX#hon%?G=6Z-}$WV-3FL7sIPtQT@MA&pN^~nYvR6oSNWlc?3 znubPmE93GIZUAX2Y4J$)i;QYStJ=I<%ZXC&c_a^+d3TO=Zwf7+zD_n>9HLoSuLC7e z8^-Xm7vA}o2ZPxjJ5y@6=KTM1{tqvTQnNmH4z0zUbvmEhMiOU6c8~u0bu&0v)2#L9 zOM8TORVSUb+JB!IN2^F{CEFU)vsJ7-Jm@!BplG zh1Vd5LIaP(vP$Nb%vbnxfEOZ$rO-GHRyt5jjNC$wTWj$I0zHAn$OtVDG9+d}I|WS+ zWw`t^iVz*MjduYLnkcXf;>le)qrAi~1h4!fF_)27PhEPxZ5#Ab@#}pe%&>VK%i5j> zLuLHHw!lF2^E^B}!x#$My$eELY`QckXP+Uz^y3-f4Fj9<*WVh?)yS;+(89Z<()G6} zwkIl9Te+TM`T*7i7Jz=!+v)HTU<^l~S?$dj(Is^k`YM9h{_#|_ENUlt0$9;Nv~;9M zpvNVkq36CEx7)U{vBO2hf!+d3(n<~EyWh|APq6**^Jgm{{xZ=yY^i7dqcrDoaf(V1^>77ENQ%Uy&ZQPee>hbkCrC{5rsZTJ2Sk z>9j%Q>4HDM#tUQ?&RzpVOuM24#hnfa3W7Uw4g%BftKQp*E^h_dLk`Kcu%qD(`<_KL zjY8z~Oww9Epz8&A@;P_9rey4$?v0`Q-88L)c)yUcv(fjU09=842V_Ma&D)l}+9+-} zBJKKX17Uffj#2*4z@zDMO#qD~N!Fn&uESH6E7O<$4$8|npu^3>qcMMj08~%G zaEN5zs30)SLnn(0B(dZBfz?6^oa}@O-CZ!;@p7=PvnMw3YN0&E*J&P3hHj~##;8q%a`c7E!S>Tz5rHDL&RXm%CGu!d(uEou&}SRYi&e7aXN z(EaYaxoFt17$AFEZttN1yl4o;@9f!P*LVE^>^)@J15vQn0??(MX2zXnUzQ)COf^;-|KLf4+@v9Qo97s9v$?8 zoyXE|e|Rn$+D;DMaq_SU2D|fo$HD__r1~& z6^G4at@PVxnvrfN+Js6)~(4P5Sb_@3}R3QhtkG0oqa7z za($Mw1@R+G6UBblAk$4>wQ$%&eb;)VKjCe*YgF8GsNO723*czoHTS!3=bm$D#fh;V zI9KA{2tFG@aBc#Of~v@=4KCyVE)i&sE};}iPm0d`u+*wS;yz9Mm%(C@sp?i zAi6oKD%5H6j=5O2OBUDaQnR)K!Fv%(fx@jzXffE?SX-ZhPFCx{sG-H=0Ben&inP-3 zB)58uc3?h_%X2P1QjAdwnegq0?p$|%2VL-c^e_qUiP9?KBU#fyWYTCrTB5|_K+8^| zTSER{EnqQ#rV=Kg@?;C!&um9q;CY|9CQwOC|GM79*npwr2YO)@zbHH^C#Sn zw{&2&8Z8dUrpd&x-OkvRoV{WQ5|`OWcWh)_E7haR@k>=r*lnz)0S=K_1l9DceDQuE zo;VIf4;f+~TTqu0s=M2Pjpxvn>fTr#;SC9b&0P1^hV#Q5mA-wNtAM(4coD``w%h^F z{RUg0qkiMA67#7$wK;k}@XVDYe%H5>@V^(RQgZ2pA#de8b{5Lz2jdkzEnH#3-tyGS zi(Pt~-(BS=!7fjKho#&${iJCTgF8qHyhFKVmy(Y+DCcV@6+GXN_3ZD_qminI4(`vN zQUX$n6ywJzM`1f^$wSG42tkbOT75)7Rbcqn8T}jg#J|QuG)by&1Zd0b1KeRVffZit zRuN->Y_o36uT5wWUH>(&rY4lEm5BIXaMd*CDvaK07wDs%B<|#;QPHn9!xeYOryMnO ze4k$Y^?AW{6%`2epKC`%n6x%I&kpoo76 zR2bFJ99VK)uHnn*?+s!0n@?9DefWFy_{hE$XpSQkq38W}H*IR&@_~cfhbs*nodPp0 z;%=27VhddytAk7GpjAI_>CImCq8scNj#i!T=0JbcikeyU+B&(y{U~Nf2k%XNfbGU) z+GuK11n!#kkco)>q{epz}eVyIAjXWh{z3vB#sHp$7be55bPRjjtM;>3kc>mDV z?zN#aBE`h&L<;(DR9EY2uQRXyI6UFH-LbZ|CCs(qU~-F@!7u-0%@y05KcrAyb`y((w+f zbwAi;Aj~L&10FqMH^sf4-8ka0?)U7Yg$@SFoQ-4G&px_@l%jA(1;HXewiztzxGgP=`f3Qs^6^-uazH2$w-&s5Z$9R z4HDvhC3Yo`wc-q5RAi%MK&lI?3Akv+b_(4J5D>hdJsRZ^niUd%T;SEXmo`qX{9v;qSjI(j)hjd6WC?y51>X?OJ=}Y33Bd(4P zIDRIW9Ri(*3xi|e%`*0>;%RePB z&VN27{Mf%<|Kq=Qpy9w5yuz}5vZnGAl(3YcN0C8^~7&G23!D7G-6i39Ml3HA_^e>w!r_e z7V@)pYcwWeP$>Qd_0%vspbfR%QfekSh@415?MU(c=Hv@a{(pS~Ha~r_24xex9pX+S zK%tX$9aBL!)qIN$4P6QOQnJoH&;VeNNH>LMiENfyF<-}NaLzw3q2U1?dSe<{3a$VE z^KzAYI~VRkFYXA@1$ZJBq=v1Plw?OzJp5NcSvi9t8!ZBkK$EQiUGp$#<|mLYxM|$6 zRh~?!>K;7u&!WS%S-RKBqKuGlQgdBIoN8bC;36pARc`Ggd z!k`D}Q8)o*P^<>5joU$yA$UO~j_sfIfh+HoxIL~B(77IEFHn3o^b}|=gfw&O!hkPe zLiZtpO;9SH2KNEqylHqJT%Z5EB2tP5=hx$Lqp-#_OE2TiD`)~e8EtBkiepEJ*8lTT z3u}p%+q+wWV*&F8GHw2O`8^aZ{j-+*T;8BoMN}Bms#UA9drfYWZq%c;=wD0590V^Y zEGB|Iu}fT8GX4KA4c~5w^s9fre2=aZaYUUumzA|t$}Sd_hr6}bzupY@IVO94I)(uC zWsdpcWP~@V?6`&U2)ugMKffQP>V8L9*yk;X^Z4h*zjc1Zoja()5yA&KRz7!rUVi={ zsC6dV#=tvk|K<0upT)JjJEQZ>*ykgvMoS$i6CF2V!-@o1b(B*Q;!t;&GP5B#`=3{Y z)=QU54k-AhJrN|DMyuq9zoqi)uA6>&7HEC!KR;!)3HWIM-kiZv2SWUt3+v9I!{-dX zfmn_{segZezTBWXmUPTAE=bYIx-fCQX!e!WH9tbO9>sLu1P8AFbR~*PONs~vyA3{Kc^l`kE=NF z*f`KJianhvB2j0ZUgo%YzKQOS8pH#;G#4YS*mrwYOw9#oT%v!A*5rk_ofEa z$Mqs)8hql;FGcy>Ja9yHhtZ#}qxJ#J9*`Vpy`+1`rbUfvI`~jEpq6z`oM7UBjv`Ok zt6O_BR%(KpeV}vIDq8gmvswFNi?&$11gIt9uHy&_lmSf`v@-k&!xB(A?YW>+P-lAfq%e3m?E()F0Q7BxBIw%j}akncAif z#~X!-0Iy@&Xw(Ft+5iIv$Tc0dvyEm{gWEZR5F%IJ^%I*2p!Ur#f(pnEEy2}~A3vH| zj$qI`IDR~fYZ|J&WN;AUV=>?)UM(b4@W!)uVQg&dZ~t8pf4>}?Uw@7SkuDu6EhcX9sh_X)Id{J9KTv_pO+u$rI7c! zV8QI|y{4Y>b!}2(fw{(s{#?$UxA$gQb=Gb~43Z*c%E0Z!#a$JPLapO#45dxysTam<@*SUkv;I|W z63duo7Bp#k?D)NsO>me-5~43AKgN79EWD-XnUgMWO+b`3X2^)1>M>6>#AJN-C9+EWz;JGop#!3Y@yi?Cu|&~FWjMT6hiXnG-@Oq zPHJ9U!o9|Mdo-~jj{Y;qv`E+^Kh*O8iWHqx1cEaW!*LXb9P1cVQ&gJr}D$s zZV~VY+DG$cfWB4DC`R2ztb<1MvaAwSdcSqcv{I4kXATcr7wU}$mcKf(?1FQ4~4M`zt|c1 z>}zVXBNn{Xz>pE1b5L2*75Ow44m00Qq4v}|SdvoV%)n3lz(o?Yltm^E0M_$lmWbC9 z9Ub-St%hEQ(eKp%gUdUubHV;4ku^i_CE`|b?{L0_M_PY4?qd6S)_Uu7m!3IRLV7;% z{~*CHb4Do~f4O@fJg36Z@0%rd&T)jhssr}9``FG}vTb~a%@Q}>{q>qx6z8bY!5r`S zdCEmR zp+re0tGK|y!jB*D@hoSU`sPhT!#zx0(@!sM zh;=n7I;zY!(;|^)Rp)mn``%hbR5?9&aDaIUrY&~_Vi6W+Y1UpGYLZVw0@Sn+5iu|O z)9yg)jdi0l2O4IIZ0PzWon$uZ32_bdjq|tZU)qL8n+n5N6#?U^7&bfPjdL1Ea&l^= z2?y?|bv!@9w*SV8T!J4V8Q{LDwa@EHv}W9l#+IIY5PjEQ*rk21U&iysjdr4*&nA9r zh?M2|dE9VQ;YF98yxXY9zWWyt_CQudc!OHD9l4;xvM^Vxko%Ex@35ny=YpBXt4+Rs z5L;UqB&H0HniH^hp%brPop|Yv;p+|~<5CT|gLr6XFdu51fXN8gq+rl>8FdX_kB1I^ z(Vo@PyEi_eOu@j7_d@345;QqpRZx+VfB0)`4&w>n!-A!G8e$gZ$ z;7v7lRXo$md3nCrpAyIBr++InPKXDwEooMnO$q}9pkO2?Wf9;ZsEo;8%UlFq3By#W zcWcN?0YRe>7a5vjkER-{dDXRVy?SBF!S67GfH79)!WRcZFnY>uNoGz2}%^ z_h=U6aa9-i+{=7poOp7Bbdy@F@P5s$Y6g$yF3k8qIuNXSQnVpQ;ZSBmq~$DQk^Akq zy|d=u&#nQ_czi{#iE*NKDyC5far<_CiN024R$@(t!`d<6K8$|rf(hT2oyP5=w%)?v z6@J@wSxK(wDw>sO=k z0^>grc*Y!MCj;VJnNmgaN;o7jEE{B-=r)D;fs?PyQ{ zI+j#O?y1#RQ8_zL6sul+bTsm=+KQl?w+^Rd1iZ*;!Nqt6y^-yvZFjcq3{R16wa6c= z-We{n(g%FZ>x-W}4VQuL>ci+eZ=ZuTzdA2Trl`-&>FD00q|WgpYSCXVEt)jHkS1$E z`>fuQacu{>BZ4$@c&gkTyi1PF52{jJl(pxr`x5x=%OB?UXtvDYj5{pe8r>><<4w!o z()T4igQpttVF9?U(HtCT#@4eIUX{?XB(=79lLYPn=S^WNWyNM*@w>?LZr#zCUNM8P z?dSXZ%6Uy1UhbQGc?Uu!k}|iMZd60tMR@V#P+!D;`EM<)E;T=besO&B?aM7F@B|Is zHkyLV@KUOKJP|fCeI0S23DecJZz0C$$t;+$o%XQQ?}F6Q$K*Bqks05p9uOj*)wm0 z;goeY*C9{b$_*So6iN+nxYv87^>yHUw~*4m#Nj)mBJ1AnLZ6Sv^Z2iZHDQzFzoz#9 zusEEnQko+tVs)g=G(?`3ZMC^8xJ5X|NC{!RwmSr6Q8poaXEw00{+}$K<3$D>8&QKFYU~+Tep-rG+Lnbs!t5;lh|$+@$^ALadV6@1)0) zSF99wm*~rJ($Uc&AsvhK(+P0OWk_9sPH%L_cCR_(=X<5v^KW)BK%2h4-|WdCWhB<% z#@k{2=TlZXR9`RTIyCRb7!QBjM->A2U@bT#wYxPoQ0NHJ13%CgTYvwoxF^$@HQ45; z^{~hsb{55o^?r-37ha@Ev?e8CIx+R`uPUBE9l+)=z^E_ot(90c`rAnD;oB$Rf*&L` zkXjW@V;csBeQWFW$?0zJQjWYM<@EdJiY1;~HZHQQ66QEjXJh9k9(a~98xMGRpIM|* zpg!*Oc1&S|e%!WIme)Z12%Bw)(n$r=P(Lo`c?vb3jLRO%IXc&0NKiqU@qsHd*QzZu z4UeVGNkVuE;>dFkFd=^Zb}u)xdB#1tra4jC7hh!*tJYs{jmgM&+VqQqV*%;Ip~%j^ zniPP&pXcJ!Yo#|`Lytr-S@5sj)SlzSz{#Tdv1}hh%CUbHBv~mMv7QBD4!LVas?V%E z(1Xb*s~&lBLk#iKY0#K-dWC^v%H>}Mb9hF5Dx2R#?9+J!Hkl4z%2sf6acTd3VeDrY zCSk2|E;Uv&u*h2dxcF>q-q$_`Mhv)JfTpk$p)N4JksRjs!Tl(y*W&KrubJ5${$mMp zsC4$5Y(ghsU(kjeA^=yvFo=%uwSrTtb9ibFc9+#*nLSjCEKG+xja1nmHFkP?DEw&Z zUzXmvql@vADl?&Pz<#xms|a6+3C@u8#1SdWl`4$}_5yG8S2vaF$Hm=X{q$Hh3OwB+ z6*F0APH?xSNlIs(c4NRI!MVyJ#eTN-RFBNq>=tL= z098&#tZs((s*s#aG>9Bq&MsZE|9T@%I#j8REiL;l2qZC)S|V^3D- z?yB&;)&sBYjAF&MxcB>bE2g{NsZQ)dz{o|{$<0nn5LiJJJP=+f=b?4D+Z;Z5uXg5c zOtsu}>frVKJO2AZ<{#||Dz2&up_!$yR@h+du((bNV;5EyQZUMmuk!Kvn=D%2Z`^xk z2x24Y4TMcqUI893HCpOMDM^&j3a|l~%w05dWxpn?NlK2Sw*FX+o6DG?PoZchngckP z>pfKaDm3b{a9R5G_4URkZx;ttT5k!nEY)2tz9o>nkdRQx=Lap$fgyU8sb#s$i^#|3 zbB}%=GYsAgZ8-!yhY%u?R@(rsIv?B!xx+Oxoq2DJ9dBm;%n(%7d+s@pUw7xhp~)DW zH)^r2POuQkLA;d4B@>4}Gq9EA71YWYXUwW*q4O?v=&sAX{Cm<1c424k2`@gm;ZTON z9rUgiBV+7re*Oi$%(`9NDvAeqmq0U$CBz|NsF3$FWIeP33T0mb48kZdGh(7=>k96A z&S%+2pKJMHT*F|YNE{JCk9nnSi#P-WJaHgyL}PVr`K}1VX&P5iv!vBo<#*-%`}b!Q z@XKAPGHWBQm-;Of6@1PO><>rGQ;l>Wfx5lT?rdIOz=%IIqW;w7yzhyg+p+U@&CmNu z0)mTw);KfZb~>Rj4@Krc2|h677;0+0>9)gDAiR#|_0~{%oqp@@Zx*kyrzK$NP{ciS z9i;Z%YFSUi*@5*#{5G=vp0JodFLty@Y=jilgsoTTXyR~>V5QkU-pbjBo>xCrs7L6> zv=NF>e&?TOX%G#xPKXL2MHK|26#XT&&Da+dZw}F{??c|z{&HeQTXfM(n@=lX$-Lv6 zZhU@XMWaSRnRQ=$#kY1Z5Qy;a^1jCKPT+NJfuAT>{X-1*l|VQ!_KV`hKbr`f^-9KX zMJU%y`TTWk6xA1E(c>VRyaK{2^jZS?pY#i-nvWjn)s^=3ss1^$pkn?U?*KlM;AK-H&9wc)^B?!_bKBj@sMVw;hS?}xBlKaqfA|*9#6U3%s zIXCqmVDXsMzPNRyQ*u$b8A~}8mL^)Yv0fsG7LcWQOL$_`t8g7%G^TE?l zr~VwAy|B*$ZP!XLURaTN*Ec~=T1P}ZztK!!t#DY5w_tqaV=7%}67Tn~F@e`$Dlu-2gta0kJbM z>L@DZBwnvk4iuKV7d7<;3TAs%i=egsdXU;;VbNeJd3juyc$Vqb2$_u>7(IywxD!%a zz|oLrPLhKSB}*A0ST4mdfv!pYtEVyME~fK>QJ>bT%>O zUq9mEF|#!_JKBc>Yww>Im&hMnKh*^m66(;#Ve`T;OCI<-ux*~MNfM)MGMuTtzFMM@ zj~_4Q;`#u9onSvC0%MzlYrCc6^z<#_8+{1E%|l@|MYoej0=`eiZJ+(uXU~KvsvX2E zjSfOKVn1LcEHAFG;d*<><&nWs2nZKbWk~M;aN`gfEz#!Z8X|DxoP_j_F!G==vJjGt z7%jf&^A0rzpdA%MLw*J(mVR`TrB9&taQd>U&86@ZG``mhPT#jYwANW8de{A68HQ%_ zlF_EOTiC-h-{Uw+bsd$U?EaG*q@;dkOxq;knFi#!rKSd&*+PiE_QGg}aI+S`yeFyU z+APwn{7GV`qm+!b*iO$L&39GMp#vjrrp^tqp6;WMJh&k;!O(`be@MASr$nF6jEsmt z)UZ{)8$M%hF?3?TaFwlXB{oLet4DwM(V_R8LH8Cm6`(Ej^?YC^w7f0(%z-n@2gOFtZ06|DjoEIbgV8^B9u@i5 zA3%GB@@n}v)oE^N)DCR{H5jPAh&jvqiH}Z^J%Ak+!^$#8AYDcyI`G!5TYSgwi!1g9 zwm;jY(VqvK3RJMPf#XQAJyA=Ak_Fm18d3DLwP$yf5|aa$UPFbq{jx%60#;V_?BRp|io`;xQZ%xo>9q-Ui#@W7B$pOrvQ!$NEWQ<4J~g@Zg%{ zxh@v(|D^@swwuzZUtd(~-;2i)5r=oZdLud1qpHpGS6nPxc)5S0%*->)gS8!;T1*#l z`nL-{qupcaLuA|y!Yq%3uTt5|!U>)68lq<_Zk>tgHBlThHgkNwY{yIyD>V8r>e46- zd3koBzw9l`UI5l1HzWhcNG|bgAqOZwiL)qhY^ZZDphpf2SV2H$6O6=$u=P%-Xj}J6 zqa}8?;Sv;#5)EeQO7RysZ@|A}*nRzAu;Ttlhi_!f1gipek!MU6bNiV7IwU-DL;j*^ zbtP7QOQ-c_js>~je_*}IFm4Vq~*ba0#~v^NVq_xh`+{I<+Hfx!XVg7@kG* z%$zQCm+QHCeKOEfH>|(;F*kRu0o$deivkMNyLBDBygp=g0ssD8x8AU%y(ry zUrw$bYiKyHXz-zJLDV;3AD5fn>E#$F{LoEs-mab6EoLx&qBwnYm-$&|m;SQ8C=QH9 z1bPBrveYVT4LDzDAB0218k-+ZDrNY~IJccU9oxn$ZSyyttd}qZqlQ+3C6}5&!a!l` zE3vM}8AgLW(eZo(#&v7GUO43BWDcw8hbz*9{kcoH%p=_~;4+9$Lum!Dbg!D)VseC{AwU&;6PSDT z&y7WWwnsT|JfBFhI+fQ7mabv=APILuFyIS?%VT&H;XC=(8kiO+DHj+OW%7XclbNJ} zWW(f;x)28rSa>tHZQJjOoQRg2Q*Ha=WI~u{MI;(|sHhbG3=0)HV^DNUC?Klg)T1)3 z=NCpm>&)MEFs?R>Ev~a?QFdTTj*idP$z!WtX~&FS=%)L&6mdS!-nXv$UFRSQ7ExY) zU3{)t_G7tT*%rTe}dNNu!TbZ>kxu z$2pDN*#;vxuXjQCl8@C)bBz$(rr>L9F1eC?j!?Q6*i7I~NTUy-A{V{}%H=s`k*pm< zPaz;olhjF=4535_z}>Xzsoqi;G|?4*02*_o_(4>%$@N#i=%6UOa^?Vo@T}w(LR9Fq z17$}MwK!tyZEDeIya3xFTEV;1^)|LZ5v89~2lB9mvF zVD$VICMQrBi2$7Fh+819f{Xm?C_{_k6E{B?+vbIK1M-21lBG4pKMx%O$|dN*6fwH> zT-f4VLy4y5fF#eOHa0JvFUpW~0j5a!^rg2I?s$M2fHCWu+<@!dXQ_9Vxb9ed5e0wR z@3f}&;IGwh^y3YmbBQlnyu?;BqWEo4t6Oi!9<%C(g89pYTShGt5jukM4Tgs8#lh)C z={Dkge0!Md_q4UOU4;l9c_hBRYTxjD7(NfnM3MINY3h{3;epaWK1Yk%6i{jI&!M;A zTv_&gQ-vOwW#!LaZ3sD?*>4t8n~~3RD0+VAdOZ`UJJH}Rg13@RGE9;H=!0;_McDRn zfR`>#9%T=6N&BkSV?%HDbGc~3s^||@u2o&#<-yb@)+LX z)O7mY8N~_D9}<2ea7c05A^`dW5(x?D#bb(bZ*$=zMKF%E%djXoh9dv%Xbmp~1QvU;f!pq6`8VQ%sV913HLt!h)O83-{GESiv!ks-$eV(M-i zwBfjxaGM-I&XbVdrnnWZ`s2RHeUU?Eg;v&u9hm&M0dSNtW-)RmNA(>U0B2%+Cb#k1 zw>_xd60R3p=8bRHbT95*sBN=t%M;hp0nXq}aRSBTML$r5Rml+0zZd%FAJwLDOdBjp z5ARuGqkC#`sDGhp7B>`Vl&lO9&T@?pF51qPadyk&{02;9r)oS^6Z@M3yBKB}i}(At z4%@2KT{r3sDMAa6CpLHrGbR_=cb2b(rCte}9NFZsNT)$FQqD?6YV3l2~O|E?<@qH`#fR z&-PIpj#EP&6$OP~A_wM~&c!pkb}x=9$g@RIN_S@2t?v@QYAmF#Z7ylA>)jX{E+n_ZT69Vu9s8cI$t}m*ns|6AfRk|@kL549pMNzkPh%w zd>2B%At4EPkO!e6eE}T^nzjPqKUzs@I`NS!FPJ^=hDA!FzHpWi`4ZyMe)+Thm7{1H&6(T5sT`~8}$ z2Q9ulKlUlsNdkZ!2b~DexaGWix5hyC_l$CE1BRRpnDzuKH|en*(bv+5Iao~I-g&p@ z=D6X9Qrn}I-SrQf9$e$mhuCG8HtVY)RwdZ)X*duAf-E11WoNog_`lKn;zV?64v+%` z(ZI3w4#H~AtPu`go^yQfi?|=X$sWBe#TQVn!S>3sAsiLOvd+2=oKvA&Eor~%9&cUl zKc%y}skc`JDpy!!q!2lj8a+0S*0%$BDT69H+4_kaBXn1_O^xbH?fmjK>e|%F+))v% zW^lp{{oh`k>fYhx-@DRb(CuhZS;TeL@DddrZ`E(@(Wk~;*K%FFF!6iYnB?KyW9Usb z{qBWrM@GtL=~1)=RO66<3ly=54lf6X0=_FJ^xf3qA8>R*nL#)m>PmxilFfC`*MMEk zu8LalwS^zp#aid7(l9COFo@r;qx2adxNcjLhe9~;8k&oN%)+7v9-*6u2EqC6s92+z zq&*sX#ZB3p7{K&Z!gY`MF#M4hCm7jn0NA$8YHsKL}){|KiCl zUdn>VwN<3*!V>0O$;>W?%SE_1W@>#x1G>z_?DOEyh@=~Hggoa_6f(3Y8*m7wZQBxy zQ-e|z9i1KfzdZFm*N_r=M!tl$>90B|c`bXRIx{=BX397)WB3D23c|50C<)Bk|G`HjX)qvpjy>@pFP4Z6V zv_F6{R{;<%6I%GXvUog!&mlNqe2{V;_8k+C(2Du6-Cn$CyS(Dm%YOUNfVLrbyWh2B zOf9MxtePOBTweOnL|i#bhJ#4dNP$!FOiFu3pGnc&NLXsbMhesR$wck=Dl>jT6Svts zyKupe!MP9cfg~@0j0k6?A@#!QPqG2D_V`cNP6?1H;c6P`=mM?4F)$N?#*1kA29fTz zn3wmS_4(KM<%767)pP*7-w_ElKP8Tk?B_(_We!=bGs~gJnPu1lfdd$0{2nC_1uWuV^*z8Uvg8DYAP7k5?141+a(kuBo(S#6! z+z0f$tNLmjbcP$r;fE6tkHTe02LOfarRY_(Ht~+#a{PUG43yClLM@Y*VQ=8dKx$V?ue7&)kJVM*<5pM3xNmwC_`2fH31- zLGD+53Bz2~(>)ya63l~mP1mQ=%g58~#Q?&V{M?8`WI;CIW=DW|eFDAaty@^L;c#1! z4GbpXJeNeWL$N1rCVCwTH%b5X&71NGDL{oX?a&>|HvBo9uEa2sj(wLYTN!~Im`Nw67NiCwNZVg%KY#*Cux2QN)70Yxw)hE zK|IIV@DibuCYu|A-!?;(2)Albg_96hXXwjgqCqtmigXT<(v$#&@4p-ere3z}6707q^L%CQXt8W?%%1PU@2dbL zXx=fru1!~qucC;?w<21T-2aYS&Zu@K?dX##_5Z7=_1M(gj9Vgts^RBOuP=NkIxXRw z#oQmSZGog!u}2rs`vgSJKJ1_R`t>*Dc6M;2vP1oEr1v--P?W4=cYHq5AR>Hk2$p_{ zRVrfWL6761sA$xlI2VenY>3@aNatgh8^~zi)7FrcK6l={2Uw@rj+gN8TqtS?fcA+( zp%@gfkM+69!rRNM@K^d6YLG)%#X8)Z2Genh9!5!~QydNZm)rP{Ip|UyT^g!quZeSF z(BMOuh2G*hal!(yOg#@R1Y9ihR#n8sqmXRP9P51qI3EjR{b+_+278%YxK}RU{=xC!CCltJI2^t~U){_ohuaVHm47T4L z?^p+4jRK(f;)rGR3qsT4tjVA2;ri?Q_$}6B=|Ps|;w|3;MN+<;wyOCie$nL7wI5Gv zAVIU(0Q2EnmJpWCm^HPgTMEB89uZ>I5n*OqxiWfT1*G-J`qPIzi}Kx<9Nu`n>ipl= zD!T8t7Mj00k#J?}l^fOq+k9cXdx7rJMSpJ{@SAeTl~Fj6-CgSZ@6D2-3n48pi4hGTDM#dm#A_m$9814NC(Ete~s9?md^zwsC`&|bH>EFrSn73ya)F=Rp91$ke z_u750?qIgwm{kTKqj9M6IVY@vMsvv6o9(wAam#?7gS41vL;~*InI9qcBpppDn#tMs z!Rp!JV$=!}7D!4Or_vEhP3(TrWrTLe!L zK!{JG#Y@(4LmJWK&p5YM$1wE0$0zr=u z<1>uLkl9}mV`1RpfZ+MC4@;Tu%vfCfa>;G8>i2H+T;m4 zmaS@eUhT_^5*+1c7S>KRHRFdwx)~ z9Ox3(Ji&)H zwY17d?zU`qt`BryqPU2Ka=3saeKIz7Uz0JX5AsUF&L(dRy=%@4O1*uic_1uV!6)+# zuA`m35zo^(am`QWSPm=cv+Byfw`A4zyL@tFSvo?dD5?omc-IX~MpKvvyu)7GN=v_2 z_N4pT2p=&N?w1S~v!!ywV2&Jsc>bJ|V+nl?cdK6H)aRVs(AeC3LYs9#@DBwRC zl}=)On$6}Rd5=q%u?d;sALj-6A1H7Al)B>HxgNftzqPO{cqG`CgetNpp_-*K+5g=h zkJ?PHSDIDbk@X7%zvV|VM$~yv;g=T3px4uLoA`M>@;lB0QhDPNmH{pRtrDxjL`=mY z49fa3JfLr@z!7DUS8qM8y82XDI;Zm8>cqZ~%%f`OaC!zHu~JRVzhqTFS~;fJGWZ-O zZh8mCNj|inWZZ0S+w7~qf#Vl;>>vF@Ep7Gp=8iR)ipC$F+Elo|_UTNW6B3*dDB;>t z!rh_*qQr)cz(J<(i5g;F{Unb#kg2}Vi9tt(My;W5Q6cw^?HRTXzmyuoYg`t zqHMAk0&Jsahx)uX7g3aQyDoh68Ho<|6o;&Yxu+$qwFr-ZsI}m*jni;eYLc07(@J)> zBx9anV;@1Y;_ae8;;D3}s>ykRr~?5YqwcQ``jXWXqHr)}r%>i^Myb*~jMAFgSXAAP z0BnKz>F>?~XXm$PGx`W*8!0L1%$P{(H7M)!-p4g0@16mA`3&N;59Fm4kx`%#9=6kIPB( zj4qIJ{CIgS7q7p!dbq>ln+kXK3Wor6&on$9sZ;?j&vO3;-qCX7jfO{iJdN^#7xNlq zo%o!I@_OhfD76Y(huCu|_mZ=T?A5(*J7r$aKyE|ymi?=75<{+zBT!ji|KX$NTk9|- z9%av}o?CUOVCM)5JHfetf>l6Vyrk@~5=9EGg5MT?hrJT0Lp;sfR%uRrb z2)D-SVmi5D#m3jK4Gt=08!Ni>AOMDjV}aVP@H?CUi}r_glJatLes}KNu@24Er!jjv zY4!`@azGS{#H5PH`3Sc*c)Sj|+$PjAsBDD<@WP0QTFU|Lu>Vq2VdPhd$@#iyiK$7? zT9NsQ*`Xzv7jF+rfm`x2^_k8pj=64 zdizq3#wCmNE4?{#slr;lu{eBwy8B*c-PGmM(%=U z_u?WgMY_^%xy5WkHbbw;a4RSGU>Vs2!GYjz{Dq53Lyu6dNLb*>whWq@X2kG=cqMB# zimgBamyNQ8jyIHu$1E^diVe6@Gq9}uy1I<}kMQ;it5Jhav!u8_IvLK(pcTQr>cA)n z%4Bya{rTdLUs9-Wenj?4jBX&=6dZw@>>nO%@9HW-S&*zs6i9C(y{Kzs7(a|&IQ z(kZkGm@`%^Fj^&@0|LLlJSPFa`VXr$1^TW1KB1yAOZN0vB~ZK-j^jJP#|Yq<{_TDy z`0da~N{A;TkPuV=qMdFWdZsSq!m9*YvzHBJ4P~Gb7wjB;b(ZsMquRF41wF#I9+Y|~^;9sx#2Np07 zWaO|ERb!~QPvJ0jIX-nDCC5BHr9lbacD3z8JZw$qL>30DpDZ5L5ivXq0WR*w{ai}V-Fhl@qZHHk<>RrhE0 zmiuxpJ@5a6&an*S0!(d0EQ6O84mVcTWAZGeXVYFG|BJ{%@IjD_^9JG)pzsos;kT6U z#}WC%tzQ2;4}F6hv)ZaJ2TBv3t?2z4eFg=S=h)(Wq`2F}!&c_~=EY!NNsGu<@27kw z7iBh(vc1svL&BxhS|J=Ew*to9su(PqF2`6 zMvDUDHkM@}=+g*dPyF`IR%?FR5PZ$!XIaz&D^+@abgRjq z70#365=R0K?5SPY=67MEJZbBF-{UjbFR&Ur;8}a5lGCG6Kvh#n^>t6;&eM5^KF;+J zii(W=!vR(mTzNWzX(L}Q8gbG;5eF^hWr#($W}2j8I)9=V*R6vdkFeIpK=G2XVT;g2 zN{OdIbN2Y}?fQTQv<3ypDffQif+XGIx%CUvE;lRrYN6|Z81zUv*T)-zrMSh|Or60*-1lg4z{^ni6N!>d& zdb)$p zdNxu>w}|naSQ{Uy_VKp?SIgpYd!#H%Yx4Por7)ir-R6dFE!%1EL6kS=#>x$lR-jCV z@Vgkm8E^aaXcmJDRixKS-lhvX_x2^d#>&HA?1RQ^*JksSSMB>E&p|o?{9#IBrOucK@*--z~G0 z=bPaDtujJt{XXX(RJkcFrH=%tm1{)DftFzG!y8Y>ftF!sw6@n&G+du5o=*sD&QoNd z5MN88G!IAVaOHf|I&&v>@qJ2}Jo`6!g>1!X_a0v=QqlA!D=~Yo0u05cRl3Dl`m71R zSG6rrc6bl?(wA(riMlpJ@(~8Q$c1$&LVpavhn)nr5~g}(=wACy{cuwcfE(K&6ePp^ zUJ2g_mvy)MdhU5B&MD5)WP@-7|`~{y# z8ZdP0&o#^DRI|tFXaUth#(P5OO{f5(ASb(d%;n#=0b>(i8=~D+P^p1__Pkhzi{p^rMhI&P zX0sg*Pn`X*FV!sKksGgzdLc@WV0TfD>ysoYFup3JQt}dg&$yS^MeBjzqpE3Pj%1)K zHZ@08MULwpe16@tQZf0{9zR75(uN%$)Z9z+=0br80YolWZ1y!EJ_J;AcFs(QV@QN1 z!8}7Bi}?E>Z#NG>3V)sC^EmCJ12tc0@{RHE@MvOwD8PaQ&lz1v`bbt#o-Noda+>0t z4pn3zt15US7&j8*ZYX3Xa<<24@A*E4mJvgxQ{)&(c(Pltv@~NOC|t6LGTj) zM@`H@go+j=bFIavja_$w!I#)j{wbu`7S8i;&<*JAxOGDAlKzAAV^;aWAFGNU24V%*>^qeTKFDo5nDf$_LL{c&1%DYQx6KljThfy zD)KLjmT z`r5xLu0r-NVZ5ns*jUQ?zE5kvC&1Id zR!H*Br|mKV9z=AqfultTc+oB2xcm;rH4M7qBqt+3i6V%w&REvc=%&@8Bt!5B$uMKS z5n7EkFtUbVrA-iW6?!_7(n>OuQLpHMF(H1D_-uZ834rP~0K&GUM$wSjg_Wk7SMKe0>R0xP#G+&sJeUbWY3L7WJK)k(n)3vNE zzpVQ0_U+s8s&a!e2P8+tL0JDckiv?g6fcYla=&`9Baa3CS4|-KXw!+jALb1#>8q37 z-&|jy6d;4l$#C>H`T{Ua3w&B6L$ldsBhjvOqo=~y6q1(MvsGrH2(wFZ9{QX5ZGj*f z=sNrcG#)csWPLaH8qF1|9#6K!M2Mb=sT?Gh zoVt3KR;4RfnN3#f>6|0iNXYoA9lLf>r|1}1c_cUb-90{X=xm05K-pRQ^DL=n)0_Rg z4(B{jPvF|IgHjPC$~Ag{v+alm1F~c*Dk{eO4zl&#)=%NtxpNf-Q=s(q!*6a5If(of zG#;rD14+^q5plpa9N>1`kih4S>^ThvU&KBgSK@O4ulfYq0K`0)8n zXjoX-x%21SotN;w6ZwM4t$;YWtixoNuJ<;(e`#n3f-7VZ8t~Jaedc}Bw_yv!wt#By z!2zs|j__M1=Fk(+fOuo@BHwJZ5cmXW>DvVeW#&fGo2|&mW*i<2Zf%HGMuSJo!jBYS zh_HJtp%YmQMdL|jlGTcDSqGF~z^O<-Cftdr1`=fth#$JlGg+;y zWv2-hEQF~8WX2L&x=Q5io23KrsRBp@Hjv0u?%cWKIiI2tw+1PcJczYOJ3;2tfY^J7 zfPK8efw-BewJ3s05c8dATqH|y{d2-FJd<>1Ak6u{>Q#LM$BNqTke~+y@g<-#1`SQ| zFT0A7#GsiYWjrz~uBK(#yIq;VMs}&q*{ruMfGeNPt#{+!?d0Fhae;A<1@UWFj~@~u zwSo)9DI_Vb{`*(JtYKR(!8qnks7VAs-HPS?KII(5CEhFgcHFeuM!90E<@pB_OU5z#Z8zA)(3!;ac}&iq}sLCN1&- zNbPUF|23khJiRbrZ?H8>5Pc6YCh_0Del`c4Om-OP1Q_dFC<_>e+6475ggLQw<|i0d zN2x1eeh-x1&W0HV^>+x@f;I8H(Sl4|#X>oe+-Sa^nar>Ns~EZH<`({eE?;cDW9_`H ziv4BOCUWz%f0qckALB(6&q_7tI!b~W{H|6tp%4)@OV0^@kW+)xLFfAd1a+%A(NhP` zFRP8&+`n_c%=&Z!&;QnSDeDL#(9eRsL{s~$LUn^LK7joI!sFHyhu^0a7h`U+Nk4PonW@lLn_Qz{ zvF9+mKbaW_FeH{bEGc z*Pj7&&)faFX*)m~9vb1aDPz>TvVyLp07Kw_@-9C74e>DPMo5xAh&|%=xtDjV6P+paw%TxX6_`*Cg4ok3i_sdCL61 zMK&1&mI9+%l#bQFlA3Wv#PEV<9{#=1b5Ia+P{6_~-M7AsRb$YSkdW=^cVoNm_~!rZ z&e!Qn8c_#?Vcr>BHajl;U{*VNfhISL?)P*3$IoB2zBm^nqgd4+Qz_y709Hh-Ren!T zLnGSBZ0sg0NJa^cbmV7WYA%$zG_g!Ffe2ICSgJj0tzST+J^17U4#$%^GA_6EF)6Cf9fE%LL)0Tf>ltB(`IDpa5?S++5$ zq`wEAhLIs_o@?($R0k;vfS#JdYvRjh35UZAj6B8P(E^l#UxD>O=1&4Has*?uZp}4S z;T6zArUQ8+DqWo48p(}hvqUT%WPnD1a_tOi!}9o?^A>ni|D)A~3{CwQ=P<2gRLwqy zcJuvb_cOOU7~WU?U*)+&N~*QNzKStJfB4ke229<0_^`iAzVA4I4j2kQepDkBCNLGM zSNbVsFIVxaDB&pfi@g^fJ~YVNr;cy4$YAD`;%EJK6anz~E7mcNW#16C_-W9ILX>c6 zr=%mFdsa#fsHm$eswcO9z+g#;0V(wj4M2#-?KnptH~qkvgc+xG3Fpns9)yJS4Q|c) z`MxQJzN0%+X$--6p+l9X=HTNI8kzNbfOmb0I;R z%)~8aVfz2Qmv}?F__9uSq9NbCJH!t!h6c=-5ZB2<8SiWm%Ka=po=jjTq0bL(!Peh%}O*Pq37>9>e9)Q`S6SA=+NI09+l8U&}Y))o zXB?sNz;iKvh@O$r*C>@5_dEjq4q^l~$W(UpJmP3J3cZS;H6uzYoHq|UpDZ`&djMVq zhFCV#*CU#c%!ea@4Pam5R)s!{Xrv$!f$*WO;l6D|wV5gO&_BNw#h}eaXMvFt#Q7f` zsPk+Xy)Qwf>@Z2vO+3IQ{nQ?^qA_p7WIr?LlE<(bpn$JzsH=K|!W=#THCSz+jfE=i zCaTl8I&*2(l+ur8={*JF{QMurjXd+{rpOH_nNoRk#{_*7?t4Gl$a4TKNQVy4fiwbm zD{U?sGY8zzHFEPM@$;RXoexSk;jzeXL!GaO$)Kb~#oojJs$D7N{n?By*+n?W$d-s( zmd*7{_3Nu*mK|CK60l%t4ya%C7sHq$?|<8VxW zTRB+u5{je_w*gj|f(=XzaGhj661F-1AYY@P%2JZHgKMNc?GX>MfsBbK9PG+LvP0N& zm5r42$yS?*crVWFBB~J_YDI%XQ+Ts~jkHIgvHk?O9mb#JSXb_d>i*0|-$@;()foK* zfGUecw--cn3K5Ys~0$co5rz0LbC_x*KK8%i+wy<&NNwW4zg}AZ@4vamw7fy+2 zp(P+zCdkn8db7_T>yXgJ*|t|YWs5p7w_tzq`Sr^QD?vK4LJExtoa{2J?=JprZQUf_ z3*?PY?Yf?2ck#-MqH|spNd$uL1e)gF*A`|0C*xD;xVtvMV1c!qgS&2+*^@4 zpnRoi@@er8iSvoY+hIF|-tEZs)abRJ0;~%&PGc}qG zhdImi{j~WY^av6NT!T^hiExaQuo-_CwHS&wZpFg7QS3-@?Zzde4mAqA_XpP{3q=05Cp3A??U-+u^ zbPA9;W{3o!skfMoJr=a0>~w|Ki}qxNiK8EGJU>Z`0xCD|6rcRj1%L@P0wXuHpK2~K z(Sf#N$OwPzA-S>RB1JSg1TuQ~y`}GES`jG+^8woAM!B!o7HA5yEU)~9tM1<|k6Y{C zi!H|GPWOy6;5Ta%b)w$b;rU;UN z64vpmr-XJux$`7d|EACT8OBzf_{Pm0gKH^pi;YahNe?^cnF@rwQeS!E;#67YhU|H& zUv>M4j2pCa9#+YEVnWrL^nD(;}uDnm!!| z_*W9@G+R1>A6xw8`C+kN76&$*yzP{9yu)KhhRqGSv<4<$;R(-Q3k<6kH=T~ zdY(?Y93M%UqzLmYA+NWi)Rdg!phKIYT$L+Zayuqcc`?G$VQ z#(-Xq;TUZ`xx01|Fe!lgPTbym_ij~AV))RSxj0RR8ngbGH~~>{mzQp~0*}bREFd%% ztC>F~Ma@^7lqud2rC$aUq^ejXFB6)cwLW`elN!9+WwND~Ph2mU4x4!mB9~Dk5(g0gc+|`2X%4~dkDX%cx*PT4Z^#|Y zf7EQX#x6ITE@$$0GQ+E{6UHr(S$Ffj+#~Ymcx?yMR>t^A%Q(VqvqV!wC3UGk*5r& zRh-v{nbBn=Ngi}pzZKiNVDl(QP@=uuQ-IIdSmOlBewZ%aM@C*he(0_5W;$|TAe5qf zBwQ6A|6S4@W(Vb*^SeRNX&i2g$n_FG*|wTwgM#qp#?&Q@y2|Ffv3y4iPn@8Kx1i5K zXMNtwr{awl8k^g?Kg(=)!KeGrPD_iubKXz$Q^=z6BAFT>Ks}p4pE-jf_z}LaY zlQ)Uvu#MQ2&CS18Zx7{yHyaJhgGm2`ea1!I+A()ZhyO0E=%BFdcZt*B9(p4W5^D|6 z5y5J6Zf6uc7)>r$GuLyfKGNe`l}EMf505nZ5^zjc7326Ejr}$+yuxuRl=`y!i6DK-6;I7^^Dav-V(q#7iiETI6{7(x|uvI`OI!P-eX|a%ErL5B5CqPX# z+f=mJ*Qg~kg&A;IIChfl6_eX%9z>p=ZOh$NFT8Dfz^J}@3mHlT4{>{>c3a{ia+FBh z`nratzp6?wE$lU&b?8FV#=U|IEP3tk4Qvbf;-2{9hLz5a+g@w0={p}2bV)Mple2UB zZT{r`AmH6_o0}kL*GAplgAhQ3pcwC^digT^ZoA>^yv~=wBZfw@)IXg&Aa4gOk3UNm zf}6^IYLZ;Tl10KeN9Q9j(G1h>sDSywKt&_Yj47-T91u*O(;PYf4rOaR zRH2?u061o#-m*^6wi(L=~zB)`<2#9TYw>Dz3R}(J4!Pq(rN5IWLyUG@OV4I)syyzSk&_9^--TcDU zJAJTM*sGucMJ5;i_3amT>@VDFIXMR=X+Z2xV^lfN;`a?3K&Xg=#&k!`&b3 za{EN#fB$Qu3o5Y_5n0wzmEE2iud!hW*>}r>Fj487U1oK1=uSLa?yn6qN71nnbP^^A zx^^SvFp+)-I;FnXrVkIe4H%-)cBssZn46nJlR$mQ-CYvqVK((%R$zueZKDIb-k{S5 zNGQ$P^RRvP_vR9V;OE6ZMn^}*uVgh_Wy#bz866BzyjH0_%YDdY1>e|1cFoQy7QQie zRHiZsFOVY|DdiG~PL$|MaW@k2Yyd%#oF1ThR{->*%Y8{H+Hsmkz! zhS_#k$PacFQ(;>nT`r7NBrhFtA!5%8(otx-A+6^E;)3Cty^ibT0OoC9c)U7=MH|Kl)?`U4C?L;EGh^<}r?fPYX*s9Vx?l7GA95HG*F0~6ay?B}7j*@eN74}YVejzWzt zS;#JAa_DIH|M_n8(m9&AVtAP#!DG9ZSD}v&ia0z;1jzGFY+}r7uR&)=fF}rwur00e z0Y5qc?P=)Fz<+;n`L_l0%W@CC&`kWAZO;Wk!4BNXxVnnx8gV2x4?R5WYDwCOSK*Au z5eepqcuW{iDGT64gQ8BnU;Y0=YEi~Ga_=5nLD2K=(zQn33zyKL_h)~z5=BI_EChYJ zR!ew2q7l^lF!6Tr{{^AamuwHtE~d-jry;}(nWB6aiw2Bv_&4vRDC~DhdTca)G|M+IHd3FE?|gg|5)U4dB%gkd?6lZWo@GBRjwnZ%GI*kT_@c|b zP|rnF-%yE{i>u3?u={)e?J!9T(EN%My^{a#Pg|m)ey6}4hD-nVb;deXOj-W@33C6s z1A%A|RBI^N9S)SMI>`#jjlximbGAky!wQsyy!>^oc_2_prbQs*TuvHltih_F=@LdG z3fhFsQAbvDC4gN7AVmjq|632;>mOo5I`CkU%ZRsyTT(I{XKDl7SzGp;@@cl3b}IG6 z3dKiBZ&rg66pzO@Gre^<&{@nhz4;Mb25}2G8BVhrxbDOH=1}=)B`RXuA&q759bckdD=ji+`Gs;30|S9PB|{!-#Gm3l#9zK739RN{F?jglUDfXqsRG+lEbrXnl-y zd&zuTDp&O5Dt}zKaY*}MC|)S^N^tScLCT>TsS*62kw)ifKvn3M&%!Yg9msh-do=)3 z@KdiZHt?Li`bY26-ay-y@^Ss3+&k7R?_N-km?;c+T-4%=1is=A-1}Z|aPQ#P<;9}@ zp|bJ}$VnpB1>0Dk<9GqYqbhbRSX9j*u80ogy-wfv027Cynm%{o0-)wvXkwkfA>L65 zF&NTJ)Fz>Ez%Ypb5aTJ|>2Ot>&n;4*%qQ5mpEDW19Xz2&l| z`wMziV<6J^iQ5kaMBLhd;#8d@p2_7`b!s91Bt8~0sf{P7l02bU!!R(r*n}RV2l#_I zTJjpfa;*^58MzN~leGt_RKAT}7vVt_|`AP@zD1MpQbo@EVR z_9ZOBK4`4^$GYTy)nz=F9y=Mkrs!yy(v3}Z9;;5?IQA4Ohvy4_2(yIif1sQCbuU=N zaO4$H`Cxb6qSsa(rjZ2Y?RBc1Ocvm^jKeqAIE2!vAl~O1^UNQnL{XOF-~4AU*0-- z?<4vrjC8rr8?N6fSBy>B8dY>9wuFAWQv5C>MQa+e`Vf}XCUORMHxhS%c*@a*K}y@B z9Rr`zb`Wet*D2AS;sF*7#T^t(+YG_4KKvbh&^sE)jET@zAj6JrONiE`5&}s%M}1D> z1g;j*OOjD9OO17s8&BRtrSA|iowu40Az~L*;1O%Lq$tQWq`~fbH^(Vip25ssjiT7erxdH zA(dEBob@Pi+hV9uN)=ItUbpkb%_aLe#(E5%I;C*y!70ocpisFS^ogzOcvE0IFAtv7hz|Z zeM;%XG^3iVV;T%bkX})U*df%6v7>G%<%`v)QgI9v!6i1y3Dq9q36DBZH=(3K> z&aEmiGG?yxWkL^^g~H0JEqkL6wvCNjx4IfEr=>%-uoIiFjWhhYRAcjH{P~}si|S8R zE2%BGFA7tLr9RQ@@7lx&mvt0vcjJWl=T14+4Gj&d#Bhgss385f7)?^<8~8oqqQP z1EtG{vAu+f-=UBF35M-44t>LF(eb`I5i#qf3!1_adrxyEIh@C)X7HQp?@^$IparT| z&rUn$-sKjU5$;0NQ?LpTPOmwc`Jd@h~b>yG>|NQZL!_R-AnV+DYA3~VJ7`|Wpt zj~*gEO&DVU_d`OMJ+rm;<+tjj^ic6An_g&Mw?BBWEo*oOk-k1_E`h|O_W?brpj-=p zyY~zXD7}B1@+ipmvT$VPq}Yr1PRM&yHaCAxl*QL6=FP9U5B?duX1a6K^sbB|6r6+K ziVmXgIg98GGBE@r+>!Nt7)w~1b?%w=?hsSS+xX0k&3kS2{lq$4J8#gJTqE|a*O*xb0eaqDR@0fr;1$;3zla7B zmZ}(Pa#8ehZQ?-w*WbesYh{T^wqPJgP#8&8K{yTYP2_T*R2G%~ zGxiQ-uZQHb<&C2Owzx{P_GEwxQ_-AH@w4H5rK0b4Wpkbq=-nB`V?E=3r+oS`FD>j? z{7$PK@sZ;Nks&fW>xvIe+Fit@GB8}%NuF|g(;CZ5iyF&WZQHLRl#rC(y;c1mbEaix z+KxbHfYXxbhlz+N-pzM_Z#uv7sC**Sdxm-af8_q-e$p_=k}SZCC{@KcgFt=l|2LmZGFaYStcpQ68G{1Hfdh@C{l0gP9)&#xS1@H4K2dHW z1ZJphTB0cmJvnxl-iGU|UTjf)Vhx>H1H-~GC!ZX2ZvYOS;s77@W2GU0T`z`5tgaT;5V*p15oGw!o}f@X3f z5fu=el_-wjD)aN=%~!LB2P^EQy!_ntCeuGr*)+4l;L zb)cdJSPxDN!rq%bm(htp@}-Xa)$%v>`BpVb86p?~EETu3G)slRER<=t zFe#k)aZr_j7$r?SUaS?EEdPhiL+6XxnD9&o} z5iVjg!k$MB=L)Z1w|N{dEkNWmXei%Uw>|`&?@%iAxg-Is(uTPmXF(Z2lq!2T!q5jPWv0G@ zJt8~5cpfp_;?K-xp$PInU3Ll;A{?$1lIDmB!9;LGtTch-_>D?7{VOrl;K4b4pVXev z?{l(wP#v@Lm215y$92o|=jzWl4k39&3Ov}~oeKEjW-KTW*S4%#QDIV9xYxeZ)^)MI zJ<}kC24kK6JwO4h-PJp07ulXK;22Jx-oTmNc!UBSQR?UPzw4>i5h74Rc|infe{;Li zY{%Co#1Y#V=Q>q#H~(9`s?Y$D+v(RreI$xUeQMulYrj~{G~6~#^rUsiyu(`#Rp>V96f$~my8T+%wr*jfG>%%yQ2gxmQ0W{cs^~} z-*d~Mv;T;dtp>`zIpm-GR}5D*!L9wRiy$uZ^qPc7S;D6L{rg<;_~jRkzC&=-Pdu;M zU3KB7==OVg{l2_X*f5Hg7Ny86CNf;uB4ZP3NwgP460D!%sBoDqvS2~H9uQb9IWf4# z06B)Az#Ki-6KmunR6(Z0@@)gVY@0pOVH*NliM!_C+O)rkb12I6sfFGib0a`l=r>+l zHtoe4SH%8F!h--eVQ5?cst~)rp_5j6Vb4AP6Kjt-Ao8E3B5hsWNxytKbypoTGaeAr zz(^$hW)Uy2Lv~SNJ-hmzPnQwA2?-%I*g?47^t>Kg4*A5f@$t7!O-&8^Y{Enu?$dVJ z?DalLM&+SNd*wc50fDO#QnYr=Z#mEc7VUGX|K+lMD&ED2b z2)qz{Rg9+mDDLVkBvVHZX8S(Qrnb%f_G=-6f~1Xi$Mk7kh@BLt0U5vrlyH5;>AO!+ zi4xHg3M`yE}|2dYHs=0>S%WehuIxj@Ky?=LCk%mJ>J)r>y zk2LF%TT)lC!u(>1pbyUSw_tr~dl$>yaL*K`-8!#O&!VH449F&lA;_KTf9ym`xQmAE7EVx61mSNX~H-)|@3W}jcO zUW?^@YGdSU9Prz`WH)1uaYM-DQ)`23`YC1*ZrOOs$BF|P=!W2qM@nitC8pC(TVLkk z8%qRm`T`iE(6_zb{x&6dgzI@b%5JwTGmpI1G9rZuRk^e($_RI67gDJyXkF)G>n_6LIwiz;d zq7@o(6N){B;MY#nEUOeaghmcu4bM0-%pRFnXR~X*&HknBDfODNhNq+7idMJvhLmXV1fvZuL;^Ay6K!Z8j` zU{A`sZ<(*fZ3*v*-cm}`rj3j!axBs)E;_9G$KpUKtUm^s_kX6BD}T$Q>PeHCUFF-g znV|;lhAR$#Vp9oSoZJTH_Iq;UkzppE#z%@@2IbX4YgUjE<|ut+W@!|n(Ljt(d`;us z&B(~U&CfPqNiRZP!^ckm;Gq)I?N9xSE?fg)1}T0ONM?+!BcV?q9VPnTG5T(YqLCtd7@z~Q zzDd<;uSUsLqTcs#s{+PLFMD3)M><9`I9);VV!`vrxoc3Z@G{P%eln*LDoY3aRk0}m z7iTk0(c}~5t-oX9Kh?pp$Xny`ilJobS zLz7EotxNIsLy4by*mnvYm@jxC8&MbTzHIXd-pPB<6#S%DePMWlcbV&euB%^6V z6je3 zVNi(n-f(}QW3qS7<)DH_Rhi{M35hTw?nI}z^2EWNKDmdfpb<%^7jBO7jDo`@{nx>z zt~>?*=cn^B4JO^@p|c&cGcml$>7VDukg?&(@NYZ&u5%RF>wqK^XCJEadT_#;wLk9U z*H(1=Zi|6}0&F)KcedBKkhoGoJ11c4M{SY$xkeQ)9)`56FKjf`*sq`PdsZivy7Q4u zoRG7>L{>_wZQ;*}oQ8#onw)dt2WNtsE_dZ;)W90*6|dh}4dMv~1w!Wm@`R&Ob%tK!bk7Z{add#aP%moa+SWx_EgDysUQ z4(rmjKW@o-GDE8emRMY5MIw%R1il*VJqp`GH7XhC2ki_LZ6Q>q?YZG@ub$C#GU>+g z6I&mCK1TsAQQ*KzH&!?x3+vZD)Ayu+?33C+MdsTWdrgs`4w8Hl|9VGM*;%SXeLwyv zJ7?IAj0PQ$O0N)=IGR9Zj_SG4akH)0>0s)P=@vm-C{5Q~d)u%tADNcZPOCVs-wf8j z;sU)Gfs*%G%y?raQV@1cn9g|-v~wKhdKG>@EfRABNDQN9xx~e{Drle@B?4Yzf&|7Q zg7F%F7zgSim+PfyVa&_Hs1CVn_YTQ=ciMP*(FQ*96aGH;^dy&2>*ZU*wKgqVidq83*V4Rw z7^EbQOzbr$6l z@Zn871Wzc9iq)pghZ86chxptG50Unf%HwV(Mv(THP4^KAFT9(=IL`arXO1B#Tx8o^T2Ikh!4 zW)n*6PjvXy%#DgZb=$Co#E$7Sxc|(4P=bD>+`zU#0d23UK!jqPz2U>5m$mv?s&REb z?Kj%Zj&#)tmH$r*U_bHTY~FzxTRoKL`4dy|I>{P|+D0M6WDEwta^QLzX-z_&E3UG( zY8S5gbM4)}&qX&ae>}AFs&!|(JbQ+4Z1rw&7>@1xw)5_I$x*9kR@yBQ#?22d4bf9@ zaI6+<88)0hzwygQC#>jW;LaeM4jiPyw&|SLetxd3x-ZJH(sA^%MMld$foo-F`Gi!8 z@*gxkq3;VtAp)x8*Kljo_yX!h040i7HmCwU!crFkxI&3`?Ouxopoaadg9p4#b~e<$ zUrEZBzra`~PXCJKX$s&z;u%HQVcgr=bw4QR+W#MS&Cj1)q46`;sm=9bZrNE5f$BL8 zk&**YIKyUk&TNa9TOu#3TU;4L$@$YVJA{OA=#G3HxQq?q>9hE{Tut$l3tqM@9koiw zYAx=2Uiy`~WI9^-E-tA-G|>A3k4TWw+Jc$&S7}r>K3yB@Q{tD*$!mF7n?CI^FU<=t zh10qkR81vxyLZrXDqLN$yFhg#P1Js6+n|ph=atlSp7zR%h^);y*p$)4=o0;{QszkK zN9nn!fiV;iWD0=C9s}%vb%G%fM|}9Tt_1IaBakhYaiug}!NS2|X9@eA3?EIskT6)) zTdNDXkaJ$a$8)WDE`q@8N;c8UheRluu3evJ5>;u%GnD&8ydg-!-JFTI|A7z+HtrGY z5cferc|Z5e>W!yubI+xGxPPSO*;RX+!__tIp4}gn`#uiUR{Xw1eKJYsJR-Nj`a=+O zwcUn#hlq$)(bwtMCAEflh88c}nn#to&R@6?6cO>GNB;b^q9X6QqP3iwX~Dnu&mwVl z%fj>`*p+j5$C&;cbA=L~Z~=bKqmohTB&w=DP|JdLz`-r~Fi8&6eE0`02g;kk{jvk; zm$bi1SjrGnI@!@B9Q%XkP8%Y$YV{85dHo|(Ve^@tRn^a+0f5<}DyVMnb~I~c!_J#q zp3Epjf5SjK{3(m9w{5m9Jo+q zEI+ZqcvI2$)9RjMEP6#Fj{!q?E;e5XZL`CLaWWoH6mw+~(AWMom7H3r|8u<`?3!uc ze_%6v=p3oJdHZ&{6Fe?k$uJ*R{jSDCq0H4|N{dCOWh0`ZhVQHO)xoIgf{h)2{r1O| zt$Xz%V%%?}TW+C@A&}gStKO1kB9o4snsP`+AnBaC19bUhmwy_a(0ZKrpXJMZ}Dh&eOWA zW2+VFcp-B?%&SKK3J@j|oVX7x!-I!4Z^N7)-s8`W5xXlk|6TUML$B-nQbDkzeu`IR zV&~rLjrx)5)eVJhMm01?y!i2MRh)5aOsWTWzR$GqX*B%f zYr=ngC*`@s9JN@R-AWP_`DeCVe13sbGwTJe=gT9E40;0LLcRa7`7C4WDdLiwa%Ja6&xQR{F&w4=TF z$~QlTM?~Uk^B<8Esi!~5lvr5P2^8x2`-i>a{zS*h-v<(cz6L*1Ly_>gv%m-Xp(yk> zB9KNSlB445RD;A_F_b)Hs4%eYkim%eAqwyab-`ZN8!fGNsGz^>OJ0;Zi@g$d^v{Wo zgE2pfIH6V`UL<@mWVIeMGKzNYBa11KcWRAomu&(SWYg*sWO~wo+-TtCz=I#s zBW6|*v+sely|MUFg82|tKDc8rCu`~G;sC(`Zq*)@S$c}#nslpX;rdMS&_uF3j}I=L z`?FvD3~Y!h64uf(A#4gw6=FRJI)A)-SYFp8~yG=oYHPg43>lV z<%EzhkAOgR`R(1&w{Fp}tfvN0Q5dM%1)IoPNC-T__nK`tf2diz6yF zw(O4bW3#MhW#Mj@vX8AJb240#?%?oC7t;R0nEu}%F)gG+43qU6uUY?c`8^y!b_NhPgJod$8SaEr$W&^0yT+=HI?74T7zEa>a}ZLtViTM zAAfckgBTzNq{BFN>6NRC4v(U*A(9{fzNP1c?U5piU9$|;w80x2Jm%0#jwH3H*Fgv> zxY)QjGB+dQtZ8$w>!RRhIJpqt!+hk%y79wuiQmCplUdpXiTN4s+Z(@gW1SntZ0Xx@ z&857G+4Ec%Obd(qD$cZJ+xNZ9Sw1VCf8L%?A!i!gg$g}Pe*(EFF{ z{D;Z7z1Yl>+_rln66jx|$&J)hxYpRi3b{Z=)40H>CP*(8H?}nYVpxk_! zHzH|MwBU>ztTLI1ckGs-W@2q;!98%1hzd|ZE`v>01hgnH%mvV9r5_P-XV)EED$T-JA= zHQ$>7bEE;N955v-MqZ^IBfI?yopTIj)i_UlYV*RT_XyFiJpSxYhCS%p^0~e|PwI5& zQWih_yJqU?&-My%y@;#iBs`;%NVAnFXwLc2yOVGdj=^4NDjc!)VtZKULtUJ$R6bmT z4BPU&c}$z!2^U?uV{qG16G?iG9rA9^=!dg@B@ylz$WaiH_Vb*-TH>X8``by?c+ z__AuOdxzhLzO$&u&i~%zf{lr2Qx3)d7!^;=nfF*cu>C~hx6>5dX+6`;_;sZ{i@(-) z0L3ihvMs^b4UM7lziEoK2JmA8UR?Fr_O^Gmzt~~A)mcB~hx$(vvmV^b@ScoYdY(b2 z#3JoV??C_<3oR=zlWRI(EkExPofbkJ0Zb>DXGv?hdGltO2Z{UtBn~icvaiu6@6++Q1}WE>(Qm2knakg= ziS)2l6kVIlt^>XqzLp&DT&qXwvh-A_78}Mn=!?&aqdzh}e?5GSiPzyUEGFdLrS%*y1)&?fLoA2i(Ztd-|EI zA0%E-0B&7ve&PSwlMmw*R?`&{HMmvFo7)XbGt6Jc%wK4nw9ji7-xS#MQF%3)EI}-U zFa@zE?2U#W6M5bwg=q)ES!V@1N(A?>FoD;R(I*41czTsqv6ufq><5 zx^8SoM<}aqX$U$NiEO4&3lV=gfjR!X>5VN%MNmzwcLG^$ntQ{);5IwBo%pvy+>BI* z&Qt<(q#q`mU9bmQl8p$29DG4I+6mPdJ{1A05sjPLvv3jnyn#)QFZsfWYxif?zRgCA zP^5_AFAT&8Moz|i%WncFr;+pYPrVNBB`??+t00-PlZ?V&sfWtLCU002CO22TfN;c4 z2!lnLzH~>EiIGu3TRS+_6zf!ZwaZ+-VAdTiz}YHSOkx2Eq(XCFS~?+#8?xJH*6*?ld@Z9BWr$Y!8G&U&<_#cG?!lvHCL$cKz4GxI3jp8 z{Ipx0WKc}V_sj1j!d$Q7>QU4x!MK_KNSl0j)#lWZPSO#RX+8OK0?RLeXHA#g7}R&B zuV*)YNwZCx;z6@99RZ7IoE-iw%G*N_O& zTfvqnrV#2iFZrI^_vX!&ogY;W4lKFk8KN+~{mc4WkFw;Y8q>_G1GRd~x7>llf+T?6 zQqB>Do`%HkAzVXN-SG@j72`ensFjw@BJs$2Q9Ql==dhkdII6 zG3TFxk6wtzQr{^(mvP!Dp!wjv?^IlG&z*(*PMl@EAkTCmb{FuA%EykOv!9nFQ@oUO z9{>AAq3gB@Uq?{^uISJ1J%^u^y-Xv#SbINk?^gizH|+W)o6t}R!E_BU*+le8=!s%s z%6NlJUi8;!+JF4GMLyK|@c+Gb=h7K}ew|8f{xrtCq#r;*7)p$i@SF;`Y)EXlP+a$; zaVoXWFiqCnZh4MzQ_ur4#y$IYxFz|h&cDbLG`v1izkH5$D_}4c<Xf7YAMx zun>JMEYNnn6&tNWEH~9z(^F+^zm{mS!4JFsuVKrh?XM!i-rWEKiZq`eJ)f7a?ymFl z%DCmKfoy+D#c?T1*JGFUg(+~-u~qicVOQP?Au$I^1oC$INFMVK&!ar_F)2wMQEGg$ z!E`!Z7)n_9e|q07m#*i7{`YY|V?&|5UOys~Sv<`1qf?zibP$QBj50iCY)D|!p2KJ4 zzX`1fikXVdm}Z{3{oS69Ld2d~oaBQBZ~wbwabZM9k6HH3O4AP}NEx7k-5}8};4w>hTUt-u5HpHit zJH0YM%Dt}T=T~F#bPHL?hoPr15e~~|Y>0FI$@{f{>(V! zyh`H!zOTwT(-24^e1Y~5W|ay>d{|_=0d?wYOf@CL7P=Qljjz8Mlsn-c_%$}^N^1aD z*Q!COrl2$zuIzTTFkxR1#j}#miFg;OidpEbTm!g;W+Rv1bj?G5FPEo)kdM z)Ar0gpga_TIuJ9##n!@I)~z!Gjn{pBC+k%O9X<$T&F*+IAg`#n0vp0R!Tlwlm@g;} zNmwrLpg#Yei!453Hu8kGV(KVREjTi65JL!ToEXl7sa0nICEz#CNm?XY;#em2fAh^5 zlT`hLukOHwn#-SN)5E zW%~M&o#)$iPwlykRN*>*KJrl zf=&%rSMrQ~o?$+cXGj!dLfG<;a|W0raC#%(6ZE@8H%bPSqac3OI=ug4{dE!}0QuMp zo#a$5zhF1)v?Rz@`q!r;doW`0sqMk{Z~ka~yuy(^$(rquPDQhRZP%3dfcM~~`MT34df@p|;{`~34){2?4ApR2I3e3kaX;RiH@hMc@1q4Py%gALA4;QKs zNP!ScR`>k8DgfGYI6goO{JNw~Rj}#e_k$h z_K}n>(yhwRwYvTY7X@A*J21YRs_xfww(5bK$0xd{SGHlQAhIBUaI9qK-oh8NXN!L- z7e4r{VE)|7zv;o=lY&=o$I*v=cCE8-X!{LS6rvRjGSnv_L6y+25PLc zhN>aQk6n)+wGoZVWxjtl9>@!XC^#Jljug4Q!A%CAyXbd<6Rvq(l>?im@u@`;LaUE={R}?hn1^H&(y+MfI=<3d{fb_ zMWntwJTUP*{r5j_`0v_Qi#AX`bjH6j71PM8=@;`V3TzW5i5nye$h-hMSs+<6x3G|6 zR~67kQ<%TBqaUF3U#4OX>?g@<6;T$JyITbSNWzGypITFGqo!3K zP}8QuGm~`tL*fvQTAnaVFOAb5V$f@|`Np4nHZc(H94fJJ+(lv{3L@qlW}g|O^ATg2 zZcne5@gmQ}+)j!9!9KeXwF8=sv!z+{Q-iF{_U)hc&u{#2cJSI}jzm|l7j;B5Lb^i$ zRMTF*pn45lRy%%gy+P6d)+BM(+7D<3q?W_*-Ej4S^72kdjXQwuT!V>`j^xlgm8d6K zYEtS>2gt$)bdm;-5h``BG|(=532-`PuOUaBA_p<+!tFB4XSaFRSFo-oKOjU`hsWy3 zKW1VYJ=8OT22%t(0?e{bXH?sA*uFve73(dhO%!!wQML^b@4Y(%{i?@KNBOngg5jotiY-` zcadaeok`_FCVGch0TbK2o$_1L&2_B0jsBLaC4EC$GEEP+p`x^l~XH_2a*oWMChH!jf79z7tDc#`dk-+ z6k<+FkvFKlyENo5v(y=vAXnx%gTt>&i_p3$?lAE#CGfWQA_3n=%$l|gF2Cn;2Uo>e zR;VSG1{I0Af4Y&hAL2OVNSPaz$RjDDECkNU4M2;)Z$`k5hXS$G5QHWP*UCBmxGt{D zvbT)SU!Hhzvtpb?;y5Rn>q>;Pf$se6pP?fV$5iB+2iFrk`gU0S+*HDF_Q^^2BwTS{H&jl1(xWcwlm(QUYnsf)YsRduyNGuVbPNjvuL9n8$H zhnF)HkVFTz7Vi28d;SYYYXq0L_+}TOmxC!6S`P40qN1WW3YFKjwYRsBtsJI|w3Em| zVGOor=Z3>i;(g3luvw@+3@Xw&v@BWs4V~O{2B= zl|m$Fu>Gi|q0(k>aqis-%;#>N%+s0oi8|~*O7XGDX-+H|Q5g-IUBxo>Y>lFy%Zjq0 zVXMCE?H`yPwR_4dW)nRZI#;$B+6q@Jn!gpJIBLPM*4Rqq%EMix0!UcX z+uHM|{NW!dM#{AlhqY4_BOaA^#}weuA-;eBJ9%s!kz1dS7!wy+r?HGSSiH0>)~_5l z<^jeS)?6|fJx4BMowlWy2)P`^N{|v1r^hmPs(KH+*K6$BPf@pP_u(k!ZqLPmFo6{u zzxbX)yNQQ?Z3Dl~qu9gWLOd?7SiaM-Q^Nc#C&Sk10pmk5a?GSB58C~^TBpQROm2>3 zb_h^*ZurPAu}*40Q|N`QLF?zxfJw4HbbbClm2e=3kZHY`=uzMFC2)809QLOchtw0a zMF1Z_7Nc8-nxAsWwv%DP^{!SzjiB)Dfih9bQzR>>KnfaCT$`W%3%&2J!ME)d;5=3z z((%|v&u7@6^4Z28w^NG$37R`Tvkj76GAI0ZIaWXm3qzC4WuV$YRdEKozC>Arp*Ggg^N z=HODn?2+|lGq;0Q$X#Ckyi{zzV&V7M{RCVMHxk{R@$+`!)wJ)oC`9l70%*Tp;+Tp0 zgQ~7Q6Q3?yqy*P2-dQzYLoX%HEtC?rAK;WtMkzlBg+}Iw5n8IPjm-Zfzz_aSzdku8 zPTS1`1;RrJ+OCczu6H`^d_+y-4tMJ1zF1I^j~!o9C%f2yo;!9 zySrio1ZTJ7!cJ{Y&?#K6SLXi^C(`btoS)85HY^Pl-}>MyUo7{#!+fpM&R%ctNKzYT z*srkL2PpZ*cV08iNP}Ti*5({_H@J@>C?f;E5rfQ;l|-7USbHM|MOVBs&OI;uhZ>uYSj8CJu(rWHQ2&3kX%` zV1w@+7%4KCT8}cP4sY>&YsD4Fh3W&{Eq$58XG}iRpLW$k&f{qwvmng(0E2#I-$v)I zEJ30H!U=r^hBzOl_}yYsP);j&@eu-)eR>r|Jb&%K<8^GQ<`$&$2o0exUTJG>B986Q z;hEySoLZbs^&&Oi35>U0X=ToQA}Qm6>AwpIOL$4u17fVQj<*(8pRVmGFP~!M%cNLo zgb~K&y13Yv?%lU+6T+>xqd+2c15fITR&X_~3)OSpLZ)==vm6X*R=IHVR1f%l`r+?& zp8+ZR&JDYy^FSCmCToj}iu%H?W(bA^q>l&+HgL(m(z|1|5rNQCGR>uGhDki1p|m6` z8B+6YUG>geaR7CGL)qgg*_Rqt(!ZSK9}Is>pG^3cY@u8`f3HO(w&(T_LeCLx9oS!{ z-V0-{sKti9Yi|%k$!+K12yFbIjMZ+zoDszrS(BHL(h6n{`~wZ9F5HxR8Z&%hP>1(F z2BN16v>Wu4+3viEp;w>(EgCf|VXQ_mckjFNW_q)l7hq}7k!0>8N3q^#=lN+ZGIO`S z7bp2D>=xigt0_aYGqm{WYiBr{N&{?~3Spa6fYbL^Ri-Zx$&L5ca`ttzkT~u9;(xsd zSVU}*!iO8~7l=DifRPAZ4DzL&>S!v3CD~U{Sb`Cm@4yEROl&yoQg>uz)MkD4`&n_1 zOFKeW+^BvA?Zc_5jvR8sh%yjuyeLm_%c59H7Bb20isvruc^1kR#w{@WG_&pVqZ$d| zUFtK^#=c%S0-l0bHOV{Z0apCQwZM<{lHC`6ncMA+!d^O+ z7sgJA1;D9fIvdHnGVO-NX1j{-+Hf2)edPY!Xo=`fi_T8Z(Qa#6t-wwhDN^qb0MVHe z9!9kT+W|@7DB!}WXQ-dgr)^>w_0vucl8HNzs=KQ)*|8jGKbbuNjo9enKRG*PWP(5e zCK@+NAR&WGelWHpD1Tolm8R*t`_#JsmPP@jX2`R#B|pL@HMj0tkXNSOHm8<~=OubW zitEifI~jy97NW`a*J@O`XA{!Z1;}hhcndO^>Ro%9-JKtrUwXj#h~&ujo@nXkB{?}_ zUymvL;xpy)zYOr9J@#V;oEZaQJp*T#@|!&*ukUziLgph7)52w4B*c_O{0F6>rWr)L z#eNK^AWj(PW7R;|h*8jD_q!>Bnb_6<2bV5>9u!ngdPI=CGHifcWxYb2__JUI^}5aA z3r^O|#e~1rI@0%03vo&sd3uF?&cJmF?uEk$ME8{DaW^M!Pi>2&%F+PYV(U zMeK{b8%Z0iX4w~u7_WNn#<3Qw^WB?iGrc_ZGrd2H&~R1;=NeLpXj~@?biiT0>>Rmi zZGwdD6cBKSEUm#fCGOV@FK{V%pg;^ze9U4TP{I`qOnBbQpv*osU{~6Bq^4lE@@#$X zh11bmbcgXar1rnrPW+2|i`t|E z%ApirFLFrw7mxRI5On0&+-;o1w@K4I{>SWF+}k4|Z#X4g}zonE@i*Mk5!xfC% zLhBDvDwAUwKD_Wb(~(_zVP@v{w>Q48em!$T!Q=-U(0|yHxZgPy%Q3$!IX0TU(W|Zm zz5a#e<>O~g;X`|_`pa}2D_gf=!=gh9!*3Xo02w?gG}tly-Kk-6l8b+u#dnAAI-5p9 zKkN#72E}a+<=-0v;?u4tuEf=$Yn92muc7Os4%vpj|6#yPW)cDLGFy+N;n^YWMBUR) z=ijze;L!T)IJdO!q*Dk`+T%Oc7Tp2tMY;SWTF>@LZ^{oyMeMn}a3db9`wKjtTIW@$ zEVL{&eE6~Rn{ug*a$s;Kv5ukE9zArV9F7o6v{IjVOq$LgSRcNphT+5!o@o>6zo=R4Fh}!VruM5sIKiN#*d|Np;N0|`c z^4-FsJgS`iAj^#dNAt((lUEntT6E8#@yZpk*qkN>eix&5S@~<_tkG5nt{FEd>-pzA-Ws`)VS@S>wh9s94ni&fJV zyC0?{^WcGyvSD2YvrL%ivH1EzcHsikHQhgwo}Ufar`#QV?oOtF1|w&Ew&}LE_RZ0y zCiR=HdF{MsaGIC*`!hjN{~d8QChDG^_YC-#t!+)weH6dwWog?Qb_22dqn$x}Ii(C< z*Qi9Sv}?>@lTM!Pj@!mptPqo^D>roMJ>Ipb}QufW!>U9?eLyo?4lG^FJ z>ZYDve0$o_`?o(9yUiXj`eZ)wE=0{nnaTYpEBA@-mBmw%37yYnW!(bDJ-?(EM#ytlXZmxKqPWo>4EX zvk@b1x~mHZ;`OW9WuyK1)+vx8r6W_!QfE1n`#-$*es+{zSi`zc8K6I_$Ex|0EiBhMs0#6;5nPB~*a={A20BMWJmZfpJ{hGP?W6Kh(dxRRA zllU(lX*P`89Bow-4gU(04{Rp>wU1MuH{{I599!M=^gid(S5*o|UvlPjXYO>gsLD(MW`Re$+T zt@)JYL(OjQjeLxvwlRja>t`l@VQ(I|^icZxRQU^~uOkPx_Wv-X@*ln<`uoK-M$tcs z@F^Ntc6zujk=s5-iJ5;NRE>itQ@aI9Ts-Tyw>LQ?;*-qJ&vMRjI^TGGAjfffz2jF# zKZ%XSaXGBfrA`Bfe{l-$-!Es~G&`ZaWhq;xuSCD*?KHY?)hVTR=)r|gg)k5#oqoSI;rU>{RY@w!D7ST-1xMU7zV z+aBCEnW1cPmVKvL;THe87w`#nL$ia{!1v_->>byKbdHKQtXoH3xx`;T_2Qr3wf&); z8qh`ooGJrN^XY}kuxY!_dVAfo@*Ngz=95v^PR(>2HUH&Nv4SPzG6UjSf&V_&8+TS~ zT2RX~emarQppoL9E^B1a0&HHL6>a!h0(aj5J74?`5@&LM zoieO7M!wJG%=V9$jr6Tv`t!{XX8!HXGV^&u?okwEqtj(hM;y1 znhY?%(ybGzRnL{|pCKI}Pcz5(DsA5Gcz2GCoRdRa+Te6F{nfZZU{~)gL57St`W$!H zSJ+8QmeNK?s_qpBtY%}4GpcO!*S@r8Q_tA#l$UmPc5SnRG~@Y>nZTY}{RfkjKR;FPbck#SO zj&t@Y_w`$tw|0)zuht3-G%+2ghLr3I`mFP=W?&6vr9jx8!k{q8-9@JEnP&nJ`Hcq3 z!xj2|&go4I?GDR`Ua9+p)1$CONcpABH z$iLL@@5a@>CNuJHvnB@MUITX z9aV|c=<^~D>MlLgeYyVr*gtU^lDYX-%NBe0BpFv1*!FUkWgM!o6CGcx?dcL4Pdy=K zKla(kwAQmCV8qq@g!|`)oScv!>jP{`JFp;D_hl|Jg^OiRyiH#NwZp{MI%VaGy$)Uv zGmRSy_Duv9Y`kIVp?S-{-eeax`RZ>SY?(ho6*|1mUfm}V+TzB?$T@zbvyu7Mnw#T8 zJ;al3qg-FqcMFal+1);FuTIRD8sG|e}0dUO8ES_jYa zj7aO=cdRmQ57bY{8}G=y9j=_JE>OmL&~r`&Dxs%8SzTbP^yR1JsVL}e(5H*xHCNsi zZjbnKHU8hhdN$$vxrhBenk`kdN1kXZw&i%~rolkjoY{S4U6z^&725;hXzB*bL3ke2 zo-2BfyzrgbuM_Zf!BCb+jOTc7Si44U1uLhsFot(PAbjig=6BBR7tF5!I0xDC&Z_%7 z3|5YUG=kl8B+6>=rwh{A+Lyp)zktINcbpPNSxp+kz`nI=ecJi{6+Eq(X3cpqoYvt^ zm}IymlT(L;MaSci&6$e!s3um-7%^(v+fTVVr>QYaPET)8|D<)wt)Ts|BwgY4`4{P1 zAwKtbdZtaYMT&Rl=!F^E1gwqVVP&ZC+;F*EJ7(H&Jm zlIl*lE!5tv=YZFc-)`&dRD%5xnKce&e<7OQV75x6S7e|8kXND_`bXAOpZ}1hrR6zo zF$_W4aP}}g;Vt~mw?zfk#2$svri!cuI(IT0;T&F@go?Wge+h5eWYov37(VG<`{KJ zT$5;{9_$_z0jAC)1;~WnYcjSCzDN(C942ph_5@!FuHB}|j!eP~1(`~mIG}Q`!nAr&nRz~{nuTzd z`2z0g1PU66rdwd?KWue_eharQeEy<$!2bqOY7>zUR5-*wgG}}y6`|GptEkNx!LpGt z=wtmqoeO_Jo8H0rRA?(i1^Q&sUy}jr~Saz6g5D)_* z%1nRyqRL#5e0c8TK|PJBb(K*{yNDaD^wjSiXhST=m;qw=i>3`dJgjVYJ1VwNJ23Hl zD7(HMT^o-*v8qN_M`r-T^xi?!0iEkd(3El`j@JE6rI1tOI0bk1MmW^>BAMkvA!3i4uD7ABKp47H>i6FN&^&QBw)}L)!TFA(5h* z%wXOCPkk~#1N{Lo%jL1p1gJqYQ2-W6D<-*-Wcnh=?dIHSW|$EW$G+=Tk*i4$%S8we z?Ib-;@7#b#t_xTQnv^LX{W=UY)TiLrjBHQiC%}yyr)yK%hQjDr(W%WtfUPWGPf2V9 za4_AkbC^5Ej|qH`*I@Jp=06d8%1R)CJ=Pg(*E5%+F#w%8dx0#W*3LtCIfm7aRtloy zK;MQE1{G@M?-^d%+1t_9#-iyJ6y#CdzFkP@t5Q7KS)cR&lJsP2l1GSH&v5x{y=D-dQjtlda!>7QMxOkYe3=Iv@XR?qnN@V)y z09|*qZg5?r&S|_;_+#SJ2umI!gN1~FO-)J6Z`;nDU%V>98DU-b3dR=gYfnO z&xxL$MSz44krf9K5$5KQ_8J_j5Qf0-i%b(yhdD;JJDtkrSP;yd+FX%tWk_&v(!`7s zAX&fLI)f~23Uow)O& zkKMXW=?DA9ef8C1&TBmD+;QM#%y-FPxvr_%Zlm}MBZ>WsFvoSiZvsB?HQoJ-Tsxa` zrhdo_73?7V4>8w)iVLmY0&0@*tb|(PI1nHr>fPP*d?~P@5i1O!a7Hq z7u|*#9cX~40u2YxtITI)0tOm{oNXL}P2a9!YPcK6^-H5Ij?ZCs(V|7=Y(Coqb(7Q{ zWhdA7ZtVCu+xk24)u}vP^KSVz5dq(B|Fv5K$EN!uWc2#?zmT_YbUY?Aovng-RY~L0 zvpv)2^=ErJ+uFXyToNTCVxXOebI5LZWQ)D}(qbwE`CI7H0UTbxtD~y4rn1`!(Rqld z$w-ip{(bYsT;n+VY)1c0`|^ItsgzC!K((F1Img3W74FnNQWs!GpcyS1PpI!ju0nb0 z<8%D{`Dd!xaZLX!%{mMN(YRmAJZM${dLA6iK*Pi$bpC*sUyQCH_ycR5j55VDUCh*A z$tNyem#@D&5TP0r2;!CVJ~AuzZNWBwa!Qa z+-^eOEG0vZN=rx0LK8lsUlYQ2t^9x2aek$9N1pp4acmNW7v!S@2(rlYFcq;xTm-`d zbW{3iZ=zcGuEjJiWu`Mb&5AOGc9IR0g0 zyHwpk2I>)qHf)ODgV@Bw9?mm&NMjumt^IJ#{A&p3@LY{V$|AP^`bX5=N$kgaljMvA zJ5U@bG~y;9P;ko9a3H}I;n$sT61o%v7gPw_6^lqBjB{Gf(oz^wSApa?Y_15E#+?92Dgc2oFIu3n=EvWF46L$*QUS5cd#)^oh&_&YA5s0jDJ6xp0?u zEIhGr^-FMtBLZFZo4rZTOS6NH)P$W}OTj(;h@%|rO{$Kgv9SQ!U>1>tmHBNQW&`8y zNG@0-5iLF}MDOIbGz0N(L2w}&8sZ#F%nq>^z5Bd~YR_{Yb>U9%)`IvuMs_xit6?+0 ze-HzjBVQV~qM?{5o(ak6`Uf45aO9-g zV(-X9$GUDEJ8~qUuy1Cr`K8a6N*5hbxu&@8A}fASd1=>Jp4F904?o5u#41~kQ%M$D z3OmpK4HODRmgB_0Klq*(jMX>=_m>fP^%}ywNG;1g31i~oupkPA7-x~1sKsA(MWq*p z07f{~vb39mNie*JVcQAp>nco@9ddlChJj`D5brw3?SX6(i+aurN9S#kKd{~9= zOkOxmRZxMDylw>8)OGZw_$I+;5aqPCG7dZS>4LzQDWJuMMo0NgUm~&hLak0zefsDu zG-ya2OzK@st{tO-$P4eqVsqCzh8X* zlw3W}$K9&2d#F=LMptH)kwG`w8u)AV93J{@kIPpPoiGR z+q@b-$4yZZ#y84wt{pp$q8O}2Fdc>Py`aAS5|%Ww!vL%aKF%P%oEhAfM4Y9sP=jF( z!5fs~lgVU~sW*)lig=@-TjX5*ve-5TUY>)GJ z2tNFm&eIwWu#V!U)xchPdsnOXO43h=>WTY)ZU|zyAqq6;Zi7aE%U{Rl|5F)Jym9m= z#`*R(W~f5wUWIhL8l<+>@2`h(qo8A-LU$y_eH@%c>6@SyGu7sG7N?Z3BV5||F&+(& zu&M;(9)^X(gIf(3?izf^_W&!%E5Pf;2kkz|tzzV9@aWys_lwLp>b+^r{i6s-R)xu6 zhS8nNt>J&4f4ZyKbak!})22<4kT3H|Ni{Z_$!;_;F>$?jPnHIo3kdrc}V0kySxabQz%O+@&e5#}v{F6E)Iv1eRRpQk%aqly1dQ&t9a z#H4Q#z0!RN2O{+iU_;{vmtzM9hY|3?Z$R6rzGtrz7SaB~2+6HL`S4q$!U#idAOWM$ ztHFa#z4CQA_yibXcZ=+G7>vefWSmF8WM-&5jfsVY=gqf23Ek>5{9lm+s@2< zGq$t8Ul9KP)9!3K&R_SQ_5w|fk*h^Qj7>HTaFNi`)MO4~@A)H`1S2Lyj#rSVXJN+g z9{>%py^OgEFpAWPzW{7xC%d%61&m!y4K><)F9cq3uMyS}q|tgEgo&MD&S-Q?#~DA0 zh-Ls$&`L%|Wt34miFG5GB;KahP}&y$DSAM8|urVs8#Q7|+(XjW$>FsGNK z7BDRF>eZ{_7SmMmb6vFA7mqA{j>7e}y}O&Qt2KBHaxZdsJUl$`@G`V1ri&u4lg%Al zi9F;z4pEUC-xW|{3%qm0dlUGKJP-7TrX!7xwS9@4%^povBS8P#(j8#Ofw7e5(NsOW zr%!J`<54tlSD*(x4ttz@grVW#j8=KPyeX%k%`);n2ftyzaZ%xXAXq(6$wStco(Lj|GLW>VUbwAYqKR+KyAkr`Xz!6>9f|X5Oh$c>N8`=- zN%Q`{ybgK+x8@4H2eK0p8M*2ETw9@++oMM)M1xQkEA4p!qh21WpQuUTmNh4D^#TNr zf(;3@H%HJDr2W5LF(Ty~lp>MBi-2JY+IdF%e`@8-&t)JReuY5}n=b9d zdoXcw{(VRnT~}@#!5ej>YpVtijI3S}xGP|%KWj9uMGGQ+RuEwjP9vp(QkT$jk>?kM zE{Q3$SC3+CT*qlVg`Ave2hi@_C z?KzCl$w2T_t|(-V#=OckQA#JtnG1>P2u!c^QOy0wv`e(GLsL9TxYx+lWnoS$P*@FA zi!4*%z}4{Sib+jP-BN5={W=8qFB<+%7+;5#$3kBPw(lXG3XpMbYTTy`Z3mWQ4TkUutuEW8T-=yE@l zehiVn{vZ7CkeLnn$!0aQ%g7^vrE%p7HTaWvGv%kh{J`~;2J=UmSy|jvzk^PO7JI^U0*Yk;si+edvUW1-WxG0i+ zU=O!5ac+^6~lLUjk<0nscqq{iWlYSeSU{*yoe%bq+?(Rfv6yJ(oB^GASjr; z+`fH^BeE7uNAcIS_;er+wrAl; zAdV}ZJtTWIjbQmmzI$xq;D|*n0LfE<&|`;sI3u4zJ_ix4vVwwwI}llZFD{b8BUM>q zJdP^D6E~IgEnd5|nY@k&eLL`oKrzit#m>&SQHQw5MNLOpyz-kWf(kTSR;U}<58A%_ zeS|C_RTug?R4~x-D3L;Su3HS*D9+Ib&7UyGhsM2f8dHj z_H~?dY&}vVNt?cEAfr}uGj=M`%2dz@s)){RRvE4&1pwkw`h4$EkTBxUNQJX<`SP#u zgC0eKS)700V=F$y@rQ5t@XebQ6B^u5v0#1?J)EMZE7L_puR%D6-QocxnIRvtkrUzX z1SY4ZqKSPAt+vJVI>I(dxh-+%ZYf4e1G`lWMd$ezri2FlSvI!%ho}5_Ms>;Z5lWhG{hIxvK`Wf z$DyF~u{8S}mD|GeE(j*Kd?F$$_&XJ#cb=W{a&k&ABoxLkff|uVVtF2>87S|!Hloc9 zm5x7(_7EKI`ozvQd-jviX(e<(Jb>YIEJ`VTWbO7XuFTcY$D-ywh1dNCAQqLn7CFSp zc>~Izk+uL=b9i6vT%d4HoiI@HE}MZQEg(8K1+}e~&);({R~{)bFUv2LtdH zFeHl4CoFqI3-Ls3kOClDN4|mz>4+7;XGpomt$E_Q5CSg^Y-zH0AQ_; z1LSyM*jC_8-`qCxp=&<`HOEhD#O$;CJX z_K?yAvp1dqnv2FW0fu++-j(a9f?4-oy^AuFrk#cPzU0_GdvNeBI>bldi}D)f(eXeN zBy?(-w(;;f0p(zcTyP-az@|re7kiTGd+o8jd^|nRwOt(AkBpvL3B144KUYi;*+?b2 z1U$8+@Kn_$|2|dHO$;@+3dUT?_i#_GcAe$Rfj>Bz)sZ!u(v4SpR{oo_C|Ms=a+WD8Rl>YxR9Myv^dfG#{d)o++z@H4a*)~87poo7^{6pv#lh3T9$AD6U?pJ&Y#V1WAl{RqgRsv$fwHfAlohadIsjuVf+qV>TFNE$hm0M$op zW~J|ess9uvR!sr*K&mDT6pSxF0aeCtl&CdG76k?4{1YR&xwuZzFy+3v!53NnAM{9N z+$eeg?I$^l5Flvb7^9^%=%f|XV}xW?v%(&(RYQX<+BhK(oogvtiJQq`g#AD^Hf7t;TM#S}JKy5cBO)Srw{8svEV4yBw7OauaVe;RUygwuIEhCAjdqcl=wq`ZLqnLD+56tKFC+ zS+Y-B=M6Z?syyE0G;Kt#3Z=5&UhR9vS)(;uj$cGEio6-o;t$*stI_aCUSHf7Mm0(x zD!&2y9R*av$IpKnrH2YY=AkX4YB*L%970KjK1UjkMpPEXJ(K|G z%Mq>7D9Z>oq5gCY5*5n@)Pu>htxd-fa3AKK<9=MtuG)k?MMKz2AtkQC`i(>0Ol4m6 z0SC1&7XfdO^phfHRRdyek`>y{d2vB-3K5{q@)A&nsO*twYhr-uR}>^VetPZ)aGsHf zhyAUaQa_5N`Ubq0Kp{#)1y-TsBsEnalaQhipc)}Saov5j24f*WJo!SnzLA;v6{4OT zjlPC(>XFBTrd)s5RwOU%QufMVC|0gorDSVs>wYc^V(1i%<_Jb~_yfkCKQLg16GG?o zGD!A8r(7V<4i;RmF-yhu?%m(mn?F*`!kp%3ZK#TP=*8yPi{6{)d(mY(u}h&U!a@fK z8UWZ(fJmre%P%%#PGv28z@pH4s{%Mq!nD~1R+bxLv~n~N&&sU$RHDQ2NmR*`GBtf? zG1mm)@}?He_Hw{y^RxZV-;kDOp}G7=j&lxnd{EeFybC#AlZ+dG=%$hNvWgzV4y_Y+ zp34k>R3*rS9_OcA(4lbW_nV})ETt-9V}VQOuM%$W?~g-qwHt8);94ybhf(bRKS=Pt zp|jxEmeQAvuimiS3qhAKxxqg&Y~t|vBJk{8U0u7-1*n1}NW%{gBv|+__UQ=={!=tG zjh*{#l~Au2_p%qO(wplqhGh>YzHdo}suyF}5TC$bL)zJD2z?d%VJjQICZkehdY9EQ+@4$hS~WYuxHp#VP_3MBu`7 z++B-3H=*I?rsAQWLznGvPp%N76vo0Ce18{$l;<0+uMw;TK(rw*JY41&8; zG$alYh?gC8){xhfC8KH6)3^4gZwH`Og&Q~CLi|I@iA|{*f`Wphn9N91#s)B~BZZ4C z3;jTJIe8OxKwEDwKNb1Dr3Gsj_VhO#p|1%4ZV&ay2wq{ggoGNVYk2DWk%fe|$#Aq$ z7q*!G25@*DVa0re`0ByYOhmu(*rrDj3iXH>m$<2@_vI-U^L^C_a#eCmGeBNBX0fX5MbDk#od#B`qA~Hxqzrqr_U0)^#n^EId1rz0{J= z*@<$+t!6r3W-bJx2}4A9;Pl=ouP!u8K=0zob^Q2o4VClcmhD`qm%W8FH8uZKgx%k= z<~}i%{HGp<0Q#U7Y2oO#VYWGlpY`6l@T}HfM?QNiR%T|V zH&TAouU&YNN|1)Q=3V?++3KifEXIv-MZwP%=sER6y~MirVDC}NC?E_)tEVMkA`_|N z(j@(gCnhFdqiO+^?L*u<@GdAL@Ur|TGk~NLuo=m11wlnf?t*iz3br|Yk!^Sb9%K6L zR@e@i&2MBCwf8xlUIVYvNY2D(wnrLmRd1A%wk_Z$v7SSHhR2t$o7X4@Jsdeq2yBdg z>R71oUIWY&kS7U+Dm~J;tlx!Og}So_pB_!v5jc{0QGx>EkuYz2fX1Qs4wL2t=K;}( zvd^0<>3YQxP0iX)i@S*l3GXj|{KxL*&F+W00(ss!9y;VQHQpabs$|HCBMG8n8bAjx zT-N95C6ZeTgz-L@$k)i{qp`ome=s8B3vw8G2#bF*hIL!mk^}5u4LHYWloe4(=>6ccqnoEe1=w$o9yM|# z>gww1BhB7-x@xt)Mkf?(v~UDiCi{S%BTEFx%b z+)C6d@fXMnBufDqH10aY20-z*Q9*^s?R|y2;ga!pJ$m~1a8ri{d1n$`66=5Tj$JKO zrok`Z2vSbmBR`ahPp?S=P$Ulwv}%=6N+TqsKhlJ_aUJRp=>bXhF?z6MX&_FO@nKKS zKD%e92UGG0v@`w$ibLuX5tz^iNZqVSYY;v?3oMcqAC!m>A%Z#sxsWGguBo;GUXkh5 zr?pS;o#Ix97UO8(JET+r7PDI`+u>F>F=3zyl%2c8imc!yQYuzVcq1edmTcEOHe&z| zPjMiI(2*;`UZL<)hbX|t;wpLZU37jj_%o3CKlLebKtP)8yZK*4zA%{vK*5K~ha~N) zae3CZ*aF-sMBuGPfAmENYTOW>7j06V_L4Kc)HaB8m5Lda0cE(1@{mJ%wJ=3RWI&XB&49%K|+!f1q#%VzX>&~&}A3G z0qnq<`>^DBD6$<2w=BZB@U^lnQZUbfdd?HeHypX27NnV2!ekpdO|&c{wF0dgL{}p^ zjcLleJN-l$j{zW8%F(IgjQ1V z^5tNtq~5@muiY)S6RI`j07>9QKn6r#&2z(-BGSvfJCVmwVi}h-$@SEyoE6NONx&I3 zY?CuH^vG$lotgh)!ZB2JzTXV2w2$B?+d$DtvF_JWDMS1tKYFbR zbVJg1C<>kGhBErnuq1xnRD@?>E(k(DO!O>hF(tv91X3`5Bod&NQi+fU zDE7i}qis%-<5z&_GNq<|hkwCZr`29j|gpyz;zKmZpNHL8XF z0rG$ZrKB{7$O?}U?wT<$w;oAojpahpdWZ;ou-B5{Y=m;3Cw~YNORf_LbM4w%#0NpX zK3N)oUoyt?$>#khP~(u@X>V^I-^+%VR`_>iX8OeCB-AKWML-_rMjJM6QDj*`t(MG)r04$UXVs%UFrhGU|IPg;r6+CrnFw>Jhkm-^Al zPZ^dn*m@T1dAD1&S?+PUXGyBt_p#mkIB2sdR|to19z4&=9LEc?zXfUc+ao3M@tzL2 zkVg9aNl1Z+;3A?WxdXsYKnBI3<+Tyb`L2Inf$#!hRs{&8I>&kb&6EB?Brdi;&AjAZ zu|Pa#rg`U+h=YTGlmFQ0sE@v%@foFby!Y^nZWCV)W=h1WC7M(aie4i&>qJH8=H_Tz zFH3i3GzMPVW(x|-9%jzw8k+!`eEgG^YmESqT1onQ5E0{jj(TN zbwGs^vadNAe+}#T zPz(GOsHz9-B{Gc0(vMe=DABy;ar3vIDK$Ffxi8tkzd8i`G+K+s*plI~L(qx&O5Occ zS+5L?0U%&IxM&k3JV1#`%=&^SHs5QRN%&%%GR&XM2K!fRE5bULm!GZ7yMMo9+?mzw zK2{!MZt(Zcr3k>$ zM>SFkUVCC{N@7_kE_`Wd>T_V`fRdu-#`^_u?v<4fI&>60?Aq;8`S72(x$J-*Xg2MV z)4(}|=LlXNhCA>Mpr|~xx>)syaas4mU9TmnSv=ki>mQ3kYctO)EJ&`EPMlcE>>z;k z7ZCR0CXj6K_m0@;1iS-aV{?+%Dq&S7&@e#Mx*t2!(hl|ap&z|jE6*=$a$iF;zxOZ+ zBGM_;OyaXBrPGq-5Rf562_=~`(ZHaZG~dICL;O!|TpX|nzMVUFmP-bcY95vtJQ&S^ zuJBL`d$I&Sus;ty%zW|&#A1d-qyhFCh|DwXNf?0xd-wC?HvTpj}CT z;v6B=@lE0dIiP9Rz7a`Sxp*E))|&k5LBcq$@Nh~K-6N)`5_O1$Gyl)Ueqq47= zysL)0^!ABZodwzbtZokb$Jc-v5Ur`+NbO=XyTw$SoPU~NafviXkB)F+i$vyK} z>zf*@!*UOO6`k2^C18heR@1@(Oh*AHFg~N44%86JE5xP@tmQ=Wc3DIsd0I7kJHR(o zV+$+=e{XY=(!5iBHvQ=p76HC75TS+u`f1^aHi|mOqEH349~_^ZofRKH7p)UCO+>E^ zC!@@PX^{v{gHVcRAhdb{ejEP%vj<*28F%t#1&(PGI1Q?!wPBgUpS^UH7!T(EseFQC zuR{P4U6O$_R7J#~M*pRz0nn6prfH$;MD!JdI^T4|+EuG8EY^QWBElG)qH?s%OqLv% zN)q+K_0zaOuGN(4Q)<&N;W(gHieB@vQcPuXg-=&CZX=gPzEs_}{kNw7C&~`UZVnBi z%YvY>7?~CdB>_1Ypz1mYPKz*=jj&RrKkXGvX~1gX&7=f#!CJs~KHlEpIPC~m59W*H zHI3}+cs51q?*{LO*{yFdnKPOYWB}(8jVr))HnOkfF-Ndadw2O3x)9zXQUM;gG~Qt0 z(UmyiqAiTe;BbDodN?OddegRZ(P?S=b?_lcBG#Q4tBqFJX!U z0u+V0EtAP4LBt@7i2;x9GL&i}C^(CqoI$qy2GwNYxHXssN7dhYDPOmk)Xqp_!3w5t z+pOR~-tsfvlIiif%-VRsBEJD%pGVrK5^`h-DCr{Olx~#T)r5`!pGZ(qg0}32fYh&wNF1 z`+x$S#4S`oIWqcbm0;V2XTbSzkr)Zr4RWF747Yl%ZP2pR>}8aP_uu-cA?{zSK7IPM zl?CeuD`E#qW$t{3OE$A$1*V82mhit^QGnll`Pcq$wT?@-nd4dtldW6~dOZkfLW6$U ziY))m$~4v&FV|5Hp2cVy@WNcY<&sb75WURYL>S>i8t&j@US89rm@j-f;Gmr%_O=(u zR2L`1fIn;kHqAY1r zgizox>LpYHWhSC;P+I_c6EnHSAPeJ!YYY!9Ai*WjuKKvS;lCo-103 zCs`PpCCDmO|ID;H;%=jHxmkA+N)mz`=<4aE@7>refky#cH4>l|6FYkhpn^2X^-u%q zXl1n7u=PbOX_Sj|22;E?wx6NdGj-U%@0-NlixQ|3%wmcaCOzK|H`$7pz zYDG|of`c;z-#`R0OBq?3`%Y0@-n9L)7#tG0$A!qh+eVRS3>D>O@p6%Nj?hBuEQ zO&R>6Z~H$KCK=qOtu~LFM-PF>5}-Lf_gWM9`d#OI1hX@VFG!;{=PmI#uiQWD@@mzJ z6`pxlJxlef08$Z|eDRM3h!JhMs`-m3OdH6HnK*n?k$n-_f%0W^^!Y7$H!0Zf|I1RSEx-9nq zIFBH}NW@uzOcgS63@f+)PIsX~O7~iRFVd3v`O_a5)xd-F&Im)L}BE)1Wausd$*-IO!Q+ z6*t$3Ek@_Y2v|9^+?MA>xwPg@AC%pJdlr1TSWWy?b+wCI2SzgOhpNB%!g<4A(YbBlCKJj%mA ztpIi&2F&ZWO$=H%>eh(nf?E?H(}gi{iy zDY-%NIN7$45B2YY_SJX)X(cR{KKFCitur(Tszy#o&>)0a#1c|4Fo-5n9+1WaBL#lo zg*tXsqX|MLX|qCwPC7b#`Oo42xp3k8M%|>k8>-dWLT*F-e5lFr+C@c0yJ>T=c@fjc zE8=ZYwaVgnu0gVq1kEu-dKrjLKzbLGB-*qz&|!#rI!IcoR+k*+q+yIKYy{0IgdZZN zJ~Ao^ZWQk;HTGTGZj-rG)W2)muAwF+I$I(P#I&ZMp`lhi0wgj$escmj_dcBd233(y zkQ=C7CUWC0px`vFtdUB&JoeS58K8=l2yIspb}|W^i%mWNRhRp8p+M|Kz)K?FF>sio z*X~ZEv2SjR0yJybiqR12NY=~1s0bp=$+1Z=oZv1A&qG9Vw>Fb~P$j%-hCy~Wc+xDS zP_%H!ZY;8aoCGV-A!zkP^b2>S?E!xczO@EtAR5R*$Q5GmlKYR4V4<;#kFQv~vk$GM z3a=RvLRC4o@LVB!CnN)EXpXHU{8@KQN;>^k%8C&@zPW`UBj~#$>NM0f0IOB-qa%Fel+UMir#Tv0fqux1FIrP9v0Vnqd{lz(Q1`*Y?4 zuhruLN^stTrC`RJA5A{H-F{v8w@Nt4x>pSlr5rNvf>AMMU-admwzebNo*XbB%!z;q zd2J<0XRtIkMF-*k4G3R*DJ2$V^*1yr;-$~vX-&qCql(l=uqQ_dDFuB5wKRb%kRK&t zGDxa6id_|vme#~JfMn~%xWTXvUy+3j@;;Ea=g1k&!65*^2|4RoG$rh=e$Q2zS22J> zkQR=xw$XqP4BqBDQ4*O!#w1UT*H78+WD&B0eb%M*RD&TXhcE7R8OR=ya9(LgL%Eb682*D*2p>oheo z@9N%O>zlWFv78ms_uhv1b?qp8j3qgbJo801M0PYHreUyX9-MyQ;h~CC z2mC`EZyXnj<-*ByNZsv{Ut(!+Md2RRW|rP&$}`*Z_&$gIDLm#93p>Ch5RqkX7ccXj z!VRg$G)%~pG?ZijoK#~x*~`u$)S;x+3*jLBj}bhgJV^7$Dv|M?qz>L93um0Yz=8z^ zSOg&>0-eZjI@g87Q-g+v5O1hvO)lYaxe#KE<2pEfA|DzqhY9aJQqlo`AlaRm=^=E) zn+fy-SBKVApnDe;U$S~6$rN?KofDdMAaSO37|uvaS<6D zRKID-)8J9Py}h}pq=6x1+8Lmwu_Ng7e9HJmE>xL-FYHkutBoQ%MwR~EF6a|NC7t&w?=Rj}#!bEF+sy2s| zzz~bo+PS0E{tq^{BDM<`l>pjEtj#rKAeX@Xu7<|2rNL?J=!DbE;7LL}AO$r5O@C|J zI>yfJPlJp-rXgUHP?=wCdx6m`1dqb~!P{!2njR*V6vnS}ceVO%S>kvOlO|dmvcP8l z<3Zp$S#eR1tpKXhcz!>d@457a`vryv8pS%IY2E^6uw~ZhUHYhNL}seJj@pVIkzY4# zM3j~x{X3fky9!jvUY`4)qAQl*dpCe8>%th|our zq7nH4pM-=&tu@4==$;-LN}u>S3slov+YV=*h0ayF&Wyhs#5{PCiRfV>ZVj|Mfw3)j zFzf0)X6#&ysX165BwJp{CDwT9T~x4YFG>HJdOcz3QPre{W|KP* zf}vcpG)vS~-IJX`IgxWjeU4vmPk)Q*(x4*Ll?z3nQ+o6qz_@IsE1`Vy@$>V$b_o%$bMgxl!J2rMlQZ>T36fF&IIR9I zhx(;UmrAVig|en-?|5g#EZUbve>#yZwL5y*yvJ@lOwXsjp_ZLjBTJm*~j?HZwk{{9J7mG z3hQsD0;snQG&&O`9fMjW8uUu^#l%Pgq{@d>ygJKCWq#B;FBx#+TnBHo#XMqHnZ*@I zEzuF?jlya;ANaLFlEio%lD0A{jKmvmGzLk*MK1$VNEoMUZ`NACy`!_cC+)xw&bSPLs@tIfpMDv`3I~oIR-10!gE1|j$tp+x_G2rn zw`oRQEtI_58FlW;`(qC0o2;^Wa$TVhCqN}hI;@N4b>LU31D!48RgsEe-PP~ki)YFo zvL7_klm7q_te)Nj9I26tsN?oUNHolgJ@X{bh&wbOj|c}kLfn!j7x$bPy*rZ=$oYum z%O4+KuTPm@9B8?AmAh+R@#o~96@La@VHY+wIc>|PEVNsYSDDq+JNRVWNy{`*A@hU{ z+|L9bG`TC7ggolvy)$lj$M#;W?LGP>U)s&Q8nJ}~3DN8o~kS|gkiLlv! zzw!GIt9|)KJwIgM{dg}Q?QA7Cdw!3WH_lXmU#p=1khEk#?bcNwcjphI+QcIl$DUuD zZnqu`{XS5a*E(p5%%O6CeXQezyi3L%ojv+%$H&JhPpAc>LzY~Z23S(R{w5^Eu?HHK z%2^yTvgg_+_+vA(- z6o`+hxw*M#9qp#Dy2c!FlR0+WW!#NXID@?>S8#|v@UBL?6QS>P%7nc`-F~#Ka&mIz z!%sk21gVAd(2vIkVLOe=uyiO2T094KCB};IWP_Yf?e6~k3jIGHpM2ThPm6u}G$ucv z51$e0%2(Cy6MN$sjU;<(o!zrLL092`sebhcOHMkUtS##=I}NWoxA}kJZ-Z#0rI4n* z6G?}vswxYGxOwmuOcwqM52xeA#!S(Y!Tv8;pfkUT6wDM_8l6M1IQaVYg7S5uF|{lr zz6YNV?tXntO^usa%m&|h;2M~;HqJH!f=U_Jsa;@??;r(}@x6$Mkd2Dul)k=MeN z@2aY_TQwsO@L-IJl9^dt;8h-#M}>v_@RfKqe71DkWZWS&$4+v zz(h6VHb((aO)tE0`It0RggH}{vw+ITR12A_z3Wm8a$>}@^pc+?Czm3PCeu>oPFx5J z4P`bTv<7fsJNt#WP4xD^VciKok#)Qn0!~Pyt~Ml8YDjL+@7lNyQ|a*$^Ar^pAu{wr zZjsegjTV2{pe&=zEi6jl+y4<=2^&`}-{?oIxPL(mfWmAK@z$pL*KWemyqWD;1~|RSx)OQa=+rk;IZ&&CSH_nW^w-=+>HsrK4y93^WW;6_q$9?=HbO4A0;8kX z0&M&{>7v5eU<*U?el}oo@7i)1ho7v)Qff1tCzDt-E#vySF}N7 zdpuYUl?n#u)UW7?Z;0PH9lC;sO%B%_Rtk1p4ti1h$DSRzxN12IK(GL0w)%FFfJ`4h zd&Y(nfJ>j9oT2 zfK3ZoF_U9^nVT$op?|J6xW-(~(2yS`zBlHFuHutfclZf8hTc|IzQGY;gZ2V>l$dKK zP4`8d`s0rqKtDP`lPcrbIKMCAUSy=7w>LAm^w$>q#3qXekor~!NJvR>6L&@GD-fND zOJ~WV2gCa%+h!|~mNY{Ot)URWC%YayUlP~54oaiiQ;nMx-Q{UC8gZ8~K|?P6&K)mY z9Oi!<_TA_Ow54rcB@o~tv#i9ZhEvvL zotI1O9(=dV4;8DP`YWCd8xG{J*WPJwZ(mtlPwp7Vf#@*x&w+3q5>}`C_!I+w#iXg_ z@J=hcXhvS;)a+|9vMSy_e)?2|h%~1skv;W?+2&pC^G2e@>p6e@Ieo6Q&8;XlmKD8| z$`CjkEpWju2rFvE(lbi2)z7q0h9Am~9XqZJcN}8dB6#B!?gueeL_*mPqKTCvmVy{c z=*Uz|Pb3+3PbAIBC2!0>{sK{1vaq*9j*Z19Zi(YywmZjT5zQva}x4_H8 zJqPhte~&)2f;|M%}LMcRLVPx&sp;lIBmBorf9O3uB1zfS#S z;vM$Sd*M&fqe~I*|H<3s(iGsP1+%C#FitV5%tPS7Z2ObCx;7mUlYy9Igo2QW$a4H=+(rjy zfx5anC&(8*LO}?hIdomJKqqZZqm7*ZW@#iiW2*nF&z_6J59J)!pqX0b^y&4WnST^+ z{Wj!#_b!LWt>+O+AC6cm>pvVCtKU$@sB5iGPrsSDC1xU7^$`oqZa9LmvN3G;XyCVo zk+}+!w5hn`9wD`X!s>~Z8=pDpai~S)X*mdX){a2m&>2=VXO`5JB61M|3mfD|#k7na z?-06fq2?xW7iBDN@<)kQ<4;jNg1WMIdr-k4lqsJ$;n!m8?0)aNCR_WcjN4-ge@Bm8 zUjHHq->js^Q3^F1nr_jX_Ajj|H8sn_=H{Zn_-;d8BmgL}7zE?F)(LEM;>u*4p?5DR z==!Z&%Z~=$z&#?v|GvO}Q{?xDy~VxT!_ny(^YrO*u)f(>+QH|0uk&`hg{x|k|L5fm zp`EK{-s~NjxnXUNBpy>^V`F6zW=!{wWTM~3tJLH*PO5tm5lP~j8X79<>g>oK{egP} zCgeJL{P<^StJ4kjWid~j$XFCA8!Q1vw>S2W;w0tf=AIJYhn%FT$>6Bkz}lt!)fPj! zUZXK-7>IW}2shOW7lZ+T52N+p7#mV@s0VP}6uMgiE~gf3K+0AIJ~It{rSS|9z3adm zsglQ9Tx?UkdcQHcuw~HNqF;VKLvI*(oCy$y-umQCSQ#}%9v<=#z&v~Y{OV;R&(3S_ z8e1oSqE>m@TZNdr-&E_)0GiT^HMV=rt?fn$D63$D*=pe6cm$+cCxjbru-MTVZmeF-AMz3=6*ZJ9$5vGz?|CD&qo7e z(=$Q=HEzak-2|Vm@%uY_e$^~g9DAnEaLc}Su=|pt{kXjP_wccU)>~s7jsh(?7l(B! zO3|@c!m=>vG#4pjWmQ#O^FC0})H>AniQN+`H;A8X(FqjZjSkhS0oa3nK^c`a0NEQW zWrI4^?5vhn(8dE-pA~mLOGvQE`8~bzl5_J={;2;hUcbaH(z#+^M0iLDQ?*(|08b?Z zLDikh7XXcIlRu6c2Szqy5Yh8$_5wCqh`oZPzQkbgzzIh0=B!Zs{z^(nPL9#;0*!}G zW#$?2#3i{qwT>78F>K!2kE5-Lj>(>NrmY#5!=?bQlTqFMJuvB`WwfC&n2x-!%H_DG z<}bJo)1-msU&{x_*pJBHmrE}*QB}PT3%68;DUdq(zAV}>e86kkcW1a_y??ZdUI-_T zrJ$)T)1siz$1N)Dx5Y4YlbnFZ|BI`=^z!EI8QbLux zW&*9!VIXDwgIb4x%mwta1KF2GBcW0$VkxGEkKE!wQxqlrZe~V2JUlUJX{U|`3QHOl ziX$;70i9He#eXh^E7|t5|23d0F}b;V1nz8OeI%>3l~u|J%gaZPls?zhv8xBFnVLR9k@MnhMFl4klr%UNVvB!qW=fR%%%xLWT3dzH z*P}u=0c^+Y+1vPcJWN}8a6}iiOoh%G0QH4MsKaa|EQ=^XG_{qI$w}yXP{Udk6%*q^ zVX~eo!O^B)+F2pv5T_~Ap?+V_)TTMxhS?J_f)j;%OhSS>f)OyMHE+ z^N?b}CPxUod8M- zM{g1!sYY*Nm%4Yuy}-crOiD!KGj2D{dJubQynF!gt|Ud4cwX1))vHl#t3fU3gMQA$ z!Py~?#XRakYU0bdiR&FVe=)?$6_G_-K{mdgy75`5y&) z%n$~wwmDtCd^yAt33ao=ac%!5H;kZVHg^jNc^{E!Uv{=p#i?~)p>N)Ax?K4qYrlqe zme<3fCU~MDw^G-~Ko|V7)%aOFYg_5gzqY9U5wse`5VPkLq?f^F*zg+isJv(y&_Vdw z-t0yp^W)&?1-`sb+xUiKk7uM!6)nzdQtMD7C#O8+R-q$hZi-_~&70Q|<8K6P$V!n} zwRQ8AZNFyX&R1_&adMw)%`CEPbn$1=l}Y51eF~2%nd4&_$A4B1L}Cr;ZEJmRmr@p6 zTI(L?=-u$ksBc!AKx=*Sz`{=@@iqHyw;!WSX93%t!=!tCHJS0Nf|Pfo*+hL`#YltR{TucYJ}%An9A+K@1d zbzJ~0mQk(%N*&&H%?bjN;z1+%<&1Nv@b5)M4eG2yQVxv<8Z9;gwbWcPNKzkN3P#Ii40Y1hbTRD9uAKg?yL+G{h*$iv9Eq~c* z2nHBc+kEBF?f(W`Nmt_U-_!&D3Jbf9PQtb5(S<0t9Phgr_tivZM*Rks)3Zd=q_yO?H=GFk|AAaOky5sU|xDeD>@ z#7|7L>$;EuETataoocLd=2ZWL74(ByJ_VO_{oTaFk#e6I?p0|y`rn;tPUyWd>yG3;Yx9=abb zrAt}Wmj~7N@Le7dTX8#4bXj0d^x|d$vNz4HPivA#EJJ8g- zmSnHEdZ9gg)_cs0H9)V}lJ)wv8P-{^4zfzHCj>)6C2buQc5nbOg)N z_{}Qkj~v`5J?LAbM7wOK@#52y-wjS!03|aa_#d34(FDGF%Z+{)m-lwG-B_CmuJ?_W4JR4RbD$;g2-xvp zF5Brusf+1@kL$mDp}%~&hf)F>@Ny1E@Nx?Ff-bzdB7ZmfZnDnjL{47}x_%hFEN^HT z9q`%sTp;dZ>Gcz+f(YiW19l$`YUXI4bsb-=e&QS$cdW_*zI|vxr zVb;7N%<}tl3+t)BHFGPCcNwFn8QAi}+S91Eb__?*I#?0|AOkDOixZqDh99C(wZ9opIak-(zM}T=GFgs zZ{oLB-`~3elu>1XH&9(nTKQ`2F&lAgwh`bLA@1h-%uG$U;&#Q!XE>wH)#3Y*Lx;|z z=YWFY#ByV7o5}(;ukPD*f9U9#;Kx(&WO*1$EZEMYQ)LQ3TX2%Iu=*QNA;W+TuoBA6 z1i`#@?k}2N4Kr~ti2Dd@pu&bq8Etp#fkNalW&sR9HuS zZvzYB^$`wX0$*RcPLJq#c#D-kxyZ=X%G~ezYu0{j89!wGOXDp-=#PwzA~Kvu1R#hp zXyKdCk`4GL}_@P^siVYIGv`N5_py*kVN)~(_c9qlR^GtVDCRz~r8MEV1~Q|P#K zHp&D|9+Ksz8G5Dg@8PRg*47SrS-5`yo%~i=DK+NY$j4$xrnnfDp1e1O)MryW2JseO z{EA5NWs{4vxNgA5$4A-}Jw#l{MXgG=+Ue+`o$?n-4ZEnn2eb$mRkAJG)g)^UE8pbj z*Vhkr$D={B?8pDe!qW;14TaJ0IT(-h!~}8*W>1>jwOZ@VRjXk)z)6wW@_hV@(4q{4 z&f5Jx+&xub>7iRWah1G*TxrU;NUyxx)B;5Wj#G!-@{wc;dcYnp*-9zzF-{bEevi=C!LR6aQGmzdTXHA z2S7W$6w zCT^v6EdNpdWFWelCXs~>useipLwb3#$pH`239>CR&lhH6HJzpt%Me{~1Whc2IW)|^rapxhnLXoD5jZ2N+ewQJ= z0BEHByX@;tUWr^3+sc)yHa5F4u=s9+;kDI>URwPnVWSWC4o-+2A;1*+u*qx$6ouPx zQ^9G|k*~+3r*i|bPh?EfqS!AKG}%tNil3a93je^Mi(Xk3BjNgF3909t_khmj2woq} z>Yw{3xYg8Jdu!v@l2-K3_4Q2(&Hi-J@L`UB0AAW&g4}m>n4t0pZ6x=x9iR$lhV#Ej z@jWASv~Q?ZnB*hJh`dxUj%m>yJKlgNW}GeOt=2Z6q4bk43y8swz_3=jOVe+7kwSpnD+?ENHol{arx zL>xgB&<#qKRxQ3GU*6nH2;l!8c=o?n`M=@w8IRce4<7A4ke~*|0i}NEceNB1WAFb0 D;IY&o literal 103524 zcmc$`2RxR4-#31?G-;A#G^7y93R$HHiR{dVP4?d9SBj)avdJbSdn-v2va^+B@4f%; zqu+Ji<9Y7;em(c=|J<+VeEqJgg!4R(@A!P)>w7$wyCy-tgJuVbL?V~Ga!H;<+G0;4 zZMwCM4F96Ju|W%eklmJ+xP(9PS`;gA!ynttuiUUAk?1^$|84N?o75$dj*uiTT~M?S z9qDwiR#eJgUzb&il@AizMn?YZ%H|83_cm$3);rCe26X9+rcn;xv!G?s&cN{kBsc_jc(V+b>C8B9faJch&t_6wBqVw5)f^ zmPQd);Z_|~vO-z4U1XkRKlc2&I1;IJm|BSLAAcuBI-Z)?`1cp?fv-z<{^Q@Zyf$+D z)9 zSZ=`m<>r}*;@%B?^IH2H;l33simQFhWY?Ked_)D8v|avuonm=E7##sdp8Q+n2UzyQNt5*GT%k ze*Idbcto^w=dN8Z%5VR0sn~Si!=rC_m{syib#*|K(X9C;a_L3=)Rh(I9ZyWD_Uwst zcPB~KFHZM&@;*x{o}QkLF5Ss3cffuFiPY0X@49eH|N1#r)~d2PVy?!@Y5ynZj8T%o zW#;*@gwufgq?GB%7hmnG}i(Q|j(VvdSEJS8BYwp(Q7 z?X@rgCBuTYnm)$y+I~!`yn+G`eh$|$Sa~vH#`+2=l?&r`#c#y6VB^M(FJ8Wk%gp3n zooSGD9LwwHHflUI`aQj@)pW2vHh_tdH$=v^ph&7;>gv_TM|+PSICwBV%eZCerw-U1FTfKpT(4U?lzw2d5^{7=ejg_(q*wPP)bIo>06W-ZnR_HCK4&PxN!2* zVaL7z6>hgRXF3sA4Q-d%fKN~9l10`RYbmF^1GQamY~Q|}xVT!8^*0Z89yIFAx1oG` z<6vH>;NBq z<=}(lU@bG7fR`_gnv#?pmj>fC*9z=+xI`bboAdD%Ub~jt)o+uAGJFo78^XmkIE@#n^l`i(MMgPISD%~hu&QNdViITamlPHj&hLAv z{^HrQ9>3+)iL%{l?{pq3r)i~xnC458d0fC7q{`8r2rMYH9c>#7P|>L?%gYN3eE!dHJ4G|~(o1;v zFyG-c?ULg9)i=t?KYM#;KOgtyD~Vn23)G%@zm>tD?)7EPpsP!h6%0IB*ySHT8chAF zl#-H?zj*QfCtrrNw{OpkcH}kmy<%o&cATk`z>u((fBIxJJJb{?Lviw2XoAD^?>v*L zni^#tofy=X(DwR2l|<`D?D_q@|7P&Tpde@;@m%G*A~U;5cJYbc%-L zeo~32!u#>#x{|fov}D(_b7KYLMp&aLjQJ*q?fNZcMOHJl+*WM@@3#02w{Qpg8@(Lf zBzhOcNTc6`H>CN^jpz*hS{8o(8;OaD`HR0pnvzx0ScU1aqOB)-F1XCK>eF!PJz*S7 zub^+($x#@2JzAWfp~Y?D{Z`fybyd}b>nf=OD`}uY{{xiU@u&}VyV@3U_XFqqYWs%(W(xtzaW(K2)qKcAS z!^`A9=%qjwD&(Y$s?qT3>>X~a-&X^#dmiRBk*j!0cS5qjcC;S#i1P4ZR_x&OW4U6z zpM0#cFqqgt+c6xC_f9@@Seu5|mEuI9#Fe~CMlx^~UB z>f*i`pD#^0#dVp63MtwpTG$tgxDPZ?>$Me!BGkvGVsR45d^JhxX-mG1F`b~jT!hdWqB@`_ik{NLDS5Pb#>Tz74hinL=`Pwom0nDCOFNHp>qc)u3PdC4lQcP zSmjL_=QV3EkcKvH(TdzK&|Oj@eYX1M8H1kEdu=&p5z+P*(UZ}FN_hBZ1|fEo5&0*{Z1_X4lxUr911|Y8D5y|r8#^1ud2C6kG5^u zvW1z4rztN*zc##uw&i4m^J|nv>Df=ZJM%7cDXD%~34p=$L;kTrlw| z-T5TD@vbJdgv}(9Mt4$h@1b2}S%wYbSnAE^#|xv`)UyrBy(rlgPW|=pAqykprTr(b zy+}(-TUlA*M(@dmk+Ls%yi4w>?{FysIe7vhRzO_qFHGpXZzZxX;MU!Xkwl$)3i*Z~1X? zxvR)YQ(SsYpm-?3gg#9_!bQ2VvXUr#^74LaIi{L}UZnwa`laq0YObgBiC_%at;{rs za~3H)#daQKZ;X-j*WnCGHSBJy-?RKsG2N{(zIYP*z~IXZW~27(6s*0K)z#T}kyS~N zl?ky2{3C!!EDATC&Kr-m=coW_U}q0?*jCWlC16{yFTQLwQTC={v;O&UyW}hv_L|V2 zTfWVMR72Otf`r3!&heM;) zs@yoaxQL?5Qn6?(vbGR?EkZb@du=YKN%&Ki!6O&3{Dtqg(SNJ5zbr|(3?4?a31nMP z(bYLiA{nSA`SsrY{x<4^t8Ia1US8gg-Mj5fQ4C%Yne5w~KXAVp>6I3N+J{Dpz$039qHbOkSOZv~W&6PlsP#_MaV zfi9;z47gd29=(vBo=%i?G?>sdp}FsO9MK_kbJ{6^cx#21ulkCt9Ouug@1#1NaQ*#g zr(L%as$kQb8yQ9ny=vSaQQK()p1*iu-MV(Yd+8H?ha1;Lci#4DefjIL5VK-t^xjUF z`OYQ*CV)3rr4tn)d={^@?0;<0FIG@gi~)R4j*JvV3A4^F7%yHvKuw(h_;DjenLtou z9eG}l9?ALA3o+)21Rmx#ct&*n(?iN9TkPz@vD+SFw~=-+2y3jZtqpbLWtbK(>fzJu z+VZUQA4qtyYhGdHOcD_+dY8Zww%XM{WM?V+!u3&zv zIPoXcQ5XXOmG1B+)qQ3^!>YPc|}Ds z&`qh@Xmq5M{j083dWt?~+SSL=WY)kh_=u$D4!m+ue) zHg9Sx5g2-Hc1c{Eg_}FGYmQuUs6N(P@9QgzzvrUYS0puvOW)|{$Hzv^Z-P*nBLQu2 z+nQKeNzG?BkVn*%=>Bcl zcawoBnNOaS&~{ynowgsV=_7y_0lbHrQ$o;F)KWCM!}2sh6S;h~u-%1GTmlmrNRe^7 zo+itD@KC#x(;im-BwsIG^#CpH>A{~OOiDq=_h(hyJabA=Py=hCctdi zV~StzoXPh{eyiUJVxAOJ)6@P~q=OCdv%p|U#x1ETbQc`?0fay`{n(#cuFMMFSjfpA zI{Y{FOnLidqN&lQ+hE%lktYE8{RWh|vRAG=0&Jg}ni8aw^2pGurqR{Ylky9<|GC|_ z`c{|R7BaFgx6^akYRgNuY~5OQJN-)jg6^AtC7)obnl`5Dc2kOL<24%WM~;-G9i@_$Q|d85va{pe+F(1;rX{PkG7-X>L>I_0 z?G&VA5_B&n7;DkzK2oU_I6uk#VIn5Nac!}Gc4fNON#H;u*90m(f+Pcb2o$1pXfO2u zOG)Tz1C5CaKtX;@MghByNh8K1hyTgl=R*BdwycPYplbdk6Gap0^uo1hA^~ z-(Y`&>W0;EsvE|9Lk-7_$z@z_=#09p^}Edwyyp1v-lV(LX!c+OXcLtc@wO#)8SSIk zP~TP-r#>bNSfRGOy%xSW2gaX5@RniTbUoQ=NhTS$+8Mf%^UMh12hT^ON6t zo&|kCX!vbf6vn5A?lf)rYy198(@udySA}tZXqHnxAF0FV;Y7^P6MqF16bN~kd6H@MJ@rnGs$L$YOh)*~^jhC1(ZOfDd41XTs zE170ftSMx=D=oA01I%yE(1@%>9-O%oP8Vo>^Rh zW6iAK{gxl*2ERT(2dsUmt$6sd;Kcbus~cG|GXf7V_xhJ4{c7|D8uUfC?9G-KI)vZl zp?iNG`>i^NOG5bQEidY|znnu9IW>dJQb+C%2b7F!8?|L7`uY1Chn{TV!A2wxtZN`D z-3OyABS3P$n7}b3r`DgTjO0GWlCs&p*MmA!=Y7NLe~!^n8q8h4ef#xOdLgx5RrJW{ zEjy_`x9Aj_Sg812CG%kFu9MmnEHNFqwy4Yh;8DPF#GRg~DaQg=H!40zaLZ zopK*Ne5+_}J^sO$^7!TLL%;!z)>aldUpY5gUvlm%*OcU>ZpxiE-;%xR1In9a{^R02 z*$z^RJ7mU2zs>?X0_6@-(bQ4W*5ZiD_I|0itXoGuF1HCJ4&TZBK3!-6qL-F8{r*HYvf3D2i;8^ChZB*s@!b z3S}QRu}e;I9kO|^XUBg{<^_jhP&#$MtvW(wcKy+?O8ynK|VYHA%nX^MTrZF2%Jq{*0HmZXGBXaSrTlyms0_ z$!I(`W|S?bL%w$!WmGW`tTJ)pv;Ao zoL~L@@h3cejce{H_66os3Df%7#zZvarYyfuvLxDz?bDSlB+^8TUUjhH+(@hC_faYB zf=d`e|FSWGi`};}nBCTub>BFtQxs^Xm8=QK9{Z65rM_#aM3CREf-G$L=cZO^*P=5K zV&x(X%|Y}1m1@u8J?R}E)%_q1@i3j-=&nYH?LdgCDARRg(Gol>5l)TFf{JI4-g|eR zR=`g^QjGs#e;fJaY+d4qeXA3_%s?_jqdDEpfb5#a=^YjobdG3Mvjq|iO%fGubr1LJ zQ`(6gCwkNKrZ}_OzQIfH%XMrU6Rs1KWfz%PN*J-Tmpwp~o&_OtN{2K{vqg)PpbKcy2xTVfg!Ic(XU|?=e)lem zBl+jXql>Z1H%?Re&ywjDS`_oR{aj z-9#i=Nu&fj0@e|_tkv(Yb=h~@743B*rg@;+5RzD{egr{fgs4vxUI)LJ={w4R1VDZ<yCoXmZvNlUte>Tom2Q@n%X1a8mtkQk<0b1_{QUd` zeDkEBYs|H{<6Ew<7Bmbl{qs(i6G14g22e$b7QrLX1quuNaZjMue>gZIBI5r2`+{_2 zq}?|+V}Bj>uZ)4H((HZx1U4o?MdHiQ0uo+g1%Z2Og;Q*5IqF@0F??5Pa{6Z)e2aMf z7gkzN{`A`NcvVY_%7qITyq-K!geviHH$y6PVdX_?5Ylgu8j>1$xwsU}3MU_uQP3uU zWZ4WgO1iD|GR#(=>sFlJ5d$s>o~7dCCc6yubl}jTMCioe&Kj%B^C}Qi;CRG~Z6cK# z^U+ceTH0>mg~->@(M^d8CkgHs58)<&adcvNOJ8}9QSx-JV4<%SFv^MC|Ri-({-Ni06g7$9- zj6K#_aK4>gGhY$f4^V|U|HEp%Wcjn4*Z>4`0MF*W^v z$AYSV8y7#!SKYpB*`nU=y4>D9bZ;yDGwaE+L4qPNtWPpP!%lz}P%a>J&i!G3xYL+L zYNY8IYC&3ZIj1iBUh)$sP7Fr-3KPx}T%l{Bd{G3KBcw;^_Cs8H29T);AI0ZfR|48P z;h8v2Ri0#}&0(K9XjZF9xGuk|Lx%ljg`rvd5Nfv2MCm5AeCtF|UXA#EG7vw&>YjY- z!L82NcL4DO4}$t(VW^+ej$M#s^OPXe&_CMpZIWS&B$k#!JtGUM)+5BY$B!QmwPhva zgIGPwu160ivhn0~4Z%4ys(bwaR5$9fH`Q6MgQ6)I(;`A?tO+|`Wx!ZeKHH1=Zv2*l|(y3OEme{lkRk19aWzKanf~sMWs;G6$X0McM=2eZmtveB9 z16In*I)g?!yN)Pkg*b!XUxRF10oIMYc2T>l+<1HQ9<=lrN>=3r$R%D+pEd)Ezwr0B zYI1RLcGgK(4RwR9HxwJFRqx5*IuLs8=IYXHz?gBC8lm(`&^ug$NwM_bGg2}>oK=vQ zpBaeu{lf-*e42)uk~x+y0Q4GCil;(ZBIFMEdNp?;nJ<+wtVKeN9nNkyZGiTf0H(yE zIS%T^?Yd$Qv*r{puQFU9^T+WkU1@4rQjokAV8Z}Sr8#z2VGdAu#alLzB9r>K&z?QI z)Kao$)5IaMj=vaves+|wKyDWV|K@118sjwh7P+JS;>C+E0s?Hxopz8!T}0uhsie1> zsG%;^gbOAA`lS;a7dHeQ7j{( zj|T?{|1mZ;mYI!B2D|g-gVmiociNzru|hGZ3gifEHED)7$8Fqv8WRoUE?K+8m5^Nk zBP3&gekIW zZa2tto|c0A5a%Te3kyP|gf(wwwX@uZk!`U;wPN#&~-p zEaZLr_BE#8ksvkzVJ^MP$k1$SVstY!$n&n&Yxr62&Eq&Tz>>9tfW@xhYyshS1c)&p{I>I4`D55p&&riT35La5SD4`cPJXgOSVS(6fBf9ik|T9C%cx1}T!*~^_)tTA%yP~kFC3h zrfWr1=EpiQK1^9=-CEEutPUjxLz_dEK=VKJGHkMwCD-cZECVgM^uEfOnx=+3{0=hG z2ErM;h*jD$2uq`i)*HQa(^iT`z=P0s8XltMS4wXegLJ;e( z37c&*PE$H{HC)g^9`d7KOoZ!_B%Oe@xx;FGiL|tIQ^NJ*{oUA%SXwdQo(g@cNgqsj zjp2|Ic=hG!8?WL1f9ezK?E5cGjROtvE(lEy?)Wgo8(f)U(JMfA_oYY{ejhjtA-s3F z3A++XV%s}iZ$cyGbh!u!g8j&C@$=H+($bgOT3PriDz>)SSbD!rR618;kM^R*EkIu4on=3HJJ6v!H3r(%P-j7o za;nCSTT7nkr~O`|*RNlfl9aS?SOu=D>Bj5~bMA|MN1Yt~?&4rZtuV3qiGl+!kMMOd zlu6d1aCZ3mb6D4zPn|LkN*+^_D7kVlZTjJ1Q$qG3q=PUZreNOdutM|fvM$^om{FQ&0kkxjc;LpfQAa7>faijz=4_~*&DZIi-pBSIlMaQJXCB=SUP^!4SJMZ#U?ZnTct0+0+~RvQS78S{^Em4&{c zj6%k1+L3_Vg$7hZ_KN?|iwLCa6aafAu*cURF29&3Pj&&d$9`~eSRTy@OEyzaQ66p0 zkia6dp~~T~`?p?1|JJ0D5fe7mw~nqI4Zmf~G+)_6as^RQ_kH{K!*5bjQ%lOT>SsB2 z?4pq4j5$#-EQ|Wt38kChK!o!GYpmq=>ITvTBl2H`H4{I|;AN%(atx!VHDi9`@#*=3 z_w5Fc8AC~>;naELI6D-JWs^@!Kwx6i5QPmR2B=y5VG&BSUQKA?-s9p4D8_^Yn3B_# zgeq%{B+t9{QNp9hHtSA>#SUzF6j?Fha)#pZ{|9En25uG z$|uhR7g!IzCJ-Eg3dA?zs^Yg419_vOqP%>3l$@OlgU^|z5;_2!w55e!UzBLg0^26o zV&@2L4TW1CDg=-2mjj)MqBI4+yfrgW=Qx~_)0nDxKFgr)qOai8qoujgWSimUriICC zDA5N|qS0cA;!d=;$Q?=$=Z$v;TH#=Z6GD2?V?aFus9556;qEG-0k#Je0-|)Aa z?Q;P|G~zaiRud}`$OjwEG&U{dDigds$^2Zt&#_i-n|QHGh&T|YJ(x@XDGZS#Q0(C} zg$cW;!Fo!~w;gpXe_q}ajnoRPp8PjA$>&e4zctHf4ULZK5&k=~_NA(78j-tesIK60 zj7s*5v^E@P&d5=Dm)~_5oBe6TFQc^iZ|mT1vZa=mzk5-7lzIKD%~%IN)pMH+#WIZ>M$m^lnzCnSJ ztluvy_=C23XV27UZNiR&eAA=kDr9#U67;!a@sPW+9&AhtSzO5Ne;Jr2puSd6P~+|W zg@L@UtDrkJI(rw{rupto_EtrbLgF(Vf?{L-1y|%V{o-3r9e$kEM z;6XZO?U^lO`rI^w%k&?M>`J7)H82>jzx5rRaj9j|zIkZuAPvpX;2s)oVXIYj6tj3S zQqR!?_MNAZ=wRzV8&bUk2|`B15))9^+4{>bqpf4z!}E|gG)#;yGn6AzlAEsKS3!J* zXs?&;hyV5N9Vf7(lfVnI_`=-VIqd-v5#v7$Xu|*IBa{aY*yCIM_0O#!RN}+FqMsHQ z7bC$aiW1`N;&MU~6B<~pH;tI0H{>cJM;91au}$k-f%TsK5qWFXV6u7{tqr$G6Qmu5 zrg~XwotEL!BHzD{+UA5EJQ(21_>&mq%B->n_Cj z8p;tL@lQn9HS$)}pZsfDbByGEfNM#4*yNtkSSF+n@1qodJ_l>|e>MY4e2U!uZnyO! zRL}4kgQ- z;|Q5BO5V6}gZ?QQuFaeShKndU^)9mhalmlYt0CZO!o2A){hRH({P);Cxy^O%;$U=- zVHB`Nw26`C=|9oz9z#rCj|u`(kw9LC$mtM*6LcFMs3mAAiiU0s3=CkeFz369{~2Xe z;D7VKL>Uv_yt(Q(gEt=V*e(3+^<{6|&GKy$gTC&&K)}lwoYLCn&m%RPE-s@Rg!DD zUWOrhtbo%TWO4t1;NT?0Ep8M!&RSAwu_B1`pN0zwB5i1B==dK646TwL5PA&e46#lY zc6Mbr%G^$KCPa$7x5Bpt^dqc6P;j_E~w&kNGu+Yz+Kdqs>fFWH$7_14(5rzZrz1r`#rvG5L6G<}g+9;46 zRvsQD^=y+mLU+@z36&am`}bKx-rtz@!My%(1#mx(c4F<3+=nR%8Tk^#S&+L!n0x$( zw3`eF*wRmL4vn_H-@gSUlEg1vN|22ZCIkYoi(e*pID<6eEElqXUz5~xOo=EaFd1|7 zWVc!M|Fh8F2Is-7tFO-dNZQGCwJy760Bm3#Kj*Hf(4M7k^}p90O>^RamUfD76d!L??{XIFZk-8h(D2!gI=IG zdO!K||HfCv!H88l({giFD|{JRkpI@mmbi53)TvWf5N~B~$AWNZx`=6jC5ZT46PAp?nlYj~HF-{~1zl72 zye8j!XeTw+{0Y$aRSOhH?GzVRL!T=4$#X_xd%~3;;$hfN+zH7{3>AXqd0=2Xk*`9L z16w3y-576$a~hJ+0N_-`LXCwtuj^31nOBeUPJ>P#eJ~Dot~$^fH){ zeMUMY-(&?r1lZDk|2BZ8F;<08ZwmBf$%FmBIy3Zrkuw@TZIW}hU0EBk>IcJ`(31(J z6-9&J`#tKb+S{8K0^%GJyr!sMy(7Q~>6_fdc4`vKSs2KR%gf1F?nKaf7WBgqIt^tU zMXvSpEYL23m!Lw{V~)b^65I@2D;d`bd!cb@c9=D^7O7U~yhOT`5TijkBLD#5k`Z15;(ONPMf1vrQhzESN$&ak$>B=M>-w0h3wErs@SswM zQ&Rqcp`P44k-Nv4gqQt4yK#y5E2HL0eXCKHBaSDDlxrDcFf>;R2I~ECOVvLAwgCZPX2H^#-S!(p8i9H~m zNE!_iVHx7a3h5E$Tv)ItQhZahv$LXq{rTa@Vw@Qu(cjEyC1USGWxGXQFwPbxK6dP& zPCdNB_N72Bt|*9qsbX*!!E(>rj$kY8WBvK3CAjY(Zf0xYT$?d*YJ>8JSzSayri$mM zqwHzj3@*{GZtc}ey<>!~8c6IVxQ-HJ9`D8W{<%)~rOyL{fcsJWFpN-HVn_`BFFTN+ z{Arr^``(&kK}DF?u8D^AwefW$jH2n&1Ai{K(GDoAw7ScopAKmhp8_5!Hjhnk@*7*; z#0zBlF|N+0x!FiSh{3DW8(fogt{w6uz0JCMoNy3j&u@8wBS{^-TTc3_YhPp{x?sJ+bWKF zT4|HqlhG@9j2f@_sXp0ka~9<;o#gKx`SU8vo1n)=4k~fc5!3 z4X=+1U17}z;*0#tqk>Tq!uQy=-G46GelK*R9zD!n3*k)3hiLB4aZA3d|4y;>Nuj6Z z)NFTU_kf0EBE+9)bg?|4zZ<7q$=R(OBzsYaHn4YL3!52ErH!}-M1@27n>GLV=OZJ9i4%&GMF7w7-MJe4&x-hB9QQPz`K z9rl|Qxc~94?t!;AbGWM^U^L_Fwjzec-*9i!R@iURgx`!XB2mIoK2LhQ?}1tZd`MOW z3l&yn9dSf}un{0K8`Z}=1}sH(W%u88VlT;@96Kq22mPv^@Bv*`XIpCSGI?BpO)g+N z@=ADV;JD3T{bh(_gjKfnI6)j~;&7yFb>3|~$93Vy)_z`(x&(9%!t7d|?`|o*w+VvT zF-TDkXXHtuN*G`{R@b#feR3M^DWH(uO*GE={n zo}BuOXoSmLkXoj}kHNQp?xPoPNHf>t!NPL-#R*RFsIcX#w9CeaT-e@GQYH+1pa0Un zx_cF83%?PZ(4tq|3yW^cE02SsK7bm8qk<4|{ieEeL!H9uG~Wa-9@S$w#Q0z#*hbqs z&T+k~d!U#~CLlaKm9QvL$s3}G8bSU6NMd&4dpbT<(V%}Ve=tXuwdW-T=hBiS=jQ`^ z-tnodXP^*N!9|5k0Wz- zO51}i!|4A_C`_HS%=n;hXIA?--0E7n^bdSny7pj}nnhDjb60d)gempXE9Z-4v$bw( z3hg;&c2+SYcVkd{Q6DJS;(pwdbJRhp@7#l14HTUVs3q&W*VpC+d_$9?eDw+WLTf7)FgIBeTf}GxlicPI4Jnce1y1fb)FCuUuZf(`_5pPT zea=tFcqXTnKwluk4)I;Y)kNN^`ug<+qibbf30!ZK$;EojfYXuiBJWj zWPjBgrLKxew^2CBzsAS4C7y2}(ICy94+~w@PbcALpbzQWGsuk6ej_K87&LyoeOY;n z4V|YUf5%ReoHVh7_iAfvcS5lxj#MPxzn!%$-|_vNy=&BzR23X9r$ZbWMOiQMVvz9D|6%E4&A7?9YMRCKk*Jpq&?9$us&B?lK+t7G*<408e*sWD~gUCywxs@b-_m+_wUu#rw`o~400{c?z;AKQo7t4cQhnY9zRb-`|E@do<>u1(yoj>H{lpl9Mt`DTF?BZJA2G(%+KDfv+Egl{TA1omKiFv%g&5MZVTRce_vdXwA9a+>c35m z^lr?n7@d#O2v3rT6Kss|gl9Nbl>`a<{j{MNH7 z8*SunZtkkB@Tj=M*Y8x^Z}oIr_u|)i=i)<;Cl{8Nxex+}60?2h&J4SRW5;eEukN9I zehkr<3Y_n#0%k>?uOGZlF-dVd4u{av&II{AB3?yE+;bt(Rnw;2`_C)@8s204I6Uu# zrKO+!{gC_L+SwmFCVxe0!s|-<85$pCoc2*u8;s+a6<#qUCjZCiRNv3<+PgRJa`3g2 zIC1p%OJ0ikJ?lTeI3_QZc*%qK)E7oD$(viKyf4olzf8P?M%^y0=f-bUPs6c)h{Ga# z4;;9JbPKhJt00=fmj?D@$L>!|OkA92pr?Nt5utrg8zG^Z7FW14*2B#{IDAIv_u$Ys zZk8awQi#-y^-$wu=*YOPkF05h9|+fGfZD2ags1Bo&O%n-@fFfr%?TBB;DmKCMS=05K$qHa(oTusS-F37VjSrpfs@7Uma2bqj$>WFqhu0_0@5=M4Sf- zA0+}E3t)ARA3chMNT`u(eh(*=A0dr*R<;0cC<0Djz+I^Y?a!E+n&NoD-u?T_fY2}x2$KOQ|WoDHuk z<2%_!*j1-B^IrhJo~$jMg5ggb7769E*tmQ5ZW4=9(hD=WOhl=P_KNiN{W^n8({n*r zVOoU{_i_5hMF?7to;)dJ^9$C?2pSm~xh+x)=6Vgjtzl(cz=Wg~S70HD9=X z0Y|MPj7_&?i;{xbik9Nk?M=FkB59rippPfcqoNWt-yx}%v`uQ}JYYcU5R(y|DS z!)Nt-7lH${LXI!6H@?Nm9L88|P|Y;h3ue_dOQ7DczBJvSy8#j+T?B)#RT)} z;R9HK&+DU4VF^BYzX5VWIh1K>9a^o>JLaWv7WTJ3^<;O6q2k#{O-SYS4Gvb~1iOW; zE!5~Bm~GErzWjt!emjY&=QHmiLD!6g%xlt-`y3+3S);~;;TqHGQKt`oZO_fkJ@9?L z8xr+iN=l`kV>@6>>w+Zk@$tQNnm5HEIM2YqgSc|Wf^mLjaw-EEB~t0d5t{H<}F(&#~!Z9C@WK;R%M!X z)8ktn9-H8@!f7sR`((iV+vyUUpkOG%69^FAkB&aBrKN>}<_%+8Ri9qNg$;YG_{ZrE z9K!a1=lLyOmLW+o@#4*!N8HvHPhy94v1vvVi?Tz@%jk(&6*cWmsOvdRd@FhtJ$aMg zIVo~%c9{hbev`8iqC! z1zpr3TP0C`3kDO(wqSiHQ<=`gt%VL;h@MKtXfrywOB7JNf(rP1M~l z&+`3xQe+lyu~7ZweUy2xxq8LFE*LM3@|$Ng>}*Z3WVh|uaU0a;a&u1k?OSjGcF_rN z*S_ABhhzPsXo6GDUrafJ610j0FlVHN#YKz0FO(#RIs8!G!iAsG^51qTLJ1R$=;{At zo4g}G8%e%Bl$4jv&Cehafdh@+&^5c?`r;PVjPLikf|mbE9@jNq?Eq=uy8Uq*mKrqC zO{uA=g*g1Xf?+&&wb>hUcxBL*>yESfr=DkAAx+`E6R)W~v^#y-{{5{;KtUl+>SScpPuj5G8+yG@#%r4gy*ZH8SI@ zEu03|0q!N`=H>0(vqw}>vC$^2e_T*V z2!UYd@Vj9BTe4>-C!@e@uZ9T(ASHSRnAv#r%+{@*f~*U_KV{%Bsk=)xm^`*4)t~;k@e)gm&Mi=7(VCBf5n+eiZQNxe+Hw$}J@Q@ z_+14OsfC>#kkb7(Z%%V^a=sF3R=ba~Xi_sG<=7P}P8K95Fz=VxEvWuzh}=I7(lr$f)%Jw;x$ zXL#7DthlqI!vME>&!zth1{)8%C|sGUY8k20;Y>&56Pr>Bfwctn9Cp|YH<52?UPH!= z9h6XZXR?orZZ=rp+Eb+diBbf zDRcwy#25VjAb=E(1rYTC0p8z+3Me^HIk)fLeG+9BB5@#=+9dj=YCCfA4`HRq<2eBc zSg2;`k)x~MX?>@AHHh;8(m7b-l`wAXd+u#Daitv@htTtp=r_-fiV?RB$qRL4FCCqa zr)P!CEHhC?aw1;S^tN-7Z6%O{Asj{k?%F#H06`nVB8Yj~nYAo|BrKo||Jje*Ac?QI$NWW%nyR zeSLNPu`896Q&S&qo-v>NdD+QReoQ0JvV18wJvrIz!RDgSHIdQ(&~*!|@<1NAotkmV zdXaGKqbn8-d>WT7jmT`*dd~T&yE_8E#0lQ!gvE)Myr}^#2*%uNv?FP^G$o}*m*F}& z0)RgEQwqJ~j6d6hsBY{h{^ie$Irc>le8RvI3aO@hWP&9FDYiA`G0Hp7H z zfV=*kt~5~$;A+WSy}Aoe1xO$K4nfKvJ@zJV2o8Ph_7$3=uBoZP<7-}`I$NzQSm4Pc zHF%1R*CNXZ2Q%|y;!qiUzad8_&No`ye4JT(CRFy#%ZoEbeEOI%(4vZ_SrNdhLXDhR zSoFWYf*gz9Pu!**-m+YGRus=uRLm&sK;?~|EA%_NJ(9@@O4)PJeh!avI4hZ{l{y2 z(eAG}@M0W{nNz?h+xdgr6`Y*~amqp$H0|T3Pq)s9f?@3zoFL&8Pdq5>9L05FeVO`E z-8dd^JC2YG$$ligVrtaR$|@SaM>4@fPcGeIHN6*c4~U~!o1+P=y;oiJG!;Wye?c90i{rxR! zSBQNO^MXZz%ic^GOHU30@!TNeK7ZWxnrnrwk-+5w` zHtkU^Z;zW3#}VED*4w-x{1{$~hfIHd^Q}=63lW)qk~*g7bepd$#pza(BIPc!Gt_4m z6{F?byA(&y@7k)bf&r-l9v-F3CW^oTKfQ^KU|}0`O-Ik73zL8xKG)O~>m6G_phl-Y zMsmwoGB9qp^K>DyhBkze5Tim^_F@-Fr4UBAdZ#DUZ9 zf2=n#Rib?#JEq0NYW7Hr39oiWSov+B9qs91TNT6*Nc%Xn(-&WToC(dQX(V812R%+8 z5{Ul91iOaEP{-RMb#tN6RS$lPpPTXIzY}|)USMn}t9!Q4(pi~`nbLLL$FUrB?eiM? zKhE0O*(D(e+#@V2TPwJF0OrI^AFgwQCf-0IaQI7i>-*(av=2WVP16Z!4YS|iUwO%c zj9h92NBE=b9^s(N{Szlf^xWoR2dI6-JDtwwEtOqa6=rwHD{-31(4L~DrA1ud-F422 zcq{=acS}poB6UuWqsC+3A9#uw0cdy`0-e@v#-+QOM3!mnUKVy(#JkSnt2?f%BkR6n z9#UTK~vnhx2U5>aZ!m_I5`a?}vz}8QMD`TLm=sbQJ($bHYcQ|$;LW*gLiH)^b zoYHmjR7l1B6c$+-UD4OmQSqyPQWqw;6A;(TP?I;rIHLUkzonST zS)zCBp{LgxSSu?lo1C6zofrl-Uu-i24~O3eq4A@FtWY^|`6K7fo_!AG&=-$v*h@`) zg%BY5Eg4}*uv zVJk<7EgtK!ukhFDE6GkY%Klq?{5QKZ+;lao}NfxXjH+c%R4T-^P)L#ib{Z9YJqV{Qp9G z-h23P75K0{o_Z9-dzS`>e!t34=9jb@7ly-vnnsk1$}pm(9%O%5NZ4VD5fn%dLLqYg z>6dCa0HL}-F?YLHo%C&UzG~VIdO{_Al^6th!52Lz`Yo2w1Gl*&(sH_c4TlESrX$u# z=GZQQ1}1YoAUTKz4PvqC*RxNj2}u|%&+-ba^lw#jqrBX0W;fY49-r9LSB?{XpOF*P zV(dpAk}0idjs`Lx)-Wv{T^^EpK}eTnWvgDtLzZshp_v3va9CQOZP5-oXGV_`cai8> zNMjIsB?mtq-f$6*jsxvhH-H2=Ha3QD{eP^z2RzsP{y+S!E)Cj3WW*Jj$%u?pqEINw z4%xCtGE+%uNM>Y(gd!wlr<9SAR95y*${r#2^R4Tg`~3gs|GV$U<9^&8kLz6Lbn^Xv z#(TV8&-F%}D{A6?@Rh{lI62(-Gso5BJ)q!3nQ-6}fNcm&iDVoL`gClU>ns|dvEVl! zu`J%K?k(GqQ@7Bw-m-kAXQ)pe?jWU|vSef7;Z+*_ornbpUjTIU^({KSii!$KCu-h1 zEK*_U{*V?>>?v~KJul`A!937WzJWtj3AsB8wbd(kn?r$KfqG)rp^g=n7~9j{*d7hh z2=nU~hC>*&6=N86&%~$mG#fYe3E)C+-@NI0 zQ2wsGJPX1Nyg{FOi(YJe1S|*QOA2bJKC6NIz7eUD_W7Uj&hC80PJmoOke*4m1_cF; zPE5Q%Z7>Hoq;T{#4Z$49*hKXb_~3yO#vV*pT(D}TWIMk`p^#e6@_&Lmz4Y^)d0+y4 zRacjOa>_=Tix#`Y+n`j2ErH`UcvXZP0OmC4Q&!^Y?k63M7MbJ1j-mI-Uq;SG1t1af3`bwPRr8C~DOAcrey&GJsD=GS@&8H68C> zIJUqTy~o?p$~2OXS%m+YfFWWPmot@PR}u9IHs?T9aIrg7XhF;m%e|`S2qpO1QxDR zJTYxxulEHF9s|Q6Ije-DsfZ|&`d={ARGsWwNBx-`I$y0Ir7@Y+6v%|$0fVwB3P2~{ zi}t!7v%?Gp(xKWN4JbIlYEs|%Y%RtxdwuHL_$CxvSn$R$mkD|ScozCS;HWnNqXq%7 zKp7n_Zl@n313SqPU<%qf){Gdw*e--DKJ3KC^u{W^DD0<9<5SH5G$7laxOy8IaR8Pz zLe&9c$WI|q3VqAXn-W>-k>Yl?0~WSyf_N9`$^Vv=d~hwGBT=pOm_1GLn)TlP1N>$m z?=H!H{Bp+R?1B%TU&yz86jDuAJrx%B5tou`{dHk#eVLU_i4N2~b5Pf~4aVIVotk=E zT6zVVhugsYg%J{om?EWb!nVi7Bfr-Cj|glp|ELR|8}|A`7(~r49sb4&XpGbaaefE; zgyN+=sL^3#U)fPcYIqpUyE{8y!6e?CYsUuk6R-ZGWR?fkVMHx$z6@Op-rHe-^l+Pr zT70++)Lv_zX6@RHFZS1?-nK*NeF$j=fED3Yf#1cxruSJI04zU$|3sjM_(N0-YuBxd zgPWCtCTL~wQv{7(yK$odc~Dr&&`uj+1pxMfjrfza&8n3v!2xB|RJH*{;MII~0*2wV zK3-A*o9vg67(+7zfs^_3pgJepnw2WWOHAf6(QhME%^VzmZ?E;5TA|Ib^bi0K7@Td# z%7ynW9U;G}$9?+m{R|8Y&@VpK{r0B3{08z4!|+dzUwn`r!DNGXiEUp`)&)Q@A8={I z1eQHr;9>&<(tC^a zkO(9RJH9rX!2(h;l7ZvL$YA9+SH5dzVsaAGjsngEbzTA%DzUb#*Z%>{Vy**msyzVG zq0Ph^#SaGWZU;z2MD=FS z)n9{Hp^H5Nk!GF#&h}iDa4+<{>d*8d(0xMFGy~R05pXa~TL4+`n0-nQ0V^WV6_}=7 zyLJIW!0P;_rlzL73uL2Tg#fP;CsXhAGHR=+`2P=Td+&6T>wkc@U>OganQc+D0yF~%4Ib?(88pMY&CSgREF*W+VaS1F ztC$E457&D1)M9DzE2$~QzqYldpeO`wq4a}5kRe+@!Q9Mq9piwsc(;g1Fnm`aY^Zue zG%181KvuQl|OoP zH3$hbh`e9k&cTvOcHq5{HE5?Y;rRf3cP%!S4Z=KQ#CwvB7?s0wU{lg|4@t}R{}qrW zabciyPCnHTKzR~reopK%9+e1u;Yf-&ceX+RYZakltTr-yK?Nb<^-GlgHWl6>$V^5V z&;77VVB{@6{ z-JI|TPw)9p|4R!{4yYc>Zc$>f6R>(hwE|b@vzj&)j%doiz=t&~5m!t=Rz#p?z&>o{ zeX;EV1KMj-L?egSn88=^9^o*mVCV2R9(gbQUH|}nhxLGD$Ml(@qVQ?L+Kwu+zD=DK0)gFb|EE2VJX*`h-^h2FSH5bw{Zi)`a0I{C&_G)eu?{G|2FE~A7_QU-%?ffU zb)Nhxj`^xnjD6e`gW^-V0UK6Wvh+hu0q1T43>5M@{fBI;EkwIVMmF^F+t18MzE)c( zEGnw3sL0qO%FVfZ=1m4R$6^OJ_h=r zytz5A>|NgYL4dydrKDEfi;6k{)nN4ByatXPP6Q`ICam187+|UwV8iwPT?w4&J9GU= zDf%vOS{^spIb0qx7IKIqPiHSQBt&!oVwza*lXbFr3B?O#ZXy&JB*%1mhY-3Y}4# zb1cRtHoXo<>uIA*t^Mwk++?Ew*j_l>jZRaMJpF3N7Z)iUiP0q`2XPgqpohQMtoB&} zcu-AE?WO13bCv{Jo>-_pDp3ZZ`Li1T9Q4efLo-)A0Tbf2?+jKeI=pb z$&{YY%F0Tc8b~(<;lV898IHNb@bVz27_8oex<-)7oyf=?K*Z5&?S+RI+cFV`a0REF z%)~(t9I^gx306ExFru45tpHC*EbuPN%rj)Z89f4w>{rrwTR_0;w!%;r#DEBak-!z( zJBfaLUB_@xTvJUrYj!BW1T%?&=vHDp#}y&(Zj;@8R<3utXJEkGOMT|sCR=0*9EQ?u z2m=nasm~QILyrr#DZKn9`k%N#5Y(bflikOaULIROlQOP;j(mc$h}eR z6PbNTNVyzU-ZXM{&k6ES`A^@3xPnIn?Wp|Hr9}lr#jZ-7&&?kasebNzTIaW#{m!Pe zH{b5ogtr&UghoZr0&5?yE@TL7?YP4zvR%@dXcHb|(1S}B0-p7wWa$!_JLDf`X2t zVF=$*n*vQv!14>Voe0WwblT|d#2~wR)!G_K6ax~C|0Tib&fh0}%%3ULuHOb4ZB*x9 zdWpot4QVC>L4Z|U9CD$oFGot+v;WU>i$#Nf_aCa+KM3e-yK1?zjkp&WSPG`5qPnU( z^m?{y-lera9v5zUvi-8yXHV^qIYM;N%ASZeu|`UQ%!=CzaY(A3K+1@He>EeZD>AyV z?2?dq6Em}Z%K~itkPCsie_2q_P~>qD0@nnq>1eb{=uSXmoWU%6?LejOBf#G7!Y_*xwmA+k$ z>8(bYAJTNi5&8TYMfH9N2~igrV`HN<7KM@84}rL(x-#yi@0Tyjd+w-#c9=JG^JG+F0G)4G*Aq*gs^{nF7Es>$?erK8!Sn+ii+|0R}q z@Sq9{@%W3#gWfXGKfef5*}mU?C$dVoGoFoL?%~h_s-@ZTgRa2+Q?o9wxO3F_N+R8t zXJ?PYS-t|?=VNR|2n|Q+ehBCtiA&G6Idq7EO8ogHh{kF$3rNMv6}%4k9+o$d?)gLW zLD=Z6t@$yc%1wm3@VnqAP}IKc%EsD6%gU+(0L$Llx$OP>+emBx=D&V;edp73Q&{{_ zd$&2KE@K=o2ptqCd=3weGFc=-(S4%lvOZas(|k8H8j30^d)hnY9#tTsja_x+7sI_D z@Wx>ZJJ;qi^pO*RRCO?jpKJR9K6>YFMvrV{b!?@lC!L)#bW_%M|K77_BY}D`iNr}p zwfWNL4)g!6mt)`4VAk{0dpmK_PNAYX`oMC+!Z zlVGqU1=TV`OYWcxm>EShS-te}^v2bzrg+_u^I@lT|FoQ~-D)3p)uJY>(M*@YK4=fu ztX{nuY3g*q5P}Dq;OhI3W1|bLS5SKOo2ma@q_7CzWoB_ZVwPhfUgQaNJSl0cV1XJA zIwZ_+5Za0m$!Hb1XDfRl{<_{h-LVAg<@o2O&(&win%WxhXISA@R&{=}n2!}>NH`K> zEZ;kwOQZ)kl~Dj;_@s(BvnNef!2}GE)1B;gYmCkLnV;q$Fo1!UwoKoZ`eBGzdoU!v zsB3hBbMnxO0Y9&0IQIWReV`uqthJ#bnCS1C>Dky~)1&{pl(m|ncNWMS11BX`SA?*! zoq!n8?r!5%!F_Gvar?8poCI7)=~lB={SveA)CN|gTbx{5c-$ET^-WNyV$BGOh^WMl z3!vF~q=l{`qJ|BC9qhB=KbxQ(+_H7+YtrVJ7eK{9$ZV8IYuG#q-8)D)-z$4KvWdIq3lBy0awdI<#cTaEi>>^q=vIC($`HGDMWkKi9pWZdYNU!06 zw2deTQD6vTt0D@wHiQ3JC!ja1gF@vU!n4AKO{vkrd`i_0Mi>b)+%|o6R=f`G)GFl$ z@)$=!diC=xEm)hIgO-xLBb=`_yB4Fxcs^#gZ^_%Ao(LV8bsh^eB zY;?|bQqWpzVht&s(hJ9x)*aRHga>{FnH&>q^F!7P3JQWhz=(Wtk=qn&Rl|OdX@2a` zHCb(~tveFx*WOFNbJ*dz7C#Y-{XZxRL;#7LG!km|DJYP_XLE|xhAxdwPQJMGGVs5O z*Et!{pl&#b%@#+$LuFg7sh?En=-^NaB)|QfpC60GYQV4|>j2eV+r%iVqah|}-Er)D zER}agsHK?5Tv7tLBfK(c*vvSYQ~W~c{^$oX;ngQG_CM7d$_`K0_0~S(8r96 z;mfP~yJgM6mcV#ngmpnXMU*&h3k7YH&$^CD9W;27mlyOP^lke@WvaBptze!Z5()xG zl4Y2W-&bLXtO=Zm#(ji^bf|tINB&IpuED_y0%YR}hNGn9Q;jm}yLo!9g-m*k+zSy*Z?U7?VE zh_cT4XL~fbEfCs8N1y_Cgfio^H_7c4JtiP4DhBlh(t5My3ioYI89vK9j^MI(&~2}V%$d~S~ew9uRI z7hZ_pwiW;rKtM0fB1%0EICG2_W}FG6w9-hILwDQ617tk#H4Y#mtY4op?C-;1Q3#PFzhSr^AjX%Kc6?U7Yz)Js_1JnAOI(6)xZ_t zWxT5;6nO8+WsQZk3-)RfWC|VN(CLO)_Nl95!hI|%3(hhT;xo)-qhHS|9gbOQ!G$~i z`UTqBw92!=7wJ5u4&KZ%u#XYzpH$!DxkRTp@7;+uYyfEZ-~9a5%RKu+K)VeAVw9nf zLrT(0B9py%al<>&d_Dt5hKGT6@?kkNZ&5H!4L44p&TnPc!6Rt(f?m~|^CI8r5w^c4 zI4`bX)@vIZ8vTpzfeXjJeWAcj3^TR9Z%zX-p^rBivI6bP_txA1d`Ontgc+m&-&unE zLJq^bd=CBpry)AsCWTw#cvoO5$DMnDaaGrW{llnxcuu1?3rkFxCo z1zqaRv0%CbNoLP3S-hFNJ)stxdESE4BMT#&fI+QqZ?E(`V4OF{1&icRZcJIc@Y{A1 zG#6!5E92nC)o(Vm-q3hf5v~7&S<2-OVlA%vOw?TmRFs(uo!>aXw;pv)in;fW-x`d} zqlLM2-qw1Rng(8P$vF%QhcP(yZakOaNc=?5$JWOipwsXA`1bZSjb{o!A6#oWKprjOETyV2J_nH3-ta zRh`zNEuMGY8`yyGzK#9+GDcl+SlH^zrPrJLI5;%lFV36Ui#8K}>}$sX4A1FD)&UAU zB;JmwR{!3&=$d3%}!QWwdn#L=g$Vl_BQUXEVE{5ZCwHze-8v#awtb%>ZTX+O^za;V8_hkNj;IsAh(@ zf*ys=`=X}4rPl4?n$zPhVnSWT1uMd3yz({X=mK>=qTHtx-#lo3dj1g~<9Edq@1VB@ z(?D--L1t7MD4m!2`9Z86*TA?$-c_8xAV`5IClTrkR+$xFN%n{b%iJv|s zt(Yc(0B*^Yg!%~aKASJ(HfM; zbanb3Z?v&mVfNec>iVn*P*coMy$7vRLmzt&%f(=8u3%W|i9OcyfZA;!FaSh>qrj!d zkud0BV8M+x8h}UdW2iE3617i`maD|C`&L|THS{zh-V(Lm-L)s7RzUT0>UAIn=eAn- zOs=8?mvIa@nfw^ z^ZCECD^8t1e?GHp7xF>aMsWcvJ_tReE;_HC;3BWO{?*v=6i*h92TNtqeTX*g2K7$3 zsp$<`y<8iZ_uqqtF_b_ThVS+BSGONtv&5@@@nWB2PQ;=j!<;BrO!)B>S2y?P*3H7$ z(wCJa6&KE+2FCCm)9NVJ`#QB@NN5e2asMok5m5>)fd?Kj&u!tSCrv20K;xeoXoxA~ zaYlcYzpIk?h_<`Wwm~RKtzm+hPktDCnjrw1{fsQGQr}ry)Za%|Q%|KSB-_d7uhB4d zom>HcObKFVcvGH6bI|9xVJpUltCpm~^7uqdbxV^-s{euD^s_)Hf!lHH+Eupk6nUun z_=BakjAhv$=&kYc+}K_#qQfNHE4Y`v+n?n!UH?ZO_b9}&`8g+SFTJg^PA{ek#!_Ft zNVSfy<2vW)3@;5A=jL;BMsves(&!fkuV-TwO?NRcwc`@ai`-IQLWDiAoBA2En;G5y zx(DSBI?+dv@DfECutf)S^Ll5=QD||1dmuHGwe!SY{3!*+J<&IjM}VCHI@zn}jUmlC ziYZDo7(gxm6cujVSv%FLP{N0b>w8Bp#Yi4QbDV52^efwyf%&&TBpa?+bVkRY7ulva z^%F-#M@g(y(N{O_!FM8$S~VsTGwtN3fB%+(oVpY3wcr(Q`CG?ej&sA_K>k@SHWUJd zwy!669aGXxKZTSy`7d%xjHut<6;3mm-S*ug^{l8OkV@+k|J{JQ(Pfz47~LV(5BthM zRj#lY&}3Y*!<;W?-m3qCv$J#NTTTpE^3&&IhHXU_ZKWvsXCrKz(nS{p53GDzpXW}8 zIx^5w%xUM)Rw8Qq8E_lzF*dEkFyU2=rT(fT7peA)8=t6zG-Dw2afLTfg}ns%E6_;YFhRcVl3p!-R`0l*3CjfKSByuxRN7ba+d+&DmpUyB>+E?IRQiP z2#ZqQCm3izM>ISB+N6^Bn08ci&euvYKd3Z6*jz|LavXxPu#+L=%J8G6fq9S5CW;4w zCJ9F}W({{oYgQIWxsmx=U4r5t%!RCUG#IN@21AXl&tt;9aK{KM1pqT*kdf|<>exLj8LxwilMUrYd;NNI}R z&L3h53Ny2)_hItnsu;*k;0dZf#dkx?e0f>d$V9#(Fes5{Bl*2QKZ)v@)t&nyYd}tB z;`Bw#gK}Wo?@&@xl7W~I><*g*A$uV#8ayTW=Q7FXM4mKRr;pVHb|W~QHfa^Q3W3Vc z8QPD*M!HB;pT|HIul9*cmL=A^KR-MTwr<~2o2~mxmKFukEImeNiztxvSG~`GJ43WL zmji@{>;)eX0tbj~76xpeX6xe58RX9X{8SZ2s*LLJ)1${d24yBVw0;Z#3O0uu$T}T| zVik_TBT7otApS8+keZy9Zfs=K1P~7_Z9F<&3i?B^^F7@u5Sm6{-bC{pLAiEWsH)}$;y>&R%26B1X?3BJd~VUn3$BDohOxN z{=-lDh5RzaB-aUuG8b3(6|{x8uIQ;L(DTM#HhZ^I zTYFE%pNE4=p5^Ypzg{8YOz*mOWD2(ZY5{L`vRogBmH8$7`-8Ud6x@<7MawHcJPeQM zQuH8GA`|qjsp&pful}#!_wapNqb#cIrLyyX8F=X z&fqb40o+Hl-il6mJ>Z$)PL_LvMIu7ROOgU)1+{l^@|*v-k*r&Vas=Q&CGrSzAb^io zAl`sf>nMb@*){l8?Mx#oct^5rbx}gbF_``_7X&T=E$&DAVvc&Eth~Hua8Lm_7z75Z zfW()Pp9zbNx`*KiwAn&*a-v-IaTcga)kTL=W zA8acS2lVUWkG)K3w-5dg$U#8Kn!q|Jmc59@3y8a+!!-w8z3Px+==5s+v7r{5Z8IAmLmz|dxn$fk`n-9Om{TsZ(3Ums%2z< zE{jV~ZqSk%ot}pKa3xZQ+@y}3{taT}KYb&^yCP_o>e{_-h@XAt&FsA!NzxlkLr!rg zeBZEA?a=j|2N|h19%6jHX_$Mh`$^{SJbqP2H*e%VHjNX@w^7Sm97nLPtmW|;r3bw; z$5gF6EZCiQvCItT7p7KD^v+wViTsf6n7?_G^!1+8%>!lS1HYx!6P4)b1@%vWGpPyx z=n0KmIFyk@&6FOH2X@g2(gA>Q^s}xJv3USVC#3aV2-u7U7}KZMy$J806fhVYRJ9ry z@y+MV&DRi@Ds;Q_D(cd}JSy)0B^z?exA>}f1NK(p=3KTxKm+*9nCLr!WFuqg=&84x zW!JJ_qXPV$g$YhPkucdlmzi~Ub^QQmH<27cnS^v@kwD0S#W$QsN?L5>Hx;Q_53Qs7jPq)BD0Bq5!SI;zPnRgUl&et3#s@wR)Nkovv=iW;LjVX2+jQPp&X1O-9f zWU}>l?naMoV*2}>SYo#?tT}Z<%-F{CEm#ywOpD^Xk@xPs!WptRZ{2!bUr&6yr+{Z& zUErk>1BwZO#_h+B8>(hlZ&poLp1JeRndQ_P@jz#R%XoKA$jwVlOPlaIaawcqH)?gP zp=%Ok74tN&8)`mPeAc68YryVU$FyEj0OE_#1LtF8HAeeYG)AdUxzIIJw}1b1ejnV1~oKkkf|$ba3Rb~jD@i1x)1R=kBHPd^j1 zk|t@7C%E|?SYe1mRbr23iaNYTRdD&P~+_rE?=&!wD4MC)QAV z>(SRD<*kjDw;mf^z}bAIn7_BAV>jbHl=Abr`jY$og$nL2a45Cr_Um=Jvqovv^B%qZ ztb0yapA4qDZ@U-nWXyc)caP-FvGfx;pNAEnjJ4iv)-%#h+g@h7uZmpCuM^j_6+s^h zUTY9>i&V5U>`M8-2k0pCEpF-SYgFRY&kZ#A&EDQU3)TfkFf54-5Ht>}%(=Zx4sLO4 zY6S}7Gc?S1oZB_jBG019A&t*gnv0}x2Cgh*uKbDBj%Lyy zl1eKYA%C*CRhyzEqpY7yxq5W!`=*L?H%%kc3L6XyC76(4@0MrDR6vIO7~oK2<3yv+ zx0REJyJyR`XDd~Hko=t7Z3qFQPq?(@R)oHCfLEYb;J?PbfmPa-ayc~XMx|3~RNIw1 zGF^2+QBl=c!O$SP7D{iw@hi=VG4WNgipZxv-Z8`XvdE4kD2^=ZR^?jt&71z_IN8#Y z@F_f}{PrHMt#=q>wX6lG%U8IHDc5HHvh z`hLv&GjGPgk0ZpJf|JW@LY_PS0xb1h%!M438JGTw4@XJ=4TmqOC2=aQ4~}_2VgV7I z0uQr`qkAb=|2#K$&8vqZUco#*Vglt~lOPqL!GT+^i(ML|ZxwiFxjemWbwfsut+|Te zs{ks=-A=o>ld=^_;IL-CzulJ=I6es zIT}!(t~7uDb#1kl+`n%f*{Nf+8)mX_ye~NPfu^pPP!A=4{w6(uEo^iA>}`L4s#o&H zzwY+#IX}$obey+HzwXN7e5MBP(7@TsM-p~lCXMRaZZIRUmb#E?8-id=Omt3r z+?Z}aA`SAUXTOpn7P2o8P^MTvxKBu?>1h#oiK0ML;Ct48HCK%yO$pT@jIdaVX_z%A z`^Bb2hH_ZG<+AseZN#`bs-wfi$CoU4-4b4W zd3f7@*W54ptv;6qfO#WH^crA2#lYO{9ys*W4Rna&dPyIrVOt66u)O-CzQK+&ykJvb z*e*`eC#JMqvsK3JD3}P~t2LhStUvypw{` ziL$&in!H6K8_JK4ob*tCUDeFedj5jL&tLR(YgFD=l}4cX8ONm3k<4+W2B6b^Y2IeC z@}?YH%bj||3a3riAQPRuxMT0&MmU{s-HdPklw)9T(SACkCO3pk=XXVGw^U4E-MjuV)nUF9jYun0{zx zfA>wHlyl;48K&$l$@W;T%dv7R=a0ZKVJNy?A;8<(F=n#qP8bie7DU}t4)2$gBy`0# zYN}If#I{bf#zY;s>AyP2R&QnE)};RE@!~js>L^_oD(;ZFWO85%B->joyK-GKY}U2- zd8pp0KYD#^v^-rQ&%+-u-8kq}y4jbQQB@mn&&XA@Ygz!RC(t+j32Y^@ehV=6vBGFM zfc)2PpMzJm7G#ewr#g8*br`+$msNWE;e`58_#z%iSaw13mw<_Z0X<=^&aZqxFGgbE ze#SA%a_`o&ZpCGdr>1DSFcDt54Ax|cC8*t>c^y|uvrA8=2FnGppH|bVOXouKk_q`1 zIffWg!=p{t1?$z5ujAOh55tNc&TMBVk5F*sWss37>lD#2)}4Yml^r{2l&(yH>E-ED z-1$ukP~};DnU;bTGqZqh_Tg)u}{;`VDqlHA{94k+<`@(}K zWMV!ha6N0L?Eucxq6%JKfFJhP#j0YZe7TwKeQWtbv&T>N$|3ii#{4mUmBWv&G* zreBsVg+KuHEP zUWLt;b}W|8b$W+?XhSfclmC!p{6-tDeUqzkE{!P`BB}+O@p5P*0b7QlVWCBgl(Vy_ zQlfBzs>9VG8?N;!mD`;yL!PRqeR!^|t4s3YkXK#>;ai@^%pM99e2_0xm|e$Q8?Wi6 zYX5$~9~l}}rMvJ4*SOcCqFR82oK(kfKM+|XwyJAsX#zD&pNWwL3jfJGjeDVgA+!|A zau!IiFBM%3xOAg#{BZz7T2)?mY7Uq1KL693;%A36_A3qzk&Gr3!B~K~k62q#}vua+lW%qMc+mc!)CyN8#I!^H|tym1{mDqgu?kmZ*WK z4@AnwJ%l0|HlTzLcDm@Xn$-uX^xuf6C{{B=FZTx0b7%LVE@qtUt`rf!?0`|596l9+X__RD!=9~^#MIj0FC)SY?Vu5dRWxBur2FbRpi?zQEQ0u&J@xq;8Odr?g z{$YmmtBA*iD4*dMg&T}msN342p}L2YGuAVfS3vGCh?fn>+`{sLMRx->$ru?NME$#a z-DS1UD)PMn+1dLD{142@9D5l-W|1fZP66&68LT4lz|q3)MkL{$k;}gNwe9Nh*+v%h zKfZc89NS-{$o)Tkn=;}OjYHM}x=L18otC0keSpk9P_?^$jhgWmFRtMANRlpp z7t?$LYby}j$0!NSPVn3kA%xc-1&#nqUtUvdYZi{K(;sPzoTVvOpegZndjG6RJn)hHQLp(YV#I-%5}b9DN4Bu}FXE zlMrtxHAI=%f9|HI3x4_X#h2v>xn|jrEzn51f4Pwce;-W}PdoH`Z&1@TqmSH_!(Wy# zf5`etzh0#kz?J?_d$z8uGc>oW8}EB>%6^@jju<`TeAX}u8U2NAqpSYMXGTr#ZTD>6 z{Dd8iFjAl&1wz#EMXoZw`kj!BU!3VxLxjTH%9B``)CJr=;{pWo98VWa%-9e?_?05Ko z`7=KJ8TmWXC5Sg9T^jU=uhG1J7@mR@u^#f<>+2b1f!p%4WU4Evs+J>h21qbc=MDig zwEX;p4mSL-yIlW#4Hd`o$Gtv5q`)X-aHaw^<$U7SMA^eoBSRrbyq`F%kyJAAYAO6t zIj#k66I?h6Vz;R1HecDpkdCewu@VAR11Jy|wFET{w#1YZ))m(RTt z9U@LhU40p>Ox4oCKTqpK;7YRfom&mPwIMta$syG3<74p#Q%bH<&8v_s8|rnD?fKZd z10>54Y!=Ma7;9SlFN`_$yxV{&YYahH%}0%%ZioPd*qvBpH1dmA(0I zQtO3?k$@RoT$6T+R&((>Hqj^Y8+LnaySy^l#Qe?Lj&IiAKV2QqVM2i0ZZKlzLrrgM zVFDcblC}d+Dk(mC!;x?5J@3P&W($1u;Z~ z{?xaA?Q!AhgqgA+*S^%s>1S!-^{IO_s7WD1oEHL%e9I%#ZzbOO*Anko1dRerf(kS2 zZipa`+C7}6kp(l<@nc)+PU^8f1>|WZ$|P}VVLy(fGlQHDI@54zvdD1@V7dZu`^)fX zR=((zJ&=mr1QwcB(ayFWhVX-Stae3H^e!$gW=cARa7B_VPjowFz&y4O>9S;x|NNO^ zu;S>vdzR=RSF4@x*t^Rs%69MSw0wFl+Cb#1=(pXrr&CUTNOG62YEF)D?H6W4nkwX3 z*H8{KdW-y-T_<7O^hC4xy(Rnh;NW2D`vV6K3_)3g95AQ@-dtT58&GO^D5)W|Y2^iN zHF7)Jr2t0BHcG}Fd|*#2-=4*1#lHYLx~yq+ae4SubI$y3`p<82NlJaL%(QQi091W1 z!-V)rpsMOF%KtofY>`RgRzZYyn)(SVwa82Dp?*t0Jpy?At@?Dn);v2)brOFk zbH73od_Zu*2C?Q4yxC3g{#IGDl>xVShfv(-Vz0sx!~ijcAqJN(3+XvCxFOx7v}oFw zf4ZA5sNq~El$%PkZe15_MCv)YrgClHR9T)OYHF<;qJPkt;R325bqtS7rQs?6_Kj-;wPkMY(`>z<3ceJ4)yGj(0m>Bi2^VYOYmW#A^7CAniUT{})W6 zSxbwp42&UpQC;c}aG19UPCvnrH^@mn7Qh>$dS@)-)PzHW=0Ay!f`Zhxz3?XXS+oLX2&&|&*+fmFA>zW6j^5Z`PaiNr|&+*$)ysd06@nnI;nA({J+DE=>s^o9VYoxS!T*4atT%S zt@L!exOQ_YuhiW~v%vAq!>w4|0>J^N`dH13GdWSCB^5dg*pbYm*MC5#Y{Kyg2 z`n=HR^ZU+EHK?l6$-jB`ZuO2GJC2ugX8|(dA76^PHxT{3>VBQY`_1Xf;%+KYdyK6y z+s3EFQ`LEo;|xhW8%lDY$*&z_ICmCJ)aZB|#@WGty?17Did}IpR9`djHOYW`XuE{O9 zQF9nN&6FYv05>93?uenG;TKczdYy2ikp>748m=r0(Q&92GF->HneVTGwF62KLO{T# z3T1VLLs6-rA>sn~4T`19`*Q6%aE51b7x@Q_i>v!@FN4QPNqG1~qkzZ!UPu-AI`^hm zK$Vu{VnEyy>n+(PAx;Jx*Fsx9H8IfxW<_GpruFN0!D9$Cbu$Y~bb_Joy*pHHsnscX z0nPUdfE*rd6grw9WR)n7<(CXIn4@trSq!8S^e&H#I6bm{#y`?{n$>QS^ym?Ml-6NA zx7Jhpu0*|r_Ez!u@hs;kVfjS0uI`}Bo1q#{Ls>iNJHLIq1tN=wr}E>eTfP`ulukCr zH>3HVPdw;Z;$Dp$v)BRmHb|E&Mjkc}XK8G_zd9x5F`cE;-u~G}kv8RO*XUGuQHl+o zvaqnABm!eKU{zdE@||x0gks_=D>JP87NSf>Mn?QBiPaAF_7yr3EDQ|C-1CPFxNco- zun@&e8J!(7247~Dlar&pqrS@gSxIwKQ%DM34T5V{ceb@WE-GhLE8smQ%a)0dirWmX z$L?%DjJ#G9AtWaYqG_YO+xO!Q6?x2Dir*a3hH6wBIu;U=fTakcqrd!*9szF&9LpF- z6~f$uaU0k}lMLX96s2IQu;r1kRKPz$$k9bDq=khl=IN_)G|^Bx5v4m=K8f0xDmzvR z#vT^n>*%H6w#F(4{&7FHMu_c*+lADHD8$TbB#I`sSY6hLzWi%!A79rxy^t)z?+!lW>3e1$u znaT`Qc*T;87gu-pZniClJ9}K2@((PY2=xmQoo@5?(@A>_qG+y|?RdkY0a#9oZQ1T| zwLV9#n!GLd$EbWt%jVDhEV@C$Sm|bq`N(>>tL|Xf-!lcKl^w-%rtKY$9lBv(m%RCo z&m1{_o);tiF)EPI5oO)dv*mBMfVjaD<@71BdIT^4&~&O$rMIB1vNRq%QRgMf4={7% z*2+lvtH8zsr|$sF-c2nnW@iU_d&`g`iMj)3m+NT8_d50}?Cd%I3fvxXa1!LrguV0zQU*o4;Bbfz3a3ipx^Tzm zVqR_W-6cKQI%)E)+VGk(Uxt{mw`C?9gjQY-bw!lb-tDtME}XXUBEloP@p6gg{#C>e zOew@!)pNWG2sROEyy|*sB0L@sf`Zi9z2$uoQ*WW@j&zoys?@qyUiFo_=+$sfPwj{hNR)E+BQ5*jB`2C9f;Yp%#lg*8@$r=J=J-QsD^Kx;$~}4% z@ipkU`QFXZPu?O|Eq>nDgq{oAe$+rXCShL!1Eu$0S^#&q{%@br`u=i zlHxvuPg7?SHSlaQ~ zjnti@xOx)hh*|R-UI(+NlGk64Ys~I%PEhB58GKLfgw8wOt5}w@fZlE`+EIkiBkaJ$ z!roA_czwErZ`b#c5n{8(rjr0!QQd_|l5CDOAhpPyp{TSX*}Xk^Y2bEOuk(T9tCoz) zqwS@orAc}}qm2HDi2f&*6*vgtMjH_T2Q-c@q_*owUv(P|xBPeiS- z?`U+iEyDs^IL}}`g*v$V;L_YCaoevI`CkFvLEyC)>^*7n!$*gpi~#;Y4xZso`@BE* z`_;1}kF^Ry-aJ(PTVR2HY(b#r|$r}{PrHhNG3VmNB(ER2Gqs`m(tB=G`)tqQ%(1ZbSWpC4= z5x3qmo9paiP7vuQS`*J_ZcrqCE%qX5mjp!F$R@MiWb$DQN@o;~wJn4B4;g93wIX!m z1S4vs{kM{6EA4|N=<2l(f^>X<1NxjsI}c-R556#m6@gmnF1pQA{K=osle_`I51@o- zBz=R9*E{Ilxy7lHG~mmiZwQYC2%&ve39o{1s_GR;;BG*A=7_nMDx_BTIZ$%X#zD2y zO<)4ie+z?S_I`G{2d8(}AZ{Wc!DrQuXC36V@YCd1wtH-9cA8z7$J7}`S@u+;qRzrUf8xh zfH2e%oo{N?*LwBIcU5nF&{bz4kd~MkP*Cu*>{BJu3%okKu!Qc;A#e&lk7f6Th`DG< zHqcK$1c;Xh6%?n5EZKOp44B+ zIG?T9LcWebD>IEh4+uTR-69Z&7O>t<<2Q{cJw%Yyu#r`|0z5j7D@j7|FnKkY<@ayR z>#q&;#uP|G#E?a{&i7%_H;E&BS_O+muXzrL-D*0xaqEtSH6#^=M9vam(y)7X8~S)K zL~$>kKlUsU(kkfBexPvWJ z?@RILy+0GG<8viq;K)m+$V1TLIPr_VxCZCUN=EbCflyOWd3pLVZuDOX>HvFsWw|xx zDKV&bqigkwd8r!OAx*)o;iC``cbkH-i%K=$!(7ua@dlg5k6kdb6TDE%$HnioiwqhbH#hvfN{RivAH|oc8)b7 z^7+uzucS-w_0)?O#*ZU8itk(g{&Ac6cl%S)oLCsbLSBysGu%9(XbhB#WINP(rDF52 z|K217QW+~Wpk{ygf=%gM1WGF_*8#cG(~Ej59C8MH^vC$pt5}2UEkw;cVs*pe{W3b5;|;%U|wMfR#a9d(YT4lFP9Z5X4v4# z5hTqM9cg5aJNK43>T|pu)+qaL`>h=(aMHc zpyeP&D^P1r`^2uKnEMQ73~aM;iFw!)bK3K}w{PT_BALTjKNxOrxB$$w8jtF(N>TzU z0jMBI9xI|qu?Ulp7`NIB4i4u~@lueG9FBTasQmgvbamIRUE51eG{PY^#_b3Z-bhm4 z<{+RC&fa`7z0qmr$5|kcw+C#y?sZ6y&dBH?AgGJji@yczfR7gXw&%ABmhjBAaVl*D z#9%OiUb#aRN~nC44HVdSvQG-r_ht&`%G%W%QYWe@`cl*JJ6I6-XWJEAJY0WAJHCY` zTbNH&kJTK|v*`X&9eeH^fjt4Oi#*yU>la1RKrcH*-gnb+5D&(`71xiMBeu&EqJR0Q zTIWry(v(+K&27CB8nuk(UQm>7Q{-a5w)Z}WWhY42hz%Y~T^^jwU!K%}=_ChcV=@A=O51;nLbJJ+(uK;-KPb$iJ99intk z9*CB=)X;|d(4cbm`qnSlALgc%(N$R}X@Cy+@7@BK<`EhC~BnOFv7y*_-x7hFSsjyEx0QwAwIY?d^ zK9g{jpaRJO5NMrY%jRwDLH~6NJ(e(Jq7X!%N>Ru8BqT*o%=W8-z5OU{y3Jh8S}G3$ zPGmE<)af_BYzDRXi^ArhGe_ov+Z( zx?#`B`eVp_$@8P7KY+h2fxrD+>HMa4#0TI^lnh75a;q|Pt~#2I{cCJYwu4NH)5|Lq z6A=lhW-WxqknoPK&TQ9?_=s^;i*C*Tb^2ou8}0V(+z6Zw{&NM91<#v&8n;rn_-OjY zpB&_KJ*%gO6D0n^QOe^Sy9pw{<;M@kB&uVNAN*dyC(LP_3g`{=rmSBQR&nrc395>( zW;=?#>&)b0x8IPBd-e8hqQb<10Dx^PH?!F@->Lh3Hpoto12V@t(eBb6TU%-N z=%bj(%*}<=sl5yE<@>I_S~?OGfcmuh zLBlq%Ox*`tb9;t{6hD5Rxc2PVwHvKrn=jbY26}vP^zK{FF_S8f8z9lKIPI)=PLr$y zoamfs7$cdp?K)zxh6h4UjV}lEsrY3I^g%q@Unu=WAlwCfsJTsuP-5qfVt|rf`Wk2A z-oaTav9_1ToWFHQ<=@~+%#a@B`dj7fF2(z`@N*8rOG*^3Rg!#se8o$bRv~3^m)>vx z8@l)JInGlbEn=l499FGrvyxu0WONt^FtW3&!`^dy<9nk ztEpwXSO2?=BEL?&3Btl#2?Fwv@Px_M7$e6L>cdC8Y)_%Kr^jNBdCy1T4p9mbo8JCW zZSOacm;xLh3ABy{N|UfV4}205j5RVP#KgiTCnr;f(Su@B>H#|2)ZE-fAP`A*>SO)p z&*0y(++(2#wKR~j8}9l0WY8pRVD+a8EFaN70y zM75hRBND|F3Lz}a+M))h?%}U1T*11B(~E^;q>zhePL7~MG9Xd}k#OgWcTKiMaM=dm zHHu`?Uh&f|&paXx=^|3=1!se+%KPH_N|j zY`hOpnd0s3ru#r+n3`RQEmTP!^Dj$GUxdkjypV|2{kFy_xR1)9dZb1@ACH<0;eQ6V z3a}T-@jO1s{YZi18n;8Q+i~)doW9M}g^01kUPj1*=x7$AY(mqf-B^MuQR4TqgkzcQ z!he)C(7D~d4k-6Ig5-!F1!5Tp@sZXA*xL z$YiX7Brb(C0mJYKHfI{IAy!b-W#sG#dL^PVBX^Z}JdVNDz++?|UctcbJ!}YygVjC} zB3bTGddo#pbNX=rXojX{8@d9y1T~>#4Z3`{(4;3mESB!8t_1WnxrnS^(#<7a6u86= z;3;N1Ta)RB&*vV)N>YGalGIo%=%h#^#%e&`zFyqquWX}5k!K7Ix%!K&b8ZFiT%}q} z&kk5@h~^DVFiv!|UgQh$y>GV{0g#9bBtZ%S;X359Wwma}#&HLx6`0VfoMOgu+lWLb zgg=lueJaxk#!dn-$!-&Y2a;d=`CojAL5Vgy`k<~!qJSgk;NbLE7XKlH(7NKqY2AtI zbct%1F!e*u6vxNmWJ8lhG;C_)&!9)U=o96KGzY2LL1XmI*<7!;_^Y>dBR)J{l!!y% z?E)`&EubMwT$yD^H#+v`wJd1ZQ0-sF*<6fjw?3u}pgJcc5M_+WO z!CY~MC@bW6U^rr=NNVz$e{_}NqqC_hh;JAo84y(#%P$Gn^NsEo^|E>)L;%>#%7;Nk z{*_L=&8Cz6NRO>>x`P>t5)+3F-UK)H6^Acj>qOa3MZZvn_K@(t)HE(0RR^+3f% zovmXtgpa4GAD%*mOJGK5Ie5VEkVsBo0Lw}T&b!XP?+o@I`eXkWX) z$Z~(5xRg)nD}d=*+2`pf*-8$OGSLQ*7za?w(xv z$=$?}5@N3>_SvU&`_Dzi`8dgbz3E3#p`*7~C4w=gQ_dsHWr8IOr#65|h0RqDZ6!P8 zK$0)rD(vRoU9)TN_lcb#S^40Q1D^a*=>it&QRC8OUIEhytVjed>=EShaB^?YyCC>o zR0zu@m`aOk=0e4z9SwTf&Oz8-3@oDz`+Sst%t%8PMDw{VPNL(ZrLS&OFQ_E_K(jsO zx36WREr7nqY228+Y4aAwRR07?wN{$<_PnYdRE%KY%0rWb&-D=mvpeZztc7V3q&i27 zg_r)w+Atq^rQX$=v3+OTYHUH6`5z)0yc5`z_WJz$bX)-Fk`Hnmt3$z`&Vbzo57ceX zU0LaW@A#pa87Fp)FK`r;hN{lOpC8#O>#;EgUW?PH6rDzkxGhbTKTUJ-5wb9pq#}&p@5sKB3Yu(eAZuvR)?Ns7FwTXe0Ymlzw@u6#&hL7L0|LAlZaCZj>95aUUH{ zV18<|NUKq^s`hsti`2{>&mX6GA(Gw)PJLCaIEJ#eXc-^T(zs>u1YiAx>Fx?^bh7M! zUfkLE=i#5FNTUe*3&#R3S*Fr9o{lYsp&3LyoIf40s2xW;si37JxO0lG)x+;1LQV|# z8?YxH^w4n`1?{IjCAyD|nXiAhNi zn{KD450L1`=!Nq3(QCIKmB#U>Ax4YLJ6i&1Bmk0G3hZP;XQ+=p)%w0vL)&NP`t{Ts z+fSR1J>t`;q2sO#V?Gon)9VBxSg11X-yZj>V$=fwzG`52J}k-1$S^cAlF?S@*1b)Y zJl>=ii6IzN9b8)Pc3325ybP3Eo8rE79TX=jEGJ*4Io`LneZEs%8Kv~f`o(cBJE)FC zDZWlNV>tF`KYm~>y>jTD8afoi8SDo}?|OLHU|fX!tUM5QpO;L%!;zXEVSY;%Y<}b zll2nSIf}3`Obdyt3{fJZs{_y|3cx4=!=JwvWbebh$s6D!#?L>fVI{id>fLa-uVA^8d zjwCkXrDj}Hiq-R|2#GU+OpX|6lg=K>oJt!f)C2G`)Ag^!Xu}tECP6Fy)_;46RS0Zk zIl9VYeZ}3pJRf~LSL(4Z>fltWw3kXf$)7E|tAzRh7-UnD3Dw4A_Z8*Be0^foF%7?G z8tpeFghT5IiGO{oU3t&6blv z92Ocaxwv}jQ@PjOu#%3WTuYjLH8AN+rho91Nq7Bo2+SIY&>6RExqJJzjKT3uq^FYENY4}|Kn5LTGAwP%GjWEh5hFYGy zA7oZoKSx)3cc}LCyPN7(GS24&6@(Z6`BM@``8Rq|S0tHpEh%e}xmb$*i3$jZ%*DYQ zQlg;{)}s(9ewJ+6^!~ae@$a+NW%HItHHt#)Bsfp^)mpRR3=fX3XbI{k-H&EOeQ5?7 zCfp4FL1&Etf`HR_Z-M_m%MUA2`l5&+!dC+E2c#CvjA>SDssM_gx9iqMXxD9ycB3_H z-T^>7fqxYuT|o9nTU=yo_H5BpoaP@cVL4v;o z=M0*-Q9xJ`r#ScDSAX;mh+yIFOH@B52LPoO{qfkTow>N+@d`TXMu9o6v@s6!2nLvb z3R*RPz2zkU$>ygo46Ib(XR*#w_q(R>^FVhYY64 zGz^)kd1%cY(S4C88VU|F*dhl$n%I*zTArI;g33=Q-o$JVx(&=~59qruTm!6Df%1XG zutlcv$g=bxZvoo`IpauB8|37j#6}C8H!@NsN(hWcxQ4w=y7$B16JOuKsv$So?h1T+-3a%}p(?p2T4O_3Mp+z2MZ;6v?1KHzPHf zfpaC_RnL`KzzRf{Yfqdt$e>iY`%BU^d^9Oh0 z3nG%G=6)r;t*=`;8C_?C6Y%X8Ui<(um%vtJGoU`q8?w9S(-IcY7$^crU%i{1EeRs8 zAsQpV$`X^)?(M$8qFV6fMmQ8YuV~aSggO}+)z_~0T0|XbL`DYfFY#U2j41ecuQcPJ zeM@LCx)_vrUpq=YFf>&Esg3vM+xeqkrDF;rYt4W|u7rBWSZZH^1awoN#Qd{w-xeR{ zfDf`@8~yxA3uV$?DXI1XuZo?2r!k3xc4xL2PsP*?PQt)NTSU33r?>acu~)nK_^Q9C zRfOQ}GqA9%%|l?phvr*rf8%}rMFHN;JYSxcthxaXxB7z48atgV{H62wkT*5E z%*$K9BxUo%yl;44@fm^N>izPVR%5^(aWXzu`V;z^DCUNli%PwQ7W`@vGk?0%>}>#;z^f zfuXu1Iu1~#FF@bqVPY$onb4V?Oy#Vm`K@(!l>|5#?aMTpzdc=%n+fLLlo_ek^feKi zU3Y=d0y_7T3*2+%Lo#mYt?&_ogM-O4N6Es3J!L8;ox}*D>9~zI3hWR;urPwev4Ba^ zA*33eesimm|lcW~;i3a6yf#KQOO!zthZm|&0REnr2@fxU~G=CISpjvv5$vq~Nzc;JG zxzWqte;=}a(LRjgcmfyk6cY^yYsA7I!npwb1XE(S_Few?@j5V0u~@8OE>T6SJDv;m zO?2v~SsR3kLS44{0)m(@ws~1=hF8GCg=Y^I^3wn9;K_3`uW|Y0{-74UkCCUCPG8<> zeDR`z;I@;T!3*S(pwaJuCkTlWG|C*tsl2Mwiz5{I3_H^X=bjz9sQAh)Arq%SFJVe z4~%|84ix4v)S@&kxYJBxI36DZCtN{f3cz<6T}p`*`p(AbbaF4SGsBi(=9sD^6aKbn zp|GKWnPTTmd+K9-nx+p;lGJ(>=;Fi7ee1Z-mS9+Z*NI zMrP)FFuidpX=S%X)ki03k5x^VT@{?xIClf}Y!tvHoISV}SIPW{*v3LPP6j*P;rQNC zm^UIHYv=tWV;4yNXohz_9Sl>B{tKwx2&q!BoxXOzN*RCloD0*8ivs@)F6&H%$tTTZ zxZ7-0rlJJ2mF1tMTvDT5>yz+a*@#Zp{CQ^6ulVgTZGJ7Av#=Z83{h^qtYu6yZnb6_ z3eSTG5y^bkGcr6>z3PnS6kXEXrh5oP z+6e!6)RI;WD2F^r_z~O}pbpu*)2Wx?tPOJ~0tMLj@At(=+A>Q@1ahD7zm@aZx|82W zq^(QOWNFfs=PunhZD06jnbY;zC6(5)hT@*E70djvX53_oH1UG2f|{RXouCAT7k?$T zDy!}BI`Nty6}_5f!Mi|Yj}$2fw*Uu6LVNgNEZLJ&}c;>O~M zFNi=ZJApOxUi}mxz38Y_dX*_N)hz8Av-E#&2XE{bGL-xJ>lsDtIohJ`z#O{G1Y_5zU7{ z+>3#9?ic+)gNK_hA2?k5K!pdm;f*0EEOY!}Oo#hM-XMe)UGH2fW@l%~eZ#R=wt`+F zkK~MiEC;T`k?O_OWLgRdmIN{^NJ`!fvV$CiRopW~AmYP8d;mA8G3*NC__f8+eQCBK zm$Y7h2iYKCg2yz@G)&jJab~Yx7?DkP`wxf4jot$L6O16%gX}RFtGAt5TQZQGUAqQJFQ7*Kkf^Y z%w%3n%$fYldGEK!!v`Y>8Sy67A?4^NX<4U%AvW=)LZwR9574d8h;(u#2y-PSzrXd| ze}3hH2)ydpNCessc!9L@u}~336EPshZU<9P`_LBRo{jk#F;AhD3{Ap-_y6&HfBIsP zOtNzcVFxvc&E(HBcq9t}zp{u}ceZpGj%0gayh0?Q$-3n605gh2X%b#7PW(*cm9Rb`agoI19SAKt>R8A?@ig~= zPKg&@3Jp#A@>)CooA{-}oWF?0SghAaN%#dfKMo(9be?c_i)~FPd&Nl$Xbfgn4}*gG zeu(sW>&B-H-7!D7^@OtWHS6&4(wZ82gqX?8-;IcPB#vI3^0exE%kWAb#k=Uuy~AO1 z-~EHL&mRPGd{j?`$kk8&1y? z$E@=-_hu;Vi24}#xi{LGwmNe!Fjp=$zQ0MHHqzO+FS_E(z(UPw01k&09v;$|>2QGD zM2y9dlzsf)^ELc*o86NE(DDLN@B9Y1BLMC3^`!*|H0CtDzsyKLFm$CSz({~qv`lmz z71GU$VblY6xIWNcj6qd{JE~YsA~4=c5c+QB=DPFmd`1q03TmHX!1Lc=`K~Lk@C`ZptMEYwPzBdpZPQg9(wBi2bjv_$-9%g0Vbupt^pTU2KMK?Zk-_ z6qwGh+Mv?Yiuw;KsZLCte@r@~h$8VWaLKj4`tcAiI&xrgjJt@IXFJwDHm6N~@;yJy zicJK!S-JZN2ngW+BiAB!l6|l7d}0d21a3fyFAE`A5w^4Y!r*yyVq`I4%su>58{kZX zzKb6OR9%CEXG65f1?60U4TVr}J0Qiz_EX`I>7(mceyQ4F0me?%7!D(1PSd>TBVAm5 zMQX?ON*t(2m@~|2A%Y(KGw}!CabM-pYQ(NUa!*3c&;^XQwZGF7hn4Lys3CXUfA`DV z%c~1>dIQ|GKbL<`Pxphz{2g1}frlRY7(8Gpm*7p(wz@>2KF(U0YQaS*r5Yd)jtx(- zMd^@~pZp$T=0#cv(8(NHv)d6zL%70-UjnRvx<6TqDcU$uThYp)tCdxc3R7F>?3~lX zTD_;3JZ{{eppGxEsIa{nVhf5r;-yyix*klg>tHi*M@kYR#$d9zgEgvk?Yea<^DYTJ z`5_-O1#r}HteBbXq!jvzbi+VdDEfw^Y*-6KIWoJ zVb>vbC!YU`k}f*fZ@F7&+kriVYsRsLl%->EPW&ezHm35v^-kRiju~o#@1Ck}stsFU zv~xZLZYlD3p(Y*46w84D6{v(!Q&J5&WGSHp3w-gyueomZ^w0G+W9y47KJA;Ua5}Uk zMx)7t<Jvw!>-e!gLASDaGRJFaD{Y7QjzMWaefXMI1YkQjtR|L;h;duZVY@->#Rla1 z9xvtm;On~%ZlkQMJ@49PXBi808k6%}c<^wc1Okt16Uxz~>@GYZ9Psc#!X2>MQ%q6+ z47YPB+)SOvu)7Dt?y<2l-+&&Xk)mrn1`hqmx) z@<=aU^D{qgSbiut7=0@)18>!jix`{JnI>v)g*pN|kR0Qwn=d);zFJRPDNte|^w9YN zkFbMVfMQg)bez_22t2p^k*YAd=>W#u#LxQeNyWZbD*0w)?Pb;aB}Kp7cl0RQm0NJ% zIvDWg2Z;MJbA?WZ=UE;KCNmZ?8{WP{<|D(5N4>5C=`gTwrgbM z{JZ6m{GGByn7hI1OXY@2C9~D@UY=p<7$y(>Gdzcq58Zyb$VX%$2;@>Z|zLYwS7HX)~m%awLA8#KbxrT z**!}LhZ?Pubgv6uCgQ6o-nxD@GB4Kr65Q(3^a&ngxAHGoA8G!OkGU2&|DQ}4sRGvL zO?Oq3uWiorzO%tso^fLZP+F_FnHOy+OvMQBHh#|8h1~~7 zQ=`@7d$MB>>w9fp9<;L2jsvcv9#y>k>`q#GyZxogjqVv*YxlO9b!Yz8y3|1bM#oEj zQ7S~@nl}kGm;Jq^6ek&#W9-pu1(L0o#Zz?d?^<}{fzZ)%^pN`7#$-kB&yDcDtlNG1 zU8?(fXCbqjXY1D>RRXYrjCm2y!|U^7$E(An1K!zMW$iS(){@8_@1Lh4Lm{B-)C$&W8<3wo}LK$W5x)W{J>gNK}a2t^VQhXB!$s7Z!klVr3cc6kz_ch%ys>Su@JmLj@4%*@- zKle2mqv2MHKPHb@9?`#@`f#qbS3=7{YENyl;o*-*4G8fMrqEBUGrEaH5giSlJ%3A& zH*!y3HF~!a-Er-5N5UEM@0id6#74}>BmDz7_}+vkTfFJ%@lsUttSoDZ;4Ki2Zpcd7 zq67}U3O>N$EXmJre5M}9y?G-3&SEp9lAKM};papghIdfju?6`^9N(_K*1FwYtGaWf zKUqDn|4~r?Vc{@Kvmo}G+QpH{z3!>x5GXD0*k7>$TRJ||IViwUq(VPS@?>dfh(ofY zqX>9Idu7}g9+++#^o*+cEkL(0Rxw8=hWKkjcCrD<{oh8{#Ede zagtAHO8vB`(TmBBAc6Oi32){`oRa%8>32ORCy#W}*<~IcmM1BR!HXFd$pHXQBFhmq zaw2h=-o?SK`N=%aT1q(}C_JQf-IFf@{5o&%EJmCk`6DPvF);We>}R_Q4hB$q@Vy?y z1{LG|KK;@$O(7O}#>3pqZj&J!J<1nS4U{r8dqqpOk2!t!o(K0vC)UMe&>q*3%UvflVkgM%|aD-Q~E4sYArB5$_f305vFn ze=#f@a;Q{;0t2kdT2kQo?X~4{&yu+KqD3Z8dAhd`E>)!Gz>{riy*URUBSh4D_FmeP znb5)cC1lsq^ivq%oV`^(EDibtY@^VKyZ7h!od7F#?fUh5=YG=o3Nv~Oa!8s;?@q{X zDPMU0kiqWdi5_JxFXQu4s+dRPu;wW@EB*%D8GCtIj_WE7i`vD@eK{r}lUEWq7C3Qv zWAesjC#}ek^N~6H*JcWLZd~Krz`Nsr!%qb;;v ze~8{r5$}2U^nJew1>E0IjZ|lNc5O$;+I8$%D6<1A8&_Osdxoioz}7!43}1Zr5qJ;) zpQ31N+WG9!0y+}v^~r}rp>c+0i;U*Yo)3#+#goZl_*75lzn%TCZB_`ZyQhcxtlsOU z=L`!RI#9$UQf(o4|Gha^aDRXXW`0ok>s2U>RFNzl%>F)y%{?qqKAE_UZZR{+scU6J z!vX5JAm~PzuUr{XSK%g$;#~31{7e|Vwe$gp>;JQ$g0ki*BIn`%P8e*YrD%5^jPI5u zrsECHp5U+L3WqR z)`cb`iti3l;_E9abd_Zk$B1oL0S$2*dFLk1oceS9Xw1THKB=SH%1va!H7Dvl6;NLr zf9fU)DMSN&yp(Sficq4NnVlG_On$mxytvs%E8=mQ=3D>n@Zv`gj+DgSHV&;ZuVO|u z1+f-u2;qcrb}(7;e|rq`^atoeR#=0r-crKlum>76h(suWH7ahdkQ=;sW((4=F1K>( z9*FA(c`iBI3&{VE$yxRE^MNvIOrRm2P*ts|%aMH~fo?kNeDz%pVBS#Ktmfc$$A$oi z9+7M!Vv6Zlk85rKbOCa*LB-A#X7Yrl4s$dkzL#fiQ!`EM+xyl~uKl@K{eUj~%Uu9* z1Bd@}xe~}4_{4pc2XgXG=NU~-O#CAz_6)5cLr?|Z*?%7KpuA7f=;-r(e+#~l2cegO zcK&?lP=0-fO$G+*5zQbR>AW zss7NC2)vSDlIVr@k50i3a1;>LXUq#T+e~#H&IR*uaVe-Y@m<7y2Elj5eJCRA?Ne?u zimrwpEgB+!BPJarY-5z+?{Cv^*==EM*M9Fao%jeJ-EO36@1Jfp6LScakAQo@4AaZG zn@ooH0Z4BXS;1FCLZVkr7BYcpOr2bd$ye5HfR?*=dZ9m`*SEao&xF%=X>9YJ!Z==yy6Zt=0 z`PzmHz`U)VOb@jGE6-H>r#t8e|rYV6gir}!(wvw_O7?+1C&KzUr?27 z5JE@6P+SE)fzSWvr*3}It)v-ynvBQs*-7J%DGOu|;N-1>^MI`EN^F1yn3>~(qu><5 z2q4GrDnd+B~H2P&tM@NBEh@fOTBB`sO&gU~*CKY`o~Lho@BnraG7s!IbH}o~htAgl&L~ z01Bhzh|1r~4{I@!@_Xdf+>yV3VUzp8@@DF8^{;G6QpniZJ| zB7jgC)_*s9-fG5KwY~s6g@tLdT^dJ@OX(IBB~Ye34Z)ECh4v2q_{g1*jOs&I&%<=d%-L1J7B5+YGiqJb&8Cl+7=PHn+{;EklZ$)P@-bq8@u`1 zV4nw=!^lv>9SAj%8>7{wQL;>#)`CPPFfTs*`>EE79|5B@VXQM+tQre*?BIusQ zAIA@G^#mTLUMU&$8yx+)B3b+M>`@_ENu}qsH<#s$VAfz}d%ToLT<&mw02~1_F>yg6 z7%}L~(2PIEPE{MNx(o11*AGvygZV%c0!$!}6jzvr?GJMuUyE=z3ilb6*ppG}wHUDA zHS%y&5;Y;9VwL)LubiGR9Z&d=3-J3pQGTK=BQzNoDbfd#uo2umH2dS2$genv`MHbS zW|eAuzGI#r%wg$8VhS^I^!JlL9fJ1T(xfv)*r#e-$Pt=4Sl zV|_5P9S1#|#Bm8OvZXbcd7=~j{1dqJYQmC%P!O2b@lxn?Z7(A27xXI+Z1T$fD7SI@O+^KNW$GLJnjIcn0lP zRkfFgzyq|Y-J$p)QZEEn2ZbLz{9)%X-_K*EZF@sh4Tyc0kr7aF>EYp)b@wP+WQ%u{_+QOs7QinE5tf5f4OyT5w43{}l?nqb& z?~ClHG`n5+d&8;Ija z&1Gie%*-jKGhL?K>5i-M`-c>w?i*)ARi_Bi`XLJ8^)0&R>c*E~#E`8&a@Fb@-Z9DC zpkVy>$eF2vOY!HhiG0|L^HzX9#vZxTP z*%wT-4UIAwlmEBBTfJqMwYk)qhF4vEHp1+q!;TTnWWMH?2SE|FI)94}S5Fjj8%k@I zQ&O27re7cn!ATk}`-gfm4fv>Bt%wr=8s*{Mcvodv9%)F}g|5s1%raNR62XA+fhS+c5%h1! zQ^XNZcLTi$W|?lPrNp93J|a;BJ6qISV!m=I_gP+={NdU+BUy$&`zsr$%)o{5GWq*( z`V*4wX|YuH8nyKAzRD+0@&qd36OI4Gj2Ca1AemUwZT4^LEiS?*KgFr~4F<#{b`h}W zMn=ZlPo6YbmAcOkL{msI$j_h8My6UN6L9qb^SlCGV2YkMbjsoog(KC7Bvf#Gg3#}Rb^_V@JvpOR-@OV*9u_fiQR7=>2T+rxqU%nn#P)5OScoS4F~*0a zAr<7~bG7ajtQit1dYxu@?nIp(*Pe$j#uSvA9YWM{S@#v18G_$otLRBesStf^!hqK~ z7H0H)6&w~1hRl{8csgkggqOkHeMues<&D%Y2_+8{$CRKfOr<06Nyv#0=!zfX5*&0# zG5Opsbm=9g1OEQ5$GL+lzNr|3u;SrgX?1c8hGgw2(eIJsiT#p>q~zEuafc`*I*)3` zoVtnmGS&STFWhQM5vXv|#&8YWju;&KZ_nn2YUw+9$V98!aq^3HJjKkV-Kn1y-p`#k z?vQ1-(SZY`B8cW7ns&Fb8lpZn>nq>Ge6F)`;^{(bYcc~|Gl-W)g#zvuk|l59rzhf? zgH&-+NogHwI0^|6fOQ1$nwrk5% zSEw@vA3gu%)y<`OQ!8HcH&_Ww;&&!`n8Ghvwr7bF>q9)4B+miQA95&2m4{jd{B73d zsRd!{pm+d-H5g2*_t2od<69DLS8ncMsAXdAxNz`!nSbt)pRZVdsP2+iV**~K*SX<4 zzDY6k$rENwPi2oEH^O9BK><><)$y8xKg_0O)tFGAnpv_;sN!d@uob$hD2-pM{sU~`Pif0J73GIb-$h3L(`$5Xz}CT`w5^Tx2C}mZU#PiC zLlt(>!a(`|XnT`y5ipfJ;KN#=tP6LzJ_N){tb9QRD+fEd)*_iO{(%SLiQ2tuf~@JT zQ~$Z?9`kGgQ})?J!*ZKYM~ai>n^uQX?Lv#vMNFns?AMdOLZ!MI%q`SU6YpH4fj;6f z|2Nw(<$KNFulVy)PuSZFVdDE9twoc{DZ0qJ2KAKw?RW#LD7 z)~Tks8#seW*9OOH(9$|^(veX&8dp)r(cNeeKvbv&rb|JePb7CB0D##L0{RA(=oP~j zU<9a`9F+dviVELPpOlCTGOG6SLtDo#eZKYbUCqYkrHi*hxB8nd+$;N3VFF8|b;ton zX?^_oa+$p`s%V%-KdI@{o&bpgz&YlaYZFTs9F3gbhT8$$prAFuTO`Fd$)ErZX(04G z797l6Sbu`mL`AgT*yHotAs1M_j{@)lBt6gPRhp6A?}gX+Zo75-#l9ch^(7IPHK=#( zQY?->f4pZ`1x}-<2MumT>_L5j6G`0=cMx-HOUo)k{%*5pHbOsyL@|np^8_b)^pzkS zkx-$QG)RR?{^!Rr5)uu*&&MbF0NaB8v7YUxJ4G-^d4=B(bs@sgwGg7LlcKT9@6LK< zCbJ{i)xq4HsE&u+^QIlj=gXP%z>=D{Ui^ClE8!GPHR=|*-NGTE#s7@UY-h{(S_=9k z_3ozSC;v`Q6ZD;KbM|j*rogEz;`Oc%}=KJ?+I8S0^PcEl-GfhCVpO0W^ zgbE{5kT-awLDpi+_pNK)Fa6GXGr^QfbdwG{!U6-;I$O`eKAKsY$T9IX7nT0X^wVZm zzBKzN_bkHpn#|Aukzij+S+-hDU)J=GTc9rY4%#nipOoDf%mM*yQc;uV~3-9?QD90OgTP{+~j>RQ!$ z&oAHE^LVdrT^`JrXxa%s77wBtB2}qNOTgTPTCimVgUk+S=J>l_?BNrs=ms*zgF#>weU@fO^9;4qOa^&iSwo0gPx$t$IZAcPCFoP-wH}{*5J+u&_ zf#sSH_FFCgu&!EjAgx;Suf;c)8s4#jYbHY4CHU-O%t0arurVs2XH{eJNJ|qT%0=Lj z2G6Gfoz(&_X&J%U`(AGt*;Ls^-$}?8KJ~R0e%N=RmlxX`x~#fB#-s;#+e>p|fbGRZ zlxv}^C*2v8a0i2xoGz2dIYK%r=Lm~LcTU_#KlZqcnol*d20XX_JNa6zIl zB=k9WJCK};-KNqHFd`uIPPAH>FQjS4cxx4EqR}}TRq)g?XoArt-IeVwWKPkJ#qCw>$Ln$ZCbEHAR z&b@-n+g(aOm0Bbl3Uw@g6-IT`ExP=~7cIctlyHbif?Bx!QO1qliap+n{WpD{&~wtV zL~j@a#tyzTFOwYG#p!*marH8cr(S*T*|v%AVa63Y9295`A9e59lnPfnMG^ssrk%o< zb2H|nm{P1T@kN6TJXKz*9JA|L`&CRW=d4a`-N{f@<|!%r<#kjRrvKzn!D<)nenp9OkEuP9NEQA0HG-%^KrFh~n)-K> z+C_A#_#|}Rv~f*$__?GywodEP8&;oyu)Pi*rygM2ZOZ*=L@h4uaW>g`X{(i-`;_Vf zp#z16f&`cbPe@ISUcU7kRImix;iPS^+F2NFF8(z%M^soh9;2kfsuzRhNEG~Nl-o0T zgy-u{sXzWbYMK0+NnYR+bdyj+u=Aqkj*!dS^-=My4F*}n;1cvX;LjzXJf$IFg91V* z9Dx}yH+hgT=c2h~E@k;d^Za0h>JnT$p?+o>iNVyoYtROp95LS zq#!OKJm&Pu=^Z!ECcFPq4(G)F&3^TQpx5)q4{XNiHwp9ZjU4f5&F~g}Vk#@}Wy44( zN`5rG_b}(ny1Mgk`Kudy_3jj$Nw849}C>52I<9&lK?y0@_&9y9$JmOL z9~_~M;rO9x5%f|sl%(=I9ediwnH{dYiut-yUec?p`Mj~dgq&t8%he!@&4QZ(#FWc( zY(v43grfp^l8$iw%RvCo+f48S>;t|dLc(ULWk2_m++67ziQntcW0!z!e{}7O26XoL z1aeW=a0Sc+mw4J2A1cP}iD_A4$h8n^(mL=m%?ug~W}H}&;GU4$02WJj5O*T9%N#p0 zT(HU-rj$f5G~I$-@>o=DcUy1ug6(GJ_3c$+_b2LvjYDQ5?o%Hyo4*B$b<6VVd&xwX zr5RVB5_>}>+OAnRYzZQ&Cd>>`MHj&F0XQ_!-Fxi02HyrJVdTy1_`Ket7==fBAl+5V zxV1rwdwI-v$cD~+aTxp^&*?3(w1K@QyQlp3`B^48F6M*$0-e?(IHz|R@S zSDIWQs#Tq*z9R@I4W&sLD zMEK#1$UuXH)(lOGS3j?J>vUQ5Y-<=~TBz~g!_pUg1Ai3TKv^Piflyhb6iGb+r|d53 zlGZo!%cooq0Eip$ZSqIo?lY>^7EYCD>T@$4s9gB8*J@EQENhDH``c?<5OTs(OML~_ zp@eIOCK|`eMlb*~&poQPuf#mRy*S^$ zr9|?l5YHFK2HG>$V{7vsJy?0f%q&J@*odlnx)lLKkRLdrB74$rwYdA5nWXwtj#2IvT(8YhFM42TS9Hg~1(x%8Ckh$RDsYU)o+P zOjS7BYAJQY=gF?ezmz`kz1Y{6cVHfjQCXoY)l;~IUt~<{q83_>EeO-;6rX8nUZJbtuM8h@AfIzW$$w^Bb*YEARo@bZ{ z0wMB*ci)il$*OwRcU}$|14mJwCL;}akTuyWdZniCC$T6G|71~f1{$@+M^1lk!~M($l@`er zv>R5VP&umhXl^RKrlP{I1c@1%TuOd#wJz8QKT%YB+8W8XdeZ|S)K{J&MFt1-fy7Hl z0kqe(Fwbtt(1JJO+bwUm&?z#ga-}@8TRcx%>}XfF*m{f8+(8-_T?n%PFf*XMTP}V@ z#gz^A&nv1{sCFEY_$gWBXJwh@w~JuJO9{eYWAa`U&x`NoI( z&PJWrFCRSRIbJzT(~c=JdXp=2Zs1g)LE-3lz85iy7)b<6yGv2vM8?L=O^a?iL>crT z;&lYb9z%@r6q1RjvF1O;83Q!mGE8tbwV65AITR2ik&Gczk${s(nmj#YF;%;yNXFEfDD9 z;kHg_Kn>=maG42S#hu3r|sf09hNml;T;;~X4zg3%r`0^jwGoDKO z(=y#UbB$Nn;cZWIGtD{Od7;_5<7?>Y`@z%fu+R4*wOhq5ba1GAEHfp5+ls$?`4r)8 zL*t;9n2w0p+bzyJQKHWo>?fZ=?Tc;Asti5LyY62WMkbo@h-@l9y#*<&ThaUEnGEIoI3QEkQRGY5P zdlywz^8cexWlLKQeA2g3=A6zVRdBy5xLg4V3G_Pd#ScI-<(hNf_q#PLZSWj1@Xwte zrz2fh6;MA6l4^!|x1r@S%{=!=-x333ZtHgf@P$pi7*m`w19Atx z=~t9}641JVV-r?$hFC@aERNEA|GM4r@a5+TyRLjMe)!L2UGKdDw?RJ{E87zw!fDfF z2l*vMP>M<}w5OZ#23yymv9U224zwIr1yLBLq(&GoNABp5nH`giIoEc|{2KTuiMqDU zK4e}De64$Muo6W@8pP;-8$!52Sh;;$Zu1w*v8vAsr<`Io=<#e-rlQ=NSw+pW_D& z3v7u^<-|S8b1tBbE(=8o*?TBxX-Z^}~S+YlUM^$36fV`Ji#xMxu2hegLRGPDrPS z*9@T^>LtV^uu4_3%|is<0Fg#ZuxD;uwDnDWW{+cBlP}vMJBkhNGnbb#_%>jN{5K;E zusqIlouK8ln)%-4rtox&`3=zeI}$ma2TLr{pQ}6)!k3e@5KQuj1_HV#V2(b}Kx`8< zBk8+P(uQWG6C6l3UFc#36QHo7R>uA@oBGd57IL)C4j=oQ*YDfqN!1Bx24;0U{W44G>wj#MBTcS*l;hy zsh1yBxRJiLuaBnplJ|p5es4}zNF6tBJmTz}QK%d62w>zk_=)U}zNlnj@#Z#Tko5me zE8*<7@8wn{}E`%?IX0)|CBOl?^;0>o0+i5$_i)BCv!+fpDZ$Z3k59rq{ZR zvZn1K?!Yf!?glp3jzJNe?GhA^du1Y0GCpektO1x8k-MXYDw|KD%dQR1KJ}Q zrtSUfNph@F2gCr<6XAWC075^PW=#b#I*xjLc@#!jA8wrxIgQw41b-g}Ikx73z2oYE z((A{W^%;{>cYXV{AH`q(Th$e$MpX(Csm=FV-h_tryqFx3L4%hxLjQ_?3B={tEb>w!mqKk$z@v^^~C$|&#h|H0kJqz6mEmq(NprICkauBQ!n}*UH;LGGC@hlNO1CBp# zt#?YGF~NIl4W`ahuAJn_-{P*-S`F<4 zy?*J#omu{SBpq4fvL-sO$-^==k@jc4WwI{L?VSLi4oqa3&3IJ9`nWHM=<24 zPd#x?;4>6-bS#DXCnNHt{h37Y#K(`+SEfft;bq0OZoAOitzJIz&ZA{qQKti(M>EnP4@lh{Dd;bO{_TABG;=n(o!1`cHrfXMj>Czct z6Qp`|A@M@mb+3;RnJ4_4N{N3$ty=w`rP45meF6_vj;)b=HO+lO4J%fMfr{s4+J0^y zTI!7On2%u}epX}*YP~nqW4L+7fWdPW6&*Kg2`|GBnR_ z`&E05V*NT~w@d%D@yN_wG`(5^ z&$|L#q&YINYthlfZrXk2;Y-S=M_Q~i+X(A<^XwLf)Rrm;3DzG;rrJ|uF}$dGp-uku zc1K|f5DMSN${SH#BxL?z$s!%B7GD95*lXp}T+6TCo(ivJFyz))G(OAA=)ZF7@fxeP zAm6a=MzE5xnMW%;{7^bmh>Oyg>n@FVz2@?lcb{fE<*ls0nx8mUa1?ThQd((o9b6#p zRG-VEP%MXn`hGH)=H;=a@A~*_S=s6g)duPzG1MjHD*0aG~*xiYdn{3Pv?%r zv0iw(jj=V2m8O)Qm_r_Rl#`V$iu)*gn_PO&bDI^l|OCxeDo&u=i7v%6?o< z=l2@neaU9YofKStUuAo10eZfrqB0(7_T&+c`{Zo;g@1g*2s##T@JMENcNGuR$1#I; z+PnC{FMQ(Bp+TQR8s%-N9@uW*fit!1A11t8p5Sd+%Xh+7fsm~;fhP@p;&3W%arCZU zI%T4zFI3LczAE4zP6&gfCfBDQT|tOok-jdmGu0=u?~1m2mNP)2+^Zv#524LjU}N`f69J=~RZq`fP9egu~zBY^xVKemvlkzh_X!}E?@ z)uVjQ>)U<0tVKBY??3%ei(FW~U{Ed}hK11|L1p@0`|87I(jIs3elRZQXoV-iJgmAy z<{Nw(*~1g%>Wg~DI+et{dBj)TAmYyoo`eg@x(gv0m+UiN5EnG*g#lIUxDRK_rPr(p zDAJGLuys{+FC){%*NA&FRV8Aj9UJb2X~5E}EGRE}z5eopaB>JO{BA;I#N#_F>PI<^ z9*ty35?v+1jeoUgKQEZ*&fQaZ@WGzQSXBo>aIV$Wd}HB^!PD27*JJp`HK%yhdD zZX0=WWw~zxI<~zQtwIU|eD>`-@^SggdG@noREJFyA_+gj5bRJRUmm&X^Sb5h$gm5B z%c?8@vnd8v@Al6BY;Sz?jgr@6AL#B#Z@yj1wC;5nfk-g)WD^r>4hvlV?pt;LeK#4? zG44~M6z+EZEGavgne;K8?t=E)m50sb;>Gtdwnj?Aj&xPhK0E_T+jWF5$v zVZWT(^5nqsKBdk^-g9q%zebeCu4B6A+}g$VSh*%uX>t2IhA?Er?O3J0C?kcn8FDxHmvn0P^*MI!@@v0k#|M``5_+7|4 zJRo_7Y`e28%&p3`$qNPAsoh>)4BW|}++*P`u=d=-w^6M7OkRvFNnRFi63^XZS=k_> zp%Rii)+lQc|L@hyGOeLqk>IYwU5wkX%(y_n3d5ri)lqWR)S5K5(pX z8!pE2?r!%^CDEJN&U)d_9o`Z4g&n@5_Z`fHV{H)8(#SuYGj|!gr0kI!d>!QG_9{7- zJtME_Ne})#%e}&*CG>F$i}T7MTpVlOw%pN8l^&O_(xcpdIm;U>Ij(j|Etw1-p%ouJ zd6`_7*v9{s%uOKF0vO(oI+mTBVJS4>a30;d?)gHN(f*tHvh+Jw+|7s6m$ldnDWzX7 z9v&Wq#)EmE#Lj@+9`f@~(^~vJp=XvI;V^xqtg&ihu{_}zZ1k(%g7I|jUZ@aYZy>C% z^23Gii4Qs<0km9LhGuoI*OQ!O5VnYj0CF_<Xe)VLy0S!& z>H@lB{qo)eAmz??(Yq7B7Q)YQytLuhVZ+2T@kebHX^9U-!#NjTeALgrWc398{;aW$ zEIwIRP97dQiqD?LiLE|+Mtu{X+(xM;04@(`40mwl*PC=-vM^ZTv%db4IAI zU!3E3IY)VArBQd0*L4+MJUQxPW~&m&C-r(84R7eXP3Q}5x*$NY0 zQ1(>ex33vShmKA@dm`jO_4ep1*>eK-pY7RMu<3#kAaAn$URT;rUXcI4T}B2Q3e|3h zB_X>N5<6|DudIFvN>ICZp9U0+#KW|7o4Uu3?IZbX-oHrwhEgZ6fqumW7%}8{bCTCF z|L^&dL6%b_*yX*f&B}{`*%!Z=E@cH4e0@l$0syY(cE6f-BkZ+14nI7KcWRrsnGISd z-n~OavFaKc*{rI#Sdr@gE}Wu!zwE_vp;qs9`g4{kM9j6lIqOcCg5TLY23t||uP8j| zy16bc#fm31d&lXTbA`?Cwb%HXdzbbYpkZ$J-ACTpz>mMHRXuhA_P1<%_N*Y%DTBn* z^P=na$orDQJPXv>klBWgHI@x8?rZA3KVDBAuo~z2hZJ|2so`CDJqD2FgG|)ck$51O z5cu{Vef7Fj`?gHY*5xg_`0q0ls5k@z35+^ce1>1QbTt1JSV|KAD)=fNN_AEK{y3rL z4d`;W((S^G0M=YT@k0{NA5C7+bA=<0k+J;me)$TNkdpHR|8f~5D?6Wea2@O^iRV)V zj{ak}jQl#w_zrVx=buj$Y|E)DXn)$`|5ojH{x<$gX3I5GR{n#5({16iXIu>2Xd zG$BjK`^4Xp>yZYyuOuIZq?ICAR%FKpVh#d~dH`12LeHx@805IKu+b7H!QY*?=|6ya zq@LqQZ&bfp`&Qv7lc)`IFV)6vTS`v4&uzziFez;Lz&Wk-cN2NqJLX6P{4;~+mlXB& z+gV!vwa-WN85POqLbo@mp%_@P2cAQ~!9F0wv)z5k4bj;!%0Gl{bszdZC{BRIoWwD{ zza3j_HVI8$$Q5qr?XdW%VimE_7Q%F*jE;x}9}Aam77 z&h6h)*coNn98%x95YMoFaJ2OMWEplJJj7B;fBOY3_NwJ#hpP}xYI)fw<5QQ`>&o4I zqT_xg$=TI*bR|KoVHyB>!mh|HTR;t-U<*>(z8xSBg4T||Pj$s8o?2>anISWc$(x!y zZ5En+(#JRbfdX=%At6k-M{jI)YUr%87>(^Lv~8C%q^vW z*x!~zXxg$KDByyC?)!HQ0tr8{hToL*A0w_kdLWO^>>Y_-v!b@b^?{Y@4uH)hKq;BLQf6t6e4PYD*khf+8(HQPePtSZ0=H9 zZRs#;D7Cv;6G^Vkx%R*BoF5z<{oMe8YUslZzc`4Cgg$gAv8Nx^>o%7!z0&QdvJ)PV z#Gc3$W;jf}y`T59KN31qxHeUXuW9lgmH(tOX3z)~&%b7z$U+St3u#r#A{v?3nzM9;l*mWenjxZnqZ*Skg+WlN3 z_T#&4D%tNZgzyPxe)*vIJO=~GUI40h8mYH-e4rApkCU^$v6+%uT1c;8p7qg48Ug`U zJlX=}dD_4KQ`i+%?%n?`AQ&_JFV@}zoXhrqAAf5-l}ZZ@(IARMQe;(HX7&qR zqd`N-%t&N!lI+C^Lezwi6LuIn|< z*ZDeMFIKs4{M<=%C-dh+?R0uG+q@4FU(Pl)R@{61*Z_zRiSt07o9541+&Vt`i$Ovl z5-c8cxCNm{=W~5xdZ+dN3cRTCG-l79E{l3aWztP+f&QU{FDCg;8vmG@DP)mYm3v)o zLtObA&0W3fLOvLVGxBcB#XrLuVrMhZ2J`)g=>=M&R$l)XnXM8}^C<2mr_Cde)$N#K z^K4pA=qKpkn$Wp|x3X#YpTD~wa#4PN)tFwuhLBcJ;khw+%#S65y@>^<)CwGpl(j3f zpWL$ba(7Nu^6IQ+(wvH>gt7WdUgE_A*GIwXS+-H=>QSmq^;MUQ)Bcg0qtQwG!a({~ z5GIu?b1%l>%RX&hPZo#%^_8?w=qp5SyWu1dHd1vUYKNy(xC)HU2jo0Hczx&FopnEw z3+}3-d4NV}%qvSrf+Y=9HXTgS4m>1!lpR!{6mL-c;X+ayuH8qODf-jc6o?&Y>|%oX6aa8K=T1`(l@m?){Gsz)t6Pg zgTbAh)gxb2#CNnpsisi#-0QTtGYi@r?^D;CNXW2J5OL1mpr%#R)MSJdjvnA2%8K{L z_Ho6mX(+z@;K)T^$IGmQ;Yl1WWV0j#xn5V_CyP}cvuK~nST^s{$mbBX44u-~k#nY^ zpvg(|1G9gH*8B)P0xP#edxL-Oae1SeJh8o5v{_x$zpInkY2rlAKiAEt6HCsF7wn=a zU$@YK;^k;+qa(|xoghhsKrhSv^JfF&?SgZ^w)1)mxqHoxo|7&;bOoUeC_YxrCRt11 z(>?yB@V<pj!kYgT(?Up6^u$GoZ4bj5C~#Z<~G-C#?&wl*d(SNE&3M}pG6(lw!xrgR6x z_18_vNmd&>tyc{SB8^9d_gHZ_EIN~eQuk18_N%o?rpa3ewK{1~qw<8j~p(ow(;G^N$1Knxz9n{3xv zzkwy&;*z}1>1H|+-9u2fefpVr9OvUp_JA`S&2>khr?s}#lyUmHK($G0>CKM};&j(8 zu(NeVE-%d1SE?9LIMV6bWjf8+56^vO~f~NGP?V(cT36mE48FM;R zJoc?NR$(5TWmsD)zwPK%FUGak8A;gKZHZN)cF##YIq@@>!f?X6%;Ur2t%wNeO5qP( zq!F3{oJ+z9*BO4@$sugVaJT-}+bet0U&OsKMR7xLvc>AlwPPYNv@XBx1ZNRy_2lGO zS`!{FeL1b8ylM$ioec$Y7T;vN&Ar~Ca2J(11PF*0H3wZ~J0E>Oh2rc#zLl-t z)t0a8ELu!@53()2j{J_yX4A-vVZuZPizv22G}$LC>>{x2pXiZ+?~Oqvao+QQGtu%R zgGE@1&%MjIz1rC7P{XJ1Hny$y{JKL^_s53jMPUxIU)IJu*M>dV=~?uxsv?|?{So-* z7!=z7I7`+L9bdD>xkyf2|KZ|Pp^@=>vYL?we2{TdKC&U(#g@|W!}lLNAlk`9{=8i_ zY8kPRNb!nyY&-pE6U~)WXZ_`$H*Y=tN3n4e(9Kx7BFVw|0o~a#7R3|e{E?iFjguY2 zT$hU}TJKZ+(AX^w!}}%EWam`r#1@q-u^^q7wk9h&a{E(8uM^`Ta%Db+36q zAJG@(%z6eJC9BD-Wp5JYoXYsPICQV6yEO-C8FEX7?5caody()I;I($~L`rhoOt;gz14-<}+&8m#v+6 zq<;W8bj`1WEi3K2SZ3Fqod4_;GW}-=;Hv%4@VgK@bIa1vqC1B?N=fJ!BoP}i!Mm++h2GkzK*DUjW^!)g2?Y5{z^BKw*2j`&sQDdPT#OzV{px-&iL5>ec5cwI z0Si3Ax2)|ID_5=r73mg2eIHgOc6-b#}h&1;pLm^)%5sAs->NL<_7Z5WfW!8%wF!n{O@SaEqFo>Ev%b=mCD3j z(%Yg}t{@%4=iHDj`t9#8Y1n(Qtp}i-I?t!NK)7qy?<~vF_1u?nO+SCMN&vf;78s+xnDAeuik}n15ly2~H zv1Yo-Ep=E$D=<{DYA|f|+O-ilwZh`|rZ6I1pGz5+d-(sPid=2jHvDiPv+U}vr>|HI z+UexxM>n7vOy*O=##dfkbbTr7=$2x~O*wMVU99;hk|kB;g0|X-y|G4)DznS<3Esujzw7R0SDn(4x<58sL#|{2^ar&depi_j?nnO|n}DzjK>r(fE=qTHXHW68`q? zE|&N;uqMo1c+5BTTI>GLV}YNL=zsBGlKgStAoFBEa#ZqyUqq5MWNWI>_3*v%BS@H6 zfDNeJK5Y?tLQ>7)$V4CaV%%df;gAuIS+2;ANoNb#8itTUV3J!92J%Y4CZgJgGWDh< z!XuFb!yw~%PvUCimVDf%O-x7D-44)nxQ|Rp(`j5$+9f0KRffcxd-vYIP+^n2_+DON zbup-eQ#0)go|XEe5=toYTrw*tfz&nNLp|S&&gPl{I>+7Lo=wXD$6QxoX13wzYC{Lw zswkZ#t)jvjUOT7(R}vcg>C!!BZr!@|vp$Q4sLz9q;9Q}ipzsbZtvWW$dF{3p#|8=v>diIl~LdVpu1ED}#3P^u%sii7LT{_O9;b*@3X3wcXecBorsx0>QjzEGK6 zh(q_L{%>#(H*eJR?>qjeM6>gw-kQ^wY@%QEpY#!Syp2;JraHRk^Xz2jyL(@3&WZ9+r%!^PPoeE3T2BqCIBX@t7o#jGNeD4+s_G^28d0LYF))S z%lSUFP%cZ3LzgZ3z`mhGjyQYmI{KKc@_b+{!!`$le82cZmJjpj&zefI#lok+~N z^hPOT6|b4oYU8Ub`14%$E|j&^n5<;=2sj?c!J}?vWd$9F9hCZ2kM~6ND$Zu&^H*q? zr{6oSHu~fP?>7Q)ytY(~gossL3yJ5+srPRGhNaa;*Et4kFl99l4DkiHAz|8r6Mm+V zYQ-6KyJxD#=G(l5?ozyR><>{=S~x5xX7BLsc7^1koxmW=FcLvuKfg2Pz7s2sUvv6) zm>9cEk(H#e50D`n=D`7vHe0q&!9cw$Q^_eS?2Z^ZrmFUKm))( zf--mBFD*?k&$+I@bmnO2Y1UY}g=Yw^Yf-HR{A?t`dzz-Vl`}eOxnJwj)wY-j?oAlaRAFg$`N!tWyu4JhAVLz9fn*VYESPNdE z?SjUYXE?5x8$kQt8sy*1?o8J@V`)%qC zo@TBu4Gs(VK9)Bh*@&|kfm?1{zZi&8QO$2KKl`D&H0`Q)@5mcQA@jx*lY|D#F}6&z z1xG5=^sl?QHo8(`x12xqdi(fF(Yv==O^w>AE@fVB&8k*Njuod3S-vVTVdaZd)!P=+ zuj18|BhPKsaLUNpMNj)p<>fnT&j{m`*R(s0am~K1nW;sEmmg_w+qgsgq_gmQS1P+( zx1|OIF84?$pCUdz)~L z!Ue{PZ*OCeY#YgZNet+95)fWsu(Xn@&sEEciBn{k&p0Q&VWPW2s)sFq-l3&F@hQ8o zIi+xF)!Tvh-oEns_PEUDk<9O|OfK&nem{>_yQr|WN^2*J{ukwxcV!=sD)t*SJdBta zkgDIYa^;tWIkQ^+wRyIs8nK@7Y87cZUm#ERae;m-kY~QC;T#Ld&XoSLx9wL-a-0lK zNapI%2%s)y4GXN2t;=9faTu4ZSKGWLZEpH^;;3P!#lDR6m#*JkbOP1so(uM9oIcIQ zR%+i!$Mm@5mwlF|5auoN7MN*;*s|8eziq~B1d;cfP!gZ`Il9oyR(^rS>1_{%sKfUp zr44=+EzUHFvAmo`uay|A+x&vc;{&hxVe7U5_!$DLbiCFoYnnd`DW z;V~w$G%0 zRXho*lKqmr)6|z|ZecQiXNS3;b67@qPneCow{9)Uqn_gw$i@pV^CMnwclzN zLpd7Lq_ql~tZz4FItztA7RF}Q$qMNA(C=tAqd#6C#g;#K;z;@Dj`j86-$*&iyTH#n0Omg(19D}{H(uC#IX4K+@iP5+a` z*E=yYtZrJ7Q$k(P3S$Fnqj8VFl-RoKV<9ou#RI-+bQpMywV|JcBQg537 z^!cyel0>)W2Mq?SA`@of1& zp_BQ>>0gQJU3T{q?Wp%ocLYT4{!Vn%QK`CCMynU)GaKf%m6En6f2+Ctp?dGhQrA^T?Y;r)yngoQzGdz9r7%kvF)J`s6{M3J9(3F}zju_g zTWF|obc3|-`Zm{H0(jNM*pA6{g-)-#G7@yY9=SC?v>;iZ8+`1L^6le)rh3+V$^WWg zGXL|lZb0N~$COT4yP*PjEcNhz-D$cY6*JXBS@j-^4-4PoT9N-GuU;L0i~X<%0op|5 zZUi&}B(IY6E#gZqODUL8L;SOV#@JY zYb;HuQN3h+@H17Jy$fxQQtgE*b(zV%a}G%jmb>~RER&x8F#YnWt`KvJEKWSLd-L&Q zB)gJbt4-Ic`Jth(YTrnPnU!Tl{hYN~vGhS9PI7yD4!gYOQZ;s1MJdUWebO`Zc?+%H ziSycxDKV1++*7u45jb&D?V5Vml@#x{eDLKCk(SSJdnWL-Emhz|u6k*cM&gs+ricx@ zJ~H)N3cKZBF59SnNG&kIrsSQUal1W@@ICKmCJC8>JVPztzI6-G2ZnU7J~=bNWw60C z>nRlJUiMd5f15<*xPyfQnk1}WXBwahA~Fe0@hpwS{G$xraWzY_x~_n=*g${ z3$>-5H&A7MZvB;+C#1l!lbgT4?3d*9<|&=`m$x4+Q!vS?%A=FO>Dh14MwPwuD4SI~ zGG*4D#!Gq4cie)U%g$h?RabESe#^VT&mxsM7EVZ{2wELj*^6&ddk-w$YRidDG8B zdNkht@|RD$wMSI)u;{mgJ)#qqtdhmw-9}Sl#r;Qi^{-kl*$CI^&Tm!5n-k^x^=qDt zU~|i_k(J%TL!LYDmULMPb@LC&wT+tA#&jpl4HTLjyEOdr&ekwnjRnW!+WZYvwiAPo zO1m^%>22D0`8%`Xq;`%92v<*PM2h}%?Z+f40-N6I=%?+@VQw)!9xD}k!R0Wx0$)94)IXA81Al5->i^PY0y=m~m=T>mCI)j+T?#F$sSs$wp`ToO)QK&=$!gs@@kq&dd8`q!pOJLl>x2I->-%!$lF70Qe zBH+EAy3GIdQ`=@bI;H7~XjFe6NOHFB2{`w`HU<4F^2Wc*qqi_HNd8W(=+M*Cdo~l0 zsQer<^QSAOsKqwr2>vbD+qDAf4&=AmkCalt_!62~g3!8y9-`d1AHP5Z5`W76#IkM8 z?jLBN0pt1%YkI$^=6)#c+~>8QyhS43qQ8|}&2iErf+3;^(usTtq}ZM#^+$I{x?Tkx zQTsz`0?f4&lp)qQhOCBVfOi9qxy#GR#=QqQmJo_}#$+@cYN?QMlZ0LhX!_4w zU3m_lvPJVeA>0FTAU220nmEVbxN3<>CfCb&jN~B053r7Cn7V^s8lA>Z_9C#LKC}n!0#!EC1WiXB@pCZmu%a6Nj ze}c9NsEvFOQUikC_Rv<9fNm(9833)qgajh?1~g?GXt)T%N0tf`!+)`xckCh3tP~WL z#{zwL9jK|P3w(Mlz5V>&0ULOOo2_cfL{SX9%o21f+5bu_t;!iB%*}i1!qyoil;5i< zi{ycDF(8JAsh>xAV{{wLkQxENV-LM*er;h08CaLp`PsYKW!4@JN}OV3+!@#4CEOk6=P0 zkfl@5yim=xK0shoR537U&3wFGnFllxQg%Wva}kUJqBvKivq%%7U&_zqZtmhUcO}C_ zFx!Q2naPwbh<8iL%6b71D5P|E1|5Wr?lf+9N#8}ccQ zU(q=LKuQ-JRDeSgn+o1IOt#um1s>5`tCTo?D+4H;E;?QSDhSX17S(!33gVkYJ}p5H zv>#E!+787suzt>*JK#6dm;n7C$6qetrt?d3336xwN(Sxsnw{%Xw& zK*1U827Mz*NGU9iZN@n%2qDF*GqX$VFz>a@NUa5i@_paEJF|+0@gu1Z0k9Fz!s+#g zb}opQJBS(|@hmVTIm7RF&IL}-u6x@-Iyix!&K509F5rC%82?Dq-i84xx6r97pJAjZ z!jk+4%`t0EUb~jm%Z=0V=1Q8MCprDz6_5YEnKDTFzJsO`K_l%!=t)zl(v+>>T8I0* z3%nWAs|eQ~U;}LHtXK9mcWraLcOK|E16BD0xEcaADD6JP86xt`Xg=u}3Z&Ki;E*>p zH3d==E$z4Kd61}?P~spfGR(7NvJS3}t^EM9y+@^fCyEpT27tw35ze9$^DAB>>cw3k zXHUr1cwnr|8w{<%`My^asUQxemM;U>vE@Xywf7u*n*5O)#HJNQKdEgIncM3eaW{#; z?g|^xk3iN6MawO_c9|GSeyCZ89x2d?Xir|gyc>mxy{xQvY1x%f6oXDNh3F$KF$2G! z|GSMhLIQf_bC5&{)XXU2+`=9dbtMR#S_%}bIw3VfpF}j;poLCIsRD!9ZyDnQ)FBYQR{ljh=MdDMJVdm+7T$%eX~AckGT~@wi54$*dX)) z!3Isi#h?YM_?!9f$1bzCcbaCuZeJvJzVrC^1_>bnJA>4?(Y>s9%tVNhhUg$Y2MAnv zkB!z9x||Sf=_UX=XksvB$=3EXY@us}L3#r@=p1^%X9E?;hQ4uXy(ZIW{eVSLfmE%2 zdT*wnNLurNo-maLXL38ESz>)cbs-b{;#|uxrn5wJ4*kQ@)7I|zi(vey*i``qBqPUP zG!OJ7&jH~jy{$NyU10O(UkNbeS{FH14OXu5M+;)?(N;>teuz#h!PL>6h|*ZRT=au# zOUSTa-sbK+_~+Dzmz*-Q8w*D`hV~X|eHf=k>hmKg+(G6geH5|9vXsV)oc8A#Zjv{=r}!&6&*KSdD#kMEhZrKRQUuI>j!v-|m<@Jkph?ksK94IQmg zE~2mEJXwfsk<;lZKwd7|R$wx3gWiI}&1c!Q8pi|fd=sY3V;`d8_=&~tAAe=&LL15- zU!<<42!aU@##Wd{Pq_=2oZyO6per347gvUR;9zObK}=S!JC@eb(NUAP3iDst*w}ts zVe&HE4ECf;=|&jkB`yQ4BzP<;X;)U_Ea?CN1uzM2AVFQ5=*Q~wOZz> zgDGfrA&Q?+S4>RLBuskE0tar;`gk1(EZY_Fm+^CR<*HRRP$C60uXBjaauXRN4hkkp>q5E)8PETbXsN0uLov=vKdEXwC!_9HboA>vQ-NT)gIre6jo zY6ejI?7rwSy(P6^VuxA5II#oTpcvq??;gjKdx?6P_D8^#gd%0#KjULV_ww-gLgoZB zG~e+A=doNnw$o*PG>oWDA?_B09+vY3(k`&q|KCo8fG_y?pYI-r(bJ`muhnaK4D~@k z+eFDF&1J!Pv2y{Q!0j(QA3(aMC{O_?{buf`YL?XurR9acOy-YEJT+971;7KRfN^_F zC`Nan)hCU7=U)B4+|0cJ*ryabLB?7gaU+TMnipWBNih;}IE*%!YiF=7QjeBAkjMY} zUYKGEM0HbpxzSIxeD|?q6ZyPErUaqW4NS;GkQbUpIMamx&;rePl$Ja$5FYJbfA6J> z$i+kK$sLN!l$5-|6C894si&_)(0%y}hjAk!Mk6EhX=Ok4+O=e{CO(x6v7Xm+^agwQwiKQi3V?tETV(@n7*?ONJ91QB+tL zIihG?5Q#mY6f3>UG`Dv@X8Q7gA6p7$h4braqEy$_rHh8v3s4fPZgPf-Fj2IH=o5B; z9=t1p`Y>72mjKNLF?DqY;N;y92&$7@7=50cFvWXp+w55pxMIq0Cg)ba}LMcQgxE;o>YC80?khuYSo+J@E*`}d?kAnmRk;-tv4>0(D z&^K8LC8er_skcn?#rT_h_wV!f2#YuT*ahWL;@}&vVK_E&JUy%m;3uLHG*@_hk*r1= z{C5v&Dj-TH!=cGr#5P6(__}i#OgxEH%>qb4R;?@@YA<4PMe-KxTL4j*0;%~NEkb5KbCCW}84KBTayOw&vxQ8t4Q2$f zK5dEXTh=YHbRqAxm`Q6&L1%eTLUmKETG-;c>W- zsI1{~P|qRSYea&1S!2t^j z3L^Dxkol}ey2KzvPGo2>ZKwm4>JqMp9!`0SH~p8*xYu$GnX^DD@zE9gW*Z>YV+heZ z(x`z@@=&9*sHkWV`re2UMJwU#fSHRx&+S^2?1u73H(>UwFdDPSZn5gPYQ3&xeek4N1$ z3PG1aJ??~Pc4Gk2n$@c>PbR2MJ7O#)DjI`IA9iS+lv5= zkh}~>9WC%BIF)hmZ#hS(pc=abjj%7!($TrU{YKf1oCEYe-1bYq8$IGuQfIXio!I&K z0?AN`|8KYbLYSz1{tnDjWb`s7jEAF7|B+5&IQ_QMoP|8~r_3vYH9O746xCTEyOHyxsjZ&I9>0IW*lE--ps&fB6Ge8^rMPLyyu?1&d*tvdP6vC(B)PP zRaC>)TwaWTK9~-3?@dJJkBvmk0o(L?KO8-1AX{RD)~ zND5LuvPhho{0o&?dZW{awAg`@36s-vYkfVqorL69+p7!V81zy(u*hRt51F%uc2@&L zlk`cIA3y2>JD>m&`%riLJ9%+YSN{5-E?a`(Ax787@e&*<+XoInUs5nY4hvA0(+q3( z6Rm$jAjuGfApvZGv5d)-&Ze5*6{nTrKI&j^aOU6PjK+sV)QJ| z*2G<_iCRP0$fWmyXkxXyEC}Hrr``!r=m^?DHX_`HlTUB3af&uzX)+~)+&11%Xqpfv zX@lHu0eB=XhqTGa-Tzzs_g6DDAO7@CDK*G|B7yrf8nENdG1o`>jF18|n=`a89+@+cA;?1ky$L1E$ zd>R9KMvKaNd_#xY;urnC3Q#x*c9ca7md>Z-iiOo#{8!h0uK)b*d@zU7KO}?$@aUi% zxyY4$X?oIZUElZH}p0Q-TMDL{t}baL9QTcdz+Ap;ncLweYa2|_=3a4pK> z63eWDjD-x6$!z9cbayBNepM`Ruo07k^hhWMewDm`e-JZ;@G~+pA_uiraEUX}rzG|4 zgd+TS9hR-5s`kGwm&qV}Lj|THKzkdca(sxjD9yyIKVyVlKw}JHdmNI21eLT1 zj7X)Wr;kO)GW)S(O3+rDMjls(F(t=C$r_ZO__6eY$VeHsefva_v{i2z6t6*^l>uA` z{Iy<0l}Km`6ml%}?CtFj?B0D6aB2hM>!Z+e)zjDS12m+B8-H500$04ef^1MhbpW#r z9^v-(w8GANczEQI2KYaI{21X@m_aiH7+yg<5$)f7IAU_}!-Y=U+`}Pz*N;>~E#EGU zfWc(Fr1{C_>5${TMgGl*Ozkw#3AB9rX>W7O6vDh8paitEw9(I>KNoDq=u1v9%+b8N z75Zyk7MS?67xS{_kQmsk_=w+kOcNwjYXIMkoK|GK4Wfyxj?Eueu05;*iHQ5r>n1z z{ggeVRfuUC19E6o!b*?^lUCTfDfd2HBinLu!?W>V7e+%Ftrrp$O4tU_iQCm|8FLMa zU5Y9yDrwUaQd0iRFxFL5B|i|WWPn@=IQt?9cZ$IG>ruu~M4W!+@g;SjGCO$m9|DYz z{PpXXV6*U4*OrwlRzS2++X1bj-2;`WyYbCc?`moBukv-!;W>N$yz%Q>E2q)%$qVeY zG!xHzbzy$4>7|~>31on}T4;1`%CU;YBsWaVPTm~fXqsgVKj;9bWdoE)uzB5E86af5 zrY(HDs4<-J)M5Ze{lL?+0XiqN8#g|O1JXjfo(!B2&UFSf900ya65=m{FAT5|R83aO zs)u=#Y2x~aY?pFB`jiNtiQt9VhEoDvCLqn~4)^mh$|VYb82 zzn6fLYCjal8hEM&Bar~cqtU$&Uj`I46{!o^UO+bdiN5?3HEaNJ_C+)6cL1TvCqQZ} zV#urOAvd3d4m!9sX&8e>fOuo5fK(iz-!3eM3E^vZg=nY zG;ea|8yET*WGIrfh}T8e4Q6CxdDs-3u3R5i`~rkqg%qINCycTMWx{ zWSuB!LI%{B4C~SJ^{|kT2Fyky!rKINPz#~c)2Jruer^Aym%8_nG(_CHx0>81ZaFs& z9p^T83XVOMf@_Wf_!punp^ZJaPizPGl{-2cI&WckyDD(WtD$pPP4n)++vK?F)$Fou z3CHd9-=-1%gvcWUSkc#O$EK#I%emGiYvd^b?NUS}r-%vzv?Zj`gXDp$>uz($BE$FYlZN=1Ky4j6%wh0XR=(2Ghz^ zk-FtxI=2%p&QEFS;H9G=JdQT0KETlamHP53E#`=Ro!@_z=gP zVXTa&7YBukW5NQ}k9fQ|)H9H>r+@l1fxw_CP3JD?`}m(4e_`0OXUVuTC+H+Uc>Guy zQ{E9mL_Ial6@%z_9=f065HdCBQJG!25`nY`Fu#y0$CE1q(27j(^4f?XSTe@2oa^D{ zl+9#87af=Dd6=g#9iv+afV8e(y_%-N;1P`sv=>$X2E=5*=eaQfkByH{1>4iB-sq5$ z3s#AUz5>AE7--4ism=tn-gloh^b=0TzQd{c=`kgxr4l~S==#YQfN%W?PnLhR{2sP5 zd{KF6>3JWB3x`Vx4^{YEeN0M9l4v^2&Mwi`HoF61N(YCaDo#alBv7(*sDb%JL8FG& z@u;B%3^+V%0&H8rt9GR^Gr&}3aXLetr-^tE`$aB?R-49N z6kO#|IVM(=tR7;C6tK!=zxVWZcSi#h>?39dy_)9(YrTguh{<`( zhQJ{a6xBg7TB$3ozb-x!GB*bg9g@PFFpKi3tI82*TD?GBZt!op^3pOZUl@}K#D`VWlJP1ZXYHx z`Y{UuI11)5@bqNhk09so)^}JjvQ}jARa63zUW`2KD;UUZeud6Iz(`_9sm(uxbhQ(4 zB@)#^5M=p!j2I!W7dcuu4k63_{YEf2(_pm2&cA;P{aR2^i_r9IOutYQ))( zP9kG|bKgLb55+5&g_(8|mO?p>1a0UXaI$X#?xleDC6Bg14JFvpld7i{(*eE@D9EyC z1UiRjqp-^?2BjGLLYGS3#tS|uq8XAGO^W zl`6g379y+xemVkyek5!Sa9*zfdZG6QVm*@Rql?7tbk{hLZL#_9wm7Ji#3ptEO2cWB z9}J(Sn|Y#jMagFjDi9Tojmk)N6-ngV-`{`L3PDf-06p?@Ko|)}yL#8x#(IPdcpLSY zsh!2Z1pCHu#hc_H#bS8#d&JbB-y)OZi%@Wwh>IplrQ{@FiIux73i9*o(Bmy8hkHrwf_J8LXfHWL#sPG+ z2b5g#Mrn*CCuc`5dHwe`?Hj|6{t5Y&dR!nD?eSnmD90EYAt)oUFx_EIBs3|Aa}p7H z*iVxwm&kMK(LSr1+;C;rBtmyT<~f{NX%SX@n|i@w;?ePW-CHm1ZJv$Fw}EvMyG+j7 z80t)Yh+gvJq|D7+RKAehAvGiE1|psOQDMVCa~+2wZj_VI{&Up5ao zfE)4PT3AR(5_l!zKA>UA)^wB49z4BxG}PU|2T6JHf{TPx(7L-RS^F_d!_xBQIZp<- zBWZFOxD!i@Xk6Hwb#Y^N98?HDy|OZh=R6c3gZZsu$SFp4BaPRAuRMV_jm;5_a=a)4 z4NJ>iHyvc>@h|@3TPm~lnY>K*(?uv16mJD%f$&Bs70aWR6O#S@)qJS40 zgW{Ci{p1p{uShjMmM9`LDfVAnEZ0Od()f|w5@;+DjmGakg$vnVd$b-yy2b~Zm9ahj z0s;cipZp3v;sxkc1@Yuru61t&hzD_}-PR5YlUL@qaq-F2>#;=;3+)GO=OmbM2`Fdd z^T|+Y$jdt#Fg!8Q03(-*py?;r5l;+*Ng6STSuKJC2#M-|Y?9cvT4*waL@t=f@Dtr7 z7V_Qr1~$XRy^(!TPgj@tgkWwRcSy)seV!oi2~r)mNcHNtLJuSHM5Kxf|L5_hwFNO1 zFIZ~hKR=5?|4;^05`vPv5no)yrEB)#WW)oyCXWyC%Q|2uNI^+v00r&_XbqCon1op5 zb}8n8p%#nqE?6z|T5n8(gyxMK`N;T5zJcVG z&NvM3?}87?DRMs1c#7gj;yu4t;T72>5sM4_N)|>Bwm8Y-jfU6=EE?!1M=iT9U;?Qz zCO96Es$E~7TLt&ZB8Elem=NYSv6>)&MXxB?)2@l`t)`7Ak+Htz8pD{!G7QZ9G=ZWH ztk)xJXcJ;_i_a?No`)IW6uh^Lof>27vYzj)*!DeTHWY#Z0~cz!w+KEdKZ21LBT=KuFDFoQ zc8iHiOLKY$r_d=SDncko7V$1L3u^Z^Lz3PY+rcLar3Qa<8(hMierZeczD!SN5o>EJ z(W2&yO|H~u$FJ`vR5N6nM-i?fs81`temzfvEE)Dr3<;hQSy^lQldG`&y$Yht{bD$p zm*I=Hk6)tu5rkACQ`2#P7rBKHikeXK2*#s!e=!Y?A%l!DNZ|r7a5=ZNw2QF~pfM#J z6;~gH+3-!c^2s%M@C&rtw#6Y=Ap@SF>3()_v}j@OVvQTWQN=Cr$za%RPjEj?wccfvYzla(WJg`aHl9vWek8$ALc| zK-BD02gJJddb5d-!v3CM-gTnk;o)o7ueY&1KrXa=X~k?vB|TX^M-CCyXQZzpaE$#C z$8av{*i-W(2>alr3WrY=7`w^=Yw?TOw2K}+MI3t*v#&>ALCw(#(po3XJ6s8%g@gj- zS75Q%B}MUZ*CUUYUPuODxPbVTb>#0PUjH|+b=&Ki<2W8_+2-LSkY-_JC1)WQBnz90 zLs@)3t`kdKKLGDF4G&Gc5?}_%AzeI{FAt)UNbG54M!6(*ISXF z^nH%Ji_6=<8c2ok$rjB`JS7)^NKAH~0=}`U6DfZ^cmPQ-d1&MpL-;C-{DEY>s62?G zz+4ag#aLu7(ij-(4fy_W-#$d~i!`H|K>;y2M8qW60F$K;57_iV`!*7{Ncf|lXh={( zu|(Y|7~gb~aYg>Z5Ng!kNUdR5$Dy9WU#NxPp6oqXt{1{q`egP*`~eIp}cE zQ573CY&AlKkx-8zCpLmRf{6+w&>JupACXhIujdqwmod~dqc8zJQ8&(OgVPlUIMOEy zXD{#7F??bxC%_QYxxHX*u?NO~zopUIIw&qjj5ibt5PC|1CESQvU!&Kwa;@W^aB3th z!6P#f=E^=WUtrUTkY$DO!Z<+%2M34y&vxRg}WX+Pls!-1W#pE!~GDHFV?9Rk;rm{CkOM97My&nF7YNnE_!gjLTo+dd2l zMpRHb2KtT0sc~GT*kAj>DlyiJp?=K3iRiOC&Q%$GfHn-rt5m#i(kjqyf`Jl1mI`i( zdmNs$SK)Ya<9yolu5Ipn?i&wn$Qg2a%auKEiXtk!ZuW%fyMiG`ex~uBro1);PgP%l}>?SGa}#{C_mj#hK6xHyLJoT z7Ws#mNhlC{>f4UCHhSl06T`#ahQX#OG1opg4UGykYFTR0Q}n2*QlkKRUzlcpSNRx8 z74rc=$6#(0@3zAxbbuDuNGlz%ufV`S_N0j#0wgsyHg=bmxXtYEX}j4!_2*CAjj54A z&Pd7cPNfLM^Rp*g?->s{z!f8N16Zjtu>P$Kuz@jPuLp7a1ieE!>-*2h>^-Vg!_G+f zod>_S*=9kM)iyvzpP;afA?9MyX!_Y3lF2`FB9exz%&u*(6N`k^e0gZhoUa{w+G(TB zuX`DCL}Gk^cwnea00X_t@aU*KCXRJ%?~! zGcz+)boSzMrKP3Z8(F{!yUE7+qr0004YDx{Gq&{jMCs7*Y?VKKts+Hl3svg;G~d_Z z&Qj`YWOjm>i%>CL6ruzpR80$;e_hXmLA6=wPZyS&Y8EQX0$`expOceoohTw}B*7gw zt4lcOBtl&$A=z)5688(3jVw?*6qtJk<;p`sT!AuM4dtE6vFz5}wyLpheF|Ef24Dzq z@(wE%?_^?11zVLAaL9H;7EH^?m;ypH$&!d)fWnl9t_X7J1;m8lAJvLX!iJ+@;oocA z!3nabXS)>Qn?Ici9%S1XW%Pj+@$q&46|AhM>v516M7ZXPLJUq(^l0RdURX;_?aK@} zfbLH~5m@;ba=A_uNK^SSO5p??!4M(O9Bb+;>0gh6IxkiO1N$q`tdVP-5SV2?Q6N%m z-R?Kgng)xR+K6d09#@Ocrk>4){(BqMSILbFC z_aM?G*^(iUcoK{dMK7D5pH5-ND&ighGK?W0=|?7x`^f!K9d_8oWkJyC&(stdc%BQv z%~v4G!CCeKx{=4BC1Dlf5hM6~f~!l`)``*xMPUwTcJD*t(x_M4EwmHR9#j(}0CQMf z8DI$rO8k*F-QU7`5OF$I3pIYfne!s2J=}&pj{;y?^dfW297LP(EcSx zg^dnGB9Go9D<=4}Lg4z?0tBMy(GoWPPRvZ(zpg~4UO?ECkhgQ7$Y9&sxw zh@>J3uatntNShJDhDI?f1pz=W&PxJjLzos$>DvH)0II`cbAl1g7BU#M&FNTGqD3Gj zkBXS6s263y9^JE5q}WNPYL$ir2(_RKJ_s08bq5x}q90yheg5#u3Nubba-;y10cdOv z-j0;KAZHVaGaQf5)05T+OJh#ZJ+R?gq3@B!-WQ8v3GuDI2?QPyUqv<44*0c~z!rGD zeT(&0@=l-2ET(e5ucEceM)G_~NH+eG&G;`S0l4Q|pg4l;50&-g(<$BEgXDUPKLL0D zkA?2VYm*QEXBG7F=2mj{D9U>g*|=+8@R6*w&L^2#`Le|r)$SF7`UC&24lLtwWm3${ z-XMRJ{2G4#2eo-wnxZrRasmE->h%A~?RO6hE-T;smJ78N{s0DJ0HD(#Y%W5`ayaK2 zmg=)CI2+gnFV&Im-D-2(#yFDC_N^-vV_i9&VF z2t_=2-e277M19~NJK)esWt*8m>1}O--*bJmw*mcVnK31ktZ|mbd`QO#Oh6^J`XPWn z_*z(0eCJ11oax1~YhP<#7R>RF9}iM6ExV+Zg<`%X)LEm9Yh8ew6Jqaa0HVxdsHg1J zJre}>`9SvM+}vEwq-;!A%M4P1uD0_*meATGc!iH{hT0lCS^Zhm)I2BW5xBO^$m%l) zT>oe>WQ+bhN2ZfOrHf@*vNHeKPI$oLE)fr)zaRF=mxKhx*oZ0U*ZY+{2?p2D42t_ zcf;VAJP&ePC`Oo;m?yD9{ElI;xR}^yl)@5_+Zw|j zlX?OE#S1LgHsBvV4HT+TBaK4@Dhs|LCd+sdN&zW|BPSc=q%l9y)+4Jle1nGK#v@sK zv{hq;_^$}20|1-xR_Y6#9P3jwE+L*K z)Czt57yva9z_&#qzB3J6ITF1{vNfN_>4Fw~lUB zvkgF}L^Sb`1Q;g!sKxg)NFU9DPuL{jIXegCsA9i6G3srqo}|beJ@@;GEI_xuuj#Rf zj6k;z$BxU(V=iVP6=>i}I2NFVcomIADm0^r2ymvfjMMJ~snFuFQjp#D1sQ~XNIwK~ zh0F;VRV~DR%UJzo5{89oeq%K@dnEa*;_Q3MOd^mmO<86B4CN+G02aSs?_1T^gEbKp z6Aw61j9{e}pC{lBFwpL-4}lK@8dg!vg+hm@TwSw1mY0{;07_sMTiV60{avAn-Z|T; zibs)>6HT!VF7kq&54&s1P0y;t7^O;|3G3q-??TnR0kUYx0?BszG z>=|`1HuUaP>Q{_@_DA+Zf-o=|Oq14{?*fcYA_{(fRWM-^P$S5bSVmEI4>1UMBkcZE z;8W$?>~ablxgpmgu3K5_vVQ~{k0G_Wkh^gVg$xCfh!R@9$(I+WaENqtsl|C~kCJ=4 ziiFpwH8+D))CPTUhaZ|}-gFvQ3Fc4XKzlaAd>Bw%YutMrDP1?~! zi_53HM|;&c=pf)NilR>~VJ3iwV~q5Z;Kkwz*rJ@{^T(y+5t!A3^j`-nBm@fWk#%or zqnAnBunf(eG?c^X7pwWN0GO>N@F{ooDKd}(IEX3d zSDSt-xXe$*g5SZ>`-Uy`&5tgilshIx#Qj0p9Up9M9yY_~3|Xk`nLkUKbmXv~G&Gqy zBnf7R4y(~ty6xNJ(QvDQe2Oz=Et_h7btK34DMreJ_YC>b3U+qcXjq6RW*p6m4FEr^ zk)?qqB#We9kyt~phU^`!sGpA=kxKt`Htx?1op|J}!Ks$^p0@Lb8}ZcOsHp%zuOlc8 zsh7YcBPR64E-n7a>8D1%uM^)lQo8!Tc!wWf1Eya5`5%xJ|C8Y7f5v`HIgPTwlX@fn zdZT(|lC2t^mk5&skTiPwENl;~wER(>2zQ78iP&P_guENTD?CR}Sa#jZt2j^(rS9Em zCIs|Sfu#!o3P_>(j<5@Pdx>PN0`k+m3O4k7$Fw`oNQun>SqJf3kaO#e7(guv*<@an8V?W8;dmztzR@0k>_W5{p$s4p zUBvD^lfQbGgc6d0IusU2sTzrZBC<7Noe((e?m+CSjFxgnGC6s)bpnRI4_l!g`<^g? zFy{UoZt9RykuU4TCvX*H^Ii7p7dyo#6NpSS4k11AL@y#>W^X^NEr7?|`Y84sLZ>5$ z%#b-hgNs(zZ3gu66X{O?Gx9Mj7L6Sp*R$Fj5|L5apxG!HLs?t9@vFt6q^#%4PKN{> zZo>%02haHJ$a&!E;CgVRk0{2=m3*E@bC7?l>ETz^FgD6S#t?x3i5`EDqz(NrkZLiUUCI5Q_SQV1vTXNGmI5 zpKL_dq>ImK-xDXZ*+ImPi4SVxK+B83QC^%?|NDDu-w`)P^<1<((2`D9=o)mDJenqlF zw8M)N)p{&Y_s~!(K5B?22U1J--lv2<8dzMU(YwYqO@;VF?1y5P%I1A-1*DCq3%`LJ z!5B+X68z*$F4qp>g9pWZP=`snGJu2NdW6t9m7l>_%KIGn(1I#tp$Qgw3Y{B#P2H2A zx$2;}65z(jE+o{N5BBTYUyA84%ZwRz z?J|jpj;2-fH4Od%=`~5Q7z~4hc!~D_(p;I$MRF+(FZ5VT_v)_vfM{qrjo@=aa&I4q zF(er|yo>5hC-h+*fY-szDJ!Hhlf2op5%}TZ7p;idIK^_odPw~fc-8_><4H;J(7gPJ;pX>%rcNwa3J?R(I+<}1s!I#tu92V() zSG7nffF!|AP;vKkWCm3On3ysiheZsH=J=dV;mmoESqR+<4)7bFbJgA(xVII%C$)Z@^-lQ4HN%^Y0*=l zUUrVdf;`Bl!wY8XY!SSL(q30&+~e7v8@lQ~QwR;anjvm*{2zpUSFv}8H0p?|MoIA6 z2vny$uLtnhxMJ3`fK8vS_>n}#ME#i9So$y5@q#^dV89YSIa^))EEAH7(w*RpK>rE4 z@lhl6#p^g;yLPRx^g~ru)##}C`>pFC>0&;198^w;Hjzoc)kpyak-!xWptAez>T$c@ z9Tf@n`sw^tMbE8l^~rOhcg0Nn2s-d8ySlngS0C;vx(UioX7TkH!(ePbPn~%TwK(|d z5T2`;_;W!?pnE9m>=Ps3kL@;UVzAA<&3VSe-d^KR`y42}VFoi`UNG$2f&-_~aa9%6 zYA5Wb0F6|z2cW5dbrk@{WQed8Nz$PgPQVm8ZBW8HJd=Iaq5((T0tAP{V!5C$*g#UO zySeI0+D`zd`B8<`zTV#9gnsK|jUs73DyjJq^ZPG`CV{Wela~zoJ;F|ZWu!8<^y6GmUKol}bWInr$EZW(!nxqQK>Mge($U@1 z6N?T?4Xa9Cw?SVXq1)DbejZFgDg*BC=_2qwA`8+}bYv}=dVqIuzA{0n0aL1!e-(N- zw!m3}-^t#Wis;JC)U4@MJaaEXyOo(@DD&dlp#2;t)%f}OdHa}8c6hfe8mmhdgrB+d z^jkC(xPa_gTEGSL5S6&{_V)H+5U$u!7bu-VfLfJi2JT*X=^^EmkVPJjTP6u-2<-No z3q(!NMt-YDbo*I<`b2^DE1=o4A<(jVDu@X*Lr^Xy4#bC- zldea@sj_6)HrV9*b#A3K-RUm-Gyg5TFo(70x0ctV$fg)lpINk8Ei1j%wW9Xe(?jh8 zFq|(*i4>`HFRFo`5sUhThNi#@l`0QTr@wqDp2TR-I+OFZ6MqFR*8%vCVUikP?(&W5 z)Hn($oUw5(^^J%tRh=(bs5)9H(bpq)&K1Xp#BsEb%x9~p9Vkkr&NYlZ$ zJ-1$LTVUKTDA+PQ-SPVN+01I8e+&l?&{$4dK>>H~%oNaD4@Kg%2&bQTbZoQFcvQJx z=E}KTE=Hbjga=)s|DV>b{GY15|87bHB_tY5l_V-jLWmoYQpi+>D9M;9Q!>^qZl)4X zsGA}bp^|wj#VIsgB14DFQz&B`hwu7$?tPx`AMp6)dcC@wZSVbg4{NRWdf)XB3_Xsw zk~WCBsFF{)P;ud`vpEUxK6~hazHS%ig9{&Zik#a@&wLql^em!F=VhV=A@Y6X+2oXz zs&mymg&KqHLgo|!U_{n|T)BFt>`k)aLdhsfxPD1rNlq#nDTp&ApF zlFCv_vci}7@mtx$%&$`eHVJ+`cRQlJ9=rmWBA>CKDmzA60Pk2J5wtT$A(|t#O3?X) zOT!8@+FRjE-=8V9Krcn^uvYEX1m8q3KD{KqO1W|GM%&a##%u^$N%XI{dQgzOz0so> z&D6uF0pR%f7+xE5S|TO`aZ`+<9?sA9sz9WzSvus#_wWKA&I&2jqaK26>4W^q%cSl0 zrm1M2t2;!dkU0Ag&fO1c9V?n*&dz?ujvX!j9?eroW%>iv%C!uP8hag1An)da!0v}C z+F|!%CpbN$-AzIE)Z*XY6Y%TDX(;M6fezdf1s#cD6d{Qh2}FYp&etQ%=tavAL9Bqd zKLm?;U=VIZsf5JA&x3s+Z_C9Lv3vuCS6x7AcNRr7^PdW5Q=7;3>3cT6q<`KW~XS! z9Y1@6iLiaB(4~wCYnlA63y3tTO+s_!GNQQTelCbhT zI0sD46ok$o@FkH{s|D7?AYs2BC=k)tyUsp4;SS#x#Ck*0l@M*{w)u)mJoZ!~5$D$s zhG5{NQF_j&ETkenZ-0eePfWvVely`AC(jKoV*^-$cmv}(4zNk$6%g2tj~^P!K)SGp zT=`;VwhS!(6?I~NK`oGm2?KP75f`?j#0S})1XfXTD8B&JJx#n3y%bTHpx|*4P=SDv z=>DJqhnn!@CfP39$ti!72RON%zovkHWZ)XB!OUJeE$?56hJqA21eFBb!DrF}iHopS zEv6vELn}HS%7A!KwIdyFU@(F71wxJ2yn((Nn$`g{Af+uUUw?v>upT@dD-?ocDfJ^&(8FBaZ~=}zCmdH>C-34Oo+PmBiNYN zWn_sgM|I(f0Sgm>l|OUBI9y2C1RYNd=r9!GgtLU{fhLm84ECy>v?Xh`k)p2>kq7a4 z01Hh-=aA4m0oy`y`RLf#g_>X#*mNEhIm{-JIgbVMG`jB@d7#)VpAH9bTZrz-sGh)= z0$g`I>S1h^-HCj@^-n{vp%b-G&=H}A$568&IyPJ(^rgngU<5nDaE}^@tnD{D84QNx z&Yj1|xFNY#L?JwBq|Rgbr3BOcj5V-43ZAFYD|vzPgc-_VCm_om-Oyw z_-$MKwZDy+T^wl{^88y!0il%t99s^+j6kCdObig;a1@a(n@PQM@ zmTvR6>@I7J+ZZIxz!PRcLO;t*IIiSHq_(j()7B0{;C+Y?DvACAqa`@+%9j>KZXh-F zpXuMKbsRUImyfUKc{5(s9nhj7Ahg z*HG>M8)>P}LV0JBeJ;HEwYk>%eeREdo(zn3vPKOKGoh~xaV5lizCajIko#fT2%o6Z z(YZea17V8|DElt-gpqOs|0{N3ohn3kL4@cFfP5>|S*mvAz5Vx>(Dj22e}DTw8N2=8 zAX@ipe7bIGqFc|ge8qZOAPa>P!qPr;`9~tQ_RlvLF}{fpFjjpV>8jbXQAvGMyy}u` zvCFKqxwIY}s`&l5+K!k8zR-r6K(*vbG4~MhoQ%y4Jm=U)V;j<#S6)c$+F`Kl@CMoF zR0GzYAf>lziGktExwMyYg$)+!ua=e#Z{EJP5O221A3qpZ=KUc-B@%}n zn@!n(&I`41k9ujKpa{6;7^fSd*)AeLQ%t|A7QiUXliAU(E2r*mRkZCh3;Zgs9(Hz? zg5Qp)*1(t9nOk-J-)}21Boj(SwT@@J)~%>B79aR}sP#dZPBn=BADE45b0})9XsW6@ z{1wO)oHeR)LA0NSy6;4pzcOg4P&|Q?d?TuEnZH&4v?K7_*l=%r(HHEo6+OVnc*-y?>fLAuLZve+0tLU|J4&7^FaxxnL z-MT*~VUj}js*R>j3Yh_fjeN0kC~X{$1g*OsIT^P_2}l96$Ugs^;b7<# zRbXzbCQ(D6uxjKRtZH_@>~~KrE*1a@RF0v(AhbaEHA~PsEw*=X@JL84C|IY$ zX!^Jd;MEGjeY~(1`OVNUrp-jp+8*=g(*R%mPPjstZ)6p62ANfj!t-*i%7#a^u#mD~M~O+Tgq z)}y$+hE%%|%cKEeQ~+@8_{(XhS$<&K++^Ni(>R5mW;HR2TJ5f-{+q!CF$qaYzsgfa zM%PebSfQUF4is(|F8st~GQD^6+3`uM?DLy$C|Q@zB))EciBf{xscn9jpnJ*p9E$H5 z%L#f}$(!R12?iSu9kM42#m>&IRFyiSIk>L)m4H5LfxqOSN-XoGV_ZJX9Zwkr6*)_buw+j zM$s7zg|H8_nq2*oG0_Z%=RU0(>T)7592%F6xqW*p6;fM!oNk8;Sxmjxadmxmt{MKf zEUMUc@|z436}Um&;V4luOB(mVDK8XvKFeJ}L4h^U_WXIn+=%a@Aiz6Z;IO*1j zF*EwZisEbb@gPZ(waHL8{U=;g$|f2c8hUP4+Lj1oV^!}@ z_%<3u$eQMvgmnoXqMs1V``75G8;dG2yi>}|$uWG_((j%oG=`>;gX#cCBP$SWW<+Gi z2T{Te$Qm0O{(;>(+Q9c74-+t}CS+-mdra()@BU?Yp~ z!^3=F>SVs=(Fe=5iwr|;zy|EkdOVU^TH4xqmnogH*o|paUv{b0XzGe;m3qYEhY#OK zzAu}bkjm=Zr>Ll0D-1RfD?Jb4{c{Dl9_e?Ercfe1eI~{HagOut>STc|YkUA}U}LFY z5pB{kTqejj;DlaoPz`w+%H(OVR~CndI4POocqV4;kl`rKDjvO#0~KoP;IR5ws{WxU z(Za&QH`tM*(@pyhxu`*1)oO350}TmJMn=YgC{fq$sx=V4JBu^Y($h<7Gcor zee~oBud=f8;Z`^x#Zw~4=c0v0Mas30nfKvZJ{5gIcJE&H;MW^PwRn(m*Mx_MCq8;~ z$SmLGH?KI`?j%pTj`Bn_qCS6==pXm)2@w+%>oy?X{V|guF;-LRXdoYDW$~Akl$5u- zgy4OYcJI^Ol5vx*wWH%q_tLX=c8~i826&=Gm*Z2QvENBlYM3J&yjkg3VqSGiHf zG;gl&o#KtcNPCccWz9b>0snZ4Eh~?dG7w>wtmtSQKJfyA7OJ-=V*7ft^8WU4eG{OWG zjVLaJwV&5%+A0loV!qP1QjIJSJ~Js10yM2(zh2$hISWQo9njQog0wW-c`Ab=X{g~# z<5M_Hv#4ST$S0F8rA(Ow^flGE17Y4Wg@=iRyux1`QB$JBEazglm@Iz9I^(Q#2+WZd~wpI$BdFT7zF z5xBkcUmj6cw=g}&=k3=7FFZ;FV^0QC)vJHu6x9po!2vOi5&_t(oa^P~6$(%7o4|?D zl_mNNt1$a@So8gjV-$0Qd8JCmqbL#NLx*u5+5YMFQ8;O)rNr>NR##Oa5qh0%cHCR9 zsE-7&QtAgbi%Zzq+uMhoN|CUb*pE3M7VkFeEgTP>m_KjlarF#}#kx)@c6um*R=i3YI{Hlrx*g9!ESP$XgCb{H$YLbnF>J%CeebTBHA1CB%LuSNl9u2 zYGatY7Gl(lTPc&ncrk6Ff;=hKK)gkxg?ElG+ej=B%sGlRS~853om8LtMcGFX{g*A=|8@idI`*XwlXd{dNEa)&}I_@7U7f!1L!?P zK`b%exKm~6Pf)?-@Wd#o1unlyQnFfi1u;&ezFlf#2w^PIQappNWFoV2pis72oBq4n z*WoUk-K!8+#$sW~(_Lo1^Y&w3B3Jim1%fO5a-w%$LtWilaPw^%pseWgquFbE-`@$w zADy)a)9spYS){&Uwqv4^|GK}U;XSuDGzzKGNPt;P+{M>;Jj{DE+oF}%bR)JsDE60R z1PS?6brCa^_t{cfQBR>QAtp$0^3+sQTSU~OS)EVT_KsJ6Hr~}7v+mVenj$P@v=Dk^ml35xZbx|1p^4SjlGTl>M?f^g%q%J%!2WM!Q zhY8sCAQp`?y&Z1{yoF*`ZR{>a)AsVd2Kck$Te@(h#$uBZ`zM*E*U*}~WYl@vvhaNrRDBX8;(ls#2@3&I1YirVUHoB;?>fl#q{JFYsY zk}L5M{Xc8q^R2;j_eWASsN=ZdCxL zX+ky?@~LturL1g;-w}jYQwzHxfyvYKMw5E^G zK8R+*3k&y|mHMtbmP&F!!RAkGe+GdI|Lg14dCM~Q{;20i=Ug{xMMW96MYa|P4SKPW z=Zl@ruQBc944jl77pwvENdJj+i*~Th{vS_YYq%WWASgd-`l5cgHRfIDavyj#a8d>% z4Wkv;eT=O<=<(JsoXWR2c>#=)r0ypt9~_Gv9(JO>@LzE*>=)CYencPYE;V;3Gdbz$ z?oLr;>)89*uE_xKJy}CcdSphG{&36afrsl0_WMaUJ6+irZFN{YtF6jkgyV&FS3uWK z8;HEAK#U+QMQ0FCJ1PC)am9GJv#*+mUUqu=5rs;}qUR>ND%Yi#s*E?}Non+2ss89$ z6gVk+)gC3wA`X6UxPZCu^PiO`D`4SyZVB)~9%9~wuHiBlD`&9Umy0uVCtSA9|F}8A z%2H~wxCuVSZzg(s9sJR*Cre&~BIUu07bGt}%FNV2?TM%#iSd9laAw=j|86GKmky0v za*wnhf64645usZFN`t2jOVXEX&?kdk!c6C+{jqH@QqhC{Zpa5~)|ouFR7N{8ia({N zWM{8_X?*^Rx%kYpH5aRfG)wo&YRuS*Uu}uqt$R{W%!fZ$Qc_YHinAx?MSM{BaUFQH z@P6>=BjXGtrYOn`NpO|&iDn3q)Ah7NcsEYhWxAK2d7Wx(9=D#YD>++-Qh^In6kfzD z!n5C&u7!y?8Pv2su(K_uC$d52Gi(nLz$ppVKvt>w~2`@L8BxGv_{X| zJRF?u%Wk)JNN;kLq>|v*K~coge@|pT!|Zqfk<3spVN;f*7;ZR`DHiLoLA!me7nXE` zPNdA{xiin9R-#IMH0&O|J8$OSni3De30L6A!G7KGPSw%qEC%vtJPot1rhE>&7Vg1> zO&l?6m3R3@k?jI#{4Fs(nHGv9*o)G|kY9$Lpm{#U+|Jcv&*vGM)bz7$r6*)R{9ZQ| z{MYme`Ek0-z5m{Yt<%R=P4UYXn1Wx-9GmTtE7S9HYDRCml8ObcMGH+NPG*1&?6$?< zxwEpu(csuIPHKql`J5;X49jKUG(JPl_V(rAOwab+ZJYi8kv#}WO?~}anR|jhUqZU3 zDa^2+qt8?;axt64CLn2l*-;V7Viw?f%z{p*i*MV;Ld|wLzd+62(`UcG{qSK4h4$u{?7#l?FTU?Bc^_+kT~02eMXN5( zo?BGkX3eu+YS7_+;)lo|MzC-Ewm>Gj~)#lO}d|yv*cG#{oW9>VUa_P&IIg;*I z`NOqt-5+JlA?FjNz6GO`V@UXxs4-mR1qjQA7O~b@dO9jP`gbG(ftM4WM#jdevyVqm zH2-+-?2kyg8Vz zJ{q5jLNk%p25zKJ_iXYDIJQ7QU`?BL$(a^aVk|qqdU{Bq<1hhqw|82oaoN{zfiRU9NJa}$UojT&-<>{H0 zvO`LWpLzrKp?J~*^&z$i*UQ({)~cUA{eTkrPY*`+X(w2JYG_Ci5I$4_{>@te%bLh_ ziAze3$(O|yPH5`127NyIw4)RspgA8J7G^M%3UQjzQ42l22kVZYvFjTi-pda_-bWmA235-j-FY+g1liPb&^1ZIcbY ztbu?h(5GB{V|{L+y4Glk;c6aYfOp=6N#F@Wtnif0c1y8QWc7KZ`+w^0_aA7icBw%% zw=PRNZ~g}-VcpZ#^?lB$3j$Z-H;t428}c%Wcxhk_WHBRP2<&aYnOO|cb;!(&kJ4nL z75vW#um-n_r!Yt=hKWd;9nS4jOg{>!_zRE&siCn15?7d2Tn5xZ%1C+lJ}wBB+U4e9 zU$PPsh7(UMvARl-1MZ@r5^L@%tOm7eYis+%`|%-h3{kFycDVxMwwE!p_3B*qMrCC| zqHsa+9;2ctyJ`1s9%6M%$`4c{BEU8F-dTxSpb~(Uo}pp)&z@1$0VYVmH{iN|0upZr zw0^C+`*L0Xc>a+Z9JY8Iwl#9!nuO`|zD5p3MHpWqhh2R8c7p*=c*%H!*e9*-3L&M& zaoMG6+S)5Pg_J@dTx$DUsm`q zZS}%@nuJQMjO+xPO9QxlI=g8XNvpt)Aju>CYe)H?xQa!04}2ieamZZ+RhGE>CUtq= zq=hvg+{`i{+xHU_S-~!h`6#h*>xp2h%mouS?w+1L#a|;rY(+W+i-|?3I`3XEu0iN- z(d3hjE)O_^VZSZ@eIXm;yP0~BSa{k}q-45i_X%@M&%kPG$L(gLbj{3G+TB8#4W_RP=!A@ zUO#krfr#V5jU|`lkks?@(IKioT)lwp5wsFt>+k>b^TcuVFRFrV0moeUw?vlf9RL2C z7XGkBybA@@!WH4_#CMVw=>$Dimensionality red #> # A tibble: 6 × 2 #> .tsne1 .tsne2 #> <dbl> <dbl> -#> 1 1.10 17.2 -#> 2 -4.99 14.2 -#> 3 -28.9 16.0 -#> 4 -15.2 12.0 -#> 5 -1.45 19.8 -#> 6 -13.3 21.6 +#> 1 5.30 6.71 +#> 2 8.98 7.55 +#> 3 35.3 4.97 +#> 4 13.0 15.5 +#> 5 7.03 10.4 +#> 6 22.2 8.18

By default, tof_reduce_dimensions will add reduced-dimension feature embeddings to the input tof_tbl and return the augmented tof_tbl (that is, a @@ -152,18 +152,18 @@

Dimensionality red tof_preprocess() |> tof_reduce_dimensions(method = "tsne", augment = FALSE) #> # A tibble: 3,000 × 2 -#> .tsne1 .tsne2 -#> <dbl> <dbl> -#> 1 8.65 13.2 -#> 2 1.61 16.2 -#> 3 -9.86 38.4 -#> 4 -8.74 17.2 -#> 5 6.72 15.9 -#> 6 -4.57 24.6 -#> 7 0.840 17.9 -#> 8 -0.335 30.1 -#> 9 -3.15 24.4 -#> 10 4.96 8.83 +#> .tsne1 .tsne2 +#> <dbl> <dbl> +#> 1 9.10 10.6 +#> 2 -0.610 12.8 +#> 3 4.70 35.3 +#> 4 0.467 22.0 +#> 5 8.97 17.7 +#> 6 -5.29 23.7 +#> 7 -3.58 13.8 +#> 8 -11.6 23.4 +#> 9 -4.22 21.2 +#> 10 1.12 7.05 #> # ℹ 2,990 more rows

Changing the method argument results in different low-dimensional embeddings:

@@ -171,18 +171,18 @@

Dimensionality red phenograph_data |> tof_reduce_dimensions(method = "umap", augment = FALSE) #> # A tibble: 3,000 × 2 -#> .umap1 .umap2 -#> <dbl> <dbl> -#> 1 9.72 2.09 -#> 2 8.54 2.11 -#> 3 6.34 0.991 -#> 4 4.00 -2.02 -#> 5 9.69 1.81 -#> 6 1.18 -3.16 -#> 7 9.50 1.33 -#> 8 4.95 -1.21 -#> 9 4.90 1.34 -#> 10 9.49 4.33 +#> .umap1 .umap2 +#> <dbl> <dbl> +#> 1 9.68 4.59 +#> 2 8.90 3.55 +#> 3 3.06 -0.0897 +#> 4 2.76 -1.80 +#> 5 9.87 4.21 +#> 6 0.317 -2.52 +#> 7 9.92 3.76 +#> 8 2.23 -0.769 +#> 9 5.43 -0.381 +#> 10 8.30 5.75 #> # ℹ 2,990 more rows phenograph_data |> diff --git a/articles/dimensionality-reduction_files/figure-html/unnamed-chunk-7-1.png b/articles/dimensionality-reduction_files/figure-html/unnamed-chunk-7-1.png index a27856fea4355f7e6139f05a399af84860e578c4..95ef2e5c73869d07478078cbf3ad5cc8383ea01d 100644 GIT binary patch literal 497604 zcmc$`WmJ@57dA>G4bp7^(nvRw1|=cg-6`FTfP_f5bR*pzN+Tc*LpKcFaPE0ueb4v% z{P@nSg|mjm%skJ1?|biSU)Qz${6X#w7CIR^92^|hySEaGaB#@3aBztFk5IsGv=PR2 zz!Qpr^cxBA3?5hFO+MfW&F-zbBODxM2I<4()xZo z!5o*bAMp7llArt*mB9T*tL?mwYM|+2UAz@m@Tlbb_s}wJTx3Gk*STRqv`-MeKlv^F z);C&8Ow2tkX^GnQ?V}txjKIVjN9_g&li?(nMaSUR^_xkXHN0tZbkF|xP~28ybVvB# z%V!Su1kkY1e-C9vbXQ4Jt&eO3RxOCsm1 zVmssi-lzDE9zyu-|t;aFue%-P&x~85{AKjLXP~nzWc4@gV%3aZw~Ka`-VkBm}i?(cMx~ zUR*+AI2K{Cc<^|AK)u#V{Xf5f-9}Nt&SWtoxa>j+0;o<S z^z}%#=_nKa`t_^6scCh6{o|NY4C4zSp|sRg3b@7QVc|~RMMsg}#pR+i%DS_a z=4Sq1j-CJCzpkh`F_DDI6Dm4eZ7v>5D_eimOMbPL9c9O#MkvJf_i)6pHz=PXNk}k+ zjc>1=&)J%eeV6R%obL+3IT@E1d8OZp%7V=deG4eymsJAFFS*f1cDzSUroYOpe_PulC-)UAPJA)9$Fl>giw(5=N$!_#M z1QFr5$UD|_#>%!&1^xW_*8Ab^f>Gezzgs%V1bLw-6-VT@VykzkBbR#1I-qP4E>Xzi z+&De%Z^-=&QVI_)j##kiv#E3A*>ezTRR?1LtTbqxh{QB4TGBVxcJ6Ab$zlgO8PyY9}Uh1uwFxM|?+mb@JHDzjfxCx+f`gVgZDepTxHU;*QGI1zLGaxgji13teU?lJNwuCboa0a?|Z)IZz4G{{M3DQzYa~2 z&d)DQS9l{%>3HnN3H>WOF(*c)TWF!7TIl55R*>!djNTQS0OFJm#-Zg0vB4?u)MKJH zZ!MF^=9l4p{rRbQaD{#s%50sjEs>@`Kyfjn%e+16w)ys_oryvNxwrq$kYItos>D4( zy3f5ETq+KaFE;!p)#y{W&8{ z`BE(zxTGwzb#a$tN zYE90}Nl8hrZf^QN)Xc`dBQtAM*R#_-{rh1KXrSE26zeD}6DZ}&84suO<(VFkK7Rc8 zaxGSV@XHg{iufNS$wLTP>C+c^c*MkSvZcPTtd{&M`Ya-#Sgt(r=MWS#>9jci<~=0 zzblxA>f&rlm&18atpcuY%FlZ;D^K9XT4z6!8ZKh-W60-T=p4P8&*Su2)RQuvC_YV5 zxcPc}L;rvQv-Kzc7U2ASSC!55@Kdr&7FElzm=jTt}+A_PnyW1Yk zLIjJ=g(`y?aNsA2ICG);&3n9Wb8m+dqL?hcl*$+w3n$*#|`ifx`T+GHuMpRSN%{rgLzog4Js4<3*8za&N(r$EU=p!Zj zoAO@CWtK#p2JPaGD%qj^t5+YEFv#4K<`&nRan>z4ma6t}HAm00G;sxIkl=7|aHPJF z^;8-Us5Lmyh>D6P9CZJ0brKoCF|X9DHjA05=cr!m8G)NceT|_zoq`g=K4@S87n3wf zpLyExoPFp5PWAF>N5s;fk-(p4LcfHQdrn3~Y1m`EXJYFIB(%$wzAM}VV%&s-!p7X6e`K2@yB6P z^5YT^NSK+u1nX!rQ)$ebHr%-isz(x^BP}8-c8>8t{HML?m=G%W(EYhORmk4oNMG|T z1c#SJKvh-Mj{oTh+Cgp{6rln8WT6LLwpn&JSoRm&dZzg@#HCkPeftXfo|j?-g*d!$ zt#liEm5hio*4lr$=#Qhz$;J>SDgQV8qoWOMVvH9wc$AbwVBtsvUD+~x?)gG+s7hsmqN$~w+l=KDg%^qYn>zSXxET`x+D|fjBq25_@_7XVP8HcOd0B} z0h!ND9{P-r0{d%h?9s^y$J0w1J19idX5WL+ywH4b zLjSgQpXaL_t*C&{rF3Y+0jcx!x4`uivqjGn**#|g+qS!NnxvG!yQbxCG4=#(TAItE zIkyQl2fV?%*2thlE3<73C&59lRu)`~+R_<0wKzBs{nT=ac2hkFT^3z^){tBih&Jv4 zzaO7Mbn*zKBLEE(v$>hh)sNeDaWGRf0D68-%gajwic{mK?as{%pUAG|%Zy$s9-CA& z7u#|y{N&e&tm9>!3+M}o%lj%H2GZgfRg>*p^ke~e(b_aEb76KNQ6b;dEUma~I35-_ ztZ+Nokak@8ml}V;QsaOP*pPXL0cJZv45~RS0Y%wI7}4KQ52^idqWp>psjT!4>I9a% zvMYpwP_W2w2?=|?ONL)U0&vtS^x#3>W{+zUP<--gL>UfI!ZhU%R=B|t4s>%;Rkzfa zgJofWwM}NKOk2IxlW%5C)Js0qo5gCTGH5LO4TtBY9f(U-i#>n^Tkp;_A2|dx?Zh`{ zrnNENmbT8+szX}cX{d=;{7w!&zzKtI3{Q^wx8mOaS@EWaFI)2B z{PPLFp2$pF!p~lI4l7@7zqtK|G&Xa2eRT|yE+_z$!Pt}c;wOEsu6MEZUX*g}>>kZ@@kwD?29}zskByu4iM%@w5(Bm+r%fsqPiD6Q&3`C{& zj0Sb-(!Y;Yi=;HIjkJz44Po%CR$%#na$`1)p&---f(Ekt@FXPoi7UrfX3biyiL1YT z<LdK;H+9ps%lxE0j?ZxeI%nIa4Rtg!HcrA~)to_X)Q~-6N%R$B z>0^4EkdD(du6GPiQkQQh+FV^-jgcPyZ{v9Sva zr*m2U!KI}9($*%T-Q=7La*Y}j%^A*1vcs~bgB9@8C}wJRpDIU(hK2?M0XaD@&JUO5 z#l-y8jmk=We&L`y1hoC}!-+h;+RPYl^}4}u9}dPMPyPapsKgPBH=fmmQ)ABKv2~=b za$Pu3=1qk67>8snzyY{;;lJ^(-VAB5Uf0|0Oowi_-eG<9|Tv0yl1=&3}M7Nu6{muySlFK?mE!se|7CxAshv- z(Bb&_*mb8c{}DEJ9@wdBn}uXr*<@T2lAnQS_;266YsfsJz(x%xW;KCAIsyZO*$jIz z@eeeZ^Op91@{e}UQCKmyJi8jab8c$cTYaxrqk)Ew&d!rAVkEZ6vCap{Hmu+to4+?j zblrS37!|A)VvcVw4&h^_GB7ku;xvB@N)`y(oQX|&Y3bFwi=|DFcXMr*T4BIZ|4)fJ zfXBMfhQB-f^GX4^JXDz;RL@Vlf4%?;!SOsdFYmaYu^bA{P?h_c#m-c@?tyDeOw7FZ z&A!!KZRuqsKNa-QGSgeMXZJc5y7F{77Nu^I$*Wx`Z^^pKWN7#%b(jE@B>=*5);jP# zvf|3o5~}v{`i_2SIqG5YOeY%6@>N5FOp_CL7T-9hykC^kVXL4GbQg1AxpnkN;euv$cAEBNl}GXcg)BeQlg&N%gf7{r0jvEnsqBXI~qH#_V)Jkqb&lj#>Q|V z==sMo$Ysc`KS%>z2`J}<;RLN|wXMyaXf}Yf(u}gYraGrLLW7AIBiDat4wZ?u#PYn;pR*KzX;w9LgqZ1D1 zCn}{HJ?(yovXe)$qIQ;81qUcce9$|z6`!zt-8SzMot9)OA$P3_x6l9GqPM>$zKco} zMSRAmOSY@ieA4`->w z@WYWEar+!fw)o(E{zXS^)$D7E5pH-(E9|?Qi_N?go5li1rai+w6Rwf7DSoJxlIuO$ z<>48$T*}19s`g5_xwZi%CJE{hRw(FQqVTKq1- zYgVM7*?DP0jMClOxr8@vBK_O1HuUW1R~u|gvD*P`fm3UCebpC5&9mCK)^6wlvGqx; zxZYJ$iW96Rsy^BL8S}hE?Z?XZVd=le{e2!0)-y$#y_u?zy%H-W?HyhBIpnev4#LtT zXOQSd09ghLRgm#%I5?`H6(AP?3M$Ky3!h9}fh}2~AHkdmGA0GU=%R>$|J2rA=Mk0n zrGC2W3Ywsx;Ct^|x9K`tYJGiuP(yRge$+Q8K$pxOov}Ge53stwF6;7?r>`#$_L!0X zQ1Q_H86VDSzJ6@Jjict}3l!dD&BNuG)#Y39|UXlM03=8at(@YebB1lCV#e3;#2*21!9;)V4LY}KhR{yj&*uNyAxST6)$BWqd zIpn|(D(;WQ^PGLTSgpS0ykV7kBzR;<%pywg_>uKoEwjtP_V%{t<#LGU$q)~qRWYfl zsX>$-Y&pGAB5_tiKOHK}=1WCYUA3+tPd3K%&;;ez8donqSu_4jXNdgBt zX{CezA%rU>92i0XWn;R*kq#W6ESNf{()~x zXSi!GH^gAHQc_gROu~`D6sRi|Cl_(eN-F%BMvnY^H}UnEa{Bh+&9Z{)bA(7^KYVROQ9|d_Zb40&wN_8}lG&(yZtee+X-m7h@&YaiAU)wsP|aa125f5rn_5|T zm#oYYW>IwV(!>%h*s_DnW1>@0GbEDyQd~u~<;TA->v}AI2u5==bR29xN!ye&aTB~v ze8fTo5O|WX7e96rW$+X|)j|4p`P0#9^2dXg9s|sE-#mu@ZR`Dix}cAMOlEC4eM}9m zM?qe#eP{^qM^Y*(D$8E2t*!G;Q`$1=f=QW~nVmO|4i1Unq%V1%V1W`JL|Ae$?}!7= z$)->Oy;2^Ga7iS>erQF}NW**2?{_HIPMp`s{p5)+K!hC+aSB6Z8(7*1`buBX-qHni zwBd-wFCeuorLpP8`yXKlo{oykWC*v+UmYwoB`kWm$Ht_?^B{HZJ7xOO<;>|DKK3N* z0nlvNWy#A_Zuy|`!_vvTpB0g7_0wBt^gkJaA!Lc|{Nv_pmuO>TLoPn_?^PDF)Q)6lhc~9cmFMxSNrWsznvo)6H zAjH9j>OrGBCE8__o7t9wT5*g%c&)gEJfP`2OK z92TKLzDX-10%Y9);3JawENP_^m~t(r%8W(+(F^@KAh)q#gmiT*xGY(BE?~n$U7tU4 z;2_Kqq45jBYA(s+Cy+VRV2u9OSE!V~HBpEUL;r?{WYRWrELw*+&n;5)*qN!hY4vqU z2G)MXf;=XZ#J=9V!3BVtMy=H^aJTPf2fjrndi-rZjNW1*#yM z_B#GKJq8*opdP z=>C`}TA(F*wgdCTDYbQlsVbfmwnq55^~s7X`*F#(-`wN5 z786z%s@@)5$z94L8O@M7E-k=dZBICHie8iW>t9b#3k9p}$P*b>h=lVDJaqZp)ZOMC zc9}~w8o~e?DxBYa@%PYe0u@iOhc8VIL>erWr>Cb^n~w(rWP%9e6I!n}$e%rbesp~N z9dMhNBy4c3tmO`U+LcD1XGkawI<I68V|GMxG=#kSRLadUrTLuw>lNV=2?EDaO2*D0Q-^L${59}Q9s zpbKB~PiZ+~1)yMcTC_l&7&+M4NjOX*&|Ii3-~ud@D9x`nJlytiJgp?>!dC}LX!z2N z-J$L?nYvgf$<^lpSah-lH&RIRBu4HBR3pJ5&K+AHwn+3CJaLQ?+udx*SXfvDD{e5CJD==?OU_q77aAYNfN8R=7qz^j$tfc;0=tRLf<- zDT3sc|1N0y{L8cd0@sfq;&RY$jt5xX&Sy;dK5czi_96-oy1%;tWV}fc$B1H;iR_}+ zg?2Cwwa&&gK<6geSELw8l&qHp-tHaGjBvPL^3~VCJrvlw&us8X3vX1DBQCERTFq7$ z4qj;$fCSCqermQcl!6+y&+WL6t5;;MbfRz16Qk4t&02!j-AI#HnD3Bb*1eIY8n^oop~hj^xW9bTMu=PFZEVSV}{f^%+C z&%E5lJu?gghY>QW{V+ggZM}SE*c-77S{c^5(!a!4DByJqE7RRJNOiogj2*K-^8~ty z$0KeY(gU2?Ie)l{5MUu@X#2CeYr|-Tr-#F!`_ZENE;BnjyIPeA768Xc$jJ7qUwDo$ z+8)xPqocq7K{7qnX13yrHs%pEQuorl(;iAa&+YoGRiNGf1AfCzQAz0`q*$R+y~-pe zDd`trcJzM3J>jEHl>^$r)n#^6{nbVa>own>QcY8Cn?fDWH&1Q5EB0laga)|=E5)%~s@if{15Mj` zj_h7`A$5t`*x3r%)wG9)r~z^awCLXf+jqOyi`Dth3($C`O63ZH2MsEsF5#hgL^!fZ zZLo-<{%>!NO*#0{=OhRq{Xuz-^5n}Cu;!UOK}Z3%@Q1^C|A~eDUot>34scwB{zNQV zKLK!x=;=e=9G8`Wx@bfqZb&4x7O@ajRm^PnG})BeAoOkG9F4r8Mm9Y{{`sd|ccgec z|Kvd6aJ1+nBarc2sy?VL`BT+?88+L8xKk09=STezcrQZRuUruv82C+O5&8J^bgj6& z)c`=b=96K87cX8w27h&#RE<@eE5V3En}+rHhi$&c`1nIoPIXo3^Cm^sA_CYW`#eGp zBbaXca*5=~u=Pu zSA@RI88SrbqVZrrxh_I-1i{w!Y1+2*;L8iz|48^-HFMtA*N+f{zs+6$#P7C|WIA|0 z132@dv9_s@6#qd4b?KF`!;4CIIsAk3Qh3`sf7ZD!)KYy3YX=9%`oq>6K)mGf-B+!e zQ21W!A+S!C0@lw;yeW0F8)d)F^=jxe+D3}b)+9Rhj;Iy((GUE)1#ft!m% z({^9@!DOyoANR=2%qLZN8IA|T3QzM;500!Z=cob4a49&;ROCE@4RjM5+IcK&Y>+eg zBuigq7F^dv3PhkWFH#fBKpN{IXI@3`6zVULeen#v6e{@SZUw;k` zz5selYU*SEb_^IQ$EFsxB5L6mm=_xISJ%UUY_5I3IZ1=MODNE6tbQ5fy=Tc=Ik~@v z9yLFst_G5CnK{x`0xJ#C1J1Mo@CmWn5pk&qq z{fYHbM(F}%WLF&^(qD^1Y(G+TX;y;w?7?;wAu=+@UinZiK%^j z_)`bDCY#QLq%({(ea6`heHzUlKIjc4bJ0-UwJ;>yg1VvsGoNmPNx<=uSgDC4vh z-I|z^?f2|#KvKNCd-b;0)tMK0NKPab9FZrWrrPvHA98-|a?BpwwcIV$6=uQUD_%+2?%F4=2A}q?-vOc33Vo)bwuu}V{nOE?U9?a`sFQGJv%5YoJ zKhi0V8{hn+XeaZY%IZD4S189`cVAzEtLujkxERDNIUxAg);E%bTR%9DtaDss^m8nq zWnqHEU=FmtnJE1KDp!S_0Of1tf=-W=*De$7%?RWZKd70wbxYm?K*})!>W&(dDV=|= zqYLY!F^B#wON@=|GdDSC1>r(nd1m?U7g1x8^WG6UtpfJLN?$yzC}5oCK>COztiN&w zja$fnL_RKDeiYm)u3)eu_H)*C+R&31bi~SU=a`^luax#@8K;>nh+?spGJHd2#$$N~ zH568^kPw%y7@3kJYzoWA7%ojsO|jyU z>fNPGSHs_l9;;w{!Vcs@LqbJOxQ;HM5EJ|oFVNn@+DBr}1MsgYcWo|#cXOM> zoTAL+R#KL}i74-`>ad46^3C|~-=MNZka2~9oEnpn@CLv>SZ4sd9)`zjzve+!P#fRN zdv=lk0{@^>hEfDmGQ}bg#zHt-f zJC&fcgRX~l=L#Kha4gFNuLe*RUmgK@c2U5fbHPNIt(pi9MoqkW^$L)zUjPRfot%um zP!y*Vvv0z6=i&#`w*$Iw2g2DV7gmr= ze1^X0*9?6(H6_}1e#F+XI)PA^k(S1bTa$^hozuZF#h8?8U@#lxR_Yjf_06C`E z2Tn12NIN`?E8osd05lA>%*Zs$WTw2+bc)G!+XipNj8z0FM=)T~#sPz0xv78xGRtAx z!|?Ul?mHQo96+Z5#w!LiG(;k!EvXkB=;yjtwrid3cToh1lPI-m{@R7n79p=y$FZ|> zSp}Ohd;!F6fc^-QNt1 z0$iRCol`nN@?&vhWdSTV2a;XvpPTErnKFZuem#Rehuj??Ugcz;J@1W=8%6rNzF@;im8 z>UzZi$qtXu*nI{C1%(~pJzBZcpI{NDq2nmOiMtcSW*#v7_^I;VJA0se+7U#W`h^fG zp2*fGoAU_S!mD(rgel6;HJtD-h$pP*8>z!Q6u)yZ^n_c1YnDD#P!*_x1ufX*7A z2rAv}?PyF`x`178KKrAo=BaJR4Q0OKZTDdhBDxX&v@Fn_j%nbuZ1cpC`Ej|Am&oM=S zWd8ZlY#^T5WOYMt{G^(b2eqpoDV|wV#dQjZOj}ds)Ni7Qlp(?HzTt5>1x6-A$vwBo zC+f{+ua?R#s!%rsgBKvHYo=R zXvU*QBbk6p+@yr2|LW-p0+{Cbay6<7*k>ZCgu_dzgaSy{%WQ1Hg$&Pdm}k!Au=OA z-1zLW7%;N}Z-S(j6-6};8~m)uiN8UC#XoSy3Pjx@X10h+#yN?MZF~{gA&zo#bH2n^@c{R5 zHR7XIX@mwo%k|Q2v`kyzpkb5BrtQvIrCetS$Rxj9rn4M1#SnfZFGr^5-S z>wQHdw@FIxB+Pb}iPk`EX*6qpYnZP-eV`#iqC8%Wz^7g4C5?4?NurKnKqBPM35dFO z6UMBtCIUnh%qN0^serLK0frHLYHE4ll383_1cY%&MFm?hCaD-mLL(kBcrnuSJUj`j zeNl!#)E;4BF`xfJh3!a8aU5(zq7zg_sV5TmDsdv{cW(IYS0o}S_&Q^rzmYkd{iWZd zDR9})9)Q(8^!~b&1lEGWdL|6k=63M&VFd~t!i@5QM@Z$($6&;9KfHxMlodcaDP{AId#yyaRKUh z(w8}lWJtqjoX4Wm7ofC)jz((x00b-^Z=Lt#@)Vq#)gGi=ke&z(qQLzGRfjNfcU z+r1cXFe~sPX{uw}Fkrc6nO~$rT~C$FlMvAof7z(a&B}qQ`Y1qEGj)!v8)04v$2s?h z$AyhbnbtedpbYPN%AcH{o1AWqMNkP{`%}?9bKsMdl45r|HUhLekVR17yuG~v_w^MN zC44e6jSi0HMnDl^QwjbAw6z~_N&-#}5MDd6Brr&<8v3830l2V7I5<4iaSxVne_?p> zy|PAzV=@^l0l7YD&Xl#^Iqy|g#j|u8>4a$D^Nfm;PjXCRH-?$@^nlE1cSt>2j>37) zj^RVIksOcE?sc)y2ZZDT)p9D}urmU^A1I{?fJy;|4GHjFWn2F0psE1VhzDv{tZZ0W zNO%uY1G6SjV#A7zi<<~+Lyq>*@GV@>eczC$c?fAjoFu~ls$0EWg8B$3MYt^3PJXh7p2W;8M z6LzePhrmONk12n^k#(`%zoA)_aKG87Sm9$!2Kv=iWK`g(S528LR^_moW&_S$=qLLu zr8EuRRA}F4B$JW!p_QI+;2&|*FL$N40mw`6dMo=D_YNbI`o5 zPqW@cQ4yai7{^qColce)zUoGbC=cvXk_`)KmXm4wql>P==c@K}K-9z}4-LBG`c1gL zi7@%*>%|;BNTXthi!B4GFeiPnO6dyd+}Bs5M0y+8@}}>jqj6z2C$JUWfR}>7BUBtJ zCg;J^?eXogY}5?TW3;o~skUfodj%k$4t{r};#R8BQdHa44+(Z{GZCq$ zBpNlXkd+&fHsmFv*369T3(`#b1;yPRMp2N`albGdP21%W&E?$Ey%gAU*Q@n}tAnOP zUQ(aOJUl%7OVeL~&*sFWqh6|~YoYUVePr5cs#KiQmIGUVZbfq|8v_h{$` zmN0_gCNFZX%-}k@?FP4r)AN-qXX|Mar_>prJ=j?{1P+M_0L8!Odw#sS-Yo~NR?Mrb zD=mEGFX?ByD<(CSeEgBR&!3UJGC%?v%leFIM(I`|%>Qy*_%X?shl?vt;IR25^#=d( zW0-*xu=TmX?+f#`=AzWVy8q5VG+qix#y^KZO9h-ZbckmORzp?~bmZ8c`JiKm1Q0T+ zR9MZhgCyn;gJtqFD9Nhw1^q-5mF`9opA(iAc*nub0ShSM-I&+PLw~^HU&W zpSN=@suIr;u}%515s`hmGrZ2#Z2*7U*{=ZrC1|e(fY)jm++M}pKBwiM2#_P$9XDiP zNl~RlP1MNf1+axw+b*R8@BnPc9bhB27V>f28XEF^EX$uf`ov*P+bYxnQ0ewW14o<9 zg8Pg|$-!J*6cDrVTd%(zO=)pZk2gMJZp(ajjWn+V&A1rff0Z0Ru2fgZV z#b<+6@q~7u=D8evp*bBEvc7xg>%iEjQEk=%6djaA-?^@?0Kl$~A7m#pRx=Ad$%`T8 zJoW!6<0#OY`hE>RZ(SUuf&pPUi8Tfu^WQIEXUpDk{U-Ez&v{Fm7aemz014Tjz#i1D zBz`9b0GSSqlR~%WFlYSnriw9{p*j;$qtk9LV0BO|VpQ$vGHUgVAwY$@JzsS3Mgv3M5k{u1>nv(Zd=Kmj-3U+=13mgGF6 z5OV(poE&UsqfcOI0TA!%ji2a&bdY1NMlzl+&x&~stVII}tfr85KO__sm_r;mkpLPq z-WW{E_0Cxu8u|jHnUVPlID0-e9&{Z+Blo2Pd7e^~)b^Uz=uNl`{|W9_Q=W0OOXgHK zu$B!pduVKv+n@yNfzR|j>LG>!37B`;^~m6$eia+sVlX)Mur>{tv-n{a#QY^fpE zo27-N=b!6J#t1sPy1Fp?JFG7NdV0|Xb)1Ogd432eL8wo>c>Wcr68EUE^RI6{E?EIQ4)h;MauwIK^w=4=)$ zhmGrO-$Ns%=!3<1w2`3eodtA~oZQ?rjx}Ok zPkr}p=TemCyQ$=~jcSn3QXl5hKsl@e2@%6nl0`d?F`DU zgr6grQ1n{VuzQ?aflwKsD1QOmVZh{-7^daHH`$ZV7{5?b!7+JyEOhf!4(2T5`2x~W zA(^xULk(B};?}Wim5h{2_vzPCoR;sWM)@ObCR3>&Y>{y4EX6f!SPoRk>EzR2y!!Et zXN{#ZPd4R0s6?gYW$nwtu4O$?ldHjkZVfFKM}V=Oki)jV9*gy{NNZ^!8>17potv8< zPP-~AD=RF&9O-CiU{e@?oL05)afbofqP%{j=Jkey#$C7*jNKXd`0;I{Utek90028q z?Q?f?BV^(H)JUetkPn60f%N+ZP#&aw4liJCfEJI7Ja8w?z{n;DU5RVLiZT%BFr)Ppba5^HGQG3B{hk@@4n`hn(>cBfkkusjB;$6)=T4u(*`({@5n?Mz3mOL^(~#SC!4?AEi@j%9P8M;nxC zOU~8RQe`}SMZK-t;(jLCBD`5Fm&OlLFT8=Ho;K+NX$G~m*nnPLXFIv?KD}LirgleP zpNwY2SEdNyb~?G1M-PxM2N3w3>^tM1qggpQIp6q3Ku>f8Tn8(=o2Eog9#%LJvo@^{ zb_fq}J}`U>&=cz(0s)xBTL%iV|LJX~3J%S+Q0_~}5OaatjUZX?E%pHD1uqYfBIXb= z458;oCX3B(J79(`ZWah#aG<^<-puKE40{*%bTYOyju*M(CSB!GU*~EtodO~KbZ0Ug zRIp@Zb?&o{&fc+gfR=C=_U~IjzKDsML>Qzir)y-Bqzf(~~ z=W|ZZ>h3<5oe4Bw(3h>V4}D;%13@{~D(=zxaPNVCiB*E;g9XgHZ{JB910Vv+`+26j z_+Ml{?#v`#L7F*`08Rk@Up0b_NLvKT;*Q_ECrUiEWrfk&fAENELPE&&j;fD3F<7Cq zmgR)ln*bx6ThDcb2sc0;lNWWAG+E%Bk7n8y$rac5U~bOvL&VJ5eav9-6!2Cx>Yn=< zO|pzZ&HltsSx^@v0;94AYupO_8kQ!}FQ!7MM7#TX(p1+c0UPw0*E10|ivs}9Z_ts0 zqtyrS>t|ky4&YjU$lrxdD9I=7LWl8AOqZ?tDj}0yl6805vh_H5jaU26^S)nUDe2FD zm&EX1yyO5eeU-66^GtCJ48~x!Ct7NLbB`D@&{rNX@x8iWe_0TbzD*1P(3O^sE`*z_ z=wv)`uA$WYd9#+bU5&;znMR211AE}|6lcfwCwAw(Y3bwCgs)9a0zgQfn4f1Cd5IXE zY*-ZA(%jt7SNREsEJ3|y(r)|)$HNmG$Ylc34B6$)54RH&5Gv}YO%WhQ-V!Ps6R9)8 zG$D9=Ncx?^RxF+Dx~83-T_K@mzUs%w(9rsbs&50pwilZv9`ehb>Z&Zx?7&*Qrp+=q^Bced7`%y-98Wgn^<>1HL1oo(&=U9q3lwl=c#i#5 zHQNydW_}o=0#b7oG)@L!{1UJw_|r|APm7;G&TBim**MODUojF_&F3rNT$49h-`Lr) z0s6rdm{}5T`A-iPQs^=~zXBS(E8Amm#bxR$Me@oyx3dVzQPzI}lDjdQ2{{u;H@>H^ zmFpcC2nRkGcD;7E>+}8Mer>!frO+>5ke_td?e%bqdkwXH$;!$CbeHqN{5u1KXQ0;S zfOZ);40Tw4SWGg&E$)pYE4-43Rs!2!hr7HME) z`CX#U0m4}r*rKdwsbDxrE9g`c9n4#5s&N6f>;5G5uCTBW&iLNIi=SY4XsE}gE`iiH zf?6c~^z<>qHv07bxr4~8HYu=D#WfbFNv42V9$<5$#k_kH;OO!5&qd(V8X1p(b_bQ( zvJH(}=W@ME8dAk$nNbfDAbSFjMs4yMQ&=uAWCjKY|E@BXhnY%2y6grx!4*&|>R^%s zTx#@wCg2h=DfzzvNkE}kg*l#8*G9OX6k-8*M|FicVYsr3kSXjGBJ5p!usE=x1-2V& zqDxy&quH$9hbosv`;U_k)IN(IGag}?nD#5r>Q*qBxh|;q9E>(V zO%Gb$OV~Xt2o3Xn#%>%n(7b!mhsyFqoSEasDLo1`3e`^7)Kl1UIQ?E57kI~Z;br-?CH8Ed;eRP$eochi{FXy|yIeFP~+ z`%dj%5~jZc3$0qcUDiuaqBzaQiX_73Z5^Fd9g=yAXxnm?}a;ll?O zCB>Bo9%Jph_qoS~vW5w+_hS|{z%iex_z}FunHU%FJ6G@(i4Pom11Kce;OGXjRIRY2xa9g z*NUmx81cIf#WM174Plq0?%tJ=50;Mxa#7B5XsSxTGzaldcjy^;qPP`&{;eD=yaNKn z&kT?0>fKIgK_R07j@5792q-8hwkC^-8yXs((cL(K39lhpYYyqxYj=f{7L6{4!=N#i zX8j~E+aXa`G{rjMuMz?VUA$AVDR|pK(U!Kg86qHfk#7fr1xyQe1MTJt5G$`ZOC;F5 z(SfiB8~24xOLTU1jhS)6rnO4;m@cao-0bU+NZE!E5yoLv0gOevTU{KS+`1)Pdc@e= zK6seb%sMEjJ`gc61#-9;Zed+dUX+~f>gG;X^2rPy1L@<<(}b~KHAFScL!XBSHxvyX zV-PWo67Mn(0MF$mNRV5A8)H-{Y5%S0S@-SHfQppVM;(W6dLQ==hK7c`zFUgNy_W<+ zQiIbj5qeUDPCAt<-*n8^gpo0Uu|43-Qxan_$OZ%D%!6N3k~L}lz=-5%MzoxbeE%KW8~pfhmTf_%@vKn8k(ssS4*I{iK&BkJktdG&toCboO`cT+HKDs|rFI>QxHNJt1i z3CT+X1}cKEA5dvR^=1@yg|)JVkLD~VJ(!u*u7-MgPs-(!{8ftaI**^2;(h*5K-lne z*I>HQi7_uPFOKMkhsN~u^cIFBcoi0*=Q92~G_1dZE3nbTNWuuX+kA_QcbA+!!7TUV zk*|PXg=}v2jR{;_u5=nNS}!%GLW+J{BzfNw;BBv@E>@agd2dg}y4P}Fb5AM#-umIh zqaGBbMn?Lo_zdIIg@g(0Z6NK(o$9VQDxxE#P|eXX~klfNHM6`8yx(kOc!kM}q$c<+d;+ zJUBQQ##sPhh6iT8qJ=`>`WtkCb#MeQ!i-uxf-E4vy`ZICv9S({b(@?r1L6H=n2Q&; za1C(Zu#PpVB?=5?z$98DcKfT3Q-6{Jx=mJ5uQXqn=tNv;cyrk8*UHnaU%_qu?|5nvcm!SxsK2^j=XXzH^ zL z4T_A659I-WME-ndr#F5so!wWA~g3ixgsJ(wnu6SmCkNOcWa@ ztD^suYiQ`w@btsZYtA zj~h^E+{Xg|%L$||82zd1a~B7KH(RCH95A$ijWh&3vd{Lce6Hft*k3PQBa+~+daQ|j zZeNK9W4i5Ktbr&8V>=zwul?R<8~3#f6ZXoWL|E@gx@z$2YGdjHO$Rn`BR`+vBcQIX zPC`a@pX=}T_yJo+M&`x%SI{SQw?#axQL25e-#t8(2TSD!Hl*kdfiY<#?(0`Y<5rt@ z`i%1OBX17c8as(-czPbF+ddex&p6JNgC+?b?@$ZnwER0XL4__*3|DMF$8vOBVXbt- zBCzV>J&{Ah|HIQ)M|HI>eD-QA&tARsNMG>U+LNH<7#mvpzH zG@_*N&c63|-|ru1opW3ZVe{;HWWM+XyImSlF5U`|@4@8CT2*!>pT|KNd$nAqB{Uy9ng$u5c7 z2*PNRdLH zGJMq+e{kh}n)JZUr?_6X+L~AnW`{mA&*qXxT%m#ZN1i9?Z9L<=L5Kyms}AE!r@ztz z+}~O^lo@dXJq)4^VpCzBMa-QpmlwW_e!}ISDW9rIKQ^b_LA5tW3@H$#^T(Jvs=IY& zh6)!K_Z`1)mW`nnA$nw`i!hdo^>SYPd!?h= zgL!maGC#5x3B2B%Y`cjj)@E(FO%lGQ?N)%|J2Gtiq|P>(Jz7fT|8Qa@++w#7fO{dbqMjIOHQ~Do+}=t0*U)bv zfQN^N0KCld(LURb;ymzTo|!pi_U7L$QS&X-@KU=$vHCWy-(tS*c@iQ%f-;)^{ymI9 zMSo|{L7IX>`bDr|b5~KL`^(zR+?vDh1yPK&QUMoI&p*6vTDqcnsCR~3Qdg3f?n^_K zoeNNQfYzZG|K@6MZk|n%0e{Bf=>GHDt^2hPST6k$!ULrzAfn)&xwn!y3+YIv3}&u! zO0c*NXGjb0Zp-oUvLZQP;A-&5Vyn)4Hz4EISt z*9H8$hwvYRX~MjoSC^0eZqLX(@e=azX6M~a%qh#EY?tOvrU{q!(8h3CzBaGkHsRp2 zg<+AO46HUt8BoRx^$c%bRIAH!7CI7K6=0&-MfQYl810*)F)RW& zv|N*p)&`zUckUak91>t-pDL~G*HTha@S!R4=}Yq6+oqlEseca#>CllEk02*q!ISQp>Fb5j(VH4IPZG{; zZJd?1Ql9_~9}%2^g}F!3i5~Fda#tk^-yr$CUh4Nh)Sq8{+0eXi%IbYG19bt|(03xb zN-ZXPai3^W#G)OAZa6JAoXXAxPQD8tcK+uYmZey};MsziH~dCJv!ma0{@QetznF95 zA9CcU0HKlaq7QI^>54TO5a@K(nCbtgirA2g3u-zS{W%Nce?JExP$Ks6ymu4P99>>s z`aFML;j+@!%|XfXwil5>p@@0!7M6-jNo4>#f;Iw;dEWC8;^7dGyzu#-d3ellB>T%K zFAS?=^B+3V`H`bHcbVE*^?|=fug2*n*snLv_nNH%0_Fl!59AQJod0zMlnwhnjOW-* zw9zV<^kr|;&5rlp8z%dZk%zSZdcN;^-OtZ}YwNpeBi3}|bRBUb^P$mFF|Jn_Vxt8r z82WnJ0qz00uI;8z--sHB%?>*+JxuI1{7BXg!)=eMB9o3igC&YgpL6=u@Qm|W0X2BgKR)4|d~ao-&GWE{7lsMh~ni1+MF`xIrvbp$ti$Ki{! zZn?OC&XJ>^YuI8#+A3Rq9Dw9O2Rz=@Y_>Hs}{f+E3Ajz z_7){1{~c)n`63S_8J`dzaq+^xM_E1E5v5jF;Y@5^o&8E3X6B+E7p+yD(=ix zJCSs%H#K996}RW=o^U_t5L3nv#SDe~k%qfZSQ^i0?thD_2%#~+p(uaP*szXOkS5Jd z5=$@j1bExc$s!tj7fc?Zh~ItlkTMmKd(v@!1WdWb6(MpqfO1ZqOpT+-PnJ`5?zP7WzKh( zZ+!~bNT_(j+qKBVDh9j|;+KVMeY(N-j$TSiG8MH+p=w-#CNVX2q<+!&glC?gEp3Ac zbT7@=0{n6?x$P%g+IomoXzY=y7@_u(kDm{$`{?ua-X-$^PxeS43pG)A`WKYThTm*;fIOxG42p(D zT-YB(QY{zmt=ecGtgIk!3#e>9n8+$+w-6}E>G%v8B+95U9XG?ArBeCNIwn8=Hlo%> z`LRm8d9>v$Qeyae>kGYY!zG2+d}K@SeDpt=^EE5W2x%S}i~+~F;JxQ(Zfk$aJPLQ( zU?e!Y^Px{2#Cxo7T?Ni0snE43v=-gPaBeQIt^M})&;m*x`K+q^&bZ+Nj5B1a;Gux! z7^yu_HMGu1XlM*f{q61TB~RB$?vp;Ex#z(SkPxDm0GrYZyzgL&_+XpC@_`5DL&WI_ z=TZRpX@Ik2i}b7Z4-QO0G9fE3I|AR0RFxy-071CbFoX}u1HlEIGEA4H@T3p%*XUOk zxguVd@-nlCg)ad}i5OD#ngb+&D1f5WdH z5r83Ty4-m$>92pWdKMmzii=h%D4REiXetBFezHkk?8}r5Na36P<}_Bxez{{d4@14? zKS{cm5X!_4R0k+}{JG|x=^*U_Io7wCXos41ID*ubx72X&-3*jnVv|&OWN*!8Rb{L8 z^Y5(4l!cYOvnB^wnvf$Z1JF?Dxa7-FtziZNBS7cSP%IS68_+cT`wG&_HGt3{F)%(g zRq?@tYt}>Q$gho(imGh4&$CUvFOZ@a#n@ZtaKf&7q41v7rkOPHl!kh~K@AV|aGM_Y z0EEYANxarL?X!cimm#U7Xe3$m{(bWL!n+kC{L(vu01=PYsARB3?){vr;YDG5)LV#M zr)`@SeuS53jD>olW7wQH5LY3{pKCcty`Deu=?BF~%TVI!%~==AZv~aEUaL>!$#46f zis&ViWH2}F-5gM!5v=9?o12SZ5^&+aoBInbX1;N=BtQk*Sxk%Ke=#|Vs@wQwbFB{- zf8IyQRmr#%KGyy3ftOzGJsBp~8`FHVqUGgliRhyMye+pLrW?wTQhE059so&eFgN5r zKi*YY$4c}GI5;>soqJCOT{YwdM#SC}a|64qzY!gqx``(D%78!RO&3+t-`SQa`9TrV zM-tG;g=($4i9(noWN{_|C9$%#6_t}iWCzoDAKd4vI}bz1Cr2(a=k<#Snxe?%x@YHb zO#hnd>jtHu;#BSj`1feHr}HstZV??2CSnjJ@#2gIxztSx^EThSgI-xKzn0Mjx@-}z zZAwttGDsO?WeKE2gQTU*chfN@X%QHhpI|Z6N-q%Dl||_(O8+ z&)r?4pI+BM;mID*tEn}ELG)yMRoV|^0nA)ncrnVHU3=1DJ;s-xuZ?q#1?K3BbUEJ! z=GO{B#U}RF81GW!rwKcMhjx~gg(U>4tooD-KiiXZla0Ov1Wuw4IJxHj`*3Zk!Pgxg zl{{o1fCdVV3AK=euA>??Bqv2QOT$YC(gse7LG!}6-%jU~(MNXSZ|kVysZt8@u{VBf z3E$>wa@sOps+eWT4#NL+&>3pNV_19N&rh7U`9eV0c~O?T;{s{I$m_h+p49Z7YQ9vG6$1xe9_r~C)X|3D3Met# zJDaNgb@K=Fg9B#st!poc)GY-dKwzE$1i(T=f_3i`TfLJ?%&hI&5-%HlMi;c2or)DZ zpXUviU-o%o;8C_f`c5f(?6c3YGZofIywErYne)GZu>DFrtLkS#&%A^z$Vtn^#NQAO zr?b_UhQs@!ecE^??gIBYWMKjC@DXl%V73ljE4msMv#9R9FE%v2ce8YVKoo`8?cH77 z`Ur}Jr>D6J6x1_w{F%PyO%0R-kU-Wi>Whz$KLY_9a0MY`v;Ph6&1zpZ=NfxCTs8$a zExXwHi0}PTtrisI{J>gE{cAD)-#f6kD#g4HAsO}R*R~&()ztieVQGqD<4xQNXOD#d z9FB)j7}WALrIr8PC0;BrHd>#!*4z3q`Idl}*c|o)Ay(sBXXo2;nN?JD3Eua4NQwd1 zVsr|izTL49M$R{-K^lWrwyj$p?r?I@L=+$f=&p9zTQ4wLKpt!qduZaM35xS zn9AFVBiUo3sM`MEfu$uJ^U4KP<8L7fm6tx^G{MpMiji~cy!{meU1Szg9E}@Vb+PmN+;P{xfURj zoEn#&RKk0fP@q2QzvUG6d?N4FE1EDI^dD;^r=mx!r*?vnhGPj3KFV1N&mTv}lg$Bi zlxjksP#&kMzMZN0k+=k2PiD20{??v)P%!4EQ$8hwDvzKb(3CKuO&Zq?L5r@|V`0;m zOi6q5rl{wyapsz16_%-b8X;n z$ZMx4%9mP?<%V|K(}#&1)1yttaI>Ut4G@q73*6tM=IgvU5LJ^o(Yj)x>rPmwZDG2_ z%-Z)+lLNHWufm!6;;^mD-n4voHHv{10h(Q9Jz1+@;^gd% zn23lW2DG|m?1Im`;LD|5iI&A(^ggp(sy?3Gp!ah?gtFV0AiFk7O z0)FQ^HHe!Fq3&+pL<%iT99hsK2F{f|x{z33Usu&-cjI()aQLwKAhe@74WNF2K952n z{SeYr;94!Ydj2Gh-0!d124S+t{kMObU10nYHW2!eMyFNJMkptD$77fgq+l%&1#7#r z-9exI%EYjjtKdyF94|(I^W!_aAW9|$0=f+W!BQ7)O_JAj5l5{X}Ta+Kp$@#c!g z!+xaL%A2d1p3rY`*R`~JXgnke`w{8qiRo0z-*wK`XOkIzXRt8fzdHhccg&BxxMj_I z2)7#Tpz=@n_8M!lODiio=I7I)UEqggNwCR%9$uLG=>d~&nbjaQTojO>odbXBu{)mv zePyZlo)HjQ@IO1heR~7J5#ZS08v)+1d44Yt4UkJ{;IxvlSq`oc*Rku#zA5;(&NjQC zEJ0yHf75cF&WPP`^%MZ+F8h*3ZT*ogQ#=d4c{vdk^TU;qm+Jgw`M3NgLKJ@#aZK#b zYOSn#2wn4tV-KMO#R-UJRX{59=+Pr~QXB_IM_XV3;7Ky`@DL;l22Up7W?T?srmcO{ z!DkdX&uhi}BS+_~)!O16V&0#E-)3m+t1Xf8HVr z{ri{g0mbtbo7kREs;T(?4P=S|&`9#{<%bXj><0VELQ{YO+o}lOX~~h|paXLt2xtGy zAolU<-UDKvtNIJQpsCi@pzUZp|H+>}bzXhD%=CF#4jgSyxqDKnfDn_zp{`xB&U}V; z-rB~_bL{At?zy=%;KE%^bOViwH9W7Y)Nt3=5@qy+;!@a56)%|6H!J3R%cw9nGt-3u z2xd)?0GXMXyhux<0g1HP$^HtcUEdkhAZiFq%t#y@RolA*PGi9vTH$lI{*|A&2@=G{ zibKv|+3On}FNeV}P7HMUbq#NC7^9DS+EQ*UJt7p-1P3c6C`&;$LpF)fAdsDv3AdGs zN3`W5C8cc8+CUZH|NP+Td|?s$H=F&+vRswMd!N2<-0|2medGRH*2?|BG1`!obI<{U zRDeoCV&U|Yfr6x@`-gw=-hcWnu!Nl+okJ=Du#rI=QR#M7`iRXJya~83QZlc_T3Lzr z3}$~6A-07{o6D%-DlR*IHLO1?L*AyoEd&{x{4iO|}D9nb-YglF5=mj{hR0*6p8TY%^ zv4f7E@NmVlKb35)`qgw)d~I$`H1JX!f=a+VV$i$^Rm8B#FJ*q-5Ya8bI1B}e8IlQr zwkUTz_c}Cl4`p~74W`MZz$*#Bi6`jFOGM%RMzk1vCns z*jHxXFLQJ)l}Q3D~zdHjs2yj#+gj`*dJiFwqYmO(WWrn>eAUMNeLpNk7Pxf4Rd%*@Qd_Vy#O zWDrTx2fwq;`MNu>n#04bsPn|isMbKwRZ1)^qhyJRfhict#{}|NiutqQxKgnDl=53CojeXY zx*h(UQ`nt7O$NjbC1^Kp0^dyFm!<#ITKGp`!ml4$FvyE*z`TS+yz3W{gBApaZK!jQ zU^`lFsRW@~(I5u15g&al^5~lQmk&6EFP`V@B33xf^5cGIw=P}e{;6^N<#6qzFnUk!XCy89=s*fdq zJnpDo0ZG=~7ez$3EW+Fn+z7@jx|ypyIc;t7JJy55C2Lt>(#xKAi37zbTQ~JfKQZ=L z4)||ze;XUim?=Y^wgKqQ!{qa_t;$G_o5OZqhgvT*sHi{{u$0fQ#JAb>9=;kru(h?_o~??4I~4KT?JhN6<(=t~fj5#L z#1$y%(M_+vPWKv8b?v-|`BD+pb#iMma?{U5O9e%ClMEi;D1XiBuThXFc^yQ< z&=Ka7Lu`%fPC!Wi5Dc5ZmE*0u-JA4UnGO#+%GY@X=*gzsv-eLF+}s2}ECz0WVgNJerw40$0Fi>C>U;{h~wMVcB1(;q7Onompm*%I#8(r=HUk) zC985WgJIQUE>n}o@tyY8vY;B8t8oS^gk1PXX2X`k>AIAh;()c8&i+Btw%c`#+9K>y z&Rm8$lVQ>p?stQy3_Cpnmfc+VU{%I@qJ)6{UoowtqoN}Lj%dMuC%#s07zmKkZ+>mW9`|m71BPPkJ~v*=qxrbE zB{%Boj}IAGaGll}-u5DIFkm2EGc$Te-IJ;!g`C+PmbfsspuK>n^8qe}-`(_qAFI^E z2bQ`LEjTKWj>dMT{8o+g68YFljOFX`G5*_2yn@QF(H!6p!b_$sMpC!Ggj>S^CsK`#N43J4f22cS{Fqwi zH}z_2_Istres=XAxrn6?cPjCo?M?UVP{@qfcpeq$yt3tP{As*IVvdF$(Ps#Mq#*ym zw9cQVXT$H-K z3$Ts6UT_Aa3i(9jMUaj%Fdn3r+K#aTb$_d4l5i`@+v-bY>230jA=!hPJiYw1KYke3 zKP7yhk&GrNOJDsPV5|CxY_%*&Zez=%{N>+j@!Gf$U|`D1$^i35k^-eOkvJm5#%E+g zosot!U5O)ubVHx8Z`8)bxL`^ttLD1Yk#|3Em@W+h^QM`dT_5!6kiJd6>iUwSd_hyc z_QOjav(;&ZD0s|EB@rV(MQ%~ z@aLvj;M}9vbP^ofZh&h*F3aQaC1c?m#S1MSBFWdie}~BEIERM~NQwZaJaKQJ67 z4d+B<`Nwd}sWlm|acHt%iPibl>9%aDy5cy9`Z=t~;w14JTLG>Ucol?HYj;HM42V=e zG{SuRsxFL@@xrhFwbt-9hDSWG-Bx}hkhF3h8>h!L5F_e>hf-(w?k2hTm(jkW?93rgc$ zA2)vSD`rRQ68z1?AVeo6B?SQDe$T%Q5!Yal=x0yZ9hBFsY3tv^6{{|}D?9@nPZ8R) z-)$-eweJ%jY!CFNM=6<%UuFYFPL%#m*&r#^;pRx%Y+}xoFr0cL372ShS8Qd8GfXjz zMs=rp9&&ORM}O$M;UE_liqT&$T`C&aJA&_NW5RCMFm0~?YGc{!tB5lGvNps!p{k8{!)m3 z5wcNa_4Nu*jw|Z>oemXjS9HFgUx=!bo&{9}5iJIOHD>*qMO}H%LV)V`k70`9iaO6s zg;Q}O2Yk6}^~dcIco7{_Q#x1;2CFMYeYovJ$vilR6Z|h}1^qN=3;6rw98`D;CL1p* zdk4A6(*`+u@pz(APVD;n`_I!}KLoBVqphXo1>gvyHO|I7#!b<9CmUzn0k2~%@1v=J z2q;{6*uuHv=AkABwC+ADq3|B?x5BsxZ`~NA!YI}_TC)uegK(}kK2^SC=lrB;D(bE~ z>5mE2sxVI-X+72LXis-{8P>P_pmjiwxr!r&7oH!wLdCa}Y~URQ{?*bOIENrP1%M}j zq{I{|9pIlPCMNd*TBN#b6DO(iv`AYAj6+BOD#)rgQ2??N3R^S*K{TjCdUOi@pl?2# z`eWkKe%27MjtDbUw3Z>*X00!Q6V95oB9&_mmlrGRUC+uN4u+^slUm}+JY5s&Tq=(q z`K~ubMMfe~bR%|Eg?kGxRfdeNo4oOU%Q2O2Z7(BSGkX!RC%N>>Fk5Be-oLf z3}aG-vrXW(a-YU`IUR*%sY-uPAnOKh$5yt3j!>%ZCvycnrYwg79`G=}uWI*g0E`^g;$`^qUjXxf#M5MTtCeADZ9?el<$4;%P6#G?}2F&5Z z6m5I?nv976(SwX>WtoTzI^!-4e%l>2p&diIRuf8_c4{J^1P%G+%Eq0aK2IixO zrLG!|FuZ*P(LH{p$tc<51XqM${c|istGTYD!5DjwMx&NL5f~Bo-FZ=<01;ATsqiH1 zsB)Eddg53XqpSq&$R%W!HK%jXE-gG@K^teKvKo7uDzafUO|*^QQL}5ba5SR&wp?66 zkO!HkxCAynKAE)N@vDvn;&lPFLT;8Q0L2`39C}3(@r1(os+GG+2v#QlmDk>n$++70-P9!W9=RN0pNqF|Y)N(Gm@9vV_G=!<>D$vEvjfsyh4%&}W zuN{4-rKZQh>b$ zo^pb*<1XZngG2|cQL!MC1uL(y&S>HJ3alwlIIqyE4x5y^0ot4 zOpJ|I1qMlDnn3A;r?HE5m<)8BwbD+;8p6=5*NDS=zetAt4Dcdgpj(!V zg!%tH@QDXm^_**|zWiIC=qJ16r&F|zT}onOYM-1f<=?;b=7?h@_&Z)x!6+c{HiXs^ zJ&2-Zb~^lLQG@T^ksg8kA~)Nq4A%ko+EF*BS8Nwgyx3{T6-22T&6a#C=H+!QZnoy zUDl+``b2yUX}J|{W>FUM;3uyVs>tfScH8>#>we@X^Im8DUM3lmdg~;+YQJIEM zEI2553>koQ1akudWnZ88uFWLG%w^EQvi+D?3Wut)`bKa;9@R93vw>c^w}UCljzh>> z@8_t|1>9%N!fNZ3Qt#3VwJEL^I?B%s7cj_8*xBH?z*P3F#@N`crn^1D!lzZgHr$z0 z&QBIQb4I$9evczd6eX4wZFy_U;NOXa9AX?*p!dIy`9{{r&61GnP|(b8r7ZVY5tLE& z{6a!VgeT(UhjtjUle>8`Unv zSxylKH6dh4vX$Su--~IA5@e^|HIo}5lLiA({2Og2`U6qLN#jO>a5L9G4vzb!)l8BK zy+vZ)$si5`B*+3{Y0mVN{)eNe&^%gBi1WD)!4IV5i6-LHj_gm1{7E74K#pOjPqF`ysB~O}9GQol6!qaYsW(#@VWx&`0vOv>CfO$e(wuNIhg+``lq8DUH;O;O*iIpYXIxzEqqR^$v#Wz=$L+MukOLoI*W^TP1} zwCj+pu>GZb_x2droiPaMAnNk@a{F9Xa)x8dL7#f7Ks@I>bT0tToe#u5MtYj=>FH$1 zN%&T2yCIsV(gp$tk>`K8&Y5-*lE-()K&`tgmBo_I+H7r_=owmqd_QPUfIPxS0uoWa zaDCE}?sdB(gBHvd-8G>oF8(xdWao-GR2L+(60LBOYs!tYCASM08)NEHP}`j5bXAj-at%@-4`Q$8g! zX^K;i)W08gH=cv6tJHCsGntaI^oJK|3H|AN@q|c3L1<{mMDK0;dP9b(O#PM>aSExJ zt!K;b{=>E?>t6s?K9i5b+g#O;8d=wL%FSJ|H6L6IXAh{QmUsDvrb*2WPMLh}w2F`B zVh&MHJ3t$wEaDdo(r(Dz!~;!Homk8ur}So>hfi!J&>p5s23l=F z&Otn$%<0F^;HPA~7cl$q;;M+ojO*+kc5AgPi`JH`l+gUE;jEA-{Vp$5=A# z!6`0Iuwc+>g&>88uo(*M-925#a#KU{(U0614F^K}@IhF_V@w45!K7EQU7^_lJ`o~< zTn<*{Sm{q2=iLB+YC2uTg|`ReMQCX9=$p%MtdQu{4afKPzd9EHzau}%09%c#i*BHw zT@p?xNLRY<{%M=*jpu3JMUq3nV{H_;2%NVd!VN*S#GChgG5GJfT7hyy^1{GODe zq7fY=vE%@K9q4M&2V2RWgZN+cCP{b7`2nDhTA4BOdFC^94EGI5{5<(XTBfge3EM}f zRoyC^5xwyHM^3Ry!Y?dr4W^HYt{dPN1;`lo{9R|Lc^C>~bV_Je+~VpB+)a=DCKca! z9ngc%XRg8f3Y-+`*s4FCtuA5FlkRD>?h#bz?AxybXxS9-c_@xuL=?xb)xM4IoeNB7 zlsR=D+rw`EE++d_=SvO#i?xje@6yqXwpND%ksoNkB`qIuU)3FOLA; z)sBfR(Y89VirCt0J`Jo_wwlF61P1y#^EQb%k`dQ)!a#o%yV0Ly?%<#d3Ir;`Z*jIE z+1ehm3ea4h?za=_mHQwKnCz>i2Q*2TggBv&oez0r7i9=LJT46sMUwHBmPk$uI~|sq z-h(e|1lFeDXvpXk8}>p%fk{>xkv<9d2_0i1PrYCC1jqDJ91t3Hs$FN)TMeYX={JvM zl&_ZRXrD_Iy3$aze7wqK>aFpRM?$hKVPqmRD@q6R!o@iJyQ9Oh2JdLMOAe7(n#4QL z2H_iKQO?^6lf+vW)NHYPw-n+{4TThRct}!uS>0+4t-e~TD1ea0E+xFpo&S_+a%GE^ z%={MK#z-qcv2_%`GCQfa{o ztb*n%IvRU>xZm@fGhhRJW+r1;f@Trqupyf|*b@|s4GA8&>)aMd+uJZ_zq1@8yomHz z)3cIUSRXsw<p+$ZRe-jaDGpf1c|Fi%%dcSf` z)xAsZs5_CJG{Uz0V9ekus)$G-AXbC_3+vbAVTPoBcxp&DPa7GTTlP}o&$h#nnf0@P zYZ|c^LuK{+KEA%LphyIkp^n=Bb-Q=g%(FG2SJ_z+{c7J}^)8sCW#MP~vXBQvLmTR3b2|&5oqDU`%6I41E#8cm@!lyO>)yo@4>R+# zC1}nXGhrc&R5FW@gIcXcfn2?nRhAq&gZh$<0moPa*!tc zJwuWdd8;D2*H5+QfX8G6B`7RT0?-8G;I;OobaIi__ND3<)90wOOT<1~J2j;h6$R=H zbKpUNCF?ipN|x@DX>2I5rvzV>oBP)HXnL=Fn~!I>KB-m}f~J{6Hq=FL#*iO}#1TOA z1Mm=%2L}mDplgKxfPNI5GC!Ryl$;C+;c0t$2?3ch-yE0$#pk1XL8uFLB6CMGvBirh z{$y&b8*15WKoT?@eN*z-nN0viF6fr7sZw(;tI2!(@sVXMenl0>N}F~|v=Uu^(~Q@Q z`0{n*Z-S`R*{dsi@1I&|TMMR<5hjQcx6CR8gLtYfC`}Mng8y{TyV!3~)KT9Q? zx+8ZKs(4FwFB}q|@jJkP{uj?Z>?QVBCO6A?3OSCIclblWOM;=Z4cs0-#`=4Rx-X1` z3>C?`m+iia>|soW=^ED zY>MFTIM}Y*sK}c#PJLjDGgc3VF$NSM$O{hox+fWugAlX>6GRqB?ZAEc9##uw`p6~j zL7!3w5et)DU53)^Jm1EiU1G}_Pt5$gLft+-qgH5JmGx+A< zE!+URFknBAkM(C1`6jT^L>2#aR`m6ZhJR(nVKhlxImhYF&CDG(`o8bTT;}{|;C?KT z!<6hbGT!TDcY@`N+CuToqTfd|HmPr%nsI4<3Pnpnjf*!@Aa$0lV-m%-0ce?T$$<)3Qi8^hJy2};Q?_P4IP=!uMm4*yk7{fyKTcW7MTcLt zJY$mkj<2}=%Uu_~RsIOy({ySHQkj_SMlSV_g{6AF1A~KlRd!?u4AI)!`YAVeb$R(d zd^h|;#b(+A#yybr0wSoJ2xdu0FUex~R>|JVsw*0#BOnbSAYdYRl&LxbVejCi2(7C6 zV_#PTBoaXj=8nD=k$3-{+<4)+J*joY!eX1kcVr?2K;-r z@RG`tBeH&jY6G>K__i|ddR|6=8AzVUQYY-HdU6Cc?&C_VYT^%us;b8)uNu?QD@{)- zlRgl8&z0Wb_L!f)16>jH4&T2&>u8-qbUJ_~!D3YLczaywT7%8ohZeYsE03*x>Z^Hp zGCz`fNwWQLL6r$3U_1(72Qr6*LP=*VwC7Yr+wlGGQ8BrP@)fDSd|5WVi%A$NvQ!<$eyLr(`&~EQnIqYRh+#K?KM z`reiM3o{ct56^etGTIsqE;So+UH|;8EMebG%u5hFs$|n}=!eXxR6OqkK67ZUv<2&f1qgFo-6M(rQhr0+3=p=k3MQW1O5F4eg6D{f;oUo z2g>jo4+0WFCFv&uReO0p$25;9|l zN4AZO5JBbyYF4&wr7cCw&F#{=0!#q74YVtUxt<^chp6O$cLbzJ0P%Ws7N+V( zum@eJQ|{u8ZEbcuB?=raM3Z^nGt`H0Z_uk@C~1_ zH>n9s9bWLOGGZ9!UR7*n(X&V*ow_g845gq8=qbKYv#LnpN1ubL9cS;$>vv93V|7 zi_I>f4R78k_J0W)<}qf=E)8ci`Y_HX#G0qebqtpaF>HSY1!aZ4&_>@$yt3_NGM%R( z)lw~Eo;;zY+!VpPcke!O-8O~3X8em*6y|MP!@&6aM){G@R=ETBg;Q5CL_X22CTbAA z6i*c@*I{A#dwBW0XTweYHQm2%45j~3&Vuo@4aCIZOfC>8BW?5M_b>H6YHw$KeQK~y zt#-xGfYuyLJ&K?4N|M7tUz8$`#RM5krVx3F40KWl6ppsqM@ zt6{JF(dy3S>N73pj4r;F$jcsT{>ZFB%g({Uf%2{mQ4-HnVyCRr4`iL&0?%gKi+}8E z;Bh&BysGk+cqRT=vglPxkLs=onoK$eFQ<%%sZ4pu+=)}-lYJE~;#CnO*2i&(Kcz2n zj(t3w?0d<{$z+Gc`j2L5k&v!JeL6*R!9n3G1(5SDv#7h<1ReNlr^!+uG`f zcNW4WWOI_U%eVL5`MJ7(8ybHHxydVU|2lGT>3q?CtHogDhCMVW#8_vza^ELoWICPH|s|AV*??q_-JeD_0C+)+WMy- z=f9jk%HuB-z7>n;ou$0)KmSM>qXh_XaJwNZK9TJ&WyeGX&poo<+H-^I`1Q9tx~@B{ z&0$h)T^-51^`6(4*T-yj>=yw%$c_E$H&>x_YpMv(r}-&oaaZRWJ(&zB4kMzX5RLA| zg`c6JVI`Bdo-BIH7~a1n@3YzGyJE81YB!*!eT3FJ(Bu>7+y3)0qDOA@`xXOwy1H>` zNt_+swWy3fzhrXA4^UemaTmg^?}vUzk{Cc(bfdsUXJt$nLjM z?J?azI-c+{sSF(9J1f5*CTl4q{YcYd>R4EVQ*2e=-o27ll=Sj)CulnF!(Zv;#tiPR zbGv&E5oA9;yuYDGH3N=m6)yTX{j!tvw^j}xzGELWb9}%t)!`&R86p zX4W3k2lH<;F$IIhC~{zchdZ~GwWci-?U;jWfGHkZ-_5hH<+hk>_a;ABHf`l7;} zY?K}$jVqu8xcnNw4FMl&90?%lsQ?=<$ou1ZTUrOA)7zxMZZZru62$HUg}i-0`B-nf z)KsRhsHpCe=>v>yhFl!=Zr6t7q?irfW^6e)UG|;F43U3F4(#F#%J>UVXoG<2GU}Pp zjReI`V4_5P_8Gcx(AQ{$KUKYDMpwLbsWx0o%jv{0WH&zlU=iz`+!5K!@NGT|E zH(NIMA;T&_e!gc%x0f)`?@afTFiW5hez3AAlj0(V;S|0uA0OW`uzau%C>jg_qsK|i z$&~DT+Uz|X#NF+q^U*Txn9EL%omD>$wrlCbpd$WdJ(-K4$@W!;*RG1{e&{Ym|tO!I8t*?hb04~^|E#Q$^SXv>`PM{|d-S6k6 zq)BU8q;TOzQ(l)oO83yQSh@t?uv9QMW7~n<=hNER(}rLE4exNu(3$2YRJAMwwgYYP9gG+voBGbE7sO6 z-l@5N_PDz}&R~B~qlY~xAl6L0Mvw%3{eJBiG zryBo|A!`qDD>XKH{I%^z0QHe$9f~xx2zYbyLMausrFbn)SbUrS^R^QA`tt)=mT`I zd~i0JEi;Y|VEM&07vbBXWdV7Qct2AHc}R&S1Y!PT=i$!LDKVO!i&`QlARs_IS4ar; z#|LOQ2{{&IWNS7~T^B;!wZfL-bd!^X^}eryn$I#d^L1eW^z~g8PDrb|M1@83dJ%tL zym%2Q+}sZ))w>4^SmMLIma7qWX4{-BKL?TNyxe~sc@5d%jw}R)Gjj2hO6Px!aNza- zOj`RuB}PhF+&B5!^Kg*kxczCq>$+3)sKoJyS3O!cH8s}bo_K^74a%+DPN1d|(4|MO zkO`G>pK?FBi%Kp|>NFk@J1cH%5xzYqaNz7G$d6r|JJJ>jfoxNKx{YodIKL^li1sc% z{2iIs@8CEpr7+73QWlYM|3dWpzKBltZ@G8D&iE@Y9PQBQCtevSQI7)uSB678+M^n zk&o@|Kw4*XZW_e`%dhYL6r?szFwPyr6iO#QSE)zH$p)Ak?sUGFs zo+uqucxGeyAgJ1dKvQ#3^}6uFtTcLmf4@QkXWGzPF#2J-Tz&D(v=BGN?&6(RTlsq~ zOJwEM5Dl+5@=S}lc_@~3!%tpoy)vS;+3=Y8CJcjgW0OMfA!kI-n*L}C%Yuwj&yY8` znfrbCfPw-)+}cmaBuZUb+~uVU{=7N$?N7fxm>No_y#QYW z38>i^E!65&@5zkj1G;5|KmvJ@rMxkOavfziM znUa}?|N4aCFBEz_qE2S*MY1VD*!PS5Y_W?7$-GJ8weZf!paUU)EyRXZr{`W>1M>=g zSfr!Qwnm%RdQLQbr(Bpn&9r;emwE>4_;oV zU9Km&4J6)Y;uT6~AK6%|--Ob}27wbw5^NzYj7SVi9De*MsHEgNV}L|fz^=_pynA3B z(Ft<#((rK6u=JDPqPdlCqxGBb?)=Haf4KRuG2TnyB_lDiDuPj%({kjyT+zM%?_}^P zN&5Ku`UBeu@qR6Vq?r_}9fza@3ETT*?7h3!M(>0*o1AekV;|>=)jE=CdIf>15dZF7 zcHd#{MefMQZdu7S>Noex$=XI07GG)iuMy}o8qzql5_=|T2PSyWvVtAA{&)q5Z4jmw z{4QDVb`^?`)jL!qANv{ydK;o>^Hr5{WT2O~V!bT+l-jI)-4f*1^ET~sV1fr7e9oT& z#MlLl7h>cdfDi@_4X93~!2l41T8Kad8h!A+fW6}aP-=+diGzE82WLxA3PiSK=+M*x zt>?iZoM9R*;oFZt-LCEoAn`ypC^P$?dhfjXLrQ7|Al|XMGk!GD_Aa%2<&157rI6w!_|4d7pST6T}7d?sN8U zy~#Y#)zR7B+gkt{F`{yFU10~Z!876bAc}H>>@@`;r&}MU?>dd`-Ae`$QiBWe8=!|1 z!svRY)nDrH zqoO1xv1kMNt^{JB~VdOf04Sp1H;v| zKQ#hisi`l2LvH)j#fo=++3<6}n zI+Bfq;7agrt}x!H&Lymjq35=0aJjMd4x7wU$15O~5iP6oFSfNw3?|ub74b_ID{GQl z3;A#Dc%tDb*DB4T0dIO9G1&lL8em(pvauo5F)+VGo*EUEu7N8kt3eBhiG}r;Bqq%& zf+l}R@j>v|$KCUNg^kg7cWDW)x03Ug5!%f46}>XT{Iii(sItGOQjA~R6VOZY5_@?4 zkuAnCjX%VDLF5sltcKK6wuCM}9^nj0%>2(I!%`9-@J|{%uMO}fmLKe|h&bHS+iy}q z-5Mdiwi$|Rf47zNktG)xkAOObkevMKj!DY;ug=Z@i>-cR@B+CSQkm7Ob3^iK0GGdR zNjDh&QD{QYpPLvRJM4t21$fk3ZvnTfdVf`qU(sX6(xC80=%Y=M-2R2ZEnidc7L$Pf z=<1C=a!UB%hJa??2>u5%M)=T>5=aXn#e@(L56?`VGN^x5I+yWPwWdc4-;N_~xyKpD3@g!psR_Z$S_hMeL{0zQ6qJ zxX{DOQd=t`;!{umPrG{T+BV3O0^lFji(o20gto5Rt)w$_KE-+q~wD zu-5|1)eGtgMd&uiVZ&S21I90YAY8Ls|IH>=yDdC(xS^BwGwHSl5pl?S72JHaIQL(9 zbPM4pB|wf~rVI1GMI~3DS4R%1XJFmZ_=vsZS9cV!4_#_xpWGH6E4t7lmoJ!p1^(vX zWr0MCi;IYhDdW)cA220L1umOvl9Hg?zIlvXCcd+_R&egv zF4~B{P)os1bJ5uz&)9?lrpr5hOy?~)VJJAWn)Q{0#hf2Vrb(#Umj*GLH8p>!C#W&U zg6b;*z`lAVZOFZ9W7r7&l7=R^xVt^~WDy&UITkxH@Y=y6nbj>!Gv&E>G6|j6rVrYC zx={>w{a8+mrF#|G3E8KkyP7p8|0q_LHMm{FAo8tD)ug@Aev98Qal|l^$emrvn54i8 zcNrV5hQji4Q)D31t_U0A?(kU9I{P0NAg_p0O&~YA zR3VFEWqX6geOlf}i(K(0+!$ZeFaKgex3UDYF4$#6M@4x9pB)TJTf4il!DbGUo&mxE z_h;bc4P#6B>G>(p8^MVJ!9FBVU{S=Dq{7|Z1$Ll0d6?qhH~<$XU4KbAA9GE8&#C+4 zXddfy{H>HiN{vIz4{*h$|5Of;fu?SY0p4TSgA-Cx>dc)0ce>~ z7~@4K6-$76f)U#*7*h~B1(*!O9N*eFJ8*FWyePm$`R30iw~RD?;COh(4XdEO^3685kYLMmm3J8L!P zk!~tdkOOMKuP+Z-_plsUnQ+)bva&zUKTacb11EI)u+T_w6>c{znWO(Xu ziFbhSrwt{~-cF`riQZM698cKPU_YHjU_p(Ft5k!|O!}sWE{S&`tgSVm- zSVM()QA1As2tVW!Ku%8+?D3f^KR|{{H+Vx{Ma!zrwlWgg{!vOao-f zjEszp5N!zL4`gB9+m|yY^PfimYTiZBP6DB3N0B!KB=_cJ;v^*^=`qF!F~x5A)XZ!2 zC2%e1C*5L&eN{(5NXR0nnpTD~<&iZh@RGo#P6&v#;nY|=Lla{O0)Kxu4fcj~P$VV? zhdmG#O@U6Ikc1@jVrm8q=)rW9xJ36u(y}RW3?nGlX`zpR4~b-Uy+&p8i1}0KK7Q~i zCFL1#8yymH>HMxW2w*6WwkMGZ&F`JPl~Brj9lN6Do#6MPKu;7h(ouB1*go_W4J5kE zvtm`b#{PzOjRRAyH=p+foTC6<}cAXIF@DPAK_9ty>g5B ze0pFk5$*q`V4+*^Gx`Sh%@yE~)PhIKudsuLXfTK60VGC_ORa)1s`6k+X#QnO((CJP z!}W3GWWvhI4#Dz>(Ib4vZ(xrfTiyUe3P@?T$}IF`r`Q%kt2c4KuQYWr3?_@di-S^E z|5hA%K_H!iiHWI6Bdu|=-yb$|P(NGXT#kVgKWN^61)cw2TY6RVADxjEJXypABr$ulpAc=7{Tp3$SLM5- z{I^N(L68lVljP#=GHZ}mU5HX1i5C3kot>ROrJu$y2nr?ugYi~kChFgUJIxGph7B`L zA8ANRa49xfZ~W3uq_s47DH=IgyS^)_6V9Khd<ogB}g7G*mZ#DLkK4VhNNp#*MkHo&s+xkx)@(|AsJ zBY<-r45C2*RQDl%4C-|t>#wrsemLbKCz+fKDwuB?0SrOBE&+v_1Huvs=^wCnLHS!@ zg`@sDOo@2QO>+uu?ocP!ei;3$gi@s4;_V*4Pion}sXjg~=$0xcQqM!@HaBKUr@9=M zT-;kWzj5NlmqXeTy2z=pk)gxRu(+u^7|!uG*vRDT$x}9uHkbIaNs2&^ZnYpo+k356 z-#5xVDW1K1{MhR-8*U24fSPjY!mP;ENq4-L5zpy(jZIC9LCgoT=0`A{2tiRiC{RWN z$O6$ng6w0k+Q|wYYRm3YPnk_N2qM822<%aHkp*pE5|&$tRzf^I zSJ%qkk2T-H2;)BgY41<{@Ue|77WlQ$IBx>!E{nuj{NGQ1>eDyh;xZF_MPV5jSt+m(mynZi4_)py@u6khq5JC-KQ_a%Avv zO?{C>QXqIgMyV?19{F&b{&Y5aRP1!@V+b7juFv=lZkBI)7I>A2Qfk@D$xjiVsd z2C53~61Et8fiHnZ<}Zi6V1=ZLFWGRmDGYH~T`=UXu5EV5>k1eDc*pQ?#DQL1oLXr6 zS$KbKf^cXfRtDB5F|Wz!_MzWxfuP4ge5TV?m{0!Z6nxjM;fD(qtx=rWAAwy*w`C+v zOn2@*2<3b1Y~HYrBI|kr)$g%`r$rE$jvr*Weh)g<87l{oX?T3|s{Tr2;MCPbg8 zxiYq>)06G$&))mM&d#SmO9=JS=`UzOw=-_NmsMfj>|LH`S5Z#OOc!hbH?3G9o|W5M z1M`b&EqgLhkdn7$X72C3>442HV8XECW3E#y%KAQ&L;JWFSE{D|waQ1iOhfQ$|NhI8 zziu!%++Ewq;JztI*N3<4ipkW%-fsMSz%JwkahQAFKl%Ske9w<)gg`~3M+9cXU^c+= zgZBMx8p-DVa*3ZFYAEY`zrKijW;c=s=r3JRNi8l!u0le{P^Z7l-8<3oR zNcAwnT?|XY(RXrm5cBSe*ZZJ=7?f>JqL()YaDW_Q0KQ&8TMY-VXrxp-$?Gr#G&^cpWoY6)QhYo=$467w&WcOY1ys?AX!Y zZQ_5Mo15U#{1`*qJR|Y;TAGj^&A6fUk938ILr$WOZHL>ruGo_cZ#-O+zIm|KiI6Dj z1E&aOcW>{+a81en$typB5gxMnBeTf)0|khs)o(D!4ug*7%-=8P8|Z^7Clx_83d*f>=%jMhdG z>gehUx$QIh`}-sF5ZnSp?nmqk=ZZuSU&G-nuw3^0Gmdb9lViWM=z_ZfYi58Trme8{ ze6b@}M33e~rYLCOM~X|oJb7)_d(-cp^J$(z>7ROPaC`uZD(}QZ3cz(*#~w9Z(p6A?)uw0Zn5;!~;;)R2Xlg+rjz`t7BmGUklQJ zy3^J>gI}#$yR`eNwo}+?Zd~6n_cpy*x)I~c?8?uqo&}XvRjO6}4bfm2g&cACVSMUD z$_9Eqz=7d8gIogYy_Lo9G_gTLDdB-j!}6mMsIWg?)>Pwf3haU*9w5!O=3<~2Er5RG z2E+Z~*0jG{XT^d6K*Fq36Ne`E34jfG$&?i9!;iMOLDBoJ6e&g0QajtWq#|i58u8q0Q8*NiHja-ko=Oq zUrpanm!&_B&p6bVd6naXb)yWVyy@MSe2}P}IclUZMgSwz~*}`zO&fpz= zZO%Y1945}ntbnI3iN3T1I5bZLKT-!5adL5|ahBmbIy!QR0YT{Hxz>z92eDiuSnS`@0NNSOdXA(IXcbjH1dk%f z%Zu-%+_Yq{VXaKSG&nV6_LCv>t<-M8Zy)jI|DBFUP*r$^hW7FV5Gvwbj=Gh&=G|z(y36i^vGfHX+N& zOZmAG3iBgq<;2VvEFNdukb{wKL_J(@wzP-HWufLiotwPIRB1 zK3ysM_=gNxUL_8)obD{e1w@zo?*sb^Tu_t7z1cNcjEvT)azMLYMVTq*SC`0SblX+A z!k<^=b<0mAtkg_t5h@!SVQkt^Z)##7|?YnoqkV8S$^<21|5M6cdu;glM!Chg0eKO z()`B|vI+K9rtq^yRkG0R*nYLp)J`A{gjOKW&cePkIX?RiGNblA3*n z^6+=Q>OVIs%Ni8e?uG$TDGME4!Sb)NLE<*=&c)ELytifPdKC{J3S=u~rU&|n0?9Ko ztc(Qe&zR76jvdEuTtFX=VJ2}VjMf}UW7EdiU!E;QwZ1c^UE`@Z$Ws5#%la8*6AW>I zUENu>GxZSRcN)76m>J?C4u~^2{2_@%5F|Xmw$=p_zA`S1_Ya^d0Kc?d?|GU~l|nm5 z3;L_q)(Wx~Ob9ExeGR8q*g0?^Jj0HY$K>pT7($G_!$Ihh8Z8fsj{Qsezk?YVkPR_! z??&Hpi;6*yX!2$I#i9!Oxm(P66d{bSSKZAe9LjGqW*(_sWF~n@l*TWa{jUYwqJ_fX0GQS&%IX+_{0clULW^ih@{SuS1aD6?T5|(2RLU!Kd}j{N|lI zFtaPARRQ#lcrk=M2qO1+H(q#FWw#WTheq{UDr_tFg&iO2dUrnoTe|~I{huCxyyjP> z!5R$mOzEhK^j^2?X9~RlIk=pw7qA=&0J*lZ(pxY7EVW;oteP&}j&bvvPkLA~c*5iK|JSoKw^my$% z``tGA5$0U{umovu3E10*N8x#2-$cgL$V6d9u(ow()N zRSOR8#OUDJH{95M-tdPFz7R-3-s&S5%mQwO_*ZO6)ZBh$#Yj0RQ1U1{9eyLkSmdmD z;z*@Px;4C)WW`|pc5{jj33SDmWLl%jstEi6_~+_8iH&i# z)B2D|O0n-awjT>2#k?Nk!mg4Au3-gUNp_nmgNpw`Z2#Rk@dqiY2^FS?Z=G_UfxoEE zJ9h3$+ct(Yf9Ck`r}7LHl{cV;2g*5!3bNF75ff(FE{<2tJ3Kc;f`{|BOtgI};J%+6 z@;1{P-*Cl$Z2k5YYy|O?l-5eFIA;zv5s)&`&yO<9y*p~AAX-_a7vk{rDIO2QLJb~q zGnhvPba$r9kl2`h_(nl%Xa-w3om!X3j^}O1F+cXF9aRD zr*h%2*xVCi8{cE>oAs42DZQpib07;H{#-i@bXd=17aTSmZ%K*FD&J>#5UH+| zKB{VUFS_XalRIKqm2y-p^8Rk4Ekm6V^kIkl4$du8FOq$D6!lT??RDH3gY%H1rhZrC z%iKT>=s0m0934}QjUDL3P|I#3_7GtApeLlqvG9*Ad2w`s=!fp+>7Flk&;S3dal_~g zS3oGfvuK~BLGB;6SModwni#pb$bKC}wiCe#SNtFl;S><~h#?fAs&wE@qZy$d1S_l2 z{*+jD4a6HTivx_PWqt9TpOF;yV@&6>wU54}Q@V^yW3AbAkHP7oZrVTFHb@AFdx4YY z28K2TQ@zmg0?!g1{sJ_?_Ug*UxcJvBhUBFrV-SRO(h`FEnw`P^==pQp z$N5Tvjy?H_>SF$V1GBDaW2T0Yg6LNPD6vUSR-@doM+pfH_2Z<{-}Lv#P0+)rw_(Jt zS&GB{=1@-P&N^3ex(%4>=((&QaSY@IEhE2ce4J&jMiTVl zM)n`eYlpuQe0JVlx*VyX7;nVMlvcSA-9%%n_}6y+iTeA&1?h6?&3koUB4A-y3?qa% zFDXK(dbM7M5u>(qC$m&Xdh?TQeHRF&f^>*%?U)X$rk%POSx%Rim;Dv!=^zDQXtbgt z<(SRx!1dSX4ixo;H~+v!1ChHph4+J^f^0^sU!<$k_~&EsThbz?Z&~aY4z2fj{yii! zoNry{GY3)n@*f^Dra`(FWX$reN7g7P++eW7W99%N%Z-iwDHM-D+xin}!K}W%?RSox z1U%Doi{I03JiptMCu?N>*L(nI%gj@=AnY~;y%IduD=*x2}>8Itv(bxUoC=gANf5%%AS(mn|6PHgkVXXng6o4eQX6jf9ko;xvicg;% zAv<6(`$$iQmBv<<01jG^89nlTAndXY(bntLbwltI6C0ZeI84y07e?pdSCMcC*%!we zQl^q^0}{Un@geJfHUZ;C66!Ytvu!xLrH(XihG3CWl%Ht@8S0*Pa`?S$l5k00r!k~f z3TkyrI-dlm^7la5cBdc`HcdNLlX%Ug<|n$}izXP4YNAW!4)si4n0 zA{$`Qy%h3X)I8?gVmS^`P>> znD!ZdLzOk-zRu2BxFsNJV_{=M0ni36zPyc2kQKLebbJI{Yc8rxfbg1wnKlixx|ALh zZjB$vqQG18NuC-J1%<4kA#HhiIRruf?EFShB~-;ZN#!r7TDsImg85SPC0*m>oxr`K zhxMM<$jt6N`1C(6fO3`HoP?hXVc?aHgM&k<>O6>v)0{Ho&u8dC@&>EEdCit2?dbMZ zClR;H%9P_|9d6S8AN+0xhl#<~HAgSb#vse%^UP{j0J`2pc*xW|p;(=J=rfwMgoK2M zgoLMhdUqjrJ01Ew00T}g4|S6sPB;RvfCS#~dfvwt4f~xwq@-m#)3NY|D<=cE$-u*T zWnm!;-#<~vkshw6vlb(m)6FN#*?{|`@OnDopsrf2GfVY{O0W3)L^fw?#6!~)!sQ=2 z{gupC3e=&`P|2L1N|*yz9Lir2G4anQsm^4(dpaQfF)E4>mW+aDzwN3k*Wx%-b1Z6I z1qKr}DJl6sJl2cN;0cnG2kD1^H&JvESZ|+?5%89l{3_4!s>5qe^gO-h?;!M18rK+> zA#a>=`VuSrBVTGre$>SX=Mv?JRfI?00|h!OiiX^G zH#cwSHROlVclY)E>K`dCFVDaKDhrueHndM}=SqB?VpjFyLk31ojW zfUzNgibBSbNA1m8=vB z1pE9u;QrkTaN`Va$TC1sZKw^PXPqR(*<$^a5K1PM)Xd>U%AC;&!`> zvLGG5*qSCmpqN1Mfcx8*)C=OOvurg_Tc5J)#Fnd8lH_N#6w8d{YDNR|`>H|sM8Ixi zj0+m+=WpJWUZT0P`n8m%p%LfM2ojaINjPxj=jS8SCF~~#fhku{fv z0S(d+yCIJtqyR0mQJl|%KjyI!3(Zjb;*(rc?Dv`xhCD2*uUKx(e0LX&zE&j%J~ZQ{ z7DUt@`vedLT5xwG?sqeZHpzO%tV;3mWS@Y98__srtoddgblEwH& zR*9IXE^Bm=+BpQl5Rh6}RMZ5aib%W*&|vZ!f2c6KuIE+2vMyq*yuvSQR-?$Sg!vcm z>xme+-yA?kj_vAmczB4sR6xqWlj3U&(EA8}p~GMeq4HgdrlAFEUbL#lZ?!;7k-o`! z5N8S@=`$ zs3q}Jd+agGX*T8s15)u$~NL(_D^ZdZ~Xc~e}Hl@8uo z+9}R^+&Ct{vee;WbsHM2OyT+cMNPC5d9zh5C$7k`nhP#d&(m1CP4BC1ZPeHRr}O+y*>` zt(g9!1wE&mDLqp&R<<)HLy5rk0#5 zRAt!#D0rPvj*9sCmiCrI*Z%5~uqYF4wmv8pndMLGVuGlNPq1*p2TcsJ2)lVx3P|q@ z3oQ{ePs~9_mDqFT%C zxYDvXp62Yur=8Et+W_>%Ly5yY+B|aVPJPMpc;*u$Zxo~D=^bz&tpqU(q%i?e7fnDw zVA^$s3eH<_nb_6&-arVIu-f_1&xkY2A0K8}E8}+E2C>k4d;1bZt@uH7!bWqbTA-(k z+1a5*yxd9}k?&V@Bw4?%&AuI|o)#^j%i`Zp9nL|_+80Z^_xtxf8|eTE%2+u+>5Ru| zFTRYfBW@kA5oBZCyf*iUN=MfC*z=8gKzbhKT+d(H(=Q)BSv035W|M@CWpiL%v$&l= zfNr1(Eqo$~4G@cJ0Mr6N;U^-J+}bKxTvD>LzmIGVA@>SP-EuH@GQKJfyQJCI(OsLU z$m1KKB&*+q9cNSz;~R@LM&Dy01Bn{~;JRc4=)j;k_5wfX#!lcXBQ+1U^s5JMh#dti zB{dYt%OEx_BV5c7m~&9xk&^QMN(_kXFl)SQ@Vt0G@kjYKq)r=-tPXzP3vM+jb?~L& zldt~!dHG8MrFTqb8@#gs1P66kO@62mx^Lw>ticdSTSNUfmTgKAn{@F0J-I9N_?LqF z_lW4xl=HOsQi0&bVWkv*azu+$dsPJ>nf-p9oH0)t9*MsF{UjFm|!3hT9f5cEltg$cSknRe4Ds$0Oz#!;&Ae5l;r4N)gs=P z_N#+L?6?;n)MC5Yzdazb^5{ohV%y*!W-sO#?^?8&@6_D{w_Z!@$6RO^JP3 z`F!u}QFeo;aB4Y!t8oy)ox^2Q6~{sbG2xG6tdWk^`AR#gIi{ugi;Cr1EezlKBT@_6 zTiTN>UTgi#wlq-ozl)4yz{M&w$BK#0`_eyI#5D@GQg`GD9vk0;3o;3I(|2<~T#j z+j@^z+{gkECVQVhvTk4Y9X}^=fqgZ*A=bm10QbRN@;5k2yyj&S0?Rt?%2QR2A3-8g zIAZ-19!Qb>f;1f5Ht2*AyVQq%ckA<*{F}%gu*xr%Wm!p?TKtf%e28;7!Ky0pNPd{u zG?UhM7f5QvM3_c!{Y2*0w<;C> z6Tc15!rFobaT@#kZ?Ukj%yCz!JjTJGN$yx~diK%*p-XyRT{tgDh257$!ma>B21TsA zN=&El8z-ks{RU5j?JpPGZL7(Flc&}L=iB9Yn+9+yP>+B=3|x3c&nXe32{>NUCi(?FGiN1L~#=QAsF3P8%o8EFFlcm$`4r}?iUB6)>D;5DvuR1Rnmvo zv*%VD=PM=#Gu=oOV&zh^GD{Xu+4yI0+NUI?>eXambr%RkJ~(y=n>A$Sk$0?tGK;mJk;Ga4P* zB}BN4O~U*$TbTh!pO7Lj3x%W9YBa3AtoCH?wRr95>#RU4w79pH1M}-%IsrjUaTeNb z{c$~X=r7VbpQap69y##v*Y`S^Z)l-HmC0{wy)9n90bXUDWCAoYeESBvqq}rAB5HXI z4>$&n3C2LpSART@1C)Z3=N?yXv5mrD7XWSHz=X3fS9Rp`>>f--xvZW74B7s^7C4ZH zu`C8=HqtNLX~UHy?_TYfvn5QIyY#llIL04yaRwlT64v4lqdagwBYZ?K!2tXW%vTWP z7~$tFP3y$m4@^iPUwC%e5R6X=3KhWE0lR|Ubnj}>Lygqs>Rkky9!#x?S0alnoQVS7 z!ND~8|1|YZcuXy5RDG1P&nE+GKz8!RJ%)ASpl#w zzshw}cHi}CDQ*)wM_-=N*;A8Bv$c8l0CQ}8jJf5yEff}cBc`TP!B)PK4Ryg=B? zWb`g5Wy+E4Jdsp9xwfU;;#Sw`Q$sP&C${VTJB&7nmR2UFPFE2%^u}|CR`DyzN5%>xfA~WCvdI_2jD^RSFgbT0VZ69b{TB9 zIQTy+WzO$$G#JBzn2}ZGY4G15BYk3LM~xTif^7v^L3_VCe!8Uo@CwB9#oRE*PSI&K zT8VmfX=F}}*GDC(AZZ?l@8v`YWyPSXjSuMYS9;*jg$$K<_^naCB>7OWP5t@)_tn6k zV@X9B$!qwjNzx5I9bBr+p_%6QDB~Lr*ZQYe1S(HAC}0nRC>D|RL)qvYC|;KVLYkMg zeAu!+YSL4Of9Nm5tUMe0K@^V~6%xWb8*2Y$roCYNPY>0ykJI|N?*5#OQD|`NgCoMI z?{Kb*EC(EI} z8fNTQ6MihLc$IxeRFf}$^@pX&NPT^&WW&A``R!Mvg`gNA0@#wZW7S=Qd=1#h284%q zjE^TmM}C=|UI_Qu^>mkfUM~Te44@<|++SJd8u@lh{LNuY)6`UDzRX=wgI?M9%lcSf z@`HIUEXi(TY~Z>c2%&#;bOmtQ2dYuSp_>)&yy+33vcRk56`MxRFKA-?aVeA}$m8w@ z{#Wi(SXlT4)QNsGfis*i$-Tc*qzSDd(j9I=!RoFhfKSv8QZxGG9GXOl7p$QfJNF*@ z1ufy0U5P)+Q{yrJd5>oER^ENN<{;0HTPwGEQX8x8gC>JLIhtNBQeKO+{??0erI;5a zoH=oJKBQkz{!U^uY#hIf_-+bx0bpyOI<~a+!=0va*n;=2gZ(X`dnRlC$!Oz!o znC#4#ab;7VEbu{nHj6e#>L>Bhf&!sU!1quyUaDWY^*eKl{KdN8F=lh9b`!3r^$QW4 zYX36EJ7+?2#>1pd)6=OCJ;H4>B?uM*9Id*~aS}9hj9LA2gjl~{&)5Q_$`l}K#7+!o zTtxFW%I}Up|Ck^1v8%KRr@1f}sXN+eJ1!4gwGG23ZhY_&K_yzp7eUK|jMnNQcAeAfC1!X5()i>}xNGWVG@ zHj=zNL3~oh3Jg37HMv_`;a-o=38;KhQm9~Icgk?o_&EdUq6nBM7A}=B%JWt4wHg}w z&aWzY>-7WnEV&0*<3eATmWGRh7^cG>h+qHL*B96YLf+`>IW@Ja%T^=-tE&J0xhC9~ zmIDOKPV6rQQ?E0900X>E_yN&>x6jLTEOdwzPzV_l`Yur($OtJg{w3 zv+P>w0jTyS{HMc@Vy5oH{tpcKe`EY%;1>09&QUk;IO=B%u5DoX0Hu^mJ=s!#~21GWSon{7mP+=S_O~868e7x2-Q2sK@A#EQK47-M!ujC;1ZZcd<2ix^p<#d>W4@c77a?q3?==dghwiiN~+%-NvHR zsV8+~+Vrrk?N9pHr^Xl0H3%Mq+5!Xv89-iw(q1QNy5CXR2F$jvA7W zOBU72AF}Nm!8&w(ID|HP&}(v_?rWv?hdQSH?*XM}Xh7p;cdz{s+xbO}$yfX0MY0`k zL+5p#2jiOKxD?#JF#i%e7OpHWBOnT}cV6|1^79DDqy!5N^?(l?8A{oZ_(G!|b-cQ`)w^faH>PYx;kb)Smj0Qi){}~Pd;&i) zwQ0Ggi4qe>CR4=$5V~I6{Qmc3ii(Pe{RimlO7>6L>TUicUpJWB!1GW@RqOE%dmVa9 zo11u-wcZj2<@6K-xVeocq1Xlm+s9(scu zZEw=H0g#8QZUT+BZ{MYgZpb2cxCvk~L=ndTdhG@W7R@65i*4_fjO>c^DJUAjpq_WFxyXz#6PnF=@ zWFf7#noO34J5- zFY!GZjA(n(uyI7(5J6e>R8X#C+UHik1aJ4~lUGTDU89g-&owiH`TqU;ohNvsQS&ya z^w=+V%T5yUkB9hZJ---?dy_CpNtO@k8z+||cBUW(U;WYGmsvN4L`N?0y1PG!kj79}gN0kVvETmut?pyvgtsoY%t zCEH74&$<=*u(P9ZurZdHlQOb!?T}(h&>PkY_=LwT71CBtPGi@9izjGI6Q-)QLIQTTS8G~=^kq_E!lbYN2EV);E#fp4Ma2DLZqI+ zm+@sm50oAw1zo8{d37e)04L%E*kSf;`w?P(!TW#%|HS`95OFs z@94a{+Y?{^Op}DXb!YnH@~ILjN?wvpF^Uk(a-BhBjyv&5USg@Vo@&LvU{gO z^ZgMj*0>+n4bRD=sBATGlzoqUWY`zT+!de8OF2uN_#p&nMpVY2!$aCAsnKgNHX+Ot zN+E~EGU-PEV^P5C28Fk%Uiox6-Rbzkipm3dM~0zQ+sdn%aL6Xv!_qG5y^AKn;Y`MY&C;x2MYVIoAFR9>dHw9s!+c0yE9 zh(tE=ljDI0O%qSY$X^pXPnKE9JbKi4^)Dz+LPsb0IE{7164hS=^~de{b842Fdzl(s z6qxE}uEdF+U|0iRw;iI(yr$KdxII`BBCYIhoE#r>g3uUFhO~kLE^uO5-xe9wCKU2a zwO}c*oH;#^jFCXCRu5=;cC%;tHl5s}T#GotT@xHR$^bOFytA>6w z`0owij%Rv}D0mP*0t;0`Eyb<_M(O-~yZ5X|UQ$j{F--*nbL;ptoApcAKHY92&=*{0 zSL-HePDDSBxA8kZ{Bb?02@Iyx@2<3wQ22NrpuxA_QruoXDozr*QI z`zFN6{nVNPGv3Wrg>=Ql740c-LzZD1L_BZf#6rG=#bOIfj)n!~tHDbX%g4hg9D_OGf1}vC{G>Gg-{dNwYE76Ky%!;MZI1?zIK@ z0&9&t7;QjWdhb_Nut-lQXHYg%m0@Yik{O3fl-BM=nSm5pz0E)QEUjnXbk7psFQJpA z8=9BA#+%Wz1>#j8Rx~I6h`m>RzME($ zW&bNz(q{kU{tKq3a)c+II?vh8PEba1hjDIfWF4kQ-1Obs7Zso>cDv0^8jCKoj!pgD zrVZw*MDXy34w%ShR*Iu7DS^q)?!?5Y=>4b^>84p%q34XhME))4%AjfU`yyWPw#x-u zp2S`Ex}^pYIe7rgEr7lWK71IYAjKk2aAH>xVniJsJpY0c0#-oqIRvY1W;I^Hf+4*f zfoS^v_+m;004%;hyX_Z=OCVIpbX$7LOFzB!Qg@TC`^M)b?+OxY>-(+K#(W91zT2Up zUm7rg%mCJhTV>cTV8G`aJTo#9vtR4JuXG}Ctc05{$+`PKF2MZMzseiCP7m+T+RNRh zPT4lwId}w)l9vuQqW%2P0PmJHifdX}M`* zL}VS@`sC>gRy}D{0LT6Bib^>!Wt!{es5dEO(#m9*T*jhQZwg6jI57WXR;N8)nA5o{ z_JNLipWb@o>D!}!VLpCBa77yfDNQ9?3GsG9av*@eZ2`(&a0@emb{ztx5yjX7W++%P zB76Z@G(jqPBm5pf7UcofE_^aq;Oa-*59A8<*e+!9AP)Db68bDac54e>p4#7+*UX2$ zV!`VxK>E8%OM7tY4+)mwos-<&m9_g_f})IK1Q0WUcocwDi6maL{yh*w!`D|TF@0ua zzt*<8VqJd+_tCQsZo^XC(!Bfi3=fu;=hrvoR(|MZ_J2dkDtnFEIM?#=YN)y!8V}^( zx#nU3dZIuWK)HzJNKpr*927Dwq|a@AfOrc0&U2!k{;pX3{+IZhD)@%;W_Ydm2jz+q z5$_`LgpIJJTD@5(a+tO`bM{51bf`86Z^-~dU2lkv?K@p^4H_|<@tt?!aGN2{YlB~9 zyEeoi@d$xrV5(_*aU{v-PQcpTkTi}{#HGyA-TqcoCQYT#wC}e6O=`u%M9EdnqGKyE z{Ai4i3qj|pI5Q%|u8qH$X;%N259;f2$I@p(SQaEwmr^F7?`k}c#tghE|n}OkAolUt{2!cv? zcXvvN5-K4rNOwwufP^5OA}vTGDAElQ(jp*@NOyOGAl|vox#y0{82iWB`|J&Vto6Qg zKB+($Sp#s;(sg^T)QXsUQa22a36#h%9c`ZmlB5}Z#_$jV_OY{F|!17=v zKnBS;GPnAve=H~6F(Al&08B6|?>g{5h-Sk?@})EGYF<8`RK=VIDn%$^^0$f?E#D0m z^bVDw>6hQ8_0y@5VPThoCaX~-ar+XU3uouqDJ?y{`h9r$5#0hb>2k?@AIO(qR$Gne z@0+)YWa&tC-ocwq{T5jlhQo}ar>6&@k#mv>L4Uz3d+<|uc5gXZQsjOnb`IGef)89M zaeaCW@b-+9&O<^+wr0VrgQZ*06nFV&vjl0~?6BVhVL$YZwZQcQNw+HiCm`-HSU$-+ zW&sl5GwZ@>0@kkegBCYHO;3s2-d+7ln9@Gd6w~pjMRAm*4TBlY31&?BY9Wf9F|2=G zRxqy8JkFtIxgXO>?#^3mE$uz6|6|bRjFT?h?o@hUgAsVVL7OTDX6D7kh2BAIPg8T9 zGXnz^am|+Q*cx}rIauq=!O;q#hdhpR4`9A~zH;B^>hc~4vH3c$-FyGR)W*0Ec0`bX z(IRI%zq+@Qu)90^=~<;C@$PYF>Oa0NC|-g08VYhCpnw7bmQ=3gu`x2EpDY`zVYa<3CgRfj zDTv(7V}C)-5<*g-M>YxeMcQTy($tznHrh_6f`@p--@uA#3DA6@UR^9`db3M~9+DZ# z%G`d>(q65vOxSAjB^d52q{P^u!J`F6U`+jzlRTC0WIJXU#4emK%5Fbarycp5h;i%u z_xNN?Ogai-uZ)3Rtj-c9b3WE-1_}h4ew2%Y#o>(;hJ!X@?kaGzi;asldcsJuqTR5> zDWG7sm}e#9`p~`2NolNgZ}Q!z@36*#R+G=Xn}C3b?PE;(K%GC1QrxH`-NVp*&s!EF z{wK0rsJj-;@i;NjVvQdwdP5ET?+dGbW}H6}oskONt7xP7LUFoJ;NaA>dnlc2$3s2+cY}uyjZW4Qd!UNi` zxu(~Jn%IswWl3sNQ4gu+=jNbA4}*dNvtti#7S;Qv#r|kjSuG0Z4g2SN$I@kuiv>~+ zT5F^|{58Z961x;MEJqE!v?WE!|$s=AuHjQR5%z#KV85l4UH2LP| zIKQT*6Mh$RC`p9TNl0eE^;==~0}t3)X_)H)9KBDNI=Ig09~V2QfM;)S57cw{2>B<7 zDW0p}ZOVZi^gH?ytEz2Y62l`Z@GWCg^Hy6+BWTOd-ySpP$22yLS5^A0Vi&GChTG+m z|1NeUJJ&;>09X+PVYe{1%)z-2O}B`?5kmOSmg1D5CY@PQG6VX~A&XU}Kz@f~dn6s^ zZWg~!*6Y2E-T{Wvt&u%5Q#n`xJ~m0`6RSDtgLeJKrgwQl$-5!417Wpc2wQ}xKY4jf zCMG7UDjf|>w1jQjFvWf&4Qc9MFSi2?V%N$}F_3>X(;urx>|*fO@bz4&hf;2L6&$7( zzBkiA@&E{nJ^|oRQnlMnCnS_8TJ<6>CizF*i=jmb2j#>G6m{cpD191G4msc+(__PJOw zqvMJgip&eLH@~0)8B)w}rA@-M$5%<`KUZ@@QSqr`sXI=#W%(nFC_9RI-<^nai;yr| z9c~5M%pl7EhJ%fXD!U%|gdzxw6XfZ6rzAu~YJ0WWG(I;239&X-LJf2lSL(Y0{*~`S zRs%?Bv}%2IZRQ1NQ6RwD6v9BHTn#8$DVkYrx`_IbT)c0W2N7kmVjv#_W~p_^vo%fp zPce>rh^9YoLPY&@bdTm%N50}bKPg&gn}`*X$@dSawP;V|nx|b|A1^?wLOySJRzoN@ zTbQ-WJXBDZ;iil+RRxmj;1N}*XX$CRI42~m5zy4=d-^`arnd|&nc87eeC>X zVs0K}s3i#=J)py-jqOlkOK#pFG7;-z2sdSK+0w2+(jH-! z@3ifMl%?>O=k5Ptd>za@pOW|*%6J{Q;g{rdmUB`ONzFYS^sAXKW6K^XF*+-XjO;By zLZkuaU4U%C%9*br$=fFU`QMN^$)vSC0Q z;6mu`yEC~`K?{u8pfkB?G%7}^5L!nJMay#rpZTA3Ri zfbMFSo85xsFj`0)%FLwE(Q;lr$~@%}_O`zcavw|eey-oT?+=H!y{=te34Bp}Bh1U3 zWEY$*MxC+Hw*mM5;i#4&tsEX4YOub;a-JnC!zq(T?n%PtMRGb?e1Dq6aqUJ@y2NUl zA-0KweQ;GiX_>b6lhCzy@Cy7LUf^nmRF|%<-lbutJA0K?#(lY)wa>N7KRLKh5aBwF zic%gHPZ_Nr>)saej=eAqUbLd6tAlc~aZ0@4sC-s!vOAXaIX}kM!?%aC&m^NBG0XYp zJF5I|G$^3~GKTNwSNGjMKsb?NoONFYtT9v7-UKN}a-CcEy{$0{(!w0CY>ut^nFawG zxJx1a;OdtpPCQp|ymApreTKASo+EQ7Rt-6%+y%ww;4c*Kw>b0Y={9xy8CKam11~QU zCmw=L%|u6siiL#*8MCdQRdcKcG9Q+m6JnwPSiLmuK5Gt9nBenx+hAD-BEq32b#x}B z)F+@Sj|eO5JPTaYD|>qDTuQ@7dy4aS$m}n_!G}_%@we+LYlefK*HorE9up1p8r0@9 zhm=AVHH_}E0P6QlTY&u>)&9mF1i~Wi;35Vx58QYN>*^)+6^cL5)>H$Y0FfKOJj!O= z_jwMB0HOe7W5eY1v|7B8p~>3#uD@k3@z3+n6LYH0TJNqA6LY(#Zf@0%15Ei@0TsU` z<=gN%pDj%7zw`@h2^w!rWV5nD7h=PmR>47cW|S4tf4D^RFa7zS%@6EBj^g)Z;*+%t zWInbFW0%#`Ff%d+!2$@W%TRUT_j{Gg;)&!L!K^*Ct`onBYAwq%@g$8cbH$&%rR9}o z(1g?Z9imctfK!7q)JR86cUG=!f}G&0P|RCB{(c(!r&>9oFFw=Y*IRJ}(b7-+`c=KP z4BH!lbiPJ8H2xqN84z4X;&PxE_6i~Fpe6~p2sCk@Kk+bSyFet4vx`f~2}QQfxAWJ#`OA_CBG*e=VsD z@0F;>tMUqW;V*^b4?LSvZv7;$s8qi&>2a;9Hc^k}qG>6iHAb|=pn+%+kpQH6Z_g1B zDb>lkr4!;g6LUF!VXb0`=w%HV0vz*H5FvI#;b<3Ju;XQ>=uJEJsT9Azzn|B|`H|_< zvHJBF4nER)cjPGnh`{n<=W)J`L;qnfhuh7N@|9ouND)HT@i=&5M`*!@~2aB_TCdLmzZ6u=)Ar^Yfy{&06Z!&4C@Z# zlCZKNUx)v&wC56HSf#*j9u^jsB^yB`?tNBz*6!Vi(|R*u@NV%nkkq)yU4oD0(rF$W z`c?WC>!TGCwX{D6@)I?;QFv3f^xfzfa%3oC2u}W{`*!c8GRN-A^1Dz41J8z1iB)^H#0K^u$9x@zi$v9eJ+YYY-QaZs#XJWKP1#PVDkkPC#n&^ zm(Y8Mm%i$6$9f@!dY6RDkKRQ_$zhT&n0+@CC6L4i8WJ!R@w2yAM=^mE7J1)V`-O*I zqg@|BsHr}*8y{PGd2qk&>7tr#Vs%U>zMWfTNW@KJ*Q??_2n-Mr)e`ZREMU4}Dx1YV zHKm79*V+0pY*c}`N=zg|Bt(uD8dBjheh5D6eCzzBm8IBXRjim_IK%spO9;`TZ0Vae zSC9r!Ux(vy8os5R^Fox?@RIU*KIS6nHLfsnezc(bp!6vTfn-9^p(C*ph-wqA!>mE8 z&(8{oAUMbr&O^p*VfZ{HFZZr1Byv0~7$y2pji@6lty-FVF7^)C8Y91Oq~G`H29n^3 zvhw$~U%@ki1?q#{;otM~DPA81f`5X7vse4jp4qk+Q-SdrCK|PHade%02gpzNwu9L9 zC}|I@U8;0Ao+`c{FE-CF$-hSAYTL6DVvOwJ9JCf5t>{ z@lU5U$XcyIcK5A2fyD8QVNg|7L|12^y@)P^N@9M~B`LIzB|XCMXG^-y+q+ZY3J+o# z;3n<{B@s`>m}jwNoU?k=o#C( zZqJ8Dg!)$1*2MR8I9GE_!tFkUsr?AKv$1a+;Q6FE`-O0_%ep8CqJ2ykiW%e}C}!To z{729l3E#meBG9exHup}t-ef);C4s-8rtZ2(%E4UAb+A_%c(FKwl74-xB%=%Sb`RdGZ@IV$ zSP$1l#KeX{tD|N~Dr8FntNAKCse9+w=RNFpXcow*%v-8SYSZ54#L?%o=CdT;f2ek? zC=Ij2zKS;b{8T12H4RD=ufvMB1oXF*Q5EMZXI)+6Z--ZZ7C`xzU8CF}6W@-FOLv7D z=r~#b1SO>;0B4jq5DP^o7w5c@`qix#Vp(3TTAd=K)}F4lwI=m2vx(9}=N*2WG{k(& zFIL&fBvx9+9L_6!b-c{8k;yC5WJ`~`s5}tSN-F&I-N&gOB7xAYGkBf$Leyv*@jyJyl{D*Hx z=+}swGo64?BCy(~d8Ki2_z;FBt|UhUENC&yR%7uPtH*S+u(-XS--eDJ z?ZUM|3cvHm1*1cy*;rMn;l5ONPV#@ApkpV4;etx=3+W<#xbv3N4dNVG+83YL(mUFx zvyZ-Lr)AxL`FnqkR#a|*8l@)L!ZE(OKrieho$5(5yb{Hd(Ycv6hj5RM;~e?PS#t3$ zZ!x;Y1}5a+0@3(SP%}hQo5Rqqc=i|dF;zr)6&yjt`0f#E@E+f4iqdxGd?!I`9O*Fe zZe@ot;+~@3uH~Z zbgKCTvl2qY!tT{gMMok76NQ9lJn$2ZF(P0~{Lfc%(z(mxikaD!!rFMnr!!hnVv8~V z@nFTTWBCjMy*cn>K*JsAaxbB`y1~QPkw)jUk*oRd5t0+Z5cA`}z4xDqoKO?lRBcY4 zvP?Z8TsHGEXf9{wVZVL95uMcrZi4WVl3l}@M^TTYJw5-hn^GABNo5%UwnF!Pj7L13 z;ORO)F^0>B!0TaMsjcTBvu_UNawV1D3{HQDjXn7E%K;*5vtM0|5i^y}=;qJAy*V66GQ%axUA=az&4g$D}Zh6h zy=75e2JrCjIi4E9+K7m_7trKg(1>+Wf*cE0*5%Vfe%RptRejLH`$X1=_4yZ+81U*V_9*aE}gy{PEJF^=krj+fq0CQYsbH9S6`!s zNBLBd^gBi1u!zj<@s3UzjKQlgo|AMOZ+2~rmQz`(t=DfBdW=5mQO^3DQi5id-7?7B z?CKw^L;#s~4iCq{zIXt74?f5O1X%{8v7L}}Q#JtFgak(QO+~s$|Ka^!A_#*YK$|8i zjXHW1zcTI%Him_Vn{>ysmQ?j3Rx}VfQ{DG|0_)tbrpbIztz7F%QeEs9n%09@w$QE;ejv&3~%mCFLNGAd4h7gL82g2wGZe5T}I$vGBg7WbmSgz%?3bd(@{4#c@n8)UHYRbyM0rNO# z%+x;HM2FlkmI(qQo13O61mF9`1nfIGt-xpw4ylubO~e9%d>v{bg7suISn^PSvd39A z;cp9Ev&qJhRg>-D!zu2a#WR|rSN(WGhwbHcVN&-7`raQFX+|txwmoha_t3$xG?Ny4 zuTK7_9t)+iIqH4!8&YE)HVmOh5wxdcY9M)+%5U%K*{ss7!x~t3?KG|cH6H}G&&|yt zMMdCBx-y(G1nt`rD2yxZCN;$!s|g0V46)TgT3(Pti{$D)^&KpjW;Bt1MJn+LN)6hmNeWTVp$f9ZlOybTT6WWqZ#;%bsK7tQtQ~TIiW! zkpB_>wUv^RGH5O>lgPwTb*QTKJhc!v$XiD)wCK*AAnWVww;p~K_@W(le4SQGlHGi= z;`VBQ0o$dIlSpA02SHrMYRkJx9zF~q*_^JVGYBVpFX82Oexdeg zLu=X6L;+FIoxUup6FnIM( z&vv%7B5sFxFBhdx!^nRQu|$I^=o-GyhfEIXm?A5?j?zDfI^arKfm>sQY(`8&9_`uI zHjgS>9pQ%uZy)JyT+*cG8wY0{gLILehNfA>4yY^`#LJdEX?m{P=WrgJ7bG!MgO6mR zPT?~w@m1VZ*Hs56zP!gEON`Z7xSxjldti}LRCAw!fi>u@*r~eDHdBhjjBGCT82@^& zEIjxLce1~@u+llH>J^61>Rmiuz3X~ftYgvyg4n3!cEgNsz5VVx^8mMs%4G+I=;rsM z;FhSoGk#&Oc6F!QpN@~)OLyqtkkn~QnC)Nf8==V)6}xRFgdL903bkA5P4**sI0RLc z)%MfjAhPG5s9Li6H?#GsM2uSSOSC9=5-=WofGjy1k{iMFZ;~v!f6s%7FGaklxc6LH zR)&uD{vm*(N|3k-vO+N7#DGf#iCvCmR6x>0v$C?pUtf}dlMpsi;m3C^;1|`=Hyuo< ze`Yt}RjZ?022cnH+YY;5CjLjN1j?3*F4U4pMbb+^RiU_2K?F^*k-fcwB8^v)(C_j1 z-k?4&$CX+*%NQz@ZSEJV1_0TPQVOZUyx($IIlOPj`5Pbd=tf$6n(=s>g;G>-OIq* zMkX~8z6fUt!Xc!O%;-EE4qFm9`yg_f@ZP(cVPk!UOM29|-%Z)_p+5{0peLcP?&|95 zufRnGesEw*!O!sucs$ruz}h9`Fw+ZkBcy60syR>~l{+uXPgL6}sJtUFnSh#CDshiy zvE2rG&DKGJrq6dDd(UeqfO=^{1ecmPL@hUvd7Q2(ljCkX=EIs?S~l8e^zuWR5`@B} zqIJ!`nCRHuYni>(uU89jaj@zVKl6T7EPLRJ-O(DL2zlWBaN0&;e*nM>c4^vT14W_d zMX|HC{gukxa?dU%mK-%>)DO&9sApI`#IKG0TA25&;-YBaf3jSn|C2=mtS(nc<= zvAm?H2CF=ufgB7d3vL(CzWg+S`&~p^M`c*9;rqD;%Rh^BWi;FjoV0XplN8O8Rg=oI z!s6A1_JDSVqgWYG5W;5GqqowlFgBoor$j^q!U)9Qi9F(fM%F^(F$6DlO!Y=u6Bnzj zt`u3DG&{gLwwzSt0~P1}0Qu{QPfEciV8N zd1L8>*gv3${V;pc{<8(9)x$E{L|TEm%R!E;ANidbX`GxSno7mHkkMSqFD#8(J%cr0 zG24GVh-*Ccfq&VYtrA@(m$@Qx`=VTsV&?xK{JCrUN)8i z@#6vDZlzI%`Yq`gYrbX>%qiN3JG!alL)hf}>L6#(+Nne10ZUn7QOA|ADqCnz zx5Y|FLGImdd6+pS4;QB1hK0?8$u?U)feqmq(v(7=DG+v7bC`7yV?FFfE}(-36B+4X zrhV926sle!$9Zc_m=n1<=xUI!83E^;CB43auU@?p_t^7;zUYRAhR>QsDf?1w(Av}7 z{J>_c_^GWe#}aAzgVTmHYm^a4H14IO}vM<=FK7DlJ7kbNm$xVVbIWjV0 z(vN-nHd5Zc041-ha6Yp5b-PtBk*6jAM+5G+{V`!hZk=+?=I{^hpCuV znS71$77&byde}0cz#X0#JDVD5@V3xv=uY&a1po+7#D?dE{j~XblrAvN4Zq9N(o#Qb zmeIj&c1cEI;oYDLX`Wv765Bm2yWvmph4=2;4f#3r85&=%yVPpy4tCD@bIwV*Myg)E zgq%G9s-X^!(l0k{A}%qbzc*s+w}}@h9Bs* zxVL`+Z?(G^Z@163P7gT@n;P^6M_|PT zD19jBF?OYA40{6`PbjhWxcBted-u8emaJcwp5_h?85yRLt3Z;hSlf~R`Tu*t8Oob4gr!Ty=;dO|%Fh4c>lB?hROo{h zA0DlcZL#XO59%V~4PZcm%NNO5LRrY3gCz%M;Y2tM<~MrERGd8ebS2^ZNh@#5%p*qWr1O% zux>)3fIJ9_yQgPB-r~5_g-hGbdCJOFs>9MDq#^KFXYc(jd?rUIpUQc6Vu{qDA@KlP zwN7Sd%;CKws1u^$*@fk62C5hhT56ePlv6)(7>#TsKy?JRp~heL;@`jT0uc!U7yw`c zl;8j`P!Lc6F^2fCow5n}+S_x%8_W6ZXyC)OQQHUXF_!|eGB@9|8e4EWrDB~mQ&!)n zcOP@PN@_g48?iAlTeBM!vqiZR8+Br+_I1b?`fcW_Y^KWEU& zB!cl|ro*5#EAz=Sl=a58=H3S1LSv(kR!YuI-w(Z3o4B|`#(lOWDl8>8wfilh-Uw>S zK*#hg)Y?I4gxH<^o!=NahL){;^4aN?&!F+Zh+4bORBt|kGiOv_&P%OWkA5ZE)P@}W zf{1#;-z-L%_*?QsbQjAUwB=eNg^WDBLi2EA!%Cy^VivA%e#l;beKwCyyEDN)x5z}N zpe1E?x$~505SJ#kp~g8#{i_pYkeR*K*95Vb8||PryoH4Yyw4DrAsZSSK~L2=J)H(3 zG)Quwn*6}GR?-l^*I=TD$P0aCAW9|!#5Sf7qcJWhRw z+=M4 zo$jF*HP6Ysv2N8KFeI}p$Hp*(!6udpOaq_srAOk;S(DN2`pV+fK>3_`B^y!s1o?Kk z8+U2$b7y2!qUJ~BqWu*o&wTfzHaYf@m5yk#wlEh#)O*|jQAsPCJ z``Cnv_w_&C>Kk`Q*#Bs%6)&XWKMeesH~d+Zo=U<~MoI3+aJ@#9?Y21HLOKS{kqFA2 zs>h|X3dBx|xyx)f|CMDFwV`j+B`qEvBzvAQl#MT3Tu~>LRP5V}ypm@;muLK$M)7>0 zD9%dwPO9>gr4JEfu3U%qRQ6x*`lpcW?)IR6>c=M_IO=`z6_PlS6Q9GNfdsz}cLfuz zo<4h=5;rPFQS)i<)n|3DyvjXOc`V797qcl3#ZC`F1~^=x#SMJwXJLmR(9e%emubHw zM?#mt!-tRtl$0F5C}NPzE&_0zz&=DnQ9mqh^ZJjqDZO4}eOy)? zWv?B_Og~!yHMO)yf=j9v*Hp0%e3QV?$&px{bzAgbk0AFr2$)oxzMd~@fjvK{1nVsy zF3s&I(+Y_v0zC9D7u6o1+C>P-MtoD?X~(6cm1JSQ`A5sgbGy6IRaJuEkqH__a>nlL9{}mj5`|zGz!%e)F7!{Wl3&U-{f*t*-Wg2zvxPK#Gd#`#zVqA=#_WeV6Jd1t_XL zSuB(ZKilqZ^v;*HS=Shoo7+_FTzCOL0xbVsesV3H+m{%`)VzH3_YNpd-~NkR5a*rx z7eY>Z`_Nv)bgD&Jc-N6$yZ7|Zpt`rqIvG6WyyN%c3uHqwK>`kIMh;N-4Um5?n#H!Z zr455MQeLHn9~7WL8)wWA7o)D$ohf-jAIC64c4xQxMF$PH@|Dx_O|5i>^=fW8JTRJF z54@<-E3z0|-h|L7vnO$nJTFqzRJzzNqScBu4-GAd&0`GU}I7)LLD3UEl1+kD>Me1h=rF$yPfd)@@i=q2-EvC ztgVjwJ@nmLedLTehNu4A=YorWqOy=TdR!{2xn(LczE=^xTgLfcNzj494m=J|U1DeF zk*!Kbd@Efn7G?|stp;&Y(s0XYkn-2cG0xRZqwjfHf7fC0gGm~K_*5JkqsSv>-7OdJ z;7ropJPBBkvF(E3kk5wSn$ioV!BP&W7Y`(`iu(5dWrhYOE?5f@$ZIt34m2siwZ1+o zslt|!T^#u4-zT_zZoV0VQ{?8=cOHxeZW7EOROnii)PJ%e%goP@4{{Oke`H7;`o1eK z=L1tSQ~R|23Eh|GyzcLFkM0gFJV)GSFjIH{z>NZ!J~I;a_`3{gb901jOUPNvst+JZ zG$5C#GSN!@Ri*kRxSvjD#s(kj{RT==rEI>`p;4UBC!)+5eyS#OJQ1>-ZgwfAxY1WX zWggjt#8g-1`}p7ubdt3mB8fW?J5%U&(ccXHXJdxGX~41Vca4_cWXJ2m75>hGQ{9Z4YD6$Reay^! zP?GIsW5Wi5gJJvL=NR?L@-e1j`At_>eyWi<+3pt@INL2WVm7=GU- z_D+Q2T(wS(Lo(Uj+!j$gs?zE`B-0Yf?FHvh=TP}ur8}HZ@#nqQf)3F(>y6w=J-ocU zEuj4cN)x(sIkvWJ`lJQ+PSsRYGB-8K%E|_pwaL%=%b{E90l@&@mxoiae!E^T7o+!B z;N{7B_d|t+0Os_|<-T{}io?;OH3dvNnsaszJsy&VLP1D)H6?7q_uO|Vs*8V;9PQsz zEMlYldiT!c{HQhE!&_u@kv6%0e~p?D28h|y^f zf^H!Y5?mEyVfM-pMvAl!LB3#i+y^XS^&uAZ0$weW!PXydrqpt|l#DH9D*JwHT3E}m zTRuKWFrRuN|1e(-D2ZOMZ4Ko7zkBdqg8aqu*DpO!sb1yEi`Lg4 zsD5($ddOFlAi4P0=N|ECU}!IglH}Xf-o+aaWEQ=_ESG(!u@O=cG9f+^{^m^q`_P;^ zQevhk^S<@NEsW@e)yXW+?^eY;*`Etjfl!N0Na#p1eElPG(Ng5{V9#dtOKD+bO?1TW z(7C>-Gs_CCyV~&jK-P6w6?^Z$d>ijCW#MicP*v8o-k6-)?Zw=WmmVVviB2LfHweJp z!46$O5;cnpwP~?=V$|S~m64H|Gq&rf(=zN_{B%r^kWl7kL@nV|gQ{SPCW*cE^y1DW zi&jCh%OBL$MZ9rQZ=~UQW{*A)Rl2_{uAZr#64#s| zApHxfmM0i7lf#`UXAR!POiX1~gLDur*B(Rv*fpc%p8ygI4Z{8S`1paD(d4p;ejP>4 zyX0-HNWTeu2zrg4gkUWLI+#aDsB`L)l(OgM)haJ+t*$BLFxE8xBMD|MC651e*m!05 zAoioAj~-c6Fffqd%R$U&aEke^Ki-8{TG?tl7k1U(o9o8gl(vK3%hz3Y4#!tB_(2_= z7S{?p3&@6e;D3OGiiJ&La+GJQiH#6dFH6&C@&iZv^or)5KL7koVY!`-ZrgY4xz|mv zAK5(pEcmWihAYX`!NJgSawAw_OepdjDt(!xnEOs)Wa1h58boVCCp1gRDh6&%UM=cC z$2|nOfCpiy+D;b{PQn!lAJNg;c-%-l!QgAt>E<52%I#5G0bTqch1&F6DZ3wT)!3j( zr_Q@^4JE}OP7Bc63>2q%3>bWS-DpK^nvCNn=vRf?pr(+RexqSV1*2h=?-KhaJNBf|QC!Go1OpBn0O+MbM|Vwi$sC%h-~fn8PgepZJEXo44`MYX zIx_0EbB#P3*($FlQC7#IeUQ;Z@O{%3vn;zg>eDC7qOo^e+@-JXOzu??w7N_2UhX}S z3F$o|=s@MR2rD#tLBFpp$3@sTk4X{ru!t5S?jWYD6e7Z*emA_P#=R)Sd8L;$80{|p zAX^{PK&!k+3VygMW0IPNh75E7LVItaPGid7i<3dHKTJ$^HqZ8bJJffW>sN>W14J&} zDJ3sz$;x=1H}C#c3&;_~aH=-!vwVG$i-Qeq~~aJXKCJ)#G>Y6!@$h zee)QCV2%5du_(e{cV(@Gj8>oPVEIO7*tql4)8Bmcim$6D?(alb7??$(L1w+VLVDj@ z1jOyAb2*t2uC6XEeIqx#)YXOVQa0B}fcNJT|5s2TZfd-g3-jZhT+0CfpkaPH2j+Xc z-V!@WT6(?7oY>HHQ|7^ScbK7w7x2$lh6G#r%dKFhn^M{)SzVPbIR54W3>Si+Bf%5j z6E->O-0+okUmVCMd?X6@(uD61m2K$YE`_mR@0YFvjNMP6ZWj0q=)Z)(3Z$N1gzO@e zXtPE|L-UafbBJgTaf;Zzf%d*cSk^XlwVi216N8fc&%b&RH=er%K32=qgl(q8GW`_L zl>;C@@d$GzMY|wT=IF?E>!;$lq$dgG^cS&Cc90Iy((y;c#}fe3zIDyb(Qyt2<$0() zG+HaZUbr?H$NThy5kp+oFDsElkvBEb8MHN(@%fy8F%){{H08;z-kub0&0_g|F0^H$ z6mJ2Ux(DnB>=B1o=*VgS4I|kfKi*(BHH|dmi)Ryr9kLZ_O7Epj9Bi~KQba^8Z`aIP z0Ne4^{Lbt?^ur-1OGHSPZeKH2*rOa{SSkdphXRq<8>8lH!0m@apRq&3{!OTz={JzO z1KOL%4IWjmw@oZv*sUz3J$1<7Tq|}Wf}?AnE~~b4T{PV)Btgt7E$e$=K@c|CCSVCH zW_wvl9+XWOu2ZS8+<MzXc8FAS;35Y`XvJ$5`#pu!Puesj2PN8w!6jBhno23G;>Q?^v;= z{yzM$2H&-^>fxd1bpf)dnYKef?%T0)zYbYX_Lkd^6%~YaJyK%JceT`d$M_{}a(w*R z-NnLukLPH{uW-_%LqgC&`#1EV5-6qyAMfW-x&szgdLbdr(E4jmvIApsTdP;`6aCwR z0`qs>`3dcH$?5mX0_h01p86N^fo$2})9|y^xzE-g({H$z;{VHd5|C`{$nexm2|J$| zb89&vVzVy0$Wyd=MX0ohbIS^SQx`hIAWDElzzPT4EP}QeLqkI({BDsr?uJhI-|^#F z7oNsuY~buyF-UMmy$QIf>6IyLH1`j!ySv>z3J}QLg0DieuU6B(nO|VqIh8C}E}0O& zh{#JwN`k%iO;v^P+w`i(*G6AVp(#98ZfqEW?V+oZ5jLy63;R#io_0&CR{euc^j6zj4B-_&mOOD$%EsxWEFYLEhj(|6yGi<2 zI4Q4f>~uGGrbk+D`~+7>@?dqYee!O}G!2(<#`Y=w`PQZRN?K!k@W91KLZULjZRS1_ zz=qBCINk~=kZ)=-`R%KrDTJcy=FIblmT{R4Uhd?M4vKKkCyr{EM3`tX+T%}RKi2mr zfB4|Cup|fA^DTvbqpc?T+RHsGd&%O(gujn(^><}^U3b45NgA9Vlgi{)?OL?^2(X~n zuU`WYhB&7<>}*5(x@oIQLm`_8Two^9u8}ExARWs9nNrB44!`%-t}YC4Uw}!qb0AAv zuABIqwQYu}KvJ4pI(F6FeL`WWCnak9^N*a_4*SAqt-zq(WN`Ov*!y@?3l^{xu#-)Q zi0ylBt|%TkgcszZ!HZ+!7bgF=w=aANmACav-o-M!MCWTc(Os;p<{R_)wIzDW-=ik2 zOER8aSK7L-8h;CWk_a(%Ub>y$mz(Iqr1lbf+aOK>LDvA9Y1n-nnw7J* zW`#0)Hl!X|c4LV>K~F)^0=6^(!#nauG7^0*PI0|CNw~R7B&+Px2Gq5xIYYDl);Nc~ zeVYd$fM*t*c+OiR;XJfiQ- zu@<9?WDDWObzNH@#N6$tzx#*27ja$+Wik3SlV`Ed$DzE`)Xk`3jl`co2@n*rlTP|Z&3lWoT*q()?r>OFz=+;-d7$uDQG^_=*G5Bv zh`tVrg_6+DM(52apJTrcTZMcQAXgdW=on?a-YS~Wm7B`-8j4!%P)!=J*Q(({N>8vY9%WpAAb{qrNj9Nl~`uMH*a(NO1k zg-Tgwi2L2zp}Rh2K&#glqShgq%#e-8R$YYiPeB*&VeA?7Ic|tEAkj4oN>oQqh4-b& zU(oL8kcKTd6i{y}!`U%*97RDgcf+OO$fbb%eT$Ug8DIGCx#w5MCBCDz%81OHSq%Np zy>NdArw*wHJ1aCYr>=~8-FO`vCYZ)gBo3lK@`8mEDy;NYdC7S8z6AqH0{~~ch1ol8 zy~qIVpQj1VRVlixt#)GI76owbQ;3i|e?(#dTh;H{muix>fT zN~stb=TCc>G?dMCG;75f8J!x1K@zEJ1Z78TV&Wr3x4YcCV%fUYQW!}+446IL z?|zsS8Z@TBKi>E?zqN%Fj986)#?5>5NT9MzN-8@!fO7HDn{;O}_cUS4m~$rwbaqD& zvkZ_x_Mp{&-LC|>YUiJ9*bt2?@R&~L(6R<8CjpU)8f144bZ(sURi$)s@E$BtYZU`t z6W-I4>^Mi_P-We6e#UG|BlGCl|Fi&@UVdu1t%HLx0EyGf;X$~`M zzqBpXKiq>hUo?5fENjvy5156CXY6KEc%L@L_<0f`hfC+ir2D;NmULE5nfsNniaFHS z{b*Hafe)_aVCI5&z)Ao{Zm0bPSuprQx;lcL{SjomMvUdc^hbEv$>6>hT{da;CJixj zRBnENM9CjvbL%}$pl3Rur2F5&ebWD8sW-3qNp2Wi=cbVSdlZM`zD>Y0ThEt66!_#% zn=~J{#SqwFArU#-1y=%F^wW!Evd^ZWUw&CXAN~rW1+G-WYD`?=y_W>u>p9#9HaM@o zj+F=1p2RjfmiV)*op9(W1{x)6pgIJF86R^N%G}>h)0^++c!m_A@z+t~ie_XPPoMT8;d904&`odt z;fmW~%!IGq<1S174f0bxO*|p@6Lqp zGv2s1=BF}~0V2iEX&+g|+aQ5?Fq&=JRs$Q}%gMna8h5uXEr`c3fh&8C`qlDYN{FMC zWx|^(iWJ=l{{T}5Oyl#P!Ggq$@p5z%v?3qikwGdzv|JXSX%sN)ZerM*(ocN<+HJY} z^Jb}lX1lZufnOu<$>W!TMHU^fIl7OBd46ixLL5<{N5 zF5mpOp?|OA{?~Z(F$exUYkabC&3+F_g1_(Lq8AX? zD%4{L&w9r-96cYfl0oSv8?YK#%I(;&(I@L!CSdDJ{Yy z;Z0Z2bQAuBozQK5hU^!0E}x3`RG%eP=+KM0eEWN%Yv8$_YqPm`bksgEk+R^ATCDUs zxASrmbHTZzG2f=Rh(YeTZp1~`A<=I&wglVhuL+>0NBGy=Tt;x(nh_at~^O1iWehwthM6<-;C$MZNXD^?8 zvq9U7Ty}1{y{0H{j7u)H%YWFe4N%Qcv(C31k%EtbV|Oz~?wBBeDahIikKdz6rN z_;KfB$CHtJ`zA`?t2ydlf4KLF+tGCjqhYK4I6XD>GU@aO0*S)>u$R$Bvq$EU#lp&J z+(L{Mcb53-E$W$9Lzr#%5GLv_jbBg&Uo}M|J~iaA=MF zw2lJ^&}x8PD8b?I;SAao6u>s9rw{HK6Aqekrah9t>*xn#DMxtltC`k^q=p=UIypL2 z?9a$T*&i{*8Jn0$IT@FcEPTsxCQ4T93{}m6L1fhBj@(OkcVg07dB&;kAURsP;O6cp z80K<1%u4R)WxIPxSbu%4&R63Jl0se1qw^B_CVT}5olv#PWp%-clbdq=;uI;4KuUe! zn0Qx6Xmx)d&wnl7m3Hq};6KusjbQW!6dXv{^X$-y5_M;;X$B#frkmKjPkEv--oPBBft_y^L)uDI|sCPS?IJHYK+Alaz*OKl3cH+$gmgKeh$ zBhgRTu?@K0vY6QN?x!gYR~Y-GU2Akxp-#JwKL^xn!$bpVg;M%*O})wczc4+N3h}P& z{hs$EEm{2Qojlqk7;yDl88QYC0*zkSCKE&r2+$9idmu=?0~j#Ea>MCyaNtZPXmiwi z;RXg!DC8BM+u zB5E}K2T~$B>?Wjzkx^xWg0!^U)X5A0670FS(umXJC+J9fX<3Ta*Qpc_Itp>U85mH3 z)buyQ`UN!h#eJ9y@f1W)Xb+LZV0K%9yH;Le08 z?sSNMlfaPuAnh>0{OtGSJ`I0F0vhC{Y>+I?p8<*bR#$A6}{yOrN zTzXF_$(gpkG2My|H#bN+@p!I_OOW(H&z|ZB8eM10OjGbI{eSTZzc<7;1DapV1uekA z2u3$4%lZw#xSVe>eQmqMcn!@1l8k#wP#-7G;-KhvQcV|qWc@bxp)D=khhz92qc(y- z{owi%e4!DkcTR3_R(-I|3I_~$q2gzM1PJehbIgpW(H=y7?s)3Kap#~%^?FA~$67kw zLyVUlY$LfgCp*(U;N}F&j-+dG$^--;LHviyd@CAlX}+LiN%)J8Vby29b`uD5>s{B? z+EUV^f!}{iK`8xXeO^UEsHOkQL8HWvQlYo-6yoFHG+So)-1J*{kZU%p}-PoO-8&Z7_8w&!ldOZ~jO;l`U}9T|zdpeT7*i57#6&SyQH$E1=4$ zl@fE|U-+0`Rn(nth5EX77_JdSoEVsx3-ACtMn}lQX!i$__Rdbz3(|Ya!=4GN^j8qH2bT7wFK}&ScZHq)zRTY>~ zrB#7~OuC4#@Yd4tElyhL$3GU-Ap4!da`mjyEo(<_@zY9v7jaQIbS*K~O%zVk_KkK- zV@5KNtkY5S-7}Hs=;-h25i*)X%lY^*5H1l%P~oL=_P(mOQ<$h1RoBz(D+`Gpciu%Y ze0|Oc8MM$*FX8Qed~+*ND-@w`K`Ci#C#zcQKI@YNoYBJWT61Fao3neG;Y#p6B)jg3z%aW4Y$>8q^2zDw6onhMc%i%7%HOuVk|FSym`kr2=t)FP<2cuBbBckEj^21VFWH6|i{YF&?9caFxe#QL&~;O&YE{Ik_`lBF0%)8h{#lWBspxGaNeJe#moX;mdi7``k?*APnuXJ=aTkWD9 z)$6d+-*B?pa-4AZ-5E|!8)>)Emgt3Do1WU;hfX)cK|?cFSM7jEK;Y;&+cm=RxYMB0 z4j;dAMnX(MS~?^sdV7oCArtT@K0bxaWZ-7XA!q+=j;f&`>drg4cZOW;o!enu%g(R= ztTRh!EkCCAVYs1&PkP%Ow^$CJRE7wn#xfXhE6O-N0_WSW&Nmgemh*GF%=iR?*aXfe zOa#8Q-}*m1y#-X2>Gw7aB1(yLBho32fRrL#N+T&H-3<~-x2TjfNJ&XaBb^G;DBU1P zHz@CZ=J)--wPx0uSu?{N&Uwy#?|r3HU4Blp^tuVt<)zN0T@l{J$6*W}&(svWurZ1S zZ-aYML-0;HL%xv31264jokwtkc0RC+3PKrg!6_!*{rq%GJm5eq^C%r)zqQwmO`L1eZ}q%lJu3Gkzz64x^BfmXYHAiM}tQ7rMHv3@I0mkRh$E=6H$0FgfrNx;Tsed6T@hY&e zO@N)YV@HV*Fxq=5f{5t}TI7;I2?v!*1wJBLGMTU7>VIx(`WT|nDdJ`HWlg7pQff39 z2L=ZiX52n9Z!2KrI~Z&qy>^yk=^7X)?Q#eCq!@tk1pc1mai+K0T5;$U(4bz~{UiYu zjf)NrxvG1gC<2N?}v3C0)h!xy}V$lfmIhp{NJhRX4_LlteNPOKCji%X3cqZC&~b0$ zl}rvT<382xG6&flk~x|``oDRq5S>VF2vcg@Pt1b84}?x zmw#_O%1etS4CZ4NEE6_Cc}V+?r!@KYRjo5MyXlf{r2*l;{b{df=HNISmXqa0Cm~Pcre&n5bF8!=Vvj|YbbC4a1dc}GBG&w zWL4l5=0^)Cdf&ubpGiu)9i)D|-cRqyFKF6%H1*Q|=mx=?EVtu-qhAx#Yq9B?jb)}1 zrj=AyPA>3?#Oc)}bBCU)8OG?p#qhHe6=~0@&3C(TF*(IsUnrP1t)Jwt;_9yD8k6w; zz2nKY0U(XAP#-A1@3~Kf5$g(9@$d{;?xpTWeqaeACQ|FF`OggfK2y8s03+iBf7|Vd25)=Kn23 z&*#4eKAIQUmCWkD!BNsgu|G0GBjI;BeXWc^9;ykGVHR{cTvtsxd5H0f#JPtBE&2wb zI^li$NjadmUHc6hJykWneBpnc>nFKelv&7l=t7WOaIzm9pc|+9tC!?=a;70oY+@p* zk?#>PDBofK7TYzz*-{Bf7?-@n>L)ef30sL~SP*~Ngxa{Jl^X|t`EQ6|wh5^xMN%Cg zBH!(f56sD@06L$pNnEj-FdXNu4`z-{+y1d-kL>xIvR=oP5q~%9UQ(V`kqy^t3p&E! zt}mjmxab$A^5*qBbBj=mtJqU&dWX|{x(6xclXJfdUJ(fm{AZCp&US~juX;JazJ!$*HBdVdSOh&<) zeSx}_UA;y;SEB>Gwu=&de7$R$;(7{BF<4b;EK8sC2Q|;c@HHp^$1pHeSqGUhJNoSF z{d&ssY(B=XQ~-7wv{Hk@hZJN#fIr~CEUi&U-smDBe(WB#Zzq}QVQThP%ECkY-%t+w zPKNj(BE18(4d6rIUO)k5VQlQ+mHc)UgFKSGk54ayve?jAnmPx&FFyQq@xQL(JlgjO zUCdp^s%hUb%v#Q*{`@n=?K**q0^}Nc*p_+#(5%IXaKyx_Rj)*EcV>*T@%Wbwq60`~ zz=yAuihU`|7@LYj#9GBT>w~{N^3DnhNxz1Tv=2As{ZRRyTz695ocDeIPS(DVfRb=w zI%?#_=tRw@oC4-`sk0m7S}f^tzSEQAAwA!06OOlI>e|9ePUvf?$mJ1L1(+Ye2UX&7 zwzjfa_O%P}OK|*G(jJNf&ajy$|F#3(GEnZAmvD}K{K$~^Bx3-+GeycpVXyZqDvcYB z)IoxZpO`ZEK9Ln9U4GjEw1$2D z$HnI_Lh?%loaGn$0|tbiCGo5sqCX@Gq+HW(aBRMt$@g_Gc3%G_U9h>i&Zt`Dg5)J( zL{;hb)*?akwqeubWj`4v8_Bje{VPbf@=o(b3`Eu7x94_(e*``sh>Y!-74vx`PjJzN zljHID_KfK9i@a~!KSGX62XH3KV+RL~hRm^irl$7#)3}kNdsQVyY4^n3Ywiw6IaW(d zEfCowRJL?gqbL|DgTiFgF0U znL59}4{|qhk^2|YBoQx8$%Bg0`3b#SN1X;UDwZx1`9T;HW~6@{RU8!8cdk!Vgg22! z=H$>fcZOVKnjDQZK`QYyjxD%NX~Y>lBZgOs)qly)ty~Ce)!&d=e1z(!t`ot zV$ueli^Dq#C_gX~mjFNiM17Tkh!%ib)oym;qPa0v+xfq7G9$$4gL{iO8 z)$N`etp8ydkd9MWK9eDNZe}J0;U`GR^5t&9`GaX?Y1N7krR?hDN{*pBrc$_jvWDDc z;f^PqVL`QYFTM&k?CTZ;M?{Q)vt{>+`Ey|yu9q5)wUqebDtC_oYLCvd;C%3?^#A9P)T6&qN%+F7!Dcgqm zP-@?O7#O&z>gwcSezE(gR!5h++)I5mwJy^|>DScMgwFHLtG5=!PVX4Pk-$dqnF5l? z2x{yg_y)oghjVN#6%a~^$e*h11Pg-kv9X1L1*VnmiqCDokR6c8jT>=Ws44(&^_M>@(3We)2%qyVgZFM>^Oy$%9Of# z##Y658$JdNg7F5vvt#yGpirktuPe9^aXfj{y!kU)J4LWlGAr|=erIzJnYfTkI-T8` zo3eC2M>Mh7ixOoH4M9^4d;v&mi%7$S4J|r^;W^NaRKg{R0N7_4Exr)-2=Py^HVbc1%sBz;Qa} zWq=4OkoCh52j^PZD^jEx{P_!e87HNzo@{FUz<_tT)PA^7o&$>NtNa@JcfCnMPIRz2 zN#zVZg{(S@ykBq*2eXV-#wckpo8k*PvXc(Hz(74_6rpuIat`u2({J>QgUl>mB>WYJ ztOX`L7(HckhL94sIA+mr&xp3K#pSRSJx=<4_YTKnNy+q!T39oCf-nhBfgHfZ#m&pi z3;;nEH~eZa>_EufYh*O1n|P0lYYnucL7}0Wyzj~k8g5|c%#ScF zdJm)U1TW5IX~=P8K?cTq%TTr9;*jhh&4bvK@Ci5(wx;VUEBK82sE5X}8;iP)E)V6x z8glfdZ^}v^{3OF%fs9_Lgb!p*wTOw%n!v!B{0^}wEp}j*GUqyq$$uTO2BRh7kA5(u zljZiDP17xQpH;KawM-CaqYR)1?q4;Su?-$8l?RDVU$~i@3X)u$;)M_4`&~>vdecKu zk;JH>^H2EoRZBCR~fbT%m`w$~qCJ-{^Va9Ac8rQ3*GeQBf z6+A9k&dY%b5KX96tkVj?jffG~W#&YH;ufS6F!AuHdMI7cnf@dtS0we&20&yGVB$${ ziPu)LDo)13{q(iv=+pEUuKy;Aab_lw(9t%!-;!ua6y&M}9H!s@JRQc4Jl)Dw;diN$ z&DA0#N^EJYOvD)Mk$el<=^*G?f06N^JJf>n>0n!GRJKXeW}&7Sb2HYuQb4E(3MnDM z+3!Vx?Y!KPjscQf1?iXR1y0-@McZK2imF8ev zr4uHV|7p^yO7&HO*dDjaggay*gEhwJq>k@@Ck#&Gyn!g6$U{K0OGkl}rO1h3gt~Bck4ca z4^^k$bt6M}^%;@`05_%{#zI+b_+&)nv+T^7eEeNw(}f!)o{N$9f*8x+WSK#nIfNRK zSL;S+WYB=2(2=*K{_%+1>%^G_eWs7>$p9KaO2|iG!`BJAJ325C#Qo;(}e5i7I;)3s0t|dyuTj%$^6B~8bhFCCb=>N0;I9X@e zI)+-wVPAiMoU1LF&mw(8yjZ*J4h(BA;B2u>=m@*!75F-G!e79? zBjA;PBAg`$&`h`~Jq`&9N$|KJ-yH-w;5L3e%Zor7aG-cjO*y-_kx>!i)33X&o<9bWFs1f@^Ft2Z8Us>M)d4-caL&yh**#+zRm#H8E*SoPx0lM^u=~ z{qtZ-yRJ-DLg>ie14m7DJ2NUoy~WQ?6kk`egJ9KACy?bD+t~C&xu@>;!sNGa!NNqU z)BI8xg6VSLVIU$Q87?!D0CqUArs*Dyhy4=^JE_j(?#1(;wNCV~k|UMM^>pslJb+;V zn0gZ9JQz-$K_T!{xH4O#-;Wpckg*l{Z!L1jA@8x9PjEI-#=cC9=iU*K#ciz*8Sn^Js#VRYaF*j@>*{S>oqJXD zR^9Dc69F=piN*0Gk&~XM9)kMldb&_iTN z;_n8h)0KrJ&9i7BP{9nNGa&WFW^nfNC4WW)DXV6l%U7 z)rb?YR+U{SVkr6XppW>57Cv(ZMtM0?w-!1suCAKK2ohEMG%LfSR%hwJ*R@?J?+ zQ5tNE8NI-uf*VF0!VMSTo&v#vsj=}RP+=gJXFz!nLu2nS#`jC6^SU~7>&e5Q%QX2Y zGU3-7BY7@>>cEDG==EU(traQ}`qigvtA{rIJx5>9N{{VnR^en#UP7By@o-C;XxmOG z;od`{l7$yBj-%sU%H_BsB7c57BPDe5dnhF&sw{o%NZL@JHi&v0f6c)lxs@RM?o>=i z-&e+m_ad%DcYf^CJ`VW|jbDaP#GH-BI+o2A1!(4}6Z#G`_PUe|2E6*3f&}x!sgwPt zKWVNS4dD3&dvl=O^!*xqGU98txt$iJIPTp$T67yPeufs-rWzvVD@v?wx7@D`rbw@5`f15UvBt-%; zVi2>G@I?G9Xl{Gf!dg*6cMMJiKM}_08T@P^ZS|WC)+0qGR>hgk@r<`!oQ2O=?m$@( z6xm67dq04Ri_GHUDCcU5VEvf*wy^99=d@aO+MwDx3rtviyRb<;UH3Wx_CC;Fh}*OGva7GZYYP3^e5A1Y`& ziGs0L3GU$@hT8XUq&|G*kGqQwX^h>IrZEKvIKe?EP=bdKNXcEoFh(t)zI?a3oQ4E zU0*~2^a#}PZrPW>fbd2}sP@=wcl;~1kzM^ds><~t>)I_KjH1X`wTrxVmY@02h!^~7 z1k?kZFt{jn3>(+I@wTn&7>wx>)jz4hv4VK5XMJ|W7~~frb{3_>K?>{o!ht{UU2oh!F5V;SAGKByjcV87TnhCQvk}!&rx#|w zIQiHPYEuh4X_+e!J;0)hOFg51YPyWq6lH-)wy+c&9nJ&n_MpXD8J?Ia8{bs*V!oco zMxC3WqBlBsTQ@fR6j111z7&btDb+8twTKRZVmt(bfhj(tVLbSMrwL%Aq5mBxw2A$7 z5H<@M8PeOYD1z?lpgTA?fC*Y>v%Tlw&6_t50V*lFWv5xF0b1Q*a0XvPLqnE+--}~n zy5&87G6O{>dwrhie!}*lx#IoDI)xN}B_2 zoEqRTQ$xsw3(blDYY@o1$w*|D`h%-^T|B&xW1Lz(J50YGkLVu9y`+OyDiRKz%r(4? zu_99BiKw<3dHV04lv$-NW%z3&M#*^^QBQ7YzbsBDdH|{o+U*a0^EpgEz8h{muDih$ z9CjKtZ@aG1{@7n7c@h{RTQNc%X8lHp^#38IW6BWd%|x_Hg5;xsYa9fcLK0&g1}Jcw z81coMrT5}(yP_!4zwe{NTEqfl+pAa>6z%w;pS!V^{0L5AF)Qg=`Vfuk$>YE6^iHX= zBhLfg=@_YnPfm2LwmrIIfWbV>!zY*zc`u;+dy9nC}ShatOyZl5jWcTj-Ls=p9-sjO{MbYM7`f_8} z$g-aZWLZtGlS>{?PJX7}E*HZF;?)WT1(1s((v_61e6`%6hp5J;@$Ap8mOEA1}TuOPApYUB$HqQsk2ny54CQ3!HiAWO>qoT&e z9L^f|otb{eiF*H@OW0w+W3`!+(`h_i%%-f#BI$3jh1gdn?9*F&`^)%Tw+C`RR-UQg zxOls+7#icZhO;(0@{s@F0nU>bPaF ze!~*G$JNcS`{7jE1YGrSL?VFzU|d;&%!twP@x`5;L8x)@+{jJD5j6G>?(0){;IVB> zl>AUoWZnMu3xYtG0~jul1`{aDu7I1HUn2iiZ0_V2aW4TncFo8h#<8_kEt}_F*F+0U zU^6;gH%?{L2Cv%r56G-;Yipa&=Z|~Tuqe(kX8w7cRE2$%?h{=jhLMpGY~f>HMM?Z` z8XMQAjG;nH`)`Akzj|$1977J7jm4?ZTD7pejC`r$#v01u5F~mcaYQ8IzV$Fy4RepU zJjx%QHPHFbTKeDxhf6+w-044SkA{nNx|NRCtEiEUcc-O$Z#N=QXT0n^#dO8XcRFh? zW-?g)P;@^$dK4Yj?wMO17R{ZAH6&Dp(pw`Bmc}r-kk#oTb+I5%2gX1F>elvaBs0Wx zYql97i<}s1TR2>*+ym{?I@4pZe^@MN2kcb{?H7KkW)4v}ESZKgR8o{Ev@;vM{00k7 zvYOhRTo_O!ihV24jq?tgCS+{@qBz zMV+xVjn?GdNS zOV0(Yuh1%}!GQG?z3#!D>>OQd;;$oBlpQ>8g!O`S<=JicO!DpY|_j)pYrcO(xCa<--4KV6b zFsWfndwU=(cF01Yr9}dZSV%nK+{=SoBe7{FT8@aY2(9Y`Bn&KH2x;6ar2@)CxK9l2aJu(06FiRo5bcTzeuK5}v@ z*NM6tx0_T(3cn`g7bqLWYK0tliijkhzNQ1e51jHh;6H?;3F3Sr{QF64@9<^!nizkT z>ZI_y+KT%pI+JA=XxDXqQDHs#+)%{n248X%0F@{|CT70Rqu56oiXN=am&at_D8~$H192hH1Xu9sQ``6Nw?rC3 zRMC%EM~Fu&`L6z^nur)Al-CWcq!<{so;H20I0#n_DMwL#>Y(+RCCc(Zga;R8ygn%c zzW;FFp*#d-Ig0Oe3YXC2;7qg&>&7=+Tpn+Iy11uBLr*hPu9s`{c$N7(yztmDVd*(u zd4t;M^;=YLy8{`tflc_^;46T1VZ&i^dBTm^$n>vTj)5Q@f>QiD($4$X%P^d@U-v}$ zPR!|~QpNVf`7$Sf{Ky$X0+60OJ%=Xro$265xRQ>V3c>70o-ud^-*cbl5TmE_7A z35A~eM~D;Rrp%qmISpfmd~trG2(j%Juv#NjHC%zfW+_8R;^PpU1sLc|UIuOjuP5os zyXlilTwU^MYHC6V)b}1cFVMe%NIT3tjGd3j;qf({-pvXdn`%k3f2^8j{RyLz<)tP0 zVoJ_|f5_>ETMcQY)G@PL^tAP8Zy5EE;uG>>>PjfqYF_&njg4_b^joXs4T_*zy3LUcizpM{E)1wrPrUl%s;@8k6*y<3Wx=AdVssOb9_8u zbWyF(#-`l5ExHKZdhOxw~>mUzkGSI^@bLKUqgs_5RpJx zy3qH3%-trOg6TxxN(%VHf#X&S}hW9(EVC1ZcvYXspzAH309?})F4#>q1X>FPfHnDSi2b^R&Y zD{UIu(Xr0LpW&f7nBkWA+564R-DGtN<^-5rZX01GYQ0tTUx$Xb$S5h7HdMlwLT@UBm)HVFwD%Y1&T*wjW-95eomg)^=qA2%V0x#Tqea;<2iNI$l_D@6>L+!>@7K|6y6JjCIKvtic?G|BX|Vpl34N$@ z+2=6Gp+LI2L4|hz!W$Vl;IIh4y2JEpqT@>aV{R@!Ie9oD;hoC}2ndi#Bm@M>`Ohx_ zaEE@bu11mug&ttxE0<_dCVa_4|F`tB_F!~MjUzmR<~yXZLLEvALhECbJarT|s-$MB^zlhUrf^ zmF^bgocdenEgUw{vE}jgp#IWndn-g+D=3p&zt??K;96!?(y%a4hHp}wFP*m3z_UzX zX-BKS5?n3$-Y=;~%}HrhO=tARd37;+m{t*f_T~W2>nAtfrKChwR`MYo77G*Yy*Rx@ zboolxp&(g$%WiXjv>2?#m?3doRXAgPY(TuoWa}jpzaCt{8eIos{ z`=l!h+;1ZSEOH%T0eA_dH9VXqrynV8m2;eZZafh?B64za@-L`p#3a0(<8kRr;T;V? z=#?whbEmoVQ>cCx9O}1yH#gfYYe23XKF%ka! zkGGw^KA)G{hy!jEQT)3F*B#hGZnfNf;^96Q?eJy&S*}9oA1eG5v!tlPPzVGB(Mk{_ zQw8ibFj;(u#|gRnz+bz5(Sis`>r8K2yd5FC>^CGi*_5BtD%B{Gjw?4$EQ?ds4FS6f z^2UG~(gKuGknVQ5P>=xqn!CSj%JzO2l|iUi#xByI*;VNBO~UuiO+{=hwj!M1MwEdJ ziMe&Z?1O!;&2Q2qp+UR?pQ&TLYhGw8QFZSy(l-1oa?zZu|f zpZjQVBo6c94DLV-B8CxHf?;EX65T@1E8haOB4KZ?@P;$=5ED` z=|dNcO_hy21Y@QZA-BBwr)gm-WuHi;+dmL3`SdUVq`yT(S zzkHbqE+n{V68T`%vEP|ncd2ekHlqzPYV^dXq@;w{^GGQ=$j`t<7~hSN`~%zP7dIA5 z?<7mLrHBRArv3{6v&M((hW~9U#*0Q#^78_FSJwfrGJ%Mapdd0X9&8MZ=YY}OU=D%) z3Xu7%g7`2qGqdG$ng$yZ-3m^Tw;&R)Uzz8{jIv|uuF1JoRZho8OK4$Xfi%3B(#!m4 z_VwxO>nkWN1=Ys=C`!Q?fQyi{G`M+tp+^+FEXM62Ls^fPjDDqLgR=;VOq?Ko0YVtr zD&!f%%y&u^;)*_~${$tJff)PAvuEVMDPzH4z6`iq!I(8*&)qN~?e6WJsh9oL_5vHp z8KjplJSV|%v7T;vRv2QMjm6*er<2F6>Qxz<@hUZ^er*e!RdwD+pB&lzC$++=k2ap8 zWmJcf$8lV2@qxU`T*q)@WrgvJd@&y91Tl4HwC0S9-Lj;{aV1fV<-O01f$QzB5ID)Ahc;dR1IcPAZGw^?vTwUsBuzo{&2`)K*p2oy7ii6E614V?Hs4>qYeH^59A?L+Nry z=IR;rJC_$cxt)Of+s0B|E;s7%D9?jk@W$VYP#<(@H}<;$h{PQ*wY}Ehe$aK^?-9A> z^QQCAG#^EW_j7DqzzD3l{--_vM1jRcg7_ZF-rRCioQ_w<7}A}OU&_anm(Pi>CRV(8 zWd6QPFaZl4AL2v(7*qLrt?tHs{`}-gg3&D`mjOTn$`TVOvW4cBklW&?4?EUSYFwPX zR)6ft7}aEFzXo&(_Rd>QTws`uq7aAx!iORvX?%1vQ>%#5fCq*;9jLg2C;SDxwa9h> z6-c^YY{MadoQv!BZ9U4_E&Pr$%<$AF%H3Vxq9z*LvNL?xN1jXsm9=4<3@hnHk}X4@2u8wIJH-b43Lm2Yux0J~mxl{yVY6 z@hP#_*Efd_&AwcZQ+^5Ol9lXhd3JpJqjPwD7C*j-ZM`(%H^L=7_+U_5H=r(s3$jGHpImUxWz(nlTG9X>wQb>Vnc z5d_QQEN)#`U@rQTFE*x0kH@avTq5wi*pg--fX$^Sgm-;TSYCIB z6}eQ^)!VnW4bHZ^?#+t&;wlEG_M+NFM@;-B!|z?wZUd~&0Z$r&!1w{|Z>g=Nd&MAQF$;BVA@TMOTS#lo_2S2wLCr*`K?7shSl}~8Czh-`4^uAr_q%+ zQWzA(%>2|q^In4H&7W9t2llMcjA#zlC`h4A1&uO~)i49XEm6hI{0TZJ*9m573r7?l-F@rnZG)w4>t1s7u6T--58m z>4P}%$3%9gTa7)P9$PX;4Wud%O6dlDauS4Dpn$SkiY_j5%rcm=rny!xym{ z7>$2*+b;ffE$t<}!&{n*B9Wfr*A=qUfBy!>#1bjvC3w=15K z1Q#Yd3syGmooh@>)&?i!;_w5F#B}%09V{lj*EoASJEQgwRy+Qh0VLAxGAL#-d5i?z zz}eCBksuw@wi{-r0ft=sw;yC4HJPYI8#Bc}2j{Dd_XDJO7a(vXnhR3O@dydgF!nq^ zGXZ6Q1+9IlpxgWGvZnG70|}nD*jwzpUMJ+VRmdzvz|~>kAfl%te!x&-XNNOLJ<=6g zdT1&7e_DXVdUvyq0kmZ;4Z3%7EQO`U?IkQ!_wMx+7CgMxIFm0@+2D~2a871MjcE}- zJxnZ@x})a3x+$zlBRTA-G55$T*SHS`Q!VuMjB+Mp=R1gI#YiKrLwpcAFO(+h1@b^n zq3Fr9OR-)}j930(Wno<7e1tABfLsJ4R6LoXRWcvOb5o z3DOJuNhEi>Q_oM2_PV;^`|};J7a?m-Z>MC{U?KNF$j-TbT$qwm>$PC_Xrs73$@X?!n;PUF~lHyxLk>L8~LI?!t>MJ}5 zm+l0U26(zczJ4uNJb^Yq3#fWV^uER-$CWQS@Xl)+Xdl&wE-%GC`}`ag1%h|rf~Cn-lZQL}>~Q2sr!nWQ9n1DLSEvsjq12kq&&!j+P=DmU zsFSUrO4I)W@O;+2G{yjfoUXrZuDWjfL3;UQn=EzFZH!3;G z@hSLfnut!%$7W#_hd?mTnKLHyC!lXVJf|-I?14?Y zJIfv_`@yMn9lLUd4S#V?Qi68d8Xuq9;vfj6XxQNK1z%RCR#;&=$>Ohi)$5yT!C_PF zh8v5oLZJC4UM*>Dq;}G-Ea2H}TkG^J1yk)Kdx50>jw@ddx3WzPpF4P@q{u5q(s_Vj zk!0{2Zx{M1_*JIEK*I(x839mbmAB-dHax7>Y)~n4*{#W(S96}W7*&7#?OR?^Z3_1g z)j8vzSZ^PbaV6U}$Bc2g%vR?;kSoqSZP`?Ft{5UXN+4N%$)9=q$;~fI{Y4XJr^A{b z)mQ;!Ig^!Gx?($*|MoGPpzG{nU!{l9ub#NGc-tVV;svT-OwZgI9X}H;fZofXW#1`2aJ>DLiIMDnc=o;lzixgw|S8;naO%Lc9@*aKsXtF zr$MV|1?;xcbgz_6Wqu4#r)nAqj=W0Ye%H*{jpu)P-hVQ3OFr|hBG=I z2e??lZE`GSgMdZ4Tj&28j`#lsty^nQ&E<8&&w`*iPHm~8W<*BSrur4LPoM(ZBvXXb}2F>l?{jH}L`bzyRP|^j{;eHpT z!<+Qh+pnLp7mOz zetZFpAPNpX2b{!Nc8WeEq56v|_IEs-qnT9&9cFEldP)J#&e}v%?UakH)Z`47$g0T-KW2E%^M>~6Zdlz5P#Xb^0xd3 z0|Nsw*ZCi(bO6DVPqlQJ_IWa#1nu9Wpy_3ojKR=hQkbmI<}5iwL*T?=w)=&~Oxs1` zw|GKAf`*1hn4~sM=i@7qA2qowo|+k#6tr5pJwb066I+%zEgL53k}1E#bNwA+@77_h z3T&Pj9p#2F4_KJ)N>woH2jA7od9_RTNo5)7ha#k)PyoShE4gjZyX19kbsU!Z1QPE&QW_ZbF;V&`^Yc0Hop8*YSq4xVzU|+jRGG zm~#nUyBJ#gp5?BX?Cb3J!3O(ZxqI}#4CJKXIuC~<~d7v z&20~_CSoC!D2K<2;NH`mN2-IZ#Kgpmvp2=IAS^p?-JW?CZEvNGaXRTualZm52M3bg z0qj4w`?S!f*DkcB`cw@ik{H9ZXHN@d*y1aojR@+9kQP|np{}+Ad zd(b_G15tBjE?+ih2GOgPC9(`JBvx4N?|r4L*0po&5!7T*j!jkyNmkM#CD(`rs}~Qv z;b2DZZS*?$9o|CF+~gODZowJ$`Uw^~j2h2D1?Yd0b$Jg=he*01JR)-UI9K8`RW4x? zFPI6P6t{nGydl^UAEjhQfEin3^+2}=_8a5blAn}5vHKKzhTp$`7pU@wt__rzB8&K+ zG}yZSh)IGXH8TfoY3kg>!CuAHUfjoY2~$NWOD%VCqIb!w)bzindup@B^X!zBQ#nQQ zwjgQamaRM+0Xsex8~dXobFCWA_oJf~M=Cf#oxvZJA!MQF3`|T&IcI&tgOS-R#%Ja$ z9V?{6U(B)TwKv*DXS;6R#Kxwpa1KlQ#{t0bN3EPJZFcRvjShnVximbX>|`a=0Q}|> z;g>t&iNkjsS^qqmsVlEoc9NjEFD;|4s@D%o{NC}gy(<#uiUd+2MmaXxSL*VGEFaZI zbxT^~Hvjxl1_6R1r~Zq~e4iZj*)LLEc<-2l+DS!jQiQ`q+H!&B?Q-cyAXw>gcBqz= zRg(4?dq7+SKh&FtoN%hzxGF<%>4bVg()tDfM!O3wz}Wx8VBU6EP1zJIf75@q)hB=g z@zXej2Uvyg!L|>)(JA!)dBRL_2H@9+Z6efNaQ)`Z zcL@n05Mm95)ZmSR8E23Tvk00@s`v%FOJ*6mFle|!Ee*D^}U^ z*dbFgi(CIHhJ<8UTjQ;^sywy}BjJ<}-?s*V$j6drAOS@}wT4bwU?;9H>BM>{#SQ#c z_Q(1UE`=M@V|7Jy>qGG{UUrOsi_#OWdr9mbh>eK}Rm5*WqB6g+@zZSXe^4?e;nfKb z!a9vnJ#dwKIptrkIYN2MDaei065FP8e_no_z+(^9e=L7pwdWLFoMFCj1N1i<2pIjdGV$1G=eY z30Mn6v#Cs7w9Un5CJuY`;;Z~bS~#ga_-ie#N*I6d5lMRbacK$pL%K{+V`Q3;tZMGA z3)?iiY@tTBR*|Zeh9nvFGD@rPu4%;S6`lc)U@lR@mtZfRHq1-;_BJlS+{_`DsByOq zn=bb3PtuJkVC|}E6oP&@%m&r^=3i$UD_ABVAS8s0^rHTMwjAeK;%ecJz<`X_g;j@5 zhA31!-n0l)I4RK$Ke0xXW>gf`VYb|6yW@{@Q1m%|5RFmra&OWn_9Nkkuvc6u3cfum zD$W_l{6p(y!uU{qr-*M+mx|x=M~0smArsP<1^ov&KUxINxp}XPt5A9f-U)BDD zxR&qGWi(k~jt!11<3h&t?OHHZpt@dnju_zOCm;=5OUihuRmkfONYYp8Y`<-u4;f}sb#~zv(lV)NO z#p3$w*LVm@cLKaR7kc)TYC(I#_4O8;M`_4(0YAHxeOfoRO>*z#3D@$e&&q#zJ1?VU+($7MJ03QMd@ohw$3CKU$H9j^=OGTP7Y^nPJxy=zp-up zgWqOJjVGj4s}^d&Lmvh`EaVZRuoNbOVF@3c;NWz7R%1^McQO-{dl%o4Tqc9~6*NbH zIq(~Bcb9r(H|ANG3fMK-nj4%_Zgc5BdVPAZr}0qlgXA?O>$wE5mm>{S5V8LD!-qZ( z`VcZWhB%g;??+L{gdXYrbQFm=xp{a$wI-?YT7qGHgcRK)wsSE4ItGK}+Y|&yuz${)&B4qGdaO+NNM&NdPB=wGOpL_HSX*1mDJU!gl!44M za2tPse3^yC#n%w^XU@ntS}-Pq>yO#iNQ5@yH^ZB#(1Zk!(}p zmt1j-Xcy0E6ZzV@BjFCZ#ls2|u?3Kz%E#aTZ=mtd@SpP*CuDNf(AJLJQnJW(Y`GsC zRDYc3tbGJ?2*LBWlpI#rJLlNt)iP)j4DBBnXs>+_e;u}1zx5+@gPF=N^{^iTYo`oZBQd66vhCK}{X{VCgQzvbb4y`9S;V(?icuRVmRZ_mJDJDb{rzzLg{+&K0QeC)2yAb^MsHr! z*T$|9=9(jUcQa!q@Tck<^=P$1WO7Fe<>2PeQ%Y`w0TM9?fj?mha!runO~BH@7V!$) z-lknq2)e73Dx|u6X|I$!6ws?s-MUevR_F;pGa#!~_9ZTUx%@;%(JZQ%aSgfG_HB&) z_@i(GNgZ0hiEwW`Xk@pSk&PlV_SA(I3K0G2fAvd)sKotI^(UxzdEP}h&CH?Qcg0_O z8vB(v$~ENGJ=NrPP^_?+`r^Dd6_! zo)J=MXp{2HO8;i}tg3W}75d&NFifVfJ5>-3R=zCY)}b`W+pE6$?E5yC(!@W6SA!7) zOx-1#?CGGoLuzgyfDFRPA%!6ff(9$S4xkuCxE&r9qyQYUY?0wZM^~5EVHRv6 zd$L=9{(wdal$KPo*e?3TzfH>9Xv~KGto?D-`5G^-=f2SV0&NGn5;f?u(o|YpzgWK@ zAa$%Jxi~mJW)ct}W>&;L_o)}GYf4PJH#4K(Q&hlE{xqu2T#U3ys|fP(=dI0qO`B&S z3M#xTR)LYr<4@1eLc(&*59Ke<_9g!QEvTw`FMG!;2u?Ek3F})EGuUY&Kic$r0sq^8 zl^w<*(3XZ$RDYNwNa57c(lAh#`{a1d$HzxqO-&MtCD75)Z^Ye^I=t4>@YkC*Uha)z z?&K(;2P(ikd$1FNaRo8N!>k<^HF?y*LhnS{qGHwcBqx*y#w7rYY=@Pv1%!?12-tF~ zBqVIjea+a~>M~{f{|6vyC0xLybs>I?HyOt*S9kiBpoP#dS74dti(cQq?h=ZsIEsVx zxZGXjAXs}nr#h239&>-!Z>pYS{CxdRQGq2(jI^xmyTnB1^f`?^4m_0shj(|6vQlid zU1)8YHN(iz%9xIwYBXxuVAz<)G$~GC4$HlYdC?X>J$2_jZ>{!?DL%O{x#vAUvZSVK zUp4rQ2rBs}gki)j$lUf>*r!^#*1#tvVQ4>dD(tF?#at|IoKI-9uY^24K=O76Clfup_Y(YS>Q0}Dwj35vHOQW zCxh;s#u6>K8gimypbX$gp*l0{p0fJ-sY&0~$30`{Z}N5Sjaqk>Z_Ip-c_G=z^@(`f zm>Z+q8|Vb6Ma+j`3n`95u}u6z_*y6|EGF=o3Gcjt|C0E6&_?5&Gnt4x2L$!PxE*;v z`8p8+9X&k=DwZ#3n%CxE1>#T%{n$MOE+EqATkhg{p+@A~i71}rUma2>6)c{)MHG2zZMuA@2J(yo&sIA`1>w-8W5IgZFO=3Vw3MHtp z{1^B)SNU?C-!?}=!cs=2kZ$1Q8YIRO2lNZo7nHWI7mwgKG zPb692kyF*;-xh9TuCi;tjUV^Y_ulLL2UVSUac$bj*D5kXx=>>u8e^6g7l+qvn3$O% zq3R(pG3!g)U8#2rHs&YaUPdV3cFb7(EfE3D6k5DOCn%o0w#vI9_r7&%Afb?Yim%D# z?)LrhX)cb{rh_c1h_A6h51gjdXe~?{?l+EZD^-a8u<~mLS2OR$M$CN~dmk*Ynl7(XXNhy}9taGE7xbS$TTt`@((G#IjP2g=}N9 z^GiVk^PuEI_s{Ehk$DiasC^}M!DFZ;#F*~uO(dDl%9E77XodwWvl%WmDhmu?xU>OX<CrbJnrY?6?N?J*o zgqDMvyFFTAjnBribw0>MzI#Uq);)SQHU%Oj%-f`k4!-}7r>_dAa^2d+patm`1f;u5 zK}iJ!>FyMeMnDi$x<#ZU6p-$c?rst3?(Qx*WA6R$bG0rO!h|`$_Z{O&X%Wm@ICEOA zXGh8Q#lN@(*ym26LKwFv@)di(l2;f>#5Sq%!VfR?0^QrpYy+Z~HfamC(4z>sV0rlc zE_vGJ7_cZJ(zt&-^8u{@b(ZyKO)@W0gDcHW-!tu8k2?50jC80+YzGYC0|1nP4`i~S zeLOw9dsdmWe<>dl7&CVMly#R)EvO?vr0I~-7*9L|r`22DUx&_SqAcj`_5{KmnkEYR zYwgPS7iC%auEW~6xwlg7l5E0I8^uu$JyU-8|FzDhacr8V&_BeBLUTm_snOJb??7>x z+vb?SBQvgCacQ_Kk-<6n6Xn3*GcOksUN6RDx6SN|7)@DDgHJ?G};cB>7$ z|NY*E3~EP=<;MgqAy!e>AWSYU1cMGn3xOJftBBeWND;x>b%H24l>3yuaB}UPoIrBw zJ`5a)l3yTR<)LO*Ir}R}oDsnj(6rap+iMC{bbvtx#pYw#9o^%0oY5cXU0IjtxK$iF z1+Ag5H<2&++t}D3A_n0Hp!j$>-KH_LkNVcLoLBkI2Yp*IW(SR`5TQ_UstP^5I9YNa9YX+RfzpBECxjv1eIq*)>XX1$7l+WaTopD^cyFN3Y>~F+&Ee<^zWXwl$uM{R zDy6*gN*siL$a7)I&j7qNJ~)g-LS4YqoGQ#TLceJo*@4YQ%H9}b@$`D)hyCPnuT3(@ zh1Hk|Lx@-{m8Xzl|Ap{O_u4U`&*c$V&oZc7QAy_3`vtuX+IK{H0i4q;vy3z{7OATA zHA@*iJLq=NzrWF1B6Cp+Cj4$iJF^Np=sf|_x(qlCfaJ44@+xE!uN(8=au3>JQ=Hqex`@p=}us*2gVA!+1FZmq6Y^CDgLs*gLWtCPL(;lE>I zglI9hLy_lnNvOJ}nk4Ar0fiL(kv|rBrQ1FYpw)=A5^Ny+@jVHjKQ{u!=TKBM_q(;Y ztc)|fp@fUaDWYr_B6q1(8pP9^;hX_zaOgLuS76}JRCTj8AFohQfFV+j zZmq44933P5)*DTJ_4{|yPL@+NxpDIUpQkY7Zx;r6^Fd4)@$FsL7e(B!(9GzV&)8%F zU8Jg0_4vq&zF=z16pp7hjhCp%`~RER{uj2dlu_5M#Qq zD&nK~52gZ9`xxR|EIEYiisKR$LW-5*mej3Zn|q%tnHHq6S(Y!1xtgOHjSXN(kBB5M z3ZL#<>$k(l44t!woShiK&O+hZr5LlR8kIx}>HGG4S=WR&*U)Ew+_qWCP5lSk;REe> zDw0+tJ7xupPsaMpmJ_58)MyUg)1g_oYAWd^_}w$b0~8R!%fSq^1oI0bV{dKEQUYb~ zE0fCa#9oQXK7GMpRN=-V8o{K=SC)1=ZX@Y|RPWb*h%?_+U`U$F!zariZ~Zc3IQmlC_^CCYY)0vH2?O<);h_oPUPgD^Tvv|nl5StYL_I7*EX+TU&J_l4azbJa{Xgz^DaE>{`nvp; zVtRUs=W7duN}O`5jekR8l7w9meGuN3vru!<+SUdW6QpxWOwY!dpTU~a)!8|h{o$7l znFm&4{vIv}Ii@VRGB) zlvMS$!z5wO_SslPcKu~9BQAaYKo!QQ|7ijAfByUl;|lKECtTll3i_Xa0LG5fbM+Q` zrr3{`i~OTQdxWS8-LFk|fM6CGY*&B-Jxv<~DHNg{3{p;(R#q04mL%a$JqKCCURk-( z@m`b5g6$K^{R6}2)`|-B=|7aSNw!z}7{#bq2^|5IA9G~zN5E_e2AwG{OtiR6A71Xv z(9*CZ_%_qPnz+FzZ?!wXkTNQm@TI+GRs7u9UMy{tH9yX;4iRVHKVP_qJgbjoP4f-0?0XF8S=Y-Qa)DZcF5B& z!g*ioyhQ*gm>D3N!2KYCvNju%UKiErGB1O8GY&N1>KMq{bMMTFNi_I9->WG?}J z;y>^a|1^qpvOQL*=00w6yq_|?NmeX_tK(s3ewGbytsUq&d?1}lqDn?>nEw*5XBL*Gf;w3~ z-OhmT%6^llF9fKA`TgM#C<4d^Pwy&fi}3t_|WZx`)DQ;XqVGY?oX zz6G`|L)cti+Fdfh8YTewFs9SJcuJ`6P@Vqln%2^fIt|!9|ER!EGyAJzhvW$N0aNte zyPqTp`oc=p+O&zqtA}mwqZYg2E+1pHF*99)WCN$Y)SJ~r4zUr2j>5VVvbuN2pfRU{ zo)QUSxU6a0m!jNoO9!VZAAe1~52B+hUhC$_yupzN5v9tK_f6M=BeQwM=RCz%EBo{O z6&GLB#&$xyImEa|83{nM8fd_Yb#V1wiDe2FN(%;?$i9%1TTF7D$=3NbohhaF%gJPI zdgsZul))F4!Ni^bt5=wyO${DJ;SJ@ zn(m}b`qK3A@8k6CT|w02@d?KlL&)?07H?%bL8=iwEo}?V6Fh);4ErcxUI3y%vmIhYV*5kk4kOS$)3~y7;g1A4UR1Ap@Xqt)QiZtS14q7f4V>4vHym*l<9z?W08- zc^68lA0tGy!2co}g8c&XovU@(F4#C^c7hsm3sGInWt=Gpg&p+sUkjqEQbiZ&F-Ptx zG$cb1241W|=XI*Ft;H%HIeE`qlMgy%nSvb~5fVb>b@nl=BK6)SBlx^RSlUVdIc9%F zuB+kcpN)MTpjadZxqmDyFjDpchTRW3y!8ebf$JyQgZ(MU=Y(oM2{4J%rE`HAn6^k% zW>3>j&-nE#2GO4ZAg3<70D*)D$@@o=CauH-j`VbdRjS?n`)MSb1`N&$ST+M7J|F=V zRA!WlmdiH1-RZgljLFTErd*Dv)aG|xj6HS4w)&!{y1HbTqNs1F>xDcNJ-Gmw z)paTj|5R}5Pi+D_515(Lu4{|=c^1JVCN>+slBuKAxdl>r9+r*i2QkyUXmr)#1SbBvjd>7gR_%e+OkUJ26a=W%RlqY7oOjbzl_kv(?WotE@zWbnTTdWi)MdWChACd%VQ zJL}qND!<@MoW;=2OL3E;RImzyq-xz>#xi=elf12U1&W zYipmD^?}a`2|e)jXjoYJ9`-*=?enX@g&6BLRoTn0>heWl+`_&mH-|OGVrWs}Z>#l$ znN7YrT$#-RT&)0*s0OyfX=g?cs{8HVqpdWb3#brRhj9aQ^X?K-5>E>4JnFIbH%1S*klb3V++FX z@AG+*Ks7cTWdArozwRCSt!q1D;KFLJ4ti3Hrf9^9j~e8W#hi&u21yJa1wKc4qMW3u zIUDr8M$#tMfVRKQpI!X10Uql8oK}8}Yfd5prlMbwXBiOT3veu&{Qa7o z+z%>vLC-VJ!NEaQH8sAiU2A>LV)TH~APUWBMtzSk_Sr)9I~`7j?{m)TqJ>nm{WQl% z$O;H(m^7Rq%N7R94%m921hEpQbJVqbu(AHX4Vo0 z_XSkR*ocR?VKHh{)>yLy1RYDCfu7zUl9vJZb+ENMjHLZY{>!nU2znh-#R!R&)YSYM z8pL48wDI&5RJlX$#ShSm*;PHQrnXiT#Cd?f_I#^!;0$zhn>6o_I+!ClA*cb~HJ_>~ zA&}ZZMCL2_9^jpW%!sGiS4m^EdJP#0N!=hVD^g|@Jlv8@Gdp|O?%cGF=}F~~0Af`k zZuiIPEF)wSm+oZ?Tc!93o?);P*1Byyg7ZxYaW+@@#@ipfxo3VNDuP~HGn zcQI}98S|+qDR0d4CTN2fD>u9e7_tb#p+^dDupKXKiKUUZC#E+s$7;{#Xhg zA4MIV+DOf^)l|kO^?VF6adW&;(vD*h5^?!LeOn>|^qXyI3<#A9f}#N>T1ja;p>q z`l9Rt#F}%TB_ZKP6mMwX1uqg~PC>hD$`2nCIkH!bpwpx?+dEI4kbGVz`k!`TnVpAeY~IheD)*){6$OYZ5W9$55X4 z6KpHeET6$aVF>yD6e4dCKIbba{rIn}{o&2c^vC!!Z)_ln5g(c5p4c|-{fevBFHTR` z2!GFLSBf?~$D#QgAoNJx@U{8Js2Y55SS$nYv9!F3j%uzV)x%Ew)bHD~mH>!-e}+i) z0>SwU2h9|mw=OVxegr<3kI_r%J5IAh=8Ur`CuH1Irqc|}Bm9?KB@$bM& zofM*~jOzC z3Ou|U0GTkQAjAj6gJFW9lAnF&Q(zs*Dl@l@$7IN2jS9^{?5PDt=DX{9HS0M{z3{yc zF)k1)FnZCkZFunpF?zu44-Lr1AkH@CUdmR-Asj8r(lcRf1xEwMz}+(t9ZoL}n5y9TvoP zGUFkk^hycm8P3n=yLByJXQ_5MIh7CkuBQ?b%DoQr+LTukg`B$Y@s!S9L%9g528&#G zjv9qGMMsB*-De&BekeLQUa)m=;6mi(oF{UVrcJz?GqqKae2Zb8;@^IsjGBf?$5P_HyL= zupZ)i`5svDy|KwB9jeE|7ye}u7eMY*?QA~j6M*R68ynLER0X!V)%@gXl9hS?Z29*5 zGH3oNk4E5TLB+cSBfp!w`~31UA|eLZkX0BxL1gU*$Okk8{$2B8BEUerJK#I(hj`@n z-%kSEW-Ex{N3|)WJfsnc{r*X!GVZf)emtplzMWrs)cWc0sxcYKKWoJ%T9ek8C!r&d)|@(WFK{tRx?Q~mfZi_uSl{{*q~cP#d7!`nx-Q-8!!4Th;bc3Eie;CBJAg^AZj9Or>RI zF|5j~XF?+b(dKt37j`C0T@jyBsS}%mEpCX} z=|e+E6cf|h(YD@z25A#tB1A9H>OJnUJofvc8N1}Dd3yJQR0t8EQRhHj0@8~MZG0e} zhiro|7y)2{Od3Enwz`B_41xIpY~+{3gwhi&OQ&6?DjADr^iEw4xAe!KV4IP?pwF7& z04*UL^m|;U+@y%O4#d)oicRqlqWl0a#G#_Pk2>Uw`HPw+m|9j+2nNGQ*c(ISTEb?$ z34xT(>;VJC_Y`3+f zt50fQM>-wnhe}UZUl$(%TSJ7O#QK~G8zoQe^H!6m`Jcy|nqO&pwHJ(F)lA4ytVUCu z(ULOr=IPbMoX&b1%#syE&|8Ln%Zkin#_ictuXNioz^CRkNF>+6S9<75FSj%xoY2&a zGF75rzL)nPI@YN&$0=iVc^Tcpy$?y!`Nfd9jefb&PMM#)De7c=U|jIrZR(8%@>>SZ z1YG3$>NFPTPle^}l)Mw9n8&_6`e%2-fQu0!Wo{xN6eJyb^#G{c&u|$df|5p10!sJ= z3FK7p;aIeE#?R3AIyZw~G`C@(;omU_B95VOrQe2x>uY&a%2sILpThe%@lgT0Cv{Wq z?kK;^%~>D(4)_#|F*1v}ShHJi0=odprIN}|XEB}xD`;PM-I7KtrKTpix@=@(;!{_5 zZ6G{C=CEomO9s#2Q3YzIMUfaY3YCS-Ntk!?{)35Qz#VX8#V()LyfT$iZ z7Y^I%k(A#sA|faeCL$Q5Sv8BEdb9FDCk&W3d%!1?;7nmRQHBl$*@#QHzS<$A&~}Pj zbH~V}?;rZWP(eJ~uI>?PV{@zI_mrzY*@qx5-}|OW{MAuNdrmKd|MwKo> z-0^nX>c9yfqwnPpJ4N#(!H)4thOFFNA@_qvK-3!pU;OjzvnB4gnZOg*K-4 zx-ygI{JJmYS57bI3DniWOx^dFHZ!QZPXcb$$(6pb@o_H5Mlt{Xc);QghI_sT@jE`( z4DGa(#f)tvtm;{7OB3ssq7mD~FpuUC{iLz$J>2k>l{`}ZtgiP?BSP}Id}QVnViLCQ z$Z+)~hIrg=G#xkzn;D(>`xW=i6yyoF08vHCXZ6)ftIwiWPVtM|;gs1gvB1_T$^Hr- z6wb*>d`x`&oWEA#ZLRw=>6=SSD~N>7`pX>=pN?0Xy8VDD(Z=&F)JU`Vn!%$BIB-y4 z;E#k-+R-Q}`Hs;3B(nF@cY04wOzlj0N53fVjTI3xU^>a><{S@r0}>Jp$+whlGTz_e zXztw{@$1Ka3nE{8Ug2iw`2p4s!ojArTX_LL@3GDi9Kc@F+s+NGQ2ja$at{IF4$k zq(UycapS-Mq6wG!&4PsRhngA@D$l)JND%+nR8d$MNNvxbySo(1jyqoRu*5AywfsE) zh8ngS(A${-TP^t?g-iz|PXfinA@%GWM>TV*Ws+>>gwy#X{4J5fOq??HnYqR@`5^o4 ziMYT`Pd*tz*;%WXK5vOtvd4BBn&)+Yr8JT==`uDoH6gSXFpeES=m1URi{HZW&4c%- zXGRQZkWukF^9#amkOJ8V#rVd)1uB;o(I}n7sv0R;^SbcN@=@8we^ax3%t3M=96Qt$_Pf<{(J9xS9eb9fVf`R0$uwBCe%dm>zsr-!xq| z+10GD7G*-uhEC%%g}nbgMp8G=@Eofk9;kQ&6~O2z@mg2*o0LuK@%JX3;;?7~ZkJ1i zh+SZDDB7wvl8`}?`-`3tbo(+LO=`{^pk)R;TFynV_XY0oMg4%y8(1O%r}=WXv7;jZvQ?CBw5*0QUeq@-_$iC*>?9M|km zaDDvG2^Z?xROwq*6c@xO`r0fAt}jcmt*r-B9^QKUI8gF7MFMZkM_abz&A4t;`Qxn* z5v8=(H-e2hYPoR&cKUC)*nStMbxvW)zszL%q}=KltzA3*cH{30150gXH7VOF5&}E3 zY3E;cxzXufH``lV09=TtyyDFA_SW~<<^!Bd8X{ewWQ84Or+W~--sn51Ioeg9JerR= zNhNu(Qq=>3CtyuU!5{&8Q51FyIK~i@Tjy+x!6mO9{I?fYg)GKG6=m~71`|Bt`5Z7W z9(NB|QItb+IG#ca+l##!i8DrwlT2z2Ip6}(8vwEMz7l-=2p8Lq4m~BxmXq{;fhmIpSODVzP^dUcg+u&UuXu(WIz$Y0ga zY6V(h(mrg^7E}#Ub@TAJ87&!tlPgKs#TZl~2J2s3vpUyH= zRf>M`y&%|>0tDOAwAjAR3YWC^2?xZ-P7@#q9we*R{nHCF9Kd%nySNb3Mf@T|QZSN9a+!>oui3$iUhZng5<_m1Jh%p_udmfBzQ@_mWqI!h z8gKQXBR9VOy^lezQY$;$di5oKJD#hmL933#D#*{N{ZgH=A$0rPfG8)FF zRJ!g`LjKjAA9>Z^TAOL0kTP4{TGRDZ)aUI3(|IZHC1oZZ1Gn%{Wn4XHhxWUl^uP7{ zV!w%eK4+xBzD}3!?Bw_t^F5N?$=XDgrPXVz<}LPx>;4(trk!FM7WctasS7le53tc- ziHV89Pb*T3+g~jDh+;cOmdM(xC8R3o{ie6qzPM}->M5Z|ArRstx4s6W$o-*lk#hNd zG280ZM_=nb+vO2k5T$7;h@?r2HZ#ym&n$31T~{Gm`sGtc=4Iyjr(#EI4r!|*xn-ep z)r_dws@*JyE9<8mj~=xe{%h*>wcr{S-2DB z+H63&ffLlLP{r_+Hzj_2N}=aRRXTFWW#FGDFwX$_8XgdUs%GUCo6j08A!ac8F=X1QXu zxMGVbM)(>2ReBLXs>uh1IGZPrbI2qu6m6a-ohd)do6-Le}ZM05^J@PKL{ zGS0tz|2_bbY*lZ!$)G>Q5dOza%qzOc=WeIdu5BE$@ttl@64_Hxb_fEE3rDApgo@yp zx>2N5k76VUp7@fOf=y#kF&ORAQShhP{o{q>|Fi&Z#AAO6!;guUtyI2YI`CCZ6(#03 zZLbwrM609uewV^*stAc@Ox1bSacj#AxxuZaNxvu)b!+DqErs7+)mEfE-hEes_=bmf z|DIEF_C9On`fJnCe^+$#;oVW%b$=;uTw&^rVHFjop^pYs-rkIhH)SoaL z4P3XvGsNTA^N5gb>Ay_qE>!4*SfYK{bjPy8Y!#g$=z(^*h@_;XIO#+kR z;$wQ>kxIp-lJ`n1;;biK-XI1jH-~DVTuX+{Iz< zV+raivo`NZc1YV0!rdmoIEkPNODHGIG{Hyf!tr5R9yWeOFC-KXGD`@K?gXv^J{%5j zC)~Wqmjl#u&ET08w)^K(mD$g8*(xM#GtpnN`Oz3hhNfwB^pxWP%tqu$XK(kACMJU# z0?6`X*o<(Y8YU_{;n${A&ch^HrF`|FsXw=e=x0pqG9d;xp-_xLF-lpt851?)5T=iB zn|J%kEbOu1K0G@=pNFty==LVzw~6~#SEif~8xJmP?b-nR%&8YWKhoaw^uHtr&1#P8 zkAg~<2;2Vftp_)cg?8&-Y<$vSa@#eah(Eeb$aly7X^r{I*gwOG2}fU)r7Nua9tvoD ziHfRnSo9a1nXHHx^A=T}4*U+`HhE+?gH|NN?RW6Azkcpz&F~23?t>6e$VCPVX-byD z)@M*$Ov{Z{etkHV1H8@iM|*;WAF!y6oF_{{-bZp>99!RQP&j!jSuYw8>Z;G+I_TN2 zKwjwD>$T$N?_b*O< zhV6WVnPCQCp5({ww;O-9WCp%x4yp2AoAP9T@}e1BCUfPE=Lcpxvkehp@l0mIgI;c% z?KPxG$<}P#RxQoV_iST9Zm3y&`@`#we*3jS6Ca1UzYBQuR6>2zNAlX5+Iz2WM33H# zC&H@)DQVDMK{EVIDvGgd&Tri)-P=}UCvz!od9R0%sJrEo$u!}#fqWd!ViS?AZ;UUJ zM_)=>{cY`rfXn6eWLptis&i zJ+#!kk+fNTUBUP?2;&cn@7%dmS?4>o*KPbUZ*eMe%bHU*%#c~0V13sK&nVI)=CK#l ztE`W8`5-u5U-zovjjkf5U!Wu!JI;8mUf!I3N+6y+Ct-vJamd8=sEFIJw&nqvc}?)v zYaRT~T)as98Wk(OM(m8Dm#b&58QV?Ecqj%wJYh;T+*!9VVB7P+GgV&z&hheuCS(s} z7N(G*^4!Y{jt%zkigKa6aN?aw^72o`^7KO%Xd694WD=+F=$v~(XE*$n!@hncnAa?D zuP4g&)zM+&_Qnd{<<*`SA0Rf!($mw^DmF$2p`6WyLm0_9RqC+SIjl|4Nl1r8ugtVU z?+Dn?-Sl8BK#OM9W}@jvZ5`=%&?6iVrFL>8#bepU4YNsqlyUPd_mEet zPd58)b3E?w|BQM!J%haRVk;WMv4@33(Ef+lxAPko@crNY9s5}=d$?EFAsjzq@s`rw zvaQKWWhLB5A@_^-avV(QviY{Jmhx3|-Pf1gdEx%#CWW#?pDA7Ux*CD)Z{wepl-ujG zEKfv3S5$5ifMZ=N`9R8>sd1#wU@m6R62+xuapmeVGPH0{x?LvLTki5BRHesYSsrpVz!y4NQw6Wz9Dmz zk&&_Z3pKucmsD#AbO)uiDfrE7u(4L(&n6?W)(~}Od`2B(BJ>nHBc*?9695|`j6F7J z=qAV8IQpVcDVqMtD1UkkmtA(M{=ws?9BbW=@cb()7EY$toiAKatCk5L*Bm~?^f>1% z2@_eNr}?tjAwvDmXr`_C697!G@!)-lY&%%)8Nb>rn;^_hlFnw$MV%t zvXE0o{VV&CAScfaZ+s3Jj{_Fws)Xbq*|ZcNJ)VAf@(76W>Pg;TeyV!!P{BYl9bZGN z{+$p1FMbfbAT}tNm-Fnt^Y)!dqQPO1i+~vPoZ3kiyR`!4#`fpbQHZ zG!S$3XZ&y4F%P|680pQ+roAQ`YwQx<{uM*X_Si^delIsg`A+VluMXjJMLXe^tsBT7 zM9kB=RgQiT%?w&^Qs^>(gNFa?sg9aj8=OYy7#OKpS%K>L+L6$_145$ER^9NEa&;QT zU&?oewJVcDE+PmZ3+Fj3ZU5c~qyn(C+Mi?s)l6W`Qj>r09gOHt1R3sp@D({JP^zHj z#HDdkOqkI8Sp6s_gw-tm?n)(pZAyKgFXowJxP6A`?9<$fkG#}4Ik*a%eyXM%16Eq( zrS@DpS0b}%4x{T+>h_{K1hLUMQmp~;s)8;Fsp+>r;cgmqeJmGt9n7`$uc}4bFE=n_HJdlB`{2G0nr)bOEj0 z^YvKljT7zKyS;ZvfV*c=&%;^vHIT$4F06>g`D^ynSO{(}P`|?OguOF07+w4|XJc1F zPu35|2AsM8DEUGPAAO0JiJX)=N8oko=b(EtL>O-A(f0HS&!y-O`w1#F0%h|rDx6B- z*s9TlLk#j?S|P)MP$JnV#{v~wMr@^=2b#x-Y_Hg{k4s-~{%KRXH$1Q=(sLB0dY+dciowC;(qiuzK>9F$_2-%(~El?~Y94)8=A zX(fA0Ly!-gi*=JnaPlO&Q7BsLkRxcA_u79~oB`B6ILO8X-P5Zab*D2WR-Rhnk;#?) zIKgBBBBM9vvPx!zAs0t;lTCMy@M)`sngaQE9*<5W#VYE}{WaM?<$dxb2`ZVHsnEX4#Y)%fMP6q*U zL9!M_c=)otvyD%O0naZ$P5do%_#QtnNE>#1C@W|>$y>Toy7_D?0q3}Q?7pHrwFm>MwTenGCI&*dPt2ij3i=f= z9vX->BD#-aShbqrP$Mn5#DR+`Y<2RTA)K?C>ilBJ0pMbSSD;f*Huk+pe*fS0+FB=| zHD_}^_XUY>e4X|ck1kEYsNv8sgCH;j2K1W5xR3>`S-dFt10&x|MarcwMQapMKMJ+G zoa=rVpBD#S-bq5wPuZ(N@16w9ZbjgZ+-Lp*UaRT62VdkWP!F9*Jh zA^Hk5%dMiHab-!<(geav{hXPZK08a(8%uw8#_#^+36x>g?mTMb9l(A>M6^GC{7_q4 z>x-JUG=PwJhPy46I~Jxq1DTkJdrnKc{a+_Z!6SOw*sie(Z|^8vJwBo8*K~AY1uCvp zA?e8I$bO)BgkjNItmi+B9%4%)`tP{~y!I*ts^X+3@LO2Z_%?K2a*pX&Dwi@hiD}3; zRD6*r4qjVp&pf?0a6ekZ1%zh>w1p@Y-q**Y&bu>7FqAGVFSh~zi?}PGj;OE!H~a4P zV~xm^i=HU$!GiSL{vwUztTTFLf#9LPo9M?sRg`LQ0pS76m)cSO-)UN`Uwgh!%Iu;OGTlN4Twqr7VI4z7ve3Fxfq)e`T6i* zKcbR;5!<@mREhbc&wRmmfN3^qsJ8;hmyh8ikH z)gT+)4&fn#@~7hQI7A7KN#9V9Nr0<+OS7rkf^Y-o=%x2v_~C)Nrb4K|;CP%q$a*65*&*@vq{HtRl3o`wo_J z!!#%<(vKAxeJ+Jp_0!dtxOO>v&kpzY5Qu~Gn&DX+FB4PtNvsUrLMApOupnj>C??hZ zc&aYyY`fs@AtwmJ;0-$c*@wPYs}z1D$$CtV@6zN9%@PAkH8;)N3Pg08Dw2zsV?yOf z5f)C^4(j$hc#W6r=wZ)>6hs`*fxUjs1p5*ol!@O(Zvmr*)Lv%i1C;-Z>h*o(=$94| zBY`E=cHNQtU@FmARCCx+Q@evPNs6Er3~(Y48_ z$=9Tv>B_3Y)UN>vgakZn1hw)0z58}KqQ&-hOiWlTZ&h_Q+}l!cRzP|uxdf%5iFx<= zI=+1=zvuR;?M`piI{sSuoBPOw(X~!pREnq~*FstI@`*S$ALAT>=4eY%v z?`+eN?)ylzmaGwonm7nf0twt-Z_0D9bU-XGGq8#pn`khZF(h>SIzB$xJ zFGUlSt}vyoz_SmPLceROc)TcWVd-xPK#tt8cVhVMPEOCyz}j+f1)OZ!OxJ}aV=gOtn=d^2Xk)rI7ub1y+?{CoIJl8SX} z*{9~^dks$`GeWUxbYx%J8}R9ak~|qALDmnetf%%zEnZTWmff3uaETxteKahn?OJg~ z8e}x;>m3pjOB{Cw651|2PKCaIey(i9rBvl!>wR9`bOCQH_;#tsbSpWEEm7h>;eG*qRkHMGmEn`2Eb#29S%b8 zdvDIihK7dRA$!MN(DyFet*P2V|U$A+?JUG`Ow?;vPx z)w9)LG@s;OsjO@-G^*81A`W;6kT#6cFY$@g@7jstq<)vhH1cacW{M5$of?Wy&Eja# zu5`2B$s7!(s`8aiaJ0&DIL#?1QiCuM#Z%hbVAEM#_#7y%b((?VjAhjgU;@5d! zfzZ9DzP|nnXafpS&p42DC@Cv{0zwF$JVby3=Hsky z_sP#|3a@`$N5~IA4>C$Q6nT%jU+e+$t>!KYMWxx+xVKR&J{c0CFT79T)$p<1jF^iS$`@nmNgD{p>< zQij9%2O@<$iVN1l?{#+@i{k`A)uXcO#Ro%M=FQCxjCu8X)+jrVpK6r{(_LQ{9g)sX zFxsboQoKAhce55qp7ikLu!H{U=1{5Ff|Ng&i1W%+hpSKY5pBp&G5UYox;}t&0SJ{4 zQT*fAwRLqt!NCi$9!7%kEK1hpwKLN-$(1@ju%8@4Z*a{I!(irIlFH48PBm}a2P6Xh zE0lTeO_dA@yIK}m=K06#KRCXswmUZ0N&iiBWsb_?6l{^Jpi*Sr+(j!1|xF&7Rn zBfCryv1S=B$@SglkwGdM91sxT^&S-Dz$Ud<^u(qOT54`h`p{j!KfbL|CEF&)FyOS{ z@OUU9d4AbeU;cC}u+&c|;t=zU@8}jW{uj=uuIEhbO{(;ZpoxkbsiN&Ck~KcW94EnR zhkEa3Zl_AvwZsKnyjOypD86w{G$Q8@TAiQoyyy3S+$hfu7DxKJpI;$C)!u#q)7RX* zm}ZR~IC~&Q9}x$AtX!S^WqU*syi9rbQ3%a%r8iI3R{oxO6v)#&qmEU|Rxfpa`u$x` z16Hkssx4)-Rr#~=1aWqgaU=u!2SRNrG7<3`;~(K4?G=?9E!EQ|ioX8_3ZJNonRl4b zYzGVzI8PpeWL@E;Z?CK(O*cKGJfF{GqQWT9gXP-ks;J;-8^j?H98zl5Lj-phy25}Y zd-R|2rf>kX5a;aK0UuJ#(XPqEoe{GP4F>)Ieb;A2oGqeP1YD(()#()2rY>|old1y>i|KoG4g8pw2$JnD?2}dQahAGU& zs@3Gh{E8Xl;T$yrB8-oJn{;1%VpneK7%x_GAoi^p9i9mG{UrXC9&st(4UA9*U7oJ& zbDI30Upo_ZVXOoNyC7)&z?NogH~Ta%3ftAy6LJy zE4<3>qPr z+vYb(y5YF2ryL&ma<43p z!&KeM_pnU71*GDdrRG>5(cik!w$#pI!!W4Kc75b1h)r4#c?rV|3X`&_*cq}hj)+jWN`@{ zIkDizfRmDoho_}BBeGsz?{c@FKro7~)y|KgS|IYi6;nXLi0X7V!^4Lk;4UnM-M^%y z^~ePuA79vI<0psVWsNLB*wqbwzIqQhVmpDPb>P$}sZ_l0|E^4&J=&3lFG;Op$3d9? zBNuA8lSBI>0!LD(+9xkqnC5#v=xn_|3uH=~;K|9Cse3~e7PR=>nH8_G!psTa@t2n7 z{DA7XO-vS>KK+i;k^N4yns%B|`Rvnw!=(vL7ckDm+n+rG)Cy`{ zd0aMBLF3d8Ia-@F~PSqLf+PdS*=KWor5egbCvm+B%=r zT@8Op(cad@;=7#$&%Uqiw`&an+bAtM3%0eO?Pc$sWbDRfcv>~{$8w_c6*~9D(TEbSTcM6 zS2YbMQR+y*&wEX|VZr@=zwj;~d&Oo)_TQL#Nj7F=mk7UCweAE&02z}~T}>u8lwsn_ zx*^H?go#mHZqXzOLZU&ZH8|c>(6r1qKB%UMUW-IuJv-3G@aJ8Nx+)o#&@!Q=%lCPH zyP00F{ky}1G+yh@1B$vdsl%1WvWlzl$B$p!*4o`iK%ScN6c|;ZP%@7AdSHhXpFTx` zm5Yv%TiIYwBX*T6@JH6OR2?r7HlJ<`E>0_IffV_4ar(%;jyPPD1zRl9{%}tLQzXO{ z11byHIuWn}X#L8H%c;vNeRZke=+!oc%VTQU5cUovgKapwMV-)ya;o;IUG!qW7C*kd_C5z7?y5 zwV)I;9o<5LRLJ%#z5gm8mb^bG&G8*XSp5F+td{c~Z$|_bvH0L)0TN4w1DPS_x#!h5 z;q`&fXrc{sUO`h>>&=-LVl{8;~% zl*G)DdO;L;J2yJH=;7@z-Q>ORE)Dj;WQgW4I;#FPYPe7Aq!@QuQ%G&WZPkNhrKkQ6 zMt$HsDC>KZpCl}HM5K*aNjgjj5@)>%(ezJb#x2LyeU-rH!L3sHixA6GDQg6cfyL15 zjg*5@aiEF4M)2wj-T2PJVVa%U@f`jdzMrqI{+ik4bZ#a6xxG?NraybA)m%I|E-U%O zMuDIrHhX?LU_tPL4?hB5hk1eM3&IP22b%Yqp#lrkNq@?%H6W`^s`t4b0e4+vc1{5i zwmJ{fIVtjwVbE!l0vZPmRX`gbK++_SY3FB@qzzzi=irHj?Ay*4Ixlj1{ zp_26XOD2qMvWpdts6fw!Q|IRPSEy%M4{Q{PR-Ib#_f-T$NHi}GwUfR7xj${?g?h)k zpALN8{yls2D0WmhqtEQvz*;da_{a$B78#8Titi0MrpgvjJI48QP8gj5LZ)Hn1_Yo-JWR6&E zzA0tri^Q3knL&i80*((Mb9VrCf#N1wSXKbxz0^@7>cWi77%N_e8=sZ-F z76N_o|>k|qbw)On4KeiTh*FZHJc9>uOUl?U5JJpBPV_7rXK$97jcdA zf~O}9OmvlTugD{ZVC%E?$4ZrrEqz?1Cg($f1eG?5EvOFk>>oeL;@&6t5}D4?XchQM z&;JdkoLqCMli;~v{WH`mB27w08n@)|G^9>84u<+4I5JM@qOqi{eBQeUE_I&`(uw*P z$p{>U3Z1t@qqCW0jE&LJ&>BZaiNV>d@4bkH$kEgn^9V{{dR;qJ&ST53{)jlbi1zW9 ze53o3NCuB50Y{pdgOI4&n}3&}0)VKEc7TBeK`IA1X5fgkhd4&CP>`{4<)xUz%Ngql zPPwWh?T^~d#Jda2~*YWh}2QQ=(n9{F!J#qNWGk~Ou(pR3yIvf*Y^7|Al z`&E`M7Vitd7958j&gmfqKei?1DWK-{_ieqT2V79G97P}e8?=9cK|w}<(R-fF2h^U< zcwA)R;pmY-WXJ;OS$)mS4kzN}P$J%#S#<|f58!P)YIW?toF~`8Y!l-i z*?9*(B_+F~FxwJMz)-mYy1bm9eb+DLW`73DVeJ^!%dc?Q-gKNU{-K)=m{3v(!&JaC z{F;VC^yZtJyH>X!?SU!%*7J|VI-f%N9e#cdN*pOPdH(X{@N7C{#zDp(B-h=ru(#IM zK1TEm!?g=eB0#ebn=v^M;r7KQ0fIM*v6CM=8~UxJws5xfyVJ4No#ZQ z;ah8xOdpEO*iHoJH6PsxTfy=FAw^M@prNgTff`n3XM$=G~}&?|Q9RXcM(wN-Nzua?fO-Yu@f zBkcA55%JmH)s+EMr5ir4?K%7Aiqe&t%*@OXxh()EBI2gtFONt|L+Gf%KVHtFu{M=E zGg7XE_OSJ4I{PctK;z9fu_o6~>r++#ju!nP2M0wZ{03vz`=+jb&F`mUoR^|0al~8y z7kyaY?qW7E-#Q5~>o6azMX%C0AKTYl%S z{#Up7Z#dr~`|M6zy4VVz29r>1%rE@pD6>KXs@OB}0f0^6`OTr$r5OiJ(VO7DlJQsQ zv|)Bk6HotBI6B<*5qv6^yxI$^4ZZn)?}2@VE2?YH!Qp3Ao&8Ji_lx{U^=x_@Zw9*m zex1*sK3=xXwVO4ux#W-I-;1YC`SJNlB#lUUNZJEH#Ct{FN6yOpKcdbuEUT#9)`Cc* zgp{<>sWeCk(jgtv4T6Axq=eEf9Z~`!T_UA)N_R@9bSR-BoM(OC-uwLVkC(ywt~KWq zW8C8w{BF&k+GFR$a4uAb$}>~mn;Qx+AH(Z`?B!`TVsE|* zn$?G&JGHZExtWsr+$E9W5)AQH#O=6Ysc6|#{RoT_+>kYe;OwuhsmnJi8C-+ags+b; zS-a@m`S~_pT)dsNN6)%5qe^B!(AiFEl_B8|WZq6p903oM4dPAa-}f9&?jxfJ>y^xF zl4y?D@Zmh~?`JM3vG9Fc)-aRH_MrZ^MN-m;(zD?F#ti0{V?y==Yb)|DL+B+ZH}(Y>3l`h&B8xM5d3ngk(-*(r02+PJ{9uMY#fC)< z6oakbd)|P=zNE?JZJjrruKV6(6f_wEo@M`0pu#D3MHTteI`RTJa4cbN`fF$EEx-Nj z(#}pF#ME|x3Xxu_HI?Ii9%SzXV%D;#T~KJR$s3Ka&|R@wp_$PsB@AHw*P#EHlUx-q*QLV8LHCEJnnxj`#NP;(i`+6gr* zjURdunq&^LFebh(M%^cAN&kCS$IY<_Uw?BhB+aw#>({DRXAX1o^E34>OhQ6Jfq{WY z!V?y;NkIU9{D7-*=%5uAjMY&2-H9c=Zc+TO#3`?DvIrP;tN%K35~1F^J9>|SAqcvbN~?i8U)&D{L0H`l{vZ_yEQZDIGGcQ9 zU-e3pk#mm=AjNuVZ*QQ^X%!SO#n~|zS1sT_ z106!dd8fin!;+SEgEb>Zm0} z!i6lSj|zpy?%VKXBN>wG^LpI1 zcGgxNt{oao`&}Sf_&NXg8Vu^Dm-y{gSPTpeu?G6BK>y&SRv8QuvPdBhe}%+5Fg^$h zq%Y}LVks*!n;qf#wNMi>HDqLV8s_qO@pA^4wm_TaJT*8y8P;5&Ui^Dw!yc?!pmg{d zI~aTOg@9)*w&msder29`SMQ3*ar`W9wf$1PvBm>slY%=NJ!qWL(4?n9S>Vmn6`mbe)R0^ zKUljXNgN9vt9XN%qKW`yR!m|yUFiq|Jsjv%=*s&$CVJ!cZrydNxzF??@7cwYK+J=^ z?}w6KC%whj$oKm*-oU69=rxvLAo^nt@ZOE$@+QguBg!@2~37ydarxT0B<^&yZR%)+$d>sya1%up$v8bdehllrY`Q21?ag34J>@159N zVkVx71hpi+R;aB6fgOPW)R4H4vzv0=4-Xpdg_qf4_q<%;UY1TU95e-j)rxxvx`9$5 zv82iMLz`KN;IB{WJ`31;_4=^o;ct(!nfR$ppG&RHXZCRG+5-{?j#v_=e7(x)wl;s* z0lPp6?$q8_YAbEcQQhfHQ)_qbVL)6_fX5y|!nrF`0AK;|AcM#k0&F*Y?Feb}45aLp z9O<}|ih1!3F#oCpd&QU;)Qj*x0q;G^`$_pf!LL?_Qd2pWUy@i4Wil`^VPJ&J=G1^7 z8M#;a9p-FaB!`A#BC&S8iEIcT1Iz{aeL&LmcQI^D)oyDIlQ}E zbXi$d7j5dQaCBVs&TV!heDeY}1gYGX;l5d7=S$ZSj3p>=Ok@-rBringNXZ9o)gGvosgtvpmz2=+pFZeI^63KfKw)zu zgz$ZKn19z2i1tJ*x_iiQ?JqTSd^4}b>Ui%5>ErzIz=+aT3{r@aTsUWs@ittrwwoWn z+|4&rxrPuBkQ|`05H)ZrzQ4gbVJoxyu=mSm@ckMe3Jc-v9q7_1GO!qtL;!(<-M)b zznn0&x>e=U!^+X#)7H@XZ-A|QsflxgR^{w>Cs+rDYHY(u4po$v_0+LJMx!{ogu?FC zE81wh`T3v2ArGQ>6Ri-(;rhd~vE<}SCLBXNDQ-uvcwuIG4~AL#Ld2>V~&D zHWm6WNw|9}tosN|kEXDip&UpQ8Dwh_XSorj9g(3fVdQxOgtH>vx@mNju^Ea|HTXNw zHo(^U9?Tk$8R!o+b|3vZ)zXm{qC$x!quhq{LGSL3R5t9dM#0GO`}O5IL;jZ9k(5vv zE?5~`@Ybr2c_yTV15L9j@ta#-<7k*I1+-Za@C;j#hcni-?U-jDF$Aiv_e^xsqg!+nw){EK#ooB@0iQOMvzL4Zqmns2O|?K$O^EYsgVPkZg3+fQ?Q3En%UvTXIgflI-UOG>(Y z+Zen;5Q&7S4m35#htQ}&(*}nlUs5soe+6<^j}e{8mC%2{g6Tq%?C-`6q-X`xB-|J- z{B|4Ny)`GAF0V3El^7dC=s!rx(S9CQ{E_imj`;a&1p=W^UYr~`0?iMh7%cvB#F}0> z_+FAWD5z+JqfiVDdSB`C#N)~jyX^m)pQ>+uIJDEbBW+a+px{?l2iBrloAoJC+wRp~ z2X@tM6Z5(W#}ApMe!H2}(E6B5r<%h89GK_y^zE( zI(pExu&5P!dQG!I>bFK-2@c8MiXd8E9ohDF$?3Rj|2hKPJw1gy(%Sr!TqTSW6$BII z2lnZ$hBBjIRSB}1tJ=XWI43TCW?e~{(aE0JQ_NRXET7(Az!Hmk-Daz1YfRJ0clb0= zkaS=%>PEtZG0o+yik5T+>$s9Vj+#17?a$v(wQd1v4rXufJ%4sx_kje8P)IsPbNF|< zrWK~jCtyDRzJhe5{SN#3O1ebBYgvKoO!p*ufpp@<9|2#seuGl#x23N&FX)wHzRs7J z1i4emV@aZXUqmMnu>@!-vf+iz2Ap9My1FTcG4}uB_N49v(4s zM(?lePE%n!!Kznn+X*iLN=%Q%^SQd%qt$MnlV3L`Z|!&EF1qb{oCjioy!~Yxo3L00 zp8|ui!L4OUgS(7fT?yd2=jYE1E7j+lEz2ol1#6QzZK7>Y`5z*MJJYkXpPr2|BF>h? zKzgNhXQQ7-W<#si4NfbRlQP%_{R8qGoFi&)KjsVIHhK|2zyuvImp~qc%(;5se;4l4 z*M0h8Nz3nxApfeb3<;aR0|8l9U~w@U%+~)CVpx9_YQNpW6yZgJqeCc7epQ;lt36kj zSGCAABSaY%*)`CXJ{UbvmzE?^svw;|j{z*67x(#0LqpiA9=g6yEyQ9q*{V*{EGBOF z=q%(HNi%@|R`}#}bYUJVRC#G29>v>tkFha5tt~CrKsKbLtc(mw-Q3*3$Q%HTVZ!%XN22mm zxg1>FV9@DrP9p5|n-P9JQQUsORULH|&IA(;$LlflsME5c`H-6IQIuOoC8J&62CoBA}c*UfRKEDBVAGvP0~-NFmGpu(6t;h#u|rC{96LyMMdYk zMJX}9UmI`5+UEHH=M9uu;0s5@5>7xT3y+8Z4m3S@vBt+W;r0c=x&7lC^qpJD{l;a?qYn`8`g4*Bz1`gDnXh1z&f+ss6 zF%jHwI9<_HebC}uF_im>{u+LK3w~K`rt$LEd3(hVLGK9o2!t>9d3iggrjp^0O|ckL zNXW}$xj=aIMP z=$$)vR<^elVDA8CgzGRB2iS^+mX=XDk6Qj)<6klMh>kdK zliyi$vGZ_5mgWd(IDR{=dPE=c^rmy1%*yhx*ln?l3yDkXwItu*vUCMA#F8P zj(x>St7|BkZpiYj>7!iTw7OHNe(K~&`8#&V3f%FGZ8gfeZ87U{Zy!LS*I0K+vM|qa>S6LKQ=2o$DAus<+GE zT7uM8PmAChA7=AxWwi2l1F~_?Wnf1oLVAib@S!C3_4-U*UK#$4DN7ojLFMm=B~Ix< zDmy6T--+zOHj3cGruk&d+(e5i>vN8#$iS+nFSs@EdpMM&mX^bCM+CT{J@c?@IwFon zI|=)7<(gvqVPFT_!K&$M#+3X&L1D2*ladond=k@@A1rK0>+9+&pd(hRDVy0XXV*;c za4uaBr}nytn67oC0iYhPv%6);6@ICn4$#{=+M}u-98u!FT@zh&i*oSedyrbt;9cr^ z@iWf@%d^3b+u8Nm_1Z`JrV_bub{3 zeRglI+s?iL)NRTRoZ~d85eh<%P%o@fx1$u>neVv$KkMXj~8aLrBYy zcV~Etii)=P&ls1$#t64E77otpN@oOs62PDM2y#!3Zb;*b95QhiO4%(B7iqCUoT4)F z$ilq~vzK)!)0o7?vq0zgd9j{G2S-A%kDidTgJH$tS?h6=DEZpH{~IXz$qrQ&{|a1O5;s#Pw$94^>Y&^&LtGua%)+W>S~XjK1|V zsOuG=I}<#aEq+~*SfIulJO1i+@-^ery`Etbhv#)JS#Y*UZ4%pbr%08Ci~SJ^_Ir6U z@w?t5E~7nxX!F{#z*pBDZS=Y?74v?WJHfwJeZ3fOBx(t!rH;;2k~@{ z6+~4XkIJ`z57h;pI9YZIaoG&cTRl;KA@wM6HD;dBP4}sGKxz3H4`eX9~rb>UHZV*hM%7wA#@`JEA(A;S{Uzr zYB-8Yz&VFXykup%ux5@P`rwDdGYLskf@ja3A!9`7!b^px0b}+1=cb)c-N}E?%*Su9 zD1TrXiC*><6cm`i!3wGBxtuBTQ9%(TM+39f@F(*|>{Vc);-;O1X<-|#X=}%bxuE^= zFkANVjRK{+Vtz)b5Axd5Ce?3#43069(9$BVtgP(l>T*7P-ag8&$i}AaeL_s*^J_#= zULBOH@V#w`zZXw@6(?QzN3MESP_ZDYUY|C!PX5UYLA)ecY-v+*ijj{WoCRZVs^zsA zyZSahx}!mkTNQ9`%k>oRpl&&b)Zo6&hh;J${o7l|f~w|B$^Q#p(-L*u-f8UIkD zwOZLR!)K{h@iEHA&ZMS}gyvP-N`Bkr`{Zg`OyiD&XZRZ7U_9xR?rhUI8IV!$w9`6t zF`NJWhBjcLhO(JTxC5#(ij&!~M~v~ydwU$?!poh*5{+evv%<7Lx!CzNLwB(JhfB1= z{sofa5V~91Juotil%`F2n|c^ss)~K$ph0p&Nb4}|a6pq>;eAA+jfQi*U~?&!nG(lO zTfr`^M}a>AmX=KX0|K6cY6n_6v)@X!U17?FQc9t7J)7{pZUPjebAG;YWaHVm@=Kd@ z$3Yxk!E_O=zw1|EE^d-ERio=YR510It%;N6SzXe)grD;1lV4@FC zP8gV(F(q+a18z$cqzTlLV(%sn(N(4cQ6d&L(|6;0Kr|GkY9BC(o+DpyP@1ePvX$N4 z_X5W1*ThOmV?MSrHGXm8XUt^Kaaek0-*ZjCu#H{hVY2%WI_gRd^}$}@(@9YW`n(kzt6soXSYa4+4G+h_aDi`z6tLP$0ACsl&i?(%Yw2K1 zqFP-ZC}-L-*lV_CazuYL4GrgCFGYohF2PjA!ph3b+8QykAeT1GS8_l#GP{R}D}m4n z)Z_e`8j{7yQp6VKve7>h_Y@TC)8D^qsM2bVRx2<(_lJZf-r}wF0SagNYERqv{(zAt#aYpIP zT?@3{yk^rg7n1svtoH+#*5zy(8PB)*plhzz^duxu5Njp)A;{$N(lbP&2W_=Jqt9nh zVtJdR&inq0f*e~SO3FwB&iuMMGE!1f(1gay(eKVyN5F%fWN>rkM~6;~JUtm`^;39* z-Sp!?L*E<0uEy;?5pDW;rWEAc?v&OWG~*ijb%1D zmeBV7H@iVyOukCiF}Rh5%8vo=6tM z<%BGo#(A4!i7}0>nIdC+m`T-O)Za;zm92(&2B~C(lKYtQ<^O5{F1d&rAnj}=Z*b(t zy2>BI!0iXM3cnWnW$(9WGn+Lkcb@om6T2~l*$L(e;eNi(c3t9I#<$mOLS%RDe1h%v zg3p1dL`?DoHu2}ecP&qf@fCI}?waP_mqELDVc^qPvYxP>jC>77J|`3C10|)UmM{)R z_ERE$mj>Q-=PVxYu*K&tYs{MEZ6&J>iRh0?MV8mM?XjW zdQW0-vLG-B4f9jggM!x+YAckl^so}kEgN0U6@u_2RH-TDf}U{|6mVKec;yKur#ig2 zoAKeHyldgIkFn%1Mc?~0;vzP<^QU98YMzfIy_)K7&a-jl38wjulZG8-e6ZoMoP6PL z%}vc%F;^TNddi=>^b`e%RiMa#fI(i!*t#os*u)?8ioQEp!c1s?e;?)@7^z>-E>EV6 zt%2ZbmZ2!rruU)nL1~R@p`#1(tYGuTV`Wh8QLyjK%*7`Dd-Zc7NJ6)$ygnV~7 z+<^6VPP42?{+AkuyDv-JSD{W?Z4edu^-Bnzy=P0c3t$F9MMZ@xmsV8N@Zpi`dM_~u zL15Dd*sNPLG&Fk$voM@iW4;Z2K!~4#4O#H`Tz>**^v!+|cdR^x&Qlt{j`sH4p3~~* zGlbA0{flI`)nc{SUj4T7ROIy`wK6k%TThR??C<2Hq%Qb7C^EdMKo9lRZEuv?m@}CN z&b;Pd8OC6KhGdMce$~Oz1<{n@St5NRbJ#zTdHo>Ms;<7^HLJK;U;L)>4a!5Ao7sCq zfA90~T0G6loOQ8vbnLtJ7-M*%GIg>~vygFrc3Q7_-2EwM;)=a_XX7uWCQbdvz^wE7 z^`jMl9KWH}m1SxeHK8F~Ivm@iFS_1z*Ll0`I1}hhQp(Z(hjafRx)1>?Lf3a~PD%c8 zp*r78&G0W=R$JSxxtcx2zn@t^9gM`YtCpU|JmKPCX#A{co#E&(zxvD0oZ_ECbpODr z=1WSeVCO$ygS$Yoi+Af*5W&^gb`?d5bXRns05aJ+kp)OkRm6o6K?I+KoxzUBSkFW@p`= zLv5Jixld?4m_7mr+kelwqvmT!i|j`Z1vB&oPVfdJ5s@Ie2uy6L6?0wxODp%t?-jk` zy{8~Lffgtm5KFV25JUPL2S3iZcHU*lDzoC6?mpfPTQ1G~U@mjvg64~t9}lbNho5{_ z4mjPo-)7{|Et8C$xBPwZu+s%{u%wYNbl7$(-Wr3)9!Q@lf=)ReEUx_i(Ij`%OUjiE zJug)s9`Z{cw-RZ-`}9+cf8|`Xl!EE~_@=F;r8LBLtp>V9Dd0zWPUuyyMD%VoU$@7X zaUk|%+5Dzqe7z9uxcJ619Fq^eD6dNEX}8Wkw1}NFlfD2nGVJIecH>5Tz7i}Tc?mMt zZP~qp#>O2vIJ+wJs4#29Z`}NVsrAxNUobWMB%%22@v$@GlXN*yO?lDCn6X=FV)upc zjYyIU_sAD0HAfLll5!Op5%o!{-ofNMj+AZl%@NB{G}TD2D6dPrm3?F7LIS@jYFRt8 zg7lD=*j(?@Kj<-=hVIVw198Ib4X0?c3sx;jz6%ZiIx(8Mh|0-MLSJPWS3#{vf!yR~ zOmn)X?TCno6n^_VAjorF_OS(Ww9iWAKAjTK`Q z(bT@rV_%fGc2~vz27vq{`Zo^0E~oo4HrfMzM- z8G+;HH)**Ow{TMYNad_0BO{}#VX4-f9!2AvdWRlew3fR1@#yJi8#Ns~kdUk;m;D8& z4>#n4AtGro!mx0bRo#&Lcf zgKK_kwwetJ9&1n!=n=aB8>M>fsQhgfcYCc*z$vDm)e-LLfiDgGSn29~+27}TVxcQE zbu?45aG-ugEq)JHB#KA!-X6=W6v3xcboN>6YY(=j$!!x97918c9VPdV%x%bMciEi# z`YQSO9e&kaQ}bM@uatF>tVAyKI0;QPa4aLk#7`lTA=``8520O?f;S`dQ$!U2p^nbFoaZ%O7Nn2IZV%wT1 zCI!y~$wFD#)$;&?FVR&iLAn`LZNQV1dtT9=7Fw-G|`;wEwhNJ#^_c^CuJ}a`sgSzSr^-8P%wV z36{%BOWv5(@S)<`3=Knl^>{=lmI3eaoI?@QeIv&OWW?7gH?3~)E%M2(U$9%{0%-^F-OX4{>MDYsL3KNgOv|S1y z=Lp_|-H&s;+lt%CacVNL4*YuYhlekkF8|oU92#U*>7p*drtL@^4@W~qRx+lRpNp&D z!a619AaG?rL0(Ry-+SsSelW-=KzP`u8BxkaA)OQYq4rn)=M6t!ht7#Wf)ap!Md9LP zeDEOFvM*@_Iz?+CPiUyPb1YYDSgtJ#Z6BX7mS|lXBFzoJ25p)2;4@b?GrJ3nG{hDl zAJ6!2Z!sQv{Vd3T|FpVHlrc2a&2Tths_OOdAwhava9$ommd`0Utz03*&BsDO{0Dxc z-8+1^_X55gL=1VkZ?;EFP5)gZcWgL9M@|zU_JTEKhthn!K<)WLL#lRZAfXq`(jmP= zY=1%{WG+bft&YBVZt|eD?Ia3wne9crxwoAPoC#_g8Ue8ITb7p>85+p1wqI>Nc>C#7 z7#s5kC}h0BFD2ZE#72V>4klUyVFkLv52wx91(uw&Z-V3b+qyG|5K1+I%TvcE&U5$y zjm3W-@?FKS8=e3M!sY89Tdc{16~YbUhF;kGdIL2UMq0+dz_m$A>S7@Jpw8+M4av!F z&RDskmz(+VQI&y;g6UN5i@{DtX!YMjRr=@8)Wcacu1EUZj~4X^7Y}c1J{JQatbGq) z@*c^T&FyYV&g`M$6Dq}z46feg=|Ek4baq6l2!`s#_JjgOCBRcA@ zS#v0i#sfgaces(}2qZswg~}8YKqB;SjmExx{fD}YS5icr&GW4BEi=G3h;5r4v=3b=QkLj@&vVDueUq!w1h0MR z`&kso_t+dQ5uH?WEeGw&`R3dp zspSR_O>6vJVYl6H@RZ-@fAB^l)xXY{fECS?JS*i_zUap&H~;k2r3iIT1j;?gmh z^QD0&QpObbbHdp3p+D1ISic%U8cY;I}U2@C>+tOqBt1^kQ9DonC`eE1a8U%W{P ze~>j0+uIJqDbpQIzUU}HqfislpT}w)jV~{Ls#Na%sc~K746QAI55!Pkf|7J<2~cd% zE5vFSq7j@=xH$cLVueZQ6d6G4oJVL{du0BK;PfoISoNRp&b?4s*H;BvbiYN^Bk5k3 z=k8!?;qk`bH1d;R^(y{OZOo{-SFg1~t%h<7=SJ%*L1kT2c5iIzZLG-LXUYdWHJZ=u zSVDBDOupc-=EZ@=$W~{Bb?a*(R>px@r*3KCW?zcIO~re(Ww=maz@*RzPHt`_T;1!{ zcOz8`38nUUNy#Q6S>^E{mCpR){0L&k0v@_k5c)`a7B}wZB-VqDl_| z(=U7$=1`|_HQ)65aYTq10IroZdCDqYG=y@T(GbL@$pWt&0h7T>Yz5{QgkobY7Y_cR zzlCI*Z`vNoyim9UMidZu*gS54IZtP`-PB=C zmaX~8);g}l0=I}lG885yYyq$vQ4Sb@$&&#pK* z_A9O21^lxCn!TfT0#5UvA|x>04qKi%de|?v*H5Fp@kM ztd4NtXUc1fdAxd2seSOU^h2OAbAE9hp7B$JiD*Rxp-~( z$qW7B4Wnv=HHZRV%Y%nVB>ovQ_9fFhs4(X>=pmZH>@_B{ars3h? zu)A&TnofZe?^9o|9PpEsib+x^?x-7Sw7;^x4r`9dxFVR*qJE4VqjQ%yUqx3UFRzw_ zufQPSbbNdq$pHh3OlWvGf}?o(V;BV-$pGToIheEV&tf9~*NxTG==v7436~=i$^Xiu z5i~Tn-t@??-I3L_Re0Cf129ygCpCASGatsb?f++8$R^!;AP0KD^4Bnhoe>Qu*wX zR2ie4Ucad^F=q~~iYI?jdyPng$QQ(d!fnc{zik;v|ILp|C7cVCpK)ue;w^T@xQR!> z!TJd{he-Nttb$(Y zoWUlM&`!}87_Q|{`(8&R1jE*E#R|J3Nh4lQ!o-9Y_!-C?7lAMU(G|jq5v+P#owH`z z_pl@NT*4_?7rZN_kaKQ`=8^>bFd}k?P5tZ=!N|-LWsLNCiuOaR7yR)cxaR?z2=rBm zG86PR7M7MyuxS6`z|!@&R3Wmt)eY}#qLYxMI*@M!q{tN>M`p`hK0>lFZBG+(xG-k0 z7##CHIpFI23rdvf#Occ;tW+jd93i0)`k>WTuatdTyTJHR#nQj3vO=jqe3z*2hG!}2 zf(>Uv&E>#SGCh32vY=H0tfMQ#?83+40d=${`>+tvo;K^+I+ z`E;^Qqn_Da0a}>dM}aU03OcA$5M^3)92cJ!8b{M;(T!XYQ9;tQmK~ zM6Cw*)4L;{H;|xjxIr)9X62*9{?hx;Rz5iJ6g=9CM?f_K_9l5brL{zD4ne_5<9xK{ zwD{|*`n6`?9A#NbO2*YtjOt#Xye4njd-qF^FGk_$Q{{%K75~6M|G7(>%@<+*G0yUm zQp=-tid}3R>*1C+FMpjd@bcb%ujXe6x}wmeeactV?SmCBHr#i{e>kZ~cOy`9oo*{( zv9^;Vc74t7;1uA2*A@w`$QV}rv->x|(#LCfae^G?k&x5U)Z`hGa)Ao2!jy;Z4!M7; zs;X8)Xnak8lL|DeEZ90~7#Jw2sSyyO#iqx{KZe2@s@^WZn?pNhYGx)03x_99p1jLqCjni;HIu-EEwyV59Ky z^T{OZO9>@brGusRSrnfNHMTsYFFsh&l7ykt19KU}zbeKi*1CeQ#WBAtuw>-LD0?@j zP@64f0LsbDZ6%QWfRIRDx)b-|%gDK7XFxoE`kHJTh;sBH$my{F? zG9_y5B=EObN$zOtDaKLA7s9vS-O&*UXJl1R)98P6Gw{o$%X=n|lXLy)WhAqI*^+~3PyuCdKut-O+3Q%I#d|=6ldi^?t zI=6In1w+h|nT16M6bZ~69G&2gcwpW&Txp(h_8q42YK5AJ_fRwQTfxstt#-(6hOF86 zn^eLtVBdI@9o4}3Z9tRJThEyOLFrmW4xjfSnwEkP=pR-9-;Rck&QI$JdOgrr(}P6m zHVMgSgQp9Sb0Pu)0^mVbupL%Lx+i$3U}P;5b*B>qfrz~iP6O!)?^0~vP@<{AfclF2 z-wJMbEafCgE_0}ryE9<)B%vWxSWvXp)YQPV4i`dM0O}QZwymUNdO{l?8dG!c*$Ymb z$3gxu&4^7*1O+n9e!Q0c z*Rv~kP9dxv)&x$jTKUCH39ZQsk~e&4rDJ{#jjxplNTPLQ^gic)S@_{YAk0;EVjiXR zwmf1TKZXVOD^|j=gwpRdwptS4UpoKu2m82Bf^K}PR4K^+%B@M2lTFKCN86slCelQ^a9^V%nzl;#u7l~_e_%`A2upf=Ue$%1w}<>$l%Fk!@p+jONrh^bV^#9 z3#@R_dj+Dn`KwAIGjfBue=Mm%$2wxwZPexY3KT37;EMqL&A0M`4iMzQ1TzsZ#*k`) z1P*{O4_ZufTU!OFVm&uA+{pwS=8W}l{yoIR#$HL(G0H9|z@#w0_vfpZi3RPdgWks^ zRc@YypFaz-qX?___UxbXw7dn~4>V6CKrg#7PB6c~udGW#Ct?GwIxR}H5}9(c*IF6& zG%?9wcK%(}s?Q}Q4raGKHv6S-zNH9C&E7v)M|S9US(89hw_qx_~(ZqBs+~ z=lvBV4uCoXuxK6Be^4?)0_!^Xk3K)2`82}c6dH+pg!?l`_9()`>Gv#(FZ=F@^k!9! z8-IG5NOWs6)v|;P2`GL*u#!`xjYuS+Nu707UPDJtw9a$-8c~l9GOiJ$heYOLO_Wj~ zj5_#TV-8ZG*%w0aDU0n+hN)$8{P0`41(;lBF4FiUFt&nt8J4aAZ{DC>op+1Zfj2MU zCo?ntgifcHmXe5D@ROUTFI`{0FZuYcIE=*tlr&aWh>yCWmh_Ysfj1!s>dsR8&8zI$ z-#S>stqaj(<&DtR=3_;wm|b?-&8~y3c6RmDJIt8(QTayntUb8dJ;9qQD)Pipt3DzYO_2Q)~+&UMY=J}$912a&Vhpg4+5BPcmUsAb6)snm7R`pH%07h{TV{fFyjya{LY#wJ6#E89qCUe9Yq=&oI@{OENBn&GvAB zQVP@Er!^Yyj-u!mzxu7Rva;d<5JQS-!QJ_%(b@&<#O+j;PR}+Jc;GPguHS5WmTwdu~(w%EywB z%<65g1d3wj(Pg^Oc#|%pzAhfcN=LI-QyEDT$%XH^d#Qkhx_TV#RdNmCn`cgzKN`09 z(NB)M=~YjKffU}yjPu^uzQKWd2khGUTYzR5Mlj~^4}dr7A%qEaj53)QjHZkn^`ehU)d z=1u+B2=S8C;@WK0-u;1_jubpjyT25slW~(>ROL0n8LIMio+-=wE+&mJj_!osXZ`Eq zcBVg%JwF`Eilw6DQg!ehSJR%Ea-JP5P9?`|ABkf_mk#$7(%#QB`9NlLQT0x@+lz#MU z>+7-8U;lLcuNELZy&puHNEX6y_G3UK@lSU*M}XI->n)8694%scXJo zTxb{R@3)e|Ig=r-y3??+I?xcI19|9^z8~qnRBaPHUyAhnp6cGgAIhNIeY#M~1S;^KU12W2oSqGu z+|t4Qpze_O!9|Qy;_H4^>VGC?DZj@${%hLaAveZUEurg57d(W3VAC)Qb+jm@MssYvbp+pVNakW zl#y7m?~DaR5A1$pW?3KlW^*kP7nf{hIXs|{W#sp7G^YF`uw=UY`{N2#?nfdiz$Yt# z3IB88+OqYK>z}c%=};iSe^g3sgU0@H^fLRBub-KtGaIW9^|ewpA#uxe%j>sa1b&4P zZ{9O^^%Ix5a`FcZf01pX$Bb^3gQ{`n=DNmH{fPWThR6DKrg^F_xJ2VoFfP}e0hO5~ zPoEwh-3gW6Nx)ybp7}qApKC1OFWE4vYlB_GbmJ=lWStS$NEn8es1TGEB;;6Q7myZI z&;N@H;1xkiGM4rn+^LZj{mIn~qM+n5}|#4?fRgHfk(z;)*U&K?152ji*ZKb} zpR>FDZvH|mr}hiuYQFds9phSZM#z+iskM}8p-aKhAkSe$rtV}}p`6jg78?_H7nK4` z8G&~N>nYida~hP?l7og`28fRp%9Src2w6V7A^@OY<&!ZF+{fU8)2Ef*vl!CAOAIT`YM$zWTJPb7{p0lk> zSGH1RgaQ<1`#iIc9^iNEBliHnTY^4~sA886WS6Ge=sVw_R9*#B%00;ZgxjLDH%$LV z+xHXS*2P0dEiT7rs6z_Vki`xgy>`IV0B`=j+paD_|LAwUX$;*y>8q@sHRxmeQ-lIu zxgTr=8a3hqqy}Nog5CpZu2)u9k&Fh|+P@J z9gd$6r+4&`LBeCX%$xJl;Uj+diI?Lt=rv&?_W*!aZoAWOpbn9dk-_T~FE{+!1txgY z$$N&5`UM(2McGHSA3kY&Ox4(~%~Hsjq+}dA>^rjUk~0Q{`!sK{*KAp2D<+{D3{2FB zgXJ5HEwB@as!k-fEX+Gxcahi^X6ev%)xqgik{;I~?6BUiL`?b$F4;ABV{w7j-Olc{xin5Ov zp_~k_`VkU_1;T%q2N?CujRPf5s}O8P+P>(ADs!HNTXj-V>hfnBH`fxhV|3J_>$B;u z&lwz6R-2v-JX~8_GoejX&(-Aa9YcEB(Vo`KqFFr7=`G&3f9KFK+BdH-Z8!u|{W>xt^=A69=b!!}~TgH03*)uR;U;VG9j`n$p2= z&Bz`h3~1e$Fy<>hzuHRm_W8*PQk6kvYIxjSx7$oP=2GShMawUo;-J+n`AXHB?6b}2 z2kvd597Z`}ZgK&Q(a#Kjb4sz1{e_o0HV6poGZWeb9aY|?r4b|>e}k1w_(c3?xKuV_ zKyi&sj^T5~Cq$`I!mjr80X&1;JUrEz19t%A_Kc|=da=T)lEy}kG2zdhLo;F1{*rFN zK}1lO#wwwjbS`j{!v{-sIl?T8nOZ66IS$Arw&2v$iab zT_>vdAeqqRfgSya&qa6K6>$K$b`eU%^yIxJs~XuiM8H3`YXBv3>dNW>l!SPaR~v>6 zy-iF6)8rKK8b*Vl?ejcnJOfw?bSwO-_2BOXw5O!Fjy2WaMADJoS?pViIE2^{)Av7! z^E|BH1gBJ?t>3|cV+a)QW#%gCG|4MBTIZpI1jTtsVyu53=tJApF>joP$R4)-W*cWt z)Frz!I=PTET4dWcHYVuxiy3qR$XyOfglEO0;DsIn^=tKV(Epu_S2r)R?s`BlgSM;3 z!Gb7cc`&oFXv_k z-L9v2`JJ+L>}oS{3bikd>~UaBE;DW}Gc5h^L5dkS(z4=x9`myAcj<%_E?>rRKSPci zGq<0zqh|Kn-e~Uk}mf9PbzZX%Fkjq*~uvV5Usmt(fhi`W14(caWhj8;h z4-fE3DIx%U0N5jhi<*-1g_N==;qZgpMZ7|w!ddre1$!LSFO?u@gT4 ze1&s0>0I60u7rNwzMv^)0Mx_?D{}0k3hCN@PSX8P3yS{bL8|DEk@wi{M?gE{e6%8+ zF<+#~nv~bl9MZ&=+BfkV)=eTG6A3a{(vVbQf_;E}LlVx507uQo3QH|_w;$*4E z>a@bK-Uo{$m^NHM82~9lQY8YzHzPl|UR`kzM}KTreJIh^6gsVr+21wY5eR1e>Jdgf zYLOJU={`Y8NZ@eVAobbKFp})Am=(SnDkHZk-S7;d1!iB&DmgL(D=A@zC2FoY>HAjD zlD2>d`^_gA7P)hQj36KBYIR+4N~J=aFJp6#XE@83L=q{@tFwnDd z`ohv~Zf*{Q^2nTG*1}!v#T3XPVrWr!P^;>%mc*o`rRN%7=_q-h&+wM2Vjxx^qXG?< z;)97U)NJroU9rKW{t!qV&hWM)sv3a*!Moq^cmFFO#G7A!hY$AUuq+rpS|+Dcu9yE={o9AqgjX*MD`_{z zE+G9liLeHPP7qNHK3^eAGHUDr4UT&51sq0%bUQ~;92!}c}`%G~@aBC0)m zmVyHM`*dM|&+09*tNSx)*Fk)nd-KBbNrp%m_KWKK)-Q`mrpZ_^`}#M$4RQ|cWtl7a z=uBzlW>w129*nm~8Nvu-raNt@487|2!eb+Gr=%YZsI#*(hu!DkS=pNX{@vN?SXcPU zIYya6z*cMR-C?PJFZLQYIfyWqPuxnYSLF)T5iK=r*MrsbR+d@={NxXzd`O1ThnB(H z;rqcJbq_k)wXCUNG8@+?5X!|o?z>@oStUS>2LhX;3~fX4*s+y`EZiS+eY!i@PDFs%pG9=rN4J_@|Fr+Sbgn<^yI z+uH>dFO)%0PQ72{Fr;~BTS{84VSZm-oTu(-%9!b_;V~5U(FHxIABcbESdiXk$}wn*BxW^M?*&T5j$*1W#)H4-r=X+R{KY3oz;o zkUS!NV}8|l_+#Xr{ni~?5$TZGDFS6@mJ<8xX{$j+Pae0}n9ve*BqY*0@b->F1m)oX zB({+!(1lLd8oul)zOX&tuBYYb7RKhY(NVk~iyXz8tcj=6OHgvGNX!oD#eAi0`(Co1 zBO2wI9qn>^;UhXBrUIe%HT6K}s;az0^crZtPbDD z?Cv}TEKwTR93B9C$7Iv6_DT>X!2}rm*GwEMGH7lI+iT zm<-sOsnW5M1;x;>l_`$|GgtsCn<>dqLMQLIf%Pg#kC?6L5B9^aGX7)Zx)6d6MJ0@s zq^AvkeIkiRF=P*-DJ`A#%JKbXh=DUwP9wew+;OBoL(Co1XE5#WaF-=jG<|HMTOR+8 zLV|`u7oYPvZITxj;e~D4kF3XqW|GT$UMPaBONFZEF}j@l%{o*!SS~(bF8HzgZ#GOw zIJ*B_w)jY!@I6Js0&C>Kh=sLfgnW|F{_vLC#F^1n^Y8op}dXfAlrF> z_(a!x6NPthaIQP`e>9;Fx=B*tut@|fP;c*s^SMi|riZ2LE54;_5>e_(H|MxIK$iwD zTC=x4JbjLmVBmwo<2Et#3H&w0NKO|rH3s{MaZyeN60}yB0L*?&e2Yo(FMp1GH*b3A z>Bjy1N@iT1o_@OGKo*yQKsq zq@+WnB$e=+>zwy|e;jW281B6u)^p!;UU{(f>0xf4VA4=yM!b}UQD9&cnT#4ykQNI!6>Clk;?v)bb z%7~{!nteMcEdvbG-MINegTlgW9;GPUz3}rrbQyC*V=hqBGJID0*UJv_N1@Lck;4R% z7!i-3ByM6}J!8F*YpRvhL9~(r>cq+Cdy$}D#{0DD;#K{8y$LWmu=kk)!ZY`UJqfFgZXr&1ZYOL&ftkqC z(^kb%8r^uYp+Ml}5;+`C9YA}=%QNE~Ij^|_ED@JsYFT)uWV?vD>-< zIwvEWDHKj7^tfu**`q_uLFwLs4@7Mg-|i?%N}^10%<5*&3DbKC-iudAU2GKp*WgU* zM{EY;{n78=c_0dfY=HU|UFr{0a_dbAAeZ{;DD^js)SOOjuf;CFD6 znyXPn{&S@d#9$yM6OJ>c6=%LD5qWd#=C1i12^UEiD9gL^6oo&1D%#j3<*c>+{a5M| z4Cl{3Yk;Jm;K1`+sgY}a%`*6N$XzZ(7*w(lU2EHW@7bDiz9#eJ4Hhk=W}*`u;dtr zRG?#{UND=uT#`bEma?W6vqAxpVy0sEGG%S?#!Vs;Z$l?NYlAL5br44k(&s5X)eo3x zcd@y@irX-(qV&ypqKV!nzp`j?&XAZ zH`iHsLM?JJw$k}46*@`t$XPr(MF_8zS5etQgs1;X6;MhQOIpaFuB6LFM=_t#^iPct zj#qpUQSGeEROJs*E9{#T#)-i+;?c1HISK%Os4#3BbNVi?=Fu_PIV~_u|};_q<95K5JD^FgHESn^ zUKLcRV;1P~tR}P?rA)`)b z@k~nGaxOugI$Nxb7H5g>__bjD0aM~&&vt|!<$Y^{TX@vV5PoG5G)#QfPi{58TQF@c z$HT$W_~||IQJ&<$)ZAwySMKcfIO=7Cx9t+w{zX5GM zm8l0%9xl$#9cnyQy&V$304<5~V!a^M)~Z_mWzlU#!!_(v=y#`$O7wlrTQwfm!o$%& zL+0<2`RbDBf+nB*Ar;=QSnYFw4rAVWr|zPQLJ0Z(J+&OzGT$1ldf9euU}f~cB{^S( zNXL1f{}$^T6W?Ybj1GO_xQ4Q(#^xj91VmE`psD0hrDA$|hlR?xvLwhYi=_g_p-ar1 zoI}r@OUhui)rG-9E%J2;aUXwE0q=ZQzW2Wg!MfMtriz)=+Msy@J&ZC0ZHYQBBdzf9 zU7d-ePV-=YvB)_Wi%PAT;xGS_Psl)9!o zi6#t*6gYHT43~KLEv+n*yB@T<;;3b^z zZV`Zar6HBev!t58m1nsQ-wk5@wD(8~0fa+Ci8+e#f^EWA<_&a-kt4%}mFjJ@EQ=t4l~u4*klDYi3QPqBUKVi`Hd~;`u3( zW)5vhM^X@LU^Lj(#0=t+*i|NBSBQ??vb=w1$fM{q-XM=?Xo_+9`^DdGalRBRZvgcO zN()1fo}E*XC;#M1HiTCK$nG9L%2Ff`CMs_>xBDR$$a#iw=Hy|Ywl*TK8X;sifq-rd zV7#6yE9h?HqfbEmJXb`)yjrkK}1a$0wzvG$iNIQhn~GjRW5^zZl3o$A9mQOnyKVqz zPs{mi2)B?Bi4YJO$GX(6K6|n?`t7e{4BN|ebU=NtSCqvPmHuY`Y&~CM5)epCnXljI z8cOuet!*b)+glwj4DfaK=`;T|OnSBF6eQ5FL#Ym|Iufe>ec@NlwNs1TF_ooP$Q6Q4 zzS}iQjGbSGabmQF{-m%#17IHj20T&5H#Bb*3fzCqCioY;^`p=|{aEkiiGsFFy*dBt zeT%=C({)nlow6zc#Cyzb3oJ41vO>H*zQd@fEqGYwG-t*zMZ5=2)+*dz!c zg7-;OrZ^#NxvGj^tU<&q|K6IrDN*Q`G!*N6y}!Q;m1)RV*PgjpkYwJ?$ zYEe`{clR%s)xNte5aMJ8pC~kiWnySD1On7q>TG(u#GLQ+#NRlW$t+vgbssfIWv$;? z*5$;=X=zIMp>^%9S!?nLNw3Zx^KpE%z;Bj}4J}L8IWf^3wIa&altob50PZqu{Udq2 z$zVZPtd`YspGyn(=TO7+4bE?y*uv5XLPSz2BJ>`{K1A_X@b|*eYQcvS%NZDiYkVtT zUA}xSKC-hMTQyolLVo1-h0|Kjia1d;`veEBzju_l4``*;bJZXMuV~s@XCc3s5bkNM z+!yB!Ta}t@vt+c=z#n=x?Q%Ak9OVTe>DD5CG^^|1?hG2ASXJF=lV8u!_9+UW0`C%n z2?r540!)Go2UcyT!vLLzaS83uQ(WzV(M|{AJzBZT;alOR@Q@-e?vApsP?gTWU32-K zP()uB_6G+IZ*ErBaL52cgq|an6+|fQyf;vN(_rjY&T?ts=i~E&C5aO2m(bl9nQjol zkwfn%h-C`_18uojjb`-xi68sw{@~q2C4Ttj=IC$G#`3ja!IZ5iz^jN#h*IIjFJGcm z^JSm_0TTdJr~;pO?) ze0Yu1e1{Gu3b66%Bziz#2~IQe9Y*TV#k8rhwTH=&;Hio%KoBaCChVkatMnPkY>(3A zm}ZpV-`S^)ub=il*mK-;Jl%2@e{VF&{q}qC+C9Vbtb#XHdP(^dGe{!SLn8(a4CPzh z0xRUDh9%vgB7`UL6*yhQ*`d+?0c*gHK`<<1vh{VfuPoLFEyTZq`7XG)*s;BeLpspe zY(kU`I*k87mNiF4(($!an2UovGm1#^r|0|6%wUNPTh)U@$r6koP#r`m5kVNctq_AW z&V!Y((jp+Rk@k7I>E-HaxfX_tC?^8A&eY5UeOf`|P_wiF7c=j8 z`57H@@snR`ldg~eZnML)GPQ=QkKqpR)46GRhacIE+Fw7N+p9w+Hl?7cW91+D&iaSatx|VPYz>j`#G|F<|G<=>3L_8yl|hE?T=|`7UZXWAn0W!(1`#nap@tT} z^B$-5hUpjsRni>GWOsMW2C8rM#VXkB7T8=*{^3D2 zcQi=Pk3o5okts3GM)txqUCZBB@SQ_kUIV`w)*d6x_l4jPb&dr3q`{vaJrDiP-oR0r z1);JFrO?;Hxs`%cB*jS9~5a zp9LaKxhSLzTA}HdnS9QG^yoZO?YHW>LFdTuz8XLc2na75dpB8{BKDIEn#o(+~;IEk24H<=|+{5{o??sGuzB-3vcXX1g z=BOBpIM0nIeiGC}p{9BNt&a2u9^IStB+}gji5H+rrxy2p2dbANu%1_JcL}yN(#Y_t zcxg~_3r|cy4t&Sl@S9fNSkw1T*d?TvEv~SC_}Q{&O9 zXD*Vm$IAZH!`aj*=<5S(!{_rq2vD`+8@{J=F2ESJ}0N zyWzX~-x~dEB3g_HzIRUZAF<}Hm|WLR83>D)N9E+?U^u;l?4}X;p2w!9mN~rZ5|wwl zb-_>2G#_p1ayd~^S7`~9Iiwe3;L~z#KAL>p+@i-6%iFc*3&@%aPL>nnw8>}I0mM(E z#`3**h1D3X>L;c)oTcbjai*`2FEZs^{1r6rjY~eB?=Q#;7~P5xK`W9HF>@jfuG9Kh z9-Y@m*wUfWf;SlMLs%h(OeT%puxrDRQIcMZULT)-C*a$vbnd* zhE$dKs%60dk$?#3D-_Dejob(c5XVl4M*7LAD8Nz$k^UF|GS|T~~r1y^iK?&9z7~{c^uLpF}l?eCKWHI1FJWE*$+t9iSo%) zd@;(TdjCKdsd^?$J>Ap*o*zt3m`;j4b(k^NB|wZap984yY8eyJ~t*$re?D ze(ToSuV2IQ43apbO>-Q)ciPp@+Si70-3e*P2}K)aDp5R6Pq~rb7=J}J3y|15*eDVz zfa?)awc}W5#c%qXSCJuddNycWKkUb?|!;|nG@DYhINSiu%K0mCLUC@HsUcP{4UT|oH@`T~a&A7Hn@ zQ0?jujWC~T|2Hvw|; zH&3xIKhA5@tt9BHK1nWhzL0lS$gv9;ihYtv5NHVPX}QIUU)B>WYWeMWv@0r zUE^NC$|aC~qPAvsIuoD%PD7KAA&2>nQQ82UWz^i$hkgY#LCa<0BS(gmn%v#!^eh|Dnv7h#;V#qB4NIy;kXZJu2E9tmjE zWVvxW3r)v=7u;0%n#!`=I-rXWY-oYfgDROQUT^ORg?7-tw>P%{4o>lTcUlu{y_7K+ z1yzAlKZ269N_09wM8oc*!xhE*>?pW%bXBE%P1m^)iI{?Y%Pr<`ut(%<{ zY6L;FfKV4N@5vt3S3i)xRnvRjeHfS!{7#R%1dBv8*Mby9PY8YJ zx80m2B&gxi{sYt}V$~RlmdunqAXU%&c&Wr^_W0z){9vgS4q2=MwLvHk&~5V<^||Ag z8&XPMmu*<&HuMF(!6@anZW5%dgHMN}!&Y(k<6`-BB^&rV;*|b z4iW7y?0e9boo13*s<}KH{r<%l9OP&TXFv}^-%J37yHeOj%l}PWmQ$)!~CZt zoYlo{&qQ`|)aMTT@psD6udf!?57J_w z90F1uBJ8|nqmF#t``tkj0Z1iLqruX)*C+XZltp&96lEZQ-8%cLl5*2LFx3=k?_%4L z@|2}}eBu?NcK1aG5)3E(@Ca~^eSCb7$z3(6)XhD!R{lZQYXAOG{+lSaqWhF>jl_NU z_>2|mY~Cs<$2%`fVv|xcN=i!pjbHbGz5o(U7`F0Fh6&5qhk72RM*P?HY)S`j}E@jR|OQja-GgK5Hh-~06&_+`*L5%$%i-aK{uI75_kP5Im;p#9q&l-oQ-{1R4D_5>j>~q;NK$Zo5xXy3S zwX?GFLLNd<1#MQ$KRoHJsN*wu?l7)V#MEq0L*k2aMovS+dq|7r;^ua7cV7pO=v@(! z_pE==OBw^>Oxh%g~NQOKqZWo6pUxtQKg`KiGxetE*Qu6f` zE9zywxR30UP4S|ZdCc8~mOt{f*QhbWeeTSeS95D-PKpXH?9Gg37lKt7Rp&6E6+a2s zS=ot|Vr1Z8jVoXf7NyAU`OwX}y|yt}*?@*f*9G-0!th5K6SnDD_lx=gN~+Y;;6&6| zvc4Px6n9q-hTNQp!qDC@>)5KFwt(yQeHngpAcJR9!PGM{7bPh9R{*{VfJmes&byQh zulH<{R;;ONv@+V!i`m||?y(>No$|CuBX7zU_xW6Ts<>U)iPh_Ne7LK23JOY^kAq>$ zHa{)(!`N~&FrWrDmKA7S@B#7%UR}t{FMjw(4QB=uYWRPF!+$sY$V-ptuMcg-dmQ9^ zb96N|L-k4>NzhR3XDePpGA>3TD7SORt$_gzV%me0sXNC0gr_Ql1e#n1Zyh)DW~cs8 zHzbE^upq)uKTZ9_sBf>Tsu~Z+2nMIlDnzzu2VF+3?*1_)Z&L<|X^CEK6cj|U;XE=3Gm#7M&EBJVrb_;tuQb5dwe@I1&K@Ax~e9pP~}Jj-~jRlvqYYRJgQ z{`>Rm%Tt#k?{+=TWv?6{TY#Lg{M92fnvGTKT!I3UGe$@wDyolzR~}`5ZqP)Rs&e5S zmPitJMzL;Eymlz4iymE{5JTq|U~3_6Ct#|#*r~Fx7QWlLX`V1soKki>Bf6LqZltnE z;t1Z5IJ4KNHKn*X9!2;?Nhm)*X>cegDuVI{t}W>Xe+<#i<{OmXKS_;Q4Eh)Z`;&XQ zW3W4P1QFn_^xhky>Z543OrRf~bQS!`JqU;C zJNPk0yGiqqqA!)LM;@D26|z}=l;-+Z?_Sf(u_AX=SrYl`6E{_(NStMO^r~0os>v1j zr)>|Z4O_hV;CKq>U3+0MpEiKm`t*0N4_o5x<Mj}lku2NizhoHxr*Gu z&&$YqCum7v=V1_Il!zt#(@R?`CVZ0J7>`|kzubjjCYcQR!;@ey0-9Tt+&4Ejpq(Zp zB@L~cu7tHg+}QsJ{rd8}d`1Sb7DK4Cka^;?;S5;jW`US**W5~x$5lK~zHYzU%2~m; z^})#H4`Y)YLn6_?t(otHw7q%JGYGRYWFwy({Gba4IGQO*;X4Ik_oaCAiml-zjsmDr z?KVWl)t~+TyQJYYl(bF^4TbE}I=<5`Zn!w1P>GJJj32u2xH@jwrT+NcVgvrXf?xeA zZl4vHI}w*vwDz07pnE@HefW?%rs<=bH2&`mS5fpY3coquf%gtVfkyP5T6@9xu$zf* zVq&79smWJTP|lz-U9Id=*Ytbh8SitB1f&rM2cL|TI0KW>=|j1?Fxlx#C4JUgO@2*N ze#Yg<+-YkjX3xNv2rWo5G?P%WErf_?sN{*ROP8JO9<#e6kv`tWttjbO#eagwbRFPa zagVk9seGtHD0J;Ta^h9)VXb_?ksP>Wgv+B+FkbP9g)A6Kzu1O{t@rny$;e=kl9H}# zv!%NIL^)PA?in?B@=|RZ{xKp0v8|bIbZBor$9mbQzUFgUHeJ-3s+LwCggyNk zGQLrBl7P7{nyjml^3ENrn$dQH)co@zT-0clToX$3tT&37E;u*PDawJU0+@8^7;|bAB>E8 zv+n_mEU3u4Im=tRfU}lUQtBBVegj!(plOT4V4{WFO4RSHgn@~Io6&4$=xKxH0U6fg z_nOQ%cejI=C6Vb{xnBEey^7G@wr6#fwNoq&#g*?%ZJyHOLu;)A%I3CsqT$+C>Mb7X zya(#&AM6cp{Vb}f5F(7y1hXThDXFbu@zk`2`M*y|!OisaOX(7Vm#tTrQ^LPN+4N?m znx~9s-~&IufE}(`>BMd89S3%#TAupprO{Y$Hvp5twaNL3EY_Uh&_(;R&JUeMR5w%6 zbqzuSf)@jS9{}D8(ixO@L9+@SU*>ErxR*BFtszTC*c;l=xEHiMMh z*Fr+4D`iH>{NuFq>h$GNu*6W2?iQ7zW0O_b&G0~<0~R)8Zh44xp>2%ymNSix@wRbd zw0cC@#ROquYg=2gkWCdC7iR@w zI_q0oYY+$zKEc> zr{VRzh4cgeO(Og%S15RR$jQT})SQ&u2`g9kE}S*~0yU2^4eZ(!gYe=|Y-zvl-jrQ= zeR$61y;nPf2txVV_WV}hVnSb6?5hmLT#=jgK}RB%a&Fk&YqxzE?# zf)ZS;cS+O{K3yd_p2NQg22y}^y*v1-RB4zJ|Z&bkjw&p4dbX@1ox7R=?e4B3q!LYyKRKGtCH{nVk_nT=$EyEF@ zjM>LyPAZz_4pN^B~)a(v&|04jyQLfQ=oamKcsc--z=g174mh%kTP z&~yMYO@!4`Nj3i^8>Qea2m!2X^nNEPI2KrZ)xWi*Nr{_n(AZgjPCFf~s^h-G5pK5j zU3}jMi?g>*Oy@pLj0sDUY4P*;!jkpQkXs)`R#c?)J9z+qZ9FMaYNuC8lrjKlC=@mwy7ONU;9XatUonl!`ypoRdm24F=R&xTyqg ze05dTm$kJXA(Q`-C_(uRxd_xE&cQIoLGpVDM0udz!ZZK!j(v9a{(c8LC#PiY^Ka|@ zLJSZw2$>ug&BySyjl-9?$gw1Ek7MR?P*1eNW~6d|mWQNDHj$?El_)79=~Ho%3*-Ka zoWuxHInAh5$FPW7sm?sCDcJG9EP0|#J!*)bdxe(~yt^Setbdi#D)q8NTGiA#z)5z+ z_8He5>G{|0%*K>wVHzh17w%-1-zbShgw3uDC)^Bzx_Pl=5L=X>Yq#)rvDlvQ{!E zO7B3@3!JLB_^xAF;%i{H-2|)1sZb;2k|MIpKzYCd*v)H9;xtFM#G5@0U0oYzH$6SQ zoBf03pfrdawt?>=OuR}G{;!q?*WLt|kXHgbI=5rT9aHQw1R3g(eTg zapMde^kegyeOlo!1L9bD1Jj?sJ_tr?0ZNtym?FEXM9SApRp2A{^YiOI*MS6l{W^OS zuxmpW+nS?8Z;=hL^_GG9!~GcLy+3ZYVrzj9`XKae3_jX6l*8oj+RP}E1Y?0-e5ms} zo<2&Sd-q54xRPlrlRHR>ek=va73ht;<}*7yI_iWn6F84tjyIouv#m9mFPBg(==IV^ zcCM^4*L#6PceWoJji*;stCvMa20Eg{v$L`p35Z%-2YP=EM1Jc^ru@L&;}x9z8TcvY zSZ^B>MnaPj^lw#Atg-3q_mR*M0C6{#Cx;&fCaYu0E8*IQKu@5{pHO?B!-)BvRJmXt z!)8|)d|)j1{(Hg>^Ko8i96rd?avP=tJ}h-&AF5pn+0zItSU-R!Ihp$37FMqZq@Q1;VlK@B&+tB6IEm3eJ{xZ@yb}{Vv?hF^DtM!cJ1ngiqFV zZBUy7)7kyS3^vnFlLP+X;Gho7=Wp;4cyhJ`#E=jMF(k=B%J`=my(rG&hQzGF6?rq8 z-SvTjbrMUoY!;q&0!{&evNrxuB-vZtb?(kCtNp6ox1HUWd9@|~EQjDX1YV2L1)dN> z(8vqm{k@9}srt|_%*yYvGP0%|bkini=twDsTfTAF=|9Ks!cAb@-GBJPU^n@y(N6Ye zp*G({d}E4ZsofhF2F-l8_A}tM~>!h>HigK zqJ?;u+wEji{ebC*7+k2JFYdi`)2MG!V>swS#=Ma~#)9PERx?e8; zFA#)rmvkO@X$Tck>d9CN=HU(U_j&BX*aYmVSPl-Uqq~g;H_iKtAD0W3YNy|YtQxZ` zDk{QD(+^798~yA_RHNu0E_7F_pcRe<7jxttA~bJ9Qno0kspJ^yn+d)3zbx-M9|WRU zOD92k<^V{2oLyb>Aa59==J>4k4Sw@(U|s0w6G`!vr7oe=wBBJ}=q#@fmfsh|Qweze zL@E-=lwQJ&hZJu%U}v>F7Ew0@@rg4t^-DGOiv+46#nol8=C^emoG=viqNp_rD2@Es zK8{)A$qGo3bbqev!fawfKl`XU!=I;BEUnLDV?&MlbrA2bXw=HpBbI3UsUBA`kDomt zQ^(!ft+o==cH8|JK0h(1SK|`ewDadA^p~xyg3=Me3xflmvajSpEVU>%$@B|_9yNfv z9c8N}1t&SA&5q)EuKFveNA1DgE!3-eFx+Z8zZlWRLn|D_!h zy$%VmbQ^ziKIXR^rHQ8_E%^H|vUY+3NDZ=15?B_;{a7jbV zFKpkEQWMnesMy(LeC+}y?CT%ZcdSqW8UxE~4 zIWQ(5sxY~@-q2?4Q$v)*RQq==?0-BW48l}U z*u)QQ02YxA?t-Je`X8I zpBa|tu=;voNP)j=Y3a(uoVl|%S0OBxtR0(ad2lg)TICqzPteJmz<0m;UjI{;t!lem z5I{@(StkaSQU_!pAUoGobS(9SnHvtrYcS@vRufYKCe`9Ew1~geu_h9$?EA88zl_?K zTDDDX5QsQRZVm`Te%SVBlM119^le6BN~tm0diz$Cnkp_NR1_xgfe&homhDmS4-D)! zT-c4$-kx~Ono~Fzr}Ut}fAKmSKWJ|z8l}Z=Blo%lVMDFuBqAkj$OSW z;8N%b&u9tdx0ELmBMI_%7siGy|D5V)sQC76Uw1B~3C1u;EM18?l9=I9_daFG_uy{O z*N^sfw{X(nf=oSnsM$pXbb<~Ssy1e6PTw!8#>H&Xfg)mhyxXO&YW;ULi6ogPQ0f(} z;TI)NDhSrg)I#3i3B#_(pD(qGUt;7RjkWO5;09DVKx>7M1&2f6tUNqA)Ijl$cXi12 zK_sEYwWKM=SxSoGX{yK|#eDzuBWWUj_VVgvn$lmG=>db^{vlV>-{*(_l`*j0?vX6S z&LzSHtg5Rk4=6KqMuHeq@b|2;Kq$p5)?ZW1zqJqT_ zCzN7uWF&QoCs?62Em}pr!F2-*W>>(sXAcccCfc*tT^lhE|8v@2hwuDbBA$Kp`0pwK zj4UymyOtK1!k^mP|2^`Uzj^c%C~CwHRgOfhhPNTo(0T~tY_ zp>K>gPdHxk+HEvt4H6P!qh{nJCB1hFPJDkeDS#};ZEsMXKBD zN!Q?KZPo{T|FZ7OaUlfoOz;@C8M+P+b#pP&ob7fy9Rsh!HJNtit38h%2o$k7pXc0e zG>GLWcuI2cyM}<^WRVTo`MOl9t~|Zb`B&Bu1G|Jg3G$?EdaMYN%R&apYIX1DKIHPz z(D`bsZrvaRtci$4$A9MO`u>2m-f_fN{Q>pt#BJ3y}S$s*L86#AINk@JyE7<$4r-6d=NY*!dt)Lh&Ms{ zfQu-TO63cElSc5~wO}SGd_e$;tc28~HEFN?H)=&B&cYoSS?{9i_V(!O3>iXa`D+TR z{{T4&nR^>xP5#GH3%-F>=w`fv)kB}kGDIazK9$Le7GQ zjt(3pHi)A7fY=40-Z5|rGV?3I7sILeo|3%dR%H3%mk-WbZ;*1C0v6-pzl_h#R8N-W*~xU+|%<9|d6;Ve?6TKQ^4 zh}#4K-{$N_Ck=ro_kK&@@v!tXKGi_$Fc-+O^Wh@-qh5$t_;l_-a@qB8@fkXAQ(cts%_NYQi@(8 z&vK9eIQ#vKEox)N3AMs=_A$ttR#FDY%L+d5=LhJ^)Sg(xtGF47c)!_Yw}Jf{0lj*i zcgM_)4o#=w@r>3~R9iG;0?E zNw~V8e+939&bamV=DtETM#kJ_z8MU=K8*qMzRub~ToQZpA=Qy8jZ_qa;Cuw_NyPX= zPVKVw>M@D#r#!Np3D1kPi21fO_Y15*9`F(lvJk!d{m)WZ19+LD0mFbwV1dVZfV4)! ziZMB|nB>O$>^?~r>Nd!b4%b~;0#~Uo&9W-4`W%E}$cLXBJ2m+=xCt{QM*K1mYZ6n} z1{ppmdn3M#tO3*B0_rEI169*B8jb3_ZpcoMPSTSE^2<#B&$zlaJx_hht4|pZ?Mbmf zvt{ZA)Q1mu_pQtY(+F`_FHm5%ScA%W*Z{wucHO?R?VWk}Wpo4n zChxb#!KoTw!d5~)O-tv41Fs(E0f2z7tA!8#WkMlPj7xK_Vd`@4!nGw>@k2;g@O|g~XIp&bZa&cXa9yd^Qm{?e*uwpJWd&L1aM&_3KCR-NYs=*k0Gpp_K%c{3Nh7YRR zVxy;~=Auf?!kCafWyLM8I$zXuyk%A-moVs|0IHu4B5pvTGrN2P-Xp$$zbuv{ywET8 zLPy{e*oEUR7kD~AGx`+~g&A8FI?A_zN3Qp1f^Mde{+?#5Ls2{3*KmAakK%d>D^5ir z9J-$P#dg^LZ-WSEn$#=bYUve z_Y;g_w$lr3{a;?<%EsFVkjulZ7UG{KeEa1sZ@~X~;_> zqABliBJ9LLTXxe<{Q`I`AT;w!v|NPPQ(=bvK!gd`WHL9E@#cXI=&}$_EX`amQNF3k zPtMs!^^*dPhbI&xT*Hl7Z)58-x%&%ai)R|Yj!&hkPa1vLon8c`Nza4D=C56&$tss8 z^!YV!vgu@ggEpfA0ukH&{Qm!ON%&+Ae=8#$kI;Osu4J7_r%NW$^pk+Y53r}qDHgEffbkZ89lho zkUnfFdzi?l)OW|A9GqXco9tAd3l5Ztb-QVCACIf+3Lar{;QA9WRVCW>e|6Zb+8e@(> zB%(m1nQZHK1Zbnk+u8%W=J!^=`cLm@teIky)Ns?YqE@Y+=rUH52L>&An)*W7F_1N@ zt)r&`xya)yd_B6s>rOq+&Q~Qbr1i~MueqF7E|yXm%bvIuZ6j62V_DN`qR>foKQvBI zxz@FNe;xsI2auv&|J-^xp8cKKfnYqaIHiL;C;$8r@KsW4DL!$a#l9j3zxMc$*C z_M0T|0B&#X^}ceD5>A)&&k>EWl{X2#YPZV+AtU3(1?8_K!2gn8YWdR ze(%qKJcvstdPhQQyD>l*fQlIp1MKIo&Gxu)=FpzC(8e7${tuoD(p8cAEizB1hXNk& z%P(jExW0vO_Oz6HealJ*rM>49mV|qtT6CbM*>1Lbs(!10IQzNsUYKxs*CBp=`+9c(&CoKf5_Q zHHOT)Ro#yXwqbz~6j6fX*VroAM{EyLuCNMnt=}8@l9zhT2(etByh2%9tAtq6`;@qJ zr@Mo0w2mdz-@=Cm*-Ki9W#Bj-`+M3k*@wY>c#ku@7pj{CxI46u)lRLOwM^~TwLk- zWqY{5H&zK;tTOc@yx@Y=49`(z5^b#`5#DS#S9JYYab&TvClrUAt7=|Ae!$hqy|)t+ zYH+Rpc#(-C&Hw1}~LY0PNq{ZH*S%$ye2ltO;n(MLN|!(AxH zKmKG+(h)ZrDC@~n0K}095~y`4e z-5(vpX9C5&5VFyKEk@uIc?*!|lU8saA!5K`_FjgFUdXD4SrGaqsz59ciit7t^9-B! zvg%q#O6Q1oG-D;Olcr{x;FF=;l!l)gWm_ z*)DS1ZQI4i+(0q6)QoyW&~Yq{zj7~zj4`xzr6Y$t3s1ZhNm1LZ!iow~rIh&QuC zjf@kkm*(3W&xx(#!4P!cGmDCmQbD8Q9?|B-?X6Ft8c0*!6kSg^rOij{s>sm4-CW77 zclhdKeex~;gz+WL6XZ)^CJ4CMNsZ{Xw!k$;@A_k}DtAzX#}nsT3ODP76}#-N!N`xh z5f&FyKHD+8A*YdHDOjl#nwOI?jF^vmnBUMmNCuM@!psMGjZdKw4ian;j?I-Wbiy6J zxo7t6w1>hUahNsitjF`vfougestcfYSXfwxfNaCd7`7^m$gzhXGYpCqkU+3~aF-GP zcd>~)=LK^?pDy02H@>^A|Dt@}HORqnB|lMdzbj0krA?PN@k#&7$4>Mj?9Rhtf~{}& zRaUZYx!`6Ey>v>Ha;&Hib#AV&XXfOO9vF}l^Wev@_DxDoCV~tQNEn6OTqs&icU@Jo z)d24=q66J@T^6+oNCWtvfwKFC!5_}RH3ENjCoAa22Z(?e*xG!GGRb+epFi&bnGvn| z#&+0zux97f5AQ$7Xoxe@ z`+q6#QH3VLumM~3nSB#oY-^(^NNXYnhgiQBt^DDYc*ank_X@Hd5U~$P6*b1Zh{FcE z*=r>wg531?Z$v!Wh3A@#hOHo(t7s|pFLr2_X6B5B6`TkFV$-J(Xh9l~=Eq<3j5C9a z8x&Pzb+W2qSF1)wv@vA1s4MFZTfgMYm1zOIdP6Px7STuSFfTMQG4Xz(PEgXn)n|8@ zdH92x#P(vQb_j}%qn)IyD&{<$bmh%Hss<&lG5*fjYq9;I;<4B2&ACFhAKlzB(9jOo zBSl!+Kzg2rMLt%5XJAX zLeh`h>I#111xIQRf`7^`VLvR=D3a$Tr6HT5jA6(Z78bsfD%AxZs8k9PIX8X%EYcKE zfs&-}hpU%DmxsU_z{v=z4Vk+oUh%_%!Wcb|@f)Q%Ks;JoDBI|!9=HVT?Ro2IC^`B_ zCnn${xuBaiLYO8$gzK$tC!#$y%9JrRVZcO}W;0gpul>>4gw4wa4$4~ zNgT*cOUTsz73n)1c_D>SfA}#qR5U@fabb+agTd(FTh@ZBONpO%gJ7*()9%Oq-81x? z=+^Vt*v|{+|BM9^mmb_@xcm4v_v5Drtx~?SQBiEG$m98W5w|^637$x=JpaJ{%=e%* zik!;romM6O_D2!|i8yz?_nWqs{My2d37A?q6O zNK-(xptn2(LHNGYEW-W)l2rlw&8?rj$bWy#HIPEVJIH zPw_iz^t-5_h8$bW4hcbpou;kHqw1W1dAf09;D%S_cnrBsJodC#REJQ&<;)uz8zFCd(;%S{8i196Xo z@aQpAzJP-NLt$Ye94`P4o;(YJ`UylXDbROs6A~CEAI#4xJPd1Pf4zzQ@T`b)(aoxf^ZAbKnl?KPlw{qpQEm>{4sDTd%#X5a?KVw8TU3zcTB0kd^oGS zXKN$BtgLTtE)AF{A_98l5ik}b)bvY_+#*B8#U_WxUpnBgw@TzY*x||an^@-MwWedY z#R>}GkezK016_b9Xn^FE`@@U%0X zb(AP8>3TuQF!*N4sHDv=Zc`a=K|W~s|B?08K~=w7zcdnxlF}*y(%lG%ij=gpbayub zA`(isqyb2GH-e;emvnc7#9jNG`_4Oa@64IsoIemY?EQV7wLaNHlf^ISjw>fmB>S3y z*9wN83VX_(cqaf+)>2Q?=+MP6dIBEmia@w)F4;VG-z-c}b$ z$3rHs{HpR~obTOZ|0M2F+p+0RKiiArAD>=5*Ace+Tq&PoS|o4iO(D^-NWX;}-txOA zCOxaSwxs4u&=!TPtn7HDEj7%-5Vzp>dBLD-_>FqP@NM@`Wxa3O8=oj_{&d~~4Mz#X z)VTanV)^$P~#9?SRj4pfPS~J4-g9I9#|Ly1bm|5b`~`) zhyLGtU}(xLH}CxHl5cL6g<3g(xz8R|STH?&+F4Nii*#NqT6t=+E!Y^fU`^&c&}~N}&M(0rz&u z;82B=b+}QouhRSS2B^9>7mbq>n#c7zTHtXt1`8To*!WQ94zC?%A4JhSDEqtS0`nAa z95;rt!do9{|A|Dgu;sg_e)N{vN)|usNr%ccP569$APPyAo1}_(B-y)o^BVY0|GKZd zK~{taL@$xht)*`pamm7p@VH7{YSsMNT7Oo_e)dqO#GR>3?9hOhIh-ioULBdD!*{n# zH14k@V_OfI7L1t_nMvR4u64NT9V>qRl=RK>&R731*%(;3I^3k_OG0)FZ6<~F-tC(A zT5T5Y9yx=zVoH7F9+v4(qEI!Tm;9M;w-Y9?B)5dFZ3|z=?blA{&7+L!qhuaJ=3gts zr>hsIjmdoSWEYop8jjkLNHj)Ao+16fKrY7dvV34*q49d4obh(ujY7dQos6xlz>1oa zA@_QD84_K^?8tBSi~(Zj#>EcS@=x!nofzRgQCZyHehnA#8EjZp&_xIT_mLpo7dW}> zBl`CJXy36Qtqi36I?0r|UcdWAaSZWh<$cmsY|7eooz`8&$kl+DmSW*aH#LH53um4}pP*K2l;MX+##*>k4j|5A z2%<|);h9wtc!2!i}TAgznW#1WQz5H4*!UD`Lz;rOw0Gbs^ZT-)RHE8`5dyo<=uUd zogRTjK*tW^-OeS9yg#Xjl&Bv3IRj>A&TB|eUeWm=i6`BU$xxH~IjXGXP*k;i^V^8L zg&D)ZuL@$45_B(#j!AZV7+7dPXhV;Kv*KdaH519@A zz%t%obb0w=q?#Iu$y)b=sqt9t9kDY4jcfSBE`k7krO2+%XF@XmkI-6)JEm<~4N}L^ z1&EG>qerxIRJj&Ar0@@Lp!j4EPhxFpouMGZ>dpUX0op23!v^h2D;8?6>w~^rVWaQ% z=|@%gPJvNz^YS%V0L*f@$yBFnw05iE)PKa$=v!gK+Vj*sj68c?{Y!$K$p*iU^_YZD zAHSAnNxBxjOK5&D4I=v(QD;ycjmkAyo~e>=a+6Ll z_`TRI-(#ddYxt;ZHPeE$Gdg-k-0*qdQUY2mpfMM*0A9i`2{!Fy_;?|@=io1eJ5wFb za{7xQJ7%}{TZr^%z_e-Wj=zdITr8D=RAxDZ*oZ^^ImdqA78@^Lcs6D@s?x1~hzWsJ zlmp!FIWf}LZudLsNeb8J!3X1A4S`9|9=6?tfxHZ{}cBDH6Fy`~gQe zW$B@wW|q(B`WHJK={7$KiR5J}4bgCYoS(CKZ={D3eP*#r4+A6FRMlNxzGl( zjrXJ;t61)t4}O6480%;%&8BMiT`zkj)|Mm@Nij<2k+mU{9Ur%DQ|YK;4-$#rPtU=5 zCt_UZ+*-FU82r(14sWUq#_^wM)JbKOgjUizm6511+=Uhngb)aXlyC=KULN)lk`T%G zG>nehi5il%^o4f_#C0AlcPlc+s)#bjYzk;!?O%=;L(tU&M;u;?KKT&; ze3|OFe??rk^WGUw|BT|!Ge?%A>I4?jYMdmQ#xOGY78yH)N5R6$w9mngYvu#FsD9FwWKu z2}HOQur9^NJM#0UrtMBIg4G9Hmb?K!zVIygu#PN6hm zq@ALcDBEV3$a`E+c~fBi$+6tQ z-e7sIp-038%$oLfo+}Gnn;>sWf=L3ZPM*PN0Q~U7qkRGoPxsNOcRz`B{*6!VJ4}r_ z7dSFVVHlZWR^(Tvd>kF+cC>o{&uzw-?T8lI=1}*TqM904Lk634!24>-sm)J1JoZJa zQM?BFDu=7D9(}f${R}_P%V{2)I<-;Oq!@P+o#%KZMbo{5OwUIpuVGF-O~f1NoTVCK z#u1J&%vIJQ7~py*wI>sjg~h2%qjXeyUT#+xHaLcpXjQV?iEYH_>NJ1!#Lp$5q?0~SDZ%C>$cjjfq@uRiMn|_UcIh*#X5D9uvoqiXb==?fu4)?5EamH(3jK^AhoBlK7VGWQ89-bYSu1jatwPG+2;gVl?<*O91C@ zX79GH_1H(-f*HE%^u22IJ|u~MJd0vZ6hy|x2ow{9I|$$sysU_fUPP4vq-svI_i^qH zqXU%F!OD=KB;-FAo%+_Dr77)%{BetsePMx@%Q;5$3AM2#f$c}`ANa3eJxbW4@g~D}4S65fd z@82uBD-Pg8CI;FUYIEM3cs);?e4F=CbZD-D_$M@15RND4X1kuAY>tJ4EX2T6P5xfC zM+}hEps$sbl$-;xrgoLxSCg+w4+C;0CtK8AgQcD*{E8pok$WY?kSP(1apDwp%hx#= zg^u1`QX4tw@GR>UifyCqThwU_OY3h<@^?GDwUVq&GNR0Ps)?f7HPhZtw=!s_4R+~C z{G7L>B1TyZ8FrAPeZ%eKx;i~kiU z9i@Jz$N27p43(zyTpb6U2lwtb(mq#-M4GH|5PI9ws^M8E_8>b0TXXVOa-~vp^1r>G zA0S}KZgZ3+xGEvXd2dIW!0xRDf5rgBuB+*|zs%%4wTl61tBTHTuIKYo=&BF{5EI+f zckSFRLilt35Bqv$wMc{lqvCCOQ(k}VT%PS#B0LALv=<{wXBV3Or3^n}H$VL=x0%sw zvP5+pCsZii9=hOqT@w9@$G39B?iEXTG%^mgjN}tzsL}O;2g;W)2dMAFys?RA6m!no zbo|sJA?fyuzkwMi$0@sF%PlHW&`s!QZbl}E_6grN6crVPh5!E2Py$V~#8|CPVhwgB z_1HH~u0jUl>=8I%JD@2pVYn+CR8*p<6FWadO*(qLJ=#;{01xrHK3_#Bs_QN`av{wc z-AB!|A`ExXKSGqo&~3dRi-M(Rg2#m4n{2G9pE2}fY~}m&r3D_sj`mlM^qAhG^pexQ zr5Wh2DYvQ<RocQCLmYC4d?2FQ@FRb>8QKIUK5wAZA~_{Wq)QdbkXd@g#v zjG~~hM(eEfx@6Jz(0>2LTn2M5&nwURs-_y zyWCxV2$TZRjIL>Mb6uSaA_+PJOHC z`-Yk(L)zPDkF1uOC$bmM|0RCPyM4#-Fz9RD_#_l1{kz_$=Tqk5KVMM4;I&cN^`KuQ zAgy1$3n$fM*bCCM>m**jAp*sSKJ;oM5J{-rGBCCIDE;+8Wgdm8j0}bw-$F{SpOb@a zQ+VZbb-Qcqw@=9&>@Qxx_`koiE_3nCQ;@+ov9SI(l%n4jkq7tfA7~?DDEPki6&4}L z6gGxGi*w5)fYk^l&ta~~&ou6MZNMK98cxizalZZajg1W}jBV;#-L_#6M6w6Yngt{C z<`87>`(uM7joh17J26aox^bpiKCf4&x<>h&Hf z*z4&ZK19a1eCqavsf|`sfwo;CGa%V>X#ST8in(*&l}hE;J)+YAxHlbGlz#pGX}o1iCm#U$XyqKF)z^KqSVYho98-_xcQbjT;#%sKO_B%M2^X_8y-cP`q;OSQ%fKS@O|Gif(ZDN6TT?^YU34(Nu@&iS89T#2d-_I) zTCv@IonitBD+93H6387A3pu!4q`vw2@W~MQ$Zc0-!Eyga7Ad@_D$mmbWGl`MQ8mF^ z1O1t))0X+nvMT(V>U&jHA2v2DVl;#Po$VV!BvWW<25sXVN`)-{l4ws<;?u1z_@u4x zZnt$`=T}90!`Ar<_QUAy{~uQ!SoIPmo= zImBQ+4Ci7{R+~4|?@hJ;wO@2E{jGw|vsjnAwx(``&%azC;d|~2H+kL!dx;8asz+$4 zeuT&P_{5qYpy2HzT+ltNjU881F525;S>Tph%ScPx+1n#rUR726SKQu^G5!1O+`!O8 z+D?Mb6hBJgLE8cA;|%uSg`^-c1DLv0lrgL&1Y0&%T4ZM+Q6!XHF|%M{`1=dkg;ya? z?>iiT2x9}p>2jF$KY*SJAY4=zmnLY6HI&IhG1`$2Ioy5yGf zix+5dnSJ3G{Vz3+thYLMg6>0Z!8hcqtEr}%m4<-_Vm0Y?D6U$TTab!iW!n8`7#Dtu zD9N74u!J$UbJ60q95T0Kk?Cav&E?guk0~tvvZ=y}&YPq5z!jsARh77EQ`hhvi1{_0 zg|lfd2WmAxiExXGlIHoI#7FZp8*h~$8gAR>w0j(_D=QpkdwS5qrB`$Vx50+#{j*v@ zg49^UyOof9at0p)Nonb*-DAx{DDLGl>bMIA)xDx}eUGF#cqR1tKNDu|4M2Q)D2xaW zkhnfsk^h(FrcC7D78gWZYQWi8NcFVsuUzV{iNW_h3;6Ypq;tDjY@Da90$1{R;G_kU ztPRaH&;OlKeZGG79s7AhpP`hEko_SN#SybVyc;SiD*XWTz$`5fFhp=z7@eTt7sj{y zn0$`xiV^Xt?a;&5VVlIe-+XzFU{v8ay)ljqgrpOgIdu+JD(h0B z)pPnuz9nl6tx$-xmz-~m$kx&U{MKLTIG_28aWD~;mE_;}_QWdP-;xfqB2ay>^P4fW z%C_=HkRh>=g-FNs#~SP%PD_v$0?)7;jZtZ}gwU zG#0h&boet?6NqOLq&y+Zu*Z?9Za}-jbMN$U#_QZu^G`myn?JvvTb`$^&oPscqU6*Z1mU#2}*|a7vBepJjZNwk`Eqb2q~ej zU8qZ6+lphEH9^BT5Cw*&rdfT%tygTxJLU0}`8<+epB-dWW_9u8=1bqEqhs_qT5m)6 z;o+tOTmh0JUc`-s=_y$1S#oZ5vws#uh6W`>1tXlc(DaeaVrdKC+b}5XPl>_ zY0lE6+)2b(+GyIkhv^lxNFjRPsk)$dQ6c1Cg2gUD{f|^_(M;6+sl_1 zF4jG=?wxER?plVwJ0y;q3Q z2D-`D79YaQdLJM%hy_?}{01ki{rVv7tlQ#k@tv8WTI*-Y-<6OmBfxv^3(D^`)8pX` zkY71MoFyXL69?yczUmMdF+hZU``srVOS(v`hop&ss^=F9h?jBDKP7i}U=#_iJ8<9) z3^4p=y;-~IS``%~VPcP!MMWE#z=pbso&Jgj@9Lk!YrFegQ|DtEM+H?SNuPwGsd@yP_Tfjl6ei6mM@S9hI6$G_nx2R@~7&zx3vcw9+W`8It-S!@nzrt}eDYJa;$)^?q zw+h*5(4sxoB_tq%UIt-JML@KO9~n)r=~@1@Tc8d3>QW8xGCXa19*zaK!r?uM_54(3=IJ(K;&LQj>(#j z|NZ~cSs)Y;ByH3Pz3>rNE6~;lDJ{bK2eEF5+>Z7zN)1SgV~oXyPdOMK5x6c}{SiJW zX?}p$6vePsuw@15?5TqGx7Xa^L2tL-d;8~-|?Z^_0=LDF>#>Q4b!hDkI>hy?!yCn%`ZXU7SxmrNLAB*|`XVwlc z9_BFoDoevhcIO!q?5%GM?uMCS2RX45k?bb_vtuTB6!LgQ|BbL01%vONt%zMZSC1{7 z^>$xB$xqa!GadZOZr~;XtK@-_KEfu4Li9XGMs!V*H&_%Y6ZgYhVjFp^EwO(*&Gt>I z=0R_i&V77G-CsyVUw_RL!~@hVypaL9OvwYvqxAUy&6)AM$evVjx#Ta31xo++nRmBm)F5ht|mvD%3weaf}BdOLQ$dJ^B zq-IJX=O4Cz8Lft;3ZSr&l*0f`gEqs< zdwYdz`%A8h75OpB>r}T0V!1Ha>T8sG{_$v(OUML9+I5DL2<^#cw%eo3s7CWfaW4L?!)=PqhP{1 z(ZHk1zj{M^54j;^w6Ej7j*tiTZT#~h%g==D*5gGF5qpB@^%)HWd;^}Koh&kdw6ihX z`zHXBw~>n+mb(OZ@@{H?a})<-1Q?BtH-@t>`ZPl&o-+ocCav+cKIzn zULmmq~jnRY7m^*2TY7oJ#0<+&rnVJQeT4u z8g|vs`Y42One(^X%oar@VSntMz~w_s@dO11zOH=uzx zCF9EDz`#;e2XD{x<}A{R`s#hv&1zrP>rIdrlzvRkW7ZTD8t55FRVx2N#J4->e0ay3 zB1rnH-ns8A0RE4mJr8jhAOG2l!MH=w0cswovdtmG#{S@379aF+JDW2@SL?0?B#H1O7UWVlGy2%i)5S?YZuvyzkVi$l z@XxBoUMtvYT=jD?{$BL zE^MoQ-JxEsjCZRvQ+1FeP2wIYMK;_0Tm9g^udtdxiFZJAv3(tBxn#`{wl{hDSC(x& zO1!OC1rT7BLl2#dI(lqeE=gnoD(7;Fzsdg&s7e&1ikmEM!w=t@sw|Y_ODu2@V%(N& z-xgjwwz@~+-DpNR1v**hLc?L7WFS=&c&*7053@2J)#}<04vYxAIl!Ibv}?kk1oHaw zyw3_xY2eyDWMpN*LzoDiW3rHRg^_6a4H&dYYv%LI?o_`&SjAiWnVZWn(87XVbRF=_ zxh9yBrALE+J7RXq1)O?h*C&;YP(8>AR?ofza#t8&7J<$ zsCW%})q;WoZj0fdZ{Hpv7$Nwe+Lf0ql%H6eZ7;mg(GbA=wg{WLB;-It9)bb5XTZ|A z2jLrt$WdriD(2xbjPha9jRblV2Pju*KB(7kA zdhvUN7WzQ((R0_GRhXf$tmdTkU!uP@Vc>3kJIOY? z;nDwS0d&3m;QfFnidnNP2%dc%%iX?>uUE&5RVIu?h%E%BVb~8$e4HrS4X8P$E3uxE zx%bZurEF%emsw5VXDA_jblzm1gTu`Yv!15nGNLP~!nW#cbB(|+Nx>=uLXjUeHDCCI z$_!ofw7v+8M=NT#^zJ>0)2aOfi5oEGK>@k|Lo@X*uR6A^$^4NN)IXBmQdHqz2{~MmPNFjLV*mJXdS)l{Zs@2?~lG2s7OO( z!U#7ohRYTC<0PcrSM(ZAF1AfI`u=7a&K7Ex+*`q)^>;cC2~}0*49q(t$6s+@xTC^> zZn3?~6RY&>O*w|{D@GD7zq1X6Skm_ z^}`1=@VZHY0Kmq^2BCxUxe;NRvHbwArbmU*CCt4!oz01CtR?=__LT;SN806k6afem@!RUN^YQ2N8&=Y- z|0rfbevn4D$XBFzLkxK+i%<=VphF@6n`7DjRgtZvr>$cg z`fE3ZF6ysldO;^zDC7G=LyHg@qBmIMpIJXj5VMzZgluOsgR~R2H%_-Am0*ZdMmz^7 zuFsNxIuo(xW@c_@a1<5PHqdZeKA~P*lLS^&BGQ;f+tUmo(T2HY!YGh_Y8}P$J zK#HTlnqfgWUuLxw4aJ}T9i=SVH}qBiEOh1*u!xWKqKO>)Yv`BEZdC9Ltv$PN|0Z9pNNl#GGDYsJ5hsliGl^CF^iQY94JyT(N1gVs4Y{qm&T73?OEwBVWCkAGp&I@?`D`!{r~N6i#lw`;K~Q&}1B znIFJIsMdL0q3V}g{X$s*^#c%L8oMgM#YXVSj>Y&ggDi|L7kgf{Z8}sZK%_6+N}^!%Hji5)sGB zlq9A3*>$FNFGl0jjXI6Ydk+NL3bzxk)T@*6&~0QxQ43<@LOU~+f&yey@MR&gY10q zj^u+sIDUC2IXqsuM-mk+#qz{p%Kw(XH9V4mbYYK*zJC2R_#)d#YS#vU$9+>HTV`4)Q(;lhi+S)7irO7xVdv0 zt-cdU5KRN+yF!DSAN)G(AQpxe^o;Z;{T-tpRaxag_W>>M7~=6(MBh*a{V zsQC9~_SwhHY|dI!{cu)p$1;Rm3(-OR?&^XA3cpks-_#3~LYnm1+1aJ?RRL3us?M7> zyT5eY?svxJ85qS;FY6s2{5{zf-+A#X~Xp8}sr=QY;}bpcRcUXa4&weo=VqTB5kE&pRCo-A0#*)sS}33zeSEbfMb|QM;Wt^1#kDW7Juwneybv^Hj~uQU5Ys zU3*@cSff@O+4s*$pA;+&4-_%Jk4PJg3p~&v2d+;Qh;_|Um$J&^?4+zpJuytjTixhm0mr6>*T}@ zw-FsTciE1$*0>~YKrl+)Ycx%^(AaNwz@Qy}QKCCN^B3RR+D4!+rhVAjip(M6-^IcT z(;Tnb*UYdfx1Q9db^`^05Qc<>g|0uknTSh@Q2ssSGb(_hSK zlX6LM@jUE~D?q3i4qkt!NM_$49h=T93e3a0^9%Iv2zfp85E9YkZiVy1Q}=3Xrpc-f z&*9nW&%rE7r8L4Jpjav9HG9yNRWj$;)s^5=@SA1V=={>l1|24iXAaLE!sd;LKY-RR z=(GQi3>N!$YwHKZrEB;b7XW|^%w$1hQ&Ys4VfCkHT)-p&d3t0$wj#eeDYCOB;vbm9 z(3E4bL&g145*a+(L)kmXF_6<`{+&L0Bor9Ej|H2;Yh86t2B~i(leN_)jy*USdyKVZ zF^R9_9XUlJZBlnWpIH9hF2luUVuS#zxxOH?9u*X~WB+HGJRt4^mMjF2xu8!RwtC?Ehq!Qo#g^fQ5IydEC;Ofhl0N#AR#!(co5`9(C)q-fVw zo+PMXr2|3hdVhcD+-KRIH;i#7yV-pUBS;Y9o#?ng5g(_IlQc6m{ErjS2T7OD()LxzasD8-3 zy@BMNf}Ud|A3HskcGcEKs);mJ&T&t$YN}c1!5ekIR*J_l*y$T)Y!i$?h%Al+Ri18q=Hd_n4SFz%Y!#@Reh>Ua z0D6EO6A7cmGBV@Mqq`c}5n2DFCo=5~?Kj%mK}%waS5jJnz7%HhpglnrG*`$T=dU(*GS;bPGbS6A}|4?z^c-{}*m%m}ox4zI}$X(C&ES&7}2NO8lkP;OL)# z%LD8?ZLN;90z~kfe$@9*^J^r*kM3kl!K`q4ynKFT_!_u&7(yWIBhZv6aJep#WmSD!j)c8VS;|PIa5}OGP$=o!>(gB^KI6eu&GWC zIr+2v5)5=b(8>q<7?8ofkfRq!CxX+T!oo5kU~+$^a%({XCNB@?<(Xa{4rcvCjTa`} ztBIkZ^XYmJ7Nwji`xP)Sc~9r>rLRz<4seP&c`~AF$zhz76|wsafL<*4aZ7w|-bq}$ zN4zx*92gxz2dxkDYuU4%3(62CCJto=^YyJ4FW>M)P6#m9+6MxyO!0*uTa>;t%69wF z&ZKy5{IYC!V_Slg&X)u5Bv6jJA!)%u{mChJbmiPoSBiNag>cGv#tGHP$~{ zNyF9~4R&A9>*A+G2i{y*{~#vTx3G|gx1zAjI-uIcmq$8@YpT2Zd#?);V{Yzozz2Vy^P8y>jI8m4Ac;?ozh5{U8M3*@QyiWvs-nZ>cXEDIn1A zWo>_xL@x5zws26$@*r!OnIxNgbPov+8$ItgA&yunACcHU?n|WyzT7qHVqd~9#nNDZ z8!MFAC$f^&dsbRQSxmV_OQ)w5La5<6L@u%ypeBx1^Zwe;f6nWCC_9qYYlYs%ASEQX zHNb;IE9`YPy8g>IQ4jN?3wi2B)#uoQk~qG;p!iZ9tDyag*ut7`_ub|wgK0MK_<3mgdz2~ z(oxG(m~y+Vda_Srx)bNooY+UPE7m(Gu8mQc@lZi@3sesx|Dfif0@0pEsR`D!ck}Co=NA48J7N8Qo=w+?wst$$C$X`Y z2i%Ua^t03_WNijUkSgF0Q_gm~)k%I8M6sb1^ZotM;6y z?O;&))DvZ40_rJM%Z^Qs{x3#Dgv{U_bR6tL!#WdsaR`nVZ zP=6K_tca9fnv!Yk`7vs00meYw3aw%TDDFXbI(1rY zpL*Cw_Gx*w=RVD3HGs;V&X>D*9r%J2P9q+yzFt>1l!YAXvp#@=DjDr;O)3x zt|*7astw8jf~gAniWQCJxIbEh`E5hYmCNdT!8AtF+$EvK6~x%V1m|u|lb;l$?b`b(LVg z3W}ktQ^fi@(a3_*I}f25R2$b<_5!+pVhwbU*K?W{pt&#r*m%2(BXjVKjqM)Q?w zQzUZLwU%pT+5dU>$*keIj9_ zyM9)ObdgnR=4@>>W`c>AQ(l+IQ#Yhya7XpGjIR0o7MOy5!BxIKkxN2UgXxWj(@AV& zLhE~FQGiQFsMcIK`R`SRZ^t7LXrBHW${B20A-uBJ(A407Jq3zR+5GQQ5#yUH#^Y2q zewr3)=bR5^ul_ABgA8dSVEP-LNP)hag^YL|1ISLadrXiyg4z}>^RNsFmRxT+T8MS~ zQRN$pZNJknppGG8u_;xZY?{7(I5W{OI;Y2YXPLbEz|`>3oy~#U%M2BHWTP^F8{h;# zuFQy)&M??tXoJZ6c=+TaVg`eQvB2YC3V2f=VIfD?&zl0^dw+ra$XEdhyJ=zq5q?j` zXY)BDgBBjp>f~6d-kNz7j_Z=-1@*N!C@&g>6HMuXD>ehF3lcPRM9z<8q$q#$5UN88LB z1Ivl)JAiwE@c#bd3Dx`yFO=NfSwr|$w!))iR}oS@kct3WOFB7BPR^w~SzSG6Zuu*8 z*r_1%$3Us#Ou^u;Ee7h{@upCFPds4Wkpsk=p%^H^`;r2}&=Q2*IYIL=2jnW+^$BKS zHbGaAz0dV`wM0Eksc9vhlF2K&k$4BX!b%*-}7TCy1y zaTf$L%gmdDR$kw)*n9xr`RrWo3AIzS2H`1JY5A3rI(ymIP@Y}a^``fSYU4!ru5jnj z*D|)_;TFMg^R#E>NMtLRPXCq@^73iTp8lyEh&>6Cq64#~UwSCsqfV~P3xC%2q<}Qt zW_h6%mSk;N>3P~4Rp-M#Hml3m(vvDkk{}yN7s%vns3av7&UY<0t7UCpM zz^8KJ?TUNase5a~iN)FFGx3=waX)cCTy?H=K4mS;;rqKithuDl2uC_Zl-&`d->uhH>I*k7GAY1Oloyp+aW`s4h%BP?CeL?lWX4wS>JW zwjO^_pI-1?T}#1@=V`Qbxu!14Df2ol?PEg11sls>@0C}_-DG-dBGX6v0!*Q`4Pn$k zl+(9y`O`NvG$7b+5J_C;TPL#X16x5rckM2VQW$)5Pf1DX48|(J!o~7c)mY57&DQk1 zRvW^^DS461tsEx-KEXIY)9;yDZZJ%tv0{8rjFL)NK_ra z3z|<2d^8i==upw(7gHtZsZ5tsmB`y)H*NQ+;8HfP8Rpa1e$m;CUkB+CE8!%sU4>$cvhj z7Ri$$e6%2jH}8@!r)GL@YQGFWRdo>HZ8(x-pcq9G(&TblXYR-?IIA{h3JN`Evp)K$ z#8i=!OSJaqm|#`j^;LWpp?gD(r8kD~k@_5kUE8^Zg#)~N z+m=?J0Gd}}><&wkFj-!M2IJH+C_ez5kF!)DGNA{qR5$ROAk+hhx_WpnttQKY!~1l& z$HQdl3}G7dy16>N;Qs(v^FX1l=wqpG5Y(uprR6T!8pEf$aYExgV*N8n8&Qy<6thS>||+aWWDo)Wkmc4d_Vi0X#wV*p0$}G zk=vX6QL5T4iAySoKzFbVLwVhYfx16%grnNc?GrStkK~VL&uZ-kPrI^t3e}I-?kWmX zyR56z$g8){zFH`~h6@O#AFn?~MZ`x>q4H8kj+N$=0_}t61MFBJL*V z=eZR+77ciFMt7=@=90fkdt9>kj+y2vspzckJ|RL6ebl#`;~i?k3D4_hYfne?XQ8{D zJNNw8*WMnx=f*u&g%Y8UTCS1ET4n7dda|D~%bXlXJ_W*J1~se*z5#)r!WZcm*#e5o ztW~iU5atYRw}>7z01Wp^Di>$Mw$~OG12m)fV`EyP4%HM;8*#S`xj#)jV>P`>7b%-5 z3UKCdRqwBUiZE1-*`hp>SAP{C{kmHErF?#bhv;ecI}NBqIUjbS68ZC8;bCvNEZrkK zIob?`Zz`Pi)=c&Nvn?Y5#3R!SVXCU1MekxYo%{=T6RKk2)U)a~v1&N<%>Xftw6dtT zj)OCm8I6d}l1F}nmmPtwjxD8vVM=QYw457(6jvI=1W2Gq!33j7`^4lImR}hCowclg z-d&;kzNNw7YAW2gKcS(?DNsbaz3DM{)t7<@=z?)>adY!ief?7iQ~><&E@@hajE~i7 zO4zfqeY>n5B~icjgY!mK?uxP$>MbANCw9sq)q0GamP+szQ^0un^4%s?oQcVk@=~|! zFn={QaWAk$=CLrB{o8`1DygOD7rnHP*}(yJeYS{)C^%}_{(nw57odFBrz+Xb&(FWH z=cVM@z0zUwtzk>(vbAKTiZ1-X>-?eUtO#v7ZBfqqhcjX5{zn$`mdFItrQeDy&1&Jf z-|#fYM-764|3?de<7(BQw6tVmNgbW>^L%{6$Rb`ytrl6XU`6kuDm%#GXM+s^jeEGe zv|_*ULxTO=NUAHo_`I1-A#uN7wj8=Y3V{_LjX#9ppnKs(Pm7uD!}}f`ZJR+oeow#c z3p{@O!iPYXK*-D_i={OR>)z0GhoeSPGleb(x+rIDX49r2%Zu@3=`#l871D{`46l2& z`m6-)XWO+4bts4uL7gTm2t|NX!3baxvujx*bdTP+M+M^aybW8}wmdo2X(pWa78QRk zfbjL=^9&>h^rn%pOpPc0`bJm&%C>F=HL1L%(WbXdoaV#Y-{_ZN_K9RvF>C00u6VBR zv~I}3!H@nzF;ZR6DB?l3Hh%zhOpqi7>7EAHbN$i3a#ejklD>u$pQ)aH0Xx=M#}Vq@ z>8a_TFFXq-*N3kjQGJajP*3``h;P*H5YaUZ{D0wZry2O~C+f!^)NQt=H!-9Zq}^?9 znfWR4H@#gJpF_9zes`&$%@z3w<2&qCAR(w6b+L!bix1#&1gQz4?go!)rd_97EwXep z5aPDhV^zbqHy@bGrvWS!c*zY8mO2rP8n{+V99QL_t1Jk<^1%aNfT%{l7&An7Lg?K0 zpFe{DEC=k~Y`Tg=RaN!F$B!i-ooT4W|MQdhnqL(HAHTKBoC%E0`*V>5eU^V*qB*Zp z?{R##Q@e}UFhQM`EaV!-OSNM~%Iizl`{t32v?2$=qcDf%-?w24&B6GVGrzd_96Ua- z_^teb#5MLR>bSljUDIe~jd#l!#3m+IzG#zT;U%jr-94AJ z$rstZ{2?F!`7Q->>k!R8maOGe&Zwg!zZ}1}a)`{HeUYjA?hdZ`!l&u!WLQR3|5mjf zFpZIlz7wXRqH@|Cz5N)AEAjIT4JLU|?Ss}D`C4Z>=;yUQrAB_!`x0)=t?lgra7ivH zSALW!5&WZ_k_{1h-?QA0ZvB1vRlFIdKhTzBDltiKqP_5y@?)uvi)^#ya9zLG@Tnn` z?5@gK%Ahn+JJewIv9-$5{rcU45-Z^^o}U?8%ar@v!;yt18ZwnN%Pn4}2rle~AcW0u zDLTT#yfa%b11*7VZEfI1vx5?Qm?9H6jivM3G{Ba)0A@e5np%6OEjw-N9E=&Qs_MNq z-FS2L_Q(^72-CF$qfH+j)8~o^ZjK7Z6wO6<6=h<@+)&i)92oE9vv(EkTT~X6mpQY{_*rYcKDZZ zjRKrR;|mObi2b?e+#lH6+tWxbri2I~&G-MhT8BH(jl4BfORcXkJqWX9W~0>3X*qA6 z>q)))m%Tk3L{ZAEn%debkivk?Z4tyi=Z_wd*;U2C1(h63zB+6lHSh}0p8xJThd=tm z2zR?3ss$%<3U2NclP|6xvQ~Ss)svy41rHzJJ27!T`r8I#=YipS%|48TU%l0^W~zv6 zYDbuA%LX5oq6~;Q0}+Ifi8*wMAx1%eFJ!t;V=Z3Hw6wGsWL&a-zYCn34t+&w+*PRV z&Jw;}E*S9hL*hqYTcJwdw3c~*rEFwqVn`I{#+0yRn}y@_BK*zkZ0pl#VP&7nO;cL2 z@eS62Y3YU08s#VHTZ9ZgC4-MN8^2L(lUHz~`#7WG%q!6Dh(@H8RV$yWh2q%cnAB_> z4|gJ2ShN=RKZf=rRl{Erc;fHO@mg<8xbU3FJf^*s?M$k9)TV|o9LM0{CbI5B%*GwL zy`fDT==<6%jSCj{3b`N0{7UhUw_%|VNBdP)EpwtYX@fUcuIa5b{8MGqG`#^cs3u;pn%Lr@SPD#I)XSgm6NBofUN2R4d!+ ziHgIdrb?h~A>+ze{QK8i^jA_%at%|<(~6<_Ne3GneaOv*?BEWzVKT$5*h`W zAM$_wV070x1Kg91S8{lbC1wPG@jLF|e|(^g8Cnj1`f^fZ*EZ7>R$k zJvox*i^H79i4HsoAAtb@Ako7h;e!LHvpd_#y?UT%R57c?Bt1T!45TwFAdS$6{TzW8 z{`yTd{+z~J!Xew(=DCwYx?|vkuyoG#yB+Zs2g|gdCMNDThlcYmr?U@8pVsy#ICDr;$V+$ zPA^E}ms*KoD?2f#*`TWur zZMwHpoJA^}S@o3&9Fwuub)DI&IkzB9@(w5|XjD?O1huRHdwazqHV|co2n{ z&i%!jlUagj)=SJKxy+mT@3<=eQewOE!#S9B-DLT41fC&T5JaEBW`?=Qa|`RSKnG;f zbpjd-)}q2jcBvnS?}|yjdOw20oC@zl`=$8W<0)!)!n21Dou{Tss=c0`TTXSC1wOe2 z8FpDlwDh{aL)6*XUA9G1XGdl#6z{+#`QisnA8m#$6Qd8=Nh=1mi8-@7=~j?Hi3rMF zm+A+xQ6W{bZQN1$ws3T>Ti$_ZM-XB(r~CTSHdn}=XD|81=3#~$+&{!6FOQ5Q^_Q7f z(nNWB<~%a)8KcxXMp*D|2_;b2CeSB-YB)pj&fgVdZMp9Gscvq+-tG)|)BsPp_YvwW zACQyF|E_*~Xh~ytWmGJd(ekm46V*Hirb*oHr*rcV$V&6{X^6bg*gARpL;6DI} zSp;_He79kKULWBR1ib|e9PJpVhtsrm^~A3)svk3O66c$|RZLe|Ff{7@G@y?7?Eijg zXUNVKqYK-IJj|Lk73g9)g$$+8PW_9$7buJQ!L}^1`)j5`bK2Ey-ySk+z`%=MVgBE` zEE|2g`V6gx?pg~mSD0pHiB`IHS4an%ThNn+R|I&Ml$KY1=BN_IVOB-U$j*qc!STdJ zN591APJJBiH?3MmBUaRX2Ey8Vz*z$#gOc;W`{Iu*T}#^xk!ajyx{pnQTKj7(y|RzC zg9^!?pOQB(8grIN-gJG@SvTZw-uUKmL6>jla$sU5aaqASNa*h)wPV9~-X&~KM)lnkV)a?xFSG8}!FnmUkoBX>?+HxT z9q?>Jb&lEV1-0}U$p{)l8f_MHr%(w((S#pz@q7l#+rFw7Q}bu|!w12)!)%m=D-+Meu$bblULEsXfv@W_xh56(6XUKWap z5&rQ_i}AA@kCB4{iL|t|@d+Z^Pj>*c#&|3c4O}fQWYCC`agmMt3Gk3)^RUr((VfbDWdEXW_I;B6ylt91-8V|wCKPsOy6g7Oi4dh*d`^o4%$v8d9^)(DtU8&=YkS_lD&M9}NyUdRjHo-w zB0OHr8E0`)(v-r&iGZ=-5fPnf(^u0-oj*eP2oE|NWTycT45wge&g$zliQclqCtOz3 z9pHwY0O~R(CPo|Vt@>BSd~R+F@2n-YJwNG^5<|2#h#9l?r-8$H`Gdx|95YunI>(51 zb^F-T`R35&UxLswNFtyj0nxwxA+l+L#ITtXunr@oxx{oa{5B;`96{UZdeUGB?$A6@=%30K( z_*oZBQ`A->FpTw?e!gH*-X=d>>hCoEFrh}1j{g880NR?1){i~Pr`XVV+4OG9Vb=m!^r`_F={3VK> z`K2rFU&gvs;IH4f2>Qa-TzsNP$`whl^_b0DC@8z@fS~rzCnNbEkAC0WTLuWX3?*nZ zRELC5QTvNGq`J{RQ09q=HY^OTl7&oSTz?<&^ONPLcg~YSX^hGETRQ|%&m8pibWJxh zZd_#;7~Z=6mD*Wd8T|DURkOmX*B6t-dH0VV=kYIa4I#u!H)K~}rMflgs^-zoT&nnv zi=hAJap@pIcD4$W=jFa60L2Y(g`2`Y2z_2KOu|EACLovZa5Yv`o}8kt6HHID9`YqE zhUg9nx1nykBMkuo2lvL4!I%lSh!JG4>+#mvv3}ox%d_B2&0t;od_e3c{)w6z43=JXF$)QOz73m zz`G#pQu3_U+&qkMkG4^M+ca8)zpRLz6VaIY9MQ)I^>%)-L`2CgOhu%=E~3@tg%(MY zuWi-8MiABL)-&ljOtL&$WK3U)$`o6OEYA(JVoe^{E)W=a1?yx;W@hG3pEr4=EeA8q z1j*Y87>bo#?dm*K4(*xRn44kZecST#^BHQ3tIZSVJa^uTXh|-}S}iLak>VK&;^3kj zkf^uf;OFRf8mVxjx8C&PR8_5rSY+7{2s64}<6qj9@pu}u-;>X=lhGTl_KkaD;Cg3m zh3W2PNtI23Sd09}j<4I>bkn`Ju~hqqCvocnA1<=qTR5dPQB*iCRU+LrR8_?tFLuV& z+RvThQNBGFK$7h=>(Z{T2*rfi*9XaKnA>(`nn48x1$9T0!^2^~Fz+{_lFx5j)=)@( zt*@`Ii-><`yXeXvM;kndeVan6$rO`nXx`<0NrEcVLjW+@8Km3@K%VQ1O|EOMyITUS z65((Hp&69Fq9t7}As*3Y8@RnO<#+Fg^`h8aX&E;K=_dc{QYCG3a&FE9otX}l#}PP$ zgpwj6y<4Imq1OV`C5_n1Tv==525`_3mLo+X~kk~$?dyolxM4bf0H1=E6>BbL!I86^|bH_)6( z3wvm`1L}(yQUMse3!r*sW#vGLi9Et@1*o+`j*9z{o%*cVoP^$Il_Z6|g&1@MCIk=N zJS4*8LX|2Q1Z`gMbCQa=45E^|i)d&>dpdp&2Bc!0ET*k1Cp#rJ{o3pxJ(v7XRHpY^ zAtAR=xQUi_!ND<-gNBLO+T9%hZE6YJ^J_?G$bK4fwTazIt-{@_7C zM3r-@DM9z%X&-D~zJ2jfj};>T4Yu`Vs%zaS%Subh-F0C{EzTk7}T_eBu*~(C2`1^2w8I*o~Q) zjUZ9;)sL3*7ao}3T8Mf025RfDbv9hsF2+p(yzmPO8d-h3y6j(XP_q?;{YWz=7O@}0 z`BAjI^D@1Z>pG_TV!?=AM%r|?h8MBK!qoP5`cn!%GZWeer={`n&~Z(*?UFCreUdtS ziw5T1Q|FH)9BdP6t$eJ zKkosjbz_(5>UhG^+B*3&sd`8ImDH-fHWDa*zc_q8O*wOHr^SEhr`KlBQ%=az z4ag*ag5R`MyQSnk4H}r8flr1US5#2HqAV;dOxJmk{EvNyS4>4i)1ogT$=#vtA(B)S zW>X_!V$4>aRzEmK9T`x+oPM`_-qZydHze^HgxA4>bT&P~1PL7P-~j-mS4j17d1}32 zynLU|-xIA91+(Xzi#l7|TjRwJIYPP{;;9({{nTEB)Fr{$3#KMAWX!y#rl$Qmh`wvY z*|}fvf=;Txhxhq@eHTm|P%cUdTl&@9Y=jqDLPEmZ)xQmca-7I7eNa~B9yBHYCY5mY zkG|`JlK+r`Kio$p3*oqNzua#ZlaR0j(+?=RDAG$e>=YeTF6u$E3q6lXaLdEARn;~4 z^HBEp3BTvFHD2yUU}VM}it()`2uRyDzdZFMh#(m3iUlQRt`3 zZ}c^@NnJ%+S-9QB%mxMz6vvGNSxomNzwN&ZCMaaWsR^8RChfvAtP0}Y+SS(5JY^}U0M2!&gdI0ywi)s&-? z(aq`Qz7w4z6VZl`tQRa|}Wv$1q*gu-qNB4t2TPo7Z15RhT9#townE7B5Ov!bAQVwyBO**125B zg=>YsxV$VbCl~B#R+ZrBpl|$=a*<@|K+=Yd9L9Pu3>wbU+!-7f@@#VM`hdBHMPMlM zf_C-^Osw!z{se&$)FtdMU8mG*oIYe!zM>5t&eDb&6S!Z2lrnj6qX`bBBbE(0IXM)h zKlKlQM8IEOElKx!YAlwJDkEr}+!oX_?PtC>IPCtJ+e+NZ=p~5pf`gkH&p|s<40;n9 zsU~f@=8;h_KHsms^Kd>k>i51}dlKE zpeVJ=^82VN1BkE|I7H!B9lQ%+tr@ElJbQS5XXUR_zS4qL2G(osIPm^vOcZ!2q(8q* z_~7JZ(iTXB*#BVQt$r;nO~uPg1OqpiN-(^$p)~*zcYycsp*VQm`}+F8^9D&-(t@aN zN&zyjev7I*T&KJv zlyuBrrOSu`Yd}miUM$Pae9HML&o~rRwq&*7UmYQ0SV4+xwx{zCLSBmC#|9#bg8mPl+ht>itsf}j79cu$ zF(c8_5WYhgmK*JTxW2d;BSb~36rub6h(0a|&A;7b2~g{6WkUKLSq@!q2R6?5S*;U& zBZJ01pp{mq8uZW3!ktzwZmokZX=tN|NXcb0=;&`ForUS2E132J5XkfLOjt8zo|n>OMMa&l8-!XJbzb zFnPVw5Ti1aDR>zOR#sZfXUdq*59jlaEpLS$U5>QoOn2md`(6y6fN0tx{VVLs(e?REzX83ViaqWA3AtC}%y3v>;OZ(#>}h>F+~BOo9(bNEpaR?lh$7hPhrzW#O6vV;3|z#DYY#_7@at41=^f8Cns+VD zox0Oi8~!|^{NQNk`=Bc6kN!K$pyXsxzu>EB@i#hhv~fMSRD~EC4>U@8EG?69L{Odm zkV;Mb8S#|&@_OdKr2EDc;!#UEWuJ! zd^pMscaMBt2U@4fVul$dDfk1$!p~2_T``#b5;s{yyH_RrAuH`xkr?ul^@d(WObijk%bv@2pcAqpra~wO ztl2>RrQ0+Dq`q0*qsk5?h4w5g(4g-rDzkO$Kf!}-K=U@_m+6Cg_-1J7Z4=K8BhoI! zdiezgriMA`c!dpbXh*jhjizRA66MdN(;gG%)>z&+xhBBz}ynFBmQmMi|H;1alve03u$_ z+1c4<;}0VW_x>`pC@vxWEV8xfU7zAxiRWqWAFNoLNP0Z8;qqW>St?QDs46`2#m)9b zVOeRCY!($zQviz@nHsmr2@k)^kD-cq}D6hcXT!^eE>|}AFjy}G_zdCT@F^mSHI0lU z2TDHeKT1Tyl|;y7ZUMV9Q1U_$kl((HR9mslyH{%|AqeX;MT-e^MnDc3W1Mh~nl0J< z%mb4*Bp$KAQ~xvLSepAZb2HsqhQZcAw6@d6U0Xd^@(Fv4z4%cb|7THgT046V%hBS% zsR>?&KW06>Jqqe18ld|(fb3|*W;rmRpjq|XmYbdsL<;$@iN0!;y$YKywnN-Wj7-MU zpI%vPZ9#Zi)5O_XzN*pMeIt`H^JXUxH;Owei306ENh;p&Y&4ZG+%a9yJerA7RO$+U z+0GjqCp{;D$;0FNh+Pa#yMX2Q`d|tw*Mu0E6-#j0cDgFM_&yg?p8E z1ofq_n7EB2kvv}~E76l~PDgzT7M<@MmFpM&!E#;IwZKV^+o*7br9j9((4ywoP*<*y z^!axyf?lC~>HFt=63TPvbvK55x-dHpH_jhf?+XxTWxvg<^4NwQ`S$prXn26QF|d%*yHViGA=W2mLnH;vL0zqV*=x@a0i!d%wwGr^cOrui~A(+X9oSjPJ7TFvNiC@?6wC-14fIz2g{VG{ zF4m1m@O{Lp;R}xvt)J?dm~BR$PiubsDt~|gFM|bfZJ$Ax z0L1%Xz~GDs;{uTe8a8(Ov~1hGo3^_nM@iaQ(BCCyHCxNPILN~ChHNO{fYEfTlDs>- zAyPv8H%ZLIrK60%iiI5$FzC10(!3(Lpcz9A{ny2;AY{q6j4-S7#KwIC#PcclUZXB6 zJq&{UysG)0fOTn)}fpLD`s;!WqcF2iD^bvxg8zMnk0ObU*eI@}D?Yu2Ly!Zj-0&)9*?Y*u6~Q1!mMrZ$HP z9G2n1KM^FnI)t^dB z%b2cg1p3If)lLft=qh-xnGZo0 zIp875c-hhmxp{ez2V43gzgU*;C2N#<%0c3ZB$meeej^9U<2V19vW@j-Iy>L(^<8O1 z$NY+)0(d~PZV*Rj$@VeG8&)*+`5WRi(ZeeA` zx1xd@Kt}eRNLF?9UzG_CuW#q`ExCI)5b4p`1?8BKY>xk=`)9<@7l1MAZrS$h2wj_^ zdNF@rsHuuLl(DZr8C8|mw(Rxp*h0p`{KTNO0Ry@v0MkLvwFlmO9Ae_^r=)}Xp!R+6 z=n(?7W9VVQ|Ll15Iy%N5<*5JCoNzv4^s5o?)?`@#XoXvodS17KwGKw=KFQpICHI8! zol{rC?@L#7d+XGS&Q3z|eo=Ch<_E7LZA{D&n9_Zp#i}#65r_hEhumI7>bXi{q3y|z z4kAXO_+2+*3WA_zXBU?uhzdiH$gt2eK6%nIGZPP};w$0m& z@aELmfgU-(VnJ<+Dx~t%Zzqwlq)i(EV~!bqHDOhOkJvs#*1TWP`Q#{mr9-90w{5Zx zJlx0q!x%ruKc&Sejt!MS821;0=C1+l9cC?UZN>0A1DewS8s4Lr2)gSMXbY(n`ii7lbitZpM=hi5D~a`865I~ zoBdt)!*nUQRjnv)b9_cRJ73O6QT`j!LeG9QU<<$C%e~uVh^QYpCV8~9N(^j-LHL>K zb+Hm2aWGmmOzKS94{;S$woAT^4RKa0Uw{>+tiwFL-oVUHH(_U6WDq{twVWrd`H|3B zc_pbJg9jb=Z7`?8Dh@k-E3h?w&X?YP?QN*2$^p{%CJTL(m-J`{W-y5gQ%wk)b_Mkz zun?@rccgy2pI=KNq%m(E>kQSfTo~8dp8A91-02f8kdqNwG_%7 z7RSiQ9yF}KVOH@rnT}V0j0VwMy$sf>((VIb2=Ui-1^I!~DZFO{ApdnSVE}Xmu&8I~ z=wQQh8Qey{KQlstufh<`YoBhK^yhyd<|%p8fAr6Cgu1Q)s2@Q7+7S2K@V-}Jn9cG# zCU1z%3ku4^1kdc{)Kp$(CeCneZV!e}$wtRVB21r;&c|6c!N!b9IRQ5MYJ{=m5q^wk z8TR731tDcNZz40r{))UL**_pGQb;viOqJqHU!JRVi-ITVM{H~WK)P^~8pE9~;J)`A zzW4}66rxdJdjIu0iVF&h(AL#L{m2S)mwoqNu!ZNC&Q;w34=bCy3p){<8h4RZmw6(? z!~M3ZP+O_GE2{@`ey8Nm&?x)#y|_?RUa$+odB>?Xs&=?N90hXj=BHANdJd1H)X>V> zoO5f>ObzMp-f#u0#?(1|Yb_r7nZ}0_uF~xhuYi4CiMIdr&7U!OC>PG~Ta ztqLRoH0JCd9dY`xW%Yr_S_2$&>{{rLc3JYh_|b9gi#Xz2%>55HW&$?H@;7DHAlNry zQ*Nxtpcw`HF+PvdIR%xoa997yv0Z9zpTB>9Cz1OBOzrf$o!XQ;lhFaU{jlWv39Vvz zZ@r)RtTr z)P1(+b{{bL_s@wT?!jEJjqck1d*@p~>tQh`0i!t&USh*kqh(M&^X<@mDyB?G(u2zc z9j8^HEYFLPGyaKX+u^TDdU)0)f&MT$A^)Wkt7py{hC534@kNkFQIr;5d`#~KNd+ux zZGA&{b9@dMCq&LHNkjqtdJ<_4FXSxAM0Be@gFIe;A*){F!?}Rms2aW+!{Pq@;mP|3 zvQDb?gZZ3VP+d8>z;K@l-+5wcaIzVbTg%+8o9WTcTy)}jt@aWNU#2Z}(^std2p!bZ zy=H9ScLJ|#lU0}yCHA++c@1%95*a(}D#{GH3vVAzl}E{FW*8g=D$hJgkd!}o^rsS+ zUlN1v?Ue3udz(EKTZ}H|=8~Z$=nGu5rTYH}?+m5My!zn{;0k02!oXPwg4W!gUdV-% zY(stC4!1h6#+Dj z1q%d(C*pCFkgR}`;(G?actiy0H#e&Mc++8oL=7^D4SJ&45MXrwO||Ub=miO%eZO}3 z%7jp#G9Toic=PLR1(i3QB$Dz-dlM#!>*Aw;P9m`PKhm^%$Ie-8Mqs0EydHPH+J*2| z#B&Zv5XF-xfe;vS8z(mEYkZn8Zi??e#A^$#du^dBWP8@MJpE_Fzx@muzH{wstMxQe zvOk~ugNjX`HO#=kINb~TGeZ%)dQw0Z`s7JpQ`1Y1O3cwwaV2?B2U8*Rxl))qwrWk%FRyZ$mG}bxEmqO8`gKS8J85UL(z0!e!27`Gd zNUs&OwPk^&BzpcHXSePm-}B-Yux5CRCmPm@$!hWb+&&#wCJNh&@2ZH~Bmzv2+&=pZ zlpV4`auKP3^LH@sK}2UGT={;%!4kg|zQ@M{?ElTrUSm+{?V*s2G;dE0OYqh4u_y(y zZ7x8TF6|Uzb!ojpyCnCbHb2SYX0T;wVx>sqiC))XP_C#qcTIjf@QQ~F^vdIHv(Enh z_SRN$9wqJ?{qx0SR2-cSICs!6FrI6CSZqO4q#EtU6w2gEQ>XQ3=QWYBCCyIxF~8Yv zsL(X3{r4Z%P@CjOoOi(lqGQZ&O0bif0vp24kDf|?C%X&9;gz5E z%2f;^UoS-x(|SM`2sacmK1ckWF<&mK{_0;r4E+2TDwlWmiD%8;p4Q0};0)qZ{Bv|N zX=rg>)U%|C2zV7#t(HvDpGy$BY)n~m)3E0>LOSQ@=!o!G!zE@1Hy1A2zH!RWMLR3n zo?3L?WPwb`qVn2pxb*7q5=F6gap48#3$_&aKwkim-Zwg`9rs*Q*rT4WezvB0I+Fv2 za+`}|OZc$c+JZ6Jy#El~j5*zowirry0lAe9@LGD#z&>9r{e2@^yHk{aJTS zX7LZ)-`IAPobmp7nuS&hdSAL#(+20u>;&(ZeQSAR;A*nDy`}A0;}`~RpSMvF3l^5* zR&RJ6a&tSP`J30AyPA}}ivGD`yl@b#d~S-7FMKHq^*$qvOYgT8-2?(z>5o9WSZc{E zwhy=VKae#J{{{v*kjSdAPV+})_|LwG!zVj`{}x|eQ^OV53V9!go7&K-0Mq;Mcoi0R zdT{$>Qyc(pLRXu3T025wzw&u0-kTcxDy1yI+XSjA7y>pn#tIOs#X+{__2a+}j6z_g zYeh!N61Xdh?GJY>$oTemMAim0#V@rcc%cS}%svKCliFv^F7015=*R_(_xJ&3A$X$E z04X8nH6b6~D*z9Br*1IvJpCyhW)?a$2V9_KBrAJ6r0dTViKb0nG zPH}ND&xbV}SU6L2a|6MokX`r11cCNyeZ_20<#${D0JHZAsTi&QZEHO}y-8$b+ndHa z5Y1zx`s%3%Z-T^+amO26Ycl@VRpq%QF*zLM4(qQ@&V^pRihC_*wCStYGzB zfs#PDxoq7g@7{^BfPV)>-SoD_qpDRLLgiu1Z|m75Rx^CYeR2M^+Hz9wXhFLr`+nrJ zP|${vsa0Fr9}Lgm4pBd(X=_PFR|nP%I8jis+G+PTW?zm^O(`oWHOXJ;8XGI<2dy%x zXRXz~^^tobXWJYaFI1bXX8}|GQH29io*Eokl z^I##gSPTsfGbn}I?9K{;w^L5}CcTL=?;U{S;}cVj#~&67^LCs^-u=D)`Bq@|R?CMA zJI)XGxLEU3O|SVNm9JI{NZ(_q|N91$zs=RT0}zfarIT*0dzS9639Z~2-47M+MH{(i z!~09t#11_(0WQ=oM1I*YoL@XSsZX13`Zu3a_d@Sf;gfvdO7x^mg=f$S1#xjf@A?r6 zb(o1$)kHoOA3uyB_G4)U3%^mp6kMUu`h3He|r> z=xR$iAF%Uu1jp$%kU}uoH2_N_yepKnKN)n1=b=TutZ!i479Dx5lFbRb_UG%RTG;99 zv3J_T-Y7HbK8uYa`STKquEOd~&Kpl(HEpHr5tZzbaK;Fb6QQ{WSEA!=(dyp7sNB(m zzbmgJD@||RycWT{9&`7mE~0Mg_}}0Jx<&oXy^mns;D9!oZvm}=!SGQ7`6KD>Ng0Oy zI7KC^rFYbKgt9i8=+C5nY;~@B+USca2;xI@ECNXtO5mR&$L<+Dh-2^ z<ksi7m)ukmn+yTs>06cot?f+_1FpJ z?z%Ff%Mi@9Idzhysb(o}vseFiee5kbY;W$1%sY8JbY5X2#P8%kXSnlky-EiB;`Fdd zFK%yNHO1TmDGQh+_SZ8K?I0Tgc)peA#j`F1Byc*Q~6z;o^2>+t4aevbLD_ozHkdlqGXj@_9P>b$l#-Xhzw2nxUdFhz z=aAhDyW?#|*ZS3(6{3*i`wdEX8P1=}^$-h{Cy_mS0N-@@23$?d|xN^a!~A z@CaF~jE@hH_)!@a*4;pMQ56&M5;#zVa}hnH^#&jEqY(fUJjeFemo9P%0-aEkdQs6b z0|hrA<&p+#fUTWfGJL0jRgVS5+|4IJ?*H%WK6u9Kd=s*txHgXr4_WK%?6qE`(Hl*K zxCA{S(rkQC*Y7Ba@vz(Vbcm2>MCdd00WdHyAZlVjR!h{v z4qF)lQHP{R$`-QO{T#dy+Ifv~KNk>N=0hPbYm2FRl}&Y>8{vIb)r%b~+Ph4azX(Q+ zRYRQ0@t2Kfv|Dyd@D06AObh{}1kLjLWEnHXbPBZ|nUt-fZA4P$ke{sjOc5B2s5k^l zq)GjleCw{mlNS3~ zCcOSB9p+0$TE!YdJtoh-9PhBIb1rK%GzsTM9PGVfg5;G>?a<}yaDDGlTQtK7EhlgN z$*$WHZs@BHS08497X39f#Hi?gwRz>SxH%v~|?I5=@X!c*?^6_M&qRHqng zQ6$LRZK1M+GB@Ac$k}qI>*JA>D8^N~_=to3Gnuz9unU;G+OiK`$KljnSu6lu|9LwF z@01CPohe$_tFEpm6RI;nd3Mn{cC~TWufq_;Ob~0oY&oVqsxa93_2a|KY=52zh;OJqry3#{gH~_rq9ZW4Ww~y$FAR);1RsIr)#J zm&0qe{Mcq`^|}`A_}}yM%GVXU2W^94z*{uU}7qjrQ|<7geR4<(o(5zesB6##t)@O#Rs>r?0Ac;Wq$=nRMI^b z=rx+Yeg$T2Bk+D*9uCW&w<8#4NJ6nO{ijj8mrI?N89mW1w~0QO%>f-{(A%O;?Nz}g zbiPJickZ_e^!vaz`16sL z>>pB+W8GwpLJGqde4p?6z1k)7joA(1vmAS$D6_<1xkZgiGVPzS3#K`Kc~O5B-!LmwU*+6ZUA6v&(h2EKz%Zy5Bk68uQI zANH;}lpst4augs>Q(KFqVO&JQM|3);bJ-4hd|Lp}xRJMhS>UDPidvxSx}G-Xm3Uo} z*l;+MgA4P;!tUFs-`(@*mJ*pt(#A#qu6OfG2y(2<&CLNT%o2#iY9Dei84$3>C^*pn z&H1KbW}(;Mmm5omxz#beKuxgL5eSw51n&;2)VV{+im1Pi)qU~F? z7@I`09g!XnL!lqJSTRQ)j%%3G<_T}Uzc7{o;|!{@vT~PFml*#^!9gMKsIHi&7=B|0 z+p{Um$)6(<{-qTIGezxbNIR2V2Cv<2_ic7{la7|ZWM}>i6bCy5GQbJP$fRU)R>yM_ zP>f$yNjx^K7m7l~(UEUkiN44u6mxsQr|jd2cI3z36ve@qX^ZFMKQQ!K8g0LvBQuzY zh}$`T7M{_Xq>gy?Jtu%AhNLUj`}Zxm$VL18?S?vtLS1|-O2usDyVv_sXj-OUBn?k5 z3^keDmf{?DXH+dy1U-+|@7GaKqYjRo3eL+5LTxl8Z|WnZA?3X8BXL#c2yHonhNB~_ z**H1pCg5%%f|Y7z1^%-d)|QOHJ6h}bIuX^^m~AKkg{u$G_C;oG*V-08qp!;J6AUd9 zU}Q+u8p{`JZ-IH|E}!GpE2v0Zr%k(b=9c}f12tMgTca`gSS$=VYBmc}?Dam90aP*f zD1@89=iSfY-_d2TS4X||h%;_%(ruI3L4KNw_EU*%x@ReRuQ2n zF@ojc)}-^-(nUPdp5AfcQS1j*r0O#0mVq6wu(_u#bEEApNr{Mv5HeU*)mC7{JG;A= z;6O!q`d_|$3Dz=IRn#j%8t#i-Mf7MXwe(dg7^HmZcjbR^bXiizc5($c}PR+h=|B|<$+vu)z zYTAmUnDMF&1W|P}W{DXuE2St6wY5RByTGl_U%s$$hjWaN5b-~FuxNKsD!yi6VKEN; zQ$6MmP%4NJJjbo^UspBn-@;`LK#jw{!khR>P~5>5-z>{&;&P)~v#=DDSHyP0QLJHm zfED#aDO%8t%irH0;)@m&xxT8Xs@iT(asn@qm7Sdob{3e7k<2&g%*59q8Row;x9ISr zdclo!mP+>I^u%BG+YFX}n=o@auMgP?`y|lsEaX1P!p$E<3z{a)!5PNI-teM(9pTV6 zzS$-c*Nuck&#G1_XubFN*(-Kr?E&TEB)BR$wlKsGIVtEkjYry*yM z2emT#H9W1*p_JivvU3Y6X8r+XRt#ETpk_il-$HmCW#}tt2{Hj$2k3UcmYO)QQ}(_^ z;wq5A$1=eAX!Qxzok+541|LLLEpUSpTZDo11|g(@Og%(m&{%;Up--DYFY>ft1SM%a zMT0pu$?cOxnR!tzl|Kp!3Lmp#7>D%|`yhn3qqFl@cDA&@v-0Nz6M2lwNS{|#(Vfj$ zzG7=}$8~NP-yhbQU#0o??;nT(Ob3Dr?&Q|n4qrLaOvNZ2jzhZ0CCkrbI?NJH}I~^TDY_FQ3 zVp|P!Yj3l+==kkJye|J}ye_8ZprDSR2>s`=nJgpHT^@dJr9uUk2x&x$B6uFQrpsh% zCNAZDd&?E%`*ZQXpPR8xcS=%4Br7p3{FHj1Phn=$;6W!o5jVY&ZV!@oO+^x-37`AR$szc+;spC+99)TF<3>Ti*a% zZ?@hh=FVUUA{7tx=?HykeqCL-y2|@_PeCnS8?zyv_$!x*nFww^=Ow2-9w>zgXU4Bt z9uD>}x*8`S=rmEcdUh~PJ2^Em+WjE7iy&UkN-gqvYB0-I^!$h~wJng^TguaQt&1*Z*9@_A5y+C)$%gb|F3gRXfNT}}W=|M2%hJXAu zb+jgz3{3~u*yFcj;cs4OTRn!?9!=5(9J%-}6|*I2*$wUPM92#u&rrk6H`ms}MycYn zWmzVIynz+S*-*(W5bkva*r>CkBPl%{#m&tPylvkgKH)c2a_B2)C2kVDpo;TS#A|qg z>HM3oG|49>tAo`Or}46Z;;$Vq!bk+-p2Mw)2R@>ov{~DGdxJpjxCf4~rJbGppp9(B zESu72)`gWiI=otMpw6h7LY|+qF=IYK4WdewP|u1EMG2;r%{sJgJ$F9pHL80>$&eEgYhgzt{18H za7YIFAJ69~uAau~-q>bmX3m2b4N?uGp*rI`;(s)*G4ojpaS_6yO_e?0JZh60%b?*< z!{1}hG94KrefQPHq)a9C3yl5#Tnqi2hBOO5#x^i8f;5g>K%Pve)>XB}Cja1BzCxqb zQSaZeglZc?vEwaK?1jk@v8R=P-pq<9kt>;{*DGkqFry79SK@-PLeCn+Xw4w71LDBk zdI-cbh|7q~P~DMP5me2@@*m_mQDRbJ z)Q$yICd;jv6aPX^andF3*}`cVkqQIHCjU!w$pt!;F6r*^GIK&enL#QwSm)s;`}#HV zH1fihY9>X#hCsw&Dejo45wXVR3W(KdpydtBgFs$t z3qOcq;2~7Jdx9RSF8!UTqowSqLL#ZyUl#x29kBZ;s*W~PpzZCv#4Rfnc)TM1G874> zSqOh&%S<}{S$QK`XQWwmdLwSK8?ZrHkt2a|IrR73$h(t@YbbZ@hwzuceGkuXS zB`Rua|3HI+V8_8t0^ELDvUaU}kVnGvE(Lk{0{nJQdU8nV>`UZ_sb5gc^Iy>i+n}?u z%%Fr->{q)Vi2 zGN2YJH_z@-?duFiV|@#b2D`v>k2u$>u{ChPjMQCwzPfQ04-wH0p2OM*2>lcYE$-Rb z#Any4%%EprR8D^eB@!Zko%4yuzZzJvMt3g1qQ&DYd*4@QOAS>mCij_`&ki>*Z_Tc2 zpr1O5w>+;7$`EhWmXm9pR*+Lib<@<++K-gy&o(oAWINB$A0SiebL&fDT8Yu0XLdpf zuXipdTKYY|I=n=kU)_-g$hV|lFFpGc(z{>%9H%SkAKhWZ)Aqc2__)vc3;gyF8p-i~ z*8nLj(d=uWx#4ZK+54?3Rt?p^u5Q~r<6i1$8I0~)hAwal&>K#*=4?4XLKb=PjusBe z!X4yF^d{urGu8~cy%q>lG-T7JgM&mH{eDwJ!^ivLn07JYwMJLO-n}!LlLvWxSV;2* z#so0pd2LSmKfH6Ukf&07*=8C4?jI9V=>^x6I`>pXzH4R*K{ela*mD!USiQ$R7dpCz zvRY0wcnH%ru<8017J*_^3poXKix3z96(E?P@yXsG-JFvQ(bqj;4YJC~`SLN<;oy~y zjt-)LdxTS3;xS)i)EEQ}cCENbp^Ygeu&s|1)&2HRcYEyx-yOd1Wt6Jw>KxF)1L>tN zDGH=RHOev2<9>ACmY}ANoyJz`VqJF1S(GD-@GA;Bp}$r2x;3*@>6n&(;I*9e;dc@ z;O}QDjCbr78z2Ah){(i4{APiO?XB6`SU0C#Q1Qrs^b@ph2*p350kYhZ1O~}RTo%!e z6F|*dRFb6ku6rs zr%&jE^}2{pG78M}<3x{xB0?z-+)j(#4!bRg*`jgtbfjctj39Rm@@r0>S{q#)ZzG(2 zU?29aG*@Cs}d1a0to#1@ixLNe4Z-$zeDz#TWWWHWK&ogQOOB};p8uC zVvqCn4A~fVA2_IgDKKbUo~<@INlJHjwrg2ngdYVB=q6_k!m zEv)aD<%6HDhO`RTypx#E6~r9@W=0gr^n8+3hp>8>WA_2?*otkf`ZTCW*k6}|weOaU zk1I~n+F_UA3GrOuFGi%$AR4VPLxUhj0Fh`|Wz?GQ@f5I_t^e7m)6f2LM4=2OC>OUs zd)*LcK-!y{!!7zKOVChwfm9<~U0N-Hl$nDsLA{{lb%@3$@3#{4gSh~@ASp+6Ft#~% zX6Z+21u2%|lMPol5voi-T}1J3%fJYKRvQEgnp5zGM^$Xc>71=Lq$kt={;l8IBB5MZ z`2IbRuKJ*TW2Y|3xg+mrX4Z3Gv-ot?a~%|~Ly#_pmcXA7@oHh}ypacuJfgyDQ@XGM z-D&5MQlwYqB>CJf2y*4-UY zSwB7~D`ciQHrVLONm48-=5S*F*`>W-wdheLHH0~{T zQe<2berQuCO!gkG#taM$gIK2J#gY_VI$Pu_WtyK<&=_Z3pjnuNO4_47z+NjKX{*S= zA#?G^W;l&N7f$Ej^1{}X&Wy#4l@OV!rICm#+;db(Ulk~(&B-|nKf47x;Y_=yGico! zRa&y@T-U@rkV|EQQY&#zJkHJSe7PKyV=ir^XmAII+`hTsrx#f(`Id?w$&4SG7W6amMyt*hQ-zhC#`7eo_I1miZ-c9uuO8!|_G|}aHfM=>zrmppKomXl z{n)rOd?>)cvY?TYPdVQyd9Xt>2G=wY#4U3q2VX$@7O|UVTgyuGSo>r+l zrnlchCBf0Rm2CuAarCgW@NFr}$0TE&xZrfM8PPeK&Adb#V-QmE2ymOpvCuq_P%s}_ zj0U}$#J_8|41W9KdL@XJzktiNw4~%6yp>B=nJIh9wrO@v)>efS%Lo7glt4he;H-zQ z>|Z7Pp=yU?3HX^zm_AxY9RpdTNXW?*;aD}w5J?=%AZL_vSD{u+E}L@Gs#3$tO}#56 zHNk*lK~0w|&&|zk2F4zwj-QjFuYRw3!jFM%9qZXw7FZCEk3_n4IPq{%x7!3c@rNzz6ADU(K~|KjhYpPii@Fy<)pRmKbuKT{a=2qh_px5J}fN|<)<-eYa; zm}kcZA3d(lpB@Y2r@o8*98eG}Snnr_Sl}n7HE@Rp>L2`)fcSio@mW^wSN>EC-x@7FEb!m{uRlqROj1gv-(}ee1;}x zPBKzTVi4fo0h(7(ZWK+OJ1D}m_H{a@2YG49!0m9hb}529@Z*)c?NRUxVpJ1bIEr4u z=@;w&@1~&5^Mo3yKumUJyty}Tsm}|5obnj~KGCZetO7ZnlSWoxegQU5ib8if4Rkq| z8^L!I#tXlaZ4Y~WT#5h*{Z3NODyiEABOM(by2Xg610o+15pf9&es38n^0bl_iUzXW(9qYVR?Xq$sWfP_FP#(O4|09n%Uj}+ z=93}V8PrDmMJ{LLz)@Z?If536XQhLO2}92V1neLoz6857d8LrCiOD386pNsjaN4s| zX+&zDvs*AK4CLCfTaB$^He-8o){q4nGFRxFfi-39=Js#45x_thk^@7Ly+bb%V1wmw zeC^-xGlWQ9OGi7X`&)2)oIz$#d=Zl0x)+dLv6xkR^q0cv8N6taPF7f07_s@+b9Pyo z)A?04EoIH&qnCgh=Z_eB+9R9Ku&afZn_u-mieL>9MZ>AGft)0RaLQtjclnQ)qKdO8 z2=^=E-by(*a3C%bL>3VyG)% zXjAaV#(Ng}lpVBesC$NYc;oBWiA|YsQeitrqIOL*p>K{@#JuwCGOprxwUgg~J24#+ z;pPnE6^js%G=bCvz~T%uLJrC7n~(gp=rM~qf8piMw{dJ}2xNU2001B4YUZ}@MH$=R zoS+o-d8?4btbR|QQN+lmJ?djq@u`ub@O6UxBO?@;ds(IaK)qlki>#1v(wm8yMB zoObWLSm~4BG1=GY4NuJHeixpOw3~OCU=kTwdgn5aIoOJ${S5iWiVov7mXvA`Ks2FAE+`dk-g1QAguS*eA{-HETWh#P z;%X*1u2)tM4$V|8{OPp$`C}y9->@Bvk$u?=Yt5s(%UicVO)ULVUwG9}q^3~y?s3z7 zqQ)zJNRx_*iP7uu;sJ@G6;w%PMX2t`zRG_|O+Y}f2bp!y?t+1XV?DI^RAktKHC09# z=az9+!wVABuM(o(l(#Ln7onaE7@Z%0Hn{nTem8HPL}iw=UU+ROHZhT}p&r~GOT_s( zJNDbRZ_v~@^-Ay0 zWZ7Rc-C)1YHSUyFwBsZC_Y>t2n;&rAmT(B9TqOyix18s_%XO z?XNc)ua=tU|K@o6_`sVg15Yg7M?Uh~~E}{h=?%_|iwpncdFr;)@fhpwo&OSmfR&Bf5@oAt*AkK56*7hTH0T)`smzeLOF! zKvgJEdMum~eWY0Q=)D(Zgi4I{jW5r@hxEkTsav z?Aktm5i~~F@p)R~-w9{AI086aavSmcWfjalHcv!En=R>O254s-;9$uJ16JVQ^$(9B zJtmmon!+J-^jHjmtFLBXA+mC5{4erG&#K{y&B!26xqDD>%ah;E*>*gKhl|hZpE|a+ z1}NU1KuMhtfPQesBjTvA@|2a8$sk1RX$r^X%s~_UpCIvI1rN^X=oc=Mho2E3!}QbY zfcO8Myck9A-}CtmVQZC`xloX5>=$=*b1Jz9R#SuByB7p516Qm63gsWcLFA=s8}w)p z0F94OS2>IbScGJA49KEwX(1h+t3>>fAgUiVom}jAA)TFP!%74l53vijA3mLyb?Z#v z-03r3=rjiZ74lbX z#{AeF{LP$>EY6j3a;zmd=TAC5pmmgEojl?jlfw3-3`wx%YUi7ez7Pb zpb@eC!pAWax0ZmcS=Y_(V{oHUhv#p!nj^;tM%C8*cnM*=MOl|v19%SjPY3^Kv0sQ# zf7^-vxwDS4q>pjn+l_?crUz;`NVkUESA1Pv-P-%?L~x;}rKLT)ui@+M9qAQ{{9(iA zfrA%4Zzlhz8(H+2n&1nKd!9(#3o5VVDzIr=DOIc?H&p6G!movbd<^U*7+pjYaGyXr zQs~>I32O#ROJWZF9uN;Ejvuv;e9RGlYG(HC#Y~ms`=htXil{L+96Cmly}t*1Cx=j` z_jRNrUU({}^A=IB%szuC2l!DU!n=A8wAa^mRLj!fh zEPcD$pacDGpLb;^iNuE^PikXDpRw8}@wN5!{p;)9y=M^P5j`>@4~&A>=>{_JD=XXo>jw!KQIKlPfrIl!|Mo$^Y&8qlZOZ-r==mA}0UNDs0WCVC8dG#M zh9vn5SWHBkYAoF;JkgIu9|5TXrdt~zLXd#?34$b#Q{z)(x#s7wkz=`OA7tUCjbxN=(>jl>C1JBiU&V`2P>VQ7k1Y(U>3b8 zXDbERo|Fi#QO`euNb?_An4+6J97fjHPri=89p%vWJAp4g>7qebunkDB(}5`t z3~Y;|V2tA2&H=$&K5n9%*~-7EHFPR_#zsnV_`0hoIVZmCF1(>AeJ(ckq1w~D?L)|);g&}0nJxJjrq}jZhgG<>GPdf6enRk zKEIw-y7aG2ytQE-Vk9AU`E{TkMkHk-#a zkW2=%@oqlK{=#l%t(O;QVNZ_a%fp27%csQ6C;JfT z%|20$22MCt>?SA6*l)3Z7zE3v?U1!IMLfL^E1pJ^bmfTXNd*{U2D^@a_`n2pWB}U$ zw#OVR2F7SlsYLZ;=(C=tHtSfsf|I)>)5%&(D~P_%}VBP=iL zIIpkqIeZ6x-u?)BQx-mP&7P5KyQ!OcoWK8H3t$pAlwWD^dGYT%8}2dc(fwMG`eH&{ z73`Nouqlp1^+Q9y*siO0B?Dzhzk5e8(w=$fRsfrt`YoDajPO!ay+gK*DmgBF%-=_z z@e1vKV-Qe0SaT5CZ^&^3P1ZhK!N9LT7f2sCaWgBJ{Q#`_zQy_e4-ZCwRd2k))>4v! zEKlPW`P62DhRJdYKl^`@3jz4wfu1Cx!Xc^mU|~+}rCFq}+EQlGOYVU`10fg%6(S1c zMCI=p5tq5(w(T1;C|_en2wV#pSSbawE~J`B|NDEh2))GsPcniLsj!d{z>kBu%FH>= zlKFqsyO0uec&G>`GrW4qf-?G&6`Nnb&^$WP)Y2aWW`QEMbBfTEFKJv@{5fSDahutv zp@j%>OH-SkwSE{u<$y33*rArNv)$w}Pc-uVgB>Z`2NWs7J%=!&0_KKjTx!)CyKOA` z{pIj^gD>&`z{R_=ujn-*QHvC{xkT6C@I};+fns)IV#1v^Sc`oS4lrslF>u-;F~wR% z+G&|oN|kD;>#2|4AO7fiwdiJI=QR9V=FiOf;JtL&M;g*}-H7ATL&Q}C z@0Pr>G7d6NJh}VAYjXM_%w`MtE*hb;Xc`R^FhM!RiD{-0;j!Am?SnP5 z-QF0QOa{krDDArXlZphU>=m;npMDcYj;k9RBW?MOaRjpBkNr5US^!@&E%(vudH=-4 zH~W2X@1nImQA2N_aN8C!oI#us!Y1X$E8)0baNF73jZYKn(;0$7~JBp{jgk#RwrP8~gDp7q{+#ZfnK4s~D+7b}%fl{GqiD-+jE~yNiVj(zTTC{S z#@^XxEX@2CX~51ykTF@q=?$%ku9rWov4Jq19JSt>;sc=uHVc+pRCyVOPsUJDAz_>( zK2=IKRR$^0wqMa}HdROmwY3`>8}~X@B)s_R>Dnu@`fKk%eUmhMGJO(79jr=zQ!Y!p zMfi81d@5hYO*Drn^}vV%>GtQJDyP4mO^=HA&IH5RjQ>YW<|>D|`RbrxIHa(M@4AO4 z+ZrG+irDr~CFvprEjytT&O|Syj}OiP_*xuRuwa~#qoG`xI;Jls#e*?fo zf&$YoR|f?*O#*mz2*49}u<@C6b zRMS}`3ca1wR=ulG#skV)uCjOJFH5Niiw-v%wG|hxl&;GQbmHP1^tyArX#$jncHK9% zj-5F7;yKDb>?hMU0l_snWL0E!kAfmPK0f}XF(iY01;Wm1x#|ZoEtymvq5gZ?C>P^V zG|jVqGZ{0kBBMZ|`@*mGIseWtKDX3c#a+8g!h$DaCPLjs_`~0_X@a6)4$A9e@Bu9OU7MTR_t0kgSlRKv@r?dqDZ!o4=-Q7W;h7#o&!9K_f zdQoTw{*}7?r1~E}C~xD>BA@A|z3H zYG#g(2x=2x440%h_Yd4V(W)9HI_wm&wL+*Ncj%O7$*BnG0Rnx3MD!uK~z}9*HVHNc{=@ z2=$=tUK8@jfo*I?|^-oxIoiwyHg8}B`fmD~sC?>sQu@nVH zY!A0h&`7~}4(DiKa^gL}&snwEcQn`xufu?BL=P-aW&(DIcl&G665XonEeJqGSms$& zvdkbb50cdgEG;b^Up`Y(dGPd)`+Kn1<$`~B?otY9dNg~FmEb*cGNBi=&Rv%_1^bw? z95WE4fC#Oa>dR86cG9DuxR;zgPNS-E0UBXg#h7Sm-}Nq`Xp|Cy;S~-Mc{Yx|*)rn4 ze$(amsReX6x_puVd1yRFrSJAxO+Y?#bqa5OIoS6JRy#c4)8nCM6f~)%@2J~O<;1_);ZQ~hJF2D_xXav(oG%+Jhx=J2 zI=qN9H3|G7%?aYT?_grm3ki`HDHh%Gd*ahl>wka*Y;CPL$D0xd^_co}1%`sxpX;<$ zxvHj*F?e{m&1CI$&*cWE$NFOS2aAAv3kR+^hlp6iNIUc~K`myy>tIPLN%zz9C&TyN zq^M9(*jHc=`h^XB_#0masn<*Mi`L4+hP%32Y6TiM&sq8<^O0|%BaBao@SUa_jCXUD z>uJycQL0{wIH^Z_dXRu$2f173_1~Z+%lMD?H=e8WJV+r%5W*AKyA`c|sktZNNk1Q5 zJ*$fb;Dn!@==pOC*|&|g_ee}LOOC%HZT985oa4jYHaIi$lWW)f=>Ifl-R$BBChrj$ znH`DjcyTzvbls%#?@^`Auk}u5LZ*3-ka#!X2^A6&`kcuG>1rTbiWHMemlcw&4Dl6U zVhROf{Kc1PCRoB!eZ)_eEC?X`?saAa>ji`1PP2_p?+ot+)8idq6(^>iv`0)~0nP*` zsz5b@hyETJnSzcEF&i7(&d!dSiAh{i5&?{cJK&z~{rveYKxt7I5%{4I#9r#`s9$FZ zon*u=X3;v9t{ZA`8(;i(DP`r>ZdNlgAu6#9XpGxw!_-lwv^S-J7v7ro-FlT4GP56t z+Nv5?Gv{L~!uCUnx0-o`c(n$1whf{#qDhMUpX%@DsXa(_gIgZq2HN8^R5KZw)*l%7 zjH*eX3ET);NA@u$fhqLE%GIn8NW>EbUY>kJN){S|9}0UR7aeOQuYhUyE+#^y3?cWg zU1fD%WHMv!VK)UUkBWJnN=Z!#W)FBPl?UbsoaPyFQdVhU>izR&-_eSsG>jGdF!1ZG zE9n#l<85S~+Yf^Y$U6T1Il2aeJpuuL2~xqX7z5Zs^YiIp;4S$;RMa82b8e&CC+zVg z4D;f%3}vPqzN~sZjcCt`{7C5*;E;~4z8RaxN_KZnW?ed$6$kg*%lTgsmZCLyWKTjt z3KcB6eZAsbiUVmvq>(RuEBwtG9^%#LCG{GX4h#&0{I=;HhPsFhckZLJZW;Ka5nWTD z2;AXin=!F_;-;x7u!d70S8C;VaOhQNA`&n zNSBUJf7R9TLWCHiSPp5Ewuwh@Ti=BTvIJQ`@&%|cFI4$KgYo}FN-w~}qH{a^hjzEg z+1}`b`?jUz@0QZj5;RRFfh2c_2n?`h}=Gy#nnLW7irr3(`M z7(qW&TGa;}7Pel5fc2U`do}_&h)=$+_!V8RRy^UB249dZQ+2~%@nZVvA5-AldipOmq<^d>WP_=u|G()u&E z3KQdxr+SRisxz=(55mGw>nN_bFhinhNO4@d`fYZ zUjDrH^XF_}$|$Ui%rFo1E(jj*0WK%Gd&?LjenkwnH}oMw?%e3a#7->kS_Rq4 zU4~m^PlJOlcg+b^v7!^67AgI38h^_9wLyQxrPUjI%`=3cI?nuEv}WfSjYfML73aj| zhkzDbK-X++X`J2{)k})RZEac5)6=(j93ccJ49gA0etd?m_t}N6gd%@NjvA>d_YY17 zEo6zo1`khYT2_b8QRV#)zeuQh0_TJe?VgYR+|q#lM1&3l9+~~r8dl7A6O55a=+Dm_-_4U?xE&9#yyqk2lO?EZO%**OB;97tf2!k3HHwhjELx&nV zs%V1ALqzGQ=CYkUm_Wea&ii6RihAhICw~E+$m=LYhZqWf^iKn`pFMsGHhq)u`-2DZ zQK17?Lk%9zFS-D!cardp3(ceR%)!zVFI_L0!aNS=LyBz4wg z*pzA;obSG(G60bce%i0MTtPvR;~y-il8>@7#i(!bYf-N)g(g+U<*nz)fR!T)NXnCS z%(1iov~SbpbP8G?_xTRaB&(o*03z^NvQqvE%_}W-9YZCWva@3a8ZtzZBLpTCR+?zc*J< z77>O`)(5W^G}zM#2{GcAk!<}VVm6fi&FN}(g4#NvQ zb>G!;UuuAc`Je3Yt)**2d*s^Y_YwBajh_8iZeq8Zn1f@DT6CY}YdC2^ zU(iG>FZd1)K7?xo{yLa0!eVA-j-4!@m#l)f?by4vscGol>#Ps|*r=cs3s}afmCtY8 zH0`js9`En)?)MR8o6phyA$?`y6A91$H1I^s^WyMRAReY_+L`FK)EtFw@$iF%zPJdE zDFt0MwRcIGhPsHdWhmRi>yB1Nj@BOb+Fbc3Q<)ZUuNP|eLadQD{+#e$S0YYzh5>Q77`Nk^v>Lp zjGyZWkVp`G)p6pHHK5#zEkg-34>OQog4LQ?jCm$d8!V*mPkxL_j7E zP%{YGh2-B08Nnqv&U7usSRZ{+O@c!FJNiWy6i{#q%BWz-)r3ZY@297T`3KQO$H{fq zT<*O=n&gWU^KW7wX}{exyVOq~f7L?1bxyhE1a0#?o!-8k2@=f_H$&ER`B3Qp!f1dD4+n@1l&#;_h=1#1c+{12SZO>l~ZTD7PJgBA!XhpY zO+MHKRM(ADYg*sX3z;1@9Z<)LXTp;I#BU#AO6x@0cO{ zJ6x;D&EFtC8_DJFwdx_Pi3rz7vf?1cVI0mP*8CF4(E)r{0^F&$w|5C6?fUwa<7!~Q z zeW@TE_xXyQnxu(9sRcD>T5=N~_kH!efL|;!&v*AG=gAx%f35q;*vkQL#m+o8xfsId zq8C}q$}C2@7-X&Ye~gcqEBPukGu*@`?F;`o-~msKC9IGC9!1}D&x6xw0z|#S0e`Rm z{i^z({o{<}EcYjB@%+Dea-kRRyb?OI7%Y&}I1ts89oqpcfo+*dKqFxe1Za0xek=clTWoObPI@ zn4fei@l{Qnh58=au2!s1o!4-Z4SvTq@xQbNQCOm4QR9owM{FA_8N*v=_LXLBPqRJr zFr@sLp6pZ6mf@`hhmAdfwtL(y8E)*0meo~s2gXs&nUkIz1YkcK@B`!$9CF@ zN<$|gBfS4ki*8F0@14}q--%K?(1G;$n1+Hy(puDB;80*=(-5-lq&R;M?NIo_$n)_gNq+o*tIhfC4NXmhYeGrKLCXsyViQ zL{GSVejT7wSwq~B`{C!vPoka+6hz}|C3*n1XtCQhsPArzi(h;QKn=Akp~+V>VNua{Xyl?&%Sullg-}X; z@U?(v2>nxEbXf*@w&kZ5ax8ZCO*C8@pbJ-jDRpEn@^*(;CH(;S1TYV#?tFZ}!P{+` zShW;Em(lo>agSvB>UXdnIoS`;W4~o58m1O!u5Z8wojG((Noi{*pSMqpj9@^n4cK#~ zTwHkGt7KaMjEdC2E4Z)jWD@LMM)fs=X9WTVR5gGvpg@Eo7#bqt@)cIV@P`s%E-( z8@=}U^#xUeA|uGl<5VasZ+S|$1W2B&W`}g30HE-FW|ceT?BubcIgh4F)~>nD@w1eO z3QCDK_t=lst6LzdxCCiV_A;&V=K+xT^Sm7u`hG~7y%p|FL}bun&z#Cv>}YSq$*I8k zVDp8M7%V~^uD`GmN(-bN5cx@T5e^(Txc_I8Nx=2X=>>#|lwyRnw8{qJyWmq=0^$X? zRyugw5K_wk+b3ad!j_ClF8ki-@9}fMdsx%ZP*_qTk3Cja*7srTP3o#K!l8Iounjt( z$l6*S06(2-ZvK_M^7C7Syi49ztlTlodkqK zod+V?29Y@k1IXUQHshab|Acs7_dH81(Wu$0T7Hfo#m6`xrn%B=!QuuLE21X|M)m{n zDCV9Y4uQm*blfVW*tYKcTs+^+^}CbJIEkMx_oM9OtOQ*t5d7ip*}#CE^J`iI{aE~w zi#E|-7=3+v9=7#U8JW4eR3j0AmK-gVvRW^3>)SeH0nt$`FK=A$hxMr!sEhU1ivQ{H z{%L}N&ZFd)A(LS~3^m@f!Z*C#f+?;pX%{1j;Y{>6Xjz3a=b}!7I}e#&^Gz z<-;o?#gVc?({6tuQBgkVD1UjfR{7zB2UU zIt?5=WIUz|x#W9ER>=|$xjo+*y3xsbcH5WX9$%uygLf{PwYVCQ2Q8l(Dl7lAh!{qa zMq=r2EVgZ0kK1o#khjD68ZSNq_8Z`eo7*lJT? zub5^*X=f{pByz=e9o;CxPHiQjU!~v;zK2BJW$rcMYN+^#)uxMb5li-7j+;r%W)(b zYVxq%SYue4B1Hs?L+ON3rwv{!piMB)~Vq)UADJh3iM~>$A9I&D{z|npE@KwU(i>qh_HX~p5 zB?e|W!V+Z#1v)XYEP#*@u|v@B2iY@QKold&*TB2(BG&ctVMui~7l>1t;j(I8^ND`` zp38M>mdCwP6HgfpRaSCqc|#2xb8z6d7#g~8@7-Ibmi;s_5c02o%{Tn9$MO2V>gT`W z0s~R<1D_47`9|~4Ehuxe&b#s#FA&7?kjE-0DRJ=B+FL}Ew_Chs6&MIZ$(O&4{H1ep z;&;3_A9urwZ@}pO=*iFYGchsx{VehQuk|0(-R4YA8vo8t#`6mXlP!HNSbI@@SEO;* z%!~1eU!vqP<5dW{P4R@|{*x!REK&E_TL_bS{<7TTX!FUg*s>58O)Px%eKlXBl=S$h z^2s-p>mv)KO|tY~u5P=j_hf!mrD}_d&Y1tEb7FbFaW&&VB;XvDTFF@&8hU;HRe-$g z>;KmRpebCUrLpZ?i&@mHwREMv8M;W?M`kTmgIIQguInF9SAW1ryA3oxBw|Cp69a3l zYu3`zQXOO@AmXHf6M*0?OFD0b@uUMHwD>*oYUtYK5+{^_;!-%vE{7>NDo7VJS zZ!)#TQlwwKe_+y~Cn$Zc+uPqC3?~Q=EcS>_XUUJIQ-)3s4il+IbM?=r@&n4nfmsKS zUM&O}0UBYYAf*=T(Z=t(xe?K;M@F`3VLn;V;Qlfs44J#y*xo@2+?hLqs|!bq3yo`^ zny6!qA$fzox+3P}MBHLIc-Y;=W6wm9or%a|OWr<_4}_`+n&8%yJ!FHDn)R5X-0HRO zSx5Ph!EXutY9FTgq9*AU#;RjzqqIXJYhwKUK7b}c@r0bOGYpNa zoKtuf#k}e!5+mxUk*gm=@$IGmNPPC1ZK^PqE|Pirv?ciiobccnA_bBI;6Cz)&!B2{ zA8VO$5%K&s0eQ4V44$)g{2=y6P)QKrZDC_02kS;UuQg^Y#e7v* zDW+ph>LizEgym{T5vt3IdM%Kgxj@77*i4WTKQNI0yNjKNgf9Jec24dI#evza->$NO zvwg*nk~{dTc;z2-DqTO@bi%aEMq{H$K>mpJcv)H>z!Iou>j8im4s=GvA`MnC-$g8% z^$-j7uv{HXE`CXa4vu?_^ceYz5Mx;I!6gk5Wt1={m=p>mp?opEb6$6kgF52-s#!d6-$DS2@|w&k4$?=y7;vlzYo$E zVu$=b4Zz|Y6`Qyh*FlI{Uj6t(Pn$;aLh6d^X8iKB23|)M^J!fOl&?VIXAGR5Fw=4v zbdVO}f427<_{&MeDAjpRft2ll)_av-^D^jnDKpR7c=;YLPD7sBz#PZaoJ^M9w~dW= zBrR5f$N?b`$|zOXFfZ5*imzuDmV-B+b-}nZQ=(3l%s6XiWiosF1}0U@7aTbZ?MRAI8uQ+x4zD@`O`QqR&k(L`$iUWFwg z;hHNKA$=w$7=mj(UPy}LD@8L4%sCt^2b1kTKs1LThBJ`H5X)gs#?j~(R4h%c#F!3a z7aYNQYh$x%XZ||UXvq0vLAvW9ik+E}8`s*ev%b-Z7+d|t>x9|A;Hrg_(nKZRBQ`EnI1&{VgxQIe-5;+>Q9vEZ`CP1GSKR-elKHqoO^ zL6DLmNwmZp815Ar@X+;+4buPh|oGwOKs%1PqCkt(f7gAM%MptDC5%mEGk ze6Aw>^xu3;G|aOImc)lzXzbKR`Cw-{;SDBJs^#__|MVzXdh?^b55N%KE;9JgX6VWD zW>iShoH6ftP=(XfJAaQ?+7_lyYZ_m=Z>(G-`q(Wcnkc8wjiu&2QLX!?gCUdQ^Jz+d zhx2Q|53OdC`%iAz3qR?8$$CW{TV8}VJcK=5W^j<+o=kMFeyw;n?glvaW_iOKnm&Vs#N%Qa7&x{8pa}bH zHm-+QgJNKOMsN7NzSNhKmeOe?_tEG?*Yq!j6`Al-xE_scML))yOXW0cs8{>$nA>Fc%kV^8%N z2oCJ91nb;&uwm=k-s}&z@b;z1v+#d&yI$sTpdr@NJURb_`(pM_AKI03d=Pf$Bf23s z)@zP}P)B{k4IB19oBma_LnQn}CLN}aWz?#L=3Jk*GBEv%*25)jzYI z%fe&K6mL`OpTi8M;C(EARrxKm3qFK%4^)k^$-(FV&_f5C3!O+@JD28{9gUwk`c)dW z-%`}b_fk@(tk=!|vnX|MIBbQ*x~#5iGIVCri*q4jeZbENnl!XvY-2NKC`p`@WUxv&zCO^IXteu&ewM6 z(r44mrdab>LcS9FjH9Y#W9R2HxXLQZn6hvObdSQi#Dy-!GE8&j?(y4-G%+)G__8G+ zCYr1)N=VmvozzM;JdFK5xSoI|_enjRf3Br(iB?5<%9ZbbRZXQ9DLZo zz5i`oOQM@-;ta8_YOI4!-d>Z7?+wya=wM)A zWsQLFEF&W$ubZ>^bjbk!O1l18$rC73-8*hRI@kG|8wmFhxZq(2zfiTW2P6?;Sck~@ zTzJ>PZq;A*Zn*-p&DhfTScpxV{Z0&trKfB39{i&Z1-f5KN)0s=b@XKIr0HTSIrJAh z`M7>!E&LQh;s4aT7&-X>2O2ox*P8q;}-S!Inmd!Wl{*KFrS+tlfI)kMp;sw~Y+cV8kCQpMaZM$8Sa8i~zGQe5-Q z94*l<6@~ud=j_x&c_8@txkgNFEz?#oGScr99UME1sT9?M4jjTn^&9Q9v;DS@jX4MI zcM_I7d3{~Rdx~KOXHU=ye^TT}bZMnIG%Vp5H)6*8S}nW~oY>9Gls<@aQRO?Zz56r= zv+j4ZR_&@`?1nya$PQu@1g>plbdtDivux)92Fl-ru$7ypB8-nSedClV0t9~DqW4}h z_V}2lUCM{loy}+cO~3O&-ffa^ zEF|~qjZvOEmAd1nOM`p zj8A@Ty5U?}bB4j4Lx!mI=de!cW|Hle+e&%IfNqI-z?&A8-gj&K8pgvz}U{ft9@W9k`Oq-eS z{msTP(~QT%$F~i(OLu5nS$hea3^eENfKC#!pP@4Q`DzH!@5?~4 z*Ys1SQit#0lk>p-p1HMylCz+$h1(B|=xE6K!wnQr!EJD69s77|i@>|27I{IW#1yAn zBQT73?<&;IrJ

D zzG2;ysxs)@&Bpd&)R(c~XQ;Ip#6+Yn%hKn;ir02$l!s-q&iR5iyN*a!YIY@B_l|jzARw~cXsKF@aVFFVtpQsvB~~G?L^@CVG~j<2=#pNrJVp> zxi&aVY&RGw(h%rg3qOh+MIB(7_E^8Sqj4ukU@qpD(^!p-G8`u ziD~Ol-MaJi$aIjqGLn(BzVOpq&NUBD!>au5yx?KZ34i{j!NZl7nI#p5QomJWJ67NF zzSSj6RSJ6xSJzRl``g)boR@#sWZ>d)C#VaT!_9;9mx)MG;uC5#6{T>Fz(o;H%{Lx)S%%$72R- z?oZ(p+chzlxaCncO3{}wFf!GHDFPfEm=QbyKo0;;lsLW%?jwMBPtVS*VSt1=QQJ20 zA%rw$i%W9}>LRT&_Fj^>ygk>Q!BlOeL=mQ-wWQoxU3X+s+ zML{?_-0Q$7R_a8T{Nn->9a0(j@=aN1JwqiW`6;7#FrPY)&%CMjE029@yNy_z z9HS`E>1<<65MiEo^F)|`V6SX=YsYVR5?;qh8*%&h38cVMcHNvC1{((>AP3k#$+1zZ zkpo1bF160AH%QV5K?v_c4AMxg$A?fm4XjdGykKj)@5D`o>9i<~2jR4Ix?%)>ORthP za-IIrykIDwCV%IAD{UA3oZN!18s(hnjT^IaLc0q2)=V#klXY*{fnrf*$k^?Zw;Fi^ zpA8rq>VnqJ<%uP&fuxEd=P#SYi-fowMBb%z*lV@%^XF>qg;F?1_jY=q_)4u*%fb+E z(q_F zPh}qBdQ`ODgt~wCCNMf1T`f!7V1GNz^Eg2l*Iy^7Bc2UEgbBki>VQ5UD$78wFQ^XGWRtPPPngtrfO4>dFRkZKjrLP4g!e-FL4`l=i9qSsdEVq2#>FJsrJMKd zr@{VjvGz@SuURa_M98BhbQsR(d*!oOG}CF_Zt>AR)LnQIs3sF|SQ(Ig(H#`aW08rb z{I1$>S1*DssJh^>p=k%6dB~Fa8!h^!+j&);Nu2Vh9hlMl!RSQ9j-xQriSep!qkJjtbwwutLi*)JZiq0hBZfeAFEbj1rGl zgUaHPj-ZJx{Jt5!bgv&`qvWce&T*((gB!qM=2H}?+U;$N^rIr4=UW^)8vhcB76CZv08XxCjYg#{vgweydtqg zfxz5_DrIbDGE=lj^M1BlsxUDbnv|7|PWBbfY2CZP>pI>Y*VYH94J94QDSXxaP__r0 z@T3gTZ8Y}VQr15lR82!Qu3K#&4M#SoX4)lp< z3}*V%$U=4_(~bKG!lXV27BBDAu80@4z(ci`96D~ya+*BYxR z+-#N@JbphXf*exk2gC50({IU0u!=^hN?fAyg$5xe^4d_rI2#*T+x;Kg{VWc?cw;Rt z+o!*OSDPE31>nH$B4X|CF_9&l1pP_y&@Oyujj5IRfFwV5-%R`CgAVU4j(qm!Aw|90DycePgNB(^j2L=ofc0lSvxns+!v z-GMYL#P-NOg?m9AZv)hz;TMY2Ep`-F_>a>_FkI(#=uo;2gW5}J_e_!xKld*sRKanT z-HC={f9G4&=Mrh(&r}^js0UU0e=BOHP3W5qBIYsj@XHLGDh5GL0J9cCc*&zPhDLUo zuXe#3?-u4*iTd4uXqP?v(K)pH_AM`Gg2DCA?-QTNIe8tb@uT;sjALl@A_x_!KF9-@xcHJ+S6tdns zy?jw9{?&=$?LqEkPnW=>(oF3lXC1FErYzR%3q^}3A72gdYa}21ei+Q<7kVfr)UI)d zMjL}hoM`*gM@28ZVG^wJh)-hDc2DsJUOvTIE$o4j4}vH-_R*xf^5hm?cWg5gt~A$$ zG!84o&dS=~H{Z-NUPrq1S7stxG!?Rm?&Tzo+DlSxXlXr6!Oe*=xJi?!zq>7HMRq(~ zW&8PX*q!tW4QLsVapcMM5Mf+p0~LplhZk7gNfj=Kv%4D<@TSg;xI2!zSQE_vdL$$!3*##2QIPPF<=@++DJ5XpPVX(4QOW^=8HJ`C!LKMp}=&_n7 za~pJI>SePN&g&Vooo$CB#z>)BW8v9LwPm&>&?>02-g2vl^`!VAH(yajh0^=7Tqqm{ zERCh0gw)giKDoXDeoD^h)ccRE_^E+P^wv(Il1^RX)Pgwbb{zkYrmqZ(a_!niQA8R9 zLAs@p77&z1q+3eq?rx>Kkq|^mK)M^0?ve(TM!HJ`zBT*#-u-tU>dZYe*R|G}@#U7& zFP>R%kHknsLSzx#qdena#Hdq>BFXAxmm=V43&clynq#`m+AMS;0b^#<6@Sn4$p?p{JyLVd|<+oumY9$nYY7CnSQTJsK*i_aMeZ zG%`RtwLF|$-af)zI=&+3zhBAys9evFs%oRos;IE%<~wZRbEFsSvfFTQmGN+xT>5uM2)Lwv z?l7u&B?CZ>VgHq)$F-Mg-Y2KYwAwq?*DuHzSlAy|<`cp83MZwQlM^>AmWYaA$dX#N zvF`k|SbB8$(>LzqyUqs}-1q>~Hyz`1C6hi`aJE*nl|nWoc$*>pED3-gJX~BQ8p4HA zanQEGfY>3<*6q7wCcHh4MTm|LHW}g58ZWNTgmd@Kq;i!xOi#BxkQHu9mqBpfIW06@tLZM{hgXhsd9n@Ct64YEGjA^DSy)oy?Ye>c3bG2kvxI;WKSz& zR;_}LNo041@y`8R<@PU{3eCucPRqezZv5}>xqk33A%WnQ?U~1q8nsHkSj(e9(v{I*%|4pwlomKXGlmG{Knz|ThFrSF0bGwu-W z_?eTXm`(}hx3sjhC&~<<)%O~2c2P!KxQena=jB~8a3T#{MI>CNnyJQ#h)~<>fdg&M zwso}G({;)5NV>0-R&nZNL;kSwW(9t<6zdb_$mjc#nIn`6&(x5Hy&(nt8=WX%FsR3RS z*9X*ZD0PWn^DREn<`jbtuV`p~9UoA`t_7WA2BsFG-&V@Eeep!ZCFzAo z8V~=ZGd@c{;iclDkNvm%96|3H8yh1s5CJjQH!x@$)>pVcwJr64#L|bD6Dd^O&sX*t zGIsj6i_47t3ww(261~THISHe`2Fo~km)>g90@-Fm-!k6F`*m5m!?90|2~lDLQ+9b- z*#cbmX@ag%CN;eC9-hzQwa(v~TKJ`i4rQ_Jl=JZ{Y8v62ZW38)Ea9EgJ;MV>Bb;t| zwX((Pm9BewkZSPD@+Zw$=L%Wro6{rRJF>A36E z`Vh1MbOQ8WhQg4M19*lZfskWTHss~3YwrJP0nCa$ZRnd+LoHJk?U&|Q%DuM3z$7d5{#5cxEp86~gVZ}K zuQv8y8X4QAs4ANqD&7O-D?(NUl<9YA60Ac?4F*3#Nz~T)GOrv?#}G)0axM*$`>hJ)4r`o|R`li6S3$TX8<$KZ|{pdu+8WBX6EdAYu(f zuBeg8!(YFCC8wswy-|D@ooKBhhuga!EK$`z!x z5&$te`R?tF5%1;1Z0b`)MTWadnt&ds zcX%}QAZ}xGDFOm`pvnPUlQB^E0_cI#S5+(Gk&o{fZ4Zw^z9;t>7uDMb58M8nD9{nP zGurICO6*A?_14y+&mc1Hc)ctS!Qij22g}kg%jn#`NL5rTCjP7U)#s0u^SlCXf8{F~ z4qo0hklI235mt~?To!+=R<)gn($(+E+11G|$)??nlFQ4A60-U)O2)2EHa#;3H0CyM zUOOA==e(6T8}j;D`WPr(Ab5kog#`9E&Xt~*@Hmxd63StTf-`|=Wg{xOnHBhX&O&Qu z8-czpFnRO zUlll>TS%tw;XJ@8Ecs2(`}8W=_wqBl94Zs z9@M7+J247BOkx*t-@CiNn$bU-{)7kUz`Q{RYcVCIa4cNNl5RYA7eGMhdm(&v^N5_B zT%gn#=j`qMvePx)AkvFShupBA?I?$@OG}#8DCvs{I3Fd^M@`~x)2D_eH;w(>c|INz zqmUxrR*UQb)g_8diLec;?2%jje@f(r5re!5-w(z)SVh4eD4bEGVH$GQ^t0HfMD0wa0{dGoz@=_EhP)tzqNJQ{8wJj4S^HlDdYfeOE zhDS0C-kju?J#=*Y^^ufjg(I7o*_qbZFnuda{1uL@*5~F$-j%c&o_D(iynOp#P8wNw|}{- z77QdJVMge`MLyr<;kX~8{T=3o-gmc#^OZ{{bmOr|>Zr1s7MJY#v722wS( z4=O$@uD_fcpA7nF8`<3@E^7s1p7PDV);@0g$*?%!06{9hX5uwnKn4^7@T55Gf+Sjk zo4-Am9gdP+PVtbylrb5|kyvn@OgVxg*Gs4DhZpC(DbLP+Rbf!CGX#&hwFz+P!j)bKzi`PmWKQ>TPrh(H%u-WoQKw zkKoIH0f_@C061m*tZO&r+kIU+Wj4U-+n^Let5@sz=Up-B` z*a?jGei<0&I;2a@-}-KGFm=KDaYBKy3|*n$ZrSQD8W?L73*0W08O$ID1wbUD!~~p# z1l0<1Ttx9N~AIOJ2^YA zS?ExAXGm{J(%&1I$)zf8<+pk@rp1$8aro<5H!*wtaj=VgB-A))_5?zt)#}YPA0;DWXu6;ak^x>3lyr{u zpn^2w_j3HXkZ?g4udoZR$CQzyr#8GS8~Rq-!knC;(3*u6{EDzwe-^d_0LLvRBiVn# znjR8@inwk8le(EA&H4Y!?bd(G?HncKFGXt<;pEIn4LTYBe5ZKSym6aC$^i(XdtJaJ0Z|Bjj=XqFDXMXAxvhJg&g* zLTA?A9+_$e{b6Rpj7$lya>a4-SGbw#QC)xM%zK|(1~SAdFcOGpE1KpjSjY4lA)Gsq zhkUizFgZDi*vv9~uOGFHyP*pbx682am*?wn)RMMD;eIN_n}%R_xI;`X4p-rFqM0EM zo}CdtKUbHK#q}yUAlNmc@hQz3Zw7`r7flkg$enG-+}2a%^H)HNVmh=9^=lf>TOXR| zmTjg`UPa`ztxpc4b*TxK4x`6zE8Gsf0|PwBD_=k`5)lMzsH^{F?-JlC@Q>Zk*!lee zr+XMJ@at@^rtFhxlJ9xL$7gxj)s)=T(hLs+95v=--mJ|cP{$^0N9P)B+K1sB`lhrj zq+y9|T}y8{b-eEGSW!Ol$EA^6SYB=ih#A!S5!0v9A#+}sqw%lVW{Vq!cZsP_>_6>O zl)#Gq4||LHclAir$=9qUQ97M|U}9C7qInb<@Y4jG!=NSv=OHl)msp_1lq&t-T-Cs~ zo{(nG(-Ba-{*9i1(-G+dap~+>+h1n7zHmpSLbZmIY6cd38Rk~-X2C)oE5I*~h(KURplhDKeCqeB^`Fds)k_Skr7r2c zFKHg+a?!|ADZjqng+EM_BvYSw9H*PPxRR8Jh%!g?KZ{d;2Q_Yfz#UjxH!<@1m>3sD zHknx>BNTgb1{&-nYOSD8%b9$xOurq`z#B|W{YX_}=KfMm3(R>)_oT2gBjYKvpKnga zf-LX>0R2|-Y#Ig+#O*ZosVu5dLk~|*CaMt@E5xqG_uH!-ws2_~8PQzzWiykmMI|w( zMME{JQLiCbZhgGYiLfo10a}}RL@ep#!Umu{u+tQjsOR?|4?9u`U^xc*!AUm;vWlfc zG`6k|dtrg7@ix(x&8c|h+&BgQ-TmGZ?V_EZk$9}OpB8d41y*0cH7$0i)j_ThxlbpmQp~ZFE_>n zV+eZ0iO~dadVLZ(zZiPv8k(2d>km{!1vrwC5Hep7`2ktdX1hL&v2Q2FmRJE44~nP9 zNTq!u6Z#;(4xGgM5wZdTf}_7?LTMD3U%JB^**})WS2izR7eNO~y|k;OV{HY1w(p49 z2H5=>u)I=H8AQ0vYEHe}wYc2ix#y{8v|jc_Ljx;7!r{rYxCxQJr}sbsG$GVjkz;v} z7Pa#lDmOnK(cX@77Kv46M{ z{Qc_U-9(*GTfZ-Ev6tR6mgs#l$#z0I9z#zj$XzbpxD!o4uq zzHapqV)15bk}nLBcCLC~X>LdPGN!p@f;@|PyzO4?XVI9*+KPj-GpPbq>iAwn$U0n2 zfkL5e52~0{Ei_5!dUT}>lP6JU=TNuah1|x)J1KgxJ+(G<+^n13iA*`v<+tF>8fv|XZZ z|4yrdYt%)BE@|Ira+ne12lKGwesCCN*Io+PEG}SpU=&xV=&m<7^0-T+%2hxvX7}fI zfUCVh=zcZp)VbmZ^J`Y+uvX91`*;T~595{@^I>^=<9k(I^4bv{UES*+2T+kBUk_e6 zIgCx4<$Um?pq905@fpFTJS8}8_Ah*J&7ZoDmuF$*ji^s*5MK#*bdAxBlmkK2OhGp0a2A z^tm#0rTn~~=dNiQ6blcQyV2il3+#i0%mIcNEU9OvZy&gRsVX{t64lc~%fX%zHH5jb z`SrQJk+oHanXUaz#%u+@jkYVWeKRdr!Nd;|Ai5V45+Gd3zp+v9<;$h(BlW_ylejSJ zv;b-z;7`F96-01iw$gTu>u<+NIDz$XPiRThiB!*pH;s%>Ir>hG3vPUojnQunXE341x7-2!p?!OLN`ZEw;c5Eqwpsl~OA&eS{o@(i(w z)Y-47q=EywMZ}8o*a3 zCiD<$x{~lA>&x{;n-%7T_1Bn6&*>KrU2M8D_f5Cm@Fl@Pkgh{~xb;WB!4bVJ+|9YP z1VGuz-&pz=dwl#HHM=jvr%7Wc6qS|Rz;p^}1^JFYL1-M4kr5ppc=!5&)Yj|g(l}`A zj>}SG-Zx6%c14(3L9>hKGy{qTl-N;UQ!`uuRzBgHVs(->8O!g9%o=bvWJw?kVnq-|l*@KO#w^Eb_1d;O z=}>b5_n}O`bRYZ3g+c4aRv_ROQ`t`dQrN6EWlDmLgFmH{&TA~YQofS{C#k1<$_6hs zR-#stP4>uABt^MkouWj|gyjFIUgZDzZX_fmsH@NxB0WS$iHXJTk;v>Bf#Q`6F(&FY zxqUBfy++#$4u8T(Xs9$qkxQlgO3g2UbQGsy#;;zMK|VS!#5X-cKT5EJKnYJpTv8H6 zUS8ho-$6I2fLBP-QR$rv-XC&S=nENGRQy?KUMjCLMJKWaOu1^Ft(aNmVS8k;9|n*(&{i=Lb$3V}Ss8hgMuWD|s}QID&wOPPIl-*-c$~@kI6m z`x|+f@IiAdMjboS>g$V$&ckKm8_7K7lS|af_YgVXvWQh2L?6*|ytYJ-DMTx_sMTcr zXVPk;RFHF5Wd76^=@gBF|Ffi2T6b4hm~%w#e$>aZi@G>A)sb|I1Co{xj8^Pc_@Y$a zi-~n?U+Ti_>Np9G%K{xs7vfE+iOOsVv}2R0Ic~)%uO_p7X@7P!8(pmUnx9@qP4vAN z8|GO5{^{wYJM|>^Km^@GMUugPw&2BUd>T+}kkjbp6zQ z^Rf|IKM~>5@V6RohgO0+M$A+$CMIdP&$9OE;W0lRlee}=fWkGz+MS$c6c@9K1z{|L zpts3!mlI~h2w&mn{S=mcPcJ*4kQV<5is;X3iE{z<%;r6dhy;JhfmrEZfF^H-?{ z9)ToKb0(WBL#K7H)|H~dTiUngCpO)=@mEDU%L;8cvN%+F7@0~J)by2#trM9NbrhuO z#eWO~1q)ys5@2ylVQ9o!$y^7uM<6$hQ`Zb=E>H}@wpbc!+?gx8d3h%S}dwmKmz49vOBaqyhf?5^v3GkeLpPo*J+x|8Q2?^pOKd~sl>D;|2w&hzKA)ZOulQVasXW^4Dp z0b7lj<#(N9PD|0k>(W_1C8Ci1#eCk4qMEPz?B#HdXs#$ztew-iq7WecADni+eYng# z?+&39ag-SBOJ%md4-oNth`+1PHGbyvuTIbJ42Di55GIxcm6kp%CL>E;*cxPCjHP`H ziIrM?ptr8~IAQuADG38I=#P6>!-$v>*JY=_HWrp}(GG%T!~ zn{#R49JisoBrv_;J_sjs=dRnujf|iydl>$$o9y9>)_0YrojD`_POXoNq-Ob?a=Zxy z<9Yb}E_4jPA92%!_s4gYfh61yFa9MfLkGyL$Rl-nSXqrbO7rSTKYm-CzGDO_SJhf) z5wrb+iS0DOSurvfY%7_cOl`9z6ZIDV(*~jt?Ps*@pIU(>5lT-I`#Mlg&R6}0!WN+k z90A}$=Q1SWPs6+ot^l0Jesx8~#T;OG6cW;9pi#&P$@prf&-hHGn4rxxv5!*^IJ%)U z;r4yLpm=YP2sY@g`5~cC;ajtsWhv}hP$hl4C#S!OtYmV7&6oM&itQow;oV1CUzHrr zwM5OxAN4+3SzT50n7F>nF!9CF^G4+5TY|YD2+o%=w&xQRp%?BUFwzr)aZ~f(V8sWY zeM0gkNYAGp!MHQ}biDj9k7@i}s9T*L6aj!DliOlE1ZP9B|`fpOPq)+YM0gG}F?fcIkGSb3~aWD2&o((umJ$6^K$jtFp zVvtrFyx^>TlDF?uQnoY_R|)NkwBL5DIHD{_9v~(CVD_b0%z^i)lpnxqpT(XQArX_R zp6kW@D*sb$=Y8eB4h>}`MC&Zqdv7rc==?&i_wEe@mOpT##cCc~60R`W&m&Bg8?kC3U1Kx`$n*_OyZ=tFea16jXVx_3|WrmnGAaSum zApPdF@@LtCoXL|BfDRuS35mOg-l-fvOX+qeKg_$Q^c5Xx)Zvp1cP(5N zwUUXxr(e`VhkzwX&v1voz{-Zg45^o0rRysgVB*3nYq8iKukk2{kl;slxn(+e9}>90 zhyl`H19k%M?Ym%-@9Zis`GM7?*>Cq(==!h-o~PJVBtiQlB=_XK?(?z%GnwNxE(xp;2>4kZ5;#+IuHXW zun|opZcYUXd7hR*#A?JU=UUClvi>Y{iFw~?H3)*aE2}e$Rggd2xnqB3%w+Mou#jtT zX9r9WX#n1FD}}Get4-NDn*5VCs?Ha|4wS-6Ns)m32e|1<%Dq6Kf(SfxWxtE}WK|CQ zib}|)*#^^(h`W9!nXiCv-7Bd-L52+6qWU5}BDV&utj(Y+%ZNr)WM*_G^xe5Q?|e&l zo>1eTf+$eQoY>rT)K@;iGUWoVT2u0;E;3yGH>$`p?5&E{;Da=f>{c960-FJ+4w5A#F91x~Her8H@NL4H9)-dGsKt>Hj9qvMGJx_PgyWZS2 zG>i;!k3#E5cWE}@NAHrISBIo7U{l%8(lrQ%&P>oL} zpC+$oQi$fE_=NcP+}5hL=tOkg7KO!8Ljx;pSr72>b5y9z!3F$YrogY3WP+ALgrQNx z?fc~-BBBh$gn66=noPJ?6seD;m8EF(dF&W<^EFvl{3yMZq(NLp#BGKHh9<&wTWiNm zftrMH;re}?r9aX;ZiU<+Sq{Dz@KthUv3y z<@N0UX#qe76mpQJ&J?xhL4Q1Q{kcnqsir*I*j!sbxO*IfQsq|R83{;6hfvA zK)lAHS@tgU@$iq%i4gBQvc`ApYReS*pgJ#)q}tT1`JVYWzm`$qP zBPaO$df6C7*b)^pmARI;>0E@-vO^=!TWn0UZ)m@!1Ge?$OOC}qZURnw_F;ySqWR<> zUkKv0c};&Wqqfu$h*H!7o`|c)^gLK-m0~@x^xzx44Tk0H9Y>nG*eX8|FhTK|n0sn$ zXMsJ9+3yiRvt%I3rahHs5%iR%Sq2v8%NA7e(rz(K^sgXg4lV&~5M8u?7jgUk5FZ~0 zl6v8Yho>fyskjfNj?{_L=iq#U6I2cuA%ymLw&?ytw7Yp(1|hveR7}ht83uF2#Lyid zx>$6#&elrO$BuMXQ&qC-&;d-DI%ilG$3&;vifv zIm-7#FD_L3R=vgwgdBzD^b1O*%q8xwXB(U!A37U29zhpZ+7remdMzz2H+Oe?NC2Ll zP~k2Oa|uI@|B6bB1AQ+UUTxsDRm-9QIO#QXrvZ1X;*N4Ds4}sbpfa}4P(<3v^ZMl9 z)7|seSkYc$or8LMuY37w_bS=BF#v`Q)QOU1qH4?u2r05+lkD7=a$@0Ieh@m)hxmX- zyTTgp_d@X3OR|@_;Qi&XxTYJwU7Ff@hl#yJV=U0Job9kL5Lro-)m2UHeagbZTX5X? zi))Adqj~&C+wk1mrXGjzYD_}auNv!FpAuI49?($55fzZd2ZAWI9iQSh#Yww&q^jr> zVWKw2+=PC+&p)AaIERt-ysM*zsL?n5tLLQ%W7a`;^Y&(&qr%amH1)Fqf|SCBip?TT z6;@oqCtvNW>(E8d()d`<;dQn#tx!*a-DvdJkcX%l_h`U9{xU`_R6ifSKPh>uGey+1Fdm&5F68TRy31>NR*WW-1c+Swzh@oH}r8To;sbJAHq8P|4Y<@Q`! zr(J&H;+u|4una%cD1tmA|Dkmub*s+P7H8wKX*sp|yHtMbiT(v&a7NDPP^qT0v^$;v zKSLC&Ke^b z{5aXz^romM(fU{ZU%qN(Hq*sK5+qrxQ4CL-#V#0~$lz#K**$|(9TG79Fh`F)fWiarF;5KlRu)@ z1fe`7Cc#Zf985#^+4gXJ#~EB5*746vxOp45$bst?wS3a8T3yam=CzZO)|CaHHTvlAs`ui>pzu>q&u04L69?f?auafM#kt$Op z;^3q2->s>sE-(M`K0R9OUzf-u?Fo^oq1m`EYhS#6HFGhS{Qh!tZ8)$w5+u(%>1B6~ z25X_NE!JBnF22L12ZXxmuB*xG0=^y+cDLvRr(VKkF4> zW<3(9F;t6Y>%-V6^>kj=mtmrbN~5p;{H~sCuKbGzA3^t)c5$jBEsNi)(Q@e=WzaQu zRIaB*MSStErbE$6eI_sWxVa3qK(!Aj)D8INrtdJv_d@6;B^z7R`fGmK=QIMZNh2^W zY7|^i`1wR$(bI4|&%it*uQ<4-K|@1>+yC46IKH5uAocQc=x~4cP?^n?1zdz@1SM~1 ztXW0JxKLk~MkQ8^PZ=7Y4JB`ER&0DXod5X~A=H6?PKrM9$xwUxP)#IbasGmgEGc1@ zLBd&&W%)r>WktSYquLJG9vekE{#1N~$4@w}F3oVmgei5gYH( zqfiL_2TY*U^(Xs}Y$U)0 zeH7vWBba#bmfqZto$Buo2Z4+I;f&*7Ui*C4mftkukM#((Eo~mtB9{JW2(kUq@xDg= zAux#cR7^pCwn?3Mc!+k_+O9|JJOpRsHMF|Y189wRxn6X4se8>AAn&EMfQS`0FlGX3 zAS5GGeQ#BND_moL51vA}E(zqbe=h|PtzVDrH;&0@65bCa;I{qMG{k@m5)I&PI)9_< zSP)urjlCPzp=uV#zo-3A)%Y+7lLX8(@aq-gww#Or+PuMKOGbVIIpuwjUFdEU;cadG zKpdVe(WsudyRiip+01EeQ~2zU{8=PK>a95xsZ7W7mHI^aZx|uX@jZmPgY*WC13aKsIQRhn|0)ZW%Op&TYuKf zL@E|HrulMhLsj(+$nJsXZuYCG{;(4EJ``+n7SadlvTs9prY*v~e)n&PHWeB4sY5p6ZJFD8;U)~RXyB`Q0{bQw`7?&B$HHdR9oO>?RFbtkejg;W-s;)Y(MUzBKQs~a zIA#C_W@&D(CHp+rz#at!W##c&I8h)m5fKq(qDrOMKq<-S8yUD zlu;nWmUc24nG>zssq9}gp@;Fcy)d3o)$9(0|O3xE+?JCUO*(dRnraX{U=@Rau+jx{nu#`Zc+YF*4{K* zPWJ>Ar?X*JlV?duMgX`Z3=-Z5(9@MUtoBX)nu0QwO7ODL;+YxFpvpm31;iDvID9fS zIRan8!S)On94e<;22lV@-nw-QA)kdjOCNMJCHZ)1T2jntTB_D}!wqg@<>dr{#;a-3 zVfrV7jXC)EoDC@?k;hImctjll8ztO*+C4=RM&b1r;~kmpu?nth;U62@en@gi0g@hs zj1lH*U8mo@W07`>S!RTsC~;F>gT?Kr{>J*B!Lsxad%kPP&4Fobf`Ve?c~hLi%*5!bVTl>=(WzvUgU6!}KXbvRs(udOx}DftgWPeLmqf z2Ac6iUt$lgfr;%py;*P09ok%+hx9=qmeRSjtAtPHe+G8`Y?^+AALgrb8{UfM#@6Dp z+3={6*q`!soJK!Uh&n(QApSbl*7K!ACoIYscw$654$$ZhM_rh^^kKXZe0#hzmjo$O zqi{V7%+;W+dMnPb{XJKBR2WxaY54YAZFA$YnN>$#QYk_t0QDuq0rwxApU&C7-gfo> zDRyttz3`3q5!*$sF?`QsK4uKRC47uh&n+Uxl*J%0!@DN#M*Bnl%^gHk4_x%*ue^nP zD7X@Gnr>qS1Rc?``lHpS4b@D}E68LvDG$LTj5xC^J^EXplsvFlhRV&uO~hevCm4$? z>vK_ri~2)ZTW!}{V(`E|I3F2I-hFN|mC)DIsp8y#*5xNM_-n^_+n@M0Xw zrZ@eB?&<`8ngM}HhTsBL%2go2<@09>9l3aOD1D*Isf+x1KLqie!(INm#p{CkY`GN? z?u4k=gYTNLESIat({Yy(3Xi`Lkb3<#D|_&Xs|K95M?r-TTpz?=EK9KXHif7SZCU^K zr5c$UUwL8nG%3sQ^-MOpVDRzdXEf;i4yh?0Gg;#~mi{n?_4i*uLx#Px^Hu9JD;^6t z>5llsseRpxDpQ{)!smed@F4)adl}8lH|m_6oFh|HQhA^BKT?K~GNixMQYJFFt2^*Q zgDEXhDvnaJP7M6#kT6j5<1sh4s_HG*N&gJ(Db~YI{O?i<;=B2kpNO<v})H; zkt(>BLPX|1q@#7VwI*!P0TZ?Y>-Re~|Ps_>P%{jikFVUF_>N-MzO)J-r-a<`yP0dFl61(WJR2FCorxH9&VL^NQbY0STUr_o@#Hq}A6unsVnV=iuG%Tm^D-^g}O0K|Z4T zzzD#-8&yH5Ah!cQ9hAl(I!5Q`Nhv5Yv^WIRWX(6ecU=qPCnPSFncpMeS)02s@$K@= z4{Iv88~D`f*Zay)4yrx5V%HH_SOs}WYUAH%N%nZExPOT4)TrHM)J;PQ($acL^awBR z6V;u;Sh0~Gs?GB4TowB>t^osC2I|gxZGYdrs0e?xe{k@9a#DSxjAUY*;J3biLO&Fc zl&`-ex~aQ-=U2g*^*l{-8HLjznEX0De3YXuH5CWu>ndK>^Ameiyw8z|ccWE)Y*~rv zVq(@{?-t@mXXF?!EPDntjVYTro3;1t>LwWI2I|QF_Lizoj}eEMX3;TD&8bE~OWWVz zZp@!-u*Sr+}hD-W2*{)Zy4g_PqZdh1WL_3Nx^=eSv!rO6U6e`s|#X zR83a-#C?2(AtWFAR}DYszJ$SY4&}tyf;n1Xy)>bJ<9yBsCQP^EKe%8TLx^)A54Fp^ zu5z+lo3X}(AgOG#i_8ZLqphbW1oYMuBxr* zkibQD6yQu9?UrYD9M;z6HOT*nZqhIt0BOh1xzqf{IGdWA>)j5P-t0ay1-u}Q-!TY4 z-m96$tpApLz4+EMl4)Nm@Gd1JCB?_a9&D!E^fNFpe1`viZRj>QAZ4?foY7t$I?Vt(id6(UXP75peA-H9S+x)!^w>qSN&GZHK;*iHX%IvQ`5#vvXgE zU(HQTs$_5FFaxB24!o$kyt0~pfStk<^e;DwDSU3CO-TdaI-Cjr?$%IlSkugX=a6!> z9$M;8`nJz@W~&jQVefEIEFF&4_ha zK;p#5-o7jlh;v(Ov8w7cxhaJ-+We)~IJ;z^T4Tc?nCX%aBcyu}IQ{WZnN(V{1;=%e zTVL$e!3|SYE_GaHITj1Ln1VtyKqIk&y|D)c+kHDYV_X zG3J^uybVg;VO)dokozHv>lwZ#P``0fqA>U-IO(UmuM}k2yn>+uT0-@Cil6SIX|{%$fOLUYwpmZ6&PelaVtl8(~%AIGw^ zVea7Myir)yvote%V$_4P+A1a{27xeDW=2ur1sqB<{AT?|RW(&_Ets(zrg>3bNQn{h zajCR%a+;giNNP&bQ{336`^b?#DIMiV$Z<2V#NSOY+%5&XnK2D>TQ&CoRgdv~4Ncu0ap}vnX3mNF^sw^kC z6l;T0A5tRWWWJwifVlR4_(oaMO~(*^HfS{!CXp^wJ~p*n`x%FK-m`~G!elq$1Npyf z1?)uY9$Gw<#t^sguea?pE`ELnm?bS(FkXwdU7hOf6)}EWN{`tpkCs|a3BAIP&Jzn0 zlP}xnlOrRa>*|sL1+}~S>kL*|2-|K4CEsw<&blu5wW=gTj29XJXv6W0E55cEGBL@Y2Z`xoCb4GmAU;Nf8G+$$ zk8Ks42qjQNM8s2v6;vd20oQz$`MYrS_er~IUUkC{ZlvJf2fA{5r z?NL#`hAPcacE#?%$hdhR1-`Ek(0^DVuMetw!4qYU39=ds#i=rnIPD67Gjq zm%=z(Q5|ci<^PqdnhoE;1X%j!sY~$KcTxyP5)TRP{>;}}sGcHNKbKan{-&*de=9@m zC7rGBKJVJv#3&*gvm59fz#QAfUs#>p;_XHlYuU8U&;V1Q zzb3L_?bw--kI`c4_>qFPI3-FFhi`MB{W?a4UZ+Ko>=wr_bv0Dhf&jw6B~nduF{uY= z$Q3D2K>+$ZQz+{dT_79zra0VuK&_4}zP4vtveb~DrNf3+zY{?NrG*dx{{he#9=9e? zCBnVSbMF1z`!6@aD#6I_iW*oq?<_vU>RE$F;&r|ljA^4Wm?4$;5&MOL!rpUoz9Umd zD49cAb5V6ZdG&7Z@9}47W51~*={cEp%iaG0Mn{Az6^f*wuK<@=nQ^b$y0_y4x#rdu zZgN`R@OzQ8un1g+X#n;M4(_4c?WW|PVjOwaC)6-}v zs%=*}_~c)5GP9|&8=G0L?eD{I3Eh|b3csTPksBEw7k~8%T}6Ncrf`j)gfJgr)rK`7`+qzV6e*!Q^Fs%!0D^ds+W z?*1l0j%H_c;*E_sU1h%@RZ%^Aetx=KB1_AO`rXuS!=mEI;>=rT@yh2tm8`Z6{K(X) z%fUX)b?Gqy(R;YC+AdzU2mu)Qwk^~#P1WeVg-mXOn)>7x7TMBT$Kh6O5Bq~hMTrjl z+9;=sJChR}(yYWOT+) zgqX5`u1E>f_GVAffFB=T*5f9PTov;B`W)>C}mJHv2OPhOTYc5D0sl@mn)EZBq(#jCzbWy5Ibi#T%H`ZGr zf(0*0n9*LabT0CN6Vl(pzU+i>~R{fg*Kz8pEqjLHSa?0mB8Z|I&sr;w8yoDwJj z$l!_1{8JchWI?)^nwkp3Gm5F{x(3@EM6Mikx05PuYW^Mb?-dKIw2Cpl^2-$GXqH(h z9t*?N``d6_i6hp>*Nk(dK8Q^{^tlR;kB<);Z;-x0Dv|W7SIfX=O6Mwr8#$=JygKGX za&ix%03G%LIDirG4ZK_C!prMM1}3H@fXNLg)&&d08r71`!>BEo#ZR2E=+QKsq#jIM ze07LD>I)2?QLXey_SV7Gbg^|PUR z@k;qK%iBru#qo&`Z5o5(-QRZILKtvv)Rc6n!lsI?n8c^Po`++F&2Rj3D4(xar8-p4 ztdoQX-v3ZB-gp^fCReO+P;*)q&3wtJBwYXZ)HtLZWk#+7lz*a=?; zOrPI{6)cI?$`ny;gGq4I)L!cT6I9~)dq>>)tkpnV%)>(fLXQxfy@7#WZS9%mPmN7# zVPSIX6pY8TL8>qRPYVz~`+A=;VES4_&IdhKqv!T*I8*L1qHou-d!+03CX~B zZ&aHmCSDM9dYkTEiKG`!4hL_WtW@wDl(Tm4 ze)-eDpa(GtSx#Tn4;bj=HcpGfEjbQyCUM?JM|k<~vh!~O0m9E=!60->PR+nWmLl5) z=EvTio)_BMpy8Pvfts>`fq}Bx+U`kp=Zjm&C}oyYY%qh)jMP5P&}$i52anCg$y{Il zdnPO)@2#_6jG0mrCBZGk& z5$`{>H$*N$DASWFRs-$x5uvQ9$!%ap+~4A)&6LXBfny|?5F z5~LW-i(1^10Kc zo=#SGHXXuGX&w#f+jHSq$=|l$hel#bY9jfG$r0^O?l9O`vTDS;{`O9STwJhip+HT9 zGz8;E@tQd8{Yr<45}L$w(`uOn7)z@#`ccT)3(+bc5fgtU)dm!wGiBS>^SKRV+ZW4k z1NDZ86g!!|vl6n`KX6)nzkk5s)mt1}QUQ^0$u&1_P8#qEX&;0psH!e(ZuY@JkvMz+ z=>pYg;x~yvbHa)C9|ZZP>-U^N_FC)10#(GBNF?aO0?dKiPSQT;PeOw8R`8yF(D4jn z=|oRHVNOemw3IEybIabc!>Q&ABC}rT{xBi2_^Toqne3ZvINSnXpT@GXuppYHVEa}I zYlPJtgXjs8wxA%aYyF_YLd>>%tvAA7OiaAsfs{ILmqJ}_8IHm1|KsT@qpI4XwSX9u zbcb|zmq>#kE!`<4-6`FQN=Yf*-7O6wf=D+aAuSRD!kg#5@!lBsry}>9z1N!aOX6qp z$lqn<@u+1&1{;hBIewcRSVrHA(PTc9WXBj(vZ8uQM3Z%af9lbPZTbsu(-)|Eh%tML2H_<8(K9 zEw0^vXs#Fxt&ET=Z?e-wmNP0)jNbPr;NA#5%j92^)V zJYhh%UQO)q@$u#5<%H~1AMK*w|M7T>7my{pf9qDPuF>`hq_@0p{+&g~#aTkK-k*bI zDo##LtCzKx2g-T1G{YZao-}6^?UEzE(NNG43V|J!Y+(Q*1F7XP_Dptulxrv`8ZcP6 zq$IE%@5?Cqphloc?m%kFje};*;fL=xh@)A5T*gF9 zJeSFtz?t+x*#m5+w{q~DV86MwOC}J->F3@z+e@4#69PQf=N2Cq^FQf>dAJ*2vn%7W zOJdAQVycKYII{Mp7O>QYES89H`|D@C_4#-#@|`Pg1hFE8Id1mySI zH}8iLHdgpF#>dBHWMrJd76g(TdAKDMpE}M6qp$4mCqVygxRuomG4aamOv#cDMI6Sq zsiUI4J}IYhTNm`J`}tk^_Nl;`1nqya`G%u|xrI$6*+o3!wN0swswV56A;f>*>Cnhb zR>dhNM96~x>K+zW#Xh#KB7X8F4E z$Ns(wtabN44_X%H6y@EXfvcl+iTtsqn#t)jJz`@`q0_FSK~XLZRSfa~hby4ULSVAL}thc99Ri zu&x0&khz70EO$u|$`hTkan_D&p6KU|Z#1Bg%ZCt0azC6ek>ZjkfW1q%x+9RVic|7l zXX{$nic#&C-@~i1Hm`L?2i0?DKsg3#M(Bq@ED(@dl*Bm=OB&H9MwdJ^)B5Di6KSsT4N}`V` ze1`MpLE+o*l|3uu?53iY6zOAAkJ~`0w%uG`!X~VQk1Fz(CZn0tq?Oaoa;te;kUZ3^ zf<9w0%?gqO__%)Te010NYZHa+d*V26au2z(WVk}^%V$v6H@sLx+`P=}&;EUx7Igbi z(-sCnl+I`SMsP~q6hB7>KLdQIB+e^M!<*&oWYrz258Cz|hhTw`(!$Uvu1g+7Hic*t zh~s#7BOoZq$jkdS{U{p4gENtUdVqFm*zMe5mY`!>P%J}m$#l-dEk8PmOpD@7vJ9ftjM8gmNvhl{E>RdHr z6NCcgK;`-T3-E)Z;z2KiGR}?kmK*O<)j8!}DW)zJ(6^sbBKF2iPs)`E6^bou8);xo z0uk~S!Pjt{=+`}$R8Y8Qv`ac&YZFq@ATZonTT_Fm0Xo}X)I{4o`Iw*I2hjuDlchu^ z%V;Ya?&Np|eEFTVDC&B`yJ&$=0Jih>^<5_<{N{Fmv*G@{$5e+AqmIw#-JAZ4)|X*< zHc+?L4R179ghPL4E$mMR=x%NE0Okl_y)&Cw$lal0u)uN14)E-RP!YHaAJp52hjx$K zm*qZ%Xwy#+cwO^cYcp^f^vN*0zOL^Ox_LQNe0wU20Cs0Yi`}qp4k9fyD{B;pUC^-? zyBW1p?4>PqhZ=qQh$uCIG{VQT+r;I>Mm){=cbD&qt=lP!LH*gLLOS-MNV*X|jFieZ87$+7W=H z?PM*rO;^yjkdpTP+&Gf%k``dD$pfeDFf2;OdQE>kydi!Xkx#w6fMpt0iZ|*JCv^@= z9LmB1=pEhpmFRNQ1JMyvl_shOOYLa^a5I<)ywCk>NCQlO7A0HpCN<)#4 zi@SR-5HG@10WxWogYFi}7A{wx7fe?t>^?R|He(0>h?T9bYI6mJBm&n2Y5TL;U4(EF z4kJVjmF;8+0m7&SLuZcAlDXis#6}IQ&R(=e)~?8e!-r(UEF>bXLV!+L1CxM=gs7{t zGn<>3cnj?7c$pqA2<@CbJYaVrtnBC-xBklRezC(WWq;Kjp_{$B0YjXzt-yT6dC9>(ysZ6=2V$7^VjH^SaXgn6< zV^aeaC#GwmqX;$xzOq01TQC3apBg4oPHPPz4i z1Tw({x%gj%%XW~7A_dl0rOL&;$k1}8GS73b{8m*HO+4|Zm~@Zr%y4un49(Vhqu~rF zoC>so{F=l>$zwU|)a@yWclz?ua-#N1RvhK7-+McQ0h9s1k{JL&yAST$1Stq%$wj== z8CD!2QkUZ>=r7x!#XJy?j2^Av7(O#@)%Kt1h#$VFv*H)Ovh)2ri0 zZxV*}3jo5xlz+nFo~hr84c-F!tWhAe0Z6$wGaAG<9FuP5yp89tC}03#&Kgxp7oZae zn;LvRtI&act8IJkaI56wi_u*)EGvL|$shTr!bZl&&)-a#-W9rzFQRMU;@wMzA?6+O zk9svDKCYlKSNsh3E%*0tCDYNErg{0Y5AGU_%E(#RJP-aTb&qoGmyDCV-yJHEPnmZg zoJ0Ok(u*G#AhhHl6L47Z(Z-Vf`EzUPSoGmtsflp1zaE)s0PMr!J^?jB5J#Z+SQ!H; zX2b}4`BUlJ{;{c&mLIcAgRdWm)~yiLo5k&M8VVh6}ZY7m`Y(W-`L4oBp&~cio(tgF%gG7|KuI+V*tAJ7SQ&; zPT7UmEeJdfTvYKeHdMiY+tK0i;FX*;bYkIFFon%P4*Y1gL?xlue>%M{*%6RkIxQHb z|0TN%EZrdcwEzKs&}qe$fugGFKv&nw4PPxQoXKD(eh(Yjn=Fpo^Dr7FzI#V^E&fHa z$Sx|&;$FbHudO4A`m`tWJ6s9x&(w4;^l zfBKU>UVC%&u750XiDz{!2{)5_y49$eDoZnCi}IRqBNj^&+I07^771L?nCaI@Prl;! ztv^mHws&&kq>;+Icjl{!a>z~eVj;|2D4Fh5k_Cx^dDot^;Ww1Tt-4?uYN_~y81+5 zO6E5om5(ASWJORznkV3u`N?>AT_X$R%k6$7Le8fD9E&z2o){Zb(#NbGLx6dZ@127z zalceZU7WiUzxD4EPFeb?mP%+J?mA~`@e9hk4=63+IK`|u1H2ru zJ3e&`@EsKk4%i{>+=JEbDrj{o>n!nMp$5kQSQel`f))J{e=n#!&w9s?q5hBjg@D(s^h!%920`+0602cn zU?ynP!FdWAWKIOAAySf?lY>|m05|>sZPCKtdVtM_w*<1PW0IAhz!r@gR-~h4Trslf z!6&fZyY;atmH3#6KHllYUFXxk=rA!h-;Bz8Vr~A4+kvH4&Ojn1jN> z+!>q%TpllzmR?+WtfK{oDtUMv*0dL>Y$&|;K~@$ES(7~Z`H`;r=7EnUMh(|s#Di<_ z6Et%pn${h@r(<~9YB-55Mk#$bxVG?6nE>ytqk=>~pBp0to6%2$sCb(<|CUpJrTj?Q zHfC0&mx_sH&~u^B?V{tlCRCu*Ynh!jEy?{d5vM%2ci0D4^x)v2zRDR?#0fYpjXaRJ zdaSG*_xrg1(NcX3qqd6>TL^P!b|KtA3mpNip8`tJn+;U}r3O1X1Do2p9|0ihf3(LylQpUf3 zw}ks0n72D9C@2soldB>BScxH5OZ|Kd#QGp@o&3A|J}D_YIeF@)EQ$mlzZXtLA-_{L zS=q^YI*17$1+CLnqg@KnXf7KgB!FF?*&M|Dx1stx{f>NKf>GafnN7{f`M}Z95qR9D zfJ*^!zmuG@IxQjQyZRydgn7x`;aW{PJuafH(NRiGSqFMktUh>^xcm5VyUT*(XM?>R&?mlhlYc*}{QzvHc4+{-oq+nXK z6MH@UQsUc6>*ktwLnBVk@>(JGvq2zXN5N_Lv8LnoYizhRBRe}gHP)-^>#cx6@%Hn> zBOs84w;fbPAZkPy6{^Mw9n-a0ZqEyrfqqT%&NT0eu>f3dkfkwJtjP#bQbU0L*;B=R zyn|7TyT2Q2tHxn7^oIV4Jac)x%uy9fN*Q@m(*2t#+_d@z5h*(M$|FsoE~%)t6BjX( zz(Ay2QuG0bNnb(Po??8t1aiI4X&5;x!*IX7bIg-rcxf_UVl6SfF2!<1iA?f)hpG1JKD!oKPu@CwY9a^c6XJP zl`&8x+NFM2dzjz}2Kq%trHk5rGvni=BsT+r37AYuKY757@N7YP2^=yLy&{{4Lz6N~ z_hn)tj@SMIbo%Cw{xyc4WpqYHMk|-zlFDwf3Kjpc4*nM~?hq2Xa{VCz0zsWRC6_sg zW_)Y~$|w0=7*afanDQBz?T3#ZWksDWYZGq!re(a*AQ!xma`8b$L>vRm61>%P2@1m! zbQzY{4#+8ulA;uzXPc9T<68=(&#nL;Vf))s`@?J7Gsuw6!Anp;lH z(cVJ@-nCqQ_{J|blYiePyYmB#&|zU=-2F zX4=gF|2_l5#HTsjPQ~2uH$yVjZAv<`r(CIKFF44_xl?Br#NIp2Kg~C+7&)l_HZ5(y zK&wrC=lyegO)X;;TPu1P)%76nyTZ%Ml7FtbE+-^ylcQFGj~rwzph7m-5l~apmP;|Z z>jUI2cw}c=y*N$W4@PW^M5g@8-~;Bqd1db{&|rRii;8q-=U7ZMviw1)5cUPeeXgmV zOhLm;fG#(IR4$|~tu@P)$S7FTt%xRn-r17^Y7&-g&{8WqO@u&5*Ef$dNgAG77@u@V zeBMCe3?g;2+(3%li<@6gzCcpJ_YO?Mpy{;%>rB##adfoBRdnro@;g@mErW`skHB69 zp?gTdHV2*MaSOL_UX6b~y9Xc$g40kH@#vDli9Z6xb8||CEAJy5SV%!S6<$!lpqeEH zyu&CyeiShgYk+tjZZywS{&1opC^sN_Xu8q_aqGgab9DSw0{$EYLZsQ)Xam(I(7anI z(sM(9J&n4=0-8hx6%{!h9U?ck<4!AX9x!qscHoB%Q9^xd%x><(xCb}{KIbuRv@@L_@nhS3;!&z(&V-=?Ht`28g#w-n@Sw z)6gIQ-!m*(Ngy)^1|_E^9u#Rc)?Y{goa5%_mt}ZM4X=f#C!uWo99itl%Zh@->exZ^ zfY-EhU)2~Ex~|iRVcR$nLxao}kkk&tEdl>Mkd&0HH_Y|DxbUy{<%a+k=q1&S+LUN0 z6Ky?Hr1U4JF>FuQ|CCJJRP3$(PI0AB+x&0J5Od^%5E-rR{^V`~gb71AFp94-1k5){ zWy`>yBfLy%YS`7))x*QbKwQYk%g3IS*)kY@;g4o}T(iRbJH!=y(6Y|XTvu~)Q6;<~ zVGkdTkQU7941{V8uAbq~5NcBNe4u_Q&~I8vJ6fKWJc!cqj^XwW%W8dTag?j`6w&8L zBRIlcoM;e?zX2~52oY-_4h@kzqMos5@L(0KVyM<%m;8>;Pk=nuaeFW5AKPd?x1|$N z-nWT$L*kmhzf>2JDz%zd8S`X3IcBFSI?I`Sc@Tfp(UH0A2>b7JdJZ(h)3C8A_nB2} z+(dM~>AE~WvY2adj170QiC`;Uwn|AS9U7;9L9EyOHvM-T#7?Yk>iC@p5kP?hQ0O^M z8(lN?oLW6k?bWn120DD=xyGjHMOk<1jjyQ0yt|;9aBL!d^%xFK`&z3aPHfz5=vH%zY!^_L;=I~Sf6!qOlEn5SiVddiIr)OZe15^aU zP6uhPNY6pxHueVt{7SluxvXyud`*E}P*G&=pjOrM+!FxwJB~^s3q(mdxw+$$lYM|_ zfW2HkZFzfV=kq&e&DS8iYiytc60X8iz%WY)?f%%W6mc0#>$hAscQ!aN#lNz#6dYXV zf;KFtuz1Kcg#i)_ut7fZw}=@0b%^B|IATb{mUvey5VAU#CigoP5W=Lf2EL9Yies79U&tHGn!J1r==_f$xz=6cTl@q63D_Sj45%rgYf?C_xgNi!CI95e z#@_TcRmRs0Cn6$ZeKXn?p(6PxtLcD=88td;b?~-O#%l9JVezLQ+i!RFuxBW)-kpv9 z`vhfXLV;I80ugt_G6e3!C*Ro&<{0n21yxIJffUAsob*h)tAPhd5A@c(a;IFuCu3`4 z^(lW#_mRVL#7V$TLV*YYPG9N|o7Ye1l!;>26L6dZPq4DZ zBx3Q?RTxCe2rD3b?v|gs9@RDAe-$>My2E?+?b)q1hqCP-2o>E=Yk!)+n5h4={)n7y zdw@a`k#GL?t@K)k*E4f1$eWG;4~xC8hee0ZrT*t+Ev+%H>?Q%kqXBf7i@WnfM!^)M z(FFe=KjI^siB~~>*Yg`fj7TY?!?QTp*+!a4@m>M64yu>y8(jKH+1vX9tqp1tQ4#>#J2zC^#`kT;Df;}-$hMriH zhf8UB3=H!U`2|Dg{&`X~Uibt%1A|;tD^`ot0{QJnVp>-UiQzB)q+^0zG}f`mdLPKCi)&_KvQ!Y$kk zNh-MPb&rjz*-LbHu42zRIfCvv1?qh}McG~Hr*-*bpHhcex5c~s?h|k9&JRoY0FCIj{*hW@D>j$vFbs^8z_sURxk%&{=uc*KWz-w zd#a_w_BQH7AvoJO>MIM*-(E>v>V-3|$fA&6Y#S^(;JrG^F3_qAU2_BA1O#;v;QE3K z13Y4}e^Z*YV_TblN~N|ZQycEaJRAP```0M0a1P$5$0!A&ploe=kF+ck6Tm-#pGk>s z^hv)^gu&7{zHETmbM09CsOo~`YKriMHSRyI_vl0%ha2fmQvsusSE|?)?Bu~4SRM~* zE4l~25nwt7pw)&sAD4{QmS9QpwoaYIwBC9z57Cp2sD;EFGP1X+eU#QTP~V9*>gJ*ggwU=n-@is3PV!dj7*k4<0^-esexW z*FYrJE2mn~b7s))z#57I2O#7|r19Gm!f*jab7uSbr66FpGc4?rGU@EZlkD_wAO0v6fjnfV7dJXa;9 z=f|;}5~z>*=N`X$)jpT2{(~H((dzvU5N@y#r@G$yNL+VyF%4>@pa~`tPNw$&gX-(E zy!Z~_pDS3v7ep;54SiAbV07H+8r7TJFMquz>BO~OGY{RrUVmC*RCVDIU>GmE1|;yx z!6jDep@UbV_sRB->y{51zj9XYthGpu4hf%;2n%lpbRL`yJUk>lzafOWDv(2I!X zV6hjySquNsarvLBi3KTq8-t4?nqlf1wJY1iVav9o(|P~1MX!sPiF$7H-h1ljv^8o? z7K^`}1(!#{%?UUvDuQgQ(W7O$fdd_|uWXNKZx_%1X>}M8Nqn)?EhQvUn(O!jKDgO- zzea2?57bXAHuvn`cYQ2;R~c(_x>Jd;QN!@aik3-YpR%|_`pAziqi1n1Y-Y!rC8jm= z3qG<)_dk9xE3-VcU1}3X|rcGx&>K&MS{!EO)T;SPwMCxG|MrtK{V>u$aLP z4WSA}IV&@j(a#7O1-VyiD<4^W3PA;0H4-G}QEMJ80q3sb;l^@8Jr$PYp6ImRpVaSF znaK4#;8vsQ#RP~Fflq)nmoM1C++0dlrjK97!2ftASAo`i{*}`?U)D5O2<1U^3BLeHTY?XO)6e{`V)$J zB$*aZ)!*nG_&?`ksz3g&b7EYqg-c942xGTPHP`09(ZJhHtw(;|bUXVI+zsJg>6X=-Dmq&DWFUyn<&f*_ip zX=CL1=I7=xMtqicalelW?CD(^c@{}qerxO`Ul9_Hrc=xvxtxvSGvVJBPx!H8->6$_ zjR{F#LH~A45Cz;IXyXDhJtQ>L_PHK)(brS^o`$%4u&?i88GRJVCOu`0 z6dIc6Cp+2^{3pFoWt0~pl^~u#->EDqt%M#(CQvk`f_9&)p;>VHt>*YG;rx6cpxM^@ zbqC{TDTTuBM~0mLS>qRoh?rQ;#j%!?TToVFuG;wu3s>ug2zyY+QmDE6PDVIzSF)_8b-F4>9zFt zRYNHUDc|#lqxa!U zBt4%=R4b=o$X9AA+oaJq9nUgIm3JG^zd*6L{Ru^FO<*|YsI?tq7rYOU{{#!4ZMBx z2F9!x@vCnj(+W|V3ZmFTf+$ zc^<%tb8;&uK%zb(spBxKkO{l79p#S)_IwrHlMKI?qibz%Z$)Nzt5)ayyPo?gRhl=Oig8HR?7 z3+F4L54_L0a$>3i4p$`Uy86eQ8ziD`t&HUkxX;(bma1yl84bKHFyHb^dlGJe!VBw* zPobtCN9P|JEXdRJazPCx5Bv>UTE zcV($4X0!;8Z3h&6W@g42j(9+?loM+*7I9vkpF;b~gI9E&$_uOx(;|NSUH{^g;plgU zA!;4jMciv_iLu$f?^-8R#YITu4kp)3>HW>ZIK-=e-{-Fb8s_Gv=*NX80Wp#F1oJ47 z*kV3xLk{;ai^t#L&dZUns#o)iOJjUU}(`YD`HINcUmm+>XAm1kJqL(wY2b9$o)&o z+CfAyL69-3hs?)8kAU%~_sV{fCd#)8qM{8$sZqsb`GwAStC!QNu}C_7Si{_)diS0f zY!F=B+&GuT#m(4OJLYXp!8X>SyeR{bs`MXQ) z>DFIL2;TrMU0mA~gB5VQe}YFSi-CqPLs=%mnU)ua^T<8~+aaYM8wWj!JLS_=!E1Gf z-(I1-;am<*Y%%+@Bt1hI)X4Ut8cd~D24uFV6>&TYET~E07PbpZ$)HSG?&j|eLPIy4+~IbytmAmL7g$JupjjQYi1w(4}W#AK8f6Z^>e z#{L7OvFG2Lnwk(ccX((G3*F!ePSr8?2?t^*(SF{z@F4v%@kyVfR&!2j(eX}nYkm4i zZ|f~4d^AMs3xi6Au0@*2M{LuH!wdL3eyh`EvTHHP3veFB6N z;ccCqOp*+}gM*FT1$JxQ1_u&&cZ(+N*x2nojX4aP)Rq&cYSpE$77f*kv~CYD;=D=z z^ug$^J^Lf83WAQ|5(23|HPsuXOGqOkE)n(i)89%{1~vA^B-dlEVI%^n_en($=jCn0 zt8v{=@u<~1{ws&}I%A_(#imF?RP8P9md69&qnK^;;e|7Tt~Kx76%T6PuxoyDXRxm+`l9b7@81!9+tm&=t1aw>QvE4?QX@Gv1r#g?Q4i=gk* zi#)NPt{OZX8<@|3tPgHC-HyxCi16nBm=r1wDnS_PXdw&>ggDsbBj!*hjFagIDMK9d$UF*o?+w*%FOd?HoTDk9c4^cvLiozvhRA#5A1h1m(?XkV}yX$AD_(p z`f)JmfkA>LMk+t~ld22NtJCt!DrOuwW=>A%>FCy-%EvB2NQ(4uHuc`C7`sum62djh zv>2#yjmHGJ@>wam*JL&C9Rmvp8Vz@*P2>Xhs^s`jb>)p>=_~K1c8KF~b5u%-IhoJ8 zC)prSVU2#by88C}^w=T{dEs|OCH-`|WYOmKSgzxvCiUT;9pb{7ZuFUUpN3cYd($k0 z2n!1X3M$v6IIn-daBt6$dS7HvR=ts0MT+ivqZ<3G-^?d02^=r(0rbE>1gLA|KM~3; zNLPzBva=b0sXNT{U3uBySb4k#e;ARLP)(9uHRfJ8QxF`ln{$Pew%_uiowElBd#n=+ zhq|o^LhKbD;TMO+HdeUFu)Ji}=RUP-m?;crp|1IgoA5XxPcqJPtJ;lSWl*dfZ$bHv zBn_m}5gDI1HVk#$P=Z$j#8$!&`3pYBvZnsl6u{HYWeBSr*f!uFsR6DRG2Vhy zV;eeAL0|W6^KN>2`ZUWvrLb!l^xUJd;t3Bh#;yIy<7V4g%sjX_SwAg(tH)pUfTjLD z+=qDS29xwbqR;%##2oEJ?#T-}p>+Y!rp|;9D7-u;Rz#i^*X9UnyS+L?;-PHiiv?e+ zH;;CnX+M2e66-I!moo`pH$ra&e7x@b9BxXwykv6>P+8Shp9%TqFqZ12FP`Ced8Cq% zR0k>q(cyw4m1?HNgY`u+p<$Z9OX(kSRe3f#+J6pYx8jP~_E%LE74Jh% zjpdk)CTYDeEd9;V5uC#KrPN!t-L~|R9dat-D8=8ud4p^0y^0Fm=YPe;VtW16zw^+r zrXz`-;WZsZ86Rrf^U)Cz@)SRF!(GlAk~b37$kXCkU2*YsoL7Q;P`8Z{NCLPE&ETNu z8yX!lv%Z{?8F}BIkjQyxb+A7&VU5lyb>tORr3wEcs^ht$^YoCrhn%ee5)+gXiTj;xJ9B)SSWV63sMe z=c*)IXmaAG@M2R*}%iO#{ja?GSBeE_@ZwYW2bWs(-|!pG$mop=qv*n;*V zomsQsbtT)TjDy&%M7`Nvw92$n%r)WwPeu1Y)cE<$XCSO(*J)5V#7deT9Z%;fg^n|vD2YA2AyiKi~Q|=z}Ws8^2%?5A}~beyM3-m~(Q7^L{^}4qIa>yMx^W zlZIeVZ8`=!S#w7Q&VfE@g4*|5y)1@Qv5dR8Qur$7fWgy;B??)SSD3yua!`4UeF z0l$8q()2717IVTUTIRw?o>I3uvL6V#$pku|5Mu|&&N+O!a#dipfH*8)uMaPS?u3Vj zw-tJ9Jn-J+>ImI1bzlgSN~>mm+NxqU6Y`ljJ?7XRmOO%Rik(kjl>`6fc$Jwn?mp$p z;bx#i8oSMW`bLJq4Gn6Vi>`<-x2qzPW)O$zV5Ciz>u&~_Ea4I;AN>hXvnyy`5Ui#C zAFJ#04l4PMEd?`c@_k2R)7~5d zj{vj^@Kz^1AnBu57ISZlaL)bqT-W;=&1S8SA0!a5?S7}PQ&SZx`!V%Io2c&gC#ur}OM88gHlmoR07@5>?l)F#mfZN-(dkG2GH> zcI&plagGR~t1vu~a2#Kp?tKRN)yXu){liMXv+V{eBK!R?S3Z$s53in7k1GtsPEb`f z_R3KBwCQ?vU2@Lcygpi+UBAv0o-nBR)zH$C(bFS=Ast?EoifG8YX zPG3x2f+cQM-nb;QpHbyhe78-kR69H!a@&378`oUT9d3n&d`9_kvq4;poy|PP34N6D zktD}km*)%j^k?R`CCHMqhJMXc!yYH*SO#?+HsFc@Kgcn}vuKoQ@t7Z&d5Xv7z+X31 zdGZko#A~nS4%MdNj zG}`*h2Z&fs|NzHC(Nk5%;tU9(@SWehZU* zj#la4t8X5#R#t7OFs1iU;%24gcZ%zIu!gnqpc*Y0&ft?K0C(SUUJirRuT7vzz~ur$ zg`uILuh+pZZw~%C3E99TbTW@kNO;=0NRASOEG-iX#~h*x8N__pAq%V?_*KJNUGbny zd%C^Uei_uJ0=*z$$e-SPuai6Oe12#K`4oZ(m6EM3Go+QpQHUnPFL<1mw6bFk8Xa9d zz3TG`RdsTOaFl1f40o}}2SNT1Az}>dPlX!p4H3~)%2K4fY4uSnD6rj$xf=wQU4-KV zF7(D1iy?WwR?M}j_Tg?@23W}xl%BP z0F7%-l_7qEpFTsz_b+T+%4nuwmi0a_O@&QN+FSFZAX7}B1jVVpwPN?}`V z2GJf%*ZAjb&mO{WMSIQx?xFUduQ4vq(IPvyy1;NcO6Jri3APhEqkUM@6ee0$Zj-+E z%zW~d#Nf3;uMZ3Nn~ACu?2Pv(E4^Orh*ouQbeTg!+GE)PQxCzigd~&;?Dxq-&0%!@ zL9@g7%Y=Njwe;mhss9qkWh|{MtSx)@xuw&5b}_d5`urCegU?#si`HKF18!=aDbzE1 z$b<-30r#U^ z;><3VzkUe+(tY*-I|4;0(S@}UMu!TccC^Q@DJp3%=gfyelHOYc>g`lRG1*8Yd=bUW_Fev5?1xk3KQ-mxyGZT%VL$4+b#+Z ziMVs)2E1?DS?sIlp6;Zbrsn|8XmpPgHHKa_9w3=IS@*96b2RDcSJ8^SAu_mFakNKytgUz- zafIgTtJm@%4jPuEZyf>9o#Uhm=B!F`(eOK|)Ae|@u4nJ#xjW^gDK8Fg$P z{hEue_v#tcVJTg&HfeH33f7swm}1(uqDwNjqZ1Jn#3CCUE1-N)t0R^d{}#U4xVMBZMf(d-N9T@L12*uTsfFZ!qws~j_TOwg&HXrZAlX7~5^!5f1Q*lEZ48ah0KJ#almaNJu57H%RuiTpMeu5!aO1!g(5-He6T*MQRcZUB+rj5& zl>lWhRIh5KS(=-7!%vhwdi$1y#&4!98ABLTN(}YRg9?^wd_uw+cX80K zI#F~!YRxuVrmF{;T13T(?)LPKuz6;qTevQB3fhr|e97s{$xV`+wpXZzgESzyxJd@T zEyPUZf|MG6aVRwHV>gKd8_rtYomI*PE?kujbq;d_POF|DH2(hne&FBwtfae_sq8UA1YD6qmpa9;^FF=1AhmiH(fZWqdO)IYa0p}GSWp7#xE0G z*@csyHAzqq}>FK1^){US-^Z(P2{HGiIj;G1m3xCvK$ zWOlYmlGXManf~nj(e?JR0|sVc+uYdiBZ!E|3F2HRXH$g0^sRkq!zWMVinS-^#6A|$KlSxmb~O2Cvd&Q-L)KlHVY5b1fPS?(Dg(YvvZ}#aeAk%>e}P0V(-;&_Wdi?RYiB?Y_>7R{`+WY$TN% zgIwq}0yHctVw&n4%N{C!Pn$BNn;X9|R!?787uO+rddwtx*GmcAy3Xk->s?V0)(T^v zKucM4+rQKKXH(@!40V52kBt}Y46{U=gsQzpxO^QJztpe_rpdp0@?;^*68IFW2LBF0_9A^1X174i~uB{)))|dTy6S z;#QZkV8CpMl*diZl5}`MX)I8G@U`lXGPE>Q@$;LV-an!+Y4vm@P^ao`2SUXUp|*g5 zCV#Pi?_6ZY!p8au2*ybI2r@^(9fb(=@{qH9njw@}G^jw=^$O+kQ2%o3nPESp1zxJ_ z`fWr?+x7MJR|@JsQwC1s@P0zx&4LAVk$#XnyvE5;}d>Z4{N^2k1Dg_Bh|74b)f~!QC}yq{v-NKS8jN2FwHMa;;C~! z1;4Zd(Nk66q6p4J)gK(TXk6Jk4y&FGx>OuA^>9SD;8%&8tDrI?ptv9`4b5fx3;v^% zm$^nOVG?DID2sbcY)qzOE1v+XJ6twa1@S~GcyhomxdA*4JXLQXmP5;@YkQ_T*W1jN z&ee)YCTjH$T0J(;SL^Qivy;TTlT;i?uuRb}6s4h^^XNzQC8^t*28e}i09W4wnLU5r zB2;EN69sKozdv6=v@pO1AoDtZ34ri8IL%;bzK4N9$EIb;sjsJfucqQf1z;+7?&DI6 zX%l%#Hrblkvc;4k#goMAnaYbP~+>5<=B@<;3=ol6mse>>6S?k_7{NdkWvCpIy_DnH($$GXi&iA<=vUp3V zRvgEZ2|i!SK?S}HPa>oCeb;Tl)uI#NKfBM4`&vBsc!`?(Ud77v$~#)J$jI?T{o@(K z+3<_Ca8+m;n6I~wjEuayFifyHv)+2>OT4Qfr;i2f7C0^kb{AWxAMRgEk2f<}{k}lI z9*iqhc@x+gJlrWO>FT>>+hjDp?46pNgaAf!Su6 z=gZl^INwUZ9BC5UlO0v1cvTuMEU|#UKYARky44=QX>1?V6Leg`qN38Q-2ZNh{TBE` z9O6&5M3}!a&>g{g$<51y*w+YA&v|o=?8!+}s|9)9?;CjSxIKkGLH#ziC{0RMm>Kn1 z?Ysxcr=5ccM4FI(E_K&pc}x@f+Rjp|i}a{6rIMGIV0Bx!6kryEKv%^b||trk3(7f z^;TeVY@NbKnPP3)aS`)Nz6uNc*U3X2YfXQ)#zVmt@O#!Kd%VfT0*hRz3kKYe5?^0Q zBuJMByxv*+>G{;-kM;ekaF-WokkW5>76nrx8mOz9Uj!W&I+^Ka05e+fx2% zn;``zJG(QFQ!uarl4qk1#3E`31&jQ@P=VZ-A*77f&y_?Od4!{^==0@ykyQ8_LDd*H z(ZV{6c)3t5mhuUoot2d?zzP2T{>%vm7kV+?SS7_FUzh2Hg$$s&oq=$GdK`PBe$bwU zeJ0i&E9b5KH}^g2HSz9b*opK7$|0Qa)3uCtxWKglel!F_3OpfV{^zg3OB#6n*XEzo zHNd699>4I}clYjPa)*EExqA#Nwg0SWupe(hRh3@~OWz!#k*3~ma#?@k6O3m6=?gj| zC0F=OKM)%G{3JL%SmulvH~#XHpjvA8pE$|ycL)dQ%F4>kI7=@=y9K-O$_uno1N6e& zXsv~2zw{oPM_k<`@!Iz)IGv6pekSP{<8Y2xN;zN+MLwYFK1}D@Xka2wW}tlJck(N| z)$fa0{jJWc-{|l`6R3>pNXfX={@9i}Pbau@H{0CGu@6>R?kR1%WoUVaGmC~+oWggu z$DB%c9Bt_gx$+Le(^dgltnc21H8u(&BCx?I2uWQvwY7?YZxFq|VY;(J1qDr|(jnM9 zIKnat!ICFYQ5+08-g?z&IrR_P1m^tB>hF-+9Xp+A$8;3!x|gFr?fWzL+bW&Uwi~1= zrC5s0&!i)?ojn9_x{p6oSBc3{r5}p@ZRO_X#-QX$tt*_n>o01tdV9)@?xoqN)Y$c@ zi!5E}ZSMg*OI%$FMxIO$f4Yp7RZo&EUFt@*g#x zA)7kr2Wj2Lz29GuT%=XP(zA%*06>bN3`Xwjbg!c+Kz1-*nO}z9GsYBodO+bf#LoUB z_tm3sttS61CT=~Q{mwJ5lUc04TsOIcXZ^P<4b8fcKov^1}4U~J4ygqq5FwCC@X`; z{9NQahvBd1Kj_H2U%4GOeI)P^FDu`g8zb=3#M991bDBL^Ro6Nj*-Fq%%(-68w2O~0 z&&Q=Ley7^v^+|!n%AEDcpn;R;eWPloG(%!ln~AEv=$sqS{vgP3-E|>vwz9HJNp?L{ z#}IGWTlKUf-RST4A8SVGX%mMD1WEuKM?KQh(vF50vtK7A^?^@X2$8suK)wnG2=pHv zLfpc%sFXc$oWW7K-i@^;naA;t;~1)B_Mp@_x!nB<`XCr`sn`t~@KJs0@$vDi%=^&b zDY)B@HBkG$Ru6uwqDYA!`h3#4jyB+@2iZlCHAmI|lYY_v4KyOeAdUjJ8>H4F+L<&B z4dV(686m8600M}E+Qh-OgU@O0_x*pE`pU4ZwrE|kKtMu38Wic26zP@{=?+QhQV>a{ zBn70qL8QC8yQB;{1qqR^JJ!DE+~@vvt6RQrtvSbdlez2G;+>O9TKk6>l1<()UzGzZ z-ki+>SFaf)2#^VT>Y_D#7@}f&l3mfp__reD_Uh`XH*@8}`Z_|WyxSjqg7~Ml3biNr zAT1K;!I2C<`={V?+4~(rES977-4Cv<;2Wh5M%Wn8axLo^3|sv+BWLKUj+%Q-N-Y#ivG$J)FyLn z=QfTSwUE~%jSk&wn^T2^+jvOE9FFZcIBmc?c~j(u@gsek&HhCSJ*6+I=k9b-JJ4(jR3SAj?QeecOU&%-Z1>BP zH6xc)+4kjjy7l?Rj`y^ofKBMSer{W#j@bWWYWy5l5DUppclS$lCe(jL57p@i@ym9- zaVB810H9u{<}Y=&)VY-DzfychV`UW;3v-Lsm<6Bp(Jxe#+hVW+1#534gLAYN{y(W)RS$ zPRF6gR?Abh{!*3*Aq)H@Svb18Ki||aHW>>z*5ic{ha$RMj_sCGlK#&!)V@PWLG{_U zc9Qr|RYP#TV1pS7u>Gqyw141LMsd)eid|wx`OfuIcp5kJ9t{ons_n=2smzWP(=M{z^ESbt{&QDS$R8x5KRk81D;o zs{bpc0?Df*coE?V$%2(7;ODKAlgHokzSiWoOJApS`4D*rtSD22LMXW0NIo_s2tmC{ ztqbQF@xorGc5J>pRR %7W`etyy76hi7fVqwiel52s1m+svrGzZB2t8E6crS;YJs zwX0uqY>-!E{v$`?_~CuP$pIeObYl5Usjw8(sq%|gWBSJ(o(iAT9|2Rs$KD0s&z+E5 zBwz}BG2Z!BeF?9Nv3|rEPtQCxD~tBM-&i7~m-J{sp4MEV0ud+XFdA>!Y%y}+a<|kn zYZ78N)3ml<2bI=zl?^G#W(vFvNRNxt4BP#|7N$}}zqs5dYC@+rn84Dfu=wvqJAF?; z>rVxVY_QCY0r>NZ^$flRu(kP1*?iX3ZPIOr?bg{K} zM~OieO|S~{J$#}!kTQ4(9|>&ua5vfDJf+k?lGDPJ&u1;EtumX)RWEAaH{i9^rgirP z-dx7$7r3|@PF52ULD;DUNBn=p3UoLingCFoBk>YQLc+s`AKh&F*}!tqPcX*(+v+=gc!B(6 zkWMqqO_k0^>As5s6hO-t?GL3pwm%m@^<9$`CI5&?&N;;WgD~wUDcWeru+#K<65@dR z$$@i)A$x@p>Yb+@uO6cOI1E=-?14~_cwsLgIB@|imS+8;XA;ueYYfy9;5<=`5$PoV z7JC>MSw%ScNk295ex{vNPYQgIHC5FJ>S__jh;_Ygipfd|R5dZWYml`*-Ybc@BYaq6 zCdxx@$`~zl;?pKlZaQM;M2~D==B91zKks zP~MrEGV{L8_HQRl6G?w*TY|IuTCV^2@Vm{m#n+Mz;xK9I^Gv#E>g?^EFu4=CN30%J zA)0tVvAL?NC+gJ)Lqb6I-C+@YU#O?&dIwr;Ge&YEPqDnx=Ajzx3(`FY$k0F}B_bl% z5KA6Z7c7941aTk$S~$P7jB-{8AxDBq0gwV<6s{6e(7)poOoSxlg@JSSKC3R=K-hru zLKxmBHrQfn2k`jdP@5?=Mn#H%CMF0#bO6a~tzfEVNIAJ&uDT$wf!|;Zt?2M>8Qa<- zMPELs*hpyA^2&rheia`{s6P+`$h=8LMpgpk88Eoep||Ok4-a98F6%3h{|#5#fa(yc z2yvht3_@-}TVNVJ3?1$cpiPBaN*ow0aND;G3}AxK0%2cZYD$eCK7E_QwmU_Z>IH7( zdxzV<`e7~D-Q8{J=(q`4eu!2Cx!81 zWFl!7R#yB#00GkM~W1xdEgzLa%Es;0NpsKFzqdth{cF?WW8NxspRe zLy(aA!eAf|J(p7gr5tytlJI){*TK#=Q5XxSZ=@yyy!*1E1C3sqag^}*4`=wQI2GiZ ztH|T}5~7JdN!JWWmm%oX?HMz}C6(#mK<{|`5>G{?%6e9}IL!%8fFet#Z{^KnH_|h8 zmv3)&>?(67;rKaxB`nNWkd_XpA^!c61wBcICgTFVayq4Nny9_HP@h$z6gvK%g(XAV8m;z1n!XTcgxDFF@46iW_Gt=AyRFi6@NJ zW`4Ekh`suCuESZx={qh<0&Ing79SNR^Ox2Gs|!9ZOJU^&+Lb}zAlG-_le}mEuoc153E=6K|K3!l->(>jeS4caO1X>o}&%rg&_o%I)JfgVIqf5V=C?mk2;!1 z(=h#m)lGU|YP~~CQ@~Iqb6i)_A*OjYchnp8ho>BM#x&y6){!@sq=Zxb5kd z5I{D-!vO=ewq{2G-Yd{X^>m2S@d}%gu~l017C*$Ufn6G)zjb)M8~+r`gPY~*bgKFB zXW4^WDu3KgtA#(}S31~;vcC9xpmJGNmu27%xM)U}YDoH%0cu0Q z3i!bqE>Aa+sX(+IYxhTq=o^Rp<3BY~Q3EhxF{skNOV2~4Gg^F?UC0LDizPE&OIL?4 zcKw@qpwDWfwIc$VBBWs-KYg9Snqn?##?Sd5EH&F>eqXOfHnnS;tD-=AS>=Yi^In2} zTui^o78+RwAvzNR&>c!jyk_0I(`~%?lmgGdv`&J`5KecFpkOWh`4^;gsC^TbLtS)m zr1pa_KPMuZruUYgyW7S6qWgEJPalX~orw8)6FO6VE!79o)st-cBXFzsdI!NmkDg}M z_*(Vm0eP1VcmJtNc(V^!ksTpP4X&7)h$Pu5f9~YkBhE6-Hw);5c#^Z{um^mV7k<5p z2`Yf+1Piba!x#cjKU%&`Vfe!1DC^1RMgF#k7aVQU&6LN2YtG14>Ll( zAtu||1xUC+66j6Uyw+gQyHaH&G*Hf;Krm#r6n>F7VcVZIt?)iTh}!Shf}GF>!R~&% z%eVt7A}EgQ(lGGo1iU_#VT+94IRqrpin_YGD;L01fT}|ihI|NhehDXHWfzJ%8}mVG zl}w>}`O8*s^cx{Di;G4e|LTNrW+X}Y1SBB&-z4%BKs*Bnc%e3M9?)K!z+dGNQKZcI!StLNu`t9xJf=+0H&&isB-?o}kwP2`9* zf>;bl2Jm`^8w|M4F4(Ida@Bo%WZR)CuztZ`lq2i|j}7p_uGNX3U`5{VBDH%EA!lf5 z{IKUc2?p-I3twMy??8$mDVQoi1AhE-v%jYYhmCBL@a-EVR8W<0?ORBxo89N_G0Y0a z(UeoO7t}zjvRd?2d7Gg#VVV`&O1ltlXe55juFh-eF(9cbYKq?P$E#EHp)2PxzdTyH z@*PZj-?!WCnS2y2&$ASB%%Bn(!7h<-!_?HU`dm8r;Y}f8&%$QPUT zluBh1b_gHO-$3poJ1M7^FCTpP@Zq4UwdINuadf~)4;6|5%6Zg+tBf1$8SP?b)DH1xH{i0pdmXG+9V2lp1+fJutf)i7OF%9L6-o&WNeXc zb^}BSDow3?PIn=pysjkscN|Th6a9>q+`;nuUA1?_dAP0kCLI7yP4gH%22_Tf`!jCM z5gHtF?+88|X+bi^Uw9~X;bDBO#$PbkY)GE`T)Xbcn-!2%KFcr$xOf76mfI^99o_de z&kpgejyJcuAUZ0g{+A*|gqgqW`b?pB$9mPTGVhMzMtnhy!$>@NKIleAk#`M+9#LAZs`u(9d5 zxe56B`4J~SKsKRNA+XAdXO1csjgItA#B=+cj?HQfs1z{2`twUMMz?N=)GH|))Le-6 zJpDsWiVZn?fKJ|qyVC)!A36=B=D`IW2E&@FgLE-)P;@U+kgg(Eo4MeyWR~ri``{bK z%XdonWH%auOsWBaxjHP@4Nc!%&w%0!w#I+=?%cTpdV#2(9_hnpQv0CWjU%4$)MR*`c^YAf+bGaa&B*pYpMxj9F4bMnIHlVED1p=ZydL`p(K4UbUIa8 z$p@Py$+>&OI@_376RD-^?GsN7nvn9}&S=>{+ZHVKfk&MQ!${2-*DbuDO|!dY49%Pl7NVc1e53(qXyVBfC9R^ zx^6>l2{SXZ%Yq*vufrme6wRz%5dh>!x%ns+2)wQe+0G$du`^ij05h{Dk`CQnhK7ik zcwuAX#LjlK`32O;y%s)2Gr7lQP>Iu)mt5+S;Sk==^;QW7%jGQj?Z3sg{j_|t!r`dG zU@nIxdvMe}+^#C~HTWKsVL@JyUQa%-cW?B%V;+v}@T)r?c#6p`r9Zx{kZiflA1EDQ zvE2sB>vSBq;+2+P0@Kmgi~U5ioQZ6$ap}Kh5ULjD;k;!DNy}#$ux3V&v`C(;Ycl~f z0(rQB&%sB(1@b-!g3Hl&cmj1agmew`9ltb4TXPO~i|86=B|6yM$CV4-zD1X>#dzWf zsi#JO!3_VLf~#b))41@lU}kB+wV4R!pd14A-+s?oe1<7n3w4nz>z@nh<6UNuwTnX= zgQurjFhO2aHt+|=W@gA_n0j(8L;Ps>rO99GC*Bdd1N#7=JN)_1?V*1J{+w&O>zdU% zozk=KrT+LbwGZ_975MT?BQ%yT0T^J`?oRme zFpi|xrLeK5NdHL|rAK1Te#Mu7sZXh`P7`dJ?pK_@sOCyn zRe}NY+GRxC9O=>6q#v=CcWXp=Ko5qfdNs8DZ)=W~GbQUL1Jm0!JAg@QV^#=m%>8<2 zBY;J$NqE8?SUR32d?E07#$(kN8cWB~Uwl`Pgqyk~o-on>uE|c^0w^tJ`8`su`(5XL z5GniaY*{Pi{(Wd}2w8J=;eWG^12PEE)j?lpaAG1UST;aV@Hc*l8kSEXxOE-m$2d1? zZP=b=8uv0W8BeE(BdiO}$Ox{*q0dWTi@bI)xMmoL+K~oA$%i31*9qj|wO%0CX^<wC7J$Wm8sKY6u4*)On@B^p`&Y+bc3KoE{QH@IsR~9=Gge7mr@E zXJcRE1eo3~Dc#n{?@v^ET?`LA7B6ND@Wv?(E;S6st?!};l_?ngQrhuFskoM%-7-j~ zpp<%40x$Cmb(j9=%l26urL1X15s|NN{26vA-FV**y+6?RI!Zne5Euq;ijdn-Qq>d` z2-kRBHQ{5D;^B!md(uqEz>Chw=M3#qUnI5}qx(3{vNCi~LE1(BxvSweT^#Db zyN-s2_TbT@8_5bE^^3ihPx7Ge$$G9Sxu%Bq@BTgw%`4~@hU}4S06N}3i1YFBVfwkf z&!;~>pe*re+ZNyM zffH_A73Up+Lcdq`VxsZGf--?&#Af*IkfIJ6T3{j(R;$`>t_yetR0h_e3yfmQD@Du+SG!n0OOyl zXu`KQj?0^eHs<;hgI}Il`t-3%1`)5fk?cS1%ELYpJ1Y zpy0)KBYY3@Z;Z~VhC3yn%NbT8RR+;m$?T&|vPQh&o!Cd923`N>TA}^NI6@o=p1Njm zQq5DxX40Z@X`@N%8H(!XNAUHt4yiR(Q7#6--bshaH7s&I-=AqcrD}{DI`y=(pRhV! zt(Ba0u^_2GFohylJIEr(#E)VxZAw@U5@Wj*=S~Z1?Bn~7RF1j1k~TNQE~b}W7!r>F z!~z?v`nIPcJwB3D4@1ZJWF|>}y;I9Xmp>y9&BWc#NurNNOGLk>r%ZG@n_t0G%aX5_ zou@-!1oIx$!bK=_&n8ySxb5>q7Zkcwdy@0Hx|N-svhe7J-ZM1SBepAAE8qD zOOZT-rCeoRZd0y)3@iy{%ewRrq!kNA7wTO0j1aqSk(gZZ6sKt)K9bk){$nF~CHPrW z6T2&Qs^j2-Le#2A7$%%(y0wnCLZ!sPX#-ix4`4|a$yR3fx^xGhz#R~3F|s6ASI0)t z^j`~A_?YV>$nxu#;^v#Akosq?q95K+Yc*&)P_^>k0lnF`~%@ zTo@b&t{vJf@ajO-ATC&NK_AcSviksBZ|uL-&KgetfxJkj7{X8`p`0!2YQ?dZ%M7X> zn5`xYL<`mNKy?G+HqD&mG5uUZR$Y4WE{14XcMlI(NYVj1kSa`(Ux4vx1wBTUF}eqn z{W@$-+Ev!Q08qaJOT|+tvdmX6%z%BD!1m}J8Cz$nTg=>=#U6C~$ri^lYf(LyzAv7x z2&EcgkRL+BvETe*tf`LQd5a#Gi1?+csb6d?Aq;n5GTDk4j#Zx&QkWPD=0#0kT>2+` zr`&rAlQRVcYz3sSR6ga9yCv^>tLjWtL}hyRx{#}+?`z^#co!_jDrEd_&t@cub}JZ)cNe zI+0nm!5wp03{BJ5HB3sIafh9e)MPXPcwHhKdvoVn@Q3_Vye9Tq&rf;*Tpt zRt3`q=zA1e#aP!mcHg?>+uB67YFONM+8dW|(bCo~g9YRo@(y6)RiTp>NjWk+^#j2h zM3rdRCU*ASe?RJWWq6v7QMw`@FZxl)aBbmO35TPwMzbf>iH?UU6CtHIwXdI2O)y!9*f z7a(Q{WaKv+_1W&y^L^WWT+2c{(kjQCN@KN|c1}ojt zPDG4`qW{Rv^~)ea)=72iuqM$Sy(I#^x8-Fgts-Vc?wNSq{*9rT*)-3#JCw48f^)pZ5aGa)i9XT~+w<_h2=1jb*6IL?X zUh{Op;}a%%&p-9S5{*2UsmJe1cDE$QFk=Ki;Ew(~wnD|tv*2f87?N)FhI(ntHx-ObHLoD8OardLM>uH-z+{YO4z+Y z_9@USQR3%w<(ItWl7PDfgVAk*2x_DYs-J>$4w5_G;F>$$Jxe25B&T z%)^6&(WKqPXLudO<=C0qpvF{x}&)pu9E1|9)Q$iKqKjNjLannhQ zL?Q2bq2g1^1H~z9>?s zbb-4}wM4A+(TqGdZwf>dYr|~-5~o!F8?r&Zj8wnE$|tO5@xesBX_>a57ULDC#MP(V z_Oc(|aZL##L1O4vZY~$QdG^UYqcCBkl-dlpP z42MTG_Pi;dKIYPai-2IWR!szRMhC6z-c3==aAh>odmTKVvZKG)i-y-RP>uLmhdwBL zB_SpvAd5kRbaT?twOb99e2sYEm&hx^Pk7u=^}yBC|8nym)wRJ9cSzd>Fd6wLgKeY) z^fU-ojcl60cZ2F-324QLJ_V%yD^2I!O`i8*M303wcAi3c(L!Wm=7$%L4ExlM&r*1c z3NgFuqOafQ!JlncOs_5`HfxZEimVZM9DrYApw)W6uXFiazQ^+4={+lyM*U~sMx%YV zane0Iu^qBU%U`{?Ms<18x_roi_b9NrjxxIM9`KG_d|>8NkuOS3O6=Y^mH@S?#YkGK zibpqijYc2?#`cv^+ISZWS(sdSUpXcI*OS9<@48UQ#aLs@jXHzSdyAl##n{R!Se~}M zugyD^RX=BDhtxs)FDLSpKcO2=AKxU_EauT}oHaK$vRFTG{X{7|M= z;1`|Vco0Q7!pj{vt=!W;_vF6+%G2Lez_>|5xeaJKfxZ$itNMZl!^7t%KkE4pOLxqy z;~h`M3UAvzL;WYx%u=t3=Nx@K^g&srtKgYk*O|JDcMBYfhfnpj?cucTf7 zb$PS#2jw$4g8gCLmthaz+lGinoKFOnBcpr5n^fk?girb@4U5a>j;W!pYG3-WySw6b zyE9dJbpfzOI%$B==B)K(2md;vqfqKG-J+O|ovqYoh%7z*YGvwu`ylrFRbTU62FkEU zufKmJBl?y)CGgeZ;I~@cn+-82m<26{=fx>51qG|)JxtASGpX1K$FhBn*Q_uwRx9oL z<7k`4*u!C}`&Niur%_(M6kJt!P18&A=Ez-3O+w+fPhiv@xv^mE&smlC;L(<< ztaeR3d-_cN`L{+qn9T#^<<=^HZ{O^mHB~d`g>pz5yc$>+uTX*t9p%&E-5=Y8btrOE zEvtmNDqdDz-rYpY$SA|afeScvYa1IdpvGJRmsna+A(5?|uAH}fbQCL;n2>NPb_&)w z!Holm_UyOmo}5&tdf(pO-apM9ZTku~+m$L6FpI$6+^3gI1jUq-#)YVDRQB+ZA*eMB zH%2x#EPv#pWohz+_y7J?%%51PI%xPr=u!oPoYLtL)R6psJ$%bGrKF+)YO1f{EDZtP zfB;|MJ<;jX-h4MNne6kzG3k=-C9TWg<0XbtC?e$Gz?ART(ILTV&@=#u^X}drlJswSU69e+B&m2()b7dN#T2*S&TovJA6%6WFouKf z{m9CqMq;@wT_(~1A~*;71%U}*NImP_qQiN8-}2#ycTEFKszZ4m|$O!3W+-4IP1uE)x3^Q|sbVEZ=yOc|U< z(^@~M`bS<`8T-JBDrs4%Xv)vHFjwi@ywh&JcKza)Uv$UpnPR4dDCj=P&wo@CdWzls zV`xiWy5nhkQ#?OYZT)01m<{M37C<2GJ;^JeI$nrDQ|9y&5WO$3eM8N{`ezMpy-~KI z3D%aZzYjzBSO5D8yOC@)U*~ruOgLtYf7rwscI`_+89XdQO8{Z09@>gl=b^g%X*3Wi zURpjawN6w^joj?AUkn?yK5Jmjec~RVOUuX}!oUq^y>DhD9((tc{Xt6x$4zz-^}kM7 z7t`2{3jOd(WjWR`T#?am?~IzbRjT(Nr-|cRRzf%jN%U9mKw>`aZd&=(uJ6J{7jL}@oH{5>mUecAK?9$4XQ2G(^E44|=d#x)WxEN!>qSyA zC%XO%O%5EF6kgAWOZ!o_*H+ngq7>h5)jA}0kfrB*F?{e**nBZKGked&(lmWObM^T( z+=PWqrk)C;D@_$%T)Nvb2;>h!3|_tjS{k_}!_-9p_a7T~VZw1pRO0mHxz~@LT|Lo% zvkj5jOji%MHiSSPux!QU{$>|#yWcB&G~wD;HiPF^h4nH$L+PI@2}sYHM4P1A2_NQ0 zp!}Ho-QMC_*^d)-m$ANN=hu@xhx;CXwruFhqx&6Rzi#hK^PjS+grQJOrJ8Y>fS{B| z;Cl1i6B)+EZw>C-q@R|o@-{HPmtw<*zGkDt0Sh#oQO>)6=ciKit{r#HpM8hVjk4Oj z&!P3NiJ`CYlGBPq_ zuLr_D_&Y+h~8WN z5?m7<-&w~rb-deR2%tepS;_prMv3c163W@K1VFKf!z14}lL3RDU3$in9&4=JlK;p2 z71_)T#>&M&VdIBW*>@U1)Cxl#Jw1K+Kt>Ath9;0JuAdx@)7b~@q zbdw<@zHB)*Hddq72Ab$LD0FeZYOv*smEt#Do?1cwX#8Wt>(G?E2p}q`zNOFpE?j6u zbf5meQP0t_>|dRJ<1?FTeI85-fjC%i*&UaqK{kE@rwF331O;UdWG^8d4g+spwHv;? z-gO8Yzrr852~&vxO=73PZ{jpWWE#)-`64MSf#YwO#n+8CtXtrMf^ufSEuWi`1~`Wfn! z#{Fa(Fc+ryP6$L*>vYibeMKjH-xg`pX)#0pNpPy?WuWiz&2;C>SZrn+`kukVXsEVX z0F5%sJG9L;bYq}tRZOuc-x;D9OJj;4H5j7I{a*hRNF438;raX(NrDqd|jV=uK!Ui;pz z>)v#q^%YnQpU03!qXNv}$#sn1r|P&+C{T}elgFoc6Fu190yn&Hp&eV;ed{9+=YY$s zW`#K}fYJii-WJ$_l$b z@{;f-9cK=gZcmZ|{o##cHwY_2Ompdq^oo5e@_((294Y@5{_zPbe`MIpK)t%0fhutK zp^cWGC65$ZeWb6ltf6raGc&bLVOQ@M#t!<-|7rm~<2l?ZxKrQveHU$rjy9bWr_#$8 z!zyY@;3sgzNCo8B+9N8eta%*>HU0VPSDt<&AIOTM`d%6w(R+y;*5yuDk6M_fdN40L zdTvePMvJwAuUN@!L_@c2V{O|%BWbB~a8gRS@P;N+f0#rmdlG3ji+q&7vPGfcA_KR9 z{AbW??52G|3zcVOn84s7`KodB5-ZW)1&i>N0C;-+&<^+@F^Y17yuI?UKZ_F*3D((m=@Y-FR9w1&#I3a;;D2H4a zxZNd0MNzR9Q_9S4e#dYgGylvT0!) zhuTxk+OOpxQwu^-c&lN)sa*Ep1(Rw{w|tcLI&R0pvIcej9TA+Q!eqnCyL*==cIF1e zsvH5mes}lm_fT~E?|)s#3|b=&BD@hs%Q|_+fd-a1}_pK6C;_diTqt#((%)&i+b+2O_X3$n)^EW zp}=>$828Ra_&u8W*&~JU$sJX^i#L_N15~_8j7{BjyoPujBaO@ag$*~JlHA6kIG_Gq z{t?MQ2RJ$Y>Fb;at3E1zBp0H%%Rz}N;Sa?%%S?JzD((DcdN;`g%~s@j(ba_*7q+&xz&Y_jqC+iD*$?KD%&AS7V%nfR4y17)qm+6n z!S#UodEHH0rt*TAa=eS*$GiKT{nL!m1v~q<^=?!bUR?TK_ zAc$i&Bl5;KYCQFl#IZjL2(s1G#i(L};IKgc?CWL(cam4F)(k#~wuXW?3!3JVgw_BF2?x9As?6 z-eW1vfcp?!7QOHp8y@CMF4FxxuIU%b04hUx(jjO!2Y6a$y}BrfRzc=%0C57Fo3B*P zel>-x%?H2NYPEusDUi*H@&M*kAi%MkBTn za`Mo*h#Ac|nc}b0%Y2+e%)5UUew>Q^NzkW0_k@`(;aBZzI@xGtO^lFQX6f(y@!qO> zE_j#Z4Bt8)^ehWW$?uxBNZ**b3%Pxy02(%5UD%0kV->M_e@iqSFyFZyk@?yr*#Zi&=ces;N>Xv^3OF{tSn6ScwDGa&9Q9DUe~zT*{sc-E1jD;7o+!+J?i`BfooAtmP|*2RPGY| zUSQOIPZlDtUo>N&8|-#LT}5goRVCr>#&7kS)wYEg^=HAV8zoBvJYg1)%47{5AM5fj z)AU;AV2#5|jkY3gJfi#?#N`fhSpqCH5N!1WijFx~%XE|*vNY5&O07WL@2&7hv3KQs z)8L9RQvi8fp{f#mkUz~wq5T%IeuFkjG*CMAw%7IMSI z`S2Pr_J16jL?Bj14qYxu$pM?Ggku?FUZHcFp=RN@IEP0YYMTUOcPFGj?!+A)-QqPX z`D(6M`+0Pw)A<2t8z6aN90Ceghf}f9{&LqRIS%DBSin3*CH}MP?Ocsy+?^fUP=)Td zxsng;n)w#LJO5J<__))7uq8Yc+rB@a&*zTxgZW|a@@yye=?h3c9at_RzM9L-u$0MT z#7oiURlyYykQEbz7Eps8o)r9Sx&EmFEtTy$kU}fh?6;?X&ZY}_V)I?qmLIq}<|ie; zWx^8@7)>i7RPqDt29K$L5_QPGR}zPy zAtyX0=1~5!4N8bWW+8L6GhN!gTt~p*XVCR}SF%NZH^Hz=B?B-a`e<1bQ3g{F{d}S* zBja*QIs4;l%lnW<8Ut$+N&Zb8{j|NFpM?|*_ZwD_e_E`x9^ zM~>$zU|ePXqtYa$^PXw?gu7s^emjFG&Fbk&Bgf5AOppg59&Ol)A4#95XRE3f^94AG zkI4pj8b1y%%EDI`7^C3pnAfwCKk!%(4P3K9UGjPUdqy<%t2bJz{ViHO0-ET0P86OWnBvYbNhK8B^6)6D(4$XX!(t_3GqygU{Madbn%c*UIV?D=2x zPimXWst<&&>=U>|fb2ykP-q*Y24Wi~RSuWk`EJ&wG0V!&B&8M4W|yd7kOb5dEI5+m zInVE4VRb2|r#V%AZBS{(O2ImW?#f*d&I@yd=V=sEqIOXjr!Xx&&{X0F_)YQ?DoAuPV z+ms0iH%_H`aJE?M_Ga}oiAVeT;isR0#(Kxxfd6kmOE7eKvjB(|iO;Lun6e)z0~-zv zfFf|lw|uzKug2`7DBuB<4P5Rwu|0#+?{3OuRr$zvnl#f|laG+bV?rqm>s^UdMB#y0 zRI-wEn*==lPj9!C#=YnAGk&|2y+a$>D=jCNsZaCjr}gtl55Q`k|I!6PlBN#5=C|Hd zU_c#=j(;52)l!HtE)m4!Fa(SXfxf*DQN}-8`SP zU0fUKPm+;dRnvqu6TSgy%G;R>WmGEYNqn3 zzdLcb5ZO+bpoB`bw<-KNu6T}7Ah&|=!Z%%B>&4bv@4R-PLn|1!v$k5=BSO`z(meF2 z{~*8^r(;MZ4-LJv;kEfAJ zialp;SdNUB6aa?p+WOQXdI^61!|RWmEFK{r(5%-^mUO-`q#BssE-{NU^lyRLKQJhW zqfS0^^s(6h(Z*GfSZT_A=z;w#I0BF$6y_ac%nU`gbahE7v)@KVl{<1YK0a!`Vu`K^ zBj>Lg-~c4y{M^^>9k}b@uHyXeuaKMnc;JtWqV@wd{ap)PT`~w^@!WDYKn@e=0PF=9 z=-n2e6hnk^g_vaX&4EU@eM1hz{WD4rIGNJZ(?QKzp?i<7IEvCsSy?&WG@I@*(>;#H z|7Mo|VE}>FLZG5iLUT#;X{Q@niWAD=@ulx@PFvpG_z@|Rn`_YQc@>W(d~?IdLg&NS z^rVRNG<^WHXhX9sESX43rR}eKL0^z`d=1My)PbW)J$Ge^o zLtn_GAyTHn&RiYt0JfOD@TE;f9_hj|bUyX_7w6mlXv%Ix-D59b^$zxSb;W>Q6=_e} zlRD45v)@6ax@f~lwRE@t0Buo|)<-x2z4Hx=jzX%?Aj~3tc1!Fq36@k>vsGKqU~*nY zeu1SKC@7QJ;0G+MA%DtA9S?`YWP*gGY^4Nd7@h<+*7$kF98mqSrH2T3)k5uq2xnlb zrIeMaCPc>Z{>yn# zf1F-7{j9pKb-M*$0JAj|{yMM=LYg~5-K|Ms85!+&z1b^joxklgv!_n!`DgSNtSk^Y zl|52JvnDorqx?r@Mpba6>b8)(22LuuU~g!MybOu}2%t`FWy>esPfC7OJ`BiVNB9EkmQt$VmG@Vj1_H?o5Z1nT>Dn|FJb0Qxd-VW2ys#Vgz z-gzcg{LzaXtJUMglBDoXnt!X@+rO=uCM2cp^zfd#%s;j)#3}@6#h2QdRCOH2PJ9v} z&bQmTA}%vsLOn*>_Gsihw&_!=9UIv~|Qn+U@<^Rj=0irtAYief48|+whl0BLefT$KflC-kG=p%Vz%3AeAlEaio@`1te0RF5 z`<>Bx*TA>Srtut;ZSCoCgW(~fXn55E;#D}EaA}zEibcqE?5o9O>rUaI$oQ&ZS(1>E2$|tTj?jSC3oW)elpT}6NKk>c6aAu#v8tR^-MwGQ;7!AJeD4# zI1K^y{g$~v`!W0UN_Dh+pP}emc?n@28>rC+F|bUEL?$EWrj zM5vSuYU+8ah#dmh@1R6Sm1n)KVwRkFie-k6gCyGh<|O^jn0k6YBjU#O zOl2&}Z|}XHA-PoWg!S8X!*LeY+STQckX!)uUY=ay6PPTGexZAQ>MlxCylOsi(qS;u z?N`XzD-+yVD{Gn=jR)`2HPyl&O+Wvr6{%sT zpqO$v+|qJA-0Fqq_*U=&nwEtE5&^#;1AJb)$L798;{9V@{*2KLUVPGSx@Vv8$lPL& zoKZ_(zcfG=8P6?h=r@d!WlP0pU|^7tkhmuO!L&0ghM_|UCo&aG#0V|$`_Q>yd*)U& zuHU{}=S$zAz5RzUq0=6dl4qrq zhSeH<)xXyD#}f-jpCIi6(0;vAWQB?7)qwOsoUwxu>|Q|2;#gPpy-fyhG+r9Vv-)IK1Q!2|-I z5m8J-MiG1MCjbw@rO#GD39?H_6rdb?eGK_(P)1-;o64Y4K=dGK1sqLnNOOu4l*P9$eT3fJxy#eFy$fbPSBAkTAlDA*t#gKBkth4p)`g zn2K7qvP^f&(!A+YIK6~~gphvkd%QN^EAn*DLX56oIT#umwgMv13x=SPjWOb1V+Iu{s?ps7EombwZD+IBu(WWEz91N%5Ll*m51_w zkEG9i# zBflP(e~oJOJ{@Vc)au-legTT7V=u{q4bLskC|#m`^r7*#8TpMlu*V>nZ+>x8A7~f* z3$*1!dhXBR>o;Wo_?Z|Y^IEi!0*mN0jgk9X@BnTMTK0lDikwG!ZKfjAmE*H%HFvKY z3Rz3=ZUUxK3+g>c_=vTYaCUZH{P0y8^>xO>!YHbexUI(cXSMYDvp;3dX&s3*iCFiG z`QD4EFWjAkBdZumzy=aD2)!(C+!j-hZYN!KaI%L$Hfj>9VayT7qlq`ngMboh-6?8? zMDj)g(9iq+`3L(cs01`NUT}WQv8dEOJ=%F;VnUtVC>TibL7&Wk`LCo2!TR|n<{~?g68^Gsb+DfP@y)?uHTB2anfo3-GM=Fh zWo0Jt;+x9OGm6>TvJw*$p95w9)Mf}EEGYIu?8JWZT|;q+Su2TE4BDiueNTdA^4@Mv zF{mh9J(g->ybcL@Gi`uKfh5J`G9Kf&24Y7DtsF`G*`F z_h5PlBx)U?lcMS~*=1G{0#d6OXNzIF!iydy!qTmC8s~`}< zAMVDwpo@pGoCDPquspJfDa8NmYKUCxVPedPurghw3tiai5taDl5f+^3Kax|&4_i}G z0dsBq-us1mZ{&cBj{QG0T?J5;>(-_e1nHDgP(m6cl#~`ky1TnWx+J7i8U!gpxN5bp77ad`yH z2F(v`u^O^-K-U+)(j^4pGvHx$_Vh#$GWSo) zL+kj4d)xU=t5UrfD1D#=6M^f5nOT-3OnLTa9w7pAI5Oz9nA0h#U;Nz7I$hawfn84e z?K8b!=O-MsleQff2T!SKXvQ~>-F-jeP+1Iek9D`Rm=uH`$k~bcWz)!g9%K;dM1dkL z@VG++xBe|oM~M7M=Qb;pOI?bLd;WS-E`#TF^|<6C?hBe71?p!j&4i(`;PhZgf!N1h z&@3tJWSYoagY(L^0g>G$;(|5h&!}Uj6Od8Bl!pOmh_(Vt2>mN(>H3hIEaId_OEq|3G^uMOjJat)G|jps?&?fDgrYqH8ugg??X|1T=7O>xX}$S02EKJbRDhrHweIkmyo~q%FjZ zglu3Qcq5Lybr(OL&oi7p(o8@z(OJ4ezyD&4JzNw2sZ;c>UOyfYb|__w*ZI$%1S?Jo zjyJ@&%1Kb2M=)CGlLsjT9I2rPbO9F0_)nr_W?*GslJRE6pV=6$UTVDaS`D}G!{zx> zE2U&2UL)njxu7N*CzZIU)va%7!;k6Ct1$k;c^rra>#!ta@|#+h;?=y{p-0qb_V#P5EaCywpJ8chrBE{RH`y;e?1f811?--%(m1pm;u^bSYC&EAgJm0 zx1~`5U$kz_(P{5&Xf07zCfIr2=r`V&GQRy#NB6+Le+rfGMUg7A*JJ|^2!xTGz&TM% z3kz=Ru{&@m)YR4WeEb*&?^SYcTEFs7A6}2L?i@@V7_AbEG#|KYC5-2lb{16DElE(Y z6sc0a@_v*mHo)452`oMjz)!E_e}S52-)+O91Du3zk%JE(KCCtFLW2PLfuSLKh}waV zjcS=DdnAR?bZJiEbAO85_HRVw&|W*=%>JaQ4;LPwZnqy;z{6g{nzZ+3HZ*Lzgxg{U z*u^zxhysGY2?;VpwgcIMRd_r-Y0Xt;9&7G;zrBrDq`sQlXd}*GXLpI!+1HCM`-GFZ z27O4gEW`Wg-qX)vrXX<|4G^he=euJM^7Zqd+e)A-GAAQB=m>V^^q&hH>rDd%=j}6g zk*#g*skcHXfPSRz^uxn*7l8SN1!M5rbj6EZGXImgb#3)K|F7U9zaH*{3~3~4`GFN4 z%G)JkhT&^w&Dq%!jk?c(X+~1a!J`b;M8LLX!F&hTIz%UPBK!epV~GCL5V^UykauI`A=QttP4yt4LEz4J7V333^O{5YNqB9nDc3{v! zQaF)a0kA|_`A(yIf}T4H;0^|_|8o1ue8Ih}+N}TA0)W`>zu6b?1Li~F44Za!5FC*E zFm!e9UBVwBBqn%G&Y&X91}2!VxiAOSf(8-*pdpR=7kAV`Uc5MkMGNWm1V9d8a4@oY zg4at4G!qD1HI48PqjR2ic6P8qNC9^N(C@<|-)7%GTxSe3 zGFTJ$&v!e&G&vcuXjR6*F9eb!WCjDvklXnmhh*{gRq;}FWE=y3m<)JA@~8vuenOSp=Lk81M;i-{u@T|NbyKp}7$4VKVA9!NvR8#o_clMcq0&5?f?u zh9ZP0f4Dm0f|q|)SEKTBSfO<8in6s|`$NW6Lg}R)?LhsEw3qcUr$G7&dxSi}%IdW9 z;_Bx5JzxT)uQP2n;Rd7SiQ8X1`E$m}xwvSfjHi z#hW8vsVpG!v!~-#^P4(kcxQ5huY6I`$z-x-t@6~6t`D!*td0UA7>Na$M^UWv#a!Uy4jJ&%JJA zV*`w6I(2X6e&5X)Eb9H^U7rY~ll*vNr$qlE@re6;O>IRS9XX()xXBVxV&Lgza zbSsL%#D#2!+spsdPyCk?N6A;MYBs4r$y8OK%nX}T&(zdO#^3qQz`*BQ(_M{Cf5*NM zuvy-8x@gEL@LYNXAurqC(;6bDA!Zn$1JiUT|8GaUJGXCk%XE1U$^*p~ac+Hc8|`w< z4=^IfA1uU~DwK#<7OY-LO*u^k=$arGpQ;Gc|D43JefGQe7U-R7YOC`e7rc4jPGgqE z-`(WOz=MM`bIUE+;JVQ_2uyNybGs!LApAv-&&=?=k@4J*kuDLBs%hbu@#wuyM%aI9 z`TkyqBh19fs=w3nQywHF!!`SP!!2C1?Bm1)k=0XDm)o)TwZMt|r+upYUFN_;5WH~5U!!s_F8uf%=LSHs zB_}W64J!~lYlvbGvd55SAmoW3OK7s*R2i|RTHj$9w>wmXiAEj!QLKSM;_$-3KN4(S zT>z|vuKy`2yD=OoS>tjv+ZGb8!9tjr1fqJrCr_Syka=^*yoKPjbSwAt3d_>^j0h);w2q2(0qjPg}SA-ycLPxjB@!2^gEvVLi znhOc=@a!AVJPx^zi}VWq`t=J?(-eerMRiAk_dMzA9{b!6;QVO5_@ny;7!J2*Q-f&o z((L4WOw3JnmPxflRLhH>-EhPYAZX(EtA7@f*48CQb2Q}SR(N;(lH6g zD7FBLtoHSoQdCSejPYOAro{>l)%w-m3cJ(xu~?R@xa37x?BBC)rqz8IB`jZYW>iaP zZLnV)7VNfaq~OUbBK}+T`@>f((OkZ0nEk*fC=KU!bQ&AsiVZ6h#p3-4y>{B}y2U9W z=ey)&KiF(W`>&UiyqIfHd6m#QLLEjLCc}hwZ0ah#@H$K(;bR<-Vd29%@fFz(wY8=I z(jmRGuxL7i{R!L{NYayFj$-Ip`|a!OId3vk?))6J#0qO@W$@Faa^-Vo!rx-UpsT{X zB)IffP0s?2YW$mrcO)zvdWVWgRQ+9gol(M_M5RZL~)ul)6Xi~;@HLh5yoTol8 zs7X$kn=(?gat_(^S@&qwR8;{P7J-~7_dkDDUUF=gF4ME{PvBsmUVimXHNrCcEham| zlSgipD=b^m)z3#K^zsqi+u?es-s^|DSL6xc=I&PdQ#G*p$@cqD;j^Citld=J5_MV` zTT>W8E!(;e_#TG-;kqha1U}PeLPop3@p+Vv|U7I`i8w6=|!sT$(%)fyj9U<5t zj0E4wac1QG{Ewl8B-nc>YTd+UZ23R{=MuK!20utr?r}8Ljv31xmI({N*V+|GhtV0Jw-P;Q~W2$IB0-! zMLC&>I&PCcTMYLYOmyV!^9)dzA+0LJO`DlBV_)COtq!Ydaa67Ryy z9|xufE|cz1*K-_+kCP=Tcav8;fyM6PF;Z?4KL08E#*Nk0 z#z0Me$`!i}QaPTY!q22w^yWd)4Gbr)uJ`Z*AAI8KiAlRf8C$G?_XJjsE8iS$(Dh)VoGUcLNVlXJIIW9>!|hNftm>AMo(p;1CNk>lN|CrRc%%8s*r<6FD7m0o`MqsH= z{9Sb*G|;)GsX~HLIM9KVtI1JEl`6CLd<8m~K(iww7OFZgd4Azqo0tSc`X-cs-uWX=HqXdLSMMWY1wKkx z^3wy?&`=n>OnzIktbE&kgx~_!SBm?O1^R; zTa9OqtP_tv4-vQpW}TnV8x@%J?x2$xIE8jIH9$)6x;OAT?YhKcy#ESx~rBfj8_j})ldxk2gHHf;o7r+(?v`q zbIvN)zYi9-77BvLQ#qKY-32r>V5DH-STi-h`Ly!qH;j&krUtrue6bNnHzBkbq?8Zf zinf|4lw)i2iFR^4ADixunUf%mCrW14EQ29<4K8HP>2c*TUGy|MXVVB{8+Bzm{%mq$bwuVCV>gOWBzh4i45loZSF zL4_;ws7|YcYNR0UiRtiB%B^5U>M$rB!?QB>)_f%+8__`80CwSKr~wCwZC*V_^lpfg1KNpMZ9YO z{ebc2YnfI&gi1vmCK##e@D#-nc#3P2Qpdk6a2fldkCnG-W2DC>M8cZ7sp)cB)H zkA4lAyeC!&yeG9|no&aWnU&*kEoW18##Q3_QGHM^+G5iMGkRs=V^>sz_s>6ecjvFU zXm)|W1W7B=-pIQwPAr-BAI28lBMx?_Q3&I7In>S96{w=%m+nq{s3J|BgJZTM8NjXi z?Hje&a|JI6bjT6w{rE94Ik^YM8?b`u%xoH5hu0JI-?h(w2qF=t4ubDOdp9L)q#ad5 z1!{uHt8JzWhK?^3Z*W#*Qon;qUKSCeK+!HDMB(1zzav2lPH05xb*Vo526)yba2AC{ zSj+I23wo*H>c_-NTG@IQaEz<*^bIrmnWm9)OaF5tG>Uj9%>D5i#O6 zJ4XxgewE(q%bvApX)9r>$no-p#3M?22|0m|W5!}1($N+PMl+wywYdPYVfY*%4hM*M zGKPhj;+DpRJq5QZ2CHVd@%W^kJ=Iw2P}9{jeA<1s2hoZiTg@b-AzIq^{`~pF_k1Be zGt>3oUyoGqhlBKmZwgB)?GuoifHGLdHZs68Y7Pj)*NI7!V&A8KA5KXd=|!J|9=>B) z^06wmrH?%S$!4USTv6py2Q$Ih?-O4J6IEmtT_NrqrQ;;v!zm+f%~+K%9ZgbF-=Cx) zAtqw8?um(+vxf~Y?GM&lM?@1iUT>_Qua9%L_eoJ8Po0oA~vqrMM zdU&{-@sX7rwhN!WU=`;Gj>6jvMdLR>0Eq+=gZn?}`=}}3lqpc5AOYC*#4H0;7h&9p zh(Fd?4~L0J)#yI6HKg5c+AVmSjPBr2G04Wea`Xl3g<5EyXnrs&)!(BJ%5Te;Z7c-v zWoRCK97$ilfW4n`lY=JgMfxW;;oMN3@=UkChdr_@B=0Erot0CFMIm&F=*k8>jp>k= z1J8Svi%6J67mQz*k_AZ#r&jwXSwZqo+87a)9cUAUg@r-kE?)5%D;>Q&&%xm!>Htae zqNSxREYeu){7X&<#3S5CfQ9r-OeDcd4F%0>ENXOD%ItsfH(mD#tk@Qm1l(s zH*V_^q?8ub1L#ZiqR!-5I@Vv7_^da3ld(gj0d2Q9y@vW$qpR!KNRizh#;B$Ja1D&w z!5~4Ou@UOjm|3horXthD$tTuXx<3A#qOm z&LUhJ$AzyID?riep-kq244p&d)lBmn;w$q z-aooPN~UAtT`B)@4oB+|0m+M$U{L|anC>5alu#fJ$2SBr`xW_zhlPOwmrH}i#!~0s zy_8CcVA;rByV3+q31y7xhKgBYvJap|hqQnR(CMNjsiu4H@HlM?b%!n+Qsa6@)l_o4 z497LD)|)gS!2Q&FUK1zL1=NlXJn9v?4fOZ!6?Xd|wdJ$3nf}3D3McQ?7lq3p8Fzho zI6HbudBA*{l5+3!4Nh~OTY$}a{W|97;zB&KK%6bXEdw76uhTs`@M0`OmUyYkTsuIQ zFmd*%D-AZd+|?Od#MRZ)n;84_s)pzrxmpd%Gu`h_qylXx+s8WT>B7Hmv-Zcd}+Oby(T}gk{4=T!f=V5esu2^wfO-2GWE5M z=2r;;3U=e6AkPP#ObBQ^)2brwNQyvB`F7ZwM*dE`t)8=*9$ty2n_k039Q`skrRb7t zAdCd~h)0my2D2hy{QFxo4_=D}eg^Nvzt)dGPEWnwKmR2G@piBRw{V+~{L1xv@|Wqh zt6%S(Ox*~AX}3icwsx1a-S*qoy+77c$-qEU_M#cb_)S&+n>YXXOxvEzSsRECp0wgC z8ZEe*D-_juiQZT}WED_hCgCJi1)%1hArm;VA-$*P^XHvi+95kRpvh{J95b~3oz=Y` zx_8-{$l}Ftk6=;Q|NNMNv#IdM=Mj_+XJW&;qI;wtY6)mX{RUp$S9|EbF=iyl2$4S! z#Mc6?nPL6J;5Gq14L%iC|7FM*IK3|colX4ACaGSzMjHJyWtBzR{KI-B*YNGn4A}8= z9L2`P=rw1~_vKE1qs=`F*~eeNO-@?%UdX|FX9}kcBEue1Wx;u8qo#?D|3zBb`F<{D z7Xj6V2}kH8c}p%{#Gh?|uA};2ah5($qt={XUjM!3~2P{VS{F*+K|D79QTW zQ(-tR9kq3%zFEtf-KGDM{P5Vr%AV4_r>#=x-3#j1BBGKq63p*)byv#Nwe_@q_8HPb z9G(O7*Ien&fPWhh^=b7vdvWB)OYNyvs-4Df13}pmq+%j_W{Z=0u&i_d8D=Xf2un(A zRTU>9EFJ4ItFN!kD{5evxfZ4$5yN<&iJaKL01t2bB^(1k-B0p1D?>;~NuhVw8myq) z+=ROV@X5=JqzTjiqq;jg@q2y?jV{{?dW60h)tffjdRs1hJGPILF7h; zO4M$c=ORJu2lE{W)DEhiSJ>Tr{gmTIz?Y=q76F@^SMR-Y9=v%2QyME|-7i;>a_!@3Md z^7xm*V7x#4N3+Y3N{^yn0h7CTx^HG#Z&SJdJRosa-k_M*se4FoUcqKO)QDD8Mq}w# zj*9Z*T>qE9RGRQ;wzuW&S@K&nR8!gwuz6AFB4Du44&X3Ut|v;kXuMO?I(upxxB8Bpi5^5WPJjPS4Cr}iUx(({SF9*PwDk-r!15>{<_xK}h5&@XzZ8hT0jDmy zV=qr*h>iwpnCy*t(KL&R1M#V-erP;RL`5~=5ke5D_Qcwn85Y9gJ$ap!oQ@9BI96-R&s!eh8$<72q!E2V1=~j_giI0UzBdw-sP93CN+9GMXVoI&G$xus|epG?n}()dl3nkxQUJ}fnrj0!+1c&6UD7{N%LmzNiWSg-Gh zCSvaA=WB8#bB|4Cr2G(e<|h<)ci6V)ni!|6%L{@_3c;E|Q>#;Lj0zWUUf$z2e8#mE zqRdR0_E|;^QL9AVk!_;g*;M{ia}pA+wSoIYwQe9)Scw&wAJaAk*FiY`?a#12u%7x3 zoAbPXzAX>ZWYlKoMKr`X+b`L3*4bE5=HDuMbdMw`yIW!cj942cj*eId&dQ)$#0m#Y7npy{37 zJ}MjT(J#X$JSNE=Z;ITyW9No~)z%;a@XG)K^;wu16lo zzP>)v3oH25qQR62QkeCAU;MNE`5x?L-=1%ou};Syh92hz^_qX1YacCrOW4+M!ZpPd z(>qene|>iL$ho{H_zrjCJYXAu03o}}quX@dT0*m0MmG%KUp!WhklDBtAt5I}+*_1{ zj%x^thln8za&q$LJ9Ck$PopQDo_~vIUF9D8w)S116?y+h%z&Fj;pHgZsfg<%>wc*k zhedQTe~#+^_XsJCgKSi1I{Hi;LW^&=K``eB0{_4njLy*BD>RtP-i=4eEse@@q%H64 z7+R!_Z^j+@B%T_H6L~RQ?z8FChJK3qREv3CTZ7E=DYx>(WmS4uv3TsKe1y-hFhq_4H-9kj3mTn0Kf98d=t)9FQ|TAjS_*T#Pac>MDqmjq zsgkGi5iD);jL(-UGix_H(?J(49f(=_`ukskK+y3ghaLCG;NT)qOPK_S+8qMDp0p)m zolHo5pnOFk8y;b+@zfyQnlts+fHcMIXNtX1l67+f;{DTcuW8y?1;)GgA4PV*kTBWZ zyNC07y{q(eh~D+SZ?1R^Ws5!s8%yRCkw#~@?vl4EwzP$V#;KLWdwF%@lSUFv{PC8R zpYp2!39rG$Zy=$FMTRCc{daz)=|+B6<949ppMlrOj9`R!2E!AGtog zS5u(euq~!qb8cKyQ`5aY`L@Olm>1mE6p(%O4bz*sjE7Ns^*3Rs99LnsHn9+QmthRS zr-4`h0WcGtz5}FC=e!7?3H$lB46uqGz-M5oww9Zh*WCPP2Y|4h_C#9@0H33eHN7TQ z%jA<$(u-b8T}yA@>$rg`>Tm1TZ*7Lnbv2xfjUznDe|MH3Zn@xjt&h*8*e%-O?^HV0^r z6vHqGHe|$DkFdsYSc5AHeu1l_Hk{0bq1NXjG`7#KfaUdKv&EzG=XI&G-6o zg>vw=N`G9O$5y)MFTtO_V#aGNtl6}D6exFrm+})pNe90!lCH5RNk>ukmGcH2Tg#)W z%I<#_2+#~72ld($*!37dC$kgh!Bx>!+4JKYrJKJg(`5QrXKpln9g?Oft|a+U)tDUzA-`+h=p9TvIVN8 zNDk(J1-&v(sFVG(=E&cZ6GJg#S>T4`Ie)3NsX^lT)Meu3jAHdeiUwT+D#Mun*8+^d zuR8+~DY=4pu~vC09BmGmt*>wJE$Cv~$Ak`ggeK@l1u~Y$ql9{{0>|){kQ$#xuos}3 z(DkB}N&y^+v+YH9Zom^KBC}emW0+UZoog=rrg+3VpWtGeEgG}^z5Z8QM;9`x z3|%G6$A-~_%@)7Etu6_$cpAY*>SuKD{dVnuTDIRyqLTKnX*(*`lUVYw zfH*~j69*&yxX&i-yxq9EHVFw??N*-wjGSuansq+Mwwb&(2cGy%M6~z2w2M)L{r0e2|=#)^Lst z+Y1M{{33oaQyC9l&G#V9J3VzeMC!Wuc~Tn?;b7 zGBO{;bm6>9CvD3oLjBvBUs&EP`*_6G%+7iMfbN0O(W+WI2_>bfq3ZWnyp4^G(8HRP zouwxi#HmyoVP~ezy`q6@-@J?YLGQB%U;J>8U_%VWmlDxm-e;c#1H+KQaL{*f0k3em zdvzHPgTrPYMvh8cEe~KB0A+`$BvXa^tmr{rFeO!(P4X_v>uor+tNeKxb ziUzDHGc|UDjdTQPuc!fcW75c$-r89JdNP;D8i$Ii06(W&^YW$%RDr<+g-U>tD@8N?FMiUlAd z9O&HQwf(x0B84^*yZg`mG>>D0#n`u=pj*Uj(KV?ge^Ltz=cVi|6vR4#><`c$0KzCN zTwIIp-Ww$EuowMhO)wXd@uEYdnX}qew`A|XT(F;bdSR|oy7>0VGzkNSS5W+KO?b#v z1{Tb$=rF9vP3-LzU^4{n&re6lEuea^ovi)BJr; zYAlAy==T0vNW7fo`i#fH*p06fg~_H1HpQ>Q4l{36>P(f^A*)|y}hCE8R7zqoUDz^8VZ>K$Rb*yAe--4OCxVRWrW613}+Zo|daGY=MKKwQ@ zzWCDc$G`xmv5_&C8RcaENIAdVE;8A7641~fg(_nc6Zs(Pfc`V(r?M|aP?e^M_X@i^ z+)1&&9sTZ$lSM`0<>ky;VX08y;HYf*UFV(?5rGB30a%#&zt)G}84=4cZ1<^wU`T#Z zuTK|v8chwN@(N3^N`5*zvUb!Ud#+Wed3ctR1&d-|Q6qN`rMkl**LxR#%bd>cl%xfo zAP{Xrx#C^!`v)(sJq9h?OtlHR!FzY_A~QL#SOP)Y+lO6NYyo|t@V8{Hja!YwMvO%9Px`b(9AkAkz`{PXJ^u&QtMwHd{??l+O--!;=St zGlcLJf^MdYcLz2Lqyq8?)@uGd@(}%Dw0~be%=+SI_`-QZOk`(YA~!g4mqkSKF!1i( zyAxj~PFEo!u(@UIV^_xnf2Szkii8v|UPFu*ET_wKrb*4kan%2P%5FryJM|Y)095&| zHHOl*Yaq6#s@?oXTuJ^}*$Z|USD6B80wR^lZqiZGcRS0MvAVgr>A-vlM!I_YnIt&X zC*Xzz$s>|0DlN@PSpAe4mpL&6zy3asZ!~KApbdzN@ zU$;pxrh)fGGvKdq`I~~0z%(O=h@U?sP=IK@E_!ZZN;99OQ5lzG0QV18bAx ze1727CB(?-+IQa7#p(^$-P;Y9aK;;YaZQ|Sno4Fag!GMsv&RF1$@VA~N7NB_}Z6fIR%^QZleDl7SSQBJvYHW^~dRb*02N&4$$K(t%%k@5*ULZ zsuSgO;gj@pVeG=@xt{@+;;0Ws4J-qVxp)?ETWbf4OGmQQZ9zq5(e)#;fX{ThVZ$mL zC!U_2Gyb(Ao<5COQjjOpMAd6zm|7qwb=g`!+A~wbf#x1MnWrsgkdi)HZi8pP)da=w ztjRuzUjnQ1jUbR>qZ!+o4`}5Gjll<_m~74cd9_&prsu`aoS?``Jmgc#2g!Mnr)NO@ z3>@7Aq0`uxFG%JzFf_=r55edNDT35b0rZP>{6ZfS%svwE#&AD)PymXrY?xl-jUs-2 zfRhT25zDiYR%*NeT^nyHpX+9E*)q5!B;++4zu6nlu2nCk3hd~49&Z0Q-(X(ZqC6!N zoK&C5-1u!;Qed#Q9amEQ8b(DzLP97r#9=L~jYCTL0Qwt*F~ruMbYysV8N?u4^X*wc zJaK^}8ES0!Xd8HL0rYI_g|4Ol?AhM4C+6wvH&S0IuzlsY@x1kR?uTYGD-;OrwF%oL zK!MBD9O`v?Ev&xypU_pxhnN~5@ ztpi4W&`dlExM(IAdzprX_0m+DYx*%Og^IMXyxHB;InuT35GgMUE@zm|jPo=!2lZ%V zme|?BKnuSNkm~gI_cVFS+0v=(x+JvH_q8z^?weCkeOsC+s(oAxdiCYSMI>W=vF`Dy z7UsFPc%WzUVgHEN9i{KRg~Mjn`EjqsKh0Vk92+}3 z0}Bd``-+Tx+LRl_0N^C*#=L@ zi~>{$vuH)v>Yh#|qL#gn-ecvf-T;V1HikkRoR&z@XU4J04QP}B9W(_2syn=`r4{N# z39q^VZG-G}au8ly0xjCPd9l8}4wzu1d{I8g88=`s-7V zPfheOalAIT6bIIkSK}MtrRuXUTVwgyhcy0lJONLw&b6?I-?i#*42+CeOjny^i~3VC z*EL2w8T|mY9KiWOsp>7HNn-I(L`*CfQgWPCj2ge0r5vNP_Z=`8&KGy!n^WNYp3zM-^WS%T=|%h8NDPs7eVAjSL2p zAUJovDA-?U0)^NOC`C2Tn3aC=@1L9j8#A$QUiY7kZKBDuUkjPj=S^vY(Ob+*%y{I- z`G9=fF-Wq_04T{8^uR{ZP~nDm*y2}gl)<%d!CCv?-;?p4H^O3oHeciNwbCF9l%Aav zF0l9g_X`W<(HXA(5P}_gd0`nb{1=fPdGTQcyS3`hqBrg}n!Fo*+tl)^f(QVTi@P19%l79cS`wY*uth_OWD1#~K2U2kI77t0h5{ zy@v`a;ttlQL{;lV;F5s=0fyasomGEJ|_memm0?6xO{4e9qkTnIYnI-IQ+#c0TsG zL05#+w60dmZ9Zjf^-u}MFIZjd6>Qd~CVk6$&d>=1wZ99HQ-1_<=GK#)am!7|>}N5h z6<-;cAEj({OMp~Y?C7_Qla(xFv}$`DlL_6%GzB*y++-AwT<^VA%I$lTN@(O&zdG_B z4{j_FQ}jpa&Cf;0zExzus~ATag9r$W;S&GS&QSwtUSN}!g5YeRa{zP)*6lV(fwU_8 zWx%El&U8~i@H4r1fKvf0+$flHH7xD``mP2S>GF1s*&{02!I{0<8;>2rvc)Soq%16n z(sDwIiWvUe=N1l+95jrJ?ez5_x}Z9_Ndu0of1#uQAopBnaUT)$Kt1D}f*nFt%sG_v zPOZ6`^QtN4SOF{qSu{1~gG3|yEv>D@P-A0a1lkOqLmXyij^Zpcn#Mo7Mf(QV_gx+g zOkVpZK6~?_^DFPP%H;H{=$q9Ib!I@QgF~riXdiuJa}((T2>5rb^{vui7)ZD$1E0mU zw9>#VzzwXnp!$nd|! zcF~y`2&(G%E03*`obaD7FAHj>69bLP_@9ZfnV<0Dzqo$|la%ldR#5DU1r;B#n?l$tKy9u#&42M#JtBcKNgL&hpUO%Pyu*QR(rd6~LGnLe8mCb)1f{{-3sC$J z+{O~%Kw>F}@7D)k2*c%dy`2Y>@kD$i~tZ1R! z&$&u7^ODYgad8rWumAvQM7o2xbw9b1(L3EwY}wmY#u}`w$HBzJ1i#C%>EGI!O98e9x30-lY_*!CuR;0(-~D zq*E5fZZjBa-Xh=*Zh_`m(3-Ac)AeM|A?3jB#rTX*!MX( zJN!kiM%ur;luV;`F&=VwVlIF3eS+wZ(uZ!0p$zNs7cL?5HRT z?^6=1Zu-;aXE>KX+LJA3U@|)`z1OxSjd1?X3n)7~q#|xmhXd_l|DGr+%9IvK+u1#> zUvZ`FWlBgi3Q{dK2chy!O5T#8f52BG5DSEd>#w?cdU`@NlT?nNMJ_k;Y{Q3-x2b;N zG$J_V!e%s7nrmrKE-G5F{6Pz^)Mp*PKTXtEgbr^o zyh5;S6rdBZ?ao&>^l58hc7_&WCu63~(<=J5{uWtl-4-0EuL#mry5XYz`b2sx|fDLf?od;cRt*^+y}pk^Y0b8zsI{urV=l>Vu?k zrobr&gLj*2*gzSW0YRrg0Q+!B?rN8B0DXG74Lf)7%UjO8iqq66aGpRxJ2wcfl(vl1 zpG_`tV43JNoP6d z7TLV_9gJV;`h?EK>JfQ@DZ1*3nzE@SQGC3-D@Ip;$-g%`F$L~EsGcB2wOkdz9U!4? zj>s~|P|)PhP!{Fo6vnhXkGA`5iXt-7B|%Pf(8Zcq62Uy%Xg9pA*TkxR_U;@Z7sl4s0}!?m z8TF32myDde&ShB!uoc9D$jX+~j@lLDxT0wzHdT;jW#1V0_=^Dm`?690^ASHg#ry|S9DkA5_ukfiTcv;Iq*4XGV z*KHqzJ8zXg9+nRgm#o6%KT=^;!|O2n3O4Rvo*HGBi3HuMAhSfrijMnWz8I+&l^BP2 zINSQ*JT?^+)E7ia5elOq0lN-rLPR(K6YdKb*#TYA(6mGcrUo(UCodScnJt4(!Bivu zGuy^=Du|{cMuz&NN}syaWXds(F751G&PKH&YC-s_5=i>MN*7!b<-M}rkI)WKg$I)* z3I!DvGK6#h4vbCuAdn9}SH?hPBegwC3Zxg5YO6jl51K(-(7@_J?YrXNY&7yV%&Bm* zKn4gcGMIw}Lq{)rInC?si({Al%Ljhse0Wzeb`R8Rj_#uI2# zw&vbY@oZ~<_)Q7TIGe_u50jWZVvu-grxc^UpB6QDPuPO2Ar}WIJayHB!C@9O3>4;~RVG|G|T!RddG2Ip>Ih9R?1_*#dJS1AJOy zoF)=(`+Ah^?dN}0-Sh4jfU-iimVhjHj_mrhNOOcdFGpx-K{X1~aX5Tj_W`-x8`+Mc zZHHtoBmgsWR3->=j;!CS2yd0`b#uxBO~5~QVg^$$w=X)howEV@#t zPMH`E&8i#~#8@xR-ag9;S70oF?Gqlr`r;pUh?niQ-yUkR((Bc&jW^R2l*)Rg!=Ob( z>Had|?H133lIwRcXygp|_^WaNs6HTzf<|jEpl%}O<_bqPEN73UK>VXuw-Py ze|nk{C&I`mgVpm#etIrnL3o5U{8qeFinZBY!mS2A-D$AJV8j?Tx2U1py?&uZ4=a)d zh#WGdA(q4hoJYdYVcN}zytd$$MM(ZkZgLWmh2Otf-c7ExzEH)($$fnH?rEcov`f<~ zQ$B^jn{Q?iqdV*%>e^eIn@?dXNw{VG=CZP;B*=gkEiGBv($NJ2@eUm?hJ!B_EuN6!UI`>DRUuMr?hjwAea>uAO|9UK=BZPg1q5$o35>gog- zRuPA?E(mho%UaFO&fGya<*CySIONdt`=?@SQ`4v=pn7mH?ff%-uihP*{5&qOo=I;< z$2@Y4>giHyIr`)L`K4^l)|!E+&G#q^gLgai%&KKJ?G^&!gZJk;19O4wGPSaMYH!cB zcw4cuk)FS^1gqa8YmiMHBE+H+6IJ-E&QA7^eyJf2Kk#6~y$HkncxT`h_Um1U!30&= z8_iN?HjcHq^f&JB)Y_RYFFzPFQlE5x_z(oHU5*$UnSM&CMa53q4?_HLS;R8qL+@QR z#X&nBJ<^J$D96CeT#|J1FEDCv&-r&tbDn0|*{=#(1?$<8?x`2Dk#aW$owL_x1ymKmWEL z{^z}JB$;6#KpZhiecu zD!6QLZX*}W(K=EUo}(PWqtblxYq`3{$L2dsR_H~Hrr_Fzq@lZ?T^)>AmjGbjkb?T^ZvoR zN!z~LLOqt4zKDI;%uJ)A83)cbS{P}PTwQN{X+}Lq4^bf{zw0F9(Ea~ffV8e3>n?L? z!!5TCvqw5EAxMD>_GF+P^lij|C_rkMLBG6mF>OLB?7tm*Q|D)^5G)HFE!!dM$ppeL zagF5<`(lLsl5hyeKXv+r9JjY>iPGN5Gq0@!AR_iuq)pr+I!YDrjGo_9W-}wLuyKUI zjJz+*PnI^@HyPD>M_3cMSfGnP!l8!T$_<;Bv>>ob2l764QyB7*Uc5j9aOB3*r|a_S z3bAOrtIXrS5_8zmKD@&jVJ&LU;RDR{+?s=uB@{>3m6##pUknduzNt4x_0(OV$vC&an>d2c@tgRaqR*su>F9;ox%QY8YPBN$Tby}b^4K*FIv z&lQdcRW&svs7J*2PvO%v4%MZKUZbI578%6B2?`WuLCW~Q&u~->{?Z5Bau(8<8~@Wl zBCfZ(%RosffvI-N8w3wZEl8$CFHg4bqavvdpmA6Qe6Q%vles*b7a!mC=(2I<66~z6 z_d`fE*3Fwz5Hbe5f#ZDJ4J!IxrL+CjGL>~wQ%A?RmoG7qW(CNLsQUO!Pep~0Cu6H< zN)_1xvLKOi8IE)y{h#05FnE(g`{74l=G`953CDB8jt-Cb6FvTdkaqTO;n#aDEDrC8 z5}Fy%TyK8ApgkM`XKGwnXrhjCkUpcN9^DjHV3BC~Bps^`6E{y)0 z@wpJp!$-8h{RNLxJ$`A6Z(IjC(t?~TOYF!UI43X z%bG%xI(@V7?OVHfwdg=eC4CpUWqplc&nr2QD?~mSHQp96>JzYuC~#SgH0cbz7vN7F z5!c9nEi9}ARl|jQmd`Kz)%BO`tuARku?-hr z&(7+)t$R}!P)@Etab|{hhe1TdAhfvyVQ3J^7-F7*_|yMM2W`Jbz)l1mvVWtjB>wl6 zPoMPR92=l1Zl`(SsNtgdzyIx`f{|Lg#`I(E>>3;0J_~>V2!NK#rt@Me8RhHkhZ0t5 zW2rbw-`(T}0^*=>kIiGT;Jt=cEkE}QmFLwDt^@zm7k_&c798z1FK$?xC@3h#z!L_w4bw?cmCKcpb(20hC4WdM>evSZNru}#W!L@ElF|-t`p%Mwfg`94!G=#;`pm|@ zjvtJ#zop$zD-inHBfYz2LG|!*yUJPhuRkhV)f-93=5RJ}1P2@iE zDAil-0Pck&#j91;%KTuBR>_vtgZu0FqK+jQ9KL|xUBI;qd)!V+Kke218&H0X&wp^fsq6GiWG~ww|6N6T9UJ^ zx>05h4og_mW2hey85kIVw_m5j?-67oBUITaxYT!P-}Q>6L&#_%eE z{!Rsfx-D}B{V_9PKv_Z7t*sbBQ~Tm5xG$W6lo~Mw@&;_<+R(#V%&w}Zmj$_ld)rMv zyPK3uRQ&0Fr!uKAbbkv%%&)*Zd;!;l*fF(w7&KrbJSl{MhU3VMwNqwc@Hrc*V|aUc zA?kp(wzkmKZZ11(Rh+N3Ug@YWm%T1dxk05bWn`2KD`}*E`ep>nLN8hbIjIzMW+GWZ zK#d?Q8I01Gua;HICK2@;us?*v#36}^gwQo&1uqk#wnnZ#z%FZXSMoiC7#YJsV+Iif z13=_L(gBD<>)6s2;RfJDLRbMwPRPlL4GBR9H0|OkV>oniV?W+x(Ont-GBle6yhvzK zQL>S`l$Y*x=vP9QJXa~xH>M1NY282MeB5@J!*7Y`w8KhkE9RzmX6EOa>L)%zLYimP zpyWw1(0+2|qnJ5Xv55Pd`*5xZn>76n#;kBkNzBN=fbl>A9WZK9kfW%qtQ-{le>}Z+ zAea5yKTIx?kxh0;_TFV>ud+w>CR?`5kiB>IN;b*L-a5X1;~2dXR zbw_DJj~G31fBE|Wh`#@qlpVonxR%EM7f= z86H(q=Mf#ctnBvGL~wd`7Pce@sAXpL>ME6QTIaTo0vYz;^faw)lM&H)fy#@rIH_uR z2uK;s-~$Jz0SNJ^B^qVVm|!o@2oyee(?Gp_;Dx8XMjKu?Z|-&kKsT7k7| zbT$Qw3(t#FhdT4!^kSWK&iIjVEmyv%II7=$kJX@MfRa}7^mr4}8|(xPnq3NP`Pz~( z>i_k3K4qNH_K>2{%8ZRy`4la)*K)qlEf(Jwj zgzL!aj`5E?C2ByVoR!^eI8l>1?H4Pt!x{G7*4l(u)^D!ImwduyU3bmS7mYlB$VTZg zV?{+owcnGg>o+dC6RTbnX)I9JcSpIL!a^}dwzJ`qR)(XV&xCG=3WO>Nx&KL+BOFqrpPHJW3MOOSg*iob=1Egs6K=#TjkK zl?V+@_wVGb1XR8y+XAC%hI9*Eery?&vh~3yyAhfE;5$mx{P!^2?`xyLgXba?v9Exw z7!SiE*!L(uf5PdNq{%8ugS+CdDs1^HWf(n9fv8T>tgMXv;K*#OMVaar?%?p}Bv=$r zfWE2lGhZ`ldXQ8}G{88yUOjgj&+zSHUoCmqx%rQ}NDaiVjh(A6oR2GDh|G|X_fz14 zBU?{*H)@c7leD+5)@{3TMt{v zDn8jh`Si(R??PEc#FGM_^DEqAE0Ej(*2Dla0P(LDW|mSyFI0HvVf&23nYOt@In|_6 z9E!8Orxx8F@`pbC#87;~!n~Jm zRk-9S&WU8lMM&uuC|6=N8@B!GV^^+HMRUI+fKKwCzE$sOOJ46FbA=G?B3dAUe}TJSRZ~cVOW(SjJ$OV zm^{&-$b_XN0s}+%F7mpAsZ3Ol9o_^ubU}94dr)$bpNzb;Bign-2i6ATR`+M_sUPSo<~ZMXyFV)YW)z2b z3c|s%q+YL+u5NrOUNak^b(3H;sPZidyfjht6$WKCG z5E9dyIN@@ipH0Hz{p<;5g2CI(ta>ukJM+b6CG$>N+M_|3s*k@vY!Z69c}#Ze>D>Fj zj!gSg6}?%40?cX^A_O#L9zy~9(`jj6m80Cs1Ss~btZ%IRSW0g!F((5R*Lk@k+iQIT z9+xI2mX9BiM*=e%5*OyR#dU0-=d|&_QtYL(D<2Q}OnKUrAkhtHDIGz0rzR#RSHY$w z^wq1RyuA42WFjc&Gf}G`7zY9q68-?6aRhlqFt+#Cho%F>hK0lJGhZJVEbnc@g>ONvgcjIHpywN~`R+3bC=?5XB&<0fg_6Q&Z9Y7|K z`-2CFssH=G zeo?aEGl=Oxj(uI~7 z*;ldsH(NESHiNlmT@Mz;HiX{cV4Txugq=F18TTpd&j7yuU32cAl-=pC1v5^KeR?j{i&(__WRd} z2w#FS5|WQ_!9{`PxD6KTE8z12#{uyzTaumYg5^AN1p*rd3;Z~D^QCnjp_2ajLq*LS zgnJe2&_)^>Xee5j`BZE2OaE|Jkb&Yyl{*qNFa92Ve~=pnEe`5|+^1oNxG07PuLLSh zo@EbCO@AW)aE8zGgS@To*+Y}Ixv0I{r+1iB&zGXD3evg6&-N^A%tyU;mnX!zSeU|7 z77XnuDAn_I5K2xQHIc{|Ybq8@-QcPYs;{XkgLJshcp(6?OfLNY_GZ{yndnQv8T<@v zqUSRlFsi@=;|diF&U>zhZcPj%I--CZ0h>EDsg2#MSFgmMzW^c)Ni|#UhktFQ_E*%9 zDN?iH+HMQ~C)lLyrdKb~*NLsVNh}=9N6(HsY#>=8p7HhTtSrc>y`xiYc+1VHJKNV( z|EG;4+D^w!q3Abh0U8yR%?2?zt3Sn(G3UZ|7Fsk77XFhFa0gBWFr)A=%^J>IizaPZ zvjzVYBb!WES%QK&9^{`;ySwJ*S{52X2WkV{sWra036a|`E2Wr;{h!TLQv*Nk4mmlP zp4`o~RKHjuepe{?@q#`|s_Erv?Bmd`EGF@5Ak3+r7=g>KIgAD{)F`nlj1paQGWDL` zNhHDH?$GHcA7OA<9rtd|VE^M#%n)bc$8n%E0My6r?QNT}TWKBp*PKd$rC;q%?5~$p zvjlM=Q;~h=^=G#M5qEcG8FeCirUx-|QMq*_-Arj{rZev)sxYp#l0uASNV4SIGrfcS z-CpAp5lI8s(*l+na&lISp{h!N)|`V>L$Aq+dN=TF1v}h}h9Ddng z3u3<1F7oxj!orS>j<&eo#m5lV-r-yfG%(zHU+Khgs=fG{k3fB$gj8esGZh*&b@f7g z?^s`kW-o^NF{+KFw;cu1mFTUmw{o1RH1ahM8s=WGg@S|vt}*05!|K#@7 zshgN7jr7p=+goJf;YoylZ=%9RwR$POC@PmzjLN>Cv}gs2Qt6)DjkRyhaQw$N9s;?b z7jV^&V`H21o{r~j9>=`0Cvl;#_}04e5TA5#{+NW4$2$%we}afw9bkLt6Z6%W->MhA zI`yjpCL-kaAZbdsZ*499dGeMRYe2xw%8*a@2n!p~ei;+_n=>ArXxy;dB0KuWwWrz5 z(3q3UgjJ$*+JQPtS~c_aE2B7DmTG+7>X)0}_^a*u<50!wm{aTj{%W|3@?hp&Nn<99 z+n7hwohi*_1w%91CSTy~zq#(-&N=~KwAE4qJZbXGXg_!9dZ0MIrGaMSvwJ40P#$GNn&;i7OoCKHyxrC*k{w>J6E1|iz&=+>E^8`F`>%&zyHl~3XXewcsAgFyv zfdpPDaKdfC7y{ggH|V-Mpp-#Rsv6O%ox=SVqnWhj=<-V_n~;D>#7t_t^M~gIO|Epe z_N=ARz9(%|Rdgi^Kgkw;1cU}!f6>&0)Kpm=5$!ET(n3T=(`!HA}3e9VpM})@s_3TL!iQJV1%H+1r8#r||f3KTNP^ zXS9#xIS2Jh?zIdBv!#FJ77`ll?hXdBBSLIIa#l{evT!^-3&Sm{!W(@Kp4_34z5T7@ zNn9vGZ@GQ|COdQA2o3G->&oaqaCTbiPDy+G%z${_<;aP6q~<(Pe=2-$W2cC}|F#jt zTxe(zdic3#ZNpo{leo z3Aj`?FVWi{7T<}Xe#nL~@Xq+X0~(R% zG6pimu>1b+=1mJHr`wXSB?FX;6b4wtRRVFA23JvunbEp*Syw+9t1lHw*dKltmiZDA zjt@g8720fH{ZjTs)>4vZu`)kUz_Q+{796_4rPg+)dXb^&nW<@4hyUO6wP>!{Mn}rm zi+IFT^nB`(-|36!4iV9PFw=bNPCF8xN0IdpzeiOlY&l-jFl zYDx-6DG#{v)xzWrU>znF z){RbnTk|8+rvJ8*L%E&G%4c~D-UjFJtkrqFJI%2BS}p7J&BwhORp$nf|hl^O7H z<2k67K+)OHC73%cP@Woy5)|kliUKI{3}<~qgB4T^_)T2F01|H3|IrFgr2y=41UGVG zYHAn=D&Vata{Ye97r{mk(YGiTsZsf%_cYv&xvNY)D5XLI<{RLyY0F$zJHn{XMbQsqsQX)^hq?Ztu!(D`3u zvTV*$VYoDh78bf0OWCFO1s3Hc8Z_q?ppYJS7ft2yJ}^Z_`7<*AZG#zt3JobY9vC<= zl?iT~YzEyGf40;dBWVzWG3(8Nj}oRLS0EP>TSs8buw1eg*KQaQwL0%+EK_PT@%}Z* zQy+BL4B6NmaPW8G<$Rm$`uvhIaxI%CIWf3COr-P`Zef)1$9AcQ^RKCVnL6^iN{lbuwl}{s^i_O6!vXHMpC@G@d>Z{3($F7Td&F{R}3Qk?+7PO+_?g zPfuroV_**RQ=fkA!EI>kW=M5j5W~%aV0LgNA($BSs`sg~dmT;HJiM>DBF0H3(MUFa z+XWf)BrX;!5`iQNMx5`E7Xr#S3vhWx++Bo(V5-?F>x+Ui%?BRdtC!P>kuS|J?69Jv z`>aTVOgM+ER;*FSDkW>CQ;c3O)1&ls1H zbC&{-*!=@rwkjAgj{l~-=f8aI4?f6tIpV5+{jZsTLOTX!0EHYYRh;+fMxHBmDk@4# zX6i$V<9A`qR%#{pd3YwlibSo!jxmH^RT7@ikEQm9;KN`Fz{`*&2w%}&3011%GD!Dm zeAe3!q=v75uGtI?a8PrY|JZ*YnH9|R`Yd25QD3>8hkBM@!pbA_p%*7`j^VqJqSUss zF^|EBP*Ro;!Ovb?T+9^p;e`T^Fu*rD0@{`*p8lHRcnlkpUzas#hzoLfKr*1rZh<=4MCp@WWrTwC)--L@L`ea`v8mg zC=|74YAOYE#gnj)FBQv{KLQ`g!?B0^wU9>sz;UsE-00!wr7;Y0DO;0$+M&uXTd1(e zpl7CwR2+PA+}ZRng}_Ik>x_)k4eFKtoBQv})njwIn}mIYl7`;9-)=s$_!-IP@PYLA z#Fhz$`}-y{4Q$u!66$Z)yPrE^;DrGj&ZjfCsjzO@q=(;x{Hzeq>1ByTAX`}S!nWvw z4B$YMdAFAT;WP~M-D+FAFAt?V{P{fSOCjY~8oDNE&<4JKP0i20Yd2ka!QL8BM%=o+ z2Mjc`terv!Eo$lX;Su z3+yXfE{JX*IJleWmK!Lw9p>JJK{9tlA@48x74MfWn|48tliUS57pmfkccWg=MFqrC zKh!bU_;3fnHOP?|hwWkBIUhBI*Bub_ejFPnEj)f9AZyGXu^l?sbeCTf^Ud)u?8EmN z1p=#DH`uXQBGI26M*M5y4~b38PpAW@2ShCkNCLuAjlm15)>*NmHz&VR3i*DhmR|tO zAHxnma&f#@<5c-!na$W!D9ek4Yt=d8qm>N*E#fAwWU(%N+5eg9aRumuj`m8uBm$TL zij0KJ93CDnba+tO{k+xWB+JiDDmz2}j;>y<&sKEk(0lc$%H|$c4T+l&rJn{j>~8^K z82@ebSVcufRdt`%pNQ?y5}_m9d=wiKWBj(_TKhRdywv)0f4z7xInkSpAsP##N`Qi} z#~)RpJ+Pw3vHUB#%%2xG@|_J+E7xt^-Q9D4c}VK(zm6zF6+HV9*Xm}p`{0Ep(SzCf ziE=psaS5L|*xeAolS49RJ$@3yultSa1WF^=PnT)jGY$Y648kRb?owqsPFSU42OMQ zy6ZuQEnID2TU?ttoiR9iK-GbT;f_qe z(n70OJoI&_38{JU`bA~$^YvUgcYzi5W4>vhC>l}te^V#`@DiLNAA?YF>~lCdEgBLQ{w9Y@8T1sg85T1Fg><-mM<@3_h3%8he1-y7X!4hup>F|>pKdrz;5`Y z5~(&R$z!J8k-hj(S63G_be)pmO=EkLn8y97c!U(j^atWl%cP8q^S)&^NUVZ#1bHYnKrzNQ zW)6_5TP5O5$#<#<^l4oJh4-nl3 zESfShwO8^v!oi9Y%k|8ka`ib!Yy+nyS;U};NGgd}^bgxxJT0|l+g?g1m_pB7M>FI? z^sCGOo(PI~KQuB@v?9q)74cP2h@0Q?^wJp#ogshd$&Sd3xSS&_nx?~Ev?Qc38F$he zhT>OEcdhEJ3g`Y*3joo`jr$L~)_)=LeJJD4id<-FwzD+WZ`5Fg$J^Um@K2x&u9-c3 zYkQ_%){{Od!u|LDTLG0kaU+U|#Dup&ZS)1BeIGb)t#+Kh2#}vo{59-Ix!IaL^;ZZL zQ?!FPTyWpa;pyK3&#S*%Ni?)CJr+Ih$zH(slG`%08iH)$;e~kBESyTrW2M5mU0S5Q!u2nCYK5XS3MHW`=(zt1EztP*+(e?|&rddl z-vUVj-Jp;A`0=6F+onIdA0AE-#;r~9$Guu)>{NRUI~UNm_PY7t(xih1s~!|`0j)Hn zTaK^m7iQuw$o%y@1cC$wDqu!wCU(mUt#kllE12@ytPdq}RRscK1d?7z6OIbj2#;y= z8xn&Wlla?j0bPX31Ks5&J@cVCQ~`w?>wB)onp zkcb&w{qj#0+2ShTWR7ENkB7-mWz z0em4J=*b9)0XknIV&Y;F)$1{Y`l?X|=Zpc878j@lfRBWNm_@#8WjcIa7%QqcT+vn_ z_Z}ERs`v866~NZ2FXYTlN>h{WcXbPPR?&(Y6~7?COG}pzo~#lR7dkszaw{`w$ zpxw3DG2L?nV{*9DvxkTRg1}j!7K}Z>^b$$>1Mt^<_ggC5rNL!{uco}4>nG==B&#f# zvD&p|B<#;QlrSs0$qN;Xe2UkxgNbD5?&(_4>Bw6rlidH$88)?m)6`X1FAwc_^ zISUMgrO?)1Le@4Ic}Yr@o$ciOlv+Ta+?u*Uz^LA^rsA9(+a(p2mq!agrJg~w-AUhi z#93=$p8n%Wag?hVGV<=~`%()Xnd%z+V^WN3cb%*yZAr5qhu*;bA1JX>RcdWn;qbR- zreSb(fk@L>mHhZn)ct?fMH4K4p4jt;n*0knrj$pUsJBrC?Mdj?nWL?^DUIhRjC@{h z2F5=RP~`*e{XWuhcgHRJIs0mMerp>pVmDgL7MDlsE4QClH_uk#+}YXbn~SjJG;Edx z^aJ+H^G%LuGJ-XQFYUXXm+g87>>nZC37|3qDl9_2MSQ(rq}u85k)PKAGRwHczZ4*^ z|0%%}{#yAo8F7jM=OI#`i_ax#9Eu_>=Ys=oZ>LiH#K6v!T3iKI3MO{fh_^OaCAsj{ zyzGd(edT)S=efqt6pq^?qwR^WhBhkfWBh9c9dT9wRUh6Jf#%Nsawk}N`U4Z!6fh!W z$$wlpF70bfvutu;jiAoNSg>G}1g^8~Qkw|i)8-J#1=B(d&tnSnvKmzf9nwu--}m)Z zid*`P+d~_+l59)W22F8*!XX;4w2Mn^r@%LPqT}ZbOsML`E|0<++0Rb4jOFeFL}-OI zkt&B~7)>-c)?oM5x4I_r{{|fy9@rjCmuoBkVjubVvAZjuip+=wMhhec99Ba>--8a4 z2+m|~2{sox@IK)qz=u5I|^_waPR$5>vBsvZI_X8R}Qj4CuB$yzU|s3N`hiFDS0- zpjzS&A98r^Y!%hkG?>6f84xzWd+)DNXUB#fpK0A7j_jA& zh_G6$8umIIMzNq)7-it&Bf`eU1|b_GMp9d{Y_5w>wkn}{gW>(g#HX0XAFbwxtP(PA z8WfGNS8JBu2I9?iL{`A9NL^XrzJg0R1O0DajzzNXO@V?lx4G6&!(z3(_ClpfRHZV6 zK2Fjr+MTjl{n^k!J134Vz8IaQmIl1lq z>)r?u)HOcYs+skMZe9kqB?umZC|ICZgd?6`Qxo6PA_5OQTkJ(zbF(mb6i_t0&TI9w zgqIK+s&~`-A0l>KUK|(r2MztieWFqb1kkDKf3?vj|36RSKt=a?3Ew2}^=N;I`1<-H z*}8!26Oxd~LZ9<-d^|ACsf`#goOo~z1VG0)UWrkB;I%HVWKVF0QU-Kp(Zj zx{>w<`u2>B*F9mD%|{JV%n15e6B4)YI}2CuQ;H zyUbIVW_q{R?fV*?M7hO|^xE(fc2D{b#kMOQ9q4%jNO++^r)B8?7r~Y7Z9PJRdVb=x z@a_|Lb@#{e806^YbAvMtA_G=K+P&>mfLE4j$VRjPRgw4?X*gE*^`kvYI}1KF`@TA~ zDubp?cwC4-ve1&ZbR}DuQpp+|L?(zQ9v)3i@cs|zVIagpbJ?9Zd+&F~cSFvc5ba7hXf7!= zgZ(N@Fst#q4-<|7k;PIK7luo0R3Y&j)x0rilM&iS=j9PLkO4~|!ybIvP-EpZuf|Mx zp~C`-&|M(?RR5zSd1836_DKgJOhA;i0UlZx48>4+l9H06=SlGd&u=CrWkq8&CujGp zTa;${Ua|v28$R)~en-GWAzr0RRpKAQVMUUxVWz$hne~;G?1vPnz;;>;$_>FhxbgqOzYdwh;A@E z0Z_9bq)wptnLm4mII+NAs;N{ZBvcJiImXd_4vVQZz}Hb$V3h*0*MD_+FRrirf%PB{ z-Upc*f$7*IN0^wHD^Qr(y>cMB7C4gM`Ib|VSr6Lw6j!>o+weP>T3Y^YYJT>YDKRfk z6*OfzC9Y zZIi?3Lkc_)tv(_ctg)U`s|K;$o~X~xnsavQDY4XBsy$jW*-Db>=0QWZBuQ&l|D;`8 z89Y?UA%}K3NZS+bG-Vi5kX$m97W*-{_YgmogQ{Ff#KB3QF!|*)>xljw=r|*y`v4-SV_ymwP{s;@XZy>l;3HuBbn*3<{nm8Kq6AGfg)g`Un97R%5V=@~oyEw= zxVpWqV5fv-MkJ^C>Fwof9N^wG=sF+_39uWhby@APdGIEXXmWBA){fx(jR$cfKBI=J zc*oAePQ7{(7x;*!4)n3 z@3&^a)rHM2FLg`yjRwp`AwfZF*!8OVp>+Zdf<%bzuDk+s0H?|Cf51_!%rQJS?#6zG z-k6LGs+5)q1XvR7ZtX{CS?(_Pg2D7CY#~Ja&JQZ~qWZ8A+ABgNhAVR`_uutBgu(-J z1G3B_R6a`r=kj7`4e>bkAxv35j>-pJEGfbJLGF*+m9Q83Hi+Cc^ubNgT^P3ek^oh{ zit=>-33Q0F0674A4{<&NgI8$B5On>=LQ6e=!_&2vA}vjB(!)?t3B{pmD^!J8j1 z5L3e_BSGoUTf{5N-=lTYR#W>+OUXY4?6)CSukd)2(q==XKRNaz{7)k~ASM9_kP2OZnNND5-@?;5V99#U_ ze((2l@hGM@qUY3~CnwF|&v3|jLsQvw*MNVjuTKHY@ZSKeg4{_WHG>;^X~e??Hl2ts z3-sw3l;p@=>mqfdJ5upmqk!F%_m8l1q#V#LEiEB;KFBw5aByrV3(-Lr_l?|>u;!*x z2_eF0Io(x;DuKu=a=ey&zAnOvHqTXDftt?=WU|1YTS%ej*qsb3O4FWZ{b0>y79%9rt&=3@9tSLse^jf(3@thMO!PUVyvsU{aoT^~aA$(8U1- zgfwo~57#?grREA8w7kJnolW9CV7{f+Kpz0x{{+NA!ub+zXxbkUki>%=(6zOrBwyA- zMr2lkZ{X>EV9pnULXx5e&(j8l3<>20oFSWoLXF5Tpv9Bvla}^ zLMQHKw*qcb_=Rr*g_RoJ2R$t2NOZX1p;`0H|F{DH6Rh%z4Q2U79q?6FCpaF&lC!45 zAe?N5o5Q1CrttC8MpKY!hsZBk&%|FIfY;RUCj+ON3U(Jx1O2WN4E0hr-Y_uh?hnH6 z5Y*o8-{SZUe8;S7kA2iS1N?PrjE$@_<%;N-nK30KB#w@c%iy%Zi3`}Z;a5;-i-VKP z4ZJYNJs%#ZV^%=Pygci?{yJuvcE0tc%0LL@-f#W|Dku!G?Zk%meK}UqrGgF=FjWc7 zo38~Ol}t@n_#CCdTTebqQ|!I<9KD%cEdB%OcXzpsBK#IBX-I($uiKOVvsUmWG;pH# z4qoEZA|cTbMP&<#O)!PH2vx`^a6XpDp1lK#n*4SVeh&F{F;cGobW02)YRHn6WeiFT z*D;+VU)C$qXEkORYtzC%I+^(Bth~1F?fIu16#`Usnz=9+30)bopxHN79p^XcUkKgB ztuEFve!r`v=vfjLhK_iMo<|U@rwm_y*`%xxNGK(!dD;+FL{&Q-_6>tx(<=+VF`BLU z3~rmA(x-ZQ+<+9y#Zf83pa>dcIw*@U=)>j;f&Qh#R*)B70>TlPm`aoAQv)raa~lNX zL^!NC&;ghSr>kb30M7tPJ5b%QbpU1(ln}NLSmLQO`ZgzM(`Yt}kIu zeKyYasa$)b(`dm~yNH7Kt{`8utZ_$W^Urvtf-cFjkipn_?}g@n6XKv)+Wny=&$%_x z`tO-hQL%MsW;G{~0e?YR1Ic3JJ{_Y-CX9%kwL=MmkD%6oC>e3iujC_}ov5&HN&jy- zr&C2I0Cm6f;d<&|5J_GLCBN-~(qB3{xswEfBNRWitVNnFe{5UH=eI} z-Z4OPMvfO~>_CUTRVX%#;j9H#RqTAV z&EQ%B3Ic8G`I#CM8;G((_89QDq2-DILKP%H_bs$tl9vLA&vfq|!WV|zbwoUQ6OZN| z2&~{b{?g)h!54q;-c_W6^e~7~P@tFSh5ftCs8n6o3jvaV+aYhW-^Egj(W`#duEfK_ z@?8(OiF4=fe@ha3w`O)iGFZCXF)m5bO_qYZ>?O(AYPD{q?-dBodYMF&*XM*Dw9y;( z;Ri)L)g#~xH44L_!nw;UFKkjFwkB8Q`_UJ4i7_!Tpq}|G#{jzs4d93o+^l1zvYufx z;eNtKINl^HZO=!SL}oKbDzBFPnD|C5j=S~;Wc>qQ9S{R0RZ&I4)CTeY=n~N%E;WX|Oxbv)k{-}^f_3~s>efpeYwOQo+yt_q9|kkQj7AH!Jfw$`nHLwAGk;l;#UC)O zFZG8N7n{pT2E%XnNj`l(=j3SH1qtGHyi+!yb7@nrr`Q*8*)*RL(|G>8%-XWc8MS+z zn6z-(_Wk5-1|y^4h}IIHk;ePdl)}eVZfArY4;$M8jvJKQwMbs4hRs4Opz+<4khm`RqX>D+%`Gji zkgmczf_CEuCf2Zt#{c62z^Dh$>K+e|I@>_nk}AZCWSXy(G*wO7W`JiW5HVQl7r_D- zULJ&)LB?sA50Xf{lLjEl0g(dHRKbs5ss%DagxI}cU8yzNF5urh?FsrP+9*s`y1{$w*q#rH$y+L%fa4?A+d zNw`0$|0Y-&`5=XV@`QliwgBUgey@T7_cRO3LRtdTf6Gw{%oOT^lXNUBk-#2CDG(XD8O)7>W5!fBBO+eK67+~vCPaEis0VywsoWltS#9nUT}8o|2+}CA z1T2M^m>4tM$(z)@j`&7%;dZ|(f6#SUB>Sr0N$*8hKe6pycI7q|j6dGq-U?#|Q1r>7 zRPOhF{d!WDBN`vl&>#S-LvyfPGHjt81mMuZ+3ux&RRPd8!CB;v{{b_|fWY$TG)x4% zi->&o+s}j{dMk4SsSWUUBUTn5Hfl=%*C(K#AQwY*!|vQtC)1HeX5A|#Mw14|*p9d) zu5m+2>5o4=%?2A09y=hB*&YEiB18nAYT8?Q-l;489^AF?}fckXh{P2epYvWNdMe5>EU3M6Gj^}`V?G)v=`{3;E6q3|;jWQ@(|fcAncH$m{) z`4h>bXv2U@_8sIz#b_x7`~q~h*+2z$-lN_{=x{TS!r8l6zP>uc^3_j6q5_~40gQ%F zhyg3=ot@2qaSmQM@G|XHj$9P++_?iss0-ZKVAG;r`h*$)YXrW5{4lr??TGsBn$@$69Hz(1h8er#B!jfb9?US0VggZHnxB0?d1nnIEOrl z^$u{tyS{z<6E-alzHr)YDK1q&tcM2h7A|fomc7E|?p$Y}1o$UFe39jIa@f%PZ(7N; z?sO>>hA(iIB8Fc5cvO4uKTF>81%fnz&{aYD*QlWr2IR88Xqm1jp$&@9q1pcVBT6{5 z?y6Q?s@bTs6Zg6WgGU6C&fSy0>B;++1mEVhXll}R;>Xia0ySW~0ldx`IEkO}9# z{ftdKuKkRz0v`;I!P7RgwFtP0k2{3`b=cqBt0MOKh|{+#TXdy`#mWS7kl(C283t1h3LD$HlVcB z!jT=9HTOhaG{X~A%;{enuoNFZwt_1(h#5-=pd)bpO8D64?*I%tB;`s+M~AD8OI)1( z>KSxMQ#B?g3#ucQ5ZR*vJuCQeU8)6tFkfwF->L~4zsVA2)|wTE}*J1`s8j^8GMXiri>0TVnR5NGpmm_g~0kp2bs z^gSoU*>u@?y>?NB_WfI>g4&@5r<8Q_VPRoOhw6y<2~ElIaw+CU?8Wo|wBuZjkY^;up`16sCy+!;mvPBiRBC(b1 zu8qtsnH|qNvybgqqGp63^MgSC_Yo+3HUqE!(gI`!ssMa|Apl8-=B6KlG_}1{p`Z)U ziyPlj0bviDqwbekO!C4z^A($*vP6L!_*cP=Ph45%H}`i{Hy_NgS|eGbJKi4RRYVWB&WLJlVM1|*zg zuBQj`*uoQ7qOW^x4JHy1Ti)GU>sA(yjB4m%t)vpzW9#DZNw5XD`RpdK zK5$6Y&L>najVQ2a|MUh*C)!(98nnhuR~bkQV1s)Y-Jzd?s_NDkRf&EG8wMpTLT3d> zV8}Hmfg0^=SD<@8d3A3u4x%zaRD_W3p$CWV1_>#F1y=mhkS0DY?Kq$eaUdBq_~SX) zoc%V7j`N9%?b01wP$aw$e~xw?*Jh=O79=LLuQe-&<~u54BV)(|FSEB8&qo<)MOMd zO}0D&^3=3A4C5%aQ*~s&xRSb9l(q>=n@43@h(FN;48}l-m$kH9=OZtUGU^6YK&C_^ z^>2-yUUlWb=rWkh&(gOo<|xQB(4D<>DeadJj_Wie&X9Rw`Hq~gZSzAb!8Op zTasXrIr^ZLRgL!jGLmIEdS$cxGIGXjmAcN6QcUlgny?L!G%6~T<7vcbehDLHEHs8s zNIA_~aOCFF_?r{y%*iS4^k!)fFGo}xT4JCXs@8bhI2&~L6&iNEEi7~kU%Shi1-Gc% z(Yhk|^PlMbOG7Rc8VC~xshI&xl~I-XK>;4rnG=;fP`TdRWeSHX^104J{__{M3&$5Y zGH3;Go@l^PPif5)~mQM6T-OyEReEb$1HLf<364)kzQ)Y5Xj(&`KjFS#a{mkP0DqH-ldq!3 zv(uPJYOR7(?iOS9_d$;QQ+ggDAtqq3!q2$<-d2aZ0r6#>m`DKXG69+H1$)v_bD#;1 zIoO857G~t1t|5EXyTWH0IYg0xXyZmJ?a+NdeL)LNcn%5N@Z3#S6NvHb>lnJyi{#%@$P6OlXNbxtMn02%7wPIu}6Wyv36*nlKbLi7%VP~dl znYL%rU6Hl~!3Cu%DTxBCAsBVUbn+0#i(E3;%hTVz8|2w2aEs>QOKLRVcg4ytuDnZy zW(ILetvu`jV!u=?`O(P-*Eh;+md;hHQN`4shhD6n{T<9v$AO)~{-_@4x7YG&&WVx} zAKiRGNgpLM+Z8G^Kr8ad&MCJs2V<7TJ$f>?Fn?jUnD}SSQeQIzQ-p$YX=gG6_z$kn z*Bcwgs}?tA-s&g{Up0Rg>^16dIPLVNW)O_Nj)~j7_If=Q_YK== z60s3!X=y=1x&Y$(4k6tD8kZTj|1lc3Wc@h@1C4%++;@)azW)ByR@!IdcXKhURS&L! z_xENOMw|steTzeua9E}adI?J{0LT%?OzAjWHp~85r{xkt4}YV|YYF~uespSX-QZ_s zt|8XY$eIN3^mwbBk#hkW0d`e@_fC8`6 zP|KVnDFH8eOiBR*$WKbN^8)E35?wz>hD&F2wNnJiQFug@u%pgWQJq0c*72)s8wy(g z#z0ABQzd@~5e9>w&+VgO1uf_Ha-8RA4wdf_zgpN&On{^7--mDTr4~Y9QB&`8Y;7m< zulf2-mf8_A#DWV*J>qC$EbF1d>)zjzJ(;PD-feVDGq6~5|h@xh9 zvaYS=hbm!I!;>Kn_Vo&B`OMn0yZW)OCad&oIghBO?F6bD1uvhozO*5|lF3^Z`V#ov zlY+x|tc&B}5QkuAVNwqDm4{tj?O*J+>00q?!_HLa_*@xuy|SsF|ZGc7H+LeVIK0I|E#D%^yGiPbA4GW{W|*RuQ2kr#g3@Z zns)NXX|q`P?;v5@N}tHyg#tc%*7S)6?VBN(*-Nz`YoN{#O{fIN)DM z*Ua#NeylZWaC{su2->=Zug9U@6pOwodt%Juitk|Fc(Z#nmZA4_5ogsb*MqQ7_)8FH z>wNZcZ70uAaZG&+-Utx9Rbity8Xx8xt8|;^FQ*)N==9Vr@v0geHa1@1VjHde+>b*p*4x1x!kFy_lXUfg=quRPUGgt>8hNoVO(c|z<<%>N+ zJa>CWe3VF>v?({bUkkB@sV;svBQ5Bsk?^I)2xE=he(k9g9rKUHg`T=W{}Z6Iu#N>D zQmP^5p*!oJ1EGbQXPN$Xs0%v|Jl81;tx6>^n@Re}I$>5c$$cDl+wTKcMq7_m zw&VNX_On42k-8$88GU(V=8yl{!x#l?RVF^ZWM~8uvR@C6We9r?EL577gGV7`>OyIm zfFqUmduL#MYo6zDZaP~3AU0Ek;R?+ZMix*lZgvDZK{y^l00R432vUMMJ`FKN__wK@?NtEp z8A^%%y_RNXSt0N)wQ9^fI6J#(3RAwyYyKaJ3gy^`Z+Ty!J3Ba3KARsH*sRXAS9*8r zFyU*pk-?mBp8tr43`_jXTlMeV81C4>jn;mZcW?cXX~yR-0xTxvg^gUYisu27l8Spj zacaeGiN|V94{W}yCjtD~6aeHiYGtVJDOii=*W^RTm6Yti!#IU7GIPdXDYt-Q7~iwc z_rMWA4%WRF{)_v=XOSjcz4n8qDxsgb&KDE1+8sSGN)~&a!7_wxJ}5N`7GNF!P7MI+ z@K>!9vY(CtBOo>*(*8v%oS81v1;>MjrSVqTRBQM306MEQ81RHN?%nTxbo2#dq z@%zu8O1=T864|2tb)gm8&RTQe|3?J!9guIr^WXZaYr^>8!E3nDj{$!rf-UUB{kC3s zwK4JV5c)Wfe(N^;aF(Le4o^3!{Ti?F>*KRcr}q4_mD|VM#>EDKh+~m>CWA>wBT!vk zU1`#p3!0~6ur)y3HsI6@ASgUETQr&LoXodA7oG-#_r@AH6yIf%|3Ozc1%3a0o7 zCRg@hX_VSx0-GWr_1tD=Lh_mo%%4btdE^7 z?@9}R3PeOf;cJp!2J=ZOvSi4ud8@UXrv0{)3;j(_@BDlgFgi7~dtsUd!>U(1JLVrf zVzEBx1`BcyOV+#19puTBI6H~m%-F2D*O+c16&nS7nyfJ_vhb-wkSzEt;^7%t^b4v3AdC>>J zX+}sM=c>y~?q}sjdmom^WRUX$NJ$iuVVCw7bpHL*)1>eK_~c)Bfk5cs=!hP&HC~Y{ zV*a*QDjFtH92v3cojb0?itjV!2T6)F>_PzECXFRa$qNKB*d{2G827k7NP(E11zgn- z-%Ai20Xei3D0yIolvY1@R8m}g03@1s=KWEG=?f2pg%KnO)aveoVdQY>yjlJMjx}|S zjUAu(`jY86IB=_UqC-M@cgdm$zkz4YIJEe49saE)(ga>zrrd~6E({O)d#_=@CnR~t z)pl?L92^kW5-+baLVG|=d^R&}6cm`nH2cAV49L?6`STqth2YFt`0hY3JNzaj8v}r5 z7y*${$qz3wB7)gL; z2DC4{%z{OxW{rs&;dhLX&jB^(JaMMaV#A}gfK zA|-nhLL^c~Mr4PQ%1Bm}nO#<7uP8}TMk;%Slr3cau2<)r&*$^~@Ar6|&N(S>ukn1| z&-=da>$>g;dhO$;@4Qjpr^oc5nTu zeo}0O^t2hAnk`=jSi?;~^7_w2?a}5PKb)1~ZjaN}rhmyR|K6;$;;#<(kfMq0{XMZ7 zpIGXCQWGoZ<429Q2|#^>tq1r>x$Te4*xA{Uj?^RY1Y+I-%A*u0{_8iGa&>;{73(s- z=Z$PV;ATRz>Zy6TGVGi+%d7A3z9lMpAj@Esidui{kMEV|2yin18MGEl_6swcN7Lr1 zmvh2t3!&6tOkkeeD&h%^koHdK?J?Shq{n8!NKkTM`KG zRIt!%>gvdRe0<;tZFp(Le-`#V+nAVMLp1*yGpGoQ4%9US#elGle0^_c^l}CM-G)(2 zAm`D;{z2K(Qwks>F)p*X*Zm&M0U~+5A?-r@I0jyI#4c%VZT&d0z;%~YmzO|7{=Q<& zdY9c;eFz5*kkc-IOxy%>uK^qeVha-5OwQj02y9FwlY1hN#uCP`1qeqQ@A=$0BN-Xgr&wE3dpWBl%Xn=P_?K=hIhz zU8R&{I*nX`pUv(Nq4C5P7D}cIu&n9bF{Zcsjf{3#!O=tPr{izy0Nwv7v~aX+C+JoO z5$7$bgjRnX8XwX8!}jujr{_O&>u&!@B2A)X1clX$yn>hCWnVW_rKhF} zqf-Y8`{gp4Ovv}0e|~uY_7B~jV`hH_Owg?$_ychL7?!_w{HfpK_yMMh&_EcafxvT1 zKsNMz?uP%%y{YQ2rb2?#7t4Z6%F5ujnL<-vaqCQ~U-2EabPKFuLeYfpF&EmEVO)9y zAiM+$i$a4dx4DCKre!LL&*fmMKz_a??BORaDH#Vo>VxQLVx_~`6PUvgR^JbDZRfZ6 zuXaZcz79m(wWoOT>;X!XCMArC#koWrb;q{dq*^sx$_H<)Tw-Ne2#qq;vj#^U14PdC zC*F+w&}1jRDUW-1TEZy%#?lra(00ApB*FS71_k!{Y*f~tYevwV2JAGAN}=~UgJCd> zSc&Jzk!SX)^(OH_58i3KuxCA_TXk=!e=#naUN=+g7N~Ej;WuK%bp))p$7($4l6W>Rk^)Q@MHwY3>-AF#5in0PfZwNgED+`J7HiDydL+t2`p>@G|{ z`~CT|XKxa}{n6PsADW}C94}q<gV`rdcKfSit7dN>AXYYhR z!#R0U`uh4{+zIBuFAmHK;vj8ndk9V~MxtCApSA;s#ZDXUv)wyKiD zr?+a#q7!nJj%@uo1aSwztpwpkEA`!Zt~&U}r0J0K@s?7HZ+|&1?!MK=&eLJagk0d_ z!yS=N=bP4&Pc|YeihS>tb@D3R?ym49prXt0c2GJDs==_&*Kgkldpk*Qek_U%78%cD z2s)mB#?$Y2Ir(1mpfj_#RR~dAj?Y5N7VtkCmn*wV_!qB=F=q)!M@OZ{W=wKhIRY45 z)12j1MBFe)hcL2C)Um^|&O7C|_|+dcph4y{%$T#{H7-D#Jvrb%3YE>H0%i-1aJJxqh zmdX3T`d(c#GgZs-=X@o7g8`rT-dQ#RFC0Dpng@|k5_SzJl?ePFLni4^HlDP&at7gH z_mPWRfe>7RIZ_mzw$y;L1RKtF!i*C;3ORwlUiRzPugSp{B@_$R))}dFJBV9!yDAm7 zS+E8KpF5$U;tT!!O|t7V^ymxkM#T50lE0I#1bG9rY-x@M1QtKv%l$52brVUh%u>zd z3EW`>GnHg+WHpa4yWEk8Us7ayO6k%?lCo$;9eg8L8%lSUfT+O zbV{aQKhoTJC*U(s#z&HN(jw|JM(tP*rQdVlO_}$bmy2N`|HE4OK;Ojg@@T}bTCtPQ zNmp2PD?6Lw{S3`bc`C_nG05GY@FV{pF2IZf{1U*MP)F8fcl}-CX9}kC=RQmNVkUe^ z_#@SuCiK21bFGkIsCOGvVNJ>1*)ou%a`KZ+5i!aVS)%OyI?5THHfvGO-(Rh0*k$%q z-SNw$O;pPt5I=1uPkOaXiM)XdW0Jp_=QBsg#AICEvCFJ`_n0B2VY%;fie^i`x=%S1 ziBxVoNu;Z6%aB|YbDWFk?5rfSyKJg`HO zntLx&u{ztdI$^rOD|}57Q88h9I(-@tj#rG zvQyxf8l~__eO0k*sYW^TC;y}zU6y6E5Gkr>kA1o4iJi)|n}))Bb>>VvFH_O^$H(Ji z>OE9hMJ}%RH1Z$5c$HQ5P0^L0hkCoi+>eXgqrX07HB@R18z*RtF+`*BRW5O341=FI zDNS%^nBYmIh-l=bsXS5oZknmoI(Hi{stw*jXp+{!Mh0wuLWX|nk>T^UaY7)cM5DEt zYoHu<8$=Mm9?LYXmZ9D$a1l$6>$VVSUh?rhD!RO`E~hQc3_Zj%EVpbE=XE{*T=}5u zJ(?Wyz}AT2=}4(1E0^hlz^l@GR1}H?Hd(~~JyrlF_bpBk0jd7idC=l<5Vls>Seoai zljX^-GnU@E07)y?JpQPAI8h$N6t`iYV7a*g-V^BrkV+W zueB%m@-P4?z*H`5^-_lcQY5hZVY-Kbi*4V4fqzO{&`lY^_y$JiuY%)w+KY&!C^YU9Kr8tBt&KTU*%(f4GZSlswpy3N4FLMYZS zwOb(mp@8VC*?WoNgZ=#{evhjh^LjbFlKe^NS}P}*=`U8?pAc7A;slu{$+2(NXIuD4 z%uH9gc)xv}xnNX%Bq2pFGp2X>_)CR`f=eG*a2v!%iWtJ?UvQU3`wnR)|KnrV{E$Zh zO0`XJh01sfQ#gY<7wRU$?4ghN=i&WQ;olPMpkdE$G!aZ&2j#% zCUO@S^@eZduDRjeF8R0ZSx>rj#nHdKelx0B=s;|}G$rs%y|c~UpGXW#YX*;5KG_zt zgEB$P_coKAjBE>uY&|cfneS82T|1L1=)|w28oC-W){klx8H)MQ?;VD4|Y6k><>m5mKYvSKqV6 zJ5zs{wO_U#d|Igg_He*ZCr72m*T7mus7{0Eg9AU_XAE?kEFCp~0XEc_D3FMBaVXy8 z9&uss)8%ea!5ZuqW={=XO%dzy;r@`+o-vuB0jvYN?6T$W&Gzo@5^yoxCn?$GoB(+) zn&jY0$E-NW-H{}0n_9KBBRMQzKP*=e<>i|3knl&bzMYwwnD#LF=NQ7yyEjgDBZ38; zJZF0nFHYy(>f0Xi<9slcyPl?@M1Upl*}goQ5qh2k61M02UW6gFN0)$VeRWP92RNJ_ zSP+~r$n9g5m&c2FMrPt^-td}vy_3+{>JB_`E0u8K;D1u5&-iIKjX`#YrOfE71?QZL zmYQJpW%mBf4R`{-Zm)pkPn^rOvZ8{RegbZU$l?Vg4WRETe%;D*pwy^diCj>}PdA#9 zimEJqvpr@lSa+D|uctumQAANFe54l{w3T_s^;yi6CF zTQL*@?27wfN&#?BLxSqcmQFn2y;X45IRe*^+w|p6Tf3D^$_`;FL-*sCZB@TD8Q)MGAk@9^0)ccrviF~B zx&dL%)xIh=)R{D=5AgQ4dDW^=%gEVXNViRSol?zG4>5M&fEOp%cYKM-&}n43Zj6`%DGsfRW~bPf0fAr{;5gX&Y#5hd`- zi8K>s_f7=WhKTC*?{NpXtqoI;kh@EB=;tPh>~e5*wL&Zb58XiGDiLJvoQe9%=LSE& z3*SC>oA1wI7#tu3Dg`rE;aV3Yxv0{f__sY$QtxKDuGG4itaXl+mDS_S3N0mN5-b=h z{`|;3Y+Ryoyf%e&{b2@;stBos|Bu1Bsa1)P0g768IFZ%3UCQ%P@HdT($&2Exut zS9%jaSIQ86>Z-A#7f^i>xHDReR2?jICS|Wa1!U_uTqou*5MKxRT{)1ChzK)^A^?Fw zY=0!K`^R!*fhlOxn6j=z~^bz1J*7FN~z6KZbxUm+DS{|hH=AVJ>}wP zkUT|oMvPX&c4bZZbf?y=A8?UYc==jZ-C=gi6LFyjaHNWOM$}$DM6R?Fcr<6)&}C}| zO|w#wows)tBYn;9r?dX*9Z3@5AsE{U{kf0tR5)>6ha1s6#XHf;*5f}r`S+0NCV#>0 zhQ9uCi_bb4kta{yFnGxDs=|GKtd=jgBDveGQbLC}-TY;a^s#eEZR5}uQ$u?`3Y9N0 z@6~zYbFjY2jax`-8Ch7U7TAE(h(D}X2ubJDEf@P~79^;0nZ)1bRg9IHf)fgQUp%qY z$fnpPhhxv351+dw#6@LM6;D7IDEeZiXt&`i{|WzYq%mvlZXnJO88Z-Xg8hZW{0LY} zWzOS%U>@;yY+UkF!pK{3S4FuytfGiJ83QxU}*+)5w`Ct64WjF0l#yU zO#8?7q=wqtYy!uKFm}DN1XmV-!bjqi04oVI? zaBX#tK6`ik)9e}2$1S%{hfM3rbL}>&uPzApT-!JJo#AD{pYQRCTb^uN<%?9CWY)}% z_)K?U_wewr5Mp2Ind$Y5UlO#;FN1MT3|mHj#&yyB@ACV53Gt+@-AZ@3@7J1{feKAT zb|g+(0A@k%P(;@oHWFsoEDZ6fh3Y)bceI4FNr9#uDK&cP$F$l-efo)>o#_X`%7X)M zyjr>sa!gp-e=965=KlVQ{HR^`TlkJ3aZCcQgfPxRXR2@J%HQ;uxbXnDZ!yxf9&imr8VD8q*}#GuiL+nhOxNb@x-@ z^g6XVNsf<+q$TI%jVFUgzw@pf5)?MF4hWDcG~{R6!xvV@Pr3iazQnt&PK$;&TZa~n zj{+N!=}?+FAhXlE@@m;vuuerP`Tl1|FsMf#iM>k2vDf8v%7aa06g-XRyI5_R@1I~| z%@`#y6hm#gK^N$vA93+loLJ&55eUTYvx!7OdT^*E=)G3fWx>&#!G@Xd*Z7K7{q5EL z_DG|Xxazfp7k`;-r=!`0!zvQlI`hoEZ$$;~+$t4z7(d;5EJb5{PEw*XZK zwPka$;m+q7b2+^w^>lb|s6QpVDRAbU%KrTP?YsAWM+K(cX;bYdxgQ8|vlu^14AO2S z+wfxRNIs^K83QsOBI5|)e%Q4p)@u}l-TMIO(#Ub69A2Nh`nz_1%7FhN*Z%!-;Xup& z4I~VUH9skPA3xrM2SI)ULEw?3t6fk7{3sfIH<2lIj}8x?LTwAIK^Xi4sRwXROuahH znwUlV{`XC)*Xxo-nGt&{B8!BC8NKiLTlGZ5SDb()DmoBXyUK!Pa_2b~rgWB8$_nU% zsR|Z^4w8N=k+V1>#4>P^;;~A@*7xz!Mw#8@IPK8yk|KU3(m0DCtNI!Fncm%Ed^jil zNq9_ef}FE+A*b8_dA>Kl8i^7x0oEECFG{q=%1TPSk=^8}(bgz-F(pd$@8zli#hQB) zC#HlH2Kg=jV~$i3HA{?5CyC_MC5`AUwmQ&q1Ov$7K7S`z&EJWf8=hMLkpimQ`WxJq z#`ix~Ne4CR+4=G)dYPrf_9XnUF{pj;ptQ4Gu6#W?sxKjoAM>eYc#wRwDFRQ$Ks3ZE!HfC1UK6k{e&#y-`y50zWE3<&DyStT zB~gmJCdTJNg3Hew&EVRE!xGB(qqaMB=b6rxIUgb+Cd(6Z5-}u=$h5(FeGn7#7A@!T zp7P>SdB(vY3!z3k>k9LK%c*3G#1lG1{Ba=!_(JPF2$MS5dhR@K0Cx!cZ?vt6kcr|4o{tac(&f5^ zU-;aD|7(5Wc@z_jpi0f)jaV3Cgon#HIvxQD z=FIb|ue%AKjx>-v&71-;|6{zU(}WmetZNrwSwkK9&U8;y=BgJDE!L3UGlL5+O_i|h zkcC?f^R#r_XXO?-3fAPUjmY?YG^03-{7CN?LeJWyhF}uO+%?-tOfv!@K7wj9_BD+X3-&r2Jx062&rP`%? zXa2i(T?qOhdcfy<*N$b}?9Ap<;7h4YETWDUH2sdRUP6m7imoUEDqhI{f?#U_RVW(o z+b|3SJ@834b`<>2^^CIkO|L=EL}vIr3Kp?Fu)FC2nPp;8u-K`Unhot zwUuF@SaOGrs=lv>n_Emsc8AT^GM6ivUWg;HFb;e4XBY`Uj9}H0UweDIqlN94JPv&B z{Jb;Te!GOtH^X|=y2x;SrEjD6_uAOEqU>=mux3ktxg)*&na&Q9_MM=hO(=aa-J6%h zVQKmT2`qM%o(X!Ne&0BLwDQy~1`?>0u21!EE*7*|`nSo~w z1FsjqBK2?Bzm`il0<5pE*jsCCN^|#j%8xkP!kZ^ZUM11e&mm8M3edYmQU9j!udP8Y z`$*j0BxnU33j+uOAQsstEIbp^HQ1BGonw-FCcP~(%kJ~U0-8Vh?PdiSJPfW=3=GiF z`3AKxQX&L@DYyDup^j%C&Sn^G909$6afOzio*Q~&!es`1Y81RpTKUWiONawZC?`_~ zE1wL$ut%HCzT9N1GC^^H6NgHdrlw}vFC;pfBK}YqtX{o$oR9jJTPwa0jHVo@I&|9} zO-}|>eVegL+@Oqcrz=>%$gZ1UeLs>eWo2egQ<2o&L?%5@%q&#N@qYeh-)jGeO_=W1 zhs}Q9-xSBvuz7mzr8$k-8m&*^D=PmzFu{U?0;0=sGW&MRk7$)i=5d2L$u1n zqNC58I<*-ds3%jkzBhn3MTH>>O7Be2E64x*X+sCD&3hE}DjJ8=Gc$xm`0)4d=!Jo_ zZ8bCa8ZxYp;N#-*-Uagu358*J1V*F#)|%B=iw;gr`E+&aw4ZLrXznv-8dh$21i1CT zU$3rMnoc9eRl!jRo%;rm3f(527b`6sK9u#7e5^A!p|oz>V9@vR@kS6_9!a=l9a)=` zqkF6pI7|v86q5#JH9$#_JP2*wVXl3*{Yyw}|WTW9KD zym(=OS)AZH5ObA~eyGAU43Jf-yGfk#rAr6VdnY@?H#T9i{_1AD(k*+ik-9pdg_?gad=%-SbJ`TCv~bEh_+A{`yzRQG zm8FhTQB$jSA%AgQpe}T)*d2Tt-9Ked+B@7vGd>f@Mwd6%cN{7kUQzp_celX^0Ac2O zmb(94CO%%)L&eMQV+~18t5ja(AIAc$`M{aZwKl}QVTLvfIw+6f8%$^zkhl8>1~y0+ z-{HxkT8CHx8M67KD|i14pFVXeqC5ess%J)+mV%6M#U}_BNFfNVj_bC3hA4~Qn+19N zKNCKA5a8Z zdAYAjnkATGt*I-!AoVC=Lc!YlY8~#p&k{>78*7H+8S!4POu)1>+J63V-zItasI{Pfu-al1{bP%&-zT zNpIeqKBz3KfUpBGB3VSx;AgOuLKLMAgE@us4>&j0idzi~_2S?C@Pq(|m@tM&Pb!jf z!Ccz1-|*VDM;Us?q?nOWbK+k8Ib+R^YnsW67fN*ZcVL7Ap7{&-@Dmb5I=V|3z5%1s zC(vZTwCq-NbSE2oc81jyLecW5?8c22;l9RBCrw9JFn@^L1r!hY+kW>N?mhrRvLe{vkn5Rav~`AJl!ZP zs&2wV92{l~pCL*}nzQ;88S>>jBw~e@r5)A9?kYS}A$4ZtIt@ zJI^C&iQz}v531xjXOIAYqV=U^J&HN2k5+mUkgX$8JMmT8wymuVE_7edPZeiyS?TEL z1g)GmHYOSQ5mo@jAXy%aTG1Jr`cvZi%1me)61W05Km%8Lg+>ZzDc@dYKs&%uqyOG# z^ZV{5;_^F?CxMQW)%_)E^IAxqN0N}x=3WWP+RQ|~o7-g8hP81x+kN%@pIbmG1lfTWP5M#>o*@6k?EDa~f4 zo2pt7AVKA{Pex|1MtCB6{>cQWL8k>K9}5u4L72g${V?^fJ%RE={x;1fyMs^ff!Igm z`~NZ@ZAozgAUdaw&j5h~B3cI+11qm;sMFvnPiZ;2PEfoOqgzrJ!rZPlUZ&)zmo`E! z1Pv-Un!NnG1-|prXK2{5-Y2Ri9C$`TO8*wvB~F;{1g4TU`FP4zoD85~VggO8V{YtW zrM%uC0^CChbqxYO6n?sc!m$209lG}efLo&=-pqin$T(ZV94Bp94`kVI>toRjQLfR+;(8KGKB+*Dqc(=JV{S0C!%Bi$~YPVSs zJ~3{Po+rBXY+ph88RP=^AkaaLBzDY%VF)*PN?V{4eX+w@N`c^;*%TE&bJ(ta8~yco zl$C^wh;rb5^v&pcI=S=Eaf((N{ITHP_8V_lGrLKE5vK$3!a<*pne^Br;Dg4fda72V z;M)HpJoKNuxZJ!vJ>S{p(f0rP<)yzuO+!fEEi+$J|)yR1bGg;@U24+(JdR0Lr8 zf4;#@$)2i*ZIYJ=Z!xSC1I*s$jeOV2LH+M-1pNb# zY39Hx81)wfyI@ul#IfE3g-fMe6R3z{d zf}Fv8U+>?yp`>LbK|*}Cl>2X3$?fUia;69}yeL;upBRtkI%IU)R^!wAforL?U zjty-Ky`koQfar3m-wG#W*?o!P=qJN}AwTNhTV$+S|8oU<{S+MMKVNTdw{G=kQFTu) zas@W&2Y_(~E}BLXDlhKbzt4$b=D6y*`~v;b37e&=J4MeA_^d7LJe@MbaT=VczmL24 zAU_N7zZVMNE=w2<-aman)%3Aq+fMG}Pv15r3clyQy3+Z$ducaZfnGspgGEez#?uFn zktEM4>w1%mO%c<}kjTc0>o-xEU~{vdcKdh#Tr<-8`(Cy_bnWxnnes`|Vnevl%`)py zDRp9gLDIRYv!cHiC@K7JqVO^l&=7&LOM+zg*-^XFoV#u$4}s*Eo5op(GB;5Hr!NNE_?}DK#eWb&XsB?Txo~Uo1nM5* zxsd$k_x7K!f06pxIOxlVd>8g)txS04t=7?L{`=PL&bt4lS0r!tuj+q!<-R)`iOs^0 zPtH>1Vy^|Jb`i7QgA>F@9$hEPm{pOSzqO1{Qs@q%C4qmbKhgukV}}1ONS?Ede_>{l zL=@*F#?^b&niu%KlFuW?3*j*r zkb4>Vvbl%!DT7bfAvISsGuwxacz~Ce82t!h6D7LDsLfhA{@a9);_s_l5-&>V9?rIp z*{=5HAvv!T1)p|YdExL(XN&L8cDImqnfRCk)o`!@10wZnNZf-5wbhA6sxo&-4x8 z387sbZbj=m`B$0~FXyT|JReZLe*I`&U??$&e$ne$gDUV(^i+t+?w?8|1%0lEi&wXp z)vO+NS3P#B!@cD}e7qW751@ru;HUp=7lW{W!`fX)>LEEL&N`TNIpNw-du*kqPJ#2( zrQ>gaXcO+kA(06Kk&PFe_Y}k)?2&z{kZ@>z`EbDJ+z%A@;fWFf>RZR*22W#^M@Md9 z=V_IX$c`Vi;lo~u@P5n76j}ML)$8ZptQBYSeq>#i7#GJ3r&Fxw(0jhVBxp>5YQr2n zgdnJp-Qft+s(Y`IRuEY%0GuSS*>o~AHlf%dd3)4omrj!AHq_yF#zLaJoiG| zE<(@o;+Hs#Kys^MLzJE;P234Sru*E~@urf(fem`==~afBw|TeM{)pwEG!fya7s)h-iOp&4FWO+iyeb%f0@7m4D>zVil~~H z2<#1By_VUV(d`nvDoYX(FoKxASI>=^iIr6uTpFe;%NIsnLV$JR?!^dcXIN{;_OM2sHz7_G)j% zBRHGMLP;PUQ-dSx4)=+ZCpRT{&QcQjDhP~Rd*=YaA=OO8TV%eg7SjdIwQ>)Jiq0%7 zSRyzg)L(-qBoYHmA%1xxK(2dtWHSku z4v;LLYb-X_4~q-=l&I5WU}PjaU9y)PeCzsm@9wrMC+(UaF@2fQ)Wj(*%oto0p7)`- z`Au(!|D?tBw#DqZ&7OG=^$!NlwWc>XT(f@*ED2lR(?C!jkJ{}gc+CJih$>guOks`A z-@0qVW7Xu*Y0KQB7-~8Fidrxa!d&G*LnR0hAuvXJniY+xii!%tUT0!q$>#LWI zRUcLU9Z%pyc1HoCfL7@Eg1h(1FL87QLgM0B(S?V2kr>5{h+|>s3UNI)4Lo5tL9S8f zY>cKC@J8idD=4pER7wNU7)IDycb5p8dd`p&voqg(%ex?t?-?H-hag(mynZXL0$DNP zbXfUoHl)#RvzcSPuBs5L=r4$Va2UeDxWHM>n?_opkoq)RfNcvj6OX* ze;N==5{H@gqg2$6@1E-gOTTO`w9Of?3zdLeli08@W;lECBdKRuRFBWGpDnw0QBgZ& z4=DfO8mTi{q`yA&)1;v6sX4!FS!hq)8^OPx^CD15!8q$rjcFj(;Y zd?2$vJ_``X0YQQLFjrNg%H7((_DlCu(q^IW+? zmO`E*-L?6k^MojJzhTRCl0-eDNTo^Ue5ah->cu`}d8i7HbP_>V{RNUS!baE7LN&T( zBSLYKG*RnQp3}bGC%usAzR;2D&?5M@1mM3jqY!=O09Rz0PlFasyjBt6-sc0w>j zF!Vr5B1X7sXaF4F2MHb81;kWyrBqTPLD>cOa;=xvJXb#@0E&3@TM}tDP!s>qPAjE1S9;HTS1YAZH=AW7`>5@6Eu&1;tLCR{nK&=)SKKf8 z;8fJl8&hj*559++-mVuIU3PPmDoI!zee5))+U?P|=-E5fUb1ghO>pRo-}j5@uT#>} z-Vg-jAK!Y55U8PeVB9floO6}!L+$ROC99^b0&BiT#vh}lNOSxdf-TSGKo-z zfxDOaJ(lGKQg#{7r8k{|TmANJ-4H`d>1kS;`MGMN%-l?J{m<}}{$b1i{1nhtzY zhz7uq?%uq)i7{xii;D|E7fe>ThpB)*Lst%!Xc3N7V9m4Qk2o1AV`F0p3O&*^jOsNW zd+b;5be3`qXBreZ0hyVH#O=CkK7HE8&(Dv)OhG{b4t*>Rop5ApSP)9aMtB1RI|K8; zvpDBAMu&#{Z{Mb{v9W<=6>%IwP!9n6uwmht zxL^EXs9^r|h>IcJ`M^{AEus6hFOttg6B_-klgi5X#sWvD4ZgphJj?V|wuerz_|Wi0 zPMl=5gjq@KEKLhsstbO2r%T;9)gM{CwXE#Pe7(c`2is3aGu}Qt6R&8wTolA_Q^e;| z;dj1<%PVgiettmcIUSw#ooTn3Q^i}4WEhZfG6E&-dsCp~g7zf|Iteq)O@d6umv!S~ zs|6jQOU1-qq#_nUs^%*T6I*H!a+LQFU1Cf3jfZh@Mj6iX;OFDrWKop(P0MVjG&za; zTsk4`^(O)_5e@I>!wYqHbArSUex|*F&1|%hN0`G9?M^8-ha}}bXBU^{pD$Y6=Et@n zcDQ9wO2?5M@=> zy|*5FN!qjZr+)Qp`umeZdED5;BmX>YFZo%xS%bIlp7L+|o-%SNWydOI=+_m_pML^v zEcB&ic|IH7=%krko;y*SW2Ud)DX01+enUIVpbCEwGz9YfA6+$q>ZK8R=WS!7rdWF% zT$J$gyf4_ApLFXy^-%1edj(2EnwVre{mQ`Q`DzT@JjKh>1~JJn-)U5>|J)EA|MTSX zVA<2~o5nb$O#mfzXV34Cym_SB+t@@+0?25Ly#+ha8lJdsPTw{#Fd*ENAf9YOMFupUj_QWMsNN!n zOgroL?AwKV%0hCqTRz#nw|mC=TPxBUlW*M{78QwI(<_S}G$Dq(nEHCC)MAg4!l!@> zTJ6$yY_XIzaQ5o^&3I2pOpH99%f0V*D`Tc^md*u~0)(>}W==zk5DX{>NnRRiDnh7- zX}__RXrA1P&0|`GmCv*KYbGzHB6WBzp%)|p)UlfSh9RI>f%D&6PR+?tgB-iDNo{n! zG+a`8i}5$b>xQJzK@w90`ExXQ_`JNlKx-@YUXwtQFXg=&1Cil0GJTFnC1OY>Z18v@ zscZ^aPPS~^&~CbXIPzzgMb}R!32%=8y}F}`I=lp`gHSg0M}QLH?v;lXI2U+i49+f+ z+}kwf-F>yZf0xXfUaArkCN?S}0^gV&qq5p?xX>4>dt9n~Q!(8J{S7q< zxOen}z~a>jCO6?&u}8xB4h(uLX5AQr2%a

&`+|H8o-;!N}fXY-1A8v3Hd9ynVaX zx3I9#yv6DIbqX`Q@~L4ePRy)Cr;o(J(b0Wkj#}==kp z`BN&>dEL9IsAv1JBgNZxiqo8qkAuTt6uvlMR zR!p5b!~6Q}+dC+OND2NmGzE!2(lHSfxse4%b&v245QfwwILe50IxJyqerBfj)2ICU zOBSF`nBfvIWjf1bgNce9b_Fm^r*Ml36ZnX{mju)A41bouI{vUp#V%jizHUY_2?SBM z;YC4#+jRdXY=JibDc>*Vp8$3SCh0J+$E;o^60}kQ_kG0hXuH0uV9ZGa(#5;D1-Q^kTNn&~z zqHM+F2(`Ut?G|zA?Gsu<&KuHu+1WR~eTN#=0t<tKs`HAz4o&?FsX|#nP%Hl85{7Hx$ zzONXZ5Qu*9Pfo32PRu|?m2lG3w7PqU`c>Dwx92ZT;+4yB;H8`}HDyPZhFtRl-UqVZ zEtf8Re`Z)jH8PjV{4NoIXLp&)J@igqAfN)TBIdC5R(k9&UD?Dlru2lF-O$F^P|ll- z(aCA9^GL3-fK`9Z&BF$HzQ#A!=`J+XW?OgLZ)5stxQ&5p<~9NG-A>M^51uBU(OjCGQ#Er?Exj!RG7qif;SS< z(mJq23FHOX3<|~cZVNozgPKu`+XsDOv@(YwrH9lE14oHj+MoxE+O*$6aEiQqA9__s zuv?Lfod#bN%q=w4cS8km@yJ)c+-p#9NqH`X;mKFd8caO|l>#-#DXaNVMKo8S6FcF( z*w#6-!m*0B1ZQGOiuUCBv?*4&UJ?s}DG z$dN}B>V7$l-itguk%UbZGVIEkg$M;SXRwVGr32^TCI)8aH{fr=H1;*PIjHA1Mj!snRaQ}< zA)*t^!wH(;Ra;v^l#E69`s2rGw%j~VB9}l@Gdru?=!B|jaQhNN&Z^km&j*ekh-6Z$ zkd~^xjVBlr7Y9@HkJ0h6uweqanJIBynNv&RzO2Eq(l{Sqmgi??MgMGCl!_u+)Ighm zx6V-!(GCA-RD|-@@;z*{?#N<-9w8k?KQe_E818Z8NnC8~JG>4}o*l$^5)8bhQB_sN z;yqX5zyb3_bDY$uK-OscsEGtgwGm@jeKugz$QQKvo}ul7%!x2Y))R(u$ADQ8{A&1D zm|wY)Edf{Dc)|?=ZMp3`cLrio8$v1}GmeRkjk>W8S8Zki#14tt zNT%yM!v>oP*%dM217TK|M-BT8gv)^+KmPPiW_Yn;n}VI*n0uV>ftf}=h0=|^aBq8` zAe(@E#bL0X(xx+KEhpOWAOU;elAflfCRyn*Wm6<1C)p~R*Pq|-rB1@=m-A~M$Li7F zY8JwI848yiX=+W%gUVc~Fy$5}yJ=`swr|(|?t}+-*H|DOJQ6@TDlX-i+<*me31BbL z*dSKekA5N(+Th1C5&;Nwvadoy^^f59=1<2t70&bSfU&py6A2gecoWgJ2Wj0G9oz8m za4nu@P(YBu=36!~BL&t@0~=_?zTm}+2k+W5d)DI^hqBry?k3%m=HQ@*Hdz=v!?9R{ z3myI1qAse6?my2w4VBygvI(!8K@8Gk*9{j3!vHcm!gd0aNf1ADY`b?NE`K^&NU~2% zU{`MCL&{3006-7dFg+RtK<~^u<><$cRe&@RCI~0R^;s6;jjW^Xw4TzZ`%I~w*4m-Y zzH-fWF+gqJvtFK>w3%txw8Fe|58C^G~|vl{t#5<7oSM@W_$b)KMlx zed3>_i|j4wmHJ2=kHZzk_lMS((ebe{BEd#ZM;Mr(6XMaOyaRvNL=*G{oNWqeISThU zd>p*jPB@Ba3*~-S>(>TJ3Zdn$0{^@2376d|3-&>5o(-nP5n5Ivc3yPMZNYpM%ZRU2nw5^^M9*^ zb${$d1#~RLy6z8uPue|vDNUnzjx*N#<>sJMS$EsSUvTm9#|PvYsU)m#Pkj0- zsvJ{_g#qQ9O^6PfPEPDX|8W6sH^l{tz~2>idjTOKYMEDfto0(E#NW}%~C@1v^`rr?^$2))`THq!bD^OG0Yi9$ud-= zP>ksIn3SqnIn(fQL}qPsY4Lx2Kizt4M?yP&Wj?(xIzyGMhX1bVlRPGk346#R(T^i} z|NebgbQkrg;5|GzVgLvpoJQx-#IH3YG^_mK7p{nmi%l?h7}4NteL!qKw9_YBoMXUA2HFZI2~ z4@H#i_qm+%L&{6Uh=%veHVBk$Y<^IW;`A6o3aJt=^$3J}p(LJjs*RRs{(IhTH_W%#@7~d_dsuOhIXzMP1^`^g(u(?1LNx)D+Y!0= ze#ZdSax8re;hes~%*r7V5$&SwhD+1Z2|pE8RTZ@4NR^g^EI~wh_;4;KT2p{L=ykfL zH_4ZxJto#$em$2LnOX55XOVa#I$j;K#2`p2un}bYFgevD-l}U}ejg=;pfrQu_Uobg=YZ(>DsZ?y)=rJK2q@$#^G~uoR`D>H4nCEt6Y6>9}yL8jAXG;XFL;Cuf z^6eLke#D%L-MG$k=uoEO<-pONDlelV)|HJGq@1>dR$MoHU6tp{rueuA_tQ)oKdd+& zi6`9`sbuZ9X-DY*c5m}u+*QTR{P5wU_pqu`K#?Z%c2S%?Zq&37l)TpyD`!q6X@os_ zg1%dCxyjw>+m=>V)$==Z5XD}Vb1+s|YB-!Vzw9y*uRg}R>rvlUG>Vv6e*Ik8&NVJ#qzb-JXqF9`n0RRbBm>$)@Eqg znv>1O<*sdP{<)#=Aa(rs@~w?x%sCgfYTkoEDRN3z_njG)_?Xw(qLb6M`%&ycB+ibV zUVAAAiXSMY^6a>~sytLgtGq{qTSWG2x(3fODDt1$+Yf6WN8B*_CQ!<8Dm%vw-nRct;@AMqln3=|C9{ zZ*$6Wub5cdD&C`~A4JOsv|J+r9TIQ89>6|9ImmEi`xe?2s&by%H%pa*!QsYs8E$6H zqO(4Q^L!s|zbQ25j-N5Uvvc(GJilnjsr?s#-mHSryRxsZ%kyXb#7e`NOr5Ad3Nh0c zV4(gNw3%i-7YggtuWzuj_bGwVSqO>GEY67=}OCL5U1B=Es*5KA$8V zUPSIQ_jyOSr=0K4T`7o$GX6`{RNwe+IUc#6Sk3r-AxtEKWaVaS!{q;IFD{ zIc*MOBJ9x#_HFYoxFA{(vYEGrMP<``jI>v5Lj7mqEG_fWyQF0Yms^bV4A;LD)3wND z>R%Z)w!khhl`7aC_+|J0THT)YzW>sG1 zhkLtNzE9o18x(X%_#j4Tzg4G*e(ABZACI5Q`#>2g6o~$W#Q2w6n>LbhB%*>fDf1|v z?t2&;n^ktI@9o>MTh%*X1s)I<-p0np1{lm_&uaX+@=LS=0&urdBF$Y@coMQbOwqDF zu$QFf&%^jEgC_T$Y3XHZdckL@dR@Yb9in&dbGI~ouU!@+L4lM0exsO}#)S@+uVcVh|%F=GW)E~>%?JgpKZXS%3`@(UXImmXZ3+-rKm@xClmR&h;L&oOiM^BhZm z1ez0MTW~5WKkh?02b77ZLK4)f4X+;e4QH{*44Ggd%ky4y2hA)j^RjtQhPdV;P~@hh zA@M-r!aPA|tohXVxgA>Oq|?=fH&L|^W$I2D6ZB{m_CE-VXV7zZl1L42FIiorvN3eW z@gK19dI9rAg$Q9#LIT+qItE5YIj)u8qCb|M9&i@m^BR3kgD6V^5)#BQ_xsJ)ugkY4 z1ae^+7=hz}7@-)#Z>@&pG0$$y@AgZMpa(Kb@y04+AILJUu=aoS*xR|NauHbp9@3WW z+aEf9U}9sV9ggndIkms`^1Ogll;qs-Cnma8o$VrBY1ZTV`?!w!4)5|IAsVVcwdzM! z*b|Y6VmXok`p^&y+#%yh+>N~aP^7F8<&-Rh0r{8DBEgaU?tgX~!CCzJafjM1Rba|7 zPD}uCA=SW6*%@MGW~MQi@3*s+eu3;$pnG*d>se05nQote^?NNhz#+hpLJ_p!IS;i4 zUMc79KW5D}+r4`6c5GA?@8{%8M!cV`<*)WzqVE=Q^uW4YTGDfg_~?hVBOgq|_slT> zK7r~%JEx)k>(|`?v_No!+N}2DM+T=ktC4*e)c77f1i~$AlA7(>m^6Fbo3)SaVgutA zvXeIsbBujcYZrC4o_TE;rkHnaOn!Rdyqkx|T!;Q^(?R+?P{2uIX^l-dOS7$P5wLMJ1 z^z*K0f^raT|7=3tY)g}xJUX14{I`fews6(<-cd^r6E`>SMlxybIISV75O$C;T#P{Z zLY_T@7EeH6AkxD?P+bVF6fnTl5dA&0w6ti5!Hc#5YiG8gt?`4}nZ9SddI|GSquLDG zH`ewi8_v~kHu?Gr7=rfXW_yslk6|kCfNQ9^W>ed#-_3tG2F%PG|kyc#(>dG7G5z*AM_CXOpfO7TX1*gZgM zq&uYH-Dl>`|NT8{)|z$KMTh5{Z|wc4y-zNW1r7e+f>Q-^om(>#U zW#i>f9XhfpRZ*hb=^Gto<+6g4g3n3&uf_w4N7QL&;rzC zUVSr$cAtusHVP7R00*N0sZEDVytOcKR+-O3h7r0WTLI<=g1BIalY=R~pv*(SF~DsI z0(W8VElB@f0GS5(e%a){*>&@qqsx2z!{iY5r!diX$s;2p<827e7MKpeBlhZU@-z8z zlN2M3ahy!e!*?Bd0>*W!kPj9ldv9!PvgwJ9jhZ>?dPE+?u& z>0*e^I_GZ9e@-|`7`Qo@jRVXQqrLo=*XUn3o^qyL-jvkD#>ilV@m;8#O@OTRDn3nk zM1-g1m)_i8#tahbD-lV_Qe%bQlLCA}p!K7Okm_)~t@51^lfJ|=vn8_$6Qu+eNq8;K z&CC!d5;Bi4JNDhDh)%w|io;9Hx~cYMKO*N z*u|kKQ8{~-s+2=A%6DP#8Yq8I-et8NL7*;ZeACBDEML7sfC{~;+&-Yn9N|0%OQBPy z^)xr+=K^bfMw`fTm6ev7T739LH`v5EwNCv1Md^3HQ@enZ!}{%83U+opY;q%}ReRBi zPnX)+&H=oV$PG`=N)^>pzyyYS1`2Z4+Pw=~IFLR;0t57~X;Aj6j1p(F)$|X!j;Jxx zQU+Wn#l*MWB!C(ojP21pSr9b@0s3PVq>@3bBLt+oZ8nT?-0oWQb^&4{0Of(C5)&}- zv_GHshs=2;Y)?uy|BTid#|8rYv@{N`6uz zC~PP$N|ohm{oXcIt_&GnG_ALsYy{!&YaAXfA3D+dh=iHKgSph#W_%M{@GOO)JuxX( zXueMMP+v##)r=slyr{S&86Z(XH?UiC#+^cZTAkS8)Jxe25RAcnJ!A4R5i zgZ&#iwzSPtKXJT29q#w=!~W>{yS<48(^DwC{n!&X#uyodvVxbOULkF~LN{L}wmXQ85tX!WnO9mphH4|s~AA5aAgT;RxHK&H~Renf$9vL%P^Q^N0(I`HYZ(r zm=)G*>5#GHhPsT8P~YzZE`A+Y+C3mi=>68=KTmU@2i7>Oh6D zb+0bl&i$3q~(|cGza+tNnZju$L9vvs9%jU!sd3hbnpHGYC?^)Ya7maWllW zvVf5Wa7ZGLtqI9%)DDT*Itp@d;$8fdgZcxzy2{XSDtxkw03Zq=-1$le@ex_MtlY*1 z+@XNWJcy9W9b9%cFFVH5HDUy2{z_$SfFI$=th*zAQax{=y0>E0oIn_yWt|^=YC#nM z2O||MT6A>pMe|MBO4s?9hNrAbQ`^`7*XQT?&*HJ-({-{C@xjBxgGe~QEe>fXha;mvWFc`P$j}Q`*5a`bh@!?~lm)aWf&AyS zK)Hc?v#qV|ax~J^$9xBD@@9%d3gW*R3*XlMl`0L?TP#PSfWIfS};)$=O8BV}%DKj_PDIM_N zvex8^`eMFCpF~5(Xk8Dd_+-{kz#G2-2_zfL2(o4-Bx{h0>awMGARN=-i7_cUBah02 z=zA#{ne}cL!vHPtbT2F{{7G08$HT|(9~c0sj39*})@G~h+RT}QKY1-2kr({;rfwqI zsNd_-ii)ieatu5dX!nshk1zss(@CqitEtHcnTH8XgMA&refR7?K#4*o3pX+gZnilH zR3$_pGXceD2ly!9aWU>f6=H%+K7>?JXuP2%UHEsY&EAh%-y6LRQ&+i4+k})wcfgvdi(63;!C#6GE1wdHS zLSVFcHx^+cbiW&i7^&QUaorZ_M(tc>MaJY|TT24`C`)z#oh_1t4tcG6-T6kp+{h$i z%%fsRBmut?JDlfM?S^U(*c+(OiPS#-a2%kAAIopa{bftynfwg!y$G=*M}lXql^(vK zY~d*n8H+)`0RmwO0ByxgI`D-8EC+i{C+!W+ouXwT(_E_R?b-WrdH}QS0p?nUiHrIl z3J)PE9AD#JVyG6T$%!K+ttAn7YHLME>P$;1Yjyo=(w*JitZxKsuRdhQFd z@k5>%jF{9~FnOn0tcUT*eC|B6Mcr~TWs6txYV8i;%E}5vq}6Q>0#g=F(-CZ4 zQ*IM(_K=snee2pcX}40kPj^Q(??;4_5c)u``h(l=8nyjJo$8S3K6QKl!8ZRsshc}% z_Rnv#Q8Us|3bN|<%s~-!aV{^7+&%m*gI_S;;9YHr#eS3gE|8=>@UYfkKX_rD0NqnFP|U>b{h%p(2|WXVS&@*rU0=>q-q;D2t(ITE zQhYreF7{|PA#_J@RI&XzQGdommQ68P{my~ktu!8f47_Ga; z$!TYtSGeH-W)}FKuQuzvqKN|PMr*~DUK+F-D0W-s1PFrFdVBChC6^@BThscvggj_O z^v&=7?^L@r{rX=;Q>_Lfb%EvjVf=9))Mk5fDb&_B>`_%aqngP54TKYTTimku<6~r~ zp&vuydk_^5;?!JQL+VRtsR?X#}1o}XwmCya05B0TMKvGw=xT!M1QX&_x7U-JH&|HgG0SUf0&9+miTKSj= zirYGWx1edlcSWwU;`-yfp%R(M=;+HHj^zt^Z*iL0K&c5lfy$gH@Us1VY-zg(w0)0qo-S1ajsZk`#7@Q&Yg~KqY4O21;!bM;U&0tzRx)0V z%Bvb6F@oy=8DtIWcLL{=0er{CiKvesgMp4k9Vndn>UJ9Bm=VZpEc|(~wbiJN0wexb zqcx1pMeE}z)Ha{oZT+H>f`WxBcDPQN!RP3sCXWty`%~_B!W62Mth5b$?Y~o2jrOG# zgBeDtY54=TYFecfZ?wX=JV&g|q;0svH#-ZCb)WMPM(Jpwa?+ znLGd&%VQ;!pmg4JGGhRn0Ju?rlk%;OMN=2Fmgs~kyB{ZDyWv~6_u$pa+K2?p*6?H^ zg`5gfEwgRN=#nr0u`dp@3~_`$AKWE#>Sg?j$@(pw@n|moDHjz82|P8weo8e8cC9I9 z%O59jw4#Zqr$ywulA7n2cHC*}j}}N_cS}Q<4FHbd!bbexac*+RTo70%IZxBM%oD1` zrgmq(|5P8cP1bpJs(au_ciR!j%z7n`nt}o*By0mBPW~6R0Zim=Kh>>h!bO5I6)-i1^9Z_M3E;_ZSufH-XJQCGg<==2 z8c-uaU>xicMAi({fEjd|@SC*^4D7_TxDmrHnoE3L{~H+9_g3HpHUi}Vq~}w_$ox94 zPNt3PT!v!=9xEKUnfq~x*M<}11NVNft<-0ZA{St*w6GzGhI%5rT$K zNfrM!<$q_A>;38Y>&P7}59cb{l?EH1aq@a*HWuKHhkyODbHvP435bg$TuE>Obf~21 zG1AAGms2*jBJsb_`)&`|NJvU@Km-dk_)1HELG8%~Q$mp0Ez$I<*Vc<%5YHzP!t=I@ z%x1zwt!OnE&QgF#e5NLQL4XJHI%9Ypo1E>=@Eu^U2WSn`l#$kCOAQQzE&$|I)(#r{ z;6#X)!GLYK28q0rHiZz;2U`Kp#g$N6xqis%0^1jAn4~+3Z6U5c4(rOznEJm0;BKB8 zwR#^}g8{#By7Yy9W&MdW!&o`h@pmnxm4c`->G#)ecU%aa3PK5rB2p^|$dxzJ4jbzd zd?xYM^5C+I;#r{M{vBAjO_=AR8s=mw@g#Q4e)vvCg22xI2FfchMZD8xb-w67Ex_?q zj!MOKG+=u+4&pt@WdFK6VbuI8(E_x+SVkvnZ@8euahT36+6cN;7e@S0#o z(=%OI`7n9=x+VJcVTIO6;Fd3iCnui|>{3%x|Aur&FvY@^He{0=9AHcN_KQkDrE{>~ z;wU8d2*S_x01k9Iup6!Z^eGXHETVq<{!-`hl*93%fc?}W`X|sG)o4)q@9?)L^E;cu z%x{=t25t?8P?g*!NL4_sO4LaQR|Y9(j^~)&nU=Ox`W_19D87U7b(MI`#hw&eaQNBo z&#v~zX28@I5LO{>#3H@Az{S7C*U3lwhp8#~$pPepuJUuvA0PO8s6#c=|HJ`hASW`$ zyrv!U?PAsmq-jmiRCSgY%@PdtcgqE!eR2v)g_qYJf-Z~da{Flan|@rB2l^Q z)R1}qWA;q_rzeCgIzo9_!hY5#CC3@r=9AhAM!BQ5B-wHH1`rMl1~iz}eS=J<3cTy-93AYcuVhwNSK|>8`5T{Ey(6;!q~tm( z^LM=jqy%A^i`1^unJfqnU?~NIyHs(={ z9ONGMf`&XVj(Z7GK3 zk3evFY#nYJLBrU=UjeDgpiKJ>hb>?Wk!@{KH*VYj86F0brwW+(Q?4ap*pr}Jisgx| z{)(pUWbz`j#lU>(iU;s&Y5Dm z`#bQy$RWML?3-rsQD0C4o(D#a2I%h=MmN+N>jq_?Y^h?OlccvK)5mPRO%&0yYiZz+ z0t!Z%dbDf+wkiUZTNtdewjoX^j~AddeeEKT0mjH2m}m)SyXu+FQvCSyxjsVJ(h+%Px87M| zNiOi*y5}TntEXpoe$ygT1x+c(?v*2ORET#N6cs-~>kGP5L^wKBl+^G{^Fc5AeSZ4V zA#2#80C$QpsJ7aiJVwEs;4UCSA)?I$v=U7%E%ierSlA>!@$tkD^qj9$e@*XWgN9tK z%mM)vpt|eh{_ZBKvnfjL&Ztj1F+OI?m>bwCkea z7JRI@BP81!46qSl?jNTA`p1cX>uHe(pp60{9unmZX0A|JQHYBI@^S#XdqeUiNWf;J z-~5nf+^sz1JjffUFdRp{N6?uKZERt~t)wI%xMcI^R`k*S>(zHu^z;F6{l=N;Dkk%# z0=$N-;*2a~rS^Js03sTPve>}X1^1ROpjW57_RE0w_<{ugK!LS+bMtmy({oRvi|ab$ zdl)F_XkC}bD`7cN!odemy?=;w3n3F)8RmNiF2@zawXZxB+>=3|t zPb;j*;fp%{CaJMq1syde@Dn)}%lL4NmL2xt&3PAZN<8QlPmT-8D!Tf2y*^92p&7Yu zp&$I&;4TO_g>!DJCP-SL{|1z;vdoMQFj(n5?=R3QQ4JhieyMq|00KK$m2EPLR2)x8 z;C$yS!&YXP2Y~c`Z#R?e%^!i~9;Z7*)Msnvq-ss|XAaRaKnAZf9-RH}tOX(2Eou^E z>)r;p2;jO%@_P8MrjDFQ{)huUkd0(D6I$esyi!WF0fU~v(L0)-%U2K2>Mp(K!vTSg zQ~-8{LhGhf$aNZ)L!PRiW=jd0tt(NAxr=-lw(|UwSz2Ep=oB#?d3p*5tg0}?K&;Uf z=yZ^}0d`;?S9?PfKkXcSMQ9fV2<<@d9Re2xw3#m;x(Z~>guKZBMgy0GNQM4KaI58x zVsP17&WaS_pKbA>per|q|C9C10ov|MpN!P1h8_b(pJ7gtcgX!4B9{NZC12 z6#7~=75(`vQnE6RiClb7h^2iTYJS_BV1OzLDj4tTSb-|7TyPECsqyA!WDJ7&rZ9)m zmx8x0TQ0s4ArUyuR07&vC@CocUxMkTlB%OVlLcxluZVnho1&naxE&~er2#yB0C;h~ zS`47=?|Y<1{(91#?c&vWWM3i{Qs{xAg6Sac3S36uVh#tH?+zgIVSLx)r25#3g5|QL z&0Vg9H>5w!Yy0K;F)_Z;GsS$s3X&LxR<+j-G4@@%^B&RLlAC<(MnSS6KA4RhvgMEd zJGhOg|LF_7I$%m5vJ7~9V_=Juf?DrIRudlk&r7=as}xr&7P*$r@eg_nsAhYV^Pb%N zo!p8S%q*CC^eKiq*+@B`9B93n)m2%5T4jQHq0)j1^haM~au5EbddOE0`@Jz6R4N@z zp_cFlXE_9L0q}1KxswR81W=<5M0<&FsUsu)AiNHV8GsA`nkNfCsTTmOHvyU44N{Gr zGv@2?fj-qsICs9}!ts=~fR=jX9#m?=7`#A+{AjG_2P9AZG!b!wqd;N4GG9L8%c@y5?#g?_%<1N2c)7&$0u`;DPNKAa`6kTd1w;r5%NTO_4_nd`jF>^R*dC`& zB>;koGN>ZBW-v1;>Vk&0{q+m#i0E2gMcH3u{HmmYD=3Y2ye^B4i_%;9xH5iJW5>bH zE)&8FR5S{^x+X8OrXQ!*+C-f-`q~rd1^|>b-RpiOtr$4pKWqtPMlAG(P#qzj{nYLM z4J?CmdjUu;@PWXsKn|Em4nzlmvqwZyaxqhug8*!7V(QbEBP`n7m9;jTkdqFF zF$6YXgHAF>yPN@v3PV`1;DEaYH@k~Xc)`$PR9F5J5&Ez?;pPO>m4xt^J2+BptXLGO zFMAb{AkmG%}-wQ8h4!cnXL@`PALPf8(h@ zgy7U&Ee?d`Ve;wwwLP%`e9En3`-%;YBa7leGs6hz)Im~M&g;?%R^THDeIn*ECxASj z_lA#NjR`^9jz~OU;>YC~SUaF$QY@c%Cfe!`d^P*rociLCzK$ZiXzk+#7oIs1r>tI* z9%8iuVX!g+bkq}aHi(e*{4X7H?{3zvy<>TOH&i6~`nS20m!J_+ImJiIlW;}BZvQ_n z2dsZ#t3$!RJskCc=K4Q+H=n+S^Y`!~xSb)I zGjR2m$R!_6DXGnjgJj(ezob`VS!9ZJ2X_~bDB{aaV&Z=jx-2Fg;F#)`LeEusSeu1! zk4D9gj#5((3Hofxsiqn0B_(Fi!hw46c244CG1CV%v$i(5)CVo7$JhJB9@<*XQ|PbL zmGhSbTxsu~Ei4_AXz>`%&3bz~3tDX?%elFsb=OJuyN#)Ik&i2BMT$25nDfy;4Fn8< z5-$My%iAED1p9mp0K>{UI>FFsLTcg+_`8ZI54j{jGz?ht9Bgugrd4BrSsT%WCii38 z%y=EpdUR=xo|}t)-<3+%n~*R+q!y#Vg+%eg!QE4Sf;)Fqw6p@=i;_;Ay}H6tGeTg( zmwuoB8sIkW9qKx2YE9r-Lc9zpys8K6l#E~+KZG>NL&!U&XJ&5xo-U}-&AXJwHq?>V zf;D2Qw~`+6>;sntO^y9#5oHHtZ$n1qB?{cLXA~%=9X36bYn&UerA<))8QuVcKdB4vJ_5sHg0aj z(-R#VJ3F$G1*wzx9FfIQH3xF=wncX%{J# zEommQi74`WQe(~7tW`h7`F2lmNAGg1gqXJl?$d5e_qN@Tiy--cbWSjYlKXOzXA`R5F`qrzGn-j?)ntdNx6$i zD^SSuV=V{Nu+9w`Em#5F(L zZ|1MQel>haviAWWUsdqdFYXe%b#25Ws>thi;ScMQBEo-XmWh+ZHeF#YFij3Ml*iB# zmJ+CT9CoIf`iL8{wL3pd)XZ^MlFCoq5TS}yN=T78%nT8m9z*k2`e6Pgl9_zMQ%bDm z%d?#57^#dvr`Dc8oKMxImsM3&f#qpO{GG7S>s-^*(-9u8rHWMX_1gX8zsZCl6u5uh z6ThInoci#q2vdv=*im`d@XFu!b&>O-+GMX%&rdE&{gJqFc1ZHIuzIySw}9!-@qv-F zyHm)FYQDptee(UH!crkXdwpJny8mxg4J$ght{Nyy@N zo@anHEW#c7l&QI7T}h&-vh`@ccuDUw=fPdw&D!z8AhQkr1h2j9$uV{Am)a)JB{~(1 z0_qMp8eZQO8f{NB`?JfV@}6z@c5@TvY1a?@PNn>qcZr`ppI)Fx6Y|jt3hLi-zyOo= zzn}9TS1uL9()y+!4pGfOG_=A!jQkoue`?Xr=c*lVNC!;biYrou?V;G$|9&r_s<>xy zH*e+IrJJsoh19hK7>uc}z4v-q;oj6V9$@z)_WqrQ!03Q81FjL!>az=)I`$J`c6QYLL`~fO-V(|Xiu9_`jCyms#StnbR2xA-`CSNH<~RD z->&f=rx(z*^rg|S`!WCC{#lN|+-)IDTk*%tJ-XTVBZxoc72OwD;`Rz{Et=cH~tu_6m#1^+nrEWfH1-uQ$vp2&e zb_jj}L7^fb)$oM`T#u1i=RgLLPT9DEIUXoodir+ivt=%_iJQ3<`f%{T--{M5MFpJg z!e(-QEL_}gw`axStRXIEM^!~+7Ilx65*OG0C6|Z|<>RUH3T`9yc(jo2c!HbZqkDhv zl<*x%O;JxJJV9Z}@&g0-0$uT{4d3)-f#XCOzh8zWXYkxyc5!>vdWG+9yeBb6FJ%D8 z5yqSa;rIrFLRx7l9=bQ7!b=;QLiCC>Dc+I6)d}JBRHO*tV_54;MB2;wbWBO;|9xhD`Q6{T2BX+c-z(*+A$D@a8`p38u2ob- z;k{3#oGA)MqXx@kH$x=kO}cdNlIhDS z%!-Opu)!9+LG;iAl=$qRDY=`ZExotS&uPhfId?LA?eKo->;~FrFob}M;J;K7NGu14 z24Z60M`Th8s8;khI&&K4ehiExqbPQlTsmTvx>|!W#rWQmW2s5>Oj+-P@Js}T(|UPI zagdmyFLS+c)E#nLOT2hAEB=@88-)hx?;8TXk923xo=rF{CV&_P95nBUzW7cyNfH>h zz{n|_5N&DrwLjKyF-Zh9;eD)@qk?sS7!8n|TbNI>ypJ@?6cJZob~;Qc=>eQSyz@`U z#)Yw*ygYdD9?ZlY5SN@5>D^=&vUS9@cXPrIk-$cVF#tSpG&pw=0ev2-&#_U{X?CNt zjI{d0(u6ZzPbe)bBuO&!3>Xj4Bn#Gv!?(*}YHxPlGY{?}7fOFXyNv7E&`rrJa0`+J z;5#XN)dJ0kDNzK^xhw;EY2spft%!(~n1Eh|i+uB5Ifr8VZL(%54J?Z3 zF_4u8m5SzJ(5({En;lM9G8j!iP0N~M!+l<2G4(S-FfxKqC#=eFuuKh zi*u9A>?OBMI*tSodLk2ObrTV-aBC%|e6-v92&0Rg%eFDXb#g>%(J3P0=wTM29Ki}-vXMH3-Ak_a=y9tlj zu;g;NwloxFV>Jhb+>w-m%wF@i^o4w$QV18SP{eiS=H)ehRmZ8Thiks!4TA*~=rKF1 zep%6k#*yUiDIWTQs4~`9|9AE6{FFs1mw=GTr=vp#2sB9ApakmpCA3^^1T79Yx)L^<%3?axBD3lE4q?Y)ij%JK z8Un@m){Y#G^r=vLqV;<2h7T328V{Kp%eOG95xg{797z;-eGwc`9#y0$v1fVe<`Pos z#mQp1_M?)OV)ZtPeB$Px_+L1XOFL4NrCm{Ibn=_WzGU&6BUG+zU*A!2FXO%^R<_mo z!m65>sI6OgJ7LPHPW)iBVU#g&#JCZ&$XzhG;Hf+C=!ggd?8ce!Lia<#+$0 zy^J+u-68lJ)amROa+h)*RZ*Eg=H4QH07Q~g!|de9Nin29>MIGe?Z<+(9}G)Mub;&EHvqwdlXk#a)u3Qi}WV+0t)@ zP6%y@b3>Njy5dg6(?-T(S3l2OX1Mz4SUbch)cZ;YA4?QoYl0TWSp5kw4phv{A(4@I zfq~Zo0t073))!35eG|ggR=8B*_EEytI6#jurZmzS>t$3T!3~diT?e)%Wv*o0>QH=qLukNev;@BzW zZR#gYzXUT*etuQAcd9>1Pp-VKO}O=`>ZQfUbc&9S4hNXq0n@qmLr>U|$>bn{AjlBR zoS5$}Bd_(yO7@1v!w>T9h)QShpje8begX-w7!bh#PJk{X7+AfWWc2RqS?DT~T3rJy z^EV)*79p@h?+NN{x`4vOl+*leR+@>3a2a2 z^3y;yUZiUkza}@p$3y23>F=Dx5f; zyZTOi>fa+~M#lWX5g0KJyBwiWI~dl_Mi|HbV#&OXl5&1a3>|ER-j{b4w*sg?{H%Hq zD-{qDf^mOsR`c>*Ee|QC)ZI$f_-Zb1Zu=OH^+cv>xk>*@2`X+54ocn!{$;drt0`*f z51@TPm2K>@U}ilM`}MPP`%lm0`Lg__Fs7NEk?$YR(ymiiNk6tv5{U~SW&3L0Gjl}v zkn;=r{j=qA%oKGYS`AH20t0jNM%bKi@40%P{r}y?<@37#djO(7S~T?^hcg75ZE)dn zl9b|KvTendD_G_+!$$$J=dStJ!gXyd)plgO=3wrx;_DF?hERpRg5HSyiXM{D?95DR zxQ9RLEF-%qpti)@k2cQ6JcgI;94ox7Y|bI%X%Qpcz9dt^*XHI$E+J8wF-Hd3x2t>Y zp*1)j;K!&l8ZsGPput-GtE8)Z!^0wsm`IB!l5AG?^JaE+@Psyl%-c$MdFp@OR~uPk zu?{uMoZ`MOxn1a7hhh4##Eu3+$U$f|I&okO-jttp&fFv+37_U8pj0Z5Gv5qf<$d4#1({nDD49`ELGC=vv%2=scbtcW$Q3FZ~yBvEiHr; zgb)&cDXOA&Zvp*meR1iV-1hQfg$3|kPCopsG&G;{ddeV~u8~^6l-}7S|CH16x)2}& z6cHc3@Ak}bz0FiG<$742diFWo5VqxSXPe z{S8oiFptea!1y3zG#zq`{rlNU5%)Jm;E%%~NHB(PAYt_?08ZhZG`WmxMmK^Jmu@?- zKP<<*FUX~{8D(d&Xob?Les{G>r>N5~35G!dR4K`Dw%ecrUU76GDDGhAPi4JoE^ocD zv6d(;(ueyN&+B1PJ8NOs8p-G)u&b30+Y|_`-yT!w(jH{_r@wG|gN21zS&`>Y>03AmX;tsargO3@Zx@+2cVAD8(yHUcZFqog{bC|9tb_ z;!dovPx6HbW13yEzh^Es2C;Gz#;J_DR{gX?d85AQ(AUJD)hdxu9&j$ej1sdwG7p&M z02S9aWU7VBi~;n@tK|n^;RMduz}UDMluow-nr@tKm9bE2K!dwF{aW<{u6Wa*ZWs{a z4H=g!wvL;12V?cFyaB%ntDLvUU9w!#ZQ3qn`0CI8)w2{R0-OaxQXktVi%ke0zu(f6 z(54*Ak5OkG>0i`UX=Hf=nsEqLO)>FN96zWTYG<7Z0g~(IzVCjl6 z#xhDOV^Rbvb@wf?n>k`7|23szvD>y5n8jsOziFeXE7& zWln!=6Ux@oYKqPU8)VIdNi4B?MyI($e7l~yUvf(lg?bslkeASw&o3^H)|h}!;eQ{` z3o@^7jIbQH2$6K}7skfcW~%O`bC=$UH_KV-yxBZSe$=U9A|&iYh00ZAnd4u<7fMuj zHp(7}fH-?)XeO1_zeB@N<$Cf6#Mp}<2Zu?p4*j{>pl5$aF)`yfe#r`@kkk@&>zz;E z^;I}8ua%S)sXi9u`j{a}`;d*z04!Kt30y&-#-E1tY*5C?bSlg(^XZX_T07=zJRH30 zg}wDQ^|A4OP{B{HJ=)1h{`Y~A|D@*D)Hv5IcD`U2xHz>z{w%V58MvuNE>MMf@u79j z`mdhZzMKzqKD_r)USSq}XOKdV=a~=OeJ`3ZmO`P+;;Nn=w-e>C{QY%Or*QRYp+;0h zgs`|c22csj-@bk7sX|83z|1W~a!lk)XnZIgC;OE#JJ0{`u9y z@C*+hRyXY|fDL+e+LAL|?CgjN3V0EG8~c0GVG6T-CMb4vjvW<|Hrf6KVphnN10}Bw zoNlG~UZ!SR4gNP-eLzC1IaQ)vv$z3~VAEtgqTSmL8Ho6A354JdNOpG0kXNUeQcP#gBJ_qk%PgKjH=r_Of~GYqblhR$2}&lb?L3 zIeBUDyARV?ogVeqs;)h-p?8iW1<%Qf96(jInA=N%ll$PugOzzAbH#T1K=vtZp2<>6T!KXZ?l*Ztfe0(LrK3J^| zf6CW0By=uC_)j+Z<;18%>;1;^gf5RU(0cXB_09f#wsJd(bd3nyb;+5C_ekg@*w9XM zb5MOI0e1)q=Y|~96eclDf12?@zX~vS8?<`MT)VW;{k~h*vPPR6=O-?gX{SwbN$Whd zwYD~Z{sbbuJcD0yBB0s(X=I)ZC3-LVH|@cLF%RBY@4 z8VFUM0{CMLOFqCo4zeHuFm_@KLC{>{BeS{3up%pKZ68A8HaGq9(OXK{x=iS4Me`og z@blMAXF54LS|9J3fmEOycDnR6fkF!#h~fi4R4#!t0NNcyc`w51B5hL~fqmt~fJ%VJ zv+JAMF9Y3hOd;@~0yBfUj8WINA5!CfC9HmvW9G-;X}#n92yVM@0+&D&JxXOFt;m!+ z!rD!nP=x}l-Uc`3yG8K$$3Va(Wvo9{^NGkj)0= z$}?hi^ZLCPmEVSg^0e%VNKav*<6SWi%wbtpIuJoa)(wLtri<9(Rnond+d-KQHxt4n z3MrPxTKRbDt_>yxn`g5`Ep0F0_~<=Vlv#2NWH-uTep>;d2v9#BWRsnUi;KJL^-CgJ z8ryM@rb47F4p`1k66XLg{O`jVDwS@Q5$OBP{Ub;lbTmINH3WdDA1q2MwozA4?N!v& zGCG4GIbq27)wR=2AR;+woCzT^N^2%3S6r=>#c^SjdD9D@khtuhlz9Lm3 z9T6cS16LqQrS1_}v2E}GN_5F`lTAdsXLj&0rK5zpyPRB{qREh6lu);MT33((HM6|G ze);^-J)4see`@xf!Q`2xrJN*1s>Zx{LX|4EBeUOXngo;+izM~VnHGOJsTPAZDnNzRXySq zk_aXeR^ikQA{`k7_;=-;QK zLmtCQPj6@Ek8j^lpqi<(hRNhhBZZ`(B?TyI1~^0}@(E?F1WA=GdiLZakVrkYS-6od zF}$gF=db~W1qbvzcnv9Pk4r8@pdg`)>tuWM==_&n;J1c&@Ls<8-G~7&+FnB)0aB%S z3I@#l!xA2{N@l8*fXy3q+;biho3tnBSz)@;4y@aggG?NZWyM?48FY;0Ddvp%9nx1D z{8Qt}$y;4CHV@g~U!9_P{Reu$|3&bfcXQc-R{~bN*lcx!Z*ZaZ!{ey?UcCi03mb}X zz4n!toA!G_I;{_2+1b;*Ke%5{%V}v5gRiLhb?>Twvr3Z+2Gn~xhk1lk*_#=_9Qrrm zMaN`{{W=T4YPDzWD2ePFUE4);PVCNZXDwhdcST5rcoM8zgq zZ!Hxw%VhN<@qKlxTVMh%1uHwMYn}hI^|o+k0RlWD11Vs`0lJB(zC1LZ3fli=f=cND z{T>+r2~EI;V`hyIWJpFv9isZ~6y!5s#=JG>?g3Y$64A4M+u70TVEqGu&4EVe8!sD{ zM6}#^fW&>kyCG0`(v=0Q&tv<?^<75d)2i*MM_{V zyh>*^J0!kpsF4eO|KN4&3KJJ7k2FsCGgQpH*{I!-@j-~8mbXIh#%UYj`;wTVZkum9 zX{UDhTdP<=t|WooQILG|A7Ja>B1ehvUqbwll@|6HVo-gypF;`smO9ZObe>jgWMN_y zlDR6EC|F#lusBJ`#%~ODGM!N(Ur6dUxGyWe3$V`3&HVs8t39wr5*nvbGoXC>&-ORj zDr{)C+FT&|;|D13w)gg4aUOgrC5oM(Yu--12#7ojsoa5Z1ns(=V_Rb4^n12@jihrYY|#~xBmGe?WouXxo) zt)3f(gaqM0saEOk0CHv=T>Fb~yA&>#Ex2!2kAGEKdjpe35kop))1s$SEkD?d57Y;= zt6qJ(`VS2nFM|p_(AyjRQ@8)k8?}mHr-2~-2VAFV)Ail!+H+%8SE{7L=olRoTxK5N z-6ezL7kHyS#u-e6i0I`$cw;+pr3sIo-e7U{vAr>-iJIn}e}t7qIsq}m*Kyf-ct}v? zdDlvw23j0&uTF!Z;ivQS#gU-kr3t>eb}C>&aS z`Ln<^eeUUSQy4%Y%b~*(bf<-3CktERB$vGZ)mLQNt*s zcx5!yf<~9$Vg9k4q$8*-K1;>%hxPSOAn|1vuS@wm+Uk!>3Bff~8|TGPQ59Aws%xPs z7P+E-1M{yLz{%dTR)&TY&^CP^A5Q?o1Ts*gNT(_-=>77+^y_ztwHQ$}%*qj z60QwblU0y_3}#*U0Y-~1l&_g(WU?BltquxUH2K7OB51{iQF{(^SUN6xg8?<4ZYS}E z==w=E9MIFz%|KG*Na7q=S14#{u>gt*erlKa;5sYE){nst6V6H>h(msb729kCS?T=R zX1IzI3Y-%$=K&L_mZ0Ho{VEzx{DA^bdWp;89yF&4s=eRgFq1i0uK7?(k5O@#0|uKF z;D@L&hUeum0z)O7XL=g-A}ZljJ6BC+&(iXyjnx39Db>|{PS*Iqgj2mL5n(Mi2E2H$ zN9c=b4)mLqc?F;Ps~9_X$}Ju`KA@AO!UJoyxV3_aysy=nS`6Vznqr{MEPY4daJf3c zOPh;6Ngw@jM2({Fs?MF3DWFlLbJg_C3g1<9)d|cK$Gt@KZy@SCAFBKhf`@N5_nKPo0}VQ9e=b{MOR&Bs9P8Mujn-&EbY`hPqskz^jsF!#&p*?g&*38 z5w+?qb-rft0$jp-Nv=}GW7^6loD~Q4!hpmfaXG-8V29o&B5DJGzP-0s(%_Z!;9u8> zjvMXLPEvLupJPa@hR5%4vRBc)hm>Kg_v#n?~Lw@{9 z07-&l7{yTu>#|~zlE#M~xRqi1K}DIRr&(szZg>^iF`3;+>upEuisUaVd)6C|-V_dY%Ryi2%|ilW^0%+@88<+HW9Nw+IIw9x9;A zBd_DyjqY{glA$oH);N`;$ectxr_iD(Zf?3+TKgvBkny#A=s7}#fxkB<2br< zpm~_j_JvMOHYn6+H94n$YwUmn)e@2~cqt88uF??4jl?d;J=$+=OvN^_E2L+2QLszX zQ2M*Q-ESN?A_-H`z^BY`baYfkyoIYv@4+G^51vow1!7JAeyP)i6xv6*)5anAvyqla)bEKH=aKPjQWavru zLLOaD3zUQapXAw3j^$~2FGBZ${>hXoUwxveTblVFwNC$8$kdDG={X1x28;hwO$TYH z&(B2ffp{+{HmPOU+L}a*vl%2dP#ddhYC?Km$FtXU?0_`szKb&|6sWp*^|5U- z>RaKxtjMhyI`R1akfMsb+Hhbq0hoZ>fB$c;?lWP}dfAch-#sB&+!`=WP6jT}pO{UZ zBssOxbp%p#EZhWoLN4)92%=DjNpElG+i;PpLY;#ZYKg|oi5CUh??loyaGie3CQqH? zRz*<5Z32pdrR^507rqM_KFR2u4q-atCTqG-+Hap^o%@U7G02p%JuLtJ-3Ybe`YXLU z?Zd5KTpnLPq#<7*#>jkKPTcwtoopM>fMcbxHN`PCK=lkHq#<ojDoKU7(1E$t|-3 zmL$b;6Gggl5}-#l;;TBw{&`inT5+DT=+%Rrg@bo4w#@5(EdA@LrBrck787XTa6e7a zJ`wbSq+_U(#UUXsD#|-IcUe$3U=s2+fLaGA5DMzl>QbLy6*njZxo&{w)B#)H7wRAu zt2KFRI}z_WqG#sKH2{V3pnVoFpW}q1wm(Pxa*DRJumk}L47}BDf5hX(rpK=e_4SLt zBibc~U&8G-YSdIoBaSjg2Bz~MqX2O$?)gbyTr~ACKU9RbB;sUWPF%I6RbNe zH#yC3Bl?Fo1=N~6L8#=vcp{P#-54*-w*CoKp-FveoDXr;Q$ zxp5uz4he9i0^2y8$UPT-&wy}*GPVtxPc$JW^*-niD)-$;p(Nb0@)&?FFL&Mn*;}|nPEk=yS64xQ*Q)PBm>Q9m=9Mv{`Y!2^ zD-x4J&-}~By4u?FjVJ#{?4Wo5#lNDiILZhq#BYJBuv2_++@pu!aCM;HVElE1T9Atj z3j4AGYw3}Jv>*A%K~h>8P0CCAW`Tnh=$H0x-KfW3%P>Hu@nc{h63LhZnC_P-^t~W2 zogaC8ZrXu&}TcK$C_W z)Qpf+C`L(E_!hb}uj))W;f3~}Egj5R%u@*z4AKg0Jq&Xl^^o#e{B(qUBXePSe-lN- zQ)cz|GZ>7J!D4U{=qfiIVe=y;J-q>;!(ChN&q1V*>$1q97)Kxsh(@YCT1X_geS2=i z=8pG55`y#ZeJqjGq${jWi~g5AdCK#Z5;SR0F9b7@;|5UkWV@ai$V$7s^YWvOeIQcf zr#b4gb^MpF#f3yJ@f=14t1IhjdFilVJ)e=RFC%`eNl5+Rj;vX~H4|m*uVLe34FY2o z5aWWP{wb&wAckvieS#1coNk6U3}1nKos00w>wV?H8{=oUY@q1KWsS8jVC`-;C;TUnZWM9zbcd~JQ8N9uy!kGW~u>MlK zoCHW~tmGhM2_Qox914VWXk}@I@XPx8h7g)u$Hq2>fhsWZ14Ni?_NLxXDX0b4uacCj zEVgh#IwiOp_ge%3P7Wv8J+>pM@ba{0$C`MhAZnw?%?HtbSowG*xt`! z#Re03SaFXIXn6&~k)*LOf#WMxI-ySuBwE>0tS`27)}~I__U7{UO*0(9@$&wdtCQ(KkxhYSI_h5E`F}-Jip&# z;{A1-{dUU9)$u~IGPh}Zh5}E^&!l%{)>HPB4D?r+DdXx#ggXbNXyjJ;UiZstnd%AL z{xR5i#t}sSi1@Hm(cdau^E2&pLL_H}0tr3q*nINI@iG_sNZqg5Mn7P9)bS2E?s?AH z+4=C{!#8iuGe$4tnIJSGSWLCj${`Yu@;-F)ch0eA3C_$rq6dDbb%N+5qH+*V=lM-* z+Xi=7SlCG4b+~&sjcT8kZo1FT%^{#;^XZ|mEt?;p-`WYYdEFM(_l^J60u*`uBko@= z3EE#z;2YD2^k@3Mq6{e$l6WHEWcWVMdxr$cM_duzbviFfSVNA~y<6V}6(p5f?xN?A z>-@-P$dmkng08%|R)-JJQ~DkL`6j;tj?Tn-sCq%jZ_(nK$(lOKXgz)bf=6AY&tM?) zJvYUGBR0}rVF^{z)bW#wOB7&xp45`Z#Lr{0tSl~<7U{4KfKvf#LgTUT`R5AWsH>|4 zFXGu`BQhNDiRBo~l%O#43u2>)?0O1@;ybVMELs8yQ7)QE%lkan43B1Auf`u;UhWUN z`s5>-mv<$JsLi36XP5>h*AzO|FE6K0_}-ZMkmWcQAQd;{Jh0DT5(-syU=fu4CDB+g z1RP#H0J8D;y@4Nv5cqO2<2);9s*Yb88y`P!rgF^Y5WcB8*Jh8vb0Fcy>2yxrW}Y6o zWVJ3po!s&AX$LdXeaZ@^iuZcKbo_U_WX_+B9ZLL;PiMwy_=_17mqvvhW)6UMu3hsu zJ~F}xU(1cW+iy_(g1f;7B{BZ-J-?W@m+Tin=A0%>u|&S7js78l{DuJa47tk2MC!rq zqvhfPmp~vtfBqb$8f4F8zQXp70m-XN7jVNzSYIF>f{Mx;ns~|s2QE4|@B&{ZG*;j( z#Zb$blA3BNe%p-rX4s$o!Z&k1&RRt`Y_}J#BQQ0h{C5>%IQx%W4N_p_=J75Y24XG& z4M$C9BH#738t7j@%*1gr?WxRjI97G;SI)$KJk^p;PRk`a!LJ2u7@;WW1x_!0YY%3p z>D8HB@p(#pQ`0I0&TOPvppfd{U(0OAcNG$+ujdJurOBUA5u84I_9Pcq2q$>SEYW0zl;ns4g*Q{3(UN0jQIN8NA0;F z@jjt+SjnDgN3NEiG;>A%kN6!eNt|Z)A^E|2yWh$F1PS$5!3*TzI{@JPVI)Q4=4W)l zNk3VRyf{~5<2-gv`BH7jQI8NP78uoDVzQ7jN^VXrf=XxyS>4cN&1?Q3LIX}@l^i=3 zpv_T<&KUHB91oE`%wxKr!EKrpyf=vQA)&FH%*-C3kwg;S8sdKshqwP4ZK^dJ65aEv z>_JET6@ptE|CLIp%kX?+cKI%*0Z;6c0UB?LY#uo{}F|1uGg3w zgkD%MUO-Pc`mPg@Cm!I>{D188w8{Q|_f`|I7Ir?ohaU<@ur+(t~?6Z_co%dc1VS~Wpd;HA*> z^XJd?54#It0yV_*Lwt^S)6%|V8)v-Ya?F2k&4O@Kq7D!Ssi)D=K_w;P`T6-66@Q^P zj3672xnjT<3dw>GR#Fo84*d4IHb%IG_2dDAE#q7OpC~qVnh=@{BF+YXgTv6b@8467#93wW73FG~wHx^ig&h)0 zD&*V>*lvbSfKcFs(xf{Wn0&R!&>09ghKWKFA_-i}@6LRwt0sTMx7Eg!n}qvDOZdi; z&Desv_ndKM_s-IvKhx?L)>BdMI}Cd#VU2(&_#hpf93&?2B@@kT(A=zdzUuscL*W9` ze@>~*AR;8F`JE=7wXtIqyLb2YeU&B1QzAeV&V3X&c9ot!N4Uk!bC1#vTajrl7wAr= zNElzhkPAMg7o0Fod;n{barJ9ozP`X7O+>6g7xnUYZu7y04PQC^`vG?Rkb{(`NP2!R zi-yH}x7gbBWu0gQtIYmV6ek2OR}~5uW8ThGZLOD`0GU(K*cgT<@;ow;BiZJoPckui zBX|M^CeGV4``GE`B^?RAL(gSzcWogdEyUP|#`IX#;?q(_P<-uVa4SVy=KQQYOy<|K zZ|#PXczrk`CSN1qEx;KD`>=@eowq7?!uzQ*)%NsD4R%`;1`e=nhmjzCnDQ)}^r_|Q zBs^&stZw;1M7ZYhQU=0q64j%RAhCANK=0&Ity zTc?5-2hJn2$`DTy@!ms+b_Y4lHECn_TdLG@CfC8Fh%>K$qmI(u3|z~(11nqZxt$vd zh%Ng9;c*CU_^_i#H8Q+P}`p?=n$lrX*Z@P2X#PrfXltg?N!8pP^OJuyC&?#|uC0{_L5OrsiLYw37Jv2Y^cv)tjV~mZG)v&D|SvHQv6P6DHHSD3L~-*%Kfc z&l0ri3;1q)1ZEMIIVaKCCfTvBht+cH@&1JI-go1-VTvVc*kI?m1@_5dacTTFH}X8b zX6k<#K?pnIqWa)~c-yohnXQY$O>R|n^@dL^?GELgTK;EWLn2ztk)*-So!G>d0bX4h zR-;SFG+7Q~>IieI#Wi2`#2DTH(EGCYP6 z+JiMSMheTDYaEaz*#Bwt!<}egY1!H1kTE!T$uuD$0liFHBp9JY36lL_=ECTSvo-iT z*+u49$wwNrbWn?bhIJBy0lMf?e(AE6i5GNclIW;CSM0ky!L7Yo7^O8>gI(zwFe)fF zPNe&3alUr|O<|D$N4OuK^1tB))1CJ9G)fX6V_<@Ro2l#NdPSosd|^ zqpn2(k*?<=4IjVnb8=a=hB1Zd*%8KiZnwdO2L1+#Js^Xd&BjpRidB-CW7_0)_}$dd zuQycGWO@Q^s@QnS(yQy}wjQ+jzE}Bbp=+jqSVwH!0Fcw{C9j92CAJX@J{ySJj_H%^S=$w3^l*QNj z?@w<}(!EqLA2_l?akw<}(8HuZm)Tyf`;DlKIo)na?-b|R#Am=~-L=*idh{~4>%4z; zum)8~^wDntI#bhY^+ttB4Mpo1tW?VCF-~dH@z# zB9w#>8s6H0s6jr47mL=6+?*%GPu@4(bb$Y<0cRc5CVxK4YlAYC`SBC zg#Ou*7Reimx|2z$y;ovEjHEGRf8d`>j+51CbwUSLWr z+0#DM)#iDKnwkqLHFQ&rHYOiLmFCJS-{f}8i-v$yV57pzxWd9mMSaK?vAejAQZ-$l zh_!8)KYQxi{e1sK33;wof4O=U^#c^{J)&8^VXvd#@Nh zmQcF8{w$GFan>EaW&T&nyIU_h>kE;nryp~kd%X&L$^4A06WzyvD(>#5>&&~bA-anR z5z>slI&+eVN9Rt=R)3I)(n(y`)z$R3d~YR?_eZhuYtulIRB_eM=4ntZfC^|L-%|YV zg$@3Te%n0_f_*=C;m#dS5-XikG3u=Op0+1Q))S*klNXLh7Q;h1|Jr8D=EC|_cgk|) z10&Gatf)T^F*68Aw2kWeTzuj~vR2wpy>&yI)Rk*zo?%=xM0G3mbF4J(2$sQo^*#K| z8QE;OWVc*MvA!?OJoIhC{pEGu#DFO`dR=YF#)oQNzOmJnzU9h|XHG7XJIv|oRWz%s zoUSf=L%nr4qOx(wamn^Y)>yu$`2jq8rE{&Rrw5-21-V4_futH+Is~n2m*M`I?Q-@pPk&cxpIQ_ zK#5X#sIOLn1atbBDLkk4bbpVrhM2I*c~;?K$jr(@4HP-iyKQ>CB|%GBxeT{CItiFg zp4^UBR!pE3z(7VIdWqZs98WYj|M~NMZn*ZFe}RH=heM>;nP;&zHbN8Mk4}`lc6cq_ zS9F;O$3<34;jBQN1ZRY(>vIe=cUBiIQQLaJPvYZUx`#`v!jM><sT=F5@yU*${WG`Bi~jt*_WGatnrAIDJg{=h;%&_V~@{1z9{g zF!Gv5d%3n~n2NF1?a94YXX(2bX4jNR{w9Y!pkKW&#=u}u{YOH^_F(eq?{(=VV4&`Q zB<|k-{F>JD|L<9M`plUvrKQz@9Rt_C?`_Dmo6@<`ktWIhyuoJR{2D*mO$66qBS-yF zFFF`^k&!X4%^Uc*CEEmSgp|8JVwDRjYi@o{Naqw>&qDu0_=|Cesi?#qm_o!Baf|R< zb&!PYGLomJ35*i>aO|;M_XFIm4fN)ZJ^ack=_B+MayCC5s^1fSdMD&azc>y`7rOR5 zldOCE_%WgD46Y(OEU>gCv02_>Nh0M+iw!O7H;+qNVGO%Jc)n39c_rk2)RFG$w3s~E z)(c7X7WPntRQ_52d@jPbpazFLu`~g$Z(9TldLC8leby6?$Ct}S(*mUg{RJs5z& zBBrb8G`^1BxzlKH09Ma!VDlwp^@CNX0nC^<{rg~bj*I{@VT zp&rMFa>v$|FdINJJ=5hnh1%K-?kKG^7JM^*YbTi~Wl#T5tTzi1DIgnTiBw`8DA!%x z9dg}Y=EN1_n?6^jlCSfR`d`w$h(}DB(W8GT-7%TtN0Qp6CXO##_f=C8j59uwk&z1O z@1c|;I*@@ekl?wLX=kDIvp;{&Vt{&^6~mKZFTsyXE7#Z>T8w#1Ql^i4g(Ms#F$j5} z5U25LbV7}J+tgsq2FebN_M8+{{H7QXAA8#SPqv7ckmQm7Z?!A<7iTFUQBXLll*G)Y zd*i{kyuZLMXLr;B3j^pttrcPGYYeT2Ko#o zww&KZnlt>q0(1L*E8fpv>)-Elc2}%qwBjy70dEX)Gb6mYf$b_vItq2g6c^Hr!8K%1 zIU)>(s4K_(%rhny!dI+kFxt4o*@%nvK+hRX`2eaAdtH(P==NHW*v?wmIhlISg59-kqkLTgvO)|!!lWEy?Fjx6v zMZX1=$yXa2OY3sVqC-nQd-h&YbQ3RlM=g&oQcnpyp6QmZPh77IJ*Bh>f4BVlZPOWG zS0CX$I`4i^TbTTFX`@eHb>%Iw-Nsnhi6CrZ4~E?VH_s28^{i}cTT81tNL3KYOl5R! zS;VJ(H7SJB*=K`W0aIu>upF<3HIse1=Ps~m)4nw8_~R?#G{51Sy+%d9lE&Ou&F>JX z3Csf2GS0ujXNLb@Ovn4Ls-=VkP}>^9h08lz1BXlVN#0V;YS62!?kSXJ?}aWC**sU; z?*ctUqF6QR{mOx@61eE@`WFIOnXCcYZA{!eah#&ze`dFo8*mXC7yN|_Q6`%k>u9!z zJkwt*?UM1$$9Q{_-%8;HmQi}Bd?LxHdo<_Rno(qbnznF*X9eq;x&wx^=EySt>$i3! zUgw`IpIHBOEmaNIqYvVQc|LYEHmZ`aN46=4&G@1RDwt;QQS2u=67Ke)k4sT9bM)bT z8lLt}TiOh)R#?N^%0oPfota-hI=JqXRAa@t=U0&B{WRi~le04yYP5GO?Y#+f01*Opy+5r-1!jdO zmR2ePrbpHfkf-hFS#syUJK2HQ?icDE$BLIZur{`B@L6?^i1$xd+*D77Jb8Af`bgnE!*dl;xdQa1AwT+e=c*Iof;B|)m_6$bbD z@2-6gOv1viA*05$i20`c_unRRlm8u4?`=vR&0F|KG+M}qfvOIY-&qx=tA1_cle0*X0aJgN-&XSPrH<{ve_rzmXwZJJY9s5xb9_NU zUX8W3Oi|z1_&d-z&5w6_*_Nux%eQ&qhbUOk@nj&=5NE>CeEU)y-MC|R3S*1 z^WxQ-gL3lne+NPpPqVQx9Y5{`AnD+dBYrXo4S}=_42qBjBI?tO|27x(*H@~~hW>P@ zV3x@(n*tX?Ix^q9B-EEq6XL62ol*8NgbhlAciQ=s2hL1JYnAurt4HWIJZ6e+x5GKP zC%W?Ht;y22M)khT%GioA2HnR|&o`W3oAYJ<)!oC`@(h0Eu>Jg0Qkg0FIcHq>Sgy>) zk*r$#A+51plYci9j@f8%^KzxF{ET1E%pm1Gldxr##yvM{*Ft??fZ1_MeJiUPC@azF zQTgfWp%r;?-AZ1|&UkLIIgS&M=DdA7;7uXcgIWPd)p}RIQvY<*wJmAq8~Yr*ogX^Z z!K>5fsNzK>YU}9wrP5Ci3~rk|oJ2jV$FlHQGxi*2%BC;xORVVgifx$u*(0wttLjhH z?>soh()!UMX;oO9>t^#2?0ER}PQi-ynYTni#BF&$LTbk+CPuqU#L=e>4SmnVMA}d0 zL;ofE_V2IzFVjbg1N2HD-DjYAjaBdefqJeSWXLJ#+Q1$mv9`#I1y7d*|Jc`xG~pV{ zM}4Bs6k>Mk`(@(+Lp~}iy9Ah065Y)Zw<9ZE32}d@=YiGbhWFejmxVu1#?=FyjIhac zD+ZpQNxD>#Cad2!wB=Jt!FEV3UwSQwY_3cYaW;V#nEP{wntF^)S+qiHD;+H@|kDQ}65@YF~;blL2cC=w|DGS1AqJBQa7hAi{o##h1Jdf7QU3uXU z$j_PE^tcTV9q0SGw|3+Y3-9AkDCq|K$QJba>x5R{U^6%}BQG$u792;-e(?dauy9}# zGl`iQD?tl`eIj01fIIzzgOW(`Z$&|ld2V5zmE)7tJ zcc{08j6L|T7N8|Cj%PLedE(!3&?7Au@N-Y-_kH~DZKorshe>1E2)KhzsVOp z*0uILYfJ@Jm#w+sb%x<10eA$J5$lLibwNrPUYk!v1>3oWDYE;lpGGf|c%?MZ*-~ES zv>K3kZ#BgyP{LO{m;35NV&2cA<2#RjR_(5OIy-BN;0Y4!OQ|k)DHlWEwCDT~xDari zQIg}uuXn4iJhte1vbr^SfmZM5r_jqmPhZ==$X+wSPMjURZKj<+N~CaF)QqAw)M@GX zz4l65%dyi~mPJ`M&?#^*at6Pj{cgalye?#CZ^j=1oDQK=xsxL;M<6o(*jKLe zjxlC0X4*!c;n)Kbs%P1i^?yjH*T2h`k!e?!(h+d+9d!sNJgTm{AuEB~L$7`(ARfD#WUFT+z_7T##RK{LtXh+9JK+pEE&2o;JPSx2IX2$KbY<9LbU* zM-L`^f&7nxT%@$YN5bnphsA2aaqaec_u#eA@R=Wqy(@Vikibchz9XY%%>^i0 zhLGXDOu{Ah=LWY&{c)*kHE!qF?D-M7^%wqNo6WpGE$MM*v#4`(%PV{`*$3~;&+C`I z;}(jIsxGC<_@LfkHgA3*;Gv;~4@cqGkGZVN9v(-S_R7zDC8*G9Ev{0v8;f3*mF-92 z!!3*u9R-dQ`<22DJOOYBMEJTuUScfs6QE!b>*-9AuY!1gfAvyMe&skZ>{G{`*Ep`E zc?53VlL7*ViD+YyuH~0XKVnBPfRr16KD$#X5cMz`$Ae@+&`%d0_DheyDtCM`EAPgD z+BQadbFl5r=UA&;JO1ptk7;aA&gxZAMBkpbD)eQf~Z0C=BNuRDJaba5BKhsW`Zgu2ynrNsKjR&RsLADhSTe6@o2L`8G zBE?ejM!TEk3z`dd;-|ZlM{)tcuC8FlCNmVpaxXdW!L?J^rS+}Vfpva;;Iy@yeQnWBa8Y|4CEyWswiRGx(hv7@YG`r=y>rbGf%&_W=ie zYL;es;Fo5)?{|)ic9mK*%5c1!^sBBT19Dg1-Ep<*&8xR+GUdvm{%0dYG^l2fw1B^= z9481+NC7FSg}s5E@#^!iya^n#Tcuf8v@`u3lo(kV0w8Yw?OvVYUi%q2LaSN4-{{Th{sSa~+s)pp?kP9u z++;u1DNJ?&NLg;pFYyNBx-7eOxi|W1UIPu?NK@P zva?p>hksz^3z0GM3eWRCREL*KOR1pnc!2Ab;ir@{v>N;ral@+xB%FMFi61|{1S~A{ z`-5jZrw-E!aFoM!9q+NQ86qW;xufl8XiU*d;T(ws)oV{9NxaZzNfe8rK%p@rHA=hV zMY8*KC7mdW80y)ZyX3yEdS`ac z>}{T&o|Xk#X+v0*02&=cOS-M?d63p`8_hey`HWD@00{t*4eq&={ePm}4aEc7x>_Jl zdWacI{m!O!Y+~Y&xajtKo=oRV+>z|VM6>rC*%}+s#0&ui?sX+Ct;ev4Gq3Ju3^@!~ zWX7rAkWOoU@XzxD_;Cs?dt8+orv{)O2;@7rf0r%g)HU6=uPdG5PDKY!B>?r!bY~um z#Z`+*g|xAAWr>#7{j#>LTzeYm8*;|B?fDg#U+m6v^0%V>ilmN~Z1ppS5fPWOX*+9( z&7)kqs|qA8(KP`tb!l^+Rk|gH!k7c0lCeHh{20MiiMaW&& zj;H1)kOoYcZ`O+!J!-1zK3+g3B@4Mavq8`JoPZ1YT2Y2-P@>MMx~g2JVU4>dgl>vX z7Kz2PZytF#S}(m2K)i@NP7L(cZfmRGn#>=cr+)*$TdHQ_s5apxt%>9RreDeW-O1m5 z@6WE6znyz#Dk{r$JLSyFt#giY(z*umkBHClbG%!Wdh_`<~1zi#~s&m{tOSqU8wVt!)% zualspneY%J92+8sktO$9`HIHG-dzu|m-Q?$IvVFqO5fTsz~W;nIk{3Lo3Ch;#WHtY zQ{`(Ku9iEC&hn%m#osZFKVZ4x0>FdF;0G`Uyp(TwKW2!Wktbd(hWuL3PY(gX!Gf8Z=a|zF3cXqn@gCnridu3|Lwss+>Kf-fBc+-=f8DPZo-Gbz6iZ zz-7dVq$*L-NU+tmW6ftHi}B25sRkj3Z5pv-M7UCxVdcp0_rv0%-J5E<9+{})auD0Q z<`{>+{miq?XP!yBM$n&mtt7U_`yY;f4Bm%gV{jm?s>SyPj2&>`$=Va zS6vx_e7_T*+o-U_lb>Dv)n-CZ6PT9FQ9Jy5Jyhh=3e%fPvCC=deQh>WTrc=RIt^li zM%#oh`e*dbQ*PwQuU_k=?&C1s#vs9X?Xv#LWf#Tu+(0`T9?AYbYqO5jTrM&-H8oI; zw(Bbn^JG6EbB+@bzPNhj+QAGiAqeVTwtt9OD0LQ@zHu>UQ%IR1Vmr_FPR81^{gWYr zK(b7^t()HRN|sB+YE+Pqq-!n(ak&PG5zn=f@w>%>Y!Ug0d&Pcg-i+a(vwpNL#EXh3 z+Njf!2L_@SGZ6Z~rZ&FqH#0X!@cV9un1z^gnPzRktBQN5>^kmzvEnRrO{)FXf(+7oJVE z1*K!)^#lGLh`;V94)#}aKB{NFwzc8me&)#v9rMeVFOeWM9UX<#06*mWO)!u^qAJb2 zP@>B*UCVWM{5mMU>iN-Me*XUPBhGS>V!UbzZ5=lNZ{7OZU0PKZvJo9sQ8BT!#e9$R zcKynd@m`=u7YWbMZTe_4A4a+BE#i~Ln+_2`$=j-N0MGG1Rdsn=iT$4s*uoKs6)(L>Ak zQElVuIB5Q4yFET{kacJNouk|{nTs{Q+DTsW4sf_%TuamG_?_YWusc2fgSveN1tzh> zngYs7VV_4;l1w{45l5Oax;TL(N!pGmX}9gWQd<{sfBtksEYH^oqEH8NhbIu$)W=G` z(yRE-;UIi&D~KGN+rx6dH!IxRoOo7#tJqN76k2LptQA3_gjbd@hlga4p|**;{x z(NC?*DY=kAGnbp~;}sz0r1;z0V)Z~2sOcB4M;sBN! z&TRYG*wdF!y?5#9*h^(n5kl$l80aJz`lIO4jwQSA@k*{_^i+-wZ47HM&0PaA z0DZnEl~rZ7!%nt>%R=eeHLrX3K6f7*n>{nXz`GQeJya|CrR^h`u&^+s=ZfmaEXtxx z6HAN|jjGRsj~tRV);`WBU(n#$d<6K2Z*k6ZqCaG`A%S>lo*)(6>{tYttg2fJhv=!6 zr{Xd*_X8*?VT;r2$q2v}IlUN32*UKp{>>G5@(WTF0wkcIIE9iu^db?u6o?5{du8uT z2|k2iqC;3nk?EbE1X+YTd1^(ZeMQKhBlU)TwPAxvPwCx5kf_NCkB+$L=2Ew(Vuo&! z@9x$MP@?=fTc-AW$^XO?wsJ~ zdN9=S1+*l9Gv(0cy$ob3VOkqtoK-0c zsnT8FpPHw`{Jd_x^DIylC?mC2-F%V*Xg{xtG2<*2^mDWiEWmTN)i^TQF{3ZtI3IdC6v}N3Psp_nBvu%Lg?$O>0|{RZdMrbr!k408nd-T7Y93 zZ{e#(;YvT0KT_;O$Mdn~be$(rZv?%E^{%jo*w}Q^Rjiuh-d(*$3 znAMvcRlL7+;I5mP8AVM!W=OBs8V@e`)O*UenhV2*E`O3C>%p@nzo@9_h?tvz(O*{W4gE~@!jzNZC%0?{ zY}FGOYlMM|wC>|C(_<~;49RE97e%D{v)R5oNi2rmY&54v#XDg{M@0=5kCaYt(E`V< z`*WtY_F0WzNKiJdOg-&ZvtVf*O6_^j-Q6AW$X|)LO)joCr{}l;t1ts*xD@2BaItMG ziIC%@|D#8b?)pQAv-O&ajt_KO1Za$0n(FcJt--I|rk=SzdmV3f$nT`ne0WN~g2MzS z|Y0osH3!HmfF0_4_>*!cWSAVeW+L;tT94mE((M&Y5qawzUHTh6y`BJn6;8f@j zv_9Zqb`~6J-WM8}#J*i6yO?0Q%-fEs{QKTtSf*NRMslq>!?D~2gW5(s1JP)M^Wg*% zgCT@8?OXwRw3Wnok$%~luIiQ11R#T6!JFj8(c61E?w)2*56Cj_@B=~2?XzAT~C=8$o!Df7k+~fN~bT`Xdqej>e3!$)|>@KN=RIk2e(>o?z9n*0=x7CAy8~k`x zIP>f)@+bCVcBFl-V3`~1*!Y!qZPC(#P!kwk&C9!ULqg&~ARKyx(ui+n2d z!@cEnXHpoSa~*f~g@j;3I79J@9xWWo*oy27(w@m)&9`9-x0X_y9?(ZVQdas|?sqWv zRYA%j!OSKjXRz{50YiScTT)pRH#Y(hAAi46@S@j8+IE{+x@~yENzg}DURxW4+k4|i z^Qr%8JdRI$-uq9Ol2bskLsBQEo3%AJfaymB?i>f0zECXW2tE(s5%?Qw5Pdn_uYYfH zC~NU9x(o`YX$x%$4hx%ithK{LfZ%qpxG#P^5zTa1s;KG+Y3Pu!4ZZBJf(*T_XvSFj z&SlZACbM0NMgfVTyKt0}Rw;axgeZzo!WR}2PRQVIx5#Mu{4qRdK_7I9yyp1q_y!z4f@g?%_l|7uBlYXNik7L#C`0V0cHO&2lwHn_)H4CK zahQ#7C)bn)#bmIBFZh7tKCjA_JmugOuf;DkEq)enli5$O-1Ih<-y^tvR0*<&ca|Ed zVez7M(@peuBdB!xYlsZ*?w?m8@c9n$GIl+$>;_uQCe{ix1yHH z&Q6`z`davP%J9SD!V*rmv|wxVeyJBWw0{C>Gc70OZ*-q??)h-PFl<+s)`qWtD_gm4 zd)eG!&y}UATC`~qLOA&2F+MX%$FD$cu^-^(HP!)Q_-@>367u3u@Dh6jOJwEE-nz&5 zP8dCITynm66cR|Du?>1~Vyxf&6SA3UpIu51aIgCQ9s1IPa3ZJ+^P}~?c)4#cpmv|a zwTFfp#=hB!5H^TFcJh?UMYX-Vqxj@kO&h|tfbjhDHhmK4^dY*emExqpW;Pcj<@$a# zfI*MYE&-Ujko-0l*d+!!zfB*~`M=A-3b(G{&Z=eDPI8>`iBgH`0ObY9dZGV@xH3mU zzq};`eh3@1qtRFDp1c`Kp;M7w`6+8?IQ}&E^XXrDp({P?fq{YS2+pJstJ~F%*Gzp~ zEaB>K*2wGYN)dlwwx+)RCi79URElB6&CM6G;}d`Sj!x7LfpKxD>4e0FXx##hzFG8y z=6~6u_bo(iHXup~1B2L_C0f4QF|b&$r=8SvuLJBh+2Y`Psb*~> znCN~en7LT*9aZh&COYGs9I3MWWnu-OZG0*Shc?>bKXkxmi`r@F2%~?n-bPMly zaenrBOe zMn}2s#GJ#KU-|v}W280#Joc4c?)GQmGA5C z-?*o=e#3&-u93T}I!}=LtL827-F>q`mrZ{=?&v&a1^u)N2DjG*rzGRr9{6z+AFb}oKtHvE#KF2qZw(i1<(D}&CtKHObxzzcSQnI(<|7_?bkEJ#c=(^y zIsL;k@h1v(e+T7VKJ-RaRYmRjBR@4m&;a)IMd9y0UYLyD*pr~FfCoKy=75@!GsI~T zCQFKF1S6u#Hypcn<`T*#P&Vbt?m{I+d$Ov%3LY6Z3{2gz6vv8>?FCae==76toey(u z5Wzq|3!z-0C%peQOo!aWOZ@ZQWhZ9NuDX8*|COKTu--6u7b4W(26 z#77%<6xU$!y@PU|F1I;(0|P5t4EhfrO$>{y8UB)hmV|2%x(FfRs2#&?xyGiMvF~4KzHb^fj%qn@{bLkF|OT)vZoNt zB)zNca@YG+xGwIXU?g(aJ$$})kg53F<80@&&!nQy-QN z6i!_x_yQPEXd?{aA4g*OFdXUeiHTco-Zb~V@xhVxo5FEXEvAoT;dZ21O<;XmE!JnxU*`TK-|CNlJ6L)_iPb{d zPe2|#2gEUkqa8F5ro)1IEt!hApxB$3_-8l>t3X!~zvQc|@@==7S?6~d_>n!!-U0b= z+;h?L@=ty>ZkRs=6|L-y=B}yk5scFiJ+V4!Nw4!;!b9dkUNq$M4<8=ol4GW1LPb=t z#&K>=qdvul7+94V73}PmB*J*rux+{*|459-Y-W z_502VJMH^VOEpx6WD$1sFYbQv%P$Pc?4KJwe^=Df4Z+YYF$Z1*Rlon-ki0Lh_=yzI z)#MD()90j#;2MyL_lJJI4h;({hmfF^Zzj&JBVnvprD|;+EDYMk^3k9W^nAM#CnMA zWg~Q;;gFwycu;p+u=6dE}uuG6+hSsoYn7M+rJrGmdE1WJCl1> ztCGuP+|}aeZv;x z8yF~sFwblwSpwLH8k3Wk*9d71Zky{%V4H$#;#wMo17%JO&p&+*1*oAxXIOTj$?^N? z{d|2GWz8GIZhd9SIE}0m`rag(H_FXKwJD;*Wf432@V>I=h11!KB~Py1n(%ytdMH~E z2yYH2{Iizty4d6X6KcnMn>5?*Eiojeq&%iMs}&p`POz`0!cO;U*d_phK=C#!aEBJ~ z-5}8esATf_{`PlzB~i^{bD8EHN0OrsfcrC@l~g+u=rJm1WW%Csokqwx#v%%0rv8Qb_YhctXYA;>hOD!*AWBzJ zr_qUsfvvhqj3zRywFvD{X11q+!`l7Td=DY(7L^gtD5)R9$~TQmp^Dng**86J~AJT@gTr2XS%%$PaN`6@7cAVSgtPG zbpdFY)ws*fpe_cegdDxczW+ndyYx1;y}0+j*2ZFL6;2aFq=yrO^2?XfKm;J*ycZ(N zL`!!?Nv8%vp0{DPC}4p5^ir~F-|Am#0$!LJ5uwxCce7{QPGtAS!+6&#r@uQrK)e=t z)XU#|r)DNEPUt?~*v}dg8hROHeoKblDIuY7Ow&-h5Wai(e6UIMVWI9k2&G^pEkl3v zgihKRAKWwzv1>Uk?i*`=foi9B+3jNx(;lnIaOYHcooadeb~S)cSWcVhRq$EiN)^CO z5LpE8C1E;6C-}PTnfOh;-G%2=R#X2lEF~gloIppFe$X3?cBFsqpNiI&2Ka7SUqt?; z(3bR(L-*&VD8CY2y@I`x9XmK*2m!$k}rDl_il8CZs=^8!bX^DrFTp}pC0MOE>bign9;eS zqOM+nZe>C}^V79hFXQ9ho4q4fe|T{F?QZpgT9o*g;7QuTw{J^sI9~S9=x9ZlzYzof z@DdV0)cy7z@@>u;%eBe3>*OYt|Kbhl=o3Z`dqyOEm$UaPCE*cSofQl_xnKbds1^Z z&OsmIHG(<=_wcruv$4a=vBA_{ms3fx>0m+XU1#!aV-Sk~V1XU=5kB!& zzA--;)>HUl+uRd>k77MrJGaK_gX3IG zw!q#jRSM`O@Oq*7-7DQolL6ufj6laRfvqOd%rKi$%zmdtEowDjx)7NJszZm~L+=W3 zG3l&WlIF{l-g`)uf<**U83O$h92X!bC&x&BCCU2Ir7also4YiC!bRMelw8%<>u;<$ zl%*PtM~K*3Ko#WN{{0kEy)7}y$%lpSvLlX=U}*|ZO(ljrVadLj{FY^-f_ySsyA%sY zAUqAQ@-&Lw3N8#YyN%iMO0-$|_Kj-T2#yG>Mkuf&>5B1B*%>_ZTNz=H*ct;s`~)Mb{xI zo+1niN)U1tRnpoYE!qKvtMC4hRd)Yr6}^xnj>o*Fr>BLsOr;VAd5oT4s+%JTA@uyl zTLqT86S-r{L&^>GDV4(2hHsdtj?r~0Q*G;SL`|x`~GrsH5^Yzj7UNL{#eDn5b@jX4wQCA^lHJGe> z%wfoX2aZvMc$edg)66pXx;YyD|Fjwh{`I}_G9gRVYc1>!Aq7oS*9Z6tGXPYe#9|a* z$D~!Mk9rO9_4$K%3Cdd=UXi}9x!LqF^sY!kZ1}Xw6DRw@E3;7#nVPuEq5PjM8-A;{ zC+x8~_8|d$JF&Gq?`R!|2Kt89kbOnig)PRqb^fk; za{r}Cf=|rbhLmJgHKjCit+s~d#)kG-NedRA!-l*3j)w*ZUt|oq$nt79B9wb=qcz)) ztjK+`sP=f2;m{!{3t!Gvn6=XeuC z-Du9pw}txHSd{O*Z7N$BDN+raFq)r#*wGtNPK(L;f}QkQEG9){SAj9RD=u4mr7 zH*(1>q^HR4NWqGFBw5$dYzEz($Il6d#ifSFv7alisMrBjBP6G!Cs>RyY}1L@zg1wC zFuF>9;?eVB5q9_0#X(p}`m~~i93G>VQGalx=It}m!-vD0K8Y>qPeJxnx}c|P2wNE0 zk@MR$G(PLB@(6DG@OjF2-Sw}VY*+ss0Esg?zoPiubv-}lPRL$d5!J0pX)@)>r3=NB z)7sh!ko$FCghXHZZKlb#K&_T*%L8I&OUMwlp76Vuwf)!?_A9AP`)%B)NwfmO`^Fz# zqAG9Tt{QN;RiVwuJ$dFC%6fzyV?U*Y6^7jb1@;+7%UBV`Iizz`FLm!#Fn{QGhe69# z!FrkGm49=Q9+UV2c^-$TbGTC|)0IG?ewALti70k@5X}`yPCLv&Wg^Zz+i1dLIUHb7 z!apjsVHfUj`1@D+%YWendBv%}1$M9Pulz60Q8ZIJT4dVVC)HLT)7~^XibQ~oP34{< z$0>SzRD*xi-gp^kmj>>bd-=@hFLTMY+ZibXtPd3@4JR7?dSz>4liunK)Fk&y`;<6F zz1MT5^qgR@cOO*2|9l=A{pr2gFBXWa{wlh+pi1%IUu%wxy9==fQF?Nl8|;WZcl!bd zf6P?%#7CD}YMpmYY6%j{=`0&wYb|O+42na>tv2W&=AJ^1qe&tw-M+ogPQ2b#9mtOu0r0Qc{U=CEfc8zHNz|*)Z zzj)#1P1DD6EJ?Aa4?gsx{@LLZ!Ct_8>OYBP#){(JoPU1yKU&xfNXREhI~R7i3!22jI=_5M399@30KM zd&pM+@YlDr3`aV4=_ArqyLCh!@2Zb+p8c_
oLzm!%*+|MbHh~D&hw+siCczogX zZbTP5`D&cJZRaPNg6QZOn3Qn=;@g$#mVSXf5u%3 zjVEI)yMKSAaDIVYzAV_Jv$L}^t($1sDg*b`{LWsLAoH)@O-3e>^o#fKy=li=SgVO5 zk6f*Qds%`)YSiEKA7z@=?+XfHGcU4NR->Yv{>7|HEy-inFKK1F3$Hqfz4KtGP@mPl zyBwlszug&G9o^vbm3flhkNwFK)lK=VT zw-UTf7r*r@IYR7(xR+yo^)9R^=FCOiNbM}GqRTkao}A9k!a6{L&@U<~s-AJKPk|rV z7(?rwtFOdMMGbsgw{!B>eHc}IB7J@6CSGW}?)j6mjY&B(F2|VWSYH1AL{i&X&fB<4 z;e64`=IXW7GrN`_Q3yrSw0PJ}yII~yBkQbg{Xx7iFMr$scLF(1j@H>uU7Z`U9oz5x z5!ez`&tSV*CRJlSU6GJPK|ZnLzMRzJmkY{_fqqKc+ds6>>=nK{UX@X@@i-~TB(3%} z&w)G}adPo90&!`P(Sx1etDLFi6bv|r`R6OEi+K|i8Fr7QabEr(qOJp)>;3&Jk&F=8 zTiJVLldMD}*(-aKY+1>ksq9U5NRhqw$Vj&A%oBE+)z3p1W z)^;O|qk`teVA8v6Lm-H};XAF+KFyWO?YWpJyAX~(MqG|twXPgiYIniX>N#8@&|?P| z|006`;`^|1Zf;!Xb{j0!)@l*U_3ZgxXAkmx4C`DaNG9EbK@SMnLUlQo;jBUkT7dZk z+x^})E(Dcpo9(tpCKm@h^Iltws;HLWsHkP2A{t%EQP7d)esLj5F@b|}ExMwI)tad@ zm_dN~8j5Ptl3PO+@%0MHd4+HyJ%hF`uWNDNA{c%f()9K9*-U4-WpIV;SZF(iOCcVOtIJxqMh~i56P%!Sb*TkP+{t3>h z4u#Jdo?>{40_Oyd8@XeRIv7mRt{zgGv>9aO<;4RKrv-BxhJhNf%^TzNkjiK2eS>#F+a+IYglo{1l+r0lO0mzuI4OG`_mJpa+y6Gyh_fli_${N&yHhd{d}5!p4!uC7i5U>gF@UIWHh z=W)>7-MwZ&_Ej7S@c;|o&c*%26EVs_wmC~9E_fQW^T#Yt>Af6Q=iWfB3d{xWOixLv zS#n?!u)a+4q%Ef9E>^6f}Uspd_Ut2)ulle*T!*4W_#EG9)%5XOR zm@-Kgj>w!zHdr@V7OuuM?-XII+}^nFB>ef?x6Jf(l+zKfHL>N?_w`M^-|ia9#qJ57 zt$Yn1S++)bZepg8RR6Wq<De6uDMrRI+9+E3By+ z-U3{FcP)(WTCRR8x4i+3@4~x;UptyZn)`V4X)ztMfL2euJsL1&^WUA`QaE??}BfP?cjr|>}bErrx_zNVe?q%pPj501X$-I-oy(%n>t*?0c z8jGufm|`c&?y~P3iyRSO0BdU*&~h0AgOdYom|*<>YrcVaRp7}#_mZWhU!~RP#Mh>I zBN_~`cB02^>>a}~cOe&DPYn~}>P(NI3q@Z`dWv-NF$wQv?8jeXA-WtLlan>-5-_#_ zFE3CgEpD#%uktQ*Xm8|4`-yy6uk0ribq#VswOG0r59I*~877BZk#>M?N$T1@52@W7 zB9-ksp+TcQO_}+u$c>>Sni82)d`?=u=)~SMXuSAn^VCPVbw>>eyaC^)kc0$yQgD|K zI!~E9k?lxsv7jyi>5-P^W$DO}5UPnj2`k?7k;D9R0!ViUD@jSM^j4zs%9Z-!R5!e9pLopTw z5gz~zo5B&kze2mn0l{TdzK7F$Yr!@Aod?)2s1K zO&t2D5;kC^NfW?r1+^mBnF!Oz>cQ_1jyrF1yJ+wHxn(ub87fDLNc5GKV>5DN6@ct>qN zxi%wKp-x*%c9s*AAMxPpY3xqnf#(ZtVu+INWUQDKB&GbQ?Gc>7iSKA>G-&ONgn1H- zMWw8)KE7Q)eL!>+CVEpOTwARvnA`ZGX9pWwqK-7>6)1R=`fg{I z4!of6f(8~KEpFjOgE>$D!Nv4^b%1I#&V?U|%l0o{gM|o9cpa z_!OWY3(vPzu+ed%XEu=_&zz>eJjNWTcB;0^A2pq4Lsi`xAdb59vI4IwIVgqAPk^c<2#JBn)UcS~&X}02Ip}(?s z=R~*2&y4fE%N8Gvpi3KV8CjWCOy!1tq58{><$R_dEJ*HBuiLDFWH7`lc>d})0&gcY zE7Phm_1)gTC-W2shRZ*&P~_w!X?lWp>=${;O**hLE#Qa+OEM_d2-{<^-It~H1o9OF zJMv=6R(an;(}KXIzS>3Yz;E*k;HJt_=NC*n{d@!#j&yN7A;H1GKf3O;Ih7D4aS;zh z{P*wP`PDc3ms0=A><_2rF1M5f(+Z@b^`Zz22|yL|x@WX76#&|P$QH1UNQ+|>6uGn^ zugiCK1jmjDPZzD1kVZBJ&Wyk$V7zn3A9myRLX^Z0fD57c0^u8>0iLE3D^H?yWyAIrDFU4|4Txg-? zxMg?t$bZYqQ^HQpV_&G(M(3&4J1H$mG6Dug1lyaczPl(;vBqDd?@$pq(jSVOBX{G- z4yYN3Tc7W`NUrKdZ^$K`JM)}Bg(tBu_^)V}qWJ`XrSQw8UQ)KiYM!|;3t5f^>9kb| zE{i6^92>=^>>ylAOG`-1%zw=k)*$;`DIlkK`k-F)UDv@23ki&p1QGu&-h^cN^?5Fy z3P#WxqN1XL-lVNFDevogYn(AB7|*=>bc}L8I7NlE$6-zIOKjySUF2qq#i$QQI>ZQ& z*Y32FU;cKE0V3W%uj3M$|N4Gm=Ue_2$^JBa1>NYUzq4i23-G?lxPrm$kJ^r@y;BIg z`W>JgEc*8b3T!6Y&54_5BL^lk52Oy+`R=?JRYU2$HY}yj+^oo#1)bO-K76T~^c@qrBki{i$wGuVtq`dy4z}RV6C1 zzem@|sXxD&|KkR1p}*iJHx4vw?V?!qx*S6jI|K7SWK-yz=(9iW8lHLp0Qmd&Z_Rs- zax}8a{L~9gp#VZKSmUr9C(28q_I_zG0&B+o+YC-5U;OjQRpZZ`>5Mh5 z^ICd|sy6ueb>ykV3s}r=$dwe+d#tUJ^E}_&iXX4qUc7L}-j3Ifcr3wRiZKmE`DXYdJt{1qd64V zuzNG5sv$tIQ#B2sl*y@v&(VNigOmCbl@IdzkFEs<20|#IYAx~hGTKCVZ-BYHR%#T) zX}o7tMmYYJ)ku?Sxv4Rh4+V~(B@Q@8eI6T>e14a_qi_edYKUti;~Gb&TJd2(gKi1K1gKZrig ze4Lg5qSu$+Qa(J!oMBqiR;EI@9Jcc(oPIAh;j@u6xvqT}|EyoJKi@KLo%F@pPi9D6 zKB2C<_rG)gf9*QV9mmGU!QHdt7w-YqH}LTqXxT#bdw2pCw;8!5%0I^su5EayG&3Fz zu9iL1h}~Wp*-F-$NeZ23(>_S-P9dNsc=`MWT*6P{H4UwXlC4ZhQO0*hx%j@yWIx*- z)-X`f)$N7C>@g$(uY%44c4L-7gEw*?!cZ05QQqk0((xW*!u=(k0Vu#8j((a_AwFdd z&`0MF;Od+0>*A-l%)_xfQUZW=7EV%s3U6FE0nX0PwQ5}0Z{PM4v>E(aKImL#GjY=w zl$j{pHy^0}`fQ;u6@iixe~bZGiJ~rXn5-Hz=2%SIc>k{-JfuXACw_dim0+Ws2-|E9 zZD#a+t8+%jpU`+iz=dDX$61XTkdG@F+hiDE)RiK;)7?Q^w#I)O>OxK7vJS7YSK*iY zHvtBMUG|WW!+M^FjP7?N%^$Ux-yvE(H|^e#i^+Dn$7T#!u8P@Wm3TUZDbZ`pPF%7B zT-dr;a?9dJd)V1e5u@I=9t-~FYAtPThzaY4;uEJ!M~mq{Enz2_08Ad?*$c|-Bjfj-}mnaN(7e;vmA#BQF!_IT1Q8Tfq&{GObL3UPLr2E3tny- zoJAIjFuXjEv%E7k76C|3U9PQRW9|9tpipQZh(&*I6S*mcqY_g*UqKNmiT zTXqAblPi+$)4G*#()swNWTCp@#+~3kIKWXpm*1Y6G7O3v%;{%KboCB+mm9S`BkK2N zYkcmsl=b@bSK6}`OebL+eO}jD@jqhWY}fGX`jlSBTn-SN5u%NgI~1udv)zKaeT_6Zf#lW3M~$iJ488=~{(l?V%R~Km*XvX0QQ2={fv3|&vadqzyCFGf0uT0;sd7Vt^P|`-OkCC{Gyd* zA@7oCvF!4L(QhS0SA-dbuAQy-ng28Rcx@qIb9Rn?ybm`24mXiku3 zodr;TSq)B@x{Q_sbPq!yGXN5bPN6L{yP6=xf3cteMS=FRW_f{MqaJTQi`SzHJvExKSjPD8R(6r4O2FHZqf(8{+buM)wg=w|L4jn9S`2l96O^U#pQT; z+9-lzMDf75Z=85C?2FNjF>ZV(;WDe+CokE-bBzJs7ls8q=6w{fBB4y={<|)1w)M%Z zJFo+}0Xt3nDYRLp$WxTq{6@a!;)(ni_;x||XipVtAShjfMXLhCuM>AF)JegH8FVmM z=(SxxKp(2_Pd{xvK*?NpTzp6yyP&d7#Vt~EQ<$=}-+u*$Li0;Y==VK6MS=dxXE}+R zRzf}aYJzAAojtQhO_t@e`71I|8e9GLwkX{;fW>rLY?-jK+fCP33dz@iTy2=6mx#-`x4j@#D)j>{TJ zDMu5xt_pqEep^KUR5XvShhk1{f5m)!V9vdN z>|1y*bxbFoK1vmz2N0=@oC~*P)TbbZ6zeU82Zry(c|b5KtU;*C{sNj<>GhnuW%{7- zeOC?{DGkKjQQbQ!11+Fi4y6 zKE+{VWCW9cNtXvSddDA|gr3qXUmY;)e20EYqQln)C3J|u(c6P_c?|^kpWVzDl#yN(7uJi-{#Ax5QFG6B6&#FN^mVM%Q1@WQoIzV;Me>xC$(O$27b>axY41qa*dq;)?O2Uzv`u1}VzzeDOcM%GJ2d^hjXOL*?a&7kZ z0oZ2$zRnnXue5YHjTF!{0g`Wo9xp z+Gzdk+W+DttTL7OvR*#F z7u6C4M>eUs`Lel8mI(}m2!ye<{7Pk1p|gBSr;O)fA_Q;7#l;8E3i~|CI4-LD>?I{S zI(l!~rKiqifm$KrVIQ@b*5R{<;qmydx)UjpXvk7uNR->l%d0u}*jIR5Z~&o}uX0Sz z4QZMu$r*`+9UA4Iu9vJe`u?WWOxvIr&=N3TQvISk+$9=xfHAqPc9}&NaA&187#fdv z7OGy%T~*Ch`rUPoC0gZ^F+wKjOeRyI(LnR!XuW@`uQ~SU*jmESY!ox-5Oq-FC($AT z>nCces(oGTMw){VJBCljimCny1=n-d(!(+K1uwzXdMm>TX-)&m>aP3>UxjWQUUvz9Hmwv=C1Mg_>#U=g31_l8b3A?C&;% z0=F<@^I1Y$tA?`rcDv;&xOu)VG_`F7i(ldlE;r;m;=sC)Wf-OBJ{Ex4Knsw)V$hga@!r+*1qjIP>CgeoALtn?as=GILuF=OIR;o8d@#$ zr*cor?A4r_n!>=rX=~0bZn-BaO5q#(i-FH=6NSC{G0j|iNqkb$!q!$)TpTe91QUTO zJNQGeF=#0lxL=~(W3PsJ6fOUcI2c^MU1tW6&jJ}c$sHLw`5a);d1_?kmZYCIq5=An z1=StU0;@A@*>P1FB^Fktu(R|elA(mc9y7gPaD*hCa^2 z41muaN#}LI=H=yub8CBNrwQazpqfX0U{?+ci!zA4rOTM_1k?Ck%S{4DOJ1l%;jkCF zP|<-Z>=xw?v#Zh*wG%>BYjbpVL2Mq<*qa-jp}2T^4Ui}F@9Sdd;nfmO?ByV)Mq!>RR)zxlA3|gIpE*QC>W>rogxBD`zd zaNiFCw$4&_)IwW-M0ohI-MSh0$SML#M(uq}3tmFtOfo7w-C28MxclkADnbW=qk7P= z^VUwawZ9%Jfx?H|0V~YmT?!#I;w!`+iYF%tlgAh^tXL_t0uk-Qn_>^kzl1B%i#JY; zqXJ&T9e0n{eb)qxJRiUrQwm|(jlNfm#6Op2qeAvs=+}j=(1x47&13HXp@GfxDbYFI zJx*glfCr@c9Kgs5-qw5UJ)wu*ClL%K8OL)GxFrDbo|~VivpXtj0{><(kVsN1R1XOl z(?{}QM7_`A0bqyw;XA|G82rF0Leg}+E80?}?4E%QFjulACnqg0EZk4hVp)U!Sc zvZ~vB{rveOxR^PAE9y^^NCRy9D>yh9m7LvIKjXJa76Dl0&Z!}dm6{M->3PFeuv+NE zPAF_e&5?56!R0D&c^DYENfZ>QP)?hL>XjkHueMTa-Gj zK8tR0>2hTKf32AXhWso7Q6DG4e4+&=xR8R|4v*&wD*8aCOqlRF zg!(80j^=(M7!H9+=)8|2dN-JRl(U(5iCE>1P8f$*0X}h`d($3fm#=mkrM0y+eQ5Qw z%OPHy9xPY&NJ=Qii7J$P4)zDFe#UEygs3e$YvTZT$Z&EtTAuuc9~!KJy##gD$4@)G zpKcwCbJ~4;GEk%=@UQp>tkmfs$p-+|=+x9mSlH^nWC4{{mYmRo(oK41z~6Ev8}|2o z7y-t41eLwYjb3L(_F3;3D+-_G5V2Rl4bXc*x$aM)`2dXGD1$gbr9GU-5{9O--YN$u z=?`Ens61Qen@62TbxBuY6>|AQ0?b{4664*)E-=Y``Xs)`pK~)y1rjaeudGx;Q7c@O znEGDe=gT#}Cj+b9xFy?yXBdws_M66jM87hxzt0gzKuCDaH^R|;ALsF)6~9GcAyaqw z@2n_sI!HK#sS$mlxz0J*xC0R##Na5VT2$jVnl;V7u{&&B62bHlE<4(jGXX&t5?R&J zi}J`(OMc|ncbBZ*wokbk#$a3O^dhTZpV^%mA8cM?VazwXwZ&PV3@jv@nR-gddIXiM zjP`_AX-~NCJ%BYB}g#{C+7!lPBOuB$`0fSs5d6HKr4!r}d$~CF;_+ZSn2r4tkCYJB5_F9M#sPsM; zhE3FFujdLNZ=e@BCqONL(001Lz{kU6uK$CA?sl@zj6}%O(l)!kZf+%0`XNw97Fsztayq!y2EtJKj&v zN!YFquo{*~oIaoPL3`_jyiFm?_q)7@JOJ1m8H)c8{k!CQ*T@P@_l`gom<7Vc2ku|f z!owSkAf|*7VsO^N-q8alT zubIPTip_mtx2Sau347@y=(XH!*L>M}6EQK8SR{0M26i@9j@1Vo%fvqv12#^>dmpw#`*5Va^=TNla=5 z%um{|0zKxD3@iXZ^lE{YY{5r{e4ZX2!pNawe^{(tdeyvP_s)?6Np!Aw+eAKrt5Pw3 zfV_ikT8a;p%h0o{CZFR$X{T!-soUrR6WTCqHK`z4g_YH>_;{hAdS~8DkRcop!VkR8 zrr!G7x6zazRyk6DrLf}n-T_N~=@h-FWosQ|th$)5tfEFZ*mr6xD(jYyVAX$Fn&Ca|s0IS%Y~QKwbAWpt39$rDvp>wiM_wsItm+L6jK6uOn0<7zP-YGIl^EfbE0!hX1`J4=d_ZTb2U~FL}1u?7KaTRahlVEqkNsF{W(5x|w zTi;ctc32o42j}=OB(M(TQ`!&qAipGD*qH@vDnSx!WM&o!mLT!?BHm|i@7}#bdQ~W1 zL5egFtyM5SJqZ#$PgM5Ol~~`V)!_8{rqs0U=O@~KVyIDQe*lm>jNkJ6r4YHuHgkv z0~!^|G=hThaAACb4%fV;^Y~!Yz`@bc7^tU!GUFL*pn&LYyxO@iUg4Au*!X}eL1W{W zqM$6AdwKu;h}V6FtW3c$7<+~^91_5QmwZb2*{1LyAorZ& z`rg)q!r>pF-$X2wpcDc}BoIOQK}_Mu`m>TKP{+Xtp_C>an0Us8IyX3zO?Y5@7X=c02VjDt><+p_5OXeHee+veI5{C_Qzkk7HHWXtY2rvHN6=$diR+UFv?S=0AP$59N+&3> z_ybaak|9^ZJQL!VtCV{eaAw$azB$@2X1f+WR-Ck4B*Q$4f}pI(24o z@nUavDi}W@W2EZHQ|!}`)MjV#ZALgE;Q#WN^^%xqVXIrnGKMwNg#tqdaP1yX9JbjG&?S~_Fn-hfCH@*N zQlO3W%?8Lli5H#uQluVBPS*%fzV^f&wY? zFOq`ZlfFWOY9Fj6?+A1Je(5yge5=fX z2UNMgZMaR>WSg8s(L7#K$5m?6e%w#zPT}nj!`w_2)^$oLhEe0G#3wd7BkaX$dTOCF z)l_hq%x`V=2je?qRiEd^^I6_vRK~pN2zU%>?KTsjeyuKQG8rUSGD^5)iwYKD98i0* zR_G(_0+F9!p`G_r*t1^VimOI=X;-~DvNj6%5&J%l$|;AteteO|R`LLmBgt)0|FqOQ zQ@4Mrf32&p(OAsXH^0beXYuSeZ1qr?5i2GRj&^V{g~FF`Gh zL}LMUzde4q$vO1zm8k=r9XD&e}z$?x~2 zmJkJ)zceDW7&Yp3*W`-p{Wb|k2E7|a2^mHJ3v;7zi3d4Dp0^|g+Goq@7!8TAPotFB zZ((I!e((S4YRUui6-7<*fEZ&jp%h_C4WC5miC?Pwsow(LB?kfAmJs`kk=tS}TG&qm z$fC>js|vvS0dRS$-YY31O!-IV>r8Ec-57Qk$$)za_iM5lWuSPPcHvz8rR&trImX+$ zDa$+P4C?7HQ|r$K0)E>#u4Jxpcl!t7szPYbk}on@bMAdlsN^6*mHH~YXFbevHgfcF zyUPoFCcq+;Btbw@P3xL4j%{xu*8#L9IESaMh-n4bCz7$RlszE&TAxA6UQ-vE zpvMYXQt~yfWNI?eZ#P7j=AFzr`cj(eQ2F|4vCdp%_&V;KgCz`v9rsa+9-D_=m+zO%_S1Z%7h)Dj6mVKmT; zsYd)ofpI2Vgpr;wIqPw1G0YNKWG5q|!T>@!Ff*8M(3=%=ULypA8b9>j`p68Ukm0hQ~;bd&Zx2L{K_zAO!7xCI3m zTat4+P!-EhbkDpow01_3!9wlKgihgx{Js#%1g@@9UApFfT!1Igb<>P$%!)fP3mknn zUi+C31QJI;P`MMcw6)Zih1~E>-CqxsoVZI%11kQBe)B2`i4NC`Cd0@QyEi%2?>>I~ z=z*pWR{>HgAkkz~{Hkt5PyNm3+W2|OUBKEEqLCu%zC_f15HX7W5}4;81SS!sU}6VR z_IU*b%@Y%eK(^!cJbv-#&mS_%g%W5jHS0XeHBFSE2nL9ExciItAR3B#(Yt)_ZC6Lfh10DDb709HEa@oxH^g}eQ=ETwE;p9@vE09H)GhNf zt#$pwl5Ki5Jr8v#R48#Uc>!K#VNBin#N}fYK!SuC98lnnF#&Th6q3a8`STI+TC)pj z6?F>j@>{&8Bk`K|P-*yguhG~zP6Oc!;194i4FN4pCR>l3q19t&Q)b~JGGM~JATJB< zz?W;Aw~EMkMLUrW-4-~S+y<)G)R~vKGW9QM5L4vG5GYY)A+v#F>q{DFgiz4(U9Y@Y zcQ`DWm3LoSwn92 zz~h`z$$KIiPPz=P(#($5lGgB_U(6jaMsPw#`}6QCfRr!fx=8^%5X7%6FOLZ(lLOzj z{&+;G7P6$?*e|E2*FF7i`GNz=Ho;fnkRo>n{7i5T!SzcNxW0yPCyQdA$(-pj*iYSH z9wP8A8d&9vI4pD+n67dR3Jwm|wguOTtIt8c?+HY2pnFzU{_O`%MZ;%+v4GWvs4;Bo zrti-TeCVFH0UAnd(CdbDb+z;ot{ia3Iwfw9$s(c%1waRhRY3j$##1SH$WHrQo_kbW zBqb)^!ozEXpcZ7_bVKAsa^q&dzeM?$t4`IzoKj!rOYj}tS)rFi1{a^XX#3z1R~*lV z{Ul`M<1M_DX*Q6|ehSUb*=pSgFCHD0zGu~wH|m9V!Rn~SbqgY39|H>nT;$Rt~ zvi(i1Ur0fi#?<2<#|BrqIdCp7o7Ip>{y(p?(Z9eT%0|7TG?OX?2E>}z+>!Q9OA@T@bq9+HA3 zY9By@0Dw0FN(1D}VM`hUBO+j$$^j~}I;_CN7VmNNtc5slCuP zpaW!jcvMu=D{d??nBcIXo|OrabjN#XI)G*YLoU7L`}d8sZp;7Sm&eNgjo%1*zoU&7 zuPOTnB)X(1$wA+FSR@88ne}I%o=pO7E@fC-45sfu(ZIeB*9bEcUNJ~C{icV$aoMUe ze05dl-RZerM$JV%K>L23+h&!N;Zua!6r*2KDc7E4)_N9O52CY$3|hnImsxw#Gvu+s9-hLAR0_Ae`NK&z2%@tA@DmA1TMMa)>~ld zbQx8*7a3JBF?z%+R>yelDF$sBp2rq{*+5~s-)(8jP)sI_P#U#sl8xw054SS>i3+a# zAonMHc(<;i%cOfNN*+D%4n=>}^7Je3>GQL;KjnuL)+OWbanoEI*3YjZ=D*a?3Gfl0!-aea1n zwhog0J1-SF@+UyoBYB6ECqJKOJ!_$y9MN!20Du9^B4`?N{lS>z+V$&*Wn3W6 zo(#)-0J~BZbOIfnLav)PY|1J&GMGH&hIC%Bz2$YsNb~QB0nZ?I_XpALyELH`wc9e% z$>*U%1}=*gRXM;%YU=F`htrKOF|H=}68}BJ>R0a;WuL*>o^$AG-I>`ipls7evwSW)a(6TZJQe%cU3MatZq;Vs&()}(q>?munI-?gl#z4_>cnvIIKEdgsAPo@V zem+`xYG0G1EpNGL+^ET?7C%WRP!2o+(GZ`_!lS9OJjXj1Rk-Bj|344EGt zdMyy6e8{f4MtST@pH}VoydH=6-c36C!&|YDsjw6i_Ve~0nlQK>#^1buR%Ad{8@Jo+ z#AC!^WMuUyib{;^&k-FshBt$Q>yN39Yc_}3OnX9Clym9XyVH7RBBXPNX>P4wT01zO zy3H4FNoN)F?DvG%wEsOg2lZ2HYxj+!oJ6IC`d0HXqbxZS2+vG-21cKwo6YZzX06KR9 z)q8a?>pEPz#&9*j7?lgs6Hve*L#y2CHh8f=cD_q|51WSJIf13hMY85};PwzJ^TROd zJJEFipE5TKarMt3I5;ql@e&hSO~`!>UmRFC`+NGTy#XgBvg7Dt_K?c!S}%~#aooQ~ zQA?PCbtZaHvBKn>Q%Y^BovOgxh#_D3yc_7$NtM%{KGOx|DF%ep=YshxRI^8%{e#`z zm=V?8+pp{}Otn%oe55D@U-&LAn&^7U&ek-hHEpe5)~mBBU`$-rt4zDGLvr7gNEwDN zT(V0ux9I8q=do)b`SH~CPYl6v#SU=8@rj8ce&=kb0fGxyp@0M<#OFpvyA5KuUtiJ! zN{Fo!Z)hax(yjMQfHL6uOc|E3 zhW}6AOsdD_?@+P+3=|Yv%x@@czJG;oo|xcl+-su;^D=Hhi5agWJ?Ml2;6&u)#0AR^ zDWbe*hWZO8ggYm=rVmpIT2QEdoek22c0MjDwVaPA_|p2Mva_oz1WeH0134@NrgKA< zXBtivb(t3->rTmfLvLyqpP$7}w|5odD*NF&dL6Mc^=^;~UzTNPYS>;L>qs~*9|^@X z5yG5f0Ip-eWBXxm?|Xr>5D!AfMY(h923Z8;0?lOhe@ep(37>gYz=FABFqt&}Nl>@e zi?n*BHX1KqUG2r*^60}GB3%Go3%c*#f!`+IkhS_%hXd&7ucSndpf3NgYP4aaNCfqo z(tKJ2K1}jqvJ4!;2q5B9qQLDJ`lvg;T(#@h8!R_BTal*$LOJRYcnT((f_yDSb<{>7 z;iqy$S;Z{5N4>uUEB^F%ae9Ka-7&{@Zb*fF%B!l{;i%+~G~yS>#`o-|#%6g{si8pz zf3!As@1Tz!U^S)#u3K8|AHpCxpXJ=;)z*KDS%WIEClr3JQ zj^C&dYN)5ibQCG*#`^4H7cuii1Ri+!$!Zyy-5K8-Mt)9=R5^~guTbd6a_F5Hu#{yF zts>hH#)&PxIX4a;*Q{j8TG3J6m-}irv?Azo_g=(g`fx#)r(47_Auzj#X?V+@|*ZziOq9n2m*pVWNdT%-p6~)6A@DPmcLwA6}NY-|{4Z8W2zrY|di+cKG{*oL2C> zW{v}36%}Egvc1q12r5jz)z5&@CL5s_F{~tddu^hL&rJ|FU)5|DqSf$-n!@B z&!t~$_Mq$Y4#=s#g?P<_Wd)K3ig;1cMF)eEAXr~1LbM{R%G6)ELzTn#=k2#>!IpRk^)e1Tr0%rVNrkz+Fl9~WtXx_dM};FIw=}L(8ApyT`UQjzLl%h{$uc})#Aq0- zT0+CZ01q<+-azecH!I?#3vQ0OlM$H^ehovrp!{;)-+%MbkBq+BseX82e(1_*>+C-2gAO zxhX3eOh+A9yx7HN^wK8}(M3iNL6AF`CnF)tUZqtr}&C%Z(w=~DScOn;{sETK#OApP8*tI0&QDgX?j0_l#S~9Fy#XCcQ3^x z+P&4k-6O)$07O0QgQO}$4?X}#Oh-PQVD0lu1E&OGdRiF;Y&GveHQo6BExoLrXHq-l ziFO#970?I?k(O$P!%Q8DLcoMQ>b|`nL7m~ZKg{DM5Kba?opuw@HNl1z$*blNj>UVqg-_4T6%J6nPT& z(Dy}XVF(#tP22WXxu}3?@$BRZp_#ORn?4+JkjHZ-!R&Mc&`~`wJ-xi?*T@QY=k_J_ zgXi&x`=bvYVs{L5*xqEJ_m%54!8P?gd3tcj*>-SDyDi|Lh@bDP!nmyC;8zKk=gw`m zKS^W<{qmUe-rv>dUFgLJsR=_YB&?YAz04duOkaI4b%%0%D7%OEwIKLBf-j<~wl;e3 z6O9-GpLO$j`*WKW$D`S+6iG+TQzOGGiQnufp$bJ2W>8M;1uHac_sa5T&sHeQPP}pG z1m9JYD(@&`kJl8$bFo4r88l%7-7&S6mGMD$U^R{(z@OGUH=l)mtEo`XZDZmrv3UV|oE z`}gk=F!JRB5{1+iUSIIqk)pDEG+^f_lpO*-*Mu&V9`yA~wl2CR#? z7SROO@1Y&_5rouygSZby6fl+kl$^LQWrdPxbywLh3YIS@6|X;8K=%&mG5^m zD-QCVFvNC9k&s??b{y40S!n0L^V?wgY{KYOl--~9SDjZEETW;W!wRn3rA&`vjZV;> zoAP+lvi{sqIV<)Yo?ozZPGeIRXI~Ne{J60&l*;pfR2fcHIzal^YpBpv)YMF!F2KkI ziC+i5mrqB(M`3_;Wrf>|71Ve)1{rly zVh7<;%fgV@WrZ#|@u)f9oztVP{yhZG!5(F!6yvUN{(U%IAzyjU3gH!oz}9%CrUntN z(FvMAcG2W)n>P%utcW|S>H#=@C$p!uT(th^I;g#1`hD5rx#E3(!VMo0;wPN1wy`cM z_Z#iR@10R8iG)N$T%=l()+e^_Uh2M}0^;u3BJeU4D~+ol`K_dI=N8=B-QXO4*)QaZ z_Mb!Eh2y`D^p{-iQPj#$pWcF2XQ?}e)x^})(B8h^_X;Xl#@u|IBu?Nk^J+^B@!5m> zQn36BCHrYZnChOsML{84m^|{XM_EHwD}o*Y4#`(e+|ai&ux^Ny`vFOu>_#n2{J0j~ zLR+6sO`IC8&r7MfUxC^iA=TeEEG&HiTt!F=}l^;?fcz8oXUjHQqa-S8kAvVjG z&o=F(z=9nKI>@RWFW5a3=Df3L_AM_ao6uY=Q*a%h{j~1;vD%>SFY(yS-k{*@mzYmm zfS}m^v%p)j1mZh0d#}f93EaDN-7Aot;qXVr$Lwq*GaJ5QY9vN!L1SUU?#``*8}7<} zA^Qf8)oZ6|KNYYo!Ggv1*uwZ$yn$^Tv&7)wb>sv{W9s)`tp!TD9brtpHdpf0#d}_t z+fM`(zaPPOnnl(3I#7f2_HFlLOJ28B+8P0o3x=HvZ=-{?Vdy2k0CQcqAITht{aV?W z;=G$fUO{HUgr`Xj`;9I-37+8LkH4dGw%;5U?!Ce3Fu}y45Q|8IUOMpYi&G7|nfk}@ z%|Hq9t!L63czv`(^`&vPw_o9=EZodL>`dN_#&jxL{BR+Ghetp})ZQ75b5vvsc(8v! zfCCsInlQvVksaOsUaj2H+WdO{lbmSfml)_3_Lh?Dk-Q&B(pK9N1hE+dV3vStM7T&o zZ|p=-^X{gx`U-Dr#feJd`-dwG%V^7WDAwTg68?Vv+`(yU{1GJsYO?$jkrWuApT@gY!NnCIB3ePLI}8($pig zxtuOYrT9I3sn)hIgzEjrdS(#z>A*$RwK^_4U|DK{F&OZMaK80PXJa@Youc4!pVajie zm7?m1h}^RqYn-%i&|6N1q7sU`_JxlAc}&Q)_>?4Vd2rDunffPLQK7z(MaBIySXcZ))Zd`Zo-mNS@%G&tcHdbAhT~O-_4Z3uS zPMEfuq|OX3Qk^1Fn`Y&gm)ml!Gbd>IQ^~Y@{V!h1=(K#hd=*5*z5PpKP4KC+FuUtz zJgzXMew{gKd06&KibQ8d09&AkioN-LfATVopeD%;H``%dGO$(`P7N5F=GOo5eQ(am zMwtXz6-qA6wo>>;M(Iy2xdl50b_-Xzi&<;O=x58R z_JPeo(_2N?fsWPQgectrVdQpRdnQ%$C_A&Pj4)bLQPu`!$z{{cDMb<571&y`W=1NP z$yU%XJ~Yi?ipgGas`lwN)n0eGkehe0Jq6k<_A(p@aJfK%@!)L3U{%zcpHkK1bw-;+H%E9<2tOC*Lmp|X zP+kFRL;BBe_R4SM0gm5iq+9Cf=68OfeptG56$q>q4SW(XN&M&a`cnR1lhsQ{fPs;j z;9PS60&W6n1liGGzbVH&hBpWF(3$8l7IjRG1R(WieWm1OL~wTeIG?0etOhSDH>8WaFG zM@7Rc!j!a(u~$fb^lzaKly5*?7TC1Jc!>=_1^C%6lWzRtNoXHOn z=!3(pKSFMLr!9<3NA0bjAV{b7;VW`DcX$49qssNCCZAW6LwT1aGb7-z^?yu#by!yE z*7pObV9+81NJxi-q|!)9NP{%e0@B^6NJ)r@fJjI;(j5v?(k{un->fCTii9s`XZUHsvfH!v;h{;LI84sIyPTrx1?57!gR{abR_V`jk?EY^VU zvv%``0-JQkx5gh|Nv>MpLs})Lhw=gS)$CamM5z63dV~S$c+7kaxxmOI-q`s`82CPH zZ87j`Zy)6M{1mVnz7ItbucY$l`YW1V2zWh6oXq(8%_)s`9UmE_={C~tRU@)SUkjiA zwV_`|{U^A4`U<%C0o1~6L_ke&r?h!{RfxT+sO3lyIG?)O*xZlidEBk}$X!`oxq05x zcV^1Mi`;(1?}Q^QEpY9J(F4W5oUV@!r&P zyZ14OQ2Z11#afzJJ}zheQ*8S*pVZK3^@*X>tuRs^qjm!0SEc`!N-pokr1M)TnVR>dQv2SM+J7Dl8i>{Ac?@}c_q*~R6+WuJ*)!B`sgcXv z=AGv%AZLCb$4!Kuj5jEKO1c#kR9#8ICGboe z_lwoSi!KkRgm{q#9MMdBgJF_f4w`_q98UP-hw1QqnO~n1y5%Uq2g*1mQ0{@s1R!h@ z&iI7S#~H`#HMh20SQyw}f=?0tEBK>Tx{?}fSK|N8MT_MyeEeqQT3ctQ3Bc^23>vYx zDN;tTdj|&Ck5nvgb$G#Cl$dNQYo=sqw`+%I}H4XXfrgroTN@WO-bj0_F7% z9JojU05>U-^71f&dWm@Qr?J{~@K_DhxK8r?3q$)?k=Dty6rLNh!2At>JljMdj^8(n z9QS+l>TXQ%53f1`QIQjUc7kqdK|um=R8XA>-qXzq{@Mdl7oLJgbyU{?`b5Q!S8=`U zbBA99&%vhP77K;`<*ORZrClHmi=5XrxJkqG9}HaF8kDIA< zc`f?=afMI(B81PfrUWNp;)#rpmwP8{+k1YfCqnw1=}C6;Z%uw}S#XBQT*L;)VU!DR&B_=HU` z!ZFwU>Ktt8u)Q}=)e-)+@=VcCe}A~bpB!-$?_K)G1$t$z4`EQI3xoSZetuFtPtb#S z*b~>iDVwj1hEqClqVrC^##5<-tFLi7=K%%;l06)fcwfIh5WBmT&_eTR(D~6wf8P3S zKy|l8-9oW3AzdjAAAy=w6T5f zJ2aNG-r|oi2+J-j*qvucWzI$sXeG( zR7;E*Qf)_wPu4XEDZdUxo-)2~Oi+cCgVbNNH1@~t@XBPUU;Y-nHSy{R?PD_|8I|7c z*zw9i9Bn0u zDN-{8zJ$86KV&?^9tzh{>q;$TLPLO_G${Iviee$yZXXgFj4UnBVz$Ko$EZ%f{ZHpL zw!MRc5ooyXYZd#yix22sFH3N9it|T+`2hltKU{mN2a>Tc?GC^vEuTlK{2@woF2OrX zeGv#veGhE)^m@I_q34?uH%u+q)QR2#M(-b4c@wUocri-2k{jQ!=sfZ|`Sw>g;S(Dq zpXMIlcObY-s|GAjhnTc%B~Z<#r73qBfyEXa9sxcK;k<)2o3$VbVbv)|#JhOGD}wgc zZ*)clLeD}mpH)QOalhlN{s`dgJ2(`u?9qvxPcO$9_&gwRv(ig4JyjH?1q+Rcg1&c~ z%nj=PODot3Z(XhwE8k-#PQovx;EwUL4U8o6eG}{VwDkBquUq%?u~)SJc!QD6vI0zx zj~+d0Bf3!xVz-&!#sQI)=Yp^wzYtpShL%Uefl6#~;x9k@mDvL{fbn;+d;}A^A@ufu zR;yF#3p)g-fL86IBzdU!GGTgmLwJ&-07~Cr6WWM(neBX*Q025rASNajuz8NX)IXfe zQGv-(E0`sj!+{9`R2l7N5)?REWg$=74utw$eACV4!F-_R>#&??14ci5V(_yDhS|W> zwxbg%&#bw|?#`GCq~n8GPfF|a!1J%=ZH`uLUT#D>#FSpdiLDb`TFNzmQ_^j<*t|aK z`Ptm;4^a<>78b!36@1VZ2h1x6%#N_bF?o<$aTiqOlLmM?1}YP&X9LuWKjrU!?cuNvKoxzZ`w|{qqY4XEJb(kg z)>b!M0Wb+`LI^v)B$uPaKArpcL3));fJ+6AG3i~(#{79r5E=r7tJ;N+uS`4~>2~Z2 z^bL$^fZ2EMke*N&WoI6CN*gUCb;0D^4na0sfHa406>S%?OFb#%B= zW>O%W=EdbX0MulM?2L?}w2>(}j4gHZ55;*cHqvd;R(PGGA}e*?1*a2YEZ<#PAhr&! zt9|Q26EmnKH}KhAcF|+Dt+VAVRF6YfJn-lvF%q~aSPy03-g&7vPS&hQD!#?~#gr%g(N+QztRC>^K(o>th|k59O9Qg3W7#$Wksl3Sj zniL;ThEM?@Q}AWt(#%$K02Hig`F(2A++c0y?9U(j0LAW|Oi@B^sF%050Y4mBW*{R) zY;m;o^dI8lf)f(Rt;b5msNIih)Uyw4rrO$`G^<=qoTN7#Ph;)a^HOP2RQ`M(d$`Vr zM@}Br&~PcDzJSzU|NE~Q1Icf9kT>QJHo`-L6A`kCa3Y_iO*Nmab zXZcoQYRAQ_NFpFX#}o3ZKxO1SrmCWX_)xU8w7B!}gPi#%<(8AT(_ANo*z4Qm^HEUM zmNnjxksRar>u-Q~S>LTLPu>mwQWqOZnnGd5Uwe$5LD>WP9}-Z{+pfD<7P#V!kFHci zH@vhKO%lmX(s!=g)T7T6%i&lCXC`b{=y+u3ondFi8`>xU;n1*fam^vpgz@$bl^@}% z`tP+buk$B}ow!)@b=YZw^~qV^;9DN8z;`OYYgcrQpm)m6-TkXdHb6Y^KK*=;tH5b8 zWdY3L&yUWEcDp36r1Y-xV3~}vX&DOnRADH89~akN<+!ZRyrmDtkbS9#Bi4P#tcZXBdb}t2Lk-u?OafS| zMK3FS&70>~ZY6ql?x4>_DGEczPdq$T+GYL3KYkT5g$(1BNe;mKiExgvkN`^+2@4@e z7@A;}hZ7wEa6txlL3i%}N-JO==LAPYIQc-KBCM)7-V5^0agaXVGf@gI1`t@_!Z850 z-G;%wKY~DuL-k=Vtgw*U5ZbKQ>uUhvC!^IT9INXOuhn|`9r+~nd9Rt#`;Z6r>_niE zL+Z)MHsk-V@x?o#6#dT%Vg`Pqnfdu9K&52l<(mgPNZ!7EBX&|+Iw-I{hNJg_R*D4X z7p{G2s7S>(uU}}1;A&I6E}p9a%!eevohOBx!JyMP4mY+x*f6wPXR>OZ4*(q){C!Jd z7$DP9?L)bq?8!9)gMvl#ByTCGxyr}vHr@F`1CKF8oN+vqSSK&c39V)L{$wFTli!Ur zoH#=g-MPYH{P%B?;Q|fOehVJ8XyWHai~edhfW60$uczW$-V7w^T|G#lrHW)i+1c=* zf+s!#VugZj!*g}C>}`wX&w65nIvdTyjE;_`rK20tJ&MC(jvVTG;6q^%=9j0DTU1nJ z2&rSh$Ldb;27sw-e!R~TOQa+OCUx+_4-`)epwyxl2`fEGPno{@O(m>XY~ZkZG=K`# ze(nm$z5*VAklAtVSGfOOgAj$xpPj>R@9ith&h!x_CPQDUmYBN=wt=d3gBnVK3nPuyuA|QhGIZ z#q+gy{eoPf7&s%L-TQCtr_l7MXLUGEz2Ex( zrDLY5^*!_bApT42R^k1*Ms$IK%`c%jDJZ-m$7O}iu0wn>AgR!2`obmy5>V_Z1FYXisuNml4WZ*l3UWChi(m2D~r{lo3grtG_LrXp;S+QC^8Q;c1 ziLDqX*$# z)o&Csd&I39+sW)bh=$Znxi`7L&%9@C_h?S=-X=W*`*7#Xg15fkuh5%UL}@?4R4uOc z+3KT?_NCCuWC8uBo?l4mQ9fd>c~4_vYM&m| zI)ol`Tnaw3;?2JcQTQPKs`NE^0P(pqZ3MV*HQqz`png7i%?ngj9BcdR*=r4um~iY3 zkadoJ?pd%U0O$;ZlTZ#O42FXfP86-mRr1yX^aHl;WhRgrDXZEkYJHM6^tc^oKf>7U zlP03^;iBI&kNMXd(ux8Jo8VM)ML2@tEq%MO@eCsKclT%gVco& zE=d$QXIv=A4nIJ-$=kPA!D^5On=6QIAh|dw)f^W{TsIfrw`nz)So}M}phP2rjOw`T z=tmO~h@@Cf?xnRgY$!-T z6l4b=k}=uzANh5K-^C^@CY}j;+eI^c55x~{c8V|m{k}Cfhmm$;kXW#`oIEa@D5145 zLt9H0NJZL7q34xbAQP#CtUSm(Ktx%vVei1K3=S|cj|2Ba;mXH^+h3763}hb^)8|by z8s3o~Hr!wrrXdKH!4Xmb4G@&NLtxzdKZAC(oL9%zn1N{H57!ryw5JE$*IM8(8Iqb1 z1B72!Js@9$?}=_HeLnUl6H&+nXY|OCkB4Cm1*BiNw||E>?@ceSPeC z#dP|5v#pZmilfRK94}E|&R~xnu~R>;u+tvT*DG4Mu`77 z?yWVoDHhV)0bR6OEPhi0bOxO-2tSCamxTV`oMt1J(a}T_$n1^M@lJYqC2>PZ5;NzTAhLT(H^!;LjTasdhHMlcu;_ zjW_druO}<3@6C)I`zM}+!uQx)FKi&y$3t77!*q1%D*0mp+#m#igjL@F7!u4GEurr2 z56S~7p(GBm_ONcosn&uBC7|-%G6;9O{C;C1GEvBKMA%C}m&kNmFWFR75815}FIk6M z_cy_e2A;ChX@1=Q5`<{4i2u7IUxywS2yCH>jwcB=>!GjW3xOfMs{H0llX4lNu@o%ve-(R;E8Qkq`1XR|||^gu6kFK!=Hm4VW!6_oiP z;*Er1P$AzkLUn&ilix!Hq{te7SeR81til07t_kfN^PLnmYQ-A_U~7k?V7iOH4q5{vC$JE#j(VLYcNaL7*914e<3Mx*R%t?e*w-#o@a3YFqEAdDxA0XNrc;K#SNdSNxtB z+ouO;$$0gov+6UEFGjvbSiY5Kswa1ejl87&9UF3~s5|bTAoODoPB}yX0b{>OkZP9X z{X1MHZFo2ofb`yK@7cLl3CH=0nXqc|`j z1CSXWusSP9Un_{zS6wtVqwwux}9?2@?m(76W2 zQm^9~Z_`5vV+Z>^)V_AS4a2|>P6swPHO24-mySn$bwY+7{k=%$ER9beK(q5WoLx*+ zPZES%AR)&Z<-8k~L!dL_0-PIIajr#%c`OpHHT$^`*Va_N>2ndK`E%QD#0mfPE-* zFDQUc2-7}DJukHl7Ca|{xd>=Y%!4g$z`qboSRt_vYvR#c-~k}Y`!k|#X(6+PhF-ga z4H>N|LYU*BT1vX1-i+7HC8;|#UgX2cvhac#uT$bqnb;HXjQ|e$cr>^NU?<2@;qJ18K*nS0m?50O+Fh45vS1FE`1gx2g#`~1Z zyy592Fc7u8k%Kta$M>Vx1>Q-NZXDy7y0=Rt>WCk_Jv>OP8s|{h!LM_yb1xhTEBGp6 z(3*T4{vO_y^%?_1*tWqnvvaa*T%cR^7~n_P)gZ;-HKbe4%=CUsHlT#IBq;XUm=w52 zAcyyr9m~~5j}my6>lMeSUeh@~Y%|V^jq^K2F%9V}s~Gn;Cfj9d-=rHm!fM_4WTo5N zD~3#@P70uQmF$mj8Nf#MN3rW!=D;o}>QrGC!GsV~n1dSXYy;lDk$%Irp`DkYqYTs{ z6nsI>#pR&$q@B zx$Z+bbuD?xKGg+!4Ukx%MPhNSw=fo}|BC#t7T`X)(x(Nx)tbms@*{j$e~c|R!=D?s*`AlM%w`vxj(4Zt0>uzT?aXc6e@OCMRUv9snQ zhCDJQ=hP+zFR8FwndUtZVR-2%P_t!QS|onrjv|PZ+)+aU0yt9F_m{ zWdn>fpv0Yjr*MjE^?^4TJWB5=yuT`lRl%CD^|uHz+}Ku}0Hm7T-c~d+|Z_V z=Vwf0M;Ab;>BY1+-&P61i2QHU3(dkP0RmnB$TzTiId!v0LUtffD}P2m|2|K%6{_}cwLYzosj68jPBjfF5s1T2K%_urzPsh zxLyFCfgpEp|C*KC0Wh1?mTB*$4LUC_9h{Q@9D;QV7-5yqG4jKy>;6e+uRAfH?dUmu z&uY^LJy|ep^5BpHrv*EmKd{7+Nu=SReC6Ig{QT9{-H;#3!9hYVNzL^=b^W&2hd06X zm63qVme@@4Bh_)RC|#b-jl7Y0DqK{(^b_3=_5u(2>6S?hAjl4}B&fgWV83v~iwtVX zzovX}fEKY${@BJ0CQS4P6^>kMV6BLXOwyen>^M?mk-PP~>+;s|_B7NfUC|jiLY@ZL zVNK|v4*Tm+PMGd6r2R%!ytJ}9S2Q>->@By}0k3isJfhbDndzRd&zToxmye(?rXMo_ z(D~BZ@qaIi8^wQ2mhn(h8;m%)9{C@v>`NqE25dA71Q;2EEDfR0mV^wTqlOX|6EH%6 zs~Wl!*27vji=2#RzKE+uFFTq~*8rM*-Q3(fb#oY^7bZYF^-SOWZEvp<&>W%K9%MJq zGXjJ`BKqlK>U)l|9NWvgPuhy;xYv2HVH*9HG&o~^G*1AQ;50CY02KgVQvm!akdXls zlKpWb=7h+fd)C+L6oG07k8BihtWYh}q~VA}kteha^x0O4HE(fmv2o?$ zRz>h~?+)wOl7)mvF9}~e_#qF5u34~rc$;5@O4!KeqB$bC4FFc5mz<=4=vTVFz=stN zj`F?z{i5PxaR0mpM`sCC$AYl$Mc*>^7>-V;byWGp$te%)Oc?M3SYvkcU|DEI*xvr>;-^?I%6c>iq?VNPfpqwpU_g>$#y@R zDfXG9BajLs{Rz0@y7O}kM6HR3C+gt9i419sj96vbUA@63PgYBV2G5y_bvq|CE(Lyv?+`7J?p z#npEZxnJuPesLflW5R$}X~hf|VwI~M8ps-6zEIU1MUGKP!)ur#4nR|4AoK4vU%UP% zUv3rR=LuEI^WL@ky{(tR{#WFvTi||<)#msy#q*UqEETnl8>8Qhwt0@G2#j-DjPDnD zZagU0BrulCD>5t$zCq1QMSUa4PvuJFlxO_!X-b+@LfO6gv6PEwq1Yze*}pHLoW0jx(84T^;e5N| z$-aI`PEbvBmaw@n!@=0dT@jxz0Ga)XSn|BAXO^uKJGZyIw27CZpp|xu{Ko@3b9h^Q zynut{Rq4ukY+PJlt$WvX+DoD5D6BBm7oiQI;NHAoV;Aql{LsgbV*SBuR=<@YY~90`fDjPlqq-qcd6Hyb00 z?oKY(du(i^)tHf>Sd448kVuag7VAbY2e4@57&dfplI=%G)|yQNmcn%>SH3?pU`+vi zHmP(t8IPp|2yfgER`A&_maVW1w~fZr1h6Ms366KTgAGSGvIqPUY5X@u9yNM6+kv$|Wb2jL1Uo^)+CU-=_%Ax58)mB$(2c)m-8m9sKQnQ0*b^$0eniPJI_!FAh4@}SbE5(4l?ph5tsdyD|m!ReONj+HbTY^=MZfmqvHHrb3}G{Nyi@m9_^Y2PuVW)x6S!=HQ^Fyn6@Z$ zO8fb1{2ncC^3#gm$3<(5m0uRHw#dJTdAvl8jg2Ad6#zHTdwn*{J|CZ^j0xu_2&hbZ z-?x9oKmvks2x=a|!-YtGRMvQL4(?jbp!HNtWnkv@s^UcWLK3D|yF9yoWOrdnq@!JsIaN3v_OdNbhQn;)1ues3-hd|0s;FQL8cBF>Y3)dq4{KU zC9Z;}B=)hR+$maxJr8onKlJnUIq!a7W@NsfW|-OT6mPF-jh&oo`*^;9>zgZi^AL7| z`{~N9>-S=cYyC!XDsKG2#+@Tp%$dy{5&=VJ1`e^)yr3H<14DJ;q5@~Ad9694048m3N#y#5IEq1|2R*xYTx z70DvZxzPIf@#9WALy{eY;)adT(9l#tC@pxHS%KVIhHD0i5{>mUZWewR{z^;lMhRi0 zMZ1N71Nl==uTb6T+oqBvyAj~uZx(U$IY#|1Ose0VB6{C`1u-pyBtjBOZXrZxd1tn1 z?LiN#)#Iow%6ZP`uQGaBLYl87ioUn#vl%=iE&OTSrjqEsNjtkM$=neV~9VeDfp?%6%pZ{D2$&80qku6@CWR+AwVd{a;cicTPR-{|73 z;Sf7N$&MTx@gDB29B3)t<6{N&bJ)B`gq4|c7{K8SUiSiVEAWq20s58{ljXUd$aA5 zPEKJf+^6T3-Uit6n=2eXWK%WLgwE!L+9o*%i&vvfQMF;k-Z5aVLc++YZMQRgY95%h zU>d)eeKKiD@H=~?T+8+r>lZ8_a~T+llU|2OzgZo-PncMuI&IVt9gIWs~Oz7XJ9|%rVA)W>V|b z7R9oTb+bkhEYa>KJNH20fk+zQEYJG6I#tp=yTU6mnJKTM@aAZ~C~qYEm(`?91hy#s zfYIK93^Kujw_Cr~?K{AO!QmRGykxOMlJ6~4W1~e!4{d|$eS_*9*^Jd2giu%Gc0b-R zG191b8xVA+Q@VIfbI6t9(H`&B)uM&WpQz{RJ$1v*S$8vweeCs_(OT8xX%Pw@EQghq zmEYiZQ(IRjf|^GYhI?=SQBTIq4=6vm249b>Ajq))!OXR zlTq;}CVo~Srel+=V8%Gme~|2)-xnF;&Q`b=STDRPT zH%sE|k7#dPAr}9Bv{VvAS1du40HjDK25nvvx3siujFr8EiTXmPCF=hdVr7LjL^sAm zeJ_MwK)wjnzP$!kO8)6nduL};NC5C{D`90|2n1O&GSY(E0@Tm8vXlh{_Z0Oe-M^t6Bh7Tk9{=oIelCD zj|luUgQIM$Es7VHpA@X^RxgKpj@8?UP`YP5xzt-rv_kWXsa*fW4yE_x?XUc4DHoM1 zP#ht_Y?leA;`)ov$x5ytI8F6ngB0~z{-*JIKy?d+~cPn(;|ubWCfDqZ0U3@0qlJs;pHO)hFZAFWtvUBo75>hO6A307cVo^O1G z!4q-HZujrBtOvz*Mr|s->U;Hkqcyjh3nUG;HsYIqQ7J-2TnixaGIDaNBlb>Y+Nlp; z7!6>>pxwl(|Mr@MOZYj=dMMzt9=zzK0;b%~j$9&ecbucl`dU`)Gs*-VS^37EKgDJ2 z6az=99}}LOwUw+X0Xnyx16V{sj2l= zIhwzIO@Wpo6<0oi_crCWvhpjcPsT1dYFyx@2PL^gFO{;6nPxH39EhVf;_CH zvXYjI=XB8(yBB|6h=07ZG;=tKb=Fz$H_>=2uKY{4s>=Y3ZGXbOrKEJJJUl#r|Bpme z=O7O`H2;7E#{TQC=IOA8u*Ue9m{v%`&Zz}*G8{CNu-!rs(knW-PlJqu(7asiwrlip z`;X==TwDf0!7pGR-hoK!OF0<}nCEH#5>eC8pk=8>MJ$mqd-KvzQ?K-=-{iBMqNQ8I zS;Dd5DVGV~LsL_Z3JwllSXjs^X^J2h_(U$?vU3pA#l7+HdX?Bv-fk6BWb+BR7z|*J zj*cJZ(PbiTHdl*biV|60&yg@{NLR_S?!QQ7p0lCjjN^5A>iL0$GE_x5e4_Dgd;s&g ze`zdgPbDcT<_tY~?9}2QomE@% zc0~@3xf}^s+hzu3wGVe^f3EM4-Cm^qYV}+}p?Gad{VW0!fcr$eMn13%owg(>y6_!f9PCKiRbY zZT+s0$46{3UOY0gcLlE=rAz)Et-;AF^Yx5*b;UqaOhx6xSs4s_V5NGKI*tb)Wfs1- z^@~}FW88=oRzBJeS4v^e)`o$2Q5(zKlD`WdaQLnVevUc_{m4iudxP`+di)0pGUPEM zN_S@rQ9HsY{83=It+KCcQ0LBOFmWDCeC&g+hCcxTTY1#n+S=L%6PW*wvH#ko~GM zlZvtimS1=x{vzE~WW`und4ZH*JHNphwCGQG(LiI;lIs<5H4etT^VIZI#UD}c)?O@z z6jK-2ZoO?St$SEb8bCGhSWOMj!<**bh+2Is;1baH2i9hL7Z;5lTX6cL4o*(4z*@w! z#6H6JbN+&osauW)PBa*J>|892NnH{{vaMA^_EmyC-9CRwvkMIkMb6o+tukrt|1*P- zpNwPGzNVU)ofQKs?2FNF_uvQv$!teQ2iA=nNJ%Ex@f_figx~_*bZ^ikLBW7nwi=Ss z4FGsxK>-`EfJoaR{E!gy((-{$?k~nO2B->nrL9IlM6{4DNyAL^kJiJlbR#2K&q(qa zvCxq~cmNjt^)Caik<%xeztl^gKByGc7ZwbI`LpWPBgscHutw$n5)u?dq7t}(Jg#g5k`r{?l&=xKaZHU0A=?-?p~ z#9C{uru;FH@nMOaF$|J!%O#)gK<)}Bz!lPKirwq17&HX8I(t->cEJ1I8r>fz@E zF(Zr_MrG2iC=COf!X^RSEr&F@n=+ajGQ;HwWzJ8nZXvaE>- z?Q5!DNSQ~1)u^z7QrZx97@Eh~4eFa48~q?G0`ZE2Fu>|=>-01wtM#OI#L7CU_Ve*P z;=;#l4RwipJ(=a6#**12#Wxfzr_xQ7L=Xuylh zR7N6GP5v@EfmNoEVk5kJy^d%?BK!(s8t6XK!b{F4Va)UV{QQtWFAkwraO2ahb?cKl zCkCir@)%ZW=peri)YG2`?+j&|moGcvS%C5? zv;1{cGLTj;!=<$nKZcGT$4-e>dwMHNX@rHH3H2OI`LL{@dfhv0?yr|Md3W;NHf4af z$NyCo27k5GN8)9BhgU)*?3C04pWro2r4_+0+?GzUGJye*wTh`{=o4--fn&qz5*eIC z9mv%T_W?Y6AnyeyVNpn>PB2y53ob7nfI7aFm(znmdMAF`a&Q&eFQL|`@#oLQO`hnO zDA2uTXEU9hm5CVt51jGk`OAx52naR5<$|7*vojRIi7F~afL+7!?7)IvK30h?4zmMkTy*G`p}laAnRdIrC5nu9Z` zV*R)8;Z<-Zb$h+Njn(&jLRK&CSd zU#Ucfo+km55KZ)D&f~9*(EkHrN~nHg%HGQLP}1@AR$-KqbWy)~~A zN6Z_Xb3xZn;sB%V%YDWUh1wR-y#ftRe~Q!jHd}34ss>D8XJTaOraSw4?{znum>Tmp zmo16m+*ZhxfQ$=zkAoFuD+gBCJABSo84&sn(hyEhPyZn!8-NiDB03Bfz16`rOb5Zp zfshScT2=;QbvmF_mbNb?-I+`!f5V9)Ha=^`QQ<0fJ339`6wl2=SgY_c-W3ugWeD%e zL8$dNClxwA!YgrOZz>4Ly$RR2w>s7{8~lnNr{+ewgoy1nlVXw5jQ_n#mtB9XuS`v+!XV!`PFZMXX6yUpT}m4mhfzbjzow0z zKW|JHdxPke03kJn{opcD2Dznbze6Fx?-KRvi6+`(n*6R38R<`#en~eA33lbaXF2$D z!0k-xj_067rvS<#e5K$LNI^|w5Srhs#sPrl@$}%Q+R_&xj;biTRgt8*TD6ZM4#3ms zNpe5n;rR&#RB+Z7LlkoV9Qu$c#3do!AM#1UdaNCAhTaCyi}&TI=tNV6e&cL~%gmq| zEibk}u0e^9aoNsZAIay#KcyXIEJTaVBEk`$!iDn#*b42#CIZ-K{tV;XUi>*R#T5=4 zy~?}a$pod|M+#K1NTXhoy0jE%*UdX^R$G*<#2o#?>awV?2N5qs`2Kkl8YB%J+aV;Y>OR8Bde%rFa|HH`AaSu?L6tCk4o<}c3LP9hv z?Y_4B15*I3HxP9JlZ0f?=;wn`%rwdA%)E!h7+jtkde@%69P-;3VK$tGEI-%;imgW2 zuEgExLzA{AKOkxu#?I9hm$bNN*zgh^5vKqK$q7pcDlb7`j^7Sn<8WMAU!@UVe1HA( z&pYws${%Ck)W>~ck^AxkT*&Y{p{#A7d?io++|;xyS1J18#OOQ*42h}tlq!5|iRv*k zkfRX1cqR7pQUSP>3IG%MNQ?ZuT-IWK7yRRXv>zK>a8p5Wh}|}+U0CY=iew?dS#3p2 zl_zmq(&z7~`Ea2@VYv$0w{PEOK!$Dz!gyas$Q2AhA{ike5i%$Wl$T~^L_v5_Eu{f_ zes9`%pqu=7VfdFjS6DYb9~-vKo$HPdzUe%XUK1``JS#hwNR^es%n5q~BoK2(7G!uA@o1%j6p~5iK%GUWHqBu+YH3xM^N* z>gg~&OmY3)aqx`3e)HyE_0qs`0`l>R+T;IM1peK_N?{CXFxV_qba$`Pj)kUyk1Y|e zVCT+IOu}gd(R=RU3Y0w=0*=LPH5>|0^hM!v5sculj6CxBb8=Z7arw@~#N@e&3HYVE zTHn$A)rM^`J3=!ajIA%q{_KE0=1sK_1>P$%u~VLgjd$M_ZrhLy*TIJxI37#0$d9<=!obrRVob0WdI9K zT);!<@=}1|0$MsDPJDJDjRgCI4URsTitq^uo8VS}lmo#r2XAd`t#HRy85kTsMBVN_ z?5bmAZ_oTyTF1Tlw@8W-b`&?ZoQN_<=>RtDEa&`!mn-rfFa6HW?&<|TSD#LRd3x?m zPh`xUFnKwJh=_3IY41F#@exJe@8^LJ)IK)*?LPUh7T^x2^ z6b^iGIh`0AE}XvPi<64E1jfBTQxPZR7q=xMzy8920;tY+=a}x~K5yn~Z;Mh1Jh*}u z2_G_&R}*HBwB7(#Z?Ui|{5$xoWy7#*_IL`VOplF9p}r8rp*)e1`3`|Z&=!gc%}-c8 zT(y9iNwoqn;O65-HI)>vmGKI8KAQ=o-QOV}S2MCQz7Y{7mc0;ipQLr4~^N4qtv&{XU6892`mzcry|E^B%_>y_Ey^p)&0zdP#7GYF{eqRbBQr4RrH5E5x z9UQ0UD7!cCQxV%7WFt$!LJOCY339Yf06O@GrHXUoPa--t`awg;6QTw+K7MPAUy)IfDH!brP-F75;xu0LC20qxm$5G)URgSwOyh(XxFtcYC2Op~~P5=Jf-kd`1(`W+!E6bS|a z%X8Q6p2{c5Sxqvrw_`SLw=n<}k59t>1}+f#^FvkV=FH-hyz;MV&bM>;tpf|i@JwoN z)cu&3%f&i3C3LswLzPn2WQSDV%vmtd%g7-JO@P{Z0Pq%FTQP=?W$Ca56!VoQuD+N! z#1JK-(+Vyx=LHnyO5^#t@>-kRArBLao7ZlV#5uVb45Y<#f+&8439&aggxoY-S6|Uj zn)SOZ@JlGm%w)TN(HaZFWLW<2k4sqR$#c$m%CBl_AP0}*vC@cs#0KrR5SV^&(S#t< zv!fv{G$Zp5yhVTyO*Mb{w7(>Nt@<_9b8~Z~IEaHs{d)N6YLTw?dUrH-!p?;~X@kvr zPux#znc%(eLqpMUrtbbWPeLSy>T~(4=ec@(QT$={l&RI1xC%YbBuAN9umpvY0EW85 zrrQPu-#h#J7|HI1T09{k5FNq2xqBVe@b`=blH<%kuVHEM`<~n%l7>Z|Npp%JJXf^P zeA1ag7uugcf1aG2y!dDhapn+;lx%DHtMRISsP6tpfbKb0as@(9`LETO)gfhq@bPD6 z2pz-CJ-@M$cgGcg1vs*S=lHQ-gZa(Q@@dTjGBmvC8!-H7q*mU1K0iSM56NpP4mkAi zBp(;#gQn`4i0!Y&Ozr z7>H|iJo$f8?`@@vUx-Gx!QIP>f^eHmS$F-!wN{7pARY4P6gw>~66hTme(@8eu~xJZ z?lBV+x&XPrug2Hy?T`vGkH0Ei`pU=zFT6QnxEDf=6iwrql#-QwZSk;q z6NBeth1s$981nny>arE?J>qg&Q35xZW|adSV0yJT)Fr#sZ+y=ve`-%za@{iq4Gy_B z4j<>kyfT+>f~Xvn}H30|6cAZsKfCBH(hNq8PiiU@Lqn1-R_65;^KJ3c}}9tT+tfG_BbXDU+KOeoPE zau(-3GoJPvJLl%%QJ??oweuYlF#df&MI0^kJn!mWGlB(dZ%&XPNuNPP=nkIJ#~5?~ zU7kkS@Gz`f{$8dOtSbFHxa^9Czl=j@F}ANN|B_VsOT4^%;{zb@keDO5lDPn{aMl4b z(aHIck%cAo(DO14aC)pCf_aTEHOa(%0i+KCtK~ddv6sJio@jsDa#&58$e)s zJ%)#ok(HJ1-aRywYK_SgCt5E10vNg{>iX<5y%SHJCOFb>A~YbhF+2VMWY(?wzgRmyvob;DY?7qYGw^hxj6F9>~_^PEFB4jXb%iL0xbRmfy%6ERqS|#j&;aFVUzdDpl49gkS z%7zhqp7vy=|9GqFz#+EgXn?NJd5_`IYcNwj0HE3OlA;<=Ai&25ZTU#yHOeJdogTb1 z^6DLy;2|Bfzw|w6qu(vu-I9p_#Zp%kC4sMngmPL+${hQtfaK#S5FxL+#v}KMFNv?` zt7qA2#n4DpTv7sdHqGeNtR0Q4-l3uVq9oU=dg&@!xs8wpsqf(En9J%2-mGjj6-~_( zY4+KM0Ql;lkGLEdcz=RRb%A%X56|{JB$9L7jORvtGJz(tCZM z?j5(OX{fndJP+518vg9v^gP;_1;#;BTYGM1Ci!US4=dQU5k?65xZZ#I6i`+52rduT;l= zP1V#{PX{z3(hHlA&;@`sC~4V2be9QvK^Pbq$WH@-ObFbEWUg8b=Y0j!59mR7j|<3GkXSw`#%}LsnKuXxc3QQV^7~q#8={ zhmOns`nx}9dd(p1J+ngI2u6g0#xJiX$9;3 z5{sPktuj)r{L90I;bMT_cnrh}=KNwF>1`BUq}2HkqhV!0cgk#_1OFKiI)Px3J$uB) z+BUcobHSSaHfKN>c9k{zLW2ecF)?9me)%lwEe*imlZW1$PW%=jfls;G)t5z+Ia=1N zD-m(QC(v)DxhJs?n!;26+2!(|aeAT3;(D6digMM$O~yIO1iJY}8oZyR-p=nFRT(?o z!vIGH3zrGVn!X5cwnzQ43fh|tv>r$VkrP1pqA(IBkD&_XUCgJ8MUn}W(e?(6E%io< zQ|`*%RK!k4YZcXZ5v!7ncR9U!A zMOBXA{rem2r>;YnSDEukY5xi{Mt4~9*~32c_QaMV zLFX|H-h>Pa3*bSuj1T&}!~>~#OWg^%yBEZ`c{qjBw=zo^&s|3{N|hFAa@CmQM0|zenjBWC51s9=NcAk3>SoXXr?;*H10}tV=?zz=IK8+;N_v#K^(nnrzzO`~1aL5TMI| zv!GKgRt4IBLCvqEq~xbH`RSo+EIh|NV&=rE z8Xv_+aB++*$Nl|ViQAqA=edN+-YC&m2Glq;H8r5}oDFES1xR{s{(nqebwE{Xwm*o3 z0*Zu`G)Sp*Nr!X@64D|nC5@zngmjCjAV`;hAl)F+(j^VjNO!-r?|n1x`PVpi=8EU+ z{e5fwQdHOAL}<1hL2T?`fvjxqOR-61^2d}z zHtlRb*A-v`4+;&eFESMRbdYFZrT1to13_PVK0cUZ$gWP@={E`Va3O%pGS`aG-U>aC z4h8}JiWCLW%*;%rTnOTp8SZVaao>&W04IRSV%O)D;b*!zi^Gi#cp@eguum`wapF2) z4O_H?Y)^oB7y85eDty@r(OTeYZHAXSUA+x%Hn1cV+e{_GN5uiUKwUyIt>9}VR!^(- z@-@!ibj$v~cIKz&T$eVgU3Uhe7&o@z;?Jdbo_s*`03l?6%7=;z-%+M-_gO{IAuPe- zRvlNnw4UCHbBsKgrVC_3-U34ZNMHXnpve4!9}=9r^YioH1^%&-hMDSkBm**9i?_Cz zjLppCCMsXaD|kv653%9iy_K7%4T=Icpi+;Ik?zCm&tr`Meh1&DSqGj)*t`B-Zh&>z zVF@RMqzLGcgX)OSqjl8;^tqUhpNetlJB}^h^!Hj}JNR2!o_Po^!Sk*_7DmU6( zK7_D>6az$w@H~Z)Sw%L<|r&5@jAh{+%W7CtG>_se@bV) z{yHS;8%os)YUk91D{vNpT9h}q7zN`D!F*K&P=&B0de_y7joPDw2nu+3brT^MOJ|5q z$lm&_rK{TxQ!nIX)W4dR91S}rhnc1CyWTtE`6pw=SYee)QrTa{yIX_jux(&6;&isn zbxJTTb3$>zy0#~f!fcU{f#?h@hw~ZlZ8GfXUe|Udym;F>RweJ|L+OG~`7QqwH ztoxuk$i>;>%rNhuZB&PGZt=Ek)<*Z46p%5|kLuQ#U+JZ%B=oFO1Z}DxE$yGpa$#SB zuPJDILKd7Pko{c`G2@V55lzCLl6&UP$hUbJzG&LkVq41c$bdwgiW<{9=nE4M$3iu> zkC)kj?+vGE-TY8X?ch$Li)Yv#wubJy#~KVr`{sO{QA&FHUI1Sbs$@cPC8Ww?YHmf& z!|u8_*t|~X&-0H})pd1q!lwrSkB-hd4+B5Eq@rT((4#N{FFZ#_$Ma3oB81y-y1;`s zr9eG$KbSMmd$RVm2ZvWvc{`V0ad;e`JPf3>Bftu_n)FD)b&@&Jkc zVN!*Dh3X+FE!1#7@maw>+IY~uyz~);2!h}d^rLD0W;KcqI+SNMS82ItI5EiV^!4)y zRDMy8oAsJr3lo`?1?}i!wtIPT#$BZM9l{t^JYy9YVLAk^_RgI<7H5UMg(k9aZ+(CV z0@fPMzxaT;u(YYR^fX3^e!uqwQ2a_IpiIMTup$Xw1pue?w5M?l-X_ap?RRmu7d-(q z!GYC5G_UD*E8#*}^~NB#+~~8R5egbJ2Li~{9DzAwqn=I*8HTIvTE>|ScJtmrhs!gU9Psy5bA_?H3u zJlgJHM}kCnc;3M{3;6@2qOS#vJoboTFfajg#Npp~Ir}*)a#tmg0m+4z11La|CNm|A z|ExUX{B3ZbQ3~TSZV(K!h)4WM9==IMkaRBenG#pb~BG-*PJ7!V!nrO_8>_8j< zQ2iHXX*H&`7g}?z?oEd`Mqo;Gv6)!k(^F>lt{**(H{czVyQv^*It)ApT?!tx53Yc^+Jg6uiC1B11N3iELLo)YS*6a z>%l9hVL5kh1B(PH2*ZGjc>n`#?nERD@Cu-yM*$Tqe|+-if*#z9E2fX`#VN)gc+o>A z2|PpW#M1C_=2Z-Z@JXkBQ16$B`WX>1tSl>xYNN3Zm+vp;ygx%Y1T1nX`|+;kO4 z5H9tA8tmd|?jNx{2K)$3a8rP^f&4NVWwW)KX)*iVR))h_1<)Qg4-CA63;?aM767P6 zs$IDeBL#F+NJ&XS&rGEG@}sge(o*=F2Z2B+ z3*#H~oj@KBCpY(xp&`WB5BIkO1TMg4u?T7yIEf}i)BES{5|*Wq1J zXKycI0Qi-is{z(1u95P@f(QOHF7?Ez`K_N`(R(XbK)UuWc$+^iKMfR?<=6BdKi4Uq zJKjB9GVQu&nNwPTy?I~?DMP|8o8I0@y!5eq%2vw)=1ejR;Wh+qXRRPyK@dqmlr(G@ z$n^$mqq6cW13~HUuX9CzYCOa#mG4P^77lZ4nsA*|&u>Pe`D#oWewLJ>TGq82N>=d@ z>mDTkxmlq68l6aU(g+sQx16ckQKuC31`wx-&&QwML$EFHcKhki)Dgj4gYqB#HgQN6 z*hmleT*8WblO|dRD*X`s$IFtw*ZvV=21j2q^f#ov+f0p*kAd9xAd$Kxefh4HBVHaj z_Dx}Sx+Uy_WY;2L<4EP>yA4rbt~B`_E~!-SRUmRfSTvTnUh!j)6{gje%fgg)`Lj-1 zZ+mZV6m$}3ZI!OW&VB9LH3reDwtfn|pnV}pr>9v9kv<^CP`Kj?lQ@#C1t)&ic92I`5-{V0h?*OMOsjh%}nJe{iXQg=0@1L-uv~d@FCiiH^ z>*Or9g`4qo);$Vz8p<9t$h8XfRw8k5>H0H87GLiBTGAYSTofO_4PXkb8}wq3?AKvUNgDV zkFbX$fnslQ$s|FTH%pb+*qJZrqZB_rXUa@W{2@Nx;r!IKSloy&Knz7yt*sXh^%VHatVDb>IDU8J~FhEc+PAh5^D;XMWSn1%f zEO*~TM;?yp!txAVIyTs0ja=E+~Cyf)&(b=zo`5Q9#?n6A(ou2)jlD z*1abTcQ=5)H{tu2xfjn-4-G;s5L9c@&%rfRLg05US| zZ2Hz>pf`}{&ppdnIo+`vc2)*bprn!n5ik?r z*Vt@1%TLsDQDubZZ)1%VHJ5SYWy3npJW*wJmaZYcl$3YTr;b4SLOed0SdxQzWHcBj zFX@)Pl!vnfd>(-v_5PYEu@a1ZqE+bxtDp8y{pw?kQcRyI6Go6B>>GSSAO+Q68h0Ce z$N=b(eKb9yCGh@{+|Dd; zu@027gjIP41}RGcv=+1_Cgb*Z?BLOSa|ou7IJmr8RYPb`7s^g6OW1*pMx^Ny3yRX| zD-5wP+7UhD+29R<(HRu;Kz?JcVp77R0Gt&Q-=?2iZR|!mz%yKs<_q3H-nSyJ4>^=S z@ig@J6Y}%NYPP`U6&MzVG}Vuf3KG%h9)B1zmsGP3*6rEf+?VBsIx7|>U-bzsI2@BVF168`hV2Qb~ z&l>Mrt?|?(38@VQ5~dy!X(j_rSXo6z?^DmPTh;QFG zN|>L&G;o*BYok!R2Qf!5uR*{yuKTZ7(P6y8KmMSXtmlqZmmX?=ku`fXg4l<-eC+Wv4gtu+M@$eV==7I#ZL}nJZxWs1_U%g`-m@OSgbMAUKz(c8XJm#`VKjR`4W!lH6uv?% zSx7S?XsuAv?}*dKM?^n}erJF3VpxBov|59>4Oe4>;x0Dm5DpF`oeK z15#;xS9kuDtTceh;FOZJB2hQg6$hc4&1npVv>No6(1Rj}QX;aq_@pJrw0-35_&a90 zYUeHCm1_{Ny$CWm9;;Cz3H(DyZe5(zg>02W`XfG1$(!_COZ_^MYH4&;;_By57dC|S)Ah@DM%)lZXRL zrN=LxXptZa|NGwqWliJ0WHF~7D&yP1fd-D8D%L$Ka;Mv{T35bZa8bI5LPYS3@t;Y9 zHzN8g+z;+;)Ln?e4COwyuk83-$Id#>^08q8R+is7JoR%c&DQVY<~V@{)Gf1C2CfC3 zVh{S!Z02_P9L>4AuLB9bl5B)U~q3FpBI1=AF=S1#ZP3ka5tnjFzUA&2Jb?m}hfngPu4k!SaD z(^D>~5d~cnP*9q-12Z2mNxP?W4E7$6Ua?!rd~LWGS*$KUAT%E4N9*xe=p~OiufWq) z8u(l@m)X)+zKUxI`fqPSBlrn}KoS7>kPPetpy_(2CG{Q#Jg8Le2IWbg*ZM2RusgiR z+(lny>nesTzV-S0G3ChpR(Mm!RbgQjm=XxZQJ{xC695@gwz}+aj}I7*>_CIv9&FE1 zW+U(Eh6{8JEvUo+MD-ca+*Eg{yegj$VSg zSL22=8vbSA?rto9$KpPDU$X!FiFL$yeJJ2v&}{T`d%gqGyi;J)!}dV{Cb$@wiRX){ z%P`{3cX&rvm&kkV8l6B61|B|HNJH#`*8p^Z9xsgQ3kNw~834wzQbLJv=fYJbzVHuc zS66fQ-y&otTy%&|7IrUC`q|mqMpo1Rp8^Szi26rEQUWEDv$n*xe%%R7>UcUvQ+h(ieoVIVu6nNZai2(Sf zKqr~h!m&QS{ffCYbn$2c9j4>#o6c}O4#vNT70nT}p$oK%-~ak5KX#sleLW@EUgJS` zDP>8m!UUKC!DtL@?{54F&faMFz=whgUkcxwZYIxkB6b$LbNTmBCG{Uk-H6kRQWU0Q zHG*BfoOf%PXIJK{c9b+(Qzsktr zp+;5cH-k2og2-6{e|}@U!WSa+G}B$Bu`a}08!CkFS0zSQGbFq|=6hFASuB8r7uL$8P#__RZRGM=XIm&eR;PQ~`;w7kRnu{J~Uyp3V zv)!W%mmLmzEKt&CSmqxS5nhfX$zkYfj7jrYwRP@Tz-7T{8*&wo*4laC^ zG|?;z{M561VOwmGw@Onav-I7@}1@^j|1bZI2DXurk?Gadklfr{ z=JjCcPx|LqwOutQaW%wwo}L{{UF--$IyKx_pFyg4QTL4%G{I397g_Fv$;NG

qT`Oifxf;usF$0A zAT`l^FY^;C&<`P2PBPKJ>DD=V7*h8&Xj03gqr4Ou#ncr%^F-QXs;VOAXZ)i+5sP~@ zoIkXUff)=izn;+7sx~ZvcUMB9MvB=EDH{RB*@Imt*=CoSjZJ?jPZNYtk>1{@)x?~t zblq{^MqI9dP-kI?RuIFkGhyoYGB2FBQ&4QN_VGWxL0B0DaS~thifoT}=09c8dK= z+V2wH51s~#koFio>e_y%^*H_STkQlEM(OpMBM)ES+l|3QXXASoevr?Akki1Xz)yD` z9(wMmOjMymipiz)4=UFkGHRXa2iy% zLzjsMV8!1QlqTj&VbEfeiA{qq`RE1H9NU=~xw8z~UGvuJ`Q619pt@igz=A5IL!YDd z5acxgf()@WAe|ub@faDXG^~0L!Z6R+^Zx$(_Zb@(?XlQp`+Dmut*_Ol08bsiJb76dAV&G`|`duPFVL9Ej)tv`KGcJ}5p3 zKkj0Rd~=u8= z6s&ai1cd}VQKA*R#pPSDH;BoQf;12=!ru&na%=rc)Zsvc)27OUE(C9-7t;ga?c7bK zir@ZWG^WdIYitJ14}tI>E;4-t6*;jGuMNooNE3>wE$&@(^xGI1mrrpWIe>XXx?BMi zD^?gxNR^<~Kf$*D^i`xiY9;KLvGxHB*G?m&z{(ltbwo+a8aw*?`{T{8y#aKMCocML zY?v`VX!EuBTthQr`O6)*IzjUam75EYkPcDu9M-2enQ?#rl&-ScXLx`>UlSGvP}XI>4&I>m-|(NDk$ zkd5Q;=x)Htf%G>{?-?Uy3|r~=SF{m@Mea{oaXYB?a#d)~ht{6N@Dc;{1DC7QMf)o= zLW1Mt(LU4B=;Z9)UU?XhKwc63v=q}}b$!-&qQu=BSffIdstTT96 z#i-z?w$(=>BD|ULPx(IgDL+a-1hOf|>hV;v?oV4WoP(X0cYyC7NXE;b0qzQ=F~dC_ zR&1wqz)lv_2ixD8+<)*!Y3D6$#R(sG??gpKA&m@3e0Ye^WhA_z3K|*#sY%!V3Zr74 z?B1IN7)U0?XU<5s6Y8B1fgeEc9ftydU3O}hdX$y%z;G39@C@(@tL#mKEhsBpnHPl+ z640%=Y@V1y=GH5E99ve3a8MHgoxtQ3JC}A^rriJL1J6GHTFP8zs6d?Vw3%*Wm%ftp z2Hk3Uncp{ALOI$ zaYI#KT6mc~Y_ERv+&t#<>n~O5W*#?(3SHw}Gkn zTDZPhcf9Aie1NT=SHrrDbL}CY-)dmX8eFe_uW$AVOk9I~`edA5?U8^cZxKss9`JnQ z?VU5_>NzX#4F6{K-vcEW;4RzEU7Ntx7Lt+pf&asaQFJM8#R2+7Fc;z2z2aQs$Yp00sHtN>hG(((M_P?iTWJPHmDY_FG}9QpX{ z>Sf$1*(pp2l8&-mOeh=Lk?zF zR{t#n2HmW5F(^ZXixx>7vS@DyfFCnIp{yRr_jmqPDK?(vW$*JUzny#4IuPZ7d123%Q2UhzXm@QX?R;x%a(( zQ9t1J0Di8Y`WCP`Pye}>(LDZmoQ7?0i#pME04-XH!H1jDy z(DFu96txbrwx< zYB`MQeFFoAU`iOhP*qbauo&ZnQyA$F1UWGUDd}ez|B$G82&ixF=s=pqMkB9-xGw7D zUjPQWF#|>f+!O;|ra^6x_I<*8wW7tI6)bG!8E?BKbVhq*zXiOBrjMWt2h-YY$^*x3vWTJv^gh z_OgB)zjCOCOY0A(le*fjO$eh1WU!$|m_uRduAKOY53t?dzUDK9XN_6Rb`Ym<+UW-({l?EMlTmIW7 z`?mc3@#+U_2SU2=xBqgbFmrWN0kQ?5VN1kf3Zv;%mb`p_8=JqD36#rfF&QrUv5oR? z!0zk^L7+Sn{BqYp6b$O97mQd4+5&o^=Q=ux4nkOdB6RFEk8OfA9k)mzvMw(A+Vi2% zEmEu!ezt$L{WvgVq{vcpLos1Oxm8z6TADXdLYb^GV(zu`UEh}37VbI+s&!7QIL>ri z+(Y5v;W=N^zS4uOaCmeS$z!zWNvsuW;+pzcmm!w|+Sb4Qjo8LpE8K^-Z~9$>OEtxD zYZ3_A3z>w)DeuN``dp>5d2D}F5mFWjdxKEb^K)@GQa`gY`5n7NapmmOiq__gg@20w zl{kEI$ACz)X_+0wj1NV&_*il1VOUH)1O3=TqA3GHOr2+;?@b5U5k50A z_NCm$-c@LpEGi@Aouwd*%s(T-Q}R=wa*^;ec;H~wzv+nkXG$Dkd~e9wV}U3eoRG|vlvC5MoHnNyEvnXxLV&O_~2&p2Pyfni;(^gRirOzA-#o=58){(ogR&c1El=pJbF|M^c3gFGaRVHHr3Kc7@5ydxJ6+P=f}snUdFZbVH4y z`@f18i*al|yr9r=<#$2>_^-Jt8LM6o$?6wOa68R(hy%XO25Lau{A=3O?N|B>VMDVO zykLPq7r+5!wX`~6DhJB=AEe|0<)3mDduG3vM*C7v-S}u}vduJZd?aDt15}JQi|zRQ z{QOX{W^@w1rjAyIDs^WH+_Kg-HfDdA6ciNBFJeUB?StyDC1GM>LR?y!l9uWLpFSD9 z*7&_iu3@h|jPLB)8TXvfeK9uT(nzCGX6qZGN~yfQMRaz@&NdD5fUytcrPI@pKWJzk z#uUcW_Rnm%ccjG4S>KZ@P&-}qawuz7wScwdBXeTDgZH(J*?X3TnNRW&k; zKfG2n1aI2I@T3AM&HM|<8_5r~uDRfv;>bR}`NIFR;!1BD^WFsuGpoG(WaWqWqm$0! zA8o}(TZJ-E!WHEL-g(z60q~=dlD?5M=<4_vn~!#&pBQ)FOpk?X7AwkehSn=w>9MkM zQhJiKk_7`7A$P`8A-D16DhuC~6zG2c(!Bm8%iJ77#e@sp-n(xa7(Cjik7MM+U~bAK zBWjnV$;lzlE()YIWzZ{#grD{<=nA=963!s96~GV#=9?^gAJp~PQeMGPD##-G^5dYw zRD5*ws9ufGziQVrh#;#Qv|tyY%JC_8Nhjxu+9O1j)%x!DqngJ-vnf$2;#Tb8G&>>Z zyJw&p0C7-C?u5-^Wvwlyk43px|oo zdX778mGc29xZ8}6ZkR0bpw%fe&XZ4xjCFsTjTMQf^6Dwy^EE2z5|@`8Bv7voeCT{Q z{oUr>{~bX%fB({LSHwci$X1PtZ$&oR{zCcI&3K%uX|q-~|E#R;pxCK7$kpJe639v?<6LJU{zO@J7@8=)_f4#*B%OA=DREzBNUf z^7Ap03Il0sN4@q&2^GobNyGqR_$M+?R@uc_gvxyvH&^?ma}BQJS8uWxC^oNF5b+4K z#Q>Ej4Q0VJS$U$MHAzpWf>1Yk942*V2E49|rsKs!&EO^~n`e~4hC`pNFYK8#wghGU z-`13TuYnQ8#LUcwiY=yhHNtWPKTfkpPQ|wdtDy817bkUW-F9y(+E)XPLkor6axcqoxWZ7C@hdGyZ{+;*%d!7EHmrt>mYOa57%^ZG6UIUVad4X zHdiF60~~=i4hD1P=q2mPbT7W78Zy_o;KtKOc9d~77Qiz_Z)aZ`74Nr}?-FIbh?V`> zisft^d-Upe#2XoTYfjGDWo|3VKUQriAJ|H-{^alSy6}vaI0bnRG(127MjG)FAXG%E zh7}BXCg$daG^F3^3WC^D3MJYi*WKfz)!|`i*8y`29w8x{Uj6OG&bYSPPd9pC2I>7N z4%uRyu2ufn!E}XFn8B-FP*I>~XJ-d?TI2CjYpFwyl3%r5T_H$ZD!0)aP;FiF$cJ*; z%C{uzW6LG6o|z1xI$61|UKpmb(x$}E^G4WOnZK!i(v553_r>Fj!QhukUE6wBth@fp z`uYunNuFwU3#i7c^_q_?7?hn#ZH;oKd$K*Os~Wg;SlVBL=XJ_sClVSgq|6{?#AI zz^jho9C+pbcQ0gSZ$Mviqa2j*t+1S5H8nl!#`~bj!iUl|;_`m=B5n8Ln(R<-lm4m0 z6KBb1V9$iZ>9PXjz{(KLNfeRO{6u!9TR!n&9uWzCXX%1sl)08RW9?!p&HfKWnubyL zI9;#34&bfp^VN@xiUOnOu>17A|J6SeAZd3sZBPLBwM|zp-?H6$t@#((<#=oJzk&Xn z0{89bYqKt0owg6ztMO-Bj4zyR{~13nnTr0L`$VTk^M zh|l3GNaO$!x-|cRuCA&ISU4)c!4N|R0i}V{(>hS7m1;K~_r}>Dese<9qoq~Fr_xeS z>drSczqZbQv=jKE;D>&clWI6e>UbYsiiV~ppV=(4YLl<`v$OL$t9$CMHPg_k@G8Y5 zD>E)hr~NyDPr|pb2Hvq&w65bY<7S3@*+01$Wm1aL`Xs+aDd(!*d}^id44MfIBIO|n zmZJ$rm>+E11z5bqB_v4M*}o5Is~DgKn-6(^a>!MinUNN^=Ma8y#xionUy-c;nx1;z za?o~nH8@{_a!K{=^{MgdwxnSv31G-aQg4v-P1PoUDjXW<|5B!johQT~-WEV!v|4Xt zE}$v6+4o5J{(ZO06JxMC`Y6&iKy)^|0oO^5;wsvGQ?8vmG5Nbbm{WxVvLp`8DKf?< zCI+Oo>(AKPACpN*iSqKX{;?p;0lhp>POy2DmY09~+O7KBYC>JEetV$#vx;B7dHz;@ zdb&?djS!e)&bR9xAjQX!h=^D}z$Zupt~DUT;ot0qXd*D`mjTXfbF!r>wdSfcq{A8jYDV;SugGf78f0_Xgx;LpW``SX1O>d zS`Y;vYv^qvqBzl8-oSNcWM%zR)F9-L+xzVlH92)x`ZF^S27QXV}nd?xcvj zIpRD$S`mjBSV#%cN7TUO<=3}6HY!?O4wPQ@v2w>n28z%dWe@56Gm>09pSNyb8;r{G zM@M>s!Ky}JaRd;8yd2laua$#Ott~_z14$(hYr=N$65tQl6Or_)e_1c*S9Xw^pL}-G{^Xo&d*wP|p zvHdP?9;90Hz)TD3T@8oGDyyIL0bgSZq{|ri@WD!AEDF*L02Yh5WfRNR@)%6Xt@$katUcPJgr(Vn zquZ3Dqas~#jpk@FSP9x5F&jk10L_u2Kpz#wZo zJA^+$^tqr9zAVI@ySfcoG>G`4XEfTwFNMX)5He(pILU%hWtA1c)j>i-bB8QtQS(=# z>bG?WZ-?4%EBnn_+<4dTo&7Un=Vd$eapD_ezpdK0DK)dk$Wl(W&7fwOSYnBQIyMTP z4t?J$h9L!QoZP6vOaU~#*&exwUm3<+qQ&}kMq0T4nd9#5$Y%I4HOjZ>%E`y zQJrb_g>k1&x}N5Q;BTZd+)tx zX4!kMgp6!LHhHf5JkL4L`Q!IGuYTu*ulxRduIoJk?gpfl!u~NG@CeJ`!BjnTl!DK+!{G z??*T~05o9O{OOH*IXhg89i7EO_+wXKd1>>>SkDTq)(^3;(iSa30|Jboba{%H=#5u( zNr0bvs0vla)jwli=j2|9JBOZh)r|9;>};TJWFf@`1Wlq6oVpippr+*l#&9o56iGQb zQ&`qBv$M&sgQoG=tl8hnJKgjC>B>J5Jl(nv)uO_4i>JB%qFst@ofq`aaac)gNc$6n z%%o_Wau^>b#Dv1}2(dUX2nkt+irK$r7{ip9(~#}^Cr)|Y$Z%r0DWrq)&jjK4N7D@> zW{?npmRH?uZGs}Ew+v9D{KB9@pM&^@0hEY~K|88FG-P;Q;?E!a+Bc#Ut&h1P>Yl#g zIX(`NovrO-vHB7XAz!N~$#Hgnl-1tE)2kDLvr)V8HZ3*T2AXU1z}iwy7}N!P{!AbE zOuQ*<%5m=2H(JHL@7odZoFqibx+O8%yQO9+c>m%6YzzC9Cz^R`) z0CSwv@BR#Nx^^9jgt>`mNmKjR<|c|Nsy(sK_MX+D~^o&>SdLcNV}ewg;YJ{ zZX(eevm2iYe$XUNrhPRJBdGo?wEL*FY;xJGrtz&aR%o$}A%n5cHv zzrfb1ckl7wR0Rpq8$@xcHe@`!Y-c>_`R$1TNW(Q9bnk(!1i< z_OOrS=kOSN_Hzo~k&7|kq|_brPola>yUphz0NHPPImjL!-+B*4h;l{iLDnEp$-63k zGK+t84p)^oq+(w@Bm4_K=j+$6?g`)C^?FPmcE^s@r{Evj2D=wLUa~>y-1d#$8!xSS zJGA02e)Hk%X8c2e_;2?nqZ+l}_v}hnw4{m9PJMJ@c|+g>#0oo1q`kIEe8@RILB-gN z0uMeYr2T4Yj^{mGuN+lWR304sc|v4qxkbiT7*>nE@Y<$3{)306Jv#x&=VfK%@w$kV zw6zOP$YCr!{zY-b@BYa)13yX{l*0s(h?BUTNgP#kYJvy_lihKGW(qQ1(gC>Xk z*+DRWu7W!xGbVCmv>exIlbq--U4aJNmz%G}OLw9d^+iPACpYnTDkOr8Foth9^u+^g z1@pJcpw7jFhUDU+b~q}a%YF%xTtLkVz{(=P)N;v7ZZXA6*4BP-M6!N$FbKEOF3!r_ zqhTWB`l6@PGmuLFx6%8surL;h+NvhKibY16yF#yW^X%58?qX?9|1G!NijD3u>2Y5N z#1kdJee;H~?^4tGbGVLHzy;KoB9H?42M+*K1i3N%HSif3*xH81#NZP1~wj&&gstS85zys*AIC9Cq1>IlR|ylvndTlW$oVaNH(?4bH9Ph zg2Us6fI##7<%i#EYmy)`Ld1rU!b!|h_h?=j|HW0u3x-W9;te#J!Q}|z0EUITd69>l z--jp1mQCEromeU$1>T|RdFSe~=Id;8@`zr-7jGUTVL32_Lqm|-x+GIcUfS0zG5EON zhX%4jtVVHP>+Q&aQAm7;lbNXfHUh7M$*7EnJNnqQmYt}gFxwZso0h=Ra^JAzHJuIG zEuVXQTb&2x_Oew~ggYjobs-!e2-cBOyu%oJfKKSV@S^(mS>?$1le$vBZ}l`EO+m`^ z(COOknJP1vl;pzuU%!KX4uG4a@@K5dPaHO0S>(zt0-K_wM`2ppXanDwAU^tAhC>IC z;alyyvLTE?rOl6M&^ac8Y~?M-I&JEMeh;0*Q+vUA@nHr)MYxhqJ|QpFdUG7|%d@Y$ zC(?W5JTT{7r)(?ctus)OJNjum?)$+_vEOb$CvD8!b|AjwI{N7`G{&CxoYgm0Wk7@a9g?>WFcs6{QyimDEJ^Z!Jy^+HF#8;yZa8Cg&SMWcmMG- z{7C_r;Nec7*BwRlg5duwN&i@}Zq8jj2c_48!1k+&6&uK-jEsrNC@Bg3@IiR$SxJ~Z zJq3E4&VV0Sv@9*ZXz6^6mlQoWn{_yJ;NV<>vm}p6ddX6)sUiVUe zNp3127f9C#ARudAn>bemi0h^y{rWBk#xt|Xrs*<1nUdSeu$zGB6Uuh3!N~*Kb5=;| zfs`TDvlJdD4DiIK>*p3D8@IRI+u!DUb6A-0j$we>VJXNq_YoBu5x^&)m{LX=3I zN3$Ab2 zJT$kb@!^MAdu8z;Dx&vH8%sx0-monU<#iJ~A*#p?hw*X3(FuPT=W-(_M$C7y1Qj!- zAVv-F$I7ZI7cCW8fbrt{??l4kx@MIdp|98rI~vz>*B9Pf`rMf4bo83er?(B)<7(sM z|Cn{gh*@$cBn*${<6>zJ<`ov29AwKO)m;EDu!8!$Bb2OUi$10o9cIYeNmsnsq zef<=`EPOz|2=X20NOi#)UDUnpwSahywu5q(WW1;cVNt=dj5(pflr^m7n#$D4-iviw zaC`LGu!BMZa@#=tiv#7XaJ?Z?Bv8z>3o3gr=5J61rm~CbGIU5Q#AJRWk5WbT)ryC+ z#?Zo|E0OChKPS#6kmA}$9H z8VVoHhip&tIy`VCV$uz@JG~{l&m*B^2*wn=%$4OYYC7pSLlTvC24!xXuQRiipA}>U zhhfErpkR%D=CecyQlX1l0nK5=nzUax)31{#_1oUCM`&_4SvtJ9FvmRD3D`z!1KU_GLvHjWQWuXEZZ z1q?_CU{9=G+fFW*&IEVX{QMP0Xg zOgoG}aWE`FW(Nx)-r(*}r+HJDig+7N?icZdw#?>XKD_UPURmFe+iqh;hZBKm#O~O1 zvWN~Ba3|bq+Oxj}k{}6RT1Mt-yZ6-XSk3QTb8j+CssKwSzG=Q3`(s`do#+B!<7J@r z^x7i0s@dD$|JK_pvr+|h3b0N`F+T-E0?folujkzD#s!2uJ^5jvgMcV#-xY^pOZ6_F z8j^O#X_uXscdGv@67S?3;`#)^Ii{=obAFfMj{ua{h&*sX{OkWh5&HSr;_vJ?xTZjx zCPkpq>_hWJveIT!YyOA#jNsqd|$M|x&DG0Hk%_^4HrQCj6 z{c^H1g(725LDDQXgAZ;NfGj%OscE}b7B)8v9Aq{BFMkRLxiqA%+t)pUxWlOP-(ZD6 zdYFhk_=K|+zSRqbWx}+3B1h1lPS1IA_)p|_Vl({d;#SP2fiC=}?J+A@j zq$1A&qtq|Z@q_4Uiulschm&c8I(STm-}lN=grb2%#V+7tV5ZlafM%dYMXgW+gl!tGn$@ z4#)usvJ9O@*C-fb=wieZ5)uwTS$i;To`Qvq{axW$B~aIqgY!GQp}h*qX!5-V)!Ni> zOtXOUSkG-6DT;t^*AVOl7P)zQ2c=Jf2hdtHWFnsFc@wx!g+kN-;vj{pi`?Skj_GMa za9Z5Pcr>+)c^B@#<%XdBlf5}_agP}SV#ACaOcUgufXE*I&!16Y0fqRF@RXELsH*`C zNzD$kATJML`H{>BIo+M(ip6lV5^5UJ$*pph%BPmIZa-qam+kd6zX=Y{x0J1{LZUIg zI_;`W|AsRTMMXL*h|7}*j`n-dKqn&Cw;g1S(MfxEU3IcYrJ4sXMi7D-FKuj2#?KGM z37cT!PK!YN!D8ZI52t!I|?+b z;Tz`lyolAROWfU=UD_17M0r!FJ#2U7!pKtBpg3p8cMCTv69?DW(()|FGYF!7;^622 zVA{D~2&;k|b-$OMCPw;|YK)5qKbP1rRSa|!$ceT0-ZKi5Y=aD$6G+S`t*%xhyz0Vg zZL^eKcT&F1<|&L4_pD^jVWOn|sAZ~i+Q$X~wQp$X;4WSa z_K63StgO#9^1w(ensgQa+PKMLOahjnHs_rjudLi#DWS)we@U2dwVj^Z5kYDOFIAg&rw6d?M=-oa&Q*vi_ z!qpX->Ql|v5jZ83|Ll&Nn;VEox{)wF*kj-nhxp7`pjpeInirIN&!0bE0HFe+e*<$g z5-e-lVfyYBts5D?($4q3zMv?2^?hK=Ikmz881M}amWxeeUnS*3@S_oJgC@HO zQDeYKW?*TVKQfUafeGVn$M!w3U;Mg`j&pBpB)~MjPe=F1D^V6MXNApV1qjMe(qx)9Dq|6IH%J_gcW%!C$c(E0` zX>s6k#SbJ`o1k*UTB1%}FTnV`kd}9uG z=Bz(db9DI1TF*y&m+c{{5=f0x)X@pL0|^g&KVftNn5p zUdd$vVh2KoJ0@Y<(V8k;*rHFjJ?}B)<3#w73rgtfQj&_O>Gt2mH=l_oh|pE*n9j_B zu96^t%>V+k7|jkYw}k|e)UGKT{~01N(i)FYwEiQkK*}jc5}BRnztC&hmL)*_KLpuvFbtY8R{df;^R z85Gr!5p&~uO4eTG+N}_AU%8_n*hLTIknv8!JKZ_s2lw9VV@78(^aYrVp@hy4X)#Ij z7Oq5-8Z>yXYm8M@TOUt?X>_tzES!msfgvs;;tij3GQW%P_l;l>+HB1=Ccw3|xVqX2 ziIP}>?XvM~{_ue01trAANr{Ty%*x7|`tf5FE*JsTPdTZn?_uG=epFaHFV4fmzH#uJ zGgPrteh-FH8%H#cqN1Vkm#d!dFxDN*o*=PqP%s!Aol*bwE23E{x1MI{NPf}3iSZ7Q z95He{?C9w3^-Pmx`xBryq6n)1T10~0jXUmvlw*2}-7hXF0k3`W0Nt;vuR~bB4j? zBM~Yem6QnhT-jjEgQTs|?;{^!gBX@p$Kojk7s^h~`w0d>|tF6!L;iy1qOC zuS?pbU~CFRC&O;>6c-O!e5gA@Rj|SZcIQ8-@>U zOXE|As^j4oQqxh#KprQ`%kCbJ9BuQaJ56GSrnq?A+@EAqJ~gI&C~pi6#-*kXGFu-v zs1~E+=Y-uyc6&isAAAB_(-kahcsvy{)O&4_9A?HCV{^K-7#lJ3lC%N`%KEP!MQlFm!&w9qq z%PlvmABm{UH#q@b)7Yr(@FYN#90GuisbphYAPTD%4o|>L!TM+SE8&9!@iC?Rj`A>v zg_xZ@x!t4}`OaCWUz??K-^s1Ac<$(J)CerMIDo;>uJ6u&GI}T+BKeex{|)iphaW@C z)k0dT@{TS~P=3od+7X|ksaFSe4417mm|jywczigrODzRH2_1x{XC3dej%)_+qRlZU zQ7f9qa@fR6E2{lZ#~~1cL{>5G?Cfk!)kQ!$^W%ta*q~XauO8)4g&4Y0s~>f?4clHZ z^Y6|lC=ST4Sy?#z9z-)DI{LI}Ta^EjO1Nb>-_z zmce5=`W`uea$v%#Jpu1CbbvK|C(LLjbxVi!0ybu}inFrI z=;@;2zwxh4N3|YR_iT^18&!@`Mox^CzDxZaP^%q!$ERRc;E8|X2#Y7-KO%lcrh^iJ z&DDYRHWPreMYB|T;y;jDjB`~578I0ax;Q!5C5h-mcp=E^l0SYEHgkBlQt;uDh{PLk zQI@*IS2;}f05uwgr%y$(aQ~!hv>WQHYWEhtjhTLP&e&M=EHAA4 zj%&0$pfEtxg9;v7TU+}d13<4Gqoc~SJMz2BJ>hdd?U8ko|r$6*SvOsq+UkSPoR)^>F&t|!uvS10IC;o3ip43GsHTm0SLdci%z`74 z4GbCPR^W_?gX#ZFmX?*JfznA-RCFlc#;fP<2u;6&SYdVuP_i>eDL!xK33X;(;Jj?R z54j;vQuZ+)fT#|>!}^XQm+ecGu__gT0-_n;d&yow$^~B^LIIA3Ml1`d?EifJp%jsi zaZf~$nsy*?v%2h=cs>vC92w_lw8PcE92s>mmnFF6HRIonDZsk6fW|nsN|Ek|1-3C0 zkXnJ|Oalf0GqpmE53nSLO>;T?bo>JM(Tjw?kr|HUb6p@fFD^2zGAHAXXK%b12AKjs zhZ=mZ2=NCQEUvDuAh%=wTS`{Lio@6(3z-Nc0%G!-ToE%hln!UaI1GA%`yVykk7rQs zv9pKWfX5l&F+mU&nK`aYP6ctsPBlHNVu>4>J`(_uc@)G7*`57;1(J^wi13w^loSjx za&ZR?Q0i8GdtkK$|FWhXT1FztG_!rK((ElU{=Y#3#nxoSH201nQXTofLU=BsA9-Ul zp9~c~F9A9wwryyI5Rfy(WM*rw zcVdz=?J3xk?$_*&cuWeVzujN6wfg>s+HJ>l^-n3|xmJ#R?(10AyLWR+i;AA9C-WQk z?J4v2&joC_52C@--K^jzrqbmbL@ z0<)4CLE~dl(X$|BuF`TZTh9Ye5_M&4;I?iP5y46;z4n*0bZGonS4QWo z?4UK9uPDQB5htJTXONcNGnpeBcU`bA%a+zFY<&6Of%2}R=0!vCywgxntX6n}?1qQe z7+Yo8F8_z1pnFhmDFsCk6{}Pc-BVE60T4;Y*cfyg;!l+5m-J0eFux8C31c_I;9FzG-WnEW;WrBO}X74?jw zTdK(?z8()5inzJY<~_Qus1YR_$~NjVi>Esi8QH~RpC|FI2V5`t{}VnbBG&v23@Ifq zZz61nb1thSh?gMy&pDlkD0x^wL04CoABg$(kfk`#3GL$2;?*m=^%2TBuPYBI1?pAj z{H{79_C76}s`tEdLG8w)d-p+|C+AdJ`2qVxv?;EC zja08<#6CET9XbOwSHd&JvetqI)0Vk3Dt>*n5(E9@OXZ~)tP-rmXdwu|fu%*ML-0Zq z#%WEc2!_uwe^rw@e}-_4HOm_v5j-9LI*$DK?EUch4HxlD$hIn`-59r1f#ZLS9{^G_5h@yix6gLWxsVM%mSSgW}81z zts4up82aEyik;o%1)m27*%!DVa z$>E1xcdl{6Z@T;S`wDfQT=izIOzd2Dlw%EfZFIPAK^~eJrjkW;w+X|$-GTIE-Gn|uc@ITdN1JC*9axD^*?{#%FAhxy zf>Qacj(1tO>wbNAkscW#yn2weWfh6s2> z^A+5&cXUJrFa(%gKoSr22oQ&0Xlx8m$I`($1#;n{m>X048?Uh|6Gzd$;em{m$Behi zdCss%i;9R3*L9qdl$DesOB{FSbP4%jP!~{{b-iro3Ot1gGY>x>i`ms_sh$ z|6NL+&v77bzFl^*GMODdYf}80Fj!VgZc>qco#P$*hh|x-l^r`o3met2<(i+Lj|2~1 zyB3iC>dY);ji4r*ZI_nmF7C0loGF^EdqjZmyQSJBxX2~FoJj!$Gu@N;(EK?^A?3RL z*jSZ+Q)zN+@4WF){Hvn1GoT$syXc043IJgr=@{~iKvf?w2#WnBEdQ(6MB_yvnPq5X+mNBHxr1z(ikpr ziZHH(M1)b#yORq$YZ_4;u>FC>{7m}DD;lCfMj)CE9eb6XAl+6(?v*EatoU`0GT&{P*CW6pgh!n{r#w zzW|dA)E)t9Q%E*Tc7>L4+JElY@MzoRXp0a~ZmS8Or+9&BZZuz&{@(rj>k~!9kU;tvPA;HW46UtY zJ$=$&s3I#Y<^K%!05)zyQ7f(UrtF#t7gy+;sF z&aY>e;!3FJj`gB-^21Qz>aP?lzi0b!6^aeY>T}yc3U!59x(3thq71+x(S&;J?Pc zu8jiS24l;6NHzg5mVf(`{``CK$$v9t;nME8t^2{f5=^F48w)A9cJ%9Nj_EW9rZ~Pj zj7w4{hQ*h;ekBle>HWv)&^9}BXE)_||MARGg1@M8OnRS0Woj1CHow30L-5aZU>)%m^Os5jDj2g-?w$t5#!yo{tI zEgapBYDc5f!w05zrM^>R{!S3d>2)>>EFCf`!mq;iv-AFIOwJX%t`EnIdgkg54C3+e zv6fbEEw=8s%O|e{e);jp&)>W@f=?;#UR~mRzd~Vg)U^Q9xx?C6qPNalcX*FT#AMRN zPx?5AZNBXBG)B<#khcB#w;~ADu0r670%|n4o8ri1_-?7l3DYDfUyPbcvWTN(W^XJy3 z`tDHit{03OND~TtZmMUnCL^WCFsLNq?RuY8BjLtSvUc6r*yXa6%nH?cVOR@G!H%9H zFsijCl9>ucEK0TS-DX#)o;TKHFxYkmtZPD?xu%!ut_U=fKp#SJt@ySTTqOI@!h!}Vx;xw$@84Nc z-JrI*r&X(f@^>@9A)1rb#StWbsa@f=e$~|+(8yv4_z`j;z!ItyAM;Uz0anonr#Y9; z2x-B_eDj$HI>=*byXB~k_B&#{{X{Ft*iz<{YaXj9<9r-rt&*7U3mY5DiHwTM^HYU; z7>+3tIbCdV22A0}+NvH6jwD}J_jPvpl64_XL+*bC+(srpv7ULb>Y21FE8-IZ!z>Nu zU8m>xiVF&c=H{KC@d{Im8TOiZeKt5Nrt0#<@}b<*c&7Qzvp!QEp0B@sA6f|R&INQY zjGh0hT<2+=_8iZ#e44q1A9~WL!o+FNmH|% z+QV&MXt0=$JmpU8+6= zwvCMqC>UyJ_LHUDg&m9T;VT>GTUzb$ISOULHLz-tNREEkdhp2i5x114+t2ZMtl6mh{Xlzk>8FORm$-i5;4Nd(r%+N3xi=nhHZc2sJbE7InK zW;3`#4Q$p(;`g(B&CM#9FZe;212A4GOo`$_1VTneIO|u z5aqeugD6TaICAYz_f4BXfrVG%-=c2}b`(MHKGU!}@FD{HTev_->lB)nmp2Wx)O$LB zXS1O-GE@94!oFtRTu{7EEd2G(chFa&VN+dvm!SE7aYcXTKm4c2+Y8iXH;~N%j!}Zr zs~2Rtn7?{P%|B(EmNN5(lYYgpW8y&trAxr(zWBlZ{+AoQuEz#|5k564v*&WT+~5E0 zSA?yhUu3PXq1oQe{don{MOR~7aQMk5aU*CzAZ*Xmo!>i%Zphtdq{?}akn=(u&~9)* zJ>)YdaudJ*y(Z(^&x?|lmvmWGav>G)RfEEnZvXg^?^kqKJ7$_{78%K5DMQbw$o(?( z5f{?+69*A;(6|osQB9a6WQO^=C4GOTdNpT}%TA*Ir{0?+xtc@Ll!d{eGU`%CHh7wE zB#?6FCoLl*a{7Tjfz@$C1sK@h$<5NLHcJPxE{c8Sn@>>OS*Iduesb@n=WE5GF`%m5 z{P{F{r;(pD#ZUI>BJ}AX%3;|!7M~Qae@JF!d3m`r#LB~tYB)KN1i|2igbS@nams$l ztiiezpBF7HzkxOzEA0UulYmX)`FUaOCr$-jK}Pi#!^hh{Bs`mpt{~w9(zot|kPM>X z4FaxQ!0!Rxo&`m{YoJYfzU3znr9=x*cNVlLLG8s8yw;sCy_<3gZ9V@QOY8W|mJRFosL zHA|=yxAFbCgd6mjxd0>c&0Ic9UH8b|L7r3uBl+o?W<5*sle#~*DhBnC4cHImKwW35 zAMl34()Yta&Leuna-kdP3%5N%kl zkWdIv7{IP0%7B-Voz|a=>qKzeE+V^C&q0(^_&f>LIcpo6;R5X@=Ew{TKy4ND~v22V`Ul5E~A{C%U-F>t0N(<^yezdRV#k_7j1~E%8Gp*>s-LbFR zT;~zmk97>{%re6_S5(Il>eLN{4fc<%?nF8l7nKgSF*^Pd+^%>sIremn3jM z5B+b#&a$<=4SlGODJgwG)Sdb)?9Zz!{*!n1txD=KIb!WwegTLpw8zR4JUIagK6U#u zp-y&Y-?}Sw6y!3bwR&ThatMD^-~XPtH5@JJ*X25p{JAW0lICU$JVi*lu!E!HDTrV- z8=RSS>m7c9%^abXl>NICrDfIXZo}0GqiGr9zINSw26qC%?xL)-8pova==0Hu#i5K& zUMBh+Xfivfcg$|gV|H1IIuVdxR54-!YU>y19+5Cv=(Akh-9-dk5aA^QZEp^A^=xT~*_kDJ8bFf#q;FOy`3pAyP z-NHr1m~|Yi&!12&no#E{N}7KS@N%RV>+|am)N_>etN2V3d6# z%3V>tWl?Fc+4;##W3E-Y#0(I?F$($T6)@^1<@WR|Zg{%elfX5}Wt;2fPhBD`?^Z8f(4 z&8xh`pn!OA!X(6ihfPW<4_GmD?0ui<`Vx)z+gU^N*DITDpRGsyjSjeZDn00<*?Yj< zExtDWkkyKv)+0-|GG5%|?s>{>j7du2d~ruhn-7Z)SDKP6u~}Hsp2*kLbq(59h zgq|cA?Sx-y_!b4<2T0?j|Dc4P=BbrI9hb$;9~AzyPjO?wviwC)%l9gp@1E7qyJS4X z(#v<{Gc&{B&s6BLRC}XEDXB(`wI5(mb;Pc1Mks3eDiw9SR1hADHFPK~Ns-Zd8uON$ z0zFUkqiqHC#|WjO-#!%7ASX1@a$}mn*vV0r-5TZRi*q=+iEm^KByE~J7L`;HagBJ9 z<^Cg;$=^l)SiID-)U58>@~OU%WsCv(iJ6UU`JEpBXlQaF=UlHR$w|JKt*9Wq40_Pt zzmklMhCRQq-%}B_fXeD%mHk!&c!IB47*RwY?+g^^dQ=(LX>0xwGeAjtwB@{~L2&hU zgW*y?K8+7m+||{Zl;5vaKwClW&xSeg0&gm*QJNfOTnC7-Q9+; zN5Oa<(bgtfZ9Odv%N2AV#3m$+0`!k0`DxWm;Oy}LvPQn}QrNz6shWe$L~%8wR$Fs% ze)bw`US#)N@|M4hfm#m=9PfDByIVpu-YL>%a|semkAXE$fk&l>HrtpA8x1y{XM)x%K6c=cwpw=frp32$arYjdFYpj z2=BTNk!d^6h)L#u_IxZ3!O-#eQowiRYQ&5?&R(k#t5}?yU8)oU)+<6n!XQlkfmS;T z2hlmAr~q92j5|{D-yvhFHP-v&#QDAWThGlkXkri4=Q=!;Oc%DUpe)?5+G8H;1vZX;VmNb znaWo;Z{OYrZ^au(G9l%2{RA}EhYueb_Iv0D9j4L$`vS5B|7Xm_AFj61hJhbRA7*9- z*sI48JaJ#YRzMtkKw#i0nD=OHAB!9(CI6f4>!)B~zcJtcm0pQ-^fcdos8s}2R7$t@reQsjmd&dP zmM;3Op_E@e^zc16h2Yg}`S~*mvRwS1X;&labCkaRelRe9hgYyj?$R`UoDLUVAz28D zo4$9-bV|ANaz*`cIX#)0W*O^`GVacE*3uqn)my@-=3p_os{Q3KRfz~ukk}6!jIz*B zOi(>0N(~z6Buv~VZ6!BV55khA;IRPUYHOw{ z5D)-kLxUE0Jl9q(+R9#J=@RQ5ZMXdKkT`)_U4%}9X{-a1et_*PvlvdlJva`0b`|ap zb>*Q!SA!~Th!_-R3SGsL$&2!AB~{ho`Emcy;FPsl#+6|Gwasw z(Vv`(3_iFusFg=g*MxC6-yS%#^M>;o`wq{JMdEt64h;lu>DAB@ zmIbJKX5JulH#RnCMbp8V0oWAKR%NBR&6Z*dlS@!X3gXl~b%p;nuP^BP|L2{HK_u<4 zZu$H9AqYFjjSNBG3?>tJ1|+~gQ>PQ6!9aCh7WDPhhuf#)Z@UrlL-v4P{%l6>BX&5N zyfe!`hz-$%=r}lPC>a>QY%LDT(O3|ZC2@}r7G6948-F>gF*$|-ge zlWh1~Uu3&3_we}ehaMuzoDmicGLk@eoWbgd=>CBPSf4$WT5b!cl!35+GzcMtdTiLc z!CpfFMMR`OK59&4&=1yCwTb2r7R~aiiTzyY5Rs!iw->w5PKWDiBo}#lq!Ap!%+dTF zKiR&wy1INhumwfjwbt;JK??(!ZBtOakcCCA+CmcGv`EWY2D;)s>lG!Yvug&EKb_Ob zR+dbSiz-w+w)=l<)x`*+vnn42lN3|Xs7;LhdA&^O+2HtDVg*+xfn7}d`DV-`8ELU# zGs1u19rI5~AAC8-JAE}#&JX}@xuXPtku1@r8(zJi{#?f@8AscCdMRN zzteyM7yA2-EG~$ID5AkoXknO~jA7{$@}kQ!T(lrSe~;vp}Zv$_GTvve68h zA4Q)U9ml2x9le=6BAM-pa!GQJb*A~mN~l>``8)?6y!*pt@WxQN@4pCGwjXOTu~p!} zBrC*K?9Y7O*oZHpRX1Y3>WM*}{pKmN4|8(-9<{4WIUh%|-(OiIy8zzmIQZ)p_9z@a zIl$pGIr+Nm^hg(^=g8oSBApff=g%A2tTS1w`Rdl=I|h+CJTUWZb+Rn8OOwQ$FiFue zj-Q_IF_B;2KiG#DE07MdHe4S4K#IN(?=FD#q!gqtynKA88wDjAb@r5EVq!B#+{dTu ze;JZ(H;31B$gKkL{t>Bf_@KvIuXWGaJb>AGV>axxiC@R-i;TF`*`?ZlwE)w`vWJK3 zi)(_;T2u$Z6v%7|W4p`m+GbQpS$+&p3=E)e0qxrlXSx=DZyu)10}$^ouH~M)i>V6VWK7je090DXAX}dyZ{CbA~4;k(c~^ZZ6H)(Y6dkt=pzFcKtAC+W5=<{CNv# z?7h*XAg26Jc?u?`=}Mxc)D1S5ic6iOA?!f^9+$5ES>9v;oNwkHH=HvP$n>h>TGrRs zXP6{eusK+xgc22Ve5Mb=yA-N*9Ut(G@>mVA3Q3JtfG{<@ncG!;Q4Q$ z`KM||UmdnInMCtZJ>?4CYwhIXalF2$UrR&QWzvA1hn4@kKcSO41%OrXc^|L0ZiUo; zOuXaVRD^1(s@m}IU34gu-b&k3UAz8SL5i0#Dyn5W6E?!iBi(cnhE(I!6|zgDHpA(+ z;EIF27uAVA@HR<-W02Koe7o;$D2XP8SV~zcV=!YNliu>O2?)u6LNkFPS>)(fRc$B! zdEwCZlN%oQtw)EC^oXm&RF5>237#$TVy(x?3J`Uypkh9ckUlkgY2b~a>4t6mk2Mt& z`(tPY?eAi>gR;T%m{B17BTj;y!EFzc*fwc10`Zv z&E%bZcokGsReu?pk6NVh4XKD%v2&1@G<-~QT8jIT=iz->yv+NQqZ!3t@)K+T8v3E@ z+l_y!tI{MHS0#<^GS}E5PYO7^PItcUo-BA{`uX_{b?6}iZSeX4UAYdy(Lg-hNQJNe ztWQ>oiFOo^HPMA3=%~8dd3wTWl}ujt3Ek?G*RNlnoO6EB)ecn3%PcIE)z%p7X?Z^u zuGE*MWDQZc>tl(@3Wp_cX+Yt^$^Dz`1588VY8)>R^TQP}30Q#_8QQ(PpkdtoDrM|gi==ANi4 zh7!g&D8HdsD}+6x&>!n&vKV;KVU&a}M7h;NNIbxP|G%qj_AgmHr6b*Yx~#*D#L|lIQH;zAt)tC}Ct` zA_{v3@WzX0{Rui=v4P1NeIbe>L=2YWt#i?;m#(Z#Y#*T%W(b7l<~v9u5Ogwt#A$I=ihA$jGS{onHyLLmuB}YP?n`=s0Pgf3>Q8L{ia`^DUf`~ZI zv8iNRBo#u%l8Bvj2BBYO1wY-duP<9RZOD#fa%J%LPnpchu#a3kPCF(L35HT>X)s+u zRIC27E2|I{r+Xzyop6tct>;Wa&oJ} zo@DUOPTO%NpL`>SD^$M5#_dH+mR%f%%L{n7oP(A$`O5BsT+#b%xF!a#9#g_wQ8S>^GCC8$&scw2 z1C!fKpJ|p>F#O6cU6_pYH8D8sK+;^=sH4<&@{8ib@-zF@N*xI-DFYxVc%tk_lTuVgKM2 zPpS&tD-dV{sk$a5_h*Y0-|aX#SCyT&7GG#TiUcuW!J)7--&}IZ_}?6lgicSis@vxJlrJS|Q8u^jz6G*9qzs}-O0>(Rn zP0oMVPq6&|lvS))i{nk3ve;1BD`q9$XD;)5Kax)egXW%=x_*PT4NbI_y{f?$^!TT`Y^d^`yzA38CjV%xx zWvr<`f|$gh!$XbP_LwU!M?93?+oX8B!A%-Lc`D#fj0zzjKA<5R(jkMyNeH)30b3#`CG;}dzO^7f5&zn_oWyL_y8&CrU0EHWYeL5lr)%vfAi+CZ z9##c;(Ay(}P-|OkL_~*?RpD3J1~+sGd3hp{)n{(Gxy9ML1DEh}7}%Id8YwcHs@?^S z7*eMN=j_O|T9y(lljNQkdlG_67uC->(o=;G9<+5#-BGZj2Zm6Jf$sNq1wL0~?6+TN z6wKq3tE)faU-%1o-)2Acyd=>mGrEPu`Sn+6=Z;&>q5oO+d1pggqy%tU&)J%WXA{Y1 zkOS>P)RjJ;?uX|0NNhXs1qS2ke3y8STGBO%ZM4O@Zw%PDf0&w*%vMMl0B?t8TQ&;Nn_CPx&<2f$!9 zh2W7d0}~PC864sdsQtGYpawBpU%$GQnUjNbWI{!%gWh0Q7qWjrCz##-vQ%QCgBT^O zK}t%>(-7^ClrTfhG5lEW4GppU9^8mI0oL#N8&z8Ua3s1M|8%O_>Enh*I*kgm`>$TT zy0|zP6qS%rR;FhGLfhs|12*k?A1|J`rp->SRuL7%=K;zDOJf_)Zo_xDvd+Bh*P!_B z4LmS#S9SIEiRv@_R`qHYKUa7?>5Ivv1EWCNQ56JIyI%f1Jajo-iE&xaia`oApdmb` zE)MNOu{`hUT)0d~g!94QTk_f26+Aml@4lAPi8YobXEVBu10;5D^ZI78lv}qgZoPyCZ@uGV<2Ur` zXS@6@kmvH|-MimytGR;^dO3-#p>86+elzt32_ffQd`flx4Pvh{;a{AJ@atPCYhoO?P=dOS z#H*-}Tu*-Gj+Z*DD{)v)33}?0qGE@0#eON=&SAnbwy}^5(+TnRXSTgqoav)4S;$%A z`IKWCrmA+k#cAH7(+`Wn;>VHHzg@^!_6r>K%MJW`GJ);1X<_=Rbqiyzu+fDWGKVas zX!9tuB(s!!?-723&bB!N-X5?P_5tqZS5$^IfB&v%cCMM8#m#Ibk0!FQQ2)8)nOJ0f z??VqBdf^-DGu+qqY3kxSe2n4-1_lwU$Gh(#&I&lRAY#rC+hU0de(q>_jCZ+XmPVv2 z%2_H#Ha7iWwFR7~y#f`-;$fARoTTI(NU^5i=O^_S{Rjs-6Lg%-@4HGVD44_fC>i{W z@Is5ABf8#Yxg)xtu=a#Nf`6k8_ASW#TP)EE+n0E|&~lARKJgAY7HOl|(%j`OC?s=9 zjOn}VBJ1|Mp9M8q5cjkmhpBpHF=ojQ79rHs-G-kCume27I>(9|@Tk^n@xygB`|R0s&M)@#oS~2m3%I2$ICdJdQqIoK5L^^A z&rb>*wc=xAFLrL}C%@~xXT2_bjMx8?MpZP^+@794IZfmgPOrio`QX31}BPSs^hpw(V^KBQ+9-D}6!e;g%!x|R{@dH4vrT%F;_K^#H> zId|1uw6qNkUp7D2A|Yq9!_qVj#R?S5RoM{tv8&S=0CjM!+c6^wnom2!3m0D>L-SI0 zmWleDO>$xsVdYWH>5`c0g&$04dBLcqY|jPB@ebq%i(f!W$-7GqP&GIv8i1n2+1dF^ zWMo_8NAe=p)@{u#wnE;*iNwP?KmL)BXcRk^PJ!ziMNqS6fl z0#Z`ar634MccXMSNQa6vNJ)dz-Q6Kw(jC&$DGl$n&i9<(%*%{_?AbH!&05d>+}HI< zAQ<0%mP6j&Hb+cGyQ11DphrM-(p{X=3Q>m`Zv2rASW)UdJpN!>Tk&RXm0Uq_Nzckx zBE22xj^PG=BI5B^6dxjed25$;O8Nhh(w`q0Tko_T(1lQ?Q{eiqucTqf>&w(9bCL=y z3Mm7^NQ67pP)&;7BwP6%=^0KG^IvP!P#iQ|Chg1kJ2jV=ZV0Uk+(}GjCyQZu2>?I1 zdCrMM8$QBc7iS(DZK*3JoI3Jux|j~Z`~l`Ku5ee%C`B{Uux~;`YPCs&D8}=GBpOJ;J#|=K zTSLsCP!y1Rcn%;s;tdaOMTiD}Z)Wxmj2BBCp*ORniq|?&qJv5og*Gr}x9MN&uuc>+ ziEkxc*Lg-|E~Mk`C_~wQoBC$nF0ZYa1jbxVf^NtUo|q3%mDEt&YX7AiVA`TXOFkywBvBvHk-RJ% zjMoa1bPYwQOhmy?vK4dHupPex(ZP;$^xVEG5`%6{Ky(LMQLUd?>G&;8& zQBwwHzZC*( zwr*?O8_=~X4fSst+RaI>_w(x9Kv&~@kCKuSHkVA=3hF5N3|ZM!`C;tQZW@Y$hK6f4 zpKdS<$!TfzwG=csO{&__F@CN)K>J!%jkvy;qa~axjZ{{X{F)$_2lBsu=P2bGCH!f` zgBc!?vj^ZfMDu`WAEYs6fqd6QfO|uwlj--C__!fZxdDxIxP|U{55ijUfqNJn98~3T z8MIlx$5pl?qUM2y=b7XKdJ!;U!Cr?17d0|Wy9Pk>LE^!sOst-80+-Egr0MTkaa%?T z(@6;lGy08!pTT4U7ST^{n$1?5#|{5gV|d8h z3TLLQxPszmRtyY`C63$bdHF<+7S~~ici>xl&p)1q8Z$Q+m>~-UU;1L%nW6KN3Mzy>9(e+#}jpk>W#A^=`6xbuG!w;VntL8ZvfoB?s<*clc=cowo^S&-GG0LE#zo zp|-)KfDJ{bKPptqY4bP73KyEB>-~0e)ehL;;yW^Qk$Rq z+fHYO*3p)PXm|I$;>z?l+HHerivK!jFiA+HAh{4Uor86rE-r|sAjBUYJsK)1gpR=W z8LiTi6Ry9i(?O7E8Yzz#o_k%nyH;->0>(M#seCUh%WPG5%>x=mqzQZ?IC|F9l)2h0 zm6_ZTKf4^hi#==1SyxNkbb9qJ_zAHNQQ%-l^#_~E5P|Z^U+`MF;j%eF7*C*y@+LQP zzg8X&={+*HCfE?A9LfuX>p;0?K3juhWwk3>aqWHzIJ{p-NPBZC-e(Z3H-8G?bxhdO4SJboP*jIl43b<$R3jmIM1HB1)c&r?EW?%iIk6IMp>NBO{0S zH@5yoZZ+T$Ke`Gmu*1NDr|`V@bQ49JlT+%Mu(OSH#MKBL6;3+g$1A}zUeW*FLXD6A zbE=}{!EmXPs|?sM*S||+mog`c8Yn%#TW_K)3v%`L79~;E` z!l1bH!J?~ZEO=g$abqZq>4lE44#nyflIM_w#Qk@DkZchqui5>(-WLKG%b17t4?^~= z&4%Q7hgyT-Ff9R?g9sc6564t5Gxn~nb*-nG2RII~O#%33ZG0(~$S@R3Qs>OS$QLM+ zxH1xH6LTrFppY}lAmD)OBQMT|g;i5&EDD&<$HN0euC*GF8Zauif|VS&WLSJV2k)nD ztR$)v5n#SF#GkE1u@PYN?F?c#ujaAS9l{@*t?2`f2%s|U2xNL(g~O4OQ|*36)L1S; z3l_JX?yR)w#is-uxkcn_r*5Y7Mjesc#ApKp#jhND5FcF>V^ zD=lzx12N7Ry(uAI<@ zvgd%TyPNjA3fQ+kOQh?{Xx?^R#I!#@aIX?g6j?GO2 z_56gaOlU;*-vmjiam(q!xsZVi6fbowcLW#@R^JwQ_I@w#3qUa_I#_-|t$48aN0=`^ zAK2{=0F43$4$uReYsbS5#q(wLxZh)+{k4-Md5Bx+3+q~dX9N$Ug*_RJOX@~PL#22G z8)M-|L#*dDTz~y)WrpF3Wx8-&xFBN5(`h92YLVckz{sm7Xf69^VPavRW>pJhTQTp8 zTNu9^J#Tby=H;V*YN^=oC1aL8{ml#z9!!^5SXiG`Dbkh3{Z%WBLsRNvdSfUx!Cs}K zqeDSS`FAjNe`WuMOpy);A?KtBi}0fw|rJX%CopL3=2Z>uleXqJRLk7cE;YTIekOZ1kY`Ai#TlkzI6G7 zzP{%`Z@}@D#kS=gtq0BH~K`bPTbf+?q5fp*}JD@WUo1NzgM16vG(!_ks7@Q|l<%Z-h=G_a%=Geu>GHHs04J#sB-)hKnV=*-iiVFLO7$ZCtPZ660#k zf_mI^-TQ$&AD4fhhJBGFZoRlQ3zSzEoojDM?LKsSk80;2lpj* z5{vW5Cy$tK+$#O-gvj~u$eAuD*IDof(Pk2nmv0mfG&FjxzV`Dir)t%xT%3OGtr^el zlNB35AnRJ+w~>V*QCeC`lqf@DG>~Kfhgnrs^#=rl0%%og$d6$gK(}HZTJP)Q9Z5o& zJdE*i6MwJ!2K@*xrN^UVYbErI>h#e^LgtCZ60~CBuUkZzI8R$ zv{e2|=sb^9I`mVSWg-5r6>;xxs`^5kICsDN3U6M~9eW*9LkiesQhaw~T2_U{*y zjhgYo8hFLF0=a+foCOqy=V0B@DJSz5^o7^{6F4p+r5r(5r!Tw@Plil>-8+>zkF!ap z`u$;@6&no&gd&56)i-l6IYq?B2L|Vo89K&o)^YKEzjs2xTxyrPc9e`@)znYiFhaf5 zz$aY_5=}vU%Yl}O3H&Ev9*0jSi+`g3qwNkLzwUjE1e?jFf2mo_Y9G5=vw^d?)IZmR z=)B>ZLSV&NKnaZm_}#6urArt0Zc-{6=ZhYsDYp;*J0zZH2rg)kDc$nEz2JC8Df7im z%GE%BJRAEcmu29JlGHy1WU2$YXA~G9c1r_&Pz1J4Z>#ZJ6l^8%dg{ui)hl-Hp2S}mNdTS1V6@-sd}=N(e6Ns4 zj#5d!HUBc(hJn~eV%XbkiXw>U)O>l5{rwM`5AWaM?cm`K%6{57)J{_GuzP!tw?L<{ zAL!C9(9T_+?*E!^l<`zC!d$IKENf?uvQImb$fSA`@Bp|L0ZwB(*f@~|-UZj0?`U!& zCE7{&lx3Fl<+4xLFL54GWh_9|A^cM177i^rK;+0paw5&n^^dGzY&71 z4K^T~mA0m9oA?_1&%&8@H#CFKEo$e%6S$3bTq zeoJX?IafyjsUI#!>xeMb{{DVMU;spInp}VtEUvRtOuf=lN?n}x2W{Cn_V@CZ0wCu4 z8<=lFua>RB3TQc(zpLzB{(PeD)`$TDH0w)C%2MH$^0Og?2>|{`h3IrZr^hYTkB5({ zOKe?uE1Twi#T1P^>>tw}Xhb|#Yte?GJdBT0}PZniRT~%ETWxyMaE;awl6llEv ze`8vTBHgXuSe*4oXMcrM0aNp=VatL{FHmRNQLT}Ob`uSd)qRT<2HZ2a7$Y5sdRQ-+ zE{=z6cnCMdodlbbPh8FwV8UiN(EY4OJ8Ifc;PB03q9?g~gRp?Va}-Sp39>vT6S%@a z_G?V<8U2z%Xqu1+L%@J|_nvV;0s%gut}6Yi^wGic>Q*-T3kxeVy*|a=3ZBJW$)8!{ zyC$UL{l)z(53JeWM(moI!CGlTfc4l%R!vJ-DLCBUR|v$(cmhNptrr>!h9&MeO`9e} zFr7Qyio4VT`2B@;ouBHnmi`IUNv4CB8X9W0TW4~r`1nP%t1k!|pV-Vl-pg#vWdq!J zy~>0p;&JjqeP<5?uWOie{KtKR5p>Whaak{Tg>b1?emRNvb|=Cfe(PFOTIPy}EkVVU z==bBQourq?BLFsUldECehJYG>uzTHmOqv&soC{PLq3UQM=f_p)rNQvCUjy;YUwHJeTIv3DDq>qcI`}A&Z^!-xdr#gT7s zYnOP$faU?SHa%CjLEPr#ubRL25~(>}AYo&_ygEbbllXjfae@d#({|ezL8M+FP`A>J zrAk(Z9O{m-iSGO55?#TcdnT@O7;AAgO3lJhqALg9%4K5|)z{UnPZTfRIO{axA&7EN zg!=AhR@>}ZjF?7Ay9TFx>I_y0!!cxbJKa;qxF{5%iwght?G-?CSqwcZ?cSC5)g}Xf z7oOYjF0-ni_!DA=eqiCg>^bYn zWv@-ubhmpKqdfi@rn+klv4oX zCf^nHUElA?g4pc)rMwlw>B@E#R9cx*bYVp%r>}^mq+p-mPKasQFylmkUtMif_J4GCk|_+%?47h4cw_TtZI*A>M>oMf{%Q%c{(2AN-Y(6)^fHy`u3$iDJ)@QVVXEZMg?zTS7NIrP z(n)+fJjnP0|4%z21Rjc`5S+SWyC{fy$^TO;!Ba3lNV?<3R>Wj>??g|cmP71KT=JhX z%wVx3xqnrIdiOeWEGpSqDGZt!K6QlZuVt7B& z5qxw6z}diAFY#q1%HVW1H|f}S#nI>Y#lc}fEDVC4U*$VFDlpwj1awpv2Yg9~PlTF_C8YU|GC^LCndmyfjFvtTZ*K9Mn^p1kT@S!N1gJdnp6btq9uW6}Hbs)# z_7goD^>F*D_^lM_avO~7@}8Sbzdok-aKZ3JMo}V!50xT141X*=Zbh-PgHIs>A~-Mp z$@HfJlajAIJTs!G;gri#XJIZzNB04yjH=pNMAboH-~$Ln0No_;;v%3qgn}jzk9~bi z*8hO1?iFy0yUDeZI(RhshZ?|S?q`d=T1wKIDaZ17^iL6*6XL@Azpks!34V;_tZ`@` z9QgvH)%T?8CYizFkt{{Gi%}JXf)9ulJzyuM$ghA!)1R1w4Unx|OT)2aw&RUXvhdQ| zp^kK)e_X4MrUPJ8At>HOJ;Na!JT{g`6FJaU<)mOXueE#Zg*R2%CV8&kRgD_61*O8O zzsgc+)GEvgK&3f~_Bvm^9Fc~JFz>V63n{hQVkVYK=Iafk%~8X5{0e6d5G#)=XCkkB z%DZfXJqptUZ8JeucTreDv?zQ+Dw-`{Y~6et%$ty1NCW-RQVkzv6jXYxwx`MwMRvdR z`TY%NgHa9o_cV3He#?r*B$>NCH?t0pZUcNmsWBH zM4mz+R~#G(K*K*l*IS#&(y#g|16*W0vX0_>Y9l@>Q@lh`55G5!e+HC>+WNdQCiL~d z)W`x^29Xj}(gMOZhsmG9MA#(AsKTF|LA1|D2t?#(YUE3X5A`NT_p<}^S|CtAxT0ae zfUpkS)kmbjFUiKmzmhY22sS&2N%_n9mgE@?O+-wLUs4h&ydjR2IWIjyyNzgnMa0Y@ zJbRQEA<`Eh^8po!UPN0rAp9|GMvq>%pVbR{cte8(FU39sTBqh z`TrEOuH^DJ+BYT-E?*$J|7IFJlOas+#=tHsFE1@6C}8;ikf-=3b0Uw6es7=eqHprtB!!%n ztUL#S{_T+@pi`Vw)%LUM5`LV%QPysd1|I^*8dm{)H-hp>#4zSIlt}}cnwfPzY7(C2 zur%yX?GN>!wcAwD^qDS(mBVJsjPy1O=eH6zj->j1|CvtrFY@UZQH=jbG()}GQwVg? z56a|qZGUK1^nMof(_eRag957wSnM)b1Wv0scJ1Bb$F_+1%bK?Z8t~g-1!0?NO{~}R zHPM;3r3pcy8Q4=k>317?yVTD3U1iXq$I_M*ibA)$ay;sb3vq%B0!)EO>sOKEWZ~dg z1t!SJ*(8M=aIkh!(e>=n0jxJBrg@g5czE*bX^nvbnZ-i970hbJo?{ zFtKOPqa*+_CO7V7Ch;bH`jRSf?Xl0(+dB;}>zmD#(e1CD@nCp|RH9$4OX8$ClGLe? z3xYuVDEawCU2FbWnsl`u*oIK2%gf67`!@&xG@>Ly^L;G%C}E9K-95{+HH z#*3X=Lx4qD}IwRna$sSDL2~@_Rw}!~co=bL>w2lAB>ySBOOc9cXH>BJ;~qVKv4~_3KDv z?Po3NOJZ<9<vCl$11b;?; zs>KgWVt)y>zH|#aKqg6$KvD^!IQszJYeG7D`ZI_~N9eh_y5dmrp&TN~b%z^~$O5(X z9>=Pg(uuk-9{@nEv33l#1SKxVrrSAR|06;I_UQkoJp5sVE3BBU7(~h+2e_1;?#i1? zxgL{2OJ=2&HvNvT;kE|6RF9YTkB*ihXdZyBOG`W4QzLmr#V_98&B+Z@Ta95rWdU&w zZogI^GDJtkoof%&M+k)n3kWJm0op*sF_FLa-7BkT0d0|QiLEZF$@i}Fvoj0=g0twG z(yfh+ZfHR~1C2kT-UM_Z@Y(|7DL%Zm$O=`PjiL)aWM#e;`hWqf>D28HjmxDy<7JBl zAkYEC=6SxnH9e? z_{q6pbbpgBkAZ`O(iFE@8MD0YALx8VbOoFlvA9I@*o2>Vz9ztkgPh-BZB}z$;h`_o ze0vAIT?n*L%&z~;5pQ-)Ev<4E%-y4{sjR1*fWpqkaV~9q)^ss{K=CJ=Z*l+`nQ+$9 zS!ixtF&aOotj_c`yt8gd;qiPdrOjIDERZ`W1xaUCw=l}F=oSt>H z5oR8M0{}=XaxgQ%$oCbH4xWkWMN1QL(16>Z_`trP_cfHWP$Z!PXiw8xj^G3>{E==P z&UX)B`?L9IN6E(?^+MxcQBxtZfFlP8oVmV7O8ld!MBVl^B$ihM5nJeo~^fSk35)Q*BX_)oqDdsQKf@8*6X zB44P#r&h<(g4Ym%FrYlZg#tBja`U|FuMZLcnn&#rPiV}%g7RVXQfFX{aCTtn65Eo*CHcit!|yNe1Vy@9opeL;kzOVr-^l!W1qn@H zr^+lViyY(ENgK{uiJ7br%2y6cw)M$zfyof~~Ud zu%9g;?sZLiWE|^NN5=zxnBg-n?8*7b?}x}Rach> z+8@A^6bbGtN0Now*WMsp#Po-H^1hoANDz_Ja-D84`a1XeugELx*NP0-IOY?sR>fwz z;*u{}xCdhruu{d%|N1i$x{mvy>2|z%l}1Y^l18cJLiWBvkR#|R757@*?nPqB?q)Ym z!K7JX`AJeN|Bey==Gmz2sT>2@9Ih_0@`(f0jtIF@xr5Wub{DKos$g{hnEJWb-`N`G zd<{GvQ`09WDc@$p2Kl-?n;~B)>hV6j^Rgt;k6xMx3YQed(*BH{{Dp_Do02YWDMFQa zbUcMq&910lr4eJpP8;>BMORZQc;EGVZ~E7nDRxfJB?(eFly1N$Ku7n!FZfjg58=>el%2D-diy7^LN~MgTkgU-kB$FhXxXyUX*{CO zdTA)#GJS6FQ0OFtBnIRLL@JiHm*T`osoNHy%YRBo6YApg=|jbs>Ux=g8WMADE#HDlw+{^jBA_!SHh0azhkjlX^6N}P*Cwr4I?+*US@vh^+NRSGaQ`K zkMjbsWlDo4itOd`6$eF>m~5DY>PV@(il*MyTeFmJ-@oGmKZ|5ez=wp4?(mTPCH{Mp z5H(@_&#@sKf+3{cc{*2TJPbKf-YPm;RaRNKomn~glrEEemg#Awy*GEk&zu4&CJ<9q zHLGV441qC#n!g1pPU-l^tqE`Nu7INWr`3Fg);`5eW!=e~D-3HVNPIOVQQ--9T!K8v zkl*2%c0UmF=NkC@E?Hhd?ha~1z)euoMe{u}SxrsJld#=I0lUlt2mdz#{;jXtJ@$yM zr|*U(WA;Opi4VA;;hqM$i8lljr3Y4p!Hi@B%1F?bj;+SPXnp%f;CML4w3yP!`WAQS zy=ab~IX`v24(cfa5OJX$0p z$9p{GYNB>P4sGYy!8WDPO?<>hCWhM%>;ZhuQ#ISS?a_QbK{1mzTw-d@^DsUbz-fVU z*5%|R^GOJ?MY>wMdNY&A|3>Td4w9ChYfzr6oPwOBr7p9>aXDBOe4$M9fzjHSiV*m3 z{_}HLNr_fRL2>g3?p%a%tIqilRK?He=^ucO2zK5ZDztL1g|T>kR}K(%ywy;O;ynM? z(%SOS*`1#=e3%R8A`)?H0B7*KSnuuiL3E?_i)#Y3d3rbQk#~PX`WP7XVs9LfLZpdj zgND&;#Atva$> zsBMlQNJB_8VZouq5@o5MeutM)Sx)u9m8*DUm&a%kGt#GR1bSQZ3o|nc3T9I*amqhA zHPj^2!@s%?`6&LQC?}3dsAU4vUgu0*T*;xd!TiYnMwaa{6wuL2?#mAYU3r%D%s$6SN{ET#x{~sxWaY$#IVL{O%Aw|?CwfbX>?nd(9ZKf( z&w_e~BZVUBU@7b8DgV0+sM6SJ7lpHNYyQhK!>f()46Hf~es=bw(NWqQT(lu2W#t3W zUDDotM`cTRH6(OEj0Fc(+DW0`62G)zog>r-N4q7)cJw1OWx z52RXz+1GvM7mXvlW27%X+itWWmsG^pP@(M|5=WOKPn){MYh%*>rY4NYuoy^5AyK%|tFaO@l+f{uR5{`Q=EvBkg2F-;wn zy~uN|m(!#D#BNCg5kd$g?r&2;hz4+Sb`Fb=pWZqKPW(HQPCqOURSuiqha7HBk zg?~^G+{M0!`vY8LH$nYh&&8-PlW?$qBJnZyP1}>?bm?D?PDku#y2~L|uiy}SVs`N1 zWsZezH&fCr+q#)sIF(v4t!x%#v`d6lXxyW0AP|Uo&G8-n611G0Q-Q5pI$ytFBt^9< zzP;DqA(&cK^L2595UIDU93KdO?;65e;q5PNO@zkRykVk{s8)1lVu%w;(18^2s=To`_2!s#u>clgt_3> zW7`8nh`R#K>!%yjl}uo#UzC3TKF}|u{xPWyD@PJ!Be1PR>AGnMw{*RrHv(5@J}!qT zw%L?RAyJt4vx)V;^0I2sz!EhyJ1yp*MKbSm-+8k9_}D2%10ym_T=xS@4l6C?w)vin zfI1{=RU5z+PiwVm$pv z?@?G^p4z}@nBGh4iQ}*MHKifMVkc|+0mq3O1{CJo$&9f4)fb*-*mIlm@^3Hd3gz+l#{j7jV3 z>LLgB+=7yb_%4I7U7q$5#}n5>R}TQzlu_m&somumb4~_b3rmy6El6p=CM(MX?q%t+ z`L#5vyGwumyq1*gombK<4g;VPqIPTUihfDHcz`6VoY0cfF=4p<(mt4=5&ZnsN{@=zE>2=w68OA5m+3- zi{KX+s0VZfY!=^CRV9U9V@#p%rMK?=MVAJry73AWH$vOP!;+LJylSIo=o{F)HDtpSs>$yF-e^tqE%yzm}X0 z<&#N5Oi>_B&o?#_g5M#+T_MTg{sqe2^0?y%MOWHfB1)s3X_%1ZthTx#v>aZYXS3NC zn)>zj58y8g3z-}p9ib>PTz#g(SY4fR%`xZc7bx^z)SdCZueJ5p%uqY}VnHjTTFpTUUMK*DmzA@-qJeRP2arBrj5>A!p2L$kp?6gqG^xDKALsubh)d<0v&6SOskIxfj7~jkUp;zV5tgQ!uxJ+Q@Kh_y*ys z=H8mFu%sxwRIGF!>%ZG`hhkZ1(=!SzMhXh{nFtITD&ZKw`=R|)w!)b`E)Cvf&Unc1 zZut?Eq~)u z81IGV>9Bj?%33g*{@MHvfgol5*c1$(-j9TWt>@ z(;#cn`^AnATCdxd^}oj0hEUJqGO5cdv~ zY+F;)g3NYwWaJwO2{gEcs$whci8)xOtBH0s8(Ts33+>H6a&pjMxY72!a=>L&|58x! z0^$V`S?fF^8uIC{5>rT@pcUnB31%>vZ@x1D3ak{WQM?sbFz<@~{ z0x3v_L>lvaLh}A9;K6X;Ok`0W1jO>T{`)ZZa8o}xKvBZf=DxqFDpdYuZzI!6mZMqDlNc|PAe~hzpp47d^osGj*M7FMc+3`v^ z5rWoAAZ>$~m{?3&+EDntY%W0;Qbhl`yn>1hjXOWQoqT+KVr?}fp-AC{4iyh)vR2q& z-uiGvcE}?};!Kma^zO!5e8O)!a^kvja)C2*8PC}Ls$dqzxy32Y#JCbHz(0YD*-xzF z`C=gEi}>f<$}l2Y6E~L=Qpo=E5o#_|CLWcFoy&iqf~g>jq%feh3gWt;k3~xdrTR0E z6ZI3{>U?!95fY)Jdd?rQ{SyPOZIEetjuqgPyr!g}h!i=5D`_#Gy5EKu*}X20k-%K9 zZLw!O#=V&gi&3hCh=LTHiQE9A#dAji%8F3+RAtKC@9A#uo5>q>yd|E!tb*DizKh%u zv+zDN(OY2PT~E~!gZPt62=AM-`k=%v%&WF!XenV}!8jf zzX1|PBO)We1O%WJ6zm`#D|m%o4TqTByLS)iAbj`1Z8Q4Yrptvy&g+#ZNQ}r2j{0ik zw5~sWI`VBX`}%zyfAU)beha`p+)!Tuf0xRRj+~q~h<@O~HzrVBST2nVNj#U=(2{mJ zGQj-w2*cK%iXF%2h`5&2>-=2(Qz%2`OC}6E8nTzilHzFm1-(I5p^)>#;(6_6N~HXy zO8ON4!5RkRRJQ2`i~gB-f5EP#g#$NYY=x>#t1;13@{06=jFhX_IB3hGD`L;WabK*0 zL=l6K5Y6i%uW*o~#H6@ZF{j1rthUPuy9p{XCm}~T9%W-n4}SY@A$#h?X{O(X=DYWs zV0HLCI;s?K1y6*TnVHA+nUQFavGXiUaR2$a)_8)V4M*8CpstQj;Oa;LV$0sB#V(vi zh&_YI5?@#e?=mqJI-Xd$Ayt^slpc#1P`$e+Yce{#NFl9b(QkzbSAfa}*I(n0tB`v<4MVh~tOW!^_8psp``r^IPjq zDY$|*yG$hc>@eWYLfoXODz{@|;tpW2VS|1^18+nu8=^*6n$Let()>2R6c21_n2GT+ z&`C6vlS3T;vc{*1=zCP(0X-+J>3XBwuLz{I#pIukXM`HQF0=zb^F;e;8d0zk!hA9U z&{Pbi+OKgsD(v1;7WBqRHtI-!lhPkcY;u-i&Am()o(7ttE3ck8#3f?k?C zjZl(NG0g^sV6bVuth}`-HH}^}MVJ^fCnpV5G!N{2r3>Zc;Ursg_f;Fs#H;U<%=*@I zUrh3kx!Y|tl%t*5c$nYPPiJvS2xor9<$_@rEIm&E~#-w93<4ii%42(a_FYdk4Vt8Vxa^MW+W2 z1^r1w6rWGkK49b)poyfrxw%!jZ{lX^CReOy+EBEKDSRG|=vW+mc2lMOb0M?Scx?7E z*v@DG1UF4qjaOrmcU&${SxOE2D5$A3)Ed_oF{={8`(;vnS*p!?++?P|y0+y`{-C(I z0qzO`MS|lYs-}h~P5!T7!m+lhYA1M8m|0llJS+j4h?;LpD~b@hRZRWt&Q*(WBV(4y z2HX2)(yjA8#ek-^$^Drt1D0xk^7VKJz27C2mkple0Q@h4n&EPV$+LNIFbq<~;cR*r z*V9mrpQdIU4@H>|yRs%;FfB}tr}}f z{(a8`y9S#jQOG|T{LTI|=Vj%rkY$`phUzi?JBd>Qc*LJGGFp7MnFVJQ6zz36VFaGC;QjGko1@=N<*z zh~46^`%q$$m78l)Y2lvujck5B1F@w7uGS8$Y%KGK+i(-!upXoQzZ1%YK}iVzaQ#77 zPY-miD_}iV45)p|XD#yP4RhyoJRmk@(-8Fgl+duD#H}7CEUAyXf9g({zt7)DzLH0* z`3l6m5eKXC0rMIn%i-fOe@CJc5{N}ZNrPd7BP1l`>+D+k6;Y+!K_A_72G|QyckdXj z7BALe`)v=<(ZKFQKbzwCPw4yh(#$39Rp;g%yrQ_gt7+rmMa38B7`H4wT)68b;eP_1-zuZ$UuC?CS z&+wXt`2o^mV2=-ix9rp9Y*E8CTR}Dr+MPL#m+^!DD*D=Q_^-HILz8K!8<9AnmiN)| zVpA1{+rs2yN-6YbP5v=XTOK^GZiHzF?2jIf310TfprZ`po@~tt%~+&;&Y-qBu|okn zY^=kTlaoX0wKtt-nQ6ya<`UuOZF~a)$ep1w$cqB#@~A>FN3cYq(G-eJbY0veK7ioDxm< zxr4TT3uQLn!iHE%%K7@Q4QiYvx>hL}2CqVkH|3sxVM&BSvGGE(dACDGRvd?~1zfYR zxBbf7e0nZD`S3X^&(U4-w<_}AuAk^ZyO&j!uk>4uBS~V}aSjT2i8vRU1Ow{|)7ht* z@8q(fiaDRYdrU`o?Uj5Zs$;kw^Ml76R*j5`nuLqYISUNRL8n9^nL6|)z@{|J2L|vw zb`{y}!?G(FmM5?sNd9odh>+A+IAvev6_^B#vM)#Gnpm(yHkN$<*|Q(0`BZvLNALGd%^xK_&#-F2Ojn1TwVl^vbBHsP4;J z(MmG~>?X(ud~Iq<2a|!t@rU`rK@0^2a`gq1*W?K3F8t$r6#9#!H>J%#kDzzAvS5xH z&Wn{pFlEBzvvKM2ftEJT_MHYnKoJC`mhe*&0!@m4^4a zc-(A>H5Hxy?!aUebQ-70)8gRZKnd@6NKNOk6Beh!ygRL0+@JcGkdCgm5&xB;8aF+% zC2L*;x&jIBaQ0kB*KI&9aD;rjPnB0gR?CHHw#4(&%WoC-gcK#<5Z;poV%0 zaoCt(jnmT70_nT=cjf5<^Ctn1Z^c}`<{iFkWdB;2ucdh%-{5ujKk(mzO7|-;@FlJ% zmKAsAttzxcM0^0C{08wklrS|wBru}K8vbB~^!)k)(^^tb&-#a%Fbqe=Xlu@cBv-PA z2Z2J=QMO?J1Pxx~BL}Z2cbAf3qi?K@gzwAh8TGa-)U5x~<=(br9ch<{EzLs;;i#%a z7~6f<=ni&;ff0oJyk&eG4=FLE!k9>1E-v~PhF?ymC@ zzsm0-b6!|PizxGFZjm*qzfVM{ysYx`jqF?~jd&bTm7bRNG`gpFeJDC0MKVX?F#CDG zP|uHT;i-FqkW18&tS5h{S%nm;>&`?D(x4BwZs6^+p4_u!Z{!|K`*v3sZ^0w6(`U z!tJNTuh<~YA!JJI>2Fm&TyC$N5iCb^colzWy$kVT)d!;g?~oJ7E#Ls)Bn)|k1cDxX zki~~&oYk3?r}DJW^KXTTJ*`P@4r}iip)k6G?%@N}p6)-u=w@YS1Lx$8OHrsuX8=jd z<}+1c08-e%i8HSi~Ll=J|kstBMxT-3Z|qfV@UGm*j#%~=PWyVnVR z{wlb=#UrESnRTDgy9C}tX~6d!YcqR0yCtY-Kc&go zyY8Dmb?bbUUc{N6i>wkMKS^v)292KS56Wm8)A`pNO>0;ik3}U2)7jbAE5d~To-o8t zox7C1e0jPOt%FDjF1(mu7(X?V+#K_H6i4{0{<;4A=eN&rafiiqLajs}ekj<*L29@k zxSZMP%dqw5m(k~Y?|)pg5^*sz3ZGR%NwjTsUE68!WUDuN$ISDId8vVAOBd?o+4>H7 z6}%ckg6C~34y5iHN2!?^?Xf0H>kTK&C{ao?iGo;I7L2_PWs^=cF%ZiLC25YPx4H+u z2Pg`uPzrkxvIm*0F&*X=p~6|~?d=66*^iQvaJb(!6ZvE5OEZcNHl%hk1lKIj52HI$ z3)=gthhyCSVIoMlx9A2YOn57f4zWS7b~~xY4Bq^vWo2dE`}fZfT9UgtKt_oWDSi3! zWv}K2-7$1uPMX+j;hDDW8P5P(;J2sPw;?Kd34{QM{kK3%g9*NG9v+_M)zyQtA6c`G zG7s)lS|(6cA=r5T8OC#q?@J@NFiqK=F$L zd-#-i5NEm>%&L3G$0FlZY;*4(>25H~K9R(M0r(8d-kKI+l5KDQ8cf8wxVYE? z#GhYKP};LKgD-w2D!YyyEZY?315VgpDGj)Kt}->~YW_*t$k}0dPHqmoQzTO%bGP93 z6;cvbc}~jdt`WFhJ@6?z|3!y;lb54bZ^_sBi1R7JUJ_sVNP^bk+6xEj*1aj`d0cyY?sSqcf@N4EY zWAqTY^Bo%1iP{rTsC7G~L52wg?soO}w|91;f}2_p+mj0OK6p701?w}s4RPHm44R_( zSc_EHXtohM820N9rgVXF<2y~iaWdomYta*byZ<88PWu|+w2Kcq2m~&_9Rhdue|`>< zzv2%*rJxvk0U2&V#N6RWNA~T!6E>cM#Ax$cB7bV>_mkOUlh8%-u~AVnlJYfsV`-Nr zcn!H42a>zs@j}!afF8#JR~^J)B#44!3SPVcVVW)mdOgv~7YPZh6_czU8t(id(uA!E zJ0befQHRc-4`qc#zJ}(bqxsy1JVUhHoT|gAhZ)>xD9%tnAEvJPDI{(o<9wp$^P@Nm zqij+A`;$qKZwY+%Eo66h4?icd6Zf~Oc1w@qcjj6JSqSbwi45zi3%u3+Nilf5Wmk>0 z^u_5d<{4#cE?gz0(tqt%j0ycnY6dIaZpzSo32xz(Jn5a}m=^iQO-TV)|HoGIRK-R3 zWEy5WbsUMl)y|hm*Tf|3N*RvZL2;7Z4fjF`?3W)_qo=3?l#`5de;nL*;Wbn0q7##Q zAsSYz)m($cr#pdjiV z;s0%FY6_PiybuwTfdm9@Mh$v%h4jz&G9#2oWr~WZ{hfEd44AtDse=%J4MFY)49i_G z9U^pbT#yig$nR=s(Eht%_Tb{{I;Pj6pmq8{WSO5TvCFXZ2Q?ij*o`-8G3DG?D(w>KT_4BI_UGAyObYbrS z;7y&Y^_CP#1R)OO#<(`?wsS;Xs?s&(`=w z08b)E#+I%~X_n;6X=!`agy+KKQci@ zVq0(C@$JBhiV8@f9ceT!b4Nd`HtQ{^jinTDwjDAEov$bdf}2g*3zJ*Je2E zd~OlnD@2mzDTbx_KR?&;Pe?#6L9u->_?9dTJ|QI3lK+jSy^x1DMjfd z3oJR@5V_$Hb{V^B=;w3grq~@;A2HmAMqC7W2hy99))vHv03WQuN8zsws3~M<4Wf6$=0s8>0c$Mc3BHec3V5P?m z3wP9f9uSYiZ9j6TIQ_%xPVqT32_d9}^Cb^x6~y>BLu(_vmK78fAVy6LZZO0O0C+RV zZ6F#t1k~3DJPZwP!BY9q@u9DKIVZoA$_`7#{r~e;M zR{>S!+N@DgN|0_uN?KYPloml+TBJijx)hKUknWIfDM1<(q#Nn(25F?@&i?Oz?^(-r zJT8u~_x|2_XP$XtZ-JJUmZ8L}R!)kD<_@e7vW$%Pp*Yw9I0TJt>31`C^W&C4yc&lM zT;)JtLGymb!f$PgnU1CZUdsxMRCuSEyi05E(YuPCf;6uwq1XC#;rnD?BP4D76)*pc zjv~e_PMi5grxSv+lSP1WVe|O)bIJ3mKi@{4`o})uyRRd0nJj#IetytK_8zIpv}tq{ zDAY{=4@$qjv~ml5CwL)zeR73FtiiX$aX|)d+Pnp2d}R3Os>9_j5ABl=yt&Imw8AJ| z2_3MJ@`D6c?rw;E75AAsy6)tG{u_3=0~T#oD!|N10M1jxTpG;0vbKffl$!7z`X|#dmtri@8E!1K!B7-Uij~YocLH47lC9# zmQ>2x<=NqMopTsWFb1ZkW2^CCo{|O?$a1zm0TC@59v1+rjggTUXdaN#OsC7%4OEWg zd|%A8#gqO2uIn*^%^{H`4~hvy5f`xdW_e<+YlA5xd+V*cXVudg7xx}H;R@n zq|2l2wEWI5U9#nBYBe#5eMQ4@R%GVEcAytAZ2WX9D<=m*4p(KOtI6{Xj^q?#=?(1b zUQ@CbVZ@BUqr|i^eJ#FfEzK(bO8(*Jwe%?2TZ(E-l2kZ${%mro&#JJbdfP@`s~L~2 z>%%tMPLLQ%zLYDHz`<0rzpjBdP~JHc#v zXZH4OQy}&M(rgw0zCPwbZAfI=HZ`!|LCpuWk?q&1Hxz1I5|aGso%Qwc zd263yDSrepOG7(KB@rj(6nV^};gJ{J-NrzSVQmWw z3{<)~jXG{cDDI2RXs{HC+=WU)pU2w^iV1K9-Ar=HkM4#@OT;0uG$9EV^BAtPsxRU`iJ6v~M#0 z&AwNs*P5#mqjhg5^(~0QeEt2Yt=cPgVU3?6`~gAU1`rB}WoZQkUqVB%;6GIHO)EZ3 z6G(ciXlU16b<+I*8JGC)83&|2|Jyf%EZtlaF*6lhjJr5FB{eVV-2d@#EhvjA7fgXZ z0}<4mtANpzo+u{;7oN8Idwc4~zci-`UgX1l;%6&f_{_>(*ejm|9*j0v1_LRg=4-fw zvJwa7^ks2}`V1I&MfMNgn$a@@Mg93k!bd`USqE#8WK7Icr_)EZPV7xmyT(#!w-w{i z9#pK@@jsr_A~rWu)Kc-0qkay%-kLmOKe6WzqC$nbdg*Ctk8QVx6Cf6;2l!@?qW;M^DBOei)hHw%W>GA20XY6dbB4(@+~mPEVYFg zfPCz0O@KNH$hd(QC&hW4=AaIqt;vHRpa=<+7w2fx^KXMXETiccU!EIOU^! zki`HG7QlfO5LZcsP=tx5oUMvg4}as zH>aoGBj)OXpSLZr9xW?~qXT4AhKGm8YwYQv%&i_5Z&df6Cq8-eGQ0~pf=84txDF*w zN%x5yw>g;>&h`mEP6IlYI>3I!nswAAEL6N4@m-PReO3-luBU<;PLwZTKfN*FA%r2~ zn?bdj4$Ej@1tQip;3T-Svx7)a2VzIYvFvEA&J$^-7$$pXveL4$rvCmgpxQG@>H>i? zTqdi_&`PKwF_9E3JEL!(00ACibV$M0&AeiMQq(6QfkaWGI&Q;55FbYujN z2{9>Y+50&WxYI&&QW%@n^(=8x(=u}WP6oyC*IK~JGqj;W6yf2ivh>c}JUt`BTY?&4 z!-9}cFMn4#N+?Imm)+t&4oq)HTA%%SA?kea-zlH^#y{XTP*`M=xJ|x3ZKEvruMOJ! zuBE0u<)LS%fAManuGC!7lUq#{wYO*WaGt%XtPJhJgEip$tZ!}}K(9U2r~8a4rt+D9EGb=1Th0^Vj6cO;dZ(VlZNmlppqJ z)d`WI$m_-ia`W{Yy^BOS0s`z!ef}w;lyn7!UzZnge;ttY40(&el?&R81#9cBs)Yxq ztXKSrq@*8jnjZjBKWoO|6(j-NN-LBK{plsbd|sZCTKFWY)OhciREkhPu(PyL>jA?- zXyy>=;Kj#yx8O2B&M~QSB5(D5^00-s$Vg2B)6>&?Cnvd(+yzuZ>Znew`UkGA zu85Zge(vG_6+O55fu8HT#RwBOS=qcW#7zQ0V5-t;3FeQiY&4QanDk-iw7=zt0fp)9 zWGhCU2N&$ya~POobDd8Ru9d)6m6MSP;GA9Y#8psGfY^hipU3M1Gzg1LTIrUv* zE0ZNz<8Ka>zx?Np*$~5&o8$Qov0$75_NGsJi`O3_p<|M zf(k?}M*MT8@EqR-K!C}t(s*UnR}az6crw!CAd%4S098iL_(jPmWi3Hth0%hSquSgX zji&)&h5}QZ(|!ImztpRv!&@LnA^~!tL8U?kqc1#T)gq?f28%HMOby5L_l4dUwN1&r z>nA7h0q4`ml}^HpE(3cu2m~hPZvj1YAt}5AdK_Yi9e?%e6|l}3lhq*Vm=%15q9H~Y za=`jigtc`=YGDb41gLf)Fe?K9Hmj4q_~X8-@8NOki+N`{rh6U_Jt*F72N#K-pKT_S zNtqFDI0SM%H~4kdpY)-VrA1_DfvP^1?jlyMDL_LKtfK(J(VF!QXop6Qko1i*Pgr=He2l=D`7%I<6b0V|{Qu1SGr+ zRwu=8e#-v+avNAN&@|)~l+eRYz!h^cvs6(B_R`(4tV;mpbXo1X9_gFWzdMgl!j6dP zUWWJq0K^{3A9!LEeA9H_t{iOrnc@7v$zLi`^Y!ds`?>za6&l5^RAbUG-aD&>zd#F?a%{9djnSq4?h!OD+a(A=9e@zd0polEsiC^w0 zJUqRJk`Q?hb|w-SI6HHJQYdacA@6O7tMf+4XPef-5c4<~JwoR{ZlZ^f_aXS%yu5J& zt^{n#egOpHFNpxie<3Z%`^3tLo@bF9$!Cr))UgDu_x#Tv9+M6-`f9CX@4{;BuCZ)R zwc&D1K=kQB*a3$T<`E7K^BQkD_|XuY@Km;G&kD?XIYf{Tw8hbLdf?@P za4La9m7kaQ3_>n+bwhl7?o`_B8t{+6>Pl=(dFS_xB++7{G`PVD`hd{YvG;;D3t& zP*_?2+wy}#1HrmwVF^~@P|((;Zbb>{ka@3o&WEN>uor*A&fR53<&f~)N_|4bbZ z-Xd+I*2(PYV_F2L1ZFoA8I;1p!jLO4xWfa*o$BdRLRbmtOxZS0lC2MQt76x|_S&E@ z`vvfLK(?U-Ph{*jrW8UGxHJx!m;*tn2-g%$@Z$?y0lQ5Z&>p(frM}|=q+5l8g4ld4 z@LgvX^J!pl|!z#rT zxM~U*=(cuti&rOerm&&>8{*b7>mNJ?<&KZnvA(R4v=R91mn+A*PSR3b;7BXrxQRej zf80034!Ru^6ZeCQJ2E*vqPMaYHiX~hw_4+n7BSHMZra-+!6zuck`OWDtP(NUhxflC zQ5c&+f#$_@Z-5Jm*uwBYfOi*@b+(D(=p&m4rKJY8{X2i}hb+6AYyPnPX0bJnOKaqq zk{}QoAwN9{@YwUGuk*Nd=G0qtu@|L*iP!yeZ35ZY=wNhY>hBSWuetauZd5$#_SE{| z$F@8?ZLQTb0QJBh7%VI^k?wG|oWZbAPjNsacN; zE7&t_z^dIaN@{3iJzJYSKQI1nTrnt8e8kcb4S)o-(yDC3dBW3?(Zv&2E|;Y)`C_`< zgRwa=Ez7DuBafK`!;~_m7It_00f)cd6S~2R=w1n?5R8Rp{gIkd`>Z<_z;deU_>sqr zK%7Rtcb~jtR`>&0A1Bx~z~aeiXF3pCTv#td+X+EKaiS&sVa6vQ35qo}4BkGOyB)hmWG3>gML`7xD=>l)MT=~sKad=`7H4t8uMqEge zh6ehQFPAT1m0yMJOco(ye3Wuz&gE70>(wi@KU;PMd5JSLpStVvQY%BAF+ zopg0)oIrPMIKXY1S{2yvvEGvs^ zK*P;Phgts;92UU-;h;}&cMqtcH({Zy|Ly$`OmY50eRTq|6$bd87>$f*=XGYu**Ykq z=Yw=-x)(br5#~m&^>q^9K^v62(*q!7*TsDLL@204j7ACMOinHHuUlI~wGv&lwQYp? z5ikvufDOw$1<}Jw%0*$8p6?@LG}+a@rI_7kdaV;09kiFyy5dMHD=VL{)Ayu_El``* zqwlp_)BKbR$&VhZWGKve9EB4T)xP_D+w zcVl9>yXv#Ey}2|L6vA+5q!4cQP*DG4Ux7!^yO`3K_cKxtP0XuK%Igfkau_)5FDf>G zKEhQxxHli5)Cjr-i4p}|hZ5}>D8LCuQD`>Rvd%}i`& zJRmmBT3oCz{uUc0GnFCpDMI7*8Yt1EOdK{6ejYpy+6PAlr@Pd??Jxxd+Y~w5W@=Hc}=@p&zjg7=YZfK2?--P;q+d z0#-MlB699|aM3ej5IqHMZGS5X-o}p`zKNBU@%62UQQA$z;Z8kU9u5-#U+wDzfkkYP zli3Sj71-5jXs^fsbIX2NgVJ`ZPLQ-3%+g7qYTqdU~lhPr=2j1vc%V zVKg|MiW}gmRJYy|+{VcGcq0q?ClZgk>_Ib9!Q8T5DcdPGzhvH zEzwiZ)FkQ4ROgsq*;aVKfc^IEhPPic`vKk^#G+)SD<)_a3TG)45ONCR0wqub+_E{) zncX2CsW{r;eEX!7*VzuDfe>4Rxu2q*gr1%^u^CafC716$(;CQ`dD>}$`vVDy0K%Y&>e9N633 z+XyXZOw)_A6(pbI4tPuj*8NP{o~p_OFb0*9CqCv9rYUyIF7>M~- zyUKb6adXc4&Drp9r8i{X{U_ghYHAdrsTAlhsD5I&vR!%a zt)((Cy>OlZElx%Ceq;QTRFfe8Or_alD#vV*H-*zU1{{F*%vLaP09;XXQM*!|-sPwdJzUloxGG?0$)d`*$wx zw6b)s!~M>WE^80zDjZRfZ+C5x5g&YcP*NkXG*N>`o&M=Uv*vG@3$Q_GU?8OB;D~7b zLd0Anl&#E2IgPda)`(j~g?`cOa(ICeX?A`NBx25pCv@+z!mDPu0E z4v+5%j7Rn^JKReaOjgjEF3io5x1__}dY5++xVSga`LUyrO@lje~afkklz9kk`no|hV#_H(*7 zM!M#V{7WdJNFaPStWqvSW4gLze_fxy^QCr_YOsItV)`yNdh1bgZ9-7J%b-|4`}U0BnkBXyNiKa2@>5U1_esI95l33h^tV}rT7bcmVD)h+e+Q?GuCr zBp43JxVqd|FL_`?TuJ;{ziZ9Hx{&6essssQ;LcM8`VYBzdAY16x&5jOime*6Fi!@! zJZlqQ^w*R5tnP}LBi{@=^`0QvtWUY}7u{R8Buxr0rS0rA&oFfT zar2|2%j|q_Kd(D0T+>3&yV4v}bamy2)=Zo_LXkD%yXYd?`%a!5qNkT; zbh~BLeK`kxAS@`fD=nX^>n8KunRdxfqBtkrlpw?}W#tR5OPB~2@$kPW>HDp0Vy(SB0`*g44|(gcbd5qQo-LVX?;dx9#!g2p>>ah?w9cCk z1!l5^v}NN4%A*xlNKZ<6v;&chKi$rIx5)0DtU*B&*tAgP;Wo%9 zYK6<(^>mL4w5QzM-0UVj#BgcD7DssE_~AK{7Jf`$XRhlj_F|X*811%^$2-VxQ>Bs;J=k5dM8_=Mgl_y)pRysfm+MHEjL>k^ccva-OPA zC5jA20~wMC$R9ZOKz-!k;<}(z7-W4@9}n@(;rJh-z9dbv|6LAB%)#%K0RphdTx4Ayx}-aG9G zZeGZS5xul7m-+zVWQf30U@Fzr8?!$#d~GP|l1^PvQ%Rj#hw>(qn>mO|-2XCP%-RaE z*Z21J{xi&zU0fFa22WHK*EzM-by+rYhcbsxI2dGywg6{07~TJGpMXx_8GXa#r4FFT z>(^4CItKADA`cA^(LcEglp=uqi#i0u`wC2fZjcRu@Te8c>^KbD!1UNgVw>+mHSbiR zvAY`sBo|=T2HR~&%ftG3JYmZEa*+oI32xG^mor9KTs3@x|BfV!!F7k3);sKTC2RTY ztA5(DG*s9OgRyukWO*SBrj!kW7G3)7MW_;*614<2Hq&POw|H{$d|6K@sjyKsAQCXO z76MCn!9z;=CX~<@mKMLaKR65z=qLJ={jsCrNv?X|;W6*YS53J$+&RG#Q#N4usN`rJ ztFbTKX130e=oWkPK+3*TrCCs`?+O8;E>#V2CAgha$C)TR-{!~R_>mE*mtk-V|87wt zZ5MxK|Ije?yhTA^4f`RT+qDC-V?=yJM6>VRk-j&ck`O4`{-#6^D}+=%LCVi)$}P*vU^4iTzgrYi^E$svBn5_tMqX z`UE)vN3X^nOOd??S(T-MGztbd7=C{#M9btC>I=MBVi!E8l1~+Axl|t8ew{x5KQ4g8 zwKWcNckbOMOG`@}mA1|1E>jad6v2fX!mc#WrPU#v^tWep;|0sTd-q^pf0^&DqO6QB z$@;R4nz1uTwOp95R!k|lK!`1+da7C4Z>#h08Lsz%4gGK-5tpFMgDS1j-lSd!ZrT6B?K zt_=k1*v5XkD#2ZAh~vBYDci27qGC7|N>P8dn&fF_*{=fa%*Ad)zk=u$Et!fMhyI!f z_1|gfb>gWs$o|qla8D$)0GGJN_VzWl?l=**BL<|zT9aWl!oeEni`FY_)bBey35!SU zeur9q=>OYDEZ#&y3E>5DTEFN`{mAheMrXOSjt)8H$2~9Q8{kZU7@-F2g5c&olU|v~ zSKL>p!A6DbG0=Qr!gdkN^AsQ-tKD$%)S%ifHvMvKBrZj~CMB{jHcfh*be&PB(C*>N z>fvVg)+fvS8hFjUi987Pi}9GXK~e71H+F3qYZ2z+ZuB`gmiq@a1%*3vD5ffgvhTL| z;=+4kFTxnW*92Oeqs@`Ztz$_53ic2CMKc)*?JdqF`daDt*%}0Uggs-tUQ>_^)ZmGE zeQGQu-!U?}wU^)iOlrI%cBh-7dXpOG{Ygx+Xl-8n$$OLxDqLH)bJ{is*IIn{SQXya zwI>FV{dX_9%1#g7u#*X=ptISw()I9r#w5mepk^u4DltvC4Owv6;dm+A`qxEe4_q{Wq*)Hsyw-_h9G41c54`MZPo zHrEdl$G_ZFtG&z1+-z;+g53%W3e|~U+m@|$IR*v|!qud$b4+bm=|bKyn#+zodiFQ~ z<>z^sa*u?mux>30>AcfC1DIcFj<&~q{l=7m@x?q=)|Q>~t#>kOrj_7QTV%y<2`f6{p#qW!#u>2^W+|12hB;z@O*xA>h1TmL}~S+TK!n zImv3BmBrOuy8W@+BtJSn16ShqEzw}I0Sj+2k7Uu{e_2p>(VeSvGx5d z1h=&n>Ak<%fE<(zNsp3%k;Cm|H@8mo=nC=Nl(Imgv%$j~TJTpyIH5ziH*;Wb>a^$2 zak>-1%@cmLED(5tMQs)PcEX*zX8&4<)qm8hBrAQpCMj-Sd=uEnGmBLCFA5>LU**z{@0L@e!8qS{jM6#YZsiYDs?l!LZ zEodm8sqfj#mr*Os>Sg9bIikXhe-LWZp!+6BJn}z@j@93r$C>ICAg~KWS-I3Z(4*Uf zAV5UK@uypN@UbdjcYm4g4&8z#tWdyn0&Gb*!Ri4Tu8#ixwQjZsT1Lh|U=ClUFH*u^ zkh`~<^!@=`?}{WL(V_DRkOdd=ef`%b*7x7xc;4nL+YgjiIz!&khgrs@1(>T8<(jLjK|u1^ovH2i`K$BLXiY?zh?DBX=lK=>)be6($gd~0 ztQoV%^X)QP_`JFj`n8nI~LvG9593{P> zc%*Fi*}g44LXwLXVMmP-#D`DflcUixOgLtn8_O~o8T)bZQ?TW$mKH;BSq4Ji8I1b~ zEcx~=ImhqKnJd5MfHWdzzzOaDC%JIz2hf<~ZP(hcb0&V~cZDyZsjNocO~aO?gk6zS z@V=33RdIlJ26bN>6i7W!Cx2h&odg}#YWp=Tq>?&;A2hUI9|!vO`(ql+JacaK{jK;m zpimpp`D)sNh2P&bY8wNe6O+mLp(e46^iB2zdQ@GXAIcks#;R= zhIo2mM`nj9*Q69*@Dt+s&reDGqO?MDG<@~HWM0+Hvjfm!W^IdcY$lHF8T&9tVak1o zGh8OyijWRD;T`$2$w>6+nHJPi#SYn%Sr!XM-;@0IG^Z0i(Q3-I#i#%#mL}6liLdg( z9YxM*#n}p+W>m)&&Ky2tR>oXG@3Q<8-a#W$& z`#`L`l9C$?sk43qc$VO?F#J<0xHNj2Znej~+0teufYnTBzdbdu+;YC~)DaIy{TJtuC4nxUHmL=3UO}|vf*F|xhuztR6Ad{NdL&Y`ubRERJtA)$d@%QKi4Iupi9Jky zBR#!6gGB7KdDgT~rqwywx~a8J>}WDSojfgAAD<+smyy&?=3tu|l2eSfQe)dPeVO9D z{0I^JSEs)EHAXfY;V_SI=w4klX|-Lkw!u!zHVu^+lz__^vcSm&oq~Y|iCCioYSg@%C~5+Hcg^fuHs;$Z*gl_(F8j9rU;z#-7z!;b78Q`wKo134tf?* z&xe$hlt5nuXJPOt^8rQ%V(iTR1sN7lC~hBGKMel3#SJY+P^HI@U#qhVbXmxh?XW`v zG^ZO-9J zdh8H5bz@Ys2AH3@wRKx_vyZx-yISc?QFKZVGaYW^rsCpKD#%#>S|o;O zUBq?=mUWNJI+bR?Cet82oabt0oPw}(f88Zix}EuW;5FW%Y}gKP77xYEkc}N3!9VS- zkrBdT2t-(K0lr40^In}hLOx(KOtrA0Zk(JXWn*Il+{z~;M80ke#J=}FB^;}y8)di? zwM|VNFwlpM14UDrF%&4mbuJ-Io20a#F4tDR?qJn>3Wk@}x=HG^_Lj>51n@;iH$^o0 zHoYN@zm_&`ctme@mTIdLIB+7?Vvx!63A7*3*}OwJS}91A4(7LwrECj*3*SeRut=im z%-3jk|6lH}ngkf{^=FldnX?NsRvv!acbDNyMMkDF$3ccYJfg;&lahW-<=1@CqCHSW zbn?TF*zuA@IUj$?$u4ZA!#;wGiRp}r+gsl2L7o|o(ugFrb-fUUX;iLjgoPNDeXZcU zk!8nsn%r?ha&#fqaC*Jl$!eOC7MlDtR)sOp58R&rq3=^2717%KRR~M6O>t;EAgYuK zz#FJ6Fc+l2{EKkWvR31%VZ|CSO&AFMw4HQbZdVV2R{u<48ml502at`|?6?I&r@vVY z`-(xU^U(kg|Ek+lS}saj13naNJ=K;6={WUEvvq0>k&^ZZR>wdf>ibyRz*$s(Gd$NgZJW zS2i~4-p9i%=nmUkDk<-*ew3b1=Vg$^Fy1s(l6W&C*5#9l{`<8`yDyyJtU(iBi|xXm zNZG){xjT)%Xk8g|ae5wztQ!}XONtboo5Zdrd5sqR=0 z-#@|+bhWXhL%Ss!fxQ={>3 z@t&e&m?Jn%MhIF+1&}G+F~E8rB0pY%Qzmuky(?39zvl0)dFJbn%&lp;7CB)6Q`Am* zDQ)f!PHFD1DH}{+(-}^m_IT z*20iCVYZRL<+dW3PKjnn&L4CQ_1hp*K)uN=lCh#N#>I-5*%{vzX*YTSz zs&9(>Ri%~_oY0fFtR*{-Q||j-;dHe&Bh1$FRdNyjm2k=to~e-AN=iz)K3YTuR)x}A z2~Bcf_zEl&_TkAOxKW!rTLL8G-XmI9*C(O(H;h_c1j+7edGP(3?M|?z?~Bk-Z2=%o zN3!Rs1BSg5e!u>LIH~JU}yvg2+Bmw{jyCN4@VyV#6)6?UwmEJ z1zsYzNG2fZI?d`=O!!=OCyR?*Jz^_#&k;kuo(*lksVv__uyQPEM&t6Ls z7_%BIYFqzwd7oBjqbu>8imJvHP*ne`O&?Vzdx7`h!vl4i3(zDar_g_vL+Sk0QFOXT z|6~}M>3>zLzDRRVIW%^f_za zhPs>6`zoYVB$sSyXTUNUGlWtkVFo}nwBQ(rAbp0viiJX~pP$*xreKiw-a@KjpYUA zmvEqJm-m;k>exvCw3S3Q`fP(Tcea`PnDJ|a$zx!ESgxQD^lob$|MZjEuj|4Zl25>w zgJv|y5Docu26~X0+wYopNr?f>Pb868w10ht!(hk9iF&0hjT*ci@j2hb9c=EywcW5MwJ^3et1?eQ z6TIPo_Fg5CAW)yI^*3$gW9s6Mw;B$`x;OWk%?G9xd&= z78Vw2e1GdTxc?a%eUJ-vfGtTri`?(=9JZ@9%O%*57)j`4?e>&lqfcFKa?>ks=Vv9rz7)dfLNhaIfQ879s6w#s4gN4jbZ9M3(Eg{&#-MSU zf_SRh_N4LMv}jrIhF;6kziZtmRy)#0S(c8?9RzF9I^V=1NS|5{v2RW%eMveWRMhsb z^pIAjOm69@B`SWSpkBy+TzD{-c{J%B2?|6I zd46sbf6s1n{UFa=NH<$C7O%HgcgW288;aNbgA%MuLA3k#jUaNjj2OKU^kI@;2my+{ zuO^T4Unph{Kc?{l1uR}vSPcIT=WiQlL6d=Cr3!sKRixYdc3NTxSh-vxcOYgSIEor z2?`>(U#oq|-7u5O$-KfU(c4$sd

bqz2>fv)+W^L8$(l70wJ-y(+ z?|x@3g4x`y)BO+m&8iR4Os})q$>X7JGaX+ zitUbR=z(goSMe4jgy#|_*KXi*J^t-f_NxLJ}U4lHKtTaeE^*Po;plA zQI7DvFR2Spja8U=om}61Z3@v<*QF+V`SQMZPAD4iMHYnI2#|Q4J6q0hXi_||D23gk zLGt%ix6YB2}nMuRmlepfpxFSab4nTMBzU(II{9^aNG7&g+#h zeYnFedxUz`ANOI|VQz=K5~kH1FTZFLNqsZ3jxyse$!k~xAxch@EuW$KmA}l@MoaNb znmWL;fd#Y8u&KrZMkyWh%UG+My1VzZCs%AmJn6vP&Sb1ux20`1-S9+dSe+os;f7r^ zLVbOC)6YK?ro&Pr>A7c25v}@`m&O2XL4ub{-z%k#B0if!e&; z;yXA|w$tR-cfC8^-zO=pi}^AcD=5!r&34!96+HC@QIQ>eeUE`546u}bVYZ)F&OLZi z*@2%Q`hy1UNQS)P1-Xy7FS3mRutF6T6-9XD0Zawaobb{O^!0zA|J%~6v7r zq4J$q)d@#eM$Y8$=UXIDUs?wcs zO8anS+4d1=S1#H!a4`0 zXkc6NdtTQY7%0gzKnZ-!s4xbj(a;b*=lJFZuEWg{%dxaXW_tQ_cX#2ft2;G3o{zN_ zbHmR4S4{@Hnfb9vj>8+|dt2PLV+6f_(ed%|TuB&Ucw}jrc|5F+X_I1AN7>q$CbE zW*+&9QGvYaP9q=#Jw0*=6J4;7lzRP|5R6^s0`cp%AR@_L ze0yV!kOhM94D2@7VTXO}Lp1pNJ6?>WIW6*E8mx2LR`$3BbXwh?x0}J@9fO3o<)lRqGP*u64KQk z1Ph#`msWb$yLggXbc41z>;2p>h%qP-`Jnc{6gf{W)!Vz2X&GXV@$1c8^F9W;ii_Xr z?d@gLnJous7tEt4t=?N(gXPDiLg?`gB}_W1Ojp|NX^W|!vn0RY0ng0L^w#|obwd*q ze@HQfqIUm!g%$~JU&OzU{qMPi9W{3MRgQR!y4AKo1Oe!uU^|YqZjsiWIsFj;nFX#9 z3>sE>$(yjxSZ{ycfDFW!*?=4=ltQrWGuhL<1!>CCk7srW&taE+YWD}^hQ(iKt^^WQ zhQ?d|MLYQI-Bp+oCnO}iPtJ!8X1X95KzJ4ctBVH=9se8%{=1s;I@&gqQc%ImewSxy z_I6=~Y?znV(Bf?)w4LDXDONz40k8ui?3CZ$#GZlEUoW*~pm~@${n;lO1l6XpixrF* zShOpH!O^th{1OcVLj^xG>WhbzR-#!@OBRSiVQ=IS7}RQ-NF-iV1m+slRo@aTc<=BL zQnb@v6tBO_!&B2}0oIR2QX>0qT8Q5(6oAAR>vxIXY>vjHJbnyBz{d=NaY~ijbw1u@ z_DJy@hW>+Ve?Te?YD-Z4`};(2^w`^4sO-hbWRr(R2F@AQF|Dy+d~&|1+vh9!q+$ze zkEBBe-qc<1W|yi4viB$3y|dpLjzwZw)py1QybJ7e(qLC_t%eDG&(rhTyqiAU*B`{) zp{~Kzkp+$}j4C;M5I0h4(2DNIe4;trV(@GK*aW6_1W6894+iN&UOss3>`iT295p!V zIsk8fMC)dLt1>VCF-Lw`$w?%28k3r(0V!WKD8}!uqoboxU%%;Pp#5Lsr5C^v_~@}q zMQ@0UZ>{@`>fQ~XKK`N3*XTB*%#!w+geVgG%R*`sT6hZ>bJ>`RZ^me(wFnaLX!eNf z*rLG>kvuFExOaGWpzFa!`8te3kD8&PQxLAo(3O% zio#PlvPZsTZr_~ci+*lOu(o@$cAaVXdB^AB*q%{S%~FHAFy6v?v5876vc5hm zg>sQEP!1rxX>qHhVHHNi=okX#Nubn#X<|!v_ZKk8z1-f-pECq14#?~>inIH_w@QDv zcD=g84TRvmWeXq#D+1*mAw&XT?Pe9HN(yLnko+>lRiLSQxeLDyD-T(#`%edUy7r&` zD`eidLtPr>EsR(!gGK+MwVdhQt*sE_<5^n6u|x2o70{IutP%# zL7T)9?u?G~_%0+1QsJXk$Hj=lHhrjHXK^dyVd2N(Q&qQaiC}Qb1BDV2qF2bu4(#V< z3+CpDIsf7(Rxj;_t*g;fbR>5@Qu1IzO-)DPMQ%oMXqd=(z%Ga_Lt4KeqKv?uf;=c# zsoG=(^yeJ2eT2f8jw)M*A0yGCLX z4Q?Pf96qOxcxzzL1S?B?zrV}7R{5%3hzvZKp9tD1-kSfe%Jd(o%H+Ro6uQ`Z;>}M? z(tE@ecjmfC49j(dhaG(CzO8Mzu_q3$<<+gMn-(Tbf%$JfexwgbZOY_(c&KVQOF{U1 z@y!#6JS*l-QPXVwwMP%U=*6X_1P;S{x4n?)>FEKW=mXPbkjij-B}|m{Eb041OS}O* zs8-tUQLNZBRLzXkjYY}liogDR_jK-OF===dX)n1h|nV}!-EO*S9qKPz#kVHxCQ9t za$&IpPy69^)m+9CTwBLuRms<-mvXP#q;wL5W3E4kE~TdUO&n8dCu{GBAiKmzwKq1? zW1}H+zsyGPk#>v%b7UlB-rOSi_wR_E$7IJIDBC>g;qniCh(9c{kQ(6ps1sx$2;EA{ zX#?UC{@7?4Gxu%Gh=8i|V}nE=3cwU4hzNcx4H!bfXDljc?(9SZ?+*wv&vI+Kd;#|u zF*KWijIIGyg`W5Nsbh?v*=C~1HZAr%-=#cIXQ|H5d4&Y7M4iI4;Pd(O=Rq#1P#u@iKOEL4 zs|4X`iBX5t+`$-Go6wLD(36=+fyr z~4P0X20n3@o8P<)n|L%+B+7EtX)hfG%rm_CwgWO$$Kr!HRo%qGVZ8QWA1gZ6RM3gr@NEp&+4Pk-r72c{nlL z+`L?kgWhEJxtaSt$T9!J(^o)cm2Q87q5_J9bV{dmNJ~nKlz@OVNH+))B1nsXNJ)ou zNv9y)jdX`JNawfTd;j-aYi7-wagFl6=bY#4{mbaWhaPR=Ey}7Nt(y#38klOcfI{3m z-z)+%BD^@ma|#QkU%bG)ckdoVKt9(ueaI80Xhk9%`a= z6#hb2*XLkL?jj_`lGu+?Z57PTlSCW0Ir+|mqUfQP6OG;w=PC9-wYn`6)8O=yp1&14 z$GYUp%R|6QEKX{}-bFaon$>I6ju*4{vnb)W<^hv&k)&t{NQq6!~A+Oh(bbQaTA-iZ6Yz zQW7GNqiUU33M?z1lHy6M^(7K-r`Q9Ahg;cIgzn9UMbx|*1gw557^Ig${Qrci5G>BDE6p(!;aQtohXmT zFpWj4r9qAZw#RwM)ArcGx&>{|Fjr$E^DYY~BB zfFuuEEmiY^D*%WcP-(h4ZQnTLjo*Iesm_7s>V5ZvkCJfx7n%4D`KsHfG7kmB;ddXb zG$#`q)_fy1!ZTrlp&|Cci&wv*S0sm3AnVc#JQiyBSt&5sNK&Qd zYJYo9;kJ$uJR}YVr%#1BWU%icHr(shn2y=OWp+oDh z`?Q%2?d77G-<#|2fKKm2&^sWvATt91lp5f|$i&1jpuVB*YH9S<8}+B2t%e++AKHC( zP4BqSdO=1T352e>nLeCgrWCO~x&@}d z$!*owukUv>TwduNO~CV0DM(!d7Olw0NOn$(MuDpvUKq*YM$9d(RAT_ukr>nw!r}H* zKma6g2N!}@$nfXNe`8sIc&cFQWK5El%QaH}Tl(;-%1rI(6YGUY=H=7gz-anfVnX$_rkJ8fAh>bS7*{$KI!(chE-Ii?i@}Xhe zUjmQf*O(YCI9lqLo|oga30Vs)a9LBOfA0Ji7VkPBtx7{jM<@MqWSPEbP;G>deW8Uv zvb(Engyk4-PoJw+YIR^`#(Se``wy zb`F}DZzXJ(Xd)$Ob)Zp#%I*Z4nVJ$vs%{ad1bY(DM=J?0$>kPze!drSLJCMTWXLHn zS|3Qw*Q+N600pux5Z-r0tOOUA>f7YEW~}y>vkx9{bK~AQfFRZVp`4KE-kz+R)TKjS zKJ~z#5qG45J)bxU6lXP(z#<67q3O;J!`FL8Fq}z)6$Ik#Oa?8B_Sxw^1@IS$CahII ztziCgYgwa{v;sc2LL8?*_&AHbZ@d63LB!ApK{cm&?oW{QfihI~Nfdv}5%)-rjg@ih z(bRO3Xp~Yvo(FS5-r5m!gUkol*?0Ghmgem9g#+q}2j-QwpWo`7G>J<}JaT$hx{R0E z5eWR4>Gx^{?RWm-%ZaP{?fsA18S3>$ukS?gTpk`L)h5 zAP~g3J%dmnP<`+rGZNaD@1BQ(K)8&L3H4-f-yeZc0N#5{#&#N1o3cmi4CQ zTX!G5JGPeFLsRj6!B7qjGAim{g8{Gvt&Aan(ghAW-cXl=P;UBjspc0dy14K{;>!XQ zbRja(Awf?3tzlzzHBnK}BUxElG2JPju4ZF#rGoUEE!)><3H~|2{>}Kx&=>+~V?7&! zNJr6cx&Y@BoW~ z5kg)|kEN9;{O{k5;2%HMc8N(K_L7iY9|@B}gyzZCg9=ZxiU~FmeG0{+(a?ma5zuR^ zs;V2N9&V3IGeZx$L;Guwujlu*4<>&%H{+fZR#bcgo|_6ci0G;>Q^T6|7wGTh^Q0M&dde7+?|z%=3nn`Wv}<7tsb{8(&%s<7&-jmu?T?jR3zR9 zJL83$_A>PHpImoZ0Np-#{cYof7fL4^u_B)NG<>=neS|?16Kz!RqkD;OHA+SMb2~N# z6EQJ@O?z!q2;82ErfN5=Bwp^Mt&z0yxV}%H>FcL7qfN@bi1FPZj;F=x>xpeSEvyLM zcN+QoOWBgyJt3jA>4qEvOS7O4LQP$rW2h}2TvmkU=JT_IX)_mvwD?>-lfnPcIuQe? zxw*Nrp5ABZ%sSbfyO$D>!(lo(N%Qqm#+r*hX<0HgXwxx!E=~5I)D6It?qWwoz! z)sBt%9^*j0Nohu^No&^wdJiPnmyq46Judv$xLc{RoPHX)YNEiv@@HbAe(zlEk^_F) zy++RjF#Ya9PLa*-+t*K{%=|v)uaCeyfynLx5&lB`$?QcVaUsr)=p4`T=YcL?*>LBQ30!Nh zqs)r>K=P17HEFb*l(sf;81ZPIQ+}b&<@3@yr}fi0ad6PXZb>I7NFto`)h28!BBWKQ zr(+q$ZJj!|2$+94;H~cZIb9=f|Kx=J@nfH|GHwM$#lMr~%&;Rsuh-NP+RhdFGF)cot8_*X_{=56*|Y^1?0OguW6UynS0b68jK4Z(fK8i79? zRXLBS!;_bGy>A2oOKF1eNVG?EDTC&*>yy4?82P6Hdk=pKX^&&M&MiCIzUY%|w-?=} zt*)*{(vio}sU+s!@+AJ?pG2-pYE?2)q`Oi#Il~;)IbhDMkSGuhalngjhkeLCURaX- zB>u(5`vLQ+=!=$4v!5z~MHr9cszQa;ggAWt6B83~_HmgHJce0tf}_eC!@iQ3gj%BF z;xK);=@DWYfD>STY3U=hS3$$O0iY31rIk{Y5q9Yo$nybS!j`SvC@u7*Jck_T=jR|1 z`#JUwa)iHh8)tWQ6OE=3F?+bA2E`ReExl7>yP?D5OVInj0H)7WC6C zU?CjJM>8{8G}kwO#`SMfDh3XhfvgXBFF1crP+Wg!EO-CzTvypy80#iTEBf zUyI}ihA`So{3aoiwZhAI^=55va^2yKyRd8Wdn_$2t#GlY3a;5;IDa5JI^#vM2qJqVBZJ)` zQtvrx5H07yFjdEkkY57>UjQ2%fKM`4ty+}h5(d~Q@y$_viLEed!s^V+JZ2ehujrV; z=8sNbFhf)`MSh1?oBA>T?S)zt%sJZfwsMDqMRg4!$W#O8xFrEs&-SLb*R9xzT4XG2 zY%z$@Aa9U2U#nG{VpSy^bf1s;Q;X4JtN02+P+DP;1@+*?@A1o5Q1251aY0e|_C)11 zY0}0W2^k`_sHo*q(2IN>r8)w985}`QmzaZSb>2u3GA#fuJhfj$0shtqq4 zBt~-D9NX@XO?yao<52qZClRj|Av`2?b7NuZ^)-eX>Q?FbrI8d8xr}V{V@Cki^EtN4~*x9q81v3&*dc-mHml&J}?h8<9H&lw^){E#z{8 z8v{T(aueecItD-gL_zbZsQYggC}IK=Bd|%%53{*`jLu93+txT6H>iS$&SbZzeR%~|RW8bh^c3toSrw19Nw z2kkO+OR}c;uBt;Ol$XkpTH+;kP|&Wq&3 z@g!mVq9Mp<@JWIroIS(Sy89KD9iq2)Rg^WP#o~g)Fa2+^7)Auj+C0&ks?F0_SGVLw z`Eg$mFP_h~51h46J&swFvgmXOMa3^BvPJp_pwN_TNk06l9d^2^nrZ`meIG!#5bfwd z>G%|Hrb7H0z=v35WMLux{7Jk=A#1v%TXyWcRM5VGNK1k8sh-~6@_no)PkQ6#219Hv zJ{Mmts5bv}I4$#ht*sdwrJJ_wruLvw*z1#a`T|(rTKf75$M_Kvv)sDx@PkgAY2=GB z%imWD-#3|N6umTjv~FznF)oQbnwZBF{Z2cT5x8#K0FQ+lDoAmKJ|q;4yXS`vPV-{! zcZ2STPfGwN25+HE_#09p$sleB3MQfXa?Mzc#Z_f!eM8y9E2k*<4r6G$C;ac8I2jb5|(sT<@%S5 z3$D8M@A&^pwf-R{GPE?7vCoK(d-gmz8jV0JH7jnZ6DL+7SU$YF=&^dAv46N9^m25Det zd>#|t`crj?;`d}XT|@C&5 zQK$;9QGFx}!%LhWef1|&`>LLzk%z!dA~A^w8J7>=28hj_6+sfcXhpdhru!orS~@}J>1R+E*s zh%m;p2{gZZ`9FH+CqvMgOpq}@d*6Yu`rA$qmEhC@IAzJ3NC1#3PQw;d0L*2fYY|Z} zLM}`UDb%pPBYtMU1;FiLWwkN4m@m2&{gAG!llm|wpzgE@V zqAGRV?0w<+@-($4q6f{bss-jf!Fp+3dMmh#vBBQ2U`!j-Z6$K`25^!)@1p+$(A2J-V3d-rd$ zI86nyIP?^ywao<0S7;T|4n%_F{;J9vpBmJ~p`VjjJ?oz{;!rbV#GNlHoCpX}&bYq+}vMP{vL=_GQ0k~O=mPKa!q`C6uJL`X!m z-*m4$uQetn#u1!Q%Q$G87fyMqRxyE+R$EiI8~>od3&Y;?KvVKpT7tNmRJjZ{5J+Hc zS|9!M0h?7Z&UJ;(BJ2~LX_iw(rBv9b*K8_i7#NvwdV*}$4;t7@UADDFF83rpQHXZC zdU~)Amfvv*LMfO2U7leql7nMJUtQiZQ*+I-)tuWe`B_EQO~WP8(?dXDZ^=imr`j#i zTc@$NOYr2a$=gom=->|0rj>1Y8Jt{s?9UQ;v$oM2SXjt`)#>$b@}FtX3C;xt9hmu} ztqsB_c7}`ks_R&oR-K&kc`LQr8)G2(6$2@(2It4I(Yk=M2S$W~u9lLL3d4q+0p&(p z*m(6EA`}&b5+>kG_O4Nmj*IJrNJ|-6S) zX#S9vk7Bs9lf_Pb7i)pv;SSX4&~O|+UC9*p3sEreiy9{sdLOg6%=3+&Kx4Sk+xvKT zt{?swrpJBYf|y#Vqo{@zwb8{)DS_Im63sR`}RixDUKio%oy^Y zc7HkKFSI)b**fK_Zu&OoVBdu$|4+>^&Bm&Wv3r|a_)St);;aPKumpTEm31`VhkdE} z3<+=&VcA%*ocvD9$mvPnao8O&!>tPy z2L}YOy;l>%qyL+w2+nTg=D~Px0?Y2?OJi-kIP|f4Zq|04D7hfvJz`M&i2O42&M8-V&oWJ0^k8s)P1ClLecBlx|TLCESf=p`nX7Jx91b2j;#0 zRgw+W_A#F;c;CO@XL|MM&PjH95C;YZMqn@V<03g9;k~VD-YH&&Bic+n@d{mg^}(ck z9NO2v{R$fJ8@VW8ae8(dsk^OdZA1C~Ls=2iF2_w4UN z2XgX3{mlCRKDI+aDxx4vT>KXBkiWW~CHp7V6TOFMv53Il+wL6cVF_bAdZ`*e&zh*O ziQED}op^BgS5@S6{x*b|Xg0j(r#O4F(w$dn$IY>7VvojeYb@tc|NE~_s)i#atJuX& zQQ^$$bkzcn*WJ8#T57&`i+Km=;j(;jN;OYJE#_rUDNBolJ^*CjC3kp>o}QlW&0MkT zK$!fmbe_3;0VOAY9VfYqSBH*|G{_~C)7*O7B6nP)l%TmspAOK?Ma%Z-`H%A&pTJi>!` zFfKgxTFPA5!tPI1+O~s07z&*S%Pn6Ws3aZCyY)6U8M{k=jls9S8PHMdx<#Ynuffox z=q1^cI0H{(+S`~MA7vRQs78WnGqu-G2~xHPY&Y=G3clBwFE4b51pKImvSWY%Qq}V` zpgn1i^Zf2{!M#z>55x=gckS%#uvWh&!Y=2E%@({g^V zr`O*Z_~gi3?{>UJ1di;RZK6%)QGr6Foz&VpiX`BWdG@!{&elm+x{ZE(>()L zohpQ$hfw7Gsdx8EjxxjE-rhXieeVHrWQdkKRJ1O(p17Bzlbr9Tf1u(go^yhEMV5T_ zL1x)jIGl%=ob)Ex!Gsb@+DA-#1VHPc{|kv#x2EOeqnm8?X{Ah-$H#rF&}``V}<|Pctwis(3gW!D(i+afN1-ZMQ>(&2mdn{Nd$auB)@rsR`*zq@49|` z(~%C84L^ajLrh7^%2)uIa9fUrBHz9{0P@=z3JHPhe&zp06n&;^VX20$K;j27B;q6iAea zq~$s|08Z33Y9U?4ZKSMf_CA4c!Ae0WsrI3A2Gfts%sW$_=Zn^6>D%7iRPp>Vx3!%4 z{KAE&9^aA!WaaPB*R#Yr^Wk5?uW}tO4VSc>xB?H;481%LzfNrX-*P0LUk$;9Vtx^J?4XIhrbm-TBk7{~= zLE)?650+WV#dG5UeI5`03DL(0|Gv98_$%J$RB{YOc>YJS*APB`?m#v_HePp=S%eT! zcq-|s)&4~3uer@~J(x#O`&D7&hH95M9!rga2V<}?4T5MY_sKZ+X*(@vRgP-n$+DUn z3%?vKXGttPw{V^admQh9l!y~j=nz5M?a1SQMBihA2<6@P@81zsuSl_5 zW0B4$;@N7Je+DW&3UqXHG<()&lW@Q0_%THI-$yj=!EloPrqK(5+XGm8z#@1rLPiqk zX?QEqGBE|)?%rJ*9zk2neLv3!7bOWT11u~$@e_% z2=8(-B0rKI>X{BLj)}AK+6x>Wv^W0t^@|o&pfdOZ5P=g20T3)NoF-kkrl-2Fu?thb z<~Hh<#vXk4o=PCt4W7y)P`BWU^MwcFBL1X#xwuhta%O<7avsr{gM5l)Er`ILdQ~ zDzRYOV3WYCFe=!ubm0lOY-NW@yj`osjV?v;>t zw9ET!sxsqoqF}8V&cBglSm+^C;4tRgYY!yp9Cq{105*|@B!#Z#2avLYV7LL{g$Vp> zOoG1Q|4m}$SZ}ZCFY=u(yS3nj3#|*JLT-C65(Fh?hppRR{tTyB(#(=M(T1W4<37l?{zwcsXE9bZg{i_$a!|9_%P*}{S z^T+)yOU$G5YZ_9;P)3#LC6CJofJBvWaniV*w+N(T+tB|Qx*3qoz~NYlwh;MupubIW zXCzmanJH~*Ha!Cm&(U~Uzvj;r$M&?8HF8-^ad|nduyCT7;`gV*ri6GFJbJYcvE!n; z1GcBn3T-isZJ+KQba%x%O(t8)c9xY?EXrye@6IO7k&7-xg^b6}G&~_WKSp|7lJX_# zB0S@P=u1HP&(#2tFuOnc+8p|fpfbe}E@oxe8VVawW+rs@<0 zsq`m}X}P$cA@>5&!3k0rN}M3gIyVlec+@wVOM3rqo6gi7JyIl5YbmJ?RyXvE-bP z=ktI6YW>EzEXpV=`w9~$ky zZ%{?f?`)u}huJ^qC1WqQmeR6+$j?UZEBz713f_jS@qhrk<0R!>p&_b5J9{Hvq^DNcM|&{MH!@+$VIaj?T7QNK$e1 zk+m63mGa@O$oYo%NU%h3SeO{koM@#lbgdfDi0&JK)({k+WFQ*^O%%~V|Kt3`dP_1D zt(TwXHVT(%{2gGLCBA>xn`gv=hbm&-TX7c7bXMpPm5}&7x0}D@-2&e%!rnL6=wdJP zAN*>6T(VL!4~8{uXsiH8KJfErIy$~LB)9i?X;<*3<>jB#MJ+5YiUVE+D11vx3l=Ue zO5Nv&+2P}Zx2oT}@PA>e6Rs9`%Y83dYF~AoI>~fJIY-0D(y|*NzW&On>NT$GusQYw zQAP>&&^CB+v-9$1!6Vp{z!wgquA#AU%i6zH$ikfCT+N{P(f%NBK~2Mw`x5Km3k*Zp z$afux0;EspHAmZJSko16Tkd3K{8L|hc(gj}VrkruwAQAhAk*B}5r`*TJ3=I^Z)V(5 zDO}6>dl%>D?LwohqUQ=Wn*3+SO{cr_?ihBy(#s&5=q7;!>eR>N}e$c-7ydG zMSdC=UtHnpnw3nzWZk~HGTb%f3qQrc4}0niL+qxvY+7DxB7AQ$aN?*XUDX7&PtG11 zZjt!UPv^4`jn$!r*v^_<35$(%YB2q+IAK`QeLavKAq-d&FrrV-h2pz%c{(q0*d_#u zF+2T>s^VjNz}FDVX@U-f>gDNDcm@Gpl%AT-l6&r)hi6di@o`0<6xB{v7U=jt0IoJZ zBgj!0eIMh&gTT&iqt|~Pd3juhmi)M^dTL-C_B6O$j53>P6pS@o2F)l4DT{Wc*LGh) zpI&Hh|MP;ufr<~#^^2^i_fem)u(-uXD{5=UyG-$-j`qyqHsw-3Jj}o;jg}LscT0T1 zrdQ-#5T>ZepqA62{w=aV&7wW18!LFFlh!b+(%!^i?IAZWPY%zICdI@rL9KrN{-b9r zbM5T`+1U&TC78K6gIp#KXy?JW78o472=fz^Rt`ZDEisQp#v|98j}ItBzC+w{S9fqn zC}x`2Fe}nme3Pgc;?E_{QSPm}NK^Rr?A)%8Sy)1wo5d9rEWAao$$CK81p6hdfK^Ay z0Us~sbDvyL`n}P4;l9ixhd#tnX{#tF_w127)(}B(O z-yIkh*R20YOMKT!rUuPNoZ`;!Moee ziX!rO?vZ> zu1WPf^Fo2Roa~dDfuxcOA@(c2mtPYD75Y){CT; ztV(Krkm|Mq?_EYVw%;=|WF#acpoM=xg{`#Ru0QAg7}da>0+K z+K|ydaj0oyzv#lsU!QLpnmd{ym420jzs|XBTJ~Q`aD1uvQaG_IGt*%vxJxb|n<^(o z{m3Zt{u_?9A!j)HIC^KIe^cN6H+nQB)YV})Q-6=Ak7Kal4#~x_@o&$CBj2G?*S`81 zyQwMvxlgs+Vk|hRW9ED2=DpED=^T;WW!p2v6OIPcsC3B~^G;5rSy@>yB(P^X=MgX3 z@KEV%o%E5ShSL;e$5vqE2laNFd7nBS2Q!x3Xj2_P|HiF zV(V<-nA&o@*Y}Q_fK2T#nx2Ot5Y^*Gm}$fU@y8h15dz%}Sw4$fTRNNZH7 zkQnB=unR&W(J5p2nV51v{kq^~Wn~4cm;x@k#<5kuZFq8o&MCTj=6u^xX}N*YMa9#2 z;$hQvFC-AWo`D%|{Z9!sXn0JT{m|;hYw+NEn_uWwfY;W*z<`enMnU<>Ysv_HhN!od zLF4`kbcls>^1(_a0{I*!Dp;E9hUPadxbj+BS|}7}x03ICkjX&r3iewYODK8ZOod~h zzw^vq4;|)^8|)8Izwre|@>KRR{XJ0|Bhx9lDN_K2=w=`7y&evmUT#+tR8&>byI<3K zmZQmgoH5)&QDVLnz;Y$ViLfc^f^m|(SCs3i%?s&?H z(=TU%%ePSOi}4vI^V% z6^UX_@O(#vC*$_ZT|ntnY>E|MexJNCqV6kw#&f;)LUqxDVQK^!4G$66P@-TqvA8JG zsg8t!QycU2R(NWNg;GP87}GFURz6L5%I##N$HQE0DH}g)0FMHPQk={ow$ zw?(3K=5(Q%b z4Z*@9X#b0LXbME69c;@8y#>gy5Ji^#!-2#`vNSj&8*<-VcGcvk z?=;mvc$`~F8v9IY6yHm=wRYy!Cr%=qh(NipyRb>jK&Q@GQn{shZ*Y?C>BY)3fvKr9 zwrH%Vg#Oe(hKEv;qw9G;ezXJfiir1(i;Lst;c8WQk^1D^g_rL0Uu&Js#Nq1PTb5>N zOMAjD-$v_e7fnrq8q}Bwd%5?FZuEFsW-KxcITG$2wu!Pvw6sV*!;0OMfFp_RQQHJ( zF@a)lFKVDX4JSP&_P|irt>i4FSVr8IHG)#nOMZf-M?^ykSg#x%91xn`Ec83C=)#(3 z&dZmM0=@(QIr)BT;*+zd9>Ksg!S#2C^7ymaZOgz~+XKFSUee$|s;AquSD1;91^AKy z!h(EfKzYlQ>>TmQ4M2Pi4lz@Z?iU3F}E9_Tx-?QUz#reIT*~E)KLG9&OKeb<7Ne{o;<#?A^~~oxzRIe|>6jiZ3Ht%6+n4RQky8 z*Mxh8i6ys1umcY4l|0i+H%idsgAgi-j$pawb%x%jVmo3?X{!GH6xNFmsZ!K>CiFOt z9`v#XKRV>Snm;bRiAX&4=|VR^?#>Y70=QTvyiUn#Kri04fJiXoW#eZpj<@T+)4xIi zB_{ukk65_m4u(1ax4#5 zOzKx6KeoRVy=>^pNXsV#G78QYl_b5Cy0S0Q)}KajT=OEB9_;VwiqEr&vq+4DZC4#9 zeoU3xM)ey?vr5v%ZyATRG`1j>x}{{jXDVR7Kg@_Gz;wckk%A|$oGe2`Ah%4fKj(~OlHA z^cNr9rjMK0b*uDG(;MBteU(VIiFXT`uBt+RXXP18GWM`;&76>>gMg^ab}k80;~^>x z5?L^TWd02Y^8CC$qBfvQuu12IoWXl$0+z$0Dy*1}{SHEF>{7n!#P3~w?fqYZTVppF z5k08|%W4n9_7KB_T=`wg+nxe{MqSF)jjU5%Jog~6X~3!woVrvp)hm&+E3VPh)X)9G z)mdPYc%_p|C7~qQIyC&!&NUk33dQ*zKZq9#L8fGE%%V~fD>Y+*FOM!ukcR$=&sKZ) zyW}s_m@JeZ^~*ML0-#w1psy4Td+4j(5LKcv1T@-dXF3jKGgg>c^H+QEQuD+>lt&VjAyrKu}YH$WX zmFWQ_d17Ndwqo?w((#4GZazy1)JNFKZ+`U>FtRidwS*Bca#v!BjE}x+6u1_+Jf5<> z+_v>jud5@Kq{97#zr4EQ2u(Li$s)aQCfpfB4qGDI2lE3 zkLFSN!TEFYK?|lylRU)fTvCLLRXK0s8wNc9(SSv{dhXZhNglGWn#jJW%AwNn_DNnK zjEKvLn#&8)Wzhv?rMJj{hmRGkQq}nW+`u%y!gl${ng>NsU6#C>F+5^3A+XR#)w5> zy`#EaY4P)G@7A>W;6DlN<4Y1)s7CB4+p-}m`>5~b|DR#r1pRl0sjsT4!h(`3h#US> z>&j-&riUbc7sg^Ettz`z7v^*1IWe9VU7shn-TyIAhX5<$cJ1PWDWp9-Jsk?PI6JWi^FK#kubY6rsRh zidd}`;<@sm8jb@V3c%|mPnoGS37^+Pk7hVqig`GVKgZmgt-xR`$X`}@kJBiEz6Q%y z6R=46q)r18#grh~$EJJ%rj8zIQ-aGzZh~ z?_i){pNpN#?4Xx=JU1mm|?`#-JiKUFU)$D1V)ao+l-%!z4kD{vMV?%+{ zeFGK_iW)t#8zRvEv;z-;9YkC9PgkycHaP{Dl1w>S!#}d(pZk`^-*~rnbOgfO8VNBt zaC4mkq$i`GkWo{yvpr|ZZhp<9U~R#gv7GtI(X9U-QV)>DqAt217wo`b`O;x&7EdoM zBqgiI6gK%Vk8(#N>T+2~)_@*ce%UR2>RCt<#apRbSRJM(xI%#Zc8DZTdHKr1h*y$Y`Pu+M+N^5P_zmt8r2MB{Bu#biG`jQ zF3&dg2Zn|kw*+D%KnKt?`N~LIxFNOQOoY;r(HofWJQI_C@OA+icLlvsK2K_qkMR{g zLUYq{cN@n)uGdKdwUX`_Xb>63DHj_J0=?HENmriekZvj@AE$yR%g;GzFi?Q4O zRulIymGeerjL#WDXLZ%a2Xq)Lh&>(eRkM*BEUZ)F%0zVl<9^3y`q}9f8;-oW@ZNn+ zLmT_+%Xf5&@qTq1C(knFw2Y=p7j=?Q@};QM+3jX&3p91YK2!^Pnk8eWF%3}xaBF&b zx)1LQL-U2xzD<;-dfg{`O!xIHbT>I%U62Rf9gGS543nbbNTj>&2q{*D&f)=J|FkjV z!>c7o0H>;RbBo`TpL?mL7n~$}n?~i%+1vgq@Aci5IZ?@z6W4!x--{m$J8z7*_U&8C z$;mM=F#LkB(6#ITFFT4EpxxXAMPwq}W2F$a15$^e@NjydW|xM3_`OzF!lZg5tOb!!py!s zx7-Q~V^?KZpQ(!YvNBnNM~tv#FM$!LoE}Zc>ypsNOX)MnuQfe(ky%A|+um*3mQ9o- ze@dtr1{TZe0g73EW`js77ad3cR1{cP{;n-|)QHSfL)-VNyF0>61mr3<_>$l#9nzhphCxeZgak6yRD2=u8>>1>2xsLr*@( zF03M%l{@wfRC2FlnME2+rS>X2nO+{qWu`%nuQG}fQ)X$Y3bVtQKRDr_jL8rd+4apv zd}Sc)KsB>)ys7tK+%|QhLYJkQNYY=scSBG2tT<87A;{0$ZyD#OAs zvU)h?f7eZW#p&*!>-D!}Jd=06;^EchcG-&H6Y1{8=61>TsYyLIj{aJFdF%;sTGUlx zmcdmxC6C2kjYQnuG-tx?z3*-G*?FH^)x0P_-xx5j-K`5=a2$iDm`$7V62wWfwU~qR z0dI=Wugz+91>3fl)g*lssKihhaCh;)=MixjqJX{A7?1$9U|Pgr^iulU7+N9hjXE_U-^iQzOAOnACXR~D&nuiic;eClMC|Ik#HnzW(qLPCM zyF?N;BWwBXiss%XULqN!lMJ#xqdn1`$9(Kdh|yX|h!nyx5w)biXT8i(!zCa}w?M z?WZ{!3DW6wr+aHihu_PSH9Xfwu(o^1CfWD8^I|8e(+16D9tewRy?p3;{QjBod_O}d z%Uj|3`>Z$YgeD8}-zUROr_YT)vAyf~;_n)F=!w5AjcTLkoVgcTz`!ic5;17q#%k;? z?i8UjhYOj8kP`FI2NsP#^lt`neGt#^0YYDXT7ydf!2*6qOjH9bq_laWD#^x(mRFI~oU zT}mnJOGp2Nd4v#)4jh4Fh-Iz|!;az*4+%yykUs_iMghE@_KB6}S6tMPI64enhAvqu zE|EZVb+kKd=?JYtobFXE`(bE736#N%nVdf)_W0ZkyJ-IRx;@hBNXnb4Fa-li_|)g# zF647ksha%nBJjM!xwbTn3|38V*L$d#_P5bv?RE8EcBLjmE*%q5-?lr})R)Yi5%>k8S--_rGR39 zJp5lUXuz>Q;`I*95hM@W$}4Y$NKrNHj!Q64hf(kq_N6I~w$8{gGyV10Ly@<+3ut06 zDA(bTYFBv^{<<@VrQQ?M$L67n=K6Twku@lNjy!9S_rO201gjCK1OO=nz6imZUS3^6 z6TAVmggNcbCbq|EIsI`CbOES%Z;vtFW~S9|n4p9C$w~-Y!#qR>C?xQPfmEnwTd=v< z$n12rO;@CrG;r#;J|7LesiQ-NM9f~8Q7WNbn?R5};P$|H4mMFMZ3aHxVD?Mu0{L84 zH6}bna4WbHzeax>8Xo*WWIYWUWwF<4@+>$DrY4>3N!AE_RpjJ2e_`M%_a}i$2_c5B zoi<1W8ENuo9mze&6;;%+>!s=1bd=nhN?)IpDa}~Gd7>cdDw}YpmUsOFugHSp2rU=?^3Hs{~kjji_QGWb>RC9fE7?9MC?>a*v!IothHcZQF*H{P2%)t$c z()MTj{9O3Pr!WNAjgK-JVWwXKrM`ZRQPtK8%HODu32uGAupJ~< z&^A2$Pxtp|3Mf}0#9vv1ZdrJem}qEbFliOv6s%weo%G4J4LLy>?!2^8Ly?b=yT==H34{}qB9k&A<10W)a-F#^y2my^1SfE zJ%C$+L*&0Og}T|jM+Vj47-4(O+co0Pe`6xX%WpA0Lx`h6<@kGb#+>gxKU=!(;|Rt* zKwVFGS2*9vQ>uD1HCrCWGnEh^T3Y+Q^Gk%_`##gw<=(PB7*2LP`Vm2T+4CJvpKLXz z?fw(hn{sFJ+sfZB0EvzPJjIEy61iy5viR*_)GMuhSlj#nmwBuXmcMSxAGx`b9cP7~ zPf$Vsp4R10>ZH$WQNEYY)`NxqMT>ttwEtbgUG+P?hl+k{G0;kZmx~igo>X`e3k#re z3#vWYvCVCys`^dOV8-Q@zW7AJz|=ut zXDcXHtg0xwjssr218WD=!P-Gu5gaSXO%N?|ct@{+R_4}eE8X69qCRMllHZjZIV+gkO$ce1HvR#+S- zE*6rjGX~H}kW5Q_%01x5%D$OzQp9w$BNrt?QcPLfGddGRWmMf0@`a0eb^wP<4*EPN zxBm3U#XhxuVS`ZO`AVp#8C5A6cny=ibAMoPrJyohEs#o)xNK!9Vl2tGuIJ)Wz*| zbfyI_uJYg@xCDJXx5Y>xu&(S7!w$*6GGG>52UD|w!4VtHD>=4akk3 zoVnm33DDa*S8r*~-eQA)E9Ko<4&iHlWMbHO*eh+rex9Ig>0D4pFae*-_@u{pzAhwG z^IS6_-NWdD20#PYhZGLC6FZI+|B5)WVfM4!jR^E|>{}SSaWp>n<$9II{%dB9`P2Wr z=+;x?YM*8kZuz4625XkQQhsS9W|Ti@ZfF=R9ZqbN+tw1d% zmNG*M#XMh_c8kjexXtNsBZJ zhzKYtEva;a(gM;YozmU?o9mqSJ>MUnW9&V~b}O*fdhU78dCe=zUx|ErwB_@m6AhVD z&{0U4l?%_4QQo~qtBVXdZcAEtiy4QSq77NA}m zkQIG>;(NB7K)h2<(06OkSRiOB3%eEf7kzPM?O9}2BERjOn$#D2X6DpA_&!!F*7F46 zcMbZkC~xNWzL>)gq@tPF5t%ZiLT~%6n2u(@%K{0VGo$9TMKsG^ zHS6*{iWtJc+Jzwh*5C4UZxV>SNwB#wYR`S|h{BUGFl0L=-vsReC^q(B8@aHtA+M>4 z9}?et-`FQETqKA6yg*uE=7Zu*)d{&eVJR%S{H|-}+e5+dt=tNn{ksdSgkD!z4eVF# z?e2=QB)BkgMGh}~l%jM*?rm*V2VY@ZY}6(`!#q4g>x1u^+Cuhy$$Uei{f7q!ix7!O zoA=|chYM$K6T1|pxGEDadv*iK==u43L9fIldTR|ZcTKQ*cm z5tbfc{TB{?{J?i&8y!f`j6>s5A6zZJKq?cQ9Qr-+v2>l7rIp$-r#BVp#m>;(N)hyy z@$t{FPkiRNg>c(~@9TITr)Z;W;jU2th(Vg(N`Z55>wC$ODq*1h zU&@5An%MZ>D*_@U1R@9Sf@M6LM3zQmEg6hFuam$0Sp*jhGXY{q{d(D1^ywLct*x%- z3Nqu4RYaZ=jZ|kVZtBYNP?@DN+=_u19V=JhsvIcn4{-jL6*xO z^$fJxSef3#V&ZzO!YdADo*1Z6I7!AoQ9ZOlUixcPluX*pthvnPly{eS9s*hj+2&ZI zQ(|LVfJ^nxfMR~3wZ!$u@ZrFwg{|VxEGO6NWhBpKe4X{R4E2-x1Rk>$WECv}yA$m# zifep${1N`D2Nq&MM8jRF#oSt-G{>+%d}xJ+27$5z*H#PT>_$H?dN{t5_2@yQG{T zT`spRXG62g#z@KUEX37Mg+9(nkR2@OKK&IcY;l-?MH0D<_bywfYE7a!Fw@XDYGeOaaS3LH=A*ZU23VxhP^}bBD=e% zYNe(-3&U5KFVQ8OV@Yw`>_{MENQd8Zz;k$v_@L@I5%EQodzo^nF0vh7D=kPgqxeZu z;X2Lz47j}!-*wa(*4X|9e|mU~kNFaJEA$!DOD$!+Y8Ar4{!*^LdnZw_+O}#9)d`sZ)M47cXeWN-qvX{u$jCMJgXuK9vs@QVS zD(!s1Q!|^@?)j_f2IR1?Fspv!Y_$@6PF54*$M>#1Iz&jK=&ToEd(CpKE)WY#(fMd^`RT>_&Hw zjodhl6{kqmf#U!@Jv|ix{^E<_LxKcLKF@W3S{fQ|oo;xdplt#Bwf*O_q>4Fd-U1Vx z)p0`FAJwX36MKJZxnrJx($bFA)C&Qx9FQAO^YZFUkJh+YA_@rv&pgZUd`^J_-j3tr zt_3aRIn3v z+P}MS>q#=555l^9J)@VL`AE25y?~<+NP-IhZ~tx^m^Uc<1AEp(&G>_=Ui-n6PccpQ zSMl9LMS2!wSjdgiw2u?6s%z@MOG!uGeq@0PF^X)I7~bCAKx<2HyaRcbO8|$5)SwZbTUqHS>0EjI&L=87>H$84y#0v=F^%K? zk}Or^EB((t^5Nd!^5JVOW3JQMawj&0UubYI9M#uSExOoqJEjE{a zm9%9ArH;H`!VmA1_4(Nl=(5IcPH9@QOIsLT^y5qH-lbHT%gfP<$!bjTzVY~lP2Pn- zte6B`C{UpRHI%_bs)863G95U7yzMO8XQU|9q5Yz)eQy{bnctGBO<~WhZ>#rUm3Wfv zH1J`v@pM9R>m4dVK{?y+zh5^Vqg5UEpc+Y)5bM`{Ot?gS6aU0VEE|ES=$3eVV_}tq z9HaQHP*_q$8-~scHdISJ`6~p{PsH*G7IHO*nLMK`zIk+AYSK?UNE;N)4Aq|a);3%V zRgAjlELnjWQpmC} z4m!74e-U*LJG&D5p`^oa1sd__X<|oh8ya%U-7Df$;wDzI&z-ny+bcEjEOFdT@cGXz z%1JnkuLRT8aJ)UppeRG1$KuDB=<{IxD(FZ-Ki^+VM9Hq`Ur3%@_5xt`;P)aF){3j= zMiiPIOTaa%?rN@%!vKuJ`xKE3tfxObTUYqwto!I=15T&Eqh2Sb4!c-opKg_#m2 z=G3r%86~s?s{usj;?W6N$&96Fri+kF-;#wK@xNMh=Wa$BB_#_$INlR;p+itCf_Vn; zFL)^=%fbUmCo%qOtRQLCA`LY|HF1z=aNj;J=is0!st$sXEKcxULkwHj zR~I*Sn#GZkXk?3xZDX;+v88Wmy>h9lHEt`3h_a)Z4eYtB=8d?k7x_V7HK_@8mQk zC+qDQ#X;mU<4*?JeNm73#1-_2{aZT*Qi+~S#%gQz9@8p^_xx^wG%@Oi+JU}CY6g4* zWu@hdIfU1?l#vlBsISG(X$Mx0fbSLx@DrF8^uYxJ5j_&p%4w;FwQOKll%te#o&aPe z`2R@fe|c`|u{_*gE~i{j;o+IuevO8=MP7!^p}KCt#CqWC4aj&w`ep|68(0I}?0a25 zfO`kbz|r5JWctF&5eY`mg;YaXdKQb0#ax8R5kgMm@2Yt72aH7_WL#pZ0p<1m8$8Ma zZp`yxEp2RfCoUvlc3xEVBte%1Z1cPK?+>4z0fqQ)wG$;cJ--CXJRM%7!-Fd#u=In{ zZuV+1#N|7W)8;vU0EzTRQa5}v5+0Zz-joyxh$XdS!(C4_Formmu%3Z_14sVl%l0WM z>P^ApC(_)6P0%(-=LWCz+JILFhXQ$^BDaYNR_34oj=wuW|CZ*dVNRidmZnA!ka!*b zqo2i#GWVHLn+}d8{<&<7RfX4GknrFBr*KpIzO{oEF|4_LFt-cAotRy%BW|1^2C=jzY7CGCfWPma+_>$-z|}pv*=-lp(^--B0j@%@MBKc z{fVs9s?;8x`NX=K8tcPpaNhMk-W2N_f0PD!CfohG)1%OkwNA~n6gBKP+V(LqrFgxt zIvcF)8nt7)hZV(5j9>WQqNEnBH8%p|lZc|Vb>7?n9j?pfWr9y#b0*!ikLN62M^2h4>Q1?_-5@zCl^@#{i7S>IL*Rm~RksguD$T|z3!OP#fi zy|V8-jlEG}*th}TX|wmY+q!|Gh6mFWI4kdtu@JxgtZ85XzWib+{_-d&D4_V0(a|Bq zGI}{T(tKOmj8b@YA#Z?{fhRimFCSQ`d<0;e!&W;{&>RH zp!(^QfO_zQf9QsTa&n#Dzfm=1;MN#K#nteE_W|!0!m>hRI}( z>U>)BjS!TX@SK9(@goo)8O5S41C3q$4%_20SOcem;F^M^MIQyC*tF$c7GI!c1Aut_%-nnMw?aVS#HwSv-!bH|;O~4f-_LXZA_5Gg>^=GF z#3@gY>S+kIf|2)Dg}-NSX(>ktAYIUqvX{EIxhz@g@SRBM z>i>CX84zTs(*}wcSe(wmp2NR@Evd0l80O~uQXiGP51npAr!ywKg{x8~Qh4lDe(8&0 z*{43PiAmlTY9B~tJM;QT-n-ackQ^r026H#eXiW0rS#~&WjCpj*d%lfxVI9o;zIWNK z^pgK}^+ivn`Gtv0mUHRCHV)2@_`yq!%P~yzQ`)g%t=mXA0VH&cuLI&-lsAQ>ZF}^M znR@n>BZ74+A4LQsXgQZt<>q&$Zu^QZ#r>fQd7PVaB8Wtqa*k_m$Ccww%Ilu=rupZ` z=0llz;!dnP#yEvlKvWz z?M&rtnBV=bpT}BODe4DuPGOP#v5$={LmmSw3{ckfmf&TC-}V>LN(~=v9s0Qlu=rX~ z#CNU=m=XNl`}I=Nm{MSkJj&2GcdWcAR7r}`#hn;Z zqM!@vTv5tFt!%YDu+T(ebL>@(oYfV@-n{6|pc9Dtalm-*p%Rb31K+zTETEkng&Nb6OWWrqGB1)0kf{9-%O3pu?@;;>{EYngucA*Aks~Krzo1I2LBynE1M@HNuht2ngX4Z$WsbgR)OpnDq)@1l%YP5UDpo;N3)y#sE!mRZaXIgX;S~ zfznKZuLhmgf2{3oqD7vB2X#&8f#nTHciEnmv8}IAdo}NYybfwpN9&%q!sAC?wZjZ? zOWJn_Ot!bTlLb7Y!2Yfj@|BRzC#tfv^Zf% zKs9H9nfE_518R`e11voC=T9}qksBuYNXI|`@&k7TVc!6kl6yY8zwX#XkBUfuDsF2l zvZ~4>ureY7UFtodm{IEP^0k;(POTypZV5FNp7k_mt!*oIB-e;paY1)qi|^{mq$;<= z%q7_YTTzujP5h^>;bVKn<2s|0dJph<`tSk!IOzGDsfDb93YVJo5PRD1Sx^uAb*PJx<^pn1~#s2Oou7ZALZt1hM z`e7BQd~3w>+^3ZGo5>N){Si3w_Ag!yX@RJIBenYQOTbNS`b%2Whub%lfaZ!RY7)&S z_|5J8U49exmLNtFwXkit@nLOPV>qqCM z+(EG*TUx+ExhK#Ru{SFut*hVCvY3X%=6CrT;+ugK0Z|R$0I3bFLs(fECpaa6lc4j# zKSd?KnRxDo9Cf4Q=L;>1Z_s0OfboODAnz>u?(S1&3M3SlJ95skYhY^*C0+eHCD{A{ zPk`xho!Qo4)$f(ehCUzYcqyniZ#5X5d0H4!xr4HnL`3Dk10Y(_Pbh8iO=7O)9~w{d zLv!yE&b`RR2~JQ^>8u%leVC<&&R75$wik;kZ{|oofBe`?o8}|_+MNYJ&vkBzn&g0@ z&FaKYa)6zt9j`|zP|(yBzOVe3Be}AyuB$HZY{CvR1p7S{kq;kG;z*O81X)fG?|D&&L}a$V#j@Z>fW1Fg^1u{7NTtPus5J8H+V1qvbxMH&@2t2 zB&qiKOiKuTeSIU|z57l7Fe4W>M}fC77k~&b1@2PdwPcn>x$<*${=Sp*Q$T`bb6Gza zP~nlQ=V=V*YaEt2{MOO7RKVw#Tv{rn-6VpV?inB3y*4I2WWOSuZ)5wH*Y!oFcs@*E z8$W)b(p+{m`d+|lbE`??u%Na!5$u2?!Hw1wzK31k1J{z0jQZLTfP<1F9-;G%(8ZN= z@noBEW|(>C+dhtrL^#->p`l?$tY6K(K#(#B2_1Pk60vH%2LINk-#y643c|!f_3s6! z$K~qWt?_)F(G)~=zMsGZGfoqpLN@nJ9T?WfpEjKOqx<^)QZM_F;b~HsUl|Yh|NR@3 zv9l)3JdG|;myZMB51x78j+&#lIy5q}+yJbdwg`NnlyM96!bSX<)A9i%u@H;gz^8(+ z7Y6gAuaI5$YO)eDMn}9!*Bj{jUWW>L{TqMmPzz6>E;19}awhCet5Y*KRIB0et z;w186QiZnJlYd3ErhjW`m3vueDbI=5RK>Z&BO@_EBO_y8yH58fRh`>9tnR4uNC9B& zr?gFui@(1tX9cBDi*O}FImSarBPAsTFNil6(ga*yibE8)P}3%9f{w}^{gHY$1@joX zSDaGpBrP`WBK@+@#4Um(a@ixJa?M`!&S5D#FK`m%cVjp?JKMMlgBl!M_B&4XrrI9{yX$m$~Bwa{9`qtJ8bUJ5n!?WM|5$i_z;C_aJ z>;0Y*YXR(s`aIiDk}=)@iuNN|jQAMu+~U}E@8Z#cmSJ_No8ZXOIG|L*E)9v+SWR0WX??RByZ4(ql^Y~?l*Q-2+>OTNDUv!L!VPKs8Q^koQnWZ5RVESePPLACYgOvByD094h?GQrG`qL zC=~@O^(W|0I^A3e`AXBT!u|_U$qVTPXhXfad3K~)U6KDUwq*nMw_Gc%wLtcG{N#xz zcvmrO6h4HtdYh&us2lFgVR~r0hla!&(h4?qP5mrTupWzt#sE;0wv%1@%CiUULvq*+ z`Ehc`LcZ-8PsQ#60E-3C_&>m804Kj4C)Wn~1a$N`5k5x_G=`7AHZ?q9^!y3U2+li6 z1xJ@(lLN>#l0DPquE(L$d($4X$S-mVUNrO}wO7~$f)kQn-qK4~CJYv1OF%q8`*i>| zB;;{&d~WM_h!k=lE&AZ~_ivj5#SMJPjG0}*l4KufNe4^6A3{*d>%9du8uTaJSWj9B zwJl$ovS*KsFjf1c_$pI=aaU{d$^4qLU{SW;Py`#Wo~%q@3!fw_pKQeT?Mw|g09#*uIpb* zj)RR1_XM2c=Lm=j8_2{X)xv>jV0@7y^q}bQXw}@ZyCO>i5M>C0d{ydzK)E3z1!8Zd zfh;ggv4ACVDGF9mTTDH?H|;vFFb_vMKpRW@lstTowolzq|J{i351JptLzE>yRz+xb z6Tf^xq-i2h!OqOwzZ|dF%nbA>ABC$RSE+-u5_{OxzVnRli6JOK_YMzVLf;A487@A4 zFvQ`2vlTQ#H+DC}{=qO;QUVM6<0o-hO}9Xb$Rj{10Zatx%aOll@J$MYVSy)E2RKDb z!bA?ag1}4ahfx7@pqyU#Vv`dTd1!A8#t6;yJ@UKI>3YI$J*A>T1-1$z)CX3nTD=X= z1jTM--nmQk5AZC4SQ>7lGBD8vYpmY@f(~E*!2NP7ule)psufu6wE!YF4$qQV``zG* z8Ltgy#Fv4$1-9dv2cMVA9Z$rVVt_cLn*2oC&7A(}>yO+aP^L~R8^l$$?$ZjpwEg-O z0G;qYnD^s8eym_VteM4sUcSCCwp2r?TlZpZ>RsXZ5i4jxW zB6LBnk*}&tHN$Qf=jS(r$Iz!A2T(7^2zjP%q$N$mCtAks`tK-uVO6bjJn-&Qh53sb zkhP-P_nC#FVf`cQ*bx#IZPW8mX2T>Y07H3`lCpaS^2M>AH0?bK5GGbM+_9egd()NAyS69+~+6v%ptYHy+;5Q)4)&^RO?St)QCkw$*jR1ePPD7I6z~ z2i<#!Skr=1WC?QTKnG3nDExI;tO>MZAmlCp=iEXDew=>|EqD zO*(TQ2JVyK3iuS#8NYpd0o-)h6sWdbV1NCZ@e#Tv zwx7Qq$O{=Bnsd0{KLPu9%kE5-#(JmF@Agx_G_=J`o@a-s>{z{Oy&hHx^VK^EZJ{8n#~Px~(8X$>|rJLK9mRUg!CEEO1h?AtbLxVc^E$@K0sm79~jqhIhL29T$A8K4_ zJV8uCjmI3N+<|%w{r&2)9m6AosA(Fu-DwG%G|h00J8^P9s@N;-g{fydrG8Mz*=AY2 z6oStJai`b6ra3L~AT6tx6)T6isc_qc2)_0>nu&PJe1xm_Le}Iqw4mp$p+lGrWhha8=Wm*Qt!-UhE$QqfhH zc;$y2J6X{-((~!`tvG3xrJ9azcufr-xRRR!WP|yy!A&0fgV)$!r71b9F`#Q<>N{4p(6|IUJ_KixTp|Q< z)(Z<;hlbSYUgW5;4@}3Qn1#4pN0tCL6J(78=*#)&b>ik==h?V*nsy8hel%`L z&7-U@u(758R=BiVwsJV*5d^!t_V+}AX~sh_33}I$v(6L=%3H-aL)q2~TuxECFPb5UXbCUWwtMMrs&ErI+p5K0i6 zeJNijvZ{a`vlaHoW7lOwHA^%pMi;o6DSfq)GnWD?Iku>xikf`nfCKaB{)nvca3sY+ z-uNKjhS(n}i(HlebwUDlE+M}w9W`J0D&c2!LsbQv(`>1WQLQ+ay^8=mOImnrOPscp zlV*lW+(_QbFqy;F5D>y|0gAuL5FvR;%mSy}liwS!fZh+TdD2Jzic(_xmZeS2u!*4l~+AHJ70{q?=yuvq2z7AHjJ zZYTKM-?^^RAWU&iN8>&$5dfT&Y!pcOm~Z0~olH@pvfI1`<9MK%CIdbq*m=|U{Qetb zamv@<%kC6gV7C4Ilwn#ah>kW_;MYK0jw1L6S5nqNIutAUBCtF{p^H3ft8_qeKay0l0h#z_b8O*+;%8i_j{L7aolVyz0 zk_YvuA$yuXfz{Z;!V*g_iI9gsH^!h>pL9#db43`<%`b27EEr1MA}q7+P)cyfp+%do zh?Fo|nK6_nZ7|5NFjx$=(E1GI?hRiYl-z4w!iNvZYPy!IC?$E9geOW__zV>mKZtS& zy9NYJNQ&RtkBIM6j9v0@Ow}2F+~wlF+XJD8s0??^S}evaa#UW>C8!%{wp}C?_Yd~J z0az4uqXqyRPvkKq@{y~i07xff0~db?hwJR^ZSUz(NO^QQ8`aPNZgygb0PCAm)XT+K z;zJ^cE(VI@NW|kCifA$s8fIopj1GHVH;4MLRLNrbF{fFa)7ZHaYe+^{@}dHiZ@iX= z$>8qp<*2Sp4>bfdf{B z?}a<~y>$NeME*H_MfRfdko!C*(QHa+mt5D$gRSD=#hkY^OcmNy_^=tww;}r~MRrn8()QJAAuN$@LTkm^AD!hb{Lpw{S1r}qxz3> z4)*rFfCD%=S{bcgQi2m7yr{Qd_;1co1onUeQ?r0T@F-31E%+hy~fXGQp5kj$ILm7BS}Lh`@HG% z3r(H+72P8bkwtUu8~Y1ip))Wb;&t}+-gcBE*d17pQ%>-f0@weo@yidodQwi)2}T%( zu#cr~!^$<6Txd#0X>sd7T(1ONj#CY!UKuTlvAC8lkytpr;OiJMmroj+1r1>sjEqFCbG&AT zDQmW~x8metqFCz@QEN$j z{cSq}`Hb>(tP0XOw(pD6@xvrn;dkApW z2m%#^%#?T_4{S$)`I5>r>l6Ex*$=vDX(#u`fA3+z*UZhyzt6a0RE?RONxm)a`>S*r zQqs{*qM2H=o(mKjo?9Q%|CU`^cb|7zfV4X?Af*B!5NYDjt1JL^24EZ4a`LeFN-zcj zRzAs5<9>PjpykoPge^y{)F>=C4mS6t!1EXWTBaI(%toS0@{_)0#Z0=_epy zN=p9Z-{e0H?`uE9D~AMO&ZKf- zQL5&O*~u(vL-M^}s$L2PvsP3N&z&CiIou5vc~@%cv>B0UsjA{l3h>aqG4+Sy4 zFvtVxt^;^Ir>mLK2poiaZ^|LGsK%fBQR*T*HFfUQRnzy9I!6n5q(P*dA~pdqgk z+u9Ek>G5;A28iS~9nZnnX3{N%01Fa=p~-R_rts3mKpdX0|ihR-qzK52fF`<=JqcBUq5<1RD`oh z#Fq!?v+UJh4q&?9{nMpYMMOfv37Qc^SXX4EB4_5aKd_Jf0$k*Tg@?%Lb6PGsV-@=A zYx{z%X)SKeyHI5ig8AVAk?;F3le^6QM27SJ!>k%B@X3~HzDB+GJjWf1jMrPMJL4oo zgI(ic!x^Ty7{MA!F)~5u_!SKJAEknD2{^?*RVT#vs^sRNRn=LGqkb$X*hn+L3;++j z{I)qF(yhcz%N!N9iMB6S^D&RT9<}MET@!9}-cuq#?cMnOwyl-G*e9T=N#$?DzOv-M zbG()O2|eM%re@!cO!}+uEDv<9&}lNby15}XG7yP12QVnDaf$5@ zz^O*^HS2+Q^T+7Bm#LWJBksk9p zz5yq1buF!&lKYS-jo|wULm13aVyR14yv(TW+;vx$kv@%58VY z>ir7eJ}1SkF;(5fj<%gUgS8zm^~y;iBy%LRrVLH(w{mJTf~CHU3-G8zi& zjlAe`O@=ryoD5;U-&(6^>{b^i=1`dIZT4y?p4Kw>eLPqdoqi{ggK`4jV$klAfhjrY zRmdG_0$iMGp7xB5 zyY1R(yoXCW;Qi``jN4&e9#h-T=90fo8*QGiY>;KKze1=?-=pqtSbRe z0K@>KFj{}d8M34R>LlmVJiQOZw6EgN0ZKJ7G1;7HNP@Qo0a^n()n01e4aNrlu4DY4 z5q8_nT_C8;u7`iDRu0&)qFLu53{Vlh9;gPm9G3Ps;uq;RKY!NGTY9;9;>=%*+L|@!f7^`&V>lXXlHf^$`TbH>~k%R3<+&I;xS#9F29n$zKFqAS_^) z>3_y4^?%FE|B&RLgBuYd6cMts!8+mTqj#`91YPc`aa1+bD+*fW)Fr^+kp%m??+{BB zj#8Ef!h*gESzccLczgQY_wNpwwz3KeFQK_v?KVeMAPz0d!**l92_NTjz6(6C!djO! z;M8Z~H87nIrc2xbJM(JyEn))GhlI<6KWZ-lv~R3+N`Qm)dHQ$eK!(v8b@nU&OS~AF z!-NQs2#pitb|uzf5zh606n67#KLRSN&#HfL z&maeIPiuDD34!+}BdNp!*1VAF==t%?IaZV<=7&iql7-u=oBibXk%$)s_d0iIkg2Ve zsDU4{5p&|KWk7QPsi|x#LG(04io3vd;s#gjYZl6?I>4m}g1Cjky8s9hEoSHB96-PzkiIIe?D6cA_;a9haF<;7LezW7QY zfuK@nJBrYRAmW$IIv#8h_%r*zbKeS5OoxZ{s~Q(kTN2I{M}!LqcVY4LSX*2Bf1CsY zv2e+JRHp60y%+)E0lYzL;3Mvleo2C^IyNZp1Y}EU02{g9PMJriLKJjiSdEk4XCCFR)VfRf1#Fvc_cEEK8 zoV0=+Yjue7Lqu+Xx(a+zmU4yL{IA%~8!IpSFc$-58DEclwVf>90P%KI$r%g=xQ4(`Ql*2hV9&$wKCs{Ar^nMkrc2w zz=Pe1n30LkU**)P( zCAVWFVPWAvQUZ{)o(%i{f1Ylt@9NfTaG1zxs%v(mzmmMd#1Ztcd-VzerskkcKv>4s z1dOe|ur5w5OQq~fMR|Lta3@B6lZ5NOG9!f5S!r=|_TK)WZS)JwGvp^LBemtV8R8IX zR3_ub)GGmB0^mv@&0nr6vvj-6Nb|VFM6Npo2I~v-nP`t_xC+tGV`2Ii*Alz7g zA1)rcyJ^5JWlbRy`+Wi5eJzA`RhQi#E6XvDE z#?GJp>xNTi!H8CIF{Zq41utgtp!|HpR;zb_;DW0$iJqOAFD#%((;joA7mk67M)y6> z1opl6Nd*a!fa(hL(`zlK?_lQK9`!`t#Dv_X&TS#-x}iU=@p8NYUdu3N0^-0=+(P{+ zBi+m16m#G4^&0J&W>f0pNS|H-f?J?qJK5XcKbN=ut5;qx2Sc0{NJ~pfPGo&t#WQ(z zK(2ugeKYk_yj5ZVh5$YRgoYiS2N1BpeIvyX2T{}kRaHEIMWdh&l#Z3#m2b1_ZcQep zJ?bqID(j4D>WE`*-iZkae#n2$N-5+PSx9soEvm3(^vKF}O#tKMm&-liiGpht!kPf# zFXel|4fG3frZ{zV%@9~)CkZ>44CFJ8#8Ja0ixS3%3a&VVY2kpq*?T*tfSiAvqUu6N zb$SgVv313=^>rKQS_p-_Tv1rZ5mgO*B|)&3-qIg}#=jw3{IF^xyteYmO6m}?!Q={$ z2YC$rDxc>=o|Age8sq?15|fD)a^Ik7N z6NIqm=^y+8nj6rya+ujWFC0{Up74aeTI$z3OAS1XBwNFdqSks%?T=(>G{?P06AzMy z`U43>vnl@d8i}4J5AsxG7P6%PH1Mnz>;+3K`$!Qc-;giD@#Q|Ga)O!Fz_;Zd$R3mR z-@BE&{g7yP`&WX?J4yI1Y)gv=sCIjl!iP){m20xx6^8`b2;?y`K-yx5R-T+zgc2}( zn}Q_PZ`$hGj>;?vJb!b6%>vdCIIv~}_~Gm-saL0BJ2*X#6K?cQA3wwf4zP#4>(%@8 zCM&NUU*SaeF-dgv-#QT^yVdVEE)GN{*g4-eq-2z0X$VYR>!v7j7JA4Zb$OrCmY~?) zKM=n7JYoTW)AxTh;_Ls8{>D)TEGr-+LntJGOv7=IEK(=^;JNbg{*h*p1_$dLF*%X0 zYkBFCUkav}*>f+W?3w7&CW&r~3rr_h6^wd7V_U#l1VBZECgpf*Qu@2E^ykT$||TINJ(Yk5ggD-eDf<-q0=d|P|Q5g($HYD z=pls17wH$-_^4=F&|3=U?rzT=HSCxg&qCtiDzU%G^%3ZP(c$VCq1_JCC||*X|McR* zY&YULgi|3S)bh}qy%%wc+PQsf5h5)B=N-rlAlTr%*>?lA4Y!2!t9nWjiO15E@F7t}i%|5{IX z_d1*L^BO~9WYBr7px^2cf+1W&{5Fc zy{ndW@<6>&JhUenmsT1+?^S|Y*0`jyhk1X18d>kL}DYw8ink?)~yoP~A zjqvm2buumD>+bIU3+*RTDn{RnSsT$Jcb8E2`xkQzmQCAo76xocN>9?fdv6_juB_-S z*kg_sPp_S|d!SzOM!Ic`&abWghWi)U?(S#Z%*y+^UU^#8S{uk1GWP|dZcfyJe?Yx9 zW6fdefKB4_CSu{SVG|%yE{ChCGd>4@v}elTLISS|+4IGX*4t0MdVVKzJ73C{vZ-2m zC;4^YDXx5{Qgx(MW-)ctKbp|YLb_iiSB{&LR#$b*#2&5v8GhbGNRt)~Y_`K8mzG%U zmDX}bHdH`JIhSza0UHFsX(g*ra_AUIB`JtKhyx`VC|ORQdeTpXx`IyrLJMW}**WK? z-f?ar8%nr>m{zl0vl3J8#;IFHK?CHO8R#k7EKwtQDNM_51Ymq)Vtl$Gdl#R&rW2Dn z?D!%oYqtzMfs6<=w7|xM8QSkV5ZE^GM4ch-u`u``hJV`r?f`KDkHV=BKi38>g}Ffd z4#G+huw*t4jtuzFrfS{Z3DCx`F>$Iw(WDgIJQIhqd|vzo^#nfhDh|APDC8W>}+a8yh#B` z)#-YBk)AJs>sse}qtIWM9b|on*<~ZCM<@BrcY(~u_VIUE?{Dg-Pmx$zzw@s^C^RW_ zFV%@(_OBe3y?ES3gDUmTG!!0V_+E|^dtpgGG<)Rk*=Sgvl^;>%*Q8+b90I`*IXmF^ zgV>rwM)#2y4&;!hynlZmks~qF9pL4DIe z8LFbD`#XPwr-m?1$JPi%h~7OUMDX{R)HlGetYgp7^VWCQn*X-n0y+FwFv`1pnQ`~7gzKxqQ?l#-3@htlUU2!*|7#iT2c zRW;roDEeg!9GwSNzL{lm-BzYH&Et<0Ns?WP^}V%b?;=R+R?mpZUn|V9a@q{jA!I%v zg{eN<5Zq4H3xETq5x=~FD)L349neAunDS%YBG@}Qp=D&m=s2ca53A!^rB_&eW`jR= zq9{$F-k(2faOvOgCrqMWx6p4P)3At?T&GB})GrQ{(!9b#s%Ove`q6z+R?@yvZ?Ctz zei04D>8|nLw!P(-98y|}7o+pG;+=q+ui3sD1ti=z4-Lg)37;a|z`0-h0Y#F;q5c>A zjMYwacKhm-)OCF;X=p2h*@1Tn;%Dxlv1?c z_rQE)Gf4dsr+*w4B19ANg9C zyj&KyHbQs$B@#=#j1uMu)*YiL75Moa!SoO83djm=o(W~->{#V(5n-$ zfIZ#e;qKFk9f9QOcFH&sT#o~S#1p?elmFbdIGjIj<2>9IIzK=EHe!Pa>jG8d@$s>S zrsf`~e$urH28MW=OJ(&LVI z8}iPz8nAq1^^A_OoILZvmeCc`M9H+{pxLdvSXcz8Mv%J%zXC*ppYEdHy?d!WH#hea zH2z;;cYxS|Nyz9FxodN(AGVqvhX6y-3Lr`8>mSW|G}-4;`_`T>Q6oK*i1HIESQl8{H>2>ihCMBTo3|{(QdP9GXKB*W_hC9=4cn$7kFNViw$W zJ5nEXRKhfvr1G>73btJ!2wkTW>X<2l$33@Gyxx+{lN3 zEG%0{w)6&?n;%=MKg7jAmt|&X|5fd`Cs8zjofwb&lLwMZ&xX;28z0HosIrr}@4T%D zxCN21M_C&2Mwm}oSkp{eLfC;$j0C=k5^2J|MxG+qy5IpABTH3YQu^vgUyL&wIg?2hWh??tb*L$ztm&AVx-_o03AiECfmeetWd~Q36+oF^w%)$=0zQ{8 z9Lm${i=CT8?*a?j*6sicR`ntKmum{GZEjf_+DgRwJa+vUgrZFGrZ2a|dxz>EKI21T zqMlH19JqbGXG&hjyl)Hl!%3fSBpl~lC9_q&Edj%}EWM(oy`zSyeIo?E4P-Dh2w%5$ z!~_=btI3=qx}v=ne0g*JbgZvibJ^vj)gQhw>i2)sTqV&T!}UPM%b5t(MI(x4f94{} zG(gEpeXF7rx8$(qxv2Fury8k27Owy@2q=y6wO;c)d$t5oCSZogQ#}fq=)oTinFr zF;NLmXIO)3fgx4=SJi@5Hq++~8?SNK6?=}z26!qh`ZHYkzw5v0%@m=%9wonZ()Sdw zf1oUaw4_g(%-_J*{>p2`$J1A|sA~?^G;Ai9ucOFB#1^I>)-DR`hYZ>++)ngTkXE)2 zDlPpKG&wWHUkYi4w|r~J$$a{MT!oa1+oBCFS5!a%kE7?o3x)_6tG^!H@rt$2cza8x z*-RZaY3VPSn9qAC80WcdG)K~ErAjo6R?b0V{Xf5q{&N<`URYXo0A~jLZcX5}3JMjO zy*5@ShtFIaVyKlbj@_y*8hd~yqSN?_$b0+wu2M&(n~$sQzbo=fWVq`pq|_b0Dgr58 zr@^aY`vxFFC78vEuvu{+e7!t=%s~;t10sD@pOmh6_|lFq|(cYkRq`4L+|rYJz0=FAAe`0d>@R_!|zuYv8vyIuU;z{Z*>~a;%pMG&J%xIyd$bQRxb2j%^Frke*f*UdA2R z^iMb-`SY(TihdRLI^G1ES1jP20Ne#}UO_1-)5gWwb&BoDBAZ*|?PIw|_v*OVDx?{BBz1MW-kj0e zcuqyMsp%c1L6Erk&*&jUKsF+}w4sg!2_RW8&Hed!Y+GISU85A_rZ{und6jsQbM!M< zr>^>;lb_w6j2IH#bS=%1{LNvW5;3MY@XeI;^LqARD`C=RJ00Gs66%Alr|6*`GI;blZu7_F z2<4=+Rphc!#(#bz^s;qElq#M={qqOXhoW8zNL!))Z+*LwsY0HNh4)~p9?X$1|ME^XsJHu7aE4d-c9ES|O&`S%Cz z1@~w!GCh&EEnha3&R*Hng(O~AOl;c<`CnWGh&cM^)=tKX*}Ad8l>Gl_`pU2>x2F$v366x*`1?lc@tbM-MU*}wVUu<0KdFCAB zP7hB{B?jFq+KR`kc4tf-$-p~8RpX?yaKvisIo|JbnZ8LJb#4EqE9RuHJmZ%FZVXt) z4Lv`rvr6)uo$ntVPGaLq*c#CiV0e0Y?S_G2?|Bf~p!zn2$F9G)(6!I_*Yutu&;CXi ze7xG=PP$H_-gn>eV-!_2170&5PZYh;Y4jjgQ7NpUfc$jeln^fsxONP77h6EJO9caN zfB*ej9eI!nK7;$0F=|6$p*Wts8CI-};$j8RbdbEwIeC(_zTY=VZ2n~~c$ky<;rXmo z-=oZ&nil)d-?PFsl>-wJW|%}jz-P-0XdbuCJej-uMH9_79Ssdab(-Yoq7{6@bdlY4 z2WdK$G_jO-D!hW6;GzSe-sxtg>)#vj>*7-Y?qm zj6@~0aF5f7#!oF^c*z_+j>(?iId0P7kk8 zvl+X%l5KR)1wMZmPviDlKBrue31|pX$B@9@31rWDclh*UV_I5TDAyqb z13dK8DgYa#T>Cgl!dv&I12zHTrUy{=D)I+sUxo7hPX9W*WV-?zdwf|=EV;}-scDx5 zto%G){4)CiPdrXs>wTZ$`ftw-p%Vbqn4Pm}yDxlB1oDsk}=ejj?D@V>ii zEKqaG0`DnO8J;z-ixrZlg0)(T#?LV;>K<3O7?ArSW83N%4rHwu!RQaWJF@>|rA5r6 zeHbSZe=eVV#(*jF!;KceP-*#8R{kIdg0|(J?rw8o&33D-savpCv*)V$hN{X=eW^2l=I=bu>{aQlDX_+ zLp?N%r<)ZMla!a?i&S1|u3(jb<9l&=xiv>A1LCXJD2t9#TEMe^GVdOWNILx2{p7({ z3JF4f(l-}v|8(ZhuQ=mqGbg8~Bf`@vsfot=zqIMLg*PaUO;3%-@3ACs><*$I&xIPa zH47EgQS?X8IP+oeg$ad_rm;oYU1&ZJK>6a21Pw)YnaU@6Lim;A*~P`bKrr`bsyusp z5~}QDpF1*wp|NhTuH;Y_qO){8q|^e49Umyxk+STF)qiJwe@K8A5ie2vN%GYAg-x_WKKbfO%C|tY8lsfu!{fp! zXW_tFLQg&pFV&>Hh08z;0^Q@=r=nQ$@MXvVv>V4~Pq#KUw(2kTT|#$xs*Q=;oU2Cu zrgzw*)!VzVZwUtKEU02YRQLj!W9PY$aQ|YL1a6SZ&ZyN)?Aq{EOx;<8oTXt`O3 zEh|*ECHNsabALOM@cK$Drm!p~D3EAo$G648h-066Jf^~_`sp4SgWJ*(L`eM9T=mnN zYMTXlh`HH&?8orRTXv>J22mVBGe^tM5qvoLf;*29I1HFhSYQ+BMC3&`s)s;*0~C{i zbVljh(VZs2$WpWMpy0{PJ2#wINcLUF_cc9A)sZydNBQ3qdbOy)6$^jK2DhWu*4B@3 z+>~3-J!fQO4C}oQ)}fDxHPUW7P<8(Om!{Ts0+kE(RbhAkU(xzG-=es;_U^*psG~rM zv^S_+s@^`>-J~h?k>K4Q(N|KTd-Q+SHC;TNuwd;?7O}v?A$54+{L8Ue+nN)}IAof~ zV`r$5=dSUCZ>w~0g)a%Ya+z^luV#w9KN)4Dal_DZZ}daM2^UImeQzd+-|>qwF&VN4 z0I)^$Zvlbo&~8@9j|fFXmMVM=O_JjNyRe8BEhHB2~3D zL<<+R+D9{MwthlA*_-2wp0~OA{Nb-X<@sUP1p4WcBlj5oEKF9x6oT;pI9-kK%l!WV z^|~6zjN7{;TYhn&7wqu?Ky)L5aY~8D#wZo9y0`Co!DFbE_wj`G{#cRM$5V*dAyMHg%v*e0*J1`H1^Tv`~(6`zDZ>d zWY7~Fs0m{kJDdB#@JsTD{YlhG(J4-3q{hy3WP~3K4sJxE$;I}M%iT6CZXOQfi^c2v zwpJg-XwoaBdp@8lF`wLnx^#mD{}x$`iNMKOkMX(tYl^DeZnzw3j89pZ`<3#>1bWy~ z%L|_}xjSZOX9zM@-d$*ahrp1eypUnzUWdcx24C+OWT{H|W1wAHa_+rBgDm0uKx2p8 zoyNMkV`!oA(JL9#2kwo~Tz<3h1358+t=oaKtM9EZ4|({cPLSTiMNUO^3uXvFE5NAH z_Ujkc?Q)3<(sLXqmh;r19M|LSn4G=@hGK$4U*=kW(I5IpMNg)^v3R|c{8X|zTv!D} zb*1kRHg3rnX(G#8uk0pzm$hux0-lwAb%Jn%Bf5}XUHPCj(Z$u3!)13-3u_AYXTYJU zAXzKlnH7$Icvq%s?dgFRgRdL}P2I3Kx3nMwe*+y&Fm)QVd_>WycR-KYKYM^uDi%7? z==J@Gw#aWVgA(^|c>uhDI1e9!5$Fz*`oP?-j!S&rK9zit<(D^oUiWXhn_4XHK0DIX z-cK>Rik$28lt=b z{NjJp%&q)0N0bh=51tfr*W3-!>PQp+of8!$yYS{N72-TV6Fg5V3jN?pJ!s1CQ$dsl z*Kndt7-j_qrv67ydr^(V(ZQYCwy;2n>Nm}=3xB8XKDOpEDZ)2TxB37;C-$qt^t%+- z(UF`CSaTr0!6f%(YqL2K!)^NtE}^6X`sxzP;V;)aZiWUUvb=P{TR7M5bm1{1nmdVr zD2#kTk^XLHseSlzp*#NLq3K)`9_%NjHd875^f4+*iEUs6o2;_Z{<-&g0Y$FBnL` zE+dt5R1tQowuuQsuJZM_zf;ij9QnKM7g1BAGXewa+8q@{<+ zZD3Z0)Z4Wg$IToDHqqSiU9CQ2vSX6@MIG^|s7cE!3LjgRguPrp{;zZrI$yn^576SF zhR}&z;(X&%cVAa3uiRd~>iR^lCJJgE-W0gcLY}Bpw6;NjV3Hyjkt8_vI~MKgef1_miW)L3Betmt+xg<9|M;y zF}POpLN%3@BH93W?E==-p-JWN=m?4lz79Co3&~o>b9h-3USwf1zJ8QJZ-+)>5j9s1 zcu}D!xw&R6ytsh-E7n;Qgm!wI)t^%0wDnR=oTKODm+j5021t2sEe<-N{h~NaR}!wi#aZQ)xss#C zed2OYj0(Q%XVqE!Kv}_=3NmAo2aXrc5CPZ$K|dB-rhi9sNA!-juO)HrKvdtyW~N7v z9_=o4Ei_$9zIgFskquEj0B3=zja7$!@e+5n3+pl+A;I47of!05cR~=814x{K=jw+^ z+6iziL~2k2FJW(gaF@xT0VY!pLtiJ0g4e6j0WTP(<=cqDY=!`4$Pun{5_4~pKSB1ga?sgQfMH~ zR4p&Bqa0@P#`<<|QmDcM`+maN!FptJvb?b|U37Fbx5aoc;KeG+TGBRM60@&dedQ|G zEk%j?-Vya4!eQaTYx(GG4gZpCFU-c;R~Y~T0O6i_o^$)+qLT_>XL+9Vr>QoFz z*8sx3%xTp75U_Aa1QLH7weRK33rI7x;CzoU%s}*j%Y6A5)iCRNlFr7flEP6gO3I9n zVeDuwc|-U0@NA6;@CbTdjSHiz42m}!_|C`xu_5qun0OSS*uZoSQRIV-kKX}2Pd6)5 zMqDj1Y$1;AZ-DyoLB5S>dxk2ri)zns0&JH!Nb4~$FhD#A_MyZ`;E1@}>^V%Qb?hE< zvEE3>avsl0)7xH!Qi$3wsi`C~nTxNgI$EX7!O6J{BOXF6oFN&COHLm0iY6WAa6~5@ z*jUI_erU}6gxs!R=A<5Pf{v?u7LH3=NVYAgW<$c9%I357um{JnTH8{RCBuR8~#UzGA3eFwuNuy161V!sVaSm>W}%{r`FJYUzq~i z>-W7nx#`y?54cIT6Ho7iNL*l-ORbk;2L6~nwgvV{Uh|p@DZR*g>}*;+8h^0f70O%f zrE0bc%R6#jW~$>H9x&e>5Ds{)H3Pl943PD_*Q^-aOIa~1UB zQ|JH;)GIHt^t#9#6k2!k997X&`Aj_h}bT&XKWgh6Txx(}p7L`k*X7|^}kH6P5 z;FYR=l_+d&uOg)1o08j^QEOQATS@&0c_SZVYePKnYu44BI+LvNH1W z^3=6qTsniE&p(4{ZQk#!5O+5G(Yo_N1KwQkKv39&q{HuvNXkKE{RUcKh+Hrqm;U`X z-p~7CgDNd6Ywha`0{VUkKBgC>!^^9q@9P{v`e;+XcbB9xUO}*~G)LQ{f7OoLRJ4TP z>=co#f>6x?t270!W3X>h@$wQv+Hf7zrFLzk)zriSQ-~D)s=a3~g9ua$T+b^WXBQ+| zC`9f(bAkG$-(zacD3u~V!TF%shjlCr%Aj;e+~>B+LqN1iKP4&6RNDAwrruMp5tr6t zYEvKq^z|ptVXNv&F@Nh5mJnizn0~|+Ll;|5_0IBbWGBOSKCw&VXH^_y8-JtK& zEH}oqbv>&*=e3&t1}7tzQSZ0sV=K3A-JqKnpfe{v$Fn;XEK8YBdqjN~mNwiU1fHet z3#e*F#75$AfBuqE^NzY@jJxb^{QWz|U;X0;KOpUuU&mB!qVbLE-SkQ1witCne8GLa z0(tvR1`I+8euD=gbFoj&Z~FjaI%r54zQ1@204Hjp2hC+Y_DlW4xm-na*~``Lw|a2a zU(%$9tW!zvN4UD3JS3O!kUp5Vnb7o&ve!6o+WgspdHZ#xIX(~sdDb|4c0O^h88hYv zL*H+6BFBArqF_z_+jh|_uxy#{Bm_12p8Q1V1AokO^bm=VSIlrv;8*-RVZEDmj1YuU z?lbAr3qywhGOi#WjIo2JstzOvD4buamYeDsg7~|HAA@)TW;jSJdd$V`y;c~dQ4L7m z#x{!&IC{Y|B814ZQBzYR<97-MWh@2;2Gstg0z2<csHmnE zM&cN^Tdt=Z5hDUHmhCnV`k-%42MYOM5BmAHX+2^iaQPhng8oy!+1$J7=9c~5h`;kTpQ6l^U_i8n875+v9(lunm{C9bBl6D}Rh&aFNhYAl)i@q~4;i?i>xyv(z@x|B8EivhtZ^KgfzxzKFWaV{P z6kbC!mDlMKD&$6<)9(y4VL^Q{Otr5R6i_S1N(j!+PX*nFVjKN*KkbJZX29H@e!| zGVsKugU`VEf!#km!f#QT4irD)M^Y+B0vkTXaMu_EbX01&ECJ+eEPn<4ji&06lczmA zs&cDqA^w?mzTT^Tl@`vN2DkTSxWZe5*MA78Mj4%25(mmu_qf#8lE!`DL+~Z87Qgu4 zU)zER;qQ4LCX4AxEp*0E=v-E@k%Zh8^fXK_vRn&aaDM&FNi0JN^2a}DWkOx(L;CDa zF$sx?7~H+yiAV6NBB_n3->+M7b%m(VXqX+AH#T}_Y?^+~*jR|~z22IJfBM8k}IHp4EhRW zfA$JfS-4zlPA<%cDN%R3K_l@zR6Ij{Wzw3+4I}dI#OAEgtq&I_smkX0Q+i`39mf!R z2zSWHXByM_yM)8g))vyHcb(Mb@$z(v4PE#IA0nw2;a?;o9&3sehiMiu(B2TF(Y*TadaQX?xL`== zKBIBGschvuINkdZU}2@#ue-rA?eOuPC_s}q6cqB>Oftp|k3d5eAls>NRe@g#4Z6>R zd^F&nJ!r;`nNA1gf^m^HDwRo7&j`xSZl7skEI*`D;o{-lL@%?N7SD8bq57HkeasJ# zs$ZDH1S!F)3L&thuT6qa+PW-j@O^by>A@H)8A^deLeg9G=Et8|O;Yal<@Cbk!0!Gc zu50mRe8NZ-b>H&x@`0N%(9uis)zT0=98RCEqF&XUW?HX}%d_$x`kmoR60S)Vez~Lr z02Cj7s_v3{nj%8}3xVoC;eEbitFdTte>g{PW8BJX3uq0>3;4JoMWeu32j~q@ z=`C(-oX0qkf{gI@uM{j2Owbi&=hf%Pr<8qk_=webuNh43?VtxjAmAY6hWc#yz4I<+ z8F~ZhdHHncw{LN82^F>+z#|RP8?q2BDIgN1_fN}aakL2t)uMf6Hvg1PGF#o*PE)nS6C{{w1aaeV_B_zee&H$?$i z8uI#)!^qZ}doZcByd4Bw>xg-?z-X_u&a7UxYjK=Ec6btzG~x}7Co+U1L0=y^JbW6d znk%BtO%|^{1{pGk8*q>{e8hhhHR)gh9&6Gs`5$xLVLVERLDy>vo zTF!lI31VY+*>e@cwaTn%{eInqLc@u2WlSkS6=i=iDm~ym<7e8m;{w+@=$F<<*SB2l zE_m<|EAjXGJC^WSmmoW4xLZIUhHaHA3h|4DWvU z{6|v!+e+VVx#4TiR2zdfAkT<-t;vA@i!!|S2b{hfv@~$t{o%C6G;FH*_1R{bnEiwS zv<&ap2guJ)b`%^OxM4q$q={CH#s3wckYIlv^!4*iV?3}3Ag)SkXl$?Ta~U2Uo&>C4 zxRUk%-(TKj|5Fd9q-QCY)3xV4HlNsNlS|EzR1UW8jV;SH2fXUE!ZbCSH>nQwT;&p*L$14>NO`Fg$+ zuJW3QFjX5$AI!)4NPvEm3{Fe-$8y~Eq1CwcXYG#&SNB>cZ&-UzInYQAL$~*&cFJ`5dROm!C z*YXO|v)Qm?;dXEYRzoS;*!K|dU@-yq=LjCDu0g&yYKH@zS zdWpLJ-e~5Ph?lk)K+gzqGN%{IRDkn)2TKHzi2TY`aiZ;1JR*OFC8;uM^6Qr5pmFmp zD9|E(uwHI8pYY+H{H-uz!uFq{_iB#kEN1zx(Z3LfhQC@Jr0xk-@PX6_jU*Y-3WgHC@~fD zal&wx_@^sYL8&_xx`lLh#DvS0H#hJ+l|W5TlHw)j)2JHG9!krtVr$;fk&OHX7G$X> zh`9@3g$HEM6uVR^C1~o8n3K$`w4XlP*)sWCd49tLtOCL<4vcwZVj`lOThQ(B?R141 z)aG1f)*2XA>gE05Ei;)}ybc!hismCM+LiiM#Ql`ZXy=LnREOgvz=H;ZsRe36P2cOn zqNt(g*#YKi7nlU<8zcrNdR|Tx4VzB7T~L53@U5j~!2!};g!6j$`1rT74%v#r^+3Vb zt=E)xeiQPED_uCBh=%&b>8I%dkpeP^inILheD{Om-$j+v>Tld{cBy=m7kSIc#?XQurbBczH2Ca%s^{H;8r)B=jap=0ET*i%S{O{u zAKfo&)lrz-`nh+R6MR9CeP;(hM$En&&13wo{N#uCXDH>Oms&r;z?oWoPbAu?>hbTN~}D2B%C-l{NT{KP?6Qs(88eT=9Rb<>ra8Kk?Dhm z=Lg*nv+l<_C$97*geQ3DIa|4%AEA1WD~=Q?<=5DI5T~}x_6DYSokM;a1IUQp?k?YZ zb$DoN$(wjt;V0nk5*3+0J^20LHN5aZD~Kwe58+k#Y1=Mr`3;b=h#dA+yg{Im1L3Z(EDtl#y z(&kIxN^zCR>#N+3VxW!;2{x4o3SHXAhiI&GbQ87nKySbY0l9J`1?%=7nj$9%#m=l( zrl|E0Q?2nr-TXxqG2#7Ya8sH>{1EJ+YXE~n7)6G%daAPeBb8VK)4yV%VFYnsw|u>d zr(Sbsr!OpcD~pRSl$CJ->!4>jC#mgOI=Z`tEcRyVRx^x;Al-)yh{k46+?XMM*jj@y58Lm6k9A%cRQC9z@oCBKD$+U0}vlKX5q&oRoMH`SoDlA&=!X_!}uWSfVz3CTV4yRQy2agV=}i2JTCXTAfdK! z{!F`KFtC$XMbB#OeSTd7i0Y-I0#hV0^<7`EBPJbdYinjr<(W2Hh}rFa$LSRkY;0CN zP!k(B9#>vc7QvD>T?lVp=*>#P9-)6|sLB3n4`i;7J@*1X2WUt-farww?BkSV1$A;C z^&(Zy(MojTuSD&aeO?8a55(`hW;lG3GnlGs!E^;8MraQ^Rhjn$Bld5=st}gw$Mf`m zM2jM9;Ek@nCk?Tj;pB9vV6omU~GT9;U53a2mO8 zYHlrUA#=~Jw-;Tm??tXUb)^4UUJB|mVSBb+W}w35tvx9hz=`f5T3MhH3(S782`Ae_ z=YA<5-Bo2!^Y6gba&45Hu(g1JDrZbuc{^q0ck#g)gdrdjDWS~H`@9hY?Xn!9gZ4Om zkH9u;Q-X8fFxf?JLwEEo5=>gxT=<@Lr!9)Xv6Wx`sMb~Gq9k1^rY=Pgu$|76#&_YVV7~o3~Vm5R^F1w|rto}`^{fi?= z1aY>S5?EKp|8#yM_`Xzb6g!YG4%ZI!YJ*N)NsXMFz|I8+*ir}eTTgS;)b3Dv5E>ah zVYwJ+F+4x1s|ucc!D>bFSxZyOORHiavPSL36|+&@PV}D696jDvlOJH$@6Qj-;Gqq^@sLUwz>mw|xzodjRi?Xs1sb}n`hqTP5tRT4^&LKD>b z6%2jDqW5J<9}h*sivWW7)t;?|Zs{6vz;Xf}Otyj5zSjFj$n9LhfoKn=sCp2iz^Rqe z-ADQ==$M*zpR)yZeYn#ehZl?G5#KTyXj#J6V)0086bN;y%*PldLMcLI=?p4Z{+)#1Xv8-b)u%_<)ymr#KlevdOu@SiKXH#fh;XQiyyj%-NQ1D z9%*>i?s&FKq)^rdbD6lF9wh|%?H^QrhykIcTVv_H^&&i+piEP4bI?T7oG$)=kWz?+ z5QVVR2M?zGf}vs#_Ap<#WQ(@kLRw^4N44-sFo%%cU0fVVeSLkI-_$)MB_#z_6(6t= zCXIi9UQe4wDqkjxpdNr~o&dn3lkX`|hxeA650h^x0a|!q z`(TPNhs^2{0K6EQx=Cj~zL{b}~T8!j%!SBfMFz{wKki-~R9N=y50ZGGl zakyCcz=}Px?@3WX>xKUPzN=3Rc?GMRUKAdaSFSbkkc>xud@X`c1#4AlW#Q&rHso_U zI?_U#!veh<$7DyYy1TU|A1Z~wyOlzAyT0CV85-3bRiZyqQ-7vnzQkOyKjorkVJVc4 z+66Q~v)Y;*b^@|}lA;6jyRb=jYp;6%OJum(9S)rf+j>q-U@iYUUPuc1;+mqUD8DEd8bd)2vrbLPJRh_aDKb1HA~OB7g@A-XXM0xQj0KSK-4{B# zLJ8np+K4eq=k*QR4+#E6pqqRKdi^6G=SVp&PaBUaW2;b;X9F;36K0(K;I2R zB%K^0?HLrE5!X8uFBy49EAfpw?F}-k+)8hL%s+FE^N}cAzO0*v#igal$lI;q2tjFd zdmo3D=g%qT=dn9mDuA=+em}|3)TRvCG^S`?_9Lbx0`M%z0ag%PkVxFXS@Bh42L^Hw zI(-4yY*jc2p)Z}NHf|Um;T<-?OOq6S2j#3D7hBcc_xoM9HYNX%PRyyL6)>;Cu7ojc zNOaza_2FVZy@EXnUIqL0Q%UHQ%d(UfU6`yJn9K__;54{Z(|97sD1E@r&YoIPfv`SF zyqPEy1)M=s|1PLCU>HHJh+3qMK^e;vL9xQO*==!lC95Iy(H-%A^kBX~)10!H`Qzx{AskqohGt_NeN;3y|;A8u) z`Rng%9$Qi1=j__~k_GGGcw9zw5dklQ&!mnBVQt5K^2lH`n|Bj)k*U|MHEt|PN$nvX zIk_C%Mlg-b#2WsPM8hkHSe?GUZ15AG*dKwWe1e~j4_Du@piTF!r`tv%C9aVURC-@Oy!spQ6wx13qM@dkU1;7&Ah8n3W3tV z^s!A^|0f?Me2iA_%?0Gt;!dx3Wb-{l3HjWyN9n82agB)|_c2t*C|xN}{`AIpx{vP- zy@3TEMj2?zd|jME?E^~#B6+EklXwB^5j6F(VD(EE>2G zHEu_Y$;ru;(^1lhI=|nmQib$yHQcr1E0 z*R?@T#*2&t?XS#CVzHoH=jN%V81560QXHMHG&1iBxgGjDZB6SJWJ~TI_HaKfeiL4R zTtp*a)L&W-5>ps~@a85paImqPmpg*slJY8Cf#^J0uq1-f^@jE$FkbHiu$>hZ+;9NG zPi+B3Iw&#Afc$c6u>1M*C!g~+85nVZK^XesY_mPz5Cl`j^AO!HRtG|+qm0Rd`)k*= z#S8n;&-c&1XKs{)#Ko5Kvc!UzvwNNJt2iMi=~!JwJb;b17T)d8R%@#D&n$bs zzB|PkJet!73FS~Owex(d>FSsio;7i*s3F&X8lYr+@FlJke7X@yL=px$y!e@C1+Pm# z!nbrz*@*D{K>EIK>*&`#3yO?v8(G*olr*YL1r@kfumjqGmqB_~LF)TKlNwNsF5tST zV^B94-&{4NhycU~4JL9Ik125--t&N@bVIOM)w+F>jhem6E_Xy-O}%@Gc05Ndib(Uh zN@8U9BpVf+Cku;?vqI;{FicEU+faf8`QJ=6Rv(=;tT*-Je7!+s@Ty}fXLyv@Z1t3! z6fahr;0EY-5%2Xlf@?w=3`Kwb9npf?dwlUs-g`(%qv5`mdz|{!`qHG=9pzeN02BP{ z%DycB6H5xy6b-%Uns@aRcdWNMoj1~q_fZuOLBwb`~+#H5)u*+{~eLUf)<*2iw$jk z1kMcLOt1q=oJl`eWi-Az3Vs#Z)Yf)yv)ldpp~_6>VItluyH(nOA_4)Aqu@NH*o3tB z7YyQ%xc>3ut;!vj($^nFl!8SQY%7ShZCgub{MKzxPO&^dv5bh|gwS+Ow?otWKP^TK zjggdI&eXaucSX=xZkSqF93X@d5HuF`v!>TF^90pICr!V`D;) zwgjig>29@`#(M_`8Ypy0>%$%7EiEdUk4yQn`>%!X1@>6N@lCR?V3TsfB41OL@ZMv| z!QpZ7Cv3|Q9_?)wp%~J9agv7P^3-%Nb;%nmL>!C{B-fFM9i7kq_ak*ij*$^sK3*)^ z!I4G+`&sS5GKnL*YKymz#gscbJJlzTL7-COe!>a`Ec)%?Dx*c_!L`Y(ym*nouIkQ& z=FGU=KUcE|OFEC;^$BU86B1L`$1!sisThWJrw^?j1SYppA0SRGAXG$lBkAwZW5}q> z$;!q;q#DA!Pl}#qBdw!D1{Z#o8~*Ka$4ymgcnKVNh-_LIR1D1);)_Opr4}Ce{S<4cTFIUIE==!j{;M2y-M{W% zh~bX_q}M+jmIjv2^4dK~xa$=_`~n;%A}^eVmKN4e-_lZ!KwRyIwaj|h7jC~)&_Uij z9y?|kSZTpKa5);%O5Q{BdKZ{*Y8C;T;OEEf!dcN$k?7xS(Y-N|sUp*$i&E7xy96(hX3sCmT+S-?fhAZum zn_0e>v1K+-F|6K*DyJ9Qd0Ba5l%Xu>liyZ(naGU8kTTC-I9(-mv!k|LB%;(GIk;jf zb(FJkBvbL-t>VIz{%BfmRcX-XodEhvC7sV{;^fJK&-~JBumv;9@`Ydczpu0!O{ke^ zT>aj43)|C^@TXPuH*Gy#omZA6*ke<$uR%bggp12F#0N5{LtpUbhk>b?!u&zDK!Y=h zrv8J@F>*6u{h0UiG6VU_x$U_t@2FUG z_dsYcIW?tL6Ea;I)>jL+p8<=NKsH(1bY((bf1Q_e;&b`mv+?sZl5c)@&YLmbyN_+j zPBx>kyc``)<9jgziQd)=jfGX_8Q+HQxIInek9p!AM>3E+D|mhTWE)*~AAt!VQBYd9 zH1|Ky^dbmcrV^v#$Z`tFHD8m(KhRngRCshgZEgHBUfk01AEj5#&xDmfe_n}+J!6QP ze7db|oFeYZR^#~^dz~rX#|sahObIAq#JcoOJ8RxAZdg~?2|pdA%xy%+touc?dU`Uu zpA;n4g+%y^P4!4RV|lIYR^!d}MU(36Sn5l}`_2tgnML^DZQh6yG1$X0NNP%QB~9G^ z@%MkJp=UPTlo#y_jA=6_z+k&5#v_B8Tv@AtBI4qDzzQrU{x1K$5(zv`=;xOrU#(?Om~8z_ihBeVTlk3p za)$XD{n*SI&th0*Jm8OC%L$3AFyl9b-O~A z(*>dgMS~vqjkdoTBRUK=6}IIS(i_7sKx;R6h#{V-j^~qC&#;4%m6Zh<-LKT5!^2yE zvW5}^gdwTUaSZRQP`4p|dD$TT@J3#4mPI_zMAk3#WaU8Z4PccjA#&M)!~;pflDT1# z6wdcR?GEY?#c$t8HJsaX+vth3`IN$vdbipRx}}1|X^JjS)Jtr!Kd-|z4M9d9l9iqo zBt8$vb_#U&VhYSk?zgB^oEh)1XEgEJ?uC)g*1_Q&O#8s#f-*xCu%X&|PqJEK zh4H+kw#@UTntxyN9!(c5}rwzl) z32z_e+*GCF;@kzRyJO@t_U4+BAF({e3x9taD%KJ`74rX)X>Jc;b8B1j|GlE7gS)&+ zt|Tt-wwj(&uKiVceBdgm($bq+8?~t6!o6YpWrpE{p%MqunnX%NFT6aaV|h{L78mLn zy+8Lc2UBNcnK#{XA_AY<%-0WBiBsV~xGqAVC=o((MZ3(Js^w&*mbt(7Roz#_RYzx* zw3-DBm|#4EzSneM(M|tu>@(A&;&E|Fd?o9F$psPEtGj>=z6;?;kv*{sS@^oe{y&he z$o^@LRNh8f@VeL{Jt-9!FM4xNHBnzjCLN}rCaNKhMNmYp!E_uu^|U2Nt79BH+HrP> zx0G&03T>b2u{rZoE&sQyaYa69;%7@)sVi5IKjy(s zrF0hhVd6v{9{xe|N%Qyzr!TRck;SO`&3Q7q3Xo*2NYhjqO@;o@!+Vm>&ikpJFaV^I zoL1A^NNN@DpEz%$Nl{_STB7k?3r@R9I3zj6CzrDgc?>FRJ$TdO^F_ZVR11p=2Re(E z0U5M$Bm-#j^NOuKWlv~Ps%p3G-sMN973a6_G^^h|GeEprzotIGB`slFirsKlwyR0f zqpcHrG40taz41+czCKV#y}A6tE3fJ2Kavd9hxSg63PszAvIeIp$@HIb?G4%JqbnY7 zl<_`F2RuE`3i`4T5!8>wMygV3{H#ZQaT=(RY-jL18Y{+V{$!uuBMiV| z5)_J)TFSdA)~P^79!$5qffO-qET*onWH&=04SHHi-%;kdd7~rH)I42DdR!V zX~96m_&|441}%YYpEK)^?D!R~iEzP@d|Nv+emEEvz*hlgmh9<`NMRZ9MZoAlN`-UB z&AU4{Wg5@Pjd%%}v}S)s@^rwNmWdBzM#A&`7S(JY;^N=fMc+^Nh!T|gSNI8zs>Of* z`T+o2$W`!0UH_G00)W>uK0c*vADqGW3-^I)XiUT!QH4qvT8njIZ6^U=Y zSkMUx={~*tQ@ZVjh5J_Ve}l7XA!Ge&*6JEEdsgE;Eh-!)n^`(;+QL~Yp1B8W#s;_$ zpT5oTPe~kg5 z6`UtYuzE*;y+f9c8gzW{3J$~U&1){2ruZH*3>|23g)GK%THUDMB<1LKfYz&-GhpKS zKHSwnOFjdo=xcL;%U(_ruQB(t>NT`78|Pm zM9!8^iPnZXB@LD>c@LLlC(5l<{ZKxi2#_E_uE!@BYqhkrfC9M<5_iBxQtR}RXYr{N zW`d7cNkg9CE{!hXksQSb>9CsgMC`|eX-L4}577OcRNtWNu>nJQ!2y?}mQV0x z=w9WAFwnrjhMb0J zE&S1FkXYV@RJ!4dgi`IkL?-x}ur18+h-)fa50X-%`ahMo9&v(@vcJE7aD1GOo+Uc{ zQZ^!kHN(R6{R(S^PL(p(VBd$wzy2y+;)!wCIU(J@RYdFOJ`}FEkGF=pY z9i&%54O0JDC|PedPq(Oo_F3GC$HOX^sets^!FK_^5Ws(q~WGhQ&C<2-M(ZRM5{;KiV6_#h}^u?Z5p_0 zM<$!k+0}qj%SoL4!}GQKCTmZvYj>1%>j+n@9gk1$Ix8Yy03bF}6C0=+SGj7US`b%r zl`4CPg%#>8_g!XdS|lP_6esjmF-@S6jQ=86Y*Nyd~Fu;N5J(QT_O zjLiUXDw5Z+aM?hsNRRf(9smlanmzY*Tw&to3OR4jETkj{8%uFzWljXb4yrRqO}qsYR8ZO%!OD0q zMg5DTAM%pS(eFVd&MV}ViGbhWL|L4)rV6>}m&{dFoGbkl-_e@?dfciISIUMGLhZxZ z`TSprHSnw;)zsPB#fiO9G{`Qw;QEHaC;cUHC1?(6iu6oHb5~tOh>#Qf?0?yyfc6>D z>kLzYlFm1U)ebp_Qx`TCU*>G}@|Q4NLG z_UUO7NIx;K-Zoi~CH?BPkQga5Q)ZHfQjPUXv>;RNBGk!1y_^`{L-k0>eLfMcHJ1T&}kIi+3TTCd8@Dg zL4=iBm@9W!Xzkl6Umr%95<{TbpeLPZw4nZB9hpS&&#aJ%;yE~9Cwzm3kNkT4gSX`VGgasi|>R@5oaeS%(HiMGNO0}yuKRU3dJu4y~ z_u-iyx1@6}P$~;jzu3)hEYZgY!a;iP&(RpZCCMRTf&*g*_z(3KQW1-$>FLC-9`?ur zFA0_|{NGFZT#aH1_<;!UqyG@=U8afqZ?}r?uO6FBRciM?^9~?hXUnxReD|&$42KYE zx<$Iv1tlVo9}GXUNA_!bfpIy;rZF8lR}jEtUO!%5p?t&msrg0xzOY^3)onK=HA%tr zo{MeIs<{Tg=vSY0(jI}8N=0R)sW3Ftt2^$CQF(Ziw7OK1vy@nNW~R8l7u}g=PgLM> z<~pPu#>0VxZ)f}75Wx3g&>i*| zks&@l+}U0yWT%M?gPhwIt}v|BkP=r~Rdu&HEkr}pw)*qkITJjJlJIV(rsdH+!}~wC z#?rN-F!+$tF{;?aX~sopaPv1%FZ$DJ7_bBlnY1wVSj0r6zdu|Pq=%h!o9rqYF8{ns zEjcUFC{j7?K-Gmix4HP0RVX84Voo|w9L&ub!JiDH;h^25bQFG|m{#LXt+@adht{-P zH-?={GIlSNiSM4izo%wVvpDVeJhXV{_tdBIMBVwg-=Crll)5l+sD_uVasF}nwfn6D zit>cDmm01NAGwcjLSM^h(_&~8>yksX95m3JLSb(}V4wjomx*uYNL6Me5c{ZlSO*|a zN{sliad9|g%rrD3yj3C)pJ;6NaA|2{*(0~f^6xX|jhdm72_1+0SlfeUS&HNv6!FsC zxj!3c;!^M4yLQzxe%+$Swfo1f$QW>cR^rNfjlQs7`YX*7Dj!C*ywv>sdkheDJv(_r zJ2c^BFi}G}?ba!vfVQ?5($H;m_R8Tt18e^pv@-x#m&ore|K@}P?zgZc0?}2tLf@Q4 z-P=SRcAO@Lz2SqlUt{OYOagQTVS_q(G)m8G@*v;t;#*3TtjMI47;Si+Ri|}ZOPh=u z>kvnCiy`yahTHppUD30`KXCoV4LM59Qpe>ZuNU?%{|W-i)7g``#a^`S59pU&3PhT` zj2(o>CX+!p5|I3O=&1pBY6}=cYwT4^(0bj&8PMjUbXLydT0i@Vlk=u$6x$zds8z0G zK?g*5xYC!ICM;~(KlI( zglK;^86bniQjvv5qsV~<^sZ3Kb#QnP#ZC{IY&(vL@uOAYC98bJJG`Kwx?Rl)Eh!)s zIT>FW`X3^6ZN`oB-<|pkkx48oD?8~xA53xaz@G6rL9uU<%gKhw?R)l7q4`j>1FRV} zBct@s&0V=TL3bV`tgDGM)o4#C=atnZ>W*}a`0%+gulkNWuUA(EP^es4yqbjGlXp*8G< z9DvELqo)ZR>IHrM@T8%!P6SqZHL7&gh0neXjah9pFP}X*vS8_TS2}yC#Q3E5ml!ia zMutjbwv{Ww+pWr2TC_kOpbCwq7ZKO<1r7pye{CPW%TCSEQ^P;n;9tN`sr{OGR(r2D z?ibRluNbTC%j5rIEt_{DF`pfa-ovF#?y9My_H3*T(EOQ&RAD}b0kDm%T(H?x8Lja3 zDK*rrFfKR+h_%9zjacs;H%1??^t>^!ISa$}#J9KSnw^`IQc&n>9*r&<85sPlqE|Lz zpu`9^w!b2NQtp4Rj-Ec3oz5<+#r`aZ0%O1ZbxdR8>whf`Tzxo?H9`*5I1bdL`v6|3 z_H0^$GsS3Q)rfAnNgo>yOdu3;gq-&hKYqw%0YI$A-T|5SSdMz5x41j#UP*~__U0&_ z51JU&b1%Cv^|pz(y7_!=onxgH&e^aS7Is;Rt(T=x_R;bd4`xOUJ7K1BfYBQ)GObV+=U|C3vO6+3nGupNo1&f&2GMf=J|Ht#z9^houqc6``-vST8X|0s%DF0T%8sd^DVF0KsT9mRAxeoP+wm zqXp-UwN<4(ihyk1>eh2_eD6u60DrVuk(csk1nT?CBHL$I_nVG-{(v7)_f}yw z6AfS#)zH&cK%y$h&bct%`a1{HzYbED5`YfvaAzR}ii#V?ybwJiNLmlBG!gg~q?Yhl z;y=G@Oa{(fC_|{Gi2Uyc9o$vO2>2gbO8`DWR^9q;M2rRzen-dYok}}M69v9B4ua13 zHR%x5yg+*Io(|y`?IerzE#+f3(bPR8T(h<9dj(%C#2KT?#ee%LeXXExX!t2I5)Yma zhXS*@5iMzOECvD(6B@B<4Z#v^q**ixX)v zF=16KP=r>dqfP?SHGL36fb!j0fi*p^(juZ-HHr_BTwO#N_1UaC3GBWLlM4 zjH33{St&BE(Fh%Cpws+6n!Y=n%fA1cN@XOGl!lQ}MzT`M%%0hiQ6wQU63J+gO+r?P zY*`^>W<-=N5*cM=WRz^4*LmH)=Q@u2kGt!t_&U$e=ly<7h$2s7$NkXWJ|DN5HeA(! zp#b5IX@E0?erLtAwKcvuWt4hkyz31$n|ubP97R3T-IE4=?;6deP4l7a&tz}ZY&19Q z7kJh?wB7ulQTWoMUE{iR^b@Mt&o3$j?|+`0)-b^OJD5+nIbY)v*U$cc8#@6%Nl>gF zm87xw)SO_L@%8U^tCBm!gL~7`GL-hHjMQB#Z{un}K9{1x)R2rjIN?F$O*S;h)6*x+ z|2zdgE#Ib>Qm~98xnXd4{&Pi_rGBNJtHMWzjhgcD-pi#|M|m3_QVa~j%PevDP?j=4i&%c z@=W|5>n>n^6jW5|y1LL2;)O07O))dqPw#vm`t7OwV-(sy{zz zQ|%Lnbh+nm>6p%*$*k$74xZtlb#C@aTiQ@?oe0tY%)usW2%!%r&y}}Yi_b=!i8dSUd(MvD-YER7_AVao(!rpbUcq$(Ae(!B@>UyuIH_>B4gZ32bQU)Yg2#6X&)=+legZ8Bd8e+`gVf+ ze*ezzwc`?fzCL1#4f@mv&Nio37B#sB&0<@lv6i?swY5o%|IEIZNn@YbyLxjjwdSym zblk{U7vDE{dkRmu_hse7`Il9YJE{Nf&dJy_HZ}d90+*k@+QIaqo;M-a<=+s`moHx+ zA_zgi0P5nB_BjiuhsMXZfVgcFE=-ncU6|zyy&RCV&f{f1#|lO*X^qNrr<-#~aKe$7 zt`&D1&B=U=y!=AE+US0Y^F_C5a*_861>$X2SX9LV!@Al+nY#7pl0nGVWPiH|`WwW% zuj{~uR2&k+KG7K509n~8CmPjQu6CZLt=%B*YF8Tx)(yqoBxl$|KhR(6l$@J{VD=oQ zcRgp1Bo56;*5=lc$x|%vzahoI_&yc3y#VCs!RJ4Q(el9%yPJoNL@>{-Kr%)r}pbBuCxpFmRZ6_3^xOvwwtXTQhfNS%Skw z{CuEwq~*dR|C8CEIQ(5ndHgb5l_Ez8^!ChH6wy6pf=J)5Gsf4%ce0)~NAfj{k^07oxaLGb0>zdaw_u z+?tc>_+e|Nkw&k&>Y+T4UMj@O6-{+ zZ0T1o*FV6=;ovbqqQ*D-DQLswS=ccj7`x7#d31W^-46R_&m1Cp7L;X72Ba{cE2K#8 ze+QIL=vVR6Ox+gq;0g>4PFF%wV2B4q%x~GjrkhPmn`h20Z+~6N?01~Ln!&BpzwC=k zJ@2y19}pVD{sE0gUH%4}CKDwcDK#~9#J`o?YLH1}lm}j3+K*&*Mbx#l_D~!4o{qYj zaL%yr%#-boR&-1bJD?Ut`1)E)s|tP&)BUA%aa?0}R=f06p*;9fXH&IBWWV zzH&^K>Q@-W?k#wMn_}y89pw~vBhRSJi@AXh)a~C_3%G`0{%e9gmTN$*wki^0%JgS^ z5jnQxd-qxZ7VXN^p#+{`P-ImPb!zkJ$?K81@z-WgI8Tw=LH-o z9~Kn>L2mUAhW?rvZ181(95uDI4F)EQ9o8J%TjOYr)ieB;ED=hFMDN^;o@qXO1*u%H z7}R%n(*t19F>Td^d+)!laTMet^+z7p|4oksa&bmS{5G>GyYZ)TSIRrlr|9ITKHX} zPLnTRy&_O!oS4^eP{aPNGE>6INh!XZlarI#YG`Dn0(T}Z zd2iPiQ^OVq3<8OlPNW;>+IX|d=r$b(jl@E0J-o6482_(!giiLb(&tnrJNKpi$Bb!i z$%ZSDRsMPLtBN@=(5nnW94`+YYu6TX?SMStd`ro=1GRHkx*vy6FiR>HS#_Uv9HSyi z^0IO(S=-hw+A?kK)QXjBq)^is~X*Li}6F;amu{(&SxV@ZrH?de#>5I-QC(6!Wv0$ zhZ({vPM>=BzKRCVJGC{H!hNDUL4zNta}3>GJe)-k9@!Fa9`TTXQG;aiYTHYxO!L8a zPo87vfTnK*V-R71!9WCymSmBY=d!!c6AHiIuU~li)@z=RdiUFmD_Du%&+g_13w~@` zsItV9p)LM*C52o_mKExg6u^_x&&u_DE8ji#%F}vq)jl~pTNQpuZ9Z<)<6uU2UHYB< z<~^c@rRC*)fDZpbj-|t0oxOd5--2x($7fdFV3*%FA$CCDL-(Wo2??vRaLxC865O(* zy#25B1^xZ~4+`F(f{AJj&qY6~Er?)VOd?WJq!1)zp6THB{p4PBf&1JuXsizEIVUrp zkLVrRz|UbHhvt!^D1EMN?1<0nY*q*^m$_yuN-R|lzf}glFePPc$(lFsqo6h>A|ZS{~{@Qa9ej*Fu-3svZT7pL~N^Pd=OHNiGBxk9G6kMyVc?l2ulu%V+E z3rY}1g!qmJuTT3-7e-O&F_2sjXN$b^`vRH%cS_vPI3XKQl>k-e!h8eM*4JyBt;Zvq zx6;B6L~xjF8{TlmK#mnhBfACWzfzA4Q38rMaY8|rC({?9h2i;}d7jSsL^l z2Sd(Nkf4blBUj=10Dpg02-o4f!SRegHLI;>J@=jQ(1xMlZNh$yjdv@1sk>ET3k~RdP(1npsA~D_cfE*1 zhY#`J-gHBbkCx>YB_-un2a_O{Jj^9$9e(a6qD5df#U=x=Z~|{UjzpYgm4Eo(78ID_ zNh0hS=HDHyM3@4*s&zQ%peb&E>>WC%`VfSqT{U*fcSO9C=qFQ+;& z+d`&{{QUe%A8CrT6q?>4^dfTdFcJ_PD*6aNes)RflVj~}==dJDYuuAXY?HcGxh}LT z>hM9Gtg{sSyknvyxcTZE#+fk#a_GP@8gEcj7uxexyFhlGuTGw zb#i8-l?TC$Dpe*L8fasIf0saNE86%wdXB zDqddRcXxgz^`*(MUIS>3U2k}12BBFWD!Ub4PdUpcKBX(%IG&U{n|Lj^^k9UGQdJ-b zl)pb|hcAy;3{AGEcQvW1sOqmZ^Q{AY#zkm@17ihov`lHTmGUe)b-`hhX#)1-P@s*^5{SE$#6ZyU0n?e z5k6p|SsS0E8WdVE=oH@i`i!q~Sz4HMUVL?FdESg9Fq?}(NU2#lY(EDlXV#;u-(`l} z&vh(+|CM0JRFv57`cWfN@!lOWql=XB-_OhHI)rDcBwm`UXE3oFt|5b|Z!vAh(=8{Q z3Y%$U-y`*_Jj9@(&B(jJ%^iS1C>jQav?f)JV}w8)et%W(QDnm2nP_{6;gB^noUed@ zcoFs2^KS+6H6kbmc3eFx`UUY-A>xm(L5%L$`_s5RK^8X62@3QQ{kh;svG5U##_5%5$g4zPGO2y8=9`0UFqU#^2lq zaq@$)ZT2nmWS?C-=9bX&YfbX_+-CDr1vX$N8ONx%$d&4Mt1d9@;lneU?%IxqAnuPb z*@+k6=0`8XjETv-$p?g25>Xf6nbDmS4lVq`^jAR#M@J(47UB2sU`VN!^Nd27Ix#U3 ze!h97@{okb`r(b!Rg^^KI0pyErv!w$wUIOp&9!hx`of83G=l{RXlbOa@}3*QPHts@z3QZKGt_x ztv+nZ88XK#=i=rr0zTYr?)@$zUmJ`z{D^b&^DH>{ZES47f>k4M8)xC5wMh-p#iFX3 z0;bby#P%d>XcTl#9Q-5OEc0s|&I4Auv+g2+)2!{80)M{k12y`BNRgVhj`-=qgLS6l zGaS>z;*bxAp~h0b-?iw7RR;w-s%V4vv=2bV8(o5@-4(? z(>njQnB3>A%5caAF=6dwhB}Pd6sC9}WAk|V&=-K&U>u{=k#i0^{IvJBp5)YSZz1`5 zGNk1G`mUCoNvX7t;&{=uBj`uP#+z=_DF#&dX}2Ey!Ps)W&WAaYo;g%u8SX4g?E0u& zV1|&Vo3r6AUA{9@P^F*nxr`9CMo4uC0@U>0h|OLPZRd==oV``Lb(P2{hu(FR#CvR5Bszm4t#@VM4bl zYZNdDgoMeOzYdF87v5~&=I-vku<(a`Z?Eq|eN~`<8UK#PGCDq{JiIG%nlJ9rv^Jz9 ziTGThO`IF~C6<)4-h@k4Q9+>^(kw)KNSyz@L43L^WpyD1CV zRpsU7yD2Fza)b?!j@AQud%Kb_CShP`%f2FlPz$6-_g8r)z!yM=fe^@<0q|`=DyrPeF!dnvmwA0E*-^O1Y3q6pW5agY#G%x$O0>T!{sRn;8t=njcya z!dnedK+Xu=A_Zn?X%mwKq=XVq9?T!j8}ZYfX?vm9d4&l9YiJg20YXADgDnuXM@SoR zz}Zl@?#j~Jix~x96aac6SRbEORq@8A{H*BBL;!hV`JM zV+I6D7+w>>$8JS4Bvd^^Y+pom7LL9sjH9$PG?H1v)=;S4i(WWRc{mJ!H8ckr${v5Y z_VT^{(U;Q-OGBq=qeIR*$8ry&LD#jmkqL_8?In5F@~rgV!fz0m{i5-+OAU&$zya5` zv;-@LaRA@<1_q|Dua6!Tjk3EogmMYqPjV`%y1pWAn-4a6$~+Nxd>;f|1e|L&T;q+y z+GH^nfP=9{q;WIiLkPtW_(!uVeh-e`UFCeVw`J#!eEW%ov)~9fcMW@m!h5gm3Y|Rkqr;r*K+zQkTU90+ zze`+Ar}heAt%dZ1mAi4Q?%5fHXHxCiLkOt2B8VT?WKV8LS9SR2;P=s$g8R$a)4}($ z5B!b4uS)-QO#tISm~!7!THfW-FSD!cP@?cTyG6bYVp*M}CSlXu9>_EEQDL_%p!@M@ z$%xVFW*d`%bJ4y5u@l`{kz5&!l3+iODti3v*^*BlP=iZvdlww0!_6GL)$3o_8{1nJ z^15NGK)b9WG?ytr^DDvFJMT<)@Sp;=^wYWB zFT@>hYrF7$?-dDJv(U@fG%mZ#3+cVQy!?33aZ3qUGr#1TgebiB)?{f&HxL8rAgO6u zyzqDP&?T;Y%E>4E1MHYesne(v(ibzBIfERnUBgzFMYU2@uE7*NdzWNW9@-vWPPG?9 z5F%~e(fjTX4N{isWg;yKABDgopddW`dip==8XC;3t*_Xg2M7rhoUn47CjQY*P{*W( zNhKl!?v;A**EnE?kxfRg=El9B0-dxE6B3w$gM+<%eDuz~b)LbU9j9&F2{m&HPBimL zOfnp5FB&o2kg^Eefp*Kv$)MOaTZsqzx)I}-rbug)m*8u+v~*!A}J2Kr_@qL{v7$&@_Bm zNC_s!d{l9TfK^nVU9-1SJG!oWmlJSOFrQWZJktPiG$3V_h>U=q5YOFm%STzIsx&UT z3epHwGD*lb{f0N`zo>?krM%fq2)RjK^ij6ICyvs-B1$nMBcQ%556=~S-OMLW0YsrC z&K5i0>~JQ%#}^Md9%yTA$D5BEe6IWwouN8rc80*LTj^@f<|pr=9pJ*ix2>jQv*W}8 zcs4myq9m`WiKabwX5-|ghS{mZ^!A%6K{GWTTUAVV`$x$e)ImQxZc)J$#Y*ef-tpy? z{ow8HU8&mOo?9aZIiE!w$)L?+{2QfO4_6%MMH;b=j!IC#t=SK%M5ot|8 zHnv$*c2s=j_``%? zYOoWV%5_GvegjI<($e0QKC_QBGk$_Bztvw7%C7u84>??r9{iL0=IY{d)v$;Q{GwOf zW=6j#e%268q`gz)<>Apbtx33sYoqJ6K3$4*@Y|ey`X56v&&IUT1-Q7*3K`HIy>)m| zPQy^9;x3)togr8vQbP(TZbqgZ;7H5XVl+`d0o!-+gsJe z;)Dbf?-`^uCmSYGdo|v1c7E@Q7N%sCQWXv@zbn9$vhL`Fp&4p(edWOrxq-fBuJbP~ zW8-+GetbqYr6Z?y-{nLutfttSZC{~c_5~3UJ@(%in#&FCi|-f$<;}3;$rZr0yu=#g zS8po5Wf*nA)2NQOyb9~o%z8O5kRvYpVyNs^@-+zmYNQ5@7?jwtS zln`B1B%Gh0FJtuYL#ft^@hvDO*_($G)dH^J>1hmDI9Kq78(S^(U>UGq=w!b**{H@2 zI-TK^VfE+Fd!Tbe#itUE!_vDmjFb$gt^94sqsZ#h<&;81W_&+nxSS|Bi(fiSvAHUA6(e6y0JirYpo?#!Cit(@5-gFrUu^*E+ zr?goBjs1@reGh^J7#$VPgZ@P6M)BV?wMAZY`ro~QK3`D*AfY0tU>}Z z9K4;cT~t+fWGA($=M zS2O3Ndw|phA3663Kg3o35=S3M%#!dOkB`d}Fu2oE?Yk;8|9K5QYCJSA|A&2H9t;Ow zdTg}D=I1q(@P-o$IIlrrddWsHvzV9>dkN5u?b6|M2uqKW@DvC1Gg}@48U_0MYsX7xb)>etY-l&*RQ?*r&7@5DqF zfQz1)xtQ9KuzH~Nl#wrAbd<}Xsnr1;U7D7o64`l2-OaeI&K#2bTNGzS-UDvz1O9h& z;N4=vWaN{o$R1T{A)D2Px-W>6;w~h;KR~;RuL-xY4pKs!!`V4FGAlWW>S96;`>#S{ zb*n@1aiktMXjPqqMVqJGUGHg*Ir;6_Lq#=#T|z$i2n$+#y`>Xr-Aru9ok*EM89s7S zV&7a%0n9sBJptU^i$#Wz=z9?J4>z)Ot9 znZW+7HOzQ&T?FJ$-1!i?KiSLF;!n>_#4N#DlLW49)@gCj#A)wl^wi&3fGGdF(Is6h zxfewyOF zmAl&I=etK-vNt0|XhK|BRVW;kY@YpYvacDJ&pFp5=~8a1@V-@vAr1x$_Wlc}xBr+7 z?y}QZif>l&X9g!OsSy9AB!niP#%+Qd<^aOq*pk4c6Y$LDj2-{`T^5d8(@Hz3k2K;> zXz%W>hYA7eB4T~S&s0`gdfR~m2Z(*BC**GN#X7Z7ZE! z5?s-LbmE5Tq7MykbE~v&)J0*+;e*JEc;mL>;ITe0|32({+at!D8s+}5vWAcD@se;s zn%5c8$Up|;$-2^R4k}o29147JKhWdqc6WAnr(i6u*~*IQyi>iGz4E2bJ%EHuEj;7% zivvg|qdvi3U@iUUq4L>+H?d8-4oYem)_v`+Pynz8wq0miSZ{8xE|+3p31JI)7R%!D zS!oYf2wS&sA<0!p1@K~MXlr}HpOP(qo2y5?ShwIIvAO`^fTUIFm9Zl!Qpp~|2?!ZE zXs8Ep%4F(f$zf1U*Ue`9`qi`dAdktZUKKd2eVBh!?AnLPgu+qqKjBbzFXO~k@A*G- zF*%DNo-Hr#smb_yMUB&VJ>8L#O8ZAUJS#lL`b4)TuTn;0YD`*YH1n8DAPXyNDivZg zWXA5boU4*hb2ux|raQY>=Ij~YaQv(FOi_>V{aMF1gNr${A|gf`N!-sH$tftfdZgS} z7Dmzi@?v!>`JT8^!7Js(5bh&k&lZrs0S<>a3Q!k{u$^ssdU`};8Ps!UJvT3apdv7^ z>1h?*nBUiwm+@zuJxS~KAmJ`M_-TQ5g@LU-?J^ac~{v|zOT{tl`qZ+Xm6u$zG> zItL*1im)IztDs;QE{gEO{bauPr-N!FdFiyGrPv;XIvJ7NVs!KJQ@v<>;axRE)wnu| zqGY1X-7_O(+t!8Kf0SX=>dG;S#qLS7Pb2?@hWV1v%X!XwT1q?HD2C_{9MFVAHdRel z`v%vt^Xgxv;GLfZR+;&sd>uS_<M)gBk~u5y3y@h~2t6D>td5ed_L%n!sH49R z3SS7*V1D~#+GW;Pi!USaN7FcMQDIWLhOJ9RR+j%(@9EE)pL?L^ z7FxS59$aB^=sx|J#Xh^6XILr^Bi2*I-rgQBQ$<18U#OT@2+cY9Ki1_>>OwP{MY@tY z`i6}`w2DA|RU$v8T{;-`!}IFS5O)!~rDf-S*|n5Qt#wac6f#UiS5VxPSkzOdDuKwj zTUA;4BC( z2!WVu9E|Fmij6&JP{}2jJM8;yyvpplPVCFD0Fv~tuDj3un#Z&KEMXvpnUlUW{$z;z zm(aPNqGQ5Gex2!*56h;!x$TaH$6e0F757K#eDxWg^)17{<`YSvc%aCaIqI9+?V9&I z_;+lVt;n+m@hRWE6)FYsgEU8fevEtNh&CS{kFgGU|Rz${)!8()HU80K=ebY%FSj)}It3vB@>%?TS*)CgvX?QRF+Xoi?;O@S z@I2m9`183dz2|jYJPxs&Ie?$QPOO*Ok3=0{g@1s|;}!S1%)@~-7PKU?!dJhL?}<=? zaN{hnV<7Zx5YahAMx>^tbrx8t6CEnI&q*H7Ae|(CdEXf6JvR7yQQ-{pWbCn}z4`{@m_Zbm0ro`^7-;fA7_gwV(cuk@cs96EpS7rwr{ z#b10~M<$NiEWO+H1Xsi}n!%v{evxRX{f8zdmW>6H$-Ya>3PdkdPHNY!Q4LkJR0*Ch zNUB=edaeDj>|d#XQI96>x5czaWwSMF}9#X^qKzDC=~PC33m)WGCx1R zVQlgkXr5yz5kxRP!oFMKTtT5@m&xx2iAAc)X7|-u85eH6jx;nR#-DGU$uE4FDOJCd zLub!lOH)fJ4UP8uMw(FQy!_DC_7u;W7Swl8x)8}E5XKl*dBhX5jH1p4ZdG*6O?u554J7GfFm^d!~I^KN4J)ooljgmXXkx-md$fk0~}z$547$L+@~ zoTYPbad0f}$87xJ&;5pHRC@cm89f7Y6m{w}&$ZO{v@fmg5}IA)#UFC5Cy8&*d391_ zb6Z{OWaGG}w2ta#ZMvDmdj8SThXDV){%LU{!YZz_T*XN){Gqp4w4ZwE8>by>sZsVn zW8WQ#*7I@K`ds?fOo%o*=f)Az%9XLh*$nxbf`=Q#2d&ARP13${4w_!qIsD*3t%)NV zbhNqHn?|;63;skF;olJ1mCAec!*mD5@8?NvBCj?qzLD<67@#3VeTc92qvCzi+zPfE zX)<*5>1R^g`SUJWM$awdC$E|hT8BwTQ~1;9!wVE{*))=xFpQz zq+w05%Cznu9(CWmiPE8?q}==o^Ha|jh*Zjg62xf%FJwS)ga8ATU_kUEJJ`Jc5%6&F?YMIkp~p1wRU21qXy-p|f#65R>@oin zdlr0reEvY`(1z4DAaCy>^Cj~8PM@B;Z7#QgmJML})Mitwf8&`XXYL+v7k(?3c>9S> zXZ&A%8ZYfsWhpf-67}0Ux9p4zpDN$^XrUL;H$%FZtn)b7q@%FGaA9EqR`g#czq6_( zl<|C}j4Gu(o13$HAYrrcH|MgxzNJT{+sYe*w2h-%70P#KOopAp04gO^7Hv+6=I44o zul(Nf?E@q3j$N~T^-2&u$IP0806=SwBJx2&0_U3t!b|*2BZAB7%sX6& z9_<|@d9Zy+vbZA@L`^ZS>G^9&kjhO!WL-qFE6_x$!)H{i{jUA3pnIYJ`$H{dR+~oS z*Gl*Excs}rLk{vkLf?@1*1F^8GZ}^qMrMml<@O;J!ruzCOi51XTWVW+s$^y~n^d~_ zy?S*VSLE5Vd()PRozrKw*H0NMf75sx+X8vG{oT7?tO%kB(dklZjIG8PUKR{mFMzHaV`E;%n?cQ2B-jP#PjcuSzG_h6R(p_y@;)aOuQlR$z5cW{6P zqH_I>X@!<*mC~b~`X9}=d+SWzd1>F1d!kYCM_0$&e(|$mB@N%%Wcr7Oy}OT?^agtE zmf)F=J6&KScg>gsCp}--XST49Z9P4l65NW89xuPpd=V*NXQ>H^ty1q05Z?i(<_G6L zm)<-}BEh}*U{m5rN78Iam!-s$v5Lx+slS2>^phVoUvW8E3eQ=Hs*9?X?TgLJnNorq z90C=eazM{t0f&)yFM6nOA#$dye08il*yk-i}56is{Nj5th{DU@^Rj z)pmO0(Tl%lt%PP@nfL8(`}rdp!H`f=tQ4rGE3;g3h_{+$ zi!7$9b(%I-vhJ`Hi$@1v@$!cFK0Ic5IpZy62~O-B8nQya zSLr|B=WC0KrysjvH@@t4?EV&o??IuP%pha<=st0|lb+(6`seiXT`pBEm{(NNn=WSR zfJQJ13r)w=+y0yJ4i)c56*qsG95~*{yjS#pCV!y4G;I^=DaKt zFXQilmor}~#r^9Qntmjc*=8j&?Jrup7^W_M4aqu~$#pZ`mqm3lwG%xyR`G~Gr5W~# zxOgSoA?;yv=u|Y#orU|yUYO{A$orflYZBx6<^iR3S4_d}8&{!$Cg>CRgk=yJF|OyF z=F#BSWjB4%)C=1XAIUy!5%=bolSE$)6f#DW@54Ei)#4!M^|174j@eRpXl6N4P=m_*0V@(R@pPwF!lxL2tO6X3{nv3zt2yQqYn?M) zvF%D{rVcl(SPGbkS5v#WyF()s=r4C$DXYw#gybGr__mCU42a;6jO((pzz)O+gRBq4 zIi0Vg-`ZbOQTbS>-o2Cl*!Jo=gY1=Mi#Kn-i`2u>wYK)EO+?FDP49sYuf^-B5?ZFa z(IYi(h=KEa632-GTqXxGEzN|%@nLTrHt`C-91Z#xK9Lc_Pw}x|)qU*cr2tV)^L0PU z^>Iwml!7-tozM#@Oi%YkA%>NQXY9!@CbB@Nz}VQ&4M~Bls)M?f=)RM1cA@7$(nXK?y=-ZDPw^;K{0VsX;6e2okp+yEnjaBJ#b1H~0%|{h4#EY? zV_lS}So}4r+m4Otc`HLz7 z>-%^bC=c*3b1VzN+&OVbkJou?&e|&a5ftx3LqiWBFaZKP)Tu7f?HYP73{nar3DRR_ zltGQxQki#rSmCKNKqg?k=* zxqa@^ACnke$xzsr}jxy-$LG*Wmtjt`SFC!LUpeeE_g%@v{K zr=6p$A$7_%wY%h4Iim(xN#TF)aQyf5>ddi8kSwG;szAR_RF$B5ik1A)F- z_~9C)9(ac*ensoL3`T0k44g;PDIWJ?2Tn>LUn#&;3~q!mYI9L62!M*c;J&&aHVc?q z=imPl*v##O_M4bbG1j;D^rT_q#l_5jtjAG; zf^%s-JqG+q&<(+BZh`aM)5@I2?ch@L;58_5j)>mb{eYZ~gTUvp6su!&4*hr?fFgb@ zgeM!fjRk%!rghah5wj?2ej##RS!m`1P)Hb^Fsnl<>9X*X9N*^sDWzZtU2q#KfUVO< ziZ<>>sDR+?!3kqhVm99)M8w&` z3OzEl`MR85Vc5Fa2#Mml-zl!oFJ6H<4Ulrf)>U;3@|#r1?4t**(q$zUe$2$=mDPq? z|M`{ewEP?++iacV5y`|0zyLfrOXvPmpd=}$dw0Q7FVPj;!)A(t1 z+iB?(p20@xL6sR5qfD(UO#wdRQYq40dR2z&5t3JBiDXzp_=LB6q|EX(S?MqH$vV)s zZ69S7*e1=tK+-!5xhIj&9kJ6{SwG*D3@59Mo_tH#)OkexU1aS{xi?Ej|GTs1$F4fl zlVD>{nXQLLM5O3%x@>(~aA;s+=KamzF2!kVUg4XfozWR@6;zgJrtOVT7ZNMS^mJNs zzXd?7CW>d?QkYG-p51d=S5v__REspBT24uk?|TlhFhN)ENy@MYya1| z2RFL3?tNK$I?ZV?^r$! zsXML>siKhVE{7c3(Ni z`V)3Y*sNI3vp@M%=kFvGAxp+4lP>Iug~*bFnoYon(RsrkS+DKxU)T-)U3rAt_uur_ zivU-JHC1fBWeTPr-%hRLLZ!`>q}24SNUJy@DvI#Xg72+wYeW92dk_!wV_u-hq4Q6L zM1<&=0%W85!5N1U0Cczd2A*9w6_9(-sOFb?TI5y7=5wV|LbQ(cmmobLRtZ8q5#rbK zWj-_rw&+D+t+hFiQ4{(WLYW1wDeui2Q%t!?J%}s|sji9ys;717QZ=r6IK=6oGB5s#Pkgs+I%qgpti#H0HRTP*Yzo ztK4Ea*_8p?6m$_l%aNRF`SBF=1>27we#dl!W4& za5nX&(9u=>bV{auJH%Do{%-3Itwm|NFh#2VnzPZX3LDn2^=L5PDpWE-vj3@ zbgP%9)G+4|6P9uai(7#$Zrxb}LWE5tb__QddN=)Za**@1J6c7K_%IO%4)xzlvD%cB2E(XM0PZQ^yY}tp4h9*Gf zgpS=(owTOOg=CFL%P4IdC}L(~Jyj+|95=A-okVYd@^#C7m3ZX1g|Q9X8DjRN65(t}i;ld1~AmC6`o zbh0ufEclGx)j{)g50fo3E3VtE$AUM%ZgFNyUh50+FA?p0a>?nK98!bJ)O50?*(%ZJrVAT7&M}hI^bHY#MG#pW51){k9$SjsKsjJFy5bgf@!SQxd&y*v8B;dkUI!%DYkSjP!lFq&6B zBk1AY^al4^)%zMn9t{EwCF4a=I6(=P2cd=lCI~43{u*Z53_(vFCA>=d=sUmvZ~FcJ z$`JBUpM)O5e`?$FUw@5x5$KY%J%kPcIN*bpp?F1zL<~psqz#7FFi3XhV8D-ATu<#6 zBUfd~HPbI;jbExvUVL=f!evoaX|VZ zZeI;ynloZV8u{OsOGiOy;-n@3KMKz4jKWrRaB~O?(2SD#Z}AXW z%ZOPU$F4Q{d}?BX1_DPJnH``bUDM7;Bx4~V1kAT?-8y*A;b%h2RSyO zu>j|-HdkqP;>BIWZUoa>p>9{XAChb!);Zz4*nsJx$%QREem0hFV(yyw<5{}@+elu@ z0yafEHqqmY0nAQF+hzpk<3vXaC1#d2W>o?oY#Ik^fMXilq)e)r@6u`|sIjY^d6d6@ zELoFHzSwzcyzgJT%)q%o>;(7jt;moa>9{_cv5%As9nWfEwgm)^nxaX|G}-*wUCWnp z{{2!h3zAIbxZC!7*c>L&nR3R!F;;JOdws78rE^)k`qg(3dM~+X1%j}M>zf#HwEbchRA7c>%084aE-yWHd^es_mL9#SN8(kU24N?S zvVV$JR_-@KHD;^R5zW$LdT)bYGK(C|H9wl?__z99PVAVg?5;SHF4A$4$7PdGWX^iL zc~F;DjLG4EpSBcclA_50E6%k*PEK zuz3N(cFZr9T85 z3Utrh=r_CV=6P7!SeF)LmA?WHOV<*PZo#vw*{-ZwteuH+f5Z#tE_;D~Bhk(ni1!)y z9R8K<-sQX|J!Q;i^e-W9wY-bK6%Dz)IGO`W0*?tEjia!Ev z&>`SX#1Hxt8qO@mTv9lCO|+lZZWJ_=iXphHXJxZ@qmo7 zsr9W1dbjYFa&QgNfR2jf|F)gRFQt&N@WswJ4$Hp{jvYTrif#*NI0v_(FBV*&ULuco zwM2*ln<*xYlG4)rdw*^OGfAl7;sF_G0iXh{K{^Po8^f@P8 zI+0gcm<**IelHPe3q{)C_n|=<*3i7WGX_uw)!;iOCIbu>*xdlkKZZOLn#wkTFIoL@gbj#rF|vl+gxDQg>HX;fj_1**Q82< zz4em63dfI*6lKH~qt=82bWgBS3UM_NxdI64UCY+*!!!lSvmpEwaAgq<>L3Y|)6&dt z-wr7#5JY8aDx{E&*UdMMO4>*s*|+aKZbIT4#$I@P&rQ#ptwU=v$*Y{V7I$n4Ky}8- z#`ZItI(&-_J|~3P-L#C^y&EcjtPo`Bkr#J!&~6=O5Q~wa^^@^~BJzWUqVAq9+P2R#-lUVX%JK>+ zN2XA?tJpAVU4;Z>fWUc=4ro$1be=0J*@K7oPK?WrvI83=cn*W6%06sk-S5h= zpMF%s&~#20oD`7w67b6so6Ba=>`t>`(2c0QI4gxfd?bk>0LvfdFx`XN*br~v$!Fv( z6Ui?w9!C%X5o8J(;?1|p$rMl4X?+ZH*BM62KkfMEY5rJAUj-T*;&UQUB{nu0>sw(7 zWDejm@g)}hi&UUL5h0r%UjKLV42fgebMs&#xKesqIOo>k4E`NiC+7O!%$mmhdwsci zMSqCj?abfWwl@d1Ki6GPdhu_BrJ>R~(45!8_4A+OB0tzkea7d0emI55-4f^7V{iu1 z|4v9q$hDX4>Fn%WRU>i~fIcp-tb|5K`yp=)%u~AEiiLv0ZpcY~U_9?5W8DYrsq@Ah z*Y$UkRBx8^xWOhpkx5lvYkg~KTpKFLEgBYk%tx{N$@P>AuTDrD#x)RZawOR`>{z*r zOT1%NmjH#@_UG-uOFpyE9^W87cn~aY<7-#zMiv~ca&8@!s{34Vw(#h~sj9nSakRDX zzX}7xe*Yjvy-Ap7hcC70!=-oPmwSte83{U?8&D(@iNz%)XHm9vvH=eFqC4WpSDFV;+`l%czgx`K!t1U<9@lIPs;jffFiO!imhB5f%>{ z6nsk_YID`YM-CCgQ-sYxnbiBvDNENArW?Y82uULj5o&aanScI5Ak&vqnfYr%#+O=2 ztX5*^xs5FejcqJ^-Zb>|-bmy?{3|XP5)z-c$J4)BorYG%@bW<1`t<(3p!FcvoW4}8 zm+{r5dGB`R?`_RDt@q#3V+T5 zRz9%t{OY$tPF&lHt-tMNyY|WqNIVWuz7MP!&c8JCs+2k(6ZV?hd!2(lE`C!N3GX?L zr~IYnf#W^=HIPu^5y2564JOdCe^H0Iu|J3Gv0j~n*%E`y_wTtMZ}OaK+ST>Y_zxp* zQ{mQfhwJb7%a@a~vrdw{#KuJ!%5dPMs>M+}NHot@YDg+vw|S!TM7M~vQ8i>cp%XhQ zH;b*7&cl5dj)mj+=(7rg7E0`fwqxg`XgeLZTR;ywdxGyt4W zXKF^qsBQ0#PUWlhEm=7~-19bUKfPq@Ila(djMt2M=%-w5>wJvI7M>5|iBIaT9yRF2LVMLJ4lvS7^*=^~PK6>_I=^o)8D6tZ)uS916fHw~adM@yC?t8k}SB zRs`ad^H?6tFqWrsN=ySX@-m=Nvh%UE7>|tBm{kI>e}qwYYAsBSWAT4dqRT$oDM{ zR9%v2<)W{=@+34N?ondOcBk`!yw1}&GkDi{S^f>5gSTXB>lE<+xk^N9bQqlcGxo-n zl=NX$2+a`Ql>h!&=1YZU{~#kH?b;BPfHx^g>X{&}fwVhc-@?EK&;DrHY~}HPi3WPD zsTz7RBmPH6Y#1}*3h9p9K09bncZqN1?$NSHD|YkS&!S&Ge{`}tX@h3&@86#w5(%KW zM?^$e`8(FOLD-lg7ya%l6y+qB{>f z5Oow8nmbaHJ1di8;jdcTf|35qjtGp)uj#3{Pc^bbt;I25(VjHRT9adYeEF}YYAFRh z9-+|mpRVcJhJzdDuIUv&RFGNZ7~n6qR@Cq~!2dq&qst+=J9ns%++qrHn2_!u!yGvt z+(!dm6o*%3rky$7{>+ZX&yF!K&^PveFJ?3lrBbXJ%bWMYaIg`o4P4yNP}NtClI-7k zAi2UtVItyla!OquA}}x`eSofszS^@3CIZCF<5>Q?}cV{>*T_=`XZ+Ll;|7%7o0W3}R zt7{xsqPj;;Hcez5{59KMvVCv+`wH<+(T`VGE@xE8qd@0U)DX>ZFn5vBR-e-X_ z@61JAM=L);%$iTb{yn-OHlBD}_eaF*kDHe4ebuxh7u|s`V_(~OX=*=u>0+Qs&Bx_| zJ3uC1GebWoCgO;n{$eVgQB)B{9NadkefFQeVkn9E-!Kp)xDyb?1HRL;C+8>#F2>p_ zh@pU0L%E>I5wH=uWPmTW9+$dNYW#=Z)d+E$Kk~hGRv-zmA%PGA=z2kdwY`|vLY*c z@0C3wGy8YH&iS6-^>JP2T%A8oc)efG=Y8Lgbp!j0cDa;-XGNHNmm=im!Yhyj$^jDl z=nenN*LpWZ2G&6I_cT-?@gPdc4Zs@7ERI>k4mV5y4E7v=1(Q(5!1n*#+PX+T<6>_{jnN{dd|f=ZWXq-XOo!KX9>&>y3ame1-0OG+M0jh4HXUfQ%-AWT zOqV}`5`%$xmczRxwr1~vmYfO(WwP>MA|1fw=+q<%#d%ZLpO{cZui@6=)%yXbga${4 z0SNWIp!|N+JmRO$At?x zL>0JIwi(xg)N@ovG%RXDQW>&_2D9wg4eFX(T9z!EZse3QgINIfT{IgHlAvD8)sT3Y zjT%$L@a^3_m~#aKF%ohGgT^mFSrJ%#{q6k@vXFatovV9`oFQ-2V(xm@*lz5KU@bY_ zB+j{}55VzvfbRo5Tqs3|97T6aKZS#+Zrq+S^xKGend4KGwiNWDV6VdhM*@=ubEoB< z@Kv&~+a6EpP~rGn-=Xl&PGq&j3rwL@3Xe+M=b#c+u_c zSOfG3k+b*GyI?m->wL0jnkK8GUpa(@Kr5*hAD24(k|Z!QE@*fXLUky>9Wbl7sx20Q2@~n2!GG~YJtJBVU!lx^H>!iy zr#70JFkqGEPmZR|)2SB(`?{^+l%(H5=H%k?f*5rLHJGQ`qbQO~NS=HBVRozk?BPia zn!3dx@$%d{XGxyo$f}8eU_Cm*4FTtcEcpcxCepnS9F2>h?HtyH4qGJaSSIQZ`9Pj7)zvU$Y+Q=K0XGYA{l}}Fi-K{TdNTK zlCKJ$EB*phKH;5(+-_kHIwtkV-Ud@4lV7-?Q2=8b}6mq9C{D%)t z3yiwYCkZYtbGNyWhol;_!t@f>=J)~UU>=l4^itC;hA%kwr|wb@a5FM2QRen+Sp@aL zC7AUpzfs*{kCQN#&DPdj?%m#Bd=QN^*@x2+@Owc%zbXtudA!GDv4sSGUOYu30IU4s zuh606B6NQfHQmTid9BVVqO0gD5B_}7v>_dAtYe&7e$rzpJT^8460{%?@k7F_Yyi%D zcX-iHU8*Nng6XWO!~oskV24-pLZfhO@aJ|uMzVI0EK90*Yk={UGWs@+yyXivWW6}N z3~NqgI=@w2V!xvu{<$Kbfh%cbY+MWsE*ga=Px)h;%A3A*mf=I!r4 zHA=GhfCZ5Qjy~-7AQ!Nshg2bYdU{Y&;pk;28!xozN?Ubi_W0C{@}0Z~oJ@(`KGR94 zylND6Hc)1C)$4nx;(uBI`F5oM1Z+ctIfV$6{nFA{cLW`tgC3G;ugmmrpE}5;2tadc zsEy);90hPpl7NzDV`Brd8tFx^4w_nCrk9zbVZV>FetZXbY0WuD_9*Xw+9K42HXKdV z*&0{CW6~?jb7d4WSO7(iI1T*&$ z)#0C$pHYRyW~07K$#48&iZ$Qx*b5rEe@)*{PaIf&sHL(OXTm%BKL>P9c!FIB_ZWa{pP#eSo*vBhI!VS>14zCEw<+1JTimd51bAH6zuPo`H$X)tOwxr*^2mRdFS#Pb$?Zqo@uWcp@12Cj%v1u=Jicx;a0|}S43_{ z{E+DaaWD7AnCH*OlI4Q-vXdrUf(pzdpijZBuSMWo$T~6})cg&Gi?)d?KwYM*#H@ZE z<6{sNiUJ1)!CDQDu`LY>>l{(_Yqzqr$bEctH@`5k1+R= zMEUQaOS zP0ibFc;LrsFxDMC3VvQy-bEEF5uL_1nvcxk-q-Q!wa&?u}>LWpQ z{%L!m`uGiFvJ30%H53+0>qP?|rGa*6kKg&;*&NN1lexzlz>u0QEZ~ZV?6aJ)j>~%K z%*4a_zqsNW4A(4jt*x%mg6X*DL3svid(ZF4_N8*`F#|eFuGgbqLy9~x`gpCZNkwCH_q$#At#AeUv{!a}Ii2wN&1dY}%#|4TCz_G@t z&GbQZk&zzGFF6PR20F^6#v|e!b$JBK1uwH!jT0)mozQzLOWfh_h?P0di6l`Dybr&I z&vQW;AOm!rz?;7u!2W_zi_M@8_BA0AW=0q{&C7?fm8oC{fRC^5k9td%4mwCJ0Wgg4 z&K=a4=I3~EO;zah4^mVKY%QqRDfOCxJ_nJ%sqslbrX6V0KO_ZQn_fS$TW@f99q-`- z$Tv65CGRYex|RwvcGRymvS+=<<7NlSmBSeC0h3XRPqipplgq%3JNSH+nbOUSqwj*e1M6w(26QkLzyLfUU=gvg~QHGrM;cum6NqrNs(&a&lw&f2OFDNK)n$j2LiIcH#GsN zMguu)AXx3!7nX!T@?-gG6_+yw1o zrrkK6j>7Rz4#eIz5MOW6Azv=`la5nmiuAI5jr>W5i7qkhXNNMeQ;HV(!<_tMM$QC~ z(YdQU_@M1BQA;Kww)vbRB!fl(V&GR0R1sCdx_xfemnH>p_FFF!2z!Q(6E+PFP2Bf- z{(qR2_fxTdzh=EY0KE!EJaUMy1QXPsQIkZ?sz<5MkJ#@c``X}k0g*5?>5v30b4}*P z<2*iU7?6}Nh+q*^ST~1V>PQQmEH*m}a;Ow}FfTxbY8e@cfx$5%G7{3?Fae1^ zp^j#kk(Atql=SepxQ~_t`aGKgF*)8%!r#7pOo_M(u;8D;iyK{^JfJAY)I{D&@k_s= zu~xQh{Fj$7Ij?Js)|yI^K03$va)&re^gP!Z{~JC$z>q*l)!q4x@`uO5(2@|hLaUb%G;`-!%%aR#K>ZebjjFmWLF4OxE~+4qAjOd zR8^mGL)R+_*==F+_q~Yk@y@l&1rD{*N6MIGW$X4xma^^~ptD#+6;Iys18_#2P?ihA%0+cdm9l=fL5M1=I76iN+`Zv0`2>c?{`f{uT!W&?Es;Z zBJ=`i9NgSZAZr2I1i%C&C9$bVB7OZTa%R+-iLZAjN8|jC{lj8|*18Y#9|lO#qRKqXUQF`QQ8S zLW_a4w(9^1;C;XdQZzIpMk$SFR|c_s02Tfq$rKpa3$TNg+wCC=kD!ykqGg>630N$@ z{*O)#2#~89f$>*tRuOu#_hO|DGmrjf@D1gJAS*CkjeWJH1KBjvBSKa(sB93X8$c=m z<7r0tfApr2+~X9NHLCs^G#LbgVl=M~k;|!$sv%X_!8`%l%K$uY@M`r#*c(@Cq%1v> z(g!RRZ0V8F)Fgo`8`j{#14q_aK|(n&L}xm!m!1O$1sNRuDZ54q{srja*b;%-@AbwW z{oSAP#swKAfOB7&lJl+!YK-d-x!rLk_Y5WtWy81Kb&mW2(f$K<-@Qq^quyOb13dJ; z9y41w^OrByQlN|k4DLr~1vxaji<2FpvVrc8H{RI;7D=bE5>w*^0uUIt;TN!|Xm<== z<(cECSLVE|{%pu86d}`)xCYXc1cs3bbr-q*Q#3UM>1C)~} zE_md~hH3a(rQQYSBqW_8cP?~R&%qG0m~;W~%TRVEi*#0R(G%ydk^KPyTXiSb`S~m5 z*P~S_n)wRF4rtjH2uU@av%fM?0S+@-z7hIpCa7%GU%09`@cSvtPN^CX5jHfClcOS( zBRz+-Bo_4{uNb9mPI_6;z!)F?hb!oGL;ZW<%!)6 zHnd)xf#DF+on0t5q^#V8t6PQ_hp*Pu>7Bik_pQ>q`Y9PR&06za2+@t0_RrDx@NCZB zu$$S20%S7_k37yB#Ln>5AnN-+Kqys)d=xW_?$#n=( z?I^+TfHyQ|#d}*MXKqFOl`1{lNV1D=AUkS!8#{!ocxR5nRbhCW1;gG_XKd3}{e_Z> zO8Bc9*wzSz0pe6JB${@(jb`{kCW$y%MTl-`Uwc-F6GlwB6h-zf*T#l2WS}8gpt9sD zpgOc^JJb{m$0g!-NzF=Zr+Gx&iK0qm*DpGrL=RTkzox`dJ_XQ6iY1&Td^IdNu@iN9 zz>NPT5p8%yx22NXZRjU4QVR1AN^GI}gTxDjr)#^<%jdK)N4~(w+Sx3NwsBj8qohzK z8B=_6|1<=MARapcRo{o2*DdA1s|;u(uAM4+`Nm~h0tlgF(JuP{DGfGjgZF~7Uf%>XIUr ze|Xlou7RPWy+?^=?LhoeXwNe6|Kf}he*jU9sv?2$-dnqpPiWsYQ(Ru1`BVC3^fE4o z8ELa^5q3K9Qr5e?(W4++dK@&{_hSgw!VHvLsKzHX6ReOB!*8mbaOa(HfFwM;FD;Nwz9_7Bh7Rog91m zQuw!+b3XXgz6fsCPYVz+4+@YQys7q@Gg^{}$WZR3a!@Vl7iTd7%uId){MG*ThRDOF zwq~5?-E!S050?)go*eUZGP|S74;!`(4v%LRkF;l|0NZ$BKED0xiZ_U;0Ix9ytZj0X zFQ9QN`A5SuuZVlx2ejcP7a#H}9rv@SMSPq*cPT2G#A*nB39MYUx_B50au$_YVxZ#* zj_O00wm$-d@Xr?-@OwXWtj&ByV?xf$ZgC{XeSBoK88i!oZA#5heg zmqNr7C|YGu_{hO7mWH;3=!bNi<+hpMs1t+QN?{iF1<=P9elDzZ!Ha?SzGfmCdV+Ny z2OB=DmAv_`{6^fajgrTl80DsvK2tCwhX2KUUffobML@37W}T~|@1cE!75ccOHpmZO z0WfFu!@xDyG%o%&o|x9TVaE>D`Wxem$Ci$<-K~Gk1_dCHu5(jIRVyKrIFmrOy8PY8 z?|9#2SbkJ!k(ygDw|&5)o*z_Y4&*ZHb0jRhV=%P-6rY|<>w&7qCq-9r!Q8{^>qk9x zvKvvsIU3qjWAh0ZED7T;t!6%X+8?Cmp|aApaj2i0PXwLFkVeF$5vS@29uMr7Z+)>l zz)0cYk3DG>r4yOQ0E`1-6iMmm=%ySY1*ij*G>Bd8DSv2|V-Y#eVWM|xF6)mm+h)Bn z$rmjWcwMjWwad9o%S*(2TEF-;FEtt-`l0Si(#q9qlJ&Uwp7U3^XnW>2ILX9ciA|?Z z7`5o4i81nLrg0#@9G;>jJf@`VzU3T^$bk#gWj71M=SE61TJ}G0&n0?B3y;{!hf3>aJ*G{ z*o~|JfSna6eTO%ohiL2UY);i+SKYe9xHdVme;U6oTk93sKWPMRRG<8Oi+7F`X#hV} zA0)ja#dlhuqx3z^i+R?WnJ#+A&r^Nth_AxNsP`mW;M`ZpJo8d^g{RREJ#=wu_QmT@ z`9kxYMMB^1+L{gpW^m1z|feo9R-rXJ5R-}Zl#LAz=4qpqwr?VESr{A(}~8myrNK@|tx ziP=0ScF|K&8GMY#D7|7EQ$-CeN`B8+S@l6yqzr)e|2*CP^@nO~*{T3ylQO>lKCW4`gd7R$!>HPG-Nh$Wb7Qb$8#C7g(ceD0hdaDe?M$HU4l^; zFtkrL_O~`qmxe6V)W99uo>`sTbe;X>>}kZckIxA1#-ypMn-b{+U-(s=E#a4$kQg6@ z5@6ssu~t8R6tfP@a4VI`;V{D_#(*?dr;f3}&!j#;l&O z@EHR&8pV9!>ol!wmFn{hEa_(tDqJ5Hz5L`;Mp@kTO@`a%9H&-5>p?a5cB0|rIB#%d z?-_z|Y2@#n`I~^46xKzzcXrYW7~N>6ao_8>7SyRCtX$wnP0e4CG0}XDj4XDb)BUEL zcukwf%}0vH1dN)BoTZL*=i?*=i9#uPC|daVUGF*X9lxIE40{pCrlzNbO~LE;$_d_c z`g^8Vx|81BBCc~+I>RxxBo2M#nVFUM-e(WHb_ZhaxsBSwmKAbefG+PQ3CYW$=7{&V zMAZ(2*UCbC_G}2Ptp=pT!7&mK%9fQO1mi@MO~i}vGZ8sE619+oIBXl7`k%d(Zi?{F z#yQupxK<2^K31#2vuAB!$7}=A0?9doXdlFP1X6T}Y3&AZMxd^Ybtu!dZGjP+ki2|I zTPFa{pTO6)w@zovbG$DD^o{ZZjES`W)=As76_u^>lS-)Rz^N&8_AtD9<(nUSs$-8? zjz+mD4+W*Lwz#DuIh?p$miDX_vzvX(b&VE(N%zM|GyI7>Ufl7aw)rzJ1>x0`v%(ia z;QL25mx7EEx{8l*-3;81iGS9YwWYHlf=k1`7^>*)#T)ncV#o{wdB4LiraoLM`u9SI zm@2645dUcSYdoOau&y7+iR1wF#pbod3u*eXKTqM^&S^X-e#)2Dmt(Nz?7G~22Qmyo zCr3Y>wx;S%Zu_GdTFu~Yh5sbmn>JG_TxkHTCm<*&0}`Mv!jCl6)sbW)Fk*7>@IXZ6 z6)Gw!Fo$A^y^y~7v@#?UF3v)Iy0#Cv4b^7uBG#IfY=(|FgKX#9xE`;5fB)Whr;50qQDbV}&WJo>y z=C{DIZ9`#&no!kL;^Ha6(A1d(k86dY(&<@wJTZcEnz>BNJE2AMz1937DED;Dp-;qK z8WuDE1VNmg+z5-c39j)c>38hM5)mDW>!2+>Ur=eByIp z9xQlPoHmUm4)qaHq*>{;d`hN}HtwSe=rYg$$x;0JQGSxzhq~=MisRRMk2>SVdD3@R zqKE<#L&<^iB(&bONzkT~w_nQlW_l^%wBySXt1mWT_FKrF9t!9JuDo$( zre0qZgwZcy^{ue`0bVcezOnHlAbOxP0M7j~?5I|cS$bh)rR=En5Us*W4|&ZT&Dg5i z8zmDj{DM~O@lIAgcK2g8e3!GRSJ6n23T=;<^|B$%O-Th~Ae;*bi)(LhpZnd2IVqBp z9Q4HMb$e;qNskvHwrJJ+vJXU~e7h|r0ay6g5?!J_lXJX>m@M-CBBm~5+sf-8z(jPs z;MeBhDs39G=ddHP*oZrsA2z;iM|6KMPrLBqltP&@35%Nb^a0Af%e1U#4;wY4c=-F; z-4mjJ3d4~yE$+8}D+c@kLOwr_{mPswKjC>sGphg(ED%D zFx#*~KmzCuzV=yc%+ynP$K?^iefq%tdSlyU(x(j<+$3RY)5FK(dx^pRGeYl^bvrN2kJ6(*M9WR}b)UCrpNvNr+NF~ed66bv8;=>f+71Fo)u`s}#dF9fw) zFRE{8Yr_TvyPq;?4(cQ{1(IQHOkE0|Y!tYl1535Ma2*6b%Hxkt2A6~%n{W|Pe5ReD zFjk#^Ys2A_{HTPJEcT;N2{|v9IJoil)9uiCC}@?~Jd!w+Q-$w)n zR#Sqoi|H}E_W?E40Z`OU=T0bEqLm^S82>!jL;HwpX@t@sy7AaDj@K2m!T?P<{*M!}{WyuT1oeM%0_I8Y$CEW>W(&Q?&(Qkfb#2&~j@^k;eXFhYE^x%ATIn?8OA}Rigv+~lA;#T~G==J;!J|V8 zGM$%3zrFQ#3*n0IJL2d8w-fkKkaZPESgD*G4p$Y9xdtno=FzWCX>v7hGkmGip*e&K zh}++^jsiUO{xeuX=j9LTAM{!NEt|82H>N~#2T8?=ouh#{=EO#lNem1QR4BK{sHgmN z%-%B2o~<1nYX&6&`2QY;?EkGIQc~>n4aY>RHMQc*cX;f$-iIGD zKR*+s<1bEoa6cL@;|0dy>W9Isx5>|4v5RBs?#{Ka-+U!`N&C;pU`rIV%n-?Vt^NwBrs&>ma!ov|@~4swSx` zLJuQ%C)ZF!hL(YV8ZT+u@VWgp6Wu8;EFOx&*A(J4Z+FddV_aU}S5EJtk=%+HM#eW*#>Ph@r3nav!@Wpc|4d{|ymG7rmk zOyDX;t2WZjJq(%WKEFjzNFG}p!_*z(&gLm`{_6?cLwZFs&|=RQSpGf%9x2vBV@d z$J_$iW2qx+c=aql_YmoqY@b-iHfR992Mb)+mQ|Tjvm~q2Wo* zFbJ~0ogGXd8XjoJxWO06eE)td$BRpV)Lu#1&0#m2cBEY%-j`C*_x6>r&~|daOmvI1 zV^>WMXG%t@PYnXhKErRPKqSoPr;TD{VZnojUCHunEy`k$S#^twhIgZPH<-%u{Q*jE zpj{a!Q?b61qtZfLN(C#_>O#6Rb4xt^1z1;}>FA8CDPp2l`Wg2B(^q2=r&9sae(duaw| z9p_m-vD4Y<>00n2gwda#?)J1P7OY$hd+O@T+GXYC(w;65zGS~>05(llR`xl>`~zqA z5xxT)WJvXUb5cJUH1eMoV6zf7H`9f;qcgc@5qoV;zR|C~UcnxD^-{CJ)Z^2kuKhLM z{o5S_pLf4HyoqY0N|4gaPod|>DbK?K={Q;3*eCeV17~i`L5|RJF#mK4+*yFAy#v7+ zEF=PHRAFdAggK5gpFkO-Ib98hI zNWIXXsNb~t9sf|B#3U_;sox^`=C`Z%CnPRMUWG(Pfl1P~t^;k$?TZZ!y?9aDa3G&HieSIf!J3?Wc~00<2m)=mIT1z`)Rni0ow>QVzP>r)%Hk_@pxifp=LqHU5BbG4 z{t896q}Pw%N#yIhT-W!8YI>6xGh6-WNx$NMJhi!NGlU9|xGa}1%fI55wS&YzpBa2$V8ECuC6#|p7&8u?uk2{yf z58@R<@9BieUUT@hOIekmQaqwmN9v z4g1pO>2zbAhB6u?_8_7z*d)y$C>R$PM*;P?1@24^F6Wf09t>><_dDD={P2=!K?(p` zq93~%Puf6*mdT_bNPj9WfuQ1SVpk=9sQSI$<2spnz5)S8YSKlvboyK%dzoD7 zalNCM@+2lI^HF8MEz_~hYsliBGP8(6a4F-#1~3fq6vbPXJ0*h35D?$Aj zPQt>&8$oFXzX`UFH{?|UBG0A}&GG`YCx`|SvOPKAZ&H`X3}0TGP#t9MX#aq_aLi5w z&`4%h7S@d$H;|lvK=$|7;^N~WX}%4r*EdLHb2Y1 z+K{R}Ffaeq<~>9|`IlTg?2Bn1ZQ|Ffh!_@*q1l8rn_t%OP2-l79G0xA9v8Q7#Q~Jo zuhZa<7#QD`S!j&5bj9wU>z&RKGvg-r0vKRe7xZ#1S~crT{q4nk{AlG$3m{Uk3h}*C z3NZ#caQEiK<0c)wgMKkI{Cyuoe5k{~DGsYwbMo@OyAR^(&xCdLN|BQDT+nw31`ifm zSh7O!;%!k+WT|>@n$%Uu_?vn@LqMQyJ)N~_&_|?r5oD1q*r+@9ul-sNwJf^jPF9S{@|K0Uc?YOA zFAm<&($TfU(y+eT&^nXt!c?NBX+QO7qeFnZU&+ z+I7zr$-yIQxFR@;tvaGWQq!e)={d+u-M-U^L2d!8cpv3GL~VKL_*2h{$lv!#7IrOZ zWCm+i3-k?pABb*d$UI*k#`F$qL#xfu_gZRiDn%oUw}|jlg#8xY-e_>Z5se3U(0Xx- zeW=YiXrH0-GI_QLpcIVqtm8H4Sl9Z(u>hn84J`iLpl?e^NI*ad*zW@t9Ju)d9@dBW zqvw|;q0AX>^mzVAy^;8}#0-NRaPqGqSV)c_C{~`;d)7{q(G%i;6&H4wkiqf`M@L=( z0Rd#)0(c{!b!;Uycq6W;ffM6NCfzWeG%51cJFM1T;M~=MR*6+2tgY8{5Tc4fx{$;NVfGZzvOXR305`V0(um7DyY}~@6L{(c3x)8T(5e%w=8$X%<-X&rV?# zT^*mfZ+TpcnWCV7xWxs5;6MQY__Q`1SofDzDwgv>`M%-bGEG9a`b1w}=_HkEUc}tD`w<%KG8jMVg860(?StT9 zmqKfbs=4nlU|xnV`nJQ*y?h~a1+5@qqP{FCz)@|XCAzw;5um0gTA!|&TGB}uxya^I zs=?U0KtDx$_YYP_9In`Xx9A0W+6W62Jtzw)ZuS-G4M?|)pZiAnWU2`n*%5)@ee!t~ z{8RvNGfJ{f5D*sP6zvVabWx9sKPg6duG+XuHzyw_znw*WXci>Z| z2-b%FFi+mTs&q^5I$PQDU((+Ry3wTt#jk zRXX?&|3|4}$S$BkyO1~Y9pTElt~PF%=Em2$JPguzKNp#b?n$uR)=t;F7v6yvPC@o( zH9Of30@vN_^Kx_NDrYd__4I;0@+q73&ndn22Rs{7HHzFuoPY|L9w>iUgQ-jl zQ;P&6f9lD)D9=jjeO`{V)<{+~xbFP`Xdr+R2F~=;Q*Qb&a{ISwou9F`sKh#@HceWG zhogbLq~qrK0g!6-PEJGlLgr-4aF>5^{`~gN1)kcir=1(xy_@?~E{o|uWv>N2gGc~K z>2~v|d_ATr6tnk1y6DDAnjH+2Rb{qh=oZ!XXUiil4({ycLsWI`D7O_ILbAB=mop_o z@b22ZjJ?w6{wh^-sNa4~8QeZi`PIKmRSq|Fw6!li(TkRmvP~SFILI_CxL-u%f1!tD zSt8ewaLvbz6ulJ92x!!?FTqUw+Qwe~m1&+kWrg+3d1c}Kf8Xt7vAutZI;3qvZ-Dhv zFu@?Zt&v@;dq<9Li-^_=&~EtewdnyFcIOPj z-<2xmZiU4^BfQWZl}s0>1xajFs=9hgL2h$jUpN54s~DxE0`8i(QngJ)`p5v3U^c$y z*F*G#xB0v8RansW90E3VPd%BIoLJG`!d-cz|mYSL>+=<}_g!4oLi=;a;Kz2vs$bpxt-NA0BF`Bx5UZQgFKgK$MbI z@{F|Vc;&zv2@k^d!2r10Ow@=5@IM|3UI4kPN-sp@?IR$eiI$(AG+6qbZ@Q4gL+pm{ z#lcp1bwtB|w)bM-F^OBf49=^F0~GEva5^uar-(#T5fL?k?Lby(`0!($>nWIBQ>8lNO!`7k)pmcXF`l_n6hMyY){Rn^8k5+oQe zR|l0wl+sm*JUs6J*@7k>^aM_Wr`V+ex9uC4rOVf=mP==0!-jDsc}_9Z3D zt`On{vmf+9+#N-f-02u05Y-cBax-mfevaWkuJv2k`b0Ust(48vxY@SPX0Fb9@?vE6T(tkX!} z1W2Bv(ppMYl@Rj5yiSh)dE03(F#eC0M&9(|SWA-SNQUsZx^8#8GY9$#6$t$cL0+BSUWlq+eB(XN+dfO>%a^bml#cR1D z{qYq!2or_BaIDJyF6^NJ+!@kgU3wy9vX6i*jLr6g?PrBs zVeN`fhBa4N&=we>ewc^WdBHBt-~$m@UJ5;b)7h_NTK?kMolv?bLz)9n$*XJ6FH67D ze(?-IlYvb~EqCg~XdR^>yLEuIvo!SOdS~otStBlx8U`7o6Fe zE_1`iECBlFhQ0+Lb$Pn;21X_eVgKX+v3qfK!C80wXu{h7J!AwH zmNMapP#hnL!+wt>Wf0CbVi2J^c#B;#FYqlG3*;%9V!NkDp+TcUBi>- z9+YQGry-JQ7ekc*IDes|LLa9)It=lAJhp49(K=k~8ci9Jc1r$=ugm5Sg;ML&hm8Q= z!}V?J_|x?GaH~iGYlsYR4^R%%a|uK-j0r!ey)^S@-;&upPaa#S;En=#{a~}=10f;) z(QIn$$1nmwa7jdTG&0UmdF&Cutuj!ktjORa>6aRNjW8EI>PPJ06POV$gNV)4p}?>u z2*|2rBqsJn6MnBLNF_o%OApt^Zpa$h30~I;l4QQSu}y29XI|{M+gN)Tf9=4+=#|WJ zp8-LcJJ!(9&{s$Dk-xU?;weq{lf&G$J}9*XK~yF{#DK3RgGG4!z$-pU&Fc|9J&a&P zZrhh5KjKch*9UC9w+3JWEv1?zd7H=pI(nk2T;5uf4SL=Ue6zz)bC1Bc$mx+-p9Zy# zoQc|#Gt%(16e>mSFv_>m=~n7D3)#G+UBxMYqXuM0Oj;c+*Y+u5+J;D`w3HNYB(=$T zYb#?~=+T;phYqfP^b~pZ3ax4tCumsIw&^cPNzwRa@l_X-JPel1%}G(55pYQSn`k8= zk*;n;_gGmoAsGa| zKXo|y{Ja1e7&c(|0RUQSc|`l1CHPZ9v$U@eJkz7lE!v27IQsJ)S>bJXikv*fStazh zg0+1i{1tv$SV5b-vGE#q^5zy6wp5#45x&9>l(!7b{j#AC4~S@Q+|?kqwe#+;m+`EuayX;$tcMG6PQ0DiV@*vrKX8rUKUl|JH2kflQk_seIfBN+DtkC&7R;@8Q%(OC{ zKdf_Eh8asO3Mj<}t{1K7>+o-G_qz^7ji?i^Pb)xs$-#k7w4UYQ<&m!RI2iAlBJgd$ zJzn*hv?$eblEqF8xVK!#2#9QspJ)rJYVdZILHNwSa;U@)xu{!!u^{jK-I((1Y8FVM zmARSW&%YL{8%8N^X2nGkV#!fqL(MPnS%#*5O^UriZlW6gI! z!I1oHyQ&1xJHmQiQAEQ4xdH9n-H6tVOy>cYL!T60P`T$IYqb(Bl$hUCI*+$jg*e_& zYM|8BdnXThQB)gOEvRKP$~O5)10^&1Vf!>>DaONI0b`g`h2^Rg^*bzU1rudZ zgGA03ruS1@7rLN4WGh5Jjrogm-CaV02mnRh0fLtBOU0EbMvu_^LnfeLKbFqBxHv7^ zi|dFnM{sZa%6D65i-?~E?H-`rlcERrfQqIOnxg=qw{>vbx8$@Hv=O}rG}vDcV|}C4 zgn;Y5xrhmJDDN4si^NZ#kQDN<=Ve|JU_S$RJP>O6kg=<9b!lbawIF!PIVd(m$Qcv7 zk91v#eq`iS24fneBM6@k@5|ow1uRuS(o?~?6I?d9vlMTws*}&VO#1)l?(hpr*p+~! z;T^Ena6g|W0D^b5gBh3mYw@OIBH2y1SrI=LVFPwml3+h~nTL-wbh-et`2kUYM=(`> zh4@oo$>2aY!%0F?Hk>xgC^O*0NUyGrTYC6w^A3xnNw(CA!4 zU{L5$UeDAe_VzwOcEG@v59nH7fxN{`KnMnrCNm#wW(Aa9o4D~9Y3|U zd7VHn?wlN4GMVZrn#02Nkr)AQ zZ)+%)cMqr1fK1^C@>u|%!-Jlvdi@qz+}uU`zME$%H1-45-CGGdBcX7ap^q;-xkQL~ zWp3OsfguQ_5;pK^EYBBuhgW%s+`_DN3~RH2ffriun^~eRs}$c%6;g9p+|2ag((z{V z8G+~|828WsJ}qM#i;_ms!UakgfCuyq1@UK(78C;ru*?oa0LoK#sXZ20y`i+jvRT*N z^1ZF|dZ_r;9~kY?d=9<^T(pjG@{|ry>A0ecyT7_LE3hpB4funLDYV}k$)S?3Wb=PV zIR1K)Zyr#!%?j)(0(~p>5Ty?Vz}^{SH;ybWml4D}!;YQA z*iyL<8jepe%jQJ#I#AXUiif52<@_P9sqW)7opNUke`|5?r}7+Ba6qRXBMc2B(Ko{7 z{2?d^iCP2%_cruOFv|oMMo`oms9vUva}A{h`WAS8ieL%}2?@xt#BE@&KlOQ(Itwy- z-3wz{!rYr-D-0%=uK}7gl#?@UJNlB#kUjj4S1|k_M7jZYbt7xUdJ{&cpf%EKMtTH()JT-XX)I|GKe-`gpjEZ6RPXh&7(WVeZH+AOr4H z@)GK>h@TT`S_x8`lf-ORWI!3ryqGAsihYSeAV4xf_mTEr+uL{UXjR!UK-3Rnvewbj ziIg|4&8dW<@<>90ldCejC*FOpc}g%r#D8}2g8as1&AyU}^@WGHFFKmy;{GT&#syo&0eS&`D-9E}I%o1t6p_ec4+a7{xGW<(FjLtnCUIjlTM z^va>ePEo0M&`(jszzREI`ur&Yqn7>!`=^Ts>W6~A=E$pS5A@z05>tbu7ENAC0JP4? zuHx$E=h90D)ovOL0!+-ffS_wF-~Bz5!DuuOV^}aE`e4FVRoauT5&hz4XPRFRJ2fCTrG=UQxvV6UY~Igt7^Vzhe0h z*FL#t(I)p*2^eDl82)w%6-?Z|*B)}E0fJtgYvDco1m2BH&tHyVD3~b2MSJsM@Iqtm zVupY6Y}5_*moFDP!!Y0Kj`4ho6snIPtiHiR0a{-J=9a5I82*|fa2ROr-OKH}=mMA- zO3_GSVZp>37u%^@-`gJRuyJ#wYO1uPg^D({NUyhBnwqvjYGW*5W)R^+M^BGYUQJRJ zz^gcZr1F_SO3M=$u0;1$-tnVa38zyH=;D!%1TInma)^<$Lcpv})C;=Gz(}d31u^+vYiF@Z$hLZ{t+mD8}Z+)B< zYXZT5^n<|Z#me`q3HoEPd3ok=aGnET2QL)4%3DZAyZjs^*YyJR{No0R*tzPF5fLs# z*%fCO-G2S?`1Ad7v}Q;GkyD~ooT&dki;3<=Fbo|xo)&&vuw{hoRZ%6)Xg;~1vz+ZPPh?dBR7n2 zXd33<-!)qhble+|>NwBj?YB((SAj5XH79@fQ8SzAk1fH-kMdLN;JAU&yCKnIi*GbB zIFMgP)FL%T9WUj9P|`eU%V@J9{uHBCLrZzY0R?Xq{0i5_mb(+tkwsU`=kIU+rv-pG zZp04&h;FJ><%lE6O@Oblr?~?s7pM^h-g)w518|!y1wl*Geae8B`AermJMbfYq8^B) z<~rjWL9F{Cx#)w;sAu;hYEKOsAYcW#qaL%wKL?GwoE0I108S6TEJYSQKY_Ql6geCs zli7y1$kKGkiU9%^9|LhFMP=E8TcxWIrhvd<>JL2Z9}O@^A;kz9cV!3(-17QleV40lWclafl=i0_EEQpq1SE zM}!{k)hSBo!mj&OOeOr_Lln%dFdI}Sjza|L4yZg~h$Vx(9(g3%As`@CBmY_!%3t*-?ySiZans~0}uhrFd&_5uN@Zbr&=r6yDiwm2Q ztd9HLvWB($lvPx`qe}0x*3>t`6Q7%Q&tfA`8yTtlH5VHt46XQDZ4-17KH{A)?lkZAnxKk(+yW`M`yIR#*I*ZfSgtw(pqK5s zFNZ#w+Nbz%JY)(&yUSudxjO3;CMo-7n-5*Np~Hc-=EB1-RvaQ=&tTv?gPSDPSQPE&itP{*hiLZpfvyDv?_bjcoj!vo02nz?@8R@hmfX+ zjpIKQmQkm(o$}^MIu8o;YNAIBy!2|O85z-pU2WoaOw2xy@wPUX-~bc#kt;nnm&M$H zD6Jwd@_Ud!V7{wKxq|h-NRx}RIlVp%0Nl_Du2CR02}wz>c!TJ0s@l;I90JgsWAHqy zamWC%J;*+oI$dNtrrxEf0JHX4f1uLPYGgjtRz1en{^S6A6u5) z!h$I|p*bGgM-2K-IXSsG5Vi=r?O{VV1+Oo;h#LmLHQ2hQI4`@I~|6OgK znU;2`S34U3oy7eQlg+r5-G(sRb%M4Q*{upCXP;2&Ut80u&?(*9L*TZnM_@AO52$hc z92;x9+RrfUd18rdmq5;0aPW_=uFW33fd6Fkr=-9ET%TIk{_&IbD!@Ba>u{xj8;O#K z;u=Npl7W)>9<5{F>%|^b1MQ-XF+;Q<*0TLgorBrF%^9Y4#r`1zdR4*DqmQ6~b%}Ng z4VnVGm^>#&uducq=@956ZXo6IdQ`vZK3tO14(S63*wxlW2dNmy7BstJHDd$Cnl zO+p*1+lKDmP_lR5(yg$X0`0}sWRC+RN)?H{1)<#v3mrr^GqJEV_YPt~@d0xXr?Y9W zPK+(~CEXLV+vP)xNY49y9eZnQE9jix!tu8}sYgA1b*B5JJEUHkd#lgQ_+tkx=ro?M z4pxYt_z5C+Ep(_o{lC$vxw(D-@83D907A#O-x2)l%^jd|21XU%V@@Z-&ahf(vSEnT zkO`XnerYctM-8XSE`R*^2$&DRrh$e_=V4#;l{B~n+G`;82liX~A!r;(uI~Jzx;*zS zAc?#+bH0@r-vmyk8NSt09g!^VxKwlQ;@;4j;c-t4LzBp8omz^1zogs=$Mk#SyAGH$9>M$E2 zJJmpq5y$7@D(Uy%No%{f4T72K5ztDT{pL>Xt0q_R!X|Q*iNX~B`*XoCxUb&J3qu@+ zBpkRstOqZ+|70EH)Rg*blBtQ3#%A;%PZt6n-5rp*2>{)~WVPq$S2x4eLHHPicPM>R zfR}}?0K!w>L!E_yqS>G9^@Bt-i!IS0sK_Oax`$0TSsnD_dn&QXQ|HC}qB2bk(BFuo zkT>^7OF0p|$+*dZipUF1XbtD%dQ^!YhzppyhQ?(zlv4xH~11g<*hpj0!6@?v)9lysvw%UnVXXEBU#S?Rq^3Q^-*7*kO;JB_N z=F7SN$JAEdmMTH_SM0Dlk7o)yZfkYrxGF1!T?g$aF-3+dm z8pXMIH|-Cb4*2j!hyGw_*Sl0KZ-RMn?U_3cM#tUwGDUh?T0*2w9!yx(nO{n@}?iT;R4NA?2@UjIYWXe-&E$d1X@ zyo6bwJN2AU7eExqHfX%QnMo`laCz(g3-d?hJMo^GD+K%}Mr4JZF1g3&B-}$$ijL5i zc+Fjsz`5b{;4SERjDqgQQtdNC#5^bh7<Mz4pi3AR9=Lhn?4!21NudK(Q#%DwHoHp%%keBuhN^WiE}8|(h$ma`_B)@Fa9gCf6NM}9owUw> zncIEO9d|Zc2Mh*}^msEe3l)eU+IO8ySvxtXtbzo?%tf%V{{8ggEhusfma7vXw}D>} zA&V5hMZ;(^^zn(dKL~@sv(P?c-ptW>to2#Bge%Q4vZ&6d|w;f7U z6z@6n%v_U~3-uY+c}Km1%&$$+=dbEMM$%$SkYLx}79z5eJy1o;9h&)aq^yH?d7G}c zBS-3%gOS3WCzP(Q|1x9}n=&ZJ#)&JclDXn}p)po@d-n7DWd>xs_5J80V=X->{5QG{ zw6@{9J#?7q=S|>QMZ{7!-`Asgw2!TH#aqP3ErNpi=FM6t?zIEq4qakGW@e$-uQD|e z-?~4y;tB8xu^IwDs()O}QdSSiR&Ti(I}t3;&dda>8ZtaLx3!N82CR*Jt%UI&J-&R1 zn|#tfUdq{MsFs{AJ6-A}8}sr(=0x8DUp0lOjyh6e^Hu~6BiXm* z05Ze9)oI=jsV^Tiq!_Loby{B4dusRA;J%mkc2aa2!P7qeG9W(}JN-KHiRA}%F&vyu zp4T0L4=}MQxOPN#o|zAij<2+vml=;&WCqYxR*Evo9;{wnKL(GOhDqO|lzDxF5q=&$ zy`ax^)4(STuwj9SP|Cx@Bf2AAMet^vqnTj3k>87KLV1Irl31bC3|_U z`@X|&GwZIV>(f%4LUlw5G9r=_XFTRhEY<=Q!BHFIGpVC<&byS6tFe13-zE0tmA#bA3fydTg)iE>Vl`^A1u!=#Bx zn|!|rd(poYWL*dy1SmzJMQMJ0UB{}57aS8nsr`m<5+wL-3L0ODxb-9BIMmA%dm483 zm7xb7QK){7>w*GjNF>eyeiZu5@rj7uM;ZxjPJ0dWJY^7mHiFa@j$6oX zrY*w%dvJ#~!BSQ8)AzCav!a8O*lixTkGmBlS=A)P1?#InYQFzCrgN=!6QTZbd0~5d z0635#?#i4jJ}Kgz_1~Txr&Uj*rH9z7@%7u`9Wkb>Twlec3zH<%=E_<(tq!V9!}1cY z%NRLjW?RBaoH)v@roqK!5nAWn6P4@q{oH` zN58rq8p>O?n}#|PCj4$#K7JUGPIG;X%&`!^QgE&lucfg&YM6Aw6eArin+wETPZ)>B zfFH~@Yz9p)GL_pky12+S-*7lA7UL(r|S=CdShah%2XDM+` zpV0qmF^ue{`n5IX?$RAb2}vlk00p?ksJByU1tnn!ag;ZXgx}X@H3o`W>cGMX$~+!h zHagmK2a^jof0vfF;ANpVLru5LT&Nf6g=qx#sPW8djZ1t3YpJj9qR}uCzh;;g(NqaH z5|TPpD5*cSv3o*UQ?4;xTK3a%h$FX^857IrD-u`aO(Betx^MUQzTSBYtr5^(p=y#2=GDI&8)5SF z*+v^iTw5GROM}XU?B5$@>O6y?;N&e#XTZUnfzk%x6aofu*!|+aETm^xz44Q1t95RE z&Z19OlI*nnbK!tEN9gCI&hOx+hVPkBq5})$U~V@E%>a4;E4p=HHn8LWT3uaT=W)aY z8f?fvBZSD}3iqJ@el21#wM2pP7sQt0_Vxst1Nv{*&YtJtCaYNO=cMjppz_H!|c_mx{#81~u znf~DRZLV?|agHlA656}pJBeh$$hi8nqw!HfEAH?waTBre^UGZ^2xi!C+#tSJ6FYVA zp_oaozS)LK<{yLMc0O_EhJgEUyC)%r*)j2oAOrmy23QN3g{6Avj{kn3L$rJV1eZgY zCam|own)+c9%*oyW6m;>=%~6bx6-nW?*SxlYL)c zX%L~$1ro#x6wvO%e8d4}I*2pflJW`CO~2D_1L(tK!-ero31#Mm8A7OCL7v%Mh`S`A z&A2G5aymO4@aD}%;Ue*boz zTwcC@?3@fZ55y>>3A+CPkfEabUBXXY?c~AIt17;yU#VU3d_IU8$XwCSa#;#gcJSr8 zKb{uI>YL%JuniQ=Z0+on(hE7(t*c|4NhW9KwX!8f^LJ68g~>$nZe)+?mcMVOuM*i8 z#$Yr3e3OZ+`~8iBul~mVsXI=S(^!&|+KOY?oM}vi^L;qOU8#v-r+^?+89pM9L7^b= zBHD4vI@8-&u6IKGomI@7pWEod7Te+blUDw;;*&}-QPQpn`};(poIi)C(zz7V&$yzp z!&2)iOdjyMDlShlC}91*pe95^T&w}o;&b1Bh|tP4F{YH%DKD~R<5$kxIhtM}9S^cE z{1vpawN8Hl>j*FH{Tlm1K@lbcW{!jbx+Qju3UUhLfOq7#&KC_$2UU#Q{v%s!n?eBt zajrfvB5SyPnXwOwQz%r0pP&Y$3UYw9J8Ch{F*;Br7sLHQ3f zBd4CsdPadFgdGeDux<#@{6MJL#jc+mS+qtm4HG>Jfd;={ zVtsF#-S)B=cQrqfjB2C$mdLL`(u}oK@pnU-@+Wj}58e##VGq@{@gZ@f%^7=;(kXj++?5|4w&^lj$-D;WUOORAcKUdC!&|E3PdR*cZePs5w=-5{%*!~8!2LogYA;y>xs$k${oal z)zlo{DRW$u&V57WzH~wHLt*`w)x&9_a9Guf21Jkh<-RvqXieQdD+&x#g3rSHkpBr) zLho0w);)8UU2`~EZK)eSL2m6EPlXLlSyQtEWZKaQqy(_6q(}wqZ5Ht7ZJ9lJ)is)X z4#!5vJ6oqk!Xw^VbE53X$PQQYF~rmjeQOWAl!yHUR6q}(K2;{BI6684{P+&IvpYLF z@+5`E*l!`#ZhOJ12`-{x!W0A?Qi83@*|df5L9u>%X%K7q0XMJhP7sVnKngyfmwasN zeZH2DFjK0>FA`K+VP7nNa#*FK#Ovc;8E12Z_XE*a3zGR#=RWB9`3F-A^yqd$Rdk-z_bFWI?ydBXOk=#{T1 z*jN#ONmV0v$?CN>>P{&Sik7SeM0Lg)Pi_ne475h6^b z0u^#=edr(ffQbGJA0^a+S%gJwa`b=_`hNE;)Kur5Gvd}eiZJji$94`RJ6 zbUe25+B+3o(R8aa52S8+_cA?0-wtl5p=$Y9PHB}yxGeho5o*oX>j%5Kb&ZXjHd9d~Za4S~mCLR(=awYyE+MGwbk2=^Q>+Z%XAd>tY^(QLD-G2<}m< z0=;JwfO@h5#RvxkV~--u+V{s5GQY#5R%ZDmRciNNLgmjtc-$Z(CI;N|L=+S{Z9;A! zMx1qDxd*j4kSr-#bhe(RkB`P)`(UZtRMC4|u{~i2cIUu?*8b1BV*$IrdfP89bAs|U zI#|2h0%7b2gU1G|<^zIkB;c69Q1cz!k6@VMv77CKYE*V^o}6l$2#;kmkd)h>Z0m#X zRo$cj^4p(6>ph}74@R}2QTFy(6Qqbg7e+73X~9`7`0f<{Z$CHkQ7S)*?5(rkcKrLN z^Ay;e#*DDDaPKoEwj2Pl$k~%;7fs!w>fiMdf$5DMT&juZTWur=!2H@Mfa*oXgHy z91HdB8F^=W?^FLTE6S(b+@`-PO|za-EZxvmh9>v#y;w{0UT+~#J`RMQLtG%dSHQDR zoEUHNdKi=Cp4h$`9Rg+Gbyc8c=}8BW#9_JE<+I*+tZ%wxY+^|`>5~BkV*TE+7*YbQ z=FXWDlj)Zofc50dOG@8ouDMIsdiaJ9g;~jfO!8 zNgendmF9Y-61drvwL5j3abYGzf04NZ!l)=%j}bpZ(5}1dF9h7&d*qihexCXSz?-kofpJeD9#6x@ixXbP(CA3EK^qU();`{Ne?!U?oMgP_1b3`D9N$c&w-nK?P*09#QpFo+Z@re#YBuo$Y|;G+5y{-U$>^W`Y!gYq&4 zc#QlH$+oG^l}&F$B^30``++bsBt|O)XC~}dZ@58-II4(BBn=3y*6-F3JLDEK3ozWW z5mJM^I7Ft@Ej+5f5Q@D396F{yO+$!}g0?m}WRgAy#bAj&t6G}gj~Vml`m?hNhmZ?! zZOV%2P?tiL>{nZ~# zFCMG%S5t)7rai7_qu$@_;DLJ?^b|t5Vp4GL+;E0=lnw){AjT6~p=Elb&bw+K(*vb$ zey%3Hq{GC95pQvvt*TooBF9gTP1YgpJq-<}17cpE?{NkE5Y)tdpJ?p&q4o0BYis$# zBbIiwogdQ!sL|0E^R#e{0M!U$e};M2*!mR=%h$qq*%ya~@mZ&GOtKDG(;Sjc@enX| z0Aq1>VX4#~f@1saOP=JZb4Fr~hr)bqrCyvNxMxX|(diln=Cf9K|45?-s(i|xMV1CF zY;&eFB#slhTHQx*x}WTcZz9CpoVF>`W+oNiFVDnSu1Ayjr2GgspC?P&%Y?))N08JH z2b3(&iMY7%sO8E3gG?Q!D7!zk5s+NFj{uE8;_j2j$L+%pgCk@b1>Z!4g@u3_#0@yC_mobOCw^@bE#u{2^7y((;e5c3_ zYR8wl%qfWgrG!9my}j3;m-}jILrp7B4#P{MHHZ%`w~e-`wSD2j0hh)JeAlqh(5`_2 z&=ds1v4YT}d3!&P5IBt?bD=6!kDGNIG~PH~$N3UqqD$dQ*4v*N7t-Q|go}#{_!@$a z1*c60ND1FqS|YH2u%Zk`q{ekAcuT_|%>MO&=IXaIhp}xD=1zIGvU<#25~S84wzO9u zA1x_~p49cMcXgueO=OcYG;GoAWMxde(rodn_tdugd%K$xTw9llsXO|b{*~RyaN$}PaGoDNONd{5M9WAl&0YPp>LBC& z+=)2)*^gV zCm9DDw0RH1*VU2}e?adoBa3ufwI9w;P<|QCiNd2U{ZJK6gf?<($_mdWs9ar$jV<6` zWtP0{cJggPteL!RHH()M1v8A(7kvvocTi;_TLNNY2)d&N9Cju}b?#h9{yZ`S2z_$z zCuq*BtccvVZaui-&9ECm(w3VqFxcQ%)=yK@)6x#c|gOfg~S zukp(kP_I`nZmyw%&H=QsmFX>gCEOgwi(Px~uFqEZ`1p{5`w4SZ6;$cU-#S$g;gw>T zyqS%jpB9h(p`@a%=^N?y3;{cLGWd#%mY*m=kfE+%t$Go7;lGQc+h%cb-1Ab?)xkZd z(sjMBlHuj%QZJj`UZ;B@4HwD5@4c7;wVz;qePy=d7dIh3l3gB`eiyK~wt05w`}tB) zkqKEdhd^o~Vm!;{ge|Y1gK%keyp$5sCAhfQ&CIOs=!}2O$*A<_WXGZk4mJkUGcgGX zqC?!LL5~E4SqK+ZBAX#SJ9`Ywm_y};!n0l{5V9%gJwb*YAlgI^jTlxl<^V~72qy@R z%%^T&EKQ{A^#;J)_#0xVUALz*LCykw7yx&J)-&{zg%8X}Fhu=y!vHOC!r&=zKuaCkSl?fHXD z1nPv#=bQ~j3(ju*gdgr+v&E*T|EIabdE+jGopD)=e1KxKAt-b@s{Egmx&MX~EGq=i zhkjXl1s%mDl46CH@pAnMg3WcwE_4&44Ti?2GT0;8>?IS?^Pk11YHcp^N8N9(y&$Wy z4GI&WbLvN5UpT;-d!RJ_3sCyi#R(k6Ktvz|ath6wiojVu3ppVm-q%UtLyMa1*~E)8wnx)fx9Q{0*F%I*XHKGj1Ku9szxOKu5Gkme_DI| z2}1-w)epMb+oz{LgLP>C?;+`==k4|{25l5dAx-C~?rhZA#l^ZSiIZPvJ;ER$W)Gy1 z`+qkbs6XpReoU(vIlFKmzXUqsWwTxqu8xYzcX+!IA2AHHHIaq6R^fn7-o3h86x=ul z3wJlII-FR`qST; zd2z|9UsebVt;%-CpN1w;D=V|m30Q=W`+}Q{$^3!U8` zoFjprVLsyPjf0}jp!AT?dd6!n$u;0t@1LybUg?OYp8AB;;c;FBvymUUuy%RO$|ScR zT(^HOimgminel0*b$EiKd9rJ|pXov*(-EmzyK+295D+tfBSnfD1i%HCY2KEbKk#Vv z*#TMSbNf7403c4IHq;Y?M+!kWlx3oyStubu{Gw1oL=F&K%@LkN=!bpy=uu{N_In8Y zfJiWL35l4uJ5T*ZBfWb4_}uWmXD+?kS51pfJVz7BY=xchh)PGr;IoAM5FSL`2S-Ml zffG6>H#a6OP7E%B&|{)k_tpinDmf2YUoss&)z}ny>n>)ZSn(ne)I@_E zDRd;l*OjvH%jG@T);zeJC4fE4`1S8k$YEkboVA2spSj`v7?>fwQD}n`E^>KhPOPX< zY;o*Jknie|kU90rb;u*QeisLikKtWFh~0U_fIIgM-d#2Wc~B$^QA|0$UPZcHV`%Dd z$HnExU=6ugRH_kFww<1z&u?yC-q9=;&r}8*@cl1F?=5Sc!E6InAjXJS18vu)rW&1? zMVFfNWqPbq^l>2-9Oc5Zu$sXZsX^^?dCCrABs1_^0F)D)Zc=_Nq*k6Jg=p} zLP@n_YLW(7(@mjnPQNe<{V-9QsPz^i+;g^W-4sXcYw{P*Q_~dX#g0ZHwS08Bv%eJ)MszGj>8a`uBD1+0@6By+2L&Rm>-JiY3z%4pT~!_iN#nP6*FW zP-sU(M)M1e)q~lo^_xl9(9me+Re_xq)vrqXTgfh|p?a(<28p^l7feP|i(Ur#KB zco^w)fLllCQXrHz6PgN%&DwWQe=xzTeIY-j_%Ku!_}*SH_t-l)%!4wUhMk=tNnR2z zNAN@=N*a6%TGNqo|9m@dO8Q-sVecvYnLko3%_rnT&j?DibZ}Hu=kMQ1Kq@0xs=(Xi zqHw`Y;<2IF`F27LP+cd4UU*#`R~WTnQ1Dnw+aEiIKcN_g+Z|As*#UznR62MMw$`{w zT&o~s77NETqQ@$0VKM@-+o>wpG%?sniKzwE4S7}Hs|W>-Q&l@zYQOE5F*S_$HV6w) z%jG@}BA^C-3{3kRph$!sEE%w0rmpDs3rmTJAj%*+m370u*_{=@8Fc7SZElobtFECj zhOd6}7=(NMQ13A`J`O{H5HT?^ICTn2N)`dwgocOJ2qbj;m^G zhlploG&Ow&S-|u2RXThBayS*?N*P*NSXc;uUz78_&EVUH?}`8w;r{}qy{e`rkR%zv zxx*O?-$DjFCycCRLhmUNG1UmmHWVrnW25`iK(X#z%kc*wd3X=L^11c)^uXbL*Zd6y zl-apb9V_J)NZ02mWGX)ek_o{-0{I5eH^R;is^dz~&cpV2sgzjsKTsSUAu(|~h#A2C zSL%Eb)=A2DZQ+>g;(d!~!wjx7F>g=slk78n(SS_e6q^nw)*#dyRtYlbYT1u7K5d{LJzI=ZiYHHM(*kysL#IJfk16V|p0J^D-cAsr zOr7T~<_gk3q7Q~woK;?~WMT36D_)embfD#O)qAC*YOU^JEQG|&1_$rAGu@^|K zHj@iN|0P^*Am>&S1ga7+?!fJ=`pqy3(7GTRv?|rm)DHO=nYk*u#bYB3r7CbrD9J?O z<%CQ;yxn&XfpEgfHIhE_0y?$;Zx1bQ;jx}8`0q!Suz{enBJp69l_4f5OVeLUcd_&})$Q3>IZP~#k>*yXzmucN0_2ioYX1sQ_n?jqfdxA@`7u6T z+}QZR@-d6yPwG+rju$}Vbq8aKW)=`G;Gnrb0;+g^mVNB>7HC&MGDgnz1|OuGG?#}Q zJ)s;H&t74j=kWj<-Z%Nm-zP0^+E6UaTtol}oIH_(G^h0IuvI2DX-{mx_h$NWkV{fr z9s$uEF%^}|B^+@2=ho2ZxEjF%vJS3}(al+uz&KIV!NUta^=sZeAb3qnZHtAmR=8wwC=_~(l6O(TIU z3K7Qx!#A>Ba3BHNgEH^I8M^!LX%J#MYwIV_4Kv;3P89vhcqTs3Mv^AMGM0c+9@r20 zPfz_2WHl94AH+Xm-M(G2L>8M!aJR=wzDPwb+fIar`T8zAnUf7;ESCU#n2c33!%@|x z6q0fDm(AV9i@AcHZ5PWM`1@i5M!iVOyJf&{TNl zg^28o>n2+tA;$6g#($DB`XgaUAu| zv8?yhA~&jnD>Qp3@(U@cTYz4TmzDkwt~ft0-&o10tNR30Q8X~=_TVZ%JT&;m2BZ`e zO5nnk2PCt65J{Cv)CbQp!bgzRS|ZthBXP~)r-hFO9+?hsjak0lY_|OhmRupY;~>2| z8q;FpMZKX{On)As$C?jMko@P4`RQ;^rm>;U__)>iE(%uh zX;WVvJ_=7n1`Ni9>Y=cJCX02NL-ZZ!Qt=fG~0L2T35;`%Af%47d< zO+f{-bQwn5cUMOfeGv9+*K&2&#zw=atG)e0U!T0}f!Z){&G$-ssduDkZ$W?qlV>c2 zyN2maU}Pkfu#3FJB|umYg@o=2nJ}*lxY7$;^HlCX2rvCyVKsdJ>+JmubK{6I6|aHP z-FZaFD*SV+75eUBFw3DxuBQ5ewlbg=@9&`afL%nu{hd8GOqEb%77gU>+xd1Z6jW5W zqO`d-w-i}v$&r3-K9GjFyySy`F=};I$tiz;rtgm@rqdFZizIp;{q&oY#*tU++?of_ z!GlOzK@)kQI|s+B=!>=4F@%un;T;i`08!e7^YMxtiL+lWr%V9lYIJ~AMROz7v;nddTL2+~SA);v zkP$-5JHhKt8pWpkIqoH0vBJl#)a596~FrM@z%FIN5OY=+QifwtXgu zc{HCji?WKbGD}Sqc&F~Mj;Zt7$0d+vn!LQDrpxOPcOP_LZ3u@o#Lw$DIME6UQicE^HJM83u7@3@3m3$~Uy`LP_~v;sKo16zRD)EYO<^a<#jxdIb-*n+M>AmBem>0Y_1p+F$)z z>m;3NjRT*wme&nmU=#ts0C0`2IqM8f9i5&cjpCP(zj=pR@RYgdtPOG&z)g-!#$9Bl zWemO`C{DSx>)@h|P@epUt4o)FYtn$g4rKd97Dh0$Q5!CPPg-^x@esIeez$ zX+$`T+2rwY`#*n&plzkeYM5fdMsEf*2Kdx(gIpO5ravJ3xXxh-8=&@r1Dwg7e?a-e z(e1zQkn33UkT(R*AL`VLK%(?|)p(Mq(ndA|qOX7pARVPPt#V%wOFsn6E41tf5CjOF z?_{(Pq~Ozz4Q0Kb^8f|w^?A3bCRCv1+L_5+4A1S2=ev@h$}pA&c?Z-sKL%CXYamOR zBm;JL-|pdf!!@#eY$U{}H+{sUgCP0j(_=HQ^^J{%OOAsHu$@6P3=t6#-7MRmhKnJ` z4i%Wb&87q21wQcW{j9>gdQW|9C99slw10>z<%jr|%oC7m1t=w-_k(H=7t=X?W3jPm1BT>8$XfwEBUzwF6kTYQVgF=!5eorq~PY}+<_Cg7@U~K-^!6P z%%@?&&KR%50ck5-Fay-Z!t(UKh&7L^hqxHaHxSK6%2>oiF5vP6WETKx z2a&QFC@U*NZy^$#4TwVYsORUw0IJ~=5976y$_ApP#fL%f z#r-7~@R&Mzs#HRA*4QY!$0VlIa>Za4P*{`pNlMh6@nz*?jVF?usjIbr8-Zbq&^j@N zfwJ`V)>I7u*uw=XbV%$24_Te;Qaj6@Fw>m14K7|zXytAB(3dfic~QgHA>;M;_R9$!Y?TzRX78))`Jt=dFAMyEY&?6BhM8->i&Yz4~jYGH{<>SlF=1ud1qe z25Ttu{eIpS4Cg+&`u|s~Ou_9;0P{b*c6c~q(kVjHLb&@I6gwUNnsZt5Vx#%R2g|+L zND3YtW-rOVY*|dG(`7;GHC+PW+7Zq%$tdc62!S96ZXV_|C@!xWP#pEA!KbDk03lN^ zsKgNbDvS->$yErSEeMJcn@Fjyq0XUh@JV~=XCd!oulBZGrZXe}e?V!y>izN(jUn?ZDM`Cm;-oU!~MdDBsfR>cPf3 zwRo72d&XBw9tk}E-q#b<(YO4l(4~kkg8ydc1XbpaBJz;cxQx!JcX(|xITFQ`2iIP* z_)P%s@CZAQZpxqb!Z-eOgp`+7av2hj7SH5B>fhn!?>K{R9`?|UiUbUHJ7&z3bdzg5 zkc0?&y3q>>(7vsqxZtY zKhdz3t%(>(-UbGFLC8YDYdI}{VG`GPGY~?KK&P{m9rau_>76@-7=W)(kgxG`_@`u) zY#8oR1Q^s*Vmm>52LRIU@i9Ha z-gAcMj{mk}(A#IGK#RCTSN6%sDBuWSE!|LCI0r$Me?~MgGeP`@Rsi<`{qiBinG=8s z*ac)kGy~O%Yt!|dfYL#EH*$!&EU+=X7)KC$?`OOy`fv zUEYBTTuK`on}JRthN_(Efh!kb)$8popcUsdbW+tDBYo^pYgz~$9UY;Z=o6GM00m+O z>99cPyn6Mj6>L9H5GIoHIQ4(D0GCmn@=8j#;^W3Sl1j#f$NEQRN4ZLC2N9Zq^1b{O zTG(Ul*W>pCOX2RM_sxR@=I6jb$x=?unGKbwZKVTx0-#}`947523czWBMWjBwgQqer6bM}=ML0{LDpy%%rUOB?zdne1AZ*q zZmRl#HSB`l4Nr1n$bUcU$rA&f{Gu=qT-}5DJ@?qyST|V2>>M1%Ab{dJr1F=#(eZeM z>CdMaunZnTQ ziFxc@k{1B59s)XK?<4SI1vJ%)6#J3I>+C!?d<+$GHrX zmr>RE6Vg5|sC2!Ou%Xd4gn7MtS5Q!Z2ytj{XS|mLwEUYj3eemSMA$6sCi&pPd&ab| z@-Tp?(vCjEsbLBzcBnap$b_E_ASeVu2V+2hEU#hPxY!!cmhY#pw};xT2;m}xHFbpt z-Va*-1|q-$K#x`Bb>RYKOTf|Qh#P$W?ihV4$SH6K7Of%->7NZ}57U7lv*4(d-wkTOcmS{?SKFc9fBA$!E6U9U6HY|sxMxs zXoSE#u91)ny#a(Smqb8q|2_C;N>OuPtZUY_9(JCVZO+ODtg#!4v7|EL>r=XgLA}M* zFMeb0L#-Copgr1NDESoLgRCP^!vuczv%)M!Ke^#uV^Q>zRgxf&xZRnj=~x zfHFfQOhH%Krto_AYqPx1mjaL?55wYRxs_%oXTh1_UnNpE*X?&>6>b2-w~$lVy*agX z*LRj$@u3{!bsl?QYok6Gtfi?5F3AmIe`LV7UVtdA^p8&U8$UhPa>t9g?v_jp?ix1z=zC+5noTbfiq~LxkhT_;8VR8{AYw0Bk(M#w0AoWP5W1=S?r^L=qkjHQS~hg#XF*|ZkjWncvN1bR zZEuQ@lPH8)gs^bG78G&efi5%b_+xUT#RAs6)&+fM@?IXLE_+-IF<^P?+Y$oDI_Z5< zH1s=)KHm|`Pq``ilah?gcerzaY7+pYf}PcYs*Kbu{N#kUK>!JGuUm4T;;7)G46#4$ zJSfeDXX~xK%^f(bK(z;)jKnY2oq|z^{Q^%OS>bmFAT2cA+D zCuCi1j)tJI!Uyp*XlBrQCAWUA#FLo4bzFH3qsqg-`7wuvPE{T5-N9<1`^(3r;KA2Q zYt!KfI0EfR0x2QoJ|{oMvTvn!WO;dc&!CrEokRG!VrrNBv%*(%Sw0a5hx{(vR|p-> z?Y_-I#({s!W!>;#7s>ON=+(#m{rd`$csR}cjrMD7GEF=!l+hSRg8;WD)kzr>R24daNN}>Wr zO$vFCPc2NTt??yleI)R?@ZA^c)4FZ~e!GBnn`sUe*rL-A0HA>L0~k+hO>?f%)lLOp zwX4`|y(I=N@ERQmVgT|}VIFSTb3Fy0I0DTDJKpZqDn)~2k*y)H(Yt4>O!>{buL0Ku zsb+=oPi*k`cQ5rO%E-#jgQ5Vk+p`Wvy7fuNCO(02X=x9*ri|s42#B&E3_%mY?^3Ko z_4idTlKHyU@(N%JP)kO~5i2UH)}2zpeZ8lrr>?>a1)!NP&Ickzxni2rEV1{~MDU5Z zcAld$udt%oQp){EeGe98PVf!@_H+hJ%!}6Sxd%Fjh7ZePyOca-SDTX%_SLfs@7o3* z_iel!9ULmV1_y7nu#{oSxrswzYlQ|h7|bwusfF{722h(OiqNT#SQtwR7OkxXgVLB7 zM0stdgX7|U3G0{D$u0r*CZEi;b|>oO-1#M_hOMG};eyG`#b-d;@jk$dJrurR0~7=uvo4 zWTay1MHA~P6LBancGLe}XMDKFJYxz95V_WgXmKj^p-+;f5^SHoOkFv=_5<@Ewpq?KAc!QavIg`e44o z!M!;sXhdXnaq$C$*Z}H6!~d4E-?LBMT~R_N(v8(%<(SRU9ptDAHeS;n18w6oq##=c zYXyOIcahT0?|i=NLL6X@VZfC(wV(!i zQWWk*gH3YAoMo0E8e8SwKr?UNegXVq_npDNf1kaaPP^Q_omBB%nwv|){=^x+7i>8c zQP*KlYwWYL9wzGEG7Fo}2Gbi4Pti)%d77btMu=!$_;b%VCWbE(a07kiogpa}D>6>s+-0^&7PDpxkPYJ{iLIjBu1orN!J(EWiwe*12!;QG3 ztH4Yx7xXv5H@4HW>|`Y>S(leL3B6FL2cFwE=#gczhlU}{j2k}9(M(c zD0i`Qxn}V3hCn26aDBhCJqY|>oHgd@OqVha&@!w&*C2UBro;6EjJE@`YQfl-A%M6d zf#Cx{5YQdTf98vUK^RIPy5+q5lk~&*qY@IcxX{Rx1%jilgpUXKn?kJ&+jchZP277R zE`#zN>tn`umb%6SRoP7S=#i}40MW-IqH3(Qrm@BiE{6#B?=ds6#Af{g<>vkrog#in_V+W%TonN7&;(t^Gozzx#&k|Ee!7 z$BHE2cpWYnbBlTzVcs(6)RFb}P591d9EkROKic(2uw@_h(b*a#;a!!s&)m4cELjhG z%}&z+9smnZ>N6Wra>4s#JzWuP2Lt$x+?58g+PmXT^1*ar zQeipfuI_Fl_=z`8Ei;W)ICPTY;;YtLj6GTmiz`}`oWuE1$3ky`h(<`}d~j6sMdx>V z(ph%_`VRGJk-;yG4E_A4g_6WjdXB5Prh)0{d- zF&i)Ay8oqMiYG9yW|#U5SIdV&#M|Qu1s7)1-G{Foyx!5tTrK~ivEnotU$!o-mZ zd+t_JBr2-(zp~pt-0u$d6qgRJefbgcy1zZ=f5d;tRKVE&5R(H68vMNF-dZk)g_w>d zXwZ^Q#KloXe*MY|F=C_=aRBmCeu#Axw z*0%;MF;1&<9}m=k1*>2F`rq(IPu#=8=8hh*EI&8>=?)bOLpN2rS!#m=V!F{xqv9f} zlibrfQEn#9WhoQVX`in{0YWB%Vf&ldeIh5zXEk~{vHGlUxYv&C6WmK$TiZi1QuFr~ z`($Oq_N6iFeJjR^S ztb>>LC!DV9sCuXWIHG~zVwaJYbUcpwBKoo~5ior~zD^-l&jR!V5i7x=Bh4{nBw3?>q*Qw0#TIQ_Qdl5cIPTve~rudlGYKkL?gWLQk5)#20C; zudiiGs6@M&`Gv?L<>$8y`$IyCaPkBEi72fA$Kt{`iw}f_*L^$DH>ReN%+|~vE`U!8 zKT-3&3}(G@8V(Dff{~dPEXily{uQ}GXBO;>d6KbI_HjQp(Lx>69``8x{Qlh!B%F|> zP6Yr979Jk`^XJrR%;w4G1H~?7uRSoT$!k7x8oEAQ{GkI6I>?Vt|6Fay_AcFwWmSRk z3-EQCr%$874@N*q83tGrqSp)Jbohtw`*33i_`}3?0C|8w#ZdxxF9z)9Q+9TdTvdYm z_Xi=34EU1{VLf8o_0dAWoT9*nVh^`k__y~^ZVBdP_|Kzck1N5g2dyrvQ#H)T$H%K{ zYnhtGAyH9?qKj55kp_Q=nQ;Jj?+QK%n$81l-Gxb^PqIS{X?@*eLm_cS$uG0WJ0dQ+o$trNAxG9 z+fQc=DIn@HNSd#^zFp*%q`@nTOG_&w(%>7lRg-+*uV#R|PCTbUddcgrga1 zz3v{zR(&=bDw?0=j9ju@sAJn?@LD3h+H3_ItC4+OOnBFW8%fAMy&QHv7l~xEg{;0T zKDLCC(^r-gJ2}6~jLFY-9KC#$etH82u{~Yi25Q#yb5fumi}sUwIXSaI`hk!;URIO6<`6PC-N{PY5tL`HXJ=+)?j}9Z zW^Uih^ID$gw$3Gs%h3F2Y_=uqqRJQ<;W_4(npd+vSvqHg^1S2PdSyB`|}JcE9ZRHBA#=JKDvbejGX{(WdPSxZUj;B~ltL5ozU0e@$SF|FC~K{?6*#;t&)A~?iDG-d&C{>8p3?yadR>e@iw#ye7D<}R zRBfoOVl!-h4U=Cu)w9Ye9ukxd;U92G(FU0oe9om=!*1^GAXK*o!I1J&9q@=BpA>r6 zVEYCINhKu9*?l{@3tOlWv{6D^JxaY^q&z*MMksSYcWMveq6xUt0y+XPA7)^blY;B^`i|)JGZf^HEXj9xq!Ug0m&{EL` zs2a%I=V9PJ+{h;xm&2)=os^RCb7`r}@l9NcsxPW8n5qrX#zIRyk3HD%`1qCiA@Q!3 z>|P~sb?4s_nkck&wcc3WT^%Y}b;r}$@u{r%I5*)Y0FIoXeo@ucRRFn`)4tGPRR>nE z?(tjeA^d@=B|jI3B!%4z+`or^uYI`ZdAs3&<$eJJy3?2dBcw|$BzyYsnH~X31a7cN ziH99&4_5h@n1j_=C%0j*@8Kyz@$%sU_l&GoG{AO-asKBfx178@!u3KWsqy0mAt930 zfLi73a{bOR8P5veI~B{hWubFgDn@IQ-xa*rIVV|qc&S_Pqc<)zc z%`X%NYg6>S-~76j><(Y*7wGw+f1}2u5{hnamH-RyE$ZqIbUoDEdp*yElqPm+P*T%) z|2o8#Ha)H{F&7rzWsGDM zz$pF>MCr_fHW>6wAPYpOD=d6!bqen%L{QU15rxF9B3C*5cTn;neFR`jzh`Gv)@^}d zL>%0ZC~SbFLBtKiT6-%aK_IBwfz)*cMaN8QBoqrMa=>@mySwFdd36NQAvO?bBpF}~ z5vSUrAtKoD)zyN)Uwa(cud>4eV^;og85oc)y`=w4uN} z^Kr|o1XxCa-eFY22Yu8(Qo)oT5fTCN0Ii>`t!>`m;)SObR|wFymj?LCfLbE23>=ta zdjWvbgW4+UG0m0|r@|Epocaq0$caD^YBqK>Zg6`mUHFJ`taz@hFpXAz?9bC^wcQma zsGP@6Sp#ot5bRCf{4=*fIT7lboIGK5@?ym??$J?*)$I@Z*`IIIz>Ez@vjG^kZ>1@P zRXa7M3u~#gqC%Q6Y9LJ<9qJnfQp5XveC-evaYk3|ed*eo>8x~v3_+Wzt6M0D7waLcI)eIw` z1(3-ZgvQ*M5;R0t{@q_?8e$ZH`v8?zGzDdwZpnP{Sr=Q@0D;E~sxW1CsjPcfcsdtO z#;eN3`}*Ja#)=a!Sth5GmamS*{la@v{0oEL+M4Ok9O?HHv)Ign5jh@m$Cx`6BuKI+ zG6MwCx%&p9m>71EEyw#oq{ynb7ski=N+f%|_Jf=@6sqXj+sZ1e^5(*e!gz|7wpKl6 zhBQ>@O`W~cweLk4LVLB81uC;y*|0b=N77zuy#I@1OYl%TsRQ6IF!5@kNREPX^bZIJ zm&xLugp-6_rkKNBTN}tKviObT{jYH_q>DGhEG@BlV$}FnA+)*lDzrW>XGf(~gQasH z{HL039ab3G+C1B@jEL~1k`nBK*fy2g3K82kUhnmf-?WQ3UU?ZJ{k`5`F`VQw8WjBy zywU>lL{!dFhlhnMQ0yyX*Vo7ft3LTi3@6l0!;MP`&(zAloU<}@GN0RfCt`$8XO=+h z^&94q=M+)Ob-qV4t95G`<3yAG`8{YzK*e~b{_BYjGmFH z_T=kPeD=qu;ywrEPotwgf5$B5F=hXbMLWb#zwavsM>Dhvk#TYU0Wn1AH-C}Lo1jo8 z?lq^YID_4w#PF|k9j)qe*7KW3t7Tv9EIznTmg=5W;G1(DMy!(ko-%wM5|$ia&gw)h zdfRV?mWM~3DYYzv*4aY+Vfhs*)=oL>QR&)S6x=rY`zqH72`?#NrsZN5%_PQ>Ny86p z{t&hTQtdPjfU*bz8G^=7YiOQ)P|+VPt&1UJ6G!`F2A3sz=O_D!NC9r{W4}|c?YTCZ z3NBvW^I|rZyW5vRV!yr#zZ&P{l3WJTny?^F^X32n0YOvcj74L=j<)u|SJUqXI+t=7 z;?Mij#8D_g0o{F(kwFg|2mK+OMEPsr?)mR^)R+yc`rfk&Jg8fiMxE{~Gz;N;nS-U( zC5KJ-eA9hOWb4f>ju>*+#7`yUUR&lo7|A-&eo%Q9C;J{xEyX+Dsc`=m0jMR`2*jgBf5;K$5HRa!Txe7!=14R9HNED?J2< z2)nVgu)SlcZ9P@i!|ST4sj1iTpPLxss{{%-^%A}B7z}HhqU2p&*3`h9zG`*a1kY%+ zjr;kmmB*64VQ-~u8O@={{c6$Tw_bMy&!j`f^i`sZzHp`N_ z_N`}TRLOu9EchoPg|S5EvE4QqKvPdXk`A~n<0KrM#GU$?5}hvJ0_0^c-u_MLOcp0x zJMA`)bA~2s`}uhomMb}~HkRuxC1v?)W5jldAlDS+xPhOww$+PrDD@hS=5S#c`x{7V za}63rL41i3Pd#vWeP zZz-Ve16!(s)R{u+-Gp+uUmneRu8y*G{;}JjKJk~Qz=Hi*;zVt8*&AQ%iCw>g4u12X z(83ZYc!YYNpEoj5m~s28`w&zl{dQaTPxOkk+5S%p;O!KJihH(AzRfGW=u}sA&aLG| z8K_hENo9=esUZIn6l;(c@rY6xt}t*`$@nObt3W)_@C;8^)o6fU7@vlcd_V0jf6U&p z`#J0=B#9j$8K1$ z5*XV}gq$m#d3VS@%eOLp{z?{5n1=w^XxQ}jU~*RUPv>@Z4?2!$5l3_@x&ry@4Ix2` z16Qpu9sk4>gW3UJmn_~j@5Y9Qqd|$p4Y4Kws%~v5Mx-Ifw_9M556N5{k< zBO*sl;4k5EToC+oWP8#Myey_IrgChB#VU8QgF(3R-r6R+kQnxJB?Ty3MAz z+FD=ji6+QAJ3g}B6vfR7$99J5$KPu|Q;UZ1SNyf_$5V&6d%+zRH|ak8XSP(Ctm=q* zL}iw^h~S`GZU;6#_xhBv$zY}o{@VIFGEojW!#BU4(ufWVwXIfAg!L_0!68I|K^Bm% zh22;l^7)9MJMaq^XI_@t5j*Qe9-q-91Di{rOmt9v%f> zFi;5~f0WpJ*OKw|_z>QL3(2SNd87OlO?`d%)w)V{ zUBEQ^Qwq+IEZakE0sd8a%`>&PZ{M0h*Neh$W5K|+QjyrS+oMBQUK4{BQ);_Q&%DOs zYCd4d)tqD6$jH2hgVT`>r&>cGHU)Go{1wVg-iJI2mV#>0iE^-m07#P#@5&ppdmOSP zA2dL^!p-xwy>#$&VzV^&7Yc=z&7cuYcnpCA+fss!>O%G-6#q>s5(rbH0ChFY1|#U} zOYIxiY8#k@VuE&us-2gO^hHF_|H%LNulc;Vcft1OhaVnUGt|SbFxCZ$$EGmVEp+Og zT3!nZkCVN;WAwvKpRBAq2A=yQK{q)TfmMLV^Vqbppnx?MMi~uwgkW$Kc?IMHb{T8n z)#ZPKVZ6?j8^)a&g@s`U{2S)xwIl`iWV~CPKCo1XNJ-nu;bwodyxuH^gjuFg81s&e)vv$qF48(Ns2rxjPG>m4Oec@Z38!SfdG^aw- z_`+mfT6~d}-e!~Wq~V};7(h8d`_loWn)-PuO2$DmKWNx5=2-}J;{vD#geGAR-DU2) z*LN`7&PN=37v4M_z=ZJQ1VHPsLL3Ix_uz8mjc`Q|1cYdO)wtmz9r#;GyGsIh1Zv0! zlZI5YD-^#s-r#S|oL`5d0sFpSdTb-p*&-jx$-#OLIS;}FNCAT24OHE2_O7CnA!|mioJ=$l5z3a zu`exz3i3*P@fLYQzI2Y^xsuvd@ZN@#qf0rgFhM4NfIwfLv!~RSLp2kv%KbMwm*vrP z{aD5ph_sMwBSaOLEaaGx_HZ?jk8_liYm|FM_&vUd%yh|CeYI#^7hZ8~eOkKDS<>jBEqd*B)=!yE+ zy@C|7Wx#eZ-*LRA5+Ye8IFVj@B&ghxE2Jj1?(B!?@5%pi`X?k3VU6)okI1bzoxJ0#rA6J1Dx5v@z(IUN58nw9Ip`oZ$ z?~8a?*{_#=P~GR|My$U8@&ZXIQFYy7(tTuS!YiOL5SAf~DlPI?z_F5Tzw`sK!V9jF zG2EuV5%S?G5##Ii30{57^X?wnUv+gjmCsu~T#FZWW(Q9H4;&A$z@bWN4IUrE-dkVo z$&de)nyA89QNgEw|$^tfmX|Gm_*rcL1n_;%B#uoo(5gy02la{ql8H^%Nn}in3mqC(?^H4tH_h22bn@ zM_`t@7n4hbLNEy5k}C|bDOeSf75 z=sjEep@SGG1#IYrXUSkYg03zcM)D=zj&hx4QyTW;{NTb51pqGXOb5f`^q{S;uQ*Ur zr%-eEXxj+Dg$`I0T=y$q{%#hIo2)0@c(q#50;vCw;!UZ=0$M;_TF#DZl#aT=PTJ7M zMp;#r&{WeoLp#-V*qoPGQjPV#fe0P6G^&{!&tI7<*OpRnsR#_N*S92{eYxXiXZ5)~ zk7U~A;1rMIup(D3$RA%&rt`Qwn$$dVGdMT|5_P_f*0a@%i3X*|m;bm$n4Tq&w+9jm}3BJfEkX{=6l!)V z;f%D~q6i8K0x0?pCPr3!yFfVd6H=PEXS`|3<)m!&Szzxk?{NbZ4Mv2j^8)`vYx&P6 zG4%U2(WW8n3xKHGpwxW-9z&gl1Q^u7=ocnH#j*br9 zX$v4;ZOuwC5naZ}n+JWB{=IP?fJ5jR7{DtH7sf(v-@S|Q4#4|l{i+Jl!1_F}wKa|g z$-8ppqxC;eGlw#6B|+KH-qUgG*0cN1U!Z(ED5m;i!e?DZwM&KL$2c`DoD7Q!*ixH@ z<3$SF<6{spmwx#&2c0zi$_8r21~oz0O^DvuJHtMe7O6TJdW}NvoGLZRHA6qdomR$~ zSVHj(xwwY&@9R{K25N)9Q82a035}Nm3;hq4N6Y{&mr>O>$kpP!=I+8Z zy}@9C2-;nLnGR;`w|JhC+&mUB%Vu6g7BPI0w9oq-?i*mfcroLXkz{PRLBj~7_FLLC zO;#1sKWRBReyVw&0Hhk;+^ZP(Yfk54PdP_;De7ak#lp&IdPv#@0~ta|jwm25gU7KR zP5)BXw;=A0^a$>?DzzC;9+a@^ZHIYNkN5TniqZ%2S=d>!t(*#`m`!o#)%Hfn2Zcko><3OAK9{AqMyCS*gdd9oUtCI`6xb z>_swYI8>fK^)GiE;RyauuMw4+if=|maT&mGcKgE9*x2~_t5?AR0bMlwACHQW=)!WH z5L)a(({68Ci}D1R=7sste3GvhDxjwmbXvOw0aCCp!PE^Gd@}-J?vIa;kCz&_4H-bI zL5-3Q#eErd1sXaL>%+vC$IC}(^w#T-2#h-y+=9=9bclOVs40)%hX<{0lQ#q|p5L@6 zmer8<*b;=N$IRT>3=3y1bKbDbhZY;jIR+*23)38uT!5J07Z-EDgg<2UyDT~&(H{rKoM00JLi;20){Mn)6+&3KS$9B>ZbSsq}3k!xr*O*_Ns zAoH3N;uR4jIM(@KR6q+rCtDDRt~e(ILN9i-nIdQ0qz^tyFbzs1)`i&Dz&Yh{shv|Ljc)xNc75`I56W$I?m?Ki>MUzzIXsn z%wumr2K((3#Xoj$0_kG)M$~E%HmZFI59WHD%(Wr{Sw4l-c z^n1*-P*zi4o(R5dI|g*t5AHl9OA>f{h6Ygt*#Tiu?wA)^a`pxzzaSdyyA0Fk!Q}-v zO-8K|4m)uSyYz|96{y_l7QfvnGH6tK`t%l5svu?B(48EcUO`4_vLybb_E-fa{?d*k7zB zutYPTtYBkio@jo(Vbu<-G2!7jzCDHWM6iCC{q9BQK3GJ-7IVHK{*k55*y7#y<2kCd2u8J4=WuGm!Z$|tj>#v(Z z)46_<6xn=Fg2THHdj1<20?r$haJxWR^ag6n@Q4U;z?WeW%LRMg?F?K30NUSm3m2RK zfi~O=*?i-D2TWz=fK~+)*^OfA!1wTK74ruRt?%I&`T>oskxi`IjJMxtWe6d^F|vrN zT|9;f<#|j=zw39P6^z%VVO?5GQ;CWp2-e9WZj*{#L`U9tvQb~*x{}?I;|DLY;21S- zfIsXl$B2`g^#2s`siIZ0LXKieHm9EzxFgW9TAc-CjJz)$|8@SZQMq5gE zm;H6L<(hZpZ~N+_mKi4KXm=w+cku79v9ZB#9Sh_=w@#$O?;dC&z*Qr=4O>lgy^Pm8 z(-~!1*V#Vsew|-g>3)NbwG6XN_eCUY6ej(it==e>5)b*1>yEX3d29tTn|Gu$GT~i7 z;1b~6H_&v~13xE2P&|V_07(AcHbe-5ngOH>AwZSb0v6r5pl~FL8=oQ`vTN_Afdwr$ zLZShGhV~FV)SwE6(Dap&0zU{AhbM2ev(Uw}aZI<~;b~yxjdD88-!}e4$=bT;#{nE| zNH0;-C-64$FxMhX5vR8M*s*w?6S0YbF9qYO5IhL3Qw*do1q6S-znU80<|MW8z`hS2 z2_YcA7&F(Rg1S2Rgpm}wgpm#W+J<=H)AB3$FWoSMPlPauSY<#6=hI&xhNi<*7G&xT z461CHduu`3Og~_qu;s0OIbocz0lHH@@&s-@3C1y|J3D*;`etax)c&~^{MxKP z=x=bD2u?|7)^E{NEk18$3H=+G$O;3tFoFfDAw2LRRhd_$;UPz?&j*{=Hfa9sv~Pda}oi_y#mjsV81L+u_2I#|89{Igo*IgxEwi zh6Gh-_O9TW(9+mGEe9KppY$)#2nvH75UHRH&5OS?v9bLy+8V?{Fo3;12hbiUgFg}q z04N}f^M$_wFg2JK+wdEs@=U_+Q`Dpc^RJ%o-o9327i;M0Vewvl7YZ|ToK+v`8NjvQdI7Q_*M-VBzYZ~U3=a#B=6M1!JuhwF57HA-oyD+8rX=f?pA#@YAVdsx=YNhw;-{nT%xhszw;Og?Jy}C=u zLrJGs1b|P+9lP(ny@;y}FjYi0pS6hH*n0!L=RINOVv?s*MZfy`NuHc$~j9=iNrvoNr$@bAq4lzg3xeq&C^&ceZy+W$FqbxfxXjHpU;+ zqNc}PkCvy@Z*du7K%4*Rvq0Fh+UzvdkLqN~iv>&%go+$zCr4I&;1B^wO+52kg*Dc? zld$lYxzwG#DGO)<{`{Gb0vm>aj>_dme%j4v$eCrr-bvMjK(O07lc82I1Joek*b-&nb$q2dg>ITbON-_W z9d;SnS8DNaTNt^upj`VODIk1NNLKgXpZ}2rIG~G0_*cNUk}QW>nO*6 zOEp5dzuGcEPj9Z`Ty@w(34OyvsJ`;hw7tXo*!EwhwyR5(0S(UKejTEjeQUe9-GNA5 z3gjP`^^^dZD}ez|Gf)t)V>?$~nTRn! zO)DEz-3Krx=l!qgUO9QZq2(%vhpy0!5lR+=D9miw3KN*&+xnGnO7A#MhIFLcDk~LR z^aT(V<6@5<#!J*65OHY=M8=Y~MX4D?klKgUVu?MP>3mx^{CJ0Zt{<`>q2C|1)(5>A zDGxbfxT&D|^%Ak71vLda+V;04=3d!B*J*XeozPJY{q4E}g_#CVBqtgf8OhNq&(Zgj z72w+lpzVC@WgB$!qV`D)NuyH*>J-Fe|dTC_I+*4yiTT zYb(L`K$f~X7;*suR#ic*G$d+Yu*V7wIWVP6Q3Q&pr%@a;eW$dAHm-i z{B`&ca37MVe*?6DBys^7`Eh%(-4)J&~?a`W~qJ0y-+&NkG*R z7eE@1E!3A%#j)#4SyGnD%ux(ctC^ZH$c^i^xBNyf3-O%G8avl7bzZ^@%evxa#5k z?l2VrzAV>E-(gGsh6z!5oH91Zf5gc#=``lO#EV=dGyL1{zc=o8D`7O_`||!s4Oa-8 z#gNmUThYZQ5}{f}vG>pi&3RcxRHG*8{0!Y2$I|`D^GS{dz86SYVU_eIKifan{sxcf zX~}c(<4tB%4ec9R-jsoxQ#~5gr!XclA%I2;#_2#z!*K;FqD5$8z<~1i!a^&kHV_{i zjx*=&X75;+I(R%^m%bZ8xd@%%(T{q6P)Tte;sYo2)^hcQ(46%Zz{!pjexkmm6`iJH zvT4hle{A6o!Zg83bM7*{s0xGHP9q zsB|Wxa6!hKCdUf{mu*uMyuMR*SR6jhrM4kscxk3)fq9Npz%x^b0g!j+SSNx{m@E2V-n$8? zBsc*f{j=%O?A?m*9{ca%lL1H^Lp<#hZB%Q2fuTy}VDlP(3Qd_*Jqid02(HwvytWp7 zNZigER7(PN%|LFsRBdqYy4m<2z0XOBfT~MQ8HvrkD<{hVv6{F+o#cntI}5TqySwK7fAoM!En5omM0uF}QF4aIaeQ?3A&8^l=55VvSy-XC zil*PvFbCxel)X|@y1;1zmIM%SW{yp8dE!lKD#ieQ8yG=otpG7iI&^hW%A()8y7Ic2 zQ4mNKv;l}TIJS`n8iIr2gDvqw76y3!KLh%17~2Uco|6SlTtmTbtfmT)4vA8u0-t?2 zK5u9T^mWQ!mkjSJwRw%>T~u7%{!y-vKv*l>xSs{*xeYf(kaj!mi|hO#(~`a6k^qQxGq~L^eW8^ph?_ zgeYgvN4A!ck$r;|G4L+~7a_PIwjt0FFe8MlA(Bt*&t1hU9M@3wF)tL#XtFe!KWG<) zOas);VDG@{5aC~@)GZVH1Bc@Sy2y274`7;IDTV71?db6_)bc9UirV z>RWg6K4#1pViJJWwUIF#GZ=ACF}R?PPx(eugT5bf4+YxRM+6ujIShV)FfE|k8N0S- z-F$FflFHd!(}NR+pRPAW-jNUQ`J-|2sy_`CtVf^$Cj~#pjEoFU9-dF|1YndjpgqI@ zw}j++3r@!iz}3epLv9A8Yk(#{#bEmJ+-?taIjBUwM6Q1a9$~IAhxNPYJufi)>#hh# zj!G}DiU8DII*(wz`p~_LBOXjf z&D@x*PtsR@gV-0uMxgNPh6Vq3q#!o*i8jP4!G&23{B1jFIl^~>w#{rPQMNYRm<;yM>>``70TM7DI0P##mb7oc z-N66_E*2IR8hZK9I?&(wpR)v&+nYVlaG6hvj=^09ow0hV@LRwo4H&^7!(2W4`w1t=lrK96g(?e^BUO!eoOpcH5 zg7IoNZD>~H-X=f_3;0RF50k`X>L5iDukb;qFq@WJ|6Z;pl@3$Bk8Yojs6D%SfF38v zmrqYS1nX5<8B>KE0}(YUta`#!gT>{yHRJrtZ%d`DpmCMua27_p#Y*|wd^8pNGP$aP z9CFV%D;=2_*u&QrIEk-vL%$7kP_9QO3)z`*73J6j8(+@5O=fuFJ zO^F<#!W9BgdwB9uunZIF`Gs+n%RxtlK2}PSzO2Qt9-uacIt5DQONi)BR-6&qa=d5M z84P!8z!Y4@uS<98cTdYauC3V=5e2^u3TP6m-M1uxfoqzoVEe}WK_AeJd9+0Fe@Tz1#5#8M1;a3oVK zO%0icS%M>27}78H{qy{X zeo%a-lTrko2yT&nZqD=y8Kxa>{m7`Y@BT5A~9>Sg?YD8kBOmE;t4``T0$udP;(I2iznbZNFiY;lM8g7+IJ%h`r(FNCbmn zy;UFoBlfwGjRN(J)Y&PJNs(2oa0?)>Z379g&w^UzHVX?5z@z43FNjP=bt;QM*Y+FN z@~TjI5<=B4_L4zD!sTp3RAeNA0jj8|+={#V+KQK$h}9IzJ6AG?$dVFHavrlLaOwlM zg695y0)BpeXxFYiG;Xp6HE(`}4e+b*=ZBJTc3Soh$E=bK)?K0%*--UBLLmq!dRIlG z@7xw`ynSI1-UWTFjI|twlcVtS7c&GXfXn&tCD6fs`E6hD_kp8w`I3A{jilYtHA+g# ztsOVLaJUe}5qnD57yuO#QQa79Zhi~tCA(crsp_lOhk;Rm7$N{%2w}Pq#Qh*mKqjZ5 zF4i))0pBFhV2^{jn-11$hq(0vF5h}*8Sc3G-Z82!Mb|fP0!TEKzQbfB5Emqj zI9Q-Qm6#nT?ia;RNjXmdl%#((b4X(j9|WaW$8$)s>pv9dkFr_Jl&}{16)ph2EwJl| z^;xeTge2y;rsieM-k_=jz6H~#+DdO{Fe6W^m>LGw7eEC5z}qYSYk}~P+c?hJsXL@^) zYzjoXLP$6VQ!pQkHmM1y+R)ID5u44Z0+2Jt!lN#;7zqTL9)05TIs(ywS2HrjvRfc# z7KCpx{Hbk9Mq71DY%SUJq54?Efww#6hw0ihdjGpPnz*BsH$-P`Zq@({? z$W7W|OFO72h3i{~*bCSSkbh3ekom!r#Xvesl?$j9omm%R&l%C&J7*dnjqN@Ahz*Ub zw?NwgGFjB7bV&;p#ry(gkKc5ZI{2-Hhq~((F`$IiS8z=ia(<-8V`elQW6v%Tqq9FyAPx%+>y3 zOXB;IxL@Y1Ga+04vBO=~#|+EMs*1@UMND|y8Xw6>2Nl`uES$wY<=JlPvd8F}MJ0EC zms=qGdb1WqghBpZ(gWKKo(TAys%l{LW0P`>Fr}aex4PU}=#JpkPCNx>j>k-A&7>38 zk9~4t8}BSGDo6jxL9yt;*Yh+&(REkA8a}uqRD;=B&?Ad``L1kBtgJnsfxFdmA?H2T ztMt0NL~4^CbsN2sK{E@=6QACGN(Nk}eAdA5>g`*|)JFnU&iPRfZz5-5B%C zpwqI_|d{D z8&qv?VV($_9()@c8{2=h!X#9eO??}9<-fMIHQ$T>Z;PBcyR4%X1K7})k{5NCXW{q` z#0LF)?KDQ!VArrmRagYna?EoXGbVt0jM}OwaWrNxNXqLbAEL;ZEBuRVCaL# z^GQ@t#@w24^hYxDWBeuLkapd{;Nalc*%=lsVyjVLytokGSWA>yiQ27laL1M8b`Shw z7*JiB!zUYgGG19%a~5M1p_SKDke|<4ZrQdRbI7Ywt@$Il)NUi#edZX0T3=y!U+>m4 zVKqJdhi-*WV{SP_UpE?kVLaQ~dG9(GtdNY*!1G; z15xYMw+~?;b@h&_rT>>N_mNBvpq)()3b(1t2`4{_sIV-+3h#~DH9!Cepz^nNcZUc+ zgZlx3lOpkT2OH;HWx1*Sa(&~07r3GQ-%QzZG~IpV0^XgXu+bPjk==U>_Xhb9o3eQBk*==bdrA7ox>o{-C3hK#MLE)F z*^<^won2il?(oLkfpDJ1YfQ8SEx8qSU+&Qydg03A;?n}+%&e9Tf%iRs)*1d@;u}E3 z-jL;JA6Q0)leq`Yr`8PCwcH9WeD>sHs+`<7S$+>LSB0IlZ{$iKp~Si74c9;JEb?Da zIc)|jM!OjzSL_@ID{D5@C!%&?HQBiA~ z-=!$En2wlRGsVEbpnd#FJ@%%>o&JJdl?wY+Ma?Oyxs9{@3WffWvCmek7r4Cp_H&y= zH*ZQp)`XOl)Ohv2R~FXSYDtRV!sLLUpvEA5Y`<*OcOP|PJ5XKS{9sS(G;-sdQ0JIqYUdM^)s(Jpw!H-PLLbIZrGxu*3 zQmsv$gu|MJa~z3}n3^K5c$7O2eU*>UiUte!Lw$|*cbS_+?hr9OywHPu6i|0QH#N=K zP?HJ!CjZ0MbVfH)QaOUsO|GCJ;-y;mjvDG?IAxq#M6Dg}ambK3CGUhtPmM?rEWmex!^sLOD11unS6lkCP<3upnH+2gI45)-f3FvGKe#6oO8ElDjCBrcYYW&I@p|>G z8cj?#i)3?5HpVNy31MbC1s^S7GKclqSyfI5HD$;?!(&S-fdK3yU$$tHPmN!o;(1_U zL6k%GOn5A?cJc8iaF_EcBrA{~<0m^9xKp&A0OAiU#JLk}`otl*3b>tgb(Uj@IFwb? z5W6g~H+T|$0b75}XruoF^^ntxkuy>qfmU(^F*>MihL#r5oa!N93v#&^HEDJZ*JIs7|fRV z;<=%GI<2_AhTNI_DA8NmZ(s8G!A=eqWPhoV47He-!b@2`C+qsZyp|j$<(hZk;;Wi$ z-1@z&`ZmlvI8RT0N39v<^$xl3v(4)LjP=#mulSQXmiSfG68EkRM;s}oFl(jqC8#qi>2XxejX-w%T$Snaw^@F~QT;)<)T1lO&gr$-bZl=P>iD zb&j{l$ObB`T4vDytx>fDVs7KVL8|e{3avINKrfT-?aiNUems_6^@VQf`-kM(Nw5++XM!PJ{x)Whf|R zWR)H$qcxxnOOzW;ric7ckumXq*YR9&QcmjHcj4e~4H^bJYBctCF~XHz@kq6DFVWFO z)`tl0HadXyVIptI`}PLu&6~Shv&iVuIE2~3XHnRv+l`w#M$~?-ckQpB5q_Fd!kH;3 zDl)9U^09p3VhQ}hBU&}`@;GEvExmc78kZ#t4bHz{?bA5A&D3HNsVjr2`h(c9*KRl; z^6%q{OPE{Vr+uQQ|5(FZbn&_sr?Z*lOIto=4)2Z_DkC#~UA8zcNQ?0iB6ta)3?fy4 z6aa^7yD4b%f4=vKG}RE>Von&0A4}c^iM2zECnze5DWbxw&}&D5?0Zr=G)z=PmN( z2x{9manHoIAFQx2GPVQtfEBNhZ7!ds8ku?$mk=m{1gT)rc=*6@HLUCw(W*~3oW;-2 zZ8s0`Prhp%QZ1a`z;V?xtkjaJ9*tqOTtzQi5l*F(|M6mV0zDuUFFswc=vU6{SD{-* zmZmI$BNohV_D`KbTnx zAh09jd(&Y*f2p{Np7;)f7&Ya&&&m!OMgVbMO8Q4rYsux6#Nnb4j2O9qcu9(rA7ZVU zLj?hKJ0jbM_+}%{uQ!#Yd#_noSnwFmdiwzjiJ0bG9L?h|*jc?<`B7|-vafRdgNScn z_%!6^c_o=Y6p-MH_mDj{Gjn$?M*`*>V5*OnVOA6#Yl+2Z`nQJpjq_~RWK!EV3HhoH z`}&XgOxk`ecF`odQoCwLL82*bh+2WpP=23BM)5j^`rSVoQ%ANqlG9>gz5NmeVZCt_ z?^E=%yfRf)O^XMEpF9arxg_*U()Z1^K<*f&w!Xl7y9;Tibm( zFCCkLHk01GK?TJmVljz`*MJ~|{S^;)5ojtw%WC#Y1wIY4k$e(RnRWd7l?)~nX#FpG z-9iexQ_ZJsA3%rG8QNHUEc)j*=Ir2lq4XFt(=2M*!S)r$ofd1ghLMD4R40rT4#{UB z?R_;H+=r&nXhF7zKkR)FW#CZ?goCV($bMI50?(!Ln|m{Qg9LLin1$pO-|5!>S9&aX zH(TCxf$X+w~*pbq^fRer7&*6_9t6tBdLCD4|sLLHTr>T4ZcKT{FBWitqpD3%2 zJRp?%-L%L^nwUutdsLUQYipFxcSJ)1v|7UH;U*D@>lJ7}st!-F78NH{H9jiaEz5?C zzxr7w^1aS;nR|(UW5eKK+@)Ld*;uBjv8)kXM; zELnoSg72wBex}S)z_Ts#>bJqmt57+l7uW%*eQ7ro%>2cmmG@9}bXkt(eG@Bg(#wO_?lp z6boBry5bCtRM)+PhvDv&i$^erRjGWcmgN zgy4!~uhWZe5%g`WV_}3+3N|P3TE2F2S_EifZo0MAUOub)z!{ti?SWfUiL(jULCj1=bG9ew%&qPkIF$LjUiE%fp1ll#&R zh-XDJ3_yCAel%H2p}|O^C@^&B&%t;AY}sR;&)^RX@HQ2WQGPd-&xPW zVrYZ+yN?6@l{ROr1nT*i!95pPpr5p`AfF~XH+A{mavWv^Uk0)cFV(KfTzCV3D-MZ? zz$0E(aQUB|LsH$RGWB&w6Uf743?LYw=itDH`47BnmlMTG3zyg7^8+s#u$aBfKBED? zhZtt`cXoDO1DIfK;~AD7@3t#?(vCkRR)sB2pQW+sD&U;*9u8|MGL=XA=P60=v6d5` z4%M}|7+RmdPp%i?8W;ecr_^QJ5C-S-0^VCq+ft(6Ot$c#bnT)v*a!yyQ{|KgbP$sO zN>vImu|_vXDoV=E&d#RMa;!|v+_2`@g;sDqp)kL3^Df6@8I$K9ta|hp7%^4!qs42} zX>Qp5wJgsSu(Ww+^w`@iKz`=>kbiPoC}UEYV7dwy3qTwaO7~1bgnw<~_8AF8gE=hs zzk#@_2Qv4VHhyrZe_R-}UY3EfVpfVcOHK-IHtWm#L2#vDa%|`1jhPXTkWlJd_@)%S zhY1U}H)L{IkqAx>&Ycd%m;$b$8Mpc0ye->`rDs^BbSdX5d;O`7mP(vnDog$OPzGx< zlb3JuGa3wW32QrSd}Yt}-OirJj{BwdtMX1~deG?ZPYe!l59*FZkY%V3Z!M0IEtBz| zZ9-{%T}I5}tsFBJ#*-^igCyD1>c%n44Xn|W-~Xot_+ex3Ut5bGYi%>&JbmFNi_I!; zCvf-@U(RlBWOs027N~8+=>{@(p~0;*|ID${Kf;~eGQM9%RTsVL&KR|~g~1Rz)BK|_ zOtb!T)g%Icwf*cn;&!t3H2ZZ)HQ0PfE4oFCjRw^%li=QM7Wsm-4$gtK1)4rz)^gB zJ4#-iNT_r4D9gsvP}^g#1;3X=2iSzn z)w18P38^qSM1!K1u)m9Fei!P`=po*?5KXPBZBzl+0B#;xJkj=zU$qE31+sT&uazdh z$-6o@u`%)$6;u1Yr8H7I+y~f)WCm=gUusI;v7~-Ljc+z{H)Dw7bTH< z_eXQn@O2^zEjNWr@q+Ko!FSIz-Je@b687Eb324|x2d?y6|I`h@T*}tS0j06q&B;SS z6u*G1g;I;iK__>3{obd;shRM{WtS8wiNw7|m-{dZ4RI|9W&U)qh6Odd6LDa)Kw!B(S1i zjLXDEG!QGAuTS}=%cECq&l5*dr?gI`^Fqzu6y;Ow;&5Oey<NjNI|5)<6z?@lGat$3pI-I2U8V6U_1_5%S0DHX=`nWrI+K}85KijV(0eTD_l z3$vATOr?~TYVR#Qq^*F8Uc1!r3e>EUGJWr%sHTrtF`QkN{d!=;vrBrrykS(%>c*{M z`i-h<5eOLF+Gb_^$Y3n`W!o=C)(t)sw|33Fl=7PtW7N0(Qd-BxwCdkjTF5kBk$G(< z^3dJ@J}qbORAsqwZNxkU`StOhb~A+f9YFvgv`a27E(8=5@+Q5C3FU|84td;$)@J&N ziHT}YpFXzLyk|P<3}-77wEoa&GjT6wn=qtjXT-sX;WqS`I~2Pkg;_lO0SVoN!NI|> zMOvp%;^CgO?9NgJSWMvsDE)O(PZ8_Nd<|A)2o2iOva=khociE{T^`OGVm&4O4?5D? zp13j%D#wNmMzHYv?{y)$JXy&BB)$=7o6}SyW6z$bjXEu>ve{N%ha06Mn8tkCd%(ocXlYC<9=4sbNu0Yaj^2mC<4;bU81CPNGl-SC?FspARyf!El5f?NP|c>B2to) z(w&l0lJDBzbI$wYx}HCty1Cu^6Kl=Pnz6Lp#9Gx;SN{RieS?Est(HqS&zslK#LoCe zx$6}B$UBT@ve_}$aoeUQo_6k;K+Y754-c*hgY`M0ii1vpHge;a%Yr8N&ci#+JXW|E zH!g@MzSj<6D0l>pqQ4$lwX(iEC+y1DxW19fs*%XX4Z>dHD|dlC zm`p@*4%5pIZs!FyB;lAW`+W-i(o*iBkRgBzBwu!kQFTwFaXrF5tXUqO+Cv>6Vt<@L z%SCs2No{1jV|#XF1*|x%lgAZ*q>if{c^_-ocR1d4{{a8}Z5^it5>G+2~LhV~~ ztnUpKS|$@Z;KqO**{&abV)&)e-{}jgehl%}h~s|a5k1|`VZJgGK;x5Vr;?_!Uji&l zefFCiEEdHeIRld7UV?2~vWQ3Gz)+#>0r9VN92>heW;;Bz$PLo;y!>=fliCOJa&JBi zsHs2e^mNqx>rsFtEy6>##2AlxFUDzX&1-?FOhhj9dVmVCWrbs|@;sm5CMJv)BSLhL zu72X1byu~wfsP!e+8JONcWv!89o`KfvAz!umVImb?_$<(aP+B$g0!?=?muuTE^g!% z6~b14cL;!yI%E3vN;U@+`Qa4o0!lOszsA(=nNeTIgIkW7gF~i&{N`$3bY4E2G|eFO zR+kGv$s6>u1++jgh_UltaUmwLfSpDh?9#rb1D7yDD}ulZhynYs~@#0+EHO8sd8CcWbqS*)0wQl`?pmRlY;W~ zSrZ+ILAqoH*IZCtSyGK)b3sRDp0rGV{Q2-h3znzca$A?r9HemnnQt)l3+xy?cRLqw z34imB?RWq1C-Uv>ZJn{rHYX_s%rVE0jH2||{tY)FcQKn2ou>3nZUfbAxD&s;-IoAR zV@G%V*vP(|K%N;ssfOCgpbk7P%$!k(yMw#-+m+YJ6HIrt6fHlnP!qT?l?? z+cH_OJSwx!2%d9T=k))=Wf|P?HRV&Isj<;?=8XHk3dP=^)Cr2r#TpLMgD)D#s&Woe zH&|jrR>(U>@trn-E8C@L3@H@spyGP?!>pI~fv0dhjI<3ldAPyoU@(k~{x(;t+3mgS z+CLMT;9)7YWlZK~$syiEnRgbWNpl@dC4u@$9M*GvZD0RrqMX{UwGA@kkp@~<241~c zVW>;rCa0tf4hTaWm>FfgF^1O>|i7&*u~ys9}& z^b50ef-4m|uc*_d`yle6XJrjNp7nZRS;DSU0rbJCCCh(MEGO}b*Z)6N-~w}KEfbZN z;E`eo+X{wJ&|kj3v?%nc+Xr+)jfI{i7NjaZ{tmYQHi8qNMA!_^X;ssDE2YcZDSS-u zW?J;FH*9LK1pz(BmFi+8jD|ys2a=__`X5Xjc`Ncc?p?Zs@a~;m*U4J@tWXe>9z-ey z7$S^_Nvf+8K!i5b`KZB?Dy3;)V1y+8`eNRCY`1hB&|{8?l6-1V!9b2{f&Aa+EEaEH zb6scb$6Z?^jYzup%ze%fiGPOM1j4xo1^5}G^Rtv=_btTO<5`#0^I~qog?~e+A%2)~ z)u8qcJde3Bz8Pne6o@K@@wYFw>(Zfp(Wsq8!uva;mWo-&>l-9PnSbdrOLi7)TNqp~ zyU-T<9Z;blO|%4zrAy%^_4qOEy?quoHg@LD{*KIqYXGCZPtn($4axlUrQA}vyYNw^ zrIdmca&mHN>gtT%ym9BqA za&`3D*!GZ%qn9Y^i^H6;qBPq#g4h_9?9y<^Zj);TsVIj@vJ}Rl?3uusGki+mrx0o# zHj4hmL7h>8tvloibZF{-!vW^l13}I%{FPo{WIZ7Onfq;x@QvstGmln6M`uK((ksD**t`VTNv+_2D7qNzQgR` zj+aGAPM<&5eK^=f2`Nv5W2D1)7q1n)3X!4$<41ftPY>tf>j@jKU18`*<|elH+)w5M z4@8P(Fiu6{8Blpf@pH*c|S&u(TYwIH@2)hju7xaywX$bbbFrkF@5+o16J>K&5 z2Erg-uqvyr$h(4ZHJ_>La{)IcR7kVu-=SXC-t_FpO|x5{oChrwItuMiQ!PO!2?Kp` z$0_pkL^vB+p4tIU>eDl>D^&009kH19Tstu|qn5T;;KR3;wok1+uT>~gq?J_xuC;vk zN}7&ABpcW!3`|VOvl@ph6me!e$fw+Z6#sS6h-hNTR=@86 zYk151!~d`IF7=tG1u+m4;|2dhD^>ISE#aJna6yR5{Rz-%r_wDM8B^J|oKoO?Cz{Ko zjgy|Ms>_cjR0=holXIeT1$ey0^-$GC!)bg9Sl&{u@cc%J?LlIrW;FKQ*bvxhH5Z#~ zD1eq{)@lP^A0Tz9Zz1!M!RVP%$B*wbqAnDB>9r{$vIppSuPc3zf4 zsn6)8y6J-rSh(J)H3ndv#M+Nl662n!Ym21MT+b^hS=qk)cW@P0`pJnqFRQ`NU39oX zb6Cw{l%8W5_xIj$UOrQM=T~M0p@8&=LOy0Sd499e%G}Jyw}3uCc(1j!$T+;4JUqkn zv#dQqXu}#L(w`La*}5{m(p>{d9ULaGOg_rzw6&Iz-?74?j$Dg4{PTeShL7H)aH``I zQ8X$Mg9{resENi(3;BqlS4q5`DDX!2C=)^V;N53_cnw?hSHUbAQd~3kN4|qj2DB*u zAf6P?LfJ-v|84`#OLjCHJ3CIm8IU2~^>whX$HBrn6i)cx=8(KBhf$${6HDpYalf#q z$5@-{aYVoY--A3*nOsz2fp<*bzI}TiP~gwzcI*k^sE_Rav0I;?FlgIW*OuF)Y6ya6 z(!J7!jMDSO@X0i{?CaM|5NFsvUchftbZ1a9qUnQMGiI{(m``TU>w|-XldbC6%Ugx% zrqD#4oSquJ8A6>>6Uib@F2K#=ro z>VB!*sD{3B+dl`g|T1pAUE$6;9=^)-$ z{r(!xiXL(ud`jma*ozsZrAk1lKn@BaOo)z18nIYLJ2&1(W#LkBBad5R0IJq-5?hQ` z>=Uq+?H^TTu|+*@8B3xyV*wIwZINPpRON`3K33Ft&rFmS$WZfnuea{CTyRZ5Yn%-L@IsLm z3es||^bCf}i-5-j=uG1$Dvb`h&(=s9cU`J%*W2glS8M8btQNMLPTUX9I&c%6h_8t$ zm@oqoa~E(l*#Cn<%?G)0&dwH?E?pTq7ynLA_rU;7720}B=oj7W>)Ss;1_E+5qv3Fj zYLTyPZ0y4|Tn?^WU~K^_RGKB0^JNQ)$mtp_4Cg{467}TbadSS=OqPbx))Xdm-tf(L zPo{`AdQrHpb%%1whSrEd_gmvMN4Z3YWgeywAqyB-u}jrH7`YrJOO18Cux!uE%cp|^ zSxBJqvttiSFBkhyB`NS`-`igXgFalMV{8l`11_)6fH~?=v@;u;)&3h&qj}(QJN@5Q zjcG3_3+o8YyIGfO42>f_@o66; z5Ir!y@c#eM)J`uv&_S?saG1el9!iDfSU6&UQ+N&lFaSqSHWPtdgu(sH(#Zev%AK<@ zAf^EDN*adxz~ULMU|rhN#+v}9%FDCDGfAC3Bez`bt037e`Q)sss@zja$)K$M>0@{* z?y?jKR7#Lh)(wH!@mywioQ`^pm-cmu6ZyUkG~A$#n_hAmCIFfz>YiOPG~)1($6@l) ziyt)#tUXYQ&zgtQYi@0d2MN7zN=nM-XOLV$Oxy`R16_T6?cnJ8U$dPs z^(TMlH(f7c|X1~wer2wLk!xkqp@NfvsM1X1i?pqM-S(J zJ_hkZM&{#C(wrDT1?;abJv=WCHTzP9LsL@7i**Zy)yh++2T4_r%In*vFEI$K5MxJ0{F?KVFP+xgiErP^eHTu;Tz=}_MCQA>oF~ubcMQmtCMpj2> zNB|22!4n-Lqy5f|FbgXyGZRxwclS-0G?34c(9|UIPY+G7VzrC*g|1z%ksl$Qmi_yg zz5XaEN>E+CaFk&#ZEcX#O%_xT1F=@-2c`we`wUzwrdxG!^HVN(9xLac52rtEY%B_I zaM7vg1J<1jGxcCs8D3DpqNk@v%x_2M=;#Q;11Qf2LFZL`+MsXqtak!QFsDHHFmJ$p zl-1S!L513m^<;LKP_SAAP`7+1(RADtRf-gbqtSlAy2S5(F&_-$MW6kVGpW0_K?1@I zSx;-c*w|R`tKb{|^q)O68wT=KgL+2=`)4ctf-}E=|2}Nf_lC$3n7)v+uwW4o$h7>= zb_1>Jtbcks)#qmk5-KWDqYltuBI7{NJ&*}?zmNf=gPozu$*?+p+fdjxP zVC|>~CJ%C9wQ@SnC?J%9n@OLh)Lm&fY#JiTT5~qliba5zn3@tyf$AC9GU(M{Gmw=1 zVZi##@!sw)17yw%_}`kuij3P2+P$R<4Bp;St0scQRFO-Apa!Ik>kmzZInh<2N5yq9 zaVyRVNDsby2#TDYNY==1QW1KsYU|T>jb{_dV({OCR!->B7~fo}&m1rRA^~0;bkO&O zu=q~h0h6r7ie@-TX#=?=doGWnj{#iD&O8z~6m0%SEsk6aCb5YacQR0cSqUDV{lnSqGR&OL# zwoS*G3ofBodO2tj1BKrTZvCpCRr0U9oZN*wg5t?1-nxnA5C5m8YR zQc{=!go-gl*~%y9%tytfN=3vT`depuKo*Ag-2KZyp+;yH9er08cBve7$GYGZ6%ehk z6|!=3$6o6KHL#Aj#zOQuxDpf{?zA;0!pIQr{rk@>EDA>3*PEjt!V5_khmHnP%jjuo z(ZNLQ6d+V+Q`bfc$C^#_;6v0&oyM+g79g?Kq6%wrwQqw~Eg>NR zbb<}r^Z&h+f`ZQZ_@T>%AS5bgX1Ohy%_aXzd!p<*EXeUL^Sr=KyqZ-OomH`?S}EG zFG!1%H$pOrnsURQYe(H~kZr@<9oXRll0Xtp#2I@}0kjYWDyab)#PwjkM*Af$@2^J`0*Meqaidk7VFCcLQSVI zTA+Z}afuLM;audH?yyW0%k&N@Y8{khIt$k1pvXS$QJ3KjOf~opq5)v?)&+M^pch0R zxF}8moU^6MgacUfkB`y<2iuIV1Kt6HT4Ln<6Y({-o~x4S7n;5Cmy`+ck7lf5cl%}4 z&4+UPw6s8t1)LuSN4Q3{Sh)jAn(|j1+~-h>IaLMu+%^1>D`R;8MvZsIw`tiI2=;{&dc)J zXs_VjZd)!0_zI#wLg=!?wSG z%gR5Me^_Sq`!zo?8l7H1u-z;)oiyYFS#U|l9)&e0+h?Tg)6fqyMN6N_rZ}K z%saTOCb;iV2+2Yi3S2IrBmM$aC(PW2ef;=QLj)B!vY8d?wA(jb=X(!U$>Ra3C8VXL z1&k*^jpfJiuo~^D@5GS&|Js(NStVCj0WQ-X2<2OV2N_+R{m^mCct(q$ZFuMF9>pO^ z`oifU8RXG^9dv}ds1*(z=DrZAOxo|AzvNUu({f3gzQoFl=9bGrLTi1Y6)+F3gjVLy zbbTB|mz071wsaWj5Af3XxBDFjvEYUnfmTok6waQUID@OAAEbH!2Y)+c02cZJu&aq} zHeDIH2DJ=wmCJw>Jo&#-jdwt?gGx%ocvJ)c8%E&NB`2vV=gJvks-B3X*VM#=qnSmx z>na15pS%>X-iAhtnIlcGyqT6qNO2Yd0IyteIp6_Bi58C)4xHHBxI|T%mM^>Wly>Gu zEqP&9q_UL^UVW3DfqG?YRe0*7AKDgs#Shlw)l9|4_?j{2;Ks}S`ZWqXO@xGn^Yd92 zM>)9oE5`5VhYL(7N65;#yi3$|%e7yx$HgE&3yMm1uGF+F_9~6^$9H5W`xx}~?LN|{ zrnlxys=15YqM<%vqUYb^-Xr!6d&*aQ3SZzr_boBho3PYTWnJD$r^J`yMt$!?c{!a~ zIO+gv9sAi<5NMVGrap&9nMir$O9knj2o(+;c&Xmd`EbX^(K7`XM;p<-<4P$5fN=$s zCUhpv3SE`^9fp77YtZE+&klzIApxDf*ad&x z-cXXH{;WT^Ps0I<;*9OuJlLs+&gG_8r+}#@^s(;OOY+++hw&S4o^IrY29@GZzmRf} zDqBf~zR>X1D@mAOc%wgZIaKYL`k5c|xeRC}fj-4}IZ*FeLGfkHpQw^*Zou?zmPn%? zlnW$}Hlp*u1AFF0xYUxDC`3>iLu1LNUl#);J2uQT_XebQUfqGbh=sP`WPbYquz@cq zECgHv+8$e=Oy4;;K-RDss5-8;GeUyS>0tvXKr`Op`A_SqfdK_<9H?DnHb2(Y*VnH& zJdv6F-}0BdJOsfEk-tPq_`a?)HpIR*=~n7B|4$201!8`l8<)~;eZBHF56*g38=tc;nWOG!&K~~b#6bmSYB1V)E1gAzc)=+_WfQ0QI z6xHh!>bmLmURNU1^-j4aKRrBzZF8rj$53Wxx^IvqT*Kgm>fvIvN<`1GB6kMQW^d}kISc$orEx^f^ zRMnBuE2i@<;ltB0<|X<-73C;Q@1}hHEMG(N)5^g{yx<2!O%xK{Swnyk4VumD+&*^mV6}n$@&qw67!D9;Bd4Q*dW;$9<4vb9hr z!}I$%KR4F`gD!GPO4nK%y<4eM1GZC1|${tu8EfemA#{jm0&2obAtj zLkFZC2C=+HFJ`~Bc0~sTT@S#a>;tTT`*7&juyQ=1Vk-2K*SyI@73e#U(Qp2u&C6%W zc}N=)5uIk|u&VVue{HOk61cd;CCzP*RX$g}7kBAEe@y8OGEQg@!W-n-E#w?P+bQUZ z{R4DjFw4eYpTRXxRP{W9P!TleAU@xl9S?)KtpPxe7RQMOB^@%gRQr{6wrYXjp^C(_ zwbjjP)oxq1>3r%LRO@$5sn098q2L32WpUHjd;5}iv+IUCm!WfAT;lho-nshLrqEAZ zx$wXWt10j~Yd19gQaLJ-X{6H9!#uEnBJVDRswn%71t|f<3t}QmsbT5o`P`9hAR7eC z6JPx9t~PmQFdLS`um#}2{6})Cip3TR(!=T~^78T#@;Mk3+O3TjSLwShbfCroz6c1q z)$^5^&O&+Qo`%s49sSju0A=;WKoeCPxWV7ML|1`YPTkmQ7X~VfA*;4slnkIHrNdp zRRU!bjp(;FrRIE3wPyvt+|7}In!%piMHigW10g%CfBP~3B%s`uJ5NCM4FwmToe|04 zn3H9uXHr8eAIZQ8%jECh!AICvf%$oPFTpGA&tx@DZ1BCAH)v_K-&Ba!EEJ&vg87qq zm__lL9&e6Ez699cLB?SiNQ6PEiwH7d!fh$d`boYTO>|d8*Tz*?fiYZEAS?_!`Nw(F z9}OnkVF`!BjVUcH4Vi~X;R8+!+=nn<4~Ef+_;X;xlIUr|Ndk(g(lJM14?y|V`s0UG z`J)Q!X#uchAtSeh?gjGMK!FgMoZJKATplt>7|g%;c}Ohe{KZrsilED{O+lT_(POED zJ+Pk_AAxQ$pseilwbsj*R4Bk~>m0ric`!DvSpNU^?j4BVfOZY!(T5mc;s723t#v4X z(opgn0hSjwS}cgg52SbRqpPd@^fOK{oa{;Dx#ce*2Wo`@*OpA8)(Uwki2+;~>H7)e z_G<$f=)!JCZ9UJdaFmsk6=2Q^(T{@Urhn+??B2n?lUFM0?m~yb^xmQ9BwNEX1(RTg zhg@uIAN1=T2P-W#!H5aa|FWV=E$2ahvHk?n%t9N9rI8(kum{cZW~DA@it}bI8bC?p zlb<4eGBh|;mH)8PO72=(C5X}$T0VKgoEtVPAJ73+Otqh0pxv;6Xx8P7b~Vy-)>i#%_TvFhF9^DAIB8$F$8EzauU$`Q`{0 zrCbIhs>7>;%4z(yqZKC@jjcV|dMIxn{q~LE2N)YIu;Rn;@jbW>&>AE4IS%XsMc^)w z>3y&g1G>z1`{(vM(kuG^Ff`|)M}2}qAsbfTkGDTtxiV5y6QG$_47ly6U|^u)=3GY$ z(OUC;$4ukPq%Ow%%k4J(ORD#GI4d9Xgv^GbDVYZ?$dVYHyFi(L0 zVap%puIxB=j91^HwA#bTWT2nPQ!gCdyam(IIZ>bh`vO()&B?{ZMI;0jbX>IT>{~gZ z@r|AMniw@`D`wR8gO=qwlU)vjcH2Blh2)xmiDkp{;dw?NUF;Q&rK>kj`rQ zyZh(hgV$%-_qu-#JLPZH>~A_ZU7lKk2BI>yY_ar8vGLBLt)&Qdy(@We-EOqT`5<4F zhS|PImB!jkqhPwh=#34N#r~*^UEYjqX3_UO<&*MV|Ls$<88pNr#*to^?yXAf9mW41 z7GEpFDw8DYSBwtA*7~Sopcpn$tenw0T*dpjs`7>~_q8&uKsO@KrI{ZN#Jc>dQMrUk zl=Sb_@RrC9QvFq^7e~u5N3OTi05$nF%6+4PLh7%fCCiN;nof#X!wG$1XB>II6yY@z z9SS^~oB3BsH!J+)B6XIAplUfpn@G_p`v;z{ zJteD@FdiuB%APvxX!y)W-oDk^x+h0no187ErzaXSHSBis?;mxfEMk0UR2C09R5;b- zT}YOH)UJ```v-udxUZuk1JAzD3QuF6b~P=Dt>#1SLb(frq1w|)Nw7PVg2R3d0-Qkp zXWHV83PvkYX}EkcpNHA#j?`P~9&k-4fJ5aC9 zGrmvJ3Gh?Gc{8mmf}b2hc4qdvyciYFhJt2qh58_@h>5kkHQ!KFKtbraA%VBQACA5V zf46@c)?cav6c7N=fz)Mb=~bK2Bk&YIDb0TqIk&w0BURW9D%-p-jnJOLZV80d^c5NH zp=j1Z#!lhR;C?;e4L*Yr6i%4v_+*#kyq_gLz4dg(h6i&)wDb>5 zDU0Hd21xZw53vIGO3P?yNCvV6@uu5y3izy$l&O;cdZL0EtX}{`d1+(w zVz~xBcfNk7>HE*0p`e8u`eOLx;P4O_38eQo0~tYu&1@=o09*Oamm`iT%30D7P!}Z{ zn^RhbTdY}{TGdkE-ICPJO5}X)Hfb9mdZ-Q~OHTraNyvfwg@9z0`ebQ8hH|1|smFjy z{^!SlLqI?P5<;TV;-o!Yxj*v=75vGKiHpW9^gMxluT@bJqaTlBt$&96^)X{hwLRAc~#EP*zcDMMq_H4U@8&6sPtq+cmSSfkx z-1Gm4S79Fr>+ET?xQ_T;l*l0Ii>7Z?j;!ZiYkuXL;jY!#Nt_LOyPmYAjgzw7juJdBvy7uC7Tp)3>gUER67Y6?1gyf5v4?bl)!Xn2q z7N(kpcW!l@zPnnuAJ}w6&CPue2L}fn-&hZVAD;;$4^ca;uG55mX0n>)BA@econ%d&l||9S6$wKGw0397?{dr)vC zs}#Q+-TOZ|kNJ=_|BC*fWU{`Lwld-Ev%c?b69lpHa;8)2C0nTyN8cy4>Un=ucD*zz zeKU6Y7=5^4Hn6n_30XzDQcq9Mb9HWQtAJ0Hug{NYB#smoheH%k-d&*)HH#Ay>qaNJ zehexvl)WkFBPkOY%c?N|!gmm^cf-h*Jmk*MM8*?-A60YdeLVsD+_k}7@4Z&$nbv@& zS&v+fN>Nc!9vJTIH2l2-f!rFEXrWnIw2&jrg zZ3ipzdTC$U+@K>iJeYgSbhuJhyP^+)%?I&z`=Q6s+WDRjOF8fNeoq-WPXVaExh;m*cqH=~;9P`^ z3%2_ngCnH^Zr6r=lT39Nd#LUZ9lC(SMq8zRT9nHbDL4SbZVFqNdIfKsk#o-M zc|N3!BIctLW#9oL4$x%4+rTww+|j2KzE$Wibe zDKYLZ^an{AfyH}gv99=^G<71fYC__~F*;GbBQ>$BK=mJ^|#E{GCZ^4eZ?Az{4GxKA_emV?ELk=Tu*o;HnZN}joG(r>p#I} zlu4%kGt4PzbOWwqs`G=J6z?hWo?|F#T7)Q7_t&~OKlog=%}rj^7p~g<^ZJy?ohu%X zvb^=%-e$RSv2FUd15A&c9g{nYjc)~osDyUIohJOm{&_wVYaa+OB9jV^-gB2ZN>Ovb z4kL)v^0nF;B~JVu8AqX@7$uN(2nUyzj!sl`bXNFC%ROUD2P_9qX*Q%PiM}UYKRAiI zxt5{U$;96C>oOefPNNs4v>JV$CykBqEycz)lnuB3CK}u`5v4ooc7&JI(b9(HUvy8~ z95wyHr!kjbhS{HacGoZIZ@Q4kteizA;fY84Jbhf3M*E4(Lw}6_R&QW5JF5kb8n2 zcZEl;cz{O35!;z*d~rgu>y*{i(g+^maGQIG@5C*F034>?;MUX-pYliq(*{n%R%8rN zrMN}VW~M=uew*dqO)P9;F(9$i-1l#=>sGn%DWaj3CTKp`-GJ~VQc`)SRD*++ImU29 zf4~51Wz^L+vMz7jKt%@9OFhify#M!;2m%dc9u>~2g@txQZpza}jk)MJB78>+lIrk2 z89KZ&aEcfsEnE@ImcHvo@m0kklB?Gbx!WGQ?9(CBUYC_AQ_WR>6NDv^rwT?KMiA-) zJu>j-H2nM|piqYH{D$!3q#!Obb zH6iLm5rppA^^WW$WlHBa_4V}=VBQ%%m4S*%j9hc~!S=PCg1fOzk@RqXGqHDOQ*kNQ zU(Ba0{z+MpP$(_2@Zn@ntjG%mv=y;OZS{}EtV6(U_!>Y7BK;Cvo!+N{?%-nadN>ak z2{*DXy`$i0tvyd0&i2L^ZuPRayBS4HN!R#r@cwoXLV;IFdXV8+O5*I8`b@r!#7>1q zEWfR1245zPf+^O{nj$q+mTfS6YtWjlPDK@JQH|qkZ&E9vL7iiWv&c{f2rp3)DL46kf=OBFDGX+-ic`7URu*MO$l57;jo5jUO-?*O^LeK6|{W zCf7Y(j$uvq^!#x4(ZjNDmFt4%dp`qp&H~^#lfda?IGB3_A2_t~{l#lRS2BKP+$Fl{ zjKvdS5a#(WOx=SM1NZ5>FAg?xTN*p6xxIlw^mPOaT?)Z1JtY)3GR|OX<>A^^hI&Y4 z`cXPSSUjv6MR`=R+B!N&njt(fgL(cxAb>N4BpOMB^WZx2_QlCXR=sm9+=~uV&czZH zgQ$;i+pm{-r89A?fH!Ua!xtd%K@o6O4}Fy0_W@`8@qI}eAwk8q#u3>MZ11@Bxsw?%^#U#pGv}Ee6Yrcs5ar&x%!oib|u0+ zD)=f^wAt8^KX1Ubt4UGf$p|Jl3}Kuk(kgp7y2I!U;^9Oq6aElP3=;Wl!u|ZdU%kQ2 z=(?E-2BGDqy#-%Cwle|%S3eRCO7fJrRMmVnP6*HjE3e*kaX+m}i;=V-EwQ=7y>3i{ z=R`W8AtA7Y6F@bRoSa;6&jvi3D}Is+IQ}_tdQbEJuB?})ridOGs$W_WXTBTMZe>Ly zcZ0)4e#=!y#t~5C1#4Bj#s$32tGFyNK7MX~Ui{rV?pkKtc+tLH_fHVQ^OfQ~Vj2+| zdJE8Fa5xPC5eZe?&$5aNu&E$|q98c<2F!!>B=h3~Nkbvx-U+ADjqBI*j9%fINb$#O z)f;J6qtgW6Au02DCEC!tu0C!4=*{g^azx=-#wtAni@>h=?NB2!r#N8+FH=IgJNGZHMZnQGl~ z4KA`|DV3Exh@(0@Mk$&|HC#~`|BMAxIVvJT46NZ?U0ne?c?s2np5A@fVzdlz$qwE6 z3zo>Rz2$#2{E( zc~8J0fYroj5=!Liens0?p2lF#M9%o<`?va}Dt$V<#kuJegP{lZ@GrJgt|Ie7MZw#w ztZ)()%HK!MdgBjHe@REtD%!i-K0WQJ3(#EcLiV8R8!8GbY5UD_wBe>s`HhNyUwkjF ziAhfpJg`#ZAgQvo`BqH(7cOWs08Z6Y{lF0m$w>usNHMzBDo4v=1xeQ)6C`a8gib%; zA6Hp?l9S>=Tx*0JaIc8@IEii^867%t@Tn##Ei8+?>;h*Ez+=*SJq~aI zqhs9knebC%BU}W_D`>@M<9F=g>^FtGRPUby+O(*s?qDDxOk-kf#RsWSuYwfR3@$qm znJFe&F%3p%GC4<~3W1&&#t?nAKnYLp4}5$S#Bn6(3vX0iUFWK=TcY!~U7SN^KzgxC z+X{c?Dt%Q{XIUuOqI$bYT(WhJQK)mftazG~_Lj_tVtv_X&(gEAG4j?FJM=09OoZtMeP*e z%Yhm5-Qc!~zb{UhQhQEb!v63M>YzX!-r;Z53B|c}jS}vdr+;F%VhBvse|L;`lk8Zl z!bMG%qoTNYc`E|SJE*j*yY+kiK#bo=nx)(4DCfU-HNBF&m5w=3n7TcKhPAiSHs_TC zYib^&Rfo~ za3pZ@xU$gE3;+BzV{$&PE;c(j|L|17P5fJ^Ci?aBtM9PpAqPmws-s-!j_HUpk)B&( zJ!X)n0$OAcgs(MydYmR5?NEg4dUYd}FUdjSNm8Un+I5b028;ggex zB_&Nh?ayH@r~zaK3y0!dwBwxf2%FT_2|#FMs2y$t%`+7>u{nh$8+>QX|3MU&7h1Zy zh`1RbE;tf_^Z?6|fw3{Ky}m0d5N?~o|31~^k%0en^4F_@>T#C}^vEC?NI!V|Fce_6 znwpw{Y&m>{9+73s5Z}=r-aL5}u)@R4(YNfm`@s57S|9Xg4|#bZsfiznw?jC!i39S9 zuuJt#b~3LECn$DqyY{!%PY#E`$Wl!;u}?!$5NmTd+ z&J`qKCdJ)N z(b~a$!LK6^8@e)OC9PH%BP z2$7&P&j6};!};Lg@!L5RfGdrDgb=i~Nk*KFlYR%ye!u8dGT2+Hvw9-UH%Nc%|E}@L z9$@cnA0_ZE3JD+Kpy(wwsBXDnytO*L1I4w9me$FXCx>5qCN&?uug;;H<|M~)nRD?v z$L_2#I5;EmRcD$z-`gG%zrwMWeqQ9w`ui;#dhD|<=s%zcaoO|s;sQlD)*Mg^4Of?E zUM>x}{?BXm43>X>1Nf0B-1y~7F^Erw)Ng7q19$}X>Ly_P3XXTXN(5{}_riq$2Y-R* z{Gx4W!MfUd8n*B5(`I6VyUwc4%bI^0T>e(ryn_k#-RiCX*ZlVb%nJzrsjplqS-x5~ zY`eADX3??I7ps851hwHw(v(#>tAcP~yxxfeh%t=xi}92iUJn}1b&^EY((f1mwA#7L zSt15j;9`O#UrGaxbM|eN(f_*|3!V+RG~3{h+>W@B_GLg*_&)Z~vTx8V|KN{VGJ75q z4O4<0PeYdyv8C(l$WtekhEh{g!=Euc(bPPyy?7A-H+ED^%zMl7jEehJ0qH4eZ$+Jn z=5tv!pIm`p1;Jh+r4nq^zxWP}Lxdk8hd~dNt{~*40IvsOGtJ}nsTusgi8FBAM#DM2 zP*&{wH2NEXkaODSqFr1THKtc4$vT6PD?26M0G(Uh=JI|Uw?nz zS`&?~HD4YMqDV_yo*RQQ6zxbdaROi>B~M zSZiUQ;xEI1Uwv_6Cq_C@{*Zs@ew!_xyjqh1V#dq!hPrM?!tpw6I+}GMqP! z<=v($Gu-jU=w=fOJ5LAzLC2#Ogy&lYEw&H5z2rRGSJpOm6V_>9y2BJ!@*3KWAe7M^0w0{2% znyTSK&5sZjf;20jT73%O;T;iSmY{kiW9>p}1AUR@zF>OytBYe4-or5J(;=&)X zOQG@F^Ld}szTh9@V^%M^+99tq_?9RRYHSFc>9+9B5P&OoYY{39)u=cfYRf9awBHC8 zCH+Yetn)wZaik}s-HO~E{^nuP}kfUE09)$xk{9mP($QkI+0XgVJ+n|nV0OrGYV67k#C5YXV-!&Y_6&WtM94L}?#z!3YFVFwEUmT8c zgF_!Ipuuu8CGcwlAQobV%Ag2o|44Z?<<>fcjFq}y{#$K;GUmRp>pezB#u$0}`T2Ql z63*;jEU35tBZKe3|UbtG?=KLx5$MhX?0SLb7(%iR$%Ep1J z;nUs!{hWCD!S6##dC)KMe{C!yLXWP@)}FC%XG7w#oTl z&BUfUyYFXd{kE>IV31WczZJcmNMEx)hRKucMfu%fhXm)AfW+0bm@b%1-_S&yiZkN z!pzM?P}7UNpE1qd7Y+vynOBBQ)w7q?7vIKiq|x}=n9+u~t)q0A&swe4wr2Th)%Ae#!Ks7)PLb&gc?bZqpiuFVjRNO0l>TXk2l+{_jHHF_M za+uizuR3!Sc5uJgK0fX%&G{XnK3>CfP0XOA>5f6w^}(NCUw%UaFLrS_gd8ch-kNg~ zbGa#nlvCRMi^HjLnwOc<4J+cL)loK(fIln>G;v4r3rG?>q=-`sEO4Kh)-3+vyN=IF z6k(}!FMK9%Vg*ZpU{cilt7n4ov z3resg^m>Rt+QhTd(x%gpo}Opm7||6${iJ~W3VH|*j}N4oSy{iquoMLuyXefbb8HTP zuVa4Ehlw#GITK{(oyaHFnuLe?-yff5{IIT*a z1k?#~FiBp`;9yblY|x+t2M0eE5ct*X4FW(ts^nq>U>A95Aqmtf$Uq&Z7iOuz-xd9$sot=pA0O$gBc0$X$ zp$?GQ0s6N289R*Lz@maL7zT8Bs=0?uI!(u5zYzlWiAuer6=L=SpDe4W$N(8KARmR$ zX(ohcQdCsTi?J|#{BrSaUn!aFc)m&J&znd(`6y)>pf~qLJ(D5x1ez>gmHaA?p>aDV zN?j4PK#9-R#}J1HE3zZ5Y6bAsJc^IB92_e%wLHnXlP?_Djvl z83o6)1{2Ds`1m}+PIC7z4y7XYy#V;YERPr+4ed4yW0Td>)-Vrmod&E!hrcY4Cir7^ zmJ*>6GdXZ8>^XCrH@lZ#h@enyiZl7>%2-&y6HbUS7rlyi%#uI59VfL2gMjp5YAvFQ$G>r@meL#uA5S^hS?6S@TfFXD` z0h8|jZ#fP|j%gxgfxJaJgl9>-VRLgYf!sQ1PHE`?$OZa}%B$3HIp`!Mvt55^=0lC6 z@x>z{!yXX63N?--P_n_VTTl=9TWSm!2}Bcpg%e|p@Coo6KYsj}2uVgmOE7fN>qt+`6q!%~MoB*(l3+IDSi?F%ejm}F45VgorjP<}y>F9*xv_2Eo^4KG=U zYnRiz5L!Dhzxutilu>I;)<(o_~;XSd-`*7TX*dO z=gF|!>f^H~l=r@>6eW`m9&dL0H*w!vW%zqWv{9sC%xcyqaH=J6x-hdZoJ@K!La3~o zAM+<|U0mGsevss_l^~Yj$0OO^t-%q#`ER{`@6!yzRjAFN1A4dq%OAuV;NT2{l$ikS zfd&dkQ*%uI5fr|D06)=aGVN_}C)BTcish&*0D7K?eOfg!&H-h>)W{3yD(;A09N@!D z2AY_XMF4zbsoyvwXxXxoL*hT-4@wK17z&&_Mn;Rk5ZwHYlXm?OxU+*4e3h+alw1u* z>cbg+q}c!!BQu1V(cu{z>5};u#bo|z>#!fr+Kj;`)*fxW3apmBBl-gxuXyl=_4oHj z+y_BD|Ge;jnCd-}C%27@)aNXZ#;9*g)sil}XLZTNM>l z$ovWGwMRpNM7~-Sgk}MPQ89UW`zPi9UtiC-`}+DmcHX5r-kFtwu_{j`MF_ zHj{&|1~@H-&HZHQ7+4?0kXm}B$&s&X%vo*fL-aai|`HmyHga}z+ zj9_4+ z*{b{^p$VhiJ43Fmet&Holuo6O4D;=tKm`rXXHA1^I2B%SnXQ#HEMA7u5=s4;?8730 zVEV_W2iZTqRO(%988bYKPxmN+E&w#KiSWcSo-;9VaFo7cd}zP&3=EcfXS9Qzs`H6; z1nfNefP zt@EB1MC|`*zSpLWl5je(p)`N1T^BS>aVm zASQz&ssFoR2T-cFp%7VstU08p2T2>7B~M%VVn_VwZh8fkA1ElDomXody~@HVfQa`m zQmgOn{{2yetCZ$b-d5+meNII2c3M{Rj}5wrRb*ZY-XP*Cne#NxXmcj2L{)JgTC?hp z>{RS4Uv(ti-SyzU@{XjH*#`q7%{ryCfB$evbvy{ShiXnhi*T)(YH)D1y33U5RSt3d z_<+l=`I}N@-Jy2lqV*I|>p-!XtK9r=eAL=so|4&ph zh?}}UOqZ}Q4J>whswPhlt0aa{L?V+hM|z7ldrBDT8l?#;V2na%8#*Mso&0)PR;E~ zH#s>viSpo@V(x6XTGG?1e}2M*>V5h5|0C)xpt4%Gw&4d+P(oBnKm-Iy32AAhJ4G7l zkS+-cQ9z^xq@_zrl$4T?lrCxMl9KLkF86!>-*Lv-WAEW0)^o3U&w0%&HlEEa>ntP% zRfO3CEcs`(JZCAEI5KAbtJ6DNS&2u8M(8G!N=iyl8G($OyD~(mHqHm^ z+xK_8v0#b-H!^?#WvZ?D!5AMDR-gygwbYN44v92nrun8Si`^gDDXY@aQJVgIljN1s zsmc>Z7TY_LFSl%QL zo05q+m4+2p5526cVQ5-NGX1$PkSdGyYY$;@^N@{A1d27h&HvE~L7thW%E0h4+P5Tz z1D1u&-5G)?OBLcOua^%cMuUERt4Pm&O5E7c5!0|~j~ofGVo-Zt~aja6otTT8ea(PL>beE9GI8KZ%M01nKOg~wjYhucDauJSa; ze-~xz>0lbbk+%WEiXp5P7!Q%T&#jbPZ0#VQXo6!C)4_Th-%w}d`{kt;bc>e|UB$gDWLG-#>C%+Yk&t7QZ?Joi{I;ERhuxDM|;=wJkFHpL0uPEcj zHX;`UijT)jhmQkH{28iwpY3!(lqZG4+w+A0TMAXHT4f_ z-wD?Jzr`Hk!UWuTK|))RgdP&BAMKHX4Fw!tiAZzX}4 zGsD)(q$Pyp6r#{!qjh=kaX?WK3$($ez!M`BXN7(N4&*P$yo{n%fD|6F@oZIwvf;}b z-JvT2+c&PnA3Un6L5JVidg3ENkca)wjqQf&hhGXLHdkIj6VqQFKQ`P_wT(LUaRV3J zotOKg<`6&o`}Y9Mx!6{bDkCCih+=Go)K_ z7j@b1lS#MLS!(hQBX4XkkB4K3nX8L~C3{>{Cx67v7ycoYOflV_j)x5Io0Kelh=N=! z1RcfT$`*NQC7XZXJ^O3+gZLF|%Gp1R%6S$5mI+NVX{g3R&-8gy7Zz>M@?ICQoXMbD z(qy1x6~w~N;-Ad z)&LWnUY*4CvFaCgh;BfN!t1iHU3f9$kK%@w!Yi&W<55I}BC+jK_FF5jG}AkiqvRO6 z6+}nAzX2H5$Y>3rl2DzPDMu%_&DfF74!L0M@9_Z!Oas@Q)(f8@1d;wBj7Xr8d;Mr3^; ztIsC{>oK%sgj}@4RXy(sOKN;#8K$i%CH{x_93Je%Ue;$V?$Fn`6(r8IHC$|PQH;a- zKgtB9@+%m*9>U%PoU9qGiGzQ<{b5AIcU($Q@%8@z3k3|8h1IYifH^?)4<6iFwjlTwk{NlQPr&>NO@B+ZX$n8;<}o6z%Cv`a64vPf6hWc9soPwlq4f zIaol01t-35c}B%dy<~Fj=zdcnA;6Qzk{?RXeiMg1u<-ksc15s`HxMcobYX9={}P$c z+Dlb6Gn$}a7)>! za%OhmpSI%akC)ILM{rR z1zx_OIElLD5C9`#FDxDI3b^@-kD%1Xm&Tj5c!vRiKmm~shJnPuB}dq2iHNTq49|_7 z>e(0^EK>7UrQ;*b9N%Buim;bzh7Z7p?5==v{f*wkM^A&L-)I)Rmd%>q-I@O2Y<8yMP^|hL7*h!#AfDr~#oe3`M|JO}j zVAeQhWI^l-VrU^NyO1S|l%@avTwnu=5iWH679wRMV7~%J+8fN%8KNnpgSLA@e8*PU zmm)fY$PbqE~Q<1T)lA#o|AH7kFNkbq8|&#w;26b|J6rdaRZnez9)` zs>ZwEcPRRwvThqy$S+w#kBP3PV?C*DWU}%`Rlhs+M~U-C=i4Zz97$j;N2S~iwG8Fc ze8lz1Re;G{Sl;Hjntsyjk}P~UC-7g>7d(agy#HJm(G$lV^#1{5u{U*T{`*pLIRVnn zyZP%yOk6)Erm&U!QhThCnZptnFNt(N>%`oAYlE8*-Y{5j&W`v{-79$ma$ppk0+jZ3 z1D&kp2Ypffa3bN0jFwvBo0^(JI$%abELCibzyTZdZm6rkL`_yJsB$v8W)yTc_1e;IXw5R0YDT3nbW<<@bahWBoM`^51Y5_z5H7B*t=<3s8HwNXp8?)%{p&Lt z3X-@La8Dtsp2n7m6}rF8q_>63kC7+kROE){`jm)&APSK?a-)HEQ0Xxf35n*Ct}c+ z`+iH+1Oh0;%6?iW!>>g6;_imrI>P;M!U=t&JsH2=|SUj$Uq;DN0FPYg_#m=csT(P(XE>|MS-U#k~KS1*dcMm3H_{07%y(B5Ro3b zRRyUGbOezJ!;}jfS{+zl8P}I47t}=7$rGcZnqZJpfTj}Zq}w{K@rS!2JaLjOry=}& z^*49pu83%<>>ID~69NesIz^SZJ>SeNe2AHUPekae*5nN{X3JptbvR?`Nr9OX2I&QC z*q~`qWuOCaA&k{V3|LO2JhneUNnJJ&6C1m8ezIw7XAlKgE|RfPq+8VpCy7MZTfk*? za3);%Ja=CJ2x`cm8l?Gn{XJg_0(6w=;RkfLd1z5bQ{R32@|3_wZ#PB;1_*c9eN=np z{5e?k%E|_vS$+Q>7eJPt$#eU4^>-i4P}3;ctXmrlmk19zrn!)a5+1v|U|2I`+xfQk zF)*k(Nh%2d#SyV#?p>KXyOW@kGXHkKq*>2h_17PUj(1<+O_ulv#cwb7Q4_pd<)G(+ z-r)vNQ2?nT3L6@aAklebyf6_bb&U!Iq5v}3EI}&geO9jbzXem&qN73zN=4SvbO;l0 zMqzOK>V4+Ha(a3luJvK8V$%L}7RR~oI3jwv^3%WGeQ6!dUK+t|hPf8?xBngm@${|8 zSfWtbtU!`ax1zJ1p>97cCk+cbo0CCmQ}=pcX)I>E=65)vm|`q-)VI{w?5L!|Do z67_@*NwmTBdYjw&Hj+_$JjI%)l2gcy&CT`ql1eN$vbwwP&d}B=haAeK_P~c_4pKB4 zBP0;sD>K_A1}dp%#=0eOnTunCuu`L>^aW}Qk`4uOq`zN`PN(!6p~=2F#dRg-v0|+v zepyLu?EK9y2TVZFy(I3uI(QSH7(^=%EPSi4-+GER)b<`GjHzfuh<51tz$HihVL2U| zztKjJT!3}?>-X<(f&99yyE_|bJz&)X?MmLrw(*1x4(LdfL?s^_uoO^(Zt9!!N+U1> zfV_K*vsDj)D>9ar46wBZNb-V9R!*+$z#h4DUin~xIYmt80-^VCpZhvht%mr$n?S(O zn_P`0I-jH`zyhzA=b@s%yTsCzE$Wwpe#~B+PJa@S0O}3&ER`&m8B^66A+N3Ytd4eT zF|8`6X8GG8?7OqJ&cTQx;PP{1gkjCi;ly?I_Ov@o-7 z`~<6}FE)i>9-8vTmKKaYKt^?}lCxDgkLSn423)+@I8&^(PgVsmg>mz?8fR zn6#r1*|Kh2vb620Am|ccdoe4zj0TfA zJ!`ku#wG(R^DWeZ=zWfZ3qgrHZhbu?>a^p}O1u zWLBmoEqW6A`Z#Y7&rhBpw)t=$q1|JjE&5dJPEns3kuWyXXNyC`Rm;E(7UL!q(A=N_ zmfXyh|(Jb3~~&S}8$?X5iRzRK^TJhd;=S_dGNUr+(1Dr}5D*jl0Q>X> zc(;#Cjre=M`#u2Bd`~qCvT+6~9N^UHd%0be-0o6LhwU9$*G5kWBZ+-xC&s*SH0__- zRHHP7x{HS1x+wwJmXa8_nA@t72jX`&TG}D=KA}(`BLfW!#FYdK_oa6~)!}_omjyy0 zs?u{KP8>Ofz%WxK6FT*c-=UgMDF93WM!Mwuj}!#k z$W@=ul2S>^Cn{pL^2nc)tqGE*Sv)&P(R7DFSv4uK5jYDdI5dC~t0s}|Nx|4PF@LpD z(MwLZ_j-5HhD1udXx!K^tswUeP|9fG;-TOf3V7UjY$>{E+@ov1@0sW)bs!^MDQ9R% zh4>*rB+Y$`B@>wO?}85IADPc{skD{V+uBm4zOMM2o$?J>abu{149yQn{Tl}3L0+|C z&IxYHUT4DRHG6+}Bin+79ia7sJSIev4N&w$(+&c#Phv{$0hHZgZ}kakwUk6}CE>CN zO*$|GX{H3^#l^28dpMZCs(%A}B*32F{yyzQ@{Io{81el+ z0GD*Of*SFAtDPBc5CUjej12K)FKkgTFt^dnvDvol!C5rbNEY095sd*xgr=Iprdyd}YFZ+R4C4bU=4tuvB6|wNn?rlUa>Pp-Y#2;Af${ z1GR&wvbe5@3BHzu$UZrSnYYg!^7}-!lR6%on`fu^981XuHA_El|8)AeBcQf*a4>?I zmpoRd!BTm`ng4BrbLHr6n)z@BC%cqdoLJ5^oi=$Ks>6A!^I!95%WP#uQjk|yk~T)wU#TX_HbOE}R1GyzGJ59evj%5j&EHbe`^b!I9~nD2SLNL5d~$Ds^F zpI7s5u@|P9#GE)K9)a;iU#cj2sWvlK*|ieUz#v?{5C>dOXFg{C(RSZxX6;W5v);=q zQn)juF^R>Ql)=lL!f0Dt`Y6f)^8s!O-W1QL`;K!JS@T&xBHT_mk4Uzaro_swnci3B z;6l$z7*p^tw9tt9GjGqpw11Ntn?K+I*7xQPm5Zb-F(-ZZH9C2lRj0MXCEd{jA=glS zK(dm*F$YreDBp71qHgT5ODp9yxZsPIR~&x*St^TbBLWsT<9793aAQR!{MAi&-+U}2>>=CIRg*DWu220m%Qbr#M!>_p=psI;~c58mlK_# zInOPpb<}A4%{CLq2Wy;7RZVWXd`h!L7q;-FTR}JolsilyBQC&V=D`cagFmAg7o$~Y zak9d43@UXKf3;;i8gWsGehOHYaUkP@?SMFo&-pM5C=?O9DF{GH9ayn>>@)r;i}Y=e927sDnD;1~2+mGScOvcWV3yA@?B zwFj`>hOhQ)rT0$GFg0U}I&H=fo08G%>obO@ zfE@J8GX{KNkUD@QRr`fK_}*4Sgv+N$|5TFlyv6SFsQ@;rxr%pAqFh@Z zYo+TUK90I%bPR!`@Gj1QSkH1R2%W#!r_n)Fcd@-b(z?TH00;=^*hCM2(4P6%x-*BD zlT3O!elMD6!6=opF|SKHX*~S?!}-f3K@Gg+e^Xmay%yNtC+^30b7wK3qzMmAR8T}^DJEaDe_%K|+9=5e z?^v#HyI1|*7?=q3?xQqg z%GwASMXaO?HS&=SBt2U^=am2tw6 zsZE4R$(KyzIU|ew)RF7vGCBpJ%|f*3{HwgNl6i z(ErVwWgqT>Otk4Pza*c>f9>uR9fejOkG2#7H=kUj(+ z7>^AY!L5)D6jBfoBnr>wV!_zq#S3$wugIqeB?t4<-de4F1+{`Is#7LxcVVWM>3dXw z9pUQt4iiqOF}sIk&6m$Fi2&8p4Q%Itf0zbJeuyZez{U<{907+8#BmyIIe=hEj&8aq z%H^-kn4B@N0=jyMBIU>!=fIHWXYvKB{a#~J?-poH*e5VqshDXa-u#}^9C@zbG2sF) z|4T-TtB&aR$y;qQ4P)EIk1oESMX1eZN*bE2$v+S8v9~(lYoA#{A<>iOg zeO7UF+J(`}+s?+E_|F+CJ$4Qq-(i1cW6zgyb-b+NEvy`!_zrS&0Ez%ga|C<2O7obM^#PcOzqZ7JEo`w4p&Z=V&%AYNuLz^;w_b&hKI zGk+Dz=zwt8x6&vwDPf5`?yROtJBwb2OYlgSooS@>n>Sl65ta}FwgHy&)O`vOpus^x z=+*F-aI0&A^ycoO;IG1F)AuUZHU3!9C_2{weluzbL(^#Y)6}0T2wOv2yQ&d%d~D~S5PV2S##Dd z&AQ)4Xk~j^9<4*Ckv3ons24SK|HeSGfT#dqIgBO1xJbnVju(R89|G~!(MEHjm zHtbkV?-`gGC|AOGP%O!GY06Jj`1NQr9Kv5nUll6yp|D=7D0a?usU1enqQ-%;x84|z zTH-M;;&N}@Yls4&ptNFGbaF!M&A^f@f?glK&nKGR9(PbzwD7L-)uc|8-=vn@f>oHY z>HXwskmVz6BYW2Ywr>if3T^FNZMe~K+WZb4UIv^JRkstyo^1}tE}{!(Zx+m*o@Ts2-g;1Nx zZoG>;MTA!kMRm(03FmZd#>Wi=r3DpZ6rAc99Z!gP04mbLQi_jc&OjP>N&3YdyMnc{ z;c$l)fom00UwLcmSV57PW>D`9L2~Mzig1E1i_&i%1>gT)v8(?L_dE>)!!`eoxK|V@ zIdg{!gO+3A3AlWHnM`WCl#788DlS>i8ym07OEWu;qNuyoG_*sq z>6cV?9x_AzG#B&&gW;gM%mkV(&?1hfuWtwqSJ)ZANQEK2r(LZ$)y|~mBc3yG>6w21 z@tMhKbrerz4v>tp?4NP9a}*KKO85;;Wd;)xL;3r{OB+yyo!v;R8j3& zlvW66f3Fr3AvD4ATNL`E<29v(mHSdjORKLQEti_oOm1h>v*Jn}7%sf7R(i-@ED1ZKh&`5gM;Zy%>y*^&uLP`t# z@4^Ax8IN_!b=)81n7vjcY@r{dbxtWK_V0KD?8eB%L~LJh`bWpWNu^|3QTbi|{s@kz z$Fm}^ei8*+xuC0f=1@(225!axftVj8;|hkZ?9f0dt43!`@ALX<$3$1h?h407N8bS8 z1!O(T;Nl9t01e~gC-EoXdW9&XqX|qL%)ErZL^XBV^z^)KJ;@gZ_>2SYP3RXfMSeGg z(=+`1FnmPMs}{&qR z5Z4=%iJrzI)GuacZg?@0IB!nd4=X{*@Vi~n3~F0DJI0`9K0G;zijPIkIJKE zIo>4c7TUEOn6GT}NaH*T>iG3Ofkm&)ojxWRG6k~7oOXC~-QlCMYJGxGw~&5l{_T!{ zoBH2N-?P0vaTIJmy-fB8<(~Cw#(?DtuQxt4@IQRrg>dxUuFR3T06(4L7vM#3N*lYo zuSa}&BUW2KJCfB^>9kLV`lILhw7L$O2{e0{R$+7{fxrOp*+awyAcaaAs|nE135axO zzN7ObIbNsY$FmUTHP|+axVr8;rBM94U&MW%BG=4i(L*u-PE~YuaeU=+f}VtNaDM%f zb|eDR5+uD03)h1UAdn6!T~3`&4{F4`&F)dgm`VqIYYyU?Y?H2(fVT-rM`&$bVjUVf z%ZCyNeg}ifNSF&>a> z-yk880gC|#C#R;?)|@deSZKTgr56w;xa(OgJKDj^*KR_|32@n_{p;EeL(=Z|EV$2WX@H&lef z%6kg9`+h*Q0J!WJt@QeNQ+!+uE%cW^<)#QXZ5Vtm=m(D-E(y*5cBrhGp z_*d#?bMPgQOnVT1AhQ&>lax4ENhRLQ7s+Y*IZP5?kWie$PO=#Or9(|s^`pD>zltJ2 zb*bk6I%ywWAV8oT{jtP2#;sZtG-VX>K3-o12dHfj{y~c-)9k;=yQQMH-%|)|xerO2 z1EJ9IBIgyPn(69{7j@`)l0fl;MMx^#VZgpY7qA*6>>4_wSe4@z$R7IO2$wyyHJoca zu~fmuvtuV-cXZr)OE)obbUc#brM=<|#~6{3)PXT3_wsgL9DRt zKS#afu9w_uABrZB-n5I)e(Q;LvZXyqsGxG)3jev)H|Mk;saI;s@7|J1P`&4sFIXN;Z(03Q zBwM#{g>>;A(($7uf>xMgFJOa^Z_pg5=a0OB0M_aFt>pI^AR|^0Q`r%I-pbL@YuD0 zJrZJ5z#bpc%dz(8$duKnn4E@shUh>{X|CGo)>1tgx=3u$xN@TA%%CelGOaZ=Q;VTx-|hzuBr5eG<_!Ic@ecz(oIS{+5koLG#aHt(4j`XKqIrDG?6{+tlxQ z>(VgPWy0yhN$`oJ3cj?=zT&AL|4qsuyz*?>1@3o3Jbl`Xvs_jc(s)Gtf?DMyQ(ixL zl4I#}*0VPrjsZ?2p^5dLj)o_fp>)GIYxw*7D*}@#@NYVJlce2w);pl7qtyq}w+`9h zZSA4>w%}>w%`r^qA*H9up%_2?)`K}CG*SJ9I9|RRToVvXN!#Y=cm1o!UBK72n69fm z*X*G96awxDq%pF4%T5^?@IAM7bUq0T|HjYn{a~3p;^CI%;!$|ltJ}!P2=QJ6;w7B; zTOQh<#wR?7RiY&qn|1j`JSO&J4^-d)wq46Jv#nsLw&ZdqDI;~wDCNaNJ(qf+-oo|S z*+Nv`LpNsWY9?vZqr4Ze3-X$|C_*NxnRb&>?ZK9*5&Y0lk;NTEC+f_rR*8;7tTU%R{RI>u@H2#IB`0OpR5?@HBk49w=AoaJ{;P(`OGN^mZuRPKX!u)D&+J^rqN$KQAkr} z12qJw`W`p2L{+WTC+64xl(0=rcQ{x%#>N<9$E{E*ygxrk42Qb(rHe||(qlE6p&D-X z_ucIwBpj8F3s}e%4Ol`M*+J$|gc5YFEar8jA|vh9x#KS*&c7zYD<3>QP07QIp|f_GY7ME>qy z&oomn4%aZ~&;d4tv_I9E;1mFtI>jOM3^e!Py$B75!7GJY?&I+>3Z@RZCi5NX(ySja zg~(7?eCn8^)n?5HaVVlAM*I`yX#k{*TgR)bJ)vy^9MYs!m86scfe8UMm!LFuXBCFr<3LPf~Mr-km zFEK{zyNxw@Dt$@ok`HO?QfO`KjR5CNXeD7_m;>Pg{ zx%my~(B1`OU;TA~hIS$>VrdeVt!!087u9Zga2$(V`MZ^rvv%i-JLfyQXxsZ4Bls^J zxkh~SLMB8IAvSb^Mn7*eJR>D0mI99n($IjX23|2Rh~4s9pd+pQOB7khUwJxE4HZp{ zIhMtuQ&uLZMp|?q-Gu#7VSu}l*_y85q_z!1P=l&k4FKap+BqSJXD$Rw{e1on1zkqq zyg&%;>4e$&p&6SQ_uj+ep|_1mChWItSC+m$pFl4xS7%H^`!)Dn&Ztdh*6t2+4q5c3 zXh8NrbD3f(H;2FLxTmQ|XUn=}#7Z8y=nmRFxjx*YFX+)dpX8nSVT38@GC;g3H?!0Ku-Ap8@B{$`HUd zb}*0u5^Dw??IkeVNCd3R>7bi}X7VVbQE1Bh#0Ct7dtmqp`d0e2168b{)1h}Ui2{}S zN&7Y-0V?^7#(4WmdoZD*NT?+#8GR;(*p$`8aIIlW$<78jc!@~#v>0Rzee8E$C^>TA zBO7y&_D)p42*)6&i@4(+Ia|XiZ5Z&PvIUjbSQ=2+|-KN>?#9dvuzCVY zD-*yEoY#g!>%6iGdZEGkfS?rs58JAFqn-_YdJ@w;0^Xpu({)|&_TA>RxB*enh}dRj zAjfH;gAjW34(L&Hbt+h{HMCxPv?t-esKsYP@^rtOhKV5>gk&*H^(w{sg1(L@X+C0|xKtT>1!=}#lOL=#7J#8d^E7C2YG zxIC`FI9ItBub>dif`DV!jqA;Rzclc2{aj|uWJ`Vl^!P-3YY9vk+ho^fnAo5U01&3E zs(MMJTIIR>SupR^ucV&bp@*=53lyrvPGxxi#RFHpg)l7Z=sTTg4=9omP=cZIB$vjo zHWe#DJfi3gTUvpw6;YO$3zoLzj$r|`?~)nf&~MKXJm6r})h zk9Ad;Y3WmX2-Y+J=`IZaUR*@nDe_*huAsLh%nEEIO}N4OGSbK!FOvY-M#YVCr!MqnMSmc${~Nq9aWwZFR;AAIhk{;a=V74(Q3W&q zNjP1gG1(K|xj_4e738!#e={#-Cp=f_jAf+*`7D4NwV%0wkEg1voLcY4dKD!hAu+!o z!?gvdK{Lhg3twnQko5Y9PLX_cbK^L5V(mCNgUr`XzXQeJGK-`sZ^26cA()F2e;EcF zWB4@KxQh<`_fmkofmlo<{)TYb9xvJ0*u)EZasy%`R;W=QQFi9@Au{rnMn0sC22C?u zf&&iiQ$Qk*ovOC>JD_ABj*p<-VD+%{sYa|Dp@UbKTx`RMhWa>QJ2-}=6|?L-AyA$~ zR?phhSac12(Zgvg>R2-_F)|@RJB?FGLxTt;{R`EbRz$Mm!)y7QJG zj0@l|+t{CWMT{8p-qT#hpL)@;Es;MIpmV}Zg*LR*&4tPlJ?s4TtnF#QW_OUqyT7~+ zvzI~DJpJezglt*i@*iy;Wq=6De5eM^L)YWn~LctDQd{l7||^>#yj-FIUGB*U{2)*!nFB;=(60T;Ql+1OlHyt6wp7UzLzd+gF&2$Ot4j zeV)~S-1mqf^7LCN3BVr4!*p`59FoIQr-{~H*ZB&0l4jP^0e!LSd2y}A%F*#x5P=O^ zanaJoa8BT#XCT>wv9ZL6AhJ*HCO}#rqv-pPo%5}J3r>Vw)Q?_xJt4k<@u{+~%bbKc zlZ6`kVxWo#T`U~%)IN(iHp9kXtzB$YaQ=Yr&;rH)S#+d{e#xZ$vTnCOw18F=f+#M7 z31Z{Vf?4KjKgv@Mz>#}kHh4uxjC*1AY`ebe^k@evB17y$GFa*ZS8T4|{T8i8*nC#& zt(EH6nfz0?>2X)M7cejF`}md@L<1>LCj*~H3-vfg!lhb%~m;pI-px@4<(D`U0o@qf3$<@%St#UJsu;4V1Bf%C-Qw4gLORQODjWY5820iSl4=EEibqiHLEy^wAN_}q zj=V(`Lx(TdHa(pJyEx_cG;wSv(rCO5q3jP$f!%Bh$M5;i)+<&fs}C;nS><7{i}kB^ z!7)@3vv+6wN>_4KLt7 zm|I_0fan(hXlO2b#*jUS#VqtRmFMHP-fy_6!4(HSEvmL5iaB%em+62u!PkY+Ytw;u zJANd+ATz@A)d|B-naGXZ+nxy8|SXP^@m7EmBfWiB41{18# z8GjCdF%M#j0cWxjyww5C`87J)2df<9y|oN=gHR~&%Xkdk%-d@3H-KXEe#85b8z5Mf z_d=%9C8YoTW2DIgz8?sk4dDxcRZc9ET_2dMAtL|JhE1rIdyOEcy#3JVvb(!G{ZO{% zpsnAl{)mE1WiR^!IA9i>q$v4S^dpr97)Y2)Q+G_l+{sj01t zoB-(M2vUO{)qSCcnKNB~Z3ep2Ht!pf2(M%9f*LF4VRDO)&Pv^^-B}TWe5E(-bsf%A6_uNaFBWv;$A6UK!A!1zhGjhg2Qd`` zCWf28eCJ$i_}tP`ATW+RdJdl$gb#_BzHzDL&TPFBdB^=GY!#XGq~LXm2f7L$-z>z2 zffoiq4I+Rl=ZvCOE6Dv}#?-=Ve9K!O1A9*7On~GBu8Bgn6xl3rC_=}>3tti<1~%xz z>QFwII>y4ye{@`xQ(g_mD!Xpj`E2s^=SZbia! zl7ykmuIKrcpKa~{jsj~(kYWF-a-xHNXtBSjeL?n?FAnrmn!}d*hDGp%@~FnBiCjY& zekx|0y$)0AP(2M&Wa?sydO95~Pa9SKyll*>Rj>=Rv~X>*=-0FX7$GAkmq8$H$hGsD40`#r2g4uO#_fANn9rm z`OqQ6pa2vjPHV%=q+C|&Gi5Nepr!u!uC&`Q**f7-kLNqRQ9#5o2E zXs0wB98vJrrw>`J0B(5fW&b`vFGsmz;YI@9VcbloSl+nfRcNbV3;nh6l6UWXaT8|Yt9gB~3L1fa_0@X505fegk%>L(Ct*V$ zETt=5aC{-V^Dl4=kmn4JzelG#JrCL3!s<=`yAwLaG5*~Nx$Zksqk`;|b;_Tbn2PW1 zWT|6b^G}Ts%?kr&(z)^4=~KknBCRPP^04w+0#2_?XzX^h0 z4mO2M$sht!J#Hv`|6t;^jQuf{CM4I34Pj%$`-Sf8+<}j?X?JV8rjAEkcG?9y<)g`3hlvX?>*yAFKlByD_pq zz*SN05?ub1M)DVQL_lsve&|h!vFS;{d z(Z#p76Q#G|=KBG=^^1OQSdT72hm-=~`AuTtgU52!2>$#1y9n5TRs(PZ`>@ zM%TZxY6BI>>v%uXuR598P|b;V6zzIN3~Addf(eNEt}9p7x*|mlITE6XV{nbTQ`XMv z+OpNT^SGrb$)8$040g>GZJ0QpW%wcCCxHMou~v)aa3 zVljopw9oIpTtWdQNybnS>#0wC)6u4+)8=Xq^sMR3QC2;YQc`mp8{KfeFhu5_Wefeji3ZHsM8%O_+G%_0i?-05}duNK4)T27Ut!3cK0~V#* z;!D`fWCDBw)6nlWBOZ9palr0C;JI!)vd;Koj8tZ3WQzuPIa$id~#g~hhF_1E~4 zcloQa;24RgDM#G(3~j(hUuIim%6r+8!t&t52ZHw=BX~Ai3< zq=>4&*p+kD@lS((=q}*o%8A-h$#=Tr_s#$kc*!2GCpv?UAI(F#+eDLCAPnzB9mmy{}J7{YlD_s2WdumLi0?6crJ)}CiowX|Hp zHfRNm3(2enqn{<1S?8CQfM(DRXH<6~gkZ$iLnuC*^XBG!LE zuJu*Sd2MH$7I2GC>jTAdBASkImbK<{LKKY6r#Z1F@`&3r$qETuCehCV*1`&DZ0shg zdrG97T{k5MKlpv2yi(DVoi=VCj@%2ty#r}|tmDoq$JZiLQPxB{GQTfrpK(0Kq_apE zGd?tFdTP4FB6?zzwup=6huAR7RD%vEUf4$nf-xh!iBDyqt%sewy4#e9sW@QgKyHvQ zRAgt&Ag#pH@-t?_1C$?#+O&uBq(*ir_o%3DqST(}SdAE&sZsb24i5TUd_PZbB|aGo z*Dp5c8JNeA{U$#q*`Le-6#&>i+<;)~8%`KQB?p4s0MN4E?F>{cl%=1#;xmnfPx;C% z1;uHPH2L)Kze$;X+=Y>x34F8O3JZ~qf zQsF>io`!El{8nmYz)5NEiP(rc0_Igbci}4P{42s(0v;=Y6}~Lim;cb|P9E>5_IVif zZ$Ld@jrF_nCUyw6=13q;Nl6LlN(ahqbogFuJdh1L4R>&Mo`(vJfCJEXrEBEFsR3aU zhu5()v{#wgsSXY?+}8=;#QOhZ>C|L`$7U;3o_KB>(y?32FGU~8cln&@%@!Buk29NoYb(ieP549)EoyJO4msX66_k>YINL)%O$5vkzz^7m zQ*l`h-ndV5dFCPwz~BDH%#=bSVa*8Ht$lFxoyNaCIk* zjm|&1+8aekS|^BCs38X~`2P*Kr&*6sFt$Qb7pc`~%DBjLLLQ1-teCG9JsQ{QZtDB0c7Fab82QL17`|wzDsyNsi8+0EYvxOzt0VK zTN60(HUJoHGFh*nt$U+|>kml{JqlkA^Nbg^L%SchnV#cr&OfvPt~ zL@v{(mU+C}th08M#F~5fL{mjOsIg3Z%+%|ByQd>u5 zWFjQqMw>lDK~5IyE3B3MJ)iny%d73uXY4v%XSEiW%^Y--%VC-`{Q1PsTdz6Ip9K^j z5w4U`eYU%Nz-2<+So|tezv=h$);FgsL_LH2PN(Y8#DM{TWIL~ln2kO^)KrVR+aqS@1V==LK zuIEGuH?OVjDmWQHe1WLF{gzWt+K?6KICIrMF}6Y+4rsf7z^}(-&BVks2SLt;VDzb} zrDX`Iy#VJOLY=&ZjXe;Kje{eerHTlrM6A+}-0B%)KJ`!EL@eupLeVrjN&Kxt48*B8^kj(VS6&YSnNt}B{q0T#qM!s#*Tmt+7}LU zX<6CF|3uq}V^Mi|dClJrrVDB6xYmWM8hgur!KR^D<0HF&WX)6_o;+@L0npR8^8+u4)~qc=VxdDQNP@9LcjsIni<+;8!IJ;F6?>~uaATm zhoz)YfF`2<`Q0~9__^usW5Ie~ONQ#;(mpWfNC4RZ7}9ei+sW3}7WRN-K)!(?&%v2O zV?h(@^7Sr^TMHGzrN5p7cEns!ySGIMbWI7z`70=7u?f!ga5#I)J}iL(Avl5vezZGHM)yzZ5(ZpUq@X4az_Dbi%&?n z*GT$WP$7Tl-{c0Jwqs9gbMt3Vxq%m-yrbh^r{X;=E{9GSx-B>fWiex7Vvykv7+4*G z6t`|YhWs{od%$>)oQWwP>jZG9jDiCBi^G*F7d~=WJQ#zc<-#H^F7AC;p2aXdorT0( zAV4w|>^X!^!$W2Vg(B9P*9SIktdEH`C`8PL_*1%#Y6JLx|%T@(>_>?`XvIR2%;pBY{|OQ zzjEh?b9jy%P5>S*7n#2{z;G^M6gJ4aZiMx0+6y)1T^KIf`I}5P}MrLL$&^sFZ@w+nPBM++&gggzu@{pN#hY36Q z9=8VIlARA{e+WkprzWjd|E5P3`*mlij%IP*@!^b+Rg7O_<4frFj(fISiu#z2ONRHx zdiT1>ffe5sQ_HbEE*LtK;(sreNjXt~F%}jmww?3<%&A5v%AUDqAkes%CCc}M*oWU2 zbIu#b7j5t&ZSC&TFf-$lk&yv5uL*k~0N56WEp;=ldrb+y19G_rOZVJ`xP57p9(0V~c21wAe`%8u%a&iK(g9?7^Px(E^PvWJCIpyU3GFfx57yG*x zN}A9GasUnwu*VK-aTXtdCCGgT=pdSM9P<^ALJ%enZn%W}w0fU>M=^TZ_MM{|;1kBW zO&eg#s2fHWJGVC85^*6!ekUzVZRjdq_+s@$R3V5^>v3Xs)cEU6iuc z9r}TBEsP<*fItM`UlSZ4Fa<*riGb1}tja$;K28Qo7?5Wmfl-hW4%&Ti3aA7_cknIm zy}+FY<~Bf4hzS=I32?<$0lKd25;O$VFuOp=Q7H5ezc)6*vN{~b4asJRPsDXgJ!#f2_azwA>vw8VimEHtPoDV zJW<5~aaqq`4U7;6z@D|X6qXY(D#?*Z7`of9sq~6(FNZVg5M~m|0e|(q9@dO%;S4M< ze*gLN69BcWFL+8T@I?UEqJnD!A`JmXd0?Y?^9tts%6rK-U5T zI*c_J1A*tP@%%4}qGh&a=iIr+#P(yp^?M-SFc~PxdG;F@R%33{L(fBqT}@lVzSj!P0}9OM9kW|KP9EZJEto5-SCpjL%t>kM4qsHJEcqx15)W#;d(+~ z?ZBQ*9I%HARr`a7;Fn%HruyY$Bv(=-Wnu9r3^%^QUC-xG3olBl`4B4&p_jbf-Q8d} z5RW7w<$Zh~rXd#l&{^gNGluu$rXn>9{=eAzIwUeSBU2~>llz7iW}QfWX~4nX8(895Uj3?$d{i10u}@L%jNrB&@MO-)TWHV3iYmLA}V zX_ESVgH%&M{=0wvOocP~JM?;81`9YlJ44iVFRamQY;1<`!#*!BgVhZIIqu(Y=D6~u zq^6FP&zH8MNto?t75Td_y-k z*>qH_{XK7Q%u$i_;W0L3_n^(|F2SmGg9xEoqTkbW@?(R(&A zZx$yEk8Lsg(N=R0ZwQTncMGl_3Z9KRFPrdqe{djA~f6bj~ZriPsP$d-}H>lbO^krV9@)XHyv+FXX~DrcQYX! z-4KuwdzhHUXqLQhcV~zwffLb`0?PZD;lgr8J{!)%zzDhn)?OKe5 zjSdW+Cs7v%LfoJZ!?aRJdoOXXy*2C0d^1AR|Mq+U#S{!=WclkA>oPw894-6u`r+A1 zyjK%pVp`e@uBJseufg6(U8docbvsEmQ%r3kL6(VVz+@f7WiR0;dYg)~9Jo-y6kA3W z$39c+zsbj-b#a&ewVf$;{Z7ZU%6D9{vB3PceZ>b3&uc(Bgp?-kzLtr))dMT1biPTe z1ZMNz^FT#KDT5DGolBl7U*iC*I{5XW;^EuTT_Y@PB0SLxn;sAL2+_Ms6nJ{m;S! zxR-aMcH?7~)XOMQ@G@_@+jUn=ig;8(ox|UgJpnw$pP#e897|7_v&dB2JM#W+5@S(Jg%<@Kytydq4u5!Dr*k>=Z!@n6*tv?1 z*uQ2QYOPA`<@No1WM7tlbwSnOS%3Q;$6J$6EvSBtQGz=%w%x@#f<#?IM7Jv2w0wDL zrAYstJ9^<4FK)6mGti`_0TDMl>awC!E9GB3ZB)3i zzf1RHkN@U7dAoEi>GnNhkx#ZPVT9{^H3XwhUa*Q1#Vx5{kvJHHQ2uO|d7&wZhj~D52Z4GX5Qg@8OL^N7J->CCdK2!=k49X3)=_ zd2WW?H4`&SnLmlf)Ki=Fs6hLAFfGT)W-^^U+pig29<(j|DtkR}F(tV=%OGu8yQu5n zaFEvoI*|d-M>>#!17#8rIBYBTaf{o-&J^=-s$#T}_B{+Zx?UC)%S7DguS!nrbzd z00zJjX}aMO^`WJcxe;=MOK;KC$=8hFHra znhb9tBN*a&gos4&@Y11Jj4a99BoX`-jwN?9d{%XfW^PuO@zMB9Z%TA-ef8P0XHeGc zQ{(P?)SSXn#RB=Shc>s*3s@J;g;iU7IMJsmTqGx3=56|6e<1*l4+awi0o5rZ12z@R zyzT}83gGENhW7Q#^#$!utWkfz6zH!bLUd(MNeUJ#g{NOiMe3ZcL+E+Sekaa}(6?#_ z2M0s=jv-|w<7nE%upd-8NK09J0>YVF}xm6Zo^m4DG_$Kkd)9}0i>oTYMdRM}&KaHsYChuhb zS%R?|4OD?E=)Q*^Q<96yOn();{iG2sKe z{rr~y)E+<{*FZ&@=kYd{wrJ>BI3}84eyG*(FKO?tw1ma;zbdQI?Amr~6iw>TSN8@I zudn5xytw*zd2o1W+#O1Y6xku;JIGsJJk7S&%Fb&@i>bxJB^?_F0p^j2@{3{;_0_L# zd`Z%>X8!v-o115+H&|jX2BB~j%nE#H*#RGfQ^E*QL>kT$EwT!~uB;W$^9$8yTVCPuA|o@gVapeA&#JP zlOL3bFg|(B+cm*FkI=7i_IjrCOZuiP^POKtGE1V)7tfcZI2wK|eJQ}_r}&K&$#Q-e z>B+p24K_i9zlVt>`gf2D58Y{E#Qle>Z5~(As@Au zc9~P5V5vPn-r2>G}jIZbWwpybEN$V!p;H@i%Xc3@zS^4@5n$;iZZW%B-hi1nFR zZFY9{3^YN&Fd$D5SmYO$m%Bih2EIy8wi)+|l}~+_5JiZ-`?LBr2s#G0*Cm`kC&)8H z+5{~MY=`deA2P+U29vlmL#ErIIHGq3aX?(*a0k6Gp=)I|>X+Xb1~0z%_g?Sy@K0g} zMOZHQg}{_BT>VlZ1drx3JgrEx04$K*Pc51DvgwWb!#%wSNvu$p9(?J{`F%0)~0^N=6wGLFQ4N4pfZ$} z>ge+3mtl+*6FH+S#ZE~6Q6Lw=>0o17qbC1RIjk{~M>#^_>)m9XcbA!JRr17N$~fa( zwiq#5qvapcz|aJdd<$*HhH$sT8|<}ze7t6=jw|?2wByvrw~Aw5KweM~Mv-su`~eEt z@_R%9lnb#0o^fzV`}5ShFII2=c0cCc4Zgd4_jvbDyWx8np%A?^95^J;oT-`=|Kf1I z`8?C~F#?_e&N`pJw*17M*-n8@ecKD{0`wqk=F%z{BAp7Be{RPCEn+UWEatYxru zrg=SNjUj@^8~)<}S~G~c^HQ;TRc%GQqShUc`6~FU+DpRxj^#ni+T>32(07`;TXxCZ{o&=2U^B6#&}+5=m|q;R>-&N3Rr_v87bI7_t1n3-3<2lw{GNwOq!*_LP9T3_ZOGS zeK>E#R;9fsRho<@mHybJOz0N#h_C#0a(d;+@TLnJNqDo8gg%%rpa`(Nk`MQe=f)zV z?pJzaF0wZrQ|jU*2A+UI({73|$6Ya^k9~~FvF>iNPJqZXhSzVO|?P<7T zpk}c;VvX*NN+WQxVOEv!DjI3vO{^==>oHhgONm-BD>PZxC~UVyBw?^DguwhJQ4v$D zRYqxhRUa^G;I`QPOSRkJ(UY>e+m)|M{&)v?oczh6Z6?jpeA;ZO`0%P!gv zE5U$>`|FM#SH?42t{ts*NlR2zxamJd!hTG0qJV0n();YN&$Epwt}hHs)=2ITpq4Cb z8x-fCcJypo)rw6a$SxQ?C`$mcUC|8T>jk=?(LrPKT8;`E;v9hdHZX;PN>0 z0UF?QGTr9mB~Bq2ZfwqKHUatA?`{bqMTID@FaKyFqzL4q?0L=O2kKXtgCh<_?CRo3 z*=3$+;F6K1<-Z3tG$LXdsE4la-;q3j0F|J1DIaJc7}J(xcRAtu2i!!Z*6KMZ+$A8+ zA4DT$Fc7SO>=A$V%5C1~4S3M`CR-ceB1Uts=MYKhC?=8p7F?x|0uL>IzUU-`Y+BVe zRif>u97a{%!-MH%Ul$eY`(cqx~in9Z;8vIw2BUg$UgnJ;W`nl_^Dst7{>ys*lKf4;EM0%bAnq}510}O<4vr$&+Ij1 zJ2!jFB9!=LMYeSNfl5lzfRZvjCo@t5d84Tq;VuC>L&EJpzhlRx7ODIZISTNh<6@@= zSTOtL!`2S}^`uXUCA>9x6rU6yY_b|+$}$I|-d#|KA-WNW8^iUpQoMntQhbc#LR~{s zTYFnrsoZRWd}oTU@m4H(kQc|2_Zd&szVi!|A}vJ`5!giT)&DU;F|N4m`FTQfukjTw zh7S+OP*&i%Y1=zG-~%^W5~$_)tbVWo#M%!l|5TGJCtTKDKYqM}`_lpRc}UYIuyAl- zytXoa2~D$1rNu%!NV%bfnYiz7agCNBwBJbb7a5OSE*QCEI4E-k%a~qqGfQ}h2;qER1L5FP>m~SA@n1(<)?lxohHh-)B z5a^{WA^$X`r+4jJ#vmXEzzS>lpKDf35EBx1ys&RYC&3;$yJJCb77VWdZ~n2hxp^PV z38+N|pB{d?`gb1`!01~wH8qF~6ZB?Cp4W+YtHTX0qC9X& zz_@`21R-=cd(U4gFe%5GFYC#{cJ{BwqE-j#IiH!Cg?26jSvduCUWFpdU>0F2UteG3 zCx;u2*6NX*oE$P{!RC-!Z^6^{QB&{k^CsrUtz_-X}6$kC~XQ-C{ zwptM0Gv<$Xu?hS)8D%EA(qUW%kn8id7eG`?kB{j12@>=?a}_Kl8=kj=FuA*WMOP#i zH<81_4!>+W*h`q{8Rj=sc84n5Sk2tPv3e8=s1lx47Qc5L9UVBnKKNT9AyVeKQs!k$ z5OIbit^@m#sLlWSN0BP^J*S|O=N}|JX?0}-KTtAeqFPKpf;BvSnrCA$61|6vjwoQUlh4us<3C9~9EMWaP3 z{Q2_VX>NgQfn;ip61*_|QuNrO3oDf}a#$!ApGUVe1Xe!#lwJ2K&nZw}3jJT$Rbg5G zQ?k8^O|0x>HW$R<3nVe{+J(+2~R8mvhxU>C;=V=VvI}V;bgD=r%wv%_p(tIMk2x(gI zfkOrXDMT5H!nx-i_c%$G7O5vf;A}*)dblEoM=jEBp5=2qj5pQS0eid0a+GlYmoIq` z1OaR_$b6AXH+WnCz*ufGD}vi4Tt0yVh;Qi<_2K}@Z0HJ8{q)+Ww6v7s{wtf}X}wm@ z1o+yQHaEkHi!D1|JugvTL_+D{PFhG!8v=k8H5r^lW@ctceXp6B2G`!Jkvuu1SP^`v zNQ?)>%3ue>e&`Rl4y1G&!KsDbd3*_JhluwLu$P{Zk?QvbfEOc95Mb~tYigjI8HI`} z?R?h&);u=c6XNSE9@|I>6A+h`V4^C#ixKtYv4)0*gkiH3+S0B?+tKjn&+<(-_F_MN zyaPLPKS)ly1ENV6zj7Gbr$?v8-uRFklw9n0GVk@t@Ye99!%9D)zUSFXBKvtV9Fq3w z=h^i*Y*F8CU#sLr?djwr5oH(w@555tNdia*fa`*SLmu5CHSt{R{gNA}B#z`|5dm4Z z7c)wR`<^#gRhT-!9qIH*OgUX776krk>4o3Ng0w!Ug`%096D^!OFmQ0P>A$n7ypQX6 zqxRt6%S_a}eW9Tk*BE2m(#b!%Ue7>XswF5RU9xi!g@Fh`%kj6z=fF6ERrsde1mXQlpE^kSV~DrRRaD;L`+<)+b95Pkph?{u8J%x;3(Mm z!>FmP|BOj`;8TG*Nb@Z5(ZRF`U^^x*ZeG9#{3hL-lwoJVI=kNS>{2hSl(rThskNSQ zq7(8piE)#=d4E3Jso|?B63^21mr9@R9H=z`Suwqch}KNIha?0IS3_qWxI3VMt`nNb zfMO!?y0V>Z5`y)+aEO(>@?@X0rsDBDK3Bi?^OC2<^FACx(--&(Uibp>j9B-o({b*v z8x60+DK^ta-2q@%4qA*=tKnRflmS~L^3ty@~e(WAO}EOdHe$U!#m(d$~;zKI_ZEl0Ffa93CYaD zf&n!$AV&KF;&z1=8k)ZDeDon%J00K!3p*Il@$h?Jf zL_iCYNSUfv@M9ujW*2AcSulV>7)%&Q#Ccox(O`>0@(c~?T-)>CjR6J21xIbtr0{Yz-MHs^>N3FSOuI{B&Mxo%Y6=$1lQVO0ZIXa0H~mok1-1ihN(jKPt2Ya5J)D-B}C3&DSPu9j}qOpfGSToXV9M+ zb2fM`o6656{I3>ZWeg4G`^gV)hVy!J)KgR&C6v{S%ij{w1VQl+5Ws~{x1+p6F=z}7 zInt4)V=FW4d8(XWH_+e{|ES>1(5%E1ehX;5#ve=fp=7|?dMn`M6bQuq<7sUL2ekn?-+v>46%T0ZD=F1e6iHwDy zXIc)M@qUN47Z1+@GLR2FesbqOPGSlCR+2N%If8~yo~(}a==o_r2o4Q9Rne=}5rVvp zQLj{`KXC2gI8F?zVI~$}Zx|dZd85vzX9ut&`!x3sPvb{SBR8PLfQ1nR+rrWTw(8W| z{J^0t%)&BxRV`dD{u|Lu;gUu-Z8{#|Rl7i#QKPOSxs?6{Tx&gNhgD=sGaEMFeXVbt z7G$!`jL+zYHe&~e8uzoc{^a%H^sf~Gp_F`sZ-O`t)qX8H4k`FNT(*D20%(`yi3gTv zd62-v`r89x_`vBS#H4MmwGPCbdj7HE?^S)S;9E|LDO@8-67lv#i#g8x8ZZ?9{+-(+ zFYlt$$ol)i@4)1LgEs)8uIZud6W(M*>LCEFh43Xl1_6OwRO{zI%by6yD%;+>r|2hj zeHBcT4a3WU<&FBG_h|}=8!9MGX|{KE8ef^-lkob)!zPlXY<9?f>@!UTPZA<>H|o5O zxC;R;e^XJx3ojZH1_b2?l9H0Lii*-7#z2>bs1e`<_xz=u0K+rG9Viq1Rkm?-fNu4P z4}-O04M>q(x%so-ryERWiO1J>^g>Nu67s_U{=HCija6Dn2@n2lqJUP(j;bO|CQ(w0)3vQU#Kb6T=$x$gfHF-iqB&iISIbuG$j7imoITRSGPYHdRO?t>o zx(q9{#6`BS-y3xG789$OCpR<&8H6-Vd&Vn?rmFoklDc332@4N59*ARpxqDkoOqYb> zLs3XtZzoD78M?7!aS@5iEYa+gI>NteR_LcF=H}*t^-s8PC><&StrCZOuylXCeS3SR zks*ceA!b`S4sl7B`Gj;VA5QMuzi}Vfl8+yYum$bwLBSSy^16WkRRAf9u7JH1c2{ZtBLZ=QW$l091d8M8X^x@O@hR_uAyXG7Z-T&q8o z53#?dvSHv-_lK_z-g8>PMBM#={x&o;1TYe_ks1~(z`X$-c47I0iPer>Pf9c^c)IQF zw>mMSM;tUBzr@Mu%0;&Nsj0^8I-;^nTGPmTghA&tlkxQajVD+qi+}O(KMNU-f8{V%se7?q# zRuDR`(u*HZ9!sNSbagGQ(PeTnY{w=(+k zXDJORgi(UE8&QZ`47EjI!O4e{hFPHKa3D+R>2v3XGVbjwJBo;$l(e*@DN_)>;R06& zYiwsQ);)r(YZ>Y7z1KaP!`;K8`1yFRw;ct}=SrJi3q1{ak2^{IVp!TqUI1Qoq%j$; zbV17zrvKu9;0lLb4Q3oJ7pw_Br7m@q|*qYM!B2LfGM*%Y`-2I#gZ)cd48a4aAJQI-| zJ2*j+bb45?!nq%L{$_)afkL?CO7)uSW^}&?FbdSMI4E3`Yh)~62sC7nDoGgbl?V-X z)Dg*GT*5$^`LcLv#kX|}X+BRut9WAKva|LfVVs2^HyHD#I#1X0_;)y(f}m99t(hD` zBG$n(!Am=t7JhmoiniP=G{B)R-te_8|2N?e;tm+s3m=PPpZ+AlZV9`$bVKTURqXTk zarg38JF=(QH0GAzyE6y;7I2>274hmlMve7|DVAQ|)FuH&{E;JicA4~oi3fwxpD8w2 zqInf=JboZiMu7g4q}N27km2=(jr1epmi8&!uN;olpiZ&1(8!){DCK`+U0GMx+tZVO zvFvpnJ`4ngg5gdA6c~5!-bKQIA(br<5ndg`rXA;t0dvv{?CuCJ0TWDYY^(&_|3LK} zJ@PD&Fg9jHNqn`tTK6nP`+eOjuFxsucTDJ}YuZ5_Dv{mZ7}B35tolOr!w#lZEsbjF z?9RR*(|nVxnOOme8$tsxdSJw&A%xY8KOkTb4aOKT)`5%BERl=N_>-QEW?Z@o9Dzv9 z4A>k$r)O?#Z4Ck!D{U&NBFYs*;D{?+BPCJEF4U17`j|@}r{-}`XcIFT%kvvAh@)vA zgll}@7OJmn7fLiGQO)=wg}1ZBm#p~$^K%d0Hxz|VadSf$i<6Vzwctk5J%Zb_Kpp_H zmJRg{9;MI0_MJiP_m?@ij!1W!?&0{K=vqm1oB^Je1c)-QwXD=Nvk{orNrTQO7OZhh zt_3%2m4px`WE-J}4u-g03pTu{%Wi0HWMhqbX2Bh4aF;hPqGc|p&lV*yIAZ=xdhv7T zQ+5I0p}fwLeo2N&UGzUT-BtR7ei4>@JhIdi1a6b@?GS@24b`-htzPvGcktOCKRxBX z1-%fv^UXhwuGkPd6sA&UF|n4(LqM?*ApPOLQxmwykDn^jCCM@=<3S-04F9wxlPfh( zUU!WA4jOivUbPzOS5iiK55qMy18r8t>}bCiFKty|Y3X>+JE#9Y_nBaDi=+bFYcwFc zdlK4gw^sQ>^XcHpM}nC9_c~;Rvg7U{mTypN>$ZB<{&iOn`uJblR7$;LDG93q{T&6VYf|PBRr<1lSP}%uJVA=r z9Jq-eHlfMHfhqVUfW6Frn_*T1JdFgOMT5MvOcJ%;nO^tyF@I|TLDB6yl?vXJ1#zn0 zN}oy3G2mch>7H%6o0B!NUmf(i*An#43m!6y?&X%;*T*(&vgs`rL zyQ)xpB8Wr1RPOr8w)ie;wDV%Ca!BNxSFvT{{F8hF-xC-AKT+MzM{?X+vjlU3Wba;( zU?&N_FQ!2Oi6o<$mC%K!LTHOLO^*kL7CE|gZe``ih2@w>ZErfnL^R8FvwhwiOU~Gu z-N+gX`4hF+_m}U>wN@---i1;0!MGzbF^qOkOpt>zeyM^E@9Vz09hgm@)&M#3$`+=`OA{-*`{t^bl^lNAh>snf8g<0M(>eFe ze^YZILxJG-b!kAq;Oa!U8Cbh|{vJR$Evy@FGdZc>pRo)iaU|$n|2i&(8IHml*Yl9n z(E3F+8*XThI67K}8bf$+ae|~sYdS-Cmg^OjCr0~*g2P=>2mytgS0O6t6e0%rC~%F> z$MGr|FhVi{8O#^I;tZeMiM&bFGlYUi6})~uH&8@~obe9Q7Z061Riz0&Q?Zz5TiJZ$ z3|Vd^*o1#hEL1<*nzx*u@lc0kyqWk$+WUxtVE3hrVE>Pf&$8}kcUnC0@aD)a{Rje< zKfa7%e!=@KO^u;@3XjytrFLm3Ne%UZZnx95&J}SN!RMqV^?j;kW z)l_s0*X%npSvd=BO_UXacxN^J-5YcG2=WT^AJ5D4P0NVn(mc%$N5}osUilsm+nE$P zP>7znz>&0K5GtR)6o~(@-Ei1>qZt)=TaNE6YlpADUGP)-!G8MS_+;HY>>}-Zp|GMv zQktGsnzf83Y&cRdK|)cHM_gC@e|L^kjI6&Vd{yCZ2}o)@^C@l>Q=v zF{s<$j;|o~bjK8&#`i6Lma>EPxaaQ+V1FPX;>}9Bq`Adwqsr1S- z*rIxy9v^Q%i6oG$9;aCFdO%F%9Bf@v9URKZw#0M^k-o5*=@t9Xh_O+Ny1(ekGgKAl zR>FDC9W1_K%EHK$NabvKJBqUX+@7j0JzA}J1^5@9FE{F%6mb3XRmH~0*hS1y>UzT* z)7Tf8HBY;#%sd}|k~dDNQlZ}A>?{eXEFdhkzRvmUvGe_^GI>-btAqMh)zT}578};R z64}KIA?!L_-nfZ0bAsrN!200RxfxpBAB?YWi(Dg!rGy`Az58Gpq7MnB)p#xvFlFLY znAQ)LB6x}R-B6&Gfa5A%j0xVJ#o_G7ovsgaoHo(C6ghDNXNR}`AXG(+s~EC?-Jt}p zH`IDFfCB1;*^kv9dvpY^ez}#?T?GTEvNVLA0ej#XyiXzFJJ?#&dE zWponoEw7toZhv&uqT%C~V06VTZ3o+=SZD}@w@NInA6FlK!7l0P+2m09GleAF7^C~n zRW~&Qi_$)azPNSK4R6=L#qmG-ZY}_)uIhabTdxP!DkGR(x z*E4T(aXsZ~%GCZR_sPg*w~1_k;$hO*PpeNBQ? z6-d?9&fwcNnffqciUoL1GV#6Q}U>yZ<{|$I;*pbU4mIh;K)Y3UNFSX#1sXt%bMu8bQJ z^?mpNZ&BSp)E#IC*0>-Q8pa?qXB?brd{%68+m|?thc_oetF($2OzclLstJPrv|kX2 zykq-oqmEjljV&QUFD+$30b&=8upCQJQ7h;F_0~x}aDDmWuvRS+o26$Ox%)qnK$0V3 za|psBM*IK(vlWe5fw^BCaD&g0l7D$siq)8*)VTw+<)`pH03#`i0w4SD&50OFK{JRz zK7S{}{@*u~CkD6@{7M>x)JP~ZAhMmi*JIy!{oGL6+0?0{8tG0RY+7OQ{dZ>0?@w+B zBGV=OXZiiH57ODFD|gq1r{o$m?bkd1U03B(^mmB%OvaI@%I20cj}vkIrQSI9^*IMA zyh;dSc;d4S@g2ZVhZkScOKEQj@DR_9cV2olRGy|mtq%lUu}|HdMtN2diuTfOt+R|e z4r|kc@#msdh(l+cBVXM_*Q(3noUNHb^(Svc3ySlVXno{3x~i$D=d3w_``Fra@uy6MkQaK6u{8Sk8cjXfXK6BWgtEUs%IdB*YxGf#qDj~ zrQUqx(r1b@Cr;@=K1MgBzXoWUaJtUmhBO25FQY9NHy;F#{{Cic?H8(u!a%WwEBSU? zi|}1g5dcj>s{QlR_KAXv-nPyiQ!|$IM$keI z4`4m~6bG<*@QzE#ys7E3Er|onJ2U0846+BPZmf6?s-Xx-v z_b78EXn!J?ewEoUbW_$C(4CNsfLvjDV}p%$W6(ZAzi1dcSTfSfN|Dg$dpBMSS9aO8 zk9V4!sD6eY!$vt>7f<}#ky}iuRbpkSjSlnCEu1lCi$R`{MCGZ;lm>nwh2P|f5lhW~PuYKWp)A}Y&+1=-KKCma>lL_o`+Hh&;Bqzs{b$e58|df| zyb=U93iuB~T3*s^fHlv@1AjboxKVM&M$ z5?4b0n`gm8O`=IOC-22EBmFle7ru;uEJ2-v6rz8<+HbcA!@~^)R3Ih__g>)0UzuNX z)=wvglQg|4?A}{*w%5A0+eQXxx&pKcbea^Z+6@LrSn_YQC!}1u5+XZSv&$`7RK(J)`v$tBnUyAP|74=;ngh~QMB-rU8%%pR4G#)(3|Nd_A9v+61JAMGQ#k|i64PdID z3fm$CATu2PK@q^n!Y6nQE!Nqpvqlf42%8;l!Yq34UZeNYpZRlG+WzO$hvPSX5gzOkbq-LBD#E8+tk--O`B&0}_cH4gm6gqbGTiv% ziTL>eW&*YbIMo9H-XN#EU5Cj+%l+)uOd85$l z6Zcw-@|X!zVqfVMYkQa}xVkn#1{yX7QQD%;k1pSBV=n)8t8bpc{X7&|tB$?Me>Aj3)H#{g)ZWluanzmW$4+*F!kSdV*h; z(T+dqpzD>ieL`NDn``3lPDe$>c^E+R)vz?F|L9Uw-Sk&^8#8tDK@PXJo8$Le6G@uw zctQ6s26;c30`STBZON`E0Z|13^@lWf!AIqGVjB(t5#Nv-7xowk+pr(t{-uI}2)Lt$ zsqzZ)LN6Ato|859q44XR?y?9g&mb&7`Xk@A;b0y(c>n)zC(bf!&0qX19Q*(8Y|n=`JACb~8ieE&g@^~c{j`!tRIl2Uk+jZ24#L~aThmE-@YT|8VJ zM06&nr|vv@O-#qC^BS0485xF-4=gP4?|C{>pB><{KEu{+&v#;^TqqCT0o8aHB+2$O zp61|1-b8d8;0dnr z?r~Cc>+9NG5_aa8oH`i%oPanxUhW>1)z2}Ch$Ms7vE$#gvF}T)%o}zQ^S5Z)+SR zQ)V@h*fMofb2CA=U0s;LH2&S=3WTN}0gK`H0gzTUg|H)1FI)5*e@BsE_We09MPl24 zh4llYBMcuPUmAff0C;_$5qL2CKQCNiAc;G2o4+$oNzeZd@kGFCo`Gs7AI3_tWtfwY zoq?36$QX52Pu||fj-anFjJi>HGW{lhGd#y?r|n4h$#YrK{eD2Z!G3cPsPM?xeOS zd{8AsCRx)hnjnc;pGj89Tvus99ZEf?IkOl+<*-p_;Z`Rb%Tq?n_53Bi{Oue(1p7h~ z_1t#TL+!Qn4btNk`6Yj&Gj!MSW$r2aNL`mwuM34 z4rr80m^_xerHe@>X^u}$vCE!$bRir1I>GRj=mj-<_s+kB?kZ~+#=ch`OnEDZ!10m| z>OXW?KmlYBVZM7}9Fx5q9fj$L(IZa+oQow_du5uyTM`9K0xuSH4Zt5pHS3AIpByGgQ(cspyjU!P|5FAJ$+b`ZZmq?u}X zy`<~-?DlH_1k?3fQI%M5`fM#%C>P$biBAB*2O%zx2Q|3mW^ZvC^NB|e{*)34-I^ww zpX<$Qa7fK^Om~qX2|)w1vnX+3|Mgd@5k+rC*(Jr>-m;|kYj7;0JY-A%fh?hi8PjL$ z{ry+}P9CY|eSz5Y7aJ25bfOtb>987C@;?##v`V^JqXHc2EEXeUPHmvbiTN{$e0m|F zgdacDIn;|(UeTS%O7IJh>CM#pGE2s({De1<6S8$F3vf43^U@3?Ys`uss{dx` z|ABr#(Xj8&U9+^zQS-JmP&ulqBuH3uc5(uN@=NRv6iDm33;MnM@|wCjC>Dv0i#sH^ z{aOUPeHej@#nGu5P1pWc3m|d0ZNx`{t#d1?pndG0GO&Cx5M2`v2V(Yj3v5j(iYuiS zg$~YqG?Gr+)Av{8V6FoF#H-zz0a!Y3cR$KULsRQkCWOuxEhyRH*7@kpb@c}5!6jf- z-h`X+eIZ^8!F02g7GzkmjS3D73vR5W@0P(?K2QBduUmlPGb=wY=b6c-k(kT-r9zJu z^(JR%(VP3)ROpUK)H_c4u-D1<%a#7v&H7gI2#0G z$2Mi&d|JkSeLH7oJp|L}&z1_sIx}`TjbbM_*#VzVK+>?*zEHyUQLK`U2Jql2h;?&e z3VeVE<<$^sqWIbWvR+PvS{a-PNCrU0eYe*e%L!s$AcLBd zem(w{B!9y^3W8d_IAz(-h79>AhOKH>*5>k~{a3P~t&hh&3*pcP9$iBoi!(aLAHS+U z%#oA2{PFZ@M6-uP3jnC{%a8v2=`rLZY5I`KIMhkOG{oZB`j74?Te)IF5Yi{$uHADO8Uoe9jG)^MhLbnvUkrO zS$6WLeR%VM64)xp#G{?QS^y_Q51n4d;^0>By{6^X_upd2QJk0z6>J!wEDQZc z#*g7v{)x>llrTf@ts;)ND`!J2)*gCiT0(YXD`?_J+M6sEbv4={W<}Lu1_I)d@-{%+ zqv6^5#K(GKg|Xeto!*xpTSh*_?pN`B6a1!(r0HJ_>y!ty0^s4BrkZPF)BWJf8mJKi z4jh=`^Fe*wlbV*CJPc0#RAGB1eSKQE(Lh)n30hxRVi~ZLRwJ6}rFN$8F|Kti<4riL z=2Z9Wd1s%za&)}S%)A=g!UGwU8KSR@0mZFkcp?=%Gw{v*z;~o8A5m`?6S0i@y*~o8 z_%p5#hS;#Kd~eacmM+I&ZY~BZEHgiUECj;kPHa&MS-m50J8$lwN{A5ID3kjABp!R? z6ZR@%j{rfYK>4CUWNE1ak5Mxwgt^Y6bwi(1th1WsMg!*K`OE&7UYO2hon+t4vS;j`xpft0v(4|QkQs)b1Ay&# zXQX#4KO`S9H0E<&`<4&t%+)zAPZjKf?)iSAXbpmIBfYOAExeksx$pvuHQy&i^jDS{ zV#nTMxX4r{PN{YF4wrdhx@o9Lf&!wNTmUDbsd67~!kp00y~C9O{mB``jCF#l*s4_G zsI$$kGT@v9wF)4Y$TtW?XC9n|IZ0$#g3HF>>TH)X2z#L@Uv>`&aVECwiZ%@S+j}{OS z(>$BhthkT8BvePtcvPnqTk+x+);-2v-~e@dQO=3Ng*@H`9~V4L=>$Mw;EY*KjP8FRd^ncI43etzBIb8(d9KM+8+Pe8-rb_`3S5h~p! zaElo3q5PH?=gt-j#}PjS$ji7+{_j=^vv0++!R`HMx<{FyS|l0-S6*QLsvbxEeDFmJ zBqL1$+c)Q@w6|3go`Y#EB>3Sa4*kU23NTzOe zcB5Lu!%uj@9kN4LH zHB1kZ9#i!+y?3E-RSnGpZo(m^v%&9g-GaHob`J%lPk}(a=k|TNGZN~qDfQUGG;2`KZ?11?aBpB^?gc2wPO!w#RU=L?&OWJtX z>ln!}EY&Kwa(?ciP(VU;qO(LKJatkDeCA6SgC@Mo%{y5q5O5nD#$p5 zPy?KubAC^4rk_t08&x-#)8*B?$LO+BdQ?Rr9I`R^fn4O|F7tcC|wz(faD zU!)CSd|R7|HGz@dOQ-!FnMNGk8>c4KZw@=g^-g^8?Nk?Icmp)9`^a%)tw2rBY`uw};1uI$DPg77`>#)--R z?K#P!p{yQ@g6lHR81`A#$(r6si1@LN``w!eB5324SfP1Q97KO<-s12~vnEJKgYQUZ zace{pvm7M&JSP}km+<-U^hVJcxbNI~7JfBA;&ae){lIhXf3p7g?<*xG^RA)Ad6sziHJNu&_`iH+odmOZ>va(Ip5;T{)#=S=iVxIn=Jt z__0k&gkQ(m#l&Q6C71BT;uiO0Xf-z*KVQrocp4|ClGV3<*?gJN*AYALV~oYitK3>o z7?ANhHd-|&2OuXx@s<0jlzrNK1T$^K%nlWO+=pTMq{*vPPMX|uyoJqn&=;Kn&f~EZ z#`;h5p)mWv4C)I*rN~$N{`G0vZ-V_@B6h!$9TYGOnv8nEYppq6VPIgLa|x)Y*ze)T zx~*2UPsZk`ex8RCh&`j~>&!Ckz4Ns*aV-Z4z=)k=OEVHCW_qdx^6d-@DBPjh+!0Fx66tV&dGq&CY;D6waB{G4?fTB#x+feM6^j z49g5PBf~cFgL2S#rhx4>&-9jfH0I3Xd*dIsqPZw^ZBg{x9uc15RD3=bOEEZlKpg&Z zlFBdeEKng53@rRmHVqn+5Xf0a4o&Dk{w7_6_cD;4T_U1ncgWVR&pxX)ql`PGKz?&y+~)1tEF^G*3mhUEa+dpN~l zd1d5pY?Uf7>g^z=D=7O54G;fI=UbPrAKXnOC$AJ$!r{j4auVo&bHU5{jTNY#=Dm+@ zf}gMC&n1Fzz*Lf-)1!?)nq%so%zY)w5Llyc$rvzArYut&&2}f0DN-SjRdOL2*Jyh< zyDLj)?*$<-ahKqbSQo75(rii=Tmf$1pJQ5L5st+rv*+_Emk0rf@EoZ!hCiB}gM$&` z#_a9wVQGZs7+3kt>S}>H+j*8T5*!_E;z4@Luj{wu16;?M<#hW_Ln*vPad}8`E>k&& zE=4I{%f^$Gsm2GDOT?R$PReR~+ykA+5@@p^Qxz#gfM-``P@{}(CYAj>JHzcOx>)9o z>6-n6KgFf9RqA(t$P?pFxy1y_<_BoYSBuI$%=M^UG~8*CE-FkKc(tph9M|TVQQGHE zz2(+bBqxOaL@prNdG}>$NP#7k!N{-dhGK5c)h?7KF*Qr? z)}17}atVAM2sdyxI+ZInE*ds%CckBxrOy%2f<0x1H&*H%j8)AkHFE#g$_aN$^(^%c zg-g_D(^r2`-Tv$MZW( zwVQf<_sY%#IP9NDNkJ+EF98jW-qtAO{(879pI99)BA-icjv?0)vzSrkKhP{;02d!Bjd7-xrKDz7wl)pwH^G;Oq3mc)nWB{os@=)Nl7$BhXktLTrhAU!Bps1 z|Adq8Bs)oz&>nKEJaFbTw8d@`Uhc@NTA0V#|9vN7D(8i|s21&sV?ZpS)AXQfTqW^P z=en>drTsfu0gnr9xt3q9Bm7>zZ<%6eX%=)DNGLFG;=BZ_YSN8#2sRl5@R=n^AvJs<|!ZA+&t3x?5Svh%Q-!G zbTf53s|7o@nSSehSDL~ZBjkdGmDA>i!(J2COO}++G)s(@f8VLOUxl}1ao?)sz=~d5 z+Fb1c$nI+RFZ=&F4|*O&`KkxhfBg84;c1%={8Exw&WSdi<{`q|pY z+Z&nRU;<~pdp8j#PmUO9B;$jUnNJRzq~V`f6FY3&MLKV2O0VI@`1RRzt5xEN(K3#h zcWQqWAV#DJpkxOpnZvIi>`=dm6h8vEKl5tZR_u7v1P;KdD;2@Hxj7feX@^U4##80p z*X4-{gLUA_SCADeN_Y+_*?8Vm4{Rn<9be2|?3DUt4E67ncA{yGgYBmF312a$8=?0^ z_~IbrFyfH0^7#vTRiwoLOcE7UZE#_mfyjJZLZcSyw|ZeKu>4+)j{ZVG`Ys-}Kiz2Q z71xF#sMoom<{tmg9AZd=C9@K46U0!epQ$}LxBKD*r};;G-bOxSY!=GRF9|4ZO8aK- zFnhi@P5qPL87Hw&_MLQ&2U*V1jPuZQk7@9y#)HWO*k^tp$HyVN+MZ^pt%29}cy;?h zi;9@gU;zI3gJ;HI(9vw9bhhoQ7=8EixDTRC-*wF5IO6uyO4`0D^6Gsun0xDc7jgbU ziu4;93|xB7QL%Rwe^2ro3uSjJ;tj!I1}GBp1pE7sVbqUxg3AB@TwCy93YvXD0!KFQiG=I%u9?f&K=5k(@ZI~rkf}8M_yIcd<6u&C zcsbF4d3F;1m5a_!7}q}3%X~P@YHxSjsB6ezXVQmo@K_Ae!{G-`2n!>DSST|vmI9~x z7NRX9Cnx7OFf3qBYoD19R_L52FI*RQ#5rV^Sti53LbQ0X{OH@5*JO6|GDczhta;7x za?U8IVcj+xa9|=44uj*1H!oJM8O zlUclnT!ekG7r`~(0LQQ9fdl{JSmA;?25vHWcEKN?Ge=9$MsK8|oCxRSdNvP#5Un$t zS%+gYlzLH9GJQ?Z$BqvEMZm1@y2kHuG)Dw|BYgslr}9Z|cf54dbz z=V*Nq?Y+NDaVPzv;V*S$Edk+1@R1-(`&#Ri`LD>PaCm;aD^m#=&d+>{Ruci z0v^P!lP!*jQP=)F4O@U@K@%e3q1{ z!@k>i%7HrLrbG`}S?UUWu3L%E$VP`puzowbD5PaLWfV$)r4z~6rf-X5_2R{gJnIRd z;J})vSh!pP23v^19d?vh??i86PE{QTrPn?}WsMr}nVx(!V{FlsXN#aRtuNp6_scWf z7HSo|{{hX;+nM|qeBQt6J^#`qpFn8JE68jl9*Q;Pca69Fb)#+NHr7kXf$rY>nqk8` zlJO~0s%8Z>u^tksZENe1)=hmF=CIn-Jh;b&Y%`tI>*~p&J6xH%u_Twrv+DmiH6X zIO1(zL97R0YukZi5y2yZDRiw}?+vVX+urlqGRYXONv*tOP*GHbGD~a7kT7W<#n{=F zY{Ks?rUr<`g{7!SerP%7K$oUl@xg zF-m&jQ_kieA*W@*P-l&<=#MznnxqN)CWZ<;C6v+_aPEES?lFKcC&+_EmB4?p(#MqO zdi_BZXrxs?@@7BkQrL1&oDH+PT)^-3kwp5>a-o=KgZc?(Ws(JJ(RPk>rSDkSeyQ9# zdSR~jkd+W!sn7HE>S4C*967F!l(~vTK$WDUxcuATBOoiRjB*b^YXs*JGO2sM=9g&( z=!*~tUW#E#X7&~-|IR+Qfk*b}xxxd37jsN{jT>)Ib0uxE2<~$TyrtE3k}0!Dl^E2( zsTo$Bb>QF;60_Rz68to|#4CgjQIk|uB!Kh%fI-{Q^)6%tTa5_=rYCPir|){_6@UMR z?fswQI%1A8p90N7&ZiH!8}~?H)zk)pEho4VD&cK1g9TdR$UgX~R3nMknH|%|jD8ws z-_zIBY*pZ?m4@ooc|P{}a>NNp85ENRl)}pTxbN2panYNOJ3g?nxGGjWm!h;$$hH1V zLibtjwg+sF5sz5_y-Q$72vK*kIM2uO-E5JriQj3esK4Xk^ z(e|9LuYZcx>_cP6z%8ujbO}5WzVqHWgH1-11}iB%3@j(se*}r5^o;=`WAEVrTW%!o zxi#d*>Ugcrr93Wfmr#GlA-?o%A1$>ip};1QSf1!Cl^~K-;iDSdnP`>Z7cV!sR1fUx z`jukt9GwNI9jas#5O9?4kM=f6k-Xa}z(B1C+pjkzjk&&nS?HXRTITKe(P@(7AM1sW zv1I{Oz-K*PqqDztPW-GVscYQbbuOAOJiRFReVA|A&*tvy{D7Fk*B8YJur*wKy*SH( zUYJ!C!hZMcYsEt5Y3>3eUE`2~G>v1l8Y@kqsKSTPV888ZdR{LdA555NBFf~yGjMm= zo1PwS)f|kw79|Xmho~8?VQ}-KYwycaFJ8|!BLi|1+`I^Dn%-&BOFlI|G7=&4!|8t= zLRbM~Ky%VOJgmiNbB#xDp4dYxP+Hm`-=Y%&6tmaR3ly2u~PUS%ZUT8&o3-kr;ux zc}nZv_L^~+svJ`*muz)fRo*zpq0btpbYmQc&t0Xfftl5)x)@N5{IxKFi1wzb<{MOtPZ83uSo-Oe#LWrHX`MjX6$qK?(ga zI$C4wS}p}LD%ma141VaIUPsV;*)FPSA(Zy;unPD4m8D)SokWc1nxi!Hx+J&Ei7U%A ztKMFT+g(=XV-a&b?&#qo?W|%9dKq#yxpK)YB|I(%YU#~3?f)ZSliLkaD_%r2}dH;NPbGb`?}-nmO@>llmFoI#QV$qCC&o)6aA>&z5Bv>O~r z!=4}hJ0XIiK4MaxmF%w|BnDEZHL%*_oUQFvmF;^E#eeU=j4Gekr$F}$J|yv3xXj2! zJwZyMn4B6H|H_G82Ot#?lZ>d#?zgV4u0L1YhLt_@xt@1Ucl3VSlylD+#X=W$ zzu?{@6)BR|omT_-NE5ieVZk20S7fKNO)zMsMToOxr^MltR!OvmhGj33xB^4yi0J6P zI(Jui(id@xo*H7FbYwqb6XW06hDg@Xh=@y|*gtE^h0L;R*N|+s75$B6>pU|EV515D zb?N5KY;K>ltLwWy^ZLBUCAmXEZs^+@EhEI*u8m*sf$aE!l@)hfCNlM-wddu+&urpDywybhLojML>*~_&@i;6710Oz8&=$=?Tk{m;CkURA^RIa&XEimz zC*fZT&G#f5uz9UbL8A#w1!@>W0(O$0{s8)hDQ_$wFy#I)2IACQ{&;O$XKTpb`XY;X z0eSdqRcx$$?NWSD9UypAXXnbAS6V2=7X;S2Z#Evw_&bHz-T1E-V4RM%#Zx=h4#R*e zYEPNVhY7Fu>Bsy zM2cpU^;sl`B~?7N1TF{hjef)r$JJGNfMzh@{*+`OYExuuBKIldvEWaw<2;qQ#ws&Po+WVkdD1;l?o3y0&9-BGnO+(x4w^SwAH`vtJ^bUaWHL!CSm zSnY_S?|mUMR?Z|F$WJK8!GEnU%AvPFINi7`t)R7KY3m-~0g!qNIgLTK`4#dbp5$pm zuC?FGfFJ8cR;l?vzbk~jgC|#Ur#1T6A3F1nod))tI%R+Ey~`ur=xOa~MO`Akd|`!D0hv#ZS0eDecKP0&6eA@Gq5wv~AiRb9WaYpZg0I6r^AMOI zf>V$jUKJS1Qt=wzzarrVizi6U=!8K#xRpcO-wJ-p6)nAvx97->Z2XSKelfSXq)AKf zcf4oJa?ScOf4%;Niq?c_P*{xBA~Op^4P9!qc;=OVjx>Pr3|8r1|5OcoaKv5!I+Coi zO-Ju)pIJ?1o^aES+ks7@v4jlz;g^ozlVr{Fn*SWuFuxO}4<9gXV!}_wIJb@Dt9i$% zJhI;^iZ`3DI8U%h&R)Wi6Wj|Jx?V>F)GPnJl{MyWekEf-UnzR7aN%FZH@}xZw6X;8 z$WY24J(s-$!@v5332G)Ma{Ok44`6U-Vv^zRDag^rNN=Ciz6JaVhz1JQq#X}1ku5%L`xoY zp0XsNV`mK=7f2MQPRN#U2XCla%9hC4UiMH9i}?)aGgGbw+LyKww)Y=++L|$O|V8b zWrr)5Egj!kAu4B)gce>0s!Ne&^{bdbJocqxSW?_C5;~Wa{kE#m#1OnN{5;tdyfgN> z5s3I5(f_T?n3X{H%_=>S_^!!E{67P48mhT6P;y)c2}7If2!Y^E^F zP+oe+=iFmR8K@9RiqhfBuG0(%oLEp+8=sqA<>Y5o7Cuy=A$W0JmC8h1IoNwRdX}-9 zFbg%Wpwzo_84(wN=d%~WD62b803luk>NGT!t8n|lMH4N|#9O8sh2UL=52g{Cnyw<# z4)zu0|5Y)5)Ae}&c|V{|1ED@u@H-TGCCuj;Iy^p}!+YuM$vObT}4MkYbIYpxe=kpUk9jX`4K!94K=8Do?+G-;?&s8E=?>Zq}sbIC-BBmAIj z&9n3YPO^N1f;*)XhxP{+of_J?b7B@Gq5vR_nIIPf&fp_JJ_wW6?gQ{6qhqZ++-b(2 z_VdA|_AR?&$tdwUq8~|Kp5-NPm*pHQij(B}9v`7T@6F%F6Fr-fPNEI|YtGu@BO2%2 ziWgElY%@KhEZ$0t*4Ehb<&sScMHt@D+z8QQh}Bvx6yM7TKhXY4aCw!1U}5`4T`T)e zFw>I0ny!f`{Sag0v0Z3Yl)Iy==wWVR`d0a~_7qW*pQFG%N2cK%Dq(8R;V6aO9!6p? zecmXer{E|p}t?DgR0CE`#qmFr5v%AM>sxG z(s5k1%ms4p>M;trX325qloK!(2V7m8;_)78eB|;t!1sGKWso>U4=C&vVKJkn zr3K?le;8apad+R#enT^o^7Hr+mTXDaV995As~crMm;kfp9+)>#jykUBq5(cd6)FD$ zt{V1jYt6f~KNWZ^qAJq{naN&Kjx^{I4ivCCa#bv6FzolO0P6EgQ4UoK7^cB@7X|u; z^L*|hs9%Cc*Opn_d&^L#TiARltJP}MLPoaN}NyQDfWw8xBC z^*MNmYtSGvH&hY8fVFGwoDC+Yc8T1ql{=+Sl=4D{!0Iy2`_Yu2xH!dmCj$NC=ayNm zFRq`g)^?zZd~^+^EBXWPuFRe6D&e0d+!$-O)d_5Mbc|5jgx%M%{ZFrQ(z#gEn*Bc( zrR{nl%GMZpos2ET`Z%_68hI+eR!pcVD$=gm#{n^M2l2Vm(VbP71^r*`daC!(TO;-1 zX$C}jBmiY`%%$Z4Uf~z}u54_8mlVkV>5(iDX3PlJ5BvDqj20MzDtP1AS2{(DC_B+( zCq5=21A~fL!i9E!pG9dI%zmPzKK&zvzAUg4apUnEvmBRHxd2vI$|EaI%F2-+*MyG( z7vJ)bysi{e>irfTHyBY<-PL>K=U>W_$UqR4KbC8AH2P6nfrne}fK!vlui%OT`)?HK z7@c7p!GdjuXGNR{ItTbIidMMNeiGI($Q)00&7D0_u z6n{~Xmk&#|x{)99xEnq;YEhRv5JCbs(A3n^1rwiGSXU@COBE_8RbED23y^8Wdjs#Y z9aoEEnU*#~59!iKw@%s7dlHM}B1^(jQG&QVTe0e^Y#F~qywumcb64qabi|f?aB!=Jk?q;Zs6W_ ziba$3$jG*G-h?I5q@hS7l^0CX_t(cP&OH{>Evm}v&#Yd)Ip%(Wxtx|KZv<|pnw@Tu z@=@mhcCWD1c9g`^hu@+fJ$(4BNyC7gcxL&!(VZ+Z+2pA6-&6)m^tBIJrxz5x7}*uN z!iGk^uFK;Xgvvp(y{GvRoc%y-$|xxz^ABh=zOniA;>-3z56DT;c50uS&B|%$!=4??Yxu{-ZZ}+Z$o{&>l8Df zYohz6_}+qS5J7IvduiK(S1HANVvabA*DxkBwqa2kI9gjvU-OGB=~Rhv&-RK;Z#_Ao zwQQTPrW_mjjd-?^MVRw+#@@zx1L7oPrvmaFA&{R#B0$*CJ-R2Zb5bJKS+R%wloU*F z(z96DilanKG!Wn#jNN^X1xjLtlsycg^$gOEb4LF z6Q}I?_edi*H}^xBW_u19eg)&U!i4?1j|ro%`UfJauOEmraI52=6g{=|xBop(u_Jts zf!k&%rS0H_6pb#=*ShiTGpp&V!{mJ5xM~$=x7{TQwMqJ6C0NRBEh*`3@A{xhLh@^W zc0zl!<W)Xm+Lo85q zj-w61Jauv~b~3-`3E#6>ljjOFw?9i>QncV9uG|=iNb{`@x?74n{@~-=&X=>;?iVLv z6SLjP$p*1WfBTOU?!K0swMrKuz$XqWyFs@b=(MtoV|X!%G zCY2WxWbFK_(3Gp)NTN#un1G0=s5CRMFGTCuah2?Q8`wg~>Zh6-THptQT#K5GI_ybO zzuIh)=?Ps|fTd0Dy6G+38Gpw7*Y+WdmMVY$3`qqf;0{M~`OI*7AB0s_O*t5#rKtH=KoEvbjsKK(Pk(nF*JpOZb}VC%(xkSyjNhv+Pk_$?qR@4Doq2s>}5k1j59 z@GYp-;ii|TF+Fw8kPGvG)^JRP+h8Kb%H384hd3|#EqEgdVup2nA3YOV?EtioAE4OJ zvh0OjcE5~P)FuU{FsRNsl7`VIQkc@+#oA7A#hmNijg6Mp=CZI}a~*gi@qmf=_|@4T z@rn#eY1j6jd8KVOBBg4BDpHJ&lCReWE@EHlCPToaVAO{K)O7sxC}Op>NDMilEDg*} z)?Bc(%HaRUyT4oB{^+t0`QXUeijJQPsbgp$%eJ(O;43d4E4hyw&K3*Yj{QDtkJM#O zQ;0M}<%Z*Cvu!91kFluV?#UaUv}qJ$65!%af>Y7S+4=R(yb^>6u+=@p_d;!$b0OV-uJIi8bB;Q*W2*Oaxm{mX}U8)j~7Zt+KP>j57W7a@HutoaJ?={9{0 z);DLXLuXZ;-ET4tLNgX#wV?A!Q&uL^?5$SuAB1mzi~I)05}>XdzK4ZbSXDzW%&9W=GLLx4>= zO)B%F)yTj4VTZmS5b@6;U1#=obT*2tmI4GH8XdZqI5v9D7bEit``+C$?wIBuL%U@pNcf5A`YZ?)+*UrL4U*3ZjFuO#kGI@K{gb~I^oh$q&wb^oZqw+GV= zWS#;g0s`!P8yuX$Q{K@RFt*A8J&nMlJA&J|<9z=MlhWvu zON&r*z0WjT9Hsk7Q5G@NC;7l&m`9{&G8DV;fcZ2AdjVf&yJ~q(i2Rwcd#l?g>4NYU ziq8SbtLi zPhEa_{1MB^pnhI+mRpQF+Qg=UWAxgkiH^4T7JAoJM{CM|9W2%V%*DTuD)oVoFuiq* z^83?QfqM-Y&z(vxXyY*06(pE;CkWkxyseU#!z6EDe&amuCz-|J#G-v{G;{fBCpCJs za#==AD}S&~}bC0_OdViJq~8(Z+%YA9xMFVPGKPA27Uw(JM}_ zQr7YCn!BNkn)*@Zg$}E4rA9zVR?&{D6xq|pV~o@cAH-|sol3C(t0`2gqZy^sILcTlI>kwQi{1|;z$3W;YTYJDCJkaB(@sN_7di$=^Al2)Kss${Buy}gHNyw?{vC) zl#4Ko8=l4X(`c5-RKzoCew+(hED4-gekn)koIivnmvgA3y?o@)&UX*^iO`RH1wk$a zx2~M7Zo=3fGFK2=B|o5d_Jyjsa^~R&J5`Z>n^Wz<#uT*bVAMue%b&id>K}P@stzSx ztpTcxp4gwKUx?D*G`hrD(++M(YmLok&qv%G(yLFEvOFYH^8`DsF7PBrS#4Nqg{XH! z4(}512)WAq|J8$>eVMCofcbmyHG<~@> z$nw1jq6o%%V)^8Vw2a$}@S620p4v7s;=l`a3Cuc;l>Lf!9dzHCTpo3n#q z^~-4>gr*^YU$A<2uq3;Ehbg1;lpp16!{eh(^-ry(v#Lu@i7prF&<%}!KEMcW+krkI z*&up3FfSI`8`Zqm!wGSEk&J9l4>8Y*=LS#Q5)IvqD{IA+JV2!sf19UmBaNnQlY26! zpzhO`*3)7A4@LJv*Nb}I(cBxn|AEJVg}7G5xBZ+q&ab+-Zhnh=>Cu6W&ZROLCx@?( z_fn*k74I%euVYuYPFCB~J=GF9th))j=$;{>TW4++>Axk|@w3DAu^9})=aL3!=S$!4 z{AtMK-b_|5OfBvgeA7Bjs4W%k0wVw)G53=YP~9K63>QKY*(qkHXfs%7XolJhQX|1`^Pow&1Omiq>&jN8-40t#rXWM{l(1Y z#$URi2W#559Lb~mOn-G#I#7*8(c)Qsql0Hzy3GY;%Ko~pZ^D|nE=9%f%X3?rQBF&D z2=1|G4d90}3RfRVuw-38#%Lf8a77n}`b3@m;%Rj;2)!Vwn|>AbQ)^$R67LQyiOHcb zZ5V06*&mIFs1&tfXQU?Rtt2Q_kRb|PwGa#a)i!jT`1)6)R72QZti#3+u^gd*vYwW%>m*f%j?Fcsp6fo)+W~(S zUkZ_6|5x91JS4w@@AruWt}GA*L4NQ3g>?+VfVbaH+4QiJywomhx;*Bx>60P6g_^{_ zob$E_n1`?6l82QHZkn>fo&=^wg%&rSY8rEN&ID_gPJ$M%_~+bQ0>Y0vj67?(69fue zjq#7dP*$tlX8mWwD0wco*O=PnMfHl;dNax}u5*)P|0cM(0@`OE*W#(U+q{gIgiqvc zZr90~Q*3*Y-L)F}k$O_SnUQtBY85Ezh-zZ&{!nB0a0L;8ioLG+a7O=We5E@no?LYU`*+nRT+ zRnnDRt;(q@lJZh@YY!LoX4_sIp2cn0?-_$~0nDe!_iM?4o|0{(AH~u`DUT)LfVGPk zGIO)~A~%J6o|JuA?9fI~NOodjS<_+bEt|U!j{QVV+P5b-qi>j}U2C)570%+tSR{S% zxAy*rYWj1cXlC!)g3Ip$-_#C6t%Z<4A3l7zR#2V_ejTKl+Fcn^InFwG)**iFjv+`5 zfK*bjUDv+h#=(rg0->jfKKLACYU$y#mB zznKY?ZF4E%R=O;;a+R1U@9fX!iHV7jE@up6AY=v_vBQSy=DbHnpyJ;UUXP~CdX!Up zQv4GGodHeJ%td(BrI*PcAy+~AyoicVP|E=Iz zIJ+#gxuU*J38!Mv`fU3A`OuFi5=PYsALtK2vgS}8_s`nR;r49vbSLXnOUU0Ja454_}o~<+S2=)lS{7JFn z4%mH&O~C2p2L(H@!xhFP>#q~n*sR@9LsL?WhTiE3kpO12* zV}dd%`+d#mi2WAV)*EGC9kF#9vlo^WUs=5oi}@lJlA zlZXLpM%oJw$oVR(b9~i6@F_U$KEzC{N`I z**}%J#r$6_fJ+|LcqMKDKk?U>4Pg}d78UfGDu!e_ea#?EE-@d#2LTbVd*x-cse$aN zrluBn`XPJ9Grv!M?sIZiQH%vIq>Zz3aLgdL4Jb^KqN)-AO`4G zy^sx)`s+f(M!k$mHT%?ynvro}+8E>p!wDpPVr@kEU+>)I zf9ClZ4<9{h0CfqOhb}ve?(v4pF{8^+F#o*lQUWM-ijR{6@gX$Z*wjF*u4(orH#nd%CMmXJzm{k6= z#UrZ3@5Qkg!CU!68B}+eU5fqf`;%;3B!hm!{5Hlb&@~~PY}k!ih`q=XDty(>Dd39J zKbH4L<=cXPvVPpbxXESymW#bu=A|b`zXk#dHnI9wc3enwW$t5fQP@ zE-a*((EuB063iG8GaY<^`NBuozr(pk%9|Kjp2j)L|Dk7PV@rjlB0qM%<#xM$pIIoA~z1}&-ZvB?n+@gReCtul$p3` z0e|u+JZyX4fo#cQiP}S0(f?qKGeFkLW)x#o{XrfW$Cf1qKX<$i)w(*<0}{1Gll)TF zTkSI(v$L&m)T)d6{I3T)EO>xy1TNeMVt{NK@#&a_e9Zz)JJX>lbER~>K-+;6W}t#G zY{$V2J-uR~ltlAh7D{ax!v3?6nU*QWxR+q;?k>s_suxTuy;!y#_SU=aC`8XIC!S-% z{Y3Bm`kx5}80yZd9+DoRoNLXGNM9^nvzp~rZTD7YK`r^c3bdo#!VYV-`z7_*@yHp) z@O^AWpUN7o1Ah`U<2*|p0^{5I3;5al7m_)A^#n~t`fbD1%xqQASPUJ0$$S`BC@Cp{ z8gAdQ_6m}|kH^QNr#~5G1uxFCEDhNDg&B6|3ea||>b%a$#_%LIgMg(^V4MIE1UxNB z1|?cLR!8Zwm1RnPTmYH;O4-023-^}I&1{Zh?{Pt>yQAIc$?#KJ7hP9Q?(t`rjj9)4iM072Nxc^m) zNjNNY^UROb{F`|=K2248Z~aR&_eQ@eb;#oUb&{iJLR5F4{ySWp`RD|$j};H`e@%dR z?*H=|y(uUt&?QOIdQyy|(IT9witR;l0FUm5xc=opPGkHa*8Gx5P)h_D?GuU{B{ zpc-^lp#j@S%o9cHfrCFUdtWgnxWto{g`m)!I2(*-xjG{ zwCSwz8r!*MGX#>Y!VU|Wfdq-|| zJv=qcZXjOV5hDzvR+Eu!RIWI^O!qih_1S?a2Rd{OpioU<2$2K6N!_pStfxQdp{MF0*L++?0b)E2R6}68n&U)MTU!uF)gSBYcf*pzbTfvj>*NO( zamJOGbv!KFQ?&{Bj44PbP~;ui{?YQ`~bCmCYSh!alW3|rK z;^uaPF-k2DCrdf(s5-{{+)U^eH1uJ7u&1kpi5`N)vPf7hOfZDn3eq=xVSaL&mHqDl zqv!jHTSfY?t|o;TDzaOeCb{gB=ZvtALk7MuLP6+uiuzZHX1$*Ui8DvuPq|!jKp}DD zp-}m<`a7c;+P2;r47UhF5;PKjZ&q471%(L2u6795xhQj&_6WAljmPsD_M5e4g@7fQ z3AIC09UM~Js^`Nj`bp!hw3Eh$GZrNkxQT~CK`@5=qM`>xl#0|toV0dA1O#t-Rm*9YSV8X7nf~1+#cTdQ08UA zU*AousEC1K==M)3LNGe;6i^RoUYe`C=(K+Koybjl@!eY8P!`H@t z>ou8+vOvwV2=ZvaluxGy&`-k%hMA8~m82(_G@aYXKCC7>n0~(87b`D4ZGSJbFxw~4 zGh~Kk;`+v!!);Kp4tJmVqy`t1(lcg|`6oxzt&mtec*W$BxGHr82p&22`T?kh=m5c< zBXj3(7~2ZPBxmgqy+F`Bf16F`p-{u>ylO25pJt&zQG15Y5E_S}%s=(1&9(b|zw154 z;T6c$F3o;B%EiuZ1XxP&NdCEGE_T1|}%an!*ms3gDoe;3}vQ>A}48)|$IPJ&^_ zpcn4-6ah%^>SuQyhKxK>4n zU9pf=0^3<=k#Xt;p*TyW-2{qV#|51zX}P?OiQ<%D+){-IGBsc|kIbt$rTgc8_}zvf1NE(jU&2kUN{@a$Q$qUt?y|>R0JPruQ6x@tvXYE z0w6=9IK7B)F7Wh3g(ji>Gcb+AlGc7n&AR$!@mq?NYAnDy#b$v=USJ| z-KYS7OacZbt7ar@KBI}1&(Y&DHT%#P?J@tWRK!>B!_E}L%q+_MqNC<-`46VnELjP6 zL%7r#l0KjeS?+|I`*FyG)#weSI9y!9VpVI=L@jMu|UQy++;AL+U@Jw!3+Kz+4%8woG z)`LrE8x5A*x5L3xf`CgjxWE*bBez>Zs? zHp7QQZQCBV<2#In8ONOX7$7nfjG>yQxW7Ta7X$QQ7*eHxH`LQbH2#j+cc@%t;iDBl z-NcOMF+i5Dpnli{_Iz)xt0RVosEsfDm|smhC~`uIoIk>RU6bc_xv5<`ZtHEV%~3p1 zRz=r6*Z4Lbk7`dfpOdmr*zJ8}W56RfQ)!8{=E^KxA7u^DV&7(9$xB z#>TKVe#R}3q1fo5c)F5JDP&3i1grJ@NJy&baO^_ZY$t1gWi0BVC>@ij?gW;HqA@f{ zFc2apBDxPXq!1)!K`Cei9>?^|%;|*%XwXF~;09pl+1r??7iUpP^4(B1XW*nTz-8Hy zc@=ku9z34y0l8XUw^vUqh)s>Oaq|2ge6?^L% zZ!(%*Rt?`gxf~ zHm$6oWug{c^Cr+9jb$49ne<^>?@tm|v+UBGM}F$w9#<`+J$-y9*q(E3sDIu;W;v=K zJ`0TVW}yczct6KC>}Epdz%*KR`|+8vSysF{<0o2p}Bbgv+4d ze?w0)Ppp4*Anb?$95R}C&+^Jy&xNFXlOTn1wtrQDZ?V0%OWVlzw~1!FcYO6Vms%~& z_wT;ID%P1#jeF@YzlQXu43}>SSGibOiEi!QFT`!kwfP-~-fl2KHa7@faIE?uSzm>P zg(b;(o*I6|YA2IYQ2gi-|Jw>Uo>X0a{pd)5IJ(K8n@pP@ntx;;GMtGbGxyMzosxl{Cd6hq(^rC*A&-e!c z1&=;KD^XGPdR0eUQE4L(>z`k{h52;*i<=;Cw$BZ4B8!Q0){0<^#bL z|4hY%xNR8DG+Hdo`ZlcXF%Gz7;ZCc{6uJsO1cMoLSg~O5#K_Yw1yy_WsIEv>pD+aJ zAXeS54@s{dk$k5}=<*r9N0(>wi_gUJh31+%8J&A-t)Ll;su@hiL6Hk81Y&AxGo|jq z0d zxmWk|y$cK>y~~n=20_`Tt$(oJL-WU|V5xq?a3agINAsb3PFOf@9_HSjkRs3gBl zR@yG#hKFGczli3si{m=bmvyvV8&)Ycd(EEp#5O{xS?;Itt6(&KHl0IyOD#ra`R*bs zE2|+0%^;}<8y-2BraJ(n3yH&qb7+Wd`R~zqnDhUxT#3(ph|wp>eP0VksCOYm2sE%j z)FY**?_Ru>h8{`8b}hQmtEBn?ulb?X_p!#rjk>cBhzvrPj?q%%nz9ReZ>hFR9121Ro572MG9MQ(~m;_0MgP+PDUP1I1MC=8n|%g25ge-wp@s%YTHkCapEshRdY#`e!i=9w$Ml%ceopFCeCeUPDd;IHN9 zeA8~9v^+RvBAIyM(~jKzHZ6NVEzo)a~eu^`A$Q)lr>c_6F7)9vP!ST z^IOP5ywCd>KXY&0=B>(spl{8ruN!)O&0B4*u zm1Y_~oDk0^q8{J4_>9B)bzu^xH@@_na&n#;llP*FzrQVDHrbnV)jbo42iq{^^P2ZX z*vz;uE8F6*nU!>VEOV{2uDsS;2^rOYezEYXldvi?Rb3C6mz!*!-4N$~(i)OpHQE-If8+oyS87z#hXCe!>JH)l_hCJ`5e)0&Z3J8}%mfQ_WNru23iz8&MG4GPn8sawsI4sz4T#{F9Vx(f{%#)uuFitf zk(-C-Gt}gIB96B_&)o*|^%S0k;XVhz$LPto+S9WQ&(EeEQEE?~c;|FizM2i}3VPmQ zC#uW3-aa^P->i4-z`tSYV*aU{A0R_EL8JIsUA-BJn1*>MZ@dMCf86coS78an13xnrY83@7*ZKa!uYIcu(eGEDy*SZ&St zePnHQUGW-T^E3rE+n;A?SvZPTcsvOv&~_m@9dMh)L4JvmmMhkpu;-G+1Gl_|?);GN z2G@|U&{ZvtYR8RCD1DG63V8hPivRF}_LmgQ+K45t-m~7M zSvX~A1)^rjLHiggD10pcwT!P=T9NDtdiC2(mkA2>Rk~@ASCE+0xF+3GlmOuVgLe;r z6QWgU=tV}P<0z9b|3S@ca}|%6&LU09NQqfiA@nOxUwX{Q93L@evKaUGqW3ui`$d)? zcgeo;_ey;t7x>&bM7?Q2fA2}pLV8y9?2Y8|GTSz$n1Lsk=4<4S%%<38s>CkpnIzjX z74`~m_5Qe4#10@^NF~hdzA=z2t}|XB!P4{DI4@yRUxIJ{ZzvPDMGNZ{y8Q`CgRq_- zYwwq>Kl8Ixz&xIRT+DTFdDm)1?<6p;WY3?W$O%Hk?>cWYg2P=LlpI*s0TWFx>Jk!R zV$V%zjmjZ^S+eUrB4zT@w4EKZn=Jg5fY-XGVpQGU2AzU=#f|F2x0;X5{V}nSK;>S43`(|l1I;QPLqwEIql~~*T5ZwL zZn9i_qx@N_?f+1?s`3bqx3ObiL8q@d@ooMV8^B`uVovpDQNseqZw7@wo?E z7^j5<(QaeNNNgDt9Q>#`! zmRdyI1WgdA6&`e5LDam$A9o2lx|i>j1}4yv8jpJOM&Ntd1t*9zASPf8bO{7^CUBoP zye`j4&b?chxIWGsl>NG{w`P78`) z(OfkFvxl))jurfxQ7V`j85y|-^-0Kge(>%)IMOy8^T-O|3qM+M3(Ak28|xQGJ^!9< z8#&9LaW~Tqhp2K-uZLcA+DZ?Ue6{CoG`I!^ei*Pvf~?;s`SPCtx~b4-Bv*d@(YX{O zsN?g9W!mbwfm1b?n={utEA9pSS6-irOm6(^C(}6Zge&@%U!C%5`O3DqO}rvL=Q+wPJ`<{59NZR2Sf5yxa}ubz$TLr&rR zeh0AgtEMyd+`x!3|kA)AH zg*AtiiY)eoiD`o^$SaHIdg<9pg2%7t&*a7SmQ@fCYjAJ@b}FNLb9;MxI=^~7jB`mn zi+2{|o+F7YJwJ^odVOXbiGv1N}_H}Jq?lb@su;OM~b)HY?IlOgv=m$*gi3J$I`N$inOO zY|AL}bdTW-QDZlDv)8EXk-rR_LJb4=fu$Qzz3F(z@~H zg$nEX)5=Yhnx=_S_IK2bX!+o*Oe8bb@KuVRQ0WP8;Uii}N}T+#EVrLk?sm3Ecy^{h zN!VQip5FSW(hK?S$l{xM|fWdIYikiD=SCE zXFb~GJES+47cu)tr6cehDZOq~UsP>pYyBsB4LS1Q&pe-M_5@`1w@)hY@js?&if44zB4Tb&;A^&6ue1qTULGl4xAi5MYHZ|bGo>2WoGWtj1Bv>3 zs_gUwDlXKQ$nu@$Mb3H%8}+yK9w>$fn#T97%n!&qeWSa9@_rW6G&eHplRX!$1xdhn zW8$6r>q|zz_^{lZ@(Ty>0x1<$D=>s_MaD>z))(Bm*Q<7H*(yQI_q;T6`o&fy>cchr zB7*woZ=^YBc}RwKcP~}`ZHbe3$vXQsyzj|jGP_?rhLYy2@&CsHfwK zTt$C6k7Rbue6o3R5A4?PzAy=m|2=7$YJ9AyAj^Sl34n;!*4{3C<^6Ss$kbO_K{_(O zo!{-uOi7?`FY6WFEf+V$%HJbbvQ}lidNqJBQtGW!v-ibIU-Y!t$UZ5&?}DS5eZCey zO3Kd2QiKF+^lijK-uK13!tu$R5$0?1sKkD%UFwIlM-h`#9zi%EUs3 z1ageu`^5|mcc50da_%!`Q`?7Ey0sBXa>E{qqk0Z|G+)?0rPw1_2^Jsq@RC}|_ z&v>{Ok!dUd4gwrseyd55dFOEynML&zV}yl3F=ZqXZAwM zbcqQekhj53aYEP|@aN!QWxb$&IpXd%y@?#tMh{9YuZFfSHi-U<1ZEMD8j87KCuaYQ z{bGH0q|7Cg=2&bCl*ueSV@o2B?-@y$3FS7Rw`LRaq`r+O-0ZGzm!7~%XeDNOJ=|F_ z_rRtlF{ts_KIONs(R=sIR7tJZ>RL`!^;&Rn@RY;Q@*y?xb9C4g>uN|Z~f2;P8xlAgg9YdmhS{2^MZb@*usu8W6nCY?R&Y&&(wot^!=);!Q^fdT5s>5B`x**kg5_3dV!@6<;O zm{S2{Z*!vTCJW1DFE8fnISnLGrm+VS(ij8Z6V`A9LuZ=Z84^>iOCtkn{-17Q6%K0F z{(SJck|Qzs-pCWh&3ZDV(l$W`e`pN07}8yZJY> zU&mU5)d#E-o4i#sJbt%tt!lyK}XLy~hjsd+| ziWxtYZ)~-(cgCIHA2WtE^W82!jzK|{sHoJ5Lu`Vyf4oTi;;qM-mcC^j8Hqnzu) zOn*;Iwv%@3yh|ar{`S4)Y|7kzMpL99H1+hlr<2AE6}$)P(hfl+ybZEjLz--1xP-2o z9x)ARc_etF+V=R971jkMLNHMW$9{;uP+wx5R_1uy(c3 z^3EHfw-mn_IO~tLz-DC?YAbl~3=g)Z)pJw5fG|PpJ}-`-ZNb>p3iJ8aJ#DS2vc3La zOg3MF(malOQpHk1$M;lO8M22#6GRJ|(DEiHq=EVK#{sa5m|lu+xn@nGw?kMT=kKUw z$WsUs&)u-vIgt&1$MtjZXu_sP!0C0%KCB^m3)BB^iuL5=_?C~_$HOQ)kb$C@6WxMt z5=!b%rm*|A-rY1a9^b!8D!#Wgw79gyWw$5;^r3aJ(r~Cw5ml!9$xeH+s0U?KClXwT z2u?tH;H|N;Mr{v*f|Bz_PrC}^kmtMmM7E{Isxnq)4~jfi{EqH0>BTO-vEo2aEmELn zos3$- ztVfY6-_&ME^iJ%X>O?)W+SFEG8rB7V*-yKGKwSk+h{rL5+59W7Bfh{2eeC=R<4jOAo2M6B#{M|ZG zWOI)fd8Jp+=i}25P2%n^m014}MR0;Sx})y^O0@sAy_*yJy}Wxy(&F7T=eL4o>2=9; z)bp(U$EF{1Zyj>?>YDD*Y3zEe<&IN6WgxIQ_%#a$?@87KMDYH%ggj^a(vkRJhq-NX zQp?}}X$c$6$c=f9#%PL_fG*8foy9J*P{(8zetTq_C3XRpLiu(3n#g_=09#0^FIbcj zm%Fy}wBwXb3%+3*~M+_-&StyugJYC zK0O*Fe2!l1CmEUgj#sw({CTca4#DE&`;@-I%PV=c>sE3se%stqw>D7vUO!&tfp4cX z?=(NUZiWyofr#_G%|>!o*S zvbk|mHG1_c@5`);0gh}{%~^AEvSJMq@~yXDBeke!(MJvasnLfQyxFhw^}F^^(iPps z`AQeZ^+cQT)G2_k`Et-;0b>p*41V!iS?UGdvwy;NBw}3&k!c03W{1PMl|R3 z1W^R#{gOZQkHV-~NDXEldgJA8u)6k_wduUAByRn9u7w;u5`hHB(W5zq)zMKX+Mn~4 zrgC)ZT;S=mXJ3IYjNpuLgThCfW2stoHa`WbX^wDi`JUDos1cOzkPS>OSBhyEIh))~ zyJ%hzR6-pO$!f{8bpHr4R>(FtG+~MyE|PsW@=`B z-?~Gwboo&x+KPsg)V8urH5=c-hw6l}%W(CDZS=^<54+oQ$|(KS*|$SEH!!9)e$QjO z7Y5&ZO<#jC{YHpFM>}4?nifi#RMJFN{+7CrPIG+I489w|Xvhd^h1OHo<1fs@ikzl3 zWk>W-qdzar*=QBwel(Gj>~POWz|F}QMkUtETnn^*E)Yzcy=B^(kYo^fJiJ;+&29w8 zYH?jj0cnDLt+RFdA8CV_O48GU-BEvn)rEQ1>wX2y&Gt&@1Y8uGUg$}Dv?KoCs z#2Dk67o=Z2xH+i&mq(PGBX(|Ut_dhUJ9~~>YgQvYiSO6P#M(wK`(7Ylos=Sfp)ES7 z!X%?W+N8Gn%jI`TQ6b4vcRIJJSsFfezFU@n`FIgr}Ws8gt zeHSwVRq)}TYN`un1(MlXcGorCf=h@PK7G6qCX8ZG z?gHE8(E`<9&NLvHfmjK0R_39>X*Dd8dA5A-BcC(xnxqkXK5^X7FDjkCOD{KOJ|mwo zH)+$DXlAXxckMEBM0fEzTNG(l=q~BSoj8$IwIuu9s8IBpe`SbZl7UBqUXad{Uf!lZ zn7mO5$AMz^;pW!>oF`o6pVo##pPI4`D*M;s5la9+z1J5D&uj{mx}>nNc>Zm+DLz(@ z%s^m5&Q4Q2cJyv=`G)}J+KFl_YAK)L;A4kq+{QN5Vg@hi@+rB@OylK(aB#ys(_zi2 z>3zqY<2NP6xgxA}RgsPyH9bu~T4?I>%9WUuq7`&&H!`Vxb1~Azad?siJ*WRfHYFPn zXE}Z-Yt#&oO4(Uc5psI+93^&1yOrxyRk-yoX&I}{yo=MIn5yc?DVd%xV;sX%1MTR0 z6BihU{)UovR?#|B(^{|w>^sPiwsfh~tlN(WxqQxCtYeCmSvI%1r|@%ea4mTSHl~w5 zDyk%Ivkl9gSt4T&0Eh%Z-Sgee9QIZBU^cr*+eI<}>Q@i$dF{)&a#5o0CE-D*_b#qL8)VgF`!8(k}}0;mj?re?3um)BjVSgW23=qo|#seb-;2=l-*MSWOlx zFXvlZC~y7}3;OgDvFpRB`7SlJpHS?CJ|Jz2An*JGPEzBtLnk}UaIL1KIP z%7}ovdD}4@X|aR34;dBx8}>zsAAJ+3G!_?ryU!FGBxt6Ey=@ttxq1{+9CmWdwsJc0 zT_WGHNPd5PZKd|d0{07f$DM$iScpR@eE^xb_{ctZ@SqZ=nMgD=B8Y@am$yspZu}HZW{>EF zeyDHVa=S9Qk7}7n<)%8Pj9flS>5STFW1mDz0Iu0Fy3=}TN@!hDW-};8q5e*8uwZwp z7)u*V&EL*=7`|JXlWA5ZAe%Ti8b1R6Y_ftA88^fF0uh-<-amwp4|6R?yW$_I&<+11I|NOCB9)>0I%g{;TASaIT-nJwhvwH4Wt5d#rYyCD^Le#v#^dQ1BE7;m)}^1RPKyN8S~cqw40$3t2LAx~0#pn> zokq=*lT_~&IL=Of_m{YI5^;peby3C~QnJkGT2 z%#7qZc6_L_A`q0_a8paWUr|by;bH%MmRI~oVSf&GyV1+%$;?}etl3OAOTpsaPfJqP96N#*$0gyK#X=Si-SkgS+oy%1IWy*8?CfVcUR5{Mjo0XYyi!&2b z-{0_&EA2ZJk&?TA#QK9LJ{fb#ngLO|VPB_$yxY{M35ZdQBT^-^n zT)qhQZVhtV2k@ul|9o0P>e-z~4-ZmQXDiH`Ad&DBJa`a&Ai>>a{w^h@4-E4!<`=i~ z%#2mrUBpxA)UG z3G(i2HEdg^IDw@DZ2>D#r$Ho7+GzK0)4`0(AZ^iy9I|s2s{b|#fP)tEQ5Z6t940+~ ztm}2^2!8q&n4p}QTY?`Y9fB!7e0UXt&vLdh2BW%E_ub17=8y%vA?kP56(yYJ6}ClJ zbww@*r~*Ez=4@juhP-@0VHSIgjh|MW z_F!x7?}a-FQXkfT;%%3iA7b7lRKruN_pGPB`wAG~L2JFRp+VHs85s;y)6)o-5XQOr zHzOe{2Sr1}o;K+l(O2M@sa@us;r_ zEBJm?p?5%B#=Nw4yO8M`p&}sxtzb|^g#i0=!|YO(v|g**ZGHLCa=iD0HS*((Bi-j7 zTFvX%e_eYZVi1m3sls${r@}+$V%Z?ZrTt;|0_h92MC=LGs+3`Z3<`Qgs0y_YrF9Sd zB#zK27%&x1!FD;OrV(~1tag5Hzu1BL`@^#)Xez?LDj4tR>?>c1CC}qu-;e?tE(jA) zcS0T35=gU=(AB3N!#bZEKIwadUnM_E=Y~ej52FtIM9NEb<{m#XlV*!`Pv5oSE1N;*(nf>7TV&s{;zUeM`0Y7`sl|4I>KU(F{PW3~p!B~@smT_WG z^R@DgYAbuusdFXu0*o*jF7DB3!Gb#N2GM!@%#JzlCoE>pRn+MNrf*6wz}xP+_Bjhm zHf&wp{YOZ^6E}$VPz$LM4xVSSp+;9t1od2rKxqS-sq@b=xK!W^Mc($l)PitdSycUR zR##B}ystb$4Ud2DgNmPHN z)s`~u;x#g$N-<0{$v%9DjZEfXXF&b74&$Snx1dr#SxZF%f=dNuH0T&(#TMyC5G*5= zsC?^m5z0pI`AfMN?DLM-JZ4GUGWB}# z>0fT;i_Oz>S=6YhSD1~V1CBbyrxM@7gyS6}5GRF_fn#0@>ucrUc?y~l%-6iH+mn2h zq{qowe9 z{W@gqdMXYJ^V})Hu3Nn%8{ABf9NH9xcAuxeqY|OH@!-UtAc^bFfZ35UmPY`@TX8n|&lnERfR|Fpag7w_9^}X{?V4j~whsJ}@VoJxoe$OyfZPF7 zC?%YNve+;+s!flKZ-cwt2tF2^+$T4>qgQ$oBy5$6RKC!CADjE+P#ou!$j2Liw2-7goMH^gJVbc-aAzZ>_=j`;31cWft;CN0_fN zwhb2F&iNf}iB^C4S@kWRZGgsRdpuw73i@x7!Q78&VB} zj|+dL2|mn9@d=>$*a6R2qn33YmcH{dU5=8KD|Z))%g$e6HDjCGvI*2p`4yldG}37; z=F_D}Y>$$zb_NU=w(C}|X4>eb>L1&4eDQt5@ucu(68wr}QAbK>2f!w9C#e?_0pNtA z1@jUM2?s%?n+wrI_B-5K=fDv??W^>ItPUoL3|(jr2}4G2sM3;Me=j5RARrjay?DV0 zEuQgowIiQG5vcgCK3vy3c=%pEW$cQdr7Q_*Tto7qZOkI-5;Z%~ii?_9{8aI$#uVj? zJj95u7%G!I-Ro~-jW-WI2?|8G`8&Us}4>V0Mih*gB)fk?bS79#}U1hUWo5ZUbjOwn%WvB2=y zIXuTsS<@Y#oNNU$smXM+SM??R$KvBD;O4d;KI!**4JZ{?t_<7h@S91Gl#0BJg57p^ zjGto4OYF*#>-eV!z$p-NczC#$+Xo;&fa(+p%MFo`kU*R`p8awUVpV}}@At8pTn!%0 zatjuzM1^bPG!ZLuv)v9T@!z+lrg(oc6gOU9BD0;;X)r(0(i`8WKGjfqw6D2-c@Hk6HDCj>`YU!70hv-SDTeRLWV zizdB0|D64qno3*dXq9=;G$PwRL|^?0^IPQu^M)(>~M zW!Nw}81Bmo)q0XKl|{Q1ztg(R)7Oy93r-G6fy4e;3`pdoLm)@A3^Cxrq zRP@WGYz@kxgU;TzZ8#evVG;NJ$61s=c`I@Hev}YrUA=QZDt8o)_ClM12clYM8u$X% zz>$GA?3$0Iiv3D+F2QQnbd^)laJ$T_SHke#7=uj%iFO33YSiMT&cZ{q$UyCxlPGsQloaaiLi1 z=48dFpovDJ>Xc&`Rnd-3RZ#fnrKd)g3ezq)Z$)2J@DV?k=3ji)VPdOd? zKeGUio>RNZPDQc{ww{EAVgvF%X)Pqa|x0y>j^Xag?$X6VfO!5wzSspkwTa^!S_ zndlws84;EVmCPnQW`lVa6cf$Mxyz{zv6Z-uPjcrpKW4!vgs|uVF$-L>f_O- z!&|62QAMBLRX#<--Zw8yT~1L1u!z0D!4sPE$AJs5nODJ2Q_c+f-`xcT;?wXU-~Va> z=DvN^N=`TscpdQmONp7+-&N)wV;-nGm*5>K#~Yv;lEifyXqmJ$2OZFZxs7sknsq-J zikxLi0H9T{Qf!5#cRcS)Vik>6{M_{ANYD2Qu??J?7zY7Lnwnjp5jK~n)vmPh0hu6* zzK$wh%VN>kxwL)&d&D7t3PaHAOavw?UweDQ;WJrSUAnwJr2mKOaHE)XUd!eptq?k3 z1t6>OWmU21c|!SGJW`FA4mI|SyR%u;Ra;a0k%~DjThW&5I_D*qf_5ThyC+}6DR@cJyQz&JkgCk-*yw~XGJw|aBI1*V1h!i!lkk} z%;kD%xwZUU-hJhqFX;M)yeWgC@}8vV_GBK4w#LqAe!l*WOI2oNsd)Y*(a0vK)N&Kr zYVT=nWtI=rO<`Cw$bRH$1lI!&t&2CO>5AbR1)}O#csdkelZhG7Q4{6FXBE`lc(CLC(PHUIbU&2#!70@d>sOiavOavT;$^ zG^-nULkxpR-k~~Mtk>T}u)@tDnIF*L%zyD<(QK{FLVrvM#C7OT$?l8Gdq`-crhkW` zqoV^jyvc|U640`U4$^u(k zBrFD`<7pDiTYdM*E7RXC9?Vc-Kc3EP&l5xhw0IYxKwfvS2)1L|CYxp_$Kf>%9d0EiPnQS#YbOvpjYZi5kzkptgo!XgoU^P zwQ;3ivWfY zcoZOz2{c;6N(2Bm5fQP=2;wD4Yh5y35YG7deR8E$N|5uqacOyl^%>T!e8ZnXD3HtZ zxuiCn{mrSAFWAee;c8(}=u?*Z5V$*Nm*V;N<&5hJjhhc&Be?YFusnwozs_#QoJH?P89Db=jJ?S7A6`;59!PT?9J{YL?N&FSoScrVvO7PI=b>qjo3h$b=&7T#_fiA3w zQ;N{eQV@NCzC%iKAnDRvmbPt_0+|V?eUxMmzrd{IW0ttgqgOPw)a+Z9(vh+T6W5_R z7nhXuudQHtyrqoe@GAg^vIYO*{_|Iu&F>y~o*kLM;p_(?Brs@%xSN*h+mUJ;Vg1S( zc>-9&T?S;fkWyRncRVmKa0sF-KreYyqy2|T*Bg8>AQHZ1TRf44C?{}MXN!7*Jpr}} zl3%|R#m-W%F+Dg4Mh90>5bIXtG2ywJvBx?kNz4?)i5udCySssDa8KowG-OG};|e97yW8okcv1cVkL zcsNACE(7N3tA0)1uw1!L)yE|4*&9`>FP1JD;X*O{zWi6uWtP4;J(hqqjJ$>M?hDt* z9BdOzW5`bYFghSxroX-*O7yq054l#OJu?ClcU^oZoj*bI=+Pqt3=hec!P%8}RkW8~ zV}3m+&=7lJ*MIK-NfZYtVoFYm;?8l}S>8vR*OuC2x;Z-^Z6t?ydyGpc$`I~zB&4I+$5HUg#-tK~*atr%HWo+9K3JrG$rqIkC~78f&~Y44#g z6jWg>yiseIPLslePu}Ovn|{@H6A)*~JbH{W=qwlUdQRzXr?h3RF8GHa+QnDyMIj4~ zXYccalxakolB-_i3uCFLPoB`XS6`>B)!o~_f(M)am!!@3qd)FzYg6Y|vMCs9DRD|a z`_vp`2OcSe?g#Yw+Px92;>S1{aRM9k!``Pri{=SyUVC*1Ba9CG{8-@6_@ewX$F(&_k8P9ge{1*1Th`E)TY@Q#4( zoto9TbUd^^1`JWfhe|2iE6j#vF=v#e(D#LRRTxB^pGqE|$Wly5wo2m*YF(vc3O$@| z!ucyK*fr_e5@Xj{9iC^B9H%uq>i%uD5?&kxlg1BCCkj|cgofh9bY`NbMh+5qH8Sob z=hSOnEodRs_|VkohBFVub~x!2Jv~JeKh1%r63DU03LZ}RbWn95!MG6TP`fO|l={xs z_f(=aCQ0W8#@{b0t8unUprAbwDrV`CkG6En&AF5-b+lL(0mlx4`|9K|zqL}4N9bRT zkTekK++N;~@%)#RV7Vu@6)1n#S|sTC`W1Gw*vWu#s>z@D0RV5PqQywhZNE40k?z4# zNQvfm`jfFI3-e+UaKA#?28X2LYhsu4b{kvUCR1Kr$D<> z+i|iTl_Kny3SRj3$yr5H@`FZ#8M)s6QYh|xm~1F1<|QP+{>c*}ScwopM|e&5rAA5o zXd5?-ZNc!|CR%Rknn|xw^ODJCpp)C)*<)|t+xr5<3tz^=y9qE*IRA(!DPO$k<+Iy)Q(LQ4wkB#guhbJzy-UR@s1h3VeTA;}y2jh|edm$6ZQC^b_& zM^aYCD{Y^{n*v`IefXll4jy;fKg#qC|25P=_btPzYTiRGDp*q>RW5i`kZ8#b0w#Q0 z*R8&QnLT%A>W)D9D7Feh8=sk`LMBzoV_d?TBs=Ny${;Pb(R=L$uDeq>!bV>|CF#Ei zF{&n;q)~OD&^Iid3bf2^U6D=xDsX-GM4A^hM`8-#vV2=2Hdjy*Qpq#@{QrnkzA4<2nJev7K75wy@<#S>G>aN9y^%5hy_UvXMfzAQ4 zo|}zqHaXprNZk@hJG}`xGRLS28 z!qQhE@iuWtJ!WnBB_%*|--_CY?Gd}PRcCXbw@q*}VGUcV>)xz5GlItTqpuuhmOQ*nM2AVJ^o`lYcRKiyR1=o)lu z(9|QLEEK`AyIl#p^~;2W%#d81RRbi3y#PC0Uh4an zt0ls^ez|B3$jR8_Z%*&c&>zhhnm4Kyl1aPGJA2=!vf`4?hAqbNuEDYf>T0-f=Y2kn z))-CW*DvB)UyhGG{+nm=K~?7N4H7H?><`DHc<*%;5%1V`$(L)WuG$x}zPMcwlQC9~Nw) z5H#!Y{6o;_id-v~M=5j<slhSXJ|EHlsu42(d#uv-CX~w68&R4Z9=dwY>bx>M26rfM@$oGSe|W;| z!F51jOt-ZE`sst&KsF?c+rIza=#z?Do+ij)+h;>fDEwX_oG?K7d*wee(lm~LX4dmC zsBYiFg}q$I*BZ%)idV7(`Gobo+KK(fX z@>ac@B18mu939)C9QPjt*II30bIm-ldc7bu?^&9NePtJ~Rb%xz>BldHR~`=qg@#5Q z!odooaRki5XHJFy%zt0IjfAGC(lJfOh5wlH){-yqOTt*9-4o{bDoX&jG)ir#%V77V zt%L9tjq9KzQo=O44V(Q)@{u%ktnqoL{oP$OFK;wJJJ4t}qG15|1}_vBaQ{r{Ocl}O zVw7UndOo}IeqpxGFSf*G^MnZ@)UkZzjwelsNC9M&8`3Udg(mt!#CHT z_is3UfVDV+c_Sqwv)h^y54%MPc=&6MBE0XsdT4#mVyw_-(yAtWC{UrLqlH*! z-kkK}z1|xu{jrm|Hx_KQ8RQkc*%RhZJaQ8}lJAYk@1`qWd(_&J6=$ZcmNkSBU0@)* zT&fe{u=YI|_M$sK)89Ph6T8l@T|_=}_t~xI-yYsn>&PXNF23}T{3cz`xp&d?_Gb-Q zFDZe&f}qrqK?~%N!@!&zzI^DrB2=nFkMMVoJU?P-FWi34(ku}&Hr#G&u2hDLQxPMM zL!#MO--5(MA#yaS{llrhY6K_Icvvx0Q(1(xwD>0eCMMm^D)0A4zk*=W>tDS$$v?IX zPKAfBC3Z3>3SQ$mVO0jf~O=J$Y2#)Wb%toV_c{i`ZO&bn`N1aazGT8 z0iZK#5tp}gUMKHBVKq7V(<|o1YdsP%M-2*@+bYu z!eNu~DdOtgeDEvA?(h#Wqnka8K!Tv%;To3bsK{aq? z;FvGXzOHFm&ok({-g$H?EMezhslC9AVQq|c@6{iDSexQIl@%0lLa)69@>nM5ncyYZ zug+$!9THwh55-$Z^@;^M_%P}v*m*h+O;T=%aTfGdS=a471K`+w2&P%L$a(DIBG_=U ziwAQiCd5Kl#cXH31#;0CScAj)V!sEvRH9(cjDY>hxae&A#UCgs>`YrUA;AOT-$sAH2W# z%CeEkm94V?B>`A?@qkSj5mYP-otnJ0^5spE-|RGlpysUzYZEElZuY`vR^HJFD_k3& z{TWhP_C+|dB`;pnSlxcQZw!vT3D?92HYTN&2 z**y5iwANO1IoLbs9{$H0^C<-JKTykhAO}aMRj;RCi81H3#s9EXv|)It8@8oZkjH+UL_x9 zHO|=0n_WGT*R-Cn_*OmtYHRlyw?LS_M`tSfm1Ni-=W7CdjX0fXeeBBbse5MMnxas5 z_9-m-zp(t$?5zb1mjUld)Tt*Vqqb2{@W6D77Juoov58)_q)Uq2AfDnc6 zVu}?$8BR&Xu;a0#Ft~KG)CzPrCM&iDUbz4L`&UMxYN4-%0A_xe8EeIQ8 zNQJhzvyuD*UWxbg%dDkZ;`bh9Nzj#Zt*5UhQ;q7auyt0;qR;L z^0?T5?J?zXFfAW{#|Qc*I;Q04ekEqQBYB$J{?k>aWZ}R!8z|6gcumWA0d^!Y!EVrF23Qt=5t{4v2>}o+^&AKuS?X+T6M_4^jmNc=_ZyUUEn+`ye-N) z>gK>9LjSUoEorCz&eZTUi*h+TTG1#nY_qoV8!&~T2Flq_ z$H44%!hIXb0>1&2O})z3(j40K0T~4a0+^M=_Zp|ArGfW+9S88gHOV*%ebKItlL5WV0H?Ux^?Y*wSXFZAlGih$n$vW#w zZZFeDp1X^OYzz$IeQN)HDsOtfSh94?Py`|L0%#?k-$PhR%vepj>B1on=C6??>s=rp zkNlv;nW(Ua>NmIbagQkHcppdE)>1d`Sd2vawQEyDUc8|MLua(f_C7L)h(LHUsb$lkY4uIpcY8`Rvn|@7z`2F8!p( z&zGpRdgJOY0od1g*Y_2}H|G1L1$vc&Y?8Hhq0#90QF?zc&yu%10piT-3L zPKuSGegR9e6-xt!Vx!j)met9K`*x%5Ks2hVK}?h<;Su*En}+qRvytDgQbei}Cj0Ik z%(%{a%&eU5_?cMw>1{_wDZYy62Z3i>m^J2F1C5?zCdeYqbeV*-YtDGX44IYzhw?E;Di1@$8&NG z*FMHjW##u`7WX(dg(Iaq&5d^4Or|c6VMiT((;!mw+x(sPCKInzB?R{PT+Ho7L zuo0D3i<2Rj#bc?0(cb{eJUv@4ZUI~flGQ`bshd$*NdZ1A#Kr<&qFd}NDCWGpO7o^R zasO{hS?VRm_|R21Z72FR0LVh)C!My>c1B;vu%%6b?kw`+BSr@}NkkrkvKC=;AvAv2OjJ6o5(8m@j9n86K@z!V z9_;STAJ!+)Fq)_JOlGbTiMC_=SWL;6N?%JpCJT+rhhn zWHsSBvf4%dd{AY{Ns0dN?DV?*&jXC<4u=M!!GH`DS@G->?n85r>=jn@bf$>9r`DAB z*D%-TNjT47241W`*6aQQx@+tYwFf>Mo7ej&Ld{6s!^y&=x@7XfBC!cm2KZv7k zuA7C1ervQKV(VY1wQ|BLFStQP`oWJdH{_B&2y38>rH<-!7o{1TX-W9jtEXLQD+Sq~ z@iaxDTB@Y`C-3LVJ{8vr&^-GZQh6ZvDaep<`FYKB6RBm%%|U&l8@bvkI*9<{T!`}1z44o5j z!{?AV6nFvL6#6Yt|L1!B!OPHG`#DD|R!Z|3DS1K5IlXh_b-XE{k*#KbgL85ZdYHVu zN-&$|iX0o{6H5$EY%mDK>zhzcm{hoKmW|?GzI@}}z4y=#5|cCcb7^3+yb@$1rNzys zyvR*2lUyNP%v#?-*29JRXRp)AAT%Jc-lhMrT#5Q{oy6cpa!|GK;@ulPOn;l2H_uB7!K=fR|Otc3Lbd^*?Vhik@$$9 zgTLe6FZ+3DXAq_oJVtt|u4@1HjGgoUQy^acwX^dP@LcF$YeZZt`mf~&%H{WPP|hY& znprPaDBA+oKLx%up5Y7muNFX7d5gWT0UZ^TOdC;nM-%fVo;XLO!QUpwv7`uiUC>$- z1!>2|`>ds1=u4D(Sa>BnHta{2q5TWC^`uIPXy#8ektLm{;&wBwhN#b0?P^o~;y9^g z<=YeAZw%lZ4>A%oB~J(IG8-OMVRTC43TP~I< zGh+9GH{&N&P|e@ZL-V)FXBQj6(}RSiLxMJJ9uu)Fph<;jtEyYmAH;_RFM_%q`i(x2 zRowE!eE1lf(EYunsl%uo7mwd%44p3P&wd9RR^#w+ z41D2-E0JxARPw(4Ypemgdt}MflF|6K0RkLc#yu2a4}TvImqsiqW<|?fZDAIelZ*)3 zDc@Eo&BCqSX;Zn8N7}cPHoDHj!s653vY1e|v9*bLv$t>hGx-Z5Q}t}z`U1Vki%CwR zcJ+9!y95+`$N>dc_2!j?99dZ;b>T&*Rik3({IcU<%-w!IL^fac)%Ha1vswYI+y2HJ zRID3QRZ;%_m=H7wD-}0nve4J(G$TO8`}jGu<>)P^-%$sx`}bZ|U+k%8RoJo-F#XvF z=>rI>62|*S5(SU{Cq8BSPL!VoQ$n>vc!(JSzqel&4I$%dAAKY_K^)bJFK>#OT3V{G zJ>vbMLQ-a(=80+$U!v5gpYhJd=fBt5bnsr$$eUs6Mvz{+hDaP)BBOO#)3Wc$$`dmh z%+W1djNK{eaA#>)#w*W-5_0A2LqJgSq%z~pQR4L3jGXxH@#gg9AS^Ev^Rt&F!szJJ zyl_(6wKe8V-8gl)q=-MXw)zo@s&lZFnGQU-BCUtEOEIy1v|<@<`$m&ZpBSsJg+vMDTU1#nC075MdA$(0uld=*bJ_b1GM#Ls>I zX;DzkoYgNo5}}AD%w7>7BU3=q<-4K96&|>-VNnwt5%CF>Jg{UV0aqTV)>tbYppjso zx6)CoGRb6eVZf|6yUnq7Ib5<52X)W9xmNVnt?ZGrVw;mgTO@Ml&FSj3=eJl(#4dTm zheSY^ny9k`E}Jqo5n4^9sj|#E0Zif0N~$d;Km62kU+0@ITy5oSLumV=Yqhl44n7yZ z)>C1Ux*Sdkz1{9fM81g_Eo0XuTKpIv(sXQLASK;R#*(vYPNOQkjW1v#00gOfK%mmd zlXGkhLO~N62&-+>rv}AH=LL6K5aF1B8XZxO5AUnFyNkeP6-jkigdn)*fX-XWKll*} zZZ||O1<#v1l(GnP0K`t;S+_7YX6llVoL|}ls@^XIkuJir1P=zCAkBDVU73+Ny7`8uR`Abo)@w$7G7&*$rf1oGQ$!5@>sf95_k7|H?I*LbEo5U z47Qup)ck89{*NYnSVQ+E-}TiO-VRq3J@SWxzd`f*_$dn&N)Gvx7%Mn#V1Y*wRS*lf*|@SOw)98W%!8 z#F#{XUUBT@7<{*!X7htVhKdfqD5M=bDk#&O#KzwFIlS;|1gk46%y^F&e+^>cIu$8g z>?ex5b%5iel)kvai)?>i6VmCLEAw#o9Na3Tys=&?w11n}Y!Dpw|<3rWr?X z=oI{D_jPz;&}@M~l!!VVbB=x$mqx^%{3Vw?G~$Yb5;y}GW65G(x+w**DaDEwC@8`f zciQPzK=ZMr@C_0*I*Yb;eQ7@LYKP+$+>$BZi(N62{*qfFoq{5GF*iGlSV+w`Z{xMU zp^L*3W3GI9!F+!1(Ouu4ALYkxB(y+BU$9rX(wA^tVK?Q&UU8+(a(xqXyCRzvQ+i@? z(@Oqz;CfdHhRvV|ZlntOpmSUtTbQ5W!2>Qhm%$&_Sm((nwlaM>m*e7kz!xq}=N8sZ z>lOwwXs~)el$6AT52jSKgzsCrG$90)BlFivmmM_p#FCPd-##ld|9N%HaR9I`UDu^+ zv7CAwzNPqpo|psGQ98WvvXo=JHlUEcnEO~g+|O?_6ng2nTktyO#eD6mU2C(C$OicT z3lk7LMJh8NUktn=iJ(xUAx#@wZ=v3~JPO-z1!2wy0hc1B@DBeTy^DGuzM3R?$fUH- zQq)(DshdRJPM>QFxiw68INXDuDq1IG-mAMe~U2KSv`tAqWNfa zF8B@$y6gr@_l?iX$8DMBH!?Ao^+?oS;?S8cywDlte1h3sQe~H4aZ^&H?k#7ZWN1>^ zn2Lu%9`&VGvbl{7`ImN=MeND`V##R9J^t3ARyPtg<&Zi~Nr$K)h z9(VN)=6EY>a*vPesCv1@b%;Mg5S8!|cG6>)lH(fZ45$6_%kc`e3>yv`}H1$v@m z69Zm(;Lopd8k_uSam;Z(!meq&B+jjGb4xko|1tI6@mTl&`@d1h-eiQ6WUt7kWRw|Y zWG5>!PLh!kQdY{Ip~%SIdqzTb_TDpO%lbWD@6Yf1`Mm$Q{<&^lSDfeT^&H3JIPS-i z(XU8M8b%@OCqa_}0|h3s60V!S0AkycZA6j0wBOzeJ+IsU)(b$mPxPsFO#XULALg2Q zXOFbBiI3sZ@LCS{F9Wnuh zhaPEsL;zQ?I$n>uEzcMqv6cU>A(To2VJEk5qe=zFkv4JX{6u839vwgimfb+ zocXsfu4nnTkdH*aRmc95<5q=Zg?o?Jx1FZNoneW~J)34HomXw`=L_%g_5GJoXHL&E z+)pI$y2>8CO2VsEuqeER`Qvwm4^hrsV>)uYfVi$6(1_l4aTbby^`wyX@oAS_+wB>s?up+wgHfkE7iS4&sir1Fz!EzM<$?%jjXt6=s}ks)!UwyKKs7a?aI z#tU(1_6-egi*r%91Xm>aq}s9u3#-k; z?-msk(+??vYwinVuxZKEA1~35ik4@^{74wK-JVrq>W4>4zo38}RCw^xw+s){n3$LZ zd1k!@u}HUNQb3n>{5C@;_2F?Z=}3I=Y8rhgopb`Qci_+O_}GkpnwfpVw;iXev->ti zb%)`25{UJ(h1&o7Xvt}kAyV1J{L#OE9e!2JkEoIuTBsz``J~S2&FPR@sQi4C9F(pg zha#v^jt4Ut(#|AB$|J`dNLq7UAtUsIgY^Z&Uj;{$fsg|c9b{(_NNKEzdw|~&)=}1F zdAGotKAnPEEsPT(M;GU(J)4sVkofs@{UH`C5H`zBwJHo8rJB9y+@h+0JfD<_I!^doH zS{fM|BHkKs&b}Gu(@uGub9dsGL(9*)xCuS^L+q=CGTEoK)jX_Y$5KJh-7XRa(ckV) zbhzxzo%8Zxs}9XuMKupt&5Sy_8$W-hgS+|n`eCdp`k$XX6|G26`H?u)nA`VK6|LL9 z+OGV&6nM`=Lf0_2!CZgb?5>S6mxk2eOW=Z5O%M)(c%Tl)Kb@bI0PrACE@Z*Tt z%kEejid^E5xcZw!6T7 z+bfHgPoq^S7!TT_L7LV1?alfVdq|vcqZM59S*%8PPK~H=kHEoqv0eUuMX>>wKUo?~ zD*k0celm#FfW>O;LXRFKX{hzBO?%cBjOd4~;Lrt=s9xU>Zx-R#H>(8pQIKORUHUlo zz|im)qL{<{j7Om$SwxcYCeil7eX>vNx5)nv>pWHF^nE5cNBH8mujV`)t&wK|e!iO^ zsl2fFD9xk~bX?AejeAqKx+3#Ifm;|cMt8W|<*&lexwkPo;5~btUn%>gPsRJJ>RWf@ z$L=)ss}sORq9LtYm2sHgaXh()l1UIIOHffeI{H_5oY^(;YOAhcp7?h+Slkc-b>(^= zwbFPG^;8U(Cb^4|yr*#r-rrWlgb#;NgHLaxk@7L1A3y@`(Pjva@XJ^p9StRP$L9Tt zY7hF#rsX`Auat@@jX7N|=$de$G? z6A(f_5W^HPQ!)z z+`r>}r}d1nOOU-varNB;U9y3*Pm9S(KdCiKTG)<9G(-!hi9arz8gRj5j9_398x%+n zdH?=&sV0eq!`IO1EPb=sY_?8FjbUw_;z|z9k3nwTyzZT8NU|eXALtO!m%(!_Q8X~@ z#wBWA3n+5!F@~Q7L(F530~rjs5t1lb|KYSh;l7N@_1~`w;(sfc`E0tr?#yb@MAg!g zorqop#V<=@sSrG45zC3-8ebP z2sy!+Ui-CDR9I=$n+On*0Np)e3qo}J|WXk|WC>;5v+g8sdt zl$6vF_)HYcuhOy&{GQyK`9kCSN3R@DdlaWVd@=@~X}UDn*Ye@=KO*|T;8645S(+Fd z({&_aR-L80yqtw&h70YcbC7069QRa7K@DdI^wJ&&QHBHRG7(0SD8lL^eS)$-J*0;w z(xT4>+C(uKYlkk?{<=I_p3z8y))M0#<~SQ@?HRk#e*L3?PHR=1)NjWR>OWTZCOWCxYmvbs(pef6v{}9`M*6dog)w}@R`@KKo!<$8n zjEo2y6+BKmO(yFqzNNQ}my({EpcRwbsmS=+@bc;uE=?q01y~>p9spf^A(M`DWnzil zoAx&6!#P;xb;lWd_5EF6Z^y$Ov-O%gx+XzXBPp0SoYEZ=V&D7kJ-?RJ5&ra*cn3x^ zD+{VuQe2PVn20a}%eGuh@}BW#m0`}^(E&~QWpx>p`Qeq<1630;UhhHAh3XKKSyH%d zWWvKEgx5b}l(aJ6+&XC7qs=f!v%^+#bYd=+7~=C<7Fv)~q5AVRp#-9y!7Y;MZakR> z?$2{Zuk`m7A?edRcfYwSjwJCM|1xP+sV{D=dR2FO?2lcW#jCvA$+#4y)_r~mi~?@l z2xSA-w(o$%K{O($*+>Oqr$wYg5wkL+#XAHs5 zViFSHwnlug;p1F}auccJg~*H54CKl)N32Oabs+>CtiMVKVIN?tVlP%cQdX^Pu$t)^ z7Kw=xbTpcp0i*+Bh`5CsNF|8z7m0O(B9%Sz0v8uKh=HkOfX>JgtjX{j zj=8*@;sosi8HR%$T~Ah6GC7BIhKIOk$XH-a*m(0ABoeewn3AEcBm~Y5frS!z@n<;c zvCR)NTkl9nsp4l#dte#aUj<`-DsWzqsVCLsbRV8H&3*AM zF}u6F0iUL}Bll1x z9dGdObI#BhyN|gKvvfF$Er851XC|F;!*6CTar>#zn@YJ)%FR<=nA>)^@jBDJM4LP0 znvOOUpgwL4Xhg=wDrKsF(t}n;U>ih5MtM@(YK7pr zhi`CuZ?6Rm9zTEHLliK4eEbdJZ|fjQBwMx?siEB~m3%yJ$~^W?v)4E(<1nBn5l zaQv_I;NF3J7!xs%*Z2$ML=q0}^oob>BRWDSXREibAG zOfe}7_?kD<_kb`VJl5DF=rRFyl<0T(Xg~#zgC`NWAwlibhqScgWQA89F7;F_RTZD} z5wJnG>$Dy3kRCSTmB=b2^*GjLx;&pBi-+H`U;E@c&avksku9O0hk>p4&mIajHb}95 zy#*e@HUK$T|KXK21IcLp6+2XgRT!QZUoNd}Q{IvBul1#m< zSd$5ENMZ^0IB_Ud56GS@hbGM8SBLgfp1W$GUqo=#-47Z;K_X zjrl&3c(H=u;#L8%3uAD0DXH2Y>qm>RCg!s;7i*VUK638h3IV)j24FiZ%*+_jeGEqv zFxDbxMo7uw_mRL12Rx{QZr-oqz5Bb}`>wscn=G8~Hx(f}h)>P%zJMQz2(CkEkPa@p zmLmkoauQ=>n)EY!@s2WdsoWGVf4%$f3>~5KH&Ho-immkT)VLI80_c z_Q8lbwL#nOSgC1#v+K96wQI2`zPTfs`}(`G&yqaPIP=9ElsIjEkK$4*-c@2kTF~Ktn9W(&IxrAP#jQgM zB%0}qb61!)w^^ll{eYVoke1?}|K?7$#5|Bevlv%71%TWj2z^;_9(Dtql&zGjWk!{L zoe8hm7xyzTDj=D6ga!@c#zjQ31WO`3G}@%An^Dj@C$P}Og4!e|e(UmQrn6>d{pGd- zz4fvhbP^zeNGSV6GN7=q&=q70!Kxn_&@ej2@Tu3Ys>K`1qe&q9@s7e|w((CP&XM(YJ>GJGRSFsj50dp%>l6 z#TeXWgdZJ zjNjYua;@#gHhv<}6NkLgeQyIGYpPddrVzcPXSnuaKUy!WqbI(^U+lfV(MYw6tvj1v zyE!ttL}0D({2_A?DB;c%?>R72cwUt2Fn@hnz4WVUwTUAU@~Zk>1ECIEY-7As5Pi_z%tCu49DG+VUda5HBh%^uQcHAW z7Mg!z1KQuq|IQ0dBhC=UsS87baPSCFN47tj7rZMcholFQZWIJo43BN8#Qi^NWfiT% zJiX<+Z(Dh1iyjctB2(nJn^x-YmoIUtH&nc{@CwYqi@tl8`FAu3A-&noH^57vvwJ>> z$d-{QvHaoS%h#^$#qO1E}X z6eVP&+}v&VF#V$cpBEr*((sKWi4qx^#^SwlN0*KJ zu`eZU@CVmdxt>+vHKl5pR^H8RAlj)+<-)VF7h#qRwn6zKLcFm@1oA+iA zM}vfVaayE``J}(gtg`QdX`(Qh2Yt25g_SmWd>1yUxVW~$@Pc`J$@P}6|8CuN_iTpT zyF1w7TKC7B9|}cdC$)}F@{>+Eu#{jCTQ#rR{1eKfyv5exRDiK!+g)+Kp;M(&fp5}! zH_R76FamHh!SC^aU>S+b5i_tx1i+EQF2WnF71<;q_H`J&zov~~=OC4MZCzxz8T4Yr z@7Jfw&M77)+>#(oycPc>G9>H+uKI)aA%-l_n_~ zT+WX}157ftd~#?5hoJb%B>qD$Z3d9C7JCLEUa??AYs91&r?6h7`}L!)g?D?D%s>;I z`=3pJmd?~j;WNn_SapMMebKwCLC4#K>!T)qi2cvv)_5-orE!e zy+@CoB!7Fqx6|u{{Z24_{R_+=N#TA$)ac*Y{RG$ev3X&hshzN}<-iAUlaSpJp4zsS zmOxuiw2B@jub)T0=B1_O=B6&p9|0<|wN%&!4;SkFJP$rRk8`^7MGoh3r^_J;dDDq9 zW~~z$-_qlhlTs}`N9>^+bF-^WVA6x)J_E-9_ds(N!NRD(L&OaaIXqDEcpJL zeGb3uK}J(%MT^(yh!G0oc@;l~&JS(wH&c~pe;{?BdqK>?EHL?4NjjjS@Ss+cW4)wn zVAhCnp_(@?v#2Lgl;o3o8<+>sj#*x{IkkH6_0-XZ?*>0VlgpU>@C}z~+8nrdh)z4W zxdzKI#4lRVUYr_95eN791LB}Y(JL@CG`DaKu=OnBoFLdYK63tC)ApTB>7`3jV1X^g z29szdwPjKg7 zfG@!T(81h7?lM=~3L}PQXh{{-IFh{Pm|bF zTn_@QNrI}x;#vD}9O9=ne3rjGZl-T7(wEsby9?!&M=;xe;;QdnRL>PBJYx0o^*W=e zJ>~D4G~YwG$uTSZKMekz6n(IH(IIwp#P0dhKq$O~Xz}XLz3q2@i7ZAnZ(LrUs^{6- zSs-xYu`+UB2q;M5r}vq-2OD8P#u=2$kv}6_{Zc@-ua}9L1C6g67SkZZY!stn&s>phm zh9^KA-J)eemeo<>$*pPJUY}R7aL67VXf3`)=SjvrXU|xN=jW|HHw9+Za_7YF)d$-Z zx8|Z=3;^!Q5H6`cO2gm@zxg<@on|&iLQ7fxH4&N&lVHYvwFma`VSPtC2+tR9x2v6? zaTV1jQWf79J^eAaVog=9tfF!ZCo_d8kNnSrMR|AS+ZxKqibOlOlqF7Z7xFMW%5g|uz+=4@fTbgnh)T%LN%PQFpKUq;iC`B7@Xo~Ck8 zi$d)S%#7B++s}TR>z`K{atH;{kB)1~PkLPy*bNT+S`orFQ09}0*8;Z0fo)Z6vTCyB zd}9aur}36{%TYffvcEmsnecu|kGL@DH?X$kgI6Sq$R_@%K;bo5LiigVL2M5IC{2)1 zS)h}tztWTByWFkpZC`%p-&z$;gv)8OIC|JaEcoGmbcpsm)w$U`!@g6LTwn>XipG9= z>{Ki=_Ph*&1&m^jjaYfOELE{UWs7ZvWk<`s?Q4G59Kv<;;|<>(z-tt5Km$ zVl-~(+jl`TV}ly!Vcg{C;qm)(ve4*VPs6-*+HCDEgK6~SDh%%6F8&1SWLgY^Kf^+! zop4yuaHdB6BS4qZm3QT};Qr!KTM3&ey7;2rQuEBF1b9$AWL_>pHTa| zPveF{=4VN%^@)M^nUwA_O2fw-%Xv~pN=YdXhbo2IGI_d3ir6~wlR46-c`1pzF9`7Q zM;d&5-YXTz$b(RlQ4_Ha<;zmMYHw{d@k`CaFIq8Aw0G;1#ueL+Ol zp^+>R0DaWC8gC|7$sZPS=x5Zq?)ul%_Qp>}LNdG&sxv0iVV}kxq9#!a5_HQJtevZBo)Sgyx44r?gIz)KwI>=NSvE-hUSIzHRBq#_^ito z0w`583ZA+5#2`ksLn_T@_!v+mqd;d^?*8-?%!Otb~;+tzTbPfK8q>n#+MV~UWr@#>u8Hag#as?Y)zi!!7oDphDP(H4=sT6d-*g9lG>|M`N z$L<&GYx$ra^fP*4U+)>dCVlofg#TG~cBqdxOd-|h#u#7e|I1gUDB60#r=J}Jjp~VT zi_y}v4kNkpB8F)^E7UVBuxGxfDVJN@*|DpLfx2QBVMV0)yzCrXl6RhV*&_>gw+_S` z4U4{(oZ)gC7vAoO%8$xGk@g3ne|x>4p}*oo6^AMKIUPl_S-oyHh}TlFG|!~}*m>pP z(fX2JmHZ*5lilFe1}4IoTkMpbyA}FEG2>;nZL@dZt-vfpM6wwGW5{fNn*@*a?`dA= z_MAAGXU{TxEd)Pg9bQ)IzAQ=p88gj!oqX4ngpu3}lbrkS!Qu{wzmqUqvzacP_qlf{ zlkC)5aXtblYiG#!^x>Mfm(d9#JpH|p>gpt_mCT@ zKiyGD`eggFQ0M;%nIMk;4_qAuHw4SGc_*1%mDeJFBgod4+1#sq^7z9MmqRAe z+QAHyS3p`o0xn2x4Jw&db$fI1+d!YlOeW<>OfZ1?;WCSixPbD5+&qASc^^Ci;4fGX zpfUdFwPc*PlAp88zG+yfczNQFf%98SSM=EuTpz9bzUUWZg03`Yed`%YIZTZ6YF2@X z-)zHuCo&NfMp=m5r#ZcU@XwTbhO;8Af~|`{i^o{ z#?*86%jL=6`2EiL;|2D$6vF?R6Jz8Vge2~PeoIZWHOu3EEmDQ;kSh0!jZ0L*?a0;B zva0c(Bym>MvY&NO7A)~oCFN5?@7GpZjf^we8v_E;Mp3FY68BE{mqulS5{;egeF2mZ z30_2}y%kOMB(XbiJhiE(ooMci{n(<*I_B3`D+kIyF>+Cs*U9E!whDhtoY_qB0&zokJs0VUC< zOEt=E%9*6g5kQdk<;%B8VGfSKj~_`nKaR*gz#;c;e^c=^SCfiPsB+ITw3hz$R9`r( zb^R3%(~>qd|7UYN<9cBO+&lj%-xcaU1fS|;N>V3(MNIsoyGRHyCwq%6R6O=pnt<1q z&N2Ma^jU)@#qx7QvV}wiiC2P`%SR}`Cfu^410nS*7&=8Z`vGE*^D)})^;64Pm3OK% zDZlmJu#krT9WX%k9*f_#Jk%Bn*P_;+e zfaZv}i(siEOJvHmy_lJ13rroExI3ovi2Z7jD8Y3hmNNO`r`!}XsBqlDaAU3pX`5A7 zjmIe|DH^bPL*kkP^2D$NEB#CM^mT>GOT`aAB8XRFYst1E0QC;L|p4v zk107z!`IBD6A#SXFq%7JJsffU#YNv*~o!xAwNbshoE<&3zlcld&sedBQkxCv;`s1A=gq zl1>de;&rh!5Ns}4k{#~_L=?P-w>Pr&#Nsd~yZTsTHcUwSUUh39Nf>WNHnA1)uYPs< z6DASQV%pv^6|cW2RnTxSwiPVu2FO9NR|mOLoevX7rdJ+?QNAF2$@ziC9jZvaNoT;k z5WEgBdpAi=5%03VSk@~)brV;fl`k34hrR(YVuECFy}9teoSQvmepKJlhV-&BCf#}H5gW*t6vGd%sFVfO;RC)H3)gy$fsv%kp&AeX7%0kqvXDQ zy=rgPr;8PM4qg0yN;sxJn)v402)ie8D~7j>Iy~3^1KyME=QdVVrDpU&{pq5UAI{HCU2ueX?cfmtqW z1pO-MM^EAs?KedNxnq{o!fWudnEmg>?k?6( zmAfyGd4$|O9#%b8k0)c%B)Z`Y^m;Y^X+iG!IA~9W#`#a?SO^OX3$%kMxx4lrWQGou9VCHi`+pyxy)$AORcKn(R#x$h z&X^moM5qW{>ox-w0+})xR5)l_@$9f3vFPu@@+GWv%Q^{Xcg9W$uhC}|_Pza#ncs+>`~WMU^2+=8Y0ahaFiXN-v=o~kf#VFkPFMQFder8~4v z8lIm<;`xG+$;9NE*Iu9gRwS^bVGkll9~#S|FTWc1w76iUpFCaXF|7OuAq^mf8`OV; zjlFienZOgK^@S@qo{7x)9YShj(a%2Ca}K04>!y|j+I2c~dc}`V)Qi3Piou>j^Ldxg zA&9E*quob2kC-_t`pB;<@pW#YUy657E-R^cCjMJ~uTB>{ zLKDPPV<*V(l&ktb6I^V|2ET9>X>xdY6Kp;`fQwN?qXm)a7wEo=a12xZB%zI8^);q( zTYzkDDv<22J}x-z)~mJgTG_o%|0*3Yi8aEx4H9UX5K0nr4x#-TQJ$NlA!D4{(dC26?<;kS35oLp+AkDbYJbNhyw8@dQ7!l&Q`f%D;)=6x8P1QIh!eoTBy-DPPQ z^Ax8>Pqd%(bH9{bV#x7gj!uDb7j%9*qKihS-oiO<4oM+A%WlE+oX|>YzRA}~d2;RC z=?@DZijcA0@3QD^|LY+%)0#h4U_*okgrvQ;#IA2YF2C5j^XdkcadjiW6=6VTez|WA zsn`n;&?TFU_!W@%B2eH&Rcu3p2G=#_j*MtrI)Jb5xxnUdA z9V+GGQJf9)!LyDTf%}SThQlx^u(<+n%0keM>90Pv9+XS-Ag5Sz7nF2qF&kcQ^m$i1S&PGC#j(4!cQ1&L22|Ei<)U zG{Lme;>YVxE4VKt99WBRRv?An`@NO5;1h&+0}W zCApO!Nd%=jvuI>I84s>0f3Zu^XQxq(XHb&HM&0Naf;~Zl5#rFkw8?Ve%1XVu!v+psT=)Y*!X$m}uS54w*c43lQfZ~C!0M<)|;J>LTN6W;5twLp$4 z-e}18;E-JV1vctG>h8mme{|vYQmNZv?vWd;i!r}`S>HCQ~Q`gOGl18;h8`Xke+9}7Nj4>36 zKp6uY2ix6Bc8PyK>(z-JWi-4S^`CQ(Gl$KWYLT%jEeBW9tYEdb3TZc_sgp1b@GquNN+jIawj^J6)|3S`=R6b(PQM^Qx`iGjEKcT$$s>zNF#+)U+QEO96I> zV(TA9mww$*MFipn>I!(-P;aI=C^f6#_(T7sPW_{mt9)FgR_r87W{QF8%gu^GYTQqi z*%g^`R!pPIHoj6fED~zp5u|YkH!yGZNv{?g>fvk|W;<1V2U0$i?PwWpxfTNP2=OOC z-DsaMIs^Wy2#78ULHMJl#~adB5YEF$zdZ#SQ)^Kz|J{jhA}*@w&RYZ%O$WFt9fAcK zYGtgwLvmm)7_D-?0X14k-uw#1jfhXt*TdOan^Obc?fEEQ$ql^z*AxpI%EfMGYEaP9 z>it1WOGyE?jt)FD6lC=0AMptPOZIKpIXM>vBE$I&>xoK1ki@B@hnL$iJY8!mw$xAgg0ogu^v-Ctp~9@n z=@@^$?L#byvfA9x*+zK_`2+{$lY@C{w`$+gzoU*vUxJ1f1P*?ZPohOE9U{jPdG=oem*cWjoCNyoE^{+;3i)ZDWGL45_~)-b{lo6 zJpQJIYevvLab`T6_ScQjhzL!Aub%a$VuD1L3C1tDFf-k_aRZi10J7Ek0@4+4UK|JA zCD-bP_p0<}0spO_xDWEefNT0bxnL|VelJw6o@}l9V@e9Y*=qL0POWyb{R0SkE;h}4 z+uZJ`?U!%q={(ljwmY^PNwk-?RIN9s2XeclXpx>7%F>Web_xbBfX$=@^J)ellce^4 zKSVOp2ta*Sv(wqkKjRtV`vs4T^GYv^u!#~`+~-)MEZ1=YXw>7sOPn)p#X0uYxli!De5*_o zGGu7uuZP~j(p{wRuDa{0aJ4q--w1o(9J`q zdNJdi`QXQm1kO~M&#^^0Yoje*ZpzT}9aqb;-(OISdZ!xR5OpIyFQtsUV#8pr-ni5{ zypomIz1K1{3jJqH1bJKgHDY&KgZYv6Adq^Zi5POo40y%jhiPJiQa`9YSD@!_FDG&? zJD6RfJVNOhCVMcdt9Qe!mr(p`e>uC$H`!Q!^-cHS$1Q}8)D`YlOhJuDGFR+rnuBlk zL-&|@=5-4Dz`(S}C@9#C5%DKPH(tj7{Rxy#|(8jh*)a4#Ji`z}tma?Lr z+V~IrKQ91uio>RZ#G}T?6X8ZU7#C|$#S4+3=sPjX8@1!iDbn=BCpSUZ=LOSn7V|_* zbTk?Y#X$3c6Ez!bUz?LP^K1HQZ!7-mCP|a}pYc)Ljbt}J7|ZC%R(7gn2+LA)%`paU zmvVP)o?nU!h#fIIS?6tu|MYrF{b2YcK~^KXbusoSsZvH&Zy(5wk9Q9&kyDytDD4v$ zMTxca6$2Oj$4_0YH}Atl8`83+HTPk_Z9c1y`CKjfmNd1EY{SqUTz=s<%rxZ=)7|jW z*xET)xp|>7|GgJp_b@1`fwLk?Ii-i9Ek8iyFKTm&2ID5HLev0@EHFo=6CdUdtZ_#= zykUy87;U@%rqilNx!dMr$btZFRp8x2d)alF*qwzDhg(!=QFf*j*%*12%+lpD*ZiCkv0Lo;4(dtp! z6PL-B-o3pSER~lWdOAiTJ$!hfRD~ow$(Yeo_ms)YpP{0m`00 zSkSx*HH0-f5-H*m5JCzE_rDX8C<5ao4iR0;YfS7oI2r&Gp>lrdYkK-N&}V#!OTP$_ z?ZHiTrIwe9dNRs&x-E#m;Z*C3j14mvmol{{gMu)LQ~1-(`>~;>N}nc9JXwF$Sh|>w zJ4qSr6#9aQ1WqMqB)|uoHL$K026au!sK;`A!B8Y5B$Qs6s2O?7Gv!jvz*p1c%O(h} z2Fgg<+uIkJV6YtxzFaW!|A32ZycimVtgOao|B!h3q9FBuc`2p=t4kFuD~J>xd?%5O zntQgJ`2B>p#a*l%lgIA*K!=M2=#UwOx*2KW1uh1`Ub8szM-%4MniJoSJA$@JpR8AG z1k0&fyo?L5jQjxuT(F4lelp@fY(iLA*sbEL^K54NYHtD)M|3cXEx^)Pylsa{5~Xoo z*S`BGAktsV&=<+(4;_Tji6~RohjP2}z{B8U-ue6dp*ZS?F@Gvt!jbN4PZOZagYS4j zpJtj8w@6{z>35Tx@QsDwOWaxY#oLE8iU4(@{5 zW;i=9R?gpKRZyD_dn}vJ%nl1N4>yk4l%<$C>?;yIx*Z0EkIENPWcA9wK7>F`uX!`^14(O z`+ZUx_lvWnmah;{KDpUwf@1_KzV4X|HpB{8cz9GdZH;J-zU8$foys0`OGHyhqYGh@h20@-l)Xy!2<2Pw^%m+%s&=l z*`Blu>m?_8_Oq2 zp?!yQGsic#H!W<#WlFFo=5C+E%DXa<`9Zb5bT8&gYWQ4pePnVs%vPZzMJu}Jzh_U> zTwm^dJ|egYoVnvCW~^kZ9cgzA16Qx3guEm19?IDrR#{McInaEsGnNCe!3g^@|)HywdF7$|!LdY;L6!>MZt&$b=1Jd*tbdzo6Wo=iBBP)!dTZ7*haE zQ_vzd_-IwDl_B==PeQ^{{xM>x!bJ3M&b0_UbLM8WcHF0q`1p8NI|mSyk$@+Bp8-Y7 zpUZ3Ze4B<8vihv`ip}qT{d$6cNddr2Ehtz+*_@+depkhzO?^#}sAbku2G=;uZ)obl zq}tBIG^a*WxwO8($fCLwyxl*Z*Kys(?Z~|D7-lbyKNAiD7NHBOadh;mKQ~IspE5FM zmJ5}cSdxb^*}#4p_XA*?P_U?wIiQ*F5dR@xbLo${ky6rFe$+Sd^s+2!FV(065@x!wmYYHZQBow z2hFjbE{c$89F9}Zl&luCFSZK!6^vc=Q=j&ocGhYLS>3-Jz$$=w+le!W&XCLJZ5BY+@7x@A`a0);59E~9h*kQ2x0%|g@l zO9grRV9On7@VVeRk^isz;H0&xP1mdsCFGk}Zr##xx^%$?k~${`ha<;x&T~-!&1Jx@ zJ~wl6D$|C(9Dw7tl#X{drJQWo#3{Um{JB~=)sIt`;?stVoItCSt-$TYObSeQlWNNH zguWIo4Bw5Lvg$2dq?kDlMAjReJwCz@4RhELA}*W|&b~iRhj9;L`FxYq#z6U^+K7;~ zXKwkAijB=TwR$^uI9RNV<}w#>PWM0S8sK`U(CYc!q^8`}oKhb|EM z7coh!+PjH<-_a6G`uRqS0`jQ~u)-BvZeh{z8K!FI=)?)@5d`=yzM)zXlLI~=S{-tpxEP2yiFatCma(>i%qmyF+@iAz_dN_wq$o{y0 zx`iNrsdFp2dybe%-vH|4*{{~Cn}f9hY9Kq@ox8%iek9LDsc};K(xiT3N@`bJPXAh3 z+FWKW(qH~?6vgq+dKOc5+v%of zw}3^%S!TPOGO+zWKXkHm%|;p^qe$Eo2-_g**=FSFugVa=J7!$U@NgV00vGeq+DGBY$Up#+H zb@hp6Qef?%A#>gv0H-CxwEFKxNl);@<7f}^PftFi#S83`+l`gZ!Zk+wAYg8agNqBr z&%c$zm794qodynGo`}}(-?2$ZKGZOLKH`R%q;F16PS=HG@P#Zg0D?Dj2R8rHQ8i5% zzP3t#LC%pTQEx7xzxVfkFRCO!#r$@R{(8Xw=;!=z@gTi)(b=sn{_fwrR56;Of;4l= zq6E)G@n@qstQT3A)%eMLA2@u09sAAOx5du}*!2=ko#{+uO=9>ScfcUxB6~d>YQDU(-G)M^YUpKXY4!{7lSdS|*)&Ila)jG9(g|GUOdD}APi?|!ERbC7P z948+dNJ~rSb#_Z0H5q&^?_P>Bi*t?#-#hde>B*dIloYG||C3;ZuKzyqCcDokyj}D$ zO3p@PZe${b4`mpnx!LAbuQU5wj=+I-{J{_9@@sEX-cDwts9mp6{vCWH(&MWC)PQE; ztiHEK;#Y&;`91bbjl_UjIe!t?W2a;>aj(+i7Vis2kXf)63dbzEw}lR!aeeUiU#qpx zkycc;0D$s=8fW^gf3<-%P5I;>W;6X;Jpm~bUOo!QWWuQ-{`_EkCcUXNH9jzj8mc3W z+{(-M-E?onCp}xle%c*d*jc9Ff)hL|iV_Ry3X9W^GWS0FZxu~L=5~<}ftRU-^ znHzjN!MSyO)7US_2hkD)=ichZ9~LW}mxI6 z;c}^X@7}%9B}n@eK?bWkMV6!;$JU@;BmCfOx~pTfJ#k|p$@o_Qr(gtuWLAc}$FCZc zNy8-B=f3Zc8NQv_J~Eyo?r(T__eslR5b`7eOQJZoFMO3i#AvpQl*~`V>U%;WYJ^S= zWo@s{=iGJ6!Tu%FG@oAu-F=fAG(p=NIROdwb6DQjmBY4-jD+5GE^mhA-cTPKkqY9< ziffygAegelFG#T(+87O`6A1=n?O2(ulBZ{_*!w%1O3N7Sw!BOff89jL+ZX74)XZ4c5ZFN|bbwN; zoiJP>V^bexw9Is86y?OT{=iIw?%@mKf3*VmXGf0hn3x#EjsyNYmS*R;iolwRu4b<% zRfl0e#p3$(HcKw2UAe_(;9Q;grh_)l>+z2t^MftVm{w4So=W)QZN+ZDU2iRuOpmEd z6yyc47V zXc}Y^@&A%_r%InM8AA!RGEC&Q_xG=#nB|`t8WPYrTRg4|iL8{m^CpQ~r>`8QH=zvT zP*4y9xJGe+KMMn5``q$!8)%xVaB=twE6L$1E9RVHoiUzl#-03R zq+Sp7x2@!Sf{)&p+%huep^=DD>T2jSFLI>X3ueuiW?*NLBD<#E@n?Jv-)@0rv(NT& zgo}-EjoXRNyRdUq?+>a#?C}U+x;4zQ35CLtcB-ZgH);3Q1+`<`cX`kz3R3&2%NsHE+4!cm!K}vd~0?^ol)0hU{6!brPI3S}oaE z=UB+F7x&AtUDJ;YY?<0i^0IbuSL7QR-F1?F_6(Etl}de1?rloRO^Zj^m2mEYSBhwK zs3d`bA}hzRkjUKc`{ZL|{+KTon&LYiuZ#W6q-MCiOv&81B{I1q(khZ=ztYlGt3)Xj zm>#ic2eV*7+?|<+Cln@xqYcp?0yA*C4!_kkobfy%puY16Tg(+Z&TQg_3!Ou`T)psIBTj`vzT&)>$Qw?}bv_$@KVm8201;eF!-NZ3-lGUt)uLTHMDK+Q7Y5guQhj?3K$0RTLxewpq>F)Xg|8p4 zTCD2rV*6PC+8oPV*S18V5TU0Fl0n_rcutQ#JVfNogbM3!h>_W~7?FxPz*~yswZQPs zyt=w-F%ILrIO$inV);!h0Ruq@Gcq_TCIGV$5vI!RC-s-8>m6sY%4`OaV?Bg-p9;_l z&=P`ePsn*ml}^-N6`)U$&k}^F!pWrous{wON;I`yMd-;;o&{UWe?iS0}eE zJdhzHWKH}&e0cYeSyhn&85O|nAN8ZFjt5Olb=)LHjr02j&&csw3!@E|y5;C}X3?H4 zaH=5U(qt-7qgk?#x;;+edgslUoPXt$25WA<>0equ`$NPGZ2U59UVk92uf2}C)#z|F z?4;|Fea&Lon#upi)LDmRwXRzqX{AI^r17Pskp>AtKoA5)x$3F8&}oIalF)tn&kZ2u(Y!e>euHbwY4cA z&kR96%pXsuvn%cGVGW}@q28EnFmkr&%T{1piT^DYNvPCWC8hJwGU$MfNcT~z?R0G9qq`91PfZik6tqxQiX8xKvW zKm?ozqNv8&P560`xU$7X6XFS*v~U5j=On*R!d9JFXayMT*N0eWypN55q74oVe)>w# zCAqw~&5pd;F#6CADmB!ww`L+ss^)zD{P`NFINA*Ae?jfq1uiLsCj@^5BiPG99onC- z!37$ho!X+3uT_f8dd7TR6C9BX@Z`nBC*SQyvkm$kmTs~9YKUz8cdt}A?pOMru&1Y$ z?(_%*1JX@>|@X(H?~hr$YUCe8 zz%c8G9MoU1{WCqOh)n+kwsGJ9huV>;2Ju!pqM7r^pGHSc+quqgTcZ0!IR^~HzwPs8+2t*SCSE*q8;Y6Wz;lh1tf>(HT$re`hW) z)SixfcUGcjh zCUxd-ad9MIAw%FarfG0D^nhx>#Iud8J>UxA^nE_f1>?6LzkFcoLib7;JgvmH$Hf5c zDkDOHhPMUQu=^mbDmCk+2@Sr>uJN{zs=2vYO$qn^KP}*fLGs_i8in8iT><4ElB5F{ zS`4h=vxhA$hQHhd?MoiW(9QWM!ou1*@(0&`U3)uD&&&JV+m4}6)6O29mP3nN>vqHs z)?O{*di`Dv124w;geAQ{!`QHo#&R{Y4{ES`qn596&#WiiBPTtI~`KAh%-=*DkjN@v-t# zRn<25eoaF?PpSfkjFTPuQ!m$7=p4uWm)y$~tZ8kHY+4IYp=4<27#P5+Nx1!X+a~<_ zg*g_^%M#*SKRQkNIsLCmf?%x%7s%`7R5t`IDGhsk%T zBi7T}ZrPk4&%BH**=?Vsv{aS6Fx7b`9Q@klvm&Z(ITV-jkM?1WlcQsq2OA8*+v8cD zBPhm6_IMl)|3)z>F&PtyBsNY94^qnS9h*5Z-e)^CZ=d*T+oX#)hk^T^+j8hrsd);R zJ7c2_Bd=a9A~X_r;Obp&%2b7{J%~AFg8tU;-^%}0zg=#s)yvOh7f}cY9R^9Yv$#Lceb4bU_Kw$)y)cP zJQD;Q)!C#SnbDq|Iqz_Ok07oe314%Ay{Y$TxvC5xfC0fz1D%5uuQ2vtxO3b1T7JMc zRIe*BKLgORYOHUC_+CUK%L!*I_PYH(9pEz^3fa~|U}ai>B+*AiF* zD#lgI)Hxb-DM z3D-x9lwo5C(4FL8rg}*S-Ou?ARmJk}>Sxk2QoM)v7l}gsrqq|G+h6-qe<0Bc%c0v= zI-IvIJNVm?d7`K7Iu?eNy10Z~b4A{l=XJs<6P4ZmYbETfdU}}W56Mw<6WLJc9}1$u zI1BD99v~mTo;@QCyNn9VW{qcb*R3{9#}S zp9nOz*L-1A6jG(rEmQj0DuLufEv8hKA>VUjtp-nF1aSzHR>C5g|5JTW{ih>5SAa~2 z5AeP)7$~~b;ZvD(RCgfWCZ8k6`0rP$ghJ_VzKhGsM?G!pdi$33npO%Zqdy%aeR)sJ zKGEIs8>Wlf?pt5(-o0xG+BYOk8j5h3hCYNZkpdZLz>0knW!s)qCflZjFl?hFPD7yF zx-uUNfnV9Ay0v=jHse(FCQ+y6GP+Y1`g;;}x-nk@$aiG?LrRvkyt}oVIv?TXbzybb z+zK;Pf0YAO6zr$cfhvtiheNFPny61$qhxfu`oni9mN~F0D^kmhdzV$~|6C|mgt%Ua zBwt5u^$i)1WytPjGXV4}G(4Xz2y5B&LUy*`_HAv2_af(dv+8$V)p985MAxmIXh_RB z@voo<;Fb?khU-*Rlacq6BN?q^k0NuNto=#N)21~GcMacE<>HLQhr9{fn!s@V75FPG z4i9d6XqQ#q3;me|C>8>zaa?{I()rq*#alh*A$hSFmMakvB2h%9M#Maw;aL=huO1SM z9xO|FJQE)2GRBL-6yj7e8*dO!85&ZBr>-}GSI}@)p14C&KT3qTT9E12j}15(V77=2 zw~LGNec(ROKvreu>t*uCJu7mg?Q93Hem)E(R!VVnU%)e*#Ja6!kY1-mkzeL%TO(>q zprQ4oZ{(5mDq6<3j;R#*aEy6U`po%|%|(we_Y1ri#5ZpuLOaMuujJn_aL zz*m7D?PALMi$+oA;@2Nb3PTSP^{>f|cdC>dx>j1kKN4eVJYJ4}cX}8>DK;Ee@ud3hJy@0>)Gt+d9ht{G z`+Wtq>b#SbMd{w&s}pada5U5J#Ch$@$AY}9t1 zWPY}A=1NV0Ik1|i4U5FBY4=M3`r|tb3x4LxPTEBke-VU3jjJ|iBh8_JZ(S&#}zva;> zBgAz;w99||W3Cg&O&bL7{Df0cA5@tLTyp)@AF8O_Ktx$?2@Y*P5!DFm;r2`~d>rNj zIaiZ7_1-%3A>u1bTM171pG9Jxte@F6#jptA@>oJLAG5xOo38Bh6c(t zfhZ`NGN8Nnh0#;(&j@nfH{gFMg?ukQABo`4X3^|toB}PO>_V)<^_}Wp?c5^2?Ck8& ziHhn5mdM&ftFfYDKbS6Q?B8KZf_>WnP;R9NU?4 zow)}?JgwMEJ2WQ((m9dr>kZ0tunKtVxyGnOC1EomfP?6(kVL7#fUCu`*F9oKltV-L)g1^G^=iVOl37PNoz+QD7Vbu5+@}k z?SqU`@G!TA5YuyCL^Gi~+&2i7Jl;zjew~sRjEoI26N8%tLyN^^+Nzap(-~j z$&H4@m3sd>&~WrQ9@kg)ka%72wU*IlvNEk*tnr1*4}+rF`NH-m_Hy7lO@g;ulg4TR zBc|K>13kJEHz%fOIgj7FLFD)^2ILc*Cxmj}+Cd!x^=H8`JIddH&DToMng-%)R}k_N zG|-+0!y1TS1Vs05Kyezz-ClL_H6rBrP>$9Al~{InYIeUl_-|reSW7n@?h!!y zoMcYe@}yL`AFx73+1uOqq}rwcgM|AHE{pVpZG)x5X%i%c2D+?mcN+-_374(O4wAV! zhE3%_gYIWncb8ZFnFE>!$<_7A?8$Ow)xQf}gGk7}mkD9DgYp{$RFLEhgte2fpkX*9%%bAbNXxeu7|~(JsNB}{ zME-`yQ}gRdUxL2OW7Ob;zN@Ck>UpVCX2^lHqSAHJl6c|Pq~SfCfI=@3d+&Is!MCsP zDNto_n+&~7rm$q&(*Cr>w2Ql~iv$QEG-?nqs8-Z#&v^IWCzuZr zi|v3TMyuL^5e6|!KWTkTKx8^uihq@s87J;X}f03}?_o0z4WKN&=8Jt($XNTwF0c#1QC_>ptlJb)$oH zYS;GRi_*{YdyNV}R!7Vf31$i#y}nd75HcE$V8(+r(wjdej;jkHO|T*6&L zm{ne90-$0*HuESZrZ;tUu+xiikHbk0GINa~rX1KB{PFYW;HPKw_UuJA zOI5THOt;;xtw@nTO9G1dxRf-kiHYzyL`cK59q${gj-ojo@wFwHtHg(kSsC80KbbYa zas%~DnMp_Nub{(k6t`9JXo&oCj3?aQ=uw;027T8sQce~Al^t5J^Hs2UeWRE@2)Y6U zaR+(}CYehC(WlPo9bF2hJ^zp(FEDiua5Dr>*6F(OJYj(@g2 zyS3E=Mp-19{iZUy#Kkc^Jo-`#>wy-pLP$-@zU8;y{XW`I`=lJ?qc4ncadDeWc=~hX zNr3lkXv#+Jb0`#pHTc3}yp(Zwbe@I%Zv1H5!wVjx8wO~Pc$&?PXPf-s7P=s6to(QL zza#=t@96GJ)y;D$fb*!jnrD1rZZ4Z@_ZlVW3+vb0dDOEF|l92 zxe0s|03o~$T0RvO6~yNTBS+BLXD3jXXh(!_lQWuZJ~oBi zSeRe-&7HubKL+9t0A^Oc78Mamg(qkatbAnvP4oEmqo5spQ@|xKg(1E=^HeteNhzO3 zzUld5XjhuxwyW^^N98O826_xnx@qVIWq)ix`6>!!CJaL;)6OmVNq&k5WR8s_Jz)(@C4aW9I@|UV__lOL?osW7G84Iq3Sej!fqF2IlOJr9x8!PTy|k;D8R*cDzSV=$PU1?=ZDxHL zC642<-Bea?+A_bX85-x-lFso^XOQNH@!>{Mc{QE<@H>Ml~C-rnBtb-H}^<1xwP8q|o zO(pJmJE9)t_!2=*$1*A)0^2$==6<>-qNeN_y+NX4fEsu;QxV~dmU0)mvA2|hN|S9d z_B-C;zaszTpfp)aZVQs!ke>8vAjHqN-q3A$hHLv1(W5{{`*|?W4}kFgcY!>Aw3kHe zR$pJA!ejb4_otqo-rCS-62KyMWs0Q%<%1ir^pBJSs<45(im#TL!2CF?!c%T}HW&E9e?cV12?_#zD*o_F2x*fQS!JT9Vf{$2R;rE=A zEA;;DLAsi*;qYJ#f-DXgf&NLOdV#X{zgdk&!qE=$h8D<#9IN*bBqt|7K06x()FUDX zF3>Lb9u+PtE7O8>8IZOK2@7lKorTJne*gU-@E2T2>7eD?$?TydCufp8u<-w_6hr7TT@@d`Dg)DK>^iHs8Z9a*)Neh4? zV;<3ZsqUq0RJZ>5i1O9B%hM8Om2(;Y1L`tqw89O-AZ+-L+kskb@96m9ZoV95N7$BD z=e}3ws|f9#5s}C%+^Ju&X3{PU z<rrwRaOdui*NRGUgkVl`$+678}8RlbO|UN+8)gAV`^pv zmW_}HOw$!v*=DqbQ~io>k1P#$0TgA?%a&Y-Qk&_D<&Pdfql@LY#DDG$Q zuTBBB?<_FQV$HZa{&^Kv6jbSC8kHMeQX{x0*vVU?DE=gy=5UW0^JhYDUbYg|S z|yzm7R;wiOp|97<{@{Us!9i8&hR7~|zuWUygxf@~akqxL~x zJ2$U#A`0Vd=|>6@T%g~d98|v(_gu>mQ0+mlc@!E(T>{!rV4^WUGQ4lYJadcK#qtww zfNWfqsw7o4$wTSCZ+n6aHHc}_UU!UYgp#K4YVhMNaCd)=zVZsaf}!(<7XiwS`DSz2 z2KPt5f<7y5dEyF(`TGU+)JKdDtiWR0O-yMXEs%ISx1I9(K=B3baP{`#+wfRGF{MRv*pyp<_(7ddx2_N&^l8+{r25E)TF{ zAH8bUU_&`s+1~cJa*g1&E>Q6CbgS&LUsb}Qa(?j-L(fzg%$C`N+Hd;na%)me^o}H6 z{1blCHiP47{awq|jHNAaxM^epQE@Fa9ztWm2R~GqeU2-l;r^Xbo5ccAJ`O;YW}yxSU*6pM`eOi>gMeiT zDo;2yBcV)=iH?4n_~QJxRnfCNC2G*n@vbE~2;INWYcnqmtV9MP{6gb_PuV!4s|trD z?7$0F1mFDDZ~gx{L8Y>f5gKgDUUkjQDFMLSnnrRwy7}k6(`pk8kRjqP8J0Mg!&TKO zdQn(!zPR!wziR^#@Qcw+IA9ng-ddSMV`1m)9~v>rjmH;-SF2))XlLj)Jt<(J3@-k;Mupj_GBYBqlatspOJdh6zfW6A*vB#~yMGkO zl@K33#(x0cDuiS#K2uY36+sc%-JMIcT?=Nby~<1gr0`KoffirwK6*O_=mLXLx% zrr|b_5Rm^Zxu5YhP@S)#}%w@2}$&o2%L^{4g0+|+GDJODh; zcY|wpIXHr{2AiMbaSd}>&B2ZF#%tdAkm@YjQ^A`c8LCg>LNF?VJiW`e>F4ZzsUh zI(9wwt z$xTrmVG8%A5_ZUD+pYcmzi@L>A56xb)X<0sti{%MwY8f#f(lzkPoG9V-0g^^)lNw3 zZvmvzB1Q@I-rgQ}ilV9iUY4JJ(dFR8yW@THk+0++hq>Le+|J`6h$G|Qv-}`5=1gST z%=IhWJD}wzC+<$wnEUv3>)I1h`S2$T;G9$Wx~^;tAtk7-!>>#&W#1z{Njiv<2?Sf* z(-rlI0qW9up=WpUZO7fBFt7f63eSYQ-)CFu=0dL#bGgTnHaupV1Cud>kWg~rRE@*> zB178ZMqdPR* z;?jFDm6Nynt2FqlV!0N&4WrS`R~)`Z;2#8{kqKq8^h{NE&&E;C$Lcu_F1y2R@B`Ko z_fosija3Pqc3eFljxcxd6Bcm1&%q*yjX2lGOZJTEB;)K{;2I?<5y{p3;cawxz z=G|a42#Sk}xW-w=&1ExwlIlN6uY(`nXCf`K!_XMIXJi5m_7>p0qgJ+74V>RtKk^}V z<63EDJ6O8ts>bgZhNvEwL6-rv*(T~_EAh*PVFs1i0JkbV{2*Ckx1Y%`uDRrfU9THD z+)jeO2Oc7N28OmRtI6-*gTTLg0}36YSGCsEKSc=ImgQZFat$Jw$Z@9p8HkSDJ`PKY z?Z@I?!oR7%H^$!LXStyX)C`I9%C#mx4197P%z%Enh4WBDd$r4CrlXsP=MIK%W>Ac% z-y2o5w=XF#R?d{1{1@4taFqwzmV?TnD~a>TUwlZHSPb~oibnHyvx{N2Y{Y$gsOne{ zP~EI4xCm2pH!I?XTMRls(6GhPY#UBq=57kZ52~t$`3rR|DLx+lpI@Brz;q}Hwm-EK zP%{KI8y-(_=3dgCGk=rZ-F}omJW%Uu%My0DMnLSx8m4^mhDT!>I-JeOgtz#P*}Sw< zQ+V7dL9uX5*1puF#K%^7&Pc{5By?=Be9Xbg`4Xzr`5vlGy21zfexsBvY|p;x)h0r| z?#%uP0d^UE%{Tvmeg!;Ret%ca=2$nDuwnkE(shASV=?H0c%St@h~SZNGN4c}*7~TA zayw1*p!BK1{v#jsefOOoT>4}%E7bQsF%90d1S?OL_a4g!1FwX60{P;5^4B_+D8I@y zo;%yg^QhK}j|9QiU#6`l7-P2l^oBLs{ON@Vu>eDJZIY2GTd}9m&dB4mGLnDFTU?J6teIeoo-b; zVJgl`A{)$mvH&P7PLFyM)07WfqT4)gI0{El`(tZVbR>jH`vv}PkE@AltKBtSp8V!7 zC?S1}L7WaYqJG6Ss{-sFK_Qfsi@5PpMvw_lA|aQ&`;ZZcL6&*40j zeIkS1i~keTd4V`Pl*?poB~wige|s|NZ0)DKVhJ>>cC8Gbd#9>oJ6bqJdpcplNAY?g zLeS)E1YV3#v_;9t!J7@nk6xch=r#|u<6rRPxqcf4d0_tB9ql>3+-fDToQ_Lmn z8h~MYcxIsX-RYyb5NO>%?6cMIVV*09g6t9rj6zTbcVT*ZzJ#U!p}!rbIUQYHIbgPN z$sg32tWdl8n1zdnJmQChb4s<;ZZ8kGsgRhckt3GaN2i|DS`M$cgEWQ?aQicxBav zuQ+nS7UcQUr*th*^+H$i4yNvmB>fIiuFec;;$Rg@=Wk*=m`!pT%i{DZKNTURxDBxM?fN7A@j}=b z*YTflu$*d`1j>^!;v8R*$ZvOJqP*4CaiyUCd&hbRlRnR_y#sDeih;)_Jg6DEq9E{0 znQP5FJQR+1c)d{dbwNY_(;u3d`qGn}OIv3o%>z+c%n$Ax5bsG+RVKPc7m>{EWB#tR zRfdf-%>0+2V1(#8ID^cGJ`uwbiZgA<$-!YBqD5xmk0D&%CNC2yYn3QMc|rsm3-t@R zIA^9l&-Z!NhFY`BXX>Z_J{vG?S@j5M+S2W7O2;J{<8GIbW5~Y{g!JJY<%vr zmKs=#ftd!_;G&{bsw9_!zv}Y0cRvkVZZ@bFL9__~0;HdQfo4CM2CppbSGlJ7 z3eGlv@V)-0hOkachhF+Wn+^Dp_$UZq#ulI`0Kj;`)kE|jSHs`60GO!4JT3u4|1+2IY*MB4pRXZhvgzs1gi(cu zUtZSMTSen0$nH0E&Sw|ahS(CY{{5V##B{rG`C*{6-rudMG%$Rrxo4$9VkRsIL1jg} z6(6F&+b*N~Q5mA`!yZ2tl-Vv=!cU#F#uzIzDVJi*!6ZfE} zcm!7`b>;=sJ<==hKR6kP!1zUHwadSsq0lng*gTFiEbaI3RS}%9PX01g{YQ^@z6VXT zPx?fut?mnm?`TGc)Y(e6&TJ^02ZYB7rH(Q;Z>dgBP9agcu+%XfSnOb!{1(x=b998n zFCvOl(_LD~Yhi_8nq`<&LP<{;z*anWg~gl9fR4PCQTBK~@$W`$H!I)?2U_A~9cI9` zc8rJe-iUw)EdwZE;~aEuT$;wo=G!@>HoyH0hvqQpeD2tDt(86n=ryHIYXcGowkJL!?)8~)`VK$3 zM)`}Y5g;v%Y#aK!jmkzwceD%CBf@bTti7%Rd`V0{Hc zK_GE}f&5({HeG)>YLKp!Awo<^(hB|nNDKjoi*7U2PN0=X1Z6;%7_U`&367yS`0_7K z8!;7!b!F(-daJ4U6z1<;0mVbb{bkS@e{Yh+==jxjW6r@u&)(giozcKC?ycTudTRm9APQ3eMe6t zYP8Vt#_r9X{i7EPZz7PbD*_OYv{=A6Itv@~x|7sJpMrd=l!7+JPHQS@gO%13iC`eH zJN;`>rElI1yMNa2yL*38tOy@k$f9k^ixY=)X%3bOfh;6$D;cgApNamOb}CM#8!42Y zi`FzCpJUvg^m7w3Dh>)cuvsTk= zn?meT@K?aZ?^*6sQ?1|WiHXbH27-)?SiaHG(Gq>`LGuzMunU58Ajpz>_vuqeooI*A z!Qa1i`Biwa8r8<%uMvk$*Ryw)Z13OP{VTG7EP4R`!?f=67lxVp7}M zq>;S>D1@!bHi0*143{Tzg>6}MO7mc#`rL(D=WjVg+*+?~{cwewi;&Q){l+0#r*PR5 zIq$7G#cCf6ODQYbaToDNZIybT9U{uo!q7mguz>~f>OfTOuT^?)!ABt*Mbiz!9Y~x* zhm{GyzF|P@1~uYrFyGqI#P?V&-IC&r+zcyQEuU?jDOPRQ9anaIe-nHky9m$_sgEo9 z0*3=cNZ(;&%kbXEL!yJGhcoDd)*ie$(jS(V){3PN9uHoi*QRfTC2Oprq=U2n=zY{!%~ zc9S_W8q@d5NP9f066rV_z8Bhb8<^mTpL4Y@JN>?E&(-Nd7y^5TVAw?YN&A zNEadd5O#o97)DFbgMxySPB7%D&na4H0%?JPt|#MbeY>3Dg|e%-zK2%hsu*gEg~TpsxZ z1_yt*N0(B}mG0LrMBMczUKkeL0E0~D|CZNoH$Cq@HdEs1oZl~)}T@XN$Zwm1tqV7kz=Wl z6Iom6bqj9!Z@yTad&eEwAg&LhBeTE>X+QlN%G2x)J`XkVTThX${KZfN^*y&W|39LDZ zAYxEN*)3q5x_MhDh2XjIVy1tUZGKDL)bOwx({qrh-b=&Bw8*ie-tf zkv>hnSrNYW21y^{lP87EVI0< z0`awAQ3I;T$FzV?zF&^TS`6Ud;TitVa}2Ii@b$fg{ScIukkuQ-^c#!RgpHG!dl;3euWF9?TPn*WB3}HU5B`E9?%NdLhr_Vj-4pshb%X(w>~#(!+9TiX2RUjv(dWo zU6&HAa#*?sT0xZ0*~APt#r8a=GlEV$22G0mlP8G&5!unk_IupLP%@db?AwD+z;XF6 zIh@AKIMh}2gfEoMLX|>XXM4Ku1_fzcL2P4ir@)Jbj0b98@WSsMUi{e9)W@J--{#VP zD<42=g;C9QHE0BXPSk6dEQxL6-}(9C(a(JO3R?^!;Uw(p$nP9&?6J+JKb-UOQeTy(Fp<)S!b&v{x;e?m>F*|xAxn?g* zT&L%r4Qyw_O9YvW5rj=fOm$~QhZ+bK#ynE{p{KLK~mUSZPnf3JG;w(w^g(yTs z4>yk1n#{L_f*Y^X{pau1FEaa;m5YHv_0z0DlB|@cRB_wWQK2J0bt7_b^1#gWRH0Jm zf2Hs?!AfTz?tQvM#t1vWOG1lnFWBOl0cqX%S0jYg2CZoMNjmuBr+qHHVx)Zh;Yb7B z4-!dxIpltU57CwIv?jU`v5`K=CDdomvpi+n_63ss^EV29_;!}-*fNZqPjK% zY%gHT+FWxcjp^-*Cti0a>D$pBnctt6fuBU>|LA{?cC%i`R!B=|TQ1PAhw) zi$MSL3+i9a0?!AUS+J1wJ+-jaTBM?aFJ)wFs|;1Sy?xARXHU;ZZ}YpMSFdujkg8lW zJb3bYri>!7=#x+?c3DyTb>ZveuUJ{0XdkT&2E⪼m@BgI2M{==O_%hK5K*Zb#*2o zQx6+ZTT^d~i$6Po&&&6yFm>rw*%us$mG`%uFDa|cd#b^}VqMAFKs4$wyW|LlfjX!A zfVHuAa>{9YLPQB%DG{^t@Zcz^^pxSsXXZT7nP23^X?oZLLG*CVCwk z`!TIe3{yE(mbB#iP$aDs-q-i3WS1{s(Xz0z!hA+P+fTt=T5(|VCR{IrfQr&z%PB>XPGqYJ~G8cxlX;^ad{|ju6-N(k5c?KbTOX3{HJlM zGi=VUitMcUNUbo3zrKFtAjriP1>>%eN$ZWPgB1QRQsTtDFbo|9IJr%+_ zid6%>OH6Hqo{{9>Ua$2Qr@vr!YG>mW8~K_8o9CBcg#$-iYQ^U7*u+#OmQJZ|R+(-e z3ViH8o0}bMJfX=>JaVQ1aoK#YEzYofnQZKMqhR|vL0Sg|t`Uf1ia8`X7YxW5LnmA* zI#aK2X2N44yoY;3U6&i|_C6kF1b^uG_fKqYrlB^M7naI*!iH zrUzft{%%faU~YWiUkq&Pz;|1s`nDHXqjcRYHrs)sv}-mMg%Qs8+K24}vin2a!ftE?Y=hLUv$cA3mfM!EOSP3IS z-U_cr=zrv6w@WiU)LyODo!(1v5$b4+HXP0xNileIG$Od}Kv6I~0fKE{lS1@X1@C zfMXNWZ}j#;?BzG|%k#=NM&6Z8P3RCiq7V1<9C8;yGql_PllH}LQX;{9lMH2?grr(J zmL>AJSYJ#&ocf#+-f%;&ue$T%6@{u4$&XF!hT((${a~HEp&l#$y>#J-gTH$ZO6>kw zbeSM{@0NGQSF++_({;CUlQ?u_Vg5W`Y!vWB-b)a+z`@9aKSwVcT~@DH?u$*OoJ5P) zI~wa{)ch&V^6f{PopoVg3$PxY3AgVWsK3+iiuEGS;@T@I2>wgHt<2IW*;%A;TA_@F zDg1cd)0U@(pu{|g@h#0!7(R`2RX|+i^1>*}?Zt~11#0xP(k-zs6M}0}9vk-aZ^#E3 zGP@OpGR$!}9R%rLtbUZ{2I(u<>ZE|82w`-w*`dlq@e8viZ=B|SuSph#Qn~b%*-VK* zcB>X(!Z&9gVnMlt2>j&b<&RHJc43bT;WKdqKZ6M-636vE{J9F3L>${bpv6Q7=Q&x2UKnw)X!#K)>JtVg<+p0WyF|3K(_p zuh3WH8k2ayU}#ek!bgodb79cr3U5rMcj)gxd;J}9Z72H$5ZR)Q=%P-!FP41Xma-94 zvbp|(yu5LsAi=e}KCT%~o#q;kDu?yoIToxc<+cr;Q8z?qm+`cO+>~>;-?>m$0S45^ZqKkC5u@pXOSL{r>V3q~C=eQvu5m z1iEfuQLq^KDrGHAp6ND!6>)VTbavPhD7(1{fevNK!xw{kwu4oP$L)6Rwb=}|JrCfP z)?#J4jMTu>rP8r8uOK$rAvo)B*pLXHpglUtbToXUbymWn~_4% z>Z$&gHm>6%N;S$v1qoY=g7&xAebYZ&C92W%#c{}kR@3njoIaVpn;-OX8Yk89jIg~x zV&q{ItKt4tqeveibOA6HU>;D?gIxM8&|qR?VvO{jKKx=R`Zm^$$T@~YsltvwtS`$| zMx`mKEL*dTaQXTF<|tiWfBc`P>8_ydbUdYV`j_n^r@rt9taoFE%oLR61mrcWs!mER zs0WTxb?}*a-Bt+!+?6V;tDAnVvM-P^zWmb`7$WW(N|Dvd6<@>+eKj`1{+w_S$Y#bU z99rF%{8&A6B#pi51nOcMt|Ci@BWp-=Kt!+LL{oQX=jMKDBW=>kn@9Jd?{xOp-8K7i ze(8;TO*xi#(3g)mj~N0M)a~`_{z_Yeu&}V4N5fJs#9g(Po1m2>P(aCiI>L+oC&Hr2 zFn@?CU!C}*UftvYnkO~08qNu0tVsFa$#vfj0)~kCdxT1+A=gK)WV$dgG9iwmMDU|S zADhhgnupPp)g2l}#AT1bv0z5t5yz|{{I_RjCX40y#~siRJI*#;K~ksyEkKVhQ2k(F z06POe^nMzPS3M^-aV0-h4k4!WH%ccvZnc4|=Tg}Lm7>dLL|#@Q()IBit^K!vP)o4q zVP-H!%FHaP$Oz`_9q@wh00JuMS0Bir9N_DJ##_@0dUwux>oFhn;zaFs#ZV=8Ty)>t z{*Z%y@`rWaINCI|W?a1AXpUIoSSSo^_42{4l*$thWF`{gY9!*JQh4@Kc)iGKANWD} z>j!DoulJcYw{4X@b?g4L7B&pTrJMWLvw&2a=$pkv;!Gsf9R>zWfGAoO)&GF`A+Y6` zK|nUUGuH|audp{q>mO}*)ypGQ1xL$&x=d7x->0WD;de9R;_-hJvPIHYLF~0l`yIM# z8xxJG0D`8xew6Emh=L_=ljIiHz~YTVE@OrScTPN>YgY*gmtp%;_rdz^=C~5eCvVC9 zg{`fTZ}}kL1gGQT_r=b`@rmdh8d=Rr{LK4|dbwHC>_^3MWxNK~V-G+@w`J~eiTnNg z_p$NuXSWlWU7dFP)oF?aWLZh3>u^78$knI^>xMPlxz$h~6jwG#tw%8ftPj|2_QGYt z`g!sx*=NFJnma8d(&v_`At&YiD5@2KH-?YgP;lgM|$dGvq7v z{^y>a{)L?8r7TcNp*Z0*Xkhn0PMQ6}*wZ_(p)ElEijQJ#yo?z*#W8nYVC2hHLklBC z0GK+cky%(--@{}FVG_YKe}2_1?e9*OA*{|t5B?7FND~^WhTsmn7Ru=b5XwtN33L7X z66r24VmZ6M{HxA&`PtK_4*(c$&8!BFNIlH$Lrk~ATZ#lpy}5Bj_(i5qN=yBn3LQZxRV>4{5Q{@n@~p$ zUl+Dqv*%>@vz^bqkiN8`kh)28;UOv6r*%3we$oy&dh3zUjKlN22B4&R6 zo3^&w1Hnjt3%G||ZIfoT@kdYe3T{$$Ub`ZH~}oP43Q<-AUsSMSy)|_14bSiWFFmW_F$!-`IR7Km&uN6imFJ zFaxM-CR~>nI!jw1{~+J%x_%9>d%hqy_`Hk1bE;Xg_;Y!CADkBva@VV^_$WF$dW<06 z2uz6AplHwZK3#LTdGqFL*!IHuGFp7>wTAST_&oDet0^0|RJycb#gV^T9D|(RTa?I) zJw|(-n<+9VvJ3*dyEm70OT-Uf#8TnyQ*>?=M#j1ay7v^H>bq5j%5_RTp`m>~%IYeq zQmKs7T&(@huft>>4$MUeZ_Xb3)N$e7$ii;TbXC{DL%t}p-Ir5*p!xJQ9&x$w_fqB2 zis)-$X8ubD;-tQTRbd*2|z%Q9Aiz-Bx~{v?AEY4zr$O0twfao&i%G{ z+t_R9(F|)6wvRK~inU|EIP*%)pdH`Ecc}=lKX`xxRx@*bS>kAG(R<`!W5q@oN9A=< z;P{yE6f-cG8Mxw<-c1^FXdJRRtx~Vl##1Gj9q~U}fF@;m)DI4+tyW5&;(Qdv0J(0C zymQlf+G=@%W&`qcT7 zR^U9^puLWpzvU-e80&lSdvYmVgPotW2m5o@CpVQAeWHbRDM!JRsrt87<-DUZ@yYp* z=J)zHpTzt$-nY*3yjyE)ybnMesAtA>b6`Y**t?(-MToJ*kQ4~6Mi}f70cd~=4GsX* zeKwtS0;zmC{My^nE&=T>*DdtkcW^hqqLg3xBy;`o-*^^NNd$3o`2b}@>$tSq(zW|>8e(_D3x=TtxKu{VKkdPEfkw!`3S$od!Kj*x7Ud%Nw<{Ij| z_kFMRNwL(^++6UPb?f8i{lAk4RB#xYazV&d^#eN6AZLAjp}ifiB#qd~yE9|v@X$J3 zlWpsFn+#~~dI$SSrq>(^$?KMjI7CX^s_%B-nZjZ)UTKt$kcS(iOtD?oV8!i$0YLGk zj+X2gKM3x7fJrEqSsMfbQWvxN3ZPCF0Jv&ZmT^Gt1(Y$~%)q<0&XSxgO0_8aZk#0L z`p8OC2I@d%q>nGJta>y?9r_S^X#JObfA7fme@|V$pFc;ymtScj?rZ}(3c_PP zKt}YoCEOnD$MVNMd3`c)h8`Q*haPwPPYDA)0Ye&f%ZHuS!(Zzn4I#N@M7Ljl*uAqm z$4NoV=zfE0x4P=LJNui-a9Ii3E6jItTC#uhMxM3ApqupMu8>{7af9Q-rD?>t(bUpC zoP6^Adp*&O6{E!_?GgY^HlFBuHl3VJ4pw|~zh>6ZJ_m4gT(vEDkU`l;bA1MjVn}GP=ftmu( zvsz8-ardNl4=(G(iBRxJ^ex_h5aeJX%H7KvC}Wq>z=WVkKnH>Yqtx&0Ulu21iSR#@ zPSvAECnHEe8;0Ak4}{$RQ7>Qt#|xV(b9kdniR+1vR>?pY!v%PDymhL?0hPtU#rZyM zs&{GTR%GuQz(|@NkuWaN+6mm}F{n`;DvMw@0>?-I$lcr^n~`5R51uoSUr@EZ|B1_Z zTPdYu>0{(dvbEEr1-)g?Q|6uCnuWvBPanDBD9(yKWwdep{SLh)V5^`YOyjfxotG^#8b56swz z^onKF2RlGCM*%);cuwy(9*U%8qw<$LA^xE*z!8OJ`DhBThEkFyGJfS-uq;E6Ab>I@ zdK$t08#RyFrHqnl&vGNI=6K~o6r^c2tg3tflKbjd=m@y zxhXSI9eJ(gUlF>-6ws!q>FTn$ddOeHtFSVvX`>PGQe^NNd=8cnwxi29hVb8|$4mu> ztDwzsV)wj)Xx$)M7zpIJjNWigjR!>QSedO%Mt+RS(e2z8Oz3l;G|-+gJ3qb7%?oS8 z>7Ok{c!HeH(*6Z{q+J?WIzf(mVGnu^Xq0`t)qS_lZA}FX2Qpv2-k2gLd_6;9NtPPv zWFh7i6aX|l?cHq2Hj`T@G& z_^dI}#R2YiOR&$b&u)D#y!(P|yLy+3kyM^-f9O%!;8=|1<{Nn=y8=X20Bflw+9`W` z*Nt;>#Lmw}xiDl|%CJj9_Qd#i3zKiEkK@`)%7eCI4H}7$(wv@IQa_XXaS;sO8Ua5787it`* z5K4@_H2IWp`zyGBMv4 z=!))x#RB0S;obrCFA%DrV5L=22=}1@ogX}opbaEPNNMmmT#a4Xq&oNciwIZX>WZ76 zry}5Coci;}bGkE3pXZV-8g}5zBn-*h58Y+uo-y}f(>sf@AT20~<>ef+v!$w>3r#LT z(1{r_Tfb;e=teaVo;u~DOYN9=j?ToxY51$yO%tvqaP?T*Hpma4u0E+q&U@T%HBZ5gSW43Bfz)3?)P|EPHfggr=Y!?=qMIBJ+7cV3GO}O1 zl}!(Yk?0AVY+nRkNP+GWP-L%6(2|e@!%AE-IhqrFhyQ6T4n|CZZH;w>2})S}_s9It z>I+RBzuOaD5Fi@X_`cwvAXJ#w-?m@+nZL=i5-qyR!QE%z)%&@uSw~jg-$w@Hb;aut zb9@sM69l7ybrdl>PPO~D8?MfeE2FK4ck!P2=GMiER5xIb$&pduVytS?s68a&BVH7pmL4;vhmcm1f3!LW@$-@phx$TqYdf) zOZD%4XKzcgO*BR4G#+@zr0}Q4{;luPmAU zgr^;Xd&~Z$1Mxwa2b-NiFgV2|CqIC)aZuDiBt`~M@4W}o8Tk^oI-$504b&iSKzbJBDJr^@x+xr{$JE+KiJ||5JoCFyY`1XbQEuWB+V^k!LJx>*23=QKs8uo;3SlRJOP621DPY z7~=_lxvnE@^?_WwN5S$(rRqaEZuuS)lg15og|`DG7^oXQB`@@lG1Qv5waR}&E#b?l zkRR<+OyXcoY++?(MO-=H4Ttt{X-LvvpRW)FiDyE-JE7$B>i#XrJWR-1qkBN~E2>{pJY)C;`Xur`tdADp!i^*&D1LP-@tW}bD-q!s@aWM-l&`=rCIoaq_FKwJ9yt3t!u2)TPI{Mz>UUcr9!oCKX z&Ml>4Ze~1fg~Z^N7W`PpLJ(wvUL|67YlXY#X!(il8msG3QXiWK=43)bjZ7-q$*Jzt zHQYNN6t90Iwff&;GOhnyayA=K2dh(MxB@aGYY0yS;lSee?@~~2g~XMyGtumzL1O`& zz6{BR4^|@{y_I`RZ#ay!aW>2qHZ*~=9$vUb2!^MVkf4El^-Z4Q&wQk~fenAn!QhClxV&)cOh67tRas%^&fv5%5&!H9jwAtjM$Wcqk`G=`i3s)Fa{uVqQt=Istl{ZE7q*JeHC8Z z7!dp@Oc^QEIv!BTypUOOSH=lJyB_j=I_{U_5A2hVeCr&1570_6l-kh9oQ=AqLN|>1 zk_HY5iz0UUf6|H2KIA|2YSY9HeiznZM2ha7!RF6}ecN*_Vs?9#S!TL{Sr^mCml%EW zAjbsXzWvvGk`i+k9_L3-v#=g`-0EH#%aKAwfvdPXEcRCKVDH;DZd$?w%i01bhN(U_ z(lg8sk4BbOE8;5~*7+=alOo+aU#PU3({1DQ15ir}?oz^2Qb+L2;0Ei?tq!S%h1rl< zaGFU#Dt)QsrsyKlKAa&G3pSL*`J%CnbvQ%ePtQ^jSqwRJVxCMr6OYSfR|7GCR)l#2 z1ikdGlHiYD7{fa9>gE0UIKeBXSPVki47Qi$<&Yl|?%RU3qk6CE9*$R=DVHGLxxc*K zagV~dKP~bg`UY!Ic9K!@ zX;4J+61n}pZtN%cnR%&pwyXM~9);Ju8w&>qC;x0>GOIP?Dl&!Ro@Zec#{6VQDgB^E zSVz@4u!h7%f!MnMR@wr>vy+pW%^uq4hhH8vKR+(4_ZaV^lYZ>@Hvhq9OV|^RFLW&w z60bwaW!Tz{YqUkgHbLeKi`;d{uvChxjK)w9o_tb#-dZ~z^Zpx*g$ID5j=}2ZN?25o z>K&+f?fcYRd+lt!>1PFe03sMHO!%DLVsDr9x${oAKmXRpbmAy3cWzDIS(?tUIoMT; zR40GVMTL0ey51J1Ax671J$|JoEF&MQM;UF#B3}OTB)NF|UIn7_#%RCZ=@RWF60dc* z)iaWo+bx=5T8yAxyLJspEVi!@THoN#{P6xy9LZmLskr&FyoX~&FK$R0`4rrmo>7rq zt&k;(-V(FQ_Q|Fj(Ywh+N*3*vLQJ41=c@E}H(`5eU>aUhaM0L&d&>&y#=?%-*E67u z`Sgmi3!;-Wwst#aYQO|@A3hI;w$Pw)7ZQ8hHNF#2*G(M_NHjRiO9QTBJJY~AsuJnkO z|DZ;VKOlqJ49I^F3Q1$=Miq0m<$1|2`I6z=@Rh)hWoNUUxjWs=WSJ z4jG`tZ~q1y_7#KYb)^Z*JWgU9loZGzVQR*G1XxCMtmSq+eucG>sq(#r{>FKm@lLl+ zzH;OqPdcEE>}^4aq!ubPZ=C!pUNw@ z><#Q`9`YaaVsCX(Bi}IF{~{HZ;-&5F=sXM3ppET75c)>UezoIisAP=b>^%5De9RWz z%56>ob382kmVmY~-cFO-q9)I26MR*9YloIG{Qc_f^Rx&sIDzFaS5rfXnz7S?E!J<- zd1*1(a-E#zjhFx}Tpp0gjBL=*JMi@9c=-Pjd&y4DZwvewyL~wH->0`14eVv~g zJ@#tN#N!LwQWsdKV`VKdbiLWp*%<(O3dripXt$L7SFQeT zaGTUE%{00{ZaD*SaYi8ztqXRm>vIQjV3}#E3Y=5Tb<86`ep1mOPq?hGdyT}oK zCBb|osf|i=7*e%li8a;rezZ2xd$*?_h?Jww_$k%iwquVo zz{Aw|yzvym>Y8U|U^_$p|s-i#N61Xi<>tt_bzOz+9~-6%+dT z7koIoA82bQ&1Rc05No~EG<*6dU|}@>+jsMZu{+?|RgB zHHZhps;sy@ z_IvdQ(Py<&8-Sq5^TgJPh681GZ@bE_@=I7>GUMqNe&Guvyjqh{99{~15T)g9#9Y6N zdezdGu5FCHvgTG^^Ah_Hz_ECpT+I*k)riv9PhHePE24@3TpnBx{zt4>SxxOMC zMaPm#Fx4Rc@{CtJMPJ>w zXime1$q3^6pkuoH;>b-P+(A?+&%qerxZ~iSHf~-FfOyLN*}Bv?9vVG^`OADop0(PrgY5Y4UDP~39X9L}gf=V88|qX~9LHlwcsrk+ahkzX07)UhqFb?rJHt883A2M=MMWfzz5r(a;{&SnCD)B*E z+ncsnqci7HZpTX!x)X*I;;bZ@b+HidgJia%AoUpomucp{+XL>F*_SDdXWV>~-`X4^ zUokXUC;iM?-DwNO`e_qnh4Q_KlWsf&hA3XM55b~y1^`f#!hkhE(hqJEJEoEw!>$CS6g0=4}6iC_EJ$Yvp zm^>U&eKppv%H+kGN+-}4Hf&YmHkHj#>$b`1xyNxsIq#XgV-lAUPS~t3%tOz?*vyi1 z?cJ%qsE@tKL-B4ox8E-~omLfIRud3qk+P2FAB=mZ`_FS+ZLVSWxpDg|7XA?G1W+&8 zLkUl&D40tIR-Hc2sfNBwjqidmG(-%~M@O*Se4Xn<#}D=9?{>^pZai8T$!#85B6q$v+ije&pEU_o5v{u`rHQ2i{(?kJpNN{;U(FDVTuY0t&IuoPvh8)LVe9|XhlQ_z zZ$R7%Fu}+bl|;%nYc_;#)IoIt0M!taliQsA&rU3Nw>Sa=dHb&;F{+@n*bs4iB*)a@ zOXI2sxu6>}cX8)myg+$8S*Z*$VsNj3cN7%oY?;;Aw__cF*>R{ps;%VaBcGc<1HJ?Z z`(0hZPX?vu?|4fTZ29L+ETDU zBkv9QL`!=aa^24)mCGI7iq(w7Z}u(QPetW9yDmsJjD|RqCJAd?gwOV##y(d0`ZO<4 zt2U%rF;T{soTxIgvNOw4VgA!f;`+*2m6GYjLnVQs|_`>?CDblt&X0Fp-r=J6Ziq zDA{&`Dx#Eygw@W*MrTOcV;Ic-%b_LtKSMagd$>cxp4NYiF`df75|&%FU^3VybgR1f zYd91unO)90I!C5Fw@5pmPb+T*_6Wqchy+oAW%A}+zM`$_L@<}cwRNoPn~~>&iM=)I zufp6-+}a+x2GqAtOK}f0Q?4wBWWIO(IXOc>vzK?=Vt{lZ0l=ztVEz9lNSu&2e8|NQ z0LLOQhpu@QI=^unev^E6yNhWkCm{j)5QlGXOGe)y2Rk6jtzne{S=t-PI(TR5pZ^}* z1}d?{S+xj!6#m~^h@jz(+q^W~;43br`;*r#t;~w5c9e#OhACjTMw9^}nNyAM{6Ss< zN1VNi1ySRSQ{VM@yu^q|?>V!_s6@pEODjDp+*hZi#ce3G%SP?v^w6?XTC~S-teUj0 zQ{N>h3E}g>mHnp2vu3p`Z$r;}|mVq$}5x5W&+f{fVDiyp+@?sIS!EjCid ztOzp3n7FANbX28X`KCC6rH;kVKP&4Xp)F1^8gA?>Q{aN0=@X;WahxLEvyo0 zc^(DgMhB|KyvD=71USJW!?ip8#@}dD*=71GS9Q_9b!t-F`r8aPlN`JC!r;gk0))dd zsKZttj&bAO{MzRBZMLeJ9Iy|><1b?Y@9sL29Nw;d>V=tT8=fBSvn9}H-VpbCdzcG} zEWJ?-2Rw~ES54LO@upB?tJ(`Xiv-QqS?&EdH(vc@+BxAMdMT0#^67bQYIC?x*YPo? zxlyubi@kg|&FS)DAXy48X5<${VXeWL`IaEBMG?jY7D1ecvK=};b^|r~TD~%R90TWB zT>G?(y6=A9X^@LyMiQhYPmAjULMf1xq*~8CbC|N20i4+*D3=0pE26@>31Qid=YUIj zLfrT?tn}c!5fTv@h3V?kYg$$4blmwVe%JQ%J@r<#X6~9HNP-l{d&c1cw((eYI9PzHvGZ?U8MHeal{QamjY#qmy zTR?ye)JGtL_&!$__X_`M%(9bf0LRmI@>eAmXKi{DlT8r`Wg(xeDan($M^2c~{}jlV z3K|5@foEzOEcjmFvYGoa#EkBzl(4exlFSzIO=YyvhX=iZDQq271nMPEBZU5+79fBz zIvc076(5~x6cx9&a!qxBj+eQOQAe3+YI^2i`dhu&#qkfo8<2_^1^iF!^p8g5WUU_O zGHQA-E-w8H%*?zA3pfe6!OO40LP9)Vhqe%%V3C;V(II)UM>s1!Yn3v$&8YB(u#B@O z3S+kSdQFxl-G}!3r0Q+DL5g~{ZP#VwLV*Ay{vEWr>m@!jqHx!L)#i@lq?azwq^_nC z*Gq`!hN3XAVNto_?wi`VO^3=&=3DU`v@ z>HwIxE+kFEz62FfMAXy+Q0=3ovi&&i6X>wlp}Pk7A?8M1FN*{B5a>%zrxEu;eszVF zd3tbbCd>k(;{Ad|e$t^_nDbOV)yxLpXmRBl3PcqLLpL?7Oov;OI-@Off6esVrlxSn z1mo9a*R+5tjN=k88BHIfPH5*h8C#CKOrqJ<_Vp~{o!wM<{Fp7v*cf@7C|vInjgU2; zDe<(<6+hM0XW|G~9dlIwd}1ZBGszvMB$0OegP;c54*2VAr>f~8(t!W*xO~zO|G?HS zhUsk&sxH)d2J7^e&H;B*V~gkQNvDzZU*i0RcrGjHwQ!w{g9n5`rxXE=rPm-w`|QA# zU>M^8c&mD%w`M4LOi>632#{SB(*1?M?CuLw_*~5rXF~n^jL{T~6E14JpmBdQMYMtA zS9|;EpH5kNu)Gz*i+bp<=-`PGMwqI+<;c;QVXIMih&WsqS*Ln*-dv0J)31d*X84 zikp9Pv}Pj7zFvL~$Mt;1;99IQ0DX$8VgDjI zI3MS75Jlmmb8HyCAAtW>?zS>+GKsmK`GMJffvb2uq@Y4cQNa1R&&59=45;g5*35&k zf14@VAD5#$IN@th=Nwf3$a^he4jLkl)?rxl0VAVB{Z3}gzEETErZXDtm`>gAsOIJS zyZu#*QYJh<5#kUGr=~#0+A^gb&b(JsjjPIf#&9RSMZxRv-pO}|m1AK&%k{QxKCvw# z%Bj#isnQz_Z$mxOJG%Tv_0Em2udhDv(x-w$e|dTN+V$&QfHHB8C~_5hvFKP6$)-yt zFN~EgsP$OJP))iO>Op#CGMcNC4EPTk!igE28mWSR!|^>KLc z#EaiG3{gE9FV$>-b$P;Xgpv34X~NE`0r_|R=-($)Pgt~miaq3C9n6Y?9KXtW*ue*) zWLAHCn5NsG30z63om6CNF?li0Pm-X!;9;J7Zlv~zLF-oJt?xgmK^I)}_-pA**5QBQ zJ{*Jfw~`v;#m57w&{7F0Oi0vqdjtM|T!wIGxSfTN`cv;89P|w*mHg)7;t~>``~D)Y z{R+S$pjFqxsGQ!A`*}Rw#Tg&gVvbMM6c+rdH)){nx)R(8f&Lc<+5X4w@$vE45Eo#m z!Np;R5#?~`aepP(`?uI9VsQ}a7l42uF}bD_c!!O1Q=8GTQ90eaE{VCOID~3^W0si_s#IL= zOwPYw=jLt#c0f!_42aPztfhF=0*#O2*x7E|7d49bXabAmo4t~**kd{B5 z4Q5sa`efVv6A67(V;t7@9j>(mRbrivuCXBeO~KFbV>~`uxpe-I!|<=ObHtKAR(zkP zSICRHx&x!Hoh%oZh|m@j6VuSpNh3G^cnm2xLZW=()V%yth#Xf-1Zw{a6 zeBhr3l2I1aXvh`~pWm^w^EVR&#{?1;@!mE~i7M0{yp&b25ur4-;?21N7$R2=vroHG%UpOM3?0t|!>@RpsBC%Ny z#^kntzIf@&^uq#P$0X;spi*MHKT*D0di^U5}iX7>UI9;(EWW z*@w@fE8M%vUr~54rAFu|{)Ink!T<6m3TR+&zqeBP!qvj{8)JqzzvuUXErprNXsD3h znUjr4lHwUB>uQF%uAfo2y;F@l#oPdW13T@np*OlRp`SP(-#)8MrGEM+HeqMLeVMVt zTW3HA&ojLxe5m%brYSPhTH4rH@TCg*p8nGd3)eYfH$w8Tz~UY@>prf?ytQ_u!1PJ5 zVlnD;{RX~LxT=_(*$UCVqhWCIyn+9{mt27+>Ek2~ z#$>SSn`1DVKp)~)TCbrxo1u+iZJMv#Q=_N?A3?sK+M@4oYD$N^ZV;jd6{x&W7_ymD z-6=KdYaiLx=c?zc{9yME;oyGpYIgdXJ?PzaT=;}G8~MIs89(E5*fMkLuaXbSj$3&~ zP2KmcwyDoPX)7`lBH0htMtU?&RdjU9@2~$tt@;}B+UiMaCE8onyaMWpuPm%nwUccm z>Hevn*q8d0V{q~Cbw9f+dx;{HNuNl8sa~G>iFdU$jK^cQzUR<_0U-eZ zzJSPjl`JuZBN}mem4|WHu`9&oSWNnoL;?$9M+s+&LK%Zw&T>ztyYdxVPgc_bu@son5xP2XdhQi@JIHmLFOh_ja3xj*9TWfBIo~ zSS9XgpfcHiwuO!8;TJ#TKIxKIL${lPoshRx~)*Z&=DKbiz08_yE=8Y}@%pBLi_ zPYcIA-lV2e73sSd>M2^sw9=pLxdFILk+d(5YzYPr@6)d0YnvCJUl@f~pJVuV-h3>o;D{CW z%lSuNg+(JG?p%L5YKA*%hc`j*re#KR`*T!i@-F`F4o zH%1E}r0M3hX>T~0zZrUHYLZ-@PPQX2BFJjsad`>(BcF>@X%A0-ay!&EHrhZQI&vjK zeo_J|Cc%@He$wYWhXUqei%2cdUmQ+3S41jdy;@h;B>4zu8)5+$X0{eR_6w0DE$+`=&O)7APg=$b*E`gTt@? z)kzUp*s$p6LI6PGFlgMhM{}c$tZc{k@Q5PiRy8*zeHQO?`H_1K&#z?V8(tDWleM@hX?2EEqKD4rgYcWIlDId`z>yM?lKAfeKxt6 ztyax2czWEn{e&YEOzP7r%m)nuPl@z=h3Zc=k7G4aKq;W{*ZVXck?R2jR|A3jx=--u zOHGXT^)bqBDi^`D2C!=Wx8HVYpWqqj0p5^>gM;H}3Pxt6Sa!kZ03ZIGE=tJZ{!c11 z(liQrdClNFDCI5v!0}0It^8ln-Eo;(pbi}61vf;WDT%0V3MGS)#cmTDQWuZrIFU^C z+sbK&vpe+(S+S)Or!vpGmVf;#hY|JN$C_L3OuV=5 zf`yT5)3;YA^r>CP2A)!Tgsp`|#^DbyDkkhRLT93A5m_ETc7@MSUmKsD%)E)?8r*6Q zLHz?T2OUqgUwi~$&xw5|Gcyxug0}ed>N`+7A>8KulG{sxMeUf7Bo^m{?;d+Gp0~lX z#;0V5GHeysh|W~as2&;<;Lf6L7Jdj86qd#dP;nrdt9R}@DicT8*M6b>y-HUkPu#-v z;tJ&l?KcQ}zG1-`1V{q{sko<4kfh+qdj7$W=`^ql*;VBGrGymJQs7}kC=P~CU~sLh zIO);+NepoDj$bKieEuT6=%k*rty9Zo;M~)T{*^elf~{!VFYd?}cNG_*krqjzKf*6F z_rCWob+V^FrV1?{4;@uu>nhZA#3>DP#05MDO+$pa&70XupFImXPIKY~{a;f1F=r{(z)%E51RPK;HNAkDq;ovDT+wWI6#m(Fk7*X?F z>2WrE{?el1|cBTx*l!cJ+9qtf1XODMw;55I`y@1l`^sf%pON_($9Fi);+w z%8{E8AiV#}gUp4dBV_a%*HGn!p+0uhJH8cwH7YSxgVA&o+%?~u3y1t`Q66!PF0M`kS89~^YsvjD!)INrlQ)_MCY2uEQST1jHy z`?rn$u}}L1s$>pVk9%~jx`ot&-G(-wCvdIh9vK>Pob79dVx9er-l%-PpEY6=zWBA8 z>(b&)m~BuLsco1hI@U;%6vid5E>qHavLLBO0$Djl=d+ zReVIh&ed%|crDAD*=pqdS({4`NILp5PNsFlY4FvNA?s#jk#*J}Ef zuy9G+58v<#&z}<1^s2~B7YC+~Z_Dd>gt53*!cf9wX<)g}>u*@_J9D)2HmA!N3QXpn z&3OIO>DE%Auw+AaQCJ7_ofRZ|L(zB#VzmwV^Q3Mx>-%SNP!SUtq+ z;*m_PA{$>B;m zs^;RE`oN#6Vx4dQdgX?Bz0fZE2%yMRldem@@nCGq6=wq?a*x7}=S1hMybmq!u_y0u zB~g6*>lpDIi-4dIGL9MeLTw@y8~Gye`KqY8Q(KuyhXTte0^qIuQfVYA0qxr0u0a{& zk|y^ESKX^k=b5CE1d7+hj}z<*GID*Lb4IW|-VZa4jiUbyM}=rsQxp~i)y zZeh1t%7P@_&d9q4iaU{rEd!KSu&u{J3I~KZK+6|W)j>S4Xw4~yVWi}LUl}XrXffK7 zb=1abc_Z>qa=Q~dcw&-5ZnE->SNY7BQr@bTGt5{m zJ-UfPcX!JV$$_JM_M2MyA?+=jp z`M2?7HYJoj-~Z;Rj5aN;Rt!l?z2F&o9i{x+X&T~QV&da(5#iq2Ok5})>$qk7$XvFa zBNUDRsEsjvCoC>*L^c?0a0?K@h_sJs-G=_&;npauJ{YbyX$~5&`mA`bN?(XM)Z zPK!^`E8wK)o`0Xl66TLmFgg2`N`UF%TkNpU^S#(Ohfi*|Xm%4~W78u_F$6+Ir1tMA z7afT_q;8yQ1TM=2(8e>0il`FSm($m!z`zNaDI=0+{QrJ{AN@)G^J+eXO&sb@5J@7> zCb5#Urt$J!2ED`w&K3KAFZond3Vp_Z5f@wZ-%{qRyr9$g;{?km_(%(+t^NEYVA4aY__(2`mRWY+H)6j*=xTv$SX-dyhH2d2_MvPrSB!O7EJn}nM=t)p#Abbsz{XO z@I1z$mpGh86s5K!)6*jzXf9*j}}Tje7bQb zn4bXF0+miBT8d}}&d%}i!nyalXM~d(C*E-AxPI)!*)R5u2@-N#hzd>)>W^%_Z)(L6 zY(-2$(hcIZ>Y5rPf(9a@$f09H`l+O<%NC77GDY}+@Y3!t4IPQy-bux`3c7`@{pyos zPGLcU3y)aPfAdAiQTVOmy{g1~ebOr)s|MGGJV_`0gDzR6g47 z@9%fM_W%@*FuF7H@Wen(IuQkh?pFPAU2lK?60p5yAesQ-93U`{e*W5?Z##2#8UdII zLVNo}jLA?N^iwEUq~D!X#1_3AF<&gAX4n>RiDP&+l(`}k7N5!^scx>GCZaX3)}p^J zl1AVxd(T%?$Uq6eD!)t1|56lk`2Q5c&pt!?4nWe?MDdI$O9EYd^PadUQQn_IX-yh} zXaYC|h(uecZd6@%A>p0e+}xE9jFWr*N<}!hKdU%Lxm6%s3V<~dyagLcGSnd;kv1^T zv!6Ym3PVYJM0eHHg1OJKA|imnGD$?)@hwkT&07sqVqNZK&Fo14azikv>Q8@2CqUC8 zm{j&zTAC%PD>8!e2r5@&Z)Ph)E@4&MA1Z)^PL#Kbii+YB6PapIhrgav)s5b(zV)eE z$q%A2M+vV(k~Pze2V-OmRVsT(L+D9({B#&enE^HT)t1N-l-cfsr6+9}sBN2puPd-l zTQn9Qav{IoRP_~VYHIM3Q3^U`$jU1b1kStXtD1Iq07-J7nCgeDCx6#Ita%Th&xwqzyX9SssYA2-W?nvjSoh1E^NO8l2J? z?m*xhtZl(aBQm5$cfff(1w}((Im`tyFI>KV3pWqFg`cipdyRLaHwuT~8>F3ALvRxm z4RpdiTvK1)wjuz!Z)Grt7Rb*m(}iQPMg|cWV+EHJ3&q@aA+;tKyk{fW#I9WFksI)s z*ZDQs15b$Mbbem`-_?H4Kn;nwZrW;UZg$ySltMf?F8XQv@{o(J712{hTuDao&%F$KMpazdUEC^eAH_`|zt2gU0`SPm<@>2f&JD zXYbm?JadVEHL4F)VgyB<=koI~$-#g5lb$gc1;bbKEA$xzrC)MTIGbGlw;OGz{7anSACWJLx zyEHQ3-~2e;!gZyRTz7TVa&_qJC;zUtg{{dZ85;TrTLx4InN^Mb z|GLk6?})>tH3*8u%e|$_R4^c=0y^9=?J%G^ew1fAPs-{^mdX5K{4lbbO(moJwvH*- z*ul<1?9v#bV96iZg5s zd6eK00~UARyXZ{l86MuW)s1ll><(%y=atbVp>@H%$u!aBxH@jnBtuk(inTeFZP#ULEk4KB7qcF9)RFD z^xv)vMz+8e^44}*z1t}BzC;+7>kESV+@!m(Krar9?kodxa#!$==yPZdmz%x$>(-I7 z%!8A~?mir^uK}+OUZmqAI|3lPFS;|uPS^9mO7~-BB?Q7|AmDo$TtS7!^5%-IZEfJ_ z%y~N6UGkV&wD+vXm^p-@YPB$vvy=H;?%5 z>**r;hyckeDnf1|aEM-Ro1NQ1PiBqdi~x=Ap&GJEv2VHWQygt4?2As;hm=S$pahBC zzEFM>CT~GKn-Nd_i!pGwM2X1UsPs72m*Zvx9$Ar-HM&%jj3dP)O46r}v)CmG$90xH zd~(;E-WSP@f{;wp+;?(pfYiZ~a~WRieA|K2^|zF3d!mx;ttRX=E4`b^L+rr*U zMekn?mpSGO00t2D3%iB);wa6{xA#VB;uwOgc-J&AMfI0ZjIpjsc_?RCZUi=kmq`a1 z{wNlMq`D0#e5p4gBPYL3MfK3!oB?o?S(l!hBqSuCYpoR3HI(Hh4j~w$_8}dgYOt3m zvw3t6V#ffG%zZ{~V13;d+RIsY;)#B70Hs_zY_tKcdiCuwPb(nJ-;%xkP`j+^@w98^M7a(b%F9Cktg|fmv9L!8H z5&x=|u#}_cVJR(d>VZLAC3Lc`sn*f{*xixsR2u@kW?DoS(rqLu>M~sEOi2B$YqN97Ry-YjLvGQ&2TtVv094FU+L4`{@!vi+ zTR$VOrWuaF{l)~bUqKTr(wl-F9Yqz31J9O%oz{E7xJ(IMMW8HZg%o#W&3{UV9xsh;u@!(@&6fp z>RB)mb;c|PY&ZWGLmel2E<-FfgR))9DgCAX>M^5!t=Qe(cXfK|@&gYIe&70`I{EUm zQs1S|hM3p}yWAuW{u2(=_pe^QHSZ(YT0=h@lkL!_VXrjBU%G8bO_)yX?8^PFxfvnj zT3cJ42E>|L(rcBK3GP39WvcP}f~3!{p!r>6FJPNPfT=OgGw@%}62F!DRwOEHo^HS^ zGA21TR_)!dA3uWb=XFw~oA~ZE6X%8PYE#*@bGV%BhV+?<_F@hZ3Z@7;(=;?R01}J= z1ht=cZ8v_C4j(qtebyL^q~g#F;^VtoGzTMhn$;umuVtZb+0V^}QfiRMA>}6NxVX5_ z0sQKwFZ(Jl@FeyMF%C;FS58h23YG8&0C(;Qx>bqJuHa~NSt;E#qR)K+DDW6OS*1M( zqD@wlb#^|${h@RmyE37V1>XGLX1(jb236NBByMlNJe=PzQR)--D~)^O5`y9KE~qIv zvz#tp>f}rYRZPQVNigYSe``KjqFX5@I{F^$F{aKYGJXyJV$<;1Bm@CC&Ej+&`qyDR zkCSUQF)_^fuoqIfyWYxSnrYY0970|?(MXiu@8!c97~Z5 zj5~8JjX#CYGG}WyPf8uQSy_p69OYalUj-4|4+}GZO0yb9di>=JU24Ker5)NBVfZqH zYL(0V-XBea1-KGNu)}aK|5}qJ*UuxVagYGG0`dunP?|gK``17MBgs8sFbRY#379)O zk3gL~!sy(w9;5>|jbVT`)oy)!aj^H?$JjHyR|PM=^$Vp;6uUBSlqj(X1isF+e07^7 z>|T)|^l~$yj=#!oYvNgGW!yvWQLfZ-Hb|M#{Kj)oEci<~q*({aDS$fEPDnz89f z4$Pd#T3!DxjoPHw74P?XL?d|m2PFimB#QchiV7;GsD~ct@V@&NmZFnnLAhJfHrNEdlaR2ViM5%SPwLp)3T3BfRY2kMZG#%YTbD3{HYZB>E zYsXD;-Ojx+Q3=Hk$&{qF-wj8kch+drj)R=iTq0@CKXMewKWzEJWb zrKT{|XqQQd>im03`g8tlzXsP>(-0s=ka;Ei{AYrdRk&Jr4PlvQ`Pknd@fvcvJV<}B`JVsf(m6gQa1j}C;5aEWsSmoya^1clSTvV|%mIubsJDkl zV=#pm)dK3~h9|imUa6=eUOuxU&;8s1hOmv9#;P03mP}i}E7;99n=n>zTisnz8C55S zhoiyvsbD79CRH0NXdHC2j}P;v(RUZ;@O2bB8*2+sR(ZposLbxnw(1ZcPQI|-^ZRIn zuM<|1x$oWQrKhK7WM+m%Pcwow_SF>nklAy4O7^fPtpdi~bId+W_LDOSf4vp;x>s(o z0TkxH$y7!L%V=TyUg#|I9R}HDPQ`E{iPs@*B~48!-Nz9hf3um7+SKb;yiG1kHvF|x zVfKRDb4vcUdzSIMpg#Wg_BImw>T0U&w6x67%SF$_a}72brvDXhpsye)8xb>uuL4hzWL-s+}P&YS`UP} zj{pUQ7!=yi_aiNm{%Lbq>c(z%&JxAl zvX872(&2VGqz(~k5xN5b&eGD-%Rxaug_7}m>t97hg?x3nw#0q(EUdltq0(9#9Zuyk zqRBG$*^@)IJVqcSwn%qJ#?49n#$?UD7CxpdujB-Q6W6A>AP@-QQe$pL_2a<2z&c*V%gu@4MFX z%=t@byVOXXABOx@L^=kTD`H9j;!{FZm8x}}1Z3LI`t=M@c(qTs_>s?eK!W0@p%S}n z>%wCLP8rqW@4s|_F267|IN6^I-Ah*a$V&f9Ijm{3mjsrGU=a#Tw(% z4b72|5H1=2r>QzXSR#%9qb1D-0g>`EOcsn(GS-PG-=bh{@Qu`N*!~~=MOOAd-`!uh zv=D0CqB|_QoRhcS$%8me)=>P%a~|AYuSaOP7P-H6v)TZylrVGU?6WbG7Oj4rt{wYH z@oFXg;}%U{fe-UsHRUJblvK@h#yJ%#6X@1vvUtARW)M}^1Wpj}=|9Hjrh{Ov1UP=+t1Iu@a-Aj z+Ko76&Ln#Gobg10hqE9(duB5_usKwEb3=;Jx>7fH{goD0kLR8K84K1(%C~}%bewc3 znx$4X5g>m4_3>(x&YQOHFj);82=JbL7rROKA@ z0cZAHvOG!(FY7P-bDm>*j1>a^W7oa5x$<-P}gQ7hn* z5H96@;OH1Sm7w?+8d?3u5>&Gdv)}pe9@sJ%DWX!n0x@V6uk zUwDo+d?$rZ(Cei^=T1o$(E>qw5E|cT2Ytlb*g%eT-8*e6#-AN;Dib57%TDZSQ2ZeR zDhOI8rlfoZU17%7rSSU9E#Gx+P|Z0g4XQFgO5`5cZ%XeJDii;p-KFTiaeGSlIS;kW zT@V;R>eSihJHRZQH!GHpR#L+yCWcJ3U%YaDO)RnSiKYQOo!3QNcwkLVFCcqP=BaRp zDet)QHie>lX!p1{m;Mc*j;vszY^nP4&NmNbGa|E9K0W<<&8&pP7Wkn@jLNkM#+!J( zJf3ekqqfG!o=p6pnlUS#5L>d=Wd8=qCe=HwH|pM=yrbmf(fOO(FrL?x0wjg>yHQE8Sy{|Jn1oBA{8RO9 zZ5iscNQW1E({m7Ju{^eF8gocy1?ikcpmYM9=WtoZ`@i-J)EEC=g_5eO2`uG9Gp%;~ z=3;d8gOE`N4~(1fUIW}DqY$OpU4xp3DHZbgMI_dH`5Q5mUdDI=$vsgbRV(7b-yXIqTB}nP-tNPX7ytuDLW)3SE*YkI*{$fOUrPf*a(uFuclq&5BSL)dE%Sz9{0LV8|00q>^|9x*~gr7NM6f<9+v2(be*n!F$jKUq$d>Ff| zJFY**m@jIsg|^xp`d5lE8Nxv)7h?LZDABLF(2WXh`bDw{{3h@>OH~NUJb(U0X-l)Y zwYgJoXX#!*-k8dJTZP+@PVy?>ls>7^--YFLCHlNY(4md>&EIjpA^XZ6fWQebX zQp5Y|I+k$4y9oG?xAk%L#mO2HQ3(_4K#|f*t^sa|xau~1S%aWqfL5~CmfTRnOQOBo6$PjdFg1)oiRLuW4oI*`) zyv`gCfJ111J# zKhaE8j$1O9ao0nig2J~0PGZRyFB(CB3o~pYSPS2*W@k&nv4m(MAcu1|fJP+Z&lnA;O6xCY zbkPR?zfsB9i%aM8toGjCjBno-EN}YEd4xl2kDS*?Yb%DU>nT;(ktI?WH|2b&VX-bl z@@!pCba9>xO30VF^vNKuwHp*G-$CM%W{!@5Q3&dl;arU_uwy)#$->?hZDI7{f5|>= zn!kX0m;AYS$;p9LYQ)#aazuDHSgXggtFuVIMU0*q&|?`y&#bOK*Vq3h!1^isw&qO0 z?NvPqk!ve&i67=I1sOSuCW0Fc5x$`j3cnh&Q&*=3EiDfS9V%Dfs1_SFz#3%)lTgpH zd1HV74rAFS)ZaM+9|@d8LAM_whAJ~_ApH{x8y;I*a{|%? z_uAg?J0w1@4k`^OntJ)`#WA_5qA4AF_I5w61gBUAwyRBRekGTt7kGKx5T@Tz&AU7W zxX$|zhq__<9EmE#cjCXP}h)2n`+%~8TR_r5ux!2IqX2t1LLdyCX}Po zzVLY*v*dEH-tqNGun~AMSbLrA$tWmdDtCUIekug1B(dWS!Oj{*#fNoW8-nzZ7gYO6x!d-q%Q@yuA{!N@}c(DWo1kQRG?z zJm;SY=_ugKezCpVrlTyjIx~@VfB)XRd;DtTnIV2aW08`cUx41$|hlOSS;3TJR20!u@l>KiUhKiC;MdJ`&^(f4=ez^BEFO z4k?oeBF_#1WFRZL3m#rLaW|`XWkJ*5b<=`}N)U2dTo2ai!07|*Jbb;+;qkOs6MF|- zM?8!0_`|>c<|T_;wl`R%alDD|9ma4}UCel>y%t3cV483u50rPLUk68-%enrybhp>q zvfALsgOKfvz^cO$KT0&#Ts1ZPi48{j4cukq`G*-}8M5jTe}?d{Ejk-po41>)RqcZ6 z-E{1HFT*ZZm{^S1IB~@o8%RC~jh6Xyp2U3>=$_v$_FMCtdxajPw6emKSNMxBs8wl~ zWsL;)$s32Fm>nZt`bI~`SnIoFfZ1AOo8H#_nyqXOSx4ZUV!pXF3w281E)zT7BL!_f zzqunY(g@H6*`c7}uQ{>J^#Yckh=zvEmh0F%``0b>HAeIo=^T=bc8{M$vE2o8aByAS zCG8&s1OJct=7RO#ugMhg5Q8#WJZ~g6cW`YVsWTjqVlM!d9>_|V+{rE-5QQZoss^nA zlH(H}k2Jjxlv!&1L#~e}g5eOJnTGt^PbWe})|4e4)ezS{_uU`SAODd4$N+P2!BpN* zip}&%?t*HJDN}_p31(Acqr^S8`;tki;~!+4Gl!_hUz8@cG{UG?;C||`U0MTsrm<-p zEqtm=PGCAPi->zqr3~$nAHa{dp3Tzr;@Qm*(^tnwN!i+NXigjSNJu6m{_4%7q5<A%X?B*tFj7 z4waO+SrH|&xAj`E%yY_*P>lWZ&Lh#bSKr@AgqsDa_k&{FN}f({i~|xvovxl`B_C@^``PVUXN35~SCU0MRXzme`qi@hl=l@m(RT8*LF*qvBckftCS=k?L~FEi?|SjG0Ua4(h~X`UqH`FK>Y6*U23N~L zzkvL?uu_9T#Q>s>q1r+_i57b;SKQXn+A8^{_YJ?#gY|J35sFvE)SvBYL>ZN~ntUAp z$`!ts(n-c|u8>61&%@8Jq@LscM^c>QyUOQZs8lk>*0o45>xrnnC52;;ktgO_;|?B> zo+_#JRoV@xjIv4h^j77SCJLGLT5hVTyyoHFF!9QX0bG0=gaVPtF$9Fa{9f-{(7fb# zyw}%+`I>84ETJ&qE=J>NBo}S!T5zA{^{Q{>H2dokGd(=mjfO=i(?8mre%@Y+xi&i( z_ji2n>B^Rh<^-$I(p~r2S5)dh??BfRG7OFRftm-#Z#US!Y}hXpO|t(-3$Pk0N6p3} z-#mHi*|jCyo}{~i9utwtz>RzB_mlyrV3C9-pK3*2lkLo| z@^)DOK`zm!a3IBcd$(dv|IbbP-b09~UKZR8%m`BxSOveDpiDF8pU-H7H-ZR`%F)YJ zZTJ5uEcK>bIuaf_azeZmd{oF;*(_eU;ZL?$sbiz~Cp3TM$HJt=i)K|rR>8F8qAuKu zx17%~luet1ZbT~`zvIW5ty+uO5{jq4`X@e2ELNiiO+XkE?N-5E3?7~AP@t})ebQ0#y*-m9s6T%ou!^F7n5Q)V1x{A{eV%&N z4q*Z;EX4K=4;BXmuz`1s;nZ&TyGu3I;59Gsf+$ps10*Fek@J>y-qQGedSDMF@mcB; ziRr8fzP*_~4Mo{iF;^r@u=Z#!_($6-Y;g8T7|%X6E8%KwtNs$47;@}ZTI~^9fBKp} zEQ7osSU|PTT*d!6nV|O#r}Lj!@EvNgcS$heblktWrFEQolw7(k?H)&qj2uX0>g6Au zDGK1N#6flfl0?WP1^1&7L^a-hnT!Mzg6u7pqTA(9X2wz7<*69dqM)vkXiL;2-dJB? ztf-Y$jL^i(Q;*0V`)NU;w7AOR#7<)K!f3LxWML&CxSZE2;@J^{t&WySW`r_94YA^L ziTZqY8!LBqKWLz04#40T zAI!P0Bmb3pUhb(|vNN_O9#O%t8{u7wM$E{xMpsC{1FeL?DjhHusjE|Yvm+Im+iC^| z38yU zozQ-F8>Ul_o_dp8VEF|w&+7Q^TQhTWfM)O^nuKV?93O~1VluKfC+@JJAk(bn7&NOo zuTPYGsAea<{mlM*USP$o@X5=Mx4Twb=9p?;V_9mF6!Z)#`tp5fAA^W;C^V6hlnlhG zjI;4fF-OVM@;#1>$O@>n?=&1>3-KOQ;V~T!f!iIeuf$a8cP+DudZNM|;W&DHyr&F< zQ*n&mw%mr+Ca0qvM-J%`t~?qChxg~R_e(y^S-y4#+I=&-aleA?iYM4Lir~`2!Ik=! z@<;A24y#~qnr>MDe)Z&4%?E_Uf*gl0j`hq+qR`zKrRJ`0erKKM3g`XuFieF4cYou_ zwc03VJ?kR>VqI&?*e}IKs%BnErV7o=Qv9{iZ4V(+*ZT0m%I)MU4>SCdNQ`FHYi1@p z(bcmNyPZqTMT{;L#Covk9Txhcnoz^%6=%{4ICWo`va!#Oj>bHCuL$7Z!OrITa)D&f;Omqjm2KDCc%Og3q zl~53OrY3Q`sI1O<~2QODdX(=TqCrUApKVNQu+(?Y$mtni&Oq(ZUbpd%G<59^u!y{UMR1q_y;aHPC)@ zb^Zva(jt}&UZc)OcI3we1|&G2n*(c7n^MHSGeKe@f^#S4i7R0)=c@tLW+8YE#u#HSj{GHP#Y`%eZeWEm=}sLTSh1@1UV3E-@zAmF|cY$aGP^?ocT#K%^J{!Ky{t)R_q zpfH+-hDwSxLZ3E4!Sm{9CPPJHZbKS%$BTo45A@bzlb%hh^faY;_;u-lM#81yi}XuP znk09uZ{Z(&lN4o0o`e?B=!_?H&KZew8wlIIf zgz0rGepKeU=HFwrF-glYw^z2%!x+E(y{NRA_-bUGl1|a!xBhp7?7EeWO(Qr1ih1O} zRI-z5>x($0eF~{woVkD^zf&Jo`Et1*Z0il8Z`x|swR}a!ioF7ENKwSuL#%A5+g^fE@l#t%M84AM) zC=sB|TN6rO_-d)}Hq<4q+7%ZDI;@d$WCt>o>pVuNJBT3N-r4yApoOwZ^rZqP5EgI) zwN2Hy>ijac&O7-X6nKqQ_cJ6dAR7z3cD1Wc+~B>?zN|gBTOIJ57*wI}Q)~_ltU^&# zwMG|G*vZOrya~&tp~_WF&;EV7dhw)2%EGRo9QZ31AvoqMV5cbHAb5`yGqelsRAY7K zsOu-s;cClJuRkX*I|}yNR>50;>BG;~Sp0OZ9DQY$?$O^ptiYbOuCCxKXc!RF9{{bP zP=T|YTebNpYsdzK!-!mbWZKPVXIGiH!&FVYl;-`D1zI2sV8XRnTsC(g@kqQENqAW4 zl^7~e?3mUrqSq;(%&CU~Ux3awik zQwmR-TZV7n19U&z3_v zG?_TswRPNQT!H08UQj~~4TK8G0r1a&6-W;#Hx}i5Pe`&&8;5oJCEm?W;HbkhG7Lj) z2cV||kx6OP!7_9x*QvwkMb+X4u44Al$SL#yXYC;w25}| z{YVeBEQmrI38{usl0}E2(ozGcjKaId;R!hrO&@XRT1)sA`@IG1mw6&r{DQpZ@Wf*A z8Dt+lQ&RCreRXxfO$45dw}4wYAra59Z2;gpFMo1;!N8CFJZhFTE#UwB3D!D6Fk$)^ z|7H6FE5FKLhb{p5(YRz&_%@7Kzi!52^QY8>QoIj^HhB^%Dif8w!3e5>bSuBKHkLj`MPdg)}C`P3-F z|NnEh&Ku|hVhW0<5IPwm#_aqJMBH>vJQ@;Wq5j~z!}9RBta}>*f$o5<2IY^BwG=j} zk9K2)Sl()xiD{Fh__Nj!ZTRuv&^M5J!0~pG+p&#miAhWSGfbp^>9ow@3d6#)1uNhi ztgTLzNM*iUsjO)7GdtLtehC+Bxzi3ksH5q*xk<&u5WSUGRTWk<=@rrm>gw5h0z1*9Niss}JvCm2dEOF3h3TrbEcT8h|$uPy5^ zG;ZXQsZ96O{1HG!R^c#xn9sVq`3>Kf3yos>pQtqV11=sG+jdy@f{3$c-7Y8azUHk5 z4-z0`Z5y8Vm~j|_Wh5oBK=6z-%7WcSHbt}t%vV3b&#ac~G>Lo@fV@CVu`V20VBAn} zrb0SLA(vs!7vIV=6ThKzVYoU8w@Y{CP5hBR>GkbK!8juA4kKPvv1ye0{*IstkxY`b zSN@P_7y=W+q?~LvI5?sI3bCOs4ueWBmQu?t5tqEx5?t~K4_FissWoE9P=wR}ru`l7>q}FAnyxo?Je%sv=%MD3gh_S!fg%k;4 zMW+?Ao-m0xRwloDI5GH|$$imjoEV07hPDz@*K#mhFNRE=F98RDD6QMa-JD_qIYMlDUgY*ftuGu7%)M ztji?)?<@Eps(dF;JY#SN*nFW~^fC)Q3lSg%`EY24}<>wwd$B0=8{!)Zwgn%)o zjnbDXqR?eywK2wfKgNK<@i6_pT3PeGIY(PV;-BpZU5m%zex;8a;6I zbWCU{%6NPF%b(u&oufwcu#jn&J6ePyOFxmtuv~slq1sdjPO|x}nq@9gW+ zOCWDUGVPIYwv#<$(A^t~g@InZ(heJP|KUepfwLw0dY1z76-gEFyMEfM;eLWM zk`wsB%&6x1(9o@sGdDgLcYKwa|JrD1pZ;Un)(R*p;s$$6kaht*7Hb;AT?dJSSNM>LF&1OwmD5q%IbICw)ht4u6Lszg`N2F;nnFpQk}Ofu$ZjLgpI=B z3Eg%`(8v)G>s=M1{AQ!|fsqXNc@|0MKQmmm;@6%Zs3CuzhST&w7!$H?IgEj_v?q~2 z19lA0@@P!FYqu&2OLFK^m2I4854{Xzxu)`^uiMH7buZrtm8h3yr_iw-$FJ~jd3v`|K+A6>D}Eir}*H={h8NW ze@~T-wFAQ?c#}Fvh|9mEE(}vV=UWG!p(1Nu!|dW6H&}-aAS@YCQC$ncASR>TL3O-w zeXW57ItJqAb4 zI&*u>XF&QD^lo$=A{&Z<_s0ES{r*wh{RbWXO7#!mLgqn-xC&qZ zWH{00skWn8mu^&LxEt8+wLc;uyz%Nrm|^`h@b-%X@ zvWf7aUKExJL7pQI*XsBGi^0D-W0!X~wnc842}NOHVI=qx_-u;To8Rsi4NX36ZY|l# z=fP;wx?l=7sz;g?EJTsS3`gHhsNp=8a^ zoZnN9)h2fQlr8bmT@>X(Rmc1Z!&-x3&gbMB0XN?I4+@mhsZ{|2QVce?b?3Y)<=)_d z*DOD7w^3wdj14;tpp$y)&fdX~D;nc9;d{XzRoq_h28Yh~-X zgCZaFD$aqqa}IA)<8Z0;Ve`m^CJHEGzWv!{ehkP3LZDdMywDFz6nI{1p)jGKR`|Zx zFqVP{O@Grz27O-r$I&|PFS2Fg6(hl3;&f9^hDQ?nD42q=fz-tBn47TN;%{|LIgntJ z#N6MUBfSoTejk|d5@atOb@cR@ww3h1zk60gy!R9=sw;yTy(wH2|8-@T{pY|4Mx5+$ zO(1n&kcC2&Ba0a@s2!MBu2}cncgOGvR`KwA<-?!kPMa*%4#e*&yox?>L!A07h<)C| zs_;tJbFm=W(dcSSOQ6r;&$0aPX$xbbv$%8@eFJaKHZIRv1XYL$Z#dnNjF~jQO<2mr z^Dw{T)AdL+dA7i~k8ev2F5Y3q`iN>G!qYW*} zb-m0w8d`#NyN_jh_VxuQJQa7UL$JWVS-y?q?$l+TMY97aFzNYzH-UNt!($0CRea}$$e@o229-HkX#-Er~{}d@al2dtLwkE1WPK@U=nn< zo%>ACnLP@_cAPwSasFI+U0<>H=0YV$Lw*^#1s0oggZ;U5dE6q;^2dXqV`)dL3YMS3 zmojwQDOM|WH^~SvF8uf7|*KJ>P z-Y_9v_FB!2()76Lk!>$+LV@HK7^y%yK?t0vKF}DWX6eyS6%{GUCLL}-5BMi+{X8~8 zg_>EX7~@1@`MutCmfy16)IH;>#V;*linM1`&)c}PIN_nQZDA(QK}oy=@rTr&nVLsBC*Z?Uu5w_7 zUY1*gB6~!dntms|DH*UE+s=pbBi+$)rz;xW+Vyq;*k8OrdaaSaOaXf*F>!_5{TXuN zie{uP)xd!966~6VyBOx=b8E|O-2lVDP}h=7OGERsFfXQm<6vB{g#Kr-ec(2q_(F6X|j~nl;%wDaM@Y&%$wrL^9^mT#1pJL2m$SEc$ntC=85fSdK8DV z*f`WxccgOVziNY~?rW#dGt z_>(Q;g97ij8#+7u-6EgtaSPu+Y=zm6=rfc-w__~#V&kLPs#En$5wPsFm#+$hk zv^ZgYOLj31r+?t6e42}qmIdo3uC0#$kGBG!pL=2(si7wCa;ufHK(vi`@3lttFa$-(q} z7V511AgR-Oxiwg9Y+&C2xrld5o52Y>si?m!FMsZZ)tTPal z5u5Fmc{!1vpYMGtJiF;U!H9K{M~wHw!ew1lrHy)bQ~cSG8?qbWo;-s4nc~@=K8jqeXB`=kFUK#2x$%fchS&NEA3fUC4H`m>g zk-AaJV9I&g8A7dOPgnlLyv;;usc@fFBoF|setIQ;Qttoz(Jz0+(Ik%SLb^WzzB}() zR{HTK$Z^U!05;=9z#>>Ea3M2VnT3K6MrhE^cU$F{`rw?*s(Kn+VLZ}s?ZkV|{L{-W zunQx&UM!FbanU1^|C3xt3dfC>(1+oR?LD5q+zrPu z`lK9H9JBk+o^>ar4s^SZvdman|6O>_y=SH=Wt*I_zwT;EY@}I7s^aAA`XM^rICpYC zE+^)T!tF=^ElPDPJk2+aa6oiqk>7Ap#fyh|E6}L!)RLT77`} z&S6EZQsR!`07#p#8M@@yqex}$|I zfouk8V`qH*h=W0)+KTfJr=}p5TFu%d&DTC8TH?){wAofP@B7vxheYplp0Y648ftbK1yEqHz5NRmy?b*5z#6yV>*k{clkvSj)EJkPHOwFgbdR&KS%BZs0~@YmI96ou-~ z3E`O-2c?bgKP)BaXmb1r!~S*m*<)RTvI!epBp>p&eu`_vWTqL)pOL&?a2u{d>p++z zVZuW}_EG#pKGqup)I{;RW8xu`rWm7e8R5+_hXoAb8J_ZDGdWuWe+ZgJ$Q5Qi-#-cd z>pvO<&GCVO?I{_aN)ijSjpO5qK(1TCosGmRf^6`y!y|`&pTbYuE!eyE{@vZu$X`2A zVT&|i1F+RSO$jXsAkK&KQZ$h70Xh;H6VnPT;q2l)r;=K1ZY@(ICMW(o@pM{-*FZB1 zBsybq@)NaN6Yowp5FiI`h={~QDadSvP7cw`%*^V)oy<`F3|*}f>TIO#F3!%cYh3I> z!u&TYK1Y$c$sd0{@)->>yTLy-iKk-v<^}ndqGQ^IhC=sDanEzc?b=kij^(o`}->*@$LbwZJg8{KGSA)|o3hADOG!N??ILjQakqghf!T>8& zy3Jzen@l-B&=%N?OgesWxJB+}wyke&r1s_3ZP^aL=a{pYj;8Nz(Z~J5tqGU9Iy)a6 z3jTZ4+VuZ3OnAT5*UtxID?Gb^<Dr`=bp;lR=@Gbj4B?^9W8#ll?| z`WT?hRY*j2KiT`DQe=R#u(VVNAUTpz1VM67Ajt{v&bb&hi~C$oYp`(}bh^q*O383P z{{82~yX(pD6c3U>87oz*zZ#WR49UNj)QLT?wLFyuZ0ICQ!$4M zzOz&SKek)nIaSoI#-6I#6nK<^G%-okJppnG5H|eP@!xN0>5aDbUlfkNVq%W!=-(V1 zo-5NANLFxRU%(4c$;cp=)t{Z8m*+r{{pTEzU}MH{dLohg5L(6%Y7k5q5#7?H-^Ml^ zkV_IN46VD^XGei9GU;+t+ki?X^aK=+X3|!kdt>2cjta`oB+Jd`d$b&$AVGxU%O2en zF*dfa20}42CP^XxI0_t7(rzUh522)=cVHcdNS0;GDG;9ll5>ZN=|?-_Kzs=oDhw-k z7#Pq%yIHGte)G4=@AS#XTULV@SGs2k!^0x>7O^kf+vOLxwW1@!A%p? z72>)?adTGG9+#VJq%*ayeZ}%Ca{YT07}pd@pKfvH5D@OE7fW-1!jbxwJiv0u}8 z>r{%krFRocuWBmF8>`h&3+IPIazH*jl+YK{4uO!$>G^r4%>8$ zvl`j7z>oN-=aRn^N5my06nyG(XaKrJ(20>13mehm?fmZR%iF6hc1*Y^0@Q`Q@EGm{ zWEg?3EFXMRMVtd7ugrh3eP1yDxuM#BwK`d`yuVmbxyS$?7y|IekNZ}g|7f`6^;Vl0 zD$;6Az?nDonTf{O7Uv%9Et3z#&X^X{XEOa{xEHgbg>Oay&ZU6CRhGi8Su5nA`k|C( z!FPM9{(?vT{KlqvqcLte?apZcj%>9cnE{W_X0)`u`D{kEDuHMP&e+v>t4R~iFKeUz z=~2HG`rdubUtc%Fz`OPkkkU9Yk6LU;*0|5*>YQlpXB!+}DIWIEJXof#vA6BH=!|BH zKfMqnJ~=n2#jx;$S=VaB#Ea#wLsqB?x8VSQS_65^|9*zCA*e9wGPi@^LQ-JS!e{1c zrC-C*Qy8ze%``|SDsSDrn+W1wy`taU54mxVn~DSPDV==ych-ZhX|uQF3(Tgz)H)Z6cH9JEed-c1L>DvT@aG zXeRBXud+Jx!kifEg)720T1`kx5520xLm&b-l z^QHlq3^Spv+YY4ikyR@KXX@W;B;qLXa;{kNV_ZJEvVLhoPTQ`^kr!~vD_V5k96|RO zk$`93qFE?+F zSaZeg8p8GRgU#dJL+v{WfYJ1O2+M73H zri-+%);sfIk9GVo+GgWq^@~L~Uabdv_#>m^-!hq7;&QjO7$$x($&zi9dc7o?i|>8c zqzTtmd-ye6%`?vPMYBUS5fOUtwk+9e{{Eh}*wnMN5jVw?9u?MW#T%rb`_!85eN9?G zg9;ap)sA&<^Md$3_Ycl8C;pH99=Y2NQZMyhSsBTr1!o5`hai8xrKcmZ2?%iV9x_RL zoeHR_#K()X|Gcp(ul_j_p{isShMpyU5hijmvn~^_%VAH}j&j{1cSuf}xC*<#fE4z;QQuw*f0qHbCZi{(~vs^6Lag4R40P zMGy&OWBhzmHO|jT>#?&jx^G81+RhI!5Z(05^1$?K?OX9~Q_q5HM%)lL>i zjsJ{$Wgra~oCEAO_km`IWZ)MdXX>>^`_E@o@j4g-UP<2`#qYciGy0+k_wpO@(@8)V zkb|652B+Dn2CnI(Q^FC`c_o1#es62?pnz}=9ibq~)!EALe_MDp>b!WKLZkdR!v%h+}ZX z$)uUjT9xG|K9aVaS)e|e{V15OTH#&dVU0R`m!kO53Y7usaC!DXR*FXbg&hjS5k}V? zLwYnX;TT4|*7-&{p^Y0~w$x_{<~eCe%_dBPGEYu?>FK#%wK!MFZm%zqee+63(_2;? zpTIzmP$n!fws-pf{Rrd~?;!}&BjB9l-&MZaOFeGE=4(@7p+HWWK|@|q1WOA)zx;^O zYHy7Sv-!LXm^x-*-o0%#_j4)OqV|d)PL%|Fjk!LAZyKBwo z=nCC_=F&_n{AW%wgHa4GJ#Qvw>!Ioe;F|h>KwwGe2Ftfue9;-po?fW-@6^!Ag1|oa z(R6inoggAarNo51qoV_svcYT>ZY1;$j;VMLb(oSz>pbeP^}Aw8{#K&(L&b9_tQ(9k zlS8@|k!m#bw)N+{HHN($Mt!%yA3b@-)K_2suxMVr#`VKQjmac=W!aPqGsM-j=S^(% zr(zCeDJ}PieNujuK$7`sBvI43iDmsQo=CW!>6*0uo39NtOnSg{a!9l_%%MSD}JN?pe`Lq{GS)YGU)~|YJ21v)Lwv6LFVg8BVu-)-m z_NK$(s)*7PD``zjHKFQjZyzljG;G^_`buYeQ_D!H!8d=Efb?&z2bQRiVxMMX6DnOY zO3J_<1*1$G zBJ2n0TiDiIPhXA@GbO(I;LYt$P44!r#~gSep4O*FfS5SLuZ@_2U zNTs5i+ttlH2Z#15R&-y=$i>pbtJ!~z!r zkqmx)f(u3qEuzhn(V0q|zB^=pD%8+eL@iLKMs9cqL<6|E3l_Q}5WbTpsd7Z;FgP^M zk>)?3F`)6fq9*f}rJnuywkb)q9PJ}vm2xYchWb3Q2Hk?~gKqphh|>f8Lh4cU6u= z;;nmzsS-E6d-4*aq_@|NdC__w1SGVfXezF#5^GxOd#}6T^=0(skd`bZmK_1?BX4ys|8EN#*7=5^)9t!c`dmet(ab%K6 zudhRWucci|TAHR^qIwKXr(l8=$rMZGTArlFiJmkknILcAOAPh6Je@``8qiC`PW4{9 zRo~?Mhrn@Wtc3p80qe!6|GOo@x*+bR^-4vSQNxn@o6*vq8}INRKYD}+)Q`73E`wWi zzX0G2F0Qd`$9H%WO8e`}?e+~k@~fvH*@&%m_!la@Klr8r4!$5LEu685f7rKZ19e1J z^6qO}1h$Eo_44-b{i{%VP+_)S+6iguqr2(}lP*;Cn3hh<5nDK51}utvR*S=S&*1kd zORVR%m-fqyB^P~wD!R0x4Jt{G<9DiM7BZlZL%JhC3;!7&HoHH+g22I0#Lx6&W=uA= zqD+T3*uP5qq`!6yr8*ml1At>NKDq96Kzl+HYu6j zzLxC#0?HgD69eYN1g5c3mLki>3-9;Zh&maOj>2JUdr=TFV0qz`ZoCn({O4~P?R2L| z+~&iv-={y~e=GtkpATFjT#sOUf|_OW;FiWDL0eb@IojUYT@@8j@7to3#=7Wc8?{b= z09_8J?U{j*e_vYqw+T$hVfPh259BHZv%a{Sn=n8tZ*o+l0mMSQeS;Xcw)9Tj8>MKJ zhx>Yc1K|azx{~Mz`T{V3_gvuJWeMY4zSLsiwpx>xIh$?3f{`w(XPc8fPpogGgbe;; z|4Bb4`@L!R05GOdY=xU_gRZ6DTygh(!|3!qZni;$Y#U@OmCyR$5U4)jFq82z?R<<* z$n9h<&$aLXXy{vSwcZ;)=lq7jbHG0$7H^I^kvG4+dzcDyp72gH>5?EL50{sf=9B!o zN#87a!UBN%0hf9LQiWqs%*hA^$4PVVWeaE}-#aT9eEwCjf|L^lwQJv`xa3?)dcmdD$ za#61+gXj*KuS?WsyFSQu7$?x%@9{Wg*J`a&W-nV@A&SN!poFC!Trb^br;I#F&fF}s6xCk6$%+6Uw z6JbvLe45PESL&UafC0WhNtl17FI59@HAA@E{ebt`9#ZFo!(6mb&qqXxfhXHv@oL>qW{4O9(@2}%e-G`{pX|6{Rh6p zLM}%TW4|B7!23aftJYx1s=YJBQAu;PirI3F;?KCMT$LC1;iW}m;|+^)giVb%cP3BM zS^hr7V#r-%R+Kcl&IfyEvY4ZuM?^|W%Js$=rGkW|d*^`AA1_~dldT*HPf`Koi~)+3 z=n>bo*f?u9vsV(e#!{ZnN}Bzg0E+5+AWXeuQ=cDoh>cB<%Q;2 zFpPp1i0kxcwt$Fy%pjf$+7HFd7tu@#7iahvSDc#~0FE=@JNt+-6nvckV`*vvtu+@W zv$Gx;5ck%9e*l4UBEAFegjNsUecb%V>7?%h0}cu2CA$^@Jeq+jjBc^ZK00o@kXOA? zcyFdRb0Qdc3paPTWTX(p>?st7hUWi8gZw?91UQ zO;39iCbU9Rc$4ZVUbK@lp7F@O!Bsw;2*QkM-xere{Mz}?F1Lv6yMOsl;VOrs*7DVx zLs(f3B%G$T+WcC4FDw1zYxm=MNvE0LHKgDahWKW#SBC^1NrJ za^j0Nw{$9*Xz{z-uEAH|8PI< z_oMU3QTe>b>-~H^pV#xcuICRJ7O?vJA|j8$d#W0$1@$-Fzh9z#GNk00iM-O1RVV+~ zsoY5h!_21TT`V-YM=bY-y{B$5CbDRm6@61Cl`iadNiY5GmVJ^-k_a+rsy_gOJo07D zZny34!X4@6zLvjhw)*zZILAoRMX&7-c{NHs(TWJE9a2+UJZ}6hg}Q=&ud}k!(%o$GRpX*EHhK40xL;ax z^Hlk8{LJ4P`M5sWwr!)n!Cof_uZ1dkLo3AlQ50Kzn zcRHF6!ms2|&r{D7U^8Y2mzTZ68}d&ohkY^@$^j(98yV|PQ=OnzFxc{S4o#qFFJYcX zL}GXh6KiwRZ~N#gch;Ib#gqVaiN{f>*}+B-+nU)=f7ik#DdA0lOg+~C;$9f=tt-r^ zH_7HZI3QJTR0IrPlczoMQ2FCbi@`(FYSb%cz}=A@3k`8OinG?HFCA1TTu{lnbl` zoI7p_hD)6D=`WruhS=ROcKq``K5+lxQy&2Gkp6UNZLm{oZ;1dGa$eWefFWI^n36X zkwoBBcW~mh%UlK8eE;*94sZ;7f=0Yk;!F$Z1k=vVE6PUDRWOtv{bd^HQ=3Wpfk>5R z#Ff&aJTUc~;U{PcoG6}sdLChAlHO#U9YBaP08pZ3zHNStDTqF%Rqi%$7-G080n>Ea2qKQ&Nckzv>V+^#n06iPdzCD%q&1OP;)~@= zj5^^lTZMgO)yv}M&|PPIirT5Lit7bzUDamtLWkc3BOy^s7Qt2w@+gs1dVQ6}%owjl z7kGzOpubx|ee0T=5G=F3iMjpDwMQwEg-pw>eY>_0-*za`uC-QONpB+K8C(!DNY??z zk3?>Xrt5kxbCVUo0?qpxG7W^5MWn~Ud@js2907+gP)qJ_?}_MV-SlpCOfu8j8^TYt z&5AC~QS}9o<|mLYtVtSP5zsM**jlu)i$j^egIMj5bz)|3x0s7WgAhMpbXsy=skjEZ z_KE(WVWHzW;RD0+O~DiQ^7Kg&$$i~9g3dAi#Sl#3;TQN6{UdS&m6a$7Q$+)y=Y*9a z%HW2Rdp2~~Wx`-VoI*gID!Ka4pZ#%-5AmtD5q3BB=k4UBPq3NFY}zzoO|3PC;#&V!*hbY_t~XUE$f0@qoC}lSxL82zU!qw6E}a z&}lL!LKlq~`OQ6B_9$GrGgve?XZcGgh<5NGbgbPU>gSKn%w{p=^7nWbF}~L^5qIi# z0#q+v_~kbO*L6=Pe=sy8qzKE3!mhDC6!vgR|2%)T<_REw(kCV&D1da&^iRKfh!)yJ zwKCh<4I7H_*H%SC8oDp(YGG{tjW{bF{JK0EJOr6b*J>A z?L7dXYAeoM$9p7UKBWIuN4KEgCsC+p^+ZutT#-KwmOSmFrW#5=l!U+wfPW(>zm2?2 zPD2gEHVhO<2FM2YUD|1M4!fC1U;A8MTYG8a@%pW=v%ICAr+n~O6INT?u=~Q;#DvJW z0fzw+{uKRP8DF=iD5iFWavqgDd$0del#Kg-bOyGiU*7fIc5n_V14YGFb_;egb{?Ks z-p^5T*H(GMQ)L}fS=Xt(TV-vjqsA#WAGqKG@LKBTc`nRfiJywi*#r=Qw8+nEM@cN0 zW$XFyr;ZsO6!8JWk9d<~aLp>M*BvaUG^d7w7>+vAN(Ilnxww*;ZjNe49{E(*nXsWa zaf4>vm6)Q;_IsE;gSW{Q-vU!N91m_1JnVNfeVs7aW0aFokLBQXOIa;2NTk(HIO zsrxu1dO8>2HNht!aLCMN(|S71g@RlC*>mG-K|4@|RUhexjZf~%)Nuhp10t))(=7K? zBIg~(w+S-B&3Jc7 zhrZ_BDbZMF5$f$)-=9oQwgXoy6vhMI1eHNayh4x|M zHtNsg8U6!$PF-z<;y49=no%+%15;(Or76w z{cXLT_h8F{-P2l4sfo~w&hAVfn!YjnPox%%8A$962FxM}KXaXW0HK>D&QhQUg)8Qt zaW@llRFjvZnOIC@ASYrX$5B59MJ4mxRUlB3!RDA{wbXrWK;iK1r+FMY>lO@^$rl{{ zCKuKQz3JuIJoX*?EWdgvMW8PL3|9au=b>rD@Ss5C5YLYtxRf3l_Tp{qMh@1yiQm5p z2Du?&pFLqh^hnAvJz`}4X!Km-p~q1yp~Vqfi!N=ro=xEj z*;cmF_z>wG|7vPa5|-eP03vo3deb*)np4l~toR|>hZTS=CeNGR=f=1lIAjxh;qS?& z+Sb-$h`_Isb0f%|g`~23Ng?pgoeNld2>~DXT&s|HD=$jl{$65J8izDrp<9i_o4_A> zpE-nG5UvkfSq<>yK8NEdip44q>R~ctlUNWz6;VlcGoCCoI0;Fa5H*39FHT;YQczZV z>UHVZ)kzO!>=j*A+2`q7*X}rCi|s4zy%*Yp7E|9u%gxhHBpOJOBm*N?Ri8Y0Lh^>; zrt~T$0f}n&Wiybp@S6yZb`CgZFGS_=R zo;@MoPU`;MKR6iK7OL_kcYf&rQ^WQmI)BM+<*&}J(T^z_dA~)IUM=seF1y`GQ##v+ z*8+T6PE-fETY-T+H#kg*uMtT1gEp&OjKw&h(C@|EacQm(SJqJf-qTV5E8Rl;cL+c; zq0BjEN24%*^qsXuWCIdi=QHO{Zq4u#c^wFf$F`3PzH%Uxm0)9gs^Qhf%*u*4SL)gG z=k{P27>RKJh$>H(SQJ^eZk?@MwEnJ8$%V#}8)4HiPq4i7AwKcs+JhZIXNg68Ngn7B zs;TJux#0QT*nan0)CAwWX=IWVKH3N_u7AY{cu7)kzo2>y zCZ<=;aq>_7En=E09}^RE(ZYhAon3d0-}*OKJCBfI>-MdK&=Z71dg5PaRlGUcdbWc8 zquIe&(S(*mZMG?A9w%f652Ro0Gf)ekiOl}&9KkR@G?v$Bd*!~R*L|m98CF|rI>Y2Z z-5sPQ#?`_>xI45Cb@9LJd_-z3W2V7te$%k>vZnN~fH$cmU|R_5SW7Kdk<5D6paqxq zX`1XYr|OxXNvKhbQry=3d-iK*o+gE_YMtoD4l+lBXa2JiMIicEGOYRYGZR&EGFY6z z4(O_pZsobe^YU_3g6XM_)Ucc_qj6cmQ>pe_1_Jr-^vhEcQ{6NVkJfc-p3UxAKO}EF z&)AuE&NJ?1bJ(DA)1h{;1Bb<(;}yTr$Y4)0EX}927V`6hM_lD(jm>jxr2RMs4&M7x z{YvsfBgN#>3X{_asYB&Q<4yyrdnU>pyiFF>kJYwv|8<`4WmzdVD{Of zn+6G@A2Hdbu$q%X+GU_%gb#~!sO38QF?{C>|7;rN%`r{=a+TH-X=7Ibj3u1wzsD7l z6uyzA7ey3CF`2wL=z|GDxJTlS&L<(7C-nq~x4SS|Rg7~Rg>VYMq{yNUZd^N)eV0e6 z_2h`+@vR17N^{=Atz$+Czijx*Wl_s-|JvdvT|~$Jv#9GYc6z~{@Z`eVt52`K1Y?RH zX}upti_zi&{t&~X(0FpxXS0tZDoE|Ded}A55ZeSdfn41wsIjfHOn;Bc$n2iVGRMNf zxotl@?z!o_IPr8jAyFeARvMl9jZfd4KeZI@EyKrmohT(RshXH-BC#%o#q-|153;Te z+O=G($K)KYp`XE~!N{Cx(AK2>Rl`em0l?m5mL+Tx&=Xq;P-yMwF_o@)3{?6$`8_A` zfoIl~dt5Hhkm`*yM=Ag4#IGWr321<$s~0iE&<~)Sb~L$;c7wsv>+Gh;AEu4dElQ}m zPmpx{Yz}9%8UANCjhWv;RD`VSG(i1{2O--|RUY&$SwUjqa-%UgtfZDt10 zFf53KFLk|Jl%iHm`zgF2BmbIVjY4?MUXS&$-(h8bOE!(gIJ*o{W;wrn_Wczp?{eGu zO`Yy+{`4I=)I?So!ofId;0xoaot$lJeB?FqBOmC_-V&qT!^o0nFdM+a-*d5Kjn<;` zI#2miU1Pv85%6M<$E!V@Fi8Fl(3RYn1eS4F=?n~5=Tu{O z5m+y0E{3&OTfo*-pn2+Df%00a*^MtIDV=Xu8rZB*oQrsF-yZUml3?{yp0pP!8Gb6^ zw=Zz48Cc2mwf)%gll!xWSt;3C%I?zGLW=6^IlMu;{hDcS@dxaa1vmm0NGGVlomqoP zMbK67>HjIvI&=w&&vtELs-8HiK#%m6Z>N^K^kwaW^Y0`8YYFQmxu0engwaE}ule7{ zD~(y?-!7NWV=`%Cy86T1IWny7dh&klq9&$o(su~49qVo)>mFVYU;hnq*TY#hQh%x? z*o^&J7;`O3d-XuquDyc6{Drdr#vk3IquMA~K(cFdNmT!HKIcTt6iU8DeHt_f?6DZi}4D zS-1QOi~X%EQR&k8eP8OpY~^;Q(j6-=ptWrso7sI6RN&&%9}B97Q$!i9X7bBlJvQ8= zdP{YFF3>B@X|#2IkTfWI3Uc@El-El%+@xV?_0sps##*uMLQJpfzJQVoJAIq6>1m~8 zx3S5|z4hqFU$%(bdU{hWB}vTYP|M1>xHg+=FOd(|C|c&7?d=7CfTeb7{=Pk5_A-9p zHEHbi;4P|z}ppjMOj}uKf2wV{nA#ho1kJ}^0Y{o z@R+M?(Ob8juS4174LNc%II~VJdyH3|d5i3t$l)zTEsInIhra59>)A@{x8C;4+iG%! z(#d%!dzE=)%lVO&8T|>7s9*PwO8s8dH;vTDqFyWj&}{Qzd^xHFxCcc9u*_>r4PRo> zl;!L@VOzM+PPHKVD87CBHdENx?)gYFArkt1e4-sZ=%anF@V4w_X)ZKHvmZ}O;A$qQ zIe+OMHVS9_XIQt|=ZS@xZe00~9H-yaoyr$p53y4!DnuOuRLzIRJ*E``3gMeW>|S;< ze82;&(cEXrhoREVyLT^QCzNny`!;^V&+~rwbr+aWR44PlVP8v9NzcS({&kAThFn>?(tXE^xpMcdEZx_9t=_oVvFQqj!`9#7hd0cJph5-x4jm41 z?e`|1PDv=&Y+*gRD1faU8oDxEY&npi!{2k?^47gYB0xAsXmOZ~y<;FOI=E1J&h`uH zue+36*_G6B1+$2-tM;G^6w z*EyxE=0yh;LV$%58}b4l#%9|hmWGr=@7Zm%#j&w`f+2CZ^pyzVKaZ>H_LGe)yu9@J zq;-3AkA)qrNp`1&FB5P6XLCn6BY|d*r8Ow)fsDewC^Y|kYIT~0HcYQ?6}4~U=f43) z-|N#0^1tC=l_U+a*p>nMSQ9FCrZCaihX1PNE_W`Q*lds;>a|Wo=60GHepPcRsBrYr3&mPi~ASw1`>BRqc2t8dtM$YN?@!$mc zYO+o*oRhQ_i&O7W)C(;teYN7*XWH@N%v=hILXmXI2BpdF;Sj* z=h_^*8l`2i*v5iP>XzP)Fm{is`yG94oI0EyZ5bIzTEwT;q4d>G$)L3g9ad3Gg-QcB z0#p9YwLAJ+vZwh?f^Hg(SZ5DQpTBTnoJQ+FXFBU!8Sv<40NP}-4@KFJx&3b@?u?Hj z>##nAxF#=L{coN8Ut3@s!^*m|zTH_9RA!0<5l9llWAKTfJ2C3maI2)-8Yw^MT0l)K zF^M4FB=DwD&pLMYedyCr&Ye34e#iK_?M7XK{;0HsQu`0GtaKScYf4#;yUl! zJbYWIN8|Q6>BQ_GRuaJ{B9lT5uViFi4Eu3UR5{;#vBpS>c`K*=j;O{jnF6KeRK|Da zs)ik*)ZzoyDF;T{n`?OjYvbp9?=J-)G{=Xq-C)sq8^m0FE- z)MXy4Dcl$iU`m~u_ZogE@zPlo&Ffc@axP!D&uXz_!Nlk9fqprwLNJems_%=P=A$S_)E~CIElVYm~Th%^^c5j(`M1!)})OvG#$6^ zr+cT4lfV7%YFq;+yC=!XHXkQyqn#;D7@?Gu(Q%tBgodEq$i&ox=Lb!f)H02@C%0b$ zlBG(3(Omz5ztf@}DVqZS{TXZVGdke+$yMXIz?0uo8661&INiY8m;KPk!o~u4=Hh*KF-m!@ahrt63?&HRPeY(VJ{5UEVkf>}nq6^aq1K5hObT3Ft*v^4wb3kHUUWOC77DX9Rh zg8VaNWjwZ_qev*07p!JJ{^F#c$M&YzM~=wA+wj;ylpPYQR-lv+M|Xaj#>X zaCxf1=$GOV?%|nh`24lGIqK)npYwf3mDIGgt8R{VW6mMy`O3NT-Qv9@USOOP-s@;I z`bCK+p4+cMT;AQpL)}Imt5;DZgh@1o%q7Y$Z`5--8*-LYQ*&SpJVFT|-_p`j#O(xp ziD1TpiA{Lt6=zDd1ymOSb@V`uP|1<^tN7qO8%s-7Jw3f1_>v7>1IAst%jAPBAhykR zv4MesB<5CBR20R$$}_ai_J%AJ`J6&v7DToAB$5+7v}SoVD;73*H6a`Vufwe#QLJ%jq+NY zL7;ZQY`2$#FcW=<*C9l4;pnKNlT&Z9*TSXXXL!T#?8ux?Y*t?p015gBX+sqpb)vN0 zJJ^d%yZ}G%8~rc=VD=Mm_h*36;&p_?b0&4fGP{ELN=c7gX}+D!mpcz|2UHZIs==7P zNs6@}*-kcU@jCB9;R8U*3)NsKVifNw{A_Sr^2Nfs%WJcMRdU$axaDz~Z@*IV2$-pR z(0C1bFC!%tk3q1BiHVqC)1T5Syz$P=T-#C%x?_1+NpW%8hlhtD(ztYO0eO536fmCo zl zPAw1l&}grJEbhgC`)-5#ezsXkTAFk@wSv*s;?py6G4q_QjWx&qwhxRQ%jiofCo&f* zqW8;`W{Y2&^8(&yeoe8(#$(VBlx3ZW$jDc*pFVxsD=nR%zYD*}D)x|c4MBpcA`6HNYx+d83&LeqXV89L?XuUjSQZpLroZpZg z=o@=Z)*SuZgWJ& zxv_u$ex@yH;C?zdICSmcnK_30qO)`T*Kgk*AhunG+*Fl@Oin_k#i2I5MGu4QJf~in zp2}+jP5+UCn`1;o1pYet7f3?@DVd{VPrw7Re;=%R2mEtjA?6p_lu210u&@`rV)(&% zJiG<(gRS)%+@GgCB#e1q6Fh`|xskCGsAD~-M`SGx{D~=t0(dMPLeu+oP3IcxY0w2< zL=kP_5QFzTr>&rH%r4XY>w94Au{Be8X5^ax$%F+H?Vi{C4z#|jJ}WJbyHgo>HaX;x zbu$s!R!)R&NKoWVXTOF?0B|ORDlVyz6IDH|rIK{$tk3@fTbpN^ diff --git a/articles/dimensionality-reduction_files/figure-html/unnamed-chunk-7-2.png b/articles/dimensionality-reduction_files/figure-html/unnamed-chunk-7-2.png index 673068518c628d3a2da25c60d61fb88592430c15..7f9a79fa9ee8d4e1807d6db6849a6640ec3e4cb8 100644 GIT binary patch literal 565349 zcmd43bySqw8$UXLh)78Yh;*uSNrQ@%l!SCQlF}U_-Q6G!(%s!4-Q6V&-TB*dj^}&t z-*?@0*PV4{v5w9-^S*mO&-1B`|7R%?w5J45ArJ_fnCM4Y2n5jq0zuGz@)-PyI{cUh z`0-drT;wD82_9F1_3q#YvZbi9H3UNB3wy$aZXD@DAfynnkMHFjlJ*uHUB)LGAC9Ij zcuc5oQl7On{cu&pi6)or%raLiRLy^0C|+5m;C!~I>8yHGRb8c^YTvj&s?mWqu7HW7 zAMF}W^$zO;Jn~GW7VLAAK@A!@au9r-|xvU4T+=#FohT?~qP3NjG|Mv)I z=;ob7dG>$(Kcfg-vEP3WQM@b<#gG3zG6Q8>XvzP3j0(M8e*VAr?WE%z2K@InKO32+ z4nqIE?PJ|5#D@RgMNY0B1+VeHw}mr&`hWOwN!?Cxqaz9ICa)M71t$ABv+4TD34&K` zxS3Jclo&;tyvf6#RGA?xTh)dfeO;e>gXOQ4K%Jd;A-mBt_fU@2vSPVyOD*E9udEc~ zJ(kzZ(i3ht_cmPg5u}~zlshs*=V4dEy*esG`}Xo^eRGp|SKklv)S>y?=3sJv5|?$z z8Owi{w@!M09NYYAIobjhv0>@m-Oa_;jA1Gt_(}#J(w@=N(`V-7n21CWJ`WBKK1#NT zkB{$mU_UndqNy1=wcELMLbRLJQ~jCr+0Vj4G>?vsj}00J%o^b?FDt96u+V+Q#Kn0g z#ltPg`pb-rj37Fxxu3+uxVmT~EHXqXKgh{p=jG+iQZa}~=<8F(s#*1xYWRpEU87&1 z>ES;n4&72>T#I8y_0nSU>t2&-p%w9-gN7hAbe|lsbJfk8a}bA$6f<+Zq3aKDuTU;# zwyCClYR*WU)ULn!r71b<3Eh%RzFr1#WeLv-e$QG7k|<4*klmiqt4Tjc-a z9r^#-$7KeVnQv*D=v5Mj9Lu&`e@Z4%;!thKF0k85?ba6zTrft%w&W+Hi(#j^-;#-g!wPmWb~t zjNO);t5C7K0MQq`NyqWh%+{L{+0vK_n*(&j5kanBM62MV{zcj?spw-GN$N) zFEJj=F4i~u`>l@8Wc__C;*8inu@Pj|)?O(wZp4++p?Ji^;G(v3cIAg#WZV@q{}jL1 zP_45uzBMtl`a^b8C#wTZ`EVzfm6MoSmcj(@8%OU%Q zR76$LB^Xq0S2H@tI8m8}k!F4W#-E6(*@>B|!W#yW&gP~fSbGsGX5=E^zo{D?66aDm zZ!S8$j-U`Lrn#b)ZMi{Pv*fhoB+Sevc2Zodp1Du<>Fw=}%l_rp6FxOO{LH<&lJ;I> zcdnW-U!f5Gr|}rKRZfx@1zG7>6Iy-@9Ftay2ZLjwy0W@Dkw!6I>X7|E7w7qo^xi=F z!v}bc;tTv@(WYQ<9mw7vuCK^oJ#c(#3SrrX`wV1k0}SuClXRSYf`6%`c^ zB{zy=$+T06kLxen4lY>j_tl794&SFZtRgEEsm<)vw{N95GeFSCyq}vIP8DpGeupBR znyA%(zkVJFcX@ZEDZTVo33{r&hw*5fH zUJZ49xLMk=Z@wW)#wbFe!0dpv8jSV8;{QV2=1Uvx~e9^}&8 zW%vJgkM~Rof@#vjtf!2tsBZh5)o`$bNy2I@P*m(U1s0mjT!q)!?i8!>D5ZwmmHwc> zgA1vG^u>gt=0?SsR7Q68<8~&$3byhKFMD+Shq8W#wN5)VZBrfb?9`7TsVr_>dl(8r1I(;7x5sMPGn2fmv;y~*DlZ@~-&qm)ZHedHCZ!EcDx$E85gPd)rUrL_m~ zXTPIGDHgBa-yCd#8>ZV(C=yECaQ!D=UO}PEW=A$5Az^#5ktZj~>Z!kfGD#iv-}}78 zFgr;_ZWYDG#&%eqdKc8tz)OgZ#1I>3zEJlK)EhRsuX4Eo+Lte1GHEVIshAIbuATno zgY&3fbjlw)|Nb35TQae$a!R8gRAHXwUktF$nGWE<`je-Ry?Bp0u!BehQVI&_h#i*U ze&y$v(gliAwx#en*F4;_tR#wg5Pf&D)6-XXYaaa_{W~Az)8B)C z>NNwy=IzOlVSfyLa+RUOaqrn#_I$Jd=BBXQRlg?uvyeyVTt)gqB?U~qz40P01Ai}X zv=RnBuJEeN%3W{l?4YwkV8gcipiz*Kt%MEb6%`pAulLH!%ZH^*C-ZaBL?ncT>Wk!> zz1Hnsq#8%M&?1oP+DaL!n?)S2I)MLKRQp4e&2MaF$7ZiFxN~|s$zj!B2{we@a*HP_K9fgpB#rf|KTSk*bmsua((i5(_ut9(i@kX{DSbWR6jzHE zP2IYoe8Qy9mIWS81oCooNf~V+x=!j6!a8K=WB&asR04&5*f$zJL&?HsHw<6lH&FX; z(b3xx-*IB;^>)!18_zknB+Lp9;2fwxT7o$iFDn-@{@%Q+%`tR

$UEB{>#4z{fm( zCo9YEFUIww9WH@D+;Kfz#Nl*Aq!cu+B-`CdW>B#AH_Z=;zka<*$_`97j|3RW<48T^ zQ9zxm?}UD_+{)62lw!siWN-P(=w&PFXQ(&IO;<0j?RcX1XEOX$$i5QTe=aj*PP3#H zxNOCUW6|%MvJ?1Q7MUiW0V;&&y*+H_J)hRCSr9`dwtBtu!gbATP!>F4h+UQyMng+PHQ_c76T1=)L7~DVVAq@89g1+j)pFWYb z8oi`XUAMHx**u)P(Dom?S)yC(PHzB)Q0b((Q;lEW7Diy77B+%7to^s7-}rqO_@a8c(DY4sZh)OJexQi#Xm z6^&ez{d1|D$mg^QgtaLD4L%Ec&<4WS7OTwWAfjUQyn4-dP_yuC^iZ0*QOkH@m06SA zlLOxE6Z^>`c+xS|mb$ttr79uqb0Z1XbB)CQ_;=rVq8ptrRxfUvPtOQL30}U8XV!hZ z))h>_${M-9P;Y&IwFUZ461r{VMWArT?b5>?$ym0e?&aZ15HVjuesNR6)yWo#*Tmn8 zc5$3-r6uofyxYK_qqXXBi+TRIg$doof{ryU?AIjJH1`sT!r3L1O|#k|F<4S)!Kv@7 zqBcJDgeMERf?wtjx@-FfDc^7DH=Ccud>GApBdFADR)pja3Lm$$WTrU1p{0#yHAKf# zvxH-8x+M4a_lJOjwLI#?J2~nmvBx(YNMPr^n73AQIqKxS*(;}{qH={!{jGni8i2NX zzFBnmVM4~Io{!ZJ>HR!u|NUq89C~W2Pdsd}fAj7m=jdQSgt8v>87VtiXf9FKpe8Qk zlGYq9CeKH6Crm-7RP3cjl;P2;Sgq-y;WWW|mzI}L9vN9!(9qLEbBWOv)zp5EmuHX8 zk4mKE<2CXLidtoA&&YhGh{mZdUOAi6-0Gt(UI*g?K#zFVK~Aqi)#`}Vo}Z!4uku1n zP1DDPe!W6ATaH%LNUN-j=2&vU_HF+*KFRR!C0J4Be)RGqypZBtc@z*3U}RpTHIy=u ze2(mW8x_-l^sYJ+j%ao^qfj2{lV$w^@8z-=pdqqbj5(Q`x^|OAZA%)y-Pk-H^qsN& zuiMSFz!b8KE4svwA<`GWs)wk#o=u3Xya{bOKeyX&esJ?aeer#0i-Ll}D<}xHsOkET z!;2sasG-2kivjw9(^FKPI16~O5H^TJ`}>f5BpS+Oq3`h>pcn?{YprX+bf2!XrHvnS z>AGqXuPWy;Z};jx92uDK#db9eH_AR7a=(v^)o|L$El~cqDXfdam|{2I7#j>{GD}7l zCTeC?=n=12zI-*)wZ-Cyn+p7EZF z;NwS+F=>HhJPij=lDln@sOYAl!7>cX`bhtev;M+@M{e|KDpl-7EzrYN435te3LnOw zTKB!qVbbkFg{U#$Vbe(It#5zlEo{`cYj!-Gcc){u2TeEl0&cv8E7YG7 zr^+g|Uqs&*#-Z0htLEZ3EEcyOm$&<3z}^Xi{Xv9WSg~^*vD+K#kSDi`9hCnvgM0gyp7UnkD}F_3Je0RDMlI zKG26B|LpuFpx3OBkBk!dNb#wsB`f6dV=##_>&lF)Rq`yBB&};gu8p44&Mjsvm{ZZy z2X}OI6gNoy1%(-6Ff99?GnuGah`^^6fQlDfWhYL>-5&t5kB*Mc%*-6l5W$c*>2YV$ zy}Lex-R1@`EPs4RLzrDK=Xm^hCnU)$L|ZFtr6+6jxLmv4hXU&`1T^~fbv**ruSR}* zR0}g#w^Y!VaH8jW*iSgtzFp!+I#ScGIN4Pcq|uMgr@70qDfE%yJY{ydw9J->Z&SBl z5VEs7SJWu~3%J9xvCx2|BLTh=3~__&*VET$*6DcSbg?g~p+O8Ln1!*4$<3!V)tJtg z77eX1Ncr=<7e1F2Wx2sXfNy<#2(MFZ!1n%L;M5`1dH!<#Td=EuRr<)bqRNt6wsDvJ zQIW+>m`~4Q$dqSi)j7MocfTbMmJ#v#RNWWDY$ z+~XJLf$`+9>Ls_tK!!R$EhdL|s*;ju&G%=;j(2BMj$6t0P2(YB$vpPQ77ynZ1xlsl z_i?3+4QKesL8nQd0^%_(%1e}R;>3s1hY1U5Cc+(uOJ8P`dQ|4-ZkJ5iGI@J@7ic!8 zgc0fK@A8f&&1A;C_~`c;Z$@(X=`z~_&W4oU-M)LoUf)ml(T}z6*bKh0n6+{}qT5pA zPs?>KUQSnecZ>e?)qQ75$Rkl$nYb__3xmp|i;IKBZfE&kMX;KaNPHU%#*v-FEkKUT zfVHDx@E$^@!1`gi!qkfpDBJz-?11Z>;1OM!P_7PYBbGhHy(@WbP2*_nc3W1DZVo{0DMHHw}nH;wJB>yk%bWCtM|1OPiWNK@6MEB zIsuDXqp-vHJE$)I-N5hI2=uQ{ca&m;WbWE}9Z%M?SKD+E^~FWqJ_EjE1Cj z*os8LWWPV(p0I}3e2KWRv9X?go|8Mb^N6C5l3Uh)TAPK)5$Q+$4U}=>GhU&N;Em1) zJLiUhu51>yw(MmV$bS7nQ~T3ofgvE*JoXSO*b_|WN!GrS!~bH54yZu;_WoA*wp91d zA!HcWm`txSa)&m^w?2kQTX9TSLc*t3YX8~(eysWC@DLZB8(MPhiqA_UQ`4VJwy$*S zT|?(P_$lkg#K4uyOy&g*@*uS{UF}G_e*&@*Wq2v&fD*>L z?-VaQ^jM)kO<2D%&7KfJeo@q4=0edF9xv)jE+g=Nb@h^L-B42EJ#0acNajB4U;Hi= zOvn{sQrsBhN7U8v-XzykJ@}=VW!CaH>aL=hr{zD5DMmj$aSNz?xT#4kB7y?2q2kB<+yN&|Lb?zs z@}1TH9pEDB>9@V4WCOmdNHf4umreup~_Jibj z6*S#FJJ{264ihD34mv3~_@c_|qyI7s`t1mp^ZDMinol5q9!0O@UU2{EG6wtS$p+7a z7AXa2N_+0DHG~_@|8F~P0;)RbQ}05F`5=c#CKxkAOZUb%0ItJb_DZ|8`I5MameG2x zC`XFfWOvP))eocx`U+1D~Ry79|y-m9A@{Q(iFEMcCtIjdFz>!@2|{(Y&Do@d{;6DX9epQ?1ov;qDN#&tE?T){!9S!Mc@(qlH(YNJZntqNny^!z5Bl} ztw$TLGM!Ien=45vpEy;G)4~5#tv2_yb^lAe(S_N;pz^4ydaF>V(iuS|p8M<9pJ4@c z^?~D!{+SYOgjTJ?xPpU%^1(JXNjna6Y8>O;icqt;y#iIDhqLF3YOO%yaX6nb{KnG| z)SEI(HjgN3lg&bH_|*l^#7rF7^E0-O_NV}(f@~W5Y>+YMD-;U@K}%$M1%$V6F?oKc zh`#8bTcR>TsyXhXjpubd*49*2R(=77&zi5mEt&P!pgz!iU5Kk%v4rM#BMUT5FmDSL>0}Rgz2NGC*G* z`jg6!p33SS^O?@$Vc)*ldHO=^-&>c-3Z(G$8U-1dRzTk*4GgFOq|*oLBLKLONl6l5 zul4lyk})!d9<6n=0_+2DVa?TMBJf(cw&TQO88)&L&2_-*lPuei)f_jXVYo{v<}7PU zSxKqqbZ5-}qgTOecQ38!rL=`Ia?{y6;$X9SIL?RL6E1+99if#|Iz!R~SQy_PqUTOW zDU2;m3FmYc25Z3}S2o-JcG5b=Hqz^q{YBs|?K+@3GHB#oCcLg^T3JEGAP$RPuq*DWtE2R(N2C!rEpYOfoPx?U!^p3eY852(`+*d2#d24l`G z@rUt;cFp6bi#7+g1X|_UI_3>s`)+1w(+v99k;%ckN=oO1^{Q2n$C3*4;(`x9*~Mto9k|xqFO8rI$Uho(drl*thF9O61*K>BpwQWlfw|?o=+4L6G?fxWnEMJk) zyx~aLZg2YA^o8WV_gqilAJJwKm>D&v5#o7yg{|70y*BG>E$_=GJeCeZry6bRU8diD zB!>gidMNMl6Bt`#Y`$dyNG&)N@5!Ufkx;jerHA_q^b>%&z5~MPA1TcrKT~cPnVR~L zHR=3tcTw(k=M+P)+O-NDiijM=NaacXoEh9WFo!Ix!>-pIN-}gZBoL~NZ@Sb(42v6`D}p#s@}*K0I7$;irn0Niw@*A-vc@~zL&&P~Ww9zyS@KfT@hjO9inhZ!D^{r-AsH}Tp| zPUIgW-&?aL=%R#)`0Mn(_km*%g^V0zCOrvpw}1m8k7@~Z~Kw=)ctSP zAXG?*mv@QAocIy;PC1^1{VV#P7bz8Dn)?piE_n8vZuY0w_B#XztD6^$Yf4IT zk75Cy(W+*eXZG|AN*{frZEZs}69VtV9S9~IR>@r)rzrDS?>C%PmiYo?wLm#wDo|K{De7v;p`B0U@%dE;5OsP1a=rw@B*B9_&EFd>v~3Yi zZl&h*CogBZ+z^9n@WW$gsqNt^J{%qrED{`PVqlC8$|zIefIA`9GfdQXNC| zMZ8AFH#zgaEC8rn&{7nY%Jh%{i=o8#53)}6?7plZ{600}Whw$^B1lpSmcih6Tr0`_ zp)X_Q{*NDzU?LAd|C*(iD<6Oy?mf1nH<~GiO2~QWaZe!<^5|z#fxzF)jwRQko=CQkm{IEZ z9>(#%5uAI4fh(sA&F(ZMoe`y(qSJG>;d3U}U*~?hvqoUm5?4==H7;x~2bw3>RuZ=R zEr2Wriw%x@ri<@X?6%-6NLO>}3ULs;0w$-~DdY1f@x?0U%qo=7V1hGh0(O9y^83#lH7?tc{;KsifZM#Qt!*C6HH8KnX}UGB!1n zeqYoj!$do{^A?cdA@+jyH8ADO6j1z;mB%?^SL~=+ik3DU)Kd5HZMk_*2f4x@*%Q39 zYw87*8_$B)Di{iIx#6l-$?hXuq@{I#nv`YWYu(B2E;51-04?Xi`bH8kGM@b!ufEAb z8*##SUum)k5eVKy>t$pySf^34*{EeX3d2q(y3z( zwLP=IoQk14P5dQ35V0{>*!Oz1yizp z_pGZsk>8aYFlLhJ@|-AWFzrs_+wAsMb5FlicITzm+3G;H5Ny1ettT`MzpEX9VrZ5%@sUHP?L8n zpo@|Y5+qmqi%3C+IuW~n-s>A7z2|B9)r0gf+HPQ|N6SN@%ELcosWl_>)^vJ!du5fb`D8q|BP zuId2%C#<4E0D>u$HL}|&{A_L|N?)v*=c+BXPRFFTNFFYcB59-zR@%II0dxTz+Y@9? z9`5hr-oJrnMY(%n+7CuTzxi0L)!gDApJ_4!svOzZZ28 zoB1JFI4*CNIiVTcZpqSS{{}tdgv2_;^(=-69cjcU%C!6?qJbusXooa**2usmR2UMW z_F|ppl)626=y;aH@oFRX3V7B_+6^#tvC$v?dZOr}5Qcq%jZKF=*EjbJGyMzU@?duRybX z@=s{ZURggUv|`Kw3<&Pur3M281_KG5mq%;ye9mtX5fLG%#Jq9fJCETPk}ZT|AEfGK z!)taJB0ytj2B0tB`z=mqM_w?Xy$b%8+D!V0R= zPM}6yczSu^{$THR9GOZOU2F1Hr_!=g{7|(DPVr0vM|3O(Hh(n z5d>IT#mOLuoKYXb&d%Nd2#*7A9u8VvSS0m)?+>{Ho$W(f(NFtb;M;Mo1+lL37&11V z%0dDJO-lT_x=-SJGZW&K6drkOR{avx5R}^`CarRw>PjasgZ^~gE&O_GM}dHZo~c-@ zk!o!pQjnA46p&w37XbP@h+*kFl+foE6s*Unny+joT2K=NyWPL@eN9h~8&~bivs9WC zIU1Uxtoua7t6=)-X?~xkp~!$$6;!>gY_$2LH|3%P&X>ZjW)4jH?m3I*fewFcpyU`d zWcv1RtY$_^ts)6r!a(T47vqkC8!oNafgMXv1>>F+*^7XPiKdYL}dm1%t-f3q$ zS2d6k%0Ihf4YthoaGFFae=?AC!@(2NW7Dz#)jN1#(FhT)KKl2MeQ?Jv@$qr=lO)P` zA~(+)@$pZ4c|DET`UElfY=(ES{%ufeks#{Bl?$8=U{4x<{mT7jt@(V`1aiuZaeI01 z1{R=Km>VqMZR?;(C3TIg&cm5L%l?nluq87>4GRKudzP6QL44Np$1E(@<@)`&FrW=- zdbm4a{W|_Cq0mX;G48PGM0fY@8ZiN51{`(9BU4%InRXZ;yae>z=mTy!;&npVa_0%?RQFtc0@>r5d#`&cmNWtW4W6 zoLWnKGeXtlXMz6jOltdcZBUW{FAM7(F?azEO&fu98% zLb_c+X}!Pn9hZr4s~Y=6%&e8hnw}+24-Ut)XiUa5Nm*)2F5VH`)+?zWzo{~dT>VY? zRYcS-TUWP~p&>3h4KYgiZ7FM6^w~9#hh~^EK1kD~TkZz?=R0P$2yff30c9_3yCz5Ia$rnXTXL303erdu~C( z_7UT;s^3R=HD_q0L<(=b=G`AfP9kETvu3|Yk@=32dpzb}+bmKqY*8HJ1z`Z5KQ$Bt zGC$36l;t|2C(iL3sA{3*-=196Y!H1{@M!hYwRq!jNNjaSOfk7gV3t1K%;0vZVQYJa zSLf#2-b!2C@FA4A^rwS;W>l4{J~vj9n6JzJ{kbKZNB8rax~i&kl!3o-+HMRms7G62 z5vW|545bpS_q<77N{#aZcRSLj+aq3meSH)xu^=wm7T}wQgk7n-%fyrCYoa?gs^K*j z|4zjz)hh%bh_HxRudXiPDvMBP$M4==?W5IBm~k9Lz#hOvHVd6ZNKu`V?MfezF8ihT z7U0*;vehl+T3y^UQCh?lx1dklM8)x<)|teq6o}O;S*^4E=RHmV6ea-PwRIVQAnfmC zo(q$O#v3raWn^UDXXn4<+9ysv7qiJ69^=99FLMA=e8~1KJ$)(DSe4mi%#i+FQFZRu z*$-youd^y?mCEiM2~=n;uXM;BfQ!;CMw9%p+I#_@NeiN=;Yfvo#{h%Qeg{m%vj^~2 ztlTkQEV;1pM-N{DmmeK4{I>6VVs5B>cw}TdxMNrtGjoR|R(EE01&y!e zz4TR22Z@p185nHhH6Z~SsRt9-NCb#c0;y?nN2^3I_%814V%x<@apr_l6BBQ|xBe>& zFLY(>@ETyl`X*X5y?}6NI3*y6vX;RmIyp0LC@_P@AB4~R9hRXPEIy~#1MAWN;%nn` z6M6)W$>*hhvK9x3q%)DOTJ_IcySg@xUCk~3SY3HY3yMHOyW0z^7yG~ymQ(~p9F#kl z6(FVf)Ba$QPN~ErC)F+CIwtvOi;EB)#K6qQ0{c&y-fq+vm?(>iSKNCz!kO2sJccEW zUFcW#LG3z#UZ+&~^*I$46-2Kd-8EM=Cf|d|)3!jP@!GG5ii0E8Y_4kLF6ty#<&1w~ zU@q5uUnz&P@qkGpHnEOAA12z>u1AQY;~Rn-6crT}mLUI5L8V!0i-l=>?2heE!Y8E$ z2WAqtOEP_Z{Q{NB0H8AhQ*QvaLSS-SZKWdp9DS4K%LOTqyx=i2eN!-9r0ct)r`1Xc z57eY%e{34!N!Om=zx6=yW8QAg>~@3E-G2beNIf-mm5BBBZT(&8O;os&sL&b>BpXAi(V%up6rv?B?*e5AzBO zgEuz~fIx@-2#*Jk{uTZ566bsj++pDbaXV1+x87iZW3?}4~OOipZL=%>j-HH+ae>R zz8;X(M2=2hwjD4@p8RaxsWK}qVP)SLesB9phXWNgATSVadm>-a7Xb>AX|Ny^%xr~w zGVR9i&tT}c_5vKLf=P$jTT5hr$^$DUO>jh}|x=CyUfkI_&zS;#s_b3ziru#f|Jo zWOEL92CMtMi^9h())qoBpYTA>_leM)@#`Oa=Te|L_~zSyh9(!spY+k5JI(0jmx0bb znu_A8CJBJ6_~HF~xDlf*c1?^fs2!`*>Goyu%{jCmsNpd2 zRvARMHlV7jX27I|=^pdnx`{Xmkz%4Re<>6wwSw8K-0bF>0|fyB#tW^oWW;gdH?Pr) z(zs+rJab57cs^KHgp@q*(4`LB``yuz$%Vz!vR|&x)%0|(susw<@f;S!5a%g+a^`B9 zcm$D1uEVh#BX2KL_g!UjsF|Ae06P->`;vzNPp^qTcQ%XLO+*VwP0EnN*ydaBrTg=0 zPD#8*m-d;7s`#%acmsBPSHjX*L6qMg<(Bmw&6Sotk)drn|0Q(9d=Hch`zOH|Q{a%n zK!f8+oXfRdz)SvYhR4*{4Qb?p@1V(?xl22zW==0WVAEI=D(uk%Nl`W#NpaA_0h*Xvz>eKX zV`xbHvn&OKN^F-Us@5Q)z74C|8Dh2Wl+VbxGQU3P6Mc})S;_XT_G?U=es2qM)aj+A z;T07X#TDnUFb_~EA3E1gM_64cJK4owxn5BH37iUBwBVE~4t=Nooc(3YvttffdHIgJ zizWBrBjF%Fs8ylGo7O6*S4>^51p{>0ed5=b-wEu2^r}_Qo_fbUEV@Xv>)Bk#gY3u7 z=5BX(HmEk*SEU@b`2A~=S&B=&HR}E#$5vi%MOF1YxEb^KOOjRJYdQyaI9RL#OpNhL z5~ZoxGK%qPg|OJzZZP+(S`OI%r7)Nj}F`lWN6y~NHA|3aB8kgY1Mx3FQZEk>hU~1 z#7BN)DsVRP^%MN=nkzU00gGtVf_!xI>8#n@CYT0@T1xl!y@$3mBgw7Ve=dyQ%zczo z?k24)DG3t_#3f>p-=8Wbp-HyE0=|yE;zajpkHC=!|A>*F*#-)v=5$oN7K}@*KSK*EkWVx3? zKpl33NOSYNLo$xZ6YK{j!$CrT$3@M|=ow;BeA_*zcBz0|_HC`}8yM-UCs$3QYUJcr zmmr`IQz)64!*6e0B;>Z_fZ5x_0V7OsKiwbhA&(A8%2I^%?h$5 zE+BE&aC_YEkSvz;*^-Q*JBQs`vOUwePYVFhg4sK25NzSWQ@6n+4n-Pcs|BxwJu$e8 z+gFyImu`q*S$>!u2I7~OcM~@K_6WoD?sUZVES+;p>3O9=*WVmWJ^1NW>%HLp6qmx;UByKbt8RN~eBZdH{6O!Ei66Y&!L42`a- zujNHKiz{Ex@fnDYS}nRixDImf7PPD67$?9iS1@AZ`xZ#Xrsah-_C*^O*=FZnG7l(0 zzoZUzOS@mgR8<^sLp}oh0Zys?j%W4l48+5J@@RXeoCapIy?*nCyMUcgvaqo5$g9E! z@9w4Y3xqW@219u7E1IwbwU%FKLuGs=F}%`@pdvu1L%W8X5a;pmv%+kCS??iHgUl^? z!iQtCB|}QqS=MkW=)+GkSp=6eugN!W-atgH?CH+538btdZ^9Gj8Skf4HtEMFCPo%P z&};6>#Gn}z1hdH`9f&nPwcA$~cAT){-N#8EdA1@7@sN||W7pW_V&;ksr_l)QPsS&q zplU>_Ma)pH-~09pL0`TyHf#&(B{2VP`e{VWNY0q0ee?WnIF3bpJIFDi-!#EWX$gcP zeuH5aps&msi6y!-5^SUz#>bNn+t_hHP6Mf^kgw?^LdDJZ-1hU|kbo?DaCo^rlCfrS z4vspCigbTznVX*O0bm>k#DUJ7otEY~J}wVCuLX`x^n#pQ(=dK<)Abuz$`JgW+ub#@ zejg6CRFZ={x*XP3-TL}^SX`Vau-Z~T3K&%AlKTsP^5q|}Lr_i6hhswPZc-_F4Dty7 z1SWy84$-5;A+#zA`T_rSuJ3A% zFf_b~N_N~77@dNPfzv0flvU~fzQ_O);@L8m7I5+U-t=S3tIjc2$+{5NzE z^KeN^i|0Xl<#IOU!63W~;BxgLuyk16ZZ8FDbDsY5aHls<-2tEtdFU z$sBa_O^{>W0_tXib|muqXAWQjID$L`vrH%4ob;mrZHFgTY`STDv8FrlSXdC^?-<^) z=qk}6AoO~CazeC(=Gi60_&%(EZFLoPGzl=6f@%$rb3NG_vY+=23ws7j>{S?#`2_{( z0kFTf)SL>qWq53?Z*egrIPaPRVkwnXhp=QqY=#cvt*gq~+H>zuSy=_VfkAuibijT9 zk<%)RrTcuDOpXNb??aZ?W@>VZLk&?F^of7|R(SPLY}`hr%7Qo0`*C}g>(2{l*@jQz z_Jomhkz&-Y4L3-welj)PV@Hk~85sflK~60}EV`1gvCeIUw|Ny_p*~(?!Qx6%l|fKY z5C+6gHU~0({d!ucu)A&O_ zHG9j78)*7E&95G|NDqXRVynG0sSUT)$=~mCcE^vP3y)*{s0sO;qChzZyq3$p9a+fy z`O^c$Ab>(`X>EOThHx+3(b;(ftjqLK6XUz}CoXl9LEe;N6`29~l&4 zhI+jnI6^VO)umHf0x}7pWPE*nksf=&F)}jN+3d6dE|Hs?Tl33$D1jYCQ&aO@NYU?- zoG>FE(R3)OvMhlb?n=e?MY7X??{u8`@^5@6-phP3$k=+#V!(Cp227LPDDjAne#T}A z2?K@NbWl_jOQ`MzW6^nQ_)SQU8Yak2x=Hg%r*zUEzZfq!+3H0;fDnHE`HU6;* zT#%?O^rNn`{P%3zJ9RC}*fBF2+Bdpf=k%pq8B0wZUu?*^m z=jXy%vSd%-xswOUZoenZ_ZXBK;>F1eIiX}4@4APOCVdzDJzTlRUsxPA&oBRv9l0OY#Z=wy9=>)6e_v$F$R+&sCQGTm-;(3yZ!lb)OFC+Ld~b5d6}H+>=_u|Wm% zf)ErS6613sVDEt~I&8#-4yQ=<^>biZ+$%9Vo9~{GFRz5o)lR?S{VLdCGah{eUe^^u zg!1mw3TAU9-oVIe{!tym*1Ze+fw(5H1gEa&Q)&d_859mSsqh>|g8*wm5Xy%n)4jPHN>aO8*Y*{*t&|hJdIT zwbk2rNl3^mM&S7&db>ZK@MrxZCG|t#{uLaB?+Vrg{FdM5CF-_F$8VYuB=)r9@4S=6 z7Oi)}pMh*EFOLI*G@YHt43U3q_rQT5YU%jjAW<1kxr4DY6r2wF8aTd?eqz`85HpE3 ziSl9wQKoPeBrR*wrcBFc{6a&wfLyr>kWh%8^FKrFsrwgm0?&&nzu;iR^`2Is#;NE> zP?mxSF~rxymP$%W3iSocBM)%mW@$O)&FuoX7RQrKOdOn#OHHovEc#E^x;)vEpD0OUiWk^R0RU&$U+d9P`V8ByQUP`z6=dTwIv~_4=yC`>u`-Sbj-FK6Ajl z^(zMe8kc$BzhN%a8c7P{d`x01)7$~>80I6-Rxc!05J`AL-$^*AG_=#OK-j0$y%^Zf zl~kG%$t7S-XF>sybV6-irnN|u78kcp65!%e#kS1U0S^l8>4|YK~6(s5C91RvjbsP(`lwh?@1}PUKxnr zg-^Xr^bU-_fef3d9oao?6GmP%M6^|*8nhE@4#yAusRzy!! z_>*RGI5wtE%H~^LFuKpZ(Ia{oGFfuFfm+m|b8v8gLIZjs-bOb3DrkK;1PfjwxbjPPfdDT~3?%W5`fZ_w>(1U{n;&>EN4vXZ`@ji?fY-IfSdzoD|gh>er%HOC&Cb ztpb?>907ki-KH!bgbxa5#eDf&yZ|2r-KEG`pg@5Zpmg;2@84ILOohyu*9U`Ezq+;6 z4SsvU`m}M@PuSy7Q4rIC(K@Sm|KWNY7Y~o8tPcqZY0BAUsz@E~-sYR=N--GIw>L`< zn`yqp;ArEfE@9{XL6 zP{h6DbTjokpMrs#5uJ#;qg1z>z!k&F+8R>`O+|7+PgPN8*ctv1v^@@$17U1T%vNyf z$+uHy-C>mj|DhXu(ln3s{`AwEVDFmUyKQVc3?eU|G1@(IZlono4QK$R80-)@tjeY| z-IGCDR=2xLd+hCK;a15fE1OE?U*r=J9mr#hkdHe&=~!QRQyM4WDn>3K%ieezmjmG} zo}Qk2^RqI-}HSN<%+B+ znlwrO8PoWkQ8T?$hw|)pD2el!iYC-u$lx08)QRYz8CbY&eS%uv2wz5W8*H#pXGdI6G z+$Ai*RJ|x>#DotiQHUcbe&ty>D!&^C8^Joj1Lp-mYkhrlb>>YR^_|Mv^RcMaQ7jGD zvoGdA?0QK~_fHYLy45gGpfqU~uG~_vw6siag$dOVetv#5YAqDhD8yP|zr36l_ila( z)@>CuHb(AB)>5)|OOEl6KSU#v$8Xz{`scdiMs$s^#~ypUlPrHchyCnmij8U@sski| zV9GYcuGgnp?nzooX_Uf-Ro*2f!Fv(ByF&aQ1V{3WoS0cqkMixl*C*PrU)->|wzeyY z%MMOy+3n4@g2oTR1c>kGzhWXjr#3+Z|B;cAna)-qGZrU2QU}q}2D(R2fB0dtVJ4*E zCFMrE=?Rk+txnCMWcP1d*NrmFUftW102(S`_rX##2}EG(PyG<|nGm;3v_ zL}=Ji_9i0A-ek*`Y@!gdHz85>9%V#iXYZAa>{<5Sd+*HOb)V1ocOIvII;U{IU-#>} zuIIW=OA{rwMlxMoIa^cqf4yQ$OIab~u0dxE5!g()o#&XCNgdwPKs)MeOAq7>Ib2x` z-@bj5iIgxiV?r*w%&t#-zh4gcv``=1#4P>e%pj`gT)dWM<&(S84rXH+MMbBRhX$;v zOpomr+HMf6PGYuzCK#X?E#SJOJ^%T8&tO-&e}p3=iN4(4Ef`AI9^|H7_MT~4_@stg znoxaYgXpoGqAj-<4tGrqg^*ich61UPvGIK&H%?DaPp=V2W?z|O^mcWY}a`fGc$uKN3-l1smT#rs;H zZ+618Shdxjm+ZFopxkOQP~M-Xs6=WGUz@gvkN$JY-t3d6I{qRGPVtTalqC3OB8JP!qbBWQh9NT+E<} z6~&ckd{<*w8Xc*UC}U^$7=^!R*Iz1$%4?`6S)>;bsD6L`hfW0Vt?V8L21lx)_*!TW z<2x77X_Cu+!E_jpUnevLtLk#7uhdbDP59ym1X?NIkSc?XFUG+LFhTm2FG z{ER_5+QTvO$HAP$Kq?V&60va4H*88nY4^BoHTaOzrsLp)508(RbK1fZj~}Sdo3dof zELLXd&krcdj4e_k;m);XBWkb(4{pQ(9F)%y9$J;Br-p=<1B6PQlc3fld) zh*%vYF=)T+dxcuxR!p`mCwuik5o_!0ye=y7Jz;;7H|P!{y}g>NipirnfHe*;v5D^9 z-39&?9Gy2*)ztde50T;re5+k6x%2sh<6Wc(xo^)Lc-Cu*J|}#b}45mlC#{OPWc@JTaii^!@nJ?qEelAHr2U&v#q3 z`2+zPYk{<^m9a7wD3C_2q2$P@0a+vmZbIo{yZ&W6zf@Rvs5#k}C{4+@F!3 zYoPgWqCC>y94iX~=~pyp0|wlLXde3vUv6{VxI=PK(`&ofLnVg$nf)bdvezYFd-9b` z!WU|sYOdV^F`~o<9yaE((}pHljNce*M(b% zauCF}q<7d)SU-20AYwYunrLNifZZ0U_I-WIhzlKtWoNw}*C#3$d@PS1UFr0)-o4aT zA9ovytCtm*2yoP;k9 z)TB8te$TnIa+s^ge^=rW7c@^b@9f?~V_|16?BDJj$W{YB)tWb%=u?6P?p8i^SqI=J zSnat*qpZFsj^8T5 zBu*T1Urgk+G~r@Ow#q6h<~v%CmA~zT$^BWq=LNh8PbJEaZ1C5^Zsuh0|9O$tKTtIc zMa2jN?qJxto+2JnR2;ZDUV%ixK(ql1uq!JkwU-fsfJ8ov=L`VS#pY;3OG4#4M0+F( zIETUom~1jd4#?n(xkbWf-WIotgL(@AaJEoHGp!i6z_Pu06S=iAp0N{JG4V82su%o4 z1TVW0#x72qy4FcKT@QnaUl)v=oVa}TJbeRZ*#643-8bZ+St=?X{8503Jy|%S_VxQ1 z5g)H@ts@`%kUHlzVGt1;4Ks7j6#w9~1>&tsEwf(ZHAmC>z53SS*ftO$;OEFQuGNjC6SU+x3 zf6&Pa={?i&inKOX9B7)P-TpGP1O&k1oPzYKmDz)@1V z&Cna$fPniI6+Dr2NHiIsD?U{IoV(^BpX_mE@ckC!+8!t_sc*3X#2|6%klCTF=rnqt zljP33v!k~My1?jA11t_-%a-m^-UpR`c76~wMowPKl_>76enwOc%9kam~yaGU{tqo-V(5>22`uFx=cXt--#`%Y1Q0N)s_;}u) zYc6NJic5mtZZ;lW|G&Ckk1;hhg`_0aU1A(uySyiEAwv7`H~sfV7h}6uaY4k!z(0C8 zyr9|I3Xo$7s{t(YoxEVczGn`eGdd>uNc_xCl@-B6CizEni)Zt6jPy?&MwC6rP6@i> z2g_FWj*l||{3%s?jmBlc8z(yU#&x%z`rAoGA;1DtU(d=D1&{rXny31I@P|E;u{q6j z;I4J?N9IR>pZNB|b#VlRgpiCXh{>SiqyCcC>&41gRwFLDI+RBmMEpo9_pQsfGwm$T z0>M<0is2nIYDP?bc-%;Khn3ZxZSQIlZg6aZf0?7woIO?x(;{OzC|!l~P9E07cy6I^ zuIa`7jlU0&{=fmATSG1Te^3U`Bc8lpEVB69b;lI-=Xch_ zVe`4E`t#hu5UFh+K`Jw|^kp!IEkd0y6I8I~en@l+`V43|&hvinnHMMqm=Sklii9yw z;B|(F+@{}2Ry?Q6lxhvxHH)S|?LPb*Yrl$WtW+vhqi)(f=70|vICeXR-9twp2HHQh zDA-@Ss_OujP=8s#n7h-c$MaUI>OQ&Q`__(Brq5an zWlUNoI6m&|jQwm=%Xs$f$B$rTjzF2B3`$g*DRHW#=fY&gzoC)E2809T=M!bq-`8ah zmo*4UywC#UqHgD?=UALRB)og~+wgjUJN`X%^l+i4xz3)v0s;okkL1wNy*oPO9ujpX z7vGu>%K$P%x7G#E{rTN&O0SR7%Zj|xk~BGk>KS?|X4BU!rD#b^$zyL4v~Tpsn;Zpp_Plj7)pJ6E4CaKZP)A$N4e0WN4Q-AZ+KatcD6jtk7 z895V;OE1Fq04~HOCU)*#E*ak>B<^f~#YJ)_KR@5a)zua$wvY6?a-Qe%+ArN^jtTty z`5w@XZD6f%e7b}&sPT;3e!hm<(u9wRMnohT%rJ#ON=}z;dcm1M8QH{7#Y|@P|3Say z^TRgmXXht-(~$Gy{fEfk30^1olC`4%UPs5q&MhrvoZMs4<;iI^tk1ZBnI~c*y544R zZVLv|)q!jR;3{;}uA^I9Ywfgmc3Siq@GvrBq=cfVQijm4W_zxjC;4?x2R-$``(1zd zZe^nCi4T>svhB5m$w0XuSL?Al4AQq9HpgO+=5PGdM9-I;v;|GJxdJRnmbI+Hn8=rW zpGNg1Vd^}Axe-q?g3o>l3b+&iLa#GWBki1K*2$z4M_pA}WnFSn@v;O~eiX(<8rNWY zD{}UYI^y0aYAG0gz9{QmeqXwCo~dYwV4zHUECOupwdS)c@1Y&Q7%`4uh@r|X6 zGdHN2@!D1CGCK|sOGY3`PToV*A1r`atQ0{1!)%7a_{fTe`pgtANGd9CK+o{V$rWJc z0H*5|eAtJ9WRPQpll<=JKFYPJeoTLuB5(66c?i+&+GGd#u>P!}`Q@Yjti#fL8zq*yB2@ADC z{#ls2Sph#-d59ym+(_#5djXzZ_xKbT7>LqVr2oD7YnZ=`H!~qm|E+{q^wVD@BZT78 zS~e@QYaf)|h5oM_E-;I-n1qDRmJrhZ)XXYPf#M1hE)tsGPGl9ECeU9#`^-M;HdSrG z@L2WhtGIh5w!>#Ungz|D=d-->>Lq=s&hxxl2`{U4A22b2>6-L+jB#;2DnnENLR12+ z1=C%aenBR10SMR#K<{~e`8LS)!MpA^G>MhaF5dtC10i{q7A_Imwdtdm3*_=o^E8ah zM*S1}(i)EF63DvngiG~UZI3&S#)L+aYv0Chh zUBTs+J)k~BgUR&2hqY!4niY<3Ij2{S!vqdau#4PWHVO)g(6^!x8GJaD9cs5Rly^y| zc$0_n=g*&@>AqPq*!CrH@^FYli-r6(5?^us#%++>kV{BQs~L4JKO4luXFiTJm-}T| zU<6$QkZ~9|I5;SPS7;R)zMsDqr4lItgi0y%_1{N=_+4jYm)V1WDD#?(z4sN|HCr7> zkANMXJJMHsRAHxu&bNbv~>*2%_U zW&zNQ2<71rvoV4n1@f*G>oNj4nYLQDCA1cE#ZH|+w zZ~HkSUsy#|B5M;eR=q#|7FS`#pO99JtbsP4e-R1-(7_ufXXmv7JPv!b zrrb`@!m!8W$5tQveE0xDvQ91ocdi7UPOPrlCf)uOQqS^Rson6^XJyB7*Ac>@OS9fUN5T`&>H+B$Yt?0vgQ}S}}cN1Xg(b zrSJZ$eqq7XU2>6Y@3n8=hzJf2o_2BkU-xyL=Q&ydoop>wIW}PShgNVG7*M_EGIdm# zFjyxdJr0<^_CRAY#LPny0wGU$-r&KX4FAb;F60V9E~8b(jB$Z;*~PI0TYvBK)KPNR z_)YAo_bhIG>rm|h%$B!op19h2NO0i36V%{M7d$?}b&nG|N5|=zUxwq889t zibJYs%#x9`R{0?+dilfJ-zc0up*ORm#dSi{bXm=I201roU*qc8yf{;}>`rgg^$+SH zb$*J1=P4x9Gt~~WmnO@+HBem0-2?h@hKBOwp&YidTJN`-d~e3XRG3ZsQpBLl4N|x9 zzY!v-i}Rr}>Z>x&{vl4g;@{UilVj+2>OD1I_zRJ%QW4((46K_!59qqVM2AmP;_ z?czKS#0-Qe)>qY76a~%W_4KY^7$30qHcs>0P&#J!xh`P;U?1h|(YqkM;+IA31mp0k z?n6%N@OY2+wd;t_1H~+N)h|k!CqgELIr?U{uet^PHDFT!aZ^lMlP#4qJLgdsm5?~s zi`rUOfaiUm%bXDMK;~sm-NtTUH>PCo_OU!!w573s0_qJ$3U{CI@Ng+@HH6ZxB!Ygh z2kbMAK$mT_No}pJwu8kH3xp1kW@TeJjq!?76U&Dm?a%C#riad{A(vKF;W7RvVv0q` zuxxzwxX9>tphaL7KH7V@BM>VX-{V80Yy6K)OWE9*OXLf`5OBm5dq>~GqfU~Zr!}O#tNUCfJsTMrh$g#%d;^S9|bl86Zk#A+g{jz2~kZ# z8<1Z|{6|ckfVukMCk@|MKq6&dv;CO@wG1vM(ipS?w2?BqKLs^nD`atC_V~q zGAYOBDq<9SrxRIeD1eWT_f&gsY9K0yhL+eV6S_KSIFqB`bcQog_9v&s2KVdO|JMQ- zvd^rp%F1S+^F3;_KL7bbV}zY#6Aj~PpH&Uf9}s#9@PzzwPp>2;AZP;6%`?iN12Gf9 z1O=lZ6##-Tp~I`+-rKtjqNG;yvOn2sjM5H?KB%G)#dgBCWr~28zk?n?6Eu(wq9qp) zlLTo;;l;>Fg6Vg4y8h~UQl>$@CmkJ~&Dy{Nur2=rQ463(@YO!TlotMOG<4RhAG6wx zl`LO^v7;YtaE@9uMOr?x#JL#qV6+|4#SGzcIarzcAio;NRJ1tH=$q0Sz|7nh!S*ut zneV4h0)nkD^<87vV(~oWS0JiVG`$c_EWl-`Q}=Yq@!)$cEFtB2v#6+ukcenVH&bf9 zP0#}dHM`SBlfaHgbK7`+x%Ma~^5|dwF}Ak}+z?&&z6MMh{40TR(4@DmWaLB!1&0=t znAHqNHkj!-E#p7f3KUZ@X4VP1)4Q&J{&CkoRR*AM7f2t!$8D+kVbhG$&Q3_FpO~k= zq`^($Ijc+=1AsamaQ&MH)Ixg$&Brxm=DS>D+j7~rNj2hmta*J_duKohLnkDZ1aQT^ z{Mri_64d@|J-{`TjiN7x0H;_h!~xM69CcyDRgLIlfFSOCgo&D}5%j78@`##2j>A^} zaAv%Qi()fAVt?OOPAT)Rkuuta{>lfc4rAiHpjeHjG_x@w-?G1+h9Eb8mdG0c$n&uK z7U<&HbSu4?0s)X6a{cP=;<5uHY7vNjmU@$Wfu!TOt1+{-*0Je4(F08Zv{189d>E*y z-xrq(>Nc%a*!-z%Z#0!O;ZXFv!#Ky>8~MBLbP0ENcNfW9@F%$|WN^<%x)MiPWL$P= zHfV&Eo6Wjq4s>`8W}L-Fzi+nMUutJ5PCQT47rXqY>JdLYy?X)t8(D>9Zwg51`L@R%`CLCqo|Jxufm`fOg{P(Y~%GE!jdiawF@v@ zC8G44K9-hpmRpXhTFf!Y;)7ZaQEkr8KZQQoOKm}Ue`&9(Bk-^7zU7!*gBUdC00QLp%cn(zvT(5#xQgM5MiwTlk1hIZ-|5bn z2+aCxV>QK4%BJlmG&)JWr5{idMj&M3@OpiN7hVVh=^6N94-xa~`f!2s!yna^mFy;6 z_aMmViq{U)yB3%K-KhgoDcWCwR2x-EsaL!A2v##7pkm}wYyaY45$4*JZC%taljwp6 zj%tEGiw;Gm^Q3OY&Aoz@yXzQ354?coD;%|Ko|?XuJoMhu-R%zj8}uwkW}34bGi#Zd zOm&gb*Ij|;{|L$xpmjc4C~onA0A@5oS)wD`W?=}SXpYfShjE(M%anRK?Lpyk7 z+uPns;T{ZhH$_tBlgRGS>_W1T672e(ZcNHiyzTNmvLbfb(CC=QrN+Ex`!O&JLZH1OwjBCKmMNoe|$7A|md1nt~X(3hdZB`} zAr%wu0{PQ_2AG(uzH)jz9Zi*Vz0G1#ed*9?pyXKx>l z{tomOk%@^LJ7VVsXP*GV-%IAZnk{in2JuAmjqxYiyw z<;g6D8_+G83Q3ADw)YPsq$v=dC^On+YbHTufi?d9p2 z?gaCTFC>vy+5L^~eziE0K$^{*V+ap96n*+?vnGouptA0c`{lN@+@G6fL%%=uTRSuk zR9+Wp0>ZD?q~emQ?Uv$@%Q9Y^pN z{IVf;OHbKpRo#3v477h>;6mP^X|S}7M%8S3ejQigAAKngzeE(au1t{5AEcs*Dtgo0 zq`}Acp_-eg49RuJbgJ=dtbL`bs*0Rk1Fs7%0)}Uzk#tZYIPTppOO>Z^TcHNw15mO8 zBhDrdUV0|&I$%qQr)Hhwzp47fuETdmF$1Q|pp*^`Y6xre^{dftxONySQ%_gm7zhwDIdo%Stw1OW$ZkLR90p_@PqG0Q|*OcOz*`X^X zCB>j5a={6Y>J@Bis9#eUMsninFPspVzWqZ`z!v+pyq^r>qnawBbKeSzw1dGe(411R zdi*>1owp^u4HrPT5s@_GzJz1;g)$7B;unoJp{#nI26)iZV$AH!HbD)+Pnwaycq+o_ zgI)59W-zghW86v?&3OXd+A=ak`~k+3=atpfMNX62wY9bRIbnBfL4ks79|6TCigEx6 zU3;irB=LHp#EaB2J(N**{gB~Z6&K3Yo&arasJO*y=Bj-aUL|pXkCBXgvN&n|w z7d=zX#d6ycK8WDz&#NwEI8mq}cx#68&*1I%ojxrO>o+WMRa`&Av;SoE-5bCbG4O^Y ze%|KEUjpuUywy0ViuxX9&*R%PiKMrdo(A9Ji;UXc1>x&LPJXK)dm&^`Bc>AQwnz6z z@Hz8uNQB%}ds&tCH4DE`-e#{}pnbwU^#9lxrAKsc_hp&wJ27!^3SNZgfd;p*5ZBa; zCs1{-jo;&10j}xgp$bo_Vp*om)Hk+g@zWoaq}uVi;QRRzMRsV8D;a?V$ke$z%gM{P z^XYYUeDaF8^~jy-#js9|)7vzG*OzNB$8&&<4QWq;rPAgd#c+4_qnxA2U0k`|nodaV zu=ZoyPJMpS5`a^oY{!O?lpCu-t8K{4Vf)gWpV&Dw-2HKo7-evy(6cF9M=seF3ik~T zkaa-7+>NTLs^;XZnTXZ0s8TGSUtsiEEDX)b$q~=|s~0t0`d|GKiGunA>gVv?{r!0; zgh-dRw`aEz8AAJ7WIpq4U@jU%6zEs z=caBXjRnkWCCK*tLpO*sajXqsc~-ow1=9#(l}2h2$BLlYxFwoZ4_8F)VvC?+#^o~A21F`zhO)FhX>NcFZ%2rrvF&pf(=&p777pMK-ywBynTOrAHW z)JgrM`Xa15f5em)=rY?*czMHHSqRQsx2WrvM8zc~NV1ofmexu2M}paLa^gB1eEi=r zUlP0j`QaOLw=bnRa7+YdcHmGtQZeRuz63%|LP`pB2o=+VpGZR{txRD;@c?UPqM$22 zsGmTCjCc$o-tPtZx4i#En&0`wixs4C@I%|amQZ}CMnpf&^W|I7+d-LY6ZFsc>@FIk zTZE=r>{!@i5(0vMj0Pauc)sSz6t6p3&kYv8r>zc*M_4-TdGa?x%5Vz+!fu1Z1Ep`& zuqg!FV4OMudYRXCk8Wv?8G@L|G;FNvFSsN1G$e1~KVg#T${K8eK3TKWEMlI|oqn*t zX{nf*ZBrOWG|ZiL%^#rt)3sGz{$Qb?-aT*%>_F$Ke^{m~>)^l%CUaxR045V~`jIhH zTuDku*bIV^b%kGUtoK5sklXFs(@zlLL&wDA4~d1IgDb2LFRZ2uVGK z3NP1gqpqgnR71(aLYpyZLVHJ1Rf3Fe;q~4u(TA_40()N3j&4+*3jCe#XRAc7n!CI8 z{#De-#gwPwTi(u4Vz2MZ_It~$5LyaXy4~)aq^_>+3Q(nR#L{4BFFWP5n&3sYBp`A( zIOP!h0^c3#_3Nvk&H=5^BOu|gAVCxEn!Wu+rZrIU?t-84vD1d;>*ENd?^6h+*5+H z(81PZ0wlvB-OnBj0X7YG@fu@_hx#u-0VA#hPNr)-Zxz&Ko%{qj%(n&sw05WW?3s00 zxehLYjONcDK7C_I9X02P(tjw;+6r$4^tuDgtV!C>L<{mZU#}bOq#FnAZpdplLrN;r zMfe82LdgA*mUu{6 z_e(o{r+W-Og6~#})&Bs=J3unLka!kn`s6AVP{n}v`16?TE%f(YUC+RI)dMYZ z7tGoQ+edncW1#*zEIB}tD0OngtnEqC;qmaMnwhBLdcMr|k~LRid0t9UoNaWM53TgD z;5eLsMG=)3KZGPi3XH2kS;P3e)w8UdVg#pAl+MA=b2WCMH9cogQ7IS}cv!jNB;Zs- zURG`5<_O44F~m{AEhep@L1bPQpOQj#1DmW3UNbY0{m@p3rkM7AMGQhdYFa3q0Y_$q zmobZjHIDf)D=TK$l)_zblKq2%XhD)qNl6LsR4agw`Pwp^3Ed$K_r@Wj6X;-D%$z|) zn24~2FwfvoOr7-PSCzXz1%q56Y1>CWxB`{)8qB z*acf;{~??w%c+>PpfP#?-8l{5F3>{+gUc&CI@-6}q^Y|*1f<$COG_=tu8&Ru^<~Yx zh7kWA=kQVsto*G8P^fabe4R0=tF-YHFc*`z-tNyr*D_=&A+pQy5CL?FhJoQm?(?IA zJR(YYIk~ouj#Lm>gMsfO2n}{1A2veY4V$sSFC#unTcv#Q$Vl%qOY@c(3U*OX(i=z8{5xcYu7W7~xgC$$nz&w-X)yhAYKYy8(WVSXO zV1K{n1Yi*oLKihvRbGb`T-bcZX)zScGv)FD5ikJ~20yxYLINp}w#aUi=0jMFVfgq9*y5VH^R_O2od4nbD%^&Qr&WDBund?s>P6DpRMFVqzv{6eWH4?mzlt~6C zmlfE*=>_r8t{I<7+Eu(|0KFv4^>!yaFKg@St~S^ZnfJL#PBJC`2Y;rUK%+CqwGh0| zPJ9%13ss@@aCRe;bmX*=`(sz#-RZ1&N!@m~h(i8=lbC?Y%1Yj^T5uJE_)s_PDS7$r z!=vtQtapVt|A_4YCaN?UzotUC4y3$J`2y@0tI9YMRm>=Z{LDbLMRHyu<0d`{lrAaP zhmJx{?*O{|Kb+Q@-wGgighUC|)3LI$I)EfiNY5*db>09_<`=-ih2xu?n|GyLu9oiA zCNfoNcCBtl@!HIwfJJ8+6yar&GZ*>*BK~UhyM-t5zT*cCb4e&~M-S`dd!^PT3B^?< zEjhN94H~15JoKxr4sZxGY`Z}W{qBH>ebiS`uR zQyurI`z6BOhUxe-5~Y2Sum5gi*`SYD7J)JYx9QcOu=QAJ02s((uG(&7fH)ue3fvDq72!Y51ME?xp zFKBC<$Hx-@-~w#`=<89%BsboMDQnR%p4d6%i9}|Qgbdx!8$u7NYNXymt<0%2o1F+~ z`mF;p2ef~s^aBM?dfcpka6hT~ZOWTa^#LLyzV(~In@_>=BHwVKEh3SFlJReBU|0?o z^8k>iZ6&X%sPSed5^*bT;1^xQ=R0ei$g}YJ{5JXiM^zjY2|u_AKw35np|A)Ei1Dk5 zKC3@NF!A+l8Nd0eTx4XV3pkHQe%6)W^~=m;L{OUtga=)#uauBAyd?%2&wb?ga8zn?U9;U$_AlR79l< z`CNW%deyvZAmfY;47>?Ua9`E|r*G~QM$*_9I}0qQ4S)X?w5p#$4LBubkRHfx*9wrtp!Ap#%B29BheUm1^x@RH{VLF)Lk*W8&v(HNWTNE*&a~s=K*zytFe+h zhnPQX`%$BarqYlkZH7Fb87c{pTK8(PXvV&MtC#4*bcp8<5a@|NtIvEBhI_94&yYjA zs`3ioZ#f9egh-=_hTh)03=j$G9Y&@6->*siT8QZ2o#+H23mje`iviE8T@%5>X@~)W zbl~BlrunWd%SL`4kKUfG*zGSt@=Y2VJU3+{5gWY=qSD9ZVm|QPiYAUhLdFsEEx^RC zV4#FNp_icY0O_n-_qo?mj{tk%bR1y?y%xXfRXNvyB9>y|@EU?((j$ zW@j-nX8IgT2obU{5n(@2RS(C;`u2(L`|(uNX3hSYaob0(-=2>8SGZ0lke@WF;Iwp6 zn|y3aR#zbJP(dKf>oYY>Z@2RA;??%gHh4q9qICRdE#dF#LP@XiJYe}Ia1RtK-@51C zIxFBn#Y{@I)pPaxaU{S-8>csM=~&| zrP{2(lvnDqfuj8*o$L=!j<2gFV+?N3ncwHOoE5#X$1f?6H-^CDfl?nXnqw;9FH0QZCjn63u&8$YL z`E|rG0+5F>3?7KH8lcwx4RfmLuZp1;WHCKP>gNBbJLNb3vWX1q&=OZ?J&AJ~9Uj_b zaKEngT>3$Fy|?cN01A+M|NP=&l8sK*?qbIAI)yx!SPwNBhY=l20!{Ms^3GS6%{T7Q zj*NUbt#(7wLagczHI6@^wc%mICxy785eF<-B7K2efafIz2FbXK%0yVE2@6%RKnZs* ztpf*zSn*+GfXR#NgFTOP^j>44A`5JwxY-;IzChw~s4!8PRs7WKa8tvq7`Mt(i8z~G zJ0&||-dHHw1bPAa`;qFqv_y1{Y7FqCU)G-z_hT!mFp6&Ir6$jG9ulFb&*Ah+m$z7# z{^VhhWh;lRpZEbhLVw}nrLE?`L1M``z2d;V{dOklTQjMwG8 zDEE>?+!$c8_%xP9Ydh-DV&&n@GIT*{%p)v1SG<}P!vEFl(iQoCK<6e6**rpw$49u% zI(UOL#uOx+TF(<%Y`jlp18$4wqO&$_z z9(+pW=0G|+TcocoGS?^_rE+iwsmB9ZDo8FOBs_rfuN7=4U=)HN1c;_;_{`E8K5Ro$ z(1`k74`;@iV^%VTtjteC|x*`5k$k=4kI_KZ&Ec$*db01+~={(!be(d3NS{ zZDvnB$hky7)OY!<`Q4<#Kkp5;w6uyB@BRAO516&59Y@Op=Ki(&&aXuNp)Tbx7-ix#-rEYx zE{=$f(aG-3nVHKE;w0p;nWcPVc5(amI|l}_i<+8on^Cgw_0Hb4kJR{f1{6(dkKH*x z9uZVVyl8IhoCdxH3+6c_Gy{&i*#R@nDaKqOe|A^CgHrVI=CEV=)`;z1Gh#aQ+~fV< zTj`vF%zRgA$V!~=>FKitx6%yyPMjLQgfWCue^cXCJwks}yMv0r%_wY{8&vAqWxg%g z>4ImxUzY1rwr5;1eU?=vbJHV!+|s$Wl7CzqVC~T6YDeuUBye|gVY9A{>9mDbLlhV7 z#_fAE)L&68r;C!1m&I1^#&3oDE9z3Zk=JYFowhhf&1G08rKbC^?s4vg6#7cMF=n{` z9Aja4AQ4ly-|aF% zvL})F7#kaQBuWnhn=GYNI7H?ulyYY;M=d-YQ$>=RI>JIgsjP&st|e|qUc6Ru{=@Gn ziMMYz>-~ONa3@?-UOm`y3GY!}U8uy0%C=~&MZmCn79<)U9K=XJ!^y)h>fN%fXvlAm zH(y9Ma49^}k@H4Yw&`_QKlJU8NF*mEbpsauPSv^FgNVuPq3L#@22Xz0u*$#Zk0U2# z7izJx-o5(Pr9b?vAHzLMh>6%VLCC$lbr-2Ruv1z*eHgFIMz}?|Zem+&`ugnU-d0+%Gv$A5~=Z{CCtAS3g35%n{it9W~qoDxp#TU*ukpdaN z#w<<8la)%|E#7yK;)-SX_wyMpdiA5vAM>i;2eN+R14>v#VdesQ065$disW-ZnujWR z@H8^sNnOZQclL;J{;U+YNz$~C6#&?L@?Zht<%L)8wvh3v?Y16aecd&0Zw^|1A*q2k zyQCcc@z&U?m5d?Y%{HaN{2xVxqqes$!h;N6D?5Bg@qQWBO;cE~jFy-6{IByY+C#4H zX!4GQxwz$(vzl+4J!u?m8G+T+{D?TzlAGlPo7_U6fLq#bBxQdBbGOIExz^+Q2QNEC z%qzFQF$K4TiagQIv%FX7k*)-n8*Fy;_4UQ2nA$yqSPRGknErrZnCCbM@5609^$Y~5 z&<|dx8gf?7M9mf3l>ST|TO4ayk@7+(Ubezz)Ry##;myO>#Mx|0^8@`ntNr$OVNJizrv?vDzkDsmSB`cBI?g)alBA| z&DtodtNTt`Ekik*0WOvLaE_7ADOpC-kR~-nJW^ME&@@876eII*59k$POJHz~mrg~8 zk+bDYxMD%W3rg{D4%iVd4!f8d(!vA-nf!0VVua)zR%azf7rcVau!4KP-gJt^PSr$% z2=yf=$>bR%v+MxZQ38ev=YcYsvxU zHx52;Ia%s#>=kz<>xeE7xAgWRoe{~Jxs4X9f3@P{kMvmbe!5~8!w)&rkk7hzDZggR z2xfG|ZGpgy5EM-27{clCuB$FgDs6V^bte+scH`-A{_p(CwVd1&Xm&YnZ}{=Ce#$9O z%bs$-`R*0F4F1v_bNB)iS^J_9U=I|nB2WfV91@)CK2?qfZiip;u8}fbc?bX=@CpPo z$kzcEvzms+QqeYnl3)YOI`_aHj(~%(d%I!P0iT$-71Z{wGw(4lv9MMTw84bB$)-ED z-hL&0$ioOK!CynKq)6w&w!L}9O?BT3Gy4|zF4Rs9`KNi^$jk5l)nKc)Ma;_^8d;z^ zc}&;6sBq%z%(llJ$8+7~$M@4BnMhCrwFlFT1!8jG|wBK8aBmN(^a~+n&!+NBUT5}=l=O7;+`*2M^mkQr zY)Vgjm9mKKzfv|Vd-2L0y|!W)QN-%~rkzKbUXY$}JXJ><1NbJuYs(zetELk#W+*{J zk`!@CKx9ALhru~?*LJJgV2PQCBpkW5fHpVh2_|P2haWBP47K#j(~K#vu}}HZ<41 zsRhwmCP81e;-~&=#k0~d{|oj&VC#v{Sp)=uspjvWKfxLU^96S#B~n`S6+ff}mV|Qi z1gk8{j{bSrm|xejQ`XBEZbevjH;B-wcWiksoDVeY}m705PB z;G#nIx`LK%faFoIaFR$CmXEi!;cXK&R>0BeIXR=@_TK|2rPyIrwI^qMGwxOO3KWh4d(%7AT)eDYUf83%_tQX47!L1si)#;|P;iF~Ls_8xRo}{h%~9 zuG`^v?BiS!cYOD!LJ()SrHb;OU_mJbIxgff%SJ+yYf4T|AoTugYime697LUhc;b9+ zAIUUFHs+Ro*QIi3AbZI7o0C%HQdvqLMZf8_ZT z!@=n$YD;LU-8cn;n!~*?DJe*s?@w#~ObIFn$(}{qlv^x_JBk1SML7^Aao}ei9UVm| zdV~T1Z-pOAfh8qrAHNA0P3lVHWvPySlJajxJ$TVG8xpjxZF#{}G-`?BAD>UjDjDKo zjYmX;bPmMz9aJ7Rtv>00m*`Bx$jUfhHu@${WCE!SDck*$4o^v$r=MmA@AL+M82`*p0OG2cPtX`d%%Y>`WEp!JwX;w;QUky zyB4)dB!XY(Om)3LPkbtyJbF2Usw&aUQ8}YS4-x}Rv@yDV3(EYM;we(vJ zUDwy1%fzvcXE%$F@c*7^&qd|au1~~4Zt|_5-{93fadm8(E&gMaXD`x)iOH+St^KeJ z1)RS~_#J{x0~yrT(<7DE&+f8gNQUkDkX(_JBqsmwPXRVbV3^x*@I&%R5+j?ESkK;x zt4FBw2f`aa3#%Jbzkl~#FGyxFy;wWL%iIq0ZC;JN7@@CvOQ}G`AA?tt7C3Bw_nb0$u=ZCC{|DKV7Pf0mFTLotP zHUI^frae%SJvqpaI-_4m%?AX*EnzeG{KZAE%9$(hyQJPNLG)?Rk)=>YS+1g2TGTq_ma~YH3^t8k zs2FGe*M%nkuM3TW95iwPryXRmA<)7}u|9NVDaH<$vTtTt!um|5d3OoBA|5_J4 zudYTTD*ozyY7j?oPT6E*(}Qc&yo0}dxf$Z9b{Dt+P$#Tv$qlb)*GvcxQ;gxA) z^CZ7D#MUnBSh8`jN&NWz#Hl*T23KMQ#p@JL%TKLY=>NpEpXj~F)0Q+gzCP)Qb#Op} zCaT?uXTJH`#R7GOk{z2;Az}afltx3<*mhRo-M)?JH1=jiG<|Q}=VnGwjY86=q_D~kz1%#kpWKnunB$ixvc20FU6_@D=Q0-yda8aDW# z15}s!cYO^ghY^SzOZGf{0LDK!R;S0?y#PFVIZ(Wk23_Y4$f7x5WkN@}m)Pd+(|hx7 zH2%!b{QiBGUzn~3jt7Cz&Nue|0|Fl*kuWJ5xmBR=cyqFac4sST0L9kiRdxCs9yEmK0&XB6&rw~z0`R3W+qlsU^rXS}P zGZ#-jjSB9y(RzS#iTvwY`M8xazx{UR^Cqiyj3G#ejVP+djR0Z*L4^)# zyXvj8f;Mo9xNH=)GEGIuHAhpMU4(2N6%AG>?>%QmfhEh^NTZCTrnkj^Af#ZU+KP9n zMZL{QI2cuRi0bI-2nLZ7kfkIK#2p+sfZ*Zj+dM(MhglN1zf|dhIx$flF~VLx^KW(D zIkvmdW9#64+n}KrH0{k>QF$w6_c-I2(t7Fq={kFydfNVwvgZO#*>X^&(O~yUvrB$q zwoI&_p?zLJ9gbIkmnH5H150{4y5`z5G<5VLs5kK89VI)wbMES;qVD(BzH@)oB(bMF z9&?Mg*p1P7QtelAGUjs6731{w9ZGY<&dgn1u3Z`=5C(~UhVD#cb>e^Zd+NXXE%F{L z=U@PA0+wu|;C`(SE*f4`RXkht$8Vj1I z@A=X3WxwfQ%sjwlupmc8y|`mMF~=tA%l%bchru-@6N{_aP`SdHl90i>NX zaW3-p;&cr)ps}=GK3lkHWQIY#@gY)SI z;E|wQCNT7G?qv!7A*bcLfj8u;a_0k^xAK*~`oL>dgD7cbGgLQYD%OxiI^Qtqyg!jD z)x_SO`e~~f|Bt5cj^}cJ|F=_-k(Ir7R>&UNWUt65o9vk_mAyj|5!oSog@lmE-Xk-6 zZ{l~|=kxvjan9p$&Z!RG_x*ZZ*K<1FUZ@I=p-z>+D6Ee+n~-r+x%V-Iy6qf~rGabw zZbA`;fLd2e`&u>zc~;-E322+vr)izHVeTvvC75Zv&MWKodGRJYRlAO;%5}Xe)6~(G zglq;w8jbr-Gf_cOX>ZfwCl^0w4<$$H9hg1Z(ec8O;kcaO3BgidvRRU}aS^ONpSZ)U z6eIheZ4QD*Ai1l}?wqjL))ZItAyu@tYn+w%7S{y=_P)^Pl)~2?<5W!(I}ssq6ZdJ6 zsujWFZlNf$$el`2k1Xn<`uMc$(U(V`gJc1d0KSk?!tWh;+tLo#M{iS6^#B>Hu6f87 zQ8>vg21ql<yeUMh+nA- zWV}@Po$h6bn@ENtQJ;U)y~=@0RVzJt*M!&eW317^GP$5Ob^o_h%gB>?h&f;cp#@N6 z5FFeEW+k=VvIh~d#6Fe6V9!9br&(DdU3Hs5z()fD7Tj*uGR6_nImtYiPCFXJL#n4$ zzx$Y6iyKYj;t1sa3buAFq0- z;$dk1nUXA5^tQUWFk6eR$uTQBPX5s1D~C1R`PrFPvZ1Vj9RaQA=wEnwBe|QxKw<#N z1%A0CZ(D~8B5RnN!;{H5z_IY$*Y{0Iym!G}Z(k!x)7)ul869<}REmvH8wG#X)gzv- zs5601Byu}pHZork*K3-(EwWT^41M3EQ1QWxV*JHHQkCDbVUv})D)w6SuV&FOWTuYD zJOoD)H&P=)D@uVW{mrTZx~_v+BS71krC0OM8*~R^2%=hDog5sDhJ%HUsP)z-V}Wr( zd##cB$p@x}0^485D|yY#L@$4a8v0_ASl{#T@VJ0tOpB$TNn)U?72ElSzG=iRC%32S z{%oYUo$hABjEV7ITwmYU8k%pzhmG(Q#~jMPeb%$hci?I>bD~$I+M?U?i7FtIs$`BA zdrU4df$vJ8re(?1Mtc^QPa&UKPeIDr!B+Lx_3O?(AFNpVA<~?@yq4LF3K1=J%Th`hw< z;_bDVPjxkN^74pf5Gg2(%x(_2RoZw&4nc%SOk85l`i^RtEX`VIPWg);zX*ZW18id% zZbLU3s8bq^^Ak$}xzd}2gy1deOKH{fWVl($jsh_q< z?uqW1{<~In?KgeC4nL)&QtR#;Y6qK_|5o-F{oFrp%6X!gfAymo(V6+aq0ij+Xyidl znN~!Tg!*y#zkJ0mrhn<%Ji7cyeG4M~0E6c*Fw_FYdH~`o=stM?;cGz2gAW!7$!83F z*OM>mQzM$Om@sy{=Z$nN{eolnj)WiZtlyRr$wWDV+kYR){xt%*08vGny_R0HW``XlP8(ySElxt!QrE7pQ>{Rxm(^#(c!$e z$W|+qBGSRxp;CC+7$G(&jN)#`An$K`<#^laaYye~B8Os; ztnl}5TVFB<>_j#*rs=rbf!*RCA~CDrpUcLRBO2mQwbZu^V=wQ1hNG#FV6BopVf64N zB>dZ0)IKFNl=j>>=#Q0>%53`}V|Z#ZFt+aURn5}k$%^d3TJ^Ey7;S?(x$y_QNRqC$ zJNwf13B>7Y9dJ0W%q)MGD?6lbABiN>Ef*D)A|0`uMX!8Hl;Bz5aE~zIyu$Er;r!Q4 zR+28*5!dyEM<2<4Y99{EC|n3;Ktq!#L@A`oL8_0DW9n00-kYypxF{yU_y2k5S8{A5 zTdTLyjbFc|lx2Da+#IL-4Kxf)mOnK3-34#f5gi(mNDBF3OniKMEOmbx%s_thu-Q@M zRvvobHfzX1Jwejga`62%^y~ZTv`lX3pk%N{^fAzIDS7S}Oxp+M%Cm#jR?s{keeg)W zB`z+mV+|6|fPHiQ%>RG5s^!IDX`oyJBhCwxN{i*VFT{?opX0J*Td?rsQ>c%6{FFi*7Fp;wJ)04l#)y0bN=V0|7rE%(+ zvWNAh?#|u;NvFjNqQ&?4OSBei z{LO={7iBU37JPO97=*nOC-;~Ai#cQ@=q-?-T=W1RQ+}#HHrPBTEpVTrw{cg%Ncka> za0t4=JjhspK$rU1*%~Jrm^^(k=TkTj1-x^W8 zX1VtWQM@$c$$|gm1Q!}>=K=Ia#gNLn0kS|5thZtnhiAZi!PlC0Fk7LI^am~R_j*zHn!H~|JMSvZlCNQEgcd|AO0{dSLYbB9!>8VF7j>}8 zn=%xcu>%{@72^vpSf0NAJDPMH)dCp@qW6GAJ4m{oZp;Xhf;?3u^}9;n)V%cv?iQN+ ze+yo-1SBTQ>Rg{X8DTuSIK{U7tIX!J|I+i^7MI+fx#9eZ#pIIY@tfE0*0K2hT$SuP zXJX++hvu;}7cK3dS+4iS+5I~ml9%zJ z)IMPlh^nEhD+eGBKw-^wnYFMs*5OGvJwIIWqu1Fq|28HXkz45pFDp`rhU7|_2And1 z-Xix>NARh3sF#nQ{~FVv{DYv5W;8UQvCZKM0MH% zwTp?@Rg28f|8G)4X&OQAa+NTp_za1+=gyZ4H%Rvs5q*d_>EHUj|H8u5_ zFNZhpxuK%ze8k9q(0|jqvm$5CdAxvs3Eeff^ad`8_04wG)kMK=Zx`4p=4`t2!P0wj za)Pura9_=}o!xSE8Z3%B*jZK2kT9cU_oedDB=E7dgAA z{eCux_6A1#=^G)YB7~%eTTK zkL<~B9Up5FU9F;-xs+{?ka!peUPBM_@&0}UBgT_49`E@;NNR%LuAQ7JXY9(1$}llX z%tNZL*|bR(%-UydM~QMo;*Hh-tQo*xSV16nfuKT*yrX~G;q|!=oWa))X?@nDdOx2= zB%t3xz(Vfkiv-9~MG6+nf#_21{mD`N;K2i^l#>84IGMEcUgI-3eGD7Jh8No;E7yHL z1gT7}uPylwe75J<4tVqu$n6jc$CDNpt^XLi-w*!VB4yx!oRaifl)8{8J_idY>J!2D z~(rpt>ZOravayPm`pYId6iZs`gY%q4|hI$#3+|@ z=1ohgC}I?T2k{KZPJy0h^H@ZxAYGvc25KbUo2ts93v(X>p_0s*fo0_P7Es?B>aa~K-9TMsma}8!<)byu@Bm<8NMPaswSc=M zr6H3_gJ8Om>%$_^jBjxS8U-Ftk^)TwihnPIX=+-sMr5wxLAKx%w|B6J?S;{;hQao? z*RMeHQTxs+u~0C+dDKONRS{k3B@yx6Iw9j*Uv)3HzK3BYafgS@k?A&Bywd{jC@;W| zn_qWWhD_5Jt2Bv@#CphSXCQ-c@EoEt+l*W%^>{<{A3=Bksw#dHsdu<+X08-yj?1?>u9{V>|xZXnbIw1;xr%1>a;->`ei2D4lX;T{Vp@CJE7otufuf5=N zvtoYW`F9+Y?>RZ!J-t3L{0=P2lN6G=_-biGLdt9vOOVlfgPyBPF2Rv8eoZJ=&`dxn zt=z8zT%^z8RXJTZy*i8hk&^_bt}^>oK2AOL7r(d42j&x}-=K!XP<<)Jc-}Qx16Tpv zR-#jRBRU(G<8zg+WzV@uBgHG6z!o}+`{fl z&Sw}@jg>F^ZuoFbs6joP0=&&oKXVs+)Rr*)qr4(F6N$b=3FBwh>U&NdYQd7@b4}?| zpYZc`09!<>Tpe5NK?s9lZ5S?D#Bu`1)ME-M045{*+B_yCI$saL%ak~=kFC`;I=S+h zslzjw+*%mIk~0LOupTqPv~3QSLL~7UB~kRoYRQpN!WvVjoK))j?y1)oBH!n}nDLIz zZ*N~kmY+9)c^}nI`lU?ypjpADtLfYB7wscKEl*ay?42(8fuqCG#mi#xaAjEjSkTlM z8@-h|-oWiua7aa({Y-~Ya~*XVEznAd6Rvg6b7&ySSoq0NdSOXghyboM5220`$=kYr zpA=AY@W?8AdkZ6v1GpkVmvZJiXwO&nf384Kk3I*IuHSC5V=IUgaXh90$))N1Iq_XT zl{(*j{S;PV?dxbZL*z&!1C%A4NtuV9*9_E8FC{+zo9sV!R}HQ!AQqPZ7`e1W-@7N| zf5wlLy+NI^qst7=d-535FEJ6pBr#5RKNgIHw5YdkgeKtYqOFD&3e{C4g5p}!*tiE) zr8D(yH-*ZP$hb7FpZ96#_eR30w)88GiH^X+aj-Jy*&7^-b?;dJ zpzAS;p$?yggL+RgA{~q0X@AaQk3GB*G_&xuj?8|(G`I6JH5`;71yIbn7 zKC*};y;#tl6XITa?f+X~&;OIkFy}+&+X02NW|c}OVW>i1w3k>veoKy#DZfoY z5eZ#v35-Tuq)-N|lrUAY0;wdG4Y@Ew^LVW3fC44o?pI6xO(`ZjThC#)PnOrD*Br@Y zP3^hv4fkqMCZx4mdsO3pdP{@tX8#vkC)8tQ(ZN|ydo#|QfY4n=tZlkGe1uWM;`et> zfkBo45rISD#J73-pv^_eBx&$0w&R*~^hg!b-4`I&3{|uIHgDfDXUDN(R(-!du(v?` zMXM#I6ic=6Q~LzWqV6cezImpf<|BrkrND?7S6adKz0R4v=@e6O!+S2t4AoTD@1LR1kaxG~^i2IeMP$SF!HoIzmFZeh_G_bVVIObY zqcQ5N@T`8#R=^C1Ug*Or5l9%>{{1DM1kwx|zF%%;P>h|W7&{xy;J3!ZFJYp1i$#FV zV6myQ69I^A|-Lq~G4wmQT zscR_U8Tk@PY=YW|!0_5_ELqQcFP8l=^H^Tn0Y*3`-~~KCR(kjl!DuN(+`}Tc z@v`@h={22Ykm7F#2BQKaYXX?hJK_ zQw&Wao*JR&wx_n#MxtcdrPloIHSZ(F&TVz&-ylVUQ#PHf)RTA5G))bCwp@i-StTAiHf^vT4)~T?c9UR8TS&#;d39DL zOwn-4LU>yw>P=mS8$jGh5081Q_z%;|JyNX-L4uV*0Lc`M5+Wyl_>rqFy}eO@dkv$I zib;rx#coK*8NX;93-83d_kNSV0g4p~Uy#9* zz>xav6=>#uMnIE7Vj5D6ak4}N<}5vg3XH`vM3hSLOSvSI^1DU?-_E8O{eR{^DtN1_=(hw*b_I#do?*i$r2&mLNQx^0|d)HiGVda>4x<$%2MlW0!_%4tDnEn^mJ@uw4Ohd~$kPXU-=d zMYj9i=r_D?zo8i#Ci*P**84i!YAp>;IKj%Fm@2SU!oS+BB|mnY1N3RTG9BUyk6&$o z(Pi-zkk0p(~hdMDv^9O$n-rFl3--SKykA~Kg;Z0$9~7Yq;v>W9K25I zFfX8@rjM?poL(+MLc<~$|K;%^0gLKbUAS%dzAWKzcW5$}Xor`6+y|{lT5JS(zSwjM zZ0*QfAb#~fwSxG6Y6YiX;J*O_vLs+8(o&hV{I3W0v`9FaedzgeM^^PyiOUb+8 zD-FBZ@LdLWyCOk89xDDj5B1WZe>7p&2f%yqphmiO7Uq z8IzKd7MGTGk)B@2>T$dL${D985>epD#UMo$fpxd11gl1oJ%T<#GUV8j~#D6>dAfC0%;t7Zw+nU!xai;Dv)iBSZG_ zMffW$W`JbXa-2R@OT@x}#tU;7M0TeLdXVQNr6dZN$|f-C1Y_k{{LNY-s#YZzj zjZg1wIJ56vgXF<2GSonS*5O?GVE1?&+z$hD?`~ip>})BdSEYevvEH=QokV+;)3K(x z+w$+!cu$@7f879oHtXZstAf6LmGn!Ra!?Q{#gV26Lh&!vun*+*jZ*W zm=tEHM4uvDQ48qY6XISSnA{(?IRCXBOGhz6G_>x}+~9QeCrQ}4H__Ou*ROZq??WET zM?s?m5pJ2~5Q`gEA3}OpWHd$<3$-HiOG~fz9ecMez@3I-YTl8-$5fy-@5h(T zf1Fx@Y%HH&@{N-5Glk$@c_qV%Q8q4t2q%Ej9U5kn^TX84gpLbfX(4Z=8;0|r&~AHm zpf~^r0+NaXA(!f)2RgcOTQ^X0)e$NQAW-fdLfS6#mewtkBSmUR6AeT?NI5!kfv6pa zoIec0AY!38nt$?dVNr=0v{^20i>YeVBxk!Cd$Py{>WigK;$bu06Mn<;;dwADEZgOO z4?s*z2x&&Mmq+(OfskKZzCV3FPVJAODV1!2P`JHm!mR)Vhey~=9{qy+Ka;N)UJJy} z8=s%DKr9M^ErG-k5r@%oXf_PzQpN_LqN08_X-tLZ8WsQcfUB}dkTiwjmq0P%DpG{t z0?v|wl{G(Q2O3jpQ$U3f)$Ah%fV(*I{w*#d`JZu4lIr;)Bm#!^kG^#4K^`~fIolrP zs-hzGf-NS~+R11?rd0(9n2sRAFS_Lkge{?hz;sgF(+Vb3QgjK5)JYuko{bU9-f5^~kX9Yx>rLADF`qBT za)zH9V|y4Nm%pI6q!`&Q6L1q8!3a%&xCuZ693{^H5yc=>&Kz9LFDRG;8i;{~rK1tL zQLI4ojz|JGp!5<(d=1;WA$0>Orm$MZr5yLb)?>xzxhaL1xKsk-;e+lUbNh=%`xZ$_ zsYXJ7uHhJ!ze(KNJiw(2l`an3VZt>?E0vhC@IW7B8_m?ei{zm(RWq*p7cCiuU4$$LjOaz;K95%C)& z(R;`{*c2UWCo{ROsiFSKb5h7#i6`^VW-V6Bu4GQ12+>O8qJU=#S=*qegygQFtd$jW zRh255Ghltl+o*5k(rzi)I@=8$R4IZE&7dc-aRk59Ah z6i6f4IXDVx^dY*fk?e7LV}VpQW5b`UZ_na?C5pKAt-421O_n!j{`YuM15oiC9CTv< zvM@0*!Oe=mDo9xh1oV2IqH@u9^ObX&jubA_v{+T_!bQqp^049el+P{AypPkw#?J4^ zd7v0O-?T%p1AA*U{w59EOvPISy95FKiuf~>{+CH;I{IR~sa&JSw9oWKbW@1O*6oK# z-X&%g$;tJI8A02ecS+-s;ZJSXasOk5w&-=x3-SnRqsyK5YI~GmYZjY*dvm+%M80bU znv$>HZ1ryE@!n(0l3CZxMVZ@;$cZcXTwoR4s}LO+786l^16Dtv=3vo76ivuC0{^1X zaYc4EWg0u`utU$9#b2N6+Kg}ulH93RWC>LqfoB4M{X|2iiJ;?DC(wK{z-M5+d;$3g z32+pQ8PhBr<3o-ywBWYEUkC5cW-L|s|ENNBtH;PlTAr5%C<0wmN@i#*`Fx{lcQh;(6{`iKJ8BruoL3sCLcMtA8H z{7HGruc*u@zp&W1<(`#Up+H>?%)4Nf9AECxT*bb=^@>qtXvm@hRwJaH7fku! zXjq1bzmo`5_n|}jhs8v~qK}#n&G<_nR`$J+q9eMKVpkVMC>-nVdqY?2j)#_jNHNW6 zyMnV2NcQ~uZHc!9B_$<)E!zdKU8eHL_--V;W-p>=zE;r6Q<%hCMA<$hkQncJbg$kk z^_5!o*FIw()Bn?ZLh!sfC=}iqlQKkO#$VDc>}dN&oCmB)onglQ)o5q_T;fAXD(-t% z?e}(T4iSG^-Vc+IX1b^s>DHO`WX0rzC3w7>XYgrQyVhuErT;*(3jy1zgV7Z!&j9EJ zq|A^fh;-CXMPkDw2MmWMRLTP&4mWnbPT}mKfoTLSw%^%m9w4(ISyG8GCQUsI4+}#I zTY9woCe0vb1+k59q%IubJfl8D*LcQ}H;{!r&Mv)qq*3BE>{=dx$2Hz=9xFET@DcLl zy`Albf$=9qk-l#2Ph8RlHEpiy`>{&f+ci_JH^HIhS#&;WFNieuLiU4=}|T=@5*UWR%zpseM<|G5}@ zdTP1(I6%-BTfefZAqX3&5ST#wY$ke%P^a3J*4Z6oJ?)Jbi;J|rp5b1qnv2*IF58Jh zb260GAVP4pqVo0suLVGY^%w;(uYKD5)pCC*^hJel=KZx5e{*ZI^U(dJ^htwycQ%B6 z09i**%yDd%UJ>%0!cB2C*x?wNno1r3>Ae6_*PX2ujYDKOi|MTVYRf}<1$XIZ2Opa< zBhqMM%zKO4Bz1mQsUNqnXsCSe;~DTI<%MiP;BU^}len~g{|=3m5D#*1X+)9aYhM=w zVS~af%8bcqr1w2_7qKNFL{Eq(e$bcU*;vlGkAx}0F^y1wX=*GG%Ue`Z9|3W77v&GC zkR$*3soU<2uP|BMM9>j%_(7OZ^RNV9A^Z!)(S?yQ#dUq+!H@OVbSY#hzYOSvlBZq1ELH{3D_WLV-X27~hNHx}IF0!E7x5 zx~A)|ycH@xmj};Xl0`rx2B#WQSW~5!<17a)B1qch>E6;KMz^A4r8@4zPQ~Ve=j}P5 z%j1SVB+SrO>8PfAsB8FIJ)!aO*f?smoL@-|i@9+Rmxzd|TkHxxju^ECH67DO*zuKD zYwM)_f?PmNJ-LZwcd;N0Hx z-s>E;p58%wy%N&|<3xVe2cMKR1}C?bAMk%zeg3+dQ)?YBKDF-k5wEgzTxTcq)vUg$ ze-cm^aG|2n+et^uRNsEOGWKxFL6*TT{CHg{brm06kmUBdiI2GZx&%-f3r}yFKa~+d znKtXFZ=Y6yl%*10eQn2|NGOpxB;c(a`atZA0+9Y%bv8L zQF|{E46R8XA*44V)M(hMj|3U?J5YE4Ujvv6QXBg|UT$s(AT>ahbO0QW_>$p6cRh~YB9t<_qP4i*OH=S^F*pUGWPw+LJF9`DgZiFT z)On5mK|e#GhlQ2Z9(;%h6xRgTou4xUg?;aFuz zv`!SxcAzMzkK9Zb@t$}hK=NY`_nD95_(Q#;rUM4KuG5|$r|bTKOpxM<7@IVSAUXnx zF|>)2R=g!z65{jVyqbl!iHclOyk$DeW|Sj&V(P{%$r=I+o7pCD5KaQYRqfpiNdthS zARc$<>jlqB6qRUlP!J0I7!ep80^=nB_xah_w~h#SAr#H-XzFVsM@elkK%%bhk9pIt zRdN34=3{iyCyBm&CTRH~ZOr6VHytFGqMYH8Nx5heuuIaQow-XB{|Rl(PYW6RD|~XP zbVEIv_w=wx!&Wv}lq(KTdhNfmhZd_J6I;_J~BmW6>8qWOi+ba-_IpK%MnlkRH4 ziFGLRmwC6hhjP)H=>5u6bjf$aT_lBffrRf~1r#6H@7Dr5kI*tFCx!3!WgkQeQjiyS zw*K~9Ea~b1gKbX+^G>}H7m`*1$TM!x&yFBLelqJS#9H+QOzfbF+)*!^|KA{T_kV*3 z9>Uo$ii*BZSkp0^Jaj0FZMFUQJuR9RduVw0Bk{p2TeJRfEON$smN8;`RCk7I*~$L6 z2@J1kDXZ*1s&Pygosh-HK;)L6l-?i|&M9=`AdU*z;fGV0?f0wRG;!mW82MuZ^EuTS#LaIiO*>^h`@3E?*`uSw zKH9G<`R(o&n#E)y>mTZQDUglEqtLx`Gz(NyQO3{^Z9alc=;P>#xyO*EhFeJC8Cp)< z2OruwGtN*dQQNrnl{wMMl-is4#p_|JcC_8D2^VHe;+17jW*~LP8~UI%uiFt;HHPc4 z#BB;GR4;J8NUhc;ruMr`VtTf{z90eA#FP(>pZ)0BfNA zzKG#}!eN9Xn?A3Sh4Iqq>n;}J03R1%OMG|F=I?C~&}ls@${d(yqkqJBuWrOG$ZTN` z`Qx1DzDsf%`tHsz1)?h@Ksqo1l=-?i-Nwk-(S;jc_{M5sGPR3 z{YRnhhrc!Fh;m2w{!y&@HJ|!I`T{g-9)f%ZLb)(PTVFJ3Q*Jso-|~OJkBt_yXII#C z8o&3C1u3)ch^28F4*6y;xDR0j;C2#$+Zc{gWITqx38XgVILn>kt)Z-($>4AJv@nj8 zq;f{JF1v-za&bHEm(=OTEjq^^_XGr4$yGz*2OAexZqu(Q(^|`}b( zJ~IPvJdI^s#*G$felGkPwf5d^CoL#0wuFN^O*HR9@7!}mQRAv*F`zzmZ=r68bQE8L z^+klXw}pd<{CK~;C4nvxjBOvCzzPnr33?2IH4xzf-(a0{%e^;9%`>7>+Z6S5<`lkz z;^2(U-iZ2GP8jT~$R+$4=m*Hzsu{0^dl_a)_ zVaIvm*y-Bal@Ge!Kh6FLWd9pG)h0$@Fp$~7`2!a%z=9z-xIa2-4nOB`DP3Y) z=A_yJ%@P!QBC!Yg=oi?{4mU3S>tC?aHy903iL0)X&h7(R55rc!)sz3=k>{uTJ56*x zyL&W0;I?@LAY=;DInS9q!IK@L5yq~r)vv|1M#>_VwYlQrI5JamB`6zbO=03XY2@mN%S-3EfZy5sGy)c1^o&-N_1u`-DI50 z+&XE99%)d{N5UdGHVn%OW6od04;Hs_@-YNN`h(>7%sqzPs(onm^wD7=XJS*@vLELl?)>p%yKENTb6msrkvC5i!NhZTcfSTULE-9astez2;=|5Pokx3d@tOsOq@xs?rW=Ehs%dr(!d@kS(B*kw zF&=8*1n-UC@AOFXr2M2-vJ7raM4PhZkFZwPX#D!-tuK9n!SI91b0j7nkm9+&e>ZupM@+AAy zJ^LlTdak2#rR5)yu?P)F>6X2Q%(wAGC+ip$Y~0E4POwt(SCfMz*ZCt_p+J*MEi+8 zmk=G65HWM2RO_{tbUS+O;cm>66jY+xe0Y@V!#6YW(BG2{o(d~ST%=QN)5R%DsPtDa@0O0v$^kxBi(vUv&rFpQo~j6knNz5_dEs+iqwBA0qxrQy02zo z@PnlcJwRN9!H)lt>t2DX@aEAMfwpQEyMgGH)}$!P@zqajov6xQ|Gpu&u8|StLI=ld zb%eeFy7L6~67iTSyIx-To+$G^4^529LCp`N-#&QMrHvU!DBtDTJGx~-SbYhA)1*X8u9r4kL~gIu1N z?i*jD1sOz)CqL8#qlh$yF$#l=^XkjD_vz_9fE5!Qip*0tlRC%_nnh%45%7G%o9NVV zefzcb-fxL+P`F{^Iy4Ht{J-UD=fCAD6v?SV&?i9rAG$7!m_0ZnB##SH&dKT3l6M@} zTyu!X32tT&`ykPZe=_{auy3%#n&{e^p!P;5ol!B-&4T=Vo5NZ*Hs!VEjKWQKp4rIF za?WgmN+Ao1rhupJD)o1+g5-B~a|`+24Bay|uVFhP5F8&^uI1zN9M3%&NOt&6H@*Tv z^e~$Syg$EdR2v6*u@#`by~Tea^-AOe3aF#TrRyr<$loTouDaGq5ndmVqwglH!X<`) zM^ZpuUjpzo!1?;1lOV^;GhZ$Idww~`YPcrvOG9zeBtwPg7BqWq$J)mJs4^CT7Z>!2 zL>DS17hH`rSRXgPGoztlwUCAyMYmc?=N)a#^15Ru;bIQ)6S)k0lw~?CGOX6Jk-clf zlYf!#HM|FtCOtM9sG4%h3lp3@K0ltqoVxs_TWx0MS6?Y&m87cVeR!`DTDGq5MdoG+ zzBk&xnJ?c7i z$)HAgasyR1ekuWTJz2{WHp%#0GR3o~t^hx>!AUpOf@?S|! z{Rq;f+snDn2g)7~x-p2%d_({3PTv&C&GA85fe171>Gn zVe#k-s~*SBQM<~?>Z+cYc@kqCr{;g}h`6(Y|4urAu|`}C#$XU-d>?<};5qiLpf&$D zN1osI9W{wMtgALw99}wQ)ar^lMNgy#7}*edZb*v*ZG?;$gBf}FQ^JV{+rK{!*xv{zhay0VhFa-j;~bxR zcZzt(?m>ug_{8swU?+*c;D~-YRqFyWSRVT^9=HJr1lSoBv|aQKl21?fjRG#kYR0ST z)A-g&(%r9$^@_Y9aad7Bn=diAgrfi9l*h3HY1q{liFZeoOxqf~#w_lc^fCsDu<#wW zuUwHJ?gx}JF`*IQT|af0%4-~`V4dsd-5y~JavXg=@p?G<(aBkVt75`0nd8vD#z;PH zyNkfjcSSsPZrsRCFOf;eteUV&vh@5J;Q*B(muzw)O=oKy0L9Rmhx&#!yv=f=iFSD| zX?H|z2{6`O`FI$HVTYC^E&aCM-W^EG4H4Bq2OwJ=$f%fVF7g$8p%eqsz1nOW1aEs$ z0JED_6>c%vtFf%Z9PXfd%P|VghBLu~%}O6v?ugUQSXaoh!M8!CI(zu6-};-lP1V~Q zv1l!H=_`X*jtO{;;f!@Wb?i_Ak7L#yY*km$clT1*QWUHVRsg8HJ*0W&H;!P2-oOg5 zR$6PV*vxR#WpcyS-oTKao{)|+sJU09mE!)7Q7uDw(k_sOlE14Bncr{n`BXb`$qzHpycWnd~Uz0$WyBg>jR!J5?bIW*I+j ztg@)Hb34)%D#ixD-yo%o@7XPZBQ3P5o@N<6eR1JKYm_i-tsl4LmgL;v=3``GLBj8W zjq1yM3Sph#{eGynN+2Rco+cg%dQWYio7~Pc>iNsw2({mtZwV0=f+G8nHgx=VjO-EWoR_$Eut-Q%aN9_6bU${!l zhYdQnJ_`jgDj|)!V2rHr-nT;0xs+HDsdTJjSgRtdZ_^GGi-sCdUKk#{CZTJiv%8yN zIYKsstA1pmM(B%-==bxQyo2Ww!1W=yM_bik)v3ShTNsnZ;&)KG;fwKt3s1e}-Oz`P zSWnHj2C~MvDu1=a$o4qy@A-!Z9KYCsg$fSAA+KtLiAl09f#Gt~oVvS=8|KHJ;hM@l7- zzwOb|OPqUfrP1H~HJt2Cat)sMXXx9b@L9zF4luDUFl4tY} zsr0&c+SX0ZHB^POKQYhmP?l4rKl!F`koUoGZ83EuBwLxQH6#hepNze1iIlX_Fg#-5 z`p<6j=!)-m6>DB~8N?Wu50sip9!GwfF2Qc1|6uEDCoPjzeV>o7qsUX!qHE{Nv;1=6 zc%wSvPz$D9W2Xz;r=6Wcf~*9;5nTNA^i+uQ7V_~z<^%{Ueq`Q{)Ao7wwcMQAwisn8 zms4w>_+}hj)Mf3@Am14B|T)FB@ML&>|ky2@6=fD}b2=VV!|%l{0R3Ad=oijA?? zox;RF^l|Ukgx4xIzX$T1`x>yeZtu^len4a&V!Oemt~cd|3%PZfK9ct%=4GhTHM@Gg)-4Q>luEvl4}+wKF$Ow$Qa;X+lF`SE4F=w=)1 zP;jbYL8@B}gOG*j3+Y{l4>C_Q#N;p)@G*&*^)W-qt09&&M05C-QgXg)Qk=PZJKJO( zh%3C|O1N^an*Q>I$FX5k(6M$7>$n>+zW$m0Dy7emj)tYBlhFbU14s~FpO3+;B9q;( zVb;Ukl1D0?>dd|=mqr3u9>lp^{yuU)Ah9o#ouG|{f=+$T8yj3TdQZkox3s5 zZ>(6s zwr8AS>DP-{P#~%v&t-LdR4SxRcpmF-HWWU_c$1XUTIg{_hWp^t19r)c1k8p{Un^f@ zdgiM9B14H_S2wR3b!jKohptfW=t3n$#Xl9lB^N*iNY}W-vd0l~dt=t*G-inOX+7&L z_=Lu?^MB{?lXSZESK{liu?-KK>xB2TP0P#5X6atH5K>2qwr7o|8zGWIf!g~O5GZ4J z72hjY2vwiz2GffUy7cKB1VoH&n15X{{j7Iee2xS|cVD6Shh$u5krS=cLI(`bYcw%t zd&rO{Pwubk|8Mfc^7>)KNfxioinsPUChMDA7MF`R3mX$vH{bV!WMq`*uYcy7`&=SN zHRSq2+v3i%5#1E!Nf-aql_OI9N#IPo9rQdvr7FkcnmEh+pJ+rJNxh3$k>;qEn0-(Hh*|EZsprV8CnCS+_pXz8x zTLW+P&}Bfr-(!LlilndIJt?dKu89*>hW%Zz{wv9(%22>C+zHh5KA09nt;!}guIAKksmM${z4?7Ff#E%aDGPz zVnST*O+SDC@@6L6&k;k*OXJbL(wY}V@+SjyCf&8X0kR<+$8*lE=-o4)WplK4M_;ZDmh4&^mM#oAtpMgk(dxEo%AE0V_`ou2pm_yF4<@CkL0ayaC zR(}wdZiQsn$a0?$=0?zI=!n$>Q2C!eBcEg%e;pJi$M?og{O89r2TI#9>D*05wQ)80 zh(VV>w@v89q%;q}m?el&4z_1AKy-i4tPLAcka*G1=%R4dE!pf~<%JV=V-95{LmLSK zQ^io?;o(8#uCS2hHMZR8S2kH1*U2Mp+|o4hsUCk+&gmj?DEc`Wvh1WHl(jT&lGmT$ z{83)u|AEnCq4>>1)>d>rZu1lW#lxH;vZTx`lai$`&sePu1kv&`@%Jbqr!M4jva4DA53}(#=Mt&jr4NrWamZ&V`utG;q#vq;9jy3t$#!5b zP?o6OO0)khAJ{@bT!EmAHeYnLHC%$f?wP+Mk60ZmW0=)7)v5jeS^!X81)fjN8csK> z)5z^O5_zC*?6n66Jeb7%M}G4X>ba`MOQFi1{8*(yxtO8w-xCqfhM2Ke1S`1GI;0tY z7mx0j4Y4=t;tI5PCfuAIlO1X*&WH@`*b1}5Z3f=jNdynMFi!9CpCwy=D0)^gTelGL z{7xeNE9FU_ex@WnIp+sFP-ZYcZ-!U&y3i@m&ZBvvkxhuhZe^yiA#_;HoWE2#FU+v6 zVNmEIP}JFwiVXNa<&J);TFYsEteL^slG~z#SKR)!s}&S0yj2wCDiA^mA-#stA;GxU z6q~jkj?|5R^*87zoS**2{(m%mcR1Gl`?r;h%&d~Vw-DKT@13oXQL;l;k;tA=$O<83 zZ;I?qlD)HMcE)pl?(g&a@4k;ixGvY{{XWmvjO#@j5H5~qXa9)XMIwzP#b%-^8t=5y z%%&ZhEBfqdTYr~YO-~}56F^{70Vd%p&hIx&s9N=BUsh&Nq-m^>&B619VV`7M6Z30^vE!vWFe9@Oz-L|fseF(c!$uIaM(TF@quU0d7)4ojM8gBm!zyr z6GMX19Kbj&Ov-W*%^!<#({oxawi)JUyxqN@619KyW98(u2HjwCU*8HJbXzr_FY_Qq ze1wt)fL5ia8)=>g7B@?GrTd7zoH$F(I`hT;)8YV`%n&!ty!NoKh3b!Bv~S+Hgc89d5MRWiqGM{sJbBoW%jZ8~9F;%O z24X(p7Xr0?oK3SmknH-|bZi^_{u2|jYAVuESP%k@i=G(_4*th-oV)ER?7ldyMqXz@ zVc}50jT>RJdmG7l7YT}<{?qzpq+22K!R?JXN<9~1g&M|uMFa! zHx6i49%j#%;ADmDX!+`+T0e-=^&g@f2PYff`};g;OJkq47M+c{SVg7szCNUm&FAA= zWAe$bd^gX7nMssDzNmFK%%L_FtdAY*&xI)6;2!y6(LA&0uP86S2f<-qVf%?P3dl`* zb|3Xo{KYHzVwOo4Ol)!h#jR~^8G880>fa83_?wVY#(R&%s&o_ri=3Jd1wq(i_qY6( zm=`Z-_!t=&f?)ky1U=+bEx+H{LG718Nvrl7h|=>Fe~?nGxW5do!+h5C>#2s_{v3g- zD-rdvXVpmc2H4y{`3fPG@O|C>^v;9R4&x2uVD_w|U4{CP9#vfg!{X*K$qE&n$E@u^ zh}&Xs47Fx=?nxM%40JGI0JA7*-x3szI%fHb@GlMM=Ny$-T_adVK+!94e0I zWxC2Xp2j@s5?fzc2OJkkd^mzsQBp%E>bHslx%XdaW!``eR@MNzSm&~Dk=l- z9#&5pHT#Q$>)|0N;~-%Mo}m^<(L)wlv-;;3)5pa`z}O(ZrT<#ERu!2W{JEMQer#Sl z4cS*dT}47y5bmWq0Qhg;llhR(?wIa$^8zHxT6Oju+SN0^#U>2iv0eC6mh}YpEib&f zPMrZ2H*<5A@RRPlEMR!#>0+W__#>b7t$*0Uh${1JvT<2BPj6e zFN2uc8XkI*h6B{^LgtZIG3K9r@$Rb>ejfLT`CxXPNIn+!%vj*53j1CVCM|+3rghns z$m2pU@H*aKJKcY0M4}f4jP+@$2X0?XYsCzYUt`}9_O0o|no~tem1{w$AYAqII)iy5wqMN3@ehNMZ>3{Zs9|{H&`_8R z%HifaDvL?7c+`HC##}w`8haVQL*nCv2VvxYV24`z^CvDg_LV|*reZX8#gnl*{T`Ye z;6{5til+c08gn(_khR@-%}h-fqk36JLY~I=t##$zZg%u#fVSGee*+IC;ZjfVtoLcs zJ~%sKpxP5&vCC=yRSuBS3fX``$7Qt>+id=NBpK4v-qaiIqJpoMdm9bSSQ+*FDj7bV zZ?98(y#!P}dMl8&hQUf+Zoxx5^yhOao|8e^QEkfs+F5^UX~G)VU*HkU1kM1u=92s` z&h8c7@q-{pwkfEe+YZDsT+6EsE?2#)%8Wlzl{rK~!FwQmaQ27I(W5f>j%WjpG+B*| zWUS2Cwf)o;mrlsBL!;*-hE$~`0HvJ{8$j3tf*#DW)wIcGsy9ETT}k&K1g6pt10KntEAK_pp8RBxU0^IcGv_A8A- ztH~orQ=scW^NSev5er7!@N;Q_G>wqyXNvD^L~flCmpGj+ODX)(+A`=Zc0jClO@9BN z=JXb(?;a^SA>nSD(rb#4h+gfLXN;y4c=P{XK2kcSVF8xVfTXh-#hDb zir;HBp595mU@6FPMUwSA#>_&xtQR1H(H7|ZpQHEW8$8y3zV+Fz4S}CH+#nqejT zm%y=hg3a5T*JoSx(p1NYs^_gDXl;6)P|!bGyI**iB#<;Jv!0@P^A^!wO7`1EFZ&;l zN^8QU&rVM(-)GJ*2jBt=3&G{c!=26iX0LOhn8G*3e<%Demzd|Qec8x{_Qt*Yj`)v# z#nGF0-(4K^F+Kh@U4d^wW8v`R2|SWO+aM8e?14F)+53OL4;G;ZDg@svM^Svgpp2A& zAq~j_ly1;e0ei@+P}D6p<^JU`lL@OEqkmgd)^0Qfp!hj$jIJN1&3^3C>9PlV>Z@`;m)7ip5`vA4;yw$y+?#VG8+WKx*7ne%icj9x$>^4!eqdBaKn+MQ{9^xAwYXz!AX-!M z^fl!2WscuvQg;1E{zTw*go0JML?rkP3E_h#$eP?AEjC_oFSxSeb#Jvf!~OfopponD z?k1EcYBblBm%rv<5g;|lXg+~X|2*n&2miW7z{Neu^Ide%=s{2?Ka3AB9$r{5 zyb%---~|it^Bn^;>;o6=&q0y**$YZZS;zGOZ<~jq_RI|R&eaVdWWb$VMc57q2`Q$RCG;L`5M0Cuo3Iu2o#$!H zUFid+gq+iEAk)B*&VZ8>!q)Rg6A!@`!w+j4qjC%DYeIU3EE)MCQ~CFLFC!wF*(u5k zC(KB;stMt?fn{|kR^#Lee4(Adu;nw$h)j>2Iz2_cYyD~mZ=~vuYGO0yFr=j3F?FjB z#C)v7&TEy)$|YYemQmATLPLACuH~LZ0EO6HMyRaXxX}Kv3U6J7yu3X4=tE(q9p2*j z9jZ;$f^y{&8W{E>>1|LhSEmwVySe^+$7twgmTtK^baVNofZL9 z`eoId`i9>+IU4D707uH@Wq0@kKR8DepF=ZYzbw&U5Pc;EF#~pXA`Prx}(1R zBjJzwh*xS#ft0Sry|~p%fenGQ$8E(`hgc|wb^4u6reAl z?5ezZHp#t@&&qZL##9^7(|4Bjf*QdaD%FiS!wNw)1XJ37|0mWAch?{&4mR;cJ9l?& zTa{*XIxl(LZdF^~pi-#fc1=vo>6|>rzPHArb<5Y;=(ZH$U@*rooT_0yd5lKZH|vv%5AWQ= za(sZLp-WYHT~jOIObmrx(n5wMqP;|s93v7_RYQVwGN9#y#p?_MI?==dDVkf6-Im`B zj04Nf-!}Onj$Y7ogXP(BGtB-qbLDpHi<8P}Ye&ftZay><7i@{GbLa82-wuiLix5YE zWE*?BRH_PtgB&t(7NAN#GdH(gTzyI8muvVu3d%<+yp#VVt^F9wLNEk!}jPOP~mR|faaau+y zImfEEdOuzX!fAuZd?B%bMY6d|uo%uEq>cp<-1TL|1(2G*8tain2l{qdl4yq~H7P*Y zc7Xjdhh2Ll7lP9D*@j$`G;Uu`0ty5@ZeO8l^NYd2PZx;80%R9Sq7*aObaQo0_Um{G zVYT%yXtlHQq^#emr#f!~#38Tf$CFwXF3>{w&tvCO@D4kK*C-#T~R2Vsu+sYl`m+Q3`Y3-0UhGT0b9JL;Gr6;Buej z?l0CiS}dcMaqQSy!Gj~7HIwM1-!=>8^;#v?Az~k1A0X-@)6dUOT-u{4HI2M)u}iCe zWxqq}0LRYr@vtr<`Pd7zyLBK5(x7LECG=z3i~UHNCoe58bAZLzrL3_h4Np-C84!G4 z>5S{Ci3thIyFe@bg*z1uu`Pk%-lTzmI=xSRKu8@|dmw4pYjbn+DXcuwGOXjn!Z@E) z9T_m5mL(e3;#6ix*FAU*jdyp$=rF?P?J%h9qpb95KQ!3EAPb5_r1}OtnON~%uQhlH z>E$xW1b!-yl8}@C1uzecj@Dqm6tC`tM%TK<+SwsaY)l5EMr|qVkVodAM&$`oc;G%-LRM`Y{B^(q^a$p0T>job}f ziiwaGA&E9$deWrYk8veJtz#+TQMRjus!M4jY_m1-bqV|r!bvys+E;(Uufzuz1d^U; z(_3RXK~Jmk)}fM=V>amx4u2LapLHi8QV9S{vkB=YCjOmOiGInT_QlJ0zZu)AAD~$4 zy+HRLq9W2`zpb+Wb<80CZyP&($F!0b&A@3EZPjgGV%ech?!|G5;dSu~$$Gd^(EccO}h3ttgS_x|Rdh za^FZWF!}}VeEMBXGQwLhIn?LLd&zE7wjGzYWHdrTr}qx7RUZlgJ3^3xJMB%eK%)U1 zC0(8$^U8Cb!u>eQZiPH;9UDsm_}z8$_ub7Z5vbe)R6ZdgVUC4@&D~6jY+q*xp+j+^-Sf}_-iH`zXo z(zIvnXHRLrRQX9vBm8M}fI-56!kbC)GhwQ4HhJ@{|+o7l`hKCA^Mz!)y@46zYLT3S4`yV7{6KO`0RF`vDWUE{%_1rP9{^nB%4SK2{z59*P zY>GxsQ|z37p%D_&Ha<1t)m2`&%C zv5oZ+1GgZeVg)3$>~3_5Q}UR1s^f4CTf z&DFMq;)vnb!s1*o$HA^Lyc%aGTWr_Jre)}scHp*wvb&GR#LI`BGZDV9xtJVDx^(`8 zO~TA46F0hj`RhnbN>siS@xJ8wYIZ;m%P{CssV5j73--M4YAvXCo|HNPIF8$P~&LPjFw|7`!yVdVZwRI~ch$?UPVbL~qwdXZBDr4G8v za<8=(A%RWsCVdBXBEM5;C|?uh-^)$ET1K@frx67dTA%cTV+61(D)aZ}h7H$5oMp0w z%YTNDuJZf*&)hsqZdTf-EsQPgnm@c-x4R7VmHYqgWa1DopNK9zyV-4NA4%vwKyk-I z;mb9qQ2guNmgo|Gb=f=9R2ZnOC$SW|Jd5cR^3^OII_bLY%hgr243APSXN_$Ywni@b zCyiP9in?%~LN&wFnTAtEd2x|D_}u0VO0eaCla7&z>B7YPulmMldxNQ5-p$Ok(%Y_O z&f_^U{@?u+2}P_q%W`e2S#>;w-?s!&vW=IcR??A}S@(EUsWDBb?>vs2#(}fMv1Ny4FJC&7UhyAx5{8%(QC(c2aE|8WN9Ku&W5Bzly>oW{b z5yors>HP$AMfO!zShz|Vvd%O*Wn)&J$Q20Pv53Pj>< z8(W~=)(g6Fz=Q3{%E`|7VCWUb;Wx6aYZ&y2X+#*e48L?)r|3Ap)i`fxjqRGaD$k86 z1XuM#fy75{@3ni3^C-|(mvkzAMDNL`fz28~B&LBE!6-I%;aPU-$!2&7;4s1Y7X)D;RbR)S zPJ#U#F_((Ipp_r#J1*U0YjP1y zCAs3bo4=Wo!+MzDMPAwwZPcqJ^S*+!X1|Yo?EUF;i$JReR$+_oU>@$Fzu!L@Y?U7^ z#kkGgR>|47jU>A$6(IfN&^f^DHE4If;G_HEDa$DA>toeC9|n1sgg#2+b;W6IiPi|o zh-#Pe6)_5S3pmK^G-Xf!6^Yb2ikXTsc)DqwlU< zUU;C@aH^a(7zE!Wau{A(x{N(4{ja1sI^aC$!-qec?w$S~N_^(W*N3eS>fF}`sF%0lXeFS&+?gZt5Kk-H#I)}ni(acKQ4vkaAD6H^eTEf)gcWU*GM zWb?gO1Ff@!@g5OUR26n{L%#nBMpvsgZO%zjUGXAGS_F;cjG4G`-big*dG2S8aIe+^ zY5%|MO-*4^UuB*@7euk}W8xZIOxPkf#y0%n+V{N8Z;RXT3C*{i;hzc_eww_6s$rIU z$4+K17yo&!W`>+VN+&nhZ_4Z9Eg?VCCV;HO2DkkIdfctwTc*kK!i zNgRpB_LNftyZkNa?Sj52DQ?5zqN^Z`Hv3l*_$YMUYCTCIL zv-rA&o5gvVEpkWOh1Q!fzp&sSv#);hJs=)9X`)-Vlpp#F9ts=ot|dtAW{9$hHl;kF z;bM8ZVC@_Kf|ix!euPk#0A5k}Pr=MB&T-Gt^jf8FRMnMc57bEV#r?@p;32=m%n@8a zfXeHC?u9}PX=BLjTKq+o?n{8ctG!w8?YGXCi#I94*N=u)mH$r*Fm(ai5M^iQU4lCQ z?4eFz!lC4wG0^mlARU?fOP;6#V|M<1uhZqEaR_EY0_+PNC42J45%DH$k*t&T=t*sA zgIf%-`8hk;MFnvSTPa`1lyB)|22CFK5vbi(8eh8*ATw`$$d|PnCwRnVBcJR#0=`w- z&X_86Eq|P1^G1-5HMBrj5cs6F2NpZpT>qtB+WF=jCX8$^v>4vHWAUy9=$#fI(xx|- zc8KpR%6H75hH}Ri+7_HZJPQS%H5POzxA8PZy@fMC%&X>}|NDaXAr@lbDWvD-#s_EZ z@`4}9FH>fvS)$sEPcu3i_I_mCL(o_6VrYAjqphpk3Y)^vXJ6iviu5v)CGrrJ%+_t* z#T;w|0+-Gkd01rvMVHTS(hWyduqMpz{&u97a{1dS5nzLb*KZ7|KHx(>IXj~dqepCv zaJhk%se8+XjD{!YG$|oLYsGQULTdZrK#4Vr<`q%g)()jwr)Kw9kt>!q@~SBsH73saj3=I z&2F$6b-0K8$RDAitY7+bTg;VW%FqGc2r7(H@uA}$YC{k_c;isnJj%cg_-*&7?SXU* z5#dZ^d#@||ld>V7V5{97Irkry{dpx;0Ejj~E7&v1u_t4np6rrM1h`-f;$G_MDr5+v zHFiruP*@gy*O_$Qu1k15WQwh@9}U_inO`oslJaSPTQ2(xe~mJjnwy}b(qJ@Q^6K2} zv4qIYl<7C7S{dZ$E(>!o`yuAQm&vd17Quoi>qVay#~kP9&kqouyJA%k;|q-xLA<^PgLi>Su;4t5*kGj#X~LsR^lxI7Lurw8D~Nr5kzey-a)mF<-6k=ZH!F(N_sn zZA;Ys49CvqJ*VtTzO|RCfYa~C_s!?Y|_=huz(_SJ-W^Q*(bh3*5Hli z47)``)`muxDWz6VysB69qILLh%qqee@cdm^$?@Xn#P)8Ze|Tep zA6slH-N30Dm%u15?YTA_j3_lBkHBq?ASJZ9nLxX`BlBoT%d_!A1l|g(MpKk=_Ty>t zjT%^@{eK=p$=o6=ZNwfOSTgA!!uURo{~a?hm0m0JKpN_xNUXgP^MvkTeKZ`{fxju& zX+ABiO0!4PNK=tS^gQk`m~K$eU%$|LQEl-RPg;t60yU)+(?p#Khe!O~undl1kqk*r zZ$)~~dKqg+AG`5V?JaiMH#ca!QF2V5Q2+J8p%i%A9!LvuUSP9BXr^sFpTrDl zj=wGRg1|tdeuH>a#OYaTTm%*xK8P_wL!XQi41U}!R5TZCB%p22)0Dq!x)zgl)8}yg zn$jq-^(d4n{*K~bBoU7srr6v!?R1e~CkH0+0o29_(^ z>9IOdla9JiSr@lh7iU%M6N{+Rx(qSYCRDyc9G1dve=_vgr(^GG++nqo)cNV1O>6N< z;uRr}Jww)n>5t%jKLL?-wkN$zQa3eJPBl2AFwxLNM)F4}4$gSxh}Ji7JG;jFz^FkX z^z2SoSC^NMYSRQv1mNJhRg=oSKq9_MyAyc+hQK-7j&a)M-EBi*n`hj!v{I#@F)e2tbNML zLQ7N$Zf=%@nj|Ps*7zuz(g&zQ%NCkfKqScNEOY5eC@@ zeNrLTJ;p5ke-BH4>6)kY1CZYZ&Q$1ls$uys78G(t&^eHVVdSyYC*<)VYK5vZt0Mx{ z@kNFCIph2GFihBgRpsPFb8?jCFJuUrPf8nF+0PhxWNWAyE^AE4%{^_oXR`j;TgFtfPglRo9pJc``JJy%Rq zjV`OYKU3K3(K|VGJh*bP_9MBKPjC-+Vt{A@{R+Yi**z6-+xbF4?IrS#JU127vUBIG zLUfwCd0l1Q)}EqAZR(M%YqccUwT-+6%2#^c@;IH z1=#%KalaSkDizkR&z^{|5WoUvk_j-f{*a&G zca&Eg6*ff0VQnTe#=FHHdRh)WtsNa9%JIzbM?s!yVYfFg4DU&lRTWCqJ8Lf{6w7n` zRiI;KE2@i7bswy4rLr51Ym>>&3Hx%6uJ_Aao@;ELIE^HkACfxfi*{w0$qDf$TgRH63@oF&wA#XH3_{9Kjb%(U{vw}An62tbj7p-pfI z+%I5O%6BKd$sYd9O^k>5JyGy7TbbLxypS~feze4F|jV;{1hDs(bM^zYx_y6;Gg zUOZyKn%kh1-0h0VHUF;nT7t_1G{#?(}2kSXL3X5~b`0`pBV#0hVa+!!TOsaUdF1)|4bZo=!;T_OS}g8$ zLZeucG~Azt7b#SU>MW>~(ru6(Jgw;`pU(1zSb`R(Rz|~5n=46DQgwUg#=#452s1m< z6zRxSpPra<*fzhL7#7}^ke6u5Z#;CX0egcc*eOBs7G=M#f9Z+Og&dSXz&Hf$bo1^a zFbw5^Y)a_D$CmH?=YoP3OWqpCTz@PmRImcPa{H&Zk?!-(YMmYVq(XU`TGM_AUH)C= zND0S$_U1^@YYDMh*t|b9cG&lJGV$^f)|zT~cQdW)a@R(41YKbJ{TZ_p5yJI-mrCC~ zGx-e+c!p!%kkHDLA^Z)j+8mKP|fq;S-nro zx`)3l_@Mg;F7`+u^w-sxPF@68ju+=c_fNQY$JxJpY~ zj8YZ-Sdubg_0wk%cAWe#L>v0$K|O9&=+dk@@KGFL6xL0ROiQZr%qyT>qDQP5d#@txTirRG`fuy5q( ztpr0`=2GbtR5C*ch&^svpZdT06k_FYjEoL%F{cb>C8Nf6^y3cDAQ!?)&E zOWnwalGmf5ZgmU%ghWUTH;fYx;W(NKxVmsukXMkGuMO@xLNX_Pjy5xC7kQhcsq8sk zXO}jm7Gw!51;+83u`C4!(yEi(s?1~M&9N#~`Gu{1go7yNpty6X;4eL}Gb#T4wfzE| zS#N<^Fb-~NyBoxf)5uPkU4&CuP9z;Ol+*KC&?4@dv_=wlJfyuiA{Z~S!~)9&pNAVF z(wa4<#6@QJ*cS%F4<*ySrtWJBNBMT;6KH$%0gsA+at%|JuNb#YpbRIO8meS;C5e z0mXgSJd$dR{V=5o|5qAPiGhJZNJR8XBacBqfF$UWTm+cm!zVqw*WtV9nlSXo8njnpxR z=q|ALc2v|>rS?@cV=X?YC9R60cIhzO-8R>-F#Zlk6=6u~1<7#DnkjsqcY7YseS5Vz z+noM}-~O{z%j7f0FoD#>kLfT$&jV?G$LK4%G&0@0Jjh{H1dI_5xm6e{CKu0@-Vo4e zfLDBMz=GvU34e%T0c(3)CxJhavbMp1cpi#k=gB&{dwM{IB3Ck|3$r1}9cLfOl4St( zf)r&b$A2jIk<&(oIV67*awaf7?8ynJt+LUpwU z+s^6BHBP3sgzXt++2>>`P8M})0n|yY8tN}_mRXMXhE?PGMiUR*3!+oM#~Hq!-M#!Q zgXZ#+B45&jdSvY4o8Fc3Dq(IIZAT z5&O4U?!GlK>L&(0g}}jI_>|yTA}uvgc)X3LQ`t=ZJUk6?}SeK zw`SMsPQJHQ|17F}oF~pRUiH zx*Yc@!~_V5Dt%h|t&wVg3%@4<+(QsCuiapV$x(Z=KD_T8a9q0Fzk|`?H9|KO-GDo) zM=GFW0ZBG4@Sd^F|CZ*t0=YI_|H>3$4 zKoT*So3pAiTO3E7Yxgh=d-EWI>?wEn>UyWo*xH5Hr<0-S0->jF^;;1dg)6x z*yspknN`F+(PWtY_!g3>y5g7~aFQjcFadpuFq{y*8ynA{A9SR1LcC6@m<%11VQI-! z3IaGz^uBeOx~C7_1a%yGbNh9oRNZ4^V!lDThZmR^wL23q3bS3p@Sk$ylI3-6jZggk zy&8pou}E{(35i19fW8Gdzy1OAzfqYrwzu~!Q}t<;rvuoXOML+!)je`PQT-#&TFuJV zbn-+MM}6fr`%2FU*S>*>ZF_~KaWxW@V2BnO7WMee--@>0nm5X@mOAggJzNqVVRKog zBTx8oy@E?b5W4|C36CZn|Fhni;3Vp*J7&d%6ac0QW@c27`h#-P6G%kJ8&+vrLDS0l z!T8__VUFI^*}AV>(um`Tmi`BgqhKy9EO)KvbPA(*kT4Y-j*hpX-Q&(0{OgE|+cd%C zZ+>agLd`?T`8=$wyfG|2p@|eTJnLj89?|z|?XV*t-q015=NU0<+MPciq(z2i;Refm z2Q^DhBx z*NHpUmSTJ5G>kT_47)FOcP0Cg_Z*7SDn+B`M_HQG=ZhZy)BfV!h5#R6G5iYi9Ri<% zHwBW#SGk7}4O6Y#3Nhi}bHTpmAf0?`0M?Pbq?-Yg;iX^SaL4;(3>Ufxo06n8w2#}& zS{Cv1Ll9l{)ei98rwBC2&QAPIbU1x(W(dpmmcG3_m^1jj_pOnBB}A+YYBxmt49pwK z>J5>Gpa$M|f;GWC0AK!v_JM$%zrOIHw6?XGpU&YJ;(uKA)oAdwBH=}+70H*2h_edS z1Qr@b-ye)Jm{IKnk!tnK%AFpL4thmID>UeT8<@{zZ#9AG}Zf0CNrIaYKb{qoq{?RxeFX=%36Al}T_Bc`t8UI+`2D^LF_q8tuji%l$qtTo=M{4JVKPOA zx+#XTL*r;sO>S@ER7s~Q?H+K%j@f%^`)1ydW}c&246l?9!>|6(Jloy-xT*5r)_;7H z|0%LaQu`|)-Z3~q$3X*_H+&`U?kstJs2!T6q%JEl)-&+PGa376Lrr^GeiNU+Y2C8! zI(~-jf>ER&s2^_OTK6?#mOjxTED`I#JLQF_L_{==1Qz~> zOjaFLUlPQCOF;CfP%=5lfnLLzBL_V@4! zL`hT$TL3-QqranMi-lSv(lggA=m?3(^^0|IwuF%-6QV0&ifJ@yQlynHbDC**ADgY9 z?R$ukD4&Fl6|R^+{IGx{r%vFeTr8pE4XQ(N;{#HRTXYjqru^n|+)4E#hS#JmL52@u zDG1ua)S)c3Z}E(HG|?5WF|cEwO^WAl2i-)zGg+)v^Xoo)x{dS4bw{<)aG(`42H-2rUZMGrT|44LTgr6T zK9-SsBU`~hUlpoT;-Tl9dC6NvIs4Zs;N#ON`K)JH{$aEgd`>UCr==ZQQ2|eUfA0wy z#26DI7IeNe4`qIo;YUyInak-RES#o_qlH?MOvC@ca=CKhaV32eH?UQ-{`n4b!! zh}QpEv4qXZ7raYIv7YGzzYpQ*jM+y+mQTLU*Uh(GeM2YM1@;(So8&zxS|_~|HZ zr~}J0iQLRlYvin5h0StR9x>9Bq<1nO_L(6O@`(Kf_8~+X+aTL;>$2ma+(9IYbXZJ- zKYhB>%zZ@G2-w5Ya+1X}&zUUNGT>Ys6GIK-Az#PM;!#8O~^T_}-R=O$=1o zXx2B}Y3)J-Me{(npkN%oWxkRU$;CBVec_QKe!JfklQHGmnCBOc4@mpZ)N{>1)2QJA zn)0rtCNjU{XPu3WU-eaP*-K#erI7O_2L3oDaP}TbO5QJyJv$wak~1HV;yGUX!q|~51YA0?enc|bU4i1(~`fvoF!1mv^Nhjuqayk*5lJD5u@nr zi{h8ZQbobBJkldzU=m7w=hZLGNaGSX^+2qIZuXF0jxcv^|cj(dCUXZ{G6k(~D~ zB6+Y7q<#e`W;zjk06=1a$SsXvBpPp1G^xbi+X%yDQE(F$3Fh$&>d20{7jBP+mT8`* z)m53wHK_qR2iO#(vxg9=p?ScCNB;x?A@_z-24{qn(f#LlkRooPd^f$CjyO6+I@Yfb zI1y0<@U&B0Kc>GBwpB+9RX5*5a-kt$1gKKPXa|8VNG}@@k0($^3jmK&ufZgT_#YrDV`7Vjf+DoKT8LSfN@M6%n|;<)YKZZ?eDt8GNoc*gJI<S+3P-91=kd=~B=rH$>{z8q(y(MUWb9Bh@*>;YabS}Gx#o$N za>f@AeM{25-=#$Pt7<~}lAbiR8MHb?A=1?C_C4k*CF#=n!`fbllyXDCP{qfCE7NdS zqq00aiV?j-fd%kbKac)3MQc_o!UoLvIP`0-!o5HV)@m{JIY`iUgzr~*5BEUAJP17@e+WLU0udfe2 zq6~a|1=2zPA*0}Ef)BgSy}`jhP3_G-!FHM^c0A<Tf>0oQu)pc8iRq2M#(V~#F~E*npsG=tFm8nX8~Z=CW7>%>J;`EiBN356^8??_=qG&(){dLuYa}P0`NVLMC_V)p1^oMS2HT0L<$}#V{uGLLb^_(8wdg`^s7tOgf zBCiihA)Xf)LPUAH$40)RA zk7t|wz}K|u(`b(h)??^mA%-Oj24;ZRAuoIpuKEW1fLc>-d9yH$VoDxeo7e{XR=+xW zrxj{+_g%+Z_hK0-<%EnR+2xg$R1*js=(YvtxlV@lxpShLAX01A$IOw4lClRBhDb^P zloK4R(!G7#h^|1inD!Iw9D}Pd=bnI~4HL}*xX!HY~M zPyy8kN&qCTBr7X$SSNoj&A{(3D`lFoN|&R6p{|xM&P&UyKabp)Mu)>Q(wjWo4ZSN5 zplJjY$Om`+JC~#gF)k1CBwbGTZ4hxjST~WFQrHR+>-3UoV>ieMCbxLP=n<$ABnS-< zje&sG5HPm~p;Y@YBMpL59p=S=xLPt&(o)+Ub6D>Rw9rwlLLSxF3e5Ns^9l;^LdzQx zzluWt@nckzre`%cae%{X<>%M(#L7NXxy#g%B5p1kp(1s2RUH;l?xgS^|LUrdcSP!o zq*;e2Oe$Yt#CyK-q*7%-^S#btaaiI%YjmtGvZtlsR(`rw*rF_j! zQ@36}iM&zimV-&cE&Q;{s<^XOTc&zU?N6JnC9Eb*sERgRuSz9;;6>AN-i_H0b45l8 zB*z_^S3EpC8cv2)u>z$IB8)I@P(*CL+2!b5J~>*I?=WiiBrhB3P_9y}Oxib|bxRBk zeT%+YesH%=Oq}{9aJ2j2jk@@2%iUq8#ij;wU z$dE=na}S%)Jy(b>$;5NIqg9nNV^Mt0{kF)MfPwA5P)#U&B^L$ zp#SCM*3?K-*E?MfgGX%<(S$Fn2mP-s zjTl|?0--j8A#8z*)XqLUG!zSIeg=>lY%KWKawDEMQ$9~hBzEKGdmjNF>6LfwSA9cPC4Om{N+EklAWshm4US`WSdqK?a zyRY_KoH?sB>5uXYOkOGr}3s2o95BCkIthV&cH0B=SG|e5QgaChq6lStDcdS%Nbn2-HXwR?u zFlkk8@RFt+??cA98ytury!-}SAj1et z8P8^KS@YcrI2%d-gl31v*jGzgn|sJyJ!~SoFyiU5A3SgZ-*5UCiECw`D$OQ?Q-?Pp zZAF0MdEJ|Z3K3Sx6vgSvKXWe|{OoV|IN}Iq2lw&}XkG3-W;bw>)na!x`r>un{?^rm zqxe1NzC)u3SJ$mK8Yvq*Y#^3R3d^=mi1Cbih3?#LDY$~xG~ zJ{tBY=(oQ4yVd&*B@YV(tO^8>e*()iBB?}z>rO%I{@~x> z^92P3qG7I>-;<&-RZJ-ni=@_fN~CgP8N%qFKlxkN&Y=~aSx)l{Q`E+=;J=nTkk>;; zjZ^vkum7o>PL>xy`RsKMP=;_&*{cr`K ztM`RdiLS9fUgO=biC4wbHp{+;s4#^9O~=T&`G*o?+q>J^7v4fKV2c5+4Z>aiXI%L< zG7_=XzYYnxNlo3aNOKVnHjvbah(6P1e-g=NJ2~x7RY$kURJs0BY#$w?>(qUEOOIsdn$03kjfJ2$ z+E#2i-xp(_87Mq-{q+!dxi*$cj$}Q3Wj_HSHs0f{#jEob$^3!>nZmu+x!K^r zIBRI8oarVi+J4o{nJm$Qr7?M|WoQ^O!q$lLPS1>)*x7Bj8d`a!Gi^cC?A#o_U}%Se-B9sh=;o7@q$wPo`17YsCKEBWBE3!BPEmwn>-~Zu1tKmt^4bDD2cC86 z%@P}4d-ctQfj7q{9wa{qB?5y(O2@H-Pqt>}F`eCsT{ppIuH8I)V1Ow0|D)+F!-873 zEewbXNJ&T|odTi=N;gV30s;~u4bq(=rF1BubW4}CNH@}rbcce{aOc|Rxj)Wx&JXw5 zd&64an%|gXykqZjmO*T0dvU#LDq1kZc1O}nl5b6l zmA@p1>Uic9Zu=Ehm?gOAQ4SEJaj_4;Yzlh}Q+QWI<0tVK`Z zsvGR~f$z`e?)uSIt(13&$PRe*Nbhe1)J-;cRG&>QQ;lEpr*62mMFmV)uwzm^`Q*=$ z64~fVSQ_zx$;y!nJ@9b$zCH)7t&NP0ZM7_J zkp6eMWwK{mWPO{G@;zAHphy~$2irV!THU0NY-uoETpVR^D0;{zkH*zZzH~1GYhVF9 z{vsi5q5nH9n*2J_LEgE7d)z?^bjb8BO2m$uqW;Q?az3CrL@jZa&ZMjbu0}G;F~kzA-~%3PzK}uu#$+v^XH`Q4b+92ae~8!NE-A9YX5F27mS#Ur>r=(@%|y_R2lgwr8!F$o?xBX zt|J>kE#z%y5+4zPhlDsFJ%!8_HUo>yvr7#TT?Y$6yZxH^*Ee~Du1K+MRP z7aRYj#VAVkx|B*LxT+xv_0V$c9^`VL0!wk4H(l&&!-l7Pk-MbiGRxHa!^%+82i9wk zZRR%qCE(y~D0JYqVBXsGdr_2`D*RzNz3*|Ou>dU%ewwYfc14&bI6XO3u{N*a2@dYo zC)Shnjm003+%BEi=PO6NL{pv&%o0F>C4N>lqM?`NA6;eL2e~WtU zCYZDTln-P*dx=XaK&iJD9?VG+?{7ptR9;FXyA@ZGca(Z~^a|`i5PX{ZGXd>mNK1DV zy$k^M@AR6Qmvg?HDRDl_&G@muIY*Yz7tUCHAs)4eBX%&Iw;xYV_~;YkZr}3Itt`IJ z1{-c0$8ehs4i5eWloH$W8_h6bK)fyX?u5+fZ`+x*cqTekuTzFsbuM(BCZtT2v;7WcE6>Zf!Z!6Qk&YoPK6~=1%;`N4{g4NBEs;2x>@iJ^L=4`r2?R-^-(n&S5 ztXEEMe@WFjqC2OO%cG};ry4;hLR7s~olfZNbbw-Bb*AB`u(J^t|NMAF_N&nqjgI5h z6$PGnD0Q;6r3;c9n6q(_L85-j9_(cM!6sLu>XHhP^Di8UY=Wb4V{WGu3Bl<>mN45j zx>EOq`+`IDsw8@Oo^xsDR>A$1xHNS(WG>LLUR_;Vd$W$mSHMBA>p9;=G_vXEAJzw z2zjQZtOWgZ7_vEZs}Ld_qMQC+>VPUJCJ17|UZMJ;wY9BfLzuRzZO>0wvST@m9%F|Z zuE|)iwzy~>U-_SevbQ){cJOOKq!;daZs15oCV!G*pASk>7&=+8RiD)oWJ@@21j-Wx z+*2eZVf&}@n!}d69nSU%P(KC)53rH0ti47)9-b2DV-aP`j*YIt71_g}^LJm!io)_` zS!S#4nCa`P(6G7Eu(h>?>~C1h!b{lm(qKrUAGQA?36jswoKu%K+#myUgc5W{fH}-Q zC*?vJSuQplDW(+_-GP$(ZoGtb1}LyVpidBcFL78?G%}u6>^tK|5a$4N8O%|-3p`U% z%@xdA@^=+xOOBH@%Jmetqc}H(B@1+w8@+vSM`(AcCz zF@;2Zd4@dpKAD{MdWpPvU?`8axmmZndoJ8O<6ybl3o-Dk13?ZB4s|W9rM3*-wY>xZ<){r`4>r@p>rBj3@%a_03QI_$%@x}H)ECGpNtNdH zhgCYK+4J4o$)EL{`oGJj8?y9%`7+ldE?jz2-_O#yD%w;~{zGBx#Kd!OI(F1u7*2Wz2F*eDZ@GzLbeNi+*bLc!B*Awswe7Cdv$JBZP9m(5PO z7i^!y@E)#FFgJDNeN~XWfydBV%!gHj6;PU(o^PVl=hV5vR$t*q%8CB<@AhO2QvU>` za~o)N1(yz7tay=rM>x7cfkZOya2H<7??#qldof58IC8t~GvO7CFY1r9s!O8|CDdfkCyqv@W)oLCrn0w!LX)s7{-6|Oy2e7&Kkrfa3 z=V@`4^UO6DH8n#0hQ;8I55xRP#s;Gk0aM42A z3FR$E?RBRJ7T4Dl9E?uU_|sBHt>!K-znV!FY7znq5k6nv!L7c(MJB%geZ5}`%^h@! z{?!-^e_xQUKeMH8sz>Q2b)qJC<5qFl9z5cWzq25ay7gT}Ere&fdrCc`#fri1Si@DS zUDd&aiz9HdV!7tlv2)$52Jv*AOWo@Wn4;vIG>99uuxUMa<*W1U=2ZgBj~5=trPvt5 z!T{LzPV1I>p@D3SKVkX!jr;SwEo4#HFL`_m@u+`+*X%X?Jw#5D5!WU>G!&3a zZ*D0L9^OC@nQ)By2Lu4Gd!4879~{06VDf?-*(XzD;=ZRE8w> z3EZDb`pJGR_<$@pf(_D}sqO0WX$zD<_hKt7EUX8=E2V%lT%$|}M;J5+$T@Icny2Pf zCNJj4v`W2ClWBd9;y8t0&x1hMdv}*qRg@?6>x?5+xuR7k;Hl zB!$@B^gVw|!KQ5Mbf%~0R!rA2!5czCLS!ZN9Fm;yk0j2jMwqt~qPUBACttBLK_@B# zv4I^OE*F7;*I!~d&5pOyNrw*Zn3VmKdFI zC@7X>wrsMYqYJFU?%p}+L?_ey`Cfx3gMi^@dbf&r;@^+#FZ-w2Keo=5zwo!9V9O%8 zMqsnDzQLDg(X|xpM5rQs5&UN(Og_@Ms`}d$@06u4c{*LjM2!QpyVv-?TS%KU2sJsm zEGgSVdwJH~8Kdg#*Gaq2RWR6ek`F<72+(RfcAlS{#Z+|2wXDH1(ALimFCW7?_ft&W>!v_ri_rG=}_9H@b zmV2qKR_`R6-g;m?o?h9)67nj(te@SEN}90J!0V>y$ms8ptc0kO1zHO=xsb51C0O4} zLl+0E8J+K)CjRazV&eJj&-@kRRZjP@_lg+hotr{7R0?|n?LTAnn)6;)mB61wKs6Q? zGZN-9?@62CE_DJ9aYVW2ZfmIJ-#;z*-C*=IVa=o<>c+Jdep@5zk3sTT3})S<>Ru-} zZ4_g}*1JNvXq*I3rJ_z_I&uXP(Vt#+!y+ytEe$oMOVY~f9?Ir7jQSh0Y~QlAcvh1M z*dk1B^JY7o1q=zTl_Y(A;j;7rd^V?lW6*j%7dbilEzTQM&MZoK3|w(<+~l@gy|=l! z$->4)_v8s#&eG6;Sdg9$HK68fY&db4mGF5^Wn;amZU$08>@0}U$1`VCe4)KMIMH2T zD%hsAxACTgK6#dbm;dmXO&55iAhJgd-|Zzp39mviG0p$@PN~>`n9uvkKI?cN8$2Q~ zR-~$w{f1)0-#t zM_*L(3{nZ+3(v*8DB=B-`#4$3S%;U9N&Y4LG@wIyCHl;&z&D(d$iBnTSj8;P$_*LN>MI; ztf;>C3!Y8m&PZB>2~`1O2VDf6G+Bh=YM4TW@(K&>e7v;x39W3tB4n?Aj~&y8M(6T? z9uC+uq;CpED1-T1NS!qcvCiqym$sj=kLsbY99acZ^>5fCtNFzENCL>AR{1qXp&O6-qB&5I5g?n1E zO@^0C_PEn7W-5NooY4*rCWM0*{PbsGjV+2t(~}wHWXMj ziMb_)%OpNZVU>Odl|d|gCfqFBI^8&`-F4#1FG+Tg)@X$!-rGb(j$KW0G#H+TKV=}r z`6*qNbwyB=TH4?*Muk7aa%gaJHIte}k3@z=@$OHzK;`L3iH35lyKbThXSpt#dJ_qb z`Uh(RuVH-mmiJkLmDGT7$m$-`3f7M zb%GuyBQ-JZsm`bAYcqaqxq92>BO}USAo$46Q1`CiTZx^Wy#@lCVCmd6!J}LG^h|w) zX=&%~yP7QOmJMvr4oA*+p_&whYYdhJr$RxITTaIYLIh%2=qjzTTJkGFx}~GC;s>QG zx_Z}=091jbis1Tkc{1Rms-x2lR_{J7pSf_`Sgtu*ebR2-`|7g1>I+MY8_pLmpMBh- zQta&f61y!d2RkWmA%Dzm3cnVsj8l1TM1cVX2QeTam^9$PA^CpT8lc|)GH^}BQJd@A z=a}JV#;OlcE|;Wh1l_MOhqryy4PJP0qsF#A*tW^f><9fD9S+j6hum>hYu7=1!h#pN zxVU)QNwcF$mkqs_Qt3ocOib?oy#NPyqfVzd)f@HE8ETIXETRuOJzXGEiCh}*-3cp* zc>VCjX?2^qi_ybLQKBeTlaa9z`wl7>=$NrXo-SCEN-zADz0to}>!aZ)POuHvvu?mW zAd)xh@k@@MKHmtfCC_>ZExo81Q+z@T^JaOwUg$~ho^hpOhKMS&+>etRXL4Mm`B8i~ zoQV!a*O>j$&0&^V&tQ-!)YR2me>F!xdbgKL%h?muzfU3XewFYwf`lBPR{kXD_5fMA zf&`kC*DKlza>s!BoAsJ&l)5Q4RZg=5-Nxip@85r__J9?E+#q4oe13lZR9^mk^5XnT38w{GsOW#e)Yc6-1Tbe>g*>LEbOy`&2f8UDuekRbeU_1FNF@x4*PU~pD#**jo{;Ms3_-d1_D4G9 z0)?H|uV0`Q*%P`<@2egUcGxoHIn9^Dwn#@;H$?4UR*prgZru$TV#VL$9qoqgtM`qo zs%{2_qz5;@`~{@eo9I6zX2zRH3#agW=AUnpA0S$POAy{w*LYq{%_k5$(qk>x$%fo~ zV`)0q37r{b{s^uYVt?|Z(8tvPMv$5ySR2{+uI)-`*eY4_Ff zp=J;!s-J#-vx!bLCLW#)tWq=Qr$9jeGbn-g8&3Bn`dcqcR@qEQv?p$1yzMk*sa&b4 zcSZf-Psn;tKtAeW*nRD4#g-HDR`UF0Mivt`D_lZuZf>x2);BbObCMcX!&`s8aUM}< zKY#udy5s;s1vLYM#Rg4RAH^QxiQtt_zMr&e^pwDBl7rL0Z6S~((o!8;*NJ)V=T1|h z{fE%?yq5iN%+*6RirmXZidrG(yC`6pYBKjJ1%Db+NzCHNZ?soKauVS$G1}bR3Jvj3 z3Jh9*PK7o#HBJBKdGv@Iu!=~w9Q`c;@3KX`c>0^Edpvhcl|S3#=ghuqG0m>2#rK`! zat4Du?yJEFHa@AS&4H%2ITHlIWAf^i%EjdPh)o<@Fjb-Sw!%>3#l^)>GaeAEkzX=I zPLS&n@@Fp-fosNa_(sZ2Yjb`9=K>t13(lrv$1Js?PfY>*unJZ-#w(Oa2|ibp_Y%;aW7!$;{3L@O%-v{#xLaQv~cu@P!+5(*N*b=SR-) zjDGXxqi=kd!^N2k1p$;kp7gZz?!V^wuvCch1k@yFwYyXeAudt&Yu34yP+xeubx z)6}22L*2wsffiSPipaq3Y#nUr9!zzbsr&g&BqiOyLqf~{S=Cqj6=NvMUGz#UnE+G= zCy#KcBadu+?-q>ls})1GbX&5ZdEdvXDW}1GNqpsyQ852Bo@K2ViyED(qoVRVtkHH{ z--82L>iIzCfJH=2YGm+!GHz71>NU*_oa^>qr77&Q{1(oK76o&h&x-0Zsbrp&ISvp5o)l)BUyl545EX{PU%SemTYqN&n+{Q|WdmHC z%gV0aUK4P}+LVt@Ax+50?bgtcs!+juCm9d#YPw=p>5JGkye8)VM$IhM5b-pc`z4kO z%S}`TqoK_&zt7Ll$5EbntSb4O5<&_(mtG>|xt+jfurq46j*7(O)CWY5MhNI|-*$ZN z1DjeTbpcIeZvj77^L8#XlL3wAcCLw@i=aehX(r|aa&q$h=#7mui@TL~-q?@XN8XUZ znVS-Imo!jFRigB#$;r!#tse^DA(utgtVmWX8US15(t+w?DWJS9T;y z@i?8jfnO5F{V%%W4q{@ckUC;wWNa(k0mTi`RFT{X1e1+nIs%l#ow)9#l3+tuk07IR zvb;P+Mn1j-5Cux$Uyn0q75NQ-p9M71yX|vR>of| zD{TPUdiwOKUBe*K;hD!LpOsqTs}posc84x3yPXyDhx1vM)V=Az6`eS)ke}mk%6{ES zd{2ylfj#(Mg7Im`jw8R%*hNx&{0&j1Q53#6)i@&B_z#vxc$Z(6k}DS+uGfnPV^K(( zuRK$nI*OvXEA4v^8x@@MY@Y*7CbK*;`m)nNvW5UTY}2sgIrU`K)kl z|0p}r6d!$rmKFo+NqoMAg%SzM;6<&Z#c+4mr1K5Q+kp|(3XbUMec`34q&a=*tB@&-eG4$p2Bbe~b&-BbHFUacop*ow?D;`jvQ;C02HuH_1bkf~M01 zeg1KXuVwpC;wQPKsF;dOxpEb79z*r(GSr;A=;rubU6N?tP}8AS3?u%e<9_Gn96#o( z=QK_fN6KDw5u1c=MSo3XpC~2;K(Ab@lhXAYHy*t1rxZT^b*;a?F~TrHZ|}~;^_S-N z?V)cPrFGVW>hWijrb9+Z9ej-Y|qrhfRGRHKrUq+9sj(qtxocIg8L}QCUaxDnCq|8U-Zl0H$0gm zGFSGs^T(~k=9xqHw`2y%PLEmWvcprYrd5(jMotoU<`-s*`8N0aZ$?`GjW(mceH%F# znPNhqg9DJkO2}eDR>`S?M8!3atn$wt&srC6>{%O9$&E%wm=$_qqh2>N4nR`{adEUy zpFWxFve7Kme#5o4k`@S>kAAC?G~2%vA+oEJy-ODOKoCPF!!N#99C5Efc=aYiTgI|I zb3vdAMRk|%I=VW8E_jUR`Hg01j->1qtkWLhuvc{0aToUD6Mm`t?b3bq=a$QK%`N|ZE`y*SKg5Bw0Bb%5CMHOu{pHy( z5C=^UKCu!-2XyXToR4Q_FIUrb3dhBuy;85Zd|lfjwIFK{R>=uqIt}Mo%q=oN=}E zoQQ!5n>`b+2G(2;ZPfH zBxq*l zg_h`4TRmW^z(q#+gy}UqQ|9dzJE<2p;cSXarPYiRtzryhlM~B9D^7SpP|ME7_F|k> zP>>Re*$T37bB5>gq^|k0@SAgw(WOP0E#dMZW>X@e8^!PV6a4hx%+~m8 zPc=A2)-L;cW6_C4+}5}rLp(p1E)mOvHcwlZG}ewCEAZXio0!r`1@+PF7$cEj0%A6? z0BxSdRIkv67IT@rf6|;-8NVxA5PsHSa#Nfr4!=4fBPuuU>oLtjPBIXhcYQpy? zzICJYcDYn7m%KC~La&EA4eY=J;KRAB^|$Wd{#8rc(O&WI`osObB`76BLC39e6xIIq zYZng9A$#6yzQEwT$o4tQ?pXjN$JQKA;R>F{jR{HgI?Fv*yj%0^UU!V=)ezaCp+4zW z-^ZjZwk1&b58%UH^RG~uK~*0EH;uFb;3s&wqj9~eKF%_kfo;awOO316RPj=Y#*vQj8Ko)<*D(%xyV{a4Fm zF*nl-L5*)q;Q|w&HaGo!qNbwKj4%~|m4|C>M zK?4W}22vf@&ujPMsRb(*Y7zv`ssF=hu!CoZPf76iTiumRc_!n{k-V?^4T)cb>h1)4 z5`GXX`0o)n)_xnlH?^ZF{UwmN56S2J8^cJxENG*9d-1Fs^ zVMP5SH%)eI@O*Bl&CB$S?5H0}ShsA}&`O-HYK(aGV81ng_h!FgdD2HvSNJ~{^%%Rt zsE@?ad6WA7YU}HNu{1y_G$KsS$;& zFLvOI4?hjT+Rs|`Y*a~)QQ1Xm+6qmDsLu1vcD8&fAPh6o-e$a>V`8%+b>CC=zvgaS z#WQTe()^A%$!ulu!}_)K^(U_Ur{B#)znhw;JvJ73^&|+Xs)wU%Yea3g14h>SYyX}+ zx7Kv;xw$Bs*%=i=m82_hJF4@S-v}Q`8Qh01k2^&E0DRnoKc8CgJjv|fcT67VEbN-I zR#yF0AM?Ldq77BgD^s9DRGU^bL9!kby;~@XSG#Ddu94Z52=W*cUo8zU7x3Vq&)Te%@M* zV;{G`OyVd0q$<_tqUx%9T*$Y;H+3<|eDsfQF?^CIx(Xb zow4G}KpQ-a4_RN=9va5=tOy?TK7{m*(x$_XkY7V-ps)6lipwpD3W57yy3%Zh^(p%b z*Xx2*9q34Wk)evp-%mn90s*lRGAm~CRK`j~*zT4LeCNJcKl%Qls6%JJRZM-CzYA>J z$iamIZyY-8&)0y)Zwz!Rc#5pf5HM5xl|Rqm zT&;eLS?NnJLVE@a(NlM!z>K}*7A~ELwwGv%tH z_E~iuzbM8yWZW(lVD;KoKqk0ayh|!%FADLBn$Jyzlad>|4`X+qNJNOdPg~nrip(Rz zc6DV7vj6WWg2Gut$X;K?8zU65AfKC%t!(k3f;W3LN`@NsyWC1du@(z%&gXYysz^2) zey_+026NG9Q+@Ha73;PH;W&5fwo!#p<_h>Y6J|{z+UlZ@p6fb^{P7-6 ztk#$8Z|9^am{EkYY+!5@*Tl&tvKUiyMt~{%K9jQnM3Zjhd<4ksWQ94Qn~yGz;?Z|%G0p_>smS^O zF5K1{DcH=7ZJ3<1ah7bviris9!L z7dI`RyaxDz#BPvsHWDN+xX@t*9^Y)of9l739kGliP zlRxHi8lkBz4wwwrl%pKK9E*fYWN*KC%qc*lv6GOHU|gxgHGMNh#77uJP-B?FVfm?= z#6Br+mJxvYiRbMgYYRTnP^0H*+u|&}|5&}f)k-A`{q$=#ObcS~;dYgSeqJam{F8)L z4=`b1Xn?)K+{T6pTFpREDu=yI<4JqNAHCbZ0_L4EM42)!!!DMs`QOXurJiwU(WtQo zC-eBuDB+g99-v0-EU@@x{g0f=27ad&05JQ@D-Uwn6Bssnz353+6sQ@MVaXTh%X}6C z5GFgfhZm|ZMmb2bKDoRzi^={_slnhZ<>2rTj+>m)G*mB17wnaj1)b4u&J zEh{JIL+IxMZ%)y#`*Eph#rBWI$}l#Qi8H4am94qbrt}x95Uf)%5g97?$ z5I-7{fqBYx`YwIb1nrR9SJYSzvrl>>@Hf;tt%b4|tvk-cBYw}#71N)_xMbA=ZF#4e zoxeH4_3wR86I4~wCw=f!et>tj|5+RoGUjG&0NdCORDJaJ=7`X<0@GB!U;`f4R}u>kO-S>0?;; z|6wr}HAF z%{|Wa-^0?A$r2R1(T8}j3(jdM{Vif;W0!ziV`dI z8c|h!EOp;RHa%8E>(7ovBQZ$_NQRHSu+saQ_ZM1#8ZyQ>fRmX&4(j{|xI6qAQBzXU zVRM@>xVMY;_^UIL;{Y~(bsxKin`AV&IqRuDa`R(ZtJokse4_ zXg*ny{i;qF3kOFkPrdd54|*UP#Je*y-vWmlR=c6n8HNyWy=Tw}YDf#>HG?QpExxUd zt04i~=Q`2?yx})3o6oF32ZA-Vr>Cb`kvWrfpZ+OV@=){IH>Rw}^Frp^CTL)8Lr~J7 z1lWpB8qe=LD{n6tn31C{A2?zv%h+s>?Nehyexs z4V(^7obrt$X?*1iC6gwu1xAp>my!2QGLCrH-n^JVmE=f~=^EaPs-q3rFCZ9vce+44 zXJh_f0Q^esKl-ai#r5mw&u6Yjb`c%o))5r6NJ<$qAs9g59e%c6WqxRvsvbC%7$4yM zbbRcV_2;&p4|KqNNQ6DGy1UOZ+arq<6#2ftlzHdTcE!}kx&C&+xE2a+Bf6Q2JsBWO zwHX-#r6!sC>N`!Jh8a2+5=PAWUG}AxL;BhBEes4AK0cB{&9E+$^m_ilKNd%JC9pRv zgVDx-auwlrm)Wn#LKc7xPgU82z(9co02LW|XhFm8RF!Wtyj7!>4e1xjpotGMr)m6&E3AxN%)k(3KI&l7$txvNGwT1r%J1sE za&QPEZObX#t(bXv<6+PMM5k<6UV|#Lu<(}zefN!MuJ=f-cVW9`dThfC2=pP!&N=7) z3662)Z>4o{Xv@rMyUvu?zP8fHYVg6T0X{{+xRk*<3&O;Yi*>Nb2~E&$?dpDq(vbbX zJ1k}a>O#oJ40#D)mli>Takw|10({2%kpC;H|04@3T_@`>>S=yZM$F02_1vr8t?#|i_=g+G+(ART_E)Per0%H)qheC<&q?_j#(|Z**-^PTFza1DLV$h} zVI;#N6YKv@kdGbGVGME^Db!^^>IEV3X9`}Bg~(;6;aFeolK&}qda=e!X-a|6YC$u< z;_3j0Sv&HHgd_!v=W7l_KKVA6PJ9ztM#X}-_Tik|(^E^ypn$lm;~-s(VL02Mb0Mdc z;iiMcBl4^Mw#Gzt^Re*t*c;gmOYTPZx?i6k|F)WMY-mwGuCyGthi}u8BfrXx55726{0c-2RrY~^;OS%wgBU+ROBC0NIepPXXQI zVG9MT-vU>!W3NjuFZ(6yR7J%{>(tlRBi?=TMhCUxIhE8(qnZ$s2L9fX$X=g;;K|s*49}N*?IfU`SN_{Jp{VT z0269~mqiFHv*pD8f~N&dF{j~RZd-ReX%dH>Kaw4M^k{VF0Cs`!WuKl-8XMDma8(*| z++i!WGC#*`H?_T7d~v7cMD>sxwIcpe?Wt0_nq+pg0mhbvI6gW+Ck^5JlZC@{PN>ef zu&`xp;;n2BosB%hoS05xw+@Toi*9)KUKpCdta***jk7o+Cs#%!wrXQ0yB<|oLQ>3y z?Oi(mVm6)>31M*G%XC53utnPeI)14iGOa3a(tVSYlT#S>vHX1%b6Q?nNu>?bb-w!8 zvz0sX=KZR}^@&6s<@JWaqn&q^nwz&e`A?GgKSXoNrJ-=GQ?byktLd1kq zfHa`2rgp%U^`k%WQ5dX&-eyZM|EA!>R(R17itC{AMB!N%ct9XEJG)W^Q|h9-c{w?G z2{}28l8;#}`?9}2s%vqFIL2~zk`2O-K|T%i*`MEb8xLa5!9|v}=&{&Q?i;GHYq|LY zttRG~V9SG~irPDaCVvwFvs=<&ernaxd}+N1iap6_M(vUwKl^g;oU z^rK5)#Tb;PBP8O{wJ70dD6O8-7tbsM!A%NJ!>5dcm87-v_FI;zy*?%xs*QN#=TZ+* zQBg<6$780Fm#YBJ)Z#EuYzl3|dem2~A%st$)puiK0}(Vr>A<-H)|p>rTs<8Ta)#V# zp+y{$C_jiwc^+H9gRln3$k@mHQ_0V*I9&72m072*I|U6(+l(5rkw4rAqYl8hzdd&0 zend~-qJheQfi~}R)zIUd^#QDkh}#yKsKFT`f&4e%^Se}rt2dd3uv9Orj3?t& zFry+38skfqhkRND>Orw-d5Y0`w8ot70>e~%fjAW$b91U;wRhKK)+ry5YEcVx&V$g zPjIwFAIFgfrAB68;e6N8h^TC&)*$hZT(^747JcJO9ID<`75S~KPa>E{N^iierF`Zw zeD%|uQtwb0z8DY;n0%#z&wF))@6C9nq6z-(Td#q}hKJO`fzZ2j?$*Um17uU!_2b_e z1Lq`2+3SO8A_9DA58(;_B;>&hvH;W3sP&<{D^uCs!01s=pYVL4oZr8HFF>f_BH?Ib z%0>YP+2%rmwDslvR45KKTQ#Ye&9F=4s7UThw>k6H`uK^q?)~sllh`j}Of!14Qr-$> zmvg}}{%aNn99myLwnybu{ZyR`R?QLH+53=}O=g_M;24_T37;&8ZA;E`Q3rLsFDwn& zT}uC0Z-i~(RflhpYxQbvXb&L*gZP=c1 zkcI5qFAJS+irmL4c9WC7B*^jvZk-ZK8U*(!F3n1Mz&-DG#Ki4 zyIZGBB!`8f_uG8zCZAQLZ4fJr7_6yQ94e4kU5XwLJt^7w6*w=;awV4Ed&#)R2CSF; z{gn3rvE4V2m>!|MyOULLyMpbmIu?g!U5H+t^BV|MT`qdPd;1pYtt&I>B9PTAra#8x z`z2sc1E>YF@?p=#d!rOCixrb6)ALsgiDk#e!qAO#xgR8gfWxi zjG+$OttfU4bjJ6R8#@w~uWsX9H-9UGmy^aD1luug=k4crxb%DBsd-jY`Mq-Iyi6ij zgP%^~M%_+%5qC)uG&AU@U*-%_M3^eJOsHZ9Dr|2J~X=C_@)7LXIpM3s0)nbyU^o!%5S&16>W@t>M zaRipUult_mUgyyHgd1k|!!d2h5!~cps0~EY2;d_`JcJvLQ0x;8M6Uy8ZDZK6fK@mo zM9-DLSxhd>5gTh^NZ8(b!4FPjL^tzwBQ6fZq+7N7u(3d(&?N58YAtLOtVmo7vZ_$~-LF`J(7@sl=^NR89(PR#3wQ zT}uiGjymG%MB3$c>Ai|MhQelTcUCq4%1919yMo}$!?3?TyW2>iSNv}+t4NCrO*%Y% zy#)`bJ1Yo^3h^(34eINQnrJ>~&V4sxq;&=y7VyS&L-NXQ(k{n<0`_qT;Q$T@uBP(` zNZ_rp@yqw`qD+d(oe+EK1xkc~-VtO7R*+K+vi>HX=YoD-GQWrk0*7s~@@N9Gf5>a; z#`&N`J+#SkZ8<~vta(EitPx<{`>~tM7*a<ZY&G%;n+P>Zua^yERbwuB8LBu_%Ki&#cmr zlT~IRi^)WN{DR)=1;*)a8tI>ciAFC06nicl;fynvnsAq<$Lb4yU=BP0e`O7a2NVIg zfp^;t?(Z-BQk#eoOB)i~q8eD-maxREb0(e2rLpRh-V8Sxj7JY~< zW8EJkRd&zAc#6SnDvm}j!u4;C3$sw<3(myMf4fqKC>~CjUEIIjh}f&!6GqO<=0vKA z#1EZB4{i+HRXqQIX?9-u9Q%&F%WH?tS;C1vXY8AbiyjR`Jg(yJXz0(@K#aY0!yXRt5=M)8A~B&5+1zbeJWk!0x#R+ zs9I-v)m3QMrT?|qF%WNEH+W?k6E&lRHP|Ej|za+jZbrXLR7M zy*jtM{YL*I*7N7jkGb|-Kudr|%`%HoHnwrww9S}e<>U1dzUpuFZeZe8NtoY?fX`q| zJ|()}uG%h5s+LDbp8!MR_qhPp(*-#T)rgm0Iq1E&d9ZLjQAL%_3~HHQbW9rW*{=`M z0+bi2cR`+fP%nCWp*Vxg%t1)Qu zMz-}AlhaqM6I_4f8$E;6bvQ50WKDIma*As+MDJldSoFLRJ?ol0a`*vzQ-q}O-(o&Z zRA@I*s9bpJPqY0$f6~*>8QRAz(v8}G72awyeWa@PSz3F8TT+Dpv&B(pgXBSDOQVtJ z89hy;wnHRk57|2p1vDCcq4%P0q}Ru=6Dcd7Q>tn_13wacacKZEh-Y7uoMclQ0{_`4 z8{ZiRGtdp+JFf|a%ZhRaD_>yXZI2aF03si>z;k*e>%yB9x4S9no_llfWiefceLRyT z2UEdFsGq;XZ7I;@Lop%8`RTArb9SkaI@=_q_z?XMX~-CT9m8+EHtmCN zI6f!Y(v|VCTMmE_qCqsh05pcxz5j#GyG^Bf>KRyQV#CZo9eDzgj6FQo`T6_t}~iX<0-onU_@Z|tLF0*jc zVS{Ka*jKytmQH5@thElAL<#iF6YldzbZE->~YPrSP}0>@_mO z)T8Ef#c#bO8uA#h>Hha={;tHGF^1eD_lBdteFs`)4$iB++q=C_2HYA42yZvTPre=c zb-hO~5ymK@;k{XuEVl->pa9&o06>VTQb@~Uh_An66q$^>X+L~_?M3Qw3-K}b)6`v8 zEPq9bU$I+xC*F6fbZ%t`Hw4tyTinyYF?-MN?;-h%I9uIH;|u!_)3RT8=W%}zIgvbK zGiv|$Lx9e=#YYeGL2g5R$ujHGN@KN)t@JK$GrOqLK+@vV%hh@TJH9<-)Y29s9igN8 zmM>56@_HidTB4^zD5pHd_&j>FN6*$WGCD@k#p{AfS3>UQ>Yos{(_#iob9K*Of!&S%o#-`< zPovxCXVhr?$HQ*wGPR1q%%)Fy=0!?E;7j%n%&Od`@>`9)3M?!vskylrK0ZDmk|PB> zC@OsVOFxT#tL}ep93CyGKm44LE0FBZA@}=JReVyXjuR;t7gs!&!R6g1+bWQd%v$b# z;PtP@@gWBr4bcD$S-MhvdO%mB8IPvFo-Vu*Dvd+q9a zVa3H<5L^<1aND+qR%8N)?z>4Vrpyi+Jo}^2Yxob(?`&c{$Ybx%POHav@GC2`J`5Ah z_?>RK=opQA4{7K@aG%tg_@L+91Ya2g+@}BSKl>08V%Ql;i%c+2uc#$Yj+Q0Aq|1I7 zKQ!l-#7d3HW^U`JMAlhK+Ao0g4a(y;c-;X${HlEC!2>WZzk)1EQ{9yfA{O~vKAEnz zb!pP1*TAQ%DpD_ui?tl9wA6|iPeS{bh_>S${;v^pWI{HtWckfKb8f@5hJ9}7U-pxE zUllt{x@Cx@;3tKo%+zueSHR@8Eq$-18`Tit`^O6>^4!2AOx1_4E`}RS6&?57behOQiT{OO2^pB-<)6 zznG==TMe+wvC0`tV>y5hay;Kz8!b<=>yJux7)OOfsoGKgnpxS?e^3>oqjPUglE9%r zi1N5WEqX(b;WdR^N_Yxeu(1AkjEzD&>olf%P?TAHzk~{9!Jb(B%DpFJM3K#M`)L{3 zInxinN$1l{M~PP!ypM@*c(L>d>o&3TWGGIce8dCitQZ3W#{??@`F~hL`FO@<3G|_C z`Jt*^k4wYD8<^9_cvzcXbss3kL}i{+&%19G8f3lyFMbW{Ur3^*4yn9lsKXD87s+{0 z_eaR#87>s&BA0CMH&@nX5)|HK(BzJ6%3qsY<2EIdU%Z#B$?Js4|+P|&LjTF%> zV!yK=jbwe6vAqvLv?0@u&R+FxH*BhOUG)iGF+xh;sevE>9s*Jp`S@vTYactWOP~EN zS2pL;nt6*yrPLfgI+FQW@@~e=xMfT<_hAOIkZ2yX?pvD}~JC8eaeZDt-L^~<1L zPC)fVU|=A0$Ubo0e+hWYw+UJYcIEL1+q#HKIQiYF`v_{I>)-A7jb04l-Q>MNils(@ zMsG6z;-n6b1pPcQ&_oY9BzwoYC0LUb&%RtFEA@Xgon=(k>-M!tB?Re|21TSLl#)ie zL0U?Y?k+)ELQ+afT0lX%q)QMar9n_iLK=y8{q}kPAI>;qf7oMe9v<%dUUSWP%}$dY z*@b-3p)?_-nV7i0T@u#@--Vx4eQQ&9_&K(0gz}j#W$J^8L~|}S9g%8Z&J7FscH{gf zRz0nMAL%T zBuGA{vRn8E#D7k@qXv#+X6E76fU9T!&)6->qpGYouV~+F$bUT6Y}>@$yAycVRFnQ{z)D)MA>?V3v_#gvDJD; zI~^+UIS22G^D|+S-N`6DJ$+zZ-2+};-nu9LZ%^C@<+bIVU0m@`8jgM#d=v$n zvIa$*Kkkj`DCaC&Gld6tiflG7t%6vIC>Fw&e?C%owWU7tCPr;@T04l$${Z2AR@2e;c~R42Ub?22G<-g(F66FDv&iGzo}(N|7Cb2iuUIFvhYZ8 zodefcm;CmNdM6GWng@a7+C*7Dqk`&ir0l+ zCRl3CMxh~jBS=RsLf=G26>UzVJw2O*7xNEGYVC3&=dItL26W)({B?T@QkDRMKPe8H z`;(qc+%#OwsmdOm`=}t4O+i5+JR$;N*@D0#Eg{3z!EIO>OeBX-B_UUl^`=pIQp=|g zr$hHfcGmW_v3ARyM)wj5Ni9NVgX5?1Y<*RQqY^WjO8;IMRz~5sG)L?oH}#ynkgB_F z%Xp_>z_e1AKGIsjMMX{B@mlL5ez-NqA-~KM>O|~SFo|v6t_{GZiVg++Wdv>&h&#$V zDCMSm?8~4=X?>H4`fJ2TQOaU|c^o3z$Z0vJLBYjQd-z4V< zM&5!CoteSCb9vd_OSvmZCj6U)x3D4;$GcU1g?7~;fx|Jh4C)1c@Ljq z5()3ANLT+BHP*5Tr*xs7=qF-7W$6^*k3Ji_Wqq??*t5@}cAfH05q}*!+4=HvgwN5# ze*f9f)7ghxmi@nPhci|(=jw0sm}C4I@$X$a(ZngicLggywfWw)hI4X{1<%?AnH18(Nw2u~lA}lpeb_^NZ0}`) z-1oN`vVCvZk6J&5ZhPEd{OE%bKPq$D=R3qDEbZsS(H6lY9c%r=nC-o)j{?5sVuSQH z`V@7!iU6?uQ=iro4CK~6 z?`hf3M_YVap5(#Mtoch5O*?&AauG{=OKRiH>}bY~yR$aarCk@Q{{`3~+$~ot&qc5`a(E!*o2Jgc?`-z^2Hgd@qU7${J|pUo;LXk zLl0w?6KRkV=E3t&SP|&JwnP?`tu3&j3{LGE&^Q22Mr< z-zwT01e)Ss7%|POy+e)0$L~hc)RS^e-WwU~W*kp2KR&qO4b(&Ou{KWA)ZWDI%l41mP_J2K28BSC<|hKnggt`rB&9cnwJ-gHeWI zgY_U+P$q^QrM;SF*0}YNT#j<8i0dT&0li0hwxsgSKjPqOS6l04Rv3-Ic}}RG^isv& z&tSHYwP=lq`|VFl>Nm`H=;`ZkX{8i2&UpIxR6!pFyfhA?etWS51qD6uK45Jo_R*Y* zd#Pr%kW&Ln5R(ko~s6Ov?Xx0R|{ znmpei9WJnmMI77MHIG~x{sLF(mYjK4@e8{Ki}P)yS}h3 z>Nv)h-+QI7xEXMtS>6mb+z9FbU`4k|#}xn%Dca!CW5own2dtYnpC7D^z;RltefS(I zLDWmf`3ip1&(L5^CkGdN@RF&c;yBoz{AP4Xlfhj_SwDjzp+z|RTOS961J`9V=fJFl|YO} zbUZ!TnfUGw+mR0H&k9Tl`lsjBiN2rX<5m6X-RJ$RBt=BWjDB5|BERO3WI7r(tE@85D=E1hQMg2|&=8u1L&*l*)Oj9RVgSjIE+aEH)a7gOpRy?_ z`leLq{galRyfVUb+1>d$R{^IWje#AD(A85zfqOA$`qI((WwDPWny+a(J5rZ7Tsyv$ z$$J_8<5=VGwxCu%nag6uX8Iw+M>&#<=L@qX9J0j4QS3}cILZU_CXX$$CS1fSZ;~`z zO<3_E{54I@j-{J1E+@f1t!|_Zv^1qi>cAopF|@&I3kV^fK>t99PBApXq4|~XK%z#} zXTTpLrQlRt96wWLmBhmaCUj6UgD8%!WEUsrv)-%5n2C8u_Fi|$dpe@~fa;I*jp)J? zwQJTF;~hWvjQbtlLxKSop~MgA)2NNl`G5H!)f4DXZzNU^khT-HY)QEndp2B)R+ECg5TGQx;8%C>2U>) z%i2+(J>2I*Lb6i-()s`E2b#Wyi0TR)vTf4?TD3p?#d;!GpIY{cKy6q-EI-d)`wPxQFHX z!0*7u)w~UpO8;_9DI^b~u923&&&WPUu6{$q-_ONr@QLZk8;NJH20X%~~z9T)_;QWWIWs{}me zz3!O!?sYjR{Ir*%zWm@Ql!+Wba2EZfTkXgW^C7;^eJe>;rtgPyjGuopoU2HY1;m^s z#KrgjNdVUwzHf5*qXbt|ugD^pjN)!)?$8aM3QlPFtza4R@Qmf>Ghnsv=&K(r1VS<$ zWQ`$UpGwNhW25A%gmr(5t^DiU-`_vHe#m~canGZ7YkYBM2idhFU^P-|4-`|vfwA+i~zo13Q{2eIExbY5O=R9 zaD%gj?75$4%m!5`K8=E>=L2}-bq#Z(D89h!dH3%+VIC3I22E79j(WQOeOJdd}+vx#0b#mSBT>UdzYvAaDL@uh9B29A_+$!HvyfgYM5YZ==qxn3`I#`MZiBk`kss>wXiAAPcsmC}K=Dmt;tFjn zpj46297B(PY$E=o}Rk*3(%~B7xp&Lw%{vvS@JuAeE{ja`5sU7 z+Q}$9O$fdEcom1pN0}dUfukorRc^H*^TcQ-WrO2iv4|g*q730-$PYeI?r~!=43-<> zcDvo`CSkT7^gn2dn((Hg*y8?_J$IHiTEL6;*pz3nSlMc#N#$-ME8kbO9IFd>n7 z_VsNW94c{^dV9MqpNlS#pHH61@7d8Fy+?)gxAh2%o!<9Cr5H)Ef}t@Ze9y=Uc%&&y zbuG1sgqx(Ib});+swK9-l7#-t;`1=Us#+9+amL^*nxTdnT}M-MA(hgEw3wy`&0or#@Ao5WU3;(&$AIBRH0I%ZvJ0SM&-Rt~Qzc!Geu4(TNWo#FpIII}4KJ6m0mlmSHf zfgOQ?(m1L~xNd&1G();@X^@x)*x04w!grGKBI6-sQ6YHL0v}<`2>l2>NOEsp0KO9~ zSC>9)Lo{uI4Xb08eJ=`yl(AJ6ZaF?`L4Ai_++T@1^+7@Yi6Zg03CB6eRs+5!Qkgvb zCXH;7>YWWcZ7@%dXwEpxYo!9@zE2un2mr17H{Nrmx&)&#dUnF_Xz(m%KE@-7Thej2 zx-r+8$?9nbSj+^ux#Pg3_7|RrH6?19fHZ*~CSR$HHF&`^Cwj8%*?=TPd|0?-~ z@(wJKw%pTmuZ`cJ*Lv;lkl^Ul|0#>AIOBDH$3avbp@h|Z)>fLu7ALN?x?*(oTla32 zjJq>0*$2kP#|i1^VzaX7z=oNSQyoN$`V#UBm%jrp!z>k3KE2q#jl371J-hvK+Ogpu z{)>XOqfv~}o}Ftk+73vQmhb+c;Px&LsWk=$_-LW=6P5l6sYH0ZM5P#4bzH>Zdw;s2wPU^B>R+>0Q`kcY683C@dN|1HFm-V@h9~Ta32jkwk zHWIFWASZi!F75T}uRtqXx;#%KYA$nT3N)y;NfFs0RCer(QJh>)8K)-ld?$d+sloNW64DD$c=8xF@4&i4Y@Beh z#{v-IV#5#67gb*S&j9)!4t>|)lmQFv1t;w<(7XfCkrNP1r`Q`S-^NsXviIwKuOcWZ zB(z%HZM|O5>0PgUE9}7u=~>&FSU7B-etLqnwLlr|uu1#=<;72eYHO-}=es9I)Xa^} z-%emFiin{8R|)@u;g1Z|o!{VQ>R76Cy@`j-aQ-WOcYBsng2ahmK%@E!g|yKF6cVNO zj*fuww_D&=x9Azl)VivpD{hnARnAlU_b-UuoP#yzyixfHuZz5r(h6W75VR~x-3L6~ zxr)(TTfpatB1<{sgzXX4Adx{@H30DX-)#oY^!ULTiz;FonnAz}3;{6z9}r|Qx*ghg>badF*zPQlPdg%FN+D=St~Qc|rC)5={XbF_XWhu+f* zemj)#j#9w_%$UBHtS9xZD1M}#@jVs6)`hX>GthAD|zuk3NFePVKWt?sh1Ed$EY zJ!K?duZtY4=F@W`Fn+s91r`Zk2Hkx~Y~w_VSdM^?unM12j+Fc8h3a`Jg z@63ABJ{>4Ny>N(oU`nXrQfx_h4(@9Pq$`hMlYH9E@i<7fI!25yyOcH1ubpu zrOHOcTGHwy0uV7428Nuj&9V2}c9NP{MqfXYiNzKihokXKx@QZO;wY-1p5c!?sl?@e zb@mcvomz99haa^$U_ZnutgG#mzyEC+xGn-!Bq(O8IS+OtcDo)4#7!H@?2g3m?89TM zxT2!x_jKp86?lggN-Z>#nhV|!3- z4Wm}6N#$gO&|}&AM8mnNp|0KrWQSL6Ppyu`)Jf{0IPU?x=Rm=fj5nGx#L=Sw<}d=d z76svd{8Fz>=V(XwHs>5a`Yze|V>jADeYOrx19e>e^N^=nMa4BFZw#9v${9L%tVtOc zmMY`56QuqB=%Hl9XMRXyuC$Ivr9?#y(B|eee5=$iF7lX0rK$X;tomK_>c@u`(<+); z8QEwRQjD#37g4fI& zp^VE9?`q>xd9Q~$cUDGc3VWa}ZjQ&i`$U{hICZUz&QC~n)o~*QDKmtmah3PDwSvMv ztJ{j#=kX|GD-2P$a_ii@Jft3BV_v{)dE{jrljv;HV66cplUZ+#tKdR!z zw>%-ziTuxh-=|FH9=tQ3gIoukYwsx=lvkmzDji28;kB{HbzFsKccPm2f?@ZJ{JI%u z@$Z8mToUFav*J&tSi^+l6*Li}4e=L9^$nCP5P{7ulo8I3(+&RiH(5?PMyisQd|mhL;zikoyg)fPl!! zvY#*w{04l7{k?mD&xAW4>9~Pg_EkuTQwN?P_p`4Q0uIxigSE4ggD;84Xdk@1J$$oo z$u(u|7}~mlgq1hBNy%%0g={vfDW79)@nnySO+I7$_6>T3Q=uU}yGtO59x1DYXC?68 z9zv}K%(w)^#6Pz^pfd+N&=$aA+V%~(ZN=2FOFe(nyp`5Ul9Q`*0RPVFg8j8cgw2a= zO2Nm>%)){xAHN2LaL7M^BhNsOGIY&KU(!fcXejjBffEnLtVmG2M=R{Y!o7cS^0mFg zy$X_5o}x+kn4&%M)|*g0@7Ih&>ne0=BUW|LC{PI=e6S4AS8M4(4Q|w|+(rpf=mPb$ z2jT-ijUU_LJv!e-N0E>U6J!EC=tzLbb5NY^XeUQZo`D9lEOgPwzVo@KL)~Yq%?}^) zm#greXe4s$l(h;{(V-_->RU2%VtsBbzdju>7t zji4M4KBxJ8y53dxI^&r9=HCeobJLwBqcPI-dZ@z$)*~HN2UqDQ{%fm(+t7IgpTelE zk9UKauw}Tz!>KatGtQKnfwe)=a>FgJ=H)}U|3%cZ%XmIu z>iu4#!@r3BOdsS9proX1^?B+-Jv|IczF=PTqFqN88Gv|@F*Km}(+8b<;996ipVcnK zV?Ju8HfbFQj#)eEC@LOeTs?S%+|0<)imW?80705E!LW&Q(=J!wx5&%A<`K`+r)9<2 zf6vuzpM|`=ul?Kka;5gG2$aoS9y=5@zA}07V<%<~T0^eJ{=?TQRhuRv&E#qV7lnsB&?tpr?y~W5YZ=|d<~j@c%+r`t#x;qiy5)4G_vtN z6rt!h;o0w2QtniNVV#OYnaz+!qJ(=aC|RiZT0$w#y=d5^R@%)7)Z$^YCd7r&dWVA} z(P_dtd_HvPq*SuVP1`ZoUKkC{y)ROSkDv&jNr5~zmJOw4{@|l9c%okV>hpVtJ+m-@bMSPcSzAgx4b7G^8A*?zdMug10j+x0*EltTpz2m?f1}3 zwt%hp$&C$}FTF3d{9AE-oF0nJneA?lrhbeFW9ZfWH37*P z2H7s3S1SD~gTtF}a!0+;c zbFYY1J|~yCt9cMUY-9$9*zCm-ZV*vR{KtE!9m}*< zcrB6pW$#eO?84tsg-0WQQuUL#Thf;Y0 z;5NEjDkAr6NcDkHWXXL-#-L@h{I6=kG2A?nPqYOOf_T?TxjLC%*Otj#Zkh%5g5T)JuahwbNwLxN{jseon?Y}|(76RZD=Z(~!9Z=Kfe$NYzV{EsSMC~X`4cj++`6Y=)k zk1~9B1$eWY9?VJ*f? zb1hvc>eEA7LQxORe|$rNkKjU2$9w=DwJU?C)%tIku_Xu|obTP0jt>3!>F4gw0$oyD z;DB|$z}<*Sx>_?%9d=)R9Fh&Nt%AK{<=HQ@2DLzw+T^5UnRL~_8~*5xBbTR83zzus ztd)s)F;+IgP3EMNx_GLU9K}3^v#eEufV;cLoP+ZjRMJiTIr^n6O}OyNc&fA%30MV( z-B?*2)mW zs(jt{^eM1iTzBR(A*jRc^>;x)))EURC$cfRrxDkp})m`#GgG6WKgmyu2l|+uCyYOh0T-Zfpkc zrEQPdYj07yj{GT76bgH>fc@cN$YX))X-@;1e7cbX)>$39hzQSH%bUh>b=4OP@B_qLT{IUsZ`k-Vz-pqb#!iy>l=DI|Ng=@vJN}gzXTg8_vb@`lXRHeI zPgM3|Mn6-h1{P@(^Y2l`G3-atWcWBR`8zGyYuD%3rL|n$PdKNGQUAyiG5uQO__8T4 z2%GYj>ULU3Z{=6O+YeLl9n=TV>pO7#5WZjhn8PhB|Dny`R8;?6&*zjek=8JI3yJYl zVsN`_Z=)(JOax$pgueoI^E<1JqtXXak_71icQyw$dguKJ!K0<46`5C(yx3{gBKBw^>=k8ybWV zG9}1|+qB`zK+grd%9WzuSu?k3I|f2De3zl3YWg(Fj;bh6gHx8n3QNZXzxaOS<-sA9 zyv9#_XJ==muGI?`x2TA$rc;_UWgo!6HZ&@%Mj)LlWD>RF8kf+J3Al;sAJS#m%DC5* z+uWKP<`mSvSUQ*|DJV)mG4YLllkwmmOZ-YU;HjZtbyRsS>+z>mnaG%u?L-Byu?GW1 zPHd=j#<@4?9dn(o?TuRWfXkkj$jw} zRyz0d^+h_15jSDFfL%KyKRrD`-loE<0%GqG+|n`eHy4bj?v@%8%|0G*&pou9k;`U# zjly#SwdhTMvGZMGsc41R4oh%aV*uS?@R?M+QAX*sV)9+eM|N18Kjfp!ND3|Ff|KV< zOzq8TCCXh)CV}d9Nj_kBMFY~TQ$iz~da$DN@BsH$u(n8k6bc$@kmmhR_@9{_07!K6 z3vk;W2iDfs#=Dys1k*=;Zr$;3s(5m)y?%&+M;*$*7MYM6DqCY|vQ%)@ z#~qda679mUrQrX(08W4ERWI*<>YGn14i98UbS%Ge{m2~4Xl2)76^>Ilc#qntLap$xSn6Zq*rM&n zT-*Z*^0kiC$;3T}2Jz<^iU46K&+5Wc~J-dRlu#0UM zTSNO37d`p5?Jao!Cnrg>GQ(IzjVQK z_C2-s@$)^+0!ZNNW3tl{u-Xb!*O-QDsCwbPdqUDsQ4Z{&*TeHcX%nP1FNQ2|^4XiT z{rT#YC}bXir6_60jIla%{TF|B>W(ciLsrf*p}I^O9UbjXE_r$i`Y-;1c=Z4@!Z&Y9 z?he+Z^m=8a#1I!m7NnG~jyVKY)pR7*ld#B#xd*S^8u1=h(fFlcy^&ah-rT)-uO@>T zFU|t|0i_v`H2F-y`V6wT;Nk>a(i(q;nzBo^Q880&Vt4S`p*Kh?R7v<@1DbB{HGK%_ zL|)NXSmCeuN6VHL0Q?&+Cs50K5S}f>x@Z5$NK1yW3YB{2$kmq<5%m}e7o{lQpb<(0 z*T5wwar*)qz>=Xu9YQx0u9r`2t6}J`>;A`8*3xr#<_A;}yD$Bjjr=Qc?gVyIdw6J# ztm$-DFV!NwLkLMe@N$yCD~b0a*UhH*p*wJf&x*QsmGqMTbHPKD9Gt*>MYt_agmqi^ z)+*0TRk+Y3=zm4@otVtvrgU|8rHFOt81{kYRSzi0%gn-4)tsE1wu`TgRLt^{`5HM# zd-E!=f<3{ibSe_gfuUR7p(VR$GNhwgQ z9q5=F@%nPu#oX7whal@#7|QoRgLB%;UA~ykk-Cm7kRe$m_w?!JHl*rG0wm_($a~a4fk~q~W8d>BZ##wyk^k{W6 z5vMAAMwWobtxlK#|BIf((sKH};?}s>t3?|}EuE3L)Io3#QSe)jX@6@jDhda2eaW$Y zZTE{g1!MXnpF#4WgsZZ@)bT9XKwrm7dss8>r=TNTfBaQSEuxnbJ4q*cU|ag9IlX&7 zJ=#B4>9Hd2=OhV@M_70v+Tm3ElT99i-A5@sJ(Y^f%YQ{zt{lH+_UyWZ>+^q#RbsUA zM2ngBRuH7kISA{Z$8k*$h&8CjRjV@-WZA^uowljC`1SgAvg7vbLwMjzKqIel+kEGZ z7qLU%0`Inlo=ep~9vWD9UY(MB$)zH0KKABvPQ5?D1sg^~>P0^K7bPjU`ic?!<;!G{mq?G?cIv{+}g0;vv>?xdsB zvW2^sJ^V~C%C1?Yc30^o23(@YMCv1kaWK#Z>`{Gy&PmwPE>AX+Uj|>##=9X-eQV{? zU*OqqHJ@eXK?1N}pWVN_ybL%wDZvXc2FiysTp3860=GqP+?A`x z^zgN8<+hp7M-LGw1jy3iH(V)rqT}q*9l4|icvp+%`h<63?dHQ35fK3yfREmX*7N@V z?8fxbjlu@oTjy3IBG~I$AGD^QC(dpf zqz^^q9WUqQ&3ulyc95w6BFe1_c&L%Ndq^)Dd=fS_f4azxSE2okwQ6bD*#*) z)_eDuAlLRkM9dSQ{R5dDqoh52^2n~HqTuO=j${s`iQH{-0+pa3l0oaWG>27Dg7sZj zBa4f(Ls)k}a5U%2>dQ;mu-immaA+d}<@n2C)zSlawqok@*2cU@NDLJ@Fc~=rCN}2SFSeCISg0gRHsrIf+@jhwQTz22Fl`esAS@`oLSz znXbtAL~Z;UstvErV`P=j6~Q?TGFeTX5dj855cfVmCMY6)*lc2IlZmmz+8! zm#*nprsli39L=8U$J=Na(X_IIm*x-HO70rhr%ao_z__s;Gd+oGqt2r3^KJ1%Rd(!+ zo>D2F$k>c**hV1`Qe9C8HIYcD&ifX{)$(}zyDAn9KmOIcpE_le<3wt)m{Ve8v%>Di zIkdrp33y`v2mJso^M2CDce)=Kn!LM~DyKdctmfkW&ABr0c#73*OT0=$D!mq0p7E|V zEiKVEM)ZQkRH|W_hB&ChHfP!M+Jtjgg91EoL`E7wwGQwC3nraT=8p3%7_(+|G36OK;jeimm{+Oux7?S50c;roB(zM(3iBgzi$qT zC(<;?p+i{n3hI&L6B9cVRK@z>7=1kBskeH*|GT1UWN1XU)#Ga6lerv>$YIY`IKRX` zx(sKQhx?v9DfX|?UUNBJ+ORlV%Usai3XD;fR--^5Eda>os#I(T6d|PPexFN3wd?z! zmj6Bz$Tb-S*WO=?YMfJjbb%D18r-Vj&-wg05rKm~74jn+eZg`|ot#Q?*F;t$D>>%w z>E|9FXk$m%V2fW~`d*&?KKWN`KR)qavMJ!&|D5_i!EMpC?n-ojMOL!m;)93@0oETL zij+CYwvn>`vKHI*VesEg5y&a!a7^!kilHu})Nb-oFpYIkXb98_WJmxfife6g1sBVs z=Ujv%!D^-H_ezus&}?;xWk<5;_bO?`Ke7d(XjAmn%)vkx^xw-!YdWjLx|$a%jS!!& z3O7MnM33$b>2~@2s#j);0!ZkSpPwJWDtyg)lm+0o#*QBGyXt-r8Jx{g7)eVW_$$HS z#WY6K=aeBwfI-CHfknubvUWX+P`dQz1G`6v5h>te(*$tieO&K)T8W{j?Dy`Q4uq3& zOVm42uoeR!Q(`{`z|7F%3SJeYL7ivWCXJ`dh7@TLl8}ar40> zZ(VZ{^4o+yM;8sO=|!ETg=A4FHG(WylYP}EIAz3{Zk4?B$3)Sutj$>~?^@@nDf8uK zOG+}9?LCk=`k)hY$IOjC-fTWL5S+8KEscQ&OYuxb*->i`bF^~`N~cn)z7q~j;g1^A zsJ?1o@@}IpofZFdKi#)bW8wtHr})&=KDf}8oPT+^-k_896c^;9;$pAS$6-^6H+cuo zH;n7oVc-g7ZWL+q2*4*F(y4v99DzkpQ187aUvxXvSq>GA(K;zcyy7uhbDDt$iq&`| zV{O5&ztWEhFm%fFyB4p$&HG%J)dmVymP^6&?>;Y?F(k2H5xo!oE=@qVh3Bs4`zM4P z*UZQWS3pfyolshfghVY83yZN!+8dW4`aoda?JVPA>m&SB?t-$tg$+ZYnCIR-hD`wzDFflQ?g&+2Oj}UTZ5GLscXHpDn zBxwFrRX>#AJr2y0D`#FeK()VXb<+=-svejaYCy+%_($^LFMH=&>Z@W;0FfZDag^Me zO|y)$KS!MBQZni*2&M#RMwW1EBEThpZllV_JL(8()SL-3SK;X<5Un+z{~h=Niap&j zWg1+po0AoVmz_L8a?v?Qzk{FP;M_Gj#vBne+|jlzV-Zf@pd+QezOY2&GgjMvT**vz zOxLBa@%l=}A$mMqjL`OzP%7jiOAL=e#?7H%9SsEPG$e}#s^Ew zu`Hn=2Qwo72=qP0TaOnP2Urb{8LH)ue`fLBkkV51^*NOCnDJYw@JH`^wzoB4YSYP8 zbbarlP(wFW%Ik+7^7e+sN<_F7UC}u|@FY;gzXayI%YE@H*AOKr)M$d??tEnS64Q$z zp;(sIxHVz>FY4OCtCFZ3a^HFAbi-SBe~dQw8lf1xz{Eo9en0ewkU+*afvEVA<109P zsBn~?;7t2k6JnfehGt{qWSd<)gNqt$;QM2&Cmcv6Dntj2J(n=q+--BrddM)UsZMi` z8)fsBc3^J}wF<@oKk?FV`d`S4M(vz1{OOMWgTK)-jUKpgV#>FzDYEx(PING8)-FV$ z!gMiL@BMuKRGHRg2KHx6Q`qjfH)hV?9At1cOSg->{U!X92Z=wrS^Y=f`yuyQI|3d% zXkFu2(v8kO3nP9K$#z%2nfOY=iKOg|w(r*>Y`~dCMKeLx^loaDseTNQ224y$#K$kP z`vo1Thikp}ks5kCAm+vj5H7H9vZN294YmzjyT+NVR-QZU*o9Tv_&r^Thwiv2yHz)0u}8IV}qTII*e75_TS z9bd62<>oGWr{$~JP{u=eA-ccih)YW9TDhxP#L6W%wh2Y=A!~U(>K5(Bwz*qT6)0-g z&xqXzNnWE96Kb)2IAs~zIsx%E#u09E7r>iUEH}=r$qF{?$w>*e%|t(9hshU`_Okio z#BW4eM*Ru9xI%JraUBIc6R0sf8?vtNeWkRm6 zjUEFqWZG9UQ{}!MW#k6G&bV<|v1Av@pyjQaoo8U~YK>a-gAWghBwduVTRCs^{dqraDDCAU09Cmt&_+N^IN|lF8PRIEL$np86K6pKcyIAwATM#gRQM+ zv17`~ysx)68!Dko$3p_eE5b*lG4U54Zwo2R)?3X|Eq9?BcTIqfD?0Lr^#4PVf^aP>H>i#@c>TnvOhub~vVCNCz>8TxzuuA!P+>u$Y|5K&<_0bg54 zgX`;mw^Zl0DP9)7G{DrCz|KI>j__;ULnvop$VI@yMlu{=nS#z&WH(F3{$%%&&em1q z-QRRRTRccCW3_x|L{64a*g*`lRQG%0I~7G8GBIrIBHtTRY)VtgcCT{!r>dL7`{hpO z+=RCta9ta2Z*QMIteW|A>wzOm(nwffqJ{MlZT6|*?S^6QWwP0bBO3Ua7KoN9`ky& zz*Q}QBQ(qM#gy6BIrmCM4PWno4r)EMdw-A)c917&SDAwXi$=e@{=Jb+kPETgWq7e4 z+0IN&A%wgKj*BQzeE>!GNL36{G7H*v5dALngWd;w<-FH#nxmZsRT#vs1)~C+qpWNd zc=SKv%Ih*y$2#1&Dagbx@bi%!Uy!Vq@vW}gCAxNP>KYL_0U|9-*EQ;$@3S?BeteTj zJawiPfR^B`k!9S8LUC84r0x1c^-@kzBcDMSij(+~>aF(P%6R9FUqpYWLRp@C=@ zi%XA$k(~wWbg!B%dDPzvCOxl8cAp8IsuUxY3Z9V%>?(ZM+zfK+D4V$__4}sFW@B3~ z4=aq#AwgH(e5B9TKd?vh=+$uRSIMRo!4Bu!DJ34Q-E(FvD<$`^ntb0E4su!2xAa}G zdR@72TC4!;jjPJ{^zVY-`Tx$`tk8h@#n04pCxSA1dX)HK=vi^B7@zhdJ`_zX5`TER z7j~qT$k3e~L+V{NOdYIdg9pPo(zBjJR(*h@U}`ny8qZYD++V@PnUeWoe<3cVia07i zwDLRCE#Y%cG8a+?Gv<+v81is`GXn3nFj%wu+^)%NTXNhzZoPujmGT4KB!eDl5e|!b zUeUeL(a}BK5blW`{ZPs~JYTrubGqeU@24wg3w@RH{$Xh_`7ep|P$PTF|K)fjSv_Ix zmTWvTRL?1ynld1`L(pKJf?9#}xn!O!TEg(dJ{0v&DvDQq#;e%#Uz3oL2i&Wg_H4Fp1oGDS_e$3`S z?elfja2Uiyv5%FXKJ8@YjH)L~Dq`2^FI6%1;H#y>jbpwpW7&$b3w8@aVj8KW#@Dyj zN$i;`TB4mfo*NdU90=Ty74M`!BdXAhywaN;B)6j^arQ{Gr{XEW;0wY>B@Ezs+cxdg zS^UrZlRmhOpfCNKnVH(w_(2RsR4iwBn^Toqg!SLm{r3vOk3Hyaclf>LdqGaQofr6D zN)|B>fKUnZipAE{CxqL!V%)om^n+%z8bQcP2E@WHBagW*V3CEtehp5m5LofX`7orw zcl%B2`6?I6iqOzvqOi^g=>y)64TD8$3CYRbuzp@BSGD~hiCG}3oy#|l5)61WjJt+&fCnYR-*I7igOCH?!?c47d;q9jYd^M(h z30-o?`wae@mo_&Qp(PYp3#MS6r}4%%j;z5<4=ff-D2kJ)b8;C<`;|X^WJvBo{6io= za1gkDv#V3cS$^-G-;o}ya#pCiR9gl3@ro0U%Pp!kQc6g&&gA}(Aj#+HYMbKX;+*1Q zY$(r#)pya?(j3>9#j#20!|qy zH;-q|!N!(!Z!G@df+9f@ak1~qk?lK zT~RGkzdKBrRg}|nv%ci{N&EaH{2!%=tC)E=*R$cp`l4~~NEiQhu8-G)ik4xz>RjCr zio&4h)kyUb+L+m(DDow#9Q>iSuq06CXvnTISu#A{#cHlsh2uDWcc)B;@jzp(U8?O* zx4zcI>dAy}SG@I?KvdiLrc}hjLTz97vNs&-GZqlc)8QME1u!`;G?sAI4spk9dahHGvIxEpowQg*60WS$oaeR-_Xb%%`rLyg+4 zQ-!X5N^o2JXX$fj7>8!rnt_W;T0TBLSE$%Dw{p<@QTA*xx z9}sLEC(Bv&3^fZG!Pbwtn;Q<%x+VA>mX&qc*P8RDvT||l>>mFHf|4QFrNU9$4ydT{ z(5#}<1V9H39J$K>&8JN~>aWJUie=Pt!z+XF)#HtNd0in9>- zPEc0s4+6bqVcq{S37lDQtz?t?a^on3{G=_B{+sWD70!J6`maV-jUk+)p-A{Eh*AWn?&nIOj@X{?T!bz zMR(w`-z$X1{LW(sj-q-Pv zCp5lNV<3WJl&(4P<`3`7H)QC%*QU1w%ns36KU%7-vv;%HBc2sYYg-G6X*Kub3ocHK zJOvqkD*LM9%l~-+K#@dJ{wLBzlv4#bID1jgJ=+H@l6La?%yKpC4R(=YUZmFofaEB< zumpAY4uFDEAkwL_a&q1VR|`n;JTTU~Z+u27li^(ito44v&6@|K1q3BAlH#2k_Bmg? z-tj)CWn_!zW0LnM*c%ew*#*amPqZ7neD|TNR@3a;ZP^*>H%Aim^6u)(YGXAJ2Rc9d z`8MsvnIa3Y=q=$i z_?ju40`5tVjZIMqBSM}lIEyXrS@FBuiYzT>YLGCzC9uP+A{>aKjb+blZMaJEurkhq z97GS3Flj{?3U^`vX^l@K^h#(rYdAH*@omWqA?LLASlv;VZIRC@tgM-bha>@?@SkfE zLwI`M!TW>zH3@>tyQ*h&0q1Y1?VH|o>o|Y2>fCU2glr>-3SZ!u{{cey)#!2o#3vcp z*sJby()L!j6Tcz zP94YoEY11*r$n;FP3pcl(|u7Lc^r)P_UpMLCyxJ*rt=QRy8qvQMv*eJ_YR@RDtqtj z$j*ptviHhfkz{Y#vP1SJGm=rVva==g_k7=<@9#Kr^v7MgUDx}1y`JMdALmAwETP3t zCqHe(>8U!{lEWe+H}`dwlaZmerI26z?x021IN5_9wt=r98of8kygWYeVPoGVN-V6j zx4*_1nbYDt$?I|YJ!0?y@W!3@DEKfHeerqq{*E6kh`Oy=&pPqlvK9we`c3LvRpEE; zy6R4p69Hy?sd2Mh@|`)V3@(H5;e!cr6oHb>LKvFFAF>xHr4M8WVUTf2^xF->l?-J( zGvsvCX5OdMxQi#`NEs*-Jz-MtJM?1Wk1)7d#!e|5C+gh^2WARY&+o?4{uJbvtptLt`KlBMmhru6ci)ShhJox=*j9w;{+FHMUr~mo^u0ljUXLDR! z02lf(PN#Ftwd$fb=N!E^mDiUZM^;?v;%|9m6Q+H9X4Kcsl%}bU8!*?G(Jh&2y z{P@44yJA#%*L4XuvapZ^JP3uw#cgBb{@?1Ccs#u{IKDl;^EguswZn@JlO8*rH z&80V?GbDo2te&8Vn!qEGq+vF~Sn{@yWKW#d!NY)n0AvACYS2WC@|ZC}mu{hhzW&$h z>fhAK_jhk=!YzEubBOxf!=Xuj3Lk*M`$#=L|dBA-U*c2PeaK{&%Jx6hbe5Uo^^vUud^4sLGuy-b#3V zYi#+|u<7$rGSrD|OKCK~@@L#EQ_y@Uv_bwPrR768cWC1PnrAsDF>NH<1Pn@A&?=l_5Fs}cunPiwI!x3g16Q)U zPbgObI{O@+*tdhPGxor?_tMg`&8~W!p7&RYddnHPxFW6rJ=3v`RoVb5tG>f&mEFHU~oe6_67a`Z8eGz&Zp*kgqP! zJt{_k>?mVn!w$9cbx_0XMKNHa!kNMa2V3`s-9pVaEh;^m_zK;#$-t2I4M+4yd_v3s z2;1C+YYoz`B%!Rs$H&j;-hkz+e0?7G=mVLXrTW2&u5otq@C}~#M3HrMcO&~-6RQ?~ ze=++DJkO2O9AcinzKKWo`f8{<;a`FO3VG8-iUe};j0j~HT|Cbyt6tPS`O&SCl4Mn` z6qFSF?LhH%6Z9b7rAL2G-dJRKgg~w11d_>L&X3p09LXHja!0K%9GeU@r&i-Ms$$_{ z0Yx&_DxN z4hnF8_Q5sNTyeaxG(ijtEsk%21WrbN*ru5xmO+6Id_1G^sgdmRprWp+Hal(YfQjXM zm+e{|4q})(Gu!MF@&p9*+428A7h*8`A~ek}KzAKxa8iG%G721L5Whncg8`Wg zu!-k_4GMUh%3WJs5KTGq!9?zvi6RXFN*qApHbAy+bHq3^6O$vdn}=*LjpJ{tQljn@ zY*%$|`Li#2Ypm`Zk1I%}#}pi_?&4zpLU?hz=TR~Y$i@Vyy)|a6hIIySnyxj*siLcW zmg5|ppcW3ZU%bXxLR6b6s+_DaR&Wwr)JpF*i$^*U85id}@$E(K80$d}Kxa|_Bci6R z9tb>82-I7I+cyu=2Q#)oNspwRX8IhHG3kjgxej}GGt)oDvG%|x609TOedQ_`U(bAW zO*xsY5bfe7X*r(O(1(ZDAlL$y1mG%_Joph?fU^0fpLjcRclUqrDh(pu2DWNeaG`!`)GYX9${F5)Um7gD5>-2(JKY1uF?P5zR z9`^QXwMfvNmrn#G*UL4!4ET!;1jS6BvJQDLBd!;K^?*XaX0~qVs~txP-GlsBkr>uR zIiJ3Tu$Z8{vLlQB@ODSfz?1G;Aj^Zp0QpZl4S`==Li=_7g6~w=JYSS`%jWW=aqB7+ zG4pZqhp;rrFW+MA09U&J%*{rhKd*^Fv?MK;r`FExEqOv-Xd6b`vZfPU&iyv(G=_ul zp+eRo3Czk8WlyUCs{`mJsiW2T=l9EL9X2d^-ek)~5Aj?%y*sr%dy~$Y#uC7+Rv|sh zKv`6Iz37>mEq!#T-FVH29kmvuYt5L~D`urI&MH(J z^poLtTSXsHQm4YDe7?@R3O>@@x>xy1HGY0o)*54*M@XvxIvGSU@LE%@rdT_4maxgm zVUS=7vKH;1l)_tO6s|J8+J-<)AWCFYvbqJQ zmO3k2B9?qSOA?m6suzjuOQ)%^t@7Rxyg$-^46*WU89fqM4!i?=VKOnbXBvlFH<2N+y&Lw?$5DVOqU){VLtsm6LLZ za57D-Y&?K{$w^T47P$m3m!&inaZ&PPZ6;W_&Vh~`n94<8376B-C~x3WNByvqjSf-e z!s75Otx;X#Q-iHE=w(5wiM05#G(K5dPWX#FEAmi1R}(iqq7=OI}>PvTBjJ{&*6Fj zyWB@OuYsTGWBP%BV*2Cbl0=41)U{gxAYsBqh3 zu7h=3SzY)^kq=)d9FijtA+BIz;zhFuPpjy4&*puKg}Qs~qG}Zk$9ph>sEj?O`D)qU z()IA1Ui=tVmVmFj!rdu>90NdWP~u=fMRlapb&CwWKO`;2k? z>=L72Z;ulKwatO_HwV0^t6h=Dov_pgW=hMd@Mr|gRQG`%fxM|e+1uc?xQU5r3@i@l z73v2owIRI{>MJNC2!&d1&o9VZb_6+2@{c(Qp%qEf#m>13N`~BC0ELBdoBy!J8uVs# zNLq5|{fNY%!MUSzxvJ^7A9hl?8NbMqH2$p<7a#lJ_K_|TRBE%fkNUTjPkurPaD-#r z^ktDa9y+9lY)!U+o66Ad!Ue(vTOrUv#hqILk!nGjfC3Po8cK|qEO#wYPqEt#wVwQV zqgk5YjUG!H%_o3vp}~OtL1om54g>sOFD}b4$+5q65NsS@M8Vpyto|pxkWdb-@MslPdZ#SA*Y8Kb)kpDQC2HA=?9T5>wS_*|?^Vo9 zL^1;Ag9&$h`nYo{_CI5%`Ss3mAF~_yrpX1q(C^)8A6^)d2nZL^UW=$&K$NoYCjY-s8^(vk&sw%5i|^E90i-!H znK$Dec%mIz$50lhw>p~s<*r)RYZ9@)?n z-TgbJuQpn4Z{F@`RxhQ$uf?PJTkXx+EgZdvl|cn2w<9{X-xb~;DcGIBDIHQc6cL-R z<(A^G8VmCT5-ONhNDSQrRX`FWQKnOMk;#3*ClsVe>BMziRNI*cvC&$WDBG3vF9$0-* zls#z6H2qr3>NpCYoLm7)+m)edsk0*n5eJsNfS*_eUlW^z{ASZQ3~f2<6XHXh*@ph< zP-0^ShAlrW_t|M%U_`&2+piWRS(T%9X>V=pZ*Dg@elB~fMd&3oT%gYbK|^gIEav=>TfL<)+K!VXI8LA5;Myh(dpo| zonIj?3i$dP4cQ8VZv@FuEc)@uu0Hi%`6omG{fSgE-YPFt>Bh$}jBpr=WU%z)pgDn;2P~ZjxvY6Hv+U( zmo2vt6vsmbk1*;1qMIS3?+|)XXEQWd*+kfkYw`Ux)J**RNpNA`z~1;|X?Rbb!`b+j zi3{rn!4>D9$Z=|=^rm>2{CWFy{P&lpP80AR29$Ofz%^eW8AyWA;^gAH5J7T+=2W@x z1KK#{RDKV3eyB9A%ov%O7dJN}nOaGUx}yfB!m`xv@L7;&Pbq;lEM{UZ(5zBzuV3Z{ z4&_?qwKYr-ARzVXvuE-^y8%XP7PLA@xHWvRJUoVtT&K;E%f5B?XCBC|;8n@Fd7IJ3 zsdpr^aO%#Z1M&!wXPq!PxiUw$myx-FP#uUPuU{><2S52l=_AD$-z~A!;9TrC*9kGQ zF%T>R^!M$$B=h8&8XhD}8bqKE$fKjkc_Wb7F~IIn(a_`}ya$425m+owe#ZU`Fs?E{ z8-}C}bKB0;%-{AN0jn*N8eu+2d`-8C+fk4*Ed2`?`3PHg$L(g*J(@@F2UO~fc@t4l z=@=@qyn90;SI1n2{J$N4+u}4ep^@l`?w%YEtS!CWR77CycoPv`+11Z#xU+%13-WFd zP8L|*R9t3o4VQEW6+kSzcdA77OXcu$>gWv&_3E>`R<0Mpv+HK-))gLvlkg`Q$(c+3hcY+G~i; z*ak9PMR4z||In+9z$AT?cM!>li5^8B!Q1*iZOi7iqi}fB>ixnf+iBzWJ3Z=tC!{Nz z{A!oeQzwTplG{6>j$-sN8@lu#@>Nf5*%E2&dYm|MTlXZ1D8h;#ryNstd$Um_Du_AB zr};WE&~e%$wOH*4rG+Ub;g&`#C_@L8JOIdP*E6oKv&EQ0& z-~LCWNY1wKR-ItKpZ&dW<5oNqdQa(AMMSzr zG2U8yo*!ah`Nx`C44?zdpTBd+pS0w7YcKU28}AOGVMg3))3s-Cvq!OL9bSg(UiO_i zWW`(#S8%xhi8iW;nPRS5z9HULkwlNvKQwe?mC0p#!-ItLBjmig?)+2+;E1@mI1*kNO0{)$6DymlO-k~L|nw#BI#^OCu95ablHd;t{ z^mfu}1=U8QkXAELMS2- zYx>8#oTnD|?tb&bLuov|bJ)_J`^fGzW<>OAF7np}FA(>hHMw%cGvZTFD0)15#4Jn4 zJQE`fVeb3;PFM!XjMjq8=P5sqCgcV#ZfhT9Wiod!O>MrVT5cFtTO6S4jF$H(0K2nz&HmXmLh!IbxvmWt&^6?rjp9Op~A5ThOeTNcok^0xL5Th>c%^ znDs}Xbb!VqI5hNCH<9)(02Ql%G;-ceOF!wjEb!z`j$Nz6CqlXumQOlikKv*K@WdX} z+fL^vj!H1qa0a&&*sE^mj>$#lhBIX$H5d?PN7`}T?n{au-thj(F9u*CZZday2p<_3=8 zPep@v9SEVTn7n==&+h82{YF z@J5@Vf$~au`Ze??)X|osK)eJqj9OXt@fr$a2{*JuO=4!63QZTaIV~b12X4EcxJUtC zV6*fh&*)y*^#Ej~2B!T7kVF9yC^vC%UVvT`aW{MYY4|`Dj`a&J;m!rfTl!^XlXKD> zd!J057O1L;_q35J9bW&nA5HwRBKwH37_n;PuA6!4`Kd9wAG*_j7?OI&Sh|wWW1g1% z=R3Yxzx2c*#i;CI*1{M34HcT-(fmJufm}-Joq1IADc)OdRAn*R;SkRa6+=xLBgR{k z0RV}(MUr@s^Hg#x-EW`XO%I>P6TPkqYXhf1-R&1ihlTP%A-B(BC)vkkVyF38nS+rJ zFE9T&H*MQ{mx>19d$xG;Cd}ONn8>hf;@54)`oKs#$h|Q2gu(fg@&2vI(R=ql94=w= zWcJhgESv?aP{eSu<9R7F)E1EmY$i6OR*yx&FJ_@I7=ADDKWD*2%`sH$LgQEe?C{8A zcG#cx!AbexUM%i)6n3qo?`VAv$LZ;EI3%oo3NOAicM8h~`Mzlh#>Hf^Q^KvgKhp_0 z;R8U&o6SG1DK5skrmd)#Z3e^qg?d>os(}uD!%%;J5v2xM=#sa4FmK*O(3kt@wAYX$ z4xW$)G30B?e+*GwK8m7LGpqhxv2*tI)O?H$YawjVAelfgJ3##6Of%C#RLygPxB6!z zLE_Wy7Krw1%d_|p_aI-Hl;9C#M2q&{)nDV8eX}J(xJR3RjY%gcv@odqqXqripBYB; zv6C9)xuIBEKW8yDBt8BH3-XK66yh}Fo-79@WSsFQt*J( z6H$cH4V?-L^ZMMx3wmQl!mECLMIEJTOQzzhhV^}bRmy*C^g*e;q0PH8EEFXogDCib z)Cl_Wn=n9FcW6bxbpUXZzG@EJ|BX7pWUu8MSys@w{n%+Cs258}@oA z8h!~Vh6|F=y!A?Y{wPX!lnwm{6N}q&f`xF9f1l+x57-`Gt-jeAXyZ^!t9T@5cyaUG zC0nj4@`fIh-Sq3HqYvjSxXp)!BB-X*%1#3E!on%<&xUAJ;oEIV@5JFlNJX4Ezsoo7 zD(msWdM$@WEB+*D{UBQR`!Yd?YGHv9z^!!lj4|@N;6)r6q12{e;zE!u&|Jg=kjT9A zey65Z)X$fBvCPwo$}?N#t2Ik_v`hDHa7zjPv}TXa%5P=9PDKB@oIPSIIjKgs@>Al) z>=qva7Jwk(=DMpBQ*%f1yT>~pKT)w9V~v^I2Sp@io5NBfrR{Y0z5A^aHfiyTX)8kE zvEOk0+Gi_f==om_=j$*YYT;V1dX-5iS9#uU6>zKc`fCSEK17tzeCiE|{A-6((OKZn44Msu#J3}SZsaWyTmPT=*4CgjTnG)F4raQg9gSA6;U@MGR5h!hY+Ihd`ekz z{-J_e&sr@1uEcbD!6gcaCz1naPEvP?*|XmW^X*z-!6t1PZ3HHpR@0*Fl?GxXgIgf$aDoX$0pd z8beN8DRIj12aP1(lv%qb?CR++>25!7ih=(cWI!l{w=%(P^mSqafzu}Qyd2-bd9Z$j zNP@eO5P6p=BbAH2B>}5V%ygcch+2IJQL7jG&4ilO67aa(4iTvYp7I+50!&o9q=cSV zy~3u%%R5Xw&i=jDSL&MD=A)_=Ujlf<#S1SkSkJ6-bKWVDg*p05e9=3IuoUvfdKNEK zCl2Alh?N6jzk#ORyg8aFkcU$WOI6M5H`9^a+om?qIG z=ton-aJF+J5b}lPf(Dnx?~c-!I=3PdO(SsH>)i-1Nap3fl~6b)+rlZt4Y|XxEP>!j zd{IA*frQOoZZmcC zDw!MQgiVY}bRJ9c{E@rfre+{JmP+$nNkK}rgv-LP&AUapXf6fYl~pE|dI%Vu6Y1#_ z$XWn5;J>MnJ3AzC_fmV^R_#j;xLN(V@5fV1UYXNgl~uEEo)N=;dR~+>Kp%W~c!+av zMD*lW5TY*2OFfPw5WZ8p_T$5}q2!Y?i3b;d{jTb@XMro0%xg^yscOvk?%hgM=*|)k zl2cIFKdHJf1P?jFFF__72tX@isZ_fuvx26g<(Lh^d!P%_Bm_$;hw+LTYklV@&`DjElPpj)~5RIBAJ4(!-SF<@zY4 z=SN&4SBeS>Ge`gCJ798w5JC`sB>*D3eAVn&`=30iJC}=l94O{O%5Ari#+x#Su1&PTC%NUGsc5~&KcGu_! zybpUW6^t!Yagh7PIihM{3C8gV-3^kVP*@ahq(70(7EVwodatU*W5vTWh&>@kRKxad zyXrMoQ5=hwchhEa7MWD|CaN7Hr-n+85oXWp1S>Z(lDukxj|U)gb6QE%_B@ZwE~~1_ z9Q7DD$lrcipG;~?V^ZV8QfJ|~&~d$H&Cz)2z3F}EumXcIrNpy-8Ynkt`cvHWqkC^z zY1$ng7C~)d@09;=Ypx*yj1itQFk%NitN2|~Ox4%F;)qOY#FfxTE@x+V zqHvtEv8(86ARHo=4o{DZ8#Ql*=kiJgc~hYiFore8a^_%67{`3 z-*U0$vAKPMtI%_JfrCS1w|UUV5F3}26l&Cpa`<^gB`hiK>m?e-oj9Sli$|IJZD_a- z$XnnYUR_m%fG_@mqwI5xbj1|XalnQ58fVpv3gJ$q3HX8r`*&P=dUONrd{YoDo{*2w zbADxvEZ+)li-Vg{ZR++Cc<3r94^nFZF!yxazRd+4y$co9u0Ek^Ja^gP`#Rb9UCx-| z^d|gTa!;WXi>Qm)s(YxtMl!oKHwo`wk!qXXu@V&pAEgKQ5uZVXK$Gh>J$#t)8Dt)q zNO=vyYmSG!CRoJ+3nX}`1Z7g)w4|Vy{7=*j zy$~|e1PMbd6q&yYD+Vo0?_ZW@@1^IaSg?de06M3p-e_v0EQItYOzSaCQEYTl|OWh_fK)7$Z zJyRQ&14d5Blzs(zDZ{2E5<4HZ@a3D&Z@18=g|JZwKK=b>ubQ9~JLN%RrzyI$0p)|o zuTu;}7bs|CCRXIXQ$PaYVB55bG?8(aKV_}xxq@Jk*+*KtkLkBnNS&4Y&^-9#K15HBdB zW5h&jnv<LkXM;a|uWr>d{ zKCU-h*KxXapZe{-im^WJ#f#(4`!l$&5|ihCG)$P?^PPrX?#0GL5u#~^TR(5`)fQNo z#-jb)obP=8aU#h8-8{&v-6I08pY&u+xt5b+?#IgJ@)*x5AOe5^8_| z0LmmhJtuMuki;AfWoR&%(1~ER9T0PB()sMp1v@nB`ev4h|I&lUJqG4?UW4EO>cK|< ztVTx?Jnr8g$rXS_`Q}Y*Eg^jh3JL`B*H@Xr*z38U^SZ4&2R*P2)@6O5k3YfP7KGLm z8rM+x>OGi-1t)?O_<+^&-16Lol(XTt-L$mpKi>`Ah%xJn%10@eveMREBiX_3Zf?+}#0ZaMmH9i{jjw)GMfI#nWtW=;9B!7j%G zLm-igX|c$kzRA=3`teh$TBPo2h^tL_76I=eF4ah7RoPo!i+TokJxUijySp!{?*z5C z0pAGOFCvrX=;-JK3Qvj)hIz z6m(4%IH_hcYeq@P6bu*)JnDT;NlxLoarv`1Dh09yb?a{uv7w{$ScVgO;WGxm`cg{* z6(!&k1-y<+R}JfnbrVy*q<2b}XqRy-;;PB2+l-(ZXIY`YXh;_N`)D8^b>OAOoBCrF zO}7P%Feg8hky^{wlUB{{Lxk$|Iz#~qs%k6j`SQixMw7md8$HS`+wnZ#BbUX}ibb2X zf@a&YbEjshC!^0S&zlpT%CR; zr&QnU{QSJo?vq$`K9*?aaXZtex?QCMz!nVf?r8Z&p`V;?+}P-;1;Q9hO1OZLLzga>!ru zJFbG=87#6nucfqIldw?g`L3ci^y~nu=x0OhyEGfDsZ!=YBYr3|zEk(^-FsGVN5vL| zD{S}q2V$5sx(W!6Y6?t|6x{>91|*rPBQc;5m=FL9`ib=ihg;z)HtfTvo+-oWOE4c; zS{uuS%ksc2;WMC!?}9fH`hsXc&@os}ta(bA$VD+2pF21UGl;)?Dde7ZN~4ZHNsj7y z+^KHg(c6m=*)8GVOb|W!@4X(|Babb~n#ZC%|t#lRKXy@oKmxT@`XMT>$u zEdBH4D)})L$i`UdB53h=Y|!5=N^GqpzV&N_C+J8p6zc*8z>JOtuBRVWVCVzekt&#w|0 zYt=EGvcj23DFHn%ca_@2F~t zo5wLeW~g47bJEiz1Lp&VQxfg(mPqcWI?aV-#q7A<)18IWr)g{Iv3mwRfmqgo?-4NINMM`u zdsX!65g516Pp4XcgKjWQ&@BceDjJ%aQmx4s?@zX*q+FWBgxBiC)7-DnSNYP=P^1$3 zMtqMS-T(+9&}1t-g@hpm3-@Z^5c9L}x$MCQ(TkgzBeME)ENpB~aw-rp=pCgoiGq>;@Cis5blD3 z;g|iDK|~(~)8{UkF2rhE4LPA9xI2wOSM~d;^XDPR9`5(M$K0G1Oat)|Y9t|3t2sUI zLT6{AWNc}_%tc0=-io5&|3gzX-hApmS!W!QW7?S7ZVI}n)xnG zKEZ4;Z1U@)R@bR4(lK`Xs5DG%FFh569|adOI4ZbGU^^Ce|M_YodAqVunuAZp_Jg@c z^gxza$wP)g0+?tlzzc~CI}SG{Zpj!W@xH*WLUW$OTi{Ku!#yzdkD0Mte z%!k+$>Kuu`5`_&4gzFZ>|F!rE^y5)df;b+tj+sJaI#PEuE{94Y=IpjbN-Kk~CF=7H z*LlABW%@x6!lrrh6Qy_NCS8og^2L_Qmd4wOiZfI4@<&>pPJAMnOXx zG3;L|uJD;hF_4U2U zyWD!FAaWW9fqCzYE;h6S-1;YBDSL}BV&;=01F)B&cUxeskVztpyjMZm`f&< zVt9B`M2@fitc@o;n^+G|^`W?4GT)uy^X5d*?!!rEtPY^iARz_2bc&g@ILd%z?P!Ml zC8uV&^gohJwOTKXo;e!w?o+Q!>%yuZtsJ;X?Q$?30l<1C-zIAg=xS zD|cks0RImwfPmbZsl8>CfNiTOm2`H4$%$0VmhV?}6O;=kfM5kBTsY$T0{~gLx#v{E z5eG1AZ{2&){a&8*YvfvXrDl2=(h>??ogchSOnlCr40vb@FtqZ#bFQ0cjPEfq|Cjho zRWvUrClHc=QL?bO7u^K#A*yjF^=Iva`w>!eqLJ}mlaRX}+!Whn)lwU^ezp0GdC zhF$ z*gE@49pDVzf@FFNIER;4RuGi4h_?XvSX-^Qg8jf5{0Nz~!zx(t!S`g~%fiIntPSH2 zO+SRl0V;d7}QCRLC z{GzEvR)SvUM2CB?tnmOc|BSBG7{{AZa4h;*W zyu?l;u(^RxeOCsn_dFy8ov%BVIYHGZ3ctN87qSZHfF3X74j%^y1FzA(&W;g0*qx7F{UpIY*`XSztIKcFg4zHTTq%!s&*{ z#lRiX2g^^c<$YUIiI$PHwdH^&rK_vUm@l>e%a>(Xs^1W&J^rb8lT0*Xrs7z=-jt@B z#xGce`G$}8XZqmZt4sFLKPg1*C|?{*-ZHr0t$FsZ>&Gi=49BV2?^4@IULVs%VwayX zr;)3$CdAs3$=B8nywbfh{?EsW$#xJX9ReQvj5$vtw+`x0+u8c!gO9pyZY6QPao+JE z^!blxLvchhiqRx}@z1GFq)BsVvgOvwEK+_~b%r!OBn1m0VsJ9>xd zsq!g0s}CIu*It}ZI>UQk-giGCQ`P-cF_0l4T%Jl&X@iup6}NRHTE?1or)%{@m?JFZ zsWomZjjg6Y;O`Adc3Wq3I6=MnC{p6^OkNDrU;S|V{>jnwZh$uEJ{nf3;rM*O$h5%5 z+8*~lcxKM$IDt;&W^KQcqV)BG79X|LAxc5lsNcVTw>8gxlXaQWy7P9aA&F20y2hsWvLu_r;Gf?1oe>H0%!mKkF--`LoF$wz5M zF4sN`6`5i43KpI$KU~~NotMvZB_`IWR@^(B+&rqOsrd-2cw{i@?97A2%R{;cb73T^ zZPwum;(SBC%$~`_=lPSKLu^mA^%N(0t7s5c8O0#Ie9n5X`e%;y>~+G+5k8pKRlgXb z2S@;j0oAVh?RYBjNkd%@D~_H{s9g+yxOTh2LI4wwl16EA8jBeOdQh7EgQ={gr6p~i z7Gdj&7H2LsWrWD5$Ugp<(nwrvf9Ea9C3p!sUY0cW7j1BYL$GIIeQ;}Yu^DZSZbD_jq>W&rtiylj} z%*>wZf6Io$=5PihcLf-u(9{T7MGd-F?DyqK$rSr5ot#|t={+4R#z@jW-7Sd-vd zW7pYcG9%g+i@*51*R$_OM)x_IFH=3$hA9||{c6SSu@nM=q8YlwZ#Y=q1;jk?JH0;D z;LTM-#&e!JO}9zSYxN@mv#U~gQo~bQ-S^Kv)@d#zHCxs)hum(ZNz^4n50*W)I9Zbw z@HKlRk{L^CYd@|`6`6g#i2e3Mqmh5V(I(s#Se+~q3TSSKmDce~bCA4zSE>`d%h~;d zZ&9Ad(Zjy@WpxE`SUHww;24ZptU*g&)I^FO!vy z80e=_&JRC`A|gCXqE%p@O-7<7cjJ{_>cR{YSb#j8A*}O5i1uRp+w4b$+OWcpVGD&) zwTtujv{=0erJk1S_XC$uux97~_EdP^X4!h`+0_3Eq@iHThJCKH1Cx z*8Xbqm1~1OLfNWiA~jWTI$M>_fBX3_op0zJwGui@W9~p*pe~`dc6RI8w{}Ao0jkKQ zVM%SOFpE0{1?riG-j|bl3XIR-BQ3^$++yoXG(4 z8c0Rh?V+$oXEtY&Hvv=ue6onI8JH2y?8mFdr&$;{l*X_MwPc_VOBRXj z(DM6aWyW(Y(0{4^u8w6X9 z!F?H*+r})pm_yJ(`=QZ|vl^b1#(C>Fin!Gsh#Nd#LvF$y8+)=hUL}%~doO%?Y5rxK!pv zFV@YB{{5*$#r1mcy#&V7HC5f>x2tM0GBR)!!=ZdWJI=6syi21DA{78Y^YA93d&^a0 z)jcfT@eT}nj3rt7jdEY16|HUE`LY_f77b=E1JQCe^DXJ1 zk7tOWhuiW6tR)aV4XloISbybFD}63>j$vdhRmX0)tVWW?L7oK$wOYTmN8nB3MYdc2 z+=f3C)Df06n>s=x&^XzlpRc`#8=D<{7tIhkh!z=wYkLPl9K=(U_}iER5~XuBa(Ur1DH0FFc$=JhLWsY+X=hYYjWQ z=ABV)rlV$(E!$vuc8`Wa{s&sxUDWrJbUa?A1~T)8;pEu5;<0+JbPNm(YHLFUZAq`g zA~d<02e(sJz7eX5M>C#P*5g<*t7Iq{8d5{P)zgNM!OO4u$C)x>QZi)M!U|QRXwWqa zAFX_k)OLLZcFT``SHAoCw}Ojubf-4un)P4LS&=*bOcKvwD^Z=j`2SjfXdNyxVHtga z!d((oP9or}g0N6LDI*lTbW1=hSw=`lIcMnkKPfvjxiB$Fr5;kZn(XYtxTq3@u>eY% z2PB2D7uiiwUrhr_BMOmcdq)q+1!bm@pv1mDof14n=fmsUL8f z*}`h#tivYmW)n<)7dj%G8CG9n>#@Ok0WogEi+1pgP@P=(A}A*4h@>2LSZt=~>knKRq}&;38)j-3a{1 zs|CKjhBjA`RI0OS_AQI*!g-&#VA-AAk&28S4ZYaqQrO-hjSAJS-ViQ|DK0}VOEVHdNo|0dcXBb1TVB=5qBFGnVFem&>W zLktbiDf%}b3UIX5$gC2`4BXNCxQ_>u;(SErs=mPBi%h_Q7Fo4Jnqt7jSy*_&s5DE$ zFb8j5;B3chPe$F5C^&ovWhc(c5$kEQoA zxbbERw_8monxQqV>d0^1$tTfJWs9o*IoV@Ihm4Gn8*GkK1L~laoG1k%!EfbZ8jJb_V1Myt<`EcEl*k zMS?!sD{CxhB<9h;?brwdNidRnz}mtwttEKrF#p)}TamnteW1Gr zSSA`UjN>W2aBNQm~<%+!qU*)Fn&Lhq>G(3L#n3U2KF*EMA zYS_49B-*Gao|6#Ii!gIp2xI!`sy8`UP{XB1-;GpT5A%x z;DSR!xFPQbV)Q1=Jy+%<*au;%6p6T>flmbhZ}60uLojLp4mB9|e~)HM>bH24#r8@< zRolejzz=k5cxF2R1oUWASgO&J@^QA0|3*BO{w{SpLlaVC!f@rTLOLnS)+Eu`h7{DR z*UY|c$r4J@2gO$i;D)1azEnu%Rx5FSA7t`z=52swt9U&D#e8jMW>fx6`F;FS9NBxW zMun31Z#-9jJ-TJz#n3c{r4THg>b~7Gxm}l~!{u(ykBa(XZr&uRECAK#WiefViMeQ= zT;unJt1c;~cvtY)Aaz@+{>U{)!e}Qd<%xwvVW633OEB_HD_L*{&SVd! zAKZ+vEz^K3(Bxyz(-_iN@Q4=o-p88>+Is?m<%_& z306`m*;^iS0HBTR!d}45<2EcBf+PSK3e$}xcyn~ho-QsfLN3N40Oa2%Fp&M7cgy9j z(Mw}gB9r)YmrQ_@b%dyBWn)CujI2LD>}FDRow|Vs^|gdYAt*sRZDuh{XC2Ip)?8Kz z$$kAA5B_e)W{r)j8!BwK`v@pTuy~yL#2a}M*qRB<^f?^L?+I|O0K5U}2}phy_^24! z-2r>n_uS@K5aB&&bTN#Li>n{`~KEDq?p4zH->OvLEw$`5C^SF|O(0V-=r}#p$BD_j|lEVU4~DckQ*Wffw`7 zJHeO3Be$eDaDCTwOCL?X-5PrF^Rov~6#XH85Q$)zx`-T=bxZ4-3XzTTzM|j%sTb3$ z8#`^2!@0xb;_*SSlphd&K&)1A|FnorLrB<#B3EAE(Xv|CS$1FDH3fGz9{9>!~F1{yiDf! zUl_H|kr(?5XPT-h^It{v370*RIx4@7g_9$j3h)yR6;-V$d7D%g%5CX?zw^)uaS;-= z)ghISq|V#*dpfTEO#XWrKY{Du(KYu0>%#fZq463d$=oh%7Edz&I5`0+1A*fs2HdZe zUwNoD-Er5J=;i)RZ?7#8#TsTR|1-3}P zq2SlHxxc?%;l}Wf3Fhx7t27dsbANL0ZPe(L(?oN!z8lwmx?sEK2+JeiFx`smzeg_x zC@A03+>@EG#H8S-)@bz&BgZZuSKq*)?wXzGvrySGy~NO1=jD5s6NQ!1(obvlWa_ES zH`{r-Go~;2p0|myS4T1}U=AXLsOwb)uWu zK{v70r6fzL(;|ADc$EX`tKO~#ZPc*W5&5(U}$feNxBRqWZ_V&yxO zBA+qC-gm3!e|$F~mEVdaz%@%PK8di3Fz-*dkZL86&yJU!Ma*SSZ?3Te< z?WCN!T-lr2r$wOd>-BGm7;&m}PR66F3W_Zcmddyi;#Ge{t`@58^bq8&V9$Ud8wf^| z5E>Wazg66Sx!7ek9{jve%`}OE^^KFIIKHG%RVrf6K@QfFrP$o3B}mH$-Sa94FDQ@v zB;$-_qKQLoIzvg+2tDjqyo4@KmXP}ZLa$Ol6%hk@Jvli!pFke(0hVX9pc9&LfT04( z1UN|OsHi@Gcqhtr9B?&bbS5o4BvBjF>_gPcpr-bMoLW)=2jh~qk}%6Ul{r@p_)Lht!Q^K#ONKTVs6c|`%V?U{F6ie==kUs%6plv6C1wKHhtAskHW+Ecv&UY)9On2 z12}9(X?e)#4y%(3%Z0-kCnR@dGb9Or+3gsw3;AY^dMDWa_INpmFyV%CAHP z=@PcD?}pEeHxnb+dj4s(jdNVf-%Cxy5cmqKqnT1Nt z02PYJtpqO1JI#Oc?Q$Q}nMD@-`$~sQB#@$oF4W$>dZpj}{8;27R9;GK-pMz0kFKY3 zP3I=O%%qjp333%#!=|y~0a2%5&Qr!TOinfH$EH!8)s~*9TMEEBl0mzW42oQ*->%`$ zX^)8sfj0uZJS2>bxl)j|*~Q7;H-P>+E_Azk{J{1@mib7%wLb=~WE{P*hrX1;nbIiP z(kZK=cmGW;=H6d#*}l4ylik-lW1r(UlpXv6hWZfh)^}&HA^-WDlb)V{b5AGi=NsRu zI!s#&dUe8lf`o)HU*BAw=+uZA*!c7RiDaqPu?;P|OHFKOBbhgDqR>pM@eFJ&o^ex` zjd;?PV;#@-w+!jgS2Ib4 zLwK+M5-Eu31Q(PFI*3^j=7j1y-R3P3&0XGoj)Z7Iv_W6B zCwc}>t=a*GiEZLLveZ)4Bi_;Eo(zOsPDEYS<7%Gu?-r=d2q;QSUyfb9yj`gEEI;z* z`}oa6qsw`kNJC2PsnIau$|a0X#|c%3OWcS?4&4X|vlq+!2vGLzi{zS|H&%*x>uSz4 zezWf;niKE(_7_T#o8?#5;De)R$uh5Saw4-vHuzk`TY*cVutiPTRhyUhIWM>H8x?lh_i9IP2_AI){SewssHZ< zF&q287X(CdCO^*ofHceP%pbwk4KuA(WuzL@vsjmmMjSGKT!l!vOnb#dJluMsC`?oc{26T!C$Dy6ECJy5-*{V8Rlb zf%?99I#gC8AfMh=?95{1n&byryL&xesS5V^DDcmoucU8^`G$pIGe%^J%e=g9_Jlcf zs^wiL9&9VE?6DGSBq0sb+Z{=cj7li@`33=`^D(i7_UzdoKgJ;33Ly2sU4qEs9PWX%S6y%lRMN3OI9+ml`Wq~uldPJ`6AET4cEgs40sZiS83P`+Z^LPY zyZ?w1s8CD+#R^Iy(c*RvjT?zhddf*>CH-N`9bL`4a1L2G^1@2cM}(>!HV*S#cRk)Zsj7ZM%K1njp@Tnze^10JRTtw|8VW-iF;@V0N- zdyJ%PfG8;ie=Ov(X<}?F0Hk?@j14*mL=RB2#;j6!UGKD>ja8r#r@=n%bm^f_-$S3% zuO;5Hw$K#|FdP9#$vvXYlDjH#I-z#A^JfYKl!zl|7jhd~62NYXt`>j~hM{+ysL&Ex z*6h2`BJ!aqh~Qp#wxmqeFX`+n+A$3*C^v@Z$z{SPP2XR2A6@kCSA%_WRn4DoDmzxx zgFe{(kRlqDUR@}1Sabw529z(ng$vwmpOb4o7Yo$aj?0_ zNsOGpQl<{XJ>p8s&Sz}?vRQm7dpx5<4qX1rP2qa~c4>_K39z;a$Bd>=$ZyQKevWCj z0t=C9m$|N7laEnBj=Fbpc>jYiSu-Ui97xT)7jz9XXs(dWRrlUmdf6}i^4q~9%FY=+ zbai^W?^`@8`Z;SScXM{$M{X%GwlE5@G-rG`r=lrTRXE4sSI%3zc;3%Q#e6=YQ^wuawvyz;VT?`Z?FOLw-+O?1zD7YtMkes)gaa|(Avv)p zjVdpvZf zP@n$yuLg(o?W31?ftmlXtn=aqM&7K^_HunklW|B8whJ4t=$=S`X}*^8H~)_v+~Vt$90g7XP;ajXU>_Taz7+M!r7Nxo#jq zRCx85pU2yk)N58c##D!$WT93F9N(kaZ9Lkenz}Dcb_e$4;=V1fsLnYEoWPOz9TJzP zFytjVYUrxB>8J8{f9uXd!f)Zrja{2$6p3&Hu^Q4i)IQA9A(rm#O{mEfKqg@`y)s8&(@q+26Bjka)xwK zNUO_Kd`=5drU=wFZ=W$P_;eu9RX-c&VE@IeL>3fNrI zr%s+OgHiE5aUyZ2g$L&Z$E~+VZB_w-Q5MPs;P{(>^PVg*!zi>0leb1z^@DU&UVoC5 z*(p16t3g-?9v*^-2mwdF!~?6lq=K=eCe-wkvhf8`W)+E_mK7(O4`JZO8($ z2myNtWhuo}Ozi!A=An7mup2M+C;oC7QAT`c5_ni#0lDKC3r_q_MSs%1yn<@nct)b! zZolcB&gJqv4*T1AGB@^41$CU{K4o?&Pm_}JM3LG$6__wv^+~s@erCi%eJf~xJ>`4E z7bmFV$!(4@`K^DTao9r}FxR8ntR)kg;BR=e2PTS74s-3dwvZ|_P&Yq<34VQ1VSTax z3s+=e4{Nn=saE^%7X7;iWYUBL1W-%52)-+5>~(~qY4vB%LcT8LKqeT5p<~&bBxI3~ z4LsHukP?dZjSWjXJ4Qaf8mWZuvmM|=n5d`1Ab=9GplP`=oV+Q+u*aiDLo(_s zEHY)ooIFMtIa!QVPW)pv!t5sr5@Ei0yBK^aN-+JF#Pf!A8Q%j%x~WMxwORXfPDcEg zki`)n4GlqlRNH!q1YUr6fW6yinJA%j6*&Ih@mg!Y_%h1Z#~@Dt6~l;!328@!#KJCM zgRd+S3_+Z1)P%zfBH7q};`3X_guhz#-wg-K8mW+r54bfJihK_K%i3bpe#N#)B#|U+ zPJg%(RwSAfEOJg8=yO7+u32ELr1JRa+~Rv*p4ke!u&b*QywCwG<20hokBUbymGRxq znoUBjh~s!e)I;ed$BXs&pe(BWSZK_?gL*TFf&baQ5QL!w#JVO*=y zbweAp`meApc{64`q8%=NZx!k+X^I%XSgmFo85Kb9ZrFT;(Uy$KBdD(HaCESCoae z-+nr0U1OrKCA+v-L^@9pBTUsVc13i)#Kx{y_XWCF8-DFTkL`0Pd4SFsw5%UrEL})u z$i~en^6GCmG^TRMFyK?9`Bh~TxH;36cU#G1J-DB5dMWsxAE8~*$(YO#s z{t6mAYdLfm2HXY)3_5B~*n72X;)DeKdE8mSihFdH=>>V;9av&*`s@%KGTa)yLx{*7 zaHT`)?!a>xDRwb;dvr%IYH8};DgiA%t{@b0?D6sCVy!hK`ER{J^-fO18rScEOlKz) z;|aXlB-OoRXY|MRTIeQq=#Q=31B?5Q3|DBXMWqh*9MSU*x}O+?R%OK?zENKkW|0jQhDgZb7J8%QKzzcL=?77Nm-#)e8L&E#210Byb6lWxsYJH%%1_S%x@c&;E zAeATpGLXcR4vO%OiP=4ph*6`52knecM>d+S}doicwRvA&&twrZg;N3Vhn@U zU$a5~AsaKkKi|7EkC!nfTDq7cuJK`*our=5m7LdV7wKo6-_mft!+c^Ret;@Ba=W0o z{@vNxnMz`s2-R&|TwK@y{Hu_uY7PAKi3>r{?*IKewB`~)%IOE;p&PX1;V^a8*pdql zeG$KWhrERG*9D-@BKlW*R$ZE4NTY2h`f*;DHB-SE2Vz1)Foi&M5k~2t%||aUV=lxR z>%uDzzbDEZxl>YWa?Cd<%ZnM#_?|Gst8UTkd)+OLZw~r5(yn2JQXJnUyLbXQC9m2s*^)=ve`c`wTaW-sZJfJch zD}!&-AkRXs!k`&MK2%V)Wvnr~7e1k)#onjG4BZH4F0LHEqnYj;0hrV@c)b9I{>+Wo zVm&+9=Lri73#6vlfUuU3Kmj@swL|f8mL-w(YN=MJow%vd6n$ z+GfhB`CbW+dA^!s?q_;EM~kgpu?Sg&3-!0P13ujA%SAk<6kX=E3uV^rn$M&8YOLp! zoje_vlCsCF4b{`u)}!R+X4zu_d3nVXXT?Jvw*6=_p9Q_pmW zrqN&)05NUgv_2p*WzcAPUBqy~x`vR;hG_5aGOJ_(n`XVq%_GGWP@J<(dR}af=vLPD z4&?52%A0~)O#KH?c6wGhO+NDSW{;%}-EfUKXd-}F<(6Vj%>`Oi0~f}?MaMPe|MLQP zqe*CC2mM^h%)9vJtrz)3V4wJ{207VV(PB?^T@tEDc3KQKed3eL5UU5Fbom-@E?9+Y zFfbmx!8cdFyWLHOCyg^#NlLeXg6jEN^wTV`y)+66_xX74+zc|1e|8hQ{>>>Dc*46Z zc#Ip}Zyi@_4hG7)PCZVdUys_nK_jAHX;rLq{0J(YUd*Jm#TwceeS2tbvNn>@uu~)W z=yX}drt7d!8AB3OGsh{H7Cg^aSbjQ@qW7}Dy6WZSCD?0WR|P_4`h+s!P?z+)TiwU> z2JtPDM#pLL-Fgc8s5F_)j~kXO1NZF5Ws#~&1gQ!+8Z@L<1No@T4oOaC9%~$}G*ccC zXOMkQcv_G(%rai_`Lp$0Bg{{Y5WwgDui^;|m6JA#>42G8DR@E9hI$`WwsUJKc zZfYT(wAZLtIM60`_GU1E`4Y8{>0WQv7O~VXMX@$}=Rak|*CfQr$wMuys_!_mwo+GX zugTs->%5Jf*U~9*@}9iVpfx>DF?k;X#vG8#0{TTaa2kr-eS}~E#dr{eKe{8J(B^44 ze0(Z|KT5g7Z6EKSGiG>g7skSz@r}u5Pr&+|F_ZJ#EiSIdQ>u!qeIlOUNsoScqGt7K zt1HFOmnJMA;%=a&xEOjQ##2YEpB=KNkQqme^Z@tJS5at%jz*B0_+C7`XE91T-@$pP z`~{CtVY1-HM?;PB<{=AHup~ciZuwtcX#K+3dC+rp?g|Cm&k*4M3TtCIW#yMh=@A5q z-ZEE12F|2*I#ixiUd|o+`?5|y_U(8d#~U(_JS__c?(xtj77FCWbim|v;TEcNMZUhi z9z&1S%y?29*nonQ`iirsu;q-c$~Q#fC4?uxc)h(@PDkPLMkSU>2v4SvB!X0i`&KZW z+9OX8Yk#>fM1qM23IaJvaS*>X68V2&z2^fmf*I^ok!l#ESOKnq;fS<8ZQq(M>UFjY z@oY474bI##`ND?K7dEl!?u&PDbZ)9IZwrluW<$v@F>)sdcEE??;xGrVH?{5c%!O+v zcW;R&YWb;faH#O(;_7V1CE~0+HLan@8;tLId2AUa(2_HnCM74w3?>XL%%!%rHYAw~ z$qg=UZs@W510^gITd$-gxFA2RxSM^9PM=Iz|w1&}cdA$vjf4^oH&tuNP)3e?v) zEd21V%F=CLj+fWeDGeRUft81QA$BnIN=lVgr_I;{;e{Du&aU26gBBk+1dO|1YR7#Jbz2+4$x0Ou5@`Vnpa zh8U^X`Iy}SDH$mut!D>AVX|DJ{cm1VxbA$AFW&jAKW*Q)@N}3caw^KtI^cea5f*nn z`yrFwtQ&r==l$O)aI*s|w99L@aFT~+U}SkV^W>Q>3zo)p?r$z49_p|8WULb2+GlU+ zB~M@DX(*{|D1larTxdiR@jS}n4*cUdsaE8QlW|09Nl1b>X^uYECneWn#@Ded8vdK2 z4ZgTj*l{258?=GTewjU?SsKjLivJ|~v=!u9O+vToHB z)5nJHFnvHZ>Vsa=z^)u&a*SJA=nB?S zo}+mx)PA!|o#wUrhkC!N%ZAFw6s~*fySUV5)S={Phx4&PW8!0yyOHc%Vc=xbR3Dmr zwW=`120dNLEv*n}+CbM?YDgbc7RxgGTYHlJ01;c`i#9A;sP|#{gWg#av>;oVanUj& z`0ox$9{Kpa`WbpvRax?1|EP-2TJU@~${VA4d*y6MxGlfiKP7ZJmbDTb6tHHa5!@o@z5!5jhD-@Mf}uzS^d+R-44?`H^I1(kT13 zhnE2NUvb}eEnAm&?8A*CvlYWSVv>|(WUl{LNUE_1hZg}A{#(~8OQ+-}e;Uj}e}4<% zbj6>F)W#y-ckOepsp=E*daA^q{vG?Q^*jZ_E)W&Et=9q98iZ!=eLg)4dV(Y<;2(rZ zUWU}W-b%vna3D_BXmoyCkyyBMs$8HD&R=qOV?sI%?y0MG9Zk@wQ z%HcfS)YLR4HWr^*=chi=@ND>x6%*jdKun6fT0vIh8|F8OO1Ze?hHl~F5@%%WJUl$C z(-o?F8W#9;nD&vtl2(qQQp2|91&USyVe>InQBgXb_NbL>R#peVQWE5zYWgUpM*VZKYxQT571c?6 z+g8bc4?8{AF-OU3m6$IgCy0CWb)rNH4JKF#N4rooK>c@|?-Xx~0Xf8Be^Fj(iX*5~ zrHi%x(etD0pV;tCROs5cFyYIptw_P1X6R4-1YmPfXjTG0D=|3N0bg}j%v(6?nUYeb zC?zxv%FMdv*`vPo4vM8X^zMSHxoh~N`g4aKug}&BUc;9x_$C7?u#w{ownA-?OZtA* z^Iu{0vh7tSw-+P#n#jF?06fW^X66?X(rS8vPezF)o_{TG*e2*#rkCy?~W{4CGKJMw)eT8i--ql8z6*YDZJA88vErrXZj&;|bJxPE)XQy=2} z=|@9%!S0{(=&v2y9qt(^j93a$v_K_|hDPCA`&QAKLkR<~SMVQ~*vm4=t$dre?PRFQ zdK#FMpt$H2-nfulr~SF+>C>m&E~{!_RFcrph?|8oDG88V+zx-lflMPmdhj>xo7~_* zeknsVwlx)5ea43@32%iXMsr+}_1h>PLCpMFkvyuRQ2q9fB3)=lfk}vxO|89^7iKe~ zsQAzC$FJc5KiRVPIj@pZZWs)_B1cwf`7^JX_)3Un9B5E2@AqmcP%tb#3ukE8#&=lg z(~$99yj-`5%P6pGjK68W)9KDKYyT*^rvv8CkgzaNs0ra}m#c4x0syf&2$bc2Ud4+Y zx>RRz4G28WX*xhZWb&q8|0yJ-_rpNjuk14^l$8N06v1&&okw0i#Fr7~v%H(45XdEv zkTgXGH_njAExku)V27vzdI4D!g$yBOU{(1oi5MeM&%n6a)_cpbMTN9^D+xU|9d&y& zxSpzX@qO;_=Cf~79hWH5LKxJr%>Ulzf1_xkAvC}AFZ$6|v|dSvQE7LABX(_MVb^V=`mhhRB8uuiA+Sz0kB=DIt< z#D?RDmf`04tcIp!+noKb$1jVV9L|I7aJ{lN1AY0wOKf_}j}>aYCE7(=CGZ3XXF_PB zbV5JiM5!_esC+tD6WwQL-#Up2BW!dOvXQ=>79dH85;9@M$}G}EtQ*ObflKjg?{97O zRg#sZUk*@}QADqvnwwm^p4p-(Zp^j5%Ph>tn&hV^{NUCis-UnoIdaQqQhATGL6+)N zV<)dop$B5Rl6);{WWMbFtn=V+hKC=5cn4kJg|Iu-NS_|sITP)8@y9#lmBfniB#3AQ zgJJfYnQ>`eWjdDwX8C%SFdj3r`NC33N^0eavIQYw`X?^vb8bpGW`FIhoK=UsN~Jf0 zj>#TRhEjrS?2FsLYhkK`g&X(+mZV`JFMi<;Jo6Ti{oBT^H{}xgPJ)wOMef6D3{UK! z`j|4@AR+Pka;Cv`bWEP`AxH**wMME}{{pQDiJkQ)dr5q=U&#uyB2N}9u`1H}hf5V6 z`TFm2<;(EJv9gV%)!Ink4@9Z#8663+5);pS0zFtM#>OTT!mw~~7QwT;3}J{YyDh4D zPX?Ni>RJ@blOvjp$2W@za|VMI7f1>Ql+_=L_~}InvSYjI(I1s`Ax+^(IRKbg9G4F) z0lEGK8dQp=C(RCDJ}9K$8Nl7DLCSXln>Y6T*b|aLIHVlnI^$Lh0s^G=I05GB*8NQ3MMoSJq|8!)!|b*nrQf;s5~U@jpfJLb)g$^1-k0$_;CC}hu{@w z8X9C7@1I}TRM*9I}Fa_^qNoCDD1g1qS@=hNY{v%DGOuoq{z~bOR37u1Mc=zrn z5YWlSJU@9rT#hEWs2*@Xr_v)0Vp(RebU?r=%u8g$?M!%is{5~leopuImWzCYHD730 z7(x}j`sw@;ybLhy%KGxXzt_ByrCl9Z)+uu z0l@S{!7B~58vpqx#$Y!Gr%!aglCBfuD8Fuw0=(?zfFp{lt)juplAo1CBpRqF0H2!g;ww9#fi*(t581oY;QayC;2!2f*hu$r^F}=F1ob|=2%z! zlj>;Lc5r|L5)uc`pFdAXNXXJI8M3Ob(_?Q>bWCR{Lp|7kG0OD-BBgbDL)1F6@e+7Em578M#wREDC==S#F4zR^$Q-WxSFe62Jf(B6?I3K|=e0&Z z??Ge+dWaU!lG^I`{8}eWTH2?28d(aZqFn`b<#ykh7@TZ^>4n9g#4q-g#$E@0*8n^L zD!`t2dqu!OL`WzF7;Wg2M(?}aVoLB!MLolMUrUjb^(bCp`bj(QOw3K}Z{;5Almu<9 z(4Kgruan%*>sqRx^R@7fjhucj9R_&~8>u zAnHmmH^O+Hh?m@Se!qtGx&XPAy6orHotpMZn&+zt+mE7~8?ZDDh#%nINx;7s@SFeo zmM;-{AVtp@mr~ko<0hScglO5{zpwnqAR1th&hXCPhws5@`*^FZCHeq3DZ`Ste z?Lx^8th<84swo>B+Uhk%xF`sA8qpXKjWhp~hMsaHv%jCvFE?FFEW7Z#wl);-keA5Q z3V8PqGlC-lysd#GhHqlSaMMsQ$sGv?>Q^|;7mdI7$`DhAWyLI%mdYM@;F~%%8OV2? zC^AmD2vQ<(F(B|Gg8n<~^0Oib)C0$RI9DTDL^{M&1!?^Yr+Q}xvJ{M=q}J(rrKP2d zurvPPbZ%CByt(^ar_e^9Ns=8dePa^!5y=F68n6k?%_?6*>MA{iPJ zKCEnay;0ZD%RHZ>8*O-jhL#%=K`rfWW2htYTCswnbIFE0ZIN0hc=eFLYlEk~XJ+v@ zz2?^&RtCeec0Grb2F>6QQr`NRddqL3;RQ0ZtNzAQ-2|xFl?SN@cu#LvbhvMG@UHks z6O;OlFLl1;Hq=!>kyh$aArM{4zxAW})almuDM2Xw*`&MBEyF*} zra?6EfK0}WJ^rOKd2Z-%y8jaP&B*>2vBnE{UkJc#3IJ~t4pNR3rGS6{1Osj8`U`|2 z#QBI&-f#Sp&zD6rSjU(c@2wc}DhG;})sgrX&@f@9N&4N`;l599chb6E}h+ zEJtmAM^@)6f4KLt;P&h9vQQ**bSNx?;x*eYXkl+!kz8=s3t3urKr%Ut=5Tf%#i&&Y?G#A zo4C!sy?_)4g2n-c8dUCvL`E*vOxrDhr{SzNTpQjt>@IUx4_#&k8g_jsa+nbeEp+Kb z4_VMd?ey+$D5pnVJib{EC@^k@^FI%Z$_=EVM~EWO^x7QfEK?5 z*SD47JVgYf!9hw2p$BMCx_o&5H-c#LzT7a3*RRhs64{n1IbibC`K8UCxO0u>o(+e= zP)FiAb=`!+J0pCzthm!3-=}Bpu%|_#4T|JMejBo;TOIczGylu4vDhT-FRQ@Q0^)=F z%Rbg#^hX`W`6g<$%@s{yHEy0M#_&}L&_nLU_i;2RtQJv)>N`h)HieSY%r^RXzg48kHqI+ZSSoKa57uc8#hbwjNN zR41H1Q<=NE9=g&u`S!UJ*GnqD`QeBzOHW7NpWIj@=dMquE%~jZ;MnoVw3qab z3u}GSh+eY?5(*0k4WoL7PnRjN$$hFikR^xIs4iV^`mT~4-OD5!LtXG10atqtfZ)f0 zMX2sGDm+0Pru*cx*1TsNrH90%k=^WmwKuOSPhh5cTa^9w4`)ZnJ4frrqd%NdmHPLy z?k!AIJ5(M0u&ekgzi|CNX+Lz?o_&xOE}o|i(QW$jbQ>p&e2~y~mWp&%SG8-B!od6V zrJ>BX)_LeZEP$$C*kHvuI$hV%CnZzn;In>^INjRiazu2N@VhsGWi#>RJ7@NL9?gh_ z6P`5)x<-o}k=i#O-XTuoAG*w*{rq?3KwwkLZU#qub(eGEtD`}05UOUSuS|uPrb>QcxYnWN}V8R!)rA^(gbf;8dTX8O$^+u7E zNfVLiI;(Nuj_wH^(DNVAld|oS@uQ2Azw2^4F|enISs;jp5U-imqnQe40Osj{F{a*O4h@h%5c@|^ zCk`KZ)MMYhlLKoVoTDLBx3{hD7?=IvPN`|8J@oio|juN&V7 zex%MylO7}?hRh|0^)jE=x9MnU5k#{)pik9V5+NWB$MHv^Wqh)qe7D9sJMnp6vvglJ z-q$(BYP)tLduN6`MKZLklxUTGtDPSYQ9?hz(#`FJi56*v-{r_cnYhEUwsDVb@{p_M-WHG);1LIFHG(2e0x|^ANteTy8ajaKWM$l{k_sg&>ans`OGPo$k zgLpRAWtd$&_-rPSO)ByoO+7H@Aaw`8{)ZO>>@L|i^-m1L{(C%Sp{1<{kT|_y$+{5r zfj0?k-;r+n7N>ObY|zNzlbSPpJ&wakkg_?U2shh>-1|nLn1cV)Kn=yrq1$J%jRfe% zo>6T!EIrShk^o%43w@~bd+uuYUC_}3Oe)7-)K0_LNXx4D$^99?xq`2Sfc1RuhtI!} zr?0M@IgwIu+v#rDTM0bb<(-kdfloGwi*E5*TTR1lAB!K0fY{Pz9=~}( zjhwiv32*7q4+{oel0eBsq~XgPlT94h0_C=}WDI_hM*Eyz5;jkJBi``UJGf_X!DEbY z^JLD|F|3$Qh;kCyLkCsETT=GBzY>jSE;%iEV=(<1Q&C^r7w9dDE2W_Fxo`wtwz9D? zE!dGpC&EKV8Ed9*)Q-zb#Pdu<$JQoBJnu4lpToo9wJ}iZel%(BqfSuKF}Hiaczx?- zC;7#gDoedI?ZnLTs||zOjfz$kWr;-QTq$S}e5|e~vv%fv63DbBbY_GmMY#Iglgl+R z`H{~*;l1&8CBM&cm(scV8aT4#c1qhacjJnr>jd>|f`=5PM{cidW=MnMKKVi>kY z8(BDerKYyx4XD0xbUZM9H^NyTDGU+_0+oaO&9ExgOo1vj*i!IJo%CLD=Zrf)I4Lj@ zu(cH(&|hu$VL|%3P}+CijT(9W8AKi3o`}xlxV`XpMq0U{BO2vz!}|pLf7nl*=@5_| zZ1@gh-R4?TwvoENn6IJkHW)QGUnBeg#8gJ9eMO3c0mt)Kq=EPi2gZWkBzsN7#G1G+GvaONld*wclbF@ zIGD?XD&nbrvBc!N=y~qUm~&kM5r&}l(jSxvTIPh_F|wTQS&7jTp(9}Cqm15Dg{?7|wC_Zp}ZozZMf$`FI z?Y(}ZC^&?o#y6HAUlb6%rq@;&712Ie!oSQqNmPF6`^DfA71jDVYLanL@d`}z$eNgk zJUnD;XEs@fT5|Z^bNa}Xz`g$a*wJ3$G|6-x!aNzGioL7&a4VBJeLAb=vq*Y2N`zid zp{tISL{W5wj6&buKdQ=QMUh~Xn$9J6+2o^5@3}JOlY&Zg_-6C6B~qC!E~%cD=`7tu z9hFAUiNtCDHSBq#Z%tXnpkgSyuJ7M%QeR8%UEJw4;3yv|y4 z?}d^N8xuRNCd*!f-qxFcS9{SuYOuqJ4i%|8t%$!ckRc+wE=5fqq{OhWX?_6FTYB1Sk8MbCCMu68?WiA||m^^^6dL}nyNf)ZkBNX#4It)!%+z)BcB{Z`sQP{+LS03lOMiK)Q1 z@%Ep7IGrNgBrh%So@Cm!Te}T z8`6gLtq}kU^34=y(gZdBcVF?LYry=?enBl|U_h1oIJ$duP+VM&ZAhMOa8=4-DwXq2 zCIc{+pphshBSXc?Y904n&{Y9@E~e!3;^ry((1r{-k%UDwY5@I*A;ErZ<;@*Bce(~# z>Fjl3;RlSbiMr#e;N?nMVP9ad*nf?R6UU#OAi781*7@F&D+!*= z?YRbYoOO0PmNI$QYIROvvfUiFwG* z(!XBDM)Pk_UeR0QQ>ww7u1g7Bl?;YZqliil!`pg(b?KZv2 zBw-mFO5=E#3UP!Av69A#gVjLbsIKB8{m-!4Gjufr9hqO*(45!EIiT9pC z`v8@2FPN3Q_a`d!>f2}k9q~ht%JxmDGYxz6v?^KDXhHpJo^?(2#jM5mf~TDpM4zIz zBw14Fmm(F)m~3|`{G>c-JVZ!YAF4ffB5>Ax^j!8Sr_KJ(AbJ1+z8H$4X5J5e6(WYb z!fDp#-p>SI)3d)bo*G&wU|@95NW|2XeVbfzbf~uy<6V~I`nDEvGj-A^6p6tm|c6*wl=y5wIfthaow#E%lX zm^N1}e6Cg?VTR^S^1_KcG&1rf1V}|oVmFZK1hPiaN{l@VuQUuj zLU%i(5+{%Hb=X|j7#P^=s*^BBIZcX%eSPmHRo2NsbfJ(po}$Dp z39lQum>hq2#)jPQT}!SH{qTVvVU&1Z?8!=3gs_Q+^OZRdOHzH19TCF+nui7@G*FPE z7X0--5jKLbL;eS|vxSWfy`UhNuRCB+>;3i(?Ad_;(S*YAQ59SgQqtZQuX8X&BP|;F zrUN8fHQ5_KDfRXEu|+*dqG!4hs{tf(yxTwp^#F%=r@@mjmO9&E+5G+1@rmLOD-!0# zJ{99%!P(FUm;6ed%Lhr2Dn(u(UJ^=IQ%65_?d6lC#I7O9@rO;jXk7Jv6S1}U!`2)M z>2H&|1+6|ssb|tfCNHAuL;id9AP;YG+ z9v)_X_^>C*P)U48Mbb(JUpK?_`4Ab|$qwL*YFxY&wh08R(i}$>*7XCmWonD0n5X0A z|4y>C7pOia9%`fiz^u{w6ng=8n|&*-u}fvhXw8cTEb0)2U3|;0om^96O-T5WBzYeQ zS}_R;op3Y*w0!S+PFG~e&gW=UXAGy;BMgRtnhp*Q1;^KX;i0QV0@YgD+8Up&u2+tj zs9_SzxK7W; z_3PJvJ@OJ9P*yH9>2UnXH*aNeGbF)!Y;k!Rs!DkvdFsv8q{A4G^eQ3=?4|Ap^xu2} zd^7rZ%pt=*V@ByH1y zSDet)iS)9bDl|g|EffTRcNw{IRD2^9E{_^kFcsLh3l1~{5y&fSG1HH%Yp1=6YL6c0 z?l>zdV^u%p#*C0>d^zmTT#Z4b5LxkFv81(gKEr3^qg}QnGQg4ym-7j0oEB;lmxK8@%IEu;hW0vl0vp z0Bhb4n7$s=_fo->Yt3BP>&(TJ>+W=|y{ve5?`ZI#wV;?;f$sj; z6eOnM-GPiMD3k;aCJ0KE5y_?a*t`S@Z z34+HTODO8P8*ChZh$$ldd1?1Oc_+WmVBqu<<<{AIu;8Zg+aKL$h6Ec-LT|nxQl1mJ zszdcDj^Jw=cKe&Rq7Nj=*ut|~of1C($Vq42RWHyj(MiJnl^`hSz6=6Z2~mSDAZosnLec6_5WPkKFG zjrGHivhUv?ko+=WN>r}L^oz)zF~iF`Vp30V!o4=1@6_Nmzc@o+Er9(Mlal{#kCIaBhfK;<5xH8V_>AYo~Y+PW1Ii$ zy|UxN^;s`jhLIOB!8v#d==VE9)fuX*G%cT8z53um&hY{TAh+}&bJKJ*MQhDC&?Y!y z_Bw>Kv*?t^?ZhyWc>hfUg(%&+3;3-6RdCI91fwzwRww$#kbai<*XiHb_4s$JD~NU6 zKZHjteULi`8Z2=K_*mVWDdXHxQUe6gG~z2wSLQgh=Qz$-uR(y`4(fX5ZbqYjAUMoa z`_g}{{5q$Ox1ccbhm}8v-p$BJ@;ts1@`Q-63>eNzC|*R`+r7M+Ri9Y0vbJe!`zbM+ z%(Vw1U^4HpwoHF8uUC0rdPK+`y(nSM$&=VGeG)8#pTI||Z$taw@NufskKBBnaejXoa5gem5bTl(v!1Lxd;EFuRy785RMW`uYPq-p4|%u7JTpBpC?fgCRNy z=kD-Yb5T>19=1*#t6a*dz}Z9%ilV-$aH!_CY`&VB=bixSrRTj7myEJ3>M4?P{3gfa zt70kQY^5^VqZZHm&yLtVnlm1@Uc|u#k~~EzsO?2oLjzfKN0i?5>9awT`0hI(BkqZW zj|>kZEtsl-NXmlS=ii(14?Zfx6NdOdr8LgaCdjRO#Xh0RI#WXJ^NZ0!bws5M3c`R4 zQc-bnyHzy-RC+5YU~A?p&E==rAt`st;;$>;QlucWRjqrR<2mOjHoLCPlUeVZTZ+`e zogKr8a+LfBZi*cnhqS%uIo$>Lf;6bW6W3?SUGK5!f0fBV!;WJuBl42kTfUZwT9TM} zPS?<-p2O}}ATJYj^*wYc8-nWkf+FF@%sbB4_-9-Qk?SN}{RCL8hj6!M)>`UV@a(Nf$1-Wg*J7-%Iq;_7&Di0g8&fy??-o(cQkz<>3EC3lUa%5jUq|FkI8F25 zcCom!vS4S^{dtEp->c`%*SiFgcdJg=dG4VKtmj#OK0MQdN)mVr^zyLiux!K>C6Zz= zf?!uk@^r*$pamJr!H%&TgxXMc0=`EC83WbEc_$sJm=s(w%cY8>t<#}=qIZ;=T2Z=8 zs@0E{#zPDq;!AZaTK(N6{U%et)n5C*JHQq3e@pUO`0?(8Cbtin$Z9$^G(VFmL^NtR z&Xjc4=ai9o3La!PAsGqlStQJgnD?{!@i@J)&la_cew8)_Oi>??=sgktzOB0IIX?3F znNmwKML}-8zR!4WwLYUJ9{Epd&{$;j?>MEz{R?$_^{j!C0#DZIo4`KHE%hmv*p^uS zcmh7`k`b8L{;S1-M}P65fF}V!51-dNF~Is4o;Zqv9u?o>=7#EzM?8l~1kgu0`Pq^X zHu7*saaiodr})0Cf@RQH70Rf~U}R*Z^p1u><9Pc4u9I?zc53!UHB~FYNaN=>HL8|k5q=@oeRoWY^x zSIsHCO6XYkO^fHHiLK?A1=oAY_tjYsBIGWJyO&Ey)BaWpDr5TjR(A!^AXwe0W@gw` zkHA151WJ7(h?rDWxos6Qo4m1WXQ&Si*nU5jmgd<4SlQCm_0eba zyvmaM0~VjNO*79^r;5WdF{LpbNin-4!v!k|(ni|rJHBE?$BsTg{5)b5|K9d5>&^S0 z;gu`WWNIex>*ss+ez|q6W4$!bUFJ5YM9~(M#=(w99$XHFE#du1lI!|U(EB@f=ktd2 z!)0Bv6RhPh$)(i??*F2KOy*k$soTTzjGFfBNW&8#D}v$Kw=v)re7^FNM7zTD!Jw>A z7^5oX>mw!a!xBSv$jTYa{%e42hcQ6Bde#5n&k&8KGx9p=1$!Bm2}OnUa;u6-K?v99 z>U_3d!{oeMrE5FJr zDhjQ(9(QWnzvd+IRzq!MzWVe!8oPc&0{rPd{B_43O1G0kz(#?s-V`hi??pWCBzGu) z4=hxkTvpBIp()p+Tj)WGEuC*Iz zMCq|3ZhO5thc=Qg$g*Lu(apZ)@<!Iyw-*B=BQhAf6dvhAq7P69(zqF`$kjmV4OcZuG~M{@v$p%1 z_wf_3rK3s4a3$AxI5`X3J3fw%aa#`4&%Vn^w6JY>FSGhlow9txwVuN;HX#d^EliAz z`5jAeF3E!X24DpkuY+48U0E<~)zI04iPPj$6G%bag3j1Aj)@;zudX)Vha)#V2-ky= z{{H!{qA^ty`OAROg4MmjlLgC&v{&$(g7@>b&waNXIs~r;uIgM&HEx%_OZ2?%v#EJI zO1bt3qxY8^7^TFAy;|7sy9Kcgy>EM6X=!n)yO(OSJ+H4zqc17GQx#fj|NGz&AuoV- ztgNDPtDX3^chhyiOGLWAyf|sJoEbR4Q+MDJ$PPNh|9uwWr@BgMTd|6c3+8( zN!#E9S5@4=ZF@=TmtS7GWk=&=O&6kjD4#F2)*~_U{(hu#$Mbl*%cN?qo*hN-Y+O^2 z!3}jYaQHALVRY|s=g|kX?3X)Ruhvhu^(KPI%b|F)kOd zY=()e3WBKUDZb-#^ez`D^DD|SLsrk}!rnz0<}c>jy6fseqITXKzp1Q-7xvT$*mfc; z&+G35B~eSGU(68QP(dDuVU@`V8dnRPzXr_Ej0r<2?oIA~#vpjb^LyieUMZ46hJm&A zR^lAyPhegF=u^bk1qPRiXAm<{d_mp!l%K`&*$wEbM9+!;KmbwKDb@$5NF6e)Gt~nF z;x0~{1ENTSS=i8CIxtIIV#M=YxuMe^b($6D?_Z!6f4X)4v+O}@$oRsx%dE8m!$a0| z7E;u=X4b?ooIiVUTPy5)B1vU-+<1AP!Pa#lpqSZFdQc zmzhx)=#9zu+G$ry;l-R=JvBHHQN407oa+ssW=w_&dmoz)|F1R|@o8E?R2TlpG zrD7UPEgo|dXL#jXywXn<8z>xlyso@ZbS1)Q!QZ@x00`@}ZVJq-mgSj~EtzuCCP; zAI7q9q==+bn-1SKGbV8H&KzEnQgX(l$lz5!h_lKX%iZ)C9Ua|;RW3KUrSg?h{HC`U z9~l#g&^^)e~IBTT>!nb04gi4WO=luQKd@r>Pg|Mkr@SKr+J)~|`!k#11BRBZ~hp0P-{vbPGt{9#>DSsmsV1hDo0csdK9 zuGVntgCY`2Ba+f72na}bmo$P1N(hqDA(E2PsdT4+NDBx`hjgdXDN@q#J^S2yzZuWW zIdevVzk9#$6KnlejBWzR*-}a-BHAX!Ka`TY=swibKKmPd*+i*+pkW;2_0Tt|Z+JEL zA76ZdrjyzxYd$P6E6;VGa3U!-u}`U#rJKSi0zj^uPx?L7>LIj ziGU-7b{b;gc&*%IqNVkNE&$nI65PET+_9Z=z97M|bHPM%^eKbigh}=3L*yg}E_Ujl z$0T3>ru&VxzFEwpblavZn3RrAVt@1Zi46?EW052=vCG{^gba$nqraW?%{9i1Dz3d7 zynC8Unq{t2$LV(f0FzTf6v+Z#UPeRXkP zzp~)jRTlH9-;~GPxzD}2>Cj)cubjxaZo{kz(TVq^3Xwjtr2u}W95I#b+K0h+Dio0% zrE4>Z{Zvsd*kuiVbvXnwNYBUM(eK7GxTQd`QSANx--(&f^+?_cIJKp7U%V3@~fimj+aHWJUnqQhXcvD zf{IG6-TXI1XyFMPxo;W2jR=fCsWDH08~E+%!S|%t$CpM4>c`z@aSexPU>wmbQ&bhBrqMQo5*CRh!^OD8srD{?`oRMZ>sNsVZY=IGP?+@*C=AKKX2HCrs z26EEUh)}%2@Iichd`@28LQ!e{N=tY!`z7(KtR9uw?i~x3QprR-h4Z(B49oYUz~WI@ zRRc*USK$>GGI9&yBnWL;0fCX#xNZ59529}cq3rfC70AXL zct_rh&936IRdt7e@sM$M?3<{=BlB4WGKZqI@v?idj4BI2>jU+qbea6GUupEBj;`c& z*wh&B!nWli=lic^eEM`NvG}6)8?j+oBGhLos!W)en1HZPLMT+Qq9PX zzSA-ZQQ4Ca`_-e`4e#rcq|k%Y1*4Dyn}(F?~IqVmYb)p*geK< zM-i8+Wf9#)#4lo#qf$Io4YI+CQLj62E_cC?;s$zJfw!kTx<%f9tscYK4l8pn1|x)r zGy#1B(8Ji7%0AI>S<=4<`~!7v_!w4bSpMg#4@mmC_vL>2+s!IgTbPQ3b#EU;rYOfR zvoh8b{oxT8!%uD4HsEi>;n0hG!J~s@?Zw2#BKrw%9X|)TClF`mRQrN#^aREXn%x3r%UKEa6BBVT^lwuPTyN~E&aTUV&-0&X8oo&XB2$h0_j;b4--AwB53$e0)!MaM_IRYBqp>ux>j9YQxGLcO`^u?(a*8C~4 zwT&?W-<|<&AyOlcjE?StzQCdI6vg4=HHj#76P6{5L4D(Enu9FY?Q8FAC6}G5pv_>6 z$F?BiBt)|oA@nDsv^0V-nTLy@a6>kyNQm_#+57xx2RSO}^N1YQ->l6yiNW|SZ^oTC zwO8CV-ditsbh`J(8NRf%hs7zaL2^@=ZvJzpc!Zi<;kLWrl1cuu;()t=_~4dS_^RJN zMs6N<+#|!UFGFaJZ3~YI9YIDC92$eM4Q#Y>%h4j$$TzT5gC%H?hTIzsL1|K%TGlj} zhJkVrmc4&IM-norayoBlB_$;ZTDu0jNDnHxYO~J97i!fj)s8s$fqvoHYf$ObQqD5*({3`x1ZwB;9}FhUceKpM}K3>)gJln z#xJ0pUEUM0N(tJTTxji13+q_Yhg1ra>(7u6Cbiy0L2+h%7$ccE z-l*nB%$tBc-p%8)`72c@p~=G0!P5TXMdpKh;+gB7#)c%5x9b$c*=u|fh7?CIx4WcK zhUavuz67rwo^H1s;)zhD@KyoPb$%c9IoK^l->3RL7Ny?HW4SwYN~>%2Syxx%Xp!dr z4fl5eLHqEzIe%>$H-RoqIaM&eyvYQ3toQ;{1PbV*yzZEc4Nt}yz9qSs@MWfxdi{vUL?9ucehf|g{op$qUL0pF zPWE=$gXqig(JpNgfx|Y25q*K-JM<6F|5@CkVP)NC-+K0}b<&9rgVX+pw4cAf_nt6h z(jZGIMDqd%9As=6u*xO-OyHezGz9#Wn8i1}rdpAjRYJOCC;WZ=(Z63Vwd$li zMB9B?r^;LqeKs-i1cr@%vvdEx5jtM|Or077d54A z|D%3-EQ>5DyvfPP$r0ZhioNUX4xKCNlHjY1QRB@IITkWj^`n+%kXsA_!twEyLl1;; z>JWbCt;TA_ukH-I%H5C&#asvH#OXHJN%DgZXSB`yGaq?~5~-5-bE48aL z8N;?rmuZAiJ@2_6ZuDG9TN|3MEa~tTo8QXId?-YIp)`SA1*Vq?*I7RX`kscQSkDFg z99D*Q8VDeZ@bDiN<_WgIba@hFEHW}OYfgd)>;);=;iyMw_X>|6Gv#+0T|lV>3t4-i zHdQb%nD?idfotCLa8#FPYU-S@?5=lC1AZtzJT$J_@do`w&$1*ehhSd83EMDaIRrl{$h=|I4szyD za_)=MS8oRkcu5B7te@m}sGGC=yMS@pbNFCXJv|#9Oq8U1QE+Wk4}9P>yFWWpXsYLx zGsbeGuab2QWsl;c)>o_$FqDXgOj`X|W0jGnhi1g@>-O?z-nd@NsxL6bN6_Y) z_1YL?%r5Shd`p!aHw&BNPNIzI&(ToBXN_!MW4V~L%mpb6GN5X5vX57OPx8pN3_G?b zxXVmBQ|&Jp8=Tf&xB(0iQo4X<&!~kj^NE!-TsdggDtAcFr;B~tD4LBtK7&T$qhe*2 zkd7T;Kwl3+kcLh_tL1_a%@s@QY6aPq98A*9*uKTd3)bBl zWKa=qYi<1ubX0Q2#u|c$u!lVrEo>G2%f>opo#C>qlQjG|b9egACr+5)3 zfCS#4AgmQ=zZt~D(&4!-DlUFyX-Uh;83kHQq@4x<-G!JZ-}&IkNGp5I%n#UhX7r=}3{$3}f7bby{Vq-aU_lS08AW5`g>coMRkH-U9*vMmk7QVjULKo3 z@IdH*I3C)}p-Lw&*|nRv;>1)D^>rUtut^Xq2T;b^7k7_YSWHYzkUcM=dKaYkIP?&K zWePWdV@+WT0vBrbz>SQZkLcW_RLM8q$dC%T{#jC%Mem5D+#I>{D_;$owDHY0JVFPP zo|~vnTr`y<$#4>9>C!)XL{dMiI&r)!JkXAg!U0%e)^n#a+BeL7 zRYJ?xrX!2nLgB52@KmQbhgWT4#nr^B)vyH*ppe1PwmP0poroVbv%4hEc1@%H1zSN* zZS90z?^okCEJR8R4H?`T&Td3h_2FS*w-DGL0+@w8thl&13TU8aV8AK-Z^8uW5GPob zFqF5#HO!kg9gNFLa#ju`lCU`lDG2r|n3Vp796UAGt^1kw%ZR~VA%3u0$f zQ6H4Iqn*NJNL%y5{y0^SKZ*N&25-Zx7h2iRmo3{a*;uzOyIvEv@h%MEr3Tl1{Q$M! zKBOSP`?(VpA20KV#e4s4qhUV?F+0E*&JSQ@)tXf5XSZIyxqbLkhCk(}h1NE43(E2# z3CiDK4%Il@zZH&1ecN<-SO&nRY@@Dhjlvx0coDA@wAiqblLd?d4ArfUzI?G?ltq~A z>6Zsg@Imjz{$|Dr@<-6$QbALM_2=GOjjqqNoWEUO2@W$o>{9liqY0S9)Zoz|(krT^ z&U!yv#b!8OmH2GD%|o~BPpR>ZvK!V!#L}45BH|X9QEEf-JHt%F{YQ~4%6GX#{#x-!KHJ7a9nd`E{W}7zd!!td*Sqm~w^YQlvpro? z0hU!*2dEW~LIkQka0rh0Q68(RuE6`hayV{;>wKWXNQl5w>s_|9hKH7$?o)HBiiF?Q zt4$KtNo#fc>4f!c9;p_~VK|2n5JA;2Y2%&d^PX^JHs!hNha*enFyO~LrIbyAFBgfh zzhTp#$W7ueh?&eJS@`lXepiD$F}>~11iN1NYbnOo+;!ug)xUhSvF$H3;!3fpsuXEBp@I_ZgwcPbG@%FdHDE-p0l(RsASK1 zUUM|3yYwNc(ukCZ?VZHw>Xs-T92y&I2YH6%JB7fPukY58zf+ESDCy1ergw7}&4B36 z9a`$BJ0fWB>q+bLuh%yz*)x(5nHC4d=8{s~AzH(7IvIn+*+TN~LNFI}QWw-0+O!XK z$wCup(IULt?KWe~bnP0eM2mf-*1tEIH8%91MFdwao(5*_I(iIwYLE_1G~LU`5A%D^ z%H8xsLPB0Zbue2E)BwE(w{p|POj4PMy!R*(H-@wX;_5>S9TY699PBU)L+^tH^42mn zYa`PS`CZY2--%e+ga0XBVbj$HGYA1d(7*~SC4~YZHG^OY{_OL&xC2)FS zWC$E+wt^-H_h!b0u04Q*)gcmH%hH>BbvC$r;84Y>ir3-abR;5_Mk%W0uO$5_Vyl!q zhwCg!i%74ks^VK)U(-HX8{XNjl+hPKQ@{1gSs*7$k^04HrL7Gli)wqnB`li^6Ql{L z-90HFjQuM>@kHr;d4fW<)a`&|&XurW3+$Cmr-4bvi z*9m1(8;i`w#+?@z8bpDmX99m>6to)tJu=`R;jT(r<7!b~bFNL+w_q+?fenfYEU7%9 zniDBCo!aIV0rI(mA{D(o?o`uk-s)6$%lLIH;Sr zEJv7Ouh3D^FRG-Vpv(Un^5noNC{8Ut6s*O)SE05s`k{NeV8#>6E}ulIA#`j^$JjUv z9#<{^Ep~iqx?dR%MioTrPX(6h;GO8J^ZqNe=YPXvk*^jl;K*bCi0Zrk^=r zF2XBM6P0br>jz)9k_81mAz=&exIqg<8-yq`E`q2k*S3djqxuu(v@XabL410aKNWb8 ziTie~rHSkmV@~v3^Dm4(G@md>D=L~$ko@a)(z`y8lVf66lwEWz^rfSBeJt;CNmX#8 zM@_cvm$QChaWVFMplZB$uh&lNqu%AT!Cd*OskLp`0v{Qo^g4zq z2on8TP*MW>y+DOnMtca31MwTt-lYoHEo12>y|@}8jahwZ`_b{GWe&+gj2*lxJ+?yY zn7-+4$6xKJY5xZHMvKK-EUPl23WGId7XMA|-t=^9Gz7IvH=M=&NRtgOVLQC(lTF@Y ztf{^SzcmM$UJ_s&e;!HCD|dQ?z!xbgDQS{Jv0v0oyTiS#_svtF&+)}A%iM@3Z_z`z z>cH)u#BOe}#@}vJGaJ~yip^3gLFNhdm!`J1Ocr*I zPk!QWCJhHeO0&Y^B|2;Xp3AMQBr2gz3j2WHTClJiLZweJ%A?=^8hkRw6_Zau_MG_4 zMX&5E91WD2FkzOw5(7vU5JQl55ugwNML)r23B8={oTVP|OSs>L*XQ;g={QBxaT|NZ zt1bD_^@LH+E6s<$RQLIp0QGwjgzxB-XnU1@2{_aCzq2N zgS$6X1x@-MH_cvg?XXquuoZ)lkdSiYG~s`E&No+Y1*eKp{tjvfuC?@hZ;s^uoRwgu zhG9wZjl=ottgZRU-g3j$c^2sH;08tp=AK^nP`R4bk5t=>@-v7JFfc6MF-uDqdFJw* z^k-?Yvaqr)z$3m4Dj;0V=JZJ5zYk2YHu`_blH=~gOG~oRVt6QO&mmJnzP@I$9R6tT z7X($~SRsWx2s)%vXa&M%MDAVZ$>usq>JJz_vDh7tF71?Iuu#M3j2qTEwpokD8nAsN=j*kJeP{*AT%WQ5X#(z9(@s1Hx8kfyX|s8h zIp&J{;`-;2v>!Xs7|OYWc?+N+c0!TY7%SN_K16{! z`7$B^No8HNhv;}{ zt>QjYk$||V4UI^!)3KFG2N!7Fq~YB1z%%W*<*6Y`_a@G1xk{;&!RTf zy{jO{8Ptj?Y~oHPH}WMJmS3#pvwM`0$LCghyj)eoOn`tBKHr>3St z&0+udmjpC{FwTdP^l+of6L{+=1RaM4B|a!2?vqd0o(@=6fs8hmUpT(U=wsycLe^== z!-LL1(21P1a+uRg)<+hr2MvcnZU_Q}ekg?$ZRG7R8vbOr=0V#Q@M zL85T0TqW+lr*)H2Z?)!wu`(%WO(*JIAAmd%T6Wo6mceKhlL$v-vc~QnV{8cOb##P7 znWvh1Dwg;4cs>|%+=DK+tCH6FE;ul9u1+6ml^l~hn+bic8jXq(LJb$Csu@;x9DSi2 z&IC}0q4xe?TM@jo1Zv=jf~mPDSTR4~+#&F`Kl&nqBDef%rbNXeT%q8woF4b1w464k zwzfGlko6$G4=U@7X%7IxLBoO*V9+*Dxel__nbwdG6wXgl!nfF;N;JJ2l(vf9y(wI& z&uYP^)T)`n7%pKSJJ9LubZR{^)noBF6{Lh2I%}`bD2|1H)8JqQkW~SZc8~yTVSve$ z(|U!HS?ifUyObhFNZlg;w{`Y}2S$A$tcRmtcA|P}I(KPhe-s79w#=V#SRqN7DP-83 z`@RXILLe$diGDv6sviMbULgGp4-JWvM z2WV**t0UOFXhKYS3SVlu!o%pEubs6y1=bpe*9C^oMS!S}2h!$Hc}8@5DCIso{hgb7 zX=?gTaUNyCwDG22TX$?To3muRUucN>!|1_7>rGSi7$Q<4XWQ?;UnARo*ZOopK|#bH zdJOv|n03MDrS&$kB-kL2o`v=OOF0JOlACuwI4QK62+ZC;k-S=Y)U$#kFp$Jqq3gE;o+vd;FStdZ~aYjQR%)}=$N{K1f)Y? z;Q4<4)sm<;$h7PSWfqahNIz<(ry^mdX5MjrWOB_v^jt}8=1y%lZxC-YRBwlcrYWX; zd9#M&q<3GMC7i~Agjz-{O5civ!$$kz2tbTjp$pOSkw`m&AL}|AShh?SQ=)MPBo8OP7Vc|NB;Kr|BDU z4W6^z-z0D8$=;~G-I2QIg~<<$P0-?C!a^IuX_4$4Sl)aPdE>HU_KT$1f@klK(9UN_ zm)OuLm2~OL7WuV1;65iE+EhWPYeJ{!k2>q)%irCPH!FrJjjvmux;1Sc%bj1Wtd}_+ zbzUrN9BA&aRgQani>B>A^j|o`o_Bu zt8I%l;{~GoPMWoAk5@ zoKGDQ*})Ms7voKs@W*jRkOfubVGVzm6jY^bH#G9)awY06urOHBQC@CCYoKxxC_HF- z%jXatx>QG4aJ=cEd{%!xB$DScg}a4HKR*p9puY=B4}O38)T%ehYtPcTOi)**9wopP zUvSKP-&w~JmyZTrdZbXnbjI-jzF?pZl)wK;by} zB8;&8g^0di@i$Z(7xeX}i`zeLEE3sVd6~|6v&Hw!J%_>@(J#!7Y<;&=ZypU{4$Uzv zk2)?tS-s$(P56>MVxu3vw!aId@Kp=i4&t7LBUMWD6Vu#8=W$}GoY}2(=|g=XflCkF zt33cN{vo)29=0lQ+*@ON5?x)Qktd_9su8)w;Uk&PCIpAymRRU4JC) zv}i;BwghQ^I@=@_F2%k!&__81ai(z4iQ5ctp6vE?ei*rj#(!{$+B?b^c>iu!hWl*s zd=`O|@>9O#GCM<=?N>s9ZoH7zjpSiV83$*G1SyZ6{WZ#q`xE<|;n%x)m29^*QPmPQ ziCgb<JtNN#+<{>ODyRLso6@rU;+1Nsnn^t+B_@EZVuy98Em$C{>e zF~>P_)imKQSb|ZFT>`!?h2P!}abklz@{(4w1I904_=;29kj5`-d$(^*tbWn*ww6bs z&~)BIj5occc}PDXw~E!ej&(}@AFwF!y}9mu8^$|U3-rXRwU8ZeyKD1vqSz<+qwW~ucMxc#|?=Wc~R@j@T7{8 zhyQ!%G-1X6dPS4*mVx9|tG!l@ykhHqddN*GHy=c7>3!ujBTs`>GAB4RDv~I4LqsDx z;0Y14I<`I>*=t){(#7$8ZE%{xBbXhq!Ky3>_)c)((UQ|3;b;$o<>d+s!G$uqLbRD`)jHQ zy{gs$ZsvEu=j>HPP}2AK!mNrL21xq)`uubWQS7&J)j!G7XyTWI<+poX%chMkA507? zG+c}?%qjXJU^@K+S%QMp5Xl`XJA(>z`PX-U&`^-9n?H|ojSjW^m;l{Hz7VeC*fYgA z;Xq8T3N;Kx3NP%@QVp`%c#3ix6UpBDS;VvPqp7H`n)Bld3%Tz}FpLwFZ3oF_n!7D% z{TnaK?R$%!JTDz+i6`iO>yOX-mv+42X_hF)0n$^gvK-*UA3_EgNS?MVVNZsyV@PBo zBSv?RcSfn#J(bG}o|AelJw=J1DBBjs#9g)5a5jXOD<>=^=i*Qh&F^G-;_mlQ+ydc8 z$B~-(|2E34)ffOK2KG;9V6d~t&-s(-?N}0pf3iZM;LlI9{iop7dUA5oSUMdfdTtcZ zv%CPw;J-nNaqH|1*f39EIR=d;X*#fWp0u?+{+(o1`T_=BNS!vZtr1eo-7dZtCLoPV z6{wv1V{}A(GlKm|kLoYidQ`l(UR#HZ2X(Jv_HUu;09;$~$*zyc^^u#jIZ z2^}~2?Ky-rgez`Ox_qDIh|k$H(I|gP{+WX9JEx^nYxNjm$L{1O18~HPOg$6cZ6&mZ z?AL__*nCn&NmL_~1J z7v23!7%T8$0yR6zD(iLCqd^bjdt(bGwaHIAz5W`;$21YRave&$7A;GsP z@n`|yMJ-JA@lh9-3GK)Ee)BsfG~#}uKHE@e4ev#hXm)A{EGql=`_Jd>QA@pY;~V48 zTqz+SC|4t-xD;n_^}YP5zv=dGTPvy3_gOZZIHr~is5K;mSHmXF&y#(ankO$*Ojnh@ zRSb3sPIdnrNt_m_E{@-sE0Zpbi>_f#P64O6BIzLmCBwS^b^hoa6+{^<llfVyh#t=CU~MM^)inqBT`8bJ!->VrmHb|yo{gxI zTxaa%YPi&lJY@Ls4$;mrATTCOTkukspQi^}jpl6feSv=sR0tPZz-IftY%W zQZNpdPmo>ImR?o*^W|a)QyMiM2I6{0RLS}!d3ALkk@(cTJqN@>ng%;Y=}UbOMECwfquy)euIsN0MoeQ zaO>)hFz)CLzFXjE!M}JJlgjVQ_mn|3G5~!T^IBFq(KA~(>!sgUkfC@t%NZ;@4~(p* zs%x;~j7j23YoDT3jsKKc?ef6?W`B02(`^-|qZncSz2_XFRzzQBjT{zQF%g&HxRH1G z_vg<6;12IH>PKoO>QjYCs@~7XEHAz}P6n38Rd45f_X;&Je*_H-`Y5~1tl$DvSjaL6 z2wfaYq!Sy3xucqLSw;1dLmQhJV{frYxi#J?OH0E|5+I2`Rz3q=BHXk@vnW~)Dv?bR zU%fDh^Zc!+t4pT801P!0)V043JqEEn;LJrs>oq0^jh7k7Hjy1}{hzOF3)Mks`#&Gv z)K|z}-Q$Th!YU2b&K+1O&2H134*zvSUM+`)gb2CRr2Fb-ZISe5XJ=l_t`<_^t#OKp zi+gUKsmC%#ce}`Qc{mx@b%|=MSFF$QErmh{3m5U*P+X4cd_Eq#fzbT8A||oF1MZkf z_>MvHkv*mn@sW?kM>$!gagm2xqEG%}DL4V0E7T2LHaxf2-UmLrR5&<~zLq_YlB@P` zyIc206y368XrrWUy=DQ2U%fkgZCO@!je|z>eoKMe>A@I2J_qsMGO!u(n>U z@GI*Lbet3^mw(G~iFR3;yLc!9NzqG|_42nihk85} z7&mZKktd!fuVbT3^-+#m#CH3N-ynh8(&yvf+18u#)OJUZj|Td#Zqi7tKzEp99DTil zoy!%iwE7YZ;mpD7%6u?LuUb!W(JTQpyS}7~O56Ev09YV2feBz{)mUcEy`FU*hh0f4 z%xwdQp3@(d-c*xz#ZQ_#xW(=5h#gKoKK#ua7voxLiAEEh%a07hw=#?ExOpp!B?Ymu zYGk*yQUzN^UJXw)T9J@E8*vO?_P!xu_PTj>yKb=VNL_K`Nq5O@o=?yGhb-t>AI|9H zSCl54@@lw<=MY>`0{{}qDu9Y6zp^qelrmk$dVFT)Fzu+aYWSN86J`BTl*i$<^VO~V zxWG<6B?+{%G%SDLl(TyoCPp+iLe(ZbWV>e<6ZiRw=5YG2ao!DYIE0{fWDWTbBzZ_E zT=$dfUDzu=%7KjsJf&0UONs)w+kWy8r3=}je%U|cI`Ms9yAjTIy!5q<%Vu8b2eGEw zU6X;^r1ED8&k6_$x*GoF;n7TfF~Mek>Mf3E+KQX(BU&X^B{W9(*S+iOg8o8Kn)zX@ zP-qU9X2C=)!P92~KQ|vmxy;f!)lI^<%E0+HngNI4X3hqw&DEcan*Ge}dECwK#$J%Z zY>Q^cnJy8X~^s=nNatg4WEtY0(fTk@4SK++eW=odR)^ovkaCKD1$eNS>^ezG0lw8h-6;e=IZ=wG9a6&KrO3Ynlt5CSLs z#4yqxQ#;gALqUx>sy&W$)h$-)`6LjS=+k|wc-<^Fx(H7qyn-nw+9 z1uBr~WBk}S70D)iw_ZxEhJDr&A-+Zar@o8UH{jnicl(OndSh56NOPIod$op``WRVh z!t22@LDS^&%Fmd>6=mHa;v(jBJl;&Gljlf zYyofj(N_sxi3bOrX@=q!-Y&XtT9*Z#?_UtMN5}H}`Y=1IX*fmqB@9p$94b zy&i^cfm@o&&kKx&N!ZLE8gSvG`ohDK2%;dFnST&b89XFAxK@l4|HTL+a&6($V~yRM zO?ssp=G1#RK0ZDKyc~&aM0r&pXjW8G;%Z;!H10ht7#X~~=m^&WG-k8a_+{H2GAz0T z#R@dk=%4HKrIu`AcWP#47Dh2yk%gGskR{Q7qZ5F!AZ7`gt7S;<1}&TH%a@FN>Vife zsXHEc4EEfr^ss#OT6f{#X}!%OnfP#@W~h8UW?b>kj&^QR>rGZ9mimatXpos2$p3h0 zC5Oil`F+c(?f1?eTJ?$Y)+0N5YV-jtk1tD7r1$&jq(m`tGx7$#0Dkrv;wXOlE4Swj{RVOmK7Rq)_j3W;N6uAD{Zy5HWP|ixj&6pfgD0X z(EFx~ba{*VxnE~_xEc^$4`#crhpP(Ts{slX=v+_ zM$gMCBc<_hFa|k!dk(QK+cdr^-r3=K`xE?Kb6i= zedROUg^FnjJhi*IZ-#cZqz~lLyqbrxqa#gEP+~4d12DYakCcaWYKhFZ_)$y6#zioP z;@1#jg6#9QN;piY0`Wx@PRFoV8CYBmq*m_j(7BA|uF2v^zKH9b0h(D1*h2zfH3@3R zK-uD4Ge=bRmT~f>Dm$U4*1tB%0(^=4yPY8(7(A|0dBR`VMesnR+ZJjSG=%t#5#t-lyNmi4fJeqlZ z9en>8i_(-qMyKeJyq?}ALB;$BtIjB4jaLpF&s>PHO6bu#uT*r9FSsI4hn*f*#Bx2= zR+xQ7t<8WM53vA%MLG=$ZKRP3e0M6?_qCK&HGMV|HY2PLZ`6r$58}kc=+24}7mosR z!F97t9`4ZpLcaj12B-br-X4+}E#=kvKNo@b?YEjnV%K4>3EEAcU{p#7asfeAGK{o7 zgNn5j$WmA9Qs-C1WZ{AE+hJ|;*JN=^PKgl~w+p)lo!%Vw_CNu?wS_(FG}oQHLAN|e$E z1+Mh?vlG0(?z{XYo!VqX8_eHMR>(nvO#nyAd(t~xTx2Yy7aSi7H>RdKg217m;rXTog;B|aitTh&vBQIi2p{@~}o6!XiD z&}BZ4Q`GnQc%_>iOKJ;lju?q&b4C5fy(KO!Szze$1R%=7ay=ct3BNaXj0e2@zByM|f(Cv&svN`tSmqFkOCEYwj2%B!E|6=6xPP^7%&_0T*e z2oo#a>+HMWJBm7BAYc3f1eAo3t*1VA^y317fv@;tK z1U6E=ffC1?7}2t#ywZIZPV4u~M>&`F?Vxjt`ym6e?1JoL1<=gY)zyiyDPH?~eeCK@mT6K?9Ok8&kF4#*=Si7Ra2~AT`E#7`y++KJ4{}B} zb)K`vF%q$NM8r6qY*Dqi{FKXi&J$oL_mk<~bvzM)$hC8I=39eqNmJ$4lR=Bp3_>n{ zmcaAE$XC6pACjS=CTu?Vl8q&I-QN8z;3qg2p$)vbI~jD9l;8 z!bn4E8n2_F))@w6==f4@0qxz@9XCNFEBJ!qghJt%pkc@Fw`(KK>r$10w9S0Hl&Eo| z5s@6F*whHdrvzpbxTzVx?b81-XOZ$*-!<~Q6nJ0Om@wwY?zA-(&L~0&i(zeDrDnE6 zz1t>ogXQ&jW|H^)6cuK)6JM|i%3dTa27g2Gw@VFVG)y{nuA1bpGZqRL>H(+na$$ZN zEelHsk`@gs04S5BSV!UT!>vG*)jW9zl4x;|*CEA8fFY!pc0!QlZ3?*~>z`!Q|& z(Fe(fO5~RkK#xV(0q~du;|W*W99{kC(;nDoyFp^D+rgk5g2k^_`F!+0nkw$oISaAt z0CPSPcu?haLF?V%PxVTIclyEY@0^T|!>>HkR2@1llI$J59$!T_(Sk@VnE*YM--!8Rp(Sb>kkYcS{*X}KhU39+Vp;_?t)!Gcd2O1_0TknU$O ziqFqI!IV;x%IkJ6!bY@VGeo@zzY+I>9S`F#Xt?O4RJ~84sK!+im$L{)kfG1hAdcV; zsyAV5rM1^0*Rm!W-_wrkgwDRglds3%5{^DVX>D)`ZBjD=U(DGdGz8imE0$ksv#?AX=(2I zdWKa@vscZ^6v@ci^WI5wVYop)HB8QJU7^yD*{Ijva-8$?H@h)Z=QA-J> zitHGvaPrS@l-DXTmHXcKD0R&Be@=0?7~w*@h6-mS1uOQgZ#`!Co*Djs-G%xoHy=lh z`5mOZx&90_w5#Yo3i|CBj3vUnXFP%}+O=MT9W47^WGTyc!^@F9&up~_?6M)Q9$P$q zlV9fF&yhFXua5ZCRt2P@Z62D>nq~fjRfF*5@gf460xj|h3FYZzkP*iQ6sO-z}zY|7EiEi)j98G0@Qb zo9(dY{YYC)e4X~tiXr~hL9io@lAn*gCslKQQQooKK$EvO#Mi#MW{4Y~-WakjjlUoe z|GIfI@1oOo13L#(I=v>A?rdJ7Sn1aSOC*=)fn8^JV@m7N@6P3+HwVax%u#AS{SE|S zYLH6LS9dQYwzS#mAz^HcBWm4rK;>^u&OF?9E8Z9EVyeA9_;=BjicA^}Bl~T0y=FHC zxYBWzx?Tw4{E^AiFcGo8h9H~ zU7ZgDDB_nfxJh@V>Ob*&s=ksmuvx=83`KJetDG^fcp+pM+W%56Hpy>oKT|a-p~`kD zu!e50(VRnA+B|*rz&3| zMLyz?M+TCRFDI(*Z!miHS&&g%Fj7@>-0lIobjtRS(CS*~g;SjCy*I&^C;?@*9X8Pz zPQNK=)-Cyd+g4=+Yb-j}u1$Ey42gNdDtbQl@M+hcC1A~8Om_ob3glcYnt8vDjx9vA zWLhG)tw&3w&0D$F3kAaJ%q`avRQvCVJIPYq&j0j*jP_`rn3eSFlX&Srvai;!CPZ3) zehA~H!EujEDDa&$oq0oNuWJxGYRSN>oitORw~t!=utRO_5FTt{UX|l*kx2Y&sw96Z z!drpN@Tv2_qY+u7A>0JG573imeT5a}{+gl%q%0+yM|;Em!Kf7~B;W%pyL zEA}Jji))Zn^K0a?pVVbtMY@eXTA<;*xYGx6mdURaK9J(e{o)52NNc~@PGcF8*Gykj z1kXWmPH+!LeOSW7pwB#7cWlY0RMm|F4BF7kSn{Jo{PutTEQ``!ZI*o%gx= z8qcKF&h?Xv`Jd9CwB?4UC|cF!#Hoy}atoR-)?*^J=epgBrg8o?)u+Hh~6v^cc--U z%k=h>`$N2mnA{7a>lRCcwHG*3GtOwzVrf3uLH&yHjnY$1P0@WmsTL-J0(2|J!Tqv$ zXj=)gMLm4Ob6T>7hK5ftx99E|(Tg||d=wat>d{`hmEx;Wn7h&Y($ePHa^c4d4w^@2 zSf*b}_cu7TUpH)F8@@f%mJPf69V%547aZ7SW5C_hV$u7io$ z4p+@L*`DGBQ+4pTJNN+*tele|*O@-o8SPV1q+`R__rB6S^E&w56u3VxU}(3)FwsN= z9uQB_d#wKDPqWSf)KZcwNAk_+(9bLR#`j=gwhOgE1=x%h7U>AB5KD1f+%H=@sZ_kW z?rY7X^wBR2>yuHj+wD*HFXGsrwncT^$^N;f-@mh`cG%}S(QT=gPyeEGGbvc-ZjQp_ z>FKHWspAC<7>B2(y63MhT`eD#`)TvhPWWgP#)(qa{1b>`tn z6yU-C2l=A#(z_mbcz$m^8(GKxoR;vd1T=kXDs_o*LO6~WEEHA5chMthUjD+kpC9oB zR)pXdDR{u1nU(whog0)-9ut|c$4aI^PFB;fLhp$E8k5XtK?1aevgDBLV;*qMZcSCa z$0Ypvl*T7V{+MeL1O$2J4{z8y$Nl)imF_oZvv?!t|W3D8IT^M@tQ>b^ENF zxYyNNS3hTmh03}Z-bgYizV66oSbxLapg%U8Drh7hUxaEyELPrKSBj1){amvkeEv_y zMtqID9#7=jU<>fHJnxWGPP+{248*rl$95sEaj@FqT-ZP+9s-PmOldMcZ<&8pM^4z> zgl#CdZ&=}7_bLT2j;H8+{}*D+h*aUjpKG#*!ZeGeiRa-x-Q6HTFl#L$@%i-WK4M-3 zttc-qFL+}CsRepx#G6EJTPv|~-Q${*XGM6e`|yBi?(o&g&9#Zz>(k!|C~iNKu2p7~ zV(hH_9Y_x0;j8f0hfdUttUK{f85}pFE_J6V7+S?1^iGhKe=K(*>We6aev4`a04?emR8Z-p&7X%T%&XIM)#}m z_#PookJb|{Ooi*!)TDbj0x%tX+K(KqozZldXxB2ota>v*%48^1=}F{|?U#Zctvxbj zJ)Lkm_rj$-G~-E`44+?JMhrX9k%+lRte(jp1_BWWR!TP!RVqB|7Q%N*o$6pB;{H2; zWWa()tgavSo+1Y^cVzJ2SHLf&@{CcYC@wcLUZ$Gg4o=VaD;*nbgjxvmsD&Pgvk9;U zDek|}Cs*nu6;8r0+xtH)0O3dBFZ!PgRX3#1JpUg}XBAM@7H(k`M7ojg4nex4ySqe? zZjkPh?nXkoyBh(eLmH&Jk&p%n?_B5J`@q9_IOoWAues(w{xQD6{NQWpuYZ0_NQIUj zCdi7#y594_Fa6grC0T??)You9`b0Hdp%(_q57f_kt)@#FiHe6DLezasrVw+6n5oT2 zOxPe@BT3e@dd_62$rb{H(3vnu7LQWs)4nX_Tw<_jN;Y=j+&W*38!~}lNPtHa26p@4 zQv;m3+&=`(OQRCFdg7|8m;j(12ZI0blI!Aoi4zDljZskb?iPDCkz zDNsB2{yU!q@#Hjn10XvBNiR%=<}IHu-+PagSLI8m1-+M)G;Ub07CTYynB3rwdV5XT z`2I1QoL8-Bf08!t?fuH@af_60jh3%$5f(YtyX9i!Fr%hd8{PDUtv{-ZxKLIK=v4{R z{f_7J1dF;O(uzbszAvYJnEx6RIcnNFVa=<0PCowb0vWs)5t3umgV-_vOCrBcUmg+1p~)_g;UU^N3E>}+3WwC^injK`1R|0?K}!fUhc7l>TPL@=eR=Mv-MzJp)s%>9TC8xdINhoKl^61|$|admj!;AFm3e0igIp}8SL z{P6j#N{1Fv>DZeaH(9J{$Hq(F8~1nKK#Ya9QBa9ozrt^dDpF*V$T3nZ2i|7^!k5(f zmjArjL3gYnc-RHFe1O)l0Pt2tnNw%hs`rzGB9#%*QdN_i$4BCZVIth_&xnOiez|y-5i&qOFQM~hrhT6MDowP_Jb&8JoLFFmDN>=WVzEKAx_+M!At+FtI+paeQ>Ml>hK>0i`=1$NNLUE_Q(mF-il zn8pURt&m(a`QQ~Ri7LCCGDZrL?pEq8ASwwwa)1ZqZipe-psx^w-;HVk_OhtP&E$Sg zXzFZ*IZ8{O!uJObl|FZ9ueG`HYE$+XrOse~X|N>#{vQyr1$r0cgYW=C(B0#yAL(_* z2gf05Y;0`hrq(PBC(6B0u*ohFqR}xv_VU4n6?gRGq}z62)EdI~o$gEWZOcxGMO8hY z{84ii%^U6?)~c#{8{@t`N44Xo(Kw`zsLD(z@-v4c!uKCJ%Ewc&L;~ElF_Ds4DX|u!^W6g!QIK5=SHR4MT=d&Xny=ZxwICka_m44p3?7rDE%@Je2?V2%y za^kQAJn4v+uA%9Hx&4R@y14=_sF*F2F4{Bn=36atp;iC<#A_C$8tkJ1gSUUy1JPXD z2cX{)D6m-cwQK$(({t%k`47ZSd$8 z0~Hj>?U#L>cJeQ^g||JvNH z-=rNe>cBtm?mR^dqpNGlp=)8WZG2xL*T~SQu~atOw5dsogIkkVLKcvN_X1vY9)X|y zzEeJ7NZxGiPuxsz2*(d!%i!B?_5qyQRFL+PEESeX|j8_527XJ+(FhP8x z2cRIIDY_AY!ar##I%z_GDmZ{%R0RBB*-Y#7C@oGcbs5AX@Mc;;4^($ zFlStRdkdmK-%v%uzR|oVP*T-xB@{t-;2}^6V~7f&vLSAq$zH~2vu__zP08vr2V7^v@Ic+nNf z=~x*t(Nzr4nl_V{!}9PHZ%|=hJb*)J8}yJ9lHHd!g%DW0v0_6vA(?}XKv45ST$lug}yV4%j6AQg$u1^ zeGHE|l(Mx&0j6){SCu%gUt=P}g+-1OHQABM28THCavMy!#ILBdQK=f8)0Jr}>FRPq zC9;CqvFcmjkwTVDC8D7ZZjo}yvb$9ttekv>X06xdkMLcTJn=l|Lo zfmXKb+4lW|H)gk8_15z^pe+cLwMG$g$3WAzR7&?Xxc?!b!+r+Q%sPOEuXuHh!F`oS zlH!zj%XHqP+PJ4<_w;EWYQgq_N!&=xRbvRZ^q2@${ zlNmI z3ev$V^@{{-3TH(_Iy!M#-wPsL6lCo0|9GMrweuQAM(q%jFbixIKtLh4Q4a(Jx4 zMR}hr`MwdWS^4F$QNAfFFo+ut;Jh8z;kB5xBJsU71eF*B8}yz)w%-Lihv^OB8B20( zitUTxCiq-*k(5_~KZMoPuw?V&XZj-F?x3JDuCFvU&Qt=^kxJ*semubnc97TCh^(;2#x`2)faEnkGcxO5Vv3+tkQQVi%YL98^_wTh*zC0Z*S~MlsbWr)I*eJPlFUKZ0gv-;M53AWTHbeMgz+y#{;%4} zi)gM=ryfowAuQWf1{SzA^FpJ$JxkEdCFl{@&Eq-l&;PiPoO@V4SYg?EA+>@D)g5p+ z@B}=aZ#`YxSBUtW!@hiZ4Zt+`{H`|hZ6HJp34qBHQh%P{okJKuNE16f{TxM0Yg_{= zX-Cy>0OD;~Iq_Rckp#t;AO>yCdYKcGH8yrF^~FDm@@QIQE{pyyBz0ijWLeBQ7* zcRF>!#h&-c|7%OdhJ}3X{+4Rk5MF@l8?>Vrola$u7x1(y%5OQ&Fj40|Z9D&FuE>I$ zk`J6U z8V6QuwXpW0!x)Rsxf?Y1(fJ0njt`GJKz7GK$1q;9jvK zwy`m(=?iAw&$JoMlkVS^QrO9O$SXL53E16>`XcR>2?pTW2V9`$^Lz#M>EE5k7L5&t z`!KfcXtDDmHqx9HTs&U_Pu#QbC2cjN&gSjlegi}0ZBQn#nMkVyrZLAfRRpyP0b{eliS*il5Hwwyt$y3sukgj--b6wjT;JioVGy+%2fLNy{v4HeD*q4zN|U%iU26;v^L0MQg$ zl|t1F;IRUIe%G<@K%lFykL`ev-xia8P9MjRo;+BT!@G?{DO29+H7>5xL1Dd4*V6^* zY%F56R6=)R6-^?2o)WbTCX~wrEK4-TeGZjc}jE(e6kwSxH-n&=a`OfgyGc z?YaZhF^)h`WFg;oF~gXm&;6=f5vqpS3j9f7pZn>W=!(xMR)r~!%-HIv{IjV4CZ;7ur3G_ zee}7)IdgCb3J_U7VJ5835!1|4NaqL#A#m8>fS+Ez5nP;g?^RN=6n}NxDE}=M!gA&n zc@d}+jh!UypK1d0z9Zp0UlS_HnW+9K1O$KQA6xSXG6_%)1T54CJStKnq@JQ29_-c6 z%wE`X@u6mrS-9mya3;FmV^*x4{LoNU1W!5Gi0?aO{=544uMdR9FiBDn5UEvb>f0E@ z1O*arOWB`4_X~|)92fkqp(e8OaSg4S^6HmFDs42%ziJLC4DNfQ%hm<;#~p>I+oO6g zwo@_Dv^<=TKxKr`0DrpnEpT$qblOjr0x?;7rIrh|f_cF7DuII`6W=dm{6xqm*Ha5$ zusHTt0`vHa7z^&($G+cquJ=h{K8P;^j-FQf?Sl;;TCxIl`7yYeL+iTykjTT2N=uo% zJv>`R4IM77)VxX;=fX<9oCZ=>pBn7S&E-#($BSZmW!)w8!zAx-T}HKAVqKjMb zEcR|_4Dd8HK9@@l6j8%k014V`et+4*?$evC%1@#xvtIKV&H7n%K#oUT`vi6@KxhRd z_HLj-Kml!SfDvtSY;^>5jEG<)-1A;6rOWhSr^6&0KeOSEnzuhvzlPT5sb5PAoqFus zTJ?J|_l^UsAV?OAtC)ZsJ-AhY=O$ZxS;#6nr2XVuVsVxyV&c%uvD@E2*`LQ`<~nma z1s@o5W7i)s_NgNIGzbN9FLJBZ8T^zx+U+;G^_OI2x2N|1p(OVUVL|L5fNlF%dHUB| z5Qu5-E3f^oKHov|KKOGzLx0n6h}3AL*~>1^U#Kh7q{6}eo;y%XNkqE#ow zvCNtB*oFEs+x5-aqf`h#IkPpEDgWG{-@UCnj3S3@Yan*9lDYHYJ4Fs0@RBN=)ET}Z zm%#*RrV}oUV}wl0J{p(P=cJ$GV)L)qT2u0djpFP+w7_-=%>R5YC5R|8RMODe(E8iL zMI$k9m_mu41R9?N(N#pzZ9mnN;OCi)IU0Wmxj$sRbJ1#IWOt;UDRP6 zon*Nom;h9@Z9|FQv!~M1_@VD5NJp{DB&4NYv3T<$*8i{mWNC-SPC zQPW0hVjR#SEU$An<52s!M4DueJT(3d3v*5%dzYif!HHMbwXL2Xx%;EXUYhfF0?q`ZqnX;31+8q;l1MAZ8QaMp8u<+6o9r>Uc6 zz)Rl`ev9tyVSu7Z<-Nen0E%L8d=B<^-1Cej*YLnsXpR7c$Oak#HLE_{1!};9w@=?4 zY_+D>hVu7+*v^8qg$Dj*8mC4-iGx_VaYb@_H8jE>dsz#V!{#@z4ocnycJ;W9O{<=K z!c(n(rt{MMseK#ras!c@?vk(0*N0T~yV6#Abj#S6=_VGo2YO(E;$C&9^i~A%Frtm( zPEZz^1tOTRg$Yf1!7U7BtV(!+!#4eEzd~Hr$iJaP(=~Wb?X5}w{``s8t0@&cr;flk zK}tpO_3Kv;V3NH9GzUwIIGIh~$G^3J1P_$<$(mPw=CcW85z@Knk9*5g#wA+n{bW-` zKl9DzaKC}mY~wT&EwtwcxJ8TspaK1xHxh-atia!42SN!|t-A!klNVF?HhV^{S|TMW zroQw`M91%;EO(cn7X&hSo8Kk*m^3W5)F!Bl)ml%8ABc~Et@N$DQB!lX)2xP8uq{=R ziVB@G-|}lYcOxD3(#c+0%uDw_oQ)HICtnkJDaHLAtfb3}mKGGc&OA4{2UY?<^))YW z6@Z-8knfk{(~|tTsn+?Upy=RUA?wE~l5k>y`vM48X0lZo!n>{3K}=6UsJ{n8Ou^5LxW`IF5XOenqtPbFmp^F z2A_QH2S-PDz@!X0VnMWpC>a12c?MZ;s|Z_{5DG?-10Yujhu6h^o`cWO9Vw<|Zm10Jb>ldnM8w-_tn`92?OYi!fqtoMig+ zC~7yA>;A}F{_Sw5p7rPd%|E7BlxDlw?=RfW!LboMfKIk_+5tpqXJ==70~h>Pno=R< z*In;o&$=>VO0XyUT}wYmsF;ALAO{DBvet)zrh6f?`C~O{qRh`^hz%JPd)vdJ@0GZ7 z*y$bIV9_~ovwo^sYx)i#Zd0Tp=iA?Bdjx zg-?E^*g8&>T%Csf?+jC%D33K1zf759WC)WZ4)}#0IcM9msQnXae*m99C`%ha(?9jO z?Ft`r^CtbV6zWHPiSbS7MJAeUWZzVImz`Ro{P1P+$di`=fSE%R5!+o!XX>IbJ=gmo zRkQ=n85x#zX;ssy_3H13)?^Y(q>UvTHMWcpW52YdWdGOmp|P=|nwmHuqJ%)PL$Ldl zr@>03RVo6t@8($^A(u%A7~&tTHtCj07;zfcRO%kZ%C2q22{VPiZ}plc)8Z!~qI}Lt zN%+-)EO!W^ICJK2-&~jx@I{o?W`5tW7RzVDG#@VLJf?c_0;<;ryYzdJLZ@QCli;u) zR=-u=eMZGpKR}*Vinb`f%z`se-sIRs#?P?(GP3G4vDD=D?K`Ei^xb7{W~SfC2B4tjD0d>7a9V z|Dj~2BPmk`6ZLCF-lXME3GGXR3*1Uo#ad;lad)zs7iWwLu)44XHcn++Pl zi>^gEOt#|Ms^Xf#s>7V}7cY2cKwcT(!f6lIk0#6rpw=n;2_x6G7+p4@xk9eR8*t# z3q~kJ)UBnnyzw3Ki|o%E*K#KIDG>VODjx2AKLSU_s#pTm=I&47Oe!T!C?=PC~ zW?jIUnk)Qlglc|u|0{i7WoLQDSeu* zO4AC)+c8|^U-Vb}Q1`ihZ9bN<0c>$GWM4WVBrdz(j~7g%qh#jtu}N z06HhZrLq2$Z%>R~~~VR*3$jt~D}lDpDGx z90u0M=NA`Hq)laVvH|Bqe46&@;JzQ}k#QhYA%hv>z{W&ah9_72aG|AV4&n zVOahwVh{fA8#1Y21`eYMXBCyqGLTas&B|7m!E#PNvg)G{Q6aT@mG);c2I)2v=33+8 zV3;4@zDOQ&`$d%JC4}sh%Xl5R68yWS|Ex&}ijwvx{j?IGx)ypmI;ecDrG*E|FhepH za7)Vne#(UXfQre|iR@zY0*vh%I+$j@#Oct+&u2>dc>cW8feD>kKR#d{F6} zt59R@{b_&M8PATnnv^BXht>Axh7NHO#!JE!X?aOEmr~VygUw^H`G+OZccZR(7gM#F zRi-zexPwyC^pf|7{@)95ciRB(*o;Mx7$TRIF-F_$t0-@S9EwUp@xR3qBqHQSLhi^e zjxP`{m_J`+l|OyqveN$;?yRWuD3(E1`X0eR`u-hopPrZ~CNGbCe5?Spx(0#UW-ix3 ztDhfiO{COB^JdrlMb+a8GHKB~y}397P%|xZC`}5x-7pJtj53~7D?Zc2w73O{P4QvG zy&yWAA5Pl8gBKr*v66r>Go=7x5q2?Am$4@XM`BAz{Jkyx93+`Ta#=ivH%U)j2vMo3Z8EP##{ zAc(8|@(p{w>#*|W_n$@;Lq<_-3E#id+1G8IiU4LG0BG~5g(Z@4-&yXYXUuQfzKJSh zR4Ww!&;dYpqg#Eb!RHRJ$RKVVK#79k6UqYvnFe`~A@k$%4N{qac`2%7LaCLAn9woV z@bUnUMpJxzpdGv}=RDE*I=#xbnsZJS`FuY2FQDv*x$EKl&mL4K`5Z5f6)U)eVmMAT ziClGI`?A6DcKen48l=eY!Rd{;{;Q z6cl?z02l3Bzo&g_e<*?=`Zdx%m=$#((V2bOol2^m*8*G#HhV#s=cGP;6wQ z;TU9^My(Ml)#4iuT2x{_Sbqn1lbs+wa#U~)fAh83aACgiS`{y9o{tD{GjO4wcfiyH zCF4MU9(WocR4Hi5<4g|#B$yA6AuRQ^vSm2cjpN<~vzUVliUSupStWM{MA&mkNhM?a)uuAVUv+$FXxvf@Zq{ zaO(rT&1#zZicTBc4a7^4U!LdIYn0v6YR$Psp36%P*OuB%H9IXgvqKi8qR4~z@81x&W&K~_E`c5 z%^LfafOZa``zC{m5^?V*5ZenHnS5?Ti)zg8fTxl#fe72}`Ygnk*W`oKtAL#E6D+UX z#5kFyu!{CC*5qC+1TyEhKH(|qQYz}26z0&7BWS22$JDWl$C64c5=S1uiIClel-nmK z)dMe^UHdVY4HqFLE}H4#6oR2c?P88m@0HkKYSLI+w$Bh_^|x+dPMtAba`=qyuBF5K z3~RTLEUZI|Lm?x3xT=v87!!X7z@CB(7S!`0gO@oJw5AuhV~=y6eV6g8axLL;Ulm(m z`R13N*BKWFtLNoD$oPp&*f@EgkiR$2!1?2P%y$88m(fsw>XM}sV6 z2^Rg)jcX^89|A9tc6WAa!7fvlI}_Q@Y^*6SmK!}8KadPQ$(A>|vMzc)gXgcpP{D~X zO0i<*Cb%R*ixTMK1MySAQX%LK{xiNsZ(xc6!N}+(r8tjc6X&5_yCwAVmnH8Rb%mlk z9F(i?rf4wn#mV;75)f+c3-ifoIc2{x~+tbmCPw=Bp) zhuz?<_JiH-;SlTWM&P0MS*zgo38q$J()tX5E^q^4_U^gbuSGe-v(9o2QGSEJj zzg#+_3*2BTK7Yn1C6FQMhm+i?1`l6Q<`kwzLrFG8 z(xAM@2zEVc+qYj-`tet0iV0LmU>{Pah7}2uCEa)}vp#G#tnjCBePnm3s&e!J5|dbs zs%{%r@}h9pa^(00Qj$fLfaK8R)y7U_c{8RE6YV<#tHvQ%eLX#5Q28oSIT4S;8DOS` zb9^F+O5z(Cbo*}kgv;pa04(*NiJ;>r@W6a+4_|3_y8xG(TF)yh(OmRK+krvFjQL~! zXNsQ)HA5?kJb{7*_6_`WpM;{O*Az8p;E@^FpW;$z%z1a3C}BkffjQIl2ev~TmNBW{ zk;5}dLNoi`T4ELDAebpnu|3${yP*NVLIo#5qgK}%RPYGi`!%3$!u5Dj!qk)+tZ~KZ zH}S07unTi2$nHwdGj`X9lBs&PjkvCmNZpciI{$EGBJJP%5?q{Z)rH#2t7}%TaawFi zM~&te$tbo}RaTmUO#xmIog^c(B%?EZ=RJE;*#y2U%zy`g5jB^2!8!}vPuBq|Dd%tb>}A)9oxD!GcxZcRNCBvry`8ZEHzxb|kJ^{f)WX zSQW>X#%B@?Jo7QQx#2RRSj18jv`anCAud;N^mtV34n`aVlx4{PH!suxW5UDbfja@=A1=;Z1;w6sOm$2hSb3@vo0p6wPus*)vGQio1e^>+CyU`A z@=BwaE^aM{l)g=sCmH?ScN=fjY1VVCdICL(0Ui!LnW4c_rx!U}_%e=F;2y~jEg*-C z+2O5=Mlg6k0uTfEBOn0oM5>hHcRgA!gc~zLGE(dK{j+?_)ms$MC)<;1VsJh_a5bOJ zX)eyXQJlYUm(l@Q1Pobp%`NG75mspZp9kz!J?`JG_7pwO!`yZ)pI!XT25dBdtwN|$ zYH%s0m7~lkla(sA*il+;r47pHuB$peI4LVpr)-YeU*MA)9%SCE0*%MPw%7LC@o`r!1GO( ztYFb<+U<)?9^EL>a$38eeH~T&4pTPo(T?*9PhepN^a*{d7?P}}9E(*o8{&a^4xIkS z5K4ySGw{qwZGtqS*-D!Ww6O&c{i=@Z_kef@u-njk5X1oi^#=Fa_jgYhGe|Oki|YPM z=7atBifr1!CK-J@yjQrGy6MAVEvRI(OuVhzWVG5)$9N43yNQnrj-`pd5Xk_NQK(3Am);gGGPf zXnptru8g)MuT>(dw$clR$;1T0#KvB{e{h-c zkdv7c59w$X0}U6{h30E5VW#6qQan>%lwvHAEki^~B;J6-7fy?w`Z_R(DlOPV<) zXatLxnthn^=0Frc_$!b2dv4PaSWYO>CZ_YfXf&6~oqGN^t9{OAAK zit*q7@goF`Z7^nlT^%`EYT=-p42W)B?2hlvYUyv_cHQ;~HJpT!`lbS=;2!|xcXZu} z?2S&35TwSUUoXzD)7Cr<380F}{LIQp7`Iax1JKhB+LbVmrK3VLBArzn*?s4nhAY-Xs<(USlx6p0-^3oX-3k#yRfisOC zP;cSO-C2UhOwC5qCFrn4ac}~eIbrDWdNp(v0m~Hl)TT@?Cd(ax+kn?-G?ChTnJas+46Q_-=0Ui-V7yAaylRP&EOY2dZ(&f zqn+R0phyT{lf7`sg?vUWHTMeqNM0spo=N8-bCuz>d3Snwxp+0N~lQm6E1-@`JfVGfL z=mmf&Caj%AnmF&#WcAJ`n$;p2j_@I>(Ql&qp=9f2RXHB_S}lZDDg(5MP8Tc~vum^> z)ETpmjft!C^$e<|3HN@`_zsC!QZYn^ATJ1(H$e>VPX_3X+d>BPqc$MzVt(?xkB`}&1+S(M+umVLlo4%ubUnf1&STmZEoHA~06 zvBScIZYO#y-{(J$?|moj$|)>KFH2birVjGMhTFOKv>h6bKUGvMXVho+#(9Ny!aQnD}Bwu8n~X2=Dg~;L5gv z#YBp*()2K&eK0jaVglD-{G+StBHfKzhbx-?J#V$odT)AunCu-93O?I^_1cj589m9q z{e`|j{-GP*i+ShHI!5r+3PNQlXUvm+r+Hgd$*ZK$F@(DU+Atfd34ty=wNJ*rZ` z83~BcwRS6F!zs(7 z)Mcg13)gfReb;=qqd0};vFJ;>u&@B7f}yNYzWJ}WMiW;h8hX9Tbl3$go7RiRoOrXf zRQOKtG9ndKd=)32eBa(s_0q;=B>V&`37JS@5wmV>X9l&P;?sqYOl@Mvi4e(B+R3Cq zNz3micHNs5kmWq;PYiS)hccFc&JH?_2xFyA;uha25LF$Y?;VN@pM#AFhD%mQaF}!h z1*&dNGM5%{?OzVn{8wtr55#?0Vz5-acqL;jXr6G^0}^rVnG@lXA-{|3)@p-g$4lV@ z=16RMURzKL2xR^U^kN?1C(VpFP#0rHQB3>!rj}HkyaZlWkN8pB7ST2f4zwzM@ASDZ zK}dcp>%xljLrr^SltY6wLc99?1nUe>n(U3tBFw0B%hwv-!xD?-NTKz9gSVgv4*xYb zOth$A7xk~lpaL>hQ3}PO5HuD(jni#9|ECXL-$})RSM>}#uVm8+GyfI(r(sF*vYPg< zCD#0kWcy-Z9f8y~@%sw8jRO6s4onh2tH8bvJVCy32jIE(M>9u9HmHY!A}cmirjJ!t zhZD0}wg>o}r+hQM&1b#Rcg+swQW5|?Sy9CNuR;5IweJ<9xUn(OIgjmvS z-Tbw<;#Rg6k}$gr`{Uw}8>a+SP(YTV8lQXD4^>qnEt2^gko*U>r_}VNHwh!q_dFV0 zA|;U{jA`X5tmYvGyuKWJrB`Qx}^OlA|;Cb;LC6vf>LnogpD0l#yhIf(i&clOy4j^v}aH8iJJy@_p|-*=%3ALJ}Tm0Ge;K#sy6nAUOw+y(`MZ7}wW6uo=X+ zHg!{qn6Rq5OcZ9@;ym1w+l?H`*JF|Us?(lK4yQp=*ug;E`Q$|Tycw%-OuG9IJqHO> z&coN)ZRT4U?u4JytD>Wdt?x|_rV2O4m4J(5e6NSY9zL(=X3Et^k_$2V3qWcEUkmU~ z7=Z{q8>{!@i#*zxF9@$?x^+|)d)DTFO83zoZ1};8JhnS0e+|YhZ}hP2TX+`Rmw6qv zQr`pO#p~B0a&><8bscIx#nbT@w=grE&FS^U5v}0LeRotp4*hPRn@}P#L4G(dxWTs_ z$;}0&?NYwZuJx75?3ExZDqa-1*E5ZBt@R4JT+@H9n8gx{4hv&MeJk35tLU-xZRRX4 zQlZPSKYu2{hyjIj6q@ypo0k6Qn8tegmE$Nl8pW=i+MEV)9d=U{?|$%-l6nO+nun*G zu01ev<{Vby6ntooE5Yd5`K_E_pR8rD!nibX{PgWhtI&u@{%^$)8BCjh(yuWxK6zaF z%-gWBmas}G29+Tb(EKyR;CxA2`u8v1F?F=z&L2Iul|E1w?C>KaQBk6D1d#SMPqB9G zBAI5C`v!d!%}w!}j9*P!HM+ke!M1v7?8gnDPoMzuFVl9Z0ky3}}$h6qLT|-lA zR}$2moScLpz#v7G6U}ZvbWXjG+15{nKsgmon$^FtbEj^{I|MzHg1751Aj9$FVq8e+ zVu)Z-Y1jt?^nNRybS8pI5LKs^tc2sn?XjcW_m!(Zo^EzJmr;a<48TiCHaU!0R$}bd zUH1At-6)IsddBmWP9){lb^@vTL~z_<5i;I9LVpcF+Z={`-;ck`CwI&Y@e*JVbPxtr;%VM(2!3T+-cT zQoMZZsAP+pXf+jQJzqqFGr79y^5XFXd(zN<{I{_b?zwJiHy1)F1zFK0P>C=Y>Y(aM zI>5xNtc(VAG4>0lDXif6Bk7s@`=|Pq3O1w%fU1KWYHg(e3Y2^c8a3XqGGW$xy|uV< ze2D}$n8KWHVn@|uA+g44yyu_aO>fs|2q!jUeqHMZ>9f?ghTTHn-armO2o?jt5&}~C zl=OD+p0-3_5ZL`S?f#8R9q|q2bXCp|-!JuF1a1TLwxbLC0>}_8I0z0GV>T|E5?=Eo zXEGqhu8DM9QQ7VdUnb_mv2l33MpOx3nUtsTyLX!Ei7)pz`wU#>sU7m!&vx>Vt-!?cLpL zz826}PXas*G^l?3iE6J^R~!;Fm54iY2s5XoqiB*jw#Z@{2Z?W?zHG0P)=+R>I50JQ zrILVS9fr*y=RZz(S-mYnUxJ6liG?9CPkAdpt2xG9@5Gl058vQ<7&b+h%J;JfE(-h--plLR)sBsSEHo>W&c^&CsGmQBeaDLClTu>_*^ z^+YPz_yV3BWV#gZfbI|d_*a-^3;OVZLJ0B7sl+dD2@(avg(m|0-isO=BS45G@QnmJ z_fIKvj~!cIOY!9^ZmeT*yRoqB?mQ=!r;@84Nm`g zt0I1o03ZCK!C8G`Ms*mp28&u-Gj=`fu=M;syYq&Op*F=iS`zshcxSMD_OOe*$IEhc ze2LDZWW(>Ip8wg(AMA>ZA1*BkW_(l%RKc7@sMT0i)XS zuOfAZG_YoalG-qE$m^BOt41SV-ta7?cXzgcR#X;%rd1QCxCW6@573;kP$xkX-r*9R z@i=?Rib^Ox)!jPpI>PlP=A4~pxSh#Y9wsEt`GB)z^t{9RCyDsd=gfzVSidM`#+0N% zjaSc80{=cV7U*@B4ER{DKDyj`4W;Od{Vb6VuFc_@EBuFHxtdAkXzs`D@lZHlHnwh2 zvObgEmGBPQQX>}_JkxbyRghT2y!31V>N3SSEFY~uzeaq=za0M@&8^=x#?4EnB0*#m zr>jeEk&j4gGYkz-b3&B7O5mspE1+hor%|(E7G-OOAUz zE>(Jo8DS-}3BG#@Nl#DXP|**hCc2c{Ok%J*ybGW+dXqFXI&&9EF}U)FhB2vt8Jw$H zS%sArXyIxsuSA3qU)H|HnX1vt!W+kD%g&-o9*d!Q|8+cP(t^Tf6_n$O+SxHTuecI| z#YLXa&GRTRFJE7|&%!C^*cObZD-_RjD&@ye_A5%D95PtV{nxqCSS~1T`8FpalG>no z>r->)l2ZIN4caFG@1X2QQ)k#A#$c*nU5;N8*K~jjcoU??_OF_!r%d|t^NT8Vzmg%E z{3Ma=KQg=}B57i}BRs2h*s$+F+5mt^6JW#9jya}r=;gppKMB&E*eg8PXMTp9#@leT z5Mw&*hSBnY z*>Mk*hD)k*Zsc69WI;_r{XK`)H&4#Cd1f~Lvh1{q$oq@Y>ds!rHiVQB36amsr$lGd z2Otx1+XDZB@-$7x#}FSl3yguT1+Y=zi)sWml%R+jYK#Q^KRI*1TY{vVPDml?FSR2lL zL}D#Wm&V87WwoKVGrR}WH~1VzC>DKz_bV|gYYb4={HZ3mViJ2SumkOX5T*_ zp8kn|9XaTEC1CmX=LO(&G&DCSe)$4GF(j_-dcIO0`~+<8Z>F03sw;Xwm5}ed=1p9^ z6FIGKTCZ=);q1-3U9GQb6w!2!C0=R|mWAGRf)DIxq!NFu8sBr->{kgtNTK864uBN> zG%1ewOsJn8wAuwXV#RwjBka+ASeVu_l^}Q(EV_*(bJF7ZQ0bIU6?AlXc5SJ68kpqt z(v^Em)QUQzt=@O%Vb3>WCDhfip=NI|we0{+rKsvaTD%=JFyiosq+esH>zYn6D8`FM zQDDSbAaPAEGcn$SAms5F-(sfA+CTif1_WfKv^V$bvLZ3FJ_>KK$@sx0eyYv8cZFIc(u)xMLKjyRM%P1xBKiBL`r_Ba!lFTJ(bHV^u4JWjl9OOHvt; zB7y>{SB8F`K`sC={F5hV&|my&LELMSAYoQ26ZAMDV1= z_Oz1F4#6CCD7Nr-J>tlSX${ur8kyGdVIWQV;Ye6KI3gy-GyM%M zovo06&zfYOAW|GmCpKLe24+cdfTtI0c>n4wJ&LQxAA)lE?t-w5)O-GPy<~Y=-LTQ= zsFgWUX~aA&$@rY{f^N+qmi-N|lPs*Qjfa?H0H_5D6M!xZRXDFbp16U6+&Bwkf_z6@ ziTR*{{@8+r_dn0-uAm@3M3egYQ$7SW`SG~ovn1P)*qcKr5lo3;=#TTIi089?2ULn-*^nU8C_)zLqu5@WJEOrzrUgB1Bgm= zgA3FIy#jJ<7i@jg21{BZmCi`qj9FtGEAZZ&uG#l0EMK-OID2nM^TS3X39esvpqhg@tKricjjf zU8(%4YddUfXWs9wdWqvwSssRiA^s9OZZ$|5i>yG{Gy5`a=#qEuW`G>4pK9MXdvD?N z^iHruIYJw4d@>ncHi7OH=4iwOLa2-M0w+et{y*83&ePlbtnn>yJl9!wj}T zyFIFu3qCy(sW2h2)Z^Hv?JZ2$pI8IN@^WHW#4j-$NQQDb_vk7;LNStLH_gY;;%f5d z0(T}{-#eO)kS5bd{fS?BT%66_fM>v|Y9kP@#tm-UyN_Bs=(V+sdsJ9qo`J(cYz+C# zy()EgJzk@Uty*g?HsJ+U=KooG1#Uh}P<$-5n$r0g{jFx<;zjwmU7vY9;Bt2Z-;|}D zT|bAT#oJad1a(6i3Nyw2^DC|-8p@)hRmK9*5Ys$Fw4Rj-e;SGx=C;(oy4izJ5A7@| z?;f?UZDGiqFX8Xz8{YrK>Yr-x!G%zo>T(tolxOW9zveHXd zDA+kR&8TWv^jUC#uG+Sdr+#E2o;V;b%gV`G4poyIS&R$T;;ikE-${Ti%_7N?Ula)G zKn>);na|sGkX`W63pYKkYU_s2Cdu|5FShZeh_dooDN#kSG96R}vruCQ15-VOOyR~N z@pD2OPMkqB-*0#;F0}+rioRLIPd*Vrqj+_Jd zdzHhP+ZBCGnro706;tKmql$%AO5__V1fX)*{kU=N7GRU-TO5ohHot>r+(B?~j(+_2 zR|~Z>ejvA5(Ku{kqsjA+$M(zJ1@8XZZ6z3<8oefYHOuYab^luEs=l!V>YZX=T*0g* z2);?~wc-6x&D@-Y)IJ<19uADDVSwh>s>0QifL4Ym_Q4i@ z+`qiei7Byh*s;^d4rZccaAB^NRn50_ zI2)VUQhN|oYYy$NENIJA;M(B*m%ym_>9>Pn12#uto;tbxMFlsX{9(8)D(bF_0Cd*@ zeq>=F1K_<*VUsH6h%clJ)y?aw2xpM|tBKG%DE+yfLi{4&#S=VRrLHY&sXUc9yc9*N ze(obBA4zW+xkWynUcy&D@cey!yA0(uXUMM7nw8~;UsC4HO^SxLD}3c5LGrWEq>Y*< zkDjz;pnEU4wLS_*rFT(&5i}_B);7(ah{Lj!LjCQo0@N{MxE+me+8 z4IG2B6YmLUVCp{wwdHPgL)TQ`^G*VY(lqd{C7`5KG&aUzZFxwmQ6pJONM_uWj@+Ya zJx{W`XV6a((DoDbt3te%7zP0@yJ0Vc?U+i{Ga*^BMX00wuo|RA#X0fBh+P zclcNX6UTVDN~Ri9>ucc7GTBpCA(08&pX?r6#T2~{);MnZ+cJ+Si`tA7v$UU`WM3X{ z5P~LlFsr?G`1APz(A3@!m3;m1O0_kuJDE0JcbJeQ-dC-(Yyb1&S#P!n^P4IYAO%wJ zQ8W9K7m;(3{@wAH3VIr&e87Hw6!!tS6Wa?wTl9}8?0bqum(xzndqhY$j$d;+*7?>dFf zXFI?lP5zHk#C4ydkzF@%W`)LO-C0s8mE@mgqL(n!?-m)EOLwPkyI_TDdTGb0{DjSO zRTnF)`YsWb(={v5uJEr;TNF;|l?^%UeJs(CO zD0tQ`3~;ff>7t`?PY(N#^n!C8i`3qcrv}wir+m6?4*hnNZtMMk#j}AfjH}NPv64~v zt0`(^6DGU zV`i)cshNpB0@j=_akRb4@Y+Jw$Y}z`3q=jdVMMzh%9D{!$>k3=j8@a!R;^dz+aHDL z=bh=+@r_Z2h3C(-tXglOEaT=a!$ecuf4Vt|-ga(tv3nNd7W$mohuSk|P48h>Qqk2zD>p-2Aelqub7SAQ z2WBV8q5^i1;eV~WO}LiMuYq422U>K23sYWwTUTDxUCSG*Ei6zJAnD zHFOg&r7b`QH2}iAa9mdak-|7pKHag-#DVA>Zs9a=c7>8A$sd<;K}Bh{G&P9ooKNCd zS9U`7bRG?>4|MvTzT!wvV#eY~3AI-qnjYn);6}s9jKu9XW8jqV1uh!2`0jKdFi#;GQ#Q0S#FUHAg`Y|4O`nOQ486Hk<1tuKZ~*>=ZP8nQ z>d#(X4nTOq0lb#dx~v~{pt+RkdA|bFZI^bZm9B2O`+AyrXlQ6|QBe?yk&r|b;pp?G z{;w?AOh*DH1i}pb5oPIAaQL)aA1`sI=cJh>~m$(lr*f3eH zEnPGSsnWxgOgp#g)#ebKIg& z{u?m5ix<2$d`Q+!P%KBMK-?8L@@m4ppYK30NY9DGepynd(vx#_2dr2?(g*+D?i2I} zyBJ|hI+@iXc<`h-a3=&bGy>kbr{Azfb}N!?*opWv^HZ4a-K}nq4lm=XTR~d%aL4FA z9jaD$KQf6=NFd{qJllGWv!f)x3HpB}6$>i%h$@G4r>!TSh$#C3Z^l1xiaZ?av3Zg( zHy5Aq-iIw9aSnsIc|xhwNGVELk|)pCnlb(U|qu|6$K8uwPKZL(Tv6 z3mfh(6_e2|Bw+E%Ar?GPP?-cM0PGE_UXY?B2<|3|?)e=)#g?+VfVkd+2wVV*A(%a1 zP6#z$fbeVS-#T2e()PqxbvuG#h;-b&ytO}K;tC9q!*JgFjh52cI?pV|npFPWlr2_C zp=Us~BJQucY@rCX>Yf89wd=hn+Gk!N0Ef^z6I7n}5Qbr6jeU#w!e?>a67gHa>`U72 zt~CTYoQ}y!v?14EnjMUiMHr>vbjMK3(b~QiLPvhr5o|mt65%v@HOTHxn&Chwh4aY5 zUPE1dzTTo*%|i4+&gK@tL0MS5J>Q?hCgt!2S^aTU4RM*c3UZ#p!gsPtXsVrtY6>9N z23UuYo`yXqK8kz#`9>Dn0U~Ea6DvCZO32W?-cU-c! zl0QxpaAgBNyp^)@s(2BsqIgJM0Dm48kAwGU&nv_YA7C~GhJ?HTbSTi)dhvz%FXD2* zs21?uAaLy2-5DK0u^B-&SEE)mzlIvfl#>^qQg37ik?Ob8#V)Oh%rk?#?Hz{3z8D zXI7Izk3urT5cnZo(QtWEV{w(Tq)ob2DWuB3qA~_gDV_I7S3GlGYY&);tf!(wIKb=|b|4t^OC}ID`$M+xdw8|lL7Nie=hG8;5OX%J?jRzIZ zz;Q%DRQD2bzuuXueJ%&w~YtfKTKa_W!i#ge++mDwQks@a#rVv*Z0&_adQfAr(7 zic4%*N?G~GZ;CpcjB$cLzt`|AlQ9fI8B9iT9Ip?dnJLlMG|O1M&IOE}fcA7AGhE-m z&xBW1>uWF*t*jajwFbVQxQg9;f{foWoJQWU(M}*{bv^PJ?}5D7*|$>zY{@U*$Pcd! z#85vLa;D*jIr3?JixausQl53+$O1VKTq@yT2Z(b42M32H${1vNGbth~ZYSBjRkzm1 zv4xmHn5rjep+O`cg&xhcFlZ15NsqieZ(Jd2CgM((cISFGk%}?dy_oX7j?c>Sb7o#q zJ*v8_Ag?DSrkI~pMH}Pgzva9f-T+cXks+5GFg}HM&Cf}2XbPbwG=L(C9U-;a4F)=Yg77xx3E2P8%PwU0m(oRB^`e%-jS4uSa>&OXh8;Ns_ zw3x|g3GM22;HC2+QyYoZ&9B8<_FJxP!GEmXU`=K&fXMB&M-CVZlyO2E>H)X~Xw*Pn zWphFc+Tuwu!d7K=E=jr)z4u4{yTT&=M4x}_P~g?v*94L`HjSJ&7b@kGkt(HNUne`mXifn#zREi*og z$drLboYb)Ib%BOrS}V0EZ(}%#IPn}K3~`fr-p|WwII1Wu{SXKSSa_o;;_)yLLkbjE zp_NCpC#I;Q5n3FaT<-$l*2jEDd(@xfvyn`NuJ=~1UlgpIKGmNGDiM2croKy|$Cc=b z$~B#$nZSP+s7Q(8YdOn7Yo?sPy~YCpyZ|ck7}Qt90b643#CB*pU%?Dtbhw&iOhySp zXRddS4gKUPe?aoIzprZ*|3suPC)tNK%S2tuQ9?6(eh#c6>5y?XiIvegCk;c<;_*Y^ zN{Iv1)?BdwbR3*6+s1-X3%lQmG#;~X?zw?Q9{kZxg`C&7(NWy{b7BK=D4T={aWD*X zXZrk}sOQ{?)vb5wAa(;qEui*i_Zi%H- zRD`;I1F<&gM!x!?6LEOQ>$Ir?ti|r`?oJxL^6E*?QI9+AB@KiqyNXDV;{#6%Z!-8S z$6$auBMv?da6EAD&nosVDp;EzS-!eMiCbybTYFHqM%gn(bAMK!GlXU3=vF~dei6SE zHpKx$Fld>hAVwo}ON;VPxhtc|fkgZB^SilnR|rP}>a~V^&u?PzBUahGJAUoMo4GD#O z;F%B|oyYiL2)TWlf>iIB!Oa>7r5q-`c*)h;VyD^2W#>ew)6V>q@7}$G7#bjYoX{2V z1fn_R;EqUCk$Zq-H1u2mOg^A3;1Pp68wMdd#+D%uDr*02M)*^?^w`;*KZ;VdS$@K7 z6zU!<^#Vu8Gc1=asbVj&+x{*~s-V}sX^3xSi`k^%Ox%TkvYtW{qUu5faZ!zpH>HtxeH`%Qae{jy z2;BHd7rfh^DD}G9DxL+!170^~XgMwFa@PJN&66RO28d_hKrreO6tY}QRwKHAXSQSD z<-X~k3O53-4m;-y_#ZuGgBoIB7fCU)-A$TBy8xX$rVcNsvEu{3RNy)XrhR^HJklw( z)Hq$UzPiLx`5tU205tgJTh_RYjDc`s=08o&%#@S{X+*(GWSt^SaJ+nUJVb}nw$W{5 z{ue25dKBvYyKD^y40StjF8WqV+S_wt2Kj@S-4}q!Hyh3#gvJ=KS4No{2d^1-aEJ1| znFr`f5LLWa1Y`&A3!i6zSO-cYkAPtd3hs|@Nyftf7H?^3DUwPg8%oQ7p)?s}&5i*I z^B6p6oL(1p`(IaZq0D#YtEthkF$J#+yocRNn2E`6xU+H#mmUFH<^_c6{j&}@ks~UtW1(-4_$}(yuo*073XRw0mVMx9d&J zC4qw+eaUk>%A#pH<+6MYj6fz@;3?>P6QOCnl=^{@t}a1N6Q`T4L4AXHBlK1vo+ltw zr7KTVETc6J(-rAipHvA~ynVM0I{fpM9^56XaMEVUWRiiQ@D8~sf8YbhY^-b`O;}Tt zRW!vbaRAK%_uKZ3W3Vp-Kjr;tqoD@c>(C2J{HIO0DtNNb_yPj!!YoeTU3^z!nf#WR zH4{9%BmQw@eBT1wX?SR89ZVsh!9^{Pf!T$jhQ`Q3Af>KBc-Di(< zi+C$lEZv9X(gj2s3Yg7)50&XFTONLoe_EL03q3iNTGIy3Z7Q#SNHYz6 z^C7lI!wHkGhtrgu2q`I@59#6 z{O9olm?wGQ6?2KM4n1ZakGVG4+}_E(J;&Zi2H4j^43KC z`J=5>soMpzmqdIaBEd6z-D?hcs@wlAZbMHfW=Z&ppUm*2@6(7u(cPz(mX?45X@9n> zqw9ccEGxHHle4f^cjYV#TUh&fs%Hf1J16j}pcZG9e24+t?>YCwSALY?D8p+u(hg zP$+Bk5!*?lfbQZg;N2+dDJzQ(6&8P(s_Lpe5Lh-FEY2`0-0abXB`9?S;{XE{x@VZa zd*S%jSNkRLJKzu)13gZXs)b*_rh-soE@%J1z~x*)%=^X}upg4~5NZHscxbkp_qq4} zK3_%T@y37$3|c=I0PbxObQHboME|C?47|xSFc|7im>{jWqF72I>j(DQ|Mvp;t{yM3 zRJTu=NxYjVh>FU$yq^C_>P%%#eHnJG5`^Z{g2>34o~*U92mZ)eyAGU_ohf!eDq&`( z`|yV&6Zg>}*2i}4itG0}z&#PmPx?gj-!n z3E+JozN}_sG(7*q6A)_9V>19W^kr}=jDYc!;)+D*Jy*jv)pn$^~;){aCQZjh6-tAhw0t+SZtb?Eb)3))E zL4ip3&E@eWNN_4Fy}870dIxXfFlZEhmXYCT)L(YBi9zO8Y2eobc^Z|4PKh$^jp^dy zBBiqVoi&Y36VsSU@gu(^iR955#yt9628Mfs`Cg!W%n+R%`jTkd*FpNE`)7tU-KErb z%4gg(x)sEO6bP-MSe-f;aZv4!^h*=fHcQjP(I_p_t%wY6)}~x0iwtj0CZ59gPpMdJ$iD9 zfuc(@Fp^xn{YPWoi2hL|VvU&Fr#Ym%+Qkmg&4D)DE<@$r2^x3)UEcz#hQf1IHybv6 zRu_umh*EC^&S7gaN|4x{K9L8j{o@6twF9Gd;Jh>kxebx6zH4=WWr1=V;DiS2R(w<% z**Jt{tj+%nANOS5s2{2Ba=L+1`3*$wz%P5Vei+QIZs7Pv@nJ@#Cm?8cJum~4IM|?$ zgHubb)9xXoA=%~|?dFg&GadVK;uBKhJPR}-n>%T6SoH)R5?+{%zxiw8ygUVf=xxYh^yBA!Q^Iovo2G|7mXzZw&3DhJGrnnEzV z#nn>}NM{3?AWZAxCZQZ{bsyTuTl6VLwHZTM14rS}bw5AhhX#DC4Vcq=^`xhxKlUA) z4YXcQTOZvE#WR=u=++aj-#{i8>yf?XZcjAmTom1dGYJI|H7nb9JEk%_Ig*x<#b}Ly ziLUUMcQV)c-`vCHNlWbCQBq$wKaiJ2QqQ>27gKmzoK2{YroZ-B)#ewh)Tqw}t$Y#V zbj)#pq}<8_);Wf@EX4Z)47SW8{ zYjn7L&wm;uF6Ht&E0DCQ7f85xPhX)H2!|IGFBI2sgdkSdRqVC1H55QCFqQGu$rix& z2yx(JVPSPx@2dsBj_-uB_h5-YT<1Ib9srE$3wGK9p5(UtAeAFPX?veVpUzsPn}2d7 z-WAkf?Bq5RimhmBa)nHk!lIBG71kN_cwPI@95Unsp9wYGx_}VEv;b3pra z?EQB}K@VVWEKS{7wq#DCi! zL?f+vM!ck;gARpnZk)Ttiec;iG@eS)B^sNSw9#sF$otiVz!9d}Z>$ zBuC502n@pz6%P*;l%Atlfv_XwbA;*}R7*4hl_^5@6NPe0K~TdOfrzB~`}N>C48M9i30mpY0yi`&XUA!mO-OjSC(TU>s4u9gacI;fniQQ=k%*{*Rk?)MF9-_xCR#Bc)Ys z7ENfLits z?)b0Vux;qg|A04~&(pS+xfHzeTqZ>{|N{HCBLol31cVER7>O~<1XFrN*ucnfE)T5Nkn1u3XvVn)Ed zjI-*n>$a@-iM^Rz-D~Q-|Btrrd2^R#i*0JNF=~aa8V#@KGgZ*a1WbW{)f5wDNhy`D zPBc)9{ORs{+jdUyeJ0T#&I%FM%gujUSSxzp@i?(sB(S_McxoMX{dmf8_iy#9<9Wo8 z_YDdn<}u8_V%lsTuV+?j?jV4v{zeD4$)0pCsZt}W0KY*qNzE^-a0g#x$41F@Jro6GbN?nr37hbLs6yieX%8tO3 zG<=C-uEXQ}4Gk((Tdbcll*m)#y2#!t{6!h0R)CB#9lpbNe08pk)nDRcOo`EIMDf*@ z*n^cOL1y%956NZs&tVRO8@tqockch#5{yu~xZ@r)Ms0j?KQ;pkAmE^YS_Hm1ZoKCp z?Hw2}?mi*o%f!u}z&IHAUQ(@sBItZ%Lz~ zqJVynveHCgg=OWcIyXyvv6h_q^;QX$2v+_=1(QkM!2H`_V=|3_kj^6Y?G(eoh6&;t39Raa$_cTwZ=~-=^tUl^ik6`Fpn_8Sh71$qlyxDp)kV9u;w*z&Rs86?;4T)gDZoApZOB^^bCS{us?Lf}Dx9 z=FNofMBkK0R?F#GSt~P&t%~zc)LN&5qXD@g4W<-MNeSt8coNuQH3g+*0^u+@bWHmA z%?)e39Ku8R!S+kli$OZC5fV0!0DQCnFR?Hvnp!JIy8cJ(cC`4AmQPP_ z;-whL(+4hZ2sd`tL|caNV)Sgk1%d5*jK<87941+ymTBR%7B%xH^^J#d&3-E*GA}sn z`O%VQ+(Gu$6XtfmB61f1B~xa-NWZW}AD!t-_9>^E!4J1Jtlu-|ugX-Ti_vX@0gFRl zByA-+OAOJ&Bo+k^bGuOzL@+Yg5RC?F2<8(45QfInsGftuk}W)s$~09J+fVsR@F<%n zc82+8ylD!%3$6FH7^^AoK~)QIbCYECht5qY)fcBCz%->{*f)rl@|_f{Ok8g(Y9M!n ztqI6BE`?A**U0S#>voSb?7R-?TrN_(m%0|O5JWkX{a|-!JPmm)s{{3@*&zGNJ`TZN{m40jTorrTp7Bdu) zb{u^5Kw(^(@RsVO+G#Jd+fD|?Q|{WHJL-g zeX%aRgF~>=dEvaR0l1FxKqd#0L0(u1))zJ%UEo-TuP}`T7QNdrOuq@_VQW_+B zK3o5pUU@Zc!41B#O3;4%;uet%+C1xa@BNZ*MVxjBiOJ+_Y*HqbJ(_Oxs$R$tzI;#q zJN=k1eaEg|*Y3C0QbpyqyH-aBHIKeGU zMeFxk3>8U|yqCvtnVh;CK^O|7y5`rAhJ>E5G8@&UR= z6jaP77oU1`0SlhxK=t_HH z25Vb_&r(SKp?leQToK}g)tk59_m%wg!x45*^ZOLyr9 zXj%STh8I`d5`h^BXxt@s?*5P=*>PaL7V10Lo32mQz>mafB>`_8f46CG#R-0PmGNw< zIw~~cna_13qwHqfy7d^~(vNFS=pK~w!s(}1U3!&VMrA?tc$X1vxbT<)9RTrJ+9i+g ze|%qUgW?fX(e3nFsXb9Okl9l?QE?Lc6F6}aT7%t8G0kT~kf47-Du6QhQO5Y)Uo*8Z-^eZ38L9q7p^$|059ccIlF zYkPa^rX+x?;*2oDYs11Ldl}fjER@MNy2k3YaJLUj#k521MpNBQPOk?HBT7rvs^IQd{Sa` zBxI%vIooFi@Nw|)lchE1RP}90Ca&-VDfa*<&uJ$GY>RCg=cH9tRY!IJnFV?}ii?WS zigIBB9=K+eH#%m)F~xJndG!UsbWen7=$SG&Zlyk;>5*x&x?f1KgC-}7pDUoDBMGX6 z2Ssk##yA;roH!DRH=Th+1*&9Cdv6$*+aIZ`d=u(zSyqD>3bWqlbD+v7I5R!U51?Eo z+6=E#{92KI^~0||$h^f9M_#oBr}W)4J{YNGW$P}VK6lCbxos;RFDcFVt849x`dqeh zWhJ^89%;N6jHLIjit zTyTQLvN4Sd80Cog2!jOnosKb7$B7FyM;8_r+FkE8sv8(e%ed>PTm#Yc7g%CTxVgEp z)Ah>A$-NuRmx4C>6W_0&%bl}|=d}i|Cc)BMW&-v!gqa-Sc?nIAXpk>-P4i(O9s{W1 zM<55M-fH|J>=@BjgdN4pPa>g)8NH2JcI29n>8#mUqkl%iq~!BhbW_t92`|eQ4>fUm zAc3VUBGAFycf1HBAdxqYj&(rK0~p>wUnvowxqxEOZ{XGn#gTmCJ0XV@lB~Yd2Rz`w z_jVvSY-G#z7%YaSPT&b(65UTHd|^@D>?>YrvPl)t2gq48u^!h>6q8XC&z`>rR{uE? zbTl#a*p}%(+VKZpv1~NnO!_Zu6`FPMS8N=W-Yz<-<+%C&+aj!aHqc>UjwIJzu29;M^(o`jK4ztsNT< zl~2Itq21z7B=AFjLIHNDJq2`jg+@i0uJ*=dzH$ssH`YwCHj>!Bu^zL{i0s*3+{H3l zv2Cyi*E*P#vv@9-IjcMHgn8)mT~3l@*Vfl}_EWU&jUPT(*xC`kg(>Tgjc6GX4WAN0qBNC859ba>eoJq}IryIzRhZ#)yZk-K;zdq3~K9pr6a7H0}kEwMMRGQz*JG^c( zb6)51w8V)BuPBKsA61NPs)qk5u=+kglb7BqM#GP_FC$W$2;f_qRxD^uza!V-`2uu? z2W>m&*Y0P3&7tQ2rH!8KwmQ#fxwGmPeNRUJ7l(Ymi>jfs@A7Xt1=+7*PKv0b!9>xM zJ`y^6dA=T>6|FlN-9gAwUi1>bdM9RXNw0OKU<-Wmn}CI8a9Qi};1KK;SE8589n+TKhk?b0hpuPp46Q5-H?C3fW>ynN19 zjXU~0vILa}cT_3*H7?IJB=mtw43wf8%)D~Re%4o|Cq$#Wuxct5u ze)W%kPf}XiMO`Kfe5LymibqD@G3pb)&bOt07=+QdnLDH&UZk2$(e?BpD&X`L<(et{ za?Z4zf1OYs-ab7iwo*1}bys^rb_aIukAAdxT{-~AK2)dh+%`$mE!~ji8GoLdmCAD- zzu50opqdH-)lXPCza4{9s~oV(l&TO~%1f217&~*1tXnPz8b8Sk2UpT~ZWOYL9W^Zs z^gw1~(huL$jVT3y{`J@BPIb!uxwA>pAbmR##o}0L;u8U8Opn9aJq$YONJzuLaKpwz z*Z7K6V)rDM_~hc>L)mTMd-(_AdAAi@5U64yY-j=C?Op7_MG<_#0e1r`ED-DelG6@V zIY5+AkZ@mRXUFH|e5$C=jnI4ao3PkkbAlS41QQ&Q_{*`_=saS7CP*F?3~W`9gwb8y z(jM=M-M2vx%-JRE$!(sx>G+99LN&`L=X^GUFr4gQ8kUE^9IZY{*6-N3?Cgri|AAr} z>F7%!6Bo8mGo@<;nvKc9YFfEYgZtKC@_&@&Y|m(jlbbUfBA&OY~(;EQSLO=0x`qPwFv0FML%_2kP)*x4vqxBuWfwIpz&tWDPZ=G(N1Y^|`bseXfppDA}jfX02}Lkw0n2 zwY>)3+_Bzvub_yqg9CufzXSPAF94mK69!xJHoyahK))XK5~+Ys0C?J54_X@bBh*v! z6Ee|4$>Y4fIb(mL{HI~?-iKc9kE2OOty}_wfs5Y%3~8+x|0yaxkp8+1mBP@C^^&_j zVbV;IXRI>fjdC{Ub3J+i*bDMmc+^NzeaZoi$lwZ3XQB{e%&fuzHxUfcd#Sq9Br4KD zP2`VU{sl?(NOcs>{PIN|ou@|1HZkD-FeI$}k&bFat|hV8l{#S$Xp0tp+sOkdrv9?WYP$8+A`SvN*tj{8MM62a)fKY)Cn)?qe^451+ zFiDnqt0My$|A|E490>Vy`tOhOE9%hMA4C}a+}k&6e$+ex%SSYV$jBa2q1Hl6_PL|Z zrB-`;4j3Cn&)c)wI9Z3tCFQVV3q+(NzL2OAgmJ*)t@oMI_ROD2zgs~nn;vp#SixHn zua*)Ol`Q<_9!!3Y);_poJ=21dF&NzT7SzGT0sx>0d~WvOd>r(sfCN^%d5*XA`}ff7 zooP8c7@Ddh7U-T)&$Ov~!8vWs^=jw5DNfR-(T)zFJ%EO}wfQ+A|EYK|jX;Tzbb>;C zbE}#f`HY#1ULrVz_|yc9XI3&6_u_A7+3N2tY!6YgU@U)^D#|LsBtI`n0M3 z&(RP**Nu!xt6EEr9O96%BL`|A0xjFz@UYs)uC$kIhgu}mR%0q^`>AqU*E3KX8?bsp zXpapbNP}Qj{PN(z`$)NN(yY*hl}|;m$8smeyCS}UmsrT##-l5FTZ`N0=Y;?71wgO} zv=&o;q~!PJ%QH*MjE9LJa-P=fQl4a}YiV@@(Nr}gJ*?U48Femh!V?1i>8AZHp|*Lp z#`3{he^saE(!a1r$6e9s(&K;W5|fhbm)g-D;!^YiyH_e`wE&sWLWkjp@#eEPbn$QU z*~}mP4yOepN7M5tA6$UjH1aw`Yj)Xde_sQ6#DKF1_URyc1X1T3?s_LT9q@XDUZ3DS936h@afAD)rehg7FgF)ZHe-}ZT^z2r ze@{NjPT)Q`@z&v-ATW|N5FyGngq2h%=tP+G5rLE6I}sv-pF%7pQxG7;o}F9p_qmS{ zENq>SUd&ihQt~s<|G_7XJmqS!Oi!$xMfLIX2kqh5CjPk()^Ze) z_wudZguq5`x^M+GaX^KPi;K&_$2+pk&CNyd&bYt-BXDq0(*J$WXZS?!ASh5nTu%IB zxI8;;Xh|sC#h&#~%`Ve&RXAIf!EVezIJX#)r5f6nxG#|`&5v_At^|b~$9WOlG!uo< zxef1m^Yh!)D=deFjqGditmRzmx9+&!_V)E5t-f!Y(;0wPR+}9@$XDp|!Z&&nL{fma z31?^T86J)a3`7;azi~`tV(lw<;u+h#haN>C@6^td_~cpJ>Nd6SuY8P@RhTScnEd9q z`0p`Hc$MuDyyh>Ek!jK`wyjMQCvu8v>WPrhZZ(7mr4iwxH%V=EU&&Q-f4*Lk0zPiw zo;Cwx;!;ZeO^%|8yd;x8T4Kro%qE~HGeJ{t6fQ7Sl)sKWieE5d)ub!_XIHxa!=g)3~yrU(`LM1dsf5ip&X z&hVbs6QJ6DTO(N?&QaFZCJjzjo34m*+i6lpt0+-+jhQ1<$`*WH{XAvwh4}5GSn`)W z1u?#&t&18JE_6YfG8h`cr*0onE|?`$u*e@H3pd_8__p>a6kGnC$_e*G$`m*U`pWsx zZ+7m!LR)Jn3JQ1;k&)OGxR1a%0M-mMHdCX38*(3js{KTkT|c9 z#VhgGjcVh~ z>pn~~PYD^4;G)k&9c{*`V*)L%<&)sN4Hj6OCd-G{0^&Cws=_y7I5+u?47Lm*MP!FX zXQH=Xu<;Yl^~3_)f9s&92#QjXlJ+j#oxPNfBJTpj01zPaE31A9RlQMQu|H=M+ti4a z%Nxbxb>^4!{FLbxi<1DU__d{1#PAOmR!+ z>T#OC^wcT2e7vmGeB8io0*9Hos^{Cs4OhAo!gqm%k;V13=#Jj>Nl8h-fC97u2&KN# z9aDU`%%1u|9z%&N=C=r`%m>g=?^vhxq+omtDI`q2HP?4)7?|Q=+IX<%yW0;v1xyH+a_^ zw-3I}x=&?+=#R@^J>dF{ftuO?Y5+-3lhQfEmC$7;lg$sNu1hi~Gyd=BC_ZA%^n5?> z!&i7?x&N)@>)`^^h3CK0Qbc3VgYK=&;$d=LV6g+yjJSE+F(3K|1h|7PZ_rFDXSA*k z8Mp4?|Jjfm1L5IbfGhePn9-gEu>-3auqFR1iLw*q&sTZY2X9T>vOMh78RG_)djP)zq@F-V49t!#rv*sjBT7jXt`D#1SM+qm9*2nk{fPv+N{Hj9OPMnL zuFmrKQLMQILMsz-BYF!9LOqTq?2G3CO?xw&72Rw)hggwfd5OaVmM;@LZC}`QlSA}V zF#K%TLksSXKQ$|GuEKY&X>#b~0ZMCh*R{H3eU&1?eZOUMh2v#gs|*{EkyY;`IDSv6 ze>_kT7)<3109MBoKsgt^GZ4JmEZBd7X++~2x7}y4>4t&D;ExD*8{!A~?21BO0bLFO zldd%JyzZqshqGmVwFKMFVa74N#?e4snpuG3&SNSsM@Oem|Lx{EjK!F&`OD^ z;hVL&xU|WQ(B5O6;5Evhwu?({VCu%zjT{{9FAA3+RVV@#b$@K?|5by~2&efF1#rzD z&tyRgwH*W{gWS!kM2DDLAwDOfctmx-lT{22JD~^~RFUww_6*SByTPRej2q*12Yiax z(Vmg7Y^J$?R~spd`kFWSsHosUqyazy{bS9GDrTp5T(?q`Vz>}?5=5hqTZR;1@}9)6ZnO;X2kd;_I*&^rxs%NxSBz^ypzbUX;y0TXw3 zZuAV)aH7=L1ALxmEYOw~93l?phbO_Iq3EDbPZY!me}~IEjm{-h*q})P0=|U=t)0#w zpI+1|yVN~27I-paC++4cxAxL7^9QGkDqnOCh;aq!qQy(jor{cp zRc7E(g{ydYu5e|%^19$Ckd9ggN(w|adu9wwG>!bD%nZq?0{h}?Gd1S~8-~hjzgg={ z%yLi0XypjNcOH1cXKb6JfH)YJlq3bV?I18n&CDF}@2{g^@7xeNxet9*Pt1F3mJTb< zT$PgNy?>DwTa>3q_rFwZYxFAbZ745pGIJJEZnTfKCU{L6Y<}nWk~UBhxHNBk&(-TU z8(#TT;2{xed{rwID3*P$~IXGiq0XVWIa+Cb~)+Z=aX{ zR8#e9xnJ`SmWiPWqrGKx5>g_d->q~37p{2l!f)uGX7i4PRjl!7M-0>u4WQPo+AY7} z&hAFBSj4Im5XcG7RndxQ4nW<3GoYytk(;u<}(?eRGY z$C)24{gy9TSYh=*?%P2zwVWR{dRYGPAETGJXYf#Uddn|x=*!h6IYX(@6|Rn1PTJ;} z5d$$#R%)BSTIrsjp(zVr!T@Nq<0VZdKKpE_u;2sZcQ~dq<0ID}zOGP>|2vqnSN3?c z^VMui#eezc&*>ODghB&`2(~i=$Bm)2jE^mlKt_5-)dMayixbSFfgy|5obLp)r%!K z#Cifo0L;BKZK)Rkp}q(jI2gfWVX0oMx}XvxokyoV_qaYcZ^$rO(~3@oa$juUB{+vE zRNI@YYn`P`pB`4G*1TsPzxrXl96h&Bvj^=Mqx(WZg3j$zhh8UdEo<$0CY=9y?{xH> zRl7pUfo4cMLlv>sS|vjCr(nAB@tV%EPFi5`-DVd{xSN8WX9k)fG$ zE8ZJL$wqvPz&i-hA42izLc@=|4u!!B2dp#E;Sa(zCX=46+6s7~`aCR^wr_LqH-JkA z`@;EE;2No{QJF(G>|Wp7M=ftZPwQInOgZc8i5NjKg{GvXtWm=-z2eQguKambv8*51 z3F<9AGZcd*XgJ1R=F0`U)XF!SG?G>Xd<$2EgG2x682~DJ%U^7I<_nfu5M|jOh;vG2 zK5~G-cHwTo2HN~&y(2Q!E=Of@;u9wved$;gTVg2LnB{}Wjl74uj!wwk_od$$S37=@ zBe9Mr%bHH18GSM9qa257%MAIM3*>dM|nAG zhXPzGcZx+?&H1AyTzzO?HJAtp2u8N}Yr||oZH1xd9*?d|PN!=>X<|$EPT^FjU!c&p z&}moR_m$I?E<2$D;dS^1=7O}*j1Qz`|ZabCW6lkx?lIl(DqwLIwjb^$emsRSy zgE9j$Uh6*}uT(Mpe*(N#8(0iTcTFweoo`a9T>c+TXBm)X)^=@0L|PgI3F#1!Zt3n2 zrIC=3?nV(1q!C2ATR;RsT4_Y2yGxOfkk0SC=K0Nj~%PMw6iqx#5q$A4Hu+XN~*``{KZH*(RSeVC|&G&YPc}?XXRi;r;6l zRCsl;!`<`>>2L#$4dMh^K!`B^&8R5-8Z;f(E@vVRgGwk5@S)lAVcnDpu| z0TE@X6afR{EYT{XXCO|LT2I>9(#d%T7GP4Mj*q=y(63;Uso0_!ClmGVh?CBNTIq5Q zWj*@0ljgk#3(bG5U#-k1SM@3F7MLeEisMMEw?Ft4P@cQi`0~qBu`@-|jJJuKTbEzE zu6$xy*eaxpcj*NUo~xwk`D4EToV&-J!ltk3Q}SJFE%#*zX|}~maKH0WmwyqTd^NKb znXqBjGoh~_>2qEDdi+^V)MFUsBc?~8 z1{aDps+M=%rMK#~DV5XXejFVQXg!ITl7FqPf?jWGB2ySK^)~6+7tnM0HX1iQg;-)_ z`@$*C*YC%lk{3rg?*A*jawVT{_fXo(8w`aoFWkEdqjvwF_d`7kk=eFT&IO#=*Er0+ zQCsf%cucW#^jCvSm*P{M#wWtm&-vqAb|iI1QnbT<2~Um3vq-8@i(9z_pBGmf(&~#B zO`AvbB`YWd+n6)+ndIfMV>PMu*BZ2}g2o^peDuOrLinux3RS@}1qXumIdP^}s9FTS zax^{dV)gaedRQkyM;++f1v1dIxe`aMFm9{nHw-k>!(rJ?^+>WFH>YBRnUwfFz#0%j zUUub6yn92hW^PVm5qNS`Xu)~t2%$4y&I$dAL zG;TZ9#*ed1)s47>vbsJb&(H8O=}%B-Qkwf3`uerDfq`^xRY7l^YMNjiSdM^&{~n|< z2RH}8&&|Sy3zo|ErCEvwnB9n;3}K8OZvTDmLZ>sGY352ISLr*{cW<)Dt>@)S#v~Qf znsD|s-YrI5k@wdgk;T(LbsE!n*5Af5iH~P(U+m)hw_co$x1Da3or&o+Qrkhy;;QQw z2Nvu_yB8EnN=w7B?k*m>ZQ<$`s&vOtiPg&!KLhtN4O{O;2wr1I2JynvH5UXW5+M!DJl3;*Ok5OS2Sra9L78Q!|JZXsseS|-Z1C-K1DJ(T-C>@-)$!b zJnQmat{Y9AUN9`wz_1PVG3l#(M~zs6Oq$OdB zS5IT0X=QC}LPGnE+oA~5tN{=6s@C)Y86eYTatGlz_Qel{V7ht5hV-t2cX4yNjFi_F zDrpo)EGY9&XC&{E^z+&5E_Hwe)(15zCpQ<7I$Y)V|NQY|1#$r_;JYrEz9+oCy4rzw z%K`qS1VAk$U?YN*6B%CWR2WJhFJoyQZR~{ACh3?@d?b~LLuA2#mNDf|4F`1!7+;Kt z+F|k}Y+qJ}s-B{-wr>)L9VGE}f=fY->5)OpGNc95-oGEYv}6V>TJz4x#mlp8E0_yV zZA?ku7Hfym{bWm^cu46So!7cdBjNIDtL({5UMk@?rG1g}Sx=7(BhjvpG+!4~fq;!) zu@4rXeewuU=%{)7o{c;#MS!Z}@}6K6$-4TA#>s`Ep~o$RgLUJUN1uK&zdbob*d>sx z45tNTyudfQ(KD7}OCHl>JNwRL$eEWMPlt7h+N-;5O0syE(B(kJEiNv>@8l*j-s+@q zY`^+cyA89_Yv|-6VAS4lu({*zc-I;vsrLFh$R}4XavMS@~9P!z2*4 z%7{r8b}nef>HF--o;K{Xd@f4Y{e)qeE+TC9^ za(6M-ZRs8x%zW?J{w|3)Dl(DhXr|iGL##SvWLh3ynEq~IpW^5rZVo%qm_F;(pCa3v z@y=);U4N^=HrV!;lRzDoDQo;u5C*VRggS8~9V!$YO#uUh1jHki94NZF%mYR3CLZkV z?H&JZ*q(scUzp*cqM^A!Oa?-zt}XF{<{VjN3-)>Zyl@ve)e!eHd*%H8L-ooyO*p|r zu6vRGTe{Vf4|#vT~oJ{|Es*+*d z_38hoy-~mV54NIfZEwE{ga@{uEK`dm6uti9Gq_l`cUG03R8W^}0nhfagZu|`RsyU4bW?g33KVw{D#{>DP#no|1- z<|iu$ZDlTwBuYt*_~hDp;(T z<%=2hn}yHlt2$v&SlHm)3+6fvHn&LZypl55ewoz8hcG z>+I2^)Xdj3&6VGq$hALpEr+%%d(cZ$*E=47Z#4!{jrcXvMXuISvdvgc1R8CVSk zo$Cw{PY-gY>QHbF_Sc?ep-3cZ9yX-&+Gxf2Z>Fvqvwn6Nax#O8!S$(bKMq|ry$FkNyB3O`!JmPQC|i2Z)JsSA;QaiD@JiuJ z4-&kAKW+%V2@rr63D7saU3XMVjD%EcWS}nT< zi4ZaBL@i}Q>&N2H@}*SWcAWM~W1N7bdfqED?6?T~Swxx-y7z8--<;t;$hH$0=_v+$ zW3Z=Sl8mPZ_HuZZ4#C4sa(cx)rz;=qkUKQ!UQE~$q$DqgXXKs-P=Q}4@-E*SI`OL? zS(0KEEiIRkf4e_`-w^q0fa;;S-n0|0D&bQ1QRm%1fW%gs|5o$Zn(0B(24N7bq^EZW zDOmg_Z>_<;AN#ON&+4l#bEyn0`ukw%Kf9st2|L{8({(ltX7qIa&s_o6m%B7;udcy| z@Tp~MHElaSo&X7{N4UHQL+U7{NUM0F#-0MX+W=fOa`|!NF&!pqbecr_{)q#(_7-(m z+lY#RIiJ2`pjNqmY-8q_nL=+@?7MB}YKXmr5!!MHsqvaeGn5=K>Mx~T}gg^Uw(oJnaD{~je<(k0p8w|12!&7?3MR7a9&`39EfWHB-_Ifv_ z^)-7L&OG9*h8Ze+d`WL_A;=H9yg2hMs=AJLo9YKB!^Acr_?JBTQf2m~e^_++*xhTO ztN>1lo1U+~pC1xS@dTv33?_jp6YYBN=F4nt!1@6H;i@odKD=jVySoRgZ)3z6MMcw) zggmfV5h?Lq4`&IEdLO3sTh?5SoX_S~CI2WF@L-UOWLYRFDap03J$z(*bdi`)y*s$a zy6xeHp#Qbls{l}+1i?*K!^jUAUTwGj0VpujvRy3<g2<|o{K1X!ildKqfJ;J{o=qio6^&Yl zERWCD2jx*se^hj8akj{#E8Scqj3@iJ#(MuiPANbk*Ugtar;UO1+e}rVvc%@mR|{_E z^JC|8>FUVTQU6_o7i{Gb7PA|5cZFO~t0reiX||E;(qTho3eh&B`&U1y8@IRv)-H(NQD--^+!aj9~+MnW9 zYj@sZi!wPVl9Q9eD?CwIZa94HDwS^1vFfHPbYj|W{1-hfpnQ*ccQ}-m#&blz>!?D2PDQWw8{~ENhz#g%7`4IF&`<_mC-D z7o$EN>UG6Tx80P?*Ah+tXj%)xFn4fBKRaB~l7 z$yI4)wDhhnMfA7OfYcwxkxD5)2}vg&73)|i@yVq$#9nD;4&HuO(hURd)bYzH$bHia7c<6#8QGQi1*IQgf z&$4jQ=?@Qm2V^}yOy=~-jYe-5^$PX^?p#4mPOer-?#1`-N&tvpuW_7LgY;x$W8=s> zJfSdLa{|2<^p8Do4!>+$r13j-M^%5nQlsdkS2jX95w-XOqdZd}W;22m0|#dnK8Z$H z)*?Q<5#x2Q0=QlfSU3`wc(_hk2N`t^M%Cz`iDTrgmOo(Wes}G(h*?FBj%%Eq(JA)B z5-*9Rw!0e>q%=K)-U=x!MEAPsz~He2T^Ho~AU6_b8SeIb89X9u>DFCpZUTF2D=D4U zr}1UchPZ4tsm2{lylClxWVoq!25sc=P!TXuqxU~#lUXq)I3Vf72{e<_w%0}Ce&~|< zQZ61us;UYKSwIvC(T`elTHx_=;-m}O&iYnuk>`4O?k(_by1Dty*c_H)-F+8dNFm3- z_;iqTNz4Rgs%x@z6_^z@nHK*im zK4Ky@j#hgsJ=YLR184^0;U-0G%Xh<061_17PCQEh95g*NK|q@88|&y~T<-$@k5M$8@;pEV1EX3D=u5ev>_=#L2#Cx>tddeW_a^Gg36Z~TBH7v+`gl8c9>gAtiz+S3 zZx5uzVM%-q(+pNio?ETreJR;K=goPt-7GsdM^JuIrNW;fZrEQfD|Sn=pSt804L|=o z7>^+uk{Y|oAVv;?ip3kwBmA^_c12Ps8b`OgzFd(SGV&l`MOf0Uz?k1*s7lP*uPgKQ zkd`Cec9NWN%dS-p+6g{hd2aTMihX6{xM8Cg7Xmt>v0|YVatQ_v`7Tf>ksLo@gMlXm z@nX)B+_jVU&FZq*B@$nwL$RsTQB|$E-V&BEo|Aikff3u&C$lsb3Gb7SB|CoQm=~2_~QnB%TY16QtB7x8=~%&IqLs zZ-lq%Z;mVoD8cWWSyI9ZQj_mMv$_^i*4q%T8LU^P;t32DbL+bFK6VB!`` zByW?gKRYqxJAb-Al|lD?^|MtE+icg1uu_cOh~H9^G1dAM^*>j+7botty}tb$Ns~GE zI+;on@r(v~%Q74417p6bUNYUDADrd>g7hLZSvodkA{RE*r{(`#C;IXz{cbgkwjXC7 zEpMQVL6RIK|Jcio51c)`zS9 z9Q@}r62zh3G+$*32Xnm~_b{N@&eWClWDgoftCcSQ zrW5yMu^zj_pBlBcW=&4Ma%S1+L((jDbflm7M5X2*?^{MyU~Iew8nwh%WzN#3J`z2A zV$ec@x53B%&KfQPk);v~Ens}rwaqxe6#Ag$I?-5q``_w;%TsP4(`*C#S<0X959`V( z0nc&u=j6N;=n#;|sja0IB)1weYtuR3K>f=6*}`vzE3~_6SRH&!EM;P^;740w(d%o1 zQAe#(6AzlKDjj2<@3!rW^#VJNge^20Ufu+N6(yuP)E9SMA~MYw(Y-Jc2E(#}rG&c* z@#tT{UG@Vy)-b5x+rtS}(gg7p6UfMflGnaIb+{R$UH#U?H33ta5g#8P9=J+*is*;u zXKiMc17nQ0eEj_U>X~t_0)uBAKpmWOxMw-B)$e*)`Z&%I7wx`LDF2620%ZbOr7=Gx z14VqG^6&0Ev+n}vU7hy3Nr_FHM+AJGGs}IB>e=ZRaP9mZl75O>E>(gg6Q@i zSSD`7#>Y!RQBqke7Ua2k?QX%d&8R*74>;ixtIP5Rde`$Q9-`3*2_?g*?taqm0K%+B{ZSn_|~ z7%Mw@`Wad9A{JxVZ*hRIAfg}AasFOO$8_m#AHVD*?7~C6X}mayj!FFPRLKyRLO4Ad z_yOGD{QIEG1_m1%PR`pcD>~;|(6@cUNc@?4T|hkS;fVHAJH8REj|bX!?LV>Z!j#;7 z8t?PA_x0+h_+GMI_v#F*iGMFY;BV*xB;9?G)UkksV4Zs#@>}3ElZTnGM?*RSbTj>i z^6Y2YWSI{S5Z>T0(ALoS3QOql?_EiGOvWz5}pUV9Jt&OCM?I(Zi?;%?K0O&=Fx zZx!H+RQz7DBR=D<+gXgc7Hlm3vb%#v^v%9dlzqa7DTV2L7f6O{1=;YT15aunvZ8DO5n$nN0qy1w&oGx7LDl4XI;V}=xn{TZONKA%Sa2a=7%oz|09gp)=^F8reZ^MsF zUaTunAlN+h90E!TzQ!SPdU?#DQ75{n4_#x@LMErX$b2P}^>3UWL zG|~mej@POf=6~e(_*{h;aLd>h7seULO2lpu077U5G%_uJ2rqq+E&z#7Tsx+h)-J;nGY(~(ZI`%r;@^fl*zzE%wV8)Py8J^z;*53aD&)R_AE`cP3( zVT6r-`!*BzT&h6e=H!jLrjwC$BZ;Y8WY|t;6(R=p(TZAs!vCB%umbYU zYkZZKQt`;U_hIVcGXy&W#>!5(OZ$RuVii?Xv}{)RitS#M=XA!Zme!FJu6-TRjcBv! zw6obvTp;Eooh3kpIm3f;GB485F|EB4+~H^T^g!kZ)M#v4+7Ia2fjiXE)%DtWxf3bB zZ^x8E_00{n1~(5+F&pmd(N1ZUeyG1K3`8M16^Y z3u#ui9>&V96oF%s-rqsXz&HR0)3yTb8RBGY+9U)f1f?M-h?yvZl(sHs$% zE3ea#7`M#VY8x>vj@1U)sdyrZAiFnCJh3OAmvm;P1yLz>2PCqE_f@UaJuT+dgA!p-@#xHw5ySDv^^{^0Ddk8@&-*3B-oK5D+f`@ru7x^YS-A_VNH@Fd-juZ+dv4{U=7(`y=FY-) zBaf}LEIH}rrkhSnMn_eus;I7C57Ck|G@RMa=n5qDY03cIc?LK>pFSY7AoegIZdvgQ zk=u&W%I>s%E-BSIJ^k9Td9ocu2V}7QKz6W_l9KQHbP=_gt>e8G3xIp@4e)$3n5He& zJU_sPNGT_PF;_Xv3In!gCf~7v{4pL8_71gbV5Y?gCVS3GUZ-Je{yS}CY@1%6_WQVk2n8Z)>~f1;+8&hi?B#)u)JUp_DHCyTl^%8s{pT z4!$drx;3F{DROYhKxw@pwF9idcW~ulfShPzr!<_5kN9(pIAAqd`wP#z`C+5-ng+e7 z(I36p#q5ZX5Vf_SuRusF3f6Pn!1V>HG^ANTq|X-~0vS!*hb?e|^9l&~V#mR^8R)x6 zZYVP9v8}`twnXcUNS;`?t<)XQir6%+{KcKhm6VX9QOrg1+w6-MTE6aUPaV;@K@1sV zo}{7Kjh#J=Hd}|4aHb3i7*v7*Z14PEzbhyZwd*dP!xHC-?RT-xv7?BNrwKfkAhm>D z?hRlE5Rs6;I};WY1G@a-s(m=2kojYppmQs*hCiBKcWm56wzIutv*riMh?Lte8I3J?Uok4VOq@|VD>3i0)^ykgOB zs%^P%kH%#_qp?xJQ%d~0@4J-j;VBwwixtX>_5AX^q`uaBI60GI&9yH-e*IQ}wg8&9h+W?2vjF9(YxM=sZDa`S85!f6IE}sZk6Z_7HlxLqm)y>vve5v+y25 zM-JNEpxRmi=s?Xuh!z~|_Sw@K9;EZ#n7|dNpse6{L*jV=9Oqa44f~Hk)HO~acFhDs z9kNf|6=L6!Av1(XpfBhic>f6sLsw#KDMOQ1?s~Rzp5N!SA+4}39uoVaJfI+oJ*lZ; z|LNZo)U(dIp00Ee&-i%S$7Fw_cTNuKkiP+FP4OF|5wf;)x%?%i?F+P0-nr1kK>R>K8a}@|!pQ3V(!nvVcT9|Zut%nyPVogAgp`IR` z>wU(VL`SDTJ^HY(utP1G%z{<8*1lr5Bs0t}#XIQ5a`7>OWPOWRP)4Zf$Gyo16Qvkq z`*emBzp139TGx29bgg$EAE_9Z5R;>fEb>mV*{tsy@$(aF7&<2;yc8fHU@lB8dBmLz ze$+qI?y@oFa=|$HSzhA&se?ux4NSauQmpMZn-yj%ki4mQ@GyhRK_%5R~Vm8IDU#Z^kC%Pu#FFdaLwq;#B zqT>#1vmN%BxBvQlC-liRPLAvC?*!l!_9$!xOm@`(h0*)puj`*a`GArDIegdLgpukN zW>+x!Y;l&}QHqqR7I~2W`)zu99~{1rA%g>@sC@P)flHqb5ji_-M6@n0_?M{svNrD0 zho@|b#HOjyXPvI$_W!#bO=Fvqc8{ih6PwbNI@zk(jg+ndvU$DW&H!6d*W@#)-^5{o zPIn0ghBPAcOXz4$;Ct|;XBdb?4iz16T_O3^fYjf1G6_NpUHsHg)L&u-Cpyr~lc)nX zXK6bfYJrV)M`!M#R~IAPTsDI4VWH;o7NEq*MI&H>ugUzZyLn}y9t5Ln zj3yuQ@)}+8K%v%>N2SNmsQKQ#s?`8nVpWUs_)hpCfIdpZSk3asrUGin3z`?7M|<8q65`d>d(UHqJ6!1b`TZIO@b}N5P~hd~ zC!nJG3F}8OoeJ>Jd0dGsSIiT(IH6ov#mG>sNPjmUk2_qF+q?Z(YfqWIa=CQ}b7bg= zSq`_+PpW^Z4-ytmGQM$K#6Fqu51N^onHTH-Nd|ysQcmL)xWS&mDhH5VUpm;~yG0F> z&WohZE!-d)#9F-v4*k7JY98;WTY`-jqOb0j_2E9edTaQ=6VTFE;}0ADH{dG#4}LX| ziChso3*T0L{n8qYm2^`W=d~}LRnYw0D2XHr1ZW>j5Sp2pA^qp*=;#_>KxDYd3;oH; zY#nqZvmp5_?X!5zX2MieMna<`;xDQNE<^uTdHtfa)MLx3A)6|qEJIiM#-F5`2Q)t1 z&KKowF?v?r9j5nX3wP)o+xW&o}$S{Of1B z13&l@fW$cykhPV!SFz}%?17|3TM*7P z;BB0mS82dED6>v5z`9>u7nxw-avj5xbL`rdHPgf`+@|n_fp1UxRCSUv3kvq`Ckv&L zCA-{udAVDiV!6%N#6gz-sTRcv<>B1ogq_@yd+~^{5?6!D>>=;xl=q$&q6Mm%oru#O zENp5|o;*3qHD)~MilOdD@?4>7VBqKvqMDnVL%Itjbwn~-gPX>gWcKkxdVG#qwjaPjC2o zD_>=BQLaW#UdO0Je%ZCc5zT}G2qJ@%f!k+)&G`2qMM_G_m#vy(PylwtRAvS5px?^#6z2MH08 z6BNGHm-m8WQf9U)mC7=TFkG2WciHT44rUK4N5{4HV$?xJ1l&A&O}E<5H8pz>*iZ@f zWU7GUr=a$FB|MNcAj7n)y@nJ@OE8}y@GU=F!z8K=7 zydn(W6pt?Xq>T{JL7?WeyCf^5Y`P{&yWG{#^n^h%@6(Q82&qR7%(X;39V*68fyyZg zjslR%c0S|^Io5kM`#i4Aj_D$TaAmt2iNpZ8)ltzKo@5n;_~4=5TX+NV9ZMn)ZVu;1 zBz!oDzpQ1K+nSGyvM8;{^}87VavyP!&NGDg!mtmyn;ZT%r^1xWMs%==d~|S3>Thjn zc&4+6=Yu3L2gAh3b$x_oW$f-jS51 zrXnkWRTEW4k77dN@n$JUX?f{d zd1Jm?(*J1zZo(LP{{|Z~&5*C-bre(rh3zI4Ziwqn{&%)akHmG?|20&`nuO&?rapjeY`T_ampQb{xM4dKja_~Gej!bEHQsi4u+ zoTgK`nbUPi^}3Wq1KEO5(3APzWle|jUNtr3Id9KvP5{mbc|PFRqRDI*X9v`yKVeFl zpVQBy&a*s->qc>3PuEDi(CVykQYT6Oj(C75$X707GSw-j215DIb*<^Vrgs{GR2a>{ z`GrJ1ZrnWMnzn@{OR)Z*nCY#&)>uWkL42^WKwik{=!yd!2==c@y#Dyqc;#;t`nU%e z+*MVZbWZBO$4aMFWw7ZPIMr>oKR+8{af*G6U+m(_!SYDHn^pKtiwT+V)gjR%L;AvF z)N8XjUA{E}dZl$KoF~DMoE2#6PEa_$F$roqaBEQYH^Z_fM~4;3It7!_3X-1&o@40q zeTe$t6)-|v8WOlQl3;~5*X-^%oPw#?gyHEzy)~ADg(R0T67W|U0s)1>T3n=Do zvAwPJnG?p*@jXlJGwjJl<(7la2KoGWliqk_36Oe=n!rKZ1B)&s4HZc+IQgZs*H_$k zT3NSV*-%zwQAYS(&PqD*??;ECQT-8H_WCTr>X(%kd6!>5e*pgF```{%_JK4GHX4_z z_(8S8JXF?CR!dIP=wqF4@%ZAesfrkK+0hxvx2j0`F~&xq<3_V?ABq$B`h+iDP`3q92N%@->eIg?Gx%Nf{@)Szx`A@JU4MY7WO{q5-L#yR)QGHZs@ev;#6PrAKjGLPvuEqD!c;{BL9#-}Hj-~b=XY*j zMqt;;8{T+gGf>2(kR7$P{>X5>a0lmI=k3AOytT7~;||8Gtw9Re7bJs!@)o8)6V$OK z(bXFscXSboS}=cKz)N#Sv*l!bs-nC+i)J$SUi{}St><+-)F4O7u%^b)@AgBYFVS+I z6zCB6UbPW@xWaS|cvweWAyuFgWEed?mB)`W(mB*}CR*{;+-^i;?~PjABbq2lTk3Ek zoQO3=#cz59goHv+i39ZO~EO*lTf!#DNZ1s;gM6 zsb>~Vho02=SH+o=etwo6(2aoE;0K=oNdD8{X5|6`vqXvSHI289Sw`Crz;Yw+c7^`4 zqDe~8<)-^+{QGwK(oTJ={}K`(d~~0#m4jQA%Vk9Yfb1I26DHWzI5QXW^5~(ed>IpS z8#I9Ufp-;S^u&tU%IQ|mN{LLEJGJaP*|is{h3k-d6L368dJ58~);r$_GZd{Fb*_0R z`~CE}>g1L0E3IM+cvSvl$irx2p>#Z@g7RWM~GGpvY^Q7_w^-pkQv2e!%z z3Z|e~n1K-1_O7lfn4v?~QONYxVXOcM4Bjvie{9^Ljl+;0KodA}DXm~Dr2oyUls}|B zJHF`j5k~WH)k)aevO3hJ!cG=k%||<6@2q|=B>*c%_>*LfcWqjweX_KCNaeLz{WMwq ziakfn+((z`#;d*h(;Y<6e2HC>2~6@yl4-i+Sy;mPF3A!59CCiIxCkMDI;i-~`%?H| zQXQ0%LJnsr@)`XXZ_B~KSaHc}grcv8!T$M|sdMtcx|v34Qxj^g*=sGm3@Oz|jKz22 z=UojA@1C5TjNDNkM3ebEQP`&|pI%9Jhx@Jrg=V(@+T7EULbFd&<&44~sBQB@ODCtD z>QZz*fNKnS5`f@>EEQ@d#1&+=fi59h@`qyZy&6jchV$S^Om$T6!N2x})n2XqzZ#ak z#<5vb*R^0S{tbghvG_>?F2CTCB|PF!1V`e zj;?35gNg!p0uCkjL%J;m0v`#K^gm)HcBxBCIW?QfA=G2b7?yi}6E`W5O3dd0$W|c( zxoHXu6LX@<>Nbq(=%LFaK|UAmLNK<+Eo1d|NG*T=x!hlV+U5&|^>yXqqUPu+d7l=R1g(L7(+3Eckw}R; zN2JCff_T{ben@iHM6Z-#JN_DOj8SwVdxMBZ=)K zH$36}0)14a{WQNVM<#>U0Q1VjX8M_y;O~TIgG}kI32}3F;-LM4(ihpIA#=vhLg{MA z!|*3##)b5$SjtGIk~sU;X|ycGX!wS>U*zzSLeCq?L~+zEU3Of1KTY-Zd3WR_o}CRu4m z! zG^Q$n`>D8ERa<0;#SmgsGEB{Zu29juhl%9Gcs~~}yqNvByFD>EoK#j4pR;`x-Xynu z^27dfe3K8u;xbeilUQ{zoMWG~Sk>=#B*dwiY7D536OC6W>uEjpPvQK_rmZA++R8tp zCNS#|l{25dyOwkQ;GKcOoUz3EUnwNrFq%>%EIRry_H)mC;o!kxboUAhmo#no9fI)L z&98>`lI00i2fO}HHtfVpQ*QN4`+{^&M@J_sV!utpR&KGB_Sa!Es(Xx_TU~K|n)=|& zQVb5)7SH#lbUNXpbxus+JA@ zDRJFx3a-ec=CS&DKKbvW36^@FKs6APaz6F>Ie@*uXNTY&bLHn7uNfd6i3#rOHqcb= z5Jfs*z_B|tq@|^;Ed*-_Ags}IaSgUzkwtZy+^0HWKP8YIe5-mg+=a-lwtoU+5 za@@z(DA?o{?{|rH%Fhrv?R%aNSsLBUHd_4PhcWi~!vMeXpN)?Q+Dw14#Nw7zOTbgV zCi%r#Q#3iq*bhsrfr zD13uLb@GcdonrC)K<+ZH+jTA5Oy+u)Ql)RJ@g#hAPI>k*o=-l$Uv((zFsPVNBf>2i z9i|Yar$l^qHh(pzGCKuN^yOYs3-3lDj4zSDa3xh+^ZQ8qbDw(y`~Ht7_Ueq8^aAMJ zY?1}B9mij%l&BbTP#~=krHF?`Pdr1OdPE#H0bGcuwOr7ZnCRnrQ#c(rcd#2w ziA^NWYG+)qkhHkjdPOXc+bmMOHeT2FOiL&kMs%Lx-<=yRRn68g=YO=|Arij(M@b-X zdm-#aq{bs(mmiOv>bE97@CPMsX`m}b{v?O0FPYbd06E3sQPYa(x&kxi^|eKw9}zS5 z!G;14ezrUe-P`q}W zLSfji;3(#LMb5;|Okj0EVIpjgO-bk=TNrUeGp~R@X>;ZV8MdV;oJV$$SO*)pXsFpy zBx47?7wkA)YVln{-u%4rcV+3@ZLyM5{_4f?oV>i?Bx9fA?5y1DnnW;{fx*aLD;B2{ z)Fog?M?=)3N}l#@#zwN;-CRW|ubij1MvNMiCY#d*H#WRsyGO>`J^im~clMFV+|21M zO?s>CD~(it;yOcBx3laul;!Jj6HwoGWrD!+PsSV4JX!M#YG zEb%1f*GunfEg!9?4k(osha@9IlJgud$y_bDf>c5ovk8^TNE(_`;#uAMzj}2_f&BbNuMA{7iFXBh=fer4>AUKYx8X zO$|lZQ$8ExtFDov%~KBe&a58qF8hIcqpSowA|ij2C-bmx1Ft&O73<(m$ouluw+Fi- zsE2pLglP$CN2QGPG2bnrfbL=b@?U1lga@d(LvbnBHO11QfP_AL*-aRON;GoeX|BfW z&_&)mT+q67Kxni8wVVbkdZW3DITPwU&-LB|QP5p>LTe?4`Q!zXngGWa$k!z1ruyN3 z%*Kp6ttKMn7bzSV&;S7f^K?VRr>2I+sio!R6Nth|>9Y*PfXgSG4R^t#KKbJZQt53+ z+7xLK)Yu22X~*}TZt4fbfiA)8<{;bfft|spOq=a!>HN41qr^-CNxX@pDGZpC!LaFs zbn?*_?Af4ysm56;HwlL1nbZhJ8N#R3LiH4twMPuQtEwZvMm6GfR7Sr33jRE#uGnQD z61R8p2$>upY0n7i1AH~gm(QQ0*W059h!O56hDm9#aHTiMO_GY>rE|QyI_NK(inz$& z^4NUR8BKZSc%W%y)Cbtj5!1=Un9NM-SGR6IgM~fv0|~Ijj>A~&>W+4Sip`+eufT?i zEB^nkmswg6X~RH17JluBdqg_S)`Q+fr3{$=_8V^-rhLMmd?@a2?Rxxr)J%fq-?ztu zE~}$*YdTLyL~Qk1;OAmegR=%9H*lCVN470yfmj{-sN&K6(iri}_aJgxhzPxGwLZ5N zHoj}bLLcF_O8}K<(RcueBoW#F2g5po{F&GHoQF^+Au8-k$j2|lv&N~aNt>T z(1`hd^Cq&Y0vq-cyfrio3^&u&QH`WR3D?;2zm4j#b$@uM4E-%gahF;{u=@P=n~#^U zz*CL*+5Nr?`;7?eDB+NlQpvxvmjthcW#`=@QH3OMP&3oJm(N<>D?JpIE#OUX;Y*jw zmzB~~#Uy!M{oVkk$N>QXeMG|SPdg*;{6`Gi`F6`9nM2E>hvo@!IQAVhc?P+{yuG!7 z1CJmnM~#`0A{#n6x;_FulVb8xmKuUM~Tl}gA22Fy2e_Vw-=arl^ZlOxb zm1W1Kowt##V`}#LRo1biZV;rfH*34pXlJWSGaL^{jz-{l)1z=>|7CUADtk-R{6t^XNhDr09=z!yPsWW> zkvBG`0&zw4^Klo;QU`qL$#bR(Ptyd|auT3v`Et90L++m3S4GM=mxZHse88-9X71UwE!MCMH zv&i@-OB6YUq*VR!X%^gs@lo$oZoMWXnpn_dkx+253PM?~b6b6Gi*pmfI>CqVpWnvm zzU};&Sop<_T#d7vE?ZN4>l+(`*7~|@wb?iVZGd3wf{#sfIZmZmhL|jP*kTFriHQFP z+`UzBBY~Hp^&B7+r<;l;{TVU^I!hkBmNKHi^=AJ`2d^bqzpPUy{#7M2RwDoVH@#h4 zB+txv)}2K*yNPXm4w{n|VkyE>KT^ra-d@!jBEK72(5fwY;A6qWR%Bfu_s=oGn~=F^AfS9MPUv{P!e3y>Xt8l^h}`uTnwK{}P{Uk%g=mtRrH3 zSE+&qw{~hwzKgv7`N#9{6*^`a^-tk{IR5oOW~77o!e7uC7+Z|NRtPCV09H&FI81&n z;wJre;LZ#!G1K8aVMoE=6bXFXpKrrn*KKPIX9MTWxLjf>e+ivHl`OgnjQEBmp{T0+ zMAkClH8n3r{m67!tmYkw_QyYg&<{Q>uArsQ5gA<_S2VctY`qovt;L@SRr0G&nsi6U zvLHJnJis3EVn9;Qg{$R9x=0eJ&a`T_<#V>b6iy1&rQ<3c+1-?&B#}J#kMSjzsY)Qx ztUh_p?>MIdx&lD=dPj^8uU)NwD0LiTWF~g=T79TAPMu}DEwoRn=KJ|*ZSWNo`e|`= z29G`Gv0(@)PvwnTIIK9buZMcuejVm_^ltltyp+OmXB|vyEh53syc`o2akd>KX-w?` zKm0iX^I?0$g1g{dU?|@!%A+YSD;ZjjD?`Vo*%@10lRK1e*{0_^Q`3B8)F*y*qW&{O ztQT(62gxe!9UWZYw+1urgc<*o`t}V8Sr;y@+|)75{NMk$63N0S?sg8G3DnK=|j(mFuyA0?dV=YG_&D5GbxT;t!YjdvxxG z6kYXdTWbf$G8`=pZ`tM5~ zIidb<#X!qHW zdTl>lyd>h#oT}lvDUq+`3>LLn-j127ir&>?r+In) z)`*##MTOCZnzW%rE_~lEE16dxl9eTb0s&d$qYN23~jQ|aAO zy%<9cypk|lwNV^A1#apkurFuT*Qc1yTcgRS9%%_~_|cM)@ul}#`oardL|_Eld|p`m zQn`a4eUBU<6faYX`ojhiY=s7y{2)(LUfxJt=$}co&2@pLP(FU5I(*0!P zt-)Qo@GTnI?O6vVAsb(24#DN!YYs91YEc*6MMZ3adbJLS*XK7ppN4fcl_9y9?PvS+ zvwqphEv_LCqcHu+o4Ijb`8!Ip^QxZuS(3LBZ`D}{h0Z;a16nP#UuPZbC;(FmCuI8K zwMz>`79cwAVMf!TqwH3i$M)pijO(>z61ZXx>9E>4I9LY#2`pXAeAVf5{vS>%ZoD|8K*cwXqJJ z&z$#t#Te%p!XNfG+916{BC0}cEb$$d?`m+fLi7auMmlzV^fPrVU-`ChrU;5fB8e%6 z$$J`}pX!MnypQ1$L6yPhNh_|H)Ua8cAia1S<&Xl)91M=hfysd9)lWaBv(t#;aHYj; z!@`T-ZCRb$K;9&s7)2XLD)VbD;qdUCyw!7~;ISvwUJ0!_pVP>cUJts*W0|_elKpt( z_%kPqnL^4;3h}msOgymBd`i2^FXG0khNB6eN}|syl~@ppHBr}N&xiHJ0OHhX0e^rv zd+g?9z~ZlaPxT75@|6QHX%q2uo?EyptMW)WU`#8{s99e!;gnO;FP)NJJHg1lS)ctl zLtUlr7r%(loFzuelwQAT_LmdcdKW6H|4J%@-@t7FbYCKIqbgIZUOth4Gf%KAYEC#C zM@XE*quWJ-GLL!u*fO=cIpeA28 zq(`S=Lx*mnN!67+I+(p6KTqhG9s6?VSgF7E?5=KE$| z&o4+{8hi5ToUUHz_g@5YvmD zD;?w>c3A$V%GexzT&=e08hUFi{#%>XT?MXWpJi-jIbM&C1c_QbGSA>U8h;RDyd-x< zA750?Dx2vS0ThS$|7oj`LIkE~k&6t*9%QbG?@z15eqCPR(`EIa&X@4#Vhv5u!k79|>Mpa}QX}zFhQ(_AQvwCy)5zzleH-Xs4CGuJC>wJ#0Di7jF^7OP$No+0 zGiG*J3ljPFSotzA5GWA1nc`Vr_k7IB345)3k<61V#W^H{M1pU*-du>;Ri+#~i+qtihRn{3`wXkEIWWx@;zY-`=& z__vov3MZBDE1j8fOi;Qj@`F9+_VO9HVwlJOPYZCXU%S>z3JG$CP4LdXj)6fNZ0f;5 za0_a180dBoVK|GW*H1g@v$OF?0k9k-&WgV>^u_vCqlNB!-!e2!93E)Oule@yXJCfj zM7)1JhC$#hiGQ>~0nhPAjrbLm23hZAsy>g_oQj`PrU*y$bt=^7e1E*6Rm%lrmrTEWvnC*U(U@wDvV!<}xOYG=t~CDB+^( zNx5pJmZoMt*m|U8vA_Gwt+uyWAF*vbh`?D_8C%_9wbH=RX)1dA5%XTfJ%>0S#ogsye;j*5$s3vp#Lg_kJ351dsmVJ?D2z6filPHu1<6k)n zQ3wwaav3I!x{Bu&zomhq7choDK)oVv`!af4=Q#eM*R|YQ!h*?|z}FeY^zz*cE|GY< z_O{TR4dybRirzJ@e+vmCu3(c!5GPCr^V{T!EvkxPiw01 zjYW!FN%htee({1ga@_OR^3;hNvLc15EiN`TXmT_EQJo`PbFev;Yf@vltwFlQJ`zfz zg7RGN)**u@6}_CMR;Ky;lG&JW(2boelM#G@MJtjZ>5&7KsR4TDN=}@AB0H0E=J6jND>#qUY5Ratxeu0!f#u4fd zZ?4E|BAEvVmW6z9R#Vnh8+@1Dh;an@8gLplsu-N>bRU;bF>6fRJ3V|R=uDVz_vSu< z?EU+s$=qg#>|Y592!dp@zi$*b+HM0OV#Xv)o%s%5)zV6xAcVl_8WSl4pGKzns*Lvwp-Zl@|Bcx#1Ffc-d&vHx=yMmNEy9M zRjHcF3&_iWqBXr|l~1tJsTXq)jxwb})2tMy^_X zp5vk7H6)97UsCeM{aQC(%^B&)7axE@mvh9*;H_fX0rAO9eq)r-Ap8VrF(3o5VK8D2 zTaXVWQcAPe!{R?J@i~UwaJRzxG-xM){&~o;OM+&JN%~KM4h)@Szinbcmngipwnn31 z4FM>}K%qubUs1J{7e6dx3;NnGJk`Kj?k&EEZ;F8CT=_UTWR{X~j=id__@ zlL#xb+2|hIy@}DKDqin>8^p7B%a#o6#z7ZnDd2QGSt}wR(u-wF40o(kBEiPz-HCYu z(k6X+a~q$VS%-w0@$B&^yqb{f|X zzGpa}u|4*1G<}3dcYMf89`k+yW){RGBy-Qj9)imq=9n#;j;T>KZ*2Q2vRmpsHYvx- z&6J20U;qcbIUY0(w-JR0P@&93b~kR}ntE{P$j!UF`>^$p$b0X5L4cf(O(waR`qs*c zxQDN&s|T~&$$}h+wZZKw0b6DSF+;?xp7rI+?YhZm*=#y?_DBR>2tHN8Y6mPV8=Rjt zA7Bg-Ec;690ZM+bo!#Cu(aL!dlA$ET)7niWdrnl`5Q(`fu~ZX9TDxP_0|Vt|QeaNHq`mV%3Ib9PgPTPfYvg;WfQ;YuBL2TWADFQxoNZZvH2T5MC(TYN z^1nIbUMM{mW0R@~N!`}%Vb21r@kvf|o zWVN3WaOq{$xyHDqk#H9kQ+2AI)r~A}?z4KHPGlhq#w|KYD-==hhCw!d9?= zV(=fHR%|X+>_a!au*r7#!O|X*pA#aAD*^o5zI*%nZ%OyAg#@9ZU+XW@V}TGN*r&l7#~G+sgXNCxW84^i2F#Qx zNvQq{I|Qkb=Cy_%IfD=7tClbrv>zIDL5)4|_khN10{p3n0goTH<=61Yl`A=kLbGy4 zAB6wVfBnlW^_cRt0z?ha?~ZmU(EfNM?L{tF<_cT9kdRM6y(3C$ zXyD$kMq*rJ!Y7;{fpfUB>|JD)mHa^Hq=S;#o!D=7wW;Ht(=AA-`oD%1tmwag75>d& znaC?Kh~eej{d*fke$qSp zOM}r32*>Vn5dkSp>O@O_txOC9<9TEnQAkjv^ZNS{*z&(1_yPuC1h%v>S@(ue32&e~ zDInfD#&{zq(WUNn%k0&1>s{rjFt}QF;T!T2FOn&4p2GS#^kPV|3oEHNih_2I3>Y1mTSx6s(d7=`f`GF7W(juV^eK-$*3i(ETpWmAtoTsf9G(IYVCD z>yE}&2eNo4@$Uu}D}+hlQq^N7$Gbvl|>G-&(tI zPjM zpB7mt8`;TzYNtcKA%8{$M>57T>U>*xe^= zbVhD-;`F(SK8HuatT|Gicqkf%w#J0SuCfJFs&nh*MHBv!gXKr_C4xve0TSqGVnXc% z5(<4XL&B=Ze5ec8?{s2dxXT5O+UG5wwV=G?9I;y5EKrl(JCV+l3~3&`fkNXtCR|UQ z&cfNMMD}XPj@iBEOh3tZX??twalf8AAYFcu{Fz#(%Cv%mwUFdzZHBX%`L!_?p4Xc3 zq;a25&=FP-VosXzJ2C;>hw8c%_v4S%x*j^aa%kAr0dvMh26zRk0Qj5Ve=xt^0mrfHcLmbS38_SP>{c5unm@5&26<6#t!A{@d zml8bG$(1yE7C1{?9TAip=^9L*rxQ%Y)=wsdmzOaj%+5rLMI#zaQ_JPsZZhRupcMC% z>lx|=e&wUCE{X$SAW*q>o}3-64TXW*1!P2RAUTzAGpw5ghs8~lOKi@9OP^o7?5`$z zRyw=8?J7-j2eyIR%?INzocov37YAs;9S2Gz`7Ndoqb|3Zif^fG2@Wh-09)Z(B;CD$ zOL0)>foX|I+>tSx$SHfd^&$JwZP`oy$Tr1W7O?t>Ob!TgsuQVMxNa`a-rEpR+WMfeYcI@y!tXfUdF`Q_sb_oo!@*`*w-stwo4C_o%4`f7tzgOVw2nt zt77oXm!r79+Ei8?a?7~5@B)4!D=P~nPczI>TPoql50Pg#$+=9Ifd;j|J`#nHL=m^Y zMQivKf9riJe+igY!*L~yWCQ*$W=pU(raYMu4y>(|qTw5+lu*jBpIF;}wx{tZ1 zs;MJAJw5a~aq#BCo7~n=MY~2R@SZMHxy$0aEnTBf#Ng@O=byiumGE4!0ey?!gzD21 zheT!eFub`IBLlW;rwRn~v`V#Xv>~;(VSY(J5iokcnM<`JzQ?HSuK%6In+hfQ>M0PQ z@F>8*2n4^#q6+$-zGg|yfyBc|&3cz?((|{o((=ilcRM{*ZBxOyn33F9W!>|j;&ITJ zC&WSgguOT-=St=>+5G^KMS_tCCJNv@h&KUoWj@?dz<~W$R{0h=GV?W$JbbQw#5~DN zqR0UW;q-jf8O6Z2j$9S@jd@Mx1rPbIwj=ozY{@O&ilm{de=KM_d9`njwM zLU1H52J*a+UCr^y$qw*eQSk@Ao_MZ2e=tC1((-}3{fQ6?Au57hsfK%B@??<+VT7xy zs`7~BVV2$hxCCbMB|ts2&CX^5{hT3^0WNr0*y7g4VJdlFh@RSZ_)McypfNBoIKIrp zpxuw*E56< zEA}T+ogx=CsACunHrkgwEGi6@JCe?FlTIvLC_qh5_|UQPg*a(IB;aA_u=s)*8b1|p z5MfZj1*ntcho|S)K=$LW$331$#c#V3=^|m^3PYTS$)B>dPY4LTETyGCh+i>y6`et0 zhY)0>e4HlxUuDj>KTZlLNF#a_y=hohV_I0nbl!J$ehZ$n{e6N4`!Pp$yxXnZTzC$d zGd4bl@&x#SX1=#&-Ju^cIh8wI#fZyz0;B zL=zB+zXf`m^f_DHCzS9M7pQ`#&GWyoC&oqg1a`v9p68-omi2d7 zN!#{A*4yTeH)VQcv0u+_>@TgY_6+H;`r#`$3%*!B!+161-YwTlT%Ou*gT_F_%F#;? z+#RU(Dxls)O6Mw%d=$c1PB9ak4qO|}e?qeO{Tk$vqM{)ng!Uo$LYG$piJ%D2Y|2qM zNbb?$z3Xp_^li=#6a!>cJIFSLUmW0|{qWTKp72iAebkyecx6DjLG;wx#R4y1dghjWLa8ny%+u}q5pw;}W(&NSWTr2I;16mbz)mW_ z3$*A;!j(Mj_Ii{~?8DKY-r^uF7~Mk3oXb|zk**(4#CnLz43z->Q<%4b1M0*Oa|OJi zkucb|7$ufvR&Efu!WT3LhBq3H>u4*feyaObakOkj=H>rv z{&j0e^jlLn^a=66O$Yt=gGvj`6-qQAl;pZ)UK_{ji`~md8qcGQ&rNX{6>#lEAL9!b zk%cM^i2%gztC*l>*p0C9t}Gpyp8*0%n$s7&6ejN__1ng1m%K3Z{c+q>ZmuLdJ^9na zA6t~ly~jaV?L4fu=L=Vw#?~)+3HQtu8r0SHn+ikUu7?I(5Gz^VY@bhkg2Ao4=vD4> z-EH4mOatvnDv{B8M~ z`re@#*FToX!3U<=+JT>(oN~yfLN;Ex2-@$KCiotq*G7;%fS6B&sSF&OTaw3t(3J}P z?Q^WN6rjY$!Lhs1eMO68s-{5u^rU+H?;c!ekOYFXonQ|HGo#=g-c65tNNf+NeYa12 zVWPY7yD|jf*N!io*U1tq^qrk30#hLlgtj1P=!Rb;fQ*#Q0mF&v^6#8$L;c^fMkMVL z2NnchZiqd^avad8ZG64^84c+Xfo_9DEuh%;4~(rwyls0C+bG;@)<0l68sY0HX5Fsd zXW@K#egcqP1my!81`$}=k#&1AkP%}A;}$$hwO4wnRI%CNAZ+mI(={Dp6^*8Afu<$j z>3?ev3U~=e#ZgNC^>o|PE;YMXta0*g^BUR(!@wAs&gNYQMQ_1oE~6rM14vsID!@*j z9AF>dh;)4Ip~ChyHugt&>>W{`W!&k;x)QVtHV|JRx+S>vTb}HJd^RVK;s^UYbDMt> zUvkayZsOU(ouiI*J_M`+ZBrkp&>zD4h!E-#CMX#yE8U+vLw}zCMuM)wZqYu0j@lRA zd}M?Oo_iN)zk-)G`#X)8f1*rq+!MzCf;N3mou02mm`{e`&a>!HR$i^ieH975Te*7ljOCM~*)<)DAC@9UAUGt9SE5ujO8dUB% zPjH%MI)U;He*br%a|wrqz&2=eok3-Qgu~V!YO9Pyg3n%u#`1_B+ z2}~GcK3e(*12J@77--rH#aR<GiEO&&xwaATyU< zRMhzavV4%;00OZ2kYN-i#E55NBc8LG|A~Q0&jA}&MNm0x7>*CZ)Z^elBQ)z}rj9Qb zU(rQ-_r6rv#)dsowDg@Bua)1SE92lxq*PPjJ!lhs$H&iW{Y3Y4!K1nT4U2DcDcpb3 z0jC1(pBc2wMhtABG*OJXtpdwQ7$7TTz94mzL6wnvm4$=%VB zQTP!4E8p!+LM4K+mCaUiJOiYwz>8!Cml&iNuPd8 zzSw>YprWpx9yyBVdjij`-^$;`ai!Rm-clzp&?o0J6C6#&sXFuvdBa5Y2Blv#Q zn>#U!m!JAu{pd(`{?F$qKl4>}%odTW>bR4a` z&B*u#YbBk~FhV~6gcY|d8WS1j++|%t^E!3uxmodeHAtKm^TG|R-*M}gZ_n2HrhL+t z8(#lT($70;y&P#DNI334u6$5Il9(N1yF?SgkaTw~1$?p$77w0!OA1w{Jau&5BER;P zFN(j<;qh4a^H;wj=?l}jZ_KQRO=$hNRoU#N39&gv11-#Wpi;oF8kpOGJAdP0F4# zq;jxkiN!}T-9EFW0FqY5Pr{pLQ>x~>s58K|gf9Gmn|crA)xfOBGO)qg+)9he+Q0mV z5gJ_BP+duy{FswnhI%>%%n;y^Y(p$6pj~!poJPFj@Lsz>Vz9hU>)2Q_hy-@QX8@&D zg_*A;l;rS9!Z8n`f!5a6^NxrEq4Q4{j)*DSZLTa0+*XZQcHK9 zg?JeNO6i`y`UaPmvqzelDqD$+!zkHgY{A59bXidkzRx_oVe!b5^J7_47DE;LpJG;a zR$cjGX;vLsI!xs|O-ELIO;fY9$?D{Kty^Q$v!{ML=ZQZXj(#wuTBwCy2_bu@+*2<}Rm0JW}t+EhiM-~(n zMZmt?2Tgin8);iz78HT2YwLX9yCpZs;h{VHwp~lXOlR<2OyGC;W&L$g!G!dOE^t}A)mo^sU1dPd+-*$I7Xl6HVAPb2pN3znJOVkq+ z^aHwv7=fm=^IoM@>x?TnM+{gwE5eZGXt=lgfSmOIv;hCV?}q3*n+jm_zFCt{2{8L4K{x|AarzLk z1Tq8t&z)#WLnUPY9l9_$<`G_bvYCGulG9XUJA~}H;Y;}dMqVhqw6(QS0_kh^9_#89 zF}to>o&JjJc?G^Xtj@(US(UZQ&G+L~k*|VrjqmfbN7FQphu1zVo3VLhgAxAv^&&h8 z3s6sIjJ=PZp8Q>NQsnWpVOTLijFPfZ;{KyXF-gKXGI@N*y08aM;>j}B6aMQ}Zx(7& z`(K8_e)?Jn$eaqLJg^=)tXzI5#q<(*ns+Bs)tk{+Mt&bFft_0D*$v0!5U_Z=fxBl` zo^RYMS;q&Jc>jZA7{fz5fnGhXuBwUy zJDg=Cv;1Iv1n|AFFy-Vnn}|}Fd^b@LVD?bQho&1v3XS_4ZXE>AvCz)hIPOmLZ8~dT zZW_K*i|of#!k-Et{+xxC)A1|6FSwCF9us+RIXSs#zk%5qM&peY__^0d{KGl7`MD_3 zqlYBkP2!sCe$&6X&znkR-15)g$K0dc#D<|r#&4M*R(%HV0Kq%U9lPJ#BaXwK6-lNlwRfirSS9HO z6u*0aa9#BL&$kM}lm<{JTkDoK*50BH^D$Tx*;bI#|6KZCf~UU1Ldx~UQ; zp3SaO>|zrdGsA*v!RkjMC;C@?2|`{hVedrKX7iM$hAgMF>4)wsMim5>1--2I1PKl% z2pQGFTxH)Hx@x``38KT=ho-KFZ~a&QeOF4FIC(!y$=Xqz7`3x-GQu6A;C}3DKjUJJ zEKy@o(>b0nspQN&z>rq46l3;5|C);b`jeQy-9=DFDr0bBY@?N4hsjhLn7F`?$OQih#HT4!@x>w7eWx-z;;65_7=}`^i8PM)1 z6*4CUT`uTEY+7fsPv z8Ed@WPH)FIU<@6-yUSUC1U7;u|1sQm$ZeFzcSIiR*I~{ttoOq8dQR5k2gA364>ql& z-)U)iW8luqpLoFE#0y>yFNjS=d5C=uLi=rG6CQsjo)nHTu>Vpnbw%kG$$uQsb^6F) zw4w6ycZi)Q8*|-MnPLbvRcRTsZgis#4tt3sk$Eus0KOi$1!<7VpbGPN!C9fc{O$zq)t64n%kmIa<&KaLpgxHV8fB1Qm#@Mcb+Qh~~FhfB0dlQppxYAEX!2 zfAC?@H3kf25&xwjk&l`BaDwKG*!o<0kfhGjsNLvMTuf0Bj*h;Lju)CroQ*wu)`HH0y3L)}8BPQ-lx-RY3 z&L+!j93+&pAX_r|B=0cLUd@d@;`o^j2R*L(ZOz4(qUUjIysi6;jx)XQ&+G)134;r> zc2+VaW}nI6izL^@?^Y2TbKQd^5DoxOf#>O8(~&9ixF7@dJHTC#avDTie~O5(8olpd zcQSpd#!-83LhYy{no7w~o0ZrY_(edH?v|6hBxFyF1nSu6$DBFY8qDN|+td!3T=I_^ z8C8@Wg`-1L0AN_CE)^(S%H%(6EbEOYm#x20^Qf@vB4wUPs>1ugPVo&*FUTG@L`RW{ z49pEsd1!j*oM&3Ode)+q7BQFpH8R+HN+&!E_aNBgIkvWkKh6 zg;La!L>K@~c-6wC83iv$(~#@Gvi|#=BNTJQE(iAZ)+Fz4M0WZ8wLU*($;QTR8@Kzg zv|;5M-`QgvMz2aw zk#5CFh4i=5+3itM@Qad1fBM_@CxRci1YNgP`NX)MABWneR9nzxN_hlVHKinM_U_x6 zAz%sdZ4}Tv$;?d-ME<;y6W*NFqBHxlXHGWzpUBhV;|44ghdy$~G;|*WYQ@|g;a;!L zA({npMf%=%DSa&(4d2z(8X6c}aBa;}gZE4g)NZwy4G+52oIiD2J}h-Q5+$@t=f=tV z++!E|ub))86#EuzJv83kR$sNT`{B8Y(oEW$zaCYJPw2`2U-!Nu{q%Vx?*AX_GW7ENX5HZpdc?3&8{-!J-b4{H@ z19bncU=gVF+%kneH2z9&=HnF^;*EcC=?_F$aDp@#Hi9mQl{Fj;N1jFpFR~vnGckqg zR34~Bo)QQ9ad?iS4LGlS6zmBCtq&hQ{P~D$ z;ryME8?&TsB(j$?KC!mUH4Xw#4EBG-+{BI`_p`X}T6gp2Av+^u@Xbm_1&zOdoT%)> zEp2|@jv;emo^_4HMl~cViYdsc4TQBh!b*ECMtyTsbt8_Xw%?20HL;o;I|Aif**D=J z{~Z)+W=$BP!5|z79t05=q7+*jwF(9=Fb9LUl}~Lo26hD4=@7+g)6qZ6a$~BiWqphd&>7xIho5qunoME`%b~82j^_Q-DHE)IqFUJ5zo1~Npo8%OIVjCT_IrecQ-v5Z5=SBotFw0p6{Nz}+7k((Zilu%hun8$^!ocsKJgWaF;?~wX>E+_Af-RuFS=U-@bB%PBS*xFhzLPSDtW^)bLd$snttlu4Wc-CgE^O9 z>A%rB{TrFAH|Mxi6G<5(@+W+QgM*O_&@asP09yhC&z17qE~fKYMNLgSsPk^X6=+(n z2I2L8r5Fz*T#J67;h1_7^KD@0>+aoGYzyNq6YZvWr!oB0Ro zGzMn=Vbw*LGQ957JeTx!8xl;gkP7+jt<6SU}X!4{Pi!m_=0^b}_CCWo8wpq3L2&GP1) zaXuf5pecGy64q~ebYC8ba>Y|P%+jpJf4SgfN(=ei_x1XBBNL6iB0bi9?-B!pn&qV+ zMqbZ<#)uY$nEj>O3$=^c?%uTm1u?V>8HT1_pUy4yQXqCF$8Q%N&=!0?#yXE9lqR;3c+}kR#SIaD z!`3_zY{mOIF=ImcpNNy)ZHOQtn5I5Hb+ge{#QEj&PraFysb~0=L}WRKYc`Dpzn@|W zu63EVN<+LDc!KEe-J`-l)v&=je5IIrt6*T)jX8CdXCu+QzI5gW1*n7Qf_m1ai?&j6 zJtwRZzpCEZU7F>$Ew1W!(-k+A^ufe2IC~-J;z9e%zH9lz}klaW|DRXWf2P6yg|ynTKqZ&CJE;_Sw^zO4NYdwe$BeS#2%H^Ic=+$IYyELYp6e z7M7)bvpj$|?z^_&NkMdpk6@-=2jv&}ZHMN(Pb-0R>^3$wbllu;z_qO{`6LrdQCx^B z^W9-_)M*Ky=9ka^*%@I2)+0Hdyln<~2<`AAVtxl+kpu|=*$o&VxVrMuoh_Ov|1-r3 zmHmPIyk>J6XWxFn*kdA3TPaT$37qQ_{0-g6m5BV#(RZfcBf`smn@8Cr?m1IU_zXA# z!LX4ag-9Ah6L%8WnHEf$NZ%^rrp&%0v)(Eb@#ygTIjF`z>$e$)BQcvRnLaew*oj%~ zW=!Q-Lie5__7f0^EP;m^A*fB$6qGL3G~~TD-7(~IU8No#d8((E9Njh%$jV+hZp8Cw z{X{eX9nL|b`LsZ~&h;NTsS63CnGpEB4UIJv==jK-2=3_$qf$r;u(d@9CXj#y<${o;d|(qD#omc{+9QeaM) z_lpx>EPE;cl{eZ#k8}_d_mfGL%dc_GxNF6qX>dn=F9v?fpig$EFeNQ~!`z847gF^4 z$x}|5ZY*|tOqv^^_x{y~!0DT;-lOwsojC{pi&JdrKW0~lU3n>?oM#pv9hzrNiWY#F zuB5L|>^bAY;(lNtP(Lwp4YW4y-TFvSE6ltw1KY+U@AvcT@{=U?ONtWUhwHcJk{o<6 zIvTJm%dTH%Ar8i&^<$Mg<(e-jsU4o^w(%I9E61gmrBTrhpu|O1 z!VVvlYRtxN5O^m_$$Yk1Pg7MLA(RxSix>Nh`KfGz*uwia3XOUYVdl4&c zR7)G;{Zo;imCdQs>Uet&xi?Lk9IhjYXYj%a9tlI>qFiEp=cf<4c0Jh> z>>qu&ac7=|n3g|)`WbIAHY z#2co52L_-<4H&BZ@=~py9C-*JVjCJ9eEmk~W#{+H!US)e;y32Cb$~JyGA~|;Ajcq( z(iEadFV>wb)`yD_v)I_|i;xLwpQ7mo+Qe_%T-BI$n_uR2h-0T5Gkh++%Gc@M8pI0E z`c^BUa;(=BqMzG1*gXLcG&BXmU-k#pGMvlIT43lI9vz)mBM|n=Z4Kjqa?qU0&5y}| zA`D-iz(gHwInGUllh2$m<#_{HgAe_A?kPTbyt3T*L*Q#fY8K=gmYYHXR~WKZi0^6* zqxDl>IF$Px$+7)ymrtL7zCJaY{LP0USJs=15l=JxQ^6~oJzzu5XN6^MKEqyHQNc4> zYSII1U8R!(DqGQ%nAv_AxZLawMg(qa+SWY{$NDkeAI#UOb^rNtqV8FjhrI#`&}0Vs z`=u97-ZH*Le|~jX_bpqS6`)-AbRsO*L|tj-B$RYx-Ci!Qquu7*73u5{4!#U2YwIXq zIKU@i_r1vBNwXu6XW9vQf}g=dn5g)s@lB7i&+F{qXxUNOP+QCiEer{97OK-e+4Ok5 zM)BZ=b!aXZJ85P{1ePjO(yqm8uia*a3AIP$7gM$AWn0Qz!tO;YrRwJfR{zSI@r$3X z>k&0|P7C2ac&lu1|EB1@Jp{x7C-76y%KGlKkwLx~F??>${F~8wm#u=XfeDR4?3W3Oz7Zx)Vz}%}9l2Vom2oe4 z(A`g6>#DlW!;yg#U*CU5Ss2vl&`mb6p$i&%5Bu5Q7%Hb=>a%U?3*{&?~ zy>Ll2vh7ySTmExPS@XJ1@)1Ha4UV@UKbmLo|FUIJ^U>pWb}DmR}mm}ng0vSWuQ#O z!NOTpv2hNN4Vl~|f3HcUq&M4c;k2wjKq@a2B&+W=T>Dk>t8eAbjXt|U`1Vs^HSSdZ zx$5)@Z1O?rjHd%Ui+ei*q5XD6=!~+>*YHU*Uh3v`3>(QQ*y6amyCZ{4SpLe&iY2kZ zY7`Ge%D`tbW%-W&gI%3)c5e(kW@YZQec@CNR$Fx^LtIa5v}^B7_#Q5mpC#_zbHKQn z&-arncV*A^#u~z^LbOwmUB1M!cdNDNY@qS zSuHOwl0glN3g6e^Zy}g}55f8i;gLShDpCH%Qz{@M*bj^m{2&YR>_{6slchzHt-UX0 zLm2oQnbKapY<9QvjydGS*BA4d$1Q)s`UqT*mvH)2x-O|Eqi zcQZk`thPx#INXfF_d@O`sNpKe1U+)qF*NKr7&FsycRx_j@Z}`E0g^x(WQhIn;X}Zu zgNty?~Ml-bjrpbDwQ2zXnZnK_jov+NiLDsBcqd97@;qe&cwoUJ*{`tq5C8h zNF%ovFKXo)#jn0jnCstDdI6hA1O;YW#pfUe} zg*j+B;grbOnqx9<-nyCG(>C801&|nKAuDnyu6+E}VuK>ye-u-7abS;QH2+xo6&ar?mgBc=ft z?puV$byP~ZN3un_*?+dUzx**^9)E@8w?$J4=iuzK%)i1s#!W!~$QTxqf2X5p=3D|n z8wAt65MOMR^1S)+eyIh>+1^i{Q7oUTHeZX8bJ%XNuG7s7h#O3xu208nX8!eE%2ved zqZ#;7=bS~bUazftEi)heQKaly9Nce~^%_`%R~+%vAc{@kw;)IXq|-^|+v9!eeb)E) zz#BYCpoR=x5d@PlV7U~pOB^N8tWf(h5I{hR|U#nz-D%G?$QYV2=)Z*UF)7>(`}m5(gBh z$@orcDk?RA?0PquenRUSk1$$Ld$Fh;EPIMi%y5)llpRYErsu z^RcW`s@jsOsMR(Yqc&@_uBeQ`l7L)NAT`#DeJ|JgyINjr-A2psGfVt>W*-3!&A%?+ zV^2AJ49W9tIb;ZjU@?Fp$yJd4<&N1~k+moCp+|1*!`hlVDh-iYo2Gk@czh1+q4Z?y z?#i9p<_+eeoitBdCMvLzOo?e83!Dw#iCBp1#}Ev6Gh=8C_lV7Xd) z6Aob6=aXEK4A2k47-_b}{rsx=e=XrEEO8)ZYnh>WTF!;NMKWB$Y=y} zMVN{?S-)mwUCpBkhI7#%WohkjnrelpMj^2n+JR0zW5bj(F|mNCRdbfZ?&{W7 zAFKg8ZwgO+hZkPda`QL^{atBvP0js3D?>Y{VkSa3J#SFR>cq8s_3a(cu8X^ayuBjyk31gj1vCDg=bx-QViy~tjY5S>guR(%q7fh2~ z8a73yJ-BZzm^H5_Y?6U@A6t6%?G9G3vcX4jm#sXS;k;cTbqcvah6H9q&I^G%SlTbO zt&&FsVo1mlrdr77hI`yHYPw++|VY*2EFNnpE>`Xws0rvc@URz5`3S@;r zw0f^Xe1Ebt_SGZgMTX(uf>U^o*}heI_YEEGK^9jAZ1ZH7yGLdZHWdMA(GHpf3PHPJ zg-{ZYS5UDb$hy~!IkScU@$9V=M9WdrsCG?0 zgZ0p5Go;ePN8%=RdBbJIz_1dyoPZFMRhTekA3S7WH-L+*Pl(=kMn?A0pe`G-*6}!oo5>-y@{)4p~AN=aa*ln3t@%&d)QDV|szY9&n*)f+R6?eah zD31Gk-R;+Q%+EGveytY3wNfqR*Za;#DXyj>;QCUz(}&wXCl!+r*~f2tA+APCo)A)x za|gA!MS3McV0l^Ur-A9~d11oVw_Hj#eBtNW!(h6J0-4)%dr+kG+$?Cx3E;3Z+;-?(9W0nwxWVqBa!k6ehwsc zXV7#~)9*e-r?gjxt zT0*+xP%7QsEiEG5-Q6i&0@5H#DBUUD-EV*Qy?1BM%vEO;4(HqZA8Y*K%Ks|5I9M*Ythf$kpq=vi7>S;VeSFp!gz zgSZjYr&sKFK_}V5_ zK9pJFS%t>OW@6H}fVyb&MKs6oNA|9?j86hox@c(pgXz{8fXN#8JA?SO2-{03WPjBZ zt@s5GW*~pGh(|`2RNOG0ah3f&Bffi+``$f>halsb^Z>%YHQKb}zrey=mN)Z<{k}z^ zz6@JUZTcxFk+oeW)H5%@JP4w6gP3Ol11}r%Gz$No!96zAlS8n$@?ThF3d-FQwP05_ zsQyWt+qmFL4ECuIPZChL!Ob)XR)8RF5?qP^PEoE$dIZsI+jOI5=Di2W>PFuB*NxF2 zVie$0mvG}n!&+a+IIbn8gF0h_J0&24-6(MC!G`QFHg-avw&DF-^7)S$6`aW?R$u@9 zGmXzB@{Q2;pYYI~A-ZBVc8;bB2e%!a8xDLZCdmNpkWG(mwBmD(QrGxVskayfqt|u? z^Q>8N!Aegw6WAtLuEondVYb5kVBh~9g> z8>3nfw&Uef{Z)J;CWBX=`oG~2ubrG7GDmH6eROF58}xDPB` zZMfygnJ>NHJ`BsTV=HaEdv~AtWgbj}feszA#C!uJCAbFLg`bc^or#Mk@_XcR@I#&8 zAox5>m|ZHTy7__qfDv~ZZ0B73S6b9#HYF-LQtV%uiDA-l^0%U3l1#r``wYl#Gj}V; zcVH+1%XM`SmI1oxL4^oyFOSY`@KG?xUg2a#Bs2%mxqIH-AP%jiw50wO7k^RormkV& zCAE#Ij2wi=GDG*8x+QO+Mn@SG z*%9b{)8>21rl}wn3+N=F*;?~PqL#U>Enr~S&zK|~gBJZYz`8)qild|BH!wp3XIpq)Iu>@+w*=W zlni$bchIi6wuGef21Uc-Faum;=hbwjj}y-Ux06YZWuAMN7soW@e;V{s7n7>- z^c`8nxE2gNMyS?Vr%gK8w+|^pA&0UsCZyqiv)f~ND4++I3~C2xFA$~*A%{i;ZeRT_ z`B+!jpp{EYLvsXvx*h}PMp9860AmBrS%YctowhKy-QEgzxsn@ylCJ-1f!af&j=_3 z!Z-C(+(1;-(Q(uzVbbFK75p8wkP2G6CLnM;j1%o4wzh{~=Vc`4__ZPcVe<$RDQ z^CCPe_3HW^X|AN$K$8rdn)f5iMISN-3_h7D^=N;tO|R50>od5MI&JGzl5|CNJkYL} z@;P>@-ovugC5Ja_>|BAe7wp#|*^~CCjRZ(lp7e_NLC${V10_9uk=%=gN=zc6o$J=7 zrlz^@oCb*jVGdxPmX_Y~f;}_V>iaJ6$)Un*Br>e^QAV2z(sV|Ftmtqko&uQLeQFMK zgL2s(L{V+E$6L!7TsBu?)1l{*6qNX@IcH0iQPG)xZSn#EAN|7Ad#q^|#yrgUE2bwF4O6g>AGc#}=d8JRc6J2diEZ4$ z0YeBT=Fk=t+;ctFF$tXDtp-L8@SI8-8}|ns11l92N295kD)k#Gx#<*A&(hu}f$jj@ z1#npeJDTe!2gS*iRXT%NGR_$*Wk%%^Ba&7d(RB~#qo&?di5kmUJ| zUqOw?iG3CzI|n!lmSfZJHpb|`SFQka{4dZ&VIcu{D4TzeJtAW2e0}`er}iu2)aKQE z6>3vi$9rbgTw{NjZm~jwd(hh$-SDA6W=P?A;&^IqX?w!Y27r{A_qVkIXQN^|KCHP6 zjsUw0#YGV5aBU@Il#Rm^>C{lo*u%rfY`0{{&6t~?^?z&mZJZig-SQi>$iJ9-TLB}# zu8y-V7rtyxTz7%}j?3W6q7B7Ru`%OUsbCW=zNSc&I>#d`bE1vVw2kfv(bvz?Swdkw~2~^kdPtV6DnYQ%&)151hlR{DczARtwnGUdEu0-De(*+1I?57F^Zr~J_qFY5&J?1% z&0|L=xL=Y1&jBjQKV@|&j0b#z?y_Pv!-}dxeiJqYK6+Sjy|{wzJFDtDYZ+NtDlRU( zHeIE|#Wum8($V-~P>=>NcY#@AWk7ccNejg=>4pkYV5AsILFV#OkQg#co*Xh6Ha?x2!~B`8SLd z_QA0E^LLo2X~GCbHx@tzF0Y}HNS`krOEWTEvJ~8lDCMs7TmmLD^10T2TC;>nMgmh} z_3%52jri^9Y_e10jgi#5*dtOw)Ft*Wu&e9U;?e>OJ@kaH8x*MG3dwR?-$GC~@rwTK zsK~n7tb;0gJyFZn0IUWxjdVdFc6D>3qU9btAY^p(%%;N)r5EE}!Ff)@4QKtt$ACaL zZN&QI4GG1srE72Um)E&z8pEcKPlE|o_XW$IViYZXZyi{yNu4Y;r1FfSZtAB9Rou_N znI8dylF3S)As|B+TrAitp}VTl_EtJvaq(#K~0I5&!$I>y=7}(y^KC@CkOU zH*bvPsa8}2qpvSVuCKdsdLkky^X*!RxHmno$=HD+NmEP90;nx0Ch;Sb`X#pOMn?2` z_)y8XGe^fryD6WIp`9hW;UMX?z3}_Xc)S)# z@C^#7u`ov=eOdx?!((vKxXBcw`Tu}$|DV z0Fh45_nr&HVSyVlnoe%o=_YGA_5+x{1G&6L(%ip|4V`%9?G8e)Xy2NQYqyz4 zehrL>tc|xy%h;WsXuj@%U=487y#OdS49dR&7munfrUcncuRWP4VOukZ;{(K6WQV*J zT`2JIVREb%RUBE=qEk39%t1>5@v^)ztH*}>dFM=XPs;h&yJb}dTO!IWGa#%@@t@oO2ONPL z1xdOmG+7NR5a1OgHG(g@(`sUWO20Ad#TP8Z{8R5K^VY0rE0>x-j66JzVp?E40qDTv z6B7>KS3GHG>SV=|&?~vGEV@hH;2Alk$ym)tNRF@deeJdpV=)hTe@?ILkQweWp|Z~V zWx}R#OhsfQ8y4&@t-XwSvg?!kjs02cTo<5dRJ zYRn|9H3&}AGz+`|YasScvC)$IYCd^2?##k(|LEsqiJy6};uOX(-4B2<02U@Hz9%Nl zPlSC*H7TgZ>)1EtdJPy`?75XC4NWH892 zYAXWyrI7kH-7xbGzC=;M1sUhf!bB^?G_YQTf5)y@2|E4$zE)N_56k7l0v(va3ofm2 zgNLC1G)+B(=sCAd7h}EB$*%*Aa@*SerN%c5!@@#OOI5eX|2DTt%Gjj#3*VHMRjz_; z;79ej_@6&zqpH+n_AwC7N$)4%G_{|NzhwrwY4{r*pTMoR6xa~bbpL%}=&OBe250Ke z*Kn?k>$JL&>AfyV`veGdaB;xCD>oP`B7 zroV|GeKHuw@z>XwGwZm1l;^xlmp@9D$f#zW6}nyk7EQ?3Tk$F}@3 z{mJ8v6f54dFty54*;Xn&RfOWR76iLLewq5B(D2nyI&1OUPdnX4+fMr&jzXSs;5ZBf zq$m$MTkx1bGqic%$NTifM=UhzDk@GNf?Uy%VrA?}C&Uf2=dmu92!gBh*m!TzD_Bv} z>QhQja5%XJM*d6&IzH)|L-R;$4*54L%GoXw@Zvz*gee%^uzz@CukjG38ZRlH#eUYj zrv&1>)E|@}3j*+fBGedyX^dUZwlg-n4W$S*8wz6jKMkTc>)19+J_x8;+)r(iNtCS^ z*$OPDT;(N@il6w~r)ZU2ok-mUUUZEX-G9=#o`9d{Mrm1e=wa<3g#mRn=xW#6^P0lx z#OsM3bGk<*#g}V7nDb>wczE!G1nO>Jz6PN)-wb<0S-s0Zc)hfuqUrxZ$y&;Bt1iIU zwlwgKnLUqLmf%A?L{j)BZakF1fxy*>NL{&2owj_$iE;rF)O5&h!e;Bw6k$dy0HG0lWX~ z>?|ujCEJQHLWE>D_!l7#1faHUWIf)|1Ap9z#G&150s;Uv0~2^CQ5>QaX3VZOFW4S5 ztwk=??mp@r0j%T6QTGcs%f?M-{`bh=ZrYT^B?O7qJ z2R4xlvKwh>X^_hj6iES=hTFSue;UE-JEaZU3Cet>jjFpLx0kb>k9{hfWlkj;r(EXs zT5GqYSSVy-GJK2?$6P3M7)`l#PPVKJt3qQ4Y?+6^LhZ?bZU(XrDtA!`Xg8qbEl7X} z@dUw1kPMbCz%+=tgqZs!cC_@qdNz%*STP6CtHB>)zkC_ksh|Dr8|K$+8r`uhOm=J} zbj^IpP@NfQ$_ScgfSjv-ZW&rRS`;N9V!_@xM><{pyI4&pPLI1xp31e52pSs$Jb)PW z*0<&jdx5fAJhT$6*s0ZM6q@_Is{HTlVJ~aTMgN2dh5ymrhWS0Y3WXPESmQNVP|7Qa zjV;7jMF^sz7^OGH_}xH6^veX2*<1M?1Cjre=whN3AjKD9-m)OBraw=XFxK}(i_^t< zR~3AWc+(T>dSG=@AWs!QhJh*Rpu!)Zdt?$_no%C6ah4l29`)D{!gFL`8@rFH>KUG< z9*(9Qe7pga)G#!3>|ZTRfn0kn!L5r6=R}n)Ey8X(PNEXpNZ;vV{eq1#X=DhHk?A%` zJo(+;-#-+mkfoxvxE&s}9b{a7@=)p#=XVQu}mxRzcf=}u*R=l9*UEetxeB41>1R`rqxe*M~ueLcU@wxjB0 zOz>t5o&O}Gh`~lk!Qyn=&jv{xF!U%q(8q+Lyhow)CuLc zLsDqx$M7c%%MaX7>BY?D3K{np;?uc(MxAS#gZC^vqBZc4X=>%DA!buxtbi>dzn{Jp zhMS^UCOeBPXV7Hqg1zbB8O%Y0m5ErOn3P&LB8*8c$qX5BJ#CAFNS zy#7V)SR#3y>6xF6U$2&zbm{0tReXa}RpDTNKTON%go_ndsQmqe6zB$MfMIw~c$ZehH+$#pEP1e5r@TQ0J2sA=nXo+A2)LK!vrD zJF3c9eEC|QQJR!ZJH2J0x|o0@RT`gekF9{0;s3P&R0O|P%sA$&l9BI#q@iU*c({g*05b1cj$cFKo zqA5xrCir25Du~2$PN$XKKPEcPXj`I3f*66UtBDzqnfv5j0$1l^3_INuc|bB%AiB~io}WH*1cf0;p{PZlk$rO4jU^%Swd z?a=M8zTSY1QT&e;>Mpt1!nUJ-994DVBo4m-l9>F+>esDpYK9NZ8GpL*a1R*ie9f?s zTF2S@!O-dc@Eo*>fcWCTEl`JJ74fWUD2SFa_^d>xPOYAjFx*_sL$91eyw|9T)d)NR zK3N;jAptB@r~vi{MJQEhZuZ}85HSSSDF4VUXI$A?)zvQpfr1wrvvo)pAmFoVLvcZO zduGCGz=?Kj=6tqdCnYbB;d!wK;zgf9F%G~`2MCPd7i-Xj0pLPF3#$HJrx(l|F#Kvu zNvbNIRVn;#dEFm?8JF-A#7B*t-2*UWAw^1y(40wBS|GLMx#W?_ewdU0yQ^>+POn;W z8rtoAyG3#Oh%8fp3!I-&{;L>oV&`&rAk_MybJMB=@NGw_7%}t`=t26jf1xC_DA07 zg%JY-U@t>nzr2_;jL0mJaFcA`qd8;dP3vnO2o9@vw~7zs?0WSdgEPb}>vn|A-MC`( zyy4QyRAsca=9>NO=mLx_vX`QGKcG@;$gk#K!U5W=0B|%y1+VbV4HO#%Qiqx=;di@kEdV{8_?hsM2x(IRySK~L~fVfOM3bBd;)e8*fe*vx*m`DtEU5!wBDO~I42e|Bv03oHE6XLZh^(xsExBk82@mfpI)5f^@0Tg;lwz@X-V zKIl@y*7^Ac2H(-xdE@Y5!*pk_fP~>O;A$B@x&Gy^S>^P_hKob>DA;Qw%wO&ff49mg zi!A9k6wK`1HBsYo8J#mkL^|`)DBoDWG*#H7an4>{(;gCGBE9w#?TF4X4v3Oq-npM* z>^Md>so+bm+c)q!n$U^=E-}0Z=a^S~@p|J~5h_W*ZY++@XuLrj2t zxckS`0omIYe5Bwuhf62}83FUU@*(ocrbX$zgt#TnD5_?8yX1~w!o&Sz-rd2?Xpk>w zW!r_O&t>ZpOg%wLqT2%e80;(Wh<_4;&?!v3S@JMGvX2+aOPbOjKN7yzc0dB2K*%0? z1H1h%!C?DenuW#lx_&;82pvnq4$|O(PQ`!EVa>8UZ==hCNYOW_NZq>;-Tz(RmPAis z#3_!+#8;_-w>Ny*nAnLu(dAmB#BW0=lk!q(rKUz_KcK(cDlV^Fw?#qxJQ`#4E$Jn= zf60V9Jpsb-WKzox*7yk}bV_a@+MtI`)4y=-vXY@L^Q~O3S(b968U9VNxu{g6BsreK zstb=wog#Rk3N{Yd)`6uJ(kpe`ZLnPfP}&f_o|njQ`z7J)2T2m3 z6idiFxm;jIe24jDk)5aw&FO=HLd1rex_V4<^44Wi6ai1gspgIjKgG|lQioxl6u z^wQW4@7d@M6E+_%e;NwTIHq_3_xwe?!{nJ8>2+W^L zLXK|TrpS9I-%>JKC`gMCi@Og=ydFOAcMe^ncjY z#(>~PAo{oKxaS7FHYAe($Nqd(vSy1jBLr&%XOd2(QBT6hx(!^_dK=Obw>$I*z9Szs zWAX$oA+ZaOV3PRk*w%Y00{0=r$opftv$3}Kg%ecN~gjPZZu#9?_2sldM^AGf|ltx zAhG=ZjcE3q)^XSwBgA1q5r6XUX7NH(1b{E1O28l@^h42$OZsPkjshY*!|>S-9MV9y zlLjW81R~Tq?%ry4bHRL|vY*+VMODP0{xpdx>zZD$9(TFbxb9j8T>Cv098D@1Fy=u)xs|1Sl;Oob$&WxV%$A z9pnJ%4}SQ*D^nd0TyOyIX98|rLE9xP=h^>yR{)lWv>yFyDX{sy(Z(Z;;qAg&4X*ueBXA1 zH#kT~E$e_EA22@iR9<2c^E2pY6PYR+%g?%OaY{mSd0-$zeM5gUsM9#rdE7Np-JFU# z)fa1$^1D1(E1A&eO-koqcDa|D36js78&{P1<@9JdG2;3t(Xl~l%#ZCoKBOC!JHU_< z$CdD^xzT^cEGVs`pqR98JTuh%CTqpDF$N6xB_$~g=5o^IG5?Nb)5?dN7U#E*k7ykB z?d%XCt{&CJ>NJxo-|Jmwc_xYBKggElz0A<3_@4B-ih@0!f*m(#YKI;bUS8A1aFxvo zfryy+*rSaAQ8nsPB&^(nqW?n+9kpKgb1qHhQv58k1d1~T9r_xW;S-O}9x!MyZx0A) zA^?VZz~wvw?#0;5%t!^>0-4IwxYq7G(^28_Tew_PGcMMwodl5kGVAv_9*lXxMBNCq z>;pC7?;YYcl@n?_#-xksVm0g#elPMrK2A6}P*Ow}6HA+pIy>in4xQA#!1E5y^^+VQ z+bdhk_I?_)r^UB3-Kjh0G29YKk(cgUgmiCaUw?Vk{i@DC@}=3cT#6W=6pN5j--yI$rSh9c;xeuh6P#c( zX81x~bTz1>%tDMTrI@2PpezuYCTdpX@lm93;8P&>6rZ?=q5GM9prk@~e*N+>Ux^h< zego~2(t+jZAEmvh;2vcQ5>1hQAeWLB6BCPCa_X=BVH{3jb+jLVOlz1_5#Qp-=xnOG zS@JISj7GA|C&Qc8*88fY3rGG?twCn z0+hJo^k}@6%tv+H*LV_N=oV$IZ`?5v=M|Z`dixo!d=TLH#a?&Q&lA2oc(N6dgOO!V zpPSD_UZ1!ak{5Xq_T?LJ*C>KoH*_kDk?*Sy&(f^S!4uRcfa4eIylVre=G!)5SER2v z@(w=-S*Q(&3w17dfOnv>>vIXzJcPLnf3)BG?d|df)HJta&TNWY zxHEWM+QnY*nJ|F8FHWR5tA98A`XE`XCFP@NQqS(L4T8GjGh;IihXH z1!bx}=#zbhFks`WuB|g5cM#$buN~X34`6i!-Gj41983`b*vlCB6Y3_D?5&5g24)&V zXAQX!e`~5EI{Q|@?YSfj=)UNSmMfK-U3vz(1_tzkf&z1S5%XUe6CX1FNg4xjtY`-- z;%4utlw{7+upbNKetjeXBmdTK(?F~Dm)wv|Sv@h9QCY#FLpfme7?Z=8p+$F3g^FGY z`G;9;++A5KfMYEQ-xNPS2mzum^d(MCO7`T-h{9J*30fCBhIR_F;eelw`Tm@nvZc~Si>JLPNLsYCk}O*6+mp70FVGR zASc_;VgC{Nm0o*#;y=?aGx^-55xd^x^k51ZX;YjW9LczwIlbKK00^$*dt^%f-~ete z$DGs4-}6GgdZoy?h@SyG=Bk^ZwHs^>r@=iFb+V;_ixkz5bF|cZbnOLilQau^$h&!R{_)~u zi0yKkjD+MDSo3U8Re8ot3*&er+L1qOjLy&h0$QA_`$OLmJKtN#le}?R_Z?TGEMaxk zFkI!eWXWcyeXSPhYucX3Z3kkRacukwj}cCHCce?{nfJeUrJqBaqcSa@jwz^CkNNnt?-(~rFO`j0vKuO*pVp)B zs-3YvS7HX)f6LH~&0fu3$47j(c`7#gbcd#QZTF1TxgN(J-;+NuFc37yti4#->CFU- zu2Citg_j&075NRfN4eR{;tN@dqi(HjGRlW-xdODM_co!q_Mkli6MuAPO&kk{xKU}3pW2&)4f{nub$Zx$d8SR6 z4OBSAoQ()evVKx5nEUrAqeJN&6e37VG#8p9~Ti{zydMuoTWhze7Gx|JD24Ll}p zL`A9QK4B^cbLZ>-an8769vJ5h1#+11qf9&m!WAR%zp`%dW_wGqHo`w1CePR3DuEwY z3VUtH(;X$zBMQ39){tYguzT@p2{k#cwO+MH!_UYpF+J2n94OC8wj4T0JKYp2Xc5zL z3Ey0q$&)-d1s1UA+yB&-eD*zL=nc7e5e!9EEa)QB8LDXPpmZweP=LW;b#^ z1vl@uvQs)DGFIc*H*5R6&B$Cny}r60@r|6?rM21PGM4{N=H&h)Rx*f^*S`nr4WY+I zTX1Y3*gb{;UItRxge=G_2kVN?eODaZOljj)`&ptP-iL{&B#T!V_|JVq=MNfp9cCB> zJBAJweAziQsYPB+*vJXt0xfLl?@G*4#F!}GBqlN}UHkRYZ z*2*^R?{7isBWk&3eJIFJT($i6M?*WTIN>f#E+?)=`eq|z%c%8*DSB3}N2#kCG292G z4dvSn9tsrQr*>rtHI0vtJ8KT2hp`Q==5t3jvBs9wcC>KMBO=(m{$H-Z|UU?yzm4Ulv(-R>{LDBEMI)qAsv+{+0Xp$x zP@X3oP|!gp=w5o&HdnLFNTko}L6zOfBwvc^Q-1!=vR_Fk8oVFEiND+Q2QgSZhR%j%MNqkvvC<5;#Ex z_Hjrp4XN&4eXI#+YT~s8SRgWdmWPz$@^WLK;xT{K+4CxWt|C{P*p$+=nrL{O_|u=D zM9rK)T4a2%ZOcv$-JhFF<_}6BvjL zmHJQ(2E+)lG+2a$gTP0B1*|Nh;K^%LM*`jn!1s^UX?3l3KQ;uBKESdCsTIG2VO_ew zr$2}HkE)VV3>(0V3eE2TaYHPY26Ds!LGe4Vu4*LfdBoYOHQ(y)z`&JQfn*Y(m)^!M z&7azZc8S;Eo*}2`KO|@hYrD#U_o@02mvfnvI7l#k5dRjh4gncMANW3e4)g4tctZZ- zQwkJ2AxT%MlNZ;l=9O;0%B5f*5NOaUD3KiHm=;K+W|@mVcIax2;$=*6c0ly#^dmc` zoSUA$%|BIvU>_KS905yU+(N>ads921mX%w0qxQoUFx^0p3*rM?G?AP!0^5q0loGV% zBO9HbFfj}LOs!?K8h(B?FL*iM4c@cQAh%}3_u&ob{~&&iYezx5{-`& zoxgfl$ibTitunztm&i+9Tvn(1Te$zMR9ar;d%UWN5>^I+*RU$Jl|G4Lf{^J5a+c-y zD-Y9{lp>hHk&zcma+2)9l2S-P%u{h>+=0s8uh2Q3MLMFVMy?!b#vnce#d%Sd&re87 z1f29U4K~E&K39|;I+#W%4;Wuq0~qA^>7P!*_E~dgE3lF8>yu(~NlEN6LQ*k?o1;`# zSZMlPquD#(bM$a#iuAp*c4U^S&|6dej`1u_G+8%ee2a#fNF+l|axRW-1Ztu}I3d9~yT~_>P!tMbBXHKNsY3 z@Xir;sVp2OR5n;o9$R}cyQ2q&&?b>?wgR{E2(h^$RJrv2Qt{~H{>l&i+yRzAhy|BR zix9m9IE#xd2k6*6I6Di?WCsjl?F1r(2&m+5V*(GK+y7r8A^<`8 z-tX$Ml@?>YChSJ5&8He7E8VRrsl3Vbk%=oQ=k0PD5$v~VTzIMf6-ECrkFh!U7nzPTM8v48cbhlHSs zWyd8n)d8p>o`x=Me~xjt2yPk-L@X(Fq|lM6wJyJr?H+Z#pyCNi&v|V@U!NbjcObbK znpm38_{NV~?C{E1zd!S^(GkN!xUscM3g5W^&Df~d5d+X1)4Y9~21fjOQ6ZFuC%CDR zWW6xmNOszo{0%oM?e$%z9T)N8tPo>vAUL6e#wl(~B_h^Jg6FuqlT}3q{p^@XtG1co z&;8*lXHC^tgzOm({z>9~l*A{K8Hir_5EvzniD(=Yk@%*FVJ@XRTZ=xXK_3_Y;qG00Fm_Y`tH5JQ9k zrJT?TL{eI6_l6H+dbB1HEESsb4}2~@>gv;|YehW#2i-V{*hZY7vwOU^94P!AqewO% zxsrdIg6+Pvwsv|)u6#5NZdO#yLUY~AsW=}6I)}ACs6)Xy_Ey|3^y;4@*%>ph-d64} zK1k$=xITVE3fZ%~WS=6GPOlD_?+|+NM>5&;X`Vk)sbP=GR|JdTZy>#~x zIO{>eL)GUHFf+O7^a1L))vAA2p2tgLQ^l~nmNUru2gw-0>)P%7K1!Utb1ul25V{^g z^ahw+7s=6T;~=1NdhQlG;++5-3rt!02ec%U#S7~db#~@-sds5Iq35smG%-bC+;G%l zC-i(S?buxLARI-)7n^mzXBP1FE0jbK8>=STXmm22N3Zvmm5$}9RXcUZ4V-Qkan@ev ztB<3>g3O$+QW@&@$x6`C6WR?ez45|F<$EG!-F3B@u8pAmGNk5}koYgH23i$POiT>a z$b*YA>?O)b3ZvMsZrzj1@i|?+H@?tJ`-w z7&!iEXkLS_37Co$>l*`j6=WN4t&Y@JlxI;VrE=rOjY_Qrl@hpKD95?8N%nK`?efVc z^5W!SHt{dy{CZ`_tKc|Jz^U@yUs=N|ezIi8{0(Kgs#<|!&A9hgkh(=*VI3G>k!3I6 zPy*JKBY+=*KJ8=TOuFTQTv%&l9G9Nkj0P?ZSfgOvqYl6A*aWahQ?N;dEVpnN(&?W? zib{3FemTgKc<}J`YL(cuzl+CR`Z|wv{y4!=2uyUs8p*=wuwl_h46I(E_z}fx z)_*_4Nz`eK<5)=3(7N+lP^REEWM+fN2Z&LgoJ;`4OaPf3mIM|ky=`n*kUPUQwsc}} z#}$tPEsV@h#+|K#j`hBZaIVGMAX;=2;&&AH@8>EEnv0X_&L|YRH!mTyB3!r*#V@vR z0!B)v`zji=@HoD|uE$VJkyD$7dpymqu1~I&&^mI@xZ8Q(VYvJwGvrX{Y^BJ*kWSr% z&^Ub0sWL=@2&UZpdO*fA>+Q=xbGhKs+4?F$+zDL_3 z#9skcJlldLB|(^ylJYB^@WbS+$huB>?%s1*&yNNuDVyb`Js%fz{TGK$MKA;4I{JW+ z3tEtTub3ngMo?~r)yw~p>W}sMyHLth-w+Dw))fY}&iV=`Z2DlT*-?9e-w_ZeL8lLN z10XW?0uRi@@(b^1>Nn_PI6ZJ@!d^A9{n$M}^F88$UuX4W7y7(DcR=|V(J^|pVcS)i zzC};@wo>lAHEYern$mrF{`dUSLP+7jP%#KgK~&+#`=Raiy#^dN=rAjD$UU z-Yj4vP-MKs&lKqs!N>tWv(~4f6-aeEn(_)GqX8F|*SqPU;^^^K9sham)NYJP3Rvbw zfsW}0p`_HUoSsVvZ4fu0m$+>0+pBfXN({jA}s&=_jIV!fb=qGWw&OXw(nUuY2x@F zF2;FO?yp~#7mXl)XfYQPdxvSyOM;7!9~T>YBJ9xgXa@S_CZH|>K*4vINb&|A*3T4a zflA%7uppf4;_)x>O}Itb<5!KBO0C5 zNDiV1CdgZj!Juv7j1lDQEfY24Qb`%XYxovZS|LHrDTH$02(U;GU2SF1=kj*FXcy|iDeE)8OWtfzx=o36VymYmT zJc>L#XN)O%3hnT7yUpHiq(d|&Zwb_3Xu}7hIsF{ZmhKPSAPRx@C40DkiZWw#xlLRe z-EFtKoC5`}~IhxoT8Y&LNk05A_k@#;Lx+ z)o0<-nTKo%C`W^2jz1g5{*{XbeSZ3r(b&s;)DWwM6~i5uhmY)>0E93rLgAUdXdv*& zh(OrKD+=K>Qr+!~xj0+u0D6X4MOi$N8#}ii^OGkcDhv*Roap;S<`?4zFV#2HrLunk z8aE~)J4GkiJL>HinuPT5seG4KUuBs^cg6&PYut!M%U7v@S}{DM=Ge>JI)0oHQci8tTGLhQzo-C8RiJy5BTBT~2feP!;L|(8SA9*JYRP85Glz#k=8ePu%P^5nGd~RvIv~!{mxCi zk>#^zmnrP)Q?=>K4p~(J<=tG+Cv^+yy{lZ);B$JGpbn`~bLsYD*1DJVJ3W}BQnMK^ zR?91Ubamy|s>PZt%c3zP!NH$jSa`8j4RB%Zz{$}Mkx)QCF*q_JRmC&*=a2uZAsW^e zECuDu5nXRJ&P0P0&Mbb#nObJlHb<(|X#M#Km%2S6|JFkIL31jD&Uzi8T?^Y>{oXS7 zxpIPtm7cz+E`5yt4eOl39Yk&|7NMjs;b}f0Bis32{rH>{_|&09f8vVb-q(>f%F%YS zHGoA&?a1ts*^?C`I@cMy>EdI8+_mC`+6W+ls!P;CHNR}JUiU64Ol{;+zhV&qk?j!J z2|Vg|mNOjMiuC>rrJ1#5x>PqO&4?x#bdIa9WuSde!d{3<-OaZ+Diu8Z^aGaWU=gBIjcZW|h(u~k-4Br_A*`nT=y zA{5rLo(%RerFXka9Ua2ABG#8puIlfpgQ*JP85evy;833welBUU+69GqxE`Y*kk%+> z@%O4K3HE}vTGmR}>?n(}&<*|zrKU}zI`^83`zS%Zy!!#aVp~H-s9-a0)j=uEGsP%_ zah$2V7j{*}r#B1>&f(uX4oraU1PGTnJ<8Rf*FeUMRZm3J0Q$sf3x77^ zaAS_u^5Vk%^^YAo^5;{;?6h>$gly;9>cuk;v_e4`GYWQ}ax?^1O9qk!WdlWs9Ugr&OEh=`R{#fX}5D=cb8Hrkq{Z!n!1 zF6)oxH96c^Zy^eHs_;HrWWvtpWb*n7CjekUJ}#reILKcWPFOzJRlsW=txjGI6)Hf|F;>-{Ddf!$Vf8^1L)V}FHe~XQT00ar_(6|UeGwaX zytD7?jo3qbJrVVGb=&~Ul8AwU!4IFeqVHn6S@Y_)IVBcraX*b9TjSt!_#tZ%D%hBK zrQMQ^B|Z?iytZ!^MOrLTM{?YI1F$c!fbxm2XW?sCv z0OcxhKmNCAzS7SdtbW2FPnAquOCo_(; z89BM9L^44Pu5I}9Wak3mqVGEj!VEAcTpRbqMOKXG$o6XRGW7MoxnjUn05FY%W1<~< zxV57{Op{yNP#r-DlBj~dAtX5XDDE1LU+1-M6;9P&&fxnwqwGvAhd=9OV%VJG#IdN8 zfkx+?D)Wg7mZQOtGMVb^c$_zE&`zLhd4O@@B4x=P@fzDsA*j*KBrSJ|820+@yXC_5*GF!Pljj;)b9Y|4n0W#ca{lUTBDY#9Z`VE02z{OK}AEZXmlt> z?n6Z&cX)QFfJmc23B9;gNfT z6kF_(_cbTZc5OV<&AfuGuyC26`X1rSE0;dZRTPE7_3Py$^E*6!I95YTlwHmj@VI5g^?%JavB#mFP9x;OKcOC+S=N+EQ#C zaT*(>PveJ6K~tr(Zy+8PfFqoFWU%%DpXL42Z|aZDF;{8$owWH*-I4bUHQ^@abhE5N zVNU|55g&ae4m$#;Y=L8!5QVy z{;BpmBupuvKHRYGC$1#rptY~3lrhBn9NEDI*bJMvv`HY)47M#ugx zBeb8Z8f-dFTCeyN5?JW9n#+oSSYEL+{q0MW7c{E{dS5s{V-9M!Xz%IJr^j`r8YDzA02GwDy!3d#)GFAgcfa! z5;{7%J#OO79MKEkptAPJfs(&qpugfYZ6W9sc+=(?yKB8Pqr-`&Y;XODmQ} z*kO}_%}Q8Of;PmrIJd%^U8=puijSQ=20}H1`Z_K&6rI~}C5&-rOEwvpAIlpLKs6;lCqmt82kvC4gvDQ9%?2Bur ziP&S4D;@+9yX!V5!VaX5_cR>%`5ju!l?vTMVN92y*3(mEWOEqT{<+Qs=t zZSR9qT)0H;Q7C1J(zz1G_wNHI=dC%B-yEw}B9BX;y;m(#(6Tf5>%9dYLXsQQMWMU( zYS7+-WGYP&sqjj(suolQ5-`>V**B{1-*2*wL`6lJbqAim`e6Tzwt`QMmsNjEk`k4Q zC6iyEMz+NzzQ{Q1F}$fz-Y_pP=P$B>8@IBqOMGFXA?PG>ZX9@L<*J8%{%j$U0=VTU z;o~Mvf1SF>oRHcO48`L{tqhm+S2F>xJlTWk`jCH1vbk3J2U;1TJq@Mo_lah5WB+t< zNca+08ZMF7QCT_o56!B|_-AW>x(xni?8en~pjN!E(%E}N{*}fPRg~!wN}uWO|C+t! zY4aRB{AW&!;;dyTU<=wkK{*THlLY1ef-F2*GBJdRAdf z@v4}-I_Han$2i(>K}b$@b#;7vd^9G1yiZPdNyERff0p7Ro#judxp}`(cq7gv%$3yW zzU!1SF;aX7>B%5#1UTznvSi0@tUt*-dr9kfz9Xn0Xmh-LK4zs^UyunpA9muPwiq7ivX+&01OVE z)?0O-asG#<^A6{-f8TgYMiE)b-ZLX1Bg!7xn^0y($j&Y#du3$vvB}8ZvO>e&JA1E0 z_V2o%@9}$%qkrmn%=>paibscInHGOw|TK3M*+R9!2m6T^=9^x4SoXi8a&u7Tcm z2B(5zNy+(ajh`p@;dL%FH2-4vprr*i^l!~Y(wQ&EO3AVDc9fm}%Jrn4C&T@y45z%$ z5EZH!DYzmO92&te_yXKVd1gGb!*+DD?i5MY?@j-x_*P_qD$dtKKsFV7C8n}q)+!n-nBeckED-KMz??WUVYrp{Zlo{v^%p*^`KoGsA`)ed=G)T;SAAKcggp6k zT}slM7B%kp-l1U-x_-rvmMFJ8L4CIP>rw?YX&?|)!0j@@vCS0HU?4dpot(Hsmt+Ds zLx3r_`bB;L36;VhW2nv}YC6Z*8@;C`;&L4=ZBVT3-TBbATFHm{jMVj_r1P|}|1}l+ z{1M-V$TI?_{xwV0p{Xm;9xAtLoVho?S>f%Im~&om*+k1$HR^q^wFPGbNMU7mcI1I{ zXa9qv`hX0JvHB%j&AOGvkKVS)kzi9E6D7Ge(zI2(YK6Og^d;!7&Xj6_38jLB`IiUe zdX8m5wZ?{5#B90PTeS28yD2)-X-DY{=kKs$(cQgP@@+y->8TfM(e;;KOmXO42K43m zeI#ub1bN9sQV-wvL8c6mKBzBtF@3NKd)Fin-SPRRnLqw8#48s1+u+x_U|%uvk>`Ys zhe`j#kDO?V;wq*d&+@C?~Lf zwkX*l&GNv+hlJYB97{VzEu&2W#{i4ue)aD)G)`G||3VZ4Q6Vx9`}^T2o={5>iV)O` zUUjcsVP8zH_gaOF&>w`H5Y2wX8HxDBjg8-QKcKM{$>rn>(F@A?qq*61dCixgt^Yc? z1-o6ljVAUfNWKLH1*A@+KdE+pd;gJEExW)v)N|H%J7{zKdE%v2J*kyioI9^Ud4hkf zSc^FqIM5f#9&hjcC@3jnArN_~6fr5)Tj%@D4>M|dn^QahX*+}UhE(jWcU#-*N;iuF zr@6mfUBN%05e%6sLbYz^EC+hO1utxw(P?QB)sn~F3=Uc)Of zg5&g?N2#0(e?-rYUO;jJz_%DbWp_W;Q_6l1W@3FxIjd#?oWu1m3qs%b3}_t{CF=v74|pA>jW)b^p4O_;{?r3%h9PI zPDulr&w^FLUjtZZGhT*#6ou^8<6Fph$a{aR+KxJ%4cmkLHwJf5i@+j(L1E#wGi@j{ z{2oL&i;&pAKs_p%J{uZ?90BBS=mBI0oK97B^=nTwx8w?}lwH<5{Jjax`^5{jHFGgA zU7u_HgI}kLhDJLW4+K;js4_XxGdYQ>N2Qa>9ce_r3J4)-hqqs87IfAh5o^>3lbTY6 zNcW-ARkj#q}gd#p)(k(tET*r89rSkpU?s03rz;9Uamd6u*&}mevbn zbf~La280%11bNADAr%dNs6UW;F(Q#5wM-3H-DIF0IA~*aPFrbMAbmLN^uX=d&3o7u z6RDYm#b3|{^R7*;FAXcVeeJK&pW{`27tOBz3C=8ID?KSc;N20E+q!?ktbqIPmCkDd z%`ia?_mIHoI_lS~EE>nbXv6$j*W?n>&=$8lN&|2E2S@RCTj3jo@+XiQ5a@}0_%$k? zuyK{&j=i>)93n_)#>PDP`GSfPZP#xJH!&GJ^u=N&xgA7On|k%=uHK?Mh!bmK^l032 z>rITRsP9qAvGmQ8Cby$ltbb*+x`)#kpkKYJ<=XhXRu~i$*!S8&f&8GwI~O}`I=cPB zY05J+@#~-Rx(z|?X6h>sIeWg#T$_NKnE4FM$ZZKNe6TS5GVJ<5R&qm1;1H(a{QOOd zUj~YLXAJk2-*}eA2aJf{V8@$tdZt_R`Zpe%I!s8BOzIoZLtm7)F-fuA86z%PFAi*M$IS;nN%^dZU=)DNHU)y^S)c2Y z^>JG8vKVq1erO!^_H=QMdR8)eBpbQ~jTkVonA>|32z`UEtVl2%1vot(fB`m-L$gzd zW1QJuBi7`X$YeI2y4no~kH}=R0a=t?Q)2L_mdWEJ<@4MEp-F4&OsB2qa&>DiKCB)x zR-T^XT6Y{qeTsdbcsAQZ56ys<1KQJX+`b<*l^3e2tQrjCFQ=d(sSE55j#mP3>fe12 z&Kw#|$^JWKDgGg1d%*Q+k6b~sUc_jz*4z+rN_z1sI_!Y*&t)_w!ePZN}xidaFHMfLfP!=B#oUhwAL@#N(9Vf%V`BZC1U^re$(0f=pqCj9s@fSpGh+O6oL z4HB?=1~I|p6S}m>HxG0llZVo{%$yFtBp*Mp!@MG!(w{bkJ3bviv%I`qW8e^=-(JrGu!#4cq}lZTp!O_G^|&JUw5RU46Eq^* zTCrm@^>$n^aCrMzV0)(pLC65V3**TpdFRo;JX~@jnV~Mzb)}eHAdfg>n{K{^fWc~i zW=w1>h_k>W(u#i+CVCJG{>>|>lV|SJoCQ94KBq92^0{I-KC&ZM=gyns|5^e2oufe7 z4~cQ@6mb$&f+#PD*<@Br;@>xZ6cw*14(vUmgp-{kb;mcDzAPCP9>u+DX1`H*Fo=zi zKvdkcM?x55oDhT*btc#BCM6kxU<+W@CMvDJjK2c1@4}yBFt{uOGiwpz`Pb0Jedqfv zLv^+)FP`vaS}++1`|2nXTwQ-s@U4)|m04kRW>A|*3f^fBL`WP|eyj+DoLjEeUyswD z#8jhr=fQYN(EP5gRKkJKi0tvWZ5HsK;b;jpr}bNzGXxR#iP ztb2SD`o6DI?A`ZxA^0nI&P!|`9&jzpeFO9%L9o~j|j z0Fp6Ap-^vqMy)FUi-+^6p?XJJ+_XNJ zgWr>enY~(lr7(TUHJZU$Ce83}f@iPME42p_0XPWqW~p{1)db?Bl6iI7uC->&9BTA5 z+(S;-_Y+-)m1>0I&~2WVQ9f2#VOv@3hGvO3l-Do~pL$8zqovZCU)YZAJA2XC8Ug&j$}~R@a_2klJU4}XK9CGIN7S;5C+|Qgw40Tb;3KR1 z5r^KNvY-T^dWo){gwkcU@9h9Z-v>X6>xqloBPzgB+-fl7T5Bt&q0LPBc^^aOHpw8K zgbI4L;Iq8R3(78@#5t8#PSP-bUV@TodB+}F3Nywlz?isypopf*;I#i<;7>@@xi_q0 zkzeklq2|KwU{MMY*q9QH=x2+!z1S2SDzT{@^{(@AIho%0TYu%QZd}46Hy*f^A!`#6 zg^c9l6-iYI39nm~NzLC#(?a=CDQ~U5PbvOo>X4`7ai{qmb$(mZN-yb0e(`tI{6GF= zj=wmcJjt=Hwy5Uou>G+g}81G{YB|7XdIX;layW zPzYhv`S-Kd{+~a4r{@P7qY;5v@1M*-9SK~$Bq#|a&-@;$|2=&9FHukBZkRt#!xd*) ztkeMa&&=WUPYH_4Zs?l@rxmbuNw!x6Nh&m=i)GVUtX^T8J@wCN>s$jSKJdDDw`bnx z^}pz4&zet(2x?ri8d@Ig4Pr1FcYa&fJ3^0j6&!}^f+9y?9Wn0e%iujLrBqg@k0Rvk z(A1Rs8&GnUA^N+8q(g0tT=Zb?C7k!%e!sud)z$UYf;V-~@Za8%-#yk11jUZ<*fxG; zCjYDZB)YKBM>;gLtjjW^ex2u_(UXSkBTC6;qYX_%OUnU#<;lbcxi0_~1`iTLpKIJw zF|%u(P)>%#I1*$jN9hi|9b&$Q%joJ-lS#y9a`f{4a`%OzG#SE3FJms1=-<~cKiMTdhByZ;5yJ7-Yc6iP4rKS}5Z#}LKFj6)Q!YaGZBiY@D5h9Uq9>F-vBfg-qD%|RK zemJA8O^SSFx>(lA;ZagIe#zSI6k%|MoWdLMyTbjDi*5Qok;V-*wi$DjB9OC}W%pF=I2cMCZW^YEAAI=qQBEmE_Vw#WqG=%kClvBeU1*LQ zO|^YwDv{8)(-7)bQvJK&IKmpQTd*nCZ%-B|&era3ZdqURY{O7 z_m#zEr#ta8`IGl641nO+-rhi?dX5!j2NioIQ(wqH-VX#@;hPGa? zWnKHBuC9)Bc_6EqU^aRFD*^c|LCV;?Z|iw2E819*k9ujz&W79b)%&qAlB2_J%(4P2 zMqKm6dgQevzi{&B}=vbo7|U z)uVGxdid9gZ%+sq<9G!=$hv-L`G?Q3Oj9l%mSV>b-8j&31M?B^qd+3_9Wu8Q@iIijVYIZg`heVly}_89 zv}aOFEY1w6xJkWe8|3A8KIqzjUV7xNQSv?G&SmWCU@jge9@Qe8PLQN07@`S)uoHNj zzGkax@)NJ+K!n{QFEq;oMt1?6_Qp_(K158l?$Ee=B2Gk*OMbOl=~$ZlSBl8jlp zJDaMlY$hM(E7;rHpq5*BtOxW&&^Is;W)cBmeOk@d4dB!wtQaU3IP-pNTb%@yAcTYD z@+R#Xk~u;C?e*{0v{x%UP#2Zzb*PKHsCqZ|@BfvPAWsPFHP3WEe|%+Ehb(`x?%gNL za>4p({mS8?9gU%Kwy^M(RF81LO7YmuG<+3;haf92FR*X*;MU@Hf^6*zp`~Nts53+H z6I@!$Lk`N;H>ht)8RnCtyc84IWe(RxmiRQdjwy7b1MAj#=yH@L50CSXUr}Zq z*A>DWU9$i1Z+H+ z)xAF@64ZAF#iG~)>Foa$x5TLr`)p9O+&sG5qF(!tH_>s2pq0a^pv&9D+ z0eI9i-VMHA=UV)b(ent3Onji8>RFd}&@#mm1;UX=0{nR-mTZ*+8WY|=YvKnu^(Hvo z@mXKCi+f?9i7+(YmX-0qgC*na%tz)(x=c&o7Z9*u`K2#9r33!@u828~$I&LOkWgY> zosefyQC@ulZ?ryV$BGXAo4I$GSA8yF^?-}*2?05+oRPxmDXxXW)@VN|<`8ewSyw4R>c}OO$#G|SsK<)a%ZU_Ku(31KZ6nWU4Tj9JdxVY) z8VuDRPD)&i1PyzN>t`9)TboFYf7NU}%b)ZiNNWq@=kfiQRGeYjuf~wJzs-|<(6-|+ zSCGFtS8c5zPj9?Q#MY#T_Vs0&*NDm27hLZBA&wIN+caQy9xk2Pvhg>1VXSjCeQmY3 zjBoe5ZMZNI9a1_W!c6=G&UrBVmoC9IT6~)%{J!avAK_iWIrBp^uFRpN5KXJB{@HE% zm*wLK?e_lt`-tqnQEaVjf9T%$pYI5Y-YBuAdAD8|4|P*G*mlrX&PP+E^eiciWgV8i zL3>A|$-*{7VZZ&A>l9!0zJ|wrF_hqwRA7F}VKo>YFm3xUB@KQn%I{5z*2+sx)26AqZ4avD@@_|qf&PItF_Z{zu8 zBD^)3(h_BnVp;efZV+pYiw7ltpk${jczdDJz4lsH2fc6M&cP)<_OAHU@ALCk8CLaG;dEj$#=Hvbh^bmx)$Xms*(ukPLm))PI+w9m9O@(qf=%^Vi zeM!FkO^B{jQTh&LA-c^HRi-zLu&5peN#q!ZD=xIVKCOjW+ZcrVz}CJ5$FLWpoE<$( zLT-}PoiD75#rHk>6WiqK=0}tat9)q)T-P)Otl7V46B!FT`NmO~MS6*%R(fcRM@+Ar zDKY<6?}RcPoS6v>vg*wi16AB7HotDq6LMtS$0LIO*GD4{mw8273xT) z5Of}cuM%TBN9f*@C6^Q$Y?NkZ^?8#`L3LY66O-H~(n#q&hKax(oaXm_9y3|<|Fq^$ zo=ZAb@>mvzsAEa%M(0iLa?CI-J$v4`c5}*k*gqoSE&rn%&27>@g4%|*ru-NG8p|rs zSbgJ_Y`mpyMyx38gQS=M&lCXDAMo?DHAY2dd1Ik&$SATRIBd8A;weaD>ERa7-#FOA zX3%$~FRB%+AX!`}ucBGU{iLQQ+i+nXJfrJh*l;7(a5j6|_q%C(Oq7zf3uoI0yj*~W z!xS+Ry!8;57^}3t^DDP)N>bGnG~P$B*yuxn(eyNv0jjc6Q*|mWqeoeXJ0kM8-?d9F zE51*i;q8%$l6&lS2tlt5P8KIecFml~3JoRFL=DY~*t+V@qPYV;6kmt?pc_cN1{!H= z;eex4>%d4Gl!074>hLLB_RLWjoyHt?%k`bj-=^1>fmE4mH`~-z_7h-`;;`qyh7;Jl zkMX&-vvirFZBQpdzVJioYb$H38t{`K4hG->WAM#>X5RajRQLH_-gE=@_=*YC>!Hzt zA~G~GLRWD8%rL>|NMSYZ73G^hq`~|tG*IP=Fh0P+3tLzxbmV$RKiu}mCe*34B6d!Y zV$h#(=KHuApC_EBkRD1l+&{7yt8MrnDv6LxdOyq+6=8j6O_mCekGwhS;x&`wN)My3 z@ab~`{G-|6&`=yErQ|L!-i@F4U^9tw*9>ly)V6-xu8w8Hl#32bdFn`dy}22)pXW_2yH84De<#O6Cnn&i3*yhn2Q8 zQV%0vE8e^MVsBV|y{Cmk5c|fBc@Q;4bGO*4a3U!lR!vIUWr`-(bkS;zQ0DYM_rstJ zGA3&gXAvEjY1Egpv0;P-MdWEbn_n^v7aTTYh8 z=E`}Fn{qyRMb8tL_jFzLrrv=sTGEhs;q$fKki0-u#*f8!LshYICZ3BIYky&cGt-?5 z`t1^Ma`XI-#!fz<$c}u)F!8j<)O2z15Qj}HO#ATlSiK)wLDXC0kbXinr)#W#7w6*i z^ZMuZbyPFx6o@6tn{QQq`}$UF)ak|^8u#^%$Qe7P>u%2y=RvC{L8}Rb+-G<)Rp?q}&(}@JCko=Fd?;7*1 zrM!b{*-f7FnqETJQDXIq!A&97tMOhGRd#KhxYbn%gLplAP8K zTq_``Mp5}{t2C^to4iu~$ETPLtdZ*YZxEjgdVn`4dn^Qe76ice^+E3=348nd2x?(% z^HW130Db?%t2Le4A{X(lD0;V(wOrOm^g7Z+QpJtSdWLRG#4s5VHpq1Jil{`;G04VL zlxI?7L}0EdteTobE*@4LvrycKctb)dh2zBhF#eWS8lF8|_<6eSxl{g}Ku=Gv=1xzlILAa$Z{XQ!=Z-(fVaBqzL#uw^eZQf@L1uqDH4|2A+uL^{bSIx7P-1^K(c7Tq%7EzBP z3zL>8&-O2iPGQJ((F)MkrpjvC7O+z177MbB@oc>6p^5EFv)_8tXQ{gRoWqv}3Z%jh zO>EiPcaBhMmiXvV2j1m@A=FZee~t8>6_)a*Ts58lD5T6(K`X$3=4ipg@ykqOc@tIH zL}X)%9uUJ2X;z@^6J%z`gp!t#okgo4Ss93_{E+jxyioP)BP;Zv>KRfRG)1pLNHDzJ zCr(4(%tUo6(7H?=JR$!PofgnmpFdT}IXAl2r9Q%kM=Ae1$!^XzZ>N-cW6vaT)+dCu z60hjkZA@wLHvbpv5T01M+Z><~ql>+O86*QUv*Wb$C?voY6%_?il;9_Rjc{P)kL@Jf zpk3oGV_^ea{u2o0Vosb#p7LM!uz0&kz z&MV$1Q1xWZJO0Bw*P(ia6&}EVK_P>2VXVI2fSSwZnApfbqa4DEJh@kaK!G^ zPZ>Le(t3K9Ouk#8BjC2r0C1!^xJ7MOod2PGcJXkbsCveDs^-h4LEKZv+ORLxN6cj< zcU=qP&x(jQy*JRq%^6?lQ<5mOFMTin9HxGca-fHa0Pj2-Q+eFW5ZroO6 zMCl9&fuEpaWxdMBk8g#$<*tOv-OvgWid;tKo81fMu%rPo@!v}~1Ml$8sgO(W1A>N2 zBN&zZ^ArVgl8@)orGw7BI7h=HAQUeHTN-3j+>*^@Say=lx(i3i|1Brk!6^P+&vRt~ zZ~Z;ao4DJx$z{Jn9!g@p^j|07O=hY@4`hyYuZ=djXhdWWXmfzeVCt2qtUHP|48r+| z@6a6X&`1eK-gr)Hw*4s77+l=AMBw9l6?(v>}Cb3S@-*8fF#d|NKgc7M2`4aUu?m}`=#K19)`dM%hTVy! z#$a)+pE?5Zw->sgj^X$;_Pmm$oRch*i6~bB|KY&sjkJt&rIv~DlXV3RHjeD!Q&L_Fd>_~w#%k>8 zf$sx#9xy#nf{qQ)6>^>*{JXViORj-Rq{V(P=DdCldbL|&CZgo!b^3yDDml0t|NZDn z)|XoRl3qa7KShel5s(=iQ{Z9-m2%K>{&IJ&1&#efadE`p+NLDMk^jq7H;lI}Cm}Gt zvk4r|nu~dr>_GirOdcp~qANB>^UZfwP7F>N=Ye0A)zlQe`p+oqa3c@@MwqP0*S?MJ z$5jFICgiLldm`WFSk6QrDkbed!XtA+yLFs%~;Q2qhg(J?~rx>n!4ed639 zMz--sWh0a!tTy?9nJQaRswiPe+eVqHs)H}!KHft;!D>VA5@;js3#v@#rrI9NG8*~V z!SZ5pjC$6@JloL9fp;K$aTlz(pZ)N1JB(>zV~3m}l%`>a^?qHj5X&C9O%W@u@J%N) zW6Onvwx1Pt3)xl2`be+Y^-%p5ERSk~;+ECs2{|S0u-dk&)YN08 zY{F18!=%1l&n^hcW|bu+(UJTFthl^6n(}5(Kasxgc&6N+uXwQGbKPci)*_gx zXa~pB@J_wU+1(;e(#pCOYh!NdfdPGK%aMmy+6^9HiV<1<>TWB0NLYD4up-GPjPns$ zTATF3@9DANKf5|fd%`wdK;>`WYd3s=siM&wCvs{z)pS!?;?$MRVeHL3SHiT>tZyEj z)ewWJF3M`u{mN9V{F35%RgtXi!*7dDtuh9_oZ{ond@ERSnWq-Ndew^!OpeZ7UBlD> zJwP$Fmc;sl$GkiNw&s0^0l;SAckc&scSNjI8zs$Dm35~Xg|Kb{4-fOjuATXO)flnw zk#CRH+O4gWxT{}hFE3n4fK14g8HHdKAlmS!UxwPg4fmmnQ)#3@Gh2HM={xz{7Ok1L zi+dTsl~_q}g<>o0KsKU^V#=3?5`(wo8?V)dAQ!;^WRV=pKdom4Y!$R39gT-X;S!rVmrmquGv75s3 zg-}rSUB=BsE-wC~$|H@%Fa;>vh>E!DG|FJynL}?iG*-xweDdgHnO!+lOCUtSwbwsq zy-zu+Mzq8+aJMA4G5)Iu3TRwqfT7v%MC;LT?q`;M5cjere5`6xRh|-_zZT4`SJBw86&JOS8@B z|IWR^b;(4|*Y^8UuION8DB>}0Fgb6Mp{6WDxOj2NF3aEVkIlE=@;x^?2a~wD@ z-UAI(bmhPB&cM zS@{nCK1Jh;cG}5OxnJ*QwcKyqeL*^H*tY$HHn!!$OQtwyuy4Y`#l`&iG4)4MasN7it}xhONTt4N0x-<; zgX;PCTP34~=xOQb+7~ec2h96?|us@WZ}7@e3dO&N2|V9pEK) zfKO$@O^WPe(ESGT7a{rM=$iKXtA8^pbma339?2?Z&+kpTTD=rTyM8q&)BFXiU<>lj zL!8TbW~I#g{N!u%un>LAZ8;bMLHXlnzV~^~(x}t$ob4eboi;u`zEV^rOimSn375U@ z!RjI$_pgh`dA!qvanaA$B;NZo_S<#E#-vUu*%!}`8XCmNd7emNp#mGTIY9QQ%`CF=71LjtNKG4k>C3ckp++8frH#@AlMHw9mn zdqIJNWnS-=!)Z@|6)<%Wwdl=yel8a7mIWR$b;-d4I{!DX#BUNWdF;MmGkh=6oD2n0vSKB=H3b)JeWuJA}HHK-{ori2x?$OP2)!#CxA<)U@$GH8# zo9X@n@$O9qEThiS8ti2Wt%fyB(nl7L-OeGXij?sh}o%t@0#vinhqUbA#= zBLB#U)f61+v8hGgjah1AYP1LuMf^%{@?*K2_v#?YAXiPwEJc4QCkR*ZP%^$7V)&6} zf=@P~*cB*3U$>_z8>4?f?P#4dJ4_2rfEqI$U|FPFjtstxJCB$xzj5CX)$qqR#+!ZN zaly(K=Z(%XV&yCUK07}Mq8LpVC)P+A1#+T?&ZT3h%DCpDn?pmWZRkkZe0jc8|FiPn z^p1BYP%z}g#L&XR!X%}n`b(ZSD=j2ei3Vmiphsi}0XtCE`yk*+I`xyWtl#JnKhsz7 zez35zWL8S_;qWd4m%wkQsmicKAqmVdbE`AW;Npjl9!9_Rd%$$mSH)q zoXWezp5-)Pb_YM2L~)&%o@M%Vj7dn-0*tqq;Xm$LFU~jc4udXIX+7$&`reu5ZJsK< zo98=|OW5te8eTP?wz}X>GP!C(JQ)DDcFt2NKpnmo;3f-`pZ#|yyy|-+f;qNdkY;4y zVF`qjq$6xjzmHC1zcxQ0DkykCAEm9FzWt{thSN}bp7Ia(p&a(TBYxeyf3JyC>o5SZ zfjsZ;X|NPNalZq$wj(qWLi-Pxt{4~@p)Q3Ng%Y}X-&@Jzl=Cov`e^3bZ78TFd+JA)&ea*H@t(#wAZgr*GQcd@4++ zx-KbAo)f(y`lN7{p!E5b4iBX`vmEgILYa!t**2)C9p>dxfLvy&+$qR(g%)bW{-u=q zNDioV08Cg0Wc=x+`%WWRtgak{QB1yr%Hy|BF7uw|mET!76x{9K&PduC`z1R#q+~O? zULCokhB3jK7+!#zlCEPTKrvkya3wjM$y66&8+#2CnYFcd`N%X5&N4;^niMH9TKz4^ zmdL(~9JlAG?=EEbJQE8#MHe0aK_Bs`l`&p_V1eHU{CT^G4ARi>NdD>51kiVogn^|o zsRdbxTy~7mi5Ycvv3@Xx3^L-DRaSm^_OAzxW5stu&+H1mWWBuh`^4MxlJ6_xZj{O^ z>R1YG#9v+7_7vAtZMTZ;$p{VoHS4QoLf4h<^p9a&S@$mlQV%hG_pYFey}x(L%EGcb z#7PozJvL8_<4~cX&Z}y0Qf=lwJ;qFEci)%Hd^O9vF`}69_18lxV?dyYg4z6hvao|o zJ!PeySI?1(L5lcK*A=d53@|P*lLEy}Hu~UWTa5eOpMZNm(0sKs`_EpT;@M$y$?g(Qa7Mw9`OXxa zy)?9`P<3UF7SAjOuKWzTJH6dWdiz73n!28z`^+diJ9`MYoAJ@rK0H@yeftz&a>-!v zsE$RjENb1iQHO1x`+bK=wFVL&0^6Un;i(|GcQbYK?Cjc`58%lHlAT2{8x5VA#lz+} z%VJUNCn~ZOG?4>#JaKhb6UjsDb*#I`k8X=bgv6boIIH`Tlcd_ap04tva~*MCahr zR408bCkkmFW+=LUXDesoMM&GM&TPx8Ba));W<*jB@xx@IjWsq6c9C`*_5S)u!B;KY|^ zj)gtP_J?^ml!p^*>$iaNUw2SH3%;l;*y=Hd_rI~8%fHmUo^dB)t)i(A6

j`sDBg zi`y@ZO4D_?NIDSi`$*0msf>7L*Vq9c?6pt|(9Mysq?(#q-QU^E z`^{TbdqG9q)T)KFzh?wtHpHLj7uL@8NpbHFyBlowwU8%9+LDh?XD^i`B(A}ZPfR?# zP-6+V&rs^esen3rN63D3{~|)$=~zdTnkD;w35G#lR6}gNC1+m8&Y^KAHZ223VjN0H z>$6S^X#4e4y;}fBmsmyBo zEjIV3*Z&*?J;S1Mf=Y9)nE^fmXzcl%%;b}wA5plOb%{Rq)vIOBEKUf_EqJ#)-O1wZ zb^oOOjZ?qszt2Tr<&I63k@@t=135$LA z5a@s4l{hN7y1V=pRaHFB z>l(Kx1p0pOq7GFQq!}gq&+h;9f2O@|QJsye9X@1m{Xx)=u+D6n zn(!F6W07zf{sgK1V(q*_MB90|^GRI)s=}u>HC1aNZ|VlBjuU2D+6=mWq zAiq5z+epLX4}!R)v~(HJVR^r8iJu#F0|>kT77K87agK`tzZx>k$={#J1PW%TQ^R09((x5>+2Tr6 zr}q!QsAgAVqF`<7sUCmW?eQu#ZD{HuP zI*{{u8{3BXm5tc9WifhucN+X(cS2EXeYO+}ez3nLj-~y<0~p{{ z9-0HV6EU;1-;^-s@!D=E@muF-5xJ&rC6rCgm77iz0cO&7@F!!Cf8x~xr{BT853HQX zPe1Sbp`dOuhwb-ru>RdYx4ru9ok8|5j8vm`} z0|^xLYQz$UyWve^RlNTT!T!zahphRE4*Ap)YD*Cp2M_Y|85vDMl=|%AsClP|a|31q zc>Paz4^elf5fT_ugxvr{b&8+ofoS;;0&z6I7cz7!D=yf7FCdPn=6~M5J=a31vaw!C zOIm4;?*C*?BZxWvwZ!O*8t1rDW(kI>O4M!p`(&}=6anM}`PK1}v9ZoQDc=Dp4O_}p zw$6WZ7oVI}|1na7k&leR3^{&4pDOh3DJKu|U)~j<`2JRp{xJDXp(^V&88Q5Sle30q zu+}2N7Sgw#>_oX;S`78L^Bsf;pXqukJtK ze!bH4n8oWiGyJiB6UoWT{sIlXRIdnJ?cmyO0}WHo*q9EAfMs$AqvGNYGnX!)lOow3!JgHe|FyUGH(f^ogj zH`>bRtuaL-BU+@?1ehRb!{1?YssMkn6!&T%^P7v?l-5h!=uH`BGW)0Dx2kXqXc_X( z$3GVrUsT_207@$j1B3tai2GDo`5?L!`MoB+hO!TPCY?udWQX%FF-t~&Jik2APW8EP zYcSlo`xM<*!`##q@OnQ%H_@$k;ed*o4&|BnVJqA>3rmy+(@o4`44js{me;ssibm+= zyveL%3C=?}*M%qwa6zqkbn$Ni`SY%M3p_dyzV1_VBhcN)jH$fx%S=#%;^dZxmrPpQ zEWB0?C+mgN(cLdmaCig!7FC#N;J=G$O?|8^oFq9|DJe*@KaZQPyX_yRwZKmli3TO{ z+su#UbYw*&J(YE0qnZ07kpF#L?zkWL&$6?$@^i`ee(0<#54^4`nk-h-zYJM>;I8z+ z^sjNrIw9cy{9H(U!ZZ4hY3k+jnfdz z*d(}$eSTK`A2SOm60cwP(nYH=<5R`HlOK9v!3P5~I?MK9^c?Gu3{QSLsV1`!B_hBUyjP!srdDOYf_FoX?S~{@BYK$JaX>H`C0h}d z@>BZlWeleb17)YvX-*2h;6Pdqjxcxvhr|pDH75J2re1K*-7EU4tJiN-+wy{jlk-;Y z;JDl;r04Q#B=<@kCkHWlY_NY}G5w`oFA`YXgQ865f}Ef*&8Fe-MDw5L#{KUTWgD${ zrJir*I`yA2T&$BEV1GZFF?beHUV~%cL=>gYj-Xp5{I<;!i?edY~6%gTsAk@@61al>fK%4u^v9Wt0nnHX)_bVuS9d05ckkp*Pm# zmM89*Ba|NmpfU*}-Smu%*DLkT?L0;imIutGqhn*G7G@|V^&iy^3e7Attyi;W9T>Py z|Fshge@=(gMOWF(DsAP?($_wc{FM@zH|k4+&)dLNq%hVL=!y4Bv)j z^jhC35iFx3b1=Eh`SK+Sng|>!Uf^2A-YR0ks_qPau7;5V)e1TubIGC`4z=2E&0P9BI($a$bj0OhO!fSof zn_U>(#nuFv^G{XRI9hE>OfFML0Z1;U@|wasEh*qcUoY{gYQ6^IW`@B`7?@QkFLmYP zVXPMokm-FGM7vmILgzs;((y)TcZ*3}$Zb#Pi=%?tP|MY;*E;%ZOfgAn!y_Z{fpx$sY(dmC4HlIroK0ZE4 zNl9*pMcL(^l*yv^00RS5kgB0!`1mXH)xHb_i8&7n`GUVAbz9g+p$5DwkIItt<55k` zuy0I6^sktJ`2zu-6A=>|L3J&JQNd8N;)W;S0VOPV01b>(ht0yL0w124QfD4s=Yn%z zpIYFr*-%5?XmbkjDEcI~hrRU8G-)+8smw-o;wC2aADI;AVOh`9&_mH-q>p}>ci>Z> z{iLj^%k)c;F|=ltN?zHfZK;AA4C;`@^!8kMY1Bt!Cf;jeowMGhMIg~<;{yQ3W#I~>I+=F#jrZwclXz-qEXG}_lLk@ z&YpC>)P?p!0D65#kkW9P?wY9~t?UWZvxcrKnjZwHJoB%C8`xp1en0vpdoq;2=uHIK zmW;x3Pd)HWe_AdfcVM;l#e@jO$^P{QTj3G)&M&D#Ge(rKc!OE9253ZRR|Rjr)T48{ zethsyQ^R^MjdSY)apQm!>*8Yp9R?oN&n7PqWIzOadBurPKxi1a|KKI&fm%>xss%AG zpVP@%7SX?y9l1>#rQ2rl2H)VZRsict2^e2qlo_bx-`21)ZN^h}q~{YJQElE4KC^vj zkTAplYW$t3p=HF}zwo09QQjLK27W>@wVWdiF>uV6*q_o1uW$5`jN$?9%T`>n~VPf7-(Yb9Om znui7>=JRxPIc(I|WNpZ_{V^44sIo^sK>U!9FlL|Sp zq?PD(C_bE3IFA>$)NjT#P~$Bd{ZNRaGED$LB7lU3SSxDpz(w$q(j9xo@BoDgVM2tP z2yf^Q06mQZ`TCYNJCpoXXM5($VUpS?IzeW9CRH;*G4ZkM zrtM0t%U0>*8UFM!9?EJvg$(j3Z>9Ud+ctE{78!~4kZIr{DwC}Lw`Sn9zkl%${9b8r zgPk63Nj!P+X7eYa^&2Z#X1xzX^*Ka>C=N^QLzgevK9oqR7IYS<4*q`qzIvU0=eA|e zjA}4To*W*zROJ=}dWR5Pm>2NdpUPiwK zyod$CKW{bv=<1q-H^3ZFc*yZOk5@=M^W;Slm)JhL6}?>aSd*79oE7I_biRT(ci_Am z6@|?CYhj=($h5=gt3wwg@%{!oNx>4q*}vPj@8%@F72~!aYbL}Fg0G#W&*(WcyER|@ zEr~L_Ta?bMLm9wuYH4XR2l-QkzlSz(XAYpFi=b4}BSkTg#TVS!h|JnhuJdNG5>qUk z75~Eipo@C(yOxJWLwNXRohP^z$nm-ykwz=mU`*a=Eng)Xpi*SCn zH@c=8LS~ipCjs`#$tv5-V#B>x3Ipa&G_KFiaFZPdwDD7J|h*@Yc4UeBTS_Vby-mt7)@gG=Vke!M;r`4$%i$-P5Tieo}&|RdW92_Vex7 z$Oiy~hY*LyVQ=q#ea%X+gkY56&d|suV&D$4jY;49aH{t_*0~wxLTo-Zg z4^*`J#vxb>ltjcw3wcBY6NZ@6@udd>kcKm0{QZH8_&%JS4%yh<_k6-ZRX>s!NT-c9 zT64U=K2a3m>5V6tos?I(*gu!gAUB)l@Jtjj7>l_^RLT(Wlf%&?L%L%b`qsVQ}J)q=C} zKn+HEq@PqY3WxuLRzj5`^bdZ5Wo*u+9;%k8NA(?X)pHcY@X@tO41WQ~I0L^P6}b5K z%2mkZl=X)6+P3YuyraPvUgkjs==)EQhSt}n*3s8ncFp(|${#Z&d(HYEQNL>}rm(i> z?0DWNbCxBz+D6PXHfWV`@*zye0go2a(S~@i4by=+I&J|oi0mL?$!ZTAV9ifBf&z2TwKKH=XQJtN>EJ>K$IW!#mURFx9Mu{H9Bz+sl_o^|i zR3;Oh8^KeQ>PL&SySN0`sh)lHMGf4>$G_g6&1nPI>1o54O+Gjt@f#%lq#w^xMSNOP zdWSq*%|%zdW>%7gI^ZPS0Z1S;PZAC`@ZbL*O=kg=)%tdQP(Vs)>25?q0RfTjP#UGX zBm|^Wx;qr58>CA_Kxt5ER9d=0I+gF*=X?KWjx&zVsPOE4-&d^lTX)i=Tq6RqfQIz_ z`*(v>oIvq|Cg=SJz5}00M)AiO^88QC`rR^f&6QXh+6nDKGW-T}D^70R+Z*}!QbIU7 zL6+nGoofDP!x+{PG`FS1HBs_*DOCD$Oc58hp&<=9`J=E;f$CMBuvA5IA$>CJP-6Qr zzO6=LQt)O^9i<=ppx0cMbKdfj1j{&V?`Z7p?ca&{XF`p-1GruDN_Ecgr}uuw0WRiI z8`XhYm*Tf&x4f80G=<#v@1voxKwhq>7Vnc|kDIX4^9hOnI%me+0}~S%G5qWPGauP_ z0&VmJ9C(ehZj|Lkt+_{II+z?J`xXmPh+Z8)KI>T@S$x+b;gWLM*?RV$h0Ad+wm`bt zEIca8465l%7z#0SzAp2KeXzZQ*8{c(GQku`x(V8p5j#n`3M zrO*;jK!@^rd-t%I9qzq*o+?JFHvN`BHhw4Ql-o0>096K}c^b@oRM&WieF*%R(=R%1 zB7-EDmmsS^m?(oO1`bJNqKynoAbW|JOXf55Ev;z zi6<|Xj%NRHHyr{8&SFQAkb5QTliNue^~=1(}c$Z6U5DVaf4FtYd!T z4LDJaF?|vbP9=W{s~U@`G~JH_AQ`*D$Clp!@ByuLd}88`lye~Nurk?)>D}fQs?~nC zks-rgWCj4yZAeE3s+R=RpZEpZ*kt1s49?rE@d?8v(P+;Z63p@JD=3lxsS2&Z~srUF225xA|fK>36*JT2wNJSH#c%Bz3cVAkyM`=9e}m;EbjixHB~Od zPrtt3_C|nKMrvxOmUPd;yeyz5eVcJw(Z9s>}w~GCPLZj33nBGbDML!w*FNNR?4 zs!A)>IDA8{JJE=tSUAcfW;IUD^C`WmnVf-Cd-CHlqQ>vvLSpWzi-6rv<2_{Ibam7d9fLhBy(TUt&SQA?|E#B(&z~t>?+1gU2Y@w}$R7 zbs1&f+_gPesu%7xY@yN7cnI@KAY{dMcgunv%gIZ`Tx6d(xA0=_L5=dP%ai$PwmF0L zx>tu;Vu{&)CW5-%m=Xo;Gn1jS#>T6$)P6FhkidnkCP7zK zTwF}Y#ug4U4g}o*VIk3mgWnhTPJIS1B4_4q(!_AZ2F^TmG0ZQut-{s4#|oMo1{ z#7%N?CHZW<95Y5raf@YQ;sj51U_%~w()elc=7VW*lTn?q^!*5IWf?|W-iI*yAg1pl zRO>cZmy$!po=71ON^!G#1em)O_y^3CCL`!o_>(17RAS~#{_LdE z|L+}?zZg&QmJT0l+EO#JT%yHviyMsFDBEkv8}F-otcFDFCK}{L)fp){B;1YS{ZiY^to=NL`RONnv|`DR@y#gLar25@ zbgJBU4dF`sXipEfF0uvRf@zaUM<@X$Wz@KB7m_qc+zInu~q&@4|I78CS|>$0-@)8|6yhHuEm z-?QVo_56-uC8dQ92=LJ+>tBtl?3PFgHI2Um+@jX_7Uj=~`Fy(|=1CTG;xK=}2KPS< zmn7c=%SK@ZV-hH;W^2m5&97_f#*V-xmdlX=*RPg3@3ONfEH11@Iu+{PP7X(*cG@Nm zN6FeHh6wAB$E>KoAGqCJ#K|Ho7?WfX+3pTss=n{hxIt?V&^W_BL-+Zjd4@?kW-E0X zefjJ);r+}5=7-iNe7S^Ut%2i>5;qhQ@Wop7oJqwCMiPe{uZ477d{~Tq*hs2qXI)*UcYi zpImNYTt{qV2wG#JM<7vP0mD?ihau8dys$hcxP6p%-ubl}<+VS*%7dSzhyTpMS5D6i z@1jK}(|I*DBks`&Nfpdq-OF=L0iuPpeM-9pml--$S}7whd6S9>GD??==aX#u9tPDn zM2F(^gi{Hl`WCDI87B)0r+n~sGwTO}m7Gu48@DsCMz!n#xUUK`#1#!lbIAGJk3OFKi&g*?^@Ru5abzRAm9v6;%U9(0-MCA1K3%edB& zp1C)4Mu)F%$XVs$4JS2jGpuasQ}NfYEjCxbO0b~7<7g9m9z-IM$6&Xw`f@M9W3s$1 z>s#KIJh?0BhQiyDU&i2TshDa)HqWCYv z`6o$WFDShD1Bd?z(fO}5S zW+dUq_Ti)#^=itr2h#~&A;w$qHp1E(9idji8Q$&8j!sUD?s8S7mLC$kcMwj5zedVO zmZY)AeJT9q0<@bKx?VwxH}Huwf|)#RDmjq)_gj`f5jZYZ3*S0yIEz5rWo}`SgM(Sn zl0z1ND&;5bB1JaVzf|&&)YV9m`QD| zS5nsU#Tqf;wM*aDvD{R86OFxIhYdUCv;l)SJvUSP$~?B`53l!du?X8R(V5v+(4Cw% zKbr^_faE3Pu6g3|-I!Gs!8KkKPHpM$#GN(>86Uz8ias zQzEcz;>6yznx0Mpcd}28I`vXTbhJhTQE4QdbU2e1f3R>#pxvO;#uCS&GYY#T2F5jc z(l8>XFlRO4$IT@fg7zFz(L{fJyhaZ@nv5UHCY7acr3XbTra$pIB(8aW>)dAxX+&>; zvIG_L-tpGW3Qir7u5H8nh7$)dCUG-4@89DFeEyu7l9L@DDh`o>bN{_`+=g2?zYoKr ze~>9}EQQRRzU5$YY%hM6oTW+}2cxRF4{c&sXMkUFc4rZ`nUV|V)r_A8+%+wXg`_w*tknGHEXeE=eLg$BmS2$E7KZ&Xxx~= zg*Q8N^+K1NlG^O4+3(*bNECTm?Mn9Ox{?a}Hp!X111X0T%4D|cbgG;3*(yo_%3qN1 z4oyz>R~R&_uHPg}8s%9v%3puoCah0N9o28#sck6vIbfFcH|l!-{;he`&l}@q69;=e zW3JVvt*79>mr!@c$Ua$!$qp4SbaV7DXF8<4 zX}Q1g+(#^LzA?3!H$B_!*uHh^C>H|kv=cbamY8)j8!_{tPa#wjeUYtU@jk?2T z7p|1bot)*`TH-COfr4g~*;@!GLvYKjo%B1?mZd+T9yN{fh>^d{cwXi2_r)FWw8DkT z4$cuF5u&!v#{QF|5w2?DEw&v-lkIfl3>ZFb4f?^`*@SA^Q zd?R)7fWq=G=IkwJ_dosQhizvy4(zDyVJtlBS9<-`VYBV(s>-Ly5y4L~`CmlT zRjI~~6z#t!l8NZ%XJTba=ZY^Z5*tJh2|fY(@&ru+|HDf9bL7WI0~&&1as~lTa|);P z$Je-@5-CKBruZCSao8(s5Cj1(R4x6-W2IdQph%2aePiTDW%~cV)T7`%%dZ)bf2SwRYAbdLJv! zT+HjO>-2TNFfQ-9t;CyXe}nG^0BHspjE%iLy)>zc>2Lh#bo?!v`xe_)$X^MU0|V@D zVCWqCbIv0Jfs6pHbn^YU-;|=fyfL_}{E||kUV8(xoB#?dtb}y5$rcr|F^NN*HK9XC z@jqm=U+(l7ve>Ms@7>bXBM3fTPu}Lf-(c~y(K}Q1GD6UmX;V*DG>z|9fIte9qaXKlRoL%di*AR zQUqF$?npAK%Rwl^o%K#|D4YEp$l!eXA^u~#@b8^6G|oDO~j52DMrWy|KDkk7~&z|dzIrig-0tAI$3$Fq2uxHPjF7~ z(E;n@JA<@E1_0F5;{vzkO3zRi5=&X8k z={v=omIQ(s`A@#&g*c?uX*%)X(?&+FAYX30YoK`X^P1h@JE0ClHweap?@$R%Z_kB% zw_F4=F7Ocvp)rHKpBM9GD?yF2xG9AsUMdwz=&7`(*Y)EIWZ~tO@7A8I)C7?SQ+|o zBKYG{apda7ja&)2k(L9e@p|LFGI7|B`ko&;#Ff<7r@(wW7yBNemlj~PI3!|^*@^Opxw4L2Ak436&hI^cD`y6$y!_lK-3 zP#ghLg9bsM;^HU}3%<0nLWoZ*yAfDDQ&A*f-S@#oxF~Z{aVlc8^R6Ls_#)v2alf~v zXj`r1!+S4J2tNIL@hnK+w2f>h0r~e| zC0rs}*}NkxR&%Q81Of*lpmp?_FPL@|MMt;XQu~vosjGjNn9m>mGb~{Cs0a3&rSQ=Z z3^hDKLSWOERe2EyNtzvb@v%m2x2XlN0A|1OWQW6>-trHVeyTv}APtg;Z6Koc5Ywor z9=&oZLYq|CqK^P5jf)u5irKBBqd&55GII#VM3H!xJpa0g=YM(~91Q0bX}{HP3ChtDj#@_Be>9 zzp@tBaMn66E9&a$$>UN;%AOLVq3KfbFV*`*=xs1*LR|*J73$5Om8`h5a!F6`tCt?3ZNlA%1R7MhF@)+1|jjMEY@S%u@ z3s8_pV8{vG9ncl0lM?G5)OjXbIH@I_xkxOOnS^E|iAgM}pm{TU>@BhiwIE&1H;X1L zBH)rHV(uJe_-VG^fM2j~n~_5}#$4d)dRjrg;n@3wU!S$+V)_}k8eE@2F$CPXp{_N_%*$GxeB zNqqT*=#XUpeVV4QIVLVMY_*cSVT!=2`UgY0DM5+_j5$VwX#Q<}i|p)=Izby1IOA|a zLLlzB3OA|+OauX0Lxp%ssG{k46NZNKFy%L&98`1LTrQyidc?czduk%N@6cpx1gwBN#m*-4DPaE0m)CO*grKVsraJ!?;qS zG{}8y>nDwvFJqS4ve6z36>!xWg&ejlm2Vw^mC(cBmYvGK@+OdYfShCh?c8N3#NYMo z3QJmHrWdP)KQb`q``BA4HfmuWXIiG&>X)`V8i2ajIW73+PhUp9-37D7#!o4wGzja? zmIy*XEuhE}v~6~z{}KA~wmH@J+mnhE3HpZDOrHEllv8>O0xR9@Mi*H{i_em z?iAT*Z~rraOicQHFfr zCRv&wi3&wYX(P2vYEBn+N4Ipmf7|h)R|`#1t%g%tN=g@~EqQDudoi=30|NTSJKu!1 z$k(I^s$eUm<6hIE|G;$PY+#hnqqMlPl2x2qGMtOzS*o?u4`;~gtZ4P3fOErQNB`>f zm>i8~Ff23<#&s0GNTjy-5alc7H{!m|*Iww-9MSA3PEaJ^zXtxkM-ASaFNHB~Z9Su( zrq0bxo(t-*FZ`h|@9KR^clh(`@Fp}H;iMV84D9NA;t$?QmtTpZp%K=td%VzC6I7~x z@RneM-FhgODC=IYnkhbQ%HaZLOeu%Ae=-v{4U)${vdloK<+`Hh{nvzSAGcw3Mx@hw|^u; z@vy+lW!nd}|KgDs=s{*lcAw9;hai%W^U$bHSv=Nz(^tC{a2-r_1jbhQ0 z_~I%ntYaCXXf@HIoaw*wCBivw{s_h1D2+s1$;G9m`^)$*v;F;Ll7AO(4)jZR8|tad z%-a7d?ME334#~#C=^CGotS=5tBo)j5tBlHia`&^^g!p2s27(c8Ir_n+S5{eha^|o} zv@p!t32FxMnupdx=Ol@vAx$;pE*3be4}2c~Ex8BZPgAMztla4=2BPb04|rai(Q5Np z4N$?N0}($@>DaMYnv1-umUy}eEDSA1&xdnabxs8NB2J{~FRo4)U9IU9+6-jpgSdzH z&xA}#RpdyCLg{6y1J@&_(S?IZD+97VyhGdO!re1M{FI2-drQd0`cZtu*{MvlP653& zu$X?`DUE+b6HF7>FT!%aqR?_-VZmotk9w8P){9#k(>5hhYGIE~iLmBt$guGmqx;2B z*e>}!$p`mxu6zzT6*fASVMGeQNQ+7R&z0J+_>qLajpx+Q$?I)+oFK_Tl*L(BTdPm? z@9NvFr7J%Io3!ZPy3JKFVz?BaC@Nw@jzDsK79+E{bQ*7g{j<7XW#l}@0fURTiD~sw z%%nwHT4c&xW$RGs0TsRQQuyyA8mb@6>uc>M?q!eO7h z{v*lST_)o-MFZ@BparGHfWEq`RC9Df0^19=S!cD4$L#|g^%|?|xQwMQmI*4i5TCoj++YfN!RP`kyf~*nC$a0(hu+0bi2LTz8=sqZw$6706V<~ne>d65UyESK^bFup+qU?Q;^?A$21a=%ibql9{*l-{IwT|_8poM_6yEhNrxrCN4s)Q*NqA6k|NF%2f zvn%-1ayJ+~n7h&?3WkF?k)$RtL4F3)@>fLvcE?uZ78aHXpt})y@xjDf1%*%Pr@w}+ zT_u)QcC#zy-#NYykbnI67D!<~?eE|D^mkxt=DgPZH_Tp9Ix&jeH!CSEqveP->ynK+ zZEU1Y_@4*f8ne7Jg9X)d4~=&;LhJX~GldyL2N$YM_RAt)QnfQDGplA z#>%I!bP~h$J_S^jv7RRc{J3N&HS~UaP87z|%|ej4Qt5X5t6XqOPn9wVe|*M$EVwW( zd*SyD2!c5GZG~hRKQP*zYj)E#r_{vFF&xRc)7c6)lJLH~W*C;Sk=LwRHjYazoDAYL z_{#spxY3}@DhW^->14Rk@$euE{R5EH*T7yBP-`{4L@CU`lRIRwBlaHg9QD@xpK-fMEKEPM;>=H<_>NSotCPgvv(A}=HvF*86wS9Bfq=u}+-#rNWoD)>F zbX&c4T`FBnEUstabGlK)lJh}xQ6>XBJC?!*lXh8I*;(Hczd$<7!{$YSz@F2#EA%)T zi9Q!@wT2Uhg66?Rrw>@+e2F}wsP%>_W`;yJg>Dl2y`%`p(UCK|f9E6#y7XJr!kv(K z^A+q!4{V>fCys+m3VGg;g@)aPp&AE9= zf-5qYZGr8*^sxuQ*i743KwST+dyRh`S6=(V9a|HQbSs$qjs5(2AC%<~W@6iRQs&qW zEuWz81~Fi&E#Y@x$GOgOw+K*v&+?U6dJluj#`(o3;;C>iR>!^GX3K0``FZ?t?zmmp z{Fy8zbx3_SS>Lwh*3U>;B+~Prr^l5N)~u*LITG!8IDbP@4*UJgb9(U^m$zjzWo)u$ zre1itXB9|&jyNlF!e|y?2mkuJC9Farz!H&ePlKoLa>os& z+OlyEH^jGSaK=~kp<;!b3M2tbXpSEg+2x}Y*j(0D_Pdn;p0Zs%HfpuFxMw&}zqY!?B* z486|^V`OU!0T}}L&SimB!n{(8i@8%8kZ2JR=q7VyMSQK=q?_$!VivV@UC-ir&5rvQ zD5uUAX|HsRDZa%_BQDLPikky4Z4Ec$gsHs+ zdj0ZZEVDXxzUJpP36#YtB;4)tDkrF(C`Vi&TPGefnhlv9);#+Fz4ALr+UdBe+#8a@ zGijV!r{xK(3m9myL4C!eg1gwh;*@)2#+j-8UKj z`KXAkQinJ+Elg)4I>$U(Pg368AE;m@=L|AdjflDetf@#&@C%s>UGUnoBt;-2+L6dX z_VUx|M&&$#_}N_w({_v;?e(gMQzh1d3NjrwNX8pzDkt-@yuKFDsb+liuFupROQaG_ z99bD%qV-9N7P>P`!Oa?FZd==yog?04C6w`aAoI~z*vL+NaLRM`p-S34oMFvKyvE%R<%I>)Nh_d~ou&WT@;865{1%b~` zW^V4d5FE#D%i6?bo;PFp>&4@dA1CJRin2YpV^kDbq_$h}5-i?S5fJ(0zh81z_xE_P zJz+(Bht`FX-)OsIVp3dBL7?WRl(CQhxk?K`!1-uc!t`TPS!G7c{I)0W^XgHbOEJH4 zVy{cFL;yKR_Cywg7Czd)!y>UgcragYZ0{z%IB=fcE+5-E0~5&MrkuDg1)cF-_HIKh znXa!_bZ&b-?N-Vx7UP3#X9r4kSzIW|rd^O$_G5X{;a3%EScgRCw{?SF0~B9Vv1?&B zyAv~T?nUd120Gp8fqM(*t`=*V(CI1tJ4@0)Ot&P-KdrD%N8Dq`4nU69HyNUEp;0L* zEoA`5DF{EZewK-roSZn$6fEzs6inr8cRtW-0p$u(upVzu$zAmHU}lJwZ_+(0Je%?D z7c+1GF7}r|^cI@0%Ywe=e4qr`6sU6ozyxAc)|vKANKfyF^&GN>0D&RoErJc|t7BV6 z=%WjiH{s7Kj@dn#i;~U(lJ{Li!b3Wk`zZzSomk*c+wR-4%{Wn{JdRn~H;%r^Z0bSC z(Sq?TmEA+nGYpU7Uiim2w`-@^y2zQ@D&}E0Lt84D*1anZa0epZN#D&Q$S?xYddy%X0FDD;6^^{t_pFDqcehWGvmYsLz@b!J z!BsS@z0)WH@x+i2a^FUMHF(^%o`c9y;wJ{6If#Kw#`Wwna02F|SOkoi zH|0^xb?>HV@@M6JQHzxwy2oVBfz>V1xt1g}vCj*#9#+U|DVlr~DW>17K_8Ykj^$V0 z4~T%bjRY+m@uvZqBy4|!et$hp5KG}${dH|d;W<^{wM8;s zA9P)n)j2oiL#@uP*oEnk#(XfqOS=5(~J3Q zh>JA)G>J9DKqj7xu&75-ZPbaXP}?@vcdIcbKc5NFcw|wh&|$vUZ%RZCgUd_mXtLJa zD6JqS&pz&7SiRG5Q0q*0-vtz5>TPP1TwD9yuIbq2+-wGM($I-v>6g6$hI4r8x!oh? z9LWApH1H%rj^+!TrHOnob;SPspA1RcwWLyCh^EHIvJ(~MGiKOyz`%QysEFS zhv2^|0KP%8CDPT@a30iV{f&lT`>TS>86CAx{xaux4JFrl6EbX#pB4UXM=zb7Ql7cd z%#+V#EU&^~H;I;xN3)Fhr9wyz*N%m$MSaKus!ASRaBZ69RqKDV`0cu`{J}~;Z5eCv zoOiSD&6cM%ck|B`GhFS+Q-S6TAn}lZkQoj#1e^i<*PXh@D06e(VGNC|9_48w5l6aP z1@(Me=Y-HhfgNCC(+eRa!s4Lt?C+EK85&8)Pr7@J=$}~bs5tsYADQ0@)D77>elgf` za=yjeiUoh-F$oWJGwSz;k&J@Q&E|a2%O%-E;4MZA5_1MDXXWLujb4pcsdH1);V>{1a(q z%kkvNN(w)CRN+_8;E)ycIpslUb8>PnkZ1-P!CWr-r@H0Z3O=Oc5N^S2w_IL_8i)Ud$EAVs!b?FR1Cc~>Uf47tQ;p>N16}!Uz zdT@IR*!}tpqILGWcV!r@$xGjgCo5tJ)+$)WPPi{7eteAWnv0szAKo<;DpljA)O$^k ziPF;XjxC?LXWT*}b*FVw#19T>?Hjzi-OJBY9yvZz40NE|o78-nhIz@MLtkH^F5XmR zZf=f{lM%_Z!^u>b=*vr$u;+{T&DB(E;vWQVp?)F#c8UxjL6^ImyoE&GXL|1lAwPap z8o`r1tE7L0<+rr6%!AQ`pC+78+Rliuzkpcrv&Eq;J3BxjiDh(TL^*&f`a?Xfu021W zUjI7ngA%!WT)ei#{3@$`0|P6tIP{b0y!DdU==s!vLKIn?;?^WO12zYY^*9GC%`3ys zrzgfZ!Ic>?l`rzu zRhat0oExRs#l&FMQ%)qW@Ni8HF;-0fde*7(&Sm0<`MVYEu~2b7)c#tv{SR!vT4|s* z)wQQ{iXg(ojqTWU8XAjN((rX_e1;1S7(N01c_{Dy4##2s{kWY#hkwsU(C}?aIuvr# zzVZ1tcDi5BW~~ItISCRg#lX8hIXQWG4~K$+LL7fcHh7fin^2^%>tP0?H&qf(E3H~k zp7l2^pNgPFM)D7K*jAYneNX(4?=!S_lvGs6l9)5SP{!E!L-(Fk@dYuvL}MY55ZMh@ z_co_z-992WP;_b|0(<79oj-am^s%;8hl_yS7{0V`h`Rc#T-Hd#Do$OWQ!fqJopsGC z(XREwqkQCqi^!2A&-fenD}sm zbeaGG#VJ#kztiL?mIa-A;R^!^|O&Mh-Y_)!gSZ)q&IzzM6M&ku=$`Sx>*5+xu{#+p#XOj$W0h0GdTHhT$H16}>}jx7qg3 z3%FF+-ALrD_Bz^d!0LwxGcbk?x+Q{bTFR5^%xD@VDNJ*L4DUj zxO$e*OpQ4da-YfRmX%VYnnR0xouQ{1-e`9=$<3vuB_2R6Ays*G`ibx6GbaD%k&l-* z9!xR7jwX=q@Vpu6u2%=MtbiE=3p3*bw%{U2q$ha!iy7zMJ$gwd@{QqMc}))-_I-}^ z?>dt|{0;_LET!sa+8B7aiy#S+wf6MEfp>A;vc~$M zW6#!UGa^0*8>!?`4EvVvXL9jE;^r!PA70WLKXb-xv8OtZAf?mdc-%^F?105Z5pT zMx;Ej{yG4p%)Fa7nV2iTaEo(R)iX-=-r3Nea^i3C%35~RB2`0I~H3MZ_!?!mz90Y!Rl2pvpi{g@{pHMDnYCW<7 zb1)*$ff|bW;T)a)mnXv^1~hyeqc2u4RY+SI1et@kp6|#yG#>vR zapO+~lO#zmFg8P~qDa=G>ul)5uyIX8p0~T<#PyYszX>~snjk*-Wkmk5PmoU4R9QT96#W7?*w|nNlMX$R z+bR?vLd~PUmcjKJhz*cv(1pOp0ND~q_u|iQ3FNv1hq*88q)4V{^jwa9HZakZ*2_Dv z)-chBGmO8vs1nd5q)PA9GTV{PTi4|8Ii^%H`zzx-&>Dmrj7JfqTh^nmp{$jnK1Oon z)z0c_G=zakDfa5z_o8ZrgkI<&4h{^;aY6a@Nu=usaLSOjrc|p869)(U(KK;=(Zc!O zc>3-jfeQ+a56&zfK*`0B9eO<#o=w=ak@k}ymEg(#%{;a#*HB=D2D0EXAJ2w_d);;2 zY+Ph}|LJ83n(lEHoyTRogTm~OprWdkWYi%aRW(uA&Wb4o&O-8~Bm_o#AO|93V8!}e z-KsC{WkW*M|3C$oyF=f*wTU3<_PkmYUs=y99wt=#eML`6KYi}lK0Yg{;v@hK*@l?K z1fS383%BjbkUsO=x;o+%MH!HLHSV@SZN+KOfZI5wGWle6X!qR7k3rqOxbjV-*fidK}7l>i_o;GYb_K=I$* z9xninAt?LYarB%YWIW@k@wHaIjb@Hb%c+J*JrD6g{*Qn-k?<{taa3Eq+6Zi#0NsKv zJIDM6{u`A`masY!IbX{&_~Gc_UAh>4@T=G4;rTeHrV(S8SUu%={-aMb0}q?w=8Ym{jTF9h9Cn{Z12C%R{toE9XY zy9^vEu(Y@nDqhP83SgkSov!}=xt@W6|Bny@*SlrS{iRX68#T=flU0n7xtI&r7}SGR zr2>M3nc`s)+h_@NV@T^djFpTL*ppcV*p4$Tt%H zVQRG)i%Uy1*J8yDj;~77eqM0sTCTtEb+}gh*b)|Z0A~LULeOQfSI8wYO()_sGCiR| zmnIIBZ?&SmZA9tt&X4yT$8*w|trV}Z#k8onhCSJ4 z;j_ehiPhR#%t`MM&xv0sfR7@Pg>W#%b%GI&@G2+l|R3zC<*kLAmQ{}d1HkcN3})j zu2Rk_l-URri4esx{K8mNv~OID<@T(+^*THZ2fDd=7XB^;>S2l{DU8&EfozeWAX3-S z31bls9n;$tr=IZLjeP4u5~J6e@4D--rNs}c18`CX8CJ4Be2B!sflLQ>xIQ38CHDWr zkRv6V6ZiP@=1bEGw$537?zX`=Q3f#1*iSXkD-f!EDX~ued)3MkYI%-6`^zNBhGSyz zzZb`W3v3{tUWPF6W|xI+4jiBX$2E&D1+<8Wr|c~ViQg*AZL@RM z7mzL77}k#uDput+{dV_J=L}b_S*-#MU(m)rb#a|nB9|eGJXzd!&dSu0wW%pS#_2zt z+;DL64@6>%SmHD!Eu%orB`J!Q9aH2G-E>Sj{I&65a(T_`tXXk3L;z6B*^>_(%!WnR zvwFgcw~Vr1OfBzT4CxgTX0qeVDWq9wH1Xo8m9hBkxne4!muKy^f4Yz7>cR7-?U}fh z>wODHhl2fylW;@6n4u`S9NhcAZS4x|H|dp)zD8B^DhPM$Q+1X2++Pm44Yn4~fj92J zOM-RcEf^F-)+YQ1*B~JB+kTk*HK~4jdj5PuxF??XQ`(2A81ZlUZ=UvJ!vRA;U+R`K844wIdbZr<4^%fJ`?tnVb+-MG4(jSLK~63jzf%)X7Jo;S zbGncIJbEY|fHH@dg*KaI%(wOAPy7`l8rm!h>c8*GnIdmM^92qzB>RBpjWYBxFS*|t^2fX~>0`+7sajpt_ zQBhh+#J>p9G!Z|F?g<||OXplPP!c7}>JJ&m^4Xg}uJpHb{wPR?rJ16{4K-B5g&`GK zi|YbuNYYW`9zDe@(5N}ha|jS+bRU!!7caZ@Wx0C(SV)a6`IL#<&GCj}K_aMEOopU+ zxhzmAEbw!S^K1Cy7>^C2hgGClG4k+}J4@6{+|x8nML&oCnMIHCNlY_M66q6r>ux~m z)shJmi8xqk;-+Mq1X~i)4X>4Suay*hw>oSKW0Mh~8(JtAt6XpgLoFY8nmR*nGCn0$ z37e7sKsIAF$ES7sd!{hF{1dRGua^XNsJS)dPJje{GH!3U2yFTTTPXY?lAmC zYCKO9 zxNEyz zc0H4v?vv(?yyIH?rHl1a$6So4$#|T>Uz0B2=W5}P7PORSH;9-iUZQpM0RMar8`k zy;Aj-O=KU{urf*_bl5yN`p8Q3l!;dB$KpFa+T1FSyF^DPAXyLU+3Z|&#iw;SmN5o# z)$p(AY}Lf`gNJHzhnMfsLIO{l4xH*6h9Cn8i--j>Wdmt^iLue)*+GT=9$|{Sjy&KY z0onkdN;)7fuRCACxk19E_8noR)=etUBJDK-bb_oUsT|F`n-TdPBa>ghib>PX^tS?iv!8$bpm6?qg{Rgxu_l@4 zH1W{7oW0YcF?$3pN43~`r`+O|p|DnyH5i&7(HCxi(@b2;>M=2wR_6 zhBH;yC-LW1lRs%#9(CAgw5+{&(alvT_(8sip41mCAdt|B-k2S+6`S2SuC0F3#W8J3 zRIq7i)*EO<_>OKWK-%I-Vcsz@|6B#D(>|4tA>ObP5ItHv@#{zi&- z4mpkaG}Fx4l!d(dlex24{gih*wT-d#l+Bd(1I_pBQ5i{J(f1eF)_xZ_0GElR!{l>3 zr!bJEIG1?DXw4i4;Yxd6K4UcR8JF8zceQAW!X~AhiEBBErv{WLnT^s+t8Ph@e12X( zdVI!(RuGt=dh#CZe0bw;wrpqFGHDJL%R~V;`-RC5rK1lq9uT<0E!9hm3G?&Iq7@L zJ8E`b_rh*c3j9IPXSG@~0Vt>gH@UCPW@TsDi~oM~;Mz6E0F*1#WJP9}I#>eE@M>L3 z=uT6U^L#8>*Jt$fToNoe!2sz6VSPhlLjT+mp&Uf8025&e<_#}jZxYC$2huGZ^L9yD# z-Vf4X2pq;vk^I{GTFE=S*+6<-Lmr1(O2(T8aiJp_o!)gyiJj24c)}a=e|tX|X6I;^ z?R}V*m%r{c?MAXh!EcR<;mao!;%Msr>>PX^9j?03_!g*51BQ`0``Lt=n1Q`(`Az>g z_Ji_@jGf4AHs4z~uBLUeC1I)eCds0{`Z%C2B1%e5zlfzBLQikvM#0WY`+3XOa{7Z4 za)4VsD&&H17_b-W8tNddo2>Ii4ZlV_pQv5yEheUyl01qMU8om2pHH~`R$mG~14Bq| zG1Gk$7FU)g@tCo}#gOnor%5HjmFbv1v-~RGCzYZG0t}*AaT-NS;T09u8KC=SR3N-% z#F`S@PBRq)b}vv49sc3K#sA#{z7oVigM{H|7@wtX#g}wie+(h1T*?_sj~ad!qDvk; z!|WY62NsOg<)&5;?8A}}D?-KUl*FB$idZE}eMvJ7#`#H)k&bRtRk``SCYuHwH3wm3l__3^z@_&gk==i# zL-S8Ow*-nJ3L8w(Bs#bE;p)141#l~nlusHC_XCy1Zu&z40Ait$y0fvd0j=L+ZWPx- zq7v6SGxo(J!}6N2=UNkPA~dWeUnX#|wx1o!6H8-|%hD@|K7Mvf!|)7ggAmXX)Cz#0)0@9&$BO#%5w=_yir+}oSBGN4?D1uVbB^{E|DSp?P_xsP1 znYCt(YdOzz&V668_irm3;v_G3T2_3vbXb1WgZV<;T;5ul`nQ`7)|jIE+W<+p%HbIn zvlYI^@1BdB7j({r1jrW3Mh~o|1xB_zzerPhdKmkFvVUF>_q`V-*Ti3Pk&=L#MZSec zqa3Ls+eO26%)C$0WTuoMeo1XL1^(5SZLj|X@zte&?K?X=kueYw&)4G3Z`adKaZhGZ z_seaRMJuISoR6!@Z)!osl-@Jw5*>ctHj9S+sfG+cKc5)$Dt$etM0K3~xcu|;o=Y_(W^ao#2IH)#m(?Tg;6o<`rP@rHK;~+>eI`4RUsbK;OM`w6)N0#Dda3dRb z#r+kJ1Jk+5U<#XGHf{Z(3O-f$op*c9-atnNyQ&2^j3AN}K#tA(y*$ke5j5c7gX$Gw z-PO9xNdbHnsminOB$)r*FpyWk-;$U`cCt8?)J}&VLosByhB9&AluwL*{1V&kzRi=d ze>HHs8eSiekL@!^bfBVLx^zWGX`FKz3tt|}|NaMCqB~G0UbAfcPS}HEF|Yjc*7U$? z(rFbdjM5R`5rQ{{MT0AN-tN*9c1FalLi!o9y(@)nEnq266&l`smVvFH<5XQVB0)uD zLgUxoYL{EXqrN8Gd>vT>C9@J2X>5)cqA(5#yofoz8;tRr4=TTxz)FJwgrwOVJnLbM z3?8jjFI}s5vD0ZNwm&?P*HZDc6^BE|kS2U|D6G6T{ZIY}Cu(DHZdX5XY&`|2;Oayj z#3tR8bJv?^8x(;6MkATkGE-BseeDEJ(=B~O;sz7 z_3Sd~4JrGB`B?rB>w3af(($xnpCK30)-GwdCpHIjB@pW=m>-Esw{p=l19=StoM7b% zN#uU&OFmj~8I0Pq-4&%u(^h(~Pp&-GruMqxoc=yrS+q`xbrz5u<7kaGW~#{+xvHad zi4klv2IFVblRb!;t){lt|1cN^M0Sq$tW3U~EQL0w6m26obmbLE@|)UX6Yp~y`i(s+ zh^8v*$@GI%p7g$@_r}-vzoqnj3_eUe)tBlfKa}I?&HErwvma#g7re_NAdCmE#Hh{m zOJEiVLS-5g6JzVZRnYvq>C#N@oS!`H38hN0NZ#0(_Eeuy zu_;BN-+Ox#SSNYLf4R5tigJ=W z*pMcrz0Q*`t3%A8Iq1{O*nfo^vUa{8FbeE#XeO)4##BlN-u+D=vTUrRQqy zJ-nX_n{~qtJdq8iVv^_Omdt%-rziIvFWKF89OAH)cWcwzKA{2Rnsk-DHA%&yqC$;$`&oF0kO7qf6TN z{{p8a8RYL<-V#53D#($Q2I4LQBf&eRu|!5Jn4BSi{5kWd(Fx;kEnv0*QN3`c!BZVo z7}aBK3CfqNa7K7nZ5%kHGBCAfJGSO`*7>yk?QM8df?xK1Q=pk!n~hvOfKQG>-cE-oi-ceg)+{&>Y=*>EPHd|+U3iz z8$f=xM#p~s{0u2wWtEj|vZMo#I(=nFwUm?Pvui_t#>)jjWd=LyJV^MwV%)9bBi4Si zB~5qw&o5i07&%<*b;JwKyVYw>C-8pS>kHyeh1v%c6mH*h{oO^`UT-?VrQd!ct6pRt#}~$KHYxTpJIO~XL%>5#u| zr4(-MX8h2~v$7rS4g}o}`gbw6ba19war8PaOTpUxwrYKR|M7Kujjh6B@w}NS{1Do9 z2P}=(MV0A?79Psr%ex13JN74{~?%i&;a~CIG~0kOXy-&(;qq) zw7E-+iilC-0e8(zTzq3s#cX8bkzzsa2L=?~&vWktZLXZaJW9-P4WnHQlc*WtWdtttx!t!iF-I zrLQWz-e0jNW*s^fq}uQUHk+h+`c^bth5Thh|jWL5(p?Cw-_Nx09=; z2bD!IE~b2su#L#fT0DP;?7op^RUx?9;V!P?WY_MmhLSZh|J6?#om4+VBE zvL<4m9IbEwY2q-| zEh?Sl_Ej>crx9o|KpmFgRcJEdgP1gs(vFOco#XoCs(im9u`D@qnq93I6Qtu+BEn$J zllPCKz41ywJgf6fEEgBoZ;w_KRJ0rhlKBg4oHo?{xc?n*D3H?vcQ6vND(1C87RCrw zNe{qdUUkRVF za8Z<%B}>J-pQ$c$#2zo^b4yn;9sRNR;&1LcFnGq8V7e*aM$`!-{ zZ6vW1LDzzTu`M{6Pen?cZomHSlOL2C;ncO!cw@l%I8+G6)QCwF zso&elpSgQ@?41R4UFRqwx-jRA!B;JP|CmExi6=$KdD(W9!jM*xda9-9SXY&%;cqJ%F3blxpAotg+S$!NeNi>H)Mh354lAVr)4t8|BUoJP!7S zLG6H@xoOA0bkguH6RFbOGO3T+hV%b|Wn@12;kIEC&?12xipAKLhbx5nw>e~NlT<6XsZ zO1fpPQ+-h5%F9Ie=qp)t-fok+gGlos&TUNWRjtFj<_Pc{?6jYl!GJriyqzQwH}h-v zi^rP1p28c>(pGziUR-C_&E$9OeOhPV8ditFF?JzQm>nWp+Ud}!<7<6m(keJ!d-PV# zm}5o${>V5ZR@aN2voqhVS3s4<2}e^hrPFgc3F?@d@J$Z(#?8t!>@_=+$nC$9v}a48 zP_h$=PjMe{Lq-FIzGyUs-ayo;>D*Xn1+=3pNgh?Ri#5jK@*j7&>_mjvM4zj**Lr`tBdtExIL`UgcJpF$btoB^Q8Sq!N!II(e(ntJfcG&moo-gy-Hs$ z5SqC6u+2HN+2jSLGqE4*Z#f8pm!fbnl4qTML|P#>c_sf~obiV$Lsz`Cosq4)f2 zq?JR%d3&IUo8WVEVeG2TP*|myd?oLln^d&b7s^`CWo}qb5j{I6zpIbQwNz9lH4`Sw zYrZDc7_fWcgHeZ$^(Ppkigi9M=qcK62X|OwK|v_s23S>?@7~QRDJcma%Ds|A-^qj? zHNyjxQ|}-#Vq;@DRWXj65<9xEkQt&sv9BPM%c^nOU(GQHk|x||y~g)IJe;e8ZV`-d zSrGs`WHZK#cRWr#XC9F~xz>2!J#n}96Vs$77EW7o2F!<#+fGiZx>nrxpowL{!Ksnu z-?}w*pNX>v=hf%X^f*NFA+0?B3OK>=U|88;>_l;ukp)f@jTkN4&VW1}ZQsTWnm|P- zMu+tc)hDTFUAoLa zp=SIToD4W&B(@M__v8S*i5j(k4CgDtxx9K2f4~N94Y=jSfAsmz5|CAV*o}r*(Ar9R zEi&*;v){b=b|8p6_U7HPFQL3I7e!59Xc18gZcz(o5y|352lwrw`miARi^V(AarY_2^~o?7&HmQi>!|; zTTT+zTd}}Wkte&Dt5PjiVjxp1t;cTchLW=LCs*lIFr1QzTLs3{$4vtc!^wj-B`hcn zKUI5sdl8E?0x)e2TCWy+6GbG+ldOg;W4HhbDw|z zMqkF*gJgMzwWqx(h&z@c@Q@hpe_Iiz7j#|{;%c^eb+mfmbS!7!X4(;dukk~FfvYiFFAnKOq9?` z-lwj8`9QmUNe8Bjpty3J`#`7WiTCsOmJs}-py(@+_|u$VEg4eM*!FkV{oU9qPH(-f zV#WR*Z!#q{88QCT@2iyc8zP%m#Iy6i#@ou$@;FkBZ)8Z#@xFU%Y9`fjBnL-Z$}ZLS zu4%>N_l~rIf#h>{8#9u5S19ME(UZIWJY+{k5SkmhCVx&%8fK2k(@Dc~VaqX-vz zgH7V{iOSC#a{dNiklPdy=S`~}=6sLJ6-kNdXbWqvh-ixh7pl#0RE_|;)|=19WA~1x zXn%x{qAS^9N2lcJSw-~x8q~wI?%4OJ{)kNk>$(G-dfQV2-#^}cdadL#05VDVkPv+5 zzhT=yOKKV#I7bLTdfg>&EyQ|8;yLAtBEHR=s_)WiyVXIx1LEQyAT>fZg|zac3(&(r z$So4~CK(?m&rLFj{ggI2j@(7kY?*t|tmk_e25zQ!{Xg5Bf2_sD#h#v?MDL=DCbiUJ zYY9rnBeZpi-^H`Z+(D0%)hH9Et}pwqBAwkicsJrCOdTB;R}3)^0ZX^PcJ*)Ecsw>@ zq@E_mP^rI3k{ymA6r_lCw_jNgM^k$&e~SIa{F=WXs?zU!q+L}bcf1RM^iI|UGzoM+j4XTwnZ;7 zTbNg^=+b}Tkm_9WO3n!&mWwb`*oz*}w0~Ci_AMA{rS@VwO~DqOIQqr_ezWToiytN8 zWo5%2rIZy`SQc=S;cRSf zM&mKO(4OqLx8?m^HuKY?^~Qk{h{r%m7?^wd!KcAxH#e~U?f!*{>rD}cE{?NPs28u= zyG#=)%H_4XI8-P*CSz(Rl}AQ?+gkpIyTUmT3_7@B7J2Qlra-RxCSmUfF<;GNxr7HB z68JRth;GQU;+1~zB=o+23nkgp`#wjW200;yOlY6ozLHr+T8|OCYCV0`bbP)pQE<1{ z^9QtSr7JllELDjSX%0w<_)^r3nZndl%V+xcm%aSD&^dq2DNW>TGd7Rv;k-EU;q{J( z8x|~-9-vY^cEAuM0>T=iC4fbb)op`3l?^2Kwdi3J z59iwF6d@|1BM8uu@oX5?Iz4*GsDf1(Ht%X=(wMce{(eNubE}BnsvLh|-6~mK2_4sv zhP!O8k;*|11J?K}FaSq9!M3C%Dj%*^gXZ%1n39fJnls0CnNP!rqh!PrS&e`F<5;aa zzD9J{lk)tvb%67ov7aQgYH=fc4^=J$rCEFf1{_pVXe0CWhkRetE49)&Wzq(kG%u08 zQsl9tU^^o5K_%l(x}VpS_;sl-(?NqmDSPzaQ3duWv5$;+eQOIZnl5+RT+PabV)}W2 z)VtAZe8fz7dgSrBZJnn@>QSJ ze40+LPgL#IYxAU@R3*NHy!$dlQS`(EE8i*h`dscjx>>f?b-rXhClDcX3zIa9x?g(t z?~B#GX{>Bv)W>C^b(nxkKI>R=v|Sw8d?y2z%Dsk;B_NQ@I*%*=2kkxN_#xU7IYP-U^Q--g;7{~dfBz>Zi8TUG zEOL}7#aYXL)svipaoB4P^`br#CW?JkdO6Fl3hVeoO|M>2IwWYB);x=e!2uk_0E`v9 zesvSm)2pkfV8h&^5KwAGCqIsl!H z*g4B~3z^qcGj=n-jE410P83ys(YkNcttBMKk@A`Wj=Y8a2{%z%Np!Q);hq++O(f6; zrYm4{0lLBiXyZmY^W08$WfE8@qeJ5~5gvaa7VN*|??|B4_A*mk{pjso9PhXiL7+YeQyGR(UnjKXWoMeC z8V}BA>ax_)1nhpk-rajQ&<|PW5@YX7?}I2x>0yK5O-GWa#ciV2C&prS{l!E2iVr;T zKwfirLT_H6DF7`sh>M9tjDMUd39d10kMett`2IMHjE;}LGE3W-b-wek!Epi5h=8?; zTm&j~4pzBA|JwpQY|R^F%-N6)T} zyWGbI;Sf`Sitk-@$5(yp&kEmXRz$Zu^D$Ap*b#}an89khW2Uflkyi_1Z@3;dTsDmp zB^*k+?G_p;wa72bg3cb3^O-0c8cq-f-9~L*p91nZm(-C4bU0GZZ_N)+o|>lW1<83h z2#UWVfCqX7lP4-KkT>E}rwmb28~u-N!r?ln_O@@Ed-;U1Y#v{oqHx&gOXCV%etq3u zXM8f~`?K3DT9t*NabUBg#Fk^UyW{%3jLfiZ`!A23mzK}RQDuTgBuo=|1O!Kh ziU5N|SZn*MiSJK{Q>B{LXi`|;!gAhHqc*z5W{!C^*THq1S}?etK|zzKyzy7Olt`t2 zw%CE~Y)3`}|Jd;9Imc_>3;f=1JK^*)m7fKeXukhq*$Q-{xRv_>O^ZuA*zkCy&rJ07 z+&%tqRaOVH>lfzIF^o92o!76n4u?vMHZi`@ruP7Tm+H>D-HR`ih7gJiN4Q)zkw&kn z4|6WnT}CY6g(ol@Y8++nB9=ljao(W=J{IdsTe1j76Scm&?Qfsz))?Wnw+3mvBsq_z zrRD#3SbTg^TMb+q7;qTLr^VEnUv)SOo(XUKas9b-%2s-HY+&M4gP$A$Y+?SZeU+Tha?%;$SG)h=_7Hpk69Hb%H$i8$ksiW(<7kpI3~ew~Dv*v{v+_OGDlQ0v8j>;~D70}rwX z5kpePDJMUlUh7(@FWlyMMfK5RO8PW%A~~lAx%ptJfpAgj;-84q_FXjyJQnUeB*oHF z)VBN%{_N(R4VvK8o*)n+(SXtj5tk!@fwm$A*00S}b-OgD9+ZljwZz9fGauBfi%dMl z1GULd-OyP_c~HZEy-DD4Zz^iHLAmbbj!(yb$PwFNgBP*c_Y*5@x?Jj4L`BkN@jhJ# zQ}|Am_Z-`wbUkO5yTbUd_zKsmS=?$IarrXRz^ifIcu@_pSvJs5{dgsj0rzbd&6^?a zFcj2CgJYgJi06Q@G`R2c#-%`!^A#A*5X|wdXZZb{k;UpdmI{&eWNqx8A0-yCv}}l@ zDDS{!6M~bPj>aAWM%22hVRa**tiQD45f8Q;A8X)N8kUWrfM>(^V;uU%XX~kg!s!gJ z-};hvDw_5Aq_L{(yH%{mzLOT!yp%$TNMx<)zRYQFy?TC|GmOB4u25fY;_yo0bg-P% z)~qoN7OhtG#@Gbu!AhV~M}0r4pRdug?&JS3u8oq0nD`Ue#J_`^Y1Cyd^v_v9pyFA7 zrrU);}JW-QPd$`D#3vY@>U#Uycpsf~q$&oJG2J~=PxYQTMZgd3Oq&QxCh7J-T8(wBdp_d@! z1wHxkQ}T7=<(QXV3L0)FczCe88y>Ds%OLfi)qAc+zw0vG)lCvSJZigWWoOcw1RrSj z<>jSR6-T?-0NB+~!TM4FI^^)OAtDj0>qnbX*INF@wW|}lS*2*woDW>#-cOKcxFPTV zn8vJ;B3$*?Z3|hFFEsJM{{3^Jr=-9f#hg44S^O!26KA52Pkq~2e!mA7b4nBc;uq&f zr;I!+7=#R&rE|mD_H@CQjkxOYZ>`$Zu(Gr})-G5HBNU4kApYlk$g$~)=Ja=94IG;c z1r-%Iv0uWNIDeVToISWX_Eg+a4Ly=AQRwaNXMQH)a#sA8ILTcHFo1uSP|j0dS5guI z&;0Su?0o=H9UUDZC!n;8n?W)w0ORzb-iXyFe&9VJ%opAI^82F8Qdk*J^ccHU?d0iE zRd63N-*v zH2Lq!=Np2o+{4j&-+nhhsx)M&z3;Au6tXxJ;oA(|o7;1^WgmWHp(M$0*`~?_x!qA$ zwy3k@rr_kWdTvQlAj=BEwLpbk*Z00R#1vdCci!53evXZ>3IUmEDfALytk}Y+q^5?X zbyg+uHc7EIPj)|tO~KEjyh2(@`FAAFLOooy&OVKKX7bN(=D=wHZT0PZop1rMJ!);) z8qf|F8H6Vj-F?x6Jx){-w*v2r2`D2F9BIy7Ka$wVFjf`i(+QowNzxls65-^mcGmjp5Ebdn1RT9Z?2X=trURnUET9v+Su-TvBM;1kW4 z_QRX(XFP*%wYc6I6-ytjUBJX{k4~yMD`TjPL*PL3H6_xPTQX$U(Hf%lkQ84qf}Olw za+z-EV{o%L@qFLt%zM^1r)ekkm1~&kcr;Ma&4B;{S_q}j-$yD-K(roUKqB)LZ&bmy*DZ%pg=C{68LOIYCvyMZ{&*tzQ=em+M>uCn zX(m4!`eoq}`oi^fYTDzSAGq10%AXcaY@O0sp3ymr6`L`T^_{AmEO_@==IT>KEFToc zC+x-Q1cLP~tBbPDY?lgm#1*FGsDs{r9^TczpEup|fVYleHbJ&v9)TG=oRI{y!JWAP z#4`(%3&_|otg}t(`1p_lq3cU{Zz18cT?>xg6WYr6A997wuSC!|GxF~WAR!O45K#*@ zOJw~JCB^?vpM|@2`B7_l*=D-G=*uj>D#`ZTR%ze` zs^?Ql02J1d(M(=-J)utM!TA1GaXKWg`{nkHY~1%_S!GwN=#OaW9 z3H9?exhOp@Fo3DQ^Wnnz^==s+jOh{IEo|-KbAlD?$43IL@V`+DD~I3?QjX=PxaThp zQ4{z%<&F)~&xuo5o|r`Oi9~rtkJT;W%;HYQzn17>b$JQu(b<6D$ zPTWmhpBwVmh|)@9QJ=P&A576HOEJK}_;SlenuVL2y0u3kis?D{DnPJHP)i#A+8T*} z1Sd3zvaZ^$iKC%o4N89)rf-w350++!M#uv0c!c8gZxhV}jkpcY(Ttyuk7o@+c~NTh za`WXmURW~@@0E3F>1J%P@>ltM3O`UFLI({qTvHcXU#CGE4K8B2Qmj=t9<^d;!@SG5 zvji71+&;G@7(YbFqmMy63IUWfuiovZ_J2T<7XcZHZpTbX>#vn?TP2zE)=p8)ie>_) z&l|nmdm9+noK2e8IOLewkN$+>k9Ltz+|3jkw&;Bjc?$TISXLEQnurufN|{7%vW#&V zt2Hk5dWNsdA|wSdY^IW7CXvs;`hjSNFepss84hB2-Z2UZC4;jtMm?xMs$l$(TXy)- zT}9I+i`2rb2>?4(rL*MK-bjfiZDAObi(*tyl8xq1FgB-p@{k3lk)S(1kp6cdeZ^1@ z0`I)sd0ae|92xgRL$bn{hz90(gP>^krpAojmt{xS(Y3m^H(nPN5wy1Bha1O^uRH>< z5(;b?(LxrIh6g#HDot=J++f*hI;zY?^^AJC^+BxmKX-vuDpH16o4htH%D)AZJS(9u+kaxGzFNMfD{De>2#X zxB?tIcZOCtq^t*5%Jd`|^5w!vsigNQJf|Lh>kG!M8b@}({gXHgNR5vucu~03h;YKG zOWR*5ZgNqJt?ZU+a-YF2rwIh5{&7gH3qT*RsOQ%O;1;h)wlm!l5;_I0ZbydKrxP{+ zP?hFBje#GWjPKzCYZ9ejeu8e#$XbsZh!8s#4j$~tCIrUDNH%pHU2nm*W_*VlnL^Of z8}mJYe&p(eibQsPg6;bA;oq#*>zp@>&(?LB9y~C6u0Pt2LRp}}%;YKBERr{@trJo$ zlrSH~iqjED0TYrjYS$@VvVaSACStD4hungm8;H10 zt$d-)2SsygDaD6bKBKn>lUwbCrxLyzrFlLIyJ03Tb`XtMW#g|x`y(D!z9tMOlSTpi zH(aI8o%R9F6bVx2>nA}we!!≫(UiKtrufyv#mw#7qp-O$5A-;DD7Z)bpfXK}rWO z6*zf##9kO^W6^I%0X!a!yiFhDhMVV$r`iE!5 z>rEYY@PHx0N-$UdTMQWYh&;Zjwb%RT8vNQB^PalB^Kor|@TGZJZ3TU?c2DFR1CLQX z1L#8;5Lg{dCRCM_Fu!E?D!)peSj$Y-DD;hOQ@$C6_T>$s>*BM&lINVlszR#?1@-R< zs)psp>Wg|lc%kXFeiwtApt-sEK@KOs{j}rl|G10z#=hD_pR}l_?8T9&FocB&YT)HB z6y{sxJb^aYauTz@GWZ*37#~qe()#Q1!ndp zHzJg9Gt$k{6yPDbcF$ye(2OwQ3%*2|(|4r;%@mS5N#6!N<+Y+GjWxVFgB(jMiI}}q z{*s^dVlilBw-clk<-VR@uvYM-$QtH6d>!$ESvLFQr?32+J`5aYFJolzI+t&08yQW? z&EG%|MZ$i-@lPez8 zF<~t|_cJAc8>3)4E1A^C_&8Q+Uh8*&IIVBZ3kEa%93Dn?RY+W?4E&lE3@ z1*lIh;6tJpt4jR3hnV%=*rvCo{f6Dayyv%$M);%5c#WGP^y2yXM}S#Ey)Mn|ugcC|OqJ}kuBP9eL_c5hu99ph6(Sy>dP!<+(!0)~OEuI64TXB39% zI0j8j%-fKkv1G*&=p@FnPx(_+vLEDKTr9C)6U5N<^zxA!NLdT@@6VZjvLm_X|LY)7 zWC~^LaoR-e_aXVn#;05TIHbp)wLwA^9q)Wa@DvQz@KrsA8Jso0`3v@&IB9|a>c2st zBZdN>CJ)F87BS3uLg04z(?zPm$PL*+rV8?FpEz}cd}q|T58{(vwZ(%pfP|8A;_wk-{aua?+uw&-+&P}uC>C71&6LIzcevSVA< z@;6_FSUmFCNYOX|H<#Pw;|w>rj%)o-oM9fqFN7mQX2+S9vC~@Fa7_4R>62B)rfyJs zz0o8L65D$kOVnTWLXYML0VogHL+!fv!_@Xy??Uv~(tdXw{R6*4X!HwnsP z5J|ozwJ&0*_hZL7d6Kl3cGDHp2b<-0ZUI)C#}D5K>{7bwX2 zqdG}PLTWJ)a5(@k`c!M`qG*BC7ygrHh2xveus282QqGDoe^buR#13lk`aHiWQd}80 z6IZ?;Al> z7U#a&v3Jmj*gPE%CeYED!wIbK?=zk?+vF|59!Rce$aQ^?35G)0gGzTueNfTxhoZvJ zJQh@F@$1XHDt$hFzqO3F;jKjHoIxwXiiHN8s}3wItdHQp+4CJNuX9o?CL6b5WFmIi z8h$V%nL!!o6T|y5bGw-K=GApn)N(iVaX?YYa8sUDY%2<&nT2 zux{+Z59lf(+*O(p9tvI3-je21K6`1+&Q@=WK9DFof}Cj%^3?m%@W^mKQz!` z{&5VnD>x@HL(JrM7)2MiTGa{;SxSaonU^r#mMo|gaC@I)}vb; zPUdb<^8G4&1+6R+;bI;@%NY9|B~Pn6rDQ) zxuN=8UR$dLs5c1rLuEO&WR>c|2;Nv181@z`3V}he2Y3jZaScu}g$*NVvewe~7#liW zYlLq9BpcT`AEI8Q@1W3{ote{hZ{a+%#aAW)@L@;eTw+en5BR!&Kn5`Iu&}~HSVP+j z(fz*|{ToE!hp;Y5?ZsudJqj2Z01Dm9AAjsaO6hkSGptOL_?I2y`8;L3Q&2WcG~Iy; zVp^xC1qqbML7u<7Y$hvlEXP0_mnTT}(3EXVoYdHAbLba+W6G4OU!m^4@Bf6oLUun{ z!QhJXjoI0M-Je4Zj=x}pf=%tyCwqXbz?nzQ(RpyQXdp_Z?mX6{5^DMlW zgme~e^t;Y5Qcz3ix%S)R#I>pt%l1A7l4 zX+~&D@0bXZ1pb-qVU!_T7vanL$jSS?bbA%yb0Cf|P$U!v3_rn}ZDp}HR$m{XzhA_3 zhp@PV*r~hWqU)Hsc{g~+2LWOu9Id8VXA+k!^#q63nyc!{k&;rayqBQ`4&SBT7S$y8 z&erHfEqjJ4EkX%refnnskq^qb>?-Q=tP8)3GscWg|bFc-yTNR1kB+EQ(fm@q0{zOaR09z>76WecDra;F7uS#2;CkN)7zs?OJ|s> z^r$96$6#4B$ZO2)G(C88as+qoJ`|`23Bi}o-oHC_G|nW+@UAiSp6RPCRT{^L0XYRR@W?44S@LC ziF=QYg$21~7WJbGNi&tdHjP_piOJtN1&euR-lnf@uY1`nmNhr#gCi9NF((NM{M1uD?#YCPQmfDMH2?5h{7n#h&enm@)p1&L53Nf zw|$Tf%5x}n*3|5aiBdVy*_?aAJ0BPSGFH(pr5WNpvd-9MDcwRzVV?yRQ+KeNWy3Ki zPYTBig}6(CLC%3-De7X>H?{Gg9T{r%aRD?7B(!~UZcJf3eqEdC+faid=*c|n@#5}x zJA`hA*wkTS1>3L3u=pmUpkscwR9vPjZYhCRT5~BXGI|zONaCPR@5kS9e7TBXfUC1LShJjj zO-V5Tvk#d9BY6m~U4k-BQOAj>=ORBJzFK}AbiXPoI8>j#8#jLUlq)N;IhNeivv~@RQ6thV8aG6+c1iSEye3=X)_a3aUbHc8GWuh+*|J1gYxv->F z$X06%IgR)^P&~(tT=Sgi%g>>Ihm?+*C#1{ZS9$_Ch;h>TFcjS z(rfkBTsW$%r9&eOSy?MKaZs@{h852f7?MS|)JKABGE`LQ@7TmwmbNg*f}rsh?DGE2 zMCU}t(@7-f=EjejM(PiFGgm#$m}%C>rGBd|sT5CZfygzd>aY{m9EBobnPeeAInm%m z17_K>IA$ha#;YuW8G6hc>33`15a>KoJyP7q!txwDWHTPcj?4eTG|B1xBxOap)3OqM znN@1r!s!88k$xR-U4^_6Wu32m^?iLvGE@Uk0Dx1Pn$m};udc4zV2gM6VyhN5MV20; zBxP~?F|8rv17oU^;#2+Cor-&OChk4c?Pf{1`x!om$Tvg5m3I5{rJm6r$UIC@>mQ4~ ze&-kW&5UIbQ)$V2N?KSafjJBsjyX+TpDfXT zX1vG4sjTW;4Y{T*(Ixu=YM8y-`}4e+%4EVZ^0GcS#Ww**qX;wT*p(*a3k%EyIU00R zw35v@Zz^%(@{40@_$@4jRb>=jm1fbNVE4|3M-@(N*hl33OfBPNtotjkptiE3$ndkI ztaT1eB^g)@w_)Xd{o?@9i`$H}rL(dM3QV}Ng?k=gi(A>VZj3=Bjk{);QuSBNnpjSJJGpWc)r6zkY~2YAz(eaZ@#qur{QdI_ z&#&U*0C~#}2~CF=hjgxYIEFh4YfN(U>nTz-Pgj+Ar)Y(&u^`H&Ly!^=fj!+lp0J84 zOm=q5Ag0NB&dHsWC@{Y2#_U3>e_tewb1-;6WqHS3X|nt;vg!sbm3g9*l6^(a$W6|c zzoR-bL$h3W_u3n;z90lX!<%3cG?pK`64_Uj`KarglOi3Ux)w^R<*?#Y_ua0DF_0#_ z)SD%W*^O`}yddKyQ47smUFVs2yGTcmQCDU{FZoR#$L0N*RT_DWpaL!5E&Z*u8>!C5 z8hzDdmM*!nrmJ@L@g?&WZ`cC1MC+>El+`)Bs7g7fYp`v+M6l3Mi>?>!PUCA8cV(F> zA07WiX4F6t0-<^O6Vi8(H+UO_9tZ=m>@OL*{CR<9OcYM&lsnDQ6HM+joYG;HgooGb zxD06uuSK=j;hsro=%gFVYi0D;3d0!xUzN!E4-+E zuuKWmBAq+`v#>O7;WcjMVX7>=wYwI%-4e2t6jY463(O8BKR+?)%RkS?Pp&$M^FD5N zb~EIFaUhM)v_$}fg~&V9+$@-^R4||A@Q#U%Ej&3Hjlel5?ft|DTYL-A?IT_CQY!}m zQX-;nFnGBdB#s1839F>!tDJMILmbK>d%D`97xqeGL16^h*02yLdGIoKCD&<`P}Xf**;E^r+>tN_y3uwl&F9H8 z@9D6kKTj>m)3i3)3o2h4uM4Z;QTi5q9#f}_*^#G`0#vK{O-Cym9Uk>u1oh>AZ z$;rP$(}cA6V%mqiDnkZEIz7*7iA--kJ~ATntHIW)`+z?AESn_ZW`sSuQHYe=B089T zSL?^gQ8k^o?2l@3wEFU$8WH)?-RP%>eEwFexrfdP=p7*>URwhM!@_n+2U8E z`ie%>?FOUf8m-HB9=ZiO*XzcfH_|dbAdQ_Jz86=Emf(8ZG$cg%J&}5Js?yV^EgJJj z3ro^nuqZVI;p5R!O_PMKWdFq_>K}?{>m2cna>{H2Y!}|S*tEgxa<6VM ziMpo?G$Ei~0W=@{Vt|2;A_NXyoP1EU_2sW?A=2fRR83>xE5%P!4Ii@Y+V-{*poB;j zOF%6m-euSzLJJ84c21PP;&aNj_tu_V;2-aPOQav32)4wyVG~a@VPKt*MXUmOQDIvgXJ3}OO!kR==qUao8)QD_<&MRzXb*D%KQ zhIt;M5`%U)B1`)&edEoYt8IQWH;Q`&!z6CQ=q5+x_5>xG&8z;Gk;n2Q^$*Y|T)7ik zI``4>!tQmIIbhR^l4!AYOgr89lIm!tCa1-x;9!vAI^bE8-X6*(5u3C1mV6r8GT( z1Y%OtelPzu3@K`%4%hA(H84lgp?^UAG`V`q4t^IcM4ubhgw{f*G-HEq7zpS(zwvr|rpG=i!6Y=&?jR6vyU=rbKfzW&vx^(tdo$ri^O zqpFEX59yV%`kquhafd!K*8b?ke{YV*^y1H+Il^xSD|W2Um>p0(KuPuo4mLOVq`rQN z$o|>ZxlB8!yzo+Tg8Bzy*jiqezUs7tnjRhFy4FadjCUY6N$!&sk$Cs`mn$+BW!%?W zM?yGbfUg8o_wP>KmbWabvs|0|r&u@@0K>%RAR?q!io^JWk&wDjcdxH&)&pDnIca6` z=I8{^H-T*j!DpOIZc~RWBFFCN=y)4rwYv9}t;b*I)G9D4Q>ZzVO^u}|ufx*w z-TiZ#Tjqnbo5pomT4aKwtI1kTDHSaNceM{LD`5XKOlk3E)V>*l-w~NT!XJje)^7O7 z#OFUGfqUC8JuhWfdb*a1r>jMc*}H2+f4t6c#+(NT!5?QA zhF9=52wHqbM-uE2uOGY^pvS`si>yi3b+2vE(e}h@{N9g9=V5AZEu>{? zss;ouaC-8BS2S|mavnyO2$hED-*cp+g%A;v!iZ~{eydnmXo7+K*B;Hbcu{ytwt6Nx zQEfcH*dBA>-UX*k>roI_hKV~iflX$y7=LhM*{{ZapN1<9 zCuYRfH({CP+!Yh>T-W^E*_j<3y5M6n{$R#QcEN@5yr3Mb5V@Qd=rZqE2vZ|tJ}~;N zf}+U=bVZ1r6;bk|IzdnKv}j;+aRbIlpr7_At5P(bV!$Uh@^;g zBMpLdw}gb0v~;(Kq|%{uBi#+czt{7A{|wAH2H<^P=bpRA9>Hg}boq9?`)z)?9Q2cZ zuoCIgnm%CamMyZVPMK`AbBW0Xh8nWm0C zd>{K}-eg70_(ywtVj=J&>u3)nNfM9dDpc%0sV4u0JIb7}yD!PM+GvhK^zL*CXp~;S z?^yFj{{t17Li%2NxIRV82fi4L)qA0y6;V67`b3$bdj<+0gpaW(C|EuK#^9Qn{QhKT zx1+^pC+DJG1Gh~+r@U>ZmeDJz>fftf@tw1sT{psKwN5%a@5u~5Eh0Ot9!Nq6e+8&bGr@G7%=P%oY-MrIn}X{CD(4E?qoZBGnD|{ zy&5(%k-YLG6XI8}OnT&kG2*l%;a4Rwl*Xev=J>;M$Ri}#&R$x#hwWF@y^OG_0R~Ks zltcWH)Qn!;)k9wa<))x7CA%iE#+$U0(IGL}jl;Z)EtVyM;XgVVcT`d;RiC`tlV%+I zj=1$ehxdu+ol*G$km!+D2ON>$kUvzMA?ji{f7yM`61$gY9~((=Br;*rrufLvAa-pR z&mKLPGTD~E0N-b2oy+?@CP|XRxBYJHsFxlXmC6e72}(bF4_cOU7sM_l%t*R%uG6R& z#3I&8k&#E4dYT46y!i3s2V#Y%q#marF4|Q6D~&5nx!_3>qg27!XI_gU@vPt)kC!&C$1;$^{d3=So{)e*SxL#OnTjY3##%phjd@*;vk;K&LP>ebdLFs{oj*)I-u`3Nn7wzSJlR5ykV)a% z-{s}cP7f)HU%0|4dd&AOa)mrTW1vzycHVBBp7-%z=>!hb!RwW7=~B@@0PgMs?poLC zP>vEkJ~&Ds#>FKNfu#HXP>q3s;VtW;FFO8>_vM{asZ_bDD{l5#g8%TVlJAxMZSbL` zz3bOZE-6h@v{p_)@1d`RerWk#L|ip5h{%E2rQk~1VNIVn_^p>4Y**2*Uq}41VNGr8 z!heFjJ+r)3o4Pns{vyJG-ZTZoU2gmQf4!gsKDP z-y73Kq5DZe#x>x@3uQl9&|bsEhop)>j5CgQcCaWAY@ngb=V>a%fpmmtzqN-l_$esT zKBcH3LQZ#R$ibQ(@gXxaGYbp~(qHV1Ds*+>I=%MNurk?#hfu}91x&NC0({`y+d=5+ z|6DHsI4@Rfsa|zjFpCu5^&KFam<-6pktVvYu-0t=;oGUxjc(O$Fa8_*ZDsdnQp5Dz zI>7_OGA@PN)*Jp1kBBI6Z1VEmK}7g}-FLHZWMrg~Pp%M&K}Yx!^czT<2&Amr#PY5` z@xAW>Cj6a73&Vti7@AQTB{>U4s@iPoK<{W4FSMXhr&bHrIg>Wd;ovw~jJ_;seAU6r zZ+euSOCH|*&PA0ko$#`~Hs3=~`|sV`L3*te-!TBNxl zhk^Enj^cLD!xqXjtb>TgaGzSe-Hit0S`c1n+Aqq=%ATIBKLbCZnmV+U%70JjuSG@X z+Qmfl5Q0g_w8<=51)1kqyMO0zCB^6e1FQz;J z&xNFmVcMs4%^Doz|r=5=5ILOwNE3DPk$W5U`2X2XY`7p2Epn&XjS zUFu>9oZuDTI-j3Ds1E-YLtS!Ugn}-cov$0U|DE~^*4VvLMOkRkt~g?#IlQP=R#EZ! z@L`@`N8WJZ-RPUr3N3{!=x5RxIMWVSL@=`jB(OJzO9xGHUk%i zz`6N!nZ&xRbj6B#wg3FKYNCYRah*(A_}4aVyTswm?I(-lwdnp%+1rMmOT%7jf7ahB z$VV(v&A5lU?~grlz3m4`yn7;;OmN|avea)pop#@s3l^vqd(2zqqD`aBf}+D0N+W2N z>*OYKVAEY7AM^PT6G-_&JRpNFnAg=x?t9l1lx>&CmJizP?Jhss?vRLxzX-hrs6$lm z&xKZ9R>@Yb_1*4w4EZ!9z7!T@<6q<-d4>5 z7C?GFV;28Gut1>f5v;bH-~=`=CPE>E(MrPEnVTj4PDF=~i0!3#%A18pU7-)yHFoC$ zG=dq@q%Kodd7Z?5KlbV_m?^XycfYOLXWTuI z9Imit&b}K}{w+Q}9=tY5xU3c-;fD|`0-<5%by)j>$u;>6fQSzR&Q%dM08Q-zG0J9s z$VUuwE70>of!~it>dHjOL45C6%Puu+qYlDIk*F(J`GIqcFX&%WVi{lV4G6f^&b6V6 z(cN&F;I7Q{wf>tkYb%RnPJjD$R6bfQVQNtVMMN)48JC1)JuKHcL$BGR;os2&QhvvdveRx?i(dXaIj!CnEi`4iVs7k1 z8it=cQdCx}3N?{eT=-c@{4Q4{Oor~)im@Lyvm2Fv0+I>%$pwNV)ho2pD@Q=*C84T; zUkJhe-@cBw(V0)CqC;Hs5_d{$K7Tq6bt;*D=8pbg$qkN=7w${EFHtuYJZ`(7sLynl z4ZJgzaaRA!h9@&2Sm#HqVRQ^KxQKWF{-}fEw zaYL#S2E+W}d#V0oQGBs{QW{mB;DIz6KqW(8_b%Yu-8ct+)?q`3KG5DluGfY<$DN(e z^Hc}nIR=4ev(1nk*T0uZJ229@rGafoWQkNIk*{Mzr9fE%C}?b_Ij!NkMI3P;exOt8 zU*g6BN&kaZ8(!j)(U-2r=fBwdkbKh1?B<2+(3-1@$QbK$kKbxbWH(Pr&N^WAayvKbKdo>WM zj`GmsWbS&k>C;a&3*mf!Doj<%HY8JH&4E>orW+V1fh-@4%p! zcu%*UnqhI#2J`iy)JpRo|1li6fK}yATu_FTloW>A$cQs(uhFe`kKmt==#~IeMnWtA zzgkXykMS`!7Q|+PVBFIUB=FYRmc4)S0Ovr93FBv1TC4$WzTO1x z{<1|a_PFNW>xXc?8QXGQ{u?{NyFqp(xf7-hvoo0uH!0$z8X1Y>?c;+$#~?#~1EFwY z;^Mm?qvP85IMp)--~zbmB~ZnY*9d_SfzHs$+IcLYpNmiYsLN+!;gQ5l598Lg6LS$I z#*17t`Y*lHRa}XUY#CMGqP$ehri%M%c)FarabH4$;2U7gE)p)f-7IRPVx<$CX)!;h zxP80MA9G=^=$MVdib_Jr#pa}oF4fsD-cK&QJY6V*LfPo& zl1b&p&#(7}zet~-wv>A<3{vttYrrn`rLK!%$Uk6jM1T4e1aknK2cUHTLN#}2_^Yq) zFWer6dy8EN%9Ed;A7b|z-i6}91FN65DHi4Og*m|t5gV(gDndO~$gmBJ@>tKm(J|xs z?q3hfoDoWxijq+f6bS z3evK}TO{;TUyT^D6vaWe7AfCH_V2%p*ul9EtFhRmGMpmNevMUuBW{V-tvVzlx}?U# zx9t#Z7C0po5U>Fw?Gx+i2F@6*d{qX}j0KG<$X5MD@7mgae6*-c6RWb(wN&CpSNmB7 z1LI)bQ8p>6iVYVHN1O&K>3x_c5T|DO+S*tl?lahGqUOqY5AZ@ zd6OIuje?(#dF#l8aaibEH1PoVgRMs#SfB#zEnz9nvNYDE8gKN5W91W{6ARdj@49~f z90BBan9Mui(d$R|ADj#BI!NXWAXj-v?YdYQNX!f_%d|W^4=lAwb&PtbOga@g=H^bs zC2)aXYVY!vU~Lws30kfH*1EI`pYJ|D9q+NEW#!l&4=AXMLl{{N4gBEldx>kOT6fxk z=1hvkfotcPll~;<-#$IBRuLCbB8@Z}Pq&s`ecnX;xDiSCQ@qhoZ8$csDok)8a#Hx= zTwh5}@p85Uw%yO{PobVp45ifdirU)0z}m2@n>VR*6NpKO-!wOqqw>r|&)G!${^1Wp zi=R0b+6}LRC2TH)(-r?N*KfUnbWaiF0=eDQ zk*ROKE1Mbv^7vJ+`7<=Z3mM{m($PO)LDG>X?DMDIiPfr_M0kY%bs9&bw}RDaqUD_< z8_^Z4&jsj7TneMAN?N*4(4n4Hod=Al(U?m1n?gcDV0ipasdoaBMhUT< z45BNACQ=n<8=w5IYoP>dN&d@|1$aty-FL;|NGN7diG)(C5BO2Ag#woZUY#zWrFyiW zP0SF3&mTY`Qt>Q0NYIp4wG~(uOpqv@yQL}T5%D=PLCgIlf`1PK4j~O(5f_`qo@mbt zZl{gXvi4yQJv$b_$C2KNkGIGsu(o)H`a)Qam!>iY7pFv4UAb_^z&f z#s#}t3}x|(dV4O#`&-Oh4BoZhpZKw?HL2D!Dq+aD-i#1=oR5pMGW)x{$5BL$ZRNh* zkEzw@?XE)ZP+e=2(5gmmBwPa`Q36hse0?2{tq9Sh1pj5H4+SV~KaJ5XPikG3`=V-X zps-{XKH?rBYnP$QkQZ-8A0J#Y@C_0K5SDMbQO{l#jr2XF+p1lRmIcON8oXA%{{GPk z37s&G-%^)&q9GK{c#-pD^h!P2KC?dr6|h|&$o#xiu&mf_?eHXak#2aN#}~m~R6!uk zVJ@Kdh4gpZrZbFHWVxL=3Kn?q0xU&HlbcVXbs=;wyi5NK7)Ntp^KFwp`o;D+c z1#?TOB?{u6KsdYww$C76emkyAZ~vBa|3Q3YXLTyogyUT$#eQ~se9=s6vCMvG*kR+x z1(5*VF2}p@&R@g98O2o^IN}p0#PJ&M`!Hl>8ig{XNvDv}{-XkhAQo71y*d6oWxqa( zS+3f0tB*3g#>w{kyFfE(E7pD?tjwlO6Dz;m?+VP#sZap8`N^!cn3VJNe|N<5R1sEQa7YNK zs|VvbGhF0m;5M#j_5 z-;YfCDa4xNIMrl4Ju|H1+Uj6hyc5Y>cJ~HarDV8L!=CwMT={#-uFdueOD;q6Ceb|A zJk~uf$uOcRRR zrz=}c5(D*R8Hj1eRp8L!d^qxw$9ac>!fnHh%13Es$=tEkK%jPMRSdto{QFmy=WS%H zGy|UQ_(07B&_t{$TZRUke+LCreP6)%7*JZkML^;I5HTTI=h`RS1Hw`%Y~jSh5(6iS zGS`##S1zaT*t@)ENyqCDS@4bfxjcW6&4lFl$~U?CrD_pmFQhGq`=>L z-78I&mGbR|$*DV^lUVvt8CXvsFpj7^86g{QR_CmSTJEX^01st>h68 z|Jtuq&!11&zX{($9FPIHfwny7Z5k0u4Co?ASCi?(;TY(8{&PS+i=C467|{Y|62WWf zMu19qMP)tH%CKEWX;=NOHtz|YvL$QgSIU5g`|7x+E8fj|L@W_8GO{es!scy;(rU+b zy0GI8ed#j>f?dCo-=TH7Wz{7P{th8DAI&N)wr6*1(o$ZJW@F4liMw8)7EaX5Ml-~| zXQ%ly6zg?ar?lkRVGMO9awOqhdj;7yM!%;~yIugW6N+tki4CAR3M z8Qi*+Btl9NGA1(%y=fRf=HudpgEKnOuwNJh(hTHRcEAL-9Zs@9Q-}8+@qrI=7Za5Y}`TnsKeU+MfvLp;Ju`=+;{7+(8Cxe?epR^BqsQ^)pA=XVA!(a|sWft^ml1#N+@Wft8K~E7F)xIPEEEB;e`tb^TCn)TniFeu{S;SFW0wIK^jsM#)noA5-R((pFFKJaMa zPR1PO{OEix+g{J>&3}kU@5ka7=}8ZBGkU$h z;nu9zJ8l+S?Jf?hWQj~6p^K7u1kfZ>1du%$3@P{aezL|~4Z5L+l7}`aaEZmXj}>30#eP-Y+Sa8Oz*D|OB)S|*?f7<~`w{BdG@tjyHoFFJ`62MF=QEqnP3&yz znI=*`$Iz2zUDpFPJZv+UdX+ET?{zl z2qO_f%*d7}BlNzHz5Uqz+*72u`I=mSN$~XLk0cACSy;Onf7db_yMP2=&F-vgES7mra{b6?x0 z4NRv*ppM%~(!PnzUA&hsW4`_?p8ZdwfN4{!4OlHuC`su3qjT%N_~rg(MIX|87W^-~ zhsoWP68^DC+}-)(MIdFp1p|u@&&9-qL`3T{6?5|n7_)OvP_P30K%Wu`!F%wdfVkwZ z<^CHbJ-t3?kCoEfvB?~Y%!>Q83R}e@_1;aOp?Wpx8+7GKQx?$rMc3VxS$o>Bgo=s^ zkek0!rUV=07zmzkup^yiZRIyD$t>ml*@I6F2ZOTAThj1kApz;Jaqe%>v|KTGr#Qp! zTki!|($LUMmwjJb7#?R>dB}$vR_5|OuB?tJpZInVcx%9b4yxEB66=~MhW#;A#lrf3 zQf5gxr~w@kFJ9b*IP|xFmcFJ_dX)N}v{6w~Vo|OJzB$f33{=9u>F{MXzZa3fk?OlQut>rQ*|Lf=LuS$fE z<{(7ENr|!YAe>Y-ff6-h(a3mN2v@0p$l9jhZ!x~=!4AnU%AW*+C$nh(k%w5{LNf$W z<2Vn50{!dke%&{ww@-4sYmsd1 zLpzS|(CCLD^_xgK4P&C^)vB70cRrA#PT<4f$B%~ z_+q$S3r2vqKqg+VR+HzI2hw_Ck?{^&2vuggKk6FF?l&(_u+=bEq#wb^VA|rbI3%4p z2lMfm0CLv^gxLbr2?oZ#aVlUuhrtoE1DBnuvv9~t(f0gzhQwwC7AEq)GbO4B^q>KtO$KbOBYoN@Q>cV6iNUy#_CBs*#hYSbm9MESYS1>02;?f z%*tEq05{K0=5x{Ng$IvO&>8o#&A(}TH_u}6GJ4bSqpQSK{tM*ms%? zhC_biJ^Mn9ayu-#(~GQg$}t#>HH+%8#hx^MvUigY<3iAAU^U>kx*$~3bLNb$T4HwL*-8A3#8zifQ+=1e#1Hs<8v+S_#hgA~MO|BmUb6alMA^7<8x@elk82rZ>|v zGmMi&5_K^sv_rFgDbMNX9R~ZumsnC5)+U6{P`m*C2)r8;2@4P zxJbDM9`J=#M|@IJ2nd)HFfx3xNaL~et2$+m_tpo4*z6@Ab4FO)#|dOVqHW&d#;Q)< z5GhpNKc>6tg|Y%1>HdDj=LC%VdwUSA9Om?G&Yt%KqHqJl!e|5q$wS&iK$b|vWA_Mg z*+*1Lo%#IF;jD)3Z9J8YSftIe5f~X&w)c+eeM8mqhMPihGmm28U9zSY&&_>xcBVPb zj~T>(B?vnZ8#5fC?!Z@$PD=XefLD}RRTQUa$bp;BUAEa#T4PS{w1`)<)xTERUD}

JeF~I+xX9Z9&iNN2HVrKcP(Mn>@&{H$CcYY1b_e<1z$CVBxi!te$mpWqawpK+ z+sl^g^>F8=7OBxBIbBP)l&Z+Yr!=(t>AC2bzFo1LdQ^7PhPQVY* z9Kw3z8{*?0@|hAcyO4tRRl7FY#K4K_Q0Gam_l^p&=J5T#pfWZ3XW$t!a=xJnHe_(x z@5txirBEi%?pOhk+E#lG<>qnkMO1?*oV90jC8K@;y*dndy#zkVh>M z`nuI0Gr99D?#osTZrgI}{eW_>7#@8tF=x+63cbS1H@XRnLd=4@+m)R$+ zpJ3ekTz@A^>2m56do6s?&Vc8$Y)g{fLVo2A_?r}tiRFWs0v449u&sK#agsp3u$4Zv zBmD!r&cAMtKe@{FMQsOgyT2LcwHijz(E_ZFY&D(N@^UmAk9&GWah$;*uogBruNqyS zfo?)oO$`}f=k0iE_j@Q08a6Cu#Md8w3)?>%Ot;3-6O8#j$5r*NC%`FP@#nE}R?N&H zCMG8H(KC3okl+t%v3mQ@{hZR*BD6&C+d`HL%}X^BfDQ@`K&w@?TQwv8?X8A=c~~|q z3J8ieR~1$!cK6+PzH@u=xeu*58|;AM$G_FG72HGMzGjCpJ5<7e zy?FuJ=JxOhvM%C03`(Lkf&^K)>7%;x;5g$6StLnhvhV;PJv!pN0#Dn*>*<#Vp+wAd zT6ki6`O0}!ar3O`Y>F;C!SBc`_21m3eDmmWkw8Mql6&eYss{twf9a#-fvj%k4}kRh z7B-o~qa#!l%Bu|7gK8U=bUkJ9f}s|)d#*c?26CDGpM{@4rvQ>8E%iF-wn?0-5a};B_ruzNI-}6KDbr453oOH zkmFnp1)LWk>{h4fehW?@sP>zTe-^7#th0}r>0+t&QM8fJg&i}OhZ&t7N_^D6}3k>}qUj)uC-{(L%QioNC7E915Jyk>rl^ znX6uK-CCF1abN*iBN+*&MOr>*yibSFBT6H55SQ>r2jnM`+65oIc{h9yfAD&Fo}nF| z=G0bghN zdki4d1122qXRA2}D+6dL@{;cE7kvbM)YQ~SU>mZ>f}#YrIA=QdeORPKFWK1j$uLd+ z^?m;PZGC~esy0Ezt(%@FQgkD0&$=U-rkKF2r#tKMgK2!@#5Y zUz%$@SZ7C@Zc5SIqaXx@;Q{tSxFZbL{An_7V}DmulhxTX1xZ}*)>OT;RAkI}kjJKE zd$31OD$flc{s+Uu+mj-=h5ZfkSC^5FIT8|33Qt^-AsQ zKgF5;6j5nJ+TC{(4i5Z?;hl!Vn=XaD+IU>`-q^$Q?yEp)ocrt6LVd0KE1%hojU2i7 z{x<2@i$_AD6ID%3)1S!h4HhXR{j=wN z=>9%4@9PVwbL9{Y2M%SU>gT~3K&ieBJ!2fhjs?iKS6|N zQ4D06iqSt&3x0`juxR@=YZ39rqQ*3O$*2fobqS{mzCQuzI;D4>F!2O3?UC#*NEz6i z;=}zr@i0q7t}rV(TEb;6cgT5m`@WB6URH~$u(%EZ5@Z6#K?WBmy9lzLc|C~!zS;0? zW}|xkTU%c@hM1u0U8B+Y_komkDUL zV8#qTkIlqava@NRyoH^Gt(%V`Myfgx{*zfBU`9t?TnIS3`r+dInbe=2E3rEpmf3J*2mGpm{cPP)WX7|qEjj9!D8LYDWrMp53#YY^Rov#W%fBxKXG9N-jLUJpF zSjt58%BaJ|IpE&!clV4vwMCCgt?9Y<(Y8F&1F>!%#<~Pzkubz!HAs37n|EQd$mmMVsD5z7~U99TUMi&LtWD|*VclD0tiDe(DZ&= zOO;bq#Rt;ITSLPEjgMiJUqlQ3F(^C~v-=~gsL#S6avZa6{i`#LTPbd{-~S}@j`^vM z+4oE*CK(?jBeEj*4KBJD;4*=XMK#`t<#7H5e*S)+aoEwyfDfQg5sUzGS5I=HK)f3@ zC1uO0%jZ9uox99-*W*Pf`%Pa{WIo&!Q4GDX*yhY2Gj@ts{-pe3yO!q_Fr3scw~squb-A(jAs$kUXmhsEHs(I4@o5c z7*wb2@uX&Lns6x9I5R(x9D0(pB*XDem#waIl!h3E$)zW3HPOB%X;DV3Aa-7D{Z``w zLC)i(eRs^Tk6)vj9}1$qttFL>Vq#mqy^Ag$IRd0)H&L>beKghyA|&7bq?b5tQC7+*vy5Z-Fz_k_?3{_iky%>x4!)kOo5EWwBZCftEtEEu$kBs zBfMxZlT2=zO5KAI3|YOVYSHUl+{{$XwUu%VkGF1P(G0@a5WOlo9^|n=XQT9~p*o{2 zT64c?rD=^&!=W~4K-UIiy?CY?k59doH!60zCE@X%2@pTZIXFCHd|C7bwz0r#1Subw zBk399pdA?0if{$?jyD|)VlEL^uiL)tyz%ZZ-0U`!DgLXcaG;T0Nz0-S49CA*iduYb z;^E_q`SGMOl=JTr;;hUGkvdgk)0TRvV7f`?>$ZlksgV|5eI|CREuX9womH#wi*O_Q zeD)f`Dw9m*^%&CA(~%PgKSEv%Be#Ry^(>kWD3a8yPJ~@I36ynWg|)RwLCkm3wovV_ zZum`wFi_eeZ8+|?QM0!B?R&~0zi0@d0NX)n;DoPv3PhBXOA%AB|6w&<8Hw96rx^01GdUI7$FZP z*G_~t-3HBPedyIRE!3$;+DwPz45=t^NC)BtTa5~y1aVyY5VJ`r>O8&a2?RRDQsY`#5I(A(}jGv)IgHd@y=Wn z+AXu+XxM#6P|gNeDp&>1r)9OPZ!H>i(WXqp!kn*ZcQQE}dchuDLh&d7LTsS|3^lqr zxgM;vzh7&oJ>U6W3D zZT?sB)VfL4;G<5G*61nu<&5gb8nw~+XyG_sQb#CiXmrBfYxPfQ=DV0$~n);|{)$VyMM_b40Yuxne=lHAV;{&VjA zRp1=nHC>Jcbs#1}DjD2|Nmudhzl&2^G>qR>#sB5p>urvfp3)Nr1tuc4U|nruk$|fd z0Y(`V(B{gm%?T#2D-us)q&TpTA6@qHIE^^fM}4gt^>5Yv{akL)CCt)Kqy^|En6r1S z?l90eNGe2@ue>K#VaH)sC&dgKrhQ1WUfHJclW})t^g-X}DdFhc$)-CWkbNT8Oflfn zm+n8_J!tT(_AE*`$eQb(b(ouXN&|Bk*q9pZ+-lcgX4NhuHQsqy(IIDIdZIMj`9(fI z8~)rgI7(8*sIXPP&5A2sxzh5pQPnW-)p^bxyMmE!a8q04u-j2SnWL>Sh+A zWh6=v6o3BJ)yJ$&y-3{+Bf)!|+x>%bEC{!5&WkGr-THeFts1YybsB)L_JG;=1UTyI z?B5}_4LE`jYKw5yQE-+VbUo5a1h1DjMxhjk|M1tHn0Izc5faFxD-l{U&~@8rPxWBx?SUh2t5WmM&k;u^{Zye+cTSjf3g;+^ z(;&uz{yGg6mYtm)2DWwHPf)_Vf;1h_N&VGmbL2fgp!FLKfAl}Sl4H4`h!Ti zNTFS;&O@;@J-S|__aT~jqB%{@vu&b(6;eul!HliW(bAOr_}!$(`6kib8|3ag!rk5S zO1h5uug)QB4~fR}+;z$Zs1ik$C>;Oy%9)N;H+kLK^*RmzVaU>fiyx48JPR2Nr`xx4Ml^Vj!#h7)9y z?Zoznn*To+fOqrzS#*3ONhISVz+@q(AZ(N@tSZaO8joCea~FF{#xaF))}mo zyG=a@*3=9BDmtIHK1L7HPnGb#Ao8YWb=~xzm10oF(yvJ7x`TNTPQ#Q&=wc}83}-Zf z 2`qw&fK0o)*Ywm34Nd9%j)^8QOZ<0HIKrpMn({CX0@jD28 zke5TqJ+7^nwd_`?eTS8;q7udWaeI3^M22P0XxqLnA4^uV5u`rLu(y7{RoI`qOY-iS z_%_`=Am(^@2wsY<>?hz7pfb9V4 z6Qj2=^(Q_AfA=>YD0FhT$ZK8psIP^m{D6@k-q*|QbBDR_ZF*<{k7iFu%y#Oi8scGa zSpVL({S8XDMze7hoJz z&*ZAx{1Nly6n?J9I2$O3rm|ai&YIZr>e zA{bX^VY^Jp#Z^7Ft~WmicMT=AejAZv;v)QMcJ3q6dYU06eyUeF#wpnOWqx zxZ)&!_wL;bQ)c$2sOY~mceSQcwPp6MM{(?ufEl52R=7|#NVE*^!Gkd~o9ZBVL%?dW z4S6!Uy2-wbl736ugP5)kH+T7x$Whmo3wcMz8rg)$i|JXVdwv9-Na<1>UL&4&6h$FqsUBAH=pc zM4_TmJGw{Q#tX`YRMxBHm6a8}_j*tsY;1Wj?%rKo?218T;(6 zez!_#!g>un-Jc*f&YL3b_c~h=v(UMgRdtsarH|wj*NC{R^Du`j`dGUUDwOmoNg2@# z^Y>H-d8XdY(e<_B%vdePk|Cm}o@)&h#&jO&- znSQmL&pVPYm=9L*i!}WfZFb=Kn_XvgdkFVwQT-M#VwKX%nlNiFp^p)E?Gf?bQ~I$h zWQ&Nwa6igv#)p!j+l8#XK^rXZ-vT6wP?C^sC}Ld=u+Z!33B=nIoO86DrX1oQDOG?k z8?y9Z#4KHwK?3+{m&B?o9bNuT1|3Kc9$gvSlLQON0&Z~-;}-{}I!4ENhwnP{tI9l^ zE%+IO?rmB>kl8s|zDMn?Dc!l)5~xl>vwmD=Y05ArxwI{5AWa5A)5ur`pz=aA%@^e5 zlK;%#1@M|4lCvW7bg8)uWSh4N_&4!Y*|4^gQIOD zKkoS$UWhix~ z%Ejywd>CUf_H?ePER=K7Klf{S6D!k}tCVRY<#@ZT3UgoP2R~E718$qwA-{&RH|P}% zWeu7{+z8xWknk9eDHLj~x(je|#Y4Emmrv(=3JCcTlr6@ck(7VL*hk{t5L=XC71qy& z#Z$zaoAqaiMi4W@Xp|vX-@~?v#i)kqk~^}-S-Ht_-^s}d@d$)q?-Ovng&TCsI+|&B zf8Sth{~az(6!moy`hq??nQWAkHPM0m#k5;a8ugtr%E*3t zM>ze*>{!uhXSCFEo;7!a0p-Zj>W8nV=C++A1rL%0+sFGIIZbqQiBZVUmb1U|h9%$E zR2rzW{R7*K=b+jG5Joi5_pI*Pi*}iumtM6MzLODxkB(y^r1hSpCLd3?s=w?&tPFmU z9)eb79()6cM5tD|4{;mb)MpODhubXK@0dTp!ot2SS~kH($Qj?R3GId4l>&Ce@lrEPxw(5SrO z!_cZd{H3pBzC19_f;h5PP86ulGwnm6~RFe4jPr3?MLoClSs4Vv36k* zq7;0A$1%5gD7UC9P3Uyb98FYvgkIhX8qRoF!pAh}xNb?+w^Oj4(w9D`CLTg+Pmdnlz`&I%80|tLCb`z&Iak#P+>5HBXJ73geS0yL~J%4 z-S&;!qNpVUf%gIB0ilGtZPf+D~1s(*_TFw*OKkSXRT{>1r` zs-a-pE37KROy=%}`#SJrk5rH0+n40&P3g(ydd%rRnadSd6C-ruQzhh%OgR_?n#iMi z#$Twr$m0_IIWjT>vy`zCeKgLbu=)8nRTg94!34e+ZV3qQO4!>^c`qs|x;k0QP8$;h zU3e(0=h=bh0vwkc&;R5mDdlR(Fwt{pib%@QZkBW9j(egsd-ZTljOgm-^7EG_{8V(Q zTi`OH_h(_lV4!IagCTn5YVSWvw8&z9x*T^h5RF{yeW5(dmva2L{ApV;-8T-V|JmShY`=* z`mKC1N(kn_iPAB&sC(H5H6-m|lo^yd7{i!-ERn@WM`-lU#%zQw+`~R_ZTKF_0hzZ_ z?u2d?!&F6$-}TqOSST47g25I82M4F$=t@=`$M>gM!k-`DjRWG4Tn=KfB%j2o4*lxn zo&uYpdr$PATpFD7p)DT<7{2lYaoGIkW)G;qTcI71fT|5qEHIJ!-+f>w-SQWBv?Wkr zi9PtkxKCa2t#~i+irSohpoE%^{b4M?t>wvV4~%G>k{Sd+s;p78T3d%G7y82j0^Dj0IC|8`W?vL zE~~7HGz$Y6^8+RP)s6RI?BH}XjU!vi=5w(2_F__GfZ@>D3@x`>U0FRwLgRU{dPmHo zs69=dp`)C-F8B)ipl#v@o?o)fMyu>W$4d+`l>DsQ`82QoZiAzSnUVjfSg~&73E&oa zHu!S|cdw<%f2EyrCG|`DlA}-Gluu!NMd5%xH_jc->D~uVD_Cve0>8U%<(v&z#K>7+ zYa>20m5jFHlMfQ@C1vA5{-)H0X4Y&xdUp4h^dfRFXY#xV~xJKHA*Kp z+A|dM^9p+DxHjF49g83FM&6-ZYSWVwr)}f8IY2*E^VI#CYtLyg9#J4taTcLjNqv#-OKbnYZ?fgqG0{#cf!`kES)>zP$Yq!*7t`-qrK6>3#qOH(x; zSP>{CUPpb^(Ug{!_UUvTFy^3;5NZG-Qat%8nk;WdPhAt~cRe@Aqwmmvn%?kwsOIR$ zEv6;I+<)$Y3Gam%w)b5tbWuH=57uN_G8DKyF1V4rR@UYVyYfs`!xKaP%qeEu5q-V@gOfCD6d%aw*6oT1*||AmI)vZq>Y^+|FSpX z)9dJjjjemS?dh_T9-t|33F4+7MloSclk-%pt}Hs*H=lFjnb*MP!tScdN8slaI+SDv{^%jl8fbF230y(|fF zL$k-%-Ja6xT$06IJRKLZp>8j)Rkaoh)h%{1JM#W&3e2G$J@+lZK)}`NJM3Z~pP688 zZa3Z+E)+>0nI&iKt0(FEqEaq9ZQ=~?Cu^S^awu877PKWcW-#N$TC?VE@4y;>FJr_E z5w5|*nNd^}4$>UZl1%(6x+q_T?(y{Wlpib-kmN6-FguE`kA3D43If;{nyHyrKA!lo z%bqVNw`o?H=<@;fx{Vww(t2i|HtZdvyg&G{3}e5AoHh{nMdJfWDIn*&Rm z7=)FcwNH}^FgK#u)v~J18d*GJ+=0PrU#@k)AqkX#6inq4oFgf(HxC6hR1xR)#9lM zkzN)1mR8?hsk#Jv2OBuMI$wTuiFqXbB84{=PSyM}nbhL5h26VB!Z`SUUSQ&<{E^-b zN`a)pL!xkF8;<2OneIU>Ud$}~?$lJL$9;yN1(hvFv0l3OR{HK$K3+ zlTSso1>RqHNOGll{Y}aguMBvjMHeCa2y#}JF1COFhsHT=>y|~NP@ZSConY19urzrR zE`f(B^f}vcM(L5#Vh_}vy5}+DP&z$5NozQquevUtWxjwB7H#+7pdt6puHJP$J-um{ zzhubgS9QkQe)G}S2IbBQV&B}N?8dS@D!>mxU4hjEFr8@`8Sh}XBw>h?e)h(8+)$Nj zTMWuWP6(VeAORhO91gL3`TF%Pq=MzNKNM%Y!9L{<>`bbxY>V)COVQ_EB8qRyleiPk zc-Sb>ZXJY+7Y+}+W}wUA_!PZ{f8dG+*s$e(0|>PZ0SJJ0_TAZmDZsZZEaB#m>YK4` zs-Zyyxpc|RI4t3(=a7@%y% zT_btbo~3u2ycrRQili?wwv*uZy>^}09s@)EpQg37H4v^^0nPsb!<);%(|*YM-r8#J zy4(BTonrzP44+&lEdOjcdRxhSvzGES8UGgZDF2v7rOZ_zkM8#y8|?Ph0)ceg--=3h ziEy&5YUXZ00>b5)&01ls#zt6S^3uiNV&bw_WNU84U!P(#E+?upnzU!mG3A~DBiA4M9+G;!tT*xIJ)+@rp>8uiddzncAkI#`T7q=MtSYNASev*Hhht@WR_E;vqW(P7f>*L z@QMA7=t8>XK6jS7pWas?nvRetQmWHbi>%gGuEC5ljp)vElRHw}Vb@vdAf*_{&a*b$ zf#Km+l#+(!W84mF_-blu5PCcW)XxyB5>|~8lz>*@_{Z;8pXAGiIBwH>o(b{!Z$=cQ zvz)q*?nCmoFND-VNk8v7UfJG;L_fC#D5d}!d}Ok=a^F~8?E*u_HlTuf47vPA3laUe z$fQen^+FqUS`WH7Og+zk&w#j?R#%spkU)eiPGPL@d>5AvXXhD5Vw|RfC1Cv@iX&JJ zM^054Gk29L=D#tIL~Tm}KOIm}aX7!I!8r4=zqt?fQ2DPv^!8Q6n(%xL(@X;_+qK^x zj!Z&}fH1HLQ@E=oVrW0fSxkL+L7BTU#}#U)!a`RN4LZOIO)}n;o6nv-`?C06QfAtz zC;Zl3jKzXVJspm~+uX8Oo~EZ)kiVG+F``hGzGz^frm5AWLPaX90+v*e5IxaU)Ob&hRKK>H8WtrY4h81nD+;TD~~_|#w19aDP;8D(Bb?HbQMI(9>xZu3$Az>n(lRphAo|XESv*P; zg@^)Bz88~DG1a(Hw&(R5l?a z*<|m%_a*aglV;z zbqcgD0YgBe6>Luy@wX70&vKZ+lFkeLF)f>dcZAxk|4ic2d|uUqAu%8z!0fksQ#6#r zB)vVe1VUw%r&yCU8o_eGW_TZojRI#yF}TRAtOnw7&(6+<9h0leV`uKsgAJWe~0j zQDR$Z6Sw}$)#OxZE~VOe4O^+48^-2;`0zmmxF%XmB$o(6X$A2V-~o|;{CELzV(e1< zB0+zLG#eq|#_+h5xgT2Dq+zH!q*%~j!)m7M#rclI{2Kz0kc@cXw5a{lO;ra%`R5+n z*yJa4sH*vbm1}5dh~(BS2PlOXHz>B7tDnrFbcI+(ZumUlJooE+Gu?E%Zgv1@8J$X- z+py)eS@0~auFAn!4f6m}Vh-up5VyP+%#RHx%;M6g&c)Zrv_)b?`nFB)>vP^k;S&nh zN>61?847%VQbdhHZ#|kvLeWd%2)XuDPz%k1*sg2jgSRu+c^on#pJdRB?wB3X=%D*{L)VxDL`y^R&$Wz< z4DwLffh3VWpuQ$6tfAYCeF;XDRgeVRmDG4{{p3cem(uIKD@cT1FJ;U<7G;#r3S^)U zEemGAx}vcI(TcyT5oTyBed(!yb6nQFsS;EaFO4Xw08;dD28ss{#0iTv$7pqJS$M3r zc%6SW9TLT)4Qp|lLY|+#^O)uUTVH0gfw6n%X^CDc_w#Xy%IWRLkxr8jRXNENOEo%Y z^rvRIlIjOVGo03A1*~M31T1?FDsgjHvYT2UUzEcy|q_OlAuc3fq3W@Kgp-Jv@_yjjVNZsP~ z4J&KawQ_Pu@lj#nTKR=k10t!s78WczIy!);B+b$hX*}6bURBf7?3im<&3J+gM8Gv8 zo-v^uQN} zoCa_gBL0B`Xg0Z+jNO1?9H#4sES#LHIax_`V=hrn)7+y-5U|9ftfN1WBg6$b((l1! zCjSc zmAkQc0e=d79tyfd4`|28#oj(55c&J#Rm_iSlAxdgdRunlgfW!y$|eoHn_ddE^2G7S~$-UkmWsP%p~~{y&`D zyu3-k)PZtCM@Q!}Z1w@uNi7NR@s<`A;$#%QlG8_j)Kpl9KKlLm5);^=A3R6sQ&K{O z@-d~EBS`wNIw>U}MyIs#ZerlN7ky4oUQf@I(xB)u5ve1!5Wkq(peLUA+kPyge??Y@ zGlwzQxgj4dMz7D{wG2$~T3x$rOk}wyCJ(_V&|sHU{?}7Q<1Pzf#vgfNP%Uzdjg7&N zRXX`FWBm>1zmTv(Nk*}Wj$|7XD?HJGiL&v=PabZ#JE=nuTW0*02@fM~pfMw!U%kYU z+3FPp3GfOGn2tPg5w58FJXB7QX}H++cy%Dv<&Su(nsH9i^lA#X;^%Oo}fkTYQP>l#d?y{*v3u8shV|4_P^(LHB$uyHeTWC}UmGf~e!VuE! z_B+np4PY-YBvg$2tU?@U?wbXV&eqZgtP19zKu+lLtNMuADP2#0JX*u8$E)*6Cax+K zUSy_}P4uvCNckHYna_t*l!iTY6q722q|VKN37@%a&xT^nah1AFuG{x+<5E2OGF#^Y zd$q*-64ap`@zmOGKd;1u(}JPC)uT^1DT7`YKd;8`fG@TK+2ivR#*qQ=iV_Por{hy$ zus3$$-;Adw!0iZ7;a>;q3S4|c>rTLvzkbaH?+&=%5k)pwnlHDWf^JB8MeOR703Ns{ zcuPCG25$tLv_mE}Ak+vm20=0d2QqkM6Ly+ul7ZND7A<;YAqI@*-$7`FE)n>|`SJv| zWNx@BKs`OT@eC10LLobz^EftsOkr00myen}#>DJVaSj5{DkH3(Vu3$=0i5tn3cH;v zh-CtUcFgm`bveagmpYT>Z}tR{3l4A&X_-r@IEFA5BTWOIV9kC6h&c-e>GSdna+~VFMmzdy+2m&4GxYkX%g2$|T)j{z zDw05zj+{i7cE{}UH$m4&D>n`i->a;k|$L7_d8B|P<~3^$Ikc~ z{>6Ig5g$t$8AT#9?^w-GTL;F+b>VXsJf(MRwN{9NHr4c~%*)3e>i6_e=p=8H|J-sM z>DkDKXP8M$jK;_C`HjLOn!)0fbzGdUvIM)<_UgSYHIVHCPwzYrWxBDP&Us}j+iu$N z3-7|&{=AyZq6}4h9;F0~Y8;m5=7x#?~;LbuQ1SC2( znoSU>)Sp?iR_;odPbCz^1wZM2ekS@`axxvhj57kf9W!%tB!va3gX#IqoEZO&%ot3= zU;}@`XWRPn!O-HR_u^#5{mAF-k?Oy2cg{{v_n|gpX>+p=+**L{xILeZ_t{TZId_Zr z9MwTEXq(YkJtyd5{D!^`pp$aN((zrunBHtxOza&U{YK1}yu75a;g4CZKo~rt8j5AF z#zDqc74_$#gDG#(6%{NhOX#wrPM-5e`PkE=s+?D+@7pskZ#zHcyMan9MBBU7 z%!AGm_}835j+^V`&NOW2S7L-R9rFjtPtz8Mt8H%AgA^`4{;7e%ow>O=DAO<~-A5F7 zi%}wo=Vhh#Tc00;eEtj0;6df2M>R5a21Vu|i9vvQ#2t)9%=B+4b`4miAi&?ttj1Wy zIe7o&T(^SwWfZO_hwNbugg9nYKZo+_1vDGqW2@g0Y9Qc#-nm5i1M8z?;G~A4f!R%& znj3Jd1O4#%?iL88kYC(>v|V~D8{~qiDiM*9k|6W! zi)rYZcu{1!XQ+dgT3Q+j!PpQyep|!$t4lAYlP_x7=;OHbaG2^#;1h=rC2wBj{lN5e zJa`%%934wyw9~LGo*Q)=XnzuHBCOE;^kk(ojz-&%uP6RpBtzOUrevx{l{*`XuTP6G zxwSmC8Mwr)_yIr3(k3Tex#!c~vt&y$nsm3B@SR#}=77Ge{d0=6U$o7fVa4HZ+5IY> zt@M5ZbPJ8}<=T_{u2WpCk0}f)WMQ9}!rw>7a|v!BY&n2Z&PQ=vFOefYYhlgR>5e0( zlyV{)X!Sx4_{QeTjECK}NYr`E- z1A+LLleJ|Oq!CagiG%QUy^YgBlIao?9O$-&w7-{(!WlqJ@w3zvr?Jr?T;-fv>gIG_6ogEtoSM%jNTklc`vpI7elbFGL2J~F{PXUXm_Qo0bL4cYgB*8}O z46`Xqp5J??VLL6ez0byal+dZB`@ZohZlm$_il_xb^nYChZC@fgU?V|fe~?YLxONq} zw@vavG^J)g&w@NEFe!itnXNe49F@G&e9t&IwDl`oh}g&ts$hS@F8+{uBRQS- zeIA?(%bS}|D>P)&H70shA7J3upbw@TWtMZ}B*ybMoQVZ^tB{eb-qI4{r!lGvWoF$G z631s5Ocbsf+lOx*3}^Qd)iWqBvf#dS+MbGrL#NoRp8_^wSoUjwd7RTj#;!z$+T!+h zs8s1^W5KovzikG78^$pw^s=AbAmE;aG9o*>(!zL_pslG2oM=g@6c3GfW6JVIw;Bvp zeKiF*{zQA55j-2-Y?e^AE0t-L$HgzS0q0Mcs*n8)zMEKNrI%1yD8Q30_>rppW-;AX z?wh$Q+AJLkrq)Ntk9H|QG#aY7*?+VneD~y(Ur#)+t`(;urQ_+M9RIea)9_!(NCpt} z1kKL5XZ}ZEJr|JH4T6_R$bWK|q7^Bu{wyJtWWKPlTD|eL%W|TSUsE$$-`flA-n~-e z3*?J{S7T2TedtBJIDh|Gdv@K3q9gCM3gdlEbX7gQKG^+WFc{!;XS!4a@Dt=%=qbPY z4wWo@%pTulwC1A?q|@bp73ta}VS1_qrD#4aw43ol`M;AzVrN;+cUYrW-%H_loxZ83 zWy$8d6{*$uDQcJj+gd$5e2tJV;6&*&;oDL}CxQGZ?F>3hv^179&1$0Mx!Q=Yx~Y!W z-@@%MnZJ#MCV-M3-th1mV@8+Y932nEx7e1`qNud>#}*$P&o&|%BE1Z+b#53TNvBY> zu9`Q7B(x$TSEP>{mx3p|z6DvpkotFbJ{jCSDf|0v zSreKkN9&&opR+*7G!kI>=FjivP9d;SB0-Eumb_L@`y@FDpL6v0`LbP`CfgoRy{xep`xbjrAp1JEVz&}WN`xC=}Q&%B{3 zOA8^{bdrGM^2(WRn-rloOpR*G67Frx6NmGMgGWv)WChRjc!718KPe@(`j%sKMC*l) zrx3};eUtx; z2xtO>g6Lr2v|sK7Q$eqm7x{mt_FyKwxu)r+7+p~g-DQ6By`AZ*PXJ_AO+h?I5#l}o zH-n;^n_HgOCBBB17TUt@?z~x#hPtegme%-Sn6{?on3>+l`{QGMwtr)mta#^F|L*)F zMS}g|CpH6XGy4=Ur-)pAeX?w|h(ZstuV8CMP_Z!KqhWPHO#akU=~|8N^m31aB~^a> zil0m!VKJ{+QwB$wwEg8>h0ti5x%xPe=9s7a$qKn6@->2f<$Flx_eiF97^Hw6|LQ~q_;rTOM8Ni;3ls#~RAH(ce<;9CnV^%Un z`*ys`>yqWHuHxgee^sv=lou7L;rsHF-w&{GW$Ykj2L9u(smCq^*;RuRJW;|}{$|bt zGIdi9ro1DTh$NAKqaDRSZc5a5N?+#+!suy#$WO;VFh=b-vJtZSYVPcxC#<^Bo%QY8 z2e_^fUqYY51=;Yo448^mez!ibnmEq4MTC4X%>JN6Tbo_IG#eJRvukX3j`NY-l&~96 zLM|U@R2PSl$IkcN{qk$7mnOOSx61WXsk=r0RDH>iMe^63gs4G+_I=ld0N!$wm0Znl znF)-p`{(GPH1G93*sxh~uw~jT-=Y}kKET3rb{J~~jjv9<8#g4l-UR}v#U?*9wU*E| zd7OWjt&@Tx7f00^cg@M6!XJcwg?t43{QOAhBS>(e6lLEU zBv*BM&EzG*7asxsRmY`vEYFI&WV~316P0q}&30ABRnv*GUw{k-{|>k331-j(?{7l8 zxOcYGR4iw>v~Io3=Rg&=-n%ZJmdSaevj;?FOieTX>^cBOgtV0*Z1CBJ=M3&!ashrSZ9>7MHHd;r-WygTJEZbX38Y#Wv zDz9O423q18e~?v+{jKV^Y}`0Gb>y?H6rfn?Cyw6j2z8C05^%K@`}Dv z#{x?NPX+LNrXZd3o;2~B56;{TX9+4a&j{|59dTWsc%*%)z#uOkrT?VhO5?4%&xBbS zur3S#ya@;hlDv*|piWfa^#Tf_V}Mc+r;X7-xJscM;XI!6WH6;rX@JWHd#O@ZowmoS z0%A`%auazihrjVvOv6iEGQCZPhj!(inwgm~kR2@MH$1F{q}2inVfVyU61Rk0Bk36x zQ;=dD60rq`Q8D0GzzqJ$8?Xl|0x<$tzM3CE?b4dUB67nN6)0A}drO_Mr=_#-QmQ*Q zqHpiQSEx!b3C?i5HR+ejqCf$f4(VYnNRxg& zUR4a|qM6_8NQTAVzx_IfeOLrJYK!?Mrv|67R^jw_ccz0 zcwP0RnAhyJ-G*q#jiSG^pIyJ#mTezZ2BYzdhL`r-3QWXIpVwD~L5e|XVPo^Hq-1}v zF{Ftq+556aor8tROrdOH=cBX>xvc!YYNg%m6B82#l$W_-;5JZXQ6(zec>Hyn+&5(b zR7p!`n?=lYbW5%^1U}LCwYW?-GzK!ig@WY3{B4k^iA1j|<_iyX`fW`j@?ut~c zywkO-pO6p1+FOq||1c~0@7&{eD5+Bd_;|m8vGjc*AtF(~oj_1HUDnj^u z4-G{ppp@Dx9=fX3Xs(ibVX|sV^7c4G?$?FL$!QJ7_sXPsVq)UJfRJwt%jAdm{P(Cw zt0o;(^IEj@WeXlg>}c-u=?^DMcx6!@2u@dx8?~?TuiDo~_B*<}`jB7~GkO znG}$SmnPvS`%QtFuI?Bg!&2l2Yep0Hv#3g9Z^eEIgD|`M?_6QBx+A9pd;qwV_p28X z1|Nw8MBJN*q3`T?SJ~ZN2#6l@`OQBeZHpWqekAqnI7u8E6?*2S?0L9Bv+F%pR=V$m za`Qf_{U2JM?aomZ%@6MTT~mM>``J3z_ZELC6G(1b@hIQq#~tuYTbMdr$YkfUG#JKIwbn8)JnJ z7#QHigQ(w^aH7Hl4zB`&w+4o})RiH5whEz4OQRy|nU*`^hs5v6^C|m8^&U8fYR-6$ z^t0)ghr{91XN8j_C?u6&f5vA0Qk^P(~ej5M^59wopLX{EnS7M$-=)8Q)b@|uSe z%Lg{~eP}X^`10kky*+nFM@Rp-yt4A~ufvA@PDG_c&E8`E2$8 zCxDU73MHrMt+;%;#}gBeG-qPE9lo3F&nYQd8ZP|&j{c;Ol8|t)LxvS(g^>AtzUCwG zeA?!I5Gxv5otkcGa!3d+N_|I6+)CC+`OMR8{~pygSe{QdUtCRbC%*a!^6E;Px$l7W zw7|>K4c!khrcS5^qobpS6}lo5vtUpJo0O62b z14)q(pVwU~{c>Ft`{^<7=AZDpQb-VYbaXV583%=BQz9@7Qb%slH8&kTI)-3#fO*;> z5)A2d0O26~+l`Ek?S&GNxe*%ZRMpj`;6X%UlOVP(OFz!rC-aypF;*;1H@Kn@P0x!| zXnwpbJi=7LbjRpbLH}zi`1TE}v=wy2K%QDoxZ%!52qajqD?DQJ7o%Ww6y{7lc zGTe0It^JkP8vT1gkR2m=DsbPlX$!(_Qa<<}am=Iv1fuADFJOs?@X_+vIDY$Az?*|+r|-hM z*W{{E3Mni_JX5Q`(OFqo^hfn`(TZAkm-Er*;N5W-^@g{TJyXcT!vkUd5OXS+Z6sk~ zgVK>bL1%#koUf%dUme`^mj6b?KNNXCn zoE{LDpMVhSM_#>NK%HXyIg{FI_BZ(Scbl$~gh5A5u>BMs6wuWEfi@_x@0kJRk92sc z2J5s2D8_+=w#56?n)CnI$yDw~3sc==SXT(vW zL*@C}JxOB1nb4mc>H9~)tt;iKno05oN6MhY!j0|gfOl`+XxgPNQCaMQL_%Z8v3VQH z0hvM!?mBHc)8D?)C@Y>Kkt@-W|A;n!VAd7iPq0cYNtQ)7E)2m>wG9n^QVwVnqDRY)8i(iwxqGy_Ro4eA{v zLdf6s?cBzZ?Ks8T*-Ig%)tp*lBw!wBrzG=5aBo3b;`>=UIYLeHe^T~SYyxaM5)Zt+ zz3uAvW$kL$5d&v1EheZ0pyX8?MB`&eYG@UU1v_F@+<4G(X}zlt(7ZilH}jt><&8N& zCjj#6(wzAamj^4JPaW^>tiOtrAr6KI|FH8+V)^f1?1MA!3tF~?Y;Shzr30AMWF4a_ zN7wh@X$)IxS{hn`H!Z8w^zAa*6oOB!26~E67#h#}_);CY+2*{CpCeWc)`?fC4i~qi z8wR$e#ViNE3OX`@)o%-i?3I>dXpRE~=+_Uy^puT7B-yhLX_jeNzlBkkidrHe&k zbp1JEDGjce{70->j6@IKNIFJn$K1Pe7a6ao3$b66o)Pk0#?dN)7Y;dg!ETs6*+{u- zFdOh@>+KWm{B)NI(cze#S3^}f-s=Mu-eHcrb-e@oYcoh8 zUlG}x^}_*$`VCrG(T$I`CRcgqPb8tXAV(|j$~;VGac0EnMg8d8EC!u=X?hBdfqgHPE1{s#;*~^E`w{QIM6L-L_0|ghanW*Gu+z z2ME(CeI&h6Ra<*?a`lQ1p4qcAcTZ2xD6(;!X2=!57LO{iuG{IhD7vGei-SBMu*g2j z^MbE&2=ZEyEf`=&#ISVU$G22~*DgmH&~JL3R?Gv(%l}{8ILDqd?%9>?1CYo)!q_YyGS&Di0AK zkbn0(+?E;3fiB{!oAP3UY)+Wdv>jWdhYu?cM+C<;h*5V|rhimweJ>irKVXgL!;Y8T z;iEm6d+Ch*ZjwieZxrqBLzjvpuzgkChtqH)f!7Kh-C5?9#cT@(A=MnEss?>uWZgo- zGUoFs!e&S6+mEXQR5~hHP<};ilL*fa>?4BdwxT*v2|`9oi0pD4<$aca{?HPs%=W&; z@FY3GZu(AK+)n-z>K{(R|E~o|9KR7<5YyS|P+vdga+hzk?gl1|dp%%l$bLK*Fa<4SMH{XV(q;hj^8$Do zjUZ|s@(veiZgoOlNelc%)A`#Dh4%nALl!pJ!}b*#>;%3@w6);!NT6b-1vHdWn8YoF z8_MF+v;aFG(0C#&9qK`wPalI4eH?7hpLyR_%K8jzczr{I z9{Xi}%ATCX*9+I2{+Sq6s`{(`gfY^>l$7Q_H91dSS;LZUp6n$Hw=8&^Gk}jpQhD#p zonc;f$d2?EK{9N==WOYNO+cHV^EJTVaqf7>mcm>Lj;AW1lc=%`l% z4cvY%tt-WCj|O=$B5YFxS3>{Y(|zxRtaWWP<`aA zPcusL5OTc=t=EpM<*t4>#0(8(61_Yz_HpTWejGOdPgBBWJKzQeWQQ~p~YUe*o!#=Z)Bs?FU!KGSW>L(%O!MJ%~P7NI}$ z4}F^LJ%s33jd-yz6WF$Vr5l$qYr@(v1KKUWcBu=PP+C?}|1_lp5FQC=+TKx@kXRf} zvmB33R%T|a)ID(cygqBrT7adiso9lX#K|Bkn$$((ogjllrm7aNTzx;rP}3y%D7x_G z6a6<9($u=qdJ2N`cHe;jA@jK-VrN%zlC4{iu07bZb!p2DcCI_#=hO2*-@=^r@Xf)m z`G(|7i4RQgeylqUp9bk+ZaQ~Z7NFPr3IpLM^{vRmA9?wK=>tG?!_pp{8^s_LxjY^8 zj#O(P^0s9W-JsPkeb1`L&DRq$WcUmIX$-U}+o+8=Ezr(|=#x+DCWu@+`hV@5#FVzx zWj~7XRdzE+ulU+|fVLHCr@99j;48qD)HFBP4Io(@kem@ZHI0LgYW^PUsVb^p_PDuB z4V&3_j2fSF!B-If_Yc&M)MoWyeO!f}EvZO`!G;&n% zW0}t;9m7DSY4=$iB#i2r3X6!h0P0+!aW@dsod1BN&8_{8wbI@3gjTa@ewV)J%-vtU_o6D$PfBi&a)zd&h#<0G$+(l7YOLbKf9=bW!z+{9 z2M;!MO7_TaxN6*_C^SCHC#Tp*Ksh-}(y=%=bcTo?KEBIA%zA8W?5t`HdWtB_x%n;~ ztorNkQS-*03u?ryxNNV3K@PxuV6fZZ=tO!#0UnEO5AB$rrzy}1hQy=l>YtxO-w1&T z57mO(R6$}7LjCCwc^;I zVJEcrb*aN^mie5ijYp$~>Rw(VNXRBPcLc2KXa!X?`@}TOlide%Vw0ge3< zf6EKSb12Be!5+hlcc$}wo2IDGvd!*c;!M-@yC_q!W~?sNf0`}b;stqVb)E;8AEa}g z@4wt2{|`Mco^zijYYTw`0JBJ$y|@P(mb=sT#=y*&RsE1&wf;5>Q(RIA#)>gZBp*kJisuTedwZ|cOnf!tEmHK*OgsKQyFvKHx{ zPxCijcj*HtwwsE?<%eA#Gh2sSy!V={dPM^m%p&CDh|JH5ts?kr8y-L6V1N9nFQCSg z&MML4cWB?sbhj(BAcB7(Llz8zf;Bordmvc$F!KdrcO3keaR7dY_iNV#JhRb8gOk78 zA+M4Jlx?K8=h9J<(#nvq;&aX>q%YDQIDWPojDNxvqYY%w=L<0y>py~t)pA@aYehjI*gXQLV zWA2@n*`U&dNSTLV?1YkUa_Gy02}UTMBY_MUSdgGEAl+dABtw!=-K0ZsM=MOxsK<)B z@UEEwQh^es>k#l~eLB-n$H+z5_6nkl+?E2FpA{QQ;F!x98`DE{rrVo0M0f67(wLGU z8S!A1L6>Onnr9csZ*;iTgCiz@7CwR~ zoPxs7+pm*xumTCWgOWB{EIz8M|7HDVgfIMd86;|m_X#lj<>isar!J7u06o75_j2!E z3y9k)bQQs`^uP*TRneu_6|(4FR`Iyy`t>>VNt$J)t637tIOoaqLjZyd0O1`S%v@t+ z%iGh#f;UvuiYLlwI77wEi6p-3T&LW8TmY+KFx*M8oCq|L0r7m=BY?&j6&Q4 z44=B4S{$geqW|c3udZLki1r6D29Ay|qCy%$H5A&bb#ZcN+zXP8j zWYKVxmX<<6eF(L13^3tK+q1*+Z}05^;;(98p!E8<#p$*)W!9Bq4v$cpzX5@-xV_Z_ zxVaNnPY>pAi@5Uu0LKWebH#zN#D`h->{HK_qSPzx$XKI;z`Zl^=K|0@h&?a{b0}i1 z0Dc^XKt!bu+W=xWgRp3Q4l;X@CB$rx?;kR$$)%BilR z*q9*;2m9sFi5KBU?Qr#x-HBybh~#J?|Niucv*%rbysU5#N=1DAie0^o^H!PfGicSI z-{bGjYp_TGGgp6Ti7$c_T{ z;N|nUZ&kA{l=I$KB5%6*0N?@bNb19r)S>E$LxSBWZi7VR_1Czse;D~Ieuo6W`NQB6 zU5dTHpsxG%+i5m01JjW=6{IsqI#cH_mQJbp#JLV8A0MWU2s+AgW!a8G55E2PNVJvW3cdmng^Wi5U$k?;U?fSJ|KB( z4eTkm^*9?`jjlZ_W^j%E6RmaG?gdHGDTLy5i(az zBthPvpibrrWMmJ3LDkx|L{>(yozb)RKd)D!Awu;z`$m|zNfK63{NZ1b=m80xO>L32 zB-;K?ytv{)(OSAMs;kmlm^uaD{&Oq4@Pu#=AcvHb@{3-b6TKiKE@eZMwJ2!ZQbp+n zsGqaj_oFg)O}3{hzV!drN;V#|;zg)_z$19y>=w1DsVJ>g#HQllHBVZkx|<7iykJ@` zoq7Xy?s&m>Ef>NNp(@ZBYR!Sm%)|uM2!GAy8^GU-gi0wSI|Otkg&DVowtW9W+Ln}9 zQGX^Wiu%r~^MzyXNex?@-)^3pqX8;wbnl;f*!=dI{5=DO+@b^g{xgIkw=P)tPyl29 zPmds6jr{-q{X;%9NHpR=EQIjOxooARqy$-&$g*9rv8nxOF_F-2 z{kNxF2MYe#Fa&Rp5yRJ4*C!dcBG6&x%3U_sd4Essv^47_Jw)Y zi|_4Bt2Buu&Lie5q+$?QZ8)$X`B5&$^vr^TS<-pq zER*!_Nub0@aLYI08P#j0Y((DzX%&crWk-!1##BxE($e^X8^&3$J2{)*(Gm=@@5LXL z+>Ea1+dAFZz6)Kbe;?p>Xp^?9T4S#t%~FvK?-O6MUrdwDZN4`xvgx9FXm@vqkBHXq zCX1gcdvpmzav@75v{p`wh-H0FNcav*uwUPbWMl&LMrFNQ#@c)%NRiH|RQEA=`G!D= zxd^jEWty6GU?|PBkuZi}6H58Iiw8h^@=8i(;62)!Z4BSbZaKLwO<$9sp-q*M#zXyD z*tLNd^-JO*&(Az^UMms^&oO=&>jvXF>zE2q*V@7cG*?hYM=B% zP9ZS*JFG~jG|!(3qgCkkYid95fSKtYyCUNQhu3-Axw&C4OUA>2NVBlm3~QW!s_rBy zrDIUHt*~CJ`Pj&lTfFuu1wZ_Yoe^y9eCGOL402~8OpotZ(gtDbvX{={ z`}#bMM1pe=Wg>`Mk8z`3Y=MbTO;qHXlf%%Fpx{`uz6V3L2dxj znFdVno!+-U6((lIS& zpWU`v*v<(4nsuwtFkl^R6*6C>c+g(Lx@x?)FkW;U?!v1J{oLF2*iE0xZo0t;x^ems z@cj$9k3pcUNBFA-_rq4Zs^m8xgMA?G<=}sQgtr%m+Fp#0q=-+3&Q>HU$kqL6sXxxDhhYBnrdsn+h7-lrcKPsvPlWTA|S3!mx9#Mp8n zPu)fj*DjL92`M)4njE=MD+7HC&`elfVQtXX7X6meTk3RI^3ttVu{7Du_4StBDlD{MaZhjeVG$uMa-_p_tlA4KM1MB+FSQ5U@jrX|; zs@4`JB}?(bfhw=N%$J+bNY$%z!$+#p@tZxrSG`<$KoeITMR)0zm@}0TE#M{PSZ=|W zCe!#TtGTU94^U}o({7dDiI{j{^TK40*f%>9S3dG*t+RFAM;8WpNfH@|o&uElO5VTk zUTtVYaC3EI*1*Sc@n?fC-TXUWyUo`9GPPx5b4clWcfaq!$2ZgWI8N|hybuG9AW-W# z51Q91tVm(2GKCj{WMwyvrsWGuDz=w;+bh!0jCr7W%=StFERd z37r~1AvdISG+*vsU4A;;ocJ8waHrv}PqWX7Ssx`uP`5xSg%6m+lMXMzV&-E|)TN;+ zu6X$p%}5Vhzm!2WJo4A+>E2@7l{4Dz$7Zv#8kxuM-$BxX%W@%1rZqs!3c8Ob{$a)R zm5Xv79gjF4B$#ngQcc;J&bKL<=%B>) zwy387l3^eF++|YdSdT;oCgDN&jcy<>LWHwm`)==$9R~UU_AY5%D^bfFra>WKa}i42 z8XB1LkBd@LUa!;1qeVLHzepy%BsXW=bAe3?LP^dEifCwP1_6FXtTO|dl&jG&(m`nA zoKbFwZ>u-uwHx>*NN7HkqM&ED5n_;1NCY!E zUDLJIj{l6`Es)Q2ROog)S*0rc92{ltLEkwwI!6CX$ z>FqKTN$K{de~p!mBjpyNO|UeDkFD3sx1(cX`1F|i9^`2k{RYg@1kNi+;HkbSq{Q=- zf4jDahXN0YTnS`OS^$F;Eu09jk;VZ(PurvPgrZEumKkghprlA|UuI!pDG!1qf>++> zlt^s@2y+1pfY|kRAJl6b`uIU6AQFz3L?e5>%=ug}q6h9B%xPtjB)6C9O3vGSe^Wz0f}R#pD>jfl!) zyByU(LfoZhZ+q<1j}qb^A3wZf8~Ktfr89i|EC}Zmj3#gq+Y#};<_34P>jMC`J&dV! zi^d-XK-@`E~mDi41Xhl#W6wKKukcST|=8w z2c&-)Uox)etEI1ccsoB1u2c;04RVw6#{W`z0E1_O>H-Gz5*xPoVj%Iy`Fd4hP+5WJ zXlq%w`Iy61D`mtgb0M~(J*=TXMwPrSC#;ov{@OwTb~6*N+KU*RW`Jw%ak^?Bk7L`} zSC2+3H*S(2s_~+<_FOe@8`^77FX=*?Fb=RGlxX8$xRt2O~7AG}h&h-sm;S6Ml zF%(p#)cux5wMtxR>NOa4c_x{vxpLy-vYAgf81*fLZxrhaInO}^z@udLTR0FDKn73r z5mkIhNRLzR>7vs!7Iu5{!t<`bR*p0%sN4-KqSd5jISDiQ$&cm;ou59UKG{4N{t-4-OnaLqrY=KpoAG+A1n1^WZfADUVxf-B9Yk`Kt@W2M^9J|AT{c z4K3JX?zy@$^h$EB5KuLoa=(VHbfDB6Rn6A6KQ}(ypIV#FRnfBnw7Vv zlU!_6tfu12RA@|p-gVXC%Mt|A{a>zPuaLcLm$naWn2~&l)>Ry{sBO^@HgDt+0lg2P z3(#)~v55{{)UL0g;n3jb#K}?h$&&^|c*5hf`TG{fWe*BZt6J?*OG zKV&H`<~61!CjaETAa@(_!GanU(3a%`D^zEjX{9`vo-KY#w z6JHB%jjr6ubUT)%`hA^_$Nn!jzMO1YvrCBaxP}RX^1j?>eYptwF7KHr9syI$ek%?qLLvTvFZZ*l zVn%FghVZq8Fa6Z3gd4=lI#PUHiT-aUtWNHLjyc*a|=gpi#F=~V-IA1Mr!j|4Bt4H)B`{mny_f%*n7YKpo?>col4 z#IvA=l3OShPvlHg#Lya+1;U&B78Vw8nD%P)Irv`9eFxf798z!*<0yQ{GfpFlu^--Z z12_)-ko4KoH}8-?{eBo2K;ep;P*d&Kw#%gI#gzmEhC}foM z^&Q_o4gA9FF+#524o(rN2`61QpTyXub$KX9?i~@2Ubuhh{7zg=!7i|=@a5C31!`j7 z^$)^%6Vubv4;SulIDJsAPVGn$^vNC~w4d$&<@rw;{_uID(~jPUgOA$a$CHtFVfCfG z`Ot=r;{ExnF4HQN>Q}@W{*}wy%g8P3`OYH`BII7XJPvq#aC#rtgL@wg{}2>1Y&Or! z#|M30w~(YsV3R=B+3*cdI;a_b|BwH)f_k6!yCgtzA!{XcywW;OtGS0Z&=fUikLY$sQC&nYg}eYL4Z+vIt>f_T zM0G=%%C@B8u`QW<5{WW~w2_mD3YOIawx)=ZNK1N|jC=8lVAomh$T)`+%3jS(RG6`1&!VKM+!m72bO2!p(|jLe%%+$PxD^H1&Y zWTLwwUJogXp(HN2?C3HOciH4b31k1T_FTIyi0}B89dG=J%OtYp@ro^Ud zsaf+Vh~5*VI7q_>;LmC59*Y?`-*WfSiKYhr@>SA#F#W$40ADzoDBssmk%5jCdm9Oj zA)2YMW!5*=j5x1muK=h5BJ+ms#yP?|f{o1%P$t5j0ic*Pa`8WC@c`zFlo2=X>OK;U zwCmB?ohgS|^`h~ATk(9pgSwB4V)~Q15E;l{>6#EG;^Rs&i+;L-G! z6HpLvm(=3ai@M`QET8e{*@fU5{=lg!S&ie&5!RBF^123zh;n4VVBx;Nz2!ExXSQTl zc1T>iAY9FP=s}>?bVYvIc7Bt~j26}SI+{uo|L1@FO`V)~Z^rh&%gDb~a5S1y$eoFk zR=7=p>6dMxAxrPzrW4h&p`9*z~rt)^pQx}K=y-?m8m@F7ybw+HNiJs=^G$;saG zGfle7^?#>~N+7mHTuDhO_yz~Y$14m_!~=yy3$JECS^!HBumSd9ZdB3N_e`yuV1lvW zHy~xLcPHh!ZJ7q$zerAVm-{C5g=jw%_hwA2Xb6}%$|%~wMzKmT-L@<1To1!q8_T<} z1nw4cjKIGmy7k+Ac$||7Mv8ln%0K=a4W&AHNhH|h<*!?StS3k;2_gc*CFe?svu2hi z?l3Ic|I3Ff^{=YW@EhNq^tC>i%+@E0Xz;hPHHG}zl@0>x7Q(m#_MEjzUpZ7(`Z3h8 zI9AU#J=fSFtAKLWK?i{O!IWrkZ{L4F3j>W#(@T+;sV@PKJjr;8C#TifrJ~e0WFN3ogydWc=-`yep@hP{Hcuj`B z0ar?o#OK;t{w^M76wU1WS^fF5eIe>7su@6qd66=2VE?BdiT&pxjlJ$mi)0A-5zr_# zWF&YA-ha$_5mT{^_wp zZ?vSi)H--hrq5PnIO8!&q4sX2 zaXL!o!f>GVRUpuE{@r zx(rtivw#4mqb7GK>Bkc{4@3;)$i*HC*n+{D9o(fX3B09j`d_bH#jo!|Q&lUxZ3-~W z4{aV|`ub?)WxQy53;0O7S`H`@e*qgq{W_BqclCPX&QHQ||a(hCq_F} z1bsr9X|QwBSZ}1+{GY@QAP*NouFS zV5yLv;5w<8x`u|+L4EDV9WF(-v=plfG54WhE=3;GBVrRfeaU0{;gdZ=J4uE4^=Li=#6x#D>%QIUv+{NpQ$9Tm zkSwjim>QX%&S(5+cdkvTN~WZKEv#0Ej-EbV(3=wj`cn}{8R&Dq)z?$S_Q|-p39xEz z4oV|$Q!L#uS7 z%V6UWC3~)>QcVj>Cr91Z0{{c}4#U3bZD|5}=!0^YX%v?HIJ1`Hli0<&GF;;;X$hT$ zBkK@sO5+A_nj0`~`$QL58XqAjn>IW}@t4mb89wh$O5LL`O0|WU%+#f!g+dR$*KyZa z)j(Ddn5c(oc0SW$B5@vwkqjs>C~ADKlx4io{4R;LMR6>6jFozpUY2Na{(Uk*(~Z)Q zkeOVmioi_r_q|W5?(_Y~Q_tJ}OYzFx@6+$sJ-1*xx|y>r`GxO#XiBT9;!pvK8MCcJMixbP~cy^V~#h$ZB(b@f)NYnhOZ}#2gI8=eTk`vvDpGi&270uBZ z%W}Rk@P!Hg-^P}o{fDEZ)Ez6uNP89-hH?YykS}Hx*7)!L$J2F(W4*ushoY1b2^lFF zk&%pS3K>w`LK3VW+a-~ZwT#knJFZV_;BJQWd(y=nPH zv>2mibq4cIlAAUy`^cC!rC@Sa{P6T8QpH-LeWCV=?3MPlE#I7^rd-@Dq+mBO+qBf*9j)7+f zbF&68bQo-+Yg@?AEoXg|mI&x4COqiQs&W|Y5gi?Vw6 zLf(7o_3i!_1V6|w;SBFJfi3n$B4H$)Sl!t<7H>v%$;Z`rVCXi3^A^f~2Bdnfo9c@@ zW_ys5GCz0?`%0bGNuT~7s?aM%J%E^iFs+x(BkKx5ScjKv1%(C)rQalRo_n}*( zNZ_|aRs>yGmh7r*G~y;(pw)G@Nj1l+ww_Ocj_TKky-t;4b*u zW~da!K!F24-h{VP^d|^AZ_UV#hSU3l766I2 zK{p5}IJcYIiv=2TK^peel%%8_2nN911r96VI>eI1;j+EyHAAppx@O=cxC!dRpykk) zbvTK0=AWb@O=A4Z2%hj-Emgz*5%Dpd(q~p%I#d#qODbo%(Uhx%Yo_LT; zRSk-dr$19M-N)0nVGZq((KqAm^l<`NPsXDxdX{v@r{T~tzpQKYBW3>P=NF5ZLSPmC8 z>;ti93r2RGB<~xtOn^Hga&r?5t~@w|Z+nV^gX8(vss3lzH9jSCN!-=T-eY=7FL7Hk z?Fw0C8YX_HE zCgJ&09fGsw6(r%`D&oDjS%bv~hShH0zkiOSa+3s{=I-ay*`dqi%#3eA0XKAdo=we> z@5@s^eW!|M`?>pv*!m}TQ1u2QDkP!*V&ddn!`|8+CMG34>5-U4C~h;fL=A0J7kP{` z`S6Kj@W#@qdxb}RG=odcc%Abnp~U_2(NxxFw$yHhR|}&gPudVLI!TcCiLPG2Bq)dn zr3>9-TjycK3@_t)kklc4I?RF=Z5+N zXu$68RzChU_jP4#=-y7)sD;~^+Q64BaZj=Z^#u$2bH69oj~i`UgJ}rZ9O(g%Yj%sx zHt3!=A-O|XSeS6U^NtA5{BU3U@!TCLNl8g5d#T&wFTqU^>wZS(0rn?>fs{|5#$&hV zOusE`A$Ad(F91jQo1!T8+9-97dJ#8e5@iMV5k2mcH@96`f)(#Friz45Zhe;fz#XNp z-mDNPHmkPC^ox0-`qycR+l@6PF$3}C(a$xR1*!UUNnMrjSiUL?vk!PHWK3>wh!{fQ zj**MueFKP4&aGq3KX(;sR=A}s9!}yBk}+IqRj44S{T*>M&wN)e^2NInE3BO@^WhRp z;O1nCTm8bu#zsars!wb$fbpY>;Jvv76Rj6Rnp1Wby=sB}>oP{xn!S&9I);FY4SJ80 zC)24L7oYEXDhy`9y_wU_3q^mLRRmxrh#Y@w)P)NO0%EB>aa(IpTL5s#8EtR|hmfZG z4v1Egf1Y>PJKe_n#Smx>$Klv3&}%n?!~N%hYNAmQS50&J_8%!J81TGsP?ES;&;-4l zBXmK)(3fgCFyb1}Hfv_$J()UiSKQ58F!~Ckhpu9tzT$OUJNNbTlA@jeYP7*Bm zH+4xraT1x%6zZ}A&WgJ})n+$l5K zA4@%R=T1VMx^&g#wS>zzZx~fb4HuTkkw)MAoEtvzHq%H__}SDmG%15a;V5=99~k49 zA5r&CZ<>i5Drav!Gb$Dh(GI!e_Uz1b*g%bzmKI7vMNu~$FMDC5zX%8nL;)_nr?cDqGTOgQkL8D{>(8H)m6Jiq4g%#QLP!))!%>(Ymc;5;AKu7)8X^* zIsH&{U#2T?4?wzQ91#a36aZYtTRLos=;yBv#gmx(Su~42$y7f!Y=2Sws|iu|#0_vC zmKUA3X$X3NCgx03Ft!&P*l{VugTjwS%!ijsYgzGV7~4JzDeAI(_ks(4|vE1hh|Lh`!$Le`Ms z77z|M4mP^--42~lm<>qmK%oV|ZZ{kfV5d}Zem(RNaY$J2ryZR5@*^1%-=?_Et6l2^ zc0g7{5c9Y zE35j*3I6;^M5ve#sG%a@L;f|$T4c~PX$GhOk*rD}k<81kD9o>=wZRuB-tizX?iO$U zr$_4hA&q+D5t?SYaQlCa7uCiY5eI%xGaL&ie-u168mTzKfr!${V)x^tBLyk?k4O^$ zHf{sCCKs>pGO>jzX0zpB{hl`0(d@f}LEr7X6L0I4FB*kLNLYBQHViCWBR(}Deq5=9`9YmcWH*Z^GM zD+CTgwb7aUHj0ArH<}gCX1`OtkaxxTQtt;@)G7jj;(pi2^8k?KxeEh%PPfJbt8fWy z`W2G(ht+M}AirWLl9bPUnC%0VqQk?h2ibu4hZ@fU_{!&IlTW0BS z@}O$tp9;zTFA8;c64KUH?(a=5P7+_ei>xJoEOS8X2HAM9jH>k=(_ zGvLCSYLA2x35EN4;S!|h8+`#p3MvdRZ~n2u55@EvXeKt$m<(pd_f=HTY#MF#`#UV8 z#QX!ha>qr2MzVx#C1hU@w8koD69S)~tw0WMFo#IHbp${aJTn~t@>OtrrG+X!S4xn!5QbIFyPUsyL3L;Vp!QgpBWKWudSjC~q>=a$jz~ zc0YeU;!c`ysH{ESsq5Q%(TqT^$fk!6?oFGSF% zU7-YRLrT;5;{(I$g4gGWLz?X2Jhg^7tChterJmC!V}*QqyF}qpm6d5$zGB!4w z#G2e-X0QROJ}jO<+|SvG+>*%37nD4|foh(dmiG3Hs_xQzh=7J|Jq^JWXLWpzEYm6_ zs;7*wEmgQHbn(OsT+u)ahpWe6fdP?y;4TC;1} z7Xv}m1;g4IP-5)%MrJIJYWHxIN;>#nC9@}z@t>83cNW019ZK@Br{|VPCWE@92`Xp6 zc|iwG%VGN!SD~%V2Pj<}h!c9ne6z$nuZ)Hig{?LD%kSThYyT67!WiA5 z3{?)G9D8-mB&MZ7fPtTY_>iOA4gNC8IcelSTJEIN)^bN0Li znk4wl!SImY0>ui1k8b-;+@oow+Rxb?P*NtzqbvB zoT#c?{PGpqMl&)b8+gXD6CW;++7tN`87ug%_6#T&g`%t}MUlPVe$9nytWt+3M1U;_ z&t98PoR}Do5wRLULxYkR7PYzK4+E$5@$hPQCJoI&i-TNU;kcn1lcS11Q*Pz=b0N8) z01~Lv7&itqC4T=DP}k&ksMJETe?;p`Y(iO3Aa;T)j*64(c-`5P{JB9uB@p9Klrl=v z1eRlZ=kD?Lpew-J2P0k&eoNRuZ($98P6@oh<+7bu`LoII6&e~%hQ*tBgj0Iwbu@=9 zMDS2?b7b_k8K)i=tQ#mPb(=5e_GGGaVIF_TbDAXFDmmPvjcg1r#WYaj(NlED1V+%mb4hYMVdRRpM1?l0iZ0L3A*1nu8rtuYin6| z@cjP$`^S*iPC_8N9?SqxwhKYHj~{me(Drhkwvrc)I)ytE^-*b0e_=kEnw-qzV0L7c z7XEc44_~gw{zr-Mvmwki>z|v)*3Q>k*hes82@Hk2>`l^_8~JcNZkX6qHW%q!`9XR6 z;lm4n&}}sZK;bb3c>q(O07MkDk6_OSR{kix<%0cG(mJF%^n4OOg^mkEFJ@*&1`vTA zo?HSU&$EM}4R{B3eO4eG>n&P4N6de5SMKVy;>oO4Z1^QJ5WK1fvr(8koy-2&j)du; z3kUM-**_EP+~4p=#NjcZD3-k$(c@O|KLzhrBB-RmB?O|L-E3Fx5%aHYfhq;q6Y zJiXiIN!Hu!R>f;shDT&I)HKfP{$TsfsHqV$+5T}*wUy)Zb}7a$AYgq|209SGlciuo zvkvnI;+|J6{SoiTmYOb+NiJ}4Bn>`nI%3nF{9^aBNfh|^?;;}ljH#~CeSa6_dnV;J z6NR;z%Nr}#Y>&{tsgtBjM7i4Kbw!W58G3bgk1DR~!c@K$_#cju;3 z1~c`<2X3ajTzKrV)_9wzyyXVI&?O>F`MqMR9G3WqkT|@2$?^4wFwF>=PbM5>tn@xf zdD#Lnwx#h{=M3q)TL<@ZT<>1Y#k_Mk^LaJmoPn^_T2Y!nFpD+=v|@B%LF?IhALbPF zB_+SiPyn`EPm=r&@#66A#lE-q1&GR{<3>9t$3Ea=?j-2vdP_~P3wRXgz5M(jb;3pf zR5ex}U1AbR^>ya>=jde)xMVcgX8o?0lUStB2T*Sza2SM#$ME^j9m!9?FPnk)ssWE zTfc11Bk@T25hVwJz=~){`;?)%oC~SL_W1Tg5)`5a zr#;@40xJB8kSagv#M2{W1XiqnA3#rqBY0y*iNmXe11<66M-M2ka!m(rLf_E@ZpQNs z$4ln!lSM;jlYiqLH;&tTz%*|UT(kljbG{AEO5}z3{5qXn$NDUC@5KIwJ*P{*MZ~c^ zKQsm7fEYnl{0<70i94DWvNqQRY0#jg1<~{oM(ob<72AMvQSyksh_s+5%>6|nfSbg^g`Z`do7@0cx@ZLqWYcz_Q9_a9jvwbYIMlm|nxhWmv|>$Cr~kBUEboSxr*Pa794ahscR2 zr^mC4b1)nJJw46auq;V0T?w};3YEVv#a&sZ<kcGFQk796_}8E0WNnmfx5}o z!x-38n%zGaS$@6V%V!sJ9u|G8S{eB2?Q}o>sb?c}0YZ+2ljKiqh`~cg05zP*|JB#t zI!?c-xpAW|kmCltqmKr}#s5W0SI3pZkuUv#SFhnT_@D0Q|NK_E@@#S9UV2-g39h?w zT}|+0^UaGg67=u)TyV9tS1;V#ns+gUx?LC`IXGMsfc(8(1s7KjSfEoA`c@M$(cS(H zB`eOyd;6k4n3pe2;J-<>E?06XcEkl}JyZK^#oQdv*>?;V*%sd10f+jn$qCOAu z%n_gl##iwOxXH|91+WOUP=K7#v9Pq6&oG1ex>cU>Kpq1^GN65a*4(7%Z{F?wvU2pq z{gC_@VO}?mRj>vsEGhw8VNDeCYPCLo z$SnE$x3ZdA3mj*sZ5z%}{rZyzR(&rl`>!Hl9|R2nE%?vWE)1usgQ zt#^Lhjax<(yB*Ee<-fqX=U5j6gebUdVj_BS`h64>y_`W7#0$3ZmB>pc$AScxk!t_6#WWq=n;Lq)eVUW{omgW#7b`%o z@?-QnoVm_BbRF$G(&k1n6odSe?3`V8;fTotD-*aE<5AWq!q9N>f zL({^_-di#L#-U z;l=`B3mL;BAP(;O!Dc6+OYG42vOEbdAXuqoCKh%Ra5zoxTXZGghDY!^uhN#j?oZ=D z`YYTQG8&s|(_I46pa04402K;c$o{Acg#a6b`JZ92@*}z@I8jQI*7B+Cfdb@kZ8k>0 zf!u-zOBbj{g?C^3#TMY_8-%5_uCP&}s8mqG{*5#O#lextE5DP>^*7!FQyd`o6CcAX zAH+>8cQvZTgiwe27)K)&7P+~LEExdo5R0e2? z@dY=QreF@&B|U|iMY73R>Ywq1oUU_WHdwBq?3WuRFk@hu(+Fh%N*c>CJ|=1VCF#4A zKm4R&`tTm61cXsRlNSMUKtIM9PqV_0WCR3lD_jnMJD^?i~9C}8Oy z>$xWa!D3&KftcSD9C#sp70a)w3@gCb;*d1BJpZH1W;i16?l+4XEdN0-fOm zbmbt`Y=grP%V=C^DsBI3R{v}N;0WS4W2)YboHaEm>oO*MUHOqzDEiS99N|k~hERi| zU>+?;OUkN{>%}o+NFOfiDz@%8xL!KiOch0T@Y;v5@D9)qcalzAE!AuOQ!inD0l;xW zSy|b(Ay_Q}=;rb@_?Yc1i@&tRn!|H4C9e5WznTX6Vu7%x%4d80 ziC(luS15vUuX71Nn8;xp^Qmt&arsvDb8^g!gdm}M^2;LJ-q)PDWQX^_KEfM%fowD> z0HX&KX=xR3>+OSzPrM^=JQX`H&j5?}I~@%=vEXi-Si8s*!z}|VKA@$wV__=~I&+kL z1I-}Bd+Gsw0fZMP1Cvue4&~}gAzjGr6)b2jq=ps!i{Hv>^M`CZ4Bn*`=^?w^7b2(e zRMjpba|XU1Ju@?&hwMr>xkSch1c{#ISOHBbPs5dvZ9e#rfb)1k3lD$40}y_Z-VaIa z(d-ukx0Wt&`U;G?C&=Te{;h=&F(t?1IRHWI8-XA?lI#~d#=^n^1dwNdDx={BBnp1+ z+y#D#Wbh?nWH=4B>n!LbfQP1^y6+q+u5n(kpJ>Ri%J3FOrn8S?tAc>Rw@}xx)v4;} zkI8byh5~v}+bRa36N?TF&FVQ5Ji_l&i0b+N;OhlvPs^U{;cjhjze<;oayd3Mv<}jU zH`^5h{=MWD|2x7jVz{fx9ricpCRd&WwBWT&uKi631R7!<^sclkJeV*eO>DNs7kE5% zmV0djlOvsAxyY9>s-EN?*9lVcRv1eGMbKJJGxt?iXa4D8iQeV%{+KRydq&KazHd$& zr*nV2j(qp-2FypCwijCgZEG(2{?O*NP@+P}&xQtr+{yI_>zcwCgU*7h%RMHK9?T9t z*tdQ>9AbDe@ZaY=iF3grhP%+{T!{7;0G|Tc%lv?QdqRhkbytqocZ5x@r{V5tyem8} z&MH$cwWK}1r!e;ju_RG?73id8fRQveHKWw@=c+DaDiYyba`YlWfG<>|S>V~XVnYT#u3OA|xF1XkBeGjM36cK}U260>}4&e4= z&c4rLH^!5}$;m(4Ia7Y%y~sYKF;w*lYD0oOmH*ZRw-A@~Eq+Fi}b! z?fXIng=O8G4K5u(T;Zs-2E0hxukm(ab^wg=X1;Mr7bN!;iC^1X*3Vy{+E$&>$;M9( z%O}FcW!`>p?K3NKJHV&n#rLhR&F>NcXDt*vSw}`9yHF%<)V+?M`AG0ta_M6GVUX=! z;B3gM;9_6A7L%OIQ&LxPPm^04Z0&K@IF3>3-a3?0NolEl-~HPn^uI3Z5qW=FJgJ3L^?lZ zW~$X>rQ<6v(VQ;6J6Z7R1o*Ta39Lau&IeY=6$k6>2RSc9hPcRd^1YRxJi!yQ>~%Ye z5e)pDQ}oKWVQl+RUNv3d8AUt*GhKiU$44C`uwS6Y3h^#};L*}MvI8njIj`_=rf;s+~nVFL=P5-``1oqdRNk;ilIIdybKMo?FlVghRe;&l; zLZ4C}P<}t3@4LETTq9&g-pTm6WJ&2E_z!$vY1GN&+v_>^;%+}Q zv<@f~WY5R;fP`FuTu7G!Hx&!02)UlMks>ZQ6!pf&pV0>e9354e%XwdHFWJN0x(;KC zZXnwyPRE3W)xTqYfN+m~C?r#iN#Y#NEGf{+tEtdE^Db}gQdd;(z9f6r9&okpgaKol z=dPDZ_oz-2d~pxC_22P%{)6!k)7rZ)D1-b*Gd{zFU1n*?x|2V(vmfTFnD>zNgd~g* z^M~Sb0DOmRI}vo#f#%^bF4S)~q-&=~)y=Z+x0C*4ri|&SwhErWlqK60Od40l_6#yZ zg?=EIZyQbG;2g^_?7EbYn23Df;54tj5p;yR1%o<3W`B-Z^)8J&-!K<6Arrb6vs|6} zY{uH(&je5Gp(Am|jG}>dt-(Zs#))sxfID?5{d*_BB@Exg6(tW>RF+0z`nH|2vT|H5 z;+8?!<#N@&8GuNTDvK^WU`AkWfQQQk2T27BAbjXS?O2n$xx!DXyY6Ko-1xx-g4653 zTik8S5~iQ?n*)ao$KVK90tD$B_+AlDIvGk2qh9$mD?L=d?oGSi&FRC@>%{*po0makY$o4Xk4DC!=zng0T)|`jh9IX1snO~= zPu8yJd$^a}3&$r6nk5cQf$~&X99Xfp)kNmJfw{Iu7CJR3@t*57oL1$vnz;~-gWR1? zd^`GT$!*d@6`x8O|I_O#Yji{^VZy?gKLy!!^@Zt4yYN1dzKa9+nBwx+V0wM?`HwW* zj)(s~QBrNx?Xp(RHRtdtcMflnrvQXwV!^H6cKO)Ry&bkc%sh$L^3SrDcmQaTj{?yi ztz7OH39-2ML)X%*N3y6q#W1T~RRP%J4lv)NOrENR##k0E0Xsv|s8JV>xeaWc+(AF{ zf$&GE1WYWs1g%SdLSsS{+_nXj1qjnx_nY<1;Vg~fw>GF`yZpcBB>r}LEc|bC06=(Q zaeI5aiFx+pQW6jLCuKkUZ*|1Cttlz_lKV^iZqTE^MGZ`AYwPZ6UdqJTGnM=E4euPz zsz1r4D4t7z^A;&#VGh+@ZohK3b?tCx^i<6g^_Pugcb;mTqI)pp)hi1hrb=@ayK&#` za@Evl%saA0?3xA32PHGk`1Lvv(GHz9uWZ%7i-(S2?mp3o&hYQZJy%?C6LoEEYr_WF zP@-MY2s*n!#P{XAwwjun^F9m~x9kPzzGHy34%W@MXetLxaDDkklGupTv3E~CG{Bjv zBEdk1-!xom4es%8B2er*xHRBg-h2ItK8}+#knJQ!yD(-rJg`M`gF!PwKDAywvTu0B zR{u}M)2u%p^XXQo`3wzP&=ynp_xR|I(xz^QP5SSHXo^k_WUU5^m~f%e z(a3gUaHrP*InrP;4wmbL~AGcNa|gS%|Y*awFz z?x|&E(MclWMs9s8CV}Och;xF>C)hu#cVRhXJXzd3x{h%X;aDKAzT?&@piy8{3%)C( zY5f1y7TjrKJKrA?jo?nfhXd_BJ$N$$F&dr!@LWuq;Yj;XKLN0>?#C4J6_`~Y!j-^% zx&8(U7lv^nlc;F?;r`BfT3SWmgNr%+eDv_)TDO#SZvP!=5&c=E$>@0g*b`LWnT6jH zh$$`eVo(iqiq=I8B4DW)wEsKj?pl(N%k8X;cA=yJFo{O-$fc#FAP2r_F(!s)&5#s9 zJ4+fI1Lr$z!eKCgHkroZ{8V_Pl}(=g^B$1# zK0d&shzA-n9NJ_hXXqfZ9Qdgpr|rp43)(H#Or_ITNK&z0*-mUyr%{Mq>-gL<^rpi= zA2vI%Z(jmi0@4l?=Z}vY++lu@o_;2{`TVR(5}v@O7T$ezb^oCyLLJ`kDvp&}E+X+G z3nT%)rC1S z3bTNdU>yW2m-=ikzvq^ohHYj#RP^RQ{f~ymAaP(ZOxs+*I}w8t(5@&0fcqwKOvhbFcSi0DdF||z zAn6!~t9AdY8K&Xw=>QAv{^ak`kXMo!M+vk(7hn9dM|Ei@$ znw6}&*gt|X6L!ZdfjE`lOSKE>HI$Tg4JGsI$}DHMvCdIZIV&F@GZLgi(6?{>ZMFW8 zW10Z!U`YKP92i$feV}?<#tX(G%}aI*uF90Jx@Iz-SnNMN-j|{bYM%U5Qu2Ovb@k(i zC?=)|aaHOc3OCM>)oP3hD?nffaLo2|_Ur5FkV_maBlM<_&A#s?r)x&q*HwhihcMO~ zfGgD$R;Sv3N4oAs(IY0?LzfqUI#qwZui%UzC;;LX$NB>ctEV{W=%hj; zBANgtN3&Sw;k@WNHWP~m-V;4i57)3f1}BzLj{!~>*s;0)edH5@GMd~6p+I24fUZsg z6onr7drL3#b6@#M3nN=>_!>z24ZMr=govt%}Q));T>2O8WKvOiI+7A!-BJUt^F(F@ardlf@lU2cnJ<0&q^TV5Ix5 zg2ex5n1!OUKvl@!j=>A34~ogY}L-Tx$ralc2JKRw$>OM3rl+CFQ~#X26S}t z@*uiL_IVhXXMiKD-rrEJ^rd~ae@p)Rk6-*d=dJF^V#nQO%kFB%$v)g5pB$-fJ6@RH zbrC^g2FNT&H4^jE{ZpWY;*w2 zo5OtmtsM9#bz|%Br`nkfG_^sI1wQx}>p=Yztzt=j@GW87UHwbnAhtO)PQivd|9xYC z8!B8x&6uL%$?c&wYJnsAG^_#}4Y!#cD_c9eqH24DxBvU84##_cyWeYv4_p~mVUB~1 z;3t@?1yhzoOMO+rfB+XNLa-DV9xW&R-*X8WWl?kH-Yq3s`IL1+O6c9i*NXSwr1VW6Jj_#IxLP zJWpobP2sMc}YRUzfTt{Y+Cvaoyi$}8(peyuLQ2qN?=)dRD%)zTlA@Tf# zo&EQB)J(4BKt>ACuR;7L%%)Lr+D4Y?6;vJQctE2!VsXE-GFdcdi|>XRDe9Z-vDlFt zSRn5@qwWNZ!FBi+R(kNvv#F`>eLRo8H-8j#8k}(Ng2WR++oLh@pWV4&t z%Rr>4S+Wb8o>fjQarV3N>1pi$xB#BFn^#5n*oe{f1=kuIMjd_A*nYwb4qh)FX!`3X z{{7g}9+{Bl370cMvRp*MW=s0$>Ei>qggjrq#6~9VfDzqLoS5>8!u1%jQ&? zKRfg~WBCzOii#*Aqbg672IcXKM8iC`ej@YVZ#)*?`p$Td%K^Pe?6H&>Gk_;z{nE&6 z7OZ=_0?IMCYyNSwgEO+2573-FW>?iAA;=N0^t)b>ywyZQsk)+v)=NE3S#O>B2=-wE z4jyzk=vN_545r|@C`I5@3;9FI<{~q#Pv{gc%vRcFbg*oz zt~BW7-f&nQYm$|R|DE250-A(eB^X3XNF;?srO3b>>i&ayz4}HAzG2>@Da@x{+Iiu3l245NDqID>J70436RK~jRa5;aZKY_Lx$cw|cT?-OCzz9Qc8Di4D-tNLe zzqwQ>E-tI1#FZVPSI}o`?Z={3BK-twC3&Cf7C&!vEn1c&7!=|JrsYo!*%_~V=DM=I zTCcZmeakAxf(a@l@bhHBsDI!?lwpWSQ7bd_8QPd$I@A+%QxM>eH!v^Xeh?Puh6>XoUfXvzhH+By{=)aO}dfq&_jZOo}B1%%OKlR3GN@T~T|_2smhf8P@9E|KnH^l;f;<=sra*%Z~Q{(3w- z%ZYT>rkM>4n&_hP9JjrGW@D}4yy7avt4`XLo2uyH;xaNh$4fdwBmR_7!1V9rDn3_bn)?}J=MT@o0> zBl;;+9O=KNRLa}2q=EGg*7(S4i@?sMhx_6!GinqeT63AXf=wyNU{{W4?*jijm8rjJ zO~4NYVB#a)O11?|ht_~_sb4HGN8wH;L;NC_f)_@hR)l8s8Afc-7hL7#jYz&1`8`!J zUMv-44s`Nr@_{~LhF1tAakS8a#XRp#ztA4Zk(!Y35~7&ygR>os52dB0jaK!m0h31U z<$X;);V`Ll#=+S%f(%7Oz$jXEJyJ%aO8sErCUGL+A7lJHIDm0YKygLiFhBPCUH2<* ziJw6OUlax#<8Hqajv&}4f1s`|0~}kF4Gqi|Je@xHG~eGDcju)nH5jKO;M0oa?Af!4 zAY?=}xl%wmR9vTywlSDg27-(S!@^0=o*HU2Z(_z^)SU!pNA1S*Gb2t5fY~P5%60u^ zss-ZXy3xDAOlsot5sZ ziOCs}bO$9RHWdae6N&+;4JL-q^pnYd0PcHMEI+5fX_BN)1B>U-5gtw(fCX5qPL&lP zZ?{?OhwK$n5K1V3gW#_+Xk0hv-lrUWN6%Kf^}v|S{Kg9_Q{cX!Wr+tWtFs=fZ%dpe zsrzo+VdV+*cxGV0>!2l%h;$gTt4Sk#8A?5DY~1wN9w3Xtz?1~=r&1_&a5Zr+%AlRyqZeIU+RCX!gx)K$C`i3@fH;I4z~Q2Tr^^S! zqY?<^pt$)|`eTov97?zB6;Z9U6zK_U&cwY;pLFyx`3K+By9cOcWO(QZuaJf(D~W{` zzB^Mumb+g-Wy;AK^c?u z{b4J!jA1wL+}A-)IC(bu*&FUAt;lF(y zXS1iIS#e<2#*IlIE@rttHZr<~>Bf68|I6Lx4%PNS&P#YNyu<&NUjn@BXpv+Dh8*05 z`d=UBRIm8;jKlhO{5U^d2`RX@+_h6KIs?S{8N7#MU`hkw9FM+NySoS6+g|%sh2z_Z z+88+5!Jv=U1K&#(h!mPdrk`M@0@KI!w*2SKKWA+$K^)2u3~+jz-Egy>PdkMW-ppcwJ* zFXm%i>m1Ue(o}w5-zk4~pltrh&7WU&wfk7k?7TSf+|3?#99?sRA?^%gv&6re$1Sm~ zEqWV=H=}ZdFDBWb0v%!2f7pPAgD5pnjYC%jq1YAzah?hpG8B9kmuX#AvCcC-R(STT zV`a3a=3q@Udu|*N?2o~7w56?W0;ZUHD@50&jk>+#V#s^RtchAXG;n?#bh1~h*4-7Q zg@uEs;BztQ(A0}_2J;R7?~y;6CLa^6^*K4*ajPl3Y<;02zJ--6FreJc4kTe|^S&lOHes zEf}i1f%JsjicS$4C}~6~Cgl$hPv)&xVd+3E@Fwa*EZDRvBNr1Gd}rNS273Io=3ie;TZhXSl3> zx7081I0#|2r05#`t+86nNnt4fcf!v&I&+9WGPLc`w#ik5NOOnvO7+uI@Hjw;!YLLd zn}g((g7(WWbnL0z%YoZRoTRSDh~{S?fDte$pTayvZ5)XZ@-hTi1;tnaKsE*_2)>Q1 zTk5|r+>8P_p24kvoKehgj$UD>3zs(JN*887(`Kjq@QK1>Q))nj7+6_ZzsFnP5NZegJg|kMfu7c#IS^u)1zWNOuOS%9 zvkvf^1%kT6QWre4Y$gG|e`N{N8&HL;g5MDm8o}1RDCBShCiMbYt{_!|=1c*AV8_MW zX7C^Ql*5{8=K`+-1=WbA@5T^Db9f5igWv;`sQMqboGtQ5`MOZLxb8z#*+L&pa z?9&}~wL9XLOC$GMix<%10X)PIVDDG2s7I7hPmJBQ8bwj1lNo`l-}z=GiDfnVZx0X^ z73Bh?a?sE`fRq%liAR#Us3xMzATlNMewbJL6y&rK)6l%prSMcp?N)jCFyzArRCathh(Kz7F&fTS zt3e207^A$vbk`4fHQ!ra+TvzYhlQorltXYF#KPsmHrWe$aj_Q8dn*8F`us;>4hQ^A z19*^f(cE}ovR3Q@-Pp@UP!=}86ru}C0h1Ljd@lsW0*>_!?n95?h5F5eO~;l(P}xa1 zvplKqYI=UKxt1E2&lJ<9n&a+H2z-TSu*hxCyoMSZlHvhx@$4{21dP#Up>HXPrTX{Kw4UY(!kkn zy^}@9>PBqUE=+=feL#0bNks=AMxl-4hgIF$*_l2}ku&bm!(rSj1;#6?7KzR$b?c7i?2bwAaIS3xg-1|$K8X9fTIrw(X z=mW>{HPtOb7+S+Sbp#2=-hYltB|xR3++~G@sKAOO`^bJ7LrmN%@rp@F%hF?g{ckb> z>Rv!y6OLS&q+AZb(0Lawctm!)cKv!HJgL{z{GlKernOh>f>H%5_^0@Lo=~FC&N z*+sdOyk(NH9c^A4dvJZI1IrinAs8UG{suPEm$*uY7Gto!g&8Yk>eN_H+1-Sp)FceG zQJ@Y^4Kby6@BEmK%oQ-}FmTz+!f50$S{oAXfl{Qcs#d6?TB+7dX0}_CqUV`=pbPD`RuE5JdO<%w1C!0AT+{g^SB|(wq1>2uZu>aP8 zHW>x>-jL;B1A|`AX!Y0V?I{YaNyKI7!$YbET0;w1XYYb{JwHf2+#i^M(wJ2}@1#dW zP>}Bhd!k$&hTiUwW5boI$;7mtQ$g+qMGONl2)TlF=j;DZ1MrM*X{7l3z?bJew4%Q57u zi~V#|M`)bubkt0YdUYU(E(6e^jLu@{>rQ!`dqICY`m_ou%ac@oxXut&aWYuc0NRF` z3q#>46&112kt2#ZgkDQ4Dnf$U`3r$Un*nLMspeQ;1X; z_Zk^)!(om1^Z0)-xSJKe82tkKC&3L=t!#sJt#xeg8eNUB+Qdx6UBrIA4Ob(UJ^DwT&*h`L}@6xz_$6^yj#XsZ7&IX5U? zKmz@;-PX_P^Oe@g_Su4;Gp>(6U3Q|EVHBwl9rtWCdPhh)8dCl{O|P$Vs&tgqwa zX}g3r{u*Fu$VlB9<)+)jo23^vu;+0s!UruE97NoZ*C3M3(g>43pp9aVqCY-rrtHe> zg5eZgUg)uZNlL9AEqwJnk?IYbP3+ivTXG_i)yr^HAGHoDrlq&RoJ z3t1{ar@ftDS#tmq^;PJw?gJqEG>&!Q1_gGds7WDiXxXUWh|X_`CRxM{hC0B#&4Pm^ zwWk&8BSoi zSV@W_mDGjNb*zvh30Q9-y|`GHN5($Vq|CZ?mh0S9%zZ zq+@WlBM+s!3$F(+yKsMaYL+7s>XhL>Sm}G3rq_k1P|yCpJ^gu^P%!XU^KFKVfXk=v zoVu?VMLl3fL3aABM)cqo>VRUi+`bCdCUmt}_MR`@4aXeV*#;h*9Hs4`E6B zS7s?$k=IOfTVFQ3_{f<6)8}-3KFYZ|)OG)s>@x4$x3hD%-dPzE!-q@&wGPxVc8!tm z-}^zF!MMf!`4%RP_#YGf%D$;T)qs$SG)-<+n2@rFok*iu$*jX`fgK~j0`Y@n7@BcWRy-68bQ0d=CulLp^H{IaO;{j5QJY;2{Uc3w!*ryl8xu4V9keUw= z96$h({0%Y-!5&9|bs5HFXVepuyV8752gz+`oyAwAXE8qAT;wYEaE;UIW;I>mXxzwF zC_OQC#GT6Im!MjYSAA&@^Dea7VP`_p!Qa)+ZLIA3uyd&-z?pOkZmv_3jC* zZg^-o4nvxwfk&Zd;f2&)$j(>D>$|95byDJGF@YSTBA&B2NijdTm|*y*35U(>1O0V8 zU}qH!43T1i={#W8gM))-{YtD&(n@Z|bVTxzj9b~7Wp`cQJC3$k8(6Y45AN!e&!z3_(D_?gU>)XIn;n69mGeq}ve?YDBe*4ICzuNi zbHNq_n9DzwDZsI&3k)Z&fdTeJ%M0FC&H0wZA0fWr{0jiqi5l(m-{kD6w;{(A>E_t-y$*A?dSHt|Na>g5>tGQ9LQHF@$L_YjxqB5#iW%rU%(ot=u)*#M99m+` z9qo7%T2AovP0)w>lpN=+v+u}OuJUh@ze#ssXbpSH9n-P&NAro2QZ4P#>M5u*e;Vz% zA8pX0DH56~1K88Gk;eX-)j6nj%B(VBc**W#`WalW@q`LRSAcWTJFRT;E$G)gy|pp? zDJ4N!m*2bbq1S`l#4v)B^K~+t3*uUbN><=BUuRA!DW+lml=ehXU5|>}zVH^)hTrSg zNSkwECF4#^oO7gi`xHqw&3J;5Lma@4S7g331l=up%>A2X*ldR(C@D_BmXvBkC5Z$yA?)c0(r=R8jhS=oCf$(FtMmIztd zGkZk#-m*8@Wbb5?6tanoA~QlM^gln{zvuhEj>mC4$9>d&bGbh6_j$f1b}Bu2ejCY| zie*zuCW=(B*xlrxjS|nG;1iIhB(AMW}Sk9k9V5QLWU_E}?pFKdrd)nCi@PG^(yK5JTD*@CR8Ra%lP+h_Fb`BttquVnLP)w9DNq08;7H#ae zt?_|=X{a{xQ0t<}mB+dt2;$nSnhH$9Bw}MK+u}BU3WNjq3uyAWjpWe}N zzeeBV`;Z8GnSb0?R9#z|X8CLOAJj`JF&u2Z~ffvNPdi=8^&gexGvV?=1 zJPS0G%^ZV3F>=G41{sYmsO5~9Cqrd721^84t4HY?TsfjD@Yw{!Z%71VsotMf5(1Ft z2eVfc z7g(6$ABrET$#;1^^!}##?j=3!vyg%PAnWH@e871yV9`PAK9f)1{VkZ-?%L_?IA!Tv zM2QP%2}Gn1FrC&6wB6)-0X!Mf7YPsdP~k-O&yDC(}4psvB#dc}AE zKN!H=w8JbFnyxL9Ew2hv((BpE#KU63EdHWeGu~#q436M&V`|{ap^#^*=LFLv8K8Sy z(4P8P)Pw|PN%U2#?Q3e^0p*aAdjIUJ_3)}ch-9};tUi#E0=)s}-jC#=Spu%Cdv$PT zC1+(VTAYF4Bq%S>dMA4CEVQ-$B=VEj5eJB&6tM=P4} zGQO*p$r~9HQ*xX@6a2sJ-;3xwF@(@zmkzaSy1JHdZNpX79&W6v^$ww{bL<*Ew#zG*JWrW{v0#~)P-VHWs|{OG4pf(E*zs?? z#EIxgy&`Lp_#hyJe#a%qjUX^&MEALNojLa}_%2F;xmyidC#ZQ8Rp@0BFPyWVbUH-B zWrDjW4)a=nC~HAqcGll-IyIls?=<@T+;1EG;IKJ2?^gf7e3V$W&AO$BpD_@IK*QZy z00*vp-upD0IiqGwL74f#H6TCCJdN>N)HCXkyfCj=Y|_OqmlQjo4gk*eCX!?W7mP*T zax~9Pl>cb~r1DLO=`OKZqc%_ZRPUAEI&{5u_7*#8cb<$-lJWPkW8?BmeZj}e5ryoC z`!yioFY}^xJOm?%T^wt}dIDJ1aJ>q=8ldtNG8^smYFBlZA)#vK<5+^+D}G8@-7>cv z=0%S{p8=IJ{wV#fO@DE%Tk#?NaGfulh=_v^2ht~pOlXv5KckMt-Q5m?s5_0)skK^c zTNgw3iqbA=hK>Qe`OoYsrc{d%97J65`S@E+1Ya4<^SM<=;9G?mc#M^ zoD?n{pJbSEW$dia)}C4XEFh*@9)?2HAp}?8cj_(zkKe0j7cJ*&q}};doY6Lmd6To5B;M;m%M!13WY}lAFK0%hVroOvm|( zqrSMOFjK>s;pr(_Ii9FLU!UOCvXb6~vD)I($SIcm)Z?kPN;a45-s<+&)v#NLIc&zX zZre>5OkjpoL~sH9#@!(YI$`=N&uRON098>e)7SxplY1?vO#+i@baGj9@#;BU@0~iu z66av7Zkece85(M_!8#s>MOZ1zMV#ifqsM&$eF^y$H zUw2i}Ee%va+=o4H_^@XSx&(m|OJM#zGT*&E`+5tY zOkfU7Ap;aq2?47uHs(@V%cyvymw@PPRA&sU^mo#Ha|ezPlS&Tz6=7qJcHQ6c9-=+ zi4n)&WNcAAnRm&)5A4>^5BVglpLDR*TQS%m9Ja++CSUAtvkM(CDFWl4{nP5<%JL;+gj^3wG^4{3uK{6dS}ce}Hyunx4WQC;ZXnqgNqW zhwYdAr`Nfrd%!vzSjY;D*yq~obiK7M_YEG#7ec4NGP-m7{T6CWbo9m@ugk;ufcy$} zQKG>l{JROpku8B0uJ(&kJk4DByqLYMBxt;^ z$f^#O20%>j!8Mk+bQA9EkoPKk#U@f&kN9tPk}g8JFQQ5Tq7&La!Vphmm$AC6EC$kH z;@tKK%pAqiK1KgMVJGlp{7cV+NHxUX0UxG^kPtclmcVT*GBueZwst7wiU@3tk7Igt z9v}ocoNeLvw!3Sx+6Pq*I=Ec_a0eC^!k1}HfVtT<%u|d>EREmy2EGUY@R1Hb zP(vVLO|jIspkNLX%l<*=Ao_g^Ukld$fZc~@?;^{xlocruZ=faVhcEOuAZve98*pLA zlOnoN{xC!#cO=Jl>YCGvelQn`w$a^Z&*b1Cd^(ccfdb(%cLMys)~1g=LBTWNzxPHk zN@8ptyH7{wXm^O!Et{5``<3Rwd~+*c{OOPzRPrKOKbw!tUDc4Ktc*D8!>NrsTx?51 z%Xv(UNIVf}S`VR7Os~E@Hco=pxn z=Oiponq&I`)_ZG>2Cewhvb=sg*S02ZFj0_$uhH z?i(5kM>JyKdrC_Fz|05>Otf)r>4IK}vJ0>6UnmPx&JJLgb7Yr4+THgFj&E-lMuahl8BU)Qaall_G|bxS5CaE1>=ZH8=I5vfk!n=WO%#Zk zGDOO`1byBM|ifyp|%RnBeRD)+GiOR`76Dc?>e9?~{olND!#IdOt7V92!?_*vdUG7jBj6|x4)o$*EBSPf5cjgFD zgKU8ii37MR8PK}0)vv=lhb$HQ<2Q@r;L9}j!g+V{-nak7u@Ve%_Lm*?YgFFQL zaS7g+Bw#S1Dg<<@iIx-023uZmFE2+6ufnnAcpHnfqQ0Kc#AF3evHuYlAnpL~!R@1= zuMeLP?5IL~Lc(5%d>aMYIpD=~5JG|jj!ov#(KUYp1%HpBtrcL;U!Bc=LFWD)al}JN zu5&jR*$JKCCw}(rA9Wo&hwpr=kcQ7NJSs3w44BoSd_Fjck5^yc{(vM$!#jn)vl1+} zT69bG-OGw=?IA9p(*c&f(=q7KG) zVq$iGa_jlt7KwW;57C({YT4H74I6dPQiLQOY8Wp!R`&plvo+tqf?y^|jC^g6?!NalHKKmsZh#YIWJ?_a1$K<_G;QANLM3Cp8dx zApwx^CT;m$93I{nc$9k(`Cul0_H5mGrhwJzI>9AeTRgxZTwnGy1T_pLo_x3t?)Baq zY*AA1mp^BqG!#{wVXQvlN{a?y1RAL)Y-?M8^RLpgadKKfJ_SU)=7GuP(YEu#?lN1g zw%$zR_}b=v_20`VYEd&TcQSF`wL97W(0X(rj6nrZ`s!7}n>P|jC6kWMR0-Y=3zH%t zsIVQBC@-@SbtW?TA(#*t_7Z{c_Vf2g>Zf2J%ey0Z_X46m>X0bi8l&iIDYKiJ#(6)3 zHQ8Y}wt1?)g!mJoTsmxRk`u1=ksfI*UYYzdNA_wAokjI4_|O*$S`Wae5NsC|n9raO zuG!nH14%qJHdbpiX?X$%{KO!!(#}&+6Wt7AT}rgi0^Mh-S*H_-kmA0!Dz4^hMVa5s zg{db~LY1s#B7{{5y8PJ^NtUjVBuKy!_m)Sg@6^k;^2q1s7Rn zbtZ4w+FZ1{TQSd6R#w_Q*u9O7i)#r-$MN1`8sL)ajWY$)6kECH*9+0UubzW$7kt6yA@#p8)qtVaUX8S}HSoVIar?y{m8zsBo?$OG>(mRc*R* zQa?QE8L-*F2%E+&Rd5?IVuIhD>uqzB!EIzo0)*l-& z`-997=c5fp_9_eog|f}1G|$o7EwGTTU9ZT5RD!E0nuA}HJ8%onlUS=iFjYDesXY({ z$On?zscn8dgCv8qPY2J!85NIjbUjyCkvV9`%0nlN=@Qa7yA3#`B}l=L{|HFK!8**y zh$*wOz}mJ*%k@gYJwDe4H4s(flxOvDhMU`g0u|NDS7Wq3 zZf;BR*R7(tj=ur=)p|(jA3(<|rgxF|Cdm0LS!W{nrz`V*04XxVMML4HE2t~(!CUz5 zt1x|#_7;UdU)}1(xQ!n|Pb2ByP-tIb6ctFqS4;9 zT;tC08#G8zI5KL;$jVPZQ#N2cZvf-|1tQ4xwQ{zwA95ddBp4s%6P6Us)sb=N~gB(r{Zl zkL)O=*M9^*X9QLi3FfFd$vWE~C&-O_dWwPBPjE{VD-hr@kGV_agCN-|Rc5<+PPibW z^N;H4m4ye~9(iCUSYj^OlJEY`&bdEYEjaS-?~AplKID7r?UjP_)^L8Iq_lz^5nLm@ z3YbOU+eF&u0pLcoC=02th%$kTnX7p_L$kiQIRxD8d-z&5UA+H5`oue@Axb0fD^YUp z$utV0H-;SC!cRmWpFy}gNbetcz`f5dmi4L5)O?mwRnI!6ta_tAcBqX7ge+(pvy z={@S^lixdXW(n_4KX|Oue{2djC`m#_ahu6vkAam;C|idX>9|lTNIg66W=}& zlahM=-;eDE%5|%lvr-nq&VQc)0?;`A_`TyqJ8FRG(S6-SdR<8|wyMZ;ty+JNPbceo z>t6HX9O!14qE3h4mN^Un;}G0lofAi}Pe76VFceG=g6wiEIYTOxQ~j6ylb`XI`=jK8p`@F6_0 z-c-_0d3bn0Urdp5uSNN->rUxc+?`lC^YC30gkB5b2rqVfPl7An&6XaJD--nKALkYX z)6uH)TqN$nEMwcEL=t1WoQY~vTOj0HKHV55fI!DTMDoAafpi7-9maA@lM#h_{#a)r zOmbZ2lBh>NHNg`~=G&)#y1%GwZ$FxvEw!nqq45S;dm+B1OHmOex*_Zs5^~vpd+<)q zk90qZN@hsCRqi>BWcR@F{>=Cf?u{F8+~a4B2G#QC54iBBec3e+N@A-Lln7QW6W{uJ)?II)Jp*Q58hZmq_s`S;VgD=8BA)(li1qY`a?L3#iF}wHX{oaM-KSqwK=IaZhtoo(4mr{a|f`Q07!Cte~C? zdgRZ8$oLtW%F4LO-^qeYdhN^}mf(|Bm^_<)978Rd31_Cpqky1|HX{{reo24;tm`-o&B5`$N zSps0=Q&CXBf;)ff`*oxq`75Zo(RUcW-Sop1dHX_JKSj-cSL3+-<;`|Hd8*KXZz#9b z-fekwAR2kt6k(-7ZV0##IGJ6E5xBa5sKpw8LF#`ujCHH~r!UR0h?fXJeo>> zKMQ-|b%`5$Z{Re-BqS7V3WiUwKD5X=bsk~@wNJ`~Jlcpk7ztv9{vg0FG>hc!LIY^t zCx;!-lR^6Siw7p&H!H^$tc_rO2mB251BEB0PnryX2d9U(wmF^;H6#dU)-U0)Ke4G;Y^C+h>9N&{0~dBY z#8d*-jq+*^=3%lcf!&nv9_QWNDrrdWk+ma=oc1v9-t#41lG$2k1jGimj#DtVnJ)l=ID46DPkVB z#!5Cfpe&M=FC&)CXh?w16ygRmN)ddik|E{j=vedxq{SN$d9zv+FNVY|?|;9@y#Z=} zm^Aepp5WFO)5$6Ivts0zUHd}(bZeXr3HXGQ578dqac>phhK*_yu7MB?<_V5f=3*K* z>FfN1cWG@1zdfWWk_^5j0QJehdP6m&ThAYLH8tdRJcnO~naO}aKSc-8x8w-D8FLT4 zL=(>xpR`D@FdSF}=zhJga#EU@pm6WeN96L?A(Hj<4~P>vEl54?C)Z-F82$>x=a;>f zmDitJ4L@>gW@_%Vkxg=Vq3g9|*eYXx>o8$qExV2>jnD6k+th>+sPu|1$=cjgEd%ce z{-P;Q1`NV{kjD7A`LJcxSr{utDl%nlqF_ks_JA!lk|+jpZ#q%Yu8Dy(h}zVWMpx7kM~B@=#kA$3SMN-|9>U4NCan zY$^uu3b{}bP7)3a9w4d#a^Rj$gUX4P`91xro7wF1s~6tm`CpwxyHj*@VZF#tY*bD1 z5ib_~=sRsz*C@R22aOx?6Gd`B|0t)|UB6fl=y_GlhNIFNTlR(+!lV)Gu7&+b%NJ7g zkzbzJF9I3X5?eaJm0YJ)8Ub2L0!{al$QNV4{o%KFTZ=e!a#9OIw24sYgS8B*lx`eH zGvDXN7H~u>ehgB4VAZKe{za&Y{rY?b4ebhRy+vL3k)cOgEnUNtt0!DUh)fdcp%(Ka z8_O6Oe&l$SE>j`Kb@b+!x&=oC1sx&vkDr|I>lu*{plmg(@PXy*gamw)-Kf%bLk1gi zN)L`tSHkm?ai^xfY8rS%EG+m*Fio+%D9~(~V9FQhD`YX9!a&MF5TPZqd{U}i{q*JX zQ3<*71EEyGwp*eb&tt}ylt6C)XC73`a)Ko?5bRJnh%E{%9G^Fdq}=pr=%uwMZ2k0` zY;OWXYzk`K|NGssOpO;7H27mX(6j%WmJ4EG5k|D!usIX}Qa^tewAB{yp+z*Cu-FCz zvKPF5wo|9i@r{s=Ogv8`n~S4FcW8udA!c;XX5uk78AP~fh4qQW(Fpms>&j06*fH_Pg6VpCpQi#<9IcFRng?!4AWHp5 z)*L{q|BvcGCN?mAFMk=j_L`~Tv8d^DMYs4il7N*#2U0ZuqB8C;W(nuqm3#~4qNDBm%3>4PX!~v*)zzGm<8d*^Ra`{FIlin-IY}G<>wNtP=mbYyck6q8)o@Q%jhU2<&>c+3ZJP|S*J7~hI!?aIeL=N;p-_w<)FGWr+&2@(-2 zA9}m39JlLtS1&r(Zw?HMtW{^TFZTc@H3a#eT_e`W)Qc~CM^QIX*u1xqD9n#7;+iq? z53S`K9B#wSX20?}Co1aNlA{0&qcn)(6)c4zzxwfM=CWAL2@M|J2$VcfmpaB@;tB;L z0km(wgMAN2!u0G}GtC*z&d<*NpI41p?gdb(wTv0wv};*B1IHj2>sJu+z)eOB7HN>V z3nB@oTwHM=ga@c)@W=8#DCxe=zZPj2xT~wg_M|Bj(0<4R{NQUch7=LV$5GM^3$!Z& zm+YrtQizrWslvSQ>+lZW@9skEHBcnFnH$SqaVx9nMf!K%NiF80S@QBB9Ha})Ka$?z z?Kd|h={z|pyBGR^*Hrhn-Q?(dwIZ>UWlMh)^|~b;SH-hcjyWECwM@2dPuuf*dc}at z64|nm5NyzfhQP&~2xBgZVp4)-20%ZQYS-_Y=3-xWu=TH8d|Ju%sNzbF{hNv@%>#ba z@1R`$Cqwn!ZwsHB(?ynvAQ9J6q1}t=|wby$#s@`mry-_EXX;r^} zQe)teZ9F)#;12`Pxt~;LR|3&S3dv8)H{l8+9~~tb{zcJg=%!BfXCb;li-*ce=hkcV zS2eV?5h0N9Zu)N(Doh=&od$S%HN-1@>JmjhPzM}p9*?v_q36gS{VF~_zitga-Sb60pa@Y{^ z+{?|BeE4wQd!Xy-rWz(LWj`oY-rOcw{TOP!!sy3`3d-Q8eYgVL5ajY>;S@&V$nF3X zjD60drHnH1))?cWl&5oFZ1@g81Y8m++IFQ%`|>R@Q{S5MSrh#F?zghH;Teq3-rMD+ zC|DCR^@%VCufv+nY8FZ105LM{K0WeeYo9eip^d*{wU(tvLbEO$w;hXGP8qv{ar z>D^K@d+%ubTk%O-TBF!c*RfYD3ThNP8FQRYd?da%Kih0-njRg?H&?i$fTq7&^^cxz zDrjeppxXoq$VUnfUY{Q+Q{oN9i~qU`)@&?^Hnv;Ua_UVTI9Us>X3hOM;ZaKY%qhnU zwJsHSer~9YVR*&98+`p3KT&1BLW1KOcq4XR6*qNvi-S6!I*HMx*yo;nMR)0>am;|O zbZB+pmDHV)ichheBgeS6LY3X?caD{+xbD>#OO~Dt$dd-1zS|jAzh>V4NT3<|cuYcY+T(`@9nPi~MrdFETI{cjY#r~Ir zfWIQ3@6!;vc1295+)_|i#AhU2gDr~7^#)vr5`|@A;qd7}Y=ey)`yl>jR!diKSLHK` z>H0=32-n}UR(AHbufZGXKM{8<(x^HCo-$N zkP&bbKh~-&(^5k90%HrJ!C$!PYZ!myO}@j0o^S9BO}?h`^E@p`C;Pb)0J4P1MQ1*j z1;=G~7m1`Afji#w9Pw9(A!7kqCJkK)=vOF9j}wbNv1;pJ_JoYK&D?tV4N0MQVKevG9m%o&Y<8^a&&FO%8FTeDKh2f^N(0On}6tl$9?BFo*Gf4i|odnk@sz=*-yN}kAQ3K`RH#!i#$a@$HV*>h``3>*4U zDcN!j^DWcJ+hg;P?e6Q5V$2)|)BHl`-o|ikclpjyfUm(YYXL!l2m%Lv2&BcuUXFXq zz=a`$Hy}&kC)hQ#h7ap5dN9Ewv@H|Z5AY?p5CzIrB0YQ!$-%IdhJ(;Cg@mMbAiCq*jX z))0Z;t?x4sW0Ul2%FdrW-T9W`Qhq}1{9;ncMM3jmb5&6{tcEc3n9FgR8Xi|IEV**V05*c zx>j!#UZ%?-w6Q#>uqVhnmc7iun!=HbeSqdybbpk1HeM_b_qG6%s0rZdx0&j1I|j&f z5uzrgE2+ulPQ1tBI{Ci~2<04l0(vbfN|Y4>+U0Sa8sBdp9dF?9$TYXdN_1HfGFMh( z=FEJ2(evbo&X~wyb>@c3L9H&V}%~xdI1q__(Uuc=VJvyaFXuLa0l;Tgo1&87` zaboQflSe7h${Ys$c_(`6B`)&nN}e@f(EkqkCv}iT!p^}F85Ly)A+m@}8HbD;B@jjj zf|f;9&+g|k-#Q*^Z@W}-pUAJa{wD7Gld>Gei~z1gYocyU@KM>v&;MUB_S^GF&|@W4S>w4*N-OgJLk zl>2reIk1$}>4mvT^3ZTn*tJa?6hi5%&HB?7a0%R+itenq@B=v=GT!ViG)4c}?*I@t zTh4q1DRJmkecv^ip|v}K0w+G3i6qUoP=#(8&i4kr8`hX$ zUC#MvdRr#y@heB1tB(xf;1=3nR(Bd3ms`}(6sph^xjn0)rI=PC`Lub@EZ>GuUGZ*CXR9Wfmgk;ma_tG&2N5?L;x~fhlb>ejM!XGJNzUQoGzV=4 zJY3+t0d2Kljvfjx#g)j&Sd8LsAU_OAi{zamvtfCZ)S1b5n^*jIH|5jVeiKj?2ps zOqGhGiu!1$r1n6!qhU4S1L9D~pDRps@0Z1sc+rHj>kfTkh9hjhmhZV_5QoT37D`5w zP(5i1^Et8SYwxD3nohqpv$?qmiV|wMc;%^VtyIqS$3M+V+@mZYj4V-x9~!vnVW%W)wg@w?%=bs9Qp7!nmv zoDl|qJi|D%$6ot&q5ha`DOp6)+C(8B6lY2#)3!pwu{ZKvJBRPB7LGb>%Jj%-bu2F( zx9NPM{P2e)aPG6%hTiTISj?-%1pd4H-nlQJJN^F{I9LLjn_s}@6Z0G2E%W8gpyy(_ zZ$BOVz7IE^ql?IwliZPdw3vyFJhiKzVKYVQ6s4HL(c46XGxbK>ToP-&k_5$P8jgVg zL1-nUJ`XmY)%Eq@LRN(eqMOrM*`qC#SMobtG?1SJJJNX2R7W_9jh(%h_AG%po>oJ6 zF^FC(is2E_nB-4>xF(Shb1wichT*z|kiP8u-^ycntkiBI6MJgg*wcoR7CO56G%#!h3>g2CeTKs_v~5sd#y@lanj6-4-1Ns}oSjnjNQ~ z2;79J*xA*l~XZ%pYx68L{$_|eWyCAbm$j~KWVj|AB~ zau|pF(-Bc{em*Unc894KT^BYd^*4OxuSS;;cl5n4{egRSdm^%7k z<{JQhbx~)m3;Yf!XuhQ`wmpkeo16Rw2fVXpLK&f4b3ZcA!KPuL`h8|*M$5z`9y}ip zPqWty_V}_nmx4mxNqlmL2Q-$tDBroiEtqE@+1|6Y`WL~{nppNe)W*ch?L!d+G<_%< z$xT#`S|6m-(z18n@D5!Z7Hi5ydNcr@G36%v1rr?*25gw!k1?0O%e#d&C^`q5aI;-u z`Mgg0ZbaIoAk9DWZn5*E4}Jg}nMwH<>M0lo<=C*I4U}_}6sa>}XKvvZpp%=k)(A({ zibYV@nGdt-E1S-XWjo#)ahYA+T=&kk+qpLKc16O$=Dh9)A1+`^zb5{VjA*3?c|KC*htT6t3L_>ahQ#mMe0(|4V5N>i+;o|CV3gS6|9nn z@pdU)_WCPkkhI|z;fyI5N03nayBW5q<92>^5BFHDd~8b6YRwepZd+T5HsO7!Ue^5m z;?Jcm6P4+2eWl&fSC#x8ZL>tIp_4{x3>w!;jQI-k6ABfJ7Mh-e%s&kY{4;cH3k4ew zyxF|MN@>i^0+1O7e(VTi%f-!>2>z?1YCA{c+!UQxg!mwL8m zsuFk2!s7VXd2r~n}Y2u6KQ4_4wC6_He6 z1l*z)HE=8)H-@b}B_%~;?JYw=C_gUOv|?z-+>frs9;EvyUotq8%J=or(UBKCT;mE9 zm^(wC@8qcJ+fGc#E)oR@rTfRJzB?aP0n3kC=_lXk5>oVXc`~_sWDkW*KDNvnjWyoZ z7!htG(bfIcM|0T^3-3 zlD4#q1_T5!D)xR8Ui@18%Hl>vMMCknkBn{CbGK)g+bhdFQr30$h-WDo<^*02_@`uw zDtbSBfkev)zEVcK9fa$(1r^L`OG}i{)6xSt!Wam#P$aav4dGq-aC3IuKy7pX<;)|s zdZz%CMh8L5zpG>qX9%}$$*L$g1;y6wzB34vo4MP%X!L74n49ra&vR`PErSe68%s># z>N`=}ph82*y>57=eJO72Te)*wq|KQ(0kT#W5N$Qy?36P64_|kl7x6w~MAkK!)MH;9 zKvF*VCz4@!`Uwh~q_ni5(G_Zoj(hP1;`=3iF}C;>-LI{4P0jLpV%N@N zUzO8qczOXt`LD8IO}9{7uYPMEX?%oAD?=1&R6SIzQ#ad%jZL1~fbDc!*w)t83lIm; zE-_5ja$NKc@hhF5*#wi}KVt}Ie_d3@8jdJq0ny;Uhy${C6cCETX-sGLcZ@uh&4AkB z%dpx^I-i!UT)`*Lm|5e8o8Qz_l#Oj(9cm?ErDI`W2wu57ZGnWi>WMk9CgTS}R5Y>{ z*FHPpkc%Okc&Tp)|58%mGKW2=>1Bu_yO&xCb!6%K>aLe=E9R5O%7Jen=lX)xQ)ruv zfpTBXEYJk_)@TStv8s|PRsQ%kT}cY>OwpuwrgKhdtU{8Li4xUWN-E8lS8L2Ai>klQ zd=`lGt97%7jpV%t?n1i>#1Lq8n1g}K?{C+p=XOmCJ~94>H;q?2{Zmk-g4%gl_fYXH zISUHeqd|Vr(yp4LHU#VB7@&&fJUR5duQ;Ze)m;VUJ~j;u*-Q|y4QXzODQY@k-jx)^ zK8&{G;i|P2Z<-;5o?TUtfTBz!UKqx*F;|G|@(KAt9}S|K+g;pj!y=~mbWE>#MKK9G zc3&~Ejk3d5R_>)*wXCG1<4f5qUhIiGQw9egz^4a723tWR@6)~urRZm} z_X;OK|X-yDY z3qy-4gkno(Iw#@yV^4*Fpj1aNdf1(E6;K?hpMQ6Ayi z;bE9utBp<(porycv%yBxU7%O#gx)bkn16-YkV7GNa9rCj2m_t4s6Hdp7ej<&r9gCC zLU&e@(~NlEndR9)uq>sQU5oq-A=l0HLE3ACzW#XxdeRXQ{n%^@3awLW=hheAQ1FSu z8kHyZn5UxfmksY9cI5d*9-suqZ;g2$Aymi;<=T2Fq0Tw4cbsW&uh;6Mm~<>6DSVk2 zxzYTSbd?4D95oie)y+U$<zw+;66I`kV0+{bv}Tx zS`8$_;ISn`AQ)4=ey$atFtTU`ehXXUS|t|U0HI!v zyyghgrlyV;o1v#Dgm2!i=e!}Dhlr`_L9O{#&2M-^Gn!$dlf?AiK7Z$b^=ED+QHG(AR&!BPDtI01(B*ImcE;e- zhw}eko8pv4pD&Dyu6GI}uN6DQ9bs!{r^xq}d(gu%o|R1^t}VjCoWEmpf**wIXYUO2-d$c{_p0?HaS4NCE5+QAS2aq_qx|Nm9UNxJ)4ZhX`4KR1dmKJwY4EQJp7@sPc@M;P)kkNvg8Vq<)j?p$drBpg&@?l(!~0T z_&SQc4W`orRC|0?;+NTdm+gEyZhMi8VU>reJe;04X zsN9X0a-qcJO;nUE(JX(dG9O(CR&MV6*6W$>A)nF}TbMSE@1s;C#oR9T5&$ zsF6moz?Npn9U!T4D@XNvjaN1EoXFI>D>LCmN=iS-wy6m`_q5Q~3*QgXFVI_FuOce@ zep8!>RaydZ93US`NO8&Km(&kH{y(t&B$dRmCa2EyZV^NU(p_)oVk5C41XK06+P4ag zhbSm0kPZ=81SIp?H=+6_8gxXd%_H(MGMJ<@9r2rAzan7|hz1sKHXNrZhIu0WxgJ$5I^1v|FOs;Y|f^B=#dN2-O91RLbwSP=#Wkzqs|VzBn+GUHpQiy=oH$#CnrAN{Uv zHsTZuqUCYjViIh(6>@gND0p>8i}^15RmrV@XnqN;M&@FQSUDYCS#0U1ZsIIry>oa^9aN3Xj~EQT;^X`jE96BHVCO{ZYIG` zK#x4sY~YUWDiV~H2{U9_Pt0iyzf~9M0l86c7~=2u62YUF`rDr!`rEOgSr|fR6Np5w z1wZb;X)CSQr(a^7bX$7sTGP`)J8_`NyU>?G2K!PyOU++eltdfH2AiQS-R$sc4zCC0 zD)659kXQmj>%^QKQETyb42`q}NzN1CR70`l>y-o|zNjlXS%S~b1rhxK(lC70zM-KZ83Ec9d3o5M;w{E^J@4UmmTGq_ zPPW91vOfSlH)6I#>fC`a92@>~a^w<5&V1~vrhz+7KTAjJY<$|(idIdzw-hN-%yjeK zb-kGM!^r`l4pd>eMsmhc++#%!&!||H(pCOoxvsO|TSiIiNj3UZusSWu(eAE-ga`%r z_6S5JzdeZ?BlHt$6uEUPwU;U zxQ)@$hqk_B3gZ!Jeovx%KVJcziQPy~N<{wDqZ|DcK zbE9YFJA8CHqL$a|yLh2J#cfpJ0Wyk*4j zK~LpYR7__$>$RD+()psF%CD%{N)f=hj;K{jb9~{TLd%Dczw}Ft)4=T_W3f2aC`88n z+h?qlZ!lZNW0!S})22UDTOppy!f)aJOAD?yW-)XNDS^}Y!2-KcewRs)AFG^ur!#UO z=ObhcT{(3Ctp$3pq}J}4Oa@Vc41=+WFJs+1>(9e-^snW_tm;(Uh z2jNJNg+~zIf-8%yogkR1S>6!AW0O0S1Y6n5gocJYL-rA7U^jqXvPjU@ zKRd%I@s79Si@pekw_M%~^xN@5m+?~~rJ@@P5M*Jw8oynvCZv|*dS2XGX;k8)E=2X5 zI&V$K&X^H(t+-K{J3@|vszk8s!k66lO3qZXogx;v3Or_NO<s`lf>+MLZLT!tXX)to*x4lqZj`0V*wtDaYbGS1UnzJ+^AMXpvTNXT z|J;3a$;a?-Lw*TxQ?5A+BH$PVot=Lb=r)~ub=h^d8wsXF%^!22luaGsi)WnWxmNVJ zm&x;0gB_Kc$&Y+@w=+YSvOrBOqqz~qQ9}zU#Xw?0L2KB(rI~wA7>`tnh6Q3JCEirF zazAF=E)EpIuVY**xh|XP5-uFc$Mlm;`-^bCH-SkzO0=c(hb2d(iU_2!f~%~|123*i zR4yoF=41Oj;fx`9=_>I_&HL;RFF#3g_I)%(o^=m_$*D#fS!{+#LIethbl>6++)Hei67rCVD=p>Rut8{ z1+J2>aP8B+&FnAhRAxZ)6ezTQ?6z##+Es18+?fHi1UJl4m}bBrB5xYv6}spdi{V%6 zqd(Ty_R=A}8f1uFN%!n5+5~bUMnOZ2%B`#?$2dmj7E@RzD#l(BgXvOJ)@NmxAc%N#fF;OmkRZnGm$Q7#tM3A9GrHm2$KQ0aE>_8K%b|4K#a16itx%FY*Ll0pqUE4-nk8cj!vG&j<(&8)VrA=43hi6*m&HH3RPU4V2uSsF3edYp3F=wHYS`~)`az7v% z$3Xd%DWkl)`U@=GU%-CH0i)hpVBySzf(GqHyqYqe&>8HFOnJGu0fj^T0qgA7%nPE^ zjB+OjHooV@R@R>AEN>vY^+SPl_}puM5wNkC!X*pe4EMZnmVUX_pVzbzWfhR*Rn}c2 z6(4S8^nmRyc4P!gOF(6Xl>4k?oX}6RyM|t1S$KW)D-DX_;B%nt@6W_M5~a!ev1%%* z2cK}_{9*FQ<3jFao+h%iN|LlnmNf$j+6DZ0k);uU8Y3dV5ma=D|9p;BX+T`UNJcMZ z4Tr%2&noxH$qAf%P*lYDyICAbnFZ-7gk`!jJ~V)j2_yMKPpNK4aFJh?@Hh$)gO#d~ zHZg}Mu|D&p3JPL1o|AqCa@7j-h=>}{;dxVkB%3}uhuCziw2ic^C6a!Bwvin8wT}Y} ztw!QjMFoyE2B8+3m$X_;A^Cb5iIjbk$5?c9G?IY|Zwz!sBm#^DQOZapGrd^N^MtE` zog3x69qfXd7v#+5#N;+apHt3e7mSt84sW1(LE_|}J#B6>3vd`g2`ve2QY$X6a=7E+ z!jp!HuhSt5+KO_!Znpo+1!%&xv{=JAug_Y05uY%PPhKax!KB9gmN>rfZDV_-;KC8c zUIBBJ6z}U-BK54v#C#UxzRb&oV=MoV>+}%?>QKr0$pvp>llAx%y#kT(?aj7h-VHKKct(*q_P%# zIVk!vx1`^7iSl5eU#nUd+ByqLYIlzr$(DC@Gv4sh$98QzyKc~-mH>@(AVTuVxuZx3 z4->qy{Kl&4I#z|J&fcI+09m!^eqw#y#R$2k|YfB z3Ic+x^|dvmlN4@}mox4m*>jiG!fI~&vbs05s{BdG&!dx*#IeUswRLv4F~2|r>TvL^IOSdLbYDgT zrD#Sx7LtO3h4%0?kx}joU`lEx_nO{cf$&_YF&GLZH68{=GX(UXyT>%90yeWJ5<8d{ zd@{ys7T1z}?Xh9o;$zP9GQg<=j>@G;&3A0`$Z_ z7Cr6NIoU^VOWZIs@zE2llTR_~Lq6E66lcwJfOodm^$H=Ks88%fIezYj6Q zs6ZuozH22O9r3Nyb%ZGmq0RhC(4YUqMudg`O1;;4{?o7+5DTQf2~=v6Q&asQDM!4| ztuTFG#r-TuB-r3v`)_!^hXQ9Jr~Y?o9bGzxP0pjR4}I2?h4-ZC?xb4MeAH-2Hv3@J z)oJ06YE|pA^jeQ%@rG%_JC)m=6qV&x9o-X;Ev>hC3*SXjmKl#BCBi^caA#ni{-KHh z`w|3LNOaOwo6zx$38J?QNS6G?|6}`r$U&{&QIW0+{oC;jLDCgQ7N#E{mjus^=wlIN zYjx^6ApsGlY5c*xu#7<>4yHuY;Xbw&&4LteMPZu6*NMd-+mvjq-htH*A)P_46G38f z6D5e2+jIXB;@k!5@9#G|ZqOjYNj-*q{15^oFsj$(gnLLRCL$uJxmracpWBwct(lsx zUc^?LSQZI)%=Ou3BYxO(+iupO%u*$f-^f)&_c;R=79*Kf`4J7Bm>6Qedj)Z`B%HtK zxYCF;6C#>y3!Ty`Qz3jg(;y7sW7OmFw-+wZ=4K?J4**u0RY9|Hpe`U68wl4r1n zIYZ40ZY9u3rQT{=A>5Sg-Z=k;pBP}d^^S16veo=Od^iFzB|jM5VM7Z zi$d68J?K-Wl7EcQczoQi?K6vE7PqnOcF17l2xa>yr16(PLgtkl#=`I0H$ES=jDIa3 zG>fx*wE9Is>)-&hQs_k_Lk$A(eE%(ikf*nA-%iAuLvmKZG>0x3!HK?M^`7!o*Kz-Z z4!`}t7pF~yO@1k*z{axk;UH{@PNp2M=$W4vV>BPvs@EXI-0bVS=Q~s}Mjak^pAM>^ z^`LlY6WUB*q%+-Geia>7t*b$e?2jl!Ju^yf>9%k zNUZt2Vd`InKWz!?)tr5^r0uT{a{rsR(hzXGq^Kw-CcA-*|A}d>xm=N|uXl8#`V>7=zKZ9XR!`L_u#uLyi6&GI?1$47R3p(PE`T7+p zI1=*MB}079B_$=aSaUKWhl4t8Nszotk~urQ z(*MWPdBUwv?T0iew}s{Latw ze4pR_${)R+dUW5e&vl*Gc^=36s3kYR6vll~K}e^dXS+98%=w41xX8Vi-baZF?=ByQ zIQ}xHT0RwNzd~(6bh`6|7u^z=E0@2uV?tY&AM`HXTT`LkB+5ElVoN*~oKBe{F1!uZ zic$xoib#GB#Im4Ukns?vsU&eeXJuZzC0U-D@a>?n=EW9KZE|mMC4rqaq55k@$M2lj z)cl)w2>ikl9~up?XoVUZ)=0&&KSBr}|yy z`Lk92XE*WGlO5dCmx;UuQEn__Yp5q>1-gOj%-OlN0Ca^NcnZ=23rS0XqN$)q@!$z{ zYjnzD|N0@BPYYZtsB>fzoIeMz0~2N?Uh<~}tS$qIKLRq3_^J!p$JtegXhzvFnZzqO z+|Ob3C;&>S!m4+)Mulmd`cgwbm&F3&B397s!YMP%Ux-S2xih*oT~!xOPLs$g{`_Ot zR|_boEi2mA?cVw0 zvH18386FNbt!UEUqyBeP<$G4WZiTBtfH6T}*(@IV|GQ&L%84ste|32_07V*-t=d;R z2-LJrn6#-H7*K!%f(O9W@aEl-G%Ty`XqT^3J`w*_a65QUJ6qurhgYOzHr9$hKtz9z zNqhef6N^RigChk#srTL@KmBP_1fpH1bbr}Q*dzyT6gsm{?{BzHLTuRkS8Tt$Ra+%i zLW|MSUs?$l3W6dL$&LbP2Gp_i!j=05z_@}=3j&@;6lhQwxPzJMZ;)(6L!WWk%rM`v zzE)-u7N(5htlxEfoR=!_>8qlq4HXnRLc*3snQz=kgNSgv5SYRs_eoUyhmvM-0)su7h+_HE*hnHS#-_#cc~Ee5@G+uV=laF@<`qjLY@nP z&A))cr&m99MzVH{(}X%J2%U@TH~rH`&`p7GO-uM^PYv~JeQYKyc8E{at+7iY6^fnz zy`$Q7ug=1@a#vxn3?-{cCa6a7NsM|%N3%ShoXGSvR*0834q%v1&&=wO5)@pN7UV@V z+}a#>Hb_mvkHjgys>8fV_PAdc^qY!p9h-2M(G3ccff7rALHCM`kI}2;=*rQR7gz?d zMc6J=>TzWhMrt`t$BydlqYy+pO9%ZxP->cx|cHEHAG;*eRx;Gov`A1^p}=Hll|c(rne zAIejdrUZQ^fI1YZL6M2!R+V{Nh}_M?-wTZmE`lBUQLi0~JiWYrhuFrdum%Nh9LP*- zjKpKTXpdL^?%#$6&k1>I;9bu#WpjT^JJ9>WpG|TYdd~Fz)%AK#YU&(!bn}UK(c0+mmw;P=L5J%rvYjYw}HRQj2DG(-@Z+#n#oeQ zpb>^m6JEm>|4y-#dP}T@iCc$yEb7VVQ{rDnu)fa@<0MVT^gW};>NIvzu$o788o5L>K4Y~KIMg7anKy&1Ly&JAr=<`7<-J!d;kR44ESX=4UHuP zRu9c4sb3#3p@j!J3{v$OFYn%obqz_{0^z|GG3~p`xr2u{I$$}%wC?_qanvDO4AR^7IcqTmLIYsILys!^b6XNf><{uVm zM^UilT|M@1wzRqqdk%UMY0ot^2ffd%OC!vpc0BC;7^4GazYVgpvwcrC%iu91FWL8t zYC&V?i51G#OeN_=BE{N*0^6(!urU6PT>QNZ(0>O-4D#hQe(`hM+>8K9Ypan?rc8$e zdTaCEvMndmPUc>!yU!XUdDU+(H3$8`-eypb?pHQ6Bn*q9sgSh`=y+^1^CZb(81*?> z^I4#v(5;|B{uU9&i-R&*B4b99U5%8_{C45aqZ_7ZFZ49A*1cO00+hEu&*$p!RG%%h z534TpTb^^F-UfzsUdHvVq#$^dzGCLf%sj1o^Dv1lWn^mb(bRj2ZN_xm3p2dOH!P0^ z4!J5Tono$kn0jrUw92IO=L5rFG}ou;(nlJzTDzXuvs1Hwne%Vj>zZnW?8R@>?aYM_ zIW0$V=H7EPcP`tyf}6eN3r3<{fR?|}z4IbjxfQLk2Z&(;$%SBx1Pl!Jk)h95@f@zO^IQ#2BOMOlaSxLKzMp+qy z9{=dqY7^ToQ=u9fT&h|9;(hU{T6EGRlz{aIcNHyEWJNvK?=I@){&48k&VTCPce1d;`GjA2Q;8YMdJ8$XM-hDy^;OSgNaJ z=gO>(zf`>D@iP+j@oFTgeoem|W@gX~8ErwLBv&Vs<+-+E$phoHoouQN7Jd_#$nQ^(Kj;hWxP02)i}H#!^isRIum!0uxd`*hpQ8tZLmLX}6q47@P(%H%;$~->D1jSDs{w4rE;BzS>Ae z_=p4xUp|=xE0ow=+VscQZl_3j3RJ5lM`a}$J$0oBWDQ;MBUrfB*^nz4RFj;hw3`>4?%Bo%|MSMxhD*1`)uTNK?qyBO2 zUP%|#!PWjBM4sa-oM6|5+VMj=Ntrd$frCQl?{}lNrAQx+-ZR`9P5eG5>Zfy0iay$u z*w^?CeU~S%$kVX5=eV?Xy|B10{K38}K@~X*3$L7hO*HFQ`iak<(Qj_^Fv|uJBs(aP zC`DX%K6E?DL1(f0)OIPQzYE^M0OIjMVnD!}iN_^Fh=W;YKePsFQZOipn^#n4W>O<; zd-(bulyG_NcxJ77$)eLw;p{;-qXTz<=zK>pikeinF6twvgF=P*7X}rgqA0hhy6Ktv zT*T%InSfBu!$-;lcly2KM~0$t8aMi_aBxm$h^DZI+J3|59~dtUiuwn0&3Y}D4bpt| z&99plJFpDgQA%%!yfsPuJ-`+Ww266n+V<<{0rIMCR7CT>81!hFr?00s=Hscbw_U|> zc$;8m|FijwxYg`B0fF{CN}H+EVAnrbl5Qv2fNrwviX;sYNdPcIJ3`b(zMwrdW!e(m zRnBZPrJ6{R7OGcUR4zzaHS6$G;)zMkEt}k~uisS8_cGc>XTE4;2U45t7AK{Ve5OA| z?~A*tYxWn__~mch+TksXcF{y#l|2=c6g6!+W%mGP=Xh)3MtXL*V?*0L6HGL9;5+C#BiUk^r(08lB)*$ZK(#u9;Bzz<`_6ysKxBDMBgKvOyWKmxtvmzc& zxUjG=T6Xh0hcOl~E`N2Y$KHi5O40?c&GoUa%f=$E?hG6#!k>&U|F^qdU(wR8JtS(G zJ0k?&0p;}BZ(CsHphL3cxm{e~(+!MQ$k=}P4>5!wAR)z|4^pu`=Aei-8+Cc}aZmRq zWmf86byBxK23!4aN+@%ct-HPF&TngQ$yyi;U*@OrYy8p@Fho}lNXWi9ugO5rF9sFA zUqEP@S4HCyu`tr~q#bXxo_!!v-MXiNr0oQe+YoiZDpS<=Aa{IzH~N7zLsl*AbBUW8 zir>U)XO^c;KEEmOGooQlwojy*H|^Rcs2|%B*8!Lk2;^Q$?>061A7%xUMcA*ki~NFV&hy6-TBgPXt)YC>NRl97&QGX<*d7Svv}AvHdgv* z@S~H%=-ZZ8wmvq;awv#onJsNwg`^9t!d9BiSvI=;fYQ=8THlSz{Tv@g|)NP}xG-F!W3ecUU18^Uqd$H&IxA@FOZ?$GZY z6mM46*0}e&jw+3Lr1zV~?#UN5T$I~Wrm6T~qk+lwsAv11Mm97Xq=)k*<3n72+1Dgr z*Kn+)nXCOit3ZOiX6AKbkJ-=Pj6J#O;QYBqXi8@wlX|FUVCN4x@l#xiu!|J&eZPN~ z@;;?6FoBF;FELISx!^Ln9L=erT*Ow2_cr{#zi48m(OQXp@A|=yOi*>y_%(gYyiU#w z_+IABG7`9T?N2yHqdJT6rI1{E*sH&Z{`4_2x>68yat+4G(znSSmIje=7~*b15+I@T z{XV&7IuBoDK~Q8b-+cGx);VFqOJ~+5{4q7^U*&uh6mZSQ)c%3be%c>Jj~UXrpr-zb z1FpgVC?$D>cT!z*r;0Rq#pNpOs>oCI<5k=6>o4>arNc_MJLsH@6QVWr7Hw^w|3;nH z-XRy)dq?`TEvwo>QsDWy@;T0*vA&D@E5#JlJ%^^l74^#o!n3&M%^dwEb+4jD3fRf) zvI*2g*DOh$k0?aF+6l51Zy=4lPY#!FxT}3t&m=K{qVhpbk#kZ3zoo(}5n0eOLdJW= zp+cDD^}MfsxzDJUVll6?d*U=W`~>3Ju=qM%{>AeCMB{d^T|5Veqt&b0d^y}xZlh;K zRw6l$mnIg8T54#v&c58+7RUIN#7+ zggbhz_r8b|>F;b#!Z*9*Hx06udTu~{8AY~Dcq5M8Ok=D%Z>}Ti8?zKTZWz5Kr={LZoifE*NQ*_TSlnZoRwTYMrvSLStgI|LG1rirqpIHCB8W8-jxu&u z#kvbM-JREyXwFG}c2}oT{uY!<9_NL~g}3CQOsO380)xfqf6OTx)#M!=`2z3pysF{f zmU8j_NRlYarEoV_nwsxwyxN9C7wPACVSO8QI&IuH|2~=SeCts{ct~d>e7F^mVr%lh z=9%ZYe&6u$TKMI!_UC`GVf~i9_7)xU*8b(%Ld%-9R;O|=M4Sth4S2_INl=(7b#Xs8 zl>5u0cpyBKg@fZM(!&uk8u_vUrzb+I2-=M?S1Q72;^N}s$76qx%wBS>Z_C4_gH=+U*SFcV z8tx9`ukxeWR+&2d`9g;0?}}ZYwgY@5)grcw`J=NSP{{%Qv81##aQTNcH6k5^0Ggub z*0SYXV{1wnmY4gZl;3sT8^x;5ed$pywkv>}En|7B$JUte9j`Fmxk`MaGp6v1CtPnR za!9nF2-h3E0h({9Yr@V0wa*M{of?s>^rmRk){+^**19&;hOzAJi7H-&sm1430ns_T z0_*zY4O#Aw81WToMVM(5W|ZUnDD)`aKz^@(!z_I}t*s6dGgl0hlf84@TG0iQz0WZV z$AU3@no|JN1Tlzea4oEAd)J*1bin%Yhv@jITc(Y_3{HQ;E^M9PW$01&VNbe)~( z*e1j@{PIpgESri1nE_W49y~a62~ z2R45m4lVdNOdOdl{j4Z4-K+SWJ~lqy0cY+A1f3Xj#x8SX`z)GiW9R(R1rn=c!x>V-4e+;8N6n>FDu6;{iS5o=#zohWcop>%JJQYt%C{e0{Bw_chrskxQ@7TE$Y%*FubHkP@MA;( zU;M-1oWq&UK1*#aA(QQr6>Zf06&|U)Z2M0&mYu$^g&@va1hNiH6L_9siuRsztOHtf z(0IB9n8YIHJkrJrV`Xhr>Sul!TIBv>RFdoBQbD{qNG&P@#iD$ZX^s|qtNe8?E)0y{ zq07yyI!h5Kc51r=vK1kgp3W5 z)Wf8ehme7Z%%GM5cgZZ`{R>O?f~S^8-^i#}H`tFJq{Cb{^4OAWd@A~jPo+5|mw6;4 z56zklulW5DR{*sMSInD9Um(eN1&}faI@176Ve2G5?^dD!BSM9`;OyxMbBCVr_pJ+FTbk0AL?Bm_(^zwXSN8MBnLVj(@s3lvy*b z%u!3bmfx~t3DH*Xh8t#qKy-6T)oh%?Ns@S!#=)*_SxBWzD<-mri@@t^F`d_r0tptv z%urhEw9UBJ0}@|E=?a{^!huP$3R!5dxBPsI*j6tq>j9VUDv*mT?*EWgYa(Rp$&@oD z8e4kRPV=ChiN<$%NYrmS2}<%L?&{{S#>Pgo!0UW`YcP{shXL0*bX%Y-{RL3@T>aEyL>h_n zJ&y7RvvEZc6+2Q|?w)+fUHNfAeeK!|ai#t~Za`KwpYvpHzl{WIv5)+J^AEs}tsv%Pgp>oOI$gMC z0ZX;8zCIP9v_2`GMTZFN7V3nsu-WyJpMC6iUi?wjIxEx3BXIbF1{09eFQ><_fw-;o zkuDKcXhr5zl2V|f+U4HczGQDbi59TLV19zk`(Wnb1|yQo#yc?U16S9jc-Kq2PYkld zW~lZQ9PhRzWuZ-5F*j&ngF0A20Ryxfwy+#7ye+SM1I58Nh)_mR5WsTpQt$7JaD3>r z=F@gck3ch!WLgjlN(b7Shaz+iNYw~~wuafx3l5I3{)u3BNqG_)$vrOObl$S6cez}> z=VrZddFwdHvSD**Bz!K#ZA(&Ly4{}ONa?&AU5HZ5n*0wu5%fg6kM#8y zjy-oJI(a9s;{j67X!`1VPYjg_S2T-A4w0due_;N+>ALA02X&8D&-!3lvmcvtsKk4` zR@GPmQg!}s#6B>4BQ*`Z&e5176DR?kQfmlkL$uQcBdTU*3{d;WNA@M75O5Q648j8{ z{=IcIu;*FP9`q*?VIB{@QE(MqM%unXZ3U@Y_%@WeF}&=LZ;mS7pGU785UBy~ElM59 z6_#*5Tt@0(G@Hn>H~AeTup~vUrH3qm3U_Mo&P3~cwnD9RLSFB=j^?CWDRV!=!n+&4LJn` z94BmgdScAHE3A}mV?a_@fEs_C7ZCh!UtuFRtTN0UhpTmgzyD5CprN+*P{{e)`K6r< z=fPo=XQ&Y}hgg?Qj*llc3qJEgd@0#EHyF!-{)^DOk>U5ZuuFby$Kv#WL<3|c>~2~7 zmKg9Xi-Fd2QY=|&xlb)M&;0i-hAGXMGLGGG&=EF+xwfrgH%|kM90(Hvt@9;0bS}%1 zt@(=BZ^kP+7WeTd)w&AkO8=fH#Ml8dGqMs@-}z_J30-O0l2c;2O)W-~8zPsR7_0jm zG%d$@Q7y0(S0Q~HRQDQdl*-#yZDFtUXGKfE-xybQAyl2 zG%n$^ijAs2sdSWlGc+%yW+egwqpBOee`*5pO_4;UCYsJ9Ig{#<@QT95a=rcycnKK__r3t_OSC5j{^Mvx(dN`P$jNB`Qh?m(ept35E}Dn z$WyAXE8Tr#^6q}a%+afhlj~@E+Sb%gTkp2Ng8uftc*fcJP-)_3I9uc2I_|eJKkl)xRigN=6My4o$7`rl_YrJF;HmeaXCT>YCo%eYTM$TR z-1DZvz09DLZVPt6c1okWh%5hM^?d=%@yfnDwck#Wd_8ujN zfOtki18!=z2>4FI|Osg6zcO z&vcp(JaHbn2=zLNF6}y6Rhl2xR5>cY5|N6&KPrCfiqy5c1h-W*?MbhfD8)be%tzcW z=~h9H_|Fhc7l;>R-Ty-F6f2lXpH(k2eJu>1>r!7q#d1h{ixI`&`Yv&qg_{}a6rp#| z2jeK~HLs?d!jfbePH*pfDGuss9W%|xC&P+#&VQwrj_D|KbcSn8&c0C6XUKamJ~BwF zUI)JUGAvuh`t64=E;BM%(H!}m82FUP7DgRKbE(RxhP0;ERXEMYv|D`e8c$caeS@(n zk+x98V9aG+6|;LKOJz~dFQ$h>iVc-5NP3!OJ$#e9D)dfra3PrHT!^3BsYULve?w{bxDkmkW>xU;$thD6TQzsiIYhE{V5l|e;s~uW$S^eq zLNg?uN474MdXuqsk$35qjcY{0@TV)LpPGO1W&@{u!AS2+!+qBE&y$n;kmtPzIN4pO zmmr0A(xn9=J(j?MTnec$dK5I$e!_qg8!FVxE4yW4(hqWt*HHpC*#tPvWEj|MyITao zgWz@*g;3EU7&k<7Mxt`+qLQufxq@cGyjr1#Ll9NSY!t*v0O1_xuKWY)kdF0z0hFx< zquUiGRyV@WRsNgqqPM&s5GiA4Fy*rBU8~gE9Q(8DYbpkD$(evAgKITNb6lYVrT^s@ zO>g%556}=mo$g}iC3ys*bCjkrs+{LT)HY~!7(f9AWN4@$)O2*#0QLDy#5Gme`eB;~ zTcMxhWl?4(LA`AC)X`bm5A0q1W3CL6odq!3BON;h9B7XPeraP*9&quAHZ@YJ^+@lawVy^MIBNvM}R}^T6k{u#>d?Pw7$*QJpR4(^gMfP0r)>|-CdD@1qm&nnTWeFd@c$M(FBiajZY)nsTG zm6D9}yCs%v8&r?uY%fJA;qboEWL(y>C)sWD4mlX`8HUWD$2z=?nGE@ ztfae*c1?t0nT>Y61iJ4&LS%uvVJt+&f($AX`;xYX_N&@39ujWUk~Ga5YThnA3u?u% zOaeTyG?DlLTqOU{V}026&(C>)yeJR*h|$4DDMscvKLoK?zOYCTPA{l$IzmW$%gh)< z#I8NMxhQ#CLx~IpQSz$%)TkMf-sUNjDU|<8w&A18ZXNmx{{E6ab8b&XbmT3-p(_PJ z(@==lz%?ArJ(=ThHa_ITQ7dC@)z)=kVajFK+bQXSR59XI1q<@}n)ouo9B`X^_g5wO z_X~3Y5R@UODw1zEP&OS$K}qQbhQ9iCyOtB034r zNWq1N(J%G=?p-kFHGiJJ0yksh=on0u~JrRh6R5gq7VH3`GpCPK&fIL!^qq9 z=$GYJzaPA}FMI^M0U~hrYy`nTtu8mEempOV5;l7M}CG|mPxs~ayDlYv~MM*v!r8>H)b1}Gapy3~!6#EGgVZ}2@YrL9Mj`K`i zw0c>7omHQi{sS+!LV(&W0)E=xyM2AW;l$q`v^e^t3P`MD!2j%~8WSC{ezH_vQAEnI zbCgZ8Exo+g4#RhPT!#imTbr*BJnxWe=lSDn$`kNdt4)*&Fz*H&{&`TsJv!LL6|{fcJJ|IIn3RV7g;z@_<=NqZyV0|`1lbdYapkI@2_^;NAP7m z(+etCq|V+Z{CQu2(if;e1_tkiKn6yTGo+%@fmfSMVef1*pnBkUCrYSHsCvVSrzd5g zA}`-N{!1J5{!N=Z#TN=caS9F#a{ z@dhjdNJUrQOM5;x&9um;tfOeXaWh=kJ%#D{D24c&t(KM+{}19a2|8uVFwvS9PH=E697>GbFGL5B4flVl1+L5Fn??61sT z*@KsY=ib|cOT9O!WeO5t5S0$cIi|+T(A&bJQ&W9lmKcyVJI5U`H_-txIGTF;T;?); z{_S|-HeIHb`020H0g(~)Rxj~Q!t*DW4G6|4DJTLKsWae_2h(LJN?llu@}N(oHUc9y zjHY1gnRazTbPF0ye<|UJ^yL)!tifM6eiaXAlroC5JGDRBKpTUlJM{`HC>hnqh5Z7n z#Qx@Oy^24>RVrSmjymzYbug`^`6g205A#gG=L4+S;!{L&2x-Tu&>~s7^a?_{{&}tL z$7Tx0)^Dx2_*0wH6tDg;Y4AiQDbT4y@(f_taCC98hug!P=O^vI2zz7P?%57k<%bu@ zGT+OygnKZW4LcWh@<~9Rrx+Li#!D@}Hw1YiU)nP)`mNmi4Y#=bvk(aalBolv@9R>! z!DIZYC6{RME%C0rGIA$P420<+s4&jcsv&|40#a*vtX~^j%^-Fn?lJ7JNR%cPo2-2Q ztg=<=>RV(GpmCD2u^TT(3XHaF@{w`+mb6WLgH$N9EScL7Puo znL$-nELk%chbJ;t0NnkjoDDwvtr%a|b|ml8^+eNsl zIw+HCI%$q{RFpnv$r;we&IeB6S?@#md+F-!|xvvaZ0K~TK8KabpVH$=+fJ0vCJF}4pd~&2a z2(`&r;^XqLb|&ay*@L#StJ?%02SoOP6DJ9TGAcUe^d=Ivd9x8?lQkC`vIu7C2(kf( zp@pgAzhwbp{BsEL16|S1O;ghtNV8paw;a7gohF(w(aeG+-?iyn*4~JlQedimn{ag5mcrw z*kMde1A^jTK3(w{i0AGm-RLTbVU-L*CG(6eJNIlhxfQM}_MmdL8y&?;cRz7P<%Dr; z6}Ee%5(i7e0IiVgXJz?6ufGF-54X(&cXcinkp>xJsfDkAS;gZSJ!~_m5h>Gl2#KH8 zVwpf((4>z9WrmY{&jdQG4|YWi@d|Q>+U@0JO}<6QQ!vlWOU=&y2!Sz28^s9@god}u zug=Mv&`V)`fGg->DJ#J0z9a4_UqEBHy-8hC2WJU@#u3q>5U8h-Rwo)$Kbc*-MrC5$ z?a}3QdQbH#r4|07!e=*(!@0*};8~DiOK#^CkE*jN`n<7w^bPJ27q_f2*@i8l)nqJ; z9~%?ng%`fGkw+5D*W$NOYE-+JOy7kcg?S=?$G+5!^7Gr0+UsNer$LOEd(f%xO9`pW zZL40Vrg6^fky+sQ`}CNWlZ=jgoF zvLn!<&64!tdv-Gt1{Dxy9(C_0>gf`5?>H;B0I6RdcHOnCxtE(0H=GgNE-lk9KPd)e z9|yx2;H;U2gi=7FUJIfFK%F6BG$1|}77-y9(`DLvR@_8a)g$M1Dw3Pu=wON>dsbSC z9b%??$#J(kf(4yev|2H_69&wyB=|jqwM(jnlbOG8^6C%M#y;t_x9b+H#_pfvzH5(0 zJ+6?h%{Mc>0imt`xOPr9iV^nX)b`i3tLZv{k_do_fy7e%Wf<0w(Lk0t5Z$0d* z-#zUuUQ-?UFP`Hm8rFxrLj`eFO)PJ@J`~2~4IWFW#8HOWc<^;!`=s+APu|p=tyfa! z*-IA={I>>5@|roXXzj}{`KTS6%>g9U$n4RosM*}j|83yPtEW%7e*LrD1MD|^4jy5= zL)~$Q!vbBchS2jQPowC@Q}$UI5Sl=pii_|?pzdG?%4#fC#T~dK0$(Yz2LrjjJ~;Ng z^toM8O^xEa3QNB03mjY7w06uX7T%K5=SW*QsABh(X;VDx2DGmx$?N9V_uW9vi`X}y zCx!o*!pJH~EZZ_$K)|Gu;dO#ylJk*GX~O$RdUVov7EGMDqfUerHbZjB3KLD+HlTxr z66HuU?y?00iJ-0IsHk+`!;eZ_QRUtk!@C1J%-v-?r&ip}^qI&{gcQE={T|r=luvv8 zWg9;{$T-+7NuN^5qzKb&V6(yz)VcGgpz)>wsBEE-glIYaRDa^lisG@&!DeZZ>{)N? zx(xCUNWhqPOI{6K7nQ?`@q#xN76Ca&GPx{43Liu8l=gjdY@+yZ1Es@adBt>NwP$t| z(u>0z;xA?!6CL{7OA;vW*qRi*JXY*TLKD5~(+RRsNlD2pX@8Nbswz~D2Ti_2p0Bk; zEzj7tW6@jxE6BJ46tOUsAdORbbN$}Edk9P)9JR^yn}kB~9P%mA5fRc8DsdMi(6WJY z|1}Wv;Ku|r;VCKJgJ_ZDh|mPmQ@cpLPuifcSAP9|2RWU~Ik2GAXO3Slu! z5jyl$kL&l(GCK-WW`^^WP^#nGss!q*$(S1F^P~T+pY+~g2 z=9QS4+J$HZ;P^t&l(8Xlwd|NF7HmwX8@pb6fI|m~IYB-U+k=3dhWy^Go6_hPpy6ww z_cb#!Q?yg2Zrxq@`ddu1tKW>+t-2?<^--}rxmN=1iB7~`J{O*QPp*vL$(KwmrJ&$w z#2$D+>oIt^b#&{m<&_)r1#W|Hh>V)An8bTowL#`I;(Z3GHUGo84+()cl+PHM1`rX>0*VJf7s zCLG-s0^8iA#^g z?Z+Lj_ij41+X(JLUpkmg)m%U2mcdY^dIy73S-XGg*PHee4b-o+nHPi!Ufd@2I;*uG z4YFBrP;q?Tm>B>5$;RPz@D<~I49eA6PsBjd*o`5&i#9I*+H$&8LvHLdwb&6>0hxrE z9&O?J2OPY-L@o32yrYq_MJuE6BdsBXKh&?hFv*Zp|LB>lWkUDBKjCAad~35q2F3bj zdpPcxLp_!PgSQc%z44mX_)-ihHj%dx>(F6%bE^mf*8>yu`(L!W2;Q%-p&@OsnXJdw z-1XMz6=9n$$`q@9Tis7wNXQ0kSCp_xJlSvqZKBP_9*w;?hhHvE-^7*Vq5->C{+I~d z2}~8=p!u~5ZK$;}*|Td;J7%e$iHGyNCLtxI$zphuvezf0fF(dfer-_F^o>2o*8+W^ zBvFWI1}|YGO1E2}-JFXMOz+J?l$@4)$%D;mVQ?RsO zs4s!>icr?r_Wd=r$zBkQSI#ssF_E|o7LF{azin^`X}-inaHq$1$X502zVAJeR=(1W zZ{V%-g^}GOkWnMl+}Dx2TB8N@LenIPfpkPai-1W2Jzo7gcRnJ zAQpP()a*pTTS;C~{zO=iOr`Ksrt4{o|^UcN?Lzgzr-n}PCbk86{9$O?+1B4 z(M-#(5`E(of_gs0`d%K?Re36{iCv+XxMCh_S!1g!NW=Q{@|Hd9Y7Pf1?~?d(lk>Vt zl+M?K&!58RF3_=T?t1XCCPt{7!H47|`~l|J6R~<)>93KOUadqoUWsIVx;4OpO620= zlT$5;sdnW?YfpSy`6R*h?Hxd7Q^4HC8W0AGheFi1U(_nKju}B8OZ6Z^V$>n7tJ}7C zvUluCqsL%Fp2VxYHtECmpaLiWCT6EUk+oj~^NZUzxbs><9641yU^c~U~kDyz6Y$NzMfc^e(sT>a*-R&X@jrwr=%T4NDAzGGy zeF>I&FE>9i&}Xo|HG-XrpX7+0VJV@v!Y69^ZADdbcm zNP#KX0h>OBXr0J4`6?EZ<h#(zpi2y=u+ z2p@FO?gkyNf`B-1wo@M%lgR6MxJcr^&I(*Gq3UcO%(5SMl6|6g_@5=jnZ7$e_8;Yr!9}8 z*AmGcs`^!cfqc>Zhby!_&QxeZ6>n}k&q~27^6j{QSF+TMcF~K85 zUY>yx(9+Vra&CGYIUdw$ZhTblmWWeV_~YI^t=RlZPdOr7MD;>ITYPw-8#Hbv zZ4af@`_+Nc*>i9P(4r8894s^}#`<;}B-2m~AJDRz{zzAzuf44(_$X?*Pn$ZNDH4_C zF&gc6_;WsnXMj#NhzB@u1P10%dMaa$7NNdNtrdCJDNV8cD57ed65Y7fGQvspe(CjW#)%jNsCx zw&dnZ(UG_u8E-F-R^RAY!WpMT43JDDwpXCDwwi1Y!N>! z6bwkL{Kb5TCA*~NfJ;WIvN6J>?jg8-L(>#XPPH68V?y%V+`A+luJCAnB!9q9&L7~T z0L@>4Q5FnkpIsr`7+v1=)|;%)8X-O-N@(I<%RFE5-vLj!LF(sd#Y;ub)f%nL9B}<( zUp1qn^pQ6?H&2zy(%W3e&}e_j82diXvGbLkU;m9kS}!4!sN#*y?PmZ}^9YbI=@#na z$qpOK?Shsp9Qt;`>(n|D_rpnLY4ucF#mQ4-(0vM@?hW&9xjf3Kp-_^OC{?|nq(Kc5yWs?n`KyzV|CtCeCil|6+(Kk)6^dex%0(7TGJ_=oK)dl z>UGkRUd@YDrVuXagv-{ND|CMZ60ZnjaT7`;D)hd0%-jT~hF*M9*BF%9TK zTwG5OCDRiOV>9U}PblN}aDAGkG9ke7M~c|sRf$O@vk{$)1tU$AcLn@HM|-tW#B89` z=uLesnkVc^=Cdq^z9fb~bp%cOmwLe_c_>)yh zuZvgQO*MDSyNe<3<7dOU3dFL=bz|jJ3)nnbD zy_AA)|DvzHyflHD^2wJkw{LYn(5NS`!Hd@X#QH~%UPcReu!^>?1e}+6^(>p(nhmW2 z&;zTfP~u^d4je;*&0^C(D=`XD&UW>EbL;);blTQC%u?-U7+?c!Z1qi&ZB+WlstLwN1>CRRMlbiqzjmG#F$+4j6)uWTdQ;c0K}%2hGxw|a z$83@DW#>iX)85!&sRX$xMF5#g41PLmP}m?2VMuAc_9vzNUd>nPq@_KW*0e4R3}H*JeEGYN}$xezy`H4 zJh_KWF^Et3!F26oxCWeQF7t3nTvJ2!QW9>ymu#44ZTZ#zP>W+vPM%aSK}mB z3VxMeP8YZ721^_kzFfzkJ z&l&1TV%1o4d7C*PHlHP+ImN3WMeb?uAzXjSv@q+*nsX|}y%5=NU0?1!0Z@UlAGVGU zH|~JZ=$4dfP?2A6KCV5}8M9V*^92$b}sa zZtfVEB&@I)y zzg*Po^N4nOw)M$UY6U90HgN^d+eHZ4F3LtsU0FCIxj%c!#WpRfUc6wv?qZSKIjM{y zlTTlDIcTb_tc-@X?b5+D%&vL;YdZM~Pg}Afk;Dyjojvschl2~k2gG{f)m9MA=^*C5 zf(MwHMW}6-5%mtzMhn^Q4R%N3Gcs)5!d-OD1X7|qNMHx;_Kg_K zpt=gB*Q_4jGCMi5d;OJ-(261XGq#gd0r-*Q1-iP(BH6JMznT=5%& z`{Lt`p{(0iHxGpqX+$x?zr=D(Y1S=Mzk4sTw6ugw%dO9Ei~V?6M?zAgd}kxRKBwP5{*vuZvATPnP%aonJJ&6Zm=Kw_oGKc?~x=0VvQc z`j^;J{bg9;fD?^Z;^rg=4fK`Od}&|Szzt731?KA~5jMHQI>hzWjH7J=Y?y8DQtVEd z$#}zc<)EP^k(b6fQWksr#aYwe_`sC)jo|a8xXrTpks?hc?(YylM8lsC1;7Z>k;e;* zq@uS}2njJ0PIl@m{UAuCN8;$pSo&G78$4iuY`9#Mg2A;Qlcc6}mZPooMUuo1On%K|7 zawGk*x7#*W)oeI)>@OqyT*$fZX%l|G0JKgRms6D4|LSl!gO(xcT5P`!2)^`a#O2s< zi?&T3f1-BlSxUhu!Cp#sSMR6oTy(yE>#CH-TaoKrEJTv`1sXp}*E25kAUqS8AN$RG zz6?6hHBga%*mPjx-j8Me;~_?ywrgW65P0I54!lB8y@}CI^@}Z==w*1y#yumD=+p-5 zF|r1&8}1Z$zd{3q#GB)_9MT&So;a7Pt5u-(7FJ~TYnLl-%N1j`>{~KM!)cE&RO_Pr zZaW#eo>;=)kN=o(KvMMW$W*fC)T3V}egV7>?gylK{@~Y|5<?D&li*;@$RvSE2*$ zoFRb*16N3Qrr?SUTES$|{JW~YS}jx&-emumzn>WL9~jPMfPxL$oZS=-rT|xh)xQoP z0*iuE*5rmPl!Jbf4ZeRfkxy4Bx9fnHRgYo%sgXDEm$gkzulg$% zB(m6%aiGYU!|plta&ue7aZh#HZ}0H4I7(c5eiuu=Yu(JT<|)oPHnt^Vxk3OC{?_PwVxC~UF{Cf zUV-53^@C%7#g9T+zGt#~R-6#mDjqiG5P!V=wZ-Q;lA=(=#L~Zq?{-B=9>sa=uy6S3 z=L<{UIU5y@+{b#>rC$O=5brR+se-L1OZUJAt)!cI_7&O6ZcQ)w{R7NkR4y&`6IeCgh{#Wy$l%gl||J^HPSs{ zwiQQBe*D`C?jhTuUQ7gHf%KW!+~oE4&yMGG3-tJf^!$li6s{TrKBMh)eurAXs>_IB z7NoY;i1$E3Qu4KUrMfPi)Rnr%z^iDF9z8;keh4fLo^Av|)t>s{S5yp+S4I!Vy8cZ+ zncucoA%@{wdM*=Q#2JH}%EWghkP-2Q0m8svOJuX+E+Fp^L`=O89n19{EuQqyfp$ga z%i2R9#ay6uiH6L5h___r00l1jZYQajyN9KVH1*6=Dce=)?dXq#m%f46w_kY46(H@= zb_){gy97ZQc{cZ`maFWG$qA3xF2|kkF$=lrDpPckcf8ZG9L_?Xyfv}BFG_CbZww{^ z<%|i&z8I07iWBr7^h+D~Y+Gr3Wee|dtp9DeL_GDHR{u3M4%OBkcHWU9pVpUD>RxZL zjbf|G`ypD{r6GK}%V_AnXdFL(L($X><0D+*3nY;pBz1GJZvkOul>BF8V;qgp6WR0K z1n`G)tYubLSCjwIEn~LEL~6NwsA`c02IvdYW|o|y z0o#r&^kawYC?jNUOq>^^G;e4_E+4=Rl}KuI*BM!=%l>L5L|~B+H;;Y}Ax1yoGgW@h zLMwe7a(w*7-3kBk%-qo9@JmJ__mqr`-Uq=)G(Tn?9Rq)jMgjkG>BY@2SV``zRpGG< z!L--dnna~IvOtF=-~H*qcNvu5d{WAzZHiljBe=2RFG-H0!?5aC7~4kpWMZP3UC{lh z^r>=X19SvcQ%PUA75K0k$@eA?QmCsEj}>*EJPLB9bqZn#`L&X2Y5Ls3hxX;`WfBx+ z+e^z44}-b~hB9ftV+3broP9~~9`z>jv)z#Q_;~U`+oJhZOAxGN!rxyB`wZSwM<*w1 zP#-qK+k+e@kThQftU+i*1Q*ibY@vG5AJLksI{3DJvTjL+;7v%Xs<>)_KaV}@0J~CN zg02nIy{tBzep`07A$hrCGs$=ce%xDl`W;7AL`nMZ^||O)pp2LpyCz+O!mAA z6ZO2M@t-Y&86V>3Xq3n5Ja8DVf_Fmp%^f?S@WHKYHQS57noNr!&&pICI=cLp`DPH$ zLs1&>+RHsv4!q|3c6LbUITRGXS}reSVcn3#ztnYYo0aH52#O7(H)fsC(+I3@7Q)25 z239%%VAU#3lVkksHGC7BbJ)<#lM7@$YwPwHv~%H!H@6=y@3|%YZRxi!DzTCJ@rGgC zMOIZ2uTazkC+asCI|xi2wl9=H^@a3kkE35q=Y9;|B}utu@Nf^~X>YCm*+O_4Rkx7P zr|7J=a#zUS4o{9>(35L2rxC9)GwN(iE12LVTk906AYo}RN|*3_g6yOqJeHuR(CB|t zwKJLg|MnqBUL*97jGL`ldfhLt5|(MpPqfw<_Q1Je3Gv`E?5esrxPHJkPTVOX;xJOE z!s4(VTRS!~A_sLkVqbvOf4sz6`IN7JmtLD^w9|KamsUHpvEKJA1v?reIpIBWi|?8A zu91aaNbjIeUsV6(d^_jIl)>JJcP+)PQMor_B2$1S)!koe<4|P8yeVGXhT2Rw>bfNd zsf6iDY4?O;n8fu=IvO1RGN((@tasGm5-GD|CNF9~nqT{QMAB_D%26;*x#9VBVZS!j zfhzqzO(I75-Yn+lXU6v=R(^)o1p32hPuCuplr$o*?mhppuBh;NJdV>zaD5pE!yM#Z z`1Sbo{VA{eS-(riD(`truV6*u7R6AcrWZ7Zs&6pzdh!Ct!V+}na9c%D3EMH^puqtT zJuHF%h0Uw~1_?;Xh!Qb2e7=l~e-u$LHqqrB&wq`3Y7-B4yu-BsAv%I7tdw%WFM<^_g^3Zo( z#TWhwNQKOVOWppd%in9V;99v;=1a>;c_7H+kH_vxD6NAx4->JbEZtxttC#DuEpGPApGhz*%%WO^R8FyYUzZr<}+u0EZttS?~qar zLu-bsSFeuBfWZfm|3Q@=&6WSpWrHkN%$5JsY>NV|10C7iPET8VIfIfx*KRPg6OyqX zP2(K|oN~KWig@hb(%HzAzH6nlurqw0Ha2*1#FknT{lpvA0FZTrsG1+L$FH)^4v96F z8Z=WVUTrM0OVJac*Zs0sb7R!=w>}8yQ1(A)@6lcaHccgWd`bCM_$`MA=f2>})C}p= zKhGXid97*X`ma*$!YDO;88Q!`NwNeD970(rDKE#(v!E*NwEmIl9Nb}XdH#*^+76QX z4zEZXH>-e>>>aNBhj>cUg0%R->JRec;0R0lb8*^fTTD()o?BBtptUC1R>SO<<$a*4 zmoC>4XTE70;C@s8;X6UxuOtDtMU*Pat}rN&il};Ggj78k87_P2C7bw(ec%?Yx!x7x z*eqjGk*DMXOdLD-aNfcNJKh}g{w>S#8JX@KB1Jtt<>YMXY{30Fu20|AKa~eGH~fd{ zTcpg2haA+p_I6t{pC<71Ll}|!sR+8|1P2qInYx~xj@`x6@Q1Ica(q##VmRgo>05Ga zG#M7IiX+A+P=nJQKl;RtJUQi+l`5|Ub*$JW4itp&F~iBLwm8OhREti< z2^yuSd6^g)b4~UiLJH73?~So^8$_;&+-{&s8lv>L|Hbu6a-QHbp9{gnZ*LSxl|W)l zpp8vnp`yXiei$MrziW!pVfwDD>|WHzdUBLBLELwO8FC{DGc&!g{}?>~xdo)XKlz1Q zpxs5BCcmbJgO%Y8dXvw=gAMs(8rHNz#MJU}_XL(wA9<+If;KZUV7C!F6alw^&=E|r zV2f*8KCl$a;^O18160{vn7f24C*uQC9}5mzo8_(q5s?S>CVv}${r>3f!%(`KaM_uj z{a8jYBe{t%?+sb#(XebDLiLX8Y(pv~Sldbj{z6JZ*y$ntGuw;1hYZF=h-n;<%EK>T z@Rih+h8Y=SN+w)W!y`#~wueMRWP$8mg(C;V^~lf%g+(KcOCT}!#D26R?R7u1T9$l< z?~U#YAAvE+1S1R4olla)Kh@>yU)+0y8;W6rbr31irbpCNk0`hHH&(UJ_KOHJgzopX z92M#OcTv3{T5*tYeYS^&bT)`m11xdhPjo(seqnaz{x0H_Qn!bNTwe!ENaJO;e&@Iu%qO z$|h5Kv|RMAAXXDVQBJ)0fCZ+Mmf)MPzG8*^F%DXzCpd4ueqQhWW?fxk<1D4R`MEEz^_CGCvn-6_R45X;SOhS7ra(8pHu&4-$EJyId+W|0y1hPxw_dWZ}U;^Bw zg}nrApLaK_=tE&{U+ud$zkd1)9;!2Nec}+2IUW&r3Bd`7m9SLeg}Gzk?OOEhTV$wQ zMVa``9M2o5Q&F7Jq#T+>AM7EiPJn0cu8@AW^@!=SwGtctH#yiuM5;u3qy>i<%dz}S zEccH?1yxoAF8ZD?9(wDUJrb0VP(R?wtBg87*PL`wDNG>*xdlR&13T_hkTd=;6EU+@ zyY>8~L*BdCx7}riik~-k=f0eBD;?uYUME)&YK8H;1=S2Z(tf~cjpDHezhM+$1aIEF z$)34jfL%G^)af8H2FU{u(2W|BTwWBSkWRGgP1|`eH&T-`9jQIC^*Wx{RME3d&HmGj^RnNd+1*?MFiGGc z5mHQ*_d!`d3rU={@81(N5^|1Gf|ZzEN-7KK5)nQ!Y-*TJDKH*`vk@6w>^3YXmfi8? zOk|K9`cgi=f7ZNWr}>iely*DOjQWnx!a+`;%+E(R5mqg9Vx@W_hh9*FA!aPlHmJd1 z4tjOn8$T)Dc>lU=Zz<}TE(aXr0XT?iKt2sZFF{ItjZBdk2)sv_zMakJ!1dz;88x$M zR_jVb0f#CIUvp}beUg2t@esu7k> z{E*gZRPbH^JNB)-G3JR>uGKWgV*K^eJ8tdlb;+Qw2m9CY%ePF#F~|&3na)yDKFLty zGk*YX6gutM_I=N|p{_06yY=lQcZK9YFiT(~Q1gdZQkaVF?>qX(`L|L=#H_f>scS!EFW`e41G!udgJWzYi1)= zYxP@6x+hhNP#XK1+T)V2`CSusjn3lA$AXzY7w4Q4SxA*z08=ap}bX>NXB_whGd zb-UyBejKce^^NlTKQ|{JRt!g%6hTG90p7kM? zT8Yc%qm#vbUm~2Gf!|P;1t7LEY()n!Um;8pq@{(-Zd6FjLIQyh0tg%%S05oB5*Wdz zWXW)G@1jw9$Bs{sP^I?Czl zk>;>HISA!JH#9$Tckj}I=ENSri%2iH`hK`)C_O%2QDNLjQNF!+6zG;_eOvQI-KN@% z>$gfpQ!EFWh`g&kf2bqxBz~qmJ`(o)58U&?`~XnRk-G?l(6HQxG8SfxE3kW5*?d(A zYVLhtl*U4)!Y!^P-!PZzXr5{mbi2R?$7h=$fPw?y2)0Z6r!AK`2$4Pb_b;Z(Am~Y7 zn_m#XUZvn=5I^rufHvug)J7#G7@2`Ia*#}7ig^FQyd8&U^+)>8@i=0w1lnxS=Z|Nf zAS|n^C`qOdzGHd%OUWt$@k=0A^7mK}5By>-1?-O$=+LLx?f4nzfdh5wW|rM;!)#Vt zNDr$^&=AwkJ%~ zaI$cEWC)(fzBCa|1idWXBeY-e!IUM@Vl&>jae7-t1R>)i-nceKYO3-)^-Lp=tiB%a z$gDD)?V^{#QiWwoU)EK7>4a@9u)NR?Haf+noZWxEuR3j)O-Yf(y&cG2@XuDO;SpK2 zFs&X&w7v~hlZ~AnaFR%orm}j#Nwny5y|9?Roq`tigZ>E^;%^%)kSV2rSs?;Q ziX=H*svd`5Y}I&uYdPuMNgVvBqLkcRGl)=bSTBq#bhCxZ z2CSo<@J%*n{QN$WE&!=dJElGniYzmXnG36p?QzBxNiZqWX=Jb0ssQNtvaBm|>qy_Ha)nXVgqy1>`NO*TeO6+&Ldpdx4+6*~qBWg$GxnY-cYB~C(_N&JM8LiO>9FrQ$8MdR-L&|aes}(O#=hUB?8%U@ zK;q`Ti_2q0 zS6E*6bgs!)_`$BU`swr3oSWVTgO^61RONOyMy>B_ENy(BTJ$k4O-dS1t^cIfO|2q30j|7m%D~vHml# zPs8(h1;wvIT0X2#}`!eg}0jQDgqFB?JDg! zVH|M>-wB8UW>F)q{Jld4Al+V=Ca`p8L*xijqr-My1@A{pSaczG_U3bGx>6@m0u|98 zKg=*bgJ4yB<-LFC`}bl<-0>lzh{PyOrY^4CaK$4oO{Uk6mKRz+lq%c08QMOsp{FN= zd?eTjFFElLDLG_Zbd;Qk#`>r(iH{tgJwk#vWr-OS#iH-puOFKAm zy-_r4sYg9W_4XQ5U-q30(hzcGE4dXz-Et3xV&VKCY?_J9o~JoMCsQEtx?WsbO88;^ z$rB6|w9v>SVkOpXMy`841EtmXC z3#k@PYH_o7sHiE-TdbY~MS?Npx15qs0|U#jBXKmWsH@hKYy6@qY|mMtUu6wpNm9^5ZxBeWf0pFHZ($W!b*@O5y! z*@i&kr9gcCa&;*L!fI4%l5f_K#J9)I#J6QGwXfi7lKWYc8tFLY zgWLoqN)z#|=QHBOlS*SmCYoq->Guplio7b^2530o2nc}%Q&@{^`*}(M-(2dl5QVJJdJOOpKQ>mNOD~P zNq6b%*F1WP+aMWgUp`3A61}cIdlm9vY*fq@A6VRk7HIcHX51xjZC%{~)PhwogzE`Y z_sWmG+n>%vk!xU(`P=N;?Kq-vHA?r359l|=r3c~cEioZy4%+?rl;^&{M04`ZPf2Bl z+&$!1s;{VNkgn}#G(WTWvuTVZ$v*ms^S|hd%WMDt)i7~??KGblsv6^uW!iO16Gz@l z&Ir5D0pAE!v6CG+hYSo2Q)~yVTsAXOY}z_9Q$f3edg&5~u4G7+6~LFFX2TNkarzOr z#MkDCV?(SDc~iRhoj2#R~5S)o0`IdegYDfE+G1I6Jwx~;P0PeB>=0VVv(3H3q1wE_U(CZm*;_n8Mk?s9W z>5ELN&LqK7B03J3=Bk{*`HYOF5FRI3eD*K?AQnU@$zkQB6|f_~*dc{(e*CNMcVCx| zXo3NY6=SzR>aBJ^e9CoQNiIUiYBZ|?7ns24E=R1@4u6k~m0X{XIKaxmuqA}`!Ci3v z!Q9twICl_!XEbbu`+20HD(OjmZ{21PI*ydlN{DQ-QT+#LYx@$N~$AeFW2jpU>T z%kHF$7?ShyoZn&y$Yi3bINN)BrA;fTc{EeAK95VTHy7KM4;*kOn@cYzXh^p&aS(*5)HwG8| zlMNm$z}m2dGYfiguFdq04n>6ZiQw0(E+=0d2S^fKqq3q@iDY6RA(wUnEy{9j-_PSR zy5n+!B~0G2*7#@4RNrPB!b#*L7 zB=@KWOeq-hU!FJ{c1~3CQXh*uIXeB~pfVk&6!yVvJUd!kZ@z1=h`S3j+lnXDO>e5*NG z1F$wwQUm$r2n@!DknOej^AVMxH3o&b_cfT_^ODE?c$Gu?@5@J*llFfv-%wk`674R#}1C;R-jJb`iZcn5GGovkp!Kk;?h$q%v)K4k89JJr|%k4Ui}(P zVnWJVliGF7S!_i{teVlzKF$OU zicDm$h~gL+ZmLWDEKoQ5A!!|fK^x1C(w&*+an>XOHARM)tJxR7si`T*0MR!!RRd7) z)JegWJVS{S6p#zuKwyCc0YP9xUg)H-=-@F)x0B4GWa1lp&RLSeOLk~#dEITIcl1NT z6I%v}jdAAT@a}Jeqa+Lq-t~e2P(g?o;6{dYvUqAyCliWOIJW!2W2#CnoNk#Jr%Op> zqe8>s#afj`&={krPtM+ZE3Y*C0azXpD^^NyMMVvOFmwHua8GsK=h7}KEXL9Gg({At!WdjNcNk2heI{}bws1JT$%R=B&_2 zl}OW=;pEZ7zt@;&cPe;}mLq*yy4C>Nv7(L%0VG-%6i|?5rZSw*xSz8Z7=>K%hwnm{ z;+nCgE1Y|*KpBYQugS~GQ-5+V{+g@aG#je2lN88i6XAFM#SJz|ZZLErooE3S1gvEb zz-4p@as~o3%76J`qoZfsBbfijdROKk(@3ZzEy-+pg$VYXW`=Y1~Qx3g*s@8B=Apzs-&4O_OP((+gFPJ8m|)^<#c3;MGt7L<-UckklMRnDrV ziil^C=1Z7p%Kc1XzAyMy#7ifj=4r3uc;LxdJ<)MvBZv?Xh$S+sN2%U8!{^<1B+d4~ zrF#~jL-s5&*T(ypHm){9gB{7e0nA;UmuU^O{>-sh*^l|m<|dGS45&+h>iW?0e1BNq z-27^&X0%PA6@B%sz~aHmM-t3?B`O=A3!IkT%8M)?`lhAiwt|&ZM3r%8W22x^EpAYJ z`iv{K0ssO&pBvv`lx@x{-3dVeTTq>QO%4-g29V@W3h=7WCJcmIT7@|hH2q-!WLh_k znEv>0F2U!dwo^$nrS~zCXeCmAZhgDFZQ2R&V}yrbf(H45WGjg%%mgyUxU^%+T*Mao^X9oz`fM>m~#|hwdxb^W?<7i?Td=ZQ-V*X1PEYa&mp?PoZftFT_q^#32SXXHkAWiY`%x zZIoyS(~VvnAV#zr&Yc5{iaW615X-vC`Kz)o7=+`b6(t?w;RcSD zGFR|BYx}Q?lVJxr-M|ey`E&J3E3lGay#xg_kIdg+Hj0V_O+NW$LM%JuT(v4qChven z_S*Nx)wiC={Ry^)qW66dz?}eT?L;^j(JxZfgjcMH2O6Hrn1$E<1}9+LaUJ#2e&jjJ zuydN8W@P$}6|}@Kjdyxi@`HkhKKv@gwDhD)uA3=AGbXs7mPFo{QKgJrf*q-+4lnZ?!F%Q z@r#rb+U(vTwCVSbtXKc48yN8R{Sc`eYa3<4Lmy>fG9)>^;X3`K*P)2hhQ9oOMNpMJ zJC{JKcCX~qUksozBXsXY=q)04S10~`-_F!W6^cNl2GQa^ZCdaA1kY;uOkPpOsZ|l- zMNHOfdo@nGWR6_ZLu;omt#jVx(WRX($fPw!k@L#W4En<`PO|x#YLor?^{v`n^H6w< zNkh994pdR=hsUX3W9N^EyG?qe7K;!oX=;3eq1QE~YvJ-F_=apE+a6|3?7LL)MxJ;S zmO{=m2S-OoQ=kllXGMWXk)4g-+H8~faH%VeM1Nqi<7{B?7r9t?4m{3Bpd%ra2!??> zvY;TwDxoGVa)5$|OcFi7D&Y?3yOF(3 zj@HbWiVE7D*`d;hAwMj)u(zG3K9@e^AD=XS8?z(B!1rS7=!K~JTb*b)Yb=R0iq+dG zOkzohqe<$lEwSQzJW)!UFzYLkoC~CF202$h_+PNe`R@(DkOSf00<4!}|12=PYoP&V z7+#Vj`sAo1n{QgVJ4Z`>yfo&M&Ks8k@q|=XkjavowWL<3yxh-sfZSPH#{R@m!-FIb z%2@_(n(8jOQNFXaaXAb`$)xdJ^r=HnesP1SzQ!TN$DG&o0*j7;o%O$jJChO1PQxC6Z5tnad{VQXwPo=;<`~SXO!8?Y}W!` z@z>iWG&_{<;H539WaqdqWM{*Z>cA{07FDkFA~j72*YvqRq`0I5iOAKpR5s~f-fQB} zi~qx{`?N8ymM4OdLi?n=@*BoD7`4$y7G*p#Z44ym9->UX2{(6*l6G1E4-yeiUa2_*xDf$T-|ops|!h0_-+eCK3QKEVgayJAhnu9%f?Chk67+-VNd zG%V}eKU#Jvmp3H6B~PeXcgeWm>j9zxJs?bg8c{=lvUo%$!h2@H`ks*jZJJ(f;4Eyo zS&1b)xS`r(M8eb(J`2U8a9S~1jLi;!S<4=nmtgwBd^a@!Q2b%|EKPs~$^YpWGlGpl z2JR?D<7>i23wp$^Q@<44BxgC+Pek&|@G=fMZP^`cg26n|9ui!dro;J!s^5_U7lp^+ zo2)V|5#AoeYJ!;q6B84WjUwt2#HG1C*YpA*#Un5QJ-xQSe=dr;AY(|efB4FL9*5DF z=^**R6sn;)FcaCp;!71vIBjiCPH&SFYdaiG&9Nv$-}-RkVu*2~$Qw#I z+J*Zd!B|(Kz)6rDp|zuc>Ji*53ph^JChuJbs=l!?Cesz+ZY+j{q9C7Qj(LtPD>sgnR3tR{U32Fa=OQ(iDMCzCPvs*FV5CfUPuz zV+*LPqLY$J8(n4J>|kTl@n4tkOZt;zIf5={YC4rKV-bm{SYftkrP*iso6J}6(bU5g zUK9CIe`Dc;rqdK10oYbi^R@gwl#jr=OgsMhb98z-Rx`dmP(7t~n1ugjGULnqLOt8u zp4o;g)zM|}0@~=4|*ysF1nqFsLBxWMBeapObR-;~;aUc?B>@6f!*I_p3 zn%Y|nUJXi8vCoU>&HosH>{LOWi$xap<$rbLnRbDS$UlR}z@2!S(nhm@6#~+gvNrM3 zB?DRvZMTSogo*4zWLXE$#)9|04CR8DlkwpZ@6YEIjKKT(Fsg@9x^c9|w4XHJNqKwO9dMJMJHUdK_-mOi(6GS=uQ7t;gxP z*Zf!pifZfY2?OTAOa&{Xzxfnon2RFLU+)=ujk4o8QVI|=_aJ&b z064+`CLkFj=9(U^qctDZi-V%BXfSh$NnSf+sc&*r-c0^BcC_t} zPd~rjfnltt%1|e@u=mg_Ua^RQunduj?fj-ifz(mOpKt3?RMqJ z>CCVR@jza9Av;-3%Qkrv8ZK`-$<}##2UnU_fr^%FtPthzMN3HMK*s1bo{t|hIUl4( zQn1K3$wF(Zb8rpsQ6oSXdj|&-YC&Lh1bdMqs7JG6D|{XIDj09x=TR=YT3?z5i}3yP z+Fy}!Bkh3WR)M+I3e_JWxZjVWWPhXf+S(o0YzcNM%ih6)G`FKqDxF!{)ga%4m>31n zU>&|3mLj#NT@a&XZ`CO9M(gpR^vM;_CXTV`l=+do}PIz)0< zxzJHjGl(<`s4LJjt8y7+Q??td(Q1->e0dYJ21Ro+1%A5`LL#*_e{rV=M!19RF#V3? z+s4(*kgcQtP5jrh3Fcb=&B>`tOHWq?NtyhFw&p@lau6wL;+g1aF(Xb&n7Mw5#$wa= zKYa32!?~;Vj-EzD2EWV78p1ysc)P9noyww8X4IjCp3H-#bJD_LS4L4_z16ywMJ+R{ zN@XKj+5XJEh<X z!0xWPg#o$Ui&@ES>9VqGzLU^jwL|%aELd42vghXsoa*2F7}-i%+;PM>@Y2=BLQ)SqWRaK}(GTJiCDpbgx9IAl=6u-^V{!UHrBIsS@aJVN67QuTx3I z{nwc@KCOa0d*{7qMx2gx(Q0vCyADUpf$TKQW0)+BLEPYA&FY6egFBPu&DyWbwC$AH zp~{aF&pzFmq3A8Zf-`8gK*sFmMBvxP6qZC+&dtxl8)vjUPCl8Z(%_Opg-6dNUO^RPYAonnqD2{@MU4PBC|nJ z6|zM^_}3`x8tI>bD-){i;WgQmHu}80nA&T~vFw7{VQH5h>y?ZP4v2ho2A-@KgT=bL&~nc)`E1mPNv>AHx5QMxjAM z?-6$H7ff!Pa#TFcWtN!-7tiRq|6Hs;lR`DAwpLR7oN_+{9lI8PEPuPG&`XLeXXY9a zb4JFZ`bKwFy>7Bh+F>Ligs)yJ7w*;0h}5mgF9e-^39PXBTG-n#LGlAhGl=^NxV`iQ z3^D_d>kQJ6r(;zy9vB7;1Qs-~Ye!#sEYjQ*b zb>Bf&tToX*{x9vliNVDMHvdg<}XYBAfH}&gn@BOJsHM^Le5`#LiOL*ggm}}P;A10 z=WyDT?|!Y^aT)vJJF_%O*#qvA-7~s6^MKylnbO`K0){2u#=|&cpFVXM+6Ak7HF!Y! zf*=HnJr#d6%+9$g(J6!~j8TX==%jb+o8r>A5+RC-_WKJ%e$)vSQ%jX%0mB#5v8|R1 zO~!#Qkm6l$_AQ(_opHkj_4QE(Ui2*19K`mj%0}Vd=QL%z-?igPsmaolYl+C7k=LKR z&d!vj3C=~Yphy##w4!Bq_q_8-ctl?FJNQF_QC#VlLBICYjVIEihNLT%S_SWF9|i`SROD z{A&z>tR>ZI3ag}1jDh%KV#!B|aAOViShu}kqNTFAO(*l6nvq?UqvF!|F(b}DY*f&t z7@QFZ%}e_B1lRp#>2Zq2w~yiq8?)}{pw`34=Q0^A-Szzyb#e23)3@rGBP+#OO;uG}XdP0Pk-HXt{+Rk= zVHSJL43DB}svSzUD?VP_5o+V8?_F8()>;MTc!`e&Dap@UfcqA)qwiZKI78 z5`&so3m_>0r@NhulxhOSi-zV;&t*z(yCvX^Kvvd$O9n&vL9W@+(Z{B>0>Z0-o|-mQ zvDK8A!o86iC0#ts{RYt$+&!oa2>OpO{Q9fjUhhQHhW@|c+U$(@IKWIRPY`-ET8E}NEOuOm8nW}8I1R}yyu znzZ?&fBGoZ+pi7KzklH3!j6l}0s*q;K{*O15~DwuEDae3ZL!sT6Ru9P!&(Ti%_5EXAR!^NcMqGZL zAj4T;Fn}3;g!=Vzv@Zqf!+aEL)vKPf^?4uUFjFn_dxW^g$p79HvKx@Qs{-X8vf=;Mu0bn%Z>{R5@uj!^q0j8wC(?Vd2#>W#VAjNF&}an^!CGMMbF8-JnBE#K9Hh@ z3=3hHkdha1<-w0h;6T`>I>ZdE;0ts6i>XM-VlsZs*3cU3V7j1U6=oS<^C>~k`BX||no>jka4k>jO<8N+MK)!p>VNaK@r<3XahrR*@kv9#>$*b!!gvll^-Am7*XU<0je4KGp0uXjz2`+sOKN%Y<~>5SgtzNIFxx)FSu~pWx^Ay&YthX&O z5cJ|Q88`_LEPzhl94LG?>LDDtZS&kEJ~69xaejx^$AzuzS9SN4KTrUPI#Gw)etxs~ z=d%gg=TwWtPc3$^uZe}7sY&xs#3DG zBK<2+2)Nh_Fe^(EFG7Xch$rAb`Vi&w?$?KA$Kh;rN`~%!SsTYro#znu2uYHZ=SOXF zv*9yqjBLSv93R(Kem=PfF>Ol`|M-)vSTp^GOUwL+*s{MCWL#WaE`cE|w_otQtXsx# zZI!fsiGiVb*OL$r5399@b%rX%fxz^t?$&rA6#!sr$_}7R^9Oti_+S>`S6u?AT~Hf* zt+Ze;9q_<@G&$P9zGOx?zRttZn*ErS61uMViEKIf>DOg@jr}ufQ@A^)X1Z-6_^BDM z8%DF&Z+?c{vO)~||5oak82<&NCRo*(nby0}!E?0=>`CFgpc5)s-arB~BGN_(zVb^p z;^&{8r2mi~=*LyEb*~aOy51ZM*85DHvVU>0u`^L~OE@7Sykky)nHaN+xbIJZNxhr7 z;=&F{cP#~APf?{_%}OQgfpO=c*Nt>VHP|7H=~@0}H?K3ngvj!~mY$kGvUN|fs7W_a z5lkTq6wyinvg+D%kN8@R#A7ldRWUok@nrS#Ed@X&(eBRQlAmRTkV=dExDS7Y;6+3- zazT|y`H;`h5D2)4g}b3ad>2rEVA)lw3yh{d6HwN`z*U^>Y5Zy(Yh8N;qXD~KpTl?D z(b2k?$CA&;OQ?qw74!AxwQpOn@diB$mwE73B=fE#t6_nVr1>C1c7lYSR0wa8NL8ag zYYzJis5X*Mryut`p!`-oOuI@6`k{t(o2cJ1LQEQA85%aI39YE|Cw{8^ZxYCssBF^J z3zMluKdDRz>3Ml#y`N%$3?EqQzHRy|37UPlbs&c!1zKTHI5cjQWcBpZoCkvu&vVAL z9o}V9zAi!qaniA0G->guoq`CF9bEdmr*P=#ycHBdk!ui5_ z`3omBZ%S2ytJj(+N zW+~m?QBO^LMFl1PXb3U*o+VaRSH~vZ@l_sDsj+ZemHawBr>-(3D?o{#!t8IsreCV{ za$AQAk|h|OzrHSLlG=_Zhc;5+tK{_>)m6j0PXl}xjn2i7282yN1)e2C%_1eXRDnH+ zN=NS3)SM6%MxzxVVV6ko8x`py4SQ|s%YUQj9NCUva-45o))D^7GY zJ2Nw$&~C7%BE9;t1X)wD`EAWXx!KQ1wDcSC6s|0g=S~^_Y%J2k^JjA1s$x|u!%G?H z8D7>s_vlOPdA5cp4^45wE_)!n|_U8is2wiSEwP+VC2Pxfq$O z7;~**U5$i#7#JzXy#-On%fdo5c_Pr^;1|Xy+DQ6;wI)tLpXo6CqAJKVn85?|8K;a_ zg}6~;T3LG9k?Gns>1s`5a+TAX(TvQ@bg@R;yxPgww00R9E#Ol_?Qk~PxT*B5XvM{t(HJMsvLbC54ulAlEOdc=9gnIa=z` z>$OS7`5G3`?mgOI1E7L@&>vi%8y}T|e=AxK_CB$d-PtwEytoci01ji>UL-6h;s|xY zGsk;8SbmgSO@NV+n1-SqsO{Lef34g;{xpIVSq|C1xK}@^Q=>uU299`$17;*mR=a`U z(qK(NQXLl~{)~Rf)l`GG86#XIdFxKPOjO0!oiDz-%QgLcMQ|wS31|^v1pi)U@Pei6 z0nq#pKmj)PwFEajC@2WBs$yX?k^(wh5#pbR{;NYd{cvJUf$LvI>$QDgtB|6{f_Xui zkjj>9@%Ql|h`yBo!hn`k2+F<67xuaSk;qU2NCg;5x(MX~{-4VnvS+w}rAi;PL!y7Y zMwKXZFAl!%`_!k31@m=LN_l=(@tr`;^leF^#oO<<_zP!b8^82k2;yZ6K5hDr{2fPu zKn&OhWUcG|WO{P#?-NSFT)1Pne2WT&9LHF}5<>Ii?M*r`rm!JEl>CnhrQNx=vqcta zZp0Zm1x_=ks@0}is=kz(grwxpJ6?+CREi`KG5WpQ=^{FJ_2^}e?*7+z_7`6HukWnk zc?a~vL|Tb3o_@r;3t>l!9Vv^*k#IJ*7pxL@ByQ@_{=mz1hoMJe`v^aW>Eg^sO@K%* zTs3v|sR89ZB6Mb@jLfVo|K)@mlsDXHk)RIc(fB()OV31&Urso5yF|CrcrOt;reH4m zMZ!@B^Y(k4WMrcYsR8B3J1^I42Nco~wj+Y+L1Cp5x)v2ZZmjD_C^kZ0h7J}QkaYr* z0ID9kEYc}dL@;=oz>|qTc%S1!Ujzz zX8VLZi<6BanqPQ~@c?9eQ=Hm^??wO1<5xi|u`IphajGmY#9rn)oe6N`DMjL%M4)~< zrff%q!ewQ&(thqEMq2{|8c1;IC)m6oG&>aHVgox9ie=rqa6ZOUssxm!uzWH%YgXRQ z=(x?5BB*T2K2BP;R95=*aD;xlirtn6!lhqWc}x%E*u{_$cc; zK9^qtgKRDs)!gCuKti8^`f`N=ys?NW^!43F;!w~exI+L2;?D1rs#i)NAt7mptglu$ zJN>5p#h{T203bh5F8FT@^B>HgpCXzxgkJIwG6IJD z4pa3R&x5kAT~&UnBOo-7*s_pBqP&xA3(QnjK#~oD9eo&}GDz6Hxch<}s}GB)=rf=N z#enfWDm}fx*9yNAqRsD^EdfEK>ej7Lq#E)9)d&z`krgnRfnu{4&r6rX+wpR#Q{6 z_!SkKIMkw`t*u>L=%cRQM{)f1j2of>&}Gj@lM1sd^T}HL;m6dzgDFFVqob#H3!tt= zsrJIm9#yZZzg8zXsc^wF(6M}g*kx;O_rBda9?cB7k1A*k%xC&fmFNUXq*vfFJJZy$I*#cG1>874LN^J)D9HpT$R4$II4 zbh@Wz5!ZVs)9geYDeRjwB8vvmOiDe9ZE`Ksx9cUVM8&(MV~Mv0%A60c-|Lgk0|74e zVI~DAT!46gjjI+D33c{@rx906Ufh36ynt$WW?f3R;P5N+*X~xW|FjL`}RSh zXdLSu0vxoD^W-1q%nDw^DDUSGn;0kNZq7?HL*sVxne4l&4>g_ zMId(h(KDNlcy7)oUl`#5y~(tkSV0ci=oL6=i4Zah88|a2Z#r}1?Mkl!;!r8 z^WzOxsxfHJJ6KHw@TSpJ@@5A?3R=bqmM3v^b4q+W&m;2WY#}T)k)`biB?Y_sv%5a9 zR|ubTvxfjJ*3K0nKAUSs%b(Zw)+-B|cSyo&5FkPdOngpizpZ*UB4|?jq^Pj4FeW8u zL&K?Ne_>Em;Z0`(_P>&DdPZ}+-||Qb!H=NJ{LVWG zj5r{*V5?}DzPuV+X!&jm2h(<_=3baPb&7A&0}`#y*5)PW>WnBK3m-{mala)xn1Gy> z*AD)t1>lB-)kM#55}g!~(9>#9jZUm<(u(r-cK=EeOjL5PVk7EvNdKYp{0&*a-5?;Tgn)EPgMdhPNeM^@g3=92hlI2e zQUW5~N{G@Z4FVDZD)n8@zVE)@&g{(2&aA8a|Ihtg_qopbon?fS0`A5{u2+I4nHt&o z;=kL0l6s_pZ6ryAP)$2QZQxK;HmL z2nO>rHf91@qD_N$EK92}k>2E@J=TW^{~ZLFY-7yP^FsMW8&w4}#e>p3J9~DB@eSJv zgE+Jf&&N9OFglqssq(y}%Z{JODauX{jlJM|dqQAS%TXL_cee7g+Ir}mD|(o12yGl+ zJnVHxmDu$1IkquDQknp9T6-3QIo@~k3Z;S0xz-^;TFjO{2nx2)E+`m~>+3_+H{7EI zUpU%iDpl8AN`Yu9=RwEXU8D1-1LBGqt>`k+yjJ*l+t*lJYiSBT9})96r-^YR5i}Bf z#}JU2l;YmtH*VWN)EdS|zNHtr@K`{4P9ri$E4<92U;K@C+W5xTHE!PFOaj58?iFjY zJHJj_Hjf>wet`8GO!o3@cON>uEd{O-K6f6SEpOo*gCPo#e>&ss*Y?^8|K69gJG`GR~)%KI`wwKf* zc+GEJ{9fLku8RPEBQtiv3wv5<=f0qGsVT!icaty~+;E{K`g;>n-UW&=nupV(XOCq- z1@W6RTkA86G_F>fIevF@?3%AmwnzjtE9oC?7cV^GN)8I-0dpK8Tbe@mVt0mKy20KK zbDc@Rt&we4zbu&jX=rE!vPQ!G2I?Wjly;!)qoga+rjSxv-{er9F(A`yBGg%y2w|g1 zdd>uNl;zQv@|VZ$A}pMK7&sOw|}$0vRn*d3ouA538-4&!IQs4+)H@ z9LPT8?Cf;$QW|+pa%<$t>-3HWqcof_tZSe9gQEWtgbJ;I5pbU^!x0ACzp&I)G9(hSzMx&1BJv@)c;95K8h9KsTt zeJ2}RTUelI;nN1}D?*6o7XNkoKIgt`<-;=B42)Hi4^F` z^mjE3=ctC034E*5lBAb(0mMkW?^XTlyz&+=IVwbRADG%r6=BOxkcdp zh^F9g9F<@wWHjP{)#mZ5^hGm`E*hPSUjmgEOU(;?xmv_#98J<`6{)CWi&mS~N^I}m zx^$mRk@hk%nDg17pJyB^fNyMUX5pM!xSdJ$y@!ziGj&cbQ zj0>8%u?YtATIhX=|8wloX|AbFkjNgNuT950H}#B-L+x>+^JnSCesOS=d`1x z&8ZhK=akjhD@O%xz6wl^Gv5AjnSQ^;XTR^VYat6u$zVQcE-&Ecw(#@`h8)w=YSP=p z3LX`wq0y3G44n;lCf~jF(NU+&GpTx5Xr$OvrFBL2iUKjE_A$iK<>Zc^ZvW8WsQc7* za=x65V@)x3ym>19DL^K;BO4^b^^ZBK2W^Xo=WTmvKxVkk$HzxTL19Hs-vtbXWtRy@ zeEraT@`p5}GGVPN%{uEF1m476fdw`UJE3n0%Vs9QfEP zw06t{hu2i^7_}&o>aJZS@kLE`Da=UqxxvnN@Avu7;7`zn$bJ2~J!F!$j~;7er_xc+ zGWT4SxKPjtrA~1GaWpb6ZWSqAx2xNSBM*J%-GmTcx{*6yC(aMefpn#N6R3mHchRA& z`)>+~--w+TTVDO=#t5`oGzGT6XsnXCs1c%}jdX5oYz>uk`4`q`Be`mG9sFblN+kH+ zziImW`z^pFhqA))iMm0>IFv8O=9Fq?_QxOK?rHJ7Ig*j(B3qigYaVwdlkYb@TmQu7 zkjn}`>ggmARQ?9m(yEFGc>N;Rf9qNTF$cJPYDyh_{^`Ad;CrC!!d=AZX%}6Dd@My; zXn9`pH-40*ZEAS}!Rqkp2G>i4Cu#-;2#E{6!y1FzmI-%a@U(=V{ux*k|^c*f}m{!e6|jj9qyt=!5- zs{fo{i*;n=Xb%1}sFXYaUF7kP8et(J&|{hMe}hJ{g}#b0iNZo6d^(CGL=h!tV2(3y7+16$ zxL%b80Kr}ZDm%J4zsYS4dTxiFGGb}0!pM{ ztf}@#7}>Bn^bOcY1mn+A|Ac)ccGi5!bZCVFqGt^*;TlzYpGeoHhETTJYmqp|@JGWp z&3eUODW+ox;|e|eUd#NctYEzOEmIT}MPB`>tC29$)&4Ec zT9;`dKsIdRHfnE7d*1TBoAn@+omDNej&^wa2hfw81ax2k`fB|{e5Xi|YY;H70p zg{mdd<39TndJNwS*YdFz>=oc#_b1sYRPk9sLBbUtV5X==Iwa`CLJGLLa-4{en-xOW zmKD8i`HhrEuE%?T&wFU+b9j99YNRd}&h+z>n zxh}o6>ciL`#@#N;Ek%-8vEeAF81)w zQ-i7|UCqu)%hT>mJ(ULgiA_f)O%)o!SrM&l*)mg=sz3~#L@L%hv1F~fI;GDO@(Zkl zd$0abyTW(+)l#i!=*LTl1()fScmf)x4syEigXOw*Z5bL=3OVPLR0u4{!YO9o$&K`H z-3~v1ZzU3tVzsh2u|q8oJA0$KS!g#gt}W&;^joF7r)M92ARasQUqLEyBm9He{r$V? z3(f{SY_4b$Zn5KsoPWM`+O$>9fp>!7$g8X>@qdbS2b%EM9e ziYCiDqyU1Io&DM6-#3>9(ngw6t6_hs2n^@m`#8<`2=luxq(BoSp?Tg_~-{UTi3 ziwY1_f>A6ydmllq#5tQ}Z(`oN5Z0=^!zt^88jt1P2cj2nS?GgcvP#vZfS@kgV@1-F z_T9Y;iTLHtM=FyGLy$#MFzx-HrZDmUU*Gxpd1%qD3|*#G#FU(29E3SAru7(tFX#dT zflm7Sm5((-pE=r%NSy$RG{2k&Y8-3_$>eGoeQ%S_^I~G*e9-`ThImX{$2R-D-G4yK z2*SuI^+iioUfw5wZ34Y8p_@=c!}xYd2`ajh9o5H3FeDIKp>FIeQZmtcO9hUEa1`B# zxOE7Jl6vyfP`Nfwvc@g8kgJVbMY3f!X=lWet5?em)v!rBd8TS&Jg_5)_v_oaMpb@M z9)SPGdZ{}K=;+zskBRADzjn7TVlt_Gw6eXGu5#Khc&WM+BBn>rZ>j9g8X+esPBt?T z{|zh2FTC251Z{d>T2K)EMCtOh{oxNoeFH_quGB|(5yLeE<&Ou0PTwA>&YY?LN2)h} z{D&RI?ngiI)fdY}MYg11O27xLo>^dV7qB7R} zed9qectC(I5GD2zwK6ovn>&k45Kkw`56(xB25unIfZ-2uW3zxAQ6M79SElxt#UHXR z@jLMMqxDV4)@#Trc04vUb@q9&Z@bE~C2@kDN#)oZjmpZx0;RqG+$|nX8W8Jvu>mv_ zm;`))m`2Wr?=SATeFtBr6@X$YjcP)trkYgFAD>Eorf&=xAK{2ozWI*N6H~dT#EZV85)7m?Sccc@ApY`n{Zg z+=w7tuba#I?)`HVpDAznzB;-jzD4qVIp{CwQewm4`-1pFa`E@Ze93MvV(+w^S7SH0|Qv1*+V&3Gx+uQk@1MutYeM2qho8RB|jd1UPBy3=nw<5bt2# zA+0OZiP!#lOT}(mfj7J(zV*Gu&5^cDy*;>p#YPSwcv;O7Qq(7O%WSpy%hlLEXXR;Y z?tJwxSuqS`d<0)muL;-0%mj8iC2nbR6TI~NOGe4FRlTcqg*suW*Qy4fm7(CDgAWOr zDvLW?61a~$p0U`7YBc-i|JF0Yu}b9)`SqHxnkPtLS*IM@x!k-+p8HC>e%N>O4fQ0aR^wN+`|k%2v4M{-)+hWDVR40HEKC-BI4Z5H4W>1i`nDVRoO+w z|DEP3|9_f8au=2dup4ap{JpUnteS03H$kT$W`>14^N^5T$KSZwFMOc{A)%pY9Gcnv z@Ti6{VZ&9J%WdZA_0P1Mw1%PjKD#e#y>3#}JwyCB^6}6XJ#h8$9=h69=lJpR*KHp@ zyqF`c!K;ZS@xmEEeeV>Q$6)@}>rIzl-}~MpuJU2zy8uTXihIlanfIm^YPzL#*naP( z(G@H-G{X+f*B(5=BX}rJLbkft@Ubf~I~3kKa=^dW-XEi>q(A;Eg2@9y91M$=-Hv~e z8T8j%?@V-2vX;iB7xm?9JUsVbQoP?fPhW7q%f??guXl6%H>|}s$D$XSH(0v&Sbho` zlMcdp!BAdN(TpI~-V{>}`7Pt4sNIuE!0zKLD7A!t!ul33xl8qyFBqn%{#uQ2=7<3b zKJ*FdU5ntwb(e>2U1@DUb+_ij%=eSs2AR83<$YC#K8R*nX9%8CXy&wGgfy&K*@%m5 z`%!okfDbwb&D z=KrVMl26lIy{NtNY1vQd+p2Yjy!>DS=X#}hV9QCZ#jHm|do-OakoX{5H9S=wvhkq) zSc9~rktdx4L_GkgeF77Q&^8SK4ge&(`nCN+6xk5KC87k3(dAmOE=^{FZdz&|I^raS zFi3qW@M+pqimBeiLe;>eO{x31UK!=L&=( z4mV;O1P8sO<6V2Gl0p(kh`!v`)`l1#Wf+9;F@LB9HGhT{qi5VCm*$5Wn zB{y@dXU{M5=M7W^whN0Mlb$+%85_G77Y)AQS0yD8P>PcoMaqd(59fS7dryG;D&Uq< zD$eBjLxg+qAyCIrzq~B*Dw8S+Ad03Et&vGK4~&;dmn9Otg3Pwkq{-_^Hnc<{@P4*M zCT+N^ZS3qIG!Xcc0G`8Q_j%4$c!#aA5qpI!wOmsv>7cv~C4Qbw{lt$CI99q+tL3`nJ_NDZrL68)L9M6 zwi2U6?=AJYlEHd#x3m;d^5R#bd;9vJU}`U-wUmo>?VbN5^dDR>?eB|67Cc#4;OMku zqz`)N{cFieTf^F*s_P+F}AD8P3%o zO1VrUY$18^+N9>9?-M48!lpMqP;RjkeWCLJQ-eL|eZ)x*!O?&KtvGB`SZoQz-I7x^ zUol6(o5|G^y%2v)b4+zjZ~Et=Qbr?Dp#}3a6QCr*M_?&Gw%4l>tJTJ9}?t+bJl&*;I7VOeHz}m?7N6b48MQ{gYNyovCRQYw~9e1U9jI0RU zwB$UQmWZTIhwBidzr6B|X{m`hH8(w@^Hz z1{Z3?EKnE^N+SX2q*q;C$B0Q0Z4EJqA<`_ElVN{=QS>0tVdCd50pq8r-2??eYM1O6 z0jw0uAt99ZckGppSLs~;goeLHH+Ap0(qBs_x&ZSvk_7~yuiaqk_n4C)dH{I-7a(~Q z7X%h-N5lrnHg;QcZBuN%&;4D3N41-LQNjSp(C>k?ZvIlYZ0Mmn_EAHuh5<=z|he?1Q7ij;o;RjTG5pYBwe zwPiw-wC3g+PV*8O6fa<4WUFzCs&NBK1|%t@-yKg2=%hU0W^$J)xu2riY#=ZxiAaS3Z3qozHzTMTyu zG%18sNb6KdCicpMw(){BTgFx5#XLrDDJZ;BFVU;q%~yBrp!8YBYazyX0&ix9M=Qjz zQRAsXne#Z_oiyzz>xyhSFH$iUiE!S0-hy>brj;xdNlfZ~O^R;gG#f*n1}7Xwop)WX zO`Y^8XRd!1)1@T+V~*cCLW!P#I{7ujYS`_Ay&hn?$ou1-Tk|vcIRP#aseADQ!Dl+a zh5nJM7swBaByoOd^Pi9D@_X(-nYUYqG}|&vy9hh@{>wWyk=F3$&txi~>#91oxRGJp zX7@0)Yd2u=lmR3eWO2{i7Qh|%o@Y3eJjSAn)?0VH)^=1>9KwG_Ek1lcr{8c-G)pM5 zM)UH-dv2vw(?EDY*03vGf%a>C8g(M_w&CuKqpL@ z#rjOUI^lSYUR3tw4E@LMAg)IiA7dH<>3*`$aeZ(mgABJ1Sn zC1PbKF_afuJznlPz_`s`iNX4MJw2TYc~eV+yJ@-5xw!zyd68%p2G!OiydZ>n4X-Qz zZ5TXCeRf=fsA>lXEb*{}3KV1skr-AjEq!V$Q(iu@4koL7c+ZSv-AqYK>jV7nK2O_J zd|w>?GxaZYmqF2_#Ka}#^L>vt?G->*N=|!>>Du-jLoTRjx-ZH0Qy-i0et5P>Q-U@` z;;HSkRV}|Ss5JP^-SvPXiaf&2Z_jPT52QrdcUrkTC_gazOl-YYAR{2l z_Q4YLKwq@AQ|GnjG!0?B5jK8)X#o$tsrQ(o5pS1r8~!sUY;fc}ML6|cBY6Unr)sUT zoPGXk?te|NugPj8lLs5c1pjHUatI9qDwWK|Qe+bz6E=x;FYj%k^s>^ae&oM{?yf8b&YyxD$mo<$tUN)xpMea8}XVBHv-Pmv_tW@{C$k|wIp}TufHVw3j)!WJKbi#we&qN@3ipr+O+MNpx}e%) zSqWvPtB=Y)Gn9=g-BBv$g*IQG-1A>N^BDWerr%+@gnr=gr%yd}tTQwOvxRMDW;MV>m~e6uhmx(zcg`r}$|DRmY8 z>je;12+GGVnR|T3MPApTS<8wQGbU?qPS5X43zxU3Ze@%FyoEuWv8!D#nOIpAa5^@} zsbWJj&Y!rREm5|AgQme^_Ii_H4vBCAC>R#hPiOhKv+{-*51z8>xk!~kr z-T%I-!~a$-UZDj`5#|67b7n-8C|+$&&8+U|c@wk|;3u+Mf+G)eSJsz#<%+QDuP zofpG**iRrc6ZB<*V+5IYVVI^DF$32SWN48Bl0}fmK$`)kj9NJ}!@upya!y1k0*Ti2 ztn32U*M!Q?up9^`3ro@SvXE;sJRv`7@c(;#ynOSo1MpG@Dn=345c2eh;!2yezwFDn*gTMjk{Tlq1F!D#k-_@K{)$AISdI=Pc~rpL%8l zdojcMC;r8BiqHQ{q&bd~{&526vH_%phq-&@jQQp9nKWR2&s907F22`pDNf*9lJ!bXbGYDKRCb3n_C1 z?^aa8*QXU=jX?^rpnZ1={4%E}Kb3XJ;Fs$H*KF*h6a9WBn5z*8A*hYUKpjD@^^J{b z&~$R2x`OUj9P#cOv8P4~F;TxrJnMuQ;gyVBcdVX^>%YGt|eWvm;71`r2KK%jh7Ii}h^0ym0GYNQ2 z^1&3QYLu3u3fbu*rF^OyoH`nXphhB#WcVOc+{I$KRKT2DCP!i29VPZuOb)~GZf2>0 z8V>Oabn1~F9UZm)KB07Ut?1hjPO;C3V#A*c;OmeW3=9Za4yC2&RiBumy&ywHRTU!0 zoQV2GnTc01);xfQMoOwxGPKwY=*j``^a68WwX*JGK~WJ#o%oB&U(?-F6F3p)-rmnA z7R-7@znXR-MP(p!i!D9!-TiDO?SGm%J>446FRkhrmUGGZQ9w|Xv9TfwN_{TxVJv`= z5vrxH6Rglf48}v(Q@>q-o8ZmT+TQmrQ-48;R_@_J1i<@d>8KJ)R?|0VnDk>Zk7 z-Tr9~%ylSmc=wiyg-&Qn#_`>IOBEu<9JLw#C!Lx|$i|VQ*pqoj&01m9RcFglXRGid zyDCZW**qh#5u6c84#F5ru%Lj_n}GhUE%-FVk@?gS|E}On;?1IzyBr$wDp@Dm;%y_} zX!KJJ3Jb9_#Ml4PdyFi^~&+<#A1u&Wi57 zCmw&ZWcjGRrVk-h>e_+%OYHtpci%d`AnTK+CYND)lbT`#poti7Sk2HCb*3Oljkr-k zbwE7#kcWcsyugwN3Ubr|V1+i6DLKc3hMIdqFw1K1iob)Cd%o!Gu$PUlDA*qficZC$gjBT^VkgK!>(~-vSpM0V4{NJk6HL z?bdXS#&IPuMigyi77WG`9}bXW301M<+r&I#!`mbq%p=Ce_zg%l<916aN^@_)K7Squ zoG(chDvBg*{$2BadCmZA6IudQEg{Z5)D+Z z>h8>ZLLN8dl;h@RW_H7$;GB=_5csyBp_QWTBgS5)@ zJBQ{=sqBZFZkGncY*JGyksJO<5EI{@A$Vpp`o(7nJ?4QrkR9RtfM=@2?!IEI<2Tf& zU8()4sdXMyq+&Dm*GR~{gmfqo8Z7u)_5WN=c2Mc!SEL-**D3o&&s5~Jm{yYQIp}K^ z_CN83^k4kFImnjC;&je)hz}|GOim`TF}CY`ii7-1>`+T1k4DC$CTygu19V#Y(2fl` z$MY+XG}5^R@c9WjEG^1K(&Ucx;LW2);3ZDC5Y}VG43$d&Tt}2O#NC8oKcQXbyR28! z?z-|1`cD#NSj zC@y{y981RbIX%1cnK5HL4A-?w!eKKAL2a z*4KYJnfxJL=P)XU`dPuC_mTeC=-Vv!sZT(VL`aiRpkf8k?Y)EBYg+w^3{-dLhD?iLr~ zuJ}Wg)=pknisKB^8AFP4wrGwNfwR~bJvqZOvRYES(w*@oIkYECW^ZUwpZwj^fengB zc$pE#&V?`cJRQN$zG83UYaGe8R1$#GTpQaOJ;=PBLCBPL}R5@O0w)&_%5fXJInKnKweK0qGxW5sWerdwjAGRH# zSDwmcT8lYu;tMPZ9etH)Wzyfn|TVYoOL?l7~#u(sT)Y=etp{QF*eE z286$WYj#p(+KOmUFyS&)VsdYvrq`@-7f~r&6U8>IGHjtKZ{Rd4S~&vFa_eU+=D+c+ zV9tNzTkY|nK)bc=@sK@=AN_1nwlsuv}xtko{n%&Q9gcI>d~05yhqNH$%}M(x%My(v(PHI5{qVyKi}4LC72+og!Q` z%aFw9gdU{f&(z4*!KQempsFI)?JnQ_1?!?IFBVrrdHiJ(t?v$fgqbDmz;p3~863O!U@9q{NG@F~7%nFH2nd;IZ35NBkZ_33x?q#nU z-SLQ37w22zzv6x>DK?dF%eLP8DcVUA_7?#tP^t&UI~Mq1axCvX`&>J2ud~>6_*CxU z7~eMLXlPu62u_dzQh!cS_F z>o_N;+C?*cRKFD<1=@h9JEcpClsZ_dv35E+~1_40r#YgAS zf4OqL|GS%UA`2P#Vd@(ODRjg#5^`sYhy5ygxF-M3=0vag&DPm#b(hU(l?U-o=zfwX!J-RXCSCVzIu{1A6vDDX7VtzEsA)qz zFXbbMh;($c6AR~Fp`n$HbD65$M4gNYCGnV5P451)p8E+wk7`QpynWDW*bXiO9C((D z?UJqIDY)R$UiRe?ms5I!Hu`48`_(g);pK#1z)e!9y>QHqG}XWYXbG;7@ic{(kJZ#^j1|<>GZh*u zC`#Hz)xKR(sfqi}CAo3bSXe4#$*v%0dJ9xaAe|qA9}+RBgQZW+(UBWD_+f_JJR9mn^1&slLQYco#?qS#OTg<=;>$9vv}fJWJgW&!P~qOlo{g-;|^R8 zv`bzn)64konj%dFa8@YXIW;rMUS;cxoy2YVBe~)I^<{yTpcoZBDg7+!%=-I=#&qBg zq9ox@e#}*)xp$oOTrfZd^|RF%g>h(jk#+sy^DEcx$V1Y_ytne9p1TA5bPX*@Mx98C zNB9Lvn~v*sKc<`zz>Lq%OwZY$!_Do_7*yoX!~`=kdasC0YKE3GrdV*8sdR9q@0Gjx zU`fl#TF$?Fh!}04D1(UdW-ZhF*jR_2mQ)W6cu=_3%VtDn&G3FyFV~jC^(7`WF89)w zD4X5Hp*V=Wl8WKG4{qkG*Z%3tDlJ#56%32lW;F~8(;MfH>BiQVjM*UYA$p){Z}-JE zDbxtXG2T?jnzOdukrkM**E*O#p(ZA$C$MF}3cH5JdjFX}FcZ2b!?0rhj3qqoMx@E{ zHu{i#)e=R-ODW-o8`oA0c2hLiaURruVikTQQQ&Y}vAEAb*?8U#3G;!xiSRDM>6}4M z#t3^7Is3-qb1~a27Dm+t)iWb6o`9`|HMoGU!b{d>sr$)Ek&IQR1C=;#7rutnQC|zVEENW*hy&13cg|Hb8R$HacOI~p zmFjY|KZNlyyY|=P6?AtW2CEE&uRA*PysD_mewunKmV=hTSMv3)$?X7(Bd~SH`_XHy zAU;u$bEk@o?0WLFRQC10a~E(Xvj>1Kq#I=* z#E%HM9W9#mR~tt$?nmJaWOMJ+D^IuVd}4dGVqM$4bm%=cVf>_^AE`}6W;D*WhL;G$ z5-4k(^xHIsPchxGBw5e3C_qnvM0Gb@l&Ngl<33Sqo;2&1ms%bZdxEq}}Y1x*84 zl0TbL%zPhw{sD`9D!9V0L6ZypjdtVzZSDRA7GG#V0PQ#Y>6+lG1VjvrPq`&ECZxoQ ztY#0e%FCIeS)vOPlO?m}Cf>-VVm`*V1N2t(^$S_8!ZnI*?My0m!kz4Cv4Sj%q#Ms_jwE7OFsie=qtEcusEaK&G>Xj9J-+x(B=eoY zSBkH@c6@|`{{E5;djAn*BS@fD0P!@smBLn@rohu#^TGT{C981XbaG8)45J4?C$Qm?Y5nmA$3m5fByu&S9w)? z?;%tVkXU&NL@N19xi*Dq9$%5}<2AymV7BRmQ9FA5u0q4iBCLy%_^|iW%>8mVm(FiX zb||9J6xIT&naGQq^g5fcYWAI|)(E6}S@$i(P;w-m!#-9AY)0>cPWSxV5IjHF464D` zi=YvBppj*_igP|U#<*5@XHLt!G>giaXF|z5c0OCoy{fe;mF_e#{Oy^uknB7@J=wv9uOCNj5x4yamB-AJ4Rl?f;g0HWiyt<6)>dS!t?7Lq;VBjqnk+P^;wj8Imp(CH z|D7r^|CJ+yr8G-YkY^cLiI*f)A^)ln^ zh0k#8gY%Y7F6HvyMDW)?rzpd%ZN5N!8!sH%S%i()XMa3)7M8_QzD6poK zdi~DwwBIxG_J=rGA!UW!Un`s5;?8~`E*dv`vcrJY+`gi2zgj!ybcMXM0`4nWEP`r9nJ-@c57xkX1@GwP9%cv0O=a6^nJn6(UhM zhKr)RVs^@w95mDfVf_GiJB!BI{XcM2retRN6kleXQ$IzGT= z1Z$*GM!jW`dEVfj+){d3*XvKyrl<}dXSwxWee-Fdh8kL!XS;AC&5>OQa!?^p0;JMO zG&WIE-}$2OkWNqtNLc!>yvGS|`|Qh@-%t?=4qXU&L1>*B>ZjAwpPZDnj}}QzskVv- z{XWDJeIf=u3P_DpJ=|o~5tb@~VTYp#jID^%1gIqP1fncZ%mWw$hM*OlY<_$FtckCk zcklcVXFseh{nT*%^U#wo35m}IWKK8Hb*_%SCxGpc$5JabDgXDVh{ELyX$2Cw;nbYNQAn@<+(Mg_ z5e&I~$jc5wUFp&1!D5qC zITt#(jC=nGA#xxRxqDBWFjnkm;x^U?mZ{RJDr8Z@Ate2NiB@wa^*hs ze|xM#zIlv&b&93;*i{+`Wuw8#PRu%cXfksZN=&#LYJU0E^R5~NNC+O|XYXQy?$-~Y z5vVP4nR$zo)*e?xY}(4--tbU{*~g~jft4vC3W!KyGlA0PpD&9ov**xvX5LtvUypsb z-$N<7yHs(x#X%#?blXbP2=ZV?~bsrdMNzS`Vs5*z(twgXra zHNOchoNs9Yh6fP_b2&C$$n1og9Q2u|MdICaAOM0k@U^KK=DXJ5sA~@B7EBOcp&))HheazG4lW2*8C<_Se3^ zy5+H?fB=?`cjpnTI95EV0)&jj-M_)u_{Vv6qdss>aG(xiK7Yp1jnLJOG%M8Gt1?eqaN`#WMp#Oe#@-55I-37OC*(;lClr9 zqsO{=%WozC_6y*ct|V4v7Rf6vy1WLt=v?J;W?O-vbi%D9d>38hn68&}JIa(5XoH|A zQhQ|PsQ^h3pD)v4V6?HZ z<{)+T;yT(c0C+2i=V=H@AUM$M-~I6A|K_l-0G}R2!r0Ev*Btl%tk~u}J8Jq-{pqW! z;)EgiE}Ni>goTjTIdCh|dS(f$R+wG2K=!o*Dd+URUI0jQ#BPD@DEQ)y%pp*?3BjLE zf~im>rpMEF%l7S~a#de^#{JPRcL{F4wv=F)RLp7QUCQ51%&MUcr<9Q-ztf*B6>uY8 ze9p$W*CO(wW&tifpgM=BzD;zV^i&}T#fczO&f6~f5}a;2^eqyL{5fv>8t$E&EBH=t za2*R?4cIIJQN#jx-AK6~@m+QY>bGD3W-W3+d(hZU9iijJk)?2F^x)Zi*K1;tBwa(f zfAsFSkxZ(|g`LWmwa26=F1<$JZSU@h?X+UZRt`LxybG%<4k!QPB!>~2ae^Pe8kH2T zWwCo`pGHOYCH$nM)9MD{tHx;WRFrse)tOz`ZM@oAJSelpdoXn))S`f^7T$`QGUwhV zGinm&l@FJ_H&p=~ zcV=cE0abl9q{o8w`mTs>l{I)UAqx=y%Y~B&n+QAmcfMjk|2G0L9fOBc*iZfLaS+gb z`1&=9DU$7#R?)ZYyz0vd`{{aTO4wCcjTfmR%rfNf$O3?QpZ)#Xz6QHOMKU%U{rJbn znA9nsnAm@k4afVP?Yhk*P>dVC7O#h#&gH3OR7-ieC#b1jEB(YIRmL`bnuSfS!l*s! zzSY!W4ptggsLa!!F05(Y>D${YUtsJ=9Y2KkHA2iqDAR~F{B}$RWJ0VUZ-d}=2+h%z zCE9Jgx7jc{LPm(fxTyZgGuN;mjILc;{=9|0T)JC-nU%3KGg*FOWxU&l-XKUd>n+d4 z9OA+B(!7&BjYRD=DXCLP`qSIkRMp(^Pf++nI;eb?S$wB!c?Zf3f0{U+ejGlvEP8HB zj-AGK-STnXwm7upX3S6DmpaT|zr0U*)vMXG6{^`>=9-eA>_ksnJ48oBn0ps3`;{A~ zTX+x|--QX`jUZVS9NkR`3b(px7bN+^Yw~vEUJra+@YV%2DOy$_*=m>X!Z*ofu%O>7 zBxDOY`~IuigOw`hUpaB{9%Pm@V0SwpSV%3rk<8%g<4i|d_hwCdKp6z8h>Ed@!1F#_ z6scO_MZaYNTwGkl7Xs^X@bC%%Wf~S@{NYy_Kf+O=1kB~f(_zNrFGM*_gt=Ynw7=?T zxOU?#xll)jGV@}iefG)D|9C%CwHi7&SdwMIK^oNdBF%({kyTc0N4V>)uC#2{cz1si zYgt7FK=(h{L-@RD-Yq#f87V~f+v~uhmJSqaZf*v#B37_WnZZ5t5mld*c?q^B~wy(ce1$ZEbni!P{E| zj5I6Y?D+h#Y==p;p#vhrNo#%pwo7S2GcPS%Ob_Qtdl6AtjvGMuUcgddC@!r$HaWaf2h-V(UF`d`Pe6ok9RHtIwp4l7Y=zgIt9A&r3 z9fS_-=@#GXh_Zm#amYmj{OQ&q4IxO%p@DQE7J(_s@PV&vDLiI{%O88ZGw)53x)grY zi{_$APxiT@seU4#z@<*2GoU(^Wi3ATHsUNZT2c;*E`sxXIw`LDNw0tBCrG-KFa zw-)B#oKUPR^;|#Nd2c^r$Vts=rx*B}6lof{eJxwmvJ+#${|6sLWQLHURd~Joo$fSt zoqkzyE#Y_&kgy-8MEdi6OYI`sGxI(eBd6g@d805TDvA=-|)vjbEN#cYWweYUNu#VPM22 zKMSdp(ig~d!9Zt#CGcg{$3p1ESptZv5fQ({bkD{{T|i{ZeTA$PD)nEk(@aHemnMnD$@$M!dA?MZvJPFmcvN+?;5R*jS9aO z7Ssx|R>0B!gqI5Aa@qg>zgjf*yOEflB7IEU^;rei`@`Q3~JOtZa6Nd;s=X3a8(b0;u_DU3U*mMiRrwz@OPtA|38+Wah`f}w{#gn}IxCTv| zSH4u*>uwcOb>|MX-fNxAcKF=AEW(}T)SOyAbFM$RE3c>r$_lqt`Sq!fNtpzGXs!tT2O0xT z#0~xZCBPpsAekwpQ}2{>=)zP7LQu@h_?kF7b`KYg0AWAW?q1w|aJAUOiinr7z3A zCo08U>J-GniWOh-UlC;NkMh`mt3Q9TgLS>hl)qrRjEdm=x>rMHVReSJgPR)%4^MRX z5_-2?JTph3?+v^A9d0HSc<_{hTM)z*sv9mwjD=4Byoc|1Zn9MkHXsWC_~J0i6_K$IR)qaRVb@0Ux_(aW~%;v(1hOu>j{A5s|~umji=oHKBrDV#g?D!%&f?p;9-= z_~=3HWj{=6rR1vkV#C+@Lf&WzGx5>Ui5=9)Rf>-5ojMhG@2OKk}=9>IWi4LD$6*gxy#H+FF z43w7B@cZ5L*`8uJ2iNKlxcwpp`hJo4wosADJTufHCwOheg0CqdR~1P9mrRx%dz>#m zDw4}VbKK9_|GGybUYG;RV0Pr!iH@4JT>fcnFZ{AGYk!xm4K zFC$voCiU*PI!h;yX}EZ5MR?vNzFs({ww1qGWRt5nu>VQSxHb;_s=0G>rT{=iVtq(L z2#~+c6xS_8grN5V+=?evEYzAML+8|wq6;57{L;^C<=n@Zb^o(f<}|T{i)o+zRenzD z`O_vHF?z?h^>>qrZzfrCuP@=fn=;OC-i4lBfhma_P{`mEY4y``FsN_OMFg zdpTryco=AB&=&@!G=eNa{G0#B(^)`um9}f278H?gk&^Bblx~m?3F!{$R4M6}k}eSe z2?=Qgq(MpqB_$YWLYn==Ov)6 z*BEg|KPUIy>+3Mj!@6%6Y&=G{_`&4}38LM)5P<#+Mew@))nY^k0}LDe87JRyCA!*q~xV~`+ntw`6o~=4T=sxt z(?Z7=_l=oFm79RjSO>wC8sZZHCbufIBOBBue~MOHEb>ClTU|1_;ILg0IV!cYBk*mYGhT4=@^NXr6O=en@%pI2BXBkehf2w$>c4sv?q(52th!@?zf!-`JXF4;TN`)Alc`8e8sc=;X5e+R5COdf%>LSaEZ1v!N8c!MZ8@$Ww>ZY3tQg z#U6IBqSQB1;=2aG&AqvyOG0zPvFSGVcKswNorRMV z6C&q1_zLrCks^8R?FEadoe4C6n23yIayeI1`irw`` z9#xk7A|fKNyg|uSY?y7x73jhb&+KI|mz3*yD?p@$K85iB`i+ZipZ1k|?SF5=YI-P% zlVck#{Vr9;h+8@%)wbk~`GlAR!kmPm~(xDflDcx zE^D}ss z^{-?UR-*U+q@2s$lvKB=L_X0%m#Q}H$%bgBWxPirrEVd9FI zwJ1ebWgj>H7`9;z=H2@sqR|qsVQVBAxa?0>T+d#rV)>jEl%UqPXLrP>zwhasUDt21 z;e4%8qG#0CVBUwf^+A}m=z)0OlUhqbg|Q`b1NCs4r4AZuiU^-T(PWa?n}r;luNWA?^QJGOtUJ{hyxL#G+xg z3FNqc5&M`H}Tw>S_GCt7TAX44>C)2@F z0!sotM2>2A1ue*XM>wYF5|arCM3(M<%05`DdOqq5S!R>#Mo0n$f~1s>qYN7+mV4&8 zaLG9K=}YJ@YT>3-%BEOGRw9awH!qCgA>Zq*t!kVNgHX4j4^$*1$yRh7sbK~+OE;TJ zJks3wbig{(kH4aSJtP7gpts)x?aFGZCu^CUhSX>F;)wd)LL~E4?=NJWguDolFk2WD zVJq?Qbl=ZqJfKwx#%$PJF1!-{_Rj+ES_A*IFO3>6DJnq>{)@*>3=n*FooTs8hwv@# z?@Tt>h~Gp4sqiAuBi_vFiol;HliI{wur|aAK;IjI&c$670S}CzJzrOZ(M%UzW(rSk z^0yXNj(@ljT}ascL@`x8`>nb`5??k>r?)zjx4XZYsPYtwpaN0ubO4?(xGG^=1?&KV z+qYGrNiCRam#O1sRI&h6F1S@M@61$k!=$bY%sHSp==gJ#l$h8-qG!~B_>dqsG?;dG zEz8AybBY%Uj{7&GPC?=$L?G`p?VHmQYLmCNjoVM7@?G&~!b?&YLC$#x2P4c_^)`G1 z9L;ePY)PqK>;HMZ|JxM6##U^tkmb6US0?*3*%MpZk2zaXJuim|y9&)GkE8JwBWYd? z*x8!?o1J*huA$Qup?F&hEv0^)o}O>Oor}OiU2~Krox(O_z+{K4@uQbOW3*D_CWQh) zivP^qH~d^lcB~LoIn+0-!6l(|uF<={JQ_5rPQ*TL#mV;Fyvx+Ku21T?URP1JVhZw= z8wlB4WI7KvcCsL?g+TfXrPRM1U5(vv%VEpJ-eSeu>%b*8fmLuo0#edNxnq!>wv zS+{d!@2U&T@{jKjvJVapvT}0vSXA?Xv&c2T>2cPvh!x+|vqSZld9voKOz}c4mdY1$ zOQY*tXwfgf@GHC-3dZ<8OvWZOINin zO0R{OS?I{BPv%D}zkmJ!$nIL*W-vP-BDF&emwPTUQT5`HDd)AzS(L~Wi%9-LTKc7= zEc;#Eq_koZFVNiXH4dAO&i@vKthidb7gpLrq+{WFzw+5!gTH@g8WCMl@e8<3Ix$*UaBf4Sz zACNEDJ^HPfSmVk%T+4EEs@x6tj=NIc;MKVHNMT(?c5}03xlvOR*stH}<#8#vw6q9) zRMnLJNfs#W-rzWq&m3YJTbUWG2;RWJ}hMuR5ng90m-LJVe>KIp6w#IzwwFL8javAJ1{& zM9J%+$?1XtEC1PWL|jcV!5zVr@bC1WAME$LdrAn{AL>CaZqm(=XHhN2k&(E3@l2EL zA@?VvXwWLlL+v)dP#=KD1D5aQkJw?)&W>zdeEzUc(GyjREaRNsw{v+fsY|k%$QqmJ z%bD#RcJc{ojjv7x@X)P=HAa^TZSS(%~kMA;oAkrp2Yeb^tY{^-qNLgp8X2inc~ z>kfY$kj?^0hdA4$x^6$%a_#e-EeA4uh~`w5`C*|~^b~{Xwe8VKk(r>=YkBG-{od}J z2;Z40rh(7>=@gr#|L}tnQ|${go;BZ?T_weP*08AeQQ#SyV*M?KhJO!Kzq2xw*Q8?UB5^2CwWpU2qD3v}Ii;a*m|#8j zZnC?!98TqI2EHxgYcKJ+i$ZUFyvrP~fPcolmXahKb=GSMTjh7^uh*fsho@F+)-_bh z-qw;=At}&;v+kw>FBLsG<#VjPdMPjsaRoBG<-AtnleT>D_Y{)1R6$V%&&~OawA~d4 zqN0YoK3=INVJltnqaeBx&+>HvEvRk5glUuaAj|*!1VTXN!N?1)uVwJ+F9I>PZ)@Az z`&Q;NR@OJ8I9I0lve~RM6we2^`!9cDW*QrsR6(hSM0g;cYs+3wvb%@RS`j1$Ja<@M zt{)i4T?^<@RXqN1-u)m}QS9YmdM@u><}5tTg-68y0&Cyc;vM~x75Qp!$63(rg;Hk4 zJeC?36m+jJ=V766RsQdk+PjzYl8(Mv(aPpqkI?9DfmXy#UmpV@Fl4}DQ(bfq10)r` zMqW9S3iKZRPpxo88g5A$zJ3221qG5v@UCzXktmYM410#k`h3Dg{S~2jLFX>o%+4`f z6s$4DmX=hRr|je+hkWI!8zU5D6W`ahT$i;`YKUxUvFYVCW2oK2GI2@+Vx?Ug9@xE~ zes5upBnUjXLi8KJgh0oqlV8SvlZZ1$Sb`A6EiTvpJpK1_6kX$+Z+h&hlDU*2F(Z?e zsjA7};)w>*#D#s`%Du{#?fVe#aF#>-{Jb5KjbLPM1~=H%_PhUm@Gm}{O5uEj*V~MH z&*k~R=xFiVx0uD_1JH&w0Ud>0#QoCQhrgh8~4E?tPdvSZAW_;QdT|DB%(ld@DG^x5&2-)Du^CG zzE&Y4cNb<9NQALLY7>|<_ug%r_)`UE4hr+TKY{5@%x7=a$lF$w-yY6kx+;#vei*T; ze2#uIm+$u+^DY*=&vZ`XwU@?^Azp=A3pY^Ok^9N9_9BMafFpCO60G8*$4Hle z)U6x_ov$s~`xQmlIks~%yh&_ie9A+{lRkz1ydg5*7!v)R0YK+41ROyAli$<3!^PFDg?+-Nf6%s`r0HhNtqrHocoUhsE^m9%v4>*K zP&JMBTsK7R^)^L+8~5DaTp;7@|Fi(VS^9o??x(e1yj2L4!bjE{2$T(Y8sLXV5&?jf zMIei#bYHAq@@;`H)$mO@V2Zo_T}`{?C%zDjU|v8#@P4w65EDmJeIw&OTae$bMKDv|EXFdx^KxZdNmpO|I_^b z&||32^s>Z;2ghG=9OAgf<3_Ia0oh0`4Jw*uUjA!dv!idmMjf zGIXG%(hJoA%~~%MEoi{XV<eViJ-ioTf9cJ+@MnvUVC&R4814#{@h`E2~3NF+{5b zHVFhg(AJucq2OI9&c?<}>4UzDEK3k3Zf~zV^1b~=Be8nSWJcP8DVSFf#pA8L&=ZD2 z*_xT3VNWx5C77`6rtDTb5cgB?$<5Iod!=rU>0ON34QzoGy;8eP;#V!yjm5Smx$&A4 z)Nv&4bl3R?zS0sFZmW#oOR0U%bUer+%{K%$CGdn1RZgSzaK*2KhU4Gs4wVJfO(>O> zVP+bGBVy32LqLPSyghO?gQt5RZp);=WlNOsp4@N9aMQfnR&&xM*7SRJAM)Nr;0S3g zzF^yEN8_0gsf&OHD(F-H#s|Ay-CYnLA3(_zzJdmOPe2+8Q{&V&=n=i*dm@?kRHu|_ zBtrVNc+U?Ip6$c4Z%JCA;$al@E9In&k(}I$B22Z`W2!YSS@oL8v}e`x+~Ck>(Hk?% zY<-jqoO5L*jrU9KJ@gm`QGaLFJwJ|O&RvArk1a3=YEN62{>8c942gYnCYB~|z}`Hy zR$+axm)124d@Tf2GB7l>>9YW#LVW!ENI)XuvUB9RE8@>a>L?)Y!e004+|HQ= zgrIxKm&SK=``(_@Q>e0^LVJMfDqjS@v0vLGtGkf}pIPX*A6YV*7)#SNK9! zAg~A<;f?1;ZW-BNqp`|`+n0&wZ`+H}PqvGN$C*SAb-oAhMp!NIzYK-nL z_yq8vRnlU^pgsgPY{@w}syaHv1uTTv7*h={cSgldsA0795nkZ_TxAX}F6(euFktVBJSfO-4Cv8aa8qAVji|w?TaQpkOCU%>_w=RWpt9Wb1(3dP@PDO?+9!K2*o)mxtbWJJW-wz%^+C&$@`#hZl*;30CX7 zRT`8Dtv@H7Ur+ld!8RbJ34=g{rd)}4;x22qLycJ4F%HB1UOv&k4 z`(kFu@`l*)zEJ*)A=Duiy11yQ!A|P~a-);Sh3_Ygw!C2h-Z$&gK8y(MVE|I{?tzNU z3@(NgJ^7()xhqNBa9Hc{k*_F%fPu)33cal9CpKUlLEa?@Dv2dpS-LwvV4dzdp&J2( zPE))k?|tOm0K=Vud0wMHcPrs?VFp@d-MeE-Zr+M1E-nJHQ2jFdf3WnX=HIR_$Q zM?C8ssV{cYxQf(rKEn^L3A$VsRuQR(D^WCC85tSK&>g6IesA{LSfO0B0Pag1k{a7p#3dwI}&8-AJ|_v7SQU3dvyf``RtqBA7e$ zlV2%*YvhKL{p493jaYLZIcTl#0D*G-=YYF=);<2Yr%X0VL?u>&vi9fZ%0>~;#B>m> zOfNLklzqEz)^j?@)e;LKCE*Cxin?O@Q&g|9@X%gp3X0RbA?Jw@LkR5SkMYwHc_U1T z`rtdB{$=>EfHfI=OsPtHs=_0U(DD~^xU_&nyg0G!nU75~iE4H=CAErLD{+_o$ef)c zU$Qor<>bK0UZ@dnG_^todz$+K@3P7}f719HEG7;YKL)q|q+I`45g%G*oj@)Hzl<}mW5me^yJsadO*IJr5Oi&b8b<9XmpttCJwDCu97lqtyylI(TF zGyp#U(@M8Ed4~4C!!D=edH-Y|K6HFp;N@?=;mMM9Q^>Ew8@QzK-v0>-mqla_4jNCf zv(c=3FD3r%y^ICxA;kKHoo~0^YACk7=!F5=e-MC{ownIxsteDV+1W%48U5XzTiWZ6 zGxPH_^Fp2*8sG;0Gah;xAKu2m(Y#@IAE(6sJ|i%(K0kJ8eS7qW_&D*kh`!9b9TtXi zZ6!fRUOL`ht4tX$F^tD8f-mq~#9*3t7X%=Xd{upQdR>c%NkgX^NA6Wrr0QKEOAf3L zB zRZ}p$^GZYbW=PWNR{bp2N33Fg_<9kQ59}Tg?HDu#z;fpW;V>*DKD*pyVTHW z@c;ru1c~78q7-fcL2=Xhy?1iaLD~WH%E2$}JP42G-QTw!8-lr=T`gA>$L>}+P^Tq7 zaW;gVfUHYk-Hvc;n*8pK+y9t8Kdw9d0E?>{P?5R5chgKcTxgmna*xL{4`vOW!_u-a;i9DhA&OD@|!cq|UM1Q|k2K2xt;Nn(0 z*Z;r$^x&ZGOd^69$@A)|`FS;+3D$>Ly01VVhVD8nIC(fTY4gDivLyEq=cxa=H^2c) z1BVL{s9``59DM{92yeA(lA**=231SC_cwNh67=?YRh{m}j%2DU9%~x55`DS8mmNL+ z%L?v*Y`0#DiD$|s2Pqc!dO)xq>%21;yPwwz@?p}|ewz<-l5B1rdujEBH24RDNW zrd8-)Xatbddu!lFboU%_7~0esBH<`ck;D-w&EM^xc;Yu+1+*Sl6HbuS7!fihl1(pAbi*zF>J^JELktP@4@=_xPH5z(is*B-ehwA; z3eQ!CB~aqVNa1-MY(o_wEGZa0Po zE*LmpSqR-f$WDenF`Qi5ApyoG@SKBIn7{GwTHXN+EbM~Q1wt`cZ!$2=e0#(u9kvMw z6OPEcOiXybHxYlrvqP47jR%iH(DkaKNCR)e;8>}a&{2u56Q9J}xVYG-{Z?~mKO*no z(Rcgy>gyxzQ2wTue+o*oMQc%mV76DIpsl8cN0uFk+F_P}!JFf0k1f;@f9Fn}J0|n0 zbo^6qbhLMCPrB9aj!`5^XM6CdJ*Ny~zK80HNMYeA`2w+_&`+?iOva1YeSTXQn~Pa2 zs-j3Gk#@noUMF3jSAp~==D0ofSa|8dS=sxzJ$;w-Oh$jh%16s%pD<8WdL26Bl z94chz1u3FmEnDF3L5%iLecOW37A{mFJxuws5KXaf=RjEvIR22g z2UJTGGl5y&$Mk#8A5S-Xu|IBbUL|Wkm0K4(-C>O_L87JLb5Qwn_OkBiPXD{6=Hjcp z`I(vMg~}#|GY{t+I7KLs8CE>%jqGW2cEYdz?OY)>)>OA*kqDPnv!!_QmPb0pQxW)E zb)=9(*1qtgW7hNd_7LvHWytiffhg0~UP^u&TyT?jnDG=8e5H9(z?pBo&16uMPU??y z+nxRHc9;GTDXc@fBMA`sEd=EOdP4}Hl+WTG*p5)cxrb>G6bB-(QcQss&IH;jq;>!< zlf>mObp*e!)lXa7#){inJifbTLpG}A*RjMh zcWHP(s4F;@(`9s|RzrjkP%72~`ZhnKb2*Akx#S6%iVe@RsU%_g#}XA<>T$nW!Z^Ecw!?bqF2kt-D~r=`a-@INYlXa@`;29#uTmRH4~ zlnv&mJ^NOTcu5}5197kpKaqX(ay9scG|vr2l^xiCL8k(0~J z6gW{cGBRq%oJvZryE6&W1ONIz$UO350ZGMyN-rIR9-AI+%3^8%ddUehp5(cr^; z&vOkZAELD~*q;5S0N`vYI-;St4n0i(uT zbKdP&JNwpu|7@0@Js^26x=G*-$$atZdsTg{xt}Eo#CsrcV4S?vChz>=?_iRp9U(bg zEYW~8e9+f>TdD{bPr`Nii#>k|BmzcLH8*%vl{vSR zZ=mWDJ=Uu*BpIpOdU^FX?~1OIR4Q&A1AGimgvmMLZ3>0Mq&l&O^zHX1!$$|rHdy`C zL0^lQf-k6;h*In8)FU zCLA>^rB+khAbs8p9oEM&_xA3*<;supYw9Tz@mxlqYhyx8TYwnsJm4qCt*y0tzw$GY z|6DB4Lzb8~!*cih^2v{8!H<_n&JvvDZinh{;{xrZHGbYDG>eMXFvYSCsRGU$d879h zpEH0(5p$CJ3x<_lEC{vpnAFg0cqzPYHbQ;G&rzfZv@c-i_UDY<(9F0bOOnBNwQ;Ca())=1 z36|WblGSBb*U0N~3Flr5L1F{>$SV^VOWusTStuWG_2jE4y~7B&&e)~Vmu=pDVfqW4f#6KhH5uOu2_;!`lJF3xt>?p#6 z7GE-TH6Y9^2v&#f3(I$%oScB)H2G)i!(~Jehht#jUq5kwgPakGFzv9$JNvE2{#Fp# zfl`-z|#QN<*IMMrCIb1;b=Ii?c@-ltU6`z>wz;@eT0&!+ z37CfuaI`a9UkP(w+VE#cfi&hx3*Xx;r4DG1F zu;OCNg&l!DvpCNycs-|ctH;GHi1H3(h|AqBH+0cp$NPSFO^$*vQs^-7<_8YT5}Xu# zol5~0-Je+PXtcwkDa5eW=0(f%%8mAmD1^T97XF)-PB&kRTst8OmvxN7a~hpaIA9x~%5rUZ&0?hn;&d z`~jb;D-sQ#15NnlB|-?}_gGVbl2smV3UA9RH>x1gzNPOp{U;~$$i6R5Vv+eVWfyI= zEpAApY`p+h20qE{FvL<1bBC%)xE7`b?{Dd2?>t)@;Lu>~Qgm4e!Df@-ZloOdgA zi7bH3rU|hcFC>Ey@Y{95uH~YLb8qX5%$w*7KE_)JFcKu=DwzT>?DY+9@>tjUDG_UW zlw?gAr&N_+@RjYJ>sqN@d z65JIJ?k)HoOvaZTRIX1fSV|nW2YUW{>RB;ybbfhB`uQ7Z)%X6^UOOs&k1;v+*XJOF z%$G!N30gtOiwXOCuzr$J{QXFdM`L^WU0@`8G++Lwa{!ebwg^-W-aK+jtNzElw0CIY zQ2yq?_|1aj0(bK=J{IAmB+(+<1tx6dF9HIEZER_wgF$$q_D)XVYiJy|W_BI8n})(8 zl_^#Jc8nM>3vk zl=sflJH|9*Hpg4U7GwxJ-XCsrxTuLBV34m0yb1tRvdxET>p@bm543CO=|zBGeM-H^ zh0GYug@@b>vPy<>#i+i}S_dteX(}0osOTMU$hrt0fWIELJv<< zUhK@iKc1SJLfzRLNM`;3fqjts6X5RdE(`%G6&! z(OW>H9T|D+R$p-DqBxTU)<99Y>zxmFJ@%2zpA#f=pEDzxZ79iG9}#R#Rfixk=4pdr z+L2qV+uro_yz-(U#{19UeD%Xft7~vY-THKQ36X|CdJtsdA!!i^9nhqbOfFRfS}rgW zKR`xnQ0KrBP-EN|a;Boq=$Nnqa#VxAzc1mt_rsG2ST-uRI@-ARiUz$X_nQ(oFK=Yf zc1K16IEeT9=NV88kTG z#_CWknrgT7suF-SLks{$E(5*%*FDQ-un2?XmoA!crFbrwzw|LgI_0N>lKCY`6z zAWCJpPWWCD{kBwv;yidv)nWP%w-nd_VMYR$F3Xf=Q^(|vaONrGudX?tZrmW|{L6Y{ z7y&~oI{AKlu|pJMNiO#ON@y){71HZNCNn(|eW62pWidn?!%OWfuBR2K!RYuTX<}yW z8;x|x*#im4na|}3ib3kpq|$m`^gk4-^_IdvmxUl!zmnJsA@v1A4jkf@PcP7s-2|fC z84WOgh;xk)Tg|J{Z&sS`zab9#_+8SQDeH>1FI^tOmk#g`CVXsH2tlGB)h(s-R2h;!y()K-zJGrdfBQlB=sE*Ge=^8OkP!~7JfjF#$SufYv}4i1IQ1+# zxCzOm22pOjy2RxnmBNFddg4H^FZA2|8QBmbyy>sTy z&(~yEyvOkyS6VrNL3M`j7_PyS^V<|!XeA}+q#nQBQG(Y>F_D4Aq-mg-prD}G+4spw zq_RQ+FG#tJ`T^n@H)h8OPYFy6QW39?00uiwNn3y=Whq(@%24+7Rm~Nbd_464#62Oh zJfY~dc^?h(ea`>Tu!AuV?Mdg!!e=nsNmx+EnfOP_z%*|Ts)-y@KICW%>B z_sS34og7AuJaeE{7l%zw=5ENEr@3PLq=78(1BY-{v5~q|dvS}Nk1q*<1_25OWDEl% z1hUgfnws`cxZhO2!NpHE%aAKi=^n^m%l0mNk2=~?b{We*vH`T2K8V18rS{wEP5gJ3 zHYd{xi82DZcFX5TgbyWJGj!_TbSNZ_Lxk78{C zJ{R#M8CEPP&>M{^z$-~`XQ2W8FY+($oFu1;v_>>OXWNT<6ZMc>$wa*-dr=O*0My($|#Y3HbXxxV*X{NtF4Rex^vUH%{=04kJ&Gp|l z01)|KNE|6CFNakjuh)eRqUc6`q$bt$=wn;QSD6d5IXe=UFI|vs3DHxaUGbv9&T;-B z6hM_*zykeb^WkXbeJL9fss`gC#O`*D#y5XKLN;5C`HOK*BX@J|A~|k2>W>yyy4ve=YrSj zhI*hRz8~Hn_J3M{z(13xu&=};yAe&MjkQU|U8o_4SZSA5Zc7AYFI;Z>KsarEpUfx7 z?a0i^iXtJRu+Ij`GIor&n+4z48piQ8A&-qObdSpQJD`WTtXNwhCsMkFDrm zn>5Q*ys^m*=DIixZN&T#=r`HUQ0 zw}fjJCd#1DLEz=c?pT=kG}vI|0}swx=z&+yOvx=hT5L2V3lbQ(NUnTgVeEGE*3Qm) zlWm?1p~{e8UWhI^#bx4MQXbl)FZmnsf4HV&N?CCp&#U*6Ieu#=H?-}qAj7H@lt zZCV}%8I0H37e;|be{Ca=%%YlHZ9qoyS69dBXbt+0S3kae6WsQ=0wL}`OiImoMbfoB zMVx1G+_VTeJ#PvnII%IRe!a2(R_Sb6KFd&@SDV+IhPNnO{zJiy4$$ON5Oncg@Sl{$ zEW$q^+W)t!i#DPnZyUe1?Ni%R9`Q*Kl4>v-$`n3$PgiY$kQ3f8*FB*zuK*Z5d%S#6SY zB&XDqUAWYB>7D<9-h-mNnKq?r@)Ko;<2E( zNaHQ%_0KuBG}~Pmkcj(KR_f4s=gSH&$94edMTcO`1WR<6xjV=9_RreVM%StMO??`J zx?D+?_sHkBA5cEiwdUQH6(Na|e-qkeUjC?T@8Q(q)pcf(W#AxEJQT$sDc)m_vG^d1PRN4td58GHSwE1Vl zGjw=(XqNhFQDT_q{v9Lc4XwMZM)Ee!`L& zz%bhsN7+z~LmU@WsXSQ<*PY*(f0&+vrKq~t5%JZr%N1OtGVx5?YW6hcv4Nb}^y6Bo z3F{mWH^ym1)#OgrWu==p9(_B)wEb!F!azCOQC0ih=1g$uKxCvM(|;g8_{x~Mww04I z491;lMSg|0@UpjN2WMk$O6=29-E;m4`av`JLl0_mZLu4phe=sy{EHKos??=at%N%A zHvJp(8(%Cci~6Wwj_@kt&a-r~t9^PPS`9>sAb|`~vJ6&Hm~Wz6x_&AV*=v;YM3ELa zL}q>oV0y3?w?X!;b0YK@mG;d87fw?mbAp#b8ajw;MDy|EK`2$Fbpf)eeIJiED(I_1 z%HA9Kf{mxHz|mb1KYn!S-t4U;K8v>D@NHjk=N2s2TrlF@-2r^RIJ6JXzGI z&5lj*J^lrah?2TGvc?w>5~7c0s?jQ5tSu&r!`wU4A&NdkL#v^D3%YM2?W6Ts`f1it zlaY@4TP2&PDaS7;YmDxu-(^QnbT&MX$Jdo^bfQREQ>a z0>s9Q?EqNo%ZYI5M1oSAz5dvVwY|zN_^ba!iQz01E#PBZ3vbpiqSENyIlFqDP5scP z^y<=bHxRUnP!Z^Jqz2kG1ik3+#qIN<3>OHwQo0zw2z?F`;5NNiO&##FXGMJ+yY8C`C3}^t14TAziOt3C-B@#o%t=9M+ zUI6f|?fQy>%M5O}U|LrIx4Ofx<)dfF21nr~&D(;4;Q4tIMx}!H@8bb*tSojQ4{6iW z@xT^N`J7vkKI9!-E$&_4rlj=S@9P#OK*~)ELz;7255r-zjw7etXn&+COpS-gGBBhh z#|4yQM%D3sBC2PTSo1zci(R`K>bfN{1QCMa;B~rt7imSotH(4SaPH(FeNGfll*mF_ zoWPul{~fK?q0jzL**YvpZ2`y$BPsgVSG#Bx#^ei2wnW)7D=~_}QAPclt#&CD)M+WP zrL3MkhVO8;z=9(Tv+b3t+dweT5M-tl9wsH#DDy-CQO>Y z;nmA6FhAz#q-%_HFuy-x6Fh^0hDJ|_C|@Su8{@2GV(=3Zf?gka0U&!L#1w$czyK+4 z0vVftNwXJe%t#H%QfNJPeGF%r$v0MPN=KXgVTmrdY&)%1^;eaoDTe;2rWUn?*!+!HNY+Ymg5Jz?EEc@G;4+E`M3f~P) z`~gojGw*ph>V4;;2UF4~8oa&cHOa*ZzuByOez4<)Uox+0*CghY+foEV*Yf82N8ltQ z@*B`?q#qx9YiVnX91QUzQAsN;8)`Ptr1|YUUs!?fV{Ng%IGyi=a&CZmt$x&WbgZ?q zpkFfp_!PZwm~sF2^DpCXF@bM84*Uop+@T7dD!^;M64>}BE5SvpC%qIe1 za>iU6Ax(#bp)F>uUQ&?5=OXXmi_EPtV2vS8`L+)Asz~oA!8r+(v_-$1n_!%ogET!W z@#B+|eTb3|03U>HffuK4G%)R242>Kw_^w5();ZKKYJ{0#qq>k8Fm0W-7a?)+A~lti z@5f!0;qUx%mdfdHo(U7tt%}pMANg^S9%#6+-j((rd_+0x?aI>}$6wCwdfiz?W*rYy zmN{xz*RD0eBy;Mc0a^Q#N4IP~glIHoA(~}aE7SPxO8vKp1$`1iErcGBX0(ihjm-is z+Br};yG=^LJ{;sQ)}4P6ttnpig)pYGc*eC>h>i+o%(QVweKx1w<_Jc=t>YQMSCAJO zS-=YKw|)32K)jL+jHU5qWi=U@J+jO7^|+k%@W4+3ff-tcrDU1Ps;aBV;0=^LNF|Nv z;hv4W)9++-vzaq?AbH{&Dj-^@`8HsHB+ayADY^@%#VOq9mn?bvsj|-ak809^_}T2} zd-@6rwTba|mZAX`>5u?D``=ayV4N45wi0hdv{ZBJJZ0-yH)by$)1MtAGms>+tD5e+`k_LQKELA1Y~-rl`FJi_Hs zi6ogt?sE-U$8DAF|K5kPNCX^>s1shy=xLj2d z*Qz-whwmy@fg!oBwxZY1B_3uX-Qd#@PJxq0i?`}|B(B_($|(*N{7{eyC}iniVPS!A z@Fxgt*FZHzDOmrf>;gbt4@SigI82%dPzJ2%%3Sf@{}fHp$7pXzntxC9v>wk9Om<$# z$O}ZbOq=4R@7|&2H<`0fi+mt>o9KM5FCh6ihAT2AlGuO<)2_^}c&<8q;P~$$djQ_G z`kuh=tA(i_iq}YVbbBoa82dDXb=~okAmogif%XsAIS4tT5TS#T0KenDu0CfJ0c9|) z)+0}@7gcuxD`^%qRu+^jcTh#^p9lz?b#C=LU}O!ClSGJpU)+%85Xi#4 z3OB|&5-E;g0bq)VC?H~bq=5&GC~|5z_+fcb^P$gs13CBP7wb?zAS4##_C=m#ux@3Q zP)ZZarE(hgBD;)+wxbHSzAplCH@F&u;OC9jT(X?1MSxEZ@ib3sL7**-)tdPd{WIB6 z3aR;Ox6nTpbGDQmD8&%Z2?EOk&OKT_ zpM9^G_#DAOSQ}f8JjmeEREcnxd-e+t;tnH)u+x$_FBsPw&WW))Ql4wbnK? z^kJIhjl%YWq_h;=qf(57bPrjqqJ^I=m5aL3=NPj8OGtw;e$Dff?Nfcg(@7^WHc!-_ zre2KgmY#XF4BMY}#zE{O^5Q*!j>H4rn!vI3SRYx1SMpjx43{)M2BLz2vwIs}V2m~%qnSJy8*_rbsz;|Q)uiJ|CZ#K1X%s!t*y>|U&sfv{)bVLur=(?r^!@-r zbk%ilX&J6nHB}#-qQXK~fRaOse7vS35$-sVojK2PpS7yYxB#A@OTI@w9zo(0ZC<$5 z!^p*(UIo-;wZ2wQw|^|%9vOL_;w@+Q@E?T` z8#0YkSF9;ok=ag-t_#d+vC%)Uvv>LlXIDDan(4mHR|0!R$vYxNI4X5RGM%!jo3xso zv0a->wR1Pz9*-}tN3qed%}5lnf9aRniNGPCgPQZ-zkdqQGIm>unRI2O^u+euGq20@ z_5b_!p}osRlI8OS$%O~`Nk4~>N)pyvfe4olWpl1683}c`PS_FjGCG8t*Q-}IeVAEx zO|kK1G%iBJ_g{&b zejzPig^h@;Cb2vJXNAZXX6+OYd85VQk&)i@gQXh+8|(M7{vKN|tifedSY93r2CtX5 z#7~1dT*;sd9ePBjy>6nayoNIwC_L3w?O!=Q>m}N@$n!Dh2oSnfe?el zuW#zUquGBS*Uzq>u@OI%TiPR-AY62v*dd%6hWe?eqBMxE8?iPc(K_(!Rp@a+0X;lj z^H*m#{ww3jUqFhS|Is((7l@f!?F6R$)gZh*wQ!j z+)keqpbNwqzHPdkJZpy^U*K>Z=GsM#CF%3xVrZQcLl1ZB zXqYH}t;1@Ti8Myj$Y=;G2GXz`g5m6ISgHcz+E-LYfK+l^2g7{x9_^Da)A5qS1Wt~Ndf@*^kZG?I0E%pg|t^2tL2p)m;V{6gbITM%A_ zgZFvZw)^FW8+d19nDgK5IOV?ETV>uz|79d^?Rw40P|V4&z?Ypih?cRN0Xx#JL|;`+ z>xsx=*aPf=Ge0)K@74w09o7wKL;c4FY9>8T_|Z6G z_dLGZW3a2xTBXB6m7e-{@6Lnp($9Nt)?0rTe4m(!uCXPNijWXC`@HYc<-X6+`h0WTG5Ndz0ivYZXCo1 z!f^cr!fK#F>%A4Qiw=8SV`F2mj`=$YynOLLpAHFzVk=B`)o~4C>!GW*Gldl%ew(31 zWYLrKkc&=C?6xK`;MiB7_@#q%f^<#tPw-j1LWh?=Or@{Bj4m!YwLD!TEHYGo8Pfvw zRlx*bj71EMIzB_Rv8xs>UXw!Iqs$41`*ozmp5|+yYM~V~CiAR##GYAH;P7loUG5c5 z4_4LV4t|lHVh)8ztF?W-v$mikNsE1V0Vd->Uqs`l+afw=$aBXWjD%x$fPwy+ZE=4 zmVXxx7t%PueyIr}x-*2FD50+g0I3KRoSOP2rdb8uyMJHCKaDpl$@=$#6x>L_b};Xt zxPh3{NXOJtJ?N)L2%j*C{Vq@wBOcAaeRJ@OSUvV51h@c6be$k*G`b>kxo9FL+12_`<@%Hs?QNftoKRlCqH3sHb`{ zO(481vV@NBt=~vhc7&?1n`u`jmztpp9=$`P%nQzb!&nXvx`#>c^M}OKa6QBy?S*Ff znfwyeS2-g$NTnAo!WGbgu?#WuXn}uKYC^e0gaPb+R5D_xt@CO3+J`!gCHrNeKgz>F=E3aGs2-49N<91>Ch^>* zE(_dz>fd@C@*nOM6eMNo2uaV~mIo(n;Sd&WX=tJ>Kjq9lwrA(Mkcm0k9YutgOi>kw zGh=_e61Tbf7JskZ8OhvY;PeJRNdm#>5iN z2z7VY`O_Uc`YypG39lR!n=&G~_rt|y!A2G?>b#9NTGOp0H{-Gkp5h)qeK%iu;~ugrui^0c z;WgRQlg+42i8rRIb8~!lK?#gZb3M;DPqBV|G+hk?9yvG$m{NDx-+37fK-zNpNeSuhM!FkBIwcH5N*bg=KuSa;q(cM+q$CWw6iKC& z25FFz?rz>|?S0Pqe|VoU^mxYDU*K8mzOR_`Hy@{6KmMh+=mK93LK^iyto@_ie*av` z-NWMvuuPE=0hr@)NA;NsEy%r^B7)SC1Z+NGV=GkjsFo=t~0-rKNh?tDu?Q}L|<6oi}y0+W^6xPZ`oOB z)arR65QLJ8hc-=qOQKZq%|#vS_)^cV07o_VhYjaCnEJKKE_{@M-WIVSp^UiiVEa8N zt!*RsMs@5aMb|^qj;wVJ+x@K2Q;s=l?UL}xiuE;f1UuS{vr?bZ%a1|dI!7x`2zrHk z5ilmQttz;>VUw{s5h8J|_uc-7Ui#bG*07^O!o*>GNt;*7LUAKDfHJSV_D#g`ui2i) zd&_HbrPDhQviBpBkYKm*%C!>5QK1WPd+O`zB4Gu{Z&kgJ1@|CbOW#Nkr7dQes^@#{ zihJnQl4#{B+pFsVzY&haX27Q3+`)gFFNs%@*65}%xP%W%!=Km>A8M3(Qi92sbf#DZ zqv_v2N3=bV#N$05GJPEY}k4nrysaW=tHj7ri_S zDH!z%viA%WzrRZE`7yxXmTuaZb?xFgsu@dEA_o=rO3QnFtvQz_op{f%2iDeq3)T_f z24X8iL#vA?@ba$LEVQNP8lpu<_symoJP1&C$-NT!TUnyF>w@=IX5n=trW|@)E?|&a z!}MZA84y&O+bKHX)el8)D4WyBmepI!P~(=IP8*QUrzsd|;AER;yJV)e4$&!Pe`Og# zx+;v+IGMLN9pxlN_ikhg6w=;FEZmrC5q!+x@xGh{ormlNxfAET+t)J{?U_lh#=nw( zTj)^~oK;^=K6&%ju-n=CE6*pfgarFSPcQrth#8{dg3#a^4{3S`XMnE;z(_a4`nB@= zrRJ{=LH)jyOMG%${zG2Et5?dZs#wAtrYg2B`0JCeM3jjqy9pi%HHB}K5rmv?A3Nc# z9#%2hQ$L>cLrD>ux#=!UOd$e~k^PLjg?ozFA5?0KJ4yG67posEPy2jA!yzf}{G~=D zy!Fvk>Nokxe36^kuIp(Dx6jBn-&NwBxbG$uz7dhBW#lyVblcgUKh=paa|9=xMJ4x_ zuCcX)u0?VKm}q)>O(x!xFBnrfYfe9C|Rn?#3hl^dD2 zHnPS1;{c^RJ8OaH^&dYLedoV}^SqRvmc0jC!6zj=d-2r9%4&M|SYqk~gYC&Ll|35l zihqvU6|A>RzcJH#;$EU^gNCyzb|S$s>Ra*l1WfSsMM z@18PVWQXL2+fdd4!a0NWTZ@pdO4WahpTZcXEox+Nkfx8f*d0UPx_f8O6ge>|j9pP- zxyeEtp$i-nn}wyKX3)QtL5PW%)7X!V)_tvRV+}8TF8qstL6LywsD5r0*`ln+G-aP$ z0=)C)b?axb)YwfrU44Y8wnY2Khr=hujD|jmg)+FT4T~6EI9pq@!5~>a!F*O^QGca5 zY&p`aboj8TfJND1tko>lbC>s}skzIs4f@eIH}y1q9k5VJ1SypA2&aUn_X z^h*EUeQ}8M;R@VIGl!@4cE=FS!cTls1Udtd?7xIxa{za}?NCbb2LXG`HowDxk6xuF zqc>6|-r_M)V5DBPreJc4g9QZ5_uzyZ9ea^fcS%I=C=jyg_iL)D^JkUpIeIzz27Uc1 zh3Mjej!YZ@1b=LFG=Fde4-OB{c}gK(l)r!fT9SK8fn^_tlx#3dr1^S2f**%^4W<$y?R4KpXvDi zuIq??L@OHYqoW}68Z3C~Tx#gv{#Mj!?G#)rVtvZxRDZ?uXBP|l)JX~-`7OaNHs#LD zTl)sZOMiA-JmZHgsh2(P=tV0FaK-F&PdW1>`LpNI#}xgFVAgwlrG{}a8##m3&dPe0 zY6&6PoLW6Hk>7F)w}%rKI2r#4r@xGewRieFhnN+Savnvtp8Bdr8~JZPe^C^K-UN|3 zKJnjmJ=Z8HgQj);fR}(M5MXLgU)}J(H|FL4-WcGn&qDSM|E2w*Fp*mg(PIo#JRj|PJXM2?5SuaCN2tSHQ zg>xh>cZ&yK3^WqU%K3eIwPB%oyjHolT3GMv-AN_iq#u(eAjbA=O^=&&$5Ku%%rT`Q z{No@GX=FrB$bRv|2cZtJL=gkN!XnzS9DJXgee^*&kw&JkOZUF&iKK$)t^~xq2!1Xh zao;cm+2y#hYGpj`FL+XvSt}apG*F1QF%PQsSzuMn!GV~Sm4#Y6sRO1WMEM8X>-@U9 z^oxtYiDVJ2*^v!dy*Rb9+yOdgmRt;p0!KFGcGk>&61FH4SD{IN%&wOi@eZY5v9bIL zB+tZT>y73Ou{*5TB%PR#*^qau>2F6?ZS5=g?IgqD1hr=v>#`f!%Y-FEnYk$8qdA7l zl<8@7NCD$9DN7P_p}E_kpoC)~{v|cljgNjcLOD22rt#q)4iL~F(^~jiF+9U|yMHcr zsB?3)+zIMh%l6A8D!#-`D0tE^g^;f%11Vwk8BaT z6%6>I^mUopy*Zxdtv9P~hupKz)SrqD4OK5;e56N!7pU>Y1IM1@@3zVy;j5-}7(N?k zhiQ4BhAEEksa-P=)Gl?1QROC7Cc1N{0B0?~SMCL5TH?F2rRvk`^eMhfdI71P*Te?o zbTzB|`okYxQ}VN48ojpUJRO62evy&(;`Fiq(M%Y2w%Uq}31RXYfsF8CuiuvDhr_z2 z!Q zB)aG=97385`BnYAXYuK6bxxj$5YW%~T%w|^Ws|&4(b9_S&-Wz4J0A5GDK!^Z+GmHx zPs_PK3Ej<`QZJ6PM=A`Cy3P7iJ{YMnf-|F{VsP4}n3>maUa)TqCAv)xweeM&rdRLMZ5G;}NO# zoA$t;PLV3>-ZH+F7%$i&Ur)P6nT|N}z~UQWH6TB&4_q6FWVXqiP=RpkgrINg&a?5< z7mR9nn9{mQlmuZUku6%lF3wm>__6J-sou?-Q~mkPd6;RgRr8m@K__#8%r@E-EirTj zR&v~aw(36K>O_a1^lm1Cycz+yXhERGbXJ0+ejK&EYU#-vG&IR%oOwgy@{rgU2mPdy zKVjXj5+%&@=}GQ(4s)ojx}K6qs@^;$ zI5gv>ue|1Q*qB6pPow<( z5MHIk$3)WOQ<)z>;;M@zT6Hm!u5#q5*sV$_Js8dku}nMg)QIe+W13>G-L>D@$m19k z6Y-u?r9~-F9Id3@4nfa0LdVCiowm?jeXl=--)J>J3%ah`zfSG%I*f=P3G#7K<>%r? z*ST}7^ag*=9BZ?^;*x16M9e<+R|R%Ti5)*c3qJyIeBK$$y%z(jZl3V0` zuJWnM<*Du`qMYtYc|W^E7*5m7D_*mFew&g}&8#s0ySKppGC0GWTSqYB=C0KTWziG21k<`u)i4UsLB12ZB4Gg&-#0KSbTQB4dZ?* zg;f|vI#`hU9%)jdU>7cB*!F0nfthitKbd1UUaz;qgrBJc_#L` zIz=}WnyiF~qVbs3$u;uKwC-NevUWs$_<1x&VDMm@@ALlG5ngOGjPkqCUv**0H*aX= zoJIYXFy=sC!!hW||FR&w66-t*z6z)SFhK_i*o-G2Vn^M=py};ZEB$LO&Jle=t(Bc> z(Zh57{6YKUTQ&}P^?&O?N}$}v5%L!mLiy~SomB=z$_Dadsd3{oj9+#oD7n;_^k{Fm z3{_7>=JY&%+Nh~TfLbDchSRc8$Qn_oBx*7pL!5P2E-F+d)t($9p}sD#%$}gbLaOaA z3*PlQyz3lQ0hF@F-I|^Iz~WzP+Vja9nM0&2PWe!+FFV1Ahj4> ztN0;10skoTtquZX3o)lGNQQ8N!!-6n{Ca(k9%WEuB$3(Fl%D{=rJyV z&FJe=jw7P;8Rx*A#CNXW@x@VkM+^C1j@0M5zP;1$Er$@Kzr)xQa_xZvQy_iDxBrT! zbSyDK`FXpZ?4>xbH?_6LJv7Et9<7uoMD9FMhev#4r!jpLI|*-P=>D_4+2nja!>1LT zN;TACh(UAbA0+df>FfW$;&ZpMvO>bT5tHnZw`ZNdLkbtN z1vU5PE~+>S+19>`C46^6<+p9m!1!J554LFK`6lleF)9A?-u!K~@ru?1>7*Q4% z-4q>p+ex#;Wt*y?nzb?6< zkFJp0C>uSNA$#=Ot3Lc2$)+C|8_Hk@4zuco;I~`3Ww^HAaiUgO^ z;uSIx5i2$=r`>!lJ|n^G;t$tvi#ww=ULRSy<4>#Wj}y>r6ckSWgU4`oc0=I41=IcH zn>USuf`)pUMkru`9jVbkvN<5y+c=Yq->wk??0q&!tS6xkkLqgu9p@j30{1bFJq~VEbMEjB?gj?bEo-lt5DAGZ)WRWPZXE|i7 z+Vb)Hk92e%&K_=NU)o^=gdGl;J;qLCbpxzbiSPbOFbaFkCA zS100oGg$M4CcmP*UW(wS#CYB$xY+jZ?a?@Wd*LHF(?8>}=LW&xkc3$3rr5wemj3<$ z%G-Wax_+)-(h-?c&WatGZTjOOar#Zz!pQC&|b)it@%lRA<3d z-Un4%lbeAQ>ItAwG=~IxoCh8EiU#SNwXwvXiIw4{ai(G)R9q2wGW&uht-kI`SHuiA~zB;4zojJ8=~UzFlqX-@knA|-$~GCD@@oyO7_ftJ;wJ42pMZJO;*I*ko6It0S$~qhPDo*N#WiGJ-VGWGY8@!x10m=`i zwJnUdBg6I2o)ySXk%#ZQXIhf1Kd&@o;~v*po8%eKSiTfgQY|CQrFeoqyQGLA_iint7UDzev{#;N z5dJokAcNQXb#&-tte}+SLmq+2)7d(@aL<{NC7qQG=gD+QLh1*ETKig=tWWLF{&cPT zN$4LEWVPcAKfW}l@r%89HT8^q!s2Qq-D`bk6Sd^RAXdRwR$R|n1@U`d46!naX7rri zSqo0|6vPUfX3q-&87%V-<7Zj2J&f^o*HykDz%8aNSdlLjS!COaaaGakJAFyY>$H8? zt??;=FO)rBhmqwYZTYBzOYsJt7%n;aTmA*wU)PgU`K|Np^^7OZuP-mN;5J0J(0Naw z26@jtP^vwThz<_=XeFe=<1LF*=&I`TH;-yNGi`3Hgc2u*_P?t@3DNL&?;c z7tiO5Bh=N&_YXkr(9$4&mf^fEFSQ~VFhg)qSr?Yw+MaYZ<&o@Lwkl1DNnbvUJbhAS zCfcF&KSfD0HvE@NsV~Z5;g6Eg@iM@!lvTMiw^QgX^DZg-eI3jCb(!vxcMSYB;+ZQw zH{9H|Yl=Jm_h`4c{$~tUW@Tfu12D-Lgn`=Ktpmvs+}zxzYO8M%AI4?<=2I3%fpIT( zdO^Jcw@9weN?u#rr7OTtX+XrEFp3kiNMksg#yXq1_B6Bpg7f#dndR)+FM<1^k&X7A z^nWx(24lNcn(S}Mgf&#hT)9)6X@9+Ah^K6=B}EB0K#zg0$=BD|?Ox*j|Z&As%~BTHln2Qa0j)m0X8 z@z>yx5_qy>g^2n7C$fDa(S-*C9o4K~O$@YBJH3m{ho`a7U!f9s2DYbt ziX=WcQtU#h`Si7f`c5#dGf*=|{Ig@tD3~66Gn*~R(~XmTI=H%gZ7C8pyCAY`s_45< zErF$=wB8+zCw77GpqD$@GBd?nUT1H+P0L`ZyKbqf7OQ{sbp*dImQQ!s%Q3%lQD7|2 zJV5AvcZ3_$p%skc^4{}XK5fIYd-HQ|R6LVYaOIqeH}E`16<$h~G^F(xJoEprUR<&SA`J?)U+M5Mw)=k9c$ z&+kBXHB^b1d;Y62O;Rz(Rap*K-!BYsilw)cRpIK$SV-Ahh+$=$EzNy2yZnX+-^ZN* zt>lGS@wazw@yeVG;p%a6&2 zoxv|~lI?FRA0YeSnCn|o={i#ZhbExekonej*f)9mnRGcNi1m6WReW^4odZQRMcKm& z3odBh9B zNU|YsEv9(3!}W5TE{olTt}}RB==z?5?B{Ix)>9-83L-Tw1b=7M-3~ioX2fI5Te&oY z-98u^wuZHx(hz0sMuxLeM^xU=AGc*M8m)Dh#_!*JsQ={Vyn+Uf|L)lYDom zWd7ybB&bJw$60HK3!^>CwBJ+5^S$u9!qnc4A)W>mesl6c zOlJZ2tImt@7&uWTxl(FFB8hk6V2t_f!D3%N{vE9RvavwmrM^oe7Q zuKJxA>yOjFUT|d6l)p3Uqdsg)Htabv97BYhf)XM~HXQ;1gcB3-3B!3T{;7&=A0rkwQ-<+>5cv0px z6PNU)<0~n57kgq|K5uT?Qy-?C%YHR{bW5WxT@O2`A?GSkL1gmk?!W61G3c(bd^fRy zKL|Gh+yVzae^l<~kh1suuveeS^k!))s27#}5V{q*BGG?{A$o3>VEwK!tzwr5BYrIJ zR-yBVQdmPm-ofNrp-;xwg`N`V;vw?`s+;Y^cV{6nF$4+PR6N_p-S<20G2yVE{01#> zW5IBtoe;j@`Di_Ww{`Uj;;%)G-BX-P`F0KE&MUW61H&XgHUoW%_{BF`dis*PWqf%u z=R7xZvR6ION=^NnRNkC$+tJCintxL5;Ym)jdlO3gv=t+-yXI<;PUVa5J37pY7}GcS zr|#y^W}6oNc<7D5g=3^IafUzJBThsRHijUp%M3;6wns-tC!oPYhM4i_y4*_6GP?-9lswYU~Z7gP%MH75ZHT{fRJk)ObR~Upg#(d&E z@|R}?7`r+)Q{SFIhV1~2a~p*tZDs6-LLV##l%;#M+duJh4iYOVANPGn**=?mh`=cj z!Dd-``7++1!JqQj6yjE{WjCBr{h6BKRO|k6QSG^-EPT9%O_II>`7>0=se^750rG*j zV+}8$v3|>TQ0ba3)o9nybS;RkX10BNRySSF713({*GPuU{5!`KIC5E74M|&Db3|yC z|AYnHxueWUY5^rMI6e^*%g&&|ExkWG7}hPmeV;a_=1@p$@}ed47{evB=wYyd;BFA+ z5jb&Bw3?3?uyPZ}6tm(o_#e2klkAe1w3F;4yB3__17GqBnEZ$c!H1H-t<%UZf&EBf zY;aEGL)+f^R$J^YROqbOO*z}3GKOI&XPOT?pErS*Dzyon>Jq)3_k{u1DmEix zr2|ep5eNwaq6LNmqOB;6(6OoQZem>`*utrDcTmI{p}0t*8dA6H`;R;!t=T z1Z?Ja;A#$n_}AXNK^6dnY6;Jdwt|^SbO#ljF?A>zi~`&q7-IHTNjHnilbYO-KM7^OBVs!O%znJ+sw1|%o{HWBpifZx)GDm zk+8A1+KJStkS6KrMinrkm32&cUa8wW4Lqz{IaKYdw)bn&I;*SSeKUCa&hw84WY2u? zc(9X}pK&XS3FlVtGsf^G&%CWgBE3SpN)K@&igJX*2vh z@p_7%WI)&p_t_}0i8|pT=>W-`ilrsXde+64K|q(o_y}K~^Mg`OAM!GSm7H3q!fEl_ z(Wr)AlklTH8c+8RmK0)UG@yvPefO?={~?`Rhjys*?IS-&+{dmzy|Jt3ks1XNvop9B z0k9nbH32ao;@4k`s3(|w9iiM-iu{zJ>G||*?8?Q%14bU`R;g**ud~Fjud+>h=$q_e z@cs@9uQo!UnaUa(SK&5TL|V&qlP=HD6XT!AK>`uI%q*$|8!zuc?%BT|3{!yqk&(T6 z`bN-_^kJo@1IzQQa+BKkRe|R{F94Me+MIK_2T*KmHZ){>&AVbJidi-g7~E4VA;3HK z%z_O8vyr6#Axt_$0eLL}y$q$Zx7sADKt<#*(F(!k+Tp2sIGyN?35;I5y|mZ0DRrtB zAyJ*^>pY)sn(aNmAI^A7IK!?<eY8rex*{+wXQK{}EM0x=+MzJ3g z4OEBccE?a*xklydK{~o<_N?x6Xx^K1pUHHqsBdxM1*A6>80dKO3%EvAI18{BWV2!( z7Uy#e(qBljVhJwcr-?g=09s?u=K<%Y%nj{BK@sXJb61@i`3}}NucR&{&m|=}EhITz zOPnJ|i%UxS0av1$mKGjT#=*flD8!4;}hB()Vr-hG3)*ooPhS=t}+yUb!u1(;cg;$A&w!)7kyi8t?T{6r_k%*5i3 zCwf5AuEzS-BVw?PND)7a`oCI$IRA<-kCwM9(Fm#1$-5IUQZqJ;ZZgSJM~C77qt?_k zX0k}ahJ}UY{#Q>fL_hP> zU}5wHH0NB06#7)0t*nOF?SW^u6FrE90Fgzze_uv;5`W#}vwN7j;#5E1bMvTW#j5io zoz$n{%`!?$po=RF@1xWWIR^epscjFv(WBUYBX2wpE9PLv>8fg`U&KJU@vpMRwYS&k zs{z(jICO%p(~YR0>;_bgIUFxA$vm4r&4JVjsOu*_9y|Z6yXD3O^XZ08N%c(LMis$JY$)S3D zst6H9`sGl)6j8k+R`JJE10qL13lCo>X8ls-!0Wt=-=VOA_WoQ>^Hzq`{MlFE4{`D8 zKU@ zSb^U(mRZFc-u@ssvLs>O6==BS57zd=f&v8oLp!z4k!>*`_-1bF$=XOQpsgd|&C@qF z)@odxpTGCCg*H)3$zSSV$l>eQ&m{+L8i5}8J(a*>?Q89W<*QYM`E)6(JS+x(xvyRZ z!hjBGl_1dsdAN>|2pa8bX1mx9vlCf2iW`h^;4A|31!* zB=!qG7M!TcPF9`QT9x_O`Ge05^pysVj(iY8g=MU4=%^zQVo=NnRpN-_RU^xZ?=|Mh zP$)!3g?QS~y?LxCuZfZ<22-g%Y@^l(i(&E%RKn33<3t}E+qP`!-gyY-ecHHA}m4#IRfq2`9?GA zt_-tiXcr(kkX07g9kxH3oxcS9LhrJk&?}HUBPb*|G$eo} zhlmFetO(*MZMZz&l%V~Y*8%{U8hAAjPj(pDYwwK-oEslZiMr+kefsiOV~sOa zJ6zE{={(hy@d-6e&F?e1V(-u!om^xGvax?=>2iK6^6gvQf4-3T@t@}z{=$p>zlYn9 zhdkqay&TbF((bO$%A6mw+6#X#)){}#r*lFu{c6(KZ@qGnC(n})i8sqq#5x}B32X&8 z6;a@wZ=)varh7@Q@>CItCVp}8luj8cp@Q-gdB2rBGORJ3K^T_#!ZIU0O8gu>rwp=6O4+B-y@Qw ztHNZ?Ic+6Fe-<)d%F4?9<@+nPr}_0K4*i@iHMfq(^8zI&&Q-SO2RCF->&yt_0w|SnS)%5` ze_vlMmLAcltfq{epNB^PgOT5xiE3FG8RVDk{Tf3Hce7>jRRGV$I2uh9_mqnB%(N$-e^|#ICBO8LUPjG+GkG zgN}dd(;-hbg1QZ7HoEW!HEC(?ukk2pJC?g|M{Z5XzQrM;C>yS#dQkAZuAA4evJj?{ zrXAX<1zc(Pe(*#YfZ7_$!iyl>L^oGGtprllsZl+Y=WbqpPo5l?1iXfagyHf?b>(9N z8<&&2JckRvTygrsiK3kdbqu|%#@)L^C6*cqKR^|a#MObs>qlFgFo27}!$1MMeW)uz zG#|?*9sB9+Cc9lV3pE}kaRQMDHETocintk?IUwU8)`NL18~-Qj)yZ1HNIfM73%Eah zgV)tUnrAm)flTDZ?JGkMZ*NH39A+bN{EtJAz#f$xL35$j=>tzR4ZKEkWE=DOK{ZkX>#r8mpRVM3_bKQIsx6=k)z)Q6y@#>V6X-N9Dy@@RP@cWG<<$p0YF@=Ll?n#7(| zQ|9Z_&4#CHZo|u-WlrN_h*())Uq1!pn}}EmfpgribRa_noWS75IlP4Bl5 z6yWxNm{I4*80k&GCXQB{`unhqcp1s1rmRRR8`AT}LvAaI>+UW2WQ|;=|_T&B4q{kZ^ zoX3K8o#<@xV6zKjq3Ld&+06Z>+VQkIoK_}M>SjK6{IejM9J{PW|EA0rt3voW>O;1D zLsP9tatze=;p1~QN`p#yY!^v*zwC&kQms^?9;);c3o&;qs^p3I@E9-gv4(}#cFf?% zm}-5^Du01mk&Oz~@}ozqLClVq2JnjiY<__YIU(k)QB=s~4pq*7V0JySjhAu9yRVL- zRGumy3D=n`d8^d$3z!MmeTux>YhYfF64YJfPQVZlz4C?*9j(aqUD1ZdSHC2;YqS!L z(5Ux-8CwnVCXnU>no$vPam(uQrxm9K|5mWsJ5Q;8H+}rKnq@)A2T0;`K!9wvil(Qd z7^WpD97Gx2*P#Pe_u81~084mipPkHM&?O4+0I!2cI}Z}NjZ_6IV`g2)&6zt#DV6>{ z-UYlVh*K%ND!PIAS5P3Qu!`t+ppDDR+Q;4&d}3&cb+_{HBnfZWw=hk_4gHP6MIjNh z+VepUYBF+iv`nJM$dVdDFU&4a?m_*GkIejGWDA=x>x;8vz(j9P7A=NH|5A2|YF*vP z&HqS!Ke=WpI});XyMlHl({(a@W^q7yROy<*f5Z5;SSitRdzn^sP7JV5N*?&Y3?0!V ztbZ&v1bp;9TZ@FoOQH&+I94llBK}2~hrq##Jkn0l3I0F=3l z^*4+eTLJl_37rHk6Y?iaa>WeDHYPjYAyh5IL|m91=TBP`Mzh!`q{a-v@LI5 ztxm1f)2c8HF%{W18Rw|@`q8c0k)6W>xQ{!C&u2Oki3F@8bTNp2{U&VJ4i(XY8JMB{S z7blO9E9&A5rrHII6w2{XV}~f~qUiN9b}*%7Wju^scXDxYu>}WLidLS&DH|KxHvFfl z2>PSB|C*X+npQ$3N?mvG_<(xAFQ%`Kzu|_KVWQv&KBfGa{wzlBnPkwr?CC(6GG?8t z!HrLrDH3VD>8bT%`KNP>&N(Zcu)gdMJpic~(kvQ&zI(7S`Kvf^pBo|NNR6MSMMC@u zf*(NsEP0;iFhR+bD(*rLR=@DzogVsVm7WkH&4}2a8^hI~^V4QmZXF*!z4S(eHQ*j; zg*HIq$qp;B&}VphCI|zZrF~zdUIlkQ!cBLTN=I;!b{MibQ310SFZseqO$baoqHi5c z6O3{mtbs^5AgJ-rNCEiTQ*nE-jaDY|Ik`@g+%Uu${claiDz4(P`Pl66G(e!aYqbJ|$h>S+}|E>?WluY{s& zU~uKe8|y7jVqK*vkzZ;WzEayiotZ-@X|tSH&aJJMRPmQK6DI~wUmeATEa{10#tf`G z{Gf3)AH?VTRz0Et9W1zz2&6X|kQfE%-&iQ|63E1HTpAU^J|_33Qj(^(2L1XwzXI6t zBP&5FDyl`w(pY$BVRVjxgzRW);*v)~+UBUsm3c>v$*^T?5#oGfz&!a_-xFz(?=z}vARPq?@;J@Pze**z+@g&n8vqAMsRv%xp|1Q@~hFE4zj z{4QmY%+Ke=2H;>vK7Y+HM6(tC{imuqaD@CJtSp7+ZfnNV2l8(B5^nB!-pTo$sz8V& z#oPz6DzH5-^vvX|j6SdZX?O?zUPH;v)Zw1D{;$xjE;HNO+XtWAx}tICRM4_@3swTX zgM%V=m+;*|qqqrn3_Cm7=J>>?mY3TNx`roACRGk#vP05nB4T3l44fajOmC)LrOUm3 zyR)NL;Q;eO=k)}Ia@@Q6Adyvc5nIz!u_b28RH?AwPR)4M2p9qoVsi%HwX$MG8q?*q zH7oGpB95`=Sl9X?&;Yb;axn5k=xAI#Jgj2O&(+FjDP{RRW>8=dCTPRTGO)<>O9(Kn zo=3aw?P~OXYl1L3R0C)SGKd9J1hVP~&qjiSz>RL`G@Cj4U8PT}f<413fPh-z7v!5@ z$sFo(h6DvE(`d(7(_;2%soHX>#x|(m^Tx=EduQIO_`pvvEVe#$;J1c~3MNvzV5Jpj zWj&j$^}aHln6x(H`S3?(4@sjIdg)DO`rIwTO)kt4V~Z2y+Kh zLKjOj_=(kNnksU+Q|#(eM1B>x&fkQd0V;D=#^Zt#I(kn&ou?FkWy6{qPOT2(b}_d! zG-^3t&Ujo?b#X3XV92R7ASC46rp@m3L;sTsZL86h$F!aS>RX+MDj)me;{|Y_=*xb{ ztze%?=x|u2H*~^_0?C%WCA&vVNL1g^d0+zbPQfZ)?r*(kcuFd{=0Yt**jyeZ(rb{a zbb=L&K&%D4)(nAxq^YfqkLnT!+6;d=h7JpI1JB)~h(JMu$GB<(d!OHS-w^)0k%LmB zcu>L;AYf%>%*3X_rjpqHq}4u3Oh-AHjg{+$N@oo!{KPtzRu(Jo?a+DA2p`>cf5Ur| z6@E`NMGenjr;9J4^Uu?ZJj!(cS6CqGKNKOA&W(HMopUQtUrN`|Ih~(8g{Rmb{vf9z zC@5wa_<}@85fcl{T@+dD+6h%HUVmLqcp$lP6p9n?(T5uVTs;D}v2(gAbF54&+o8ch z@Wb%Kj5I#(l;^DPP{F=WK5F1+g_qWUBSy%6x7;H0wehy2yG1Ay@48~!UEr_%win^`~@mj zb3v?yMB7y`1O|lx)f0iSIOwAWZ9Uyug?3)Ld^Ghbjxj2Yq~2UaZwpbJzep{2!J1_MEeXeiJBgOGkpdwcS)=)+ zj=#FQ^9l=bT$X5qU3J}JRs{)JjHrs=D!WaiRMrza1hB!q!6ZqTp$L~VpZ687d%|-n zJXr&#&$}i&FMb}jN4-_6;7W}n&Ha8~ThW^+fp%8@VopA=_k@-Ja*Cl`>U$|=L`TMm zJ-=YAq;i5`r(~V}Wnw)kDL^Ckb22QG5I9$cN1ZchX<)qs^n;GyF)Z4hGrH4{WZdKY z*R6y^0!q16nr=qfvE9|mmMD1#hXkU6lsj2s0j90}_HbM_!#75wj}7DvYixH1s+Z%l z7?i(kN-#;PsdSDoE!y=OsfD*^wdm=n3>r?LVim8cIj;&L68T^p;mwB!v-!sz*0=OrFL+Z}h>u{- zX$VvFCUe(E&X)s&Io`a%fN#k=2PXNJ46F>Oc3OKyJtzZ~C9V?~WR#%Vk6 zoG2cF9|^TxEk#L9KP`paQU*=YHs@t9W;qi%0Dk=ZPOnMb(urYqm(1OGczVowEpSxx z?%lg1ZeyCojD`ymN;h^M{?3id;con(uI!P_U2|_K?SsjUB*Hc@$kf2d=QO$!l&vVi z2@L6Wj7o8g&t?`wnf2S+4k;cza&Yj0nxSvCGo0F*J|fRC$W_c)m)>{%;K+z`T@IxY z8K5E}uGqGV=X-meW3rXBj+4zXq25PT_E*Sc!{Xy3qBIuIsJJ7dX`VfBcO46G)vdNm zY)D{#N+u{MI00SWPurrhhsEU`pOyHOA~XUWgHu|y&fl}Xq{7BVx0cUV`O=n?xF8@o zch!@cWxYxxErTF0>g%%~DSAFv2!0wh{MGGJi5YUrE?Sj?i$Ff)&6_vE zPf5_Ntael{lGZvUVSCePp<~{EG#>s^3n~i4Uym=H2dlZ?KkuMK4R!DMvj<&n{5T5jEGQ`ZX_k%_2hMA(Rx~&JV^f_h{u{1Yqn;QD{LR7)-31sjQk7 zhkiqspm*tG=0rf0lnV}QBERvyFmxi$h)cY=$oJCZ6#FMC@vN$Fz|Skj602?t-M+zG zB%7>K*V7@L2Tt(UuuYSvH18_fqQUvbqhoy&(r49lWwiYzLbY*|Qccpjd z&WrDYJ~JOz9N2z|_9v0b-D4CvGPEVZ_C*a3r@VN433+IgO(}wwuA#nm*F*?Li^sf) zgCLj|&+e_DB3EY~1)i3$Nhj;vi}~d?;SPz{#|w`rKfk*g6s7bnscGsf)VfRR*}jh^LZcTwFj{24LZ2N*tlBU z&<&UiC6G>WadGh&mIT4`Xf(prmv1h z^s$@wDOuurO~01OW!1LwZ^BnHB-S&nq6m-pX|;1S9ud(!3-C-N9~9;*$^2&YL0#e5AV%OeCNqlUJdfFT2e{)Y>>^iXFE$?vD8lfst3|7C^!77 zaEHlsiz;vOH8(X{_%Q{iB{i_HhSdPm8IyEmmG{C%?13P)Ws>9XAR!%)Jw%F8zio)d zyrt-54lg^7?Oj7Wt{p}K($o`V0k zS2liJchbYuV(C;>It|ZIDZ+jY?M^Ox+u6y#{57EPx(+k;4*+68fVqsN?0ZHCNSEff zDy4#w0#U0nV(c_Q{r&w+r#Ie_O!*G|2{W~=Hl>tn&hhRVbreHE-c4j~MEnV-0*jh+ zmo}@@BLsE{QcaDNb0Rx1(W7I2-OLyFINEx6GfVeq_vFMEg2}oOQ8zr-+L|7?pLsvSjr|?! z!3mrW9X++il3|%me?5`rP9X3s#FeMfRc2VsBjCSU09dgjT@ywHt}{1L&I09;IXQI5bAWwa+9zjb))%DAmVkgJ#LEY3NZTX1gRgqyzDdJ7 z1D{DyCGPA>GTCR|pvOCwxO0ku0+;(A$>K#vWbFl+Z#X{#W4?O1_8zmnpJGWn@NYA1 z%fIatYbio`JpKI|zy{a79qsM80F$c}QToF^Ayh^+*;xc-(%me>BPuie3k1%gtpe@@ zHC&99Cqw73g&#G9I{>H@ddBb5$rZPn&zBBy3)>k)DmA+t8k@(D>>9Z8g z(v<-&e*VS6{0y||dG(e_TAJYo%Crtg>ys z%Vs6IdwLkW>i@gExODi>0_|r5PZ`fHRFT3Do6(Wp623#abvk4$3+-6k+qb{qXFht~ z>MoTILoQY>HG_53u{Sy>nZHxJ-ExCe9w{Z{mY@Iu0vTZ-xQwy1=D~?oLxBsX1@ceR z-}WNI1=w8Aj@+PC3m;gfCAg^I~8$gwd|O z{Y^9oDv+8xu;l^@es*@L(BusR&#_1C8dC4n445aoF$t2tX+H4gy2zw?+Ni8K%vCRa zPC($z4WsE<(DTT)d93yTKnf{@zc-BEq#Hceu-m#f9iN88;{==@mfH1YqqYtG<|4u( z7ql7iSi)fOZ3@425F%{vcX=;o*~3~M@_1qJNP9t`&#cm%Do4!Z@K-3Ny;g!VKs&;p zR9vU5tSm+J5&1t6v(kJ0+(K24(^zF6Q~Rc;+IVA-Rk5_I{h-pPbV-j@>D6E5wD2Cl zd@0p{YF=SY?c3LWNJPXHUIRnXElBSMo(e?!*&1QJObuovbm_9Sy09QlXifj(91%o& zBP@efufr|?G!H4lwgdp9{|3~q3BS!c1gwYz$U#ziIG{w>we??~fM%-nKZ$0ou?+Hz zcOQZrYHhOmHS8%E@{1!^y1!S9{K8R3RT5#vP1X9{J$G|bpWWV;g|Q5!JtnXgQ+=0~0y8gW*;g1DMoFbvu<0<{il~wYX za{a3t8UnT1Nx(~tq{~K831hyt${F-a={tWClm}OQzvk*c}Vhp-Ea9o zWM=Pi-x}v!?a5_ci(ZU^C6jz0J8zN3*rX^WItekc&S)!~l08p8|KAH@*E9L={NwK> z`_rTE3_j4z^o1L_&*jBaOJ1#O4dGbIZ1PH2$(TcciMQ|F+XV@~Tf18fgM9beC={4< zN=6Cl>XfmZ4qSyNw6E)^l+&mtUQpoqY(4P>9m97=u`7s_P$ykV+4%nvb>8t@_U#)- zl%2gIdlj;?_s*s=%iffcy^_86RzgNmHX)HsvNze;O0vW6yzb|Io?oxr|J+Mo*Y)|F z<2c@j1zD0y>eAknkXB=eyANq4M@XEw-zmT3+0+2C97FrZ7yQ%zNObcJ?{GUczfGGn zE-z8S)!R9{-VL*OdVeYkhdsZ-Q0PWdpB=2GO`OAubKu`+7r zYM_1=_;slxsttbtf#|?eofsu2msLF}`oZ90vUj{I3cqB3Cc@R5Z@P$dKRp~MR=eL{;a*q!g* zwHswaG_cVB6B-z$Fd4cKqN6@+31wZUV>^leW}sM8Q-egYVJy53ySW5ebqhdVgyk_Z zZ3l|&0JOZtPi6<|_unrc_Z$^h(&kSYO9$~>i793^c%_u~fn7`^CYSNi{CtV8p!bkm zsbGS-H6N?SON*861Q5fSZ&cs!Ml(9&k<_URG66D2zwHUwh zeT$wGc)Yb_sGZG-jJ0orkCJ5FD);r1Dk+&fCQpjS*$#-gxHgxI!VIjDI7zE-+rs=c z4~Ho2SfsN;)wvf^siEXbzKaC`z*tqbxrx{x)2DZrN8M?E-hGh#y|=rba&!{Aq=x;5 zWrU0fb0U%SKFEsB*@V0P_Zp>X{zreBa(UnL(<6kO1p4F+@QFaiBv_%#EqW4ZIp>Lz z9fnvRNIr)?Akzh7sI&Ruvf8wgLgxV8aC}R|_yo>+uu||JD;`^CeTZRE zWPjkwvYg1p00+m}4Z)>DH-^69z^@Cj-?VSpyDzvMe0uPy$eOq$)TmMoW7MY)K{`0q zWg)4Xux}$sv(MFY7-IYI_l7(UAH$tDv#!xB0Rm;>=lineP&vRqOcisrZl)h*KG;&3 zTxq`NEB+rcJVFfEfA7AjSp~UR#-zhD#KDBfwPA@x1M$ajv#A0;Lzmxg=I1oJG#xW@ z2+p0RctqU-f`x5bqBs~3r#*HThQ-eIC{A~O`UGoWz6B5YLx;k$#$-g)0R28b1tSZ~ z)fffYv{4nQ!+hea3XrT7X}yxICKkTgK|e|+ zkg2CbMK`kJlsDv`iG-u@^Yj0LNj1b#Ady~tRz|?LcB20FKw*_5uVjZp(C5mtZ#s*6 z99B3Q=cnw*2G1?1dESo#H>Y@|L4+FL>C?djiOavPZ*SKTlS>jg$D{cg=UD!6d-xii zKb#`uQPD@2m#*?8e>EnntmCvT)W0&Vsea!xDF~m^y;n2^tD$&52z+Qqjyc#gw(&3| zBqS_8t8au5 zibggH>gy@$W@5(dR*{?^P^PZwnUF6(1DtRIiA|9!TX~LP32N5mPo^mS^k7Wi$}F-H z{J8CQJ2eyN#ln{c?_92~t+^g|n?g7!J(49y_4jx*==c-DaBgou|(}doB&`Py^dmcMoNrPhK+Ak2e zD`U+#OLHm>wOumdIyqce8T9>)4Jvdn1>&AFzu zmW&|fK<(%ru@_o}?31!NFePN5iv8%Gn3+ixOQYB5&M7V~t|w3u&7*qbSN0OWvMTqt zAMw_rf?1XBkNi(8q1S=p#2n@Tn?F3rwQwH{ZT%3wj)JNnno0cP%_0#;*|? z?1?EXvAH@gaYw8;gM*qXiVp*L9usY#~N^?0!Uv({Y z(YD)%WdjyzU85QlaTn2+%R3)-Jlxo_7_PR8IY=&N9Dcu;UxUMH3E1^4B-pPfG9w~X zjrx%sSwu^roY);rb??!3HEcJOQ;Vy}wZ;!<)HoGww}j*^PA-S_A^2E+=3GQTTczLWl9{*WPcHG_%P_L%Y2qt(TAO3~a=U2~7J6Y!QQ^W?< z1lxBDYwK70{+1RNzW~uTG&Ia*suno;J!A^Yt@5v{ z$ywcDROtWtl_pz3{Wumkd<4*J&Ij+m`RAQN-m6ncGx_KKy1WgC%ypa}cUowF5r0so zS4(;!&Apsr%zqUT)|$X&>D#zwSg4xevWuz}{2KUp(=#(L)@K3@{`NO9Up=q6yRC`h z+Y}M0)FQLb04@$fd}{Z^!(l@s4sqMxf#ziuj6KS))Sk7~kHd=6@fJQ$|?36TLJI421mq+XzjL1wuiSdvQ?)s^ZsB3uh7kXCzEkOc{R`lGO813 zVZigYJyRElOf?b9s0o`=GRsT$R1BLCiH8=E>9RqBIgIaj!0k|6M;gN1QQ7;MF_KC< zk!5iBft=c$Q+3cw(5>S&SE8O|(hCPN7OZ$nfW-ul9c) zE~FSSZSpA%#YxG@-ChqLVY#CDQ>VS{>2r1y*l3_c50c}aWSjA0!6;xIyM_Uq0g^|p zmVzUEn-5$I)pJy!qXu!q@4#gyWiyBaYJ!3h&Wc;vmfnb~48H#K)zUs_Kyz%=k`L{`2ekdbMFIK1QJ<(4ATn?5tX*F`cS^UaW9!7OfEcDlP~3h z*wgYZRdsT3EP)i^j{oV%t4heDrXR?GaSsxG{`tr$K3Xjkj>jG5F9aIWOJcDCe%}zC z6@10Dnk;}}dwQK#ZvY)H#GK5tx%l2|;v$U_%+zz# z7UDwBy*(JjH`x!OVhSEJ^dP!luyt^5jmBBuc>km2rGT7VVeUwVv+&HXv$M!R+rjwT zx9sVa0&gitSlKu_B0<4W?FGSfoZIwEF#XTI>&!e_Qv`dxZHj50->O-e@n$)u;ju(O zDv3-g`rlrZol#9veJO?Vb2W zx7z?RMD@M;6mCO($eML@VJwk3%st1W*n6cv0+Sz*vg&{hrE8fUd?DFwW&h6I@_2>b zw)`VZ`+Z3b4=WrSk&+A61x^f8(^Wa14-y6Rb+1Mi|9)u!6Alo!n&~Za!VU&<^&n@? z^Y!DQ{H7+cfApweLV=ba#lZQvbgXLTGi<0((VpCkS}GQxyh<+R!pGHaR;m49pSkv% zokNZvWuAf>`uF%GP)x+96@|ZsE&@a}+28T0U*e<7H3V^n2Zi$NRVhbMP`Z0uWtOy@ zyJqt=xg0iL28MjNk+WM0^?RU|>DeGt zw!-?Yb=N+>VwnV)b3+&2-hn4p3qV5q_a8$+_;7UA1c_friw56#1o#ZnM@L^*S5*5VkZ?}@?|lJ;_fSIa0L530er!WDpnh?PX$w@tui zfw&7~Z=ONC#IIHI$7q9#PYT-RF#{j*^A7Wd=*n^(ny_}nK0!SmfF;GR!ak(``k^7{ z3KE&+qcdlb%(i80OqJR@RGqfgW@HS`J@~O9?u#iYKYs&1^5*U(w8V)BGqJ{gf{2FZ z{Kc*YT$Qj=vx2K5Tf&bD;N1fQ(A!O~TvgyjrFn4)p<*OM&o2Hx=h}t6$Ql^gzV$T) zyKS}mJBpM=R7|B2>^wRdOU%&n{gV&!Brr0Xx6DgJeGV>n z8%KL)l_wp$KcyndrUM|wkQ^??ic@!<8-^Fpo z4`9^_4W?gncXuiq*`OZ0N&BHmVOO-z^w=-4%p5DUDOuN%xiwk2Qux}#7KIpDLOwqU z+C(P$NCt)cgb*BZkX?|W@CSv)<6`W&Dn(FCJuxaPwpRU1jh6W8!9!Ab(j4k3jC_1V z$HvC=+SwTRd2rTt|1Y^!)u)>k2;7KX(kn`7)=Mm$s*mWi5D$BpX51Uncwm<@Z?68~}NH&h) z996EVO9$iHVi@f%d50-K6>9v-V0mo&BkKxv^8z|ARC;zLS651eTl)E8>+|Wsf%hjQ z3y506Hyu+A*DDmO-7blMU>(0kYlCwICiUh}>Vf1+(g<_s><_j>b6^rCQCN1?Pu0DK z?=s%_VJ|?%L{gS(9b8O8%7;U!I$V)IW4?GY-Q_FVSe$#0jEV?44@B@ncRS2rt z^wrx%hk%yw&LF0=(Rp1EfjEPg~vaFd4G0bMirp$s%u z=VwRe!-`2(G}BsQypH%gwJtDnd4b&&L`P()RM2J&>!cgJT#Jxvm*3EkDP%4p_!#HY z(r$P1lm+WyM;3(}p@jh}F?m8y>+b^yMuVWI%eYVbu}N#>EYwzH2^l@2k zDDkmT-9wjmh@di$QBd3C(a57926+{MfDOL{p{IVH7m1c!duVvb_nFF;2en62yrO=) zpFT@+iE=wth@FV@XzZTd`MCB~cgV}Ei!gS73Tj5FN zr^lfrek3CNnkL`ao`tzX+=l1gKO6@5%Zukc{{f@F2oU)c5>feP@x@_Z;_r3cnfldK zL+IXJKTnl-%snHg_5Fp4Khz<#&tbI0Zta*h{cUm39d>0olQo;)URVg@EXBqh5j{W~ zefH`Wg8&GnB>cXKY;inzZ=`HKV>&!{h1}H6K^#{~Y0tUIoYhnyJTOqr1(@rtKvy>- z-K2#+64_&t$V(5AP!|?REbVSYtBSm^ddv*dZU1cpkGkEa9Zm}Y3YJzhPo5}2m$LkL z3}QajeIY`Q*Iz#anmwO!I%p=5n05E1dZlm@{h`+AY25IReGAh}@e^^#iRYbjK^0s~ zw!b6aO*fVJZRnTNW{S$;pLHH`h~0xz?2ypBNHs$SaJY^tS2A4YJy04@Cf~2eYNXvK z-^LlX8X7h3h4Sk7{AYj$sQsWFgrF&jkr{-DUb8?z6NB5?A2@7cO`OnH&aoi)5l4COb%9zzO zSyR?4isX;uUNyggJ!Ipn+6kkjlfAfr*`n~QnVlcV7!qJuT_yeD>kH0TijE+J!J<{} zwIy%kl^c^V<}s{uiaFrRP|fx`oGK_N0Q#66leAfoAAU)p&il1RlEnx?*Ont5i8nU@ zZMQUk=LcY`^*>|mU}Iw=!7CE4;y{ZH48NwPY{cvbh>Zn$&*}ZdbTeVrR8G8w)Jh75 zIE#RF9Yh-}dtJO8j6q$fKWiErvyd^(@US)!u}cr_p<|+v?9kx)_S?ek_OL(4nZIoM z9paibV$;N^60B{Aw5! zfBt*{{MPFMYvnHD(km^tYLB?fdAw#3hxt{sVXGV?{k$QM{7IWLxVGJm-$jC_zIv4+WZKrn=BI}RBKoq#|JC7%_y{Wu3Q z-a+Y{wrY=P{1mPfUDJ;ePTH~=_xR#>8VY|cP2R^(1@jW5&tAcM266Px5IKw1FjIS^ z{8s}`29M+My5eOM zo9kF+yp<+-hI{3#<%IG&$yhA|7(j_D(?KBAxtNRsxN;@>h9%G=Jn zU&ab}AgIw?AWr0fvhk>K_VzdY(CduN9Q8YHxU3@?tM;+2yX!oW1O-3 zeVcjf~hdm1R8XPx$4t*S^^mQ+=OEch`R}-Y$G6ghOqZ8i0B~^mH6IQ@%HGK z+x>(TLDZ-YdG1ND5J*gm-iGMEy$EabG$TD`YgLO~Qk|@`dv9DHAcB^Z9@8AEr6h(>7xpX&vynDxC=zXN8Zq1IZTUpj?(A9#j00s zg1X!l_p@%^qj{g^eba9hL`va~A;{e;7NRSRgPM^0Bmb6fa)T0O9vzQ}x%#ZNPsr%A zt#MPLuYilSDXuP2o9qadUcT*+mxRuq(b=hhc(#F!G2S)j3FZ1e{JCDXgr9rbYb#W9wRL?}MZ^pmer z`udbGs}P9HTR+bi=RZgu@!_X+j!8~*V0S``dsE~!!UztXn|KM>OwuefV&zf7ZDP^G3y%=p|HFq9 zY2P}R?BEdxb`4hF*!bxcmOUQG z5Gaw%rK97B+mW~C#(nZRasfAHhd()FivH)<kYup{&@0#k~$~8J&G#`c=G` ztMYd&_=iOz@>`9OaSD=VrI{-_Xx8<*qxJTC)(G1c9vSour-ne@Rg{=sEGnN~^(|&P z26)Ix$jE-fx*yR4eG^`zhI2ImgP5}LHGC`nH8(VL$!!e9x@`8Sqp}8AgehMMg~{nW z-eW1)#K=3njdlpA0>sHI5`^a#YEZmB`+`-I)^#N^NUlLV&h6|e2`ANBAo#Z?gq}*> ziFD^L$B8mwl>Zie--3NOk{j+7U2HT$OuM4$Otl9Gp@tMQ&Qt&UfeU7 zzy7hk&BbK}b8oiDAg1nmwJAM0QRz2fhe}s&QDLR(7UDG$p(Y4E7O>pp>`!2&# z#omf2u3%~WFf2?VIr7&wft{V5cQ}8A%Fx4zQ5A|at198t51jN}&5~D4#W!yL?4R9z z17iZ%-*0Yh+1lFDw`PQl@&59ruGNKDP%w@k_h|UbxVT)(lS*oMdy63HCy+Y2Ah)mn zo7eha1K_uBp3z=84ULl=4w)JGV{Hq4tM}vVCMI? z?T6rhf?&CiJ=zF7|AC@iY#^qB=$qo1Nd708u+nq(W{QN+&b@94AQTyCV><~a;d-%+ zE#^CXZxUwt)fp?xckFDl!*87rd1Vh?sy`Qt;Hrr!CtI>{tNX4vT7S}+gqSg zn6D6HhU9jEA7(D*352ZH3Mnh~%IoC2JsTZdxm`5%0cRfBg=7{wkEq?mr%VrrFg!ol+POB=o&E%B;DkI!euU*|jlUEEb>3f+FT>o?)zw<@15h1#g)&wrf0 z%~Yw;7|5uZ+D1ofc)ByuG#TbA?6C;AMd^eIs>$S>6gguUOclGfg%?XDmD5ex$73 zjdM;2J`?hzyf#aU%n}$OT{kHs1NIOm!1(`~`AlWO5Ozm5BqpUS%PH_u7MIe2_8QD> zxhb7lO;yQTg(w--%kGUJ!4?1LZVGJ+(s?O=3gJ|F_F@1aS7>yfa_+TYtUy3#ed&IW zQa5YI%eHTuW5;bda-#&Rj-qF?9`8%yWwuDr(Wmpg6DmwobvmwV1pi@+bgtDGl6$CX z5r<3g%2~ve6IV*+%RhNB^Q!jOX8 z>Tt27M*hEcvzY?z15(?xO47g*8yF@~BU-tB2}s7T3E{9kR(2j%{G=W7a7T*lYjjmk zL}1`*L3$06Oyo4HWNK=v>b6(hU;m~Qb#D{lW|&!PCsOR&fr%bn2|Vfpo8J1NaD>g z2I`Gj8I9@}`c+mHAQ|Fn`XvJ=S4r$m>*$SW|E|NgG}Z6a>gSw5fEhdg(;9XT;4?Pk z%}5700svK5DoZb2MwRB*yUkx=UGND7q>-u>r9cB9%v z!A$)8O$OI)-P*9-X!>;FsI8;%aTw|1L5zU5&O?-xy>{3`SR0|v!s?sln6qWGF4Bv6 zL^;{743zHt;Q_ONxtVOJg%N}^>NY4vw)XCsrm)0gZ)oGjr${h7>`zOw>l|HYcZmKIlbBi z_5e>v5I|A{yue4setSfN81{Sc5BtTz95OK@LwJ%O#mKpX6k!g)bm@IO5h% zdYMRC!id5`7I=t>Zp+yGCyLm_MAL|I)o-^swGNE%}Sk zOoou$T*x@p*zJj*Aohj6zx@;|NXoG~+rd_@^yh}>m^xKn!*Y#|J#*OKdNeuz{wSH` zye}0z&g9{%Y4~*{c%Ha(Tn*jvVM7$fW*{F`eJPd!^n_mTLkOE@m@x>v??R;OZG)LQ zMD|uvIJFas5jdo0iHZ4qU<1vJa$?S9)gA7c_JJvjQlFoenJTZs{W=mRcIVTd#AbCb z+^NKyMe)pdtg=)pVbehxI}F7q@aBM51HtSZ`rOGCWdm=wJ7j(cXXx14imF)GhxGTq zOOPj~qr*ni5(vtZhu|Cw5D`H&R0$Iqg&%PR-yX(7sFChX(xYrYgS*$-3{i~BeW4fg zTyG6q-`(hlvqV_MpYK9Lz&Wv0!fVh zS!@sS6X>rCQ+|9cszj5A^I=+A--OnxRi%)i^ z{W07GjL&ya5D4K5GCiEIHe|pA@!rH$CYFhQ_z{VsONO{BHETa-#N}k z?d|5*eR!R0B@A;lbeS?AO*8*D}PsTs|*1!x9+z znKt(KuP?e*WDu7WpFl|zK7Ax~QSU5YQ5+H-jr+*(oGOj8K6JZ@Ejq*;g11ZDW{#=#8!}$#e<}NDt~)67T83i(WVDf|DDim`i(SK$R_; z*h7Pr)tRGToV5DnZHdn9Zc-eWUhRvPVo*9}_6~L5#6PRk*_v{NwoxK694-286#DU_T$HKd29$^7Lh&! zJou~CejwWW{_%i>?mM#D+C)fm1bAsH;4vY99;mzDvh#bS$V`+pgX|BX4Zl{Myq-=^~qIB?Q@U5=A}5ZyG{<3K6!bd0Ev75{_=hHUv~M84kTS7 zl}kUes7*FDeSYoOSGFLr;VC7{RA&L^&>t0#7ksMa60*_i~+%5)H~q5EIk!kI`tB}iNIb^h7)m0?5EYd`dQ@Ueh2ed zM9T7*cYN?F8SAwjeTxLWf=4_G>lIRb?5Fl4$0qW6-aJSao!EH#``uZ9JWy}$&OW_j z)!J*ZMGc#kR+nH~YPBJ|$Trb>@IXSU9~tm#5MgaZ#9_vj@WxLTEYSu157kOsVAw(D zL?4AtPx)c|xqLa_l&@eH5T{KA3Ggg(DD;T`tOmNHtukm<02WjriH_zAeqk=i zbWuv4os?r0w|i(r{UWfNX$Bg*x?!lkCO?-A7$8V`gu21{Nbv66eZV5`U7Y>YdH67F z%1v zmcI&N>bA((FUF-QoG~02s(con7!mvamhZ&_IW44*bPmD&91fKc!u&*FWCKOksD@<^ z5V$ZXPQlt>-fR;5Ar3IRp35=F7jUoNz6F)sK4j?Sz)l1L=nyF_NJpk8UdrCT|1#jh z3!(VH;B9%@JK)uW9_2)@1&?*!kIvl@$9cw=gJ@6wJK?%?`fu-ZHxitg7iTG#KOlyF z(evq@{sbysRaqV^GGDugr7a`Ji)ru%&{OPbPu0i#h&7iZox6W4lJ_l@JdqlkUGPoL zXu9xvM`2uz?BE$e^uX+3tx@;1r`!!8xj$G7FrJDK>+S!@tYjxolq|CdR-by%{)Zd>gI>w&OB1Ibl7es(9@L`xwkl%Sk{g9)y^amqIfWlpsh}2hG z8-ht9gEyFLdXnE>Lk9gqZtI#3I|%0;l=;*`PXmE!Lx72nXyiar(XsfnUGDu}D&I1k z9=xlj=+!rS+ro~A;`~XXNY-O~xRuXwraq;si(K=WD|R%H-Ts&?=gvFjh96;u?cagZ zvcAHnTwSopTht-1@@FY(^NW+Zy85;OjEl~Wes-}4QEpJF z;}MOuV2u4IA9|uLVKKGBA~RHn^j4uzeGcFDT8AL9MQgjoj4;34En%wZkhdM=q7F7T zh=AhIO;Q7Ynn7ZS71jo{GweZ{ zoi;UdZkz}F{9-D^U0=>@q6D7`m8U2l3S(l{Gu=h42@6dI29Ux{9f->@&@3&WL zNMr!cPh%zBhJRw*d;ZdVZ97ex03DKU#l>@w{rhD+&x=;N`SV>5 zME8_yEn$d$1OCJDWZ@mjf7WKt#mIVM?@Y@>V=QUm_`fGP_J2=u>`$09A>$cj;|yNM zN#~PC*|oZ}@5MyCH-+>nLc@vVq}t_qsi?%?a(yYWOSYX#TY?oA&JPK$Neg?jnmOi* zrg=~||AtVl2=FW(>5l;SVgL?2<@?3yZo=eQlSeksWDA1S-;nBaJ3m-jb)G7g9vf(V zsj(jG&8FqSNHDsTb8+0=2=d?ZdH zzxX8J>_!k>t}T^g&MLHKuVqZL>wQFIL(noq3}C*E=-iP&#!@u`bnxQNvSQ~|RwlxN zVwogKDdDR7$!c$iZg3Q6@a?w^e!A|5h$_|MaXdZ!(%>mE%bP04p2GN?CRkSzjlq<& z{r#`2{QOKzBqR)W@p7)0^3@Gr%G^RTA@0p|w%)m7tI=ai|5J$!*=jGn-I$ANV#=3M zeG8^&IkJA(zUX>T7ZmOjl=CZ3=5W0k;WB?T zOjc4PY!sthooJz4B%mp4+xK9zQAJ5b)*=)mY24LmoZR(EGyO5d zbZ^7Pruue_ZitFmtUfCj$0XLmGBg!PdIR#{ruB7zS_9%?=nK(8GZjq9iJ|__%o|G% zyFQ%nu0<%)uGH7=Kk?=@5pyJf2mmTpT~m{gnhIPwzVewJCgu%{4($GAp363PjT?x08w$GID$-Viw z{tD`I6Sj7cYV^VWJVU7B^6ZQSiJAr}x%ajintW{rlXB7TUc>xnB-d(*#~6@)*;_Y`f)|LA+4m;jaR%K*^#?2*%uhZpkKq}?V zcM(M6TMkmD@7`OSaJM3SL&Rotzf01@V(4#kU2aJ-t=Emfo+Q?;%6oB&he>ROX2jIg zaodc!CrWkrmNLIThJRtVev-=hs#6LhOjKeutnP0-%xc3-xRneIZ(v#7y->O<@%a(K zEm;cQbmMk-Z$SAEyN}`%*z*XiLQE!q@a>WvF}YZK z)z5@vZ^_=&>PU+0!h|?^HhWPhjz;`vo=wB@$A@e;Z;@%2-7KoKmvk3S;866{4Z1Vj z1Jfv!zp%hp5ZgH;!QFHw$G(MUCtPV`s<4{^Q=$q9!KA364eLd2R@drP9f+rcz8CRz zzJPQloLBenfVc<=Nh!MTNcWgZBf}-|)A#F?wppsF%-54l=u5Ab;G}3#4t7iq?ef_k zZtP(k7&A{gxIYT;69AMiLf}m#I`;d^QTz5}5DcuG;2_4D*5v@$y^ii&4Vw(pDVv)J1g}{5WjSY*3 z;$RM)N1x{tYHhB(E#!9np$cVCQ++LBt_7B_v)P3k&N-bJWFTx#<-oXE0uln3$J~uHXNy=c`Z!;|appT1N!}Ihof4h*l1C zE#Du$Tzl06CNMzy#0Y;L?Um#!r+PkIw>s% z1_qDx_kR<#S{B~%JgzfwQ14RN93FFW;jt=-w$$lLkM(IR3MSzi@CEuyV0qZ`5Ez zK6FavAWDN5!*-fkDEhgL>5Mwkp-L%PdoOfac($7Gev~9O?fo`thvPu0f*W<&q_;;c z$&FXiaZtpGmcgwch+->)Z(hJRI4CrG!PA&Ep)=+eNcDs#Y(~<`aO4JhzBn9zq2PZK zcY6OlfA!NIIiq$V=q`$qviM`=>_svQB}ZW3ab5mo2{ZQ5#lGYvv3_cab{rJw+&E+; zoW0JMP7)iQF={j)e%Y?s-9l?v7wHtw!ac(jkv*NZ8hF_cOZqQxNqzwWA3~Hw$O_;x z1>k5hoDQyioOSJ_CR=aH%i|Hv4?N;p+S)Qe*@Oye4T*|HIPA!qg<{2_O8PC9*aJ0D z*)sB};8IV3e}kL{avefCt(XoW71hCFq{NOXXZPNMM4-gaD?q0|znC+#qCK)v!Wk?b z)g~_scl_;{g5Mi-7GY-!%lqCB%)4k63=ZL zl+OSH)54x-^SIF^hgk)A;gBEHi;1gl4nh9CuM1pn8!wJa_%$%@ka##;U5E?#yL?$R zM)hy^`Paup=-<5?^E&4&23n5zvvtcHx!)mqsFHlz6pAn0g9=|_D>PbnVTpf#DvBrm zX43J{ze>r+Yxm=t+0yQx(I`R;EREvl2J<{3jGS^~+?6&gZx5|XvA6gA<&^Nu$T*q$ zC~+&I+c`F6!gYq_@6 ztU_-+!i`(tfZ?rAEP>XGKQ?o)NDKLJQ;qyp7(Puen7EG--G#k9qo`;WjCSG(8JCQG zVQSCB#56cHqM(F>%SPsv%#vpijLuFuq5PW6q{&aP(T{d;h4T%griPUa>I32DQUzHo zPbf`0;?&%Dze(J7Y9e8OK^40QT9%Gg7_|g1rZeB}8vW!JOtpb2&?&*lkcWySBf0(z zx|nnOXyoRxb@b{7wb(uW{shH`IAOqyO0xl4MIOUCE4t`aD*XG3ElBpC56%`Om-p=afbEV`*LgT@o`RW(%+j(8FLxN{bPN zDKY44OWqqS9Cf0-w>iP2l4L#4LlxeA&P=Qw&=d%n7yET%c;p({Erbh+qQLqsJVKs5 z)j^x1$mKC9XK!I)+8}?-rb$o9_1g;({LT!X!91~)&@_iEOFL zg5fj*?I*G&VC?8X4hq=)<}`?WdO8lXGh~W(5_fqVr}w;;_IzEDiG>A%eE%}NSIWG< znMFx`_h--H`1pg;2e*;=2c%MO+jvEVzf~j{wRuy3HFf^ORsnOQ8wt<+ zQKO6%OXSF?zP4$DGdfIGEKkDZo1iY0TUC`*qEkc!vQ7ClIi||5ZBJEtfFMr;ddjtRJTk*FcQ(N<+MaELOpjt+5IIsO5 z9W^o3C5jGi?;1n}a}UZzj|u5H1NEyDt-f_IO#XWJ$e>MtEi(v8gBXD)+`h-Z{3r5l zsgT%IWB?A%e^?jQJ1^G*SXF4Nv`WZ%2^|G1we{y?GS0~r^uL6DFMhmRIlH($bS5f@ zBM1Sy3IP}~7dlQ3u$_e;Kaz!UK46gd?_=3|N%`Li-s4cXPBQtvr7L)NOgy~Ujt#wA zp`wm95hF$~Q|b>hg+lEr~G>$*Z#Sr^;h3 zj!M;kmH?u1nBoQIVCei$#Y85K)Qgb5cORNF z5fd1wsLaSpVTmdI#=7MsP|xSX@#(L&>s3y3BJksIs3qaQ|C(>Kljqr;{C4&V^FtKV zAZp#Zj`pob&JU%eNSKn7_OL*}ZhEvkhcN08Xim(HyPcizsUBiTw%!t=u+NA!b{l@r zuSLnlQh-q&iO;LHr}!O}BQFPRXp&f9T}C|AAkZ2b8EGpwZA%A;Zk+fb z#j|J6JY^mAR-a=$d!j^c$*fF%a-bLUp%a;_XA8R?1Iz_!H$Qwjr0Q?JmFai?{LllN zD=}DiGpM1Z&_;_|n<0s2%}jJhc-4?qlSV|v)`V6=;)IEqMRfr*^{3hl79Xlk_G3XT zD0BJUdn{J^%qvA5#pqC#X-Ljm!`Q*0E?Yj9{gv!V;=iAMC3z6eoJ~ykk4I_(JrCZH`g{dm8B5U`Y+E zWC&8}#Jf8Sp}@Z{$1DGvCwQS@j@k6jNaB*0goNZ5XgQHRnXyuS6k7tSaTDQ}KZB5% z6`Us_qeTl6ZzRnc_(5Es{tQd6jqu07U|US-u=FiE?Bmf|^!D9cR&;pKty&}dvSlKZ zJ6i`I#2(k?+h{pdMlsp{2sA&8loT|)Ou%q&^c#HkP*=CyeaC>QAU*1Rr$=(&l4ZI% zHG66^W$VEOFA5?&IUhJUD1I9`mf23J^OKHxuj0u(_9o-~>f8MVIKr@O^Y6b`^&l*W zYbi2ZC|HhP*SngFgfmjV(lp7~EhMv~tju!!t3JA{v_nvm1J89)bs2P9?ROjFV%s?W zv(|p&()vX$N7B1Xw2``2L)H4 zhKHU8Sl0%9ZeTXfA?^)?_58~BFV_9$TST0c(W);M5(S9WMt-4hv4L(%WAa6Cv|)Fy zvAu$nMWVTScKu8rcOQkX3i-hzw$sN|G6*wigDRBBHR5_ZoJ@K^Fuz$AVnOfN;y;vh z12rarIGQ`I?baXT7onXI;k%)lQICTnt4*B(wh=gqDo5e)k)bt4%LeoJ=b=gsOVa4yUiwJ{4 z<`PvOjdLXC$PNzv^0Y6un+3tnJ6nWlu9`bCp{j>vl6rc1?v9aVo}~(x*m)YUFlf!~ z{z>(tkx)n#{xENoa`R16rxIx%ohj*#ZYcf;#rR!XM1B6d4MfEOK2!f2nicUxmQo_M z=-+!#oiO$G_NEKFvfRQZolZbKOSSK?v6=PWDub{H9l#DwY*|8m{+MkyXjkd$zyNFM zRV>_vKu5eWB3<7Cl__ViM-<%qXrTg{)NvB~OP*^LJm+I5faTx8nV6*ge7^GpRZ|lx z7u9saz;P2!pXvF0D37V^N&|FqBdH!^;Wsj-&YwXkiW>hafSx6ZCQLlW)_OK###o6! zQow+6b<>opnwZD=?!#LP4td5MT4{;Y7aGQ@ICb>I|)<3+%>^0vsl`H0vqE0;(DTZ=lxEAJiSWVxI&3{pqV8(A?H^R3dlZq zKn8(5JOTm&^&P4%s|iZky`J|;jdgc%`L$;M5)LJ4F?{+HEWZ8D=f-^6b%UaK?%4fyn0eUtLnmkIc7mZ%s;oT%V;? zrk0sjZ3KZWEl(rs1b8;(^BAKj&7GKL#PPG3u^O2(=u3z*gnuYdKe!8MUr3YOE6)5f zG(K=TXQ4TYsW|iJiy2E&1cIJC7W-VHn$GuV1QY zYtJI%HfSK?t35&uQM%(@uF&01pF;9(;&bG__h)K%s<1Mjuw!!?ZdQyfi9jk#xh(tkP_z>cE26X zo1yd3lQ^(WSWN!5!GD=6oGZHZpwviOA@rs^qV+&3=02d0^Q4_jU|J zbT1FJr^PJ`B7~z8i`vVeV4`>;Ld;p2l4?T}0n~x4gg%aP^Yd^7e~jc!w($dZV2qhQ*FGD{?k=HSCf%uD61V>HD-CGL1x z?9ZWCLdY2h5i&wK&|xAQFvKi<_=_FJHT6AGQc|+{AtJGMXM>tOX{?&>sJn{XtNJhT zOI!r;hd^pIOjgEPy1{deOVR2p7H6OLV(q$e>jUwR&lBR~2S3ah6QEzf9vs>KfzUEq zN1f`=OJb(;BR%*O8w+izkPIUf`L;Fsdwz3&S*8?*etp~)IYdmgEj#WbvyXbdhdx^= zQf2K)d>*RO_&Jt$K;8SxO*t*Z>_I|`XT#L52xV(-IG3XMl>z-T@90JWSp{5U} zZNuctv@}Inh{J#!=~a;6QV4IlLoxNg3D%a$e@lf#+#79v8f-uswW{lN8Jy1qd zwvoD?Q(RoYR8;OXXSlMm;=AJo#=XboW*sV<;+E-hw;72G+at?RJsD4Vd`9Sa@V(DU znr4fsOg%@s!)jW8Da>?U1NmEe}lq3S+K}Z;2T$z62WDjA< zu;^e%SzgJo2$wZ?WFXRC;wDmK-;VSx#%XLN4t&J44QC7zrWto|J;d#~TH@)2POH^D z_&v0S`|K5o=QT1X>=ote;4QduQM<|Z!Sv$OL%47IFcVU$bMu#V)$LsiLQMv)tr)T{ zBx;vn(G>Bzv5j+?%g9TM_vcXS`k@bXJWlFq2WFucB=w+-+CsA5_D=k8Q?PqdL#r77qEg+;PqgOwDj;$A5j`pEiDf_>oFPp@-*+mg{tI zsHS7u)2jwGpA1r!D9Ozw3Wp=XIXP@jX`Hl38XIgt~oV{&!8C7%J}{ zqoXm#N*yMyc*hgcasrQ?uQZp&gJ;R9+&RxauS4@|wb~p+@Ih3MU7z4$n8etgO1n)} zIn;vxX2B3agP1Uix1ePHS8djBmiz3o{;y{B=0cmbXD%ps<(PY!wNHh5{^HfOYnPs+ za}_>zePB7pr5Nw0ixl~mbZ>Ov*9iIt=_hxdcptI8g6+|`O4k~?I1CKGYUAoX zagf0^*0u@xnFYNbPju8;NF~fZ(dWEu?pY5tNtUZ^JvcFfpc=qr+0A_$JY>gw6O^+y zC!Je^WwiRo=xF)^clp+kY6PB@#YzYo_li=-TI#$n)EiiLY6grjnj zRHSF*6;JHQ7I|Oxo9&@N0~MX~T=(-{7nZHfy*A7Jr=c&Gu*}M^a7AxDvR$b4K>3qmu{M(ZLKc=$5FYY`*QWRnhM=wjNLj~ z4InIj{dY?x#s=2iSIRLr<0n*J)TTnO2tZNM^8S#=j9`#|Hyj!6?(Q}o&Pg;}mh7MG zTdqgC3{l!NhrOk6L{p^=W+u=b@tBO0J-qjo`pIz-zivOXO7PSt!PMo>{IGen3XW&L zr)svZkKGNq!};aU6>!V_1mGGXBKIG`FK6Sec3^|h@sBEYty$}RM=aIOj*7u9tVRAm zP|E*Yj^E!C6e{rW7OUEy6;UqX!Yo^I(YkRH-7miIO^Ci2 z_LJwt>J#%J(rAQlNabH|VolU2JdH{G-q^qYeSd$p>g*y4B>b=*31%vrEJyzcPmk4K30>iAXhoH)72$>yCrM-_Nk02Zu3KnT5l zWVC@$$q}|A;1h-k?C4df8f)jpQCqOs^1^8vRB)AxK_`VQ|U(qJN!5{U6w1UMtO#g~@oXXB39QqsF}d;V?{ z?4@y^(394d@Tu@_bH_&F>>2W$$h8u?Up5DIEJ72sf8}pw?r#3@)YM;VwdN%wl)Z|> zi4I6NhTTXc+6`J$xLhFZRXB#XrKrsyavS8dzEFn;A{YEa z2ZPKau(YnP+knt6ge{AREY~tK1N7U12R;GDJkO^E+u;WR!{X}pHgo}R!65VZOua&d zxpTyksiY$H%pi%DK{JO?V$v&a49~e=0C%tii-*^5=X53EKJa3pbP`{?rG7v5h9la@ zI_&}}$Ba0Q_=^`WVvN54iw#60(snblIm(SU13GW~-YU$^U7^22$g=R~x2)grUpcar zcn?PP8%KFEZZz10WceSnJwwKw&+zuqlgRG7u|dt-y6C9b>KGTCOIdm43fVWzr}AW* zkLMV(kM^J^-~>7xrt@MnKM4ReMo2l#69z=yEyZ@zXmvRyZpq&wp8iqz2*q6Z20=r{ z*Eg(lhtkUh^x8qpsCRNH!rkgqK_yKr(`+NUwSOVl=yPp)Erf*bQRh#Jmk&r(sp*W^ zJ{s6A1=aD+&!WRPm$k){bR|WI8Bh4bp*p2d!m&@_GfcO6hvSm8Jz$%3!lyhNNmfZo zB!pS8kz9vEdj+sFnN?LcBNJ3Z%thRH6hEh&3MDX2vYYfDS-3-2M66RjNc}7~KR=oi+*Dxada%z8TGk$AL0N zQIx|ps|vKgCXaR`}COs|4A~}Hf5|D`PaG2=2T_n3&qpZ8-9VA z%;~#;+*UQi{&Hz7ALCE2aQVk))hC8IL{gBVeap=!TVIkWb{_MZUvO^mWp{d&kL>B` zDKdBgTw_pBHg;m?o42oLk0b0wdIVoh^ne&@b`Wi`BW=>k>T0L6+8vKZ=9Kf5^Y7n` zGii1qNF0KeF&iO(hN*fEagssy@sF`5>N=kT)U!CGgz0=LVF}BzJ|^2E3=12X$L^5X z$2SpuP2UZNO7f_9w4lfMMUgHg%32!l9Y*QIowoSWtOb^Z9l;%Uirct~tr@(^?Al}u zs`DS}-T`F_ULerfpnNDS3xR7_z*61+odW=4q$vq2WAADtzc?F-8Qh_vj|j{U=zST3v8l5>#R{AZ zkQ6H|fo5P_&Ua5?nvzD2t+nKD-q;P3I$&pmXEDia#J>uK&Ti2`X^q(tZlmJvFUtmC-eyH_;-?WVM)mQ40G208wWUo8$a?xXRLreEn zcLn!JE%XJD7(r0gmA87eD-M@o1q@_o4d;w#=Kq!%xe4)Uy-*3Cmr>TkbA{nJxFF%e z6`|!X)6g6?PJgwKa>*m{jpnoUdQ8xUgA9Mn^SR)v~q7b)Sh6&M726 zPOr4f7JTnyz5AgNmi^6j4z_Z?m$4Vr<>pE@b55(=cgh+yS9HF)J09=-7;t~`l8iDH zaks$KU^jK!D=;_BgLQ|J=8lu^)}+Z>L&{Y4vaz7GTwdGoOgma93c4McsUTZ|918=< z9B+p>8KY0JGn6G}RXTb3`6q=T%FrNjMvgy_(=ga^a&RoeU}YXWShN(lL^rM>j(j9U zw~OF0Gw4SJ2zT|b1I3l~9bY37a z5or*p>qCaeh)xo=tU*^w3H*fnFF26aAvEI;qVR0g(nPG`p$bs_QM6Z|jMt^5iox9YKnYqcc0GOy=AYwK6?6*ZP~TKkD7PHpHX{ zB5f!Gqz(^iML*SABC!V)q8`KsW5_vpZ^ngaW@ZLa8+FEnTW1wBjlA>1sXuq6`1JDT zqfp)!+m!z2b4F1XWC}44AKjEuk3vg~33Ki`2va1UE!-B8*SmBC>kbl|eY(HaV%VbQ z2T~U{5;{?D2MKwi*vOC^Ypk*2Hd9*ugUvQ-73B*OVwsGZn)u4f%2p{2_!ku67CNTy zj04uUv(5uzW#tDP$_L*eNU#-Th=xx?A;&g?kudy^&*hPif;aGfzXKBLGc1t7 zN>WNnIVbb#GCpaF_Qaqdtat}Latp8$BgYA5 zl6<3nh@P^PRF+{rgUIL?4F4qV`I+X4gx-RxAbKM zE?v)P^91GlL(QYK5gQ9I?;Lh6v<j;udN{yp~X?a_IbMZ#D5Cevvs)7qfG7HNogG zwS{=y^&OhgzZ@@w!U0qYy+V*ifrif}t?GC&9{ad+!ZBFSIqmT`g6Y13-hG-`4|hJllqAYx8B+#vF)}w zF&7RKpYNTNB=~}tXM3@RQfB}u=!ZO4KNUCb2cD>j#hLzewRg4q2P0k}`!J%=4iq~x z8L9=~W0AdgDDwZIz_mB4bEXw&_Eoc{`-BeHOP0)B`F-*AI6JRoWZrH!SQDBU-DHa~k(&8VN3Wk)r);cF5A9sd9! z6hX1zc&ak~??cK&mha3D{*XX`!1LP^mKL`u03jRv?CToFXO$Gh}a z8{N}%%JBdN$L1#7C?&ro9yzK%dC~zYhlj*(6NlQeF=tKwRE6bU={2gvv&_nrKw@iq_ zzes%@>h<*fN~%-0{kOvSN1i&OSzUydm&nHFCyyUH&3PZ~0J@tXIECbPYGxoG%XLbe z^dSi?Jd>IUor8`?!1n_Qxtgu*T_h{8qQbeetcc{+VhATK>F>-s&>(|A3-UIv85g)b zAp168>ncB^8aV6E90E=T6$h@dS7hZ5lMNHapd_!mN=cdflhNS2toR4HjXQZq45v30 zvq_p0!LoSQTolAEV8THz;-5zLq)RbZhgnY`vvOceD-yqd<=YFfxBIdPoFjjE{>ZBL< zE21s#=l>SjE$?ssC3v1XyLP{?xj<~8%z~%TfhCh`e1|gRsJ!7qhR?t(#+!qrIYiT8 z5g&)vXmD{8=c}L59x!BZCyEJKh3^d!J#XgtOtzBvb}T87S>CEn@vYBoyXe^3HmxhV zMt5F#sP3q^KWn+1{o%5mlk-;;NzzFZ^$gfLI%*HI;yR({rXyFrp!&Bg(Vj~Cb&1`{ z@puX`E2g`NPqC$_@xuV3EPO3(yi&QB$+`#3f8VKWM%aJQ zw7vEqv7iQkDE6k)h7B8^yggl{zQ>`{IT`DYGIVC{%yDe|F%99g!mN4e)J5ZX>qgBl z^S>gy>=wa`e6~z$KavK0C8w;OdT>Btl2iBFV8Cjb4DFojf^B=$gfb2$Lk z3SvQ$D$@FqSv|~a?Z50?%VY-fEfGb9P`@_={3&rYp~tKLQQTAxez2@|^(F~yyDbQ- z9ELpd3JR!AjP=YtNxedEpKx*86HKIOnC{SE6dGmZSX_Tx$lo>Zu011Bla}(RFjM2> zR<6{&(QZ?2>HaI9MHHrS)=(vNQA*r7?< z_k*-VRzFfb znpix7)=dDh6Q9rxvZ0>;;FJ6_nTc~$DKw_vYN|eaLRO|729n8_4)tsmz+Xe2Y8HML zqesH1J0%Lq1b5zLV#)*+rt83l{f9;iru%qj?~~fYgZ1Ze)916<719N=Yp=^rma4d+ z3J20njo*3|UzAa`iP<2LI~2yIonV}fBW^ZF0Oxm3WGzJ`zh4kJU{n;$YGW49>nA1; zcwj+}qhTbzi5|8k2u~mgHK*P^4t5s4Dd)60K>Ka}kIvtu|DNy(U#Ry8-h-hyxXUsC zd^x3{YMa&|Z*Y{-iY?<(NRYXfYmg!=9IoZ8FD5UK_b`i!if-ev_kCzjjI2?mUjjKfj}Hk=4(W5F zdO@${g4g2F7B_l#$eZw=Gu>Z_=2)S@>JmF2iN5O3C&n_WoMXYJ>hZQ=oHshhm_g37 z+HtC=M%_SD#m((7szZzTEi~sFj~cc!tjQNQdAlm&8to15FjQl;9*`b1n~6XQ%^9>+ ze!=YPV@^(hi{%5&>m|yttugzP)CzP9M<@-wJ-NrfrUnSa6Q**^%F6FL2d~%u)p% z-_-xEyRMF(xZa3a;&sX!$6*<3$-Zdpz&o=;;`Gb(j>l_6+6Gf$l%K9kOuZ^{xu3V0 z4;nBq+dYV;5RJNqrsm1FTa8f;!S>K8MO0O%ryj_>1Wf|z!a$vbkNHCKwAN&d248?G z!rViV)Tk6wCVXh{#hb~#nI8gnGGngYp(F!~_9!%M5B5bjB3(*re(^8Z5QiEwz}X_1 zW3)~C;lPomJdtOEUa^P>N3M8CP7B8*HYM(*rNak1%9+8Zby>Z^+!fFT=pMFyh%-NX zM>q(d9{<239z(9`27VYhN4vX-Dohd=+i`p@{&&DLZg;r+`L~F@o{m@dIwW~4-5{R9 zZ*9N6!Wdldp!n0AxGfA-oY-7(E0$~}rAu%{nTH+S#l@v`bwLJKFdKMNRcUUVJ z0-=CpCa7jEDO1qtH9Rl?=nEeoTw)IMlLrR>bPKiaGaGtRm0K~)JWY|)n+rCH+KBHnaZPzLphs};A0C#1Bu}4XEMG`A(4YqO+G*`f zfN?@}bTjOw$fheX)6eaSS09J7sVOj+_sFbb0#+S_a|9P(h6%Q~pc&QA{z4;rZVoc34MQIhKMGV-KK{EBV)TsF}^G~LHa-uz~< zrx7C>nrLy4HuUj&QjKHjI>Q}xI#a3PYxM^=+1oEh?*$dAWB*eBUSrfoydlD2#LmjK3wX8(dl_Tx-^T7PAX_bI_tB1HH5vnw%g7JEB!XZVAF(GeK6_lo##b3Z?y?eIT zUjgYF)dwZCQyNxZJWAfem39vDaLPc=KflEC7qJfLUU8u_;cO3*nJy=ar1k;vK(zDqFV_n zFP3A|1$-M^If=p!jiV{Qvwn_Vp3Ty#{FHm=f{JDI2F16vDsnnCrVj@Tk**b0TMRtU zP6W;I)cNI~WMip3aqO{HR!&TJd2r>5nP|nIj{0$!{6fbckRL;%Pl?HI2L-r`y{bwM zA~6NPjbLi-*j+KPbZD)YnY3I(qT*nyf!HW$#v&^nB3`+zKEc|$5@pFw`NM6ws=J(c zi2QzV5P>rne(oUAbA}e{+N46^njx}JZM1cXOCph4YcAO`kweYVf7}ocA-FnJz%0aJ z3*FhA7@L0C5v@AOgC9p!(sZ(HR14z0J<1#njB9Cdk?bI!ZKbxMYl~KSs<``Q=1^JD z`Kj|4SKidd0_nk;zK5dE^<*{X0%oP8-_ZzZ(3-IiW2C;Q)_UDUf!kW`aK{bh(LHI? zWb^N!h)o6BGE$mAgu>d!niOqB7?AsSkpRJfMgv!^bjFBKdK)EPQ2-iu{f zaid8;bGr+BKEZHabgR zvXnxz*PX!!Zd7ONw`bK%PR)0R z+lfLBG^VPO&AOlWm8C=m1w}-t*)nyDs|)!S%bN|k8*X6cWOK-OUoZ^n(adpU`}o{L zpbLdY=d5C9^LY7~TgC;p%^w7DWFj5;_Nh>eptW=@k_q!aq?1%vcIa^PjGEF!z7*Wd zom{MQOaqs<8A$B;4k>eJTty0UhQ?o@g&P0TAIp@!L>>C|tk2cpdqh+E+WPvP-n5?m zFL$F`hizdcGLDIc%=DJvYtrqbC5=Dc5uC8ja-19rZolfX|Ck^gqpXXA@sRxwk^j@m%aY%EFtin*e@{m=H;_ypFwwH*h@VPD?iuK{Nv}!fy zGcOWG<%HKXm`KJBf}Hrl(!m_hv`C`Sg)cWyRB0MNBOQl=(-63NV>Eh;qm5Mv3KOgC z64{ZPAbZWDT0j6|^MYI1bB*5jk)s1q6gM<9fPKahvYe52L=W+se_JcEy%Hu|DM5Bz zsA5s)S+h@29|olt-A7@?zH(*dbBQvhq@$>!g*l$xjt2^iK+dAkXOWj1CA79MGXG!(1qd!-y7FtUTkNAh)`XH*W^hAkhv0;yNo;8>L7X_Mh#L@4}YTJ8N2KBKK zW}uRT1H1NMbjoU7RO0J0oe@U|OI`3f!DO7U@Vlq<3JafC(p$FNG&MD)z)XoN^p@M2 z7r+T@nK&|`j+K^oxeqpFQZsYW4)*tl+vX5?f@B5_!^s}=U0syd!)d`ldE=g{$0SCRg>n%UdIt+M#UCc{G-jAw>Ba5q87_&yi@Wf8mdcY zH3|19_tj)8%%_g*-R+I>2!?ltE>QGw2pvXzuM*cfT>1FBXNBeq{+gGukR9Li}%XemD8hYv8XXsOq3aP((Bk1qe)|SZOxEbOr2dP{6-9L;U z4;7%zx>^^ZW}U_86jVwAcr}inp+;w>cWRF88Nhe+{yoVZT?g$Bt|;cG<0a&{r%1*D zOxh3!Q+d5LKUtq73U-m%wcz^TJ>nT+Z8>#nQQ3eBE||_WS*VyPFN@&T*c(G09b}aZ z4W*`}Z}SE$j!yqo7S5V&u=&ap<2El3iN{Qf&>$UJ3**wbU+U-Tf?U3MVbjGiR_ zclSKAHOBt(uV76l1HLfQs3kJB;WTIsHZifHEnCs@EQpIW*fJLi!N(6Spk4Kia1b>cdWz!|hC4vQ6Hs1J*$Nz-gZs&ns^-@r?qDR zd$RTC_zW9I@U?HL6b`tivMD`)zENy(y_=$TO;<~Y`VHfnS}a-b);KPKiMNm3(pc9? zWNy*soxl&sXU~G(wi5l0H_fUwvUo!q?Jh^NU*w^`-~)=QI^BjPw}4%X)GG)+03NR( z@ib4~C4g-DwtX%=*+_ciNZfCMXUz91hE>F4&EJBSoe#L#B`v>Tq539JnShQ14v-xf zc{{>{6zM%_8lf8ty7tS~#i@vPg#CR^>NNdP%Owc%;wL93k(2?Lvm>E!@Sn_ATjJjR zeFcp!H{{(Kw-#~8^x{L;@MYthfm5T-((bo)Dl=^y{WUo@E82o@Nb@e$b$7au3{r1p zW;)X~yK{z;up_K0w6N_Qu`kCM&ucHP6_^EDX%#BmDwn^>yZSgQ&$4zB9qn1>Rf6Ck zl5ZuaV3UVfw7bDyR>AU&fh@+RI}>E@_~WPJ)H^fZ|!Siy%adfIKu4w@W@=b@tb ze-&w$m{?Ae?f*BN77%MESUhvf%L#A3WAzpz@=x@WCVwmVs7`&Hc~19%6$Pp<&y=~B z;_a#`KeOu(Zg_ip17`7O>BsqUCQI-2I$4=>qXF0OviH`+idjT3BFIhFB^N^ z?(ouc?9QiH_qa`&>h$tX+mN=4%VEbo)BsOHV_1?13Eb7JWdldZ*gKlmwzC>uMn&_YE^K7Co2`XCQjXA;oNz|}H_od{*21cPt z7w18los=)8QN^KK4@2*;$^{8iH=TKOmy?KL@)DWB#keUrdxi%F*EH*es3zpnCy|uM zlOvzY7YLSS#_cxZRteObHC1f3P$2t=(r8Qv`#g$oW?Y6*e!TQ`H~rN*f?lp}Zo2_d z6M`a4OzDMlYUa(iX6;E6suoQ)bX0-+y>xWbzsDWypH8w4t4C zb^yWQJnwToI$5nI5D(#rtE%Dxq{|!-2mnq90T2;zYJev;?bO2#=vh(;e9XXp4vI^D zuf^MQKN0tsYc#gT(v5QVw+dS!R4Wf1oF$i(RaBISCo6P|kX;!-wDi;YSIbCSxCb7b z72HNAuo#rJx95Z@FZlO}Uqhb;l&Fe8@pSlP-|3F?`t&gI^9#fZ; z`ojz__(Cpr?V8o`4*{O+=95-q5&S>aTd$)()_L2!nQknQ*g zht1-!78RO9BV_MwX>9~z4XMF>$vZNozLB?rpatLBsz6xOjvTBJ0U^} z3%?W1mEML8$PN{Z?il{H0g;f>_bhpGzYxiH<#_3%ebDA6FxmfyhZ7_$<%f zaWSxj94nE%@4T3A#EUE9i1h@LiU)2!&%8I;KHKN2yl>bvzAv=jK530Jg0FE#?8!J^ z=B{4JyfyDZe)VQvT{ptLf|@9blv6zWLA$9)oYCb|K_$ zOz{SQHIni7E*}G9*&R3opmYMqJ&*nDmu#;wz%f&KZgMy7f8=!JDg{|DfzEqLIAq1Q zK62~6bD+6(>lSoH*Zo_F!@fNSte7zk8Ywp++3tWT%WF06R*m?P`_IyANf?S{JA3+- z2-Rku-IqJt7~7bAhzf);Ow$zXuUaAwtNO3Ml}13oaDl zAF8U}Ap=Wz!(B=+6N@}@XHUM89~VTGDI*%Jwk7`F0z{7o{1_b zrip#hbf&p}q&&D`PkZ<7^}-QFt_7))1%;DLZ`3SO%?K@*QEsQ~JGvvnE(R^MwWU}b z5v<#TMO6gDS>~1&NRRnhbq3vyJ|xrtyl!dDjGq(Up9_hM4i_&B{jlc4U=^BdcpH+| z8>W=r@mVL{G4HRzsc9<3`YR@DHV7c_6MGef(0qdJVC2$Su59GPo0M}Wq$@(NhBr`1 z^MaZwSwM5H{Hn~o@)&p=2t5cf^+nT1Ku%$)>&9a^blZW8DKwfSf&qbG0AB(HlCkY# zfyB#(D_4Ym^LWs)d*Rb~&~cTuHs1NK765V%sa_qMz&IRNm;!Gz z0|bC+4HWfDcQUV8;XWC@Y5UElY8M`sN!g9`;lCzA;DDVwZolWg*LyFvIyXD}&&>9# zc=)0;3hn%QfGnhn3IrALTS+yX@1V_aKKeQYXXMv6|W^VEPAl?N(yz z2s7n{%@u+yEByfWboG4Ryuk$;Ih~67Qpn`z&cfjVV33LXV^$A{248$J}xD!i6{0gENBo3-k+bK>F=s1wJOaZ`i ziJ`*=PaG!qQ5~nu@Iykc3`PiUvHj1Ygq3-@@V}cAl9uE!^5_XNg*2&gC&X3C<;O89 zCBQoQgkD_tP5=eyMrYB>vp)Gl`@h zM6c(Uzs#TBc0ZmEWMO7LZu-1hm&W{qkHOX?ruO#Oos`uH8RtK>J9S@h<-GOq(Fg*~ zmy&XFa(FDdi8VAd5PKZ5%2+r!Aczy@v4J$0aK1TASi~dWo%&dL_|TiZKy9MC(Rn+< z^({$niZ{@%oFn8IMt1h_^s^-$(u(q<3@w!p&FfoL1(s=?Pn+UyMR`jUWktzoNw z8#EMY;1X@d-p(kDnSWl{2DWZ3rscV@F}a6Zw};x2t-Epu1d`fU9omtq^Xw{XJSNu1U>F55K~V2g2xy-DP`7)K?FdimIQ{a38rcj{ zW#hofyaHRN8Sv;Ts|AM0?35>S0lEPWe_!BWz53~TZaaabbKWuxo0|(XaEY;C5hwYC z_Txd_nF=CRL70Sg(EUbUcXyHh#mNF zU(oZ-2HAFkN`S~6f|-Gv_RCi8Oq2N(lV+*OiD@qwaFrB?v{RdfZM^EE=!0RVU^`F- zzJ0_r4820=Rwa3|#!SwbvZ5A6Ubx?znle(rtXB<;Zl(l78-CsgA$N+`x1ZP25*(G^ zJLMqc$)q6|3-A9lytV`s_!&7?a{)+X0f22kz-zUUd__Aub8~YCkRBqzczA@p^ZU0^ zrEX^4Cpyvk+d(j9g4CwS$L>V?e~rK9V^VE!F(rs}WYZpmypbZ2$nb+jGY0~6(L>Fd#B4*M#y5=sp?c1S6T1_K#>IQh5umU-mvHE!poD)3x#OiPyJyAq~G znR`&k`iRTXC`~YllW11gZXA9%hS21p0FnfQP%t2cLoKPE1{0nn5`#;ATP-vLq|e|}!Mn=?3-~J{nG&;y1RU7bye6p@n)$Auo z@`y;`#t62AoQkmP`{969~I!qvY!=dEae&24ZZ-nX0k*qa*ca)N-HASQp3= zyCte3&rzksFCksH+vj}DhhY+w-%9VRSTnML^C#bQG^l~$sT>dtnbB-G25XTIoKW;GV%Hy4~Nr# zB2fDg*%YY!VcrnNO4)``kinrPqpI2$s2iC9ZvdENroiV}$+{8n;=u^B8tJl7o`W~l zPrW9;e-Eigk&lxx*#V3<`^p!z2&hmR!jnKd@-0{Nom#jy8@$UqHV*EDEMROKo9@!C zt*uEs!eN>SB0Pww zexWF$%LFy|h1p3XOrt%IC;DGqd)<>JQI{K3OPJG;OBndmG-8W~K3n4N+UjOVQAf!M zq(R$hP;CTSz*q!s5eXt=%#2StxV&)+nJlWr!RC00B~?uUe~1i#z{o&E@cl%9Erbq=Z__ z1)qj++fr|9JKEeA#;^dd4<_9a34$r~xQhm30URC*KMEdKalM`*v<0u&a26DU#U|G2)?%4OY1QvbhnG%? z+}nK>#T(5AY6HUty`cRIaE-?WLaCs~KJ&ao0%Y1@U%%czd1-IL?E8-^1oLvTG$qi{ z2Fx76#GSJ2T6smq+A3G8d*NLiiPu(5?(#9|>HV-kU>&9GWh{>j4+Apx=Acy^7zp7S zMac0Bd~A*&U2=kEh{Ru@3-5M_T|^_Nzs>EC^z%(iM9qydj?VO)8)gB+g|1h)E~oDk z{XRL$VkQvSK0)V*_bV7LreBZwH;;Id&>tL2khaS$0Pq+w@402+Pxtiq1%)3R0V-KUzu4jqz z4!VT5UzmaAY+z&rPznq{y^a$O=1yE;Xrm*}Rm~~4y$jH#E9#5X`_PT(uYA~t1fLxD1-|fq`y~R zRbim0M|HZ!Yrf|uisw&l3{p=}(_Ex>H{kDG9UdCu`P4M^!`ytj7`i)<2{-=0ZjujC zV!nm1F{oSdScbrf7GTu_8kW$_B_6}{_%)dH0CJ@=W1U^|Ze|n=8#zo$IImJ6~st=mOC$ls)#Sy9iFEnP!eUCkD zI!WXB;&t@s&VC-H3rm3Wl(hoG7%w(lK|dW^|1P>SU5z#N9ub2MW|z~R^VV#Q6FN(ufjWo|sI#8(Z0$UcEwd*B7$ zg{wq*OYw@F#m~mbjWYi!U8#>O9&eVd_)$k3R&c-UZtq7J?`QV6klEVoxsz4>dF&s~ zIi%YV2{Pc+aQR6k66w2LzQin3=}l-{Iq&B#KUj}W`EdQ~h7 zoNC|;LkLWbhgBs|YbG$eG2fVf=p**Vcpngu1klU4Xq~yo&d!c>n!f;EPGO1~umX?0 zEYTw`PSt^Ukkfkj?VBVJE!vR7HO=$4(B$7jB0EUxLNcmM;1-l~yBG0JARlO4=!Qh_ z5$gk~O-!T#x1RRjt>p;V(O^1@&4?$nvg z>V_@^FFy}QG2Bkd8JKmABdW3|eDduF2A<|}n!wU$9qGFqLaDQ}&p{nJLCMO_odp43;o;XLDepu)AYiaw+@b*T!StDOH z`SU&(Kh>Rui%*JRHOV6!V?M@*dU`#`?BwFOLo8qg$_xlAiywGuM`zHL^^lhUXA+n> zr4fr44bxx(0>a9BFeuW0IfSEmqT22@Sae{U;sw&q(C~2Jm%e!y+y~ff46|(vot0LPUWd(mnxO)H?O)LvyHS zVMaqxLN7z|LQV6--JH7v-$3nN3t1ou!mg|k^6@C~K|U29IM!W6LE)-d z+4~j+TY(DqNQ||vU3S+O1PFAm_dMdaF$-)Eh-Ks}R(JW~Mj?K8BN3d-+;tbfC!{q= zbjr*orYcDSIkm$0x(EG=$2w?I*9~!M)oC+{Kgp9bX7`zS&LqP+VYa)76OiLCAYTgZ zNHc~v?2pm34=(*ZOW}2|wVfGJB4!^Kbc=m#(G4)Pf2zMzwK>!9<|}wc5y9KMU^r~< z5#a5NS-R0~)ko^^oW)5XMs_*M{ytJ&A}}AwKt>LJF91CdI9uo-VZ>xe>!GZyWv-{B z9%iN|VEX>9a70U3X-(n0*}A;lMDebD_0vgff~5NOi`Vg!)uLMb+do@x*?*`XS5|gX zZPnE^GYRW;@>f!0x)!n@SA}A&?F`rV+;DNEKq++awZAyvT zR3pK%Lj>#{s1DyWL$+=k`|DOh0tOcub|TsCa9rvDk`ovJa|vvW93rE zoYLp^iLwJp-s4X0&9jLrsADJog+mprK3p0u-lP;_aYI&$f}Q@$b-7B7iYpL#XD&cc|#T#yS(B!7`G-zj%R^K( z=ZGPB+wY}U#$}|U2vcV5lw3(dLKIJYD$X{_Pi)};qbE4w7+PYKeZn!BPIT=S3bed# zZ0~^cQI$^5${GT_q)=GZ0Ts6O_X{V!E(#IL1k!gMpFc;r(eBQud`70O-X$%Q3&I^~ zXJ=lRQlTILpD0V#?Km%AbvZF|YfxBNSRgY&B$E>MD&r4j^Ve2*FJ~+{C zLDTCPTu}($Vb!`)(G(5M z&l{b*g7mh0BAH{Zu?tTZ5XlTh74$IZ2DjYWA6hP4fhd~qDcrGmVy97vNxiQRmuDzP zBjGEG&hN{L`NMsO)m0l04_%Zz`-xEcyGxe6vg(pE#myhm*8}Xd?md%=u7ZE|EiW>w zYEclW#6aP=2+YHf&iY2gHd*UnB7KY7ziw0PWQhnw1#pc9{G9`|g@K_?!d;S|A6zr* zaXmHLGUfNDpoQn@^bCF!b_D!sJO~jqy6`TtJH4Sfo00Z?f-I|7;virs)h$ZEVIi%O zvM0W2uPl|D0Qy5t!;%*RCC~1Ld;@*71i0$KMBTJ;pkX=}q(j7-r@Iii-B{TgnVn;D zyCJu6;nMYH14CXObctxD9VdS1sp`5kN7)J-Jx2MtbN?Yd4vRWnV9M>R3jB}ZE%O^W z6HipCi>*2n0vL^4kH=5lB^6dvF2pVsE@m>6aJSlrp43k<SFejhsXLe?dKgo-mQ1_idJ%OYPS()20PgU2)rPTUTejS;?SaspQg0FQo zq4KG@^)XIarYn}9*UbL4`n*4zxevu&iaVB!>IICoz4|w$rWPZ)~zh~b*G*M$9o&5AXA>}7c z^PdtTQzz!{DZIvwk3ph%$@EO@)Y9wKtu95zGN&t4BMM3%A~+k5-#|gb`|8XcakL

2j_)hM`xN4J%{=D@Ep zKi%^q;pIFxRvl-Psl)dD9xhv=~!Z8U6#Rot9M`O)n zh-9PF`IDKm&{2Gv{Hpe}=5^wwUwt=U*k^&0NmY%A>DgaIyn+x&!6^0=j&nrMgpw`& z%Y@s4R*Bq0q=@g}{SE*{G+;47=|8DiC~#J0W@MznqD-!tdv!a$=WXw-yv@)+*_GQ6XtmYAn})}uyxdz}jRoF*$SfN4$8R8rd>GnCaPdJLe!P}_OVDwV zeovf}tuG%Zu-j1ZBr_qw>p^|;Y*x>hVtq-lwA~V;^F)9;pQjZ1>}p<|#I{a);|>jK zd)F`~&pY9&7^3Eu){bSaj6dZ;C;Z`4JEy7I`((=H-?x1@6{AckeA}WFf?X*QYBBKe zmImdhWup0&m4&E7^S_1)i{?b>J9B#`kL|*5{y`+=uxG@?O0_+U7xrqEH$qd;&=@M+ z`~SKH&4jC^ruW~P`NR1xCgvN6ZX8dZX;bn`_1Ufp$&U4g^JLM zk32~i@8{wE4dHwEe>BD_iC!aZ`K35>ii_tI7gTVmKmz7I1}Y}X zk z38h1jE(t|Jk&s5ZyQD)vK~m`kX;2zOI{*93Z|42-&RVWFRl{d!DH3ck8Vuvq3HZF(=blSb&up1BRF2)WN+a2`pkPK>&i$TW zULcIzgFv(-1u0oz#Q7$ya@>|bDJ@Z7x*zVHN2qcwD-pkQjvFg*P8yviExe`pn3RyNvT#h9O02FoYN*LiTG`fD>2WVzU$vB^AR zz&L;;vfpLjC6c1dHYS(%aDE)_T}~voo4o9|rSXJ?cpEo`KOz`+5Y@v#M{{7?reOFZ z>f?9I!ij*%VQg{lUfjB=?wS`3uxbQ`%EHU`pIKJwArn14Jqa?0kIrXT+8MkrEpYWn z#+WK;6kGhRYUg)dWDTY8c%L*$wIJ2n4(lH<{LUJO@GHHLcH@LZ5NOwrubsWxG`<*J zZ^%z@yzo&vzC}ZgOY?@)yy1L~FJp~a!}W5!swxSqvRQ?2v<@RBt6=(lt}8p2>6o}a ze5m;wD%4`MbpiO;%a*yjqD+w_8Fo)K+QK@O5`T0IktjSkB^iIGzK!{roc|9FuLW~i zCOgN)0J?62q0utAq9lPibyV%o6)eJcTr3M8g?DE7ZHD%OdmFAfX$bD^rHx@mnlCGk zq0R56JuTxhCUbuB#=7VmFmU2nlYB(0C(YO!@6gcm;KSf$M0y(=;Frf#vLlEnI?3t zySGyz(`j?l4$dA#86PL&#cNh%G=Iyz0~PnEPC(cnNo<6krAM9QrmXRQi}IA(~FCy$cW0kCy}HPCv4{3Tt&#b+S8ltt3Na< z>@o&bm2Kp$+-x%VqCF*EGp}NM|xmh_2g!)sw2xCMJ9u3 zUcLIRckjE1OSMu)idEPOmG>g zSu9WyjB+UPV%0G5o2V8A&vNk@|Sm7{kMn@VB6SF2ECSYn7$YB+_FODZB_KX6Esg26RDXR$1qknfu z^?V@3=pHNU23aq}Z2waRH!A%LQ9^`2K7w+Cr zU<360ZBSXPo9g0FR!@Izx#~?LB^4Rjcf{9b_9f=qprCbIXTc=o>j;AbgHF-N_5zH? zpH6@FKrkS=H6^90t*@Cp8JBSE>CwPI;ukPBC30>O4k1z^u*^p2GUZ)dNmakgU@8l)2qD_=j@{4=oqZZ#7|2q56W0fXSKfK%PM`iP8fu4vugnUETf9 zQ`fEO5Tm^}Tuvu78kl+U96ngwB^YvYyI8~)aV!3PbF{=G4?M-4a z8+b%m@4C@!%$}OhwBlfLmB39oHi=*0@vI^T5sn}|n_#4!EKPRfYRM% z8fGg;qG zR-^V74GIt3&6Z$hZep}j5ZsY0EjPelp@*-ejky<6Z)qp;Hu#4nBj-$w4`xi>$j znb{vYM0UO&T=}+1Cb}hC`Cn)42Lg~7eLKVt-vsDVQL(WZ3^x|qLXglh%gPov zTpu#hkO1fekW?~<#SUE1H9mUuD7B`B|M6=P16f&22vM=PI6r&zXxR*(6eS4&pq7@5 zuCA`ToeK8rn{FRJengHL_!ICcrkc>>X;BFK=@;;VEPzuCDE_sSUfCy4sA0;+2x~0J z{Tz%i5d#Sz=Nb7N-G}&EI9l0(%j@WPd@~C%bAn$7A4a_qpK37FNv`Yh*GYGL6ik`f zG4bhEbyMumpN~aP*116A)edJ$M`!08aB`l&GeTrN9A(HqUa{Yy-{ASPjM4fc-Hke#vEo5#=-0Sn~raI=j7#y zxfcJz?P2|sAz$C^Q;7?O>V&&Y9DRiGqnyko8ew#Lb0-{uaW2S}&WQZChQ453#Q>X8V=yY3 z8FvDAK>%Xlc9HCXY`%ixx*#yy3G@jIqF>H@K*6K&TH{Zi;Q%+y+ZYq8?UZkX6|mr7 zAA~S$CbIzwDgT*lrSSHx23lP#W5cF#?J zmNM9`U;q6o>j0^Xc@U?Mly1xKb(_cXF&-?8{WSedSIMW9>Za0IOd4FbM=N_*7I2J+ zWGDDC!uJmSDb>`2NJNe~Gu0_Rd3v(|o=AH?#C)bPcKgWS=kpe9;nVFFz)2y$Q6HT7 zz7#rH%>D6HF=fpsy_iW(JG9&?%xvI_ zvS6YHOJ$2FAL{YCdpNaj$S?+O5FlA}H?6jeCSPGaJjJj(Y~s zofP!ARyd@ID>2R{XT%oG-R2IHhpdp#0tp-zn z8!a87LFaiH-%1r9a8C)RF_!PsT#wgy{1CI)_`$x7u2f*^S?*{@G6e4Ekojva zc1Sb$pN?hYWwPm9{{nuW#GzL#H}dZC9sPKl`)aUq|FvPs*qBbC2))%hze0f7sh>x@ zI>)Vi(#+x$c9*F@%pVRObu?wcn899>2{VM|y{)FDD#JB|2^l0sBT}mU_vhyAzBTaO z4^I(GDciXPC})S`1v!KVya!;kGFrS;>}pG3V9@NBQ4S?kx{&cwSBfEO>75+3kZ1_S z`qzEFz~Woceyc4j2lKm=md;wK+6wNMl;B8)heaX-5&4N2_^Gd3>qv%rT)Lyq80;4F5I`a3$K2J%juTOx9RuCMtu|Nza zkbVM076jo&2CvI|;i{N0u%tl(pAZrTtU$1>dJeL7!0=Z%-UOr0am#2;{_3ne=S}U< z%Qk0iwpG9`!L{$Y%Vo!MvL=>3IsD^gms_)mUdYS!A*;n~rHs2?IQQGn<)WrveV_EF zUv75NBP!CZV%HOjCKgC8PK}nF-l)J#K;NEC=Pph9(=|TFf7S0UdMM`pK!GcV%j(ec z*aOIn<9|MjHe6KSAur(d#e214RDH(hw*S{J2&oSId)hzMDX+M4M?4`3L-35s{xOHR zwopklS{u$4oQeg_sW}%ma8^QuRgzwefBJR(8|ltdV}JGZ1-PO9ydmCm0C;Mk%dJ%B zhU(Sv&qd0PJMLXwVx~Y+oNGr+GZLw~ziv3-=g3oc$AvxQnA@4OdLAvixFYlYPcWY% zyaN zsW(8tFdY2-r=9Az>8PQS>qZFw@0)BjevoxV5!uPT=yLrZy!=|TSi-+Mm)#GTt!D=_ z7QnE8(H|tchys7*beS23D&Bak(ok(EYHkpvE%@h@S=`5l;>g;ktE>>@qMi&VjkZ6QEIFSUC2%{jG^N1j?6H{aY)Vg$z~#CT+bfe(5FUwbG%%$v>+p4n zAqXd@I)T`PQzVoQNeSh(``H0i;VbpZ1(jz~CUk~M^R_LQx*ATbu!jQYuMTNd9gAIt z@LA^wN-EJ8`GG@28q;u?J&#=j0Om)qllk*97t97b=J6O*-0pSvGaS9T?|C*e@+#On zhYQLGp%-dOKuQgi)!U!M3tn|yzEp7}Io{~d#?7Ltn`k@ZKeI*8$oTHgn!{7YyhU1B znOm1%iQ;INw63{DM6h4Y5ZxSFNW<=Ro|tp8;2{->$m|;&#PDlhKs0(aB6d3_bm2rI zpM1+GIWvM7*2bm%%gK{WzZB}^9%$XBX^+hQp3(0X0lG2-5-)?m4-HMT&vt@&@#k3P zNtyKe>Qae`QtvGAMW#e>9qtCDZzJBxNVx+8gXi0`55chtB=C!6-`Px%tQy0}f3M^h zME_pNudk)N*tw3_PolgYiO7{|Q$ z@_b>W&Z2$~@k8!2-7IJb*j<*G$I1gpJgUk^Mpl`Jezp3p{EhQes=#`T2E$%R>piOW zJ>g4FPe+120~>?{=%Q2G{V@5^hi|>+ZTWk0mYd5!%Iec}tBEv-t^=l^uysM+@Zbd- zP%F$^+OQuxv=Tz{@xX{Wi9@kqQfNDsZz6(WqCJMmzXoUm0Hy;k&{Jq8Q0!)S8Re;( zyNCXbD!fG;Njj2{Po7!z_b!0SzrZ9E?AzJW(jB-)ATDG+sLxt~UnGgUimG{It=06c zg~q1G-0#sf2?rdU9G9`t;iXjxO$<}h*Sv1}K+=c50E-N7ol-x3DuDJmKS5^Z-S!qC z<1UT8q$CE!pQHnA>U{($GN&m_6tBwuKsw`qn2{r4xKhDHz@z)eFE6?2ziO)B?WK}` ze*eT~wAc(7ML=xBi){Z8p%pwh{?KLVYH-`@Ct<@@8GV*mFq}+ZI>*ix&d2uyO3Kz^ zA{8*U3OBSk=i52yybZs_jmLFG{ro;=bRud{74Q~&a3JF*>Rpd4&D!#w>+^J{Tj!}n zkt5`v0{CVnXx92V1OrU^qym3qNLek!C3;d%l1*nfKBLMfmC6ZeUUParCw-HHSmLNk zS?r7(8Hf7?A7*KVKTlHVdEh+g8 zN*{zogZmpHE-*1MxdTpe2;)vz1q7WkNH?qNx5e|Po zj54A)=?utu-N+!U+5(ysB;ytwGY8G=-^L{n7=2mBB?{n6!eE!RNL9shcGa4Ht`~UP zm)iIQ6Aci&IV7_YnkdQwGCm?w|eL zKJQ<@{Q2;Vl9rYwUM1?`hr6ujf___zYipn$LnaH-BWiJuo2gEws3#h$wyw#K-zah3 zMW-AN`9AZ$HSP^d=Qpx}=SQ|f`{d2|&!xyq)PrlzTwkE`O{gb?Vz(`=iSRUu`3|SP zqoc`wTbE3Oc6iFhO^OX*r17^;NPr>ul|r0X%ba-0D3|NHj)rE|Y$5Zb&b2Tx6>hdbi=#JA$@|%jd-+omGE-KSD$SIM@4c$mOR`C6X!|{Z7ct_j|#nU@p>$iMR78Vxntk@GzNxyJfCp`rRU?s(YHqq zFy|EbSry*UP4y|u^?pc$8QPF51#RxtmUcabG^O6QWE08at)0ETxkA`8Z--@FGuu{= zeIKBZKAO{GXYt`^IPJUTWlN;90#^MeRBh&>B8hV`2VM9N4lxN$O+%=bsCzdiyE;1V za&bi(DhmN0>cd}85v|9fWMHfGtu0_DPLU2DoM|n-ea6w>`(X1;Ch#c{5H(!4bie*t z*n&u%$oP2H^{IoIDD4-oWirxAOW7ZPh*m{=j+uySlb1UrC~;-iVMiCp72AJtmD31< zT!0B|xh(i9Npc1&m5;a%6Y>*Udj92Ryx#h+I6(UX{8zL`-`}z@Fa^cz{@}WP^^Ba= zH%z>bZ&s&1Bf4u98_m>Grf;#tJj@9rq>%}R$nGmyv5k>V`|iSNPEk!q@+fbCLQ>Rs z{*7_83c>spXP&v6H7%n{+k4xZ-D`89KND-NKYEl{x|u#W&TedA^hMfgfgZ{y+rRFn zj63ZGUm%?3+czo1NkEZrYB%I}oi8LL;SI>PSb4M=#eU!*^#eko_d>ik#C<>n53mYF zkqC>LsWiLCs0gsL&`0MVIBrcXDHmH_di4F*wxIU`l|*d?S|`U*M}&mpAP#8}CT8Ii zr;6u`i*h)NhuTrv&a1rZ*e_aY8VwTl-)_F4>>MwamQeTYk9F1 zd;LeHpba`=;DyLRc8iJ&9^4Th!AUtOu#{NvmY$dcfCR~Ye-DIQKqG;gxF z*?LSuoOM2i*|fTp>&CZl%m>soL_UkSyC7UY07D>Wl+Drc>P({If2Yl@e+N64&`_u} z2K3m1n=PZf8iSTt3h}Nt+vR353l?bGnZ=GLY69M~)xCZF`ZAbv0}&|E_xuPk?(Nud zJ9tC=zO@;o2IFuoh8P5PLcH1X=hgkG++5o4XJj@cwD`Q0_>p-2&iV4ZN(n!r4v)y! z&tJLP(*)}AN)-YW*j?oq|7;0rwFF0!6iy;twR@EIE*kxth4ef;AxD3I`>w5ZegBT} zWm=%rLWKVhEQ%)cP!PTKtu|m9L`ST%WQm8p1Yese!*fs+L0uaKfNtD%J z3yhI6soxO^+;6;xZICOt`O36$>4Oo8dpuRQliH+ozu&P9HMb4@wf%=wH&ATZ40^st z5mEpqX&ZVh`TYjoi{pz9-+V2)3uGSHrEUitNFXv;d?4k1Gx$UY zHvInIjr(f5K zy7hg1a-t2?`V?@bxl=MK|MbT-sP+0M)I(bauZUNCmB_Ds`z=nTx?GDxO;1nm?rm{Z z0+|rfE8^AV@0|ZK;3<4eOmgFavjw`Mhdh2LqQI#^CF#li?b9>>tYnC3mpRnHm(Y&uK!Nmc+!dmBJNT_IzfIfqn_H%g7*>3&3`d#c)|CvD;@;W<+A_76yQ#^>BDpNV$-Por}-Q|SXPmEgi>4lo5qTSSC} zK*NkiE_oMJnco1d0$~=hi}`%8)#d90OO{{O+|pCo9|~c-Pb94yF~+>#s7M@5Y_7vb z;oNPIWV5p8Hqh56E+b>9UJ4V>zu=(Hsl^q-EkHyV-6hWG^71^?PY=`O$hEF&bcu3kN> z-hlWR!sMuZjswz%AZWqL&aQ3A(P8pgH9Duo9Rv9a4#yT@zh6Bj-&-}{T}HTVf$S)D$CwR>;L-C9KM+ma{)&6ShUTca5b#)?#!B+9^3vQT zz{-jIXazL3qdzcc&_&#{P$kMu6&aJdyDS+)5b=YiQ&Aw&(gd$8vkxQP;O2i^fPVd! z{t0Dd=tTnhc!+-eQaZW|l};IW=OY0qFZY!3Vg>O`6!7e1>8DufRs7QcoFpTI;5Hnf zc00Ofln)j?uEq0X@$OG;o$9Mx?cfYfA0S!fw_6iI6%_e$aW&8dt$#zA>eErn-=J*5 zs4j_x*um#7x!@Qxx;P$1yk{YZG{s@%?1mY6;3sOxP*N$(GZ^*WD;4HaFkzA zJpXb=*sq<8NibGO{%uV6H)|F+zVq2)H4NA`Q~kXg68u!C-D2xrvdBDbllXv^Q~`rD zbe=B{Afxc@Jlku*H@|;;#DLfsVez}S?>^WldQBONXcti%6hSII~9I-4`d)D~f?5XL~`(B6lqJ#fB_Hxhb_aiL^~APEp&V z#~OkgRZM#Ik_Qjk;uOs1rRbK7+LD7b|8Y+T`=I**0v;V}ssvZ+MF?opI`r!FmHMU} z?>!BD{W_=%Ty0w+K*9arkv)Jma0ar2A{_w0E8>N1oa<-rRgZ=2GH)2 zZJ&}c`_4PzRq!#Y{B3^K6dITbh`rNU02azW!u{&%@{&z&g*yIVJub>7iuxQ3znVCf zpVO3JQquGZQ2Afo34F^(pmN{t@D*(ae?oa$)6@Jgk%p9r;$HfPkpV27&L>6O?o8Kn z(?VAc58dnP>i9du-&XDlid_7e_1y;Qf#;Z4DPW6e5kD|!K#5kD1%uABR__7owKIb-0Yjw zlHX`lMvpdD$*LZG2~u_#Od&yONF4@@1>d#c>B7Ro^HVKpd8gEXU*g?XToS*j3KYq2 z3-#qp>xMp9UTVHVB=gM{VW_pW$-w7*n$=NKRDE>~efwxi$4lwncfIspq!U{snrS zaQ=Il8B~6QZ0%Zc{k;+Pj|y|?&fDK1nJvIh|3iTvSJ=jrM~5NEY9B@Ch%D+T&6M=${rck6ra+>0JDsA}iBI(ouFtWo0EVr|?u#&};22M>bm8)8*&K zWkHen?RZ#+x%LwwufItx)apc?3mZ0=(kk=elt*;?3P(V=qRex|xm=0OCyNZk!&=_Ml2!8!& zS#z5GGv03Qzv%choirpEhFcpy8P;H@JlB!p5_ zGy{$Z(rigdOZN}r>nRuT^pE&pHO(l-)A6O(cnQ9bkc+1aH21~6<4u~E{la=ZFt3v8 zE7k76qQE<&y>NRLI=y%A`Kx-ou?VBF{>GvIBODP|I+bE7oPkW(>)h&0)HCo?69&coTu8MN5ez0ys6O`sJwC5o zvyZf}{azN{U2!xqhhK>$gl;ER+%hu3haBypO*g+VKWKXOo#Ke_0*QnMza69=4R8ug z>T!K#Z7Eqv+r2&B-WjhDf5xLTg`K!O1ze+GV*9@%{lAK6CfS1|1~o3_hnXuAR&J{B zIV5tpl$y01w+RUeVNw8%)NFKuyxTwY;FCc7y{_oy+9RR>B7M8?(?qbLo!b6>sZAeH!7%f!T5l%+9he`OX>XKF4kd`(R- zNyY*`RLd`{6pvpY*QfOVNjpB?TeDItIO*l_IefLWvcOjTUg0nCz|){U8-JgBMcz6##BktehW-T;~v<4qp&noGi(qj_rdgjB>4tIx*3<~=ZYh;+#Mi1 z8OZq8zqG^a+=8q7+mlP*NtMsIu1J=>XN$5oq=*43tACVhoYC0;WtM4+qn!L-{Cy9lAj zzzNTe>JJtzs=0ZWTD35-<@}2l0$HiZeYezT@5)c;n zqS!YYXkZRtFV**xeB6bcknqjqMt0U;_d^a)t-%d?1b$h2%4?+m;LN~@@*TR!yJUa& z_AHP&0muo2M7{o@A;4WBK{y3W4q}1WkT!^Y5%vT4m5|jS0>FzjSY{(ZO>pP|f7qtO z?hf)b4x6BNNH*D;ZWtP&oSVf|{vfz&ODnK@klj$=FlLg}aAD--MoDSry>)THb7D$! zotj#l-4^{`fTEcy?(Is#hpPN)Z}La`Glre4-WL(Jjx1F$JYtnC^32s7qEcJ(x_ret zZCO=3+(4Y2C4iNhY#hb;@uSz~43&w@(>vmL&9uGkE=zUIFGLSSQiK#Xe;(L~{yitx z{<58?T~e2IOZ5EE1f@n~qpYhbrsJY}kNbzHlGkZMv^}L}>pNpVi%LBnsQX3WKq7?( zK$k)rBsfDw`h390u>!*&CT5|ZrWX_Y*JKrvo*$Ts2;pcxS)$$;FP8;{doY-s6~h55 z7vVfqt;`rIirurgmmo^9w-HHOTNu8&VCx=ZQ^BLvKu%h_pbht!{#xyV|0mvY?o`7dHD)xEp;>6-Qh!8!ld03B$$;hy_2iAr!@P+Q9CCh zOl)EdO-(Y8tbPm&a?!P(Y%0tuo{5n$d~ihrq7*XDd{_p#U0~9>3a)7dw2XqBsHFLm z4r`a(%+n8YjVDcYut<4eVB)edp$RGmv876|ZbN%s%p=mB8R7xM_uVm*Fe~76gCj;n z`$9jIsTIJ@Y=FG3I?(NEsHpTU??W?E2jcQdP#HkOo0pv}14dpWaDeQ=$(*t;L5+r1 z!IvcDHUa~*G#ILOs{1?+0f|?o~2*kT^8=2ee1dt~Sdhmi=_a-^{TfAfRx3^bj)0AmZ z22YQ9YnvA1L?bdcCaY~=ZeMq@S$`izSuSVfG16t@xw?B0PwBm+%N#~hSesy5FCKH% znsijI%q^BSI@*GH@0Ds$sGQo}+aIjrCt?~N3oOmNUOkWJ)O>zVJ|XO?O|R%~pCoAe zY@BEAyqA8^up5C;_xG0jC70+!S9HE=Gcoi;wc_=`rBDIxkOrV*!?yDU0^t94Qn`^oA+qDi^KM=8?Qp1d*&%fb(ICj;;o1UBhObdHeOp~|3 z0NO#7FiH__XwaJt;43A@P7GsB!zkel9A^7cANohd#W4i7P`9v0B_$OB8jXUf!63kW zdyrRAWVq1)d=?Q<{oc5IDW20T$gXzjPVHm1rQg48fQ~HqeAW-iNJsvIB4=m#(`V{j zH}b)2&*&Ivse2$XVWg**1#m^L(mJ|vy!6pZtfKbgfrD~A4D==(-v+%afz`|$9IA*W zW^KI$u!9bT1RAF07ry`^aUp%SSb1c#AQ?Ue^^HEVXD5nkPv_s{8}Rom zF!u9(ly{kzN~XMhE`v9U3kY8ZW2 zW-BD82jLTz=@bT)wKCn61gfVeXcH?TKH3{n(Jd&ke#a z_bAIJH&**I0uhP7HE8DreNJnD&@92MJ&HJwnh^&eTL4BVBD?O6j%CT-`??U5pa@)b zm4^=>T2?+sLsN-uecBHf0}sR`qQ3TRj5eKDo`Y4J&F`F>L)6ro{ePxR4;z>|XXx!+ zYST@gRsbWTwY|L{KVJ@%^Ky?K^)2^j+(*^EY^nP)QPNLRQ2SCcVyKYImCO;`-mIbc z_k_B?Vr{L}v3`MoFq$@{M2?V9fKyQ&piel6RI^GHIEuf?9B8gEM-#B1Q(uvnLa7C_ z8d4Nq@A^Zb(s=PGw@FjW#VwPuCnnP%x!2{M%E+P)bGLE*Bn6f}#lCUgYdA5iK;9QG zxnj|@5Gymi<5wopoNuUI^nMJNu{dE@H6{K6F!Kf8Fa0VtOxiFFaxZ{JZ5`6QI`y@u4 zQM&dQ<1g)_srd6VztK*C#Rsbo3oPc5AVOwt+c9}U# zd@s%fUmTVS>ImhR7uC-fCcWbF4=Je}zQ{Yh!FKpNO5fi$_B&m@tK{i=o~ z+EC-NI{t*s^JUyxo69``iu9;R{Ktz~0AILFz)>x^=iUOfUPNtM8ifMnE10uOG#O7&who2dIS$U%zWYnxzN$mQ02?X(T!6%1P+F=227Qk8 zQ-H=*bHg0YL-^}Nt>!eRx5MF9kQ4n{bB_tZ#ySIv^OESskCRy8^BanB><{g#^}!K- z1blR8udL0*kVrFe1<|6WD6Ce0lQMmG+Zrb#`HFWN{Yu4Dxt8QlZKmd(GlvAuy&|{R z8>g~MrLwvDJFWTqQMswltAE;6!{CBw)uvJ}fhDIe5zf>K$0a#|Lbko&4$IOo={tKN zby8$h2O8yO$@_9?&y@1k}Egwbg*M7CJXC=6Nk$& z0pS(7Da3Zb<0pojDoeGQ_sZ%LD%(M*ke=BVu4XyNa3A?h@!lp zs8j|aJaPqi*+t5qME|IKq^fbafDXn#=v8RSk(kb7YHC%i4#Q+<|G&BKLpoBmVSkOL0-4Fa>3)UTn;ginqd?QE&A zHDWGoD7g2RjXU@I7GN;a00?i+%-N<}S9iB&8IL9gdCS@mapRW}?RO(~6YKgJQg3ExRSc^(b0w5>6?YPKXzrC0g5H@oC8( zncmSgjn4-8nOQZT590}RL!H0>=G8aYH$1P7X_?o^&uH5Btj@dpp-4xceRl8TS7p25 znBqgQ^qelfFs%4((q21vaN?1aCOteoh|!(4zxOTSDt}7FcR%g?i}yMzDyiT;$)Top#;ro)Bi4u-8#!K-?^ap5Y{FT60V!VAVSN4Sr(u8pITy_ar$ywhK$uBM* z0ol7#sO)$RlzI(2UCd>AwxsLCn)E-TUp+Ll_X=R@zCn07)EdHdJps2Ih5|G?D#{Xe zxuZ_v>Q+t7*IBM+ye#g?yBquVh4`DUq04EPdU3D(@M9@s>gIWLN7t;HpTI_5C5lJK zmHO+nbOO@_qhtW$nI=FU8gurNJI!rtIwF(v!r>z)8MbFZ2!8%`4VZ8mLhzN^Hufb{ z&V7FM?$cz16PO`QW(jp|{~1A9ml4HaF0PC67=ex{rVg7gc$1lBGU7W4NgTa z?r<=4t2z`Q*-+nD3-*%d&Y5U>|2g})s1=v5G!=w7Pzbx1PA@>zMZUKBfhli-;#9rc z=$6lckO&AgCaUdIkk<}Y3xUT&Z0r%Sv7^gA`33$rpO0|mIxfETIsco2bZjoi!2S2tYVtX&0Ig^UF-N*?`-`#(()0e2Y$B$DXT9Cs*da4p z2XHmVw26t(qIk#6A{CW#)WP)WwcY1GGKz2_K^q!F>rz3_SL^+%=sgazIyjNp?fsnt zgwYwAX&a;AJ0H!(r)ZA9A5YCYhz=H? zfrs~sYKobK#nw6H=;$lyvj)$-V~!R~G&C_4p@hnBk&~uP6Z_|9O(}aG&{twp@jiwn zqZ!3z=q(gBFuRE#J-x)#D(gB3SQUb3fWK04Ya10lJ`E$W5^w8?LBnXI#XHw6%Et=D z1GaVMsqKYP)RK&hUv+zsk^`72yOAlUQV|m9RwgVl#$L}-f5r!3lVyWOwacy=-kVkt z>yht-*7>KZsFIP1h>M)Wcnmo?g@GNy?}VVoU2JST-H|^#KWK`j)x=an*;%F!Dvm3>FQxRM*(ar1%tWGf z$@Lo;0&;`mx}?|jZ(jQ9SpqN@mWV3^?IQi{n>R=K?D7OAR{VX!;OwpwOeH3|8`o_< z2<1cuz;1a%{KZmU3-{TqZ4UO=Mz^p+3zs1HTM;~lkHO472S#@V9c~J0?5F487Mu-Q z6FCF01a_p-ud?kQ<1ksu`@`^cM4B;lI;d3UJASTO@kQ#+nQUc)d66eSn?~q`K8g9% z^OFEFyFMVqWCI8Kj*t?ZnW+MmA4xu2eCO^~F_?xKVXjgFv_x=k-bVpREU)^Ri%TVF z))`TC;6SeDo(Y)DEg~>h-)uaw^S}omzgYjCH5eKdfq(r&()WdJRYk$G&_^HFxJ zDPX+q47m?YeoRZlHHk9aDkir1jJGkx-RJ#gz#z6OD$l=hYA2r3z;h+*xZB<*1Ndb& zy~!d7fOhSl)u%P_18Z6xWZnJXFvbI{QkTu20u}6my}#9!ltPgSG9xpyJQU}^4Kr)l zpjV8~Ject{O7S_)gGx3X$XMT3oLAwY;zhiw;4WgTUBtUj&u6fP1E5MHKwzo>q5#Sg zR>5)NOStqla+0#h+P60U#n(Qki3%%EU=~SCB4fpf%;HZ(yu_O$2r~GFP#5X>_ke`E z3RD`~{Xb1`zmxLX*5GKH=64mU36DFJvfl4Fe`!6vm z`@ou{7`Wz^8TQe5tc@i7}n_RkqN~wHpBr4gbXQKULpJMf`SGB&?h^MGq<%ZJl_r! zvxJp~-1AV(Kh6<>=D6u>!#=?qn!5@McBPx_Le_ms=b%t1m6@*E^Md`4XUzGQ=bvmQd$6#GVW40GAM#ecdcmd6Z_1E2n zTvjvT&(nlSa~5!23gN`fudCAo&N(!ygTUr2#-)+rt}Qc%p9}F4Xt+2(nJ9hY4>jj- zjxv=2(5p%L?8uoJpm)7w%bS3Bhk&!MH&W`Vs)k2IL_iM1knzPttExyN{@%n3nUGKd zdu^X1bWKlrTGSm~O4KmvDMU1`k+hPl5H2 zVvicQoIt@HL-}I+p*Ji`=+xAtq+YYtE#CtRM`bOWh2g5lY_Xz;vlvLp2_HKde7p*S z#JA(>UDmQ;S1-eYjcS>*+&8gfwHYZ4r>$jC9Mvd(_5i3(e>jkWkG1=0l~ljLsU>ob zb8>O*fpDQ>UqvrubWPL4qZV4UvBePPZ4;^s4RTwllZpsDKf0CQcJPPjymOA2c|z)a+>8& zXcs?|jmc{>%33@;uM<9F3+Z+j*Tz20Vq4+T+D!9cXE2M8T(pG9(+&)QXN~7eyEft1frflN-e-Tp`^^SP;64 zs{0jh)6+QyU&Sv*>I*QoCJ5fQrbACxAYgnAAm?JU@8odXV!K z3tBx>)fdig2Jx;1f>O>SP%J>*);uEOcL%y9STY3HxG8;-i=nr`X241<)t*`CxTjOr)WRR!M|5bzv;r2r>h zQFz4EtlQg{(ENCFd@s(APiFjYrpIV4`0A;H>Xd1n$&@u8x=IfCSzsZ*D4wK{UO931ewuYbq@%xwo>!yq@XO zeaDGcE}x(P@=kI~JSVE9URhPI`I^CPJ{51g z04oqU5`3VBNg0rODh}h2)#>!oj|iSs7i2tob&P)BxrJH`!buI~&ZfmB7nNGpkx^GVDy{Vsk5!Zoo^tl_wTpUqOh3BJtSqaJ57haEj9P|P<{4*YJA98K5DR7} zo{BqrbAeR(^HOi>_`R4$rt`jvhK~@txa~zgA%<0b;iGpV0@y!o=jL0>x{TI)^)0NZ zW2gj_d}qZXpvnUy%M6Ij$j@DUJ3?`MQ9*N%(#7&P=UKbf^52&CnyTuV942kcU=(lv z=MOv++V2|(l3@AQyf>K@HR0qOy(51xVs-QK=|oDsl7Mvm5JzJMqSmWuyPYsqY*0^& zqM$H{Uyt23IDvtivP}~dvk{qHWsgxIv1Qv{1sduGbSOu`q@2pF^611wB#wC%ctDX; zPc+Zpu~0BhWi3R@!VsqjU}3cat)hs@4N>}qe>(juF*sM@*qc`NJy!4j$R!&lyz|zT zQm@$Z;Ht}81+6c;1vT@zpU>r_W!sm}vbLBR8S^RwCt0kCl**Im&rT;?TiBIsn&5Ri z@{{N1Gia#VW#iRl@{K+4y6}YFE+Q&C+@Y>T)W*TV0fCixfQa{Oq5=gT4Isf7DSgt? zquYlCuOw0a$1E)Ujb_A(0GOp}AaW3#6DT%mHDWHIRTs^W1AooF7}f-+2$x4FVK_Tk zT|%2TWHg3!ViV^%h`Dh@W<$cXrqz>?TY8F1=Ff)0?M1^0Sd!R%P7epC-JITqhK>Mr zJ_|x`mV=m!@BaMfaA?Is_L?2^5r!c08-;?c0t7+Oxgg*s6a_^h73OZRnXCbf>-t04 zcV+YZ|GK-)0QA=5c2D-r@OS`j(Mi3MTGT-f_D)~7zf2L+$brqEIUcdM5z2~0u zecw3;kwM4c^MCrVOJAwdTQ6zbS%>z*ffGU0?cnVELrUsY!ZYqfj`_VW=6o4(`Ng~G zyfAYix~OC#b6WD|Z}NCv)06VxE=gGGn3D`O)Q@2Y@{9vXN*RBuD%-�^ah9DP?o}xRdc3UQ1DDWd{33@Vv93`%K}c! zdtZgp`~oN|fq|znzVG(vfLLKoI7-RK#l^ACo0DlHl=p<$rv!Vj#Ui?CA(0TaG%fgM ztIr~}0pixt2KUdlq$_a*JG>J~e1x9>3O|7?SqEF&8<^Fs4}C3h=g#>x{c%ZR^P)C1 zvWfZ z_NrUJmx_i@3zdMt0Hp)+=A7FYU_OFM-vL7_snNiVf!7guaJ`c!dZ(v)+n4YBNzW=V zaEXrQ0{L2fEBam4IeZOK)kDLiG!0(Zay0L(XcDe6Oi0UAj#;VwNku)(eAm;Sg*q#d zvAgkc5ToE~k)uB)w6?saw+*y0mj>kU+FTRL!wZ@b#FF#!EE#MNr8w;IAT3S@M_pxl{j-+xj=A z-=#`4-Jo>R1Oj^~Cxt*TM-ijvWMpiGD~ya#AxSyN%+5}2H|dF-4iAS-CNy!XNjMv& zoS9gXg}?Z|mS|D@bxpgdCNI}W8A@ohHp@FX*I1rnT7wfvHVNk>h7&jn#k>S9s;A&o z5@_{=DWBnj3n8nsxfTdx!!a2NJCGq8X!3kwE)~^oUOkup=!cvfAu1)@L}mIPfmOpJ zPZYB*cMOW52P3Y4a!lF}cG)D9gk%HxfAIUQFsxv5;}PWG-5Fq&FEe8A04O9v>95W? z+h_5OpH21yLxGb^z4lK%F}HXcZjoi#_2V-Oi~P>;$k9m{N@1 z)P${%@gTAWbfIf4TWS<_G;U;JRG{=qI4zJKac)|D?`DJ;tpvB>4xcHZ4 z_7sClBOV@&j?5OHrx#_Z*BX@Hj1G4g#-*?+LrrzT-4RYTxfly1?Q=5_7Rr^NYD6i` z8=kL@z8UptIXOk<&r_^DJ+m?-3R`ic6rHStXHa;9&qu~-;^{s~o%MC+!^1TSGJFk;--4#n&$1N%C9EKG ziDjDz=&b9?j4_PYWR#yr6XjJoxn?a*@xtgy?O>txD6c(Z;<&|=e%O}?AhE5 z1Qg0KEqIj?5mhv@uDlF6l;II_W2({{E5Tccz6|&&^=NNmz`B@u$~Qo{rW}5_-PM)H zv(Cn=1HzSs<_8^vx4hdl>8%J2n|yzzepM$g#hSbnNmu$Y#i$K+`c~)z71`>Q8lJV~ zq+I_;=zhJ!dCmI^n9$d9GZ5^HeDXmL0nyT+JGusK8=0>{sZ`^EN+r^@u|>KzD$9_A zkgKPs_u)mN&GkLG#fVtypo>8giWtNK5LgX5TJm(Dv>1|=f+1Dc+O(-GbG{5UAo+6z z)a*~r`la(E2wRL=6Qe?4-lDj?ut!is#r%SB`B@$XSee|9hIzpE^~g981rg^D6(*Bl1os~}U~sT@K{te$hbuBnkR1)A$loSxAO+b5<)7skFW^^7#PiLQC2ecP^lh(N{QdCUC!XLz_ zc7U*rd|`vVgJQa@^$c|l0vf_sXn^;1`0%jyr15aAItL}-!5Ea4sTi?yz{(|ey@E8Y z1I){yaTT!$sNBQNK=jN)!XwBOvy+pj&z=>*vV)fE=^MG}RA2^O8Uka7^l)Ny0Gc@} zDk@r?A3q3@b`k?cO6X8IUTk=2G~|cZ6E&hJRrqvnf~pHL-c&u*Gyw(Ynf^3y5%1d9 zU{=PbKFd9E$B9-v!-Bd%M=r{m=0ULphL$HL9$ZwQh15%Y$bQ@94Ez1@ZFgD?lItK8 z8w?XS^*m~5Xd@C2I;J=oHXz%JOjNGf=6p5)C>qF;IQlow*jMiWsSt8gxj+gj|hX zO>bwBNfG^zz1PTlPrtd>=Vb4+ur4?l4H>f-l^n5mNO|{8D=P;U>&Gmc)QI}m!A2>> zvoH#IyOh%iDhR{75B=c!-lG&XC;mU)=ykQQTJfu4;18;>DS#PoEYhHN52F)7F0p zO9Mcka_1OeeXnn%bc+suD`qIghNOoDwGdIKkxWWI^u7{Zxp09`a8Dq!{%p^;br>|^ z!SW|VS7^#HdtSd!oZ$|~HMKdU^Z7?kWp+0S3Yfd3Z-JuQayYjM>U+GB0aA81ftry! zNc>^~4MFP5LH!b&vK8?UhSRT4$DSZzM3kL62@6b@;q@7FJ_vD_qxa_O=2TR;LOaZ( z^#e{7p>>tZi{pt%1MZE)LejGu5!}I|+;`9tSEwF8Phu1PvYcGM$pdKgMR5DHNL`oW zo10?nZJ-zGn}iUmr1l8@nDSE~-l3`LV$9izDn6gz5`kh{ZAg6os!d;Y$PRt_ zp&+LZ2*2BCr9w1Y%YdgX8fzDch!*-bW`p_EECm%&GX)!zSFBK9fyu@LxGH9+oRD@Pigbz3m4SlA1s`6 z3ROBCvZvv~64X#bQxpA%>h~Aa4jm=4zOytaou;j+X@UMTtbzkrBw`eKGM~P_IkE~O zJ>8NgI`I!y;Zxq7hXg{16D&~}UIf2WrHhy>^O}8=qbLO$+nIjj#(=;o#i;1P@9RNZ zYR~;1lPpzEf;i@0jK>ZxiH<=U6j{?_V`v&0-jMcYzX>TODL=W+w=AHx^eS4>rf*); zxqE^Cmli1-?(|0PZ6=Q^ko!Hb_5Jkg(+LO;$vYyFWB?|k6OVm25K%Ir)3Ay{x*?oI zT#zJYIpi}c*~n||NA;22P$DA!4Yz)1?B8Vw54<19U#vecNFWE>G3VfjlII70mXD!e zp?)_p)y;KMm~Q0a17DT_37E-IeLP=^l4jmFhcS(15cgK6?zP-P{ z_xS^!wVqjP77jAZb)EBx{n>jTf@P&eFdq>;f2Z4|V!k-9{tA_><$a9F8kici>IK0l!*?GcYj_X$XUE?)Ayx^!y_uXg*&O<2i5K^^_a(i^XTwy@rK9 z(0uaWBU<9y|94+iRH8?9JMPVN<;v%n)`k%g1_-FA5Gv;5#&mt2UKQn4yi-MDNRU)6 zyt1LL=vlR0w5>T&{ieEZTVu_Y0#T;L>ovS}YZxgiEoJI8EYl2?+wSh}X23v%U}HzB z7Jb~RJ(?fCGWXcr8Y?6Q3sRvG@bHIsRsZEyK2-U)y@^HKi~kmp)pDhsJ$|vXp z&79$`CSTOx@Nk2HR9;FdDxC^dlRxRm^={|cGHHAh=9PAPFS)ssghTO440`bTlQ{)@ zV&84f!}vX}PMUN}lH<74DoopG(%fw|&m0;!Q>07F$_~%Z$6>A#g-jT}1qHN_0>!ro z2nZGG(IZaC$jIMfW1kWbC{JgJ@~&HRyrQK=YV7Dhm5~`xEfU?T1wYTj%X@fsR5C@L!YPU+>ThK&v5<>e(3GV&%dR$P2*tI)?Vf=|;1L7(NI59XZaTmmc1 z#uZ)M&-Z3`=IWCo`S0SZ<~@@R4h~GK`0Y0y5AYmg(8c91mE2yRmwDZL#=cW)&xbaI z%v#>hIwVSFAD5<~H*MPMmQ5B=(QQX~xcbcoHQm|xM~V3c|H>h0V7VSZTFopp^m z?mP1x$6C!8unG5$BW9mWlllzvA3C49e*66+GZU$Hw#fVZ=`josC1fPP755;(-{0o` z_I$X;&ZxP$8C+1~roHXeiAlC(!UuJA68MFYdz^gwPR8Nl;=*&iQ&z1`XIX!$2=4F8 ztR)RA>vtth7yk^A$fLC+tD~K=fw7^<;Gn+`Q4e|OUBX5`_rCr@;};h5iN{HOiZ*)L z*-}YIM?LgQh5!Ept9)eDto3T$;pa(LP*igN&Z3fK8&Nrbh9`BxX}z5EuUM zEkZNT4(>9`%gc3FE$!{?vr2Y$%tJy$5#D@QxOY4qRYELw*d9Yy&ie22gE|Mc6tL&E z2m%C5P2UXX$aHMlGr3+MB)&cgC6v`uc;lZeF_(paL`L1*6dUm#OZ@aM)M z><8n}#53qT2+&!ut%00(&w$rMSrTz?j_vI1zN87xY&pBQAnes@bEWhX`D%N6-5sYr z!^2bLj!jAm?OCOur{Bj<8)(xfK!N!C`~M!!86lL;Df@qJ`74+p&-+iGo@8ZZRVarC zsa?)@QdH#Ll#&0K9|tj@6$#=}!SaaCLCr-?=2kQ2ccvyvo$P6Nd~9s{Pr*Rr`37FL zq{1QPOVpROvzp6y{aE%IbmN?eb0A{B#>B|)DtAPX+Q8%L#nu}Sh`CQ#<~^%tC>$~2(}Cw-Pl6gKG@r{4DjFc z$nafK+Su5@-^k~2^|=@A;X}xCDyppZTMiPeMpBeCvs1c8RC0IO&20gr>yu#_PRAXB zFJHdE&OXyUit7=!w4`fjXuxf%618B!$k3&#YtwBS7=XsU{d(2EXf3O%8UllPS;SGC zs)J8yo2Qzan^R~=ptLPnU0Kntnm#-^DS+qxTdP3Sk;wryIj?WuzR4;p2f<)4ykHI8 zZZ(!0=#I#WuH1)noS3fGg(hE@<39Gu1`oF^Z+1#bB=3`x6Qb+w?Ck6ZgLN*)_bvq> z(Z@IptENG;JFxM*)5qb%_6c1D3hPoNc?}l|%ES#W#3yjgh0-056*+ zJ)}WOPbuC_PMKD`S*UOQX7phzh1Mb1GbA}HTcHBnHEzDv*RNmmQgDcg(cf2D&eBQR z{9kz93nT2yV6^<&=$QslAg)Ip6Z}Fj0K(vPck^bNiv%l{UJL6zRI{GWI_v-5WO+)x zz-zaL!EDq|`QpXTA&oZ@5)zy?OGx+UUiTd!0}f73GM)D46e`KN>|cRj3G#{2s6RQx zLtkJ2V8(9XlcHifC>Ub;`YXcRH2>S^-1#l3G$f#;`X5^{2KO}Aavy1Kf& zFk~d8g8{F*nDtb*2u`~-2Jjojm!%R}7ISk_x%M4G|Cg^LnR7^WKY#wLyT7|OpDgva zn69+Bxv(L@Lee$Oyn}+&3FzWNS9{{hY*)pl)A*#`zlZR;o@kH!`UD!(sH4l@ z4YehEwSfEN5|PVx<>5<_2>tc`l<#C|oOaX$yyqmt*;0Do4HchL{@y?`{UdN|ciPga zJYtclyj`L)9o$TbgGKels3Nj!oiytQmZezcMkgD8zJ3301KRkQW6j?WI^zC?3JvNc z@0}>ogTGJryfr#na_DzfrsW-qI$gRIiP-Q9Cq1TwYOrr&Qc{Jxwtp9K#YwjDEyWS4 ztgLKf2f3Fdh+^d`OHxSx5=AeWVsaanZ6xW+#Zn~a;i%CCtC@soT5i^3b=ahVJ|>6St?nW z<3+2lWG55&LSSI9vdb^jy=1V`y1Q83Ccd#+-!)MaeY!n<4B{E#paq+sVJB8iR7L`^ z(fs&1?1wiLc9#f$#>W$^^{0e_ic*-I^LG(HXL&0Ltvs!CJvG(U)dlEDxvtKdi$n;E zR7eyyhifOP`1US^dttT!tz*tPjv3WyVZQVwBq1RI(%RPcgxUJJOHB=u`k(K`2;(}D z4_mCcy7-@ofQu_oulWkvV2S&stt7R4VKVf;&&$Tcq@aj<71+`g&!`7J&kwU2FQ?@T zFOyGH!}w?J`K^7CiysIO{oUCI@AdU5A(6ai1mH9LG^YbUI)yirJwfsA(rtp?8nC1t zJgzL3RV-5PYW7E`Z~m{zchdg^x3t9zs;i+PH5Cdlc{oIij5l$#6( zd_hEIa@hI|Vn@Z`&IcJ?R9w6nD#&fF^AmERIfl|-@_VdGLk;pMX7;)kK?>-!P~T|%-QV;r#%CN-0S9WpG)R%W^#IgbP}z{B_{4E)@eC7J*5KeSVl&ssNu?# z@AhO^%R`W{g+aMg9}UEIrpNV}kch}|wT&J~b1{G?FSoVs#m&vlE2i;qaTx*RxH{Qv z$w~9 z9Cgt!VjzZ&B3j))6c0rY3J<4ZV~f2!UO#Tb*IL-!z2!guo{-Sh8U0eF-qoRE`S9@2 ze5yS7e9kSB|Ne47GKCAbb{4DJchP3KozZDeoyW&Lm~1w(@vW*(<@Bo{848;w6x(yM z4g&)BlRqLmlVyRR9xv|hN+~MhK@`2bXf-t<9MUO#Muoy?!H{@KYQupX zl@`mBMro_NRr5s~X=-1i#omugE4$Zq@jDZAGx3%5r`@HRUe+vSBgepsrXuX`edhc>1Ki2!&J*TImrPnfx zbl$;@#cTF8X9zo*cfF~+Nm5B{3R8TqUkB^71pKLUv1<<}?qD9^5p;LwfmF6fgL{l< z8z2T($){A2u_$rAJXwhr5yq2vVil+qPj0u~Z?HL(1#v%ULWQspa{rL4R%_Bv->hd; z_TaU_<6xM!r~^Bl%xM>}4TX_;GbdH)mMTAlmGBdwd12pWh!uZ_y{~MBVK=K`=bR>4 zFv7zSb17@z%F+JA;_Ig#lNFHOWX`gs!x$PF+ffCj66Zr*_Yd{e?w^TW`KP|qRaLaV z9h7cbtEc3>=j)&G39*oL#BSarMtR@-yT#t~2RQ^}3mHVM(!5EZ4aeCaiO8(ddGc_7 zghU->&LaKwyLSe&za20Lnf!X_YQw;Nh^qYdSxB9IxOGO;ZF|gdcjiWNf6nrC?Hz?q zJM9v+GzIsW2*t~nDj=6rQ&aiJjhPO?^nhr6HLS8i9+GeGo>3k)0#%GUUZ!hqZgE+O z7V$hh#rqqy=o0UUgfcZJYn|vJ0*i(HoKW{V_XZt;Ff!i6%uLED4C7|Z0j==S<8|_% zy!TTHxC6J1hf-phFj!D$&R!nDvGL=OLK~zA`CO#Rutwc7#R3evSFak)&l`7iIE{D} zwVWa~@?qEunquY^stMdqbi8h-6n4Ak&qz4M7rw{g%#;yxayx!X9jtn>Xg5?n?Kx6{$pHq`FuHuAufBwWc}P@Rfug`Dq$iY3_{0s`&bk%W(r zPrpk3e>H?h6<$L^hBuLB*fF@{jt-A5^A!tqkJtMADlt~t@qa5lazfZ?Aj3!Sr*E= ze5+K1^kchoOqnMSJCL`o!2Wj@E^*FYy0sC>nc=5Bgt*Y5VG~fFXvq{q%Fs--~?&3h_Yn*v@SDICUBg`cbr<41ew@4JZKkBT*DJUblb)fFIwzrq+w4jVZwPe6$ zgQ!q__1K~tltSHUe}&SUml0d)M3_I zui-r&<4lanKhq&VVPs^4@SIKP)!jFtW)=jsk&%h6EaWd1ysv!Dm+%rgfZF(yC#bn4 zr+PCx$#^JJENeNj&k*z_!8AS(&(YIg5ncM}@;TD>TO*rJ`x1YzkB;`A>$|wRI$CNC z=DFI)*qOdyv?wAHu=Zv1=Kk!kVr1()jn8p3RC9N=U9%WK3^_PHwu>~vPqDif=A?qe z*X=-_?S;KuUWP&**3gCsmQ?|s!Fek;2NDz#qT9bSIpexrn0&LMHZ-)!!{X|R|J0XbfRF4}I-h|5Y;Fi=J~+Z`0A}%JaytXYZ^zwkP~hH75!>(2rGV+q?`1xY@t@kQym?!jd>I7U*aX3&Q1V3%YZA!* zLockp*^n;%B>=fH74p-pj@a}&AA@Zj@Wtlqj3DKHbG4gVNL%HNMaosI-Si+mBV%BF z_3_^_AQ2Dvw_GPlYMlLsYdR1Xt66cHx`2=2IATTsdA0Bbm29DlCaraPx>h&o$;*!i zz03pF)~hzEXQ9~!^La1!@1PMjH>l@*qmS733t1H76D2^&jb}1=#6G87F>VQ<=|qDE zx7+#NYVCf5-tEktT4&>k{4S7W4?a< zpsPy(*eDjOIg+xPEvbVn7DRwsS(1p?|QQFWmNSza<IIx~7H<8~Bar}2Ha=GDi z(2e+~PoL@zn$ZCp*y$oKC)Z4DRo66a1(Q;p8eqQ+4GCEarb%5`3?%0>a{Kp~DQSPetEVYHY?38qvuFm{h zb~0Vz!H_wIi-%VVrp$($BMIpgF8`by8qmz(cLlBqHKywX=42a9MNNIw`7*ND_)ofc zq#7;WUj4ZywM=SQWaNNwp-K0**DGr)j~#DUg)sIM4QB9&-uL8)lQKkPiB zz1T7lB)w7<#t?DigSaQ(n`dn+4<1u=U@o7)_^AvA&V}rEkiAFq_=*2rz%3#VIh-fa z$JB4%hSH=u`^fO$K8x#7IINyDU)!tQH#}PD!rev3Xj!H zEtp@mbv-S+)Moi3NOS>nb6Su~__xV-NjVO{Z!B5(VPShEZrEy_vwHE=)C%-h602_N(26k5oeyn*c<<)ZTe%zU5c@b2tCp1zF%8U zdl(_}2B7;*OiUo|cbDsuX?&zHU4C6i_nuYA@^e;Q;7;tf7Y9i7nlHDuu`ozTBtiAV z=DW~-m-cfSaHNwJX7~t&#Dgx)jp6`$^G?LQ)gp)pOv9h9vND=1HNY>d^!A28x^2-- zljUQT9(s#dH`X{AGU;I2LigTvcR{qb#|q0WXA}F9*wX?{|Ba6ocQ~Cu0h_M)KJH zG2Q-?feJBV+lAUhOb%ncH)&6>+wWaXr)4IVq$Zm6!pGdJM&4KKgHvgsH5s%7V6GQh z{##2fcj4u71SdB)w?M5b0?x`NC#xSi1BC`)z9oNrP3>ksw7SD~;+^TLef-_B%uGLc zF$XBdZfAnAju>g^bn>V3g{xxX`r@|OxKZFDDPd>#_qQs=+6Z8xobZ@Q@d=3hHI-JC z92b`$An1btD3)0$&-U>?ATS{ptc5jeWgRlf9A9(@@ayQj!7qn+x7L^eyqM2qS&i`( z-xK@2m^eyAONZHv(p&^0$1(b$lWNda)w@Y zb-q~d;8@bU_!h>>eR%9tr73!6%|~UDpl~Li9Q9!MJK^4f(%d-pw zBBpE-v9vm1G2rZFR8-zB4j>;o0AX_Q=$xk50I4e}VqttGuF$lvyZb?-xnp2fFj|{m zz?l1TQR^@j#4j-LzL^k!|s zi=af+Z9ar#A-Am;(c9y-7bAPX^$(2%jrC1xDG1yj`wWp8`AlG$8++v*@ z;8ozji6(BBvQ)&(ClAd<#-l!|pdKy0&`{lg4h544EEH-Am%~y~?Vj#TwT-j$2#N7M z85kaNaa>@yV8DLUdxHt3bcNzm?vT6W)`&WN~PuGdmZb)2?xSxVpb# zb<1gK%6(1ltFtiu^Idccs!pgiwBTJIm*CVAv}>|~I2ncPZqEI%4ZrScD<5FOI$d&5 z*Fjt$C&BQ4Y9z^iOBm?FtrY`%tUr+Vmaiwv(h+L9J6T3UMn)!?#D*C<+FCccscw@+ zUNu9cYT{{A5=uke8k4HneX!VKGFC8oStkU8-wYZS7Q71;-e35{zWn`U6iRxgt@S9T z-`e(4TDouo**m`%bS^nb6R{`6?3VffT>+-+UZ?9T6^rrUg3st=rG?tvDb#C}!xBuu zEGADu8GjCDEPO!ybeJDED#(d6H+4-O6zt^ZpCI@^AFS4994tcBqp z8A&d0)wZVPQO>Z+pFp`xwq%dtJRpM9C}WXuG;WRNi;0Q7;NXY{)w|TW>uE0;*>|^J z4-)1r8dYS2v~nDU=AH19Pc_dTVx=!ue~Ql!6=?s@3t&#BZ#5NRHEbx9uw&{Z6aa#Iu`D#|C#I`BM${DNbHM(sSE1<#O~P?XK)%=S#QAL zGuv;-HeBy5ZHy66ckH79^rTHa2gaod<^~+9F1^ewe*{G9K-Cz@J%kE#-qnHvYXL)2AG{F3#|!}69u&Kd5-LKu zgGuIFe0)6DakA*?BXsoF06+qj^VOR->AyB+*mIuM#GhPCY=z9s%zzd2%sN^x;Mu^< zMSpfM#t57fK(o}=*0zX~d-p%tQMu6dQgoLQtY0z-1Zdixo}Mr>FG4~>$wZdm$uc7V zRB>DNv_bkZt0LM0}- zPq`!BO*EGvtL4pB0fC}zpt`Z~J-~(SKpuhP0&b_h%wNBP0Kx+OsU7gSn_$#SxoK|% z|L+0_%S#~izml?nKIoQm_#DP=j^FsBV`}&&@3EvIPB3cOM?mOw zzS_(&%evcw&wDeD(-tRNqoK^(Y@h6pSOn^!?Ra?NCem~@CAFQ?_2gxfy&#N?M}Dm( z_1ytX=yCS zT2kQIn4%NjssXzbV#PT!`v25w6%RCZA3b^mIbWBJ{@tu^Eaj4Nv=mBjyD|8}a3ED< zI_q-}up+GW5m4^RxOflY!T;ULT$NF-St ztb|G?ujlyqdXu>005z3XmU?sJj?vOMFtG1~`W2WbgxHMV>j)q;SP{KY_Hufqr38l-1ANzE07h9awW7(%%bU!+4!SlxX>8HFjO1%EU|3He-BFDW zii-T%>Iyn$W*mBY`nvjhv)X65>p=aNFIkfISjnoy#mA3{ zixaW7E`Bg4(YraELkOhf{kmf;AX)y}wH1OCF5pH>$a;G6!6{Cl+)S9WaXIbv0#N8V zoOcA03H0+;@IJJS34atstLCkBZ14Qc_>q?7qtNDhZGa#hZolTkb zCNKy3Avyh+D%KJF2&VgC8Gb2c<%xa%MN`RmhA+)N4{mD9Guz5C7*kH69SysQgI8@O ztuUsfnb|{1$@{R_0e%!iW;}8$+BwZ{nc2&<_S%PMd5-rVRR|;GgX3upe@oRNhvuLL z^en8fyG?RiU`EiQ@{(=0{meq`3hU7x9zHf6%xBfnNYXBif8Avx8|94BVxWC~PWelP zA>56X#=z()%^0b{VzWQkr86J(B(PV-x^0i1K79(fy9~fFVGyxw`1q>>9z6rFAVBjR z%$28s1l(rGf49bO)MsNn*(aT>;!0T3#ScILwZnmK!2&ovKwj&&h2Xk_4n;{rgF`~n z%Q~*!0`LI6v1l0(B?GWX0jt~!8^FELa>FIlY5Hcc8dYUOGdXW=xHD1W?Cfj}-l|p1 z)gRZ~`~ldo`s1`b#em@9SesI$QOo4GqYQTAGmTQtKSW?>mM|cj)S1-j@U0pysp;!a zx2UGuybqglUG!3vIYa_Yx7ggKuPlCALoD#E6?+Bfc2X*OES@c!G9Y?ep zzsq&q$BQ&DNLYeaGASYEO+U4LS~DpDiO{>wY*gw#$y8K#)ID!Ara&0b1WHsBQusa7 zFCeJ&>z6#fjceNRITTXi?>^gt?XxG7 z^;CE=P8Y^ZNkLnqiLIxBof9dI*jDDhKFbdUv`|`bsMlb{1TW1{ob}H&HPN3BovmR( zfPdh!4z&)9x?#lZ5rFaeOlUUp>j}B%#S3;oFSzioO@ir%16Wb+bW(*h@MM>H_TLjr zaiQXnCkYrE8>eXeF)UFgVA6jm7=Te@+(Ao6w+1R4utPod9FV<%)^Dx5-gp$Vhc|DR zu2I5RLty}40WKK{d344!vl2kQz$B}N1b{C;yWRlZ72ZAJ-$-CKTH4-L<3|36f$t>u zfis{AZEbD1^*IA=3>a`820pt3l@DftUzbj#_wD;vubsytkz|0f34qhFjC$=iOUnZZ z%&6X-#Aelt1dqqARhg=88bfg3cJ}vEGcZJ*oYFC4RQ zYgNqHbSqsR3#_%}PRwKI@Sq`8jkR zSdP@AROuAv-H$P8q>~$K1$)F7_a@zosxe@i8eNmc!0odJH`8gYyzxr#^Fu1Cy>n$6 z8ZKdf*fGcPNKKg`H9W)m`?s$R7izJzD$PK30QSe+hQ!zZ@G7tbus<~$PjPVI7+TBo zk_u2X@qLCs&ugu=S*`}WH8B4vR3M63v*=5T|A86;iJEz~$$4HJs)Q z=2J0gY3gEmC8AkZw=C<47Jl!KEh0Ll@nZ8O;qbW--giOr-^+O(Q!YZ14hWY+)Q%Qon-sI~t?J<7rdsiYm!-?#!f$Cx=v+&aQ!FDWLV(e8m{T)aSzCik zKkn}CoszF8S4GL93-k6F%>ieD_1o(4MWolwa^09s?ld5OAq`$z*8MIGN>0zMTCmtG zral`X&Y|H@M;#7h5{JeNzmk^DCn)m|e9US3FjtG#2-p+gc{XiXTUaR$C}cpyN+idI z26YNo09KLCY&_z%e0Eg)H$M^4=hWo%j=NKB8IgSApnriOCbv9XhoJ6cNCLt_!j&yo zjlMu@8)c`B`j1a=qQ;IUiOu34nFH`47(gEYE~sNiEMV$UDKi9^HaM&%_v$;08Yh|^ zqe;Jn0Z9MAhu1%Sn30}dtXlXiMZD#e-5AHft9LEY3s~RDoEH$l=L-Xms<5yy3AbYy zNP@u}8S-R*tfO;MFvfogv93B-tHN=R+79tZ(X{iP!6Ce;2+tnHsk$ZEdl3J8L&n17 zcH|)h>)lNFqP;?H&Z!hBn#pp*q#B5~fsQQeamOo`GNXa^mieSJ8H~bbd$DHL8Z<<6 zgWqRn)cI}>T8t?(apx)z$N7vf*9K7 z6Q^{_8|4)W48^9ut@3mT^o@+60)oes*k9aZO7) zfpN#2)fL$Al9tTyR^PhuRV3=6>0CT;n?xsB{tgC1QOGVJiF&~}1F)W-Q-&dgfDS*) zW%ApazU@}%=1K>7E8f!&Eove|S6xQNx2?=9b*qXz4-i$rRS5=S6+SJUGG|jQHx@9l z#G+D3U>)0SSey_86990cQ3Gp4SQy66VzjbHzE&0*021wG0)oJ)EG8*=lcKb51QhQX z=jCt?(zZ-5Qnlr}^6w?pBvb$d0iO(A<19|qP5uIyV}U=Y#;igm$ecW6wj&@vagf8r z*G;n}+JiwQ?|yV~zJ&0OG;yhu_W825>8b$Y*UGeJ>l(yPxHTE>aREK~=64LV9l(7C z4BrFIIGxj?-&eKjBM_%};8xn2_mH%PW&#+<59Tc{x(q)v)IhuQmr^yGXRkgqo0BLf zHFLj&(d;_&K>`qJVPd*}Lfs(1Zv=BYH38mPxIhAk*bc)oovP`Yt-SnrE{8XO&Pe94 z@i|=Xz`?`&C@cGzkB<*-76R;4g>*nYuns}KQD>#uX^N%0)d6=CgcW7FVioFj`xea5 zBR?5==U|a|PNy$QW!%zHwYqSjGh#{CDB9KP`h|0TU8V+rxvtPC{b$$Jn*oX1DSUjf z9J&08mhvQfJE;1Wy5Np~R=HEZxy^x>yQ*-;`(k%T)@h6 zi4bx#C6rcHbaXi5$BY|^yZ)@?DwnFj!|=6=$V`(uz-K@<&H}IzOjg5{(h zPFEcd3S$5HsV6e!w9yD`&g7+~0}I2ikf7FHOG`@^*Yo%NX?G_yKtpoSENZ(1O%U;Y zf1*Woh(unB9*4$?do7`Nbu|ZIS4vb1{Q?4*{v}3gLlvzYK!z%p=prjxai^r#Am>LK zt)fu}k=Y}E8h2_|*=W>f8tp39_=k(5BmF1&MWv)x0YGXZS`g`M^c?MHbWuhl=X~f5 zrlNwS!z1fb%C{*OkyG=Iy)Ya^Grsp{;aKaj;x}bP>c8cEI-o6%> zYFGLEd6~0TJmj^w^goJo*5aitXuxn$wQ*skoQfo#AzXeq&c^hL2}?4*z3V(yw_2U& zWKa+cC_lT;_F?yY9g*ZYDgyx+7qGpF+nIV-ZcHmFK%rgUpFc?2vItOGgw$qFa>iz!xEk9^0r}+^z#(yXP-5e4Z z>954UCFJ~h_3^--$y%_|)Zk$^grp|RJjLtlO11h8QK0o{tD3RPwgSt>s^ynMpyc1= z>G`@TTt_8YQe5{Eekg){btLDJuHBRw)M+0scQxRddq-?bNf!Zzvcws8+;Pu4hVeQl zdJjHVZ_VL5N$Z^U9Wa{$>oVX1Zt^3&e%fyi`NLnvCP;O2+gal(dU_FN8Dx4?2QA@< z0a+L>-$~O@>mHp^yyZ@!l87CId3gcFt>JhIZ*^R`%n%dw*&s8zmKN9=9!a?Fj7OeE zRu+rJ)Cq+G%|AfROXzo3VvzbXkWa{swHD}-iW1?+b!u!)=EvHgzvD(aY>l9SVVC4J znl^!-h9_q9tW~3~Qy`5&g!|V9t&d}O7Rfg!da8U^1d3YoA-nbI8HW!sbOEUV=SP75 z|0yo6FesWdGO3NVI?Up>OkI;@F*6>uhj6OFH0u>7+PF+11vu_-cXN5NGYPEbLSQ;l zfqC)r z@7e*a_KNHFczlYO)wI=ZzrF*gKKZkbO+LsFdl;0N`gnlXuh0>l{r*}tR#I88yFfiKo)MsoTK=N~jGi8_q-l;p1(1{l!vf z7zyWBFy1Sv?7Fi7AM3y7LOcj!fbi3&nzwdlmGK0ee2Mkbb`LiPgQT%fJLtKPJb%xe zy>}v?+}YXD@+{?tJ1x5gdS1G3u(DJyU!|c+QrD@mrnj})wBExApOHzmR()b1^W;Yz zZ20q2oz;f2wmu_Tl{A}hB=TM zsO%As=rBFutL7INw{KZm4*#V3aj&R8lTKOjkf#9{Z}98yj>wkgFn#(t2eu0iL4>Lg zCjL{DRwAX|!Xe2kEh(oW>v7&DBs_^MvN}yo&Aqwg0D%i!50eQeW8rFa?bD;IL(G?G zmQKh9moAx5HF=XbVX(n1fx5kv)zX+tck7;g2l7n3*p6rh= z>@K&U)7Kri(amxK&vPW86>R`bhWAdjHC;HA!~KE*7@t@JY8UQIYuj2Ros$;c=y^Vw z3rl<=xDV6#qU4>jM1tC{dw%TXdZwC;JPK8nR;!O`#>t&<-@On<)~?2gpq&lvGS}_o zhZX?Tc#L*Rxpr9ukxXD(tx|uG$Y#+E+`X^(Vg`OX#VSn;a_E_nnHCHbo~Y+sGG!c^D8>jLCbk56BR{fFCe$so}2(aVCb)TUp`t zrfJ#i;R8cfI*`Z!Zd=2*(yLIl;lxyz#y2z@_1Z3*dZ+GrZJY`)N$Cf0 zA|p84Hddq|Auj&t#fujN0r1jxXfaL%>*p_|WXF)ha~B@_Ed^2L;VlkCkxN!+1i1>A z0%UkkpT$s1T?wzpr=;`&NT*!y$_nfO02U1auMymbu2hbg8_~0>+Zy!59h^XdWZqc^ z#p+$@Rw~?+P(kfb_kjqqP47DQuPwqf9cZ?6At0#-fp-i(D(;QVUN~*bIegWLYH-F~ zz~b#r0Z1JTaPGtv!1oG0Bp~DSbVdo3|CSIkyx3@77R_Kp4MHt3tS*2$!&OODfY3t% z8>``vN@Y4S>ZZ>C#Z6U8SC90LuxnR$V~oo&eBA$DzY=qM9Y&ZZd3~ zC(O-fiof*G!)~h7i_nXJOS(X{BE*ke-o)17bn$DCNmOy)t;4a0ywa1QtklWuJgaZ4}!9 z3d&U3_4MZX2QR!i&Nx7K$F1M`Ygd*2g+sQ2OWeXIRS)uhq!%TqC{w-cwA_ zr=Jo*v)Hp-pizql&RyWqsZVTNVv+H5f|d?f%TBL=tx=`MmI~~HHn20D_TPf+ny7bU z7gu6`Rz&xCra`KCUBviy$y!Zni^!ibH*+^c=%?&ND&^x~A&O{G%BR6X>HOlff1W=L zzGE{RFG7Cqwu~j-uknP*WxwpRVsyO;zJZeN;pr*d%Xu}t{sAXf|;iZOf9&pNViS#54~`FbMkN7gS7V&p=IpIH6cN^r#DC(M^Oh_f)glx0#eY)$re-YfdyW7QMlk%%=KE~sUdNsG^*{taD z*j0wQhY_)2nLhw&vgXCqAYlHDn>!XpUnR@ryOjxtzz*MD9BV5jN4I-@xP zCu8Ua@k5(L4dmX$nj-FTk%C^*2Ig!wdIpBa+}zwJoK7VKn4-9+>=jI#J-^=c3g>

mH{PLvoH;ro zn}I3j8-RBMzZjOAn_FI9-k|Artk&SBeQ!LYFF3)J1_Ct7mM$>cgJ-)wJAT%LAivi* z`P)owoY;Q!T(3(Nrs=Nly|6*f=H-HazWxjy@GScT1w91ass~tf`@T|1M2Y+FzomML z22NZ01@Ia37*?pleU-ADd9uH@tr`_u=7td-Z_V7Py0~!KR$wH^J$#PkSx>{gMz%b> zS|wJa&~!oLafm)7tFFDUa;MJb`8D9D>cb)G{om$lIcvN>&JNnVT3L2x$o0=-bLQ9f zn)=`tSC9vXz*aF@6Y=B6bGQmPny>Vl%MCHklXNSr$&~84;~|9Sy1ZbWgVN%u>9BMn zOYR@uORXW`kA}P%-dmdC_8Z#RR+ch+(DK3BI6dDfLLQyoU2xj&{D2koy*A(nP&1Nr zaA1XVndWTF);8Evk#5CCXJkZmQ#H%uqcJTK{Rcq&eo90XqE2T7)B@m<{;9~oXST2T zs6VB}to7B=z>TDdE_KQNey+!dU_Y<>>v^90o8$X08c+TUPoaA#4q_ce^oG?bILI>m zQxJ8|{aA`lz1q9v2LS{`9(7-Q6R_wV9v|nkiWDjyPv}LK0H9JzPtum-<OdA+}JS zX*F3vw?<&|Bq6AiuJx%vGlFZtA0tS*Krb{yhI+jQe^CL5#lX1jFW?(a z1c68oKO>RCH7Y;1#15uZCbKcxv%Oihb!BOHglR+akGr~oAKvBA);`D=?!>6jZOaO$ zCz7Gbd({0ptY-lX*vsG}0B>L3hI;bL&1()$tpC$ld{1yu?to4PDS+l2{gf)vpUi;Du% zmRKL_pZI4lKDSb-jIu~hND%w@@nhk+E;!Hzgp_ZqpBEN#+iEjVGv?j=TCCDm7a~455f!-DBT@= zl0(HVuCMP!N>}gcUVaRFpC$L{sS9qE2&$}u%!J)}zZ6l*`dAH`6Smee0D7ln@V^TI zG)1J7gP*t6vESCWY8)=GYN{TAj$(6ElC${|q1?S3Ex1E&5?JBkf&madJ1ZQWvA4WE zqG+;1-W<`-rBl+SgzZirc-^2;K7DO~c1R!*5}o&XLtdWo`*&95Edh9s{kLR#(la)` z1&!7bp#Bx`s{rK=&LsGVXQeCTE1nwqj43y`b6%hA)12EPDdrQ?=?J=}>?25j~p z2Y3NB3;4*k^)#>k_RS|q*k^6f7-GX1|B+60x&Bqi1e2V|09qc-OyT05g$RssF8P8H z5f+O@J2w+kF-#A)#ZybhzXykki0dL27PR4%Nv~PtG0_GSlM5E)=QQm5Ccik~QkYav8 z+(5yHY3CoMqM@SFRcIv>{rl~s4#U*={P1TqhB}P#z+!0#OsHO5Z*QuAwg(iJYP)qT zqVNE)9*a9WH`6%VKZiG!tF2#va|G14TJt|n9w(-X?Zp`w2Yr4)!cG(p!q;h!1oDm? zbEW&-MqQoUcT%~Q?XbcEt-8t@!7tmB-EyX}A%T5&E-`HAvT2`g{?BX|pJ#Zh47Rn^ zHJd8k6>7w;-+A(=?u*4)r>LG)ugiwe|AE4Lryy2mVTwOq;c;>JV6e&t;4mD;Nx*oh z(rjINhm@qV_K4X=t4?rfEK+QyG@_b5_S0kH;EaryITRE?Ax8x#cS>1Jdu}-^7ySzr zkNRhj{IV5dx88&qP>mot;qq~jkZt;@1_(Dhy>v2%PQKK&1n@fI`_v*JAo23!TMTD^_?Ru^lM;uIz-+ki^yvp6GXZ0- zi9OVF7l^Y!;@xhn-Wuknb#+gRYyh5Jj7PK2c_^ z>DSvQqBr_YpBALL-UwXXHTIiw8SAm4lAPdjMdQG87%o^)vcjH_U4 zyUAE!`1TRD(vDlX;NmL0>JxA~(!y=mAbeWEKoM_&rj8z2WxzSjnY(fK85P86iNY?h zi>JJ+zLtO=fiw06Y&P_A@i@%y-rTexR=7bMDyts{ILe69guB&}4m? z+bfFHs`nmzrw{rM@a0*4)mVD z#y+xMkOG;(7uhUb_^TlOzDnT+oslMF);wAuc|*lM*v2N?ZfYxQbuNISR{lLp0}XBw zRAFa5;$^|0R-LGszYRhnJ%Z5CvCndu^RpxbpQqCb8V8JuC;9H0MfSxzEwG9B|JaG)kMEH`DlEuNAbXTIH zQ)v02#jEs0Mxyig^Ts@WC7V|Ya8OLy%x}l=QGNJC@&Qi;1>rg6a|jil^LmFZuN63G zZ~D=_E1Mgf6OqV~$!N9Mc0>Uu&hKY72*{1{vDJr0X;48_n6}Ae|86=9(d_K(%E9UM z-$%lQBPDJZ&U!4oG*@^1G&C#Ric-??OI~28x;!R9&A#^Q*}G+Z?X5VheE;Mh<|uY# zvO|)zVUP{-ar1B8Z?M{_LRx~!@b_7OilI^Q?TBDZ>%$oP9<_MD^D$4(M#G3vPtOPE z=;jPuB)Hvg;pT{nijrECmlpL}pm zI>p)MMy~*okBn{`s7#JemXpBlfi0a8K5$P{|M&bE?^y>CEl=~0ttgD229)Wv4dGdd z&i-(0kGQaM##&Ad-z3W(%I4MLs;7bC6gkps9JZ|22AQG05(XI=;u?Dq!2rN{1guOj zoC`y`4A}h_mY0!-0$e+p=2?$3xH)3M+y@PrW4U$8#VECh*hQ#Gy6HrD5R^p26Mr@< z+83?ePFESBzwoVzCr2@IVb^6UxZ;wF(r%sd90`@qK+K*8!8yz=VU7=pa-?4jRIy{c z-S3J^IXr4BGk6`>rTxhjn?~65NxT)d(dW*(S$6u5KG;cNyJrnoxqG|qldK=Lh##tM z*KDc(-})n?%?$Y>o_h5KoCe@agU(GOe+29qO$c@mv{nbWXUw{OTxLUw{KR~+-3OQa zOF#fpB`q)e*3`Hp6m4#9BEoVIi3i1-ILvWZ(otPZq}mo`ah81g zOIBMSJwu~WF{%1^!l_>}MqJAkD+3KO^@y?DRqo|Bd&j?jy*Hku@b3_V|HKw3B%Y&n zc+-l?%5zgSPIcGR#oiLB2=e17KS-P2khcGbS5@)S>eivT?Nr=6d>#!>xZD&J6nA;d zHR{?BeJU`>RUc`i8TvmUla4O49@jZq_-vwzFs3|{V*IsPmom( z^jIv3mgDD@6+S5AZ5j0>Ol(=daYT~8corox zc!XICQtG=w63Y2%2U$HTnwqa5W2vB^z_4sw;+|b1u>2@Un#@>RVVG;JeQUCKig0eE zF1I>ZTYe}j0bU%|p%=3i{r-pQ!-wkSfsheZ1d#;Lu_BD_TlB+Fhi9lk+9=8aq^@c# zOS#hN(nKO@1}Q(T>`=HNm`?ZZ^yjF1jMIDlh)g;FNv?9S_R z^+8;Tq{&2)xgj0?ctfMUA)-8@dTo}->E87NMP((LiV8Y#OaShUP?*qteD2WunI%b3 z-F44P!r--?5fQ0@d4&Bgu@etxk=l1#H|EINm>RwFkJ!`ES!umh^7b4)KYtl8@e=!K zEdK;4ztL1RH;6c%^6_!GojZc(=?fTCy5hLg;DJcdhu`$9p{~6Lp2Sy|i%C{SQ)u34 zFB3RU|0qhEYyRpOiv_##x#Z!|mfn+ir}-crl)EM6JfCT(%7PzoTl>_H1^J(|m?zc$ zhP~nlXz*2URk}PgTn6B20cjvccl|c5ENktXb&8xntSR&_nA$i#9$SLd(eviWD#RpN zS5bg<&t{noH#lNqLU)=orhk-NF@2H8+017S3*`?H(Zbb7tSXIeA>cRw4z1`r`to1k z-G4O}7g{=gH^Zd%vsj@NfWWo!VAG$GxSmFWjUcH_p4-t-p)aQC+Z$ny@nb=UwdT<~W0Lf!YQ?YjislE3srr6E<8 zJX1TvE`2Wh#O}%?6JPbh;dY8ail>&JLN}+7P(TuPt#pH)#F$QL=Ae*_f6Dwzxh&t* zZK;oUyhqPQx(FYW=RS%go?TdIhC2&l0wvj^=T}$##RsTfOy<@RsA?u}02Ou0UtO(|zH zE%BZp?A4Qt2RFKK&|co2L z;WioQGz>N;t72FlNZq;$EFM%BHRgO*7Q^fxFxUNBTc=FzWO;4qDKB^8{nLgOz$YNp zYi8uF3S*@S-RHkOrPpQ#qaCZ;cJn$^iehD^ILeynFI`h^mUv;I|;fup0U086w1R1Gn0HTiEx3N@i($j)Y(X-YfhEW^Kg zabdMJaI?zOr!(*)=h5?Uhtr!V_4B7QC)uH01{`r6$E!G`6FraIe%>%|ZLymDi3Ueu z3tYo~iaCuskLLQTAFxDMFVdpyruHC@l9_cDc-otoOqAS_QPH~G*xV|6vWbl@e@2~` zNhBq8nOIU`mEP7ADg!XmuuRRmFg>M*_4z!_jVynBo66n4BI?2uW0KjQCwB2H{!tL> zCHl9y8=_B+pN+gNdB`17dR;}1i4dVrQwrwaBWLO_-`h4PyC3SEcoHrC21&9+y{nr3 zBa`uUXK*~YbZu5bM48CtGU|&WbJn~+si7yo**c&I$3Yu@t^}{mA5O?9rBIbLc`0h~ zOgv3?$DWJV&RnslI-QiK$KsWqMmKr;ia}jKqk`(X<;F02M#+Ore{1Qv)D8i=7|605 zQA2Flj1M0MA}|;|14B3j8`jj+Y#8i7*iTqeQV%G@+7puM#S4lg3#=MdmA$H}u|9z+ z0|D7C+YS#az#d7s`?OA5pR z0CWd5*z_}9$p3oke#sA1DL8a{!B0v-;bpoHoZ&X`5b|nj<1@Vb&H_*lF2asS>N+X` z=Rs1W21M-o;taoZ9_z5MiJO8rT=_$HQvR+~+2HapnzTa;_!f$2 z&LGM}cA4~!(~%wZ6aLRhY(I|@vg90VY-Sp-CAwdpI4>LM={+*qrH7=_u6yeqFD%6M zv(hheV~>3fL^Ete^|Ko5t9V#Ryzq{Xg;C_6P_$Y%5Pnvqp?kMR=NN*KQkw1s5b5Vaic=cXu!pCGR<6t4gi!`SeSp%+>P-wdkdM zu%TIb8_rx?P^|LEQG^fPxZF#J&}w!vg^bV)LynmCr+97NEweFsuMm;gjhi zm!-@;GqYzJwIJ?{*KlxFVnhnVp~i1%eI49YxA(O%J|J#7@p_GK^%8 zyiwMY7GD5m#R)}{E|(nbLZX^Zft@_d=eGy(F&eFEqkijFpi%_upn#D+BXVe z$8WB^$>UuUZU}J!nLamwN%`hzPj{JO)?V{9I3)U88{@MQTRS!mm;UYb1uWs^omagi zN(4KF@y)JQ9>;~WZ=M-Fic}sq-a}gJ+Jj;BhV^GutzYoyFmQ0_Sy_XQluve#^;Gl) zBRY#BJ~WFj43cj3mpP@aSJ@lM{vC@aoa&~tw6v_#-DKpT8_2b~C)9jceYs>7h}L50 zsWvxRf9Ydye9wJS^fb(!236OMX7kt0+5QUj)g*V{%R|aY^McU|v!J5v7=JHugvx?u z8v=F_Miov%QqLw~@F_sW?S3|YcJJf%wZi&S7W^E-kzVtsKBc0Wa&ob8ubP?yBK3$K z0ajgZF^$Bt-81fr(>Hfu)6?Zp59?gJtvJma{o!m6nrJh3S!wB1(48+VEKoc2>rCf! zb27RFj-f?Lwv<3=9x4^etjAyMjFXr^^;mpwZSM7++{Up}hnscbbQ-;&=b^l z5VPq)9gbMApv9UK8dWm+E}x@!636{et#l>jQ0D)7;7gqU=J%Kd1w{{a<&58^&HMLz z%|p0rgUJP4cnTVdUalebWu7$+)Hda9Mz%sI<)&lu%f~>8i=gIb+GeeM?X~U5H^}pO z%@Q^qs;AD1$ z;*x%{r4@1aM21oR%qIH@|2W&lrG>iM;9#e%Ju6_T8Ri?J8J(>SS&_M3rW!V4ujapp+8nTy; zcb-c~!?ZP8Y*wdW@^n&2E0!TJdOT-4UI5om^m9=uVUOG|3`gUetbf%4GvD5U1JD4( zeB~$78TbjZM-}J}7E{$NCWUoA;%sy)`J~5!Tx7o8ti3nTXP%Vub&Uvyh%FNXq?{=m zFCi;Ch2r80$!4&T(igPQ!lqkC_%d^w8*@SmCoU7eeftATo%D(6-KKoCu!smx-Ra=R z7bBvziKGGMyYD_~C5rb}pR`jvepl9i*+Et2QNvA0cHi|Y&hyO32)n0bHf3Q93h3{q z{{(=ISFLFw&PBemDtX_s&1U@WcVcX#X;;b9)*!;?&*kt5#JZb2>4BM5ij76Qsfbt$ z(38~E)KQ2bfr0`_v_Zlfz>*yi8A<;ye^lnx|E|Uh+-4jtq{G?Ym>|hlez_a#5;^&x ztz)GAuT|d!{+*gf`r^i`Pw1N$h|L~ItwcIXP$L03oO_5h|PRXQ?2CWLe(U+tV#7f(Jby+ zq_REdCQGhReTe9aknBQwdiuvt3m{k$F%=#Ri=iP>2A87^UErE00}DlS8JN=Lo@BaGB@jSL4|_+A@>c z)vt>8Yom=jZBg12C@c-hWmd~nSri8P%1whO`#v{j8Cbh)JcH#Y2A))qPz4oSsGKfD zyaq7AQI;&QJh3NQF{9D_ucLY0F`k4gH;@(ja6zf4R}lY43vj#a5F|qFsUyTzOVdR_ z6878Jn^4qoL%AW(u4l9BX+mfanTBm7+fs)r%@uH$-|>f8y{3&&?Q(FQ!i4hdrk7&= zPmRp1)gMoA6SX&TTe4iJ9eNm$YnF{Nex|RGb+KdYn}Ew#fQGIo53Hg*A|k#%!=H@K znIHEp|BNXpAmcGx`C+0|2Br5hk~?vE%%v=_ZHOF-Urg9i0A*)xZeE63+mPO8XnM9Z-oRt* zuC4xRD(6;K!Gf=EEos~J>pM=T9|}wm4hrlkaV{F zFzA}2b9!YY1pd>^Ob+MV3UyJZj#~LWB}PJ;=UCXMa8cQ4a&8& zZq?nsbDqT?e3V^eh>GeL5@G;?PLMk0HXZofz8BokaHp5@y!(?{ljbLV&o~rI3k!OE zSG$W5MOBGIxs)YiHF4VeIcVj&OU48{v(Z(xo9WvgiXMVA-nAQ&l}8=7C(lOobGf|! zb?5$b!L?v|6Ge9;EXuqr-oInZz$|{#!1=n=#y`vTY4pmZx0l+s3t!$4jDHZ$y4lwL zZ|JEl5$be}{f4pSWFdev*x#wcq$|tmV%a4&mm?(Y_vDf&&-eRDu?9LVx5gt63xiuz za^A2!Pf?y35;3G&c~bp4Va6Qy<@5WT8902)t=G5IUejc2+p?meWCUz4D#*!&naKdU z0N_Iwi$KI$jc5mkuQ{b*wJ~0OkL)kAQ521vN3A&_Z&G#PI0A&t_b>YYhu86axdx|@ zVnB-y4L|?4Yu9hSGcfQ~%a_O+*nvHPe^2{rei-3$fZwIRvgeo%6lyP0imoab@N2iQ zD0Uj=ko{ig0h$I7(SpzSykOmEO3m=2VpQnxN@eG%ijr`CT08Ck=#9y0X@(|t@t+SIXkh$`Edf9e|HSWR?{m}2WBfk(|}(xhJ-wU zuLpd26 zU_ft+ZDc+cYhgIw!Y*4rJz4sAz^@z!K&!dQ#7%9-)n|Em% z_1A1x2~0TkroTo}s%mL2z{q;mP&#aNQHQD%ZPuhH=baYdk(#b?t847fT7^)F7Mp0b!@yj^bLh<>CrsO`~g{6xWW#{iUd z6$N&GRGDtzFCLbajBlKK2|IyJIL+l$1@LMVOeT%>9`k|}OM-err%`-d6gD|_Hv z5r?RRbC>G>x4yJ#Zvy8U7Nk{(^z$$(1Q`<{Baey2LxP2cjRfd{OML;5j~uSoIf_V_ zLWiCGOHH;; zTS6FB_Lbefnjlpn)vIeMPO-9C2yF;7&D`qh3&?onwVXlu{8^N`a!rf4^(XCa2)0P$ z_b;j}B?0Sow*#8Q*Mb930Fw(FGkH@9Qg&6QL(PeBNL~iv+L=pvp$O2+&oktAy4N(m z7ItN%{`63$`_SpgNL)W7``p`m(Dpib+YJ8JIt3L(LDd4ho`;OC?-lm@$hN;Cn=_xT z2HV0|qRP-;(y!daX)e-q0V#mdKqf9!?a-h-a^5!t?UDD8aT%JBU6XmQ@a|#q{R>Nr zRSBbW&D6xJz)^>a@cl72^V*B+eeA9x&z-5v6Iq5q5f>4l_AV<*E>THT&YFrPHXM3N zE8aCu5RahKewP7n8^GV&asjH9S>qnMXw>tZ3aO*LpMM z*8Z=QDNlA1nU;*m=~{2a6k$qLK4G&QV$?WeyLr-VcWxCGl^-574LhyAJ{q(2++gWqeYd*THy25OCmJB zyhX~HK0J!}k0tN9My~zQ*sR^-I5~SQkC!C#+?2Lz;&yoXE|<(A5kjtlTlPHVNcewi zGrvnV9bB!jl`Bcexp)iF@rbz{vM5MMNKOwoenU11&2ug;t&E zTwbXRfRvf|?GkG*+Q3PF3uZysp;AJ54G?E2NQG?nSL6UI^;FJ7jCH^OpWWsO1%^j| zjBjhZ^Fd)~nKNDWGL_f_@2GNdQ)uF=Zi5L9qR2;%+watWY(_)SNEdjf5P&L6dqVcN z-_)0j!-sFt)0hIKo6B5Y5(bm)JM1wB%G~j&$H%0x2ri3~$)*XDHsmd191CNH653x{ z`iBYLr$MbC8oFozERiG&h@ZYL+*cJ4sTtCusu)<(K-c2%($9_W+pR0dKZl0TKBZ)P zRN9?oSH_3b1%&U?UJrJC_Ul4Izd+1c!R>x9xK)Q(Y~<9`I^l6QK@xhE>)8`5Zx28` zki=yIGP3cRdi%9OKhPJzo9~RXJNbC-L}R9wll{FoG*mTch=sr24Mx38f24PXmR|KC zF~5)38&`Ji<0`u~55*i~%V3iut;p8D)B*yO(4?1DA}Ap;@dkPKdp$z8KNS^+`IrW? z{1hZ_8u{hcXv~R?yR#X=vMBXk8Ou8NEjN!3k&x};T#<&k=7U*C@_>3BJ65K(;qrhT z+*vHLeAykzi&MoGWIz1AyGVCME$h)QB#Qed}3iiXb zM^P%tuVtSP@MDzJhX)q&=yJzdQjRvrz6~yZN<&bOC`&d?a6vW!I2sI}z=8Y(M;8|^ zh@OpmY_$7kkGwzg6}h~;Jkv8bw4NN#bxK_pwyb}htSI1`J*XK@f~5nH1N}#l}0b#>{@ zn-U%Eay09Iz0vBbTJ+^mi4Sf65R;2DdH#-P=p+N_O3KYlc)B8fFCq$2faG=#MzkXu zmR0lTfixe9W<%1^-LlV~#L6I5+n+x&-x3m5$IJ3mhyPFhb&)|otWENr@Is{y2tBCj ze|-4;_3AKV@VDs`1w}aAo<+A4(!~>s#nX;gg*dq4MKpyKn{xBEdz8GMft!X z;)!n%8wC1jkPDelRqwzQ77!NSo7jQxT<;oD2)ku()Cu+|%g;nhrxsXk#ajYe)CyMU zOUvHFqhhuEKk+;vAjQW)sjA_^V&{=TyMMQ2cRg?moDUC_zazObUFD_3tV-A!M89)Gucc4b0{bu0RKe=0Vc3&e097IsN^DlajE8jD*Wj$iR4e0Zd zW=*T^5B%8`+xUT5gDstG;>iqrt+AQ87Nb7$Oin=S%~!}M=aW}26@O7mh`QeS*Zclw+z z+fLS2jUP+biHL=SHCTk|ZYN9C?xw82#fLukND_lvOEW2Z)NuUeDEbc>XTVxPh_s^! z(sn}Y)UO-j?n1xRSfbyTsjj((piqY;8!dT?vt-cjumPZy71|xya{nD$q4473ivcut zY9#>-+jRx`7ZCN&O!?Y(=#H02*e{I@@BpgiM^g9{aNgXkUSq65%XK5e}xGi#pYAb zz$SHnwtjL7K_DUf2^mKLg7rWN2uo$lR%C(q7#ti7?|G(w9Q`QxTI6K+>{^>7^Q-Q> zf!bF@3!WpXjHY8=N9=@VN99sw#>L7X#lZdqo(Wh#z4JM@+BX&g)wn*H2r*bXDNwZV za52@#(#X_lyOhG_>mR_KMteQ(QA2&h@fwgh&N(3LMdk>Ap)L;BRCIZj($Zwpqo`ke zE!LKHM4N_%#UHp=^XdAjcb~FgA3{qYxo>WYZhV(0h}8Z5 zc<$mKJ%zJD5S9q|c!}6O#vMT(QH~!@e#`{&tcZShP zqBzc81n*O=;tI=FC*Ibs^soOTC7i@y>zGPl-ZfdZdvIT;0<(+>lE|4@SZKLQc3QQc z;A4&tv-UA&;Smt*RiHVVczJvGeSgaZ-lz5*0>(z;mW!}kH@eAuCNJGk28{2s)A|hJ zqC0`H-)JZ|Dt{?chCvssMPR?J`+M-Hx+vJDbN%7O)XjZdc;y%%_Ar;EDw>%;l zG>cE&?EN;mUSVZpbKMI^>kevFLRM+!K)Uk6G+Qcd1Adfecqw+QxSK2GS%KM(o4x#0 z+bR1L%8w74JxM}Iupyqw8ok^ishRLdVsW|O^ecXzWbRim?^&h878PQ%fvzZMGhc(P z4YWyp9Jod!1(Ya@Ma-2rD>sBY4op^Vdea(FlcyXTKSo*m`pUSDZ6J3i=JB_{*Y1to z-M658)^V6jFU}4(FX5XVZ$=9k6O~Y8SQe@imow%F?&9BZN`F;n`jkq;|3}wH<{i+rE9=PdxLrJ$>aFdjFB9(Kqedpj7p@s;tTsHE0t{ zWY{m6`JISRyyd0W?~qVv66#GBP;;k*x(Inqv`W+CBg2S5m_gJg;UqLdgp%K-it8T4i%_4;G0Y-7rY2b@Qn>5n-R z``fF72%$UZ0%g`!jmIT7=<1%rWGwJ`W*@XjBU%4&dqF~H8YJb?{|n0Msw`h<>V!$9SNh;KYh<<=KT7SbO5W%vyXYd^t)LLkkhg-q0n$OH zXSm6NB#^2XFpkii4a*I3k7vEmj7psZ-PkQ`-333e0*t+~5Lg2)qBZ1R58SDs=3vsC zEZW-#ZLW4?!6vvo^fs}V4>ueUGX-=hm%Up5%jVI_i6IKEefLHf@P=r$S@=i`3k_Sp zwDB8Dmsp#+3l{dgOm?;4QMV*{H_++0|3P9r&_c4u$yFGYLrCMk{e<0uG1`XyKDFhW zNA}&K67S{`*XcL>Xk6CWBA@Y;Hg&DleT_@b>@!TSt^Ed%^@l+Z6;c~Yq#*`Z5M|~n zJ9!DwGBWx?AnYf&yC4?VAAU(qjYN6Coq@tOrPlwi<;Qqz0zPK7NCFhL^zO9*BU&!` zvI-g6T=8A!P(31FhJ$24KuV3fVS>#p0<&)C-^k63G#`^K^R$Iw0TjiiYe5A@Bb=d~ z>lMsQOn189-zi3AWx&=?L-SS(F35OL{q^VZpv}+f!wvO8%uVI{(;3?{Mhn(Z&;Ox; z5d~0Cr3@LZ>}ZTQ$A=nCaqoYuCujUC&;=b3NDMOHmYlk0x(`Fi^%nGgXl-os&nh2` zKl!XU34Vn}ty;;TvZ0p+a%3bgXEOq%l%&6%4d#pGnN8!<<3s2oFD#;8KDX&k7AV7C z{}m|+f6wu@DCVBtTYD}3YUS;cZs$wU&}>h4R5jH1>9msKnXw z%@OjC5zLFFNqjK_>{r6G9fp&>*j-0(bL4DUq&>^~#1^s=Q&Y?;yLsEVt5xfv-qg?a zNW!~FRsn+R0|#|yNi82#$I$fpw&rk)NEMBqALuEgHWqnYU7dqTH9z2uptqL{F6tbhKX6W?6kX^V~6^O|=6w$fN^ zq((z)`iqFmLAp!%oJd&E5Np%y9DSVz> z`X)NTd{>F!-b1CE#X?tjzv?t1rSHRrGkjc$y$xYw@ULJh3MSsDJtwqgl$_vL{yPOE z2mSnB5TYxGl+A(6E>Cs>gw%x9-?x77Y1=KEtv#cfI{Ig}jpHpUZ}pJNkx|P`uM$IxU!T_G$O0}`aOPUjTp_AvZTGcEyvQjhk1c{(^?Xl;an>h zJC)@hAN_5b_AX$*)mW87E_W}1-egZUj#cwZdLmg(6!UFq0VJe8FfdT9jQ}727>GtB ztOCjMU{U%NR8D3M#|49IoVbzS_T2`V{LJi9ub(C(D4{G1s(}pWnYiD1DlupN77E1j zbtB{LKv+eN;|BIgF7wH!1sYZI>vphXMwDL9jQ&JN5wk+O?{{Q+z<=`mQ<2uuy**{# z>}^47H5+a zQaM8C7c7_w#EIdGEmO*woo)?IIUm)TKklAE5IG#x{G$J_;_h`3*&0^v}K7eQqSqKIe;9MfyjF+MkV&xGe;@ho9`?0uN3FP|qO z_Zt6=CMJt%pGPFZmi1(o;WSWGr`mbDfB7i+%`?e|4&*Dpip%PpoKDf81CkK;I+l@5 zvwk|YM+$^PLB31V#nW|ohWad&Yl)@ zD6;Uo>^GN4zHTe?=VHvM`zmf^v}#cvo0!-QyOrZE4yddVfXO%JQXNFgSJa@215oyj ziU#_p$-0eny;q0#;T%T9a=Cdqk2UH{29O*$z5I2a^-u}h>Hl|P*!U5T7>)Ho8fzUE9vsO+{v*{!GN620oEd;d*;F@)eUdd zBtfxl^2h!jQ{*tkL51scMRj!?#C*a?wZQ0T5*UVaSrM^v@cpO4~#um(MxUzYf70i3H}|1 z%`T%T=dB^atMjZ3v(;g;tL3hbzpBu->s5MH&^*PM8Rno66F~#x9;?4L^mzzA0|9TP zO|!?hDaFKOZ$|lL`PI57i%p_s_pp+9zZK%y&v=G2!etd;a)QBY&*!rqi(>1V&8RZ0 zMZNJOMn-yd(MKljr>gR+&P^Qo+snOX(hoB#Snw7&aaMU38XCHDc)dlN__peQgM|JX zMV|*tMLF7IZ;8*;1V1MJA*NXm4^&{Xk^D#)_UjsdbeZ>1yZ#%@A*erDBFC!#8!-7Q zAXz@Sr$ZtsVnb0Sv;#xy5kbf`)Odcg z$|RWJ@1pnHp2j{eD7<791yX4-0$P3|0RZgmjQTn}&H`K>T8GkcKp+2Jnzfi*7VpwA&A{ot!bzXXqBUDo%q9)t69 z;BTe$ztSIIELO0g$!n(m$st_N{F@T=qa`aW>u{pWSXC52k( z)trQ6IX?nBF7$L8e8zs{OWta9U^8^?PRLoz$A&0qFbNxg=FNkXS*V?M}vevQK^ zM2=k_UAbzS2<5khpNG`SOw2GJ3AL#uUuPjnUufJc{q~c|>Q}Q4@kJ9G(9nm%d@9xb zJ32K}k_ul^WHP9qrrs00Mp|xyihP7JIX$w@)p+f-$~VQaz%uNeRerx^XiH5rH)pJbtL=r zsVU*xL^VO!I@w%My`tnnd6L!Y6khDhy|ncMOy;{5%d=E#FPg?QcIppP#04P`E9TCf zMtO^5y^**64vF`TUb0}I7QLiOEh_$+Yr~WCvZHlsDxm=;R6*g;_#)Zd|6g9M=Gc-N zVUgO$|7Zb}Ka9Mq@MHK1_(-r}A3``leYgz`>HN~LwP>9?5j4Uh+U{L-M}L0<710b$ z#g7ToU@tYY+e8uxOz+0b%8BV5;avgi2Vo|M~h4z`kVO0 zJ!wV%#qbZY@l!`KtUM4EJOU2@LcC7aIuSIO)9jzDGu?>&WRiTh>}~v8pDA+-rMsrz zxl-A4p3lzu%h1)UXVUilO%Z$jdbz;N{+0#HyOEJG#jkfMM-+hNfcw@1hsre%{rbHx zmZrm_8MGiSMHS~L3mbITdS78X99>@6TI2%dS}0x8D`euqS&q# z`Ebeu^*N9#$s}^3r8Rw$$^WTe{ooA@qeE`4#?RLgJ_PJvB6(&4&(s(qia=e8j2wYM z0XYJRpGMj*Sx+@4Sc#3@WKob51H;E;(CDAJWNnEfnYz+KNl(^0G&MtO3;`Jdd*}2b zM5Cq_7vonPQYJJ{Y0r^SdO9>*Q@sBz?XdNO25qxLC9|KpnAml&$I^0e;8n?czg`y1 zuDd9DJg5-ilmJeE@X%0Uh&hD#K;xni_h^PfgNp=Qf|?c&hNm}Py}P6AndtLf##Eo< z#WD=!nY&YYA4-e=d0lG!_a^!RQR0B=1-0nRmQ|!W>d7WYxURNf+db5Z>29^aTK)Sw zfg|GlF6U45Dh+Bk1Dc4Wz$Qj1Pwg*E&y)@RzM}oW;a^|IGE&Y;5Lu9FsbsZJc)&at zX7Ez;I&p%dty)?iY#|S|c@ddtzfxN_jr<+@>b)ECh34-!#>*PiXS&+kXP}79K6l+A zA1U@Noa~BfG$LS9t?-+hT2>=++)yU3j-)`ThVk0pC-pdY;IYvtFk!~>54@Lr&lTHj zXX!wkrXebRt^JLbwX|xT02w+I<8}JFTi~Mr zeF&ijOXfd)-fNm_!ThzSJto0d;BkJbr$I~Rd(ydkY8u2;CQBT=f-DX zJ2}k8A4AUv>J{WTgGsyNvmy^8ut&e!`wyGa?&tVgt$rLK88t6@Q?zbiyBu*xuUH>5 zAI#rK7Cc11i)Ib*M%{lnCBA>%6_a!rEz0-n>AAGEy>{k59R>^?FB50yXK*c{C(nD< zQP$TPvy+@x-%zkBiSd}{!MrzBylmJy+^ml|e8c;=h9iD+TwFEZUeM{1j3oHW@J+d? zI*c#28Re5w&N}xY%beML<4-br0v#9HHRsnjBH9K^Sv)Q2&S+WvI~%7DW~+_r{@G*A zx2!BcCiD-NBXfWlgEZK(06u{5Xq=2Hv9~xV8}*IT7uNG16GwCDG-E)L!MMIlgLg>Cv6i~A zo!M|nELjn0VEckK%$i@S-0UkeD|{DHFqJL+l+l@ddgm4-6{638dkiAQ@uHJ4bQpRh zSDiAR{R0mFa=frf37I_=}txeSw(d2bu-}QP@_I{WQmbneo}F7g{Lv$wvb6%gw25J zo)udfgW?>)dVotP-+e-b1f{;E zqOCYn4qCY%o<%>>-&U;#qpT71;>CVHc>P5?l!*)y%r7@jc;3oa+O49PVThPdH5-;! z@1vUPV;2*rp8Go_q!r1xL6Zz5wvloo+-|O}0_Gf)Zz`+#3LXg5JtABl2vzw!eza+4 zmQ1p_;gS9OAAA^*mU;V>#-nKE_dEe@@fXj~-bCG(81?BPU8mo? z3~xNUDR2J>PvI@D&$+dE-7agw-*4FVE_r=rz^5XHK1jKZ5_1>o_BxUv=pE~kGcOsf ztlVU&2+{K^M`b~~o=Ey-xXpVdjKel*$n)3BTVXLV?Vvh`HT5CSl%4;Wo4i>f5{KOB~=v6BT=2G)ULat5Y&j zEAmaF*wZ90m{x@u!*6|Mv<6Byy^U&_)+a?~V)}SPJ000#7hyGibB_J1(yfB@R87;n z)1(?t<^3&Uu(1UCedvH34^RTR%Sitd`ElEVtglUY~lTy6d?2C(>s*h+@nHybrRm%HVPk099 zqN&Yepf|UVGZ@vj&)KI zYU}QK!(RzJlnZQZUP6!K|CMQ{_H@mHv&H~0arfh=|GCQGCj`*`_hy5Yfp^34<9o|I zJD=d~R53=9euV?VB~r|Q!5=Fp7>A~;8PsWs8ApjJ6L*Auj@N`a=fvs$zQwULh3R!W zc;PU`R=z@uhQEN)qqgdkakeq_*^d=we`=64^2M!K{v*c59U17$GSICEkh~=7TpGU7 zAkL;jgTcABzV3c>UST>$YoBjCfnAm}XF}k!tdsq_iG92uXpi+KIDs!b?>A4_?vPcr0C!yIY(l$0 zsJNLv>2REL7I)B>fTg8!6AaF4M+I{EJj82xh>D2fFqFux=g?zvEj}6_*w7hI|i6sUmfo3D#oOFuZs z5CCj`ZQNcy?@9r*B8Y8Cw+=0~@k_%2!;gsDSq+sEn)*~ee`@^BQqj@V9vCHazHEaz znXxdc&bTZN;M#D|lo|3^P@N~=(@JqzR)`vDJd9?O|Co0(KLnfY(!BDx25(%*BgQHL zH1*95PG2Sm-UegH>qb$DFi@*7_ePJ%eT(sw^txSL%fePyLsIdB>v)R5uS+L`miM;n z3s#`_K^13hZQZV3_RAL{V_wCp0WM|jgO|}J?;hVf6 zB*sCJQ8SaFgSP_&A=ghmF3$SDWeD!~q#YD=MHMh49g1K**UjjtFLZ{)lDT zAC^BMCRC_a`c~N46P@k-T0X%Mk4?KtRV|P)-_h!NYq$;y&U2?xR{cT2YcaW<2+&qE zW_s+fIw3P@CVEHj#y*v-z1$O+|9TdJQJa&Ky7KRDiUOC_2*<71z)y0z?I)Y@?nb|4 z;n?|~*W49Vc;f?_9Yz@I3qZZFa5C1t>2kF0V22xjQ&H*co?&k_B)$-JCK6*dQL#vSYMdR@C+7D{U zs;zXq75oThwHh?jC&qbuhS;vIr1mu%4h9}VfGWc|f!-LSKB_;JXG zp>9SUL37?(w4bSanKJL(5BH^@WZ*ZgQbW1*BMj7NHcg#{_ONe)u5sthqPqkMBVFbd z17;Eqn@;H`WR<5i_#8|g{}jd$df95ewT!n_TOP@yQLlhG7q&3r@m0zzh6p@z^4}o6 z3Ckmj%upK0<{5C3Crn@vmv^i2iSuwKH0HfVStn<_@R8S?(b`-1{d*c@b`=CWAY8A5 zJ8nn;X<+NGlZ$OX%f&u!&tsi&t9>QsR=3AQJ=)J#4&BY4o*0xcvk{|JM7%8LJNHvh ztxt|S^)PNrnulC+5YDa)<&i*LxeQSkFlJ|Fb+rR9RtV=`hG zz4y2^LD`2?bc;7vhSK;YeM&KoHgi_S(m}GWo9a;#6|>j=X!Q~3)}3sUVR3RgXy3Ov zQd)L8JAR|2A`CbSyV{52ti-&dzbLMb^vg}yLT@{HtSbUPY4jIyZtZO`|?!Sv#OE6 z2Pkb9p{~~}JjO}l5bG27d2eBwE_gp^En@ixw|~zs_kBY>GThAsKDlB8_8}7X84?}} zCv2Ny^?b!dB7wRMVy=1t-***ikCdY1RGI4Y)Eb6)_E1Xe=Xjp77jA5AG`uvK+bsNT zvPJ(l;=fWc|Lfba4Gm^3RFL?<)u`ovJw289uFPlcv_9uwpv=E{dDLPwIQ-?OScBUI zl1&B@J+PR{gIozZTZsp(-^DAK$k1vMaR!X z*FP^N&3>j`2|WI)EMK(FRGq7_W{hohWIA^5G5b6r3d{?h-io_|2ian0In*1P=qE@= z9zD9UM6_YwdHWnkxW;$>jvgwSZ@3{-c5`55u+37>dl(MViC{2?u=DFKbaT$aUBi4@R9Lg_VhjpD;pck z^WhjA8G%`H!CHk5^q3{O26K`}_~R9e%hzY9Sg0h~Sy|0Wk{Cd+h75e+b=*#-lOz1{ zq7v~EA++S2EA-HF5Oa3yfSJBvOoKT+`EJxk08bAU_8I1i;|S-%F?w`SoS7}@%&#tN zC6MO(t5-C0Z(SMI=+BuGu>CbY6(H=&VOQu7ikOm_89J?=A)AqP^;;=pVH(2t)TJlB zu`auR{rdJAh0m0J8Yi#sWP)GJ`txh{fPeh?#!G+#T020*z`<;8&FR_H2(xdVg6{5Y zB;dt?bn&J{0k$=%r&f~8cH`Ycp>yuC4?3cGUqoh`1HVYjXQVu53|kU-Ej>lC4e=R3HYZ@RfG$6R!dCENUjdRP?j9|@VYI67v!|oIyKl?hT~Pf8 zNm2o0^62+qSV+M98ryKC+y_f%ANTVnmrIFMK@njfL}0st<%!)%P*PkRByiuRHK&cs zib323wcGViG6li~L&$jsLdj#e{E!i~$ka)Sqspo(tMg+kWF$F=$HY4_HD%3m6q1Gwc!S(l!yk8K^JyEvAbz6XEIe_lI60rcC_ zQs*zAGY4Oa4S-Yl-D`I_|CF>imvIy06NraNtC-9tx@^wwwB0l4OMRX_q=Q-pq^;xy z9Mm)o5qG6FbMHI1L_}Kf%9{PeExt8XJ8?yMPyLlR23vxzI%U?;iiqMr!JGDc%zor6 zf8E*46CGM!)=Wv5pY}u&YczrA;BD&nugJ7X7_Z3XMT+_B@#-u6?CGg}Er zPKeQ#KG<|z>(QixlpV)|73@z>nn}du?mN}6L2}?owq*dW$l|i>Nyj=gLSG@#e0Gj@ z{3hf$eg=_~ygaSM9I^Q`5nmOm|3}qXKn0by?V41&8!1shQjn1Dlm-E%loILg5=B6y zMM^|Kq)R{=L_tCU>28qj?(^*LeE(VhnYCOq!#FI2z2EnV`@ZfM6gO`cbWh8r>%6h8 zW+;9dkXtWb@ak-(t*j3Iqmr!+mvJ`M+GG3Kw{Uayfg2Vd z^$YW@R)_0RxJ1+hK0Ld-t>o1`z|FBE9!37~aMJ zZD2CM)0}zX#TjqH`;4A0ri-kjo#j6Agc2UBG=j-Uvcl7A?>0?ZBr2$~Lxm2!sh1z@ zhDAjod@{t3JYZqO{He$3v9GeNLqs^qbv&x=bOUZg?gN);o`wdq)A}pD^ryx?G>k0G z|NGwB`@i?rO~eb1_{GP6yBBb1os|xevxAO`{>H%puRTrLOqx1@i6uZd(#Is5fmXgqVH+wSj@Q+=k#Z3 z|Dp=@5OGqFKFrRe+J9(mYy=rLsaad!+PlcJ=#4Ycc4!B2{T=RDUgwTETX|d&`!x4w za2d54|7WWw_J7gC8jD*qOKGX8J3a`zdI1z_XWxzD7l^GuYC99JAt7BdoV9((=+@fL zR==e%o_8}C%Sa48B%M;gcP_7i`!rTTOzg(+vec?JZt1dGuHWR&Dt+W!6xB$~Lm7C% zz_S=yJYh)e2g@$)UUTPV;J6e2Nik*S8$*vlOpl-j2IqflSS(9S3) zwvtxwLewezsakIq=lz((FCT?Y0uAO*esDDahaeSTKjCx5(V`7{-Le}?(w9T7j8gjz znF2D0FKi8Hi`_9PWUO6EC8l{%Y_4-!Z({hIN55#FTz`5)))+-Y!edMa z)ZziMp-;nWS9ePmp%eWI(j1JC8?N30rwilN`*sqnL8tdRM(|h^G(L>vQ*JUyg94R9 zzgSL_tt^?gj0QjVCA#z45OMP3NZyi|+O@fVKj2~Lfb$UmNXYdGOzJPH$v+^QflAQM zp!{2%`-Gxl4DUHL(gQL3CNXmwDNS-&Gs2O5T89EA*-Zh`s#yluOnOT zTZXG^cSJp?W+Vj(;CuJqzrq6v|L>l7XZt7NUQgg|7cQCNeK%IrkjkPYV@DQFIxCe|YgZie#WMr=r^<6Ux;6qSry8t&v zaUrwk=lq8jJltSl2r->DP)%@u$NCvyJ5;=8auNO@{@jD9 zS*B*Y!KFP_?!k*f99G*3?rcfF}4H znsg);Gat{n%Sikke@fwkDL1-Qb}XsT?N=*3t#g$5iyLh%7V74|-e!D~^1GzYd9ZS~ zzQ#Sw90E+jo~IvPst>Q>*yPq4M~(5IY?)kG7v}vcENIO#CUPL=k~Bn_p6X>2uSjyg zR)6i_XW$&wyD5_=RargV*%ssU&?*5uGKHD1a+1_s>nyx&gw}Rd%hy_~CZeOQGp?n5 zLS09saxAA)O}9u=K@r1*W@x9xz+_m71FRnWOjHSF`rXF z^a6qli)sn8wEad}@5a4q{fvX;XO|uOP()KGsEjY3UR1Tf^8ra!SU9M4gDNvGkLE;0 zy6>dnv@=H|YhlfuJ!dhWeW_WNMh3ph zH#5(5u&E@Y^6x#nBkG4Cogufl7?PLyq0rtmV~6mUCi~^^zohjoaTU+ntj8H0&p#)mo_+JD4{~3J9!0HdA#fab^q%FrKOMEGVD_}GS z-lBsRn?3%ODDks@qCYGjSl>j8&3m`p|Fv{^Rm-bl{ba<63*Rt{dibyP`6-?(Et&d1 zje=P0;Gc;PGvYE_9%^enYKCv%=<&QlX@npd;D4aQiMgwu(xI9>)RCSB*Nc?%&ANX#bi4hx^WE1@_PxU07IJ z?f{de)W6NcZMdAya*WZ@&sQ;PXYW(Sr#M=MtyUYpz2T;dqDQw}NI@i1WG%EKcWd(c zY3W&=(NIZ!q|xo1Ve^JC>Ph;@XbMP#67u{U<9#db!?7KAQG?RLUp791>3_eX$Vz41 zco=FU34XNdC~M_MMbzy*s`KE2aHsi}a8fAH>;!2+9w(JSHu6L`eKQa?poeN4~dqC9Kh;^lGU8?x6g)H~`9Moc3-J^Su#7_PTu`R<|NV=&cjBoz z8UFo`7Jya53fi7qtPwq<4rMdqengGtDZU1_KV-2?kEupE^qF<;P*v{|@5>J^Y&QG= zRt*&iWm{{DoSAu=y$w>}gDvV0bSLd6a}Q*!#KIovl3`^g6@vfj%{(g#Tp4sFzCJoW z>x_##ZM^R&h{(uVM7QdH!ncerRSjUI>yvef)c2lgyRT^%xN0aVeags~C5&ji6acu% z5-@};Kxq3eT}=H1un!XxWz_g1n_gQ`XeNNV^Fr}7@qdj_j!xz;D_NPCc0y-1H@l(4 zzYlI$2>;52p$`y?5TRh>=_*HDeEiDajK!?KMF{;5Lt4snmSyPmd*(}wY&7>=29NTP zxUFwbs|->G%XEjePqUWmMhy&=jU7a4>KZZYChx4g&+dKQIQHt7tn!kxSxXKh>0hsW zB=i_b)rGNY)G3Us5nxogLC1v+gU4FhH;lgu7&D_e=*1hd9j1X~K`~QIcmV--9bPyf zfBbvTy7_6>Aav>knoup@y1uQV6@#}{L{eX#a}QmTBu7x$=S5+G!Xs)R!H{>DU-Q(J zWQAet*5Uz!l5tJsT8W>Au@4h?@6@rY9^ZtdV$f}u`3^fQ?A9HkzK*lOAuyUf?KJ*y z^?P`k?+t;qFMW0O-#jph-=m4Z?BPkFSX2C zKH6tQi3_Oi+zb(=o7+S$@mNa6mknE)|9xP7`@?u#M45@-KT2++CqG_cL!-*h!2t`b z4C6uy!st5lo=*PVALW1=2}rI+RmNNKByVVb4bog7zrk3pAELaG7NgQOGkQ6ONw(U1 zj|EZkf}w8S5XazRP9SccquS$3Ff;9*m;Vsvp?`d2YAS+&m&wp1qM~XCY;NgeyYuaZ zN8I)uU&^F!6y#0G%tb%4^IN^)kxFNqm4L3{xVT=|cK_(IXFb4nqMiX8>Vudk0WYHrl%^%oj_(I(jsN|Gzh$Uv=82vK$SoE|8*#Q@1y@Ua`pz(>zQ z@y_w6ILGSvS4A+yKG&%NfWb3Zaibs|lu=VaT2eqji#Wy0F0=WOH?9V%T^k(x3D?w% z$u6=$kgEhpUQo*sXv_x!JmohW`@%l^Y#`}ScrA4?YSGy=DcgE}_n+gd16D`Sfa3I7sR!f&UsyZ{G>~*k?9xOGJ6khE~q@j!u&5&NYODqP) z&~JC6>_dD*i(ABY^lR&PQPUFZWk=Af-<468KH6%#AaPI^oyYw(dEY%P9%evbC28Mk9E``jJ5Us#$zWu9) zyST|?qf;51b6jt0%qpH-RPwt_pO8%ZDrVYKMiup{%BqNvpQ%3?9L(BwYAfuIZ8+d) zyD$;Y#7h24s}>^^`S9S~$6EE1mDCB5$4WhCS;}Lvk3miS$@IA#LOr=@jD53a;Q+EiT(4$Q>4_iDJavAG3tseoh=7)wbV21 z4I$bpb11i0XxW)?htb9W&xQxTvPQrnz5Tmc#kmzp;n?Heq2_+Y)*U)|gFk|`k^}KU z4qS$mZmHgcqpW;+N?gn^II6D~yQUufq+M3)!&Fk&=8<;kxb$Lvi_j2ld~xj94-wGn z!v*7dqgg0<6X!UTKzC=(wA|XRB4eN(du>kHI3#?GZ|B6q%Iao220J@D5ZLB{b}$<$ zG&NH>Y$BVdyE~wx!3*^i^3wng_{r>~ZVs=nw>K|j-oU^WHX7(q5+h+Cy88NihvSZ} zPvrToUpeC!g_6ANUf;LFkp2X3P+^uQm+S<(aUO^LCni?hb&q%SA9F9zt=ZVJR(;?x;d&bd0)|?;vaHB|wXPeY{ zZKzg2QPBR&6+9o0ClMQu-cs;IKSPZvQ+%sr41+8HLXT{CD3UFrmmGcnX(~IG%(u%! zQNFl?zMndsHnVwY&?UG_5&`-I8vKOJz#Vw4+Tj;g7%L_~S-Qa`IlCZaTRw_t?3a4d zbD*h#r5Bi1u2K(Cpt7HZ@%g~e5W<828$KX^-PVR8$HpGRDHk?sr?B}i*w&58BZAyq zPXZAWZZ-Pf7->p>fu35@23=0F$JNEaiW^pN^`(oxJ{qg~_Xb1#g~wdKGR@f4KYThK zbBEIvwYT%O=U`P3ox3K=NB^znEKkpzXSoE}GJ&GBvdIKJBaHCP{hisXdutI9a9FH5JrnOR(hB7;2_D?rgYg2%SCvTPIO+Fm%xie6j=Qnw-3 z7>`cm9cYEl8Cd%wV7vqh>LBYi;Dub4e)jv{mGz@bee8Mx0RhlPBhXGTP|Jfv6*8dR zwx-hHdm;Mj%d`z#+;p(&*96)!coX2?ECHm^WVjF;bDTZ{_0T_1SXr1Tv+gzN&EI>9 zk`jhec%a}GE|e$kX{^c{c-`EDIK(#@@R^RMMRXz|jy6Hn&-SiWR>&TNkHJ&_1P1mf0I+ZZivkkA2ioB0 zj)jgxRjLIFF*>J~ z973fnXNXsmihJqGs#EPE4i(%Hz43O`T6Ev=^#^KP0+hv?sa^?4I?{D|ukTEEQ@gAn z2w~}#%fZ$(19)>m9s*~>ib(l&e@c8gmL`t-2LYK3ZSU#kK!wHm=<6$RwpJeBkd zTmDgatuIclOvuGcHNqX02u>4z@;u8Z=2PcrIoEkP?7As6>Ed^!M@FW#svAK@ci!ty z6we*kEkW!82_Tmk`S{{KtQ+mRs0|Dlc+HNg!a{2PsxLNnZ`@flJO>fLxehYQcRR;~rr+Mnvv+;Ezio}kgPcb|uxjwfy57}fe`^(X0#!IQ2MJWXn?m34 zr?sS|G}&glugT1Q#BKS*fF4F%pK)}U<#Z*lE>;zui#-{0XVGZd<>k!BW;y&wH=9nY zZ_c}uUi%52oVRpsfQtA4wobDKiQrQ^ziGS^O~Q5eqmgJ*V53*;2abm~d;}Utw{?rz zX=rJrp?#2AD1Q7Fa}j#0U`QX@hCO^agaN^E`Ka^>D&XX<2KO=k^`!TJLhwzU@Awc2 zJp6xB1b*)--l%bd8!-5+V516Fsn8aM6^wvi_Bxw8vtYv0i0V`MqB zCGkWL_SMw$!w)Io=neFzNQjQk`Y0&&cDv0=$7hC-oK+p|N!6$|C)f2)Wfj4-3#rx` zA8z~2nzM^ttpQ7W?@7&5l%P% zykXMOH8idNK?mI1<@4m zOIv|gz6DpM$`E6{m}u%D@+M&Z7rw(pbu(DHy8d^G(9BEI$uZATw`5@~v|J3hGYTX-)~aKa1}^8A8=ncCquk*X_^$Mj!W z8@)N0!*eHe4OI2)tT>9%Yv-DrX!wTf8q*?$Ti*rLho^jH*DEw=hI@g|k|xsY^OOxA z^DtYlSDjg*!zYPZ5gbVkKdUHd&8Z8F6h2(G6YDJ51;~b0F*o5IvBOZMi=IBNyO}O> zA7!|E!+C@3LGSA#gsTXbGcxLgw!csH58`QsM+}bA&{9<5{Xie5@&lJ0SIa+jq@xnP zq)2`R+}pOj&%B}ET%V|k-;%6W%hCcCt@zmGX0CWkCEJ~v_*a}0AzL3w{a?2=2)y%P z{t%+jbSN>=1yY84X=T!;I~GuH^F<7%ko>; zp8h_Q{)2BnQp(m%N%)Bz-9RjU(1N+#$|l7?H8nL2IG(-kCPF9C`*HunAZCdY;r_#G zeT2{A$^=n))>CdD?hbAjqs)1HqX_ivQ6LKUh8IC#RB#|HPq(1aB z{U+}IYVJa`j3)A!;B6MunxH^OqVUy3)vLFgQTmB@*Y#)<^j+D+{c-Ciqb9n@6FoqK zXK(I}sn_rV7LqYw>Tce|wGM8;rk=iz5$0{i=|V|MhRqZXUw09@SuN+JuDN=27BwdlPdY3#RMKBMsqfy_)TYcR_wTHa!4JdVfyFY1 zz`VVa*>SK+uHhC-j%~F&tu)d0TlXkG{j+d1r-u*8eH!Sqdc&%!gn}9WLbG;$exCd1 zcWY%@b)MP1R6}x4)I$6N6fTw*^)8Dzf~ojD9&|Bx46CA?9j7s+S>{0_2J{DB@M$3n ztFvlizI6-s<=eL|b50gnT6mDiNg$Pe5cQ0L2_`QrB~f%8*uNB}Do^yqR%7~pI`GICCcQ|m z^ylWy8aJ;pC^IY~aMoX!+ds#n8Y*hF9$`UKa6|u;@dG1h(nc{uYi4)~7udAGwA1lV zP-z95HtIIk-gm2SnNj%6Gd0QTbKF7f>`9-RdZabmy#p6jps1p=gtqV6r}a##4qAR) z)nXQ%_PkNg*Y!)1U;H+>*{{6AG6Ve-n+t49bt9%e!#Lsel`TI-!h9b$Ns}}4;}5CB z-zB{EH`T!g4o&<&aI$3s4}4}SWBKuq zZDwUq#q?S&f}{$0?$8;R^yuVAGxcrNJRbhWpUMCupAd~aZb-$wMO}(z>`mgoh-@tH z;oTW!-r%ybvRL5AtEUw%&V`87zpTVd<6_~fbN_;8oE%&H6YT?d8b}6zMm!~yf6A9U zQmyqCr=+;}U-Gk$$c|k)ryo@_!T9%yfc~Ajhsx{iN}I;Qaaw^4uez+vVa!8N7dG4D z_S_xcS2g@Q$Dah)rTvB6FMb;QDguj)1KoR@2hCV~Y~r=)hF4w*r|WnNH28w$3Bj_; zpZ)5iY18RG-Maj;?8%O0utxjWxM9lWnTP1&S?dx%7>53%Ld{?_?_%QSJa#Ou-^N#d z(3r)y^KG8OQ&ND5PF$1C@-svC%=T}^(TjbPIsK0r?BzJw+R9MtfhOOD#1j<_4b92f zIYX?Deve1Y6Ej&VF;-e^-@)&r-p|+>B^IGd9KCl9hiO&_ITI#M)f>|{(e#T{2%PBZ7c9J8f_^wEW6ufXy@XF54zCId}=F%s@ zIH#w=o$>m{cscc->$doohzDown4j}Tt%q%;q%?P1L-}#k@5;vuG+Zu~3j395S2v1d zH||nU=y>ygjO+3(6r#!7Lu4l)(N1|I5zSa8!mV*XN%T#IGXj zLOlrapKdQ{5D8Z@z%>qjA+o(RjOYKm*5BG|QkZcE+Bi&J_o0x5dtkw(CW*c#A0erFr(1OE{@1TZzE)UMT3yWZ7|GwiQ@+k{(aEa&@b*9* zBcoC}da;}MS*6B!+qcwnr8N#Y=U&l1^zX4``FDJd65rksCV?-JUAvX}%tR+tG|JQSHd3t){1T;zyMxvQL!;@MmZni3$BUyfttrEIAovWKQ=en*2@oGAD-}OGLVE&G3N~Ziw`VgZEPi6iCVQuSXW;=8XD9p$ zjl4rz(;S_3T?e~w$bR?t^?fLAy1G0=g6x4v6&nUs7;f8%y=nW~D3gth;?HR_8Hdbu$L-x2 z$g#dd^$o}mGayYNF-dH?Xh&~xESCRZiR>S>8rUxU2{bjkiX$E26s%RZ*9hI|g$gbv zIXOI{ie}4cSnmw9QW@ec(=O1s!A7@r%-XVT&fFr6+o>KGOu`Yx6l-+7hVvUT>n+@F z{?&xC?<2E+zH=a$Ew-N5v*BSC#`ga9OF`w^R`#I_$qQ-edI%O)P2mqe+w%IH!oHT< z!=25YmGpXouWhd^WdkpLJW4<6?Z4(>-@j*5n!)3B%<JuK;BP4mjIR9UXuwP&|?MU}tXMMkO*V}=CBoLQlvk%ww%yIzufziONEzOL|a zapTH0$5NZcT}H-720KH41qWk=POJ3Or!ZXG*4pB*uZQ0vf-K~vq+*L18L?jdwUuFG zlJY5uS5CE9y|{3W$CiC_<~u#jd63Kf<$>rgMy>~7Tcjoc-3kvzElzqeH?vE{lg9&gK3voDB zXu*H8*7JZ&O&8dqf&6m`niH9#!M|&R&)c`4EojH66{C)D>~ZSr>w{v=G4;$Hwir-* zLYFhw(s4x>AcVH%*t=ZG`o^prZ$6W4j8sq@#6ex(++AJES$~Sa?`o>fhTk6d?wuUK zj3GB}2AbN#9YbTCE|6#?19}9(2`RdUXSPE+1vSE0K3qqg8Bp9=H>`*#G+!Z*sAu%{ zx^_S)T``*56I*y)h44lhE{(f9d4;@jhOR>)?>ya{bX~W^z&jeY2mSrU#-eEGskkqZ zo)n&t!yaxeF2&bl<5YJNo>}mRn}DVJ;zSwz+Nwk zIn#d!B_W6AK^ivrB9S-?K#aiGjdF|Q%{NUiLF@@x6B_mHpubk`Hx=BZzPyv;Hcu$) zx}Yw&)m&ClF>qOhgs?+m-a8x2cuBg}!jiUoZqBAG{`b++op|2F;R^4yVi#Jqb>xYp zz4+;P0bnh*i=O{_A z-OkpjtJ*m3H*mO188CD-8cIkeo zd-0?h>_jk`1LD7c6J$6xlvY>6JJ7W@FZW;?VmcJ7)u~ONJOv0k09m|{kSltT= z2{}|U`|nHnpSSaTYteJQ`OI*l=JSOEgK>jNbT3=O4Izcn$u7jQ0Hy^oOdhs+R=RK=5%lQ0FH2>12S=WO}~ zgOH%N3o=)*iYXZz)4^bH5iGf%&o8jBg2nUVTA#=S)=|Z98Ub7j5rQMBZYbhD`%hr# zl%(=|Ozc~p9J_ulxm?uhh>du%(d#a|+Z;@E>A4hsaPg$ZCMQ=%9PcF;tR^86eN&-)mwk)d7Eg-rk^UWwp5@tBT*+r# zZPer=`Fwi|Q(4~rqhWxow>etpyVsU0CwU1AIeH=kU1~+2r(X?)9M|i1yp|?{owA6$ z(=+^@^CAWn%C)xntot0{ zunJoKeHug|eJz>NohdZ+Z|2##1M& zklcFEc$J)A-oe(;U@d7&LvLKi*lsZbdr9^59E&Yfu=k2XVC>+-69diz>+x32N3rtW zerQb55)*SRa{f<=2ZbCM_3P#+XhzMZI|ln|t~K#8L=?vbYY4g6ACwF%th9@|h1ABe z6Jf}uhFKXn!th3hdImRB>7vW7Q*fg#=~2+&6UMod5Gp>`-22WctG0Q%)3wqEMYIHM zuI}!O0O5ZEVd^MIt~hK^U`vq7F7QER^AP`)IRA9UMrN17Xdbift&gq0VIY?#>blTQ zJn_;nAb`Kmz+~hN<3~s~g97w>Z^Z4~YS^yJ*AiV;60aU}Y!#?eQqRd!^ z^UyaH`FsX|mz-8h9})F_x`KIKkzTnndlhxtAdmQa0Cb8mZ53j-f35#t&$4!4EtVSmCV@QUix@cIZumTY$sYtac8Wp`*6kYEJC;vgs?~8r7_lT*{2| z7O0SXT7SA)U>|h=Uj46t=En;c+QHd%tchbYQ+l_K2iT*qurSDh6)K=0Czl8BD_BAR z(smCrVgSmo1PxdCn>R8AgJ>h;_uvPDT!QTC#@{^`G%@6HqaSE}o@;r8BKET3#_5&A z#CVNPa@Nu+VaF>10>$ygVho#`w;bzVH8%4I2@6w4w90^o8Q6hsU68jupUSGX8@X?G zcp84=VwqET2}fzPcY%^49(UiT6jzq=NIK*FnB;cHM~@dml6gt%{obz#pG!Df@;(+m zsw9&ZMY`6)M?XR46vdcGe6N8vmRWRebzWt5(NEp~!}k?B;T8$vkY82aKZMGAfAu!otHt!gpGU4%hM@_BFuoRYV0-`-hc)%V(8n{9vCRV7KB z_$K2=J9rRwc6T!y8%{sC#;-}G%?>4qr}BK`;Ckw6 zUgvfR*#Ky_3esT~aCzJ&*$0&%q{)76{AvKT9w7?W{kQbG)tYI3*wDzxKLu3w2zeClkZH3fem(%if=bi?(DpFbd1p0r{~d=>g4@TD z5D#PY(iHmz)ArkYN;IRkhc{idf*Fabt7~!ul-{#mYN&o$b~I!YrHIb1r7?egCm1*! zx{72Dn*)ht@hK^taGa@v`V@2pmgQUM!1qSvoFEQioA#%=3jJmN=Z+jhAVEzXZ7dI` z%u4?|FV!#FvqEN6+#3}ZZAFSi7`16^0F0H(N8L{=Ibz7j2cB z7y|-iFY8Qo5|dwEPTcl;P0-SyLzX!zvlt@R8BO12V59<-G1xNhYl!V&0JIh8(!dVt z{QLB0u5H+R_npLFQDwR*Y-K~#?GvRWM`2Ob-w0c+1hwKnzRAnHQCYxY7X*L! zCUw(~2me7Ua7+CK<(-V*&_LjPckK}$F0AK8)yxVTCyC^dg?UK9;8;Ep-gcWdRM0?vuf%A&;ZkA3(@9`x@fIkVXw?S@rQ ze@@))Eh_`^Y%2IJ-P0nZ zN)IBT0r$1wdz5PK54|7aReCdtU5&rYF5f>Xe^4g3>bUr6(B@=0D_V+Zdv%;vt%}Nm zn|;+~4>aGep_K%;Q4cg&Aa-iD<_9{XUgO!OD41EDTwSv?(j~-p+nHe`_Y#T#UL#9pF74!JWq9kvYZ8 zJai#5;=(_~gjMeC+qXkZr&MPe^{)|&b9Xid`a6&-PD`qJKgI;sJRvVHFW!y&M9D_K zmI>QLM>MU2#qKod{VBT0^E>$CO>tf%DY22-!X%rJtmbI+<*wRS0%av76vlen@gd5m zlee7n`I=G+b>g0F%Myy;3b#xw*`4fXrQY+=K+9^7juHE)QK)>|*_Q<-Ip-@Hfifk- zh>lG?NA`=Jc|i%Q)7ZlMR-f-zms+|Xgdbei*zNWx4?ir{o}pNe$o}?mHI6;td`A)a zzRAc0UtBka+fTpPNO}bbvpob{o3!5>e92UbDF1y`anZ0M5wE1hp~OsMb#JZ8dXL_- z`44jH&7g@r#10)ogbOg^gkzHF%}t1V;Jn71!l?1fUxGUNJIh*3l({IWcnwFW$z^ArANt5j?lc}}84ZX3hV$k!ck z@BVInxf~$;Vk3&p&wd^2y7Q5`SgnV2e-ZBBunr(lnR(9mGuisG+t7`g&gm=_=kx0Q zsMS>QKo78ri<76UCSNhCdHq@z9e-x)#cDi{8SlW%kN{5d<62guIwiC%XvT%zSIJ;* z4_oN~!pP^mDh5tknQ5Z2=bnw%!^i z9;7t~P0tj+>YmS#bP~ zx0R8yUSXf-G&u^NT>Q-yx_>e)J1<~+Comp9&K+=sR?=lP56FO=%*)?5;lN`*s*ZHs{>BOmjDUHAta2R7E?@CeGO5&Muv*bhR(+lA_UPdCW(x6wc{#G zyFX3)qDd3oBG$-YbZaK{lJoq!CEMS?5pYDnm~+S_s(8&*7h9?uoqc8selg+kz`UXk>!AT~4e zCcV!xQ=R2&x8S%DvAK;ix|T@=G~ddc-xUr<(OIj>P#gGf3Hct+diXyXjZueGjf|d4|B^=i^D;_Vm-@wfEpmK+XmKkcSlDJV*yIdDv4iO!cY6~w0rz}Kw%sf9{${U z_y22WqRxvkO|-~PU<(LFbqhGYk<~2MkPd(Sh~Vk=x0bYfLQR$RW+1K`82VP<@-;vI zO>J$hVCzC4YbKi+U$Q29Lbv6uD=QqFTN&M~UoFeN5vOB0@{y)UTt9q1s#qHvB*8Q> z;+#xdSK`dO$(cE*aF&sFch$DzRJg-rYpl}t@OC?r)c_?G98*Ys1d!;#kYhPg`V>rB zb(L*bJxPFH;Cx&UX#KYjG#P&d-&E1x`n+FY+-~%4WHl8-qp~2SwpIj<<*hrBCpeN; zi5B|G2pJ^)fVh3bk}m_G&PL|s^|EbwrOsb+w{}W z3m-R}UpD+&iOkroIT8}TE*R9Lid{a;@D8UajgH0~=S%BqV;;YF*z(v`s^W23GFM#n z+Q#d8=_k8~hrim|t_KDNsyM#aGS;;{%4$gcI!>-juJS{>cToGsHNm5wgG;)x`xp4I zY(dOpz~DnTgUHZS`?E{tt=HEuF?qrChEOXfCMJ-i7pVgJpE#AlJAr9Gns58wX?!fV zJImr|nrx(ygKbQ;{fE&=Y_Nq#RBosYubAZ>$jkQjIQPNxp%p(e6-+P-w!&A% zz`y{~AtcRa+W&|SG&5~h_egG#{292T<2@Tfd4uHWfyRKVqe<2DZXWri@zGZWF;?U&|sXQ}ADw9Yat<3kmRT={cQ)R7e7Zh!c~n$J8h zCX=MT_QY`tEXgjSA zJe)9vfY%=O<66dCYPqnG>#uS&h4*!3szDUUp;iFAsfYVYp^P#*;LZ|EC_bc z(R22a<=_s7uyYsyASODGb%T#E44!_=*+i>FhM2ivjQtNVo?)3`KxVh8oLiw)`13uK z*dnUuf#VfhEn%8sUoX!Ic&ZRc@RcGb^M`X=UYbbQraeP>6(1>W6zvm6Yt_YCj?|>He%2VTaH;5BDD+~0U@d=rB2U`cGIzP=FQ{z#Oj;yX~Rrb&I za;2QEi{VlCx%i|vqo-`-NHhf%^30bG4KurHjV8XqbrI&Hq%6FKeu_((tE!5Tj912F zb_Gt4NV;GTFHgU%6`8?GPSsNyG8%ocx{$0DGMU8#PVM&&a>aUDN$+}kB0Tz^K@^Km zg<{1hn<^)x^M!Z53kP@+lm1xg(g=K+bE%{InMQRGr-uUBA5#{If>(YDccN^8$T*ApO9&(FcT5P_?1#l+5>fw39m*l-sIlSKM z4MtVOApm+{$Wn*~?{#x?GeOVKUtx0k(?jwUH7e=@7io7I*~M8!HI`+L8?-9cD1ua& z8>Cjs+1XU$SXc;(et()CkwVK#QFJjCF=&tM*XAn^3&R>JG3@~%gKat^?2PLV$83>b zut?^lcu>Ie99$%dMS41p{AL1FcN5-c?mGVL5jK2tmmu|T)#9Em$BNjI2{+et2Mn~m z){3g&QvjG3z#4KJm3R}r6?XlazT%{=$re5H;t~_nX?zM){RG6tYUY^>ne*Nl6OHuqc6`rjcU71gj&@@yQ#imWqBaf<)%-1?aDJ(3! z-1*x%8c%Lz@-!bayGqo7_{D&g(lK%&XKI{l72PUO zFcF^(XeFPfE9n&se$L4OB*$cJ2v(3UW#0Lr{qv?^#w8ympVYXW0~-n#S}ha-uQkd1qVj zO&#csK#Y(M5x7}h*YnfU7akfsems`n*oF`)R#)Y%&h6n=6v9O zdw1$?t@>t5mua7H{W%6QZ2=WC1_s8tPB)K)$yeWP`Uye|)T3nrt~aC!OYwItEWk?E zK1r8lC?63ragbUzG@OOA-KJ~wrmrpZFh1wg3du{xMDx7-%ylm`OV+5DgKxfRU~Ftf zAWNd^SdGisf(3igsIuzds2(*(mKa|Te5ABr;N$OQT6Xy7ywGKuQt1loEo2Z9Epdva zUv$m2l8kP`TZXb$b?psHJE?5)i?=_kYHDvM!}w*W*!VZ{?!$6?w82+MsC)WJ+mDxc zkN-w|nnDfBRN4%=+5PLb*2j!zz`sJ89bm_%kp?!j=kbs_?>*EpeO}?a1q_mYWc}JT zmeXqu%yd*N0)lIw*sDmQgN96B=ey94Xr<|inK#S4arh>Tc__Wa4Bi+8GI z;l$+Re=zfvHsmO+XM`joN3j%`Vi&D)s@ay+$JO&Rf4>^AKeii4P`YXVpR}AfcwPV^ zjU=H24m#YNN{(LTZnD;K#ylzT7(Zimv)*It?4#{F3d4^@W=I0g&I41G6HQuPN9lqD z(iz_c*l#4KatO-Oz5e1!$Yv3bY(K$`on-nFfp0b`$v1oS9i4C+IQ%*u$5bC1d|~7%P+-o<{$;n%(n5t? zOQZf3qrPUqC6y&B;Vy{0kkTPII7KlB9nnufujB-E2cj(ozn&&$C9_lS%WAm_N9&S= zd~?b>_V?QW=z#{yY>2P^1veLIH_w;wD`pR3)mp$k)zn6Q)3q)C0YS;TRROVH| zfP4-Tcghlr9+h9SeuL+TJ4)vc$z;xvc&)ZiOv$D`COvRp)-axdN%H5Z`i`Af$VRIb z(m2>SIiW5N1$j;)c=>KXl^Ock^6xvw1VIvM75s!wWB;*U_tWxr+(ggJREdfPm>A)h|(TipBH#ZwF|71uyO{^7)!E4eh$ zve+}MArVsH>m@-bwW{K^e|{g7ELANRbAQU__H;w`fO2SSpj^gt5zmku))(E6n=!da9;+00$9QO8H5Z+knn?vCJ{J!xQ!SFq98p>0y>d@~J(l>l8C3zb5N#Hh- zXNl+a-n9Ue8Jqf@`5ek<{NDZZ59iBNI>TKuLr)@|eFNDao+Mx#5I)@xB^7SkCCigEG5?uf zT)IOD715L5rk6k9X{-ii z#KXiA&6!n|nRnss1Na-1^6cHlpPX`TeLp?49?coneLmB-YrL$JtxQz&IP#NjY(j#( zo*o5XGG2M{n|*z~dC^1qi8_^=4)!V(wX#cPgUY@8X)G->)N|GvS|ugS?o}4^#OJ$y zot_L|4&nc+#5Ezk#=N)x-AGequw-fDV;&=R=mtyl7wa_>m10Vr1pQIFX-NNUZ?XDD zOhhCF9-5kxz;G)$$pN~bL|hcB#ZzBS|2!m;A5)`$=~2I+Z#(obrs~jl^{Y$!mGkus zLILa~f#*V~9sg#kszD}3E$+jQObbLE=wPL};1o#9_qF}(&{wX2{3^pdrXX8M68U>w zwYHm=(1Z7!v+%|i(Zf6*(ddIJrx}?af)YSD&?KDiJ0)yIzWmU(b60?r!@!I2=_C<% zc1HOcSVp7(VJ|MOY3mxQ*tLUF+>e9}-Iu>+)Q*LlTV158(5%p%WudrB-X6uaA$+Xx%R`y5@UmkKnvJ`}v-fPULQ*}o zJpPfuSnC!OQ^rHvyt?Nf>hm7_{;@RmqG;&eXG_!>Vk%|%A$OYxd!>)Ms;&L7*WDT9 zJFw4Z2?J+9bzD^J!_LWR0c}6jn_1y23g0ixwXQ3DyHh#($fCqFqRZ}wmA!-O>|a*= z#mEPYX^42~zh_6ENE62keX{J_T&ObofeHs2?Nh>#0o>s4@V!D>7eqOmooM31R#H%4 z4mkrTKtf(O?ekz&-~3|Q6i~n4_W)@*&a0hx{L`1!TDF~x__>$++>I_bacY)!rBG@j zXtJ9a4r)%4@L33&DpHwBBEJ~-JgHNY>PYZY4|Jn?kVbvP$Y69K@WJaTX_)rzovkT< z&Fh%v_l9&5Tbl~@OGPqotooxn7T(fz! zxWd_#H1Y{CjtH52T=4QFv$s#zO5o?-O;NtqX@LfMXT(4F1QsZV30UxNR!|28Rj8iA zpmqt&g-;>x?9iSZ2lM^w<=+a(whK1TaPOGGnAs0RO)zyPiupfOy=7EYZPzx8h)76- zl(Zrtoq}|VbW4{=BS=cOG$=?(OG-+I(g;d-BPkuy{mp$p^?r=u@Xs~8V6)bF&Uxe$ z7O-f0eZuzo6g85rN>b%{&+ofG`zXoN`a|5K_#??VDg^~GqMUI|#@a-gF45;tdWC7u zGLDm{sglGyGl+u;IKJI3Xed$f%t11ZM2|jBn|PvmFQ*C``EUi;1I5C3TlnPgZyim( zgE%VLu}~X0$YfMiKX`qv3<3!}%!`QIwY^=Esqb?(CkJ{>7aCl~&UNmIyIo)OwT2o? zrM^bCpSWZz_5S2xNIWLUTe?ri8tSDHA4e$|vC~S5BG#;FpS6|uG45(a@4b30Q)trQ z!{D)aa@jej(8GWN?G2VLo*j~sJiNVj?tj8BLvpe(YCP&E>6ESe_1kn_y&=4oz9;5$ zj(=2l=i%iFnyE;VMNNmr7f!AI$tJn`$gu4rOsjBZs=4poi@%$)C1h4&g={Y0{Mte- zFn4G?q^#pW*6{jHyw-<3Dh>>1Q4gk4gIr$bkD!wW;jMc~@c-rloTrR~Fa;6V0b<(% z+5Y9@f6;K?%d8hb;IOpU53~7&(PFBpmTZdZqiw#pf8nYlRuDR8Y+U^K_if7+MA1Fy zrfC7L0jvy0mf@b^7_>Me8E8K z6X=-~a^FAouOxTogxm{zUVJGxrYLRW+op`v?Ms$fiv^ z4qVgP&8=#wULo)3KWy4eX6DPUce-P$!ssvGoa2QgXGn!O;sD^eUUDFaj zR4*gBIGX*KD3o}RXgT?9ZAWo?RKLh7H)NHyPTuR@mlm_Se#=~RV5t0vOW zzjL_u_x_69B*EYOBUC(Agdhf@Ip<2)BNfhnr6jK+>2scSW!n8Cpf)&U@jlH<TNyRop9QtJVFF`#t?RxI2TJfEU-wlEan{Q zM}EQi{G28pUPgI(wQyc8cXxLLln)L=T88CX=TPwyhiq0loELQuE#ApE|15ps6Gv%~ zSm+dIAo4=G(-v?x2(8ISzC`yl!r$Sbz*}~d&smA1crW9#N*iJ@DWh&9rVFr|OM$jf!>QPlbf#3X_g7^S`N}NI=X-^73DP{73^65<7V1!06u(?jD43 z5&{B7zRZ2IU&32!DSOoR^mK!5P3?g3X@YcvpThGMjKxy5*bgD~UbwMJSA#9#n(OOQ z193?V&z>=a-c)sLuJ7zbX?}eqD46mcvwFD1gE|W>XFMF&RzbRFY(vLMgerUS&+{1% zDYduz0>R;YTgatM4}I%5Nk?*C^F8{Fk3ws3c6)u-TkNG3x`=RH>JH9vYm+XL=EwL; z%(^dIjbS-`5j`5cPzvq2$4${r9`#&*Y(3~_D0VxkhM4A}kI@E0lBJrj*{ zMnVuGy=0$1KU44{{<8cOF`Xj*Ae0Gky@E0!6bKj;G3aO)huTpvxEaGe0bQ`=F#Dlm zKj?zRM%vMla}}9!G99WYH%1B&m9q$wAXs?exY_&n&ji>47?Sw}y#dxkqSO~qb3Vg3 zYfz+NSVrl85G>CKs!|&opK->2u4!?XKkj1XZS^?(Yr4kP5G)qTs*bJi(Yv^T9MS#^ zv4FBkn+HPg;s9(yPymqGfB z+a{8yVQPlsm8N;^MeKwDS6bid>GZeXsNmC&$B<(`o3*E7XxId?B``Qt)DLJ&mt^#S=#`*U)r2Nu3Q zHKlZ4#zT}SLHi9tF~Y0T{`!p%a;}p2Y9ak@%5GUwkHyc(tl9R9!E~iBmtE*q7-3tj zB{Q>F*2R9_SLY7UY4z=x-j5ph_>=&9krm0`clQs?2r+TC;M?RcyI*ovBE3glP1s2g z@*gn9XZ$e0zn(#ERCaGr(N%5%R0vT}3BInkvP1XD$zPNje1|^2T(^^3$hpz>pGNWz zn^mmrbMYW73|!%0|7esLOK>>7N9LQWd(R|b*UWU0dx6hW{1w&U_dRf8$PW|7W)4q)$ zXg03=7{VgX4yfxD*5Ak^VP3PH;tsL-3b9d{LX2?)l?WwOdhW^&Z%QO6(hxn-GagR# ze+oz$8inu_%sCCO?)eUQ{4WzEgQ~OpL+yKw6pMz2_NDmr(MD#eC4R zCSM?7uwlJwYJYpttl*JUHwM|6${zJbMVwjvg+~3Y6o(%FD9x}!7oJEnJ0@uUcqf@J zoA99@%gdoGpw?Q(m!==*A)WBY-V{DWs`zw=6y(jqs0D&u&!Od~7+|a~gQ8n`_|oOHQAWvI+Tlxid05DCr$zPguL z<wP!tr+W{?_pA?Nb#7FA7`35o1-= z>Y>1F>M$S;5JEbb@O6Kr6%U+VkvaD}J@X8Zox6F2HsG*8E=%81JYbPP9acPUdF#7D ze*`HPYy>F&)NNARLFv57F=Z_badyjp(;f-Zr9tjW=BU+wWZ6HXpyujhWhFNxd4lTI z)$Iqw9c=PNPbX$*RO+Cmo}krj@_`D3U+RJ_WBtj|tE1v)Pk6AN>&(ueKM)~Ri%%=u z)GAXS{gZ{&?6XFq7eLoyp3Qr4KPL~{xMb)6;fn`AYqc-+H)t3hL|p;8iwgmkg&JQW zs_Y>WfH<^Z@F{|AY$kp_>+nE~D5FDF1A+`K9Tj7Kqx+aqQl=(9tK%8e-zVpf*ix|O zST;w*he9;t%+_c7xyDeCYGg}1UM^vI{K_f%eS3oz)nWH@y(mMekU6z|tO#jbv&6`% z<-F8~d_0s%@|{31q&|QBAFs!MO*m(FPiN5@U1`IzggmUQS6D!mih}^;K@E(EG6q;2 zW*kmP1%V4Um6R~`avG5`j$lk-Wd}|Kv-Fmi#Z4J^C{1#&x}kztu8WwU`9n11x!V^D zLS zaEDs(exZ{G^dIB2We7@g{$eie@65#Pb>sv6qUe@lsZ_N2-EBWh4EkPUtrskvG`h7-ApbkjlQ{8Z07sN{Dqcw`S-N13{hctUIF`L zdBQf>w!s*)gik3sfEi88{XS!qxWu?1zg6&CNZ6J!;`mqIv$ki*dO>mx$>r9n+otv zQ^^Wft_pAo@~irlgl@#W9CaG8GA zE_Jz$ZwHJwkNjYS8?Jl%8e~6xkcPVzyDUU$^G%*)|8Fd;zv^b1Z&t#+W-fVeDb$J( zF}fonNbpz;F=GNbqVpBkKC-DKsjMoSbCV%zr17Nif@)C14djH01TOFz-yMG&e``rB z`sXyXRz@=B`?@Z!)WzwYftm4y!hqKtUtYzYj7lR@rP&di+#x2~(HBtu_}Sm0B6Ei@ zxK%5FsYr-Y;$7Cgy^c67|0?N!D?hjv4Tv)0X)D9!K%qU1Us~h2oV9EDhhS{H1 z#KefGA`spxj+d}ZM^tuzi3I|4ve(8)-$m#KrYKSKys8@^Cd$CRXX#F-(jJp?OH@9> z^r1J*B8WKIu2?$QDM1rh2c+VEs?d6SSNvX9^TM&#@pvNbH!vu)o z{`vjP%|eCQ4^MF($c-K`cj?cDdR|JI$yqKwuhc1f$pV8Rhn80C$Bz==u7ru#?G%Mz zVxMw^(mQdZkfFO#(%f7CYR8wLr^gtw6oKS}S3EQ_as?PQI;cr{TX*;X?0r>_%@3$J zro?7!C3iOD*0$yu)-q+wOQ8UzSIZ`8!>5gZJ zvywmJ@dZ8$6QKzLMCNAY+Vy|Ymc`|h_Fd^eSfE3LZ}4XO>h$ca+^7Zl{uAvzC5w3A zU-X8Chi|>Xvc`WdFCdiF;je2(!WnP6oH^4*Q5Vv1Rl!t7v2sUB5_6ms?^|$(wpXre&KL= z`lZYeN<sHF8t11bJZLM>SWk zYZw+CoC=V^?tts&x;1gjcYY++#eq0uC--6JMdzWtX(_Vz;8i}$ug*8j*;0O5%3b^K z*8{J69-#y^PxRA+%8Hvb!%1t<*&OFm!1C!{Dm|!!N>IR4RljL8uu!B;p#EkDfI+yW+a;N)ilX0R}ek_|X*IAo+#R zUc5~A&9K&pUc>XL6sk;YEb&~ImPEtAsxc&AmpQY>9as6>SH*=ndu>?SOog#^4CSP~ z7VkQ7`K>wSiV1VizT`ehSTq$OxE>g$=7s>h5B(;E45q+$!IL*}^TTCZ2QF0`s=G)X9UX`y zIKW^)QwDp1+sQ`AZiaE~X-%7|uEgl5nH+)lBd%>N6ftSHWi*U`eIGx5RD?ibP+(uN zr5nd;Ai>hxapJlox8XEib{W=iZ1Mk>3g%X>f8kPlQq;@ zk8O5Mo?&&WGXB#Any(lcJZ{ISsDqg|+<}7UEYyWmb&Nl|>OFmdf%y#gNv7skJQP1t zE^~HB_XX`Wf}@$9PJxFQlApv2X0LRVT5}H%#fR%KH5kYFVFKa0Rjq85I;#Q-4DCa^HcKrLrTnfCv=10c=@`C<10@7Z$(+e1g1h=_;O;XCY zk9-)auIHZBase@M>FGGWIn}wn8)NkX4X1}N+)M-|fOZOD-=@wdJSM)3s<QKWJ@Vi9iteg>8E$KfDM&_9dFxEkoqm0< zdD_0I7ZEYD6v>y!`3eJOyF4&BgD?C8u*CsDTVG$FG);?v8># z6R4!qS)>SbHdww~CjQ#VJBis_KreEAX|CO?`O7{bTbW_Ypa^oVQJQc3(6JZo=={aS z1{&|i)a8rfc6D`?oy2C&>_32#r!uWzuJzyDPGrOAe8t@8CS0T(pFUO2S!T)VmvEym z2)$$95fWGua-?2(LA=0aj)t__%Guz%K3OdDwV}S^(k@g!^GJHxm#SAj~c`b8Yn{A*u#)vX#ug-l@UH8}QEw={2V_>Urq@y03+YpD^i{)W7rZ zu7r38#58IQ-SQXl0uoQXuK~9-F@#yjuS%0)GY;L~3sCI0O?4Dq!k_n&kK2@N#On4dmpK=P^O)dXGx@ z!P{4l08>nf=Yw_wi#FGgE&v`OQ4_kC;D-C1%wzp|vE+XY*YJ|vq+i<6x~1};2@ND3 z=B~agH2aCf;PpMWKz(Fo+4$>Mnbkr&2i@==7^V)4Kn)xdpKOrxl_f=Vsk2;kXc|06 zeb}Z^qLA<&IR8t*RsM!EnJh=Cu@0f!l z7IMbQ9hRh}qbX+>y}_*Y@|wzHmy}v6snqMH@L>7#?b|)<%b!Dv0`H)_%*x*)!>y3f zGE-=<7FEBOzlp(s7A6_$Pfbg0Ou|Xv*ZuTo)bQDvvOLaqk8i`zgU0^Nf_dWd9c5Py zts1vcXG5QmwifslKu5`KP#1A*b$<>Wy-VnsWl3SX`jaq6&YTA+gYrvNjwp2z!9}VV zE~$BSia(*?*bQ1pU`O>7*b}qUu(8-=C zDAHM4vFJ2u=xvVeYQDhv?ec?N`|+gwUb(!wLS$!klESi-fBAR(20U_&f3arOmGx-+ zQM?Y{-nJd{$ewjSc)jK{w70GDBxe-5nG)mT2;s6|Pm*_YcZaH~@b5pmSJEmqM^ukW z?K%F2j?;F%;(x-6)M~D@J77%8d4x@-m}|tuK))M_)9$VK7$L9oYwB6P#(^rzyMO!A zUIAG0K*W2-SuY_qiuEypg7!ns9J03xPmj$BKvoFLt-nfkyEY!|;}B_m$5*T0Zf&@f zMy&viQV4Z-XSRG~Ots#YIr%+<|Hsbi8kA>QCTMbGFM9iB@)?@mOVj-ru?QtSWdZla z-@oZT=0H3_wzbM-M<=frccu!;F=<$@jkt$U{3;~C{ZicBp@J=P*K6-4WJCt`iaLlM!$cC zg^g`jbA_O}E>HK>w`L=$6PD)fMXkNR%_?qprxyqvaUmh{dLYs0&YS6@KTZOJ>rN9k zypSwoxB2=1qKr@Hqm~g}@D#CNgOR6iOVpAbe(BKA0CIN0GB(Ap@rAqI7Csrn&sR#W z{y1?$zS0BiyM-ClTheqZ4K8)Ic=j!N`U<0&0lp;h1L8paL;G+Sx7BA&a*QV3h8De< zQ!2MoNe*mLyk(`+?6+%`|C-QzY|^YZJ#KE2TbEg)x&F=G354(tNI`8PEXX^xOW2=z?@k(~FZUdz$a)_$mw0=}tqM>; zkRYNIFW>GX^Q5@D`&0N%8ZUMl4!0%=@`giItXICfKX$hqF~+`PPI;7$^{V}|c9Asm z_=(}lcS=Jt1IC$M{tdxeU@oAl*^V+F5&>pF&YQ_%Y|&wiF7Ef+*3SNSRuZ!C_Rc z(}26mch6!jOev*ahdE48e6jug=Tc{X(i`N1dYe`@Hj=q2;n=gf1GL%~SR}r!GM8^x z`{d_KeUJ5u-pM)CW8}nfCcmYgk|cfR+VE!P39>*ccaCAE)3_#*|6fHr=Fb?& z-r09UXYI`oc`@_Usg9pV;3k?VX*721X|* zZjkr2k7Y=te~7Be`ZUy3-11p#Bkbi~1m;h@m(i{L#Lj|>ug4wZF`hNF-^#$icK)6Z z9pLM4l`Qe$F z3%Tp8Gcj<3OG-ZHAFcbqiL9cg7Vuh}_;7tZ#^c@4QFk7CDmQ8WgyIC2Nne?Lzc5AE zM2U;&w7P%w^O?Fm-3A#Yu)V7|I5gPGQTb%$%}V^q7z~X1EP0up{+RoDM99G3R}1WX z!-+1~D1LuJUQ>5{7cn0Fe=QP}E~*5mF;7X-x$FjE0` zs=pn|B`ye#>MY+x03}^Gx$MUOwS@YEsmKplBdbQGfa`#GQJ>=q59pmhFbKw&1w) z4rj}c=?R+tOUhT>^8`GOOnf0o{1n(>(O%&NiiE^f30!;c!=;tO{+3L+`*sfh-N#Yg zUt>m(_)Ow2$09Lp@#==}mFL0pTX|ZPe;0{gTiUVHbfI`Iw#9ypU&Ab{b5kLF9iQnp zVMQKWKZZXZI&`k_FS-mf4|QX<<`BbMVDg;lR_lKY0Y{LBat`XY&Hx-sU(? zPz~Q|vekxSdS^_6Ov|dz(8~3VI0Xq){r8XbgL-Oyyn>PE;g8Eno$>{OveE3EJAZq1 zOyE{z?tl7gZ;6AxuH9q50F@=?!1<|D2}Q`rKW<#CudNd7F_)|M31~A}h|NoD{h3GM zdZY062%NRV25x?^3mN@*ZbS)0_RZyA5q-8y9RwW)nzx(`(H`^@^$R*Q$Bm5*gsd70 zSzkf81h_bMs>f;nC#sZYzX|I<)jO#mhxY?_DyVI*78t5T9!Tx1hi1QYdcaGcp10p~ zXT+F>KUMLGhRN7hh}1xY4T`YU*L-#nOikAo-w!V3xPL#4w2JSogscW+NkV;WN!#39 zR_$t;Hq^TjuzR8@5VL-4;7Qv1V#n}(s#A#DEM6t)L%_^1LHdvHF$EeERj4(>!q2Y? zroG}iKg-GU2s{(_6!mStkWq0E2!ZVsAhX%Ptf;-CqgNouwT(J~qA)%%3RW-qgbuHp zLHvZxERz7ghIg8Fazy^+_q7HmR6j4>Y}}rscbp>EY02SdMINij{kDoGe@0|ky$qu= z#RzkRFZU#B&M^DqD!j)G@OL9R*nZvBuZrEGlOnNF$Vc{ipZN4c7Msr>z|l+~I|c%v$VB0*c)e`aZ6n=cWK^pogf z_D7Ywvt9UAlZ>-Ielu7<%f@*9+r&iY6&VD(%u&(El6~cATz_{TL1qmwV7J=QA^K;4_fn^BYISrb*tb}geMN+BLKF6vfd~1-45xE%7`(2QYcPA=37^P%Ub{TuZ&~Edj4$}`8!h3Oych!>*0pSb)rP* zeME|&g}_`9myocux%nFe((j|}$m#y=H0&b$^h9FxZT2HZjTbI5xtfD|>e6lHTsHGR zQX$R^fSU#S#b0Ke2}ZMc(%GlavOs$Zhh3T(+MDyF(J0pz0aBTAqS|8&YR->U{ zQ3mh|Vr?IBBbkw%%qv8vrCK5tVzA;SC5{-&OKA8d1_*jzo=%t4x$e#(toAT@sGP1? zUEalRsqtVlv*PJpS%G6QG^hMp>qZg2TSpg1jR2_@BneKIjsD42e1& zuG%6f@fZ^4&Nf&IUC($dOtNv~Fyzl3B{J($Xn@NX5tBnB5nTICx5|<UY5!XGPh_IG_iE?UGAnI+pxi!O(Ep@QTA_eF#xx0PW#$>ASf^w&l6vIFV{Sy;#&d z7vdvIuO&wgBVbZAe0;Se@h7lsUG2@34S&!5IGQHhG?ZHk2^K{fMx2=;?@&MCAoC;d_@q^*kHuiJz<8 zeK&lwGWl8eoTp!y?s4Cs-&3XG}QV$P&cISJ^eS`ePnuo-kmICgvtMpt2g0nS0 z@7_~*Xt%Gf?kAimS6CqIn8em}`2kidN?)jA$sFH&3T-Pn%;R(i%5+`JFm8{3@{rI# z4=%*7arctozL!EFp;3|+ksUvAh+0Xkqu>3OYJHi0XRc?BG4mb?Y1hi~yR6)MPN5A* zoI#%_8bWBazSbU3()j9zHL#d2r&&GFQ5iVEK{Glj(TDluAMn)s&_bZ1uD-lc+VDA4 z_=>DW?I*!A+s5BPR>jsChZPEcobcJ**rhhdm&&yFC`Jbb-7y7bZYT1R37>*q|3&K= z#ZupXDtQ=yIi+uZH8?y``L3~np7sQHHp{?a->uUnvxvV*0s9Cz?U!KIOBHlQr3T** zlu_a($vr>h!uc~HZ52D5uzG6KbFEwT8&8w?_pkP7hyS92K`RlLt1e}g|e*5=_NXa{?%C3>EFk!5LBMeKCx}z9D884DU2Nr|A0INf{aWtH|(NazfJA z#pwUPbZ{%WQVY#jz36-^fK}&YTOSgdr_L zbZaXs1fv9ee#!eFFh;v--&@l(d;R(?NUO-m$-BF{sGmMff?9#kijQFdNB9X5(j6eU zWFshWjhg3IO)NQ0xRTMylP08RY{hcphTZ4TRJFFuFE-an$fW+}(+)%{+CPh&`Kobv zxRLUH{xmc0$JHI|il9A9iTw?HKc#-fd*afY(5FrqIPOS@UGwH~a!Abtj{3fv%MTzXi zS_C7jvHWT#nB{H-gjC_V>Yu!zr{lML@@Tp#v$i%7`uqYBhMjLcdK=i6@&lFSJ0>Z^ z&wFb^Ec*z84(oeE_DK0+d_|&UJWikV);$7jV|w)&XMA#^$Bs;{x@xsGIml3-WiP%@ zIzqxI)m(UH(|V7|dqT{#^UiWw8U$}~a&;g({`xa!vl_EbF!)+u#;1y;E{|+GNd1?F zTk|KG=p79b$vAkMu@vr}Gzfvu4v|7}&);{}qTPu&8*D_l0kY_@(HD6d$I7SdMSZ!gq@mRa(JuEXz!hn0; z{@|CvONp~1wKc17^k}NE5LaCDkDoUD!@1SXfQ0}NT)6s`{iO7WfRKNLmxNWX z7VOYjpbm!~?2lk{zd5n%Qvj_#qNp7M17jfn@;%0Sc!B_0c(3RyulteboUF@srbY=* zQQTyPc|0G!I-9*DQ&S8|xq8dY?E& zxZhEyIK72(>xPkTcGW47g`|{-8Vcgt>oFtFO&m&ym^F>qYh?tX1QtZWoCaP;8Z{=u z6yP`MKq%M%mYB&^SlA56P*v5??*&>Ku|;vrGgK3Ca^GrdX9zofe=^2azRkOwvcJoU z@ibT(6HF?PaSw**>=x}X;Q|kQk|;OYDWsip4<&kYJU5z2o3IpaAB4^e<^`y`B>)f? zlJhb$M4bi{w`ETEPzckQlK&MlOnBY$vJ|2emZQA#+GMu{2-}S^$0j-9HeT z`s{oy8}OFF6PEUx`QDOkJQO7orNJpS3s%Ow#m(8prz?))osmC%CfFV4+{s^Mh|ml_ zu5u94Ax}mc2n=>$9^spMAtwjO4kDHlwA(5d+r|-E2m3F`-qQ}?SlixKc+6__i?zM2 zEdaV?VgbRL&6Th_=;-YH2CQb0=GRRDFONgXorTbxA5p=-iDO`37QCQI$gaMVB>sGv z>b_CQ*G_d6`89pD{IhEr*w(5$>9s@@oKRv<`g1&&T(+bu*4`-m5FM^#HtG8&F7{T1 z(M635mYI>FAPd@=Y+@ZwdzPa`SH*>;kY8*_FVt@H>Jva@!E0z(F7ecC`XWX#C-EwS z3W3$<=`TS}{B~!qlO)I<5Lz-Y?Vx5{&%6}xtow-@sFb4k*8OQ`mbjzl_ejIiANl?g zWu%8|--gPqQuYoG5FLq4Ne4F&p#c&m^q_Pc3`45q7r#_yI=81(xBBO794V~pUGDh4 zPIE_XnC%0>SpKvpNm3qa`aT3gDoY3Bo=urBY1v3>X+@OueUH(FK8tkk^8#JXqtZtY z9|l4J>f$`*$?o2SX*9wy_ul83SACBptM%1(C_06t@hgm{IX|B>Pxa?h;?N{8?jJ;a zQPh&PvttG2`VEzSI(Yv7>#O}HJqE=9J#?N1avIG5VL-G`OnJ%V&$_l3>t`w>1c>)p zbVhbg0d{a){z(OJGd7VWsl_no%+!kGQ<&}l0x@jk+6XRmfGVL$8^_ie>x@~1#;KDE zjpS)u^B~=T;qT1jE{BM-pe`YyeX5c4f5n29&s=ZiwE^Y%Jm1vbu}L6x#8xDt&4|{~ zDN8rX{%va7P~XPE?tE1Vkr`JEoaef&;1swF+&%HzFw;#TnO5o24! z8JiYkqS-F}dM6qY5h}o^OKA1B7r3%SGz@noQdB1F8tPP^RDX(%73)-({O0a%QZ7)Z z)4f--x-kD;!|nJ5+G8tmHdfYoiQXXO9~ac&?l%_9lp)UhxgM$vFCP~obt#VH5sf?S z7jAJ6j;`a)?H|q9JnD0ECBC}mrP{4ku2~Jswj}gUx%XabR0ko&EYm3tR7^X>bkLHd zAQSIN-=XsveT>B5>9xN(d^ag1_?xYX;y2e)$v~HxWX`Hno5_eyURyrXrolN{vnUb{ ze^535`y+v)5|%+V{Kca)#1RkK!!a^o3gMX*{OHh6F#GrA4N7|vy zp|HP>Ui!r$#S~&LiRnfoI0I=F+t<{gc-12Z|v9xlcF>B^H)smPgLqT%Sw!L^{KzmU-EH zzo?#`_xelkVwY9bVWa%9s4_~Kyb?VxGmvVQn+jKj^2^k0sYLKGoij&Lw z+ef!MtW=gF&z)=Fl(LEAb9x)`A~0(%));}_7zsv;aGD0+)enw6RXhw=SAq{rONcrg zb7~k+$bVzx3%TBd0S0kmgU+!%3i~dP^~pf(4Pjv-`<4LR*f+8*g>&Aw)%*qa*K?N* zghWK;uDb>h{RXTgq7)uP7=L`itxm^mW1%L}Ks!$O-Sr@Hd&o7Ax2Cs_gK zb>D)wk9BW;$jScC*QLD#zT2aR-XRb&^W*ARw=YfTHzbS7>gbSx9t)}!xxmFa=Y6p~ zeIK6;w4#%flSPJ2Y48hF)zJw9fjSTcW0b-`L|#%mG*XvJr1zCFy+KD42FenO#?pn_p#Rg1)UE z1^3^FXAW23(9IBH(wrRA+U#&I8&HmHUEv|+_1^MzeLXn&(t|Ob^?8oE8XT=a0TrKAj$Zy-qb{vPY$u6n$3-)a4&Q-e=j zO6_L-{doWDex;>}+tyE;^5RJQPb8OSHEqzh7q{`p&dM{U$OFlfX@w zlG^xFKC}X$i>N-Ts;YwKZVp8CxI)V6uNp-;Ia)@>f?4+$aykbwEJsI+BIF&5HXDE5 zyZo%oK*uu-(Y!;*14z~P@4;i?}lqj%4tUs$~Nnr_6?C$OxH9g(_b z07;nY-q(`7+P*W{#q7FA!?zyv(u0%D0h3CG$nC)Xy|30^JE!^+bij*3U>>xrFlPNK zNillkvJ8@>&9?go*N@0=eC+>2 zkv?$E!^1c1^qeq_$l!;1D!=G#P`bl}O=E@QBREVmYqc*+^4nUQ*W2|BBCBTfaf!`1 zpP4pfVBG6ej%kA))g)M25wagpecz1nfS?Zns3AOOyyAs&Ina=b8!0UT5H{k!3nyml z{QdQc7>B}P`Tgk-2W`G<1H6J9G{9NbDyEja?`odoCS?X8iqrPg(Y(O_bGPkM{09!E zfO${~{xwDxmJTC!s3nzkb2}|%jak~>?nSIN@aKvuRfL+_7uH;dKh3vbt!<8H)`D_3 zkl?cedmAVB2xMarn*pU6|063rjI8S7W&*!sLy5+Kx*G$dKw{Xh@!MX{g;pMy7+Y5( zv+wPfBSyU+smP?)j`#6c{=Ga;U}Vh@+6{Rr~db-{q|H9WM$(|R8bAKT{n*k z-5^st^{MkYoS6I5N9Qd3t(YLI8qw>@IcSVMb&YPNn@R61Qe{#y!xPSZo#L?iPUuWm zs>K0pABgq9+IER$H>b@E9)qkyYvwO;o^J`&ELj|JupIhD`~-?L+^iXMiG?z^1$30p z+;9cHV8ZvRk~k%M@}+vQ>4!l?7J~cNDm7S%d_3g7vrUPD@>S2vk;}R9%nVgC{I)_q z6^4>?iaU}Vj^3BLdi3aae%f?B*{hSs1@o>E8^c-!!d|1JN(7`Rj-H=J z$BRX*y7%vR6%wJHMe^i2K+>5A$yzMqV|Xm$Nf|NO4QW9d(}D7j=1e^fZ1p<$re0a` zz>kVy&t@YaG&)bwnW**t=6wr80CE{G_fVW8y8gKa{3d}-Gy<6`{ByxD4Sj67Hl?NS zZU1Ub>n|T%Rp2+JCR5PFP+xExHR>{`)?@hSE(!rVduV-}DbmQ6u>9f2aQ1{awW=lR zPHXoPWFOX+$+iHnuFoCMH9`w1B2Ag$>UL;S1zL0$iI#3#2bcPTsem1;`}JR6mMr;G zBQ$-8t{Ax-EBmQ=!o1C?X8TiWD{M-slvu^y!E`iIk(TWszc!m(v*Ga)|94V?O-Svp z*NRW(mLPE9HZ{9)kIH>B}iy`7@utVCMA%OTZ}m}3y8o3xaBh16 zL0lDxTM%JbgVvoQdQ3!AIWQz&a&lrnd=TG>dRuahkpsaPQ5hcw*ZYo5iIK!FWR}PY ze5=3sP5Ny9?i(L=+bGCOeCGb`#i3=vBITU@6KbQPQc-25{fOO>{i^O2w?{5H>szmq zOX5|$Rs}NY@YjEs;U^f*E1qA>8y8tTbU7C#G$50Yk6gBWsxZ24J<+RK@4P7u*axVy zxDD8vRW(AGims5&r__jB*4vG%mCJYUQO1gCS4nRuz8Z>S>SPa;PhF$mL7u>pMhUtX zzgyg)tPrDJ*5#J{XSz2rlD8zSNE)2GcC)`=$9Q`4miHu5Si!95?kyUoC%xDuIbnnM z{N*$1>O)8PTw+ew%$~JMadg^Mt2X|9aF(J3GM>Pm6#rp!86v!h*7>_Ha!8%ssA-0S z7e*i9zfhpN^VJ0!hIg5Ez@-6aIJZ?5zb!9{)Xy8ziuI1-O^`_g9>Iag69bT2`1H?h ztJ0MLJ-uN1v8xI8ziH@rbqK8m1w;E0dM=XXK@wKsi3L#kk6^rO}S zQ8Hb=|4jOUuNd9l`egKF)vl?n)fZq4zyOwpK;~}f6lbFlEP}}ODP89lGPeqzq)1~- zR`i&P^BOKlPcP4pBovDsG5B`>|J3+xHJmjKAM$~lD5r`!Ihpeo9Jb&Sri140R zmJ}i9ee4pvmK|t*Xy=U`@hXUL`=!#=nVOrlE3MnIo6S24XGRe&psQ_oQ>F#x;XQ!h zk1m)XX3`b_S4xE8FAE**(ZbH7{6^iNk>++WloK+=ogZv(CZ0(4CWY{F1$_AWa^|T6 zEpcDEE74{n1xr@d{lM{aZP29{fD_5oCre&ta#q>d*`}KZ}<^nf)3$(BDHL{S(6 z2F3bVFTAa1-RVP8Qa5aZU>#$1{Rgwr9_E4Tt9h3|*Eo@>52#rlX9OZo5@#x;z=`A! zWofwY;D=>)NitaGs)7zB4cs5S5o8#$#*+6USN@pJtGY6#FUttGG1HUO>4aw1qBckoCVzH$-0^$7Re_D# z^TIjj;O*P;5$l2pm(RIxwSYKB3@=^wzkVyo$(cY>f&~}n{^mR{7fEyOuxU@PL=5x5 zDQcbYCfr|ph>+nPu72fjtIQ^!o;VV?r}7Hc%X1uP;-ZkTrsgdSo$;P{j6P1U3_Uw# zsRdcy>Banw;@g)*8}F6nb2{R-XG3S&2uz<-9wqeS@@Lp`2bD9JswDr97Jxhb{C6H+ z9L8nHy^M8LCdCvi!9D2aRE6Tsa?_vrB_;Hrparujd@B#QlgIKgAj9z(T(YnqK_M)g zUR3{@Vk)F7iI-@a@+AqxBnUPyw5z_njV#I17_di5r#DZU*Q>aaHXLUw)OmRav)1v9 z69VDw+TJ=kx`94t0urboobTpZV)}gp!ry|P!X7y^JC6&s=OQ;}{XVaAn$QudGr&)? zcJ}&DvDQOgd%j*w^NIUc>SDyi*y5yya<>@)55l>t=l|N{aC@2<>~+$R+gf8cV=IL)dbLP;LdYZY9)1s{# zRhLEPY^HtjQ6QD%APi~k_~)(Vtvd1J^YpH>4HCyH3^DpYmElPhyb@fTIiG7AQ1N)5 zQ3mB<*c$MhHT0?IJ?vEHCe~6u{U>u8O%e*&fzl#=fSq zOL1uSrek-LwvwA0Ka`c4K$;jt?sLb+o*r)n&9nuq{=!Hu(Q7gPrkboOS(D^ddy#T6 z@phiR2o*CJpMz~=c=%(iY3Ja?1Ofs>4Y(CTUF#?uS@-G-+ZmEfMMF4nR#fJY6yte3 z`C3w1`d>SNQkl<h8yzp|C|f&69<+XpZSxmtieE(1S}i*{HeL7w*E8pNpnzzP z4Z=v0!>nPp>nVpV+L1KY9@4ft1u8`1OH-HCTqy zJrF(^7nd7XD8MjU`4#`{Z26H{#fe5F?C4W?1x!*c!AonPn-67;{5WZRWif;J{K0F$wQfnZb?ufxh==aAl_y) zEUXm}$N;TK4p{y>za>1Pw&K0__*`*pFjD^ZzEJ~7{O3EE_sbwQA45d%#Yp<f68mx1_o61;|$upFYn5KRKlnKtX&)!F=`@F_@FhKm*gnezY%=mUR6bIa#*29T|FvCFd1uAu!7NKytn06(- z6)REf=g(VXJ^;}n@-S^C%34^MPt4(}h19b}0FKoS80bx8FS1gqYtw>ftS-fQP^8_n z)Wc0;JBFAZV#B8n!!#Mj5c;N2STpMt``9P7iWBz1=(%yb@?yA@BwcA^PP|ZmK&Jtw zwZqhd37Z`|{W|IHJtEA#-7zNbQy1(gw&yv6~-sDV4|@j*X=e zm_ojN+Z`SQP+=wio}JP&2z^a_;(^QUO^B7J+BKc#Z#b^pDpODVvx1wn?sUxHfu@R? z&}lahwzp$%u@X#4z}`?t3tjVrtbfmP7@bn6b2}|??rCW2k)g6fdEjAb|M0G#@x#6? ziO$t#d$ODX$F)mCq#yA|QI`%X3H&Et=)I`QY!597QFf2nBgx zYjxDsr}fsR_fI1)F2QMA8`{9a{UvuGCVA0CKBgN&dr)533Tb%!AYNidAx+C1kt^(-fBv)t+dBm_@Wk3;ElwKlN9oO5{ z`cpaYci%?W8e_gBJVM8j)NGiC^;8kr0IkOqg4zw{Scq3191v-ksDtX-N-yPZDSj>P zeQMunOw=?SOkP)gqYoHd-8&7Z4<}ob!z{4t2t$xKwA(&?cgS$YEG$NJ-@g@V?VVYw z={Y)=!NqJ062>MgELhq%HmnHK<`^0UTo!Iyh|{ub#GBY!iBdf9Z<~pr{zx-(c(&kV zGHi`b`u1+_2XTa>9Fggu5w9(&vNBzsLL!>0o_ToKnPuO){)U=?@YLzWmxaYUKr0R` z>>l;P(g#Y2mVwMRhJqh~ecB50Yt+wpZfO@wGi{ctdbfRV@V*kDbo=8s-FG(MV*dXT zb>8t}RuqR{PW{gsy_LcDarNWPv+j7?^SZ+f?!y}}={Rp<+=U*dSV-|L5-zm; zO0@iyKF;B0c-Z&J?++88m$Pti8O&O4P-<~&1soBwqgzx>_tF2MPe8xPcn#7u8g58ujI zY>jngG9(?8*>mSywSqr_!L^1p+cix$@-8{>U-{c`u= z4?i!aA;Dt~skSb+8kAqjiOa&+wxadl1}!bEGJQ_C1KveVKR^IR(BlLxH`{yE$n6!T zzE-CF5yJtfK=(3RhBQ)je?J~ zZC|qlk0+~S78(#Z>2nUJiOaVIlh{8u-XL$^oO#D@;D}vaS8jA8q2oc3rMCE$6ZhZI z-vkLlXF^6SBy&b6W#X>oP9~$TzDY2t-|eJwJdY`XdYS+E zwJ<05pYe-T<%2Pj*{{``V}mA-ANx!RrK;YB<-Y`@m|w8Rq7ufDXk2TnaM;}%a10|B zZkRN-nWRUl-9F}8P;|t*YWhATUss`R#KqoFOd}vIRIi#lKHwi0zSsc)fG$eNgOd@J z8ab81R(`&_W?9!y^Ke{J!>G8Ab9M4dB)OeiJ07;hL1u~e^7=zD?dZfrvN%>1m%jTJ z-2{l-kKlXCJ^ZAH-#l`o6^uDg7Z{57C7cQ7gWehG9L)jHW~!t}m>bPx)UcP+mrIpEz1S#cQJxhJSQ@Wv5+Z<_W2`KFr;` z>X?}GLltC`2YdxX9Cx+D&D4OGS?{^iDL5D^QF3wBgrRu5y7|Y&iR{Veoprk1s3Y^u zLQh7$+Ew;Dd^nvAURZd4@xUVb0m9bEbOrfnz!obG5bF@-jQ0D?lvM$DFO1KA(T!C^ zZ5YloL_ z&wb@tSu}JE!g+s^H4!$dUpqC+M}1@$da05ufPj#`LYox4T;V*#0$1fnajY|%PcWfy z6RBgja}{M{3j^8<5y@C$*sOUTk8-ZTpEN=&3RsZ zK^t!TGuOE7X+?c>f`b@GME#IFaf4ID=*`q`)MD}e zT(!z-{1D<8^VMP0!6q;3sB+EUG2Eq=6e;RMYCyr}f$C~(XaJ)i*p~SG8BS!wk73Tu(BfNImeB1PhGK^++QLZ)opoy6~-P+!6_J@(0oe3tfeGd}I1 z>FMsdizC5<=VHiRR-5F_#qx%JRGn#x6n$P7K?BpG)1-r!r`-(RlM<5Dm8Q;l-}{Zv z4;dls1Y}B=wVw=-blioaOLq2f*gJ>_2zDL&j(0RQH0GfP{`tubPq1UDV=F#Ci(YY? z;RbCcVDGr;awb8J`~SiMm*|6YsxYFp0_s@i(E4Y-(TqR1?b@9&Nzd^HysLa-{oM{9=DoSa5MS@;P> zERcQJXY4=GS#X*AFm*UeUCLw7D zqz!Uqh3CQw?!VePx(gC@bQ((A(mA&7w4pPuSRFek29Z0-pyLW`0N`&4j{cU=lR{Hc zD@N;o@)S-BQYzbW4MADq6c4V~cl7@43sA_|W45(8LwWki5qd=xtaOKS{K&SKn+A)ah{AVt5H#=aJ-MTl`FJ9MobkB&Oh zh@}fvrd79ZC*7&a=;TD?g0Gh1K{aVdp-nrvA22Sm)0|gOc^R;M@F>+{&>&o`-d8dj6s8+j!lS!F&?rs9xH!4n4?QnCXc1xt}i^> z-toU+bWQtDWqIxOx&4%#msKUV0>SM%=YA7TG<~33Ajk}_;Q8e_oFrw{XEwK3{*IyT zV%th>grEGGu9=LrW%~Y%X>7J*e z$IX_87_Ty%oNqB~c~I4!1$0{SF5DW4IN&!m=j>IWqK+tW^&D)v{7`pp_~cbK8C({>rP7VjVb?v@j@y7(B%{_imB z%}L{b{85*@*KUwEL%6?ty6l#g!CP}&!9b&pAk$;4fvRO4X_xyH5+%C%%M1JyD<(n zXTu93ufq{E^U({k_N{Sf#AHEaNbp!$jTGpB`;sXR_f_Rc#&Gvv%h5;WCGSL{4FHOc zFfJquNB&dB2=KEqXm$b7qVv!4ccf_!4k^&`1;HtBctT2!gM)*Ojjh=%Z?PBmPF@eY z+NV z6OL6jJ}C9ano(9U`k^&;h5VXvDR|XIOhqFjY@#2UZf+Fc_*41skv5s`J@A+!mk9Y> zhEI=&IudVSF5Iizt+(13skX8baa^W_Tl&Uman{Li_VfA!$3No*DcZJ?`%tgJ%B$Ji z?F$2ty!;Z@6SZSv;ryplP2kRHpmB~*Rg%il1q1fm{H22&BF< zqi!%S)!zFdo*S6mD`{L(^M=uN;MZghi;EuFYaz_x9E&%Q;e}DCLG7Pv@7KTGgdr2z zm8X&QP@*v*HaXFGAGZxvF;7Vltvq|8=VLN$;?loK*u|)qIk0v&=?1ls%PTPT>~=H7 z+=YK2G6r3;<(hA!YhmIYb#CZ0W8FEq8Np4>WWLXlng0Hz-qg1KhHYM7Kcn4-#Aiyo z0o$tKnQtLQDt*maR=2<1OrhVHn!!-@LQ9?q5)j5o%JIg<3{J!kB$lQ+8E%%zpp@*TZBIDPLo3nr zSiN8ZDXBHO^iTJ-7lSjAnOP$FcfK(_J7hdRyU``aaSKeG4koOaxks9*?A($RgR#_p zwX&7XZ+uffyiTsE`#Y2|wAj7;ZR!W>uZ^*r*@FqVt6v$oxbV=9!$xbaDFpS&>sa!R z2raDQ=;?8ej98;zb#@qtolK$T)r*wtL3mUF9EJQ04D$k4W}-E7Y_!+5RJD2c8XxQG zdW=2zKVe`l`BEexTE{#qmu zIOL!mL+U_aY77o<<8|(LICva0E&ox}D!r5o`u08fqXx11b1zLVC&7S={d6IhrH66< z@h=Se~=Uv-7U;8*l zxllg;xYf|6S<~j@moM)SaS}#?NEagvLPF~6MY80hGCzHiZ7>nkc%!IjOQ7~T``YX5 zOuQGPU3gNn<5WXUb`MC`Su8edBsaRKe8z&1)sAo(P8eSHCVCK2!Et zq$qljm=59ZOgx;fdR%1Tdw%tu%T?NAch+BT?{!z=9ajkO$EB2xnz0uyh2Kv51qSpr zH(?MsDIPe{1C`q|H4;1=f8dII-*rV<5eKEI;{>H#3$KQj(k5OSm1I8K&^W>Jlw#F- zQa#1SrO3QKc?+p90K)DSY`S}RF=3;seqh81I*S3agPixEoMJy+*YVeuZhr0>x%Q7v z$L+R7&%nP2EJ#Wz)~tnL%vKY>*n)jMcCojCwVDT^|48w+bYGKO6cAyW1b)$~*LY{B zJi0gh*gV!ezeF0aQ6w $Lf1~{0|CZrS1ap+iScx(6`M@kI`(RkZw&MPkurO+`(3+{h5sp*V?>dx> zoxN@xKi3212smPS;>yhN-aW>B;O_1HiSr`9F39)ulsCvM-oP2X7~9|VDfc->p)K*U z0JhV*u*J5Tp6tWrP)#QX_ZuiU`^Rk_|G&F#joydSVK}Mp1>6L8v=UDvMxbZz!_y+K z=;(b`0ui4F#wHfQ#{vmUH~iy00dUcQelU2vJ zmK>%cvNcI0PY>4H;7kV?K_Jd*CO9_Rei0DAx$Ah_WT>w#-?Q<{!Q(B@TQvn_M-IBU z`66Fgyub6}{GiL+9lVFyHfTGfBYRp>f)Jphi_f5F3ZgYet>6E$=(IGRcE2|{jcVQ?n=>NbLF*43YUDv<%ktltXz;$TMd#gKhNhwB z?tjh0?j^k=|HxZEGZAd`t$K0QC)W5Dyc*3!7!=Q&^o5UouLWx=!QhS3Pm;;G`pSzy zlT1>jXM?0&xgL?2u5#?$+}y~Idh>>0Q-BKIVJW3!^CBL16&s@q?qp&+DEGCXZ2il+ z3{8UB)y`*c7e#tD+=rXDIBv+$-*xf4Y5s8(m*_Z`?&rz(kQ4xm35$Thm)epm<4{Hs zM9=g|F5S|+!T0gP3dKWXIYM{RAFiBQYy;2#f50 zZrPOmqtl4i|9Sz2Ey8x5rE+IZIDg6wpM}03R*~@fL-3=}f8Jq3BQf0b1Wp~TVN?i^ zE%#yK&Vb!_=NR59MMa!&!KMyozO;66?ZD&;HVU2aqO>@BZI7jS07-4%S5 zhdy{({}tV&7t;R!S(y=Di(T+Ob;27N+UwiPbNi85WcMCFb?!ruQI<4!A~DU(xaKd9 z-_@mc3W7ZEA$5Y{l9kGvwL4UOe)wAs&UWl-y-cn<39RO}ksOas=lRg;&QQ-rChX&B zNhRtV=_ebZ+a@e3>RHD(QhLd5rTe>^Lsbk@ngmW!4pJu@YD}JFtF|yuMFvVRC1a$+ zwpzL^^RxQk7V!zjZupVqaIQ?)8nL{AD&Af)Z}{(=F8jN&KILVS>kB(l)rnY7tEXyr z2Lu*w*)yAWVY=KjUOfHQM(u5jnUIeeUECL97jE6whW7Amy;5dcvu65RP)QNWEqba< zcZQ>U)#Wj?KfB;ZPQ0LP6rLZ@svLw+E5Ye$T&4bja7(|Sy-ojLOA&X2;2QZa%%>f- zuT=fx-|T7at=~sW9(XuOmagTti`E&0&Y6%vPDET=drqa;pCZ4p&=B;KVm|AJ#kHP#;^f!0-gkqOLpApf4;=;z_rW%34hYd#At9Pc z39?7wTNX4k(l&#bM#jblHBJn0yYLKCKiqdHc;eC-lA(fG(N8-3MaBGpJxE8={*_;2`KM1K`M zahTU<(ibxwJ7J*tf&&*+{$0oj5D^VFgmMHz3l79V5<0I2mnSKoJg%vUyjWtD@y-%R zmaEKw0z%KNMU*e}EF$G}K-A6pGn%zAjAxvSVskecSC$_f*de?o#mo@m3a{m9pez273Up&)fy-Xj$E zzr~v!F*#`{?6&r^sKy6!rohO085)WOPXN@B64THiOFqA_u)Ztl^jO`rxzD&Yj@GA*3#*20T_>W5)Tiyg;_)`G-s~j2Y=yZSx zz{brjpF1=F!tBBG#wXOVwUm92 z=Sj-)xvHta$>j6^GMAE`y4Q1clJswfjz`4zUC~U+%toCK*9*O(wpZgPJVipZ^selF zC5@rc6iCTAFuaN5sD_@F@^k6X?(r)j|B|n1FW}VwIX{M}zSuhH@*^QolI0Ze)jwMa zV)}T993tNeY*Z-`_!C9MW9w5(Mk*+wk+=sz&oH zz%6(!oO##=h#yGMK~I8)rlvITF=>R|B)Jps!vse@nz{$3T1dMhu&MvQAUN1P z+A=psCm|sb!HaV*LHB8XLCc%i$jLdn^eZZlZP*$ccWHRvH>f=B9v`7^&`D8kZmifh z3x`9`*AaOPbAD}eZVnmsZjHZZ^lVE@zEw91Gbl^B8?mX6Zr_f?n!9N0zF4P2vi$Ji z?!nnuWU|-tKA7eC0ATvdN`6u7bBh_hQ>T-r>1D|DeILLXV|Y->I)uM>*vf7?GmB0X z|B&3{Q#MS#O=(p<`T4O!xAsChzE1vFw?ri#LE~FGDCh=;(Kk4w{RLbMVn2gQiI(?s zZ=$%nE#e(S&;_VW7O&9{O&d1c9ab;*$JgolvAD6?^g?2p!fP8Pe&%JGsEGpFY*q50Cr1lk7nPFq8+?s zNEs4hR4yOXMn|XWPZ-d@5@@*7KXZQH0*8eoHLY&JclbgI<7SfNk7)OX!_miJr2MFH z4z-JY@G-`W*vge?FRllOn!E4^B`m;E_TOKg|H&L(MCS2Wt_+l~o9P~U z$zln22r5M0;_B}2&*hfDa!}t-`{-V4faW>#MfgcG+Sjvf5n7+kdz$_cOv||s;!A8f z-7PnD?^P%hQwOq&zRILI%MYs$%l}O7*q8>%4W@b~T;AKaLt%XX7N)LGDuk?ZP@7AIqb3MPvXI3@Wc6-uZ)@x5 zXe62jD(B0pvvr>=Q)Awa+ufQ)PxwJ<{+#yN`FYMp!>-)UNUYcCu8Ug`_k4 zZP^(SX0DbbD}ks_L7Uc*Y5{RdHLK6@<_7aNI*cX69^B|ZO6{5X^7ccoTToCCg20En zHd3kR{70NWNf`(S^r@@4SV%SO2^gAvLJw8L94XD02+;(VE9X#6j zvA?y_3DAunV2?%E3<=dm^l0bj=ZG?m%zmK37lAc`+gZ?ON0MYD7nC|E4^lj>_8D*| z+G+Bc8n^6lMLYIz=$@*?)RMzPy+|X!W5+JyOBh32=H(V;^S_#D&%K)%-cW93W&P(>JxWDS%i$JWvkxyOu9BFDMi_C4w*~#$B=o&~*dJWm88~ArWu2)`C8;CN=uwZCB(HQD zV`|<_AeR5q2Tx{eU1mE;3}OYLFdah@Gf1bWGi`Z!_xJB@fGP$QC987E!-*qv?M<;L z4p9Pof!FKauo-|EZsOuQ5BT?9f+uYkYRHWMOY@)R z*h~e00(aKC1g@AlcLfNx0-<`YQjOoU{vk zGkW*k5lZT!?hmAvnHQ6q<3w-LTP$hg+`Mc>Y_mm0ZiccGRd!^EAj?}Dlt*j6>p1dV zikjVN!h*i@fVi7wy%$FUMXcx=+!yGb%f4N^1`BqpJmP#BNzN+$VQFr<~Qs>T8X z$nBZ>xvD0(!!7>){S9jGVAB8IP8m)}7(f6RkTq5n_qG!hTEGI$I)d~L<@GMmzu+Ad z2&Ftrlz6mUj~U0T^S^)37PyVzsF1w{W+AicBgX!Y=z3x}hck;EdH|24E)BVFB5pFj1xkLQOj2n-0UOtD)Ko0pPZpAbs9P3K1@#i}3~BEJ!AGKW(ujfp+HWc9RwQ*L>F#zJDmo8o=p zoeuQp*H?df`k+;*p^Z@V0D1*(HB@L2rf9iEgX1Agu}RVjwSo-|zYV zE=r=yo6Iltq!*gPfU>v`6c2S@0n+~WE0M9JU6JTRr4A1MNHs0AA|-`iU)nxN3S`K7 zJM%8XAoZQ{k(!yuO8w5)$a6he?Ldit>uM%A<8v`h|smciZr3Zjn^=tgoH&^GJ>{=Zahu zYjd!xaJAW%GwRKFsCaaXruH40#b4|#Gp+0z?_Y-;}2@BhMLqVXWVph3Sk_I~{GHxG$1arMVb81OGc zt?0=Y+)w=t88s&YVJ@WW+0;IEWZ>ant{O90gboS2Bk{RtlTs^?H4##LubYNN(Rb8l zledVw5Z+dhGQHW88v+$kC)uIwv;MIQTeqozaB!Y0{;I^$GqeU(oWHno$=Ru?`(ko+ z`|;4mR7FJvO}dU=q)DYq;!30G$cyJev~;S2-_wU6{tSL^W&dpQ| zNi=#fIfEaEnjRSI?FAMosaNGOiPmj`fR_`_IhG(3HWP7)&151=H1i8ASyA z9B^3XQ$t<;{qj7AwGa^2jQg|7PVXj-csnE^AR_;%Q(r!+tapGL8y(izGiZAX=sx*x z5Q>?3oAf_{U>-A2K#{I<3x~+tA04TT+9)08xP((>_a;bSCJ<2NlvG%F2OyJAfBtHT zPZN`S*2*%SX~>{en181`TR?$C%EWh14q|l9{fnDFGp^oNP5A}W))Zm)2;eIKmX?Cg z`e!Lh$fVYV1r|+BRRn|A!Y6ry4%EQFD~Tg=8&m)5%`oABk)C#1ZP@Y8uX!@)l!rFO z`PpuX`jQH8FD^BeKrW8ihkEOO^4QehZ*WrkuCm#L4$*X7=Y`t>o0?$N`@9~|= zdvC3!(Law4Yx?n1*y->;r=ydPqV55UJHF(RnjH-zHyqE~E6fFf2q*&uojRFp+@2um z^_(4m!gz&1q$*ct8uLvdDaIj6N`2?nlTaC+f08z4;vHkSyAD%Mj`7?arwu}3Ttj2X zB>UU<@6NcpPnxmtGa4ELsee(-_r1jJ`V7&{uO|z*7k?6)2xw=$N|G~;>pc)RAYzU| zeisy8C*Q|a$2t+b`DKb-{HJXM&Sez*ov^6#D)k)AcYLJ|msEAf}g<=FaRV^E^GhgmfTxkqhprmFu?6zQy z3$Vq{i6EM8HC&i7M_i?;vKmJPqy_aKo=XcH4UJGITU z5)TVV7wG0!R3_zL+WaaxdAf+kX9>dXHP(s=&_5y%MLKDKckNw z-zIv+P0HTOQiINL#6k&2I#E&4amcFa=;(~UmOm)=9gy=fFDhcXl)m}QO6}>x+83sm z4BAGGub@!@jF%37Qa}?yqyMPTZhY<9l^G^>mEK&w+VMxfFrD!KwBH_0&&1FudYw89 zBjm?1k)>2z3YGJxYGiP^HKm>{Jr2svy$!@@aavm1-c*sq*UN?2$$!Z|{JNHmliZ_x zG3r2$3QMc7t@`jMndK9mGBfPD-g}uHQp53Qj|^N%64Gh=&*}xd#bFM_vB;z4ZESSc zhEjxdtX&!f=06W#Vc!!cs5^fa%JWO)3qFq8Sf_$vG07#PB~c6{%YX>Iha7Bx+F1Lj zVF&O}I?rzEBnY8dyM4`b7hmewl3U&mHp*_*HwXcv-|G6K|C@4RCZ{er+{xqaZMPN3 z^f+$4pNV&oN+-Ge`#Ltvan+4m01o~D@E_n+uBodVg#IBg1qB*$-@bcyH*Jg0A2&ES zxHnl4Uy3#NFfZ5n&`$s0O%LfwyIY$aU3XQVl1BHl^L4cVMj;`JxE{AV#J3o8#a=2e z2F+bHb5^MDQ~aCl^{q4|>(@_JdsgQ?CNMX`c9MHzbme3%D+YSQ~0J zKR3_iWR0)1+51a!(|PigmvetBJP2?>zx=JRhzX~lU;&O@ zi<7abMy7SR!G)9+88-h9|%O(W>F$+Ur z3%wcMApH<7{TAN;!)d!-X;^1?{?@M_d8HSxIt!)9k5TI~mrZyK+mUfbXY0I*JTwW< zmXWS&SiML&9vY|Iv+3~pc9wfDRRjI|J#7UhidPpMYCeml{` zOBAwmJ_xuFrJ$gwsjZz~U+;l~!1`!0Rd#kZ6h~Cfavwati*Xr^hn`!O8Lbr{p}bPY z=kf)GR-Xz=LN9y$fye9W@_^;v^**}a_|57^>>bLDH)hn=ROwtjm9F{~y|+n>jddBT zS@D9Gj1c@J2&ge14)r_PkwyvAquHt8g-{88)}{ddiRj_5)(t9w*Ki+nS&6&)-mW)3 zH#{?OQi0^OlB@NDap3OSNO&gK8C$*6wPRfe=NQxwTMqN~1O6l%=-Cx+%!kk(||IPQe>^j2z#sM$T0O{h9Dr|e=?6H>8oc{?-3PyLVR*WihF2qBf$ctFSk`}7W*Hl zK&z#I%StZ=n3cNVXtiCZ?+*CgS+7Mr&}_N7MCH6Eb)e&w!LiFynpMSd=?bcPqI-&) z+Y)4)D40I``udXJeS!u~U{KPS#`3Uz4xdg>3VOw#y{?Nnr@N_MdH4XTPQjOy3jcR| z)^k@%Q8Vn3F*3{9xedy`A;vO>AKlz@ODYMZ2!4XEz-|chIE-BKqwr&2tj8O+Vd3HP zJOO_rwVKMxG9}#Pqzo(euc#-buaNNkuVtBGub&AL#Fu-(!zcrA6WlRgkJz$6tuXWq z4MO%&;<@$ZTNn;P)mbk%9S!Q-*n#(vT~zcM{sBnX4GB`3nSCgs4iJIe067Bt0=ghR zfj=w`j3S6_7WT32Id6(S&GbF1`^h`M|N7)s@4yX&9E>2yBCR;Yk-I08p^lupL6+G* zP*zFe4TgGp6Q3>qXllYOsyeZu?~kV4=_SWgliAzN$i`I+h~q`#w+P4_2;ajH_9J)RG$t;Ru_C_FmbPjf!Vb0-cp`gqoP z?)*R`blCWyX$UWo5nJ@6<>5hbN~7UO8s#Y$d21S(pq5*4AOf<426uj+G(gum&9`EH zi^aj-BptCgGKhVjxZX6)ipBLWrkf7kw|CMw*ojQ#eW5mv!r14yGMiZStK9ErqyhTc#w5 z66v`tp0us{Ot<4^ZC&a0+Bj_^p%~443-EA8`Pz_i8MXsl=z-rU-=hGNph3M*_EL;9 zhhxHz06~Q$&KpplJ`S&2@2yH?IoWmd>71Pr^DaM)PZN%~Nh7ur7glU|OG zzQ@idlsK1g7Nrx=QoMdo@+oFTr+NlDal5{9i8sNA6PZQ^m!Y*zye@ zUqjC>OTwlA4pX{@vm<$8X2T$Dldp;$wYX2PB1e9}@_=FvEK|S3gf^bD04TRLTdA;G zo0)S36dZ|>*mf9}KGb*tJu+i=%_N>y7>=Hdi=m{$q)Q(Uaan6F^{0avr2^|>(f_D! zGTuMrkO{fDybz3waqXIbcL{h6%&Vuae|5w_wP;u$T#3&$%K0-%$~#un9I*S4@5(}u zqJ!!!Odn76)HFrl9%A9sx_u)ksUE$aBGme5x&w9FbNQy?QKz7hdG3!sZa%a%Vb2Us z@taACM%K`3FuXMTX_<*9;}GA5#4-P#I?31*Eu?$}W*}a`4o-q?6b1=yJF}_q&<+j` zLdj-?coA0>sT{dtxzwBaZK`O+4b_znF|=qo{{OWNUJnnTg}dX)4B)hY1*fjA9te;& zaE_^1zA!A-h09zQBr}6L7C1Nm11Efc?sp$WnM>yAnmeU{V=PR zA;4f&OX~&Emz|A`UQiH0BS1DIxiJJrLQW^UPob=cjg6E3;OmN?@iK>y)Qrr-nYdSz zbNJQc4zPN%=`iPtZ;dV z4$4;f8WY2@0w0m*##?ra%JkW&m#&`b1_s_^7a&=EhjCzg)S)wmTa4tJ@01^m-LfqjTxcNh;dY4f49W9Plc` zqJPqkjX1^5LvCc8w|e)=J?ow^R$p^xI}kP!`I5OtH^n~Z`2oyct{_pyZ>PzMA2H&L zg?x?Q7Dm4oCAU5=*Ycv6geB!#bE5+%LyW|Nc1nMixrnHUC$rtML^JAk!y$cn?9IJ{ zAs}K=^gs>$hepBUh#uzWQ#j@Im*Grtky|TMw_YM&=iDWft}ZV2{Cy@?D-z&BqF2b( z%V4(?bKV|Z;y_QI74t|sl?FDFZF(i(s6p0g`+5#vW(0h zYZ7`AE|=;nu!*)GJ&#$&qV)d4)WZq0%5rr*Oqy@xm2C zRnH*!0#FF^yW|M=07zV~$?vuHr2VgpNO~a#IYjyk+6z!2WxYu0pODbRo;Q@d{^w~C zKPzHl8bVd?!v|Xdc?@lCoaZWzDzZEQ7A`MRlvvtJRS?;gNkk+WL;?QC-v5pf!>2D; z_K+|QU}fNMR?Lot&EYPX7}ETXCRlMz|K*xhOuWDQ6dmpZZTtnKE#|CQ2ll%${LFLo zR{O$0s8a+L12HrDkL~rr`i4cK`Pq&PHBkJfUf_tHOUUDfxdtH`?AB4QPyqp#bJ`EO ztoa!Ay5AOVU!>%t{?DQ+miP9$=qkV-3$QuKA9m@B;(1t;2%=*D{dK)^lk zLKZ%@avA6COS7MHzo}Arc8qQ%DQNxNI0TXOkKXF9F?Egvm54%5O#=h=i25Ly)d;@Z zl3AV)%Fm35O%2_n5c@oE&m%ISmCh5L;G!E1=g9OUchl?l@5#G-%)ulG;{^d9lVaUS zAjAqJ<5eZ{aCM0Ve`}i>*dD8r$R6vDEmNqZ{fU9eKSmm46b%;=@H^#jb72YoE8eN6 z|Fz$ZUBJWY0&5V>myUd%d3!ectB=Gt?v!?I!&lRCO1lT_stYKw?JctbiSd|)f1zbl zoRz;t)2LPjc7e(43NlNs+zk*%;ew3JLqL%Ol3$(MdMjw!;nC5kVZmPnH}Ha!)>@P2 zE*#ki$S@e0m<&L>1IrCK(4&AUg(209sy44SB+ypmdvT$^@tPbrqFbmg>QDT4*{IZD zqhgktIr49D++}crfROz@YhzzzM8umy{_YVx2isJhGObI+f#tY(7UNGPMa>MAKj0(; zAwqDmrJS-uy{lQ-FCvOxmDXm}hV0|?hW4+-_t~l_47A&g+x0aEHxIAAk5HoCzhNfe z02?Au3R(QVbHt<4^4!Gr3+~)|7rvvdXN*RJ^+O&Crk11lmzg^pe!(7tpspaG_G{w~ zH_?QH?xw(SeOAx*?zWx0?j>-j)RV7 zB^C$vSFibCGQaFJ$P}@pDBbrSO;-D@bjCz7r2A;eXra=T_qYxV^2GCc8-Y z@MQQl!8SqvOy*-^0ry)rci!EF3kS%wdumo1dU|>lfGAm5Sh!1m1H6m(ZHM#fEuSD9 z4S-dL2lcO}6F+#)hq`wUHfF#^M8r_%ES)$joWmodsIj7E|}!orqkhL4Z6`+}pP;u`EgmEh={i zk&O32WfS4j2H*ZIZlf@IY}u#}uwX|QX{Ms!G>G$q_S3%&5@x+wLRCS=X8J+ zLs#)*s&5{tXw8is#^;)tSE^?5wQLA!X{MOQY(Li;5rcJ$O+%&O@!N0gDr>IEt0yGM znwc@C3cK45hr)@^z+gf@s!ElyR5_!yNhtvGM_BakQ#c%hrT4)XB)`D@i{Kwu!iZ}6 z81pmp{JXy<>sTi9?pkm!lr38=?$PW%iIW!b5XsJMH}hSIZ~@v2qA0^oUq$ zCd1T@ZKZRaE{~({8oju98bG5i6ehX-&iA@NGsH@wXHq7POy?j8{>V7?URu|fF)1kt zI^~2H1RZC4LHLDHi5wg z`Nr|6Lwb{KV^A5-cV-Q@`uy!tF) z?rz~*ugLlQljhUneCLQWh?^uma9(hvok~R}t+1e-ytgn`UMMB&BXOgNJAFO#&s zm%5;~@ZeYr9}HZ(Z}60^$gTLygI*mS(53u4f*yO#FpR>p);Y=T1C(Y4Io3L7z8{DW zbHA;jp#g`YeE=DJhD5N7nt;W>YnYh#9A`zryjt3LM48kz*eyD$9{&iEey0s%-f(Y+ zE#3+zC# zz-emJUgIRzPJ3x-r5wRV!@C3AZ2j=Fq2dyuZoo!4-Da3EfW;@M>??AZ@oQ76fQV?D zV|R2VBB*|_bgzQt*jitkAl{SgXiL|*Oldv4-pL znwmr<-2SgZ4?5e#u%WBY*@nnKC>MdGQ)99?-UiJBHh?nUzb+{I%aC_3b21K5@3ZRu zNNXMyw;0(;W@yJICP#8~lWCQ_&nVcLA=}v&)A-$RPfu6fUp#HWJhbQRDRE1T3d2Ib z+S{W6A`VBBTn;9R<6YfuRG*TcbBoCOT$2PWqMW5ugL7eihg9_ln-X2eMdfGQF)vio2HfUW38;E25}D7@VLS#_c@4NGxs!zJW}RKAm* zTa%c9Mj4s^uBv4^yZh%7sc)t zv)#;MVyRGJZfSlw0$1g*g%V}eDJix2d9r!yq35TBBj%i_Q-WBv^RVd=JS7!=YP>fHS}VP!zIbpeZoH_Nl<)$_W1@E^4bFd zZJWbrYRdy2oetPBYk+S=e@Y+$Q*7Xnb>v&8aVwH|G(N`qMf+Q2FG^a|!!&n!w=?NO z6$`)7sVe6$K4f>-@#DK#>K?~H1WJj^0C}bO--Gt-QM_mQT+$5YnMtLtNyqE1OtigMr4Qd zPveSR$_JmS(s?Op{jf4|qUe3vLiInmJ*k+8Jgt3ox*%9Wr|+2^b?wXM9QiO#Y!; z=rdknM=w|`rrdYF?844g0sJMLu}jI}Lfp4`I$;*A{k8ATO#++GEI;yaWQ+3$_v-8{ z@LS(?fuZi<;V_FyM*d&Qasy7J*AODT^?hZ!B}P3!2Yp*tL-fEFC++_c_1)oI_U-=^ zC6bXXBO{Us85!9ldxh+gnZ38H>=m-IH`!!UR)~y@WN#^Z@85Yn&-Xcgf86)oeH^9w zxUTp6JYSQ|3-9|f$(!Pbd@hOWBWTPf^NIHH63a_-k?f~xVL`Kb40fFng` zM27$hECuk*D<~<+EiAkxDA?-rW*`3xtRfYfC60D~Oo?3{b8!?#tfH(@uq6q}v3hvK zx81d=wdMaVD#gmv2GqBdyZdP?zdr~cK~@15bw^07p1;bR({2#rP%@~{u)T#%vo$@y z_R<3Hk#T{c$WGc567dY22y?f(jsQg;`dEOZpb0fRKZ=jWZnadK+lRP!_)TF^(P{rR z8yy`Ahykc2RwCnfeFCwi|7IaY)bHBV)D-jz8-aELa{ZrKHbMmwWRnOBNbm+XaxW4K zB!>R`KJwvpR%Cc47eg%cttA7Bd6nmV*$CvmewC8LAAZ98Nd2PXnzFkx#*F8I7CQ;7 zdR-PZm+K-NzzViK!wtc3-PP3&+W%apg0uGSo0VN$)73NchvrDXsO3~$#q>q67)_o+ z`VZJjW2AEd#fJvMAv2K4q(q*x&Vk(p#+Bpszh!j|7wp{LebhW$1WD3hil)yEY1_Bn z!n1R|y(TmNft5{74T#?WJ%S`oGHmFoT7ZSh6h^5;*#}JQDFZba1edyKtRI6lXmVF% z*isVcgkw>^4{UmO8m-~s*O%hAGo|Yb31BwNqTP8;8kBZ6x=Jx zlYTv&>dlU|5}ebBNm(hM(TsLrS(`B$p%%*mO%B3zS!#C;0IAH6!b_E z;zy3Z{pCE_-Q2W8;q@r@ri(vD7FBBaRibzBYy5CdY;Dcm*5F+Hu2ydBEfT#$=3jTX z)|xHZg^jetX+xCdw@bXX|50|FEKedid;tA@`>8_0$nj^LZ=-nB?283HTHUah$4c^lKSzPRz7d^+boTMQ# zll+=*lO5WGeDiIHzewoh&dqE>hJHjugy-p>d?`A1cjuH%>dns?&O6yM9caVsE_(pf z*WkHAW-(%j0x;~8W=&}2ur^sY`WGm+hOuS`e#U*Qec^;SbT0Bu0rzLfLpWA)GwtH0 zk_SENMtpIdGqJt*!OL9LeBBOJz3-qp-r0MjXG;YH6*4O#Fj>-UiRe#SqNCunU}Jm7 z-s)V7fVW9WV62Y>>(9sq=bMsQKEnbb}@lfxAuM2Eiv@dVotHfwu+Y*(3fLDHI( z9dm+t-2l61eBSy|aHrI?PKf6UoAmRm52wZEaa01sd3s=<f{5nVz~z;Hc9PBGB%K(DS73HwrDW3AZZ^8OHQFyc)tsc* z>Kiw13JdC+wke0U@yF>vA=!mpu-DL?$s^+5LJL$iVW zYV)i4bsW5~&XEKz15Pc9kMB`_W&Cr0Z2X5aE)SEX9NzK8%}seLtH;>b*afOgS=rf1 z01(2vlnsyYVSj`KEvVR+5WP;B3v=?W!<~CPUl0i%RM~W@CCeOjxoOV(R3r3H?ge(?RF%eboy#VN1{9vc zLlpPn1OCVhy!;d-=)=94a)3{Q2f}lL<1w$LH6@(4Ug7{ouz;ik+uAz^XqH^+?3(i# zg7pzzu)8VU5=O7ClY0ErJo^;AIM&EOQyAViKGUwPhXmJ=tU>1kSLeV{ZC@W68Uh2op`js={33r= zh4-hFTycWMnBx@_bUPwgY! z|^wAQw@h^>T8x?OWxoJ&((a5a5`fYd>?FjWkyyh z1MvWkDPzRxl$UY3EE$<%VJ=&WH=$o+5RzA=U4>5h6-w7l9BGlnFr$sCKl{> zQ8Uf7mwRGI9z0kWt06bc#rLwqi03$eD<%trJMWA&g7VGRAAW&N`l!Afw`fA4zM)Hw*3Ne%0Tp# z!z+eDM_HPfOwqg9%o~MayEPj0`_ZkZ%S6A>b;EQe=Z9=yN^08aB2Trx0%O$zNE2XN zQ!tk1kAJvx=dUT`y@Qyy4-!cy3D}US62km>Kzcz7C>Lz6Y(AHs2&s-KIAd&M`l%pm zcl(y-g9vn?^-bxu>^-))xXkAFvZGN973lKt)}$VlgfCc@ z+aN2tQkH_7M`9kk>|ka@1gsRFn@NjDdtr$=zC7DPygg=5*}>9uWTyCDvK!e^1IMKJkUA(q(PsZ!mavAk<3n#u@Ix{y#2j zX_T_e<^rm8x#bv{?hF1G5D^1r7MSjy03=aVRAhT=?8))8TlbV^nP5^QrcsUU1*uJP zmrjCCPl#zNy{D(kjf(@dwk~JUp8{|9%kDDr#0aa@+!3Q0nQoX9Fl5~H@=$VHLNoTb zvkjjxkp1t5%sNbWd7j30QGdX)mXXPh+_gDW@i@dc4E)&eTNB8d4wy^%2u#Sy$bPkW z@d;k+-(6l_hVV9a0QxptuPy~&zC8Wlo0*Q4Aec{Irp6qr&-togfHCWNc1@kOtu`9U zXp+cb@m4fT>gE79S8|^fLp``D5t&*FcNBm-F;|P~VpGp?V#F4H4XoRTDr}$!XvD$i zQw0$$7Wgcmz2qhWms*?djQ>gt*3o%F6tCj*0PjsKYK*GH;6_!nhdJZ1Gl$bSe!+lL z7iZQZ!(6O)p@zw!T3B+Ru?&T<=#cRJ+m$o!R9kqWN;lB;hd7m7{$L(F6uIZ8pwEg~ zC9m|+izr5_1IdP$qRaZMR@eG{dE*;*HFZpPOz`rZ7}|~dL}8Pjms*hqrDoG=S?f(2 zufMw&&j=Z_RA*Bv5)_;ePnIQ>OMuPuo0sbB!f^Bd> z0k#CLB>>*C)=5MD2762KPd|xQQ}Ovn1AOfKhdLe>-8vz-E1;}G0Qtc6Ja^DR95@Fy z9F({%-hjdeqVy1>X!EA>q<)g`Ooaj|Z(rI_L%9(sI9G^oO0nn?l-@mBOHrOK|Iaeqa3ogmsRqD-ab*{In_$;J3wxi4hW$KK*uq;XWgI zYKHqh-7EbWvU$J+;Z2(VEO8SKOc(hxz5^v~?PdKIxn|!JG?LL`I!4SgxUxrD zQay55X<~vK{@LGYbtAp9PCGu@UO0^raTf5QOzC_#@{=N|_NLskK>e!wA9|wCjtw~1 z*wnCIB|JyPd>47N+_obPr%GG&eNn_T2%-~Vyd{OTyL&O_P2GCUq$xcCN83Etwvxuy zyZ44NFmXCdToiW4yxJhhv>O%%Kx(k&=ly;a7C#i8K7TSv8No^a*z|ga+(>(ROkUmt z6y_TOG!+5Cja0&a7BxCvtS?9(>tNOGoRB5=VgjjBn;xr|m0OV9SG&h-Xufw^Sy|~k zP97lviMm679N}RZ8XWv0a5U8pcq7GcfIW5~G#BsgT~Sc`gPNkXDE%?SpdiG~;pX%k z;=?|7j(Uc@-_=fF#e?r1g#KDsm4cZEvl6D z0qi3!HQ|?0Q$8N9Y+2?- zu2#f2`0~|w_pt@GxBs_=1**_dvkVr7z}D$4?q>ZOt+(JR8=t%;K0xC{h;~>I^g+ehlJ)nF9y%#GsKv0Y(&ExRZ*%>(ryHMMu%@uH8GeFzcALk$b%wUh}%i?Ub=wawxcB-PaYn*6ELqKS@&^`2F!*4- zH5Hl^zO@ydCbi7ei}fBOJhHvLcH``)s-CdY3hBIODBV6)14+`SgEab>Zj30>DAha~ z4r6Zkl8dnKw4UC(qLhUj4^$z_1p^r=n!$$Vc6(gwZ?+w+Qq-sYVdt)5pW1&@;!us$0ys(Z=YI`M=^+A856%gEeK?f86MJrCO@cwgJ zAZ?rQyJT%2wVR$Zp6xb#f3XHh)9NdEG-ld1FnESL@%GB+XZJsp%!;N_dGv&n>=)M- z$)$k6L-|s?P&CvP&5~xa=Bde>SGQDbw`Q=!Xl^g(5^P<(>pj0AWCceiWmh?uG4Q28Y!1%&z@dwPW_A9Uz=%-fcH|0rt|2-&eGOQ8#vVx zIp2(x{ceSXZonZEi`S#k&3G+MON**%Ta$Wwr4i%^Mjoh!DrZ$^B)CKPFCJBw(f=s` z*n`XQ&=?c~0s#1xhtfN(9pI)z1Uk^gktF@j$Hu4c2FECOQN=4OtKV;GG?8vBXcf8_ zY4DWn1hmf@&;`wHjqyXULZc737dPmQ`?sL@Jx)K#W!3s+QbPI6Z~?=@#Iq5-o+VIz zTo+m|>ZpoZ6cXuTkbLs@w(AVr?f$9Bjq&*fdv`V{g5PA!-5D{d5lkHNJA7CEoQWwE2oZpVpq4^-Q<+XEsaGA(C!~;5!%?7(&cMdw|FPrbx%M5ghp%^OR`ji-x)t@paTT6V}SG zMigar7r*=&$+-^Fr?2x>_S?BS?9nlCY{D~@=Yy9qgFX{Ar-d#`7Vy&E{xYINaD$6qKwtvSSA@Cf z|915Z=-Z5f0*r$>O4pfZmHqB9VtxZz=1+59JN)~_2GkWat73p~&JfX)xVh~>*Gjf> zAySMKIl+9JOyi*Br~~ADaCT1_=z77z4!JC=pnye@(jJkDlMd$`)vv;%mQ+%L*SXQJf_;PO*)7$u;>91n)|mgeu8=_;R-hL?3Y{Ao1u8w`1OWg z!)G24bd?krw~Md%MllgoNQsnWhC^;OB2I-X8L{SF>ah0z-=Pz=IQ~-Heqkwn4v=7! zx`Xvi>W^wq`O=%*gV+og4I2db)1qHogd_`u*KuOOe{P3;^;D^NfY&)5a8q`CZSy#y z{(9?BtYQ$>kNZYW^yqqC5l$54~)oc(9A)3xr~t$9%+7SwP3+#{SosQd=0m% zgoFBi-i6--z@~D(lFPm+Z30p;SDLsMeJR+Pz-Q( z_ROS@1f`l`vdf}cfAo*Jtduw%{sfjq%|DO93}KPTvWk#7Xf}wvBU$=kqEja+KRMBK zv&+K_$MIx&&0gl~gSt&H8bIz&TGa&5BuG6|rx`o@@%-1R)>ZGk()8Y6ghnx(e5?X( z{G`Wo`V!CilD&^`gf@yzKo0hwJQfM9Q`*$(W*)Y!8sH@&aZVTyFHsKxcClzo~O>}KPlJ$ zdJRHY*rKK+%1rYX1*q{8^s#5I)BHKuf7-y36wqmC05DB!V#>w9dk|-UnDjeTdLk)) zV3sxl&`{LbIUa&iRTXXtW)e%~ies_ZV@-)!zwoBu?Sy5hPO z`$J06lEg46;Qivmr}58tlQhedA1`^**8PN`M;e;1aOP_Ybrik zSWrOYh?0DhG7eQZ(c(?d>?P@k2dT}e6?w_zf1l^V;YM!F&ewsH; zv`75HnoF7Ur!UYuZr^X36=OD`O-g84{CD)IzI=<~$7T8ZYKL?qb_{<9nwZ3HYl^Up zQNpCe@V2uZkm4Yk37^S^Zs!-9FpB!+u`$}Rvxj^H z4Sy<_ZLU)Ea{tTm?56ww{0d7}wsBFb#>DzN_R$f;PX%HtMLAbt9MSc>L@oejIVSOi zo=#yhEpVV_t|e$>QvXW}QVgnn{_!+2QOL^#6MfdI(}XMg`@sFxDkrhWr&##8m{&V4 z@SIbfS2xD({JfU<`AOVTfM$@NFi|S?jMOymfO}j6)?ckW_OMRFmdn#O$VX*hjqgPN z$~EXvWOE_1r6sh;@AW5>yEGMODpuH_g!2SC@al7xVrw80nFpao*Yr7D(n{V~>6R%n zmTNG>8Q=%Ot>d}{C4n$5*+Ly`mDMB{60rjzL!uiqu>}o*i^BsIYajZ}vMi_NnX!36 zJZ_qP#|EBYaAQKAqF6+T{t`#Kq8k$%XVUS%LslU=5jrBgojJPQ=g)#GBye%3`~#(K zSjEg8TicR6QH-pg*nLU8!p=_|)J}NMU4AoveY`bX_K4=y zw_48xVUZ!~T;&kmvTr5oI60*h1a*}YgVVSHsa+$o!<1gPl4=>OFWl$6CK=(Nv-(}T z?QjHydSlPPz&8(lg8Q+P#I=4lR8lWRh|q7nLWUC{16+=Iy&pk+E%N7syJB>{p&8`! z;9FgQriBF<{~T;78tX7lQZRjdZW|j<{o202zRkGw+*`vj;^|cP7mGn!Czo%Z2umA@ zT)2d^weJC4%m7l)`C}Om(w$u~_o?ahI9Aq}?OyfUu6Deo^ChJ(RhrY5IM0S=7-_k< zJ~TA&f|fK)<~8;7WeaYF2#Ia9`BcxzwpQOkKieZBEIpqKPUIhO2Y?U`Haf*q^vn=) ze> zs6+$G3_vCzswPTj;`p=3=f=dU=k0k{Oywd6X9A}_HQ1rRt8?) zQ$71PpT%OOyaXmcajX!i?AJ#8k~PUm+jNa0eaFs>5jG>#KKgWhp=^6l6eklTUQp8u ziQUK{dHBgyU48rxR$)y!B*a4gNU-*z=u%d$l(mJ873Gp5qvoQO=XLkkRJY*w;SOjW z9hr_7ZcC9Ev)!l!Irr|iV2N|>N3@v=(Zt}w&;h0i-qeP1B>ali7Weg|oBlUssrLHJg z2mUwDwf{lrZahLlbRiXk3a?k~PQumL_a@1cw9arozDvGApc~nyJV;S>4@&2z4Bhc; zi?`bq=KuIr6usZgzKNnJiLtR)6%aI4Zf21F;hmbxhY=Z9eNHu1=Tpt_Wj`ZU_!L^0 z0ZxMzmEGgevQL5nmO#cj_khrkkDTX!n$$c2=RYu4LQ+!S+`N1qAeS&{<-x?C)XyaY z^4Il2l8P8Hkzli5Im(_4;SBbFjKr=ESkZob^wnPM2O^FH<|HU^19#+&luqd#53Pr1 z$692pxkGVjGSgA3Jw7|MWMw%JAleCH9DTttI0IkE$k3VzQQy@i59?K_^JW?@E>8?F zAJY|Wh-rL*>ym8~vC?9*Wpo%h(Ko}E@@%&6zD1L*9N>&8sU~eu3up(M!bppS`}DNt z$A_z~cR1@gkB@FqZ-yA$Szvjq`q21as9ha;!~Y82p(-=x#O-d~!dEprVj;RVCs(~| zX-QZZo7J${!)Oy(p(*ntXx4!9Tvoq!g7M<=Y0Zv#chl51*(lC*grOzTBg$r)?a+bh>| zIff0>f*;xb60;ke8Fe(XVYLd!Ak`QEf3ve|Vu@grvZJBIs7lZ2sKhiBnfEmd%e6hL zE>y2bl5_34)8$}WtiQ3fMY6aJ*c}ou(OX7T_4m?hWJxvi&_z^TyFH14E4F;$(eN16 zgPjd3o|8fM-T_m5JiM>mv!3mrtwab!yU!>8EtIk}CWfm&Z&%ce;4Q+sf7C~BF{CVF zIvw>U!5We@6_u6!WX$N4aGnR6rhjGhyl!_Z`{u|$ai zbEEUmPqDM|G6WIznt#iuv|q^#_4?>@B-#DJ7v7)!keT%KhSNZ49nL?|LBCf47t8m7 zXGW3|A+PvqWJjy?;nl5LJ^&boSAM1C<&6nr#`mT~mm6rvy1$R|4F5be)KmO;;QmSX z4H!1SR|knJDtdYfa&p*^#tX{|l9TyKjpO(4Hm(cvL892CN~{Ue3WV>nxiWYQ?Co?8<&_1-EQ_g6o{HBFy3A2 z(XMm#9US~&`i19YATuN5EsSG`T{6h5;L7=MlQ7iv-NT0aM7KEHq$AoaBXQF&%~E=8 z@#^tttXkg|klbRc^hSvrG3EWVry`m4!Oi|){pIfN?=gPc|3c>|%Wk|4qChF;yiI9*?^p&JCmX@D>eC#> zspZu>C2!xNAj&@kv4BiDa2@3~HQkGl5Cs?klKoDj@SJT{fDUB<>03h^`AD8lSJk&K z;I8;h#`FWrj$FWfe-1<#;zeqAEB2KL`b)J?jHRBW`QL~>>Un^4zrY6W3bP%g`SG75 zv?{u+vmfN&3rqwn!4Al6vWKco_CZQ>_wBEso7DKV4O!vXCD-EWb%P2&$0WXB3wN^% z_dgjNosHk|A&=6adGObk2wV;~fcZ3NEV}~Q5#{)3#|77p)e7HG(p`3Ic`zs?hB3!6 zbt+XRUAvkuQ@}LxkD~s|!|)DcMHeQPTm&XTtUpj{D6-koT9ni%`Td4*~JipmdDM=fXpW}$PW?S=gDvOf~?6;B)P@_fc&^7$(FrkmC3==g9? zLlsr+kzoZ%y@;@=1#c&Wfa`aq25Wtc<|23d`#kqy8A@O+mG5GHX5?C^6kXR;M(#oz zTM@pza-9L+`~b5sA*JjDw}|iKl+j+e1b)ln*@Rd|dpOMzSxamdI-6a248GrDc-c#G zxOtDip*oaX+J>{`qW#5$YxqB%1Vr1(V=q=WV`OBsb9k87P=GP{7S++~#CX56Gx6^_ z?xXkuKYzB-vG*54nnH{%M|)ESHa0f$>CgK?>-nnHTcC5*VdJlu&`U!WNJ?M_DKtcE zbb!n~0x&n=dV*goYkOc$baREpf8?As;!NHq=R<9+h*Y{q*?gvCx6aV(Jr(srOU9#A z+gJ$0+h{XmfBQ)FLE2Y=%9}N$FGjSV`>%XB%r>qre34jPQ$W)eT@ZLANk??o_2?

27QzO3v*pn^5_`zz2NA;TI7Zy~=dTagi=n?N7Nf4Y_p6N-r6 zySc5&oAufe^6D>y?f54qxJd-uZ}04^{+Xy+Y%>S0l8%7^3EPAfQ%pt4JB16+i=if^ z>dqYTOnO`OBAD#q=@bETD~_sT2W5>wlt0yD=id`M2O!7~jaN(iItcHJ!ZudJVW=RyFI$ss1hYa-odWY5Sdhg&CQA)?| zs{Zf%@A^&XAGqURwpa}mb~R#68|Fp7zoYMszd`hFTl`9{EUUu>JcY{4>BxvLp{LK6AikA?~sPVh479(OIwYz zu^$*I)n63*x6Uy2ImW&SnB||r_Yq6&L)#(3n#IQM`Yg^lO+ZE_R|5@=7waM||J4!n z_;ASkj`wW!!gdGeMr3oeD%M2tC2{&KqnM(=KTS1-fx#Vybkd}hI{vn|c4_{Gsl49e z@t0!i^q6`=@bxmz@{BStN-$OKF3}6R?q;vS1fqFCM!!m#`ZXC$bnf_m39~9#aZn8~ zKaJ|=*dO6}ZY96%cp0&}rd4qA=iW)WHNEA~wQuHsxX9zb$t$PWqDMsGK##CgqZc5( z`T!POwI!W7WU4ZqfVB;YGz>gz`J$-fJMaZhO4Y)W2O=g4 zc;y7vB|Y~5*Xmb39F&=UKg-G$ZSx*_h&le&9i_cCo$IKq5@=`$!CtkJ{Bi$|dooMd ze zYll=)Z(Oj@bEOB>ujI1fCzhMT_UNXOIK90Bw$hQ{1b?8O(E7UkT%9?{ zEFNB%bLZ-vznxMSy;y!NWV>Ic)A+gHPD^`7u5)y-^pBbhwI%^qxV35x=TXrO9k;uP4K`HQINb+uYBqepLU9s*1l@NnX`TLgD|k z0OjR_&%1|IRjGN}_!29vt(`lkwHYe{A+`zWL_52Zk(LJHhX~Lm@8(U>#cAGyaq--* zl0W17{!#U?^0y-*B6wB)9mRHaNeut|392nf6Ionc4N_%VhJ=)5L{(i=RJ+HDJ`;cY1VLbF^;hl=pAzk3fs_h;|h3QVH7{2>K zW7I;MtF^Y^+m@DImVY;H-mEh0!~`YD$ff{M08a+w89RWXN14TnA@ArZfwYSy*Q1w& z<1tdN1JJshf0_EUw!AjJGK*T>-nS&T+3`>Wrwz0;w7+J@o8FT5YrLJmT!o9z@xGy# z|NVfcw7Wa6g1|wX7auV(F@jtp{XQGSiy|M-Pmo!`4Ga?~(PtKl@6e4nNrsG<%K;d= zL&@7QFB-Hq+j`YnpMUjS^M+O5=P}>Iv83B=t*H>ps1;m3kpaSNnrP~y|d>DJtbu-mdBN# z9sGs&V9!9@2E7B6S?5y*pa>=Mr%VyYy$)g>Z>V#RXl)gwDI_?WX)aKZ%bs_?v2yB8 z$3)1Y6jOKf#~+A-gaXED(j@I>_jnL$EG{p1(nj$QXWDvmJRU+-3nQ%f^zzAIhbyhh z_a~gmZChYF{_G$&XRCC8C#mB|R*E}M5@ZiBUMfVzl;)zfVrUza&Z~h6X z$f@LeSrv^v+drvY*xDL^W$=Zx^a2!oE`p-si%C`H_EDFYE%$nCWx**MszY<6w~9!Q zTtN;?cJRACLr=*g@y%t4AA)zX`k94OCXz{ConEe@F}G5QtCo8u^&4icOr{qIrUpx~ z(5{so(c&DoN9#y+65o6hubwT}wDPNUNClSnl%d;{;!X?CK-{>t7qDOiV!+qXFLr3Y z#_cd^Rl5TnQHq{xn8J5&QopYz^oNzR^Jdwv$y&%$fcio@D956rqJnPJmATVP`X6b8 zA5Vm7Ct2xkQhx}&MM5NccytSKWhIgb%OdpeGq+tjh| zZ=87PPB`)@J~*j;EQB^W@U~^Kei9;GknxgcLD9W#$VZ@v7qWftNg|v)PgiEm)aT+0 zv~fe|6AyS*TZGYOd1KqCS~JbYor_r0L@4n5rI;nu6Ge?mpQMht442e7Z-u_nQkY1) zKBCj$*Z*77m5D>eEMKmrD*|FLQaOn0^ER9mT{sKtQ(8a1Y5=EUa&j^TcBBKYi;a7Q zV@Okc(fVz;qrL$n51kgvxe2t=Fw6`G_DE2BEcL@_++}jtib|Jwafq*h~ zp+CM}PghJ-E}L=1>E27@y`UqJ4nXY#Y>Y*>={O~D1;!A7=R{S6Dc2dl{TWeK=k_!0 z%hUhnJY4D}_v!^r%Vl#+kLuHr1Z8bk)UZyZH4e(4L83DcdNpU;95rx$0_11_i_+3k zj`GX2$YM!c!x*&U&VZCRC=h6Uq=-i|Vj*~&^8hyLbAxMJSC?B?StX#JSts&q47b%7 zA5j$7Jm+FIxz3*ZXeLu2rf|w^SWQtSx)%{215EnNb$gC=g_`eV4?)#*UFXp|FrNuK zY;}3*Q=K)B7I7<{Zs;=o(0vWGHfVR|R>m&>m0it3DUdOs!m5dw+wr&jzgdLv@fH(> zy*y6Uc(cKOP3}!e+dJ%12KUDh8oEq zDiy{!Gcz+FaR=$OZP-5zT*8o!I&tUxqCCz;9%$W#xdiBocHpllen&x8nwE8aAQ(DI z%cd2^zgbH%TRGwVW>zaL6BH7SRMfXTKi*MQQ$q}2h?~FG4d)CRr{JK1kJ&89%QCaG zgxN*i>36B|MgOMBTL{=f;3xoD-pS`XXfP0ky=ro0g9t(I#?5J;Ko~BN{GOf2^k7Zz zsOiqfXMw1UNkQ8vRzo%E_sxgL468Jw3j+rV^K9hnyC?&2i&)tAd|LhCihmjuKeKNVHGBb=!4E{^YZH){pD>UdMe ze~UtG{gFBSzWv_Zcz!z%!UTcLb1p$0sIh+(9acdV5MMl z-#0@FApu9GI2>wpv4L}_pt!s1XRE+{(k~KLN!xBdkUzwhbkCtm@ObXJhi{J_nWti* zszyquos$?H9?o;WwLD=OV_OWalyY5C60t8!4-06s;R+_{{r*tUJ+Yzqh3vj! zhz02&w`uwcA9TSd%l<{qq`(DhwPI3#;V=zm@lsm{TeRf9g+ve?-`C}q~K z&`=C=x$oM0FS$3g`@)`rtBUj}coViEi(!`gN5ionJ|d*XpXap4AoPe-tTw$l??5Tc9LslaJj*7_HT{VkkC_>9=@zcGV}qYIN~pb~ z=h=(rfMM0V5!CN_PyhDG^c5u2AWa}ktE+IINC114j4?pF2wiI@N`xP{8zu~ z>}aX^kI$z<9^i*;@9bn&7GcVWUN72KYzq2z|LEZBr%~mUXsL@Dg5ArVhnRw2M-K*M ztI|Oo1J>;@M20px*=exKTt0`6clSZGhS`KY(b=KRxqh>D5|KH6}Q-YD%| z*o}y~)2P)F;-@HA4(YT+f=0{e+vjvAUU-~Kb(;ZBQLh7f4f30icmlD`lMKgrJP#MN zXT-%)&sD{S^| z2hyeig=Y_+xySz=xpuAVQ25VZ-Q6i;rQl@0p!d9q}3Rp88G7i z92pUVOS>NAJ|V%u86XFQKU6yMk!foq)^8B7AWwng-!ZPO{qgONy9(RDgQ++^k8g_b zh$#sCJF4;X+N+g z5j?nxeVkZx04k(UM0a&OX2fkZioa~;{t;1x7eS>ZKWCffWb!la;TI8RIo|5=Qf0SO zy3Zz=-XP3xJwDy2@2~tJE>N$n(Q3CSK}JS~u|pvwJ7|`JKkw0DQl+Hr6u;j_%YXRG z2nzc^&In)sB)F-NH8xdRAQ3<~^!u_+rOzpJ#(d zMx$TiHIqy4&mR!o(hdi!8yucK2W(o~ySs*v^MDAkU^IeJI0*#P0JCe?Hw0>0Js&gS z&d|<#@THXs&mg-z5qpF?ZfdzxAE?ce?{jqt#>9+vkH2M^<>k0B zQUSgFN>9p|rSmFE(ZB-Na65fkfxNRJLc9E z2h5)KbnR&@nOvjCJ47YRmQzUngFiaPPN2-`Tgvv!Qf>YA@>Ic#jH1HmxjFryv#kFL zB^GiVK3>~O2j{e3r(tGk>E`Toyt8@Fn1!WfHI^6Hs^I}fo#U{C-XsuKt;bOiL<5x59<6YrC|@O7;-tt;afKEsPLSzttIvLP4uGGuD-yI09w*5$H< zHj=3Xifu9njzS(c5+f_Znd$3{{7Jt3CZaSk8AE39O{i3uOcV5Z4slm^R-Hg|1PzMi z{crBEzYcD{`uq3qWVPLJsDMqsNxMgf;;uqoPtTZ2U zA{j+6Ucg}8UHa{i&G6*OHTN@LjBwt&2JIq+eMMb{<EYMg-+~=_Ljj;K((6@}uj8b?xH!4x3=-1Ts4R$&Hmy)M>L8QZO&&rMpAWZ!-AY5Mw?M`cZZ6P8_;)_s-5Wo4!yFaI~w zoH8<^`rq6TdKwXexe=DEFSJr9zt4V|mJ+bZHB;JCPfZJBzehfHL6V;GmT?z@)m55Y$Mg*}VUc{u!ey1q z|4f}8cQkXV)X1~q0k9pz7B=?xt2Y)hiiMgk;bSAAZB5`(8pwX6)Js z_|wOq1cZ9xg|<+j#sRJ`q_P|WElNyQn#I*P}m;I6Xm)I zBDPq2h>h~DHQ?Ahfah_rZf?4T3VmFj1M;|FkJw{Bd`cxb38)4eYp zZjT3|?c=*JAG$MH(f`6#ryF@y^elNtJaz+O57WTam8o3ly=O`@`It?_XJqv;!xi7t zk5M2OXk9zXh`qXpP3C)G(vJqBe+(Y<89{14>T?5%Y;41s5+i12W=G~&wKH^;)FhGA zOk67=67TDhD)C97qn0AGg?!RmM3|%@S{)AE7)+(QZLTNDqI2<#OK5^lRQ1K&O0n-H ze*9ofX;xYMD1vusq}$#K z=Y*`98j-_hL)fE)l$BZCR`2PZt@E6&n|DLR^gFUs>ozu>b0mnB-oKJ-p6KlvP`QPL zWdvL^3S+!9xVwWxLl?U7hGH0;%o~RrRarv|E-x>EgHa;ziY`yWsX5kBH`U4KJ-cDw z{Am447YUZmHx^eM3b~;je`II{2d5)hL$7^N`aOT)7Z&@!SDhVtee7!F{$-~Tsp zR~Q$5a2@8>wT1xP7Bh*TO}eO4r;>y7NfUIfO_cxbl^!t}Dr~(xDD$j-eanrZG!thh zXHmyL`Mi!Rp5)oly8I`Toy*TKO>tRIb-zWuuF>l4#UWV+mzs4gZHyF;!^&-!X)o>% zr|wfXZ+~&v#wD1U(I_e^sB?^2pp`@tyPluTMO0K8W2cz+- zrn6s6Y6c5c7+@pK9P*cH5{Qjlyg%(8>wbTyQKT-Gf zOcN_?A1!2s2f5AQihvx*{Sc>QQ_B~qfMk&0Sk3%>D# zwKlWqQ|emUb+*0`{&Syt@VP!?X3O<^ubP|=Bub4bvI_XoRdmpSr}@vL!VtDvmeLz_ zXnkS(@>IV@>&eJ#hiv{2Fd0Iz&M_Q}m&-TTK=uf3YsMdPUs`pHR8@2$*679?YBzdE z-GetEP}{gW`u@LP75+$mkc`oB)wblN*Q8MUmZZlcJb7$5*UB|3CO4Wc4ktfp)o!|w zOjE^5Qo02I-dYL9T*xLuEC67e>$bt1!`_i_I@DbMWcVpmj3!gm_2vV)WHBg(1c^$Q zVZ~sJmj}2Xdf{sHNtjv}JUv-k8c=B8q6!gPAaK3&`%s9)R62&m8px=XD(HBag%RbN*WSjlQ~nubGZfe zn!05SEG&_b{Th>+8Uf8ppv8x-+rm+*eQ@R?;S`a zhd&z-(p7$DzIr=Al8d)(q!iO#9yjpY#g-1LKIB|Jo>BQ-b2pI2K^HF>B%+i!4lQdl z7O6UM?DaC2KBnsE5sIfoq$F-~8jiKsO=ZV(YUR`$TB%7; zzXu7GU*Tmu0ec*jzuwuYrw0=yme7}flUmGOH!`*;-?eyFOu2>skPk}+9Z_S% zeIP4%bhp(8x*|Y*@f8_+zxSV8;u<}KuA(lW2IXXB!;cL`xjy}F?q}oXvDVS{Q!EsC z__+REr*e>pqT#n60Jr(Vj005mSCcAuf9@c<2SdZGMGgo}NCmLp-v0fI@B9*tgOe#M zm70I+K31bUcyUr^L>DSOO5yXeSxRqHjCt2PopR^yrs(p_v5scH(`$-ZVY^C=j143! z5`hjL%blO)K^YE@)eSh=vU76Kj=ua*CCV|VNmTm7uh{7JlbZk0Qlt+&7G_oFj0dVYrobM!`$&%F>CxUqWM5Xx-j11 zK)you^dR5PpW%kPGlmx0w~#*T*? zW9*po8f3)%U7PSGBUY(ZQBHdIRo|A!?7Vv8&%D5}-E2%Iwc_k88#xR%x5i(MF023z zE&zda{_0znFXRBe2T4k--7<=`?tH;PmcO<=$9lUVSIx=gJLl%HsJ6Ci;1!1+kG57- z+}#1Fz?LXfy`0}uCCAiOW6=9%T|*<4`}nZ9+1qYWzHeR!?0$8x1;RQ@?S1Tv`ZfL zJDG(|HWKp79C=e!o}9Ca787E#5360u^VsdCe?b_9Q6No#jD)7^c2`=w;y)%|!4>@3 zvb(<~*+9NDr z$L*v}np7ZgZJ0=dXd{q7BfVG22e&XW4M717%V^6hEszky6yJ0*F$&8vg@9~b$d zI~Klic0t+pPR{=$>Mek}T)XdYM5H981nCBq?rspIJ5>;nPDv3(=@yXgZi8;=5ELb( zI|XSFB;I|W=l7p?<}hc*8G|qPeO-I6z4m84J2^2ZjrcX_;W`v5?@Nq*1Mo%jk%F^- z4JQhbe#u?{k(xYSz7M1g;V?{{QERVZtf1+mb=M%MkoLJJc<*V?>T4<>lMcX|Zt6>q z`ZVOngM0x$5q6|^A-4TU`UH76p?-Vz&!hcnqcKJ7@g_R36h2=U=JZ!EwYv65lB8pq z%y)sjtV>+u&6sTHjMds!fxDVh(`&ub6`)@#hW|sBl@P8SNw9@;v)`-rSC@ny;elZ^ za)eG$kU=VVCLoxo3vMd>KQDl`^O2bDcx4urW3*0jH;|5sS@8)zd(Qaqd%E@?aR{

r_k!TDfVK%O;>@Mul6m@ZD zLMIB-$ZRa!uFp5P@ui3;!g^v@aeAVWy=Wxj0v@kZKwp4uyJKbs!TH07`rDvpmI8O8 zSJ}ybOW__SG&9!%uI48Vl+dkcO?{l7Xo;7&)j6zrgI(UiWqc zRHtwh0|YD<_EjIUWegNd^6(k$==Io^+{b9^sb%?+Eeoqi3r33`I9(6wFsW&8p8|Jn z0|rXg-)-6^|zUSgmqkWB;{A}V?R3ZIlsa4`oqdz`Q=LqI5K7Po#}oxJ_`3kL!%FHTzhCv z0qG)`m_Wa3@WOQvC`QYQDcRT(ej6T$@fV>0TE6y#QUNK9k(xfd=RMI68?=mTGvDj} zYUw4(*c|J+o0ZSRZN*!Kb^(gN@y&F=!Sagf3TSsLFr)vM*uAiPLI)AL*|Nc|Q28t4 zQT5oF9GEzR;p6!!=U9*o90>zyx68p8&7fA>2zw4KXY8|m)ro_DL+jN)o0 zGfFUyCBBbqJhO8b7iG|71qh|42M>Db#~^qZ&3rbPV9X1AjlWb9>2aAkU%vdcSUZa5 zP7K+Gu|Q5q33h#=Xaxgu0rVw}XM`5$%zWpQ0wP$X7nn;B;P%h1ph{!TTV3JyFfxBx6x>eZZC~zM2ctMjE zmG#Vh)aOJOIeF8LKZhL{4g0R=&a1n@7$!2`qf6t`x*wMwG)Plq#6}Q;z z4NoUc=EM@4LG8^@nQkcHy8KRNdWtl2jl>0T9cg@@^HzHM>099$!RxDUjLEH6cK3uhHd%;3jeZ3Pr!x1O#?Fs>GLE+z4V8EQIa#@@)AhhqeI| zndG|9ZMpK!_1rEZh_aoYS7E_c>hO3pZJ)<$)brYM=Ed%0CwOlzs<3%xC(&MO}hh&-b+x z`xYBSL4?YM4O*>0M#O)hczjjb3R_8gkGtp=q~Hj&{=2(?RGY2mE1dWL@Ivq>ilC`R zs^g>d$veq9pJhw5RuU<;kConAO$4&C>MMcvjaBLY)_62&NCXTxB7cEF2)g=ZMc) z6!R_eJEHNBiT~Oj$+On{aAf?j{KRzp7RZ8&D35JA!r1!sBn|tEv{n^Q_a^m-~Gc&99YV7 z789jonXl#kl%~akd2i{foSPw*ydu8PjF258r&1kK4C-U0uLq&BjZ~LabH+mY^U;^9)2iymz5RS1w(KqkO3k< zc>9L*V`z3EA+2WO<^KLYbRhtmxR+{8{pL$CtNm#5CHsg4u+L;f=6|i7`)1F)`VUOpZOaPG6fx&VmUg4xTW6GX6uf-I#qdlGdTe7W!f@ z_(34FYb4&vH39F+QPZpXcce0BSk0~Ch{Gf&r6FON)+o0a%tgQ48nq@hzS;ZgFZr_e zNZp?Q{P{Dr$qcdvV1o?^uXVWOujV2iDCtD{r$#&|UVhmU+EmICQ|himI^EXM@dg3c zftrS>*YL9i@5ABm@o41xfl)64+H%_*VIx4>KiMi+K4hy}*d}DWrO51PXph5_j+Ysm zOGxo4Y}eDf;m&W7_b7+8dcpDr|k8BZw0_n z1rFWeyUt?NDGK^_Z==(EkiX1OZb3~H4*;sZhqEc4|^xlB)>z)hE|d- zCBUwb5DhDRN?nG4k(Gqw*$6cf7^SN_%6JC!hhQjK76B@0Xh@#lqpt0X$`*`xILjXRli5D2UBQ{2EWyvDu52{|iOReVThJ1`6GT2)}7a@3wk zlTDBmtI3*r(5?LYX5P=S93}c^9t<`Ps|NxE1O#pH)cG%H+9}J+-vEBTN#mHo2h|)0 zL&~brX}H=8lD;Ff10|=ss`} zmY|XF3>k)TW@mK^OAKTqQ>V2BV&a#yeFwi8U7sp!vv_t_gpa<_M)J~n3J zgnt0Pe5g)sICMvvz?p_2%>PzCYOz9K^$9pl zMB>*xsjQvny}%Re!F5{9I7$%<+sgkf?0b9<)|2Sr;xqM9l=;&_)^}gHJ)>4$({+{c z^j|BJ?}5IYSo7_T!6Z}%FJIz}44uT~rA-zQD1B5?BR?-l&*>O^FWc7JbgVJHuP4@x z*Ja)9)svL)H+y@M&@@_Yxnj0c77W{9VK*M!26>DR;7GE$C;2K@jRcIUEK+$qH%!mI zt(?c=*SjnQG1Q)n^FW9!vJ(Itxp1weFj^%g)${l7a_s)1A1Y*zXd64wa{i<2E_tzx zeLuZ%Xuc=zg-A1N-q>)GH3grC9+6A!wa|xZyT1%g{w-3$CK{7o#(Sl8ZkKE9WR=W* zexfr9nw!G?DsJ^L4T#J!Tjg^FST zO@?B3aA{wI7Xc{MNTwlVjrXq5kf@2l2M9g*+Q%Mh3m7?0gGVX~^Nw5SHMa*A_8|(n zpdx9$IK=25>dCR2yC%(1C?I-MTUr9esriT$@%};V@wt)2`K~PJOhB%WEv2t5UR(AK{zv-_kGp+uTG%t3q`Tv`myUbr2hWiRx z;es&+8z*NEyu<#N2bqY&^=aoHItCB*xJ#|#cYg@|zs&Gg^$ou=*2@<^r>)lLLH&P)bU(4vcwT+Bng){;U=b}JkO*)yCRLfD_&e*Cp3Bk;Qgblr~rT! zvb7uLLDT8@aZ%XucDri!r}S(v!0numz9-8q> zr~7pHYEpCebxeL-n&Q0gr!YZ3c4WT1-fQBH##tA9hw}w8+vlkcng{bAoXI`k-FCTb z4_sNJTcu7<-MkcV-KyBc#JCgVHM9+JzUSGuJp=A_^5pj z-@?6wjnJgh{@8xqXXmneTi$orIVD|PJDUtovW5mbXM(;>TOMART)gDBToF!FH42ug zcus72S6#ic^@{c7Jt0Aj3=UGy-*c@t1&2VXytbPmR5E%SPqoLHkE)~ifoiUPr5Usy zhF`_;Zh|#MX+&E3*VpGdOia*N;v)nfc=F)nN7_JytPGdU$jAr*MB71)>jkq2B{j9x z9ses)V0UMoYgtet@zLIE>7Ge&QL3A%NRpL~hIP@uWZ}sV`lFrUT$g)o1hP7!Q(pIX z#g+Z?Q$i!3ZTO&9OSU?k81e2V=tYI{ug3vW34k1D=o~(U4H0eLnJ9~%ab)3NyN!aK zjGnCXAb&!tm<=CaS1SD9V3`ucc}x&Ce@%~1IY59jA3l80TcUsY5Z*}W`OSex6(!~@ zO#op&T*&EyY$1Czg7_4ymEH5R`MUIFEbDUQxPSVDl4`jDO8>^}g#|A}Y9ptfZCS$K zlJ@l-3A_ZI;8(9E^i<4OZ1!y{83>;ml#?RvR*=j8W>Ozt5#t8x%bNPuh>$ZTmSB!} z(lwvc!`No2k0tY5Jb3;8j*bchzTL_OAb=OJ4+4fFh&c3K3}peifLYS#QQS-0YKqSj zTSewmyR%^VKn%m8pTAxXVB+F3t!^0t6hILs(Ki}X8j>b!oxZ{2kBAhmJ2f{I`kK04 z7!}JP0ig&8I3xmhNKiUPqiKzc2_uT(#I?uF>5Dz9e2y;R{%Qy7`JF&&-C){tvLS_* zQ?C3*bq$jA?{f1u2$p$X(4?w4Xa#i~fs%4r8m)32=$42T14egIPy_Y+289HvvR)id zSm%V?Z|fXK|L~i}y029$Y;Q}~{Y{Dj;q7l>YR@t!%5SQ0ylKpx_D-AJqK~&_t5wBf z%zA@oVJJ?9M-r22)MXJZuKeT)9dg1Vly(Fh30TpOk>JfmmX#4$6U3vP$BpN~%mZQy z)++rk?joo44UATs9~_!&duIdB?pY>Gd+n>1jYguzSL;phs8hMYs2j8uu!t=~L4*vq zi`4=j=H^rw+?!qDwskJuNvyBW+8Iv|`$?v8Be04*d!A4@Y5(s{o%{km>?SF{{JN^v zl67>5LlG3aqOdyo4XgR2ve%K&&Hm^JNPvNCkK9cfaJFtZEDJQ^ zY^k3182~?XqNFV~JstN|cUNK8F*={f$7bo<7xy7VaBHS95d!Ox!6!m-s;E$?9A8>o zlu=W|Xg zGW(^P{XBm>KCsjN#kEjc4X0u-ray~-7+q2d$6$Mu}&K7xtJ7;DQ# zH0Za>NIZ#_uC-L9Jx9$OgWZR0KV#$K-gKEuGuvJA9%f#hvjCulnQ85|p0Rj#OKgZq@n^7M^&zp*()cSc3Fk0y7W8A z!Pi9HR=>Ke?p%Jc>3#G50Won34=bN#R%`<;Ch92Z-p(tTl7ie5+6q!iI_A~H6;aXC z71(q{&C;%U@yIqSyE(h{e?G*0>;E=AYH4GY5LW}l?=iw07+MZ(1A~ynMEy8(Rp?s) zTnHl_gUIPV|NDSWLX2f#kluq{DlRiKy0K9d?6j7!DgcH_EEE+R`P8Y8@ge2`L&mD| z72qU`5<;6rw|0=N_A&Moe|{<-b>cHfIUxth(wJUD6!N3VcSo459uEof{btc*`;NP% z+?8zrMmVH@_&0#p8I7!=fSv>huG}B}>-<0P_0^efkdHEE++P^gfAsticm2=n@XVC# zX!j?-mxhTeCL`raWqy8kd5|sKiYCn=OETv3ks0lpY9Ybqr|_hITAt|YcEs5Q_tx7o zNXAb+yxDll!?C*FTtJ_6vWoXXJcEI07gd_N# zAh}2$H0;mT>WHfc28EDqcN=Nfk-8QBmJ#whi4%7(jL6PV;#C zBl>y}PFYl3EWJ8e6Q{n)TvJPoF)a1w&WDzYZOcD18+ajMK_H5LCjmdvW!EcYkb&tQ-lg4$rV=V4z8PhC{s1K;NS zE}7`4iOw8&GcP>FK?|xB@Hm z!3_Tl3x9Gy-_*IhJZZh!WLkpWKgz!`*xjxrEF(VJ)X9dfY%WTu?LvkQ|}7)kI(9lYo{=8QUvL+WB-JYwZfW`xs{a~wg#cronF06 zJ6|hq@ZQ;(=Z_Il;Xh4a8!>RaEPrRSJL<_eol8TSTK~YGrIiLZ(B+Qat11QAf8~Mh z>Ho{*kz_y?3$X!zQ90+!Y`1 zTkWFiWHeyDQfI+uca4nN>VZA0;9PX6lK7?BMk-}|svA8OkIVUU!|hF95#-%+zYx)` z+2MO$EPNmP3lF|N3fK!%sxNNA(1X`{2uT@}VDPKED$jUkdgtb=S4(#I5eiJ*ufw|LjAqTX2 z9D5Ih_6>)e0q_u{k5Pd*!kL_{pZRL1E!vN-{F43G5?B_5TC+-YFJX?q-t zdI7lIk%??lxbmb}2JZI#E@?g_{TNzud6!wsrt7KUMYzOkp(>*o_>P+fgT1};&_vrs z7}kY8WM2A$L9_hd;Eg)!4)b*#c928L5El%i*+j%g_RO}dDUA}7qRPtr5A(Nd#_`QR z&qP>h)Mt%(X_}>=OEqR?SK-&sd^9cAQ46_}5;N@xZ9cyNZLwBy{QmUQd(ZiM<5R3G zu5nEh?A(Rt2F^OVxISbjZ>rYG`cIQLF_WBjJV7LFtPpbyMIHZL-IzY8!#&RDy!goz zTgsn$Oxf$OgsGgC>)oxGX%OB|Gj7jU#Q*gP+Q*@)$u+$w8p)yfV(sFxA}RWW+!MU( zSq*%NNYsQ=>r6*?fGNCu$t-uuIGOcPTB)EQ#w%wdqqtD1RrgySx@C6ZMdp zfnkk!;*@*6`sJ@Jfr!x?uo3`cJmjyJkZ=&)PCs9>>D8(%ugr;4C#Gt~5bZQc&fBA8 zE$w&uG1s@F`1C0wLe%{rLgo2E5e;SdNElpP*NF!YWP^r zt+0T$ZT)nc@@nUzRx|~A+VueO^^01US9SJhaEiif83Y@gNlvX7V+*(KvFc5RVEX0_ zAej%Tn;-NjTy~awvJwmVVDyfPh8HTiOmXYE0u(w*01T% zT}zYjOJUP45PF}j!g$LBjJl|*mi98gd%Dc?Hv?|FEQovKcr>P`rKfTy3XmBL5OvyX z!+gD~C)(AoFL;E61l1XQ7l;*JLqnqt;(*t|(gQwMBtIF*B5^4x$^cG{jg6&*0QaeA zG+9U`0AV6Y*sVZlm6wcC?c3^`8ts=RCTF7X@aaiT0i`3fwpOsK9*cObyY^Qh*FV&t zbGh@2i)0?lu%)BCJjOHp+ifsnifyc45VmJ+A!3=QCJ!}bw*+Uo`=9A#0AL*ek$oSQ zl;ToTr#1~Xx{ir`8$_{v<7IUO))Ycp2cz!zP1Gsn3cxPD8Kg5c?Iw3xU! z8qtAk<{_-NY6xO}2zX`p)T#aQ5_9{Jfzo{QXN?S#vS@J0=|C5Ls>kRme5*d7zrSXt7X|7Zn0iO{hhd{O;4rz4sT@+azRFl4BM|=0 z1izABQt}Qw`#pqndn(UZeb6;b-;G<%1$oFmXZA=TBPgvMi`DT$B?#xaO!IS^ZA$+1 ziHC=m7f6#VFc=4M^A6Budc>_@fkP=z!z?a%bj*v2jgh_K89L91gAcC@ne#GNt?t%W z$68QxP*EoP8bASb>e5{djphs4+_asAKJ8D#Z;p6n;gy659laH>etG>}2!@Q2ciKgn_7hy(v*a8_sQmG%`k$t1J2c1hIhj?WZu&(cMED+} z43~s`ftB*Le_);kR#e2KkD{8zBA$`?T4#dweMysP@gQeMnr;Yt&Jk1Js=a1boOdI? z-DkbgkkcAe_?V9bPn%%<5dCrc^@ZN$``-$^Z$LGq%M6R2c$wt4C#X3g((mTeZQu0++jNp`2-|VwZToU)N!_JOM%i$?W6XH~~ zVzkVbZKJL0^FIY~@>7F=U;&3vCbNS`dK4U}?_ttX(X}$ho)89ZZ@2A9ez+@T#(mKl zVym0(O%*z^&WgWbQ|ncjx*srq)At#51B$^?_V<6@r zq8u_mjo%Utssd~?h(8A zG}6GLPjv=8zX5gr6y`qe+mi`MDiJuX`T9ifv$7%~C@(Hg*I0?MZSCw_u-0GsM?Wc= zc~MkZUce`w5l}je#NNS(0a?pvxi~i7AG2qk|01m9cpYcv7A{kX)$ z9{5R-i+MQ{VdSY5E+O0$Fz+#Pdk|e?+V~rYBbD#bp<}EdZFSFk!y0mbM@#i{heOo# z!@JsHm4=o3wlj?o!By+S=OKw6r6i1~mev*kJzD`e!F_875{MRH4|@%AnB{&bymY<} zZ|}4hYJRN_T=&wlLy0i z9h6K6>QQRXP{-WjrYu*a9Xk{0|3uW+=-R$OU{>#%zjRUI=-6~QX@^*Q5dSl>Tqxmp zMytt=Y5JF7^E<8LBgAk~_);3F3hk^qZ9J>9TtFBVf z(9m|FlR=`KTvQcVE4gx#Xui`M%94JAFvu(|Etlu+DUt9vJSK7> zYqOKW=)c9oI^!1hO5V+gnD*-_dc?;En6BiT6;D(r?W>;?-3NaUlFsKZ|m z(J9XpX@2!1=_xXwMYaY(mNXt5v3Dl$ad+^;VtQp=ixNikY4~V;WYLpVvv;rA4x8Mm zk`|D!V3?}0pIBsld@^ZQx#xd%;{Wu*ji1^gIA>>ys#s6f)Qm1aSWPS4{d%!N7_u{*{fCst`{0HFst{?d{xNpe7kki@C%>uX?Vt?n~ zVBW%_GgVk56F^DmPH&jR#^xD{d%leci&}N)9(eksqVgNs=rDI5z_b1C{rhe(0(64Y1A6|y52>d> z?6H?-W_WywQ_<>tJ$(2V>pm%YuhHd=fQLbH#m+)LccS{-zKQn`sf$T#8c|f&*B4zk z=J=}Ts+Fb#{ymx0OaRe;fG}6aTWoaAJI|^gDOG+XX3j*`5fMFC(om_43Bt_aYy+QM zzniv_Xmi|$*V-|?6gyw|^G{7goA6-5h{Wl@*rl(pFW!oub6L>l2P1O)%r(W7R914r z`Hdkb?FYMXd85qpO!#u_d{@&RFycKmF`am3J$wM4n&Dfi;`${-kA{fCcMmd6jkV+#8zh>fn! z%qQx1{#r`a?<$coCxadL9i)~Ijl051YgI@?-g$)B3cw_CUMn2Z@EeiA*e3*JFB-kF zPDTk&bm`^Cm0ci}364keuFcKvcFi-qK{uuA-N(#!`Z(Qgp~U_d;%06N4Ab@BS%QWySn6((r-OcmDlKgohEa_aF&>XY*%_#u>Hs^I^1y&E=uHMyYo5lXp^) z{16(yLqeEvxQG9%WIW|Tj zMr&waAOHQs8nhE7;9c216_*vfmc2`Qv*sPO~}L7B#=?k?W=fkKHMgS5!}iW)->`!}V6oR_RfOAoUh z?hYho0A4Rx zGRm*3yA47OFzNfiaPTYdamtM28u$`W+w57hN50?I)vUTgLE$N<&irDb;e(O2hc6$a zJnXq1q*ytnG}jaWiJsi>pdtoMh_m_&7^Kt)aVDlf@NuBdFOWzFhwME&YJr)IvWiw+ zY*XfsALfvP%*y#~r9GLX*Act6JEexI5_cOM5s(?+3eFtZX#NIHLRnaP=jZ2#7Kx%* z>%nf?zu}-7&!%yUHUe9W8MQI}Qo~PAv4D>-j|6fkLH_6HTP;WeiZ9g{aH`Qy6=>UW{0LKSF1a^?|Gz3*VfZYYadqC633(=RL z%^k*dQTX5YKOJ~p}4*$IR?V?5ubT!HvCY{g#arB?%@5^Qlf z!>1Y+_j11Ky;a+s+&--M#7g)Z4q64{$f|r4+k4Zgo%C;#{mqCCYOv~G z+M3uL;Bz@R@CarMZ-t^Y&P0`mo|_bFNhc;UJKJ2YJ@cSe^xgDr^6`|~%t2WSmr@lWu)QAb?8C=IBNUxU?p{f z@~_xja{WIGN0YMo?k?=L){c%2=v?3Y40MH*VgShvg5?>3l;{P&kBK4Zj;8qr*#N5E z-olTX6NWm4sVI`4e6G|vm{BxbG&rwEa~{+psSRjs{{%);gi8> zP1d>CWnxcphFp!n+HS|{tbvvxa0AxIr+o#aX&YEmV|=`GFtOw+j(Zy2P+$5rFr0JI zw=c9=anZ*rAq8qnOUvQTTxPL$AtKu$kzP`5oK4~x*UCR6?)hPLBXu^Ibw&;k(h+!qs>p|{{DW< zE#9OL*(Y_Fzh5_FXs1=-s_wIa0k#|dnWl1|zkk<&QELwz6DiHnDBxv4_86dwxqQ>O z^ph7)nyw?pP)T>uu&i37tU)B~T?@L@W;SEd4p+b#ZU+Nv#I7b$-<6d(81O6s%e^&K zi!U#QLdUSvR_I3=@Gwk*Gy2oTgY|<0uJyYbtbW(7g~};wIAffT4x0!yzuVm8K|qrn zk6OOwtC&kyeJbI@>82}+-(>E|)Mpfl|4r2wK+6SIw!-T*Ep-OJ(oY&f8jp(Fjfo_z zZk-yBeRf`ufqjkuxqz>YD`h6hnMrorA3}))8(hGh-v$mQmhp{A&yKOO{Vd0$n63W?n>F5>1o^?oAC@Bp zQ9h*Jukv<9|6zqDI#YdbOMwV7%;>qfhwCq33Q86p;C)6YX)ZD=jaw<$IH-JiDo$KT z$#Aq>cu0MOs%2=QDazGE#8kgFoG|x_8O^L-nHa0Iv^0I{|9XyJ5G%RU@{c2fP&2aA z6h)dod$bqpcG$iUxZpsKwp#z5t!kDF?LEO;1=KkZ9=py>0@I4T@fVW6&r2O_5GuA6 zwJdX-6I-Zpm#hmYiR(W5$-^pMgE13%Z&J+*E%TR}QbGo#icrGwuBe2`9W5C+^7+fh zEh@5T{YHa*L5DmJ{=n(4*Q<88y6Yb?YyXf~;NW;yMfzDHr)fhQRmrf4N#w+@M?HVL9gV5P_WJ99hU zG8B2fDFwC z(W7~ag>2nm$k8iLd8uCA3C{z>oxKfWrj09g#BRnn7Z}wvcDtTB`c`WtT8pHuxC0sI z{^gYDagqnPJmT7bO$$qK&<`cuhJO%%t4?8LIJ4zjka4zX$6hHFz|f#+=9TQW`o{hJ zNrygtiv*<*YxNB6per>79w~=WNVNJ=`+LXBGidt}8ToR!C)PY*Qp^txfIwjHVfa9V&m!)wuv1Ioo-YNey|f3N)2iObC<$LYG$4h>dfgtUV+ z>`$klii-nr!Fg%w;4R+fTTl0;G!xlabd_>yNl8f%GEKqV>@ZpNWOx3{5C%2S)0d(p zhv4f{vNeMyE+(c8UVHd9_a==>hNu)57hcai&G~!a6yo(1yFD8F^@O`mSnIEA zZQ$ftopuyRHH4y!HipX_-AuZ|ung?-MK3M5Z1{Cn{M22J$?2ES`5RV!1Pce*MTWKo z?vjv`eP7OhTvqC?V8eGrn-L$6_Nu}7iurTMH8kmf20O{H6aNkn@l88R0s>IqbC~wS zUEVt|0OJ890D{_knULCR{u*2(PObM9wBD*U&&W@gE3W>QPhDe<-JAZGq|zVi>qZT- zfn(Whh`);TW(csV9VAn8h=aDjBtyRoc`hS9l{kKJv{53eoNn_>zYnn!RcjxCFqK_b0v zbq==8=(^KY?r=6HPPdk^YNmvr(t`)to9i|*J%Z_P?21RSE-oqHitccP#D%tvEW88T z;8sOekKlA=i)-NCMs{3~RX`YUF(fD_!}=OBE(MPrt*Gdoe60t7V%r$6%yiRI$sOi` zjPoBqyH@5iq!+xrPAz`ee%B{G0Lc%Wq|Uz_md&PR?XL>LMORGE@PcQ$p@{bPkSGER z4j7Mq{|;9G7w(CM`FH)C-Cb#R-K^bRI@Y`;{3uuOz`)j`<|-ex&aL=%McyF@ zobjCX4hHd8OLO?cq++oSh|tly&_*uo%++O;rAkKmU;KWA=<V{32n;X7p<+!_vpF z&umVKyU?i1lVDb`T<6s=>s8xuyhZrsED!pZ1tzf+>6Nx#ZCv8!xtWmJm1iR zOKLPalE*zX-I#*UBQZi!gl~oGeWkyD@1DKuy#U%>P@R$9E{a;bf5BQXSI3v`WKT-p zYBiodt@nZ?xwAgdnJkE#ji0H`Lq=nF;Uv0ntvBc;R(guMi!6)6&3 zMH`z%{Uf)}4TZHGb$9c2%K8q*+EFRvsX(M;r>i5Nh$x%NKrrsp%skAkZN5_|nmw zef;d1kYcYJ{KS?&6J}@++L$BwNiYMXY`V#TLNMjV=bFE+Q=8Bz* zSFGbptpB~Ct#`p%YzZVhlO`|1H(#WlJ!1ti{wY9rBsT;m0CN_{thxw(Ao`1r9i>O7 zR6Ge7dd*3F>=>JUG3jiHzjd&d1JaVqbQVfM@uzCdR$>xACKu$+^qbcC+ zb@08x|C3kF<7OLg+ZzBW-h!a85XVoj#m5bocII~X0r>PKH28vH!5JZ%1Debnfy{vu z6Qa1Yqi*J(qzx-Qt@xw3gUNs0jON>=qM*k9jIhznXz=FE zak@_ks~E@nUc89)K7Bl_^Ye0rtoKnZp`R6=_ke`s2$)_!LdL={6CR|RU=ZB2u70a8 zC4{2TTrdn~uZNli>q^Hu!SBwt+3y93H04-ewLBN<*Ngo%$h=umsP*zG4Se(6fLm~! z5kWz{-bL?B>QJuI>Jgs&?u}?s%M0}2+%MOv+}6|_>sLrK{EiKwGsu@N#~4DfUZM`_6bAtCL>h6NPhbL z*-U^5qT`bXm=($v9OiY1M>Cwb4|*SC+o%R}N4r@L82|dJ0PCOm$<}NGBGHAdtjp`A zD$YW3o_in)7!jKxO$HGs3U;8NRxt)YzwXFL$YOKhSNuSo&{-{&=el^Kx^^~qc;naW zVqZx;X%S*O^uO;b02`Yy#omM0-fd-BvGWA@1@4mVxlUhfxiw6aRn_`E*Q-~MeQm&V zy&w*`BY34^_VUycd?IfWr!yVtYM08NCE@T*;h5Z)?1W4Vu+;Ma#pFx{D+d@T!fvY{ z>?e4vA7Uduhtu5-e8eV|>32*nEj@S@boSW=Rybj55lD;az9pP6{{cPG(b>S7KG$hw zv;JsAZ*Cs?ZrZzdf8$e@!vP63@!cg-ubDcRgGK}*3elTjHu9V>1H%Sb(Gj&R^W_;E zoC(irqR$qE!Q;AIJ#L1iWdi8VsM@v*G&$tLT)6l3*!UA5){!R+90jH|iV6y!fY{Bf zp79Vm7eo~S>ye0nucob{?uq{3S6ItY#C^r@y zqPygePfSEsiD5$pvRT&PFhZ$ntyE`#3tTq_zdYEJacyegDaTxBzQWp8DHDJ=0Ih5e zhYcu(5Jut&*VqRgU5i#jG0w*$w9C@A$`UiLi?h(Qr9)L{1mcQ|E7FB1J+`cfZq?(+ zYtU|+C8-|OhwEfEzLL0$0owzR@s0d}P((*kztBCRUyk0_@sAj!j{*Q_gMDq%QC{Xm zg!J9jDl4j)unw!PR$m(WKgr9)()sM_sAo8xg?<>H##;~q9rDqFu3!z#1hUMv8GrEi zIe}>=yr$EGH0G>BiksPTGudR+*XRszMQke`A#hpX^y4Cme@G)1#dm@UTFhHbQ(Z*j zZUPfDtvyho?CF=n@%_b-tD1G+h}}`d-9N^n%$^}^F6FK@%5bcazG>v(V}iih0%swv z8F%Kpx)t(2T|eWa=FHCmqHPwbcLt;Of}d3zfiThod4*|HVIF=DMh**OyuBN%s>yMQ zw|?P-{4td#Kx|*|?BRf(w*G_Xd%h(fB`s#}#i&6Ezn8CX?x^kFyMIJQ_G09ZKi=u9 zRLO6r?S5}RRrBARfhEH$0I1u1wmZ&3UXTww{JZl+%V5p;PH5v1YtseRHs7lp6%05P z&bOWX5$u(YUYI8N>({RzCUL!nTDaCge0ISZ2~LLUDXdnXbDIG*BgAueS?GlUBlwd z)c6UK(20KSHaaxgJ8*=fN>Vs>b@ilY!Fd;QLXlbql3YN(a^Lt7X!El`_;bZo7%>^y zXLteg0wOY=?^N zqnf2od`nt6vL$JH{{Xr&9`jC2aI!3viSAmjA?q~rS*nfM9E*={q;mghi(y2L3XO8>Eg#`6g27$q)~fqYv2R0x881$*$H0WM_? zCN^yV9I^20npl}>7dg3(){Q=08YooLN;8V&X(FNXjBdZnK`Kq~-Eu{v#+QbS)9fjH zc#yJj+{(VHZE8A*2)=-M{4il3dHk>XrsJO1m4`XHtAnkCE9VW;^iyjxk5dR{Mu2$f znrJ~^U+j}s$Sr0|QRj7==!JHe!wg5W3a=|(A4f*y_NzbYB~VYm*Oo zQ-c#J;#yKl7Wv9Z8DJt@2!#M#zSoQU5rJ<$;*MYx zY(d6kCV&c%PTn48QZpFQ7J&Y?K0bw1yuO5_Mjz&J6pYyj&gkL!qB!yF013zeJg6e zL(O}nHvuS`wcqI?qcA=D^wIN;jimm8-F>VMS+<6NZI3(N6Buk9LeWO$tKejD+W+;a z9l~JR;mzIE3BKj_`-0eHQt|m0ejfdn&=Os=fQM0X*>d!Wxq}Ts`3fCvudkbS_5r+b zAF$hddp(k_exj7{0t2e|6PUSR>=c^Vw6~@fxPY$Dj`z4aHGOK!Llj0ZPk}W36_%k9 zqMW5G9gNT5gA@Lo+uV_3)TEY~`fuAq6tNjWbvtBk52G@O>U9_FT3r1Fvq?BHyh>0v zCN7+MpDOc>3dif`Wxwf(s4Snkx1<6^~FRtoGwZ0xL6m(n)q`KJMJ)Ah1MX6^X9>ge^cO=v$j3+QZvXVtg@^9cvJBd*{Q{ z$K;53#%^)5r0T1RL3J2iSZhfFI_mQeVjpH>r%(%93HX zzW!O*mH!7;x8QJli_Ey+U7s3W&C4CE57PPbTBn%a;^!v?Kd+$B#T3s*FSP8_9P`^!_o)B!LBR=5A+E{@DUUg6oSI( zeUNP{Dl9A8{Z`%HrZ_G5MAh5#NQahe_0Y{ba_ilf6>RmUn%v&5knjam$gwd5s`LxshqA^FU+j6?~i3hof)UPl|-%K$HI#G@W#A zQjgYSW?YVWv7S)ZQtOO(_|NvgJT9}*t7m?a?6^nK{fRMjqzds$0>J~x6B-AbZFs~9 z`~;BEvvN$xKb5SRiQ2pJO|WyZJEqM%BP7V+^vxO%9?*ASI>B8D{~D!oI-_pO*URvw zC9j{*V@z7rAbQwJ-C<;iS>OkyO6IcRC$}8MRws!WqIVM7evE54>VBjmbPZ5*0q+_x zB@-EIF0j%Z|63=7(SFA9n&*Az5ZGBE5BwTs)W({zTh*`0}sPqd}Gf26IXMt?^EZA%zbP3 zdzT)odenhL(-rUmEASkL&RssSoO}?{MxYx=r{ZStZ|K8Mvskba4I^EL#6qa{4kfEfzZuBvJ=hClwLemI$~7qM7Sx`X=^ z`>vmP`sSi#;U`xjl3qWQ9_c?5!@q%Pi>RuQsR&Fh9Tz7$2Gi=bwWEBz6W=rT+)`8l zbIQ^xAh#* z)QGqhbf@fNCY9@?0G5~IPGek_1b zO+9J(Us-E6mvwI(wGjT@iwl62h-(h3*QUV}-O1V(8^>4JHj){W-SZv2g10Zct0Jr| z2E}&3Efh+we^a7$0(*`q7v^os$^8#bC||DW=AIiqRF`9Oz7p^ui2O~5HEmm8k&JPS z;jWlfY?#ASd=mVT`I$*G-W!R;$p+Ph*GlM^(|viab`sQIB}vHTSHeYskQW>l2HA4q zK;#5IU{Gl2o1(8B;2$^v3DFMro1*ySx}u(U*5(R&63#5QVq_$AC0QNGb7`gPXI7o|gM;pw?mHNFU>fik zPEX8lPRTmPGFwo=3>Ic5MbL#C8XD?EZ2ir=;qJ6$3g*&JW_n+r?TMzl_d+BS;AJEM zy^L}>aZ14biVw#TA2*T2%9Nrdcj9+wif_^cC+Jz9H% zbz@mLd$}qa>lXXGx=%9mw{lU7O=<|Tmv?eHd`P$n69OdR3{iKSbu{hYtoX=pkD(Qc zDP$59T7D+x5!3KX?FeqsJ5mvMW?**p>}ePDoR<}zV#_L9X^?l6Sb{tWuL zUyK5zvwlDseG%BCF)Rr|ReTY#^`((YZu^Q1Hosp%)&pJICr%sD>NF*3wdF1f8OISM zgb=|8!Mr_9m6s}gPus9;>}83}1JjsZlQflajPk>aq0ik~@L~1WZh5j7o_+nN%hFv@ zf54@`3-cZ>NVF3wh|^0NJWI(Nt(QCZ zMyft=3{f;(tDL3y{{2Z~i!;$Ra~@`&)Gvb1w=_1>htA!}58FR7blvf##eyapfjgK< z>Pbps0;)o6B#%T8yZeT6gP4Sfrt{r`K0(*}b|;3OcLgG+Um5GAv|XHUSF-$N^%!W5 zh+m=GM3p9?ZVpQb;1nkA%1B88H?=+N%q#iK)<6@STI*Fd(0XI4c0viS7DFwJxe+2^ zCRsKy@hBvYbw4WRwB$|tss<={kQtf^;`yTM$}|3+^))T5*c~7c4&yxGfJGboNEYBJ z97PqHR-!lc>d4`L3Mf*S|s^?Q%5?C8`|G=~j#%yTLH3}r2a6yHh({d2edMssdX0KCFgHLZiQ zPEIZHs_asHQV_D(75*Ch^B71zLnTzbOW;!W8ZW3*-5Z-CJizzCtoF}FOG^uw@dql-tDhjU zUr?t7{MPJRnJsKDB*Iw4-&&k7LrE2!eKRPw5UBr(+q5{IO}i8}9*#rGJ6jWYRfD3d z5qP;BwXp;?MZMGng6gOTwLtr*qn!_nkr+DSf&?PyqwhHwNgIiaFU?) z0`EZI(fYBsfGi^sBJqK#=|8XJijreCm99a# zNW5TnJFiw~z_?b?t5yBXuSue*w2vO)7psAh;&oBMBtyu!H%ayyv?RBLHxC#r^4?Nz zl#M;exaS?*Z9&J%+L2thhNzOPy?CtG{Qr0V#i3kxd^2WPHN9!|9Bp0Fj>SM+d@gU_ zoBN8cdpG3P_PjT6&%g(g2UB}u9`OFCK8T5Kqbf8Q3> zYjV;3Y_e`ueSi~+u#tSlX>;t+acJ(T4avYuj)|<7L9RcC_-;WH=7f{>j_WBmZI-LE za^#9YZhPU~HDS^?jXU$ZA%0lO*tpt$=6A;LCu}~fWPd|uOqjL>%Y)77QB0*@Nl$Iq zq3Zc#GT*TsdsX^Y$U8$%PxC%^+Q!NC*%&o?oT8DDw6Uj$CreO*+43=u9I#ccTY6}> z8kA{8wNXAKAkE+ut(=g#OtoSbqXXOXcm2BGknPe5^$}z#!_v)MO0^cwFJD}$tJ!s&nuEFam zSnKrNY0Y8bGI*Sr%kT7|-k^+U#QPxrhUVHY6m*97eMkDv%E>SPRFn}GkyGj**YN}W z+9c2rMIj{q^c&s|5Tk|2{OI56z+76e$6E?loA193N_s!|a9Ym0ImenZ>kH zZ{BD%$Rwy^YIb`Tz6&^VUp_+03ANMy_Y$Q^+!AC6h*L#9cs*Oak z*Qr7$4C&uAiTpZ=pSRYR>dMH*x0YlXW;0!V3t2BdwVt}^@{k1d6nwi~AQelt9*61F z%-UKfI58zOPP?m#5?cl@5YKE~ z6%^k9LaZcn1X+e;z{bvLh#m9RTar>=KR=}JL%2rprp^Eg*j$dSP`EdNwZ%SP+-JO1 z$oH66!v}kNMv$S5><`&ema>uH4iLvt!>DA@qJxZ~dBU&G zo47%Qin&mF&f|odA7ebA@EJZn*Vh*ZBN^(UsK)?aN$mRJwCDZtv}c?7YLQDpz*z6s zZgBcn-WZ@-%{oVFg;bxoW)8(%!(Bz&WHU|X6YTlzU*#1P7*~EZ^o=eL?swSa0RWU5 z?1TWOg8sMX>KVNgR3Ph9bu=-JcnFRvjuL_?!y=tB}4SLv-fUB!!9{_;o1OQi~hJy<>na>R-S#b8`E7mpg z2f--bTk*5;zZbIngr}UI0){<%iAqtURU~Dl~yJ2jx@2 zM8rg|W{!jAw@;q?JbZT?s%l8!CS0&(Q7=xuHb;-_p-9t>4{uG% z-P2U0v~~qs7YY2n8)y z9}j)Z9MNCWm@mvYi6NbBx|I~#$>00<1dP(R!y+53IgHHj9;v4(zM~C_singGMgCef ziBG&G*zfj>P?(YsL38xFNKvh37{9mZWZf(`knl>gXj>mT{pSED)>M~0h`BMKdq$nx z^hXR&pcyvFUO&ISgu?q;uc^+PN}nc?%ijt=5}Ti+s;E&VvRDabV#hsHT3hG$g_A02x4Zb%G{YBwex(rYrd zI#0N!#L!((i7qUhb9`c6oX}SOlgf6QYCHkgSx{z*JaqY~(cK+-v$S2C&l%f?hl?P< zll>xiQAhe14p-Q*Gx74qhIG71dUkiBb-+}R!|(D? zqQsOf`#$IvoJ#qFu!3r+sF@sjT{h~qt2a_$nB?cy1$jd6;Zx)Q#H=MIT1%BP z4`JaoyQ%Mqs7^ZCvaT%y)D`vNuJ?O&WwPP7At=;w*KAFXg7f-o3^*7COakKTAFpT) z#~J9h5+%p&?XfAiZzhh2AEw;Wyrs4DWHt1gtK_fL&C#RboBRyQy=OjGy(gR5 zD}pm$9O{lRJVZwgyY6Sa8q8vB%?ANNuc@3#@lh(H1o0{x=?!UyoJM*jiC?7Y_uidT zK8B41+hnKPj_AzT+ddlq$nrX93n8=T1DtE1Edz_#*PNUn(Am!|Ed@dx7Bqu^QiuVx zBeKGW2XCQ^E(O#OzO;&V`&f&NA;X`jh9fTnn1ccwsHMk0w=O@LAs?M|dMI=CD({1R z`R;05^D}PrcO9MCy_0PWW@8k2-;)?0F$aORv~^?(o*ftPPDQ_naR@E{*syUWnfT87 zvlS+UG=2W=OmJs}Byb`?V@%VK#yhyzz^J*==^~JTYwwA#O_f;nmy?s5)X#1g>k(VO z$WtyFODyEoSG5~-jWjxqp#SA5M7C5e&d5~Rb6a%mC^hfr2avMzj%k2RMB&*Ex_Xs= zC`Q#IO`YQ84cz;=_X2xwhoF>4+ugR3BRC-s>>G-iA?r(#H%e)INQWB?yVxw@i7YhT z-vXfuLAUKeGZ7CpIV77PvKCdfk_Va>#IWCjH9Eq6z||L`$$J9^zsiUScG8Q`pdewJ zg3M8!5E3r2fSU#oJyd;py5`L?)7I_XibqvI>fV|E=mBq^RZ3#wSz6pUpu#elxb?f$FN%F<>tNh(nTRWnd0Utx`P%GZ(LAM zA;^e~ghd5`)2Z7ta1uASv~Ylw_3hh)KV291piTw_n+OQva{A&F zwLEW$M9mi9G@6!u;gm@$&H)c7* z;*nl+ZpcLnj^KtC+!r3&JrHiC-`vh>y^)T+IvLfPU!&CCl3A78{y+kZ65zBmi&#{c zvE|G8M(oc6S9G0s=Zl9|8W6kz3+RD$G!Z2B6kK@Hcb=Un2`NX$+P%^x6Z`1~h4s@=yw9lR;B_-V%ZTSsNMR3wFtygjtkE?871e-Z~%Drz( zigcKha&p!b@l)Tyn-}bEEjU6`6PhV0cD}uW{%d1=*`;c*Yf!hd?~P2*XC9I%z3)~s zyjD{7^EdDMZCP>#4&~+FGiq6bQS*Sn86oc~dq&FR;v{gP zDiHnpbtHxgxxGP8h0My{>I*fthPOUVMFSyz>NMs{n(9b#R;J68mo8-?r+os&Q5DW; zJSRgz<>^eBttv$pl$Tl1_ghZYCbR2`m)Sw27syLfOS58Ym56p!{0)k=pTw42D^^oj z(x&;{`8bTrJ(gC@mGG>&Q#wYjqLpfVxYVcejRr!;1@}qy@oXq4=NeJ@|FTrtrIw_1 zUID?jZ zZ~9+7`r04NZfIk(^@ZoPX_01ITbpqH;NMa!ZBen7AuSV=d&tB$Ab`KPZQ}gOUq0LZ z_t~!-%VJL*w;0Es*xH`{R$uLkK{oKPKU%8o=#Wum9rUJJGvJH|9bf?0nKoU_UA3Ga zw|~7ugA5)>OR_eN$3gdZs8^tpuxog-U-{N|%z=J0_Idcvicl_vXxB?hUteF?AvX>U z9Wk|jNJ)_g*}om%SNHJ?^kd12^|Db}2K^~f$K-Mu7GbLTOSH3?Y8A`5Eob2|p#_odea%oivlMYGamG^7pWSYs+Z=HEU638o=vNb33q z%kBD~K|FC~B|j=E>bU5Yei+zP5CPrUR$ULQ056wk%I(m~x&BjCQtrW91UF*?NC2N4 z?2=Z~4Y>H{bG&vKFplvR`?lx>xlLvwnL=EU6W81<4ik$m(48SakQv)v7*;?YT?>NY z2jO--LdFe@Ok&)OrA7Ixpi#=aos~>TrM#elQ#7{TCP0GT>_7cuB)3{Upxcs!OWMYe zOFOrcaq*Aa(d&v2HO^BJs#^lxP_RkB=j;LyDeLsr4`UCy5j37ApGQSttUjH#GVfj zuPUqHqo+nk=|Zp$7La4fV54aWsxbDYx5FDQ=>F3~xhH|c(+y?m6)v%PVa6P%vwsb2 z`4rL74Zc5URZeeU;?8>xn=m?+-pVEB?^MU{NA2Tu(e(l+A`Z{iP*hU{d|5du3QKQE zl*0n*Byk8#4?A0Zi9vQmy3Jx>!Owr%N{2i`k5l;snLT1$QqsQFQA8~>?;;deOhkn=>SGY zk3J}-IpFvRL>?oUQ7dX`$xLQb!pbq))%^)o4S}Z=52165J0p{6Gx2wi(x9{qW8$mG znj_q>JlU};A+uB2j*KIm_kl8NY>NJ!xS@Zn~m zs~Hj|6cv@0-V*5N^!&3Gd6&pAq1sf z+q!RmH~#5;<%I;kz;{Oun|Zatk=xxo&F^u4OOd?qHpr@+;pCC4NE!NKWA2d+ItbBp ziPS!2Rn_+s)>{rfDw)a%&Q;HKfn?HkX-k#-d+BSuTdNX1)+$OYCG%u789D2>*|Vv> zL@mp==%UEILT9~t^}y{YEmm|Uv{0Xz(TD_!#aDkbo+HUa=PL@{s}5mbMA_p$CXF8! zH(Qt4!*z=+E5*dnfD#8yeK5@S-RNDe@Mh-b{Im){^{z7TSu%%_+S}v|)j}ft^=-?| zq2+oXs)yAVRfs$cN!MZaM3ufH7+OCphy~e8p}~2bOw66bJqQ;M?79g2&5>thV9?n8 zu#m02en9oP_|Z(xg=mp>_&{t%zh-=>Dys=VOdm6B`aX3VT5-xy>4q+vt=$qhc zIij=oN%-Z40f~asa@e-idZO_Yi^^re+&MAqU69WeLUFuZ!{Crj@mzd~F48zX{1QEf zp2ebE`1zcKWyHTOa)@t+G(l!|_Cw4GAt&r@o`a`8cN0aV#?YW40yC=H)RnE6Px9<3=u3QF{CR%0`3O=87 zj^9k+pi}+w@V8w-PC|3`+H!U5Awa}|c-FUKp%S&>=61N=jszRzspY%OM@!lACpR}Y zBZ)>($YH*t>kUjOK1uSn;_~$3y7uLE*&~}=uBfU_=7sCUQ8~mpXO6A8Tn2348^NCn z33K2RX$KJ!oRYIp2Ydx!hzOm?QwuCFv@=>ImZDGUy|&W~2&w~40@%G4hJXI_W$SQI zO{&$2rK24UHTvY(kc(T{@sieefT|()CU*K}vk1yLeWkPOhSq2S$)Hu~&=&vun#l`( zr-Ve7OT&As%Ps&6D*r|r=3l{=7*2~NE?ZmE?;0TYS+;59BSd#$gtq)O$XGxQZjiI* zR@kC{X+w`3vcADy6`nS+W~bFHZTz(*Zxds_+IE50>x0Q14@-fff@gcMsup=KP+t}=EXIF$bxmN2U_5_M+C9GGx|I$M z#rG^DD{cZJq9)J)x2h-zw17JF?~I__qD+^QfJKE6X6Ts!(d|ukUL&rm4N_u}4UEh+ zCG@H>ZI8DA<3#k`@CP3wAnR;no5V{9Py}z@C*)!28`(Ka1rynVFl)@E@%wP)Tw{kN&>BFFYQSiHl(!;yUpPX^2^>D_n|GChga^O1wHv8f}oLw zpHHJG+1f`eXnQ3BGRKT<(#l!JUj#>GYi8c;*635tO)QIAkgfWhc~a|Rn|$R zi9IDNj(Mvu`fDQhb+xZL(R0vDK()aEOS7(?XJ-*$h+ZGB_=wQ(Kz<5l6u=E5lszao zcFowDk(3|gWzQ9toN5aeKR(+3RUyvge~>#rlrj^6;T#o{yuf1NObyt=Yw38-uL87Gjg^?2Lxp^t~D{ghAmoM7^ zm@r)DUAI)#18=@wwaZD#%mwD&Y)hv%fTPPnnNE* zF~7~JUnk%Ck@-_jx)BEn$u=+_c3~bqGjtYX>y@G>I!S0siKHVWysOIoNOFbR9p zg_L73U+CT|A!qurLaB)Ho>0Jn^W?1d6)3GyZhF{JXHI1+**EIiN`D*(pMGBEz!z7a z7-&%K;NKDU0E)zQ*R~Cgxw{O?PuK&KyGpzpUKi629Xq)u6W0#CCsQ&8H_`cFS)B>Y zUaSeSrqEH--RPrP9{r0`a$BMOeX6V+TK0&}?k;;Do0ClD=3M7@>_ps;sZB;D(~m00 z3d`OgW*g}A5mzT-AOJTIJdw=z@26*F1>AcPi}E#}wSMIXU5sOOukp9SdTR~@#+IS{ zI?(fbw#0F8D8+LJ@g-3WRTmt&Q^Nc*Q{g4I>p}L@WtOkXtlmZb0c$To1&G3d##Bn+T*&n6 z>{Z@dd3!iU!P*fIXA6Mij($x+cZPuZk?&PcPhMCU1$@Y+Fpd;*Ppv2|C55;~(Md<{ z?=mYX`C6Ni5i)R39fo36BOfdH3L8(;8#7@Djid#F>=mKSKtj2-d3Btg8}>Uvg1NDv zDikn&97W9xQ<2J0aJfJ;=mOXh8}o5c7H`9-W6q)UU~39U7QoCxQ0d72qoi_gw%`f} zR%)oU&x*IxNtaCX4jo;j;7zVOaPd{9$9kWfA9a!?iEg9 z{Th@5SJ@!$CnP67nM(Ox*9;{Ok{p5~L{e7GllV2Iz$?dY&b`n6kQVphL?e=z3Ii!v z=iniFQ}6RR8dm^&BFe~@d!m^7HPI4^85Ft&Bq}QT(kw?xQ66TklL07bGhW!S^gC|!j_$aBZI2nU{_^WMU8kRP5326LRXh~qkF8Xnky}mw?Y)d* zeCeerbDzVw9AhOQ08@uOj_Gs5Cgg>n)n<(9k*Lk}3dWbL2dWltoL^FUqw%x8f|^Y$^{I%1s$S(afA>+-%E+H(GQ zUufwn|MzD*IPCdnUeDDi46`1lZLW*R-qV0;If!Y&3EW)cFbx-a>T3n!co>30L4C<9 z5ss{vffRuY>7%`$;zU&RBojSLc08AP4eoNr;I*`t89k=NCLcw!506M7dLli*s$+U% z)WEMY%wzp&)hO0Ea)MVD-f<5=0G?1?%|8&ILC84eQRaA+dW}@766NT%gWn zIs6D24vB8`)Q?e%t@K++d>t^y4%w9ZQ}i(BVU4(6H_I=JqqB})O&OO)Idd^WlwN&# zCWkKK$c5I(J~Mrk>BU4F>tbDebO1(0_OBSjLvPg_MLI^5-6V5*=uFNx_d4?HxbN~? zWtTs?=fGLnT-#47%)S>=E-}1vGv+UwWYrxf3wsspHJ)!xUV|e{cB57~^Ou_IZojVC zp=fr6FFR)PCG&cCG_kO=FG8PjrOxA2Jklj_H15}Jnl3fVFl!_^BTw~iS~w{9PRBwu zm8yF74pQoX>QH||G&$~z0+4KxhzIZxZv2X*mByDKE3CO3^`3VZq;I;YAj9v^57k5U z;i!2uKpYJd1W-)C01Uj>y#oXAa!3J@9oe=Z3T231bl_0e26jI1P!K^j;!;kQ5A0lM zwBSlpb*No7DXJh7%6HH}VP;-Fb_{{sOe4JZmCAK+R~<2kKhYr6%+KAXKwvuw^@{yPj9bDdt4g^GeN@Ix%`n-2hg^DV zG@aAej_mmdb+`9GwRAjqDSrSZKh*kVJN&NhQ2uw`+69su%A@1p9joRE(sM&J^2@+> z6r@T^*?@+5Tw4BrJ0%;j&0-=kGr8}$-UEaj_W9z zf8ol#t((Fs)x=)9iY5F3G;DB`aF&pPl_1$vnX+oqBY$nta4jk@ju$ zDBQ)veFdvQNS$i5uLg@G+E*%`^8US;le3xr9x4fANCJR_K15j1SAuFNZ_mYZ-Ki`% z?I5YDTXNyZT1h@in&rfh3I#HQI69*83kpundrgf1?x%#;*fgf4t;~i=&e^ z2})~2U}~OXXbGRu&)p8i2#94&O&ROXCbm$v!&fECw72NKO___jO^6T3eUwhQVi2(L z#)=;$LvNt3ws4nJs$RH>BKUk0)tb|4sjqp{smxzkOw2D^QTwD_m#Ss^Vg^Q zDSld1?^}lJ{n>1c{tfDly=d0d|D8#ro?6Im3|jVc;IVG)o|fPf&K^#d4)5z87Hesz zPln1{r>8FejdTkd(5(?}ub9BXf|uQxlf-LOlau}1%)pLwTgQ1w(t7vjuubU;__2Yh ztD&v~`T4=x`))%`P$aorX!)2gt@QFoZmMwp&p_XbN=P_;NYmL_7z*Wu3+FQ}{3u!- z_wb;!P@(e~yp*dP$ zJuVa|3ZD^#I{hYNM3USW7CeGcqer7T42|xQU$45Du-6v;py!zmygT{-T7aCKX^`$; zw8NIr%v&vI$;;`zXqL#mqjX4K*PY*vL=HaCPF<&E_BAGZ=Iz@=lQYoVVlQv_orRAJW3JpaA* zde!G;JCfUOJF^SkJo4EeVF(!}Nncb{L_M>x1d9#Cnt-E!uc(Z{arB|3;)7ZxE%0R{ zrTs9BzbYy!U{ZtxM#5i)_^rVgRG=QJ!_M^dX(Eh8=_~o!d7T8s+)2N<&jv565`=czA!-_I0dy`WeP#^qVFXcMXpUi>ZNVOSaM zGGs(0SItK4nJIW453u+1e;hGZ8ZL!G1mphcx5qRW5R>XmzsAlXZ@6! zzbP!t_9;kHR|I9;-IIQLeC@z2@>Omwt@$z=vtN@fH)Wr`eD=;cws>499DB~oH;_7S z4hFLMe&n3TWz640OZ&}5v2JZhx&5ZtKjmb%bieLDN)y-V)3nOojLaP2t{O>|dMkxk zWRYSK?rkEf$rCzB6Dxic1i}E#$Nc8iov9yuFig1{LU-Dc|9Q3J+OxD5I*n|`N&4YU z1|qrGw0uADIQ=m{)`kRxbRtvMwl?WWuQMxHT}FIKdIMOb{|ln$e*E}j;u@(~8a@A) zGFs{2n>6BHeb<0C(*|@go8?NE6Gza9BD^2Oiwd1BsD+}SMuaK-Z6U8`NZan+r9gs+ zm_cQE%}5tp#4g!0B}i4*?xAo@OiZe>h0+_}qLHxAvYTygC9FZyUl}acevVW+-iNDw z8XC%ENh@k0uOw}z@sMt7dTA^sWx_~89@9SY3e9(ull3FtN^Y*5p$HCTUOr7yXV;ww zfOdr4_)&uwb_R(xfS1bJ%`21;uo%L&G*-Tcn;kRVd`+C8?8uCefv_?>!7nurrT9DO zOiH7^e3{BLa|#vkS2H{b$?Z*$EQ7u@U zz}yY0lcW4x${D1b(7UvmA#tg3+1afl1cY{?O)WTDJw)NUGIQUWtU(r8ubC4^BAsqF*p5-S@he1P$jQNItnuNA~;g?p^$p{k50X&svl=tTwc2MjezNPs z`*G0V*>|#);ls8l2Ya&zw=!#tE)?H-Ev{Lm3&oY=EGj1N8Xm$S$flF zl9k#iE0(7`_m&@jqX45AQM*DrS^<3~_AM*zj5jcBf(QNzi4G%9I*$D?Fp-1SXs4OT z@wg)0k%99`QSsK+z&~LJemmYolxIg({@dHO=OtPc{eOJKX$^NBGKM_f>#E-vyndwY zy~|7(f5*M}nu#>uj`QU|dwuQgjmgCFr`}=>2}ib1s0K`v(|Fg2Gnt&C9yw9_Ok8(4 zUZsQi?in9GI35Nz_=V?oiqRveR#^Ck4vobrBFp`wAxauFJ`j7=GBrix zY4zku;^lSQ(CcZP5|f)e=uT@2!lInY{vnH%I2Oh729GJpf$)pClcv2M%9yY+{Qd6z zw(XO3XlU5a1v_?{K6`zQ@6!?#|6+XG?4Jbti=DjUz~4|_N;F| z45jhUlzMH>ngJMLgb;&V<6wvV6cR!h#&d7u^ade|fO}6`&MP6@K>y_wqh;P#6uub; zdc13I+W2cRKNh7Rvu$v`?Z6Z3z}Fh<8;#82K~J}_r12JAXo~q$NW|0^wnIWTCt|(J ztw+FLP%y4-nmKL>QI3~o1O_@-#hDlwGIT31;Yc1Xx1%>9zm65Q(!W?TCAw3gtGVyk zwm@;ZpCBe}tDu$E8=htH)1KFeTiu{|mHf#u_Rrl?MV%xukikG7xd=1@h`hz1F0_Jx z3dq0tF=DkJb(2=)ZL+5iiW0+zHJR*z7^&5TgZ<~#x8ha(8&oA;AGki?6{yWqbQ2#B zQ>By24;DAeV*qeBpqwddc_AAFDX2uEz8-|8*0Oy0k&^uI8>}@_1p*Y`df}nKmU2~j zT25YG5@2})IzCM%VvH-t&Ov{4!Y5vvLbockB6SI$5(@q@*;uB6-H%dA<=~`ZvmUyT z*@ve6j{v)KdbsgIJ@)B~)`eC6w_4TzY5@rWXV!$%1{f(odHEA8UVHcI z=s?)2Q45iiV+esUg4C@7vVW^eK{x0F-PSzy{L;^uWPJ!|%lIzLuLb(5g4)ZsQJj;=a<1g1hGP;UM=rgjPY8w&7!h zk=s&|O}=Y>-7pvHH4WAE`nsulUb?U1skDZpmZD6u4K4>bB-(W%wiV?bC!A0ZBKd>J z0rKXxTJ{nXfAZ$?;1`!4gvOiKD@XTE&@&kfzgwe<2$PfiTkz`mj1~5>0-(WmaBA4D z6_kBQOnlM5qbi!^Xh~^cGhoowApuB*n%9ry$i|g^=LKP9Sn#Zt^LmdqctWfajC%he&VU*N=c!&!vQjUwb-c3TRkZt8SBUKY^!QI-?b3HBd&vN%pZUu-K&-V_L(TSbmLdT6 zlx-LHZvxxU`n}7+Z&(kno*v%=9rks+-J!b682DygEb-j-mm8365D+s1W)pf&;c&SP z`&NjzTk1$XaGK3W};7Uf-M|mzg?@g{Z*t?-$t* zFkzF4SS6v7Sduy5IF+0n{T}(kAxgy){T&cvrkR$;f0nbyy{=qm!XktgP(ATlcK=Bz z+im0nvl?v%8~~u`xVaaJzHU4VDXZOKMR9d4xDf;u(fdj@G}6$2#7ki z0z$s!sInrgf8f>TRw{}%;~$BMw#19d*X;=4hEj>p;onJb__yBN`>I7%xiu#8D0+7n zmH3(c9c#W?ut3DQ9*$OIias=0i)$#<3>g~>tgTAz)kc1 zSYk~jVkB%4QOUvFWH$&a-UaO&_Pxv6sWdF}5;ZIeUK}xb(tG-aO^zEF%+eX3J6{x1DLfbcLYx+$koBs^ z4TYN{IW!U_VOe}X?jhaY&Rvgx-1~l~N~Mc0aPX{}6{8iztSRIJ!>7&{A0upcaQWhh z(7{ilK}Sb&0PO~g+nJby8T%`CX33|9k3yno*Kf&jC-X-Z{I=@(`dpUQWq_Hr%&OIZ zb7m}?Y=+B5jAViIMb|wORjV-xd#}5&C`bNgzB{-Gx{kvLv&OB2?HxCaI}qbQOUxX@ z&4kgJ3i8z#eM6*>#)(wLa2lHc*awthbCsobM#=j{2BhngFm9Ii0st8LP9#Z(g-z(W@v-p0>Q|?W1c#P^fl`;R zH{MCtmFJ3MGP<9N_XfW2O-1^yA)OW|-dP?zIG0$0od~iaIe+Scp@;mF6#;1=igy7C z!2t>u5|V|KUrKmGEY&{PKJO2)TMQf(?P`6&KcI}6{bT7&AdGrqvURf+k(VOjhyx2} z@jooDsr&hVEZk}|aps)4w3a=U!}CBT38MRCx;DHYCmX_*FYRrALu{(@x(KUC-iQ7( z=Z}16fd^LTdQ}s+bkaPmyH3V$9f$7yvJ)v!V&69jPsuUJ)$&vAcg>?Om!LFflb(a@ z3!1BADLwBC#}4&x_ZD-{6yKK#t_R~@_wA}t=>Fr`eCebV7+rmOBVO}<9wghBTRK_F zF)Ae9-5|V{ZnJ7Dm^R_V!FBx|$R$wR4pv)0m4Jv}SX{ktU5Z_wdHkd7sqc>r-``@{ zcFVVNj0~|7IsF4ZG6~F$P*S#?wLZ;BOAAU8B>F-lvCN;CSoA3l)XQ+_8UO_pnc4v1 z(b=s#iI)q5iI-?}kC7sT-PIBoMK<%~b8Wj65s5-qn7fj>9}MnGvd1xo4Yzd0CC9BA z3Z3;~hLh!Xb%c_GD!RhEA&4G~UJ+TxRHIqG_=0)z)hYAP1JQF8O#Dy!;!V*+1Eya@ zAOO0|Mjw`UV2U*8{VI}?T_vD*U+^s8*o=m8CNfgxfrAsBnS<6%&uqZH7wK zdL*RDxY1kD+mNO_yL(N9isnTl5uVC!A4S-c3WVqemUH=~3)sUI!`a_ajGKOV<6iX{ z{&zB_M90DTJC32_zOqQ91gzPG)`kkrpsI(UU!+t9A@)bO%D73zMgilD=2piUT5MA5~e&$PyJlUXi z0%n|-!Wp`Q?##qv+K|ehvggEim%~et%@o80e_~}L=o9PZA?+Jb6kgtMw`$hy;aGT^ zwxumS+3B7BlRr75xxLMJ6XTAOLv-SmK-MA!!p;Ix?v;Q3T+0n4s1NDB+A?I^?oCRH z+X^YT)uvV?te;aso{BGMtl{v&MHfK?*I+u?SrWR6=Xvw5S2K2wTmkU6{VTng&Cagl zC|0N_-HZI+cm)>Jmac90zbByNMW<1FO=Og!F&VYcJ2 z6tV6A<-`pE&=sEs=l92wK1J_aV34L%aP%bQsaV1adQGD?{xUfQ)E)YR8kMKpsQf z8jvndR>(2{ud2aX#>^91CY7Td7N6f-IHTtC@1r!ZCH4# z_%c~U@A4=p#T+HNy!S3Lcc16vK_fD?duGN1@{#$)#lO%kIbHn!G6nO0a;rLiWX=J5 z$QwZq&UNn;leXd$es3OMpC3Ld`R2C98o>B8;gL|no11N_oWCz$KbZLKxVJ2WoA0;x zC1q)Lhzw9NxFaJYLgX_)A;<%?U>zVR9XVT$Yx5*7Uzax(919G_D+vknMX~cNc~;@X zaDP+a`D>>qF@fv^JbfE6c^f3*;|dZ01I+G~fzXKf_;~U0$7KBrs5f)txk)N+7`CHc z^x@LHzZ{oXKad+f;Ge%7jbLI4`P?}%nGb`yJxec$uz-Yh6S&ccFI_Qe(cII+a9dw< z8p-zjp8N{D%U9ApX|thh;$2l#!CDLCD$eYnN}7lzjXvti+zl;|z7|aTszfVyVi!%Y zriva9*Yfd~RU7BIUUHPO>u+x$h6$KbBU+-15r=)V{;~BuIdbuV^NJuR$^)qg)afZR z6wdI6S+gDwNJxmieugZ&-oUbC*<}b(^{k`pTbW0?X&A*K#%q-0Qwc)+sCUdE+`Oc{ zmU$xh49$2+zD=g7=eq*OyRmZrbPkH<$9Z9p(w0ICffH z#|#c)B$E}xq}&b+gV+BbO=lfd<+^ooL{vh$LAp^u8tIm9DGBKYX{1HEQ%a;u1Vp-} zK?EtKyBiciLipCc-@SjFG0qrg3=eGg`@HL!YtG+1&50khsbDMK`|C-s)KVSeS*QTxE~lkv9Nser5=w8yTxC1&^YrQp6c6 zh@B8~ac&Yf?>|AgRVu4IG1rL1W7Gg!V4Nob+F_>c@Gp%o_+ACP3WFpMm_&sBm?uMJsHJ%ApNaHs6@y=Im1uvll3Sq#JOkC zX!4j%xzZuNz^_$M0$XR)pulmP!Vj!5B_*-Mv^%@MA7{?9^k_#>Ru8b98r@{H;*yb* zBjo?Td)40`liYWh0lKwb!%G@OIztcF7p}>0Yr5a46*6zrVZu$9;%>CoXX5$v+a)vd z=ySW$@^S`&kJt&E{3e|IqxNpICe~r@Msms@Mwcclv708`BEQDs;62_N?G_tDEE*op5j)tins(peQNXZ~cb&f^Bt064K%0z$-C-P5y4QCv?&uW zJeAF~@xD)Ml}P9Rj~`Dv?pP%jv%h9toc!qnvq^n05j5^rG(+uLOmT*;=H z^4wVXGU5(kyOYU|uokrH}zXSML*)^H)W+m;&S!Na;<6dVmuX4p{8eL5S?$%kB#f%ctZNj9OdVZ?N>hE2q`D=S&opj z>8Of*ma$~#*hs@gjjHwMTI%Z5P0W`U4?or(z^2s>5#vmdD>zXx68Gvx(x-bW!}?Wo zU}#$QxTp0b`{+4q#RDm~COJwE?A+1vkinXc2EZL3iR3~}pN*ViW!$+xd4XE_ z5+AfzYxE&Yo5OsAmu?XtL%w(~y%*a~lkEbpK1*&t!td|dLEN|ER@HJE4h%CB_FqVB z83jKlGo`nQaADKiCc)Xwp!$WM`EKgCij)ji;WXfNm0{KY20ATwJPw?=E0h?`z&mU| zQ-ij+(28rWu@grrRWqyJ*XN;!q>4)x&Gm@DPMHmXYO9-d{9U70uC1V`D1z&Wu=WGt z^FLGH#ztPHL+!(O=H%d*OzHlqV`$6DU3CI_Yw3kQF~UT&7;qRHsG_XA4m{lrSgd|| z@t8Vw5V6lkybs{%HUq;OV(AkZi4Fx5powiHJf+O_JY0Z9Ap9b)bUbsl@8OY5@$JmM zD51XmW%+&4BQqkg%&~Gn=%68g(8pH4UJiD=%!g}14fcE^t0=K>86jcc(Y zAJ0NR04Y*2PSe19uG$ZBAHKjpUg+oLxZy%n+&494#0OID!*l>!ocX-I_>>z8W4}Ks zPnTd{t6g6u05u&{NHNMG(ofxukjkp6kdQQ8*@`ywwa^0+SDk)`H>;#(St{Pn+oGi{ z!N$BWWi<#1Rx}fOpekLU@d)|L0go&D%|q{}%G6)@@7}tV*(GfC2jO9w+G89x(wEYGp?c+)|1tt=Clh^ybnuog z6dG^-E`Ziv*!chh^Nm3+qwr@jR%L2X(q#4n7~1gm_4Q2?a3%u>&pMO}9HX|_%7~|~mR1s`Lv_ku9gaA}tqe9!QLFz|eGs-> zxK)fhS&Nf9pLv_&@hY{_B|7P(;^9y&#m?;q(_r7HaZ;s3tSjJ@`038#?I;2KFl9uP z01?)Lq+y;KGs0viucGpwFV*G|4!uVGmPSV5>eYeEhhJbWkdyWl(fBtZ2 z)@?|4XKv*;*noGZE40fvEe(n`W)IP_Jjus)yNP|I@P}T>Ao08x3Q<~>+M0?$WlP}6 z3m1Ln?|<<>FTf=&;Vd8WQ7^eujgSsh24&w|S-~{wf#`I6^{TOW=*8ogOJ8n%U(D-@ z;4G_^%Mzq{`$C{VAQ@N)s-xL&u+dyvHv|RHD*9 z_${jc{f_NCy+4_OV%~Nwpmbn2m%n+xlg|G^3>^-k2to6_bjJ^>hKwf6)Nu)|`UJRG zs5(U?8@<`gFXQO8{do*2reE+&E&Wvw-iU)gsNoS&(3>Cu&w~d6f4iu3+x&ifL8)#ze3fh9J-k0TCm1qBY86d!lme84_Hq4r(4AG}LzVOQ7O^L;4|n$&7b zl+9ndRjNsvUL>^LNL3iMeuXWLlDj+alP6CQm#ja#eH5N^9pJK>uCc)n(vrQ7Jo}{8 z7Y^v%1Uv%QI$a)T~6vBN#j)8sM)mzWzlF(oqC+BpCDwBxnSbWwEG4zX4ZR zota>&f-t~t8GuB-AQ&Lhx6s!B^>Cr%HcV`Om^3u4Xy|*f)N*qRQM{>e)pbeX@Q6xS znR}xh;rq&+B~MDO<`0R(eki?~@n_|Zd+fO& ztnodI?n$E`*-;#*TA@~)cX9;ms3a0v)h_FdUoa1d22Sff4P-^msvYw)XePx$jgadV zqkj9j6MyQX?4GjV+UqO~QZ@`B*nK|DA4Py!!6KdpC1RK|sy@eKq|?&}GU3Bxr_Zfz zoVFJUHH(yJ9zTwsX|e|)1;u(c&Y_x=gF9)_ko%p?%9?Je=jZAa8k44{e^gf*6sT=;$*B1uwUM}b>{azPF=^YMhC*-a~ zIZAJAu2*&meU5&`39kNhJw2%nkgJB4z#~j6T!0RM`5RFV?9rUHv0(`z5|PX7mSOa- zJCE}cJ=?x)w-w`%&sJ?6{#P;LKSFOoSnHoTU$@L^I(Gj(4e6|4V(s`Rjx)nlGuWiy zukK$`!>U@l8H+#}fSe7gp|`O4^Xrta3{#I(_}bnNOz&GboHqNmyp_r(rcOW&pDZLH zauCJL3l|hj`{aE46F+IGP}ZBqg+OXt>%Yq+p%~MD3+d_p{CH9JvE$`69(!gMkiHXB zQ=jf9{Nphah*CB6gk|%P1%s~LT<07x#)cq4Bq*E;c;_OOOj%`jUeWnPR0^MmJ0&Cr zeB_~XgA)&?-gH@iDfYycELN4S5mF1j`-=8l{}ccAEkpw+f(HiuMo;7A)q}&9KF`eA z+_*eZX~j+LiF9(~pGa_?D5A97nJ9gqtQesnnbMaJ50a%0SnJQ<8|?pdThbmWvg-0$VC`GAjF~yV7B|QC^3ib01SpEONID zT6V>!$7mH%+iV5#!O~12TfC`IiD`2!6>#wRh6!weiFlsN!iM@}?9CL)ZpcIHGP++M z&YxA`bAGX?H7R#7u3uR(J!slxk9{B#Ir;*Sw@dgbsCnU~MbU^nNcn7CmBnvMR#w*d z^K-MwU7M*EwBl(8rku!d`j=aegF@q^-2@ZP?W#y(fFN0a+~NM@0W9@Uvw3d&{gnA| zc8FjPzki88Dk7VEiqYf9tMNQTVqpDE%gLDH`+l+Zc!5W~-a9)kC1rMh4wAn<3#Pwc zAo$&3bkzQ%1zdGL8nrf!PjNsk_->Pj|CkErYhr3G5}smQe_o`8FJ^jIqcQO_ zh7Ten0bba@162%oXpoFqgNsgaQPJJ7^7NX2RPiGL=rp7M5*|*ZxjjoZe4?N%Po@zO zjk-whvNI?7R&rah-Q;YUYKe#rLT(m!`fP;#LqCyH1ZYo@XFj%A&l$D;3;trnCDoS= z9v-Kq&CNbYp!Oh+Y<8m=@$Z!5XxO^}`y$L^1rKR9zw+7h(Wz%pmK69Ckc_Df{DTQZ ze(;j0c|3@Kv?CFfUT!1;b4vQ`Z19;5Bc>@Yt|T(6M2sGfIy+Gg@q9a#w7NOmGEa7X zM8WbeDI+5iT1i350tWPPnAlbBc(^8H1iF^D#%4W$;;yBobp-mmbK%xKdOT9r5HXF? z2gT#9UszC)K`DX-K@#M47q3t2`OHpsC*u%jjCp^2z)jF1HE2LZ@HTO3|MwQ8Lv^SQ zg;y~sW)|SWl`GT$(=fpH5x5mFOk))a2DWt((WTV3Qfj0pib@@>T;-k#c%Lu>MyHV` zV3~?8LGI|!9|t-t4!{$D|B*V9_E}7-JnF6h`rLAjdRa627f81Kt&ZFO?_pH@zr)C+ zs)4FzLevl#sDB&97T*2LW;I|~`P38@20dc0x%*axT%a7Aqb^e4%}3QlAVC76lnC~U z&sh_OU2Op#Q4#;q^!Vn0sP-F1-JzW3OZ=3TQ@L`vO4@%>N*TME3E@khpD<4+C>+;S z%RO_sXm#QLs#Xsy6udU&AP^Mh96?Ki--qiv zIMjdj@8$H~7B{;_s~pd2=BR_2}Tr5Vy7AI-t~1(WQJHwU*>0o3nYV;LfzrJE>-92m40htD`QkDhGWY zGRF1%{^tFP2htFOOtRB#c9~z8Ji@+X4Yw#?sJig|yBr2| z52CVZ3L5(H3;fFw+KC8<{L!7W#-7!{e)_eq!#(v&TmGncHkn)WFWXZQkRA{Xup07X z{(1jl@;LBYYrA2^N=gXLXF{VCE9!FI#d^@lDEdaa&>S4pNWqw-PrJhh%{5wnTSUV3&l~jyHN)h!? znI(J2-ZW2Azf+lvD2#aKXMu9{ug4>{rv+6@AB9gXtfHars`M_$J%O%WfFMr%e2ep* z=YFAVRL@kfL1_m+J=U#$p>_5Vk_QjILHOboY%(27;?*$9?@-R4@%nd1s~G#JzhP9% z@=JuZ^Z3Y!xSHDL!h6_*TY;AfR=g!c9&qxMZPvT|x%$aBOQ=DJ+a|yE^Cn;~%hOlO zqU~nU%6p*Tj1mtuR~}BMzb{exDUE7RHkxty?XCD%>Dh{6YkC5zU|qECX00+ z(G-1G*u_m}?vs6pGo5qAQPyZ#?7S7&XIkh#@7?0ak9~boe9QSvsGzDU0bJ*ab#;7@ z_kpBTom0nAn6%THx0NR*%klW#{mE&=)ybR82GEO2%gR>45Wu^sa3eV#l4V_MB9H~# zY#S3Ug{1D1k#wFvav}WX9(2!?pE|$VqaWbzkB^h`KgN}pE?97V&82#amX^ZwA%*E~ z;O2YSbjFEZFhd{X95{2r^TPX9Nhhj*uDc-KhlmUS*azcg_ZdY+-|tqozlW(d)t^tX z_3CO<%nIx@!hk>7o2kW!D!kojFbuxwVMEXP9?-R58^LHb{7xbtlaBorm%bmpN?6Fx zP-IA{BaT=L$z775rj|TOUdu{W)#C)rDinxhrah1~Cd55nR zk`jU$>Cm3JJnD_}thPEd(%07ykBFdwI!U;*A{-HB>FFbDI2Ar-w`Pvov^x90p@tf# z5C07F9Mf}HDQjN*VsRi*l$>=-Kl*jal9LBWhY`Et@NWeth!+4Bm=2T)H;JUPiAHRMaaU{XaJJwh~6H* zKKJH%NUS(EEZ;>yBPMrc*i&7Hcqb7(+Fci_sDtUDf{bKwO~Z z4PG1M7Bx4|)|Z2%0As$ouI|<>BUEi0yJ7?>$*!H8^Bhhq4Zh7nRbW`=WoAz{Q1owW8st)!4IZgI6zH(g>;A64=jq?5uej1e&fqlFnNM6FDQ&sQ?sbR z+fOC;+uO(tNzzvx3u>0QcW(aDgjVU1^u|gSjlQUKD){~K{n{-o1o^eBqUl5SjZI*C z%;~9z|F5KML^wq3A$1^JimPA!wuEo!wS4|%A857@;BVF1rcwN<=bu2)7RR_ZU+>!F zf)A>2ai;-lNJ0CDYyhIo>$qV*je~uOG#QuvUJR`f|ASkvU)H)A+i<<_S#`%{Qe@CP zaLT5pj;E)>LVb6(c4n6}K)`IyI%jkbQK}7Kctki9yxJ%dBwBO4WHAN-|Ng9PC@lPR zDaR^Y5I57rM@ZVOXN#LjnB-73t={g(1Qk8tPzYs?gfGsCck6eL<)+<=d{EQ+r$(bQ zKB1(yI4yH>ItcQvUzQ5Chs`=R$3V2YM&F@*^@a}a_ZBk~HZ?VMI0X@sG&&}q`Esx+ zr-I5-7fu)MCm%*G?9o!$*-Y3u4wjPW9yKOT;D zn_m#?16ovMgd7T9DwG!o_)q*-964qlV?rWwh2vrU3fEaqEGpyf@pCk?pEt`g@o4l0 zK2HiceriJQ7L+;uH3RrDuaxr!OErs+yo7_zqs5D~v1d5E)*v=%PyE5=+Mc{)^(o!B zjWZ9A*<5N=YuzpI>Nz;b5IzWHWW}l+3@K~I4=bfm^kW!J+Qbto=lC-_qZZL+F3taF zNOi82;F%VE!tc$I&-<0(l>7=(sIhfK?~1U<>K(o;%ms?F#RNZhlp=H<&66VFOnsMs zJ+8Vf?3et$$lG9^!pmOU+~tm?D;?HTV%tAo5*oGb9*T&_uAviB)+ZJ1tfGWr`%-w# zsp#*bBc(y5aYsi7A{q}#78el0$oTwrCdD?zinvaT9*IT8_Xb&d{G0SgFhzi76$F?8 z*p01GibhYaQaMy;l!A&Z)^`ugZ+=VoJ{N~fxFyCv(-M(;c@9E*o^YFmqo!+NYU9w|&O#z+1XiWts%qJ2^(n-{m`QEmYE?R#>3;iU-%)Qz{Y%qWJdw}6Fj6W8SDb64jYeA z8Xx#runlYHS02L2`vfF3ki98gRPN>Jyug*gHD7#$bEa?W+bZeH0aD;9tUbT1yKwJ) zmZ6VM+m1pdlHrJ14=WX}rf4+iXmB=r0*Pq$xZ4sqY9HJh3_YYrqZV+umyXSn7<1KZ znIFzXHRpFY=0tt8kgQ9r+K|w}|8wOdjFjh!Lj5Mi@E4cDN4saLGz4?}SZb z+!)y|AXPpGGq}X^x$1yYbLdn!XIl?pb$N&@;p|qGCt|-1YS;}wg_wvTYk|NcFXV_O zB?2x&myVmNrw_4d^^+va3?uPWQsYQZydr+NeQ0G6=%!o?!i(FIlTOV{S8!-wLwwqOK?;G;p~ujj*C zXI=l!7F8APFcd=GQWm4d>3l755ps|^*z}O!mynQH-1dS3lptz4jZC@B^0zZ}niF+d zzjpKA?uL&rj#;yS!F)qz?GU-_$JY#AJFnFk{wwrmw4nR-v&x2s6xhN?|LH4+A()BY ze9OK73C@il6w z9~hKmcVw~&O!%kMz0RbA@Plw$X@{&bo?Kk!lMFIAGp!UgzRA|YLH$Y@lK@K)96_6JDFYNLUu1rFFG^cK+?N-GRhd*7vdChy_Kz7E65nK&t?&oC$DK;coKMr+M zO-XnY-#P^J{Fs;dyGB|=aS_z?eX$G96+y<(WS@gSdR%f$_>ZH>l)uiOsWqOu?+v-P zagvyZjs8&UJx?5pZrzLZ-~MG(nfV!yrBy`OnP_CTDo z;G;R0K{kkBBg2-Y5lk*sx{tJ;Ju~6UbQX9J-O3PE#eWu1e!Oayep5DWe-p>i0I^uV zmG=f^GUeEv(uLOI+K z8-{FXybSB3yyTFLA?pGEeH&-zkY%;=a_60PfA&mLA5Wo-rE8gy0?t>Q^;)<6JUEOu z)2-e^<5Rrgh5{b9)%o`%YC02XEXw*fJ1ZQ(=Yczh3RTRwP49ZmX!GY6_UySIt+^w* zEc3=Mot1CM*TwAd&J6a zToD}Zh|3xHvUS_HmW(prO%=%Z!==ctl3vt;wf8L^z&U=a5_&~NMos~g28q4?a`l5fyx^5tUE0*we`XLk#J7)a>N;=(OOPC)^_&3Rh>uDKKc zJzb*yd%6hu|0y$8*V5_+q=jznUljbJki_^8UFL2sto8VrGLcB69zW#9Du-7Fi#;^j zn&17JUoUy{!|NU8z}sa!^A4$}uls`v?zJlhJofZZ*uH2AcRDSeklEV$u-iLrL;5*; zmR4kqxfU>(Yk5=U&gy`Fu;#TS&bor)`L zg%_mpdh7VbKvKmW2Q6WTb7PZ=hkXvb`6D}M3QA1A-w3>C3QFkaOHOX>OL!;P6rSng zPl_4N!{Pj+iT`DWV7%R*;QLfjV>m(8Wp55X(`K;7jsGy}`rBBhW)Qtm&NhuLKGk9) zZFEx`?kPcS-b*hXm%4$?m#4M;m~8gEhr|CCqVgTcV;fdtm!w?jH^>r*Clfkn5wf7~ z!V(heGaQxTkeO8>QqCJJlANz*gN<|o<%SUUnpFLETmJFgsX7O8mypQrZ_{svpP6ph z!~EoOx~C`pWqYf4|9~PYoVx$W>m83aRetG)0BJsPLj1;I^Yjn(HMV(URvrG9yOW^{?T6*SULs8#Ij3DN&r0Hm}=}VpQ@*SA1+1$AlFhu_1wtfTFCt1N4;wH3&%+_mpYseJMFq_gd!9A z45Qx$za*Ua|Km7~KqDVWi{8cc7Ms;a#a5wVbrY~+_l;$a^aYFV8}t?`-=kYdRbu*k zOb4f9n#NL_EG)AUWoUFW4f@d@f@nAlDNnZjeDb+* za`CcMBBzXu&}+6MziQue7bNqbcgr0~5tGo}&K~#eA8({Cu$3AKc~6(~%~5#P&S+zE>Eth-Td-tpb)W^%zK>v;fdcbHWUf* z&+U7^zYxf9U_IwYL~p=-vkKqdoQeZs3bxIEu>r8-{srkNd_uw=_{4M^TaIO0j5u<+ zKci)dl0K6rVb4b!A5C)GptL%}zo&cD>8oLN8uu}#AGJ?+R34NlPV?A2%YQ-wG5f*L zok4qPxrQE7`Q_UuXAEYMYczNFO%d=HhYfK=h6aU!T zz>Vka*t`*@T+fRGdby zg`Ca%L+MJFb$$(k3{^&j=(GYnq-M|2;)H*pg0i^`#=GA`m$1(VR4^x_CX-8JY9llEO9h|Ka)`FEmRk?I;w#X=%Bk9VpjTNa0%EbuD+@og=l^;K@A+{R3Kg(S&V&j=Wn*XcOO_Xy@!@&y%KD!jqNP z;`Pv_Fmy_Kz-nUqlbX?^!bB!UEK0OgoNQ&YRWuk3@Nv9uWWDoQ@yCiVFO0sfDXfGk z7w1_ca5Y~X>+@lsHh<{mj?X+EXqX6B-$1pOQ)r#2mMbxY>oZ z6dh(jfh-qfIw1o$G&BSot(!`^o*%Zn2=_DM+EF~?iCYva!#0_(6O27y=R`do|?gM(TlJ^0-+DV8Gz5w$Jg&ctW$~l zi&X!(`_JZ%FE=2?Pe4ROOZ}MTmu=^SU%GOBm!(USA2tkyBlCKS244wynqEE-Va%{o zRS#H3fO*c^Z$zN&V{yB|v1ywT;cL>5`SH$ndbs3B&pO4AkHn#lEONH+>=gcgyY)wB zhSiSqg6J3+oYr}dXJ<#sI_09$gkKn!kBNIvXenf1e}cw$19lziNPdJ2;_NI58;qo zx_ru>`g=qQ+Zog)S9pWLme+IfMws-t3Y^|jQ0#nwkY>d>nw zt8t6T9E(J6YrD==)QwC6$M=0R^|O%oput1HH*aTDiM6^6U!lDBbMU;fg=jk@0)h8E|CPW$+tB9uGEH%PmUE^B0%Cex|;%1WKPE+$Wm zC3Om7kOA(Te9!}-;NnIMrvEfQdwk7q&laJ`{zc?$~odX{)9!j7>)F@r=p97MF&N*P$ksa6sC6_I$L) z?v4BI*4u7HcWHVNO!u@w1vO^gsc+>EW>4)(m5CL!Rs<4dhiU9~xK#FErNCD>3F5sf zDp*Kd>CuS4m5B*0Bd_H<`gSVg`mRljb6&!UPtBcbjwhpp3oX7C|2+xgvHurd@ccj` z`_WJc7yY}mheYEoR@^b)TNV4CjiWaC-gkL}WhF&kWcYN8r6OKb6Sgysbc~M3$7q@( zww<4Znyeka6;~|_^wJJEb{ZLB1_<;nF*9{S%%EX`UdReX6(;n ze~c+DZ=WH^q6mB@;z?&?V>9ra|C6SaMc<>sNau{@(zvtI;$7+>Ivg@{I~=tpC97Lk zJy4Vt4HWv?)?4*mp-POaa9Wx{tq2FW>S50$ zF8;!F54n@qFWauxpzqU&d~iwrfYZW2$VxehB;MA+$J~o6qX(ysCr!+G`Mp@)SmoMy zL2xa(yO00kg{>`pfX>a<#r26dL$d+9=*1S@H_Pfu95d~2_F~TU#J652j6SK+XVn9b zS!LVBPJ3-m{`j_Uh}KQLZn-w%%Yr1Fm+9fNxMHd|>CC=R6WDfXl3pB$7O8hTvOeX# z>0HBz9i1BM-Fk_s(QJ8x6oQ|2R-!Dm^=Fc1+pLoQTv$=LpO;S$v6u zvK$N?H_HB(vy1-`kKlu(Mdji$wNhJf3x|bR;<(jWHN#F}p~OXO8gE&E+YUbjh#}>Z zrE*s8zzt#$Ys%Nk8%X=!6>sqeO&9~GP~OtuufebfWnS*eV@$$pK6M~|FWy|AwV^H@ z1|ej9$hiInL-~2dJu}tYVPvARWvH~$6mNc5bnYeFw<6%=j?MdZhkI9V5Q*|zIOVE6 z_D*zM%TqnZ+`6tz>zfkUStpk;#UxARKr$pV1|QlQ3QI_LHNTbBiot%c{!rtn)A-tQ$?bv zVU1=pak1x_Pa*2i($b42#Shj#PUH!mkEGR3MC5#wEHjM$p;itJ!@5LXN$EuB2Fhhz z5x}ujjt7j)eBoPh-vJ?tYo+ z&W#I7xFOlq(Do6{$uE!>oCX#nz*LHJa**8Zd15!TKN5dcS0)wy zJnfzP0LeX%J{d(dTO3Zcw9JR{na;O4^@yXqBWSHe1JDAYVRouA=O+{rG=l$wy{JVI ztgMP2)ZkYFM-I4RiO9&v9!C%U!uRB0So;-`_WfP{r5k68@z3~I?oE|Lqx(6_Zrs2< z5@d|sFq}nt*}MnJZgTE2d}H&+<@}~~YJP5Td-u-Mn}1vC+-3vQQWw)vP|Z~C_%@DA z!qJw}eHt_#EvlaV9SI5wsqPw5i1e|~*b$hr3d9WB1l&3Gz#|Pgjm&tOM z!1EJMq|=?d-}=xcX!`UfqqmOpB4eb*MDZJqqRzv$`iB?hq%RXH!{5>95u|-rES*Te zcfCMthqcH$nZD($kElep>4(iSOcRE)pN-^kExDgYmin!D#?!=drn0SSEo5Gu1>Eo> z?0(zvQrDpJnuMd0%X2hG4v z04q2+>KSa-><9EEPh8vv1I+eqdq>AZ^o3q(<>nV-*y%WB)XKG(6d;y1xHI&oZ@8>K zC%djJmH9j5n%GE1@?!OgiLD$i5@xAHE_ev}gzil~=Rrplu>Sd1{)`M&15@;nwejr> zWuBq~MsRzPJaJje@e7cHzFAETjUehI{7k|0PgA)4<}OV!wLIDndiM7u=*BsD%{eJY zyN(Yi+`OI(>|aMJouixto&4J**w^xkv^mm7#=#e@nXFP^VWY<+JmG}x@=Tn9j705m zD=8&y>`x*=70O%GPn_?*DZJRKNstb;8k_Ntg?ORHubtTUlC~!V`pxVk7LIv&=1ipd zM5jWsc4jonwM9(wHgl9H3Vp|7a4vT_sV1*j~Zutk_} zuTF}^EWjuA?|=$+`-tX>z4_+UiVAjE{^K($Ek!=8cmZz*4Fc}OG$EX-CX?V&GZtQo z{KBVA0Y!kq1d|V??~z1e(!GVl!`#x+2oTXU^zM!bPDG+KpB`jMk0k8^Hb=gUk z0WznmmS@$fB|--B(?4n97kgf3zdW;BQE2Bx`7`J@ibb3(C0=k@DaBwFZ3`9?&;g*4 zf%o5VN_IAOVAtM@@qe@ZX=2fTBNAUuyER4pYE22Jlz%(}x*qHWyjqR)PYFjpSAIFv zMGpxgHu6olIlH-D^c185{u(M5X$OAqYwGw0v8<*};v>UOyFGWESGHcqS zuOHgCOwG%i0#D4l@NiV{;Y&$K+zLH5d$~8Gy4%)@5=Z&QH!$*eBN6Y>`Z{x``}`0se{j_!AAy~IP3`blD1sTa+v z6zS;U?m60I#Z(leNw9ex5goygbenkT5^8sD$qlw7&S2bo+3bx<$sJoT`}QItwr}9?y{jt>WY<(Y3hvm954Uw6jUh{pKhHjG?nMbfwr~>|?$tJ)@c3Qf09Rq@;de3P z^wXcL^Hwe>ZZvojG@55Etl+zk`1ZhSz^u|qHi_q`ZGloqgxEHIfB??p6NxI(4q5^F z^pQ_mWaMQm;CO@Y?`@Q^q`POm%CSR5Mcd3+Px-kwgkuLSqzGEw+_hb==PY|;k}9&Y z!9fJa(^ww|qlt93bsROF#}olV=b{PV&M!LSzzb*ANNB&KPB3cCGqvxL=T<5;teniA z!WdP9gD{(X9V~30ol)qQYquQfR2pI%YqdSy>o9f=e2t(W!1Xl0yehmTxZ{u%H08GT zKkD+q^j2eDwj3_YnRG7eT%~calL~z=cHjT3c~M=1)I}3_o^&$BSh9!5{xXe$&H5lU!)Ru7P8|J0HJI5I|sbVtJ z0E2i4!QcG(rdeLE3D2rHq1PeXw7lZz584=}Q3D~h9F?-&H~(RF<8fhN6f&oX~U2G!-x#_vJ_ zAwf02{aZ9%-$>wuJD$3TRCuzJainX%6;_x}xpGa+_X>R|U|vG*A$hu$XAJ@kW zSW*-Y^cxcqAVshL5JJ2O?Tr+6}wN;NwBF_ z>^q(sy!GP{slyVS8GJd_jEW`SJ;nG+LJX=);JW6H2$~?S?{+dFHytRq{JfBV#@@{{ z3nOZg8THu~3y-9f@{+zAq$H7A8v3@#_gzf6CP1eN zxeChpB^z?D%?jP&%sCt z+4>c?3>K00bag%ci*r9@H@9TX=b2IZ<(3ct{j5xNRhkJJ zw|f7*;i)pGBqBe=HB_Rn-uB0TzDOUwDwfP2G1>E`cs=lN`=B;w#H3P>SwDMF?N5q2 z*<%{1T}Cf%$BrK8tt^ljhR%1msB<8B$lP}pVBCRG0q*PAwW(DVvj;ds0oW} zL@Y^&WNDABU4Gp%^H6yR1Xe7z`Ed$j@`kijZ1#y;0B0>NEq#OtW`Sk@H|!y3bUw&s z)TQ;~CMB>WhZ|v2q{vLHId(eK)25ce!X(*^Qi2Klz-oL%v0m}BbQ+id;#Vr>9XDU! zqdX$~v|9+RjmnvP$56tHAlQ$MUHPqnr}0~x-{lC4RKp{0QLc`gO9>WDZqW^e*olCz zuI8m2HWAr9|9!yP*;O=#0(aJRYlH^GyrO^;oZDc6;6;Ew;9!PrZ(&12 zTAk}Ph9C_M4LlQX;i#XVyn%|koR*e3rWFQy`o~TSE&l54t%wFiIJ`Q08I$~duvjK7 zG>^ox%>;FTs}nSp>4G{$8DYRd7=)h1mH25pzw~PVE+A#(_4K9#Z9)M!w|cQ#d3J8d z%A@d3n;SO0C+FJ$kp2CfI2T$Gia&fnub&QD!Bf{zV@3N)wtVS1>Ac+`PD&6B`?4AA zMW#OoKI$a*+e8z%tww+KINDo0^LnJcCgDA2s3Af8?C+P~6H#C}s2De?)wgkS+Jv$~ z9v&V94Fn=us92}xC9zt&uT|QhNF`~b@6=JkVEWwH@&0!dB@++-v z(p4?e{xcc*lk*PSIjrs1hExRIp>blCFp#&kIklZL77eR(GFswuwzhNRcH$^~{oKrA z{2RHjF!ArUy=}h=1IQ#5RgweLq(IXPab>gy{E zghG+&>1hPs@nJ^fW?SLmIcm-Y`=R+tjrB}z$L3kmEQ`n@?a!dv&@T&XW>!I8RHvKgCS zmqEJPdMbvDSfZK&yA7NUp)i(C_`^f};p+CkXq0t)N`p0P89(MPbJlmyTf_{nL2SAAj z67jieHl#wkMv++mB8E4(RCrT!)#MklTeq*FI~Nf;{j)onl$shgZSr6u@79;Scp_vd z`T4JPsC7{jc*^ zca^Q2y}cV&A|GCTjPz&b;pIJsLJ~-fh4q-yFffEbXPvnV!>Ih~y?G91p7%MQP#$Gr zP6=DOx!iV<=s=w}pJ}e+f|6Fy$ekMv8d}*El=@J0`o@>73rbA6SI3;Tn7(N9Qxq2F zCr?dH(fFOX3sO9GOMebShQLy+;a}SZa%U(q&b_1%F?&MM#fIHLHIf zj);vds;uh{u@dwewc~K)#gN?hzL(Y;zC8-ExV zrzJM4`O(h+b@#NKEB-A{X80#Jb1sJYw|776VmU*`Y-1?1F9M(Gim1QdDU~QJ=}q4W zzNb$D26|%9Q_Y{wfd2Bhk_s7zcvA|nxLKq7L?w+0=h-+nlrDfTpdEnbOb8xiHIrmZA^65rMcn!gUUoP1mrz^G9 z)K^|Qow|Vay4vs3156?RS)bm}np;??gHIHo!Be$%sj5oAr4ods&1K-W9Ric{_ozdr zS#f(W8RemS8hwU$7Nrt{JM(>g*|wKdE?Gs3qBKdeIIjC{8T{*?J@)nA2VB2uKLySn z(IZ`PD=Vhs@zCYZ0@e?0k9H9o5U>-;n3&L1Ro#BtYVh@$j$seg_0c`Sc0tLB&WHE* z%$%${Vd6s}9j?HFLZs7P*{{aeY`ICrIWcj4yDvxl4nArfeOu3a_0MvJN;lFVVAO1E zPGn7>MTKeMJ!Kv(9i(hQJHbBBahrFaJWk5KLeX4c>9kU1I`3%aTwfo5wM8OQ`=?>Z zk|pTmbAq%{z@3Zd(nx6^OS;Z!W;F_&^+OvU507i9>zq)>08wbWWi50_zN>apH)zgPimLY#)g-A} zT}EcPPIrs-QBGAw>^r^csoy=shz*DR9jzucE~|wDp||=>GS8;%9mI(?4!k2V#5x`M zF})5>a4`_~d$$W_**HVV>xlXSPRLY&kPm2&m6a9n@vMOOR9O8Ng(iKKv*3^F>jPG{ zoJ&bgXJ=<1$e<#D{}L>0X<`AQg@uI^R~yRaWV}I=v3+A!i_3qSz(Yd9f6Okn+`I2F zV)F>rQ;2GS?Aq5u3$InUU!s5PTkSTt5yvr~(DIXi>O<> z%#MbZKfkDK2(dadZ_=(fgP4zE1KQmjFJ(W%hFNULekLxYF;a3Eo+^BMM z#;$T5k$kD0m!T*5d^dW{-G^erL($_A!V*m#5eJfs2|V~8VcT3(#HgUacd>8vm;^{9 zn6Udf3#{b*!v7m+%V}T*hwzG&Uk}aBLoCcG4v#B)NsZ6GH?i3~*|8XRwA|lGvgjn? zd8cPTdury%vN>CDIVaA`c+Ei`6u^resF}-#=d9gx#$?5;JtVWC!m0g zkYGWGQpm{j$Li*QLx2a8Od{UIJ^hoZr1+PqX9Ed&_2F?%_p=xuq|VAlRRy!#(ZS^h zYRc}X**LS9^+qovoIG&UG8$w{Th7^|px|}(s%^<&1^v$p0LP)lkOXZf*N9Df+e=mr zJ=Z`=A12q0Zzdq#z7q?0-#hGjKWh6q3J#e3a?`s*EmwX`4X~Zl0lO63|F&O_TYe7< z0kJ@T?2(xBnTAG^i?z+eqQRNq>7S7j#4#!qvMx$|DKU+pc(v!2l|_Z)CS7&UD~^Wt z;Bb4~RW8QP(Y}XI%>BCP?YNd(wx#(NkFi*D-&fLA{|A)hVB|e{9{*1eA$}nazn5|YvaQXphBgoX!FXwT1E@&X7XLu)wK=8%!dyv=9+5a5;!5n`L>&AhV z+d;p~+U6#mqvx$2MysNv*M6;Qkj;n|V9uV6d9UrshPjoM$>ht0&rqSV{gaUdHHI0jsl&lvMHm zbqW-jXJNcBqXj_om!=e(UY?PLa?o(U204E8m;- z&$71QMqj&1^9*WXdN-Cwn~8JhNovO${H%eqypR~0SJEGDi|Odx!Qb%|KM&D6+kAl1 zzmzfO`}-}oEa8}4Ic7vl_~2MDgYYe}`;4CBid7#{4m3vbwPi0hu*n+SGz$%do+nz` z?mbY?IS@!DBcsC19Q{4AacJB@E<3Q*4PuOp=QL)EeNJyg*o`)g0dohY93l~qC1M_=-QN}3PW4hO5V=@n!xt)sXCVR z4QHj}CiPHZ)09Wh+}mJC|6t?>BI$VnlRIAav z+6@#rmU=(|39%ue|A>4P0!AUT-zgz}KncP* z!RWrSmXnqZYSH+xs`50d%x>!i_Z~w*%Fd*!@-;lWYI1+^;E64o$L?q?G$kI)M;s9; zB^9*X4oE)7UI^uS_l*~?Szb;ipS>MZfB_Chc_ej}l#~={BtrmZSZKh73?sR^`{<&U z<3{ih1M$5Wr5L5JRolDT{DU=Ef$efYK37iKh0c6}`A-)T4qB0%!D16ENcKR-z~Hq0 z!wqNYX+bFl8eT8Vh(95K;@zw_7Bq_tsPY#aq|1q zOVjMQhwX!>u1pN;uo!`h{ZrU|37)ayZ z_|e&VA|jT>iRXeBs91CJt6#la+V~*qQ;h#8NYFVv*!x0C@Zi=9hblIW$CUq`OhZ%) zQVM|itK@c&N&6S6#xFs8*kqX%zU7>BG9PkAv>Q8pM55xj0#`fONO0LTt*$>llrgs! zk%<%zf@k&gQW(`k@B z(s%WDi8nL1eRE8Hg^%UB1y_AE*HF>$+C(-U5#PEM(Db}fzyH@-4)1Y=v-`84)x9W} z(PvC8ry_W{G+9*B1qB733p@!5NPV7T5vKaHCr;5}Z%64%XFG8^o_WyBZc>>Quf;P~ zy~#}gEzv2(8N~O@X*HaZ{zu9|Tm;;MU;=}CxdklhPcLe{q`emT#4=@Q)bol)M+P0| zxeep5XQ>5uFF_M6F`Hfm9=zRJgGoabKH`leCG#IsO>XM(w+$0Rwb6OCghb^+?z2Uujx;zqt#@Vap273ztjL7eMyk%?Dy72bw-)}&JV6Hs4 znAmb0cwHx2dWeQFu#O}YLSZgayoe>~s?>SfTlJa6)z#!$bV7{mO&r;$Xnvw!K(pzW0BQ*0@aK;Sg#H~w)fEyHDAY9X{^DGyR*0;i=5>5umK8Jpl zsH>~MjX+;$B7;}-23VxuKB4F!neHDA;HZ0=xX0%o$oqn&Gpp==_uvRbzap6>5Yt+C zYC;!61AZ(%@^G)}!pTYfRL@fj&=Pv05n8nd`fHxIg#NIgQ_9k5#i)1`H;1c2iQ{cO69KF@!#YHPkt z4+7TzTt@&s)N7b1E;J&n_x@rJmQy(5sq{1H(7}6ar-B(m$*LE`iG;wMlDyD zJ6CcayX{D)Fejy-u56fB6u#x(TFkM|q+21-%#TH$!vej^OEau<<@x%U$0L1xeVmo` zKOZL0g$l&ym-pykQJm+j61aF_^xVwU+CQ$=?*o^#7Kw{;s^Iu`7%xBn9aR#qXsp?* zG`^Hxqv>4V8<&dbwO)^UXjVb59oA_o{ynDO+LW(})AiS5MbjR3}Ho;OpyK_tOK!I}r33(3`H26HnMb*f`YiPlDmdb5?zgWb$-GR5-Cd^t42J z-gaAlao0xMN{mq=JEoNkm1Z{N~L=AQohA)C5IIrihE^Vcffeg|ZK-p9u3zT}HXzbdz zEbA)Fa-*7H=(wr(Fv~2mVV`)O%AH(2nc5aaY*6Mr?NQocS^*#j35pxlv5Q{HgLnPMYU@s@wJ)tc}snVWI8cV|eK!kOv%CIFMRNf~N}bail~W zsk?;Qp~9m&z!LdVZqNiO)0SN^71l3W;-|FtHf|M}2zo^&e=ArtEl;JZ(dR&VczSzZ z!6pvZ6=d5EJ63CqF1g}jqMAEkmU-UiOJw67iYo&C&y?$qT|!jV=YQ<7HJCG^Iv%&O zCl!dOT)ig?=6A3tybQ9XZ(^oe-;DusKQQyAgcd{GhL5Y&Wdd z7bE7IAF%#Y9KfQZsUreJm#kax@2l6(V_T%Mb8Jle_Z4LGKZjpxXgP~;sN6Px%R`(- z_7ittDXWnb!Ib;?UOU9Fxt&&NhUZLd{R_Htg^QGQ1F7fYVf5f_*>@Uaeiqc6(`@MfJ?+`Wa@?E6g_d@uQv#`1l!zM@!}*`?~juoBf06kHkH??sHl*SYo{p<1f;<*7M09KO7~;nggu1j zRwzc6nseJ3?t3+6_PEEPT-5BzJ!v9oTz@f|9pCyLmrWnxc1y9ak>T99@e1ZJ>+tru zHxD5b6Xx7a!v^8Q%w#E}j3PSM1c zq?AP`}zddfx6@2!7^_Cb)c@tJYz1``71!7!)#8x4Hb3~vB z!X)^M>Hl!~2$;_2>;GO%HW&LHS|+efushwT_XtW(skYYDN1TN4l&3)OsBbH!5P>O| z`}};-;-X5;+LJVW|S9y{bAng!W&zjXE+j?n}2yx~Z5Js*RDH(8)ofw%esxeD;+K{iBC zP!Kg2R}|!_0kB{E?Ah~GUcdLk*DTn&+70!>sI@*1ovBrA+gpZ{OR6y8+!1P`?Fdm~ zMB2%!%^2^7VZyqD&pSEm*Z|odH@&XTX6`@(3#`v(kSL2Z?SO_`%~3cy`DmKq%`U-E z`irW&>_cf!0+}C8{qr!M6ij7 zW%lm^EsFTYN$g0k5pB0>-IMbz_nA+8#Dq?N?SObUwh~)XAc5*dS8sADc}BBpBj|9w zoGA-NiI7DJIFhW@K8AxA{ka!E23MsjL(hda-tce!O6HG-(9-h3!5!aMR=(JZXUyYv zVq&=hiN;p9$dugWbNudiEaKk%dY!40->>DB7(+*%vu3mnze0H?dTnhmyflbXKBlX} zD<6Q`A3p?z&vzw23?mPLyv{ed`ouP=`9PYfo=II$2Va?m!p;czeZ%Pcr?Cc*$ey%gKHWzREiPB`jK_ zb=&H}yi;uzgl8f_wxsQ2x1jnUPn}UtPOkXLT~+3Z2W+n_VnP&nWQ4B)EJ~UGZ2yh0 zL9y@ct7*woCyC76w)Kaq#=^>Cb#$LZU=Uq(s2QQShVY$`i7J+J2&V1RN6D_U#)RfZ6c2OuB9qD5MAsTN&nQu+*_tUFspx zRvhuysTv-NXGBem%TY5}2*pz?uv^D+CbQ=b?NdAE=Q%;yzVCh#y$l@^|SFjH!M zn8pCmTCtW@2!<7UM#h|;d1b9@J$btjTTMAv3$q?EXmEhhMzYjtXy&!Zq|eNXC$<#Q zgi`=OpzT1Hl{{2^Xf;mYF7ZSC?yvwxWqm)DNwI%ancaFs8sl@&(K*U+<(|$l-7Sb? zOm%7AsGQD;(Ab;MH9@83+wL;7Mg2G+No(7!vx7@2wsEYb}Rapj-UzRc-HiOi2(rNQTZ_85tp zQA!bR%Sm&W^Dv+gE;d-*Z}ipP-+xFc`1GQ>v?E3iP3C6HLwD+o?w+;=_Vm0jnfr!hNS}7^kx!nsvGv63%B69N0@s-9#(SJKLzhR@%sdZx4(b0kZ7zTCNi}{i@ zdrjS?tR=h|zdob5E%*F4Y7E7goYS)O!RZ@rUEd=!{-lnlXPBxa?*QIG#JWaHuvJI> ze&fRJ^Xa{(OUH0pHjw4)U_4luRl*gV0DEAOTAF(%suVI3s!EuoV=G? zq3=*EtA}jZL?VjM-SeF)S2LP9q@rtBmH34XMe`PtW z4fwaVO8yp~26PNm{Mh#caEpV^PX`xA)Bd>@zJDJ?hgtdfCrGjYzYbSm$g$mYC|rFN zNmEiAa5JZ0Q~upM4#2G_5ZD|As!tFSxxhW3w6ydDwhTms0BgT>xyr>1;Fb)HS#FkR zp~Si#4{@_@<+OwhuKloF`K{G#Q)$AJgoBN}icM7e)BJS|?!C*Xe}iIJS4sjTHAZ6g zVm<(6I9)griNPa3uk&iu8bDj&Ilu*?&;BvvZyEuq{R;n4--CN%Z{y@_&`m(`lR+I zoOh9D=5Kh%EvmGGd0HbHKdEqJ8yt{us_Tcm?sr@h-^#+y-+hup{IE)-w+3^6S~s9{ z+V4K6&-X{C3uN~`v>0a|sNAT&r=9@3E940SPM1E+2U!QdjEr1m|I9>U4>ipVnWc)8 zKBwMpYF9a~z^=MPMLj-Tm2HYo`38B!4Jff!NE;R0fA4m20^u;P~(ASIFen}_s zy;AP>Zq?(H^x&Y+d0+e-twsm3LMxSxEG=208I-fXmJosef{_DLj3Xy6HwIc?VL=-i zps~BU9z1Q?ef*f4POdRs4qS-1L2fVY~ zNkw;9nV%GqD!xHi9DbS1SK-&o+42zGF*aj${W{aH8Rh8mI2emzT|d`M(=swbULO$s zi>IqZCMW*_rlgSR_G6j3;Q0qRilH{lT)H`2eYJyhranh?h6TInwmEs^EXTO{dAQ{x zR93!=mG{U!3|L_?Ond(ZJt6rtTaFp6Duu}~Y0#(5FjRacRG*e~*=jmaBJhi`(i|!~ zM&vq2mXu8HpQA7hY&oCUk1^v9?9Pwhf)??o(K)5S@$X%*V}bKVyTlYnDv(#*!KGBo z4K%pL6BGzkW>^Sux>3La$v>!Tg_Q$lseuOju`7ax;ZhS97d}8ZxNGkAvFbjs;T~L# z@tghpncC74(U{+MHwnVq@>RMgnUeSEe4s_!+7Zd21uV{>KYXipr+xvBXc@b6sfHDLGfDv)$J>wEbcp!Mi)*a_O0H zYJA+oBgH3!h1LDvxLJchkufx$|4Mw^P3w0JfqEbT7pbj6yt{B-)`j~=MBIeY(Dc_T zCrLa-PM1q+WTOoesj&9l{9LYA_d{$*>>kHu-&N}^%$QaSVG6+m^DuTbN)K!S#Kc_hVckW-T|kY`n3$MY1sNaEf+JRV zgHG7xp|@}pwc&)exY8jfvJ%5A47AZ_t)U&SCp~SOli!Vs(g>v{ZI~5>85oumlaqMT zl(`Z%6Unc35|$T+=Tat{h9v_V&sedsu|>1gjEoo1|6dF6qH=W`_ABpg@qxbV9FC`wC6$BCCR?EXxKpZlP}V>3gV(7yQMBKrshf5kU^dalbjT2 zu)&0ZfIX0uhYyAI@IN4{NIG4WYdvgD|6Fzd1^$NT5=+}${2#>?4r2jlRaa#oKI7P} z2KQ0u8pdA{GMKpG;Iy<%Omdj$agvT7uF|00zWis9i_d=Z^5gv}94hkP{TMT<9@&wh z_mrc!ZRuo;CL4hRS{whabNjl|4?7K`jw~ntrg)C)%POa9H@Uwg%cyjz-g8I|*;OQ6 zq7I?P)|L-J-BpZJ+v^^+Zq~7-aeYm6k@{(t*$#u?(`~WEKJ**EjM|NmD1*8~O{g{! z+yeYNDu^w_5ATl5>Tc(v7yGlG@TxUU1kDjkr`{iV(&2gL2*>N>R|AK!JYfbYshXtM z+{yASj0`mf=~^mJjc1nX6HufxKZ5q~<5wsR4Zx$`jAQO_6pj~ek?q;O(6}rjhFst& zZN<(bqw@7Ls5V#xZFDR2WS5RBfLXw%GU@o(1t9V&$iYCtuC+*n+2{l0yjd%OEl^g^rL^Ybw{(`zRT&@Uq+|Wbbl?GR>S`BUH~R4|#6W@wDA# z6B~4{0LvBj>@3;!rpD5AF6mOyFwFQEMNDJc@!RD1o|ZB)&lCq|uX7!wEO3$;EE@OT z=op_HZin?7QF!&4>)uiV<2%x(vZQ6$}#>_qK zTV=HBWfXH`rr%m$d~A)pEwQ6HZ}Uj5IgUXn?ul-P>r1k-TFknhD@yVBsHjiYJoy$& z$hE8@DvAa!Rff;^Ymy~$|5Q{wqI}k)4JXb{PD(8XkMzAf&Mv3oOTDf< zkXlW(0rjcqtCnRY=Qtgffm4L-vk(-T15s40Ef9WwzCHbO*A->G>p zTQh%eZ!f)~A}&PNf{=@j&JSrNZ#Z9ikZM&Smt_pCH*5wqF-Z2Qnp#j+NtR0@b;rX5 zdD(95>rdP5w*Hh~MHP{fk+s9Hjiiw#@Fy`bi-<+uM@>+W^{w`^%rtcask0zByB3Pa zSlHMkNu=B{uA!mbb$=RJZjJSs^Z*z*urKJIOy9aCcb21NbfP0ycw_(1B~Y}~^z;~B z)_m6ll#g`JuLCFdl&qyQV}~DlS`e=)xW>*!jxY>-ktr1+TWh-XCppY&{m<6F{uQLz z?f6K0l_IhE+4qJ(70a47!zn4Y&+Oh4*rW~eogm*1KBVtQQWGg0`kHLpX(I%iA&4I* z=<%DsIghGdwrwf6*yBFZoN9_WvK1%$Y6e!ihOVU21eiXe;Vy^G^cb#(6L@Ejp_B=s z6G6F$G}6J|P8!%Ews|b+@S?tBctE16$6=`hEeQ&wLPF*t+Yh1R7MClw%qD)pNi9V9 zZN-y`ZX>6Jr*fiFBLsc>VwDd$KC0!!8W86ElS5EW*oU$`q0n#4u`u4RSQ9HDn5_~SEqe{>X6HdPf z8Ilw6ayO=%E9m~Fdhl+Gl87oTz{{BAdp5%d89MJ#Lv@M%71mDIlV>5qM!}gCz4=s? zQ{Dw-cz^;6IPU+GMfPiER@Rn6FI$10LHyV)5!4 zbfjAY(iqXZ9o&n;mX_xSo1&^RF_ERIFK53#tg>Re9`0_{p2+hFPSOH1NZ#I8PMJDFsB==aeQk>r$BHf&@ z%LpNRJz$-PG7)>MlH_MP?yXH&;L0wBfJ0b)z!uk)zw2V5Jx?3)LK%NsS>EqhyYIVTzB( zCg*T5OjC zlqxf|?!xW}IBn&)GI-cfFb!f>%5y(Y<85(9R2AJvU(ZAoz4@_hmY2JM?;3Qg?5g$u z)0d_w)zE#&{LYh>;p40QD>ipY*qp>ww5#9{f#MnvVezO`ffEsU~oa&k&aOV1Z2Fn5fNFZ0;M`-Yl*!8o4=A>u~FB!cv< zBtYUUxX=LfUl0+BG3tQ~UX?rzFp&Xdc{$i}GVCC^dnuQ#oYo7f>u&hU;Gm%AK-9pW zfcUm|@KU`MNWr`P@cr&?Mdp^k>StfCFo=lRKUqo3d~BX@KFwW*xl^{eJ58wIc_hu# ztM?lz$N;wJJk&>8SNCp9z|D4Jo`pf$xc6_bsrcV{Gm@A)PLbW{I5Q&`8%T9p)I*!s-XcQtUu)x1L~(_2bqQW(uZICo*vF_Eg& zw8E;gdKeUs>;0HCZZX4(Kc>d`VIQx;2yn*&6r`~=^YIqKtp{#=Pa^*2u)!rQKDE{9TN(>t|gTZ@iH zdjJKdHe9#*t)lOIqfX$qs)I?zFf~oa?jF6<&kH^U$Cyp+z=CWaNXUQF&0hIteTW(A zE}6b6(Q{goqlncTJk-f&DtXzjIMJ~6+c7EkZ5#;aCfIw2nuf!GXC+A^lH%nIn0CPb z7p_Z+euvZBBhP{@JG(f@dHP*@{skhXKu~6cEfN}ipHHevg5)ECR0hzOegOP`hEvE( zO3I6M6cs(x{I1&x@o>`8E%&>UIEcQ6gURfL-H4iT-TRg)zd|m8=$0V4JPDGix#e4DiEkIQRVmiPis}#CFi41n&wXqA$(&U$gQrY`9DWTt+3P zoGh?MTw#E3NEnqmWN36T+RgRRa*Y}ZuK(!CFr0q+9-ys(G#e$e2{9>Zp`Do6*pI2H zy%21I#G}B&@%LAq0>dDwb&TgmJsiu&TUP^U6T_`La8OzXT4rD+VQ0%`U5E&_Sl4dsV)xooB3v_{L&42aktMSe7d-eS)HfEc*~zkKVYf2nA- zr?^yjAvMDo+rTYW(8D6(P_2qlF3EW6wBaqlot&6#H_*^S{X$%DB6V6!Dlz8O-Md@9 zw(p|`1g~pG6A$LGedVQMaQTC8z94X)iL~m$RPNsj`Qb)FspR;qelm_LpIMwtl)f@T z3wQp+MtO|4AEbd05;8XW`!$b6CB&SF1b0!FBK%ZfvVy^My}~0B_4P9~-LC@LApt#l zb@6{5y~`EwCptM6$`#jR(A=&i*Z4jydEp&R;(l(CUk^-(6dW+)fRe+Q_w!XLz^{Q^ z4^dt|Kg%fi9GSUA1h4?W^!$c-74Q*-YVTc;9sOT@5d>o_!{jZUGYBI9!u|J ztsd@q6o;A}FLM^Qrm8anAZjUncNnP4vZAWGEohGpUUmIdgBm*)h{`?+dIY<{(plKO zYH)|<3D^g%m&&Nz^LhIuW$fOE_oj7Vih_Puu1ib2qaGx;NH{4HEYmmPxtYu)q z&5RK4nm@XwuHkXFj=?W?c3LvC@^tA#$`vX`qO50vNn`(bVa{OE9NX5`Fpnp4Mizq#e(Qqc- z_t^$2pQE9xjTX*b2QHD#4E)f7@az7ydEa{W$I`HUJ^&a8SpxQ!ls0|nyOlsQNPhoIHVrPDP zd7{-$1!!(5f40T*q0Sl6?*Ms(5ar+Nx7a=dPTUY2kp-6R|D<_Y&t{h>&&WwMu9e#Uf6Fs3IxT) zwXN=@>dNC(lSbi3bT1iSxUT)ssIaFrQ2NWm5Scn0#o9uw9K(u3npJifPTX8H4Q zGOe^1h?JPD-1uJm{Q~cEe(Z~u0AQ?f;nflD`m4_LTUjh`WWkAF@cK89K*K!o+c6zk zik%X;UWPE{u2`;b=q@1#y&$YJ>KEkT?;87D>jCV^bU(%@E{ zFf@IQUhUle*LxMN_#h>NrZ!c~xs7m4C$Pso>@yfeNL7UeY#*zsakr}kwUYbIBBuZgJlyPSFf1^ zr=R>9FZ^xH!aJCiL-p5iOG@FUEQuq()IV#c)z!jVOqQO>aDVjlc|J?d@~)wsed!&3OA&}yXg zHCfBgB8&y%gIlyi6|%(dP26ee^FDS6`^%y-{tGUnR$zOXA3Qj^+m75)MbA<5H47k4 z?k$42B6sMY%yw)_p|3q2)-0@kod2E^QB@ z-&j|geg7Tau%;GQB0+`I`tFJ^D)w~I;P~Kj*?q2@UR71ar+lCWur`(Far)w*w*Kax zv*V}r338)H&Gb}4l`Y=YOo1USPacx33{=~jfoyoS+*(!^2gZurW{F+d4=c^;h1Vh- zT7-_V+}x(SNG)p))4Zqth^ngILcV4E%mIvLPnG2tAS2WaEYlhWM3)Qm^N7&`xu21y zDulOg!@uKq!r&4zrLW}A9LQo%>7x+7>O?s55(PDV&y?aU;NT*Sc;^= zX_p|!m)DIp*3|kz47v>%{yz#j&7y_&?=Ztk=Y`7dy-= zCI_pW+67@9i*noo*Mw2$m}2gJ4ef0%43%7=fthffl%G?OAGit20RnKSjigC_BmzB5~E?N8TbB^47kj{ z6O_RO{mv|4-aXOOU9jK9wil0C2IFr>C=vU$ zyreI6;eEV}_S>w|lnF=swX|ga)b?8au7D8yBsu?O*Wzdf` zGXLqcOU@|ciU5%m44&J?QB`p;xZOZT6#!(GV4WCy{R%>pa|Yi|SXUysh!^WY^`ImK zKIK{itG8BWe-V7GS6&3LYTFH0p78JGjJXDaPZp;0he$aX@Jm5AU|oeRqVzzU70FPp z%{xT7q&+hhNDWrX$vii`@9$O`OgS7@B&>>O@X$ZgYoe*Rki%{>Kh$uC7~LDl-nlfE z5XgUYs--B`RRl^8e68ZF-pk;3LChXM*v+1P>UWaVdTA+~O+zb}l9*`UmW$^5@Zd;k z>o7Q+-hIC(#(F9!Z&JbKTew-n?I6t=JGV$y^q-UccO*UqI8zG9j+0G9o}E$)e38u- z=KQ!?Z7-Obk2X7ziB;o=zAti$Z6$UeTg8bF%c>m5y66EtRtbN(3)v0(iBw0pRiDG` zGU+s7jerm!Umu8khnv=+jpBn9mM;94B(}CP{RVDxVUDwdoVpH444gYF#VKmhmhUIa7bU^jc;o}J6Q;>4ieVkbhe@BBE}cB#s9=2#MnS=3*fTesI(>EW zhq+9C;=ymxfzW;*q)qY*3m4A{i$^sG1zhct8d$A5vod7NB2?`EVWSAS9?Sxe%ScDp zYBjMu@3CI=Jdxwp9G4C@c9<>wwxQ={M)c1YY`={m+`$m-!BfLAAlFR5#xyiKnyJF{ zgW(7A-*C)=@JmgehnS4}y^`mYD(itZ1wP5BnacARnrg|)GN#wqJ0R(hf!gm{a(%vf z@6a4i(ah_uFG`3q1Ck{Yow2mYpf#Q;Rt~nhj4`K3@fQUo zVlzT-f)IKOPSKjkVsf^V0En-D543AP>;7Mn9=M%83BD_lsdA_#=jPEE7*h#WE1;b_ zy%Y0_Y936Ff|th&?l3*19`QU#^*0yDR6kZ9aPg**XW-}$mj0gkjdyq{n%~34!b6jR_EwgzT&a%6yEZCV&Zh_v61pt zue6$7eY)0)?C}QOoRZ|1ufl;J=2IxsPavlgNsI?w$?O|G6&7yvQ)h6t4?O2sfQa{fv=Ccp<4uyOoBdWsQwtiC?Hx^%6)H~jU(s`KuutCQZ@CjR6nP}6;i zM!@9vmO_G$d0VPLa}X|daJA*y#b$^Cka&H~eRHDn0itiDmHx1+?Wo^d^>*PHTHMB} z?Xkes_4(T-TI}KUd_CSB!Y+>EZePN;>I-a{13DiDt#hh`eS1;s{!A7QoGNT`u$r`o zAJ!NJXRPYDuV&qq%$=-7sS;P|SAUEhXr2Sk26&2GD;h?E!oyzyI{%J7{hxk23zli*&>I*sZaypf zM{SjTU>a<8_6ihmK-90m%LGpbWY&xHzWkcqxaG78rsIy(A8xOx!V zCgzO;B?@;)vqh9*329W4WOK@`_|ws!Yp#=isb?m&u+x4GXIF6jnXsv~!n#L>9(t)B zmHaM|^Mjn7Tmn}-Ji5PCA4?kK{pmmAI3&K!mzk_1Pf(N1(KCw#>XzE4dwX$=H7O{? zog(L!ywoFsur;aUAUX|HVeYsgwW=jL$2)CRQXc`EKq@QX)&^VCZS|Y!5gXpZ9E6Tf z(FqsKN`v?W|6dEBQsY74Z>5>BK@?GMP_(8rQ_1Haw6^o4*|c*vAq z-V+8zY#1uS)6%GTlER<}dCoxqr`nAr0Ec}o`D@2RhfznF+70YjBO3-GA&RUtk?#zw zHnl0u4TX)BW<;m0lBRO>BN;U7YD%;9ba%N)UJ^exCn`3%#7e5Zr7p_>8lb<}Kd3Kw z#3dy1zI|)e9Uzi@=A~Ie36;-qQFkAv zU%$4VwAiWAH+(hjU1DWHF-^@|5IokbHX6l2dA~K1u3?(^@v*(Q|I?6;`?RzRWTCAe z?mi9yEhEAgfIt;KXW;YTa@y1`DJc9QN9qj@lFq zWpXe|QyPzUnBXjvGs63$bP!tgF;i*-TAL6P3S!wa?2jHEG4?6nnyAvyqj&SK7?|JK z$U2ME{0_pw?!Dy4=Fcv3V_olBJC3EOk=T@R1V{aR4I(6D)>6s|{myB!M$USbMXqIZ^y(ZZ!KPEhcB2%Hf4BYLA4eD-feC!ii@(${!ZOg-WHPns&5>Y`Y%o6 zcIL#F?w^;xkUV81TplGw^=7dbUSa)rt&Alo9^7&uxU4UEuQ|WH)XEy2XBS)Kd2wo` zIa`-JGf-NMpawO^U^mvS%Rcr$rM(KT|NhvM%55A0VE;~nwH~Q`H~prZx$$ND*vXRp z*NCZBbg9riNRR8`m48+Y4@ej2E(Bxqy}~p1S7=gs|H*GbbiUwz2d&_44uPsDi3D$c&cN^nO7N*UQ=oqnymi8>KESRcWk9@^^*j-kcx4GTp|4 z0m);CN?xAId`hed2lbpE24hYxRy}B0d2Vb-}BDywy2dY^>1O= zU(O`d%~MCaIdpWY3bejEY+1(qk*d6&)8;2Wx?hK5$L}c=mB(L`1`m*$7UQ^*--p}E ztDj_3w-$BTQ9ZCSLN~hFB4%1FIPGD5K;4CKWT*@Npj`Of5Z){F5BGeQUf+r<9Y?=G zsn8a_HLyo4rLcDA(|}&DnHU43`R-G;cVtBxB&tRZs8_vHL94uQCVp?HBBN$y4gHuY z-LGO4@m-$R2lIvm1xY|@zk2 zlo|}WA?LsqV$eQ+BB**M`DvS{ky&gZ+^l*E>f8F%957tStW{cC=Y9d>0un5kY85`X2J*oGM7@K|g48;En*9p2uS`4o zu3zSw6B>}lMO@kw}$% zy#bm`)89VcK|w9Ue!APf3RU|ib<0r{qKb+=q?KpRAc{)>!2<=+BXBZNof8%&$nU(teBQ4IJawB_(&Dv?vMh3 z_)m07zo32NROKZg^%T0Rh;l=QcInwlm3CDiyx904?*LyYzp@Ctd60fY_CAQ?n(V4` zX#AAu8&fXQ6UGjK;v4ARt&0<2iHP)DJl>AxOzPqs(Wj>S%nDMeXO3iJwayQ~taFJ} zrn_i3p4RW!XPYt9Ia3q3?kI{9NJ)u`FM)M&o$sL4lL5BcVUok7CP zGN8xgtwIzPIXyu)xN&mvw!@E8>TS}7?e@lgjj58zBmSim!JWS)Chbm07?>V3WJUo{ z-Fzr}AX}3ii$Y=X^uCY{d5(PL+iAA}+eFNFMnIIi0K{?;j=%U*)Z_G^$(VCcb};mN z4XUTFW8NRbP|KKSgqcxPfIG`|+;y zK}cCfh7TlFfDHUMND10OYxKw3kVBRTs*aWbqg#SOzYUtaVU9$C-T?XYdd8UzF@``) zCqJk^_JMX(pr^YhtL>{dzSnvVec4N+q29%Wninr0o2i<;vze<@;DMtHsU|yCW!gXT zapQ=Q?7IFS+2WXOOmf?+sS`ZvvIq0z9z3~7QTD8Zfb0%cSFV)_4!)LpqV0>bM73XG z9CsT;#9AF`CmcRQo@&Dr%tn9_kS7DC_a!8d(U#cLW@mpd;#Bhqo9E z#fflBrQ_n$Y;9Ww-R-9k%WK?tqk4G3j4ON^hp6wtOuJowW;0_4bjBQrXN(b3Z7N&# zKU4Wk60rCQ9Zj~tw~>4HjPzd!7v7X>*`JDTZRM>?19qzOr{hUXU4w_NLSQxZ-)^7s z#!b1U<-3XJ$VdJ(N^)TM8iY;7^;~yoaHDZ##C^D;HE>ZmnvOT3TD*V`o69VSvWBQ8 zj-@`x)!)V{Tm1y$Q| zaT1?LbgJrwO&H&2V(~uqUYM9%`J9VBkEQr|v%@Jwvrb0Ejx717!0RP?YFQ)_6Q1&d zmIW|!OCj|l`@bIje%>2}1(9a+&F90rl-ZqdWk2G?44pbz9HT6cV^Z(Fv7Eo2D z-P<<+k&;e9x>FiyX{1x6rID0IKoO-IL5|C0s;@i)B?|;^~W@fD! z=6KF?_Py`Duj_a1ck6#tUfdxu{yKV+Cn9*Ws66b`Ckx%O%Y;}u`Lm1p@T}gn z?ham(7CofWCX{86`rup~h30y2d#m&mf$}cL(@a^T6>-zd- z&Hcxr$Ov;4Gs@||0b7yfCvw?1jKYr0yCeK-N`*UvS@!udej?|Z^C#EFv!a~c*>BvC)8qGu7R9ZB zi4TkhyZ~Bp&Z-2f!Y|NHhpKmvstA6bXpoihxfS`T&!`6kmt?$F5oObqlAlRc-)G4N zRePoMR_%6k)GMHGNhO8QpcHh(&~v#@;=9`YHgiFasaP0(gH*Z=R#D!7G5X#bfSf-d zfHtY*=b~!za#2>*4kW*Rb;LzOvveUVTY&;)FR2US{NVA7GU3&D2_PQGzd)=ZNZOE9 zWqo4EmYWEo-~_wYuYWJba#g@_5(+Ch*Iz%{0{-!wH^$NjC+nY;kU8o$$Te-q=APNK{Ub2ItEJl5mQp^+Q!BawB}jEggaTzE!~WW%5hUD| zogBOR5gl+&hlB<1oFF_207Dn)?r0TgBfe5l`66`{43x+{iosr-)@rmm=nhp>{v@@x z==;I+Y}Wx2h);)$i5y7Ig~?8^8gnnK*f#F3&P}vlUF;))#^2dkrQ&9YlmR3(_`v}5 zn@AE0h{L$A9T3d4UdOh$PUD@?%o+oy@*&3OoAX#^?#I%MLAMi6^s){5c z!!c57!s4T(gt5{So%gGk{dY9nZxNu+NrdOCZa>hs>e?*%$HKb80dGfGcC z$BzrCyG2o9vf2f=w?>j;sQjLMD+^6fPE@h$5`w6q0p9{@M1ul=zZNH=R zu9=gmrh=BxfMeuo*|TbY`vTFIxC=Q>MV4F)P0A+yQO|lN#uZk`rp=OKV!j|AW5^b1 z8z4tPCPLG7E_6LneK$D-o^#{~`zq}5v`jQ{2EPd`E@=q}0Ay+s$FD))AwWl!1k!QW zz1cfk_YWDX+A1*h4}J25YSWjqO@I=4FQ6$71W|uEOmua-fy(_Ao>zn4n77a@g)$47 zMdN~ftWm2MFvvyukM$z5zOy|jf;~vXz|7ROt66YLuMei}>|oP`DG_4ugVhD`2oSL? zfXaEIWwGn#9Z@716?5;gWMobZxiSrT4%KzMBzcedq?G3hw{0H`jQzCxVpB#hA~M6( zzS-Kh(0nLqWT?N>)?zhB#YEirVsVQ=Ff=G;uf-P49cAQ9b#=-z#>6wII8eo_xnhN1 zfhbH<`>6|=pSe>>-i<~JS+>8820LPh{6=MtF6V+}Jr-q|Sv(X&T>*kKMZ>JG%Ntcv zOJ}>L&zkdzL{h0zhOQTD+a35A!N-yUpvNHZqxI9tBFNI-E-cb-_Tf)HS>zFNy)V_T zu5GUTNwR=HnD)q4Mk91;hmlXHU|x#jTD4NNW+sE6U=sAdM|01I5CE&Xok*~zdMvRx zN|&r>Exk7jPZ~p>vHy~BgBuInK{-IqD-+~?fFvP($5qoj=MGc)Q;F=dfO{l47=J57 zk?i~WOMTw*G@z5YVLk15-z>K;WPgblA)X+nF9Wl)ZC8$F@vC3o`Rl#WXr;OUvRP4MN{#^ z@5-05GWZj=t24aFp5BKhNZZnLu;IReaQD!IsFinyZc(H%wfXOksL^RP&a~Uz4(@VZ z-VLvOg*5&5lNEO2-geD+$jaq3hG2MR&Z*4zNOx?i~Xm6AkCCf`&${)3v=; zS;-&RkSTG61u^BMa|2vPJ9z!eDI8$3kE}KTktWZm_Rc66(ccx6mRcQGyL_$7 z(<*Y`dYyQFdhg-ij))G@R*5K%vV_lUw=%;bzZfmbtSo4KcMTiac0-neiAr5CB+-Y| zwHb7=W=BfdpPvVr`IX2A^~+l z_j?B;GA$h)L;?F~ttL|2uM*YL8J()AD`^&LYVCdCAzBTl_K^g9%f70!;cJ-WvdgEC{fhvbTIu|V$UPhdyDLk(c_8ao0gjdanM;V?nqu|{z zYw-~86HS#K#!1g%J_I1a=J#skNCcoFaGuZ!5{lQ$u_+pfK{9wfE z5%D9k$K#HFiOc4tjyu^x>wlBemnAib`4-Ha^XE{A)9@>(jn%WGNc~D&WaVq9@n{Q{ zro$Wp&pq%jPQ^WSC-BA_?HdQ`3s>*kb#;-bL|3oi`~T^RdjY|F9oo_5>K>N@)((5K zwRc_)f4rC_{AASaLmz$1$d1H>y(5S3%9wEb-h+jATkr>B+yh_WzP05B9J#P!8-!ud z_ZGhg*H9lnarquW?|Cnpkr}IRCo^+f^fWo;^Aigid3EL&I6DJUCAvowdL}L~w2Oxj z;{*3HTtcc~>72G1_0S$m`AqfC&!$~l4WGuOjY9Sc1IVuA3GTjv*C(w$%H+n*GehiI zs(0wz_9E`a0Ly)`f4`P3H-|H?zxs1UN3XaHN*8Nbrf&w)ZqC@V;*D&f2i^#7j$OuV zWMLEi5-GUQ3!7t75p55r1-K3%bQR>9g1kZGc#QP)plnhtJwR{UR%oxjL-@jBVgq8h>*>ejKhY69Iym}Q6$h;5vjCY_%d5|uy){Elyd!w?EUfcGAh`5P=f9(G=axyySv1n8 zp^76M2#O_L&}9PB(U5;pJV}s5@%?aA+a%We~(T zPb);_4?gfRavS}V6W-QpCnrfQoXNpLJSY8_gwju#B5_bW(}h?wd1M8J`h-@cyHw-_4dc53u;RL z!?oUgYk(ItVfm?!C)~iE$GC}^h`eeW_vawvwwTViZ=r&Y2b0Qtw4oj&waJ4^GH_V| z?GzLQw_N9MqWn!%S6BbRv^NM(1X2)S1`i5W;@A)x6N3wjDDZB4g=PR4An*?m z?qm&Wi>nDgZ1g6iET_X82?fTxT+0O&9GP%oKP4~W8+*Z_feWJ8t>j)ArHUD zud+XVC``O0Sp^0-qP{@8L-iE`=#YxpuxZNJ#DB}dVgS?jYle2#txwL!)g=ip(!aq{ zwGE8Gs;;LO4C}|QI(mp@ zJ6AOgqxah*WIMe4fVXZVr=`>LU0Qma-tw1q3~?V_Vk{E~(1f@*guI0`h06n68k=q? zf9g9S#E~?bGW*P&Y97dGZ>Z6Mk?|TT=d(m?l&;$JdHa$Wlk*9)Lvd!lL*M)ted%>%28qI#U7}75& z%LWu7G=hl8Rs3UfMRCW)XT3h!M|O6Fb9L;@=+P5OE2VTnQ54(zcb&R-y8bpBu9M9* zGu4c0k`GznPqtp%pU*8S^74K7wzQ;|?u3PBn3tg)@ z3lqo_d|DKr$2K8_0Jq`V7AxO z*7JqYb&u7+R(a`PW>-r#A}+WE%HELrS<|{5`qgBy1m}jIR%y@}Z6@>GE-{Eg z`=vw`W*-%=S56Y2J<0Ubhv80E{wM2NiecLh7vH;^C}NI=h-n9TK0$tixx2@}*K{ z+gka`Z;^uXY8fHmqg4VN3`7Dqt3s+UWP7F_z0v$=49x=c42sIibZ~bA%f!=KkGY{Q zj1k(xT3;$!%4~=?sim8`Jc87Y;dUQ3SMFhzGd`Ps- zGT*xnuq@JI#sUgbQkzw=Wlhi@Ov??Q2+bKyFu#B`YVF^PFE6jZfJwplHHWqOJ1HQi!;DY!r*=L&p=FGn4cOMW+#MbFEg z{;9}jEe^1b`I5jDkZ#oAb~^IhhXtm@v>^QoWVe&=BABozU7APB7&j!0BEmRDmBmG; zxF5uMM@-@8$y9Y%YDg+Kjz&rM)22M)+5gi5)biMkGpEmLY8UXVee5uPykIwb4R&b% zJZ^A9O2gw$0u;ACMWHaZeB)DwxSo~PkRIiU9ts!2#O%;08lR?Al4pYhxl8)9cN8M6 zRY5*6w$a2f{fCG%B^g#aLw~+Z%%Ltk)*D+F88?d!Vdbx>FmH;Q%+Y>Z<%o`f>R!*} z{2_9e%4sds==>1G;H$Y z%32aoW&j&#$G860bt7%jx1acABBKz<7U*8iF1ul@f}lOKG-XGJi^?bUGW6c!7wwMk z2{e$d#!Ul)%H-o37fjiNe1EeS>6KZn^(R82-nH7sm35EnoYB$ZXXq~n=b4Zs$GCA@ zEU7aaSmsKrs;Z_Ou?YNrGsVUBCA3u zh0U>lTkX`2Y2jylaAT-UJpguwwdq7MZTUao3=a+?3mnr z-+Wm8)uwFK?L^hp?$7fEgBGh`ia4@i?*_Fw)W_U=guDq5qBZUcy9gJP%xQoR;(v7S5wt`fQUKx&b?gdji7JQFyRV+HzC{e;920~$M0PZ z&O_-@|9q0~v>9!Gi(4GkIj22X{%~JI_r*00?Ks>uuI`5UL-z$!n~R@1dV2CYId{ur z_1v%J&90}cyUrqIJ<-)r-Zvyr;q!fb#Y238)VEVRmN3}6*0OGuI2h=W)avH*9#=N4 zHV(~+|G?auo?dnK&X0G7Ua8^qIX9uVc=a+w4TZ`99bc?vGY~jH0U*5}MCJYPc^ZgQ#0&`R3 zamvyxKqAs#TwOXncy|+L0g0VpwI#M9FQk;|tlC$y&3AMO`i&rlzYc=ThL%-kIk=XK zyYQIY94%M9hKnS+rvnr%h^k*?Zs^!;I?-(@+lgmGFC#RX;ox`5NUovVX9fJ+vFU^| zgW#TLZELQ0bIl}$F~0|BI?%9k%?FZx&QuqD+u9YT$j;72k|!W}Y6%IUTy45*PaQ@J zx2LBd+%xpf2@u#pW?nEV?1pK*G>qJ9mWh+p;ob3uOYw_=7ck_~*4CzGCeo(t%`}~- z5n1GG=Ng>Yaf?4Wle_EA*#6I*mYFB6(CG2^q6olL&oOCU5+Xxn7-NS^m*kA;JV)Od zO<9lhp6Bex@mF!rO|30bR-thj{I*-FtPSC+oliN~mtl96mzntrQ~@R)iw*Q)dI1Xk zsi!t82C4FKvnmswCSz`#;Ry5^Y!c$9s|5FXc|%()8KInJy9{YO+rR|8B)X+G>7EFk z%0IOq#rfBzsBM4WMM=a^al?w*X6>&n?l3Tr`TNBzzn#{FpWjr}JK^n$>q9OmmMb1B z9{LDk2|A&Z-61%@z`5DY%M?Q9$&ZoNY6{S{pyQvx2jd!rEz?TpC%kYPo}keNN9X?j zLN(}g`qEKrJ^OY&edXv%uGgX-U*cLOW)yAx6iVR{F9hB~rK&x3^%w5!>~!9(o&pgw zF`P$r5f#e1aiZu-44F622*eJQlyom{zC_%>)=mQ}2i%|~9ZVH|O;gXt67MKSz$%}w zV9a#_^3jGJWyHPH;I<_V);75Le@^&VmsUZFmlgKYhQNl%XFTg2w9`$-`&{j9z7Ttd z@cCNtpS=Y4in0HxCD11(uSP#!Gzj^h3tfvH*|i?R2$Ym@6VX-12K-W)K3iO(%;&*MwsmtLUblaNK8GN$0IRkL_Lk6&sd_)mbR;-2h; ze7OiY>98-Ah=Y)ES;}0XQ+~1d8-wAPtVi;1KA6&^0)WzlrI;FBW;0HMrRsg!$$Lt7 z1%)8nr(0x#*I{q-`4Z)nKbYr9AA@Rj zW>RuL%C;m!--N(0)wT=rP>NX#c@FLLn#Aq69V09EZsRXmBXy&l*CD^NXjg+G^YpeQ~IR@tCRr(ZBq%5@C*#i?e z0=*43sWHfT`}q5b*tYrz3}ijD1$%Gah3u>z^YYK|5Zu3iAKWe8ye(+K z$*xaOZ$5uPh)<|2ZDG=Hr-ta9s|ua%F)OFP!t}Ba%%wJbhlc}YKU{@1Slr#z8l&F# z8jIIDrtzfzY>Gs*nDBLk0pVfx&K(#Va)m1wjlqMNIpDEk(r^w|*9WP!pbxRBp1In( zyKpbOzJ6RA;ah?8pfunQXSMSGA2*i8t>2nyPGMEt8Ee?N|FVapJiz{6RH8EASD4*c zWpsKt(RDum%*97}1!jZG{4c&^DuM?vT75cLCP_vvofk};!EH#}bo)k|pKsjR7b8OU zOSZVFaLvV*_}h}16IsJH`H&d%uc@WwBV6+VApHVc#y>Gk$Td)D#rZ5eg(wwk#o&G{la-v>TX$9Bna^ln&2CsT#4L?+F{K zM53T>okE~B4=EP1=!P$*W~2R`w0nO!*3!#*J_Nj)IdO>oZGed}+}({QY{$1|;{S>| zj8x6aRCMbe2aR1d${&S1o+CnVbpXH1|0reg@3(lM9 zMdrZOMcw(O3okK8b0!t3f+Uj~qe!__xq7TAT|KGEZN1z3a}*BxSdNXTPus{+-^nGA zQ^qPb3)gxQsRpM~G{J=mu9*rpHa)_T62L)fYTFa@<%Zy2%Hi}F{|j~5pzNryc3ng1 zzCtx;ZCxI-b`&^vFDh#*fo%fc4fHU@tes2vP(2B@uAz>LG%nfK4`v)TgW^_Q*+$NyHy$JTC!sHBbInSdvo@_g>@}ed z6`F;fwT=3}NKF)!c5FpZ=UZ$zN#%@>n6iJ_s>mSJKGuqodUJk(8ou;i6x;Pvf_UOW zxn7n=jiK*ONlt3v-?#WHw#OgPHQWD8qOQjeJvK!V7A14!O@auYE1`VP*FgH>)Ho%6^5pR-w$!!4X--X{)WHS8WhX&Vfdg;A2h1 z6xJe5!>VEU%+UIT&+O>^3*mZ+&b8{X)lyj&J9YHKMT<(_1ykx$Xc4 zy7((HY6ZL(2c)QvN<~cEUVpP+4}4f^YFDMFWzWK>v{=I{*t(}M;KCwODm`YHx-e%` zo*eQ+8!2UQ3&TnJ`hrj12d4AdG(GvEZ`D!Dt_cI^bN%Bza*FXBOD}s)r zb*LB#kiEh#EHo(1max2b8azH;rG4{KpXdXOrvQxyoOL&$MXuz8gc=AahP1S)Qlq|s zfq#$1Brg-em4|eAg)#J@!BjpWV1B;#+1rxmLQbB0GmQD_vjs#sjXbB zIjhsPO_-va0?=K;I{?A=_w~^*i@hoAA)ohepUMx* zbWwYY3GJNU!lI83K5L5iPbZ^|`=jUXwQnwU=`r(Ybb#w!X(7 zcq6JbS!@9b2N2m*Jin;-GF=WHHh|rbGCT?C$?~Igt=z z*xuewD(1rnljqjr{?LJ?ow8Q6j3?XlcI1O&!}<#TIRS*P#4`yvpA%rKtfiJstJQ95 z_)C}Q9a0-rJrelN7BXI)?mK0glw6Q;2+QgTzp?o@3>%9(^uK>P&cjLObRx51RNxk9W)T&YKSS9Ss5-1*UR$f}^e?Lq3?`Y7n=R`615bx7$3^C%U)IIVtzuUGdG-uxj9Mn$H?qQ(oi!l~c z376@zci7m$fEyb>$I^xj%{RN5dMJECQNJ5*iEqpkg2w6c(I)pd=M&M^xb zdcLZMOSWgnTgV!AwNyf`6?J7MHE-{ku)FoZh#cyQdjlTIE5M2e0?-68rUUEEkK_va z9qzRm`*H*J5LP1Nr0|SV2f<`pxy2I9$l&OwWrbfJn*@twIpnE!Xm|&?!6?qqeM0Bw z0!O%mnPS^!do>@SAi{Nmi0wY!A<>nchKv2&>Ex!MldyHFLD0#1Hy^ znI8L%m0OXhAN5(ySy4co;zpvL@zMwT(o@A*M2Zhp$pYXA*HF5u7A@{bQc%6lP>0&2 z?f5rrb=Jutu{E4tqkf4khTgGpSHOg&85SXc7HT?~e1atMAp!FqjYtFrAkh#stG~)^ zC`Mf%@ZTL6t6DdqzKX0>C&z-jUTHY3nT!Sf(fZ)YnmC=Jzi@LY8Xf%E|HD*Nmu)@u zh+5IcU1ZYlvYzW+9S1a}i0BqkK7m6#YwvR_?gP^=|BVkJ1rnLoz`Q@_?3N>h4{?fr zSEP5l_fXvi3nP)ZtVd-pb7*a-!#5sxgrbC%w6QX@;%rQNJRMo@0A>85qVwz?VmfiH zs6>Xm2-<^$(@>ItuoK9k$YmIOF&BBAMlUO^*WL!c{S-AYgRN+*&l(QYDSAdmO6 z>wxUfH1Q(#w_Vz{Y!ZEnOBwr9DqQN;7@v595#63(=9#IEWxeD|SGVoFR;e^$V%?m_ zAmOvz$?pwqWD2RAGt%kfJ2Ql+4D{q*E3TzyDKIHL`a&I)MSNa)AXdktSaEHZ!BwI0 zTeWl*j|_!~mP3nVb9I8vLnag{dUocI{kevSRf##oP3JemqX^oLdV*j*4+kGEj5#a4 zn;Q|gJ~yPCPjX;jK--3{F_5U@Alweo*Dy){fw;9H_i}u)c2)eAZM#8eBQ<86YHj4; zNJqYH!%J1luz5>qLR8>`sRI4N#?H>XD~u?}e%ABhO_-;RO)x4mJcw>y7yM?*{g*b+ zTwC#Y7)Oe(_vS|Vr zF(1#XtbT~rbl{TC9w#6sRMVaIFu9BS1=ggGYaJ;?RG42ke4{OU#x>D>6cR$u{D2@U zq%%C&z*G2y>eQGlD^!Yw)%LTVxtmTlK7U;kj%XZ3%Iu>M#xO>Cj-CMlysS`08H(3E zJ6VGUfn!hU=;;$cANLY$&#&UT$7F7u3T{7x{kx`PTx(u0?$w5T_G2oc{odq1FaoLo zjb#YdYmnLHQJY^p`xcW;IgASVOKC5yboe!8?E~i*`hTtJucL-5& zY}#ThCdM3zXEbADX-kd2dERSdb7WIMuTio7RMV-oM^Ah)LRcbcd%p%;;Y?~D>A?UB z1xnNBs|g048ESg4DQcITW4ugc)4Q};*Wjg!4o1kL;5qGZ(w^Sg6Y`Nd>{n5PU<;NV zKH2@Nw7P<+topw{R`Lt8T#u&S4_QJO>2|o^HALSDu8s^YwaVllKTH8tuutHb^5Fx5 zXohSRlLIeNxY|mkX}JgrEIs3178tOM1*9ox;)6j%jtI78a^l{P=n+i%qANW_SAEKH zl69ym_D8vJR0KZR9>sKvGvhB+#)LEZYj8JSJ3VSYVT|-C= z0rpR;0Q1Fb)}E-(Zk0uN@F~BMfF5Nf;jVUlIJ3vPE71CB6p?(G#a6f3wzdk>)rRk+ zY@mW$q!N67eyl{Ul9RCaH}ySUJU4ybi0w8|wkmP7v?v*a11kFzbZ+33CCbV3GZog1 zvf14g$!T)D9eQ6&K=`DBS05Lp{k0ZoJ?;)Yj_fmdqiRO2vly)I&If9blI#Th0by2( z3JtasH??Q;Vok-r33Y=-ne}!`GAb)-x#E^IUFVtnpjKA9P=1W&c3_`a$J9@A5G?;$ zbXPV)y0mx%L+ZU4_Iok8Ku)1T41GVRLMMF}FF41QH~p&EUT4v86= zt&Uj#zNIi9tdBna`Q`@djT=hZ$2w5bk0?(DU2!J--zbe!Q~zjUjpDKX8l#*ht6?!yWs5Mf=ouIeKpp(LyD@xDK5l^qUKo!s=WlKOr(9`T?Kf z+WNYAwL!o_)TQ*_)p#{h!BU6UB)yCutw2rqH~o8#2V`s`KVae)XkAVD$jQ9iMGO2a z1bcfa;djqO9ccx%<&zfUD&CP$f_w(>DW>rw8*HXrUt@qd!0LP!NL9HjA$^9YVk zEBQY5%f!(GaSu8|TKa`AU;i*>-*)sqAe4DUrPW{>a@+jEsdWjl$ib5QVC`^neEhTb zkyWecJbY)P00Xfo0`LQHbgm#cWHvTT#W=+B4vn$s>1w>gIu8=5hxlo7#pFls{Cs6* zI;4BV_iR2`tn58VeeQei&Ed2X#0-Qj0umN^PEDv1XcdApeLcz5EX-N^x^`UtxoQN2 z6!4Mst(g4{!2`xpOnRD%v4;Rg^G}>Z{ncA>kkJ7A@<%d3>~Uo#tsmi{wBpe?(g}00 zX>6&Sc3t&HKv_kCLy=+&@*JYX#5%6Nzb7JT-<1bK8+>lyWxv%r?E+RXuLf%(;!*+n z0In3FVp{z*Kc#{2Isw*?L5hM|;mWx`cP1b>BR)BKYl?lt733?Hurr_>L^QUe{hihl2sKNWQ<+JYDo7eBL+@r$H9RZ3lkS)nMw3$jBZIBQjjCE5#}U4w#4$5iqHK zsyHUC*0Dy9{u!p3(=n(0sz8G{2oc6W-SnH@kpQtfBEKmt41--Vu2 zaXYaS^QMhAZ|3gpr{s1>=F`S8Ti)o|ZS>y!bBD)$dpw%pO(o0fQ^l`P-LbtBo;?|}tEZObhVdPrIWAtIP$1FL_h#Lwl$Pv4-Ts9* zHFRD1O#F%WM%Y4P0)V3_npkeqH_}qCxffp@#_i7jnwBw}&_L!G-Cgu{L#f5MLuTDN zso5Edc}K&|A14hgrDCeaUE)vw*;4+W7Jv`~6|rdnFTp~nl|eQ(N(x<;4rQrZ_SHYE zi3LrFXLPLnC!gZyozgWLzIGC~n$yPGqZAa*6B77^W$OB)1+=-i7iz+0XHiud@76i} zvby6<>*(+BlQsll|InY%EiQ#nO^+#$Ah;s62i*p*K7v?I55aWKJi|TJsrXVV9jVIw zqy3di#Y_6r)NJ41z1WZBBgs)Et4m_sY=g=UrtcI~^$rOlU`fE*gFF;9F+aD+hzN+P z%jrvIW_GUoMmUu&Q=onLd$iW?bQf5|gv7-7cL|k4#G~R*UGHj1?2<~j)F$g&Vi3C% zoDQ;ML?$1HQT1f}Wx3006g~ZT|H(#;!z`jD2&Bd(CPo0dAPYX;UtAm_s`c1~u<5$E z8!NYg|ItY{ii^w4XSICT&-pAd0}bVCjltKN=7jOP@{(UxTn;v~qiY{*rht3f(vo56 zgOK#NhQr{^7`x4fv8R01*c(r7H+3^kzgh%rkVn#gn-zjcxeky_Bm8?|pJQgIFpb4h zh7jli7ilCI9v;&r*kk7fTwRu|ANe#(>EL_UgeZN$&?*%ps$HVu8%9FQcf$&X}4b7Tm^EilLBzp=DHG z{ozw703A%9)BFSTjo_Zhp#g~d?I+Goao)K+c7<)iM{~&*7=rNz%p=Avd;cFov&kJW6S1f zo*J9Jou8gURJWhnT-?Y~I^Q(sAWRB?T>XOe#}Sy#%qveD9pHY99B2A<&NLufFbudj zfv7{mYeq7-tZ8vGVFsYHX@i2>53BZM5%A^4-b{e{6#wywg=lI&{>R+53n~7?B z9?o%$h18j&px>YhPaM6Y_iu9F-jo_W=r{Sxmgj;f8l483Av`NjpnwOsA@6sbSxps%t5%Zq5hriM{j@uctrvhmNZbKrwC}cn6kC? z8Q~?CT)icCy(31XZeYIJ1Gc)UFkj+hbHe>*v@w5h18BN@+YQ4jWh2)3Sn zlb~ccD3i=o&ls_R1VYzD$y-y>(GNYEF5W+p_!2$V=;;LD*lq|j7=#)wr?O_dSjB17 z@C)o5Mm5>%Fmyon%?a;nN_9iS!=D28$bTvvj8%1a-7I zk5cAU995W9XJ~=Ao^8DL&|@{UNZooDhv)15P_015%MTV`rbaUfycra7%89yW)hY}z zjRry#sUOl~w;}zbu&8wTErp{bOFn5~dW7*voJ0`;w%ZhTcLw@e@d@|FPkB@;{o^(Lcz={Wkr zS>#(n!o3?m;B{Rp_7EWZogN@a%WG_0T?zBf3Qj*G-=dMUp~)n{`-CnaBPoh$`jFkr z{9U=(y%!e_8 zoi{ysJ}r4@=g7ZxA%Goe+*-~Ll_g8?D*XO=Aa)~g$&J`mGlzkc{Pob~9)zqo9$fxu z$K?8JSC2(@KM1A;AwYk}$Hjd)wZj12DUt`iJNrbU@seO`s_fp?`Gy3NlxbB-RyL&! zpCuAJ^6yX4&=pux(*E%N{?pF&>+E1(|D zVXb$1A$iOZ&^}&W$y(KW|KwJ*M#VB4;bSYX63EEQAHfR!7xe!XaQ?xT2)5D)stUSX zL`+K`f4gj6_2(CK5n3x#l<8SaVUU|3Iy{*Dg&2hH>HT4(Wx$ZtWfs<#8GMI@h*Tha zVY>b~6C@hCDQ$Ol-HE0ymM2C3QS9mJHBA#$EYyy8ios4mD&%Y$zA_Kx!mHW%65brG z##3uM!P-aFk$}jDt6hmGljUP8_?u$=@<3ROKsXb~J~Q(3Lx#mij#I>l?VPLMXtF0!oia9}?0+@pVfA`x;gKYzO>`LX}4-7-_=RWm)7?@{jmBL zGbg7NV1J%1G$jKd!p`2_uVBWY?`275EXR`?L|B8k)oAkY?8S9Yf5fFf@@88rnc@d6=|ex#2ReftXM!s!*^ zk$$E`DOd7l&x{1mYA=FWVf+DWZ{dt`;zbpSv#D$23i>b_fn7vqVL=RB0FMscqr$=v zcq|fPks8)as9g|VaKTS^Tbxar_zP_iw*v1wv5zW3gb%V-FUlgt^lp)kR03Q$Zelgs*~oS zrSemZax$#9n8xGEii&2y6aP8in1py0k&lv_<-_Hf28Vy8)rfS!1#=W+ifwmw7j@id7t{5 zRi#tuo$XXO)FiIv|K0e{ytEQ2DDssvkvQ;!>ihm= zR_&g6^^>%G7AmLki@_wgvLgA5Fh~6gEIUOtHDGIKn3$;j3dxjFX(aZw!h!M-NIMYZ zxu<4PYexFDO(Wm0Ly9WM z_ibPO1th718N&#?da8hPm&HZ!Il-a?v(HqL1Yd4!3q9@#x#WRC>8@6O=m4?dYyPE2 zK}yRy&6|D>_fzgIehEayyoSDm*Bw+_Dwi#BL^|^17^~Tn6s;(>d4GQi$eX{3ydEI$ zRU}YQ0wHyv++kJ#l1D-z7^z}_a|K*@Ow<{cAO0foBmnKoFDkMZbC#m6@~i?KGxuB6 z`@fb3M$k6<^sDblWoK@8iWjQ>d^k#>A?j#RcIzdGxJRKUMB;C%@G@n@oe9o@cw030 zDp>m$E&`F|p#3B}FvvQZ==2%^hPi^BK-ke76Y`u&7((hK=9SiOVfGH4hW2h=heA5GS z`2u1Jk#xTO0H!$lau|0YJ54Y^2$fripZ##AZ^pBBCo@hWP>j?6yXWgbd<_c+=XcKO zC6hA}MFTy7l0b3hK-%*d|KxtIfrMg{$e*q}Pbb+Qx$_a^Q11j%Okw29l0vy zBpDYPNDO;~T}{`i{;U7En~YO<$KTD3ud8c&xmarZuP^&;@~SMH+T~Amb)!H!dqznPH#+-L_P!>=F3W^4cAmhOI66E`GKPRon)aUyEdWSR?$ z$54wM@~o9($$P}|NnubJpx#XZ3m!3dUua zc`hlXw{l8qX%T=0gagKmpdYCr8J)@U#w+!v$xL!oZ^XPW=6;jKp4AjgSI9hfH>?S; zO48XQ>TB%nbdAFy4%R-2{A-0>+fAG}R3>3#I%?TQVtK%cKY(xL$3Na6PTYt_LeQk) zbE#eMvB$iA`~n;*pgeM(cb_VUe^X!SN|7{lloX9>nFrByc)`q__6w>JQD_pov<@pR<>aP>H1ca8%bma!*6IB}N zoPdb=yfC!7&Gbjhzr7V;oIqFAtJm9ppBuG{O{>X`A&h;@Vc5dQNR-lEMiA>d4aytO z%zwiYBhTwZLh(>y->%pavY#f@rC8(ob)1l9WjpIljV3&KIW^e}0VsOV4<845hbfrt(fG<^$EEQVOO`#_!WbY#&1CVnj2ZEx=-dG4MxeH`Y*^)i*V25lm zq?Lt8vnxry?a2`MWbj0>i+WZe>CQ<|B-^F>1gOA;1dRMB~|X7x4D zep$dIIRZSfkmH$EjYcqDd+(iiU&a(-wC1t-WonXh2+kTRlhIAPd^eE%EU3Qc z>#}*5Mo4Vv0B0kXwJh26y(ZaZs@z2e2>h;;SaQ5|Y8%^wLL85u#yEpT^_ zmGh-Lpt&F&*(K)O@sr4IT$GAdrHhrp23w=6FHXICFdi!2Yr-$cK?AedDXS~^Y4?!K z2iOFf0{!gx=X5-r<_Bfbl!`~COT2>Tzyl1m)2a!uUJ-qD8w;5dW% zzObb)t}OP%#|j+T1y{9KYO5ulx~BLyLgGZm6vG~}Z6Xq)*SD}+ek7~`s1gGMgFBo! zLi(TamPp%6S*%>Z`JKOTkCgx-F>H`4;O^&td1@_6bqBl&VA5QQHTpEMcj$LDnA>Mh z*KBO$^~=Xdd&+9WrtAxZb$ad@LSohkE9+wPJ&7ytIT$!<>*ye>c1D#CGEijW=<$e& zyP@WJL#6NS>$4sEs9ZL61f6H4`;IOck;A&o+f2Eg!KhLR{}m3U$gzn_I+R0%wgdJW zSC~rR6A`_kSHvRc3jq_iIv6x_ZymJW3_$t+Jsd#h+4VoaL?Y(ztp8j&YdtpGTos~^ ze3>QryUp(1(Ep?9E1+JB!JUie@qo|M~D&{>oZ%V6wrBhWAR7EDN)m?(V3Sicn2! zIl3lEI3={(+}9+Epd?Xk3)Q9ut%$xaA;bx}!tjHT$I%M&H#PEjYU z`Y7>?dsWdi0VW*7^SDZHnBN-TOA$f(QrVV+(Py zyL3$=#BO7%2gLxSnE2+6g4Nc&zyu7&@RHM0(bNKwPdL4BC9cOS(0;WRM4BlODhjDX zHJj0NcIJb5?7&+FJ3+R8)eb(hvGr=s#(5q4X_XFj38$U0LTU+*=#ddEK~{l;OX_$( zh9^^pRfTu7TU~FelID;)W_fN~g@1cj(H9xEg1$Js@#*PUfoAlr;gjFXaiPQ3h}!=L zf|KXvVZ8qiNnESXT?YR!0abomzZ5xK?Wf9L1rAC$jOT&p8ZkJ8hsQdY{rzhPz@j;b zFmK5U?1xTtNJx^R`o6`eY*dRW2Y(6x!KW2AL5sOB#oFmoGyI6xH1VxqiW+`VnZ#}#;@FdTy@xk}*1yAz* z2b0Lb2=Sr`!)~uHQA^05+Ra(z%;JNkB*CJLo^eCvZ=01ybx3Q7D$_)9~{sZTd(Lp06(l!F78J7l=v znOO%MPrS@GC5yega;{ez;X9szcNx-0@ndq@f}&Pp#f}6_mv1jjs3h921Z$V5(lf^A zP)R2x{g~xmVHx#HY6?wMdFR3f#2?hebp?70e2=$gT(9x6_CKM8hG3Ws&T$s*62qPk zi{BswZrG1*R)ez5J1vrAPNn1G2*cL3*2!3(k|L{Ej6ug3>GUJN#i!iwefge5*y@xq-p&a~@0xg{ z8^8AollBK7;VitY;du792$>0`P^3r(&RlqG#v%smwM<3Lf&GP`9yCp6$C(o3l2h4F zi)gZC?D(ap?fxme>33|r(>O(dhGwyvn{jgTl-h@O^NK%3KG!WREm0mTZVTt;dHX`M zDAI|wK9DAu_sn8<`sQ?|Ue!Ir@ow%k1Kev~lvD!-pL;E|nTC5?&uE3U$2v4kA<5UO z-PoHcOD!O;d0zf9Ref(t*DiEqg#QQwm-|f+EPPe4bHSI=cJ+7g>c5a;7?6j@#)9dU z*(=`^*s&5n$g$EXEf^28pqL3wiXLhpYF{5NhIg1FqV1N`JZDC4D8e%_W9{c z31p0Afzm0z*hxP!LOp6kY%D7qTNr`s9li!{M-O-%QRcuuuTElNtCsq?IGx z3E?r;e?khTpXM6wu1X_W@WOKmRkOmC|p!=5ij8zgCd2C|Vy)kX|GuAt;=!lF0OtY&W z`ei+ec>ajWT-dmw7`9P7>7^!;v2Z7xe%^Y$ps)%7J|Xpz=45H#>n*<(4y+waydtlH zrzbPwbmZ98o70HZ{bkPzZBxEKQg@OjU@iWb`qyWBylCnl{3JdAf{<{dZC!^8j<i z=gD6uTJJOq$@J~=O{V#DC9O}~{@sP&6$8cfjpK&2^sK|P9f|PevdNc>iD%=e>0gT3 zamLwnzkW6!J!P-#hv4_nuTHF-)!vm^b@$1#-q+ey8zPzx7_^l(*X@+Nj!XrmUSVY^ zs+!V7exkRL%SveD5HWnk#g_K6)ImW<*>c8<6Si0^AhzsR9oJR z%yNP~2)gB2U3!hkwClj^^dEDbd{x@Df*`ZcF8`kC=%y7imyT|}1)v>%p84(lV+iBC zWB557DH@xbo70QBsidR?X>sLk;Xzl6FgM$k*01T4?j9cgUQ%)EIpazFVDe}y&2wQ1 zUKSWPqfJhZWo?LfBgl*+gZR}^@70qf_Vh#k&{EZ-*Jxa`{1RW69EJTXU%^RZ(iTc+ zADO59SjeRqPvduCj`|O*BI6D(l3JdBEtQoC2+;*eSGANzT3STlQZSz?pE%_NC<=n& zDLglYdpQqYJx%vU9Z=>gv+ibPEC^F~6Mr9E{&iI^4*_;yb{T+Zq$%C{)LRz#cN&~5 z;Wf&Bt)+m6QpV*~@|{sDCT8o9U&FrfhmimbKUNFZpnU*LG5}H1jQ#WpREcl#&~v>3 z|1z+WNHl4oN}G_?Jk~^+GYwOpOP1w=z*u6^)IdFpFFQ6_1ovLkUPyx?X@2hmONhdDm%@eM zr9?pN;~;|M8a*(U(Mc&u$njfc*+X;*T0kdIx>{5l8bH4q&^oK>SAW?MzW^*|*|8=L z=}`nj$dgq%V;R{r4H10jP3Wdd3CN2Gu>cH{iSk)BJ1BuKPL&=+Qa#vmt~CRI9eAmb|6G0Y*Upl&Rk%Bl=1kzuydF@W_NwB*HKGbTM6V}AaaD6aq0`-b> zITX^|W~ewt=kg0p=Su|)hA4C^Ji%0fWd3}3;GMuAGeb5p@Dwgt2$45ei_YuP7Pl1I%i^K4F#!z#(Qm5cRgL-u&mX`43!GU z`tw(soRM=LTMtj-rgfg_f~J-Ztf%*_>cmo0Q=xM{qoQJ%+$yiy} z#eQrb<9d~6$i~*Hn;mgJKScF%`KH-&X_>=#dTo!|QmWM!U1c;kbJBp&VAkm<4*|b@ zj*lrN7j0wAmW+gUiv?44m$u)sW9}zFOlk zl}4rZ+DAvpY|xwQ5?g~lIyWQZC207_UygkL<&;!=ay=yt4@aLzZr=xCEn}-%n z{Lhc;p?EaPnwo@oVL_0;16omXpeMb6Edji$ePy43dOm8vkB5!>OzWDoIV33|lo*h* z%Yj|1z}JN2FyGy2?$n;hi+d_?bHP^k&nvQ)Lzpy>;2r29MHk{en9CPlnp1!&=3adY zgG}h&;b0@^{BDtwZV42BO9^V5mwZ`BtoQH%Wl4Nd=e3icCCs&3FUuY$>hEWe9tUrX z6{u7{)+L4Gi4VwUd7fLFjK>THu7qMasA$-k&_&1RGiIGm_lE}>NbA%VF{>Na3T9K* zO-$2!GXIv%&Y3Z7@@)kc6cw4nLkB{2OoP3IS+8iOyAn>HJnrYlQcKH78-URz?!kfL z`+tHL9lo1h&O<>y-_fP$fv=70l36eR3gd9qCZ#hWYN!SXFT9%6uA$$h6e{+i3#8{S zUl&|v3e6ZVz)c2ZI=CQeWAPB<*sC(CKh^KAaZ|!hNV;>~vhP+JDFR;rmm0CRw};nt z@$lsL;$W@?4+{^^;InGy?y5BY`izd#?|Ea+Uk;g6m6?`iZb=Jr4Gu2t*3nxZnoB`{ z9K?PgTdIloc7a(N--X)9`xDpleN2DHN9x(NAB#&HB4GqL1kICx&(Q|%0FE~dF36#R z@l{sB2F>F0q)WsarMwN>sIGG7%864Kjpyg`Zc2E$p#hR1IXM~b;85V_uMrgBGtG=7 z(g$(Az=)uE=5q^;*yk%$h@GHYi2&Uf&}JzZzoN#}k0j)e-+eC-ucCPGA|cbL-en$X z30xv*ZGK)Qz59vGF#i5#e+mD$N68nD6H!c`$Zpj>UG0uX<`@{TKSHXsvcM_9yaig; z)VW?UJAVg-?U90$n|dYgID5iPs(Z#7kx#0GNd+9J18dw3i!g)i&r4`qMd~Xz2g8%Q=r424yBRRe9 zxumbLlVhA40Dnl7DZR;JN7iq|Zi>L|6c?L*^VN50c6sind2M^3Y0Ac1eQ;MLx%$wN z>8Ue&Jx#91++XGNsSr5pTjmcnLdI+-U6bu~xam&9yIB=8eW9wjWRoOCn0e z%IJ48&YQzysY00x&7)jOmEL7#cs+nZV_;mpAUDhltYtk0NB0Z!GqUuGEcn^uACPC?lYOG4kj@$fTPn z&2@|$h)bJhrWGLuAoW~hiHlKfwE6oz9Gv6@^ToSF1R5F}Bx9G&@{(U{BfqW{d}Br% zQWr=t*?s<+^xc%&b!;4K-}pOYBgx%E;z@cmY=WQJXw`|`-Opfg6+ho#Ds4WQIjqUC z>0EN+^=n97qoWy%T5d=TSM+jn9lH?lDML*p2*+iMiA?3N8V^pi*AtuAaS3{^nOS%5 zW>m$FCzZj8hGE(HgXd6C0)IYw93uIz;U*QD%e@Z6Eg)P3n2ikf7l1)vgy>judJQ4m zz(M+`&3=S^5m@|KHC|p>$}m%5Z4||**iv&M)@#CR^WUL02^6iCQJ$EZB<~)0^FyR1 z^3ep}ve=*y4>VNZ@Ws_z>6o2(V)UaUO0U>qGIrITL{5`j==wFUi?rH$7^iyN=ol6g z)yk)^Q45l9JF|PBp(TVok;QTzV<-Kfg{NimrfoR7?AFjPRyqe*SJze zt~!n?y0@j{0P`~=Zo(cy>ln%+evpI~5?>&hr7*XAaQ$0(2PymhgVU~*g7P_2@4;Pn zFWd2OS|bnEfnJ=WCk_g<62iFB>BBA~8TP2!%$Luw9^G*3zI;!|U@G z?6lA?lWBQrE}d@{VKpX+mPXdGlIy(a%$f2@!2`alvVdc`Z3r_5RILjXkY3QqD(v(F zB~U)7Yw5|3%p$RbU}S+mp4}>qu{2av4*_~0Tq%>a(36WkPwdisK>JOL zyOSWxpFGg_2s7h6$B>B>KG%#ofR>T+L#pC3VkiTw4l? zT)tHBZ+P%a_*I3p=F2~m%@$g+F34IBw*kJ7^i{Z{jPsN&yKqeifSw`nb?kZG$A=3@ z9g)4u$5Quj_;Q*)X#eGVfx{(Yb)RkLqQIqCdIiK68!#=s|HsVCjK~72>m4BX1u_l^ zAMeUut-d#!q5~e%tsTY9P#|nnPvcRxA#U(5o!>6+6-@dYmLqT1LG-~eHinj9n^AaU z3!h?hp}s9U*X_q(8RcrX+BJHSczGDI3>S>&UUq@ zRz=+cY2Pf%GHp5asWnwLwzbTg9ve_GbUqNbt-!4A zvGJb*AUr@4?QunG=jM!&WxnOlGHz<>SoGV3(QEejg>>@$mfZ>!9MzyO`XtZyQrJ&@ z`Gy!lyb}jr>{QKJ)(hMse2cps1ZTL1WuA|gMvMVK@#g*Oq6JD zFB{3TUIk%@SBJ45v1n6^x)sO;prWE8798ZSoydH|j)7v*o`Vp^vXT2Fz3DvM7x(;Nd+){z+t zdi{uP4G3?al6Tw?c}yL}Y`aM)5IWXBXi#YxVfNz~84V=Z{a;P~H_}+Buo8oJ&>Z+q z5)$g%OwM#Q?CX4QWt{GfYku@42rI!USx|X#)z>q1hK>>d#z*cykHoJ!aJ$vqMAJ$x z)r-d~9p^aQb|nA#UP#k-1Eu34>V?A%LPFu*UUp7S z+v)%#Xx;lSEV0L&bvd>W?dW$d8H+Z_c9#IhKWoyDsXi{^FXDFb#b=6!QpF_VMq+-U zzE;s51ye;_@t^Rg_`6$gr%@Ma6j$}X9+t(&XAxflX|Q`lYCEK?x9g{)mUIn2l&ir_Xl zxVYFG{;bOb2APq2sC*_yG1@8P1sOGr-v-yVcO2i`R2m_qeJ5?OFQqKxFLRW`QG(OT zVamf|R;;-SZ~L!Je_3SdLA?ElV*rrI|9RZ`AsrKpKg0VW|8D*Pxf7Jy1s}E6AsQ2U z8!S2x4)kAd7%6Xb<6&wlz0q*8CT6u`o+vo+%dqe<1BRl6i*w>)|1iB%j@$&9FX~{6 z?kT5ZZrr@}N{bg!I~oNA2C_#YA25*T8~QZa1|+{IC2CZk8@()lP5X#ze{5piA|()O zv`cHfG-JR7nc;u_{D~qPnKnG+Uy=8yg6gLWDm)an412VYZE2v_VGzarVS$0kkaUR% zJzkvQjmGa!U)D-9^C}45bPZH|i|LLek11#~-wyudRp^<7fJYD{_YEelHt2sHxbOk$ zCt4~9qaxtS|3viOsL5=cnie&sRFH`c{h(ihv^v?fYf7O{sBJ}=JZ7kqAE^%Soa{Ii z4ws9n&GKUTXpCjq(hUEtADblCGBbPGVP5}Z&=+Js#`oPhZyq1Rx%}mau;f=g{cAXu zeO;S8rr+d7e!`32ov6-8Pm~qY&W^6J!ks-}B=_o&g!}9$tDHo-xi&RBWKm=IwGtxU z>5RnhQF8?q= zrHrh+JU_&VKrcPySy&NAVA$AG%0LzV^_OXLs|%Zzd!(=hTKy$Hu`Ck(I?rskUmNWOJVr7v0{b zzC~g->J~N@7LsuK;Alt&!pg`2VIk5afk`|Ma@&xAu}2LaGGo68kA1Srnqz?|S^4xy z(z$UMBaHr?$_Fn;Zcu95D%)ZXbFi?mz*CGbRm`y4bAPzw18MUethWh`#HVBPtN(Ur z9@JorEP92M6K3;vwlg)FOpT~(RRz#RZp)2rzBb`Tis_I(dNY>Y!=HdU|0gd5Rm)G% zH00M*l0hO}f%6IyLtF=9mD%~)discrc&x2O%!gN&+Xf=S4|Vut=ty4`8eKc-r#@J? z42QGB1%4rIvof_Y*%&f?cb2=D+J)-ckhl}OElt4kX+D7v?XKwe$GTB7W0PcVUfj=~ z^YDmBTlUj89Myd&iqzKmy%4hPG_-kedk8)3W!8|6vFzr#yWrZ|Yp67Wu)xWz*5Ke^ zv+6&4Mz7OKd?=}y%lYaJDLrW`gcIQMN>-3PW50a1I z<6Q$H%?dc4v4-)BxUY{N!(xhvaf)QkUaHbv=!&X=spe){E>Gj{FfnDzY1TMdytoaTMJa-ao7>-ewoFJSY4bmykie@U z_Ch#K2IG(Ho!ZH-g$FbwlW9M|BkyeG zz)=6thcD#5S;{p_B#&DWP>nP=QN0`;RSe1|Lb;z`!mXx&DKzyE3oqJkc;RP-w(k3o zc>@`TAj+Qx@X|xH9z=gOW_-#3b#|VyFIP<{hB+}0L*}U$a|tJZqlrgloS%%%t~g%L z{W`@4uZ5i?YVR1o4#aZWeA;doN$ zfWLX<@uqLw@jb*;Re*K`#H=EwHKbAmgaqBEIV*a`ZligB#9Kw{6SQ}O#(H$!c4m?x zG_%3;w;G7Rqr|TOYNf{te2!`+`Gx-NCMWX~GOpELwjN!zgk22>{cph=_d4dEN{3)+ zWE9=Q4J)P%8VJ<)&^CD!#H<9Rbj9np-R|H*Y$JU*jVa8C0EHd??)cBS(KYy67Gy^d zbG-tEcF2VQ%>3C1&HF7*>!MSY#*N#W;z32ARk^}^@gwsFGfi?XLc+G|GBq1X8M;QB;ls`X> zZVnWe?au37$@zNFqV_Zs2okM*jCku?L!!Ms?TrF*tg4PH^5=gd8`>~6Rt3 z%)!;ER~=)tqLMqA*R8Kz*K9Iv^0Fl?WU@yt|DxI>ePb85wqv^_ftsdN(!J|3J?KnL5!d(1wCwrM!R@ZW07}1$ z6Dw$%f%YC~LIYzMxLeH1Pi>6^7jf@%u6mrDxICjZh{4pR0p{~Frs0jsO1*6 ziGL`V4GIbZCd~r09)N)5$-V#7@NY~wN(qN1M9IQtT;cGFbh6-^8)(`Tv1}+b3zKg! zE5s=1JxH2(hQz%3gHue;ueu8$6O?Lez1Jl2X~rS?&K3my!8TbDlgH9*8zP%3=sK_T z%O~npJ4b~hL$7ep4>L8pq;Jla#I`(-*hJ77c7mozs^-UxD#RVw zUE{5C> zeO$G#M}$H;`x*I7AB9$Jt4Q&KPWJM1?lpF9p)7V6fXhwyoKwZ9-bY4B+5`mt zE-eF77CltreaMn_m3>?2X_t9mKd`W{CCY*0lNJm9$rSL6ZRneInPpA>8f+{B_ZVX& z?djyOJ2D z3M@zK$Qr)2Cn)%%dKUZU&7VkEAc!T~JF27cic3m;FU4kl!hM;x%wjH>?lF+CJ~ zMs)<5ma(z0gn)YGdRUwDC3*c#q*n+8n^;&_U(72IH)!FCa7|g;Kg!Cn-wBrYP;mm; z8Eo9f-mL%dxL4C?=AeXO8kZQw-LN5av5Op_kV8CFVkBg4VG&SWce{@t@eRQ$i-wNw zyp`nBT3Fb(dsIM9a%Z?Zz0(V@za6JDV}M3S=Gu#DoonB@Y4w&IGeaBJqUrp zmjagH&Ph(Ka5y)>O$;w>6|jAkCx$jk9mc~(edT2*Y*gIvb{BW|8^X+Pd;wSMz!Ys7 zCW6I5mJb+hFoxS%)_S6`{}7YED`V7L#81n}|E4XQdAqH45ElP(G{f%Vxxs;>4$CA* zwpzyI&)-zH9~@&Jt6H_xI2u#$Z-2Y<2#Y)$6eYq*`z&gn*A=QJUTZfIqrG~&=g-Vy zELZlY4-0oI6j37UHxyrP6mA&7mw}oDW{ht<~*ubtM=Vn%?wp#rCsE_Bba&9RMweh|rP_>Ne z9(IkmN>=7TNs}>}r4uB!#$pQZ)X7#}|0V`BaUl@meq#}V&rkI1PR=$p> zaEs5_j-iseg*K^gtiQ^WX;kopBk5%zH^|A!dF-mAW$0Tu?_a6xdChiW1Sv0>eu&(> zE9-GV62=|KTYV`9L9d{`>xHX#u-MPT;~s>L0ayeC^Q=nsn6==GswFBA>&TuBQ^zix z-s}9M268D?bW$%W8hR|nr%a|s#DMu`>X%LEP7KO{^aCOa@sTL)OIga4oSN*HxBcgE zzQE5Om|pk3z)WXpYKFd4=oLsvNeRtjN7~SP64{6;rky!2e=9+#E(G7RZ#zOObu(suvmg1o(<>#-vyYhynO)EUV**3!!@BQZw-dt4lAy&e`%dYYE_~!J-c+t%CyhL&N5i>>9O{U~NG4CX0Zsi_7lSMD< ziXdlm)PGoU2nKtkUCSZzJ;;|34IZTCFl)*@($Kdw$m>iAn|D+oK#N}EwTwgT*+^^F z9&A;WPueg*>+TJfe#FBGZX|dTT{=kho#4M2h4V?TON%4~Av^%w#YWN0ZhMT~HlHK! zem9vs{;=bM**HKwDqINVnJxwC#aKb(7gWE3v;Akv>X#~B%a4`ScNtv=m3?BGD5UHu zey)1lOGqw~M_&N!a{W)zzdvVJVGRwUj&(~I_Z()>Ua~8;6!dO4(P34yGAfnqsBjjk zX&I%*(TBsb{VfF7=x+_EJ=;KDaRz^K#Z%gxFu@Gn&rd^)RWgN$6NlSjuj>BZ$6_4L zU_d#OWv#34!4^%xF%i@d9>08xgH&RikX{ka&LQ2RQ zW`JTtkn_-+H1eixN|a4^+c$j}8MRip@+XX>N@^3HRy>D*S|s!e?h#i|Cm(<*KEWt{ z>la`&{OgyP6oS?SaT1rpxw*Mx-9NWo{A7Z2$c&2}*dKQ-oobL!WH0o7p%pUc|G>dW zNzNA@IinJ5>DK`!mu~o#V81wVScEh`q|Xz2N6|?>`v_#FT`<~yCdqeTq8G+c8ugbC zRik?;QcfImY*pvXn6;GQNp(}1D>R&4)WnB0Z@|_vUyLW}pk#66k)Cu0H%T!=0wC)3 zrGgEcx=}b~%bCMQam?1kN*JjRZt8Hb1mif&-VsTXmzDZffV;I<#rI35z_!0@sT9*3 z3x7*~J^aaP%5EN{`$NVVJR>5@(@F_X!v}xY$qulz`J$0;ndiH`bJr z)s0D_>MVB$_{~+thNI;1#_bto#8v7@RLh4VTynz=ISciAu?P)YnK;=kZ|6ttZ?zTF zkU#O%u>jj9pM~hFtGMPvyt1s`t1G*;lY|8sQ3h*#H0Ak!JDZe+YCNr<}HJjwie!Pg~mZqEOif546UC8EHM^I6^2)8hvZ@aF{JZ0P?v z@Zt3A#X@=pJ%Hy>6th0^kcTDTp0u04;z_fgpBFRvnJ!gfwHr6*`s%6^fOJUl7xe86 zc=13<4#cYm#J&7N1txZsR(=Hchs2Ctu%iAIZ(U7z_^ABxt3^xD0@6XQ3DQ0T{*A{x z+Ar`3(a>Tjr+2>ERSN)=g#?n*iM34r>Ts-u&Wpdnt%$f3gsus_x#^6?zG71E(xfZy zC<)pdtB;;IprK%%TRf9>(E+-Z&Z!tZeQ$3N;TfXqUy8JiDxpUO| zUE*>dAB+J=ou}MjOQ3iK=1e&6+;_6=+(@2f1pk6syIv&w0X&(6$D+((iGN&qj)^_* z6UdVGSmY1u`G3f>xUeo}|1w`H`wv5odCC30_4AU<=8`-Md^cMG)1FOYPj?2w_VfUX zuRR8kB3ILZQ{-8iS1lO#b?gfcO~dElCYfLn+tb3F|^^3B@reB;^r?Xo@aYP!OHb5Y$2y4VL7+f@bCK3bt_ zjQkGtS;{eYylpt|D-Xw(m8Yy}|NT9wl=_0nR+~4WPpPls`k1}(t5vPYj<;0;Hq-U# zGb{HMDTPtfM4~$nvZ)OZS(W~AGqUqzLsMe?`7Nt3y%qafr)jG<|2`F*prHE40l^3< z3dm>2>cDOg&x9>>^!QoFo6n-ZY--1=uDUUgcJE>*@_~brNVobz*z~CR_ac(K0cr8a zzl;db$aqZqp$wR#c6F51KvCxyIKHKXv@vBX9i@)$?gs}OOb9p=^f)Ws){DGV2Q^;B znckr?gv^uaxQ0I~rUxadhBj|_*kI$Z%brDTp%dx}Krss`X>yQf0y!wn21&13-Q5_0b{O>D95$a)nT=_ybJ4AAHjPA!mXa~->txb)go68{EmME`P_9zWSmJi(=pnEJoc6w&p6^?Rqo?@b8W@dut0nV%G<+Bvttn$%VRXs9NnIk@k9EQJx(%~mk zRC@etqUt298iIgYXIIvKauAlYx?_oaH}doE@5PqX^%bYoBurd!e>PwmIhxCHt*kf{ z%jALPIkR;2@FQdQ&%LT2nne8-7u3u`Z=-Lj{rLKw&s!p<()@JD^4DL9B`0Aopu7=P zpBG%C2+s+N>Q9LMq2~UV5|~;Ne9L@a*)etY_MTUowT=%4tLnEM=htSn$%uc}W`r36 zu?Y6cAVf&=r5QHrDPQ2phQSac-X3niE}gkV&NvWH2tzBUyxtN|R1G);5MwFU+S zO*i`r!8E;&V5T6jP)rEkKH&w=1~OYd?SDJ$&``>(gw&pb@~6_G3lAJW@US2r0D$vH zTLS`E)j#%|U7hQH^x5K2Ui8J3F=y;-XJ)R&w7YbkOL=;Pas8ph#iv>6yGAwkPY#mx zN5%@gW*H>=Lg#~{?~^;IOtKTGYvZQejjVn(Z7=S?^2_Wx=ug4Zc>swo<1>;%#l=0MR-vk=Yu{<(Hwy>2pRV@}w=XOfowh<|I z-%@fLkt9Idx{a4uyFzT)gWD}Ere~GK@`_t9vVZe5Yl6z}-#ha}rF6l>5jyc~zGvic zj4we>@V3hw(m@4L1CQ^?^3(5d%4&XJN+4CNeDk^gp`tR?N^P@<@W;zGM~kaiA!x{z z)UgYv@DpKpcU^-*wJvqbX0G;K-u2l!r2H6CRLPBoc@k_&ct3MAgxTG zE1UBni0@8H(CtelUn{qeys$+_PF>1O#8YgHqY0g2Iv_Op*s5d#FUhg^4VVjrP6p8 zF~O2edi>efsK7mG5B@I#5ONQ<;IBiG-}8+^5R}zvTaAQ}EcjnIK&Tx+s}>+!M!E#T z!?BQVI2h=hfV>F}by@8ulIaFtg+z!oMSFI(bmN zBNx1pRUvF=^TyETU`%7YG56{wQ2TMZQ z!%lWx9-u&l%~!*~my+RyhbFRRJ4d$MTwFiFQ{Dtu(O<~p&Z;mWd{fPN{oe{VLqEaq z$;FD$5*Uo7q6*AT?dJwkD+>x%XAt*qv5}EI&n4oQ9%8prUbj^~A|3UKWaU@pj#6&%>+1(({VrHf8PIrWQvuQOdU3&e za!bv)U(&7NF*P1;^0;qd(R5!DhxVg-m)z&5ZJ%&Dwmv`hUUT?PPkAYTP_U|^3W$b6rGo|O49Sfb$BB>lgWiN$`d zE*_K__|B4545CjN9KhjUfY$KRt>b61bAk)ofUSbThZPJaFcD*;SUU!bQ; z{NRBhKD9J~>{zHkdg8h4*Yb>T<`GP_P6CpM`58&SGpSzJNv4OUphN1idSem_s2$|Y zAXX>l*p?CXxnl+_=4hy&+#^6Ly+Gv6COp-usHsqWp7hq0Q0^|CCzYy$)yBH0V@LoqJ7VMn0HMwp#q;mN`^p<(>1}7wjH$(-+s0x z25I*I#X2U4I-yPlU>9!q-j5AV+#rKNP7A`Ycxr<1mS#6AmmvYH_%Cj{M~2?!P*Kd- z#KZxhtW_}HES^OM;wT+x>DPrdd~0ULe=8~7S|Q7PoZaF@$5LOsIsN-!^oUd2?dbk% zD~OFkWYuu$Ze&>u%Xw5UY)X<-#Bg(B`1*0Ns&tD+XJA{ z(_qDpFn`Y7p;cN&Cq+;Pa*;6wLJ&8_s+?bOWP;lfcc$9 z;|?yQSTC~toVOPA_(kf;2};2GKxoSlldARKOyoOO!jzJ9X(+d!l51OEbcF##TVKBm zdeYzi{~{^yOsuZ2XOG)b@Io?6#hDI_QmS?jaS5~K34KHO7dEhoorH|6r(4q_*B7OT zNkdsVsnxU5^&PUGFT%qZ3MS^gPXp@#G4xn)jwF8E4Zt^pgfT?*53V`oFM7s-T{E#& zx!5LvV|WZaWic!&sfhk(XLf9-U8sYsF^DWqoX{KaStNTqf@1!p5T+sJjgZ_uUQB%2 zBe_uzIIFNEyCZsR8ciZdaBlwgmgnhvU9Kam8Phl7HFFX!#Zd>xFw+URtSaKs zJ}5Y%ne@wbc{%jQREO4d5Yp=Vp)+_S*AFrgU>HvKK3p4qq_Z}e0`*b=Sk-iHHP zV#OI^fm{0l_D8jL9@DfH37-A6C)c8^7#KqB3sqd z!b2Kpor14nnftAeeTnFeH5aN0b#YkF$ZfvTEf5qfruWiM(PH2`UA z4Ze#Q2!Rw6qe*TlM)BsPnRUBE#=czY(k0#Ytq#s4uhn=3_(_PN9m)iQU|L3I9yr}# zZ-Y&27&3R@lN!&9X}Sg!K=vFilH8AL}C}Uoe)% zwXA~7@0tpZJM!k)gV1iR&MNLf;C@pi>CO7Zc3JO-uDxE`Z>kZpsf__;xP0wdx>VEP zvQ!s4CIR6cuTOK!>`nkStRd+Emm;vaG<<45f(<7Q92N@Q?hjrx>^Jx`>?J<^wOS6ul730Lh z!a}ZUzBU>`Sx%0pGTQ^XfKTdDU-TarzURVH`yJKX5N*=v!3Sr68H=No`DAJeL;eY~>hg*X%f8Pi#LoSZqBoS7q1Hv8TCkrqyivkBMbP%+65ABco@VuMU}gW|8&%wb#M`qc`VL8l;3nkQQPCM5Kz~ zhy>=ksuaT@p}|kQJ0ZBLg-nW|!rQR%vyhMw(un8Sa`trbo12eM!(dfi5D<|6EkPyP zk@XGDc(LR5tB=0Rx9&tY@M7ec#hA{XiEEF3cxW(BtCK}pwz}VEf52tE)et9*k*i4Y z(y)Y0Y*TvX(_I}Q>ZdST0^2gxcUd&UH zXPs=gUOXvXa4%J(MC(Dxf@Ww(uGfPotQ?B-Y%)QTDg5PllL8%1<@YB~MnVbc66A8_ z&P?SM+^?F^!Xx_gDmdtxP1RN0ZdAML_IiK(x>9$&x}YN@2BAzLvI;?)6uaNy{`hAM zuu?rNiIDMHzPJtrH$OwjO_AINq+HwocO(c1KQFU6MrQ?FQ4OW98l)xgLree{35ow8 z#9co0_xI0uY>eO>hyN>PL;FLjp_7x7B5x%}A3l$(8OnQIs^aNPQ31}gW{BUqIBHMP?gqiWEF1$ot$+Dp;S{$Uz5}Z; zOoAFupX#TJOVL{nNlIhfY`3dUxcZCx!vj&)!Jgt_NY}MU349I){dR(@&AA8F#D@pV z`RbWAhxfMd?7tBZDp=B8b@RNb4*B-{D&&qgqH^*A?zln4OI?lt4fZAWJ9pY09HcCE z{j;p>G+3QMbY=42RFitw&f1=Xv6~=9sZ6%H=H8pEKMNl(Ta0FHAzf~&C4Q= znQC&NwqFb$wac#CK@khWbf4BwXr{KC#{NQg^{4B~>khez8)380F(ZT&@NWt$nNLOs z8`giYtxtj^d^|dF6>vk^q$?q&PNWqHB4^;AKl9;cOHD=wJ$Lhw79yNAcIve0n8#ZV ztSYbu)&AHyc=^J*a9$eF_;kAR7m_-2sJ)j@%EQ!qj(c-g+18k)&Wc=f3oWpNH*!t^ zwOcLq2eGFo>0he%RTOEDGr~k~CK5#Bvfcg2Z@7JPyXWHVD~eHUe6`Nq&rYB0Z)W7= zccuCu+YND191BB%(9aSDj+tZ9cjU%{Uv6LaFO5I{@%i59#3$Lv(6BH8kkQOJA_}@7 zGdj~Sn!ZbuVBj8Jp$;`Y$Atf^Nf7^PXitzxTOo7!mQC%1mS$y$!)y(5GdF#Gu9HzocdN6ga?n_1`@zXr~(WDK}Oi$*ajQ5g+`u2VC4EG}?9R!U zxYZy-G8+fGP&GmGQ^P_RGV^1@p>Ut`&{%2ttR}Izzcpeg!3B()7NX?I8OyKT z1t9AaZWH(>B@kJvh*opx$l7%;mY**Kw*+P--J{1HYY+F?=mbEF3!j2R?76`1`o3sI zqtS4be>j0WkduSIXfZD$SWsuePYLG9Ny z2tEKs819$hYz1#n{U^D)3RXP(Z4?~L96z*T{O#Kan2vLDaII^{wN0Ai08KoYY`r`t zr}Krk_}X8gvz@_IsNf;^;VG%mp3}7{b{NXy6MC9% zASiIG)RmGgTaUQWK!SFDveO3vu3maJ4%}~ua+xo~9~JYzC;V*Kq{arpBBu|t|CVSO z8zVF6aHj&1`*&f(TH34~YwnXsWglaqw1ZQL%%dI6KOj{32XfN0xHpDl_W?=9 z)J>rJzB+cM=z4p*C)W+OKK_m_{p$oDru{5yvrYF)RFsrZ9|O4a0D8p7Xcv`?f5&h1 zU+OM7d>>Duc_gF#jwt2`@`I8338d_i4_ay$-7GzU9b(?u*#R^6YnF#8uiv~0V~;%A znSFyy#1Q28{q%zf&GGT^obO;W7S;`3GsT=d0ZKvH5{uW~g1qjp|4$2W=f07?)>H#s z?J6^u7mA^#QsZ;?yRV;3OGOob1YeaCXj=Yut!E8eBZ1Gi1fJgLn#Z(>r`lvVX@7~$ z=27%hi<8Cbi5s#BYz(hN|C@)n!T*v+!LxwWeNF9nR903ZN~%AQ>Vh&JKKcI z+R0~jxKQoyg=|i?k;}&lrxYVCoZ)1VL-uky;apwT!TR^8=bBS2w^{v!pEfV=r0Un> zy{~$QrAz(Kok=52(C?wvGmYf|rbWM(G9hM(x5UB^8k+0G@Ze-ea`WT!1ZLUfD74w1 ziz!=7KZz|hQE@xh_%QJlzyzd&0(_?kXAL0fKK!vj;G(EXDWfAxcF*YgMcfO;V^6b8 z{#2~pomR!kRNuF$x{A%l@`)T-iT2K&MR2f%*1R!H$^7 z{C#Ms+q9z+R3!XGHPiPxd(~0y^87>#MdBBF5O+-vSH;9P+}^rWb897+r2+W9_lPH7q6`%tX(Q8;U$iWW;qV6&m#CVn&z?RwopVL7Sg4Nt@F_-G}wPLthhjGvU z+?L^8#4Hk!_;vmNZgkz($;lxQd9?PJi@O-N`M8U!Txgc?Gv)u|=`6#tYPV>O z2#QLFAl)5;fONiex3qM33ere-ib_aHhzL?jDIq0FN{f`V(jW+&xxRDu`Qf$y?CVo_ z-}S6#jyc9XWVp$3YZJs9$?TL!z>AHTDd7-We4V_hl5CJ~s7RuY^=`V?UbW9*l0#V- zq9WNQo;RvnkH|w#NAtfng(!@bRK3Qwo-$C})}0+3^fxjFqt|MP-faDpGqUY~!cQHT z`@n99JpW)MXp38w%*NG_kPSc&S6BI>maX-7kFfvpkZw3TiDfrSQoDJ}_;se-0}j!6 zjM&0n(Byl7FqEu+wp5-*g?O(yLAKt&bCq_&WeOOwmzw+t0-_8RRg$LiZUlT`p$~Q1YtU)g=dd=ECq^A?(3+%0AoOlH zRS<+S^0(8>7r{+xb9rUO1KEv^43ZFNB3)Yu^cg}^@1S(fwRKAJ?=sQ!YZu0~fWNTN zd#d*m&X(TbO_BcB!Wo8McgqI-nRwn11y{fzsrzqMV{k+W(=h9sBORiOA#%UT{Us5{ zP4==w{ge9ZIS~)){0YF_az5M!Ft;wX`*X|tWY;F^9EjjDL4WTa5!&<0lIA&wnu!$S zcURD&8*>v$Xo__1tXq8Ddqg}TqI~zc2G2%c@0c)&n|t;$?E?y>GVW`JS@zz#7W;KW z^a9!|T6tHD#$(Hr4LAg{#OlJ6yy{lZ;9p*BUu&QFtn4sDOSc|u!3aCW-py?lToq+c z?#<)Xm(^8b;&9bJsT*UTr>h+AM`9C*?E(_?kDxDl*ggS!U6QCsTFGW&Q)WHW_r_nj zN>=kd>d#%o32bpCQB}qG#*dU%J@^AS2fH6Uix0|=EqvCMajSPr^hs8!Wfr%oG9+Yf z+~~je5MT-bf6X;@4wGNGFuPZaN^9z~cFuf}3@R4WY)|WA%Xd(Tz8=X6zK1+ylj% zYFyp^T0hGBoqW?%Jx{ycnu~JeRjx3n$HIac!j8CtuCt1=vRBzNF@n|HFXw%8TsKz63GL)4~D?Q#q!+5zV znrYyvV_1c{1`1XQS^~L191uyuLEwE+r01k{!?7@YxE`)`ZLX zLaX4VKM6uNSQMyhJ)m)uM<*GjrXCy$)CcI}5qoTc&(-Ojcao@d( zA&p{k+*RgIqPhrA`zP=;A`t3@?CUe=ABlrB2a?OUQ#<{|VtEV;iLs|4IotUL6=P%k zb?V0{YisK5orpIU>dKJd*-N*J*s|~RXlBW`r15*PsMHIEZ)Fxp%a`_PDXH)4w_Th% z{chP;2Oq$B{^MMjOx=&1TKlRiO#Stz@xE)Y>@#C3j}%4 zt{%c&1$l?r5l4JZqEeBzxB|-S6{G!-?od_Q2}cnMuz|^D`7i?V0XSmXWgDZi zGj<#XCLHK(V$Xd7fE?`5iY${6`shN!bIjqrU$V>N&JYNSxc!bST)}trSH0%g$hw}1 zrKn5>cj`m630{&$nvM+zd8wZ-dOfJb@3BqYxmJ#nWCsv z7B13!UZ4&(GI`K`kkk)iG=#+xTEXDBR9$%`iN^IR7EX@Ev2uQY_L_lhjPlO6BE|^7 z9OR}w!;J$~>P_(6C~kOAUkf6G!wLFfPGUbSEG)p_zOlKv+eBqQR7l`mrWr;%#9gmx zRF~KAU76mpww!yu4>nRcyjIsBbNMrA=8u#-GmK{8Z%D5VC+IY2ZF82+K7w1nWp$wV zsuMSpylP>;aU|oTGA9mHrJ&_^xgqDu;={-}DR5T;EW#oia~a9Y?tc@_|M!_{Qrx9D z3Tj4fbZj^l7CX?uCe@$mzI5s2=xvRA$yY+%^Re3-?GZ&7L9rFx<-b@p40=raV50wlWKdQ;yi8>DFFKMgJ9 z?@bx(nn?1c6zf=Kr#stkY%!#Z%@2eUo;^e}5BmV3jNh5*nJ~N@sSLAX$Bv|!ym?H! z9MgquX9hp`Y=Tiem@S)#;`_|R8$yAuCw4@ZadxXUcx)W=@+Py;lV=kq#JYAMXaiHv zj}+@Gh8Np5?dL~cBA257yZB_@4Y_y>RCJ}^aaKYzFR)u(?pm`hbMP8Dfr{gD3Q zMSwTkuJVEF^>C@7m@EFqGY%*IOo&1XceQatDlf>hA|AF5c<5O`%K^Y<@v)a)bS)*)p8A@eP6#KG(5?(7f^K% zZzTZM?m+8^`_?4y23Kxgx_H3BPw=PwUM%v5uX~S zO`?zTp(`ZGpb4S}{OY}WI;EO^-gsO+xCJA3@CA%8GRY0RuGTKwfO#DGz=L}{g(!mw zg3@|c&YC#~_(j;)Ec&IGShZ9LPBEh7%s(YfS0l!prvgs5;dl$U?178YAF;zRos8^k zBBswvsdJRaza_VQp>_d5s3GCwwr`;QRaFfdn5c31x-FqS#3v!J23P>Hrm^RLMsuhX z0(DkT#RD4%-^Yi_4-HQa^#Zx(6Y>YFCtu*jH}9fbJ>~pM11_t{ws9|TfzE@dUd>gx z#6g1VpRWWHg!V=KpsaU&^;s``boA@Xe!Ul?R`eA_a#R$rOP0SoOQ9Hb#AB!{^4iW- zS|2S3;udPH#|pmEno8@;`=wX>^pv1dLylps=8-XLJypqfEp(}GDW8HDxmnvCl%%Jc z7)9l{&W3LWm{3#HXITl&DHEs`P3mPx<|G|~QVX}?s~<@WOgVPBOsYtt?NmS>!s%ti|BlmuQi`C zfUJ#RV(k0!<$!2muE~9XC3xPZ+f#~T&E8Q+-9D1=@66Cp=)lTz@K$(VvR~l2K7~Z=IF%CSdf}scw1~u*T*+C3BeW@DLJY4sV74b`IhGvcYz_m ze9;dOCkeqp)vG(H$qx3tMNnq+RMoUf?#JVOHE6GTLW@;~AyDrVT~n7qNR*SPP7~fa ztm-mHVDj4+AuPcZ-F(0cHy#+I5wzRjpg`TE(_7nMVd)mp3J2vFr>ng#KRyF*pA42#|MG#Y1&u2-wDgwgRdoYZPwOq91DhTd(t-Zb zOghzuM!h-_4vkdU!fHW38i0d3q5n%xR(2I#GnOIRdFhcUDiwFSHSU{(rRAcbVbTB4 zGG!Pf;^V9M)ymy$GY*;0?Xxz@GTFgjdj1l{hXanjM!Gr*eF)@eBU0Bb!$iB#Tfn;ETEpfi?0wCK5wb$^R;@gm|WxYuPh zgrPP0HeO~k_-2)JutT8J4pzLI>v5 ztC!>51Go5%ZfX@@&mq&JAFjagG!b=hWh;4KGUkU}Z!`!hnu3`b_0-f<+c#NR*_sEO zaH6R9B^gyQ2>3YPpD-*iI7N|@@0~zS^yz)KJoCUukA#ulA)t)02GHBOkO?O~FK^7$ z)_>os5^_8K3B+I#7^#n;H7KYzxwGS8w}xMlOeb6{Dg6N};n|xz=81xGs*e5R3ho z{bHdzv4OU+aiISCc{uG`fE^+?b5~dH?&J%qpl^)2whRp~&>3IdN@ROFNwNWRmYgl+v1@;^QyO!jL#iDdxmZ_3+R2 zHB$Bx2KJ3yclT@4cfTa#-UvV1BfWEHois-elxWyPJ2*Sj^7B9Gg20+8Z;~O*M*o`%n@Q&?WHbWDm*}MPHWn6HH*Jf*hq53nWcZsn2rx;~I4$r8QBFjPV>WcO zn(NwP-O#soQe@@o;IQ!WI*s{%L zkIa270|9C|l-RiX8aU`y0f>sUi*l`8GIylJNE1blj;cpgVOMW`VvHKn@S`U`%vg}y zAmS|>oSf5_V(YaLWJ7mRaS|3(ASx`Q?;am0|NBiVve~7ZV=Qtp z(G)~6cwa63x(&eTAygA81hY6oJ3zCnv*X4mEmAA(*NchF7E#*O+ne*QUDzQ&(h=F8MO6Q+&i5^&K)QSpidCdOA{z)!i(oI02c6cr<{u@q|iv==zvMHNg$Yd?4p)43p3 z{U_lonE4ukcv2jBz|v9Ba@|qg#7`RkhF}*MoGr$l4BJ+heD_QMGfAgG&w?(pjPK~^ zuy=h^V$ifuxA&J4cAVMfM_3U_{FgQXP_|Qk(G&wUbC$63( zf-v*n`p4iiJez1uhYNYC?}bxO9j{NAzs1q2-qr`RNiB!ohs4jnIUeOJJ3Dg%1l1aR zp-4zPFgUhajpnx6ud!xL3K15e(;c#oK%Ac^*=`RjtGlKORM);X42{DRH~GPb14?9x ziHV^abZzw2w>w24mmzN*(g|}&1UImUnZuE!$3}ol)EgzP*9E_+u1}3+Cgp5-A*6oDUT)8ys>gYI^ zdF?>WJ0WIfKODq`E_D!7Dmev3%pcx_gfD#(ypvKGpFYK+McTe_;@*c@33!xPAZi+Q^LuYi8t-!{B_V8I_PMrntZx7CmzX6ZXKfyJ~`eGEAkJuotap@@g+C`pa#lP&hG-v3^6YKG48hXdlsFD-*z`ZLl z0SbbcU!F#@-yD6%o5tHLcj(8W#5o>F~ff;lvQuyGi60Rvxf{;-jQ++9$ESeZzO{p>45Eo>!-#50hR-mQ89|}@NkeT zXqv!udM=^SX8!@`cVWtQv^M{+(Zs$BLPSncUBat)upAm^Jw9QQBH6i%iEh)6c2)&9 zM7=B$la2}t3oqCFVJc(3&k~Jzc+c zV1U!@7H!!WquJfqp}ICOPSyJFE?%yQsUs+SBt{_;gw@K&ExFw#%*YtKoWTpVjmRw! zZF+hd!H)%eLcJyX;d04LNA`{^u5%`-GcZjpMkO|3pttwr$v0MLqZK!+&W2RnvyhAZ ze5^FZ+LTYi9ghx3qKJ5kAJ!Woi*kI7D|ce?gX+w0UX({t1khs9!;|`kMk>l8Wxh~3 zg+1ZZFOSHwjNX5$gS1~K%#~lTV>WITkI$f>BG#?-Fw2d`Fe{a@e4qyH=#PQ(O_?q% z+~!6Gx?z>M{QWwjK3zOU(;(akek-yvEWjIy?CeoXq+ z-7LRx1x!#+EAAD3XT3IT;76_W4BKeN=ntbj6B+B>=Uu~^Z$ zvi-yH<@k8$Xk|>PK%TaYY=)vzguVQeI8P0UK&s8M!z`;zPX0$ueIDDt3cTVM^`2)U zjtTUK*CN93Bu+wO+~p=!Mh~ps26I{^7^Ig_Z4vp2*FL8|)L1{S2!59j{uME6C83__8T&ft6)XQ?PXluO%D&P3l$bDocyeKct;#jmAmhaY!W}w&(w^WfQ8Y zpjl=9m`l`!@H|kBiMx=8fX;!j8+U28?OrUl-q+^(dUT~d-@wPO-jOu7<^WZQo4Q59 z!=!}s18E~AT7h~0ifNZ=sHPXX;f*CU1e^F2#L23v3tudNmvJE49_%^P&*i^o|BJ7( zxwH-1ZQiOji|w>pfj9Dg>{2^_$oZ!Ed(fb20=S%=4CP(V)Y)J3uz65g7;O42H~c|K z(HaX-a~(Qmh|46awQi^3{BNMAhyC+_k^^ z`Ilb+v!kf2Y}uPahj@+Q)V!>YzWvi6(%|+^|DxM(4chSIt&^aC&oGf7>z|kud?wG* z_tH83ScMun#w@k@_dD0yc$y@5b=j3L$QM9ga7grk}|J}9X4a!)2;F3s`|TpKtPrBT81NSudcox8a?N$b{;h#jtiu-kiqsV z33q9>JMORyp5+tNDV8i5eUdbneTt3EbP>t77jg@G(0mrhCC;c^KL6RXxG86(;1-)kf->S$sD33An3_TOJo)?AH^wee8^=tHv4T%g z-^M3a3WuaSjsrrY5dHU#yb^rJZaLh?6fGFRmRK9IJ>)cA;F&!M#3Y)aNOJ*^dq z@*&{NIF&er(aLSuH-yu{cx{w(+^hF}=5~_amd~44BRXrFOJGbrI&ZD2N(8?0yg0a! z#g1Dn12umON2&Op{N*%ex&;saTNVAngILsBhF$FVT*7#j7{lN-xfAgFV{iN2yBhed zz;4k#fXTe;{ng*J405}U^MFVMwlu%sh2+s!QT4dfi_330RgHmufq|``s7zi)U{Rve z7t+)FCQf!gnH;f*Zu4n{S^!74cz5)61i0EZM(@ zN4YP3M5)zC7x&tvKJDFCky~u`tupBIVNis2*X>73en!}VEC7$7 zDE0-SF3F{o9}v4w)+EZTQXBnCeEJ0I>vvUJb*$iPBUZG^G16&4LbGZo|G1B`gVml_ z=7FW_y6HVTk&v^Qd9u3?(cD^guK{%6B{b`SPk0yUl>!Tv1Zdyp0WoyyL?WEzU+Y5X z@P5$9_ZHHjV({tI?|l_NHuI6c-9 zH`!OVKixAHQ*a`acr4U@Huopka~`_7AqfI1!zVNM+%<*m^ z-aHg<@7+8kkhY46kC%Nlx^U3=lGbmN=f+P>UEawu-i0hm%DSpob9Qzh`62CoEEYU6 zktgd=sfr{Jk%WiE%V*E1?%e4Ep%g(vtEs8M4Hdo#|FsZ<*XW(?pyl!JIXIsXdzzks zX*aOMBgY-(w1|-yB3e|;>cir9+euHzYVRmhS7=mrPVBqsRw|H~S50?Ow?5>W7D7oA z5sT-%q>xF}MLK$VV1_|&n=q1&zD5P_vH!-7g9U}httU<(Mia$!IA@Iqj|!YOZ{IUg zWt4fVt*hIW%Al||-+tC0841ZDKG-ZJoML&N&PPepNM8(R+GA2_J^RgYPr$w=Zg)&2 z^B{>vNv_j%I>Xknm@kcgJxz07kUVi0Al^&-7+Gh>XyBm6Xqe}Pkyvw-~B~PJG55) zxu^+$_-7VXU7s(K(A#dD{|a~2M_@HWhJ=FC8DO^LAq`HGlZwC}fGp{1sNFrxA9GK; z6oEt4Q-iLr1sfVvesz-hk^9F6iMNu}`On088PCW$7uclF*lCAE*{)~zsLKuFnt=!r zn%^=o@8!X%bhMCZ0*UX_L!Da{Fu@VS**mlJu-)pa?3bmhsh`pK2&1WH91bh#YXM>e zKLcnct}VNtLytWRTIq+k%9*%16M2;;v{yOl<{J>;A~Gs_dU;(z$26P!k=OH@m5(|f zS}C-MS0;sj#Dq%8e__?;ir}?ZJF(%ZcX>k0@BEpk(lSulrD>k@h9X)MS@bSjdnel& zZjyH#q}DZ4@NUpQ09+Z8fWnwg{T^UT5Q;#mjvz%D4bu)k zISz30UVzW&--bcE2-9stBr^>%H3}bf%ACv~Y>Ooygu$(GOE2*ZOqRK@sUxDM{tEl6 zz>zaN58IdWJ9&>R*Oi{0o#)ds?nGe`(04g}27;_|K!8ZIU{;O48I!?mn(|Y_&Hr%3$iFP6ix72PuxrD0p|_hz}eNeUh>i4wOQOyuGlsSQ&RfQvcM zHZ zi;dWA;Awck&wDVMPxaQzy>FX15KnXT!RHLN?ApL%?l(<~H<1vQT=-C*4;G*XrCs&qjhqD)tS`$y{Sx;^)yG6O%k|k_#^G)f1K`7F1Q?RE{hA>I-5%!F2XB z@Dce8YvCmrcW%Zs7ufb7mOy0bN$KuFuZqngqsxN!Y?<6zt`Is`q3J3gX&i?(W3-23 za)lF7!@nIY2cHRqebeYFYT8xY2$Ghf{XQ9=(EH9^X`5fviOppu+1N8BFHhaj@Qy@# zeD97mG;+@HmarthEVR82V3`&8jxq4^rcO_jPm8NXQi#l4MbmBkRm94d&TL9}^17r1 zGg;xV!R0{jUHOU=;o*9uL&t6}w_~eKlZ~D`?kMV~XJcx9K9JI9JAwCgH)l!lkJpvk zP9m%~eFJaUFwGDD6zOk^a=Swi!p53nH(&!lEkfysg>C+qFNn<&8bnIx<`kQF8wPkM z>WS(5B)H!%6C!D5sQ7s@=W1s^VogY&G~ZKKn5R2H%lR4AkbS9=D1SknNk8%e)yHsecFLwl(cLlzMRUtMDXgRfiV#&K!v#nN%bP-QuR1;kq+ZZ zdf#g3AI-fi___Xx&{{C>wU)n=+x5Zwodk#je zx742UmYuJEF4J;cexNdCkwLB9vCR}6KAo>BlB6bkF5QyX;5wtHS25nHp?dxp<{dPl z#d+Cu-BAas=2@vcx9eyUQ;BmrD#c7`;4KY@#M6rmF9}pke%!a!B_s?6-mV7%y9qe? z{qGkH?lS+=W=5H)m`6N|R$O!o7(ekn;Oevk)7Ag-z$=Rk|=KcE& zjtXe6zbO~@8JN;Ow9(|{3JtKkGrsL;?GZmVv?NilGN>3wGup0K>Bm-4U_0E!$G6pF zz*AOu^l*tRVDof%WaJCLVwIpv5gf=o1xEPZHfrwl!E*KHfBiIu^E(<`Dtc@mXBgQl zOVNJ82h!w{{tNLc<;vI7dre}4j6K+NYytQ;`7ke9UmtT?Hy;}}_-DVH$c_&Wr;UNI zbgHpPwt!s7YI7mpr13e9y7?^+i`F~ok8yY{%3=1~|0#>N2lW7Vga7$2E-opmtJ}gy zg(#rVF)NW`=t&;}o!N$PYX%Ee7gM9opX!gyThcCf=+U3D3#q zFJ05BuBO^ZqNB4-V@GYWq*yh@T=|gt6mvYBR!|UDG9PYYKDp*6Y`jVOuEdot`g!Be zEJ}nVg;;iOBrwg6J$lSyIiyfHN{+a||8LCf5+V)ZyP1r9U5J>;p-R^rWT8 z{lQZ*_1D~()r+OG>E8%e)%$0o-3M^J!^0MS#fCXqgWVtLCQ?*!lTQjxi7bA1m%Qk1 zl%bL`^{297JOb*xm_buDn?MORf^%NSF(2STTOEoKU?4UFsRgNSzLtxnygyX%PVTGL z!rX_h)JX7I0z5ia;1zr$SO_g*UN-7+;Tw%NRrgp;5{S=ww4R)EJ0Dp-d#)m_ulW7Y z=EXXnrz+{a&-|G0$ohb$boF=yYR>D|D$Fz-2B?9&F>V;$IXC8#-=MGeu`!Z~Fwi;N ze!eZQ=dTJcy!X-g$s-&`=}5h28q~|XO6t-<#s)u*y|eQ&fHfr77k`8CuL-mQh+o~! zdW*rgD4(9|&K;XN6=vx#;z9=T0h327nU4WW!&3DJCiO+n_lmJpgp9xQ6kF%$Of}YUvJ=@7>lOCY*A)z!q$3%nl*8$s|&hlTdvg@|zUpzd! zd!YQ;)J*O0)hCDC(l&=RqDA{3wds(^IG17A&Vh|FqUFF%viwI)T*h#=x8st_JDpY+ z;er7EeCL2e?bdU~zJajweKL_PLGM!{Ir1lQdun6f%N$Br;#R=oy#gEWU*I{iZuAr9 zwWJ?@h9Om8_~w%JdM6HJkIIH0<_lCbv;=odNgn1|G zCSh1uq^-K@pbh;BK(E-iCo{_tx`sqP|FVU}{P-Qy)X>bcsV=xna@<+Aupw+J4M zRWbHIm1<$jWj0_^d&7e4fbsKI=ivW-OnigtIagq`u(p>@!u$Vr^&()@vx^3a_YOhtH{jWWQsh_M-Slsm?X-Mx9N`I30bK^1Y-tQp9x!n?7^`f54j}XKInWQRn^_(2Ln*3C<LFNmSXg7knX$(iy>)@&BY+j&28+wMBLL2pvfEg6P^mjAX0KB> zPzQ*63LMc0qy2gEMTG8v6ue;>yEW2_UQ9R05EBC%O%ALa1e5CE>#wP);TI6(W&dYs zU6g+kIaoV8*F$NQo4Ti2$Ix zhUW3>fI3;t#9ySO!F19{x!HxGPh#WQ9$FJL|FCg#GD74q;-U3}$w#OdE$N9o!@9e( z{u0I}1BiaD%Gjio%j6V~2>uu&9ZT7vK1 zG9bs~(ipEXn@Lp&Oqx$E)YLRv@^YJVr2b+wq7s<(Sv3Xz({3?_0zw=MZL&%?oFkyg zRBLSwg=ji%{x=11;=y_o1PHo^uZR{yuHLw^j(zYB=SGWULdr)9dQb#jv8A(Ulr}Xz z1&8Jy*fl|8(}11cYJP|WH1tW9XuSjM%OYY&e7~Bv)Ej;r(@&;~a%2vt9nv?I@mi1| zmRs;^Kcj-C^=>wbo^nPpu@^`cJWLrl(!}dNm)>F|<0msz_6%R1p4lwA*cWc3^I+Y} zLF%f4*XjHQAb>Kk=JoZZZI7cEml|VY6PlGbdhJ9+>oTpLan^!YgBKLGc)*?^@8IH_ z@G2#YJ+-fgrj0&*=c-PB>MdyNg&y3V9(5`UcQkq|;PUzf3FCc0NcwdARxfs zS085MQRC5au%|K$jzpHASvr}2CJ3Phtu~=EqHB(5z2sZzY#`%LubU}k-=nR)1mzR& zWRIz5E@2(MDGIAQM@|@iatEIo_o1kqrQtdsWv1)I0x|;Ke4)iL&e%rx;KfWbc-=uv zf3kAQRN2Au@^^SUm|3i4yE6&`68vfd%Q8-xRn z=L&uM&esc)eK2f}=9V+7A8twcXshC55X;dCyOIUz^jPtiv2DcB7fs~s{)LpZqWU7q zgM&{J?WqBWPcyTw#RtX}zJ&xaVkUuZq3F?d)T>bfsPRUygUE9axU{R=>1k;qHt8^1 z(1f<_7F}I5l^ZpKLe^wo_Y_zt#YBDj;5Et0^J&EsVZmJNL`%MfXp0mDxLBpb$f^E9 zl?f6IvvA_>=6N*a_<=iN%9=+;%Njm=q)e!B&X>YGC zAO792lpWODb8|VDwF25{5yBsGP9V6VH#3BFIIU*iy7sv{HV^l@h%_+78U-xBr6*BQ zcW`Um^Jx$xEWCb=E1M*?C9TB&@itOb4zBlj=--Kl_MKYn&YBogb3cp197Y$B%pdfK zD<5L|SH>HhV1jIc;T|Et02^%b*(LA#t}yD!D^S^hDnwZ|6Q<#rPL`@<38^?crUG^9 z{3J5$YlzAT6_Lqu0kf+*Jz^s8%T5ydQuc+vA zrg+kOz+EH1b@Y&9GUAlh`=3aTM34xq27a;KF^BdRNDSQrXi&HPTQCA@8`cPysXZNz zo0v%|?nQ`vxt~3@>nEw0NN~7u`!AP5D|6+Ii)sCM?eFF0ESgZ;v&z{8& zp%~bLK@aX#B*S3nJX{*43{-nNaJY5sioPc3d5q%knTDldiy03RnnBLz8Mk(uW;c?Y z>6cwGN-_5K=`IAVX$xQKx!%OunX0h@xYI4n9KJJZWk*5u zjduXcdilYE=CGmj0lhW>B(=83{evo+L|K2es4sGdn(G(QCCXbpy!;m|i6^!r^^qEG zG-TekEx`z`7^xye{y^%Ass&CrvP9EcLR3G#4KMUCyxGRpD^~el>KC{LVKIN+O!jh& z!~z&E{@wy8)*!DgpaS$13Tb}`56dy|-V;AOr6kTMH@u63 zgM&nQmf`JHVo+^{uv(G2vBnuS4-ejeRz%kH05GUU&4UmBzS4yJ^8omehK(0pVF6v| zU4GiMe#MMOd#t;Z09QdtM=+jUaCsFwc?aBc^}A;_rSwiASCvxYvHuXTPH{jlrEZ6^ zO+&a*!6xkFJQxrsQs5ti?gv}IpGeQR_)MfzPF2qY8;kc;Y2gxc6-u09f#^8wq$V_* zs5`dZvEaxE%`WcM-0bYyJqckleaLAS^tj2bb9Ep3tXICJvdN~;Y?^v2w zI)gVI{JvY^XlysQG{2+PWT8)6iYBnF8<{p!DQZPla#3LG<^!KJcl*CRP16V(MTLyB zoYL4xdjHGj8#h{B-AQAlQzERY5;t%=FYyo(3DkaqwX5R6Y;wdl zVU3f~*S`&w=ZxSw&@|ap{WZYT_7iDIhbBD!pk_LILq|t;#85*DGc2A&PjI=H2ef85 zL-ipHH}8Px3r0lfnSBv-G&LKrSp^?IZsQCUexkY{(uxJ`A3A3^@t+8XAsI!0aV39V zt*8o3=?Fn=r=+G1Z+rCj^#O&6WvB7ms;G;O+&2vM6+h~5DU7LO5^gV={p!SfN4SK3 z8jRwWSc$)tovFvOx;Ty8d%5aHJM{k=2i!9BcVFsJ@U*_9^*BcHS;>!12J_RhZqK*p zLu7CV!kAW#GswCdeja3ZjkKl8=R3~RVxd#+zvtLrEh6y-RsNYxy}xCTTbr?mCGiLD z?_~u;^p&YzySuw#oB!a*SVnkt&?-c^pK!dLJ{%u*v* z-~D;{QjTN_JDebSS-xnPHs+?`rY;i0%fqW9RP%a>LX(by&v?P z&&V)PM#b{~;_$SF?(zrF%O~bk9hxtB^B3fOGBr<*qhIh8q{E_DFveTV)?4@kz|3t= zN@%b`jF|vHELF{sQBt}AFLmM|X4~O#ja|(pj_%*puPP4jt`B$eI*O9MO(T)C5gadM zHQSOaGLg&OzU$NQGu#A>F~1E7JHP+X}iFj@cG`sMLpjrF9mf0D*LfVVcfR)-X0w7w0s3+i|e+RgDb`FkV$9ij9TTgJ3+=HSBl$O}anWmXplKhy(*r7?& z7w5Og(=Vi-(9qTn(D)O{2QfbC zR*Be>nVy;XJ6;{!ja*k@HUdANljJ;pkAs^*$g27aT}dKMw7=NI{<8n>%Ao&oh|;f= zD;j>$fEh0mSqI3_y6K^HqQz`kt&ESaTjh)X4zuOb1q89ozF(IWXo1mzNj++{)7wu9RVQW&{4*Nkv*KyEZJ^&x>noD|*%;=f1R z(_vhgu6MdI8g*|-gj;bIhw{44H9-xo%%sOhBwQcKbL1mTNt{Ouqwwv1#~1cK^}gNV z{i%IUKG!jRVZWIGUsxgJhQhf5YdY>|v)`Xk0i<@T=SOQ`O><>4v43&{b-~9s@^V>O zS=Xlc0VQ=K%bDC*rKZuql9z?Zt&dUMg5TB(J5Ys`?mz1|LQRJ)z>LEg^aUYuE59iF zjnPVn%Ydpojnz2Wiyt{r-bSw?k~$s@TcWEetI^Jh4hn^0FWu!2KYjhj;BiLNvDa7- znHF(PeTMHk6Gdr!*NT%I%i1~vF6>`)8H!0LY(^}A&j$HflTMgK0v}I+KMDb{!L1v~ zi69X`VoAYvM`0KX;pnrLPhvFjQ~fw5zj#omZSEI(68X~9wXrndesDWQ#Aj8x=Npw` z0B#2@Y*FettQ&#N%mG%Uh?(tDsLn+)_-Sc`mi2wu0*QE(q@nQSH&f1A>`&A-d*0|w zd-d=;4Nuf&rU~Wi^CaJDoGaiav*%5@mYVR`ED!DWlXtShB0`?_J7|GD}R zX-HzvjQk4$iU^7D?d!jO9@blp$fXhIsXY}$Z(J@YtqKJ-9(E1ZNOHYBcut`>T8Mh* zJ1>D(DJ>g%n&&U^===(-AD}&rjE-s%W5Sxs)O7B++MAq6drkcwhO`uZ?ClZ;ca5phD>_cj7L9#RixTb8hZ}6ine6GvvZ{6T8 zgo3UwwKf9}z@l$sV*?j>gbM_R$8GpaL)PgoG~5?eEZ2gA9CLsZ30u^n-gnsxrLm^+ zd*4r#cR3u33#9kO2{KtYlZmSs9Y@M{NRhMVu>=i(iV5JhD(NViwk(a0QAk*OSFUSm zzs{;syaTY42vQmuNL^f9?CXsX@HPTeKiZy&9#|=aj2Yr7(jqReuD1L7BDuUavp`Ox z)B@~DvWe{pop~@_e}p*x?0U;Hd$EGyRI`WHj_X85+V!UGFtEU0h3pjTCDdlEgstb6x)5($xaI1ryy}#(c4f zTe4P_?8TtHr$Y{`ZB)n&$pC>!tW4fOV5f!oac$>E-3Q0=J<{|l(aOzpomqaxOt_oI zda$OQnvBm3x2h(M5H9<|2!{EAPld zt19H0jnDivmPlvv&pZk)<}ktj1R-kM)1*?r$`Ue;S3LGn9d!f;@0RhcRHYd(0)N;V z%GXq{izY2|p{kQ<`^hQ8?48&Pc6tfX#M0Qmz*=ethMuBfdrjgeh`&)%?Be?Lw5Wp4 z2F6uc)zxd@=ElCSVQn=-Kiw)Qm_5icoe`%*^JL;r!LVT%;~9cB-u4|`GhlHCpFOOf z7eSLQHE$38_uH@C3VtuSBdzu1SBq-hn8i4cPCV|S2<-ZnA5LjIZvSm!VgY&2#CupS z_f0c68)0X6ZnJUZw`}K!F$IR zYy^@Hs+SzzCQf!nLmfGe!|v>2{v>ipqx}_%?8~TxPybIKq?0N5vF!F?of%XS$`jQg z$Khw4yN!)66$#-b4CLpi&ggNhH~6^_xPhf1l(>$W2e8t~yzmU(e?AZG?5f~f6#hAl z3RzM-2;a!8D9~KtT8s%aC}j~h>!+&+2{EMQ~6Lw1AcOXMv_-EvwiB*3eytBat8 zDcf#$;LMSVdYu}fUryZlf-QPE@svK9bY}0&gz~{90a(?-3RS7BZESX73x*;0FWm9{ zTl--d?&kq_6lV5dhP52;Dw39spN-Vfm#cyCFa8#HQ|R6v(i#S)QCMnTZ;{ftotWrY z@lI>>-Jc4rqEhwv!mKX|@od$T;WI9;erUyM92F2XC%IQU=-f)Ufo1KGq_I)r$XCXhB&or%B8`@-zhxucu) zaStcMMi9vshiO+z-9SvNCZ-ty&hz_j@>&_{mK{iD8}uDSJa1OHlr!2=oNc=;^|MSe z|5|w*Xh^O6Icpd`=I3$A=RXEdcGKBy3+3XCJ?QDv2n1h`)@W+l@8~V+jeQA4_-LR! z9{NAH#!DNF9$1luo>C>up$GvElyw1fv|7J5n5PE8CNRzB7`W1(shTT7qLdbMza-td zzpH?EVXskZIQXfp2G?~Lir(1v7w)F+#f~x$M9^Uxd@e3}sjg}gQdoFeKs)Np@#(uR znLP!xq(Xn8F`R_uQu2#XcG7WqK7UDvh0d0GHAdi75lKD#dbB3YR13Mqe_oj#Z^IEt zv{N`^CnkROf`ng~15F@sB~LV@69{6^9t7zSS|vh5L&L7FuAiRo5hE@f-moRv!M}sT z`uTrNALK=;T`D|1e9l6J>d{;K!?k|*1qQNydW*b=Sq-M+Z^zEOApT!&!@IJ^dtIAZ z?HLNrZ9DNUBDyaOHp^)JB$jFJDb5)noYdxU5hL z75U6o65jnVTdBzHUm@%`^A%=R+SM6Pqd5uuIcXdLM(UzR^TW0VMTS;{XG9Kavigi$ zhnU2-Zv#V)7!fk5{ALO2et=9d_1=j^Lu?l#o|LEbhdIFmLB}yxGe9pxpcev>xbV5( zGP(~?UD!dn!;3C2Bj!~Sv1j(!JHL{FYVO7d0i)l|;%8hG@a6v1W=HtU^KyE4zQX!x z>xU!PK!wKWFmkm}Tuy86}1N?)_^L z>5Q=?9QtUE9=wLBZ<`(Q31W$wljFYMy7pQ|Eb$Hb(eJqd7^~0(RBS;ffS!e`N@-+d zLEPmFSJ5}+?hq>S+i5f~E*CVnNCIZR3h>9C z8@(nOILARw`3kwFKgsC(Ol=(?m*;=5U53Yy=tKWN&@v!(9hsw5D=RBcVE}A|eDZ+t zLqyRNhDZ4cAg5`QQ&E3wj|f~%MdnRAuRB_^4Iz&V)w6vH74jY|wmg+y>l&6Ok%z$^ z7dH1#pwDe`W*rDfH_==AH6HOi6H;t3F?E=)kB({$*V>N-|9dE}y$aXlPk5%Y@>HCC z%4O7eoNs-3F;zXc13~4P;I~Z%fS>b!WOK+#QuoY{#-X~g@#H+cDrIFNLOv6Jt9XPW zIf?!0`#xP1_^0b9@oGSiVvk6JZJWlURctloK?6F4p^ z{kFP>DS4_T(L0Ma&yvMl9PR20F=g{gSuFTtw|oFOW#{23%yz>yu3p28>`q!<1C>!j zd}R6~Ri@PGZ+ZtkpReeVuI7%tp?Egr$&?qbI9Yhq9&sAgy1I7}?6-F=gybfGa7KE| z7Vb`XrtHTD{tE#apCy1&nwo1+T$&54Agt6kjZ?9SKSdH*YbR6>+<>!-00{d8b>-0Wv=BFE3@WAbvjJmB9 zO{LJlNTz(Kvt*$nzm+3}S)q?b)+?TCbh)r4$iou{%;Q`5qzl3(W&y|0wWQFM-l>pi zlLDGdOH0@31_rnK5IJ+IL7gk4i_GJ~r5FXF^raKC<(h85CBwo%2YJwnoa=q#_>9uq zFEn_+X_>Ge(dVde=(oO%Z=GR{Xr;)eeGw66wZVXPX@R#`(pV>P@I?OVk@MQ+*Vjr7bTnM~Z=EnH@wq-BhIJum0+% zgN&%69nliKO5GhJu}vMNq%H{CK#UczjQri4h*srk429L`0y3ud!J>{doI#zy6*3iI z0Z!tLPXvX9VOZ0vdu-_cPF+UCHk zr$oQfxw-xA=_!Xx`?`ExFGjxc*si|CM>Rn^PRe=y>Lj({|v z()aSWZx$cWBTSD=_X4D5`Qf)yXMkb3(1zhTq| z;#JYqlp0>NyxenMVa*%;g=#TW0z84@6GO0=8UQJg7#4|^a&mKwWsVZW@$htnp5{X& zumaw+T94+`LFmvG!Sx?4EHJ@+(r~`>-0jw3|AydX-qTX_bxA9egoaWkf+a^-elkZ} zULtl}B&$=JyUt|+(dx*6wD;>8l4PtG-;ds;jdDE2?6ST3I`4v+hzyRVgqU1vyx2th~R7CvfN^?_zuOGmVE_$KA)46 zWobH^V~1}}d5Piw{Dn!g<3;hpQu~8}L91Z9X1=|H4z4HR@t9z{A4>+_b2$(y3pO6he~ z15rL(5`5|-xK7NBV#0BF(5b_I^G!Knxj}S!L5f}U>A6q-TUO4N-c(iv8v)db54ueI z_7BTJhtHp*5Uk{lu(R08KU>+LXFa~Z-rhARGwMjXrE1jV$^OV=c!tuJit+g!#8x5` zDy2?|8PT`f=-}#OAn7z$4>bshmt9qe2JKqTghT&lF&-^rF0zZI%d^1e?YOwOjSz~D zq)fix77v;H5W$D{H5T;7?0X;21?MZER1_ z#O$k{p3XiU*A9aC_mqmN+=ahHa*3NR%T)musOc;)h;L$To61O z%IJs6LLe6M%6B<+2G9AnxF9U;Lj_U#ygu5xC(GsbON=9Oj{RBq#%0sZ2^$-mM$8lI)o7eX z#I=vnzFFABor#Geo1$t3l?3(A%v>W!yAlicA}sY~Q{}W*BU#_B*Hyy&p2vm*U$OM^ zZe+gwnKtvwkwU?-l4;{Da{?nIDhH6V9=Jm_avX17QD0-=Bm&AqP7rVWrzhoWYL>MA z$+v^(OFyN$JYML@m83nVm%P>y@iTO4(4bo(dQ?tD1zbbHa9^5JG{zdrM-R$|IN+hw*4n$*1PI&>LdSzE&Ns8F>&(r zbrP&gC4$nK&hJPjGdO*@9z>$#Y;wma?2iPs7u+F$=_fz~^BN-qv_?$aEvK`kpiY!n z65svz?-?DixWH+KaSc2l23$Q2 z*%Kq~{a4V~rX0-$?%+#2slc&fWX!O0#yD3OrSWuH{*Ob)xGe?BDC#>dHh{$=9z-ym z;9a`{ApaV?nh`3#~-0fk1(vwW0tD1%2s9&a5gm-_*mCZ$eitrAM`oVXo2 zdeRSNbeP06A9-qxS>*5P`uxJoHW(KWe9CV+aM2In05k}7-+U{F?RM%~Xd;+VhGqd? zX_!Wl>X(1_jc=p=-*p!><5c(o@>A#b%eBYfX&bT%;4mWtDK*>*Am1JU0lg6%20)z| zK+k5JYM=OKdefNFj+&l)ShD??6?DPdwV53u*WW`6Wu4Q^C-}SU{rqy%*Q6XhkB`du z@XA-cOvTCz;`QQtJ8ti~r}Q)zcbR}5s+BeTvle_gC=zb|W8bovWkfq4vF8Zht-2uwO>kbWl)sa-%};v%;? z@a2V|r1<&=W*0f_{8~Ly;lDrGu%bkWt5CKNl<)C;UMoLM__>KeBF|)y9IR{Ko7WH* z+58Y@E5-NsK3Q#u4xS*65qRoDSFRi#v5)vRc7{8rI8CYD%klLA*K*QU%WQLp9Ak&< znF)gFxZqFXkK4!c3gi{9sk9W@x(R3`%e=X-{sT6VjKGT%Grye=$i&~%qtJHlEu^n5 zA0*RKai@lfkdx)=Q-UY6g=x^G6cZC973mp4r2IjZfFOcsWt|zni-BTh&oGY~_}Go0 zrSBip_IbB*F%B_#0;vg4cX6?r;z*fl{T!I*u!7z4_wwUs{`Mc{_YEggXJZpU|eE!904EW09|Fqk` z_j&6HkxR_2Tf)a@Py9@0Oj`)#6Q4qIRpWWx+;893zp50P!1ZU>`CBX26j`wk^5|<# zMqPtnj2fkgFH;f}8+hl;y$bbV1t1fF_Gk{fb3n=v@g*?pj3uT2Jyv1)Z5@i4NDpIk zu(z+wEh&kTgjy8D0XGilcuQ6Vv`)#%xo?MUtd^vKjF_^*i;$-czw zKmX0}^}ax`Lcuj{PD|l8_AV|xKTDSF1_DO8G6Quv=J0j**t)ZYi0K!NQ^5HNRII4c z`*hf9LNONw2#g66hNYsz-o7;sz(bOn@WVsk9hjN2lj#CKkKAHdgcwNk6Cn-HSqqr@2y??xXbw8)%LyFR^bdsFg2GZPWdMn)W3M?w*z1b0NX@U;VxnTd)qs9 z!r8p2REfyuY_gy+9AB^w{xFJpsjVe1k+s~xGiCj1>&m@+G(^t?PymB(Y@(6wV?gIu ztqDI~9i00bA(k7foXPZ%RK9Rl8?E^E1{i=LJYd<@uTKLiP(i$^vyiU2SNtF|mHNYX zJk_Sq9a3ETXi14&&=P@vAU>PIdo~yqZ1e#=6{vYts z#h-FJFVaRt4RPL={;E=SApe|8ry4y#@#C|t=JOX{Y;yes#dxoBQ0jn-7l=6Q9S{N6**KmifDQQwFE{*RK zbg%Tb*8OGx3LX3wNWUFmD%MaO^qgc}HeByJ^ZVB9|J4F4aU9YtIFT;f8&LHR3?Oxz zPBS$xfarwUJ&;}?`yN1tNXQTv=E~j=Spkf{pzwHVa*|1zh;VjYBUyu$iNTVH+5T`! z*VI(?(W6K4EB^|Rb&-jw+DfP1*>gRT3{?O)5_@zP?>^IlTBZTv>nN^3rSI@4`%5)eY|rF53JEHYF|X zJi=TfqCDwaEL47Us)7pYYI-Sq#H!m8?U+^_Ji-Z!#-}{EbAE3YGVgf|?8OfZ@$d3j za%p?qAMVT>5>cT-}4w_P>wJYxlO~2v8bS z$FqEA^5b!pcc)+#eTsx80KXnk^#Viv`4nt=U0s;RV_6qnARbcLI`zs|6D4eXrN+{| zR^Zj?izzMg^QH?iF>&(B10+)c1RnQ&n_+Vg!M)u=5JdBocg7uEcqH=vRyI=;eY}GR z_Dv`MOetID8ClIwuhZges>enQlu_f66T7=!+lQ(ADN1PJLXnpFR|u49Y)1(lP~v%y zS>FXod7n~$DAKI#HJ@N2w~{_2TdgRewx9Q3ks1dS&MY9PR`_? zHT}L~oVv~C5W4j5=N-hK>gi1t+zis4G`^76uLY1;HQ15(_}Xsg`i4f(VSK#Rr2UsI z#{ws5W4$k!R6btI+&s3>e!5J zvPoik^lc=aeX=fh9S2?^>zix#@Zd!zGRUVcv!J~nsyaa`Jkg?HF=`i9H2jg?KCjUF zHd#jx)*K37-g|7fG-qMz+<$|J!_>qC3GPGdQ{6akewU}a&_<2^y!u>YFYyRhVe;44 zaeI>bvWM`y{%gNHxqmVCvPgk)Ac zEc@dO`5=Fszs}6`=a!P8^Y#d5Ui^{r^eoA}l_GzXy{_1_zy~sCyZ|_oJ4cbi@Ym24=(*LVfr=p4}4#p`6 z)pNYGsMOXv8p}3d#33T=Ca?tikG!06&q5`dcFpqR(ueR10h0qg+feJ#ysEiBZKkg& z*Q4cVJ;wqxr9Mo-+hSt&sa&VV*Q^N3kH_&HJ{5$1K#QV-1RWC-6UZXE-xYFaG|b#R zF`1X<)vebNWceNU75o|!xnuWuMV=BRG3c&v_Ru@CGBbxD0!T;hT|w{w0zh#O33RU; z=V6_b2*z8JLXF7SHoPu5G!G?}WX*8JfVb!hgc{ny*H^p64gaLj$K||4MZy%E3|?|p zVQNdh?agYa!CxS9sa#_l_gWVyaUn$`~pBFyN9QNGoCxNOScLUAP|6BjL8~qY_+L7*C%*1;UzuG4#W$h_LB4`T%7C z%OJ*Cga@U$>yvj9Jkb|*2qDX)Kc&{Wfvj377yxIjH%3s2P zJRMMA%xL`{JI+apg=NEn&oVM{Q$PCaGIuYz3lyW#cvHW7XDlcvJUVG4GqTw(;Mx`M zT7)k*MsioZKyUk!Ep>uA$~O^{(zvEuu0!JCUbX|y%!ak^LcL`d0dZSH?R~{Ol!M6c zlurDrO6L3fKF~phpj`U;Pd5r)O`jZIjyygVOscsC32>RQKLk^qq#{GpBm*xD$-Ltc z8)!;O3RpyNKxNbiVGRQDOm=%8VSv-9-ggLI8?0X z|HMz2xLdG~zM!gY!%fA(9(m=rCzZDBMhJ@*?+;cZr?5QTDIuzxPWjLFO%dltem;fF zbj7+Di_xQHqGj{gSQFA8QPtaY(uz}FIGJO8)n2!qhigBg&0%?;8jg_(Ez8Dz*-?A4 z%Ex1^kufd7;3i0#*(~yHrmN%d*a}J+UxBj!HDU#Unr8X~ngGgONXCYoy2hQ!x#FE^ zMd#kOhC>)M5)f-d{oG)QekoEOjD$x(ktS3(v1nxUK_&xLeOVyb%rd-w8hiSRSL1l= zaGxh6Y>dzTDxu@ZJ@eZRzcU|m#|bNghY!1bGSb{NiQ|A7I+JWi^PNmyhNWpy7+mSo z(Y*dpPN=O}Lv<8c2gfXIP`g7)Lw8AE2~nC)VJWmumqkvODbn}ud}gBflfYs- zLQxLZ98z$1ks`!g3rNgpMh_D>4i$54%M_w5;uRk&q&}3%A-Ed3LXjjGSu@0hp~C9o zD3*MhNoq)NdoWS8&XK~DddV6tQzWcHfjLuU z_Ti7ObLB2yG(n0R5x*;2NpHz*kpdWi^? z^iUS>=$b?eR2a6LPtLV8{u{h)UOcoqCoL;=PS!nF8C_{&Q(kHy4ZBi&UBz-TUHtXZ z3D=g#3rz>bGe=AMYX5gKUFC%&V8~~w^7(BAb9YQpE)8$ge!i`Z>%RIOH(=VVt7#?{$q`h=)3m1u)_MaL-T z(oK%Wx*WG<7xEg*2W49}lipm4+RX6UVlvT{C52RPNN!H_XYA3b!j%~o^qs6$8SWF} z!2C>PA3(%Iu=f9PGXLDgj(xltS^?0SBW>!=^Ijv2a35E2F|v;92X?d*$A7i zVs60Ub&nhSL33@cCyBwE{D}DK%3Dwe=K<6b7Dsf=R&A?VlC0lnhG?@OZ7$KSNk$JB zQt!S1|5vS|!Ebh@8J|j;!1^jpd{_x3Cl*aEBjywC?^%+8_u#AN2MqK<_#e?1qc$1A zBZ`Ve7Nyy8bLbSmuh}2cgt24>#VNdeTuI26_&ZO;tv*`Lk*ZU-u)65L15EXa7FQP` zJ}C2p<5W%czW+7Ro&*l+;6_FJe6EH!K|hgpF64Et-uV|0s5Y;jTto5TP3ZnFH~GH= z;Y`i%>?Qje*D?kKhVOL(q<%7R{{lnm!Djy|OAJHFi|MJl)KtqST|G$g381!!@&Lq) zyZa9fQA7{mkv={#k(iRw1<5W}ob&-l%}c-kc?|1Pa&$1F5;%Lv<+sM?rt_#Mci^3W z#7El+PHZG!5z!EASC|sMdb2=%#fh21iJF>tfK)=o*yqm6#q%%XkLkpp?4TqiFN;0W zpPkuZEm{2gH1&Dv{qX%S#FsTYOJ4u)oMHjtf?%CU3ZUQ7Zb4(?YseY_aa+3%Avv-> zRz@FsTVt2&SLNmDk}X{M*wEs!+-1(oM0%}I9YwK`4Uz-ZRIcyvURZ-W_#r6pM7Uf~ z{lN@M(>CPXi|$S}$?u-7^*;16K~aZ{v8>dxR5xERM{!D8ouP1T`OQKR+$j4^SB>qP75l}AvWb&tl38+YT(1rsB^c$(>fTSBib?dGO z!hcX+Sdg9lt)T~LiaH*A93YD#iu5-yH61`YwZIQ(Tw|lGhVq5SPUGLTSIaj&BOQC< z$Ls8_7}vGE;`3wbc?$1qRwUvDEShm27GRZuvznZ!^|2vCfbi81F6y7C*W)56M1Fs{7d==&9#d3ecQsM!sK!{Dq}Y(NxQOY{I3NHL|GQIj z)~3S_pWY?wPzl_Uf{8dEwMt;OpYVe!nCtNTli(dU)Q#u-I?l!!2~UO5(kpa+%=LD} zadVl}MxbB0<_bcQBhj8$(AJ#^H0;;;c{OMYAF)db3%f=lFP$2HG1gdE7zPrUbR?-` zcYk(WIyaQkK8wbq&bF^H#!an=ttvgLaL}e81|{x{Cu+X}x)RM?6@pjmJsh*YOX$*5 z986M7dPFpsbce2F%L-ZPBGIm(CSiL#r%>XE#y)i15QJ$;mCNuQdxAK|d%5cG+uL*B z#3Kqzkw!isA_&3@#5oP57)DYxY>OlD?{h0-w+24Z7n1R_CB?AXZrkP{V~=9G1Xm_J zJb2{g<;x83F-R+Y3MQq`tTuXuNFtym?2lR4$~gG}!NjNh+4ruW{cTqcpWLvzKSu@7 z!9?C5xFvve{{>7&2J(&moRmPq^P-UiqBz~_est#hkC3@v`b8>G-^Mxoq5A^j`8a>DxfoZaLm8nQ_@Zr2R> z(mb}dW=6hINKa%UisZHFBY>0NOKF?Y0Xta)o673Lw^F`3=(%iTyXA$o-a<_kiMF&u zu4nlTzim1`@t(;^6^)vHK_Y@+eEPa}z<;urz1fqsM}6Px)syY%5!*S~xG97jNWitD z*b;gkVD-PtYb%5D=#jg99E`v>vv?i|W_vL)5RAy?H@LfrpIRJB@;VbuIEy0@Xh_Bm zk~qkkDHt+2Nk$X=CP4XW?R7k9ORddS3tT>Qn_KvKP5yUwI(+dbo@qphXKCe!%>K;u zJl!I^8rjk%Gb`hDoVSA&ER`gb%r&LuPOM0zb0cTpPClm1-re230kk|9dCsr6O?zMo zjby+gLB-ta6~${#ky1L)C1)%6)Eve-0OE_6<(F7j9(nwx!%aneTW>n~GJ)9}^$t^RL5v1#tZ^MIqSFgaQHa+DK*<2^ z*DX*Ci3Ilna8;xDhHF4AT`&^B<1m1)@_TWYfMO`j63Gnfxwajge3AMLe$4)vXYnqZ z-6Yn~*}7)yuMuMlp6Dw~cFL?-4d*Qv2h%6XnZoIWPd%p1FYtv&`cYHyU$x$0?X76p zkvE5Ir7eqHK~GdDzR`RM2cT29hRj|6xFD_?BoBr1dWyqYmM`= zyGxqnhFN>f*18zFwFjIdRsiJj4j5x@)2wR>%tY~z&Lfb~ADqVI>unc=g9HK2I(x(U zJaW=KOkzND?CB?HYH0jKO5XtR`<`|AkJayp>NgV@NX-D8&hVbKm)Ok%l%6!`dtGGf zBhx$VLW1l)d<`%3MqhB**tGbH$NCD9X7)sdc``=xjSA*Ny~Q&HSEV^w`Rp{H{=IV1k8VUq@r+PDIG9q}q@Qz`=8*XmD8aGUNY-XH_)*q(V$DhI?d1 zI!U?>Ym0tJ8uUt>>Xa8!Q;F2VFc91)_zg(IwU115q7RNC(>sPdtc0wfVbj{vTvpB| zq7|wMZ`Q;Xi0OO=ZOG7=rlfO)?^#^V22;s}#Fy;zYw{Zvr2O}7>&^mkb-xKgM8*Gn zoY3)s<{Q!1mgE)S)yAOVy;>Y`HCj;0r7`7^cy{ax{L!b%fCEm5!D8k}Z+@>a)|~qA zNV>@p4UQlOm9X|m6?+BufKbZ!cVlPs!W2SgIUpZa%v@=X7+#AO_2|7d%+k4NZokNQ zi&w-AqkmG(yVm~;L=Q`Wm$amW-~Aiq>LUu(f3$TrqsiCCM%^OHcj&d#L}=@sNZLk6 zif_>7ciFCPK8nBldbYK68nRMH>`0=!A>?T;LXHXc<~Z)wJ*Ki_Y|a3FVw^q=s*bgS z;U4a4GCA~UC+U&ex7UldQYy~L2OrK667;#=K#in6&sDVltxpi){cE$d@()Y~-47it zfJfpZwOK0(7r>zZx_kH+cGO=Zq z7Cj&Ht5Gv&Ih#1;&pArO4|6vW6qmUu)0+yuIBVcn1kX6F`EH0RzZmz8-uN|9z3b)OK|n|kkl1@?zu=dbgrZ;MXk*Y zOF6Sb)f1H1I_{OX3!4(I;znBG&@PfeyW(J4*dE2^cgdwYZQ+G0mpFwV9RY&2Ew&^l&n3?Rr=+keRW+o#D*%>#5_0nQz6TCa#bg1$--=mIDI z+Dkdy5;CN(4Y7_Rct9;?sg_s4l$m~zL#1}hX6+c%)~uXY{DRb)5g5KC{Q?jum24zV z-F67vBw{Ao~%I8F;n<84;sEPUWfR?dy5X1cb=4D|zud9+4w~p*3Fe zA`R3?$!vwZpYPpxe!P;1`I_%A*@)gJ-k{(){)d;Sevv@)-?v`7^IV;j5k8a59npb=j)_3nsZqpGQ zx@xasRi)gk+9?qn3&Zr$mIY$&Xwbe3!Nz0EW4>S$LCVDeUzFITd3p93lu_}G>zh}? zl|DR7wp8xm5L?H(vmEWKRF(hN_r}(<0=uS3TenJ3l_E~qZnI8v7-kR<%%yp!uEBpo z5crHU&jWpVRV{4_2K*hyT?~;Im_1QrGx-5(FTI1Fx%tHVU12b!ktv<+8!b>pwiKj3 z9F35>ukG+4#nY*f;Q`mxNb5v-PHUYfyg5EX z>RLRP@oSNFjHHZ(rSjUY=c|RW4^3wreL~dr1f8t3CO!4IWxV$BqonT=NKs>L*(&LfPh_!?kyBZRA1H>{U;8Yy+I=W za}87#ziGFhM5w>Pt9LJKeG=}Wo}D(xy+@#Pu9QUj#7Y=nk>hzn_-MMm6Z^?^!dpRH zGiieVn8I$Rg>X&sEbtIfqxQQJ~Y;_7bOnG4;sU(yH^hsGg$W*0emAaYxb>I{P# z+ff=&9F4lSA+kyg*`7MvGha(B$4QFwXPa*-C-l4B*jtIBVCn{(VpQ?$w>E?(LnM8S ztkOE;uD7-&rF>XQNLZMxYc+IcBW_DH#88d)hfCIv^cR{O>JOKKf?KIo2J?-V!UY|D z^`yF0*h5AY_9C0IQV||1Q4y&Ajq1w_P*Tsy-gS0yDa^?MZ~g1He(2Wxj|A=>$UR!M zkdq$uAu6};%Oy1y>;YN?T9&gwxB{HY(6rC~+VC2LY~Om&J>0YTFr~IEZ|45(hbO&4iuNENh90|by zSA(9RVRHK2w4AF&0?&RK{~e}LY|eeU$a1jaQ>!m{IW zZzkWgV!9l56M6mo&{HK!^g&#Tsio4V;7Yle^q5qSiwz4ZfikRT$w+;X`INn*6GI+ z*#1k{&>e;~KG>1LPug$P3~~T}dP&)i@u$U!3?m6ydbT_+evh)&@)*3ByfVA*{^?_O zlQAL}6BB>N*e;F2nmX) zaLoUF?)$Ti&TX;TqK~E@avZKn1>d^GGy91}lrmlHWsWCq#hb0AT#50Iz-?3TGAt(Y zU|}HEBar^wJ^mJ==Nnc0m!$ik`m=`Fq)kf>8IuZ{Gy#QZO#+yzGXVTbOd$!pSJ8Ir zfH*a#`C^|8GO6#zIaFf_Uz=4(LKVE9xWpEt5;v7(?iGr;7?MUA3v5IPR=4d6!JeMv zG$1#jXCgB(ex^F&m5E&9Ab7v!0*MGm?vNVA6h)L5mZkYK2Gow`4V}wF6LBP41i(|<@8ic(WokId z<14A|SG`smk5C~bAV~ZgSv7dc7cdd6@oZi-J>!LZ6&z#0s6`$1&vBpto|mMl|+Y__e7y#i`toaAr+TmVg8uwO|rN& z#r7CJw{v2%*J>1gqNY#ohV&ZB>Y8Go>%?x`JpM`$E2J(RiP@)4H(2$>=evd!!|jK7 z+3(vQkOG?ueGnXTQ3RNYpT;Uay(HU9dEY$7e)pWiyKO%Z@m(RGMqC}HSi z7MTvE^=mp#-k&5yX-=7)lYK?C;nemwk33_=AKp37lz7#4Mer&oyr~|%XCa6@ZMz_;SPuYr6{-1QL-2b>b z#CfL0Cg1E59k8mXqPGW%%PmEQ)59Hf2`eMWZ&2R#omgVGY++x8>bL)BxqG z(RFQN(TL97Y`B+9E}t9u>EY@w5(Z{OVn_Zvc;5a8?0ikVK8R2+DwkIzP$Q#Z?#00C z{#cl?yQa>H;E%ncY%Aq^@MBNWgDN6Uop?q_Okw7ZZuj%>bSwI|lY;Qj;yY>CqPJX@(q933+ zYJ2_6&yIp;agTnf*Z<;>@2bWB9s}a!J@#M*UdXLN_+_N{6Z8Sj7n^kF$bd$ydG~q6 z7J^?P+Ez4_7(Y7t<0``Xw9j^Df>AP#c87*lP20D0GDMB!#V;blhg?0J$||;pZzsKe z-4E)4!M75A2&W5JgHiQ7?R@>4?FHPMM1tiAV!HR&|H*6tnFmnjg))vThAD-NJ5 zkqNLRC?s(l?tNGA!glE~(y;RL{PA5AQ;KyVQPt?ia%^o)-ovXe*jZN+n!6{&0@=Ii zm}R|>6X?h0YqCxYGZD$sPe|^TnmV}sgJ%0PG5%2v-lbC0EVof&6&fSZ$%wxOxW+u~ zcL26;d7SY)FXM4&(F5kYM^vMO-FwX{{D47QBACmlFJYz9@u}TS_!qV)F5{X|B;6lm z9RCrJZ{GCx^=0REvRSQ1*Ai-n_%~(cnWPOV;d(b`wzRYz8IS!J9`gAmCvy7W-3(P$ z$lg07vV!Mn&U)w0QCi$TM5%yQpP^z}``mM2(kxC0=vAcLmyTyx!{4fTXhLy?Ml;bXZFg~DIe(;}$ z-nV?;Y(0lZ<;HUTs8!bdhr;}Bml2^%@*Y_UPxiCU#Oq6#g&{}By#L?P5Cu4Ld$IKm zI3!-f8mDVu5C+za<*rBs2{!1z0ImTM?@5z9G^^7yJJg$f7RF#^mldU|W)-#K`5A~m z{m*s>hTVe@3i=7QNRKbeqKNtQubu3+le2U8cUJ=ZaHK{M4hRAu!ETiFdgcl0V_-DW zECEjCM2A5una>$Udh$^p=qV4)(q)DCdMnHYYZPVEvr<+u;(qe0s0+(6+^@PSA6wP# zewFq@Oio))mz0L=j&S4Nk3|d&<+uRBrvp|PkF6fdhVq18#r{rrAgtYqa@5{Us1^5y7SorT6%RX^kX-*VnyQQuy8hpix8 zQIV%wRj`a(&(CxM@qmv^_pjH6IT)L^3#QU;Mf*k+D^ynnQ0Db3Q9mzaAHTDMg!#sb zia-}j4-%CMnB!Mwj&IQri$)ye`yu#wYNCWSA--;<0ope*U3(peDwA>$KQayQL(*=x zUQ*8L=>6T-BWBbRN?YGsoWj!pw;M*=ieQdg%I2?G5)oFdUoTlF{QSwU7;o=7rl9%? zP@g$9HALzHseP(RFTo}`Ei5K>eO8!XY-QXc{)gq>*sqVCglyA3+<6AS>&@fBkv9%>rl2c?c`!JvuN91 znCg!i9QHMx%QoRbzq|~LnsyPX#IXv5m>qrU1}h6c3uaxCUf^ZicMaNFCn=rN=C#P! z*1wa?iQl8lL?|P;u0QUuz{y6mY7?groT5fNQLC8#?(d!gi9FB{HMhO)A#oLu^HY4Z z&3eb#snQ?g!Ofij=DMQX2UlnVm~kE&^+cu!mdmC($Gmp_fgsjG5IA&ZqL0*0QSz7~U6@4j zvX)g?24Qn7eB;7&S(5N zVQFIIEPYJ)Yff%VQ1+ujHt$A$1I=>Ktg@U?s%djRN};hZ5oN1Iey_{oGHiun;aHp2 z;9uFoIZFGMlDD@oh=FXO2hFa@cl%s?zW0&9AN^*Wf`b7D}pH0Wh;A{XB^Ia<`yYgt1%EKH4p&ad&ZF{5mSOu*u{0MQ3*^T8oMJ zdG})UDEe`&HyTZ9*RDS)ZC~!ocjo~zPuDaY&Tn}tn4rn7diS{mtFS6ZHXdK$PDw3C z%WiF@Ew#Ij38BL$EA*FrFw6}jG0tEI_RXZX1noH_iM&*QBkaad6Y^jZTS9J8tRTj> z00UQ;$rp>3)_m#&w718Q=t((%TBJ1z?;Vw^yNlJljw(JW*2nKQYqm7&R8zIM=~gdh zqVh1GB4}2Laz_OhcvW5TuOl!Hy@<1?!E(-nN3C`WrI@Sm4CP8yA3n4+p8hnaDYJ-# z6L*52ohQKMMOD|S%}FSv^v+h`!=e?uB1k?-<(ix}iH794CtQzVsw!5+)_32zljSmu z=G3~fHAF+q7r2=^;V0uZCh;)wj^69?(`13hal?ISI6-5A!1VeJD$jAZ_!nFQfM&^b zFf>&#VG(7o90+~=Uap`m6Or^nmNW}P?8VT#Rip5(SncfCN8x({|4eM-&t%BTGYFT8NEB9 z%Q#CedJ>yKmYv^`A;A1|EmO^JixEs861v~c@&EV_eiIVC_rEd+L@d90eF$;%r2Trc zMJ1i;!7JRa?3W)Y;hbfiWBZ+#5W9Z5wX8uk;m^slUWvydG>?#aZu4d`ZGwIRcUM~P zst;Pj?H32P4FcQJCmam~d|daQmM*aX2MF@V<+}Wp1U$k#QL}F8Jum_@D$L50CodHB z;#fDLIvHmdwP((fCYJl=%Qf#VdLVm*;{Nq{#1_ooA{#Cj&SzM0pu_u z(-d?vsVMrh&*b^y)KrUZsl@tw=T~{nB_Chu8FhKH3T;R-Io>ikhens1hYJdE9e7_5% zhHpDV^hnK{WM^GBlmzoRLb-u6S?dR9j;b{c7ixN;Hd{teXxBY|YM~Jwhui{*pOoxbQsIj#nI=ODm*F;_MH>nP^~`hR-*uKg z1<|niR5g~tzw~NB3$ilE%hI-_4&gG2*d)Z1w)_+kt>m`W+f(0%f6Yd{J2RoX&c8Bu zi|U|Fhw9mNH{&E}f?tYv*TY*~5%>tC+ay~;>MP)^6rx$y!RgFk{YvpJo2!AElr(&u zX-o{wxK_v9yc>eL24O%R*=pQjl9YrtMJluKtBaei>`y1ZOUSvP$;a!E^6f@v{aa;K zq&+eMmmavFPmWjO?d>_cA80%AAM=?g$X|CakV&D)GHNtLO?)%*-ooEh*V7K3BUCw}VOPdhGuS zZxQkBzaV>O=O0ss)T&dx1?Ld~asQ0on7dbN8p%rC;mE~}XpPIsTbU9glurab@ygq? zx;Yob?$dyIM>ce%&!`HQho(VGd%Ds&uc9pqp<@BazL*m5ZSHbBsru#FXDIi2m~GvL z5S|}c02eG{s@7+O$*N`Ny-)u+X~jS4+q5aD{#~ov77an@5qm-PwqXzeHsnbBEyUL*tG;Av(o(}bB1I_pC!H)vv<9}zQqHxA+51;Nf{wN{ z_$!RxhXMAT0T#)Tkr8PP4SWbP|AF|7fpCGpfmDP`S`OLEE+N$8jsnqHZuX{%Q$~}L zDA--3{1}(X--ht?tEbXqv*w>bz{fHKdPd9d{$oY#*7-$6 z9#CYjJJ%FFJL#h>#vFK;-I)2^;+Z|yq3jsxYUk_Lk@b=HC3%E-5`5KbZfXCHw7t*| z{L(rcIa+$d|NnD?r21^EZ!`1?acRt7WsVk_NR?GBPM@`-Y)pNNFC28OAUJ}~YVwP5 z?|Ek{SW_X?3y%;0N9&@tdy}aQC_W>KK{huW=|M$pZ9=4rh1|@wBk);9uPiTx4b-lr zq^4R`8&OCG+y$4FJjsp3TVRET=N%^Nfb;Jc}W_DpW5Hxm%r9ieRi!p=p*kM z%KP-5?eImQz_Y#?n*(ZkVwYgXn`bv$UQ8MGf(#J}HJX(L5^B~Fv7F5`Ke;_uk}A-$ z)DL=6&#-hXxx0c-Z;ou2G6>yziCn0l=B5iceh_f@K1;ji&#h~3UGZPbvNEgiXOC$I zM#xfIuu=hVjOTVIT={%RPAXqwUde4vOim7`T(>`IA6-lPoi@HsUJ8*2%?H;}W!7pS zkVv?#y4bKr++ZX^~G#n7=nOU zN=Pz8f)#;40DUu4N0Qoezh@bC)CO0!?M^844f_UOD_D=YpoOujZ3x_X(%{G+o2UZl zXCUmhth5nK7U^Ldd}Ix4WDJcc(W`+MvYw1gOoz+9yHPxS zN|e6i*2K{$A^!865E@D_jeU8HasxO zM|=hKdg5pY;F%jZZmp;Pa;u`5XGnqzn;&esK!)#+Cu{y*R=w>GDH6~lh=GKrQ^d`G z`<}6G-fo_#PRLwl7ucJIzUC;lANImLSJAvH2HsyEh-;`8OH$gEqzD&JuASEwNyfYG zV&d|DxOxkyD%bAan{JTqZV-@8Dd}!R6hTr@5G18bx-sZ(5T!vtq(MPiNofHkM34s0 zeBSfD=YPJl#%65C-t4Wc_1rP%ysqEH(kdT-XL*;9|BCldN_<-CtB7_2`lq}B>+wyZ z+o%Lh?*_fE5lVVdk9uD-T9o~N?tw$I4G~%*pJ)6qx~z_Upc(!myvc@)-qxRmuFm9* zLy*sPl%SJtrUbw52(d{;2tyb*-J@JyI6`4jenteUiIo1(l0}3EG1sUJ=~6{gJ?;unTrC77ml9s>R)l{vO+&bo*svdasRWTCTJZXL&mcx$% z_8B4Uq6n{(T;6!|ixg)?Vjmc`LuhK^&M%}DnC?EZX4NlFi@t6v{ijA<+~45Z-zz0m z?XY1T$!!kOzp2a|OadO?WK73&3tnj6y^9YX(dLC+xpU2wo{_*K5ypT+gR0Q%nP~jq zgXFtq2nC*q2;69|CYEm!MBc2oZ2gSDYmO8#Z1y8Zz= zEE)JPYrwQyhk832cY#j)F%o^@0GxjS^h``o1F}exPvgb2Mpot|o{eNayV0u26$85X z<^*+q{vI{;i=dMqyLXzHK9yJ-mtCP+1MMcc zI}a|q5V2FR0;zPu7DuoUH60z5YihFdomW-Xo{m$+FB|v14DBT*e>FFDMLS)l>CF1^LdwbS5_xM>5)HFT-eCnuao=Ys?hOjSNdnAeE&nyr?9gHUALJ!^};Pj%iqfjyM0O2 zr+M*2@Q{&@;s3m{_b?Y0%=>=2V)|R_@MuTLU}B~#eaNQ&?XvE(gkut7{o&B1aI}@- z4q=Vgj`0BYmeS=Od{zxMmcJqBgGcr44MB{;oAB+Xtr{`6JxkYIL# zqM+fMS1U?$vx^-JCv&PMCV?RCe+u}4(S-$_+O$D4CAnu2JUvmkkba6JIYAr!Ey{1$ z(20VBS2+68)Kl(|8Sg}Vs9Lc4mGq6qIejQA&0R2>GE`B*Vqxm=eMa|8Ei^%xguYuJ zZjQk`i6x8Tx~6JM3TJY%RN_gvP+7$%m|qP;J|8YdeW=#|C(&Pr=1b4x7r#B4i2wK@ ziYr8;i4dJDDx5-J8IZZ%(hSzMB;)MVE_rY=zd9BX9TgS6Moh6zQB+*K?E12qnCEh8^@@U4B&?Wb8iLkTHlWJQba~I?e**=?9xDeo zbKxpmbDyv4%U% ziNIfkM_S(Z*pQ%5-#}`6M&r@D9LVz)Xg@SW@txcy8JUUwx@+)=&;0v;wE%wmWdhKD zy$RA5Vo=Ti%^=ZAFsk5_B$^mX^P0;~G&}lZ3IitYYq7Diy93r1=*cgcJ&By%R*>Wf zs*V#(P=4NoUbH1$NUcMnsruWX`~8}yBr7hE|F}vhB7|$s7d9+zX8X3f8i}uib2tTZ zSt)Mc3+Z2lbOoB+mHgYgw|4HLL?tBr0Ixx5YilN4&bA-*E&vD%d144cqoo=-Y-#($ zH~Ls-sh^||lK(2_j_HDUxc|s_}!lY%dWrY z7OyB(2*;MoyP2ueZSLOs;EBrcl+5BOJ}H)PuaI_%y@+mxZdOv!a09a|c)oy0nMJa( zW|=SlXr3`ws;C*?997NRfvuouxUwqZcjP<{jxob|+PKn_(TO({6$kI<%HK?XT5caH z7*MZYj;3*rTw)<)Ac_o%;e>q0L%TQbJ2P~|($ zHW2l8mgmgy|*UU)do;^Poomz-*^6tVkPV0ZlN493kYQ}OrTn(G6uxDVJz z5q)y^2E1#OkiWM*bYI zW2MBB@8HF2sCdQi-$&!%3YE}-<-fm{IJef?Bt%7lT=V(&c?18s9SndmcsG+}BIq63 z3xf^H-34h`_j-4nH%4o|?VpLc84{H@TQDLq24IPL23_aVrLb!QpFYw4X_J*Te;`3Z zf|*Y4xEYw&(w^Gmk+J3kd7rGTv|c;2y?@rJmOQ-JXoh;Y5~rS~w$eR(^r#z-1gJ{U zGwLouFJlj4JVzJ2 z79Ne~8IRLAt?Tzw3U9BLyE7Dvnd!YCkBqq$?ZBicrtn@=`W|)l?J>Nsy|WW(vRlGV z4CiH4|KgxxB~4)DCz6>^Joj${&k5q4;O6DEu3aaGkF5f&*CRZm2486C#g`~E0vdkZ zJdN@aWr3yHN7V>o!PZ`NxBA2z*C9SL;{M@5i!}GlJ}INa=e))%)&Tx^Y)8kN)MK0) zqzFY5hA5Y&edPx`Y(WkTZPHv}0>6K5{`cjdC$&!VtGbszY z=Q|Bf6e;Y;OcYEz#9nkC;1s&pc93Ty$9o_I1a}Q3mEyTyRtG`-r?mr-Q&Cjy!1xemT+{bLsaFNgEynnl=404yB4vfh%2buQdyR zkw&aS!Dqmh9>#yX89_3R+d=+y9gA6w$h&;=LJD}2FieT}JTwL9NJG6FI70QBX& z;0pw<6kJ>0B##}`XKNJ@tAeny|xfvlhp$U6abTu z8|-(VRYHI+qox7S8?g;Z%)2T{{#=&mI3+|-Y}lt+TV0ORlF51utm@Hc9I_rP(WFR} z8_-?9Cw)Ums9FvV*y)ZLT6Hz2D6&tnP5oGT3hk{LdsYrS#>Vxd7Jso5KQ%IYpR=`k zqtE(l)_O=@WLL`HlQ4l4>p#?)&#=b6k{cUm?Q-(cHo61Z3NZ|WTPWh5J`EU#Aas`* z2d5%9q%)QpU1*%k>*y#V=-cFE&vW?;7F`F4bQ{VPnJs$uuvc7spHUOG15q8+#1KF= z(*f*!ZV-U;6mE7%cO+7zCbIC|JK|vW)d5VVRKj$R&(5Nv1l;yq!(1x#6jxH3Q5-7t zD$o7X%!}iQaw!u>*}TVTt4jNBhZ?!`vrbb#kz}#H{amyDQI8&kkUbUFWuyLM_-pzz z)bYq>!PW=++-HE#3*u5565QeDp2PwnP?`Wg_2CuD0I|DUx$e)lb%dUb2&UM+?+uRU zitV~J23K?iV@BpJ4kzpVOIV!HX?vla<3?L!&59??@Koew2y0sfCo%BI9@NcH%le9f zH(eUY2mEB51Og{z2SM00vSG*PasU6Nhw$n<&KLH|ATxKqCD*OSolW`n9YVv&8iw3$ zdwAwxhU}NrO}qrY_IsXFCIhuYJw?xLdvl1NP?+R5o)c4KpEs{@y(Xr3BefqvYK%>K zopbz6JydXTR;@Srd_!jD#-^sE{Cy-hN(km|+@;miDGP^k5{G$Pb(=s^-n|F2@LCrH+J4`HEJ0QJU!aFY9iR<3 z1Kb}|EJwoO;f$#0_A-nVR^WEj`|V37LgPm!40gw;CG0sNQ^fHGq7#K4r1}BN&PSHL z#gh9K)gM@m1u`--K?@8ujL&q{+EnH3$k_Y6G0{p#1_t}(j06GIbKr79%v9Q(WH20g zd#BZl-@c9$=j<}@3QTaw4h?G8aK6tFUV(rPsynWHzXxnsRLH6kClA!x!byiHQV@9$h-IG+ILJacHu6Y%_UOZT+AucWPNwn-5>iwJq zmd(Oi^lI6LU%yBH;JMm7CFN zIR70TSdiYbzab>!`gUGLZ8SvBEfPPm1>M5qJcH!ykM8QqDw1K;;Z=3H@>Kh9 zVD4R^P5seoKQ?}vk{iVIBtyV$;V)`C3qO71=N{*h#^jpl*j=oL3gqMonDt%0(S05$ zE31(S$J7I0b#tKPACI{)s4N|> z0}T~O0+KuR695UIL&7)y| ziF7`!QVXWAtO=`TX_h2Kl8D6c+K}>5tB4@<6>zVPMjew8U_Aq1=YNiCm?_)=76ei~ z78e(zP{*qx3U&qew1x?71`1K5NWO4&y|k__o^OII2YhgCL=w0VXBE)gmygwTbO>FV zGB?WzvSbONW{rv&w!Mg>Ab|!FH*K2aFRtkV(bBp>+r0M5(6d+QK9>top*=lSOaxmQ z-)3K-xE^l)r!QKfoBe65P^~)v*#TBoS8#dF=~c4tiEqz0Pr69Iv?nDcjf#(7hd8t~ zM0f+ZYE@#4r(7zkDWczkH167vP%4ohOqdGFxd@0W@!1dRx(pHMYP1ul+9K9O>(#z^ zwhsb;t3f&Zl+AYZ>t#b|%#RNj`}Z3%FZ1=J$j`E*i$jUIo~C1B81|Cg`uj1|pOtkg z-!K8=_}%A@5Uf*4)v%XvsuEGvqYKjVnGL(uH#Mm>XDHqk4JPZIy@)YQb76O*`p7#? zLhR_|L|e1i@d-S-=pXkl_r|A+de^w0CVj2Ak&JPc6}(X?;mqm-`6w~;tYTs> z5soCEI$=KmRJS%q|CpY~z9fv~dvrX$_w-V_UZ}1AbmK;0;|5NAwJ`KvqC%A`@9E_S z$=Jl7_QXV+&qs`_sw@%f7Kd>w-PBx+_fj~v+ub&Y5S_2C$<+|)4Yo@rZ! zX%SC^4?!sI>!0kwiAPp!Ew9S!G3gL52V8rvAuKMae%Zx+$;qC6Vd<;J9llbyVM5sY z@UiRw@Ww{w_S%M#HVJHB53fB;_^izGvV5g{83z@ET1`&vCEDzys&$XDEz7{(-lZ(^ zHUn8OY`3_+{sjb7xB@6HYH<%-W5|+2yrobhK|3{%|7p+cM6xnlNFKJzOI(ZvQBQgf z5jR?$>|W^hJhy?pa|K)e1QoCoV-eg@9v-*RlG6RmeL9yaqY6R}vy3F~U$6j@KAQNU z&9-A2LAS%5IsRxfof;o>-Ic;x5Vl%Di2y3sq|{U;=w3c)JH-MT1oRz8xo0Q{vNcluo|3#o(*G!%`&fuAXQ78_qm0AYs7v zT5!sh7xxw~ioI_03?PU#Ag&4qlM+)?Q<7r|kOndtt`YZH?mB&dU>q!`7LErGWA;&z*o>9fe~3kvGak<$sED;C>^i5`}Y?%;Fr^v^-d2 z=%JC?&rR^}l=MciHE|r`N;ENvv>=~6?TDk14tnC zfe~MA(Ym?4%?>~WK%fdj<|923HUK2GXIjwG}o zkDyVB_UWu&4uHb}zv1%aI_gxSBlTE;k{dHw7w_~w=FR`$%7I)-$mFsF{fy$yySiab z^r;UOO_i1(&-$Em_Z4MnKG^Z&*2Kx2isAblmoE7ddHDX5_;TP0A3Rszcwk&w+H&k& z&-zEzpORyq2fTz+_~~ye7KG0658@8CerFG`@4U#Ixgo)JfL&dG4b%=V@-W7wH#_&k+-7%h{p)O{D?wiP&`q14;ATS zp@pE-jHM6dc+jk%a8=Hb4;Qr+Qxi}+Wgh*8AEd@@RTYVVNq5MJ#-ux4@h^INQU2)T zfapH?(O~X4n|G4!K;FVc4_N6Dff?)B*KgnI9*$Yh&YDL{6s6dtYuA(O=@TyD7#sY$ zj-WwMrulKz3rJqS4HLMn)bs4#2QO*gM`bQETGk#!?cYtUd)c)M(sf&&LxVmXWCB3> zY>=UDDuC!m4Yzh@+9)UM!pI9hgs#oZcy3JkQ6sFSFWDzh5a zi#Ue;UHe))MyzFJ%h%(>4@Lx>-EK|Ix7-=5Q`gH1ouQ7G7}ZglW66-wlBAyPeca8u z5^j4lV5Sy@pPwITSs@Mt2$QUZ0o=tEbLqNe?6B~m-|V_$FVm(SRGe@S)d3at-MdH1 za~#C_0isxm6O>L03VBLy#3`ZOKNy<0X9dEc$paL7MSxG#)YJ^+%ICsWWTTsMNajCe zE@TRbJlPf&6kopbI#+d#9(+#>el@av;D>`1*8M?O`rolWiM|?lb@{=9DwU6?$A4c} zOp3%92*Co}3|$?M9zC)F65HeXW)c%wmffkz$#+5j0uf_-;NMD1)MS;W2qlAhIfrad zN+=u)nSb+;#nnYqrIHZil*u{W>Ib8Fx2@|;wp;ZHo!YU5?W!4QQ{`= zVon#*Fl|HSDtO5JJwrovo_u^&)M0gcZG!vBOfQIePa972mB!|)q|!++e*XHv%pu0q zD(k7=anwjEEiD>y4DZp((cBaHtw#`@jzDH6px*|$toiy;-@o7gA|FK4X~j(cn&rVq zK6BiPzP5ZOOf~lz&~9OdoD#OxlEqO5<=5;s|WSq26Gb2npIEFgTMGr z{v7OdYGb5j=vG~u?yNlvA#pUGSUPVaA^95}3ZDnb{x2l$A#^1%O8J%KD;rIgOIkGz zjlsM?Xe6LJJHN3_>l2&_bee8=>e2RlhfDFYCyk!dp1;%nYmeL=T*JBAT;6^cVhsC| z8@=4=j+;EiV|Q+8H66V#rmdrK&Qj1P)c<)SkHh$zw+T(IrF#a}MSEDEXp)s>E7(a# zI?(FweD>V=TVGJ|>D}&P68*>3U&#AOTcu6!DZcY%wGDKmpma+~FYgUPFv(E(eSK>= zf`Ah&EErs7Xyo)>$i~zkib5i_>kpWk`l9L8&itEM-W$_P$lwX$?&C0fqT(7Rjt zB9oz5 ztD8d|a-K!}?6c5jtn=6R4=EU+uRO&FhJV4zx7!!35hpRkt~&aotMa`hBX7x_auo$; z^}X-MMoRoyZi+ttpw^F!>EqEcE7mq1lS`8s= z-j&6Ni<@ymmMKnIS{T}OBlp4fba7FUu2PCN2D%F^-LZjDJ0XgJFyNlmfgHKopUAW| z83wmTB)>1V_ZBm;)#2u2zK=R0H==wK;wwyAstWyxLEUtvN8Xqg?VjWjUMsiTsX0Ux zXMp~qtGtM`Y=8i`lb;&0*h*Qt$)9|1z?Vk6a z&`^{`^))eS0)*ax^n`~*MwSe->OT{u6dkghf5ZB$Z*T|VA36ebvi~u7VDBAgK2cfX z=i^(0G=+j{fj>%~5UFqhy{dn+CfR@%jIq-HTrq}u|9_^;|8CauAyAQJS4s6~x{N6 zgg@ZQu^;kaf|3iV9av;!WLD_+I{wKaPG#E|>#tRh-p%OR7WVbor{>6IhGAQNTz_iS z8S#1j2LNBKfG6UAIHm@YtM~8UBjNzKM8NbC30Fii2%v66+6a;8tyuB0Is^8#qFfj5 zkWG>}s{$(uMb&YwZSLyXxzmH<)b%)#FDME}egkRENhLP9?p22jpAy<*+0${K*LP_j z+F7V_#dXb?4#P8~r@6HA^XCefrYO6vrhUYE91eDVu)-@h zdaO?MnxJd1?>)tZIaxqAv5>kwYrj&4HFJRCg8IIl$e)D@+5|L0WR7koV?U}DX_i8%hzCS;@<9Y(OcB{zQ z4UCv)!^{n8Cr>oka@hC-Sz&b@mSuxj;(|p2T*7M`YWDG^#l;9N011xQ(c#!xcnQ~P zm6vR+JfA*&I)PCF{zr`Nss~hJeKaK#eBTOigvDFq8E@d$~>FhZb0K*}6&Mks+1-irkbH=3Izfq=y!>16tbM_-?li{9&w z)MVH51~f+quP*?dW_UQpT}v~0cGTv-MMMD!18ysLzQ25y<4Y(>z2LVFI= zs|Vt$LV<^*DXaZ#F<5Ad5`Tv=Cndd*A`hWqLQWNAV1Y`OT0_u^I39yyQDa0Uh(Mir zv+vhlpA(}r?JbqwnYprnw-xNYKgM>e3QU~YEvRL;Pw$#IGqyS15U-2}yPI0QOtv|B zhz4~V-4wq!{6^M0-7>M5ip+A-_)j9qZs&>6DQ%^Zd#9!hIE|uaEh@O190Uv>Z}A_L^njsF%?cyknE3l#$2iKqKvypDU@w%U`_;jhXoA zC(KX)A^HMjvg4mME+N6WIu>P)BhYC0O1z)E#;*Izf|kfS2eWKw2dNPp-X|+Q(8u*{LP#EVT(ek+a@pb z3QR(C;eP^Y1aQ#UkG5baQX9;hkUxhvj9J4zB_+apVP?+T8ySbcpWSGV)`R6lS1~sbO?n2b6p%&X(~6t4N)l*okMA0virdE?YQ%% zhi<#miQeB5#g0GY`U%MR*{)y5S0qMcPR&60Ivq<4JZv!e0Xe2XkA~CojwpFhL}g(} z{eG#C)9eh!P1$-As&Uf*Vq$9fV{4}b7c5alS9Y)gn)!Y=%%ImPqOGNI$O$o-#87*? zV%_A&#*61R{#&Kp_k}=c1yfDHr-& zrc*lSPF3?sU&H5}E`458AxcxVdL}08)vbH1JUoW;dsNcc_Fs+)3y415XQ0jh7c6)w zut%IM_4QA1E@T`4FB7q7UmOShlNk2IepoF-JSHzCl@8jhXqnySu*M@$f-n@9a@97| z1@|vTJACX?_V*B96`>-t(V`nIjTPT;Q#PPyuP?9o1VigS7+6M&afooZkr?!mb-7lS zMigetl>dEgO;$)_M@!{W7h97>+wg*PPtH8F0i#WJxsmdl+X~-Sk6B7&mR9iyp^RbU zkv_5*J`1!Gm>3K;Xm`H#d5CAcdgQ4*e{g&MMEZR9HVgN83tV}mR^vnv$O-s90W|R( zoCWZu$Y_nvY<@>A^|z_UR?Ap7-Ty8`#@+U`q1f)efA^=myd_-h zkfN*VZc_q+D+anEMkPP$+tO5GMZSV~8X*S~XLTGVneTFuPI@H$vT(#6?aX!5e4HCW zAbnuA{tWYV4M3}BKXq?*2AJ>7)3wyBz_Z`UV(aVc(0-2qf~lZ&&6^HqB)=9W%4-`N z2k@jK>Zu1`iVmC)EIfZ#_~Pto?8jq#2mjymrmdo)B7NZ9e@Qg|;4k&>K>lAh?#=xkG9;ITUdD^S zfHYm`85W{sha`i4Dej)2;-S0qs%B;-f+Fi&DAOhcD-`1$iOws*SF27!raUpv+_Z$E zx#nN5PBHhk=Nf?)Vx~%kA40;|)p?ZOo3>7QNl)4XnjO)Qw1Bg&8JV7%9m|Q--H0Q8 zMqy$f^q21NY!*eZf)i{mxj!F(9}U4YA}BN@v0iB_x2 zVz1i!08SvDCsg*bjvI zWnqkZ_(I)nPmGPIGDe> zS5SdhQNeHD26@B})D9r`0CAAMqp?oQt|bqnrfE&H{@lraXJ+va>dOyGMRe|Lto#I_ zLVPL58-nOB8uq^a=p^nv=`qrXWu$WZPLwF_jm}1zrOSmB6p=&>U3OptzxhoS) zZxQV|LLdZl1Lj9SDkDa>njUu2T(Rgvrb}7Y5>#g8q=k^gw1;UbC8B2N1_oOOVs0&E zWl=yGg3DS{IKF^te|*=kvDwo8ERA{=R5%g7-&Iu`RaDrwCfAuRHk+?a1uM7Ww-av? zj1YunjKFT7jyEze2pP1shE)rT@|x6Z=x(opc3}+yNPYl|VEH(C(29-yygT8ij~{2W z(6f54*G7QX+QQd!ICwS8hSw*($hc?{a(iR#L=|lhqC+XJpbp8s7TbEMtfGS4pb?`1 zlEzV@m-_{Z9U58R6Mm8ZS+>&uq-berPv9qp2T$c?^2?>DOYBAnmnI=2>xSl6FMK^O z;Km94-9R*z%EHTwmpT}}xENLtPTafv&v@TgY`Hs}bFHu7l7ZAlJ&xF0ku2j+;fU3f zO(nRgQ;XOWK%b*j{d+gNqt^*N3WJkK@25Z%M0{y2o_V^k7pMlH5y)tLaJ=tXq?*X~ zDN9}dXly#*Mc#II_;ZbM`jno-ch_r_JoQiCHs8MAU~iPj80V|UOgeRCz)e=Q)G83$=@v3+Uf`;449 zI5^sZ*DO4)YsM8Cxs+(Ruqo1-zuQhESC65S*=|4~UF{oRm{Wi-0LhW58-9XX;w!^j z9;Xcc<=a*%l9>-hmyHxl?#t>Hn`3A`$(>=MHho1j4UcNp8Xo`FSxlTJf)$wO@U zAlLO9c-j+`^ujTV0)I~8{haJ9__jG#*aE7%mX(<65m_DabP{NJ1+D`P+35xj5f&qk zee}M!7>vbttbU}$M&A5T-j0*l5o@NU=_90IVD~dyt>IaUZgbjY#p~4&w&h&xn0ru+ z&wEVhAYWnC`9$yPif5muW%$^KH%kk+2&m0AP5gX=npg2m!ugA4%4*+(q@m`vH=^DQ zN(Q&sX~#8$?e%|LrkK30E-0uCot&I>4e6YpP7i}xV`ZqkX!hyD{YgOTa?VKd&YMz6 zMrdvAW@=Gn3cXT(M47@ow(}%^?whv3=h8zgX`0tQcqngnouu0dK}vc6(#Sv4Hi@7u zwe-KjY_A@OTY?tVb8zbE3cFsNW^yw7(HO;7K%y z8dE9%k!q7g$dlASh{mJw<;2v~bAIXcvS#hIBqj$xF$i1QfU52Rhyao4>wg4*n=j~{ zz_*S^`i!PDHCdFfj)yk4BeL(Pds1|-Skwb0%!=J4F0SfvN+k$=R*GzE)XtVHt-EC3l4=XmMsHx}sw7lY^T)L=^+93c{NU9-PAv z4$&MSl&{}=7>c&qeYc>iWi4uEV4VK7`spXy#_@F*_SuY2JgcS#Q|}X3hb@1DVK5v_ zMcYTq3tyxciDGyI)!1k~49;wkh5V7X28aZVwTav@$c!D76tH)y0d5@>aQ>ABoEXb8#>TD$f2^qjH*t|2_Z zIXPJO1h7rF&BicLDTZZ_rwYuL-S9|f8Z}-V?b<;SU|EGGG(s7k;=8dw=n2Q?axt0H z41{Uk(_yi1C>ddUhz=b#m1QsibuZtfeCEP#Pe*A(#kxvI`rN}_%c0it`w)E35V&>K zzyk^3eY?}z^?L7mHfCZwT?I@SXhMl63Et9WzQy3C$g&e{v_LAc-dy6tRxsLvHYx?M zWp$1doc9E%pd|pUK$$L%ZC6RaFLRm4F$wEYG7n2;=(eQCd}R4y{+i$p@u#;w_2=Y~ ziQiC?&SozIgTnVqiw^MZId438a^QE!oxN?;Xw{p5%EowaAe@*uJ*6#5`7Y&O-Qmke zWH!`v5~-Raisl!d_1@XUk9J-u^YuN1$=&95xe6&k5sjJ+$<7J6gmb>CtynlaEi`>D z6sgkF(-BSMD)dP(sZDVztEw=V#d*m}E0Y&w>C`3Gi8*@7Sc9XK)$|BeruIaHeqpD@ zXPi`)2@^VF^E{bP2>y7&J}kt4T`>mesJI?vTpaLMe!(cC(~4OhamP;;Vr6B6B^c7E znV5VJIJU?MIJ)EHgaAf>;F5%RNgXHZyBv`|MokS#t5AYtv;!fpIv1|$pVTkbO{)wy zS-1c~^2@pS+Z^pK8*8#n&Jgu44`pT0G!a(gAyX~H)(Xrdl>HycBJQihTlGFp4++Jr zUR&>9XQc0R0=aQ_Kp$65-{$m1lzIfw6ZFWt;zkQ5>h(M%x!WbRN)uGRetr-EtJUNA z*jluu(UDqkg`i=Ax@_rf(B*ZweP+R0L}91VjoJW6;?cy+Vrw)kL64)aNtE)quq5Ah z(5X4#hUC$uO2w?zm($B!P^NVDgwIf=W=X{dDryj&Ne0@oC1hNJF%%PWxvzMOA7*{_If_-XVM;HbxbqpSr|_WThW$`@UCDzV5FPwca>4^vH(zKx z+8$7L#cnrF-kuhkCD!xH3t?-QK^^#%p=aNBv+AqQ#nt_c%xeZl=QI%igLK*9b{*LB z?N=peu)1k-L@UoSuSU*3 zPRa>G8wbm+&yx*QDd~bQ+g=!L{%u@wHU14$NpQ>k407C-{wK}*9weDVP~-mk^{aa^ zv3`~n2Mtm4V!d3ad(o!5f+{yVOOzh8Mm0gG^V5H-NU!h)^6{ZsfO)I!|P zyH?>cr{`}g?j9wRO2`%bHk1cB$MVh(U}+=L&3|KV5VEm=6gGeUT&tNgii(aNGWhG; zD(P$NPMJWdi-W`9gpXnn(Rn5=sugX5iDa zC5WYKBMxt*#&Di%1o?eG$Z>rDvq#PGgOJqwyaw067SE=P@Z~-Tz}-Oe{}dGVFa~3m zlBQ}E%E?<%BGs|&*DL+Jpx~bQBkx|juNcxh*x8v~yqChhAI5YM44*;{G{IgX*@h%4 zUk#0nTHrEy2fj0unfY@@p$R?9F6%m!aknGk`8r>FbiKnwz876>T7*`d<$d#cT(e403tWO&n#XER*LrlBJnj{El1~_ZS+P3c zj4_uZw1l^cCR6aWq!umAw3nUpO3noti(fY?pidN1CR=~voD+`j`mTq>lX9kdF;qtHJ0+BY{rKsY}^hI&t4_Nu=r)xvUfR{i*oikIDyGu2-H_FVrhoGJhm-{yuBV zaF;7P7La51>s1BynH_H%LN+o2~8VQC4zhZv>$8=JyD!NJ1#?=qY`Hksyx!j|~>2J>15ax{h27u5? zg_Ru&o*+m#zh!N`@~;2?KF1#+8C^&Y&jXgGTx7XHYKWj;ae3}EIB}?94qi1XB3YOwFjSvjWLzE#IW*34eX2X2*plpDJ$f?Y040xhBe*VlW48%&kU`H2Gf+adQNHm zG`9}LttblB1&bqto)E|N(56I*v5(P~6;9oWF2JaX^0J?%d_c^)&>O=WncZK8wr?nm z)fo=1C#d+KB@_o5^r-2$K!jogE-!`1x(v4&htyP|TwMo>`yFH&qNHRmL#9YaLRP5u zPu_3tKTI#j3JU>~EJQ>;^!_%sTaBOV4!0~g&|VxJd7%a1Utj(<|M&;;i6J5A5ZQ6! zpRtsiCCFGQMVZ_2y0QA{t=dH3*}dA`-F^4j-D<2ZKT0@f043pN%7E}S%forjK4#|d z-gQ9KyaQpgbb!uuLByB)Seu8AxC?+1RUlUZ1uF8sAYtu+9l7((>D`Q(k3X|~B2TQm zk!wb-+{Zb@aoygj8JXl9mbsCOw(G%e_d|iuv4no8;N?Y`$n@&`M^FL~DJ0I5$myCY zz3@Fo6%4%MQ0A~*dHjZT?bxbbne4SV)@oZ1y}Lm;h|N7d3Ud9Ki7?qOyiW!;4M*YbFqHRND(iyxpg;h z%hK#INMN@Fv!4*6nk34ceE$P&G1wnmlf`mJjvFv3;#Aon9-aphno3}m(1_T(LWC1Z zA^<=B`;wAEv?HMMB~mD1Ni=p8h56CloqRbnMNr$oy$IzWlivozeUbLsD0=|8xCG+lf|h4g!^5pz&S+>#)O~^v2zYt< zC*AcI;zMu6ktZ5#{|hJ@_EvWFgN8P8e}}#xIvMBT4F$rUo}mN7BF$A|n`yOZzM}Lu#5NCmAOT>ePs2v74G=OO6(r12UdeaQ{@- z;$ywxPTNYv*T3szt=H=pNAD}{yFik^xa(xE*W1cnF@$(_{o6RPKEQ~U-g}<>aifbh zVf3a7*{;GhxtZbJR}E{N+RUHLqYPp?8R{oSjXtsX@t~ox+30Of2y_)nUSsm(=XH;I z;B&+6wu)Vo9~on>MvOpga>=R?qsep?|MbVeJ+CWB>p}?V;98`pxj_2SV94sqfAw}y zn`LOqhlb{VQ5hOFK^H^Q==A$~vh{uw z?kNp=Wb78<=d74K}oOX8Smmgx2exC;g z*U-$zS}`nW7ZOZi5cKAQ@1M1?9`*ftY}$Pu#*{j>Pwaz45-=6z|f_kq0sruyZiqKPSmy!Rt{$2YeU{!6s}{OzUF0)f+_{baxHNyC81V(L zsm4Jh6eCLgfNLFb*y3v8RH2=G(cOdc9bPO2+K)08kG}2R{`=0MQ9cj1J0C5~An=~8 zih^li2xD8v$FkLb81m{%*`ki5y}h&X^WVQ;wa1jEYjYyq@G^tKhYufGjTdPw<9#qF zP>v?$(0suSzc@XHQgvhY(OXQ6J{mn%9cjbg+^;aki#q8K_X^~Eh&4uSD99Xfj8}|g z%?|hB2-@6lB-Qt)W*0G45^lj=b*z6qwo-9R8R#t>@T|Ha1(5t~Ao%kT5+0DM@etn& za)*OI2Fz~od3gzqCrZRgKSugX4$E?KV!f`6q_lL-HE6TAvInm)yg!N&Xg>q6kp_91 zupJ)MIATPo&M zdh>AUqe1h@2awXTv$M18@e8?_S5)w(ylIIWkmK(fA!q)Q(s|PMZ@Dr?0`Z)jB0fUM zm;89X*RB^|N{*U*b5*^kd(JqiW^f0E-3&W5M>Mpp$`K=!k(?t+k%=s!n&E|b^lZru z$33}^uQ|ln`_`>T@47ydu8|VOkA@pa6q0p(Gbc0@4MZXE{dR+i2!oGBeL(-TDkD1M( ziJ7gdI3#%w)`#fh&nO5?)}`ap3mGwbZ3ks{Wld;k@!lf$#IR$EckVT2n8o=Buz9uu zDW!7@{n1wD>;)GtkRyS*J}EbsiG=?HtRN!Bn^9v{cK4P;?-%6Xcd#CMcW~;o_qn;< z!o$-sIq%IbtuWuEns#HemhR2M|7rmePaM24XxUg>Ovr6bi163m1UjSH{xlwz@j)^g zp^9qjMn|3TcOYw>dR$OVk;(c4qmMHZyZvS1sYl`H_%CeMU;x!YiPMk6g|1|1yx=jV_!zeAj zTg#w))PQ)mr7IOF@v@FlobP2S-N&og8pmpj;VfiFdrJQPH)XuGnZfJ@_s+fh%>R2; z{_o|9{uDaMWH=ZDUy(wC1p@<*kSv;HHE9aPt2nbS_(!^ww5Ry$#K_WG)^#bdJzx7D z_j-$l+||V$L|E<49^~q=v@w`m?prp&zG()5>9C*#VDCfGkxq88EP|J|8cRfDZS2C zVK%2$Ix$ve8X4f!q0`bvM)5rV$5>hs_3TCDsEuv?ZaCY@u7Pco6agiE*M|}{ziq_T zi?UYCu=v)>UaUC9dbr=dt_HeiAYAX0xxU!>SlDQ1@iXVfIk}&>;r7e`{OZK`8cMA{ z`;zKg5gSo6wkon)a&JL?r8JIP@6A+H^9Cbxl^9xFNc*wv@7KE|D&G~f4i?+}Bw(88 zs=VAl9Lj73)#&hWua#h48J^*39a(HaLoVDQ>$$Qv&U9rb#Rh_vLAXP=G2b zI=jXey9SM@gv0?HVnwSuyYb26w?4JO8^c zoAL9flR)zlnxUa#8YGM&=m;=EX=h0$L!c?zZv;w`lr3Jf7^SZ~hWcNKkS`FCtrUb(n5tvc8~+3kze z2EwDd858@Ko@s(~^vL4Lc84jk!s8Tisfh*C=!${MqhBs>Z<#cl3k9vskjGE>zyCGo z6`rW{_A)hq-bp?sM1S?hFNu`*YP&_?_4mJb6Cox5CD8_ko6Cb}8wU561C~9Ux*YZN zMw;ZjYk|gzkh?mqpeT!w%}VXPdc>-+sZLTSdR-TTb5qwo=>-$zS4`!hTLiU$&UH;8 zO%3DTe7H56I5#)7Ax*)dzVm=-t^VYJhqP1q9$(*MaU>RqusO&efsp0ecgxuh?!`nV z_TP*_7yHW{9Tw|0A8@Rg-b^O28J*@|F3E-m(F|- zo1`K3w6hzZ3SVoprwQvP)!@{C+{M6Ts;TVIM%Z~)6cMFtd&%5?O9ebMXuG8YHv;-l z0*EgL#WUyf@y=QB$n3wqSJlVmUVB8btziTiW+{%;nxO*mXJ=>cf;KudU0ehZt20go zs@EsFEz>!+*|{mK$4=N-W7>spGc>(%QMRnbr4Iw%kOuP^98iAU@+c~1*xw|;>@yoi z_q*x?JkwwK^XsPRXgfi>@oY$2p*w)tK=`fec9Ae0Lk;ptwUBrF^{IAlvj9n^{ql#x?iW4iY&I6+cL5aO-A< z29nv3k)Vg(j1EPX-3P`s|mvlD*0)j|Lhe%6Fsep8c(%nd> zgrHK2(g>2$-4c@DT>E+7?|IL4_8;f$>+I`*Yu)RfbBysDOq`sg#_h`b`fLCK7X~oe z`L;*fhQ~B`@eo@O7>nOSydT*wqf0B=cG(QwRBI=UmjS67d8A;!FFIfRoV-!!-Jw(S z><->-_Sxa8H~ZUV;}=xu#9Z#LZdw`{S2rBIKw%twjlgB@CWB&Pxm{7!YXo;0Qdu-! z>4|GN=!q!SY0fuT(wxvrO7>wp!3Vj$Pq0JWJ!-ASYHqtGEn>D5!)!(L5V^-G|I#L> z;){GBOZ}1g=dYZW166+&N4lr-`5zWkEtsT&=U z{F8zebCt9^#e17yy&Fwt;d%g8dxYT!OVXgNdsE`quyRo=>RbBFb1(mNNu2daOOASv z*>r1L)81P_pO1IpNhaDmvD+;7iIy55s)~?YEy&w9^6|TgKpdeNwX3k{U)KS-`%(x> zNzM?3m|T?y0~;Hj^9D$lVp1=7?C- z7vaukd3AX~CdbEY#O~MTF5!Ot6Gn7rxvM7i_~)@pH@o99%Z68~dJ$0s^E?;|#0eo= z%;EZZzP=uqUf<-N?#mJDSUv6(HFaFy-NR^PE%u@*EKJwazLg%OANG7!QHKO1DCO$v z(?0(Y7duVjx!eD^zQbqn2|xB7LH5nP!yUMw^n-omwI6c5qzu`<_1*=O3^Khzu$6n-l+F zTp#)-NNPq=-0F}9Q1 z%g({S*SV13&5dMTCF z(FYq^o{-?_J|_*hnJyK#MK3glM)6P__-VVu^E!u6^r&4asW?h5#i5!K1Kr@E*-o0FCB|_FSh}jZM2==~V zLlq&u{0Oyb%*cbv-rk-d^JajA*tWWYdJDGd173SIZ=uQ+Bj~46R~KF)E{i^=%4m`< zo3`McbNPsmPN1VxB1F!g~1=(FDz7E6(wbeIx$kzbv}{ab;|qj z*g4+rJM(l}xH|tIY}escHfv}cM2_gEPy0%A{^PIPNHj+N_(DXGKhrNPk2&P?kVpaN z21DJMWao}sjJE5o8}THM5;OYr**q$`EXUAQpP!qcOXn4ql2#Pnk;Y%E9jmn5Imqi+ zG3V`=J3Jn6D8*Jh0>;1rXveTu`HcAMzF%OH4u(l{&*@UmeerIXb~n%)z~OQKV5L2G z+&o@$tkxCri8z2xaEcoHl=a@L+l8t`)qH$)-k%*B;CZC{`KyyRY3|!_h=9#I=8UX> zu)Yc#XWfT{<8swW$~A^}s*DOJUX08N)}LO5;)<^g;qT`UlA#j`YtcozFx44#>S1GI zt4ZJ%R)p&+G8refs>^KBvUf3_1Mn;(SkrX}T%`<*rE+(aNLUY|o) z{?KNf41{0Y#&S849bFU9WM{TAiQU)R^OYAE*j)Hw#YY`Yy5w%SNuJbs87<3dRtc5! zuvmos!qw8=+MyT1s(A71iS-_|(nrw4!*k)dpFGpCIN^q;l)YW81cemnyf7hX9PXW2k!-N!IDr*&= zB1EY?vTz_;$wJc&!7rvtZkV#R5dZkX5&53$=@Rx5;tC z!ecRuylCr=-IoNU_{z%H^9mv?G}c@|B4&;c?=kuaok}tMu;adi@=O8 zzX+Q!TxXHW5NNWvd^$Dw2d1MvV=JPI;Wm-=E zmyndnt33m-l%fpG_{RK5xD+>^Y!(=F1+VrT#@0fYq3p|_`i9$r#PSMK?KTk%)&u<2 ze9TpCT0}*?-@k|OFuEA_`MBnwHq0u>pXpAd37Bqx<1Cra8rQFlCb#d)>R)Z8DB*do z=f`z56)(k^nDqIZs2S2#4osil_=z=M;q`m>%h9i;WSDE$Ve-+%FBUt>`DUyq`tx z(U;tj5;lB&&oy$qg(Ja@I<%H1-IezV&sX|)->RYt8qKM|F>u~?b$sQyoNTQJW{z&u4;3>6D>gNO-l-Y*Mt*TR#~t*GTdBZB9KY?L)zok_J=m&g>pPe^fOeaj1Sg zfnLEFOOBGdY=xSmo@96G?Q*M$-nN4LjgYZgT9rIp$*8^(Lc|#hw?JoPGx5}CPd>x% z^cg^doEJc)Kx#i>DxmHY+4%6Z+va=1UEp}NP;-fkAKFb`qTjvCz?~Yu`)||LHGu%5 zaZptOtvVWhOZ#AGIv9|})6~(CFJTJaOMXFbXY@nlp82qbJfR!^M6b=e=Y!@JMf`EZ zbXdv*a}S$~6MI*6Ck3!@v~Q_9-i&l1*-~L3`paTYLP(Y``KI+v*{0*aG=)h&E%Sqi znrp73rY{7|Uf2=|z$Wh9I|W@`Qek0XNM$8LUWRRxhkB_{TIYI#an{o3DyO%%(9!Is zn-YN)Q)Bw|1{)h2HyJiEjDT-55LqCYnf-kql66UZL;p%1Q1{4|1|r7l9v=7M!AH8G z)4(Niarx)pW6#y>U{)?Jyt9ytsTj-T?QMtog$0H%0=dwA?c5T!^z@0|0`)=$x@?aQ z6GXp~EmQQZrlmxi>|&CShul5cSSAY5t-2G_oqmzPpJ7=SlLzi2V{ zyw8aKGE*ud4GHC#_uR3j%G#%f1)WbiGwR*+-pYvy#bVP#3aF#&h%19y&Dxs9s)jtg zbHDYJ23TwmJg)?(B=9>BV=FMAz-AQ-M7dxS?w%+rQIK~KDELB@D5uyvjZ&WY6<6v&a3;G;;4IQsDte56zPUAZl^@p1NW;kwwwClQXy0jaAoe%|0A#!PF#v z3A85I49|E(3FBip0k#rpVn)+P|G>H)Yso=4ZdSiLu~Fd+ksJl~m4knt@Z@>!b>2QJ z>xR2_H9H@ZC8x26Pskuycc`{sFzZq4PNGic!`WRXe_Ei(0NcRy;`ER}mqZbcjD9D; zLj|$iM-OzeD1Q>Mgx;IH8aOl9_wx_eW=1A*JS9;l&5) z{371Z!pUDhS0l8)h25bZEYH#U)f5|)aly!lXL*j9lHW6C%-*?WCu+z#&^c~;0DGqO zy36tmiZHwnQaU;apbv%x#9y4mz0Vs*w2!JrhVzdpKo{G-x36&bpTK08bHH+p14kA} z=*nLy{KII{`{Y`5!d2=-ap&+Fq0XMjg%tn!>Q?IJdvUw6GttXGv7xsJVvF}y%t+0D zuS}@aw59MnbDRHVp`{%v;2&Tg8_KVxC+eVoLT<-SKPkj+)#ti;mlx3BvK$IE)AE?tNv|6B=}47WtcS(_@hK@n8M6 zZx-`NSq!ukAl*uBo_m`%;HN~k>7dC!YUG~ddNb?T7TxD37Wb-;J;n9*$7{rV=Mo4} z0jc!9sApkhguZu5O_YQ8U3mL{F4`0z%7(;#z$2ZLpMO2GUlA-iVBdn5ZM%JCW0G6^ z|Jh}kLzfA%6hvf6K=j6fYwACOnKAF=;tgB0R=!0G|IIz$P>nKvM$iabAIvV!PLZ;&OT}VVC6_=JvmaQGreSPYPc#9wdK##McyHOhBnP9_VGT6<~ z%X?!mf-fuosIV|<`|;HE9wnNaQicymL!Cb&)Gj#TYiD!(5UkzV@y-f-60Kl9$;&I? zc3D(%dGTV8RsEB5MXrH_St9T9}|xJtEc3J6>XOy z)AbJ3^I=}0%@YI!WU=nNFfP~k*`^&?Nzrnea!ZX5dpIt6Kcb#^JvkX!!sh8C{^-6# z!Abip+*go4aIg{}jPz>{HJdrvyIvWvmpvQz?{~!0C}-@({(Q$ZsB=1P^I01I(s2Zh z+ua3)rw{z1tVm)>?zdxVY^n;KlyB3rt(K&5pEFdoZv%l$=u1t7M*vUzwQ|zbBae|ACYXKI_KhvOF z64`rLSXk_iJ~noSvmQ{@o1hV_-J@ zb9}bvDTaJlAqZr~Pk}@$GorD_Uy@bRZ7H8vY5FkwWDWJ^+!E*w0Z@+^` z!wH-$=Y_!(|3{Vzg_}YG1oRPr3}9yHCE)hkPk>HG`A?60T()^iDTwoCfXSEq@n^Sm zgNLscB8nqaQX_jEbNh5*^(+!?7TFJ(NoH)L+y{(3t?{_ zLNJe6Bmt_leu5WD#;du165+T&yn2DWWl@*tnC?Wp1@}u;6ZX!esEXH9qg`w-! zbyKj)fZC*YfHWBbtS{JApl=3LIasO)U%l!p{Fwi-f3H7HI39S)A0Ge8C@Deo6<~4` zu`u$;q(tZp@D>wWP$aOiEs8f@6A$qZ`EUb+@`y};%v+I)CUUSSRP*w6I8oPh`(tn8 zWeA9wgX#T3K^O0iAi@dJH|X23hF6B&sEHV*aOf-U@o7lUOzt;j zwBV`fm+{{-<4xA${OQ7BJSkbw!~2$4mK2R1_$RFmX%ziWq4W#Mu*1FwVhhOh-W7SL zkYs%r#|J0bZ9-sVDCgyJK|ui+A8);5fAR(XF4R#oFfqM_kpc2R!#iHCO*2~GfR@t> zR0Iv3Q9n6N#eo&NRkvKe!}RnlHs1PE7Zm6N7~Wlh*hR$2l@L#;h0zT(dYHP)$~cf~ zNy7X02as4HymO})VE}D6ZFquo^lURUf;BoaQoe8)P@DASZkl958U4${fxq~9ny(gK zXE5>v=;l*57rtE_rwq!^luK=mv&xUceZ}{5^e0j;{N*jy*Iuv-y3D*>fnRSy$YB{! zHYDMp7CRa@KSv7h`c`Zb%zLYdAG}hDdh56g9)h6_zJSl|fJH_`C1+=6egGEl{*ev~ zJAD;(mG*BC{i%))awkTXzurGRsl~6IEyimMO?|j1@`N(GQ=gbiNk1gd6;M-pI-;cNgX=( zyo!14m8b6;J*2ELE_$CZwc#y?TQ7N{VCwneUDw8q!HvU4G(kgDgNjRsQDrc$mp-n* zy}c)_3(R-Kc*5CYNBpzVU(oK2u2!Th{&j-XHY)kVP=a}~(oBU2Cq}lP6{oB?ez4HH ze%r{E0I@+pB&MLHC9S@lPGpM%yaBKuH4IDN&SJJrirkC%E-u=V5s??W%E-`3a_{3o zpXgl<4&)pp&{;!8hETv|^20G9k>%*fdaEa&@~*B0{sYR}FGSA7jEAV~at))1*W=^k zULJk4eo|>7ow*^_)MzN9B0>H5rprKZXPSzZ7r}4YLR0RpxTH7@^PjqKY-uPcC^Vwb zNP)0`Kn20lj;>x9;QEaFqZUDx8JhH{M(U7~juRIWf=A&3dT9rlZkc{3JW6oH43LsQo$gY&sKvs^3g{xViVc$Z)sE&XUGC)eo0A;%BBvz4heY@(wQrC*V!+MQE3(ZnqOyl zSlDNiKcEb5>--RhL@<1%e5&sppwL(BRJzHr&fo8VuK25bw7vhasl+5DK`lKlsQWQ7 z?GPCF0&?rudMf*~hFF2U1c@=tkC%=oM&e}X46=v0%JJ2)1J5t(-(0x%`~-!es^A%c z-`upzo#xh51f~i7LQ6n7WdIc)Rv^*oq8|GQc-hD(^0%E8m^&J$9gsw)tN)v<^+KBg zyAu6|x&29uo~M7cW_8u1JEH?}L*JA!enQ{5Mgoqz zyUeN{K6)evbAX`1&a6}$u^+L(=*A(!46gyjd1rIOz4;|@Gf>O+x4@wNDuV8U7G!on z|D*U`j#ulk|48Nw2A@|5OiX;QF3&T)LjG5iyX^f4QJkXE(y#1Y^9jw)J&Hbm(b2UI ze~&K;o`*#@HVSRJdsnzoQcdR<@p>DKna1!NcK~f2X;T5*jsTPxNWn-4>J@-gU}OHI z(P@t7*mZkza}gvHD;T2Z`dg~QNk0aWI^rk?VFwvRuf#NCV^Sd-8AAHpC2ap#=hJ6C zOUB&*?D+@w_}{h9h`_XH0@TYM+t>9{z8$>EzbKiBpAu`XV$m{5WCo5)Lk&;0%^*Fa zrpD7DMlJIf1lOtD9q-glcOp63CpA`8ZX3Gu^InBgqUq{DE^0#=AS}vl=O+!wqOy*+ zF?IRz%=MDuoe-K z*%Wih7LJu8=i@?cAKARNx!OVB5p?lR_UuMX?j7}PhjUG&6*EDjItlcg!xoUZ0Lw!Y z-swNN#S9f-kQ=xb!xgnXrYK}YDUlX37lWd!ltPDd-o;n$+e6PtY+yLo7@C~sL=6=S%-3cF8|#BwRVrHu4O649rf zUnRzLDP8WrU7nF&+pK2RJF->=8}1LJ>=QQVFdyQfWW1(=+wH8g7h1}REq9lew-Xg= zTR0*G0$NZ?mB9~Ig~+<_OE26uoj}0Y10U02vIIK@8ko~ysdbLZ0>mMNl7-~6!P^TX zuO5tuiCgeaP@A#eT|I2gRX1m!2$X-{?A)%j$mtRA%eZ2c3MBF$NoXbB{Hpj3UW>nT zbF}X56f!rqX&4Y{vdm+7lJVQ%Bf2BpnJoYt)_VFA@?1vE?t_cvw2}^HnG12FDE2cG zPIJ|-NOW|bz&aD@C4!+J>y?B>5B?=Y$loK`vh#Bvgtd=2@4(pjY<%zT^5O%+7xcNG zn@ik>by{x+n3#pF)nZ@;0!>qH;akE#j{*D-i?7>~_6it2t%Yh)p*`9fpOf&+ce{ddb$8)&X_L43DJ>ZPP`LDKLz=gn?wRecLFHU7z;6>yd=zknsX(T%yAw|0~9KCxE1OdDPHG zNBc)JZ53U-xXJE^8TQjoHG|4G_3hbCi&G=T+K?sJc&I~yDX#E2OZ#1YhL328g z=}qB}EQvdw(E|To2Z5>>D%zua`L6#ASnGX*!c^WRj8$OJ(Z}8+(WE#J14+#pp2ccd zw!%r%4hTIYN9}#I`FZE~#h0GvRr;s>jeK|Js|G`!^76ji{ihfCZLVHOn=RS-E%E*G zY~Y|mA2qGrO(%XNArToFndGJ`CVjKBoQsU+1+T)KQfxLD7pXp5`Gf@n)a=vc>2p90 z5>#ctgr0(kddLF>oqm+cakX|z(s`23_vN^=NQSgEolE<6v8r*!{b}(ZUYHK%kMZD} zkq1lhr^R!1=m}k?J5^MNjMSArPVf}(8zf9s4)|G z91`Jon}|QT_(Ui=(`V=Q87QPBJOFKcs^Q+a|5oK~J7f8T46pUO@ZqX=degA$_ji-! zH*aIVGh4}nngtY;`aZS^1C^?-&OH#=4x1g_+}vPjiU*d&u7pLHFe6rSh|>5dCq;q^ z{8vKo9Q*_I=yz$>9Q4S1hPWj;X*Nmz@e34Mreb_$-hoY_o|r(Mj%2S{mYJ;hiETm@ zUi1C0nZfk&s3M7^Qzh5JP4dMW;}t&M(j4FsvJ_LUlEp`V<6wOahpHJ9{T%T(!WUTd zTEWIF1XvN<(a5-}62DcPMZ^zAAXEDqrSA4VY3Eqp2&(X$oJRZcz=3xDA`{a6 zFb^=_AE35tFZ80%z=PL-Jtq;$gemUaA?LSw*k+DrDR+(0-~|DGPp{A$QUmfsaqk#8 zs(+#J_}A4gVM}qE(RyOJMXp&$Y0}7_-R~wk;?OiIh%JKU%)FK1;Ux<9gsuqkuNTL& zG=pvV`EOx+L?n&Bx>{^DJhOr?Pj%N>_FJ!5tdOcm=&#RpujOr$Y{< z=%YY$Gml;E1M{`!u$+em29P&FJE?N0c~>rBxu#c-IlN6?%lg{IXJV-f3HIg?6mdSAV5S*$MD|Z1BF3H$2;Hu z!Vn|<>tz=W(|3)|L0vA%6>sM6S5z|n-K%wEOOlc7y#%imE52Rf0(*~C;=OW{YgdX! z*seRrql?W0yL^Um^mbq0>jxEiZlR_G2t$4?hGx7#MxPnPMb23DNLkjQcSibT zGF5fWb~q>2EFWF#?~{<#%HDKWbPDNFF{=&#o8Z1zjAJSC`sP4XF2bB=q zFonk9-^<>q-c9HlrlH#t67?e1fE-r3%28{KGV11yyXCQz)ybw z^|JzPCff&OKVciUylf>l;{gBuG23+euL$2i;Tj>m3rx{Fx_tD$%xk~ScRy~r+}E0D zdh>eIveJ#Q>XhL)kEKZ5{Dba2C^(yb!?CFJ^;tqGZ15gXxD!+rIB4jsLAZv@jDisuvJ|v7dKNQ_ae@$Sj_0H(adv_b#1k;L)ih zaJL2icU0#2oM}%dYZ7P>6c?lC2botEa8rV)GNMuEfw5= zYMmu2_DSJY-uqI<)tFIQcz(f#ub>x&7yiuaa}T~b!QE47pM~>4q+uMnf+K%H>Q>9B z{@q}=(eHcfgDY#m8&)mD!Ck*VbpMCB-B$(E7#^DmwPcUi2=-1ZPAnNhw;CFHH zh1kAch!^{*r{Sf;`n2V$ygeFxnU{fs^5=L1N~TdmZfiTSro1u>lPI0VuzXFNuFLu( zI9P}dvw5h~VT`$@n&?dPh^3^&1vcEsi^B8#7dtF^zl?30IFr2`Qo^<|w|`V}H{Rpn z%%``4k2#WmnUcAZ8v5Od6whxwpBRTY6+!?84>|(`iY~S%|EEdqrbv3S$$;z|enFWj z9Mkp=y*0V|>tod*=0V58X~={i)CM3li%HZfI&{OhQIwo6j!M zeN!=OByf!fNJ!U)**{`yi1D<5@>knf`}_=U2^J8+^8pzv;krO?B!R4YG`@#yQY2=? zci~hjh$wAVb<=;qh?2O3#SI#s*shc(uaW#x%nQljv@?cN{W4v|lKOyoxb3g^hngCM zuTQKQlSJ%&i$}`>-S|U7JL5*NT}{OtKy+_n-R8ueWJJ_|@QeiXL*ZQ-Q%q`VFAOJD zZj)Z(rEO|9Ipq~A27!gAC}(^x_mKxS_wWUca5qf8Q8a$n6V+0mH9Q{NF2QMF0wAW# zk_uGU{0E?--N{idrjzfHV_B^%ovyu$Q&a?+C9lv+N{6<{Yd`O-xr}PVWDbiJYU=kT zB|wH+d!(a7aIcGRNa(HS+U@~$a*!0$OJBxQODg1~)|+{-6Bo*1pz~>7I7^y^b1e$Se-yHl(Yaf0PyZsYHEjZ#MlJ zv^$%tK$VC)tkKjtXek`s@YCn-5r*}{0U+VA|o%SIViRlCYhmByc? z2wkyxunVV}87Ot~LYti*RArD?rGe#zZCNfNCz)bLVtqp(dZIQ-tg9fCLVf8vnFUAA z=TDgzTgFbqYWJaGF3PDxPgeHY0y}+uW3OkY!0j!tA zB(lsyEG}#mZM1heZz^x5AI*+e!4+yiRe_ObUuevoXrVezqYZ_3)RRE{v&-FI_VI z^W5S<8g2Q_<_WD`wob(tIWK+VvYdtYJUkP?3#j^?kJ9 z`VA5tpK-ejQ5tm=<-BDp38UBPJH-Mu@3vw&=cfd7a~`_7*ZaxkSHE|4R;qCJDEc`* z;{KpX&$iiv;1PfJy3HFNxoW0VI!trrdYkKqKGmrgWp}=sjllQ(Dm^14+k=aQ$xfEu zPjQY_b6|pm_=60ZdtJETtGvfAz^NnGON;Anw*&}_6>!GR!Op0*REMEU82G5E zc@pfF=74#5&D{93ZP&{}p80c{vdRP8!|CR=)e@8A%LZ0TFJ{sj_p6t_?j`FIU)O9q zZR@lkkq0MQl{Z9Xf=uakQjVFSKX|% z7O+mK`D4gZBRi9N-dwv0k**z`#$DvJhd7y(ltsv=5Pl=UtRb?Z0$B&ftW$zm?pq4r zTtgz{us50Zpq|V{CTI|*Ebauq?KHZ6U9plVb6uW`EF?ben?U5^Yww$|8t+3rAStYb!Enl3FkoIB-{<-#9r@xQE89ZwcmSy!)4 z-jFJvon+E&;Slv9Bp37dpMe*& zHX{~DSmNB?WPKH$lg1YkJ;?hP5F)4bjztbbL;KgNxpGchdS}(ZFbJg#W|!9)yQs-! zTbSZMbi{5JU&Oe3lOWgh#@!U4+p{+%d6qKQTQJgKzW(-2ETiJ+l0-gHc@R%#eW5W} zX&BE`a`JbT`AwMq5EL7-xGU(IuD!qWl|m9jnfFiaeQ?{Lp4PFTD2?P3RHzoPjFS^E zVGQKh&|CY-?Btl!#r+IW;1t3f0nn`PVb9!IyfAKSq|~ihJSC z?_V;{^0#P2HzY!e!Dpp;u+ez|HdlD72?k2y zl*xD4Vt&zNvl{VLp@-IH@~xZos3x`lIT^&j5b`zRKTJ4)t+2Mfei$mlORd@N`ekt4#D9~6 z9W`RxsHW#*GZze)uj8@S!x|qwp-Z1mw43~gtq?#WjlXxwU&SLJ5Q)eda3mmb6G&cQ z51e}#80wF-N%Jq>-uxUC*jD>`1#v9u4=;de{v#Fpz;?5y_ zqxVoc?>N7vvh|qPcR68}COF-4%KzAdC)RuA!fTIk`Q@^3zwnDb=j9g?{VRwz_vA_X zm@X{DqB(r931SE9RYTs3nBSVuf7H?x-Z~TMS?k`?xC>F@A}bGY*nAHm=n}urzz}fz zsSh2a-Ojzs*NsKku12!NmS$UPjNQwcGmXLSj#Mac>L7qOzzv$m=YET%d8=Ig=NA9M z{{7+kQs$!5SWEKvvyJauTwEG~@_4eu_3C&2u8AV)%Z!&cNsZnjcU?&Lv~F>H_6jR$ zKvPgFpeZ>TyhAm6+%KSJAv@|o;Zru7z0$_oB^|8Od8coD%fGgKmaFduc#Ne3Zd8G3 z0m+!TZ%=&#vA7>`X}8+#oGpLAY5}QrD|bE&KYEO~YH<6iH}Y1cq@ zkIly(uIvGPE_Pm5bZ(%U9gWumt{j#}-XBIzcc4}qMkm44tu)^fg1J{Wo63XHpDM@s zRgOIfyb=Xn3GI#4qG80YWB0~kP??0t?N>tbt12@7v2Mjasu5>`R9oPEhu=vi8{6oM zA4wr{{%PuJS!Cgqqn&kLBIG;)MK09l5TZxET4`c0<1Wr3%~X?@QN=%L5L%ojooUXC zc7Ut`g2p4A#{>*agj^m!6Cb&~z1XgJrW>&{<4#9Gfck!>@ADtQQx$s)m48Xs??FSZ ztuV_d+9RX6W4tSgMZ?V~Jc*On2(}QZI6YX^VrRZtZSi@-QGQql+~@GUvH-2-Q9X5m zV-B5*ZY{N(A`91+KezLJS4#QhY+=5C%RL*cC6dH@@7@V9GH&~&vKkO#R{1`&6DNOH zI7L-$A|utl<-Xt~M0VeS5{y;Wb6?)Jzzwaoo=hf-y%+d55t!lQzS2#&lv-l;DnuA_ zzgXW}$vx`O^YZxBsjp>oIOZZXt&%_*8Hic2%`8|yF#CuV+t;%d+e1{NCUOLbCi{6n=MQ&c+V#JkWI^x-b37AC1R7uW3bN!j_x>8K@ zGV#VL@mYkwxw4sv0 zo8R;738f(*^g!KQ7GhpBRD7w5s$;LXcO&9JfQ2O(5u=cZaY91iM2!z~mC(Ga1t^-vd4slO-Q3k_TU)c$+T6{Dr3yn5^(6NgH= z^G?DLV4Y6fxYTSp>fUIz;}7Hp>Q%qJ6bjTM_8-|ueAKLpyqwQ|DAp2;pgp?VIgWnw zV}Z13cYA(a)$A3Hh={V5h_rY}h*Iec!Q?Pf9MiJsOc68VO}lgR$)AC{!q>@?O8AE($Vj*n0=-0=dsOd z;aQH^LP4M6=kSyK&smfRseCK~tcS~MvfIWldGr}vV^JrK9l* z2^$Plq(}g+e+u|=flmWjX%{KC`aXJ#2*%H;Y@N)U!N?Xgv1#U7u~Qe`g?9pG?3jC1 zEcf>bcHC1E^(kf8Wgn~%y(sb2uhah$`-d}Z^eb^`aBPgG#*3#gn_eIusa1#sgofIU zSH6LuWIEC~1ML}-tMtJ0LCPS4Y5d5H#>k!okR4LlLH|}l1 zxKBwcp85UmdCc0u^^$p|Jt*KCQc@!e{7uX$$keesH10*%@T)oZdoBh2@3rkN=xIX2 zQ~OY^rKzi{K#Py~ej_5V4YxS?YoE&Zm?+x$YbiX$f;!mw!HDBGv85C7rH#KI%Mag; z)llrtZwQ`{(_{qHH~fRtGsKir(ukP1Gt@I)3PsxDY+W+zi;Xgli-tew{EeLrC38h% z=GS7Ns{vsQART!Qv+whie<$2~OX=ijrZ>V!xYReB7e<{o&>Y-lA|Ob23l0aR*N+sb z?`nR`_7f2i=#ycaz#Uw^Pk#&kh4Q7ZIb&7mNW$@6bDQ61*02?)-OIC`S1UIi!45tL z5^A?uR9D$a(dhSY_{~?XYopV(tA`z(oo~%lB+fSZUUOcbMX?xs(AMGnSCz8+Q%N0v zqsl)hI_v^nOx72O1^y6`>`YK=D&{IKuv-sEtS!M|^+E}^VNu==kgu%ntb^t{#G?Zi z5BX#C=>O{lSY5S2ERL{qx3T4-yIXMfvf<-%r?XUYAt#gDTYupBM5R^R=J&5FI(&q# z@vtxfHO6G?YkOd*Tq@DP;In;Qmk%$okREQ(vgY7v-{IjTG=ZY4Z2CRRPYj;?EVw*T z1n;n_u+op~UT-g$nB4hkOGU`LqWb==k#VRDMX?O&*@)x7U{4Khq0X}`k%vFN{Xw-I z(E^R3C&|f{gTF{;6?!v%vF4Ak=9?Z+hdy1yF3U8AzgTg@v!2N7Nt-J z{1T(fH<0-XX)}RTNA`vYPyHj8xGsEqHHASm{@UAM>%Fb^Sc#}+jo~m?iD#V#N3}IC zyb&wNM1s+ht+_<^04B*pTdmU4Qmisw;dq1QT%$2Ju&qqxpI8O%+*XrphDNzmp|Smh z=7kTc$H3{qy}0=8kk$>y~`y3 z=Zy`)pS!wIWA&3BQmsuU!iOrB4ZbM}6t@0M9i3f!VEcweT1xr6t~Zy-a5-78QBumQDr`B&PO%S)B zr{z%=&K>O8y0-XpnCl%UyI|~W8@_x!_kdKMV78cPlw|~MqAfA@7CvLUwA&pKB18QeOC{oKy1Qul4BftAe?4R)%$Q#?$kg5${bBZM>#R* zKbypS`67ej2d%)@obt~3#4gJZj;^OsvhjrlOv9;bG-040ajb`a2X(sp>CWTLBR}Me zp5i;YS@bWY`sf-42IKE)vP?m&RLY;=glh-q>)?Xl*yyP97}vIploTPOSPIb-ZoV#F zrUz5k8CbmYEP35OzX>B`yYv)+wnJZehT|q4Jz4Eaz84c^b=st23YxpLhqg>{w8OI^ zVS}35A>t(c__uF&BUtNq90pcmMb5(C1aU0#4(aFfEi66<>V(iw^2a#W_i|(Yr!ykN zA3zKFLlc95JIcbDk%s=JR1Q04$HY*NMr(}oMY%koT0(L6vmx8PHEPObIm+d70%59- z$)TzqO{mML7^B}P?2fN1X&uv9w`qeh0O>OD-nuilnY-~t_}|J|RKx&32eJH%y-uT= zm41@Grgm=_MFKOFARg749TqbEWUK*bI`;S1f>qN!U7^?eO{Uai?B ziSf+oAK6U*`;`9AH}#4NHZ5Fj`@ASO#b%wpw9!N_%PD>>{m8mcW72l~98j72UyOU; z#-o$BqZc+q75RDnp>Fa0@n6sP5^YzUQQ${Lb1iqdRwP{K`cc%?)iyxk3?veAVHZZL znq<=aa@9pS#kNoTSq|n{oBjcF%c1aXp<9^%epQl?vsqDe@6tR3u0^yQ4OW#2o>{{c>< zSo<5U6;8;wWhI@O$gieh5oSH%n_8{5`AqMopifyms}xX(-Avg#o0zL~185sgQ*@Tx*?R4U3q3k-Qv) z4RIfFgs^^RMgLvq^Uc|fE7A*x!%IAWf~Wpo=3x2#7jWZ75`k~K!o$O5$K3pFj}MJS zFjy7*wg7=HKRfja@ejbA+^2=^{6_7}EX|1Mx)~XoXE2ciq*{?KEr^oT(-?Gxu2(#B zc{jAlo?B#vH5uLZwtMyqkh?m!8fIrKr*IW3w4a+c9Al-7=x>_w2Ygr{qY+5wIa2Kr z#6ve)@jP%3(~sP=uCZW}bg;9@^qPlYL&uhL{Il;YYmcH_3#RaD23o)B%P@CaU^L=* z9pgP53N%Dn4_Jch^Ip9~+Iz9k%TOYvuTz#Xi`R5_4;KF2W(IJ0HS3o`s@P8vFqnwTgT?q~;&krO8sK!P{ zcEK@$!0aBju#vgd<5CK>Ly-P=gCh-e#!f-T?&@pV#hK6s0S^3UBz6QwyTPF$8SwY^ ziyb^*#lpol^?+P>3q&EZ$Kav=7r^-d9z}ME^Icg%hbbj5FA=bJeYO)E9v|-k4@qba zYXp_(yV}|rK5Kfp|Gg?-%^^K9NJr^?)7()Hn&86bm~<-*YA5G9%DAH7DtK7> z?!}_g3XhXWI#PCqv|7-`hsxKQ5|%Zl*&~Dwq}35(n8fnXdzK0|bQj?5#>Nc^V4XB= zlrNN&me0e_JO?Xo#Q*e2kYu1u<9M6;6%?o%5aiGjI;tw-GrAhl2{+Mv8@y18rui`w zhsRoe9+cO3InG{1r?``FS9=_Yag*uKm3b_QI68Azr78Rq8%K26t+4LR8ocZZJGl3_ zd=auRJvro=%T~KP5B7$;q*b7-AMo_}!qYongi zdE&5w^=B}>%bLmK)(7cPMa`PMOVn#OoPhU$tawLlEn!s;`^Jh%n-*v{Mv1Xn?=?C5 zSJdRsp5#=zHF87MMt6Pp8RsJ-hN81jsEh>mr4QIBDDBUKK7YGCyj)t?<%Sk+VePZ7 zla#Mc@PL@HnlhlOmuIv1D$snLI<8Y9+tBbWEqveCYj0U7TY-xmn^LH9tREY@@SlCd zbQj__KRSg$CxkT&*i_()rl261P-d%*H}$Rf9}m%Ct?F0T4OxEZxW_l*c>L`%uMfBV-$y^OPPEAgfJ%5Y*JGvBE(q zA81Y_HcFiEPaX3oV)P znv0qno${u>Q#jQFV6U-s>`tBeV>e0B#-|8Rx@1Fh|(lgks#gU-*&HV^!M zn)G_wnXQBcd*%Co^)qkdgdgW&kbU4Qj;qHE6i^Qcd6U({&oU5Ygf<5{k*4FGVj5m+ zqd(Uh;ax$Lwj{|{65zg@^4cgf-J0#2FajDWFf{%h^CZ?N*x9io+eW0R2H69`8DhEx zA#CKByDIqo{|wP>?frg7d`M3VMDaSnRv_=|D-Mn4NL(9X!#(&L22T+hS1;?Lu7u36;v}%O9ydi0_^L7y0I_^#!T5?jrq|&Bi%&V!W{BZmX#LEIS;I z?OXmOT#q`+EA7NfNIPhpTwt)N0RlAwfk7e3P>&fbBt!IhQL?x!< zfHJhdgGtwB+#B?~UdX6^MqIgI(4%0+c4ueUVO1HUQ&LdoSyX1|5w%a_(tk{=Oo(*4 zFLXuamh7=^OWoTq?k_UlEaG-Pb|oxJhU>G3{?SIpMv`I!s{0sVQYQ}Z-5oDaBk zVGvvzdA82P^g#9Lrx!e#7+2m1SRS}o_Tynq!wB6r^Xi;MFg5ayLnGZHwP<=?9^+Hr zLmennBs%f}v<_^&K?Nc}rF+D`I(ZHkwoNUREx7(8hQc3jCqGLKvsUM$if<3Ydfj%^ z1-aZZDw}OjeMHGic2N?rG$*wKg@z67ZEYrD^-n#>dD6=Nkdo=jZDt*g(#|I_zNj)ROns==XkVo?VrB_4}a@PN$ugAD_a>Zv*V6AX8roTR!MxF zpvHnF%WL3opV%KHBnf^m#zit)M@MTo-4Io`VUk?bogEq<*Xxu<)<7K6G=AKl|FMAq zgZ}3y+miI|XL$TMYi#bqK?y~lYEL(0V((BPQAVUt5IHH}>oVNU^BVpCW9lrRvRd12 zjR*oFjdX(w2ui0&cZZbH9ny_7(j7`lBcLECAuZi40us_GB@#+_?)ClWJLhMNy|-h# zLwVPFo;&8erX6jW!Ato0QMc4vg7FkZXzB^+6i3O18!o+{c$tjXGHxV0($L(+w6mr< zaV*eg!9cSwwho3}K)6ZWEErk^R=r$yB_m!DsUOqf1S#~3$f~)&giAXC+>Sy#>jx8_cHlgBb9FIOI0xFov^|_+t~Ej z_zTMagr@k%?;oFE{!i?I3n=4UktF#T-j|$upE%@~^55JW?XUQScW|EuIiSG)KC|-q z$9lHs!V>898SydcBDv}h3*uKu%KrJ$ab!*{=$s`a~Hu%t32lH1n_ zVjd*=wx*`0Q!a8f4I|qn4Z~WEl?9s$dq8oa#ZMSw0g)WzG$lS6oW_^dvR;QgIUiD+ zF&5f)?3O^DZvlH@k-ZKmYlq={R48M~T&jJuf*;b56FZDo*~h6g-1G(v*o}5mT!2q| z48j73AKdVrK-lTJJ3Ocj@z<}|L5CPq`MW8*ebK)^xTlviJlU7k@zkwF{o7*CK4RY)8j^e0Sl%>HRM{gvKVtg;ctDcm8zv#4%fa7c!qr%}mMRa%Yq!8}2fxjf4Y0 z@^ZP53Hr*$xgAb3lcpCe+Ig;el?F~6augv3PEHKEUm#fn&aySIuCD`7iiwf&qGwe# z;IAg!V4opl!rJ;leqJ;4dl8Wa(aYq!8q=TInfChg(}N<338s6*rS`j6jUNOVUn$1dp0Nev#P8(` z>Bi`I!kZ1Akm}l6h5;_3drF=5e4ikKHi=#DR(!nxn?BRG6eW-c&9mqH2S|l5E1;pj z9?EcJYiDPpQKl-*owBT+ofi?LD~NTR(z~E;Wigs7PE1T(X*y!ji)-s+<*j8NU(q-|$8}hKGQa}| zo)#AbZhCR%jO)WcK@Ec<#0m$9D#%yE{qm*heq%%SNz-BZ7%xw85<1vC9S7pEn+^BX}4pj&+%)1YnwF2{S2u%@Az~OAPt}u2|dK4&~X* zRp$)e7C{Aht=PeG1)tCybEz}y&#!JPcZ&$ADB%j)hLpuqr_v^@_ud=Mz}@8WeOKa2 zKI}t4Af77VvWf{(Mf1a*=s!I@|BUB8I~#P50HgtaV1nw{`%5)F14z5wo%fzdonIB#vVxi&!6ex$4++v{}oJ^HTjn` zqxf(n;0n6oKcVn4o0^%W16~_0UiPSb<4-d!uItDsWe~n|k}3Ed_!C~H(jDk;3p77y zyJ*cQtKlKObVP6u4OuV88t1f!|LdwaFHg1GY|D>qc+ySZ7K|6wjg{!EOwLEhecgF- z=B`>|0I5L${eWM%n4zKJbQ(>3IFcs|5q_vJM(Nboz(-3YaXc<c_|Z=tt?Funa%qgg9RMpM; z#s-Uw*y4+$HL2)B7)hOnWLi(@pT++>!$X#MVSnG1^{e{-B0?6PXlO~RkEP_D-)2=l zIpf9qXl-JD!rQ6aF@o^~`{Pn4C7m^hp6Ld-0JUxm6$)ZWi`LaPGEy~ceKhC5&&ZZ6 z_loOaQ$-;-yi{9(Gg>>zUJr%|a#b51lr>fLe?=ZC2t#EEE4_rXRycn^KrHd{D-=s0 zBSF^LF;s$ZtX9qLT98ZTdzne9{y%V4w;JmzkOQ9xwa3&xt^$Nn*3&8uwR^ zH~ZuMFf)tRgujc>OeO!DK_^i25nA|biz(T7nl+Hy;Tm+HTpuie-VXO~9RppG6@@}r zR=8ee?xwiyB$o=>X~E`A6q5Jm5#9o5E8Op=?%RB|lUPw6zGUIk9MO9tyVF{nzsr$N z$4PJZ0QZwKJBxmTa*?9=SAcjlk_|EMbWL{+SGl=GT@Po*rE0h5Ly*%E)KX7o)$_~y zV)~nJL{rgBsm;5jbv((rZhSjm0(E~hPm<;SedL2aCdKdL#3^i@@d{iY%OXa{Q+t<^ zoRHAl;^*7=!V(cGA_kT!Ouk{Fo&=`iaBYvTcBxboCxl-w5emr#82fe)r?arL-r+9P z=ZHvV*PZ@cqh)YZs*etGHlQt&!o0_DaP=huvkA&%eg;&>P+AItApUl|ml0nmm%?Q< zH75cT7u_4@kw$t%l)n=*6aS@NkvKI5jaae z!eAz8cP2)mIe)h0_>IQNlwX)Zgk}EMbm32PK>n&`l-{98B+Ff4|1;6NrOzA1aVS2x2psf(;!KxAg)7GUS4lGDPC7 zHBrSy#G31ft#Yx%@i`+cQOn|I9U5bik-hyKsKH?_Woi7{EIq+PnK}8?4NOHpOD-`` z87NpIO(_b7G*Kk2=O}bBlIT&3ii=SXkS^|^1J8_zI;L8+jow}85igI5*Qo}LK-?tp z&`Uo@8KG4A9jxk)A6(e?#1!j#OaLDb<65qtjZU&MRR$5=tlv3I=nWO_k=C@5K9o7QGPhh%_e4&*6yb%Ln;(K^Q;9G(GyVt^z*shQ+-juTOzxf^0_ zOP)6NLc<`dZFCO}KKxe=JA0t{5fxOl-}T7he)>~XF7Y2-K3)D61-L9Ou1@12mX-ow zcySY3Ov1v#t8(9X$_L0mwPo3+(5yk=k~H?>-f~kL9ULnsRDt=o2>Z4NDI{2|CRfc~dm(x`)-ISbPBaSad-7zjFr}3rLZDHg|ZH(ts8E%euXX1?6algUeLhtib%NNs`4QBg`op- zR{=^F46i$*E?xnnUSE=|_ZJeU#m7reF3(RrXW^P0M$AsYk?s1*qG@AoPiN4-ggS8R zL5)EV@s9nC%pNn6_eiqy1yob3h#8Te|Md-3!Eg$`EEghAjhzR}#+N!Mze&Si))Ymh zqvYMP6vt14fOKSXh5#lY*a8FO8S3xo6=L$FORYZmUWbhrPgp(%yoe)MIaR9EipSFG z=D$|^5P=)wPX#3!it=P1X}D|E3tpnaEu~ibeGiESQ&6iYOkWIe~hb5`dF*cBoSSMH zm;g6({y|ZlemOiVp#+RFZjlauKbl5Rph+6uFIWRe2xpZGQ?UQW%a$HbuB#> z3d?vP)~yt+ubQnv^Xg8;8<(HK&ck;ix0s@A(lRC2& z6%7^6g$|6@CMBcpWHPhhD(g&ZHs7tD$94V(`O(X;+hWwtOw}*SN)Ec7f*!v#mW5C> zpU>94jM}Nc&K}eEms8KVL#>8xP5E3v<5;i<2Gv~#k!%#E&n-{Tl|EZvGkbW3w@moU zss0%hXHLMQf4S@%rvG45dk%fmktULjEPag{FZmi`(}8YLvv(hUB7$UjlW}$V*c%C= zZrCMSIxk|(UwU>@hz}hMd~pq9Q&hID2p-`S({X(hznM{~cgN zVLqZ+0n5?`66uqhi&8hM4CyssGKMgP1Q<*MO=_hle&b8f^*lDy($_^>GL46tZ1|XN zHoh?0Mab@l=fYj@{eR*AQp(PMFVB%of6OSZWbrmY1o18+i!s`O3z({V2u`}c{OYR^ z@u`qL@@`hp-ACe*Y6C>!No=83w=y}Om%wWmQvsKx5HMcU z-0a#|ekH`G(<=L3kUZJEi^v`ut3}WB@ys%c{;|yVvBI2>uw`3>wo?RWE`@`3Ap9o3 zGiO-z-&Oc2n8`cE6$+2@4IR#z!w$ijO6r_th9|wIB|J;j%;<@bT!Y4vI=`*+0v5~2 zZVn7d&Rf-rhkyK-BK>-ak1DZnFB)D`l&4UX^Hi5#k2Ol76~?uyjLco{VEZmtc_L1z zOl3EJ^9v-I?ih-OID-7VALwKRXav%SW7BR~tA*n8C+-cl&JDM&{Z@*O0@k-W0w@5H z*7UZ%VzFS3H7CvOmtn@YkE5Kk0**3&9Ka*z0t@g;n1#YV_uBdx(*QY|yJ)6}9ZELm zdTD25cD_qPieyI0kbF^~#u^zRm*0?N1Yv>TB6pm0%cB^3Z@Oic_^c?2DwhbZH35)V zA!|!`$KiqThE0t(0A;5Q>N8+ZP$+dQ{p$Va3+0rWy|+U;Knv!C*Z=s6E3VOF8Mj(( zpY?9nSUjJRh%xa`KwA(ZgAnkE7gksE5D#&A9RQho5%!gc_d11dpAr69@lw(We&<`U zdt6Q8_mb$$_`96o^$w;>ns>ZO5>4Olc~MtiPY#n0r$rRF&tuX?SFGr<@0xZoWnA!5 z346qFn%#Q+3#3KYdKi$&xe4`v1)P-QCH^wUsD}S0u+!}_{OxR^F5~k31u;>R}xzNyUGMMtML*o&G$5U z%8pWm<}!uKctoC(eg!UDl%g5S>+@R7_sEPXq(!|kq2WeY4`5;*xeqKCX1dQ7AKJIexwTX*P zj5_pyE_Ss~QjlV92ythDZ)f_GCmv!fhLu+C*etm$0b^(KJ={C$aywjcilTR(Sz5R^ zW~Zf*A)MDH?;}8{JlDfA#u}k-L}vpXB2K8$e?yj3Y=C03Y?Po%jcL`)t5`9y}|wFAlEVQ_1>b&cz9cO;Gs_f;Mgdk$FV^bDH*I>0`M# zE^2jw1>;Ak0AGQ$S-O&Q!Na>m;AyNzRG30751rE7u9#SE>m$Oq-xQLyqa|aC7`#xa zV;^~w)w_IFW2c`mqKPbfr&XK13PUz?ke&k+A$o4^*^OIdko`_y#D3259LsY{b^t3T zB0cy?HIaKpX5+AdlG@RV<}-v7ltRqtaaTx4NDKd97U7g4Rx-e>J6E1yhZU-Hu?qLb zP@@L&PY+*}xijkr4rWEttCN1&;nWs`xjW>dXB5-lv@%?sKXlsujiE-JJ~*HK76O14 z45Va2_i1lmJI-R$^>{G+$7tk~;edpMgbOfTFwq>I6a3$A#0C#kc*Vtc35kfD1saUr zocnP&E<7T+nv$@k96;=5TzHsvs@ztZn?Dqz9R!xg^Z%M8`VONGN03W7A30?3O1?PW zd{C_!rzM{tAGa6Hmf`%Dl7*FZxtr3_9HLwvLG%eI@u7c%AU%uD2!fP4Y9^4t-z~Mn z^$|u&U@~3M^wbv~+aBYwWDk zl}N)n7#IU1uK6>H5u7bqiZ4-^N(1XTOwu9;l33%F!$TkfKqyghGse zFd8SzE49vC?@3ToAd>4N>AKCqu(f%{`_R8BBBF#j=5;YWLmqx7!!*alAMb7J>aE!B z&k{=3F+P*M!n?YUe=I!`)qG_q+gR}~g=bf0@;2ei>V(Dy;pI>!bETgP&6LvW5w{6D zI_D?kNnJ~b2CTov{MZ_kpxV-SpxqXyY2M>HF{Ebel3Z8Yo> z(YXbGd5fIv-@_|XU^nf{R79eiB_ymcN?)~DHw2g6*DYdB8cJt+`cZPqRcvQ4+u`V& z#y+bIu{4r&Z@4iN#3YYIbHLJA)4)J3xiQOJ)`%?$$1^uo#*;jwg7EcdeABh;`Z)(3 z>gVM}O!w|_1C)bFo`IV?85)n1b3XDa0Uwl4#*FF;j6H5N>ZZ4Zgm%lE*;F5j30f!6 z2i9%Jc48YGjS5?j#fIMjLh6OeIqA~Rd>hmK)9mz^R{f)_nlNNJ8|!_u!i?*ca$MzSsR8AaVn7>p+e2UDXYZ(htWpA8`uM3qM!!t8zd!xMhgdKfYZAk z$j%k6na!yWMs@q=wF9csYiSLc6wU8vuO1YoK39GxU$;(VrXV&M!gF@t=BC@t0U@E6 zZ7SjBYDdRHr;9A&<&qqu?%8DYLAO}&GVyOmac|=PiMMVfzi%*J{>8B3_HvJGep;9w zhyTtiW?84LauoUvZ`o^APy=0-7x)nGP^w7dc!j7$QN-G9E9Eo?f~zOT^u>vdsY<+` zyW6t{f{8?S7v|m>Mjs@Irr9zg_kYY?s$bK83vheH0lz zEHTBKF&oA5VJ5QdhT0^ZMe0-LcXNa%S6?rjOTq>uQf~_j4`85#+#_MJjUW_2Nh&-DR_ZT3|3dzuNOM=YjDVJa zktx)ayrBcupx9%dFL%?Vuvt!?K{zf%9t|6F3$ZeqJ={9Hthq`W{m~pn1c-Xz|E2*r ztnQLmSyG*Na9w4r6>K4JRAd@mER()~noX;Y8mA^QU&*0Wv3JW8E8n`a`^@h-)%Sn6 z4HZXVkOUraMsZ?Nl7xlD9UR*y8{S2Yr5aHs+EL`zG$G7#XKr|4Krzuxtgd(6_)k*% z&0RFVPJi9azs3Xa8cV-LCt9T2Rn!;vm=P|WONxsLV$4?(1f4cILu56wLucAM*_nz5 zTUWxXZ|+!X|9dbotV}G8>_D*vPucQu-jTgjb%l&hm5SyQeTVurl7$yXL!Um1wEh?Y zxr;2gV9>#-t2>J(O_In<_u~gx@{Zoh-7}R)y#w5aFc3)#JI1=d|D*M)dKC zqm=AMU_e9nw>7EU&qa$?m0~e*b+Jx8$jyDn%@M2SHiB zMlp4Pu5e6*oRK%jbA84&TlyMXZ#kaZ(voCU&>$inJHTo-qn{_?0(wnUB-PKCpbiRdjC2cnzm}fJIuNS(Y#M8WK zZh}vd1fm*guMWZ;dVIizj38xkeQy?o4|dpZyXp1xtS7zUN}9*`!GQ0Un8e@hByUGi zJ8e$*DcmGpapmB(BMK5Em2>s`9?%fPV+!yJFy-}Y8(}!{2tZuO<({>035p-n!({>=kM=~lP@Ef+@Fo=PKFBj#-E-y6X+yZ*XYY^kpx3>N`@Y>QmlSzYt6=-iqk!2TNl^vO%3~B7 z-=CbweKEpCr#+K-@L8!=G>bN#D_bRG69FJwtM@|)G%v0_)Si`)X?4O(Nye&7 zC$srzxZH;^e3F{Ep*{HDGcga3eQ9RK7ou73$eRdSC_(?`2Xiio0HYe)CsK3&>rz?@ zAV<)Ju+;8h_)cz`BbHw}!9GR&e!bF)5_;pVonz2^e7K0OT|4$k=QO(kgJ=n2CJkzD zsq|&c62tBJq8Graw4eW&`mp697$7y^8j-NGyAMQPxCBFhfH7X@XoNyBSA_P&sICeN zWm1K4iq}vn&yf4o%&8*PkCi#XpX8mh+yKfqh2jo6NdO$+a{L=s36hb0+cmo-a2qYr z+Lb{ifDxo>APkDBF^US6@*XXb9p`NI@)i1MU94W-4O&C|#&}w0^*EH@X%jYF>1Ssv z@qhrOM<6FP3%@uNzaqqA7(DiaD%E#x3K!rTx`13oChMT;frj%z>xBy(D6iDk?Nwta z`Qx&(sQUZ+nZKS)6i(sa>EYr#yg6vP;qtewiim)qOey+lys-JIH;oXz{BzFE8mo8&7RI-q*F04Cqq0i{hFnRIy z=@Rhe=t9@U=0Ox3ZDl#U_g>`3k;spns3n(jZ-S(>fZ=m^1Puef*@NUBa>cFY7MZ^n?A1H59Z}0T8t)>VUaj0_zFhy7OqwxaHSvT`9^>uES=kE9Y}?8NjZaS;$)rvNzyKItzF8<7!k?qp?)O-~pSt z&PMpp{aGc?!c_Znw4eFOf$IgFYT}9|tlt+H3&$0a5z-n&v#i3Aj*(kX5CZ4H!HiYd z_3sQbRZppaNcjtX7EtB^D?|MMh9THf0;Hlgr4wmF$AnVq`8Do%;R8Bj3;Hs?J8BM9 zU^I0ZU`Otr-j7P|?z~7+WCB`x{V$f!p?Uk{*nHjc(w*229``dx-D5#L9}LTD@98rU z*tLC~nmPhpaHYW?%-4(EGF0L(&M@xcKWNy@H(9Ri`$toT+t07I$V=U16kG7%fadWF zfxqX_`&iwD(C`0#wbTPe=NG`p=&?!GyC2?FiMf3Yf{8(Qc1yb-tl%AHhja-8NXtL2yURW=D3g z|IvMYX6u9sF~(Gboa+hnYoG4h3y2W?EH!(R0}qO403)Kvfy0A)Sm62-P5FosONlm{ z&qTitPV2_zpDHTO()@ifRN{lycqhoXQ?bQ@i!f}~?VxIwbi4Dpsw}a2_q~xdr*lh% zcFJ@Mk;F4bDMOstU%fQnCuLkdx*{@QSrOIfu6Bf}O6@s^1iF<1b$HFi8JJ?6&%alH zAbxuYQWuwb)ejv%_T#<%*7{Q)oqY*uIy~jqt+xKXwwc6qhz!wyOh20Y1chVhGMmiV zGl6AqB~j`=Z_7A6#?co||FX0$Dev`4zo=ES8Ja%{H~xwLO*OnpXo>GA&yfGp2K%ep zF1xe{0|vh)D;f8!fFgx#__t8$N`f)Tu_O4z(OA+S7hzvwk4uJPZaQ_7Z!A0AGMEB_ zvR=)$--DJ-(+uHvHgQ@<(k|oiCK_$zW34?KZwB9lIBFC-ST(r4P;v&t&W-Y5id{O~ z#t(rN(aJ+UYnD`IO@EYT3pYna3?$haEi)le?=Qz z1OwB#%4w;6vlgOnL3bYMX}K6hDdNc6#f_y`yYjqTW{Nj72-UEmSfgs~InNVhBf!JQ zH$FM}@*X{2xSyNnbA1hh{4*MZ%hnB?Q6;QCb)=`DV!OWipW~sqpva zc_y31GKuEqq|h|wOgqoOqgBS$gajI6RdXT&5vgK#s_dvl&G-2l1S}R&Yh(>Id}S$I zJ~!@?8~3tgk?Zu5%73(A#MUMjQF5(JS~s>B^uXr3tH8~o<2g}Y$1R?v^0M|dvg;fl z*8oWo5|smIT?cCqy&|6$d$4qEaux@!fsV~K>x%D>bDBIg%y*OW>SHg*n8SYmPA@DZ z9-Da*_u)fi#hyab!VRSKL|V^HZv>wr#XxYgkcD&EVbGVwGLhACqJkGxt2MK`ux4T8Zg(#-{ z_l1PNwooHPQsyX$7Qbx{c+Lb^f~aPtY(p>*S-c>;_z3G(#$K2Nh~yW@UXG-Euup(8 z)1K|qx3MiOo(XDu_*>I!ULaybB&|aMms0^HlS& zCefGtm=dYzRDfS>@SLF#1Gc?vMpcjWt!>!|2?^nD?$hzdyWx$v@b~{+IijJttVNnD zpo5S9vLRlkDEQTh&@eR8h*pk-O_#$~6jAVj*pC)gb9A_UFK2}s!~{66$i9d0p51(K`Rtvv||BsI~Xo?zPC1jLSyar8ZwyzA-%79 zVl&(WknS^{6rIn&ELLVkxbm@8(tYKw!dF#!Vhv|(d24I8t#Z)1kVL=KG4f4CVpG5_ zhX9h*i|x(wd7=p|uKUkNGwI8@$96b46GV8~?7z#?;opmv@9Tk4@->ZYbmF3{&X(Ha zIT%yI!+3A(dB|zXJfBBaI34En`@^&IS*+jH46_DjLfa)j8gY%Rt|u|6gGgn_tVXZL zBQQEYbaI)AY+HJY*M;z{Ixz7d$696;+9E01xx3hoS%m*&zyXzB1mWW>v zNdDfx$xARMq1&0)AUVHeNh}g0E61ojSgh#Cm>*t=$(I!B#?|%0oJ|T-y<(4E3G+3g zFF6O5j3^*tkkxabnC{lSM+u*(qRuw4t3exFiuJPE7iUR;*Mc>P_-TS_()+?96-IV< z3i8WO(+#`vV_D1MfZj$YW7yLzj7YDxi-lpT-B)W8y;t>1VU$S9ImAvP*EP7EKYr}q zn_UfvbS(Q~_bU}%#C>T}gUYejbMm= zjHxKnWVXEe(g?Bw@LWw9P~GWdhSJoR&uNAM;`TTkNz-h~EI98jQ~|yCeGCnWHVkS|ExNR?%|Sd#gP~o7(5HePIMLO@IkfFP;tvNh+yo?kO@xeT;E2#CkO`#i8S|x2gLkH43vOfdqy>#@*uHYF7_uFR@ zNxsjj{Y(~ErtPt)$_ypr7gXXGXy*BVUydNB<3z8#Pz-&x?yQews!E!P?CKLyu=Wi< zvNX>LlBS^8F)oacz5S3eimQHaS^a}3w+UCcaNS3ci2C>fz9iO}maXD8W?VMj`yGn5 zgr!9`@BO~C=l_Z23%BpM(0yi$%&vg9>YZ&K{~Iz9al+nSHye^D`T zV~tg=aVt@VxOv^m=a)vYQY&h@p_#&6-&e5yMqT4%x&tUPDv7J0*9nRH);>2>1%7%_c_%gN~5 z(?tS}gDnxNM_viQfaDR<*6YHS&*8z#9FUy;q4>0GgD0h;VE!q&K{lPd8EH-3Ow6gH zS}v_QbDfuc$im`D+ld)HCMtZFSJ&75ZJs9o6G1}@bu^Z`{^Lu#(?8re@Jhq-R~CH% ztP)6&6z#5L+W-H$$Q(TuKXmDLV}|(_(~C(5rN20-v=ptk?!OftmCJZH>SP$! zOeLs=$Z&zJ=X(`Epa!!fwB4Ub z_mwG*&y=sD<_3!8x#BkZejB4H6I~V%UuJWVQZE*rQ`Y<(^-7Li`ebGE$?P9UtrLeK z^Y2fXi${OXAWRo_Slw1b47yd3&S*TMWh9nUS5tDz84}{(P|?J5XP?R%9Fc&t2aFzw zYZgYYi1HN7o2GlTz?*Rm@Qy>Ir%)3uzjv@)%i(0|~dxg6e^q7e41*}p~D*)OH4(GH~=evDz({}E9$?2Ky zkDpR5JrfTM>?_M_Hqg7^Zcc!!bQ%t6(5y91oGaJ5=}#E^q${L z3CC|v{~N;(qyCA_skbZ_--pbtFwLT zq+YJBuE=;1vHxb+RhYoCuCO>R`>6#e;{Wg0uOVZ=@S?cgFE7-UG4hx#CqvI>5|_9m z0T0vVldE#`4PZB$+ij_?Cu?loa0NUM-q*!kLG#C?p(GLZY3tfTd!#PwxQ--vogs~>vwK9 z#Vu{L)}$!epP_typDuxp34ZU)Y;2FVm-m4BfxH%o6G)x7OQ4ueO8QczJRPU)cA=b} z(#Jstl?Vfk9Qw7ff*K?ah7)}OLR(ZG9ZDh5EKe)L+|EA}%+_G+V3uA&7>Vdz|NJNK ztg?7`i=WHksTI)VO23P4$j3`%f4e+-?v-@2ug@s(o;PZ&`_sc?UfJj(YHbA>wrXwo z2PL_sPV+<2wf=f8#k!d)8Ei83tZAfpa5-x;e$pCi*Yeyggx{`35W7GZngkj$394U? zx}Se(2!n8BQ6#|mhGD15tB?l`jaWn?L_p8B6w%>r7wj+~r;|*J!sTCE-_e@kLm9ts)PA(I3%t?qk`GkFL!vcX4r) z(gMYR1_gLyf$ZUH&YnUmYk8-YVsF~>>{Q9R>i3O#?39A=_M20t)4J7 zG=iBKEJ1l{w&}S#o2)Ai5<`EZDCw*_2NCc2 z{~0h!0z?u>j`~4(6*aqiHGXh4I5=3~r*QZGf5}E7E-~a(3L7N(1l2Lqz1-@fV4)MtL&dNcMvDIKqaJWSWqGB`Ll@ zXU7zT>h`m>u@Lxp-3cUk0Mem=oq=*~>SI;y?`(uCt~mTwjyUYQMb-`dh*R6>>K7@` z?d6|+#PO|x&8hbxAR)JKNkmFqg3y9tJAva>P5{@;%#pR-{i4Rkuq!c)3=(mwJ9Ro! zyf6GaSeOU6lofcLm%Pl|tZBc62%z(GucD(J`!^hWF!+#V8uu_3!oaNkoyXE)%wF}m zP}9E_brd%ITgC+MJFyOb@Az#t#A!OMkUT1BP^epwY5Xo%_pRH0r;jO0(!nCyI3lpQ zx!K643Hc6zK-4MMliLGY9WL{m8ox1{mpo4Jr05YleG_CCkL^w>kUP+)GmSYhc-TD$ zab_Nsx)@H(owYK;{DSAA5K>h&GankjF z-jkzgJzS8xhpUJh6hRu#m?=23(Y3nPpPw4Z(!&_7-7j3bICX2o8SaScA(*5fHCrXN zO5CT1adD)9Y`V;qN?i{GW+=bMOl%>bYltLvhOvp$AZJgEKpZlhMf^_<6=p#4m!ll$nbzdh#?(KI4*~&=v zkjpNs0-KxJBB|9LKV@aDOt%j|?{58mDI_pgi^ahpg+y(E3%A}nAW<$9{29OCAnEzs znw*?m4_q1K&VrpD(k~%@FdB-ICDWkL^h}d~44FM=2pizd{kwUSoCu9wpBjCcIII2O zOaUjAV(6?QCGl{_kIHqB^Xn94#Y*9vjTsF;%Lf70gEHGtKZ^h>pF_OFHQjJu#Q_Hj zirQs2A;j=yTAS_C&w`-4k=RF(ek)?dqsp6-_enrKreVPyMYB}AI8$TPWZzxuRzG4V#IKuzrTUhx+Sc(82zWiT=G^s) z+4C`;Sfp|aRDafIa=N(hcu$tX&$}{0u9oMGiv=EtJ7aG)(i&D}>$~KEmg`sMdr0NOs z9&7nKLLxzTiFspm_S@feHn80h2W>|~JG)!>EIt~69#2+IvW98|foFW-7w*i4HyRRA ziTjN}U`L#2C`e(1()~2rtaF~RFX5kz4kc0{bH4@4b_6FH5!g#?!>6|_ zfQHsTt@24bB>$!CJb#boVBWXbpN{`R>-9))x&F0nP|%ybhcbEPY5M0xLX%k75KT-%%VaeX}DW!@0Vat79OWw2MmLJfvp5A|QL ztIM@L5Ww2HbaVGOfWb`$tclY<4GTq|oq1V~ycvSn1)>#{tA^jwLVB~mxiTD-=x$YD zGOLSPG`Kx-pcnkkr=72j1 z3Y(eQ%Xo7u>gb7d6)CLI1w$FD4HM`t5Y=U61kmujp!We2IDv(Q#f#$Bcv-oguxyma z4K*HaZlDFD8bas$6PAzF9p6`%1he&w|KAwBXhcNOBM{uA1V(Lm!9pe7Oh~iQctx)b zVTfgsjXXOqoerfBYG=Qj%tCtL?LWPslMqE692FiPP+~wsa1#@CWR{7ysko3r|q3hVTvsKeyq!e`;mK{ zBSq%@#CYxNj#OGYOjN|92w@kvNK7Fp=LC1AK49d^h)5+R#K|f}3kFbUcPL<8n;)@x zo81l7%C*hCz2cS@n%4u;;J42g_;?^df(Se>gZyD$&^^#)kK>2JfzZWN-SP#JD`^V# zJ``yScA^d3(julvRX~C9-rxtfIawO-(59wG{@x=GZFb+qwd^IVB;L8-qDJ~S2QPDz zZi^Sx_t>OJZ6q=ep-qeD3sdu)F>T|Cam zYXWm|w|ETlKKcnyQVZh~$XA)0k!C|dsL#k-EwwGDs8~>59&0Z9U_Qvwd@O4A4c|}w z8z8xb`|njthc1&as2Mka&9n|ujpFKR;y`m2vq5KhLhem%5CjYMzwYcX-cS)OM6y&xw;EmN<#evc;g+<>)R zr?k}FzE8biL*Z=-i+IeW_AW!>$p&tj5KdiLpj@6S$;xs}U&7xn^oW=4|1La9z;7nAxaxq35v$_T=OwGRhpA($v({gITZWSsR||Fbjn|k+tcwWqX-|`y5(l_~LK9 z^f}*Vx!gpEjv)PoBFBSy#|gWy6YD{{PlQ7=HO}p8LAeX@lcsB3tu4Js5^(J7fhYe` zA3Mcb$>Khj)&Vl}gj&`K3HwDbQ)S!koVzgn{R}fY8Fr8KSFgH}FviIb{#|easmlHv zJ!ZOd#~G|w2p+_&DyE66Z8bB5W#8Xd5XN>;1$$IC@^JpYuRnP0rd5@Y{#LA#t?=Z@ z?Q27%w>_lAB_^H}>uq#JG={)5xvTb%J>Cnc?ADk+rKD<0^Ib?xFEeqw<)^$IpK2%9 z!_{b~X%SuXf)5EaWJg%Mg%~K3DP)o0`36bBU-i>}i1!Rg>;li~Nb2rmL_cc!tZ&hA zqn&`3g+;Sc-yl%MvyR?j0T|v0Muv*bNZxNn`_UdMKAMk@-Ql071ZY84Z@j}?hXpYL zp^E(o0W#n#K7)g506=uIk-u03$I-^Sp0Vj3?ig-=?Qq-KW%5qat+gjdzVWb3jrYEC z5z2;^DhG!92wasB20Wgq1!)tlSH};T#7(mvrTWi@tL}HPd5|)tpeJZ+oR6y}|caBAcnVZ_qhA zN}8;nU8QCe>E{n05H1VdxV(_)04+}&@7UxhTM=^!#%Epxa@>hkLFPm-_pwivEQ>Ft%-bXqk9CE<-Zk|9V*ypiVVcrH#ewWbEXrFbwIkLL>~SGkxDWDxC~5m@RgtfyKQ{)qj6M6HZA(Rc`P!^R@E=frozA-sSyNg-ijGi^G6lJ|K%q7iD? z*}TOQlh*Oh+N7*OH2z8i$N&iP8&N1AJ8NBTxvDj_9|3`eHQX8X!VygJFZSE_oq^(| z{>*-L7pY0-K+IfCH7Bv2LX_~nqcxo8j>OS5#$r=&D8UPI2yLkv7zL2fX?QX*!*LSl zK*<4Sy-)TtTr@tL^svJEZgQB8g@pwX-YI~kO3N1Zgw36_rR7}!mCC$Qc3iAO$Dl>i{q*uOZI$dYG^J#1pFEWGS295(5sL=;4d)q+3wG zJbNYO(}Ao>5Ty?2>>;nDK$RTP=Uw` zk@^Zojg@Bq29yScQ_WAkq{Q24e-<`46R~Go$R(v>5#8c{rl`nb=y)ATGHE&ATS?JW zLE=3uKu7|&V}TzjDd`au?XECZ#S?ab?OFgJKhpuTQ}@F|*gdb~YiYRIcf{|5{C&hg zhLHAAMw}G=DpkBwsGXVIZ9v9`^1DEhJ8G|yi2F&&e45x zy=XT~N#-Q%yB)<&#}rA+Xy}#F=={;7pg32(eqT);CMc^fNe#~eco$%vZw_I!0_Bl| zLwdn%`eSaXP|Kl7SqiAe5O`uZ53ne?4K5k~^B{}(qnOxTv5~}JaZUK}#;mE~L#1q4 zgHxJ@6cVA78(Ib(AH0EEqs_xtD7xHbb397A{RLLw7K$`Wm|+4l)Ev)J4T5C8L{QeB ze77sum;Ufgyo{&8YvG*-ij={3M(4B2!OPE08G`lvVIsGw`(eQ>N4XX=9h zYz$l~WAI9jxsnt6@){Hw?J(xQtc;Aa4v;i6%f-)AV4>txq+F~tjo1Mi4`2fqQ@Rgg+nJd^BtSUYfCd1F z5CNFvhKAOFe2Eb4Og)cmqcl_*xcxQUp8ajlPO0%z3MeEEzw<_{FdmT1*}JoKN6bTuzF!-h==<=AhHiT zAhhdowU0O!2J?>tQMBf6tF_bCe8~0nIac78xmGh}xB~xg zk&0-C`#<*HJ5dbdCjGvkK zX|tZg{+#6j-z(VwYAN+qU>5+ZBLrsWzPPQibeIvrF=aS{th~x?JLPW+Rv-(7mH`tL zF+t`tyNt`fb(0S&J4t0<0MD^xL!*?Nv z)=LlgutPwFy7c9PZz4K2`8Vgz=tyRtQ1~T5_5z!b1;PERnqct4{|7&Z*u1tkuXkh% zq&dDbp_1)%iZ8oPo(~-rMvZ~nmgLK_mWZfeI!q)9u|Vjp>`K7ZMgR)4(i_sD&%4;} zFf>kLPiG`Kq-2^9ij%w)R&$qJq#5L-!SP-^)R|0~p1MQ%;3=VB8}7-mW85|^VogU( zIY`7>rl$8D6E6indVskMuET$M%G(splW*DOo^4QR24{4{_0olP)gl%@WL|M zE?}DLVy9W>49V=f*as&QQEkKt`o9X22z;FLaQ#@k=cMfmZnZz}U!N>8RhUoc)k>hD z2{D8%KCjU)#iEs(d~$Pbxg?PG>$zZI%4jhka$lv6uc`%nh$iM=YLQD6ux*0bUHhPYwWZkUAW6u%N>+F`D(kb$95t zk!N~;V=MkQ*_5sO1npiI`37PnUIz%l4Z4M-_VwBT!f(NxJ*T?dY0Ga^4WALD`rSdI zS~yW3et`mPq&qg#+OE`eN*HgYFEeaDRjT)gq>dlCt$E+96 zvxfzXJ4xl7%7A~uV}77U6$QPGRp)OAKwITBNMjtEpC5wQLkS2zPohhHU|~j@1%5f| zL`!)7uZtxm$Yg$#Yg#p_bybfkF*MGR@!Q15xGs!@c_&z4H#dv)e#|bc?u*D*GExJ5P!lzh^S(N(#^pfVnrI$M^I23tI1 zYNiDBRlmg3YiGOr{?YS~U+7)YA;US8B=Z8N3!B2Cp)aP9jQBtE^GvXDaGu(X*|Olj zRV%0dvgDM@d=sW?=87cJ&OOWcE7ySP6x@&#K|?dfUYM_EbmtS(Z3zrem_ywdx$~hl=>ITv7C>38>)QuJx*McB zqy$OnMp8OdI;C4B1nCZy6nO#ZMnEZ%7C`}#ZWKfWloSNMd+qPP&pFI6d(Z4Wj_^Kf zJ$GE!?>d1XiqD$4iZ`U_&e4wo@7!UmFs`!sVQhQV<&u4oX@f>1!AIHZ-#c9;G_0=B zmcz>F()tZi;gyM2R2_*JOOhQ6gPYYYd3x@rlQsKe8-n7pmzD>@3U8xye=dV=Og@br z0$`k+oS0Eq-}Ms{JSx`Y(<=9)ACRh~nw%fv!Sx2)T=Y*=mFUbG>RfkrUyv0Tcoay_ zy*o@gqM`O^$;6&z8idNs$yJ2Y*pNd}%}B#HCrrM{hb(=r-&_TmS&30a^7jBh@F0;Mj$jtQdn)C7dmS2()MvNl{?!6t zTREHuvA3$;p<^`0Fl?q>4>_E6MC8g3f7&t*0@GLpo+3u!C$wM4HztEW^J0HDv>+(C ziUE!rb8=SJhFp9#U#;~S&hZle@r@cZ<_CXq6LP$<((W;|=p=rdaWmY0kbE9;Ay3*o zPhs&boz;G{T1>Tf{_o@OT3Xpml-+12Z0#A1)dgIiHPd9`gR*W;js6w@!wrE)`vDak zTXuH#TA+0xYVZ*lA(38QWMgx+;pW)@Oi9)yx zgGS1)s2R|}U}CmQLQ**Y5&Q$rznhJll#PI`Qjl^Mv&3%UIOl~(SO zpk_)KM)v~HTCkc^xjcSyf3Glvlx37te^_5T-x&&E9u8jBZ-3m5!yhZLmCT zWIT)}uogu{ZWtvb%q;%>CO#?#!Z4(KjApzaQ{O$5b^Rb(J&i?+^8si5Qf5x6$Bd3& zcZpN>JAnNmyUi9zd$o;|3uZtpyx{Zlnl@0Q3_$;FkX-Q6O*-xBF93Qh-M`u8 z4muKg=&$k@zm-YXc>ZVW$MNICL;p%K>fqoIVJYr;CUuSO1fHHWgwG1ur zK4y-FA6r{I zIpvVTOq7hxT}v@aQ`W;NWl9ptXw=mXKk9~Y^zSf{Yu6CG(CZCUylUHm0xXaz4ULLl zEEOTU()#+Og4e~57Z%Jpb#e!g<{b)dt+q8

767B&MdGWd#w zg)5?+Qr{0#=xIeZpZzhqG(9~S5by4{3h{_Yj3WcV%lKD$c)^NHLhColOM*X82-)tg z%l5077*#Ov(qb(kg~(Q8H-+_GvftXe zB8c~~_J+)Y3b;dPACX>q@{IQD@AO|Bi6ZxZ{l-HpFQt5Ag5&kf-h)A%tUF1>tq}7g zmD_Q~J2BNvoyD!R2MKA_%!Cp7F-ynm*V+Hl@R0XWeO@>Ymlv-1MrK*&1if09vG=hv zhaFSle@D1_+ebEE>E5A0-P`*{+7-2&xB1pb&&n((ef!XpQaFlWM7x4w6!gIh3UhB6 z?mDt}fA!!7Y*Ye5Lj0p*qN0i5dW(vS3sB0BP|)%JSTk(dtu|~(QhqxQ=OXBKEL)_) ze0do)9(gMyAnEG(SETY!qJ58)dw#m-%ALY~AqO8T1#Yb(u1FSf+2_}oJe8PiWlnO> z?YUC!sTrsZOdsIWtj)-;`9_00&Te(+uGJW{Xnx?9#eZcL@8l`JTM!XdL7%~=%#vRt z`>RsrWpRN9Yo>XoopgeJ1GLe_pA%jv5lz-995$aktC3mk3a-G! z7A+OYTwnNGb{=-s#s6dPg-Zyx@j^qC#C%SO7`_| zhm9o?4Wj497OM@P#YAQD)cYW$2Ejz@5Jbp%)PYkw@Cw5fGjt*9RMvcsu$i6H3Rst}W!;XC>7U4%=5 zulO^E_h`iCMZ38ZpDd48&V=-u701rMDE+0T6<24b&KAWI`cNw_S!<9ccG-NRrQ?iT zQb!ZhyRd}f`BAou3(sFK+(z^_z(B=SR|~_LkSf5G_;+Mg(PViB%6 z=8ovLAaodUDr!*UHNUYEQQn=dMcKkC^C$gD~3m;5xzj`5S4v!5iFYwDp|>?_j|!a?0D( zJ)OoN;ViZ9UpBQE3%#NE#_j*ebi0=!uyrMS1bxClU6 z0!lXMKmjE9p}M*c#P$QQ#6IEh25M%&LZod;Pm`QcblE>ya6eHbYMCrL?v{*7Bc(mT zIw~^h*tj6wXsfp5$&0D%d+RY!1Cmc#7wc~ zz6xH}=NQBfbVxspJkSSfcLgHwKd?MJ1&yD>GLYJb|<66P>wwq$AYGEAM|cz0$tct5;y z0{Y+R7|Axpt3T_T-rhW?Hu*DoI@=OGc2b zWa(uLo)G{_1Z}5L2jQMwHFY;}j01jE_F2@w9v7;XlG$aXN;uSYFX*RJEwp*hV(m%4 zBOdu>Ev_D||`P&YK6b3>HNm|3S+<%^Gc$}m7`+T*L6Zi7*!Nzs*g?_ez zwYa@qRuqyH3>zgRrRvCz=a~RHk0idD4e&~zp5f(ux;l_U-ep5Yqv2M|(7AB?t*w)< z81c{F$QxRsC-lq>v-~Iw4uj?&{XSR)GI@0CLxx>nH-7$jlzY+Z#%L``Zu2JK8vQ`Gp49H)JfMns^;efrS ziTgw{H;XAtaeEM>_VNCjB4j9h6!o|dtoVdl__$>*E!VPRMKCzDG;qaQef2+%5Q^zLUQCJM@A+a;}^E z%}Tp)T#%qU=)bre!BOfs^E;Ir9{1T5q0lI!w|@p#(Z9wQxAcsoxzM)rKBL^^a-uRQ zIa~dES$F^F!{0-_)0!fBe=;?>G%j`OTZ=;*{jbn>c*x-hX!s@a2+fSTJh}?Y!s?Q6 zB^ti#3(9rM%LPk4VvA~;pCa5(%6hpu7-#l3;MFm+HGmSJz^V!?m<)|&i0nN~AQ|i- zE5*LOs8_Ai8X9+$!o15~Vz@^B^w!T`c%DwYHfZb6`St`2 zl|z7oh^!UM$aF017s9V&u+lQ*3{k(vp&x3>}BJ=Qk~&p!|zty z5(&_jNXN`9m$?=|?TIqH?7;iBNXD$py6?^DJKJ}I&tZ^L9u5-QVmNeH*p5cEhS!Aa z8~YW;QV>7*$ly;&w>)WV<(~#B0xiaPfWm&+5FIyb33t0l!pH%U{8En}lfo+b0_2U5 z)NcG@QQl7F*00KH#WH8Ff$Y#&xipvk55dxO^UdoAQOnCXlBO?sW@PJn_WQXx(ua$u z9CO~SiMV4AmMcg+)MCjsTy4=UlU1+q*=}@1?J8SURIgcCuqv8yKjTy$t@)WwEkodL zLL#3W@NMUB5PVEWEC(g-mu;;U8Qy6=Z{5W$<|Bw@6!fDy$EC+H4R)9ntf=IsoHCS! z6TcJ-srfho%&ln#KYaGb8 zi@(}!NR3ZbO!QGn27V$nt=PVMw&_DY$;@nTBgGb@&JS>B_Fnu`2nkn|W1tilha5kCBM!Lf z0cTLWUY+vd?7@#EKJ)nLVb<6ylezM=dL$-QQmHw>mvGtjauSUC&L zgX5>v@BRdEDN@T z*C{8hH;>_goqaNrD=pz+_ zGz#{F#h$-%J}E#W#HY~}yXTr8hg8d8fnlo~!2Bc6z?|E0<;a1GHeex@qxef@%0sftOD*z<*5_c*<*lVC+uqV`}aNp_RsS&?|D1dsYIvg1cg3NnrUQ&sK_%NHS=ul*h7) zm!|t!u}3p^ECanNe=fFY;Y42z<>zsxnU1LwC`)FC@y%?sm<4rvXgw@nHcu;>jPh&A zpPv3l_;3^y@;jSY^y8M~=vsC>d9l&vU17?>QI>g;$t3W-_WF#3BBaPm^sD^g;P{>j zFGP8K6$^W3edlBh)uU1e_bFW10tv{-vhmc3{`fh4~{0~G3=h}T;URwj1A(CRsk6d$iIQ(sL+csJ0n zHT}JZhWoo!u{9LE>=PFzGI`w2x-A|wSDv#Y)&@jHo%-EJL|p1T1>g&qa*^X+NT%SE+WE=pL5M6PjlBUodYD%|%b}{oT)>=};=PEq1A$&V&;Ans1=Upkspnb;z@0xK=te5!UT!uPD+PWQQS zFliO1(yS%(ovu9Zq|^nT#(tfegf;y~gvXm0XE92(n(!>eDa(V4m4Xe62-Ba2=s|v^ z^tF9d+(nKVFv>f|9}>cL4i9gIuHM9NhZSpFrI&$KXB1^#7joE-`nl^fH!=l|aK%}* zBV%mivqGlKrGBCEA}uXe-@sK1N%x_55^P`I5YI*1DKV_McK5hm-q!J@Fz#27a{bfE z5Q)ySCT!?FF7)K4^690Zs+zcQKOv~)&Zzt=hycHk3A9Ir56T!+^-#>s%klUg^on3Q zfT~F-Y=hn*c<%deIIlu8Qs!40JfR3{WB^T57hFTvwsn$1fjl4ejyR2Pq>Oo$C9bSS z8Kx{0D{+>F&vg!RJjRME-kUU;u4Qe9xF0g}M9U8T`fIR0K%cwqA01DW!|fcipSmpi zTEfvxdA%>Rxp4M5sCt&g_>zY3ZMbl`?Gh_3jU0rUn| zXjWB}H^;JN-D96yj{QD1YmQ8o#{1S?X0Jq* zrz1(sxc)t*|KK@X$%)<8W5$Y6a_N3pcT)v~!uu_&`kyyy-O|IPiE7Vc?po-ruyM6F z=2riBX~X*?(TkrC)!xagX(?I#EUDTbJdcZ7r9f6feBsbX^eU00MMxB$w4?n$Yq zt!OVNgnG9=?~U4BGpyNKIYNV7eDUbJ+#Q40ENwxuItD5&&O`jV&ri7$6Y-{SyrCQl z#3AzTF3}&5k@Y}!l#gD~6ta00cIT=6pOoEJ9x1mo@g1B3#sc+D%xizNWI*HnLj%J= zUnvi<@k$FfrVUTL@I1o7HQ~y-{adfrfY2Z%CEfhns{{DSt93;k33Ah+gXAIxELgaU zsftmGBt|(MIPxC02`!8KDPQlkz{_L6bUrfes`N5mErBxNB2pkjY1=GK!#IZg9?+Cu}pA(o0dbMHmB?GPo#L3{_Hny?~3kqthqokmu`~@RdXl)^} z)J=nik@mg$AUkW`KnWaQ!HObu0PEmA`EpoJ0PFgx?=J?{2RYdViG&?vo{IR?wi%U2`6d-{R) zHz&(XtC)6T-`Pm6B{6mPZX1zUR{ca%>`@F$80DOW-Y@~f}n#TJ%=)`3enH)=YPysN#yaZ>i^Vm?@XhJ4L zl-hWCR&PTX&aKV4#ur5<1^ld+GQ}#yJ=;BmMMTVDy!G`!kdS|WP4Y;;`3D%04k;|; z1jXn@`2{4u_nPq>?k0_8p`Onyg_%Z}OB)>pfs>UR;*(I7j?0a}y&-A674FlI=(@lD zEY%?yXt!Vu{vOr7Yv^Zh&Z9rZ8Py(r3)Yqhsz;s=SiRKtM(lQV*H1ZPMkuO)ar>f3 zLVNi2kI<@PlfhkrD{HcOG+XPQa0y?ciB&)n29T~lCxmu~^kMju9h@&-u2UT@HcJTo zM+=}q@l@+T_W}ZL9@oBhO?7uX*|&nZI(?5%E7ziUFrq6DtJiI_&hgUvil44tM80ms z@3`ib<2OLV!}zn4kdP2kNeykFsSZo4 zt4IMl;wS=4h>T-HspjNU+^y!Cx^s+r&`hoTQe*Od(J}#SmfhayU4v0nBpKzM*NGI_ zr(J=Sm&K9bABd#W&ex~q+P)93N^?UlKg)HMFJD=I_Kd%=CWI!phow%IvQ=swSA?n~ zGqt@k#?q2j_sm6X(Rv&7f@-%3Wwh=UlNHOE=70T=tAFz95(?_@T-M?-{)1)E(b*8- zG5P&FB%GqBr22EPVHFHxQ4ap50FUqTEiZ_Dr~vUFRJ6dx8Er2XSlrq#hbk%hbXts! zLT0*n7ZPAifiws}_|ST-vbMS>@I6Dh-aP|?%PhmC^yCIH8u|4Vd($LX3|ya_lO!V! zoO(RA*`eL;ePbgX1V^9KJycAUNYyg`X%HkG926v<`bN*9br+b7o0G5{`<6RC)PU7Q9Q_cj_wP-wJeRyU{ zoHDi0DP9(&=GX9ueM~qULx7+t(_va|Qn-7t2(AFC^0Bu8(3T(bRyHxj&c1IPx}T1H zWpiyiD6cfR#5r8*V7_Xbe=3X_ru!i7o`D>+U$zfM^s=RLmRP+7s>>mscCX0*6{hQ- zSj&Q<_3C<%_cebw6P78V6EO+8sM(8N2}}>C8%gI5TYxi7+_o~=ZD)r0Hk#7eH{Lyi zfbtaGu52Hhs*oJ7S<7dtNP{)?S5LRvpoXoriBTV&s^tbJIo?NAc8C2jQ4MXPt>w(5 z+M$$W$mfTvg44W@0nDx?Ezh~g!1#cqbTqZJaNACc4_NTRkNXskBcv%8(eWH@Kew7+ z0~+W72o&1n%YSVZjQw+jJuQdoDagOZXGvNwZS3SQPITj-6lpe^tEW%EwOY&Lfw zs1vRiikIwi?t!}L(sWVyp1U~V_pBN|pMA#`Dhm8gaVl6v3-{S2(UZU5G4HDV=kS!4 zp44c%iV!A1BX^r+&E`X%tbXn5kKly|+aSmU6ChNfp!PTz&XIl_Eqt<)#A;ZOUDO6o z2;f|3njFdY_*_?BP8y`~R^NDcbPsNk^2*^Bt#PwCT zoRI2OKKzuV)VW6qMCwP-amIi%7T}eYU)1E}3K|+jzyg^6UNpILt46TS9OZn_ok6pQ zcK7&oDCp?hak%BMe|P_Jpm>-Y>*%>Cv`%>@DTMrfbBRl>C89h$dR!WKDGAnosXRax zEEwSoHCg^@N&iLdO2O}rxxF((BbkhY6!OE}`wgl(z(o-YKezW7Kb0|F@9_adK^q)Ve;hZk1yR_CQmG6Tbyg>+aVLt>cqvZ zx-KSzvc-Z;j!ki=yvpn5PeC8%kHijP4)MqR&rffDof!3%mXtRnAgQDFk;!Xx9wGQF z{{4Pv-uM!~P~evW-5A?N;Ek#`iAxXu%0HKF6X)!y&b(A0ls{@cG5-K84RBPw0~-R3qN{>9`RMu&!GJag&efA(u(wiZSLwaTV${$>06 z_3PnG0JQ+b4Dl)u-#rt%eY~wo`e~H6lHa?u2FCR9CVYVXZ&Hym=LS`k$XX5;Ij!k} z0{KH8Mzyw5i#9 z-*pQRbX0x%uZNLxwq`S`Q@>jPMkFZYce>$j5~tz?{|?2Ah@h&%kkbLIVym&6P(lMk zM+=N?J*LN=N-xJt&UT_V>|UJ+yc?VsINEJ#&!dd!wwm6pq&mdAh`voZDKj+^+!)F< zcRS$9Nvy4Gnf=k=nNs;qpBsZ24|(Wa1J}fJY#5$)<2@u>!c#lS@4}^j1&%uVgZfN? z(oH6j6*{DK09?;VZx}KpdjkXVz+GI=KFW&h^A#|s*M4o2SD z%K#anU4ep#52HMc?DJI3@9zON32Z`7WIgEBxJ zWbRh|U5DKQX$}PnJJA)}9gjgJN-E|l3|T{8($X%2GKFX3Jdx(|A|s)*<#oh84;qH? zS`P}KeZagR18}&6gak-EzZ4Xx!pTbpQe}8q!wiM$LB}SqpfC%$+X)lX5uhZ=DE-CE zt^^yLtoJm_EkcS8UqT}=cUdS|eNua*mR55P2}wJ{MqbMrITzsS($LoKcbmR+tLB8j z5%a-QS_o}B)s@3JBDE6Tw= zxMtIDF>MON*6d7MtZ?nOpjK{6SO=c?PNqNwUfXLoj3AA0=c(U&qcQ8089)RBXyn*5 z5ofm{fLZ1QJ{o~8kc(fz#T~eT%FXekDT-qYGVlo4>KeWLG~bGeeuWNR{#HDtR>iAQ zscJjBE9@x8wb57zZy~yh0sSG<=VxQL3|4{+cBn`{3aJ4GWteA%<5MFAc*~1@Ln6}_ z0-#TfWp57ZIqc3Snax~qf`w>r6gJ$T+Ecpml{h0$;<_^ zyXJuDN|Oq>_Th2WAJ{vtIPa@%-ckS7mbJ(89@hV7TW(SP@TTuFk=X8%dAkRcEpP7Y z(y6@u@uNQ%(0zN)4)MJ1za7vCjl{57uxW!k5{ZokKJ;Y=S$P^T5 zL6Sc-R8*cEs3N=9R9zA%AHRbK47!4tyTUQPKstSAJb#3$=#d{hO_06*3wC6dcDJkE zAjpG=ibXKRNGA8>oz{X23-!yrIs$GBE`QqW>nf2+w^T-qLRw$DJ;?NO8plg1INhD~ zmX_3!`1Fv{;N&yxOYh#lx2WQ=nM?qC&PB`c|9dnuX#e|Y-qkHeYN3&4QFx_PyAPcI zj5Hdt)uw~0DzAq6OHTIOD!Vp(BAXG5`#U@IkX;RsK>~dCXb9cDFkxxbJ!Dp1V}l8c z0f@Y0PSn_nCDq1m7)9e3B>{#`s#no>o~LZ5vq6RM9~~WvV+%7gw4Jf9RZS6iqE@P|-Z|^Z4}eX`?s4@1ag4=<5f|QCEF^{noB7nGCi5-iAcIZmz6X;SX4&o@5l% zOBzw@(MvUQedpxk%lLXHX(#^p&qZ(2XyjdQV2dj%J%r)X@V2#)g_0!_qt_A;Pw}ft z)%+n5CaANDsmi@Ow#t~>iC%wPTQl+-TVBO+Pr7O6(^Q4U%-$}ZZ{ri@E(^6?&zk!1 z+e5y~L1+9odYq4t{R>(fDQI_EUstiWX8`cYjQ2?*-*kR8hi_f&rnrtKFh4;<)~U2B zRJcnNI@s>?vHd{yVsz6X;8SRpBAmnN{ueE92&4c4Fz477k+P#Vx&7`En^~X;L8Co`Hug z%y0}Dyg2~ah5{H#@YX^!*<(GuKeMwb9yGm>^#(gyfJ|y~Ru(pZ3~L^if%hfGM%sx* zJP397l4R#TmL!~)lH{yhg&}W?vh=c0#Cn$I;4^81*_rG?P)-;>v1n;6*huBz$%MlR z-NZ6k_oD2&PVH+!Rb8}eV^wOT&#QUUV2){7?iUfWt*rvbl87#kr0uDT(U zk6q^^_yFSNbYSoI5-!WlWkVu^t2Sy=gQ|p^u|)62j)M+3uTG6xU67_ZM)-41M&Ir{89apmXcYx*|}3{q9itv)hLeO50)>!OVBf^=xl9&VS8R5~|~ z05fvL;^Xft<15XI3^Z$HQ;2&HjHoEbrs=oe?1}U9QUtId%Vo5b_zpYNtQ8x-<{Wlj z33a{c`Uz%wli_NtnvAt{9`-9p7W5?_jtWQ&5k1>|l)v_&bsD3AROdcAIaiY5jn@Gn ztMNY%(%x9c%g@c>Ndl=TfFdvzQg3kCfWqU3Y|C4Jx0!K*J9i8(K4MAKM}&nT4Y2+p?4I;> zw>jrfAU*@Z@QeC!ZUD|o&VB*kk@jOOL1#DyRs;Z*`oHd6-rZG3*=}rJoA)R4I~9x| z<9-3DKQd5q07+#AzNMu9y`1Uj*v$?v?)3%GT^>Q)eVS79w8`iZ8=@w=T<_wa*?YuPhD%ksK0pC^!qsK7w4L2(VRRggWsfovTlFg-LZ45``$ zT`kVkbw>WJ{H~Fe?M3~QJp=eCfhLJ}(+mN|>MJxdL(puc(;AWmp;Kl}39jV~D9JcI z-Rb`NxbPB8rPqXA+e5!Mkhab{+S}Jlt42)E@tht|(+aa;d7z_1l^a~CX?VTu%2yeW zCT{>uTk8vRK^>Ph#FeOelR^2YltmzSv=RA3UN%HR?XC=lfUnxb#-D zB2U3@{S5LNF7^bGgvDg30Bk%wdia{w>>kh;{P3NwA>V9MyVmvn=g7zh$W)$z`vfqx zsJ3Sie;oy>Qg$AT&oJ3>WsG-I$cIbTu&Injq&4#Dz9|_$wmJV4{4~+ieEHF5s z_pz_P-_A!Q9>GpOV2baRrf(;Z1OnL8X zQ9-0RDC7S?UBN5OY^~No{=(#qPI}OQOt<~q5Ga9A229VlmSZ;n<%o>C)%9nGf*Bwe z=)ZyH`rPl6_ajDt#9GF#E0_h*7>vrYQ%#>rrQ!yvJb_jKsiN!t(j8Dqr9DV&&NJ{R zScVA#v}_SDu>ipUbkNX}AevQGSlBPilbT?K^ruj)4e7xs6x(p=hsXTsDa^jr?`*+Q z-3Idi3YRT9Ev+ywXY!PyqG)h%BfY{P7>jIshU~Bo?(DF(AR@ERvd*7vE41ylmkTC* zPg?5cwvNKg23SE;QD|%7FIy%*%8#10xsY*mj*cWymglJ@|991% z8p#m-EBroZ;^N{W<$i%XKRRs#%B4HdOFdFTR{C>m=fjQorr7j8XZ`k;($zSp=xjN^V7z4 zAW_v2XZQr_j?$RMZ!<|`g=#VrDaG@JL4LziQ&X&Z2xMEDs;hevMiWIN0jR0-%oH=$|ZCCc0N?6O4OIPo`rhKi$KtGtghJ^ zZi|4;BvgYHdAA_vKPNX=r^JGnAP6_M=qe0FfP3O!?z4_5jfy92go|L$uL?|w2!{dx zOU^hZwD)3`o>Cgzh8l9U!tjv`2HWO_*aZi7H;e+e|;6M{T^6z ztx%#-e+69;f4kJ#QjLrN?TzcmXab-?U-gOmi2MG)a!k@O3U#s|BJXj?zvb-NlDeAq zc5%Qg5U_j{_}g9AjtvoCG4foRu#q5QSU7;wWNwiRv1o&;8|h*|f+}DgsT(?RuI)E=p^c>&(%)tA_Jc>7r6>oxHIt2yW)QsYh4j#iq=f{mwtMhEyqtz!~}YT)K11Lp(KkZS%RyzDr#qzS-DU9FL3*tS5jCkdl!V z!lbr7S)&N8DR9&4SGz<3jH(WaP_JUb!Sk}*36Krsv--n^@wdj!_~{=NB_&+Q64TJU za$fu%7)sDG5M+lUBg*PQgvFn7@)v^l-Y73l*P(cKlz>M+TF`DkLaS1 zWiHf^>;bIiAhD8eu^evr&eVLf>;7WyJ$8n>+wZfJn&+7(KYrO_hXE-&jEm=uK;2r8GR@n>lMBbZW|uefCoy*1r(A_-gm7*<&Ex z5b|Rq+x9p)N*3YFhGDs}shM*1_F7ciUN$SCaBO#?NG|aX#Z%a?kVba|BTPs@RD`VQ z1aW*)qyigvOoo^cCz}-}yCiFWDgzUmcS>g_O!!5W3Gngk;wsr~Fg&&!;agRRyD~NW zT{o(oc=xpz$<6RaQ-yBv&DB`Bc`!gF!FfUR|0c+PHLZcC5%37Vk(Pwdqqqe)vMcAD zkww}~-{I>9Wp_8MB^}U?z`?TT0m&aJ7p_e{`)T-RcId|L#jZ`B%{^~j zO)0?b(nN%Vr0E`{syV=O6@E+52Ncn_V`l#R`2jKhBV{(!kcm!)aeu)d zfl#GLl^|3xl#}76C8PyGK)O4XmQ+Bxy9EW5?pCA) zNtJGt6zLWbkQSt*`|kIgnS1Z|$DEmGcsP7-?BCvNt-V$PthJ2d&~o#X=eMp@8q5fU zBBcg+j$CyXFdiMnjA`r!{8B+hr5*S^FO~yfvk``M#RwEXEko_eKo&xf5@a_NjORl( zDyrSa7R$&Wd?3G}ff8st$SV9A(j-0A`?K=Kwd-)^4otE%bUQSkb$|mW8J7u0y$25U z*L$hdD7ec;KK2^=#_NdW%AnRcc=21ZjnoW;*}pARmv~d*Zu8io0l>U<^vfCMJmk+# z9zB;WSsFZwBsS|DG~c4T^F}{D!#RTufL;2ZBlJ>wbd;1?=S-y`!@XYqAF4y?h9{~~|JQa815&0oZ)$+OO z2yR|t*D3Z38fr~#Z4=wylFt$wj7NZINz-te-ouvEn;$#@Fh0O8076R?8=e)sXJuIb z#quRE$#J#?jfWf$MrQwYwz;zF9DN0mil4YJh}I+wY%( zkry!`AxMuM!%VmK5cZ<20O2O5T%L624~WWZTPxU^vg3YA2-=s=6GNBJ#yxSRO5`@m z@aO@ZDA>30VDxIR7L@^IiI^n@qNms zh5c_RNazLKcU38MhyctqnuACIn5Dz3L|Dxp(Vfw^&@7n*bx26xk zMqpw*$FIEvl&6CKZOzYcu-xaD15gugH)!K2DiuQ|vs$3j9tk0Wrg7ls&E{BG5CxTM zKXgPZXP-Ck7Ry*G)cQxP%-%v>?Z&@?_g^glZ{=tWUY1%>NLeM}7R3=SRj2PaXfGAQ z4_~i3)B5%`&I>)2eav|F)$3IDS^I48XM-OCp)i6g_&YaEzlmp5&4puRFRD3eV&W01 z`>j|j=q+i(OIHtZzAYSkUg`NV@g;ROV|s3Nw1_!Tk&3XkxHtm*FHr*?V_a~dYj5o` zEL~&&&FO6ym~gYZ{oR+=xcrwld+%Xl`;6qScO`X_qT@NLmq0J!jGRH%K z%(<+ww9Z`woxA5xBY>3cFxLM5I9>|?WFRKqarC~z|9b?G9|d?55zY1WlMwn{Wh#ew<&6(y&M6*D}hh)2`T@*0kQnJEnBsKdx(OpVv? zU?n)^`~558CB=-tHf{yo(*H7#^P2gqN=ucl&Yg69jX0tQ3aXbt_InSCdA$D}@!SFh2}QAZ>HODrc6ect zvZnq%0Zjf-*LlQ2R&;N*=)^UBO9bRo#&cuKr(%B^Jv2#{rw8U9lpEp3=)3TPckQ56@b9u3Dm`5!U^z=%FulU0I% zxhFR0=U>WEMM4>q&CM&hJ>Rpl>A*_t`SbU9)>>rVnD3a0>&Tbw)!Sr7x`*&z7F`vr zjnPm_BXIJfcQC@dG=v@k;UL8&CEI&@qr`WLe&+HSHVZ?(Sv^-(VSAC>D}fzDm$x%h zs(QP2*Iztv+8O6EIPoIQE|7ijIJ%9~KfBbS=;?23YN~W8h-Gx$iwv!;27kIS#ml>j zf7MpxUw8*b#aoI>U*{>aCkrYpPNAKV8}yo^C3k%jqA`4)@10)X`7;e$|<5^19bV{&(2K1ovrRJ_?-TL=L*AH4t+KjM}cwTFj?^+Dr{8vu_h*XkC%g_)56CFq%yL*f3W%{l-uo1{%f9Ti!i& z0p$ncMof(A_3n1iSd?5wMi zh+uKz32T@&a>KWNGr$yC?wCbf`O#%rRXo>f=JLqqp-gc9C-cUA*EckwRoGM_#Mp*u z`-TCfOc{&%T<&%T}82K?cs}q>o?8j_xZzF*MVEw^mKgE9u9leN(@7bv*%6^ml!E6>8P1uO_6b{u{ z;bqq4cjzbuqN~_czMZxb1jGfSbl@t} z3T~^=6=>G&L+?ri5uTEA84F!(xt-Hx6}PhGS874701`2HT};3V3|t&do|r^xl`y6} z5+H;w1*Z3I*g)Ujj-@ONrL};#mFpme$hl0Zyo>m)jonjTC%} z*M3s`kaPB~#mB$aI}01L0<~T7J|~Ph53!JdV%bP?G)M5T#*lcPKl6umxdaMcQqIJmGF3*-5fSLTlJNI?aRCA$c!Vd|`{c#kiU ze*;-D1wp~!=xFAhc?2VE{+8teObJLnDLpHo&4Pp$}U z0ui)qY*a4#(!7eF=g*6o2p7-eUOGrYPDvrf?fvt?)i$>llgP&6xUXKStPDiH^K7dX zq@`b-tK4i9Av9UhLKokivqexLn2AZ(&z zXODyvjTC=4_;Vn_`xa_%nz ze-~=OIa;a& zNxA=imYUIYXA^-Vh(-ExNWRL@D$*vTq*RtQzX8VeNDcrvG9jsoc^ah%6P%I~6Hg9@ zlpJb+uc~<8x9+%u*>w-xl963=NO&Okqj&L@yJ%ZcNsTz?3f$oCn;Tm)4O3D?K(Ct| z2AQDLZ1J(Mt?k-5wnDv-e5Fl)|K4gRAMT^wAmgIP_Z$^Cc~|8H-r?i>mn<5b5fBwk z!WWPs9_68^!Ns70z|$VsQmr^{^gW6Lhf-rpbERurC)uY-v^&&Q{|3D zla0h~x*@SSlUiJcf=PWS7;yS@OD-Cx(w6b%A3Vk5{K|D6Me)F_9YIGe#y} zY&e6U1NaQCRVbE88eU!!(;_|pbhOir#3OKgL`hd(4}kXHV8O`1rvgV5Vn> zH0}HKlP6+2)wq|`+I(8B7hC&i8D!E7n5^KZj1}yt_7pErgG-Tc-Qa4@o@=VFw6hob z5!rUi_qw@3H^FRX#K;|ipn-P%3`1nyA%>&@B#{9eUmza`JW}_6j$DFi zV-aeCKu!P6#GCl#Rsbpg3hxFi^ zxbRLUp47SS%Rw2Z&{ZnK_u`X38;NRbO?eauZ+g9^lrWhPD77bRo1fo#xUxEYK0M>; z=qSi)b`{PkM%qK-q@*O*&FQm@pVa@RQ-mpKvs@2$u;I8YFq@p>oOZc~(VIe7!R}c&WG3uGT_wU_{gB=gBmkrcfXXNKuk%Xpbf^S86vsMd7S>V0e zn@1}Wjoy2?Q@X*Te#jxG@;_)QFv2T^E2MFauc`|NXx?oquqI zg?YleY&QQo0zjqxCcLnibeP=DX`ed8W=*Xif#Hq*U|RLpSl6?^{2ZcE6=Uk^F*5d( zI2#-3($E;bED56(*%z&Lk7|b^1%qfgWQjnc7MO-&L8@@JLRoDE=`s4j{)1mfDlBZH zeT`IOm5t2o-LwLK@3nh50G5J8Cg4)?6IAL&N@j%z%IPTEtv-x7OG~iOQDag1P`IdI z?0!8@MgW)WUJz)tO>KV#9JH9-7HO3C9oSYp7z8mH$mi7I>0&*otEou=FIO;V3uyYt zus0dm*;0Y&^_%Nyn+T&23#A0XM57NM0O{zrb@F3l39Wqbf7g^=8t@4_uBH?Yg=Z_R{uBTt zO|*)*RE~R=`!==<67wES@a1aHzr}hX?z?66mpgZA?w44b)tl->!o$uxbY+l~xDs|# z>&Cu%Q6gpfnzFGf_LBP^Y2Dw;ENbI5A4(~JI61Dq5N-C_!Gus8*WJkN)p8V+z2fvV zleN{NL^}#!@2j*H$;cT1QI!vk-@<%g)Z`n=90uxe6Nur33i7DI^P~3L(#(M@iO$eN z+~aHL8Wbf0arAdxoTTt6si;E3!=)Z<`V}j{gaxm~%F63|hxPIi>{PY&7MJeYU&!`) zum8TkmoVm=UBI}ot1j8+Cs(3Z>A5|38N~c);Be^(Qdwp2zk?wLs#^=VI8?Lr%j1fK z>uJ4=RC0k}DK?UrNOmf#Dbs6C5}gXswc)X~BG#30ai_TV?Iv?su$Xo(qE1hJBZq%{ z`69V?9(&Z!C?uq>(V)I0_8R!)+0D(zznV|}X^zgDG<|inkTYe;K?zJxk%9tAGeFrx zf^rA!TEfG9TD_$4UK4yC$>4q3OkoFaqCzWf&dMy~WtNHY&9>UaCW9Ks=WqZa-jpa1 z3L~axOiWjzONT8*)VuTi;I)G;aBFE1-PX{LO~k>o1wTNuLHWJr+~@%XyqEkJQgYp4 zJ8&|!b$q{)_$dg!F*AD?oq#}aTbne*N`!_s^fWfcS4`z85N_gBnK5Dz-Ew`gg=4dF ze-A@6uxWm>DyvPDKaycdbGvaTejST=V}btdN4=j#=|tQ$Ht z!4(ESl`>u|r|?T3s%;QN93z1`)6=1wOT!Yx3|A_nqOJi2q?~#$n2=u9l4Ptf0$>=} zMTU_I{~33`=~E+(B9Y^b&8ed^ZqbWV7s#Dcg?mqc@f?J$fHWy~mlr_=DRSMIYv2RN zbV;2VQl(e2Q(~MXm4y*%IkH*#`JDhEzD!T20wQ$5Y&HvD7CRustM_;;k5LGxw#}I{vz3Sm*i+WLp?i84u>EAMXhEWE77ZFZdGNe0Yv(8K{u0JlV=( zJ~}*v)?Gl`O4fBDQ6(+gXi@E&Ry)}#8<1F6por-2{PNsO)iD!0sG7$TsDA_ha!ab{ z&`@Kba*=&B>GHj04|An`?fCt4IOdHOuoOL`z^t=g8XA_L=6)Jrv93!-g9)|zJc@V zB@95c8(+CTJ$_{huOjdhm2HLrj4Ekchufye<_(z6gw$<^zf%El_ubizxls$z!cQhf zQ|FQSH^ zqvgcqfSw*@Xhc<8RpUL+cIh76EzP@qkv_|YHDYr?wy`eCz{Ztu8o}?17oo=Xt>&+W zKWH&(-Pg%6-|?<+om_h9&#Gx=vK};}?61ncO~=Ph9st0h^TCE8qS%H_Y(*$5u%KL1 zQ!`NZSPZgNqaq`#=*w9FA%}G;Il2A-dyNO$5Z1R^d6H1vMgW!E1gO1MAo)#KsikPA&XK-P0ia(jc}f9CodygYZ52S3v4p7 zIHA$DLifru<>K^;<3QI3hzc1Drhq`nyJY=ByrbwcJqVwb@l8BcnS8H8D`Hbi6tKUkfJt^tsMIhXZ6)p+Whi=jSKY zu(2RN>dgl9g;@#5i^~1&GGFyhFW=18{<=Q+m#VEBfE)&~>M%Bb4(gt0YLQDV-+jdM z>^q#_G+fzQSh%F9sL1cUfCZ!M9B4gIJS#kEYb56{(-~v8S7`@5JY4Ma?pBiTwRF^` z-hL~JN3+?h1VbouA@4`_yXg4pdI^D0QMW%cLHMvk0F1y1HyRn(kFU`H%y)FOoPnT7 zz=p!`U_UD3_iG{=#o6j4r zi9JwwUL~bd!b;CFcMoOXbZgk@i|B|o1B;saAL*^%?G3oXA(a{$Q$L=C`30&@@bf{8 z1Q|^`TEM~w49f{G=gUsjlz#L$!u9699OLMk}F4@Py1mhyyWE1K?=xS|%Z@>yU67sI-P-o)1LWaMQ zxk2SwH$9W}SV9}vcY7k<_(n$5kv@G{-vjc}E?IUDNlKpS5G*yv6|DWR9I(n>@_F*q zD84Tq-^Ho%76LVqyHQCHSOUHQ9DGNAe>C)PaQ=0I1|r5_G?6y$V2J?+G&H)GFJB^Y zP!Q*3Y+>;VgioMyILbHr?(Xbt0`(Qye9F!3P)~@@-fO%pPT=@=HT+{R`nCkq7MPI3 z!2w(O4?)o6e`0s}|Gh6y|NFl5ffgTjO*)`Ef5v?_$oFZWV)XByQ2o~*4IYgrLL+$( zxJD!>h}Vc%23FSkU~%+;rDefV4WuDMHVjJ7Mf+t_Z0*uA>{!DoCv9E0TUe1=Qsiy{ zA!zx{#v1towE4+##7=5#qMyHj;y=M+#9<%+6rn_DC0Z{v@ZBwd!j%6)Jc zNd3|5C+Rz&V82eO|N9XPWuWncfu#+8rIVXmNyROBRm~U^EZ5z_zNZcY+c*GB8CzOQ zL4OX*i?c;#O>yV6omiYXyZJPKn;=1!X!7Tnf~o16V!e++ z4CBBALbw1u)+Kn^nEQNkoUUD@-mLbxG*D@ygF=40y*7_Vq%FML zmRz=YD7ZW$)Y=3F)4j>7JP<2&Eb{E{jS}3+Cj^0<=we}+PF4lY-d0!_g3v_P*9|XNou5f)A z4fBfV{GDD*_RgL$lHe%nCEm3`lNIYaWl?PLM=kgm#p}x2CRkOaO^3a^7Q4}85syyN z+~?g*OtfAnp>uD$|;6vKSV{LVk&HC5D+c{xn*2iv^qhSr6Fk1x5PfEk{e zceT@C1cG2#P@VzJ!3X<|knF?rEb+*?(bD|WtmkGWjJs(rBvDlC5Tv<>6 zcelXC+YR<y%~QzW`~hP1}}Oj&@P1 zkOv10Iwl}S0r%mU#IqY}#4K!m^T&5@sc9$Z8yif;n*tF<4eEK2^1f7mj|2_^Jh{Em zoZEe7J?T#{+sr71s{njyPXdZz0|+!tGMak>7GX%~lq z+;Icw!2oA6)vCX0C-yyRlbI#y7iiAFHE2uB80_&py}V+NPZ^iBD`^3IVmL~L;o{e5 zPU{=P!7wPAlT~)#;KwiImO;h!pU;tlxcfh3*JTv9kBZt@fvo^Zp}ZByx(LAu*%nI)5o! zPX_Sbw3+nuJe@O03Fv|w8q(N|&o>jzW|%CQr35`ADz|-V-pv#BBC`cpG=$Hww^t3n z!R`r74#4`?sDDBYto>W-y1PaFAqb)JU@sTAE;xIo`&%j|MR+*lKbiL0jOF~;9R@J# zd2BFx?eD=6n*)|gVIOV5zIF>vw={f)jjv8!{m`e;7`~$%T{yoqvbiOos&ewHxsV<3 z6NS*asHP^-HUHC42v9^axll&0j^-z=H4|-osh&}zC@gN-8l(Z1?Fip55VSzE&^$os zFdfMkiZdc=!+fib)JH;taBC<<>YUGC=vycKR}1j!8nQ2jjLZfVh=37-KY#>4#vc)> za>f3Ods{Rpzz30w`}Y<2xLbSeXC_(T_hx;0LwwDD9X65d*8sE7vGd18>HMJ`z6TKIJM= zljCjzN;N3sac_J)j<_bbX$LNZtc1f*4`Yj{-^y@4KFBvEIHIi_MF_)vud#V{AN=j7FP0&s>IL;DP?D+9h=imO$W&!30# z>M9sRGY~nl%*X$+fDo@<`Ey;>O@_MXUH zD>YU9e)0BWV)G$x9;um$ILHz~kSd4)hUsq8=)2A=-;OZAxr5H_X+LU*=ZnGtEQw|= zy!vQ3_07n#-cC~Df{V|A=aA`!^)7Z`IH=gt zTRZXuB2Ue8VB`R&a^B7>c;rD~IL>f672qA0k-|^drZWxR@>^CcIW=I}IP|&MbFoR- zMVDBnWFB5$6F7bw6drU=zGty7>6{(-fCGF1n7n?3V-nkQq=FOY-fP#`u0sOE9XJAReojL&%b+KduKPQ@0$|J5c>F>um($l{0!+2kex<+ z{AK6})2dX7@U24Y7vb5M7xKnI*+5t-qp<(^8)!tcEi4s5Isw@tcR@vnCec#ouJN)Y zqNAhz)t71ojC6yp#0*SFpK*R@1=Y*VRgh*CUhGSmgl008pSl}a^BW%25;eV9u!vJ? zR)}ZR>ohen$#p8=?KJRZ#V&z^J=tR>8S-&Y7rhH}08Iv6{`TKRrILB11-BZ02``Zg zNa6u2IhR}hZ@G<)J#vt^;b{ga<#|Vfkkf@?+a30vce$JtR3cKaAo!@lk`N+}5STG} zNvg#ooD1NIXN!1jcXcF=Q$i74-T?&EJ74@CE+#-0OiMP zJ(3AUI=9)yN>unSFZ{ST^pN-FGY9}!WE0z4-rn|NcHM>E*+|x*FME7k2UznWCsN2U znVXw?0r{%|V{41;UcVc>_G12w8w0Gb?vuLf09!5I2OD_eZD#9_!tlQ;;*Me&Jbz{G z3;$v(55>wx!qTY%Ce@`nSVmR-J38qv}piqQlr+s^U z{C9WATM?%mjm3gz_4qzV@p_n^ZWwfcoK-Q{9`9#D-Hv5%K>LX?9qKTORmQQ|wgTH& zkz3Z5mR)JQaVLTs+iHC!y9go(BV!!3OLAvt6YUcfri45h$m!f^zp1|Q`&DguV(hVj zv+sTD5qXzC(PHOM;1Z?rnlrq-PT?7lP_V|Vgk6EXP12w;w<4?qNIh#0m5T#Daz%?A zl-}lcCmDg+)eMv z`bb6hGdF!)x$%}D$Xm6#`tx52#&At1WwABidrno*L!sf^GF|_JCqC2Umn!0OAM}KP zOecZ3$nqF;h4BEv#-#6R66L6o!TAj{2NXw$9%1iwf`;!wloBC}X{WUX^V)9(d^YJl zpXb$r$(#Y_^_xl}XUgDIjf=^8F%lgO5ye1J-wNuSbAHkU%)vj-<~HE6GPUmi;cXcoGH^CA`&W zaTFh6{ZN7+q@j)s=LD1IkFbmqs#n3Uud*aig827%*)90q$QyrMLPa6;HnBzXwbmwy zeAWX-HZ@j73rlOmb!t}PI@o+yPe~6_%#+kPILjFC7d?pp%~R9S5(PC?YAd`@Fv;c? zGt0%}**-OXa2h|q(CDSm=svID#aQe2BYH+DU31L28IlC_~3};Vi zf}~|(G>3j@nHdWUo2m{hscQ{IIEpt_)l^waOXM_$8>v7Z(LVH1EqKpQ-s=Pqj-vH^ z?IJH2*8nI19q#4KNqJ&aaH%LTF>t4m@L_OLS5s3nXkaEGcHJ$m@qpqsuAS4Rh?NB; z9tO_*zb?$g5!51S0LtyGbWsXEYpTxfx*H}edX7I*c+VgWPd01dvf6^m6g>j{{mIRD zT^$LH7Cn}?NvW>B%~{kP#?$%fdMhjYqerUlCZs4;)zM8AEf{cs(Srr`wyvHViG>k8 zhfFlgoIK_2c}EY2ayCDJYa<99brzfc3u41RE$RP-vHeYVcXw0Z1%ejj*YVxf-&`kj za0pf&!$i~#Z4Lp(Wt9^SaV>30;LFw3)dLRf2MQk+<+^K7-1L67_hxtEgt$pXQcJH5 z2wlQaR5W?{ z-Qhy@j@FaV26Eq<4-E0~B?cM<3IMXxtAZ;HnqF8|LjwD})|pn_4k-=&=CMzJaFrX0 z%s_jXctfZD6~kp+;zpIvgM(^HQ|!xYWzFxP%R%BgAZrO;%j}0MbcMH{S2HsuX1~$= zEm)?+g$Y`d5l5@OAG!H0K29a9pQbC<$Wojkit%{&cPnH=0KfVK_)hYCOKIt#4yVG0 z%pa<%-a#2_Yi~z{=s=tuf)8(Pl^vE{hi&VqM?{C;>-gh0LiJ+vcFwocg*?nbGzHep zNPdGRYoe=z^0CysG$sJLv&a3dVB|!LkKg}pKIjY~*Fc~Zmq_|${pWmTY3o4GjsA^t zPiJQ|C|1BWNW++>o?QwG8EUGIO-9ib4Dq~cPfGe39$52n7YX~2-uBo8yRDF@s4>B} zq^tekS^{B`H2lq9`6=N`HOtECsxyG!2)k};Tl`MsiQUbq9}(>qTVdEUx+oDT7Zf&5 z(cPA6sF6|BB8q=?&<7H&2_MU>C#91{rDR$$)Dy7RE$MHby7l_ z;0(as7i4#Ef9)ZpAri~HHPVYNKM26)!e3kttG!$M`dj++1uJC9CQjA95LcUieSnu8 z2De}?gHjHXa)P5ckO3K1pY?)&{YS-x{DW04$`ato*rV6n4%5Pd?tkR9O_-T(dR=#Q zrUh8Vlgu+lUr20e?j?0WcbFBIFP?T~;{bPDTQM-sXmKb5s;~XGJF|i4hp6T`=(zyl zwfSpB!E4(gt1WM^x$rE-~Kf_LxW^=eoR<>E_jtDLH^EWHpmAbR~!)#(`~s711A z*a!^`4V{OKH0z^dll`TMM-PvVoQ`*`5HBzo84;M7H4!_;pc9H%vQgws8K^b3hWapy zTgetHnXGhM>P1fmJ-6~wt2utkh)Ewt_ac*K>9Z)di#n@FbAk3Y^cg7l5oLgJJhx`i zfH@i4{XN|%1Q_aALmGaZ3om3?!Duzy;N^lWUV`N&c(@6ewI59#uM;6dSj!~G8@<)` z&|o};=*Cyk(fIJCegPg)VKW{DEHrejE23w`Ni{fe4>w^>fC?1q=NJGg2(YCcG>=Fy zwlOwFlYe2c7AtnoR;!rNWpZec$kRW1%!ZE|N^sTYr!*p|KFc{F*7?!-927XrR1NJT z);`q^kF#@fKDyaO>dZI*U_konrJ-7pV(rlysbt@sB3E0$7MPX(LcWSIfb5`zHkluy z1Rm3IpE@8aN)#yh4#2`=UV}v07tkM++v>=B=QA2JjFXd-`Ptc)Z?9hQpGFdO-sG8W z`|^_VtwuQLz&?I_F9ChY2Tnc)zV*v80`DO;4*|0sca~HlUtdUp3Lo)Wvrfd8pcP4w zkFNceJ|iZlTgWbW^C^SlQKu+?S@6p}cP|RL2O9D;?3arEGzW)ku>FIZ7UjF$<|8?{_2W()(#ZmkF`wNR^ARv{j|2Yw+ zO+Pk2(G_j;<0bU7*8@IqejPj#6b{JEzgaL^qZ3>k?mUbo!qj_UF>Ykupeg?zM2tY> zVxyqE3~(1u;aORl%K;(CyM`mo6A!WxCkLTxrbUwr77cUl>*=@Uj3ly(qV;sU@x@MC zK$}J&qZaQs>Gb6}cKcgg6`O(I;php(Pva$_5r5~j)FmY=qmCoIz|gWH zB-?)AxwnN6oBKS$h26S9xq~JX>Ye=lnxoOHjOFMuN}h3sl@&F;m|#WS7l4U_QIyW|igCW2Gp0FL(jYJ(cSF>+uZEbi+WPOA47yN3T09S%M@j%(Y zrnsGYhSE_POz=oXCSs&zX(vWw}x zO4rxNRkrKu_g8{P3@B0r!%dm2$t-ff5LbAfkZ7^ z_ZhnS=lZy~>mWf~5&lhZ4X@t%IN^r5i^B{tXq}bn?SON6{dr+KVube<87Whx7Yejch4`^Xwg8{0D z*|%;P+vkXuGOQ*9G}{q9HgRw|2E}L~BGP;J<^Zz6@>dHgy9dokNJIoi3+RpfmVb^d zCgSTgR0KsvVc|5HTD%2NERh&&PtfORhr`SVGO%h+VcbsAB_I!z&X_p{AfD9%klP$V+ySU6<^$ z+ymS@Z>LSl;OG4y(5=M)4s2jRdDp0+1#kn7%{Q(7vJY2gxmSeZ=*u!KEW>_Y`ThkU zK0p`rbrcBLS-R*p1_?pQU$OL%H4zquNF=hPIRDBb2$dUiO{^ELZdZSuVw|rDh8;lQM75t(y z2Y$g$o+%`EATCO<{TKK8wUVMDHh_5GIAqz@2-k~%lr*F%_A+SHCiqWI+Z$;sn`;`0 z05;9aaR_>wg^YZErW;=)^9gj`PH^W`ZcCf22x#WXz-Ud@73>htyK@wE9$G$AJ@EqSlW2WEnTQ&Cafjn#;>tI@w>6d2QmuU&psmOr zzIg>AIBECV*-bV!bDq8G|Edzcv^pjMRQVBXIq(J(7v<#U20@}d65#^uH}A)5u#BK* zQbdDA?r|&zI{7<>bqOGpM*KG50bmA&HMFO|vHMRDf(01Zid{S?sissT2HiCt2m(z` z4-eEROGNd`7&ek}U?hjfg#Ug&iI(n1?QOyT{k3{ z*f6T2{oXqb;7x}=y}hLO(PY$_Om_l_47uy!i>-iBX@l==XXqM;1|RyPhi{T4oQwof z(1JSIoLuF5M)o;}{_*@kCO7_hio$BRzNe=rCkPl+e!c$`_riL-;7;PCj9Q6TuRbgw z{GNSYQgk;evQ8;D({+!lx=0R`h#(he@T3*EzCQIs`wrb68t-bABtiC4MGo2`Jyds{+(qBgrKI0zh>Q4X%%cks!={G-{u1wX;zja?``z$z$_o z8r{bcinC0CR9g*tme&vUcKPYxV^S$ z;2B{I63_xo)>V%b@%oQHLh%J;U^4_7t{hhOwt=2&=tMRk+#q-kBfux~UUKp4glt53 z4nONI2c)J8rEWi9X8T(9*IT@s2NO|qt}flJsXhvN(Srdz?Z?W>MVK$)j1HT5b`l9_ zT1;xHf|@<~bN`-fdmDv-NWTvmvOg{8u&{e|tX#qoW;Hb~o?1oxlsZ&ZaCHwpb+!G1nHH>3cc@a|_=}LqU zf$_`JX_>FCpZ}F^WF60Xb;t)W9HI&&b;KKz$f6mOMdOO~+?Gza6p4hSsxpHHFOe^A0`fN{~Q?0{!=J_M_BvUw*2Hfi{!| z3zS$gtsELoHalF<9S`|&|K{=#xYr;2DO;G5k`hs;d3$?O&^&BzU0%rRB)IWG z&t+nu!h~`46&!}pY%-dmhtsi|ktO@DK1g4ZLPJ)F7Ps8Mv+~LEn6`%N+L>%<9K8+! zCok_JK*$JlVLN+|<66p{9t_!HgDXXABg**oIOC8tYl6=H<5vI*3V zg!jdt7o0ZTz_>#t!qTNULJ2bCoMPpxA<*mP!dlcLLC*l@xKx53IDq6s>-rXN`3(CH znyTc=8FjGzy=P=>Zr%Z5S}9`wP1@9dGjsu3hRAp65^WnQ|JU)YumI2lXDp-~=0nNV z>e<@NDk=(p^{Vr6Sie>*D9j+i0Hhw6xxV&DK7-M#tUF&jTPChkovjAzn<}w%)MLbSHA% zi|A6smSZnOLp!*CYuJ8DRfXD8V1G{tK;4^K3TQ~T1E?{-pkn(7Vl4xDux~rBe>m-& zJra7gPX$E)6gixjjAO28j^gp1tY)d#7QgS=N&lRBUhr(Qi3H;^n8^1Z4PWz?D*Gp$84JwPKg1XNTiz!h$6Y-p7Z zPES*#=v{cp(eB zQ0Jfmz#b87=_QVAlZ7>fk_fPY*QcFMPNV0*`JlWO?|A|)1Ss%uMBIfMRLzAX=rXXWuse=d4*0_S?V$=S5)P zM;8aVlLsEw*`(9&gy$EsWr=S-h4lojlEB6W=AVyAGUNY`pouLwy~zBh5}#M$QrwS# zRctVPd%x(&UG1{`_gxdPa=)f*2>=`Ehlv&$Y*!*3fTYI22*DGUcXyU<51pws;j^1; zgMz?2$I$|dy15a$W-K?y+!kTxA+LT400>-T$Hn|}nlKOrs})TonbM0*M*es&Aonxr z)-TxiGVskUcnRvRzuzq~5HCLG;q1_cPqjm9+DXJ)D-&YVDmhDi8~qOxNnCu!Jr)0Q zzn?L_baqn&;k#f6LI)^dnzPY! zsX4pr33_V^;0MG8H{Q0qddd6cyWGyHk`X%tRnSeNp!LoSNmDh1P~vq%3;6r!;NK^jW&Z@Ij;HyQx-yN?M%T*@WXsmp1etS_jHvvh*BGYNs( zdre4skSD@jG-KtklB z^oJqMBs_G@`g#sm`)zV19w140tcyP$+z?_7Az{H*&pTjEH#VOZyB48}DzD#k@Mt#g zU%s2N{A`u%&9>k{tv&T)11Yo6n4kJ;Z=?=u7Y(L4aZ9wN#+_^i=$=}$5o3!U&Z2`; z(ifQdQ(%z;VYo9h#rfnw3FrB*&dCgx6Ft4XpFDjk-4SntVN2Heo*^Ae>_Wt{($#lI zsH5!blNPyT(%s)~9VM!rm96rc-5d@Z|J4Gpl3)`lz2v~|s2|70?Iov;mH+5!Epbp? zJ!rM7I5L_zHOXD1YVHZP(zOcsAD}5hoK69I1;r~}BFoCX^G@$|>0I^Nhr4(oIFs+c zCGA5t?aa)@gZ7_*jg?!EvOdL>-94LSZf&YjN_MhY5j3W9@TCH?Dt!q$8M;K!du->Y zj$J5#w}>PNm$fGM>zb$kfyn-npHOM^*o4 z&BGS`pIn?5P&jrvC>#dzzU?SauDt%i+!xweJ1Tzs%u%yHTFc&2@#NRzVXG1B3Uc0q zXkR^xo`@9`O3-7h-$WREq+wo`$+>(b15DbJoKLEoKRQH__*|HOKCi8s600L9sY@%J z_s@MllOSkX??E1z8cCs7l4eiDH(>S$AHE@JPE+{ju^cu~Q?zz;V8TYn2K8~smChSi z_c2g<>;exqou6sl!d7oZqut@-oug!GwvyBSqjHDRcgxR)NZsn^6%Fh5g~>mL(e@6% zCykP14o!R@ovm@ba=L73+`(on z8R=l*MJG+{0DMD?6AZ^S{x05@!58)4#2~`nxiRFWgj-#6~f*@TdE&X5vk- zYwLq2%hAK*3XPbq=hLQdHN4Eq#j70ZbXmhIiKJ<~mqLTUtfCy?T+D-!LM=8-d}?Kd zXP^4Mh?lS~Z)8Ou*_Gn?h;o`;2n$hD>IZ4(yjwfG_0iQ{#?6ccj0^aoPQu^-%_XwP z+Xo{&!i)fmKq=~bc*M)e^AtdS#Qq3UZlSN~Kz;yPEwDEXNQ$CQ9yITwd+ID@C>9*b z(6J<$O&VTF>YHmQxoPuoZS?fMjr3iY{yZ^$gn9*2uV9*xgGB3yjWgJC+01 zM__jdrgsGGKN&TiF%K_C+NE{!9qwiu1pJzh~Mi)MPd9e~Tx+`MdeowAY>5(1Xy1hNzyDHBI7WR3>Lt zOVKiqI(;7@Q4KnMxh%iu!RMlJSLHjDm+P_ewc*cFk4r9oJw8&$b++_oaU!`FNeqD( z(gM8vf->~`a&U?`Z5Cb@W~cnM&<%KqTL{#Av3~Wn+tzPENWPEHI!A?p3M~AHilmO*Vzg~wR;B-N^FXQ7kA*>KMV@Tn9DsA-a zx9KuVR{lVN)`ZvL+|OmdPbTOJHT4fNhb?WV1l0_+WUUVc;0x2ob|Z;mJ+@OQ zTJ#BdD=8VLYkDOwtE5Cbd+M$pTUmUrI&AHUTI>1zIE%UhWX39v&8F(6gR4w=$fZ zbhd14KOTW&6ZB_(b=4Z&g<>hv)XrYb*+NWm1eH({?9Fn)wt}DwIVmY8EUshXlD5Et zMOf@mQqtMdXnj*d?g^^yMbI9UO{*z;{>xU;U7pT(d67c8PR}I?>v9QjadA`l9*{QQ z&(S@9;h9Qxt7m=2JU*E?o3B)p(YKwIP1yowiCvfwKl6@&x0d+BhXjl_qIh+G><$0j zs|`xm4SQD?wy^LNMmsKE-m~HDi=Wc6vX^FOf7VaC-@3q;_wjwcFrWbtUC=E3v^T-M z;H&VgKq*#m(?U)%H~_cAYMc@0vVT6YIu!qjehdbyVqx&#U-({b!m8-Z#bXnc=u(6^ zpLY-a&+EO}-;Gkl@8pcfN5X)juJu?kMIp*8&0_<~YgkyI2D~bl(NyC>jS~>5&*ZK0 z105^%efIpMO-+{qYY+Hs?bnTl-b^Vn3QH(9#$zTV9bR#F)> zH8lwc2|t5uTL4DA+V4*Cx35D3)rsr~0Y?KL1lIr^L;9>XThRTW)XJib<$`Z(1*I%Y z`zv$glzzu!Ck1|15@5F-{HF_u!qrMIPtOnF2LZP|threXF#Opb55w&Z5p;0g3eMKA zoL^vaS#B{v`JP(9E&I*ucUPOE44LcRz7*6zm69c7#=4!$#!w~N;z5902f)6clx{^!Z_9Nxqk+gF+o7t1>y9 z`x6T{qW9~AtMk7b1L3i400V_Xphi|!9&Jv+flx4N{bs6uY&*U*Z!Ap8*mir!k2xYp z`H#;l(Xlgj6isZV`g;U>fkE%f=qO38fvVA8DIRMQ7Gn#niF?-|=Oj-<2`r(-?Vl+3 z4cEg=b}0xf_^E_;mxiq?PtQ*_p*E)g;6W4r)$(T@FN`@-MWZH*L+?Jn=ApsbhDyLJ zA6cMl{_|k-Ld)p2UmW+hv#wD5(s_E0Sosu)UWO)xxZLCaA{EZBO8*m~v_R6)-5mx@ zJ-5|Ru791wR+BD-jc8~Y1!=OHogME%Ppf>Fkw??>>Ce2qOz+OFC_Ic%3}}bSH#X;f z`d}*R<169}h16Gu7qC&()Xr0Bk}xbVPDvP>1P_(k|Kb1_HZ-L21L}mN{lT!J2I1tO z5yQkh&VCBD3C!^&S>tombTs0UcZV927MO5O9Gz%+dGQ8Jp5)$!d*Xrbr<^~?winbt zbV|(OK&t8%DUS7mzjU-<(3%(K;DLG%2SA5lsS#sV*PZgS}KyEvgl2Dz5jbfj^!3mWAiuo9@p?FA`-t`I=k%hHvUe+so%3&uK$$fm!hH zfS|UMS6`p`U2}i?tP3~7(Mp6gc`Ohui(h|$gLZxlRw|&|2II{a>hIfndLrWD=)znw zvMZb%wu=A8WmsgNZ%?hYe*KEXPa!Z9B07fYIi%(Tx##EpsxfUHx-6$3#<@Z1vPGi< zW>e&PO`{dxQZ5*U6D_1ec-&Hu}bDlvIZx;W3|B}x& zrwN>>h~9Mwu7uxV^2Aa$`n}NA3E?Ertd~3fl7uq=Zr?m`A3<-8zRZVQCY<-{)eqUVt6d)Uj15-<(4$adD_crBCv;H*q0>!KxEt&O@^Jy1B)A1^sh}euC zD;pcy>ai8w(@o5cG)z7AXYu|W^#{s^uVaUz;Jut*neR`GbZ|bH73N8^Ztzhl8vh@* zzB``lz5V|qqwJDRC`yq{$j%N4Av?(~GlY!D-br>g*%8@9va`OrM3 zk19I@raY734^KjHk5vbKma1ZSJV>>4lCb+{f>E{@S6S4(B;)j*cjdu%Pq@HXu=^hpD3 zLGkeIUFZp=Z$)&O{bGc(?G3H4;ZbHi*4bkiVag#Ui9c7@922g={EIb)#_HG2zkQMr zk`CObefORKw}=bw#in4w^ztmcvgEv`q0})e<+_fmuCBKUgwOYk{s{l|zsWIs*TxGQ zn(CX|%UF+s-9AW{_?6m`gWV)qA&~{}X+2@-jc{yWpYk!`i~#Dy%7-1(^Wll*K=X;5 z%T>mw4S$N!5kU*EM^Y*);{Xl2N<;*9=Dcrw-UsXapfTy|gZ}Hz>Z$`0dKCLEq0oa{ zJ|}KPXyx?t(=ml0x4HTDngF0x*#c|h(UbRnwgIkt=M`bZHgT(mFXZpXXWswI$S8LA z1rP#sl}3?7<$wP=BD)rl;|Hhm6!YD|m;<6?MZv`3ua=$3%euY&umz`kap(u5pP!$g z^L`)%Nc2MFCiferS0nSnRq7cmYh9QS@oR0iRsOZ~*ba> zWtn~NU()^9Laz@A+O-)S_eTXnQqHI*IBiUcgN4sg&!1oEM-hxy?cuohC3ihT?k@-? z31Q8dZ$IaE8j2;kU52q9_joi{$NeMV4(LSOW)YK(*-9!9+W}&!(b263kd_RlabJa9 z{6X>6o{O~@5JQB`0V2oE*_ZHdk85_*vt9pg_^7S!!XHByIkvecTY}i^C!LE+oH9uRhf($T}hk+Iv1>)Ql11VXTAbQ;Aase zL{7`GPK{feF1TfNpLd(&FgBvS%CofdtJsA;$*p)NX67aD{Ziy$f6$maV}go5`(PT> z6q5jdB5XN_e!hv_KtS$NUN{n7UC`Eyye@Me#jj=Z#j6B%djSuW@ zxM6!@bhsP+$2b4c)2Qc3ea~#oJ5KEKu8BgARW9ZwXAYI_I1m_Mj-L5q4hQ1@I#YB=7pJSopuCuj%hKu7Avv&u`t= zEb;}_3gmQsaZhOMva5RthZXfyJz@tL0R_v*y&lyy=9jHm1C zsN^muI8{AWse2NBIC&QYs)(f`{0UPF3yq)eseJ$O zBm4SApSm8zy*(w@>U3NseD{_jWVG{hOZWR^%hz*L&3{J6MSSX7P2gP11o4H)-!Xu~ zoTFVvw9xPQHaP=cN_3I3M@mNALt7=NuKZeap?&#sDbQ9fsVNHD=0u$ynNnv_#rlBC z!VllfW4~LB5?sweFN!e}^{8<}vV9;^?2!-em(HRS0rD746~JIx+ujHY9`R7xk^K4d zhwu1srr(je)_Gi-Nxjo`P#uchohvaS1h;l~OQ78O!;^0!NuRwlPA?!#juKZfhl~vh z;rD#t9c0<2L<W85S5C+r`M{%O^B*f^3J8|!IIw^D;yJItn2f1(zG+2Sr7QWpDdR&I zJH3aM1sHH=beZ+O5-e*uOG!`)r3`+QGzm2r82wdm&o3CjkPz%B5VhqaadiHDFTyWR zSm4wveWuCWnX-Tk0}v)9gSw;gVBDG8taq`d^8YiP90kA*9sDEl&@U4(z+C)^hNf{i z4WAR;000yvRUFr!u)9eD&GAKNl$x3vIAyy-F1xLD8|t_fBF`#9*R)p9G?{&QJ}L!G zejy=if`Qi*rdoO~Er0<0s*iB>jjPcUA%hPH+$e-$51~wLVC@_A&@Rg&2TU+Pr|PAx z-#UrO``yMg#hi<~IK3^=>v=`dRCoDJ!Lt2I_F*_cZ!w3Koj*_1)oL;Fsi{X?E1l5+ z(9CWcFYq&Y?1&O1V=AI+{G}rfwq4=&j-smR4b*6dOUdfZ1=gCkTbmcp86*g!VOZ*w zCEZgs^dQgaGij1@qQhed>r9os4pg%SSVD%i;4O-5T-tAQ5){!(V|jz+<_$v^YaWS2 z3m{UnqX#acx2E=L;_J%hP@aT@+{*;#fIqt8X5?K_;zSspM9C{sc~}y5zUDr z$%fP6=1tU>_FTR#RdavNgvDYJzGDj3+{^keUV}9~MMRn-`MnjK!{TS3XD_|5Sdn!# z;{)AS4*li>^Zvl=j8E9jdhaIZo!5uEw>{@OOjJ_ex-WP4Dq{q5=QH)BqPhpRMsCgLxp zaxv4F Ta&sN43cHC7>Ck1f{>RBx(*@0kI2!UY6VA%yKf1kKlVsE)1rspE`CSp1Q z#2K)<&1F{JGk(86WGv`<8U-cMdcGoW(CO`OI1>x;8d2B&{I&Uj%Y~7on5|^HvH5=e z#@CQ%Mv0MSW)>5H0C5>C4aWITQ-2*7k=Wg10rzs{q!jKgM>#_{0(>rv#=&aLGf{0ay1```1y73r+HSk?r`3Sih}dWwF$`1 zz9O{8BTJ|ly1R*iO79O^;{E?f8C48U=u=I3TYev_LW&;9h-y zT$#_fUhS(A;9BZHp;#9`;R^*6jNrkuq#n)~G$I9JHJ_}UX<-uXG~;>xup~8yPJ!`0 z6?qe)T}Kr7z$9&YRp@p&@j6#cPD6tNHDw%`tfX!*P$WR3!}#L0MaPd;@?^{NTd!28 zu2knJZqTNeUHI$;tLvzy|5#&x)BEwX*9x{+%Q}b<3|LPF5QGV0`j3^njqafeSzRV@ z(y;BR^+u7L+VmqNFT@*@yK0b5VQy2SCFCtW*E>eeIJA<`vSTfp=RwI;R!~ zH9qg!E_mNJhvexIdhbJ7k1$Q zNC*UJav{GpFu%bEzyO4taYD{tei&mCKD&JRGD2kmo-sRj&I%*K0B7|tWpq8eZnsxPoA-SDjZZ_ErL zf@nn8?JOrVqlF>^4?>K<4&?CoczSWM38)h&v3eJzHsD^$SA#9=Wl*2NR{q7CH!u|8 z&N7Sw=xrYF3W(izE;%%-wN0Zc17>+I>FK{XJxWo}AC!6**1biwQkHe~TH?TntNnZ} z1Z%x)(ELQGwqoCtP4(4MjLW_+A@ptd|Amrxl`e?LP35Eb305^K&8x3!KKEY69 zlQ7LTBXWF!wa(y*H{OHI1$+A#g5NS^ur-0Z1Aw7bgn3$CG zR(Nw$Tbm&uJE`gE-8qdFG7QSlM45D- z)8An zB^iw@Z;82oSrr)!j7{Dk}fZ1y5bj~!RA9&s-%&{Hck=4 zQ&*e8wiLp)4NIrV*;xq_leWrnu-jHT%*Z#5d1T5?q zY<=RT+(KM_(8z>_#_qbq(kG0@(GT!;xF3Rwi|srOvY#=*=k*H=l*sPu22wX{1OO=q z3^Y+K8(tdrPyOg3xjhhCl76u3Laj3^si9A)Iwu*Yu`U-|o6rSA6>$S8EWxhBj2zvC zR(^kD*w$>gD0AExp7d=tHbNAT8pdik=I1>uf#JgiF!e*YvFmffV#hV1C4uQi@^xpv zQ~m&HX?7m5g;dL|_ggn(s;@eXOBfn(G<*9JN^PxZpnEgcD2US?jwZ0Y|0ivaZWgOy zRqFb0fPc1;4zZhFk3Kv~I?Qin+fG32{39N}yYw5{E{7lD zv-ygqruS^hPHD?I?r)o=JiS|=vGLCyg+t=Q!3Bi15c^4NN1jYS)7HN4dh?VvWk2lY z)oKR+3$)V?WaIb~Y+VY)f8=54c|VOf%nt6*1^%> zNf%lV2@i9hu!kJn^bg%>dsdtXD;u3Z)7OSYyi)Y58%UPT_To{U7(qw7? zJcYnb?8HH-z#~>+{8TOKNx1!Qjvv-N#hI!eq6^*brI+0$Jmi?gK36&J+!-Gq2jMmv z#0PnJI&5H7%-{C9B4Xl|6T9fnLYyiEi-Xwn9ag$iJP%XX^#vD}*c{wilpE3lFD1Bp(?ZWC!bC#Ez}%rAe_! z>2?zkm!T?WUbqD?Ffiy~ zKh!@Xv|6s-={ zX2`uk?irAw+~J=h;K%k@^VDX|fbB1Yidb)S3eIAABN=-Vw_bT0{n2K8H}M+T7s8rP z`_%fXu29BQzcukcGpJkZ%-(sg8lM`&&0|rUv4s&Zx+CQVH6a_jTR*1BpiBY32?PHwG2HSmLDtqZ zcdUnx=<5MfK?w?6>RvE_rf(xJpl-n1n zMPe4;B$R(_v~*vBQ81KQKD31xq7M+N86q2ipOpi0;-H3x$)rB#FS$g=M(>a0cmhIh z1Nb$}h*($7E5XW!ZoU6W(%r8TkCsy=kh6Q8+1Q)4JSa0Fz~W7?u#5HPy7*-N29bj~ z@6kQ|z4fH598pF=`mmm+VjfjPug_$LPjzm;yY_d^2L3F&h3&db6;-ugFdV|L++Dh6 zm7}8xmxvdj2B<}VjelCiHwP2;?`_8yU4y;f+ZyITmc`8mB3Ogj=qtFLpC6P3l5;@b zUSs6fn*W(`e4F$L|K0Z;;X+CV0)~R2-hdF3o*Y265~tNffbT4F&R>Qm3{8yAjLYOE z)EKMH$yztrNle5ktL*I(5!i*77SRNHI#}WR8_QyWc_g+fVP7Eom19&|Y$3kzj?)&<_pdqWeHHBHfW(%#Tp zj-9tQF?rtQMJ?h=4crb04qXK0Ea0M0?~%9;0Qq4z+6ed98ooKDf=o62G{j!{KC6Taei zRkd6SL41T)zTmou@cBbog~cgGb5cfWr9OF;G0m^~>9SDun1t5iHiNrvU%aFvw*c~y z8lDLNbRK}bs^E^?am}{10_zodXk9>|a>ba7ge1}NTuRGj z6dE52?rv9UD#ag{gTm8kR!n~H4ImS@h2QaR@wh15k6+}pz+aDVL`rU!P3=T)Z8n*( zi&3BRSAc*I4?Auxw_sJDtP8jvFJ(B*AeZ%j{yH!BO^-rSirml;9UI_8VrK5CG&Kgf zQonmDF7uxo;_4Kzpel@nP@tMTk6g%OiNks^H|h`l(4Xvu-iOnyiGRH#nlVq%;cggx z7?gKi{qxbs&znD@G@A1v$oM`*4rzstL&TSs{^zrJJPE{<7XrQxxH!_ooq7xsy%dgr{thx zYTJ7XY5ZU(8#TiF+p3RlZS%;hWR)4UjDzm^TGne^mzDmA`+lT_KTy4ZBDa zI3GO#M8m@PlAnZsdAWZzEp^ve;^yi;X^J|-Q-qlNzF1t+3;` z0|3ZPPXE6-SK9-Ut&_;6#qm#>%L%|yIkmrJWPxooOnIRymq7|k4N0c(a1tsRi)oiE zrmxoajt;L!D*$`YH(`2p=ltTHM`T3AAJ~whngYwVx(8bqS5V~S(aEs;(BDYAE~&>r zzs!V!zWAmJ`ARWG^bq^(4=q8#Js!opH%{l@1Rv@DR6`d=8arf1f1rB)jY$q5LQkj_ zq6K0zYi?M_1u58a-IdodFaJK4Os z?m*Bw2ZAmrf^k5tQ_|4zi?C&m*^Bb;?vID{A8ckq!>xR5nVpv<##$Fq7VGa~Ey5ox zlcfI*#+_ciBbLKeY!L``xBMp{NijuK!Rh55#zR{$)^EM9<(byIC|j`e>IZ@iJG-*- zXNsV#oif)0M>(jP$F#gKuq9yTkZ?weXG>mE43&0OUmQ{Y{<8~@B>u* zzzF+q@E`z{OI7BNm&(tfw+Fx9793^xbKbnPT$_cT9iXRcKvjUL0aW*|06h|PB)W3t z&+_ulbJuI)DoK;t5OFH0!2u1L58OjAKB9LPP6$?+tIGk-2{(eGs>Zd%x%uD{wC{V1 zQVSdtJ*8{xF?;VqqJRg;B4hBYF_M4p&E>D-0`9P`JZer#{g`kKE4%q^zRur-Tpma& zgQ@`b^?Hbb5SawhNn`aU%)_z?(I*8K-87JgS6==Jb~(ve_mcpJeoKB7 z|21?J=y7?L6pHT;H2|_{E-+}^Z5S}&2F}mbh%A4EKX+POvs5gX${AC$&-;wzk09SU zKNyXt7Zwub>-KCRyu+oPkb!v@;mKM*wkskPc(uu5S68PkH|TG#;yq!}mDV>?&>yB3 z>VQ}43s6fk^QPBpLws=tQ-2hH6K`8#tXY!@DRHaK?IG9sVs^S#C0PDF2FP=nCFZc( zgW72@*BwKe-*)q83L7@OoK8id8gE7hsWNk>Zas#aCtPV-&Xga|VLytLTr{nQFd}=( z1J)Ui0;@#0p&Go+>ut%m>bq-$i$;mz{ z2b$AuzZ5XLMjqTRwDuQFOR=6}q9yjUAr zkGj|(>=hWoOF*UlNizm0RT^NVAa>~G`u!Ih_j;j7?B07qck@{3f&=l}KJ&cuEe*V~ z*dlV)_JRoGL$@3K^Uw8X5u|in?8$d`WUIV#%p@zjPd`Vt>o8-e!!t86%e}6aFfJr& zy{;0cMUXhtWN26T5g)G&gI0^#7}=JGP0C$jO!p5U$l{dfkNNYdVXY^MT z_@To~+IP(XEmUUlut6F6)Jq;$&0krBNDp8G!}b&G5jl8WZ^GhCWu<{TyZH+XTT5bL zj=OvAj9>ZBYhDGn*Sy(`I#11!y`TMWvXx4GmK(7%gOzMq+qd%01iv&!x?&`beP;vW z>oq4M?6AmzrIAM_V9+$&7LRTVozS7exQBX&X{GQ2o{JI9H-0YcIY|w+Dl9tUcj)90 zodvST`r+Z2!x3lLaNW)L@^<=|EgXa6ha@f})NFyU2U;~q;6qqjPSX}FoMktKCPuu% zy7!NqXT4UQ>wa#Io^$>9_1L@6IGWq6o2GF-f2q=s5xhfTN?8OT94@D+Ixk#s!CS;R z6)Haz_dIEaq9*^EZcF zKns9k^2X}_RI^)dF7KR!o;IYnj ze_$>o0wNA0-~&KPz1!kj2ZL>r-l!xn%CeHlVIF&#ckyUfp;nw%qXe*s68;>?loz&J}X*`HozFX zm7mjCTR{jp!8xU(I6d@Yw`v`_rB(%9?0^eSBMq0PO>H!x(Yoi~wYEPk( zkdcuAUktSNU5-asn3zi7X#?mSIu_oG!_BFtxjG6=3=C9d?>RIvep-!6g4l=10#-~D z14cxcifw^i3>#0FC0U3$v+u2@_nFC*{z%YrHX2OhBN4smdsTTC`G;W2|^ynGslR@cEQuBs&e z_na1aLT;s}%9TzE(z$ul`_)4daThcw74zB(&FrqlmuXnu2szEHD`YTHFN|3prUU3$ zuL1G>n=aN5P1V|5p^fmJT~_6?n=#9eV|XpcCmsJ!;P@%eHOzmH9yM6V>0o7*c}C{F zP;&uP9f82qK7W8=>>HDRvx`&YX)k*!CqKNMuYgrHI5>Fvdq+z{1C1!FB>=PXFDv7R)Y@-6Ohhod1#pyD?spe!4LYM;rKRnFeyF*r z=@+a@iYO1U8EY)0?No;n*7bC5ztUiOGpa{vtkyIBP1d;uhpWlIsyXxajRJeqfFwVX zA?(_3s*mh5GwrU+=Te2A?6Oi8`_pWkYi2~LztKjX!)cZ(MiVaMZTMLv2>I50=3@it(jXB@BR+E2;&T8QqmWvJe zjM`R3Ew?CNawFjc8QRGk2A-GYX=%5CZ!ZjgyLv8!#l|wP*0#*0Ef|^gk)!-tQ3`gq zZ!*@@!4NlOE%v;uDCuINW95ijjzL+lLZME^^e?~=p;Y8Ol^Z?}WBq{rW?-~Z+qM>7 z=4?e%ASQrN6k%cQD0>qqXpewZ2%8<@D&yr`Nz<9&AT48g`otPUH>`kXoac z_~41b(_x;pN_Nls&=eqP>Ay&oP*nw^LlKOe9> zf-^S(9Ffj$r^)vZgPe3xa!g!w^bbX0FDld8wg#_O&rVf5(oZ!LD#ElWHCB6@=%uIq zr%39@wikr#B?rmLe6b%ZE@Ox(+|q|p3|eG#z-rw%v2DZ*P%Jg^J6l;6St*g%DcEU67ldNK!{aNw;_J+6M zZJk^HH5#4g3eai6=UIL!pBvk`Q>ACUyPuI&8R}x2!(l$_{~I@C^Wxg&eBCG>8)%LK zvkD(Um7X~d!({M@pFWIafp@}RQ}u%cQ_63uiBH>$)I$Yg?+#)-L6u3x?SYYzYSBF`H(orc`0_74jbM_K+a5mE$I5Ae8QoPcy~ zWG?}W0ff@kc{hxXm;Da(gH25`$j$<>9EG$gO6`>YgQ#WuEY>1Px7+@RClVNDP<`k= zoplm=V}6fWp7CHw2pF0iKS(eHaWB&zyS=?OL%Gon9_DWE){Ba`p|jv9ut`6olH2t! z$6SkP2gH+|+gt*=es&<#8K~Wv7Fl5jf*x!ULjF>D_sqnv!IqZd>U;GYl}=NDfTOfy zxe@m>c;rNYaxAFtO$~P#$l~yOdwQa0C?=$rmXcpBl>M7vIMeNPl}4ul-Q$nAI3UAB z>olm3b}DdwGN!$Z+`U-NJQJJtw6Kd zL^9tWf$WB3{e&2ct<(?rslS@y#1gQs=vEP7lkimkyrag7KP(T#^D7*phNd)}Wl1m8 z6Z@2-u6aE(a(7-R2s~u^2sJy2ow(2n2o<#mc<5dUkMfnf5(O2IMHX?p5j? zk?l&%fn-J!eWp9hTVLDzr@(PpBIzkzI5YVV!LMJ=M6zZ^@Z8npfapAy50Bqs?Q3(A zqSxy3a@Kaa%eiQ-gJmR#Na*P%2HC)_c#2v9gklricqjpWSO7r>(I+^5+CNNwk$E$G zWnTJLZGAU|ZG}-2zQVm$UnqTu6&wMLU=!#V*&mc-4D^o4pJzrj$3CX`F@29kH&$F$ z7Tcg9@FqL^rsBZ8f7<+i{%?Dk?%&owpARY-(A5&yV>V$TX-9cb)MyCx7x*aia7C|*k%;87WZ%^b3C2K)hW z10bL!eN6#x(yh$_2makmW({jGa`KpKwzjcfFMlV<{o=z|4cF{v_^FW~uQDAjp$hj0 zo}|e|dvpNOletmL0NzFS-Lx1KT9b9dXuv*ifIS;2i)JYF2!z3Iy7^61j)p=2RI(S_ z)aK4CF5nYk!({}mNzB37(~kMt=cboMWp$_JybOvoZ(;$74Kw#k3sLR)i&H|1%Hkwn zVJ<=tC19yaa`5{(paBdesj8vx`MY6k938Q+LuO6!gw-;Ah1B8x&hM=mxNu zc=zQ-_K(X)FZ%Bz*0SKz&CY3FA1YZ35M=*QF+y|&Fs)o+)ctW968mk!%_bu7zc*f( z`sJ=zZ1xvMXVYdeuBLD3_$v%&+|TI!dSE!Z$idE8bPP%!6j*^}^<*l9>CNEPw}hK_d<~ z!52m}5d%}xX0WOCc*c|l?(w@D6M6$8tgPT;=M)+d;gxA;0KDPf_1)2*Ml%>j#}t*D zIDmTyYzQm6p1W`({Z3htkiUQ9UW@-!bFo6IR9qtzab)iTvcP4GZB5XE?j|@OtAtN9 zj?pS%H#pddKN_nVVxwT=316!>5SNgACs=E|YP>u%X8!OWxrj25S7Sea?~zHhDSt95 zYBPB6F|M)_d9=YmuOj1>YLlC&7cX81=Q@+wd>y|Hv`L^@cK5kF544-c>q{yjea6@D5dwGc`*KwXI69@2M!`UuVtvA0n_B#cit7q@+$XGHfv zRk&Tag0vzyIQZ48D?@)^nPQ#a+@BY+`;8g(oWD4y2c`j#xJus&dtqtWkt`X2ppKxI zYs?9w0>Q*UK!C7OQaKNcQ$?4V!!u z3_eSo@0jIwmc}Z0;hWDKFN19-oUPx5hW{8~fK9D9lgi{0FDB?yVCoLL<`^CIYYh~M zlRyJTY#0|)LQqNU+TyOAZD%434;IyFgm9)n`u-MZVYNT5|L^&9wEIs-R&(XI58(pj zs3PYRWG1Y++1G*?h;*>N0R#$IF_D*_YW%rb#M9R1&d%>ow8Tp*a33kV2Dw?X3~klQ z%;CfoSq`rB$e0GCC{A32RGkFpA6d|foIm7Rd8LSreM?Nn$z>?f{^e= z$3p!~*NIL1%Jli3_;Y^eo9Z!z2k45AZB#&$X9$8{pnml|&*(BC2ktK@HMm!HAI9sR zw9|wH7YXjEip+Wp|2*U3b(#%? z?3_SZy~)P%WhA5jY3Mbdpdftcq7ieG-Y9hH=iR|-RmLxSntWhYs%-GcSEPhSp*RMT zwm|m(mvZ4)9oU&1=Kc49Z($M20=}G4kOc(?=N`RO;4gT40b~C}Y3mNZ7nU;w`V|5- zL)U5PwhQV!LS0uMwzwz>ulF+I8)RnOZs;<8!;L8dWb7s89xf^ulrx!KwVz2|b(Yy0 zx3;xG0JtHDQxKS0#T=_AQIf7*w+h+Yj+cp=$zL%k<~9`}ep4K?)|0arz1@%RvbiYu zWf7e=oW{XBCE=jna&TdgcOTvFqemd$EuhOj?sZL7rhr0k1W_J)Uy9iuJTQXy5om3j zz$hYeFk-Pb?x$>Z1ly*g^@2L4!iTZa({DVR*C7%>X2`dvuTp`d!+wTZ_5q$zgz$@NsXJ33n`VW z_QQODl^6#TJ}EueL4&kme`7)s5}6Zmm1#t*J^YjJ&pzfFJ(D&VO1w?-XDC%-V_+b> z%~!-nF1s45V|ehuP_VpG_T}Img8Tb_QvSwrn~dLZ-#z@n;Qc09QzuwDl6MOp7S{xR zMh@K#&=BueF~{ki6xO=JR@DGX4&<0!B_nGz&##gKS{&KWN<;RJ`udM^e`{WVg5Xqu zM)0DqZ{b;n~1%#iQ_>hC=TpC z$nxa@2zfT+&-6(*Bli-!$D~(oQ?-LvT<aN)6F!8H;^iAMYK*)p`yeOtXi>x{jgzW~31wCWg zvw~u4f$vD+>asr!p>fvxFf^Dxwzt6;YF5vbiY$nQNJec|B$W$nM8A}lPEZ;(zv5i~ zXer4Q(Q_U_LY@h3UUC6*Egc)5>{l3+qc2U=1{7E{#@c`t zvHkj}-@bMKZn1fJxJA?<7Tw!r0N>7)6?epYn;S_uklS=>2YL@`WwkcQ{#)Un6E` zNRg{mVgx)m`2^t`a&mu%X|i?kDY;+3S=eg_i7xg)o(?_ZZJfydv*ozRa7xU@m<8;A zPn*Z)>rj*8Jv)nQ=Od(Sy7FMPC}7_^c68>Z1Y~HYh-E?t4YG3w5>irS4GnDf;$j}o z=+%qoH&3G zM4_#lfh^)akTvy#w14clEXHu+L6vO1{l4^5X_-vkt_E^Xea|v2@qRsh`^7~_r zX*}H)2@G#{s6NjNVf-pyqicPwU0}0cw^v4n|M)Q~PLnGNxqyM~?s~RNuzMEm@9+QZ zTW7=}*mEKQC(wd$m?%BV)fkOPJ6hH1^eC*82MVqPgvf!&69${^AI6Gsvx$p}idG#| z+Aa_PUT~X%;Ul;loY`eQdkmCv#IXW-xBjx#^d_uf+uGW~b8H15#2n+Z1Nf~%O;RGy zUgS1HS2&YO>@zzwd_oVh#UA{IGEvmHj5ey0J5i4dlv`}c{PJSc!6eiuIKd80G-1r_qvQOrQ- z%w1yt3j?ps9QaKWR5MUYPZ{!?%*f^cWSzZAwJzvfD*l9Vv0^=EH|EtUBe0HI-DI z*G(B1@R=$a-a4-^0&AzglwUt4ONZ0_)V5$5%X-GyMfQRH-xV-cI3e+ z;+*cd>Slq?;q&FiSf@{+$6IJQ`Hvmxn6!9XUsEc@g+G#AcNycCzrUwY1zp4PdlCDf zGnpWMQJ`+-&X^U)fJGE=#I5Y@Vfx-t#22M``1XpsTGe>&4+)>{UjO;AJ6CP3IKY1Y zZeUx1m5GF@D<$CW$U+`G+Y_Kz^g8~8_=N({w}Sa2#IdA+9V7@4G>c3=Xy(qxJB;i1 zq(f!OB(WOp(;`JST5P$jXKqFIHX&qV@=x3tJF?Hc zPE5S3hrKF{6jX$cvo^ATJ;wcILGP?T@qzUdGwzH50x=bxKb4L<=btC@{<-Cl=TG== zs};Dtzi$LuO!%6%cXozKENP*~nF9jjx4t=I!!gOEr-)b|7`F-_AUR)ij)r-kf}$BQ zmorXqX@Js)*a2ksS)HGBF~m){2ROLt41IJ~FLT%< znCK2aTsMfQ#^3KKc)m^o`si1nL5EQn#7YUH!*j(-ROo!~$u*bp$7W}6L9o&>u)7Wq zxQieTX(DdejddCRPJF5Sm&wIY2KITAv>sO<)RyB)XX5LBCt|7`u>xn#i#?(F;lzx_ zmPzHLJi>rUOteJ1+y}8^~If4fjtlWl8^%C&>AWwWs|Js>9(efdYC~POtZ)bv&NB0|Ca2m`px1i|(Z!#? zd?^IssOEt-Ec|Z>*v|s5e-`uupJ$i9HkTQ8ICXSSZXJdfQoH>GqufF`bl}ONbe9OB&t~e0c1Fj8h*9u0WkVaxfyur)K+X8s5KwG z-MmFDbm?wObv9el)7W#{_UYbAtz3hHeA?+*Ui2`kOp~3ule=xNn`DEg*CXP=3&&uh zH{tw;qOJ7_F%jGA^qnaDclI~*PJ)UwACaDXau&f-R8#~;x_3bV$I#Hw?)q3Pcvhxz zVg}Rb0AQHBsgx|N;t1D2(!`dXhFpwn^xUQdq^SY0^ChmCZ`G#S)=zK-2;Ck(?iB`Q zD;j&j+vFTNPnZfj^$#PlP7KGY>hu4ivvcv>glH(L*mABfZk9*ebFHzwge%_TyYY^f zuH#C3Zb2CgcIgUlDSQO|I6wh%K|)9(Eg*Ew&CMpZx6E^{jOl`5^a_XRT9AInM)LXDxBqW>r?r$>|Ej~a?%jD@> zwoy*rw?0~+fa2rZT~Ab##B3fn)-0}m(pTS|**?iCx|3&l{YIs4YyDFcWif?J4*@;< z1BXO9`rwg_nlw6k0tokd=vjfnuhRQfUl&$bC;e{Em8?wppzN@^^keu0Mws0JQP_#d zui7(5I3IV8e@S!iQn+VE*alTix4THMpOMc>8G$XwcQ8Ii0=*ZzKmz4g+ePngG2>R( z+Mrr#1p3Dl}M=C6eJeM2|9iPfe++IUAb~45eCzXI>vnSXFtJtM>)mQ z+O#k7GH|UP{9tL^MQ;xCsL>0jB%f>dYF~*5*+f#t>ApxG=+fC($_UW1-yu!n{7<7cjqY zg7(Yhj>d6rI5bEz+wDszj3?vSmT$4>RLFaZX6~+1o>*^Q7kL@t<_D88g56BY$210Y z5;yD(+>K}s3YB4i3-4jgxzJa%n!YK!{bjEdY1B>H5=p~>(s36CqI*UU@;;LoeX={? z#MfLL5BKw;7s|l+;ZV(3@+7z4m@0BU!+No2VTo^=neqrvlnL}^p-)z~*vcGNZGoP5 zo>G1D^$y?9*F%qB&O>65NrP#2T@TcWrI^-ct zkgW8!n7$jkSO^LR_dmnUUFX%9x0BQR_ki!y1xUj%UQ~WQZCrwVfSf@3C%|T|PvE_p z^kBx~an{k?n|g9c%Boi#D1V0@JVwj3gF$=?1OV|g<-XDb=oi3rr#?x;I47>^X(Y*~ zNc(UzJO26o^;dV|7M9ofj~g6;bMOkh41kb?h~^1sgg(T(bo(kc@&WfA zi%dqCVyKwafhm0dMau#Ki<6QJI>(t(20wR4GSEU>mM?~_M~Cd-FvQqV8eAQ9nU?i_ z(>$YDZr5#guepauSQ@sLGQnb^6kiT>;bmQ*s!nCnNP-Yhgl7zajN z4C~;QJ(7tsTykL0mF(3tXOokgi^zW!V#xbB?X9d{fS?FbRN#tKd#PnlmDSSrz_{k= zsMfB#8*Lp3xEuo)$LB-a74VBu5Md3whc>p+1a`0Z{lmk0-?%Z*us&KU8eU1SuK^JT^a2yWhC`2rG~W%NoU7Ll6I${iXS0AMpZ#_hJ& z)i+$Iey%G*KVYL`fR{&RbjRwXRdcK(f#N&-&UWHp_py(ZDe7!j)Sn!+UXMS{RTaS=VD0)U%%!cH@oBKbRfzR~dGFICf)g z(;G(Xq#drDY?Yu2$}5e=2Da;@QBAXt%d4uw0m4h?-nfZAPAGjVvr0ovL;sE>e>0ze zfB{fMH*@SV^SXIt&AatKiorbgVK5j9{>BtOCsBLPpe1?4pR!lu*fT(rh5h?y$Ww-~ z00WA9m<+@5yy26tV?d>5Jlnt5g2TzqS@Ih`6eyli-z`^t>gqizFArc(Jgl9ph7$?B z-zZ(_5R4|>GwoK}v2-w0D}u|w`FZ(dF+ARS}uc3o_lDEv~axh}bSYqil@ zV%>!nE`IK9$5D(m>&zf2VYU}@+77u>$X4T^9Y-E#&9Zq;8H5>3$^_H%fXR(aiI4fkpH7`z&{Y{6}M;*QGlP8 zr0ek;`COglIQ39hEfFwzln%KAdOrBt5I25+q-p{0wp)+f<5Su1ipTx{i+6_BkvC&rW!YN$C$WzcEYD!0as)C%M{;MpiiWk7_l$&=G?>4Vg5~uPSflko-9SZ-H%~xLxu3*(>P$*UN&;R~Nd=X<^kx5Rp4F zb6iKHc@Xc_lE=|i8}RLJbK1z^TCq{y1CuV#eQ|Xg(-UHELfR+bTntK01V>P?;|Ut6 zs@uuW>x+E)?i9tnMFsX}Gp*%G02@ftZ=lhIEmBo$@b2dAoVn+TQMq^5e@aRiOMwnp z#auVFl8*`=C0L(KD~6*ja+va3REzJLvrr3}@Xo3L7BfG){2?_pb$W7L5nNQ0xr_Td z%!hVvOn2lmz8{hJ0(+{&lN;HJ#pQ9`9&ev9kpLdG*G}@^hHps4c{v2R&`-%KH|uaw z^14JNaYt`un?C6qd@?mV1m{yk`r z+CVL;|MG)vb~%;p(xosWc9T0F30b8l>;Li$@cr+{1|Hs~Y233_t(SjFIFd&G5925lul93?M0Ac_X6$DA5 zk|pP?h=3#!5fK#>5fKqdlA{tNib&2`$wy_|c__w8@* zwbov{y^%j-=}Ac*-_7IMuM>l-N!G9@6s$|I~v;Iw*hyvJyXZ&WFZ3cSN^WRInLX4}pQSu$tKmNFIp{ zW*^5o%~{*n+yb;pkR>;DW@AdfX*Ff7sHUVN@$)}Nm`2t5zLU;A|7Xx6qbR<;l_|WtBXb%boJqA7!qBqSf8(*xd*LBZk zY*;4uke+`yhj2Am&L>2|uncLqlW^jQd|Pt=$2W5^a1qFfcG%mof(e0L3BQoge$f2I z;)jJt#kQIZs=_JB%6LZiFI&e(-}^XP+_XCCyVND6q%y$>z~YHQ{VPwFa?ytq=Q(C8 zIZ^6+R<G+V;mrzu_PR-b#qx;y>NlO#A32X4rlT7v-jJyWfZwY-_#8=e|L5W z0V0HmGBFfm@+ej~?WZf77vr(nM#B$cYby*`5CniBLOw8DV?4ab63{|*V60LD0LsbV z14%i_!nDo3P8Bhm{v5dPrmTPRkoe(X5|lRFN^Dw}nzOpQI(!jkPLI4i?|nn3!GTgv z{p{&c9nx<>)5t^L-8ak5wpaAU4&Q4zw=15>!2Nk}IIoG?N=AqEoue$z$@YexgM&B? z>@5$@e{BE|f0q7-n%W~e=NI3$MIa*$hgyz|jO_nuiNwJU%6j4NZFJMg8XCS|jh`b~ zWxj~J9GmR2V0A%pxcaE;bC95L@^M)jO(y`1)VF?;=dw0K!PPUG9!n?>^e~gL0FCC? zGA#DxFaO;JsFDOTAoyZAJlU-@;oZRyKf<48EPF|5>rnDZz+-^CZ~uIImaxk~(GvWx z+QQ(^uee}^+<*s|F*(Qzyy#n%uUjwRL*gI|2@5-; zps@LBXv~%Vr$ePLuWtmdaH1iXyG<->!}zMTNlxSZ)bNS;V!Sz;{W`6uST{syQzp<6 zsmVtB$Vcb;Q>k3Me<&sr>W*`}&daLBHvrWdaaIGBQczTTIiHJXR%{carI?eAz~(XO z1i7H^i;s7q2(9~A#{hh5;2)fUu`)m+JFu@T*M@P4eCY2<*^?u_iHFLw{Os2a*%5H#zBm&Zdv(fs`RlNf1>PId-H#y^8{^6~`BkerGfV2nMi`E zz@$zn;yxw%F2Ywr08ZLUFT@IwhhWwPVJJO3><2#V(4qGY20-!c;jy*fWq70ZGkW;B z-iQ{D)BK+H^*o&82qK)_ZJrF?FEAo30OWWNY82H!f+V5^Y#}b1N_m;wYW_ORX1_xWT5MVQ9ao;3Z5Mw zTJtccl57-Q(F$^^>&0til^!CK#vk^zMxMv+1@~&IwIgjz2COE z4Lo|-7v-2k+`fSRi2iM4`QgV*=pgv{`KI*N?jVyT>4dCg|Ld`8 zYHt;}$J%T2pEnZB*PdRuj|>%7no1!o!U& zu96C%BnaMrM$oFS%&F!klztcnyZS?jiuL#tVARPVC7`T{vCW^e02p}XUDxcNV+Zc9 zdZ=FBggA5vO$D|i2MUX7Jzs^)-ROVgT-q-O{vqRjYiuL2kW;rjS8i*bY0J*?b5^rw z{N$#|#<6z8G7TP$;F>-)Eqa$nF6!nP$wl!)Qx^cJh?xv4IUO^FW zR`RGv$HO(UNm-AnY0Q=%LRm5ROBVzdW2L2W$99QyJI!_}N}|~``%7y3fkuIweV;$p-CYQA=#Z=3e-CHX z@!uVKW^p8?2Hj=#j>nQLzU|k2@kzwYk{a_j$v_Je?#P(G z2VD$t-%kFf!HI3P@_XxZJBGVyexmv!0YthLZ_mqI zdPJ)n-!ZN?`tv!`{>S_0cDj#A2-jc5&Dv^jKj##A_22q=J|-IkOWWY4MIYgVss9Q zs?_ETI{>q?yfNGgD@`&BK&Vd2GX5Bu(8+c>zQ5s5Jr*tnWE2=htl%qAg%9*Ix%3HB z%}d;J3HtPVr%(PYzN2t^t7LYLZ}}I2;>@@M+D*&zM|UC-qDsEI>tufH?V7k_f;zUP zKX%wF%{5CqQYx-IXj~yvIDpEyB>Jrd(RmBO0MP+}h$=iTLI%SFC6c{*`!G~}y?~|q1_y;; zdh;ea(aNkhp5lxkWUc+>iQ&RVD(!=G|CYoj94`F({QRM{M(H*~CK403=WfU>!$zXZ z7tloLizf;@`Ia}!c1NFPO5ObSwek+sDVY}C8vx|TTL#H+z%q=`vW=K(#cjY^1B4Ip z0r1fj$0>a{G7>^eDEaUQmoW@OTbm87dxI3NJ}7{$Tzvv9gp^gx;r7lBb(3AfXM%WB zosABw*;N%4)sh2Ef{KzwyCHmRmwRDt3OAu{RcVH$8)golHz5Ry!;3F?Pt7;ce|xq3 zu;<0@S-!vWN7Mi#3kasv=5{U%L*)n_sI;x^1*U;o8!cT)9@l#9*qDB)Su_UaojtD^ z=h$>QAQWg`-R8R~cYYNKX87{QKK3a|13EdtNB7Zgj6mm&BDN@9DXPw-b6@D;>6A2$ z?P~T_1Au_m#lu5PQ;ZRfI;9KW=Rr_py01y2j6KF#LN(wz;Y86^Pib-?d&kVfKXX0qlCu*q9RFOiF5& zF6eh)T!>yLB@`x%usDITYo6ZC^S_6=BT)6NvikZ1?l!Mr&W8CXvfwD#UY7pU@8W=~9&|wtHiH|8jRicL@U;_W+P-Pi zrU%Tx3;$B8&+!iDEsjfU+;u+o_;~Zjx?w^}negs;n2cgygKuI+mNWIBi2s`t6|YE$ zFSSu8$T3b@_R23#>Z3;9V6O16QO+2qJul5RIuXCgm-q8F_yRYl8tnq}vat&?m7K+) zcyJr#FDDWx3uPU!2%M|;Dm@WOq z&CsO+#Z!b_PBif7!Tn?YW{*`X(1|_Y zfH2M}8Sf5WlJ2@OVmVOd9GU03q-S7o2K2hZxpR6T<_YT9-=E6#&K<&L%sh97PDv?C zHxFl51|1o}; z``4x=tybz!b0YyQ)I9@}d}!@^Z~y8)?yiXa($w0Ybw#ZZMy(O_9BY95slmql*uh^r zT)!BrpK!`GiM;iWDZE+tV{-JH17S;z)cXJj!j3=R^&QNcAc%Xvt%X`!bC@Ob=M(C$ zdB0XnZ^`3^Hd4FZ^NOY{IdUBs+xriP$iUl^dGx&Ka~i*{J?%48E(l+MnMRkz8caru z{&a{!HbzANmOTI$iMc9ByTKs;MVAdsBQ2*lN3FF@;V>f%u6#FMPq&+XwaSfK(qHJg zL{tWgD+wPz61GzLtBc&1E?s&dW_fSZHoD)Q*~-r%A}(LObTTa~XVn1y)4I#^lLhA6 z|45RTOcu3GQE6E0;WpqSX+}EJ;&-<8%z~KF%RjEfZ=d~el)I}kOKmz*$fNvIQsE0Q z_zHndg!r_OUF)m)?{k{1)P#(2l6_&jC!MC;Ct)&KBfU%G&5{0LPoFkODF2rVbO-HN zXUe+6zuc~%v$D3fbYDG&pHJ4+$4HX3>U-rx{?MN94rM_?dj;5IONg|tJl(@@H*yW2 z+S;g4dxj->fV}5rKejS9N=lR7-;5q@WmFy|quTEdh=#6g%LV>?Dn4!ifR;kQmcqQV zlzrzevvo+ypEWanxy1Qmjm?9CXTwb6lXne^$-B@0S=8B(=S#%GT>ob|`=0>r@b0B}G`Cb& z?ZWnzW7f|0OiuZ-5CtL+WK4LMRgwjQfrvT>RK$<8mfSz;76@&|4@}@d+v_Cz%Q!f} z$VM)xqZtf3V*hs^9`l-;qVeDrGPy^FCph*&JQmxKQ`Wpa+OWfQL;ck~FBZ(6nN^Py zB;#~p5bCegp_NaC*RIC!?wUvMG+H{NN?I`9zNfbrne2_xpIOyYOc4^goo~r;Ftp`5 zr&l{dmcWm+C&epGIdfQ<9Av4u=D|D^TBH}N`T|t8`1aw?amEOuz z5^+`-x?0<40P z+##Qz-sAoc_UV2mw?tr|O}#oKe#0M8$LDtbUy(QZ^mc-~?GAq$8ndk@&QxprCwr$m ztdvjZgAvph{-k3t9BVv z+w-NkzosW(xrQowTRDNbo77fwLp4$LJu-ipkG|CSJs#{V^WbNWH({CX?!Kl`b4mMC zh1FB$xYZhi5bi3f21!NqZ0Hql&71Gp2JPo`BWAENVAR*xdRL02t}lDd_QglwegPkY zV*EbyHS%$=1sl2;VA%r4d3iTCX_0`IAAizj;L<_g7~~>v)yLN6qI1$n|CCz`&*S}e z!zrn#8_JM{e~0-D=q_Sn6c{2h0+y6hw+FH0KapTwhcOUOWT+cHn6?kO>ccY-=oQk> zfp2OnTV5o0>MEjJ_;p0d%XB673o#$3(veG1x;fnlkWzEmXe$YsQ~Xqph=|BF4Gop~L$tQ) z`yL)Qt};GW-`5dz;z(%EfIh=+9zH&z+(+%ZFSwkj(lc`HJw=y15S9ss46X*r$#&Q>s!7DOv} zfwySMfum2?qoyw1gM!16MkW{$u}f(HOL`W@<>Y5uF7?`Qp+oLtxjldiSZ z72pg}=AUNodqp4gq?Ze3Ned&y9ypF+Y5D{3lY9_c0uA-rD_9gG@h2vdK%9Rrrl_+s zQcc@&6M7EZ|7fDoy4Q%G zA1R1gbdgZ-L<2NER(&K`fkD!NA9D};OOiqXIKOQ$I0v=^qH*xuNf3lEL|{}UeASEK zEO<9$j^P$9(b+M!REy{41tEp>I2)J1$QeLf?^VNYnsx5Rj{XLO3hgUG%xW0eg;DGT zX951|vz1x#w(*zyAsfUFf6dERRQZn9PEjIxoSX(YqRB5h5rKt-)AE;;;4S!RqpL+Q zn2AR(T|(QI8cB!BeD)8IagIbZyy{-=Dxn4bH#s+Vke~k%OrEpkd2VsEDN&;XhN3VfUj;<~!pSWIgDD)6 zpj5u=YF@s2wkgQ`v5k=g0zp5-aWi9KuU=K-KVZ3R6CeP4YNC}C*p;!mdfmf4+|MM` z)bi_L0A#1Q{QlEXPN~(Sh?9pD6Mjpr@KcYyM5NHKSsFvx$N#tD0&t&2S8O`dm!=P` zJt+wA3!k0|qDdoYK^BbC#WJ1t$_06T#Q;Q&JI9_MY4219tgpj`@l6TLpUD6eOv1k>dR@p)=LX`#TM@>yxo#TX&Uh$8b#}}V#c&b)>y?)TaVQMqume&A! z^tyleyQL`K)W6AafVc8OSJ}fcxZ6N*!lv!Ea2sC4ge5EX=11*ZCLH(_JUJg)my9%c z!rWd}k6w;v1RjZwq=Xs9)oSEb0wN-?!AehTerT+ z%3?x!W7u+IBhF`Zi0wkF!h%r}nqe&={bEvorCd>6{SLdnE!&<32XT&5o+nE2Bj^62 z+4IcL{?VxVzbkW{jo1Hn%^47z4OqpZ33x@&kCV(<8}Q+fCyS*G$e|D7C!{3Db7x<6 zb7}Bg=VH8RWcDB|jGh?r*dH@_P0VRSR@a}=Iujt9&pwo^K;?|EF8qi8@qkw6NiNX= zLR&cc?A%o}`|jJ9Cb9vk95dmOj%3X`n@cQhUC|b9Uj%94&>-d;SisWEm2RAv>W!Wl zqk3lw)(7tDgV{dfsrMnp1Ek{GOpe^{R3up{bMkJ?q6I3HWc`4=LG>vHboSJ}+wQe# zQ|gdV$RLHge~;zME?m_oR?VUrP}Mu13ma8}l))gU#?Em-T&b(>qwS8@p3JPSO%5KV z%J%Td@O=0nb38mQ{9R^fc5J`FQk(%z4+;%S^s8d+>a=ax z)4o~y7lk#HJWOv1v2vlOqmePo9ai7KY+q=WZaL6(oH}9c{_=|pY;N;6KzLt%>vaY~ z8TD*C9;vm=$5}iN`Lylhs^$1L1&4(aqgc_P$2~KXNqe{}!DaV^s`gd~ZkkOw930hW zh$*;z@9b-&=00P6u{n;q$$J zjwZoacYwTS;JDG`sj=&Mb-E6@(o+BZ_w1UoB38H z;c+kLsEdi{*H)Qlb(HQsnj?00M_EqES~#D~Ui0J)s_6||qwdEM6$N7hhJX@|nqBC@ zZ8s~euM6_;6BFdpDK-ls1u%>v8Ni_?Nb~kcg`lhEbrbPslt=N zO5qvYm+`W1P#@P?6sv#8(lVGBopj+Df8ped^bRL(sE+gz(HQ)>@G>6Fs86kR^9^S5 zW5rhj&+zQ)pXZITNJ?$z_WKgcA5lesrFc<%)3}(R;LhmpUM-5wp-vt8ew4?|N6)qe znm56;9J+v`wjb9mZxqh%o_Oe^5c31)ED;%Ch=sX!d!?jaYNQ!k;*tJ&dR#Uq&6J0!PgT z(@Ad+j_jAZ!LF~SylgDGf2jy_l}5WX+o*@W{8q+|XOUt$Yhxn}c-VF%G9=_HT7DjU zFAg}dYc{1nK2|)*S^Slot)av%!5NKqzvlXo)XUDk3#)f}?0Eaa4dlu4-7mf0JE!M6 z_$rvCly8mo!7-T#x)tr$SM${b)VCUVT%WRT%3frB6P90?rTjoIWdQQsV(!G8d-cZf z+jT266jVv?cYV>4{v5Yqt2-sH*)MaMdm`j(G@iBJdMvju08DY{4G?{}{3-TAco9MX z{D-c0kMEl~aH-R4Ph3r34}PRKe4?i+g=%&%Gy4_lMnQQ=*zk9Cb?vO-K6sEaq?k22 zZiF$A*UT&BVM(G4R+5oY!LZV=N@k zj<(Y9Q^R8P>7L6ksH}uSd|MZI{%l!NkYYR)a6LS6%+8N3FKx(K9!{F`KI|~xP-OV!Q8-J@ z_h(my#};oTHQLoY6#ZWFJxV>1-cZ6&FZd1@y{JaJ1Y1OchZJ{b(JjHrD$&l1`EIVL zQlScbtzqFj#+0_v#Em-q@T3>dfn`tDeFD2@#iT8Jc0d3;zqHno-*ihb$*7Kt@E8Ha zdQogwv*DMno`HaNv;Cq%o4_=phmF8m`37a^Nkff^HNbYii`i3+dpw8xkIN^@YTFAXNztoYnBU)@r8zPy~JqkUrR=d8O`osQ(m2Yh? zIx{tIk)^{v3bZba!FUL+R!C@Tc=@wU{u?-o~zQ~Aq} z&s`{6^V|Y`#DkI@Ovz_g`Mr)@{qWi5kBW<{t7F$)N<*~x`koQlIav$>Kwqz_W*;9n zt4H?gBPsCoarBAH7v7O304P3gr5vzlLDbps)GG>rIYY6s7N)cGi=MSIB^W-4A>Fpu&>0k`p+vBy9DX9(>2{u zMd(s9mbo@}1JB!rc;p0q`ZEjV?42W?NC{+!r~ut2PY?$T&J0xrOz&KX*>4sK>=3cXIUsv)fb^(XQu{Sda>uXj%ak5Z zdM{--sTS+<>)G)*bJ|vzZ_C{zlI2Og|D6iwX902g$3E?O9?$B{cV*6Va)jkjc~m{u z8Au|Hcnf}s{4*QVVNsqWv)DUwUl)XXh!YaHnbEYv*!ViYY|&?fl$MbO(zukhgh zk^JR_q*jysk6m^S{_M`x<0oz&elX(HQ%28%RQF@S*IfDmxpohrIYi7LL2%g9}Pjelw!~8SyEnw7n|;u>vMN?Dc3dU_9(WswE@Ih zj?6PtGbTaCe41+~=ZUl)ku!5o$489THTz z2{%y$XAs{O=vk@M7lMxGEr0-<;fC#gF@1^l+K*AKqBW72MTNFPc=lQ#^{9h%zto?D zmNrvd5n3IzA6nd6W6ERhtfam7?nTqp0k^nVz0a+8gbjaq`1ou_BeKyCeTK2C8~psI zK5B%K-Dve)=w=NxefHsZz?t z%ARXmqS)$+&mKY(s)R9=2yK`cH7RGN+(92{Zfe1y`(Dpc>R$5 zA#F7UgXgo$^v>?j?&*vUyyYCZU0O7lIW@lRA$yIP!C?9tvi`xzB9N$-d>kKT%0!7f6CVzqJaGXdH_89L^a?q&*Qy!J=Utl zs^rEK6h>ms->txV2qzg3CB*2j6ayMG=hM>2Eb~Jf$78#OvwyN|f6!;NaH0Db0OM@{ zO)e9Kl*InvbJ48v-d>PNu2Cm3ylmpQ8{N$ zeldS#VrS_ubDbvnD6{q~kGmPHojWpbVfJNiA1VX4)tbE|jm|mwI3aJ(7AmrW+;g^? zZ8=0l(b1>czhAssU_ftZOGAy5NA&f9oeT_R!-@3cw(v?(fQ39Ur>{(mzM_^#$I7%- zP4j}(2>_G?rFQB8)#2nC#99nMiHzn;%+8ibZ?|Kf8muYRPYJzdu8x~Q^k829vU}BD zH-*lE*GyumAy0Y8*U%|I{Z#yFA~wTU_thzOrenr$E!5UijdHn|=Y`C$!K_o3QN(@U zvUzhsaq*`3`f}(J=P~Sw=x`$3|DbIxraKO+TV1$6HJOSaXDkPUi~+%%hYu42bu8h# zLQEY*kp5KH?CVpOwgYdAv=EjQw{SuclcP*Ka>65J*uH5+)9q^dJ-4IbdE}|S$4M-m zX-`lr5N-Yhnn_CjsT8^(ss6`{%shbU*n5?j>EcpeZ#4Uv=S)(-EAhrCrR(p%P4vHv z8cGE&&z}65Xu7z3gZIG7xzTsIarJKvd`m6o;>aeh^Ba}kvb#M_Grlu>#l%>2+_N}g z>*0g;)&pHNq>T@3xKdl|VjB8~)c24~PO!1A&F-Vsk(77&wX-MsX;(k{{X$)v`?>Iz zxCO8Rem2qHZrY+6CAK)GeZv6~f1#`4x_J!X#o`huVj=?Vw)2{G%-0)Tm|Zvk)2nJI zKGiW%XB*v7i=#)?=(5|Z;Uhu}ut5MpR{G|I_tNACy2|2TA>YQX$ri1q-B&g&c1;}T zkeb{v8SM8AKm2xD%MKz?(Jlyu9_e!Z{o4DXl)gv=oH_K7+hC&4y}rI%Fg#X&F2<;D1mhMLA?`Hk618M4`5X+~1y_a;;d$l5D|uOBy+ zo#(xK^R1n$C4PK)KKc1;k*^GpioAz!Q(P-TL)H9buchVGo8C_8x7~MWZU|p5FdM9V zZEN~!=>P#CHycFur_@Mu&xoPSfx?;Sw1xZNkVD(^$N;3%@-NwoM~2Q0FL8Z#9NWdx zDiV3DZtV4Nug(tkOdm8cA6}m-LK|%LdYodl1U<&IL)tkGNo68yfW zO8$mG_~Lx1GA(VKB#zKXm%m$Z>#;eGA6UWEM_YDln~Jc$TQB-wIgi~ydp#ACu#a*5 z2U;ekhs~y3d`pt~%k~Tnopi=a(FoyO`t_%A9MwpvIn}h~YYf7@v=UZ+hV>uzFb)P< z8jsH%C_S_DVgeI|=iPg47Xt4rJxskUpqoxF<JoM+&3*a~38+ z?mzpJGN+l-!|$4ppp3J!snA4n9C|IN-R$OCP#x)g>l=2XEzV@b2zo$naB;JQOdF+8 zxTNFX+g{o3TtY%2Q0Z);qHvNWqr6EYsz-1oPh zBtZ%A_e0H@^)R(@_r!5XkU}0kB54ls%x5E$Ipf~G_OjXeEY57QraV{YO{y?Y73J_O zEVvmYRf3VhzKA=MJ;g3-D|5@RvLSkuP#;?^Rx-Mnh!iF&S^wSkQTE1oNAZmS@%ajO zg+<$42XCq-3{KQ*CWxqggsFtMsc7XH`POkJ_B9Ogd6w=)2Sbz**!n$_5BUJp+3@)Y2A( zhn5dHs{cXWntLl!`KXF_+TO4Pod6D;u^+C`yw)DRJE9}8#{+KEq%I)o&kk#96RlP7 z-YC37ak=-Y8E4?+M1tIuG#~i{I<>;Y22hLZcjP!a%-6pguVBtJUpC8bWjZYg+_ z9;AXBuA)44<7?$op;@V+)$6l!mq>w++FDz)HER^t@9~kubMy2;2 z&$PJXBBn8tE+%LkyTEnXw=_;Yg^Pqm;lB6+)9DIV^M#__LLwuvbV`lWRzvG7wu(fI zzLVrT+|0hl+&G?VmDD;Ky69w%<%+r995`JY5?U=VC+%MA_UNxZaSn@n+!UTU3xxij zm}JqM6HqtWVj8h#8hq2i(OGC_WzKOVsr1N*?ex@CZ(Qsv4oOKCU{Z^t-l*}p|0dU1 zTh(lR+-sj~rE-v|V|K^kgLc7ARy15G;gyva+HyYBCa=Z+y3@>_5>J1)G};FM&SSR# z-5KY0#vNbC{bKn@fZCGgLw5|NGs}k}V7W>M_hvt}5|}xlyBFb4MsfU1xvwD+EdgzE zkG#OlKhpc=w`an8jaR<7;?IhW&z?Vj6AJrhm2^%)>YnBa@8rHXFHqJ_>BL`K)xWO9 zKJR;+a|IWBSG4k%%Hed9~a_ zR9gBK>L;<);0<0v)(6oqfS$OA0r`;0O*s2p-w76!1m^a$MnVh)(%^0L%L`MSW+piN z5&ctBQ!Av|4T3{MoUP+vN))7@C5L$V{}S@8ZFlRoxa#*ACL{vK=Zu<-c#gm<}3)6EJ%eY&z6BOZr^ zQZp2gHf7SgOH_{=Kd>uByvF7{t zeFqN?I)&|PJRvV%GQ)e~Q&L--W~nH1|3GL+NUuZWQ9#hIRVZ>Uy2y7U+Z2ba3OsPJ zUefO7r;(8~yJ!FKRI!t5MO3Nk6UC}%J|HLZA8zwYF}%VJi+NjEI>bUSvvX>yMn*#V z=to0jz%F90$N#A(fpU;hQS2v9JLDB|o zVBli91$_av-Fvp5;n$rd&&)2IKFa2{QDn&9UiK78(#0fY&f7jIBV)Ho@Rbf^aT{fS z)>aXKR$MQZ^&!F4AWWR6kd^gRx-G3X^B|qvV&5M%QjeY6w%uQ{=Lcoh&epx-^!~b@ zadWs|jiGYz^z>9m(r}Ss`jxcnb8+i|&$@*h@O`A>PQe}xrmL=8%0{aU49o$y(?!M* z2a~+oc+sn{mzz8OTG_}5Rv|EB_r;d7s_3Ywg30gskPJUi*}$8*fOvgVn2CFaQVSq% zAF4P9O5tx6GVgy`0+QXpWYaf&H&V=Y=*j-+)@*w|R9ZZe57I?p<1h#fSxHq@g62?b zo~s0Xb!4oWpIc1z$xVh0OPhcvctiB|7#&e4YTs9Nsgz!CbA1m4&{Be)&M~LXlO2&^ z(!7k6nm4x{Sd)L-M`6rQ#DI;==_7CTBHe3SA5} zEFLQjlO9P^pDK6Zy?&xQpV6O-UN7BU(WQ@r7IjCZ+T^AV{#Ha7@l5+;&?&>sLXL_}bMa_P zMFP!MdS~wQ+N#H!M$x!|mYIszr@S+sIqj_Z5aa!Mu!d!07Z}VzjG!(x{PLvbP0!Bg zO#X?ZhYrni$6Cs*uL@R)5{zoUCXpa|^@I0Cpi0g3JI{*eZSz3F2ytJV-cpOH2>ezy zfEWr1w2=PebF+1oT_#FtD$mAMj}1}OSAB(=1e}3HZf5og?=|pltGyg?sP~mv)NRax z=TYHR_UKgkzkpM&9i_vj6$9n&o8kxWNwR`FC?o4_fyY^Ar}{JigapVE$Qx9BSfH;B z6vp4=pNwJ_dlPeKna%{Vytb?B05ixyuf|uJfyA#QF(QAjUUjrT%L2bvmd(Dsd%GSE zXA5texl(!Lqhs^4qntHg0)vi>?00FslTM3@5VxmktylQC|1*uA`6s>EV%82)kd(w? zV-gq%YR%wq79G7#ZBlksd1licuR-;bHLZX3g_#!6q5r2gnlgk-k%Not!8U`S4PM(m zNiU70fEmpCmbV0+YXEs>(a6yE1gSN-m-=(MR+b0F%_va@*Tm&^rt~DtHf{Y|R&~K{ zq!H^J2-X?2q;fAWuO~on|7MCa6@-#!w~x)AGfmO2dT1)dKn1-T$wSVMZcnQyAT*Q# zWEQ2Y_E#)oI5>K!N&;EW!&>%Cdgbj3wVFp^p#x3&RTW&vT_kHOIt$v{U%Iah>kwvF zYBe9)7Ji8Woj%WG>vkXbRdKOjIIer~gK@l8wg~t-KJ~$x&%LdKg=Tyr14YfzBN|K; zL|I;ib0rAddddAo$?KUlo-fLPVLvY2;%^!yw9UX_f!9(Le7c<&I?qD#7On2n8#)U- z^_;G5*VUJe{aL#U#+y^Tp>6n#P9RJq6|?Nw2zt%Rw|fj`DhsgWwwU^BAlpO@`zi(9 zXx=N^%+46jU1}3`6TKUd^~jR^WnOI~S5V z+?ZNGVNk}f>I7G!duiXkyEsgDftZSjV1|!1&zCjKrc}?eISg1n7D`C4d>j3WPr^18 z5A+R$v?!x7nmNG4)fk(U{DXGxam>(-f}15v$Hd_?qV9LyEhIn?9G<)cG6F*OYD~@| zlo-fZkq_RSoZy*xmTt2m;VtS?4jrq*Y%|g3ShuHfu8@-bGuj8J6CzKPWQskXa}57r zd;M{w>)l=1UkU8citim^%4L?nVn@QFCbWbgwQf4Ov=e_n_!cWfo+lpDSXU61h%BTtJ|C399At5oMiV<6rMB)#t{} zckUkI*JH{{GvoQvUR)Jnrd(|>$-OTl>lwyC+xwnKT1Uhc9OH$_5AK# zV^=fZZRC(0OaO48rK2ms2gFdk6Tzc^G;^kZp6}O2T`!i1^FJBpJZLd3AnuN{jS$Jq z%#4af#2-S15TM_{k0^-x<2GB3M3hB#yV+po;H#Uk`&7%>d=9Z~VPPy=>(}sNi1{Rog-`@aZ$l@5P=uiW2+xi>SXZTJ;QjlngCh`2M3>)lOwLR>iIFE-xmBx@t7AX$OE9NKY!*Y zY;ghk$lkydps_4Jn4xz}tPI}~A<*TFrC$YoJ*orOXgW1WZ{I!5^?3R3@`w{A$17L8vat%HA)kWmup6x`SOw_w=!2r7|Jvv{tUR}aFYH(NHlk7*^RneU zvg0f9s-qwDRsGiQ-twNU4p>-bBw}J6KJm9v&9cX8=H0(K>aT1uJ-w#(MFo@-Lx7h~ z*5qHBp4s5YpUCg~2Kxoj#5=6Hpc96tsiah`(@~?JG6}BcN8IIu@GDkuaykyHNZ6?F zVq;UfXu&_8Go_T-$h_xjlSz{<|IV~qED$hUGX>DMYgzCnL(?cu71=ux>&H&t^GoX- z82Nit*2F1G3O`&*28$9_cLZB{Kx*x6nA# zo1EY^c{ejas8||(YJA(1JVrbH2eKQVTS-sylL)m(;~@Py3VGOX1E#bEGk@F0mm`Z! z%<7(4m!lkaGk}ZU_}J(sSsNQ0uSUCLAlZyykqED>?r*-k9IkFFNimi}a4Lx~&pQh+ zPTZnPHoO#UUN=0{zL`!&jaNh%HVki)Tp5BEL9%{#N4NcgZP}U6<@; zKR#EOi=|UZtlA3-m%!maHb?^8DTJO#XH~)>Vz#;`KV;Ecysx8co3g z&@}-%x*ez(*t$jb>x1oyaz<*m(1`Iu!alG>>s8cn?-WZnuWabhzP6d57|{HcK)otP zBD2xjNV=y%b7bW^6~#~*+vWnGljVaOJrKDsrRXd6?59t1?PdV?H`7WJJNhX75C5_& zFtHn8dr0&7YfCaSoqN`=$mHBQzqnl=Qx8ZZ+LK&Oqnv@_u3ZPK*;-Ftyto5lHt%V_ z)|Z?dNic&x-$%|Z-4Km(J47PwescEoi7Vsx3NM=a7wW$4?R-Z@kVZH7`d#3lO7_`d z{^`PtPx&)P^V;(A!lFSS!7qhMM@NTxd3v9pHnl!cOe9RL6@EyUNO3x64|sAC-MD|j z`#fo#`e$sQCN+`&bBI1Oc;)y2?$#C@PK?(FgWf=v6Fjv0=h95!vv(-Y`Ws$3#l(&pyWWa>hL3hrsBNcw4MiX>^Up79$5I%zm3+!x_C7{BH3uGHjiU; zqURmEsvt$HSngXSS5M5hU_(AWta<0p)~#Df{3~bqZWPp-HyNir&B#R+d{iUV$JONB z#cXwRss}xjQ9BRcGHFpAeJ+6!lCzq(wLT9?$f!R0aow_r(XC_mufuP z=7CX6HIh>oyk3T_NB6RT)Bh~j>YAD$7?SFY3w|nFTj^X&!kmXUUrTQaKQnAu+60h` zwDoUt6Y@UlWl2`>d)lru^@2g*T8ryQ(D6)HUCU-mafmMo8u%}D5_w~E=DayvE;5+h>2Kj!=e=eWw7 z;TO1wUS)~#oUd4u&=*>nrnKGxy&Qnl;TaO*tJ6j}EAgw1pODn~D0l%(+X0u3yl6#+p^Lkp!j)fJ3YL>OY%HjD7txT2;YX`3IuZu-1e1 z_bOA2?u+@bo}K-3dOe8s_=id){`cG2e@PM|e9&5|tRJ`QfA93^7f*`OBkK%kHZ1{g;uOZw=mWTFT@LvD?QrhSCg_TRf}TFT z%8|R2R|r857OZ;mt?x6uF`CVzb|f#CP@gJ&>*Wqbt~%RK@}D@h#zTYf76jTgRXW^m zC_H4ZjlTyOEbNrdA8ps)5}&0wD^Pmt__ydWAZ?oD)=SQGQ9DDk)8(+w{ zvw0x2wzan>TFY^$Tq4c|Ma50f+*05MX%9YJU&KUs`R`YViXX*)iIMMIr zs3rtI$g41`r?}9Q5*)(U(o#aDTnDuf#NSrxrNqrawu`pw09@G^D!?q;;RoMuWl-=!cH@tx2L02gM2r7z|b9^m98W}1L1Bq|={huPEy2RUxn z&Tv~z{aDc?Lc{_>MDSLaBNhWpjQ(acFBJ z46`qXB9=-MqNnq_FQ@G zqq#*ZpCi<7Y>-%8qS9D{D*HhGZ`_^NZEbJQm(0V-xyb|cZD^M6c~p92J^=v<1xMui z5`WHct7QIjYpr@OV}17XVxI!(q49tUBeM95PKE{9{EDK^S>9aVN=$zSVde z9ieQmA%gP@Zv@-JqJT#5^MU}s)M8E+bn(7BOT(-5NoP9q9xq!y4XS;=cGb7-5Po3W z@;`UQl6PQO%fqMb*(>)|M}S2SrKI5tgc|pulv#Rf_;K4KxbejKLa*aO>sffQC&|?X zvo5m=qwbBn2fUE*#*9&jgJK(BjC@?$do+iH+y@-^Qb| z%Wike_1i%^Xbol*{M)A8)m?|<&vat-o?mVmfZfEFZQHmlBcr1BzPk{9FCyal!tSFS z{r^)Gh-J&+u&N)ia}M8@96Bqm0%#MX7O3F~cN_jf@OnT{JDI4Ri;gRA)mFO9yTm2@ z_jz6jd;Z^#@i@x=Db)SH1lRw=nEe0cWh%UAH1IFhE7VKE*q82Mt!mpFDa}Y_bkV$* z109adXv-eZ1Es@{BO;u0&;KKqjPPHNyx7B(+3iYhZh5_f76T08)VYg z&x^M`h7`no)C|R{K1#O@VaQez2>a#IBE7IxbgKYV29g4FFA$57KvcShh8_k5(IAx` z7WPyAij-><&bPHT5iz1%4ox|b2+h}70uB}oIjC&6yaId< z48Q}(AO+`!+cJgl5;?ZkG!uFp(VK_~sqj1ZhHyPBBj4Mb5*U{-=0H^r!q|`#L;VO^ z@RtBF$_nEbGP1M796!o9!D)b)B?L+5_rm)6ndG_k;u3nM=j&6F8(*}W#X`R0&NQYS z2wBckrm>UVAKQ>8hoE{;DRlvXU=(E6M6A(UaLa zirF8XlTElj{I}fdvgNFqo*oC>PDoLhV1g6uad7b6D*dneDFiNuWEp!T8sPqI={1;J z5;8`jTKV(m4-{_1%owz~V8d?c!iNU*`RUuruAMs_@Oj84FmDhL;0utZXo^0=1NQ`| z9$7u`;F1k%-*CGZt}lSo<-w{ekZ%QBfhIh^oO!@~Bt9FuMFhBux3U3@1H(aM?j&(y zJ0A5bE<#@&#Jo0=PGS*-ug73h90G5&TElN}Ead&z}C2iNrxqFq}ll-mkKnKoLf$@>}u|Iyslwlo<=;YE=mSuUr!@Yz5@BF#xE zBuXpONV1ZlVxn1@PQ`3uLswwYGSLsovKBT=P^XQ=W+5WOIo~jqw%$y|VCr~(sh2aG?ZL-;OhdPW8jI%EO+6OxK87(Q2V zTtZCOrOtXB9<*5v0K=0Lvh3&qB5PS}`GF>t>7}Jgola+|1`>l%0htU;0>^-KMO9bl zda_KLDO=;7|ABBq#|KGP1qWOT{@Hg3r-RRPqhMomQ;g_1dVRoKZ8UZ_;ge+-mJ}Cn zH{^HtPC16&6MMoEjkXB|0{iPBW|Jgw-VyGW!qyC;BAEvQzyfDmYDc~gfwzH!kxB|E zesZ$^WV__Ol0j3ZXpspiXA|fs^sQ8Uq!vPM&F~qRhxQDS78Z-c;>qUNxY(gN8PdEp zCo*x*iB-qw&re_sdT8S5eK7Zm=D7#VuZc3Jg0jQ+69zhUI}=sCF=bK%z>A}07Xjy& zM_16k=X4ws&(0&)?_b|QA!XEGhw2Sv{6Mr3NE1?0l$He;=}Uoj2Lbr`$NcYb!*aBs zJbTD^#L(G_ss=j63OR$&0ck{PuyXG{KP+I0%VmtRV+vZ@ay#_;j^q310l>y6y91Gt zlWd38Y6X?_By=b#3ubj)cpw&i*4gzoXBXfJBAtVQtTif?t@JC%zu-i}y%2f8QV^|z zTL0X;Cx(ud)0H^(U`WFzlb}e4LIyB;x9JLgnZa!4%X_EY%lrHKs#ei0HwdZ|hJ_e% z!>@$;Ngy4Dmh}R&o?@YIX6J7I)XNJ#7#)P5W5!9QdlTV0yf@GZ5bSc^a6$J)wb_6j zPMV1;$#<93+0{ZYdAqW3W3l2I+|vu~27^nFoS+}?kqV43pIa-Ug9ROFRJC;JV>uR) zlV?kOhF#fUNs-V1 literal 486034 zcmd43byyWz*FCxc1(i||5D-w1kPhiGX+gTXySqW8K|s1x1e6qzZjmk#>F#cjhTq)p zIlkZTyU+diKF{5c9F7R=wbxp6&N0Ura|geY7RA0nasz=tV2g`AmqQ?~x*!l}y4TR* zE1IbNTJQ;7Pg3+be1^yIvubbnblpZw)gFN$3q*dPL@w+YA`tfw;?JKbxTLI4ID04< zj<)Pfy_4d5@cQx7Yt*lC2I{eD7PAPVdEsFb5VnHFk4R)TFvm8sjOXExP3B-j0_QL4d{VUJ^=V8U)63zVh zfBs$&iK=z$?;~pL-T#08R{06@t>2%`iO!J{W65vmfla;>R;|s=na|hWs!LAVqv)_F zvXUGe-amdREsZ0RA=?{p`)y2&fB(vrpY9>I-}jQp-SHfJ`*FFXrF&sgsr#7j_Jl4l8(8R#q-9 zF7F&3+F^=IN&T3y(P6!_pGJ9gzBc>l_&65%^&++WPnnr0)0>+GhqoWzV`IA&+U%E| zZ7d$YE4(Fqd5oK@T*$n_{`~noOGO6iq>S+SyMwhM?Sqqx^V5-fZ($CjE}h-^_IC`* z1wYT5nwnf!GUIJ{?j9GC33((m1>%-?9NSHL9%^c6YF;{}qWgbPiLkHTts_^C=4{Jv zU2%v`O~v-f&CN~2eb}H^v|RZ%SA{X|%tyKRjmE<*!56&&XKCF=X#1+q3bJ}hxFbhA zM4PWrQeNV3ex4e?xVQ)-;S52?CYj#aiVO|KbgE9>Tk73AUP`w=JF?YsTcOU9NsnmM zq5EoWW=22P8reEy!)i1A7=Ge)ZZ3nZt!>R-4}Xe)YqWR_4V%~55ndJFKSzf=z5a1o zvQ-MV<@;{?%THdtx=9#%)xXha#3D-~mR>4_=T=6a*wd$|va+(u8`Taga_dg~mSbfL zQKICH-QC#!jgKEcMr_p{lGDTl!`E$Rz6an{u>a3*$Dfczv6h8x`Jz%p`PeJHPe3|5 zra6=djn(Am``kYV+uQHm4>u7Oqu*B0mFX$}KB6U2whTu`Mvgh0{r&whEhHr*zMGYz z&IdNs57oHZBb?TUZP9XX|Mz*0yU7Op%UR)fS5)w1y-a>HVP)LlgQA>2?7lPm0?`r2 z6xwb;zt7|A>x+PZ9v}95@!z;+uBJkpY-xc-lg0{qw7CQ*KN4 zr%#CbfQkTHXJ-sM<%`m>jUg;Qlu55sOLlhl8xwKS(SA)c_c%EZWVB^$OU5=3)N20Y zZo6rih};1QX=&-}N>t?^Yo@#@T~nluFX|7{D3yO1V?UIdT(WCB&--wAyE3|e<%dxT zfs6Ef%hwT$tCLMHp3e_Di=x*wC{o;E(WrRr;=<#&HrT9JbbB}sF4Fv;mD)H4G|j*! zS%ZdZuXDHPm>A3nrFt*VyEvj=l0nf948QM{XQiavy;@^OAV_4#B%Lk4^-zuu`M*xp znka=DFM6B1b<4*HwnKu(jW*kS%HgmXHLGs7dG3WoL>Mi0C3YoqM|LN3@2zB~6J9gv zUK}4&_IFiGsQQe>c8z2Y&ic0#1K=T1U(CKvBzM=S2jCaL;0QvguTv=S2df z3bdP~r0(5w21Z7xmAW>vCC(^W(y4CUg@oN{g2_Qa*E~EtE><&dlfs56DJfkzhCbd@ zF5OiNg&-&5&CuKwXm4+?sH&P>TvYm%*~avsaN}*G4l+}{Jxr5}PIsOkv|ljB=H}+E z%@#v}??uMepo`rc{EXSJ=%6;s#Ry!Ny*pUwZU?K)pTuK^OU;#ieTI5_aea=Cj?DiI zg@=Zs-Fxt09=Df(gv71evY?>g4%VA9)h6ouh14&^2k(`qG1R+RKO#BsXj9zR5R=`v zXp7yQl;78Ai}kt;=Mki^qxNrnzcfoDTfsnSciLyY$)I7blph%>F(+>XbvGjd^7D| z{9m!L7IEDLA0I!F-ShK zlX9_IPu862KX~w9d$*G%CMM=t49&}H*REBV4n6oAbCk|y{8_$H5IGlT$6e{dmr42p zf`YD>=ZBb<@d^S>w7sR*nl7+r)$pUT%hB zt`fCo(!Z+}6S`VMNvRBl1QKmj`IHxFa<`JsSRjR$Sh|pB0;f4)U0ofu!iRsqz0LYI z#H)txc!jOUexGPXa<{-x9^1rI`Z+7E5(ch_cK*X6$k4EPU2sG@+uL+2cK;sCJWe(_ zJXO5qWKCkE(8;yX_UER`nCV-Sy&0X}i+dBNrg*Q?QlDY;v(vq;bwAu4RJV?GsQkPC zH(XvkN0eENJiWX)NBKIk@gvK4T9?cIzM%iHXk@?DCaTbIUFb+{wJuxY5nQjL5eqnO zcGq14wNkTy!a^1=FRyRrLlIx(v$Y0hpZt3mpDMn*@DCdA!^6jSg;%3mWXR%?Y%ke@yuhaS+L;(%Hv`&B4 zODG`059PDI!t3|*_m|wh@%M#$Cjv~X)HgIR_?an5^k;pq0 z{_51{D1|}ew^vqH9?;UlQml_E|7?u4#>fbXH@(5Wj)eu0{n~1xip_pe3aSAdl7+`k zGf_oC*tbH3TRxiuIk#QM-JjW&i_%c*KO$ix4fhx=MWgYb$tfa?36`mLLg=)F5pys6 z4dnSAWYkzC%+DKWxo>bjefo5JclUd1YhXje9+htKRv`JCGA}4&prnDLM&u) z=gE^N9=q+dcX@1l;K@c6u)ga(LYbbKl`{}biyJTC>gg=yq~DV987ft0`As(``MD4m zLi@O}_-_o^%HhHR-~Zm!w9=P>ku8&s{ys;>v`Yjnn^|MJq*rKe%(~uiXSNyAXx7j3 zxw$#wMgnh>X)5{~NZzqV+aY2_lG4&WxX$hYN(;+vqC9-Nw{V0mSfgaH^;P_< zG-_O;pav{qG`LEq@*!7kGG4(3>wPamOtE;d@#J?xYcR=UI}2&~>aJ@}L(vvOv+ARu^DtWKL&SB)YrE?%?S!GK8NcaG4ib-P7E z(t$4{(0IJJgu-L{FqnW=MxUKz$KE+xJKW5|%iv}=!W&X(_C z;^stke~Gb7mBY&S%r3^dQRn5P!=_x6tV4>IXO2~t`0jxv7>){P88Y)ZNH#hz5m z28`5EJw^i*cAufKGM&LjDn_+$LH-!HzW^=F&dy%j{iFA|`xR=fK(LsEk?xWBA~|12 zK?08#F}n{tbRbm~teNh{Brh-D^tV6!{ZRc4m8~seKVNnu$uTip#0?G`*0AGfPtDeO zqv35PgX-^k?p7A+;vI|I;YJ?MP9>fw96WsKU`DdmlhTx=pY3&i;&Fa3gs3@QOwQA+ zjZ9G0qW|;#lON5^Y@e){>XrwubMIM~XiixSgO5?ZjikzC8ZGhL){UqS|R=xWbkyzwRO}aBZk%Y9clE zR#aZ707eR0!|d$$lHQ1gaPG;5u`yB~qwb`g^vknA+B6rxTf+GZO=Q)knnkEM*)ie9 z89`zaEf!oH?td)Ih6+3<4(0!r2s*RAdz8%`R^@1wC5D$`lL_0~Hk&wft-m)@F<)0B z>Z}U7wuby4v&ayV@wfMd#_yINS5%_jR#{)S@pu}wB!K6A%cpDoE&}ju6Qlyktft2J z>cf)lVR3e5>%BjJjK06V{(zd6!}QmuGaK&Spj%WbB}`HrqL-#-6-gjl@G*O8gWII4I<@5#}1DH?oeMH%^TH9`?| zDbbYFD7Y3z1*xRmhM225)sCE8qpeM+D}n6}^C7GnXYosRTGi%SfmSUawDk3x=YM0a zAP~76CzjfMJo}{{!$sdFfHF0G1y?5tF%e4Dseog4PqH=uz5lAP)mO?_Yi{o9qKtHX z$bs3G+Fd<6Z`%mHw3}k!enDKT{NgU=$>7tR8bhoi^gKeKdpj zGU?GwMx@a9{{9#;U0r0`9!|==J5u0ze7aO>(bmzfJKf+5TZBeL6hD9&A72bU zpMPTl&=|Vmg%5$`-*vf4F1mOJQ-mZXq;YE94k#HJ!%)!Bx2OGaXE!#w;bN+g*=GIJ z_blDIS)V3|+c47^`U%B=U-$QCS&QMXC^9lK2#BWc!upGjBK_8*q56v#+0v;d!(Z={ z@i`f+4;NXC6bD?zBs|l#*8CSNM~(SHeQLv&ue38nh71%R9>>+&z&GS5=E~(Ld^ux- zNLc8X5jI@@`2kDiTT0PO67~wKmwq)hJhAV(ybsCr{xnkE2^V>TMf|kVZee?GkBWyU zfmyTa=FOY0mMhJFe{NhWtoJHmR{R^{&*`9$koHVWq(XD1X@9C8Dfp(_NFUZGbz`jQ z(^tW(Wv53+tk4j+{aJU-ko=46EAx>*sQ$ezifU!DmLDLXKHv;w_4M&UR5@*QKrqwE zXGw|2)0G!}`}Qb;Trgz7j2d9l4FdXi4&wh7vgW5qV8srY(RD4q99XVn3cHIlR~o5= zhO^^6ppA|Txy=W|oF`oads6x1bsYcwIq!5N`&Y?iXl%R(uc+Aj(yO?nG3ZOx(}de{|5+K zfi1znB{$fbtVQ;2Nu1`tD(#Jd>#-i@#ibDH0vgbkjrh3guy#LJHoxHyQPR}QKx?mi zG&JbWC5f~o1KH*S9V${HPS0DBA=1Tf7gqA{%h~>8ZL`zZnFe396dqf@)q&ipuYX~w z)otVxmsf;^VR;?RV0fMFi0bL<@9gY+fWB(n`||uZT-4`gqh*$)5a~v+u&Y`unmM7i9Z|e6(3g!mSazE-opFymSC@aICGZ)xMcL5fc-;aLVp) z&rbL1INF(O@9JXwx&>=;flBUrw$pmN-!EfpZ(nWd$f8;G4&oVT*Jtpg(29grk92Jg zW9CH!89;(SmYc1*(}Lk=lkn1Xxk!jdK6`x_6P}1A<&jw(uX|jP+}b;lTIlYa(HCZY zWN|3Or-*~z035H%+P}0|r7Cj0;|4&Z)tvts^EjFbG%zr@J?zvgc(@Jd8y_IqXW5Jd zE=v*wWJoH~!3_CWoh}iou?)Q$AdrARRf5C@$~O(gx!4 zm(P7^an`M&{4qg{-|7?4nJDZn1eEDgtg_a_GJExWB|JR5&k7yMa)h0VW2p^U_OdP& z2`k!rt0T3pW+%tL9(@(y|ERC(HhUZ4<)s|h_-|a5qv?wi-J`Ulg(h-;bs&^`$|L4( zZY&DtGuKQ<`!ut0pJ}stSzpS zpWNd-_fV~M>$I>vUyq|CU}W zbY%Q^PtP`oT8vjj!Nvr@p`yJ_O6oYA^6rHj>pBxal)&dm-`CeSBp?FBuV$6Q40KS< z0|t6K4U?~r-Z8Vb=&|qUE;)U}#-Ze=#qdXws8(B+7n~;%4S*)s^i@wfhjGtMVq#Us zA@z65%O)Kam9mYUxox(N=l1I4T}hm|D!syP`zDAB>u&Uq{l9Kla3D7P7@}kKm#V2+ z3tYp_iDpL#@I~L26XC0I&&A(ILmqu`o)S7Pd04j*!(h_iSM%TisXDxYP-nLq=kYpO zp#=i;Vr?Ktk?Ous+WfnBsB^7h#7&pyQ)~~vc96%+BH`iFzYQo6?hXT zp`+g(zVt97!DZ3JZYb#{i5b$FT^Q^hCMRebg+8>x=05Zq%!B_s)di?jJ282l{-G8W zB=g2~hRmePMy%?2!U(0Do^^1lDHX!uwYJneT<&=|K4@94^)DdyySb<4ryKnh_L#cA z{4iLJWm2E7TsvK|;wHg*o|zRjXLFl)H|?eP)%O~ecHT?Tm+ye3jd}aFVKsT%adCI&&~L#?(=Ol1VIyErnuiMMaAtJ>+3Mg&NiW3R zCaC|EBW4-uVuooJ9z)ixSKn}b?i_6^$x|v$0yI{oj-p3c!$U49xxhV z)+6s?WN;S7POJJ0MI58qOLkiow|6Nk-f`~`C$0zA`ecVDhGf>L00nvR(O4-r7Kk1l zw!}M5%7TdK{6WfIis^;K%dOkV;egGw?AIZS-mQ517_Pw=jmq7r%5~vP*g{0jb|($< zCu5D$iA{&yu2Jj<>h@!IAtT;|Jea_yACe#NIysrNKU)UL>0s?fiZv9p)A` zmq9+~JIWc<+xB204y}QIs|J+0d8mh?( zcN~jGgjYb~EW{Zu8oy9R>T+?s#CFE~wdU5O_oXMI=Rx+*-L5?~N1$t#DL2`*I)Tkyk_b?JdTZv1g#{zPX6pO*xf8Ir_dlh1t3tGW z<)Dc>EZbnTITH}YW8Rr8O9cVIk6vNgL*aIOaj^-%u~6iMVxY95pDkO`Fd;$rx7t9l zGPRYF652@Ni=&svi3&Li!60@PTaIykl67iFmOQEv1O(XkjShle_F-7kn zvmkMjcR!%AIKTID6a*o1H)g8{2I0fdptg-CC|gW4w6qx26Vh^Wa^mrJl1M?Ps|(a? zjzaUP^>qs%Bv_NXp>4yNqhP$}l+m5U89Joxof;PAw}B2E#m=D(M#FUvdmiqy)6e$R zs54gNXxmn;gC5TFcY;+bE$?PYCHn2{GLFlOx8L#Ut#*9hG*01SzK0{NAz@$6DBmRvq4xKO{ffNI^%76#R1sTGIyy zyX*bQGodVX@1LFi`Sd9ZZ+a!T+2Fz0%sm<=GPFvLNEQQw=@~s5dd_fUgUP3aV+5Q- z7`b2)XiZCpbahc`WftuKn3mz1xzEkI9uMW$^nc*2zr5~Mo+U%VR7qF1~PiKQ5c6#4spq;z;eCK47NU2FgsbY=e6! zDAEa1G$1-jjAup)%=#rGyU$)ZJ0GHIdtP!#rwO#HTh}%NA{Ud9!DyJ8 zO2?q^c)K&#I=8f>yv}(U1*|5U{)xkG5_Lu5OM`{^9`X=z$)(Fdi|LG>4Y5)~dk97n zLyyoD6t$M_@D`K>xMye$%G#c>^_HRvSf{hIrYe)^hKGkU6p~826H#+;JT4zv=@oNs z1D2wNmJb>MGE4}!OJh@pwwD`5-^yrwqrX?j>O+C{#8i& zNx_U{iX3MtTRtkG+sLRl?d9Xg4O2qdpb0hlU1d})ejP(AGrPJf0i3VPdQq#%=r>a~ zje(8()YMnOWbpqk%8ieYOH@!+#(w(rX?k|nue#bDsk-+L43z$$)desO0?i?zKIDg z#>N>3cHjre^R;QcQ_7paXB@2k1hJ*eeh~;*(#@@@dSUOzvSh`rxO{bD0T)*FNOHrq z<7Lz_(7zJ}-MPs4ozBLVLc+p6d0$?vPgIvTtO2ysfdjyz5K3XGJDO#=jGA}K20dAB z(mezM;a4mZ$;GNMb|uGhWd-l;P3Q%@_BZJ$z3KS)lAx)$MNAwV8Hr2A=kVTkuEpDI z>RBKTo5|06kYkRGLuqP;KVH`&Btq!*|8kv)e|dJ(%MbRr2pV09c;;{*wl>Erks8DL zcqM*ze{gj*KXksh_%u@QRZDW+hb{lag;wJoKv*OQxb99>DJ6HefQjSBV7|JzgajoW zU6A`$Z9I^W=Nm6Z7zr^!G|2#Qicza3A?}Hy9UC%4|s=2Yb{O16PJr zB^Em4OPn^;kbUOfUIqY(eK;!>qYzD?8jw)(WZyIiJ#HzTDf!of_jeO{c>$O={mAD} z6!PQ)1;k^oo15EEx8@^&poq(h!}|5n($M{Vha9DR2@v^QK>K*82!&>l<{z}+9f8!V zvfjPBo#wvDYt)nCsz^})&%*{CJUC@S1zIFoYM+BCrm)ns@wL*``Xut{h4vv3-%7?* z-6;K_b|t`Z+JbDm2Sg1D)W?YWK>n!qhsf}SM7Mi!y0!NmlSSju(GmuJCZ@3p%K;F3|_8=DN|x{Yal5iQL*MzI$E7UwfQ;s;xvX+2fP zJ%7Yff5r|1PZlU=$i9kMxyy%m;E35x5%2LRV#}BUDHg1QHiGgpq`x_`^ISL9H6bEs!F!c zPL5AKJuBWuHGbcYIRkAI*>(b@M>wj60xqH`2&0*$&7Qq(%=8`eM|WJZpP9#{1?hn7 zi?rLMdz}P>a8b8D7+e8VRAFy=Bgm2AKIGO>)(ajy$j_9*&Q)+=G336AqRJ&am8#VvvhkEAnHREDQEd6UbpMZ||nM$Of*^p10p zgad!IV4b?B^bRD3^^uYt2V32aS|lOwO7G^5>E zTj+?*aNe3k%5!D|ISY}VCo9>!Hq!_|U48Cn10$Oldn&`HF{b~WFJ|MzJmh? zQjqiwE`_v>jm<>`_@ea7$4rTD`{cGebXUQ#ex6=vhGNd^b;bh?cpe4&P4CDl!af_0 zWS5V!o;fG)KKA-$3P4udUmM!0I!PF{;JQ~%_Dr^>VA!hJr_tocvcvAyMs-5f);%VF zR5oHPkfx}GsPIGEe}rir>XeQV7a^@TF+i5+D`cD`umpOp02fpAko!lt^veuo6GZ{d zE|;nVSI}3~(69b-oTMz?a5_6bzuYZ-V#Ra$^BFF9bP~r)(PSRwq}S)uD!S&_qP=0( z?v8AgVKe(pN64b(p}B-&!o< z7#j9vsKugQ)}Cqgnkm|FCJt9QuD#6Lhc??&W{hZ~l0?Xl7F?vF5qCd8ZhT;cr?s%+PViW~^@H8JM@;;Au(PSOg1m2j`LMBfDxEe#QPMhQ6dyCz~ z+*WrHV;}V@4o@k*oGeIXt@HZqg%m-6Qfv-mKh6*dFIe+$+na1TPN82K`mGFOvL5f2snB)W=_{;yN#q z3AF$>p|HJc0J{KO<7UjG$Vj2!@Y`WZ z)+;q)GibZXWer`^KrV_)h1SN|)n;~kI~9Uk?X^>vVh(B~wYh;`cYW(p-0bMa$j>o) zInBeUXp@1(exwm&)K&z z{jx7Tn}l1(CN-&Mpnw2_!aG5UfWc<^DQYH5Z$$4}5#v8cSxy7YoU;$q=VH4B2}n*V z+y=<(w(H(|QdPO@Hbw}B4Juw<-Y{Yg8t)b@CSmQel*p{5v*sgj_SiaMMk)^eKz6H2 zPkwdH&54oEHNsmCCf&QITTRUd^Fa14!OJ*0Ir){N$biSro_M<~`{!s%!)xqHU-^+@ zLzEj`E=*FBf7Vj-SJu`#E4(l8lP9FpDdKE+X7qeF9&(X3Dd*|BD`3Gc{700&%kLBh zuvfoS?O1t?Fva`Cwn{no=~E-ZEvxR0HPWbeVNENaOm&Va3#l49V{(Kt;m%Nvn9UtK zlA3avlc#Tvw)$dTN2Cb4#{mic6C6GDk3!j*nQ?qNG9?Lk3py6Kt`jle7K}MQ)YH?u z19+G#Ioz55n^EsqjAQ3kuA0fRtCHw{bmyA<>6TU+_s;`OxQ&H4v%2*9iej$B?;1UC zsv5T70t!1<*s%coZ?CeY$!K0CJqMEKPV#n3r_d&o)Wh=6X45?hKU~$@NUFoXbf(!&Q6S>EBV=~?+=|uLc z)lH4yNN}xrdllVtLgTp38n=dtFha8fJBNdv-O5GtpHsFw2TFb%1++D^hU5*kS^My` z(n#(+QBVNDCdMNCQ}vElbk7vCf#y6f{Ctw~wfAns6wHQ(JG}?VmBy2lcqMtqttQ%E zC^Ja88_Y`C!R{j`FV9Oz9)WT+l(kV)WXcaE=6G)I7l(_(h#4V;Z~z#F0nnh?)vs#5 zvs}tR`K*{b=r|QKq~#tiu1}C^!SY2QCfj zHhhjrOl&`jd+GAUP@a(nf6K|lAIv4*)>F;>!iBUeyXRj=E?oxm59}VF&$1*V3x~&q zhAY6KKUkzskMJXRyFDjN6(-Zaer4rzSZ;uOe(}3>;p&3y7t ziU)Phz;a%7P$aFpmIxg!mCsQR@Bw%nP<2YxRI3~wrZF?u{HzhbumvHf_^UU|MbQ!M zMfKLr%L(UeXkP{S-Y6t*BwwPp8%U}FW3zi>?%@Ej$2%{Rb!Akq20;c4sex>KF7+g%?dJ5+zsh(YnQ%u>A$ z95JYvizqyIakN|)V$X=XpI*40w~PzVA|^&P7cE7+^#wpcn9H{2qJBd zD3F0$N=?2)vrHt#!{%T5dhMoe8abh6ZU zy}kcz_t^>Q26PU_fGE2XIRXhw>NB*%Ux5`xR74slm#XI`AsJ=^wDjAuOHMAT8e*j* z3HEd;%H9(l=7qILr>czL!Efv@EHpHSk+cIIp<43=N!C`E#w;u>aPOU-nfGqvkZaE0F{MSol$Dd8B!#vvbXQf+(i_2atMV9v%YfWfn81 zTlL0($dP3ZJcj_Q?$OhS06V!F&k!0Y*;pT5TBs0J+w=y>y!c7F&RzLsF;Y`!>;7S> z+m^>gcY+2{!;I0e#&cx+kEj+99O=!2(FU8f$I(twX4LVGnj@YLqv7UkOK zrF8xn9=5%5)k#`Bd;f{|@844%z7!MF0blizd&QpJ+IKV&(4qknUWE&=jXH+B6u`ZM zdrkLvci}}^E)OvlI&>(_^_Se(7 zMw_+eg{9N!aFKo@m*uGTX6>0MQj}Uh8~*ljjQPi>1tDV~>)I|g@BJXbOc| zsW5{85&yI9S1FOxD0wXDvZ0}26d1d+I~vF3OYJ`BOR6%~{Ho%OWYX>~4~*RT6UXY* z`~zuF)OQ~EkXBD2uBrqXzZuY?K#?68I0UEb1*>kR#zlnoiTT9S()jz%Fbvu~n88!Z zB|xjxHY`t&y5j0?%SIIg+R657Nr5r}=bdt}zH-2Pg3+FZu`^9>i#bhtVr4xgo9?i`|Rv^$m{>e)J{=lb!n*;T;i3N7pJaJx8l-+baXaW z-|cNrA7wrVXx%Vb;UZC~HhlE+{J7R_O!3BSQS~aT!*MT?poRsPfZ&3_0nY(aEGcjH zYd5(!5f|QV)v8zZhXOmgxEQfrb@wKpFN^b14^5$ZInp?vq1PO8$7^U7#g6EwJzuKB zXN6lsls$dybT?&);?L@ul~*;W6RdFqwGZ_?hB{3iAvMM{x7CMm-&)&aXpwCXxJGrJ zH@O{$ZXs`Omo>EoFLx~+QCiB+?th+$-=t)t^(STd>A;zwiUrHOuU(t=Vgr=#AR zCYUJT%07^DPKXCk|1E|0SrlwX@x8MvnBQe?54VEYiT!M|-t0aXsH=r;4!WJkCWK6C zNJs|+n(oQ|3QwxEmW3_1dT;Aj$Y(gn_V~o35D!|r+FfYg^vx@Y~tA*uakR`D`? ziRUizob>wpR{$i&G7w#0{EI6p9Y4SDZzG#7Y9-HrKG;HtsJTf}IqGdxVtw~@Mqb;H z#!zL{ZLlHfGCn{sO8`D6XEp+zQWo+qN8S@n5w08=aM=SNe#1htw`cLWp4!DhPhyFfEJ7@yYe&$=pfz+x~h2I5;#{j9Ovu&r`R7y>4z z0)T%)av@k=`cOCN;fSskdzM}<^RRg8LswAR!3YoxJBJ7SYznXa zFd!FS{e0DuH^?iWkkIz*z-+J6AC2c={*{;Kvez5V&yXE%fU=?opzJ@b5s{V)ijUR( zSYjt-O|UTvF0m|*l-461!x(e;z@pjmdF-L>;ZRV4fw32KTBC`-c$4%$eFhNSl5vb5 z>=ruCT+VKPkT>d^J8c%IFraomcgDdzJHl^QGQaRsC^a8K*V(IFri`rK(bycSO_ioS zR4f#EAHT%e8eySA;lr8TOXzaGpj|#|!)FVb67!2xq?zK43E{S}P@?21?8muE`FGe2 zuE7yiEgr-C0n$r{bQ-3mr6HTn56>`w$WEM!IRZmXyKZ|lHOTHTi`fHNZf|-v9W1sz z6eXPWZ<6GVOXh)q^2}8z=mKgH{8K;7O6}&`Zh;}sCp()KCO?6U!#&D(e4^W8J^a)| zgyzYlmWAsPiW1gpr#smg>%wHuU9w}kj4i9jz#Ebd78=jDMg7iGje*VsQBzxs^yh%a zzXU@z4Xw1!J9!<(1>!lagHjawvQxkc{ z<6_=V-DKI$*VQ?RyLBz!_XY~qpsYG>D=8=-MaOp%)aq|=3{Gu?-O7qHGNbNKY*-Al zJKU=l!FiG?w=-&9$Og8|l#~>gvm-Wyd&b$LgmyKIg2=AtZB zCdXno0L}6U7wyWEoB#ZIeQ81Y@yX2#;hELd4j89VEj1&kcHW|)H$z)2WPA|Z(*ZQ?-omCF0g1rZaqwbEW=>(-rribeqvwD;F z+Op+356iB7aUjF{S9HVW))W}Hcc+uXNkJ>rt+fRn*$~8R0oRYruSnY$-YF~D9jq#X zO}PWC)I2~2$Hm2UljDMY216>DD;!A3ZezS@m#28G_|Yb&24b;t;?kzX^bM~HUJ9Qo z-RWEy@9nwI#Tg5XHPS)@c%G!I9_EmMC~U7%cQ!S*YWWs%Q2jE)-fqO%!g#F!YZzKvB$n|Q6=(8qV#=*mPtRaaBn1+&xJCI#X&+A$+!t21e1eEcZibaSXuCTjRRPE)g4TYPG?sSw$T} zFH}X?@nQH%*TKF^Yi@~A4=J%s0-25P?y8xR*Y=az=G}|JFjDRa`cge^|9ah^H?CLH~%#FGd z8sE(sA350wXH}MpDv@T~+!Ki8?$M&W&q5(6DA>{2*-meIlyec97MBAGL`aD3Xt8|E z3-$8PBtO^vG<}SU@~ya(j`;a^2R5patikf?D!ccE$K!Lps``52%F0S9lckQ<+Uowv znyZ}j1VjDo$I}wmxUI&K&UlSlH-e2(x}cWlqN4p^HxCI7UFrK3=bC24lbG~2LAhb5 zd@Jgm_G2U4V52jsL!2}HSK3kz^RL`BQG(lRoEGuYy)Sq-H#enH`AR3*Qc_b#!08Gi znvrzFRVNXVxvlk}x-!DUG@-f2QUVgOA-c>F*df)94;rRCs%`n$h$YbkMaouMhRQeD zV9g*Wt}*Ei*19|U`S~3k>tbnI=8>cps(hFhvozWQ*8`NSWTRVE)|;>Udp{7ksj01# zbG}pNcbtz8EP8IR^h!81PjxQ`MY3p^t+{#Kjw6RDbXpAZY@wPL` zJ6I%}E54FB^3HTiI4L5`daI-O{hEh23tr}G`OVP&24SnI48x7uO(Xs0;NXlkLlKt! z)vf}Jz8Y8NpqT68Kf2NbVts|^-#0~8qZ~}#_?xY+%oIL({^;8G%RmPQhvo4~4j7WO z+T~mae?f`cftf^Z4g??dI`@{&bX|tSWKnzp|Dhc%11Y%hfjU8J027{sHr?~ubvPFU zCw**I1?JC;SSGj8RpXcCX$G9`ljZ53iS+lr7EjMjPVjQtK2no=7)r!~Gyx$M=opCR zv!2a$Vvevsi%bZ|IBV}fr7JJfA1jkGSWVWngBdkRAWrU!0ki|RiHJ(tsxjlW6C1D& zarVs&TXR$S>^xf@j5Bs|&IR)EZ_j;wk~GWw8M82Bl&8e_n=k^H^T%HlxOfJE+~Boe z#Omqk(U9piSQsF!@m`^K|EL!=$jm-Cl5=b|CtW%weVjU<=PQb5j_DtR2;hpuGS%L&IgS}v%wJ43VD38?|V5e=$WY@}z(eL)T)!zez| zI|Cs9SE05rBO_x1w>3F59jDLs&cKxoI3-&4lNa5q!@co$>WQmUfmIPkuS6pe>)|2# z{S&9KK9AqI{7(v{rbolXJ$T=9bG<=deOmqedmUR7iRMikXc^w#t0kh6W&xRiSo3$WQP2rQ(_-$)H&y=%W`9+OG#`hd(6};dp&d$yto)xS# zoN)-9EK|81ZgzuSQ|Wd<|ABb54NX*3bkbw*<;%nM*Vplp5oMi@t9QEHXj1!4Y^)mw z-LBR8UvVjoA>E8yOjvG{{Y^JQPW-}EkrQv)#)49^+BsL5CtqGou^D(uRMxswzFr5P zXXaWPzoRw|Gmu5nez9u?rYRDZm$zSBPGS>IpdO&=tzjG(HcV0>_Y>@8wSDIGP8%e^ zu{xBM8CYIwiD@tUG0D;0`L;z@RO!0hW}qE?0#BsWHY*^Fd8hI?MM~^ran>6!b`(L-cDoJ`sN_QPQvX@)OAhzN z3*bxP{X(LmqMpdf;qmeDfevs>Utb>qG4)JBBE+b#%G=l}4}uKjeWV2)aWp*gv+v_o z*98I%@opWU6p-U5&=tSzv66?2USYRz11ta!*9P=4e5dp^mXh+k$e-oWY5@KuBaNHplqrocA`5EN^9snAoh~7IS!7uOBnH1-5qs zz@SC9DmIpF%JgauRqkREMJ|9D}(z9lg*Da$CyPRE18@_quGMES{)CKzpVUg&RRVONjH_A*OG`_1oV#t{&)`g_rpd{`>!Hc~ zYV~*vy?KuhCGvNuiDPLIW$D+T>EBogUs#q(xtwb*`zj^Y zWXAIN(U>=aJG=XTkcC+P96{C6$OyUpTi@zLf)`&;( zpyo`yRUrLxGM%9`@h6KhdOZj#O5udo)Ogn+#qjWQ3SJ7EgNlK?A;TmjU#+`X-M*bM z^>WvLj1C|wuzA271^%2{Cy^4Y2cy*uY0&SJRc}-<`ZD+6TgUiNf>!N#9&Dum}UmzKCY2`57@}n~k zpRL#H|h=xnF$Nt6| zoT%!A_gHA}?WMhUZ(63lOiNZ4b^~Q_aBz8TjhilLbY$cf9^Q9&8;uGg@}Bknr8UcV zu?Nd$?LVU>zT|!Rkdx)bZER}#u(`RpqPiNNfFNM%Lf=J2?PpfN!`_aL%GksgrE_sWx(?%)Lz}b(KVCT*tzLaI5h;ur8`bF;6HeI6mO5&Alqiwo+ zguS4k(B?oYuP;%;uMbRDcpnGk{5V-uU)O;{cE*b)y}$8P!JIa{Gr}>54#ZyDSIC&ueij4}^DYpK{~xB_ zGAygLTN?%ul@dh-2|+>WMjAmSB_x&ZlI~7LL|O!t?(XiCmXen4?oQzy^ZCBLpUt1O zj^(lNzURDRjI%~hSCV*Ub9Z+j$n}QK-S+qPt|h?nCaB@~XP4DM!iF!G-q-bqpo;e0 z+mx+1t$f+Am&Foa(uVIHjaw9JH{D2);uHG+n=n`ymu$XQ1XQ=K(1BGU{`KqEPFd;F z(ne<2-ioJxB!-!4#I6Vdu6b{q_&B}+;^l@`?P}JkH(sFE6BUj5`Sa$Xp$9i_-n_WD z_zMNC7rnBfp&|U5g0eDm=3w#Eq@=1Zc*0Qc(1nXV+?s2rGvBl-W~QQ~{F0GDEfPfH zTUN$_YZGTfe|h)GYUIO?($naC0>w1x=DAe9zV+2e&#HNQ5I3NF7I6FGm-d2&X4dEp zO;Avf6n=GX&fufUOmE>seogyRo+0sP6zZ`Be?|uG|6_dd)@08Ss_&ojgO9Rec^%A` zx`@hw<%QjS!uLF&@*{z-Q=E@nYLZx@mW3@zt;Y)?dm}=@7?Km#gWKUl?DYGaB4gwG z?P@1Py#%$5mxWF2Eo%o!c($c_D<&o^m4d1qxP%Q&r)-h1Iw}_zNrEI$8pdA6msdNn zW_t0Ul?f&GC^5G8Qi0MEz=mSuA==@5&0cU)0d-~Jcv0cbX$e^1DL4yg^79O!Q-*^+ zDa~HCfGFG#&Rpy%j{xYj_;b1k{z=~@A(4a)n5-5Xtv2&kf>z%N*RJmn?##<38>(l| zW>;2_v=C+v4$37bQs_}{z3CN7O7(_r1orLUv9aOt{H=#&H*QFYd>SldlXF;K{-OB1 z>fg(Nv-6Glc|l1@>}XDl%K_ZS|9eb)zH&+OQoM6Hr$GAvX{PWnHXgD(oEO1-{^QK~ zVn*QGtMj0}f5+2o4qFq`u{Ize0PzW_i~|-=WJKsYIT1i)!B#}Y%=`_M;tBHOudoWB zT#nN>L|YT?Hddhh!o|JAIc*L#M3PYAjHDckhp}u}IUoXWGj$PaQXv+Pi8yb(H ziv&TvHROn)z;1Hd8Iy#65XUTsR0zG-z(G&Q$hZX?b&r|&nyZB#Ye6%Ocy={OTX)`aN|&U_1+@swjbtdHkQnc48df+w-s#hYUzM8gmhJ4H zGc@`Tzj6N4Ybd<}i;Hd89O|q9aFUE*{wR18w}^=+$gR&R>Ri?Ei;K$^pOZ+Scnj_& zTI4{7RIwCeC`(>07Ju3B!O7y|YO+@5-T@rAxVj%=6jW(S-)^O}WS3HZzHO}A4M)>o zqDvIPN)C_h0WX?IV>)^164tMt0AwF8;MrHA|jBo$3qSQy9~KZF#6n)h<6 zE|~O%-1N=yrFqV(p;nvb)>b(g8PCj2p0k9SnwW3j?)3NfBl~$|gg{kQ6$yC*aSXA# zCGN{a8OyB+ZfNdW0d-(M9fcAd9xA5iL6S~Zn0QI_YMB(H3{(5jp5R?iUS;W1zUSD! zLchQ+YXsu_;t}fqmcGk)Na;)P^T!VnP_V|m|50M5J-ko>rG5eX^T&LAF;Kr4EMLGu zr3`XWgQ}_vp0W4?2aWmG9Ga)K>^@lXL;gIm;0gsVjdXD@biR(;lMb?|n_b-*vY8R< ztF6$~txQ%u`(kZoij4#RL1blv25w=f#hcp{1w&Ap)JaBpogbobzJ87P!4tOlW31<} zdppW3h0`k(X5deW~_Kb_R@)tKfw9eU4g z`Ku5S78RxAqSO!KXKCtLmqzB%uPd_2 z596+N;$E)RXsHUK;h)SmwA2F57yM%0;I**=I{~1H-m$Td`ucG86Eqc$caoB_ zsz$B!OUJ{-pCR;GRaF#JpgLw|-N2wbZkCQ9zCt*<|BjFEPdZF%r{s3utkZ~zdLDJ} zp6G6!w4#*x0gBK2082Y^3JNbM(yf+*&OSCn9g~@v**Me{M(+KIqR>|=PF~EJ66zcj zNnWcjf`u5(i%V8?Z2q`j7R-)UR==~dPBw~rEp1FLmWBWKnmaMM^PiQcC?kWCQEeMd zk@*M?DsfrayUxym!M(k`%MhjWN`m&8*4{%Y2c1b0w@p>+)9_u#ZJq|$TkYV041`_| ziD5}83CnymZp}=Iiskm=lBK{RIX|SFl@;lRx-cplj?QIsR@1j+NEZG^kusQ7Mus#3 zS%|16e0_aCrx^BMrcVZ#t^0*$vPk<$jQ(T3kt*IIQtwW`GWLe;*pfhW_+Y(5R8i1r zaX}dx_T9qb#H6YyIwL|p2AYJ8sg`bp_ zESkUPKn*4hRn-Wpj3aevJz+a+Cj2DNwj=YD5EZsMVkwhi%sUbdc*t@M z?(pw&@}tl7P)L8^OY+}sFYYgL-o10#b32eR<8aR2vwb5*qe1c1jQ|ZJY6pNy0LYj((0;2SjP9d*uf3 z?5|jHe0?#+KHucdxJLk8CgBD#TYx#ouq(c`KOh}oQ|$nF1yyN0pCDBFdeMp;a~^}_ zPFe1iO$;C!VXsGwxp(svHE$JnB2(!sB zJ#@kYAIeOjx`!V=*OPB2Cyw2(?SZrU)!CUnHKzhyGZ1iIa8DHP{CXg1YfGJzBc!S7 z-xzdzA?)Y9sNL(62Kdfi)A$M5IhjTU3@rJcU2}Lj2Zv5Axi6A&1%T)b&^mz{-sAG!Y zdj>36_eehy9U*WJaw#pEA9`yZz-{fP8mWwQ_u=8*?xO*a+UucU$~FSiLTEw_5Awv2^2RW zDoV|fqQTK5<(xc0I^Nd=1nNcnmF>V%i?Xu)=R!vj&A5D|b}232hkQcj(rU|6)avZAG>)c}2RduOLEY*Q3$J9{m6v&8P{)K&8# zfRN#tr%o9Hmj^LKN4W6)!DjOX9-vWB{TiJ z9?It`I5Yw{83~|u~Sjjm`Z7*|nb}r7pz$A$tjc zbDOn68UzxQop|s+HTnq?IVMs{AqVO^v&Kz*h(Vsfe~xy1SD>7q_{>`*@f)7Q;GNmKuFK-f5of{LFrz7$GRf=9T2W=c=1 zUhlQlR?TZ0q3-xpzbiE^R;Qq#U{??H_##BE4XH^e*VFa2k|?NF!ZEOIteyhkf}8i5 z`CO^fwP3ii&3ZFKbWq2W9xz$Gtch zBr$H^1|Dh)bb5p1^=7JejlFQ$H_eM`=_lZ3VC}V9bEo5lI_*IE%ZO~MLeW+lPp@4; zsMpedNsu9*#fk(|#~Y&q3l*>mQ6GnjpHkA3 zv@!4&o|_ZnPn+t)-=KH@Cv&D7u{+^nzVeQ#E%EXVr@!2#g#AaQ{`>60v>|`S+V4F0 zrY!f#Zu6K^Kp-C0J=)rZ9>&glMd>+$E(73Gr;b;DS8K$c)@VvEuo41P2}N1*s4m9; z;(1q(gg!z8<`w?qN0Ip?4<8@jx6Z}(MQb%RHKjUN?%w#T_qN245(Bs$BfyUb<2Dhi zRJ}#d_`Yv%O&MPF4PXm6ek#hM9nMpifO975g#qY{P;R~P=-;ULhJAQc)$#}28{)7K zTKs6~4-YG%q8e+{d!r^i1eLf@-rqRWV~mkLxKNhd`t!p$6%V68zY`y-G9+mZnuUHj zyXBP3yxWWhX`tfEo^r{WVni)TmE&LClyGw529IbOAWWlfnoINZUd6?1<*dbAA>Tej zHPS{EFn89~k+U+}T@thzvDtT*R}f91!S4YbQP*93{8j+0WQP@WGxMQ2pHt88nTUE3 ze(YAo3LW?5(t1lRcm9r_stY9TfC|>2HfW@ZI^ejbT5IREd+x_F4mxLN`D8hkqjn>6 zeS;xhdngBr-^R`#g{Gs>S3L|k&iiLOR_9Zu>anDt!-_JRs_$yI&j=lJJ2fM!maY=l zJ8}KwzlQ+@t^cbwc75Z9V>2u{7)al0}M3k%cA%2wUJe4e(Y zEd=i`RCi)>XmU<>yb5{CF_Kc$@2Q!;ckVjaFRYw|T(FLjg^QTb`Y zi{cc{lr!3z><*yE+aDqvx3{-P!W*D*N*}SXN|w&>bHizi@kaK)&O94MCc9}1Oy+VH9#$m z-2PDO&VIO{2x=AR@6w0*9FYBPV17J~E1+}gea3!CX>Czsg?r5 zH9j1L>*5TDY8%kdWoF}PzUn6wdaQ&<6qjymfVO>uQytMCAMRM5IWv>M@?3U+N)Z;1 z>RBp+aRbK69x?BQ%bx&!2*Oz|L#U6be%ntpXU>%$KRWd;xJ>T=BoA2Tr@}&(qoX4T zur%R`tbSg!GU_s=4s^9XKtunINgLaGz5qAho}KZS`dMs$7VSZ4$&O9Yva>TKt_iP& zDrB5iR&oPv@bGu3(?~X(d(csPikt?w(+^(dQ9#Apj|FdPJ-uSco3(oNBsA!zT#gK~ zNKA2XP%2Ki!gIdM)tKe32QtZK@cxNbnc1Fh`P2UOVonE>?m>5}M9Lt(s+6Q;6p4H} z^AzYqnrm62aopXA9}z?xsPc(x3qN}&{_Lji95CmS;@Wq4SQ%{fSOL|>c+;B#(0pKz z4I}rvflcDLe*rdcXiy-i;5v9%_^&Q(_%C(@zmRhEm<9)7J6JV~F;bDA6Gm?ff7eh5 z0I5wp#9w=OJ#E^_ET~5yO8}lGx0y!fWL^2`O ztRmX^jCm$wN!o)4#cN|yM{Uh)t|yitd_|JZ@O(deV-c`I)&nDCT&t;($YtIK4h&Mu z4}AQML4<(_CxP~1-I&2B!#&n57_d+-cZlcL9nQ4T`}qTc%pIjrK>%!YadD?*=*RzP z0rq><>RclyadlTrroWpQMIQWh`!>rM1YlE&kZjB7!u>g${SXv4m2y3I0^IJx;5LCd zTeF~o$UH`kviAyf?5Gj@C(G+-P-vz6s)A*BQRu_y*EnOG{?Bso6vB?(+$7lX`o2bGsR`R`rAcNRh5^C zFF~qLNQWM<6DIh^_y4D&x^o%zH0x@0$o#XwB4kBUFfs;#7VuwutRP%zpu~=d=G>UL z@2&~W4+aK?f}-L)L|g*ahP3v-$41K6F@q9%?Ah7anudq*f%01Fjh6<*Gf18;%Qd{@G7+)8*7?z10GU~bSuV1ezrQ^ClJArD~DC_O_^Xj*lC&+b9js8CNd+=_;Jt^qL$)Pqq?aa2D ztMbAmx|118u~MSeP^qdZMzD~a%Risiz!_KTth9zjeG@5Be|+dGt%1$L6Mn#&`I#sc z6YxsLdRA1ZY015>Wd{oM=c)5fIW0e$(k%J9Hby@|@Fo?H|HASa%t|mX*aQkN2Pz8? zDJ02IqgcYV0^eXJ)?wMtwi#jkvbi zhliDm4?akw(jTlzZVxkn1wu`#Q%h9uJ~Rzc+c=)JwJ*Rk{cCu*tkDkiYEe)$C(2M; z+S)E`mQNc%@S~JQ8=x6T;sp3f4*AKLwNTba@-51CE_*@QB$%l{9wOFUPxJc4g9i_g z8b-U1xnJnyN>N|`Sxd`W1QBq-ciAZhLx28ESN^Pc5?>0O$u%@IZU{5HI?P0HT#s+m zJC{Cp(WmP3pkoDNa0jUGGjnpT52CAui+cx2wu;tP?ZX+Bavz^%Rq3&`37fvAftJ?G zckdoxdVd-S6&X>*UKjQb$BZf85XwvyHaFj@|5xe|F5UttHIg2V0eTYGyl3Hax`tk< zaimsGPR+|pXgdgbWi&tu%fttl%m7vwU?4IY8h|I>hWaZdJzX~^xoJ}|eJ`gZ0DYN} zbH!S1vYe{ZwVK`etwkJ`&WP6ssB^_Ume~~=KyW!caVz_$Sr$XM@t%yE>X^0T#4UOg zHW@O4`~9=&n(#=ULZpdVWZ2@18ursl!j@+j7muUz%_oypG8X{6Tm(SS?7)?ljtbDzq5e$^)K)X2=gsW`ZpqPy!R}Npli&L zDrQm9Jb@zAO8-o#YD|g!FB6avlq6UUzhB1x9Wfm0Ok#LXz4N!uC;i!4d_9a;_;UM^ zUzvDE<{RA|0ZS6tRTj3pS|JVuNV%DtHK*{J)uY-v7V5RLGV_+bIE|CB(WK;O^TprB zFXoTbjl=5y+4R3w{8?V*#F`a&kJ#MDhM5Bu1_=ON_Z+Kbh=z&D5YkBz9gprK?)-|< zbX~KO=8n%#$%}0M^z}VqW-b^tR}B{zu6O@e;r_2GO^h~N453E_0R$cyp3`{GAu#D7 z=I(vwU<=0cC}GTKoAV89D22jBsz&m1OXMyQ#8EYLiz2z0x0C&xNKMMaBv)wT|>%Q2y6WoAFsJ> z!@$6Rb^Q`6m7O+z3`2LL!^)JcW{?O0^=tcjsSsa(fU2{w?x@C9bUtKNP2J9@W%y_WxnM0V!iGzIk1u(n?$HJp=)+;_Z+0%;r}xAoK0)6<6?i-4)V`Xsb3 z?mV-=0%(*J=oxE0xP?MqH%4$U(jRV$+rA~;R>w{&3SpFs6#6xGS-V!dcA2DoQ`!=a zSJ1}I%+B_$M0gBAXcltj!%=hK@S&wl+r5N?qu;dtgewq;W=DXty`{j)l9n;y> z74YlRwW+nGjvv79U$mtI#Y+bWh9 zSRIa@%V{P`8NRbo%eiLv(!*_?luQ##nDM8)`n#6QH_5v;B^H)BY;R~Jxtxif;vs46 zqs7Z))!I@B*A67V(#qn?m>RinBj>+@y8X9UvD?N9_gtfQtZRc!O}WxB1A7sO#VAp{lFZ{_X#dQa}+D6a*@R zJXB1Kj&>>gqnl%S$OkW=k(@8Azb)%8sztN-_6+}!}H z^$Zev{fF+}%4z2-kQU)hyFSo$nm?^SPo9sw=lJn9KEsN6`lafufl&`o7Or>h{{mso z+2OhDCPXy_Z-!vLh?x&Ixw&T!a?NjEhAYvfL`8y ziKYH1MoMbe#!iDAOz4Z0k_7$n@ z44^?L>vstO2V#P7TteuIo&erZUgf-}JWUGS$mrqYD6C-l$l0lnsJC-bm0VYegfY?K znw{-Lt>uo5==x;y6GRB~t5e}laa#b{?Wa_He$i*;O6cqZaE?|&Za2XB#3ZWeWuC== z$Zbv6=Wl&u=SUL`CWW;5m!ZMuqAhK02(}E5tO2^rzW)BClCpun04M`4mYDwTs<%~( z%H^%(L*eNc{~2l!0c^b2)y{j`aFQ3!_W=yV#Kb(g)Ob3^N+aP`#ZsxON=b_II5Xi6 z6Y)Bwe>KYRjkAh~$UW+MPXIb8Dr1VWjP>L&5IqDauM#vAa#b>$l|;)mtT@SeeV8n! zUXh1@=sRL{DzR^lu>trLO1lr8&_TlRlFb|WrB}-M`1nYU8E}W+->U@#CZbZ|eTOo! zg|GK)TJ^z>@X8}|1B1SviGYu#0s;v^<&L?o5bk*iCK#HItO! zjpr&8=pRh-wm7z6gw^rZq#$khcV)F}o=|&i+wPm%)&r>II+4u_=fl#n56eoMu@xh? zH-KIU3mKc^PB-{;k${zVh7aWat6*ILp>V_CVA$ZG0;F}piQG0iN=QIJ0K+#v0l?wY z7MP(pky}0WY_b|Jd_U$N%Pyi_gkbQTzI~X^gona5$@_sdpsmd230x*yhRZU_@?OQ6 z7(6N}H6APv;g%9mn?MJxfB`rl!Dy2-wG8;8A;1Iy{MLRTK6vu>NDAKpwY9|V6<$Wq z#9?W1YH8tJ-1rxU-GSrx6%>$~5Q44xwd$ex0GAo&K}iW0iNELJxuG)cx$S4nrUb@%4XexsR*pu!{qqvjm)w#Nm9P# zqzM;CS4|bw6XEgNy)wks(Qzr8B}2U9}*K^ZJn|sFY@}$o5e>W5ATgtTl4YzmiKDT ziW}b;m>e7EZ~qqdi`-sF#EPH$0o2L7UvSO8HJU0AS29B@jmV+4KFcdS2^W*eQn*;y zZnHf;l8S5FFS34Fn=qR2%1eeeyo7_5ytX1@mhr6=!U5ZXEeJ_Be`5z!F%w`{;p>pb7p)s>NzrQ_#v(-bFqtKBI(n(7>|3$T%d zqE8w24%XWQQP#V~OWN5+Yz@b)n%7STf88K?S-YdI3t+=742&n7oCGE&CSdmS%FHxM z)L4RE)EK~@fDq(t$mG#_*AE(Z{ zlauF2EH(5AFh#H(h+`0PLFCwVsG}gj+&ej0w|L~J*YRZM37A+Gp+Cea3j|aSo&e|9 z%>M;b?zkf*$Bwk)*#QlVKbixxNmOrMO4@+)zP-lwMvtMJi=0L^bGWP-)pRVq9g9&# z_C4#!fPrAr5OtMSAjb~Eq};pBRE@|n!Lbu$)^ANeo*U+*Alb< zwj**%3M=2k)-ht@-SrP1AekWUvbl<^dI_;kj%DVPzo9rpNLKdK0?v3ncIBCOAD5Kc zg2~d;(xSF+9H*g=XwKWr~0p3D!@-aKA{ZXc9mHZLZL?mM8u{`=b7ZKyzOSoTFg z3s&9Q>!QNDK<Y5 z5g{cR3`9d5ZxRxnl*h;kKPE?0Ji*Js-8%3a&q9^>R~(-<=&zt@jEUs?GL@@p+=}S( zZ`9Y>78dGVMoQGU@qhK%H=Hvye*M~<5wgG$2HO?V;i81EuOkBr;GmwJ`QylO690gd z^exo()HF1&7(){spJa)Uhd{(85>WxE^*H!Z_x=|v8BD1c5W4f3AQdtlVHyGOy@h{9 zU=b11xtuYV>Z+Ec;Bid*>+M`7mpqqqpb*i^uEy-l8jLMWD-~|4E=8Y~&Fgju3Ci1K z%_Y{%RX~V~Ma9=BN`F%Cjr*MUb^N|oDftENW($Y?r;e>c0d@;W>;lcqtggx~cwx+Z{O8aEgA$FemWUeUYjCh3$k7!I zC6g-T)ai+?Ucag~XDKOT=%SWY*o7K3uqR(3QwiTzegBY8+CgqAPIP0vSj^ex_VKcm z;Wu3q(nW%A-xNJVeOV~Rx#o4!dQ9x>?4AJ*7{;mLSBLJHllpZi@1$-pzF1I~CzfSzmK+Zw?Svq6m6=U6&=jHa;R@N`ek6wwx<_P3wT`e!Nei`3V+?u5OgrXAixf^q;)GNB5eR>-An+O$+OC_ zShwvq@PGn1`+}mB$rT(FWqF?1f6~fq24wOAGlOmeD8Dy+`ZzB95+8TBBH>#{8ybe| z!9!1Ub>7{7e^8a`zm1H6-7K9lQ2SdlPd-O_P0Vo(4Zu(@KKO zj$Aio=v#-s-b8^T!fmzM2d@#SSIx4f? zB7CUcPEF&DRQgE%O$^6_hw|#`tz~wJ$--C)8UDW6XD3PjIOO0c2Pz3Lygysk;T}}}APSkr`Y4XJV#}Wxu@-GiM=nFp!%mSYW`_u>8 z=?xO@lvh--NT)*?@JmfPxIr`+h{?ywSLG#3{a zI33UsCdb>`8$gpjz3j3)2J3pImj`8~Y2Y8$mX6z#wIEYj$>f!JRKC%yd!BE5vP!^n zae#$d+M=!=8BqGqncX>v)%SD$%`B`bu%U{O@Vv29xq%`gA`)cN|du^2y?$N)tTrDN+;{>^c(-@nCS#;CZH)4qCoy(n$C@s^@G)jo8y zM*4c~eJ7$N<7aHeZ{rPjQ%w*fi#hLcNQ5Fv2JhPknCP%~^+5--u)vq>U}Bfj#!Mh; zTT=41t4Dj~qb`@lXv@sMHZGE%U*WMq`JVv_Cso>^1s>uLCi|~&EkNJgO3Izv@huN& z_8TiZ!BX(&we(NM;WhICESgMDo+GU_U$!vnETyTY=oHT70+WS1Qp;!4uCTqu)`@JIG(z1jDV+eLD4pMdlx2UbuW{Vx zrM6E!rmejtq5gMrnoRZDwWaP_i_=M$<$c8>LkJsVW1~CovWc_sv6(S9dm|=oxM#9Z z<8~?Tle7`|OQ&uSvlEVNJy3Td(N{o&&Tnt`Lcw~tU+H#k-__lHdbFhe`iNB9LWkDM zyM+Y2POW|SYTS>=fx?4a;uU{XjS9<;zy#=+mAf{>uSv&q|JM@dp7D1@+^e3 z0cpfv<#9q_ou8MLSUxY+b+9)Uey|@D|2p&idhB`?fl#creu|MmWC+>^4V_3LB5Qh6 z@oGsu3N#FXAmVOj(VGx2!Ub(oJkixWg1dxvFyLA7nPR>Qx@|VLDHSk!yupUOF^ujB zr`Uyj+dY_6^gll*4#GgK-#NJlT^GvE*v#c-%vT=MfIy|c`MB%z=Jz%>#NMdC7$L=< zE!XGVdjEru)%DS-}=ipt4lS!*di3^aKxdXx0G3HP@c zk&iV$rsqPP>@2T1gi}?L?^&#^t?|5|ilysm-s#Z1NjdgQL%7r~W6-#n{H|Sh_k}gn z$9na;8w~&w`Xt)(R;u0hRHrN7a^xhifA)0$U#^Sfp{*!6p7vw>V*3+j{J5`kq1jfh zEIbi6pDmKSl^XGnr2O(_(Bx5XQ|zO7u3@<9Y}wdSQ_608%XLIAGolg6ma{{;ZY$V0 zdX|^wOO0-ZIv+N7{EC?{=B8pRKJ3w;iwp?<#D4Dg=T>;RpZHg?UL8O@AVc}YcmGHf zynI?FCKAHJ-tKjIF9f2)3G#{rxC7BTjLyt*1NCYKr++f#Pb2aXNCLnkBz(hULU+W^ zi>m3u`>*Vo-C>O*x!+2RYgek=r&yAQ;{%bWZnd(R+9!EvDen~unYaVfNgibw$!VEV zH;(>_sUhNSavzt53iu1}aY9UAJoAJ^qEqj*QsVx|u(r;JmrTTTc`xYa)a*%x?d+6@J8oHTyn@Za@g+d7VR+KC zj#wI2TK+k10$B3k*TVn2Pz`>5V}uBeSRNoIb5SK_=dk8u@Ej=$fgtPz%Y6#L5ie93iSM(=^F*6x7A&Gl8w*C#;wXzu)XDkzn7iJncLwM z2gfxxH+X)pa(;~~TChE8I3{$P&)9gbrJY)iF6)-Ht=91%#!5|F@%Or?niZCO z;+OU=B5fDu14mk4!8|y7t{z~PA?XIaVKYf?>C{#&0_zVij|IWcxs!kSe;*QuXi`M` zblCon79jmirVu^;J_PIRK^Jh1=;InRkOK z+HXPffQ@U7SZ>bTz6s}PXXXcIWmT3OQHS5eM3u4%l5RF^Iw7~hRRTjA$q2YY{aP|U zzVtC~et=Jb@2_0)K{nb9((b?3+6Mv#4cKN=T}p}lKlofWPi>RBx7N>_m9K{)-Rg*GKcL$`C@k6y~Id-P1P zT>f&oBA+Q=C$PgGrQ0Gt4&3iV#BlC^(ywsZplhk4}<7W z=GkA+civ5y@z=Np!an~V7Z(IQ4LEE09Ctk7Q^Pva&KHwjS*Bx;i@jY1TW8CvrO>;)0wUdJq>pgfXt5tJt!P zZ*3KEzdSWWf_cG7EuQ)va_WKd$42bZQ0pPn)R3ts>m8nMNcZd$pa4^s*)G4ZIi04fS>^QGg>?%!A}kLpZ~1A}AJ zxMH`?cgTbZY-Xol4cnSrt1=n0V+#DgyW;v7`G2;>H8!@u3Wdp6A*sWB#-`VwZ>gaW z6B7eZYilSuku)&%m?ojjC=baE(ZQmuJEGLpLg&S6xbqCNsP3Z-eKTANZ_Uq#?4YR@>sKa;|RYD_AX))U=7h zslO8L-8>X@VsK)&j$!DEoNV*2_@x7L^>+96jLUO#a~a?-(T4y`XyWg9zm~t=^INR- zqHe0@9@kgKG|J5*o8o?Y4<<&&ElX?^fDJ+XQzZ31AKpBCHDu0!S?fF`1_6;&_)VNU zGEz|T)f2eFl{)my@=S7*B71e%8AT}2(1=u39D91xcI4$P{jA1-Zz_15>tF>j6+o8=C@KY>uT1t3BE5iK zd@a~XZ2dj^9ski6c6mp4{~Gf8ccETpPo06 z6BN2}BPBI;7y9u%@Pyz2k^|vD5EI%wHWmfLAwDtXP4^p;uRk2D#cI8ABf!R{vED_| z96!8(nbj}8E!b#YoG~-oaJVp3;W?=H{s6-K+DTEhqOX0X!-Gh{DE{AYA=T9_aKk~r z5&uP?eQ&5#AhRLP^S?h09;~l#&>7qjDoYzgAlhApa(M-7!Y+Jgck1n^dze&jT4NHH1X{q%SI@Z``{`+hY47AD68(3Y{jdhLbZej|C4-Vb4fBJpU zk2U}Yn>yd(&vFVsjB^4;f3-#3`*mZ5)qDjYY5ewOB(eOFq85z8mq)COU0AxGiz(oq z&-i$$zS)rm0}{c}*?A9`jnLTGTmpwzp$=-pYkXwsGI_o=1*N5%1#UoB zpS?DHi@(&hve~GB>yQKfL^6RM0E4+bE^FM+;SxbxLGSw06aqE(hxv@|4Cm$rueLXt z8G0%H6iX_F=HEEtOW1DMjg%O^dxsXa&b?{*6uv>%@!_yx$>m;`lD#Bp8y6?RnO&i7 zmJjb;w)7(72m#}SqNHm;DuEt~g`Hg=_{fc^T8KyDB=28(S*@hP+&_BP^Z3gtTT4^y zo^$tM-28k?x3`U>nWYEi(OL(2eVtG@hW_SPZR#*uD1cZJ6{SVEdHV(j5sfD@=@4>S zw4;7j^Ve5WXb?`2z1$YLDu%XV{fbxpTqlujEh?HOBeUh#ucX*}CuE6#4v&m1 zIMkb4?0jpR3hdw>3~d3N+gEzGwq6efyFN#%Je4 zoxi%mA5rWnpV~a(B!dSD&dG1$sheee+&5ezqFD+Rr6~{BI(!-hzjiRCl+?wcb*#dg zE##qwb2a&G+q{0V@>V@B3wq`2S5Uyh=i&;96ilqahpPb@Q<~%TTB5YHRN>vbS#8}G z#bmDzCj~(Tdq%IaE$s>$+=<*A>b&fE*SB?3uSWj#zfP9x0Cq+RL_ZKm`DgjFM!kEi z)BX}TU0M>%)xSpF^UIvw4r)w%QDtL2T+HWiabI+Rb+@R{;5ZDUnV&u-tI!v!!2nzP zK|_x%Dal1g70ScI!-%LT>)BuEFc@0`?7Vc0YQi`d`kwhy9dwG+Cp&v~@a=UCb-GkP zdL4B3J|Y>@NC(mm$?k;;Y8#udc|l`K?KjW!u&(s zr^Ecj`77|SUP?${LAov6oh!mU0DbO*0*K;nV{5wTZc==3-5m{G|L=B%oF{u{3_z8? z)zKk`$-=-rdqO0`H-#+UM&!KM+Lh;uik<~ko3J3ovBYl~G_|EI;*+-#AZ?IVPPKpTTt2RN-F0X1PEyf+#XE)9?(U>; zF3u5dkN{mG=++SYcnR7DD2R!?v2+dn;MDDcTDGrU(~5 zytXOu8)nH!f%vQfYLwbHnO&;`Q~H`ps+~N!Cja1wyGjoN%jp09>}>nZ{HJl|;^NwA zA<#^ap>ljB*@Glcf$PcHm)!MOk11Xaqa6sBQ9b)abptq}*~ zJ8-E8k>4GX!i1+KnkKCSr<4+5M@58c!;f=}nD+MJnDSv|o^oXq#eT1Is%nu}g6L0>UZaAx_{hv~Wqe6hq*`2Jk~Az_KFf~vc)BP$+WQ#_ zWC^js7zaRI5qUBSL@vJ0R48&ku*5&!&W7vdUT&emiOdh|okh4dT#rT#&uqp^O$ct} z{%Ca>ACq~U|BQz!-sPD-H2sTBGf!gT30fB~e4ZN%9}jrUxbuaEqrJRhJj(cpMq>o+ z;Be5x)^}#8MM0n0ACYU7mAReHpf1q6g?t~;Tx#wz+$}1lWRayHa=$td13-j2GrQ?E zZOasxF2R=z*N+J8Dj%8e)7#^Q2daC7 z*KrCx2}dX>>GHI9%3hpYR{5V4StHYe5(Rw_U+m^eCm(@()U)&?jK6gRZDj5(t3H~9 zwad(b3=H6b!-wJB9%~ag*w{#}6nV(k7OI{ij-@aBXQ|4mo9?7w+3 zN&hX8;NNaEHqt%bp>l#xX=G}OO!RQIU995Ad+C#zNdp7DW}t%GD#7LDmAYF77>Dr( z#m8o1!CRL5j6QPx$}{6r%9-|CQw#rtzh+^gDQ)3)n~vh_NT?Xvi#U_Tw%tnM`bQi4dL);L@8hIa4hksvv~tcs#E zt_@q<{%T-#>4Q^i?(^?*zW)9cAT)ta1__qsWRr)DFm5nm{CqSOr<);%gf&8QtHlPg zL+h?CT~MI-gr=JWh|I8`Kjp_KBsV@O1E@i-Cl^z~gtqk~Z1+rAs;&_Fl=NcjThhHc zem<(zPLjD9bJfwucl?FA4p*i01<~LvIw&k|gq5CkBQRo2_PUr!mC1N?80||Nk3cKC zxw#s`>;KB)b3}&}IF0uG^+f<>Ay=fP9>Ofn^LSjd#`@Xcc>VD16G&)!MoWw7xpP3z zPfR$NDdsA6P6FAs8@_E$cuchic)%~#Kv>BA;bFWAH>Tn^Omo7qol|oE)o)x4UAvLqQ+E8_yH;e>O@(J=-TQ z#g{YE05L1UCxbf>>Hc9clL0*il4NC=>kQM?KpOhb*G)-Di5UjhA-HOM=yaZ2O*9=q z&2W~KslLxe%EI%|fjg+0>h-B`PEssEC!SQ8iVnbIPT=#qICiC_$m|^0`*JEOzajPz z#gTn2iGP3KCB1>=ah~Mb(7pP+BYJ)-1Sq}kAQb@I<4o=G)BxE!@)8ndc8=~yiR7h9 z4!NT!LfmQj;=$QvQRw_?Bo_})5y&(+&Rd(CQSJO0~BiK2RH%Mm0`W zJ?_KQJnUvb8m*~l`e9}%mVHlnDvUJG^3-V^BoS#FO0Mk zRv+IQCwpq0o$=YL!|3Ah!0F32&r7I5EMR64bg$R6G)`!ctNr(l!1F>t9bfp;1Wei7 zs(k%1T(b2Garx=`>b}|1>z}eQhZ$$SBXsi7664)DW=lDxApz1NAB2V`F^F#N%fG#y z@zJYe^{?@~FlI^6UXNpj8Pm5;n%rzdI8_jto6>JR?9IN|3!+N?AM;jQ;bDc0M>pX3 z1>yMj_;?5#a-Q4e(FL8+Qz|MXJ4K-(@3WqUZ&iaT)IE`rUI0WvLYM17pD4m{tggNR zd&UXOg!}N}!!|1;HT6vDPmNz=V?>~VK!oUkKY`llC-_BbT@-WQvkf)n##UqtUaui! zzT*jHOdZK1$%B|xxY}W86b_`yqQm%gbSf$;A*9x*xTx^{sOm7VJ)(YacFu7-HDv&{ zjjnd+s?5l|^ac3GDF|MV}{u2#Pe zuD#8=g>eyIV9-qj!({(L-FY?okcfyVBR_w;#51hH0~e%x$OJH?huVnwV?Wmu*L+`t z&kElY7@V5Fy*Cvlu=W;9H^jvZ_9ss`KK(5Gh$?aOQ1??bUF(-G6EuvA8&1*{}$R*-OhO~_xon|PVg>M?iVkM}x} zzKN)KA-5`%BH_^5*xW2EDtbN9|LfFA`?~qGf1;9PV>XjE%{o`yYaGYR8hHKO33u~( z&hb<#tyB41XRJv1UBx`>1-ylYZCTi#bakRpVX;}8ERcx5Nw29xh2sKd<*p3pM!VMo zv;)E0Vi$9#CuXDGr6G5XJe=y9#4!FW5Hs;u;olQP+tYONmDZg*Ict4{0(FgLaZyS} z*;^*LYXSCFa|=0!G+DX2dyVr?!``6)l_sq0_JUoiUR1w?-vgX$pxE3!I9LGBA(BM? zyxcDUCGZ6Q;luW5i@J_58hIp)4_bc2hH(vkd8WCsvCSlDyl$bG&{01@C19zazOn__ zS}hFb7(K$=hr=GNd<#K-BG8M+9@vG_-T&)RjR7x1PQyJ8z%`K#p0BXOIG<1`JtP!H zV)7VcvI%O*mQTO3ZAcH_$1Eu{J;B1#4Z z93Z}t*kr(YQC9TLywd|8q#okHdJs;1&*r$J1(HIqz(7hSE(qcUUzohIa%TLM@>Co> z?!&J@sRR>6L)3DIk7Aze(BIFo;K8J9rB)E<%gK#gTI^AapE{eEBl7;lIBou``}g;h zXHiMM0uyz;P-Y`T>XB^P%Zbj;-zz2-onHOc|4z9g{vTCe8I{%AwTp;_frNw-3J3}a z($W$F($cMjbVzrobc%FKOLwQz-JR0iooBB1ocE0Hd;V<4-ecp#T6fHO%_}15D+4J_ zZ#^&wUb}#KSe3;kI-&zJ9Lh>4FDEcHHASLL?auMlmxt3PCnjFK)Y{+VFY*!qJvb!O z@0@Fp`vw3rVZzD+!d>X~HT3npb93q7A=i&r?xk#JpS^+cKYXFIj0_(@v=P%iFHABw zl4MjD9}pU1gLMg*P28TS2@F3y`dkLwfPUyAjVhjC=rxqXWbxz`cX{U}V1qE)(KZ$% z3}YZzTJ)GTygI{J;GL{^ofe3fAVdmi?+?Jc$`z!W$dBS=nVHO>>+b@4H>lP?WKGfA z+uOlupV&zcbwg8m`HZIi9{_ow3bCh$SSdp|N&9MhF!7r&F2rlivUdy5W{wZIt?8GE?V(9;<0GnM!5m-_8Ht>+pk+a_&=F^>(rM>* z@LvABy*5n8vHKS$rj4)FBU5*tOpO%;HBdmFnV}eT01=VJSpO2?voK#D$agvJopUAE2 zViA5pdr$i7EG#S#;)vISv%mq)z-nURBkc5U`8i#u8!!mSUv5yEHJO|(Uy7T9HIDP> z5k0UofuXjdW55R;#umoineS<+2WM9F%o?pI9|bGfF{}1a7Vh5lGdPTu#}hB(!(y2KLga?T&R(>PYMZAp44likju;&G7283Gq?V5Aa~sFSB9vRxP6rnh~eK~cf>>uc+xf_ zlDfCA!qCC?>c5|Jwo5Ivsi>&OxHO7An|lQX49EsJ*;|788L9Nv_M1OLX$>u@QQc0FjM@|s!g;B9o-wKLx2j=lO%+J7%A4&mL3}gAka2 z$C>lPhY!#__w-Hp<$rZke#dyd(n{kfWM|)Kfrd6K`!lZqj=~-ZVtfPO@dG{0+p07) zKfD@21jX%J{T>h7-*r&A$G4+pF_aN+|H_m$6pNWMt1hRq+ z9~>5zYO`O|1V-^h!Obi0nuabmV;JK8j30i1{0{K#&FQ{J48fN$A@0>ZA3OikXDXBa z4Cp$zp*|RNANfhKFuAqRuRW-({PynckEH9p7HM;}PPr6a|LV+4@WL5>tKgC9N_++$ ziNY>P-|$q}-rnClJvmppx`ZeH7*q3LH62o<6o5Ie^TmO}?%v)BXmdWiz=64TH^9!e z#v#D1>hU|NC*VW`4PR z(bjNdfP?R1J}Z5wOeEX<;6P87bg-0sK!U(ukKR93%S+$C4sAri?=c#=2eO~fF#Pcn zc%0x2kiKS+SHw5I2WhE$O;1dJ0DuePIgaYf!9gT$aBP& z7)unSq%5-4+U-%G1aq`lnsjPou+~&L`vM<6K{_3OqMEwfzCue&TR__G2268+ntZp^ zbb9f4XYSiLCt&y35DtB8B*Fm9HTdI*AI9dIZHK~M;!^sZ6=6eY(pnJ7a>aqJTx zX~XwGNCH0{!h(@pWIxsu$(_~-BX)&9>a-SyLAY#S^5C-`~EwR9*z)k0&^RD(%3 zDbtM>l%GX^ZFIHeUMNLl=d0@4$nfv)!-++|uY0(wz2+Hxe)X8URtb$YTw=oi0D;-cHGPTgBb0l{T> z2{ahJ;j{pl3ay2ox;X3+d-78PAFQLxO`C%FO#s*oP+?l+Ci@|*pQp3;NYu)6x);@W z*dySU+BlUj1TN4i@(j8uy-ZyUU&!o*fk?3fK+!Y@C2Xb})Q z;9Cj2*v~+dKTRp)ayT4_u~^wE?}K9o@AN?9sz}$%$(coDqi}zXQA>%TPJwRoThjvj zXubHyPaVx&VXsXw010YuzwUTqy!$4HlNDP zJ`X0jz(M@jaX>~jk|((I`Yjl9V5~LYqjcV}Kzn032S~IdM8Zq1i~j$u0)Lo^pW_jn zVP<7r0+jPP%vZsolN{>~Y0&LRu~a-~-n}{1^hbY{v5AQTq|?bEu=K`V+)vutZo=e= zK!A0GTw7ssEO2}j)Yo6RI!wQF?$QO;jQET?_kfEH{|SML?%Y8Hvdg4-YHDg`Q2FNP z2kn^TIC5B%=Y(zS@#@+;Fm(3E_Ep&b?JxLkpw}Qx;h@=o;`;q$Ym-g#iJ_B~y*_n< z8L$mcuhjc$bJYnQ2=AtcDBL=_H3Pf9YWwfq--FwyqoN>|^pd46V~>gsQvT4`Z9}{b zrTPR7m40Cr;inRtGgJfiEPrjWFBUguDt};x1OAkQDjs!x%>7zj#%m5WF1u$hhI+si`QLO^^HpKliE0m~T1bne}oTazgs1SAo z5}8!`;KVE1MiC0KmUN-CvoU-E%=zWF{QTFud9FA+J3Ei9@^t~Z28Mv9uBMoPJuVQ< znt>;|cxIsa`KIMYUwY5|PtSvU$K@Fn@XYt@w*Jah&tytxrt9emBn-sFcf9?JgTcy8 zgqe)zAO22l#!_A)nwx}~Ie&RxDbZrr%*Lj9R0&(bp3)qB3+Yak|*|SICBsVqbc{sVywXR=(K#?ZXpIp~F zktHsFRLaWKIM^`eAWj=@0WCgClyZod0BJz#=K>D;l=?XnAkV?X5K`{daftrdWEPFmCeN?f%JHs-i0}OrnlM=ha8OpB`{bR^|G)rU>v+0c#02U|dTVP1 z^Q1Ee!T&0&2=(VCV{Cn9@$J<5h6YGNpg=4f!6haF!fda)e%-jNO$Ear#5NcVS6JeQ zhlee|ycW!8g#ZTwaC8<_y8m&n?N?&6yfDFbS~ogwcXc)ni@Pqix7yfSBsS~glg~__ znp_gl*3?8Pcz-!20tGHL3sSNt#}_rXkU=Zr>Tg~ib4_hrH@ie|siL!^V;)Ej3vh(Q zNJypu1~$lhEz7^0_iGg{;NPm*G~nd`1^wRd{5zoF7%*V=@wl1gA5R$AGblT^%;eCq zlhN*w-Lv@9+9RhL`n`9)xIrNy4Z?Ur){+E)+4=c3!h=~!ly4rh5Rg<(`@T&dFkqRg zXr?>Dg5Jh{M|?m->d%&5k{3M_Q?gRROg;55G;|_`BJSm4r?(uwyAQGH8|bxky_~aa znv|O!>goF{q>!^W*;xrU(Y)da4hjxYRfs)d?Dz4eCXdV;?#5%V2Nj+KB!mXF5E;GOVmHTSI6 zB>?DgpKx@p4oC1pG8-ZzRtiy3Q3M#Mc2dzbQdGnTYS=`XOT2r~hx0eimQRNF(mM!I z$Tcxdg+4Yx+wWa%kM&Wxt0ReW|3;_I(N1D?WQmbIRbXM7HPU$S zmTx7vQCba?8&7nPC4M{-AA5eet~`blx<~Z+;wnd~C@vYwJeI|qPfYdE)Pebzolk%N zRp+Unks%oYvp9N4T_Uz_IW*BHP7ZV08WJYOF~&RI>*8YXNQ3e~GYz9Go~v_4h)uor zNtcg-+T&hgw9=WLJCI&Xi_I9ai5dg@fxst~tA36f-vKZgxPj`8OIk24EGz)7eH-(^ z|HAXozSU)>9Q2(uTUe5C*$c?XVE;0Uwi5XC=_wdcfi~t2YAy=k5BDHI5mFwq{In5- zAD$!JQV-I!r4&_s1!xu_k@;FV4&QMfj?TIi|F46LTu|^+)b0k50qR=beiI;1OicJdS0Do31N{6*2L&6K9WEaLnh!`7 zg|rRaS2hE^dDu%=Vc5V|ZEsa^6(rlayEitb3=!>SMX#4;io7EX8~>(UKf^rA^ZNdB z1z^HvIC0M_#$+<3zA%t^0@)SDzw!R}W~+VaUxbK2!@pj1j8ix0=x<9E+$!|~$FZME z;Uu9dZ1>bdVzSquheNEEfFser>~7SEcefDNyZ35DXFvPi1O>SRI9ci|nr@`mkc$0> zv$VpasEvw{kPuX?eJ-0O#;r|1KKS+N^bftjF{;4sZdS_5<$sz0Jz4Ro?`*5+C!3flNxe)06G}DKg+)X&QZUjU14QKU0>G z;fEkPr_-WXNic*%+CVU)xFyra79HFSeD8HXe`LkkW;^UdPhwN_0UzqhZwUf^kD<7A zv*WHlxVXP;(7iuJoK=Be&&s;_n(iD&VsR1SxTRS2I@sAW{EO5@T%C7zPSlF_4+a|? zV?gFO`jiI+Fp|#J4nm;4?x?j0U!2RazC1pQJwu53sCKU&`TGOjeMhnzNOb6uPu3pf zo_Lgvqj1hm6{=Oz257f8JXGg#2qH@-K-(N?|Nhf_pzi0jnk;+v1JH7pr@=lfOWsI+n&whMkQxjs32&B@?z^6NVds=YjR{@ZLkAL2Mt`EuR{7@$Q z`}>!bm#<8={jZI*dK)!2ECi<$OI}E*+4@nf)!^{P`a1iox}oYyof8vz`5_Ww>Q}F_ z)o?QdQd245$bR)o5_ja1ve$p(%KYBdDveTs8*DL{$Q0DDF0cuBE# zX8v4<{;}pR!5r*i(Lf#0&@$=y+rUU0S}9uxhtl#c#QYBYZ(`aybgbjMESx0u z!`HweMY)z-)l-aupC;%N4es2(f4txw2HYyhHPTGz)Fy&j4|bVR#hI(55So>(A516( zJ}SiEz$Gvkhq4Qovk*i_0Skk)7ud`t8JXj zj=c&<*7-ut%sxGPzEBaEc@}Y`U zOC|IZ<=^@AsEVUX6X~wc%+CvGBnY~0YM3-N+A-#tK4(!8M(Dc_bL4T6!smROG0LLX z=L=Ro{%{6yb1=Ly9?1qavVgbswI8K6nq< zSuE{7(E@}|{{0z$f?y{o>XcajcQ_e5Cu7j{6Vs35_ z+AS{A_yBxCFoMAlX@5_f+W-S%AY3Kg1dgbepC38oKmgdwsPS#l?g>yJ)z&w_Fi_l5 zf*Vjq80?!dvChp_<*{g1r--$+C0v#%DkH>9)^0UTySleS>i$|||876N)k(1stlziWo!)VY zH)jzKmMR*o$yU>y_hWdkG13i97DE-(|G^xS6zFx}z}uJA*)&xBr8P51MtS;eU4Rqt z!nD5}(Sl^cf|N13%|j53alyz54o=D(;uq=tI1Yti0SME4V8MvgD*xf5NRd=YJYL}YPo_~i#M_*aC{Ex3{P#Z$h8CyUI^fM0uQ$`MxQLiEq{{?`CK zqTp2Nbhk79UqpYMc53-`YvpbrvZPAV)y>nWn8FqQE4+b5wn73G~NDh;9eLm4nS85ER#;ZrkmiZTZ(fC z08``0bkDzbL;bPPCgB^t%LVu~h#Ci4NErF=@M+_q6zX)&LQ00IjXzjcAvAc{U_jyU zq|cGq=-Lw0pjX+Xe2QwXtdytymWR_g3r3wwpF|$_vYp@yldq3f;=wEtNbRkVY0VEJ zOCY}afxwc0QD=Lvn`f`nzw&r&yc9ba2n7*V`{bQqpmvYgFNk-1Ngv>APidyjiKV}i zd&6HZ6ld1_fm>-eXkOAxnZMGtwU^8xIZa!_830V=jXK_Qt4}$QCa-|hp)VA>Ht9Q=spAu~M3sdX zlX;ktl0^f$pAemXC->gwbn5m{WR|KryWIoVr<9)7b4LE2{*M6cEXd3R(wu;s&U+^< z(YuC1_v+t8PshkBHNs{$r((PXBfAS5g1XgTt}L@AhC2I)Gg~&q4>SGEzZ4hM@liZ4 zE%6sbmQ9fl>EIU4Kli$?k(WhoC0X-n_d?BKYjKH(;4H1mL+ z2pK^GCOna19>oV+ISN3G_$u50DP^$}cE-&dIDn)_M_S;L1sNXHr0Xt+1Y-BbFM}P~89nEHL{3LW zVame$C3EYx?p+J{dn+Twrq6?SR=hMi-q?RryVD8`)LE;mYgL;(uDLnWi{IPxA>~C{ zUA^nrY);R_gkm5QZ%y##N@1-%Zu*K$n&XE**qO;5o#Z#i}>+ zAXlq~1|!HH-x?TsTTFkzZ|nHoQZ3HMhYHsY65?zF=7F^fwx}+|$hPj%Gcrof-)a3I zhI(bk#LT>+Adi0D4Xj~uFAxx+qF!m9H{Y$I0v+($&<8oW#`)IZmC4HLH@_^-If*BG zqK3ZZz=R(xkhZtP0q;cdJ$D@Qu4KR0py|QEW?q`?2LuQN(P3#4tl}7mS4g7GqkiVT zWis^~s4gb*VfX~XP~&RDw@0uDQ1pGFc_l;l+f~pHg3uE4^D!gy>61J$ba!SO{fIc^ zKcZwXgXk2T*g<{VSyYb+hw5A0!?o{F{|81zjRZ&hT@}q|qLu@=U}^W9z}Uy3y5~Q# zz(P2lfzil6+L!nd731;F8E_0OSNhzYFHX(&7RA-QIP1II$bm`i?JnB}98&8B$~Cp5 zAtIdLk2m)nWPJo^W}C;4PIeA2tSu%IrD23L_aSM~vo1;So#)=Ys1B7$^W7S?b#}|; zRrKJ{Vb+KCZ&0DSn#j%uS}<8LAGXscU0ortvH0kR-sfBS3v(V}flth(F`0}z?D&~k z2~q?-1i%d-jf;}QCZfBZ?8>rK(7+2fXcC8nfyzQcO^pbtHY0vY0O?BBfEjd%uBl$r zP`r-6dDL9N&a;EBr5elBHIwlD9DqV|hhub1h+a;EB?x6oqA6x4?G_zJon)>3Yp0J9^687_M!IIK_kOwQt+QajJRT|pxz0K{RqPGQ|W zeDb6{PotiltCk1IL-47qvfG1gRA+dMb*`J!+#~Fen=v>)#nm)uOt-xd{t-MSvq|Fr z2QpGu`}nFCHCH)X2Sf&l${U z7>>9MbT-p9L|~;hWxw_cY$Wv!3=)C9#<|zQ2vjBDzVCi)D+WJKGT>vu3?76q-LNyV zYCzB=n}Mfl<;X@+=3h1rQ_X)1hUdvvT_x)1uR?`wnRo`sj@TI?T5G+I&} zG6SQ0olp^(vd)PZ2t%6#VJA#!*c^{vgSiSc#K53L=H{?K8aq1f!T1s$*}?Gq`{kT$ zHR}A)fu0|s{1^F*EQ_JP?;<|Ht~zX2!BQE6r*>GS_W7S+JO=>8N){pb9pS(E@~g(U zGm3eAyfn}xH5FP}s$$xl##rqdYvz8O`Sy$q6B(Kzu z-U3$>h+7q6@dB+mX?Xk9m&@ca!?d*|#j{vb0|TGw7^L?sM$@Np zZt@(xDvBGx^8T{QdLus| zy!6Po@vp;yQH18RGwQ)OPy>a)Xt=3KGS};DIyoojLAmNB9Z|gtLs%G}RzN#3Vj5*K!Nbo2U}PwiFN)H29Wqi4N#CcpqN( zR%{p@mC=)bF>1X=8_sC)A|t!;PXoToEeAp|zvKO;S2dN`qORXX98G?-M}9d*!&E94 zZjj6orU?2(9x4sY=AC(23G%c=Bde|^9X5aI8>aV`ee-ktDpGYSqM}|mrBJJZNIp4- zn6Uinwo2Tcy3F85a`*jX978+=$oX<);rsFFynDU@yq}i(pVHtk04$S#E%i7$+#;WU zW{O7FEcG*v;>EiulJlhtkmbpiqQSoqWX(P#L{=^(w`N($MJM zeRj@(;;-COu~|$S*1*vpHUR6Bgsh?vy2P#RcbRW_QDAE!*EJy#5u4R24oZD&9CyN_ z<>UhQ^z7`EoDw9ri1uSm2a>J@@~`CyU_xO*ZwF-`;1t(nr!!##LG1UmH;JBaW%ift z2TgtHJn8ABK=wHItl_wENx!4eESIBmuF^X}VnLt8Z!_J_O09m>8m?%eolZtPO3r zIM<;O}L+gvg8-F_MDpQJ>)A;VoqOS|MPQdp_k3<)$*#YYL`3%6!Rnvu zBlJ3GG83vVGBdSAJJkGurhty$@sm3)DlZ2YV+N7k9ug(=hi!cs&G%)cQ{~N3&zUMP zQu`?6Sq%O*D!YUyxwUVP3;QF7k~l&D`s>=D z=?&L*!v0yQ?SdQMv=9GhbIn8-GVx(_Q;77r?y@GQuHO zvjc3LJHdWUtWdQJo*%p=#$LIDYURNZ;m=xUEKm9;C%-V!FRCh2JRwagqQH8~d?%kA zob7!?*q=P;EFj~&*7q^fO~fXX;<23bM99% z{b_|knDMvn&jtVE_iA(K=sdOsFQ-m~X4zNf>m&Qs)MY-+;6C|-UD-TBb^ zcyzp%ks&G&@&{^Nc!0~W026SdfQtIX7aIof2-{f4OZ$N-2KIy^5QJ_Q8mg$QJiD~i z3?yNEcFPwqibZ5h5YgEO>{1BO0g&Sp7+pecu%>1rdirXK79LDF@8uQ#JDIAE=*h@n z%K06UIa&_P4nFC=H{oG_(nBmW9zU_0Ov4DCRE@CX3~}0dzwRsfSAZf(opu-t2kO%N zo_>C+U~tFz3(g1`>E?t?dQz3$IY4Buf_P0t65(*;ofwb3&sNjT-q9A}eo7iHU-z`G z1hgp{bDF=1Q>zhUtUl<{8>pefbwr$U$7R2o(NUM{| znUnrp#rP||P6s|@W!{41k_HgpcTHgHju3Gww+EMHpPVQ*p}@Hc0pi>q!4 zO2&aVvjT2=FcZ|+oo|h@${=EfA8{!T?(?9)@zH7cS)%E5cUN!_olxo4(f=Zy zOcMo3r=L3|^j|3f2?#`66d-m)23UV?k-+g?1logIltFO%Ylh?uQ40%3 zBsI9C#Mr%pryY2h!XhG?0QFvN(_gwkKbllhA}>=;vprl6>RKdmh&H^iuKjz86X%MK ziHN$~{WI*JBabZtb=>(1-9~^}BiB2YR4It&C?)&1ujln9E{;YciY62W(<;ASS~9TVC&SMH;%q24Mp*4)7M&)rEW+i&b2UhV^UWGw z>)4egej5Vc|Gc(#(&wR70ckTmtUvUeLx zrAR$o?)sN3L>SG&OQwFg`!pye0q=EK>l+?jDktNj#$h+;hq*bT3sA%J*i(At9= zY;-|^G;Mcm!1Na1=-cNK7*iHMgi;oa#~`x;#Ik-$J#E4)6Ju2nmIjJ z8hOHFSAzW@{wbWyK`wVwe1}J@b0wdd&Xx|+4ut4{@q~Cdtz_wshsW_rjfsES+Ezbu z;e2%=dkpHI3~6x#0(|`2xc5<&psxdOkw8g0jQb~r)01q z$mgK_I%#%Cd4sga%a+CCCeFYB1Js*f>SHl)z%H9p zdnrj8%p)yk?@`mLEv)r^eXCNt3>0nT^oCa_EFUKFaHzi@34%c+xghQU;3dDPXx`q0 zI8da0{6PK2n;+XhDBMx8)zqRMp?4OXD_e!?tQq{BCPQtqw3vnce1z`9gu2CNiZOLR za6s8SPG0>F+)O~0{4*KL_H*A0{%02#7xDPtF9sR*U#>pPIMl;z#P$&-m`Gua55yM) ziX~iQCkwo!AE#@&L6ZUbczs@pAl*byj zRHFQdzfsE22Vg^}MdYYV(G;%}5fQGv!;HT1`6P4Eg)|mII$mzrK8iz)njHXXn{|jILzj9&zE`)O9!pBEnDY7>81*Z%V(k zA;Bv+7*dmNr~2X3$i&1n19cEw&ktYXR4w*jZ4^0wO=^wwI1MirRu!iSbo`+ ztTVH`+ya@U?2c*5mw82u3}9pNp*<%#E#-!x$1%gC8i#iG+l+b?jwiG_+QCs#KBc8L zmCX;((Meyt@PfYVwf?L?Utd4;qK#5i?|P*qWo2=o?6S4B%>y%5u-oUGsP}Amlup5A zX=xe3sQUoUW-_ql-Q6_@i5eI#xCshFNJld0inb(%lEXsx>;{arvFNEUZt8uzSdCtA zB({p~Hksl>8;Qop42yfGSW)t-LA-eQ^>5TJSgFwCJ_DW-$kdTTCxTuJ@#F{9Sk-=? zs2HTxnl=Y~O3d^XM3IEB(f7+Yh(p7Y(vs>czdP*|lq6Tx@GeYeUpju))|OIM&WLoK z0Hr_5)_sEC&o@y!_SWAk+T+rDDtww_$4OToAH0*F5HBSYB`ziPSGp+?hY-1yQV1%A5Cj}zuRp2C{3%*Ut8z7zpSEgMT=NZ(id_NMN zIN%c^yjtXG@$z1ay|+&=*BAPh@)m9^dth+-o!+}kU&vSkB~2$tsaWIBS0AIWKOxvH zOO>AsK9$*SvF6Wevawl&j>Q(%F3(ipt+->sQpKNDr8@TyR(+a?!xr(|waIbA%|YD= z^6imw3rd(j%^)#TTP{}|dlGRA`yKBU3G{9$Pqxv`#I|R+=63jqoV##k<;&{Ho`tPm z@D}9PusdcIUuAlWd00`8dyb#n;KVZzfcs#IcqD$;1VndW7AF?X;t#LG z@PG@XIN&3T!F}usdj;~$z5|$pw>e|fQHM}J&xEs<(rQO<)i8ps{;`2lZARIaeYB46&kaHRE_^qv`{NzANNSrOf8yCERU=*hkNzD7sy3x@{K%liWGmO)<;Q6Us~q?NmAvxy0vT`(7u{ zmY}i%zdys8Ig@F5C66N3e5U%z(D=<}i|5pF{qYYz&#b>1IlTRr97{$fjDLM4@ICr8 zq74Q~!-7n__y26PYZ6TDf3u&?jkmY^0;XXGTLqL8ynr1;b*>A*Adt^5 zQhYvry#mh-8YDXwOm>>zX7KkFxZ?|39jidxEA_>xRtB|}SZR*m%223}haj=S@TUyw z`lgm2Y|Z>^aWOub?gU9OvFx1Pvs2ZI7SE-FElB{ske9~=8T)e%jwezlBPJw|gl#P3 zKASid#=xDkbm6ted3C<`hJ&LJOp_5k6(RvX>*rQqUGj$~yBZb679ZETStjs!!5n7! ze`7gpWUmI6vVt?IY_~XR=Oc3hhysdJT)^0&v*c8#T;v?vm!RkjCEq>6Kmed>fw~`D zp1+L^W{Zc_k@P?$D;cy5Px6J`u!LW{9Ngu-;JVZJ9L18J-k_hQxA+OPjUyyiKOjK> z@wWv=Fj&^lb!4@UJSM=3i{yvu3@lM=v2Eh>vT{MIQ~aLH4qRN~(SUWXdED3R zUD?BL)n1Qh3VWMIyX@7dtsuWM+NpB>W$T*V;9vtT?%d>iht>kVbn=`$d^kJ&-%b(( z;LBezf(Z$`@B|R)Dw4D98hhXL_^^I_%m>aO2`&+>wQL8(b^%`X4XKlfii~N0k|wVD z*`B*G67QD)fLgStnjTE6{*FQx8#`jRbq(MUNtTRS$#(#PpARk=X5`|zjr_~oe_sfl=${LFWK6q7{{rDfev&yRf{bnzRjmEUh|A0;>|AKpQMoR}qGvkV`#ItK#~&*jL>mOcyYdlR$o1tDTjvAjo$^szyd8@0NF>!Kkg{$TPW14gBF*p!5g z&2#oG`f-!VIbh2kA0MOWWxctVZ0r&XC&hX^XV_>nzjuqz!uk@~kJZNsNru8|DO3~P zAYnz;*TTX6Qx-(*`~N;)U34!E(WZbh@&y|HtF1Y}dkQR9q{C>{PI+EaeZ9H~GpgT! zi`N=c`rqEkE4t?jzmDMn^I)h(##sa2@Vi&vDpagh#cyYP-j$%BAP*1wH#6f3nrv|7 z8yNVV@zsfA+}!+BKs%e_*}f$?4ao?`T_-hlb_ehG*p%k;%O8;0ErhS!zH>)ovN(Ed zsdrd+a&?gAV+|n}7Z#COISTH)|;)Wnu^t*Qv2N5V$a}T%b!y-6f-HHAR=CAx~2>9DA z?4P}uz8pAlX%$wwF6aEn5e2^RzyrWLv)31x^D-L5IxnxbFLDULU9>+0{7)8;@M1J| zSNc`-dWoB-ewNM*4{l*=l?0-bCnf&8yP{NO_77cGM|?|9(g7RjxV(buh=?m=gPKSM&$Tm{bO+ZOlD zn|lY`;DBz)&Pe?&|A=p}z_FH0xr=CEFesf%b%ZEf7_JF_l68P7m4TCldvrK2HA@C7 z5AoW3@#!^Ns2rhP#9zjKgt2HCz z=jI5^V-9OxG$v{sLSfsMCwMvAa3!t#`zub22ghU>AQFW9{NCgKO9CX{MnC{9Hx@(J zl9lqobBaCn1}o>sJQyys;BJ<~kfID7Fmo9z1X$px`9c%~w+&YyB4egRPWKc z99n7}-jNG+1YI8p2*F2FMp`=2UTCS~88>%aB$wLwBO4XPfl55sT4bD@s)e16jqV_? zen1&Uv%h~kmMv1FmT=L8_nG+p!Io%)m7(k>U~-8#WR8p$A6&=%uQxaR^H_4W`{FtE z)2G`QNtu}$&RH@J1E^kuKfP3U_EW}QY4E!<7fWuWNm0Gbk@5b5KvMmw5-F*vf@B5G z^E`^86ULo4QwCr7($VWFy~mS0@lI580eh^EYRz9J!K9J0y6W2>hX=do>3dO5TDx-GMVGb2I`F!cxuIyBIJt2ExSt+H$V&|umI_JldQ>`Ynl9RP5)k+C(sc`q&8|b69a{&hV%V+_6 zqE1#J9Co6{R&qX|Oy-#xO7@H27Ks&~EL)guGNBI4(*CBBUa~u!pWpWeJX>BZfIK(D zW4QaHV1jIcUT-4Lt4&md)BtZlrnjf=U$QnFc_h~WYDYf0YwwONQ!c^94d^e+Y?^S?G%>QD^eu+=40mWZ;3ZlMZz#?=V0RuXLxYV zM4#8%x`e`VJ2%g0lmVz|Uer`grbpMD1H^xol{|oJeb!eLzxe8R>X>u)cL7zK^A7(B zPL!G&r+8nW<>oQzcDwb$R~OS}aE^SV4C_qen<4Ae?uHPE%-}jK)~N(CD1a&8Z~0&* z{SX&LVzq4*@_jo?Udp7RWE?3>{aK9$SbP%?_Zcb#TndBCBRxGGal!po2J8L5pKX_K zS5fF-Q0ejrbbMe88!V+N0)uslREqtAl6h$zmT<Zso$x*Ga^ac^ukMQXBga&Qs%U}O(y=LL0hUFvbE${0Bh{Qd! zyd^;s?xlW)lhs46j3?2yCkx@l4e*}SNA6Q! zcOr)EqtZtPW}#*b%sTbke~5?+pZ9eA`NLbtRFfb2#ULq%N{lYoc6Fq0khqe?LsGid z*KlnF;7NXOs(){CGoo}4Nj`s7kX$@82V4B!EGa24WMu4;a7#_bhQVB2b*=unB-{qu zUB9j!k60%{mt>(IX;ens2_VpFbo7bcUp;}kxH5qPs?5BCg2b}22msGF&`n--tgbX= zv=1|Vbum@Fy|mxaigIpybq(kVhIbC8C(66wme@dFfYZm(ffd)5bil_o5Y=OQ?!vZh z?aAw_>$&q`hheQhqEaa&xJ9ndfTXi=dO98)t7o(gAf|yUh&mJ&ZzJrx-ejqnPl*}Z z2pVQhq-cF_voG?c2`yYTd`G4>Fq;LT<|0tk?N&#|v;aM@+!zZ*_64*^x8c&NyL2PB zw^?%GwSzjSGI=me3zwKfcZS<(S!vgDg4CiRyXQzp6rV$ubwF1EBk@n znjSJV47SN-DpCT_82?@BoDm75vi$<9pXOjZ{_Qozk=v>@qlt-E3X;sDf)ZEbC~Tr@FcGT$RNdcQ+-ua?Y!u})cK$r{NMz+=F= z$DW;ifR(k7d>@rERZ>r8M**lInM-n0DF8c1Ewlsh4i)~3&^8_%TII0fH4*aUa0T;& z@TJh~L0~bu91!d;81xE{&=VGTPCm&>!(H$y&1T~@!o1masS$%@CZaqMB9!h@U z@$`LJRGxJHP1IP~Xa28vKfju-bgv;k=PJNL<$?v@~c0p5(W-LaU(z zwWG7$kKgH1Ch6#=UY0h zFw2vDunUabAAjGrCa1aEgjxT3F!V!K$=0&oZu$)&896=WwbgN4aBju)79f`y zh-lF^K1DfCeDIi%+p$b18n)Um$4qZ#`aUn>%S!nxEk}$K>WpK4 z%46H(hjDxBt#lYzcg9@Yh?2hJFaAakGLU{Tf*0Qqt)YOj4TvM~k&4$0JK(4`+d;93&K<}lEa1;untojBao#4h)`fQC+Pq1 z`izl|2+tEkgXn1QjxJ;Z8+Lk17{M6;!rP3;(Pcr=%`k`+6BBF6$kN{QW?V-uYR(K} zgGF~nJTHa2zFReCw9lSBTV7k+vrt97TkX(0-1K<5s{}cMk-@9^Cf3J5;)LgAR9`W2 zrx4mgiJ*s=wZ%VJ=Q06qQj;SMsB{=pM4Tv;GT8GX&lL*I?arjpU|o2(Irxc@YPiO} zV%Nkxy6c;6Y=Bz#mTF;~o_7Pi4aT&N#Pi+ja|xU_yD_P&gP?K-HUIBT3njbg3+4XV zQiGga&)Y3GtE?}-slKwO3K0PSmu4BV1*Aka4Tgu^^CRBoc9QwYw_ zExqnAU5`?>?%Qd!a0+}r%XaAaVq-kakeF5THC|H=)sD|B-C9M70HisZV7Xs)b$NzV zuA|M}QlmYt*+I|x9V~UBe<8so0X;$zLkrnZ+VtuFXN z!GJ7?;-FCfA6#w=NM8ZAR$_5k8O|o4PoSjqT!bVbLc+L_qJcq7JUq|z99ocz(QNO2 zs;Hz!VfN3MD?uBx5)ciwa2CH0**6_gEcerk=BPFTkYG(Hp~0kN27aUV3;X{1zL>-) z_6L;D_uzsJ^H6`AE-QzRv2N5JK+oI3M(mR#!1pV-O>|U5tuuCziYA*&`R_nhcJ_GD z=-3zo1djru*S?q5wYS!gZ+srtovgF{d0!3UKta1yAg=-zfn`=}xZt*nOt1-^A`-3E z!8)M;3PU*Qz~~&&3IKZ?x;`$VJFO`T=iBudNXQWqR0&vdt*y|1v`YY7BA-jE|J+eL z*DNgLijx3TQYbLTFIaji$nX+c=k(8y{Mf(XJmJ3%1Uq56+~ka%_sqJG#}OVM+f@~; zTmCb&{;$l^7~!<6f*@F3Q_E)|nCE~|{NhwBuubgfW^XR(Na`!Rn81q{a5TFE?k~2= zD(1AWWUw<90Idb=7f3MOD)e<|lQ?ey9Lr2REm*wP! zpBKoYzCx#AGY1Dy+W7#r+h2ZSAAX4APqa1Qy<=o_Z)aTxX7dr!1!M;EY73vST&_Ri z5cCJMPI<-gz1g#_WcqU4+whel7Cx%juC8xvd{uP)N|tz?Dv4-&PEu=J$~^pHTSkrU z@%=DkHyivlIU`W`C0CO-r%G#k#nE+`Cu@0De=TcY=CZ_#3Kje9LZKJ+72o5+S?~F@ zL#DJ^rN5;RlfKEyjcRg%7kJ#aWI$P&HJ=FnxmiPN{)n#;i$iUSF^D{E_e5WFN*&uI zr({n{ph8m8=eA95Uj`k0wY4@p?Uk>zeiRFnO0+))PDZy*z-z(Z0c1cGd=oPPfYI)W z%oT2GMl~?(?@N%n19ixzmw&qY@3Jx>;>>v-h(!2yH;2lPMtu7$cYE4m+y`;~UVsyK zq{@{GsHl0sX`}tAf!+^5H`-(3nfb z^WU!Z%Lzhma~CP{{@{4sv$W@d-v)lmKR zR-S|QkLUE6ceh0Y5Nrv+(pK`R6q+>1+%Yp#ab)}g$^kb=E-AAs@f@c2WDmUJ6@25T zHFL#ixbobcE1%es-*DVNT}GKL=RcRjIr~lc)`%3+R(WgNF`uX zi(RYWd`bu;lGsVaLykZkr@P5=hAySMW^T9yo--=+p|76}h4sp)p;O{eSdKi0Ar|!Y zy$7TB9(4M&7@u!!B8pW3M#cdLTvWiGr=v2BdGKs5vR1X zkRbB6smBY{L)L{(x^G#^WANUbIjyPXx162Z|?Cr(y6+W-FCOxQ71J>Ejsrsm;wN(d*4A=zb;HWVA@R9?d z#-?(+#YT@QXxb4JYEGy7_sXkULBjbZ+Ug=c2nlr4bG!Mw<6-dE7H;9ek|a;1p88~J zV*slTTwzeLCs8q90AEs8*6&6M?%{yp?>BkVt8N+^8X^iqxZtB=s({+^VLf&X^NOctn_}_Ad2>jg6;Y z?N{5BBXXkMK^FJGapyXUWz7XA#OXo)UZKOLDi8-o@@(9!9Fa5iw1AC?2X8yfPqyBn ziu(HRmu}mDM|AGVK^+($dIs!%>#}$pNxv9f8+>!6revs^;av!Z4y3gc3Zr)R_aQHQ zN1Bl^7lz8VFnTDzf>v?^7%#9(zC<_muauZcGLu#B>}ph|nV+nyCY6$;p{e;9*dy376+|UZ zdoS&oAa&9!k4PY+esOwDHH;Y8iyBarlucnJ?kGd@YeDaEOo&H-3SO};KSt> z3Zf7Pvb<9ns2LSpmk%H|$G&;DPa(!7?F_bU0K}1^1Bfs90D1T*d`;I){3{p{_6D?X zA6z}<-`?VXHG}Uj0u`wrptTJ3o2p{sEzYnn*N~pxsgA&OI0IHj?5LG zjKC2z`#7ws6+&u>Sad~vmra8q&VlA_w1{a&8;NVV>#@Tot7_!tY}0VbHeR}i5(;KA z?*J#q?rNZ#8yDv-FKIMi8v(B1{naRt?=^!CWj;BlTHxeKAlhwg_$Ihjn3HsMb&fiwZmqJ5Jiyt`ZSwV8zDdAVs1}=w4UVFMb-l!Gv!giZNcQsyOwAs!( zJK59vhLVRU%e5sNr566p6#~(~A{2xD`0+#AWYqdr%KyXrVtlNHxJl{ffF=O6u-g~F zT(H;oZthNiGu+SWP-vY2iRZekpg>QQWm<+}41KsoQIPQT^P_P~P)mKPtH9oy`t|_` z2+_}ez~XRn?PZdtk&}9C z)km+hk0)5d4`vj){`ve5K8JX>w7p`~% zgV#X9v|e_CP*Ffa!I0EDNy>37FZNhhMa%MUUm<(*`Yp12q9~E9+bm{v^=-JoFzN15 z0OX?e#>%o2R8_L5VAevIWk>;sOC!&+k2~9_)U*d>s=_9YIcYnOaf$qA0R|Ea{h`EH zbmB%!dWK?f-N#fN;Lm{<1v$#W;o+#2Ky)S#C|>t!dmAFN+UVe|ycZG{0P$>~5Do*Z z|A^3EL|IME>_thC_ zH3QS&=deloC%>+w&vv%-z2UZox8!$bW)C6oQ*WoMz34XHd-$~-K_t{q-(((;jDwm+ z4$KWONKuBoUiY|+7d~>ZWu5!PwmDFk8d0&r1}%22e}Ni z2_9_)2JM$tU*Qe_{}oJemwSgrVqp2*U+xx5lzFCKCpF>2=-kJR;u5IY)wmhzw6k+3 zlUZ!wual^Z(7ZI`={r*HFgTM!(su*yBhTe$guHF5wWA#_TmkljP(URH`vTbbM0YeaVD)5tz|ojOzu7VNcz{pyj6* zD|~y~&4tQmd+=Sdii%1!CrnN7=KB;zr5nar8mYza+Zk=t&BI}D0GmhU;<$AG)TH|0 zv4cmVXstys%q)n8cv5_vS@Ak@$uY-OHGs^WThRTNA_eu%`X`aV?!34-G7u-F0%3SY z8{B{AJ6c%e)$YzCP(^^9f@Hdjlf5krvN2c^UAeNWo7UXltgZ7^`u;4RUIc4LvK*uq z!y%0YOSOppqUoWnz5OCs`e=dAgnatmo}TA0DFMmZ1YJxh8vfUThIt|1cg+deyUfv0 z-Unhv^=G0_PX|(ESALH?Zw7Y+IKg-KKlftV<}LTfl(fkDx-=3Hm>nJdDb^qSc}>#R z@zwQ~FbP9azPA!8JTJ@b41t%8rkeyoFU6J+=*fnSztcxL{d-)Jknm=B`t6-Ruy;tp z{}hy1WOpjT@nir8< %H=**6~{xGZS4J*pCxvLxSdHUUWp=#z#x9f+1Hu1VE6Xf zJsj4WUtByKFzUyFw+USVj}|tT?|bNv+|t(^;PZeUFco5#Yfh|B_d!y!;r#72Y@=`! zg~)1-E)l`Qz_DG`40z_%0rxu4y?5_Ifd~ZAnu5a)NePaRkM}$!Vsrx$H~2*QsI;Ss zOEX1NEG1^%)L84=J9-2KF4yaLL}wVDP`EAsPxLYJ=Xu3Lq^$Bv1Q7{<@V6e+{EZN) z2cGnX+FBG?hM+!A9#GNo4Lu7Bq)!6!e|10-`1tYTp9*vkSf+inF$#h}^4{%+XW+yH zmyr`N%79;@Z>v`~@zv~q#ZSat1=$(Ob5Ki?#*u&Zm&6|_rss?=!pV4;`SwHov+v^0 zCll0gkG*SOO}$~}99!L2!^OAVwCkeGjiZ#)ldB~J*&Pk=(r(m3?s%EiEGjG%R_q*z zJInI)2yp`aXf(fw?+NvZn_li$T3SAvor091xsJYsL<@yw_!@?8HK1LV`1YyfsN9dKE} z9$ql;v7o5PzCv#b!T=Ct2StFPbJf)JFZ_Z46xWab!31?cJ&212_H2%tXkp?0nVH!R zpJskZN%Qb9A*A-DPDKb&3JQ|vzi#Lg)O_z>)?WSDH|qgwUj5nv0m)sM281iHzbR@8 zFL%YYwzt<8hT^;6-Ue`JA=CSWz>XT%hu1D8N2Lpv4)6sCo0`&1Lkn!ocE&UwF)?zl zz>?KFRt*^^(0-U-SXkfO>ji_Jod5WglEz)=KHd2`5z*b07ScH4c=y=+O&BDGjp z$~;=_O{#bQ4~qAn|GbR5cOBtgS;56^w>=g2@1GM2tQjC=Oa{vr*%lCCM8{VnuHAWQ zIo0M@v44AnUC=QIKxd3Y;_zw%UoX&~rpY)%eCs}*ykzeL%e%Ml>u_D`zEly)q|-s_ zxQ_PNnU0SvY9#-0=)%?Iv};1b_o|^OvrSef(&6%Q+};*4+HMC!cfiUO&+AJAAM(9`MwisBp%wJV);}+- z;1{dNA<{Pcu{zN>`94eh31iZB(6sVsw=W78;Q;Yn0C`VVJuo2?5ut6MsD%N$LIf(Y zng1O$G>t^UuVYEMg_dWS=E-J#EN6^=?u+;2kXPZP_lVFO!ck4_0yjk zq{NeTccYYFIB8ysU@ZiuuQLYCO@*x?fhRF_w9=Wav9S?uZV1PNnO+Yrfll=@h*CzH zKaAOlQTd9EOe3T~oWGzW{!}fA;+vNI8_3ar`t&IhXaSc!(p9T_`XkLBbrLniTciEe z4_cPtB8s%CCva0Zf zt=$E-?`{NFrQbH{W4-O~-V&BYnn6qqx}M)Zl)lMnen@>+p_p5-F3fKl=yMcK5G&O= zbLJ}hWWaRlXkE;cHk(^%aKuj{sjhcGAt8I5pliuc1fM`&mDzIXfH8ZxdOlk8MxB`S zyte7bOm7|W;NNDSRagkY`Ui+(*WhZ zax@YB!>#e2!I+>+XSuAEg@#9@XB@0M$!R$`MNijEYzhqx3})x&(Q1Q_lT;Qat41rF zEc3v4!v?DFRzCq>Cr541bB$PIne@_c@r|im^{v@CI)6Xk_Ehb;5C8!>WEz18^n(J! zQYPPViscyIW?!ep^+)6%P;6$2ND-l{ z$<6HoD`BGaQ&5fvo(lANmGCq#8yTJyZuijwedc%Eu7`7TgP;gm*IYzrWRmB&9 zfl(G0)6JFSi=!gb0Xosjk}X47Y3A|~Wm(9qN&Kw8wMa-w5C8`~I;7Hq0m>I-TOp7b zN1NdG!c9EN0mo$GH37_`3_c60icEFQQoGwbug_!2AZOeO^_XH2^0Paa_K^-|@OUAu z^K!DXiOe!3?th7vj+{0W9Y@WRwgbX&xO$NoIrxxZzW#Qg(0fh3)*1i|0Z*<@cs|#MnMT3KM?WqtJj!lI$a>Z z^{{sGZ*1%uu|s1cUUY05bS+CkAt>m+uf~^TRaC^m>cYXn0hySyo12~Rnh(8u*@*)+ z8Cu)g5LoO!A))Qnr91FqZ&Eow_tWsM?inpg;LBIo%_+-ec*NLA^N}d<%4TP$dDDjY zH>PnAQ(^>+@KO7D)BgQOO&6r~Ywnx)V@4b2K~oN5?TM+R2@eOXqZ+(lmio(kb%Sas z6Rn*_r?Ysc#ZNWJ`Oe245bHh(`6jQiKcIZe>yM53Yz}P_ro|#q7gbL{n?PJdTqOEZ z$2@N8@F{%j$H5fUeDaln*J4Zh+vPT6!{Zz!Hi%JzCSQ9Xnms#!f7t&4uWI&mEZP!TT`Iu_Z z;}k?wd=KZ9Oe)rat?8=I;Npqe{aiYZ?4fBf7-uO#&Fc|yPwN3SQJOX;+ugw zO(CJMM8>)XEVI^*hU`?Lat4yTGBSGunwI^GNn;3=6Sc5lf}qRP;^OcKH&+fk$C$it zts{H}{F*}B3oZ^!A>G}2Yl(P}LI(pE4)CMBYXa!kuUjp5k;z$ZH#v?OWgp3M4u#-2 zUq{Io`3qO&?(y-JeD^^xEF=0b^Ql+4gnj>xi+HdgM-u=6&y4;5=b`ZY_;BaWt#h;| z_wPXYe6KOP8|V9bnKusxOHQ~)Sb7W5z-Xj1*l2csHhpCXIwVMDTV#%V2>>v{_(LIr zaH7mgu$r>+4CpoCO{k9Sg_9seBDu7pqR?vg1qu)Wbzp*q25a|IZVpwP{#C2qs{ddT+OmP1FaH%asnl!3`pG9%{}>4T zBZrdl(9~mP(gxI9TINg@vEZM(3A)`o;jn)n^p!eCSq-xTB9Z9X*i6mLz^08Bhhp+1 z#EP56`(jtTb7==$-+6$?pB}8fgcHQf(r5p2<{G2O6sXmUMH+QXwQIf0`lFl|?w6gM zlydXg3JL^R)O@}-kS>t3w4|?~2;|2nUT;)vY-~3-x7X6r&9${&&})?sZ|cRz+AALz z!*?N%!+Lk_)yCVm#xisey8K%+U4NsRs*S83Osa87H%sHQ?H!}r z^GgebfG1__!KCOMfUpLNv!P&nPIG5~7^)j+H#EM6)wC@-NEA z@%HxaBv84Oh<86yfv&`sxJaTD3cjNm=zLeTCP|W1()Zd)@J2X3D&)qdC#$~3I zd4B>^MZ(=c5F+RxjD%QAYg#e)P-qddF%Uh++S;07Gd4MY3kZY|%@FwS&)+oR{;#b1 z-}ZlivTMi%@a`S{wJoN~lh37RkLgd3mfT!ujQUwsicImFgDI}so1~?r452&(&MaM> zCwjUOQpyiVcHw36m7VZA?L41$1k48MA_gN!nu=^H)O%gCVt5(`9=RsvvD1WL_h8&> zL~~17+xhdw6upncSS}L#m2_k?MuxuUR4vVkfvK= z?NBo?egYwJa^X9^^VpbW>y#f#c`LsawL7wN66>2b8Mo?(8X|k5LRZ)SaciBx|L-$R zYQfAu6-BM8&N!pxp7c2CT#Zt&l5#<1ImDyf?~S?M5JGP8b;k-iYOU#MgXPm#5quGe z@Bj9#)`*MBkBPxB%95E^ttct4I0zmjc+_4c_wIDApqv8#1AlxBj!!WwvAF&=vK9o6 zBgZTGPVXOv6@cg*G9`S4?1+a31`wyAloS?H=eyeP3(C0j#0n+K5Gy!CA%DFan1$#f zj>Y@A)ef1X))+4zg!1!&&>Q2&V0%9MkKWb{GV52=5Qq>4q7-BehER)fQl+Hco>XZH zDDe9zie{EG{iwFHXpnTO{&wpGa}SdY!|^7xr8+hU>Nk$Ir?C@vK=Rb+xa{P}>lY>u zgf9P4LGvdR(6aok4{ML&X$fmf6~us(?US6hXp(TYBGm~V)-jC&9X|A;K~SQep&^1_ zC@M1UM;fp`fPhfYJ_qgl``evSU$^8_gTI|T?1vnaCB&xXnaoRrs-}1_AE-Y_!FN(t zWmmg@B0%{wHT$lA@*(ZwjK zw&yoCCYFjWX_3ZJh-pLhlDgbq<^QK5nWdiowDaNW7y;`R1r21S!UoBr-}0?SU-Eyc z&<|Id|Cz~tK6SOx47QNA-|gJ&4Jmyd7U<&U8N7N~J zNQQi;#pnnM2U2N;CIW71Lxl}Ma!|9~MOd=6r&9Y+6w&Lw8J10&y+L7lQItVKa6W{}!6aUd)m2cBY}wI5}v;ykU8EtT!3w`gO$CZ)Qv5!Qj;0bmflC z3AY!z6tcMrbL+;zi6Srbg+nwyo6ilyMIR;*}sr3^6zv#mnZ6b zSL=@hL%nFC*C&Pp&j_3y(I2MCqkm17qokxPb=sxeuDKEfJuWZAfe#E1C&|!_0y;T6 zJB!r8cEk%*G`gn^nhxb^b;H7_R(ijxvJya*c?w>4Mh1pkckd#Uz{Xfn07OhcrU=x| z+`oUnr>o_ggfrS(;XBCYVyOq8od+ow>P!F6HqK}i)1~!GEy^j9QHazUtZ$4>?cLqW zNI58!owPLQ{xJ4qc%s{uIRBoMOOAr&mqO+!`Tn&06)KHoIZV~j}b2|C{uBT?p+6+J*dF;U~0Ab^ecnvUM+l@Nu?$e0Y&;jpuWG4@)+hCdWY`bFfi zu2HOFX(YP|F31*mHO=}|nw@sAwL zX1j68{fOQt!!yzRx73@;L20gd9MlxdwkQiOuU9egQ!5lX{%WK!2u+RNe<=NuW6P z%uHKaS{}mT2@Q$>Q^RaALQI0pHSo?Od2F!8Ist)!bR;!2Tn`jQd?w&b#Kz6{d!Qk( zYj5{cGd-}rl#rqu_GJ|ak}obUhS<(~L_~gZ8tro?uvfuB3H{)Q%?{gBoluv&vb<7@ zJuhm-{U{3Fr4T@5a+3tcX}>1M1Qu1-z-yci8ZsQV2>QARA^5t@L1d>#;8vXiSizl~ z{dtn=TS5~0y-c&R=&+Z;jC`vmMxVSBAMH{b{8<0;$RWR&66VpHVR!EC3^lGBdv(r> z75Qziyq^rhD@=K2)BR|R@IL%VEaQMJcfdKcf{a&(vgDsQtIi{V>o*ojgg4if`$9 z`t1lvL&QW9{@*ka{`ZtA@_*>qYougFT{VC9B-qIwCjR+)@P+PcGA=+ls{v}s?~M0( zA+c0VJt-~C555^TXT?KNrcXk&AL2mU;!7x9g&AZHqSX#I$N5p`fNnymoS)9^tQ?;@ za**8Hcx`M$$7O4CV$osMWu$Mtw;&F&0LIhR0w^HZKnyHk0k+~|3W88*&WfOXg|^d> zm%EPklvY==rucVgBqN`@xbVU@OAGi4)D&3HIPw(S;3(=OO|2K0fWhuXvSOi;#KWT$ z)!B4$E8EjgEnYN_dg8V zW^p@4mCni0E!YH6C;xJJ@tzpYn~(9Dk~_8FJVH*ZoHdXWqN=GzD05~VUVXUrxZV;Ti zsPi~iTgDRNG5d1K)i0uMeS6(vnu>uD&kJ#a14*LkvPuo&Z>0AJac0Lvv2@hm_z%W> zJK4aCb86m0SclEX1n=dfI-IP_z;A1qXE`a$eJP1E&upxHel~voSoQa!zpqJoEj23p&jYy7+rfH4+Ao4nv? zxX4%P)>_=FjAHyn{KJ%kzDrXyN1?a14OvTpA^{2Mr_iXU<1}A&emBp@E}%Ci^SjP5 zU`t3Gstic?!N`!6VY)=hceggnBF>tfZ7~pI7zM6}zJzjgS65evA~_TqJQhlX`aJ;1 z*D#LlcU)68yC`wU&^xGwW?8u`CJ@@`|NqyAEBybX2*Q5mdFh5|5Pd2_&aH%e2KMf_ z#{d-c-AGK3LNGGB7yFv3pB7jopotrL0;MR>`Kn1-KEvV(PDNaa_J0SW+`yaM!o+;c z%37cjl0Kl2J)d2a=0&?}UqH*w69$haDxXATUl~;lrCyoyev0PIjg^snDscMGfknO& z5>b%YRRaH&p04kjN5${`J!;JebJorhct|I%K>TU$Oubpj==}$1#*O8pni|~q5VQp<$)ZERBtN3Ce8vFx_ChpT^mteiK3^r74yz7GyUen!WioB(<-k$HMJjo}6F0SwR{h3g_>Vo06` z=40I#G(mbU!%G%}B%@^={5D^5>$ll@8vSp_lRb-Q9l>Rfo>(K!p`j_TU6z7)kG&tG zf^jf-`CvYHVQ$WN5l0#|oJ2paM}ecJ(D5_wOoeSAfn{^D$hq|727)n;myNCX!grYA zu0cx}9sIgd=+cetDJOHjsqgsONd8!3iOM}?D|hLe9P;Tqb$JmgFV2|T@SI`D!GJwBgsIPFgC3`teIo$jPYM$i1XBQ z4p&^TY{a+yG3kHC!t$uFAR1l=EbIBDO4z{7)dAkuv!LMSxG`(taZNYG4+d!tK2PYC zfEBNQxHmq))`+!Z65s#z=UY1k`G(y;cKN3(Xu%IydA3#2*~P&=P`c#lf z;~gIMGD9^S3P8Fs2$>$Uv4whGtZPN8DSuPdtm|#KPabYe_6>elIOnW5xX}JIMj<8S zh{Fp+B`uIZm6e4F{9|$lieB7`VyetH`Q%PpbKL%DqK&1mP&wTCgMH6TH8>yTAN6T| zdtO|ZMx>^!I6P(mN#C||G})gpsIG$KEtnCwxy?~k=)-poUuVzc2$Rt6bS;wDo$-9m zW*M8aLmr?{b8AAx@d$oEi9yVVa=TB3cMtZsve|5}h`bD|GwwPpM z?Y;D4$ZWDRJUrYDutSs%KJuod?*#ai9;(nFo%hOuAK8r>HEi8Zm9`mwGWUczE@2g@VZH z{8i-rG*~Gp(6jR{+vsy4ppQAv_1FS3HB_roFE7pzm9M(Gx~lyUYOJKV(PCLUe8-W~ zuTm)-w?zM18GVF}Ll-+dQ4r2LXEGRceDiP^nltd5mhHCxV(W<+W1MN!1j09u#&OFp z_)}GN_mr4_W#2Tqw`!+S$@W_C6%OU|qz`~EDzgn}QSiY%Aj35L<@l}lB*?H~-|IKh zX#%4yq?0Ye zz@V=7EC4>F(r1pmcmjOiG-X?%a?tux2cvk}g2woY#bS90I_Fnk)<_$W=;8*D&>I=CCEL>eN=Oj9q-T~n7zdKM#` z6Wkcok&$6IuhOCqfeJA|ypM`W%a46|;{d0fM>$0j^Vraj?NNo;bTxX^{_SQfR<`66 z*}9P+a%JMSCu!OJC7x`iM6k6iC=AOy0iXL zzb>-oWc1w{H~)m(STZz(4`LRuExY6sFPyGe2y;wT>DqRd{iz2m6rdFT6_@x( z=qs5p@_SaT8O&)Zw|uFt3ZZ`oValkr?ZqdBl`&eitv~E07&>@3ZE=}+t!w;Uk_%LH zs*$oE?K)HlyKr7jj!@N?h9G@bprmYUZ4aBtK`EMoR~Tl>VW~M_(Lc?@^KJO_xK1I$ zhym57tir~5OHv)Yo^bmDt&`1?E5-#s0CXJEAzK=>;UeCHcW~$ zn+tnuJdmMymJt^CSaTe;7B-QqsN4S?v?mnse=vzoP(@T_Isl#5WdDAvhmGai-gfV` zj+Hh4o2vQ-@YnzP^$UodhVHUW#u@_F2cIwBls{`i(TtWQ`w1<|qvBG#sV(N_6VX*x9L}8-!Y|T>gsWN+YGuQatbRH2dcm1r$=1^j_B`VlQ0qUwXJ?ByOukVb# z*hKdVg5mtXiAnSvv|IC^J{l{e|Km844LGTsNy0x0_togbh>@1dl*v2jxWP`W3}w8! z`9x4750^XQv+!x6*>L^Q0Es%gmxD3too#i1okC4Sp?)harrk$lVBU01c-HH;^_W7f zO{OHnPY)W}TJGWWB*sx|1>ez@pLtz{SM(bm8~*s%o3(8og39MxeAO{pEqRmZWf5Ah z0Uwzn8%f9&yO9R~Ns8QUh`K{45SI`xD1V2EHWVn?5iD}`crJ(raQP{dd9qW^>3gau zB?x9*OnX}$)d;EVYH2k*y(x+f^xAmZFADqo)erJ_vB|T9 zszEqHHm*X6AK?F#&hRSfw_@&anq2;Av_nwXp6JEg-ydCZrRD9#WW^iw@-M`Po#LdF&9jZw)M5o(!+}b$f?Vm?4oT+} zS0%`x>FsQa9{Ht9Lw;+q`Hbb%8Vxi&!wb)=`|yKFpo6qq;5hcO;&iW_`LJ6i+2pCe zR#yicOKgQ|%LH>W791pxF&b8N^|* z*cN79-f$(cu~{@N^HSr%kVVx~soX3!?6FN4l-LNn~bZsKtSVR(!7X}A*CU4jXS^SR{VA8m{g2Wq?EoUtC zptxaMUwI0sfTsK5yR0m7qZzs|335TV*M^2PP^<*e`j|>eO7Qfyw6*<$ouK=VtWz7P z>dro0C|mJkQlf1W$1`#mc`$-}t#yy?XW3JR`G5G4H)F!UZynyB zzUoHiQ8Ty;>j4CTJuEEv0(VqCNJtp;SuK_pLbT+^v%Zal#=hzP1y|EEMRqbqW-@40QqyZyw&y{pgKbzNG|V&wt+1^F{h$^q73!)gZn z^&`X#Bu8k@&3r(s1Oang_Bcy%{roF0?xhPlP+$*_Sf&s+^m!!qQ!fs=B z#p560AR4NN)KYH1b~rgXAs=lAT5Su!lnM;Bn2inKx|pCF2H9!~;S7>+3X?_Yw~$w+ z&eWiT8oqE_wHPn&KN-~&xaA+P40{zJYr&HUF64$Zpg6YwBbKNbs;(%U{R@Xr4=E zE(BM%k#uH0$DqEB*FO9effeY}l)G!)_aAE}CSCDMW>2I&6{kHsV#;{a2TBx>Yfzdd z{Y(CDBT~YDhCjpTVzIMJ;gG_uVorF97>ngeh=@QsAq8tKU}fCJk0edKT2Qk~`||ag z4b71Pb{NPZ%bJDx;47!zP_5UUxO)tte$F{c(m^!I1#C?5Z9X^8&(HsXgz8#$-WjOo z_aSz*ctq6F%q%lkSLkp3W;*4M3U3}1v{F$?{k5Ux7fNxcQAoRba1>tuG6lMS@R z^;hH}IT!HE*h^3Y`b4SU#|^$m*2(>IPyoW6dN8eohsV#iBVPNHVA?OvpT##-`X~I3 z=WuFQ?zPba7k|r)ifSmB^ougB7f(!-HBbp4VQ39sL4R%cD?@U^;To@bMR7t#;N~gB zGEB6!icu1F7K%>NdU6G|Z&FI8WlZ zQ&5zck{?n!hs#d9v$uzYCjf)y3m(gFzXPK3N=j(Cxg()w0$Z#(m2eg}pb?TGaUVQr zjhk@0SuFdEIWr^r?8JM7h@`)_4Yx=1I}ARgPA(m7p>7}_gfx&{o9U@ap_W{gm|IS8 zbKR%oV2&-T^&PgfHJFlgcamp4BMFX4loCs1t zZe{gPzI)!Y4ZwD1z--cUbC@sQi_<ufRWfoeF6O;|impt?J7b>p@<^sS9{z@D13PC*ccMB;Qo!!x+mQSx z3Ur2c>ykrXs7d2k{Il^y_ctST&T-jq0(s{yXqqGu^FgIQ?O~#Vn$-pXvo9UVW@KKl zj=mcNxoh52*6?dJTVM^H@UWqZg})87fkVN>Z2>jy&pDha*9Y5LWSBLD{BK1Llu_}~ zd^IpE=|W*p{qvf63qnDFOArACRrkS48!!<0Ahm_m7EATgrgkIdLYRZ-ihO|3pIP2b zx@F}!7;Fv|cA&(7T(loy;jF;g-4LiEnw%nYHfPjwKg56OgPE9>Wsq1z1DB8}Jch7U zP4qL~V{cUX^Gg2wV{+mnUp#rD!*LxXOx*aFh8v>b%6?G?%6J<4t+a$~Sfj?(Q9$zh z2n2=DOA5K^u)ZgaRjguka?EbeHB2^k@2GE+6G{BJ`aIcc#+N`e6V6mqs#oE_IL2Pf z7hxfjDf3g#43gg&_BR_Bo!L&TT2SC3enk_q10BTyv83je-q6CAsg%0}k2tcy5Qjyp z@i+r114Y*zpvb!oL<^)tAYN_QX_0|WMdiVb8#fTR(ELjUoEgXy4bn8K&{jYH-lj*D zZbx#NlxgbebB%0-vL@^dtCMKn5}ok%M|Gh1EfYaYii^89u-xAOlPV;co||cpGYy{z zs4d}}d1+w(*(HP&F*EBRP(bBY9TCG@j^m1@Q>BBaIQ{_mtg`*jJFbI9Djv{ zN`Bveepa&HPvUqGG!+|5ibPd{v#{OGb+>*5$HkiPPXM~wN72Hcsf6H|f|ULvX@P*N z>m(#3;Bve3{H6I*rIL;tAw=E67}h(aUlYaqEpFk!(Wwt%kDlY||K+u~thh%C4kb@E zK|w(j^^TSl+2lS;=SzX*{z4fu_H2t(4=7SRfve(#hYm|kPjBkMNbcy+Dri|M-4xaS zWVYI$xkCIgB+eNk*4D{#{4j~e(09LJ>4rt{b^rn6-_Fh5@Z*vxmjFQFdSD2iPWftC z9L8Hx?qeh!-%prZ9<^_m$XFw~ei=vy%ug@-cnZZk<&KmVB9N-e(?rN?GB=MrCt2L_ zNnob(Z7==@h1wy0|$A`BCK8TZ2f zMK%qX-9YNwVQ}-{Poa7EOZD-z$vw;W@3Vx8!Q(;?!_HC4FVk@I(n^hv&Jk{l$6A3zA1@qhtXO#h{VG2yvSqA?NmQ5GD+z4_oDA@u z=wnFFft~%Y@>i-?Gao!;Fc4i+;ks$djChJ0)XOrGA$m8*bi!7 zV{^e3T4J-W?8^2+>-A1*i*hwqO)jB?k;8hHMng+i3M6v?(aPDJlbcJ+%#4lw1_QAV zYz+TUiq&}c*2MtdA%(`xWgg4XW`FnK0D*BKC1?)1L4g`E8O|XCSH#RZ)RrIAM5H*{ z^3bDu{VuS9W}hyxmltXbsPHxwUUs=RP~w29F;U#))N-NyyIF)pG7`Q7aWI#R^Z$ixpF2__ zCO=O$CMG6CdsS%EU2tT0odW&O{YT(DbUJQ(J7X>ThZac`1nf^Tiq*TQgmQ%7>>JJ& zBH-9sBHT$6S?_@amny-~0uERmlo22 zCEN7qzPg9f_14CTuSsk)v&ZY2eROnXVWDE6TKzyaUQ((E-#s6{*C=-&y^;9Bi}1`T zX~_8Bzf-d6a$D(XB}&}HYisxt^h8J*;`5TTwV_?hADtEejSM|eg zb3WBU$elYy(I7x~THd=0!XIwWOMWnglM1>;E-dK7?7lKt!37-xwbRpDo}F!N5~4w* zt#K`{%dZLodN(JnO7b3NW_-bTFzWIsTR8czZ9i6(9_}Be#S?*wT^I<;BmGE!%RPl% z=H^dWHt=Yrw2gE-;1i6AvW|j2vSpLf)~xG&#y9*lf9wmC8u$%GUbL3cbwHI0Z>`& z<&MvGwV$|?ZMLRmrMzHjZtb}5X+%5srrn>OsZP@HxvBGwq+{~B*K~Ey84}C$al9Nv zePZL-0)aix4q_{MLt9-%@(Qv^GB;^xXq;SJ1nqM?ML^7iw8k<;>?0G{<}@~p!0ffj zUm2Esd_rVZ8X-!ngnJl%6zG6XIEqFhiRR&j%28N0*&WP4DG{h#;L3J#buA$!f`stX z7vJpfG*T>Ga4zBlmaqg=9!M=diBLYGruK%CXs-43`T3XdLxE^nc0JZtEa`$H;G42y z7o5Ccq5!_J2Q=Q!YB97I5<(Q^qpI?X%*y})0O_2hm^gDG>;W0Li(uD~^==#)9esrB z4>KOFNOhicm8<1A}f@VydG0Q)` z*>_*r+YhkQfzp6VDI>425L%BSO*D9Sr@~^uswA5!(>K-k(LbKdsmPOpRPt?JAO639 zfB?PA^AjRsVyN-%gp<_-1SnwLy;^^vg6I+9WC%vPxfgUb&u@e?Mrr+&nK9)mXu2gW zt8Y3NmbdA^2VDb9aWFA}q6{28g`j)~;3!ch)1>Fs4{&-H^X33p9%U3i3s#=jB9vd& z*Zk?8n6j}|79`4U4`>1Z{nI`f;3`m!+&)_S8c_BiDs1rl=-CINxKdZEvFkMaA)6DR zIC>h#w|A7he(t12@)86RJmEju@_#S!EWnd@jDE6vsV(#oi?qK>EeR?NG<*20uR8iI zPhEdIOWbeJ@&@le659j+KAIK`|1Y4x>px;VCue6wfCG+?x~@_uho(k7lP5`<>3v2G zAbJi5k&Tf3dR|x&iru)NKpr|M)EhydHt%4v(cStt~NFzun(j_9&EnOlY9ZGk1 zcX#)9?K$6^^Pe@dX012$@nP@#zOG+>YX1CEk>EZcCE)yf0@LLW293ryx)BeP>~pmu z`KqEke^;g60*&zJk}3w!x`s%SQnIpQ-MwpJ2M=4gpy)Hw{O4Qo7wkGZi2ZW$V1G8o z_cbvERaj)?Yao;^xA7yRqklt7lHldBKHMtQjErf?$)BO$2@;W|VeP_5qg;=A()_Tb zsUZitMAV2KqJSX=fZwzn7^;Nd6Q_Qqeu=uL8qH9nxE9+a=J%mSoJ$ z?|L2Jk(QjCSyGT{ogoTk1{{m+A`96-7GWg^U3j8pbqej)nmX zh9N+Z+WDRRUCLiQCd>R8b>j?q%z+qnM*Hvx!a3ny$Af=x@o2emR0FfpZH5;33@f=W zvNtMSS9rlc1G)|9Ke2{nD`-yqkS3-AhNV;?s^ZFTP|FG|bzx43Bj`x(fZIHR%=^6{ zSwMZS4Is1T-lw)~R3Wih1nu_?@4a`JFPjvAiy}=rseeiv^mtB7agLyrg2w_&Q&kcw z;ue1oYF0ue2h5apqoV{aXX&_=kN=MG4{ zo$09`e#h>2VfR9kSO8UdzdpmwiQq*|dMzit6# zEltD2k#Oh1EPcxV($?33vT^j@QX^oy`WY#8scH(#lg$n5!;RmWyfKnv zg0S;r%RQ?6SeA^XNis7ctw?8mJ3IPt^vcvC_YQvjy~*wPT!o$z(qr<;^o~y)NZEoD zAkRh5O0QkR)w#DK_ddsO)XtxVzvyO&S-n0(`0gG;)!DFti368{;@A>zG#6&ws1l$+St zdo9JcA$}bXe04iJJ4NP4`+U3Lher9OKYshPsBlhF9Tn;eZ>|gdi@2;l=FVXC+QN<4 z7I(TyB`*(c2@BA{NKQdf0In4d3Ra=(f~o(hc0l5bB&W@-od4&dslCdEd8~Fy6eutFmB9Z8k`HE1OIltcA-7ln(PdRt zhv)Z#2)TM8Eg0bN?GPThE33bwqtVmT(>49`)p`x+P&0c}T`xk`D%&|8Ppn?dy$ z7zp$p?QCzoRCwsf$>CWxQBhPrS+?IadPU4;bPpNZLEZzoeejHZE-WnMRDaDh63`IWYGKN5-;vah4^B?gD=RG%^9JxN4jFB7ir%?7 z6?k1Ixxzfm5PtzXR{D*Y7`>5)>ss<*+5SBgP{kOVjQwGNoyqXx^gu*ZR9;If*wgdI z4b*$x=naSx4{Qn3@Fw)3Cm#9xgU!FC9p`41duCkbQ|}3biCmMx34hDql@JUCN3Lqj zBRVj-{x%F4%#6}d3JOoU#^kV94>`P_qt!8}(!VMy2ENTSv45ziJk+@^ExEWlN8j5< z8@asM$_?sEBJReZoF}mz9k<u_5)I3dBr%cH%#)gJI$ppbTh*`T#J$jSXd3|umw9G@!Ggvhc{wqnT579|* zsD4#aYnZM=D=xTk2O5m|pZx2_*ihricq)jo!426wccrxrWb{~(OkY^0QRbJHY_}!_ zK)!&V5&V~%mqK>!Ch_GM<~@76ZtQ?e*@P7Ms=%=X+G>-A8Luj5lZJ`kr_P^);~+XY z{!e2gv~=_hmLAw}dHe~w%o`4igbyRR{q@tRu{=e1!J+cwDbYrd=Pw&i1*0`kfNl5v z<@tx|i$e{te%GHaJGn`{PEOVuU9aY#e(Z~4Wwj;rk@$)n217s`q19RnI7ZOF>~Br| zr)~O=MNGua|3_PJ`y3xEN7F)-5G|;bt!xc92YCEYy8HSd?eHtSOvtkW3W7W6=+|}1 z)6x2PEA-6`n(Mx?y7|jIV`K~lQywNZwpUnKpOAC)$jHdM(IP+ior#6q0$(OU&fHT- zlYnrrNKmFwQZg)cT$YSL+aR2Hb>q(yEcCDAZEYso|5;E{+G{Lpi~X?gizrOt7wmj0 zd32Qxs}BZ5k_QV&F1&Q6B#Y%^*Ptr+71>eX`0yI4xA!P1`|vvcg1Pg7?sGh2(p>B7g`TO0B{g#*qYe($ZzxBK0C znd5uZ)YLivgN&XD_0)yWJy0mdyq()4Q^ij~k=n8pUFr`Xij8TXzb2UQg-*(n#?Z5+ zzBSDAA9hd8$%H32#}q0oAR>wm`lAe_GiG*l$?`*yxlFNpaiLhHmqnm5*7=N>xGrgfXz&fwTfUlyntqX0k3_jJ9Xa+(tlE}@KRO-hackz}0>u2b`ePIT z63nK(&X5 z%))kLxVLZpPG3U#6*ev#YuWeE7G8Jl$(_vxl{!@0`4{L&vIj5~u*#UBjqyecbQD^e z>$QiE^bOl`MOBF(iPKZROq12gND;OWzJbf6)z3RsSg16W+Nq2)y1~^nNm5hpy%JB{ z&(REaEeSI<9-;wjT82>dL-wbtVq!i-cf{Abva+&aQFtiuRTu%T45tH}_RnF4iv(YS5HFwb|0OC+yW{@jfA#6g7w*d53UbOc z(*J4!9IXzwrb2>WcEXj4KiGpQ9O|1Q7Sap$N%-qs+4OHira7_C3>nmJ7=P64SR#SpdWTsYPNd$H*;IQNr6ojFukIQNjX_L2G?e~MQ z(u{0_K3~3ULq78!P;b9Mj0+ad z(VUOX5H|~#+jZsx6Y8l~4W{XuL(K%ku3S+b7h)Nq9Emq!dzq{GZnd(WW0O1C$>hB0 z?AYJN7hU|f@%6xS@Lf4W+6qs^VWbpGN%4`9(y^39-cI4VWN8z~K4atJijzkZ7C@@k zY{2@xw)dJV-k=;s#-;AZSHf$Ucfc+^+b1KGDo;zXJWO-CHQx2FFd~xB2IDBfVcS*l z38|v>jhYFU+Rcg<`l`p$N7{$)(-Xf+$0x!glSXK&qR76e9@zBHqwJMMk6+ZZ5&yjR&>BVMB@y z2{ZFUSg?>ZWv{!qh!z4)MR+iX>9s2HqIgGt0$u|6*~0|w*RLhi1DfPeU;sqP_%hHI z!6>J$K57uxTkZ^X<}6*=cVom(^%GO-e$x%X%i-QU2sz0sS!lOMezTFDliYimOb zX@SG8QM36OUdb$_1>gN^iE!M(duOxIiVfdUAQ*rFI!u=!vL*XJyWX>H{+np|wKY;8 z7yy@0T4iOdW2H-hv#h&hKdFqSXDrOZx2y4yUhdEqgUZ=~a9sYF05eF-Clte=I2Y#x zg8Uf`%?eWm-PJuRnfQ5#JQbnG+F{z#s$3noPqoJh4dDe`D}vgS{x4`F!otGp0FsBu zj$^UTxh@-s%(Ahyg?CymhU1JLqQtUM5Ah3+U*z@Ql*>3N9LmUX7J;Z>OEQ%r#n$S7}l) znPrSe3~kBqF#e}*jGQV=HW3RF5iw!tdqzhWaGXOwyN6yh_L>|EF}qctED|Cz5oDwI zp;^}HpUw4)l|8Yjr|@K`=CT2($gAB0!4R-MzK3l(=iYtQrLDH_(w2B@tKYOW>tw9& ze8k7Bizv|>#)|NWE5HnCqx;&54LY3fwFgu@@c;1ghKGj(UZwXlTNp`I?~I*+FBm~a zA!X+pbA@@j(QF;AtZi6EAvelkb%wL(Yl(18`4LSaY;{+X$qulYxxY8=$O$Pp8P3{vzoaD^&W2-?tQ-X@)*~%wx$CD zB&g}=^mVt0Kdx+z8AN>w{xVQ~0W(>SlCeeS%Hqgs^*%Y4*7m**ED&%yah`E&yQ#al=Wk8QlCtNSzPY5y_5zW8ew=G{Hy;pf;TSQG_((yrL^NUCyTS3to^1DeY%Vsh*s+rNH(x11=SnNGxlfheXCtRlc=AW#$Z@8TYSht{@<=i5)K6mvP&2XSN|$$UPqLW{!YRz>W~RHPqIGMMe2ROC9o33J4H+ zfZxtS$t^KV;IE#vs;XXZo7mpFakc%{;WL zsfzt?SO)tV8pdPK8Yoop33i#b;&Upng^MK{*Yo1k7W;4knEPqN1GYpphXsOk>9}5u zm+XR~Z=6)KzMQY)NDM=(+HiKKJ<&jO?wX#ZsFo7P&WBqJjqgliXW{UOcUgxWt95l1 zbRa#VLby0M@~W!MC_WAV89a{>#U!s98)cp7^VF>&(gkf1eDy3K(4mx$ef>Z3tNDg7 zb*KU8;a~enhmm=8LDN z73CEo%x7u1gcTl^PDI|#y>tyqT3g|Cj&fYRzGNh6xv1<0QQa`!pbS(DMkXdcLz;^I z&ie#9I+DPFamtI8Wp3C!Zxd*5Kfaqs8%?*)6C0v6WsNl7GP z!A}5uAc&G|{3#v=PlR1z0jX2-vvV+Yi_tH_=jS<`#*|P@_0PjuVc6iq{zNtCvMuiFMSe|Bu zC`d>(%Zs!a4`q_A--%;qm3~qP={=!7#}R+kFltXuimCrLPH{~DZPN3)d&S*3iiCNf$xbQ0mX`Krp{vusP@DW`?H?4uNY~Pda`a+8=N0 zB4Z!$c+^ZxOD}f%Xx29*1JyV(gzlr?f(r+efWSXHn+_3&gD?~1+z?iQ2O(d;GfExC zMMq~{Y@ug927GMm)Pp3D&*`(5F;l3ra_5+972LZbX|nGbH(0i`?vdqZ5!l+=BBMEQ z*-TaYSTJ%(9X^E=7YM5Ou$EhL46*J#=H$0mS62Sho)uF};k>{67g`Oj4LHsvJo%0^ zseteE==8`^$;tI^pC>F@uw^!Eg*DAsno1{ZoH6$e&9$y)RyxwenneX3q3zGWw>Y{1 zr}y=VSp4N~j41)MV$UZht2v8<)Ur%mJp&fIC(z!U_LT1xTvcPPF1?-ercpyEK7U|0 zp9zSOdlCh%#~T$9arZ^b%aN5<^usObT!ZG#>X<+*ywN0q85tXtjEs!uq&Nlo904KIhm8Y?%Yin|ZTV)Ne{6;CS-4VurTqxN zmw|z&KJoDIZ8S&Ft#l?VFuX`wx)s_I^E)v^DozS#gcD#&0I~JNq zt1;}F12G_q-8vh#U%c7$vy)xQf#R;Q5s~qML@T|9X%z>X-M#8}la*?S8S8)l6OR~9 z&NaZIA}25Z`8A|a{1bS-Fe=4FM+KLefM1K$AnrADE71beerEEZ`gGdNz-_7#gC8pI zIR$Qbbi{ChK7<(Zcc54F9v-s?kk`|5b3n__z=x?k7}Nk%xyadVC|}zcPG6+B9CD-{ zVyD{3NrR`*p3uXOnDJdrm@jM-uQ-a~>$nWLQ%S^|f!@Jr%>P%GD!MCA3}xEXP<-pp zpZ;cpFNQ{sPN_9Do_+uNwL7c!406Bs=35@Yf(8+CFCK-@$cQ))!*50fiPx}tm6S3; zA}c+8{8rX^VI|yYkkEgFB`b6JEG&L8V^y5|Cbxa9s*2A{4bh7v#a#%SWOY5=$2p?F z@>7KY2+|DTd(ufxZ%X$>W6m~TqNGq`t8mbpO$r+a=m)l%|78DYR^Y&L2mZYqV`FP6-Ib#@f7&GcXY znh34wh8&pH7WS*6;@ZZ)+79CrhRUlq!sAEq7~R|6&YC!K!9C3#FpofS0D?yq(dnx&h&x(dKoG52n= zoX;*W`%#*+Ga?4^qZWdKDA5q&4p`riST_(ZA;Ai;S;-H4-n!`+L0Oa1#oAIAuB6N5 z*V@sfO|-SE(R)LL6chTPr3SH~0vY?< z2r&Qg-~yK3>%RnbZo{e&cydAC6ZB;U0Gi+Sk|?B#H5w@LWuKRzOSL%li(aC!h6W5B zAE0Fp2@FDeKs?`{sWAF>wk8Zx2T=ms6$=?wv;3*MT%Hs1Ip**lTH5nv2fLc+uQdWR z1CYQ;U9ZIddh@S+x^l<7srAV{0Pxi33(qtKe?8r+Dz~XA{Vp!{GQ->iVk2)G+p@Lq zA7og4wH2TP4D5(HH`{oso`pJG0``H$iVSXxk#DFS`$n=-7C}KlhI@-0rDbJE;T|x8 zrY0t}ZG+yNr_S*63#tzO;&^(fm+V8gczQ~XgIyp<8?PZQ4yleT@DoC5zpPCfP`!B* zk`&(=cDNIF2>5o;J>$$rfhpCEn6Oslfl4m7218f@?K-8#EY`z|zb9s_21^Iaqgj1Y zfIBo;#;IXDgh7W;3GMdhtYuROOL<%25CpC}SWlu@^ikonoxPFf2D})d;NgB^=^aRw z(a^v`M+aWcjP1<}inn>H1rS+2E%cbh{dfiqg)FI^1-`NZ^KDV)b2hkpG;d z8R|%QmOMEKlB(}+>j!4DRadxEB_*P``hD5D;k_;ID6?_N)=K9zw{8eC`sa9&e^Ad7 z33dsP-bi)w2nZkpIg%_QC3PPXLXaGc+S=NsMw|1A{;a#jfeF@af&oS!91Oz`<6*iR z#96(?&G#p=EJycy;Um)LDntc4JH;9w7rB0oRJgE^g)vy)S$<8OTh=t%lV;vlbN{z^~&d>M)IUP2T2RTYWC~$NM{W&m+f0ffhTwkK1 zQbUe*cJ)1SO7dwZTIQ_A9S1S!9bI~voh`ZFB<=ui{@nBBU(hb$u^PNCJUH0jN1B@u z5eE#WGjPfRD+t!m5ttqzF0l4*|Cd`;<$V*4(Yw4#@f$lnnUZn5;m8I90l9#PjKIGP zno7T~!k=*vsA0?#S-MWWeNc|5#r0b;3iO--KjDLgtqBBo5w z@&_go_B#bS^XUK*&!Vjtj)dW72f!K`px-Lb{fKMH-_qmeBXqDgQ{_gh%K_{GSEm*w zFK;vq-!R9Xm$)a4{;|0G+%U;Z_Jw*1*6RH+_7Kz$IG&siijVn|i;5KCYP^&KKHb;f zKe@b|0PMD?_X)m0{YqY5@czCXxJbK)hSC8F=jP#oJmVK2LkIj2>Ez?IP>)~uU$km_ z>IL#kv4W=XKhbbgR6&NZF>Dm}_U-)E(Y)}$1H^s4n%cRhzDw*mc|Y zmN6qKrr)v7b8W4iRSB5v<}(7O1}6d+0ajuD`Z{tX^%2zIH0R|cL%ep$VrOk*^FuFr zakaRtezT=xIZ3z03tLw6x*gLw{6AaF1!i*AAfQnHq>`zK1yNGz32qX?!hL_gZj6=m z0cwXq%zv!yqQYT)t>DA0QLKs|zHKU+0kASd!aYLW=45AI1Tptm5Nmehxf0!hmPj!6 z!QfsU>Qe=wZ(Nyp!@r+z@qax23fLhV zbe|$wu8>6t3Cd9)$#25jdV`3FcAy5ARHyR|69*kH9WAXMw7G(|Si)?(0eK|MnnFYHD6W1C&M365&owwUu$SGtkEz5a*4V5^s(Gr zFfbw20Hl1;_w&xvp=1;?3z~g-L=tGsS=i0*l44??&`^h?izNTJWtb}e;*}e^UV$nd z*4^9Z6XaA>g<#Ixc=ihw>Jck@YK`<^dXQM?ix!5aU?|Z80C!9A#fy|)fOK~v=iW;_3mw=`6E5on@eLX!q@ZUnFYv2=} zZ-9#JK^*Thg#Zqi!j2v7>hnEsz@`P<%wp9!EASt3*-hYmg+!TefUa6^jB>mSyocXE zS*nL{Ew~n_xe5WPE#TxN-d7G^vO@~D ze-%yd-wi9G(A+ukGEi2Wo#@PqD$RbOO*#|yR}f`cqJF&G{%%zHV@q&lfaQ%qAk^3J z#;J{k^urSExQ@ zH7R_@as9pdI32BM)@03MS;8Ba_AkOzJL7){YpQ&P@oWhTf-!(zLtcQ$$Vg;5RnFIv z0*|@H{{Hg7AWjn}p*i`{_6C+SL#6{x)qCo@)KEeBqCvCuBh&}zuPUjxhy7107xXE^n(ddcFD-9FW96*#VeP%b22Do3Y zXAYywYdd50Jq$*7jx3Cubi~jAx`3Rfc_2a|n$ZS+xKIjFwAS(%J-3t&CqQjy#s^{! z3tOtekBo#rPPrZtp5EAvzE+TTymh5yBHDA`+}1{#$`tMzqkF8r<*%43hzuU8*WA|}#r{jsPIr-kgTXxtA~>IO zOsLm6*dOY7D4>1AsjMGO@^l)=CZt08ihGKvW1CkOc>fvC;7cJ+d{sfW^lc{jy5kRZ7KknQzIz3${7V;0| z($*Bq64HtQI$22zC2ZHRk(r4+ zhTdobhmFx!@DW(JxYB=>d;1$dY3%x@tc>xzOntwE*@^c+U|){ci=$X__q}1VOWVJ7 zpuwZYQtnFBPV~k;6}?B{JlRgUp#Q*M=_IB)7-Q72hTGD3E892~aGZt+|NF0k8xzT*b1Tq%I0!4{H!&7BLY zb7_oF`lqweVS<9R;uJD3E%)!d!xsq5j2mCpv&alm074Pz00nvyVq_bkCm|1;lJ=)O z@M6tb8NKBlX?8Z|@_*9){?pLjll`w2;Q7-U42;pg-(Z>%$@tO)KTy(e2_7hp1M<)( z{U#Q#D=A>gvq6&r!Ec0nY_GwbVCkk)L1OXxgjkna-{fC$YiA0cJ~Vu$;0;zsw%i}WYFK+7pJ996JayZ&PUF=S8D7Ugc6EXN{w@ql~gZ*jcQS+ABcuDy@|lv?_s( z2UwsHx-sEX%kH7wa(Dj$vUdU|CZ=75JZn28szCZDD5Ygf_UQ6f92zyx4k)=CYcMie zkDx5w5^ATB%1j^*?Vc6}(j-tR#5*QL@4nr?r*yTYzq0&l+6S|8TZ%JG=#AdsDe0-S zrq65oBxV7Bhd3XW{ev5lXS0|No1V}|h5@dhnzn)p?&0d$E+<{|DKaWSfkWHA5ifQ2eTywS=oosx-njA zi`HdP5jDN}x$pxapp>`8#nX%OFd)GsDCZOMumjImv-aac10Mdnkd+T16B!KaWDG{S|Q;g7~*Uj#@y5pEwO@fna*rIc^^QLtWY zt&|}@;`gE`IibE~N_KX@+e`zMe*z$}Dr|6ZDEWmnj@s4h5j@V?O?3%Mt8U7Al_W&F zNVv85FW>Rowxw~?XRV1C2BthEKe?K5X#+T^8=cFYO3d5N<0m3}Tcqg5&5O9oUi!i0 z4teMxR=eXNgZdybU2|`jO2F?+uD;KsKO6xdRonp&_SG0q9Ng}oM-g_Rz%vAdJfsXhC`uM_RuDxdo;|7WiHO_Y{NL z1KXFKJ8oBk^wsaf)u_6DS^YCP=i@aCQ2{+!%680?>V(g?k&>X*byHPBe0h>^XYdJ<)4^ zRvqZ83yP92US1>-ZFdfjD7rh!MjT+EMwCV%lUaZd)ea^WAeg(YmfVc&H`)P$@8@bR z`@Zw#5lz;zFO-P?0)-F(0l|AmM=Hp5h9W`^+x_V1Xd7TEy&n*YS}Ji^;w+NmMs(Yr z2~s*|jQ=|dcmu|YIwpOwZmGC8**8HGtm<@#1@$Drxq6iVSSeF^UxrMRJ=pyIfenwV z+eMIAsv+RwzY|p)QTej!Tg_#DkKnjRK)%Q~(E0gl%6E|K& zp~_@`^p0}#bC$u%(Y%j($^2mfS+s8jL7IaNSxV05a9ysiz9Ju;89w`MGLGULyS$

({!IzSTN=8KlIW%fXH((0(alOkA zQfETbR6V?> z`gSYK6zu^(h3KD<9f_~MKlrhr8y8kwTWZg}H(10srs;Qar~LG&kG`9;Pncud^zc{= z2xiCI0i8o1JgL7|QX{Zj&!M>;cK)-AJjT11-c&=P z#`EJFcw@kUoT`DqMr0jm)h!E5KuEiKd7d!v^J0 zvfCr#!3=!$w1nb`d6z3dQa*W0?$Bu?K}8L&ZZpR`%JD_P&_6ffd}>2&FzYX;7IKI| zw$d@1#AuS5Ax5i^p+{l=qAErJXX6r4FUFB)fe%S^uKXLH8^aymZ^E_h zB>D}${Nbs;=h%gUvi8YH(tfpGA{i_=9%80#7Ox^qbi5bLJ^XpX{> zv8sdj@I>sIbO@<2i&*swHRr+`o;_&?j~<#a5GKQF@AW!ctP<<}Hkl{BN9_KFohm*% z3fIUuR~k9IO8wY=1{+CS{nayT;QU?0G6jC}zx%dc(hZ}2Pjoy8A!l~95eH0cMfLU9 zIOE0oZ>gvLY#Cj|7iJ{IRY_*Xr{a|SCNwIH-?`aa;a?|LOL#YbhmSvN5&ZUOWjrdj zjb!TDJgDa8rx4zr2^Jkp1?Hm5syCXQM=o#ed927gVIQP+EANxA$fyIzv20|uE>3B6 zv7*sn^E3l!Fz6{BS=Y4YWa@XWy0RQBceBs>fb4!3RwP2UQOgumm@IU|zg4h0Ls{>` zAmn3-u%SZoSQ1L5Hl8T0YTC}Mf1E;Wg%BvaO5WbrIy){V=K%V(Azxt2xk}$FjQSba zPvCzl+gIVMzauU0G2r;K`J? z;3CyNu~xz~RJ3J)qw*IGQb^PEHc&^;8Ihogb(W0{l4Y z>zTiwpVvEFu3C^!-m{^POv?J;nWvoU!>I9;0D!1wZGpdP*YmqF<3YlMS4;sEr`vxQ z?d<6zxam}B6jIcGQ(zGA&F!mTHCt4AvALT}2%R>yCsdcUr2ozee&?4Pco>oEdw6MT zm4Lc@NXoyiyz3`=F+2)&F~$@eXd5voWfxW9hV{GA6Ps&Dye<+GHGKhFo^LQl1T}A0 zb>9(YT$T&ZfgJ<4jO1+m)3K&YLn$jSWE(Au~o4b|3o5^Kaf#L?`#5x>mD+ zSNT)|LPEL`%B5|xjOzXSZ-k$|k=hDWLlvM3S#Xu2IMGSLpY_!52JO=u4?~y`^iHa} zUBdIXJK{Z(W{k5{vMuvAbwF6of=EGY8Fj}ZXVX~%SK0m^!9E_2rSbc?-xXl0?a-4? z&$f-x^3~9xKcDXGfl!i-C{}a)C2~SocG@;Et$`Z|frAG=5s+dV*7E#dGn_CiH@uvX8KDqi#!W%j@)Dy@`Xw>Bn;R-3t2z?EbL}+*`C}0=F&6X>ZgJ_0 zRL)+Yi5=`tI;xgGWK&-#-Isc{5)a=*#b_32oT}zk!`SK}O@BQ9@^y9OpmwCile- znUm8cIsXV`?JJR|v)#6*1D<~t78c$U47T(Bk^gxPHW1HdgKa+%`>3MV3@g>QyCYs^ zi(jQ*%UOjSs`OZ-gSKHu;Ew?G4|mISfph~-v`cSUsvi5YVDl*r{o)vmyE=`=aC@?L zfC@>CfhtVdW@SK8{njlq#N&dbk%Ih!9QHh%Adq21Tng~Zy>YTpSXhl#Szf+^tZV@* zAvX~na90aUX0Nw?!UX(az(8VxS2!+Mo4U0KZ83)QFT*m4)=9;($6IE zJFW(FpZZ9sEZAPDo))D(vl2HBj_Ry=(vzX+z!*xnUG(>nD=DbWHn3H$SZpv-ytD68 zRK|za$JFf?eb&BH0DGE=6HbL%pIKo0o#(-aX291(s^iOa)24g87Mlxe^0QdVT_l*@ z_fy`>^Kf(|^Bja~+Ln^(H>ITp6D-_e`{4@(DR*2rm%x=)`!#iJq2B=NzY0PkU|5e<0@Ff3yXR@NdwA#nq3r_8~!Z2v&7gzAIQ;fal>l1z9l zEBuIUvDxeJdrYA^mH>}19Wg3+Fxw;eMOdEDr%CnKLu@Q@tcX|%RBmrO6T8n^QABox zPri8aOSdtRd^Zmcrg< z=%d=aZYbJFdb<(kK$j9$Jj$Brfy5}2_d~C7YJ#e~x)$(r9qQuY%*-0b-*jFl7=A3; zI7)+xn_bs-WbHzcM0s;I03C$CYZo*p;`{w;d|pr}u~o=1W`#~nPiv^DVS{v#10~@* z#a8j&eWC4-Q-0F_>~2Vp&q5GYJeosEzRFYATM6C#T~FW5RqlBW{Cdo04Z)jVYUYl> zqV*BXijbXBtWm?FB{9=n9;N@81aP&0!%eT=7C`1?51k#VVPXq=Ed=(7l!?#|Kf`7W z4C66SrSbp>RUZ&KVf$eR7oBC`a->#{SmO8blH}JmyD&#VV-_#StUT5z&3<>@_e$Su zQ~jN0SVZCv^eD=17bmABNEhwroyl6367H*$RIhfs1|!oq58l`k2u4&~!Nz|~DCO4~ zGyGKE#hcWc|Lvol}>m$<4)U}j$RAMZjy8b`P3rVVp*|xT zReVHXfWTmx!N3Q}r^>qM{E5=&=+F4lzd0yti~*HzM*o00>3CRRm+vXxk>&zNj(}|c|8!@ zsFAyRVZAfFT2Z=vak2hk?#y9vK!=L#X{{jd3Wj?lbNH9yIMb?$nyUPh+Ve)2vYV8y zRp!NCs<*i*N%>H{ms7RhrPW3QerB;bXKj1v!{2in@8#?;^8(1RNxs3jJOX>|k-Qwc zJ9|vjEe@4$nUL&k1O7MGeH$@q`lu|Zq# zl#SixZZFJPT8EKd&fZU7U2S}3uVfs#7mvKok6UoN=WL;oQ-YN<993R!SFF|LKs)2d zWUI>|<4n)XtD>TUpisCn8S*YPI@}A4sRMO+xNa{U{E525=?km}w2q_p9hEj&y#(|Z z)z#Z}#A^TjTBm`bog~Q!ff!e;u*Mtet!1ByM8O@6@(`f+FKPo(m zz*!K8ilwENt}Zd`S!sY2dH0W{>=1k`gGeC-q1s|BaRf@TSy80Qv0fQZo(RM6O+n=a zwv&qs##{HeLgsVP$|xtPlXC8|pa^$I29{}E=Czl-UMW9~YF2Rf)3USQL!1EZ=tt0J z>Ki?=ez{D8Ij$Ft!8~q>_V$h6k9ReuM@aP>#+-x;M78nm_Wy|&6_uG)Z+!LT>2i4&~>Dg z(e7y^e|c=BPx1%yVsXNTpDGJ&^iEHz2RL4?(w6?dedF;U{qS+@WNLcAonr~ci%+%; z%te^H(TyI;>#Oif zN4O)2?Q&#a$2VCq zV2#FfPZBu29=aRF^mhq6!z9CJ)~#6>vT)ebLBV}3Y}3|p$@YB&2ls$FO$x;&NSZ{bD&&5`_KrDW7d$9|EB&eHza zo*4E@0A;=s_Bb<_{JD=}!nbo-P={fu3~fB5CQ16X8nbr>FaGET)W3zohgdnQ&~zT;awRm~VL*ph|PtP>bgi4wMvU( z`znk++|uWXIQg+NfuaCwJz`EwvCkSETu-5t7MtsHNZ^3rqqggL^+~$#RMx%s1mD@j z7Pg*}gxnQOv*Q#K$muB(R!<`>G4N5OOH@4xX4nt1h<){vFzC*3(xuY!@acO*j;}D5 z?^)G^?j9_xyITi*y@F}agw>@UZcW3=8thGsY^2~wA#!?Te*(f5DW&0v6NqZV82Y4w z|3J~r7b{1I_8xoBH`X{T?{P<~ln?YS$4H)lh@vv61>u592lZ0))2G4v`-bTm5_su6 zc*!N{+s`#AR5)b?o{dK0PlbA3?(OYG?lbWG*ox&KhgkT6rd88GJAS<;2gH zV8&z+W5F4rJAZwRqNe?j4lUNq_Pd0o;)55@Eq_e0%<^*kVm7*tx$C@T@cdNbTPIzc zs^3>O73pMX=#MQvTC-2W#;(V$!@jLPD$2y@l5x%azDt($kqtlyA!q~V=mNSwu(VLo zJ*e1SWl^ICXh*VEj81W6_xq5C<=-fjC6gQ0 zzwU!92MOgsa6*@H)^o7K-Ls|qN5}7~F|Tzw)sivgB~H*kD9RJa4yOLo1m}JRZ-8D8gz83V`ZfS#fwz6`7pzQhc=etL6{cR62CjIwoM3`Q%!CxpFZPyHa zFXuhX&UgO=uhGU0h!G^=s6VMsonXd}kbVuu0Kn`h^&A44YZqh;d18~+QPX>Mw6>Yg zy(Fuud1vOY2ZjfORa@^@G{cKaH@_xxuqaqC{xrD}(S#mo$2GAq@5@N~ELVpM^3MLT z3j-3_GW6^K;ZFc6YHZF})3}e;G|KY{Rs`dWRMMMEDue2VTD)mpidqk;%FGOEXUM<1 zOegoxt9VRWYl>a%wM$Z^AUtl%9-mmJMA}6xj&_4+j?d1D2(C~I zlpdP>mDSF8Vn6KlrpB2+y+N?oJ?VqkPw$Ca6TiNv%ATo*vut@Ynts{YZyeuoXX|^8 zC(pcQtvitekBQk!MZ6E>-E~)Zd50gl5dFD{s4zjrM?3|qR|NO@<_(_&SFW&a7w_%u zA(V`?n*s$zMUTHU-ClM}vtt!Mz3Ls6AJ46>Me~5LSNdWgitq~7?W0TU=)9_3%6f;S zDX(6a9&B^AjI$UJS5=TFkZ7E>bd`exnOQZcnU|5!oDn(FGYp{}yNQ0JC4tf`Tm z9n)`_zvY+_3h#%8gw1RRXvE`_vTwNrW2=k4B&5Br|8<&jgvI@*G^P`2y3DzM)5&5t zr*a|ls)0-o&M&Q02Nti-zg)WdXuRlDwLVJ|dqFYd1qo*9aesfn^PYTqLvBRg z6?EA5jirpVqC0xRYlgHbHl{yDalXs=@QoOA1q(X?d(6z(ZpiECCwwNq7am+VOq7cw z+?3Laid87rZ6?p3(TZ>4p$e1woCDi#)0YO4hrUJjqmliqh)i3#_oac5yTW6ujOP!q zCa@QJ?Bo1IkXUe;bqYV-W`8Yetv;^nYDX!oGagINch7r1h< z;L(5~hn|5!Hw+;)4d$tAR-?(upD}E+k$8GJUGV0f4I_pU%!urb47%Gw8-e|4bTX`0 zcbl5GSw(()SjDq;tIBREKBg7b4oIh{850(bU zd{YIbCPhwl-CEtkc$}8rOb0NSkKmuW=MNFLUO?=IE|?v-^pGc(jgTr(O?rpus6;H&17Ol4 zCZ?TE($P=j<4QI*to|%fBK$r&Q~oAaZ1diHt^Pl4#)<|w_8?!{8sf@I%QaQ^ovxwO zY=o7U2_>EVjX$k?&JC%n^UBEBvg?T{z;_si(gO$=Y3?JA3BgkJbVVXl%C8?>spm~+ zOXQr?qo7KpuyawuE_*_3)2vn(u)_$yk{0mZBDg@bQT^|x{J)Mbo$X8K=ovjhq8L;VAfH*xFhvA1q0At7kl_*tg#G$MgU z7)iPF0r~GQ$Qu#iII|&hn^ro+{?l+&!eB&x_zE`(^JVg$+7>7^&QyDzw`VZ-5Wc`Vqfmb=ZE< zFT?BA{i^}YtYm!bHa(AT{_O7_y=PH4IsgnqAsPY@U1>hh7P6(PI;J3IxsE1p+~^>N*GJ~?Ife@J!NAhE#VLBFHWWfsiTjmFXKj75vW~) zH+AN5gGRF&-T~prnc==W*QBL#by-Yeb+eF#_Wt2vNZD!s!onTU8$ibgFopEvyb(6 z1%OF&W7{7cozm~q$6K9?$&eMo!m?acnb87fJVbntX6q)RF7lPYWt{S!L-GT*y1Kg0 zpTBH`HlIg>E*OdG1v0RlH-vwM%y<8JXLchK&;fG6M$IDtqGLkJTdSKy6NPZ_qtcTQ<(g;}uY zmr<~hmo0|<_uk93xhHl7!QddE!m0T~k3ROiq1w{FwPDKyzOX06U9ge^{W6sN$F7XO z)MjyB z`j3j1kdRQ~c6Nmn2S+5*zJaCgQp2>Cudir+<=u~PQ@&sBHj-&0h7xO+T0w}x|t3SQpa;5CYLL|3(g0`gK z)$MT3ok41E+puv9f0PMr~CuzGpgw|e@%-N~Rq@e>hW0M3)mUoP(ly?ni~z9(?fmy3>dcM9O)NF$*AjLn-e zK>|0|G&NN~MMVWNe=~)c(t=N;ANN2&ieyE;2Shd?C1CI|h^(x-w~u%vPNVITr1OiG z$(?Ez9#u4;OKzy?D+bcLA>yh2#25<9M^jU#;a$wEE4aP4(Mrm1S73E1SJ%bZDPg5q zz2%WE#eX`=7l4j|WHQU0j3y6^$eu?e*1SUyJ@xiO>S7KAJlh!Tw8+CaHfGWtN6FXn z^{IuF1#hf_f>M zhyhZTXp{Su{QVD8R;qe!mf?rOkXR;mfz8kVedVS1%N)%q!N>)o=P*vCzF2RbQ?v>v zg>CgReC~M&vQHBx(+eEdQcQ=b_VY`JX@qVm_k`vNXqr!El0URNUMa06_D(- zlHO}Cj_g6k2b07)aDyxatuw%$5hVI-X-;;&V`fDv)KT-V&(3w;ONlM*2auAJcXwW# zc_4)kgtBPml!(r)14ASbbYT#v`E9)eJDk}QCPqFGCFixfqyUgr2#Z8uA*41ZAV2;C zPNtg%i|E&E<47XACZCn_iXJ{guk~D3L=4u|9VafZ+5PVKS-BBN1YeQb7#7ON{_Bnh zA3Rhv9Qe+45vx-7+s*HIHcH}Z&|j5`3m+ILqGg|rG8jWq1{tKv9sQ*=a>mr=KYy|st6PN!a$==-F0;ct^yJ&@L={yg`kj8RE z?&2YGpZpHJI0{wT4uwMaHxvWo#trzRR(8i3uT5>zXk>$k%2~&~Jw*sx&l5+T*1#Jf zy=;o9V1+>PpFLYOx@{U+$})RUo)_q8L-8Tkp&e&dxR;V2>k5>(M8|Q?_!BTxL%1dZ z5Mx7~oh&%?T;>6qy6|&Tc^zSgak5ftSlGRJdwP3ymTq*Hvi~X$2BOb~0BVHOQ&d!B zB}B7(za3$qUA1gU0sGD_6p+8*J1j}ccj93oHa;?h!XonKsWUQ-krded<_E<4`VM z7?+aXA!!GI7tp(Vm)L1KiePuk95+AD;CFAH%<#Xm^;2==O_1b^k>g?{$ zDK1X^X`v=O90LzeC)dJNEa%UlZpb?r5Yvch4VmO+p2(27r5@P}f3tgOZ>i|DnggHb zKhSmOaZYgd0gM13+z@6($r2u_5BC;ieW6e&g;_%*Lh3)>m+3S79%_v`S~kX&d)69| z=a)dpJc!G}m~jv$+eC#4LWvvw@1$zEA`75pu-bPNv$6PTi>g(S#& zKs7y8Ncl4URc_#Gk4lvsx%5G0=B0if>6oWccSZy%Snk{Zyg#Us`JpQ*k-I!Wqn3ov zX;M3XMqB=%pnPWR?}rasuxKf(ti)v2<)&lbCL$4JPiH15RCB{-9=gGc^e#?3k9@~* zvj0A54A?5Ewk9tx7h+u&O-Q?J@&X(E5w`(GN%6;$HdlOxZS(gs(wQWFL}ENq3wqcg z6V&Gf(?9(Y5(iww$R@0`y4u0#2VRt!PaO?vcTiwP<`pL8PwOZ(uUpG}U;)@28;UUb zeYn4m1lK@-2Y57X)&^1$Qs^Iis!xlHYQ_uG&=2G2kI9Na!u>*H{QI+u6_~)=LKcCN ztgpJJrVVt~hz_cx-CH{EdTWg42gMA6mNz*#e`KHoZ>zPN##8k~G8Rc&#F}wtS?5a=lY5t0@ix;D6m+w3OOS9NBKOROO zH{rG2O@*t#xY|;3!w&=llqQx65aoLr!C66J?E@ZHW z?&R+N4TUd=YA?*Q6VAI)7vsbN;XjP8B6x!Y5ix34_+B7g=*Mr7@W`q2@hHN4!=*}KAC;5ABBY#h8w zr80_{ph*;8Lrs{)icjf!-@1kfAG#+|qfT~+mV*l!4@2GutJF#93o*!*Mu2pPOIXkR zf@)QyQ#a#JDfiCrfI67wDVPnVJbCgKw||q+S@H>3eIQ@PYry0^#c7aITy6B(DQ-Es z%`i_!z&%BM``?7CGy;i=H^%NL6x^v^@>D0sJOY6Y(n-U68cx_%Or~TBvhNDyf#iu? zR3+pIWukxhoZV)%nKwA!XUHcOVty4dYfQ6Z77W1)?(mnwAcS$Kf)U@Y14+U@pLu&c zlH8+TC@Q{>#D%XW{o^}v@-`um@>eG$yA^>PRRjhK)<(8AZ6hP(y+(C$GT9=_CJ={; zL2(y3=&*!-n2Q0(TuS!!%X(!~r=0LE6@1K?~BBMy2b$fxtR&%-MOSl>W= z1*6_f39l90b&oKF=l>T(pM^%%{iT_M)cq#xmA&md$rw36j#p=}$rV=!~1uzy$EEGjm&AXQbT6j$Qk&!%?o3>kf6_*MITFUGCw%;*@aL#?oaSEnV=ESF_NW=~@!;~@@|R{) zOR|GlWeRHQ@x?{m|L>&c;nweUMN5FyUbG~?S8j2*! z17%;2{zM#dz#+ba!tMEG1$hdB{lJ{mlmX!c+3mKkG^(S_CJ^4D!%SiY`zwU}SJ;%! zOTVZuxwLS3gV2w}<3>k!rTFI{J4_xKmGKmsf2lFzCo;$eWkE6z?x zB;-UlCRXmg8+%DI8{3Z7q5B!O3`2CORBd+U--fywRynzFW)kveu^-2wAv^H8ynz0} z!DlMyZ$9EUZGcBvnOza{yIxNBEGjY(<9N5?4oq?@Bz$!Q!z@PWmtpOBs<|pj3aJ** z`wJ`sV9&bd0r~2dqe{>90hgFd&#PM2WJhFA?}4Gd%|MJQ&x3n$G$!h!EgWq$*rIP* zoYh(+I|1nO->*OUaFGCPQ5^Zst-TFi+K|qCb{2m6WFZPKMKY`e0MYVoU8Og5aJx(Ao93* zd}f}fATKGp(ve)r|PrH$VwwqQMj(6~o%fbd}Q2KqO2`FaYT_tTN4Tet2VUtGI3 zp(zOV-F~pJ!+w$(m#i>xTs_@8$(b6(+wx3RjdD*g>tomN2zZa$iqc6!a8MZ(WDx5F z`-J}+g(4`ze->aMazK}FE{UxoykHk;ih(juVOlr3HA*LdA)I;lUA*99zM36~bwys8 zZ4e*0tzK)*W2~ht)#cXo_z|~ol5D6r;G~g^dT^rnm`ci{GU8IZ z{*+a@Fr1ZNs^DO(`KS=l8ScA>^C6$d7i-DL67FSE5)#r>eHvF8pMi%{G(3;=zl=}q zOk;%U{$jR%p+EX~0pgaQB9U*&a_5ruT3Yo_iCvip$-+c_wDQ*-T3QtTzS~)YHR6*+FS``XN(` zYa~m?%+j;#GScUO8HljKiskkIo2nLboT(zFBs29YHeGl$jWeUvZo<5z0R*ZWW!u|bT{f!BoRDe|M}A4 zxKm?n=w537Azy`z;5gzAa4l2|Qz0Z7?IFu#%1_%5gZn2l8+c-={0xi3)3o<6mTD`% z)@!1a0|LYybG@)Q(_^9TKsLLugkBT$bB7|f%Sm+Xdv!@afaeUA)N%F33su-48a)jh zhaZ0)0gAyE^nPelAAV&f>hHhF(W8iTa>eUjQM1XYYzdxklzNX8iqjpz(s3v~{erKr zh&Zemhu-=>8=|DT+)ty+W<; ze`D$n8)Ag%{caycNl7lvgjYrlT%#V_sOjPCBk_>vm<`Aj&cTB{?F1%67718O=ip(6 z7SKRXPhLCmsV!d|)-4-+Zgm;_c%CR(-7C@Nvep2s_>d!>4E$8k{T&`1A$KhMpt5G) zFD8ke9!KkBjqdryxCwf-P!G1&=JO|`=^^TxCxLd7@*c_G7|-u5HyI29EC$HmNO<$- za%^n-OuTS;&=vU$M`_vGu_!06*wuK5yr>7)mqB$9IMP7#@&Pf+fWDkQiJ11En9c8F z#fviu`gt{d7veuGZK}9JJddZ|=uSOs`PO-j5#V2kzlUU-Z>!5*@9L_*>H~U*v6-2F zpo#n6$8`t2&MhAP#Hi_B#tFR$GP3sj&l&Xf)xio13PO`G>c^cWyxKML{ykp22xtP= zVEA29+!+oiR7HdPAGqmG4h>f4b?bRt2Z{lYuX&DNaFmK z|FiPMvikb8`PKk7R&R;GF#p%7qRtY7w;Uel@GVLtiM@UVW|QS#fyhWqD30^maHR50 zTvKIfUS7fu@0r;juUCHa1ztoPnRSN9z}^eCQ1###1pQk~Qqnhw4RHiO?=p9C0qjct z9RN>NX(WuaW}X>&tPr<&mIWUh2|8GBoSl_ZKbyG;-s7oX_hE4N3;M`aqJ4w%dv9ZK zFL6E$)YAu3kMN&8^_XD}0V({@7s=ZTbWKN{Y8e#KDvhf~mM!*f+fiBd8qI6quI=HS z(LL_K!-2o5g5=xxPxxp7>_!#Ou@#ObWMP}C%yvhY*e%KX%?Xi+tRrLWsHE0#XL#DC zIOul1!W11FU>vS39!5rH9SH8?=OZ7e7TQy ziZ~3F(lQq(vfgLD z@z=v=eb&|K=g!5OXi`;U3W4+4z5H4C-UF`1Kh@lLla@Y&h{_ikVgUx@vxZz>Xig3L zt}&!LR0KpU0>pF7$|v;QIMk=<=|OFr3zaL2(!02ca6DE@e1o^_k+ zE;{BaMowF^x<)3#h}jJR*}&#+?dw-$0|mJVVeEudLr5Sn%*&O9XnIsB7<+rq5B=yj zPbgY>p1;`YrIg@x5rn%J(He5)-ZXpK?LJeKc_aJHp=W8(rAH~)6+BNF9T{Xs?xQLP zi+YnezdTPGwX#=Sz>t+WrU$X<=yTQtzI1i^(MMCYc(*nrc(6Nk%IgDTpx zr{GYwcM`Wv9LLTpjMIdF<>iG>gC8oBz5I(@V1!YHaVyGG$0koMsT1DutkQ>17| z$cZqQR9n2;Np3WO`D1nY$eH!kpc5OPA7JL6W%ng+E&d{dM-R5wNGmVBESblPG~@6c z&eCk};P87q|2zY{1}AIVyFaKJBBgiUq=V+(YT)CKGCN2mL~=JTCTuq!c8`h#qH8Bx z0&c^j?HATFOK)6o37vSo8uB2&tFgo&;-DpQ$C|t2-itqVx~Kp1y7uk33f47nc*i3p zT!gnZ5-SZzb|gtqV()_p@*0KSt=MupHb%KVQ1rdLO7Wet7y4zayu8^kP?2ua1_a2^ zXCCT*wE+AUeP$vfs4x1OH8oEXGDl4bM~@W+%yTLC|1{<s87nK`t#8Mn z2DHWJd!X49U%6VQrI{Zen6S%%gK?fB-Ig1AGBZ2FhaTE;^Jycp8R1C zgjr}0@p@zJ;v-?Fh2RCAw6b0cz(%qpqKTOtU=rS+Hx3~JU{J-8&ndiNlOz5qTKq+< zH<1ZjVqU9yJX80^Ry@cZi~5pLWv+s0Ry_hepTOeBI5WuIO`)8GcPC_`dwa=2QSBR7 zU$$b%d*79Nv@gn$-QV_-otsF>!GyUK}-LeDJoJDD|l0PCa(|TmJ0M z>vX!E5ELOUq?*E}8bQ;7P*9kYRPP3q$q3pmx}ThqvKMJv!6HGUf0f7z=GUNbFy0jX zz&V^qPY|S@FkCpKuhKdeLuSY=r1h55X}XzlLc_>OFi%s&EXxexr>{(y-2Do5W-q&W zCQYbp9Vb7wnTm?BlIR28vaLl0-Mb7qn$OwaixC)7mXt6U841NweLxX9mPP|^y4Gca z7mR%I<3WaR0|wjohh%!xm8d`cAbLfnca|IUEsHzuU5nQ$EG&CC*M!dZuaG8t&CzL# zsV2OpiRjY2{Z-Ad>7JeU0&&c%V(XL-Tl1~d(cN9(DC7|kAliB6n6IArfVcoIrzY>T zvA8Ju`2Oif4b8L-JajoKS9W$AMM_;4!Y9WO+a)k3{ilL2v{&YQKH5W?FH-cSrIEGW z5rl#Qag_A*hlcc(CXIw%R{7M?;g+kce_wv?Hrz-E?-G7-7YEUTC2=(}D0ESlV^~^B zFEdg8JGDao$)#v?-Ej>rKVfw$?`to~m}KZNH~hrLJ~c(avRedJz6h!oagRN{YW5C* zpst7SEn@UnVoAyLQ@-oZLg{|h0pFvoE*xOiF}B*-qOrpkVlZ}@^xXJVz|w0FZ^Z`9 z4ySVG3Ud*opZx-ONUcYkn7=3Bcu~JV`G_R8V++yn+a+XaDE2wAN6?z+l51m&BltE@ z%TB-cag-nrgaj%O6~MkKou3LLg_(d&fi6l5r*l(@j2-?q8zu}>ku-=|P|`79Ny8Zz zcKe|HxF=?zjQ;YG(K9l#={|km_u4HPviJH-y;nI&Jv5Y53T9`us%)vNk|IFpNWLc+ z!6xvnIs-$|KxXW8&rY)#iRjZ&weL6BI}=4UN8rIr1443cO`kcJR1QN&R&J^klyPBZjJ~ zA`JU0>;r>-+d)R*^rt6ozS2K%9^c3$5K~rQrTFawi!rF26O3wCjpo_2LqJpFIGj`@%k6JWa zAl~Pm7>w9rlNjHeRQ^vDGExUGKO_$cv<|{K!wF1s&%IXrAk_oWM1wQ9$0o^svozB5 zgPM=jYGH$hE}gE%AJ@P$B9OEQT)TG7v@K8=F~5Ka!O+-vEL4kg2aaG6m;hkByzx#C zNv{Gr1CmCCm?~k;r8dX($BSZ}mz1UMV4Q z)MjJHF7@AfF*Hs><&O_GCO|+O_X>t6XlW6^s2CZe+G??OWr+3Ma9W${A6=4-QK=W< z_@*fT_NqB4N$Kw`)*>tx%(%)FXBq`mW?YOqn8ph&RZ`I0i<5089}tKqvW}#HFmM0y zj1vw${LjcBdf>wcJ6L_8(GWP;tXxZ$=G4!C+NHSAp2_{Lcs-9g^BN1pcYt?~n$Mq1 zy&%hc>}n8BjGZ}t*--}RZY%fvJ^}4(N3wj&FmBELgU=w#&IcBOov%VKK!Xip_+4%=_I4OX6zbx_-%k3zu=w!@n5~t z23q#(H9%%t_a`wZWosdO5v1cs>suR1BniM4%0cnG@61e#7(zpSRiq;gd2*q$FyVbs zUXBdA9^;Y^jEtPmdC?MJfrM)MjZwVSfOs;;aAv$&?FvkbE?1NhXEeyQ5NZekO_5BH z%fQ4WV6J#JG58dHAkWw9G3>CIH7RmKE(g0!APOa93=6UpXwlGWt)!PThr^p>N>6Cr zvQ?YsbWBXBvAV*HVo;sU`N(AnQYkQ;Ra4#)No3PZux-{QPwju1OU<%PWR+H#pds}v z?MuMMQIl<5PkPP+M%-V2KuLV}uFNaH{3Y*K)};6BZbp6{!0z7uM&s%&5go{l;vY2C z7H+w8wzVIs)j6gF@eZ)Ku%q$8j%~dJ9kAp};fz!N$9Lm}xl+lcL3>2T!XaN$^893> zoql^RsuGhnPYhq>iSxF=D$Ikwf_Rh-7D&tQy!?hOz6UguIcnHz&h)CIehqY4-P%0D zeJ|_Z*p?{0wDhd=F9+cGZI7o84i0Ai(CD^3T)a9h6z9-Zk3W-?%CqThX$(xdsNuqn3Vr(*v69)bZRJiY`C#3f8qXe)l$T|K0veiA!D zpFFvP=xSk3DGZU{AfEuS3t42U9G{)is$&PDYwY{N$qN2--S@H`)_qp>WY3J%O}b_O z5BnJ;vP6Gubl`!ZQ5Tum`X(^Qkk?#NX z?EAjo`OW{#IPUE1x_da!x$o=xq&tY|^i>~ep%~_niS6%i{!0umvM!$;E#IIk> zB&4`gP43hLD)@6=H<*M&Ipe@2BO(wVl8;rPH-dc>FJXVi z7fipb&lAIWOzx~@l_8a!efxdM1`nI?yU_4wf)CfEdO%@?WD-L64R+m*x5%~ElXMjR z$#g}wd7LNr{e)Wkp<3|<(_ey^=W=X(j;%Jjx*#0m=Drs^FDKh^`v^*caY*90N!dD- z0Bg-azqzdGpu1^-D+^mQT!?Mf6?}f1CI~{OXJQfqYIv}WQ7H-9_d+Jmm*w>i3gP2L zR7YLTizEybv*4SKzO<}jT-2GGq~6Psth1%0D9N+hk|k71r20#|*4jJW_427oi<>_b z8+Bpn=IlHGUZ21He_ED;g1sE@u^uC_?}LvI z1q}>48L3{m$Rw8>;&PSWEgTYfwWjM$?J6bpIc~^Sv?7@Ni?ukn==MzA&do$m2xtlT zOfP`P!VDvbnlJ%JZ%UH(!4Oy7$a}|EWw&pey>lunOMG#u0Jzp*^lM7&9&^?R>|PIR zt3JnJ#rB`(ntT#~-CuJwa!P7Sj#G~>{oQ%UHRp2JqM*OZhXPDKn1fmI@a`noe%^I_ zQLM)2?1>Vpc6u%*qGopZff29eH<=Pkfy#rpP}#a^iVB>u-#f}uZOqoN#Sn-RDWxJ= z)u2;~%pST<-O@d8Opsi{8Tco~CSHV1FD2LRi-_o#d|bkGjND`uwt)L zD6aHxd=72cfl*(~ds=wnK111^&yPSTvU(6?c3wj~^?m+b@4cw}zL@Yx4Zk6#x_nan z{fb`#OuOoea`_4mmDbu`IFJ^^QYZv=K>HwE$Vg?yE&_jhSaKFMR92FhzNnyHQmwVW zu4D9mGkHnTiK>av`qeU3ZCrqqLf^k+@JTfYKme+ z6==BLJyzTx<&Vj`Yx%P1)l!_WXx4afadD~q`+}^wrxtHNHir|lD1*2DJa4AKz}VOu zI!}h6LmQE-B9U1jKs|x*{a(;kQwi8&0q(is_W(aJhj!ic{P<2DCr+4bZg+Rx4v~1~ zu_wCLITmQ4p-R}hYe2}1p?`(vV`S;w7YTYk&C z0RsyzLPGK@h26`Lcbwhm%>lO$;tqtO@EBP}BJ)qAcvh*~iln_>lj@bW0`$8I&e64O#plst@@* zlYuI>I$bM%meu>W=!2$jTmwM#T}{n%h>RV%^Pcy2cORD_!Kei-&9H^iTiGdvr|T%W zYM;=*Fuum(e4M3zGx*U)?+`wtvCL~lh@=b(NAuts_*>zR&PQW9 zjUVCI{xlxS?mXlqL!Cc0M1y=I8MWIlx+{wzP9@aCs)pS{c-wNdAx^k3#g!pSi89Ju zDEdr!jnr{(Vp)GKBWjxk?|V2oX1_@%r{B)cevp-A+;KOrZ`KGf8e=ro{aU=unOm_< zgnlN&=+J}blRcPM$~|VZS-3h>B+I$974`N6%-YOUJDPt4~vUaPzFA5s9~X*&TUC%wx!fMWpT^=Zgtf zHTsT~<~l{CNJ#Y3zxmhZ*KZ;;6H`DjlD)l?#eID>mp=$%Cg^xhY{fr zz&@Xv5EiWY~Ay^8()Nl zT1YErf43hmw%7|jhHS~)(E+7I!NgnN7I6vESPxA88YwKdDoyxzk6yfa0zUjt;CX>n zXBaz(dTCG|xffmMZqA>#VOk`}THus2Q`R8y$`jZ4cU;6Ef z3x?%Bm5ac*(Ab%KK&k7qzg;_yop;FNc}H2D(QtyWZ2g_4TRTq|Ux(-$vIi7rpEFU4 zZ=XlEu<&m9N&4TTOFFd%6AU8K4Qi%uHXnRn*4zgS2-gAqJEe~thCS_^CVz|R#)|Dk z$5TXaGN!pw%Q1|~?q|0LHeXSxJZLJxqhQLj34M$EEN)4Gy`kx9Dl-pgB|`DoY}3f+@rMr`P{{Y? zIw4};cePQCW%*O$awX!Q%@|7rp!zXX|0FTaQi4%Ex|K* zH&Y!*jM4eY-q##L&}g#368GZ;yRC3faiPYfersG~pOnxTEh9HOsoKc0kHPX$R6gZn zV0ZQ)dx)5vyieos?Bdyr=&WU)8amyfJW@O~av5%JwP-w&{WaBa0%&t`vf!s{6WI@v zLS$~Bp+Pja0MatYF)KvlfvMUJa*5qH51R|BtDk|TC#rLfzr>ixSqrx=^FWu?tdi4l zT0Ux-5kO5l0F8t#}_sfBS9y1Ha1A#f7zhDChpDiBJ3PP8NQcIze!)?z%*b zW*oce6G>-d4l2G_BT02kl|CaY>iwG^{-`ny{&r<=-SkEYuOx(0M|d($c$@uKe*HpO zFffZv3mRzl?dy(`)g^+jM|H0zamapnYFKot?K-9&F=rw7lj|>vZPQMZV^>$U92a~3 zOh7^eNDx)XoHN1lk$K169&jZ6f~bK|gVrmG3j`qRaSE0$Ks=r*GHi5q#| zGLe1#Nybx;1fFJJuO3rchrz;5)3&^>g9P=4XBfs}-Lz-z;lE-{KFm4P_f_VEoLRJO zxhcys{zwVW@2f_q;lolsk4p|A&mpo=WBHMm1cS@_G(YW-fCRX49{&V8OY5tP8%U|^ zVW5b>7tu7I5RtT80I~Q@`iXb8Jvt&sC&souH~vM-2GhH)!?I&h?js<^{~gY_r(15s zo8u@EE51r|JQ5jN<>nZkrX(kS*-GBJDaZS&e9flBk6z9QHGxXxb%jkgSoKJLCbd~E zRDR>J0mKnd+2N)4Ymbu9PN!6cy2Y`o2BNk7^f!3k)k`JkA4;i)zqz|X6dspzC@aWJ z!p`*X;BEfMr|O|kLZhFAY>4i5#P&jN2kbf^cKHUUVf%%9;~G2iR&ZXoE@l7cuFf=t1p z@~%RU_op^;M+Xpz04fwsK-Y)(Fkm>)I=SZ!d~W^yyjyD@GE#|`wqt*F<*1~eQNf4G z&dZw&Z}rWO;Nd6Na|TryiM}}1ya|zC)Xw_kz4{^er%>3DNAj>J*I7&F<0%84>=jxTJ2CbZnL9zDx zs_^x$3r=++wK0~P*MO5EVoG|}>P}c;i(JMkHvkbe7zaKcBF>S$(XA?(JgUM_S-Poxt~5l9!j) z$0b#4eMTYGomY7{!Qz1FeO{CDaysVleT&f1`EZGaRep)O5l<{Ea?$tRv~0J96A?Y< zXRuGNYRCAk=I|wj7~T{cD^C&%=JBQLJht_(f55SxDq(ZG@ed_imvy=|SXs?b4?dVw zgg^U51}x(su&aMh9%YfrJh$ERJgU^K9GZAcz~5!-C;TbDJcP3MUCT4SP2Asm%p-ZC z%ngKlyl~OCvf3N_Kwmj{e?Lpn5(O%d$iHLM`)oOnG z%n;_zO<-m35Cas6A%D^hJ_Sk$O#asDgXyWEft&N>QVdugWkbVgJnHrY@C2!@&M|$; z^Hd&2`^j+I;r>E@Pmk!Cm&X4+((rqu9e_@^Oe+!8Zu#geHaU5vapM!BUoGL z%W+(|e4;7UCM^8#KTzLubN4yAb4s+d4EM~QtyICyPH$u4BTo17fgd&U3;Ag!No?oV zi?RyjtiIb!LQ@cb`{sHzH-0sjW<~=0XKCJE&j@1lSUGCSMZ(4s_uF4S)CsaLJKc(2 zK1-vQicH9G`d2Fbw%P^%t(~*hbhMn1p!gr_eQQ+@G9oHsspkq?_Z6>(tn0)7H zzAtu$l7w`p=Dl*JEGcKA1iU+%tXk>>Wef(_$&UT>?^z6h5HoIYg=IL4nrZuuY68}$;wDTmw5bH=%%m1x3`P9L=PXP zuE;)mBx&*FLRirLdv1MwhU*({R$anU8j2n$_dNk~&DZYy_z83uI?{7K{Zahj-!V8ZDxNE>dE4!7p%JFM~PcCU9UVnXLWpp;s@BA=;0jx0WT65Ok zE)PCuaXD=r{C$)Cvd=K~_s^iDpwUsZC0QI)LM1W6F8zFR6(W6kyu7oyU~KptjEfb2 z^P+s}nVm;XzEjXYT9rfePq+Q#mNB1};uNn>`I}#MxbMrj4%B}MUb@W<#*+VgIdDkl zBqQoKh#pYBaCj0AM3q7Bj*5C{o=?EYnlJW?eKszglPf8gW+BF( z1Ep^Mu>?{Hfc%aKOik+C=CC_43^DL&I&!Yg9gw-~>K+;ul;VL4N%YCc$uowVMdJt9 zv5nGH=z<_?Rc^pBeLftIff~mUYSo2JyyQk%p-0ltHT>($FZyK&1S&%xP&p{OCFu#_ zTekwz%M&f0HrV>opz;DNV}YRFOpW~c1jDaJ;+egH!MnTJ?V!gJs^vHsgvh1!6d4U$msTQl@L~=okq-{8qy+bqsi*f?e^nEo#dk`cA${=Dy zRGMT-`mk%0{!Bca>1AnnJMdwB07!j99^!7wQrex}n#J83t2=BYuF?&;rj!qdBRGra zBN=1x)Fl~037*{CYEjNVkis3Sh$gFaEts6CjjqpdiN^aZF#BWZ8Q~ZBvw}ZAae+L_ z#XV6SL$>>qnq=CS4I6ur`Piq2TN+>}eZKXSdAh2y5()P`L0A)}0qk%j#thl&MGcx> z6R*9r{-L5j6@&s&(8N=V$EZ5|8X{@#b1}YUD!K(hhuS5nK;8e{_ zX6am{UJ}=G!9yAQgDu5+_1k1|&gg^?ndu8e<)-s29oI{a^9E_In9j^{t%1So2&SV| zrlUKw9`0QqBXNX7;KSjtb5c+10O8mxKCAX8iZEyZxefPDc6fNW&Z4cHb-*myyTZ%Y zcr%ugZ7KT0%#*=%DvBMf(QX>XWKl3BK-vpZ^MjP?+^ciD_!(8g+j{N=t8h)rNV)gF znI5MUn>Q&j;y`8~v7bDRtIQ})_x4iBWm;s5>z^wzjBimbh7kK??2Fj40b?otGInum zA3jwEuZ3tw7oOZti;NJBhA8wGe+M;Ew0_!yh>J2QW^LcC4&96SU72o{T4ZQ08p!W_xO+~ zDb~8_spu%?_APLh{eKp!OEx6ePBx7xUAil5?y$EafmxkW1rqlG!q}`G1PK(HZ0eol zT$? zx4US$y%uvDjSseryd~*A1;weiF3Da7hay2_0P7}1t$Jlq(4AAgtXiD;x_D6SX}c3F zt6ChTL$C#6zjjcvmwf#A8)@;oIGQhd_YR|MMjOVICy=L0CFDqioX04L;5QJsWmQeh zPErq4BGT;6V_ko*w#YNFt63S(pY<|nS)#P9OH6|e6jf9t_vhlOWSqT}q+;*L$cXt_2qn^rIFykTVrA8GQ-G-jGpr^a zjepE-T*>?KzXQDF?7MFJ4GFQWk$Y*M+VkU=fQmyDXT%#);1#tpE(=xl{H9fF93uO0 zgT6FN1to?w*st%p6~{%MLY_?{NPZD3Bw}cWT4uy#_8qwvz_V1YQIX{gae=H_e5sti z7AORay6Rt9O(q+>Ib2;`n+N0o_UxsmbZT8uSl%CEruqMDFD-W-x60f%X6YYl?S71k zS`vL(jd|}FVz(L-X%T~G!|_tQDL@EK_bt+$X*53YJab>umwFaV2y1s7U>tM)^LB76 zN>NZtq$A0Yh`b8&Qd&x`LW>7PQPl*7c1`6q-piC@#ku^4VcZD z6r%rvqefAY4C$Fg!Y)QeNW>*IRrBee7SY$W;>YI&TQye{B;+n}3_QAzr%_?2KUSSc z<4*kWU6xw`%`__hSb#kGB92BY4lgAdF-VZ1CZ_dlZio2?Vp3@Ug-RfFiuBI>yQ3%A zO`4vP$fzo6)>q6muf<12GLRFngbe^Ll8X+iP-KFGgo7P`x5W-C3Nucbv4bAPWvWjQ z_dURTB^4|JEtyb`nhlg66ykmb6f-t)t-IK&Raunj%@>zAyUASVp|u2qiS2hI##pq2 z2^S)opga0mW+4LtzaHn)IO5$=KDBP#1avZnr)DBcIFV>yWml9!c{&ERa{8!m`*+bi zY8q-7T(JSW4dm7^#xcWfWwX=~TXZV{3sDJq

9TL|8=!Vw=vQS1`&Q8E7Moy9Ml zFUl0EN%?KHKBuZ?*XGTme`??d)o^i9&80^YB;ZXU+UyEzl56AfqZ4GhXk~R7FLi=f zPq5HXp|ds~F_-3FAW6*fsU!ur^;0G2zS_41^;PtT;{ynum$!)Nxu~XaeZabH-z960 zTGsn7yi8P%*@v-k+?bIsw=lGu!eE?tyw^s)IjIVX7q}Sn~6fm)_(;vF-{K(rhoP%}Y8WV?m zt(EBVcgplU2HCVvgr=u*cgydqmww_UBKeJgXmFgVdVB9Z?AI*&uPFp+IE7G}hxkG| z%Qy45bP}hmmwpEC*a3^o%BCc)2wuoZP>&*#Z~E5jrr5dpUgdwB!~gXr>HB|aOFd1| zm$+#k5YQkekWMN?uVgqmdMIr8roEh#>%APeluEDjy~MaUC5A*p28|C~&o3)%GM@3{ zrVn(L8or0D$e77Dj98LKv)(W|6Uph6aGymhG?}j~3>X)4{tTtvPo)=pmesLGMDz+2 zEC}tcl0>@*&B(GGG*mbIsn`BoQ_Yqy(5+6fVfZ?f#lLs{Y0hD8x|?g{*-&EM6De=l z&JhZ_*}Iw^#)$PSh;T72x%Dt#9G6t2L|964kLmR@oij*!0O{~`6qp?ZKtFijtC#H@ znvH)UDQm!tfd%#{IH~FkyI1_AY%pMx9_l_qk^F}J#H8J@N=NdlT^qu+WRoo0LF+7Nb z1&;Q)fq2VXqtwnyY<=62to;Auq0-k?oV2rhwsAw;qaQGF!h1(6KArlzKdx{ZvCc5y_5_u^>l z%M+}oxdB*~k(C%}!emd!POhWQ6sCSU^4)Kc(f~bvO=sHC*o=#i)~abmrE2g!=++t#(25fA@c4_XrgeZqQ3C>Ef{(TlG66YL-@RjpgFd>` z+6tnRB;mS1h9tze6c>jBPwNRRB)#9hEh7pXnCbuisH!=q<2E}Q-FD6G*Vj-R)vA5j z9M8MT-2X-+zs9}eu*zC_NX8GZ5>|Ha8yh#~t!zeROy`e9&5kN+XNbiw2dKhYc!R@Z#KBl|FRWutIYUYn!%80DcWte{12y$9WE%_N!9M{Dd zW7Y88L@q_@=f^JA48UW>dfX<|yn)}z2v5`-() z^5s$nk#GczqX1BKtf!T$F|B-T-gD2+?dIuRGMuYEV5SGO0#s1IET*OmdGpKRCkloK zQAi7E!B#7$@c&-R!BA`o6Pd$&ONhZ)oT`Wq@6S@sv155%f}+w}ylNzfbQucv0J+ZR zlrgE>E&+MlAEXR$0ZuYDA|F!HY^BU)Di!g$MhU;{&iD|o}#0@OUn&5v|GlvrCxI$^px zkp{LT;@#2ua*H-O%Y$o+_U{t~2$ZzmeyTL#z1#K)HN?K^q_DQZd&O&iRrkMs1%do% zMr?76jzpH$hk|F1GO4Vov`4UCHMouUTFn#Ok0UJ@j)6zAknB3SM89H|Nu2mLtRQjPssJSpc1h3<^AxMLP z{YyMMDJv_>t+mG)xuMVh20+vYQi0naW~MHA)+>@6<7lkgB~S67}k;$WGR06-M+uTc#_`R}EO_S0TT zhqb5iLU~!IKS@AqKOALkpcTf(h)|pvQH$$WDia)DbStbqVZ4IWB2kY86u_#xtt*Ha z7zUv#ZwgYt5#yCgGQCpS1cXPg|cq~ph_Am zB5QsJNjL!NBb9(5Hp=^)+o%B%Oq2mHHI8OBr^!kB(>JG@x1H0ZGUHx^Sgn+@9$t>t zYi#ZXH7|y^yScUP?0m6Yy=>4kL@yE~i$!{I1RV&FF9{F;U+rtsva;?51|s~yAAr9W z4=zt9T9L#z=wcLRRa?5#dZK9(b0GqDVUt@FK84$Zw|UL@orrL!zcLgbuLAuh+* zkJv2L2jd3n?-`+jT4;w*f3XdY#X9Cpj!J%NJt zg7A76B+euB2Cu!oE?h`+YD0EAfQ)0j#rl5b_4M8jn4Fm7{4WeZTn3j#B0vUJNM0We zbCsT5IGASkBkxB_cP2jAY!KC-_;`uYjNWv6pW4*S?6mpMyHai>RvboIOFmV%Kb^L$ zz+{i!aYa4DnRkF3v2#%EA@#-tb($G`dH1ZuAXEpQ^yJDPl6_`-%+nCO1XT}r5FsRy z_*01MQLCv6HPJuHIfVi27%c*rn47TrWk*S-U^V zR-2BI%hhF`d^mvN^f@7i)OO@Idixtb&-j*Z94_oh5TjlDABQBAz^ND-LK!#{7)io8 z)olxtIGEf}@*TfS=_)Ao6G&g3d%wH;N*-c@<{$0h+h=EQ77us4(z_OBWO17 z`P^nj3FswbdTp1!63W=ZC^6YVMP~ab?nZAjJhab&$`6*#(JA<1&Oaoa1TJ~_RN{5X$!z^7LMgmj3xL4Eaxb;PQtVjGvz$k6zM5;vKLfR}{#x z4E%lopc)=%nI32??s} zg*CHpA3rp!u&$0Y(y1uD6(Qoe!< z!@IR#OM5$3O~>}*nS5i2M~4XngB5#9{j|hHqQBrnopY;lpKn1CZB8sy#NYIE({f)u zhfZ42@$vCzO$2GS-{r})c=VT3v&RC}`Kj<=m!%7ZjL%(ghv^zN;bsr0wtnYY6vZHa z{(4%9?8PH$3V-da9aspEz;5y0FR;7XLq{R-CCf?|Ip zds2UVj0snK#`NZ~E=%z`rzP0gA;lmI{u@>mksX>%RA2e@2i@GzsnMwm9Jea8m1o7C z3Ard3g+mh&1|dE8IsJ~CB0&^}Rb0HvN5s~VpTF?8Ha8b81rPLO%JBFXBx-kTN!hxr z(ydd*8SO3=o}K;c^>^tk3h1fCSKwIP?a@l|rG3}_JXxz~86F`OvS1!2AIKO$l2x4~ z;$q??9-G&ktYdLsb5Z1%r3yp8VgDh!TQ*O1PMeKwb7!(6a9B`2-=Bk-IpX&6)J(-2 zg*UG7+zQ}b=Z_chy2~;Yi@_bDqN_tC8Ni45)l z#*0EF6|~P)_WfV&Mso{l;;VBZ@T%`U0FMS>CHTf0e_CyxZ#|`>>E{> zS_7fX05YKAFrAnW$cCDzw6BRb9(p`axBk|}_{#HSrr2e$o7|C2>UK7mv-7$=d0Nl^ z>0E25{kosX5MeHEx^DzfTz_zwj*l|%_7eWvP!<*xt*kB2OYeW>hjwpjzLCHb|6i*& z1D1-y-7L{mXm|h_8fV$8yzc{geqGa;{K$f4oU$@}Iim9Ev^9?(o*?;n+I=734wNa= zQBY6wu=ai_pLL#WTyY2ONzUfG4^qF#o}EZiP^?oCzf!o z$NZ~bxLL$*5JM1OHwHr$C#K(~dihOu)boJoCg+ zh5v<|2dMT|205tkKzpCdC;r=O>3jE+)k!>0yto|IYW~y+{0$_3?;m>lRJrF@|33Hg z66h}mga3avTNFPoig>api`^v;p?@IBL(+i}2wG2Xu;D2}I~OT{eF>gk{Hs<7P_3H! z5X;bvTvo_4Zr^{(W=O}j`1_(4 zXNBHDvxEh0TKDfhd2NP+%_*(-LCjVqxvMl;&XD|dvmvePoK|Klz1ooX<|Mz9lM~RB z4uH@iv3+Exhx|POl{aR}g1G)YMcdw=%##|p#>jXUI^(n^J1c_bQYy>iypE6FKm-2DDUkp=sfXB zDGjfuGDlih0lu@OYBl&Uc4dGJ);#B>#l^ZYBnH{=QC)tkl9oV%1p@&&zQ;lQ zUV>*Si2Tme2lHUGWpb-u#6X_5Bzh@e^YLg!%e$FHkVli|${Y?KFC5(DN(h(JsdYA` zZnI2@wq(O^>x*eI(m;*yvL6{SQdT=LBU7>m#auIv75IGa`~Ef*rFFIKO0tw)3M7u| ztbNv!G_&)C!NW@AFzaH2FfuO7mvRt+u|19$w%?VA3B0j^=@$tol>`HZqS8T@H?9W~ zMrvZx1N(I!Yzm&Dw1q`Qf*=iH*L>|`M){urE*&%v(D6K}cTN*qdzk^g_;4PY?6(jY z3uqM*r3%wEL?OT#X$yZolBysS@a?NjCy-UZ=mBsNtoLrclhWcllu~{LJRjB!bN5b{ zL`*dCtZ`1S6o?f@Q1}l&mUXcpHD{IeE0=e;X7o^ndbO>mR(sUq?{LO6%K_G|jP|5P z@_JNPS=IYbb%wt}#G~FCXGc*G5Wh5izYOhYemliofLI{!gLNi<*qhbAB8$6E1^fhE z6pHCi~24t_V*NmNf)73RC zx4Z_S_6$D&PK-xsL>(*&5(i|oR{{X#1Ekk7}lP(wsa>{ae2 z3(@|5BLlsKYWHEuoYf!IBPj8ViF11JJ-SURd;Yl<0$P)0xH(zt7#`6KAyh zZk+}7?cD;c_V{t!IYPA`(0a>EaYL0Tl^E{vycv*u5J7ahO~KM}wAzQxhx;J^uq3DM zlP9x{LW=|vbHetP4RIiYoth*R_)*_%l(4@-H$zm!R;SyUCXAde>?XJT0KA+^pPiwh zak#y1dORe0TL|-i*ND7t=mmcEAJ#hb4Vt!H>f&?*>?jc}9SHx<2DSdl+~uSCwN*F& z2lC($DNJ!`AI!Tau(|gl6(I1WLO4cqu!3Qw&3`Tcmq^@IgGX>O`P7SpHsve3?@o^s zuE>(Uyi7gYu)_(C7Qh(@ zbA+Uf14a!6HD4`3+_`B2xx6empR;4;+*aTTRWvk2Hb)SUwAY}b{QLJ0DXveJ{D%cK z(@X`*iO|QP2C#70pFj3U!O*L_aKTy%`CZM~Lw7JD3m6;wojUGdT^Azx)5vUE{hG%& zt)PFcU74fA=)}4tv5=v|%K)U63Qp2rK*Ou7J8>XL9kH=f3r0hJTR2$r7@3EcN^Om& z&TKg@5==D2|AX)1ZqyDhy2=BAk|RlatwK=mra=}S*2>Ufbf~QC!Qy}9rNl!+gXv!> z8%;$^f%8#dX+UCAAyoMbq*yrSzJ83it()MMi}PRN$>P_i-hkl2rwl1V1jvfT&o3o0 zEi5#^E>Dc_5JW+9#U&JG{2#!Pkdm1hZ(hd1`IMHA?vf%uQEH{t?^vSh8v2cXSsR<> zCpNFI_@R8_zlsEia_IO6>Pf`Kg`CyLyUT$a{dFD<4;K9Z20>VG*ys6)K(A$)qp7R~M!_c<&NyP{iM4~`?n?dw+ zlPn;r4*^)c=*&YDdqH?vESd{9PH+(p0G^HGY#yV_oA9+lin|%f^gZ)UW^ODe2%_5+!i_o^2dEEXTUP zIoFM)aTGODdae{eP6;#r!`R6e7^8pGD4>RWq=LMCI9s`FfZ2^&5T0LMySGQ5C zqPqymKlV%~-}qmsRg?vO0G}Gyxe>J{N|G2siqj1uzo%Kym8LsI-)J{>EBZ0foBpYC zx4KNIx%FQ7axEVZ8!v`h`vVs_k>lQY+I;0JFu+uR=u?(a>*a_kS-(P6*$V^|fV6aw zWkl;!&=0T4GaNh^FK*R*bwng5ENeeP!?`2wg&EmMP@0!aPX`6|_oT?K&h&7|}RC zeaG}3)Md&JDJ1Zu-nHSuynj!0Nr99Bbr#=p&0g?$3D5FzQ3 zubq#sXhgYLFHFOC!Enw>*GSjyvlpg$Ljt2vc+(d9 zx*F-(b)DkP>t8JSh8D_xrL5e*c-8^j8h z2$BOLp6OmP49m_W1_pcs-BNlv_MYokXQAxdPUpvB_gDxAy2Ns>{l9PjF7S0xpsGzv zBH)0pKY_>xJI5shpM2@rZrFf;zp+JbgDS3GHP4Z%Y6v=Tn(dV{F ze?2cj;yqa>);HS^BfIx_E=pf2Y<~pz5>it!Gh>VE;R}zQYLxhrr&}?Q43~|iVt#>(Fl2g$0xb+l{0Fee zleIo`_>`+q^%byj?FEf|xFTLYD=Ca`nVFY#UUOm7=L=7Ua;gH&UP_4ao{K)638$=; z?q%I8mUa5|ac(rU*I+WOZHvGhog7ltbQL>j!^!UmP?T%usw2|50ROM~;}bjfyBR~@ zKD0_CCMMo8C+iy+&nrm6Ss#m|KXY^M9Lz1JXSTv$KAFzC5aZ^ZRH0 z&)rk!>r>NyNYOgo@BY(Q_we9{HK`3>yolK^aS*``!qFBO?QnIWV<`M6ek-MZ4}xTH zR+tbm5a_)NJ_0WB042iGy3kGla`54+x(h#pi>uA-zyR{`iz^FA4Vm3MBVfH{g^L=# zSx<)cmYmZqwAS}JW!%<8>G+{BrALYH!?%6c&E6}`mX0xVn~7YTB27(6L6<)~uy5*p z;PB_DI|Y}YDYR0eY^8V4V`EiEnSi_Ps}0K*I1D(nm^;$+Z%k}cQ{6U8_17J1av5PPms z1O zDAzRy)cZIh-ka_l2qW=jKcx7~N;5MLhyT(441SXx->fteO_#euZ&RJNRni*ngnUq- zCKX7$to@dPcAMemj|^1V^dk21viv?Wq0QX(SK79=WVn<(l5cHzfrf`ecerq@V)Tp+ z{nFio(+~}tDM3h+Sxdbwl$bcygFo8p-M851dZ_4AAO7g@Y)NDeUw5-{+%Zj{_qf4w z+TUqU(4A+bUuI+_R=Li7>sG>t&07#^;})(E{_vTz=ka?TwkU*8h0rm6|LxfwU;HK; zSTlv{gwi?R@&DM@A1Q2$#3If>6J&3bk0H|1E|F1g>yWwJC4}u?OA?~3q7q8YGi1a$ zqImwUBcUl-`iSVoZTs=#gZCCzBAL6rZhdB6Tuzf}N*dB}OC0iXkT@XrYc9Fd#R?2i z8F$~25bQ3kTA*#R@O2H|8yGT+XO>^} z+yBR49@e@ol}k{X9$Z&(HuE=>I&0#L`_b(v^d@)ZL<#a4kwRhncMT5D`6fwrSVyM+J+a!cr*%6u6% zqA-b@|Kn`Ekypp%K4LCVJ5Tv2?&YIyKarQsGjjKZV%RYhooc0#&^J={yC}JOT-!v( zHD-MjS2UHs`^mWHmkcsdkXT5dY&VZ6>|p8n2HlXc2??x_Y*Sq=1k)^nS^|A{Vs1mP zp`T7sq`TUJ;u3sz6c||Vy`puw$IyQy(wCviu)!zrfkjo=!SYOtztT@5g2tHtjLu@$ zbuOrd+oCt`kIUwvrP0UJ)xytDk~^&{%I*7Ux{~PP^<4`UrBP&MmiZFoR~&9#3&Z=$ z$68G}sxaz6e3&i&C{Jz|Z^N4fLoNQ!!0h!d1xO$TFnZdh zstZSXbK)%W33g>qa4~6+A~ai zh?Da-2zn-dZ}ia`Zcv$G6Jzj`o}8Rim-YktPpLIC_DA+g-wvkcYhg`>Zm2dBwbUpd zc(6+DPw7;-ec+w4*v zzXWRO1 z$W3U7wXb?rcuWt$Vcxm>Pw><-ryiz#EX4_Av&iLq47L@c?|-(dUJXzp|1^?GMx+>Y zUp%qCrGS`itD@**URwS~h9N!Ub_nuKWsOBl1+*&g{CGn(36ByHp`RI4F($dn9a5O@xeWIq{iHh;NW1PQ%@v{HUn(tZ? z7LrD-nmoj`S#lYP==PC2Hs@l~0qL@Ub&r{unM%+e4|qCBC`xwu`B|*Ij8mO6F2R;B zRpif#;sK5PSrA!rRakrfPI`L!SJ-zaEA4R8#u_{}dii|U4G@Vztlk&K66dgqkF~l5 zFCa@?tAR%r6lAW@lm(%rGAg&t!5w3{r~SNQRGH{eG|Js4rqo-IuJD`2wA&&vw~ zb5m&Or+n)+WyungC`QTpVgn6Fh2Wo+F(PE(1^W3N_DtRAY|EE>GK)%8fugg* z%Q5xnJRwWmLM&HvT_yPkPGKVC*nxr&Y5#NfU)*BzI}H`&PLyeHKh-tdQu6>k&*#7GxQOg;rDo`TDK}jFfMoy19ZNEZnO2?WEF6do+v{67JxAC;0h_fEgzHj++MQuh8iCc z3!4@BX26(;(=RWGbabtCnQ900gp-#S@vmB5oE|_|2y(usFe#Lq+yWST6oP93R0J)h z9pJc%iaxE@%eIbnWGUgBbBBVH)rVta2FQSlgabpOM2kAFvpvWBk>7}`Lh&Je*W#z# z{)xzbsyOh=pJei7_A9EW>^03_5P*I$qBS_>wa6CzxP-MWre|HYr9Nv!ewnTD?(Om%eL9r< zNH|k3&f}<I0@-2PIOwzJ^*h&>8=xEm*f8_PgXx9g@8IjGS3YH$navsLc_!a zWeW{ZK?)(>{1!V;vJd7zcht__DR!5Rj8QG;!g0amiddzteHc)Y&8t~EL?dSPp4 zm-_PMQz?PiRr8lVQz`-(stvYY3wywpdeyd%LM~bIL+B&qkU3G4oh2vgebxoMSb)Ku zMLj&5+oM#DjR``_vZtBKd_TNy^Xriy>9zZ-!$``$|Ifguuh(f5J7o>+$N{zCLQ1tE zX#UxY7nO+Z4qVGYMMnh3k(Wf%w^1d1=O|kE&t=jJaN!!luU%lxd4*+2iQgArj#(awcH=i+;Z1$?&COX5K2>m+2)9bAh+8;9R z5>_zmS`#WNfd(Vt4*lAC~Xzy1G@r}vJ>x_$r0B|Cd>vS&uf&fa?^n-HRqRb=l? zg~-UB*(-|7kc{lT$|hw?e#h&6e?LEud;N2V>v~=1c^uE#o@UzYJhQL5B|+c4&$=J* zWa+8r;Vc>J^}bXM)VkcKi>Zl;gbPjTafT>^M#fP(urQ~yW+OKC@s z(mI^7TzQLfs>++#TlNnr1n=A=-90NCxfiEc2jK|#pe`A5_$n^GjDn&OIV(yK%64{MwH#a6` zeyjgdnoXbb50~JLLg5S42c3m4iG+v^f?(coES4yBW=@)&8a{7%o!_qi zRr~RAu5I`&oJXFL+Pkgr+iIE$VA9UQTcb?>EMLA2YK-O{-yskAs6G(n^?R#LPWLht zCn+|iP*8e^uHN_kA zMI!zS2Vwm$t)VK$d7bDCukB z8o^;i$9-K?zDtHuub$((w%2ELW|_@J+h+@SYz*Jt3%Y`&B%69;&f|4GE((v|<(?eE zJAWKc)Y^8sH@D6epOm#^)yz2KVlczCen}NKy?=5Wgca1(v@;LKBlI8Vk64DNk2uk@ zU`a_twd`VHv0yu*G_4txCmYSZ|M1~Fwx=TR={KFR8-JA7^M`q<{}-^WbscW)A3!Z& zlS-+psdcRX(S>FRU`|1*gb>Pe;Ks@?EOZCz=X;(q0fK)59j+WRNkmy@z{zN$k*igb z^W|eI(}@KxbhaL0vYBzF_~*~Y+ZW+rvAprUo;dpr=L zsT@14`adtYav-tO%&fSS+W6W{ET-Z_mO|Z9Qq)9SmHjHef5v}HDcZIa6>N)t;K(H$ zxCmn@>BYXlBJZ5uJ!c3zvb_DimlrqoV=|+@D7xn?L|V}Up((k1GI4<9lOjoG0QVWZ z{}*^#a+@grAltB&zF+z;#izn>nME(8J)MIi$M7-J7@_CfgSvhbqX&)y{%@7{?(=>6 zWs~!(1hT&&u_1`{%wjq&dZwW0QATAH&O>RouebuSohr(1(}78{qZ|!omcs_Vk>Oi% z9S?jlXY?`66vsc)jWPU7p=U1ioVq9FP9RD*{a!u--wr-#;Hiv&Wp>#^97>s&AszT! z)_))blYmW1Dih9orx$h#G%qP_Y2=^SVc`b|Ta3r)^6M^3spOdr!2cTXtNCptXsCWq zv@NV4_~KAwhG4+WBt2SGra?6+{2vZpO{M)i-vT0H$NCf^3YoD`xwt&z6nFT}aPJ=+ zZ0s|zvi>-|zg!dopo@ggt2;A^3UxQHsq&BVOzLk9D$9OWI%!~)4e}xzB9fJoY~9YS z6&I%v4}KnWK5Y>xkbV9CKdvx`M@KvO0?yR`K_sE~Y$YThL6yaSI&W6>6jzXEx{Vv& zgUWLYc+PtNU0#6e1U|QjP6>!KEG!ku#H52V<(N0NGrc5F-xkzG{q(?ZK1Kp9xVX6? zFoU43ujVUstUd#0|8+&rna#;c2AHzeAc!S2Ef4uol;sQO43jj!Iagi2g(WY_S&L#(#Y{uERsEe&38N&rkxqRo?85TB${0+sxW2`>`@ zGD5*$#Ic{>`Os`R&NO1S)rP^EdI0RG_mnr7xBr3+FK;SSzVL-y>T1g?a;MgG7oC=- z3y?@3K-vNIaMuB%Eku%70K-al==kv{cfnBYRsEmK(gsb_j%<$OEtb6oW~L;j2a0v$c7<_$PI)-)zdt}yFy#x_h^?@zhzibg(NJCWSFx@Vh zPLiKLrE=>r;ISdZF0?o`Ab9rPT&TZ3zo5WTQGN&&L1kf_or7Bs9x%+JHqPOc#Kd-3 z`pzyEui|+Id@f!5^bd)YLdaq`DH|Knvlr3Z`TP%VAg=4o5n}>c(RNs!hzP&b#WBw$ zk~+lPF3iokb8!PrDbK))ekVs z?p6K-k}AKs`3;h30`8utbPJBM|8LIs_=H4HApUIl-LAz@DrgU&bg;VU0R+FC_>kdo zL0n`Gi{Q%poLtV-m2>ksh(aG6$kqHmEdX#Uh>QagSBGN>(bp2>*rzH@39lpus>QZghI&bd38y}+N}={Vr@~pLf!sO zT27Xz)Dcn(iWwCN;u`D8Z<$E@4}y??7`)mZ_6Ly~B5uyj6}R790ELa@$@+S6IoG@4 z*NW+$DiP(TsiSg61J6lGJHjZb$HhB36Z%mT!4ZRa#o=mnC?)qIWQ5hyCLjFXmqDjeMFNQkvK%u!boX zF~7s*9QtHdM4!W+gePqE-V4xWfkwzijtLxt0Ygm*yVbGuQt9R`UezE{2M5N%ncv~w zd`1$pvJF4w>GY6)kGc1}A}pXN(rw&~J7AnfhykE0%J(zl{A&;a3=|fmKXXO45fyn! z)`jZ^WvndNy^W2W=607LODH&%cSg=uyD(^Fkcq zJI6OY{w+P-7|Fv#+zWu2J%m$1lolT>t%EO z0iXqZ-Hin33Tdka3jkHI_$^i9H*ek`5)(R{=C_>iKb#Fd@$UpJpM*05zZD7sGE)tF z^E>;ITE9A_5p)%mt`V=~e=FkvmsExwCei2tdNW%AJxazw@w|M@J#M4%JmrM%Ubi5}rzqg+ zANza&$fA)nmj9=jw0;(lqX{jHkp+e>J$WCH3DgI~C*nJ8Fg~z+meJ5jXm5}`xcgb> zL1C-o-DgLpA0!{g>1hQ|)&IiPDRV&I4`z;^*(i?I(4FW-Y07ZwvpACUe?qfh#LMji z-v=opcqkciXaLcPYY_4M12kHDRWAT~4NOtI1mqNb&l{XN>uZW`$Gb=20a{Sdv@QK4LjIldHV$_cK$w)EJhq9zHz|3yLzd;=J zP4R2ORIW9&VQOSaiv4PSLDtdTMc|z^iQuPax}$(X!WM#!hldoe6x7v`!lPMC8I_}g zjFP|r3%akV(Bk(-VM?NtD*o3t3DGs75fQf!li$IkP9MV=8u}%OMbXZtQ3-(p0d@VK zr{TF@;LMB(811X0y$0Fu?TX*vREUQ9F2^I$Uw!FArW%nc%QcXFr!Q{bLiu*F;l}It zx1YtB`5u&5$XJ290hdAKEdouZr&BAilwPtH7b{?}lF+=3A0$F%fan$vl#^y4CQSQe39_0@pf7XzR63(O8BfY>7bmYvsn4wrU8XK&Uv6cVjgm*mpIJmaUd+Cd}>%-R42tmthC<0!ZV;*NF z#a`qkwv~8EWPpE{QNI@Rl_l$Qhix1?GOZQ&Pn-qnr>4vJMv#R3#ur0By zHoT0T-%{e@P$E?X8&F3)ox~|r<0|Ut47>G?jx=-V@GUW9lH|5!{g-VoW(O)O!)BrWCogszc+Fwj#WXbBBzsE5IU+BhW@KPkuyFrt&~MMbCv8_h zpzVDXR%@|kA4F*fk|-ow3Woa(Xy}DIx9Mj;CL|P< z*5G9CeCF`{T8vxWMQAf(r0UG~jG=PJ2GX=_?d{#6YNlFyL8*2|CVA>c3}NU!PyG`5 zpE++sqJz1(cg|KSi)$FN?{O1~`~0#3O_?UhJE6A$hG=Jz**9%6MUeoG!wGq9==uGF zkvSvHr>4So_4o6;@E_W?nNGcKOGXr+fF-WS&YAKlAyI~KA(Z^4W9u99v^IwL2SrDu z5;%%MS^kk&Mb`7Td(WAenZ>}%nUrKsp*S|uOi4saCfiInK6*poXKlj&vD3sgJn*X? z1~$>Kg!6xOM^AP=OkrY7wpHonG5+Ee001-@Vtxi(7ht~v@{y2xkIddg`X@;?H^Id3D|U$ zh^+p)x9n;((kuST;3)65SNtFe(}OaRaNpzEtk_J3l0eZ_So8T z9^*Hysjgvxe0U9%okL>yIJOJ17MY@M6C{5@)#*Rgm#VR%CfCdf(Q<=*iIe?r&)!&A z0cG|N5R0!xbH5iYsfKWZqYh5Edf62S(f)J(X=V0%^d80{RX;uU-o z85?U0UTK8D0Hf%^%k00QbP`@w8}>au?NXJYjg5jqB8 zu%4k?P-pS6u(4rS;Ai3f$F~3)&f#*NVnNi|vh#hTG`G)O9xi?$E103m8-%qlCH9+M zc4kT9b3daykIDTK>P7+uWvlQxip>3joDV-zOw;ZL_%jY1`PD-QmS-*Di)Jc`7F=J zm!F?a)RWymdPyr5n*T)uH#zKs`>x#}@OYkX_ttwOvhV=THx)uu4;ycZk#Q2HM_iw8 zg;ba@bS1Ews4_}30UB4Af+czBBykuPi(o^SJtJf2gj62rNMO-6Pt zh~6Bq;x5I*UMCzR55&OGbD!5&vf;_%x2`A>RW-F0&~D>IwxGC_zQnqj;x<}u8`(*e z^u>Gk-NZc%nfeoci*flh-fOBtOx)6HbiUURzEoQ*Wn;quKu%Otkp~LaRDk@ksBF;-lpcTDyk;VJmxqG4V?|ZDq_FmEl&_qxl>+JG$IMx1!`sXAN z6+961Ja%hK^jQjm0yA9F@%{V{1y%Yj-?y!v{8&ekJm1I*8Yh8RUe-3oyH%rXkok>_ z_n<^TU?$ksICyxvwvSehp7-_luRxP&8zT=cV!C!3;+ddSI=Uh&sbVb8{S07}1ZxwJnDGfSkL&B_B%F#;R<$1FP>)`NAkS)Pq!+=rx6A^#!#>#uyE zVEtMm8ng7cx(`LSZEI$qpn67XmO$8=P;lu&m`LT*8lW zjgVm`^)GdWRZKT2@t4?LoNGZ=rntABkicv$&YBSkL)_y}XZD}|{#KXyL!u#ga&ry> z*F!4PakPmP`=up=WBgZiKrZ#M-w40S>jA08+6STRd5aO|Uww~{Q(i<5Od=E_qJRex zKYX&?0hR| zG_>$LP?WK<8git>o6veu{*xchqnGA~Pt=@FtVGb3Jz4-&nz*gr^7)7R!7q7&>-=B+ z(eVTDFwGbBcILIKy#tE=)vOdPJfjR8$x}ws=rfniGlDpJfyRK0`4(Y$ z--*5Ivm6(-8)pkVPCtI%IuTYE31`z{ZdoBgJ|>9t1R)IddJPR<18Vz#P!ohVFVP2w z_7v()#HM2z;O2yt=NrJUNp@!re}m(6iR|(+grWN1s)XNY025l%*#O-Izz%3VbXX@t zLTdrGM3Qw@R%~cpl(W%yWWD^azU)7PWQhRMh4tNq{hJMxsZ%&2`1suz2AH2g&czDkabl0{f(p zKra;;E&gv`PIF_ZiaRd?KmwjgJIJ(XJ?NnUo;mw4Ejb@MR74=ns5uIwIh;~nP*Y9HcaG*) znFWwp9Gvt3|K|z~b3CGI)p{a@G19ekS~l&s!JEQoi97+?PJ-atq))(nY1_^Ih=9## zBz|B&zob5SIOp`%$)CQ*)R{j3Cjc13yJHoaZ3KbG?C%$fL2n_1jPw;fQ%8N1FOKtS zA1i}{j;pb-rV9AaG2@tKo3m_$6C7>^@#i{r5K-1vR|G3@p}sW9b6^@23>DSqQu?fs zF)9}&kuW-O9m!$<)GWEDN9pk!-y4IxgF$ZKXF$D5X(^$`Te>G?ePVnO`(c9ECgeNd zAGs?Iyw`H7bWANWoVF%a=UjSkg%ds5P;G9Bgogw+^h5p=_MSwIkhXBMlXzygbFsC> zA?pD8YCW9Ip3jGZxQxbF%(E9{h%p+Z72Wo=Nm=j7R2?6e?Htdg$Jap%U(2lj!|RH= z#-M9PpghoGQQ~5N?ffgEce(R;t{Gn&VRg#|A^QyEesfqXlbh}KVokj?Z4@b z4|A}e&*Z0JfR{v~qaPK&cae7Mtqm>hXuKHEn$m7&ywREY;(tizI#c)h9|8CQ;G2iO zW_*ryiKRSX=8%&j??jInZ15vOz!QWKZTL14bc2X}z*&#~GzT{2cX~pLO>G^O&s7DE z3mQ2|lJef<;<@wsN@X}6iRdlVWdlQ^Fzc%~?H7pXjcY-f6x#cmB?{Cg(J?Ve3cM3m zoV2McYckWRxce{kQ{QBt*=;A1G2EFKqA08XL)`ZOhTfYn9-f~+4-O^7pjIO0p(V?v z88dPJJ6rOb{DJ4RYNG|JOdTioONRp066K!`0#GdCmjvGcoG&mV!Uqxs`+Dc@OMqvC z{NdsDZ&0sRf4A1KYX!yU1_lO<1A|9*YGauxI z>J5pVws~gCN;^JpxuASa6UduA{U!vOKjbue2-`CqjEkQ#;n{Tiu6d{0@9cMsJ$3^! zZ}nLTQ6uncfUEWQ8*jW?SW}BiX8ohNR*xIdr0;_C>!Hy5m>{ofW>T`z*1j#b(zZ8f zLvoomY&I2R{<#z(=R?wO*kLo_Z6ea3WDez4&1V-0t|ro8`bf!X7KSGQ!m1OuC_1aW%wvRM`i?e5zP$9~isd)od@6iL*JU2)%9*b5#~1}?yYXEvG=(p; z2n!3dztGy1tC}tP`0Vk^4D2K(N2dx~<$pN;6HC1-0O^$1NQA-IJ~QZ;A;0x^=<1^T z0Poo3nd7=qQmya@hw-!EPE~!^rd1=nS$9qi zp$@A$56HzlY5FP_HJ+){OLvDTKQ5?}tyOXO!;oqA9E^JSJa)#ihsP z8&0_WN>d$lxwjf1m{X>97_q}$d%d$_DEgM}vaQvh!dKns`is%rny5q@tx&=)J!nYF;lS z-qKKkTI{~Y#BkpYfxN+Yv{6g8fz}16=dU2<16-!WAJMn0oT@$^`| z{lvBsCq+o;;8bSs{kbKby@D~9!-TD3!~w~h>FV`%SsvB`LcG17NpUBH5o>MWzCnM) z!8^@QXbMc-#<^VzrLT#dJ{GW;o}(^_F&&E(3k#Lu9q!Jis^4m6;r|C#XB4Qr_M}m+ z6Nq99pfmccl{;KEAPoI3RWqeJ7$|53FER_XxJ6)2MFnEhdYW!>Ge+G zQTFlU_f|eHNml1LU|>`kQ}A!RD5jVKu>4D3pLJg{>yGs4wa+OI!92Q<_8V7W2T%?$ zgTJ6ZGxK|{1mFfNK(nxSWc9O3Rmw~D;4pLA@C)4B+~G0n18NRQ9|bk3^uy}^>GRFO zQUo;Q8pNqRTzq#WSUwbIJV=*amTtl=s#E&x=WVF#`iL}Woy&kO z^H0Ll%&@YD`&qh&xE6>lCnnL$Z9<_J^*#=c@3_n9L6TEnPNSy-Cc&hTC;y`89fZT( zYhI^^g>U4?skOB=LR%r12*L!9j_N_+lx;q9V+yRe^6xv!J^+)|(M|ccG{w+#=SxqK zPh=g-$VSCafCa3f36&@T9VP4#FXS z{pwcYiBk$m59#^+@CU>^LEHDX28-G=(E}kP%E+Y8&56F8-VEf1u;6rn4{Dx0XD#*r zv;fwBLCaC|;=;?s7L!~ca&?61QEpM#`xmA$1G+#7Ecs+NlrsyI}-GJJ_x!m4XG^$iRJ3r2QcO)k5pFh(gMl?gyzBfg{Q@nhCY zUgjwNF4S}@(_QYHLmx@VUJE%ADrpE6r}HWnQ&OE~lqM4BZhU|LqdGFOu7vm1fFf+N z^^+E}?*QHdT$&AOTY&kNgO|7aapP^*rFN2Yj%+*#1C@d0dRbQ0IJTEhhw`!ZXO8<* zka}0cgNZ}>-zj1C7ycypWU8pEuR@-GUY$Kb!47sECdf@4Mws>>L-Z--kFY*?Ni|ee zu>q^)znE=E+Mfy0tXnmdYDy^QYJrIPQzWN8o_TykZ0MBeMj=o!bU3~PH7SIL5QFqU zkWRDxKl}$8(7rwQE4psJG>$x-SfJWbCPbStcxZJdB_mwWC#q601vy26&yS zw)TF_rP;__`7;?By!n_xR8*xtxs1uU+12@i?bb5M zEJ)`H^b18sMv6|}w5XCi1nVr#op{9<@&lltMxphM-*rg_5w{?PA5WcrfB%Msm_Z*5#orgo^vC8V z(uY6d9AGVR87TE|!dtk!Vm-h(r9P)%P4 zya|)R54i|^z$1^qS@hFngzgvA;mJJoWELTzI%sIruc-TfFsWUhLEG?~cc~@ppK)+U$=6vIld|xH(zwQd;ehhxSo)lJbZA%QwdoB;=gr6U;`=;ViJ?q zW*$IigaZ-3bo3l@?O9n^LYJ0SE6V{2t7b;&2;=yb6`mFn9E{rC#Aoz>E8q_}Vvzt2 zwp6LKYGNhQ$8`n2W%V2yFJ|IN+qn4d`u}(+x;0L16W?Qxn>SH_o#Ce1xpCVSBiF}6 z^|{_qHR+FvcRR!OC|hRftigeimq#bwk#f{fK^ujOYNyoq(d76S(s71Sk=dQL0M8oByj;2 zZbugvL|cjEsY6nPLH+8i3o{$IbV0WL`{Oi9W|#TyOjJImc`!`<9p+t#um{ed1(&z$ zG;ns{Qt}6aCwI#MX3bj0{R-bRTIC|vg5S)F_&09k0g81+7F!)ug_%+dv z`fufyr}NX;CcN9viHC$4#>o7mmhfR$7qL&KkMV5F&f`g)BqrFFotdMVAQkd%m{eUv z9umO|0o!TFOqI|ppZ<(Lb&8GnfeMo`4tsxMyVbU_AP+ODZ+LXlsUhF3?kFM>Hyf@# zy(dhN0QoBLp-Y}guh9>E_g9&;dQZj5=~3F{C&Pwj4puu8;Qm_pQ{QKKBQQ3WV)sdh z{f!kE`8UQUcfFo&^EP7aU`M}}Y<22w%k$tQA;P{Z-4QF03GLIHRQb=C17Izh?>T(| zJ+O$1tqt-^k#wkXlX{$@@6T4~w1e*cT_!-;;l6zJv!PULS6CCB)X+sXnFWcbDJ?BE zhTLAr&j)aegp^dl#Dw~4AByDKg^_FMe_vt`-fr7CK2NH@-Jie};tj@4$%8JE%!cgp zUL^|)dhlH7MEnDH1IXPWP234G-%IpOOpsIa=?AE`Lp)wcWC}dl7&zi_AX`JC4HsJW zb-%j`(KPm(YNXx#Fi>q^P}*w3wg;lA7O6cDBVpm=7k<7UraJmpW%Z>pBdxMA$d686 zB?$>Ttlq#9diKceEEAr#rMEb(C@=oq^4>i#(@5#FD%yldk-N>FPR$E$IBldV zBL}&M^klbZ(zC2*KeHbGtlOU(I@w!fkR`+__BUC>kSloq@xWj#r}r0v|H9u`ftt8C z2PLZpUOazuuDf+NRR3|uvwTLg;54;DYvU?@I+?PWFYntiBuir;+A{;f^0=-m(tVl} z;t*~c7b%yUeA8;ECcwp2TDqh!nWms#ByG{H2{y6VM`MC0;LQTcoQ;*WK>rF51sx*` zrMCj;x{1YyWXUAPoid#qa_BBuJHa8w0#RHAXc5b&pMpg=Np%x}z>$31wpUzQx&kSL zHV~Ht8}e}3Jw7Bq3En#GyO$p9BSJhvvG=dub^`%Ae>3B_#T}wmFQiuhPN@up#f^>KtI+?S zo*wzBnrQ?xDQM!c6m|dWWd~tR2slh( zhJat#6-E;zX;IK10m_fBst66Btjtfrn><;y$?QB@Qm^z z-DpTI_nU`V@4os*Qa&Ko?dj5bK>qxAnCnjB>(}Fbsh}1fv@Zl^7diNTIe6ib&mM$H zmGR=BsPZ$FT{|AHyuJjSu;k{SyW)k)*f zx%=dEf#~$I$pGQD1IxQV%FgM}7=6uX60r$y_PB>z+ZG+r$)Vj3A8|gev{_tu0T$I7 zmst@2?UAe>Azw7oV+;|2G10;hWj>i&6KxAC3KSe1FppyeoW zl+@51Shn&79vTVJL-h6Bk0>=Y<5(2&axFU?G?X;cyr0pC8GH&44)%j5tLs~)M8NL| zT12+@-&dOknxd>IT}@_4C3!YiX)kXA&YO51)9&JX$oeZQY1X0VeXq*G6PLw$bQ?Z`WYK(jTyB3F}Y9y?X9HYtY@7)w{O`sL7r1SuqQ zya%+ZD8HVWCd@9bj|*~Z=Dry;RCmLCi+JWi8|FVmCH4$d)+Lpd?2xMozT1Bw>PEGC zE$4u1P}^CbaxEpvSg|7KO*sa~@7<#I7K*^SNbAFx(Q=A(sqvkPf6>n^SurJNMZeG7 zr@cEt&8$f~>_T*>g-|IrO(Cu}7G#v}5WRz11txAV>#0Zb#@pW$&bZ7@;wdEIQpjc0 zFEY@3PnwfU$fn4QO^g@hBqGeq{*@5SP^(67>(J^}tgOQw!l(G!0Y~{wrn@tbtWjYj z4hYJz&#w*OqG&$W*W8qnOfta~_kC+MzvjBW!KPszLYB{g#1V+5klgLx72TJ{KT_DBmrD!Fx_pPs2O%^=!xFt1N26_`Bz`PnNW57J zzHw^_Jlm_PbdB7Av4E-J2GoDv03$FNFsvPrTLoGe2u1V5#rRL1hCD{SxXiVar}!7M zUx{!xpR%^#{FAq~mIk=yXGu}k`GOn5(*5ttLvCp4Qt?k21e$Y~mi|8IWw<_*{PoF$ z+G(Ufg4?JZv2~h(73!{6Bs_U-@XVKr?ze)}xpY*J$S`QRI+f5~+Np(+k??`$a`~zH zv_bPLB-aE!L`eM{siO7y{CCb{+MKDUIh|9gQL28wuA~{cxyzKRLB5Ny!ib3wX+|vN z_DW83C--2sFiL%d-ZWRkh6QqgOH1_5ek!5+?!n~nW?D7 zvUZQkiU|yU$33O;(yb+NcxkF5y48G(j@cso{tD&vwz~+~)m^U3u>3SZ@%xgm&f@KT z#JeI_d#Jb+bmXbv$o%XAfcQfg6BWXWtQ(c|%mV^DfA48s%ybccbJtK%eAktsUVVZx z7$lxva=lLOAs5bN`TaCSZu|1XT71?~$|0}ydw+K;16Cn3fL&TTONOx>Jj~a0#!z61 zP_1HQ93FV9#rIU)e>}$W$eNhP`N>7}PZ>IB{IoE|r@HyjGkU1VM|AD$HDuA-^}+|i zKZ4XxK?-wpE+KeoK?)NA%l>O65>DEqQx}SEg8o^~d%sI``zhJXWdtw3+&k7Q-s$B? zlL-S^!PP6Q*3V}R)4^ez@!h*#e*o0G8Krd28o%dmc`Yb5-)&4}{ZHG~MH|uri}YrK zo&!*V1Sl8QVDBP1e{{OVO#C^ktGaPZpCr~S;#XkiFKH19Pva?yV#M_cy8{7ly>IHu*y zkECOj5RaPFop}!ukbz#t*Sh|OsPBKjBJLt_fii!Bgky}L7?_ld%yAai+L#qH&*oO% zRC6lMJ$jd#6i*&(V0B7_&P#uNaZ$;w?mT7dQ*yE;Z?2~S;juTNkDcwzD|_A+6T`&u zKsHe?d6Wv2%yB2Y#~IQu#Nl(9lkd(Q^1YHt_`uAG+P&n-x1#R*RJ1J#c33&s%^wG^ zs|Y+?Nj5zwvxv=oBOZVrF()Q;UKS}tOQy<?muE6JWgBl0Gy;_H$>uanll ze&&__H4dOH)+uw;H?6*be;)mC zG*?8Y(g476AXWgw31Tqg9~>Hj!gj*VjX2qzespL;wO(9(ZGFvt{V@5#a4ym^gBCce;w_Ybi{xZ>zoZJ-6Li@(Jo!FSco>DRk zK!Bg&nbMlB_U(s92`PsX>H92m(JX|yCAu>c6&$O|zpDT7)b>u!S;MiX?Z{*jr2gjS z&~h3T))fAxLt%2sWH?teseiO=kRCj1V1VCTA8VNB(82CoY{;dOa_&j(4P@)C@g@Us!Mv}E-UGo+pTF|em1tAeK8wnfEk@&zsbMdX+En?x%Geyr& zMcfKW)jl>OuPfM@QDL|tW(pO3OgV3zYkFv@56J2hGd~vqMA}N%As^)aF`{-!ndG$*!2pnD%;R zCSvZxT;st4)r#(0q9`iF7dm|RZsttKBk@@cGyz} z6P|9O1OAxq*1!+IcZ;g35@B$meYsg|1$=@%Q1M!jKnmuD@^T)4r(}$cjT?LQ4PUco z`2+(egMQgE`wZY%FXH>Ax9nm)O0c_6dR@z*1Zop&}Y_fu|6ZCI$jti)*C>EfazQ;o|N zJH0Z|=DaqZpesmXv-K(Gt*M*d55AtV55jO+WBl#?Ft{tQD|aYcy>aE zY#gAaD~1UR@R)b<5$+JDidgpl`UezUEJ0`YGTiySjFePdacpLh_zkbQA`VLEzXrcv z9a*4XDt2{L91uxKAPt!P=zBuoPoSizXw6UQ;ATiSnJ`5GBlGGnH6|KA-ya8@FYEO3$#A-<&my3CidhK7>#+C>rAh`gX*preQHs3q^) zru@Z|ZLg2A>xb_y)9dekz3ZZ5C>3%-5eqjJN}J_{fP;wlzngR4s)OI>a`ck<{Q3PG zBv5-bE?~JUE&k>njzueC@~by|7l5KI5JrjjrLNjdvuIGlZoTHBUUPEF z3_}rmRun>y zd0J@bwZ<8x>bL4|+>y%a51KirWX zsPCw(5Q*aVxP`MN$)s=t3!KC~H$%N0QWL)j;r5ca>Q)-mbe~a4cjsYO+TRAhYd&1_ z;CiX@^;Qm8N=u_e^i!Z=TU>74+TKRkSa@WS&l-wt9t#tlk5?b3 z4^N9H3YK!nZLl0iV^h@i|8+6!R4<4?wjjPzbE;8|+dj|gtDGbJ`grdN-H0qmWmt?U zooNOOC&&=~4(Vt83o=_)K0bmnfmg4pZo8%B9Sm4F%|;hHOCvC{!=pzJ;Lf7!>4#We zkY7{Al80wWyiTm@vNCm05Ip!8Ui)yH21zGGd|BXV$nLm5a#o+qp@!+Esk~nFGxc;{ zcl}VIjY9jbmZ{WQ9hr}IZ(4w#M^GbX9mPM#ljYs$2bN1xCE`G1|M_DJSx-PJra^+_ zs(Z7FnwkyBn87&n1|kYc2wZUxG#|;G1fNmO*9ZLA&Z@`m`;Q_4)f@gn_YCYT99(>K_ofJ z|I!BXRj)$~lv}?h@JNcQd@C^5+Cevi#=q>oFVV5)xXgO7@-jK9B{w12a{GNtJd$ez zaYBC53`le=1WFnq-of&DU9qW=2nfo{bsCPvz7ui;{YXz@d+ znqBL)g4f#*?5niz%?M=Fb|S6VD$7qr&Cc-bJX=t9=~eg(y(CiLC;dvO30VdRpby4B zh3RA}>bun;3?61G3@db(Q}@p}5he?6ojedmd_IP~m^@JWIve7kOTuNtz->w4wfx72 zw7r7cuid8FZ@+o?|B%A7O~O~-zvs$YN-W&=7eL*If%y)Y;3QlEfd2X9Es*R*03%=N zJ|B>o#gC}d;_38Bnv z@A+7~l!98Or$~&c>v9MFEH@Vy!r1Y(wI;HvORqpE@s&mICMRr$@SoTDhlQf4n`4=- zu91rSGd7y?ag=I!9kJua)2la$Nl)z^-l-~jj0cbr%m@K`=z|7^c31x{o#&d8Qc}pF z@{j7Sza+duNEcvaa?-*JKDc@rEfN~ORax>#rulqT5i5EE` zO)_~a#$Xopu~9(Oouw5hE?EMub+>L2DGosb7-2(7C_h*AIP9f!9sT*Jz4A1epeRm> z8BqFFc%*);UioPldiD-w!`{t+II9qCI?OgG>FLp`DwN--uKN#tGk@YboT(|Fla8iO zO+FHC>X_~+Smb-le>*jYeq0y?@l^;gT>#xcpfMx}uv8O}@2qkAR^c4y+}o>WiFPFI z$1K)UbHyS$B$vRMy7qSm-?=LxK|uiTwh6|QH_6&@CK!P%Dql*!0&stj=Qj}#oD3Yq z;Qhq?%{7s9uNq%f$mSK#sok9#;&#S#EDmXn+yYaY2(P*huX?0$0V-ibR&Q+?><}={ zq{x|c@&Bf&0eI0H2^vH}99BnLe86RH3)juArt!X0P$<&3d=c2u(ZR6$QF}dA6)0d3 zm%bv$8XGygB_u42PV&_MeOsf4zZ7g|Z?)J#<@!8%%CV>Ve8@4ZfAbBluXxX264&(k zxcNMeeu5OX#ed6|rlzwMZI3FJ;8 zw|G%)J}0bdG)mVQRe#*WNbPo>!QniwY3Oo|!csDd*Hq-`&o`O3?`R7vDk`r1{7K9d zuFFcHPsE`>jGI3t7{%|1`Z%vL+I{jSY*~SU>`S(f#@%;%T%E&pB;9E$q$^a`5NH+R z&F1o+=^4I8*a}Q~pTO4ER(uyY5g}0ldTewBs7UG0QBht>(fWE2M=vTr@+2ZFFfFN+ z`m&VNXhRSMnY?v2^@_Tdmg)cvE-&{|5NZqWPFBp{xFeZQVTae^R^~!?&PI-P@_$+Y zD)if(JP#Zb%Zl+|jTSZxvrO7Fq#^cV#7&HVhAmuoJ9(z7(mQ^kn>GDS=NGr`2z|V6 zLWl+>%Nk%DhlpM#vWkcg8_dL5Xvk+8%pcboXA))JzPkemW!ap{o2&m)#V`rz*MM&7 zdEBUPUK_Kv_B1MTqjUJ?o!YB*Wrz?gIY{-AyqiY^n(JHZ;wu`QQ(ZcKr5R3^*z^T> z5uLJ+9&ulbZ!^;|sy~j5#A0F=PFR3LclG3A^C9h=>KuCHOFgW#zdI)`c;u{Pgenvf z!|EF`!5W`xFrQF#FUkz;(AkP+WCk6r^|ci1_QS>^V3Vuq@=lJkD}o}%idl9;GtNZo zwH__0cN_>`wwSrOV?b23hIvJ+Zzycc|DFyT`~Cqlw@HtC8fUm{5=BkP&j+p1@bd{k z))9}*q+FWv$lksCDXOlA-5j3T_cJ!Wu(aLGfKW{wS;AjFk_fg1)`8Csih>?bo?f$R za4I7Qw(M}oFLOWcAKd-x;r@5G{*G<5RcKpk&2D?nm+vf3>C(N7GQXivoxIF#&l5uyO>QfUPD(wva1z|HUs`YbSFk$nm6zTj2T|O%Y?; z`@?A!kxT)8%T9mjt7qiJGD~=!EJ*Ha?(1dUmsJc8J`+CL)Z{Z|6T{11er+CVO5%0~ z36yt6e%{rq>a#*LSGGu-b^nJ&_`Zlu0+Yb0d&D_61aJhU5si#Fx%xIFs|!sw=e-kO zt}V;%-?GTfJGAkBBiKIXq%P-to)L|;>=&9!@t-hN1+V3BupbLuy+a~u(!f{rcp5u! zoHV-6Do;#DIb$@|d?yW^p0k^Tvs<5B6eOmdNR0}FUn9lRNcuL?)RZCO(y{GzEiozS zGlCYw)}3%6wCEs&Tp~~5DESRA^dG>(m)x5paWxApR~+Pav2#j=#MS$_P1R${aI&{p z7p7>4qKxGQISVzsnkJJoGY6r%u@^SfXW+e=YTow5u(i-MFc5#3a84s!?^|3kudV;! z=C$b<7FEPS4~J+qNJ{!YMo4stK!DMI&4#e{Y`s=9a8zkT|LZi4gAz_K=`3n{-yZNQ zNH&bFt`%00hzggcJ>Ksrdamk)n^Wg`xB0i1b8?8v%@m!R!Q}NxO7-Db?`oA@^9g%V z99b^bc!kQ2ga(c>&wUIi#D32#Euu0dTY(inGCKMv&>SrAxB|Lvd!J2QJROMLbfnIG zYWMi@gS+=3BXZN~bCZA1XBJ950W3CXYprRw#_{uYJRYxU{@Et`*}GA_);&^?CDEEL z%3RzD?>pO_@3h6tLP7u&ke6fhx+OdjaH2W{eH;ohbmrzVDU8Up@AvFKwHETs*4=#k z{ileu^rusmHY8H_k;XPt^Pbi`f_Ok3sm9OV#gP0@;=y3K^w_ z4s?{#A3~aDvEgq3(<=@==N zhL{$lumJ+_5ep7fJVP05L9co}IBr~<&6><^tuP5vPV7^6>_kC1Td+!g-W}%K@7X0; zqR5+r^cF{)o${<~B9Hu7WRd1aGm!R0=0*-p_Pn2unQn5t)pF9RsoHmEY@CjT(YKnC z?n}*AMDhkVhz0~pgIn?z*uxMIg&jszgw~6>^&t{^Xn_XM;bGVj^n$HlX2S3PBkC-m zy3Dt)PfJU8Hwa31Hwe-Q2+}DaElNsvD=FPNinM?tEz&6^3Md^Sf;8`W=Kk+}e@oWP zx_82XC(d`Dy+8W}=p@GSH!@azBtfk!U6GcfAo7S=3f1&lm&a1I42}D&zMg$`a52)?T)I8kR_o!SMwPPj)q|8;A3s0$F{-TJ_M%uR^ zSF_?H2|seUlmwwu2VmyVZ0Vc)`dcidA8p}@5);<#F(96ncp-p27fzUNRg}E1#lo&F zPQWG0qP730@j6@oG-JG7g{*Er#Tw_f^I4SkKQ~TVPFO{og2Uoy0<#v@s|x!KB8&Yl zRKBi!i5u$a?nY7LD`x2&N2%mpoO3(B=}52biwWZpf(0_*XZ_z*D#y3!e5zByd2S=< zAL8`7c^Ma};Q)x8hPwK9FpKos3F_Uw+Xwmrbh;-{2`G+u0kwu;77(H+0?!vS8t8vm z9XKc}k83%mIcP-&5n~oH2b|%s3 zJLZXef=?@D!&@12iPRZ_1+>eqRsA!k^k(wl(|kLA=+#NV)rOwd4rtu9)?HY@ON>cO z{0Z@~v*G*!gkFcdg~1kC)+`#WxADc`o0(R4U4-_o4(I`#TA)AJZ~oBaL659-8rTNG zeacxny6b6Ik-c7HLxZo297Aw>0pLPeaY?edNn6Y}+2gPT4LE8ZUu|Wa9c;LL#&68V zq#e^InaU?Y5LaX>%%W{_43o*bNu{T(586p}E)r#&+nFN|C$R z(0P%>jg1CHYHQ~Q!)rB<#N4Me9&(fBewXKv|408$ejDDKO@t27aV>YJI7nW`lYKq3 z+Wuu6%&ux2KZnh8q>Y5D8oKe`a}ymc8NYDFc~#t$p;1colHA2$i%XwyS+C*M#*+|C zW__yta>InMY|*l8FH6}w?_vR*h{$3X3QX|81D+8DuSsYzS4_+w!6P6!MWCYdX|ncQ zhBv>zgPbg(PjPhqxb-*uEg*_)xDB!yCTvgMXZQr6&Tcj{Y7&7YkBKo?dljQkkK8Lh zy^H1v(W?l$`;Qr>d`WBCKlWE0OgS2fRElQ)6k#5JW`iEbbBrd_iV=pUrIDcMr>jkj zX6WecQbt6u6H(6#tjw)B+gl#ZS5|j|q~bdg^k22x60Jq0>sF5CvyWT*{*vceMoFdR zNO%JLo`TI64@1sqVJEv=^AKdPD|jR#Nem?63t#u6k03Db4Jpj4&@qGyrrT_uV^Uh2 zGT#OXA3$+E)NIf|wk8$|J0O(}C}UEFalG`RGyC6! z4|plk!$mEHa0OY^R03XBex;T2b29A>S{Y&QCP|corVFPoE>nKmvj{hd zO5DS$sSl|Py|Os6eEn`UIYW$6_ca+4iyznTN09%lg^X#5rz9P`Wst@j17{B9ZL^5K z)$V2)SP8|LFZEi31sWHHA6Gl+(Z&+lP;*#(D*sq<{40%fZ&O$`OCV}mUM7ymV14#> zk>kT?gmjC5sDVfbeW%u-3b`)6vQN8BMdePfmgQ654DM3xV&=pb`M$!RrV!(^g210v zI5VTm*JsRBX{)e*tFV_3xwn8xgqiBohYhC_qg}Koxmcs$(jtM9uymsk*5jDj*xVGv z5TlFhI=tuXb2sf7KMt5$+-{WDIA2pOiEZ6&!3#|x+PTk9v-9Wn`*At-g~2b9l*LIMU-UE2%^Zse-qNU!Si90I5_ zbUtG3FemlB4N6GEtm}yC`=)7a&5Xow5KRbh5*@sHaArXUMv%k8O20yT6fE}mQ`Z~7mfjHLn%NYa zHbqUJ8gt{(G1b792MkIO?paN{eG{D3?jLQ&;*zzq1tW)Y#cat2 z!Jv0B7!Hfx4haf;{Mx($F}DHmha>t=o@XyLXI{lFw((sGNyqj^E&_ieG2-&$JHRz8 zjl?hiY$0D_jvi`Sljgvn-pm}8*LcfWk4F5PA2&qXZ;psfwrb9r9!kKW^_juJU9j~# zhF>p4G)TCMEC2bHJWzJBg^N9Dyj|32Ga{fy!Ec34F_-JNCVUfA4q;CS?*h-|7}>|jN~p2H|rA!OzDL7^x?Z)$%w zzABR;yjwnH6dpI{CQui;-Sg9}n<b$0c9p8tg|Lk=AJaWO||S>$<^`#+`afwrnl@$91m4<^ z@Z`iyZ%#!tx`g~4m>4Q1z`=R=fc06x7vEVmoMZ0UYVv~ZTwm%&T|U+pkhwXf*PuT6 zH!#7h$(5*V7$+1KFtsCSUD}E2oK{MbWo^E^9=?4X5XOX!>~Nqq0JCXc8xBZrZf;-$ zXz5$tg%i^tP^KWTCIor8wiLxzqj=#qHt@_<*vc=8%}ikkA`~?chq#|uWIDA_4v_)d z{r2>@7MZUMCCyL3%tZ7+oaZyvueUvi)Ucf`=IZG5H|`ilamHAq;qXkdCdnT6fHmi4 zxw#)1Z&CFIQyQB<@cHqcup?(D6r4b?5!rQ^JyUHA`0~4K3*ESNk#qilJyDa7xm-P} z?~0-;^_AVD!e^R}3}|S~id=UZvK8&+W`g3q5dku4THm-}G{GXqg(oF0o% zpwFVD*bK52o~EQo#{96brl{v#13fPf!BZk#W>8&_o*xg(e6&!Ts}3s%FR7jE-?f`t z_21rpazP=-)L3s*th@+zN~J}q!4@S+j`@NZV8AA0?mK1FarsmprC_8F_?ywMoMhR! zZ6uAiyK%TnE(*ZqQ9>maC-j zQxyY)rPL(nr)18vC%>hoMC9%(KxNCZ{VhV~JnJYt0WZUk^>~CfJ#4k;51f3Sqk8nw zKO&<1(tz1t#RM)gBt!&bFoGTC%cUbvw`1qyjsG$FG)4{gX~RkGjOm5M@6=A$duWyz zeZ;^YcaZLcGHD`}eJOGQ8J~5c!uNjKVVIe7aXN=qB)ngDSBx93aRa>thr$Z1-~H*F zLZD$XoXJ{3F}JzTmw$bC%`wUpPuwlzb@hxye;5schPy`fzXAcgFpK$$OHd zJZRzg_}D5BZ~=&gAME@2r>Cccwh;h3WyGN@=2pn9f^tR!mze)S359HySAjaP;OVHoPPn75rV? zGu)FgheKNO7Kadtnt|$-j47%|hU_MwI`7A~t4p!SVGFWx3ERVj8N61DuW5HJZL)$eRbhuziILlFVx%N2aYNA~MzL_(^Hk=ivA-s~2%e~J~+WRK< z4vvPSp2fTHxUUbY7U~G=SV?C0diLBgKN4qatxA0HblSS=nl(w{Qg?;pT`H^U@57ci z5)cz;O=zgm%{7Q7o3#&+BGfoQce_P(gp}^U9nQ8cbgqOX{BE{x*A_aqLMKYKV!GLF z_!VhZ8GFIgE!jd@$NDOkEy_W6ENvja)1J)OjRkfD)zzb;W(o5zWwdnlX4f{d6sR4N z*kw*#YX?NOik^+TrhKAC90kq4OB>fD5xL6Qw~j!p8oC$N040s%PUtY3Jh@ zq-h9jxV7$ICAa+oGS3*}nXp0jkTQoWj!xP?<>A6WY#Iqa-ZblTJT%xGE=}+JxlTXp z98$2%@y6)D`HtYx&g3G`13%inIkWos_dCz&?^L8Ct6e|_U^0?`ALh`DU3O}I>BBni zVb;Tm{{FtE*Z3*nL?%hWT%5l(n8xMKE5pcAF9lQ#sUUi$6~KOniGbviNiN zoc>#C#VVgwRI}&1vG8Cucew!<80RwuX8>q|v<+vP6@Wn7!8{ASCP;zsU>d=jZN+Vl zi3a*5_1+(VXJbThRm6@a*XEL)@D~-Z(XV-!ji^Lr{(+Z>!8DQ}6Xyr<3^UT_TLUU9-I1xtnJauijD- z7}J==3uqWev0o;I_0pkiD{?V+j&=G!{(Up*=-Lw+9^1HdQOW+EyCNGgQkaKo2=d=NyMu#j#ogg~sKTSKkrN&nVX{5c$t zVd8tVup9t?C)l+aLe4#5uN^jzsqh`)`NANvGk$3cNB=+o+d!}Oh8vCiJGlb1Z}$~@ zu!{-k89yBx-fERG(`#~iAXv4e6n&tjVks~Mj_+kG7OSZVKz4DYP|1Kj@soF6$ih%uA@VAQwgT&UzpP1PvXI8 z@R4&bY1NOPcoSQEvw=Kwlg%(@n`yT(or8ewj#d#{*;gPim_p*47XyL z5KZ$pc!;5FXt;Sn4&6K*FPl9YCEfwrFU39^?iduaj%MeHa)8WyAQXUD&_2u`h*K_a z()2-5SGC4vvY4Sl#mG z%UjnIL8KWBWFJLH263dvLeBui-^wnP*k~p`)g*i`bflG%wj^~_=lHLlX@A)TCutPl zU46f)z>buxcp?nq5<6?BZHy1xSD{GK1a|p{$G&tF6ulsy{mW1WpE(ksfN=q~f9Z&O z0Gq{VSFw5_Qb8&n8n3c_4n_%APK+1>zS08hC?;b$CZ#@_(&#D4=1(3tpf*D^Wwzk~ zC4>VzculAr=;u2IB!^Qvt-rZzKI>w`b+#}YsIMe2WO%%D9q94EZa7*GoS&OJ{xhL7 z3+^760>Jw#=((&6wO`nHcxQTo+yC>8OR{qDgn7}#l~q`OlEeHD6AB$UlmV8Pg<#*} z)S_`>-V5vJhd|AHN6ar#Sy)*#w$fF>sY%;*LyGV5YopKH_}iRQ9#}UUo*_j7X|Cfl zGbUi3KtRvv@_Jo_By<-7nlIj~%m*eKHadkpsLxU_(bul4#tFB!`Mc&qN{26;R6KW2 zF@`k)f}w*B+H5TlDR>7bTEu3I?9@S?d1cwefSM{>E(C^az^Hg|W7S!)7oN^6o#d1^ zy4bKb*#AW~?{D58(Etz!&y2piw-=$6E_sMoI`J_rW@wfc)%|t(r#;UlL_oD80o7pi z1Jl?-=KWP4UK?!SctqYR7;iL3{BhucNMqA8F^QRSv4@u_WML>u#%5L?KazYA`0Mf- zl``u^$#9w@^U{C402{T*TvVSDWDEFy-bUqegRR1^rxvF;191i89NKK{pvH)Ay{bcj zWi~iT;g+C=>NOOs{)G8?{Ln5s?;j>+4vlz26kW;5U<5`(>r(0^brF9Ogo#m{sFC2K zW#v7fiROZW+I;r975T3G+xiBEC5X83tCHAjD9V@4-c@@1SOQ@m!=3_P7JCCHjL8E` zL;DqS7qLK!#!_hqZWJtP;@pGMb8~Y~kV~UIL=HwxYuLCzPC|*-7F%ldkozSn;o~L) z;}8(Odx@|yk_O|!jWjv!E| zhe;L|9hApHyJ&9bRxo5Xr6#)Fh!tS7mhsa0g7q1vGWeAZb~x|aveDO!(*sBu0U`iA zv&plr$W|DoluAgFoTomHxikk$cYR)`u`No=85T|?XlS^&Q!d=F9X2F`9#F*B_k?Zm z14N~?+5;p-8bmA_!E)sVN)lpF$HJ!?wP*al9Rd9d#+V7w@Vgb9>u5-Fmrz$-Kq7QJKR7OTlknA!Mg`t_B1O6tvobDc z;c4YRRrVlru(7d?&dq&JY7{BW9$_1s1cXCZNps~d`ts2d`z!~ODDTnS#JJBWXS06< zE3PFwQ~VP_Qw*@rxAX6kstg{k%_oPPL7XfM6Aw5oiaOAf2KAeO3wD4>@%BKxVOr zqRr5c)WmBO1Nmdt1y~O;rMBAbAS#WFD=;|Js~t?;0USU4r83rXMn;d9A}RgR5PPgPI*fHJm-|?V+Ayuc}lSr<6}G{)__zD4BeMm>4cD zDrF%Y!kyr^G)l1z71lygsQfJZf}+oZ(e>f2t=S*$&KH?e?M4%?aB=df7zmL zG@nyhC~rPQ4_Y4SS$Uv9k{B^ZT0=$u<8H8$#*QBl&R_I;+_>|>lkYl3B|4R~6F zwMLWK-|p_Or1NQin~=(r>Ye)rsL7#+v1-H_KGq>>{jr8(i374H>SV`1#6l zudQpPdiT%OJNw;1C*jTarpBI4o@KPQirP$U9c-v*OQ@o6l{A=`Gq$gzwMMYXFY8i1 z4`M>qLPNcVEsE+Ip6F(7fA9H^;zg0oi2=TLx!1zKnfm3e9(An-`=3iIt_=dHIzm!Y>muGoLUi%|F6xU%ZHQf*&82$jICc{A)z%r_Mg> zyE^2?5qz6kaE8VgIC@Se(QhwqC$^MzU8gWLivsCEkv`k5TRn;H0*9!LvMXjLD`_-e zw(jI@enE9E7fJsBbnPFl6{(r#3KQS&qioiHwTmmCm*^5*JPhQeZVaU9n%WP03a>x( zLTUR;aZgI7uKORi|CDX-eftQjKYB|4k}iQKgP*`jj?+YbhEcVVe^0ez;#K3`c%-K@WO>MZat>&B{p_*H(9yFYMt0IL);Ih zo_wW{(YDL-@>_N;r(rm2OZ8>C8G`Z8i!S`bhB8XCFi}}^sO!@5^JSN|WN{iA8erET zczSkL6Mx4>6=P&nPg*Hr~tQWl!jz?9Y*To~umASvehJt#Cn6sw$NlbecM z8`*-C$yTE8dLH-?xkK5pQ_lGV4hk1 zvF4+bB>Qc`_qPKAqyYH+25E^z(mNz1clx!XGSp%P2`aJ%Q$5J7;+p$d?`A7Ls>g{= z)3kohZLHI8s^xg4;9|D840erGXsXoq;9-#TiFtP8?r*>zC)1A5W;YYfaS`*Wn~12q z2I;@fV@dJ8{}QHT)Yftk>>H5kRPeSX;6=%ujwSm;K2W2!La5@$Kq<%1zO(CCa}qNx zNgk88o7$g-S=}(zU?*#?nAnigO5pn1vhgQRtA^3O-l99fpC2C`HI=*HnyZZ)Os`uDmP*(De7o(`4Oqx{X|Q~xWBP3)^xS;u6J?r<%OJ+ zRz?JdQq}OzaH>~j%4uoxtw>QSUii&b$jb2x)!YRXaYzVbWTO|0YL;vR{3hwDQtZZj zY6I#CqtIXMf8jo|bGT`O%DQ*&$Ir zG^%*-NKl$m#mlE+(%KKdn^ECxc)D{A=}AQ6FuwUF@;{%RD~u>q%TM@=x4!3HQPyDG z$HR*caRE`1{=?bVJ)4Ac6-tp#I-EWGa_=^5+UamQdSbHh4yGvU8sC@M``Mg2H~Dd~ ze|+vaE>VK9f5)5LUoEm8^=mkny5WyJEmbdpqRN8P{Oj0B;_!dm9Ey1>aYVDBNLW`! zDpBaR7Soa(LtL($qdNMFl-1S!>om3@{heU)`z7svqox}U%Ih}Ro?2`3(f@|Ne{~a5ziwER)pHSl8?b$BVfsxLwgS67p)Sa6pZXd~7 z)7_~3OWymOB&QTeyLGOJBsIGLj>Yi>3{OqDp!H#74ybUEv4Fu024oI0sI7Rp0_p2c z4k;7!OTO*K9}xl*7Am|vXB>e4>YCORC?=*AlsziwJt+SE@Nk?k#KtCrdTIQ({m;u!6e|Ed?C$9jBsr>cpBp>c; z(d)&m*hpZa7C$k4mdy7gTA#!lE1XO`e;C(1r zxi+YtX(vF?E~^~r9URsiz#DmlJJ%Tv%GW9sqU3pW;uIX4{P*cf5yFY}+~hQb>h|}B znwsMZl?h=4TIOTnSS=V|?!?E!vXfd8afo8DRI5?_AY&MyBd$A|gF918iE~ z(Yc5fJlnYM>g!jJ1-w_aCK9=^d3i4+H(s+qpQww}mtq&<2x3o73NrmNE&MJklRewf zU*D&&xJVtxUVRxWrY}~J5_Ufa-z~BqL;{jrbj8wJY@cg&v^-*r?OtdZozdb)KdB^q zXdio!hqFc_8iwy2gi?BYmh_0)zWxF%wa{bYiIk@S0j4@^ua3#t)cglMc{=(W|7>Hw zw<3B@_L|Gxw7v#%$6JMEj+9Ul-6%1VnuYOZWFR8}Q)@sXF@~nFEaXaU^!%i~nNz`ogtTag^BAxZhgMTH9 zuPwJHZvbOf;7nO{nyY&@o292#zG0yRDUu{(G>TcNiFX@XplI*2JcQ(y{sWC1tn2{kr3%!64!d=>()xvje#Vl z%US4>E)i7|eiJWqhi5LWXsL%g_pebG$xX^iKJa^V^{m5#lA1bO`to>%vGq>608OM` zsaA>TIWrpC!Om^cZVP@!T%(y);>n9YPX9!llS=gl%>A{Yk~BzL>*@KLvRcvKo}BN2 zxA`f62bZLpSV_LeZA6ib?L77J_+s5FhZr}^! zlOgt$at`l-qiY>v9@rXo8kiY8LY}y>XcqEfn7y5y{g`F#(XdpqwbIQJ&GpITPMGp( zOJ~}BK0nmy$l|bA?NBMKe0`KeMmav1s`WdY(=jn->|jQfcm`Rg-mQxd4q(v~hZ%BX zbCczZg~H<_jg{5HPa1=_T2ijlKo!OG?Kg9(jpliyY9hsS*dauZv}x$B;v)rq_b8DK zVLwIIqF_8dfcJXM)YVm#qDr#ut%HE%W0P$BB} zUwVbWmcZ|o{!BV@u9GNv_V zD95*#C0cpiqr|FLsl8K_5%0n)_FOnxYn- z5ZMOvkgVsVx*?tbnaGRwGHSf4K}q(auN)FtFCI}yN?PQ1op0W4kCQ6y@Oh84)VG~( zzGU69?R|1wa{2bJqDPQxTZDl+hfPEbjkR5e>J0WckwBf}MT@EVHpcu$DUK=58v~4M z2R{sEsRJkr1eCWtL@;-$n=|$!$)i~rB!gB(CN@RzPKQ9$M)s8%&$RP}E<6(`yeAW= za*EPe$(KkBICd;uaut%NHN}OM#f2lfvc>OyOL;uxATju$TyDJMvP0WR67e_F7NZR<>Lsk?G zeO&vbcR%JyzqtJgnik$6WgPg=r4ARnP~p}pWBgUR2^x$QJ(SPeFAv`=cw7)*gxTKg z1}{5;{RgYUFjCwJ2C!+31Ny&vVoeKc)3!W?j4&Eetx$+mXlsWQ#Fr~9{;4oE2A@8oWV3j;> zmf-%0f*;*NjqBGN&--kCO~0INwOTW5Q20zySgAzDk8CO?b(6;mR#D=vw(hMSgKEAj zTlG!3cY4zjPSS_FZnl29ovqrZOK{f3m~u;p{oYMw61%oJ6t}mm$_YfEB!aZUUwBCO zw@o#^wW|6vLc(FsH1C9Fldh5ABO#=zT(Tsw`$m?v!y5){SBKXRoE3v>-JK?}Ka{ zdMzr0=i9uzt!&InP5ibu*-i0g=Z|p_S227|MyxH0=-yWK>i0D6BU^>d=|=?VhA=-y ztE+i{0f*#sw~yW@-q!5kZi!u22+WbtF|Ape!0MgW5Mw2DiEi|=If`5eY~9q?*FrsjT=!4N+VyZZXO;6Z-R6;3W^=`GPM8`k z5+xF0S?Qe^C1Sb^wGpZjCLYq|*3Q439T0pTg#RFzkRT+6b5gNl zkH6NcWc0p9PF|$@`k%g*^*B+ql!Ag0&a$eiSjaNcD-a3b(-(-w#HhDqgon|$FZH}3 z@Z_&~rZCmT`=x*X3t?6HjmM{d_D{b3Zvwd@2-Kr*v+S0*x@Cpa2LH3AIx;mQE?ggr z3X|$W^;aLc*+@k?eKz=nw;C4w=H0~UlKdOj)M9(IJe6sPlghdAs3xU_Uq*91zmfei zk0jan*Csk$(vH2!o|+yR+%wT#*>`>>#D5yhiDFXkE=HX*YaE~Z!*GptUJv7%yFlVa zDqnX3HqwH`&fZ75D@zYHaX{K1(5Xh`b%b*FxZvTayO*Gr}1}vYB&^GxYOp1c_zTAJu2qFvzE-XWe_U6tO$Ht5ElA)@kWgqo~k;=xl!W=q)*4j-iVH zap9V0q+Y|!1EvWq5;zY~%V$^9dCSMBURtZ~**lEQ;=r}!?nqb{KT=V>VZ=7p+ZJ}9 z-slKJoAjk>&e`8_34fyK<#OqV%Zm3eWG66ra9NNl4QQz}_Z|}2_cMLIqF8F-NgDHH zg_yh~YyMCrE&~^>B@?xQwv~@M#5Lu*%p1MbmMpCR)M6$9vcpmSw#=eR?v@HkFHSy1 z?DCm{(o$l40#AUU9DtIG7&tDWh-#TAO?=Gr&iMy4AqU&%wGsE>X}08Ovd5{RUT!L- zoV=(x!yn%)5otHxlh^zp;I@_4%<$cElF14>2FG?jNVi&)D2D$81x7xr~n0b5mb zzcI=tMmR+3$ht;xFtx5VicRb2G*iR9;XP8pVz1XJPRN~2D)^!M!{wt5f+l^ZH&!{` z)@?F6+-0Bc_cL5!LErR8ctL_aXrnKG1UkG>4}=U=I1N5K!g1EGgL+S>@Ns35dkL!- zS!PBjSs(AI?F;-W1^~uDA?ojF%>Uga1+12aPyc$CR#ZeIu}UyWjeq?*RIC!;3{RA1 zAljtsyxk}6V6s?@d-_xk6%qDC|Q#@7Qx4EKHN7r0~=NFi24aQW_ zCjkLS?hWbkBTae_B{HwuFQ42GKCw6J@?BYdo|X}9L0y2kiTAj2ZvidAO@z_c)Gr{J zDCs2DdG)blbKJ&0Ll3EIdG#6}&$v!E?T!*LomQ%2VTr)2zt-t=Kg#dyY7ReW0j0=+DRYQqXVp;T18evMVQAS$M?AoJX7o^G?aRie^eO)0VU@e3Ql zC~G3Y^9bRI6S!kVI~1xjR8rrEY28B=>DYmLgz=vAKMEoTsVaILLhr*o{Ha1}qUC*3 zZ1J)Q2nhwn#St(c(kOAbIfYQCfO>kOl%BkTXjC80c1z@@3FHf=pLPUdaNIXYc95+( z=@t8+U~9_?vFE}kYkPf%4{+(2sAzjR=D59ew(BX0vhts>yk9bYVoR^(%@Oyp%8NoM zjlzI*W*7nxzhW^KFM|*23`A_2dwf>sGg*Rvm$Vuf7Yue{hPj=cWX-Af=skyTK@Apd%D-| z2ZfRegyVB(8l->F@~)>yp1U(c6(5pAaD%$3#V2?H1X06~XH zb4~3RZswt9yl^Xm7BCDek_e_4yO{&(7@x5@OMt$)l0DwORhm5TPJ3NQBLP!B?nVI! z%}sk;KacjQ+fbs4R`x|uJiv@31p6yki?(=P7#e94wInOQbc$j4$jm`H8RY3X%#qDv zWr9Z}iZ}GlAt2dQ$;t{ z2bB|V9<7k*^YeSm8E__IQnPDlu+klp=!NflW2$@F8RYx2s7c?Gm}`hUF=%&p;HJfT zzxc#u{+p_p@aOo<^jrzjk&nDjPF;`|F@$!3GLg*?tL(wW4edhYVzbl}8orbh3m?c$ zbxpGBrSBIGGPjtd_;8$s?U5#BU&m(~i*k4JT#|$6DB}NvsN@Pkz~~>7w&poCoR`62 zW6Wd{v6VDGz){H|GL=B{={YWkMY`gWAC#o6kpdc9tG>d}dd}1ho)d!}5P9#zQt~Of?3`Nz@lDFtub%~Vr;Zey^ zS=_479Wn&?q?FA2Pht^ID_|(b;IR&u<(&={CI`u|iHrpt?@Bd|G=sOdH84bONuG)e zi0W|v)b*f*+w*&(*dhXK_zC1%uDDJd&b*I^3n~oLc8tB`FYZUf`B$DRiD@k5>8#{q zB@KF{Ggu!X-Z>!Feln!f?DhX&F4PxzJimeo4H&4XtiVq1l+(M@^lccK!lBX)+T;Sk zegoCLGUmvU45(=Z7gkrd|8qu>6aM=3tGQjexcPt2oNXdkvISXj`*%W}dk-pTO6`h+CTdKZcvhfY!Lcl-s`VWW`df|9TI z)(=E>P?q;FwOw`724^%q)lKF3PItZ-_k9fUB!IcTwFboh`O???djti6R8^C3m^6 zgJM_uJT+5=-qj<6yzctO26K5-O@H~; zlTTmbo+>1nXD}tGCJ^0s3)OmuQXs1Si7K8OdAmw|JAt6G7hY9W6_U?IzOllD+YEQ@ z+%j0-mxtc{ol=&>L*MzaXb~=LrL2AG8}JR97R@uv3oe?QJ6FuR2w3Sp7CM z0<3Xr4=MzV;neB@MN2)5vgUrX_Q)3s#F(NxIu!2c-l^bek;qp%_e|)?U<)=Nbh>ZG z>bo9who9=lOUnxv#WV0SLy%YGrSU&D@Rozy$JFr!`9mFYxtlbs=?woQo}UK-fSDSy z>1{f~mU#d7i64m#S&oSUxtlb;=NO1eLvVjHUIm$&Qs;_2w3Ss=O90KX({W;T7og9~QXGsCEDadNCm=G(cyd!zL4nazIBtAjPFAHq zFL&VQ>8k-EPKtQXZ$W=i`Q;Ai(%hU;2K&X+E%Mt1zdy7WpNZt1)oZ|(q)}r%%i72i zU-|7}_wame?s=1V(D2`7(+_>i1b(Ov9kmvGZ*+6srIX z+y~zg^elJnrmS9^&(7P4ZEEd{+J2hUoLcY1J1%mzKiLIu^cXg^X^i|L#=t;2%dDvw zx6-4gKHWZhDBO-Kn_!<~3FU$n&6kd-P|EB8h{?I>J~SKC8jy5+c7x^hF5l6vFk zpCd*a@nz;N)0ohY33+AyXxd<8k3uZd3_tgsi7}oQT>hzmaK8Jy6N+L1gHifKFpcKA zx5NVB+NsksPa;!oY;=T~)0RpSc|(JH_nK%j*=pw`bdw!dvY zpPzAyMRV68@T~EbLFw5bjZbi(cxC#7kBDAbO!$ta52;^n?qv~HqmhiJ76E6Qs*w?* zDuOfd`0M7k{ZA#yzs|i!CKle2N6SQZ=3#P)dcW^%IU)L??tkl_v96dHvVmtXF=NNz zZw1vmtL>iz!qFxS4y3)_`ZsReK$gX8F9I0&!q1#(CDm(XNV`V&)lLQYYX&rUdE1C` ze=t!Ay_kg(KmllLF6A~>$_bi{=-GYJa0ee>zibdAdLPc78qM8?Xs7%E=X>7`qIDCw zu&^>;HAjFQ{$E&G@47-xy%}9tdKR&YeQ9NJX~GSzV?EV_9NW1W$$?@;ReffL5K<`R zS_6BX+%8q0EwGsvV9KOoTq#6GVotszU2}6S1j!Rb)s%IoJVU2_S|$F9$>1xg-T6y{gD;yHmBfnWQ+OO@5S>@U!b*^)*q}uKvzJD zAt1S3y#PudW7jTR(VYtd9flRMz_?j4+Q@3nkBDI;Ojd zMe3l3zb;am^nD09F$?5L0Dgea&?7_$xS^aMKJ44^Lk>J}3WzhH^WOY9 zQ}I2vacsOfHDM4p0_XS5phd#dfGu?$odRLa?|Vi643XJcH2(2)tF7c0+7ae4c+O9D zs5^BfHt{n~-tkrHunDV1F)ey{itMVB9}c%xs)O!7?j`RZG0s+z&)9Jah$uUTh#bDS zr}|q%L|MT`WB2ZUL=JV*pTbQ6Wbf~YbMjjAw2R*G@#69|xnooa#sn`cQ4vO0Rae^} zmDlF&vRb)jI!)7IPZesxd?RSard2WWMY+BGStX5pYF;TP<%*x(3c+I!aXRrA>68Iy z;=;6+6~1s7xyd3R=R7Q}$wBOY@7i?~BBO9nSvwaZXWZPQf_Ap0 z{;1(ARg4F3DT*Ms@MygJHVQ^71z&4K1x6StMYakn8D=9Rdvp%@?2-4K!7UoX%7TmABNab2CaV$-j?AAXZJx_{M-e-b0{8LpCwu{XY+ldX8@ ziQ_*W?@KRcF|7Xjb*Dv1`%_q$i}FScLl65q3A%;w(2sQU8k60AEG&Y3e!n9yY3Re^ zH-0M~^~wH=bq_fiuv~W2erx7c%Cg;g98jnBz+QLHesi*_K!d8O=Kns&_UWx$}?Kfw!@-?yYS1a4~l`d`=04oc=89 zkDE&Wq{UGwz`(#Acd*H{*mkxUKr-UM@J^y-X2M1TW!BKx7$6#tVfl=@p4e!OH`i|* z_o+^&jNNeHm+lRbYxnI=Up=&{ON^CQ3fG>b^C#}&KL(2RWp>1;WI>+al~4S~Wos)_ z97cNh@m)n}-Q`uJCsji0G_uN3 zC834^qE$z+O*4)X@t{I{_#le_iXhM5g>Vx%Yx826eLM$f}SPM=+oD`QY*s?@;)(}uOBU6Sb`Y} zsw|)ZsAytB`OUOKR8~AM*YP29)ZwMS!iOx|2*D#7<~J#C7y;0u146&2@{j<-q+i8Z)lp* zV%^t|ZGzULl2|0ObA5OM&S~LFvnAcGR3)qUUMzXUjD?kLvlzj$!!@gqs;||F;=mQZ zJ|zjiVyKw?BEQ*3)y8OXGoqqS#f+6RlqrbB_sGB@Iz70m@qc&9-p?Q2I!q*S^i3m| z*EiSQ=`A1qXh&Bd6aPDZTduKyP3OMyar)@|gZzq9Fic9^_nGyRZmDhId8PaF|+{-9GILI&v=3lAcJq*<4wM6{}ms&Q9WF8uX! zbc5&ihDJU7K6#B~g61k(8U;Fr1mhxsPI;r3dKk)fdI}SU0N8IAa2%#Hao=Gk2q?O1gMb_ISfONPEIj!2msIq zA*{|{8%qB_qP_wss5bi>kp^ig=?3YN?v{|U0HqtHOG3IqN-619l#~{bZV9DD0SReA zI=*vv|2rQu%Jm>s!y`dn2k~!KIvX;hXX43CDm>^n;)~lnd0+OHs+e@8DU{5=KIIdO7*L;z3l|M*?$_(M^qKDWT6f>k@?r2 z*H^q0kPiLspNlL~QaGT;5U2P$CC-|2H&Nb49Xp*C@dqv=>7lO;pQ#bSwymRQb?M=+A0f?i)Tl8nwjf@25T3t4>H7-oVq#L|mTwHn**rc}1p`>!cYb zJuLM@)H}Hh&sr}$pakP4Tv;jrZX(*-!86M&H#@lT)nC8TP7{j8*rFeiI+_bXeGd6O zyjLfdJfc^qRA0V1>wIc^BBv1#ic%9kv#3*GIN`rHm_Iw0j-xV7?+``_iIF`wjb`)> zIy1TlFV*939qd6#z75GdwV|(wayY9fA5}1zAM$^N=3+p25|K!Ndh`E3^&RoMTM<=l z9SfMaI^LQelIq#o_Xg{ct5&+?qCM%}(w$?PH>%92PID158IBs-UxkML16FfM^SZdY zUc)N=fjw(E8rJbzgNv9!sucd{!X}(`f*Rci58lx4iin7~Kort`_pRq&$H#-Y2B4(i z>y(W+-~KYkvZ~S)8hSR2Qa&MCic<#-5$%dF#V^J)~;|MBDaKUZ>HUufXaa^c*Xuo;G&mG)4J+zlcONVgur>WMb<(d7KXK|C+rNfQ1I@(uO0 z#4L>hxirU-bZ@}9CF&=*`T7}^414+@kw%d85+m?pAYj5#N3x8BE({DJ}$ zOTbJJXW}0B1H^cXB>I3sWAo#Sgv~)pi$ZPq(|j+r#C;C);+AizOwjW%gbMNBQjV%Y zzoFL&>n}HwvnQQR;Hl0a{T!26K+qw&_lFUfY+JWbmeJ%q1GT9uX9wpb@3= z^jK(LTKfC1Y~B=IvyASz-B~oeg-*;{axBVj%Yg|`=`aS@ZenBKh=u$|kfdX)pdxy{ zc64$lq#6f27uY@H?r)h?;(qRVfu+<8gkBNZ{|uY|Pj?&ICHlm7S6FiEf^K0i0LysN zYwfgH`qP4W#^shEjkO#3jt%~fVo4d*m3Pf$FZqp)TQvwp$_xr)s;IoLw;UMqG!Ny@ zk8n$nu=i@~p_TRG?C$ZUb`Dl18#ALhO|tRSQZCj9JPZo`=24E~#iFemuamX!?dxpJ z#@Q*3-l)b|?@zf6MUI7VdIJ&Kl-*P>(GRj{MJ*3}nn0$_b>k7)f}~VhhJq8@f0I@D zN5YJcBM@DQ!Mpp;-yc~M37resd@I0OXU4VdiD(iJpOEs3y;fB{G!;tic~WoA%3;gQ zQF@$rffpjd_SW#-5j_S5M_w9H=6j0@`kiLyAe$(u45brtfXVphebYIyh;@Wj%QBUe z#)7bWc-;qC$M4I64b^_~!-f9F;l|Uebl8w=FH4u82Y$JLdd0w(=H>QhJ8?+^?5#B0 zqMx(dWV__$E4V z;Dt7+skT3zpP#ZK;e-V@)V1~m&InhVYf|MNa!daOC;)wimNoqvB1G_2)C zr-IWQCJF|!=!CZt8PjY=VeI`N$g2?BB`=fTslIbSn{nM9#Ji~X?6SK`w?7JWG=xYR za*QTysFE^|Ejx@YQ==&?hmt=rxjaWlM&LbfpvxClwF6E`pwa?Bw!9CQ?)bEqg4{H- zi;Ev#_Bxy}Yw7Tq6g8)&{Ut{JQ&=;W>9S1rNI3KC((t@@zb&b%9*Lssn^#{LEydL2 z1#aDWwhVD>N_3@0n}QhY6B(?21f+p z+1p?w#Ua8EU*FpL4UMTCA&Vc%%8-{FPJlF%n3x#KUciQS$cVLn@dMJ|xa&XA|BGE?Ld-!ZJgd3uoM%l7akzm! zjPacUcxW>qoHl8T(WJOZ342sO(3@JK#8zeI_yfAUzYmf>I$Qm@^C;7or%#v4-!I~N zLZ^`?c4Wh$UIKb(`$K~H1S?1qMIy_P^xW3tF5Y7xk=tQK9fZ89MWtkEZ3t4BKKQ{3 z!#%L2RZX5W8RFUIcPHtP%c+FS3Qjr%k%W?H&^o+`!iioRot+{x)DFI{8U8~x|9;2e zl%d;NEacKTbyHf=u3PZq!3B-#l=J+0$LL;~#@kCKA^ZmnjEv@=dG*H0m`QsiUNakV zp7fc|I*;iNqMDo>RxLHE<8BtATx3HqCBj4?>LaA%a?hx+?;(`^(cjB#f*p>ML$5NP z^hcTf@$EB$Rz>Xq?%*HyNmx;TJ9Z#)iI^)A0pdKCG;(suDmsKmF=F;#xCL zal)$q__6qhcxE*uGOR>7`HAD-7d`I?7RSSTM@HyYf6ypRx?^Bq5UOll&k?G~_yq8@s?Kxl zNt=5+EDj-ySI@~ai#pQzYG-&3%XWy&n^P&7qPp2;X<4yQA#!mMq`#eQCQpC1IH%2G zV8s5iYs}LWeLH+iR$KaMdhf*t4G|e8g3eDweBC=)yEa=B@4jJS>Cddfx>TT^Ht3N# z=yt}40u%mMp{;uSGgam#iIIVmX$m^#ycPDs7h+4F1OXf2I@qP@fDS5x;Jotk zfILx4vS%+?%RpITW5s7-RV8w;O+PDj^AYvVv(5dwuXHwr&=UmYkQoIALXeh~A;*>3 z*+IzVx(oi@#1ZrG=TaAs$y**vOzY}28nCI9_NGOfq zuxKz?eeXT=I>(CC9sooT(fxxnZwZ9sU~(iX9!D$>4G>x_3h&O6UvyN|RHZBC!r6}_ z#5-g=_J_Dz93JqKk5{L>2-1&C)quBGCEo3!sit?wP{`$(3CFL>x96T7<|vqU9mPwz zbdu;GB0xp0PA0K^Fy#2R^e}TNOQlRI96y`#IT2pkY&Xr~vf=l5$Ax-lCO8+V&ssX# zA;GP^^>U*%ZuW;G1qQg`*sDmCvLv5ei;$>7NAtnNAD3_vb>=b&7+L7mN|(PsMrtt{ zc4zEv_zqziEsMf%;RHV>QG$k8_GK;)?TbzRXP-}2LYxsNFswUJyoZm3YcK7+f|(XB z4KWzZdK_`Z;R~;rBR@POu{;!GCn0SY;IoNK-5x9<%B`;#m1CBMm82mQL=w8>v$1zI zx>yRBYgA$gG4oemU%ixR+uh}}wOxv?jLcJoUFYJul}>X_OjY0O?+zne`E~CAkfTDp zw#Pf;G6%!^E9xOuiZ>bF04)=WQTqS`a3pnBmc9cdAfEV0t{bdo|$budELBD*`L zfP^HD1zR9R4VRzKW^d939w5Zcz?gsqw-GZ7OQl&C4)k-GW?9p>!Q&dFd5=A@TVh%z zjZw2$tz1r~Tk92%mT&plf!v{rjI2t&V%o62rAXAzwl)*hjo}frw9@{ziI-SOKre{lkcJ(kDK+lJ4-!bCY5()>-6K%q zL9|&xL4nhs(&8$+Z=7HWxh(Ce{vW6(6KIthaM=fwa>p+xLi}(sm*w7&rU3*&ML}{5 zuh!T7o`E!>*NkoPe_8-!-s1vU8Sq2#h_MbtWn+Bx61h@9*Fu6Npa#9$uOFnn4G?*z zLI#SPaWSKw+-KEToYc~$00%uxZ8T`OC{bhMGO;qKlsRfHXb zj{^5W*yBYRc zk#Vj+h5yEG+O9zQZ&7Y;AR<;_U{oMP18!3~n{NIqVQ8daiaxiz#*JU}kzHdhe-7sH zs9KyEv}M~^3JCdp4=@bZZp6K9eJNY%M>S3zy+}l{?!p7EROHAbf8xb(^X5(L{Y2(S z*cYcL;|kCEQQ1nJ>ojA8`e0r(A2 z3=9wt_f>YwK7LYJ^XwHoMt&ZipN`PUUjK*|x*iln^<|^?aq=$q`H$3>GOmgpdk~;;KSG0_5Yh{c5KI$>GrmQPj|J=IY!1E#c?SAH}WbuuG zi@A}Dx1!FBaIcJoPJa^dz?5O0)R(PFjikqNV=tdzFI24IyWg(-rZ~EX_C*X-$<>Wi z4#DJx#J@a!fzOs-#tFrudC(pVnGSGU-;gz*m;Ph#p)wnpr)YQj&;?^iQSWAEQ9CtOgbtx4z#agE#8 zx*uCDCL8N3soUI(8_hX5FeP$``J~AHg{Nx5rIZT+>t=hkk z+S1-PW4oOxkD63CK2_-33$f!3Tc2i;kb-PKznkFw|8E>^6IQr(XDdAtY7aO$f|U~~ z5xp7cf{_R57_^2NMuuCrr|rKVKV@(<$FF=>kI%Zfuuws_juba6Lnpb()=Vw`tQ0K) zWWh6|fMRNW!To&zTUeXDiODXVro22VvcEyfEIB+)v^{Y&a6a%k&IlocFFPry%RZPu z0n+AsqwtQz5T&YLxJ{AlK3OYp=Hx$}fD##$g48OE7}PbM9}|;_$2n!ZxBLNDAwo~+ zdp)j7CYU#CY=$#k#6XR;lLOZ}0CTlZ$sf}b{)E&>YY0voWmG`2zhUC1spwyQQ2PFT z0bJ@}8G|6>R1wF=6X<2OR3DrF;y@uI``O_-V*})SLFgDVP$C&$Nb)lzlOrN%9sRll z>}hNB*FMz2Ra7e`7b+n){Yo3yRU;yL)1MUdLC0=#Yk^WJn-gPQ?YF0z%`Alr{B@`Q z7In}g$JsZg!rzCL;HD(m-x}R%DaBpi{)sw(CZG|F(kt>?a7r?YHz<1-PCz6)>Ob|eZi_MM`z zLu%=V5~$?a%us}c{2|>)z~{gQfSQAJN)?H#{ilONq&AJIl_Ae z=+GcysipKyUz~AB=nid8ivitiUlIlpx1u602``H&*{NrpdQhYnM;d+uWs-%${UAj~ zqQ{1YwvLX!A*Ko03Gt|eN+$VF^Uoe=v}(s=IKR_un@SbAHUv3S?L6K5onxMX{7EKO zA?^a9f!d|_@ABi4J)ZFSGl8S8?~s?2^XE(%b-6vbkv@~lGSQZ5&}5%|PF)cG@epjF z4Kvrilnd#Rmqu9ae&YPMoa#e80OU>)|FSxIP3aBlSW@NaGEL_}rY9QPe!C=Y3*jF= ze2z9pMcOAz%KGV@AM!fa-NL<(f!)C|i4RfvVb7U&k+uj#malKHPQ=+zgz9U@_Doph zGc-QJ@eZy>5#$r8N(Rj!i&(?ez5w5UKaN{p7TMS=C}Hl%nDl}oY7xBnG`uYb#0ZoH z3CSRbx3jZD@{h2?JD~lMohtUoxRcQ91|Ht!GhhdiCKs6CEUc`c{CaLJaU*~f(l8?* zspr~K!EFxx#YjpELMH+*r3nc+{%sZl&LFOJ0S*yB_sli_`7{Z}>kqm~(dXMITP#{L zBFKtP6rYtA+2RSu#}awwpE2xIEq#{pz;e0?g zH00|i`>RX?0?6A28jPHp8q(;lFVMo#0B$nKe*Oj09V@tQ`TZdM7XeQZl|`l7x-Qt+ z3D!=sMX1q)=-|R$21MR$uHG5`_V8d-&TiG5luh41kzC(HpVGuevmC)*efFw77?T7a zN#~MPYPVJU!Zp1YK3|_=H7BIfRbu{D$wD;z7hez06{gK!gE6v_F0Pqg7t&W&be(Zw zH@uQP;!cnF$N0u-n#p<`TE~QYYUEfNk|YF z$Ze41dgLY;vfA)m_za}E!;j`PkR(RKuJDyY?E5=Ss1Qa7x3si0L_(*^9HbD%Hk}z7 zp&C9Xk3<^HIbBDw)fMR&T(Z@*+byH9u@UV;8!Mc%aR^r9(}PC%oqFU&h9_$X$=lkC z(pDWve>pw&!sW~SW97T~Jn|T*fvJuV?Sq9C<1)lNBBt(XtUM#OBBknDLG|eSeCm_J z;Mc0$wkug@S3~{_56M#!2!t#*0q0@gG4FK}y zPnslqb8@R2$JA#qEGKeWnSY6Su#t1WoL=!2(vpRaOI88pm?dkDCjb4|4ItLM{!fB^ z_wqW(@Xe77J{UTX@#BrR<@xa*;)%S^twSAe5j_{4p7V(t8XczZ>pPSy{Q%q=_ zz0`PH^m+eC75fwao^5r&&xXXcg$t^dqUkUlJ%X)oXd{mp@&);XQbG!_@E>doKQ&o zTe`6QRBM2YNP9cQI%#4kEq|lIyJE#3J&*+K6DyS$Qo6w&c?p9662!sH&5c;_I%mfy z-qgPI+K5!e6QXMB7oDp|e-v8**gUdz{5Y+nNE66#vzE@IC(;R;@KP_aS$IdMa^tVs z)??<;koSKkYgxTQv>HMkHuyHps2RR#`;{c(H;DPrS#XaH)TS{PE|HS3b8zH-_`t(@ z<^`E`NXY=Adfw#mjyvDfQ**zeL^|YlLRC_>p!G(3#0~#vM|tfl=7N9TPv5S6u~w=` z)px~b&Gjr&v@gi=Xdp^5QU1<|R~gGNnmjDGAOeNVOt7q4fx0y9$r(pf(Cii~14Hhc z2y~zCyRh7S0cENv^h`&-U}C^Qg@WFHJ||E~dKc76392Cp!?w%Q%3WA7+`p*sz3TGp za5!<`r)Q$K@WJZF4FkPOLkzO~?0`#e0M9shc#3Q$uLSHC2_ih#C!dZBJ*L8Usb9N^ zqNphFUP1L$VnQuedBS7y-y$gQ6Cqi{{6}!I$5!m&bF%VYyJN*`l_PMRuy!TKBF)d@ zSnuSx%ofa(Yq5-@wueO`$%_1xqQNFdSB^x zMe|OlcWGx=*ROwn_-|l-nWePNlK)gdjuF1+z;TNdVpXu!L=vs26{v|tsGhBQi{$)pzE_dODa+uIN{n4R4?GlRNodN~0XQ*Vi8ssd@DbpQ z-SF0=iD>esKGe}^hsjn!-{5&RJ*znx*J!iJwLt7Khp`aaJt@szR&8pngsNEl@)U?F zp!Hc}fZouoYdseKduffWI+Jq?ECY`2b5Cb33{#BL!Hb*!>C{O0P(^{5 zT12f3ufcB_KO+tfj)H=N9XzCB9eN@m`r#|W`y@2B7_K}2 zq;s@;q#lwuURhGUN$$Tl>jfJFCywSXJN4i*kOBo2==FMP%8RP0+7W!$n>!~0dRc{- zxk!D#61S2FwNze2Pji2Y`#GwR)%551yuOKE%L$GY)x6H3+s~{Zi*@j=#2etbp-NMJ z(~7(puaU2)2>;Au{DVk-p0casO^cZnR^P`D4${lmFUagStYDu(;#na; zT{4UH@c9eWCc&H0!dWjrra1Lpe`y?Jt$w~PT96f)lzX^05!NrdIXlE~w2HPU1uwZ0 zDRUT`CL7x`X4X-8RcxmUOWdt?ajK3UTf8F+`kjC0DeKtLe7G&4U;oN7lod%xgtKTz z6M1S|DgJRt_caKypewhNda5X0C`+XsR8qHd&yeFm)Vlt^)iJBuJ-~ebf>-QsCy92B z4Gv2}OLAYAXh=v2N%LLXjeW0qFVZ_yoIHjYf`54!^TI?Y>eI*;K;)~}I!f^rDSI*p zXdha4@dV=Ac)I`Dk$exLj$hNhMC{=(o5Ku>9LKPU$;!%p3DIC~)PC$kh46VxJ@KnQ z+k>g`w@s6`lGg;U`xq%Zo7^(x?nS&;5k!8g8P_#3MTuUDlqb05?r<$^Z=p=@<@dVA zGSPeL%sxVNgT+Hqv5vEK{N8^pkk=e^Zl%L=HK%22H>*pNZs%X%5vg=VG|i{-2|h{h z!uMvv!9f;MDD?6C$QTQt`+q*J9@MY$)?GA(?>=XPU>gMbfY0*8|5>2Y z97hU^;mv35kPg|gynM-gm+Z!+i-oX8b80930G6)iY1Kkwqc|*SoKWc`%SUlu7iXNv zeE;K<8*NZhlFn4QhegEQDYx)x?eD30Ll7)>_o#T7bG+4vs(X`sI-|Fnr!TQG34_MR z$Gu_9O_K?b-rL(7&FsCu;QUz9pylvZvLtqf*fl796kK&tpOe?soQ8P>S_JOx=jJB7 z;S0-+)H4H?(85rJWNa8kcB0_P;P&lP#O7S%l$Kdhd7OxZ$_Q9O z*aDQzX~T-Lh?%y#sV5T@9vex6%g)H9j|I8D0aX{PCnkASOK5A`2!+mBeaYw1sgldS zE3uygZ50Au7L_vh5LkUrwNDd2*A256q?fRi3>GXB^q%S(q-u%zC02ax>jxoc=9=u5 z!1(F)g$TpZ`4$EP@^7b6Se1{4#PP>PO%2C*mxZ#_Z{X^c$*@ z>JqH&@`-AmT82sz-meqDBL&w73bJ%U%Z{rT{CpFHoeC^WtHk~Klo+E`g)4VW@hh~{e_Grjriy-O4I z#gHSKRF8@yPbg2K=d4T!7r@R2U}96@%pZ~5$D@sBYvlfEUs&A|r8@OOUWg=>ROXKI zTx?vAcxL;jQTB9=hE-fNv?2@N>~`!W{zx)-uuR7>YcMwm(Mc%x(DBr=k zG&StG<&}~(xEVpVSn>RhaC`pf5fjt1hab&7p(<@%Yd#@6DJj^{(dxN{prL$#>D@K= zLzPd8UGq?#CF0i{39)4P>^Kmag+pxB9`#;nP2UhZ>-gE4{)|n^#+hVMn6lEb?BEns zbw&c+ZLOyK+A@yz;*Y-K0&HLi$V;ke72tGtqI5P^Wy>VM1Q*^|aC4>sItRvA*n*Oh zy%zn5WQj=M7m4a-de?8JO-%mB@#hLmR#JMRx^Y3!)@M(S8-DG3yQcVMU$f<0n*%3DT6=816f=yhL#f|vX4U_ENl@63U(1*ON={Xcv@ zwIfyf1sX~PS^Ci;72{Mi665rYZKD+G$}4K&+akJXeu*Co3t7b5&HwN22mHyn!)cd_ zg2LAx8SXr`=hQOABKOqxvDuA%r}xBA%pC;p>2MI-RKj&~N3L`5y?6miCAt(NcuAvx z`4hmY9H45E*cY<}Ytc@$#X?03?jS>3f)N3!+IK|Y?%6i)X1W;g-e%BR_9OF+$`9Yh8~ty(g0#RQlZTskhah{#vnDv3r(WAgV0?8zTw1#i%(^r}U1Z?e$yaoW=ky|okyj~7g* zBxSD#l`;%iU?^Xh?jshqlPz=R7o?~^CCXBjSYKa<^5+DHVMeV#G8r#kIg<7ShwBK3 zZr1-|p7qJ9?r@x4!>LQO88I_EoPMY&MM6fz(%T*uZ}ZQfx_aMuu|RQt^!-}e7po*1 z$Wc;iepnFr#?$@zRTr=SwKeZ4$RSpIZMo?o0Z=h40>MB!9|`## z?^&%U(&h^rb+k2}VPWZz`v**+TMP9<%PPUt_y5D2+uDB0-2Cqp{vAoZL&1x?70w=^ z?;WKhoMQSNJER8XX6|*UH@*K|UsqR|Ud^hp(XO<7UXyQaX)x6K@49t%H>u3ogMHw> z!`8=(_rYBl1tiXS84sU0H9neL+v@lmTY>~-5?$a3r0Z{BN3RWjt=TYAU*P;WQH5PR`kbm%|10Q8)(LP_z7`%o`% zK|r*OE=N!O-PJ>h;V_#{ZDK#p!qOzXE-!3U=%yh4-!A@T!7wOm>G&h9t`LfXh@wa3 zpZoptXz~Vd^&x1*+}#`RZM!reFyNy~GxThS6Ex58Tg7W%iam(gSOmDAnGXI9XtHFt zU6K5}`>aUMR)Lh6xX{fZktTbr%k+vCrHZ?Q;yfiaWP4M`z@Py%($@lsqCYT5H}x3L z_}Y+jvosMYMNZT>Gqe6qN)|=ask-;H?#-X2Y#rSrBGx{6$Vyzsgl*)E^bNLtTOvz*Da4ElPw8D$~N-v z=%2wrO2+-T6Fl0YKU1$DFB0XRNgBn_23dkl(k-XkL!D_!s@1DH-`rm=w%yM(L*3IQ zj$$4EAe3)I#Fh9~Z8|z{NA?aj+u!o0`O5{gq`ppMRfQ1_TDtfkKIvG?x9$e5WGX^f z!^y~>&U;^9zZ0g+n2yaqdUNO$i2|WouFIoUj0Gga#He!R@A5u6@P8lep4d!z?eKaTx}Mi(`B7Sr&3kdT zQ=usWZ^bE(`AShRiR~(4G@qAQ%8#0ZgQ;&sCYVz2J|X#=(6Z9ZfXfr$rvvf#wO2vk zSXfdL0Z69w)w%28&Vsg~;Vp3Y#N4_Q2kSVa_iaO_oeHL^1cAbc2(p!;jAx68-eFos zIy$VoeHR}lsnQ2!HuvpHlL;!BYKZD)f`HSluctr}qt0>Yu}^k1*6y7Qq>m`T0|{sK zGuh-p{n~97icuySQiE0zKg%do)u50(rLQ%CxHtRQPKhv6M_lbsb)OXz-fnZJYkD#5 zcO-D(5wI{Ylz(wzZ$6W)As4tkw}mIv?YmvIv3Sqk+VWuTEUzJ7<2moaa>+`B0wr^t ztU|}So6Fi)1_Zjxc>Y=K?%hp+f1q;YgMk%Bd`+N)wfdBrlS7IJI*>;1fQv~pf4_x~ zeZ&3T#ed>fD&x}peqaLs@ZOv(N8-cmZ;U?*DQ^AcQ;KZn)Pj^7ncwVNKSewl9I_CA zdsORh#UB6SGv=Saj^jKJ{0%}^ip`Sd85{uPOgz@IRh>{>qMxh>Wqv5;S-)uTeO3!s@F9cePoVOlH#;o>}2 zM2woKFejDr#J!IqZ22|`UN zM=5zWrKz6h?-%b$y>@gQs7gNc*&HYXka9@;eAt9EC*){{WopD4;k4B+k5g=?4=+y$ zI;R@>NV_eIa=XxQ;!I;Rr3tTLb{f7|MfD`7aTCSx$nn1^M~KvN0gzu5%}Dh>EkFT4 z3p5fQPMcHwfb`ab2Hh-5#cj2~x=HznW7{JsNmQiB4}@|+>6s&Po%!@h%$!Q zd^W&F%knko5QuquXf+xHaw}V9^q$G6cCmJ9Tj2T6PNI8*j($&$za^m!NFst%-2pt!R7gTK2mdg`w|b2 z{))@STdBS}<(*kgHtJN1e3><1Cz1i=uA1|HZzb7*-Hw5H3GN&7+Q(`d6GwM@Bi(<} zo;h4k&*SCyELuqv_P|dw*Xqhj4V=`|*7-%JlL9&*bL;{C$C4@hXZGn~Y$Z*uhK#kO zKA$R@T$!G_Ij+3&lz=rVmF1RTHE#~RtvJJUc*i2+x9PLDTda4Sxe{#_K`x?b@J}ri z2?WAnwEf=feeAcP^G;wt||s_(vnMx(QE>C!)J zBKX}TD|;5)1(6gGd^9L3k3S_YQ7I_TRirXH8`!D25pP(KTHtdu>3m(Ng>;Ow9qBvZ zc>V83Z~(coVsKz!dz}@m0`Eb?ztZNMSpEonCpCOqF5{6lVVAC^G;yTFB>T=yx2G#i zuY>U9SF6+V0yW%{zz0HhR^Q7lNN$jX8t2~b*juol5AHQPZP_%f*oya^y}80uLC6|(hx|hcYn~?l?%OQAeP#8 zp&icY2by0XU4dP4Zodk6FPLcxl;D$Mqi>BqX$!9g0IZSh2MdpIaYtgVGq(IdicG$uYOQ4qHcX)UKl70b+Nev4itob^LVjiISPUhh*(Gh=j9tx z+84pt!DLG=YpWuR_Ox4{sq74+vBH`t62+3xR4}55iyEpkqfQ+|Ea@J7AxsR7N%eOW zeZ{x#-Itf7xE@l$dS@Rz0ef)a1N!pjo`Hcz{&uo(ZgY?6s-h#yX(NuGeyDd9YQY_& zv=)HfY%r018;0bmx(sLM;zJj!)0+gAm%Mp0lWr+|?EYM2eYEcT{pwzA{2oo;ZYuqP z!?2*bItj^Q0V&;|jR8WmYu5t*ev%UM=~weyF;9H&rQj%Z!g)_W4LCU8+qt~Fyz#)L zotI%2mqh0fY0?!djeS(}UiFXj#y3lJz#Djb_wg9k;p=AEjMgw^ZLzey7B*Dz;GqdO z>MwS+{#%}3Cy62zy#SFwx^m!lV`gI$^xQT=e3`nsZaR|8FEBUrU%asU)5dsq=NB{q zSb|JtO0Sxt(Tg&#VBzVg1uMgIv~o;O-B|;9tMgsyqe-EZ#t$7Yv)GXG5`;g8mt|o4 z&m@OxnpUQ8=+ZW$g>Xz%KY72kMf6Dl_Oxp1uH9RGd&^PARLCK5cS9Zc|7%WD#Q)tl zh>Lf-ai7QTLZz=_HOWLRR(zX_j7?W&promC+Kqpm?ia?HcH1u}r@bz6SNP1grOH>1 zMK#Iv6R}-+_~5-7pWux2+X}LR>8A=E30uo?GBk2um87*xQjBl%F5ReIbQ0Y=^P|Rb zuue3mf&FARX!~F_|ZDM z8NG=x{063+FL3ZEX=5f~X+0`u`1W!z#YNhf^3?xCrJ|zZ%NPQ*paSj$GTtYHNUxf= zgB1QNh2t2r|a#k-h2F%rQD9>@F?$--w#kIOtZ&!#&&!+ z9@@#PKu{7cYZ7+rqMX7;T}v3*kmyZ9_LHg*c;I%SrP%drT`X}ccE%cg0Y={THzbw= zktZP9=u@fZlFBnSQZE{w?S!9-S{cjszrubhmM(i5L8*xPr0nP_<&#KDZ%SVODA~Vl zUa^^7+k;iE9zK`1`4t(9*c|?UE`CpV-4*@e{mN>gvP43J3-eU6H3eY|W&BqzwH)Pt=MSA%gMqoyBD5%i(-?PgSs_6Qde6n!da>^YG0cxdEe8!mw@w>ks9Z$4 z3O~A5IFn@E!)^HBJTxG=eHNA4S`|9-}|<=_8yUR{bKA*>*jQ~{1_a25P3 zzu`<@2G9T{CwGHgLAU7eEOXNHPtYIR;tC3DQ!KrZD>t4Pi(ije@434~?EezE*ib+|&-K zTH^6<-he(p0wqkI)%|a+32YA#|F7n(9MY#(j|i@^5Tu!RMw+>+h`fl1FhUWPU7bSh z&r@b>4EOfcD|xvL2=bJ^IM4$cN=;pzQA*1AsSg*+5iyV{sqUzthnk6_WA;2>cN5+i zsBA)QT$2JTYZg$rh$}M7YZ3dlayIOWf6oKt(H#x*6iz3DN`YKZ7eN6u=jKy3~* z1&9s=$-O}WO2K1r?nWQQ2-B3(YfIQchCm#54fK4d0Awu#pQ9}KOaG=)0`U7TGq%Nh z2;u=-8NEo-16g_<4W^P4Y?~*Fimd7jOiF7K8`Y1-^Eq`j9`Q4#M5umt=c*$6^{^gI z?Uhr+1^F24a3wH}s8f@wAd@F(1_U2?_aYKH6N7Fwy%!qSl+PH_egMaRO9TDfHG zH>vHSrMt%qvt6xo0(m#2^E#f!%Phxzx|JdtE$1vH)+^E%IgqGaB^G}(gNjiguaYR)#au$oaD7WopT+2D@6E^iq(qAt#t?*Ubk9FNV&R zkR5lgXY$_Uqdk4mD)^?4&WaaQN`A4fygoMH@hT@`{P;4VRC?z(H@Eqt`>g^TS%ZZ*{bKcfi(zkTJ&>{)t;+%Z=TOd`(z=(o~X#LLzTmA^(sc#CiC1 z(u1Q#Ba~_Ubs$oj)R9+sz=5QNK@eQPzE|TqSq2Sdu#Y2&V&wVGQ>FE%Sq1$U=v$YM z0qipq6x&m2EZGqcx-+MxuFeVXZ){W*l#(I|Sx7M{Ol^T65Cp?zM>xSMBDVSxf-QM* zFuwVt&S^h`;jP9ICIzx;9j? zu}aI!8auA7vN><#@QnwXfnvjuRCad;X$ z#M9$P7JZAo?k2sKx*{oaP}Y6<&-hgFo3eyxh*|^DmX`=_?e)-E1D-Mmr&7(Q@8g_D zq@uT=2p0Zu=zd0OWA*g)71>G6*1qNoC zQ+A%hqpJ?O%U56)brz~1$XHvune^*5bpP&PnAprQm-#iet^M;s1VJDy1gE(qEdg+h zI)P0Y%gg^U4*Ks!KXp22vF;W7&Gl7?I&L`fTkzZ{UkQsBwqzRK?u*z z%gZ*Mev@fCOC!t=YdQ`UZn@saXhdqfWK$K9r46f$kt?Z(rYy2*(EDvfA8Q^V+E~o{ zx0fWm^66zvqbvsi>tp4?>rpk%a{&=6ud?3RS5G5e<`ej}Ap9rddIDW;r(LZ}KSwe0 z!(-LT#9G^92dj=1Q1+6CQ|2|E2a@|;?sR<2mYfYADv_(ng6^NON{P*UFc6bnzxgeX z3Cy-_*i}A+|HO z&yGtzN>9h6+2794IWC7=9!P~UmgFPz<`Kt|Y80KK`_dDtS$v|n>+k>bZJ`e&pkQj*JG)qB)3oyHSL?cbZ(AT1{%S0x=gm;| z*NG`b`JiaKqiZmoF0;gSn5r=|pV@ATt0xtsLJ>4rnblO+0$i3e#x7`b`u$eQs(8X+Zs6-0P1d9W^S z8$X1-e=y@tJVw>gW2pFSPlY8p2%_{}DB zqIN(rACXA;VA#o}dxTBeT=nC{XRocgkmhH|ObykwA$jaE)MAN{R~aw4+jc!hO+3YD z6~!5&oeIZL<_qT(wyo42p4MGr1-+sKn-TeOp_y}G{ZCsg%x9{EiDF%D%Go12@4m|> zG~Wa%Hc!_$(YA!Y5~&g*XMmKN{n*YgU_&-FWq^E9gs)$?+CBqrK=Tpbp18W_ zvSeg0lu7zizzJ6rm1$f(1+LU||BG)!ZezpH^L(`uWCby+rl4SI$s=q`6I^F~|N0U) z?VHfn@3lQmJkPg51};t|7lQuhOLT&8lWn(N`OnPEn9XEEoDA}+Lp}A;^a3KbgR?)f zu1G*|C((c5;(Ba`&B1GDU|>MGkAY7kKJiWya14Zz0k@1t>(Z475*P@Hdm))S+^pty zJMuB}$t`&abJMnS7(G{jOgv&t&~nR0-9z>S0^8#fxJZ_qM85Ty3Pal4Ll;z^WwD$3%dM5_BpU=COHrLi<$A#V}n#-z`Xu2&X8=+as z2n!3>YuIXNq)ysz+P;=#?H)0Ix~hU)wRpEgVjz%^!{?&~w+2TS^`trnVRr%x9z zQPloax#J@A+blw!MT`|`D|8;#)Yc_X%1Cl)zd)S)5+7QNCh!Jg~Ae*CS zpZ{?B``Ia$hw|(x`RbR)gp~9Aq70ryWmLJ9?_%!n@Z+>(^No5_*{)ERDX3uC%MD9! zI3y+|nRiZpSCuMHpuJQ2sD@wCpHnQ3NC-WiNWU2?Xt#E|KPkbIGQP)EH~T)&F*%!E z#>PQSjUmk()(H}}ay79F^Rm4g-B#6=&*mE`a%-xq1;sxFR%A}m^0MS|aGGlJ9~g5kc^-K%jyOH2l_GY>FT`E|!)o<>lpYrx4?WmXws3SUg);6nxpW$t-BeRm&Y( zW2j4?^pYQ)HFDXGBD#Zl_Xqw{`aE`t)a={)i)?P&@dq}~a{P^yb zYFVmMN}lzk&$%Y3n`v9Ob!+cBcc!@?T>%W$0pAdK^b44mNvyTOB~jyXe;2l}3dao* zk>}Hc1!_q?|LWW~?xR#Kso)=PTX)6hj2bG#6ax$mQepshmk6L@LGb`296l2Jr&a9Q zw(-}o9%Rf2%WE@J7up$w{m{7Ofkgd4)b2#GAgHjBaW~+dk;VTX`>yEt|D$&fpa`Oe zW^=mT{p_pEa613g#>V-HZ(DJ;Nr{PwbT*am*E{qAH~)X{o+_btw7=HDtJ91lVi(Zx z23c6{x7juT2tmwzCbJWAn$z5z3EPYrzgVi!vhSeo`&TO!tclcjB0Qc88|3m*+R-e$ zBT!1>xIu>c3e??@9@C-i|CfZBLxhu_8Xpm&B9)y$ti?e^@!#b>q;TzI|IG8Vds1d* zOrHf~$uR~ODF)%ameE!MSB3j0Z(3#!as{TqG$Frd3(WZav;;)pXM)oiCJ zVPZamO?EERh?sawR3fn9oxrHufpyXKbE9v_`N2jd09;Z z!h`*KOx3AGTzgxCB?qv|f&yr-Z0)S^anZ*aM$eu>2E67#m~B~uj|l&g$2w&OKVL2w(*4T9s^l;^Z`+E4kr<3 zUF)^Ao&E>L6%7rI_CI(%@x6=|BDX}^Bj>4AH0w!GpfeXPF4=#1ww%UMPa?SFROL_m zKjK{*Qb~C%AN^Q647`Q0OP$*&NG_X}1dq>@>uQkpmtfs+tSN9FC)d1UnGdipu@_?Y&Z=X+c6 zSUdNF)ukIvs?Iky#=WVq+{dO4S@P%;%?23gH+IaRg54uJIcY=Z*n|2}-L;{{Fv_evK|3+ z0eJ<6OzP|r6`+BTcq-tyHaxw{CpUh>T7yZiqYeVk7CTIp;HO`Cj!2g{d3mjojSQX% zc(6CK16)hVwLV2 z-=BQpX&cQ~5d+_~C|tsWtKgV41E&t6hDGKTDyN2bP$9iN*WfT+6C+}8 zN{Dn4s?T;loE~+Rq@GeREsyvv9iz0#`H;`dx&7gV zxADZybvN+_Fn%C;r=V0KENSEQOmG+~5}Z?4DTqA0r{JamLn=}exePC{HB9r@pY*`a zwhNJ@<_QiO+D~INqoSXYphx~crp^Ma%e342fFPj2&?ViVAT1%?-7QFW3o4RQ(%ljg z0us^+BHdC_QW64!k|Ib*efydBocDZOmowKmGtS8WiGA<2)^9!7V9RD9^L@Frak6;K zZL~8<>e@MN7Egy&S_W)Fp1lc#v2{1_RK>AHft>grsnU;&(U0Nsu?B7byeW1DpNV^~ ziT1D1c|`%cWE*N_y=8n;R8uw_f{34ma+RwIwKp*^Pzhelh84(Tu?Og?1*R3R-RZR% zjF=sD^yC%xC1@_chrr5_s*(r-#zt^)&Ng~j9cChnpMW+AN*{bT6-KcDHt-1>REHJ6 zPPzPf*E}xhl9{&+dj||dd}-+7SPh2%V%c`ICSMvzmWqk zZ5^EfSnIOxHm=4k9youY@j_?Jxi*3+NmqbwA6Mbfd zY)F7)k3IkI7ZM*&0=WeLTM+%@{0hT#d1`FzRDzz550Ndhrv+gmV5ItTF7P7bhE+lS z?YZu6%Xa;a#L?DpQm)jC4mWmib+v^>Gytmh0b+GkmG|P#AaW-GT?ROWga@VdCP~-7 z_F5=etR>85m(EL@HfDctZz6S+CvGxn{|J3xPq!-H|0Q_>HHH~{zIeE?xJ*%ivME%; zPZk(8dY#B|N?vYI#X^Nw2Q(3cU zF+K!n`v2<%@RBwD8ByOm*AS)Wa%pU0;`3+90Qu1b|3x3jQu2`hy(-(;Hy(Wyv&Fo7 zl%?{B<>x!JtZP%*e}Cvn))hwJuR}1IjxrXBJN5q6$QDWjB?%c$-0Lr_dRa%M2}f>3 zMU`o8&PpjXrV8;S63dW&r?1Sq-;wnkmSPI^xXo)tVCmHt$jMPd8uc1TN)nVyHVb4I z!-A!yIx*H*RomGdgI6f_Jk;Oq(M@T6R`@C=`j9YeAX)fp^>ZMvOjC*bksGBY$}-~l zQYPAy0slJo4{fFgc9T+z3)T&t63<^lqR6+fMzhjZgTmw8m9erEBJ`a)-vy=Rxix zU%{R@BRMIl-aGbs4L>cpVwG`mT@)O)O6hupagsa2+sbnUH89G`5}YZdwa%^4#_$|J zGNTl+5dR@~GRiDrCE`MzWz!7>Yf|#^^4rE+`|Fi^_my%VF%*0b)blYdVL3dz2w+H5 z95Pt~VFLVtJKr=P@xkU1;VgsQDKRuO6gB?mpd~*gC^P8@&jd+#%+y$6Ld4M8?w@bq zJ+M3d{T+u^{CsaQKJI_NM%r$CXfH1;JZQ+z|5nlVMsE_ms(P*`arv>efU<=&kIX77 zLpGy+J%*F;Tx%+F$^$bWoQTic9^Z$BDFVT3=`N<>pnOMQr%pdI7uZlfToI`VD0vwz zVn`>#0H&J7p9AR?PuN}Kv7KMQQ1Lpy<~a^eJWsC!PreBu4%AH+MPzPAJ6nJp1p;@# z=SR5!w7R<7yBYyU*37M$P=cHE0zszA=AkaUO1-M+=)qC(Wy@NW(y3H`0zP?dysuHY zxG8*DN~)XYMmz5&DjDU2g(t(%TKbYs{HuNN5Ae@g`h(A6v?}1wZDYTwh=OhmD_1(6 zZ`+=iLcZ63zOfQEJ0cyf>_cixmjJwE2#2`>Hh?g|riUNeWFeVI9+YNJ%_;68+!oYd zbmF#>@C@^pFcWL?O51?z=ouI{lD|`7NCIpTp!gso2(MR(fJg~JrI~skB2a>&j4&dC zL*er0U@Mc(X3t!i90bEfv7|sM^_dUA_;|?STe3N-qg{aQGmzHdZ=XCYV~?k6MM8y> z+M7iGeMN5pDyD{jmiq|FshbrXA`e?2W=jF!Wj^cjg{ld?AbT8_u%u3Pl=);dsFI5! zL?mIw5w^_B^+h_<9#k6jvEl9{wPlfgpdcZ``RZ?R7Nt72~;^NTjstEvmU z3c$I3&Cd8JF-uc6xTOlyQ|*A}V+ZMqJD~<)r6VJ!qnN%GmCnu9XeALR4|ASg9u6x~ z_!*nwc?A21LQeEV>#oPWFAqJrSprzj7H(NpHL%ArMN{Yw^f~BlWm;yaH2H<5DN^HB zDp+1Hbw~!B%l@Xevd7c+D6`VorvGeiDIn?h-lYrF8)Y~n;=Kq#@Bwvs7kBj4s3N@F zKYnNIEgIfo{H@=3G)_}0C)sW-*t4sEa9Cj=DQRkYqPh6Ndkeu4k3eew6mVf;KWh9b z(505))`<^$@83#ks_@^hjln_%fz2O3{9F`ORbwuwwCkC_mB_r7o#LL2(;{Y3-DKWH zD>8gUo?dY}witMIQM!OOv81A;gw1FBpc^JYC2l6ZPlB z%vIXv-+QH8bBEWEww9I@6Jf{RaUBFT04yl@s&NbG%5WcXW68@?vi{k6=|p%3=bkG1 zGN9W|Iv@Ff#EUeP^H9d}csy}D_e+X3s@bnB2mzBjv0-09DKD$P?-_M@YdIPQMxA{R zlkwTkgiN-SuY{;BS%WTUU5H9v;lJ8j7i<`C)YHB`$9TuEItV;kh_w%5 z=fVN!Lh<*1N7ydW*{{5v!tcu{Qpw2mV746y*Q!rgCGVL$lp~kpLs%COUb>)>;irtv zSv5bbw~J`9R`$Wd>b|K2x5TS54p>4xsJeug8z>|%!)}rhriEl5(G*VBMLX^h1Z&+L z2*)X&6CP`L0aN)@u7=^4J2)R}Z|Z421sCsAcsDiuEPjcUZb(h_x%v>%G~kxg z=YBnDy&M-q%PIKeKR5FI>(LlvTEa{JG2t&5Xl8l(7P;y7J=%Gw)~%Cvn!FxAu7#+) zHS?$Ezo&HX?J(eb5~a#`o!nx7;}ie;uLf!azHMG@YT>3jO4K+PTot)0W}ZBP$wX~S z@kaGY)|5i`?~Y}}{mJIo_B_QBq>q!OPYv39t<7ao!5^!F6Wvc5Wtk^x6sx@@I`XAg zLTBY~Xf;*LsguI@U#}j`OmN+}zEb%U9nBQk!C@0|y~@u=EgUP=d*?ei>$8qqwgAmd zdY-+HQpCKS-gxfBiK@U-F%_6X0Kh&fBNqo8d(-9L zt^L!FYew=s%)6eo!(EDkwmjVrx>Fi`hz)xgZfnKm_|X2L^1X)gzAf&<5u;(HzAHch zP-L~vwWk~)fdTVbGEZ^6Tbxhpb284P*S784$^aX2Olev=Dxf*t5NnSGP$8Buwnj#6wBB7 zZuY}v=52oa9hb|AAX3M4%R!r`<6cPea4Jm!O6FA3xxVMWpkWXf&qdNNaHADKPP{Pr z&Clq5PnWjj75ZvK4oAgIS`TDmwM3S*u8>gM}TZUW2WxzNR_LW%;G2)CtHi1fg4 zfXq1v60l~Pu*h28n1yeWpCigQ8-@ z27<1EqdF37Ljk`Z&foU3sX{T?PhN56bDy0~dn2wC0zO%zp-Ld%%-TUN8Mz)NBWzg_ zHn*jo#A3B<=XrGngPV9(45T5T%>xGjBERryDf3g>oO~Xn5M2>v624hul&s`Q%58gM zDNn*Ft3?ctUwJxw@?SHp5pa-$E83{uo&Y&C12_X|wYLRUG(Zn}K8|>M{r9Vt>VsU@ zbWHB&Z0IuS$+<#hi(;{sV@RAC6%pC!g0ZawOi$D*K6}V!MKMVh9OSO>Y8`tE;NMj9U-tiJHzW6q*W+i<9F%_^{{gpC})r~ z?d5p#!YKNTq&BL83`#AQ@fzHVFSuuwRnpYFHqmdef)D5T<=M? zp*hRqY7s7ksR-Z3k}uRk2xZ6*1S8%0r_ya7K}`cx<LqM$_*bDdG<<_piwN%jZddransuQ`X+8X~ZsC$$z&vv|9$n}|8 z^%!I7s~DQME*^cPJWKII^`t))rqbeM%Qpnw8+{lhpujp4!hp%F8ta#5dzkIC`@bA6 z9&$&pj92*JsIm3h3f=mhYCF7|;!Eaxyt{Ku`7d)A^t;l18s-W82r2$QKUbrl+T-Zb z(I+w-1uUrslm6cDY`XrjclYCgI+CSNWK{T(F#j{b_k{zq;W&AYV03cjJhr@um8I*0 z2M_Xi@}RT=-il4IRU^QBD!yG`WX0FLiY++4#>vX~cF&tUEkyU--ZeVm8vMVfeiTf6 ziHbp`RGoC0XA5N6xaxJY&i}qH|EB_Pq4~+g*q9WIl%StdAjM=LB{wd(qCH2cvmGvY z`xZ}&>U{cDZrMupxPZMx(5sbe=3U|cAa64mS;v0_gzjDim*sK%k*#upIk5vk-0dLZ zfCz(FxwpSIB{wz-eKaEzP-|xI|5&}(+DWY|Xy18>U&4}bOO~i>+>RmgI)}+)z?p=@ z@|FrO$y}XrBqb&&NQ$5S#`Uao5_AS?@jY82d4ObZn9nNIl~3Ui>g#Fvx@!=&*D^p7WwNW?=biOJfixMGVA4Ndt; zgMFa1(?6b18UQ}+FD?OP$A}#xN3_9a*5jSm5DVsWu74mahYZY+8~F_&Cp@L387R|4 zF)A*QI?lA=>ZEqbulPpviBdeWg-hxBzZ(C7_jJy&oiMvnx#A%^b&Hunf-w0han)uo zSC5W4#fyoA8>RIMS*5!i`6}4IV2AX3|4Y1&%ajw+JlE3u>(mb`c&23T@F2pTq#6y4 zKtNU&@0*uMCLD|q2@*JeSQ0>)7W%%>mC}t-6I4l~tE>L(31hhyti638Sd7qpu*0O$ zL!=NeCSa#fgOq9s^*Yf%JP>leX7Kg;hk8sj(h3|N)n3@P^Np)(9`*WZ;RYva?eqPJ zY5WmWzY@g{R3`)T?G6%$sEhj?rz;S5{s%jaKb%>uu-@esV#t8fd&t|PIEO!F>IjmU zlL~3eUY8VD)mcw)oGKIdMK`IMp5OE44mf{`9KRqUEcE%q^O}LW>RTg!X_}>DQ|bd_ z3OI-Q&Xypgj~Z0R`I8b7B;j!kXF0Fy zChl|B1D3}KCP(fkfch>l>Pkf zGs?%91D^)y-8@#kIPgye0pbjT`Y?CE(s|nHYgG6sR_NC?JJl{*CF!)T`lp}Rs;*Mp z`6VB(2oZ`uIX{Ky!bCs@NbYqT1djQPlhf+9N87U>PgbJQ(NGcp7YeWTnXy~8%Ck>~ z#`78wV9d*YPgVsbfv_ujdY`72kA<&b`M25eOnp%ze?8T@?DuBmZ*4EN<(-_INXbv0 z+QHq_cS-kU>{R5J_m!{8#={q*fmd687e8xKlD>Di40w69DtkRYb_yS}?>6U7$j&~G z7f%WJR|}N!^YgpoVxq7ysA*(00JA=3FiKezyLe=<+d>4V80!~S%3q$(4je_C)E^t< zhG}UfPO-gx8;;slYAp~9;G&R@c7Q8+i1^;!YK1$lzD&r3(kklhk5tvY-TT8epPnG6 zad6tMz+4h@(do8h=80?UUHWiWQm%)k$Aa)q%~47UF(Dx#KrA3Qos^myHu!x7z^+yu z!5E;`|5h2Dfbc9ZfJ=&tufHExE-0nmayVr&n~I%CP_D7!N^(Cs%5jNfTu2!d-(xxV zWEF3VhwM=%lAp-Q!Igyi(tJ%UIlW&4xu`7;s3Ohf_w{t)`7Z2t!u`1U@mmm-2a;Lq z0xq5*s2!SVUt-}XC7yqzWD6L_bk4s7F_pX}rgIr2l(k*RWw_OL?F|kA|JbSu=l_MlumK zL7k;gdII6HSGvBML&_cNTpfq9vKxOElP4eNw%>A%ZV6a!N0q!Ob}QB0Le(&?jKI-P z;mr~Ccg1-HRh712AsybuY8GWOQc}F98nC#TM&fhLPxfpTR<9Dwm8a4s6-4(H>baX$ z+4KAybn{%cz&K|O-^-8yJ0vTMY#)*Jml8K!xt5;=S*!aV$6tCQ8D!IRo!SY~2{Duc zQ7|55UFa3fzc~7t>^$6Iq1;XOSZDEFbkvcUA+CpP3Kv7|Q2;9o3wV)#{tNcSm5oXPrb0#>~12{ZPs7jl|}CINkQ%>(U!5 zO!~x69G>C?atmSyd6DLtgV7Xh2674;w9f+s0@O}FaE<*C=90p1eb-ld@MkU4E|;D# zk}iTFf>18{igvww(##*{ozRWemXzA5+gR@$2G4wDV|8{-Rn;C&?(rV+9@8)=N4VWR zd0h2M@H2WC@C2*`d$jIvo{{6WTuUWfJz%5pq4tey8LA4ra0&n*EvVIKlIetWub#61 zLscN4JwNzJa4bRH@_pYHknv2BG!+yck`kf%B7Vw7WQz{ZA_@R*!LEEAx@wC*e4qr- zD`c?@-#Jsj?G>A|C-aY3H_**hmAqJqaQGt0l1q~t%En+*fovUOf-|+={RG-fFH^?P z?d`SnwsU3>>+Yi%K?f&=lSV@m4($~6<+y)U|7;BKB+b^ zT@_!U%Cvrcj5ie}8$!kDPh^A#jlmYOzE{Kcdsgw1eq8&##LxtwWrOGKYE$ITL9rg3 zk+BxV@6q}G_PgyxSFhf=0_9M~;g|ORI117L0z#=8H1B@L_g59dd@Q@c`oa&0OHL`% zegDy1pY1BD$C&h@K{bc*=i1`k9CcP8qwpa1DFkZ)ZlIPq&fpx2@lbJT!;lAZl@H>& zc9+3&Ky?`KRfpcO#?Y|I)27Y8H;#G`60u;yrghKGt)U4#_dwD-yLW;CCn2;9 zSZGAG>&fdvw=@1x%TiVEG{l<@3=*A@9NkeM#8n+?Ns{$FqGNRGTjpl9!XGAPBGF0E zRW-z`-8h_^@qWBZn`~s1wV?cJu*W<}f$m4tABiQOE9lQfsZ@Si?cOmoiOv5m4cUEo zLVr%~w76Gm>yI|kO}~ZDRSG$Q{C}6eTz&kpmp(F0@E_?(c?L+1C}jl+_ia6CJ>FxE znbZ0Irg9X##Hd?P;-`|03;iYcb=x7}<+l+BCX-qM3<9@qIh#IIV>AI2=lRwgSZQcK zs0cG*k6I78nUF4A8Q(Y`vXG@}`$=fi1aBXvK3>=nBcAq=P<3t6`;xk`=ETE7m6;L2 zvI+)#yQN3}&~b6a4RST(0F)+aTq%jyA^p~`ez39l!OB=Qlb6|6%!6zGy_+4pSCDlZ z;^cx}2uNA?gN+<1W1JzIl`hDTSHvZ}%WOr2c~qvxUt~dA8JYsKFOngEPXWfPZtXp_ z;IQ>y4(b?3TGlx;DtBC?Cv{fli-%30xPOHU>l9qCuObhEBYLtF`Nw;5#e7jRfJbtA zdI}9Yz+#~gbS76xyJG?Bo8cW&K!zY?%0OG_cA)M2kv(YHVOUo7d09l>;X+?mueko4 zI?F^wQH>^S%)DpAtvLUb?wewe5S+VyI^&y2PNmgmzHXf|7nA-N1m6?TvqF+D{lV`< z&#Y)TmfL6&i;d1m9s1qed49E$c7mp&i;IPOj-RBYDDvXQ4csvf^)Ni`#U|S5A9P*D zpPkx#;%c(7Q^ptdM&W*N*eZJsT~hF(_h~=IX}7F#2czcxMBZfzOtKIweN$e(3P_CC zfVDME#I=q(6+&m#VyNfvZcNn&FT&Kc8N3Fp+H3UmY~b*Z)VG;)_ao8`K=X5Qa==jy zBZ3he!XWFnkp5Qk-&$lMjr;%lWoq7Ol>XXgg;P|8?61%)t;xFSr%Wpnb}G-;iWod= z?L2>drp3N4a4RW^sGLIh{KmLW-)BbE$6+E^*Bg|7mr@l}_=wsJw{)$k%0mX-En4qQ z-aq=~sqdEpUb>B3u>7g)bJ*8UupaH9%lZ{IXZZyOrqE?Tz)2A^t*Ek}baIWLD+|jw zINwo9IjPFKBtwcO{$AKDt?vJVXKa|u{5v2V3=9pe!Q$lKK5U>>P@3hXJ8xtl!@vAM z=i1kv?YBNeZl$<&9a3zYU6xcQ;;%}1b0ry}4%=$)lU=g4jrE)=-c;KtLcY{9FePyU zM==co`u(GZ**}u;wF;%YjKf>)%<5t^{heSX!{TpdvG=}z|4;kq{kkTrd8n$zWn1$vnviRlX3Xs!pXlTe#Wq}S-0)nP? zKb{xTd7i~vOtJZnNwJWHcs^2kv&!%BKtPy9C@oz~s^p;L`A} z;^FPNFHato_@S+qA=E+NkpN$j_YcXvg>Njxdh(Lys&jX;{8Af(|2!?6J7vz8P>jD_ z^r?YX3Li^Wc0ZEkMopB} z5rOVH%5xhgW|n=xzgg56w*Kfz-#v zzpkQa&xLddwU|{E@w&TLx3`@UH=*%dd+YGSZjcHa?M}t+Lnk0~J7C_9(1%DOeaqN*|?NVX8->uHPCzJ>8FtHvi^1)}Q})ga1#s$n~9R zlHZ4$RfYfk;uHFhx|^B+T?_|idIgD6XGitXNvI(Mz5UT{%RgR>uDXbZ2ykHt6G}@c z%~bra7eK3EhMJwpE}q%x1cxaETP{x1#5Z{9eEr_XlRh#Bd*^n#jEFLeNmrhybkF9P zl{(G2kp^Kfkqcv6QRMO#8azaOPPHM#saoNE3l=K$z0$QY7~41eBo%R!95~F2ym{%W z`9|w~zbRQNk$5{t$vL4;NO6 zKNd}(*!3}4-7)E><2_V2UVF@-D^$3pU?~)eMiN>?cnh)AJkfhsAcG zI}JzMr77#)8)l+p>uM#s8J=*vUn@^9T(=J1S1I>vU@#nT;MT(hBDirmDYK>j7 zOfMz&ZdOKqMa-y(L-p0GS9^31311HP(q8_;MBLg45(w^*>iHc6j*euwH$%(}4Ekbj z+I^mxjF9n!bZMNaGF?Teeca^dug}77SA9%^oX@YEJ--b%kyfZ<=7vH?Fm}9o`?h!E zfCuy+l-{)=#@lb62pI>=>Eh{CcI~`n7|F*7VUOwrZyQ3onQ8I8XS&e&P+OZ2L}Pe( z61qKMzAFh5D^hU)?;YRm1~9I}yHCC3K*fMwp)l)pC#?KXs%Iy-DJx|=1JIs7e!xXm z)pjX@vZ}pqx%W0yK;^OL>PW6Z$SQPga3a{dQXX^6zw8@4DcGwqkJ;N}WA3 zo$s3+5jn8=!d4t511IDx=}5OsVGW^uDhjo%~i4Q>~I2J(vp)Hi(>h$x_u0 z-yM|CGoGR6717VI`!}?g{IJYFW0F5i8yQgtL@GE+A)5ue5;C`<|K42(8sY!*nnJdq zM6C6iA|4Ee5EDRz+>5hg$h|U7&0HlNhHEm{Quff1N0w$OItqyLDB7Nz?vy&F z_~*xyTV?g4AE+`oVpXkx$Av?P`=v_F?yv`PC zMe?JS51+r^5YzC&X^jydON{M%sG*C^h(%b&F;Ou|$ReAS02JMCI-qO zqVyAPp_77KGqkFxDAtO|6&P!6`V%f?P)E}tjd;1Ubh-2K9RgT#aCT(sN*Ogg!$BX3 z@&GU@W$YBy!QOJ3&3kUhtYz#SE=fB&a)5M(gh4?U^3-8Pj1G5tg;>@ec8us$X)e8r z`~@*ap93gjTfC2qi1EyLS%}RvkAuXR$x!)Q4?RSW?Jm38(Wv;`)9W0`5VFGaTRQmxP#K zH8hrU?@cNP3tTgb9G~$>Djwlox$_20DDTTjj3VjixW%_Tsn#!ZyqXKd89d3l!tu5y z($drW;N{Z<0cUt3@=Z15{c+3_a3V#@Bp~|KkbJ_cn!)`XP9!nF;(b)`n_8ZXQ=0f$ z^v9B0kH=O-lpq^|;OIwvY0JtG5eT`be}gOBbEP|SW)mBT6a{k8PY=fwMny9;{?AUa z74tuL(!V8HU}um_Bl&3e=~oJEhp@ABUO;}_+Z-zHehrv6DW#=ZaTP1NWnf9sU`k(cEQijZ!XYl zwb{4YfGLF!Yvr-cD%4lZ#y8tF2OBdI=E>ipnOpyk2_RZU1zome?BVl*PY6UGe6(C` z=bi|?00bCVM)+0C?KTFo5>Y==(OkvLrX)kmnpSi&e$bKWxu z7QI5Giy?B=iEOWXx>ZS1t@2G}C%GvsX-pkaf{NBGxZ6FhF|m-Kx*z@+LtX!Ij)rw3 ze5fe@4_1D4dVM{=v9YoH#CZ8A)K>xJg${R-monG}SSnGJ%;Tn~q8=-lh{IYf9v`qngZ|qHdDUb8oPBAn{Q14!8v3k?W8wgB|$cGfv7_Pe{`C zpsmIPQP@LH^J zZqFZxO6TK=NOLk}oV^dm$H1<$?%UgI-}*yHOFIhsTn1>_&x4LAHj^&A1_JIU>W`qS z47`th-7lWVa3-52Jq15I@>E&T`|#lo=WPN?k@_Bda=Gv)OZ>I9iDjr17gH?+7n|7@eSwGtqu# z6lg57)gFvnOV6SaV?p3_)Bk6(F#U{SMopbl6$;jaUtoU!MSHbRi!$ka!bkCzRGS5k z2sMSDwCq=Hx1EIfQ@TJ| zJD^o6i=hO6z9QVDd3Hn)dFa;6<2cEttfJy^wyCJXw)y^_pm_sKNwqF@T|K18VjU^5 z1a|{JP!=q8i|1mz?UI5r~sxp`DeH^eu6O=)Fg)u&LU0rkW z&8e7yt}gfEZ9|A2FDYc7`yyy6}?v}YfaXf;o4*z8>`?aY{po$ z=l=x45pY<_*)2Y|3LeZVPk~1z`?wVu_rNU`X;jY(CNbhwe02VsNyu{M`q6LTw<6UF zkaq?0I3fkYP~MhbR>mP1$CPRB#K|nW(J4ONG-l7t>c&E1vo}FiN~yW5r-gl63LJW1 z!+>y>-X;V>>XPWQ58kWaGL{S@pIYa*mpNp9)I%3cBI}V;x+?%23npFspyse zzqd*r#eepAp9~?8jmVV&ZM1q?4qqD*dre<*8}9UfqjNmwojdGgCsy62rdx9r!VX%< z6j(la8(ydP!FE7C(~Z`GSuxFD$SUdXPv&eP!X(AI?{)7_sbQpt-z!+%@mx&mGU2)7 z`Fl+XG!Z-_@++u?XDf`(Dv+;LlKD~X5+cLL; z&bs=VBBR=zq@MU}B#!R_m#DDB|JC;q1geU3rqw!N4tV%n{QdRLOLuwSDY$mbei?X% z-(c4$Pb>%E>~>g_|8-8z%p8F7nPH@WhMy90sIpo`A3kK!o-bo&VB9Y38Mx4|D!yT4 zjn%}@QBrf`ac@QmJwp=L_s{s1#Uh^B{OqFZ1HN1|O|kk$M1|!aUkI;?#@(A+G!?5b zefXH?c~sPm^`YFZ%WG!?13x8};Y1n&GG@j-d+E;Q&L2>{G7RNjT6!cU!Z~r8H#s=; z$E1>Ys8IQnzdbK&A#S)Pg~9mBIH*$cc2y*0|JYw@xn!Q^n5>gLuqC29Yh?R#?+~FXPh0#?AmM)SrGBO)V(prIcbVs4n zrwjL@JmS#a=vBp{yl*y%2aka3*%v+V;=O@_|p3CuV;G z)!==EB*UR&%o17?U|>ne$mj>Dv_dO!pNS|`{%TdihekPQjdjt(}k~a-*v6}YlcD*)izBZgKeS@VVcu+5{PiJ9IsEk9$ z^n##0NXishNyAWe@?lQMuz@r%eJgv1WOFWF+w-r#BvBJYzkwYhQiZ}A(t*Eq1^PKk zg1R8XwVPWkcTkv=DA0-T-nhZ8O{%0V67V`XBtPDYWLB)c-v zD%+cNs_;IiGzN9{)H|!1#>OUy4)%BZ>|}ox;qd|bp;$Gub8R3Qsapd7T14dEyuQ`_ z>cjQdfG+qI>fjYVucbxdn$sX87^(C+WJj{6} zj_k{7@?PF&#oQ)K?W*^7oSuNOfhSXSqahFB{TQVU@Wdle4wdW_*)$)vG5ZuatJHu- z4IYi+*LPPsW0+M{n^J!MH1M?OC8X+={rXn`0HbjX%MnW>@Aib z?{JevYS|E#t6Pn$KCJ_rBQp(OG5pHhq_VztS-m3N$C= z8#V8@)F5DY>lLFGBRhvCK#An41pq{BW9f$HIoZ zlBz&pa&lrwW9k>P)kEEVytO~Rt`b2oWoI-8dfvMXBFnU|+L4w0-J_K<@PbYFx1D@^ zQ`TAv!J+P(@Gf!n)K)n=1x{!;LWPgtwC#*gE)kMLaDcSOTu==0)RJ(H}k=j8@sj<<%(^nD)CRu+jHM}|IEm7!sb zO%^KN?PYvl!+1ioZ&|=HemjTf;fmjxVR(-Q1KXLFE=9Su0$~hKo1IZC_Z)BR7ke={ z&cCj#l~9lw%0semiO$sQssl z%sanS>&6|cfx4K@M**j4Jd-at>~9$8*i%R>|9MDThGGsKGY_8yoH4?&1R6+U3Nj-I z3kn=W)qMp$zAOe8m2p5sOjUMw1!@d!HYeX~v{YI3)oa!=t+sdAp(ur`Zpx5QNd!=Z z*jsCF`c;H42D@kTL=L>UIWzk)uDCa3ZGEJBS4i~j;Ok)xS?rqf{i?M-jdq6-Nx5P% zLyg#DECS(fWXXvL=paX7OGagc3H2Wwc=5d8#rqcd4r~^ZzON2pYy|)U4YKBkZlv3{ zqv4^R0;hoNX)5gCb|?lw#3rbmDSUIm1+ zvmuzQ0jVFaT8|RgG$^0Gtyp-6JM76RuEBV8;&ngwI;;l=`pM6qjY9+Nf4)vX6yE%w z8|I$dbvo7nFIrUIfux?s$tEhNvy2a`a}pu5;e^=vUIt^PU=u-5*?xO-P7ZGuH6Hy5 zkR1qO7(5I$WfltO4w#ur$(fZlts@n(CB!u2z%x&&S5`-T4g}ie{ik5#fo?fSOZbC; z=7F&}<83RzG7!b4=q1r0DAqRfUvR{wye#hewKYDhLr&A;oZIC>Ru|#;m zD42PL$|iS=&ymvbm#g`o`{xbA$memaS_Y@WdOE z7xH6Kh+o=iQHwoSaqV3#zf~VKy*kmohoH+hovJ)RKysH}R4DY!s?TtH{o=Y_d3}t0 z2$k4xN3iqTh3yF2T9K=reCF zI(yg$cVWr9d6NgsVx~7^x3n*6oP{tl<^S;SIP#fIso__8PB9rqkP#*({?wd%6Rkha zanJp^4~vT@k@wgQ5t1j)&X7FQJr64~<{!j(IcdVZ9b>PL8St72J=I!wd_jOp4j!N(tX ze|U79I>oj#CV%dU`IsHG?Q2I(yL#{J-A$e02ef6c=;64=mk4z2?{2wnLFU{MWo6{J zq(C{)+7TXVjk?#bk|XQrM{s>0^xllL+LpM;HDfx%c(UWuaUGXaIjN^B!p9lTXZ_+J zBC-r9zqP_4p+0kP5SEvE-+l|{LuvWKbG9gCIR;ru?ajGGCle`r$dQUZg-8oN`g2&q zx~L9?(7e?8OtXS+Lt9H}gLu4d-NXAVo(wB&fFS7p=57wU)8S)Qjoh^Y z3bJpW&DGKS))~KRA_Rk@@_OA#;JI(Pnet|Pu@35vI}C36=^dhv3Ws*Ms8dO!4Nnr@ zcxt)C8M4s)Umv&ErP1fWawLnY{Da{1S@0WijqsKP^hcDerlR(^+47NIh%*zs#}en? z{z2GJ!E~CBH;LQM7WSUPLGVpkS*L9s=&I1vqe|&5R$y;#I6^firiU)$dagD4s*fbX z3&j}ANEchj#3Xv+Cpzr@gAikx+mblEw1c&()_oi!Si1yM&O`Uf0SFa&4A@ES8aQ&Byw#yhMXrD%0l=oI?<6JG+21l zy&Fimzl1<+0&K8|nlWP)ucfUm-Cm`K+t<^B^hMJ6{gO&b`g_c_+u=ARd!%ZG+Qr!u zI)z_L*>T6v_mt>Zm+unR@x`sJxp0W&3%oqPtLHJ(1$8m-39~q|Ti*$2NG7zoXNvy! zFm(zG>J^PvG#NtKqiKq?gohJ9tJ@lG@J$MZGv@Eqd-?801&JZwVHq;j7xrft!>f0bj(r#Rj)z8E(>CrejT#(()ovSCvf1Fu zk`WklInODJ7RYh4BKy-AjTq1G7}d(Q1)xft9uW}FG?P^U&rkZyURUk)r?z%X2L4G;|cBYrhmbh7iYtbHxOBY;ecZ>!7ML z6XP>8ik`K*1$z0koo(KQH3)+$$FL+~g*7=jQOV&5pzq6%!s_Y#QAE z`=byc3nMmy-@iSXlq> zbAH{6!=<>m$bWMqK!Xoll4HJ~{*TStM)98t3UvtAq0Yf50l0gHg8>b_VnTIufO zdq0)nNUU$AnxA_>VH<__DR;C!%l8Wuf;TVRpEX+Ds-;}PJP2$D^VlHZxP1jGdXA-(!CJ5g!s*l%&5K}R;qJ}sIV zDeqt4PDscSCbS!ulq_s%%05c-Jdb+uyFJeJ01FE$q#!FuHayw_24^2Q2Y^$@-`7_Z zLLW=cD!iol20u!;c0c;%xsosgJ6Lntuxc; z!3em3EiJ5FAaEF^p;fdHC*3SH+w6K#C~=&cfAQz&=v|0k(`CFY!!zf81Qm!tcCH~E z*?`RfR6QI{x(HTZ3216a9>^b5w5i8xf5^%e~i>S_0D??dwaQp-LO*2*2`xApVsC*5v;*s==SGID(5E z=I%Y=J9&%T1#ECJf%o~WHGTYcRKc=m6O2^+mj(;i)@`prJiiWF?^% z723SbD!w=XJqB!d?reKk{)_ky1b?aKRBo_Nuvqe#@T2P7YI(irUp76r(Z8#+m~5=z ze{kcwoBCe6ib@I}9UWcXkcHqbOATKmY1TD#cwo$ihiy-FfQTHy0uO1#)(bs* zcE5`TboC4@2zI(NR(@h_d0Y#o(@qhO&F)To*3oiAh$rYGDM>e|Em_76B^CKP4kavp z2|=4Z^un3s5+yHhzK^cV)o@oZ25FuJAIlv+>^iU#(_B~mR z@8gsDQFpfsMqo3)PZ;sk;pUXi?woYX-f~Uu2b9}`ys+m&+6N%;`A_*&6q6F7Ng>w6 zPgydPzW-=XG^KBjv`~5M73jD!3NWXV+!nWlwOGqr9ei|H$-9EjDwHl$kybQhn|&i$ z{266j%zf!y{g1iwSuLs7!qEw`L}kU*$3He2ui-L9u;cKP$n{NV3KO!wHfCpK=ZS>C zTRgJ8XL+5bJ|!2$PK5eAfs~Hz2_aUqRs)t@j`zO;GGKszzWL~N#S4Y4Ag+ILF;vhg zx&f>!`Iza07(H5&{1$+cNlVh1+@aHtU^VKeQyD7J*?RT1<$8Qy7aVNV9mSg$)GaJ5 z4yBBWZRkpbM;Lmt!zNNxYlV}k2F=eMS;ePf!^4fLljw>q37mCrV`@bpq%tIG3IBRT zbo44rVrv)2OC_%>!9G-Yd+o{7byd&!$mZ7SXw!z<_=)5j8A`bgSTBgX71k4sbru;v`(Wb~@;$Tx1)iE46?G%){fWves!D6~3JFfM%E7|aM!4Vf9@G!w zqTt+mf}!*##5cw!TB+0V$@rXM6jN4&thKDv%Hc_qwFzdjy*g`8w%S{7HmPBS!sayG zTY`u;u4wei9uf^muLrcrv;jcBU!6)y>x=63*BUHh0a$d)c>JH&%DZnjmmZ{O&(>Vi z(}4%*Wji?Oziu@ms}M3%F9LX!F=dVS*O4Z=j>-AtZOVV?luanS5YUYaziprB1g|1t z!mkQ??h*u?sxh-lhGP=6B8)plbDlNIVqwe=yVV@d((Oy3r`Q9eG1ulDL6|^bMsM*w z{tZ~217s5i5ZOBL9zvmOe*%3=R2vMbHn6Nt(W820R@q+VP59Zb{ta%5g0j7~Q*{O> zVg*O|cYuDj;?3+I9==G=E&_jtYMwZ?M#&4*ci&=SbCljSB&e#0`@FMI43>TQRT6Ls zcUylkB$ueht#5p)9RmFuq2j82viRstDqJi*{`!HZT8LtTw!O|Rce$+U8;>C?+i#p9 z-xLMt=|?cT1#Ed=HTMq{ejUg1*KM}byIo+H1u++*jM?_8 z>CZckW4|q5{DYJpp0^DluR;)^%gU0zk%#If&^AZREZXEJ6S+H9;7X1>5 zw+QDpK<+Bi;aeMCKB%4Ol|7T2|NL8c@lSo}zetR!%jR$Cu!<9a=`{ zgNqxrcMf19RRcs=pc*FFWJ-lxuQBgHLl}R5w$Nq)`T}nxg<3<3+U1h&qQ_)^beW~U z_YJxmq$X{XODa3lG`wv&>FPTOA?o2@>5*+oNSjlXJRq=&x9IsqGL$WxjHKm3q{)H) zC9hke9hvP{=jVY)w`c6cY#?gE+XKMSbocdLnY7t+M0J8zeG9o*3Mz2&||1kPt_WHkw`c@XrRe^r%k;xv3|5|6p6*SXHyj z&#z%Q#|y@Ke|e~nAWmH6s*rgYSnPxsv;U8&?~dnk@Bg<~$lhdygviLq-g}3n?7fMU zmA!YeWy{_|DtoW&tc+|)l1li!u5;h__jf!V{c#@WRF2Pez2C3bb2`V_?7niy4@JK! zP*pV37%ts3v0<$EqqV7qVr^*j6x!*iBVRuDI0~Ca*%Mo4x-J+B90Bme1C0b$w)@@A zJ-C8U9;{M|w=YX1S3J^wO?vzMc|`GR$G`jjDM}F=bEpko3`||O6B27}ybi;Ag~m$W zuv8+JC&Z8`-s|4Bgvjpv&VJY?uVu|!UdKP2sLoqQIop+py~s*V?n3-5AaSBXGt%~-Z%jagewR<2OpX`e4{ge+XXVHLNTh;;qK;q1yO z+eBwg_kiWx6(WqK+7*)0ys5^-8j@|VTN=3%*^=iwnn>vY;^zPHQ*Z}T)3z#`mv>LD z_zBZ(f{<+0CE$!UPwRAlKP`>w??n!uAlyz!6c+oJtgo?1I{f>~^TXC5A#0gxKhEH1 zuW|NgX3gTwCJizX&K?-^b+~M&SI}qbpOST8xRyIP68Oa#)!ZIw2@G?+UUb2Y(9Ell zyEfE(|M)$vy!IO;6$*T&XZy*}p#~{{eP9>b3n+i~>2oF@-CL~78<5o+e94NB4IExr z@a$(v;&t6_2;md60L_FiXbf0cS;x1<)EaHBR+*wp_fT?c6>;D}@TW}m!n-qO=n1wO zN@Y@J#*VA7T(~HrdwrRd5yqXO?@u=}b(ffyPwmAfpB$BJ#b?%gi0s9^)sqk&I>@j5 z4vr6nv&<1|B&Zymc_Ax@>~w@6_U=Uo4mkEw8UdA1`ZENY!{1zCRAIx)IhJLOjum<& zh@C0)`KmWB=x!N&Hi+x$>Rexs=qVEFl;{zS`ywyKh_Mhq{96>Hcw=yA$OzQF$RvP} z3`Q;P*A;2w++qJYz4;Yh3t%|YAu|rt`5_?~;8H|(x&oQy_i#J^g;&W6_KOF8C)4%r>m!PIl)lIT^%6#{*ZUlnEUT~7(-WccHA(h^ z3bIA(A?Bti*yjrq<4T&ENR_FuuFh3A${*pR!Sw4&0wp`49T|gvvNVb0_W1^EGX@i4 z_-oVl1;Wa4%9gG@#lhK_4@0dn?}>WY*Lu*jkbf#?|G=zzjYrD5llSA=Aowe1rCSjwKZfZN7B!;0-AZV?7>e^fi&a7IGN+xttC zfXn;pgpje(?&M(P@q=7Q=-o)hpD+9N=Rq|jj4b{*WyPjR6?0ri$l_#Yqp=RtVP8mk zM-!h~RQAx++!bo8T$QYpepmq0L_FBw9u%Jeixd*{VrOgn8E(l9h)CE3Y8V;;+}w=t z8E(fD7gU*#e{K<`+dF0{&TZ&2$;k2B8#IMh{M{Z0j5Z=^EOjuI4u z58=4SLyiL2ZMqIBnmnR`|@jaS)~(>Va5#_-j7a_rIXN($gu|WSjdBJ_xhL z_|%k~yF0Xg41WeIB@+|VYRY0Ih!bbWy!+osoTWMPbzkM^d~8dJr0s(_iXn;BOehnP zv4F}1#3hbGwClaGdygGz2P{Qjn`^PJ9X&xr6=3kg`oR2&H=5#YwgiY#0=|L3<_J7R z*&ygxE$rKmS59W*v-`*j)Qvc(4+3%d3qo(O;<3wl;b>LU=cz47zpi^Bz(*;t^w^^g zR`DZ|@VWO6A_`OWqL|WB(q`3fUn}N9+P?OK2g69}BjR%d)fuJJ9%s!=C><^%qbd2p z`KSZwiQ_$^Y5E-0Y1Nhh?2%O(fXfP)?VFrjbMuW2+5p_2zAvq!;C8KDV55c-Dkf5Y z{9>AFIt24O^Q6vrrAc21io$pVBF0fY5ltLdqsi8jGVMeF zyzy;C-<=^l0#> z1>=DrSZ*YC#$JNL_ZZUnK7RV7Qjrqa@^UTIBtofMRk;C5{_0l_w~&FNNv!9h-ZtC( zcIBY9z3dl|X(3H{z>Tptj$S%I<9ooL$z0?WDme5T_r?`2A_K(=WJM#aF6|v>%kw`c z-F>GIpG^J>z$5-IfcJap&|lHQf+aoGH_C$j8f7&G|NM+J{MhDqf2V*^A{yW==ylm) zs2X^Oys>9L4=iAeM8YXdd6l4e5b^M8l#oJF_`*SN9D2!ka~d%_>u1Ke)KrRPNO|8r zTmixeX%>Yb<2T6O`6tVShcd{r({eAsp=>_y3L&kKqbaC~mOjB0i=33g(3Yq1blC+m z+WmhNT&o2&lX($F6kSQOtqQu-1oKoFp}TO+Ke2iU*KC`i0I}@I#J>elud=+v4|#*X z&uV#V+ul5jab(IR^5<;Sc~JJ%eFVw~CaP~?U1b=CK4BaO@udZJ=4%ekrZyH&FwKG@ z@+0@B_*i?dN=dycs84O(Btf*Xw?RcLryWBv=<$0G@_dgB?*{dd$r|Dk>7CDYzk75T zSazlA%LP3h;r{Ms@ry2ZJ-No{T0a8RK=mn>n`rN5B+i~ZXv9FL@BXC28%g0vaV~MC zT)aBAVkhW$Hrf>xF)}T!;c*pT$U8Y~@w4SQUREYKo%Q zj?ZKVBgi+b5q~V`OpxIp0ML5ZRhhU3XB)?_nB8BB^Eu2|2hgO{&v@)Vd9x@}e80^G zmd%!(b?qsfaEDnfN{L1F&zMWUO&leI36`%y@fw`277XwS1{ zQ!#@rk)xP++;=~!LUE>Z<%zFBhxgZx&N7E6^9X=JegThFLf?&VEr10K-~_@fJ@K^HE@(6sm8FPQ58 z(-39@{@8~B=a1EbLYWoEoVH%M^f1tP(6qJh`M|5lapQ&=JYC=?&Y7Z1Vg)FV48$HE z3n~j_#~K=cth?`ZGS7Xp%f`R2*`kGGEDGRpCssD^j|ut=Cy z)2ceIegql&3s$rj9s3ePIBb>oM%@ z8|&pV%y&vMHGfq}l}Xk0@bD$DSKx<$x=+ik(QM=~@P#*6Ep7bSvQ5C$)Km>H%H|O) z`rF10Bji{fa$-^uD4?V9#_tRSN-k}Cm^rZfM=ixgqADc**fu2E2t3DU&`=5 z;I_stAvX!_^1tiFBIt%Ava>$t_E{eRk{})kmirFoIUL2mbaqP$W@R~(nH&8bwDtu6 zEy@@lE_{)_A2<{7mG`QH^!Nw1Zlb9l`xfzivJiD!vbjrKFm6#{aghD>DRUwto9<~i zllxp>hxi}as72Ox98;~I+gqGJd|f}%%~bbAwsgJPdH^jPlPKL{w~v0&fZbH(QRn)}0EjIucAd~SC#`DjMmrT0APm^YPmu(*2sT-N#E)!tjuXdwbyWVTaCA-~pQc6>L;Z8(cizB4d%|(;Kd4C$KuJEtK zSb_fZl|R?n*^fcz`jd7HxfU$q#d`sck_HuKSs4jFRzb^4q&x^IM1p&`$GrB3$mktp zi650Xa|H8H#2t2iP9F-s;`Px70o@~Cn*`r%SaZsrQLU$S6pzL~LDF6U%eleHxohM3 zudsQB7<{C6;V`CZ%~E+Y#yPa;okrAkY*b>@=SfKLV=~H(iWg}{@Cz0I=T>E=`V^s2*`s5qvFo2dJcELlaCB7mxv>faA6SrmI+Y}vO z3EeGsbbWuu7H-5du`y*2=OqtN^O33tBMGN)Hsx$kpN@gd6iv!(c-uK>KGM?gyIY25 zt%uC+1GbV|j7vG1va;y)W7$gur3(Y&jpvg0wpUOcdxHp;FwY>us_s$qD@X`|^#Jlw ztIXiu3Sq$uVjO3k9Vhzg7kh%(##+ZYmH*6jVT~TJef2VHX43%~%qvB5r6e+P+MD;A zb!Hj}jc^lQ3S&tViI9AvBzMzf%@3VlUkS{=v5_9;dT+Q$t^N@ix#02f`dT=|CaZqz!-;<#UfOF`QzWAW*zL%vA+ znP7~7HYI1DbG-+ABHj+q;MK*&K(j1~wd$8T_pfqTnY2l~tFK$?H0hCG0IyxKx_H4Y zjY3r}M|^{mdG`E)hW-;A9O2OQ>O{3)b6Lc4thc-G;uR%sD9hGdA%y20igMwEpI8%@ zksqQc`{cDo&`3;~Jo@TwI))7Wl+Xd(P!#IA#F&w9(meI1N{xT*d5UxFK6RaGDmnSq^T#t=w-6C$=SO&fSaQ9HHjLY{v(!rxjJ zCYy^ayHTjx62b0!K16n6adV?Rq*1H7Z$^=GTh9c7a-c4U82+s3Eg!CjZ_|*D4^TUU z(KT#ruW##EzQ=^r8dmz>J-7TPY~qdvYCzT28%wXKu1-KPFlzUD>oKV}s=1nmhN}40 zXxnw$H%T=VjD7hwvH^ZCL;iQHLt`C3tfR;xTA)gFpsKbnBiGHErqzJsrb7a0D4VT& zRnd4!D-;k|0cw846`_8gn_A{@bd;hphX^$*j!R9)yV>R5ccuGcoVNCy>%fk0!t#9H z>vId%LL_;C#`|w_S_&5lcKpr^&)Ho)-?td*`bs0$f(J;tmNj#GCm&4vF+%%1p$CNZ z*26ND?5^-r@ugCV z_axHun+m_`A@Bf%&VY1%?lt#HND?j`^C4NsHf?76!Mu$-)o@tcg9|pouRbM;?>)DOqUy(_Wvw19adr|*dht;hT``-f2$@15 zSXF`Fprze%8Gq^>-8C+7Fz3Lfl_o|XEt1;(3-!(2>HYGvl(qeNrM07K(lQ#efODH) zGENanDXFQqfwqGuaK@U-gJTr%!)lK^Y z>$UaH^OBUtf=p2S8%cjzhr7GiF<_J8`TRMUoz6)~>4wp}hr4+ZjRwCtS0lBBv2}g5 z^ufTz2k0_*kc4Scc#V;;Nc(l3QI%D*H@&QdMwdU=D0AT-5xTja3D@h^9Wr?W`3rBA z%|#(ZTHT&|K_-`f%9my!>ET_i85w{g+*x%1KX?n-Ugy0xk$lI+C+o3Lj3vD*=MHj3 z!5-$D(lm=!bk56iaxbV&8KP9}%n+afdb?q5*-ddDp{1ow4>kwE0%>frjhaGzIl-x3Q#i|PbL0!{(JtXKS7M;mL{cMyUJx;bHXl+U)>RI__c9n zZ2^K%nG-K6a7q4;*t)_+pxzzL0GCFYvQ)sKh zrxA!isu^?tZm_R>m2rJbG=B&8W+z|sO62eI;A~RcZw5#k%lOO;1$nJT7#tv^w6v<> z%`a+*I%N(Msp;=uA+}`8=6k*3w1^l|FM$_}bSvinv!BbH{y2|a7;yMfL*mo*_&CZuo zS#jmHZIjCFlFFaO6y&=KxGx$3ct}|f;ur{H!3i|*;P3PlUDycF*;$bdUsP*y;`O?b z`f6?6wlrwQ6=FE#9=)t>qJ}ri*1!|HbSX*dUZ*PwT{_+47di{?t~}}w4V02PshdB4 zj9uXWwQkYm$>IKfVP4*IDr1sV3qGu#U>@^@cSQm%Lp$H-ud|qOczN7KotG^*V`Q3- z*014zm?59}sbAWP9fY0q$dWo$nlnKTv-c`OW5W^(}l9cl|(?TkpdkGk%Y{Q^RprH{ekG-z?@<%_G1o8WovCF?>mngiPTfQIH z;;I+8=KED?f+ur2ewH=AesR?;%#W~5mi8AA8^3|%(7ZAG7x0EF2UT9?-NL{uX{e6T z9g^1I|lKVW>Ok4Ul2-tpv@|rPY8y-%t3@m5f01joDBQp<9$ zL!+r^%O*i_TGG3)TD-uUXl&=B2pLXSEvc&339*(~!QM4n&dwV@FBla%<-$rO18I3p zQ7AIgfyuoo7L8=4oEM$7tVP}YBR-}n@jC?QE1h+`*2p&YwFaAnOaVOd7ZgP~GRI1R z3@rmI-C~E^8YfS*y`P?vlYf*qXp4}me}Me~Qam*6H2!t9SpN5FktLId961IQuV;5Y zM>afmm>n<0P1Pplk|j~YuOXu+We4@gBEuahKHPl&HV!J<18s7A!T?&&Xt+N(l})GR zJzhHfDlajWHzcpc=EUc%WT^}8*yyOl>)$%Mk5AK-8+fhe2x10uHKqTsVil`{22&(v z;1U((d7J|CDvFWF`i^b2+$0$mL2h3S-^+D1y1*V9RYzZn(5_LNjSvTLA;8%b4S@>2 z<$JEM_@il2&jqU-qD9{PD3|F=7H!Mkku*^`!n)hi2yFb$=2vlQ1eO9k-fm)dKCi0C z#6gBBNG(mFGOTi!^4B-lQIV}5{lVv=;Pa6ok|X)}jB;aShRQvBjP<&~t=rbOjSLZb z0SX9CPFl4%ahT2K6*JrF#(YHIKK>QVqn01)sVH6TM^Zt((MyS*uudm!IN|YBabeUl z=-d%%MW5*`%^&xi$9b+oum9T-0_VN6nhp*;n#Tj@7L#l zli3$oTM9}`BWh?&qqj)C9#`evt_hdDAQ5Uaa36n9kD8d+G%y!Jbyr13>9>G~ zG?HTfw-8Ry2cQyF9;*u?rJ_K1-a;x{0r|g%vTW**8^^0YS?Vy4OLr>=3mjt*tc1`c zFd;ezZGk5Z)pnl)9YbgR%8lW)&dDb&KT$OI<$y=hHdOZA>5LK zOor$>M(w4f9n^mo9%E&P{-^rOHY02@2@IpD3`UWXbGpJ;!o>Hhe-XXXglkN%jfbW+ zIJRFU!BdyPu6WtwzOK56Wg6D_%yMtr;X5QwWc}LZE2xINcfvvY<;8xyV^={74rymm zBN1DF2rlWbvz1H2?H+V&f{#5;+5%?H*H7>#IZ-#yI^fb>^O&sEj#>F!!7$$J+H~j&y{7I&@k5N ztjZ|pW1H*HKS~$RkwGL+Y)}{}+d(oIv>?K1VBUBic^nYc=-Qn{50l|EzF__Gdys&t z?x1?(>?fDa*-Xj&`%}SB3xfk=V>VD%1`!ZUG>RV=WGM{_apflq^miNZI)Ct_Dki)Z z_oBBR%TWj9USg!n--my2wpU+kjy)js(VitFgn~E_Q<{i3U4y&lCJ_z_W8}F_g||4> zM@fsvsAqZ%M9N7a98smEg_-V&7^Elfg5PwtAIiCgXTCnYCL>iSQSm4lYO+z=mX;j? z{&j~a{Pzx#C&EC;gzYhIcX9IP;(C~;>-wS*q@>i>JcM2s(+LQ0c0NPl#kE#TgQBQS zP;hL)3e~m#dz1U*oERE~fnpm(S`9%(CgN-8UGqEmU|+Hh?Zhy#h(|!ZsKT1u`4Kvd z%Vto}20h`(eFZNi2M>?+V9E_BP=#*M?mDX>xT0b8;D=~GG_yNJjpeOQkFg=CpoE2V zJb{(JBanx;*g7V}|F)Sf|H;7!kdzNRMg%9+mXhU@SeN}yP4MvWY?I@^TlKX$9#@#Z z^d@-Z^>)np@ILeXw7+k(Eycn-#hR`g%9bp~DUbJLz?W_YttXQU13Z6xv#M~(FC?lJ3T@8No{!h=>pr`bZ|t_f?CXr;c~X?_es-{O{la;^ z4l@v7)F$VpK@e8Qvy};yO@q!3RIG*-)`&+MG`W-`L?!^GAQKveDwj>n8MQ3lXxBAc zdF@VCc7oz3+rA1{-v@PIZowN<)MeZ^Q)hq^Ce~J2&}AH6cB9>Ta2Yb7;72^U#%VLw z(VRbqN{_D!5n>iO1hBw*ponG=2*Nv;|e~;y|*WU56qHmn9V5 zc7wyJ1p>?w3)P)PS9Am!2PWe)XfUu%zkTiyrXyTbak$Ffq&Y2lY|gFRA96!`mh{6y zrDg<5+jK0(H`G6VkD+UuC6WX-`pnLoH{$p66>gN=t&3J)eSt`QH#h2he}C8I^zwo{ z#a54I{<(k+Rf9GY&+)w7OCC;6(H$Q(Hd17_sKCUvL&f7}0l5o3cdpjf&1k&OQ51PI z2E9L1HOB?W3CJN}1uh==UYDCi&m;XI@SSWkX~4z+Wjlk2 zwhq)*iL8-eNkfFI9=+5y-yrJ>5vnU@2Z1d&LdxO{RrIamfC^8qwK^l&*TOtM$qQ4l z$jHdIFl(f|c)b`Q9lp@EZxL2K`Ad^dK@&))>)6xAT93*$jBCxD<$i3Bl|gp zyKXNG?W}Z1lT&U9O&aY)FY^`R$j{O0i){D`N%@TFCIa5WBn>(`#7tH(vmBjzq5x44 z-Yb61JZ$+V{R*QIH(v2xG&sL^AegCZ_M=DPGpA!H%6{|aO>$2Cf=JrPgQq)1DKB>9 z_kf52HG|nmh9FWLiL_lJCHCi08bAoz0JEZZcot)(TUC5#wd#Bu^=;MD{WwcHH#=6= zFOwgEXO>SMh@}tXNaJ|yB&FS@C+I7$-(|4WOEh5;oTGJfCvKTv0rf7ENkbCGxn_mY z_R54U#gEycJ#n5XP_H7XbBGWHG%Ruuasw_2fZAFV-AaKJr3jQpAM0?e)4hKokx`tK zdxt*YRdz7>HPXlsBBF@sp-$@D;04{j=NX#RVoLElTGKdRPM%IFx+GG8^cKW!K(=mb z>FaAmm(#Uz6R)O~x9RRNMqHz9U#XY=`$Vw$YktK)$wi3z>HOhKB={aNv9Kt$Mp>MM zhJ-}O$?fqlc-zy{X%jLsYS~ivERVCv^wp)DDafXt!%VT*;&I0P-J26EeXvhv_(#is zaulk1vxWyZnwpO*d(Th)d?%BjCi#y`CE53}GgCB`Nj}!DGe+ckRZ^3O3iA=SQK@<; za)T$O%|DAfM{8U**1cvStG2e*_o8QuonCB`7MS97BpUdn$`7b?q^bF#RwK^z!5_j1 zvK!H|t4k;k0B$M~n1$ZcE+lWIV;n4PHp~uYaUrL=yPx`>$5q!v2zA=?{^1?5Z>$3m z9fSX`)qov30{s7dUFiO&X!j5V=uf`9FhE*^r>CcFOX*(Rw2KxXVZZ*$7SFkeoE)>< z)TUxbjrE7qdZal`3;vpEVF<__6+Nz@BBBKdDi}z)@w7r31aSrr+%Q2o@m1&&Nm+wy zBqBcka1|}i)=Vvk8ke-ACUY=MU3}&e#)+J(l7ACGKu~Y2C#Q8xI`tO|={dpL2{OmEG5I5Vk z-2F93efSb5_VqI~OYfe(sU{`7=8emS_xer4`mxZTn{J^r%1zcRk!*{rskQ=LC?3Qo ziCxgKqY%&Fr{du?F*VhVC^5OY<;kumk$mUNr2mEP1hyl0NIR(UI=BzWz^5&*U*K%n zx_i7|FEI7B$h;35pH7@|VCs6mUBmPXch{l4z^{vX`i%>z-%?Gv`PkTtst9bQtUIVd zoGs%&%lBOARY6gZtJHggUD2xvTXd27yEjZh9Xaj1^q9d#wTsrduiPtv%j(DWLa4#? zQjL#~_^~M|DJjwze%2la>IW=FZXYVeOqB!{|138Vy=iBuNj*7f=HAp0I^54Y6_Q@` zY7MP7k1&n3^+W4EjRAj1b@vG`1R^+9A44iqEmRC6?;fzi8c?wI%I3!(Ux~pK`k2&W zFOTW6(y7 zY|@~^h4WsI^9*FkE<9}dAD2ERDn*#~$ByjoKdvD3CNP`tgKhoNY3=K4#NAiFRzObY zRK*%J%(!PuXMVRf>0!ed?Tp8V`r+RKio3RxGzEPsO0XVl+fvK7`=)IwaYLbjW9N&) z%^2p-4h028Xd)YZmQ5dZnls~OSdbG8oN61!)h#f?B8e-Ae?D9AkYCiB!Ry!!`&|Xb zobh`+z!`N_@>C?GN_Ne`6f$x5Tk;oR9*_qP$*{sHCLy8IgwFS$@Kj&zNVA$26kJ@$m)v%>-@=9gf%! z?!&88(#2eL!3z5E=t^}~>kY;5A2~h051J>)k0l|useL?^-ufV~4pI-!3g zP0C${Dc`nty|Sdq>}ISx0qRH})ljy z4M>m!eBKD40;f;cv=>fb*e9nA3XML?-JSkvffuc1u_lspJ`=s z`Q5cQ1?nG)8coS9l|)&y6{t5 z(vj&lC8b+(w~f9v&8~awt-YM53$Ctz&Vp?~{B4K%u?(18>8GD`I@#LdGc*Sd2TeX3 zCMJ9`*YXFqvqQsDusg2zMT~|RcDM-BCw8i%+GZ<3@bA2iLj{<@V@g+{(l>(c`17`G z6sfjWY2rz~wa3<|_!kEpaBvgJ^Cww$e33v4Y^x^(<7pOu_F{wE!~;D88v^Vy$u7#N zE03MHjWy&%a@Iv5wrtqiqxlFzI6#H84q?HsYHJfAD+A1Z+R#_?oK+d5H&366R<2@s zaqdxZ#W6orVh$SivLbk>PFZtMdn3(>5G{vdqb3)G>9-*h5GIA9(gJ;beI&FVNp><7 z6yZ=xSE^$Pk0l>+yD{Qf#5;Kd-<~af`aaS_mZ3;86KA7;jpH(K zqQ^kNf~_@y1$B^cuk8vv2&uYHu3z{8n)!XFOtZyw8FOlS_9NG>D#kC@h$YpEB^7uSeTg&ME0a8iMnObG zpO}+#Q8{}K{(cWAZV+-_>@V)Rl}smw(l)Qmu~sx~9GX8Eq4b9Q{G2_C+0D%jY9-Ub z7o7X!F2p!NH<&v_I{uRk@XG*D&IqLm!|16g0g1og&_{*WV_c|4{`DSSlNOu)xP^6D zvItWUOk796So*D~?vTrCyS6+K&K_l84t(D68cKY-0#VW7Qq=Is3atpWO{Ntl`J`DT zke2t+5Cy=Pu0e*3X;A@z;rthTueXwHhhpN2^0a4-2A}_oopbVXe)q+i;n_YPNySc9 z>QjcK@pFHIa_J^PzmQvNZ1RJJA8se1=Q+XWkX1X6Pwgr+YH0H72lm42QWHhpv*+7K zYy*RDRwbDwgz6XGxU)(PJU2LcLd(HRPCD)@z@h&Z#&D#VZ2$BrOrKD@H44h+P>ytM z^7QT$X|nh>yyV|cq#5<~g&Qu>Y3!SRijG1%!T_9dZXZWwL1hBZenznw`9T)L9qe+d zF6Tp0V7vfG!q;V})nO)NBE$?G{3aoqLgDV=ff#Tgzl&XPHWKLzhZGf9O{~_obAJ$h z`V79~;q?N}!}Cjttzn7u{WAq6rN9tBeJxaCt}2|FMjeO7nVBZ%*|Hb;`Yz=^d-Nyv zX6&b#&6ldK^cVLNJ}0ugqRM#oZrJknS(b-?K$fMcQjqDh>hs2}b4rh#t-A}u)NHw1 zXTI+~A2rn#{3WjtQk5e*j7JQ*FmMwWOehHN$A1@TTF~L3x_d=YO>{x!C8Tge!)#X8 zFer}^7di?bu2D?p?<-i}t)1>RWwTgaGo`4&(7T3)hC8EHfrb6NCY&%pmR01D^**nP zj!jM5D*vaqf~>04F%4=Ru1O}ch6Hu9?_UVDpaw!f1Fzd!cm2aY81icZF8zzuevzMD z^$Q%T^dX2JejoIsd)03@yi=ly{+BB2#QhlV7aJi=debgupbddiCn23vNLpEhEF>80 zPwm(xC36w+-woYj1WBy}23#pUA|xs(N<~eEO`i0c0peo*lQIbfP_bOWPL!8AdAac_B0%R zzN9>@*w6MqbRMkMo!V7=LZaG`Lf%nl_Yxu;j3-cc`UIp~1&)gO#JuKm(veU2CBc9F zPoYBjyTAUDNKOX=#esxEKGh1qfHdf7LGZYNfq{V82c8#h4b9CKjrVKkHC)6C3y$Bb z+t}D_{CIIepLc9Rii6?Wwgj@L9JjT5*#U&RySoUO3bV){uJ%OT-j8;=5ky`7>nY2MYgdB5^w3_;$gRx&sU!bFYAwj z04FH$LqxZoU$+TLvTdI5k*|ueM3K64;m9nG)LWKJw=QQnGR+84AysCUE7hH@i!y#g z&M0`;CR2)wn7lLS>u+xgGcUxBgp9rS}1PJq!lz`yZO_u63zTd2*@4hMuXW;}U7WXl1|B{TbBr{Tc%vd~AYN!lyBESY! z#5#WW zmnmbyjyCP8erkt1OQI7@g-OaJs07){DIXSKvIbi{Nd92}C7^oYH*ozW^0L{}Hc7`D zxcRExd%wnGn>!ISd_4E4F=!4j>)1bhJl^8^C&o4RH62-zVy8$__O;{R8m-13*hCXB zBEb@X)KAS+nG8WkOD|+J^5Rl(&3!91;V3oSkBrHJ7lO|FgqK%)Y>6?Aj9>q0; z42pZ?uaR5& zO^r8m1o5#6_7{+2R0vYYhP~iieB?mEQ zb%tEXI*yuWD>3P=NujDdmO#ugs`-D6tDiNN~>+0pf z3G`f@XO8Ipk4o4cs&4Trh~`31v;bc?vmO2x6;CglFrusl@8v%A39cN8cM;XIyDHN} zRyntD%KW)>@NtU;_QQlLbnv}o>5@!ewYO)ND-qdn5E-4!d455e*U2d^4imzLFAPs~6 zVbPW5Mdcu-7tqpi)&Cnh&%0mdFkMP(ov<(_aM(}e2dh{sz(+%xD-_ZlV}^n_OW1Rs zFn>?qh8EJi4+41FM0R)v9>RJWR<^fzis%8Bi1Z;r>61PCEn1V#Q-qEg`f9gC$Tx)k zLNIat43SoVDt-eoWX(SCAb_}7>%}*2$k<{DC=#N=T@iINy@eES{V1J)eJmvICn23V zTCF*Aj`J<#;D_I01{JI}i#d!qiI%}#;SOu?@>11qZIwjGrShinb^gY|`TOVM(dm)A zq^_LyRF4V$f4{N=jDI}pghaFzQ10GvoNo<?Xf z#6#ZV{C`>iIo>FWnEcRJYh4`o-_-^b*fKGmX^~?lPsDXeeB-kYF7#QYA-KnS^n>C$ zMRMxf*R$xyj>!olV53UsxA{J8@W>7Be(;ef)mSo?-!^$p5mm@n80{D89Bpcm;>okn zS?=>^r=$g{;YPRn4XRz?YVsYv6l9o}&lgFqRieum#s}=cdVOMavqaqtPPXxl^Sio|{)ydiG>OZW%|D&qsdNWk$ z7^z5rb%k&4xS!unA$;lFa{*m(Dj!OWFTNpyp`GQ24)Gp zqOZLKeJnXgR40%cEPJ9HP9*6A1vMG#->}=}{J#;jZfHaiBo7EuOfcP9)o)G2zzt7R zg6KexH*D?!^$%q0AMl&LM_})K4tE6HgZ|G!XWY*x`@2-yu(sxa; z;`mVRslDVE;bSmT;OI>a3D7pv{)b2AGx84vCs%; z>(YE+`)v6%x#}d!8GZGttzX-e7xaiRPrR`i0<|c}-?5WeSMeIwuCx#l^^;*=eWDpd zq?wfjc}q=9gOKi1WmPaZ?r9Q{+6aUjrVA?4X-`HD7&UyC0*+5HOaR~N>^`yty) zUn}l9wg1$p^qnew*Z1|=z|au-tHw&^-KV@8dEbBChhBEyi)mn6JI0e;hZ!^al^MF; zbR0MM(_9@th-rGTEw4{*Pw0;t7$If+=6SIz`J=Nt+Fvh0qhXecOMGM?XIWz>H}?Me zaDHf$7Kq0aTo?vSJ#Yc7S9LBCe4wdgP6FLdzL#gSpO1f2rASa?5E~JaiJlFyH>}54fBjUfw{56Ozr&?2bfXcHQ-h3B{ z`abgEl^|_Qj~l}|aZ5=N97=P;xMY?&*dHEVQdo8t(zy5Y6R`Ig%DqidYhKG|uF-YC zCXcr5S)@r6j${l0zMrrTuENWmu8WAI zBdxhGon@a0qrSWN2OA9fPy zO#|BT4G>pHXXoe3CI7#W;xO=^82!Jx-!_sp>tH^1+{75AzhF_=8Y^P7;FPVmx!t%S z^!=j%-vqU7$E~Ye-@ShA;oi(Js<^dZJblNN>{0s`;OY56fX(X|#I`RWD44B% z4FS4Q`uxsZ!?XMC-}H5we-06Tohl8^2gukNb!D6Qp%8s<)~WNFD{4l?w{S@o@OygHXQ^Qxq)L_f&ag3um^M~!Yd?NSL%j#Sv z_uhOe%OC8LzD2(9a$>s5#05kI3-5Eqf2@3=FG*0$Pi1(4y`)_q3hJ5TYYo7?ovcV za*@BX%uy>QDHk(sbnpkE3)1!8?Fr-L3tyt9@2&C z5B6ZikY2DeqbAI<$mB*nIwH|Q?^eE%xV<}bkK26eKOJQ9BzUd&HE-dG8s`tuH+kx; zpDEOD7RIpL5V{usv4`Rik2CnuB+s3XG*uMR_*v8>uEvikZGmw!DFqcXxi!1j$8JCG!Q#I)?venNrN2P5Vs(AAdE2i%H{ja~HF z$}TJ}PRhs_1T+pOP@31A)PfJs8rm4C_z26XWMTABx9eu4`n_Ec|LqCZ#qv%(1ij)F zOeh7rXQ}b!+7;hScg*S$?h+W~dpP{NcSxDkV@F3|2twuOn@`jUQ{TxNcS&Sb_LWvI zc2?cW$!kACVUs4^pah*1SmtVI%xh@Z_@dZ0YKB)Xe%=YYddvFv_jmq1D{_oPD6byO zcR#eE4Syj{r=>E_Ty5E0M||zmVrWio;i~H!OlpPlM^&FQzZ(y}NJqJU`$0Yg@-jq;y>h0D&x zWecDMmO?D81Y+u6RPP>5Gv_2HX}H);3?bIEoZrZ{|12IM{QZB{=O#iQ zFC)%Iv8MUZ@=Ia@HZ1ja5)nGN+Zndwi{<*)5Oo>GZR>z(mBnRisrn|QUKtM0A_x#fNcc5nIu`kBL*7H#bUzRC zSr!*<&Nb9WA49S2G16t1fxf3S$k}1Kf0Inim~+Rr;saxbQY~TrfCpJ~b7V$p_C~Qr zL|M7tod@zhU$7gz>9-7B19IKuuTq;-!s`>bc zprjA5C_`@kylvn5;j1buO2v4FFF{v|0ie1EWW}GD_b(yD(*5@rgYo6%us|Z^e0FA% zd$J+ZS{rSgh4$tp(!6U1?U1tmJRu&kzp`J9C6;DbF0HN5JsUm zFiO?gPUJ^a4!sr-5~}k)d69Qfmgn{{mtSjPx4+L&bkhROA?qr)q_x zl9))^Woc>YKl-bx@Q=3uJe!|ae(-=!VSPtj>9OZ%3S@sk*5hUZ&7uf%) zNAUxVKWTOt;ygdOpV5eH+qlm7;E!ejX<3~Aajx}cRN0ueemX!7>2UGWOA`$!QOmpk zC6b$vGVn%kR2RbyZHEct7@`9_fO@@F|83jI9*CRRRGQ+D%IBjG zPf;=?_()O4{_0mmY^()Xn&4=%`_SavesT|qnL9NW;t7yYj(dxG=;Upn?X~Y$tdXq( zJ|-v#^xLJvWVx-v3UKkKbo=*rlXy8R!shmWhrHT_kp>QWNL|nRmDp{p1C=gbngk~% z*xGu)$YUUVQqFIW6nrJFd9~4(i{vC?8q}_T0OrIi#g*tfolFXTw>2S?-w%PcI=p8J zg>`$kqP4nEgE~y*Of^+iqe&h(rOKIeDTj1QWHF4O&++t{Q&f2Nk03KPRAnf<)zM^I zO6%j@!+78>_UtXKmL7F9Q<$8CP(I_@_dDx^P3Yec!WyKxQncw%aWG1Ugk7u2P{^|T zUwh`OFjk{~-+oY}Zclc@HIP_&vcG|HVzs)Y;xRcV-WJ8>n=yr}QYCGv+2Jb+QgZT4 zH_b2z9qXAgK?$Nq(!9o*bY4^id~44j;>MsS|HYrxV@D z*JA!DI$}S4J!F4|wh3%9^)nVQXF<)s?w8dGQ$B=kJB#>b$0@W>CmV_ zBq#;uWg6vCoEmsFzqX$~1jJ*~rUGCjw!#NN%A&P)g{64mS;nsqBqGSgP&?u$Y+tn& zXEZdBKHNs+Q<7)%V@kD~w}pJX-aD+m6nAv~Lz~Y!J~#KIm)2PH())klFqQ;)e!+2o zG=Rh1eSfc|8|o--EdT)hUwHWOtB_G|RnVpaefI?}9}AGMt(>@edZLI2836E=8@Rh` zk78bNqoi_c`vxUOqDBCV*m>^H*A_x^xFL-=ZUonL@yonz#%^|zHYeJV|g2~Wy5Y528}AB)}n4< zq~|yKkq^FgkI`VHJt|6;T$nD-f8iUVP8a0 z-e*r-FD~#buD05T9thFf9PZf$r8~cGspxM29!y;K`Cx2wKLaz4W5+ z?Sl-QOxuBcMrS(3tRlM7i>$0EH`eYAQ=uFp;x<2S@nc>honSJn2Sm#L95~FiwS=v0 zZPLWdsnq9*&Q#sRd0BzG5Qfy`W0NZy#Aq&H2!z|SczLOnkx;;}QsUwW>w3__sC&^r z>j-p+b)@yanTuwoML{_VBkS!OHIIKLUfDrPLG$eA{whqXra&~I$Nkm=lQRwm8nO05 zLF-ZJC#;vmq;4`K42!R19&Zy-_uhpTN=xGGUp%E)rB~@OKakFZtP=Nn^e23`HOQEw z{u}g)#>o${ko}`$;WqA-r!*gs_MRUFR;Awr#@4A2-Ams@COL z8#p5HRnug=OOr>XNK3z6JC&rm{uK?e=cC}e$I!WQb0uYaI!K)4bO95V3Jb%}m|5+A zBhCLQsTtjgMY}Roa;mvczUsL7Q=a(^J9VC5iRmq~qNF^HZ97F$V&G?hXh&_r--7xL2MmeKBqsLQ z(}PTZ%U%M|inKBKS*#?HIUVy__7eg8%>Td2@tn9@)VZE~Lb8r}?e_u*UVOa`t;v!X z>yo2S-j$Hxh5mv_5bO_WY1G{``7DQWtWl1n-)=C_&^RFZwJlH=e&%$O@BcCN)^S;G z-S#&iB1kt#cL~xdN_R>rNC+s1fOJZTNH-`*OGt^7bSoh(-JyVVBaOWCdd_*y`@27z z{fC3;6dXzdX5W7An34j~+amX}9B7_GjfTYeVSta_C;SrmaLn%O0|V=6hq?qX(49ci&y( z-tYtp2;w?`Kt4#XE(OkZvIL$v??Vdl6Ym@ra;BR^eRk(!4;sn*GQ*>~C0%s4rTLR% zWl@KQhqE`i;NOrD%_Oa|Og&AFR*2vH8)6enL!*A|9nGOXhs1VfHZtu8E_!meuT#Xi z6Q1MwDH(M#pg1im#Afg|4ZIrKJY_H7_f8o{V0r@HRb)>oA-fDTvZtUf{{d~fy*i`T z*)V^pES5JH6J^YXo2vd@b0?W}DJdiB7!TBgKqfGbgNx(}a* z6&tkn1NhX5AH3s{Vv&mx)(dZ|oZj-d%hPo9@>AO@JcU-0=ba^9lZ(?zO1S1k#psrI zl+7_HAJEdMVAsDfL~9kCHY?whEmPq;S+ZZ347RqH0OXAG$%g4wH*`9J26nPr_>)`T z|7OR2`^k*-+-Ex9!JeffK`Bd&$%Y$4Oks%9+Wcpx^xgd*Og?|6sMP5!)I_(EC%n7Q z!<)wcTj&j*8Yq%`xVpGBIkRex5#?8kM?XjqV&W9vwKPl(M%5yr)EjMJxsJ{}=s#>U zucL~h3%97+kkzNv(+G_d7`ljPXvFp+f5rFp(r;yEvdHh&?gS21gXQkn#zMiRQ?_@T zEwR9PMM6f#Z>?o25ePwnFkh;wNPh{TsDRM;gNTaD%J`g&N#tSaoVMcowjjtnm{*=R zUV%i21y(y^P0ZnZEdA~Qq24|B?Z?0y`Fk&P)+=6B63`tW{GbH&0sx#q0)+^bt=d8e zW9#rG4+)l+myuLlTf5U3oN0pJ5gb2klB%R=>?Fy^uNs${Ie2*PZ3wMC1r+kvs;W54 z-c6?M^j@7HbzvE;445yspq4Ow``|!B8+K7|4v&)eTL0287(a+ z!0v_~s;~Zd^HAi$)|9H!o?@GE3QH)3(ak4f{=>$qb_)b{AH6yxc%VhT5JSZNHEOZ+ zB{@$mP2y+I`!AY`q=`O%m{8xl*3ZUN6%savi|mcD$GM*rRD0QO5-qCQe|w^NV_|o1 zbVSg8{0~d}lf>VcMbfDZcAxKML?Mjdm^&xD9lecC zJn(>tePRsjwP5m{f%&lOF1-)~_iF@QI)Fqag2$o{LRlu5{bb4$UIR!_ukLvwRgCv- z#fYrX%->9U-7?b8{H&=sIlmKqilK7;O<7H~s9a^KV=<>GzoL)SA#fUZ3E?x%^Jfis z46Az@de7NWyKX^}$+Gq`pTd?Hm<6;laM|dI%IM-QliHe0`WpjD{B(W(pW=_rC7b*| z?R4ZUfhqGVm~v7H9~pI0t>% zYu=T%u&~h05(TR@Al*R1$|xWp;3Rme3&3EIog>-|1d|A@>-iOg_6mt}7Qi<|P&sX# zis9h^%|haAkl8wrpYGE3bz~J6M5@uYAvjM<$#<~J z?lV<{a8n@t(gKsHbH0+cGn(#33q#sH@qs5wA%%XNNczKM>62@CIz%had@>3q$NBgc zRd{|hh7xiJ5D;K?`Q8qq=UYeH81l+{vXkFoe7&oWt2kFJQ8+ybrk0N^S^mU zP`OF2M4pOqV9B2(*mu{DXCEE?eyhO)M{HUrG7q`p5&mZhT(Ua`tVI20^gz$ixi zkVq)&7as0)Q7$`MxtZdZJlUTdB@|kFA9lV~3#|_raeEf!-Bws7Js1rNgctdqu<)^@E!frtvf98z2E3Iv%VWgDwi(k)Dfb`wsK5$#N1h3 zQi?yC-3>Rr2!PbQi^5=@T;~?wS1Ka*xjL#&V;1)vY`#{GE@51|zJ1?r& zEe%#x@p_i26Y){x;(*7$)P?-Q7jd(B7OAx_fu=E?W@ViC*hNe`>1xNNbR2 z0GGKp9lYEqg6C&`N7Cnhne7HNdZz#X&2Ap+e{Obp$ZDr&?U2?xa66(t$4ty4l*b~* zbk&(Q?1&1hW+cOfi6OGs5gKl|eE6!0hQ^-`s+X3~nnlpvJJtBo1RxPt)YFR#XN%>v zbn&bFA#R0Nm2ex{WzZz)xo;ZgiUbf=QFdA@z*V3utr}|S}4rO8LlgV zlK~=I#kll8QW8*&jm<(RN+`D?I8zlt zMr1#!Y@tP*%q&ej22VCvv&_LiMmTu5Wa)P~z^0b3xM~QwM`2kp1bKGM%pEJ&40F7m z_9dc3IQG&{QrKCUkrhX{sj-d4w0$wIe+USC6qr>YAT0L6Z}#&Bn|m)2F@jD_^7q&L zRbB=Q+I0X5MyKy^^V)e)udYh)2j4xzS3{DDJC8PY#|L_@#Z882ypVdasiot zpSS!_`d&MMz9orW=&P$6Hgrddh{a~Ad%~nP!fc`kjEMc$$se~M4O|qwv+CpX+6OU{ zbUzuhblPsG+HgS(P6S7p=B%hQC+ryD0@KyglYjTuSA_jXn<@uMvO>JoEj+2}O&R^~ z*ZOtjb0s#>Gx@(7q0IvH0^g`s8j^uXgmzb!73jstUw_!jd&+KVdy`H1<{5t)26J9eqlmh*& z3LC;L!jE47}4dW)s$z0k97nMpXSVAD=tff3*NVNo{5INDY02 zs2$%qWjYhTGk&_cGZDhJv^3*9@D$QSF01};N|k+35@A1>2@!;vt*}`G)?EmGnC!AW zhqkC+miz(&ND;s^7>B4Q3JbFekvwjzk%5j#!$1e~!J5}xSZJa07JF4=hyV=gl!li= zc{-0kI<&QAXGyicmN2aq(=|{Z(^^X|rOEsPK$wWB!K`|k$u1`+r_`)9p!wzg zHD2F_KWkHDg^Kc_``dRv%mwNav#PD?9KqiOg;&&5~a=ts4?m0X9HeK-*a%yj%9^=k zK@KQnUZ2?*4eFVhzeV-d&x^BJUj0641}#D2{d1O9vlt+;hiaWrHI#V2vVQv1jPTxP z^tHnmZcN~v)#-?))6|ZAf4BI!BH<5vX4wX>X?3xMZFf6`oQ^Kl)<3VP+HRO_zYEhy z&X$7~m%N9;($vR}ztlF5={zrCk7p!$4Tn^91qcg~37OkG=S?*x<%A&ug4G100-Wt! zBS&*`^EIun`AZEGgW7|KY!*VI4mYO3llg4dtdA@UQcp5wj)+lIdgHqUZDjIbW=DEA zB&&Pmgp0y<%QUd~fQ~iCCbsD2P0CNLOG)9Sp}_T{Q~$_Wh<2j}Ze8F-Grjmt9_!7; z#YIREN_e9R1=T?*RCHMwa+hf*Pn5xn00!hWonuIRwCr0Ka`CP!NaSKdtABLYCrc?@ zn(KaA(yZ#sw0Nc{iEHX3ZaX*3PWP9Q@t6;z1E>|dLEK}6nERu~G-G2h|H@sa1KS%( z(ZQ6t+R2Xk@2kI=zpkYSS?J$^Liin8>SKic-JHeM4v4kXk3e~Pvaua@Tt6u7SyeWud-MK*6YH$)8CJN zJr{JWFo+PRA(O?KiwW17AZOV{YiqauU23o`Bfp$<^`dxQj(h(Az#WL33xs?a{v|2; z0{1rd?h`we zIEYDxT};p`Dl3a$_ZC&?#8x|x^${g8n+7uwih-*R!dnFEjO1i2cBD;|LiFaV{Vp~n z;1viDUI{V4xlfHgt2s(DMgD{ShYrgwx?SzixEu0;o zPKH+8yE&(bfY95jPZB(4C`3D+4D|olVB8SJ_zA(F% z+xe!(Xr+3D0ZJnQ7m|k8GD+y(!jya8c`0o@u4$}`AOFU6+0Rb#YdfNuW_pqPe|!AF zPQd>v5q>#{B18w|lB&H8&pHJtQ8+_`Kp?g{*9`S0}ts=gIL!^2if!59ufl zX4FipdQDjyPT`e0E_S?R*{z$k{||4*X@3_Iv@%3)NKf-)GP9UxXzh2tkmY9o04);H+0FuI84VV{SExZ$7w9 zTZ?Tv5g9i1GUroPx62KQU34MoD_zIxY7Na`>O=cH?wr%A}1yuLQV*jDKIM%0$s1+6#ma4H~*2PCX*uW ztsBrB@%In8v-wQ%GMI!#lVLC}6goL?wy3uzq>J)y##=vmJR`s9RQwE>hKL9lbW;f0 zb}#t;#cRXy@rb^L2*VYV^A}oI3o$ub#$Y&XwGni+W5>z`-BMGA^1>+(ZgL4k8ZQ z{WbXF_g^nWgNGu&M$XIbc@ZjeV~IKPiQg>eIu)MdMsc;m9Nqs@;F7z%MrI-NVUrbB z2*t~=X-@58!TgN);X8+zqp%^ROF#6FF>VdUVCF(cYR7^jdLVo2 zQ4p0qh1LWYpaq~y=W<3>N~K9{RO0+1Ht)MRtIpc&8-Wp-qUvN_Ba_FxWuB=bCD7g{a=DK3D5~q85q5cJDfNS%%mIPcSrL;*98N`-}Y^*Caj62ZL>z-1adQil5tfqo9SB4ia3Hl1lp_74i_g3>(yVF zH&VqM;vBLA-%uM>CS*=`fznSyxvNESd>{ybKj_jexh^plKco1(FZ0Ol8}D&*?o2BX z)<6D2e5a`^aX)8YKy1iI7!t3cSRViySxDz%D5v*QtYQuLx*%=PK=joTFJNhY!OY@g zVd2e`z7D`e)k4ewH2=o@=aP|oEppU%rasM?Jm3p6{N4CPiVLGvDS$8SZjqYjD)v#e z&s(9{*WVKY?{7Y_8fNp5<&k5K%W;WF+RHbtS=LD1HiUnoMqVjP_g^0oe%`sRC(R;c zM>4yO(U6V;*W%|R9x$$eI5;L`$fA%PIg(&bA{IffB5FRQ3`UXMzbHbkDKIz)lwr7) z(i7@zsgrOe`O24#reEcV?vhS!(4T8Y!D5$!^3%mVXZ!+GP9MYlyO2Q@_neIEm)xP_ zZLFN|H|*HOR#5XGs1+@CIT;%UO3(PxiFoURS#_V~XW;ixM4vT*(FiVa7r_l}F6xeA zab@05L)`Tcxkw><_xT^`rH4TbSW}ueEAm6r8^`ETn&FMddMkr;!>ON7Pg&6#+pv-T zG8W_#3JFP{p_3WhgG_ z3Gc%_52FJ62?d=E6Yx?n!94vNOwzUW-u0!39Dsnbym1YJELD`spD|z(Y4{P3ZZ|?K zD?sl1$?{LE39p{w>*3CA^FB6pR7wh9~5ZCypR9 z5h6juzKYxCL~H-HP)I;v2*tZ4`v6zgGV?1kJQVW*%^@@1i9A4)yP{aKMNyylwn`~n zI7C(2TEQRv=R*HK_nd>5Z~y0#$$)5()PQpFj5D7 zQqRy>?02mxt9^5%#biM&a2?u-}y)M;ZpMM(S!xKXfUNolK*J*ta)iiBeQenY}PV zSr9xC=H0BF{0W9v3{@hpl%Dl!iC?&S$Qm=Nen?1SwII43D=hJj>>r`&Bsk%y^nXsGZ+qX;RbEbzQ z2CbLC1F#HIEtbFP^&!!HERwDy7Ap3cUmS0Y{x!lv|N3L#a@J_~k>rwL&=Z1){Ct<7 zI{c}=i6yE?8fdT|Mv=Qulf`^DcxrblaOcZrbcnB8U2FhuXeuQPJ{TPxzlUAZ5h@zj6c z$u3p?PZz3?C0_bP6fn!`{diZc6?{jYMb(EsL!?`v6Y_i;$7kq=NycCwOt5J(Np#z2n_6tgZ zXA$W!>i_MCu9yb-alIa2b14V-JcRGHLl<&wbCa2eCn}an(Fw-C$6`dHT2x4;A`Gmu zD=OlV!2-gpQ%?zE{!98Cp!WaxkRINQ&+#luQpIo?*`L?97Yjrc!192sJmdxq$s6+% zV{mdz);$I9j}!LOr%yeMHnO`*fIed4xlB4Vgh5u;go{LeK?DjUF;b)~v~0XsT=*DG zVdBD)!?JRnLow?D0|GfD`K*DWvA(SnB z0R(7Q`aVr?_JL&QU^($By72(7B1`=0#OlwHclB}8?c4RGhnz!l1cXdk)@>ntL4g!y zlF3OAiL(7~hRVqK@`VvGn_tTsN}wm38k+pJU5-6HVY2hSzIy({JY8aAk1O^>R_K8z zEv;F9?+52kvmbUm2aYcjWJis7^WP9$C#<(@=a?J}^BTI=k*!0?QTFF#lPaK1OJVgB zy>F|9pl*bD!uCzPX?KR3oR*f%lWzt|TFZLL9mTo9Ub+tu`m<2EXB8i=-M|C!(GTFg zP>MRxBTdCfb$LNy($g_2fMP(p;}c*=0K9P*rrSvkS;yAa;_A9f1ZWY1hpI`vwd=AI zwtYW-kW81emn~?fsO)M#kGWN;#Nb)MXxEo#|_qaG1cC6q5yY+gd#9wjET zcAl=TLK(hi9M@c!F4|@_gcP6&A-CgLUAx_5nZt3bje}H0VOcsxQ{^ zGCI~=%n7b34du8`<4LjPD-TC51#St9WZ?yW?*^<`eOf$BsDr^Jm__Om7+yBw+0S6S zaJuPKn_pZkUo?sYia;W3XhZ}8*o~l-oZ6Whw-$usAp}DD6BNryH>LX8t;ab3A0 z{^m1HnrE7ldwYA5cq4Cvy$1?r?OO9UXd7okXP4D)kAEQ0{GU`^aK_H5AJPchQXp?C zXeJxS@*t}Ge_p%u0rbZSk;{HDRaL?uM?ShYPI=$=E+olWm&j~^gTWK-c^5>LE{M7u zcn{~5dBS(V`vyk^l4oG@YIz4Gx^t1ZqnTnbCv(@X48(EBQ=h3%Sh3rQ9!WL!l!IP5 z>3&zv_7=^mi@3(}pR=~aa0X?f8~C)Akfs3mc!U(+ZZ4fY81w#p2cjYa>TMwVQL6u1 zQK|i`xNqgEfd_N+fYq28CX=uiGlma4o+4G{U$KYc>zFt==2!oGaOmz`aP7Q=8XUnS zpyZE=W8}_DSuSa1@LH6OJkTnA>!yl}f*`aY2H2FNytu0BeJ7n?D%=%`AzQ^@%y0AY z?;*CoHEE6Cd-sa{Sb1CIAdyL0SqKdfoTP%?pHnMltH{dN0z785;jw9 zr)5*>Lka6RiT*HA(x!o=xku$^fv4kj`P! zg8cCf#2^PWCsrWt!tX^P@|HYAr|=|(XJ*nvq5|xr@Yd(2U|uK43TG9vq#mV_7koJI zD{j-HG5hJfkR?$-&0~@JfyMZ(8O1lceXGxp2Oq|F*2d4`t?&lsh#FBE({M3LyE-j zu*{ST#)4+0FRu41zc?YbTm&vWzYlF4$IS^o*2r4?G*4Yr=xXhXGE7u zW15x!sB1b=ZT3}FA~B49uyz-5L4b!|y7&kW4K75{5Oq!@Sb#GY zxluXGPef-lC(Tm0r({3pxk7`Kb*86KFeQnP*3Xl;V!ZuAjEQ-OO{x6&C;j0%%H|h0 z&S`AX@whh;y>JPIS?U}MO|=F!-VMm#$O8^1g)9G?uNIe|Id0w6TN1^ee}fh0N13JFc#M^4dZ;#iw~V?Tz%!oAacAUEFzgRyzz4?8=`{Y*>~X#ylS&cMWzOK{a9ZH$PBh?2@? zxQ11Ljten=&)DC{+nV#|>sb=2-u}lj}Y$}tHuMcuGXi?Q{*KLSG zM%dG;yN6k!=(3P+ZK#dELR@n_TvE~7jp(+5)=EK3=8=Y7ba*%uG>vm|zAQb=(?~<+ zmm}lj*<_V%x6VH5P?ptBKX=jH|Au|X0q`$XFX#K=7(!SN^73=mb0Hy^fBI57kzuQ& zBOl~=<$>*i-Qs>kvKb>zXy97oxJgp$d9|XO^VerwcKr&bf%(Q&j0~>fa!mw9o00Yj z%p#=n8K{|rE)k;xtM6~$eoWf)aMlHH(p~!x2fZ}4zy8noPq*aL&k3xG*$Uj>6Bei{ zuu-h;etodT-oYXUjRJHqc^?)HthqdR^eFUp4;=b##Cs4Q(75sm0t2PkyxKp)Zq&R? z7GC|5C-GhU>C3Z=B8f6FLu+fEZ~4bwE$`pI2XCZ|Qiz{<#sa&S`bF723es^Ct zv)r_0j5O9hVzpym`$dd3C?9Wp{1S;gMwBS_`uIK{hu2OZA+5%yLr+&Pad@GCQ8z+{ z+qzVV`yq1)Zu<@d?9sLx?;57x{X3$gE3!g-D@N&Y$d$A9`==V?uM~p6_kvLY$AvGjjmzs@`G6&8Rrw}d$Q zs+Zw$f_c!#@&CvZJ;3T-3yGig@_Y8Pb)=Ag4BzJBo|L({IWo(}Cc8~9ATWIXgqHMg z`z$*<`z!h6l$6Qpmvrkf^Z{&td5D5c1>XI^KSnS}^ga75p$W9n!3dUYw%*->Kpp2N zE}I$+5N*HKP_a8MIYC6wv;NdBm{7q<*kGNO_zkuRF^2^dh{OYB8}i>Fc?DGogbB!0 z=XYDE=`@`a=o1im+~#yO{w|(NS9!$n^VYSmCu7*y*o(*w7ba5wR0b;`0&}CJIUR&t zS&NE%4nO|p3z@X;9;8KQkF9Gz=V6@r&@lW(qP?g@6|R|(0Jn%7cW`i}Zi~viZH#fS zqh{p%O#5=Eu%EqWZa4MLc!(D|`eU9%%^BDFSp=EzpP*2p*gCnOKs9+LHyYXCPL--t zVi;NgKdSD|UYd#EMlnZe|O=lmw6trBE31t>it=CO$mEzQm3xnL^Wl2!@!0p z;3qa~a?ULq$>p|!y7N}Fq+AT~C1Jrj6vJEnj6HK7*p=50?SI>|vGOH}y54-ZT|w>c z7j%=<&dI>MMY#HdaP{P|pESYA2QaW@cIktj@Lz24DI>azTe-h_6I;=D+ z#8f=+Q-ddiACez=nrAlDXXoZL0B!`M1a6&AYSIMgw6Auhqi7{nN;#qk3l4rhuM6yZ zjb-3;He+9Ss~i&>+hXucvG&ksC`C6^B7s>e-30t>VMs|E0rgd%Ve z5jL{0v?u1^KI&kR2*p)9Aa=jQEN+G}`2OF>Xd++`=nh2*=E&b*;Ql@dT|^)rwh$1l z;9XgA8(i_wK{46hlzOYi*loloq~Qp!L~CLg3F~ROYOHXAmxx$5rF8=g#FZa<~{6yOKhaT~};?SL%LNXVnA?SLC)04#peJge@e{ za&xK@d8E`9q=MQXFH6{S%4MNFz!d0k{<<$YMWarE#uRhczPzHMtH1xK=tX-NsalF~ zB!oT=KvNDc(s1C%YmscdbL@evOmnFVlH}=bYkT`oxw-8kjr@~>=QLn745 z1UirXvRNq-Ef*mx_Sfa{{e`M&Um1&R_m~#OY7_#y_4&nr;-NQJHH{Uq07`p0gmy>D z#YGVDLPBgZ8eB25va{d#UY-p$`;Gf*rir)1{x(rzg%3gNfx*E7kdZ{|v4Dz%Y9nfM zh|!WZ_91jFmiPS&)Am#ZF805n*#iS?QZzDw!vDh6_hM~-WcGT60m{^G?H`;p|NDBC zp@lwo@OZW8T%K+g!Z@k%N_h9%)yC2gXdw)a)8Hb^g;o;qO(djsA(AIyGb;QG*JPUS z^y3J`wt#{o9C1wSEKHyJ3H@&TTe&No#qJrpRu24AH?+@BPKb}^QqURJ3gMxSu&i*5gqkcfnAm&NH&cOQ*S74wz z!#$5j#n=<6$Rf;(T@!~Hh0Jts3~ui$_(CQ(&8~?A(%T~$Rf?l3s(*J4*NA`sYq&j* zh&NTMSfpE*X+1>bla5VS2gjtNiizKERs-DSqq}i`DGx<(vfJMGI1fm6PVY4IHBhZ+ zTi#R4T^1w^LYI?PPsx7$2b+;jwoU140BxFCX0r_@OZwd?iTeyH@04mNBK?)ZN2DTk zqnN!z!osqenrKyDkea^7w4?6(BF;Q1`(WhZ1M@q_Sm}0SKuDTax3}j(#wM_*WqqTvg<=Ug@MVUVoI)6X}-w5O!plLEoKkY#{>S}?PH{cVYxPQ;x$*B%~R4Q`(jA>3Z z=GF_oXI9*b)K{!}0s*{y7}^BZdxF}(yW4LI{VXxP4|VUVD(e_IqTBSrV$+-y==vGW zrZ7wDxe-T`>PDT{rGqUMb1%-pf@t|!$y-oNt)RJ3P?8JYm6?C=LU2nat0x0*9nX0GTTZ1u<-E7ug{6kk9Rt4g^2+X52qk9 zt@5cTf&6b&Os&6mtsei#qlC z;aPY{$f^*kk?m&@CO4Q!$RGcOBjPA2|9XS3U-|8G^yM9@G&&QW#G+11XDHwJX5G^qd4e z)_-9;)+zLoO~=4BuKY7T7N#madwGUw?evr7!+#<%EcgKUik?5%scydHhE9+)ft
    80FZ^d=q)quhL$cJ0clBx9s#R`>hsnu2d zMQ#acEs|z_7jnemj{-ZEwS%6v{XkxCx?mV8BI>R1C=Hy5_N zz3E;u?QJ3CofjFyjB+bF^nM!j=9LKw&*^S=*0#^Mi@!?!#+G<7x~=e%X(Oc~>b>lnJ& zHQ<{PB))Ts|I=Obo6cyAyzi+ZCMI(r9t*1j{jGPe1Ew^emyIrn(Y@oM=jXS@5c@M= z?W7yKH8EfO1zMvp`cRXSYGJuNx&x&)DVM&Mkx}>!k=mm-siYNHB(jb@_J((H?`;q^ ziW9sM4;lKi7!nZXA$yAmA?b`jt6xZ8NM6$PdS z2dBKgu}{7S{o3m&a^77tp4f4vX!>N2o zp}Sw3bDmdON&4u$kM?t)kA#&AuYr(uC(X9czFNoBRMX6Cfn`$Rl`%4OVOBoWu{sH@ zCnsX)AY|wOaZMlG&ypm)kH)9+42u;I6Q0aTfV{Mn7B$D300;MlNNxR2BbYrVP) zS2snaOl20roP8CI$?sW${pfxE^Skm-PI>yPGNejw(vR_?9G|ieNa?XF@aBxKZsS_hT1$QsS^j7em+zer5zWw%7hYWKxc4FtYLGbKk|5{iySRS;ooI@~I z!_p)1RC3$(W#2RgIHb9^$TF={5Z?>;@)i>sGoPAO7riTdw>%}|-(lWu(0J_%fAJR!*G-h;JpO#J z0z4x^^Mn4Kt5M#8?0)zdF1gdkOh`}8fV*M9x5Pz=!2a_c|9;N;LmpCniP(c@Sv!gT zw|gF9t3IFjO6=_^1ZfjyfM!b6wbIf8NEGTriQ68QBAg$OJ3qEB(!_*D@67h>g(Ipr zy&`=_=%mf#``OrV0!MNQ1le-ggO789N;(R3=JLN|mK~#V_+#qbj(i{lmc7K=yDD)A zcxIx`l?%)P)`GWys{}@iys9cP=S9kI*>(42<8?~pipQLV{is~q6$`lTtsD44E;>RO zY2TqdhvpqhOsqpCC>E778NwK_4C3{UPz{ag?dOzn!gf5_ zeL_u}Qu0{g)99p>wKY=TSOMJ)Wpi@zZ_DV5HxvRVZX=vDu6?J1RV0fJRoM@ohhovm z=*g1F+bM>Q9cQ=xip9~#jQW6uxK z>Kt79BCWtGouU%w#;d?b0N3??z5YjvWZ=(!0^xWN8T9(|=i6|ugDSl@S*T~As4~wN z^{d1!Z{r&+%VmoW?wO-E7{ZK?8~PV2ImHalJge08PSh#X%b(T(wgEF4ex|;g$ssGx_MTM_!HT z5C&fXX~z59!4$NDl__??s!k45P89wb5N11Xok8+{uYbcAnb%Doy+=|bL>+&l$Fr*c zhPC)Kdc)Pr{zxdYb7xUy^YR+S0^~ciz#00`?d9s?37~eg-}u zcMU2Zh}O&c{23>E@CT?7YN4RR#MulB+TL_lxv)(Af)_=45szo&{zRKVE;TNaNRQ5l{?jov>NxjjZJ>?%BZ=3~$~mhi~roHfPx&s%l#f&uT*x1_#}3{r1TKxee6`;PA( zHrO`D?j5@`z{uV5WcL?xf?07eh-X^y)%3n1qWn;L^5wF6B<-W1HycV_DLdK?9EFkf zvT=h!H(~txipcM$8@0C=HPF!wr?^leDD9}vs33bO=%w(3`Mx80!?#`k%t29>8>BR+mZMvY zQp75al_ZIstq_*z33{&Pz2o@)rO;SZj)}*13BqYG2B##Kyb=GYhv~5tbH@l>JZsYT zN;-$bRc!=uaQ1ftd2j1R>n*#8;P)>pFE7?<=*HI~8bGg(UVeLU^>fxl^4mTOghq}S zD7z*4sw4WI$rkJTy?B#y^JZe$to`w1ua9YSHHoh%4!jAlWe{bcJckArKhoJ=@&(C-Uq; z(I|Q3+!ogZOW+8PjE?%eG!+HSfN%+0Fj~^&$YOWyaN_87XsZnpVO5rYvTptLrBHuCq zM;OAcg<8>C_sm{rOk%Bc#F_u#DF$9``a-FtRLk<_!s9(F-Goiqyx~1KT6qDZd+*r5 zz+iR#X8R>l=+tUoni?J8%9A?XhE$BUO%LO+(>B&$G>&GnRf^gz3+(%7gMIV$qvK zSufz$yUcG)-tDK*q(%E_Tk>hrq>u7|kpEjA0rA2eH+Nb}5gy<>*Fv`#nMB@sPXEnX z5E)$n@t6blu{X2!ojgWmJtnb_O2#d!rw2nZ)Uw>^v)Uib8oYaGi|fJ6wzkH^apw-y z`reY(kp>HKXr4*O4$}vvF_oU7=p}g^9@_t{*(40wU zYyd8fM%}HvY3~RZ8=dGaB|NIPMotfA9Fm5M=kAlIn^qe3T{WKgHMzeAjToQnI_cN1 zNqnoap<&cv`c(d-V{*nmcrZ&{S?Y@4oUO0!lxBd<4tRvfszQ)lywinyKkQ8HXg!+cl|DnasHMYxZiVp^3HH#Xf^u1}a*!N-1o(dAGe@0~=)~FL6gxaXwibmlN zeJu-88EmYPAY!^01$l2&;grbfm(6Ji%nLenGu2VIdk}#kgKUr%)H~tX>5Ikn^`ox9 zPAZ3T%KmrlH<4&~)UpR(y_|nZ>MQz~qBQ$)^v!u8(6g}Za?1SjBTpks>-N++xwm(p z2`*$VUH{n9es3d!Wx%N-Z{&FcpG1YBh@jx%dWn&N!Hu6QBoD4%e_Ij^hBict2Om=J zmwD#ZE6-G+DTox=SO0ddPCyE+9_4zUp-|@A2p^pC;q|W-stta6ffM|Lg!{JqM#ZG< z#XtAv8)kt|IG=D{6^u$3@^(;IIZT`}AR08p)e8EQtD&v!aEO1{LmUx*?x}y}#L~l$ z_Dr$;sK6;(G`bI#!qqHSn8-lo{{pTu9|>KU3x+XCnPOv~zhBRH$Y|xRFa4?q&(co5 z5XOiN4PO2D#)KvR9@HGhx--`?v9M4Z2s6pQ|2pz|Um#=>TUGLb%&6La8JwfU;IC+U z${HUkv0a1AL{47W+)-FDGgBTld2COGm8^@g)^XZqO)MQ)m=&Vi>HO`8lAma;gHP@` zk@x44zS$+>tAGeTX8Fk09Q@9;ss~m)IdvR~sX>w^^@09^^KQ@T-GAJEa&i(D3`iq zN+X2fJ%Nv4+~&tFL+Rj(>(aWh_kOXhs?RZ-kIJ7rO4tSBQE4tM8@Lwf&`~N5HM}Kh zZi=glx`jvHu+3FbXQ&-|i?g?Oq>6O#7id?_hTalVrE0inak|=BfdZ=SmjeL}O`o2D zaXZM(f57R2T5^2^R6%m8;U7+F_HuGfHdZWVo9A(y4(6C8BvN4ijfUc}(TGX{3lHxP zm@p8ZEr|#%E6)$E9QUcHhXY3b=+BwXs6_`0a8~tDCnU)bM=b&r*VWw#J!#@e3&l6u z`YY(_QLOguua9?H@Y-U5^&NUSD*5n=bnl(UM6jGfcqe!zK*%v~mAfyGgK-UV34V_^ z{}VDW^{FJ{%l&T$arb`fRYc1<{FlFRWA$1yG(t8cpjteUXR?PVlb<$~qG=k1MMXX) ze&j=9cBkgCrXVbuzk@WcA-BE;4s0NLe{3IK;0lk3Sb~XMqowIQ*!}{~g1i_<_hw;K z2KNk-Ev@~nU{5f=G&#O@hsqd%@*{8%OR-};cIv)y;qs?VGr-`M*>OY6J(i}q6T zPTR869>mxHU6&^sH=g1L#jH!S_;=mGwxVZJu%WqG59;iH2AeDq;a!X*=v9AuA*^${7)j#xoSUSVN( z;=|s2Y!)rLP*ta&L)z`CcN+gww!vtlprBDv*o_|!7BCJ!e_kSWCrN2Ma!Z>RTcB=8)62 zoG5+ruz0M5Iy7f^jRF*GVEH@d#>T^gDccrYmHTu>5>MW*yxWnBV=@08d~&vVB+CAI zLe{5;5>$7H1|06!F#eb&zuahjF`Y?vmVP?;=${_3Cl9FIpxcIoib3lb8geJy=-TpE zvEziXyh|5EAA+1pCg}M7b(?Gm%CQl|qz2_SgbZdY>S$|AgM=(sy>rb$(89F}CG)|H zSj!LkM%=|!K!KJcK-WmWJ6Ys+3~D)cPEJNa=C@y8kGs}K3EpD*9?V03@Wb>J{NG)0 z>MH}Dvc%39|XxZaAHj44uBzY8-0^^?&6hXX>=1l5hs z)BbjDPiNZ0<-a&4^%%RXX4pRioqo4rX{3qELp~EQX&3|qh~rrUM@shsDTxUPc&A^m z+uu`3DSrL!n+)90@85oZy~y%|KPbr0r)Osmf!@ZGvWHq& zHg{_%3ma!NXSUkt(PKW+3@CT5$SEj57Hde)^16W7Q_~rE{Ac{GE>jCnLL3VY27RB1 zHw@dc?92qCpa=iW{xd@ughTla;+Ia~+KnXmAW>G+`Fi3(%qFtByHd?w8V0_-wa)U0 z*%b7Sr!0-@p-ANj;zpFLQRRETJ`+RTJ!Tv=sS|B{q`+Vxp{g`yb%H*i(Y<*(!Hn%? zNAM=z>My&k{97DmJ{!T6^=O?@-&>XWx%sCAL!KY)p%1b8*9)P;An|OyY$V9TQqcv@+FNm+AhFeJrOaUjZ3CXxI9wW5oZf1-RyO z?IX`5mPZM`zgu+efREdI)53XI%^9zaVx&q#gl0&y4vaTgkKV_!;J35g%iKS-T8&^3 z{md=;xfnAmgr{N0Tc4aV93BUN0#`rw-l{y*T+@6r$@MB&J}*Ab5f`;}t}V!}k2GOv zE2pv`VPU~6qfbY3b7t-DKlPC2hVgvE$|)(^Uh96nO=K|e8{Y8k$|lrn7yt!v+Y!jD zZK=Ln?Rtkv<`dIRPDAR-nx_UO=H5jWsEL+V;Lf{>4J?C-YYCnrv5m3f1DZEviri0p z&}1_p^Ulk11*pj~>g4724Ye&0L7HySuNCMdMm?bv2Df z=wr_?0ansyir>xq)nN4_cP4l(Y@sb&(Q)aaoEYtVkX1#s5fMgCZ;9{hE z9#J9YX0_bkSrt%?20~L>kPX041Xhvb%33%j_P9`5`A8)z5+4h0j@uwjmCYS-1dIt; zN{9x&-kl%LZlE*4>n99?9^@;L91vJrIyyS9^F4b?&nl+3oJEnb8UEk}=$T#t<$)!1 zP5;vsmXN>)#Bmrarm7Z~;CnuU9C=8ta$k6R4T48P(<6`I+v;l?eFNb)-rqrB34bVJ z#DT#W?YV5a5vLIGvD?|Yd*LVyn&ORKLS(Qd$oe-`aCr+Ai8zd&hUDLQTU zGVTuT%`yi}x(G`Q-^IM*19_9bNIWnc+9@`g* zk6`NA#-_EM@25(+V`8ZCe+ZjH(YH6W)uKp5xO?Jjz)ZZIRn~g(8EMROREClX5wQPDkz6IaG(3_KV}0DS`?&K z0TqH`BcY%`DlTv&e`VVe>8z1{Ffe>-%lSLFu9Sr_?Lu{zpnE5rjSv@?L0CA6bmF9hY02PxeKpqkP%i1~(yHscYAJ zx1#H*t3c_+to#9uMCa;G?KeR5trO| zR44_sKNek4jC1e30dg}t$nF+SB?K~K@aB~(EjPsSU#2g81UMxJPjeH;o|jW!l^<&a%M&Kj}SPQ5HJ^>IhgVoRmDQg`xy-GhSOH; zvW~_zO^zCR6!qHWf7jm^LmnPPHgU~+FbDzY8#4ODr)7|H9V8^N8FXC?=laUD zHF3gfCS;gYPwO#aC&{NaqUV-p2sJmke{*T4?WQOkO^apc=9YP$y4<4)2b%@(B=?Y< z*ZC$}7#>0Wm;sqxfVvS0F5H?9`T6A-sFF;Zcl# zI~z&6w^2V2+AN#fb$Ew6n~>O936PJ8_4He|eLJbE;nMJKt& zOU-XX+${CQFe&cAR#tWPX05uFtmi6PzL zvVfOw|6GK!2EX`UD_Yw>L}ghV=oxwz0DP6yadma&$r7|?S&=;5QbxH~J6$P?cm=|Q z_*uLQMreQMp~P3#;&{7DTQ;>t0~5@yCk#nf0$Zg3qz5sWa_OfFK7e3q76NDx$LOBjrscjO&l`1cz->~{{5W_@dp=9o&(KB7 zNkZ8Xf(49fJmHdq0#|Plx6gt$g~{cOWO1T2fq-gs((b9o1nBLF2KX3q`nTvep+2l` zr}j$VNVDWN?#a_y66>ef;!4Q^zHLMi)4z>lPt;zqGMgoey&jG=N`yAAa1gcr1YX_a zTt!YWCYR%DsrGCdnA(uj6S>HP5Yay$r8MrwY*$oz=T-5Y>+@>9s!w=p^YVVgObbC$ zwXA0LxMzgUHZGRz0o}K*PW(f+#WwErQAtLBHr_X;>fAZ+UptG^*;G&$j)lx@lixPv z(sg*##L-J4a${F}eoHD%vkMZ^L)6BOS zTE=(3>8OZ_DLj{GVm^+OW!uPxp$7{svri51venL24dV`Z;&!k`Vvxy7T|-6k4_9B z3twTzSYjB3zTQbF&pae>_r$H|BOrKk@gsYPxLjo8>3Uu!DAXKYat4Qj=EmQe zc!;#|{o4%F+}tcHCszWG{n5@`FQNhil?!@aS-hqdhYXiZv_<#LY`+I+fF?4Fi+>q> zai$70|0D=>;5rG9qUa+o+5-1TNqfpyx@bbKViXS&GsJn!?{W>iO0TB*7;3ID$>Lk_ z&Dtu_JhxmhrL>Z^)Yg?(;;+1~^EbYV9*#$boCz2D7yqAZA!|?tx#)8c*23U>K79xx zx-#owCP@DIMNqCRCADzc1FnY>XMNZqN4QE!>V0SS;%aEQrh^P!juQ&8psPwXVfzKn zW(R4J(g9v8MgH5nr;K(n4|M(%NMu2##a^($y4mx6(81y12j8?GRb9UB<%h(1J$UmQ zhPPBfRa%sQ!?00pmaq@oaEXJfg;yny`&T;?|3Qs(?1>y3E1Xpt> zUI@Gb%n%sWJ|Mw}vEF!|)_3=qj-A(T2zzg>gt8>Wu;6`8;9YncO`)A}mUkX8{bm2Z>gKSP% z=9d!Rk<7D7^(0Sp_zCN~SMyUvo1VlY}-T0Qk(1j0nqe7SEc z_tGnEz@9rhBg4lVobqTodUQ-ochiQVc80T8$WNcz7Bfj+lTuz5CQO|}Ya(jJS`>J^ zsgO^q^z}om{fvU9Cb2iP5F?q!=(}HFXhBvou^=_-!(fY9)rgnqRRwKK3=H3o(noGX z*l#tTJQ)C$h6rTWr_;9}w_~{9l|c6+JY|5NAc%~(#Kq#$k~@&k$FNa{^{z%zpbMKt5+J>=^g0>Lsdccdk)Ug_coC z5xq(+`u`YH#@>7v*bsCfQRxpK02g#V%X#}>K9Q0Tse^WWJi?|NMW1W_Tdujr;#$oS zCYfl28Ht}mkBcbFu7F2HMmv{SW2u#EuKLFTN@;y(gW^rO4g$F>euRhzvKL3@_p&v3 zKCl^-$>(ijZu-ECG9X+gymGgV@;sgr`(piKTk8t8+VjT2-dSR%(D0_hQ6%R)=yYgr7Ks|l6>h{VUN23qxeJTX@ZCtJt2T%bF z$o?=h7y!r_rO#W_`I6(V72E!DrnG9ZB}>VMSKc1$r$Wa>&E+1{#~obiis;Eb{GQE7 z6p3IM)t(u?f%lvK3<68%iA<8f6|OXGjTT}FE>d`nXXK3T*{0re6S3{GQ|QmV;)KSnE8|PNWbAuD^}w8DrR} zF>GMU`K`;R(fH)&LY5te^%EmkQYX~pVrG|j+^M>^nK)k&?VsQ7G!AJpdA_1@bgDnI zng6XK*hc7hyUwW53$gxZXS=;Ug}BF28$r4v!LFD~Qd{mv5uMvj)88bGjg70GHo>?I zXYz}kSrL^J9?`9S^A$S=c1Mz7&DJ3s%n}2d`~nG;$DZ6EhgRIeFX(fxzHt+8TIZf) z6=_9=Nwo>zB~C+k@UbAd)(Ef+1n&IVDqL+@<|>J_y^F8C9Q|ecdPX!Qh0XoASa`Z0 z8W6M$UL_#bGcY$Cy>`0&1_ZfC(Apc!OSSP_`k#G}IblfSB5xf`6$gN5B8?=^yuSJ} zkmTWYE-^x7?mAQD``=fKH%CZQ zAzY+~FxLjsWQx9KP8@BUQCkOPS7cE~jtYJefx}jQ$nle_$GK2MxxI)ng;1#bc-O;;+QS`mZzb&Atz+Ht4lX zdR#~H;C4{N-Sz65qrYTjTR+^0M9|)-Vh8vMy3d`U-4}wgF3Ns?bJWxMeR1)^^4Zi( z``uzAj%5!{=*r2AN>tJ7Mm z09`}VIwd^d4oCWawd`AS8pfd4X?eU^1o9cu6TpN5{4_prs=5c8sv2`!} zKJAW`*JQlj`b?$C)B)6%$z6JIk;%vj^OVUl16AsE%tMQviGcyGo3U~H3JKk=zd zFqKbrB=8;LBD}Ip&=@uTVab0w1wD`Bn=c7otk~9ToXBdQoxzCq_kGzvy%i3FRa5Ua z;7Ad{jno1hHhn2~BEfW(-`PrBH-~KS524Za@TO}_{Jo07%}?xeVJKN7hqo9v7qsY_ zy1H)}g4{5t{qS_-^9%k46l^?y^($T$bE)k1je(es;MF2De7+-23O7;6UrOc;oYtU% zjf462?MN8szB`Ks(}@V(+VP^%HYHJ7Q^|F2P1GkDahOOzHq^gs-hbCT=GLAgCQ3_{ z^f$fREtbj*;*~_P%^|l(rThw$02)dJ!WdAz$|usBNMa#8b_iyK^qC@xTCiEmG7&#w z+|E=5LwtXKzuVm>BxWarrxZj=VcppSFMLH^d3EUwG&|s@Isb0^b@;!pV^_IizfJ9Pv~Bp ztRVscP>kb3PjM$yB)$x5Hc`o*ei2tGi78iMM2hRtrTQ*N^Xp~PN)KE1Pv_J|8ZUGp z3?%2?k9s(Ck*pX<`9Vy}X9br6GlF#wm9gcbza%H!3TjgnYEh1I$$59A!Jn@sXr^Mt z%tU;XHQJ&pOGrz;a5Gz|^5u7?myUW|4<@hegf)!s6v}8?0Fq4;PDW`Vo>KaqaYKe2 zjgr@-LmJIU;K?$`;C38U)6%AsV$7MwqjQQ1>*ya6q6!S8Gz!OhAohFSObw15Xz1{P z2%ZtJdjax}&_+nyH3+i5pf0npsQ9|vW@(lT&kZ_=_~IWY8R-SdvdknOey zJ&zF_D|xBnIzn84XOiPqgy$PJs_w2dENNHTAnC`)LIuh~#wGfHV3(g%NPJoO zvAaL6!qV;EJ1;A|c&W**+$>ZHHK!fUpva$%w_f<>PSqV^T zp&eynT5U}K3>>asxG%j!*yq>{csyiPdpW4cu#q7plWi+5(J8|3TgqQ}Y!P*-zwgVe z9Rnf>eATXd5RCtuT80P#b37*Cf!6~AnJu7OnU0c){WW9U#dv8YHnYSkDq9*cFJ zhEK(ZRrh7rR09bsf#Y>mL(uD`vks*w9eI3@12GzWl2^e=09rxJ#(8zPcpzT~wbdte z%s2mPHvCz<@~M8~7RFz0N0m}O_H7d1(nvq9Ow zjif;#vO^fL0|@C({2qlO$S)$6s!$fmHx(*U#_VMFAi|3FZRzXSnh*_}uEuX=w&}&vr8M@w>&ZDt(=uE2UjD zKeQ~csl>p5bov8OT(SDI75} zEnXH`w;Q1?=nhaZ&0!%kH()-jmQgzrD3+F$CCkn$lVB7I%7@^Kml>c+`#hPg$!DV{a=mtk(BB>>takm zM!~JLfy)>TE-I{~yY)ZSBBd=LL>>kZre3~$N9?e!2+7o z{}LsDJR7`v!IgFaIjWmu&!YOmXao|AR_-Hwd?b9Ft`uiwGutX@(<5Au_4T_TMbI%Y z70#`5T0AWm@mG?y96QzeJ9eP=T+CqxE&QnrKLZL#kjT{(Q%TG9D;a%_%RB103n_LS>fg z_U*Ne};f%Tn^V^v;}iR(H=ql|TtkRcgtW3c&cD9JFD z(7L?U%S&S?&=v2@R@B6vm?<~fc0aeysp*C2T=K}oGqn%=Lv8OjA|0^}gf~ByA^j3) z^35u`pKZ@-9VDwg)!Gcz-nwl3`<88skO z;)5II*^`^$V;)ZnrWBec27axNOjX*`z((L6X@(#NKt?N-uJH-2#UMY8*-MSD!t#X4 zm`%a8;X#ihEOf_K(~U>yR|Wjlj>K+13?HJ+NB_Q6Hi(mvAsK412Pq(O+lBd~UVGPZb%NpY~kwGL(hPRBX7gWN0 z@j{KQvQ0?%RT6o7U*A~Q;$Cn_0`W%@*yv6B*|Vn(f&_EHsnZJy1!71q)Y;>K?{9eC zsQ~SPB}J4M6S`mc1ZpO-#ZCsq1n=t|kle%=Vz4z$yFXm2PnxX*iNhZvNT$UFJ?VD| zDmBMSulp1n`E3=PL_v!cqACW#K=3ND2l=&Ix29S&K3XqYLNW2RJ9s5EVLgpxe%W){ zy1Ldj9P(rYu%8#t+tS5&JSoqcg0OvPn45K53Wv_|uGuRIFi(68euE>kYx-u6sdR9L_DjM6 z>NeUodM8qvQ#3a+z55dV&liIRTRpvTpYz&x;QIxc?;?;?;LQsFlt~NP&>=eGov@>6 z@m~b~MUxpB+@4^3AI*c|p+Z9MeTCa7YgJ#!<~O&PmjH@Ell&G+P-}iupZx98o5xt> z{p_=k{r8a8R6C&&M~B;tR`a$DmoS8@>@gTf_A(1DBidwN2BKiuY7oLAzGIN^=hoIz zSIrD)7 z$;%t{xGyqYD^iOy|N18Z5)Ol?*br~Ti26MXaI)3^`g$K^^Pz}iq`bWR?7KU%oB!u^ zW|XBMfc)dHHw?I(PwIth`%m1)rW;NfGf>bxiW!m1kd^1usEKzED}7Kw?rlP@O&QC= zp;*3fZS7zK@bBU%;k~lEa2G>FcM$V5z^{H!rmQMA4}q_KB5a;{SJZB*Aq&X@QlO1A z8eF}W&7u@WEf@lFcL+s6Kk}aG1;p5(F`y~QO6mNi z)Z~leb)tT$AY{TfsiE6nag!UNVHpdST?{W&#SD?U=QE8lb8r3&xPgOlz0rTM=kfprvXZ|!=F;QNPPA90{c4MU z+CZ6|lM`{MK;v=%Y;A8oY{e#9d7sVt-?>8d~A27>1|xKsusnix9yXbVxHa>Q?YwQ zi@=v?sw@{E9}ej@HnHBQ$!;e%CQ`*};VwwKl<%}-1&qaO&H>N3xez?N2oyn4)EyuN}a*~ZTCk1N!|SMOGZTn|9&F(3IuwrdSCqZ zMmo6Rj?~sBi%3?$=m%M{=uK2lCH0txnKb4<+;|ii(gXX%#e(}62x9_@GA2f&sk)`m z!Gq?h4M)r7b8M`w1oN$Nfrtceq-m&m&UOAgZNLzo44JFqZIGnU3C4Lr1zS5#tF)JT zqu75QgTojpJBH`Ph=C!B#nSki8SJ|T%eC5X-wXXYr%X3$J$S|w~T|8$71n}O8C z+nSV7w-=N93LR^wewXox;w_m@_D_a`!6&LoVL~m$*Grvx*4c0|?#wxpBJ5vuLwxbc z{Kfe^Qc-QtI3l$5M@RKnNX2i?#ql)lS-ML+M01|tlAo%7_(IW=C1Rth(MM8#k!`lY za=KMj9P67yqK19q;;9%d8g!Ghv=QMRadS`Zd_`R{po!Epsvz~LufGe`uy6Y<&A`Qg zl#d}I`X!HVCd=8I9wGGw%I*7t<#!U9a53N$1aa5-r7K?`(F|C2n81N6TPJU43Sqi+ ztDt}|X@8bWKNJ;&l4Y}*9W9J(X3)IGoy+~`+tMMs_6H=rDmHa?1n&#bHfpKD&2V@t zwr_efvNB(Jp~YvCc*RJSJnynE8_AYkyJc0GQ~PBYF%i=cGDY($Te1?oiyU*_kZ7kg zV^>L!7)zDZJb#6#$sk*$2V~aAFbP>Zr!iy}QW_fx)F`9FWh(dms}N96tapcy zaSjdvPpO3%Dahl+GmAAfl|EbXI}NF$Fro`?!3`%f+k_br5y53HL3aNbZ`0e0HtKI0d z`n>$r+_tq{r{=;uSzKmiaXF9T#<#TzerW!_&u|E++rZ9L4Z2U1n%2<4a|qH!EavJTsL&*SE5bLDXvGsVW{;r22@0dYbu0v;C6=4&?^%Y1 zetKF)v2fRH@x6Cj#Jhau3c4Gx#t`=0+#UNWs4kbE%>@5&yA!$uk!T!n8Fh8@u09wdl28gUA(H7|f+m-+lGJ{^-8IBakDOBX^zFv~yZVQZ z8>RoV{Qs&!B~-Kmy$Ptv5oL*}5tUSXXH?Q~n{sfMjemjz-Ac0z7TI+~z5tB%dElVO zK{l(g=*Op+M=vJ7T5q#um6je{msoQh9v|-j03(n^QH7_!iOG57Y)@(B{oc0frXvA(2k<*4I=UHAl-pO$31xgvh>Md2>HFa!0oE5f^Kg;K z%8jg4XF6#zmRV&QKH_YNzoW-GMM;ld_qp1|@7mmEXJ0S#1UnGClW0T!BmAcD?x#`n zD=Aw=nXp~*n;)XL`!HG)y1>4M%Ht!q_dx$V_3@umd#?!-hH7ZK&<7Y9LR}!h35H!6 zQ!Pfk;N!T&Pf`iww5#TeMelr+Q>qeHS1muNrz2j-8hA4yAsKOGBOxaU8*6ij^{$1e zukAY#$zEQX@Jw%)ia4|AM9|hvc8SQ2akDtxk7moCdw+1n6vn-O6j*Qz#uPrMWkt2r zA=HhtW!CKGqGK?luHoz? z7(%iDJ#$L{(B0(aEgAf+3Ysb;1{bzxWO1NAIBQ29O;$_cUw=WaXLy+_TtP(h7v61X zyN1fUyYOQJ4r^m0uplTVCU)Xu0`a9t;woU#VOse6l`7^pe0%5mU|OW^cL!3A6B%hC zo8?2f2|wx2;`M#^A0Im0(Y*8gkl4u?`zmyY0g<&|HLRekFFpp6an8!nC zL^4l%;=Wzo`Y&DyxyW??B9`7!u$~j)ZE%>X?-hRN9;2teyQqL9gF$0khpQ-h<5h}K z)+o7UBG!_N;{71njp2(<7Ls5FC9PktV7yV_p=8mfCLwo4r(Us<=)}ati&Oh51@A%r@Eyh-7c-);FhTXP%i}NUnQuPBZ|5>} zxMWBLiFzKtceWSE&JcpE*z1r3dhNk%s2CG1C1UmBPZPNRO`TVS`e7Em35QhjAZC(J*j(_?Vnlhs;8;jh*?$4KHZqP z&QMUmC$Q_A$A5>?N!#ndmO7abA}*0)J5tuv;Lfbzl?tvv#qfKA#m|e)JU5BaNK|uC zjIT>mw2E1sdu@_TFX-iAmg`%~e?tu9^{*&xR-s>Jq@d;>X8V52oJ{@wHK ziw8jIuE=x|t>_PE*0Y9VOVCWJ4cxnUO@>{1DgD0kw6*EdrC~1XT+6U_8+DWUh(vdA zDTn8>HJFM?%XQ%x%Z>0e=hQ zLI??MK^8WJEs5E{+3k;&=9NX>07rC}*hVv=PxUre9>UtL30PRBkyp5W!q$}kvT?mCt&22S5+kd+#L$HoZydANOL7D zv68w`JdI~9mxaUB3|$%XvTD=jA9;gmxsAHvnC`81Ttbfb6Y(9Sco%|gboA)6tj`Vc z-#g>Uhx+x17e=+B7c85i9pGo7P-^}>Pjq`7U!K@1RU8`K9ax`0(RPGyei?vwni@*P zvy5Sv>=O93>mY!~%R<9v9Wwg4=)_Y;Hxp!A0A3u`5uAbC`Ompmj8=fQb_KZx)q9~V zU>c_Ner@^l0w!v~C59v`l;fM5vAVEFL{Vo8>L}513s=BO_8KkxgKPHcxcz)yF z&sqAP+B)yd;tTh&XG)Y{D)r}BY@;g3`sx}NM9tbNoFr89uEXJmRB`&a=0;c9BpuFgOaBzTRrR_-a^LG5j)_2Xo&QRd(0HhD; zgO7@ex`f;1L{!!-WonAPzP?nqC@(EMqsD;SaEQVg^b&jjxOyuJXPDr;*KXSBuY zFL;vWIGot}fYO)*q!$}|TF?4nIKDvNZ>E8S=0CoLQ|@Qph_4dyai6@T?C9()bJ;e4 zSh)M{?!4O-?UY=EEPliyAIZ52V?y(z?+25UYM@trjqnX)z=gSlYMJs)YwE169h8Qp z)!_o&9!AA44DUH4JB*Hw?m@EU9#|XEGf*PF{Vh#u>y%P;0ZEknRdX&hU=G)a44ZsD zvfU&|T_jLJ-(>zdCVt49v23=DKhJtD9Ikl5b-01f%65rG#37y@c~=vbWM0f(hBu$G z%-BSyZ;FLVttK)pT0R1+62L7@lRJ!zZ)`u+1OVk+0)n)`rd*wQ z$q8m0YSm(*g-ObWBW_QsrTxTh@L3J`)kA0Z{ItBY{sxQu!@=g_YLOpvDjwOvp3$rg zs=%#l@>+pS&qOdtlc%ir^oEJZq)eE$?mt1M5RqgY!wJ#Nk}-lbno&P+1+<1MZ&PzD z*s*7RaJv6XUsE6^K_sHyS0t&AkR&ER>%kYyIO3l`|)2o_vobr-CqIqd> z>!u7(@ftL4GBM!=2mt6?JlhRj2-V=IuYnbR4DN>kgs(}vZ)eAe#A<>>cPaAVoj9GY zZVi0)Zh(-WJLqed7-|J~Nlnk{B3}I0@C+cA43PB7MaEjZgWj`JC?Qd++_^C&!Lp$t zL1&cbC;tEs^f*_zt9=}V`=BzV1uzpd>*vL24BXs_eIL7_K-Rhc{z6;uAl}=0M1KZF zqQgT&J`A`p2_9{JyM(N*w6rvqoUkU#36zxVaK@K=wU>YA=LsA`>tdb%Yy*`YrIKzo z);sNaBg9H;mFkEC{{wQFIXQU+TDEthFE@U3-_8HO*0|#T&iAeGIOBlK+ZZ1GEr}x` znKG-GWQ`z}cY7y>`8JbEp1mfV6dV8?eVzBD&mHMT8ifGY0&tUcs4YkjCq;p`>m#1V zcC@APnFkve7j}kRz8Nlamf57g@L55k%X6;oh`(v2+mGdP>?rK(YUg64ZC*2~Znr}X z`kVXQHQDoKfdn*&W)E??xIw8V8#lMSt}YCN@NN=ffR@3HFX4WzTB0m72P~kYraVrTaNnJ_0FO%n6+QcYrgH~qD zI2k1k1Y2I7jrAy6f_Gu%D(jB7f#0P)-2DzX+cI1!bF;ItB0FUmh!}Wz9VMk; z|3g$j$7|_uspk=WPOs#cD-pV&=o3?LJHJqD07?^)4Jwe3ZV`MUYhcx3AsV8Ob3UP- zd~tx;vGycDGbEUP7f)0~=UgO&=>>e=raY9$B^iO^(S&#@NG2BD3DpuVhZL>!>&B^p3~}=ya#HID20>L8Ul)oHz~2(di5MRTF45yx`km+Wh#T8E z6I$s0^IDt7`S*ahx(t7jj3ybB)%27c3<~26Z|tFgyx}$M?4I&hUSCHN#VvkvXXWV5 zxY!egL9?UezUJ1v3{)OFR#LH0e@!w^Z+-Tgx;`XStzD_;Q3u0QHZ7I!VQ(m zt(Y%=x!4kLAzM1QV-l*wGX6@rEwmzMWb_FwdE%v(XI1|;3MsOnYWCCy`w4LTVEbpl zl`fY|C@8@4lLD2NNQA)i@72}VW#%{7PNU+reIYJDKOAXhWLOMt;AYBXSc)RqV}G{6 zOpeccwEdYNAKhRD2Sl$UA5=HXA`1!-halW#zB|=GJ2MMAJ6^6f>3wG9>cJ(on_tPR zh8}z?@o9=m(u79?d=QZO@`1NFv3e$4DTr}GAoc5aDM(&Zmy^RD8ylkxmlqWk{cNbs zOR0wEN$7#2Jy0EfG!W}tU4Z8=`t%u>bb<`L^9K+>#siKwXwSJ96`Mt_9Lo}{aNRQw zo`nwmTqdR%3+j-^Ay!pu_nG{=`3P=EZLsehlig7`n?dX9?q=lTBFG)VORe2y*0%gb z-!QbOdLC8x#G+W;9M9?YYkykXMWIv}S87jT! zb{C234+?tBd;8Xa-c975-kZo}b(lN`F;AJD^>sgAwVHTGPVkrIe&5K;%rg_SV(E`~ ze_HorhhM;q`n@Dad&MSbomrS5tDt!@Ti-V%JwcHRxj2Yb?i%-wbKR?*`5(l8_up&4 zUrgSVe#F*A^Q`(!umg>h)DtB}UJ!o5m)$+JZ*SNbs@&x=`k3W5|%^ zVjBxdqpmdZ6UX2rQAPaH}GA}{uL-zq8vg0 zY-GeyaeCTSOsXcQzvo4se!b5nZOB zZXxd~2!pg~sGz|04H9I16GY2Gc4R`<&th=u^5DIL4fYrLoK%H?FBu9cngaZy7OW;B zilN0ZwHtJ}xY@~0C$zn6Ne+tp)yqPlT4Hq-K|5aM{n9q4ZJR7z${4$v@T$^oss%KX zr(3_xN}N`d>z~{XE|Ec$qrh%GS*_W6p<80wewk&sX{cTVnu8U{2z-&Af*8IOnM0HQP|-?rrTb2JFg@JY zQ*r4tGHYULuJy0%MYn=@LAEmm+_Y%+{q1bbOpky1m-pcbj9t&3d)OhdmKfw4r0|m9 z$LFhsjE_Pnm>2PcyVdB`1FIrBj!XlR6r!*3vrfAvy<(MnBR*Oc_oAKr0TesDk!XDJ zKPXN7j|-+T05p%US^{5suU66-?3W8pFJo+J)iT$01m5^aqT&X!lcu)tUaP`5+A*ZW zr{c~+RgOOjQtdN|dt(ixI=wfEh&6{EwQqkjs7yS&E%bs3r#tMBzA?>aPx!Z?G39KrQFTiDStA@9le6w&ymh z-;bBwL3o4nG~ZV2vSdOI5r{-6^S--5IeS-a-UGq{R1cZpv(b~3z#~zGJH)y#{)o~N zo_SsTb`Y}J#>sl?8=YucmJ2r~Yx}$Mp8eb*y$>?;h)ekeO8S>AS zMRA7x#byJlds>H3ZflT=3&8lx9eMcl_A!`T)7Dd6Sthz8Dw{Q53g{ zZXOOeOQgZGFs>+`laq5n^5z=DfP}*^PvD`>n+jg$)z~X$&f?Aq1pN;v-h zeO=i7)BCBQa8nr^!9YZaur~K;j7&x>4u?PRv0su}#mSxR)@2S@OIT2+7U;MUiFREBDfTJW7?~m@a!|2#i1+^n# zOGspZTW@)y$HeY$zNTrL9uBiTSkM%EnwYZAr|<&Uzf!o1!kdkZoq+biRjdR$0-kuEzvPRN zC&sO@cAYS$D8i4RQhIm6@Fs{xF8o&r*1pS?&#MABEzgu?Ny597lNb|t&yTJYO5H7G zMboReo^7bDSJ&3^_lJx31xIQ+5CCXhJx$m|GmoY{gm@(`3>SCURpe=8O06^=9f<${ z-ofxLNqG4dEk*x29lk9w>;7WXz#bNRyk$+oXA)^?roqt*>T5}Z8H`%p5RN+twOpYL zsU$l_ZVT8jJgPlDBs`P2DdN6n;%ZJ5jHReZt*l@u;v_qRH^lZJ3#DaEsUDUga^P2x zUfN}{u@Vam=EHE=pKrNXi_lCp)~V3Zr(GpKxnt2aPypSVbEW>jt55V|?FUA21iaMZ zK9H<(uE0-_B)VGXWYvA|B%hZB`^2$ml7-~x3 zJ`2oxgYhMo``c8+|% z8z7@>oa%{Fv>*ziE}uoS2iwXx?GY@ky!d{3c>Sh{!joybbJuU#l&inJAY%TgeX{jn z9*vrzCB5vQAdlSOrNmw zxD&je`>EH?L1V_n-@MZ}hR%IxaPmA8MZ}SFM8l3@Ou-2g!a7 zsF;|R#rDvD`VDxN7Zlrb?S%I@X|A5V;|etTQ1J9B^wEIcIAh+|Tv9+wN)v}-(+hVF zds@vE@5q~LI$Z+~(=1$@iYc5$O)7*cNHQ7DvG`&>td{Cn@e?vlOdvqmMpJqhCF z?&UuM%afYLPYhWuS>1Tj;?Vh!CFyHal!j(>?d(XV2Ch;J+x~V=R~=3IM?4*3LD|Qj z!{$C!_{S5)-c)CWifg&6x1}}7kB)_g$ntlHCx%$>ly+VS!WZi8OzCfXit&w<3Opz- z`;uDPQ;gPCl|Eb?lw_=YvpFszEKFhjN6mX&GV0D)h7TGKA9h0|%_(i`y7O1)1><53 zuGLfhOmEI@US&(r-XM-ert0i^$&lUVIG{*(S9VEYiR&OjW#IF8vPiPwKghuVd7vx`A^}5>R>( zTvcAahj_6deh~THlRD);|TCeQycWprt5V8TWl_LVtb(4LhYC8B8V;GHK-jeZ4gWTbnkal#$uV~D+g zP-a2I$^$z3FxF^bZjeA_sB>)@1nrMRB)HFSBa9w+Mj&Se8k&$gK170`jdsEaW@5;4 zNqh4F9lJ@gO@`s?7dr8`I*vrg0lX@F{gwsmrXPL%z;Uw=t;$F4XJWhcGG0$4z_E@7 z5@=y@-8dn;%!YGeG}aPVM-k1au1Z2H)0Vekq3L*%1s1qwF#|HXx_zwtE_Hs>-|;G6 zdi6}$@0OOFV@7zW39=*+D=vR+8}*H4 zuCcH{nqj%+)-?OkHfuJH(w$YlX1>t;%KJ&i@04m86Qj1Qyw7hb8&o;9)X)*(%GRfD z-JM)JBh!tbFa@)xmx8G&39K+7*H6Z|n^#bDk-U%j9n{4j2F)vj#&XR zMB>AI7A+!wb4)X-YA)PG1?1z>uOxZj^kvwC@Y}cJ<9bND-Pe(kcYv56up#II0H!>E zJ_{mTESyKZyRGY2A1fC$qRK5XGe6&{4Hy`3IwIp@q#Yg@TQ8t@sE_z`)Rv?&pj;O= z9K1$srQA$sojInB*VMhY?}feNlJnNGh9b*Yo{Z&@GEM2U_iI^20#E=WP^iQ1do>WE zL3@fAaCEC6M#Ev~yc;H<&CUEVmg=ea74moxv#^gpVl{u#H|6)q+`I?>?t+VrXe3hz zPC)j1Y)P3@$BpR-W1=wgXo3!G<_ZUMu|C{2Zbo}vf`bc{! zy}e~~i}ljf7GV)m@U#N<>!8)sXTSslBN+^FG0-0!%M;O8P25Jg4eNK*g+A+(45{0f zXf+bmcjp6RH0xLl9mdS9qH#yY%oXoVA(Tr|SC<_4HE#I6Oc7>ZKv0kuicvqPrS(7pN|u_E6w&9IZMVAyECELQC=?%) zC5c~HZmC%j%8x|`XMce#1k)pbLwI%!RU_3q?LwM>x!kTEwEC&mw}?!vYKY3t@?g0e zvDY9)#E63kQruH3h3q|JVqy>(P7Tmp&>{qgF_x4hnH&;vfOL+-?${|Y{|az^nFn_M zA-*h1NLx4<{sRz<%cYK&nk)MQeyg3+_bbAVqUw9gvFae!p+Gj(F`I2y@y1YuxP&?Q zGhBqRq%sN|ujz)@@le@!IpIFUQ#eiTw=|dzS$CcwS^IH5mAFC_KQ@oXGszpEugzET z!JNFMHH%q}u^?10H%W?ZyAlx>i~L&Vrh-L=ix?w3mBH-{EG`;0EKtt**GY zgd;@xSZd_4PIYsSK=S|b$rsTLjK3v_y8?8H7vU_5`0*XlH&z&3+R23DaY9x+5kQKC zg=G&i2`}c>+@Wqwu*Pt&98ojtDK>Gp zy*OA_g86U%_%)(zf;I-()3E;9D1pxW3ciP&Z4bZl22-e2ZfA8EsU+m^7&PrTlj&x5 z6!$ZV$k*L_SSf8I-VQJnQjo2qYfd2@&Thd{yhUvDtMn!mYcnO@z;^b(;elNc)-l)~obi~=L9p`?N zv0-Io%`7#hj$%yvhjV2y*X^Ln&*gLrf^!4um2%mc?FO08asOOn^V0q=O41D8N2;Kx zvdmnQ39vI`}~BU#*^;Z5kH0c9y5;7R;naO2iZTLC33s_6R@Ei;i>sxV zH~zyQk-HmXqQ#9Z66x;mtt=z`e>be1muRlvRgC{hL}5l&O2WcmOHhH3`0)7gQio^f z<|9b@l5-u(`E?&rGKHP@WK`4d+8Na!6JE>(mNPys3{tn%%jJm)8sIR{%Tow} z9M+A`(v|nw`@s$)3pjrMV+lfRRG(d2pN)&N!$jCGA@&~u`)@@4xO!p|^LUM@4&}pb zQDe3B&1~?o%T<{8M-bulhNK2}=m+pkh&xN&0PBtCt2+inw49ix!j@*!lgU;Oucfba zvk3udBlr`(*bDE2Q2S#SRczJU{9-oysF(+s2<`MjVtsb4z~+W#j4=>2U%7YExi)>3 zJX5?TTx~!vt^j3bN*3*GP3^|DZ&$s=@+>fT`@;1PMoCJR-nC+A$2Gj^`U9}pv@LONvBZrLjR6Ycvrd~M@Z~CD(yR_=uWK7NrmI>^LKtXp}=t7 z)Ajp$R9e~)zzmt=dA|ZrpDvfAg=6#(C#LM1a&F)$h1BMZd+OVMk$sC@$X=`4HWI#_QJLQn& zt!Pl(1_L$HFd8fm77!rgT6# z^@Wm&XFa$X&>9Z)>M{`@Z_96c*ds@u(&FME%yQ5DM`l0**h`i3W1cs;j!f%HNsf!_%!O+_ zKf!!K1P%nD%H&%lG4_TLR^SM`()FmRHEOV4&Hbv)yI2&OtEXD*H@IX*6>|uE?`o=8 zWrSl`p(4ma&y(%kz9+I;1@CS*gwKv(hF`zo&|liw)phu_@q~o8#BBA`S5N^=jy5MJ zc(jZN6{W~)tQ*M+6NvKxEDDBi09lGF0wz&-U zp^k6xwcZ+0WTK(s|GiijJq!@NSiad1>{7EhC6kSxUAgD)At<?up)6-Ipd9E`Z5_i`*XzPC@Wm z*`J`kr}MZVuoHEBkji#+{Gd>0Xafn|$p(b5T3|T%d?{g_5h++aa$0>b`eF1*8-yFw zW-B8sht(8>e$I^kWG8#ImOxK#)~zC1n>IgV6K+y?DazZ_eQs%b4CvuFfKtp-u5JH0 zrRjepno;-{rB%pimA%*+iz^9mv^2BQ#g7J zRx0ltziQpg<<}JR)eREo;2Pv=nd-Kd0kJW}l?{U8FQmjxLU)8^o-#(6%Q1FG%K2Mx z#AJPsHXr;{?5w`BHzPOb{PSfnp>ey<1&~yb7dv2G^Q)@~S{H`_Pk=ZjqUeI+?mdZy zrxc>z$ZMYz$SPC1ud&+-()3V3$B_+u&V*ViCms0GBkN zUG5j_|GA+?2rmF683>U^`!CvN%SW}Nv#wZA@)_K}OQrUm=7ew_N8@4}#Pj5z1btW8 zzb+&IQSX^bV{{Pbfl_}<^8(Nl)P;zK7S+ONB0q08Q8eE99E<>N%Iocjqp7L^-xj$lZK4m+dV`AJrKBy;wui_%RLU;d4AWOS!ux21>oL+^1U-`xQAn4F!k239MOd|hZNkO z6wlwJgL??@FSGnm(H>L<<3r25aKo@p>!%;S85 zWQH5kfQRgf4bKAtecsWLV6rSE`<-d>O=cP|9FGzo_-mrpV69RdVys|4bPAHD8>&z? zl>K3|=?hEibU%51dI=9@UfV|;IUp!YwVd2V3eUa|rw;>o-0!n1i%;u z?e9`0{!HL(NcqcvGCOIisVtySDnVzAwXTXc-;SIn(45|ew0(#XL~CiiP#xsY`aEkE z%$Kujx0lG~fO~kbAbkoB1%D(Yf)mB4#eg`O#RUHL zgSdq>s2o^>8Dp)#>xuf5S4!ij1KU-2`Q#be-;tHfGvr|OkwzsF74K4k7ZBL!_@RGw z^2uz(|9`5G2a7N4{{AM2cNrl6BRgA&m*9i!-@}vQF3FNby^K|>x-2>fuds$CpPSRQ zR!{iwR|4eVB!s=fUBVlN#H)odDtPLWPp^}M@%b?gm#!7TcEa_05a^&M!Sb?jU?9Ol zE=VBQ9C$PXNtFxEXt2a%`thun>1#J?Elcx%~ zAxbjRD^GC4j|qp!fO|HGFso_uToYHiZNdAyxsA0oog`VHH{R`@1ut~YFD+fo%B^1p z@3lqC*KodFr98hv)WrOjdu51zjAX8~W$1M%nH%Tmu{qM?d%QEZp_wwG5*_|*GO6as z?b!^%qk$0PG>Ap6k8X{|)4ihMqoMcq7SlSX5muTzKzpw1JSv^?`gjKMIwC$v#AOXJ z=_$&6_(jp3@6Png`bEi(&;FsCU{duH6wNWkYrp4<#W|u) z1~Yi=Q+OMKOnkpwC`)HDWMGECLku&^UDg<;ee3UbZ_c0Lj_$%&-5Ad8=}^v4#U$}q zW)a~pr1tg|FA2iM?$T#o^(SXY`JfWj=C8JW({=@B0_>X~@4P8_K>w&Z)zQW+C?`|Z zZTY>?q;WMCiW-8>|dp=Fi`=(marBmL*Vk+xz+%e*DHTSs58F zk6%B$rsg27hqz*8!_C9c;3OCV(YB+ZQQsfvg=(%JL-W(UlHgUS4sC=T%bx({&n$KF zTW3o`s*^!#Rr48Q1#W;;EGNk?(L|U3u2@@If8b-oo)ZRyJu>(~GXs(h7GyuM6#xNfJV{)6CBA4^Xgaiz44T}x8 zG*_*GDGDwrE7r&Q`oj<}PylF4R8-Vc*4yAVMfm&@ zQyOI2d~9io|g71xJRy)CKqh-D;Af>d#I3}KNHF6t;B{>^7X^ZZ*WCMAL(@WxUrD&fT8$? zMff71ERJ6eK?ev-IWb8|!2?rLVTTx>Q`c%nB2*f|^jG^7y-Rbwkyv zRP$q3A2&6n???#K8a>TG1)_vBVUBGjnrqClhpp|-pOhwZ0Ra))`FgLd77Mtj2;N#D zC^(5#n{=q}sW0*8pJ+_<-d=-hY&BemlS9Z|A`TMJQ9!+kKx)YU{e}O|VKGKm*0@>3 z{>STjU`U8DG*nnGG{!;Y4@QLSfId#@apENL&%P7Lj-+IVH2u#qYti%HE_EHf3xJhq zpEw5iOR`FP>gh;G3{!oW0uiI281+c@_tsP-z7PLmSU}<^<}vXnhLMr;MYeT(=e`J) zHd#~bFt1T(d>^y72&Q0_qa}?6U;w^me!mUm=k62%rvl*343gS2v?kT@48v=ZJdIH*^2Qkx3X&E8Mic}s@e!E{8i?=>D~zM8 z35kiTA$Af#^DcrI1`W@chqNF*!hyQp_fJ~{^ZN+un>1cW#rl;{c~kLe zu6Ed+)6bkH4d=~G>7zSY1q*(8k++r%7S7#$lk9)QEG(1wg97OQ?G4K~A2jA$l6}6P z2uw7_G1$>V_!!~N=>lO1`J#bgclpU{ihVoW^>B{~93Xk<2K(N9+sq&L7`Y6=CH?&2 z;{3cW5*1|%E+~>PGP!Te^_`R64bzyLon}%5RXZL@HfgtdJ+y26!;9=F)Z#P}OJ1tQ zRLDJCw1X)#@z@Ea;706mqgU>w`Kej?*o@U@vmT)rjEq+Urq{e88kaB?ef+rDG#V$9 zRD!#pDsH(4X$s0>GLgc@-TPCWKzC33m>UH!XH8))4Ph$72g>sD;%aO5PJG@xa|Tl4 zIeEtfVC-uy8y|5;k)3mZ$Q^iBWm?z&C=o#S$i4CwpEiSx`qzACN?QfH!V1~>DFkH_ zuDm6AGtWMQ)8A8S@fB63Y9N#fAe0oMYUbd~8SX^)@7RjMhiLw$!=2W_E8z4qZu7Zr z$awiav#Kf@f%5gyzh64E2;Wf7r7WMVGuYM=g7=MyiOH)q)3E<}GzAwK8tMN{cD_YL z2vkU(Bhp-PuX>192JbHYvi$>lAjL!D$06J9&!*hw=2Qe?UOpvh`ekNfa`(EXKXz;A z#4nBe?IzUs%*fDh>VH}*$zyeo9FeDS0Nk3sdoyHm%g#4kzynJ9fjK7$eT2Dg6|2@D zE{o(AXFQ8Or|nFTi-CXNpOr`c!^#^!!m$r z8H+4uAzT!3@BKY#9naA8KlB*pP-GCT3G#TtjH5!yeBAaFE6UyXKACPVstLR4Xn$k@ zrd0ARf$0{a*6n5JT`+^M{q}rA48lPN)W)`}5W*RSk$1xt2jM`$_zW#{6$_U*SMh#_ zCQulLA)ZvJ=-+(~VgyUO^{Y69(uVdcCXTBr%{a859XjW#0;^v*)_V~kI(+3*p8QSH zpmnE$jk}>)iS8Q1^Yizu)p=YcDasn9laf_L4GCYLygnhFsC6sx;fO3J#t*Df#7i#Dr z#RG#CSeNti4wBqZA3C!HW$0D#SQnkpGse|?Y; zny=TRhTjJTvKdQ19wAm#VQBbW{t?110mL}uuCr`!@JX&DAt$J=C?@;u>rhUWE&TJW z411o82iHCV_4AjE<^Mdsm-zo|0zCR@-Q0UfIT5J@L)^@Zp1)R zl9T0?N&VPNb#1aUyRo8YFrR2!!<~^*TC|)%user@UR0UxGE6_gGV87o5OI zM8B}OI9EnM*`FV;*udClSpui8$pZI*#sXZH6~BNFM+66-{Pd$5V?P(@&Y_$;lwmRtO%|bzZIn>2mrI~{B z!QV|dcSCLjXNkEH%>rL$R!*Y@gdQDt7zG`+WrfuF?TTQ5HHlfW&}Z@jQU*K9cLbAeiR z%UBA+6Gpjg}%^#=%G?0JX*)f6tBdpH-=b=Mx)*#lGvf)Tr z;`xra5pYCg2^@}%pS%A4%U5L!ohwyUd1~q(Z+q7a%D?`S{Mq%^E!mOjiuB%IxvyU9 zJNA0J#D?IOM3ExDHN7<(SmIxSFP#+`uEsH1C}^Qs`)rzs@KzUAQXH9%#L+ix#z=#~ zrST!90;a$$IS@hLKyd&HM_^us@y}|EK&-IT!Lr|z2nI%9d+CobEiEmq#fcG%dROKv z3ZuIgMmVN4KGqIQdbI?tn_bjo^0ioW_l)@Q(S*FZ1}ei}vCK=$MRy`OB_^*1&0M78 z;pb0B)-NP7p&xH~IzM(FT(?;_A0?;YxA%tEKngfTPc}5?0pyKRI4XJmoPAOxwi`!j zDXccf;iHn1xW@~=8w#yTrNULmUQT_b_1`q2Fkz5IY`MrRjC5v0yN>-xwJ)79y}Umb zmQSK`ZdlSM&R4>!}gKs~=OWINv`fa9-qO zZgWyECQ1Se#cNWsQdcZ_OiE9WO7whYxV;u>WI+sbW}@e$=gFef%(MYgR=j9!fmtjh z(%j-*5tEkmEG)q_H9W|5tQ^1=du!_vPbiFz$_n$zF>Xs=-hZ#gLvL^zKNV+ZANnHB zOvL3df!5#4yMCmz8vD$?uM}Xw0m&|ZR0~Qbq==rGaJ}_rXw)u!-6V9S1b_C_k65o4 zI3}WQVM9a8VB7#@s)NqUvti7_%wLuUgAbinDYZ#q^cW9QGuDeK>L*^#wBOH$J$EoM$) zIxL)$S6WxQpy9g;T*aKWC(21L4E7Gu$?XS}LG(xftUpltfFjBbi!U#rbRdng;BvGu zH^;a$PFRA|!|5DF_kv@d=WS|>3#yi=*JKA{+KD_L4((%wtD3Xl7%Z>8U^2&<|Mknc z4CsQeJCg?`>R+;0%EkJ{_{lsW{pXt}{2xjxFZ0B8ic@h9Mj{Eb-} z>;F@hg9vJsl|BqA((a0Qs7Tkx&uQZb!|J27^YcXo`2R&Q&365I#1_Esxbjd_tIfL7 zIHFHNizp@hhL1Q~hdW?lK)~_2{+=}>?}Mk814tjhf%sRu;OCdb?d8p%)zf&J#^=DF zbmAUSZ2x%_rk~$2w44ARe~ztD^1rbV+4b}A|41$W@|GaiF&*wPN>s&||JaRmx_2K= zag=>fmJZP0w~~++uBH1+=wZp+JDmkttm3KBZ()X|DT)~I4DM<$m6n&UL#LtvqPS04 z&7}IGvSbU&@+R7mN!eR&Nh7yq9O&%Z1rl|K&)D}y>ZP6j6`Q{OOG zyN7Y%5~$0El;u9u5H7A_ePevJyr?KPE^hhA!;=yh%@?5`0FDaA0zkXGO}vKWs*uCD zcW7w$sQ&L$nCfBoQ4@Obuyf%)U7wWeE>AFSE3%0AP3W$np>bs&byiI?aiu$=(1LyQ z@%XY`=0=Vu@uxeE1jcf7J;Et}c5Pyvcj+a9X}c39cKGYIa|$FqTiIYy4;QKrbM8(~ z+~C;FXlzV^iR$h5D5+pho`DBEXvO9+$(V&#vO1s2B<16&{^>Q>?vUw|ki%3ZV#*8F z5CC(n(XCRL9&2lBAuj^JB8D~v4P%Yzu7>izHa}N}X}WkZ)JDh#A2h1iPgGu$j*FsW z-sXi`^%X|ZGfWUh=^64)PWp+S=(fQwO}oyP5~_>boAm%uis;h()o152j~?Ab6g8;! z#5EI9N#Y4Yfa7p?^!kgME(ujDKGaJGwaboEPTx8`QLv~)(rdQmmrp7n+b#SdsDJg@ z=^Fc+ASQ)+UFBP!wZF-PciM(B=Ac>}KhgN2{RxiuP&#=zk_yaYy{X&y^2F#%>XZ{K zjJ-j^F~()DWFn|a|IhvQ(&0ZZ#9+uZ#J~gv#a(q3i_LMUl4PJNNr|^J*Nx$^%Bm6F zX4e~p9M&mFD$mS-+87%fJ2LP5E+K(JP-xSlgq=>v&7=GXa_SA*PTYd2%HV+S0EkZ0 zB+@p>T5od2X2%8tLkdHUsTXoTCC{G6kJLSz4GyED@kOf*_TIdytocbXx)PLO>!-eK?DZr{@Smd15wk~;l+ZsU*Y#)D>?z4*l zE2Ot{h}XOE87i+5c$XmnUoZe8C2&+8KQf1H#-{FoW`#(m$RhGrr=X^mq3YMJoOQ*G z$Be;fjsZiobmxVo)7QmJrKmc#^H+@FX2Y{Zy`p5X?eZ}|#q}<2R@QOym4&tMw!a>u z=v4FnudnHn=Rev>4?=i|j)_5hcd+2eh5?hRTBqc~aN`avLuPP?ns4q`r~e5B1v%;` zRMGOS$WCbP<*js@8X2MEQI0Rj1IM9D_OCR@5`#owd$w!E%R|$z9$RcURKjww+oY%W zgBcwiGK2nxc-O+r{K=;qh=>EOdD^qEp-3Gs*KD;jOp8P4Dp6CC7pEZ#7Ikn}G;|>T zM5i4T()($-Ftc%$Nn7pV^EQ+hJLf2$wa=6)t)}h+u@wj(s63>@3|gBRz;N^h?M|wloy`x(f^Tism08WNA67zKM=zTi>8}RQ{{V!w?a^mB z9^or0YI}F#k(S95 zAb?rq%&mfj7HI)SFjqoO(SV_S4+XjS7^rd)4}G^!s{=W@ZmGZG5sXm#@-YNX3?m-0 zGlVFnx2~%7fMO4yoP2J5edEsMsVu~$9tGs%XZOi?C@*rd3;5p8D0Ad1;Gna7RmW*o zkw~V3Ib@(wKa=JokvuDv5;?#1>c$P6T1=ED6@Jk1fcO&rvj2CgLRMLL|KgEn;)oE- z0hTYs?y5V$~#Hj#+Gwmp0)w2>GC zPWQK?=DF3`Z#Ro}oa;9^Za&WPa~HNmhn<~D`JpL!0B0wE-kdS-=#cvW7OyANmeI(e z6sGGx5}(8s`)#rN8I7efaRo#z<)r?v{g>G}I|O3%+?MXsedOv_DV%n*VOP-kP6|P4 zyy+@FIukx!^7W3d4yNX?KE|HD#nm{OU_FYJ`jS%GPP89NzT2U%2Qhd2Ep>5nszoyl z|6-hTGEO%&sV@k)s{vIouMVW)gbN;CH#XnSv0bsP$B9~YSRYv_1&>P8 z1Fk_1T$--fM~^Dvl^ZD2S29KHeKyAPk-Y11V;y|+p>57V{f11YU4RP=ifSAI`gaoZ zXu!C@fq6SgvR3nY@Bxc0n6`rNm3^}2J%mQ&D4QX;jHM}Oar(MTl9jdyeuX+Y7zTx{ zdFQ5%bBE!X0bS-1hM$Cv@Vim}&lCZ4iRKPeX7C~hYb*k2d$UCglK}!aK)rg!pDta} zwY?DSg-oA<%)FeD4e2)98(*Y$9Wwq5^C>tPg@r)~zzC5fQj(FpEvyX?V_09`Lf03- zH9##n3Bv3NR+h#4?TSjS#9M-o=|2CNsW(urpnzg)S~mCGzPu;4ADzUGzjbOj9uZ8n zLX_d5FL~Z{yLj?<7km8wJW)d@@7@g4=74$l@J?u#(Q;PEeIxK#AkBy%BY#6@+jTua zpim+D7d{4`!dR_7w`gkRHd-?JoefvGohXD8Hj4)o<22#*Jhc$qv4pZo+5i$6?it~b zpzk;F@i;JK(8y$u8{@sjqGK_|vUSF-u)TvNs*40lv!&TIJ`}&zQQb|nA-7R7mD;>c zE#@$1`(d(0!SGP#M$(t+(p{}0p>RB6@*bhR7D*$cl_ww7|6~`jB=g!x;L)21$mt#j zQmxn$XPHnNhkn2D2PqP^D{qFt1By;k_>wvEPHp#=i>g*7y>!k=%XHTqm zxRnJEVuELELC|D8UYWSstCZkfR0ML!C5C8PdiroLw=5#^k4%pQDpeR0Z1X(eMS_Jg zX#&wem2^qoLUvkwQW}J3PA5}qf_uN)^GdS46;2FcGM4;#e|h_Gcje>FJ+t=MMFTF` z(ZUZgcV-onXDNoB92e___n*bylWjk20SOvFsGE;;ng92_wuk%gdY7F&4j!LggbV;@ zWFmr?W@u9^i3!amh@)o9PZ;EhrjWO{n=HER(PQt}o-kgyr$$ z(aqv6^M5|nvzmPk2Bpoph2MKCM;;s7+nv-FyW_pzQoOeA#?)Yhj*Wf2KEo~v*l^eb zURxUZ`@W!T{$rJam{wh?D0$N#4PHqVr7mSzN{S*_q{9us?%egl2?)~Hbs?soe@Mw&c z8+aV6B*c1=lB&IY_YI}%L2|D=Sp;<;GWfU)r?G$hJ0<=eC7I+w#$qGgxwq{R;0bhj zPH4%J$>if46HL>F2@fg2uE6nGI9-!DAn!W^kds&Jv%AEo@mxnje57POwN4+*kW;zc z6tN?ZHW0goq$T`9**x!rs$<;#a&69&ZwqL2siIJK!hBey@GP3=4E zQ+^2en)_G)Km1SqW>N7|Sje}!E&q2h>FnGh`Jc>P{u4;gbs~u?=vfWdKN`!>jG{H+ zp0&q$ImU18lbY=)!uX9A1{ecZ4RD9_#olo!?BR#S)ZNJNQpf8Q-62sFRu|+2I-p zAOBd6?huDEmYL191k{^mB#hAvYhb-{uG+}>;#~VR7=EPs+2#*#-mPkysJPM=tAK%*i6e47LW}&vli6PUiGt|T2YS$TW zMixOw!eqymQStjZMH<;habi!FuQ_?m7{2DT_go1(V)D899k{@VfUr!F85DNV`=6il z*I4n{%+~DNtPjopO>NkDFnhZ3GVc;+J;e!UwI}^+phDNWjjWnPVD$HPqU%9webs@r zmMi93T8k2!aGkwU;7qw$-A!tq_qklaB*GI{eWkC5O-N03pCvVApK|4&!im-2;{Brl z%O5+TV`N?%;C=`Sjc_fNyy+2!@XFkHDQT7~FKj{7`>*L7Tjn`%T$v1z-Js4m<^Q(O zMRkJ4av^Jey z>3YCGtSbL45pdPgqJd5ynERrSwx*1$XMPLo{jbm?dZoE937JonTcJ>_0(v5mi3{oL z2KV6It8Y=L4ca99c>=K<@VL0N9GT-3I0Jl|NUa1T_&G@f#^hWIVp%&z^wveGgfYZS z``yQ)Wi;kanTLjSUU?D!^}dO6*EFj$fvQI)cr>(HSM04FHy8l`pB>PX#nuSvCa_`!dO*P%rO1Xb5iB-GeAQNGE>#?9#no-e3*TN>M zxPkpK7MF%{LnXIHx5lD#B&-S%$pNI(D~NCo3c)()d3hsEapuf#NtmxlYuWc=*AqQ) z50}{cLZwfapcG}2t4zzlq9N4%(r5E`^E(q!+b;P`vwLPw^9^pRG|T8#`TC~q^cD?{ zEwa@Op<)=wb;D{gyKomp z$pxL`*>*v&1oa4}dBcW~+b+VVM~Kv?0vo)%zuwr;`F?<~(1waGq-Q(3yEk8M{qGu1 z>pyATp>=@RLgf}X|I!HEu4uk;XO6*DD~#pRr5HA_pu?A-lU;iij&_s8Fy&K=7(wn^ z2~Eu^EXnpLY%l?7@1wY6Ix2Q!RE_5wamjGdxjlAYxcg#Hb*ko0`K-KrMr3AQb$dhN zbHGew^@E!`RKSl{|5`K?r{HV2mDGi#)N?um{mJUy_l^AY?{LL10hbuEYA|#&BSwmI zkb(##LI6Gk{ojp{*$aX0tsqDZTv7dSMs!j3I9gUwnkxw^HOzK6``tcDe_Azyy9p>8 zM~}+KiJx;47OF}1hCRILmH}QF_>2rWrTn+D*q8%-q+lpccY0xJ`g3f6y%Ny8;exKJ zbJ~jFua@Uo`N=o_qf|_b2#NTlz5GrJqQDR`^8tcMK~@%>*XpVRXM;&zC}aDrDdWHI z>S^ldkG`$12VB?lhWl#>QoRc&3`Icp_54>XI&C1;adSmHe)AAJZPnX*hQe=gkG4O4 zP`jhN+dL3ss%N%ZPKiR^YxE|nPb$9z_V$lg$xoRvtIfM0L2#(=I`aa7#iAhXvLW{y zF|_05IZb0sDZHg?Am%u6U1emcWTMP%h2N4A;q?Vo=5X-7_Nph%C`k)l!aFCv8^)N8 zJMZlZxRQf_!ufif4uxChCk0|ks z>c3t9;AJ3fR!E1y#jacHT|A7DQ8n3*4JYi8D1t&f`FjvKCE+n2dD6oBKaZ#2;*J~AmhH)r= zv$w~E=aj`qwlc(liHU#hwuuA@_G20BXQ6#0qs9w0IinK~c6!Wt)G1lJO8NV^aOl+o z8NAcGRf#6s)CmdwyOrCF0<%6pQE~i6J?P(J*EAGNDW6)LfON0GO%!S7kjTVyh)T?n z!tJ8db~v9aun_7*`p@AQnrU*gJ3ZcK?|`QTz=E`h7g?3iujutw;r;2rzS~N@d*V2! zC<##KGnICoCHT3#;#K@^bK1~{3kkF4Q>9z4Wi9^Y&JnB&as>sa`Ra|7ThFp-v!A+7 zaUlZ3-C$Y(`XCSp*u8+&>XUZIdjnpJN=g=%vLQjig)o3Iy`#sGpQsA(v|@o%nje0% zc-N!m3r3~Lj01VP4Y|$NV{FM4VmafDhhAO1!glvGRQ$awfm>5xMQ0SB!F_avuXG|J zRCRMo#pNQxQ~<^SPi8$VlkueSL6bu2B22UyhPl$P#tRkolFb>vMk)l%hd*;Ls$+1f zP`A3xC%o~oqW-4A1M~H-r1p3=%G-xzZfLdJM%tLPF!?=rw_v+h{Wp0DfKmu16O^;c z^V0!3sqY5dJ@~P&Yn)?OaU0|VRhGbF*KWcEFg6)YO+w04WeHTy5zlbvKx)e17^wUn z8ykbX1wGh=8yhWk7PP>d!J%*)jZx9mzTHGqizWwcM&pbjLtsq&ynO>!J8hP=2wqfO z>wweYK(ZYlD}VJ!(A-iuu*(Q>%`DDKkN+>58t1>MVlQaE0BNho{UKGA|1kA>=*{IE zYV*5s^|6_q47iyld*l>q$DCRzk9;D7AGs{4&jA7q+7qu9rBi$9eAB2im6gqP`W`t@ znb34IqAl`$QKO2v^~0;?wylAI7!+wT6pqGqI^uYwWPEs z3S3@f84KPSMlP-@+1EgYgMEf`Jvm2mmOcLfGxMVN+}v!bGGVQ#yoZ$+e7%S9vC#UU z8c6IsLGL7v{6Vmw8|kj9&~dM(HU8_60?bND4mneuXU{xCYwPL`FR4!7V3BZmL$c^6 z$VIU4Q}UrHO|JJ8zM_7w8Y&{Ac zEE;N}&7~guAeIXKg==a?!)k2PAH>l&q98M@*RSk5E>6Z?KZ8EBehZxUnhJi9zl2k3 z%zL!wPK0^|9CDFU5ev~$uG>tsikzqtRAhqTYI{s;NQxA|&n7+LlqfkQPQO!z?{|$7 z7Uj+424y_wyqQmMCrZAC9y7l@NRsUtNtC@UUx1zJfm6kXZ)Mo8EB+wSL-4w+|@-NvivzI-_%Ttgg1IT&RW@TFLH(KE zTX!6Twv$OyQ%CYB_P1zPX?+D*76}P=e8x(C+iQya)}Yr%cE<5F&weHghI7+7+{mIn zYMk=NQBvd~sd3>p8pepY{^HKtNc3!zE|Ut{AT;&t0JYKRVeo>V6S^!nvI(-jx}e- z6km1x!6A+;7i-H~LBK>J8*pz`@RWUk(t)n0sAJ?NzA&Rb@HU$73<*$xFD-1rHou|* zuXXXx5ZbO1|3k`byAu736N90|$b^s2IhZqG^{?+l9VO)d=i7J*wJ`O~MvORQ7=}&kcF4#C2h0z@ zL|K!2&lq%&JCFVl5myBww-WT-ru_r--Un3o`1`gqI#$`rp305^r7tgAl2VMg~go)SI7JCbsyZVXwg6 zV&zHeZz5Btz2VnjiGg431$0BN!P%bG!Ye9#8)7e%Zu4z-0AjfB`TTz`kFEHB%AX@* zM5>nqe+}#N82X|`!5C>LrQe!-%C$r>eVve&0p&_O;#v0kU}6XO|IU_tart#W#N+$k zmnNiFxF;e8VfX}p?&(*XymnXK!V;KM{i^4~J4-kXc-ODZ9A}!$$*S+p4_AJ8c)E5u z{Pi_jw_4iy;^okB+1C&))`56WyLtoPHXOEYO-YP5x1v!3Zc)=va9qJ*h&=Va#?MJ9 z!PJc>!C7xG?-|v^`mA{>uBLdW>F^_o)ta29znh$a`S{gGqYj-W!kWi1DtWp`m$K2+XyJLmGTQEiF{ZpJlAAt;->`5ucdY zhY)ySiU58*#5LZD>YmZG{Sb+upi11rw0xU03J z=GzWzfIc$>r4A;mXq%UGPpd38N^<(N!$p5!Mu5Mb9BIshsML%8SZ4i~i>)dMp?_v( zM);tUpyb(!fKC2wqDP=`Lk%?o&7fvs*+f4VQBYLuwB}uP@a&bNT3qLUFDvi{Y@;-; zcn6#>3pB|DQ(Pu^Z;$;bGk7zg)7_aK@hi8zg#Aa}kjpLk=*Sm|9gKgw5`4Be$Y@1% z&E3A(f3$vp0xO)~DUU2C3@m3O9KlA3q8JVE)ec6_jmT%rhg6x&svS?qS!<%H%1b)E zdaK5o_2#RvQ@f?AUKo5kYYub%y#pq}=WYwqfQ9So>H;0dS&$Nr7le%fbK&c)MRa9- z*7EA=>S6bouh1#RI1k1H{?wtsDTD|J4v_&#Ts9py&o=Ovb@%5-6N z(3EYT=kn*Wv9xptYgp$ZwAqG6GI z0%Fx^7rR#*yt0e4S5gM8Iznl&Y+AhApv-^Z8m!Nn+U1;yZd!>IETEd&cq4wNAXitSY zz}%7&EErC}^M+WaOsg9f|NQ3ix^RcJSrB|H%gS(?^;EzF9C1>Rlk*P37?qGagk)e~ zLihKc%hI8RIG2*CnGs8mh`b-pd`=%^a2h`tXlmP|?f?@zjWNyL2V4XJ zu#a=7@WLkgEn%c+AtyJzP+Rjd_Vg_niJgE*`=}= z6WpyygN)@=NW$dr_)hKRl&xXBIGWQ2$rntKuzPM;G~PJ!fZ5@1YPt03FfdlsiYLu- z?mov;UO#Yemwxc?>ALPK4!0P=)LpBGm9!}j8@;>&lLGB||2hW2``dEOe9HIsiY=!b) zOz`Qv8NW%eS#T6*+52yUofR<^y%TylK}MO)uoyZ@LF_PCFwH8X)R6d){QWH~_aKml zPjx&&m^QbymC5IHsCp^X;!UoN6P3W@^Y*3FXu6Kr(7KblPE~y4>_SalT{X1BL-A9P zUit8vqXV3=KVhve?M!wBi0=nT030qlKkx0?=mQMv;NYOy_8GiA+~yr*>&eBVHJ5S5 zk>n^MR>M-JX>rxFSr5XGvS45XPbDlyZ^ZPygY4zrlfQ-wb5kIdTc>n7)Vuf+KTYomt5gs{uFd>m1HX~-h-!^|I%sl_|9kh^MV)rAx_K3`si zgV995n{jE|A^d)us`t+?e^5fzRU|{gW7>Rc21?&y7)2`P6jUAfy_)t7gFkegj7S|p z6gc^zfknI4k_ai0g|n^3lf0v6sISiuF3h^1n*I6Ov)8`k8gTQYNAq8+E#ViGSNXZ9Pc8C{ln8xY;In#R8(9BOz=ZU!xt@{|59oOhb+>sS)gfI<)5PR z)BE5@81E}8#-ljT0w$fFhbQyCfHbQ09N%#M7sRV;{lm6$@E6dcyDjIoh%E}Pl@>Pa z^!Ek10%||2NlRAW@{3Fp{xB?%q=eZih5hNPp0eMeT*Qt@y5rZ6zqF;Ejgdt1hj)J< zsQ*|hS5T2~E3gjRULr?iS<%yv$T)=jIkn9C zbPvPF{`NH7j@?8fJ@}>RH{BIkyrdMnIT@wTLpKO$35K)3QzD*KE4#& zTNn^%a4INXkkrs1&?~R&ST3ZxUfHp7iZNJ~s`1c{$1GN9MB^upuN0n2b@ zU0pZvkGZ*iprAPHFNtfiU^{SL8{M+0f9R_7Y@h)K?2ZE*>9t}~(O+oJI^0zhSp}~i zJitCj8LLO4%8FI5uR^EQo~a<8im|b=l-GSG{F_J+4VFwuy{uvqPvPSEp-l=P zr7zyTT~O=FyEaTMf9tUZmt^%DpRSRGgH*y86|Gf0Frl9{4?}OmzenSpoh+d{%*{g; zh~W;l8u-dvc)#3*DFmGZ!Di=xl=AMqxjYXwbIOHh12%xidyB(R=2%c(&dAFf4~{Nw zm(7X2i@<0)d89;7_w~^v#ZT)O35GWgl6L3E@x+zgaaHdWh?Vn3S&-lU`enN;Ys>*7 zRXJdI{jN^x$X-L%ghHD_?ik*U*GDTD&li%P@3ld=wHpk`f$!Bx3eyz4QS^ipJ_r3c z`XCaKJxWqBJ7!^bFCPHo;=Ya97=Z3ZaC0p3UA@yY_+1P4G5r-COR||Zrh6{`?p^+b zFZ<5D^}jFT;^GkE1@wjgnvPEpVaclZZ2a*~H=3(QUB5CJq>uMVoNCzyiCZ9oqo5^9 z$4~Z%di2yX1{_My_dt8Nwsbr_^YRD1<9NQYo2L4dGX|xH#5)Yshp4_@6Pqn}y+4Y) zh*F6$=^}E(%T=OQe&3B&UX}6Qd9(Geb902vuHc9GW_gbZRmDbgcmW+zc1pPKsc{4*+S80!Lu@uN+R2BTn}}IGag0 zYI@aia5)P^)KQRk)0Ssgz`uqBn~lIQ8U^9Jnj*wYi0Pqivh55~y~dKf*U z=!ge-N4{Scu zqhL`A#zNr{3O`0?aWi5CZvfjK`jy&x>}XsL1z- zz|lChp3nmEW6l@-gqD_;95c~!pHqGM;^mGGuxq~DVZ5Ka=ZS)st}gbv%hq-8E9L!t z+nFjqaGRoL)A*}NmP?n0vkJq>A4=u*Q0Q3r5%mxHF9|ZmP5#-r=_nb}!|s#T%Dw0o zvBehV0uq)h1$x7KM*{HvkPIV(`wzX)zMt@q2MYqhZIS6XPag7WIHpgHe%HKF1t1-y z)iTBWD^=w~*bF3*y@;yST`fSq?3h6`c|kR&mKHWP$W{56aH~C^sD0P3@0$S@Y;7EGZczDH=$*NgsaGp_5+$UgCH7MZ;lqu7)82(u6-S zKB%vX$~U+Acz^4$tfd{GQJ!|IEH%CExha~}??71HHwY%3P7sW)ct0E&*%O$(rV!P? z=XSSnV&d_3`<;fRL2G@wToFi?kVVp7TdxRh-5Lq zrNsCRcsj;y9y{kq_dkeG&l@(k^(ey+6aTY?Syr{miFFxZnrNcDAaiZuV@5l6?Vb9;{@M_g^z|NjO^yjmgUgR)N)68v@wCba71A`>XrQLg-z9@X+B2&8ny%0sUbxAzg4p#4=bL7LolC z3deyAV+0%;@@sjBh>3x)Qq7W5)z+2?Z+L~WvyU{nt9tEq-UXvcxLi(?q2zoOX*-R; zyRqiRJV81$-4rFqI!A^^|3vr`6G4PcK&8g*f8Vw3s*DVM0e3z@yozQ`g4k)|k(WXI zjayf-e7oO0mwa|O%~4ufiuO$0moyk1gO)~2K(y~l0M^fP=byFRsRFS`Z88XZZ)cw1 z$fY)e`yW~2K#_zl7!dw@PwP&>&^#Abth2p^H+yME!1=?^<%(<8LP8Ez*%E8^RXXb4 zlMLPFvY6j)tlsAFdd7duE2ehzhA~}%C9?AywmX$iNcT`kbKBB;HLF#}5mnV%s>E7A zM(A|n#mq9uzIMJ+waXbhl{|SElbxB96(-K`*W7XWbhSdxqXa$@`-$GY!rmqmH$f`# zAOf?^v2@(pBn8Ha$;tl0vwL1P3})W&Ps3tOdl_ZKNV`l*XLM$KGd-S!Lq)&JSDJVw z#{AhS*6bY$h`f5*uAa|WC`I4dmL;fzI>38Na=`O-W_ zJA~Rafqqhv){1&k2tPz36d|FqNb@cLRiK)kyCtN?Axi{29SMm!AYZ=QNI3|P z_mORcr~7=Ykg4^)>N{3_0dYIZ{moYBWbiq0?CiR``bq0axLi}eVbgnqlJ|ppoMa}u z&n9*~Yb!{a=L<=GVtL-AWXE^^5L90n4xmfP5|Pn1Rlx#*%h!g4e&%^6A~0PX=*+dJf3=lqH_2FqjSN zF@K2Y#*T=OX&((+RuNrG_<}-`Cqaj2v9dadKk$St%}LIZ3U*3!FSOAObmM z6?vKtsW-pDsBJR#=?N4@cXoCHum}brIQn$HdfkVAB&4NbntW{Dn;tH;|Kl&;eQ|C-|4tXI&3$Q@}pfKke%|~=&}~fgK!581bu#_T58=Pm7;&AtZpH|Q0%Q;?;}7_ z8NsEqAHwav@~!plpzIs+*80$E;F3^Tw%SZ$vWbwRrS-j}IDAE*?vDlzBb$W9YDDO+ zcN*pNA4clLG$a@i@+i6L?4ZR0kxnFx5I0Mh9iG;sKBuF7%YB3SEx&T%*XQ|+aI!eb zJ$m}U0>+nkht3Q{L|7fKBt!2=$L( zc`@Wh(m$hfOV~YCfH*!ovqPr`#OTv2kIcaI7(tNZsJF)QG}!ZL$)dj46~%fAdfBHy z;`th$uhm3+7*6g>J)1f56ugR6hnBCnEPQ-9YKY>oE){_4HfbgI3}`sbn8J2k!iJ+n z>+Zi{lqS#cxz+#{T?i|gEoT4sQi+uR&zcd{-K{`CBV4o;-g+q1v!+@0q+uIF$pSHv zzy=CO2Q}VCMh#_<*O6?Rt%*v)HfCn#IjEV% zg}Ux7r{74F9-y1f`ZGaNBQeY@0!9657{tRXF8mb%N5;5z?mr2^FxhLC$UX7L`?@cJd`0awE^Ua)~W3n}UvRcIM^h&(q{y+m>za*PPTen{;{(D^4#LJVUKp#rTq! zFokh&aGo6wYtbFmE+^X{;?iNaS{WtEh?XfAg5o10ij>FUlGXYW zVR6^F{PI!gbT>PHntb`GH08{sI3yLe#=3a{r}-05J=Fo&z^~tV96FsNAsZ&!KvLW) z%1k1W5D-_jncJxPNbM<6b?!Q78Zt9RUyshA%IvnTr?9aU%z@nZp?PO z3xyY-Ek)hm7Q{g3yMK7jT&#Uf)bICW z6zfkRnR5Kxy5gvt&xIs6O`=dlH`aIWGsvzDb^Lth$Ynjm3^8{dU0rnd?p+I)3Ve7T{T1ng`J3$KBAUeyu87(;#f;+UdbUf~x+K@rk2t;yd(>#)FW7?Z81d{2p^787X z7bctxCugQYilq}&ioBmM#@Zxzj^e0yH6I! zbOl3tA3%R$;l=tD2P*(} zY$)FNe){UABO}aJ+oFS(C<*CfpUvNYU&1E`0*l~Md}9ERE0VYG7;`SISawLGP&BlH zg2@R93FW-UW#AM5P|v3xEw*)*T6OC3r%8F{hX>b81tg?KP-QN?i(~I^pzc%CHm0@& zF9`@OTL)4P%{7xiD+ngK~LyS;;u}J^ZEqZ723dbhi3MkC%n~vb_XlY zi08nXcyaJvQ}$L*x!p19Q|8m%@d0jm{ zxpj4^FDv%pmY>*gG8Jg9A}(3{Rf%*20dv1Byz}DrL0(SI<*fdbO5s(aS2Qux_Dp1W z7_US~ZocAa**IKqU2CV=*Y2_*;Ip^llUG-<)O?Q)cp>@4J z{cjwG1H56th{8*OvK9()66d6Ny6g48(w6=E%8tZ`;WC#MB|u<&bMq$i5O4Lni-SCR zricvV_LsqSTT~jGcYUydj7b-GUDrsu=zhQ4q>Jc)f@j6l@Qv>9d2cM{;Rh?n1jJkC zx1Tc0+-BooF;nMhJDKbHIoU+5kD}t^oEe{#F)SR{Sbh|ik)P&**#$&(-S0&H-ugirr$37DUQUZr zx_WxDa&k!i2@*yJKefj(q0a`<6l$1#(D{CR#PJb>l!*7z<}Q#fiWFA>ZKKsJ@=r@3 zL??*(`t~wo7Hf8aQ!okii2KVuS;I4-QUgTAa-s|cYgeo0qT^qlAXSVNR)fzVD_y|v zH$O#q;Cxe%3pDmVK~Z$Hx8Ej-A%EwA&uhZH^-*`i;E-P*e`q}N4sA3QPheR7lht8H z3|bNVo>-F4wrw=OV#tJop9qjOuPyg^MQ#Kjsz1A&W28_lWvfP9|Hgsv-c$TJwbS1&h-xbJm zmy*Ve$|HUyt3?7i3XhC_%iVMDd&aomM`>~DzK=g5dG@+Ign9R37B;@`<1!K`xTI6X z*4EbI5)zynFOx#sAiDJ}T)L{2<>fMfFR<__Tm#Kd4j*f3Vi@yEFMDDI2ounF0u@Lr zYYnF#W=5rCh=fcj!Fu@@+$d1^29&>o3i?3YIwWETNjOdzbH!4u$5DSgP|(j^d|xtk ztn{T~N?hC6Vc`Yor@;?#((o?kaBd!YdCtAKast>442^Hd5RC{Dz^1OEa^0`^{reXI zSFXW3b^_PXDG-V`N_%1UN2YWb_I`q<>ozZM)$D2NHVF7kK+|90xz4qoMIP-d+x*qq z`rf?hw0Y__BU);@IWOh;gAUbGJcZ;?vB|V68^0iBSx3>;6$NV+F(a)?Ur*&I%+&nE>a966~6L%u_@!i?mxK&LFsNsGt9K z0yqlhDABC`-Gw*zenCKFRBUV${9ei+v;s_57${&_HM*`&kpXa-XylT0R8^60r>+`JS9)^mKkGRmPk*yc4N`KjOMa zOzxp`K3sbk!;aZ>Zv9wyz*an%o4&k!StxlzdG1hv6G#m*VzP7>Y^=2KUuRTECA<%u zzHk;h0xaA=rcK0!OayFQu9QMDZT$iBqtKiNu?ad2(``m=aO=q3zK-^d)Uou#lHISE zUfRZlH&QuSgOhSPgZ9uogH8ll=aFrLHcX%XgE|A6kk0%M-t+{<25@_*!J!EAl8jl- zfZ1s|#4!B+{kuf?o6a|Djher4(!XklN48ovT+ocG=->CVUe+e=mJFRikF4jbNLSe}52ws$p30+-ftI)-5 z%plbvSa9Y21r8A;3YgbnCaizVV`gpbpW-5T{=jY85lnMKb&9=sR!VkS6RmrlxoBPc zWf_fk#*3ONlM4R3WU+_pMS+*#5W2!DB9&(L zp6du)Owfv!o?e%_vQP`a>3|ZBQxjcm5^nObOcuDZds*ebKkVX6B7uY9DUI?`a+E6b?;8| zykk^`l1Z?={?d7XL^9(QZ2pDm5c&c#GLdLY6C9w!VBd)Ua~&ykM8mF14gRwgA@{JJ zU?FS`SeQW_S1wb@@a*RLpqhlHrCh~p4qb{VQob96nk9yca7`fL^B;f+VZ{|Cs1EA-Ml8&V8`2;_N$!X356l=_L#7A(I?wua2Yn9ky&t598^>yWS9kZ!QQhED zv-g@-mODi)Yu3&7_qLpE)i0>5-#KZO= z)We&OjOMMnp|1A%MtHVaz9&vd%{JwT|7PA;We~-V>`{D!vh!o%;iINkkK{ftgEFEE zzU1Mgf}iHKYY%rtOPn6i_#P0B8oIFeDCJx)QC+ii=G%h;@L%xd4EyCiNQrzFBa{HY z1yvrM;UxUE5LMX=QU9@3O5Mr0^TbqCOk8vHs_V_EZOy_B_d#ndL4!fI)1@{g>^4=` zvq}Duve%l*_=3gQM(wXv*B?akOU5cD{bl|b6+p6);rLLjh$Rg*dA%yWK~jd`sGWJ+ z@h%OD{;jtWTCw~~fj30w)PnlaTtuw0imB{D$;+4kt0BcTkT?bhw;5mqgeHexLNH@E zHLRTSf=E@#&W_#5=@gGe+n-)GJ3At)%AJpjO5;+1a0LY&hZYY-{7r{%l2THE&ngW6 zOLq1={f7m=?PCF#ggLk>kQCa1GPkAW)N3-&>bB4hkLe3m%c9p1M7MD(?G&%PPf&A?4mIjKg zHUYI?v_Khc&b#!lD-OkPHa{uBnoF`spND{~;MMO_U%mN2-AfEI{q=pX-;LWo6U3Er zzndMqPz#k-go~({1dM%CAKGh*7uKwLaqZW_<)l;1&;-L}Lu@QdmXMS!5Cb7OnX8A> z)%D0V29YssJIAqv4`PbGl#*3wK5~v?lxAtcPw@mHRR5Z59k>eq)L%1VxPH|Uju_&r zm)g6M#65qSqXiPwr!F-U&O6<7A;R7ZU|}&*_Wa2RNk)WJKg{h=Cb7$4Ip2 zKO=;D@6rkZ0G?=yI|5)^Su#>G`d*)b^ z!nJB^In+67q!m~;xwY-`mu3L)|0|-JJ)4fC?h3XXT&2~7i$~k1x2U!{kK2&CibW;0 z|54f!^q#nI63o8&r=Lu_Ab;X}W0OPwh~W#l9FiI$SMv6>+`;LxPJ0p8UrvVFVf?i`BQvn;BFdoZWQoso?1v^Z9~@HgN_8o>H<)=FgT8f1 zJ<5d;EnMR@y@j&z(59YjN7^M($OeN!WD$~^5Je}X@$o=7Gy#?1tNV;;oAdi*sBN5q zeT$4?508wI$#^A`pjyJj(FjH2(JWxFDNT;QJ7bSf_K>^M(LrD_zZs(mmVWEf)CSjv z3DO6G6!%ztR$PXmpk?QnhuKOnAl4%A%{zF}V%Q_G$F<&%zV$?~Qk}Nh5g3*D;qmTQ zO#{a`PvZ*>k)12bV)OBjV|A1UzMY{g*oG+=zrtg0pTm5kFYt zCaTDGLjLwxT8r(_-8Ta6&r;5W+<{Z@KkCt~qVbHzf2~};(~Ki17%w>iX_jSYLao<+ zHir<)#Nd3mUpecf%A3P8WnR7q^6iVZx5@ub2eUD&b2os0s3!#i!RO*skfY(ZbK!?K zmi8<-4m^e3s~S=i>v0hSQ(`XU4_$@5-8r%f|8NpG;3layajs?VU7j9#pro>)QsegS z`TXgw+$e-knEW|Athk^0(9WqcePUf1ZTj*PqjvG?4Vh-LH|(#!WH&xeJ;C_O9zmOU zftAJ}SSQ42!yIxsmj7sew%|c^+SpJdziwR1QrTe7+WwSmsW|g}+syJ}0%eQ4ST1as z(nfOL>f|3Iupn<}lCBr!J@(oZFCE);Wx||5I5BI|Ft4~EF83&QX!4Cp8mp9))tS-h zB-7pL_ps-{M|j9Ak#fitM(#*Hsa)TPNLrDYFz6NnQG)4gy|4BGqAXuO9P=|E zJ^8fLdm2ESBkBiCXKYl|u8E@Z|K3!wf2hW*vngQQQF;8h8Cjt~;UuFJQ6{7D`keVR z0ek+=PF48xg}IB-e#^LsFcU1U*wZ>DJX$%KCLg{2)Cp@vyYuU4-Z z+)|y|dK#w4=zaFHQ{WBnyj$h_!DKjy{>)tYpu_UeOHdCzM}EjSLZDJZawKD)Jc$LZH`GWkajSD~qv83ZMf z-wAJk3;^@?Ow4PEUdbU-Q|k!=^_e84oIv4X}YwJ&qLsi z?fKQm$8{oo){_qeZJq~-dRW(rENz**;&$+8mkgd+QD1)$rhJ6K-J&>oH9geus?kaT z2DAUy@?`cl!|YE7MsX2URJ5pZ34vaAMG1lGM*6b z#ms(pOI1G^;)szxHert|S4J$a_Av9A~kb|lL)%Y!oeZ>?FfV$#2)eO?kxl!qG_*LIepPIx0- z>A}(2Q-F-J7^f99XKYiqD$%kDQU_L?P=drE+ zo&CZ1hK{my{`oV*@gH0}_MN|_Rb{PF)|mIVq{sFC>;z|eeqFpIro(d9YKn&yFQG1t zJ^bVK7hh1*hble4HThxYiNlsOrOizDi?dMdsp#{n6$JHEPGUV z4HohVY>md8oKUNS_{i&K>O+TT8<3zA|Crc!gjb(=QK@TGlYg#_2ilJ5H*NU8C$hyo z!hYn}zcavghxZLqeq}>8L?gGX3LtX-!W+1(JsT>A(_cSf#}z(ZA|@z4e;}BJpVk=K zHvZ^a2}u#P-^ml;Y>`_B8_T=*>7jQ#f$`VM6}q!LK1FSb9rQ2f-)T)A z-*{%`%@C9QoiZLz)c4dLK~%T#Y`Hr93?s{~zU?1)KJ~J{@FBIxZ6}0KFSEM0oe}GN zOjs7)gvu%dQ|DH)F#R(+nj#Ym#QXa&wjII z9!?XIZ_P*%+%H)Hq_bCa zj9h-4M%$KHX3^ynSPU1?oIqWwD77px$$^G+L;&B_4Y6?JYlh)U16hy4rQOjphRMjH zpICbB3 zySSi|ulVwzX)zX+gvX^IdUuWa*Jf^KiEC#vinlwN8OFb@dUMdk)w*vz9sOv4#4aEs zpNJgC4pK!3Dt^RWGMoN$>8Fu|t1Cea{rtW_KJ%=M+b}OITu7Bt;|d)@$snwZ2a_P8 z4tzxuCzrDT=4#^CuU{id+pt@F5zvf^L^~pBAQ7ZAePCj}@l_?~9LH08UKB6@+!wQpl<~4Saof zXOyFkmcc5f328$E5*TUD{n1kve5Yh`R7t~zmLfjF zNtRTa#6zs3{`>06;=ft|szg^p-S~8*Szn_K;F`Cq&j@N#+^}+HIX=BO-?4z>9&{(_ z;~d_5?HqV#%-rgX+*U&l!6BWG;J0<&y#dl?*3H+HANATkcE+Cs7-C(c#`B+Dl*s9S zD&NEC{*ALpRwutwa6l@(>&xqF(SrJGLmD53E$P|m!d5ckT_2x?=Kp#pn#aw_c!AL) zTmQ0u&*kmgXV@$B_ipRvO^Fw0FM^2#X}9L5{PUdMhvqTsjh(uE0`T2tmY2Wy?t8D) zbCJ$=`WL?*pNJAX3IH`i_?h3y23QyWBNQ!9`OhHcM?xnRHV2-^KZX%Gnjfk`Y>a$C zbah2#B_Rz>q~;_QJE!xK3{tECF~<4DW3uc1vV?7Yw`|E2O26oBtl1Vdr;d3`+v}aG zVi@M^?*r~-3L_bk*(@Y&M0aoh;nO0_DEbg351yR+DOQ$3fl?NCyiXpAvRr>Kxq;rd zUSo1O^J)2~&vAX)8o>-T$C8~(DpAYp0sdvi`gxyk7=3&FBTmBGf=VNO@v&z_mO43h z2RcTXnk#QX(U(UAthz_Brd>@>SH~IjXAKqJl*a%m4VnXd|3+hDNbW%zA4oKPn}aJn zB~sKZUE^-k#Xe#AHrDn1DH>MzYrG8=xyfV1$qtT35y#CjF60#ei95Ea*8*8Zo^xV@ z!UwLHXjDSy*>s$iU2cnC%u@6Gs;eff&epe%7WXR9`_?{}zdxfHbKScnjxOjE{%Ywu z5fL{x;Hx0>*42&64`ng2Z^|ftuXfl?$Ge&p{DxXaeZ$H6K`6w|B3;0imAZ&wKv(YC z^|W-FQsus#7CQ$~g3C^*I7|R@ub#xc4FZIq+2bm92-hB|@gVd9$F{b#7mTytSUZcy$>tO?fhn1SVh#XD79`` zW>$U-t|?2K=MPqrro+k_@Jx>3deIpZK9oB4NI{L7E5tLJ^mbPqMUy1#rjmG z-Md9>v;ruE7AC8C|h7Cgt?SjTmC2gKSq|HJ*PTMExknt5w}+ zcF6iZB5y{%%GjWZOyz^OQPlsY@$!^^fY_^lOQCj%a>no64hb!1mFHE{DZ@^idBi!# z@T~Cm2i1+e3O<)-Ek-hwyf;_zzzkayvoXW;M-Xv{iwMjLCyz4v;vMv1^tEFqK_QHo*FkwlF(fEH>DUc-uK|f zCa3FL@BTumhew*IBXBgOfb*-|Tt?6mBE5#y7iSv<`T28*rvq*_F{xIjyX4J? zaTzdF3y^#u4NNAL8v>fO)Rl7LoY~EMt8QL~&-N}uTuNqewOmXyL{xVJq3O94EuCLb zAYfPHEH|8*%N|w~4milj4qAV&NA>rXU)z#$h8i>EF zR^%KGRzTm7;V@fow|y6~ z%OGhw3^a|fH0_=G08h~eK{r4Ht`8L;POFEz-!KtbQOW2nK|WrNgzw)U!Ji);J>RGd zC1Vf<`DHCPrMv=V;`a&tsWT`#+$vILq1(8O2And3y zX~cSA^;IhN{xclGrjQ~F#jLY--UtW7m${cLA6xHQv%5tPyYCzhIbmZ{HKJ`47}5PJ zcX;LS=+Zy4n-Lx)Q9pS?EBr1J#C8h{3uvnYIWUs#Vjy3knJU020D+HW`2+Uu|0=g& z6^}8_{~8Kk{xSE+kT4nE&D03MAATV$JW?YHe!=gyyq|08`z@EizV{Qp@E_Qhk3Yhn z=zPPgX5@R_MwbS!m07=MqL1#>ygZ3kJg~3Y1#&BrzJpk%X&ndCcCsoQX()qj31k;! zU@JoI7_ggJ?cYbVfFHE3@Pvk+$z*niTq3y!%0TGbdj4c@p`}Q_I%a5S1kb=e^zk!&u7_yY< zbss$!@*9k5OPxJbeiA^G7@vI>O^3?#tat zKq|lcK2X`*Vmg0ZJLX}^a^YV)eCQ^K%*;PqZ#m#SxR{*1NB~PZl9pC9jTI}jus~dk zV~`rR-2~H2*2XLy6y_y9cuP1nSCHZIm}Wx#`JLPL(NFUSLO*Gb4(}8otzsp zeEhI5!v4{o_gX4XG)Hx8bargxcaG|nGLQ2OgjqrK;gHU8d~3%6=tq(pHwa^s@yiIj zTU6yDi*du{W5VdWKvRK)5u6=ZQIQlu%V*#%`#D(jupeANy9w@x;Z9(dm4I48{AziF z{Ut^sL_|cOM7h$}f#qeUaOeIo8m!S$)XUmkb#kckJn zp-BZ?e*R5Sa+(^a>mn#Ot^1jVYE+bpvZ3Zuw~oTt*9` z8#_@Ld^}JaDdxbr=)z~BxFzm>>~d;-yVo@0{Z7dfXZy@n)rICzW+}4Yu^0FSwOj#=8KL8i4fNgPWs}%fw z#l^(X3DxM6&h#^Lw11!EYs%#p;A4GJcC)_y#iP|!ZP6<*T$;>;eCVfI)y?`Ya7rR6 z9dCtwy=ss5;a6&^s*T7Ex;+t3X3AskOP}r!r9jv})Z>h!G?{`dsPh;O88V)+F#k#Y zURFtxP%N2nn9pR5@wxAPUP=Lt)fopF12Odv$)vwmCF=u3Is5D?b&+QBiRrtSGPCxxCcKJIm1^$SFR2hn#}o9G%qC7G1w9=5FP!$@RQQCouay?r#O1@-bD#D;(- zsj6~A#QSD%j`d%!?owIp+G`BOz1l?O=UIF@GM(fY-zF+;^ooxmYbF|Q5F$6LFqHE9 zH}y;*HK-W3q-V+~O`ep6)$uKiz-uQ$;^(sppL=3CSLx8kjH+U=q-8(2ndvBhjx+wW z4_ts9&=R1$hL-c}=YKC`VqO^?_HBM>EAje7W+EH09x6*CEAPA5x;!$v5y$Xlq7oAkzb%05 zw;WMd0#2Pm44Pin=E*5+OIj}*L&F`U@QDthAp1Rr{{84ie;k_8sOd)rZ97gfB*+-i zcB!iJTTZqo-f$={^&+%koq6KDmG=e1-F5Yo4gM;=*UYnhe5i*Uo0Np3KyFE~=Xsy9yVT4@I3>49{ z@5DZ+%Vl8YH`LS|S^h`G1Gf|eATV+9rc4!uxb8emT6&evEPPEeCBfNeQLUbW4J9FQ zr$Z1DF`FVrM@D|Z>2Dkrc5pvT!lSc^Px6I0s^G9$!h+LhZl^d|9U94^&0*AB|2 zPw0QI#d2Y3sE_GXT&k_D8TMPe!-EErQk9hBEGr5yTF!R-`0*1a_B$dXB9E2HZnxT+ zIWD*0we!E@8Xt`&qGJ1@qWLxJhwkU-WeMj8ilV~N^Bc$K;^Xycc-7786Fs3y{T9*L z*Zh9KR5!Iu=?}HmjLOLhVDs0MzezX1kt4qewI+jSmEP3;hs`J8v<&Pp{rf$EWBiU?936x#bI}GW%}1@&D%a$uobDg#ar^4gn~n z`sZi7|YL_RORHlqqyD!Mhdv2b=oB=4 zdT@8#&60Nb3h(ulk?>cWvFOt81|xD=>6wDAyam+jO<`g78aJ0rYo8N-_`o+pdir0^ zd6}b0x?63wp*a?xaoa_{ped>gXxAst3uwVB40Vm@Ew^wgs))ygYh-g!7egRz^W?gV8CcR+DJA<_jE!A(0|Folj17=V7b4 zq@iJDYnxqPFZ@{K3sfFMdZybKrvHt9C3F~wSLb_gOeQnzUl>solR|7?ybJ9+=<+>C z`j@W zHaWLn$mXfG<7Y_)QwrZ2gZ7V2xGa;EtZd)(Tr7Fez~e~pAg`+GCR#Zqb*ifsflqSK z*s1~>A-3H%>1{4yFw#kg?mhL;Dlc)pTzT{eqwt<>dWY#Fjp0wCJ0OQZwy-`~FRYCo zS}8%#G#Qoz5`kFX&YOjpIg}p_lxHjUqZp`?oP7E9%L(%GBEr25?{HP!HCJb&ewP-Q zYr<^p4=P+ReYVR{N@SIjprw%*em?$iz|>l-X_K-DA)`nwESV{>(1Nm`Z+Fd{&5G+# z-%*knhcrG~S+@8viK&jVtpby)ASS$rCq7C?zQ67y{b35E_;{MC7`JUG>DG8N)8y$1 z(3CUF6J>0%Z{Ny5nkH-|JG;XFx?--^;}ibFTKXl>ubHMz4UI+EB<8jrWp@~~z~8Yc z;x7b_B6Zj#+uBmc^MfoRbrCV&@5z30XA(U6FrH1(Mo{u?tIz_dwBq#~>*Ut;;Sc>C zUfeNPDrys(zu0ScV}GGw-K*XtW9LHM+{t_R{61tU!qjrt)=!>uFsu4|#FYwT{}Icu z_1zf;+3%KNcjk^TRIDBZhbg>_dx_1Xlw4|qk5rF-_*fJA7vyuRu8ro#NT4lzyc&t5 zH>dE6!xbE+RVaq6S+_19$WXsgB^Ar&BJgj2`}koG7A!%JR@%!HK(JjpxrIhA;r5-> zv44&^N5|^6lzl_APPsLv@j$k$UBu3Kc@QKqh2{{SsVCPlNV;ZbIN`=K=&i*G-AtPq zTh~`qXSq9Z)xVG>JD1=#-!TRrmb_(MozGqA2pPz6}3RkyI}D|FA@`J*O+2M z0KwL_(SMiGOY=du|9#Hcy1+kV@_AAjb!`2v<2t2-rRBGc!>8PryU39OS48cN;9E^8 zGYr-HXx5?brQZ7uYeR>WMOMCCWNcq3hvTS?lzo4QWoDT?gR8m;qx*U{wHtUUr08k8 zs2aXXNzpI-LaD%G{xMLFBJ|~pl@%ke5V*+$f56nw7DKO^6*piYayzcYI;I=#%QQZf zp}Yp>vpU5~x7w`eWjdDD0-xNugKGPD|C82qHz*pUOANmvb1<4V6my{!IIoQ0zRM7g z)KJQM#QuHxBfUW3U10`oZ$6HKyK?%B8Vr-lx(z8$|2`SOGl=T1 ztclQaQQsE9xnwh0<;YK2WcW21@>zqpYZ}hZq{)e8s$Acfb>Yow@^mHoOpea@|9SH&dDos>iuWhN9vz%I7ut@4|?#&zvGNLs(ZI|J%Gt7Er+ zDL=83_rYjLqKKo^)k_$NqXY^4i%Y(Gn2yf)`e*qm z$fxqi;Kp?3$ZrZrR2B{M#II9Uw+&g5ERwb(HEYgnSj~xMZXXF&W}cBcH0Tt0+%7KwN2PW`-3Ah=0HpL)|)J ziaV)XSsrC7PpZboWb<>GA);yCA^UxmKfBRIz|z5mgf`Kx*XEGscH?3dEwbGW6i<4l zQcMYH=uQ}iz8PI`=Tp(v9%H@zuY339u8B=;R_H(c+&7eB76@XYHW{>u3a}+YD;3lE z@lKolXLw5l9Ouvw#{gi?po#vhYXU1STHO6@t7E~!T$LHJqLf=UvQ2A_dr)b>4OR`9 zeZeEM0)hmjHvY)jk;AzB_>z*L$?Uu&|Fm22$KkQZ&C!c@#h-8AIkvqqW%ndHQ#QVA_nDB-*;*bN ztXs%CT)=M^6=v|ofZ97>Rv30IBVc$*>s|!kkU%u^MjuNS^b1( zJR3@aNYpKAr12T}oH?;uQI8cF8q9An9Q|Qx5EkTV8swm5XC-aumG$hGilEk30yc5p z=?Z2u5s}x|r1tisyN7Zy61KLSS*PHpr>f`p-&8At72Ws`0+0`ZTF7AR2@))pyLW9| zB2>8t$NPxMlZgI40i($3VBR$_yEnJAyk1s>P)j7qL&}0&x^Of)mK$p=u3H}FO{03E z#9k@aSMl!!wC3^o$Mk-40Y$g~i@h;~5P~2IX5Pu}j6b{x3hll**7$z$9e4KeAsPOB z4jsvG?~Ct0Et6Z3(H@e5ND{2g@cN_CPL^;BBUrTGn7Y5J3s0ZcS7JY^*Is>?6VTX@FE^WlKDQhoaQ)q zKcXjB?~5Nq!As#)?Q}j)qOGzj^`F#8wC1{O! z=1;)s@@S>l@GC`RTfi#`)oFrtDu(RVqh{OS=ASm1-`&wZ-y6I1Vcei=`6b_4teY@q zd0tt;96r)ijI@lkN7E^H{W0)6{rOLwAry?TpBpkf@I_&l8br}kDgMZzEEx+PG-&fj z$2@8HdoBX#DER|-N{&RH3Mp4xtUXzQMm4PPmZ4#)#ble02t|PSCJ;R&h>3PVJbWvt z>4hYzVrVr_Tbg%4{*0vL;m1B*tZ@l*36F>e0r&m%It458%%&{ycxh`FBObgxo_Z*! zFC84SAd^_$w0yoBRbqQJLAftuz>iEerVoX$u?IhWdJ3M2uZFKULbU^Kq%;H;OaGP6 zW``u%J?g#0pel@s*0*)!RTA}-(s}!R%!V@ z@_Nh>dNX6jAn-w7*tn^A#{k3cb*%=B+fe)h-#*0Ngf2AM-=ky9RZsCAL0wKMzUp6B zS4Ut3A&~!BQ(n;oTt!6ZS4D7wn!wJW|E<)dEqJJ9;ql8CqZ}RLYYBolI)bMOkIf!* zzZkedx%ZQpy=`z56?*tF@}--z0S8-xvD7N4cF~{|NUU;^8Fqso=@Xweq@?L%iDm;P zaG}8A`m<(HY7g)ihR#aDE2YOiFWMn~FR3uH#yA#rGAQ~*$Xk~cjv+7k zwVU^&x`We)Ji8oO-0A5v5BBJjxW@)7cq=r&YD!j+j9M$_MPNd(HJU%ji>Uu@EFv5y zrAn1*!A+BRo<5Ur@5l31B8k5#LzX!_#E4QFAtn&+1pJtnvup{v^6lTKM)2?bHBX(1 z#b2yRJ`23;p&W1Co;&pX6=O~W+=EVmBZrARKc)rNr$USlRcvQ(2?|5RJJ{LA`-Cv` z9UCtrDSVYS0VTuzS?{u0+-GiF&l3!Hhq2-NIq7t@*9G z|Dcg*8oAQHS^(+cr=^HXt=#XA7ZPyK<8@$(d;$*7&-IX?T$szjf#w6=HPB682@u9m z99$jnf42Zu4g>q8--v^JV|0fDU?lPk|ONY@AjmL%{q^@c=? za+N5ZHZywkq~I!rA+m_7wOGJPzF1QXK0NqO5Tk%G2lV~J-@9~Za2!e%2V$6!UWqG? z%fEbSm#&K&&{U3hKEJTxfw;rM5|W*5EPE+(U1C_Uhr&JW>cIxRkV$c(Nq-9({A4zE z>zaudf4perZF7sEE~jLR-dq1r0@92-fSZ9})K1%x^rf2{DTlrc4EN}t#zV)yp1Y;? z#M0cngkc{+Z6Nk!UJeh74pu?ep!0uGPO+2HV7&iGz{)4L9`1MZAR(RrR?*95dLM5u zEid2c;tmfF-<-I?Ms+<;Ik%Cfn`A3_z;D^sT3;FG1Mk8C??Qj-TT@(S6^J!U9#oSP z?I)oy`1$2G?^Ct{ybVu-l%%X`@guzwjtVSIS{|-|@yOO4Y|0WPkQW=$-D?08J z(&&stCrw}I0|(Kaa0#(MfP;dCrE%^6xxC=w()r>@o3bH7-~U!APB`6vIjcu6P|Gd$ z`nzx7spy8j-d3au%>7WlrVI0v+**74rCs&ho6ZWjy!1#1B@pm%5#sYriK@qjD`Edx zOBYOl+g5Sgnq*k{6)o1gh0IUpJcv*mYz++D++-?0Iy%smP+#^*`dBixQjUjLOTH6+ zqLmk%3dKw*p=emX{1W|V#Hv!5O@#rEmUvT%CwMkDpxno1<7aMm_9wRu&F#8 z5(@yn&UtsPQFH%|(3O|_2RFN0-x7>QRAw*y;$2Xq`l4|K4SbL9_du_N%;M@hY^^0& zm;vM=z7N=NqteGBrKHL4D>imdzrdWdr#=$@P*QS5R0C5xvuO2z>T)teW~Tby7Ye8& z#lHN^OlKL?K=(i{VhrixL!(+MJ0Gs5fkbfcnGhs9K|=K-U0n*u<=WKXg>jLZPWYjv z<*KV-`txm1K%20>!N11pJb6@eCA_jDq+{rbvIJwvh6QXbexwT)7DoJn3G!F%>>mPu zVc)Z;q$F8*axV8!X}fY2Tki>C@E%Q!qBq*=X{hsWPZ6I9^0FLiA8w8A*r~0feOk?& zq;xpYnAiFmMk(;?79V6fMl1u>{}btZshYH3T#OWXU(j)rq86$!k=*`{o}P>3`2T@i zeh)Jx0$|GCO&bRMZ^P(MG8k3>j1A*8`1Wj&A&k%9yUZX-%+j36f%*8OzwJ)hWDl|| z(QlKD4fP4?8>t4k{5i2yDeT)g#Jk1IhVla~9HwKP6Dh~@UDfC1ELBbS>6F4AJgkHt z2Q@F}0Fd&aqI%u}+YqzTUs@cg~t(?9p4PCX@^U~*ha101O9#t%T zNVUrfMkCuyn&P|iTC4jE+W~Ra*UC#gg;H*beE(3x*+KX|<0G9h?y#2d@?_A2lKV#k zs|-e!h*x2%+@D!7=hdevU2QS0*5)~|LO2}Kf}2uIm^UaZE{=&nFK6o??tJ-|;`&Z5 z{U3sIXA>Z|th&t9#|9Q>w_1&(mCV(pWJ~clBbrz(=2Q((EQbegDCI-B-l9{e_>QIi z-1=CY??*wEBO^n3yd^D(XwBaKV7lc14OWprH7{sA97oiR5z zwQA1+c0)uY)uB*a64n$^3_qOQ0rgj<#9h=x%7rJ-?r4Zo78RR({$BK2w^bWZnCx4kC3-o=4&{`hYl;Zp!2_i z-~l^1IUxv``agrIY9=!3oG3w%twX~fULtOx1G_|lsHjydGKJ#LsdBSi&U9DV3AKJ*sL*1VzRLIGH|y7Zg^K;E<3;`_GsvpFFTJrT&Ne1z9EsIwpCKyXO<6Nn3w(VZRdLDLq$(dgujM2s5ic@-3Z*6PTeyu zEqy1+l#NPLGVk9<1Um(0zlXw1{b5XjeE+>OQ!GiPY+;qx;#LykO?TR&EM=N*U$$YE zZjb(=!Ss37?*ZUN2)Y1yf@<2@?Sd=Z3vL}?izH|X6t}}Mpi>JKyZ8U9`|hZm|Ns3v zA~Uk0H0VxQQA$hYokF6alC)?_i}tR!k=5W%(v}oOn@U3iEe+axC@t-wUEk~J^Lc;H z=bZ03zrTLx{LZh#k(=)O^?E(m<8eK%$93(v5o^b?P$M||=7c_JN+bI0$u8ZlPvc_u z5p>KEa#s+R+|AGbm~a`9y}qBDBwY!AeqF5yoYM3qn?Z`wg$pME9q?PZBo0}Km(uQ> z-n%lPzu=YQ;Swh5j!L@3%r^~gHoLril9fKJ45%ykNK@pEX!KO0;qfcHSG?cs4tGl|&xrr2szdj}`JGailO7Vj(&|>g!G{ zwgy_W#kVxCxL&`%;lq$FKm+b}`$&2h!D{v^bp`G!y4Lr=xM6o0$vaxd2k#HEyjgeNh3+9{Kwdfl?Hy_b_ccGWquzc%((N zTZDvs=IxyE5>&YI`pTxxbIesLQuKjHtcWf%87S4EjWsr>H%@pkx*ek& z)(eHf(G3tnE+ke@sOX%0x22HtlW4?cK9AdHqvKgm7Jp`6T8ZLt1t5Rt0>j~Wz=H^K zn9o(+6X1TtUKhOT#5$dvTMwd7)Jq7#l}*hdyH&~6{a1w)m6!97sXRTePo4HkH8#&y8t*+B`Iu}E@J75H%E8QB zh<2tKcoPxvd%qax;5yNv24Bw-QXex4)l6w9g>CIKFt91wldeq*I`U7C-1pxs>NLUI zlxDfXv}j62Ma_S_LW<*DRnfh#k@o$!6FnSX-Co=o({NmQL4jzc0E@ln;B?XYEzJIMPR3aZg}^( zrnbX@XQk>FQL`wgGBGg`M33ZqKXR`mPnsJyY+J$j`~^*~_vY=}o@WB5R#6CF7`(dt z%ZI;JSIeO0L5|cn5j8Mx$c0XAJ>-i81WuN2r*0OT5HWcn_l5^w7p108T@9IpatOit zejMn#lGmcbebROh*T)Tp>zzLkVn7PI9uq;$(umGVIQf z1j6HEv8q2{vAf#{;i;sm8nFt}pPlG?c6Lwfn>WOxsRTJ}ptwCBY0Xo#u_q|RN66AW zQIuS~E#0PLV30f^Ax(E|tN)MOT|Nwq&;2HByn7!$D52{y+WEj6>WMd?DG~ac(-d7n ztil!s7+wOtJ1pZn7POY4@$|!}Co5r4oQAMjT%CCZ!f49r`^AITboyE04@B6Cq8`FZ$; z)g~5}qwg8RyZ@5j^XbWns3{TukDci?MsI7oI0SFO-7kpf=Ymp|h%_IAM5IDWpYcOw zWP!8JOi`XoC{pspC&!c8GWGM8Tzq_R)kweP4)5>nimHd|I~$Mde&waD+Y#aTU|aiZ zW8s=by~^`d#LX$^`z(#heUD1mQ4IHBBlpXNad`dC%gJ5Z5%XZ+dl=ks4??;vsbct>^9jk#DB&_!Xi?*Xo1G zg^n7uT;=uIczT-z6;wva(-Dr&8|#DH))J=~@H5|Prul%QvcT&MK}V6z#QzACEPg03 zlAiqc=biMrx+15!!%jrZ5T#m>A#I=)&CsUl;xaF6@v?hr4nc}NF`+;g$g?sdXnuT# zqDB$G$R>#dR2slFK)eeFz_;@G z^1^oXbMGdlca+J$_kk&yp6>9JPxFkKSz%tmFx(hNuzmfprcQz}_?$?Uyz*`_ z;31v5bg5BTXBhM@15BiyYX`W$KdUriYh`)wwdZ{pxhv?;R5^;bY05{Z6t-n7PQ+yK z6o{92{Uc@hmq<-ujm|7j*VNqJLmTXDhO1*#>TyqNgeVOcBUO2Q7Q+7aSr<_XSI^K9Q%INcI>3qHaOJgadZb2(k6@ zZ?9HWRo!TLCdzbx(?HJ1vL(RbN&9BDqru(~Mo4j;vm*vO=q=e1>u*ZieUH|;>Z&A5 zKkGEOmt@ux(*>A*k%vg?iRh|+teYI-7Rs0VT)g3tO3fBVwfMa5Sg-gaLqV(nA;vyDb@P4Rzd{>`_WP6>bs}~qr8Qnt9s!0> zc~vW8L2i$@w;su%;iEufkbqCat?AQx3arv zmjFJHW|*1BArX+tBeWj@ga!RmAkEb{RHXkp9dcFmmhhfL)$Ix z7kc;}ugWI68hP)|?WcaFl9OSA_P0(!#LIpKBQ9q_o;g=dQHK#u5=_Ik_4uo*KW-ji zML?G)*OM#3kELn(Lw+bS$k|pgHM@zUL4b%fiPy9*?1O@{#h#JA#Y_U|Sha;Od1ZSC zB^4B1d_l{6F1(_RE3W14#_*blt{f5-q#lESFdqTMqIZI!APWg*4rNblA|X7AV9)>7 zd1YKF>Nk!4%g+e6%8SAoP@VK*mk1)3q!-gx1ZUDp(~s@;N^+PlQx#-;5&dDK2SP~T zM>CT?e6_tagr4*L=c=w}wm2LM3wPR|uMz*#UP@$P`0mXS^Y>Z0O=hX# z4m|m3HDf|+>6b~3D$sYl#IUS=&U>al-1OQtq7w*gV7qrgB7aWX2KrwUsXf&m@v*UN zD;?gvdDCPbMnk!Jn}ei^Nzm_<;j4V}$sv92#`eunyKcO`vfQmk z{(_5?(;nZoWkS7Y4ZcivI($+9+$hz#eUoj6kbT*C>hg1)4c!`F2)>Ec4XrLN05C)o zj0h+D?^i$H_=v-0YYfQ|HRAR^(QQJLy24}X`K zPW{~n+q!)GEsoT4!VloJunU}9`Nqghnf}PFoVR(ci{M&ItJb7 zr(#*=qC%JFZGD4TybCV;)s-OTm!dCpPCRmoCqzQQRex)nU%q{kaRocDkiAdi@mz;I zZi(6NHFDk35*MjimgX2cvOP5GF<;ZlW?>I0)PsyKv z+91Ritq@v5+#@V3hBi2b>lyQyEAYdh;dcGRPMecQKoFLxdN-_kNS#InJ>tTf zN%7`UMR;>3A}iK$>fA8-4FN850sg2QWjCU7w(-Ocyiul z-f@#I9^%Bq)g$HbrbbIen%E+W)$d|soUz_cy;2AzpymgpgL`>-FQaCQ(u}0wtEjII zYHDhkzuwJDzpeWvUfQ~Xv~oAGIirPC6nygy=eb605c7gMtf!|ZbJwziC(7i~Yspld z1Rg%VA)eO9Bi7Ypz9~Ed8@4bD5_TKYiR39%8xFeTMtI95*bIqfC?13v57BW zbGAV)Z{Vnjj;dM|TA6@7COeKB5g6$kj;AU+-L?V{cZOSOpOZVKSTw&$Vt(Wk@qk3j%6WD5Q)kW)qsUk0u4zr)RXg5tux;JCwZvlE?eH_M zt`f+N*cOAeHoC1t0VCpb$dSpZgB=4MlTIcU7JDQm7rjgw_uC9qPy2F)>~-Upl2uic zReo||X)YQf`2?n;knE1t)Nwo^F3#M(tiS&nCBtrTRy&n&HskGd27bl ztu%ekVq?zm`O>m{7B;D;QA{q?@h@I13-~G*%eVHN%BTtZ1T9SF1PkB;?7wKC5xDw| z6GZhJ85X}-=Wyl_;N+X&;fpVnw@SIaV*6tMLLr(u3K-rOOt09Q$g8?;Gu)KX<(k54 zO(T3C?Ae#b6T2x_S!JhK{PeNukaHK~YE$^qo1h4ZErPgTo2>swqV?wW-!oranny~H zRJaTaHNJ7(%*=cj09DU88nc+ztO~gX854@vcK#pE!z4bP?ohjMVJvs~21+}lpmp;{ zals4Mn&dB?-LTtx^h%FR;7yKcAzro1y>&y4>#vQRkWy1C{$?9_X79o2!eRspx8&i^enFCg1WgLh>^e$E$!TH|yYRuCEhv^K+09ez_xwAV zzIokl=8M6In{H6_o&K@keN{YWXK7TvtPyEStNYTzg`SKS3(3W4ea`xsOSnOi6g5@V z!!GsLp$w+7yX!P+qBLfH+Rkyx3!9|rt%rgiwna8*a@gs3iSBsF?}NZ}UsQV8`{hC5 zksl=}r)g&?Qfufko{jfz`!4l%;?{w_qWjyAGh17RC@>InZnyN{#Ruqyv_^+1RqkY! zs+Ff!iO0B6-FMUJ~?|Y*5+?y zT5+|Sz2UE!@(O+yZ-8iX3?GF5$!Bk;6l-j5H#alu!upDaJa~8ov)B;A;eGplfDZ7Z zK1m<(FzEhu{qu;F=;dexki&kyDo$Bly>MZwO_6is<)TNsUPh<3*bsueh&7U?Tb0S@ zY3nt-9%MYS=yrR_nn^P+(U+-SVG!u_;S86a|1_qck#|%I=O3e>)CVCFESlBmYrGd zy~vX4&zHy2up*~Fs`kdtR|!nF@;t!IowirrUN3)pi|q07j_+E>6Fa0iH?FGb_pbdC z8PI5XHYQ-5% t*TWtG~~cf-(WRNq+W&FT#le{cBQb&`Q6floQ#+M^aQ)$6Al9$ z`~*CskVZ)Y3RK5y-{IzZSQOv#saz$Sy+qPs?W9a@#%`&LDQP&nN`r+-MI^jH{6Dor z5$8}Ly4II3spP-`l2?inDiH;;NMnTz5*Tc72sHY9kBQChFBBIKA!%nJE=~AgK|w(x zUr0`SB(>lAF4=1_10XLyuwOl%p7T?EoZ9uYJGW(`lf=FMW-%K&V>aYR_nnFBB+))x z_Rm54<9Z{7PzFH{hkgW@b_4ZvJ1v@<_pMDo*nfYIkyN#FF?bj0xHs_Cd)Zy@4Yq`r zC~k|Gb&-*=Z6>e@MIvkts{E*Y;B=%%*ZOf2r=tMFBLd9EoBe_H26{ zE>r^u)e6671c%O&9WUvfLBgdjA2h0TU8SI=Q;PmkMWBg*up<@2B~PDEe3A!2U*8wJ zcvh6dsHzYUV3oxqT>tC<^brI*BxQ`-utKA_1Z945lq_3LFTbYwMj_i^IqcFPeTbej z+~6LHw*Jb?-x+R2m^>DJA~^gi_r0Iw$lUDZ>%H;jvkb-UuCSK7n%Z=q1$9cN%x^5-XUU4&OUJQ(E5l>zeT?`!mT-Rkm89kG;kJW%5J&j8>NE86whI^( zndC74=Nfl~{EMh#?9Z=%bJA$PtE`PcYFpQv68oL2jQYev72xr-m{3OPi2>=Ga{7UY z#)&l3(&Mq(g)tLsCr)q+>v0;1Zld`1cinSlR{OXc$c(gig+dz8y=5NLbf5Blc-HN> za}W|>&KEWYH*b|UJ5!$?9ka6~b$d=7WNx$|d~9yL0HA%;<{_a~{=ushWwzvz6;r+s zH4&0af&ru7>S|sdGr_FfcSu@Vdi84p{y*kA1#QR>#<~kND0HZ>#_q6XT9>@Y;#V&1 zpK#CioczVMcTXnI$!pZTyS-1Bsn4X(Wvq{f%EJ@>kySz#3U?IG^pW$cnRaMUeYPv+ z_83jY_Uvt0T2UUoFN=?L@+U)m$}BgS%(SOZ3z|PzyFbeQCnLv>=3Den=ckIK z&A#o3;Z==RdR^4E_&W`d%zMpGEmYCP=}tfDFCCY770n2x$9X*7Wg`z4?f1pL@uRxV z4*F-b2wT)$2cT_?Uf`BX925#=NtEsoMWPa#vtLli6d`t)C%swxsWUQVxdS;p0am5= zmi+TFee2&Yc}Si(;xNTTcsxdBK{Ykp)+pIVLn?V#FvtIn>7sbtU|I0{1WS$J6_#aZ zoRbc2=2@%&%JKZ`FEh)w+1j+R`-(2RO?wtZhv&nY#ojYFT}qi%RE*00AiDf6`!lAy zq5e~g@AqUoO(rMsQ7E|z3b|{K`_`cO!36@+r64K!Q5gno&qzwNw@<{r?Mq(Dm1N}z zOTFHa&)0-?9(Jb+kE}g`k7K=$&^q1^c2eFriNP>X9V8|<<2X=ZoZcDK>CZ(LZ(&04r2qPlSqlJ z$H2NXHtb|&Ggni~w)!s1+-)p1r?GE;np?u4IhrtH5)vx71GH$K>des{HRZc(zdA3K zjD4{_&%4E{#kTGzaLDEep=A_G;vjt%Wx@gNxTR<{NVfPiHgI9C_~7q1mRgUg4XDJY zI%VHt6ywE-S^i+_e&R++8h9AkY?Ktl2j8ix`462M#%>(~&KwU)ICibb^QdyN3H>kY z!+zJ+Qj0<897ETo-9Xb?Jpb~tZR_!Q$nO+s2ec)m;s(!Y|8`7^k=)Osa}HiSkd2>v z94`(q)TKwftr*8LN{#h2&&*+bT2->c=nv8(zeB*_bfacaRcm7qHs>y6uVp~e?qp)_ z8Oo3WwlC!`>_XgM>iN{ObSY;;RMH2xl;5)jhJj1IfhLxgU%{LSmH1sBDdTU!0Zc$0 zC5NZ*WqB15u?tBPQF^jQ6TCrMi`{-(N4%}st;$2(%RE9!H?2RcIKHADVzD@p=A7(2 zoEH<*?^n=mJEL9|L@oZ%6BZ2d+b8LjgYwUD%Sx?p+gEr{vGBgaUn-PnyY3KlP-<;R z6tIk2a$c-?w+9q{UFiLU5kEii`HrjjyhNc3Bg=A^Af8L!tjoD=P6w5}$?Cc~V??ks zz~e)uBb55b@L!*A#%gnc@0hG4l&PO)tix;5N~z>sC=_0mWjf?f4*~A>760GApccjF zQ4Z`sw8=6jyV}qu=HdY(geoy{apz?3v~5tjgt3F(@q-7|wY5*vS)4LpbpVl{8J(A1 z5LB;fZVsWw#K$YB`S-C$y+?a3l#8R(6Lg~Z?yy6px>X)FRkWA!@$sK)zEwf_Jt`(< zZ?^N40-UyOMa^z`dU~D@poBgf9X3FD%ug@r87hg1)lp{3Nf#%U-=po{_KE=ab#ignwYIj7E?iVr?r^5jjz}h_)Z4hc1uAnxsC}vS=Ua5Ny4{Dwt&+I~K)IqrAJ}xZ`_h4EdxFJgsznkDXXgWiB zY^5U}p&svJ;7h?tbO+;YGe z0YbDesy|}mr4++iQ-%KeE<6O z>qSxeOKa@8$K_LmO(a!h#to*=L^}9Yc6PQ(6I|b{KCKsi869nuS-n>2%s=npO`nyk zV2Z^$1LP`fvx3O3xuHx;7`OyrRtX9V6V3Dw5aFoAlY#_fSJrs>ud#U$7CEtbk)0W4 zvPKEG2X1?1YUC^Z2KF&a4`WSns&x8S3M`>?xsv`#T9}{~L$0!_%zv2;MaOEcM_TD@%Cwj~ z!lcP{BRV@+Tp;I&21sF3P4HN0U4HO|+Qtz}>R8lbRJ*@>t1YuR^xvPOam~V_9I+RT z`T@z1_N1_@1MuMP!C|KeT^FSG z0m$NWRKl^Wsi8|dEmeZ!YwITzrzs`(M;R|$lOGbq54{CblPEN4Bwqf@M{>58R4lZA zzln`KL-Wb5$w=-y@c2{E=D3OQbY!)ymuZ-V$IPD73E^T-fmfQ z=NP2sKY-N@8_p0a^iXVZogo;{op$wC8bGSa{KZ8X*oZ~OBY=hKz2=Kv(#8JWlnmm^ z+6_6DbICWr!1}EWfu2hN?w6)ugdl{H?$B5WcIlt^PY}-@{JnSk^V?qb#})PCS5a6I zB=N5OqIcuX2E(Sx;aHR;L$OMZklg~su3&gIkfdJ})&}&~e zL%wcSJocDlq4$*NPvg~pSCG#cecMJ7V zQwv;NMoBbHy2(tr%nUEjSorq#cr0h^6|u{uW3V}LyE|!UC}?s7$Ucq|n4MzW#Q-gz~4RL=RA80A1E%Y`R$Qk|;#;$dS53H#u3?{mz(XMiie^>?2xnyPewmbX|wde1l=5r1s9wl6)~kw9USkes94Pt@`y@wlE#t6xMUsLj);L@F%Ux_ z3#`~?X7Se17WFBp3zQ>O5;jFrQkHn-lYm)$BAIO*PHotQNR9`V{*VZ?OaOWm7+^Hm z3OUdiAL7&>6C5fInQ*Ec7;NK^op`C6;}&{N6s3%D^l5gZSX1$58O*mc1RlPUf43G< zYUb|!2ppW!5t51Hl$WCs5iosSOE4;e?_>tE2wqk45$k_VEk>~=T|*N$1G|eMYB5AF zoA)-is3H^w&jztLaJSUy5nYh>lLSH@_ce&50I(qqYmN@a2t4jgyPP3BDH1f0Xfkr_!m9J zL;LT8EEGx+NOjhzRrN#%Ta=K{4KvU7-TIv(hY2m1h`1e$FKwyD=zXmDjcG%b)6{G- zDimJtqIv03Wo6~q<6r2zT`Y2?qg+0Jjs^}DY27?)ZEgMZfCdeHAIAc;?KD6Z z$VM9S;sqNDU{y329QgV&z&5EdQTh}4J1cIkr&H{jsj=`Cyo zD@1J_lA-a0T$g5)njazd?c}gIRo_%y{RC3l-I!8Cy;67-gY$BWgBXB*2X|nDKS9hY z!eppKWOgG9i8YqYR}dG&5vTBzYfY=c9f*q~R6ZVf&D{JPrWBS_hS@NDq{zua4HPoH zu#$1-GwFzLOluUwjya|*lH~)AS#lw}^UD`6cHfcSMegc|(OJl-2U8o&(^{-*HH>YW zj9HGFUBm_$@8jMEzncaC@+wH{5VYeLsOJ;IZBnOp-jIp^INJ|*@vN_=Wr0Utb*6k= z3IZSMlryH@QPbeVSESQiu@&|5{dvswBnMR}Y~66Dsj-np#Wk2gUh{WZs!ean^S^G5 zLDk9SYL4$Ou=kw8T*iv=Axrw&uPz?2bE%ELIg*;1TGoh^NUC-LarzcA%$bRhni9bI z(q;`5vCBGqPK&74#3&jX8uEcz2zX!*u?!rqNpKTFNmCK4%yR=r7?zVTabIk887~{a zoECpMPostprocessing with tof_postprocess select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 -#> cd45 cd34 cd38 -#> <dbl> <dbl> <dbl> -#> 1 130. 2.81 1.17 -#> 2 229. -0.800 10.6 -#> 3 292. 4.68 1.42 -#> 4 431. -0.406 13.2 +#> cd45 cd34 cd38 +#> <dbl> <dbl> <dbl> +#> 1 130. 3.18 0.862 +#> 2 229. -0.949 10.6 +#> 3 293. 4.93 1.35 +#> 4 431. 0.0843 13.0 #> # ℹ 2 more rows
    diff --git a/index.html b/index.html index 4df2870..a4e4bc2 100644 --- a/index.html +++ b/index.html @@ -91,8 +91,8 @@
    -

    Once tidytof is installed, you can attach it to your current R session using the following code:

    In addition, we can install and load the other packages we need for this vignette:

    -if(!require(FlowSOM)) BiocManager::install("FlowSOM")
    +if (!require(FlowSOM)) BiocManager::install("FlowSOM")
     library(FlowSOM)
     
    -if(!require(tidyverse)) install.packages("tidyverse")
    +if (!require(tidyverse)) install.packages("tidyverse")
     library(tidyverse)
    @@ -164,12 +164,12 @@

    Reading data with tof_read_dataUsing one of these directories (or any other directory containing cytometry data on your local machine), we can use tof_read_data to read cytometry data from raw files. Acceptable formats include .fcs files and .csv files. Importantly, tof_read_data is smart enough to read single .fcs/.csv files or multiple .fcs/.csv files depending on whether its first argument (path) leads to a single file or to a directory of files.

    Here, we can use tof_read_data to read in all of the .fcs files in the “phenograph” example dataset bundled into tidytof and store it in the phenograph variable.

    -phenograph <- 
    -  tidytof_example_data("phenograph") |> 
    -  tof_read_data()
    +phenograph <-
    +    tidytof_example_data("phenograph") |>
    +    tof_read_data()
     
    -phenograph |> 
    -  class()
    +phenograph |>
    +    class()
     #> [1] "tof_tbl"    "tbl_df"     "tbl"        "data.frame"

    Regardless of its input format, tidytof reads data into an extended tibble called a tof_tbl (pronounced “tof tibble”), an S3 class identical to tbl_df, but with one additional attribute (“panel”). tidytof stores this additional attribute in tof_tbls because, in addition to analyzing cytometry data from individual experiments, cytometry users often want to compare panels between experiments to find common markers or to compare which metals are associated with particular markers across panels.

    A few notes about tof_tbls:

    @@ -181,18 +181,18 @@

    Reading data with tof_read_dataBecause tof_tbls inherit from the tbl_df class, all methods available to tibbles are also available to tof_tbls. For example, dplyr’s useful mutate method can be applied to our tof_tbl named phenograph above to convert the columns encoding the phenograph cluster ID and stimulation condition to which each cell belongs into character vectors (instead of their original numeric codes in the uncleaned dataset).
    -phenograph <- 
    -  phenograph |> 
    -  # mutate the input tof_tbl
    -  mutate(
    -    PhenoGraph = as.character(PhenoGraph), 
    -    Condition = as.character(Condition)
    -  )
    +phenograph <-
    +    phenograph |>
    +    # mutate the input tof_tbl
    +    mutate(
    +        PhenoGraph = as.character(PhenoGraph),
    +        Condition = as.character(Condition)
    +    )
     
    -phenograph |> 
    -  # use dplyr's select method to show that the columns have been changed
    -  select(where(is.character)) |> 
    -  head()
    +phenograph |>
    +    # use dplyr's select method to show that the columns have been changed
    +    select(where(is.character)) |>
    +    head()
     #> # A tibble: 6 × 3
     #>   file_name                  PhenoGraph Condition
     #>   <chr>                      <chr>      <chr>    
    @@ -204,14 +204,14 @@ 

    Reading data with tof_read_data#> 6 H1_PhenoGraph_cluster1.fcs 12 12

    The tof_tbl class is preserved even after these transformations.

    -phenograph |> 
    -  class()
    +phenograph |>
    +    class()
     #> [1] "tof_tbl"    "tbl_df"     "tbl"        "data.frame"

    Finally, to retrieve panel information from a tof_tbl, use tof_get_panel:

    -phenograph |> 
    -  tof_get_panel() |> 
    -  head()
    +phenograph |>
    +    tof_get_panel() |>
    +    head()
     #> # A tibble: 6 × 2
     #>   metals      antigens   
     #>   <chr>       <chr>      
    @@ -232,9 +232,9 @@ 

    Pre-processing with tof_prepro

    As an example, we can preprocess our phenograph tof_tibble above and see how our first few measurements change before and after.

     # before preprocessing
    -phenograph |> 
    -  select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |> 
    -  head()
    +phenograph |>
    +    select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |>
    +    head()
     #> # A tibble: 6 × 3
     #>   `CD45|Sm154` `CD34|Nd148` `CD38|Er167`
     #>          <dbl>        <dbl>        <dbl>
    @@ -246,14 +246,14 @@ 

    Pre-processing with tof_prepro #> 6 448. 2.69 11.1

     # perform preprocessing
    -phenograph <- 
    -  phenograph |> 
    -  tof_preprocess()
    +phenograph <-
    +    phenograph |>
    +    tof_preprocess()
     
     # inspect new values
    -phenograph |> 
    -  select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |> 
    -  head()
    +phenograph |>
    +    select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |>
    +    head()
     #> # A tibble: 6 × 3
     #>   `CD45|Sm154` `CD34|Nd148` `CD38|Er167`
     #>          <dbl>        <dbl>        <dbl>
    @@ -275,8 +275,8 @@ 

    Downsampling with tof_downsample
     data(phenograph_data)
     
    -phenograph_data |> 
    -  count(phenograph_cluster)
    +phenograph_data |>
    +    count(phenograph_cluster)
     #> # A tibble: 3 × 2
     #>   phenograph_cluster     n
     #>   <chr>              <int>
    @@ -285,15 +285,15 @@ 

    Downsampling with tof_downsample #> 3 cluster3 1000

    To randomly sample 200 cells per cluster, we can use tof_downsample using the “constant” method:

    -phenograph_data |> 
    -  # downsample 
    -  tof_downsample(
    -    method = "constant", 
    -    group_cols = phenograph_cluster, 
    -    num_cells = 200
    -  ) |> 
    -  # count the number of downsampled cells in each cluster
    -  count(phenograph_cluster)
    +phenograph_data |>
    +    # downsample
    +    tof_downsample(
    +        method = "constant",
    +        group_cols = phenograph_cluster,
    +        num_cells = 200
    +    ) |>
    +    # count the number of downsampled cells in each cluster
    +    count(phenograph_cluster)
     #> # A tibble: 3 × 2
     #>   phenograph_cluster     n
     #>   <chr>              <int>
    @@ -302,15 +302,15 @@ 

    Downsampling with tof_downsample #> 3 cluster3 200

    Alternatively, if we wanted to sample 50% of the cells in each cluster, we could use the “prop” method:

    -phenograph_data |> 
    -  # downsample
    -  tof_downsample(
    -    method = "prop",
    -    group_cols = phenograph_cluster, 
    -    prop_cells = 0.5
    -  ) |> 
    -  # count the number of downsampled cells in each cluster
    -  count(phenograph_cluster)
    +phenograph_data |>
    +    # downsample
    +    tof_downsample(
    +        method = "prop",
    +        group_cols = phenograph_cluster,
    +        prop_cells = 0.5
    +    ) |>
    +    # count the number of downsampled cells in each cluster
    +    count(phenograph_cluster)
     #> # A tibble: 3 × 2
     #>   phenograph_cluster     n
     #>   <chr>              <int>
    @@ -319,30 +319,30 @@ 

    Downsampling with tof_downsample #> 3 cluster3 500

    And finally, you might also be interested in taking a slightly different approach to downsampling that downsamples the number of cells not to a fixed constant or proportion, but to a fixed density in phenotypic space. For example, the following scatterplot demonstrates that there are certain areas of phenotypic density in phenograph_data that contain more cells than others along the cd34/cd38 axes:

    -phenograph_data |> 
    -  # preprocess all numeric columns in the dataset
    -  tof_preprocess(undo_noise = FALSE) |> 
    -  # make a scatterplot
    -  ggplot(aes(x = cd34, y = cd38)) + 
    -  geom_point(alpha = 0.5) + 
    -  scale_x_continuous(limits = c(NA, 1.5)) + 
    -  scale_y_continuous(limits = c(NA, 4)) + 
    -  theme_bw()
    +phenograph_data |> + # preprocess all numeric columns in the dataset + tof_preprocess(undo_noise = FALSE) |> + # make a scatterplot + ggplot(aes(x = cd34, y = cd38)) + + geom_point(alpha = 0.5) + + scale_x_continuous(limits = c(NA, 1.5)) + + scale_y_continuous(limits = c(NA, 4)) + + theme_bw()

    To reduce the number of cells in our dataset until the local density around each cell in our dataset is relatively constant, we can use the “density” method of tof_downsample:

    -phenograph_data |> 
    -  tof_preprocess(undo_noise = FALSE) |> 
    -  tof_downsample(
    -    density_cols = c(cd34, cd38), 
    -    target_prop_cells = 0.25, 
    -    method = "density", 
    -  ) |> 
    -  ggplot(aes(x = cd34, y = cd38)) + 
    -  geom_point(alpha = 0.5) + 
    -  scale_x_continuous(limits = c(NA, 1.5)) + 
    -  scale_y_continuous(limits = c(NA, 4)) + 
    -  theme_bw()
    +phenograph_data |> + tof_preprocess(undo_noise = FALSE) |> + tof_downsample( + density_cols = c(cd34, cd38), + target_prop_cells = 0.25, + method = "density", + ) |> + ggplot(aes(x = cd34, y = cd38)) + + geom_point(alpha = 0.5) + + scale_x_continuous(limits = c(NA, 1.5)) + + scale_y_continuous(limits = c(NA, 4)) + + theme_bw()

    For more details, check out the documentation for the 3 underlying members of the tof_downsample_* function family (which are wrapped by tof_downsample):

      @@ -357,16 +357,16 @@

      Writing data with tof_write_data

      Finally, users may wish to store single-cell data as .fcs or .csv files after transformation, concatenation, filtering, or other data processing steps such as dimensionality reduction and/or clustering (see below). To write single-cell data from a tof_tbl into .fcs or .csv files, use tof_write_data.

      -# when copying and pasting this code, feel free to change this path 
      +# when copying and pasting this code, feel free to change this path
       # to wherever you'd like to save your output files
       my_path <- file.path("~", "Desktop", "tidytof_vignette_files")
       
      -phenograph_data |> 
      -  tof_write_data(
      -    group_cols = phenograph_cluster, 
      -    out_path = my_path,
      -    format = "fcs"
      -  )
      +phenograph_data |> + tof_write_data( + group_cols = phenograph_cluster, + out_path = my_path, + format = "fcs" + )

    tof_write_data’s trickiest argument is group_cols, the argument used to specify which columns in tof_tibble should be used to group cells (i.e. the rows of tof_tibble) into separate .fcs or .csv files. Simply put, this argument allows tof_write_data to create a single .fcs or .csv file for each unique combination of values in the columns specified by the user. In the example above, cells are grouped into 3 output .fcs files - one for each of the 3 clusters encoded by the phenograph_cluster column in phenograph_data. These files should have the following names (derived from the values in the phenograph_cluster column):

    • cluster1.fcs
    • @@ -375,15 +375,15 @@

      Writing data with tof_write_data

    However, suppose we wanted to write multiple files for each cluster by breaking cells into two groups: those that express high levels of pstat5 and those that express low levels of pstat5. We can use dplyr::mutate to create a new column in phenograph_data that breaks cells into high- and low-pstat5 expression groups, then add this column to our group_cols specification:

    -phenograph_data |> 
    -  # create a variable representing if a cell is above or below the median 
    -  # expression level of pstat5
    -  mutate(expression_group = if_else(pstat5 > median(pstat5), "high", "low")) |> 
    -  tof_write_data(
    -    group_cols = c(phenograph_cluster, expression_group), 
    -    out_path = my_path, 
    -    format = "fcs"
    -  )
    +phenograph_data |> + # create a variable representing if a cell is above or below the median + # expression level of pstat5 + mutate(expression_group = if_else(pstat5 > median(pstat5), "high", "low")) |> + tof_write_data( + group_cols = c(phenograph_cluster, expression_group), + out_path = my_path, + format = "fcs" + )

    This will write 6 files with the following names (derived from the values in phenograph_cluster and expression_group).

    • cluster1_low.fcs
    • @@ -407,23 +407,23 @@

      Identifying clusters with t

      To do so, we can use the tof_cluster verb. Several clustering methods are implemented in tidytof, including FlowSOM, PhenoGraph, k-means, and others.

      To demonstrate, we can apply the FlowSOM clustering algorithm to our phenograph_data from above. Note that phenograph_data contains 6000 total cells (2000 each from 3 clusters identified in the original PhenoGraph publication).

      -phenograph_clusters <- 
      -  phenograph_data |> 
      -  tof_preprocess() |> 
      -  tof_cluster(method = "flowsom", cluster_cols = contains("cd"))
      +phenograph_clusters <-
      +    phenograph_data |>
      +    tof_preprocess() |>
      +    tof_cluster(method = "flowsom", cluster_cols = contains("cd"))
       
      -phenograph_clusters |> 
      -  select(sample_name, .flowsom_metacluster, everything()) |> 
      -  head()
      +phenograph_clusters |>
      +    select(sample_name, .flowsom_metacluster, everything()) |>
      +    head()
       #> # A tibble: 6 × 26
       #>   sample_name      .flowsom_metacluster phenograph_cluster    cd19 cd11b    cd34
       #>   <chr>            <chr>                <chr>                <dbl> <dbl>   <dbl>
      -#> 1 H1_PhenoGraph_c… 3                    cluster1           -0.0336 2.46   0.608 
      -#> 2 H1_PhenoGraph_c… 7                    cluster1            0.324  0.856 -0.116 
      -#> 3 H1_PhenoGraph_c… 3                    cluster1            0.532  2.67   0.909 
      -#> 4 H1_PhenoGraph_c… 2                    cluster1            0.0163 2.97   0.0725
      -#> 5 H1_PhenoGraph_c… 4                    cluster1            0.144  2.98   0.128 
      -#> 6 H1_PhenoGraph_c… 2                    cluster1            0.742  3.41   0.336 
      +#> 1 H1_PhenoGraph_c… 13                   cluster1           -0.0336 2.46   0.608 
      +#> 2 H1_PhenoGraph_c… 18                   cluster1            0.324  0.856 -0.116 
      +#> 3 H1_PhenoGraph_c… 10                   cluster1            0.532  2.67   0.909 
      +#> 4 H1_PhenoGraph_c… 8                    cluster1            0.0163 2.97   0.0725
      +#> 5 H1_PhenoGraph_c… 13                   cluster1            0.144  2.98   0.128 
      +#> 6 H1_PhenoGraph_c… 8                    cluster1            0.742  3.41   0.336 
       #> # ℹ 20 more variables: cd45 <dbl>, cd123 <dbl>, cd33 <dbl>, cd47 <dbl>,
       #> #   cd7 <dbl>, cd44 <dbl>, cd38 <dbl>, cd3 <dbl>, cd117 <dbl>, cd64 <dbl>,
       #> #   cd41 <dbl>, pstat3 <dbl>, pstat5 <dbl>, pampk <dbl>, p4ebp1 <dbl>,
      @@ -431,39 +431,39 @@ 

      Identifying clusters with t

      The output of tof_cluster is a tof_tbl identical to the input tibble, now with the addition of an additional column (“.flowsom_metacluster”) that encodes the cluster id for each cell in the input tof_tbl. Note that all output columns added to a tibble or tof_tbl by tidytof begin with a full-stop (“.”) to reduce the likelihood of collisions with existing column names.

      Because the output of tof_cluster is a tof_tbl, we can use dplyr’s count method to assess the accuracy of the FlowSOM clustering compared to the original clustering from the PhenoGraph paper.

      -phenograph_clusters |> 
      -  count(phenograph_cluster, .flowsom_metacluster, sort = TRUE)
      -#> # A tibble: 24 × 3
      +phenograph_clusters |>
      +    count(phenograph_cluster, .flowsom_metacluster, sort = TRUE)
      +#> # A tibble: 23 × 3
       #>    phenograph_cluster .flowsom_metacluster     n
       #>    <chr>              <chr>                <int>
      -#>  1 cluster2           13                     483
      -#>  2 cluster3           18                     418
      -#>  3 cluster3           11                     300
      -#>  4 cluster2           20                     215
      -#>  5 cluster1           3                      213
      -#>  6 cluster3           12                     182
      -#>  7 cluster1           4                      177
      -#>  8 cluster1           1                      167
      -#>  9 cluster1           2                      165
      -#> 10 cluster2           19                     124
      -#> # ℹ 14 more rows
      +#> 1 cluster3 12 323 +#> 2 cluster3 15 318 +#> 3 cluster2 3 309 +#> 4 cluster1 17 234 +#> 5 cluster2 2 218 +#> 6 cluster2 4 206 +#> 7 cluster1 8 182 +#> 8 cluster1 18 167 +#> 9 cluster1 9 162 +#> 10 cluster3 20 162 +#> # ℹ 13 more rows

      Here, we can see that the FlowSOM algorithm groups most cells from the same PhenoGraph cluster with one another (with a small number of mistakes per PhenoGraph cluster).

      To change which clustering algorithm tof_cluster uses, alter the method flag; to change the columns used to compute the clusters, change the cluster_cols flag. And finally, if you want to return a tibble that only includes the cluster labels (not the cluster labels added as a new column to the input tof_tbl), set augment to FALSE.

       # will result in a tibble with only 1 column (the cluster labels)
      -phenograph_data |> 
      -  tof_preprocess() |> 
      -  tof_cluster(method = "flowsom", cluster_cols = contains("cd"), augment = FALSE) |> 
      -  head()
      +phenograph_data |>
      +    tof_preprocess() |>
      +    tof_cluster(method = "flowsom", cluster_cols = contains("cd"), augment = FALSE) |>
      +    head()
       #> # A tibble: 6 × 1
       #>   .flowsom_metacluster
       #>   <chr>               
      -#> 1 11                  
      -#> 2 7                   
      -#> 3 11                  
      -#> 4 16                  
      -#> 5 4                   
      -#> 6 16
      +#> 1 13 +#> 2 3 +#> 3 10 +#> 4 11 +#> 5 10 +#> 6 11

    Dimensionality reduction with tof_reduce_dimensions() @@ -473,42 +473,42 @@

    Dimensionality redu

    tidytof includes several algorithms commonly used by biologists for dimensionality reduction: Principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), and uniform manifold approximation and projection (UMAP). To apply these to a dataset, use tof_reduce_dimensions:

     # perform the dimensionality reduction
    -phenograph_tsne <- 
    -  phenograph_clusters |> 
    -  tof_reduce_dimensions(method = "tsne")
    +phenograph_tsne <-
    +    phenograph_clusters |>
    +    tof_reduce_dimensions(method = "tsne")
     
     # select only the tsne embedding columns using a tidyselect helper (contains)
    -phenograph_tsne |> 
    -  select(contains("tsne")) |> 
    -  head()
    +phenograph_tsne |>
    +    select(contains("tsne")) |>
    +    head()
     #> # A tibble: 6 × 2
    -#>   .tsne_1 .tsne_2
    -#>     <dbl>   <dbl>
    -#> 1   7.44    -5.16
    -#> 2   5.64    -9.25
    -#> 3 -10.9    -25.6 
    -#> 4   0.781  -17.2 
    -#> 5   3.50    -7.82
    -#> 6   2.82   -24.9
    +#> .tsne1 .tsne2 +#> <dbl> <dbl> +#> 1 -8.41 17.2 +#> 2 1.91 13.6 +#> 3 23.9 20.1 +#> 4 4.79 22.3 +#> 5 -4.99 22.4 +#> 6 11.0 20.2

    By default, tof_reduce_dimensions will add reduced-dimension feature embeddings to the input tof_tbl and return the augmented tof_tbl (that is, a tof_tbl with new columns for each embedding dimension) as its result. To return only the features embeddings themselves, set augment to FALSE (as in tof_cluster).

    Regardless of the method used, reduced-dimension feature embeddings can be visualized using ggplot2 (or any graphics package):

     # plot the tsne embeddings using color to distinguish between clusters
    -phenograph_tsne |> 
    -  ggplot(aes(x = .tsne_1, y = .tsne_2, fill = phenograph_cluster)) + 
    -  geom_point(shape = 21) + 
    -  theme_bw() + 
    -  labs(fill = NULL)
    +phenograph_tsne |> + ggplot(aes(x = .tsne1, y = .tsne2, fill = phenograph_cluster)) + + geom_point(shape = 21) + + theme_bw() + + labs(fill = NULL)

     
     # plot the tsne embeddings using color to represent CD11b expression
    -phenograph_tsne |> 
    -  ggplot(aes(x = .tsne_1, y = .tsne_2, fill = cd11b)) + 
    -  geom_point(shape = 21) + 
    -  scale_fill_viridis_c() +
    -  theme_bw() + 
    -  labs(fill = "CD11b expression")
    +phenograph_tsne |> + ggplot(aes(x = .tsne1, y = .tsne2, fill = cd11b)) + + geom_point(shape = 21) + + scale_fill_viridis_c() + + theme_bw() + + labs(fill = "CD11b expression")

    Such visualizations can be helpful in qualitatively describing the phenotypic differences between the clusters in a dataset. For example, in the example above, we can see that one of the clusters has high CD11b expression, whereas the others have lower CD11b expression.

    @@ -520,33 +520,34 @@

    tidytof provides the tof_analyze_abundance and tof_analyze_expression verbs for differential abundance and differential expression analyses, respectively.

    To demonstrate how to use these verbs, we’ll first download a dataset originally collected for the development of the CITRUS algorithm. These data are available in the HDCytoData package, which is available on Bioconductor and can be downloaded with the following command:

    -if (!requireNamespace("BiocManager", quietly = TRUE))
    +if (!requireNamespace("BiocManager", quietly = TRUE)) {
         install.packages("BiocManager")
    +}
     
     BiocManager::install("HDCytoData")

    To load the CITRUS data into our current R session, we can call a function from the HDCytoData, which will provide it to us in a format from the {flowCore} package (called a “flowSet”). To convert this into a tidy tibble, we can use tidytof built-in method for converting flowCore objects into tof_tbl’s .

     citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet()
     
    -citrus_data <- 
    -  citrus_raw |> 
    -  as_tof_tbl(sep = "_")
    +citrus_data <- + citrus_raw |> + as_tof_tbl(sep = "_")

    Thus, we can see that citrus_data is a tof_tbl with 172791 cells (one in each row) and 39 pieces of information about each cell (one in each column).

    We can also extract some metadata from the raw data and join it with our single-cell data using some functions from the tidyverse:

    -citrus_metadata <- 
    -  tibble(
    -    file_name = as.character(flowCore::pData(citrus_raw)[[1]]), 
    -    sample_id = 1:length(file_name),
    -    patient = str_extract(file_name, "patient[:digit:]"), 
    -    stimulation = str_extract(file_name, "(BCR-XL)|Reference")
    -  ) |> 
    -  mutate(
    -    stimulation = if_else(stimulation == "Reference", "Basal", stimulation)
    -  )
    +citrus_metadata <-
    +    tibble(
    +        file_name = as.character(flowCore::pData(citrus_raw)[[1]]),
    +        sample_id = seq_along(file_name),
    +        patient = str_extract(file_name, "patient[:digit:]"),
    +        stimulation = str_extract(file_name, "(BCR-XL)|Reference")
    +    ) |>
    +    mutate(
    +        stimulation = if_else(stimulation == "Reference", "Basal", stimulation)
    +    )
     
     citrus_metadata |>
    -  head()
    +    head()
     #> # A tibble: 6 × 4
     #>   file_name                          sample_id patient  stimulation
     #>   <chr>                                  <int> <chr>    <chr>      
    @@ -559,21 +560,21 @@ 

    -citrus_data <- 
    -  citrus_data |> 
    -  left_join(citrus_metadata, by = "sample_id")

    +citrus_data <- + citrus_data |> + left_join(citrus_metadata, by = "sample_id")

    After these data cleaning steps, we now have citrus_data, a tof_tbl containing cells collected from 8 patients. Specifically, 2 samples were taken from each patient: one in which the cells’ B-cell receptors were stimulated (BCR-XL) and one in which they were not (Basal). In citrus_data, each cell’s patient of origin is stored in the patient column, and each cell’s stimulation condition is stored in the stimulation column. In addition, the population_id column stores information about cluster labels that were applied to each cell using a combination of FlowSOM clustering and manual merging (for details, run ?HDCytoData::Bodenmiller_BCR_XL in the R console).

    We might wonder if there are certain clusters that expand or deplete within patients between the two stimulation conditions described above - this is a question that requires differential abundance analysis (DAA). tidytof’s tof_analyze_abundance verb supports the use of 3 statistical approaches for performing DAA: diffcyt, generalized-linear mixed modeling (GLMMs), and simple t-tests. Because the setup described above uses a paired design and only has 2 experimental conditions of interest (Basal vs. BCR-XL), we can use the paired t-test method:

    -daa_result <- 
    -  citrus_data |> 
    -  tof_analyze_abundance(
    -    cluster_col = population_id, 
    -    effect_col = stimulation, 
    -    group_cols = patient, 
    -    test_type = "paired", 
    -    method = "ttest"
    -  )
    +daa_result <-
    +    citrus_data |>
    +    tof_analyze_abundance(
    +        cluster_col = population_id,
    +        effect_col = stimulation,
    +        group_cols = patient,
    +        test_type = "paired",
    +        method = "ttest"
    +    )
     
     daa_result
     #> # A tibble: 8 × 8
    @@ -589,62 +590,62 @@ 

    #> 8 8 0.236 0.270 "" -1.30 7 -0.00228 0.901

    Based on this output, we can see that 6 of our 8 clusters have statistically different abundance in our two stimulation conditions. Using tidytof easy integration with tidyverse packages, we can use this result to visualize the fold-changes of each cluster (within each patient) in the BCR-XL condition compared to the Basal condition using ggplot2:

    -plot_data <- 
    -  citrus_data |> 
    -  mutate(population_id = as.character(population_id)) |>
    -  left_join(
    -    select(daa_result, population_id, significant, mean_fc), 
    -    by = "population_id"
    -  ) |> 
    -  dplyr::count(patient, stimulation, population_id, significant, mean_fc, name = "n") |> 
    -  group_by(patient, stimulation) |> 
    -  mutate(prop = n / sum(n)) |> 
    -  ungroup() |> 
    -  pivot_wider(
    -    names_from = stimulation, 
    -    values_from = c(prop, n), 
    -  ) |> 
    -  mutate(
    -    diff = `prop_BCR-XL` - prop_Basal, 
    -    fc = `prop_BCR-XL` / prop_Basal,
    -    population_id = fct_reorder(population_id, diff),
    -    direction = 
    -      case_when(
    -        mean_fc > 1 & significant == "*" ~ "increase",
    -        mean_fc < 1 & significant == "*" ~ "decrease", 
    -        TRUE ~ NA_character_
    -      )
    -  )
    +plot_data <-
    +    citrus_data |>
    +    mutate(population_id = as.character(population_id)) |>
    +    left_join(
    +        select(daa_result, population_id, significant, mean_fc),
    +        by = "population_id"
    +    ) |>
    +    dplyr::count(patient, stimulation, population_id, significant, mean_fc, name = "n") |>
    +    group_by(patient, stimulation) |>
    +    mutate(prop = n / sum(n)) |>
    +    ungroup() |>
    +    pivot_wider(
    +        names_from = stimulation,
    +        values_from = c(prop, n),
    +    ) |>
    +    mutate(
    +        diff = `prop_BCR-XL` - prop_Basal,
    +        fc = `prop_BCR-XL` / prop_Basal,
    +        population_id = fct_reorder(population_id, diff),
    +        direction =
    +            case_when(
    +                mean_fc > 1 & significant == "*" ~ "increase",
    +                mean_fc < 1 & significant == "*" ~ "decrease",
    +                TRUE ~ NA_character_
    +            )
    +    )
     
    -significance_data <- 
    -  plot_data |> 
    -  group_by(population_id, significant, direction) |> 
    -  summarize(diff = max(diff), fc = max(fc)) |> 
    -  ungroup()
    +significance_data <-
    +    plot_data |>
    +    group_by(population_id, significant, direction) |>
    +    summarize(diff = max(diff), fc = max(fc)) |>
    +    ungroup()
     
    -plot_data |> 
    -  ggplot(aes(x = population_id, y = fc, fill = direction)) + 
    -  geom_violin(trim = FALSE) +
    -  geom_hline(yintercept = 1, color = "red", linetype = "dotted", size = 0.5) + 
    -  geom_point() + 
    -  geom_text(
    -    aes(x = population_id, y = fc, label = significant), 
    -    data = significance_data, 
    -    size = 8, 
    -    nudge_x = 0.2,
    -    nudge_y = 0.06
    -  ) +
    -  scale_x_discrete(labels = function(x) str_c("cluster ", x)) + 
    -  scale_fill_manual(
    -    values = c("decrease" = "#cd5241", "increase" = "#207394"),
    -    na.translate = FALSE
    -  ) +
    -  labs(
    -    x = NULL, 
    -    y = "Abundance fold-change (stimulated / basal)", 
    -    fill = "Effect", 
    -    caption = "Asterisks indicate significance at an adjusted p-value of 0.05"
    -  )
    +plot_data |> + ggplot(aes(x = population_id, y = fc, fill = direction)) + + geom_violin(trim = FALSE) + + geom_hline(yintercept = 1, color = "red", linetype = "dotted", size = 0.5) + + geom_point() + + geom_text( + aes(x = population_id, y = fc, label = significant), + data = significance_data, + size = 8, + nudge_x = 0.2, + nudge_y = 0.06 + ) + + scale_x_discrete(labels = function(x) str_c("cluster ", x)) + + scale_fill_manual( + values = c("decrease" = "#cd5241", "increase" = "#207394"), + na.translate = FALSE + ) + + labs( + x = NULL, + y = "Abundance fold-change (stimulated / basal)", + fill = "Effect", + caption = "Asterisks indicate significance at an adjusted p-value of 0.05" + )

    Importantly, the output of tof_analyze_abundance depends slightly on the underlying statistical method being used, and details can be found in the documentation for each tof_analyze_abundance_* function family member:

      @@ -654,26 +655,26 @@

      tidytof’s tof_analyze_expression verb. As above, we can use paired t-tests with multiple-hypothesis correction to to test for significant differences in each cluster’s expression of our signaling markers between stimulation conditions.

      -signaling_markers <- 
      -  c(
      -    "pNFkB_Nd142", "pStat5_Nd150", "pAkt_Sm152", "pStat1_Eu153", "pStat3_Gd158", 
      -    "pSlp76_Dy164", "pBtk_Er166", "pErk_Er168", "pS6_Yb172", "pZap70_Gd156"
      -  )
      +signaling_markers <-
      +    c(
      +        "pNFkB_Nd142", "pStat5_Nd150", "pAkt_Sm152", "pStat1_Eu153", "pStat3_Gd158",
      +        "pSlp76_Dy164", "pBtk_Er166", "pErk_Er168", "pS6_Yb172", "pZap70_Gd156"
      +    )
       
      -dea_result <- 
      -  citrus_data |> 
      -  tof_preprocess(channel_cols = any_of(signaling_markers)) |> 
      -  tof_analyze_expression(
      -    cluster_col = population_id, 
      -    marker_cols = any_of(signaling_markers), 
      -    effect_col = stimulation,
      -    group_cols = patient, 
      -    test_type = "paired", 
      -    method = "ttest"
      -  )
      +dea_result <-
      +    citrus_data |>
      +    tof_preprocess(channel_cols = any_of(signaling_markers)) |>
      +    tof_analyze_expression(
      +        cluster_col = population_id,
      +        marker_cols = any_of(signaling_markers),
      +        effect_col = stimulation,
      +        group_cols = patient,
      +        test_type = "paired",
      +        method = "ttest"
      +    )
       
      -dea_result |> 
      -  head()
      +dea_result |>
      +    head()
       #> # A tibble: 6 × 9
       #>   population_id marker   p_val   p_adj significant     t    df mean_diff mean_fc
       #>   <chr>         <chr>    <dbl>   <dbl> <chr>       <dbl> <dbl>     <dbl>   <dbl>
      @@ -686,11 +687,11 @@ 

      tof_analyze_expression() also depends on the underlying test being used, we can see that the result above looks relatively similar to the output from tof_analyze_abundance(). Above, the output is a tibble in which each row represents the differential expression results from a single cluster-marker pair - for example, the first row represents the difference in expression of pS6 in cluster 1 between the BCR-XL and Basal conditions. Each row includes the raw p-value and multiple-hypothesis-corrected p-value for each cluster-marker pair.

      This result can be used to make a volcano plot to visualize the results for all cluster-marker pairs:

      -volcano_plot <- 
      -  dea_result |> 
      -  tof_plot_clusters_volcano(
      -    use_ggrepel = TRUE
      -  ) 
      +volcano_plot <-
      +    dea_result |>
      +    tof_plot_clusters_volcano(
      +        use_ggrepel = TRUE
      +    )
       
       volcano_plot

      @@ -709,17 +710,17 @@

      Feature extraction with First, we have tof_extract_proportion, which extracts the proportion of cells in each cluster within each sample (with samples defined using the group_cols argument):

       # preprocess the numeric columns in the citrus dataset
      -citrus_data <- 
      -  citrus_data |> 
      -  mutate(cluster = str_c("cluster", population_id)) |> 
      -  tof_preprocess()
      +citrus_data <-
      +    citrus_data |>
      +    mutate(cluster = str_c("cluster", population_id)) |>
      +    tof_preprocess()
       
      -citrus_data |> 
      -  tof_extract_proportion(
      -    cluster_col = cluster, 
      -    group_cols = c(patient, stimulation)
      -  ) |> 
      -  head()
      +citrus_data |>
      +    tof_extract_proportion(
      +        cluster_col = cluster,
      +        group_cols = c(patient, stimulation)
      +    ) |>
      +    head()
       #> # A tibble: 6 × 10
       #>   patient  stimulation `prop@cluster1` `prop@cluster2` `prop@cluster3`
       #>   <chr>    <chr>                 <dbl>           <dbl>           <dbl>
      @@ -733,13 +734,13 @@ 

      Feature extraction with #> # `prop@cluster6` <dbl>, `prop@cluster7` <dbl>, `prop@cluster8` <dbl>

      Like all members of the tof_extract_* function family, tof_extract_proportion() returns one row for each sample (defined as a unique combination of values of the group_cols) and one column for each extracted feature (above, one column for the proportion of each of the 8 clusters in citrus_data). These values can also be returned in “long” format by changing the format argument:

      -citrus_data |> 
      -  tof_extract_proportion(
      -    cluster_col = cluster, 
      -    group_cols = c(patient, stimulation), 
      -    format = "long"
      -  ) |> 
      -  head()
      +citrus_data |>
      +    tof_extract_proportion(
      +        cluster_col = cluster,
      +        group_cols = c(patient, stimulation),
      +        format = "long"
      +    ) |>
      +    head()
       #> # A tibble: 6 × 4
       #>   patient  stimulation cluster     prop
       #>   <chr>    <chr>       <chr>      <dbl>
      @@ -751,14 +752,14 @@ 

      Feature extraction with #> 6 patient1 Basal cluster6 0.0759

      Another member of the same function family, tof_extract_central_tendency, computes the central tendency (e.g. mean or median) of user-specified markers in each cluster.

      -citrus_data |> 
      -  tof_extract_central_tendency(
      -    cluster_col = cluster, 
      -    group_cols = c(patient, stimulation), 
      -    marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), 
      -    central_tendency_function = mean
      -  ) |> 
      -  head()
      +citrus_data |>
      +    tof_extract_central_tendency(
      +        cluster_col = cluster,
      +        group_cols = c(patient, stimulation),
      +        marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")),
      +        central_tendency_function = mean
      +    ) |>
      +    head()
       #> # A tibble: 6 × 26
       #>   patient  stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct`
       #>   <chr>    <chr>                          <dbl>                   <dbl>
      @@ -777,14 +778,14 @@ 

      Feature extraction with #> # `CD4_Nd145@cluster5_ct` <dbl>, `CD20_Sm147@cluster5_ct` <dbl>, …

      tof_extract_threshold is similar to tof_extract_central_tendency, but calculates the proportion of cells above a user-specified expression value for each marker instead of a measure of central tendency:

      -citrus_data |> 
      -  tof_extract_threshold(
      -    cluster_col = cluster, 
      -    group_cols = c(patient, stimulation), 
      -    marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), 
      -    threshold = 5
      -  ) |> 
      -  head()
      +citrus_data |>
      +    tof_extract_threshold(
      +        cluster_col = cluster,
      +        group_cols = c(patient, stimulation),
      +        marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")),
      +        threshold = 5
      +    ) |>
      +    head()
       #> # A tibble: 6 × 26
       #>   patient  stimulation `CD45_In115@cluster1_threshold` CD4_Nd145@cluster1_thre…¹
       #>   <chr>    <chr>                                 <dbl>                     <dbl>
      @@ -804,15 +805,15 @@ 

      Feature extraction with The two final members of the tof_extract_* function family – tof_extract_emd and tof_extract_jsd are designed specifically for comparing distributions of marker expression between stimulation conditions. As such, they must be given a stimulation_col that identifies which stimulation condition each cell is in, and a basal_level that specifies the reference (i.e. unstimulated) condition within the stimulation_col. With these additional arguments, tof_extract_emd computes the Earth-mover’s distance between each marker’s distribution in the stimulation conditions (within each cluster) and the basal condition; similarly, tof_extract_jsd computes the Jensen-Shannon divergence index between the same distributions. Both of these values are ways to compare how different 2 distributions are to one another and are more computationally expensive (but also higher-resolution) than simply comparing measures of central tendency.

       # Earth-mover's distance
      -citrus_data |> 
      -  tof_extract_emd(
      -    cluster_col = cluster, 
      -    group_cols = patient, 
      -    marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), 
      -    emd_col = stimulation, 
      -    reference_level = "Basal"
      -  ) |> 
      -  head()
      +citrus_data |>
      +    tof_extract_emd(
      +        cluster_col = cluster,
      +        group_cols = patient,
      +        marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")),
      +        emd_col = stimulation,
      +        reference_level = "Basal"
      +    ) |>
      +    head()
       #> # A tibble: 6 × 25
       #>   patient  BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³
       #>   <chr>                      <dbl>                  <dbl>                  <dbl>
      @@ -831,15 +832,15 @@ 

      Feature extraction with #> # `BCR-XL_CD4_Nd145@cluster4_emd` <dbl>, …

       # Jensen-Shannon Divergence
      -citrus_data |> 
      -  tof_extract_jsd(
      -    cluster_col = cluster, 
      -    group_cols = patient,  
      -    marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")), 
      -    jsd_col = stimulation, 
      -    reference_level = "Basal"
      -  ) |> 
      -  head()
      +citrus_data |>
      +    tof_extract_jsd(
      +        cluster_col = cluster,
      +        group_cols = patient,
      +        marker_cols = any_of(c("CD45_In115", "CD4_Nd145", "CD20_Sm147")),
      +        jsd_col = stimulation,
      +        reference_level = "Basal"
      +    ) |>
      +    head()
       #> # A tibble: 6 × 25
       #>   patient  BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³
       #>   <chr>                      <dbl>                  <dbl>                  <dbl>
      @@ -858,17 +859,17 @@ 

      Feature extraction with #> # `BCR-XL_CD4_Nd145@cluster4_jsd` <dbl>, …

      Finally, the tof_extract_features verb provides a wrapper to each of the members of its function family, allowing users to extract multiple features types at once. For example, the following code extracts the proportion of each cluster, median of several markers in each cluster, and EMD between the basal condition and stimulated condition in each cluster for all patients in citrus_data.

      -citrus_data |> 
      -  tof_extract_features(
      -    cluster_col = cluster, 
      -    group_cols = patient, 
      -    stimulation_col = stimulation,
      -    lineage_cols = any_of(c("CD45_In115", "CD20_Sm147", "CD33_Nd148")), 
      -    signaling_cols = any_of(signaling_markers), 
      -    signaling_method = "emd", 
      -    basal_level = "Basal"
      -  ) |> 
      -  head()
      +citrus_data |> + tof_extract_features( + cluster_col = cluster, + group_cols = patient, + stimulation_col = stimulation, + lineage_cols = any_of(c("CD45_In115", "CD20_Sm147", "CD33_Nd148")), + signaling_cols = any_of(signaling_markers), + signaling_method = "emd", + basal_level = "Basal" + ) |> + head()

      Outcomes modeling with tof_model @@ -880,19 +881,19 @@

      Outcomes modeling with tof_model data(ddpr_metadata) # link for downloading the sample-level data from the Nature Medicine website -data_link <- - "https://static-content.springer.com/esm/art%3A10.1038%2Fnm.4505/MediaObjects/41591_2018_BFnm4505_MOESM3_ESM.csv" +data_link <- + "https://static-content.springer.com/esm/art%3A10.1038%2Fnm.4505/MediaObjects/41591_2018_BFnm4505_MOESM3_ESM.csv" # downloading the data and combining it with clinical annotations -ddpr_patients <- - readr::read_csv(data_link, skip = 2L, n_max = 78L, show_col_types = FALSE) |> - dplyr::rename(patient_id = Patient_ID) |> - left_join(ddpr_metadata, by = "patient_id") |> - dplyr::filter(!str_detect(patient_id, "Healthy")) +ddpr_patients <- + readr::read_csv(data_link, skip = 2L, n_max = 78L, show_col_types = FALSE) |> + dplyr::rename(patient_id = Patient_ID) |> + left_join(ddpr_metadata, by = "patient_id") |> + dplyr::filter(!str_detect(patient_id, "Healthy")) -ddpr_patients |> - select(where(~ !is.numeric(.x))) |> - head() +ddpr_patients |> + select(where(~ !is.numeric(.x))) |> + head() #> # A tibble: 6 × 8 #> patient_id gender mrd_risk nci_rome_risk relapse_status type_of_relapse cohort #> <chr> <chr> <chr> <chr> <chr> <chr> <chr> @@ -906,28 +907,28 @@

      Outcomes modeling with tof_model

      The data processing steps above result in the ddpr_patients tibble. The numeric columns in ddpr_patients represent aggregated cell population features for each sample (see Supplementary Table 5 in this paper for details). The non-numeric columns represent clinical metadata about each sample (run ?ddpr_metadata for more information).

      There are also a few preprocessing steps that we might want to perform now to save us some headaches when we’re fitting models later.

      -ddpr_patients <- 
      -  ddpr_patients |> 
      -  # convert the relapse_status variable to a factor first, 
      -  # which is something we'll want for fitting the model later
      -  # and create the time_to_event and event columns for survival modeling
      -  mutate(
      -    relapse_status = as.factor(relapse_status), 
      -    time_to_event = if_else(relapse_status == "Yes", time_to_relapse, ccr),
      -    event = if_else(relapse_status == "Yes", 1, 0)
      -  )
      +ddpr_patients <- + ddpr_patients |> + # convert the relapse_status variable to a factor first, + # which is something we'll want for fitting the model later + # and create the time_to_event and event columns for survival modeling + mutate( + relapse_status = as.factor(relapse_status), + time_to_event = if_else(relapse_status == "Yes", time_to_relapse, ccr), + event = if_else(relapse_status == "Yes", 1, 0) + )

      Separating the training and validation cohorts

      In the original DDPR paper, some patients were used to fit the model and the rest were used to assess the model after it was tuned. We can separate our training and validation cohorts using the cohort variable in ddpr_patients

      -ddpr_training <- 
      -  ddpr_patients |> 
      -  dplyr::filter(cohort == "Training") 
      +ddpr_training <-
      +    ddpr_patients |>
      +    dplyr::filter(cohort == "Training")
       
      -ddpr_validation <- 
      -  ddpr_patients |> 
      -  dplyr::filter(cohort == "Validation")
      +ddpr_validation <- + ddpr_patients |> + dplyr::filter(cohort == "Validation")
       nrow(ddpr_training)
       #> [1] 49
      @@ -941,8 +942,8 @@ 
      Building a classifier u

      First, we can build an elastic net classifier to predict which patients will relapse and which patients won’t (ignoring time-to-event data for now). For this, we can use the relapse_status column in ddpr_training as the outcome variable:

       # find how many of each outcome we have in our cohort
      -ddpr_training |> 
      -  dplyr::count(relapse_status)
      +ddpr_training |>
      +    dplyr::count(relapse_status)
       #> # A tibble: 2 × 2
       #>   relapse_status     n
       #>   <fct>          <int>
      @@ -950,13 +951,13 @@ 
      Building a classifier u #> 2 Yes 18

      Specifically, we can use the tof_split_data function to split our cohort into a training and test set either once (a “simple” split) or multiple times (using either k-fold cross-validation or bootstrapping). In this case, we use 5-fold cross-validation, but reading the documentation of tof_split_data demonstrates how to use other methods.

      -training_split <- 
      -  ddpr_training |> 
      -  tof_split_data(
      -    split_method = "k-fold", 
      -    num_cv_folds = 5, 
      -    strata = relapse_status
      -  )
      +training_split <-
      +    ddpr_training |>
      +    tof_split_data(
      +        split_method = "k-fold",
      +        num_cv_folds = 5,
      +        strata = relapse_status
      +    )
       
       training_split
       #> #  5-fold cross-validation using stratification 
      @@ -987,18 +988,18 @@ 
      Building a classifier u #> [1] "vfold_split" "rsplit"

      Note that you can use rsample::training and rsample::testing to return the training and test obeservations from each resampling:

      -my_resample |> 
      -  rsample::training() |> 
      -  head()
      +my_resample |>
      +    rsample::training() |>
      +    head()
       #> # A tibble: 6 × 1,854
       #>   patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1
       #>   <chr>           <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
      -#> 1 UPN1-Rx        0.0395    0.618     0.0634    0.572       2.93     0.944
      -#> 2 UPN2           0.139     0.0662    0.0221    0.0825      2.25     0.454
      -#> 3 UPN3           0.633     0.0234    0.0165    0.0327      2.25     0.226
      -#> 4 UPN7           0.474     0.966     0.124     1.24        2.59     0.243
      -#> 5 UPN8           0.951     0.958     0.161     0.556       3.18     0.556
      -#> 6 UPN9          15.6       0.446     0.0445    0.163       2.86     0.434
      +#> 1 UPN1          3.06       0.583   0.00449     0.164       1.94     0.416
      +#> 2 UPN1-Rx       0.0395     0.618   0.0634      0.572       2.93     0.944
      +#> 3 UPN3          0.633      0.0234  0.0165      0.0327      2.25     0.226
      +#> 4 UPN8          0.951      0.958   0.161       0.556       3.18     0.556
      +#> 5 UPN10         0.00374    0.761   0.000696    0.829       3.19     0.886
      +#> 6 UPN10-Rx      0.00240    0.167   0.203       0.802       2.57     0.822
       #> # ℹ 1,847 more variables: CD127_Pop1 <dbl>, CD179a_Pop1 <dbl>,
       #> #   CD179b_Pop1 <dbl>, IgMi_Pop1 <dbl>, IgMs_Pop1 <dbl>, TdT_Pop1 <dbl>,
       #> #   CD22_Pop1 <dbl>, tIkaros_Pop1 <dbl>, CD79b_Pop1 <dbl>, Ki67_Pop1 <dbl>,
      @@ -1007,18 +1008,18 @@ 
      Building a classifier u #> # HLADR_Pop1 <dbl>, p4EBP1_FC_Basal_Pop1 <dbl>, pSTAT5_FC_Basal_Pop1 <dbl>, #> # pPLCg1_2_FC_Basal_Pop1 <dbl>, pAkt_FC_Basal_Pop1 <dbl>, … -my_resample |> - rsample::testing() |> - head() +my_resample |> + rsample::testing() |> + head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 UPN1 3.06 0.583 0.00449 0.164 1.94 0.416 -#> 2 UPN6 5.62 0.550 0.00374 0.622 2.86 0.342 -#> 3 UPN10 0.00374 0.761 0.000696 0.829 3.19 0.886 -#> 4 UPN13 0.0634 0.0300 0.0219 0.109 2.34 0.314 -#> 5 UPN22 3.29 1.63 0.128 0.525 3.38 0.688 -#> 6 UPN22-Rx 0.0643 1.68 0.0804 1.56 3.06 0.529 +#> 1 UPN2 0.139 0.0662 0.0221 0.0825 2.25 0.454 +#> 2 UPN6 5.62 0.550 0.00374 0.622 2.86 0.342 +#> 3 UPN7 0.474 0.966 0.124 1.24 2.59 0.243 +#> 4 UPN9 15.6 0.446 0.0445 0.163 2.86 0.434 +#> 5 UPN12 0.0565 0.185 0.0115 0.142 2.49 0.254 +#> 6 UPN17 1.40 1.52 0.0128 0.284 3.46 0.656 #> # ℹ 1,847 more variables: CD127_Pop1 <dbl>, CD179a_Pop1 <dbl>, #> # CD179b_Pop1 <dbl>, IgMi_Pop1 <dbl>, IgMs_Pop1 <dbl>, TdT_Pop1 <dbl>, #> # CD22_Pop1 <dbl>, tIkaros_Pop1 <dbl>, CD79b_Pop1 <dbl>, Ki67_Pop1 <dbl>, @@ -1028,20 +1029,20 @@
      Building a classifier u #> # pPLCg1_2_FC_Basal_Pop1 <dbl>, pAkt_FC_Basal_Pop1 <dbl>, …

      From here, we can feed training_split into the tof_train_model function to tune a logistic regression model that predicts the relapse_status of a leukemia patient. Be sure to check out the tof_create_grid documentation to learn how to make a hyperparameter search grid for model tuning (in this case, we limit the mixture parameter to a value of 1, which fits a sparse lasso model). Also note that for demonstration purposes, we include only the features that come from one cell population (“Population 2”) in the original dataset, which means that we probably shouldn’t expect our model to perform as well as the one in the original paper (which select from many more features).

      -class_mod <- 
      -  training_split |> 
      -  tof_train_model(
      -    predictor_cols = contains("Pop2"), 
      -    response_col = relapse_status,
      -    model_type = "two-class", 
      -    hyperparameter_grid = tof_create_grid(mixture_values = 1), 
      -    impute_missing_predictors = TRUE, 
      -    remove_zv_predictors = TRUE # often a smart decision
      -  )
      +class_mod <- + training_split |> + tof_train_model( + predictor_cols = contains("Pop2"), + response_col = relapse_status, + model_type = "two-class", + hyperparameter_grid = tof_create_grid(mixture_values = 1), + impute_missing_predictors = TRUE, + remove_zv_predictors = TRUE # often a smart decision + )

      The output of tof_train_model is a tof_model, an object containing information about the trained model (and that can be passed to the tof_predict and tof_assess_model verbs). When a tof_model is printed, some information about the optimal hyperparamters is printed, and so is a table of the nonzero model coefficients in the model.

       print(class_mod)
      -#> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e-10 
      +#> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e-05 
       #> # A tibble: 25 × 2
       #>    feature             coefficient
       #>    <chr>                     <dbl>
      @@ -1058,14 +1059,14 @@ 
      Building a classifier u #> # ℹ 15 more rows

      We can then use the trained model to make predictions on the validation data that we set aside earlier:

      -class_predictions <- 
      -  class_mod |> 
      -  tof_predict(new_data = ddpr_validation, prediction_type = "class")
      +class_predictions <-
      +    class_mod |>
      +    tof_predict(new_data = ddpr_validation, prediction_type = "class")
       
      -class_predictions |> 
      -  dplyr::mutate(
      -    truth = ddpr_validation$relapse_status
      -  )
      +class_predictions |>
      +    dplyr::mutate(
      +        truth = ddpr_validation$relapse_status
      +    )
       #> # A tibble: 12 × 2
       #>    .pred truth
       #>    <chr> <fct>
      @@ -1086,9 +1087,9 @@ 
      Building a classifier u
       # calling the function with no new_data evaluates the
       # the nodel using its training data
      -training_assessment <- 
      -  class_mod |> 
      -  tof_assess_model()
      +training_assessment <-
      +    class_mod |>
      +    tof_assess_model()
       
       training_assessment
       #> $model_metrics
      @@ -1128,15 +1129,15 @@ 
      Building a classifier u #> 4 Yes Yes 18

      And we can make an ROC curve using our metrics:

      -class_mod |> 
      -  tof_plot_model() + 
      -  labs(subtitle = "ROC Curve (Training data)")
      +class_mod |> + tof_plot_model() + + labs(subtitle = "ROC Curve (Training data)")

      We can then assess the model on the validation data…

      -validation_assessment <- 
      -  class_mod |> 
      -  tof_assess_model(new_data = ddpr_validation)
      +validation_assessment <-
      +    class_mod |>
      +    tof_assess_model(new_data = ddpr_validation)
       
       validation_assessment
       #> $model_metrics
      @@ -1178,9 +1179,9 @@ 
      Building a classifier u #> 3 Yes No 4 #> 4 Yes Yes 2
      -class_mod |> 
      -  tof_plot_model(new_data = ddpr_validation) + 
      -  labs(subtitle = "ROC Curve (Validation data)")
      +class_mod |> + tof_plot_model(new_data = ddpr_validation) + + labs(subtitle = "ROC Curve (Validation data)")

      @@ -1221,26 +1222,26 @@

      3. Use {tidyto set.seed(0012) -input_path |> - # step 1 - tof_read_data() |> - # step 2 - tof_preprocess() |> - # step 3 - tof_cluster(method = "phenograph") |> - # step 4 - tof_downsample( - group_cols = .phenograph_cluster, - num_cells = 100, - method = "constant" - ) |> - # step 5 - tof_reduce_dimensions(perplexity = 50, method = "tsne") |> - # step 6 - tof_plot_cells_embedding( - embedding_cols = starts_with(".tsne"), - color_col = .phenograph_cluster - ) +input_path |> + # step 1 + tof_read_data() |> + # step 2 + tof_preprocess() |> + # step 3 + tof_cluster(method = "phenograph") |> + # step 4 + tof_downsample( + group_cols = .phenograph_cluster, + num_cells = 100, + method = "constant" + ) |> + # step 5 + tof_reduce_dimensions(perplexity = 50, method = "tsne") |> + # step 6 + tof_plot_cells_embedding( + embedding_cols = starts_with(".tsne"), + color_col = .phenograph_cluster + )

      As shown above, stringing together tidytof verbs creates a pipeline that can be read easily from left-to-right and top-to-bottom – this means that it will be relatively easy for you to return to this code later (to modify it, or to write a methods section for your next high-impact manuscript!) or, perhaps more importantly, for one of your colleagues to return to it later when they want to recreate your analysis.

      @@ -1302,7 +1303,6 @@

      Dev status

    • R-CMD-check-bioc
    • Lifecycle: experimental
    • Codecov test coverage
    • -
    • R-CMD-check
    diff --git a/pkgdown.yml b/pkgdown.yml index 31c6459..221b9d6 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -13,7 +13,7 @@ articles: quality-control: quality-control.html reading-and-writing-data: reading-and-writing-data.html tidytof: tidytof.html -last_built: 2024-03-12T01:30Z +last_built: 2024-03-12T02:18Z urls: reference: https://keyes-timothy.github.io/tidytof/reference article: https://keyes-timothy.github.io/tidytof/articles diff --git a/reference/figures/README-unnamed-chunk-17-1.png b/reference/figures/README-unnamed-chunk-17-1.png index d6cee807454d3671241deea294f70ac77773aa0a..44c7106f1cbf2e046e35eb3f9551d02db8b1f77b 100644 GIT binary patch literal 87905 zcmZ5oWmHsM+XftA=%G^>Ql&cu>5veEmTnk2q&p=fL|PCPq`N`7K|)fxK~hmVzCAv# zPkcXI%XOSNbI#s(TybwB)Kukhu_&=nP*89c6=WWxprAFPprHPQqJt|7+E)uGC=fg= zX=ybZX?baTguT-f2O|?Rc{4jRCo7Z3@=_=$LebIcdY07c#Nugn6|9V(gT``l;_on=cvR7%G7?#yLaG4rlmytle5PAmy){kWL0c&*!do6fpmHv<+LHp*i5wJ*yR z-Rm74A}*~y!?-@f?5r_~EQ!phR4Z-GUw8N6UGtMiHOJQ$+r?_~sNr)VQ-wl(^vh-_ zS0tU~dj1f}^B&Ae;}gsdQA9d?nXtVIMU(su{z3UrN*qtPfh^md{HUvrnQ)8^h9eya zhV#Kp%su{(MR)1@WqSn*QdJqgGzFdeRm;xVbj$=jd|AQeL%eXK_9%(P>Ge_=EK_}T z)+M}z!>Xbac5PN?h54NUMX#YT#0l%Wc!!C)S0nYNOJ2UR1-cwBOomMv z#l)#m^cS!%E$sDpEb;d{exdq$&%f17VW1Iwr0UbjR3P)yZS`~$l>!l>e1 zwl=@U85(Uricg(;1JnXt_hR+9_kO%h?{PdWv){`6s`%1p=S-(e#|8f$y+sZu11AGV zTIWo8>oJdgKAXLgcV$@XR!NU$Go^H<*zesj4H0W=Z!=YTxJeQkjA_K_=_Xh}6iuer zfZkndZ(86}=uejCykl2bF|l<2soZPy+uk`V`@A<)?N)*r6z@~ehuAiF2JimLar0FY z`&tsv<@_CS@20W0fj6Hx@%=W3Ac}>^PmgxKk2!6X_v0-`S!GmKrG9(S-n+VDj8($J zLW;B2l67ahezSpkBnPi5$#M;))Qd-`&0g{9l5ED~gPC(Cy3oaK(PN!zVf@9y8^h<8 z{Q~|LD^2?-h2lBxM~~facNj0A35^G}w`xA594esQ{-x_~$25;J<=v!zeSYcbb9iHH z0i`zU`o=YrJ9ekZL_a7HLS|Zu<|-;EEa2}@6x1*)6bSemD)>VQ{(xGNh4$wPT4UCY zKYvI4iTuZ#ZdBzcC=w`&GLlc-QFk&hXVt%4T_Ck(m|4#&-Mh1<1F*^F;~%<1b3=RShv`Q9K1bpkhdxbj zHk7?enkFoE!5^Q==UN-b{Kkw@5>O~A9UKzu4}+meWyug|)yT|zFvtAo8u9~?{?HOT z$lo6WmjdGDB!X++H)uu^q5bW}*LSF*20ZOWax^9X06G;S)=yG|mjUhm#X-=tLpv^igqciUDQ)xRk#5Dj=XOf8 z;CyXqpo^OhM59FC*7tl@uwq1x>Vufved5rTq5IbejUpX0ff+R^@3FrDmLG=bvqtG~00|YPIzZ8t5X{3wulhNg`M|e6O?w{>N;f|6Aj72y`dKdVIyeX=(uC9= z{Ax7RUI;exc$$CSsh?fCQ3`xyN$-<)-L%UW6$S&Xi<6a?6s?oKZgTEF-yyg7f9oAA zF-ibiQt`ykzxw+UG6X2V)j{Y>U*dm0=?_y70UM^cFF9`T?_hy5fU6WsBQO7R14Vg> zV8Jc1k7wBb4k1$+aFyZS*`xp5U<`Qtn~6ROaggDG6o9|9xx;C?r5)HTbyqb|&9Tv7_YEZv`cRADjFBwYYz+WcaHC z4*kZdC@R6vJ9QgxC|Ezx{^yB;CDfpWv`;0~6A!^2r`ibR|dUf$YeO=RfkWr(^?;7jIT}| zVzOruO|tZh?&Rv~e1Cl-(+_W--c0|8ee~?uYCU%6OQAOJm-mVZeN{ibjU`-V1`ey{u>xcmT6~Hy z*+%p}_WiZT5^V(G!3Uo+?=L8)2@KAHP+bS_BVcKY%#7)4IV#(ys7A+obGUx0s$##M zR;<0&t$*o>3kxvtJ?$)Z5}b2+Qn3_Dg|1cp;s?FITaEc(s(SIgrj1P>JE-^RT9WzY zuSvl)`%fNrx4&%`5=c};nitANQ)*|vyWuR25=|~@H{hWI-w4&?kbfshR?>5`Y&J%= zwZi+<=}D8P>v_`5^eJsqFLPQlt=|Q=32Gc{-s5ncVr;O<^H+J|(p%sCren6#Uxc$! z{Nw+PWhpp5gr2VPcBXgv(h#OwV;GI+$4lphE%kp#u>>?Yz`rrEO+wx5KM~u39-zS2 zcr`Kaz7l;^@>Bc&eJ4=j5!C(;``x!vj<6IluWJ65V$G5_c?QkCm{qDO1ZaOJl|&`T z2f4`SiJA;{b4*FkjCn^0Xpg~il*O@%xPE)ORwwc&r+@ebcXj%&VWbD@=O{3FgUvCg%TB=Na))Wv#*`GcOM_ula~>tMZBN)xOJ9 zFL+JY$$0m*9_2%{c>BihUECk@{`Dnjz$zWQjVegoYb{YzIYY!1p>p)qhBGZ92H~QV z#KFJceEn(KJk3@)l9b(8?TNbNzn-*L8u_F?ayn0MTe{;5uflBl{BvrYH$I#9#L_+B z-$EHJ_*XtVA&ZZEOPf%mNq5ZpuSo;JsUP&s7e6AcrprIno$ocMOcv`6f=&SIGE>j_ z*BATH0RSEGf;flclDID_mPR)dx z1;<4jJ;*_2{xZoJ=DuB2gD?)ie|NUAu`*n!NQTHx1<1v;vmsZe;>4 z#Zk)*{8hCVcqIP>r9Uj35Y@`vS>n8)` z&;_U~0!2UZM0aAxJwz1#exV**P`IfN^0g~+RL-}>%+~r6HD2CBF^XNU!87bsw{l+83aHplJ7!%JWy8;MCS9<|W0xeUXD8(%wB zGei{I(-=ZeY4ApTmLqQOWSeBTPL$=K2ocN!L@~h#UvP?aoWD3d9CVwp)pWEXjDA|6 zF=*|53$ys-k^SEdEg%rNb2mN(;feGd+>Rg(px`x6-mO`fmvAE(<+3mDWuCxu>%R3o zs+#Afesm|HIfdWZmrRxiXKP6YEI!32lK;7t+N;pO#e%a{v;NoGxdPP-Od)io-@B-& z5C%Kv1YS+8uX;)b%o?ad=?246d<)o!v9?fum9@m)r^JI+3&6fTq z5Kiuv+OZ?c(EIuqiRLq-YLK6?#ad^bG@hGp*8#k#(Y;<&9K%5v98X(hX7j&+V!yoi zBV0u$u&eH2rZ{t&C3ZBGpg@woXC8&PckL1T<(D*Kh~$QBemOGI|Am-ZHdLXV z>T$P}Y4|kuspHH+lAc@2To>L}Jd**U!hCRGD>u__IF%?5HF}?a@|g)TkFqN>WC#6G zZw##VCJcsB*;$^y9+J`Tkvp0)!FL9$mfW!aY3Aql|?NW3}nJ>C*Df~9CPXTyS zX%EG7rU80-&&prP^H^gM9DSW~H_XQemiMsKXd^)q1-BNnZR(6!4N~QHZ zXr7T2m0nuHvnj?U)9% zF5l~51xOH(^IN}SYE1qL;83^s@!a$E`t9P1uk#X|@7w-FXa@>-RC1R<&|tD1x75#K(Kte9wGO*91mo@H&at)Y_WgMu%pV)XaOz<^^%E{1q#` zQlLd?Uw-%sUKa)@S}ZkcXIo-I%&Us-z6yupf+XPqd-w8mIg%5{wstWP8|Q8g(;tYy zLkCX?Ro>hbq*Ggl?lc~L4&Cu{R2Y9oGRCS|%!kaJQvd}Ak7n%ct46%Lrd8?x7ocz= zfZ$VxN9@6!09>(ndue=_WXBO2q5>ZER}n5y@XG65vh`e#QML(wYgvh6Vz; z$m5_Dqo|1;0@m4Az{gRz?XVsHeqmy&R}ij1DdmDwhqUcq=^U^_5F0A!Rp{~_7EX+c zu))9~H(dXmVN;b7Yk<&5;?SeC5?glSrdJwvqn?22-@iIB`I0RgS^M-p>m>;WQ@y}DHQWTh*bRmmY$(B3Xac%A$ZRCMizxz0$kG@^(1 z9tGF1?W6PSAcHZM3fbduId8E;=%rCM3a!WU)$3_89p_mzh1Xs^QJ$%`9n>`NF|(d1 zv;y4GCY+A#Pc+10f&$3<_T56T1OWluvrTZp`$-;pYy%Rio)yoEXMLZyDQRMxX0NF( zX!>hkVrkLJCJy4!T*0rLRw-MU$+Ucky##FsH{gP4364@d+y4H?pgOW!eXX=IdE>Pw zENzO`mv7MgX>0gx&>L+0%F_hVV4?=guG7*>lfmK)V3i&#tQ4 zKQ&Kh1TklLWVg?VK{x()_dWq>9s1Joqox)h$rM5kSxB6kr{7eM1mVbp9T?X%uvKVa zxl4lvn@h8+@AW>KwwS2ijFraY?ubkLlkqUL5oAJGe#g78ZV$s3)U~Zj9Bd0AjU)fi z|C+s`L+~InuceTnrFFyJ?>z1FpdEh@pddrHuU5AY2Y833nhUW<0{&!huml`D7CM^A zcPzSJY^i!Bi)F>`Df%+met-q;rvctFf~h&@M6ti8%md68$mH5Ff|#{8_L4CiBnf!l5ULri|^{oE+a- zd&5IZPo@B*+4V}trV_NHP80e1U@P-andOlHMQtgg5y&MefUissqzivZxstTsYeRS%I7Z0ZCKhsOwC1ux1 z{^WBm_wFOy)p?%=?qhJmL|OEJxPa~fNEYmT|H7` zxyx8pT9fgw?z|e~pFZK#t!zO|fy(!R-+GM8!27$btO^&^6rjJm$0P>dqW@lHIAj72 zZ!4IAJ3qHsA!DB$&sZt#iSEXg3kNmBKHI2e=`+4NtQ6~oZb0OP8v14IL%Q3t^2 zLRamtFjVZNa+b$`zq$e(WC!LBpZY02r1T~GuW;gTHh&8tSq>1>Q8l4ZmVfgmDR>tW zSFL=0G#)JR7780NZVSd-2W7i*ggyq;T`k$NJC!~ne`FpB0kF8{LGdvJXqYnoI4)$* z90GoWwj!OX0VJA@qTn5frISX)$3O%W)&GFESTbat#TLk5ge<>o!RBly3L zxB;Rs`k5gv6V!r#|H6>t(~0pRz%6O))l+TW*O$i=tE)g}i^@T(e}UYxtSBTpSoy5^ zMTsh4qDVK*wq|YuuvaSd$5oai^aU#S0H9QASmL&wOL!=5WuwvHW}9YBIjTgtlbh)) zlEbf2^*gdY1o_MWerZD0_|x|Jp++89+1+-_^IIvNoZWwlme6u4*@1cN* z4M4s`ZWil$^lm7=+aUjB&-*N#{hO1k&O>68 zE;~~r-oM5*1s=46p0(xshiV6h1L7OLn7{c$*6{ms=lW}1yE0Xijut(jI3bq9x@o)y zdaMe)_px<2RQx=Sn{@!zm2iXsma@E9T<}^5jn?}hfZycgOXk(nkx_J9%H$*i-@4_B zzcCi5xNtbGJ)h7vi>#dC(a!XGUhW$n5Vh}+JYIO~eS%cc2w?Gs3cK5hNNFkb?GJ#o z|EaMj$k-R}s+Wo*NCrir4g@1kFj4e&FecGJI01uH5y|^{P+ljjqOmV84u?YD;{(wc z_g6j3v%gbLiwbN?759iBQ!t8*^UhS6`J~?SDsDB*p8y2;1W8kD>9rG5j~6!`=}4!m z?|Ag)%Tj6!-wg?=?fb)?V`)H+zwgdj^)-sT#cmTGoYutFGu7&dMC#;XHFTW z-3kh_1v29RJ)@eLS1-`eUViv>t~6v5C)P%x<_|9Shuy(LOAUz(@_Mg%37Yx9!qt&r z1&Hv9c0AGKqMG@yvmj{K2L%_RDrq`v$z=|ADux7rES|=1)Y53UHTq#4KuunLn~BQm zDr{0VE}$@0qu!4A`(f2Q!Fua@`qXPgBGF!i-dw%wuDuLw%CY+v?&oKwo-D4@)&)ff zD}_d&lA3N3P7hq=xC1C8h`Z{J2XquGlw@N-$Q`Mo!D9IqOz}iU;E7Ak?0@&_0627ihJoRzz&oezhiYdWIn*bWyR+p*>&W(jmd9KFE4}kr%sGfD| zuVnuUx)QD*)U9ca1F2?44;=KdmP`#B1zU?Q1rzn%BCYzn=Jx_sF0F;5v+L)l^Sug+ z_V8MN!+eJ!vE$@Oj`|*JR-&oGo&x2l+4&}~v^Qd2Uu{@5>{j)%u>TbDa0u%3fgGB1 zDOtclyjp9V-h5BZdOfTB zWcmatRywgN%m1_TQdu1Y;mYlzohCz;-@yA`BA9Ffdw%g7NZ={=u0G_<-YBQd1 zR$RM`RWYgW72@?M@m~sA0E8Zv5}L&Bu0Yv(c}m4=9(4-%6z(H*##1_ni|^f3SIdk@ z#d23OTXv_spTjX<$JF%{WXu3kMOwLKLgn4dl$3nSZHlgZdt2(y)&)zLLFgG8ea?QC zX)-|ff4T;+m#&hhS42Dep^e;rVvV_t4Y7o z2_Dt1{iJUHCnX!&XU?GWWGGL(0}NJzWE3nbkhW*QHo9M5BJFnx7C3*ECyqd02O9=x zdie}c2Kz85Wm9v@NGNlMa!l<3t3vX%{-dMQxRr?TjYkw6crHikmTpsO)jtzLU| z7TPH~!{$35xp^g@rLQ7wz9*`}oxVxmXoI-?glN#KP!wG=9$&<82j5>JwcD5S3~_WP z7iEHwdu?Jm_TN5{1)TDu*k8o?KJMRVP z5az$WjpqQRlurLcW8@XEX$pnOS7Zbdo_oAY^xIB39*yoiP0HuJg$A2n>ra}|Q(dq4 z7+jXe679sOYJ>CY;r+|Xal;Y!(R$<2QXnmSEQMZ(Ak<5q)$trSCFsE4$0$(iFYyM~ zrw5O9+}p8BRGNu+xx=^M%eFq0X>V7zMp^*`IBijb@b4dz^sT4f#Qj4~TH!FvB_>HU zy52V)>lC`%z^I%Zcq2Ar4GFT6bNL`KzhAq8$7|SvVv`o(!~FH7Qxe0=d!t`>42hz$ zT!R{KId%}3-9(C`ws>Mc)f$o+&gbHpl-STQs2wC8P z<=2P53xBLAT3iYr?ClcB5W$z?XCLQ$@2y1fDg%V$RN@#nL=IS&(K!t+{}1qiG?1+0 z&)kQ*%Fw*FxL&>v=cYtppU}m38sUJ><9UCq1^^V5(FtBVcUq1PG z9Ri{@tqOX-+1Jl+aS`2KA-l@#+5ajY0d264_r8#7XmnLj2_P)(8g>O5)Tx*;`?Mm^ z{5pbB@pa_g?&9SZ0#rC`XVN{6ohedL6jNlEz^pPsuXVHSv7^Y_8u<029sqL-=U8=2 zp`7L@RW_3`%cI(Q?|d)Mj%xD<^pWIUE{0lrX$oVcv!M#KVQoEmjDHMtbp{y4lB>ER z%k+nW=#OZ3O!h`f>Q_eH{XQ~}Ujqq*8*iLd=N6Y2P+!9k=&eYgn(ncllA}{) zEnD!CgY7Swr&kW{)Rtyid$5CS=tY;@x<^ymSLX}Y)$`#(W!&7|itxZ#3BJtFx<5eD z3n0yM0NFIs^HZPb(fD0B+8n>I6_R=ixtG3$uZ$Vb7~D#M9nP2hE|)D&}hi9A+A32yVrKg!3lG#j0JgmwljT>re8~l1CG5O$@!_YIzP4$ zm8oY`KEW8&l6 zZUf0sNly>6=f=zE{X(k02CF#?uRyG;Q{$mBN0B-DGxf^*%ck646LO5! zgT$`ZsIdds0bI6#kD&Pv-f#@0B2r4;RVRa|@BXUoRGsrVo-4vcH^&k3ker|ki*;?Y z7);^qw)?PwD*5Q4QR_&xt?uDx(S0qdhsuKC@sIZ0N@RCmp>Td~GXv3^_+XW0-S_pM z-0i^t{c}BlQg^81;T*6)Slf)^5Lx-j6(vnasUD!#79FbOs%A*loQ6b6Lx2xrt?%~{ zKLilbb3G87qx9}E^x--}CIY>M)GsrIl!}2q~UBmwH9dtwmP1;>XCmj zZa5DBv4_F+z~q}?^N%uKbzt_C7HPF}16zOUw^wnEZ`TOyp3Ob&Zx6k z!XlaQVz7jvf%@SpgeU$(U!}Ub$LYmhyj1LbO6fy@C6GdAZ|teOSgB*D5zWFfO;tJ&o{A} zMMk2a=}AF}gHav{hqo(LqLW$+g%dU>-@;ZjhYY_+=n2{+`;B8I>gWNLfr!0)GCm?t zYr9v!&5@?%j~O0umS0euPyFx*VBpHT{+PWo2!kXoxoDPQQ`v9Md|W_*>+?a~rG#!?#@kEM`Lo+Xyh& zNmT9T2N2gM-S-E6Zha{tqW-#Y`;B{B4x~$5iyqQ<3$<W+rN?Ky&EI zs)<!{ z9HoWCSe-UP&zs%aZ!`(?Ia!dJjf5~9D0SpNc?hVIgBt^%#AHIe{9g8-13d8cz*?vy zwl|u6Y`1!bgJb-O*aHYE^}R403S&|>EyL&cr?R^R^y6s)&VFs{>gttG2p{GFl&&qR zKYftXt)rD*beS%MhKx5-* z3hkFqzv{!na;d z9wl>|CNL5Ne$?-=W~^&tsCUWsf_xj*1FzC#{gAD%Eoz)(=*rM-WS$WKg=RwN;% z1nXP8X3SBnPK*(B@mLL?89jvQ6n3PZVX*na)x;r;3FE%%ur?i3_U z$d=ZFB;k#3&le&r6_E9>G%@JuM810eGvMUB?HaiRA}*Uph|FT%e1*kO74_3A&G!5A zj|3Gs-jCVvrgJKG5}R~IQJ4ecsfMh@D*9C?Fg|jwN6(&xLXiztPNM|}wN)d-%N7`g z=EGT%5mLb$H=Q%C0Sp)57gTlb=o8;>JR}^C;bMurOKLKuNuS@9 zF6_+4JrBBZAw|+PxzBG|EI0(HBLO}25wM~m;2jw&F$8q<#4)gjFB}ftw~wGx)k|i{ zGGdo0?Ur^9eL}@(JW;5PZb9rvkA2NAM7ql>P;KfbJ=`Y|eCUW`{Us;b1B?I+fP&7x zCEFilB?BPKMbg9uj|_^+HJF*u$XiS1hb1yvNiAbTZ&e>bRSjcn0Cb(>v!9>!)r`4T zKsZjDB~5>aC=Ul#oLI2Y4`dUSGVs!@;5KOA!34o>K`#A!HZb50u%y{xX60hs;iBbA zjw)#aRYY_|SHMa%!K9=45^EgJqC;2t?z9ic5k)>F3`FmBWcz=BAWj8#@_pN~DJ-JC zh=>g^5Ku$+`fjjKi$5y*`HVLNBN@mH1Kwbc2^4c{(zqf11aCa|FZh=2N^?)%$Pz<( zW;9536)PD!+1hFOLvAt-`3V#0E8pWXaxfv--!dT6Ot&B@;)IYpuG}yg0u9(gB|qN% z{#4f{Qh$y>wln{|2eQw|hw0uTPNn@bvesmE#|pJ88dYfEqsrC#Z}AulK0X+3TkQA& zxG-|+P-}UYX`2QQNOsB6 z_+n!sX8L}Yzq(|9DLiiIjp+&efdpQrc+s5ek{C4ZhViKc?t0p_6%KAI6kney6fQh{ z3!tNo*vlwwWN88wM<&3ZukmJf)N8b85@EgD-ieyh--ciuYftSp~OBtqjuYJSC;=d|hVJtz!!pD1^?e z!0zm10(P)ztjRgHy;8YOJt@_s79L{q#u3D}4z5__DoqM^XY*U6S18kKwlWtDAPXjE-8SWb<81GVD7sJsFTy0*VT%1d4>L5;tOst6O*Om0zsrWw|>A$o{ zD7B97gHn4Rv`!$f&k>c!d2Z1Pq-_-^zyi`$;ryP={roSUmW_;2`1=v&oCm}KL=<1& z)-3qWSi6E>UBLPgqK!uLIp)H68=XRx-{_>ES9q;5qc70^zJuy*#>SQoNO`1$Qv}I9 zzbkL)&^%+TOJ6YErTv6>fCAq9^BOqowyQA+QjyNW=3;gT4_!-4$U@$b-@Ugz>4&M; zg8!>Y(Gs3Vu%pEOkKXC^F(TjYPz|R#Vvo z_L{GK(_~@JG=H?g0Ar+(+w)Pn*5OUys*tEYM+6ZOrJntTuJOt;qSIbTKrxEx!PFYz z1nw@!XDK!;4q$m>sT8+I6pd5a)wZHH$@gQo22!uAY9ii>TdvlTmAZD|pnoA#)|tZM zkbS#Ae#LK&!W4y6t~0Qg z=*>BnJ|@3%5D0ojCsf33b$U~txw?U=%eo$L7j2t_ZDk6Dtrxg#9b|+%iO3-x5j?^h z#8MGQ7ogr1m*ySO=tdpG#P)9N8>7q1S2llOwk)Uh`T3|}%E9Ltu+k)Q&W^2{Pk*u!9|)w1=hgb&Ow_(TBlB+E$C)>tjuX+Fbymm6K?(Dvh-ypWnXu zoyPbaOkzp-9>Id|uNc?vxTU&Yb25@95PnsxrlV_wT7_~uyMv~`^L`w-GE^me z?^&3NwV3U)A4>Z9F5HCfedI6?guO1Fcd1X(n zN;o5f|K@9BuXj7NT_k>NCSiAT80Z@x9fcNyt}pQz^da25+~Li$Dy>+3ryj46sd+fe99;LmJHizvF)q%S{TD?GVji!QL1?Bh>s z!kgK9u|YbtBZt&$*mSE0Qq#-0TpNf2G-N`6te{2=AiZ>8#wNB5p?_hVc6h4`7+@6u z@C$3}g$>y`vi161ZX4tPoa(mNrTdlX}9d_?PJ6w zMIBv@p%xyE#iG*P0RPt92D$x_^{wn-ZVGPxjuS_iT3B*-R#^wzi}(DN?o4?EhDnig z=*sVBvkgbGWd&Y98x)|^JQ4Bj%K>xHfuZm-dUgkEnDPlOpMIFzjc4$1R;-Xqu5IPiq9db_aVGmBeQ-}0HzK%5&zd50AA z$#4Jnnb&UBXdCk?Ud#8y4uSZ50{@<~j606ZU8ndd0=B6tYAao`=?}Pl;OIhh3rO6; zNE_gqun_EC<1a%LjQ1jSClE{5H5t`Cq^MCS8N!9C2cY7_dTeh9n{qJR3k(A`jgOzl z!cZ*Iub)v{BJS5|DhXrCDX8U7LE!!q6SU~@vYFVZ5$IFVD8|8jZk_= z`=mNh;%D%_6GibXGqqUQljg zNx?;ct=$Av>B28u$M;ND02VvODzfX2xm84qy298&#>+?Q9~|=vNoFXKb5|X{-WwUu z2LSf5$WVkr_a{HzbhYBEO~yEQaB`b3*Sjksgx%)x_b!!Edm5mGs}$)1=e{6hTzc<&A+bFVvyRwQLo2%d# zupDlQ*R%K$`-9QvF35H;+yJt@p(~ooqA8G$D4AsOyQurYVoOy4j3hl8tTX0~R_F5= z(LF9QeRm^;BGyK&%7OQnOtLIXUmZ$kjKXf=SOuI)69EHnw~g~X;V8XC{x(poQaGD0 zMy+c=e|vSLbqR+&xP?kBr0t-D+)fo>n8T!+3D+ZFLPEw%sLdcvXNpXWm(ke~O-sq^ zJsfL-h^b)_UDzr7GnxRBB)L)}t;c9;Nn*?aO0G`-4y86(lm@xBwTPY2$chJKNC*WD zSVm4Sppv&G}|!6J`NVanUw3h9E361jaJPPI$|2AD*5ml|W!k{wTkrOJ{MpNuy{%yHi@A;Vb=%(9^Zm*6C7n~pCr&<@4w@??y0`3(Vcn_I?2?U zcma&T)RA}cGs@P=^|7k-_&B#j#zKAQe?EB{Kc=RSvj>~Co2%Dme>~em$2fZpuL~2& z|1|CzECGYU2+a0o>okHC2FyrT{*s@7B9dE$=9NNRl*}#^kG{pI!kX|P7A-Dk09apx zStBg60Vg8VD`VoyGQevvFrr;uz9nci%BVX2R4-UU4gzR}E7Cm(Vn5>@x@WRGtSCVL zn=k-lb@YIAs^7>~%*e@q?hX-QzGwNzx*b!54?*th9{l(N0?V1|qUg^kkKiOcZrvTQ zE+aL1NW4GFOl`+{SL^tPLvsQjV5(2U{P!9dD`j1OpF~;>0uW97qsM2f$>NN2k7-l*9(QM;;1cDe5wai`RR;{=g*erfhp32yV?unrsoscx;;Kjwm#vbKJPMOxkVW@e*n{%ii|Lku8Ts6QQmqC0?8d#V~@>6@!p z4X)3U=;CjDei(cQsUykZav7DtYoQx(ON($U2}&)#UPP{R<1q6(ROTJ+%d=m$3Ortc zSHDe%EBpXpA*PzV6q`upuXXV2*fwV~o>cft4s-=A>&7=DX5y=hz-qVITE`s8Aao7g zNVzrOk@E@8Is}1(X))Ih=P7)x!MT#q?SPzPaCC_mA(<_F1>8(Tcox3+Nz1*9gLV=f zO6o_fWtSneY`o+z60bh*}TZV23^A`0Vj(k z$mBK&%`i=Orh+C3 zbcFwD{y&h%Vpc!h4rR5n1jjn;6wa{;q)i%z#Lu64tgR2GQC)pHS;nRcB6Ef&)jUrlvg5HZr* zJ|nVZDPR!4*ScaP%D`hSktFVJe*PWX1<*QKZiO~gL?Rw-Vfg%Bf)4TkO?{8f7{Azg z;JuBdmWTllhr75epBc<|f$$~x`RM#;R|VL6Eb0AD)5d<_+|eL-M{_VoXr@BRr6~j^ z9tR)E-!kLxy6Bn^TgMHf^{oX%uF~|o8V10;pfVsgewjrO){^~QR$4#Nup)AOmbF91 zjb>|pzuos5I48--6G_&GBYa@k{Zzn8VQNzS6s!j$EvnlOHFGYvy1KxOPq}YA`*r|{ zj+kpz@*Vnk^Y>B2Y?_YZG1}t7d?g|_q{qV#Mm`G3PZVS%S25z%;FeMVA?T<-D!aZ_ z{%wH&nOQ6LpsRor@P(%pNWpegQ5q}DCkxfPZfiK6l{8;j@1~{5v~c4f$GZpH&_|eD zs8`8U_*162tRkeeh|AOrwJkC}Xcas{DY1bDpuh}gjc*Uf>AmPUeZ3ErPI=i& z>5REGayJ)Pg`o#2U_8tYD#Lpti7FqpimV)C>k!Xd#>Rh`>tM~8lt3-9oC6&Vo4cF( z9VqV;q{3f%soN#+@49xx%Fuwr6rWvmI_($vOnYF?;OJfoI5NB77Ka?>)PRXWxm0Z# zQQq3Y=0TFHw^e7C-dk8yP{`NFwyK@VY0SL^-p4c1Z3a0b2Tn#+F=i@8oNZ8=1)eV> zXIAy@IrzbBssKKy-sPxvelz&R3M{#dKT3nH5Un4ODM(g&fKh4tvCq59TX|6-w4=6< zypy~iZFU=SOR~ZRlTHnJy7Gw&YJm|tCSQzQq*$lXTfduD#tz1@P90$ZFZan|6(kC` z64V#pcOjWL7Y=TwxJ`KB73IEgY(fuOGR{Iqhxgj8yjIGrv6 zL*+ga@{=?M91us+c@0Y}yV~;Jho)GYHVM+Bo z>wF)Wa0{Ecl822$ff@}D=sf%}7r6~I@5vu;k&tS~ZaoYB2nP~h-m70PWrqMPNLS)M z(xTo^M(Fu*SrHNhThb{;LE?E)m>kedpr2KDxM0gKPv$$d8k107#R&!|+zSbPD&yE< zm-0L*Hk7NFi&+U6OmtbLrf=q%SIIEx8rRX1QA+zh%fj!QiUu7tg7bxS>DDi0XE5%X ziKdbWnTGFrX7ifTH$2Hzbk^K3;0AlYc zWNHq-KF7>BKIWPq0v1J%J~JPMD&@}-A_cgQt~wg*xp$6c_2m{VBCKq34zzwYMbo%I z3JC!;ilt|_mDMaQ97OtM@x)IIx90|>aG#(<^CJo4m4vAyRmybl)H!uYc*xijwLDxe>~b2Dm%1j(h`KMS-mj@-_+h8Z}2O@&a51#mfW z46?=v^blg)#o*lw0&+5sO|IA^tgkZ|iHNIlD$7+;`5fEV&V zjK*mr<)PH>aTW>qC^`t&F(c$Q>}q*_QMMZ+P2|>8$%_b3%T|Oc+0`zgr^(_DvdcuV zi;#_=4)O?zlq=nu8twG0Q`=?K{-HH2)SxlHGS)-;RY&{pv)0q&zxCCDJJC=*kk)P}9Hz-r$dc%8xL@kCA68 z4Zb9{a$9B#vB~tJa z@cucQ;>?lWRausY@B*B4Wi}XXr8t;pS8@Ds|C7{tqJ|EB2j0a|A z4SXZEtIpCz2*1sr;wA+4(uc3(l_Ev5jSPijo9<-RJTE4{<#5(x$0?}E2F?=GDmk82 z^1Uou3$OU81jIv97E8KInxR;}J&NGnhw0cErNa_h?hYKTjy}Dl;u~+HIW87 zIQc$1oD^&lDZ2E*ej3*)^1&Xqv1mn0lr%B+8;=15xh_|jv3GbRx`^Ge=*n%AB29OV z!wihZwci7(-;w8A7JUs1(u6)td1TkwfJxr*SV_0Xm@yEfsL3Q|X;@0vUQHw_r=ZIm zpiJ}wYnPBxneRo1O4Dk*QsKK%FmGko-!eTIXRa)8hsxIM@y)=^8flrxJ*Jrdqv+b<#_ zXx;k4qE$Lb9WiIVw3VMRJ_I;P<*yYLlwZaCk%Vx21+Dtyyk=9RvqIaJ^XZPbB||{W zHQyDtiw>h9?1T)6DZ?)?Q~1eyrG{G%UI9D2uu!=-FxdE);Zpr$<=X4d&nDZ6MZr!b zLb;ZHH0b!RZP0CUNXJ40CFw$r8ri1U8SO_HTEtOAWI^npM4aJ))Zky=dD_Z|}E@5$z<95&GoY?#eA)UTQ%*%ZeYLFElNdmJ_o7P^~1S@1)#Si8!IGoX1 zOQ-0_JIitw9( z4FU~tbb3yQO`E;m%h13d2pU;#R$&Y)1hpI z1BoEFcvs76>qrvXxe`BtEed0E4o)7sC<(xyVxJtSXGV{A>}@kcH8;_+>BBxGdi;o+ zrz2oY5(|MfB#6HVCR$eYihrDEy+8e0aHRicw>FfdwAiU^v*ZRG{Nd4v;F2KVi)4$r zA)Jo6Np}+Hgri34oFG}(cqZ40uZp0FQ^QWV#cSOXrNGYIE4f%IFiW%9>UBoD=je^J z=#b`kCNU=Mn`nDTW&o)MgLtwfl;Muy-vFusUBS3dN5x0|)MzkY=U+_UMJi1tVGWLXg9$@cd>mHBpUHYsl(zQ}1;LB|HCvCx$eEd1(8Wd)ofT#AU0)MQ&4->=1?=8fh8 zM_s{$)7p#t4Kte4yX=b}+z5Tn(%kwA^;brPhC+n#>matPV&>EV`;(Cd67-C%n3&Sf z+vNW=DDMA{-E)%%*c|RDL^6c{B1~&8s*+sc6PF`lZKZO`x3EE$ow-{#I;$8#+%oz< z?jeooPzC#Bv)?>$X-ECs^hhK}MvbCr=+l0i9NLfE|4B2R&C<3ZQSuVF0xw$rTdW$K zf>z3`Y?L6h&7S)ke{QUE*^yDGhb-B!p?7Dk~PP3=v3@AV|pVED1F*z&RPR8`d?{o7ji^^8j{ND%<(uK1yAiCJgxzkUD? zFV9+*-k5ZO`2(7jg`T*@ie+l;W^X+*@=ebxxmA`tt&W+pHA_=>(ZrPd|CdumM*z`* zv4S=+t{QbV(SBM&DOP2akSs$gK@|NE&=u_;_ywH8Mxqboy)IfKx^(GY+v9R!NA0!R z`z9l{QH@kZkvKA*1E&;qM_<&(iEotXBUGrzI%8&@A;DS^uQh4vTv@4BiL0b0+NhB( zn#w6L--zSiWNO!>C<&v%(wFccFT7&g;f6|LRswMr3M~;5ib>r)q?&6*OeUJ1k0tp3 zm9j_vDJU)!D&mBm@SZWYK6dTDY62%j>1SXsXeBalUd`$OZwhwC2x3Y zJHA56iVJ*8_UK-sgO~Ay&yppdp<=jjr2ekAtZ)4t4mk#P9d+4vKzK$u$ty;F+szdWB}T@V7^&5GN(S zGV_4fq-)y5FH?{fcDvU#i~oZ>^sIcL+7y){6x7HF{q5 zO?SY1($*?^I3-8in~vH^hloB09pB(BL>9IM|LU zk&2A3gS*r3?0|zFnU1xKSBdu5SL^&MWHq4)Gk7G4*(O;oYEj~n=-CD%Zl@eVd!7t#k*hR#xR;PQ4PKjk_mymG9H8GjW zp@$wE5e|ckWb)S>d@^fmj3Y94ZoCeP+NQHb@TN;lu>WG7vU$wvQsF=n9tU3)~r zwe8g)BzHiOvlEtNGm?CwF~s>w{@5HyGAf+p6fXdv$oNF)Yzbc4?zWH}zWVhgj4+sy znPvxyNUAi(iC2Hb=vl*@bybRQf#ShR=D0mtG1QB$IiErGd5v9USaH&5e|+lIQeC8} z4|A4WPpNjkGdV{8cU(({oIU}mP#vpd7c9MMU()sB;4wR^&EcONg0PL>(Ht-c<+5Sb zHb$v%fcukEciDgDe}9?-Ln~`$0MU4Iugd)rv97=}HK5OGe+|Y6gF#Lxo-=6*19hjf zS09Tcn1iHQGI$067=9_W!htq(4^r0>M=Lr1hGUUQB}VZQ4=Ac{v=0@9IaxjQ9d zk!|JhEbYE)yklgJKW-IdjFBf|FtjZ-{GoZ*?)2dV3OF?vHEnzXi?srDkA`mo&!qXH ze*w5%d|drl$WMTGtZ!`4F}3jixF$gV`$qFx zZ{UpL)71Mfj!Si0%|Pn+s@kzZ!u*5=<1YrGlx5TD`6@8FZ0gojOqNEsx2Ub?Ya~;^ zyV(9NcSV^hmv}*AQHxLxXJ$?j^xr#~D5%P)qFGk@Km>Dk{4@Ri&(;3QnObUcML|ia zlf8}v{pIM^=S5sSRCx%kfKuYW9f?8tH03uymg??gYd&~IL#!S=8v9e)-~UJ1$5)aw z?Rc~5uZb+*^{s+gF?yb3UDOuO|M*y05b$`=Z~>yW`k>TG-f2Gse51jGSD+8b)NfEPwOo=RibKSbDx-i``^E(X~yoS07c~!N1AB5v+inq`|4*H{S1{ z2g0YB#VMI{cyp90nZHLISda%Va|EoN$;&5;=tATqI2 z`)`%Wh(GTua0IzAx7JB)01JNi!_cGBEx0ljFen~Me4I(Qg7wvXvR*t|Oq$*;H##}= zf{98jXQ|p|0fLvR0~xbU)U6waR~LL=*%_BeJf!y2O0Hk;0TAajE(@TDlyD=(q}FPK z!^BCN<~u!et48(LNlL*u_zms$AD~5O1!gxu7_X^<1gpE>ywUu$NEUNms?d1ptr^?* zY``xM3u6Mi)@#X4B_~0TimIm|tWNEl=H62nFO**mTY(mA(SL1R0~H8!ak0W(Ir)pl zxS9bd%~DuB6Y(G1$@)axczW9)+vDM@`}K(h|51=LeE!oAC%_orbN{>uZvf_EWfv9x ztjT$8%V_QMkG^}hq8u`PK$XNo7wjqY1*97$8dKT$$VxsxP81V{`m_+gi8@#KJ78&4 zj=pI_95O2&9Ar6o07l(?zZ>?2vItvi=0WvfIANVuM8Pd+S#u0s_OGwVh6HUaiG#DS z`XEI|6QkIh1IE2viLCE!SY9#*#j)L=(tJ6vcwdd`k$E~ zT=GU`Mw2Dnqf}6Sfdh5f72UY22o7!T=){LXVy)~Ai1G}N?dsz`Z4UbZ-Rw&2M;xkg zd70%p%0aPp;jvDTeKBiRzt}760B8zortF@T#T_nJodNWfnhZK6E}vE6W3dkoWG-JK z?J=e>0kCF)|4#}NnJVwl8341TB&cM=_$BfKZVzt^8>kbXHLQHh^~#=GEtMDx7;6bD zLRfX(2(JW#mnDVG+7$wT05~s=`Mvbg6=9BPLw|;;TNEpyX$+6uF%csvIQttg^~jHZ{;e*=%Ytj59XK^?;g%jK5Skmp~&Ty}ClLz?%7X#a2MhLS|5 z)S{y3`X;m8K$FOca>|$S=Ujg2J@$s4050m%5019bNlIKV$Ypin-y!WmoxGAUNwD{% zCF+kz_b7Z`|Fe%odojEpFdNlP!-~SUjJAGF6FL?XXKg-q1ppRe3fGBY*}jo+YA<;- zX!|uzbt+>S71}M$bj%W1ysiY&!Skx2W=gW0mobz1K46CJ z22A2Eo9+ORNBNE>+UDiJoX4P_MQ%FLorN0g&!(?dGXEqwRbwgepYr0O8UtrPg+m;RAx}Je1^%S_nYrHkzw_0(a zWwVALDGaDZ`;S}|zH7?vz!8Ncvvh5lKYiH-&=U~#EO6+>4ires6hR06H8pF6o0N)+ zFRgTT2*@)%tr+QszG~Pjkdh^uD{vu7U#8XA!)fSaJeE~PT{OS^Z6kP@R=oay4J!L6I|Mnsj%^mDM(KLlXkI6T(mK*nI8c<02MX;d4%Pi%6wtI^E%*~ zg1DGbpe?0h+_j0{oe*R%0JYT2FDE`;sMYwtQdDw8*Heea)l0l;xdv?Xf%=l13V*5( zF)vJ^_HbOb|5aH42w_`h`DFQVjI`xm_O;spieD3oblVXk;sc22Mb4b)*I>$($%YyV zMqLal6BHj6P19Ul6s9^6*mz)PuL^6)CZyL{;0=LIS{zp)#-dE=e_^gZxzBd+&&Sxp zj3~Y!(1zV3vOp7_?=f+Z8A(%fkQoYCAG_!@?hIyNc$l`PVPnSw1{x{FUsrmEcJNu1 zrDpty5s^7pjG^FmSkA8^8a}vop5qM`c*%(&Tu;i z-Mpb)D(Bff5tQn!tqpHiFs5UQrE;vR9SyVB;sO6F= zzMts(00tv_(fbhFnTj=*N?Qs1knf^*0_xY4b$Gnv>I5Mp2FxGGd3XcOA4NQ#&##_t zTkgpPT2AEfYUDJ$rMH`VBEPMeFEwbRGy_?huOPEepqsXc@y5}tX%1n$<4 zmk5J8HxOKj3Xks6FeP1tnaP}P7myFh|1>U3mA4<)rQ?cT(}tRBav2ZVQt5?Mu`Ptm zSSNGh@|9`2>RZ0_*a*g19@X~wE!2&4Sbh|eaD3*(X3u7K^jT6+g;26yO<>9q2Nolz zuw9TX!Aa_&GS8IFU3t5?aw2KA`d#h8Z61fj>R0M*BP=H<@oE4i`cnITjfpck8qC-vg-h?p-`G#tZd7PTjOeX<8%bJIf~^zOpzfv$ss!r@pnl5b7bq(o zsk-5h!v2Qf$d*DDFN##a-NG3th0xFp>7lRpd=yrewh1-yzvb#|MwyaHt5Jz0#?XtcPW! z^GM!DNcg{Ok~(FbK_EOxF-iGHZ?grjtCON64dAXUxFOjxZawzF|dBq3< z-;NMw2I~clryTA8?__m+|D!P`md*pxxm_ktv^HX z?~aR}!zJ$qz&1zHjMj6EzP#^TU>onhAH~L zHeB}1#tj<`-#5Pb5h)cw|+95A11z@pWOAHJ%rz1CR8jMZ`EZR~N0J(`>^We+780Rx{kOM4>vG_E3ST=wBzg%*Hq>SJLq z20x*bT3ikxdaj`>g6;#C1$u{~Izf`RKvC?AfUkf$SP#5{wuD5tabeYwe_HvjeZkdds?zwsOJ5Hu6ULgPH zqmyPlNBfyT!kqs@%rRL%5%J{=_sxonQnO)Amjwc6ain% zDL8(2Aro#$UC>>&&&ap{@l}aX}}W-^U_7zKn>B}qCM8S)|rP5Y-N|B<$Y}JX3#9bS+q^fZi znMV3AMPHeD3AX>jgz$};)qUeMc=<=?J{~(?iLhPwzf^pdxNqLxOlDsNWD)Nu03ql# zj+(b=>si*~l5dwb#unad#g#i?X)KZK=k<8Z7_))BWSYnlRsq1|En#Kls8SXiL7_yr z{Xs0o;2MXK`aW^3-#Q8jb@f~vypOL4{Wwgb53m93aXv@+sVH;7O<6cc{(r59aEDO! zSrA-VSl-?=6fTfS`uiJhO1+r1QAegcXRV=9MZe`CYwjXah_ZzYPQu@J+ZW|Rgt9DN^0Lz9H#fB`G~2Z-{Ds?u&nJKL z?L!gW81J;OI!TT9D|vr2SZwKO7~nb%;HSfS{qbyg-*`|A(`qz+3;0`}Y^T+({8vBX zKXP@F&)3u3F^vBNZBN{bJj;+WhiDJkgI3f4elrfK8rap-Rp}Wi4@2XkW_0nVM(wb^h9~teoGerPO~^t}sPeLSo@yI{~;awmOW({xJ9V zx8#R<$*M#{`1T{=y}VzjZaX<}`V)X)g*+E9o7hsxKV&*wN$v^Cs{z*UN`H8!plg8u z<01AQ&R@U+mSJ2s_GK#B%Hm+UV$aVXyPkbpLa=rwKQj_|B@6a_E>umRBa4Z7x1u}e zE3T>#YlL4Xt(r>6m-P9^-%o)b^J~}lD7_%kH20s{er2Ir&HtDu_>G;!?wF{QUolK& zN?6@)!#;6Ssf&zyZ)C=u)3{i?C4V35B%k8`qt4?{w+(^=k9D8Tu~w0~TLS+=bKNyQ zN6eE(-erc#agS4Wt|`3ts#{clnl(|X{p^qe#FeslFn~?<_u@GsroscLZgjtptkG*hm_EY?BF# z$Hivj$DBbwmVRs)&m311YCjjhuaHWt2*{yS#OxI7Ctp%5?mN=vc*fp5;L?NFekMM%GxX|xy~e)8c9vUy%3RTO*~wD}HM3pmX<;Yi z5%t6?sUuf@xyjT*+#piqHg#WP`>)GIW!-?q9xpMve~I#9U5XSf@=MQtR?qfSX;xSVU3{w&!V4(BHM4Gi9wNzgzwd+mrXK;beTfGNoxlidd84A)M%A@}nySG?Rbq&6 zl(R5& z$#txR>oBlDRiy5hWQuw-<#4TbfbV6|Dav zv?NVAP>;K9BlGz%@;1$_A=-f7o1%&^t{07{N6=7`^3rb_>(0;)(Fkdc`S2 z;GnKV(sirvGlB)d7n4hg8SCDg_}FB9vKMBcSd$CL2u&C=LRKy5x-pLV)eQLut$u`* zhA1n}_IPop6fn1$uD@= z{kBB3luTPooqp|5_Ia{5EwiIkepVlYa8UROIW7Ts&!RlUDSQ1L+88;8?aLlfsy&88 zv>}QqZj>Zt1daQsfT#j`7$18Pnz|D5*?SW>4qW;D>0gu8hDf;;013^{4YTLE2zPyt z)Qx_2Kn_<_Yi;B8v8*^a>;3d2_2${6WZJgE&twuv50+%NLniLLGuUubg&wTIj!WR7OO5HE`I1t-a5>K75i z5VHjPlmJ2%h`vSgsWX+_#%eppE5Gv0Lt#}NrkrRMW*0u`hdFL%s0L`R`K^e1l9gGr zXH8E6ixna-&{WN%pzMa2FHDOtFFAQO#E%z?V|zcB>9g*qZ}JCyW$$6Y;o$V_fk@;w z!bwT64>Wh|TZULLYnd~JO@5WB!GG6e_vEFoOC-40$UJ{@&h_CF9@9T5HZDI4HOzQ8!YXXaU0u=#jJ=r_l(TLMLJS1(;{K)tKX?1&xa5 zSQotkG0W#etj&hSDn?~5UiqJ8ev6lY#_APQ{CrfRllf{-hZn`}HtU(ii;a>P-_Q>Y zL|s`Knhvq7qd43Fi%Z{x8&gG@-sD12eCW_uXRBITj9sJGWj>nkOp^V^>fr6-rPrrx zD^J04&QQcR;@(7_Q{8y-p)psWpT5{gvQ2g(`XTLD3Hs`|n_}bs6+xpn66fSb{0SR3 zT}>~B9`TFc)w?`gYkvG4K(C)`RD+?@CtC5{1Ymjd_(*nrhf4xqMA0u&h7ujN9fq>- z(Od+uc@(aUfh;O#;*9b3#D&8N(Z}9!rpR&X5shf>TVGLI?eMF2cchCJ*z{NN%zd$^ z{@^&3{fYGXVkz7>JTM$3#%UcHiSkk?ox1f^oO303PjeAHFrS`gyC%Zu!!O|j)b>_c z-QIfQiXA}y8NHJ`*rt-e9DAxx(*@J^!KQ~XLc<)xoRGo`i$kS9>K%u{+Z3a)$#Xqf zuP4pgHH23Y0{Gjl@)_R{uzKdLxEX9fTVphPzA9NaG9?xHoA)s;MbV>=w)J7!I@`%0 z$m7lYMqg?GUX*j<*^JN6%_sb@CEhQBNic}u(TZh|Y@H#hM$6}u@H)>kZxzLQh`I_S z1V+Myg0rNF&ZS`y!JUr*iA5zYCT1Hzvjl%`cj@T$jd?0w7gh>5*>b+q7ZX?V1TPye z%3(t5QmqJ&$c0<%yQ6IIr%K}N@9%>f86TdnoD2s^DJIU~?prd)zOb-EV(Rp{PUdjJ zcsPu%7|64qiktc4{h@RGRP4=4aN37n`D_wX_M(qO)IiwBihk@#jET`p&w$L%D=DZq z@rg(b-EEkX$iHx%Oi%U(N6m!h$QEzP6%^m|8?Nbz+i=mkq5kLj;mo!Y--j6fZEIW$ zIe9_eE~w&5L%I<>;RhA9lD` zYyPv&Q4A&28MDs7xnNq+dAhl5+4Ed}O(YvQtN9O6D~YCA)`6nnIj|VC^Zk0}xLNAU zQz!EM-&!2HX}O1z{K1++P)y3T;LBA+uUUSL=Rf73yRolDSayt<0jJ;PG1QNDo4JJ# zLz^+ry_;?BhW)`-sz;|Nt_kkE5$@&o7=19UB{sY?l%7B0x3R{$6(oFrd5(G)?C7_;&`xdHm z>N7+^U!NK9yy9tODMLODwk)h1SMr+4J$j&X!xkugVjpJ=dJnk9(xg<@B%r1!tlzq_ zjn5dVf#3S&7kvyq`gpOt-BkAlH*~VO&~w6Y(g(@e-AE{4KlKxf6^i*o<*vnhvN=?- zGvHp(JOp{brs^d@F~)zAMj8*wep2IUok47@=^9uE?k62QQGk|&tyADM48oV!Dkuh|tyL85{`s zqF7NDiyyV=D|8SA+k1AC^g_0pOZYCD9*f-D)|f=0O2m8E$=S~)S8KI~(a}cR!}yTWJd9>zAo!9jg)d;mZF?YrHvOilA+smuS=IMa>ZFPs(& z#<$C9*6JbfSG`9ys1{)0&l4uah6!O*@uGxi=wid zznK!4G(-+q#$%u*XoB*oXu|sTnKe2*Vqe5lsFOI{h|bdeTCW&hCUPIYT!YDy@T3U5 z(&!lcjJc(lS?R$cFx8c!1Ew}aAl?eGOH>M_hz?FghC4rebkJ@+V&sn$%-N@<$7M~MD zK9(#}YLD68R0lhZ1M0L#&(~sm+I1ZH)LLjT+_>{Y+SqUO3UyW19MsfTGzts#QOb$tGZoR zAd}=44}Exx0pB&-=f9;yb2Tr4aKF&pZ~$1z0yLuQ%Nlj{T_MWE_~@|?iD2CbWJgyK z@kbpt`|TyOE^fQwRF3)gm_qbkocxEEvN5MpU-5zqpc@@X@9qx1bpVBb7a_4GPcn1!3K7Y(OR$nr-P82BYEdi8?VV@MmZQmWv3I2^ z&_C(>mr(gajY>?k6zaH7GQcq>3e8r6zo3!xQBH}hgk|*_b+=U-8id+svG)=LB#Jm5 zQe;k>XaGxyB4+2o{s}NV=K{e`yG>Y)a=b+0(~j3blOD^uPxy$I703{O|DY2N>e` zyL`S3L1`Ml;5zJqpK`foII?~m#(Bs8VSyf(WkVy?-}N~Az305KsLW5G(`JB6=%qZ_ zFheM{U=80g4h8#tF;9Cwjl&3KKxgM@erWIcy?Z?JbsguPjuivRc9lsjgey-G$u1z@ zBrjyPvw zW%zGIM)W-ymFXx!O|V-}BRdO`+c7q2qk%+TB&cpAG`KMX=ut6*#-Ahfl>KRzN=yxQ zW-0ee+3VX1rv{cFEBXcxv*dhUCrj+nP@?{p<+2tok%;H1|Y%aoCPW5m1-e7($)5aQ=JfII^A z8*mWy{Q#mnD}>+f$_#pCdLzQo$*k<-e&DVNVffGdPRH3?lZN3-y#Cf=h%NaEd}VWW zF;idz=x@L-2m7L;&@dvI+o8sd|GtK#C!GOx#5b+gOT&>t@~exmVD91zR_QZ9gZ-c3 zeOLlBBN~?rm}WfOKEHTgrS`3j0I0j9YL;@fz2en>lEpp~At7W9zzH(t7dQK4s-Kq3 z!Gg#0V4c~Q3n(0P%>$qtD`yH7zZ_z&{3?!=eTKQ0#vX38@mKv)F^JY^`gc*8D%!v* z>Oaub+h_^dy@hP+T-Kf(#lV)FBXJjc#_eq7f!H@TZR^g^dF_Z!2Ww;)}E3@%_7%T)>d4!ukKOsU`DwN~W zhSK=|oDwaLzK3qgwy)qK2bn;XBA#v+Zp@!mN;GOGu5ur}pROXH6jNam}<=>+Ii?PfJC19VzVrX8Sbu=j;+Itsh z%Sj9s27C|6=EJ?Vc+?7Ef?1!Sms?2>TC3y1e0C~zY zB(eNf!QMvkQ;RCH8c6UiK*M`Wr3Oyo^G@d8kM0Y#iN{7B-%cOp;EkUGiU%N zYjOw(FY9goR3!3NaaSk|QC&b8*E8`8B*OK9J4pw#6%%LC+?LvX-2-cr0wR9anuQKz z|FUmm+;HqA(_0i}Y9}v+b3^&j7%5d5L%e8LEN}lj)O&yY+DJ3E)}@^%Wx;rM7SkS; z$eaje#Q2RspvEk>DIJevoVx1ca1b2ec%Jtg!3-g1K^HF4K~9dxN5MYO3%M{g&5##N z5^&wrJFPss2fXT|)|1okYhV3-eZPDEYFfhYM^%;iOS5Z>hc9nl?)0QS)qHnNVN7Pd z?E_pFq8lxG^5idiU2Kjoa0P0Ua1hcYO3pp$P3U}kSNrh+ON? z&VCl=V~myO2aY;Zks~K)1~)4 zCM*}7T2~6q5Opib*Slh!f3&C|KB2KIQVMNOGo{~1&3W~OUla$U`#7Wuo^e^?&fra= z6>d4!%KiI5iYDdg$`wDyBn&AS$Ywx00LArS@Tb8#{^VI!v^KZyuWc7~B6}RC916s` zkSzT|COYj;1hFUM?(Cxp=5JyeC3~^iD;mpguB5(4Iu% z$E*cVef575DvssK@p9SU@)==WZFs*U<{d~TNPZnJm5{Vf^9eL+eTPoKLPO~kgVHVj zZjqbx#Ds~HEdLj>ayX={mFT zKCEh*G9-Rz`uf$M`w6spb6j+Bq{fmlwR^6B-s(vZfBMh{b^(Y}CdaW2Z2R-^Lo-t( z9?Bv*j9|wX3SzY(ZmN)FSh!{xAy>Encwz6BKHY?F_GdATdfmLcuV;X(X5qDE6yE*{ zUikRGiV)L{;rx@F%#pNP4fSE zMB*TvJ5H}l;Bv#~B-ZblcjP5h<7w0jgmWh^C$_|5&3EGaIkOx~IE5^!7R?Ob73HpR zXOn#VB$N51Q!6*LY1hl^SbJGns_9>$fA;E*BI!9!;5p7~X8b}3+#Or#cmM+`)aP~~ zL188#c}-hD&Yr&PJU1F>zQFMvLmsf}8=$x4Nei@j%^)cna4}#;5>Hq7Z6{W^tAB0z z`@ZsOL-AzLsyu9s6&Xe>dUssqhD%c`dN`PPO_=$-Y+qOiys6Kx6efw}7ixPRy}7Hy zuL5qVaeA9n6kHU1DExxrJ6$U_6Tb|01#~@2$sNwVHAsVWf!y$ncaPSdx1s8gzsM{H zSuomv3q>J~`oI|La4V98*5;~2^icn#L*cI9hv;5kN^b5Z9{x@sAqUHE$_T%G{mT}3 z$u`(kwY{6vPZ!0^HcYn1fMp5}g5RerJGT)W3lbj~8{kdgGA9YJ_u1$1BY?P@(sqsh zUc<@2nv3$P9Xvq8^fRKC?d3Kn=ARb?LISYcfHVbJm`wD7vI@AcwvjRD59g6Vm6>o& z&i@{wlHkQKvK0t#`Yvye2{%yT{04g%pXB)Fufs^5t4WskS#P*?m5YDpWg-O~coLjC zxVB=yAR*Y3i{|9!FWAn8domIzaGJW)Uj8jx0VeplbsCw8fbpTd@>j>NuV&7Hs&vIp z*6JI$T?4oEaZZl?tNW!|1>3Nu3%#G4ma%uHekAc6cy;9YYbj~x)`2S0mfTJ0^DY&7Ia923e7Mt>FjVq*+lP?OeR?t^_7j>4nU z9P??5B98}}nt&^;!$^5uS+f~#tXYXgiS4?fREiz?6!gu>NjK05)48tv@07ihLgN%f8RX%@NxO=0_doE>5 zCP>4ah}&tEdO@;up=X*GpdY-gPTNx1=$oFt_KUF$7sIWlz|iz=`Im@{CHKe@`gF?^ zL>ZC2=oSdWp$aU8Z9@`FV!yzuqO2@%iaTR?4@g?N!NY?wy!+|MR)?o?g(roRc&Vp|EqtK# z)oC+dZb5YRogjAlT(a5GoKKGc7d2C`qm4^?5RMj4Q&9#L?f#-xn# z_#+JLAJp!HL@;)C1)SvgR46jL8W1x<_=DirpO7E2%R`j~)J?1&9>2D@Qb@vJ`%xM% z#arr_ZTy?A53@!T7zKl_u*od_JJY5z8Lf49MugCsZOZ?50n})2b%gkJMU`FIncUo{5OWQtN3L*D6A=V79_}jU)wL>A8SLflBQ)M1P8TOzuV;+q%;l^ zF%a&mdMg-TGuk*lpMg7|Zc%Tq+nKEDOTuc=jAQxMyvDvFQCX4OKxek}U67PuI*)CB{-9ZGR5DQ$W9#o~!v#lH7Fz6YeF)-nlXw7j#j{?F@&UkAqY5q!J- z>_&T{)L z(Pe5mfq7J(X}{^xq96$UE+{-r6#ouB!CQ*Skjv(F7A^ggO}Hlr4=~P|(!aPcfBuYw zJdp;$f9e(|-f>pp=XMWj8z1xnQJq>ehs#ZVk?A(_c8_bHl0G)MozJH_p!+mB z-&+=@bqNJ;S{bz@F!hRT_>Q_W3u&tBp~5qbCh9us@CC5HF%-!91=tXR=A%6pf_xk& zqQB4%pebPzE1vHE?-PGi9NcprzX($xNZ+FQ2=H0gA-M+z6I)?E`h(<^opb*Ye+9 z)Ii=ZsgNV1SiJ*#6iUCVt5byJ9tXW;NN4PI>Hhg9<|*2nej^imwV*(zMnBD|)6V;o z|5Bz3O;wU^(HdHsaSj`~1(WAvBN++ZEj?bkD{LE;1|!o7rc7t6k!zs6Wp{k(%g#N z8_{>VY)*rysJHsn953-iUk%_7qNjrJ6QxQQDK-I~{Bj<^97L%sb?4$Bd-Rh#?GT|B;VSe3{mVrTQVU_avwrCw~uGQMA zE<%+VCB$x9I0RHCuGNWwT>aKnuqe@qHJLW9(OTZ28Q0&EHSRyZeqLOnV;iN#=CvNmm7WhkF8Y?c-%h zVSRzl=cbD=3dwRSfu9bm?7G!x9L&DoeWqhedUDF2ewMw;{jc|~*#F8aa36K)j8AYd zh?G`D&f0xUBiaUE@_yHLO~`BVT`+OzIx4gfWtLD;w44lj=8Pzq>$2PDqDBK*XR62I zCSoWljlS>J;iT?Flif1qd1p^jpzdqn7ikG&H6%2%GUUr6#ei(6XI+qi$7xYxOcs++QiIp*~y z8SF*Be}nDX*ka71KHW&BpD3bL7NmLGAyv-p*Y>^`H40J>Q_vYxwxg`Ko{RFG*=OL} z^wcVwV-T_s;~@6h?gWjGq1HJ>BF;xej@aeP1qe+kcooq7yw)K0SZP1atwqXl3Y7Ip zo4q|Oi4y4rA%N+OFO$K~h0cGT=yPy*=m&L;);efeS#weUsoMnxBEEJr*x|QUX7~%7 zD$PJxIcnF`4sA$a(8&2M3+%7Yrv{t|7MzorO&Iq4Du zYMzryMbK&)U~X&*Dm5W}occL-evx8@`G~4LSShE0>zPIxaI4|e*9M|Kz?w3eq0288T zs4?KQI+4jBv665*5jji2)(x&q5DU4}&T$MTu}FI(>$$=h(2QZiqym}~T)`Wk^|?qI zdzZR<9NrT&1vqtamg+NDg)b<^JWS$YiahpS)}&6QCLwob*zgdShi&qsd#X@-NEMOu zlWm<5Q6@;m;uh!;9yRo%8GpBfB*r+;7R|_nR@*uy-WF7B%ag9~CfR|W;;oao@7PupT zt{wZG7|}(8d7E_0WB9hihcY%@+0i2ct?8YDXsE~owNh_wUt(X77SGiCD(=rFA9lsD zldFs#Os*qOKWvbA;u<}z68EB^N%+J`ZqH^wvV z;F}I49v9|lKoYN7$`8L*cXM_Q&}UO5ze%F9<$Crc!XiG7MdHnr#zD($P8I3PUH7b+ ztJN|yu90dG@GDCUy1*zFQS1A(aHJi#lscQ42AhBXsam43gOPNy)Y7&rUi zH$=X*=+2~q+$o?b%o{);DizwJ*k1nou@@k|!SdlHfzEtevuWM4?@S3|B7%;2E>(ac zQ23FZ4(O#L$w-@U+u%__3sdzgB~AgzOb-LSZfM3cyHeg^nw^G~SVT?6K* z7p4z79~c4aZ2Zx5uXA6XdJ-%u&R59kM-d);on1~YRj#oTxS9CSoSR1q{PD)inZ5N= zijeN>%#jGcMTwgD3Bj13R)#AX)3o0{Wjkdu!al>qGXL*_q5V9&bN|Z~$No zscS01@{4u7&;i}qX$tqLt|a4t{!ZfIz7E@^4%iPNLguqP)$?pqo_3Je4Y`t|+)Fsi zCa42{cO*9Sms>AduSJ>U@(;QTTBikshLBPKcvK%I<`LUlOA}3UjGI<8FA{ zZL^c&u%PaJG3b7c{t;TOvYgXQv2xQlX^Vl9o^qRtk{&$?j-KE<)5iCs zMNcC$y2*!TdMBw&uvvdR*f0RPvxQeUD}Ae6YFUbde!u@#Y`oHKz0&e1rnG+q3^9u; zo?3H@{ae$@;$MUkCUOg<7Mc^u-m}|VhvLp=`;eI*J8sJX!(D7XrJeB4Vi)f6TMD&7 z&P%4+kf_8Rco0DH_Vk4BKu)LWX{cdei6Hc5 zu1|$uqf{#2wvW{qGr7gjMK{4wqZbL)H0t>^EkmVW!w5x2<*Y`3UMN#%p_l^O$>*NR z7e1mwR#Qw(EgF{JNRoWeh^}T3MJ9531pWMA2GAdKbhar2DRagM=%#RZ9ruJJgL2Yd z4}1rbryr?jc`35MXyJ|ORCG{lvu{tinRz!y4I?lSy9M)k<;o$KoTKiIj{fhjSNj-r zt;6VpBVFHQ%dcu8C$1hr{GDI?iz9>5NBy5SK&RDpj|Cgc!8ECfb@;-_p3k?o2^GSb z*wn8h!BUe@YgB>)!0+4E3#}x+CV-^{Cs5RM%hX1(Mua~5q7P!}Edn^cjS$K~ehb#r zmz9>cK9VVLaHN0x5eYd#C|ZW#o!IZWaD?5xlQw7BjE`@8*g#yj^{tDtEaVTk>S*lw zwAF~oSn)|)16ebuXcnUJzywxA{B&2(FW_Q{U9Mp3xzEZ`9TQEk$NF$io*$zMV0hVo z^gN=?$f^F;E1q`dV{M*uT>uJ88zQ_0Y9siY;cf_~X!FRh@X4IZ+8; z1{1eRQCJj7cKb0{68rAa=*`W)xBwWi@EZ84p2O^_ewx>>^1Z7oj;vanUbBurhvf83 z?%$Ez*L*%1ZL{W@@f}6>^Wh1NfWx<)H%CdD^+j%mg#6{S)|$HSK*HSbWt4gp0Fka{ z4pE(n%<<9ye*f%gFHKLEF8YR_F${^&*e%R?(p*Z6;wNGF;hfF>3ClHe->Gt34M!9lLR{eT&t)fEzK_m}sp*S;^ zq}u>6P35)Bj(qjRSVN^hF7RThjL?Krw|A@WKt_b4EGz7-pLL9N6b`cgE&xeQZFoC7 zjaTxI&1^z+r3&FELfBG@31cB=bqbeLh&6#DqV`yk7*J8NYCo9N!K(1IS9akOeyeQj zV@+0o*4fU(dW%EkhgmFQL=seh)hgu~zK@L2J%C`wX+obfVkwd2%XJzY@OZH0rE+Ih zwEAkm#kb^^&nIov0mvX`4#vpq-?B5ysfl!z{1abA!NSM+{2g-9v0?mmxBGcbFcpkQ z<3BneWk#WPonV<4PV67J?~aP{d&6kmS#x->wO$<}n9)$?tGaPl+d{o;OEyFgQm>hD zI?E}VUk{Qw!kcm;y>hVGS9YJL**2T-K_6XxJw;}VojOOH2f=|AoxjBkl>gT1hcU>3 z-T*c@N02YB`!%se9bVlsPVTQa_#r_RHCw}6yW|#}kbuXB0dnmE{L0$Dq!XA14tifW z1N@rrl0OP^3Tgkok)ryYRSo}IYi~1`SJ1!T%z^6XJ*T5hSFOL#DmL#2#)e5|o9a)>F->P5TGiQz-BLj*DxWeBAFp4TDhu$WNF?`{ayoc1`yT|x^2WWB0}{0`q7tU88B@?*a|(nN(9>+501i!4Ypw`aK{s7tia%?rp25Jo z9)hPVK*0HE){}5>5*>mhkpPWNf9K@WJM}vv@OK1#^nxiP(le&Yt=U{1bRRV{^0$Q` zdH(qZuD_V_-ZS08i_mN|Eb_11>@GHbpmUJ2kbn z+AMdJ4d<(b%?L6@v&m8CK6ro1_awo|nNdOGsxx)-p-06(e)~^JR%3zvLML=afm^NJ zWTtF6u~3u?%#Z=)mac}Xg-Z!s^*2BC2gDLm!- z`s)lmYG;p=v0OA=*kNu0blc&5=*m;4Yu%*EVuU$|<$Ltl^3MCLy%)Z1wh^=o&3m84 zn=Qt0TkS-h%R)@Kam!XZ^K$!m2wA_yF9bVY5L+x*P7E|Y32k^bZT zh9Rt2zIe>7>cSR%89_Olgwv)Q7V|!2fb=As;`z@7Cwk^d()=hI_($lZ2?6rEy3B(t z0Gc-)j@}C{Z8XdqeKfmTCsysUfjQb~*eEd)%#1^m7lDG+r}07e=aN3n8EIw2z$g%g z*huscOBUowYZsIRVfdExg%ol@U!Ebdoj2wu{Sd|M3Rn6f0i2~F#b*AhvdIf0OlF=4 zLUOR8d+(bj=E&kPIzWXa>QO}quzXC9X07Wq73P=*?)rE4p4L$VrYb}q3U*sAe~niJ zh~`&AQZ`}^+7P~k+RitFH)iiMqc0q}5}0AGWt$~5P=BQvih5j(apl2l&p23-EYIPg zeNm&NC|R=sy||^hv39EGylO&$bF|g%CQ5y)v^@0tt#fM=iLHHB3{l@#=Jq>LHSAAo ztpvZYJk6?c58d}BNcK0D49#k3s&-QC`959f{`a~?Ldh3Qx9W<_63u*z}QuO*`M63uMFMKRkq!8e>x`jMJZMi7;a*M?iaY)`-;w*?~-k;{4 z@^*Y~BfLZ0BqX_PTMlW|f`_zO--5@ZOglv&A7isN!|A8{Tup$Azu7RWGrAZ7{xI{7 zcu9irO=zPynHtmEdHTu|>c*G^i&qCX#cB+Z4ev_4I|;u3c~nWREd0TN1y5_(kZ^|Lf2swzXnBGN^zFzw{35Nkq zI9U}Jd;E$d^f4>-1B2LS*L(CZ%0a~0^}ImZexxxVC!ZSwY+s27hKR5o;)yzepd(NC zxfKy&9qi>dOxLxx$Mh-Yq@C7?5z;{&O|*z>4)uMOuj@q&lc|V#{`X zg18(830bY=Iiqy1iAIwtEO zYtnjvgg|kB{#VD>Ij8Sxi>|imhGIqlv}chJYEKgNXHhuoOsy9}5evkbOo`F4GlFo{wKlk7*&B0+?<8~WYG<8~y#_ZPC=b*TcRRUBge z&-psTuA92x%oX*%FXt^whm1hz{QyJPWFOKHa{V#lez4b~fORaoVoz!S*ec!uf9NOgu2`-m?0 z1yUEmq@cuRqk{?npyCUvGiL>it5iu&rbDGVpx9P-@egn&wlVLN==9rN@SZy6^C zmvRMQo|pT(u(Ak0+`a2qulXtMOtLLVIKN@K9yKOxI9t|V$Bg95s~7O8-p{yFrPoKB ztz@lfH@uG!HRCwHcPDE~@(aibnTO}j+uZfNzLd>kOC=?Gj_aacM?M_46d9-#o~hlE ze%_s4bI^=zVl{$HRdYlth^|)zoRoCJyPrIS@*bor(AAmjSi=pdVb?6EK~K~Q_1@M- zk0Ayyl$Bgg(2L0NB!t1^co~V&j2=EKFJKF8@+8+zM}D$ zgpq=_MMw!ySx)8OO84jaLGPcr(-ur&L*P#ie>Wy}DW5iRj}Y1lx(0BlqS}6n9Zcqi z(x0zy0Av0)Y^pOR0cR_&snvettsmG2Vm3^@RysJg-C6x#C%}M11;CCr7_9Q;1HZ8H zxc-j&tMZ=S03b#KHJiH+&60_&e-Hlb$}S54m4b+KaxG<0zJj32&d7$gmEir($`-cS2D52`LyG`4K-m9rdd3 zP2)3%@~`|FD`AhUaB17=OXI;JcrtrZ5y%%jE{fuw)3sJ}cePc1ZF$BbPe*)ON+-ym zw4#lfCh6nP_x9zFdL)!1iGEG;1}qr?*{?l%(%zFes&^94pYDU#%|-}Ud0DV`6wEBxv=gNZR} z(+I|X^@PU+`N+{e-pwJL$j!Z_eu3y^um}qU(V#9t%cm~p@e0_-9A^Y7oqB&z$^%#l zF(35RmBwKQxJsj~kRR!sZk8U57_d}=pbOFNI9InH;8y&JM&S7<{o%q-C|3P9H(ph+ z-g1jj8CYy3fMj%ZfYw$~lGJHZ`uZE=@E+J#b>ilfilf#_jD6meVpNDp*;oX`Z}%MR ziwl?1s_O{ztecO7jAtQKFvvIB>o7=#a~Ic>A-)^RMnaNNHUa@zxla~*R}kr zrhA(R$``aLLz1CfaD2?e0^tPMx(TVY;cv@pJx(Bu+m6NCAXDtX@~(7DO(%I@2;&S9 zbHDKoi=Ypg2gMHNEI_tg%u;24;E{NsJ3qJR>oUK0n`#a?Z|em`|9X?gPS~huykKYt zm8a0N&!D4*t<$qX{Hs@Q9Ti#qYiL7GLGk;eq|Z%+eQDOk}D zslFzT2zwn^-l7~z)>wc54`|&FyE|qr1^kk(#FBPTh~jiWOTF3)ti6=alY-G)j=p=hW+KcRtCNN6Gbgp9bEMh9 zFq`|=^D20+Mq##tp-6k??qm7#a-h1^{za&eIs1y_b9>1NUe@2?UGqg}OZHctQ zX8s#hwTRo&|8^@>b>lKZ~g3U8RQRqSW zZ{DvX^?a6+W#H7~kctA76u#VTY@9v#_S8krO7fAI9)x(`%Rve&Z+o9VvhA4ocS1&6 zJ1PW0!}n_hi`EIuaCs+Tor#`-;r~iEvFXPWaeSHn)x5=s)vqQhvBzC6p!f~=qFfNV zAzM6!>2I(o1~HnRVCQRiVVesUlAAn*B}MLLy2qJ*yN^zpV+z(O`0PM5Vs0?=Y~b%P zTI+o*$MO3Z8Y=#Z-wu-94i|^Xt!k1nWI}QQKjycxViBHkUt?^7P@MCXe=Tu0nzw{K zIuZ7CGZryXKaRXgKed><5e0v^oE~I95-)LQ#KiJl&VOd_b@7Bd%zL}94+Snu<$*Pib+guUeSlpftA zQDKU6*XT|0W&FU8op{L@8YlG1Uly`I$M8Mle?ogBb7DE65p-z~UuR(mOTx*=Y$d7^ z_uV2!WLqoXd>eRF@vdPlmu($(T}YR0b7C)?Hl9xxPREHf`#whpz(;SGPGu8yMx7B) zfb&2&K)9ezeQX?HIf#3$^JLa$ratB(99Il>Jh#fwQ+h9krIe@38n@~ZI(5{_3L43} zXGhmM{snq$d@<w3MTawh_%sVzl6k|^1XlWnEsjiz3$DK$^S8s;;q{r<&_z=f=6OJ!e~kNut9 zYE<&BL{xuM7n%Tu_i6aGNi6zGGDVlF>oKfKCM72(J-)?smG&Wd&H+bhWD8s-@o*tk z+dZG7xrRBtkCTgpXY~Ta8m)dkB+P`ewsjFuz`OYQNr6a!F(Q8Pa-Dtu+2+F*w~9v% zdpc9W_p~QP+8_~FTvP@z6%4~4g!z~Z%eC-D4f{j+7rrdqoth68b;z*)`b3MN9EW9^ z_vEdivCo9;Z06p-ZIE}f>pR))^!Q#p3}d_LmDhK-9RVuZhz67&+QfiywXq?_YHEn* z5bpgx(Z4y={~oGk!lxpOK;s(V9Xt=)4(SU9-C1}d!sI> z=o{yKasxrC5>n-@wiJ>RdnZzk*{b+yrzGA0v&h1 z*fRWw+UmNK=8JlZW8q1V!(jDg<6?c{8q4_IgGCt+SD3Rx7g8Bwww);X1EJG7=b{E^ zc+jJTr0a~>H};6gg{mr-m`X|1ZLhDJQk+K8ofg+iD5k2OI$DE>-0bFjx5}c%tL0-= znKTn`&`QN*bdLQpcZAX4C2K$_@LGyxi>e#eKB)t|^h8BHrV&a{;?CM-C2PGkW~~9K zpDb5yOzfDCdN2=MJedMnG~kvaWmk?>;YZ-RhZn%FiM6%>?-j}JF}oMrn-q7O;;Y=B zF_3^!iwBkCi?eFS=fhnDmO6h2smw8%Ql%!jN`c=wDk_Gq2FVX2H>Gl&ZC4JDCieRK zxy0t<7Yin!99zaRA;P7{Y0=Kwe#_K?n-$&jdrJd-X3$Ht4m`#(-kT8gh}oF@1;?ui;G^^{ zCCT@}FCX`Xyc+5tW1)aaJ;}0?-jIty{({jq97qpe@4(VtLnq574#~e2;&ZMjZ?Mpx zMh36oCNWCbV=Vn`DjG;-krQ2DT`B3=9O_T_qer1Jw{maco?8}j$xqV=uZXp*;#)dXC)9<VK(oSY2YNW7YNsLtjQ5rVvC8i!B+BPj_v*+hjE9oZFTOnCE{-vDke*d1~p zJh3k_jgV%uo$_rghW!j1(~G%yff_b>_!7yT^HIUslfM=^qTSE_1Z)}2zo$p8^PQVx ze-uf%m}W?y@Hl=!Ktiht@uC>Obn?^Gqbwq2EBnd}4?&N6&k}DZi)w`XeVdbSh-LMe z+sawln>a$e5Gyt>aybFFcEh*jWEc!ups^(iaSE}D<2GUed=*z#ycqlJ?ayNJ5%MKu zT%ClBtJ@EYKu4mWAbMvCQqWDrQweVne@qAq1;^OeE2Uo^v9Kx~%jz`=kVS$8%5!Fo zVJY%3FI^REB?TQbN4S6DIdm%XHkQRpk|C?4+;Z1NP~!AnHPGml(9ti%eF4gq{~;aT zTmS79O3fh;^x5r1FDzzqPv07ao_^-%eV1(p%(IdGnQR!lVP&btv#Z4Ht`vcEs#L}Y zl3wl$K4|*X(qW59d^Hjvf2}#@PXV2O{Q8ndxMTUR$s(f}KIQi|obrez=%@L7_S$!i zoAaL|G^yEAbjZ3{@$aq!7^j4x-0q>`-F)NP|3uwPXf%(UhN5Vz>hISF!Uy0+04h() z0?JQOjtQxI5yVZGwp3YVVRvbO?jA5=_+)j>Ll!8M-eyGx{Q%zqNOv(3HCGg$7A3N!N!DX1;Y|x7_G;%`x0~nhQ>0S)5ZhAG zTNy&LaP23bg>C+`8N&U&{F_Ruo+x1$`{zBgvwww|%$z8~9R`L1GBF=Y!e^ch*`JpN zc={TKiaIq+Je!}vD}@scz4|LJzF4Hk8S57KzgHm|>eWDypIC?6v3b&scsQO67R?8% zB)$XA0C@-Ll9 zk{sf}ghJgUu-bbuOMdeLRG)eLvQ>}Y_MPkKAQK&MVjDudXk*HVsU3J+J_|7S_<8^-@LP|j)0QA2B73k>A8}t}+>xboX`6L5fecKUlzY<^mQu>ob71Z0yMgR$3k)4l78(Z> znq0(_*5P9qhJ>0;jc34Z*kVoC!IhMzECBn%iT0pnT0@@%W+fA#=d z(!!YrT5VNdHk*LLuJ1&61`-ki&oy!aw~O}~{KMB7&ROsX_a5 z%YwD#S;3!yKk5;qbDoj+JRRzW89gUj!^)N~_e^e=9WY2k4khe0&VPPI!C53dY+u1kWxenrgbeniDXTAD+r64Brg(l2Eb zQ-7KN^>vIfoTSyD6x&r5hO$P)*Oa71$xI30s%J;1vI&U08(pgna3tjyZ({O9%Fx{m zR2Ehk8$z7e!jIQ9op0F#@vW=|tCwPAjxb)|{O~$ofKz`S^6TY zDqoiFaWJhXHDX!)IyS>~*~ddJQ?InTE5AE>)@5$Y&v?@J2&+O7b#wp1fUj-p&c~98 z>aNGl1cTz$^=4`FsP5b0?|Z2%%a4h@!cbH9cL*D=8b#l){&pI*MGK1{qHH+2%t+-r z!xsYyfN_E7y+8FaP@ilT-~)abaMVnub0@q@br6>W21fMw<-zH7z3MFZSN79xZsJj5 z*Sd2C)^o_DE&6u;UPnV0+G=WXi2*(9Yq>8S$vDPArcMDdt5{xTYU&`GaA{$Zede4y zo17lqu2medpqn6vOKJGK18H=^xDD-yM#S;BQh9x>yMQfx0$jnIa$Rs zeZf?-#ky9txL9>h8hcXylH2H=Ipj2A{l^`7OS-9iYC#{^-CF5pdvSjbjRWhSAL2>N zoh-o6Q0xp%YrQTVvTJT8A@1h~YGgS=hTDhYJO6IX=ZC%H){76jE~kZzj0AaMKqlqs zsz!#%!}-}q!5RL9zQ(6_g3||0y4-mSKmX#))NrVXXBa~LxXx$>Irl>__-q^x)$w0V zW-1AzI>a3Dbjr;4cG0&Dpm7UM`O28cK9MP~X#H=N?3@2u&e_r;$dc-2A8ZUMh{}`I zwac!y`;*Wp%~mdTCiK#yEQy<4VA)0{VRoNEElq5V2QrGl4Z#3yIgotV^{cA&uM5M} zm1Q0(Sqvr~THgf1&1MC$%>2!j^gZHa6Z*3ikBqa1hg#0ZD+=7+-A9%aDmVS2_g)h_ zz_=)={mpiy#_ds6rfFT*dIYu3sga;Di`dhqW|wb1i|-gicVCp2$!zpiH(L}GCJleA z852`@6MA#lWY_0oNwSzZ{g-cCEt#MXl+r^Anc;|R&qYL@@8+|TlT z*4o#1%3r@H$VmYMV_EOPZU9mOlgH1vsK(r*-`(02@XVsL>(m>f3%{)x9-&l6f#jy| zlyQ9iE6V4zX>(qN?$GPVjqxa0zcT*QS4`EWWb*&qGO;CBXS&T%a=#F3wQt-We5WWG z!qCD!?B16wUJ<~awzcK`eaJMRlleLrDSrXzsQz|r0vp3DG^V#S5jvo z+q@w^L&iy-fV9*;>bp;l`~xP$68;WKB(PC>j|PUVshE)L+kF6>01?fMPc2%q@mFbz z!VIEjl5hFWB}~??O|pC@Y;cj-2OJ|{4cvxy)NtJMf2%rC17ZzhAvwM4G>V%6v;PPk zXj(ODySYt4Jp|jefEU9tOK*fsevU}x^vdU}bv)r}+90n4u9LUdQ8PAC+GacbL{F$l zL65yqB&uv{BDVFpIOwUBJxU$Q)7M%t53vfZ1c9;rtXqvJu^2qe;tAF(yR$iR#=$6Y z{FE)oE*60#Ej54C)j>`%brUtR>i>{ESGeL>85pUl47&(e*&s%P1i!;9-AF%Hl}%}V zTmn?Lg>tFxcLP~Adua=l;8P>nhal|ruv7vso=ON;}tB|JnJsUn^`^Qai4Kc+2G`TFWYj4lBRb=T6cOXei_^MX2*{^wiiB*92) z-DZd=TxvY%8m{vu9{crZT+dA1$*m*-bO)_aZiAX1G7wMYwH3pc$L0j|KMNfOX5a4;o!e=C4v%rttMKSv;f3b79Bytxvmu zk;N%Lq#cND;bxnS0QSniNjF@5&hFl?8P9`_WMBDqqW1Xh+Vl}ok(Ar=7o3Q_zTPPZ zpNgQ5S$}KX>E<=h*uAE6wk4C>yBd$B8++=h8xnmKS|bAr=26>Y6z=2~F$b*fT;11% z#1Ogd%6TjoeXSRL4ZO*FUXjpPtHtsYp70w>b88K9~rF^bLtYp-(Og5b37RmK#ggm2aWv=lgZDZ7#*x7MZ8zirC4q$EuhqucX zSVs!zcYdK5MSItY?-W0oMmcwIUye9?!xs^kH(>GWe$&f@c+T9kxauqAx6Q-CV?0lPsvmQnxr$gn{~l4A5DeonK-f z={nRNC@~UxLo`WPUi>geR$xZ`E(bq-yes5VNS<$7tZ^1l&xA*FF#=79z|x=bXUh7$ zPIPQMn1EdwA3`&7)>m$Rq;uL(ExRJssrHNLsDn80AzYD2wPZK1-q0ZY<~)5KFroJNJwcF z=u{4?ju10@_W7fS6}+aNgnx%%uS>xPYJZo&if?REOux0&I89}Sc{nts77i6`>9pEt zPMHk3t2Z%C7PBR95*%}@&#^f>XJ2I0;CK2`2jj;`UZiz;Upw8Y7co14A7Eo2d3B2R z+K=FKnNqeNiRw!em=RGy?VDp{6BOD^;BD7iWuMS#T(9Xdt1`*dXe)bths;N`eQ<2u z)+I2C%|LubJPQ*Xw$ix^q(`NsjURA(V;g;qjc0%-*qb5aTwlY zLO)$QNhZ`nJ8oS`!?=c#OnkE6b2|TT>_b6OJko+wd=-V;u)Ath zA-MRJ=F=NJHsIFiSPEf!oXRLzurFoerDqsa$mOs7(dTVbZCil;5n0!T50zC zRcpuj0JA=y!kNdrr{@v0v8GcJ+?q2v)*9I|En*52@asQ1_HU5i)^~W+`PnaAW++p_ z@_{8`|DMJqT9qO&(ufa&QaIQU6ji%2)L*qH+Ve<#@;z)H+VNeC5rULx48^4;bAR0E zE;ygVhiVk@41ow z#{OKZ<9_mqxSJ;WX-JXEO@$k?$-lRsrznn|(QaOAh+I1UWVL>OJ=BH$ZG-Pa{`xJk zFeJJeXKRt3Vbf>v_W8S4ByQE5N#lGp*I@UYNtc{s{SMV2vOgzuUz`h7`mKJT^lu#{ zQrV9U{nn4}egUq;&~$gzy7Owyy+OQEvp(iFF*b+@vwfOB$qkNz12t;UomIL^Hw zV5P-p$d3R^Ym>jp(MBjO9Ru{uAO(*`9rZ=87Rmu95fl-D-SmEIDgLd71$P!YvhDFg5VhR5iNaR%1 za;E0F4`86f1lM*~#4|Pyib*$r^WkdNkUfI-|Cp}K<`o-(zCW8-UbZ3W-x62zEy7Ll zzMR_*?qs6S={50g(4p0s(m$X(mZ4EA&tN%fWb$*fzT0=nZlZ#2HOYy%ZvGdHJNd68 zs8}Ck^~lx2UwGe>PCKV?E*y^Yq+6OT&Kma|{hD%u+9h`+lNPc5?r4?TL!<9lrHidC z%iTIp3wk7Z8gbDlN{y8rf%j0yvq&SLx&1ABUFv-xjM=kHBme8NxA-q&B5M z+VE#ks#1jPsfi>jMzX0m>!RYc3T7~q<{|(1& z4AzX9c=;PyWr%M~$FjzV;!-oOXT50jW|JoAE^9cD`SR{Zd7;}sLS~T=RkfuEVIRJE zms2^py00B{vrZ0G%I%!Z$Iz%NbFtq+w*MYqAEh>>-u?=TugbgfpNf390ORoLKZ)=e zZFjPM*RNrDPwX2_wPiM2dg!A^;5D@To0$g2rAYE@^rjlArzibVKPAtE{&rP7D66q9 zcW3Y>6p>9+@P?TKP73}8B#Aj$xNmJf_@}RvN~czE9C^lq(bE5Ma=14O>4?zE-Tm90 zbVmwbe0cIu5`35jRBSVQP$ECglF@8QL=A29y$>8@E-}-KS*x+??>%nQyq@;&t44s( z3FRE++txMLQsT7ntx5lyI~x9>0mA|zcwbV05y+?<`!Zx5_Rgo3DhkM{7_jqWI3=;2(bWUNlc@BoU#26(r~I zJ;G*^nX8uw0B}SM+zu2fxdcS^@DqwArXfN+NElWmsN-mKTi|V45Av76z0LjDK(9t=I&Q z?*%02c~;qeSg*JEN?0kk<)Jto!3opeGTGdnN!Q@v zAqWeTqvePn+X6;1I|N0Rt#h=o1s$rIfE)Gb_bUbK1HRY+d zvuT<@cb{IKup#2USbi!v9l{t}Yb^bz550Y4pLkj_iA@aemaH$uyc81K43yuazl?)- zj;H-Y)Wnu;x;OZ$zhk1ObZ{&S5FMeiBkt$69$XI50fi$orxf=T^Ip9K_Xv%oiPpDYN9jT8wz@4B{my%ANAtZXD!0UA2_1Gk?e;$d z>UwaIFhN|b|Kbti`QmfO!?w$z7%j>@yKl+*OIOiSE3cv_x#!RYhlHES#ltk=^NEX$ zM?*a@o2g zH{B(zSbM9Zq0=HriH;fFRQ12FZaL;ezH8FIorMee#UO4+C$H&1XU~FxdZ+TMYeIQq z2}g2a7bftsd1d5Mka~y#%@7FjxhatnK=&0+E)$5q_Pp=NS0|`fG zjd_r_zHzqFVApK3V>ZMAxXF=8HD;2k_?>$NNOY~(9T0tILUPDRqwjwDIDN~svK%45 z7Uh$dTqK27`?qPL{(){s{vXHzB!C@~&{>EWFAw+3i{{_RYCyjuQyy!My@i+Mcqe?U z@8wVbX)N(c>F)XY?3C-*So)#hN4o!pdn!#biIvyr+f$DCH%Uewq8wnY>t=oB5eK2F z-v`Y$vxlY|O#TrFZXiq~4XUCEGJBMEb6Wo&2KzA3{jLhlf0KZ@5qTf3xsk5+J!H5A zs$L(&UizG^C&H6#!RAdj5vYe-wZf}S$c4D>6}dsD<^A+3Kn3ziiJS;ayt^qRSXl?! zt}9p?S7ogKO{LibPeFoM9maO=I2@x8j=4_ahJ}@KF0~)j*9FF$t|t{~G{r5wq{3gD_tBYX`A(>BG66Zhb~n?v z+~E*WVAfApiHoIHTSDZ@T%c~Y+xGT#)fld?2dsCL2$V&vOWYL?G$WZa;p3jXm{OXz zS3IY@fid-&PW-v}opV~lf5VCw-zN`V4y*J2E3*VddKGPH9PQez?=4PS#h{ISTPUVd zD;_OHc6Faq`=g@6Hygt~7b3|-=FO^ed%mrDH1h&~OEZG8Sg6wCgJAvgo8 zYvSb+Qw>xyqcN3s~(Ld=QWxYZ(PNp_8O{hcc{8L za6L1VQ5mD|g%zuL#`fdON#F2@+|dAokPf9UMP3x0wR~!&4+`i;kEM~H!0c*`3q5p1 z*WVAaZ~Y-a7lau<)I9fccrHq2_kH+dUZEYOxjr^>Rp2@pK?=WDvQGZ+#F1ooHa7a*jL2mq78Ne!FTiNGf#i>13 zvdc0Ldbem9cE^@NttJI?d8>vQ{v2KPI{x}vSZ3I_*mp@3qtyMXjjN_siFLaTTaqVo zo|{~;3_IPT8lOLPVJA)f9Je<9Sob%sg|*S)md^D|yfy6a-?&(3{7RWY8_lo8Zve^6 znMI-sm`-1sotECMm!!BJ_hU%h&Y-B$&20ovbv5HqbZC@gC2fP6bS{TOfZhd<#eM`I8#jYcI8A)jI>pi-0+Qmc2~`Mp zf=m)aN30_O+JWUlGtwkwLXj&_YGnlG_83}Cyv`mH1pkL(Qs`^~$KY#Q#azw)CUF9} zzXm$gE&0$y=JC@WIjzf_w>Q^5)sVF*W460uwzTngv-#Qpy*3VWtvW4W-2vlTL*0lQM$Y z`7SC`zlwn1S-Xd)EG22Yb1S7X%os=nEO&eMurf$UC|N$j2=GLG0wiV3i5yje&Wx&& zmR#2NDq?<7t&07V4W#~J7|FnSW6JfQUhMAIE6k#4Dz7@KDpN&t8}dK+?`^ zoCR9W40nJAqo6{Ten~JY0B8)GwgbswbVp&g5*MS z0ODuXJp+IxjU4MauqWA`zXs>@GDHMNy$kqDz@glzZtM~|dhn;m^|;mw0K zYxH$=c4nuraTUncoA+$>bl7P+2Y$7`3@su}-gk(k8~pRsh*2oPTbaCLrXas70ONt0 zNLryaDD{$Ba=4tomsF@W%lM+k^abkfvtm_8AB%yIOtPaVEzp8Kf`c3p|LrB7LYml| zq2cqwGg~90q<8K6;WbJ7(e+^OE(91X34YPK4gKi_wXQ2%X&Cq}!SS`d<_g>Jq<@lT z*!In}X!MLW^)3A6w1Zxe%16=TBmwe8<(7Yc|7fQgpD2hF1Gg%Ku>%9t9&u!9#z&)B ze~*Wa3^sk-kTX#+KRb|>DX%l#M!LBr)oj?fb1%D;AR)WB3avM0nEuoAXQFKHN6bg^ zTVK*@PHyp1k6Opyv})fgu6HxOO7M&^RgxM^aD>YeKt^t@8YWq8&AWsJy0)<#%4*j} zztGNQxiiHzwU}>gL95C3sn2bB^#l!yYzMo^r)Qa+%CbFX09~v?UbCSwd0u*8xYNiY+NTIv$i|Cphjjn2ud4m#v_~Yp%QAm(3%4t%Uvm(R3DW zP5<#0-v*5C8l8d&0;6Me3rH$mL%I=UfFNBX1q4J&5m1nB298cCDe3O+P`vYZ?|t?k ze4l;lea?BEY}28i#DWjppZm+pExU%t%R-k{E9k6-59mD}ykf8wXr&K-lBbXRCr+=| zGdqLLcCoelh>IdS!nk&ep5}EfCLO0~f=xHgxcBULtAlQ!pw_wubt#4!feB*@i&`&o z_B>eAi@Bl6GJMhcFHS@-8$CA*5$lB8DTqP8gm)Rsuo(>Cj@qfX->pdGCCMk$&G<`pqI2V? zv?zyhk~>A#Nx(s#O-4k{d1T3K)9%u0bCE!f3O*)4&8x~eakCIEextz6)eq&?&+;lu zh%4h~oSIzx0cBzpl;O4L`!{zDZ!}Hh%?B~}pG&g0tgjl8f<1r*z(=pdK;uFW70HuF zPd`*~r-cd5TOw8>sl?d$gDh0$QIQ|30`p#VoCZ97Pc-Sdb^D%VE32p51TIG_J zE28wIyuVuHU5b@Y>wo(G#!h|Ri*lO~DB7KoXcR;Nz;hXQ0kBmlVhK6{sLZ5juy0sq4y|J8*u0!&a%Be&0#Spq|(1@rOevSXfv7$T+(iLhOiBUq8Oa(T?V}0PK zTky_ET)}3DIT6i))1CuZ&xjnE(2iZG5wVNiw`clv&g;;iQ7tC;DA%8N$^^#YPh#)u z%Mzcqdj{s0UlTM4l3!ku2wywAZ` z+QwVs#74SsfC;xJa4G3lXm0U>Z1Vfny&SAvA zXRf6fGM272z86Ej%5eHE|1_TN?Sv)r6eHQx(qI2M$kGbzKQyYDOT&4z$8SD6{?>X7 zqmndr6#_G~pXc>!JGQ&jOwJ{WvmItZ)0+U_2C(8nEd$7`@O3|6vVl$oX2GxT7g?j| zgn0l^be%R#_V)@Yi*&pw>3$~TZ5U(zML5fE>sic=njm6Oa<2YCu?s-iR`}&WT_L%HvdbT@71!j z-L|bFq^lA16w}qNG3(xV$awX*-0=ITfJIUY0QS{r9i7hqG{>9#9$=2bDCPLZMiv)| z)8)ur;qUgSE7uwSrw;+(9JYtJJ|tzKZdWx=<<%@M4;Qk1hVX2$OB)phWeTIr7G^YG!FiaBj z8g6>N?eCR@Ja-w%(W3DMeb`tbP6P(rb?Hv0x9luIi4vk|a_R5R&4}LAd0;J19>pVb zBiYYH0q1mb-cYV}=Dgnxr)`eb+>V&I5{?=98Mgd-xIoVk!GRQ-w=K0)nvaF@D}K(M zFfK~(o5b)ksqxD|xM>*y&d0(lP?Ri=ZMmXNe;$bM6Y4*7S7{I`K;+wo zmr#Cx!txgy8E*(Q+wf+%7!&?X4B^Yo5?@4c_zRw=JQ9Sg^*}H-QuFBem48qVTPisx zIv5kF?6oz4%SY)s#jUH!I-wqpEbVjYTecoO$$A0QamQNRm>-?h>3hnN=wR~;Sw=to z8&55)9w4*)OX{(|beqyS3o=C^r}jq9|2|$elV=G?O^f_pg@$+36m)WA@(jSkyWjLd zuwPcw!_J##aPReWT57tq02k631Jxp{dPT!ax9;jI{oK`K;bLl|W!mbE3@`&A5c0X7 zE}sDtWy$V#kWcBhMDzDZka}%<|Mi~r4i%1wF|rXrVTVM>7P%5tW=^R~N8xlH+H$n; ztBQ<0v)CM{NR^t-YopN`CDS$V%kjN_D!2SN*3iM{be3bN!^3wdG758Lr z<^{OsvdG2NJ||_qVV@_7wmh_3Y|%eA#kb~eOzmj4&|4pR_e%^=cG~d3RQK*0MN_eA|Y->EJZV2JckWVqu!5q zYKYwV{2AD1@PHw=tF+%6p{{PJxwCD4BhSE;o@==t6olhi=*)S5qHnK|(EC+zlkp#? zJg!dFC9eeYiHqg-aI--Bss#+qj3al7y~@ZcNE9kEYnj&>5^Kk7fZ#Wmrr~~MW-<8~ zeUmwDW@ke4w_C=)e%oXYt8Mmh4+Afmx*Sr{-HN2s_n5ZsdSXkfimbBvsl4cLJ7$E( zM34g9>=fJ!&>_0n72Y);Nm}yuV$_L)4hiqy2p9b$G=l3T9Hk+`HH z;?tP92;r{z==TXuuoXJpWoFk1n&KPQ4HP=UIK6Cbh-qp>LJjQzU&%S>?cTo#S$NHU zOc&!$QN}i%*G^osK5_!F%3_&U)4J8RbKSk_0KRw!AgiORM6%&fDMd@N;&>M7zJw)n zGlY_b%bp%#-fvFDq6Z*}M>Pbl>D*n4OZcP9(%{5bxbeTgRNOlGS%Yku4$VU3-;9@^ zil8Fa-?#Hr{;)7sPgp@JBMI4u<9S`c{m)(8#HRbvSf30+j#i|_x9 zN#te-#Wf}xuV`OXTO&%DLAL2fcX5VcxumyMnMnxnPMed$$CKJVL1IDr)5xLDCp-?+ z#IA||6s&@8Ao8Z5$Bn;1Z= zUjt6}p|1f>taEiQ(4#sZzdsu>*&4a^7NyBz>$h7pg1m&;=Hl>GLHj{Zk($W=WjyhH z#f)wPoyia#Z9o>T$CQw1@k;jf{KwlY#?S&Onq|=yU-Ec-U1zog4S?s%$MV|o+@oUXXK zq@qb#o@%LfZEW@$E!oa!b#YOJO!|f}4CO^S&wrH7R-eN*aMJ&C+3-ClB)$JR80gCF z=WZquA(*gqf7yU92tutUTX=kh_4{0nDv^Gcg3IkF1~fRAs9oGoQfIer9l(0ev4`UR z2x}1f;;k^Jmri};KX5rE27=B;PJ({A)Kap#DWu&Ov{pu0KK8*1#wvVd#%!@nQ%Ta< z&o4_v?zOU7_E`U%PP2s3tq1Tj53Oc3b{G%2+G`FGIWE30Z^$;!jhB!5AP4>uSpegi zecBjvX<}Gw5VHMn&;fkFMUZ2{*K-#EbnrAv=x)2RGmpJrx|;WXjd_k^eyQMDa{Zqs zEysa;IiU-s?K52uE+=2uC5s$J#7He`4Aba&lBVX`Zp-V_|hx zptSz=VA^9IH%c=G@A8Af$Aon5rx_0DVV~Jb`WEemd&TX<#f$7dx_w5%Tt4Sd4nfLG zLw9-~mM*^rrD4s((}9*{T=rSPhi!LV zIf6=^XG5&s2}KqJ(dM?)TcgkZqxpXf^_{|OwM=HXrBRXin?P2y2uNK%#R%{u(csW! z2*L_Xi*3gl)$&XPDh5SMf~2rYV%VsP07Th%RSD)Z@=1G_Bd_^7NWy^>ORLc_pG%KpI!cVt#&8)XL(#b6vNur+o{)UCWLSpruP|SxfPOTo52E^OR4VN( z4m@S?Z?QSDX)#q|?*miNiXMg*D~!=`baEv8Sf zb+Ly-KAO*ekK{gNGS25B%55WU`zw@kkyXK;^jMbvS zk_qz~oh7Gi={vNX)tw2g#HXVc+&$lxg(%Zxh=%g8<^nlT@^dEbZ!p4hvDD@j?)Ijt z{JmMm)vTbr2$yA^p~oMsH=v@H-NwO-0qFOiA(3z5c?urh+UDliitnn+o&D}^Y+&%M z?2{qX2*B8rQ@z~d$%CKg&Z&r)4ljK9H(#_J1igRt2WTHEh3?K%kO~RIC&EieAOa}n z<#cXvYp3H6V_Z-=LAwS!SN|ZCRR|hq?9yUWc|7^pCSRs97D2dRC&*h3E1x|2t80k) zJ0P-@k=EMCAHZKvb}cLjF9|)YA0ipX!Unpm(6>9=st1YbZLnKTL4ljU`Ne2FSunRi zUhASo%X9(8<#%T8{Q?Wuxrc?*-W9VX*NOeq$LN8(A&KqIRWVD!I|VDRdtdq)2#Q<-J2hXXt0q#{S=vhpG+dIe;!o`ROfF7_k)(02d5Q9WPT;GI%8|~N7sGouHA%SFn z3Hwa{$my6*uS&`j}ck^MKDN?(gBz^b5>bisWt>uN; zAJvE9cVk8oevK>)>41HV5Oz={TVHmY=IxgOMufpea^-BpPvTD|{W{|oKG&@sO+nzf z`0!3)BxG4dsEzjD8HP~9EULCo$R0m18K8@$NDN}J51BH=oZdWGVVP>Y$KSs8DtqT3 zKjDZ~b)o5dXpGmQI_|+7D8KpvOJ_cJ&ycB;d4tTknqev4&`*qpvA8f(4ILa2X&NkE zw@mD-@~c_bY(s!4?AuwFbHG8(40Z`J(m;ElkPsPc3zptde0G_`4i4z`Aa% zHgfyA01-hK$SO?JP|WTS#kjt0d~*uqB3A$3=yVx@!HEW7a^#r@-Bs`aF`nh29W_uo8%c!L}SK|WfuDSH!suN^Zp#zA8SL6lX?sUB#nG@BNwLK_ti@EG75qg!z zgOja=Kk!Z=+%L2^|55zct-Lp~b!oh_W3Q5GRg1+5_G2|F;s7MFr~wvb46LqaxZxtlc#VMO6dwQ&&m@Rzk>RZ3ElB82i0I67me4hdKqg#`dec8&h)mYaJ~Fj$Hj7FZf>Pk z;MiLN+ALf|)zX+82FuDsL~p_rLDg4T;F=#ozAXNSTN%==Exv%M5;x~7dl}Ra17P%Z z6*{gaurYjc)B}iVd*U}f(O;y8`~JD!i1&{*QL?D_UW$1X)wVU6WXxCxj(o(OBZ0Q2 zvdldv8+Ddg)u+c~&@>ssTm$C!yD;51uWsrct^NKHRiZ9?;s})RG=BlYw6Ox3>O#rT zfa9(yo2yD!@HOKQz!M_;&QCTu8(kHV*v*dh34N4n0;91P!$xBWBl^zx1z-lVGrs!41K-Zw`T)rt_``d3U4p%^zRRk?)ibPS0s&1iHw!cpx3W{ZPMhYWYiKk zzK)i(;+FrkV5eif@A$GOUhZIU6sW!x8W`YhrN}KwZg~#q!eMpa{<-3J0hL1W}LP8V)H*)c#(9Eh+>`jghP%bUoe&%{DlN0 zNgu%0!iXN+7C9&`QA^dx2+xPdc3qpwvA#e;-C?3&dQF&_O0yHX#)j{Bo*@rm|FuiC z;q8E)3YN4LX5SI3g;p|9wkcI=nxCySi>YI^LnUxMyWZal^DtbuN=@e{#foa&kw8TH zkVn*3yt&%fVe$BSMSCFCniTUn z8d^0!2&_yeRK9cHPBixo>0y29w+D6<+#{lO<0*gd6|M)orz4kN-6_tyZ;5ie@zDF2 zK7lT41IX_g-9`jsV@F>zHQLUvug;Ql90X1q2^6pa>e@t=F$mB&mC#!Wn+fw*zwC05 z2BbVEd>>Ajvx|qMHW8Kuw=G+2=lck|adNa3hNDY{gmxk*TZ#;h|!o;=$oe}rzq z*_Y_U{MOC-@Ww$+=(At#U@6*CaBa*WcEE>`$;U*%Wzm~!=8($muSwP{3kLl2DQ%d8 z{L^7Jz_IoZCZPXL?6n|tk6|`Uw#jWo?(grXL>0$a0C|+?8XiK-1nwB5mWMfT>S(dl zvNyvtz*OfCn%8j9v%E)jSwK6E6v2+uvu4zE5|G@6>ej*i+E;REH_#V}qj6iZ0N(2M znoj?L1)r4dB=anCP-Sd*+)8aCM;w96SCQ35RPtQqyM4YdwHhFi>~>(w8ALV`djg6N74-Gw z%U>1Vgv`_*_i@^s(y^n}wmF9V{`%voy-BM;_S~_$ z=N4`RuYqfgPpv5!(Sr|giqB3-|t?woynVXU? z8VW$8Ee&nfMt3$_So_WQxh9z;SUN1s>@aeg*W<`Y=S9Lfp6XnBvPX8VL^?P};SQ#G zBqxPlf_FJxUP65gRj+<-2weQ+r7dN%~RQf4Q5}FglK8 z9HLr5eLh{$qJG)cUp6s*)PGEuNKb~?0Ok(Q;0qC6^sx#kcDlkb-v6SXvi}4jVmII@ z@H6-YO^X5_t_Ym}F(fq>fCuIZ8pg4W#y^kV@C?@aooPz+A(T9s`sYr7Bq4>J4KW{0 zDP?%;S=T0ftTM`cc~Pw~T9>T1k}!ywB`fU;}8Cclf=0N zloxb(#;ot`@=_|A#q^Hu#RoALc{!T$4Wasz+t+ftPlY17E}eCjP4Y%PW;-Z;N4eF9 zTcyY1z@mk2klRnJCX4;0AyL?OJ*+RTpW!GS++W!IsqY&e4LQN#7+IdKACue2eCGhW zjS3zJInSz+)`^ILHlAJk_N=noj-p(K?{Y#NUXOIoEIweClq*IFV6J|~<(R?Nx3LPK zA&R#WH=kY$IQ-}uJ#oVUC~KdyBJv4&AUK4xWsW9y!R?E|P3%^YPxJ=J^*$m*hCXn| zdc4b(ODrK|19_qS@b2$lIIS)GARgCUr}j~ za|sDc_utHN(65gXuT;Afs&cqq#I(_ak&HRZSF(0(|!=Jhk%GJ=?T3ixigZKax2W|_thm^SDl2ao8q`uw%7um>f z|A^ZRzRwo-HmTBR8B4#4x)?v?r2mg@((?hCp&OZt1c29Y$2hL#KI% z*8WS_olg1^0Y5@NNTQ)OB{dox=fXX8J$y=X=zZJA7sLVfL?z;Y_yYThTKxP+lpPTE zS2JBn8^ywGLP6D!;`O3YM9VDsNqnRzlF2RArSv@0p{gaAT;}(G!NcB-{NcfGZ5eSI ziHp`T-9~}3MO1$b4{gDGw%R04Es+bD;F-a5TibHGecO4&u+sK$@%``ylBxafB zi}h3;F8k+_nPhx#H73`~b2)c+WbzM8jb)c!0>2{hx#WiHVx^{mga3x;p}s?&cs-+6 z;A?1??}9LxK7_knwdHUEgE-HPAoUzm`zp~B22ozJ&6>Euko%q-C~X~vlh^Fy|H9sz zowbr1oAM9zYZC9>eu*L?63u^2j(>#vsqB$Z^tH^9mApVF|M=pwk$yR|{aQ?YK?nCl zdd6B0gNIf?(%xpTz@CgBOr{j;WZx`*LlVCy$YeUV+Po*AatCQ{RMrFuvMun66(6i= zKi;`TVWl-GI1CxrK|1YJtKNmJ*qUz#$mv}nXg)OTpRkuVF<3?NUbs>*yoT^bzq ze4|Ay^dA(H4u1xXx@FvVBUemDkBH0AO*2oUa4WhES0z{LM~*scdir*}SuFN6#Fg*L zK}0q-7J*}d6u}%s$O3EEYLXBK*C!mGONZ~6)x@D~mon2QxzW}wMq@onyQtVL$Q;c< zZ#H7dVA4cREQx`#ctRLOscQSPwOnQyN4A)1s9fQfyFE=Qd1}egE}T6SdkL4pz8Z=1 zqUupo`8^GTm(0u97Bw`_s@)pGwLBIOGZ0GWiNi`L49N9pIjHX%0Qv-DHAA(5!Hr3u zp_D>4Z-K9UNlxCPjdK#++=fK=ZZn_oqAuYK3 zES^e{{D>sOMjqEf#q8(HT3m~9+-2$|d|wGEtk$+^@X722eNf_>|0wPP=^y;wFMGvj z15|fEAY{9WA?hZqWkpu1fr5t+oL%CQJ*&mJ=h8=3A-S?H%R{tWRhvPyQn+Lva0S=5 zMp}+k-c0*FCi_7wVo5o&VtgTZ&zKuYnWYR%f^X9TpDP{yI#cRt8(NpQjp{&p*)((Im&>V<#8p&gM4h zXiLx-dga`@>SZ6D_CNLFvRN9TEaM7sz!mpunlV6%YaMrRzP^;vO(*2yH7_xDg3p#W zZN5(%kCTRwkyP%XWNOH;uiy>5^1v8fwJp)6SB;FH?F?v%YF=v9DxnQ6ubQvm$g3YT zvnKN5Vi@f|GTYddn**Bz1gUE5Yb7Mz;UL2AA>}fZ9!+vtN7_TcnFDsnJr@Jgru!!V zOX%C6?%^>1Asc|!A1^vkqnDeo7|iz8rS46W+(?$8Tdu|dq$86GPWADPl;xZj4~FV% z3E!N+8KoXZ>n2ipA*WQXi9U5gu*?I4WilqAHe-8QL2W0!EY`(;3ECBfL=w~trYp=V z{#mlNoRN;e0mm`Yf>1&LG20Uo&k zUyro2>UjV6I&D>I(qu)GwYOc@Eq@FMigz zjWv+IT-k9m;po~u@a5Hu6XriQayx)jcX+p;4b1`Glu@m;Qa8=;xIlk!`$K@Y_KeS< zc8e?d(l;5750M!PdEG;1%F}Aw+_!-rwq$QBm%J>ejS2v_oTF=|0Nt2oz|r6Dt_~rT|3oqwsCwl!>@(scK)oj^G#7$uI=!l%YAsDu6X zI8nalgJRH8;F4LOC;VsN6C}HEWSr;eeq%1^>Q$|`S_FC0jMu>O;w1$xa<5PQA&(Y$2xcu2>f6EuY+!qG@KMum#-8lUgm8WY`7_rP5 z#u6R;Zbmd;a0K>5pQo^b3E=3x$3vZ>>IFDqaNHFNoQ``NCR1Ob-fU8Of_ z=i=!7J?FG=+k2?~?pFC7N=XhYVFxRj z%+(hwFf*tRomJ1zA@K9wfp3Q2g*=S2?m|v=`;iI@C8!e}{-^dpS^eEBMqw({x@E4d znR*byB9c3|MB2{A*rle25L}b>F-@73+?XGvf#B}S*5}8soO}4f012z1$+&U1zSIXA zRN{T6l^J>xT*y-fr%-6qrZ%WXCB~Fxm`b?sLYy|KMXcEfTfi$MZdkjVBkwoq*OiT9 zP^>Pi&VyghoyL7g1w`M{cuiNOo0BPSoZnh7TO$Hwwf5ggm#UNYThwRbj9$Wz4T}ft z{F2MVDvfX4Teu}o=>t2>YJT`>`_1n8?}QVn(R;eT^#?~CbGwi%irpA zl^zoOQL42HjL-hHoUE>aO%b}m=6Qa~T(_vRYN6=Jb4O-rm}|cHWdW;#5(FQF+Tc<( z?et+hqiwm>E+i8vJ?!@!wTeRg7!=2Dyzp?z+C3r;9hSQF=G9g3(UmIKC(`R7vj{F$KRYe%(|kF%)MFG!Ls1vG z!o?67K1hWH>J52|Hzm~NN}2Q^r$o+49Cm79^||!#o#4b1g^1}otGF+;?^M6z4+@5> zibsyB+5Z}n_{<54MSGLaXf^bK1eMucu~dH%ItVsa&TEnuWJpUmOx8De>TMP=e+v=U zWiuW;&7{L~i{=vOW3G1bRAhb4jZ#I8!c+${Wh0pESXL-wn%aL53X+|fU{7i5soh;2 zRftEBjt_Ede+I1ji7WhTfeF|m@+~30S_2 zh-{dj!|VLSJgt3aWdczvYDm|%h|8!)b{55Cv{r}d1T6M&R?3-`7_G}a*skDT;rZIpAOz>m)7()n=Y#KdC zf&6rMCO&wExd4@W=u7H7rowjmp*h1y+4T|h8&|MsA5wvArIt8z$2mOxw|-aEHqSs+ z$=}?`^ZADkJKfovzrYl^avR8Y)yAlH@E7reqXr=c^~oRX5wuI?q_C8DLf&g~a^&np z%C$=k;Ore2U5;2#Zpk7`(^)MnS-`9Ahi-(^*;>~4gx`co*V)r- z%Zxh&AGsTXFYGm2)j76e=~1@VauXAmTSTJ?ZeQ^iZ?CFxi?nSc7z(eYnVi;xDa1&H zS1lt)Xj`d9C*JbUPrjj#s|B=?YK6QX3cfV7$}ZlLuHndhPKt3R&p&t~Av1SLi4_bm#-w|u|C-BX@FF_5CM)?WQq zqdPDm4Bwzr2kKMm~lupZt+Jp|1}(9qRgeFF-srvR;w7F&O4O8>Qw zkGVU8ZpZw+`;vG2rI|l@pVdBxGWQsK5w*|Oib};xRgp<#7`5RGHf}>b5EziNIn`{^ z(kf6%i8|5&XWpmEz9?^Dm-p@4%MR+)cl0@x73YH1VFnaiDiZW3v86YFagQfV45%R(wIojm`oi1$C6)PxNdtReNoO6i z^|9h=P3!H;zwGFJjDxL-2y?kODZem_B2LS{2u$N^<3oLi5y_Uc`UA=GiEt=+Jh`Q% z!O!|}MG~T@zJ%+!w%8mP0=G^D>0WCS-bl;B8oHSLnQ_)J8<+fWk6%#&u^tvraN~bB zw`3`R4LfXH+ti0iefmPUjc=oyN@3~N@-3(|yngLv|Fse27+1vjOwxQ!GAxSGg5AfF zeyqItyum5AYCF&xNLz7}NcPBU_%em0SkdgeiBDURM&8S4J*B+&7L~-dPuMFD@iwh05!n{s3)GH#mjTS>VGvfFkH3?DkfMoL z%>bcYGJf?QOeb5!zpxCvIl1wr`id_y-ltiu4Y9U(S>M1!g5_BBJ!T2T0EhDE+c9sn zDm9`MvwGtcLSxu&4*drVa>u1AlZ41V!eD2+Wc-T6hz!&XiTf)4WVBQ7%mVu%!-ZAQ zmj?ay?_~^IWUd!eY8|EDX8e9Jk3c!l26nTzqt;xV=x7u#cL%rvu_4--up+2)uE?CzS1(-Mr554TPoj-SF9UfOP_76^$$gUBO zt=JNI0E2-QIOodAQ7vGOt$o|LGS&n<>5Y0vJ?6r6K_d2Y#KcQ-?AZn@8zt2DusT+ret)o?tVsl5Y$F?s(2H1L>gv=J9IqYE7+2OxfxRGKkwF|= z|3Rr|_-O|dWp>afD~IQaKP7i!z&^ln4N>e!7GHc6PJt6EpGXlm9CVo1^D=^u^~nJD zn@XXFiF4mNRs}XzpPj2d&TMA!GIH<1KApYz_8iti{wjaoQ$C=Ak?%CM{Fd`rnd_l{ zMHLhG;%~cMhWgX~HJ-=5JoZ1+@=>Ka5yd0$s!S)pgW-uHF?-fY=2ktTr$k&}Tz#GQ ziwCk99)^qier^rGsE6Y&J*rl(S1I!(cI%&R)runryB5y|+9wsic?EsEA?smoMYBTJ z3_x>n{D7aElMhtA=53Q<)Wv8Tp7TbmE;X%yAZz|H*B8+>LM` zR>UmXVZ7IF$WUMY?yxiW+c6hyUxa})9%ZCrI|CK5#HyY@a|(0e0LCGZ)^OP zRF67r+nwOoGcLCYq**O4m=-=VxRf3bmhHUHZnC+?XR}Ej4r61gb**ODfHR(4&snhb zyXRM<{+>%LK!ho7zlrhE1evbP2$H0)`b~Mnss~%CVUKr87fp2~&q9IzbtTI4ADyhQ zXh?Z9GyNjf#ytvqY8!d{wq`A<_oX;b1^%82?1d8S)CPt|lH`VW=?j9*u?id{7ggI3 zTIBY*hJ}S1v&oX!$Y>J1m9cmp(>Z%$%8jO*&1{#A9r|1ciKls{|IY&8%oTET*AwL< zUX(Mq-gx&U9>;4mrXt8PI`$JRN5ROeE7C^uX#5_5(Zo`PbvX1;zK zXolgMMWSw#=xXh^Y6o#AZ{OmbGXa?w?B&kqPMkI-40OINh4k-)sQ&~q3QwgLx^jcA zW4yfQ;TX3C(BOC>M2j-A{t0+l$^DWZavb4K8HZax<(%vc|1{6##iKh zHBxUFV@+oAvuIp2$C==lNFx~_fv{gSU)w~ZMmx;0E{9Tp7xP32D+?3@#Sf8kv|b() zla}740Yk-~$?>eD3ou6)v97GG{?@u9G+BO@M*6epSdEcMNtqj8)KS)~>|3{EQR)h- zTj^JFS7dO6=P@X73N!p9p`5mt>I^P@1J>oC>gM!9Z^&4*X(P z=il2mOunyut@WKFd^geI3th(W9j`#qe($75#_2{K=0-J|7$VBC7*+Cp_tW{ilg|C| z+KztsX1lxG>JVn07}=(MSB9!s!W-R!H~$!?pXMUg*mwDYdC!*6bv=(Z`h~|ou2=vW z3etKuw@9EN-xaq1gyPp)3h`;DnUk{!oI_g)hkWx}y!PAy5;=4ts1MJLUH(P!sOX#O zi<=mO)9%1n$Fp6m&?u%#pK>6~(>YMZ8BE`JxXjRPKHMYYV6cCFck>?#_aL@|(^ zF-BnHPs2fIklAAO`n0ygGr9g;Jz01Kj8}m{iU|D>si`FQS0(X(LPrx%dsEk%(b$YQ ztiADAj82Q{HNWr9fB(*C#6mgn=WqmC&=4`1V$_?Cbw~soS-l{(L1*IF5JAfk!`jno z>QBuZzWm*ZS-Qzt`f~S0)?TxnUl=PpPV=4137%*Dc8z6uXUOzlKCTbGrE0f+OV%wv z(hgM7gx(SLUYq1L=~FDI^#=k@zV;VP-#Af9&UktoI8<23Yc>T1>l7ds!|Ez!0WQp3 zL5L5rD(b`3frhIxCz~tFn~Gf~@dV@w7lN|nYadn{13mOKvx|Myr;;Rwkg>1zW5yMF z5I|!Oyw}+=gEbIPteSU5X?iV|*i&;v`FW-PTl4 zGVAjW+O|rAaYfr&%|?oY9zL83MANg3tfX;BWm2s}4^kiENYtS6{iM`jg~q2!4Cz^7 zD_t#!ea?XF9~vs;1R+(?$j6XlB12n3i@djZLvet`4im~3MgfWx2~Is9EU<9?- zPqr8_e2R^j%^>snarLOep{yPE*8@CUqJIIpXZE~#t#){hengX;ErVYWBv6u1+O%s% z2Joq7|JO{x#nFE1j~B#@mm>>V3uM(xz6=^uMU}Bvma$eflrcT8SCJ{Vp>B%ORmGzp zM-p}I`Z0lRQb>3gS``6g?1iz@>bIyUxPOa#`^K+vHFr1U1L8&JohNVR*|7_Io)Qm` zvp7BFP&YOp3o2mj^Ck1Jgr0QPhlV-vTvE{xbQnBMCdy>%Umd#TjAt*@S$Ow^W1v^~ z#~yND8f?{NG{0YxBmCY@xqR6;?iD>7=f;WGQl0RD5=0A6h`Z<4K2B#svACrV*|hRP zx5wWG8$sQte`?CCdVkwLbZ-{yArAfwY}v6JK6MiZb<}UW2}BCz3ZJ_v?A{f{R?@Uc zXKf%)u>GL2UCclBo^Spr{VX{NU@!3EXrZrjLaYw~qODnLVJ>{m1`XJBYvjB*W9d<3 zKqO&=q@!R=$=|-*ZaG*bm~49XHeUS4xe$9iB3t$F5iIJ}b24dXfS5(n1gk*sS!QCY zjltiw!|Zj`DVwHtN5pSYjSuJWfpRT|O+}G+Ja`XAikge5RAYtMaY8vjv1DxTED`N@ z3|olCAAH8~)914!fl&>=zZlg3W;s0?$kLo%VInAmg97Gsl<@>!{hbleXaJ!`Y>?cK zr)YZ&o}#k4p2-1#$1+y&iJ4BSzIe`XOxE?M;}~y_iV?vIo&&n*o%Eon7526~Tlj2( zSItpWs)_Vn^4`)pM^G=6D|i;-O}AY&6FRJHjk2s@$yMlxu}a-}bUyh22YebRv~kS@>v`6N~DCiQ~36_3A~u7xO*LiLu6MmY($ z{6l;C?@vljVNh`z?y4sUe#{xUVGlH;O-W<|Ccn&`aiUK5W+zaT@8Y9; zqPqx>YaF62)27a7c@{&=|E7hR?jp|m=MmnQhA@>|yMUjszn}Cl>^IQx_*4EW5AB^5`L0VIMfq973opDt0)M>JP3s9_fkUPWr6>atd2Xm2*54CEGCkUC7Z&eHoJo35;M9=FjnkdF0C;)c)Kxq5GqdZ5=Vn zlKto(2fEeHW=Ly092|tT!bNhMZJJcdM=SGiD(C*wQG$lz=Bz!)C~E|9SvPHI=E3nq zfIfSjjx^upF;&rB{8Bd8Zuihy(LNe;^s5u9z#<+xZa-oGicXe=vzHZ#B6LZaqzqGO zk);DFihM?deqGOQSnFT`G<<9rqG34e@!Kph)sR&j^2OmuqEoWd{LI}$c6FYO(CbF4 zYY=JO5-cp&)>G9zf@K}*K@_a%CrOVvEzqh6f2w}M~M~4e7 zdroW{D$C1DX{k@8zHlA()&D-VZx*nm+z+s$nCA7MO8sl8H-shH&zmsl@B|sn94nk0 zSP3!5usjPm3m7>JzXcwBqUT{k`v1p^?D2- zx^{HU!A2wkgqWT|1!2fQEI{b+z2%*dOs0@|vd;{AJZxd_Q9S5REN}=NcfINRSZ95X zk7|LNkNdVk*5U8*cwgbtwscoR{6?bB=^J)kcKIulrH>WLL(pQ9PyMbt4;S=`YKD$_ z4A!9Dnnr8D9{pw=$sr%t>MrhcTRd{zc zJ84w{?YNV?yuJC_#djL~*w1!!>~d@|!b#`{BIt1OCVUftn=?McXh?5MPnGQ*5L*1&QENrIT#FiZ1ZCBCkg9~@}) z$X=F}lfQUzdj3aTFopvYvCtH|vGd ztPKyv-iqrU?<3}n&vS(S_}(x_9TeWEBuRBc3^0?yio0Um#~0~D=lg3-APyP9Th zac%WG;lVXSH-S>v+b<|yO#6Xl#|Qfe)&@@6VxaQsIWR);_2aQOJ3h^ArQsh1HfHNz z|C?B>ft}amqxIIr$*}c4?~@loYE7!t<#}S>?gVxX->@2>BD7bar&-Sl z-a4FmgKb_CX*it~)yrgvnmyu~t_<)O;ig{HnqiYxwtPigbgSKaMv^{fQTKW0R&RxA zpmUWgp0MlvScqZF zNz>0F@r$2Zaxq@k3$nS6;rw5;dUEkJ7h&_eYp_%G)&}r_vqv+Z7mw*z&g{pvW zCcClGg3NWi?+LR~b(B3EMxmK0V&y9N>JR z=z1pTl@rPD`AOtSX!co6T%)3KC+)BQA?q!G;tG~FP%N+n2rTX_5+pbT3yW)Tm*5_P z`z{*XEjR>7&=A~haSg74puqwx?hbFcuj>8x)~lilw)W67XQrpSXXfj#LxZ=~l_KhS zgjW~`n*^m-bOUeKs@JK)g*hwU;aIWfC@w^NVCgnt#*yy4n9>jp3vZx{&k5B7y_`B* z6)Y%Ww4tgGF=M_`QhI-`TfSOO=QDN7$`i1aVk%lju;-(50Pl$=p1X zi|;WDjP%?KpnRNWqBNEL@^aOW9SeeOAWH<4q?9APoyB)>WIEdTJkPtxW)_;cb>j{! z{v2Ozo!v)g|1K%6;Hb_|RulutZ%VEjk(Z$qps%>D{LQ*yL=Zll1!_XKq0BL355Hg; zHpXlJNIBgjOxrE51zCcKLZCpxO|<5`eW(xB9BuDKZ6AyZRG9?8m~Q(~zgwvHTxBj1DOGU1$Pu!+@Nz@=Y8oYALjXecdf=2W`q=eZBLc0zAz@1R)RXt$bT(Xk9+Ksiv+(*a%yW=gh`^8#5 z&Wn{XtWY%pv$sM;IZ!dPKVF!UTK@w4llarH^2)}1q@lVzzLBJ;v6S~uM(28WJJDs5<;Zi=WQ2Y+a z0tPhq&oU=hm)g{S3xI~L0`{1zNh3(6lS9t8QgqX%3XY*7WqI*!7qW%3;DOfQYl=EQ zy~Zgy$X2`t-u5todX%6ELk5N#+c$|MnaKT`Yj$`h$r_M;nE7+-eYSHqW_{2Xx!}-k zJ{iM?d(HNtLPtEe9Q%SCt4jaAC2zZx%KM?pnd)LL$Cnmia-IApgOyx(?%ee ziKU7jN+snuc1?Hwb%Y!^FOIeFt0xYOs!%X~Q@v#nS+dZKwu+FLZYbY|97xOdg4W*K z6-on*l*L3jfQD>;DaQZBkC$HL?2phkkehtL@|)zo+T_>hj;N*y-ypAoEGB5d1eaG* z@(#AI1C%*!mjn(1Jj}6#f_aWIkbC|zyIP3*XHNW4yc0}Zq0XCl@UTcwSUq=`hHr3H|9?1pN+4S?r{M%}M3SNrAgLi<3-}_nT z97e5Rh@ z@FhUvj@H^v7f&>lCKrREZPGxB@~_tS@93m&5{%PnH)E2m+t-`nXNU~@GLe(xs_mK- z_@&C>DIH+<#P`&707Yy(q*4vH0C}xJO+6bgeUJjRxNP9oa{Otq^?I}d1vl4$0L=uD z5dYX8(ZH&>Xj-da50UFTr8T%M76tMemX6FZjPvhF(qt)P83Lu(4EGqnYi8ZVxfDae z0Zb^R4b`dFH;zuP4%U->VP4lt4qK#6QpQ zZ*Ty`O2_+7G+^sG(5E1_s5A)_Ajp{WN!jMi|Ku8TT~4hHUoYRSjVq+F{i59CUCy?H zGrAHqst>{X5y6$ay786NCNG{20T^1 zh4=}uYaGV1vfmM&*$c&YX3@!v0EcCwkS*}Xlht0_Sd4TUQSpluh6GDYg z?bUWzgr^j-D)6yEqt#QqPXSAdbn#Gt%mL|36P`f$(jU1+d1Ek zHr2m(o%uX+uw+vrS6GYTXkforQ#05Th(zl_OZ+K)Wg~GzMrNT~ilqR#gir9;n6|Q= z{&NI}YCd|X{NhDmQ}|UcA95B+re1oW_8AOrY z0?}TIn59#GI=54+s^wNMr-KX`=@d_5*;;U( zHt(RN27CCi!tk`j*smY+2-fCDhFzpS%Uu)Qw89VAIOgV}ZHDU@5=yf9r}2%FuK6J- z$!j2O$&P@Jsu2aA={2NiJ6K^4??Q7X`mp_EncAesIX>*Tnd=?2Fm}y%?i7YA(#vP| z)5YQ1(sgzRhCu^JjQTxPbCYPTSAVy$MGpqlt=Zm1H#iv*<~5FxDaMIY+7P~1#XX83 zwg5SJgMn{zG*`e1ktj7Sz>>8L8OU2g%~XI|uZ4n~{a1*FLVB?lxisp=L9KFh+(&1Y z!t>PjU1g_tbgJY!2Btzh(SzPV6su2F>uWOoRC3)S(d#it9s|RWY95*`uaMcgV(qVo z5_t#!a|1Sg^;q=sK`pZ`$(sK53oKPq`tCzYa8C@r84-9JE_V}}phsxQo!?RwyI3Ky zB(MZ2)bOMehsrMIczwMZW7?`zmJ)wrr9zG7$ZcoWiiz6>a7jtajlJn7h>n5&e2>4Z z4;;Odqvc|sq)M?i8GDUbH3Z2iZPvptUY|sDfxe?#Y=&yb4bsK+daX!C7n>u$m>O0z z$D8{BG0;DkuU&=tChIqc>hSs$)jPsY`l+V%VI8nAWr;zDf#9YyEuT1^&@>Wcj*V01 z8IGZ3fiJGQvO)VM2wJFmo5k8&1~xIxK=~qxDqr3Y2?4V5A)!i{Ub0fnHM4$PG1rFu zVYic_N<<|VE5{-}mor#^`p~H?O;O$D;}r_vILaBA~*m-(zYdZ>+J>lXoP!~WoV z4e$?p5g`D41qX{BtoD;3`u zH7C;!R-A!*5Qk2LR*ox;QLE@Q#@EL`diFa5Q9Vc_j`3P`NtF_GT^f>l4`hY@_I+b6 z9-MJgs>BN92K1MGz6Grd_L07#cbclZNT^G&WH5>t$-~C<=+~2&Su@3WWn4Jul>KPenJGr>z!c2tWCZMhQN}u)I&|kWo@+B5HD*gF|EvpvQrs!He)HgM6?h_ zK*8=l2q4d_vEw~}M^exSa#UEPLksyMl4B8$k+c53=r7xOjr=Ry3*YrV;>#MMRU!s{ zyu65mw|`|YMsQ9v)OiUg$9t@8Kj^s)Z}s0Bjuc3B9DU-FJ;gde}N!-!yU64of^ zU?if}+6v+e>KU$Z+^?cdM%yKfXYUv?_j+;S54XZkqzTUM!eNY|kH)bW*KqOjoDnzO zqNtYb1{)YP9&8NP+P>5BUXQ@ZvnH;~S6_L0f4b-yd!LT^nMmV@A0(Lit3q(m!HNvk zG{=EWS#~&pVrr${s^1*2Z$@xH-E8%jOO33^I2kd7v}CnxaN9{NM*4uP<6M`rQI(%G z{NG26hB}eI$M5md-d6Je;lCrEOMWtPVjP<{4^!LGk73&Kxbfphi}5OaOlPl$wc;Sd z!g*~nZY4)V+f7;L&Aw2tm<{?~G`;j$n9k8j!d*R35vM)*OUsx{nDETpv#=M{siuK$ zL~XM8fehxsB~1cdY4hMVcEkhjNqK3$5MP+CB~}gh{50POW`H_TXt|= zA@-B?Ku0LFx}c02`5|d1e&KIR)FZyrc#P{uH)4?L8*JWw5vq{nNd#7pG;FD0chloP z_blT0E1rh0Xo#kqw@d?cq(fc#%cB^oO_}+FYb0jAMa4u^%IKKSp-C5y+Sv^SthW1I zxH-1p{Ck&^L^1`6orpc-@)oUhdB0iki`VpBV{Fw4;eu!kGcL+5w5Mox4@>TzTYDQ? zUHn50Nm%Ciz7nf%S|NztWZF%YMYVy?LMq_z!FtWxBjIM})A{EovEF}`(nd55zlp7{Yl^a+?X z2#$6(t_9#qofUSKTb=aT`@o5<(NFupd9O^d$-Fj_E)6MOx&J3H=dhxb@c5B<{rM9A zNz|#qN^HkJ8f4puyB=>x)*K zUt=c;prUpPf$dcQ!S}=|k#_t$1`LckI{PP8`dGbsKDrnSErAFQq47!)gO!)el%bOw z{+nwrI3W_O)-Gxf-G;tGQqp$>MP?m#{W$v%jp-kgI~V0d=IITD6*6d07KWVe`<-SU z)Tnl8h@sq;bF=xsc8D0I!s*Mc1jht71zGCmYH}xZofUTDkfer))3Fi6kw3_Lyk_ji zTg6@<=?S3mgn3EF{xO$j!mLECF%vJEz%$*P`b@KH*LwjCkxg=`)NUV-JrbvnXpP3}O+Eja|$!RDyNx3uJj<$>`DV{kEhI&UgY zicgu17ybfKk!zwm_o)&7^9}l|kgO}X84R$tZF)J zHVxS@D@<(MAX0V0;E>7-kYH(Jb6)YAKbmt*F2**5zr z$Cz$-0V&kKpT*D;xSJ==g40350v@aMzbM_iv`pZ0Zp6eN8=S(JQ5LG|;lj>tBFTx^ z=8~w&GWNabOvhreh~Ak0@g!efbC2L6b6HN?e=t1!#sfD-d$_0!@T1bC@iP%4Dw^I8 z$e;SE{hRdSqLi$w%hH54{(r;S)=xe$u0NRvAC!cd#YW`6}oFwxmvaNAF z_~w^t#VQCL7b^ELIW63t9EiabMxvk0Xpi#}9>k<}&m{Q^l^m^b&yBeg%Gza3&1_2T z2ssYQ>L#*bcP}iPJ{3JEVg18;baYGQpAXKpriUy+f7A=PED+0+e~a{|u#`>fjNZxjb;n2=|gZ;f*#)} z@Y^!4>8Pn*GST)9z+QDw~BoCe}~FxPai9rbO@%Ikiu zSB20hZ%rF+UWtIVeJf5oBe3ZBw)KZ)pnSJ53h(rf%Syhj(GMHh8(WbQH1A!NY^JIq z(8OdHI%{AgUz5i9l=wGjkzNFwrX{(VGfp%S<|RJrVmMjCuqj6TgSj4X8T5;n1ZG_e-C!bfQdi?_&1^ zAwN9|i*agigZr`EWhQl~wdiK9*8<$(Vtitatf~ox_ON!4Hz@jBnBM(s1_@@=DGt%N z@Bcn*ttn5M$R7M+6E$kN&ET&r$FjgfRe`)nMDkNyO`xv4&yzO#R9e`pqylB@h?f&z zbsY1gr5_CRH+`9FyuPN}Xx?y8P+cB$4wrI27c{CVCso#P6#S%U-kqr0@=NbyTiBzB zYPX_5vZd}LDa-Gdq^+&JE~*+0FhmwT0tL|(pW@(>s1js(+C;0j?$ei)IYngACmgun zA9c#}Cp|~9KSA44PHsm1{x@bKZMIw)EpCJzSTj=;vD;{V=AK)I0$;RB&dcf8<4YbE zVsgjk)tw07WHK7BGcwKclplg3 zghk*4^kxq&m}+fGYN4!X}bnAdOn1=_1G35SGLgS%FP*wBNH zLq((Uf_Z!;jO+QD2L9TINiYXqhBop1?cU=qvtMX{s9b$Ka`v6cr`9$Z3+7ZBT<@@Ir}>d(*jd7^a$KhdW+l4;L{WK8kM`*4T?ET0 z9x4cz_%x!99J{Yjf6~zd%F8io{@M%(K*B9exl9&`XYc;&y{Q^L=>n@BecS%lLyMtX zj*?cDOe01s3%%irm9utZj6MbY4IM~vM9(50;*2r9-Hl>T754Tt!aK1)uK=5%3I4Mb zJ{B)ddYpjy5}DEb4zgbty&PPH5p0&ljG@YhLS#%kAK6@&%dziB5fX9ys$T_l)E#0e zGIyh&4BX4M(J>DC+pRPIE5jz|kMI84DlBEtB}1$r&CA3m-6r7kSxWH1;%2nO)~IW~ zB-Se%*Fh3X63;^O?X_9{VT*-JW~YaQO@p4#Yu zg+;3rT9TfjgaI$QPG_^2sKS32Q>zzguEnwZ7+qspr@C}pR49~6(O+@CupZpF#QPYw z^~)MCxpUCBZQ@)+-q*UKrOHAQjdBsRDW(3yL{3(C-&67@Xi;GigkDOucX3rwSF?k^ zzDtF}iH-oJM#SB2fqxeamxA6p-AWQC04*i2gYMRP@?kdPIhmC3I#`_!=Utq86+>`F_>Nf2LqFldOu8vSy} zE_0mX!oY7>D#2*3J3P&maLp=x(2FGo7ftVBTydtkPqOMugAE|x3|m>zdzQfBz0ZWs z=A2w+Eh%pPP?=N7nZ~_NyG)b~#B3x_=HUm0gURBubRa#Q=>XQdPJ7a}v@Zbrmni)* z!f!ur^y{rTEIj0$uNVDoh;nte;ne&$^;SeRQs!k5PTw2-87{}bx#W0*d51xR-AE~K zrR5j;8)T=C?$pe^(~7T|y*H!0aBpM?6FyMH(pRua*n)bCzq%?Yzj@I{?-UWn;>-{o zo}M=I03HS)qwI;&vET92=>SdO85MGG6KQ%Ab(6I}1sLvxR?P=+5f*Q+bpNFhOf-$BWn|77~1NS#?9<;Q;QgQ>B z2ik`!;Um~tkxHg{D{`l_j=1-MQL>qd(g*zY36Y{Y2liLC~mm^ zP_Y^nNu(gGl z@vjg7MuNyr%7vEbFpphF!+N8c|V6jRBBx6;AfQw?tn zp}>z(Ww9`xcYlMNhXralQ~^cVZy~#6+|uucfG;P?!bCpT<9NId=|RDg_Ddd2db`dG z|FEU)$hzKhcH}?*f+PQs#v{&UT`IZU&bvx&)mghSP;rrWb`P;r-kZ1Ing|QM>umO| z@C}KxRkWG1fX&A66c{hs6xi~5QfCwomZmJj0q8kamx{UHNyHO&qhGYNUR~S-lIC2c+zXDt1;|`l{{~8h7v51`(vPE#?4+@VcMlAWfnuOrY z$Xgp2??s2*yNK|N8`!{gj0;D_#b>sD$=$-%oh789L0ct;83DJu#dF_@hETAmJ#xg& zzlj%-AtlPq)BjdydY2!H4SyL25IbEH4T@=7!*TjC9TYpalp6NIZ}Knh29m_wtB`Uo z*IxRc#U@V|CY5aigV;gaH{73DDyz~L(W$-GZ^q*Bx&IKux{Nz+{^UOVX+hAOp7=Ip zimW|^HHOB;Af0R=rlQSZ0IYc@B`V@WoQM%UR#05Ab%dZ&r9ZQLY52hNrY`(ryp?Eg zJ+F$wgGNs7rZB3aSj}G^={5sXmfs@S;erCg0ks5!K4g`L`VGwIMg1RHYrz&PS8%yo z!}BElsp7_SyW3BOi@94uMu&v~JE#}1pI}=8(c6zSi{d2UJKyq#Ic?m_dT>9l3U3_u z29XipD0vh#RW)bF(&7+&-d6xUD+4X|9O}PZs@j3VYT*aE zFtsV%!X2oj3`7zda6oKIf?<0|4k1re%rP2TaswK#cn~K-*7XE~w2nWWFtq;e7P2M9 z#_Kwk{7K(i9(_L_|DdN_lxReg4hk_(=nM5`lsE*dhMUQE;vj2_u4rM+ggA7jGU>gG zKzY%B_Gzg7tF^B2_g9{^c>n(PVS-Pmg4iqT&)MOU@KGL+xic>k-A8OdN0xapR#u;n zCuGPkJOdoL5yVnMdLTNb#*`FsPx~A8^H3cFQQXl|zLD@jF&%v>n&GG03cBX`Lae~C z2hf31Xl`rT}2}BEpLPR+g{!`*KG{ zL3u9Rl?U(moE!kr2~MVqs1SJVP|zaYwI@Zhq2AERkY<%x6Ru{QAW&#k{~0 z`-0B{>OFE_An&0UZ&9G0Uu`D84QX2AZOG`7fJ=*ZpiK$yLohSuGOz)J+%*+r2|p_| zi3SDpti>gAaJ~ZaR|`+gq?rjQrr&_A~MD&wF{uV{r(8&Rh@i19{`wq;YUsG+K1$ZQXk(s zIB2aN8{Fsl^QoM3)`DXMT4cnkE2M-?QjX!%QnytNB>~)w#SYu0Z{$S1?(qI%e?QtM zEqoxa-0|PT>j!omNbRw{HjWCP%g5s+a=H9tGlz!C&DxgcSAvAvw(Gx{!lZ+}CdfTc zSBh>Jw1dD;k)S(MY}5a&An3*mc{3H;=TN8{cqIobcE>XciXmeYVM6Z*8FDkzcc9Zk z=nKvBfCdG9NQi1`B-HH2#x8Y$=JQ0`^^Azyl;HAmh)K%p!I$Qt3_}JaE*(^aU=z_4 zWFeMcwQ+lmu3>{>HAB3^dx{B`wAhk@c&T_)%cifNB-nf#nYcA*eY><=Nm&jxIprDH z%(S9f*v@ow&Wy58PU%9_nZRig*IW`mVO0`(p{J(_+>A3XP(U=&B0MUFno-{5MH64K z%$ly5DPXMtlp)fH^Ewi=a3KHC;=6q^XKdefa_D+CQAO9;fZ|#@7tw<%_8mi>Zw&Q! z!JID50gK9~2F#@kU0#X>bf=EAZ}UBWbONeoMNP+>?EbZ~k8%v)+3hYY>Y8X+Lyh{! z@QhCXc(S9WbCW!1iiL`|(!-w9Kt)iCw6!CUBh7b{K>py+qCFrDRyPD` z(+iY@6ud0CbSS2EqI4BVL)S zd9vlSfF!MQm~N;yY0*W@(B<<32@laFLMA>(0l3gN2gLvM4%W-7L>zVFx?h5#o#W!- zJG+8(g^7u4zN7%H?z#>(ASH?MvP@hdWpYQ~ zs7XeUA@Ur&Z|7~weCTo-(8LcErN;xy}1+i;^s#j1#u(Sav z1i_1WFMsnHNe40g?j%6N4CLE_2hWF)srV}8?d4T<)4+<4~XXK zGQwu-4zwgMNDgLFUN{}1FGnT&nmjAÖ1_^*GQ1D?2MsLjbUaX?WI?aBIUhn|# zy?~mX<`Al)!{_h$*l+@Bb0YRIN+xVR2N`NSO4$(p644?c^eoC28r*iThxD=$bdktm z|5dkm;jLuZBbgw0`&OFeIQE?v_!h@?Sr%gUYCwaOJkG~>E+d*Jn`3p0SKd4Aj@Yl< z(|(e^C)0RQySLIVSW=}9D=#Oxi$8j!S9GlVMQ>oKMHuOl;_|yUI5&AoGwS-Q`G;g) zW7J)++lAB`(B?vMXbsDQ^yj3{jRjXB`6ZiNQ23>pO^>pi+VGGqgE zKO6KOlh;8WAd87&RvQO0scbnKobvH4%$S6(AMxH+X)sIt7)VilC+dLW(^SIb@jY&> z5{I^}O3MijUXU)xSLT-ddS&!c0rGhx^R(j~5pIPDU0NZN-W}0dpT)8)+ORw1BJ=~G zG*L{Cmry~{*jVhBm*80oc@^^}b0e7k-!W}OeM4MGx(8m~y6{MEV1IWvgfUqBj#DO= z;gZU+I*glpX7+J-?s|V$KSj$1R=V& z>xE<_w`omx@B7hY8;@V#NG69GaQE8~9Z)uFs~kkARDD#2rm<5p5Fbxj#30>htRz>0 zkVtrKzbdrvwGQTZ)|GdkNUUP@ZKh8+O2s>}GUgApxpxb{;VlKrHQRxU_=45cjvGL{ z;(J;!C3J_)VHc{gWPx=S(O3|#e5Frf5$VWq4Ot8jkj>u6b6ri5>wr=lFV^j6y>hKiv>U#=&oko`@g_itme7ekc};n%P7-=j%PzN%+EAb+0` zp1jMvIEZ%<44_2LDLfDxPdkimnhxe!_Yf>83Mk${ZVHorb0IpvXZxW zZWO(`vz!hkPwW42Hpoj)0@c0TDa}93xDvX97_4^Uh2~Sa{#D#gdGJ~pH!40S1@}wc zQZjzU_$uih?%z?KHyYz+YR}3)>dLgnju$Ctp;_<_&xv$B7?9;DBaZzN7EIVCflTHc z^Cd>&bN9OP#tZHyatO2p`$vVq$FodOoP1=$3u#^NGVd!8XG3ouppYKtik=6cg)Lu$ z$d;&qnGgobXiCiBu${sMamh}{P)F#no%$Ja*vDCO^*bA8D$$$%fr?|~@#wHQZ{Bjz zsSyuRk+X@fg>E)$j#iyOE&_$5 zG{PQJXXb#YvBO!8(NIJu_a&2cX9E!~Mdfk6OsYb1(DP%)Qmt?Dz9=r=p&!QgmLyBD z`dVFA28PCgx%tggd$|u}49uld3M7RuT~z#%x0eJImgZzee*Q}Grn`;c&&TESkVtbM zwi^XqE3qzQ>!V7~j-VX536%=GG4h`G)M#yo52~qbV2B*{V6`3OWlwIHAIyrGU6V%d z3ihih&~d#&q&>foEb|ElO@+i9|2?5Q<^l;Mzq8tG>Ouxi06oO1xvqqdDEGb!^mYzQ zMa6&`(1kTu!7PL6Htz?9k@d>><5Js?B5G~mGcZJ-ud2ys1#*C+MER>W3@go4Ej` z+)|1I(GcJ?u}%x8&+G-W~dev1i61OHI401Nj^Y~l+V^fe*IiN8@oW;37{m7%5;BNYs0C$aS(Gt__R-X39siN`4PrSg^KNu-?N=sD;?;3IN~RRWU75Ww~le0Ty!y8*`@iIoaUt>T(!ExW?W`_Cj85fOFQ1IZr6@$ z>grsAn)4#xz6Tr2W8TILk{;FgLtSX(@&^Gg&cZ*KOqLC)Eyk3bUcH1v&)arSy_f6X zI_68Heef0XkMx-3y@Zao=oj!sWCG?RWh1)jLf3|TDj#=c`dOFt9OVS}Zvf5LhP*WH z1@{<Ce%#9&gMY*<={J~<2C4}?KwCEt(gx*XE}Ac%ty#~YT!+4w9#az@P`j%ez+C-_VvdES9biJ zKM|G4F>+lXo=A{Z4ngkwL;Z8U(;3Rn1n@;(*-&{IpxRr@$ypqQMX5J^?yF=9u_{a= z?8?ZHsiqKiSnGqz*>=>eSdhPh_hCHbiYrmh_+CFWv9D92Mhbh=d@w~SBeJ14T|%o) zb?aT;{&@kNiu-#5R%eh)O=rC9gKnoGGlzY*4`T$VP8&3Msbwi2SdC=IAb z?nlj6k;giP-$Za7)f`jj9ZYH7V(};)HLr+n##|nQ>1?{a>T0cak>@EXN0ju+e&Ftn zTkD6h# zoG=`h(UJCwJG{iJF1#Qnvwhcmj%jCqSp%TG2%gU_eZ%u6` z2rs*MLqOzB2QQIJf3OZL4HyjH5eW-PE9Jk%QwgTXM@#%1dMnd=Z(Iio%h7*{DlbBA znj&+PNE95Tk9wf=wY0?6jL0trb8~dIVMaRvZL69Kh<7B7BEG&-pLA?SxyK~ef;<5MrNJip=h6+ z^tgLekfP2e*Tp=*+7f|O70r8sub%l%hPv;%yb75(a4r&H?8E$3Z$)9Dvz-2dc_7ur zYB}uemN{mIwrp*z3c=yTCt%LLz95dE=-7!PEgLNUdnf%~5fSu0f$S!!VzzWpsBoM& zvhHsFkAzTx-7O6!B@+SpJO zKz-0J^MGkFRAdbVgt@S(oMWS@2OKNqJ$xF!<(WJLo@&(D-2R9?PMu@lYxNu{6~O!> zO2ChfgoGdWURpvcg~>|upT_wrvm4Ym_2?^>%~u!M@_>3Hn(I?hPv8|-_b3|QKq|+s z{cU}}xEc0)Pl2|gZIkx%;|5dmD54Ar%KLw|HFm)zOjwrY$eK`LCzL7eFAUTs)Iy6Y zk!M!fvS2z~9#@&bMT*(a7A-guvU$wbAz2vl>#4Yl!F-Y0OX2(EOU%Qhgv{zRk`l)X zS^uQ-a4eIUalVr$x4`hX3TD=-eXb5~=ifXX8~&NXxa8uAr6J`O|Eh@#@X>cNF82M% zH9ErV5=Rn)p`C#pQw6-l3uYWCIBF^}-9)bbD}rNB92(xI#0 zSCi^{1i^NXl;a=3Iip-tsbn5GGNd1G(J`G`8dUKB4mpky2`mQ@CkNN>q7LXoZ>6*5 zbVtjrINrQ`I0 z2oeVTf}T!#%g%3Iil2UBxkxHOEE83N6%s6k8TG!ck>}80&2%RXNxdD~AVT#rSQ)ZF zf7?6%mp}5@`$b^f9xxH=qd<3H`$&HQFv|Kd4p3wsrvUWP8@o@+@KtNrU|<+)gyf`4 z)_)hJe_@+|uG)4!!>!)w7IdvLv`+YwE8y!{uH@;qVVDEE^ z=O^_d9`5yXlL8W*n1Y&pb?OID(dKYF`#%%04EI30f=2igSCv48e@u)k$GLV4FYH)S zotUq7a;}Dx*JO*WpC`AKeLPRjg~|6dC3KkC$KFl|ULL>u44oz%Kg)f(2kKHnU)n~M z55|EP9{@*&yP@!$?tL%Nfw?$NDtLPR0XEf0iDwfq1lM5h5zTDosy}>zr@VWnBe=k( z%6UW_)E(_03`?%0HRbPImkG;ia#vW0!HR!iOfY(FWy!aiNoru@hZC8-x>G5d)ScZ- z^@N39P0)8;dKQJC0i3r)ASxVP55`LD(Q%?{dP7c=kFhi8ly{j>U{VMI=u)wVku|tm zp)!r2^S8K-E#$58ZRAxg&TBYuoD#t$Cr(%O0U@D+_^IC8yS?3|{3k1~Fgh}Wu3p^k zZG;=On_`X%f^hGda8UF4Iom#~27*9oQ&E7u0-(otVo>WpU(PF`{dVif7%hut)22%R z{73MAes!WC!kAVhHQrwc5%T}9q~~9c&q1e{N21U(o!|d`rH6!I@gYI_#F+74G7x+l zG>En@i#d3h5FP$6@mPqZd4wW9%7Ez7e~G^hMqnHtXJq~{{CAVmrpO5AZiMtB!}7mn zM2ZI>y11CzGWhlXy8YY=8xmqaf`!DFr1U>s+`&b3@lKN@Bk8}J#1DLdcq1?5Z`NP_ zw~G%F2@V*5-)Lo92;%c|ZPiuj(<^x>ElR{v%%}BR1Cma$EGO8NQPrU$J;9 zOX40Hde`xE*AX=)_%Gc;Cp~)9|D2@#I23-l=u~-#sEk_Nu4k%Ean-&?(QX!~I)7Nu zfjGp~eI}l^Gjd65U9z$@z3&mbm%5lA5cS+VizBx@9Hy_-Tl;0;*j#u!Vk27HO=*9a z|FmWDSm?b$v8tEt4KJBRr9S>V%Dxk&Smg8ikCFZBXBgq^Gm$5}AW7xJelX94v}qvV ze%9nc`+_OplxY@0&GNJIuBFo8Z&HKs?#!>~@+VIJljzw}JXM z!DCgpNLkCc-{G|2ZGCQ==Ya@ZJ^uEC%GshJ@SEXtt@-xb2B*6Qcx%U9>vpCmV=91+ zATX`{yl}R9fZD+C=_=rfhbC)W0qtK@XL;kwhds;N`4IyI2T~j$eYTf9=d!N&LWRi& z`{-T6j}f>3(Ui_!gaT!g{)BP;&!m}B0e3tQ&!e<(KpOyk=DDrQ2ae4j9gNWK*_!CW%^0s*!10)?`B6%tYra_f751T z%Uklk(rzWKgCNj~)_EgVKu2KNU9;_Agv{paWXr?IvvTMnz~g`7*bWvOD_fo(jyg8< z9_7(=B0rZ`8zYJk>pnxge`1JTca`hE&t7_|NWD*nas(L={`oxE6*(s{Hg*5XRNo1S zz{<7jgfIdQ=KRa?RV_M}#U7@`%J=mb7?X_WJe{Z&(THP_YW9Lb^ZDmXZsX;MDdD6# znMX`hN2%y(V!YNfZw&N0DQkoVS(93i7G>St)ymI~$$npgrDP!uIQeGaU^yt-- zr|06!7bU8GKN$y}L8GMsx5WWbnm1y=ofjy^$*0ftOUdhlL_AzMf4<@6MhQeD%4j_k z8eV+E5c$}vtv$<>{WZkPQoH=>J;NIHRntJ6Bt%tMQf;UJvDMnVk~Y-`+;0aw+O&DB za1T(rT_-vm%>RlHxZk+oTmNN$WXUfjud49;uGEjm;qjvi@Xczxtrx7aop!zs7(yzy z1xdUGW`+*sC(!EX##R5jIQ;A7rEQm~Jx_*YG5o;Sw14?ZSH?N4uXge~%=7IAR&UE! zy`^7Ow7`G%48St)QE9HlFUGvu-FAYadPug@q`%1l3RDi&tt@q{CBOYghj_KEI-DN= zA%5Uuj~imIY^Km3ioy}#avvJef5ZPbc%K8UzmuyvMR@vk+%0n=aQ2DoUWmW=gyINR z&y`oT{2tG8<8u*1r-y~6!Bi>3XT>-Gnh@G?{DHgIaI ze`O#ZwTgh>>pJ-?F2aKX_AO{i5fx3Zw8hS)#Oj2^E#LDK2L{|V1_)ES<-CJhltNiw z{?^U@N{d6WbbshQ*Q$dk2<3l~N7DAAWn1J(|HRYCx$A{Tq{FiN^F?Wh>5K;jwkokh zEZ%%aK)`Zb?#+nJ?`SSuNI*P)!gW*3Vc4~w%Gb0#L7 z?!spyyrmf6zsPo4QzP&OI_GD$W?om~`a+eJ-#S%fTZg48W4c&QvUlYAFO9j^ut(>Y z|0yGuD~uD7YdI|0`HDW`P+g9S?=+ELvSV@ikbg2SDiL$*m$YdpV&aTxuWxpm=_W9q zN3}vbGxGIwK=J?i=X0FEn6(3gSWEx^cJcBE!;5gw&D|OQ|Hm0%ex->cs{bbf;gLHH zpOLn@g1puLYx~-15fOwF-RAC^6!=V_5}mcU(>ATz(u(}+e#VX{_CYX zS-Zp#OH=!~F8kj7)9C8Gvd8H!CS8O|7+%N)oXgEVFJm~SDn#<45i#F#$w!q>x0S3E zU5MO?T+wwy>i$V+wR0`9Ldo>Rm{d_h!vz3qV zN*$(bcMT6jNx$DKOHFvT?TBK3rNf*Z;8$Bu|C#Fs;y__1hhMdS|D#o9NP*8*)nlj2 zXZ3CcjuCK-u}2Ab5BW1}tmF5eWp^AVpoQx_5&ZK%xu{pqk-{qA5}bFm^{_r z9*2t=iroDfuTVW$?dVvjwNbq|FBTKw7=8NB3)%Cb?5-`t;p5#*2u-a4UL(jC48%@% z@)sX)o|(LUKGzu+uJO1#Xgs<;Kq%Uh`tq)d*U$K9RN`XR`?Y6l>d}KEFtd3h+`b_U zKlA)}jbQ%Ky?Kc4xQ-5wbn)XsoFgKds(OKlTb6?q#^@Lk9|Q2NFaMwA|NmxX3@YdL z8l2_-{o3wbVgKsn(xdM{1#j9{U@@{#Xu0>1$J0JNV7K2s? zhE5VVPuDsy?EDL?#Uf&Xn?kQD125)zHNEcT^i}11U&ns6+aDyd)*WFRn>PM%U$jN|D!*A`TV*n-v!$R&gm3^J(Dcx z!T&y@<5Lqjt%@}_1hCD!2TGc2`5#>U`s#u8{hhYId}7vRzj;+~#_;%-WfR$<-IP^Y zocY@z+TbN)ubYCil-aJT%>`iR!@DA$6`OhC97xET082RY0aW>)|4Of}Rl%DqP6i&fObn49=s!F{e6Z5mG`+hI{XReOv-<3p@pjQ`X~dAZz{vuh zZt7)2gxh=H$~1i-qF0^h6ME<9?fe!g(B->rl?clBQ*jT<1`?y#LbN3rALqThZJ!Cb z^MmH68sv`s!Azt8XHMZ0>K@51uKc8zG$RfESKd{UbLQeR}Dn{4o)2 zIhvOklk^?!Q>Ds7u}*L0O1dmO?J5WF_sg@Lax*dAh-pn}q-(EZC}Vatgxc>VM0AO? z1i0?pW6>dyfI)FhJ=AqFzhIDVn0(s!Z1U-RY;k9y^~uF8LiJm-+s^HcAr`UhUo;1U zd9C{W)*oF!IuU? zpP3Xbbjvd{R5_I{ktll*JZoI)(2P;luUF5ygrm*7&Y~$Fd9Tc`3N7{9r`e_1F8Fk6 zE;8F`+iBZU+NVjIjk@l0nC}&5mSU`%#>>y9iK$I82|P9k6l`s4HIRL^aW5zUUH7S* z6L&sA1hHlvYDbB+LB3~!4{@&jj#WYV_>%BjsW?ec)NC^j%+9!r!wAT4WY!Hji=T6+3gMSjO%AZ`!rOZYdZcjwJKiR z#RBBPE0Z2BALEsVeS`v`Y?q%3E_CgB3rIX;{%tMFuSf^-DYsA6U94#55hgtvw0>RP zxOpBUk1im5P5*`bi`E76oBntY00As~n#Jd+T8>w>uR5q(ne&DD2eYN{}5wzokqB4h%(XVV7W z8a??iU`%m0F@`Ey!aynU$Ga$*fX5%iNHXxkWatfLetB(Qjhi?95Ns3rvE$i4|6_K* zv0*>)rZ5i~SJs@EB41!@_)3g!QL4gLm6 zkpN|4zkl8aUJ`jm18r3w{-PW~@b_o``l6*V&i{VnFj~k#+{vcm%74C6!o?9AJnw&R zjpaZZ%b2ZY)&HK5=5_g`Tk)OYT&G0GLSDXEJ;6Hq_0@h;plt#|G2?@GteQPUL4&uO zYB<=_VSbKG$|Cq%4>Wr|wVGqzSy5C{{dODZUEv*B(!*SrfQn6eeJt5pCqpprzE{&h z<~(bQt~lP|fv-|!k*HehkejQRuhjCi(_@?B%MI~UEsH$mVrDj?HEZ#S#@ww{NR*jOTzc|oXMygs+A7o9539p4W;|gEvjH~El&ls<&$NhX2 zi4YL)E4e#e8DpJpeJq90%J00VQNCBZP2>UV)p_*M^d&zz-=!RUWB)8P^e5Pk@3(|` zh<|PP->+}t;VsDpM|%BdFGB>8sOw9G1I_*yAK>jGd=Lqjkx!Wm|JhHy_daOWJFh;G z{&~>vaDw3=;?Fy5Y;aTk>t)|b5IGO7-sGVEYg{5|S>hrA-2cCa>zjc$?~8mV>1@GU zShL|I`QH)mgNFw3^&^=7k?P+6?mlbl_4V<9FNa9re`bN^>wrcWd*F54$GzS~m&PHN z#PLj-?&c9VL;w0NB=K}L9a_W38^ukxY|7f6mAt>MkNa-U7SbHHm)e4pC$zmAmaA!H z$U|Y5;3VIWXmOI7YK+P9z>)2Dv0`+tNDj1@FtrDgGty*HAj{5REs(e zko)@K&A%7A?0iSgKaNGp(RqE;^E3#5+`8$;XzEvzd6BC8Rgq>L>1~SR-t3e`Nek*; zrWUf8&f)U6pdq};uy-gBvuM4++=)CzhLs%luA<9sIwY6D%~zwZ&LNB)eFq`vD`YLl zH8cN<`}0}JWW!JdoXS8<;-u+HbK{yXTxa13{$VxtKawgZv}SHE=AJI>nvEBj#xZLq zRV9EC=Dzu&<~P>h?yR1u?R_)manwZ@ckPC5HJ!92{qMj;q=F$Mp-|O#PB){RrWNt`{`haHq$!i!)b%mI*TttM?A{PU$gc#p9m4^1B*xz=xFg!is? z#mF_do%XILTU!|oq*?}HktnRH{rCOk;HZbYFsnucNb*$8Sk;B8ahMLbGk1TgY-E5A zJ^0rIR|CQM*E(2hvad8#RHSA6K>r^oK|=*VpkvdU8ymqj-N|7#+S!}HnyL58bR>JK zaq^16$(?Jph=H46s41;VLh`$js~4jkEo@s&OJy z^(@$+Sa(c@)YNA0lGC0K*spru0# zVpQmxeZ9yh}6~i9)t5CD9>MBQ>>a`u3$H|bi(fPsBdc3w*X|$hKgPZCT z(N7Pi0V3E>n|?{WL+LRHeLAfhOx_FN)FSSwwv{k(tq@=8U*Fx1iHNV2_9OqzmzPGZ z0q9EXGJFq@*2{Dx>YR2x;?ny9MC$Ppcx)lxmlz*yZDKNOVWV4TN)P5w|^BpNmC2iB{-#TI|LtDn2@GlKQs|*LbjC?r?i4 z1DA;+&GJd{WDMVPY7tVQBG+P3k1k(^KjDc-2eu4*(<17z_k6wUI-mzQn`rb(XaV8P z{rvkDjR0fA{L?>b0@NmQ&k>QZ{%ez<%xIl$4_Xub2;o5N0rJoIgYRrP${MzT*?Qv5 zYLY?0%~8@6rjK5xmjV@8S~KjU%a4g@^XyHJwz2zL{zNnd9A@0sbPaG3_TM#xoqyCF# zjUW9V<&wE9kr=d5{xu9}5uDnc_PTBXi1bdzd|E%)nF)sf zy=vERfW~c-*|`D4Jeic!>}_5Tsd<4e(NisrO@7aRPlA^kY%Y><1E3b`1H!*JWaF6& zO|WH2SJpoKYxL=}V2hc28FbpPxj6v5#9i#w?PE!tfy`E#U;kHpft0KRlYJn6Jm*&_#||vq)2l9By6rp=owO_ zu>ypQMD{YX5eo}(iR^ytGfX6H-4w#4=0=EiFE%q01CO|9>>0DC!!wLMBd1jZWmU{2)S-drVj#n7pn_JK2C&0M=dJyLD0UA`8l zPE>T)(B`24=T>-|;E-$_V=1!!5*bB5j9S3Al}F&+5(>|^1Z?Jq{bU1RUaFWhaxO87 zDhu~;5IO43=A6@1OLTlyL0tCI#%t*Lk9DFRek0bNd~!+dJUi4#RHSssd)IXNeuZm8 z4T#v9L{9U#rKKQgg*bjBcB5XFm`8GKGnUmKcU30Ttp#Vg*wVjVZsprQRdN42J9JT{ zr&mVve{SIjS*#H9yi}PIzqvduw2H^VhG}QNQ?E2LRI4zdDoaMSl1d33Vf0wX6)a{H zhNwKVxjCIEev9TGPU(GJI_&&U)&_WjG=cDjk$~?Hw$`teWVcgjJo{GNd=U-WRoKrg-ZmGF(h!AbX@qvL`P z%W4Ui!k^FlOdEp!p59HZjJ(854Wx$f*U2DNv9VnrN0eT&WiK1v;`8iQjP$~&#Crjy zws>ZBwl`P#I@tSs*lH?Ao<{uk$Cp&M?yqZ=Q@)AliGP6aDL9u}9AO8kXkOVm+%p#J z?ha@NyVVQ7p$KGb}SjAY_M(%ji9nhwYSmq^4~ z#ZaQSPZufmpTxQdM2rde$h}X;l!F|!`v*OvYr~qe_3mngAR~(IH(nL>u{Dp{0_xU_ z!@skbm#0jHhYm^NFx3mSdPtx7{I5b!I})eLjc2ZHAzYq6r;NulrvZRaPwX@W zThD$iHJvK^+-dc&KZu^{pH#By2Qmh84$9X7=DHm{!CXjwAHa1~j!)Zt6;KHu#nnW z_r6vuTV!SGy8AoVTpvo8_w#KhC>5$bd1dn~)sXY~AL42X&l*WTI0u!mDFh~8B(Ss; zlzt~&2e8DMY+04KxzN;<)5KL3BlyiP{xO!I1Fb!GaAj2H|k-ku8?pJ zCU;_4@cz|6!fR)+$)Ui6|4)*AP6{fMXrYD+?!A#$!j%#e>I&fC^^NAfY0%zm_!E@i z3DoesZSYEtgT89sZ95VEZ3>2QjH-I$ps0MlunA|vfA%3G%tsR~b;oK7e5s zjaPg8ATY^~!9Nlfysr8j_GWphIT;(w@W{>qt|h|@TEIXO8_wqIPDpc!{^Z8TP;ekn zApDWRYUYKNz1ZBdI(uJNaE`%|NCN6s0w@6H3+nc2Z7p7|ZeN2rBmxqh2o4H7E34d` z)a^H#GdG?ucTQ;DBm8@Wc#2@xGu@1+-xhODXpE%T_w(ZC$!{td!od{`!pI++t0cl= zuD0@Gr+lEmh}626krPSA8f15i`&q0ius?&d0hEL9At;ckeGu4C9Y(ZhZXRqd8sy?9 z2zl1l9QX4V&R@fGzM$I)OWkgj`WE>~_+RT3dk+aijUj)e@VgYbZxHr_X%wOQ(-dLv zMn6b{&%^pOZtGNdp;LgB1*T(^8NtPdjEYr~dKe&gD*soEbQ2=Fy7Zj1=T9wBAAl-0 z2?!};cgH|NQhK%Ec_KOEAncum{bv@D8f@S$7 z|E>YZ-Aybw1ZIgQDN(*q!)6tzVT>FX5F+2P&RCSo<#Z@5{e4z&!K$s;roQdDPbK2B zAp5kzpi{YCrv=Hr1%-H0qyh*kMiwZEELJsZabb+uK>9(qG@}@J>}a2)T%WPh@tzwL zIj-N`q)h$Sdg7DEl++6qJ}7BADjtKVR=j*k`4`5fd%yu^!M->y*ryrH$xtwyNv(nf z&?ZjEwdmtu><30kT$Wqryhc^Rmm8VlIht$K=&*dCV+Lv<^=%iZmiL0HNe2{RTCOW- z-Wf%i((kKwRXk6}`asZH3a-x8I)>X6DsujHY#u)Z6)VwQOY;0xe5kAlP!ky{W8NXc z2`A)@WS5G_LscKLg^n%|O$Pk}$1mVTc-;;sTg01Jf@A9}k#G3lD*yFOXt-cQ+S-(8 z8kfBifwvK!uvrOR2})wj;GYPHe|{}<}+1=r_X7q4znHYcZdH} z&)lH)jXS$g-bR-CO$0kA+zS#}^@Buddi2N(UOEp+5-ScRqIzr;gl`Xj4hJP$;Ky4! zp2$%xNTFr*oRez&y+HBb_?hZ;125q$VDN^`S^4LY-td(bNk({{4FUJruK7 zf3OB0WE1WTx<@%?pPqcHlQ|%S+<8yaGkQeMD{Hs}72#uKW5y#ST5CbMT&9WSp(ew7 zoA)-mP6?nm#9gE8Jt+xA|rr`*0`1SFC2MJ4#4TIaNCCT1mGUe z3)^R8p&$N@>T5m#ltRb=V=-?o2f| zXTHtf%(jZR?D@9Eo!3oy!kAZ4C6r?PLDf;{Z zy`rzn7&bponFBgX$AJwPOv3i?dEw|`^Wyx8&<(Cg=w zT0rj4RV_FAyx+asHvCz(FY8%MFJMf%gB&Y}|DFT_1VhS&%8*f)&+FRdO_P_WJ=i0- z(zwlN5GpcLW!VP`D;=-f3*!eqQU_ChD44yV!bmiH_PLxlX;qfFrk%&~2+rgCg{~|{ zY8|(SO|#Uf|Ch_(iL^Y#2HdnMk;gV;bH1TYRX>804OMk*HskJsE#Pw8ApNi#XzL^{ z0)Xf{0X$m|rSh(|*N62&mC{xX*R>Bp4(9L_cw;_U@~LLKsIC{tqpuC!J^#lTVkwbO zjt`i%8)s7-$5oZQ!%$Cw;>4BJr3Oe#5ALaedhby)_nbovZ3A32rfqN~BAJ;p{RQWG zTniq@VO%WfdeDPD?gc^*s87eu=9e@sZO_vW@M@a(Vl_q%XifB6*>K(HZ&I{`|M>or z;OXca%WWvtdx4`6)1eH>du3N3eI%h1JbIhnJjx-v((NaSVEq`i$|Y>Y0xJtzjg<kjAmUOnWdo7ZUYP3JM0!-M756t>8% zJhSZI9A8jUr?j;tlC+2k6Stbnamb?Tzxzts!HFS10;F>Tffp@kPdO1o%!_Ki-}MEF zan9@K-69YJirri#fOSmbK=m0aM5Q3mAS@_QORe%0ul7y9*q<(^mBK=-Y})aqRnU=5 zr=bl%2?;zs=Q113NuL<79}qMS<&MU{dUXviF|<4mCB?}NTWAoTrE4###RUfY(C9Cb zi_+SYWB#xyMrKj+#uxfd<}1oJVgKpf3a?enRssrbJuIJp?`s>Q#@E3Vn^ttC`4XVS zDUa@gOw4-CyFFWD-|{7EuJoop8si-b^nTZ3X||mFLzs!Db=@x4F-ZB-$u~Kfk!2U| zR0i?|#gsb@GY%VrEvRDDF&Civ$DWYuh$P2kK3xo&F^G}FO5|WE3g>g&ntVW60EQ~k z{OIdMp*r_@tD+tXQf~rWnZK8I`p5+m!mHC9N%))y2MLemJQ!)cttDQ88mfR;9L#}+5fu8-m3G16fTWFDo4P5^e#*kPZ$)wd7NQg+(0PIBjGTCIZhP= z;SEm1)&T^()7VYiqVq?bRw&cAs2Gx}N(Gfsh=%5I?(30kxjx4UP2|_2`-z|sD{bz>UblIX zmLVS03Gc%>y=??%Xo`^#=mUljz=NKRzyLu$=w^*nr{yxwnEh2}=B3AHT5! z7#o}{K&>ainV5Uz_CK9I%m;pG4NSg*!SoTl63}%d`jTQ7HU%3lZfFPT6Ojz! zsDT&y(p}IW^NLeB5BTD9#@L@Htf>+A|7!L{?gJ#l@{7a4HKk26A}!T}u6qQ#bbq4) z6a$U$-2s=?>?9VTx-SbmJQZ1nUql_>vt&$?d*{Q_X*jBMPHlr}O`}Ho1v_)z7AGSK z(5usu%x}{`O2hX5(%vG?YF)%-IX&4{&Lgv|lbLWjT>3{}ie*4TiQ;f+iQu35%mhnd z@8@ab!i;#7I}VM4%zkueK`|nu&VWAUD3vOH>qu)@5Dj`LtBF z>pe2KeQdyCqI7TkyDCj{jRcLbK_}kvr2hLUk@f=2A)G%@Ab>{L+qTVX^sHWzz#XWN zGXnXL70dEIF0O5fx1@Ivn}FsZ=Z}j0;&{E!@}|?)qmwE)0Te+vuo zkS__F&o4+#{kaR1(maPP+X&AmOZ5xS?nWoQdc6Re9=oj+8#1g4fw0<83lhAx$IlRk zb)(N8Tm+yKo{&tPx`SD#cRynG&g(5N}x z8Y`z@CaUZ_6DXOpck8|y|bo&&LrqWSab z={z?kaC0((`V5En-Qm1Fr2}A;9Hco)e>HXMl2Uq| zFDadc5xaIp(<*h$0NLZgs8Wg4mWUV>69Os%VS7-=C+oi#9DnXvHmR8Whl1qz`3Tf2 zLZ9>#Gp36qu`6Y?jks@o3QlrDTWrBMV>-X&^ zb%Q?_khEA3Yq@;7`REy9W=we!`5*s>Z#UXwlR`EMlwT*^48`|}lAz&8HBum^&5sxT zai=Az6%^M2o2r)I2EDahQB>dHc)QML|8y>(a6HR-2NoN7=l_R|AVl9e?cJ zU`nrqGUlf1BiYYmIi029Ux){a{{;H)VW-2j@(+iP&*_f#%J2dvZb3<0!D}~kA?DWb zJ;#&@z}Ub3xj8>-v=^aAZA zr>@1_su|`rp-a(!e?H8|Z#>LnU6nMR)~BmQc0G`(YO*y2G>1)3U%yD;62n;TbC&RK%ss|v2O@Oj~swg($RpPWV z8YC2q5oWTkqO|foq7O8X3XO>cnY|MWfPU#joA+X-X5kJtsR8J<8xg09Y-2v#o36~i zQZ4?2rFK$_(Xz~}aQcDWoC>N|-s4{OKCq>hq+AvW_KDN-|2#sTsKw07vOk5_==%H+ zwQ#?vZqMxCJi8p9Mk?W1%p*k$1$Gs%j|eXqC#Jue;X#}t)Gvfn)pC#x59|H%QHc+2H_v`U`{o%H_xj)b~CS7hW& zQqo5i?IFKQ7#EQEMn20DmwzWUC#-zQ=b{Lqa9Kn=?xcDD7Vjh2&}u!?lRWk9WCcl| z`>|jgie^B6DKyrXqxa0k6-)o!ltH_NBb5D0M&ixIkF>t>0U>i#toyKI|0}@JxMc{o zCW^JAqI3bhuFl*5$5QAsbNmWic>mzg;u1WeVc&0NyyX*G?o;-}=c0-_5Ak!< ztBd-$0%AIz9ibIGs;+;5CV}F6JsTl!Dhb&>1kmyz+qG)ijG>MPLP97*`?D4E>8i#I zAgn6IMcg+aTd*R{D@@@_lj%xN@4WW}+H;&kwfRK9*Lc$bJ~a9J;3skH@E`%ewVW=w zuQR_Nqq$%uQY-+PXW=G<>Y`Bx%Kb=V|K}CsE~oc>c>KiKUEd3Yi-s3?;7uAOTlNB6 zFa};EWPXO@(+TaF?_dHoYsh|Tq^`gFj)Z-H1HJs_7H&*<4FJ})se4Nhm$+VQb=PsE zPU1VWR{iASH#tL?RefLetX(+moQW5|)6QdDYx-uSTZ#dXVyyX(G zxniBeN||wZkyAB`ZFg7XVW~QXF)BO>?H{q zz1EKxuAe@QOW}i1gY{$JTEweQko(=?9roA2MsE$JOErNfg6$i>>waK-aM&JaT0sta zfd>LSS&#$b3d)ZfCGji6(B{ndLT1ngX0=3fpJPBiiW70j`3zLmHmzSmX;Y~k*8A^^ zP`K}u0&5D555mn5+-v|xs<2x~E}h+!!AY{jCV?_A0&LSmpjZl4F z@RI=fK!!uma0w_35i<7mt`K{Ntzd>#=WM=4O37CR4Mf2|@@D z_c&h){$M}{BuC48U9#+?;;VUnh55q|zLPVtnv0yxHd6J1| zgZ3hYXXraS^iV8yB2yZ-9MmUuX{YoMF?ddTWm01b>OsW^k}o^Fds#c)Zp5L@^8i`$ zNWiZYQ6P&#Jjh2W{;`SQ0*uQbript$jPMgec2(DLXlW7|Y3WyzaF6=K?+=t_f~ukr zxE?-|DC>!)@xkH1dcOx3yi(n^o@{HH0V$k!6(%07EV2O7FCGultT$xu?y3|SMoUiC zlmt->bEVPZJ$YZS$7T$tN}d_hc0@0rZ6dLSz&3F&;GLooyh4DHL!OM&O)zKb)wjR+ z1us0fs-LcgKKW)5AVUv`!1rL3cJcGUn?xB1cu4$wL)luJVm>G z2bb_x%WadEKb_j=#Un_@JD;AB@SylaepGoLEf`b7`Es}u=j#+?HYz++r0%xlJ9)6O z_Ax^kX9?e1*mvDRb~htAehqS3M1+js#TWpHmUN;!yk`O{zQPX>DR6MOtt;5 zLo&l4q#DweJn(cPa7109;aNVL62&#p2m8(!jlw%6Z95e_(dZ%jK!!CHRD5{J96-h3 z^LWuP$Y5pevwntAs!MB8!nl>8*gi6@z@Qs{gL=6iDXt*jdnn~{Y*(Ig|KRBG zOFkx|Qna=~m8j5V&|EI+v}*Rh1qq{|Lc;EThm&EnLgY6p4Gi)u24YPI`Fpc-Kiwj@ zkT$YwygHLwb;7ojS`1VsY*b7ZvBmpWKQ2A1Qju2aP_BX7kkH20Qh_XYY_ZS?R5!IU zS#R0zK%7GZhMIYSD8sz8So#-q%O51XSLu8n&9qV9zKm~+Z{|W;has>?IsjUgERHM4 zG1K;Nj^gOukLhhiF@>cH*fVF0McMWrSzp{h_uK-CoVo^FPK-X$?8LrwA3JsXpBSVy zIWKrl;K_8+JC>bOHJ|o0N1+JASW6JlT=iFsR_7m`KP`|7ZhTz8@dma8bd^xcAH;Wz1sXku`4*Lu4Gs}%2g1W5%A_6K|LYew@7qV38o%GL#680K* z%6creNKXuzEpdEBKWDMhbW;vM{b`gqGCxjeI%|G5JyH;8`aJx|;3Zv(jaV+nmz>?^ zI+rfm_(}KF7D&)|o%gTXxD)Dy=sT7G*ka*z%^pPgEDp~4&d2T34&B^v?l6f6DMBhhf*CYp=Sh^9Cst97)IJk z4IE}85bsXVTS}DqK8n3FK=WSU?pb#3tr*lCGH6GGeEeNd#N(n7mP=V)^wkLn#!v=O z43+ya+v9r*4K={I`)MkR>}REzG>jo6$n@|_y7*en3^TPztV3W2-ysVC@gZJk2!kKnr$s|y%ANrarYq@^T4l9Es<;wXjck;hu z)uBSeFJyCTd@JfBLq6|uEO!iSB~u#T3#GwbP|XG;PJ7jpu2+VLV>P9^9E_2U52gyaHB1iZ7$DF(d zB5A#@tq%*DVb|^>juNh1s!RLS_LG-@T{t*_aJE3`bO`* z-ns1e#}%4P0ey$h!vdA!pws&Stv&pnPs-N%( zM1Ux*KFv9xpq3K(;2c=_c2W*h2dHsS8r>@@@gS9qBxX#Bc&fn>c-iL(q#=K)1OKU^W+Qhb3i5WLonUN2eKMG`pm} zrg+97v=nK~nzdQ^em4<|#qFj8Kp<5ae(-R~Fz;R>2CmTrm&~Q$*{nXCtZN_L%eFWa z@h6zqHKM>^y@KIOSb~zXDy46) zbe5>*&a}L=lPP3#OvPjw=(c$(x=gAoDa_MRnpKGW0<$hc<*aslccXS!5lvLnT-Qmq zrvhJOvny4uxWF`wJ0HNXA*P-BJdreYu@S3CelJBdvqy!1pp@>m|`5I=-t>0AC_j zElqloWh^eQ?iygt+2s^%H00=n)Qh~XK^%hI3AFw4@?$R$e2qHsF{q?7nvZ&9=!eH* zKAb~qM!QIAf)-qVkhl4f+H$e1BgPfo*jj17-NNYyjf(OX$6i5t(5N6`%Qoi~@OUzX zuSKT3=lNCo+ImxlfSvs5Z~*aLalPxD`>AY74`x7Z%hW=hgT70b21IY>PlA0xiz4GD z`pacSF0d!;?|#1F%8D;5&o#gQ1MwOyT}-|E0uaZKecMhZB;IY;y#j9k-N+Dk@X^vo57SkV4H2QC*b-Gt~u&G9&T{?<-Rzd z?a2Y7W6RYN`EFYD(rYsAkCI6T+4(N4UgBm5t~L;VAKL7OAzLvw(3dcmelKx($yuL* zr#}3GR}3l2h)@lOo7S@aVm*1cTf6fCGzmvr_`aWZ-u2h{n-=1f3t5hS@}7`+ps)NC zAafWL<+_)sU6!n(m5_FLdA2*loi8pD+eO-v?q`0ltS3D5oQ!j(r#DuhG8#4p+2oj)rz? zeb|tS27|?lR2W;=0{T8p7C0{@!2N3xlXM64GvAoYgml`SpqNOa{;PwuXqd0~d3qDs zJK%k&EkBYFysrHcTZT+gkAIdSK*Sa9{QcqjsN~&SwLmVv(gWslGG^2Z+Cl7AWt<=_ z=S~<^+`)=Go#owV0-`Vk%n)YT4L@|An%THj9w8v!_aIVN{%tG)cz#X^3JBH)LSVRJ z+a7ap(`DnwJC|}}`r#RAI^v<|K3Srx)aWDR4CHmLFN`E?aQTtg8|s4XkFXNhLGU6{ zw(7lJEvt6KxRe+a8EIp3?vyFQ4YlN?94xIN{H_GnD{j)a*~bk%^UHk!CuJsLpa-Tu znYWWC;JEen0h!DoG_>86KXndRd?pF4=Z6mv%Bd4ypvAHw6{xs?R64mx#?+HDsjR_?6~< zAcA%Wobk~hHH&_jy`51sOq+om??^ej&u-_jdAVax zfq1QQfx=KzYQcv50ctT_VY&{?niaAP>^iUyPmuX|4WarS&%mb}14p#2PLqZRiMC^ez zdUbcM$PVg>j|oY5CX+HpMN2s$MYRLAzXJKCHL1wS5ll;oJNCCJBP;@hS?PcXMThXB z4>FdwEq8sMOHlo~Oz~M=`&ofZ@G3&6&z0=#qvQbtH*ilzxFD-_H`pK`m?t{G0{v-z z6Yug)w|{zueQ(F$Qy_@-WCJJ6y>E-U{yJYsp>Hj6xM@QX*dNGXXsAgTdBV% zrB#<(W<)+Cn5g@$@8hAs?TD?akB|9Ec6NdBg5gs$hN&0YqkveG6R1OJtYk@q@^eI6 zk@p))Bl&N;uqX!=G73*f4JKaI)n7eqq>H!7V2;tJGLQN|hqPfxa&3q00VGkSJ^$1O z(5gd03|O)MWmBxPu}yM7)e!xA;u$`mMi$KfeK7>vO1Mr5R)@qBhWax-<_v=CM&B6fqys?sp{Y1s15D3=dgN7>wvyPWEOy zDhRBtYZ)0ttJT+jF9Se=)?{?58!bEt>>-(5Clv~>Qno*=?&M_T)j&mJ@xtL<=dIDM zi7GE{>U%TrD`P>08Xm~I%nyGg=tt%bT3<3r&jA1PLw?VzpM@$U_?`^m9pLI#j?IV1 z%~1)7&#+P%nspt~;H`NPDUc`F#bR$zH#pE2p?C~vmZr6&c!#g(i{VWXSRMnb4E} ze0fzJ5dXwdz&01Cu55HUp}QImj$C6kKt$|=8yt_dmPM(bKOmn2_cxN{Sf`cHVzH4R z59dK2XPmu%l)v@|L(y02(akdh1{yXI$sn;yK?9DzdtYe8h=!(Uc-lly?(;hp(5Ay) z3N*lm+Z_bSq9u`4ViEk@z%{QafxM}=C`{0N-ze|6>!KHJD^E!I989>rnW$5}=0dZf z)N&Y-{5emPkK!BhCi_L{FpNc1WFV}9*0u#7H8<%Nm%#M{69k@FKzz)5mvnBEzlnvn z@)$!FEr6Sc6+#sCsMB16b>-q)c^#ORI`$*CUf`T@;g-F+1%g#>?9;f2E(pw}pdxTX z8h*E=^A7wj&mF&SFO$DFgeZTw8lHk*5ZdQAQg3C;BIt}T>Q6Bp-19?M!CPG`l>III z{ANWu?;c_!YN0?Z9+KjIm9S5m0oK0Bw80CjhSTvl!jc3(O8?nMadMA*(rKEg4vRD* zRkyy!a{Ci!r@VP4|D4<(I^(<)NIad0Q=ii5tm3#0I`o)Fc#S=NCXaf^U@nvw%q-#9 zT~R%@GELHgGL94AY9{0J!R)_C01Ovo){FEXQ^bDl-O8C#5qTAi{G_0r7$&iEf5r%})fYzF`!skHu3DK~HG1nO{Ihn%pt=VxsBx-rK_{hG1Vb z*?a7#?vKRdSlb zS84b6CBuviuv|4XLbqYu(HSq9$vFDm*RzF-+|BG#6r(`%pAsQdkmfWW@7=N|ptO3C zDfSSwY7HE#@d{jz*A2-Xf2IAp?s)!KWftLvSt~2Oz62)V=U%no<-UC{GxBWSy?9J8 zP7j9NQ=$dTS3%b~Fg3KNZm$gJu0^Bo$DZs=jgUH0(K4t%aHkNAhkTf zSQ5K6Nci)&0KV0QTTv9=a4&f17n>KY0T)N60(sjtY?3&@mGOh721Mv`gNEUgXstr; zb>}xpQE6hNAyN1&>_v4jOoLzuB6zBV%~wA5sp5@vcYXj%3e)CijJZ1JYDAMMrC?gY z3(RRyN08?~b$Zk6l6E+F==tRCJb2uQ8U4pQ@n~LgQs3Gzd6(VeWXV}{e8vpR!(tf) zkznd4Tk{p_GExcHPvTfzbZsI1OcPub+CWJpMbzU^(Ty@j8t{jU4xsAb+-S=Y0B}(T z7r`(~uC0<7zul*3hdZI1ykLv$0|Fy(2MpX5WhUv0$4`@V{Xtoa6-bGxw3vX{dbCjX z;?=kB-1YcwuNfBim{qi+r_JnVcZED7d#^(73wQg*gW1J~6V%6X)Q>KzLKU~Z1`X|r z*@62~=EaUi)M2JFVRsFsz7@QW)Ko(obY}N)ibO+-i8>q9&KY=IXkR$qj_I2xuXLE_ z&1fdONF4g(&}!(S#_>m24npElv?i$oXly0|d8EV5J4z-6u9HY76_w(#{M0AC&Ha-4 zyxR2pf(9zuR!J9)Lkf7HlRtb|oceY@7H$!Bo<8|HxT^*JCIBtJ$r1KDE=E(x zy!S6p1{C{sH-YMPT)fktvQ0gN_#7l1whh+{tR+8{ zsG^WaTX;WrMl9%%BU+m{!jz4Mavx56zAQvhz)c(DG4HZ@)Z5%ce~`SV^RF-uJYNwFK?gJ}672uEJG4C$A@LsSZ-B`$V}gnLktD^tF(+Y0X+cm9Ms zxVC+`W8KcSCkEWUmUoFQF_pjGKbtmxnyiaFg_Mvf7Pur54>!pG5t@adU%hS9@o{8{A+>rhi|6(Qk4FHwFTqsB(#+>s%@5lw|}UkZPt7 zV8MWCR6S~QrKAmq9hktYUm{)NUm{*M>dCrh1bp10hJ^Wo>vt$3E zcbJ4vD5=Kk<*z|y>qF*xT8{Vr?G!Pz-i3yI%CYa0|2Km8h?*1i`Rnq6RVgAgVS{+C zcVxW7(W0HqK}vV6?-+KpKx-e4?Gw#Sq;V(}+RwA59lfkWl28xE=FqKNh zkA!G8)@+MBU__HQ@LlQn_dS~N0vpb(`LTF<=?^tZcbhUy$jTn>< zFb$#&jr2RTh{8|IpkIKlrt_IbT!DN^04Q0z(U}{rhZrnlksYjwLp5b~_i7}E!o;}H ztN4DT*yqX6MDOn3MAo;soE$vPYzWwiPN3Wmq|7{~V+lnwjQ74*Cc(=*)RboTT=zjg zt;7Neg?q&;gvAOpYJZwjB&94kF{~lVbA$*@46Vg$Yefm+KD`A74^7)bsnYqpH+B$c z-NudPOO=X^jcx1N&Fp4nlNVb4!{L;vD zbSXhlJJDk+ys4!8f^g*$K~mW+T6E^z0RFZ?`Z;_zHpyW4J|h2zrn3%f>JQua#>N1t z5z^pBD;<&}21rP#Aks)9(mge((EU=YKA?o%21< zb3ga}c^(!wBH{2y9Z*rd6l6JI27dBK>&1^})F|m!!aJQgbMuZ!4DS59*?Po}c!`5< zh~G%Wr3c1Kw=2p<9d&^DgX{vFjUQjpG3ARDin4sh4~VM8u*g;yii-Gu#fmTbpq4qW z8vj6($Q@Two7g>h&$z|Mg=jN@1ANpX!J9M;*Z5`aH%wc5#_;3;P`pr50hL?#n$gZH z?q@#00L;LJwg{IIJ1m#y`tZ*WK!11n-e&Pk%4(c;)n2-nWO*4;<^ zT+1%QtA18asvZotzWGTYbI=&R6&jnCtOLJCgroLAK+guzS6nVm43oCj#(XR8*hGdtCjUa zfX~L9!@&ws3ou1t5K8}P{!|z#()kyp5xuujm$rUxs|0(G0K2%7JuMb~yG>?dHFt^c ztoIkJM$=8H?K?-P20}PB8((zvg2Av^ivYAka3xcsj)S5sZ}V8QXvEu2nq)zIr*|X7 z6rXhPlOZ^pbBm8QD&*9>wwq>5)p*F4P5{%F!NEQ7U4=m*?f&OtOkHaK88(1W=b{=Y zS^Z8$uN^#Nc;cW7i3OgP7ln}p&j)c?Av{G{FG%)ZJy5~_D-Swg2itBcd!X^ne1Ljp z{)So)PxV7V51Vcy!|CWvC7nGRbS(~O5Fbf|Vcd-B+sknZ(`+1%#L3&9$l`kI;yl2x zMT(^esGnhbNEdfpsKvmg-hgjN9Uux+P>avDqkW$|X8IM8vfDEgRTLF?_N(sjH^sMG zD`g%AKVC6|C@kPCblu9J9EA~+l< zD_OhSu>M)D;)BAN$y8ZF|L-N&@lX0_oiG>QTMJ^&12$>_rb57$&<(hkILd_`ORIe@ z_Zq+CcrM!r`BJW36_+V3by&wM-rKT=D1%-<6;*xA~a9b0BzKe{L@6wr#>PPTM9J66^GmH2Sv&>yF)+ z%)d9P;pv(|zxM$_>BY-5RaxAG?h3z6wm!FZWqPbtyzTLA^W3ruSko+Y=7|jIj^Ok7 z+bfeSt~_~9c+WI)lkI>AL>-fn@(wVkus=w9)AnP@6{tk(&Vlc;;_O`~OJIVd zD?43BtX*12?ny8C;dQaeJm^iu<(aqy%n(Ii3!<#k?#_At`E4^KY>{T4Zp`tIbt}d` zsQN!GmNzF2X#4P&0c-UrGK_(|7m33Map{?1@d`U^3AKb)puGiJ&*555I0c48iJ_j2 zfXd?GSqX+QY=1gr9lAnxf{p>#(kF;8%w{QwXbNyWh1QPJ?~y*V2Qu*&$-S-XO9ymn zmU0>$ga9W&Srx;fmTnRYI6mcX6rFuC%|@k{#~kM z4-i>hg)mr?ps$(7gHrB54%X6$igZjNa7>L5lFmt2de$_?U#aBwqYhuBx5ZJddC@>M_eTI16}xpP*( z%Y{Ws-%Y%&HWugHE|Y&bVk{1MSB;>et=n)UQmK7TRbY2znOj8D9Ye$(whhKrBNRr^Kx&>U9`hKovH zGBMkpc<%v+zwqr^17yegAks0$EogV&RL@{Ytw3c)ucbQeZ&~jGt8MDblO1zB`TC6A ze8(T{BJ?UXyTf@s^lHk!@tMk`M!$t94%QC<73Pn)D4+mKM)kBsQpPh3-oDo(qh$4o z`O5v#nzT8&0HEQ;md9;4<(af?ywGfH8o6fnPN)@KZV`=M3t82=O-as+22yIL9@||Q z0j3MVO?2n)I+`e1U@}$vwf05+2E>~Tf?I5cu@8$XB;<8+Kt!~ zJ^;Z|ODepTW2_0ur9(|_`*x|`Adkjv@hH@bpIF|?>WYBaig%MiBYk>3vS@PTfb|NLp2ql`@6_jeqZzdz?c7d(-_!x4o>%OvXL!;po7BuJFXIW)8 zg=JkM3LL%l5?xYD(a15nyOFfM({t|xHj_8xVrjCiq&^x z>bi5=Eq`UY63+)k%X1?ySj`5uqlZ9p*RO;j74d=2+-Me4%qhVG z`K{yA}toB2SjHf%z`A-{|lNSA|xgHY$Ah?bjo(&?88 zUB>Ym*@J<3ktxJDV#Li~6V{4rqnV67EWF7ND7AKIT%dstO{MxxO8Bcq3j=U;@UkI-9yqJ>U|A+|)jFG!jf;4_5?U zv|Ks&7Vrp)K8{_c+B06+-Nt%+Dsxh)=LvJS0p(7AzDHg3yM@&JOqgxtbGt#~?h1-i zm`r_H%=1d=7qf^QC^DhU^T0pTEz zg*5a*g91DCET1ca#=3-Z3-Ne=emJ69eY2L`EikROkoVBzH-P(@4PPS; zhQs~kAG2-XVFq-QP>cm0cmq)b9}=@N?x%A83P)JDNf@&X-0$VD3^in~QTMBT4V^Sb z4MpTU5X5l^MF+w3Y6+foaS{L7Zq<9wY1ebyRhy6LL(Ur}0TQu`f4Zilg(RAO4mGDK z9&Z%JsISM0=2jyYo_8OZxJ@x@ljU`&WNU^-vqq7Ywlubr;S`0*>UUpGsq)dby4{x5 zrrzX%Q8!70S}uf%b>ul*Xk++_o1#AZAa!}vs>)_@j}Qf$t00abqik?`AY0~VI2d2; zU(#OSwomJQG_A1TlrzTz=?xq{Q!l2ArU;~&cEjI>~xdqUYbHC(w-L2CSeC@;8)dNg{3SA;5XWZAZXlZ0 zyx?3#AY?U{{aeJ{wx#+yLVvRdG^9>~L1Ot2`&w1G{{YM=x1A}rdEQ6ou^Rp>5;(I6 zD*$(u5)(@LS#aB#7QW(zt24-#@K;S{({?-I(CT))dRJes_0*JHLgEFC$l?f*1UhK; zz;_FNCFsN)PZ-CWBN(~`X1=3BviO0J6x4bTlSfOm;?8CQJ->76etPFK@Ba>00AJ@| zplT>wygZr3ZS3LJBdHC=z*{^?`OFZN!7n&`BJNv>j+O5h$MOFp{M64vE0_M_I zNKoUvw(>34L081B*vR#ORq)+M@_1v+Lh*E!6fh;=3?bz1WRJ9ek#of&`!2a;sk@bT=kZ+&n60k1}b+9*-VKpX+Kbn=IunP)<)!k^o;h{wY=yT$Hy<6714$hcQ+&8e-5 zB_uoUF0==ZA>L0kR?N0=73;n{2!o#Gg8|0 zW2hu$)g9GLIG`_xGo6TFSf$_!r(v^5izz6mUg0xUCVmLEg5H z3S5>?Y$4#g4OOG7czcq14>Az^ZaX6FK*)-Caq?@c&0{78pUck28y7bp z34{wnzw+$eDP4QtyGB)rvyL$ieAEE_6*wkBeVpjgDDz`==nq})Pq|8x(9kQu6I@TI z2GrDy4d0h9DA%QgSTKFcC2PVx+$xz|e@s6GoCL+w!S0VW{XCZ*1gYvY7_Wzbu9?mn zSw7F?wr*CwB`A1k7zek5MHZPXsV-j~)D!I7)eF4spP)gq`lJW9UVw;%ck+8cwnl_7 z=$-v~D={Otg>c3hMR#UY0HgPdqb|X=xZJzs!*aL`QNj+!nweh&zP$^3X2wsWAUWR? z=sgi@c#;usSqR6lFZGbd@a_fCtlkaYkn`{|aX(m=$|~My<)Kw@=(zUaqDSJ=GFihY z3TFs=XbPRwm|naJ&{AQ|eRHI;tLLd3M6A`#tr!?9_TcBQG~Ig(8NV8P?N6KC$nwVX z-l+)hJNpqX;CGruxEKGURby#(y^eWjE|6DvV4jyzaqmn^abgi+!}9WzXbj6W-W1oZ zw9p>Vg`_6#*~)iJXRcPk5AVDP@`T`f;04UFd^04pt- zGh)1Mm-9@Z|2HfCbeXBA3c3Bow!f$ zybt*yPi`=zU1#K~7Ggx8i7%U6v?>*(xfYdpD3NSQ*j{YZv-f$=kN+ zF{2joX0^Cz)&$HdnvF9$z@~;c45UFk73%!1CR@r~^`|)B|9>k}-k7!+IlRZOxfJuq zwuSLun5+^E_NZ{=Z1_DW)fuFVl3VfWVNw1(X)H(=rnb8CMWh_O>@sDBcECI}QF}Z6 z9!RgZ=F4ySG<>1#ghllD1f+%7_~2}3vqz6_tZlvr(H7jqI>|x3bXRM901GhDJjY;K z)bhh=fl`C~)%g%zpK0$ykVQitoE(NP!sHw~)Z7&n?U@z;ZP98?CVGywTA#Plv#Zs_ zl#o*_CV#Px-F5Q33}DIihJlP(>Ig0{F1qU<^EC#!TWKX*7pae>NR45<@enKGe8Ibh zYHDu3-@;dJ-apxpD0$-C74y%IY*Z5VVY!Q|$i;q2saWWbdHl%AGOe%p8CQ@ms=rTU zp-c1dWbU?S4OHqBT`lTSPG!O+)t?Ep3k)V`#>v$Y{Q~^v_qz&mluc^Ic`0xcsn&@pL8mhjjk}^ICvmuH{hb_c=LNI7&>qSf>OuOd&SGgVx`yGSk%*WJoO(`qaD1y<+;0umL&g? z&u8dz>tJhNn`O1;+qm03;NRt?b{~(2KbYB5){s3kLYpvhX@t(fzct^& zbZE8`{25yhi6R37TKKVT`$yfA?qF_jsQ zvyf6NOZV2G>DuUnz{2&cxdR4+kcgtpoU?CCh~T&Js$&$>ZKw%+n)Nsn0aX4>kj#RD zzTlvYAkISMnW*wQ>c4@wejpR6nv1}%{n=v|MrWqZhdBdcbLO{9%&(W5gW{P3w+byx z?5Ae&pP_r;N}K(+qTvM!u*Nq7{tG_iTW{-^R882Ve+^5emAxBoJ1O&Ni5Aj+t8z^Y zX{L8v;Qig>Qh#-Cs1+2!Jj!83oi)u~rGc87}$DqHS z-Q7Q0&^%#C>);R12^WNEU-aN%|9Mdknm(7WQd`O6{=LMIlH6#f+BHOHv$g-|^%|SC zA)w?jH^19SLj;vt`A>by-c9I|Xf6==75PWzfdWeJd(WK@svg|F09!=X4USdE?9gP8 zn?Ys!vs0*~xO zCqX`OF-H0DFZ-}P*6ok2w}27@86tg@z#kixz6Cp zU&g6Lxoqp)9zys59}p`(l_{m_FPe}E?LvYO_-gD7c-*Lz4o&ikV`vPNvGN{r*mD_p z2G>k~6;I9z8pC|x-`hG#-}f=jXy{MEd++e0z3ueksCtEll_{*VR)*=TMSl?C9@|Ft z`dYxFk~__(bh&1z{-J1d+1QC@Zxxd1g_*u`A2vx`t_Vx>nVgfCa93r?xAk#up0B!& zAGUrO#0PLlM1#+3fPO-sK*ekx3e)`8_``3}dy3+1+^{uF2cu&{`gTwNXb3X|J^ANI z(e_J8d~GL*jE1twSGoWXxMCp7|6w?v)=$GZfcJ4+_ql<9EWl%LVIC|}m|P(MwLjgR z<|;V(+|98w~jHKgTy1*S7h!f6>3Iv311>b_6hve08!iO{HH>9- z@NmfOd9FaZmi7u0q+5Inq<RNjFOZamLMIgiEorVS%#*w11#_*ZxQmUcu?nZwK8K-YLki-a0WDpl>LQm6w4jnHhv~!eQ;Z z#hvI6I<4Wr@babDLvFKDi^mA%7;bzTV*{Mr^h)zP@S{-C$!iT0+Hx!Ld7Q$Slo5oU zA5&;F_B-c0OKYSbL(mZd_mwsBl}Vh=5N$5)20mb9uAMzaGay#u3!fXCHaZsTNSF$H z`CgpVRgWk`e-K0+^5oo6fU3oM{N=ZnSn z5p*FU(B-Q4BcL(5WH_O>ISFW-zhn1EH~BVrh%w47U@TZ8L?g+t&dsgJ3bjOsIkAbS z2+NsmvUo1%Iwgs}^*OAnZo?VVJS~E^lsJ1WpE(=@36xLe7>{vymBayw>4Z zHE0T56rLo6Tr&}ELR%6i2*oIVyuwT=+s;07(-|qtT8F*gc;z+Ms zj8ehhIsvGTjCn3=Skui=N)C73;}(wq$PQIT=9a$I#O6hz+hxc({Tbg8(;TlEUp58v z=(?4b$T$^jIreugpRse=9&=W0{YO9}xVe3w-Y0Ph8;c!dJi;A%#6|azG_j-DdO7m` z8)c^8aoP+JLKXA%@Am`%V@vA1rRTIL@AQ`^76 z&RZ9rz|4}Mu(AhMshwKVwRFPMqk|hQ+mDI@Avd5(A_Rhc%=U};nz3m-jb%_FKj@H- z$yP>4Y}q#-n=3&|!{14g-L!@1YSu5a6`ebB`5t!}(W#D)x@LWcJRS8A;E#xW*3r8g z4i0KOhJn`nl z2Cw<{E-E}F*D_aDrFoO>GJOB5k8%#8V_Pd~&sk;RFY8M=Wu%m`{NhjLgtJS#WqAu) z*%jZlxGqot^EUAi?PCwZXpn>jv2l-i{DYi#2y1B-;*l|&3DaAw6acnuEeem*ozjlO5ua7r?eL8P^_k7r7BDf z?r8;Hdp%!>jPj;WcyC%czH+n1q{x1ktrV2${VP2Cjv2|kCEOq~;K#ELtH@_EtURbX zuOiYe0)_bMxk>G4@01IHI`-BglJG`fw^VKk^ivok#WK*tpb*%rgw&X@M*30;Cs0H; zJ)uCqK?rp!nW13N)x@N@I6mn!<%h;;HRc2Q<1D!r5_aMDLOF=K3HAExpkzNqk8tFJ z5hTe2K1ZzUD)J;`c=BnZK?HWCqL4d^ofx|#0o0c9)c6XNlnc6;U^KjyPGaqeLSg+} z=UaTI+FXqII}a0yD!~U^7MJTeX4pV020rujd5T0vneBtlOdmo=QOru86+gMVIe%nv zP5_S(`BIj3wzFbkYuK{^{?Q9G6Zrv~^t7YmP*d!7nwOQV+fGz`a&i#M{l{DHfrPME zugN`^5feQ5pGx-*s7@a!whgbQGq=)?3FcS=;BYQ`T=e^bz`>)HeuNdObI6{6EF|7) zst%pZNEWoc7NL;Y83VFmQ{qV^D6V|zv-eQQr|4_!dNq#)+=%~DOQ|*ZN|8S)D>s;k z0vgIYTYk5oJ)Y<$Fje}gM`b@HSFT|3=3#6Qu7dQUjl)7n2_7Hs7D#RIb*B##?^S?l zz9??#oeNV|R=C+9A8CH?@jKhgZ*l%l>akE8=Y6pf29})uMMlzm)waiduRI@Ac_c65 z>!~y-cqZ=}^181}GY7%0Ym@Nu(&E-C@Wx54>@g(#EYx#`e`XlBh{vdu4c55znhkyY z771QtyNZ^N_*t+pBaDOR_#&I_Il8kT4r+&DCBX}1#=;Y`6WYO{FYJX4Aj_-?X`p;7a8qhWa)?kw6uE%T2io_DM2W7U2zD(bWm>ohol@>WwgvCYZ{0^=3`F#E}&~p7n*bg9X~r zxLXy(Cw@hqpo#PbgFESrY2_9qJoQs8qNyP_g7pTu>t<%Or!SiFN` zzp<;0vn)6(@3muKa-)V1{${Up zgRTn7bCgGd1f)=l2_@n-bak=4OM~5yOlF;;_`XablQI8jW&teQv`1OA-C6d;i z>~jdIvR7z3WumHA{Ik?F%L_)$-3^L(0~8gU9ToH&;#I`(%fB(*HvuOv!kx+3LC~$O zP{UR8PHbEnosrXXBId_!li~uKO4ciLucAarc`ltR5p8eA?^#fr=i!K$ym+<0JuC+p>^rQa8Kj)i(s!f2F#V?>4%Svo7Y#~VfV2rf^j1y!Z)&^NZCQo zCev-V!M4ak@D3z*&EjXccrC0^7G^V!Od}BlgO>t(Oy*B)$Aogq zNZ@Z@95U+&lfxF2XpLIjYJzY!=;I9sX*Nj3Rf+|*7|Y>5*1=ACA|HfYCWOBMG|F9tlDyNyWAfNH=I(WNCqlwm zaiFWUd2xi@o99aZx|x-0Pw*%BK64ZAG|p6^Z$n-ziA&pX(m@I)ZOzE{dflJ<$V=lZ zC^W>7yHkgQ-fgv&pj3~amjK?P&)fQtb6wqoR8=v$P=)TZW>049tLi}t0A2Jg_LR2qWxnl5xS;*AFnqZ&CcK(7a#8c-s`#$VU1|+4-?z&rf+p9;)jNXtBn&%X=Z`-rJV3wUz2ElZDDo5I zvW*kgSf0o`-Yif1r;i1R#ga+0Z6G2;&jj1!A8HG1G+O9v_7Kl*CJE$^Rbgy{B^-a9 zzcgs>u$CPdewnSrp>Dboxn)e(?$RN#Ht%<#Z>ElDHMWsQ85HQJ3F2fJSrsi^pcX?p z2oGKX$$*a@B9lUdw5zL6esQ773;&s^m?-vCl;OM|n#JB(?K{p??c2QOo%g{_@TxUM8 zFm!+f43xs3Yb5P0bxgf5$EZz=4OY6P0-tgq5D#O3?1UN$q(n!9G9U`L*K7(Td**9v zcz)%_Rd26Hc;h=ElyOWJY3AfjRGvNN{-TMU5BXUh(d71O@+)&>24DqekvAq|nJtBu6vF&7qamzNF530s zFf%c2A#Faolb-wz2Siz$xAx8;mA+2v80tg*D<~REt<8e}8$gyiibc34t;ykv6%1%5L}ufl`WJ9g13tV_vDgV!rym${|z2)LLFfeNc^I1XEpJNG~M z+hZF;4&U74(NWi|3~Q^ivP`Ku>s-~dUw$neyPscFH3Z;79#CJ)S;6v#YmQ9s6qt&I zfApFAyqt1RdeD01PpW|f?S{VmO9e4C3?4|>n~Zwz+#qCox<7ERi(p$&fu>Ae@L=S_ z;(*M};Y=FsOQJilZ-5(U#@o8rGWpX|!K=L63$zTr@F!4H;{n;qee!}Lh(J-)Db&MGYZ|g!_DpoTKhe zT`bTvKL7Z&;G*O2S-5}+(jfy9=?hCP)Z&t4CNq7)}YQGoZv^8QXFCGqVQtq#G(lFTqK4bARR3b?NE^cCFz z00tj3v+o+&EdGJcS?sz7G}nPg_}-q65a`wmz}NI=Jr`4Pn!$zv_b={-dCfdi(k7KT>G)I8@+L(+ z+mkx2;l_%rz++PzgsuKqcQO0EJNg7ttQ(4FV!SAz>#xP_Z2<19-uC)+55_4^iT%>y z=(8t1;B({ea0+Q*p)4AInC4q4w)fg94S!GHLvQ#x5_WrK-u_(d`mZt3L#F_cbmx`8 zhfY>@JQlzPTrT3WqM5m7Xv5`2#SpmTp;ll8}>aKAv06<4&?hUXz%Q=WRbO z+d@CtdD1AJ13~vEc@+5WPx7qr;WFi{4Xw`yOsaM!*U&cW)os2C7mW`jt9WV}>p*-x zN|)xA1vj#^E1L| z8Z;Z7#vg*dXa}jm4kQMOgep)ko3RY;0%}LL$>Wb8w^!7ZEVvb7LzQH!1vy~Hp(w+M z2qcSybcPR(nm{7-Dre%}Y_J#rXnQvtbSD|Y96SX8K>eVS--@@tS@|>2xEKXGpLCqP zhnkc?+@Zw+t1h6a zahS%MUcgtMK}7ny(Sux&jL2oibm8-QCX?hIo%vtmj-f@hjBU!SNmfgl)b$^!tShm)K>k> z*SD@u1DT<_B4{A3?oyl2%a0gbLiACJh{_6BQ7PAR_AX zkm+^6nk1eS>Zk~H5=HUKIOk7gK9l~`PKgh=@ZN*8-4k?@%fEcasP1fnyiX}a2@Tap zuCrbmD2IK=)^mU=)qzlISFc^agXc;3W@CWjVxPAEEo&lsxX?btN#W)2$mE8QqH(rh zgE+`L>9~cd;Nvgd9%(`@08p`Hv0@s#vkH(EmL-6P<1%3v587&G^;94R@! zN`Ia3o{ur_W~AxJj`}_wCml^1@M#(Iq^d&=C&3;@n#w_N99~;cUBox_QQ3%yJ75w2 zbmW>b5GSmJ3fJ_5qV32Mzi(~EUN-pRT?kArWp+MHAjZKy1P7Z0_8#%-gQOJkMHa7V zDExiz6(EO+(uX=t>p&)R4+YNT9%Y8RY$(DYh&i&SWAcd4a`c@eD^oDT^9$m5yy$NT zHaX7B%Tt}E|vYOA!J z>`r^06`X%uCUJU4vcbt_Lz{Ji8B#G4T=4hE?F32^k?H6Z9^bR88iSX^A(aqGvk z;xuy%5uVUCAlof7tVv>c65!GGOVsq;x*rt{&d>t+Q<3+_FLY_XB31@>|@EL;Ch z#`z_Gb6v#~SC!doJ@TFGEEDdm9$Qa~aqgaPU7*V>FOzR}oa}U%xP1ca1rgYvq8;MR z%|SfZU8H{TAj_PTdlmFlBwT+1PCOgd6{t5jsA5#J{-?2{&8f3In~1IIJ9l(0Fm>Uj?dYf8neX3V7v(+VB3RJT}Km5q)F zq$gqlEnRJJ$f#7l@}J4)glrY18GGZiYFFL;=j!YF9?Z$k%vYM7-N6k$3E+XWJ%0^s zbhV}{LZK^=xz!V2+r@u-;AdIgGt<4;2dWPA!ZNu{Wp3%nbp~?pl&cT zRk~pCEa;29!oLWYey`bo>z7B;t+4HvHx}yz)wb^$&E;j_LhY}~2p!2j3JhbcT$3LS zY*e+3P47Ea;9ZoDtL@ihcsQK5-`=0ixA!N)*Zg%6BC5}1`dj*7IOun#Sg)g5KurtH zQ|BtfCGr+g)1TSaWXZbYy8MC8D`R+p#DgPnlPudf5`S*cPNUy$V*{`xCh{XdA(iec zDB~!8klw?)*-hyK2Ah=x{06oezAas8w{H&Ncs0!+d=X7H0Jk|iYu%D6-3!nn^k38U z{cn45y*ypR-_Jj;9TwpJXPv&5_dlqLb5!(=DDc>sT>k6kno$pradR1de=nP4WKb5`?q`9<8;Vx5%5;8W2rJpZ^&s8`+sQ(KY{ z*GIpl$n%teL$(tmT+JXnQ_!9uS3bZd@$Pk3G`NjK_~xWUM%@&Tie}TFIX35o0|@8a zCJEFEhXyh%oBgkbeT@%HRg;vSW5YFD)6+?|Qc}^o0dX^1xh#4^=9nH0MA_%jP;a-`|2xpCWj~{PxPmJN4zi4b z3Hh7rgPxg;R~prP7?k7WTDd0W)HNk_dT3Pi79eb}y`akLO$K#*W8jrj%kwb{3;+`N zoRK`JYd)fGNmy5nzcc@UThXdOM|=77yG!y8b%?(kB8M&>rUps(pt&sXxG0zRR;DgJ zr`Y!#jjQbsl*}W=6n8X~{|t$AI?wt$t24^LF4@_HYLJwaR7wu@^S9^^ZZQ+GzY-`k zaVvz^nM5z27_{`X0Dm1Ig^KcgjrwM{IrY^=*u0e%*Q|_|zb1y?WcAH;c_m}XEKvM{dnC5kkt`$(@wu1UY;zx2SK7N0<)p<5+tN!_)V8M~c0fU%%v+d{bWVpFw>Z?pP! znsY@vov#<|*<#FDp1IkLpfsQAN}vsfeVG4sC!s716N$sO&Ip11)>lvnFnbmt?CdTF zzX}y6tkE6ieNA=mAsMgviu#mCrFjmH_{6C1NjPpQ$8Leeh{AU&T~IVJy`7A z2h0-0{^vYDidTYrR@=A|G+!zHF(_OdHx}m=epQQj(9mbD?Wgeqwg2aHOtwvsaD$1$ZK;=F=b_QK*~AxXeYG;HLdrBI<7Yh9NpI&^5p`5;K2awEu|$cLAkE_VLn(wU;`6-^Mvms9Nxy-|KsIOn z4P=Kk>>W)q?6OTk)D3XXUaH8N-7F#P1`zL|ArX1!Tdf49@&z!lh}+_e>JnJ_ggVF% zLA?Dj%MJ|7lLE0oA`NmSUt;>v zR)Kq-DUES%`*J_?;*R3jH9mjcgY{ZRUy;K%F!G*M(=UG~!wOUA^E>{`rumHxT7~bd z=gP0Yh&b3UpLg-QJ?rv;H<#n19)I>f)v@Qjx;O;Ot_0LRH%8Or`*ogc`y}87U{!bm z6!S!4r!ZOOtD`?lnrZG0jKX9Jtg&~q`7jxz2yz?C27CI~hq!}iR~QLxf9+oaozZ1P z7nMe}HM!p^gMaHtH@zMq_riOhiVwCpoirRt4o2+w131IY3hChN69!5bWw-!AILl6NR&WZ1usoTb<)4Rmy^DLKbR--Q#=XF z&OEQC@KfO8_aLV1G_XN}pari>?%N^2Cm=QxiY!75*tauz9n4|32WM7K(a~P&Axzgy zh0BVWMXi5EE?W}+?H6rNSSkb2h|qR6ApQSZMI%7Gt?0iBIqCKGf&r!7@er>{0Ll-M zQWEs6an|%Au$*{tM7>31o7|^Rk?n8ME02?5SYrgZ&%XSig?$r!e}8Fw0Z)ie-N-0o z&2at!w@b~p7_vUxLc_jmDAfeBDjQYqAE|4E;PUrU*Oqu|Dc7^6 z`+bzO=tSeHQv4x^9*Z$6Wq#z5$ z@V-z0wkv-J*O}CmYN~{ot+QT@OyLc0zv?!DVkVkj9b|cN_g^{Ryce*&RYMgdB@^}@ z3DffdmB|x08CmNRyI;HHY})vnJ_!Ax%L-cxoRA)$pI|#PeDK8K!+;b`c;SAdSaB=x zsep^l)0Xk zDI$OxNKn=p>WD=j0W?{!Z4OzIr-T9#dR>m-7k9BPhe}6p)HqU?6bav*k6ObB*un)j z4(?rk8))!5jCxs!YeHr1ds1-k`%#YXeoDfmKiP{aB(&OZB>-=#C>W1lxsdbqgNwxDW z_rrqA&X{Dp;A6*T^#9$0)ttmcLdSe%Zd|RrI+%x5TzLt6bXuq%V9oR&3|JgaGv~f$ zaKycfiLj~Qna0PuvNbKB&DsD`szqix3fu4qZjsjTgVrpJzy>&Y2eh56>PdDkQRD#e zU@6wM`{)5ywjWKfo*f*SKNXT{;sqv><$mlQ^HfKzqefMHyHFAOpeH}piu!m)1d$D& zl_x<38j<2msU~hb_@BvJZ78|fksshehhd?q|L*nq=vAdS#FP6E0UPME?kfB}iQ!KA z%Xh^3-Aw)~NQ+D#r*PZx78sS{_vT+b!-=18@RygDrPqWz2)qz990IK%z8BVva{>4lFr>w67%2s?Qv+2z!O-w+`M)j%!H&ZafF@C0?r>j(jYD@vPUuzA!CwTbAM zS;dx@%lf5dhk0%cn2e7vd+_fekO40ifWFWBO{6s*dk}N?kzeV5&CZZ4f2yGW=0(Gc z|7to}QQ)aslyhV!SNqt7CkbwHmb~Xa^DOMBv?UuoWF{CS)oC`F7Qi6cIF>Ix#Rm2U zMfRC#=Ff)UJH0f^3m1F&xgbJ21!uRcyz=qrS$s?U4{E}0PJ&6r;Tn9faP{xzzcL`F z8{f2XcM0vrmV?iRZ=Y@9Lu&J;T_>M6ecDuQ;Ch#A$Nrc3_#xt&5pILJa~MrF-c!Z~ z^7_OOJq_wQq@UQmWbT;pKQ{;Vi`*|_mN))O0qJ63MpfLFq_RG@|GuWR;kTE6yQ!yS zEoz(BBDtm%a{h;?vv6zj58M7dI!417U4lpt5Tub31r$MG^cdZZG(!nVQ9w{ql#m9c zYjl@%H_{!_&-^{d^S=MUj*UC`Ugve5=f@N;ub?~zx~LzOd~{5EGqvR(l|9NKreNdy zqWB6ki>~J5+`3yyHHEESpk+VJ03-yGpIi|K>$fagtGu5s&PB8{79rzLZJF+n5Pw`+ri6^NbCqn-caT}fLc_KIU@ ztc5Q*JLu#KaQ^)0p<1VyO7r3Zrv0aTq&d?Jx_R94%*v9Y898kDE8bUx9ayjf2N*YO zGA*W9d5@)uRPKjd2}x(?L^Y25irxy?DeKJn)7w&kDFYJsN%)e!aPsKpManOV-S7t5 z{n*{L!x~J7yH<4Fp^CKJ5b^hds%jI~z$zl+ye0?vdB^AGsbpfQq@gzYofHeZ7&L5= zxFDlUY%}YQLAd9m!PLC>^n*#99WULV7OwoLbJqW*o12)v(4ECvO#97ju|*Oqh%2WN z3ycw(WgaL2lZkYTZB#EDJoKqZAp(_CxGFn4r~f8#z|=CE!PukY@g#w36IVT>=16}! zE@y#ww;1S|NaWn#`@q$>p|eJOrKCY7#{eX`QxmJ8GIX#F?b6jZSn|#qF1>KVq$C<=}x~F!1yQA5+ z0RzLg_2FI>=H%WgR*IoVR`|%NJCKjJ@^Zo2V3ra@W7kD$EgclOS-&T4VTk-S{bgvjNHQt_7+r6)bgU2M_hV!<haVo%Q@3vW=dKq zppd##h;Xo3dS(barC={`P`N3|68UL^0n=FF-jhXf>SF9*N&9j>oY|MVJw|HbCtE$% zww#z*A?96t`%ac02Q?A;wfaF;pl1v8kVmTopxwr zxf%UhuMgh`rFwMd zp@sAJF`{OT=Sqw?Y3(A|oy&q%YY7Gi5DR34>_U@3$%$Jur?79^ zIn(cg$$}<(G&)&Qke<(WH107J6?%qw|4C{71U@Wlml*?20?>l4Cn-Uu=X8p= zV1pe?_LHViJ!B|I8}*PDO*CZ3J}F>0zqhmVy_*FN%FNa*FsDc{`nd^fx~glcTeCbS zj7k`NGA9%c44j>vjjByOQrLkFMdRWSgm@acb#rPD>YtHuaiPf=zOm$`RJPRH2f;KH zp)||Vp-=yj)CkoLQ^PsO0s*ct7jAT~qM7U0+95d?tCd)cqgl>JXjVJu?srmS!gM?@ zbE(Dbg-M;*gWmb44&^Q^l3ATxe?}`x+yeLg7SxuQ4yD5Awg(=OH;Qn5Z8|Ves)^<> z-e#HL-v3`UTN(R_9p<*?@cg~S(D&v0=A>SHQUpV_jLV`ta-sAWYF(Mucyyx{BYK${ z~umMMqhf=Fu=O?jbX<2&*69rG{pYk5ss#|+zr_fb=YF6KubI<2iGQV?fe|;g}v3kLA7fb@0mqL%l$Q3V>hRj%A*7>t zlb-x&a(S~yqY>rGs!wjEfR!p(L|W0#8@yvOI`e(46o);){hJ@*xyzcfiQzpCH=>4uD%C>U5p1m5eI6rra4 zs&w39wfxtzapZGR55LD~Y`Sw@TntMul!0>6FSfANE+hn z!frAYviKVEDmT>ozNP&JnrEZ+D>h3`cK|AQ2>BqHk|6ws=%9x zAel9L9a_m(a%Map$v=w&_9HA$kZ{n?%Y;Fo6!$Hf`^DSJI5|%fv9QXu;r)NRmey$8 zn}py>nTYdrT|G%HW>#tF7T3*p$BUlBfA{S6H_((OvUnv}vHYMI?#`N;*R}Ug?v|O> zS1%%jl!D~nrF|3nU<~@E{2bkm3CE@YOcM`LFcNazDCglQA>#ASXyhG=jqJ71_klxn z)Cx)Iw$wRM(qNVmT5G#YkGO9rEqS8L>MPh2OZ3?wHd^G~Mni-wW7OQY7mFHJpv|H0 z&GZ~nMtbLeNfmw0rmUUkFezWcK9I-cp-lW={Uwp%yXC))`5IjYRTKHd$qg~~LR7EZ0QSeW zoSqRowQ+Lv@H)e9B~UDU16GR$Jy(fVr&W+{+s34PyB~zGZwar~HJX=MoHzzN%V2|# z@USu+&4Vcc0n^Ngmk_L>gool^yIIY&u=^}y@{T>g`g@kf+vt0vinUUXt3EeddQD%z zH6NGE^!ZEc_TDIShK>bPn<2bC?$vD>q-wECx2bl zesW9mRH0{HUS7XtWVF)-@18WJd$M#aV{&O3(sa={WoMIiu&wR+rn0NwM~4GS)p)IY zm}S)S`82kU4ENZ|Db)W&-lc1u-qC|j9JHnzk;SrnK5=1MJcu~rhQMP z!D3Pdv_4le3+Yfh2IwL3NcZq>vSHK?GfBb+*YA#w!=D|~<6K%*xW8v_}}A&qW*hR!bq3UNj04d8#tQjNKp>`Dt&-OG$GGIO?z(k37JJrC5D~awQBf8e z)Ju6-3*RBYCwBrgk-iYKjkQx`+Z6m;5%6a$S@%vvecTvjj25FcS0Y6nFZBG$3NEJi z-mRGUSS4ib9+QnkP7ogCH%THPZY>dcrP8{QON{>Ae4s|3*B z-(qWxXxUdZ;C77Z7W{^_%X45}wA$$dTW@>%Qw{S0L6>_><1BZFEV(+@BRz|kOY5J# z`jVSy!$VKo-e85HP%(TchC(qhvhB#5-zu_yq6$a<;WJ-Mk!7Xh@ptx9rNr1oNuPka zAWvj)7TYzk7HVv)qi=L;b&A;R%v=RYsgkUS;fNY;C94DCs zkQdW_P&_?Kj|P~C)j0Y_*@+Ozju)PEF2CNfmQyRvM?9{;CFi{t{BS=A{F=EVZhPfl z24{(7(gh-s1CF1vxbyWLnBguqv|L!es@zYej*r=H2bh*f981Rjc>9C~&q#mAi_43G zb*hTULmA}{CmPQxiZGSc0rvYA2c|h2=jft8Bg>MK3DbirLMg1}F{%}9YYq;J6_Y2{ z4YqZlIL)i(IEhBU8qtMRYW9Owj zRtw~{NYas$?v zvr|(~9X^ZUFjo(4pBTyLsXt(~WW(1~>I{@Xol3M|zCb(2f8Pv9=nBCUdIy5i)w6pYqEm>-TiavH>MuO}qM?C6(Rns$6fK;>_sq!e z!-VOpnj}|a;=kTMex=A(h`_E}TnsyIXg$gBZ1!SYSWct(M5Ah*N49ywZ&?r%KJ{dG zr>1v_Es6QZk4LrzwjR~u_(rKupfrDO)slVJ@nmW~;Y~38^iN-vvZH$oSb(z70?pi! zbU40c{+MogVOq;Tv?P5}PK;p`Z-1#C-gLYDpG;bGVMi;O-^98e zF-NH{9@+B`r=tKC8c%*55Ihb(jIl20^8WXHhgXshuG>%|@tvhe#h4q(jU1Xshwfm@2R)B$%~l8t9XF;eFq-|iNrLs7K)ZA?}g^^`i00zV|+Ogu5uWoVx{zbHpnJWYr@vz+y;*Y z9r()1_@SN*kYhZ_YjZ!D5aL@F>O%S@bsGis0$v%4vIJxWy^4)Jz9yIx^kxlF$)Mr< z(I?Tfl5+L6`5RHh?NW{KIK%yViv_Us7rOQz!wNr4N>`h`Co~1*^B)@!Dtgd_!K0bpDMe3DVSis;K_vxoTYz4M_ zD!q7~sbmEso6=gNW4XW0WRy_a`}7m9^!N@ir>!8kgH^m=;Wq5#`H|O_LDJpr{@wF1 zHRg$)(7~d?1G<7MxM|Wl4@C4|jfpL-T-a2-@OGzPZd>Vg=WvxmE?8=z#Gq}SC3)3B zOy4Yz&gTh+{6x`?rL`lwMu#8GFG?R(cm1yA`32JNqt^@i>@E}bTg@hx-mKyW?M~Mf zuE&_ZY-j)Lax&5R-e6|i?hv!KKbA?^v(Ar5pi=7}uv+JejD8g11!nIO)?Ij0iD)v! zi-_q7^Z^A>nBX2bQ=adAaNpJp;(4{3#zzP@ynfLe%sUb8t}YFKs9s>+P8f9dGed)T zvMtX|QF1|vvx-k>TKRTG?snx}yEI&jDu5;q@fOI?pml8X{--rkPS#+sT2urZ+Rg!? zw{FAXKo1+>892u#xBd2#p;CQ;TCvdiz~+R4@7*6x2)R$r?Vq6A`#uVnMpgSYV6=5c zfS8PXy6J-@Z?}-{Rd!3(*EQA)#~ASOgNVO}*ORcI%Ic%EeSd4Bel7f)SB(Cy%>q?p zs|%<3u{FK?$~A_==)EEIlE~p+9;Qp~OCAW=3tHr^ydk0GXN_FKB`tdmXHm!I;>Hsl z&)7u<2wIUIz?zXp>bEFhk(ipIk5#2RR(x!%uGqO8E3!;`Qk=I0+h{O9?+SaShFd(7 zfAA3cmbV zw7l?Q;rk*5s2SA1Y`>?udWK~1FOP@up8mfrBC zZ$5$+&1nwCgIIHoE}b&$lyb=hnP5BH22>-!f&L{KxMR+u=HPispK>Dit$F$JX92*! zM21Ri4og|SqF@MiV?J8b3(K801TQ2jM_2#dGlD8KVru^$ZQMa$%|OiQ_4uRJ9TTJO zd~DqgrLlKwfX>SoR3L%&PsmrWb%l?shbD~N8&2^oqBgkrN#^f^&8Ccq`G9ujP3*4H&6L$ zaJ_oE4~9FlI~f$D$u4){t07d+RRsb9(8nD%mNvSyVZO!Z8q0q<{`@?$H&yAAhRGt% z%`Ii)y7NAMRTfJSyRn;Z==py-T=+kEx%G5-LyoFKod}X;CI>@t@lxFzk5pr{$F9cu z@)JcOZ+nQvYLAuB0NOS$i;vJtRtk}?uH+-#bGEE|#VsrajB{;Nli@{1Y5ff$q~Wy& zr9G8g5T3X*D$scuE4>o@lwK3N12$1Wy-4M9@LW$Z5r4bO<>dqdR#714Qi56MQ1>hc zNk*BkZ@xKPs%@(=smI!*+I_fBU+~v>!Hm3{i2Yu8-OO_x;Esz3-6O(2pDyIUPuU+_ zwErGc%<_x;bm4Y)L2JRh?H}ndM#~4LRdDmr&C4m@Wb=R5Oc*EIfB$)P(Pw7zp%DM0 z_zd;0xLhKx@5);BE#z$6d>rhV1qlK37@@*tBJ&T7XM`JVc(~?#qf3h+-JW;kpINHm zX}owZ|GtH5MU;VDr7X?9{vlM+HhEkeh?-w@QuZYc`(te0wGixdn1Pl7DbX?d;6)do ze|zDH?bh}Q%l{+*!?3(xN=!a-zjP}d?&k=50hQ??+z8tczqmWRnVb(63Y&AH*c|!3 zGBOAnmh8}xGgBwJ-{R}%wDLJ4`@T7z;-pBCT$>30_pXOTi)q;n?Kf6@WqZLdJ5gd{ z;}uuS&oqmTFpnulp8K~_8{tx-kuPqJ}mL z36G*h22^Y4I1U|f7vmi7$bU}H3uH^p5f-7j)Z zd7IOZTw-jvNOlch^e3htwd!tVQRJV7EFuUY>*zT?fmf-V9q(oq?m^0O_v|&v#Jblh zKbTY3u@zC$`jIM?!Ixt7?nmb)K}W?E&OUdHx=eGEi?%W>H&~o0%T&&lCnhcztS&PM{f)#|me?Quxp5*3U2AH)jp(O`~YONtbE(| zzU7c%C>i20|4g@osU~(dNVSa~IuG6H6JEBa6V&q&KM-)dD;~5ZDu)82D@9BeN@gmm}_Lb-i7%d?oaCC+%ZulfgZ7m(Kvm z=GZs{+=p68YPw!i)Mrc>VV=ixLiJyu_Rj8|(t#3!y^b*OwA|Y2%F9U=s452+fRdoS z6E{OIGx9}Bw{RuGqw%Zru~)usRwN9TZ9$e8_b436&kOvjO34s8Qdo#-3&rYA=^UCz zA2JeQnIsNSGqy#)`Q!9aGK;FxWX)%fQ1l2=u}3}ZQBN$`(a(tahXs^sZm$RL{CknD zUzPLu5Gq00a&+uMvt#^);f>BU^MVgq*S^4a{R>P?u)!r_2kONJAqT)x)6Gm%T4amn zytsZs6~pB_SE+i$Fe%vgp2~-;;H=>O5&5TT<_p+BZL_y@H+~7BA3plEL9iRh{RaP+&SgNzxD-jeT z4CG-3`dC8zdiMV5R5ixSDN+{{Pk_0B#sGv?|F5`OLLHGnHD97*x{I;7a{FV$w)J#* zm(mgBx7LS5n1FxA^;5T(;RDN;px>{(ygpJa`3qv)(sBXd2gy?Em6}9&q*gQQ6qm(f zoIOQ?L)IV6M9~H8iA=glW_q;jnfpj>J^q%|1Q@#b2p(-~Wb?(!am;hWJ;>bL6D*Ij z^O^62|DW@y)Q6rM>>MSAYk;YAYQwn)$YDC100bafGtvG-785{;I85Azkhjyn!ZqBe zvc(dLAQ3wRx^9ycz?xKzc#i3~Pwibx zt{s1%ABv5B5fEY`6CSNGXxX;v{`u;8#)$*5I7pH|dATUUdbO*7>@MbL%mqggPf5YI}WIJZx0b|sUm^>*2(f2PW8aYT`&}QmsnwLf=F&)6Z zF&M?1>W2ZC-XAxZ!bBNpWo(m<2c(>%nja5ff?RE3Gi+qQ1f=J;6_Qv**FgN7NW6kX z6$tmIpb{d*A@=Js_e<Ek#Hln``sO4GTSp&-;| zZ)Xp{y(4fVpxf-b4>L8gsZOrj+zGn2807f`-@Z=A>%5o`gUweY_3>Z`-~L2*wpY;= zg1dr)2YjG;=pDiNQujf?L%!T?nGXMS*A)DIr0zV|pf|M0T;Lqq)8SpkRCU;%Y^KpB z98&??$V@Q15gj6J0Bg!+w&t&T(g5JhDG^sckO(TWn>4O@_Ad(xWTWog_-EaVIR_t# zE2-`)QChf#{jQ)~@D~5t4P>C61MB|cGDpSmbfWDhSemM!n|iS=?2A7MoXhylDNbaF z>FRQ0a#t}`*(*8pk8L1z`ffG;#eg&HRK)m8w0a907}t^}CCU{~A^4%ZEKoM7Q-(Ac9QlM_y8QDSKS1=78KUn+Dqvq5d7JA9Vq7BK7PyRhWRH$9`NVn2(Hb1g!0z!x zt{TG+sVc_Y6DI@OW~t=+CI0e|Im|obb9=p@S~S&V%-KXz3`IIc$BQIubNw~uBiRm7 zl?InzSY9c%4%>DqON_8%&+=KYKCY}aA%Fu-QPNPwK|~mTSvEqDCAV&183QGu z@M32G%ceaID*)7!U}^}|11pUYS97a>7zL*6>g{I>2Bj(=LMOx~UKUGcl8gdgTSW37 zF(|+b%|g+%sB9cALROp;m_mr#5Y>8Bk&wlS*&?7F$#ylGE1OvPg;b3BTkKSi*U<>tzGa3O`49apf{MT*ad^AHqJg{_`6`FXN=B;)9QBYS7@Gd}g+;NqALIMl| zEgTCRf#-MTM-YB9X`rme$%nyPhy6QS&({W||GRx?uk^!SYD@B}LGGhevu(HiR^eW) zy$WXf#Uhb~HgEIB#Z5^e{d@c&#j3+-_`_0BG;t=J0({c-y1MvH8i?rbvgA&(1{D0d z59~sS`s|=VKlzZ)fPnmCUBk+i?LLZ{*B}f#{zt^8q zYb%3W0PddOUF4^jiwQ=5{6)M4>PZ`}K%N(YhXg}>)GeU>g@o2^3!M*SmgWIH^e5gYJnvu#EA}I55uN+;t`-CbenP39oyA9Wh}hEHNe;_TcF~D-)|6Wa zN-Di=&OjZ5d;ugI@p%@gBLF^%;&E{-Ukwv|+_M>VgWCvuhGL|RHxHI|(v}~(2a?8C z<$5&H$x1bWPubAHUT*yE;lr{YDbbX|N~$S%lTY+P;8QYIve|7Zxc6y%)TaU9>m&Rb z+vXv1C-w70>*PR?YQS88P>u&vG|K^L@`LarGR(7fljlCGwgJX|FfHDcRJkDaG~)c9 zx--XfjDh!kzSNpKyr?n1QtymbPltqoQ7n#yLFPZ(-R-|AMKJf1^9f5owyK}6)AS;tyT@9p4#> zwXpN|tJgFJOw6g{>AV>CE zZ$&M#3K_;5*;_cf(n;#SSt}hk4dxXbOeiy}`<9ziL<$M;kDiHYe37xeom>A)VGU)v zi>zPjhkLTv8kBfGupYULKEw<#vdn_D(d%Cb_*1+}vO)8DnEc~_K-#x-AAb>dE5Ley*c*JsJNx>RD7`xO_mh}=!H4=AlIknN6tIvg`^T0 zeIqoA&_kG-3a&TJBri_fA^kUiP=N&Cl~uZ=$n4K|i?)N;dEAM-V{GOkkTC5(IuI@w<%HWw1B+A?`8=f5zoW>bWRW!hVV^ z>!sVzZ?x{O_z?Y_I2kh9ms4C_(34rE_a~12`r;9XNbSpB=qcF&<>0#TY3h68krQDa zv{X@?`4zL&c|}P8f3WeMZCQ5JteYD0BkD8aexlT}zdP$ft}L2>6@N7h@IWz>Q`B+k z3z>gl{RD%22mV0K*4pD@^-DdBT2J^YDOi7UFJnr~r7a%%CR^0AF1L&gwnCT|aJrX| zGLFo(|ll>Jz|M``0wZa)M!zAX;LQ9nuC>^-2QQm6OmlykGpQ zkvkMV7iCW|aBgd)b=KY_{Q@ZFYwLBYSVpj6?I5iKObO~REl(E?IXz$`GS>{;HMMXT zML)uEI^_@O{y9)>Hc9<2kIGG-oEt2j*X8r%(?UF+kTo(UST$Y(jZ1CTSsGi;4UG#H ziLdLXMQw;&&`+Abq@17txCXh`#UQ^xP9QIuS2@7W{mf)y&CL33*76tL6pMr$QvACy z?Xr^^d-i5bZBmMg3@&vrm3xy(Z}pg8sl0(ctFbMB87n9`fHQabHn!rwLC_<&!w@rS z(5aH&F38Ie|#A78MnQeen5&ShW?b@m`5H?l=zTHKT$}DE>ob3j`+_~8Hu-U zi`b-o7s?B))Dj7?lZslSOLc^a$Q|gbisJCW_jKR*H5LK=7~amS$PdDV6gy!a*0V#) zxrOi!N&}RITRss$S`YXyDd+}9fhLqkNw{_JeJm|o$!UpB{vg>x{eLCTBi@2!7l~4s z4#VLuP_2xWbd!JwGnuWuZC`8&Fzm@ujojOWidp`@9z$QqfdPcrCDE zOl}B=PY4ZWSQ|?(yV8lj0)3R&-e-2@ ztkk8HP*YEq3&P{TesN_Z*YT^d+g%897=19>hBf|G+S>ew>4PW#!ZFLDr5@U_RG zJ#ZLWgci}N@ReL15539LLXKi)eJss&E|O`v+}W)8lWb|A3OrKO#EE1efK5gUWiikeA)1 z6)BRPnJPgU;1YU^!1AkLEe9qb{Gxv(74&F!36kgf)O;gEl%NEd26(AxOZWUf zGqmMSOSf8g0&p#k?r0cfsT^nd=#l1W=MYweCt_f^UZ0Y<3&|2fK(Q)EPrD2EESlb9H&w-NuaA9eIl+eeZ{%%7jIZST4b}B^q(m90??Jc z=zftisjAL4WFH^Sm{3u_N)hfp0jetAXS!N%On!{*ZfukmvE`m|HOodTrXrjyyJI5Wra5oR;2bZJZn7>6lMFx43;s^Vl03}qe@xVs82GNnK~*9&u80C8`BP;>{1q zi;o_3T+|(DS6kES_(b)aVB}QAf=hm(WnKJnq23WKeUSRnWrm&@@een>rjy%K$ zKn4H!Oam+f?t0#^m0ysv)v$TP;lL(m;w$`>RE!MtoKAewUo2{nbE3xt$ z{q%lXLdy$4o|(KOQ@SIXd$5Nq;!hve%bg0`qG$tReILD$Sj@4Pn|@LnBhJ>fh~e&` zMiFP!xW}pvL?CZ7yHJitcv1v~0jnG=PdiU8%*!BWlc$Q+qOD^r3u6r_{Q?HpdR`q%rMlM5DDsENt&6RSjC&|u|f^|^cv286uvhk@@cH? ziTa5G%c^I4!tZYBoL?Fe>XpBX2;C7L1e}_BwVJQh4L7p-J-_WtKVb?f|HUsJW?B!+ znGqZCP_Uj)q1SfoHHu{k$Me?kj)3}3FHB~VIc5oE#h4!UiFmYE7=n#39Lh@XAKJs{ zaa~Y7?*=aLUepTm7D2Xf82kEr3*x zPafYvfAyiDIN$n(NXCWw7qCX08zuJUhowx%DRs%c3~cF%_G%ym3U_UvXEH}_vA2lx z;d~$b*9sr%RNZJ#oZaP~+HEAAuhKVOnW9W}XD{uh_F zvddguGJaf##a7Ob=&Q#dA!}BD>rvlf8&0Ysh-W&BVjY{SNjS?Wus>0uD@*O>TcqS~ zFwV94X%RxfQiM7jgtvj&yFL4gXWSEJi-!aaldFs1tz$mtDIFbOBX(ci8{>&~c5_!u zT|r47A($`|vM2^x&no`V!++PfZ~bFrRN3wkt0B1h{9oQPKrju`^5dJgVIC&c5OrOsWh&yc_U%Zhv`Tow7d6{{Q z{-4)#`m z4+tFhEQz=0xREnH;vrGgo5i4&5b0%FV~^o+4Erm+o_DTf{6>B1Y1=`hhS<9IZ95Mc zg}`{jtF^v=+OD!)W{4=b&{&-l1*n6Fbq*Oc4HI1+Uoodx9TU}f1RD`o)e8L1pSPaB zLyZJKb%HNalHa8*T%;-H0*dn7x}qqWObg0h^I)>Hp#$uL_YrMd`GT6s&arHkpZwr` z_lpc@%YGZpx|%%ST%Er?tGd6kg6Zg(soih9(wZ?F54GWYvy?3!z)HKe!64bZanO>w zc0=kiW&#aRzZC^pm9-34ZV7nNjxf=2p2R3`SQvcnIFiwww+p;HH4^`s zTGXDh1@tbEi#eo@6w_%uJ+qNc?yLQ1k z)=JZ7)w>@%5$h&_4NPmpThGqCu&~Q`jh%ooW9yN|6-!X$2~Fm^Nu6Q$`G@fxlb+uP zg3%6E|JMa@q~!NJ+8k1*|AN)4iL7fP0}7_lE*>-xJ;Ma$yqLEyw|*z5ICsyV`>tL0 zPoN~8UCP?ay}LfGtQHUs{4Zm{5OA|?x`1&_1@$ZuL9x;lsM|EBwMO>w)MMkcN{el?N`Bd%+075GfFRRV|)DSFanq3T{S#CVj7w)TVj0sDTN z@P$qsvHeSpz+4X2SJDrxBA%;P0`P%Lu^Qb|Xc^jVFbjuqE_iSK6@ zlH}!ISCQ@Bc;@PrmG}YF(Xx!dYl4e+*^58#3XLx-q{>p% zaG~0iAf@lEhB9s+C8MKCA@cs0qd%z+EgK+Dq+%SIv&MgF{xYOb$^FU{{t~n4@Ek^k zHkVHwh_PFdi-Mck>RGq5-g@#|gX-N4NHt4uibZu$*lMIAdWjet9v7$`D4NuPWI|!6 ziPdHjyQ5WIeEKpgJb&WQBf<(_$2)9RV2Upccd~5S^bC|SrzQb7@72~ymtHiW)(~kc zerqlA_=~49mXAl>oDr zd{usKDoD&$7I(=9+Np6NQ*Y790hx5#8UoTdtxYM}L_-@{q}7feW2MzPVvVHzIzGxG zuVJw@&!uyb);=;A$1KLl?Jd_gv$T0+v@!7x6!P})XP5Uw7mK(}@7~&vA6-|Tj#&)H z<4S2g`)7lBl7K5j97bLj#yN6f$p+Ze+@5R9_Oo$OL$dzP>LVsrT`;C4uGc?@-sl%x z)NCdWhk&omNcaad#RQUlvI@68M|sz6ttQLZ%d5KthbF zmjt<~KldzrMbkB&=1ht20;`4UI;lIHv6s_~&NW@8UG_!JWYZGcC%pWNi$Eq-0{6$Z z`HzEkWP!l_hI1}WE3LuDZCSl=6xyw(O z-qC;gg0@OPy{(~EAf2(?A*%M1CJFO{!KOweC`ITSTP1W{P!2&`9?3h=#9J& zlb)ZnuDU&X~e6%EsI(-Wp>?gkjCRcO~q^^L-dQ}uUG z@aBVkFFB9Ide1OvSj|wt%UC>mRs-LrgYQRci0h$H`=nTc>}fwMR#>f7>WjuqYZ> zfB9>@U{HS;xgCioQ zd29q1DlJ_Ap7h+wfi(51e?UQNq?eLUgHs% zwp`e(8QTW#5zJIY?l>0$>!^;f*1C|1k5)d+jY1k6U6Fhh(SO<2Pi(s^K_9=-q;(bw zb^otq&LR6(2v~ucd_`)olRPRm%89llnDV!fVkcZEYP9+p$6jAZPokXyD_jZz;r6Uw zUDJBry+Ra%{Dxvhyq;(0jEYvzN6ys~zja|*yw{fR+Pxnv33RMFeVuOZ?jULNL7M*i zJ2>s8p-k5fYRKZlVK@JJ4|H=%DAjX_tb%S2$nJzJB?-bX&Dcud8V+NxIu({g5W2lI zycnQgF!M{25kg9pUH4$@_{!C**~P?j5A$bLNs&U_uT8vmpX*XM%WCjnzDY04>}t}cRETV91$f0`}h>sB@6Vkt_{O*VgXp~GxD zj52(4TI9Z2CkqJlQ?uS9(GeQkZ2Kaoz<7&s%sw2$0BE`Q=464|b+NR@tQ4|<4MoGd zzwhsoPvmJa2i$N_-E&$epN~)hHf%7BV-CqFU7^zn4VVrgvbxAUKP>}QhR8j~_M6V1 z9zZ`r!*3cb$MoDD4MwH5{@%C%a|?5~)sZm`3{|`VTR6SIv)TA;mS3M9pz`yqJOX#A z`-7l9ee3^^yZti};YrdcGPwR4YX!YHtdW>J2r^#BT_SfophR!5+%B>FuB=?rh5U)| z#7;(WQ)RtDwQAzqWYr(yeIqs0x3J9y7-kgPcrEKbYheq%8U&{>UdW6?29ETh(F}``kZ9B4VTX=0ETFU%yM7Nd#!Dc^l z8SXH#f{aE%JbiiQNXoV|xHsouVY6`#zIxH*v&C`Lt^q}OL0&Q+12G`^;SJdQUMp6P znis%Z0Ae7XQ7?qcn~}(W+`jC$mVXQh<}I$y(j}hUwsT-pA)1kapbIcbX{&ZeEN>L| zBH^qESLwD_%Qp7kRl*K|&Mi*?hr?M9$2XQkh&#t=Aqy=xR3t^45YbQqHctQt?QXQ= z$#3z|3(OJ66#4XcWqkLi*smci#s=#jMM79~yy*`HGhcZtzT;y{Z}(@g&+xGox|za*tRhK98CIe~Mb`JPqwzCJj;VK{cE** zJ<;f3o&S2{8Xmg*?W>;m)PK5}J++iysle!Gvs}OUhM02k2SoLeqAcN;6F@Vb6>YD% zo>Pep^&)t5)&idMKkg@7gw{LqAy_+j>cY%Xn(}mct&)D?-n|?SNPGegKCISl=|AQo zr98ziX%Gz6J?%9xy48jE7b2P*XA&(>P?`wlZyjA5JOhIySj0bmWh6UO-SdhhrDIYg zaw#amne^NRUR|=j&Ee@es~HRs2qpv`k){1$u4A~Rm1Sih90D7`jHK}uS0_AWcC~3t zpiO4875J^ZC`rYdK`s{P%NwIR5fy0oxQ2ITv|#h-_Q<#(^c(wd(1;{#=X-Fp^}J69 zeES~CX2o7-<9XB2eQ04De2Z~O`)BmlRz=Uyl>-G?d^Uu;2YmqEcg>g?+q7{0pHFP&0C_DS+ZeSbmNhc8NHapMz)B{sF>mE7+`LL zVwi|Mmy{1>!Jdhiz0pc2{eR@0abdi7zKG2|c{6 zz^zXY<&ls1^V=Ddw}Ee6`Ad7mCN1Po7~Y@zRQ{iA=SYK|DW`@0y*+cj6SK5he6zAl zo22K-F=2d$8A8>aEU^W=#w`AarL&A{@_pa`#$XH>jdY_3lB3&E0y-M$MoK`W8;5j* zba!`338Pb58tLv<6#4J-{rw;8;r(Q<^S-b1yw2lzAJ4CuG$Mc;tm`jq`0{o@t}7|+ z1mefENJ{?r$YI$95C#36DbfNY_7U0$+K`$L=Q9sGao@d9HHv&+t9kVFnz2D%%FHPP z{A*vIf{7*7{Z*h+Jgk?|_RCevkz^Kj+#>zLrULTyr*5l7Ud9@WWuKu(&MvNyxS`v; zv+&r}r#QWgs1LK>U0^)qQZZR~^sn-iVG<@955XLCwKK+0Tsu&sHRZRfYJjD=R&7NAzs%AKEZ@7=cI$C@mBpsq7&)X6X$Lbu@moXI)`8=?=5jo z@YppS$5P@qT7&;|I+XuO{$y&9!Aa|2l~Wk=&SdBCxZQtK^9lzrs-FI1231%qud-+A zGZ5E+lKr!fxI+MS_b;0&q!o&YY4W4Lqg{XBm>c5vQ9j*snE`zRd#NR2} z0>@INDy>@xOP>5JtmF3bD*3Tdn4t1{1J9g;WhKzqcTJ%s+A4Tlh5~+V^^#p5ky<^s8ea(GC=LBR# z78k%VfgotUPn>ZnkM3}uGLBNb7sv*zL3gE)I+C90&Qs4D55&T6hz4{f%JvehaXx;( z0t#2fUe&bjrjwP_ID}hkt@w|x@6Lmq(ScFZjZANl@3tCSHUX&L7dtNh-Fti6q9<(d z??*bjc(m-~Z`H$}yVzn+WY}sM^M?d+8a7y+sUC)*5LfN6sxS8(klzMQUNQQ>PSzdN zA{j2+03YiS;CKwsUBeUPRl;cV2N}Y|SX}^AM1%XC|1llWtXxk-a5!w`9PDC-cP*jH zi_U~{Npt4WUaa%ltGV}RtF^(}U*lJzV(q#VC@yi(J0Rv)yjx;HtLGVk2-(JlfB98M z@IqbtNXCa<3Gc6ULufYOX-l8XPcIsz8-Ru4^c`bB{15FuWxT+tz3oKfAl~&hPJL4B z2Z~P@6gb-$@F;lXeNUW`oL=2dlmZhWG5?u({`afSncaWn))(8Dy+?*2^|RIvvcTe1 zogBdsPW>oL3H)q2Jr&9#qnrH75r?sN0AAV*N^+!-RrXL8{g&UodBCSA<(@*^j1G}! z8RAs%fkWoVDS)D_uV7bmzntIer!0|Po^z}Q!5a>FW{f-wz(7({YQi{sJhy5Se1HHz zZ2*rnV0h-f8zies&t$E7&5Gu||_sZC0 zcX*jJW8qhHf$G`M`Cbm~<`NkCp4xrBeQXQEK0B(=Q~^^v}a?ppPkb>jh)6 z2prL_kM+O;1N^&r<+4B#|Orj}K=h{>3$K0_OVg_>R(L|Ah=U8IXW_`8i{qXdb+iGerP2*>;PV_R)dc=4B~!QgYqr9VrzFk}YKE)G&R*RzxQ-U3POTm0aDwzp)xv zfLZ31CD;5lLBFk&{}Gp)Co_ILEKnVXp948*cZqnr>CFkQGNV};*~^h~j88maFd#9C z3ze$s4}fVy&xgC;*=rHw)##R(U(s?9OrF8HtdIuF=2X=hoBHs!@E^=VQ8dX@at`Kc z*t3afN!Jbl<@qexdYd%&CSMG8t0Eq{e5Fa$BB*$OO zkD!1h^;v?HQRG$M3XUdFY8g=9d^1T%g^BJYaePHh7&bmopp}?hUkhEm@4vKI)~%pX zq90Bi07ho?JuDDFw*|0qzUZjp+Ym`-;U4!Qv^MT~TaS6F8Ggm-^l~EGTJS#OAAG{k zaQAxD(;uDjO5)RhZrrF~sx3L{_}>X953-m=pK)CJSRC&K8+G|fpQzc^!|GfTOuazo z_iHcg;ruIoEAQ$SF_8g!BmI5YQ0z$Bt~66%qhTKiI|HPKXB!rU$Epob%H(-9j>*A2 zE{HV0OS*^32DkRADU&ja>b`>}xy%~iGUXAu)^mTJ>OG#SnKg@ga+44xg<8x%WM&Dv zjn=il^FoVp(=WL#5&(=$9NhrttwVzab+{kZ2NiGMXV@T21;fE5SS(n;+h>2 zAe=Wz*avuxDPJ)HZEji#Vy**s;Y{8Wy77ks`hZ^m=qmF5mNBC+PbSoZU3AipvA=-o^Oc~GGVFzn;LGYbs4;? zJO6V0CTAno!PzG<4LK6E)?>q7Er};ZzydXsk~W z5d`&JyRgoOVnFXU6zy8WHI*9*{v~;bj;O~6I+8Yplj~k&O$K=};p*Q*WqD= zwm)C#?h&smJ!0fDS8OjLKv6vWg3b;nGL5^clW>X^OQJ}2g(f0Q%~IBai%hd`I39Xl zxQ(?g*6aT5;Ui`$2=5d1n6H|t2#3Rqo$sdZFy)mWINuNk8ad9zJG75wTd;<`wyJ{o>;=i z%ZlF1eq+&ivbh(1)UF^~R4fm2v{~1AUS}ij_*cAI)%_)|nsD)#@KwQ9hE(2cU6F)U z^ej&piR~H{htUOkfr^xW34T`h74VdoNstN|xD!4Z`rZhr+5P}%HS9$t_+WfD{62y~ zmO&JxW}4M%2pfv&C&%FQ$4&+sKmKtr9)Tr@f%VD-))yb)>GcYRe7WBUFwU2ZBBcQ2 zJHi1Nxrh9&;~EYCOe~giqiZTC_W-?%&+xO9!nFfJenL+>8bpOu?SS#_I#)@!@Z z*WSs8IVyI2Q!x)}l$hwiga?a7I?btUrVGDqEb`_t@HF=%==n(T!D3Gkd{-P`JdtwI zRJIZ18K);#8fC2_f-jpCFzKH6vwqp_?HwLTsUu{ne58x}E?AWa1g*2gsS)#in=-&Z zf(DjM%8hy)yyqkXLJ-Yh8qQ?k5;FM7L*H|$y8dib5U$Qg+H*zP$RsSXOOc@t%2b8* zp3e*js&yjs`u=>XUpVVvN+3dvW|ZOAO}%H#krbuq1_3-7#oQ*%WW(4 zK$)@65%m-vQ8HjfX_gpORXHp zckTSi4_GZkdun|eo0V206(zx(fB-;As($#y&Z1>FsMD!(3rPPsO00+NX|y*$w>>*7e+}(Jxk!{p4J0C-C!Q%%sA)mfs0OJyaR2GgsxWM<)}4_)iE>VHV=IlrdVF!t3RKtn%fiUN}L|=^jXWR5T`0eR-X^;T9{U=_IZ% zB0r^D98j@Loq73Kz=o1141e*|JJP(pMn69qDc)pKeZXh=8AxwLHq#b_*UTe zvws^H?y*7`h6dpTa_ui!nM}ghcJ(VHlJmMDX0)d2t@%{XmHRP-y~3%OT*JFDIX?%y z_s(J+1Ty}>QEvb3Pn=%^Bx~I-m|6K$&#gEZYU@I;8iHlVNBpsgKu?9HbAKxe3#q^s zBcHI*G?_foTYB{u=-vKyAI=IHcnx5fc%d5d_h)PT3&YnRY)(RPtonx4jf_kewNo~m zgS}g-t>0`aq^y3_OgJv3_*X8%(>=A(bN+9? zx2kyiA9{R73LV-(%wYNy5>80Fi{>Juo=czxV3Q5*pI^W-y~OVn@}pcbV=x4@TY zVFA@&kofEctPB?Zg^y=rDFH8pl7A0xz;c%5bwhptkRx!AfLgFxm_S&B^9+xw$EQid63!;_37|54usxa_|?>Wn=< zZ#R%{hxvkzL+JlbDB=NMd&Tc-wLk&E2TkzGSWl^HG#ZGEhsP@0X|v4;Gr@6XQ;(#e zgvXN`AhAXh8uZ{Pvfe420sIdP!0W5sj?`_-iW5nX>wH#e~R_ZY~f*0H(0V_r?q%h z)~h8S_7Q+w^K;A{<9{tjHTuUMf0CmBtHrX`G!=;z5>}O&5hjH4Z5@}`Xv0=))LEI| ztdXapK^6+=p#q8M@_11rjepECu0CQ_U#&by)c7lZ8kF#^cFv=j_+kyUsG*Y}BzN|1 z?z0Wei_6h@IM%DG-~VATck;;si`9@O1V*4j`qvB|ZY3&6s?7}40|6%BxP^S1>rA9p!iGzJKO^|?1_ zs(x7KZm;gY8MszaXs&E-$f;AvnR@Ado_1qx!oAnPGnE10m>5fcQ%;rMy3bzQS7e%d1X}2 z?lYKZ-#3|8#(t`jt|>*yXo)8hXAj6V&rr_|uOnAX#^H#*gXA977O92Qa2jZF9-y)=l=nI^uF?3HA5dq5)^VIH zk^pK%3`n~^f&$yZ`%HtS8%j|gtc<2(@935ZC)%2ThWY-H=w3O2T*rbF0E6kZgxqYt zxQ>y80Rakpgjx+R0jH-pbyvPW>iSak`uRk?-F>Cs zzK?cChm%IO(*SnC>aTtqOW(dLk~^%iU>mRT8_BVbi6d_FM6NNih|i0bVY)SD9kzcE z)$QEmdj10`{^%Iw#n((RwMgq_Pu|2-2FXFA-Ro*gHZRZi_tpJgx=a@S#TffP(PY7JKNmvI6vJw{AyA4~Zb_abijpID4iLT(C1OU}7D`)TjWJE! zI$zfxWAH>A1K^wkIvugj|AxN(O)q~=_nfs=jA?SY+y2710#8Mh@}nRQ`yLvCl8NG& z3{#TWO|>Y_ycw8xC0Nx1WIxyU>`G;yNr+M?@woU)T0Pt91`1=O4Hc zBs|=RA&t;mDl_G~1B%d?~~dIFEG9{Ird;l0aBt~B3 zzE9lla$K_Z)68;#32`Sdjh-1vIW~j0>t1u;&a(Ol^b%uH=7 z*HwqYP1ynJh^O&2U#m<_^^8|ym`)GwwJ$7aTbY3-_B`(J5-gia?ZFqI?v=CFR2$^a zayFj0sHSGN@t&tn&ax2*tV1G1w31E~OxT#F8@Hn32)L)~IDo`w4M~0#k!eefNWq!(<4e0eQx33fh~RQuO5!ZO=dmzvOJ8=n^?ysE z(e*w{b$(rUV>Y1dD6|hfk$co75DV<=Whs%dAW*Ry$!P*2PkSG^Pinps@J-jH_Ad$7 zV~ot3sCMZuyop7OndHe0e@T+XKYRfP`K5Kq1R3^Fo%gc7F+(@j)h&n*TI>BXbmSVk z+m!IRFTvKEEUgunS<_1^zi!NFMR_viK*i+XCD(Db|)to*@gs6Nq7c^+VD zmzQ}l>SA|kS*W$;QDU+YZ9(u`6;)4uYKwK=(MKqN_r17#mFV*tmX&tr^*jz`rjYm{CcfSu18;+ z2sbcfxsGxGJ`Hp@mn{AtivrPbiQy0M*ZEp7tQZ2i!@wNwR$Aer(;8*D3a)RlM*en{ zxm8#QrO3-Ej}#DZoLBI!-Qgj6vj)ZYZrq~u@FFn(5xeb;&Mng!{HwdhW58?2^fqho zPPTK@Vl0(Jg9#eM?M1@73SQ^#d6Qc+pJZYM^?UmmA#~n>%TtFM=YJv^LKPQDvNIE^ z%o>St7x}`+Q0MqlR?OC2=NZ(-g4!w}rcpWN&j~`;H&15Z*`A$=nd0x%m9LeNVr#lw zNl)p*%x)2`Q{DL^UvcIwiKzJ9+l{@*j#u7G2*fgdkl^3l>1+$1q`k_y@X%v^=lat{ z3LTk&sJ$IzMYbsMTL-_h0sO2j?%vDPCNBR%g@YPPx&{o_XUUppqe;*#C9o6$D_+Qi9=xQ%0HC3~Ai_z)C z8tgnus9`^U&pp z(RCeQY(;z5+q7!#M7`+W`n{%p;rAL6&~}!FG?x-7Z7EjmR)*+P`Ag$Lq25s~z*P1ni~nWNgv!$dOI@@q50%t6_~ zZ#>PEl0Zav`XK;Qp!=$7&g6W+PgZ0~9;+5>2mGEyH8PI6tV>8*!eD@70(+}3-*`fe z;=-O!>S}NK*Uq2+-HR%`2gE=OowsW;?v&9h-(|7}TbZ6z3^=j`i_eW+^79XjFy$U( ztTdfkbgC993oECpq&63IGq#8uzWsA_gd%-r%SEj<8!UdqCzjjEmVF1ydL+ zk|OKF%KF$`EC9?v&#aO$G!RRrEy$wo8{jDbx3s0?*Qh)$k_ZJmm7OrYlB2RrUI!Bh zr5aHE>LdADX9b%CxF9l7MOb0PyTHcbkUV9e#0heW5SSS1F5iU?`wOMgxh^#9G!a_2 zgu<@#tM-%e3_S_w(rgF;aRlFHaAY^q?Wzxsryvi9XZM)71vPv53|A1$^Hbd7OFN;5 zRQ6Y}|z=Mz@`_{iUAW91?QRq+tbBokcwb3nsSsZ^6dUzXwOr>e+CP@_tK z_!EmF!uMx)-_HE5RE!qR?u*>04=q3Nf+wiAD7538H~td^SE0#qXszkN9$Ix)mGk&_ z563<|3{ef|McM#05!Ia(1{_ljoEWTIyO3w=*6bI>(Pwho--hJ4#xx3~&Cdf&E z3@AOpAf|CQLPm|S0dy2%ye`6x7xuz#brpT)^p}m^vnkt&+UBiDXTk)p&@J{3fE7FVjz>~3(>=> z6QxAk;4x181@xLYgmysl@x~CsG&%k@?MGL|Ai+&nrx_>F2a*92wGtCy;)%L{iIGAd zW<0K3Lhmb8dN@5>uDuwm)AI_4zwxf#D|rrI+fF>6!1Ay&xIm07e11YfIC@T6U36CU zy091Ie&c5GMMQ~7<^KP08aw}Cyy@?S7O**R<(z#iC=eR{pr9aO3-s$XVoVX(U=)xqfh6}et=+WX0cdC? zlob4WoYd|9^#MtLm7Y&*9<~kj zoWlCX3&GeIuEN{eRCe^%jEJ6dM}4(Zln?3e>#=ogvpyGjRcRx5(TSt_2hRZL&0HZj z9P(MC$?vNm2pVFz+4@ z%6ucrp3a@J>>5M|)YuF;yuj?}PFfeIdMI-7Yk=TY?nK2n1!t#87$k5&q?fIKj(Te; z%wNOdxt|_gdjt%_i5Co`ryO-Yi*XvJe7>a|wPV3%$1eN-BL?XV7PmpU7%^y%m=dpY zXYV~RN=F-fcgX1s|ti)(ScdOWzi-uCyW zeFRD&$1v!-GSqnGMoy$UQ>dh=j3zE3(TT!BhIOY3h{QjvX)pR5UqSb_V$ncy!@m<@ zytbw%i8M5nm0oQ_Q7;!PZoc}^NR~4cV5nXD(c~HIBhTObC%-c0(d_C+U_`)EyXieKd|}?dPmNj4;c_cB$PQbI zrf}dorU>Zqlg*gyfs9isEA312kLMX!0jxrdx(`wh z2dX9ElBni>tAz)TZ%0O1Zpu04Uj`ZPBZFgH?fLF7-d&47Xuh=4Z34<&9X=UQxDf#l zrS|b#;yL;S`CqF;O-Q$*1Nv;LakEAMJt$Kx2+S05j^xz1c7SJ|QjyCDM6qP^Oc?z8 zJI)ab`|dJ&6vzhYG1ZI2-Ak%DJ4031DSe8%pgsUxs~olao#~D9{O2C6MsE^Ij&^HJ z5WMc)!1BHs40S+t_-f(PZ9wF6cVSG%>VeGx$KUPO#*{J%*u~&0ASFPR38}$5u(?v( zJi-z~vCbFYCd_C_($^wFZ+hJoFc0TA2DXs1qIOQ{QE2b!o3JFJ8oMv}0D8;)OYX$a z*^buY=&|I29oMjv88tT19FN%U0v7QC>|a-aW^ ziT?K~4Y?<$fy`n=nVaJ4g8g8{aIV_$9l@dB_$~(x^PDisB}1UgrdX;PDTIPIj)VT> zzu+D`aRer-*I>lsj>cWj5{6GIy*UX60Qj-XA`zp{+%JnTEbLk1dZ_6ZFY!32BS0~7 z`*S=3yXmimjH}5GIJ*#iOD0LmN<&lF*?P3N4S<;90sU|CNA&$aeRMqgfUK$*5koo# zxsFYY40FExIUMV1|9S=|EzDT@Zx|aL*&yNh6Z!B6glmt|!EJZp7E1SXKF^E%0%q{% zFSu+qBV^i|R_SFdSIGs*N&4>tB3%7xvX8v)R{yN{jZ3cWd0CxG-kmnwE!jQHqklP% z-g8UUk&j0SI|db93*GfU!WSC-z(7)`bW$G6%$sMJ*?ONp|N zofx^1S9ZVCNi+%dyLn0Wt0lrOB}R;8*-8^1*ZL9J4kuLt4r}&90@3_~d5we4A~RCo z1YZ4N1w(y|moJ4P)uNjJjBiplEj4WIP|)75f@IdB46@~=F6qPJ%xXK__5<1oh|CV9`pC-W@g>e$CFfTjstrqHPTEjbTj`7iW= zD`%EQx0T{%;raB@Kl8Ny8gM{ja=me@eo*QZZc%Jv|LV29US0~sN#_JW5 zUf&#uHu)Z}{$_xjHW-`JXPDNOKs%@Cy-)S9ug=feCM>aR;$NP@LZJh=|7@4gw0vDh zKd`l%c5{jC&##V4OHXLi!7NWxSgN>COElOgFD9}1EuXyCl)AfTkNDdd%~G;Wwf-1``I7xL1al0a*{0h04Q*mS6~+5ENf?>tQ zs%*vwv8N8U$J?nw+RY7Fg@OlmXiRCH+TWs@EL$F0gwq`iuaJ-^d;9M~c?HMIFxcMH zMB@ggY94DuTXj~S(|EcLYsQB8NcWgT(K8HmS=NR@o^G6|bAUB5N#fWXEViKg>|$p(r6-Nfo-^R`|3AzDnxn3Q+;t+%AFnLdYA zGWxmu*Y4;r$flkU`~LLW`|&&Z`3^jpSo+1SNC@RfWPmQU7B@)zlI&?0htaS51B=;b zcb~g}In-PaXsY-(*0%Ga!d4H8i+UYa5)!-*nT|m6o9LeCYo&R@FHEk%pBV;3J<%== zg9^LiIZ;K3DZl@Zhi|>UQ(Uy6d^x?d;tsJrOIDo*9$SoQu*H`U&FSi!=Q1J3>v<0$ zUUQ<>nFlA38u#MpbbOd*(Eie9P1Py$gOdNDMVtd3&(7kQf`m&#$Ha?5OT_y5{(Lk8 z?Lng)BXO!EhLWd`=?9{`U+NHc|FB|UX#R_zNlZqYj=`+Fm^{r@<%BD@Z#we02Ho)? zFbqrFze{#CRpI>k_8U0nZ|DR7%(=}+mtU{g3hUaIo1_KUq>5MBqfVtS->^iu_k`$L1+#Q-h}W> zo#M}BR$YGg`|j)VtC1l_nXM|D)Q!lY%x4j4v9-13;1|$u2M#8oX7>8e4fq5J}_ z{2C4H=B%!LsPgj5of768UBJ^0mPWwL?5ymJry`qkAloT*X_Gq^oQPNtlxpjS*TB}9 z$JYkN5wfJ3NfDEI2`TWL^#k2Zq7-3H=q+nlC>^$MtgdDf7aPZ2uzVjUZT@{w`L1tY zus#LdY3-&)9e#5dPmk4dz1r*LYJT}p#-o-b{NcR!8a`z$yztXE@+mCvopelM5@EKL zTmfAN1%a}0NXJ_TQ zm(#=F&c?5}ZgPmxEnRgQf8qNcG=%$Hsr|z;PNAddcciD&ke$h&B{4}A(&G&s>b+4s z>RUn?W(n11S%hGdoQ>1toQK>e+SYAFg)tY}(TV?FEvf%X#=J7{@|GD9dMJxc=b)dh{3?_ zx3QG}L5lxy4t8q56f*2OxxBN)iU4XU9t<48P&y?1{6@tn6EcVGhYc&n@+Jn>X@Q?(oST zA3&C>1`TR9&lj3jSz??p$0e@D#9XDtohMQ{wx8WZ()C=IEC!3*luK_rw5{{aLJ z@f|&7>3SpJIO@4z7SH0pT>toV({Q7!x((lK$bWWFC&TONyIQ&oRd?pZEf5i%H(h>3 zxiW)64sz>TOZQhmjf$*^O~sh>Jm+pdu20V#`h!LgjE$FRdVMwPTriJ3u*YYORjkQ^ z#L2!WtH%N6y+UK_ZNHIsyS=MnrD(p<(7xk~W7JX%Xj>5c$j!Fi3$1&ba>!JC$j*If z@PS3Uc*Fm@?eOIv+rL#+;gNz3NKdBwC52-)vj`ed{*Nl=94~w%T(+5?g3==2{?huR zj<3}4iAPW?BQE>bdow~>v28zf1pNe>%GmZ$YONcounR~ch*1mSOV$%@q#~GaggA=K zJ<~o6D@bep1+lricRs=oQX%H3v{QV8F0VzF|H^9@!ntXd3)>HOlKTZ+fdHROssLws z%WGP=T%#MB$Y{_qjg8zi{D8#>N8I^uHEi*(UZAoHG46{vK`9gL~&uM(spxJ&o z!f_P*x$X+s?`C09V5}&D>-D)ki}|>nX69xD_-I>JvX!_RLk_V%t`7(+Gr`QcSKUZ9 zxyTtmYR5OyF>b6uv5W^qx(mcGg)SvFj}Mzdnr_XyOMZP+8DLJ8PYF}n4oz2)FS^%f zq%N+C9OiM_3{v55L_rBdb+UU(gA+W9nZNzbRFN0NXg>cC3abFX!Zyfm)qW- z=~+Vg)GL^Be&8&ox)y6W3x+LjR>KoBaIsRbBns|7D9FTS3@2#-e#}i*@S%KeL@9KE z-XA4BgY1gfs$NnTcBHAQlx`I*-cMBHj=#M-9NK$Ic6%wcvldomjSyEDDcf0+U*=Tx zT5WtJFWwZL&B8==Fn==BdL}aAq)wa)ypSGR=x9yRT)$8ESMn z304Z1(c+BZRn*KYn{aoj-G9HpT&+ma8gFbnt2Xn|$ZC||lK*WqlD!@O<_%Wm(UN*> zFLi)9*zbjKlX7QS&IrP$ZVVk30S73_No!FN%E!C(h^`|`Ll)Fl+ImTcUKMg}TeP1{FrTQuY{Djp^VNN4JzK?> z=NuaSw$BjcPTRojHu|?wv^pYuVKEM5?^ z2X^r>&t(D&8FtMpiuwbHvI7{~c&4!ovb5NCoEZAj+VFYkQu$B`>?tBD+oCdTL_#l5 z9ew!w1i~~54`%MjG+*!udQKoI(9JQDq#IE|o+g zza7#ky*J)82hH$28oNgXM3{HYF1otn$qF~n zc@{NFls&-}fhHWSD^}iv^x5~Yp6VC&j=da&GdnybQUGIu!duJX}+v1wr zY*{)W!q3A3WjC%b!I8&Aw^HPov&N&BeerdYS&axMO>;Mt)ss@_p*@NAKuF4geAX#V zkm@f3{|@RD{bkF`KgGh|%Cc>9Q7%HI#YLL4ZYP|vc7%#8)^C<&Hd%xBI7eZTK2Fed zGwy7=!G!bid~ot3eHe29t2@JVNjmHz-M*&8SdKpgYccvSl}pt8|J7}_TX5s$^-}Q> z{p7VSHV`dvM;V zdk?YKhn|lVJeF0EZJvk`jXdiKmtf(WCQh)KERh-ADlOj1$GGs_0o4f@oqp<@BCD@j zp)8^ZKjDA&KEmiXCx+a>&fDyr_-U$v4TuK$V4O}?<)yQLtEnTJesm~t&@xMP8IoEi z8a!qJr&hA#w`JU;UizyC5hoslso}89!9?n(d=JTQCc|yLj?=&e^;G!vMJnGH zFH5M>*(#hi90_6PdBuobTD7V12aVd>+s`^YzntqBcpRyQem_SxyX^VdmxzpuKQ^>< zSqBy9r~hL$UmxB2?ZG@5g8bLIX#BT^P+xB5jAkty50+ph!JFJCQWy4nT*5(~5$8-B zamZ5a7T6MjFBl#3)b@Pymw8+Xin(^Eq|D$j^a_gWPIxX{r0K1gdqqq>lDh@Q!{mfK zH$U1Sd`6rnQ>qMXC1+<3PjTJB(Q~gpBYL;j7W1AR4d0)k{pyh35%Ss&77??D&aUvj zy8iiS^6BA5use_;-!4uLP&P;=uv46#UK~u}28qWHc3+6*Oe}~9W#<_qTH)2*k6WkS z_4$qCHg)HZL2(nFm_A29!eQ74+cx<};7MGv!zHiKckt4V86IgUrdC z)J!rSkVz%m#6e!tIk_?Rtsm8>^N(@o?K!C7jO{c}xg6VQDK_=dcdPmnu%Fj2674t26|lf_V8 z9YEVE6Y*C$TsGCWgqW$|pO7x2au}XQ7!i{lm?VU@E$7<@T45EQK(9-JiVJ<>?P8dK0@*KesRM8mKD9x z7w4{&@gkPb3Y9oqH|5CrcV?$0@&{kjdWTT7X+2;j01BpR%0=9_gCm~V`w}V;fUe-0 z9PCLDu7V-`+5wjo?!T_Co1>)}= zV|k@xE(XW?IhjTL(uDP4`?#38oEfIqnf|d&NrI@?3h5{Hb`%6%T%(5a#0Ca zm4py2@Mb;jhf1GfO3cr54u!`#`$TVk&2CsT(Y*iiluoG!ldzRr<>%%>Ab>zMT_!V^&eXo&_U%_oF)Ut51-SvPX_cRPOvBp)#k&c z`m^t>Go4;Z?s7U)DGVEYDu%r-f8)#j?C!gxzl$=_+qOwiAwE0rM<00n)9o*pA()tE za^)RFs9fZ_5n4MS*e%G&NTy{pvpP%sn&mUAvQySAm)lFHd}zF!*e#S?Tzy^QW3eif zEs<|~w6R%dbp*TK94Q?UZ^}~x=Z-Jr#cPZcy?b>l0T{PU7q};SVNk-(qG5}g3AjM^ zKSZR+e;|_FH4f{L)(|xdSsz_1#f%v#>?O-5YR6S$jW;3`CgFOy>Ecxx!-CqukhrmO zL=Z%_X&HN=4Wn0fMbe#d7Lotr>@H?6@oON%ko=Xt38%Y;4T;OVaU$`oK@qTOyR@Qp zyNX@nwOKC{UeaRV%ZiSOOIkGoGs9YUZ-{5Y7|OegS1(W+I%(q-HrIRh}y zeJ+2W6+@rRCuDZWaQ|A0>R6pZq)y z%SvLJV%cMpMuI%c2<3i`V@=~-eGWGZiDKS81b@g(*9Z=Nc%oyd?sN6g`fw(fzy~Cn zzv|BLx^rB#O%Ethm)~?H3P=I+)LX8 z1tgJWGdCuVVc#-~gH!3_2kL>jU&`S3kT_2!( znhnY;p&1Pnoy{c@4IvX0CqW zQL4yCBSkc~Gc-=b=^{>yOD7-#8quDq7)5;x^<#miwK6h9O;V00GQZ+cm%wFofYI)P*-jPi`lv_Asz}W*iFHXR9-%e>dMqB~uKQc7ITP(6V|b z^YDUUP|*|jFMIB+(R}LZj)a`g`}RSJ*znNeCFYV@kCSBn>t%GDhCzLi!$OjDMo`o3 z(wvZ4p=3&(Nzc1JfQ$3&*XF99ugXfes76477}-Z3IcXIF>Fp^9B6jP7alPT(yL9V6Mh*EW2fb~am&+FD7>q-5MU4NLmA=J*1HZ0$? zq#}qel}@yZr7-c?Q>2{fUJc)%f|i0L-n^+bYOiRN?%ZW zN~%;Ca#+bVBC`VJR5TU&M!=*S0`leiV@2nYyj zj=pLWm-<96pNYMP=NV$}d~i4)NB^)xxB9V^mJg?;J?JA`+?YVLYMj@(TF=x8a+#X8 zhC(hq^P>@%Z~91Kqc348g2ga@N2h9>ovj?vd^(DVpHt~x(x=c|*$?a-*giA5^I8XC zf#G!vtqqO+)%7Ev**5iH?pJ1LF9q5dQBVqHCJ6yvkFshBJpwMqxXRtaRRo+jTRh2|kcFuN9MLXdA;U!B`H=c;{&B{mUq@^(Ln-ijW2subz-D{U(WynM) z&;s^1U}-8LmkS}kN3d{uP*SpS@w(6cHbX)k{It2ZK;`uw|2!;NWVH3%G)*WdD@UIhj^A4R6sA1 zJsz>i`j)qc2R;?mL-}n8;hNXIrSNR)V@ou~e!9)}@JF+%V2!+Q zin`LxA+uFJpj21Ei&PdL7&v2{oqDg*1a*su2bQ5bz*VAS=IjCAd`{utHWJ)hWH%{9eb#47C@lKZuFuPa#Eeb{wIKRPjtmjhiA=2MuU)3A#pHKVz-lsg>6 z%>F9@CNk*?G9j!j#RNo{gzi((FlVch8!f0e{NcG z=oXXMzhR)@Nx(8|nG~Ij*;#9e6%=1vj@#H(tw?F{0~;UUl?zbNa+{_`BmKBFw*PzN z58ryJII=%YbHdH(WjwcHfx?70m@E6FJ7|zY@8e#JgOV_*uce(J{NneSf$a2l+;Mo( zSp*C!GNcOk#p3m%T+vkQjA^9`-1T=y--Oh^W3IGYyd1xs!trL< z$MF!Z6dq!&u@egKf@DIs57DVwdX(fNIK>M@;;1P<53@m&8)@Tzpn0-L(7oN(f8#$zY8v^ph$o^2vPo&zz5zlU|oNc^?7madh=4+w;jUhZOGT9a0=;h-)OPv$y`8r z(C3;#dQkuEXzVC$UvM-z`lQ1(PAMPO~m+DfJR5z6=O=9+ZSD(&oVW=Ky z@k-wP%2HI?27lmX5qUus#m1#|pTifVs}E>ObhhUuN=$K$j6G*wlMO$;<0@~Mk=sMR9@uaY=%F`Zo1Ut_-|Az*BJ4`lnl0mlX3jpQg>%!QfB!+C zD6>0)9CDe~(;2IzVV?btMeRO8DocxrLQgmBC)1&qi6=1Y#KXe?H8497VRJvgZ)vUo zKCnXsdAZe2zb4%snbr|sn?7UarspRV4;^V<3nR;$h@!@?(cIg9cEz8+vQGNHg!%mq zYZjIOUm6P~SKPCU!0f_Ni;q z9}nn!yd1Y08E-Uj74~X9XTd<(8NxPWDQ#8wJ#2GlsAz!SPF!|Nk{vNx4b!_`? z2kqFrkZ%B8DdyQ~?z2}ac%Vs+fZb~-9AUY!b(rngcKL4f8UvVDe9&-xrtCu+n3?bu zjq2-}##4DQwV{~;Ees`a$t*U-jXDFdJubV%$YF`0Imm1tNLAWPl=cWYx@_+i!xS2d zaa)n6l8r1Be;`Rq*44l7c$XYxunOHK>_6yAHk7P{xW@mug*rmb^DMewZjbp}D`Cwr zBa|Ad_5}M6EApYJXAt3E;KGzHEtL+OMTZSHUUX6Yq^#?_dejk;abUP1;UA@<13P-Tu{aR zrdU)sLG-B7_~vIxHE9Q|`oo%1AyQ@dM?h88#1p&0k=SwjR2y?a^G%>2xtL`9J3d(Y zF`Ul^7nTgd!ntTfJmk29yW^-sOKx%^i6M zSp~g*hV|Mc#E{qO(+#xpVr(bnJztkGI?l7$y(V9SuOO6iUW)Mcu;2KcazxxMerO!# z_RO3l9=i!_9@l~4nv&u|qQZkem5|X53J@i$^J4mv+l3;w#e_uFsXJlK-hb{_PplhV z2k_R~sJl}VglPJQxV+1lde8-4aDAyLm-DW+tHv1uA*sFn+q~jj-_kDipZE0V?VcT@ z1H&=D%wfPt61ihJZEnk{kA5BGAuo3QQ2*xVG*i(xGNO-LKT#ePd{9`DHanGm=;$z> zr9_%brw<~p4qB1Bl>8ZFw4d|w~1{xGWuL_)^av& zcU$ubn83`xq3_K!g7{%H8x~l75J+% zIY@;(J3wS$Nn=42#x7g-b!8%I@a45D1+kUH?1Py^W$D3EoPaH-*aS_W(**O#T-7e} zH+aUt$e*O8b9#2_h|1D?&51flW#><%GX0=s@qynN!Q z0=AH--Z2S_(c}twL(B)*LA)g~ia~txP}oeh&%3F@dWn)_?E%fKF!Sr9dOc&0`uLAq zdYSie_Q99#k3MH@2lEdXmMll3)oM3Tk-VaXVF#)*3qg%HZV&PAD_W^?AO_AWa^P^dL0EPrhuD?mh+=Q8d67_>d%H|HqqI z$Yu0jWEN?*k4yfnww;Id*OYfTm%ZWSfc05I-y9;Syqbyrhs~W^2I^5)h+Sz!Nl@?S zx;~pm+Pcnf!&GyovB8RoYaMP2Q?a~lmSlx)hKFU zCZsZ2OG2=#(yw~a9cDX>7`U_uF36u{T|Xj_kIhd zR)SN`oE!mrHl0`^63sF)^pH0)@6aB_9|wz6xSNCR%Vttv7+^GqzYBC~}h zs!NaDE}ZR~m>Q;^b&;P12;4H6D4$kAOM4WeOqG^{OSk()bw@RQ`+!1|_tP^zKOszI zi_ORw=W?xMuM81ExM3XKa@O3NH8Ww-Frj z9+7N7$rEA~OZ{_sx_H8O+|KV|#R@KP*6del3sA|6j(lUz{o|~>eD4m3UQ8%ZEaaUn ze}yxtvPKz;!@Turjb)T>d)l(*uo$fz^mQ+$#h)6 zy9*VAxlfPJIso(XIP6QrAlZs98rN)>Z?M#$Gv5ap3k;TtRi_QXUt+_9^<-0W{h#>W zf6Y>2L${;IxhLb@0Td6)-7*DNvB6Z|ggL1$`{m=oio56rktQSUR}zp=rc?(%Waok4Gl_RjHJ!k?>Ce%_SSA|)reubkoD_6n-z$XxwI%^ zdrlq@f@SBL-o$lgE0y&G7UVjq`qbS5#q= zWl5)Efg{Qh>E~UZF}pk!o6vUetq`2~$R1bG4F0PL7HxC7_OmJ?)&}rYa$^m>O9@NG z&N4gQfy22}iXq-ifRhpLTINhFU*mCXV|S{ev6*VRUK@jP8CyP)x%N7B{9hz z)`N{X3#b!Qe5@>h8L3T3P}<6NG%lJn?utoe6V|O*l9<;SQ`itbnZ-_7L^ex07X>lm z;$DAH@GF#X*c=%-$=#^LQHY%+!aM9w{UF&P^0L^d7p$NkQi8eh)PwNUyJ+EQ$sBiq z1+Zq885p2g%@c-qiw?J9xwojJtR;z=vhPIm(F@qUiB$Bt*TY@FQlm*z<)@hr$D?E3 zh<{nt?@HXg`d}x@o3IZZI63jcTfB4pp6|eA{E!On-NMuE@NA}7cuM~7x^r-0#>tbIQxeZNgQyU-78?bU@Q^Fs^7vEF3r+@$V9 z+51i@L(W6*8fDL_(1z#XIDS_p*}M)*&bYuDUoooG=kfHSxOqEt>rWO{!3_-&z3efG5 z!gT1QcV+#cxJ!D4SWwmEqer}RVKKnO!Ei92iWOWw#nUHrMKsOb>oA3hj8eSP-1Be_d;G#VXF zZ^IGrv0ivOIdQCq$ltrk7n{2g$>|$C1^cRP{4g*Y{&ifNwXN*aAKr7_1$qeI&CNw#T1UT*S~NS$M`7(Gt;2x>ZA(@OJgg#UJh< z{~h9IWh{p2oc#@&37<86O2%`4XF@<7^qx52TGs;BCkEM2Wu5dbd=lIwo35#FI#uQ< zVm7P6f;+N#+YE7l$Y3XvkS{AuC1?-56kev>?lM#p#59U6@&V2M?kk`X&Rd@q`VFKK zz5#d$Y13x7Kw;ePH8+HpgjP1Hz<$RIMq>)j#y@_RJCIyATn;TU4zIEBhHjRBqlFb% z$R9-5=N~DL9E*lv;fTFimJ9w!2&M9;GQ8kw4w_A$s0!M$f_^_}a`kh4?08ot9c;!=-1s&Q&1DEFT&a2L)GnqLzL4*l2laRyb&F4r;l&T6Bl6 z{xFrhSU$OYea1dY(%!i$k6z(d4zJvpEyS zJcz!u$aaWR>s?$l2qQ68>HHh1XiD^xcSAFrk{QA$lO5xNDCCYsTu_fw(YLT!nS|Gp z&||f4Iy#OnL8!!d^NSk)=jj*!MN&nYxmx%)wwX?{Dk`(Gj90xnJKu4~+`m%yH5|Vs zMB|grmY)_m{DR7#B3};oF7X4k-2*|zV3MScmh;>i_vhsU1&&?hiP>h zLpB-jO4GdLPo;=PpBd&u$n6A!3>=$oSGQ(IMu}?q~cvNz_VkfMS4muV(XQWYDRFa6B z3Tq|(nZjKDJ!*xD^D>4x4#-Rw)${`#gjyUY!kOM^qP*`$Og(KX4QE5enJ6fyD^Y@3 zT7VbI{E(~$ljfE&1L#Jp!o-Z_;K z>`)zC2J`D@gq2k(Q;LPwBwb`Y-BHK=g1og|>xAi-`F5(Sn)8`?8DXpqFTL6BxHsD- zTdvoQEp2o9nyjlM+jvauVjD)XY@u4@Ma0sx`WaFb(Wm&FpnEzWXf;mEiOa{w2X&?L zh#>ad`PkkGc*eLhK%}}F0Z1(8x0=iy_$BzPCApMEmFU3j{9M9?kEC>Q9uvlviQ(Q~ zqmAej_!`Q$H7gpo<=s%ROO*m2>x}bJ9!MOLP+=BX8;OYHu~f$33m&xwLy*XXM&Bn2 zziX;lW^!CFqXX(F&Hebf6vA?A*O|LH#gpiplD{{dUAehT*)FJha0Dgu?!%}!hn>W> zvpQ();br#}b#xi|;}X$w*s8%n=V<)6PQuH2nY~K|7v%HybAPgE5+&*cN}5=9F$$C< zRM9BDJXI2Cf_g{GK7%^OI3j;kvC7PbHX**JyPS#_yJIPLubtyL@bA~pJV%$cobT?l zMTaFU&ZODo_COUD&k+qSlX6{)gHqiVX4@yUr`zPT5ZOKzsItw2UQP5tjne$$ z!SqCAX_Wn&6O4;8Rir-j+(KNdWUNfS_ILLe`O9coOF{Nn_yld31uLiGx4o3v-RF;6 zDX7e4{V4qj!m;$#pVdf0S7}fk!%vjzZO|9Y&bGq(rkdqM=Bd}1Bv8OwXmF+l!M#Z; ztrVdDC@OA=6X?S$bw*6*EJ2sq!j7*bkubA>Sfu$ib*UQ zmeVw};Iq=NR;RDYS`YJP#s=2gtS5d8qB%nzmm4FiSyzR!uzkH>7n`x&)78+#cRdXW zF7+8wiClg1&Ud9Ug*rv#7?=(3|@}~W< z4j(%BS-KYK?=V)ac_-`D&C7Cs#BZbdQkX|Q*;rFEG@){*`$%M@^mv~1`=X__tL6+b zq*ZG!1|C(WtkW0kMO`3Q%Q%}q3~vXp8yr-lI};sq9u-yADiTF|8$99v=~Ei_yeT|Y zO4$jaGZZ&61v2%Y*4PEg57kA?im*Ribjk{hQ;CNrq3wW-4F6BT49Hy)4t0^wecu)1 zXB&VJOACy456N)ln3Sg9MJJ2FwhazE|PP##S=$UCQJNXD*fRBVK!lDCQ3OX z|NVJdG3;XvI zMle4T^qHr_%m2D~I4O8=Y~C=-e-J~HQqi+$53>+kd}X_U#c*_0DNAfqrnw|rzmeV; z{gC-~_Pm_<-Fi3b%H^;mZC(@)A({!H?m2eILDvJ!P)v!fc{jIWO!BZ;JKIXgk?t89 ze`cRO*Y@qy5~P=lx5s7$1-G|}iziy~yPq_4XsnVv>TWE=eU9H@fw1b-%)y{!VoIbw zOe?E@TT2HfXkpkOe@@+KUYuwd{T<5khdnPfxu+p06_@S1joLE}tf*Q?F@1gRmFM{v z+l3o)xhbdWkgZ~Z5#9~q{%9p1Il_ihiV~cLXF?B9P@ONN3Kf^dx=VWQW8(T$|v$-JCQkdg!(1x4$4k6iQu4EySG6ZK`AJPO%lvV_C6kLDxI(>0n5B z7|I)J2nX4bUFaJgk^*~rGXJk_D8E?TK_cAbccPDIILy7U?uZrfDjVknvc@lWc`qJa z=`#1>$=8Kf4)lS$_rK?g&%Xo}J&cF-pdVX!E^zClzxxx$WxbnVL|@7QU)NVD^=X$8 zo(l>2;v&H<2YSaICUslEo$+F;Ef z`MJ%^rRRz-C0E*dEaN@R`inm(cO-v18Eh>v*#IRdS#@wzhGsZ-#b;&ytx6yHM!RfP z->{M*g?voU-0OsUIUfQ;gJkxJrTJUZ%3(Z~T(fI&<}HcKUM(=3w8Rsh#t^Q`!Nc`R z(W+C%l$tA);PMTyCAbDluJTSjh8(_B4UPFI3{HMT9IFJ^gEVWOFep?g_=9P_C??ES z2X+KCkECBmoKQ;pfgY^%2s%Fz99#dU9XgVjLUj_W@un-|>~d-MIQ9B(s(3x(~D zA=f=!-xBgC($34E;O{-(Ia-d{XXs-}x%90ooU?WdJhcwDk9nbsyOGxzJ z%O?60#p%*f5g(VF&zeNBlB7b*DPku5%7N~jb(5RtWft&QP*u9+jHc9+&TOW{8DSBZ z$G8<9hOq1wxcMn-n=@e-ky0t$ExmIQJzPp-M|zjV&vPPaEN>+?2xOayrj=GU-^m<; zI_=9It!`n37_|yW9b#AO@H%wN?Js1Onq_PT8i$f~i9CrrWOF3`!cz`EQLjkSOO#n$ zGMZ_BkMg|fajmj8Q{}`ds??eEI@x{sjl)aedyQicS@mLQl3wFLvk)$zR3)dfwm zpQo51fo3;U!b*@8S21vKd#QUYf1KCeCV0VZv}92dx@zjDe?)ZVJbO57gEJ%awbU=Cy$(DXi~39rjm0_kp2fpVvcg^aF5#2#X>K=%O)U|OP+*+}+b%5ewqC})Fg}zY z{SC?-*|b3;AwimEhXXJHJET9-*bAzU65rSQyelYG=09_Y zs~VqTo|*D~4=q@(3!TQl&uh}m`a-U7#3z~JT3!Qxj*Ct9Hp#G5ZpeUgBNsF%oV)d& z0J1)zl2Llhg_moQ&TK)tI#AoFIp>c*9ov2-3xcu<)@aXVoULEZYZ39e`6M>|{Xi>o z+4badD^n|@Ga{*JCG3&u3B!@#37yw~+iFL&PnI|=q-=s)f8b1_E4ak|lS_?F#wqho zf18%sY+AC<0q>abBU90imie%*PorblFEc9Pay+<*kvTGUm*MwblJhNO(W(EYH|=vxDlG=#vui|B}}MM$*1MFr``@_z_;&$V-`FRDDHP>g&LrVKRINXKRY|~Z#`)FM2nfQGNSZ{z zy<2d}{$S_36aK>~IFw4lT8x8Ep?fF3cd|Dqo9PxjmAM5!Ml>brvyIzBRh%nzM6agN zAu$hrM;0X;$+uyfr|44sc%IY^<&W!R9N^>Qz;rT>XO_z|rG$z_7y5CP3=m9&HaGkH zyMG-FdSnk&5r~1ZMTwD3Fga9O!b<}X`oIw&j#3CZZVZQypqbFWD@Q84B^}O z;Wvi>5Lg+J8c?V)8eSbC4cW!B-wk*#N*|vJr~73_kcrCkk3gbDy@eBy-nji){?V_bW{1?CuE7#{3^6EK>bSy;1&Q$Y@+ zwL6z+gJY0O3~jBH%IuqMPkDtT&2rRYA~WGH!TGq^;0&hsL2QH_{ZyL_y8+TP3h;H8 zWPM}Gl@i@$ftjBB?%+ z^=X79u`jnhDUv;@iBOxx?D59|UjeJ_fKAQ80p8*Q>HA`AGUb^hN`Y8{bmUT1=G%hH zLpt{#qphLkPHg##jv`_X6J+m1KS{U{vi+9y-8T%Fke~atTIJ}vkEL&*dx61N;6#t=14zxZ^I zeVQSnSCiWqO&OD9(S2q~M%!g4sM9c8Nd8kvtHp9UuU9GW?BLriA<0f(hg5N$&2&dH zh{wI1&*uY18%Oxx)4X985xw7m9La_>>`h2m%x-$@!l5#stjv)&wfUZZ{(u-YA9yz5%t&h*Fh1!-K%I$)dLfo63wf zEj@Pm;hg%Ou-JRQ0v0#o+wz*S2C>?{eyF|=+)fLCbA`RZZ9)TC+LMTMm;d4)Kw6c= z6^^Waw_h(Vzw^S`bFAXQ`2l_Et%R9B&7=nttEQB|5mbZ<2YiU9lDx|HQ7Fw6-tW)p zm2tYzj{6e1DdYK6>l|mlT=_mk(ka0O(Y0|<%C7Om?phEWwXgch`X&&KnZ_H)8ZvYJC3ik%p-3-Sm@%I%HIH0^wEnWkjZX?s*0<$^IYAe87WGtHK0 zSgxNJ-`rRTeotzYtOu#%vshpU=M_8XG_8?#%*^j|#@yE#LZW4x(8s0r?KHpScA51Q z*>+4se@G;lj8ZiFJ5kHL8H&XonQ1W54+Q5)rY zu*$c>tnxgkP24@Od*K9_JJdbC$#Ed1hO5ArwSoL_$)U~gY^B|0R|I>xbVscSg%Aqg^=tv`EJ9=6NIh&;=XAprecJfZ6BFJtUKHrJki!;LKnePY)jz=HnDAA zcn*ocqvMBKv|z)-VK=7RB5%{D;oH43KzKqUedswrnbI%(vkQ8JXm69m;tE5#Gj{R7 zAApI?AkKikrc8g=cw$ed03X^`<*5|TRU8l_c_Ml zh27X>K9Hq$a+;Q8XJ4RB24?;G*Po*Q){V);u7E@F(iMY;AqK7aHByF zG-YCTSLUw3@-hBJB|AqE?4TMFByEAJm{$s&uxAewufyDRX&gYB$U!eccB(;VmKhmt zKQQ6yTx4Bmd?B7}Q}K~cT0lgvA~^Xc)kgid-Z^I$Bu*y608^$|)Ps2FqD~|s2w{Yj z9l3c?>i9%x3-9C&lV$F{NB8N>HEO|Sq}Tk}AmnV2Q%>%{l=84ySEhmz_O}nuLj(YeyV%FNhOFRgD#Ft&`~TvUUQC-)hLEwxruK+{vwm5V=Ery{d%rn zo+&!v$ik^IO#^t~{$32A)@{&zS7GzO4%U$3Y|15gf9N_L);*C4J)L$V=FHSsU!5B4 zcF&du{KBQ&BEs15pzbs_bK7EMA+j}XTl@k|I)mkP%;3GB#uOyvPM!>9!IZB;?j|jm zih#0*O&pjEj~bbgD3uICu;Ynb&Iq6+jJavNC&|IuI?XH6p59GHTtce^V}2Buvsyo( z+{*Dqrr65iAC8iBX9;z?hx9PHG1XZ6Y0q94zbIjihft3unwc!C^hdpqawKtGG>ppZ zN|{*rmekXoLPkN=Z+fqnbO5N@^m+nX3T~4}x~s*9!ejr)-v8>@ujTAx|K6GhmKqVM z#^`_eyZ`>fDgt2MHdo)!Isb3j``^o7`M8jZV>*lfd-ng2uk8gz>C9!>b+>T?v?m;{ zD4C4bEZg>q`_KuYXLMPxZTi^J5A~CxhB}+~=qYLgoK{#!~8@)hvIXs%=|g+xcgB&^@x|&G7Oi z(V2bN5pazs%yVahnU}}u7oDem#>f5uID!`<*3nh^7-Ph%^Vg#55y8ga;r?B7wa=Fe zeoqVFS0q>tAOj5sh0!%lH_pX-HO&;H+hXZC3}J!&9!LCCr#+^eO1+BM6!=yyuL*jA zT&IfUA44S($)9A%p@aH|qQ<#R42UL1TMkMI$y6=VbEyA;Vf;Jv zS^`22Zq3IWGHL$-XZ+{vGI{+^=1wbp9u=tGK(<*Fw~m#yQs*#PcJy>)C~Ot2CbPEy zo}+#Oez&mMw6<%)E28(cmlhDA&D*}#bowo9NV#{!|9E9W{GY4Q1_*|-R*SNkfnGtp z|8Q&n4((`~zjg83Kj(}*fDE)-0U$pgxV0NnbEM%1(WuG;HrwpF>d!rDa1Q!J4PfEF zj=W-}x+0$dQl#s_Jj>1L^EA+tlY~nVyT6O#)*l64Bw?`M2KYU+`c+Nw-L4+R0lvjN zjkB$jZlB`yDWF&cfyVwT2oZR>5&)~@UMA0XJU#Thc$toO%>b)S=hb=5H*enSzG?xe ztUavXGN4ZGo~yc>LtUNN6(&3Z1JD=JDDcn-nI|>RaZ!h4OnaNjh~MY7?)CEmLJ;t8 zp?mUPfec{O$6i!bM)y9%qwj0`r>8G}r`)<5zvXOAKTb@~3EZ|XbY+(9y+ritpfC3L z`9ZdEdcJ?-Gf9KkTjYi0Y-r$@Gg?0 z&RV;yb6L_JNtn{;UMsz;%%l6`x((O5wP~L-CkU5W#(_=6#Z(7usq+h?@1H0zH1UQ1 z0!o;jv@R{kwv z^s!jOTj>MQqibTq_+Cr+HF*N2d0+UR|HPepBkoYy_$rO1+-VBH1V?rq%Gp%{9Et~I z`bTrXr~3%d&+w%G@_3l{Y(a~Pm)Q%`Biqj-#Dqglt%3ym!nDF};VgITrFYf-D1e^+ z4r<$>>v`F0X`p=>z*ax*z1MP|D(G9>`WFKu^8QB9x4BO_<*M8v z%s$t3UXC558^=b7yfWN)p^BRBLKtPu>`&3Z|1OMTXRhxS)|>`#8sN53o2y;w$AtIi zn1Z^&6mmHs<{t%&+*hzKuKDcH$C5pO7Ndf~u1w)!bZ*{z6^N|sz6fEo4iuHTGKy>x zHON52EtzCgY5QDv9QLMR8_-j(5R0OELVdYFovzWB?`v)|cHF~}% zkSMmJ2s~c2C$|hnxUU-?)ZkKRWq%aw-InQKTm{UN!DRwZheua=FWz0-8V+MEbfLG| zPE!@rMNs-cZ$1R3Subf0%XW55gEScKYJ~D(7u<$w)z3+ zJM1PM>*B=!lT1kE_2`L6rxzo{xSg_&O3nIjlO2&}&(+ zbR0+euMs?-oj=zyJlC`L)c!STOM?seMxO^r^nhP|72EY&24Zp7Uy+Ya)Uw@Q+!^Yp z&q_<3-=(HS`7WQW-*&cGU1^drA;NUuG}nPeZ}Wpt@I85s7}(tPy!cQib%41Jjue6k^*|>OyR1#|%EKTY$0-KfR*m{u@8(V4(13>e0aQ8UGKQRe@H`{zboEY z&r9F-hb-~GTQxudZY2l$x5xOu>xm0(0=BcZ5J;V0SNmS7_R;wBACi{_&sXgzz7s># zDh9yY^avPXevtGL-qQP5a>>UffSTY}ZVf|X_h;Er_nJNjsBPDR&(^8(ATlZB?72p$j?LS*`3S`a>{{bZ) zM+0BdrS^%=3ux|%cW*`KXnR7);ng^A7LBXod`^tBJnnko_!aps6XL3+PF~~MQTuW2 z%HtFXV1lgVGK8gJP5c0iEJYtkm3|GdvFl|`d^K_oj3D(_@$jkx{@XS-!YMUR8oB#frcpLBLn>!>g?mm7XL_;8AuT^PuZeu~@-(zR+0ep(Mx}#|z zy}9;(*&(SsV_VQs0s2nAk{=)^X-s?XvmDpS^WW_r0W*AUEYI0@PBsCc`2d!K6~J=P zJwBT5rvy^u%o44ri!snu0>Kb_iXY&&PTug>^hQu=-KeB2??@7iapTjG5L zY~E`>_1*%vSH;o&Cnjs;33Rfx9mQBX#kmvB&HmS)@hb1%qcZ;nSnRHBueLYr;A65! zrN2Jmy=0{RtG)+38x>Rh4<|AL+Gb(yM> z-|3K7YsXrR=btEjovwRuUF|wB{c3c$o!0`6EzCMAP_12Fx9WgT@BLfGT1^@$JUn{AO`zn`)>Ucum~rSuYL#CmyPO+?rJXZ)p4%;p%7L zO(X}THSDk%{x>xKCr~2Twfvtz_j)cx9H5Z>fB4GHm$yWQZhZ0TwG3~7A1N_;(OO}H G!2bujDGjFp diff --git a/reference/figures/README-unnamed-chunk-24-1.png b/reference/figures/README-unnamed-chunk-24-1.png index 02da430c64f51c08d4b2fa244642c3c2ca8dca29..0679c316c491bc3e9bf242fc2183d3569afa442f 100644 GIT binary patch literal 225004 zcmd3NV|yiA)NO3rw$ZU|+qOFB*tVT?Y}+n7*C{ss3#J-fKpt~E90n6tv< zWyN5ju%G|{0AMA=g%tq+fI0vG0Pi5czRqlFd~5;$fWTP@3CUXti3!l?1LZg+uK?+2JRYki$w^KiSFfhRB)ax}3>orYF9i2p# zLDjI#{RU3nK730=a1T1UbNE zok_5R)ZYl8hLHt-RX3Fu#}uk3LPJp&`7y8>3VulZpa}x*c(oeM%~DcHNi;4p%37W- zOFY*Z@aoefvTil78Xy-_&)|i!3Ec9KLgkRW9fFXpvbW|GT1{tBKZx*Y(rN*DO$?yZ z-Vx*gb?|@oq zR*K-e9&Izq5GhZvZYGS=2*aB zJ8L5{s|jO(+1=S#`|=6+3Fq3p1E{G{qx`*rZfB?r`pCku1n?G~TKf6LP*_LixkrWO zxlapQXPbSL&mREI%9bA^r$;jkf<>RiSJP#Em*y(O9WdT*=Hm>H*THB1dk zX0stIO)X7XjU_GG>T-J7sztPms%E$Ubv$+=F~hQ?bsAZj|LrjK*{657Sfh8yrU~-_ z?hWj7x~kgDa{A+sDwJ27oz{TZEsv}*Zy~LUwLyJ;o(7BR3lRP|fLE()JA@gS*4y6W zC||tQ=wm!Sna}RV9`E*~W41%K{ig4T&K8}6o`aq}zGJqS<-FVF537sn{9333ixh>m zY(dQ>T5byCAfCSdK4U4lBh=tPNCSFzXSQc*Vf#ihMsz!KX_62`hEsr zZboz|oL$d59M_G*?L=DqZfHzD3GW}>+cku$W}-ra+3(4rIBh#>$C)XDYfLfU2dMF2 zV(+t)_;^QObt^P+%m!nBBjx z0I0t9ApihFEC4{h_5i;&tgr3Mm*fEb=NX`m9N_=l2fX{f2pZ-)9?deew9ahA<;=FUt`7*6M`5V%(mdJxH*TE! znfX?Og2`+u1`zLZUHuXAw5tALh4Di$j4sMol%F^UaT>xLQ!w84nNdW@j)0|HUa40i9Sh68{CK>#?`n<5AY2#QyD#S^&mq zX#TM;JA&X7_g2X0sTHEj=eIY$H;4C{|JM(1bdgWO`PmtXT9tNoH{<)*Wi)>SVMo2$ zRI+NNrk4wU_Z~nNpATKF(J&fwy}6@C7f7_6H?0o`kLwlx&TtIrGSc+U2dG>C4OC*@QYPr^VLvQ^!68b+7bt7@oGhwC-3BlL@jTo$(io9@fz&0#k> zMc!aIs+8?o3n4n4_H^LmZEhq|btLPbvA#Y*Dzz#cQvUa~0D>6;g$QKw$wS*6zIRR} z-48>_M2a{vYrQMk7LUg&61l85=%%YpZ_3e&{t)=V*;&Q++BduWYd5pcg9&W6m%Gw7 zi>D6SBenH*7rB!7V(~b^fa^4ft0F%lWqJ8n>$R3^=H@&-G!=yD(`1Ex$)nx>lK8(O z2t@(;u^ok?elN=Mtp@)k7mz$Cp!6%zBM09+T|xM@Fjk6KNUOW|1(q>K@Oyyax2mc`#(zf-?I~e0?N1&gQ|8a z{GXvp{J*sE|N9r=Cn37J*_Yz*erw6(@nA)I%wzkqm#^i@BLgy3xUIQU_zyeiSrjB- zXICF_;&)N?+FUab7MrlCJ0r9aCLW=v^O)uOeIet2~J}tv@W!HmeVYHCg;yiS)Xz<#zYhnmCcFfCiqG^yYRe8AQ`$V4T9mt5#oDpiwL8 z?enHiLqpT`QhNkz`EB}sCBeQASE7y7c`;(&Goe9z*^Xd18ZDL9cv77014n_Is#dFd zagi$?H%0g7$EzC8@U_u!IQodK%c``)#|JQnR(YE=eWD&7YZbjWxt!!5m&*?`pDDf0 zc;PUl(TNPU&qK49e>E9l{aaPrbQHXJzjT{Fk$-EuKO~;pR+}=FNo47oB*u!4bWVM= zZZM)B?-fgrMz2M_2+b)micrm1V|2$5?e@L;A(hc^gr>N!?snEBZ3`cvseDpbj6^J+ zWR^~hwN$OMEtAVd_Th4~`V7HymJ4C8*={qKCtI&(*`_}j)&U7bGvyyY`!s_vog9pR z9)7(0Z8hEyAYTrJAZ9zi^W!Y7AR1o}_qM(J11V-)ZD4|TQH>`gaA~og&5p$2Y{>z8 ztj=QH=Uy`$otmusVuSW}5_A+hRwJZ9!o+9)1_^tBeK5~NaehYOOi5!bE9X|R(t&ij z(<6qv&t9uYoY3p_K0)emYCL=}VgPZ%_M&)dM6O2ek5Z=1prE7qVlgPT(A#3CvxO1ibA-!LsMN_g zT+U}=y~_B-|40HtNdM_-+X1?JbyBaLY%$hPD^EDACfjR*p3~`sBqpxy=bz6+?ysz7J9BQrCyosZA*qZ-VpuX^3A$D@>GMO7!<;`GDKIae6yWwpY!Q5t1? z;582)^(zR<*$CB3(Bb57>hTo%lx}_CnZkb@M;D6UrKyEEdK(HF5)zSA9B3N)496LU zH!wa{d$5g-P5)#RW_${rPP{)TbTE(e{fUYjSWKFNb)EjjUW|4Juj!;caC%YkKDs9!WAyybSRNHPdFsS70`@uz2pJ%($Q@ zn_te~*f8MJgTc2QJeVK_aSkF0mAUQq(R=9``Z-V;?>;%R>OulR@^VN#Tu8y)v*Y;-{Zti5B#6cnsBBxQwchL(a;eVE z%4N~OEe*58YNp+b#M5WU)Wr(sG6CV}0#HC6Yk*z+qyrFoxvY zO=>cpl<=%BL8DQ(H*9+l;lv9Kv8oI{u{sE6*@D|xN?A# z7bj4M!47?q>y?D}82*6VrqZ1^Xv!cg3zK`c#aM%fyUX}qniErR@OcRZyhEMCh*r;EQb7rj6NhBCDV z3uP*Gj>B-z(1Fcx74UA?9?QeSVideTvE%MPu5NDPomRX{JbIwY5CdInPq3^Zo>CrWi%Rgi7(^I zhu3^HRlr$w4IMK!>|?it@st)A(Y;y1;4N9H)2<2zi(3|tIP~&6{#M>CgxDY#9SOOG z$kg%~s(W1xgQB-+D_T6XMmCjyOo%2max-Q;$NZ(IKZED>^}4U9dOWn$`i-H?WIVYq z#?2M?bNY5yOT996-VtSZYQ_7$?Ja(lF!F3x67lC{R|S{`Z4^k@gj$tEm3FH!cqj)X z&!;ZKvl)ER5~)-m546kA5q9v-iEhLvIvFcZ;A`}`BAJZ&xSz`xSKIx9T0jxw($oyz2~rT5LOyty zv2TM#QvYDgHwcK>BTnN9swiqB3%qv-(#+p|ZyorKZ@VGz$d62g#vOXTI4$;4Re!5t zZ?v>jlc@-wZ}$+x0T5BKeH;a^ab^qaJBBXhis;q^LH2%iuu>+j0wF;4t@abGL|wh`q*$0uN_whORi)ioIPrN(lM%4wS+D#+f-d(-VlGG!aC4NB(a(f> z?tv7LEZaS8RVoU7O&pDf6Yg%45iK?NEfD;gl_(-`xNks_mKAz_NH5>RF7vMOjr8CN zu5=*i?M(#xzYyMnj%zlrSAk3ht73sTBB)!rYNaw2FgD83f{C$)@zdf5@S<9F-d9Mt zibBjeY*H>&oMlrIzISSb^o2CKK@8I{+B0j_t828L^&T<}w7;@~0u$eZKg0^tUrJ=;w{lu^;tVp!LX z==}g#wG3oN{}dd@-azFl)#DQi%C;@RSQWu2vw*`Ktrn>W59|2ku$)O$dwVVBf3E`# z>_Ad$Y&W4N4^cP4<=?}J407uif|+;KlRlp<_fw_$FJMK4>31&Pi=Iau`z zi*RNw1y+q)iYfpUDE$^bm|SoYVQvMjk|Iy>k5D^KY4;4kzDFchX!o^zhneUrj0aHn zaE_c2I7yBWv(((f{QN@$4uy3YTwYq~s4e;|^%CDU!k;d*q;89DBiUvFBrbIYmaf4I zvq?;dWi?_WsBUnBTzn(fwOlSHC>4Y_g>QQ1nh|4*n)n%_TUta{>k!rU@t=R+^f}!o zT)RI01F#@a9uhcbg@PC;RwM%3>jW1u z#w?VhUOS5BtMX4+o^V7$W`N06Zy7Bn(>gr-v9Pen&^XZPE(N0Ti))dGDFEV zlr^A_y9(?@5*Up4pfBx3I7fK82xMC!ERz%ewgEX}{+kAxr#xlpY}v8^^Eyr3D`ny! z4*p{Hc`Y<-N9;ZaeNB#dG6j-mz**o6Kb&GS<)!=6c;jtFkqtrqN!BD)Gqx$530}Z-Rc*y=xh4_>Wo~Tq>5ceF?)PV@u^73Rri_Y)YiNvh3dc~lF|C=v_N`tVw=7J90-vmGvDB#5R50#O5z>9}PX_2g!{X&9o3M?itzbnB? z0-rFuaHSi5!&J)CYxM)$(v(RbK_kJ~)9%!L(C#J-n66nxgue)6Q6IIiK5ie2xJ=j0J^ z<}ztUMn{ku684sjqfr~MM;rUC<^K70s|J5ktx=xL*@T;wRfo?Stp^U57{2NpetKYI z*zOR86P=NXeBm%Vpc!5{k9nXy`#m-xat7541AnIzOV`@z+ zy#JZGemC>(CtEL~)snD$k~YhPL}@kFCO!vvfL#W5T;$%`P|r=}EowRmvbC?bK0TsoDY`|T!TOy0%oO+L6#g4BnAk`Qud zDYB#|W*tw73=AHRW<3u2Y~);+Z!iqZRbi5zf2MFxf6}5 zDe@tfBqDjVu-T^+FBXf-r62A(>n{5KRxN8I{CI8*`pI3d$2;#;_ygSX{cELG2)}rg zhW3J&!0!}$MA#RkL25W!Ud>1XK633mJh+V57PSzZESZrm@|bDy3)VAf0>~)hENfZM zsbaDkk9^|%6^BXIPgrG*AlY#{g*$^XnZJD=NdJpj2xr)Mkmptj$z;E3IGXjLtg3@; zr2$QUg6HZoM;=Q5n>$9FwB+}A&Dm7m=P#VlqavMl6GYMbBH7=XJd>Xa6CGi@I4~kh zB^{#)1{s)xuPeW8%l}AqQ!$@F!yHt-5fmbsqT?jBT)SuJb?pw*dRE; zp}nl_YecXR7Uv?+!jldKlD6h>PFgJ(tLi>;dUtesRg!necF<^Ws|Aebi0zgdFw|7r zQtN5fS`=(^o@s5H&f+ne5Kd9c_osRYuB*4n;B~v=JFIwq-Xdrr0abtHF&VakKHt2I zF!MJFW{R$y9sTWpS|R2`V&)NrSqp4wQ9~9cctdWEOu?4(cSd7hY%siQ&NhH0np|5^ zR@#)@;V`M*5o$3MT3cI3Pkx=w$He=3rX{1k^<=IM{qQ@Mw{@)2ps#v`mk{_-7q?d_ zbf$s*H}w3=m4eRK_PMD9&@Nw>%zVw zLOPt9%8)Xm?6eRBPs$frcu**p#L`eHNCz9S4-E8y&O_`3dpwNqPM^0GiK8WxAvV?e zJmpCh%PO+_cprmm4O%}ra2@`kbHVzXREc*{hgh&svX4)H&K8BOw!4efF@UT#y6PpVAtqBUhrDGW?4^ z;J*|6;`WYy@!T(eGs$|8fMscgI+Eg02knNGUS~_SW3O$8J%G!;L$&O=_6F};g(d;> z+Yu@Au1*(OQC7WIhfKBGc*)1@qOrYJ?x_vf^I&mBl2-E~>L^3RQMr;yR42Kt7}TE7 z#KAs#t&(;64y%1TlS4`ihglqF1CEzjHN)apOvIZhMtuCkdOi(sraWrG`S@;l}-`PEu}8Z0;4Ws`(j(ZSZ71Iqi? z_nofNd9d!GaEW^?@jHFffiuW}zh@D6s>^w)zr5cTG@^Lup1*VrG|f*sA~AioqlNMm zkf&z}B5pkFDEXp$G~*iQiS&4|Qm7$uwYhAcKa2H@Lu{lSZKaGjx!l20)*&Vaj3_cn zn|5E(I|x6yh5|=y7c0p$zp3vtgD526<$)uwW7cpMW4suvsMD{;(Ng0=wX%RV_-#+b zNW%c(c;07HF3o&Cs%qWDS1?oG-R` z)qP`i+5R|h-xx5_&#T3{z1QGVzO|*F*6mu$-lurIwP1DKp98_VkJ-q&7v3QG@yOBS zhjbR6ix=eQ*C-;$5d*=>3SKm9b;0LJGH3sL#rd2JT;Rxv-@@nlqH@KQ>6Tp)s@4=x zKmZAOkq!>)uk@77FdYDH(O+q|D*n^Q@ za5@;Er~IZAt%wW46nPvBX|xh&>|@MapPn@|{lazR;zs)4nboWS3m(jUnsG`JSlOX; zF;QKx!AApx&?gn;O&NgdpHTVZ@>TSG)k zPeLY)(u8)ib;`4R`gXj$1&T%PRWz@g5r?Va&?6wLwrQk;ju%R6j{2p zF4FqUh_ZRmXywWHB|&dqPi>&-*uRh@DIz|1f@>&yB8ln!nl7W(7L?8Sd_xdBOLYjU zFlFQYZ*t>5e*CEwJ(wbg70O>`s#GVY*YD49kf9#ZQfDU1*^Zg97i|=E(x!DS{PnL| z`oWuoAGt-pRQyX*krRF?9@a6SU6nOR4vj;>y3q(`n{H*qw#rZgcP;LpoZ5R3|>_!5jj~moVear{{B_1GJFymomXXo zdx#pOo1E>Ple+26`Uy2WDv{Zsf8~f(vQpa#Cjq|Z>Z>-~LyH z{p>U%`MCVfR{33n)){|AIYZ@(Bj9&?=Zjuq$rw*fd#b{J{B4uB*3ifS*bJi0W1c0= zV(RegREk)on&%T{ef@Ta-}?Cnn% zI~%cNrRqZ24K>!ds9(uk_!WeV``;SM0e>DsWLsA0h#BKr{xg|~#dB0~ciE>j4IDi= zJ_o5K{OD!lWF}lrD4wncuA|xSS_nDN%K!9t2b@jD!esw+P}3((`h3xn#z&D zI(T#Vr}R@*#MWy8+ncdv@uVz!f6PKjn&}RNPQd?G9~!FX6^rSYdzEZs-%HdG4^|h( zXAIUz1TE!(jR1r!YPX_nd|i~+xHQB!Gl&rnhBTLUN`+n(FpZU+lLR;U#eccMWXCrxmSH%P)=}f+q#*cvRnHiZ*SM>MNTaD zGEU#R>5+122(&H>GZPA{^7QD-Jc~#isxe`pMzOzx#A*^96So$P!x67{^1V(Uz+b5N z6~ATV1?8(o=O-t$MIKwVAAvS%O7UCBQ*OlThq8$<@={Udsxds#usCN*5)GY3&E6)w z@DomYC8sZmk7V3H)>oNg8LZ@QIvOoxB+zQDQSktXTLk!&g=wsctaW*aLJN+9^~xW# zK+}r2{@_s~gj*`}EGaNS9H&_|QGP@lpmM-lkF=MbFsp8V0@J7j*kn@;9HG%SXJ6#*-!AvV}a^m@G8Aqv~%*@gb@oxqsAmFFL1 zv&>r>RUyhjarvU7m|Ob*@jQKta$xtD^QERrSA!=o zM-Lsp!EAY_OQRF)W~sh*6ys#PU0*Rd5@-lpIf|inhM7wKvBy#PKQMG)-B*$@qxvYT z!}IgY^`u%&)(*&r+g~hYBs4p%8GqX_F%=!9HF8?{LhNA+tCD7uf-200v^=a?0VYq6 zNCetD|N48X*U8~Gwww80$Na_nd9&}Lq^Af-nMyg?8-$*;_|-KZ>c@7>OV)=bt5uX> zI6pW|Yj+T>uhCB>qS72B8c>~sH_EhaLS6rvz6Lb;1(p#y7kS80AlXG*io&$vWNbtu z>Ri^8K`RXwe%)K!4KnCl`DP&yjpF{{0VF(~=#xtA);jm->+TPX;5Yy%3xvdNzt%Go zVw4$`8nd^^>Q}>X9IH&^kBpIjT6Qxh4K|zNWLYvw7AGR%?n?d(Yw=EIay3sv!Qn6cD{c zTa09d7Jk5Iqa9&&I+_7|kW9&2RG4XTfa*&b*Vr^EYfk$MqsPkZ;%~$O4`L`9GdFFP z`*mOr(gg>Eb5Y}dZ@C3;^Jc8@4z=ocWQ<(-cbWWL%Ur;=5s%41F!hXE5rte zGM7q_V8QU8u@c$hI+U<@dKVyN$i z{}mLOL^K97e`lo5NGn3$f+75n2{Re8tVi_v`Kw`qu`BAz(IMXXDRtSisVp%9CHOHl z+(XD1&8*RvC@L{BVWB*fe3n@7WFekee&+Sy51D`p^|-Y$<>7FYAEjT+Px2Rm@94Ke zl!Llq?qP8s_KhTpAY#v8_`5D}DZHAF{^EnM%wnYLb6*mOCtw@)LK!W;?M-MofQ}s^ z)9hl~>%m{~@X^EpO4U7a3_{w5#kN|Zyw@Z!q%W2L)lf2AoTaR_k^m|qW0_8ps32xE zR!K{+VB`S~J!ZApD~|>5?(S<|-+iTrlnFmfq*tk@HP|>4 zvx>rd)IzW;5f?h`y+{WcIF^pw6p|g|2Cantg|qWTQPe24(4u?=9IzM3MI%$kh!mi^ zwtT4I9>k%`11)sC-jom6(UX)hp!#;MD=0L8bdB{QDJT7mp|F?36{fIRtz*Gpu~NJ4 z61ol=cT3DP*)Z(?p|qdu5vHLoV;n2*;=T*%*QH(1g(+AX%hhtKlM*L~PKodbyjc*;xJfCmsQ1Iqa z)x*sS0qj@6yDJpvINiqP&s`^NH5E$<=-s!3MiD zqtL*tWub%V8|yX7)|moHfR#p;n3Il#lC{2KuMG~prn>9KO#UWzFT;wGHuUkH1548) z$Yv*wrrEt&Kmu_XD>cVOQ20ye!Mc^G=)K}1@17S{$#oMkApr5tW*e(r{JtOD+`Q7n zm$iw>y8~rwTZgn^j^@?vqtiv=g2$bR)|6&~0cJ8^t*6)a>#W2ZZ|0LqrIg5~7B?TG zdB}R(gW3}l~{-)_-K5I`7^6$#PSeJGX%>c9wo`3k3P=n-cmW44tFV9@8e zMY5br=TO`{E^>`p7)^u_(Re(?409YLku{~wPi6R;uY5iiw-B!9el`A@_0Yxv6~7c(fD%Q!CehWvKWg z<^e&s{kq1cp-M?Y2XfDz_#IAf#{mo1!*R&<1U$QSGdQ=O{0Vr4tSo=qhO7ock1f}|S)d}#!hT1)uRwy7^$ZGZd4FoR zk4qb|6pl@=BlZ}>z*_T9|2?pUbU0WY4MFQb`iVPK>>N2ptU#T$GPiXz8TW_|1493` zVa>evv$STDH6^6J($AQ$3pIP4Xuu+IcQ&~_74q@QlFfhWWs)34T@`x!CFkg z9l6528mB)wR<V; zqA!#tW#RQJZ^rXhjhD$^+Dk^JVv#TrMgkwMtdzpf~8f_RVtXZ59m!`Bk*H)r{gTPqbJf3ZJ6F=aAItKOWy(-HI0qPgDN?x z>gvoHu-6t&#Fdo0eVt4O?X%vjP`}r|sQsy+I=gT9H{(3Mbq9l+wqt9^WAb;BxHZiG zwcPl-oX7d!H7s6aKTmmpauacKGXvTjq&5Z$bxXnwXB^MA!s*N=c;PT&f9$@SpEV9{ zu|*Dw9*epX^@dR>CAvBXe=^9OYf!oUh%7Yia_1dpF?Oqn%2Y6xrZJIwBzqFZ4FlHF z(ie;on;zwUfm=W=*yBhuwFDecMANg5p$XAp8DR{-QS^zLG&Ci@X0kf>O}UCA4tR-+ zFvtinc#misu(l?xHK;u3cIS4qnB+P$e?;!J+1ws{v2kW_a}WbEzWed0b#MhO@OBss z=0>222Nokkw0`H-P_0Dd{OY*tY~dX9i+j$?#tK)UnBKE`vH=LP!k()n6qSSgeYm+@ zbo{pT$mk{W7ydvWR|{6ZxZ4@j{R5Xw#^HkQ%Ez;a)*^fb-@Zo#q#=ZjN*C2j`r8Q9gtnj{EI5k$ZXiJ7Ps|`t z`g&9OO*I<@aM*lXYH{K)SCJ=_4wBZ5kEU}^Y7wvM9M}is5xM})k&J33BE}C?KVyUW zPk|oIG)YDq!~?54Js!tE5XyZW4~Yw+s(iOvM0@PbtmQL2?D7(We_SIj-} zqEI4X2}U7vC=Ml)l|?}_6^uI@ASFngrFqm_e&*f*{PpS8RD@gQVKIx|16uy=4<^{Z zx(Wlr4qgFOEJN0CtxqnOK_)9J8%jk@=(f$4<;p3~N?h(TLB0aJl&Ffam^$!AW{tlP zH`_Y~(2=mMc_q0*=+Xk`x$z3Ua(Lun$pGVc@YGJSLz~Mw>{tCf(2rBELP9S{4FfPy-7FOKxTHIhxf&dG&;T2Yrw*W z@=w684WbwU0*GT}AnEn^3sYb%M3u1cxqMAod=Ru)Z)&%rlA~B_SmeXt@xg~FElD<1 zrehz#s2IfPHdh)C6Ab%Zd95X1VL{p{Ls`ZlCw_SoG_lmkk^ks#?1cqdIAY_#HD=&m zE~3O}6qx04xlEpPZmPQ$@(;QWd}p^^NM|5mFiU*(|{7R*!e~~j)2eFdSCb;rzv_k491{~0iNPv;l0S0_2!Vm!tKLl*r~fBlIK1Ej z7?Un)X3*&7Fad;p$P^Y^+!Em(hv1qN(Vz(n>PGs<$SET@a(RtTS>1oI8v7_CFxy6)OC z)GW~nX+!u*^|h6TLC{h{#&Gl$+ZAu~bTxA71g9=!;?7S**IgL4KZ6V;7;v);UfNKp zRYw%hLO@m^)%QcHm%cK*jbGC7*#1erRiPS2I%Qf?RNHI7z(51&Y^XfB$-5f@P`kk< zs6SgaOR`e8J64H{D!FW}H3>spVYvssy9fPB{J#65cR7#pztc`4NWdY{xVxHX8bYj? zgUwcQT7KW-#Y}M0xhhlIXGmDxWQ;*8XzU*9*kq&OXc2Q2^C*SRH~o2a-2u}=p$97m zibQF|r8>9zL?NeC3sf)*so*09$0Za^A&$(8eNv0mM~KkMk!8d8Gtid*^Q z;%%}%_A~L0KIFDCwDFXMEqelPMakfR7Q&3%@bJ9E}QAKX3GgI6Z|j} zQ!*F*as7mB1uu_>LnE*5f8fGSQ7QPjj-msRum4iXq>)P zET57C%8XS-O~qzEUHRP*hJG@exB=!FF+><(102TSsI6Si8J<&lF%>P z1g7dODud`#W(>p_`cg#N{kVwQDy9dL@er-4XOx|xyq6ByV?6OP7#iuKD)>+OwBOe7 zCVcRf=5q4t;{_$U!;3iJ+V!b|VWWRbAdw7wDvLm)B9*^B?m57+1s(JMSWfEYN7STe zugLdkwygtT!&ZJA?-T4(_~YiQ5+<`+@VcEprYTr`Z{%88`tax^j?+{QNzn3G!&C!S zkj>GpHJ%b@BVNl6(rwo)Pns(CAXX<#v&8sMO-%vZuiH){f0FT-c;?G4egJLa_|2#0 z4H*Y~#+=2=JG8D5v~$Z-(BPsUskdRSzEtXS1pe6AO3_2JcmKi zQzcpg$m;eovKIB~3OQRWSiQS}GhBw%rfIA8a6n zVDxoHe#pKjrP(@u`N<6;)X9Njp`(|eRW7QR0GeJqegHZ}a>az26dh%gke7VnuH_wL zUmJG!H^&|^_+%#~7Fu(XiwYY=Ce0zVl=LO>@II4w7sp;17U+4G#oVV$*~{TKh+-2a zSfS{6+qdQ;hLGxEAxF_neYK!~LKYA@la>tH*{0 ziDophE@KMcVgCeHjWaL0G+JTu$NxO{E3E7R4FkffD%@wlx>*wbbu>-L@@#_yVFako ze&l0vt7RfBYIK{yG5@Ew2Cae*okVMU;#YsF9v*l`7Zp)gIY9bevOi4xPxK(K9FSS~ zU*#ObZs$%*IM0AEJL#bu6XHD? z>)HXc6~rP!mEHz{iJrkH=}kwOC;d5cX?<>ziQJ(FKYt$kJ`jRiZ}@QdnHhvAHro@r?l_c}HL z#YrHJ{tJv&Zv4#{V1r4W@}^9kCh006MxUVb#w8yJ8SCoAcyA!g(a9?e`e9gUOMOLn zyu;BeezRd%5jKi3(II=;CH=8vT5M^R>YkhI6_Cxbsp}AWR&fYECoeo8W%|-U zFUy&Bx9c5|pf8|zIXvNg!kYJTOD>m5F~?s)<=2BJfX=JJ8^2*H|E5a#Y;dvGs#qwA z+UO(;W5KB3*DpPgmlWvV0k-+bdqSHJy_ZlZr#FI!pnPz0Aw-h~syxJc1^&6}z>{*I zwAM}?M59CyOd~FvzdTX0AWu$C2=6jQD0d%QU0wa7|8j76q@+=>0W)P8*?&ZH%ax;` z7g$DDiB3BiD0JtB%Uu|%r>GWZ*F}j~kj6j|x-=*;Sl8>djPL2KIf>ShY8&O{&9{2>nx7}pk}>%jI!m40c%)=amzw+V(lJ4{%kkwu**z39dmSO^JZ5>(Nb z8zTjRm%~tw7+}~p@dD3T+S3YUCV%v;(S}{L+WhXogwAocug&^DpGR z(vIT5*~lhCsWXl|1k3tgn9xtWjL~;DT-SLIHyw=eS7YkDHq;r@W6I&$Yc=~@ICS{v zfM!IuNhPEsxo+@V*>4ioH;cwo`EH&)PmS0h=u@1Kx8UQx+np`HNFS}Xh@zbE5w%X2 z-L|#CI=Ym3y8wg_p9kM5uD;7#Dosppk*2djP8Jm)K-A%RDK)A_Hbik_DunbRbBf(t z*IUV*baFX7OrX3U09iV>sosXbbxwKisG}f_&IG!rQTr|*8FmY8jZR{_^Ef53jJ1{L z?amU>IG1yP(o+u%;?|Tu3SfC$`N8(z8KhcVPn4Me#uz`vT`X5sC!b!WhNRO95DeQ{ z4PyO4=MAEt&OtK(Xd!UxmPh-xq#U-F6s|!5i{e?}b|dHLwMeni>B4h3Xo5+C`^F6m zuoFnz{AqZ-?=@%rj^fW=0<;}_#IRy#hik;N0nsYA>}*}8rQ!(+4FJwSqXaUo_@n5Q zb9~?YE7raMRGCd3;?J)S3aMKA#{R0F2ngW9Pu;$&(H9P70W(<+K;)hWqQX==p;9z_ zQAS2Ma?*zFhU@N>Ao%pfJ%#=DIDwoVFvcBw2bFbPKP4z4Cia2a#DS<7Sp=(9*JzQPMUprU=$KCNo8yv_SeaSVtp#PbW zZCn{KoLpLo@Ot6ih&ZQuE5_^nZpI3viwlSZ(t3XE>d5bj|GrK8>#HzfDghgs6d#FN zj$<~Oi5LN9%n%??TSlWKpSSLY7WY^fpQp%{N(E4yeZ0I9$)ehLqN{#~9uZ*^Gc)p1 zfoNI46j*s$31^8RcHcbmyz(KJLq$BHkOq5%ZmTx=AoJLS-@DMb1g5<;t zz97$FZylu!wdZiE2vvE2^ux={g4XOceqpGp;v+{h6{QV8rE9;oat20{btH2bE7CqO zF@aP%+2&32DWEbTepi`tJA*E!Esv1&JDYRAjk4CygF^CZtjnC`NPecXHPZy#=MkM@ zfai`pgy6e92Sv=bnoZS+w=R^cN#T_|9_Id?3~J2hu|)_cV%gPv=Zr^Yqjs^~RApn= z=yywv@ZU=o01E1ksg4}*#@i;#AxYl~&NZOJv^5XTx=Mg<*$$05WkV_ODUYURrpx$h zGk!AtE<8`<{N=NH*7pkN$;HtO{3WMKkEgRs6``(DfmJ9Ylm z9Y%vj6NgG*-&x}%TP`eM{GnP~o2(!&dS2rtOO6dEs5P^oGOJP4=lwYpYvhSqQi>GAzD+NZv&2iOq1nNBmPeoL^)B%A zXG_F8*y<;g1?0q5?{BR&3Gb#U!Unz$p-ioF>Ay?}d(|SlqD;3bT{k$ds3m>$0-?uo zU1$y(RYpl$KOn5()&O8I82Ck_unMaPhe78Kq$m)VZZ2;*4J( z&(N$oQrLBuDPCMZueeBYd<`IX+M)4mSUXkvyDU7G;O;$95_iVfRarr^Tt}W-9wD)Y zSntffGx!_C&?h#hy-T%Af$z3kGKdlreT3Yrd#D0GsWN;mW#BXi1mD6Z4fU17x>uYh zen0^*v!+Z@7LATrqV@$@w89eoFpL`J6fzQ~f2##(b}Cu4h?Ifvm62EGAarbU z>jRR@&qF|<=!-R`zuAMd-3ttgaFa|M7y;GxYQ5S}EHB7LcyUQyoeC9{=Z_yrjdW=~ zcwI4&^cfhp`%5kdX^UxX>6WjODj>qE&jv}yu3e=ei0skI6_h1mRH^kmKX<+FC&Ar8l}+ zi$cPt|=e5X7<#eoB7`l)GO=MNJ?~=ms)snp3gTIu% z`S7D^!*9DDMg%WMGtx%b5n?B?kQPuL11u6rGI(h{r%qS#V&Pw7`aQj=nc$@zh6!(7 zunjJ47joZ->|6&~3c~v6^=qkxMyj?LU3=KAl3Mou4P?}%Olh?lHW7}1fAu;@UKS{w z^jLQT`D5HzYxraN!HBYSn8;SCYBiZU>44O-u?{F5tAx!7vauO|yt4Z;o0vZmizBreyy--fK5;EL^=HA=jl5&0IF4}Als0T z@K3dN?OH{4-CavcK9DpfGMoS@&9ZKT{0X8%59wy}VqGAC^C_ zWQT%XVe1ZwjdP`Pco6xy*J8$!(@+a`%9#8ROlZY)URhL9_2Y%)g!8`Y8{iJ_8{?6OI06i94Bcw#eyNNy_Urqs_q z-Y29KBFQ+c!60o}LFUYGO()=({qEmYnZKs$Zb(Row1$ez=PyNC!X(_JB*%NB71T^- z)t-X&pcxv`;^6(!8|o*seKUo#PCS3}7Ip&IJQ~zd(P%toe^?@%F)gk!Jh>$Kw0?|+ z7ntLdt3#FT{mU<^!7qHXuh)SC>gHi4Zgz}wAl3u(=8}UqZpnBIk)T4m_|BiO-AuUw(f$U^GeC3^3LP6u}C1fkYd3aj}(XyD97O&Wb1)wkH-zlPe|^V z4`R%H*M}FGqpaVYKCM%D6ngr98i8+*fcEfyd(8D7H3HEN0d~(b25CB!(AiMcsJ<~b z_G8Nv#A_MGywW>qi)G{R^$yG3Y>ZllZ383T}WS6gt3G%@~44B>Q$oeu&GOM52MgmFxpw@ar+3X8D#cim+ z$KeYu1;WfoEE4p>`SPh{^=(O!0sQinQn!sMZajuLP?d=#r>m7LSyIM;j6cB*0;9^} z<6Mc+7{@&F=Jsvbg|rA3Rm+Q)FUzsY<)t_xwm9;4367}+@G*+E4l255prW>hTFr@Y z!F6gVf?E;IZe5US(F>!B$0AF2?87JWAbke;4HMXC>xK?dv2TMxQo~nbypQ4mW2)b#_3ZUqMQ(Rrzo~98R+e&6-}5;igU=MQl zq1S^P$=q%jmB`u<1dLs2X9JIu(|= zxg5S9L~m885>f`s?IgXPPy(rteoS$o!(fop`yii2^@aU|ab6_&A(%==A1g^cOwZC0 z&1ypte>Msq%*-8EFu(CK^|>{OZ%GjU6A2SZUNoUKKY2!2^B66Hi->9wmul^J2PKyxdQw~AjyMK zU#8WrYd5)#?Qnp`bKuO{j_WoK%I><$AyNRxdlxqhv17(CeHr4@%vIV0A7rE&Q#I(_ zJ%sCi6lDH92=H~-VX|SRAPcN2&d$#2^-S@g8gFyuvTQ0+K&FL8lPyC`+CEruw2k2d znDsXrfp3n$-?!1XKdS>-rg`YyxQpNPp?kLIi*Q1wXQ z8h~WZa4MpdO_JVD$jtqx!3p8FRT`voV834^!?5Af(!pN#<6M~Tz^vL;@Tsz_v9wSB zs{Q(niewIf#e>BgfPF|cU^JFdOVN0hrW^>k#|Gmeg-^|zH5K_|V!>dH#HDX{DVpU{ zK&@Q(<}Z10E?At)SCDlWu)rIVr%;|#0&jj$Mg0XNoVl~Colt7GqPc8gD48Rq#Pz%n*?MW}HL#+*Z`b5Q@ty-}{D#D`j7ml?KBIP)&!l*vIdrNh^PllpVkHrk$N4R+#hKX<- z~pb_}K2x!9leeu_O*9d3?fB;9=-a!OaWn`J&4G0uxkd=B^F6ZNmKo~#89zj5F zV>v!2{I#XA{N6NMHu=@tS8^ai>kY`1A5^^(yZ1|MsLBtJ`VhY84Q$i4 zT(ZQn{d2sI&0(>TB9I$ocR_Jy$+2d=@~#%c@iIz_Hv-QlPgc99?V^9*zOn!l-jbow zZ-QTdOh6*VQMXEJA{w7$4dpZd-qG72fu>ahUegAcELIub;1wlHNS0M=#S1EC2Kc1c z2VW4zz|s1^;+W&f@CGvmZBdD0P&psTuTZU>q4Jg~UR-tnGov^9`ZBDG*#g?7*bIPHzf1`7shG4d2sJwa;u5mDW{byLdY{bpK@@O{t5 zjfQEl331-MdGZjdHE)L4^r=fDpb?0C1T^7|e2n!TGy?y51lXD0s!0<$i_dYODDFg~ zSa@ZX>YgW-<-fE@0y7{zU?iH8S|Wyw^>dD_QW(qsCr_SKUSlepoPrjS^(Cp3AwLSS6S1}oD~av&B<7qt*s?CBF54uOdvC02^a)&ISyp@F?_CPLEwxDc0~&o zlv6mT{b)*ig-qXaTXv|XE{^{-YJa8jQV2Ex`f!aj0sf3%@52~h%Qm(@@+`gEo)&@xs<3O4@1Y|Du83(q2JveS2GjoTju(CL=IPba*G7k-3ePP$w25ZJ7 zjC8J(#a4DAf{ppZN1^I6N{#ri(QGhoXheMF5FT>~Z7Q1#wYoAI$5tZ6AuULJ3wU!` zKOZ?Jy+E!>c3By)4f=TNBi^hVn(O+6S~r#egPuo@qiOAdT*FPoKNXWh_P~SwCPqw| zc;*~d12Tm@btank3WuuXe2_W6Ie>8<5PNH2Spb>Ezv0{%52s5bpb>~%1T^7|TzvJ` zH3I*61W0f=K9*k8+GSkSlq)tk1q1|0_Uzf!C|*w6Vni4R3WO)Zp9&yjyIz498f2HR zC#kHFC9@ntnnas6ZT@wWR3TqNWi>4}KGC$AhO30Y#@+ROT$-_u)aG&J7gz^+<6NBJi~R!% zFa6v{FnGi$jytx&O^7|z)xuCrnaEMYI)iEsd-K;jsR_@oQEaf|_iRo}3+us9oNrL= z>XHfsQE(IEhUAS`P+X~erv^!n3-$K^j=3}%@Jxw5x0e^hpNe^W_;9I?|AhAd)#)l3 zG8ns4pNRp)-!QVv2T5FK2L(&Jk)y&!8h`L2d@})7oPh%eN^`6poW(hvf&GCh_}BuD zvJ;+Ze|XO?&72wbGRCeQ&IcBvABDTgC$}c@Zkl4+h6-&kLV@Au#*|Su-z@{%4 zySin|7U_bfFEg;0bI43JipuB)5T21x8jIw2RGwGkXW>6Lgg3J{l)YoHSg<(JtI56t zYH-1FOi9ZSjx2?LJqdngoD*yPr4W^`I~jScFR%=6_)ht=j_{iL`1pur&DydF7J{~R zStSI-ZdbW7(z1DT89QZ)njm(xY9*D7K;N-n^(wLngqlhD z%?O|M0^n%W3Jho1jeOvKX;aITteIsth@t=qg=I54Cul;8_bo=F$4BVmnkToLGT_!wf{F#io-o7N?e?miej zOcG9<=fOH+H1bi|?E!m(pIapv0qe$I*HUVFoTGz-+;A=~CEK)>AS8g8t|DB5Lfr*7 zB}Q4nSKbnXHg@mcZ9JquYXmd`k%WL&cq0i|y;+TbM&LaH_ix{paw(FB!Lc0Vj$YF{ zAd;!ER6ZQJuI-?Zv6^N`ClxU0!T-z|$(ZqP)i3PD_=5gV5)*nMsS30EovQ2rcv**! z9xWp=;Gq#3(eka|Ans*KNp380XI!ybY9PC|FP5u0A&c8S26Z$dRgK;Dwy;-}gasl8 z6heADN!DkBNSZ?_Yz{K|Z$(SO3M~8k!fCIKnJuqdei8cEI~emqtJ%5V;6wg*S5X)mzsH{O|}+t-A=N>Qlx9 zo1SzDS63MfFD8rXAbpXXqIJ4vRTW>g2+PJsw?D~V1siMG15af5qE(@Nt5%W>p3t~h zGH1tr5s*jaD}^U?7;n?uLGn1+taf4xNwRN`8n;`%Oc~Vx79Vzj@I@c+K9hW5PA20h+@eK` zs;B0_k~|v%6IZGtm-7`63lK+x?D7dD;m#oBx3IiFvSSCCKcK%F1^pJ+j*()fwdKk+ z;pDZwP;uF$*Biqw8t>gNFVGlh4?HH|8uEO%AsvFpz?+;aAgh&ej?K{!I1+wfA4JAY z%Htr9n>3IZj~+@-*hca;`AP0L6_b@v!Y5#CvaheNSX*05@#jzFNCj8b2zU#)vY7c> zIYU}G2#gcQjw5^VISCpREtjoQgCc_J)Q~~>@`!JBHb;@Hw*ZmWr4i5wL@oj`@Jr;wHJr%ZU!-ll zQKLq(Xwjlb+y1xMFx4tftqMOe=v(YNI_!gQW%?8ofe?LagjIAn|F3lpv>B*)DE#4W z*07;$+O!ef?eKuYyUJyB{_InV*Tn(L>8CJEfyI%*Y!oue6*;W*#u`maSurAaBz&Mh zK}9pId`L$)1){eCO5{&_4~UmrMHT%-(o_oDs0_7kVUdESFOlSkqiO|ml*#*;8o_J) zkj-LMk9bQ^NQm)J*k>xoS)l-1K-HrK!yQZ2R3w+70jVdJ$S*-1<$ElAkqEN6i}7Md zLE;YMgHygtD;dZXCymh|oDWOz2fe(MSJWL!=XsDT4t`*DJakwk5fB%uwL>uoA`u7~ zm*R^QC?K9kkA^jk@%eMl2FWOp@;#oOVfnyZ^5?$;PFc$rs<1PKpeP#H=L>27bzNJb7oUE6+WzDzc6ee0SN5r zTGikCgV9u05Bb0JL3?0dj9MFm8=z?*?uBqJ#gOvQ3APui&P71bX{q3_kRBM_`&W{r zLcg;u@@^mDn#ITUU}T#=;>>cNJ0mSZn-aNis_89}@DYHU2%~sSQsX=sMaPMKMiH;c zNP(br!#q|@xd1!ECMe)k-+5!#9d?^EM-PWh$K&g$^q1PaRbXxq&nguqFWz%6LCAZ+ zu2TVakWq*;+jHZlBms$@fq1s^X!?t&WUWgl>B)EC|+C`fO&&5dE z_}bh5FKmxZhOzM;;gFV%$o1yn6kR_q0$Snyaj%^|a*aTwB2W@ULk-G&>R-M}pKiZw_@@DO6+?d`49 z-&l!}FaZyA-Fo%pA#TKt;x*wP{v}J6$o1>jrT2gV@Cfe*f%RA8gwtT8akDJ8>N*>$ zeHk39J@Sl`qhYPZ{zFpGeG`b`dynxBM2?MxQcGVnhnCQKa3Fa~8F}xaRA|^p4R&yZ zUE?hXcV%qX70qlMpUmre6LtgB;?%kD#IYKhAUP76)AdY?*C-(rZVnV-lVF{?b(Ot^ zY#hRsq4=QtVZ9+z>Q=Y!P# zQ?i?Qm{x^-(wls>)co}YIvNZMoR|932ruZ^HNj{9i<+X1t9hOAC9V}0vu7L1W7uJF~1~wJccK4UaR32oN&hIEN74+4l=Na9Y=lwK_!tcpFXYH z)CBl^seWz;Nxk;`r5uKWNCl7;^yrBiOfl2Bs5C}X+O(oY|Th<^e>NaXG&?nyxnBTo-QLCfDI@=9E0z7cS#CZsYs;ix-Ej zI8o7ch9dhbV%1g+8>)QJsc_E8aGf_n3FbM@1bI&qC$>_0lfxHlRBW@@Qn_{=xdrSV zLFr9oZKE0oIUK~aNPIoec(@7Hk;$+ltRAIs?lWi1P?PA^ zhg_AZrvufLHcr>8vTdgtS~0H}8tm5OYI#n#cK;lBdrem_wQFDR=EU7((+55T(Y=I1@Xl)b0G|o zFn+!aLl^kRo6FC+p}cV!I1~P`pMXcwv~GiVlDGv22dhXZJCKXFam?j6EJHKSs^YdC za;rgIHM;gLM$vZiJR&KegxyPNDb?W-P7IajB7{%;a-Y67s->9C$k-atd9gqS2`pI788@K$aiSnZcg4kB6P+pw2Y?paO z3JJ-25j3UIhf3@@8kkLG1wdjyrV8VE4lkd}@5mNr`BCvkmTy-q|4+iiu_sV1kAv`Y zCH2OWnF^((fsPcq^9zT+PP@3mMZI72Qo>T#$4?J~BE}#Lf0B+C*gIJs6Muj$% z%(&?)fyOqAwCUtH-t)Yv=z!;!O!K#b90%`-a_Q2jyyW6oCHd5?BzKXXq>1gAcGsmLzLN*xe~$q4oD3_|t*xfW-l*zXO~00jF0nVJQ%k- z88!+tkX$e_xm357I{qGqk4h#i`Dep%oCgVCSGuIMpD|tjz~r=NP_{F`;t_}jC1Zlv ztaI zC7TJA(=25wm7)6@`MfMHpZ5a!VaBj86j=K;?qUNUZSP^j#RYy)CMa;2gJX*1avK9L z9HA;Fg9^(r${fMl4-H;DVG$td`gM?QqSAE31^1mAHUR zpGWf;(;MhlW<*&|__s-B*_*&-wpQ?F`}lZEY~=TDfSOycW(~2x%}sHT@M`@|NI8t* zV@rS=ZzMcUR77IKvHwbDYcs`4UYii^3 z?m-zfsz!|(G8aT-Jp7AHWvG-Pol-G>3qFY#=>X-h{?RA`Up6@g7=lP!R^|?ORecgc9#Y{oVF+mL)wuD%9 z$x>_v)AeeE(3I^pP5&vn`ul#m(4ze;+G=mAv2{1he zkP*Y$1*Z3-efuehi{=X4x&Z2?A3AIa*mps|xZ)Wsx9Di#e(p}8OwRuOtu>72`#4(c z1azvIh2k;T?7fK+TgQhUvW`eM#99jMD%3)^3XJ4#SoaUARCGGiUjWWCI9Atn>#YRL zdu^N?6q2RL-9f-TKdh$DzPcB${1=}=h~y;FmHKfQi>+0YCfQ@*Iqk)Kd9Ex@W#0fK zPlV^OH;^UxU`K3nGT3!_GIz?G$9llJ7s;L5F3@;F+Sq;H9(P{E6BvwChRu9^=Pnb7 z)S$|bFrJANFyvo+f5sKKY56O?d)r$B2ii%VnLOd)uE@>57bzJ)Xx5?2qmS4(49q&U zY-Jz7ChupN0I!(dj6CChS3T`dtaN_PQ@Ytu3%TR~`UVXeXcZR%@e3J*g^~XXFwb)S zNW}o^-lZ!nHsD^f5;qfJ48GJpT1_(iSc29%3Ga)4Dkd`%BR#hYR3D+BFw{#}=P-Z% zeCJ1866ul(HA6$QGC3IJ)Mvn_=S{99TeohtT)8d}f{lY2^E^^O~4gwcnjop{!M6%KZ`yk*4=m z`1Bz~Z!ZE|n*yrEWD1N-t(e>uVojtdt@oxa&VH=@6`(1=Hx9jJ`R?7FMVXeX*})u` z>d|FNS{c~F82}3vQZ+`3@C1^8cmQr$r^#)gYU)(ZO(I5=s8&oxS64Kt36NHNkK{v4 zZ7({1Rb9H$wbrd$_ptYu(TT3&^>fH0-p4jgg?As9D`T=| zQ<2+N3eqCS%l-OUI$R1mcIaTu0na|z)q4G5hZEq6pg0SNi^cs2jrA0!NdllEEp;oC z6T@`wVd`wzZ8^YFAz)XgSW!#Fd43D)d;oUtS^%XB-PCHrm@lbZ!4+*u7dxF?mMT=x zDx&KSjiP|=k6=H2u&dWzeDOuA&cLB__Ng{3YJ!Be1*TqFTOVZ0%1f<&b$+kVf$e=d(w+bI8@mHpM@E3Ky1S)f5Oj>|_CdR5 zD~7%MUc~9;1JKukb)3r}ARVCh1Ymy?I%^HS6avB1DYAU+Iz^4rw>N9p(3YdoJ-CWVkrOH(; zW$rw#=w~-9+guz61a=i&!*e?S)MV+xEYIZW79R$)LW&f&_M7AO>8zPH32kd=2-r>q z_`X7weyu81Z1jsSSU*7Lg8&ABU4=Bno9Qn0IhtPqIzRk2xsn8=88^}108Far>kGh| zI&AqNR$49)J_zmsD0u_cwo2+$PM6y-eVA(}djS?$4E1+E{cHX@M)xLujlx8*$tnfIPRuz#I zhxHu`;~SUlRq9o zeg6d@L^)BnvJs_9P$-w$3SH5x(Q%!VL4cIbk~xh6wQ~{Mur?;`+JIeQyrVS zQLA&@Qi{uxQrOrP2})7e>1l7jWjkOK z51jeI`oe6l0d%VI#n(Iot(r9pJ@i#S%Pwp#3}x*l%PsHBIhGz^TZ#fl-6J(cNzL>0 z9M>wDOXN_#va$YMJGR>%Bt3^=+cgl9B3l`3u;C z3>p_lkLB7IzxLW|f4lXj+&4a95V{5T3U$QWKu*b!TK?DVh=%ot`!t zr!yWLFUY`cnt_aTFYAMGzN*jVAF5C>S7^lM_kH{KGre2fwOQ3`O)`X8_~dEU8bDSG zc1Ugpeh5IMMh7eXuA~XCeg1`=WLaoLz2i>Dx;3Fd$`83iG{~OKMishR>nNFm?4#u4 zsu;d^pZ$16|Ek~BSRu!i*Yvw0D{=_Q5TwhL6(NQGG1MiiVWqDPHFbA&qq@pm~u zx4U6IxBN3C7ZbkNZm(X+hZa_k5AUhaNz7*Ya=d>&nr&uGV^6x`Kx*aC7KLugZisnI!dKh;7+4UP8NdKCSV`Tws zb+5=0#J;JGa~RY6*KE)1pz}HtraOYq``@+l~nKj!T?@0zS^2P0OrOTTZ zehTv`FJv`$$OVfYTGaL$I_H=A^f9rV((Y=iyBAFB-GH&|406ulU0etdTOP3Y3bK>D zfL_TM)X}auvXmDlPqNq)pA}E`>ocHZR^=IxZJR=}g+hR=ofHR7!UAq0?SoYmC&qT< zh!M_fJ32Cm5m8eXjp3evZHMz*k?j zAIPt4=X|M0=sxDbWVXd=ZN?P(HdhpiER@gdnAkS)ritVz0GR1PUuC(bZVSLXcSt-FYsb{?x z&tE*GGl`f5C|{+jy+*Dg+sU~d1^)#Z_=__T0N%eip~3Eg4E)zKARTRKrr3WucNVs8 zsf{UH+Fi1AhM(-%>8j@Cq~M1>JOxTV!hTG}Vqz=((A0De7)^m)MQ!xF`KHWp46K+& zec-oRy4=b!B^vtSECBTomQ+Vz1XEq{^_4A_91AMVo@eSJ76mCn7Cw-}Gu=%Wvd`>Q znm1I3-Rwl`+Vyp6y5nj8tzmB~p%a#)gb#N0VkthH)p9n6 zXV16t>C)Ky0Q8yDr#qI^?U4W8#u{rZfVT_9cky7k?*g#j1rQUPtSM@RbiCQP&NBeS zr*en8W!nLK&B&)bUi%{td4y|wmjb!_J9MzHurT`ywz>}kg9lfvvbVPHaLnRE$OHPp zp39x#2-E)q(IelRBfD#{tLgu}fWM@Gu$|nqqSIzsDs-qDnD+PC$LWB-B!H{PA*Tf~ ze4oI|hvr@D2`o*61&oP~xC#EXnz|PN7BJI5M*|#5Q7X@wZ=Kq-vGf3)wMa*F+*Fyf zIBn>tU3;uoNMV*-2zqgU6q0tVU@H9-8s;O&EgpLKVQYBBZ9}i$+q{|cF;?5*Se&~C zBB3E&wvHbf0|Dxzh7Y%m=)ik0-F^TDH7QaTId`N_pWYR=4Wr=ldLi&#xpHNj&0s(v zR}5ywPv_a9>Qx-upOa_!g<-?3B9fKAGBkjR&oxeEAf}MhM;;o7NDibKk{gY3B}&*H z!2JniMn3}D1<;QmnegQo2^g$=9x{`n{qMqJPYxf_JgZ5EBtL3gvJhaK2supx?z<0m z{qqTjr7q3;N6+A=yiesc@g4&}#S=WkYCl~J$E_xBfk4>IsqWZ>$* z6o17YgM9=U2r}@W&VU*OZ2j(pJq*~IcIdDb!5*tAOlZ9Yi)|qq-h@nDt^~A%#!!Ip zSFoJE6v2N@)?k+|&&az)nE+4IDwelufThy&7g-p^UYX03wV4#Sg@!&H`@<^ggL43& z^ErygnlnY6O50Z|XOqj9#Sb=`WddMLW7}mHF1oI3gK#F;ixeZtm~r+T1$Sbi@}h4Q z!+I9qTv=)PAsK+26h5n4(}5hh5-g&X?a!!aFS|03IB@cmrQ+IN?EI($so7Ozb%iPS_Y?ZP2lw*LqJ`aapyiTc z=yx?ik#=1Gy#!$Lua4y~u43jx;~AcjCESM_4cVuCgErZ4m5@y6G|y01>;*G3m{LKZ zLcYus4jgj#N75MC<~6~FZ4~!!^1(w4Bs^!W*NGg?=CxwXLJxsXE@k@kb(bL1~d&k z?vqIl;I;$AB?n9`KJlGvlUoi;saKg&7vPz~2c+8m7K4#e6~0>Ps@N!H=Wd%pCNl|aJr1fWy}K4Ne~V=H2dMnOweEny)4(O|xQUjHscLn-Yr=KC1(0jmvZdRFnjREJ z<6H@ra}F$Lf3E3W0Cb-M`K%Vp1oF>u{Q|Cv^~X;*(CU8Szj`qKt#amYUE0=f-fSsh znq?;^Ph2@*NYmSG?Rx8sW5o*eqiQp)h7qT5!dO0kfh(N!_x0TK&)Y{hIMigCJvuCY z%gh-aC@Tu%ngLlwvZBRo3?9*n>9FrhDY$$C=}Qd&nDQh4Vu9Tq=x?_-sOv2Bl+($q z+wp-1oCAT{GKa?Zr%y%rC;Q9A{;x*f@B#Pn0P={)zRv!7k-tm7>ialHel7Cv@nA~j zSsfaS(1$0CkmiXK%XN0sc9Iqxrs>EhKV7iA z3`C^2R>9@_3`{hT7=>Ni83syYkP4k+K$w!*jt?jRZL@5JlkU9EGowMMYy$mGfQfiE zb}+*b8oKua!kR_VtjtDO=OBU%{M{J{0Po+O;b8wk2L6K?C{wnqYYLI;{`S_S$J2HQ zM$@1A)--n;fRY*x)B%uv2dENoOqDvd>*5tT9nEi* ziFy0IP*<>iSazwKT2??*9FF6MKG1VAo&GiZQmAdLzSQweEp6-6sco47Ky8pTC|==1 zIx!#4876#U>0y?OP>d5F)^TPCdnhJ$0n&~2wQHcS-D1x_^Nib8ZG3YBNZZw`Yqgoy zmSjMUGtN*jmIICO%K)yX0Mum^UY(>c?iqBrGXN1k1FXU*1R4rUDTj#A&~&{901GIv zs#>DBlIywlOP zP8j=zrF+@A9^}oFWdUOvap(BkMGnQ-i&>6;3ZJQ@oC~Gmf zj$D8|KUB1sKW-cwG-#0XNtSk7?je#;WU5rro;-5QPG`zuTefVmVeE4;l9|!SNi;A~ zYzAD{1W@k;)bBX;y&DJ|gtdPi{jVQtlA`v*vUD3i`U88uT|1}o6^QktUX!MPx|I=t zUU?Ps+2sCqwsqGo*LBWc_j=!zqt4jJ`Gbuj1q(W+{d((b`Ri}LZIAFil9il%mHPrH zNAKEg{V4Rj(MS+Kfhz({#yt;>uvoE89R~f-Y{F;c^CZvjOqk?^HEUbKI`y39xf#WP zm3Y22`_T?*jhOYrtS9M=x*twq03*-o2bulxLj$O`CWK?E82+cUr))c-^@Z{Ga2zYZ$BJ&Jg4`|J2$T>#992k`Ll-TYsj!hhnp6iEFg z*YS9lE?&a8alIt*<9i+3wew&=e|NuVgFSuSXl&ZF$(u1_hL<8yB9BHE-kDa-+}D*dCzS>)ErX+lD3!5$9iC`{LY~8um&jOX^;4njy?X5AA*)TehTI7Z%h@ogjf* z#?-L~3l=)79ht9yV=FUFN)`}?5~%B@GsW0zYzY&|T< zyeg?uddMEUFB;VGl17j2pfH8#L+@LTL4y{rW~EBMSugT}UAuO9VX0GlX_6-ODwi$e9XfO< z@+#N-9UC)GdG%|6Q0{%&vQPWBR$`G&neGu zkypA0dNHF$@y75>>V2W-LeC`(u=fP-3Ba-UDeu{^IX4HL!E(`q`=FY2EqlO3j zRlOn9pm#_PCtENpow4)wHbnb&zAGS~B3HN#dSoHJbxpH`6fWa4^doE%hM~)nE zuc0gTzG>Fj8&|Hh`fNrW=%fqYK?JsW3m|kkWR@SWMw#S_T(3;MBDt9jLm4f-b@GM!}p~j9G zyq1xG-`u%#y-ehas(g2Bod#v-d0hB+u({pw=fcE|O-}h>A4~laC=?3T_dGRzLn_IP# z8|b0ycE=Y$MndH6V4#zi=LEM9f4Bdt?*ZWbSKW?VKAAhT2j1ZSct|9_2tmF~?ZeQE zsRCBt{gC!buO+59;NE-hb>IEhuJv8hlpmrmx}8JQO47oq+Bt|D&ww6f6-BAyShhn! z+*}4^aIX$ae?@2-S2j(m#{L00K+bI0Y{RBaPFmpaU)ona^R2REww_Ec%Tb`l{Dn4k z+H|Xq#n<)X;f@__6Gc#;Qq-d{a3D#rzN>Qdu^EJ!7GqlJ}4R()I| z@*X|x3dH<<55)Cg0}U`fLGyd9fSI)HND8KLEKTXl#h?UE4Lz|`di=4+EGiaZ>h?CX z@~>6;+mSPrMOP|qE8r$#x2k$Ci9S*l_v#LpiobD(kr60V?52)q@?w=Hv=i--6H!d3 zW((WVoQ6i(nX|DvL-xSG6-X8&2~dL$KL+7VtZ8J~e7!+|l^>dpPfT_Fsh0P+R>fV> z&g$>6{{8^qZ9j5{(2zwLfYAV`cJRy(R$$6>yT~!4a_p>GvRDQFcK4ttOnQ+=s8(_mgO}2cYe4*S@`5B|7)}Sd#{>tJ&KWuqh8;(!fNq2Wf`1qmq88AZj&* zc%hLBA7B+d6;7PU%FUi<_fRM&4YJxy7e&JIFfJTfxsJp^xyVsXM^xyh9E(H51PD^52&Yicnkw>Ueg5)*b^W}9N1$%wA$tKYryB-|_ z|4is}t~@dw21u3%>BMgCe^GSpGb&eba)s7UK4n#q&&Ve1uMEjQq!$joFWSHK$zv&i z)cuyL#LaX-liWk@7Ak&=Lt&*{8|2b5h{i56k>JRy_#?V8Rzo*^2nk8i=`)>tMbd^J z$iJMj%cED{!FyKizDN8^KfBeXPZAty*k|Gkt>!yH+`bw3p9yCe2|7Pdm|0WHMp>-* zg#rS*`jQq<4_oKXodcul+xHm@&iwyb1_TcEfv6~l_v)L22iqR1<4-heYlEHvkw<)3D%rp%3>J6hFy9ASd3pnbG(@ z0MJ#D){lHB-UnEh|7>WaLZkXKKmbNGbg=`*(mARqYaiOj^8k=ZwC7dGlUNe}&YaB&BNjW4fghNqz`mA9-9 zYUSQBkO6=|nf!H7hwS9;yYD{txq35TSLe5G-8!qCEvqX`Q%6G$s#<5sWG4aHZE*|HK%()YC6%|L*$`?Ejz7!2bmBYSgJejt}Fns48ul ze5)uzUXqH@qet7Lbkorv0fAkOu*G@=5o9!-Ra9GT+pQC{1gE$cihFT~B8B2m+}+(B zN|EBF#T|;f1$TFc;BF1>&d&S&V;|&vjgeN}#wo-ydb}4noKcNRH#8kIKq_Iw0+*{+okfhh%?t$ZuX*0+ zBIFl!xm6xQ;=@|mKe1)FM zpf!7h(T}VvoG{uG01JO}7~rcDV^5$aNxv+X$mW5mC1Pq2u-5=k3PN?isjnxvWE>)O^#H*xRhpw`@1>6}Q%try2 zYhko)(e0z1!4<`n!wPqs<>b{m9xQ$nWIO^s4WWsC%m%Y0l2FhQ?n+AH=MLjR<2#CW z7|bBB^KI929B>lNC5G$zihlg8x_)J-f|UwKDTI*INkQAGurFWfe}xbB#`5L*rDt=U z2b98sjk+ah&yyd~a|wzuO=^g79h$5&K`CSTnJ%+WI!dGJ6>AZ{YAH-Yr!pTpTX^Hg znj8<#wS$!hwmdqr0v}fsMg189#WAWTI*?LbFd{PP^Yz=D)>T7!!6DF%{`xn9l?K;A zbsYE#Cfy1WbpHrE&v(=KMF2nI!`7=Q$7II1aliD@a zkr~wy`#nXZfQhLF_eb5fESN`B~WE!ZrkMas}2XgHC5z1amifEu>^JA zqRVSIwJy_Dk`B_7#icuSami_QIKh3$pR_AsALe`KH|>p|pWh&DY<$az1CLI%;P1Oi z?7U`cqwcDR21nlC1nYz)tFFfac>>oLx)k5~{1bJhnF6sS?mqYik=6x(r5guN;xUOIaxTmB+P7dfRgxl@megqCOS0 zqx?H;B6cKD-#*b@_}@f<(_NUQWO;oWRr$7~pJtoOqLKO?{GG%&>ViwVORyF4p`YEj z&+)oqvjx)lCyR4WTXW#Exo&;^ofY$iaFAAv=v)sUcL+kW!w`oAvpJ`TTJ2lUX2?E; zO}F3MrMd$}T2B(m4^olHY0#rwidVywMwImuv|X)MtFLC)n7I*iX>oW(+r!DE=jM1g zSfZk^@nqE+x0i!{*%z9L2VYbu(x7kSLv5cs$L$odj$ zAG7JOgJ2`+y7$z*!4SnGSU?MZShGEa68;UQqHEf zeYuB6hzn64`+hSQ-iGPXa7>+sJEz+OIqhonxB}aE`jW>{F+e&UvuQrRB@-E{Y9FxW zT!f}TsMu2|;)r&#LTTU)Tmud314Z*LqOBqu5YTo$Kl{8m*q`uqHb6AnpH5qE85fi= zuZ;B>9Y}4%KfJk_A#+l3cPXEAQM$D`i`)+lBs1;&MLz?iarVU`(kmdRyv%8bx1-T3 z3nA60L}ft(kFlw$uvKv{{fjG(k9M%z-uVM>TA)I0?T{m zdbF39`>-dPqaL8viIR~Lp2;u7uKZuwj^0Xs2A#1q1H2j(8@1?aMc_7+?G-Jtnlz3G z?<5Bvrkon@D}0^=ZE*5AWG(bq;+OIBM_VxmH)f9WTE8n(?k?$*oXM*@rppb7K(cn; zvu(%pHcbg?;pTCa-qUbEN6YCrzu(+;U-Xv6(*U);%3n#B52*a!Z(p}_Z^1Jsr+Y0F zS~bgV(%#18Pww#M1nhmR@q>0C?_7otydO#%zyi4^Yc^Q6_{K#;|`)Kg`yR{MJ zaBYP;hQ7|KrhkvK1vR9hrTRH^TA=KG=0_<(;<<(c<0aAcK+5g*2g|!RM=ho7;YT5S zauk_AfxTqS4X*dua0V|Qd}4WjlGE2Tfof2FhCXZ4wmYj$e-YvO`+|<{e?BC7?h%_~ zb+T}ph3R#JhA3sLd2m@)rKA;opUQ08Oh5{`F&tks`ZJz7KNp5ZzRTvao&$S0)sFZ1 zJ5i+5K$Z~C;xT5=6#8y~Gn?&KmZ?uhOz2c*cWZ(iGAe=z1}z9;Kn*37I$x zcwG87VQ6)-vgTN!(^xZ-`l%T%hbxF7*e&?yCz%g@4v`gpB%KS900B~TJI=97Ssi>i z3l&1)>+1HW=^g_YyXx2?(|6CT@VH_4b`@}c3y1}~gZ1@5RLlMQNPl7lyq6i>y~n_9 z&$a0@ng{j8p6kYlg%d&Tv8QdpqPg)*4DfNl)i~pNK9TW10p5{$BA;n zx<#sH{MN=D|LT2^_&n1QSe)To=K*a3{`f^NA@uL3Jy5KzEI!Qg45;v&JA9t^9E(0thOwK5)!$yFN_gD1wrkqEp3Vh#?!s&6cbzK6$1`jtVm~cT z`gRCAXh~{c5%}t$YRzD`-bw<-!|8pzy+;q&v%akHFm76-c?r6nmfI?o_auqFUu*Sf zprZ&FqP_7Mo<|V6np1P&!FL8 z{tQo>S4bZ)JceY_mZ&W$DkxkvmKb@l`sS(2LFI!J>cJI920XUipP$~b98k}ZWjs85 zM>ky-{DX4iS$OoQWF?S`W#sSkV(F1U>W@kIRPMkcHyF-@uMfu9$7U1klvEF(f54v$H1F0;n%pkt)LSRLQ>-=dk+#;{nP6rf&DRw zFUP(Un9$-fEhYs)({PLVCdFpz`&?Q$->Ib$7E6xDG4540S+%)Dg>f21;KUQ~9@=|a z;(t=zQKiLa#7FZ7nxM^D!Kz4dr!wUBeW^7#BksCClRo-4`8^FNrDgVq#AML*@XQe- zZ-uiqVQBg0#9FJJ-y{L4ZQz67sS|WhGOz*(lpq{&9G_v&c6>*G_D9<9TpR&%QzgEE zXoc8@sJGp9O`iTz;vVf2?%!$BJiGNM6_dMiFB%wKp8o-!OjfjSleaJt?6x!>FIK!2 z9(l$E=n5F$fEn-2=uD7{R3ljO3P)BSu&e9^y+_t5=@?gMjkaLKC&*L~~_w4JFLELw6*#uOlvyI0nXl32;V@?=onW7Tez{StbcAI--u1y#J?sU{! zc@{+qDNVZgL&!q%Br^`eft*0f!29Mpb61h-j<>Q7xIfnC`)b z+Pr9G)ComK?T;R)_sYQtd^I|+Wb1{OSnKoESp@J(+72rWTkDI?MC9_cFNc1> zO#=ZTWy8Q1_vAA?FL>L)$AreJTk#KueVKZXK&7MJNVS61uX zm39UU+Dp~ji?Y0WObcgxH(#IH>vum=iwsO2jJ~hgz*wqnalI2=NvXKT*(4&(TpcbV zRA@+MvNlo50>26@3Y?BJwQ4(X_z& z>Nl|vO>b^Id3(vP-uHHkJ59?=l=5cyRAi+E<;HcdIr zP@#DQ`J2y|=<`hQwfJ)4f<~f(~BwwCeNcRh%(?Y-+s< zQ(sD}<$#Cvq=!E#&?Zf!K(H@ki1kTmgPD{4&J-Z~=^~?_RdZdVcVd4cbLG+{%cQ`} zQk~M7%9nUwMF%odAlLdbEjt2MMxfCE53C~Ip8V?7fJc$?&}u2Djy{UlD3-A_39U`q z&cEQXxif&D(-ps!f(MZd);AS)BI7gJjdNN!Jt2HF+2R^K@~W!|Z1^pV>dVOEf<4A4 zHq4lFp$;%uOU^(K*e9JE-~-ks3=uEE$#iE8PA5f#f{^lf#TLc`b;Pxb&y(3&OP<+>78Enzwaa;91Xec!IC{|N zNq6*F&0QKhUVmcX;(+~7kPUar6lB*(HXGs)Ys_&>oKVeWdkkQ4qQgM1; zd`(kfW3HGN2hF^feu(=#8P>5YkUMppuNQi$7D&}RDw2V3AgP$!(*#+K^IsJm|8{={ zKaRv~SkvPz?r5Z+yY-0a;ih96NY=Qs*+~fx8>%nS^j@s5lh0n41?R5mGHohfsN~Es zL?cVcwDghP;A`&P)$rP|%r<$6WD*%;q~uf~IDZ)|5Q$@5s=mbF&w@5uA^6vF)|QhQ zuX0h3hkE;NNi!Fqcg6SDcb}msXruTQQWK<#ql~VPX@J4M@@f=_euZW&1}y`kkttql zr8SaPZn^Byx9yc$V}`8O;>mhT`o_~yxIf#wai6hbtMX|5rD9ER+gbV;%c(=o8#{zd z)UEzjW9gShE*UA<3w4x(fOai1{NCL?Hi^uJ+kM~AFJ|a5={(KKoct3jXDL+Z-Gm6yLS$T{ufHE%RB*o~SaYO+`lX z+g4R)Dg$7N`r*akSs8ES$gEk>sU5Bru7PR#WPpyh*>$%X37v%axO86f(h2KaJz=|S z(5d_!Fk3ghFwxto!3yth=sO;)>peY^1!bx%Ip2xX{S-?_6hd){6+6N`j7Y^*n`^p0 zv`NeL5k3N+Dt#!ZLo?LEl1&fc4@E<-j9fs+HR^)?2LBoxiybwoRy~D&UHQRB3Y8%w zyUV{y#|3TPcKJbfB#w}E*hb|k@h`2A&?>of+Qq_cW@UG1n->k8GJJ$o4bw{c;TUI9 zi=WaO##>+Dn1}!hdPUgU1ATach77g5rMO(kUe@y;iH7d#F^6>DY87aTXdDeK@_32i zFYcm9mXLR!UPn)bL9ZbGF zWWN05o=30ITdLI{iLWC+n?u%Vti`_rH;myDwU36sHKOUD60q1%#E=|Z|ITgwljXu& z_4bZ0p7shcQm-ZKz^&|0?$p8DTHtZZOz79=!l23qh~Kb_%~)1@<-ME$WOB*#G5)gv zKf!KDs3PGB>xy_*CEiFjp_Mi{s7*6CH5$2#>?`()gj=-Q#aBhb!71hbc0ZT8zE&Yr z8fh&=LC0GIrI*Ajb~HXT*SZH|t}1wUbr=XPSZZ zij9fli`Bc{dqTCD6Z&U{Od)Lq$UIce=37Iwng!pI#OK1|Dgql}A*Ug%(RFY|0lZaK zQ3N9*{9XWiDV�V>(Gt=|Y2R4LpfP9--<_Ssw4py&mw?%dPnOIhCERP}jP)*1jJp zFM0Id{hIG_fYxlweA$wnkh@@j>uT`A_v&U)!}*JL8RV8 zCsf`PLTeNRooh{h(Qq^LifHs`pdK^2WpD#JSkifQ+nFe*+q(hwCPfmWi4< zl#8#4Z|&g1WzTgKfD&)CGYO$XM1|xcCgCu%@Zjr{id%BT6Q}J0^DGCA{d9D;){I$@ zqm=zeB;xA(+yR1@cwO9L&5hFSKUguQ$>I*%NI=od#uKgu<>C+Fm|mW64tL$EqO-RK zx;1Y>(E4NyIWAf8&pVZZ`4IA~`Q)avT#Xc+FGjrRldhTdB`lcmMTHXK%O6SULTa>+fg)Lb zUrk_bZ#d?QIUTJ=C8I&%`&$aPaVj79Ra}yPbM3!rgMwrOi*}DE4%~%apk4;<(kE^~OtsX|ERvDDBX$Xe~6xbgZB4zQCz! zb{F&Hr5VJc*dR>N`|>b_*==jAR-%>dwC7JDW|e{NVH1WsLa?g6HB&BPOIzuT|EmmR=~TgO~kmB(As|(BKhd)MY;fniKT8ciLDm%ZdAV?A~fh4HljCTl72?ez@(&qViFz6 zH@AP3p<8SLTZgeXYQ+fFZs#axbW1T_Vxv}+t&)8Tt6qD(Mah$NpW%2RM`WjOt(}tT z<|f@2aW6;}^AEBznb5o|Bu6`8TW4D!@48!35?wYzB70O7ng38_xX}SNo0XO`XeuW2 ze)UF%V*|>txtxf0#YUd|F%9c-*!cWVLEZfAV_}%naxQgl(Pm38Lt_;t>7g0@zaedW za3Y*k^3EyX<%?#OyFuIKhX8yiCkHq@oyTSQGzP8j>tu%gPr{sU2d`zoA3+z!NT!&a zd=W0;OYel@vVVTGFX=KWVEPm>2ry%aov(y0I;V`bR4Iz}qz= zeMfZJt39#${yV<&qf;(Hotj+XsZG$%_5)8r_nD2Nv*M-cLWQ$8L@ zIs$?go~@L`e@C{hPyAVDeDhkE$qgS%5*hp2oAHxDqxfDu0i<9(DEY>yOP4vD(H~{c zyk2)_?3pN}Vlo=f|GT|+&NJ_md4=iXUP4lM~OC4rm*DPj)ujevB->UFSha!i^hefOu z|LpAwcmULcead`Ey5AeLRHN|28+Wstp=ZFU<1CrMx``E{1J;Cx_r4`}T%WW4F(1oK z(z22#8+a2qAMkPM9>R8=`8_RK~lIz7zxXeF*k1n;ik!<`8io|04c28G}R zQcj|VbDjm9fqe2Z2HY#s?$~~s2=l&(xlF=GxMQ1E%jr$fF7&mmF1^i1Zame||Kjb2 zg#Iu~bizm+9wfT!-u6y*oB*JY-nG8Bbj7k|c5#a)u+P?1H9Z_dEGENd0KyXb^Te6! zr~R8oyTdMn06ufDX7n3rUUAJ{qWF&hO@oz-*5y?>hdZ*#_UBZZPC}i$V!Sk-Syi=Y z%_2pzD4>`Es@ki_CyOIFu)+g-eOQcvSyw#mmfa%%CGa?6DhGx*(wp`6JtV@^i@B$oN`NntZMvdh7n(|E`ti&>8qGR_jX}MU3CrvI5uC9cW+ygWRK9y91d~Rp( zDemX#K{CG$qJ!fsg#3~thE@N#LJ zX(AX;->@jG;crc_Awq%wNScCLcWkq1ix-yNk&#<_K7;C4j0h5gdLsmQ`k1pTz!)s} z)HM4mJ%q4pHpoDVLTuD;B9P8!)=UO82kFLavpAW`S_30fmL7RG6Tcf`bUXc5TA0UV zSXZ*=Z$v%$<}&P&ht1N5+kC3hX5|T`A*dA?MU#O2HSx~TwiA8+%2%<`?`d_Nxkl1u z&mcduo1}5oFaxa9hZ8}stib!Q*?SXyF}}6I_hb>c01Z1n|78o(r{$&S3RGaR$#Ax% z&KvzfB0Q~+!Tbn&<<_ZI9pKQ5dgbs_fgbj%31n_cOAffefBK*akZRVY|MPni^5%RR zvY|e)A$=K%x|(0eHD26m)@)1rVStl!k!HY`cCzOuzJfh!4Bu_S9m{OdQe&Cs61n*nY%YXnk3qiTP#pyiU>6wt*qP|fHbi#0VnQIg~53kFMDQ$NmQ*gx^U=IYn zdx4;C22g+vXHpNG43&L%<=Tp=#Q9aZ6e;$r{&i>$Af1@T>TmC@gzm^!`#*U^3HmVO>(l_dlI=tgRS=B~C!>TF zQieQE*S*!r8+!^1jJ|3iidIFxLCAxrUml<19DEEmmoXc%$ojw46sF*51GlSi8I5)h z3k&W0?UGq_=4#=WG1&Vnb{dT$H!y>tsO(d@&cTNH{gL+nEh23`O!5V6Sk z8gQgX+mLG_lTl+9)zZ!?5q3f*?D}U-%%@x_Ez=@#Nlp)Us2SxN{UtHr+!ye2@=gx}$0e4cCv0R{ZW>XniEOl5l3H2|BeF-4 zBPbs2vv-2-P$M7h$6k_Vyz=W>$5>rP7gkYI(d%;ae1Ix+)~Y9s$I9ryC~p)N&V@m} zo$s23F5@h-11I`4n2;QvdiH!M>To)4^a4IIkK?ns*G3!TmOnTU=@^oaWqNfKU}}sUK4>_b@oCu3k*iuH?|$adxr zeUY*x)2wukK{x2%;bPc?qKN&bs3jyB{?qgk0WKgd*3e6d+OmDl^XkBBVtp%(H5$^e zB8%oTd&w(o=YUk`TGr(<9uf-ec;$S$9A#4os0=X(90!&j7>)b~q^QDe+q`ZNSXT;? zlcoJEF*^52!$ZZ`*jN!~3NcAbZ3Z2m8KjSw4M9`varzF89BBTEF=e?!d$3ZvGfG=V zkkbHCpyko1va2P#y2&X3gsv?(IN8;EESpW^2qHA$wU!ONg9!Ot7ti3ycEj3}qgt2dl@XPh`bbRSWkEgvlfQH57^YWwvvu=)JcFOsgrC)(SSVoP73E z69deX4Ey&As*l4<(;}$HwZN0so>}0{c=CmVwYRTXokE zl;CH{a<-#Tm>Z!k?5NjHh*>QK1h*}O zTlu29azQg64R5gDJibVpI-H0dT#$3Vmf32&8dyu$!=`&~y@mrg7OvjORjHPgEt>$0 zu+^%q*tR3DfUV!R=$ymk4OoKg6FkgV{QDuUx6M#W4V?qJ)c|xD5H;<@_esFk-k!ajrJ9s5tyitISxf1~!w0M#4%& z#wuIbV5pJ>yZbSYpwU$FNpkMA0^;y-JiC&@oV_BQpGVJCr`E^iT_UCeFAtMEOSc@R zndQ0ch&phspkche`i9S~kIV^STGjPRl}~5~--|1qWNtMNvRI;LL^gA`UdsCzF*Qum_y>MKmvgWB{R~N-Cj_j=K}HcugMsLx!{c@D zR2F9%dMbep*gaBbYJiZ*q4O`W2Q^2yZTfdDa}}N_QITM&t;gA7K~8>5XeXc?sk{*O z^8XXTAIsk0c9(f4NQ?|_A`WUMR7BFq3)b<|Ygx;%W4_CgGaY_^=xsoiHO zXY)}%a-I*C4}$<@|ea!1ZWK1|_mPLXv;%Q*?P9 zACf&Rm(nEM_(ewE@(=6xR4bhsCBq4qeS|&d*%ux56<=HDdZ0>;7BMO4Y+ zjrh!uCO#<)3`7&{n9KZ8zAjs&R%+6HgIdJ2S3_#rS^4XHzohY8Mi$C%3EvJ;cP`!D z;mcAk#32{ZIa?niTH^p%8${Eq2yBMS}Y+$hu5C#;i+$AfJw75=RobK`oEI?`t+AsD-nzFM`rguv1tM26P9M;-C zGbH#{`#S_;9t`b+v$?Djl11EY*bK_G3_6@H{rBbjSQWEHPWpes;xVw`MI$TNe0{;E zq1}1!YwHHoe1z~NQ>#-JG|$ zAKZ=$$E=<;Q8sPVw7PECn#-U0YZd;{6j1+q*XrU_F?IFVmm|kX+)=rv=k&m*!Pa{% z+h?SA<4!02d8>A&KhnFN_136Wm}`jKpx@xF!@mknWA`NGK?afXtY5LdkvW3(Q>KqPQSDJ(OsxQ2Klx|7x)aKVZubK?f zih7eo2)Yw>CUHEXg6r~?JBorpklS?FeHWOKkE<-PlNs!F*hDC~ z)Mx&ZCq5a3z~W8oKTuYYpI!%U);wBC7OoQdBTfTeG0t&>b-2!aj6QBlR$le4IJWPt zA!4J(e5dSe+6Ew+L@4`R0}$y7h_=A!~#QJSaUR) z6l|(A=1Z}k-n|5uIAT71suG*XFrWxRPC#z#6bP~b9kqD}Sp$2vdc(ii(RP&uFV?NK zwz@+PhE5A)Q>J`#PTI+F5ULat84XTG5`|08slgBV6xVjVj>~f=Yyssd2Dz)v!om7` z=?eo{K{vAxS3a`*iibf;4_Hm#Q#}`HFcSI1-7SSEv>F6K$i?EVjf@ zl9`@Pu2l1J$;Qgt2FqV#g&$~Lah~hmgS+s)InMBE-N}V1?{ljB zg2Ui!BF~*XuJf(T7gbp>WojL8w}%wAjIYBky)&h{(_4%R-tONEPT;msamQeTRjmpv za2W3s+#wZVA8}Hr*G0m3K9Q*n{o|uW>4w*?)2f2&Bz}VGspEq4EV$J!z7dmR@eD+o z%E4-lRDMwJoX3(i%s1E?Wx5ZoOa1nPOYIM6Q=k0gUlET-YP2rIt7l&xp$+z7~~d*O4u z+k8%++1)Y?!t(0QcWe+>4X4MVTj2xdFF!&UnRfz)|JkuW{VA%j8{MZWi+{N!iLE=PlM1)_rFc)$0^3Yd!oO!4B5tR$)uGUv)jExrp2>;Y z(G3;QE>7C3Xq3=aZn%I>r>3DR8+u_^#gnOi#;zEmcWx%cpeNY)wcoJZc1BWzgg=U+ z%;}q#+n|GQlP>Sw^Vgk<_(0cu5T2cR=%?4xQ{Q%VXgTtvPqRy>O+l5;7HuGr?1dgL zNFdpHo#B^pad$){pi`Ro8%f38AM4r51m4wMGZ(XCF(!7>GeM`lZPlCZ*H{Rhd+C@5Z7+6>nl_R6kDjWHtAN* zBtIIazu-+wSuUZ(#8lMS0Wo&OV>2nMF&Dr*_a>!GLVl?-;Yz$I0_qh^m3-QBAl{4t z;Igy$%kd9O{F-jX{U(gMsevdW|4GVPB@@%;Ft&gWAK;7ExiSpVI?@~cR*Ksad3AAu zCLRfGH+UMY^8A7zfB5(eAuWaWTW0GgLRI9BZHhvbY4>SY5 z32kIn$GBOMsIzC!{w@8jznk*IqF$(Fsi@VxkyG^b7zrmAx(iT7u?v?rCS?jcSvk8d zc)i5-z10l>+>f^V>Sn($vJ*Hdo{wxoLH~r5-DxC>OK&zvC=~X6O%cuKRNS}q?L}oF zG}{zTz91bIfQxVFwcbk46tt78Ahs$a(UyC*?wukhC{-WL3Mfe)J#Z4J!Rw|v#kM=J znU3^&u_R#t=s8a2q-F;07AHz{`toMNCC@^PF(*Gyta=|eEE?1u%@+L+PzNRx5GacO ztY#@7+;IG_bRz5Ev_I2R?QggTAD48VRP5!8HOX@iYGpjm{#tu^_i8}brfg6%1##av za&%exQpFFu=WoZ&5hh~VI}BW~HliFVg=4LWR;^QN8hXWV(0y}UvXLXnkdFUb?fU*V zp9eYyI9i>-1V)LY$MF$h?^F7p)w%COXjL9mQ5^N9vF(x~X5Q7Ak*J%^$hw7^7hv_F z_v-!HC}*)@bWj>yj1XeQs4Y^zCJMm2#b9f7M+R*hfAmc;{4G#?RxVz7i<^BeJ+ggO z`{RDPLm=;?p**OhV*sDAp0HRr$BkM2f~2NT^^Q}R`d@Vch5-tISoT6+*kvovUjc?m zGRsT(M@I-nRA*YoY+LtQ0@>ljz9=)q_ORWX{Ns7UKJ;X+np>vcyJ!Q`s4;lcb>fGK9cWBPM zM=bs+!7EdzRf#aKR|NdCTuliRys~DSN_{*FpUc?8>}f$z8BfkV+Fgg&Qtd4od8^9< zy=qQSrl3#XWe-+hM1dv>XmrMjb?NSOe>D!GgQN;_|0;(lVQ9N8HmPg&=sLB*>* z9JA5ee1J&T6h$t_=QYtX23+JTZZ@N*>jC%eDrxA>;+Eq)z=PzzW0@<4H-=s3>pryb zVRs9z_m0aFbAhwN2nRU-<$^ld;7zMZY~imKBSEi|0OFUYJ5LWK0^@>~gXUxE(mD-Z zu3;3jVz#MoB%_sSfT~#b0)E&1df2b&sGIY+3hCrKUIJOpj#()$ZRI-xmIqj2Y>zIMJ^CFgO=7BlL;{5<_dy76m(#*fWz||7TN>`V(9$o`7Q`pDf$x`vkL6tIYKw z>lLH$!5Od5EWfEk^iOuwKH?+-+a1gGO~-p?_`OFyKS!eir)Ij0ir}jod&w(#b1Dd3 zLK1g5Z1?5S5Ml*?PT7gow-kgv&SUg*=L>9h>O8WiW2&(}fu|xSH@9(flsJCg%q^8O zO%76*EzC?&H8uoq*;O0Wj3Y;6!+m`Gu;9&t&h#-#JF1?FB6D1Wl6SbTD_28{Shq{W z44KyOfNE6^QOAr)2sw=Jiz4*?fdC&?`eGYCE2(QY_jQN3_PhAPzV+;j1mriGhzs1c zA@Y4>L6TV>d>uY7iHQ{rS+OEU_7|KyqPTS#7M+dRIo0?{kBmWxOEU0H6L7wGaiWfE zk-jS=hwSVPqo2XRd!4-S!GE{T#vQBgDB&C3kvh7%IuSQr{VV?6(t-^}8Iv2OwHUec zP1SJgPW!CdxF7l+fgfFL`J*>)4K$UyqHtV+1n zNG(sP25Y?06+)qJFUqDrxV&;zqs{L&Rt7lgUu|!teninC6h zcn5m|fQkUGsM|5$&pOE3 zj#*)F@Rw+s$Y`igfhCPbX__)msH2hFdUKi>MLfDSf5qu~K6}2z`s@$AMUzm?vwM|d{N4B>DOQ^P5a?!t6r%uzvc@lLwiq4G=Z|v;!F*d z2cFc<+XgLLyl4E=z#3%BEsK>Rga{u!{-;y-PG3ru@n4kEhn#1pf?y3ML+_Tb1>6nK z4S$c*xeu-9vsHG71*l%_~v)es;yzZA|E7^-Z3&n zzaL>^*Zl@I#GciE;btv#aK(odEfMh#9ECx^-Aj!l4SD{5Ao)iGg6&5EuFO29$!l>3`dG2<#SJyQ<)4u6!X7=^8+upmr10yoKkgh^5Y%EIn8^)t>H z<-4}0QWi*2^s`*L%(PhLMqZoO5sJQGGDLzi26l%zOxx01Scx{KDx=MWHQE`su>%A(|n6}{+E|pX{U`!w& z`g$ZNq}wZxq~XfbA}<>SQ+y4qHIL5@bT;e0dEKM*7cFEjj`S zXbJmL0p)S8TaX+-JioySm3#rx=)0PQcndlfSWbYq4@D@>rn)=!dvyR3kDAto>Qg*5 zenjbRn^;}@)qAiVsAu_2NcB`FEZ=Wgr3cZf z_v^yZE+5!xf{wR2*dfxodZNUCm0<4b4Ww_KxF$b&T<#2_`rZ7kWUii&)K2blxnqGL zWT91#0IPqJg|4VEjY#d*TS4vN6cussQn+&1g0U}fQyVS&R~uRvC9avbANDm5meVWE zY)VKlY5BQ7;VkvDNUi9+KWDV9)eE}P1lu(z0oM}H4%dsJ=@c#reBvFKISS+nH2F}I zqQ#lPpY|}IU3Jm$hH;n9@gc{tgBd-Yv7v;-+K$F%S3G7>Sg&PZ{iosII#rX6>0f^3 z$IjLV_(%1273Jnz$0EbuEID1Sa%VPMo!@MCU--C+QU9scZY) zLbK0(ExFSyKTxH_PYWX7mtC|;?xfvz>)l~A!%zh9+MKQ0!Rz$_xB0NzCMCYCT@1K9 zj;bMt=S7K5)D$|SDO`T8oOn`8uF2ZZn})S0=xHCjy~C+QC=NR(D2sjXP91VwF>+WL zeq}}d-!KLJ?`rB~P43QudD56Z!K5eo2>h$N`PmrLrtB(M9Avbh+g{O+Tu zrl?K#VZ)bKcB@0>^qBJPUg4)>=1p6S9L1T?r)>X)e`;QI2f&77yfR&a_M%Fq=!!O; zWT&o8R`sfR& z$qMcUU?D$h8CO)S&;*0$_IYs!L{2MMK|{*Ko~s4%74WZ!6=rUsz>Hx(Ye-C228$ z^_VKa*C3yDZXg9bRjBW@$WfC`Q=0JEK|y|gb#TRMu7Sc?xlOo5H0D80N0n9@9PW(J zOwl+6;V&OY zr>{;1IU+{`5d6Z(2LoBITg^zc8Ah1DkeH?YKeE0mEXuA8cZQ**q=!bNkp^iPknZko zq#LOL1f)9zq`SLgkd*F@p*y5iV)Om`+DH5BJ$cX8wbt|8Y1W$d{vv^8pNtDH&u6Op zUCYihly|ZVtg+Gi`!o9#F2iKdX2XiYOM(LJjZkn-$bSOtCk(`9i=LdEz?*qk>gmEv z6?X5-MGQUncn-TPQ^(Hvd%};pN`im?d>YmFN_WVZ*&tb{u*R!R`&-bO`r&)?QS=1+ z^A+u#ceU{{&k?RXLTYTEU%40q7sijxbaBn6vj$6-aMHN7EmJb^95GzJ*aJJy`H5^< zypvgdE@83^RS7fZBHy+@}#PO15KD+dD+*WYe?8u2C3sw9iG zPeY!Of0AhW3Lg4n5j%4RKZsEe)_s7r;&X;zvRBms=IR}M(XHzFs2cWW_B_Mhu?F3R z0|Kw=6*1sB5o{G1oNIDIZ%%~0VE}p>*;ow;qrUBk1E2}>lrseLi_zgttwXsX%{KcL zK>&rQK@Z0_Bb-vjQL#M$E@IBnyvgx-sj8`B0e@9_XiGP!dJLIRvB(q zyy|p z^4KH%&20}iAXc+YS4I#L-;u7q7XrQcGf>XJMgX-G0HGZ@TBd0tDlb_dUDC35xDTLb zBFz%Nk&asYo#T&QtXg^8JBV5NUQ$P3Q(%KOQ>zflg9v}MZ+0&o@u2|p1l6ImacjfV zZ~is1rw=^1nCX*~=%ar7J59;kLi<-k4{H_0MwRHN0J=>qalmpf#E=osdiZd{W3Bt? zZnqutj{CIBeIbu}S=JT#ect3)MQv9is*KYQ*HgsN=U@00lTdn)BgpKihDf>BhCZM8 z1BHo-k0A6>G7n2D#&y4z4yr}|V!q3MSU}g)f_KIc+WhU?L_(LKK;vOFqYEE%VOjd z9Yx*Q5D)x*u3T?m0kB;|)J5#9$*MUc@@3x^#gmlNoSiiO-^N^7bA)b!D9E$vqJjMv zk4epIZ-AwQNk?2R=AFZOBg_BQ8Gd->vAdcck@Qi(589USsa{ZO$A0G91AI|SBYEQ+ zYQgJyt)cR#7_7e zTT$aYV|Cc`Es!!?7zlI3IXc*dwjn+AhYgF1{o_dAqPP`p0Gy6)ys4X;1$0+8HO-R%Tl*{(A%oQZWNf8uWz zA2Y**&ilU%ZD>NJJv@3tki@6pU&YA8YjIGqde_&xio{$#sIBQ0s@O1|pPxfOXe7ZB zsORT1-GTdIX^v{Rg*QXzf4VKaHbsP;8ov9UXMLB7NtSfbRAJ=I8_|ESi<=Vi2@s;0 z!JFi;^s%Jqm(xT{7_XM(8|l)!l+YVpCBQWX;L9E$Q5un4b*NOoqq)7=!#ps>9oSKX zU5Xk}i`C0tz>zUY7)?rl0*DMil-$MfE_Te#G6+}tu;_ysx7HY`Gxkc|GG+@p9VEGu{5I+bPloGT&zcSAs9qqEh(G7&z3 z*3F`L&@Q_bLTZg}Mfvo;XKEbx_ThX@&gnp|8Rz>ozRX%gu@)+1)mys-4Nc?G+k!9I z*yz+my?D(S&%(k$ofdn&Mn7ZGMer2Z`yRsv>!Ra8!6}dH@|P8iE2_;{I_k>~wmWRJR59efqkVynAlrugB{gi@N80D`K z*`WGmz51F?yF8@-h6GQ=aU*Jw#gU6rEDTV3*4Jc5hwl*hVL)zqz)TzS90L=@ohb(r6`9y7e+)61 z5X(S++zt}M`8H@Yz8R8{S#Uu0P@EIT4+Af2Ihm-)p^D~}kGSc-J9Q-ugBg9Lu5TRG z@K0_al64Lpo}2`^*IMftx!)cN_%E{xAxPIiST#Ao1AsxQ(^V{JfN&W(&KEHf;1BiU zTB=+mc25W>&Cd8O2;eq66hKI>FBV4QM!1ss09oWRF!qEhHjsQr)O3?uxLpYpTc*kU z$4R-&{n75m1}(T9xuOZfHP2_9o1Jq+H` zEJvZiMvSPAZp`hz>?8hmYuCp1aJy23h)ltrSzoQZ;Mf?LqBZ+2Jtr@l*uoNpsH3tV z#Ng|;jGuG8a_?z~9F+&mqZ?Bt=MCqV0*-G~Jk*rgJ&gMygg+;_8Obr!tW$~D-ueIL zKe2EsDIaSjX4R>MXL{1UF`52>AVpA^tfKq%CbK@%k6=6)*IU3H*&SI#0ht^A#O^ca zI}Lt#&p8E#yY<(EzJKxZr7cduoWp2muKkSnF*^%QgnaOa-)0i6XrjT`?{ux=d`Qu9 z!yb~@ks7p99FA&@B6^2kUiq8DW4-qm#EwruMh;5sIs6fHpEwUguAV?IZ7bkEB4ctr zeU2mE^{7W!!k-`WNUvAI4%n3i?3Kb;?-KyC`*^C5YIG_k;brn%smkzLQCo~ScFc{D zaasjK=%aGrVV>4zgRX)$IdnsCb1~+atF%dzffUlOH&=m(=~tM0nhK&tu0J?~9N!^6kEuGxaI>x)wt& zV7faEl>ZHK#ETWIP&<0h$d!gJc2086X8tat`5YlW&7cKhAT|v*=pDCK-YV1*Kf+7m zoNjb6f7KY+oSPL6J}E$bn@CM=!L3t76vA4Ocwm)rktoP_H18qElNkWUsz`zQ7aItz z`7WgE-z?)#oXuRatB@u|0+FRgc9p_gM0`uZ1>YW4~aAb-`6_4^W&8RT~35o z=$$xqCx~GjZ{XV_bOuAz)u3l@(`9Q1MfCC!Uhv$jJq|GrG5lIFY+(PkT+8kYxh|)< zrYh(GtmXbacM~75Ph08Ff)%Y1 z8?JkISb)p*!>t2|9jU9c!+B~MbLgj6etZBO&HQwHNQ($_PUQ+Glf-tpuo!&|(LSK? zTp0rSx?o|uy{R|ABjxeTT) zq*`k2X(Q#YmfZ-vMSTIu?uxHV@QkZ#NL7QykeMg!pKl3y=U zCgZ%ABjv)=u2I7DNMuk`O0zVD(N{2_Re0NJYn2x3W1!mOOO2 zLvB}jv5-ZjO5F_#&IAc+H@uHH#k#B3ek$~?B4<(_^;`4a>26fCtcM#ZTZ>s!9lst4 zQjdU}4gpY(A@X1}1>BUa!eKza!K9;NQ-(2d_M2~QzH`JfA+ z(k}m~f}Et4Gk>~*zuY>tx9qy<^CA-rjw-_3yT~cyryG_T6@`J2lSKZvvQ+JD?(&`C z)$TIh_iJ;fy>>0okf6)tq9z}5pl8sP+T!<)L~X#Oo0cg z#I3~~e`{2g`xY8N|I#(WSCGq={9a7iL;+Da@3lEd?mjI=YldaStUU)Oa>7aya7>sb zOs}3x>91G4HRVk4B<*_@Qh^7z6%(g|AVUiNxHY`EX7zn0o-4#y}FnoUh~*Cg6tD2`yHeQ8j4$XKNX?GAt0|kR#m&Clm8(t_bp#yLl7o1=ITP zI!s8^6maEoUEYDGp!a8PMT>Lb2YXJO?Cl9+!Hv~_u-$e2|Z+qokHDE7@fL-f7qh&LO-$Jzw1qqLxM*sLvqofmg zoVVTw&0llnhOLV1;Tsd_?9^oNqF(WUOV;aNId95CY%IhX8y)k-M+CCP=oM$~jR0xfRgm`^yQBuH0YpHtHYO-q~xoGndx#vTDGu zcq9Jpy7JGAn7n^mHv2)Kyk@vC-mqKq7UP5m2+*ec>j^j)i6O5o2jTu+B`!fMN<*ho z#6Reu5z3z~17t${;3s<|gBr_Ov5x{lp&BmSA>AxFb1_|$a5V=dD66q5_y}mF#nDI? zMG+>H!EG}Y-8(mwp8xH}S#3&r9GPDD)4}P}`!|2j&)YN?FO|2zLi4 zg0-f2zh~L1S?~d-^8Py!E}WMGhnMwooSvskaY+N%?i#$7wfakQrH^7APj;RXlvBq4U``#m)43tVS znt1H@B}>Ce_@1r5AOte$?}{GIR!g*Ky-T8Wn4wj5L&~u9{7O3^F4CF5fc_@O*@d+# ze6~{>6f6{3a*bzC!yalcRisXp2D_zye%l~|uz;R8ZIe{Z{R{%;5g(}Gs7#dYV|8gg zGEis&(WVN$2s#TtSP}Cu8L3=GUs54)keN8G|2;zh{x)(InlWE^rzH9dpeKV<+@}ob z^PqrDD+1tpd{$h5gSApmLUE8*tR-_1A8b?H{W&xD5?jMhFkemqFfby_+&T}_bll6P zAnbM7Ly?JU17-QDPPGEW*dKE33?`K%;t{Ok zscdHfq+e-=>exF12aMbAH7H?O;48LMO(v z9i@>KK0?Q5tT9B!xT|ytNAR%w+cBp5OI-`vw3Mxs2NwLF)}|-`XU*MF(lz)s+_GV0 z9cA38m;?3xBl@br?-9mHKxIp{9%JC{NEz}+%;q!bo*Q>tsGM*?Mnh8aponzvyDJP3 zcMlZMBvfylB}v>rzOE%xHy^elMN!J#|Q1HKLf#nfx@6$<+>JAdU;(JQPi? zUv5s7NOs=}Vrh99y1ZIuE$|S>RXm6TONvd zIkQ#MuQ@a4j^79IDhtywrC%K5j0YF&pIs-D4bRuRXa{p9X(RMCe=XifD?AaZ!Xxkj zqwF#C4?b(C4G1#?=LW*m$YRpm7{l4Z?TpHlMiTSKo!dgqPMaI9*Upo1=6^HS%u4D=nhnKzh5Z+B1| zgUj;dWh?#w8p_P{B@HC=yZoq=sG10(M+|YH>5>2inz|QWhZP1Kb^K04r84ccTFD>} zYv^V)psq+hZ4g#ajnAy5a31nvuVq|9Fh>8u6bg^>o%ajRX{STbbK*`@U0o#Lj!t_G zv8;#s^c*TR`&?TwqKmM)!Q|>b#&XfcwFqp2N-gS1?DxyPCbK!;K<@>iwH=eM?t}f% zb>H7)pfh6A6D(;S&%cEcxNOxiH)4{hZR{b7^9Wh1ZGf6esg}`0){q2kCLV)IO+!Dx z{@+(=z2QnrQe9go?Zco)QR`Ovpwer{_&C(=55IHhWTDbqtV@bdngMKLUA?`SVk|t_ zH6f#GlqS49e65u*wU8FvJBK$WffyI-kd$WuSUYC*I_Eb0nNrYGfhjlPitg|YL0+0d z<_TeGEpB|0QXl#YBzeu8PMJ}$LMyEqo|k#w=W6Vybg6?95_JX;p5zeoiTxM2cY~9V6V?>=!)( z98V`dI88{Dol_5b$g(U#!oen>MKZ2AwK=#3Tw`J>kq+u+XGSZP8zu8xqpp7>rd`VC(n_iqs6T4R#lRg(VC+e;Ah@IlNP^EI1;k} zga(B4YAYOtq&FQ^_KfpWmI9rYNSYz#Xlwwhb0`)E-5at4igj%@RqjZtq1otLW^Ebu zQqt(j6bZ!^Usgj#7g!IOutn_}Qu+^6A8t9z>GD>JF*4$HlR0P7ac^bg4fWix*_#GG zbeRT6L(80=ou~5+VefW;h8upnUvAf;9fOXae4XkrtE9bCu|iN;yshHF^?Yr1+Vok`gsnSBTOcl zMeX?yGnQn|F_rD-OqA$feY$BE9pkA>E%bqYnCTekBlF@>^eIR@RS8-MibQeml}36z z@YDa;#u6Fjn#@v_!h8Q3d=F1HC&KO9Dfcf z7g&&-pGH*AYA&k8Bc0>K$8@L`=raGBb$7-lb;GAt*@qTEKp(W$<)`8qJ4q9cbw=c+ zVfY~=$8sZl9?+D0V1}>PLKGh~kwQO$s?-~DyEr-N=; z0kV?eoP9(Ddlwwut-%njvl~ZFx__IP(Pal?Y2Z-wVQjcVQqE|kzla~J7IoS}X?zlN z4*ZA4nYRE4c(2GGAQrN6-{Be3=MVYS+*ZKhgp5p82XH)r3i_S>;`)s;nI*It%$PK~ zLE2K7C875nQ4b}=)l})4NS=HOyYxg}Ta3#)aAZ4ca(m_7n}Afjt#q&B1vM^I#J~0# zG@I>n?J>Cr{i+0pBL%7y=ZqrielLOs%97B(@6)NjMWJ)=9hM6Ud?gPv*qI<=9nFTp zYAq?RB6PQk>>^|DN1?ADG*t7-?I!Tj*SA`%RB7zM_xbOb$18S~KMc*_Y{INk$fy{I z{vl>0)J0QruaF=?v^^RpI!DH^CJL-e6rnT)}P)+YFMfyerp`W^fNtf0l z?^11Ntu8HFO$KyICs74ndL;C**6~%`Y2`{G=I_` zu<`B>-kQ>JQ-*pJqR*REipI zR`KZbBn0PDfWZSht)yQ_S7l6F%HbiqY=E?BK!JHIMbb6=j~4J76ZDvwCv+KK%3qgP zqV7uGwgv>4tL#4y=MMujPZ+~|tGBLjblN%}L+hR8pki9FEy05(m_Ah|fC{7KXXJ=A zl-@g8h4CInJ_1oB!2O>nqAOIgS@1A93cJtNV^gQjTg#~_^l{I|b8=+ZBEh_L21G^m zv*T89J;EXv>b$F5!@P$lI;ca)(K&``c-eU5CWNZ|{UJ%?i?E5y4+AHzQY!5DxFZIk zTBgt6tv^rE>P*w(2!%Xh4&|Dlo$LBu>RfDR*9O&B`jec~v7iGw6F0|nUfsb6(faJe z#NohS5q2rNNar+};IbwKXW2Jl zltFVe=CJm*#V;13qXPku0O-Z^KZp}Msluy@>#~kZY~t|ukHFz|`G0*%v^E|n&MxM% z)$Q^F1+TwMn-uUJIM7&*hVweTeeCvo=Ck*|{x$nAZD2&8?vI+VR1}4NST9FZYIiDR z!-U=4lkv$C`OH!Gd%@{KV*It;myDFT)?CKg?U9jsOO?cED!+%$KlPwvTnJ!0RqrPx zNaYi(4OxSwqEQFCKt8A5oS=5y9?+uC*Sz=Jmd%ecW$v4hqQK`5uPGzr+A#{tKn*R! z*7rleaxDV3$fIN55u~Vd`w-P2+IwnDSfeFh{x%p8|B<*Y7uauRK*{|51Zc-H8MGSz z#S{Q|M!pTUT;O%3lVSk}J=I5cVG$^gUJme=z#2tD#?{ot>K^vejPXV1UAts*c62Jg zB&ug{E7=eH;9V>Ne=?miJRFgtxFUBpR1Xf6Kez4o4mzgYG_NKMPFlfL3=T;+Df12h z^OIx$?UhNloanWMyryB|yh#I2i4gCEDU_+4etG~Bqh|A_ci_YA>fF;~*SO8w*4ecS z`-yC$@lTznqKa}KHJ(iU(K>Gh1!ut9o&Hm>mREA~6xZ!ovMiV{U2s?Q`2tR;Y13zg z)-U?6Aom@giC!CeG+w9OLgK~KeXwk#RL+;Ce#*x1W{Pt)99(1jZ}k{j0k(-^2TkAV zJfdpK@4k%W!FT+5iG>T9#DMBMy>2`Q$>N0Hu8#JAnLdK&CX?w z{mC!<8f3rNSkXZdTDkg&Cdc24F+@oHi*P5NXrb!z3U!&k5mQWfHR?{f>2|wg$@t%a zfHxyQ?casze;H8z0i0k7F=^pQwGOs&P*#W&K@VE)3w?8?*kHwZv}-&3-7wi6{&)_U zA`eFHoXC|MGi=m32MM)F#F+KMA-LSO`4(g8s{7)<;EG!q*VyMtDT;dcxDR^BN8sIl zPtXGsdbfu;19SZ5Xx4W~=HaWant6y{?-nbp*%hL(-UC`Ur)s|b2{7d@hevPGNR>*< z#d?VCb#iDhKDxX(n1#wkHuai7|7FGikq!4Kg8z*We>4qN=oMz_@TpLM;_FM5nmDto zzu`v2LNr78I_p2q8Ec|{)fm;4ZL~QDd9|~jkS zXJoBqQ%d?+qmWM4^b_^I!+8Mxcb{+>O6=`LDZ40)DvvA{B9Rgchy1%(a-=X4#(i|9 z3;r@iRywBFr1!{SBbYd%L;`THiMFMcHchBJLf)DwHa^67YyrcFeiFTfQw7{D1_jz7 zXGDv~sVSCSts! zrKj1DGf^`HsTg8Y3s)D8`qnlQ2^4HCCkdpV--zgAfhhbG9kD~s?o65o+D)u99a%aXjP2B3(`(%&R{WnQLa7TdWp)jqLnttD3xVBjJ& zy9#K_)#SHWZ73Cjj2S)lE2-==;wGQ{=9nU0=VD=izd3$tLC^$%ic4>&J!vr3p-?8C z%6`+?Q9VcEJm)Pjap~Pbq7c8Ul|wSCkwI6tT1WeeC`oQ~D~CC8X=V8yyqM&-i-VDF zJ+VrX%0HPzzPjJ9GHTO7{9kJjg(uHaj*ckzrkm2B2~TsfD?+n4f>HOvykt5lbyjIV*!4Mna%DBpUypUyqx7 zSPf7Hv7{=rs-i7goov;MxtUTJ&0!odPG!*Z%9Z^%Kc6{%34xeXG|)cH;DcY=ysr%w zw>@6}M@~Kg5<>w`jZJ@BXV&lbc%;G&mb_v?swW(jcV%i@24o!iT7{8xX- zH$0j!jxLk#+O;|53oAbJ96wRIjnR`mf>h~jvPn!_b*Cr(H(mKto6B52#D-kfoVkBU zJv+gnSEQPwDGdf^N!}AZTsAg=xCd8l*@zFT$jB_m4V>$X9_tQDeGbq&SD%n=*@vAJy zHO1;>b&E!j8N#lGZ3F3a!4Nkg(d}!%4#vL{V@ffT$A{leBEZVt!2a4f9`q79+kRx{ zuYT#k=b|8651P;QDz(f1!YMae*%$x}Q=WNRJRTG_yy{daBZy9GgkVt4Q&*j_qf>fn+75cJ?ALD+Q#Gx-lvu_+g*7e`BNkn#VF z1;4!vPBq0*`1kiO$*X*qTPUF-OE!r(-inKEf3hMLJGKm%X%!+yc#J=IxW*qdH$0s_ zU4ZEeng5MZW~H#yvf=OQzk(udIB+AVUr!o3I7OE}8~3%SUg z$r*v2N#-wjbPDXbbEa+WbvD!QJUSJNB1zdxREBo{yq&|Q;A3BFPw0Zf$`O$T_W%4O zm`GP;4_rDCytM=8>JWoE>lp!9vp59?5x8MI0KQT-J9bsfgArc|lkB$#7l>1ni#8)% zr+~&kepY!1$b}yq}^nSu~%^&N`5936$K8fkBhB28xOc{ zze<-*y_h3W7?9gwL``#nF|F6!@Z|PjVpCBsY7EA0h8Xo~39hixV8eSQC8ZhKhVaKQ z+beFkU$+=YOIigtpf}l%Sw`|lHkbU__S@p>6UX&x1~B%t7!LuN9zd^7+B(32JNZwL zgj^rWNNX3X&COJU??)F%-+FdD4x?^kDVbPxD*mmiff=u>CNQUoxs(_~>6%U2NI!_P z?$wRC9WC$_dWe`K|*QUw>8p}`(w z@odTNZ{ClZE42lz#z|JWYC6cb5z8?fc#nE=j^C#dZbIwW-43xVqvz8%HW9gS&qd!+ zt{CKu`?3+((z^eW=kC%}AS(Y0qXit7^G~1~Sd}|hN{YBvu9s$Kypm5L`%vP?GOf&zI%RVYiCPO>08S`@Y)FCZDdIOnm$%Ra~1dBlA+^Z#zBVN9ONs7*_!n7YyC%aUkLsRCq)Ih(M~jhIUf(G(J$+K#z5%ky0E%+ zs2H*urI_p$x`mVXY}EdmADCQ&NOk4asz= zyuDFFo3P<*>2)T4Bw(%~#{V%rQJWcK`! zb!;i{nip0zjLIY=M#RSo^-_>=ju8i~D_wf*P{$RSC_yYyd7D*p{-8fJ^#II z0MX~!12<$+t0m%{)Sjx=)NCs0MX$8IE;HFSk+}E8ng$wy2*dvSs+&FxaNcLwlc@%?Dt5e$*w3r4)@ zJkhf`Ft#nZ>TyuogR&cj|w9eQyERann7e{(f=2 zD82jhD?G`+rI0mNmW9$N(Xo9JX;TPGEAN6E7fl$j$bzzTnV?r{rNhlgxs(Xz2?;iO ztL)az?}u(rgYosnJ74hUuOSEdka21pPW$P?oAww^#y}$%IRNJ7SwJEVw5{CykSb!_ zJ?a&tc*}RPj5Yt zpJ#jShbKS^jymOcSPCdqPo3_SlZ37Zm<|%Jg-yRT>H2%Vo`{~&8#kS01NL$;Vq_o9 zmG}=iydH)kcjgTF&sdjnU9MnEArN6oTp{G%uk_L5t_lPR`FN`%W05gHq?JdyyZ-fy z$b0$i>+?-ZU560-!^VfFo;LX$nv$l_Mb9WL_*3Eon+) z@!g?7yCmxEVktkIuFAv+9woh3#9X(k4Hw3CwqAkhIm&yrfYKL40VBxFjc3PSwf?az zQp2N5=}iB0{~=3fs(fd|TClqqFswKIF72)jF~|kDA~R}(9AzX*Otl7#m!n|oHs~`6 zo&U@wkiR`rZjPL8QYo!@iw#|A29!$zV8Tf&a+WGIoYa&(1+G8HQx2lyHEC)yL7@?z z%-V9401>+(-i>Z`Rj~>2zB?tD(dp;U3=g4FHJD=`GcJ~j=CF1AH=-jy_MVG(-oLKG z3#lyCuyfC0movm4Ap(tz){|+T6yUufZ7Dp&>niHi0lRYsVk1OzF-`L~b3~>6&>UDy zH~TV_j8x2yZ3=SOyf7VDvm4I6ob={^ptLx^%~6GkkE$HFhir$02iN*^D}X&GbPhpg zJF4{I>~W?>`lJs<;3N-0BjST;em&#Zd(bKS2pa!69voSXszzgC)v&y=pOo^Xu}xibK>2?hFr&2?XhZqW`Jvk^_}e?s zT8!?rz?|#CK`8h6cU{>1m)Xr{_O4-70k43iYfTNd@v_;48Qo34}4!s#@K{(EPlD% za7C6fft)TL3j%zlW1~I#8ioQ!2UmJ9r^>&(G#Pq){`dI^^j0|t%Ptv(#yHL7UajgF z(3+?D697$ZOeeGsO_?z-L}OopBt~1IkDC5uM<>|g0i-B%5GWhjJME@J9M5#2AJiC$ zPZn#^URR`YH`-8WF9dZ?ywJ63MXs2IPm(|udE&xBgYE=S`xIQ}d_2WD^^I;BPPJHk zA7_V?fHki(gRl_fv_h7$f<~__D>!U4-5UkL!;r=xBtGJ@P@$?8vUf$>7=<8UMIzN& z#8Qs}aK?}BSKtMny|8eTG)IrwH~ZROnm%R=rP#}Bqmm4XxwYnrv09GoBZo7z@m+=4 z9*U`~fJBo41*vQyEBz`)0MsY>-!6);N;C!)Fa-H70UMmywX9q@-TgrA-ABqu#ctK0}%Q=-m8!CiJv#Bg}n;$Ns*;&Io?cR zgKGZ9V##T@F~VMS{dmdauSbd4BJr$nve?t1sj*^55QeRi|Np9q!-$Vs5lRZTZ+9_v zo!2jiv1-d@(Un**396kN3$irZUJn=bUDHNLbl09u+Ecz0@mVXU)?mK&f;ND{3~%c)mgp2B zA#*!0NRQp#9~JNSsLJ4wW6>vqqeHy5SzDC?h&_QSQCsiar z-Cr?#V8z@<>cH&)j+$tFz?}!M{zFLajX>)z25$$C!?ZZB{Ss9~d`$}Aey+k&Gxgqo zsn*mLD-6GRm>$9)iaked727R+KGrMUP4IcnLrKh>G)N>QV^SM9xD%{q3PvnmowAW$ zwTPQ5+a+809OQPm#?z>pbaKU~tLz^` z+om^?BB8#w5DL(BUtk-{Uv%xjs6IR#5`EI7jYNITvdT-vK_TFMZg{B)0R)R8u2;Hh zIlIRLDZnrwX5vVu-yUJ{LxIydKifJ7V*tM5#a2Z#7M-2a8`fkS>L0^4;UR% zL)Kg{9Ijz*?J5FfOhTOu-vH7*M{o1u*+)yDBhyM_LZ>|*(qHnJl;C6OG36Zd`~p9t z&DdPqxTwUaE@;8Hw8`TGe(y04!M1=e9TFc3nZ+0?VD_yvsFq^NI#=QZeTW?f%?*CG zvVvZD??FvLYc?Alcde7$Y3%%`29p?AmBaj^66`T!NFWT;Qn?{@k!Mtx$ zIx)zI%=#@`GNyj_PoF_62qnMi zgXF)Ux!R9IRAm6UOE&+M7*X3H3n`y1`zJ-^U(@*!_tDilRUmvYpHchEti14w0PoXz zIA#NhT%?!~R7+sM0eGLD+S0+Ctm8VfNv(OyfJsa#hMz_{t=_z%?jnKMzy;^N9d1Iydqu{f;}iB=8{O`q z?YSyA?5Ob~8}p52$yv6gbunmtxOsZ?KYp+~8sqVrba%9s)t^8BWbB7ridzewF?dAD zVK5TcUBDYx{?0sl%cV~nfNNc+WWlzmRGk7{*0gx;{wZtviaMnuZjD+VsuskJ+DryhgS?FfU6nwLKQ64;cOi8*B3A%|5 z9b2?9__s1^ZNVtU2Dxrg5&ah9A0zU`0DeOUR<*UP{UWz&p!JEgRe-tHnqX0CFX&>i zLQ}pIl9K*4k`7dDKILl2vIl&Ii_;fCHfu4oIz9%`3j{v<*`jq{b3o++Ow|`y5HYQj z6==MTRr*mn*VEMyI<*C-0Kux5Rs$T?26puZ>E zGNvSYu;%Br8u!wA3TdPpszW?mmzY;7cvKkRFV|27Wat918@yRG9gNQjzL2N2OXM1jS4FP>yUA$@c^AS(&{X?b*$fKUucX?5;mUt1h`1Y@8_>)e2QE zbf4eVJfc7RY^0-jl2dNo4jcbTC#H3IkA(D#7rOpU19{Z{@PFi&b8qM6~mrFy#f5Sf|DB}%d$+)h7&YF{LvISGB?@*P;@8&Z zzMlerm@qN@jwT1>GG9NB3)B6`({8S;$6ZVYbgm5tQ%!+}1YCElbV3ZZ08<3)#Wq0U zjSU+H!JtS-f9Uq_QiDuLw_X3?R9i#xz!UX&J}rzxR1`xERcCLHDpXPLJC|kRP+)iR zbyIoSo(6=WEg-4z3nnp7TmlAcAv%%W1CAY{=>JEE+7OusYerNd3Da%8JXe}~ty#k6 z>MfWpRRe^uvdeeipod`2W9kCh@$*QlQV(rr$~?* z5X0C6uCYzgpZKA}ayG4reR^byqA4np1&nB1oyHI=RWh*mus|p$$$#_1~J) zwVpVOlAuuPTveRmA;jFQ?2j!vKSUS@j2N}jhqh=47+*6-l%(g=?NF^)zLJt<{P;+mdy**b}-nl`dqgu81$231!@(dmki6P6b${ zJSz73s`W3+suB~z{aS(#gyoXWfHW8z+-hgZ9yO0*NL(52s#zepBFY=|D_x8mmt|3*d(l&RWkiz29R% z6c%l4etdTY+x&LzQikspTI%YXZYJuh+Z`8$9$7kSd%r;gNI%}lHhzPQuQu8M8Zh*o zwJz3rtlJJ_CebcS3&jeM>~@vJuUFXY0+0S*7QkB#$4SsPVevlA^$eaOruVZ59P=+9 zif^3qMr=|1bv(Bw2iud}yhoH|;^)0waG3!Mp_2ZEVM!tGp?0uWSz(cBUzjU>YD#~O zh~c(1B2NnC2M7c91YwvX&elr`gPq7ZvN~3K3~L z8llT;;)nVlZBo6*3}L72LKl~WPd11dnIDwwGFw%MeY* zCB-OI`a}2eo#g&U4X?5(NaPz^8fu>M5sIug6{}Wc$h2SQ?=m0OZo+0luwM6*SDoiK z@YMgI>Knr&+q$h|+fF*RZFbbLZKEr;opjh8+crA3ZQHh!PQL1M-uK?`KKpMywQJX& zYpprQ9AnI1q2ahQ)j;R3JOq0Ec5&;)D!NS3si(R-m#K)A67L5Dr6Ph{*LU~L zg4F43)R`*ZhpU66$$=i;`g`_dXLqZ_&@T5|z$4N2L9rvYCe6J2^ZsVfBk6jcyt7Ck zz}!`?VvPJr=-_7yg&zs`z{O!R{8+w}xNuopmPk%viS1lUrs=n4iPWtS#;P(~5t<(a zA^P=v#lUY=Jwu1_c&$hx$e4;<+`h%jpj7HP4{j{-v`T}L5E4{yE@yWW!2<`H?vRq% z)$kxO6v?)147^n$sYEFaC0c>2&B4XU$;zb$!41yrx^DZasNjl7M{YTd_I9ZzJ!8JFUjm<*K+dIf>0xqkB`xQ6gb1eG!hNxs& zuq)jDyry?Fh2BsHUfbm00z3N()kbi`Zo!fe1|lOpDU)*dr?YbYzd9{K}qMuWhv z33_;R%QtO(99Z-hOcJ)}W(8&_+U8~CnXd>E2#$msA=oUN6|40HR>DWmw2o1$8MF}a z`nV_v@rKt~YMQ_Kvf)A41W>h6qajtaFx|zwPRfDGOt?c`Z(wz&s)9o;AeYpj5+5l; zlC(J z0%ISBQI1364*{zdf;!e)0Iku;&N<>JxEkED;nx$3$@D2Bm*HZ#&NtrTkKs-^5Mc2^;S&YNpaC?hWB3_W^9!FP+ zw*xqMa0@)Pbm^pC0Vs&0ygzr~eK@LsIYObC4dc~fXXd!X9&zl@a2TAWkRp#1%{8QE z7Bb1VGSKqL?{tLN@MkJRT!;)&PnXzS{v)drEp`mVc<@r%g97Py+N_F9XYTReXApNs=SKAjm{I#EC}^RpUUs!*E2) z9E^^j0V^RsyWA`ORFZ#XZTas*aCY6v=w|0^cPOTP_6pZ zgn{iancpJpg7_?~CSok@IB*Ub`-Ya-1qo`}YAf{l&mNwRdGoDaq?BkQT((eUj^=B@ zm~?izGC-RgT+TOeq+3ngbdc+!ydGN++S>2v5rEElD*1pv>)wy5Uk`4RpmKb;10DTm z%YXU%UV`~Qhu0EM*o$?~*oO|XuY%3BE_)4F^XRq&a`(p;t5Yql;XVz3X8)`!c}|d( zUEycbJb3^({rrW~jsZ%s4`z=1y6gMX%Pth&ePl@g1Z@u0ZYoRQ^zJx%^h!VzPfk2Tt+RW%y28@`lV%$7zL>!{cR!k@7ZPG0d);|FCo6s>LT=Z=5JmI zs()bNM@W1IHceqKJUi-dyD-EXGIiU$RBgbe?YFgPIbBm)>wKaNzJ2lOOBe^X$KN>v zq;7y_>OAaW2xTd;RQ}njwzFH{O|?VEAF15Kv5$!v-0lfN=L3vjeM=dr7SjVyu%pN_>)puf!&x+%py1b!3?9Vq)#ui0 z2+djiC$qSz8|w()4${lZhD5-jaHK0Mqu(BE%J=k3_4Mq1avO<0q|8lDN@cQ_*4ivp z0oEiQz<#0Y%Cehy)RJ0f1KWujZ`vK6jVxBP%C5xbHDCfdn^1nPuuL zQYPpc0$f+P#8E4SoQgYKKr)(1OR48(k(z9NXu9k&XM2@uv*0w^JnLa{c2JAc5#F>a z(puIFB-0WI1BGp>FPaNfchASr5zQ&k1Phf7*8m*I0!iFA(?PHP-5<+vR?sD!tZ7FbsRS4*&ogKHr=kvzc5trx3OvPbO0Fz)AI~J2jv~q>Z#;NO_b!!G1*xA zAe`Q)6zQlVte(MhY!ug);f8!*^qsA!Vc-2reW1!uli0x+&o=YJD#XFRRQjD+Op@d0 zBu#@yJA#KIsin2p5{zdFcs0|~{*I!R;>n%E`yCY>$>`!vBPY3Oqjh{{{*^<3=k^=d zZ&vq>kGCtc{^J?zvOhYGU-#pi5yKl!k z6j2lI{>$us0eV@TMSQ+Tj->Zm0ZST9Ijw-9lfdDV%cR5M+pE$)`M|c^UoMOs?(EfH zX3YB$F3Gis*#q%VZsiRJNG`kOEU8pQ=waRAi5}*5-l_-~z%>e!iLnz1zJRbrINxDO z6Iw`WA-~XbuDgrLAH} z=S(cx@{NLHUhlpQ8TG97uyZ;|7+v_Gte;ei2CRt{wFr=0K=4S{gK4`#_`5Xg%Q8YI zzqhGZ0*hlW`M8tI%PL`@Ds>lxUxhHhpS>=}Is|djOo$dZ3`~n8K#e})<2FRM8PKCk za6%R<);;Ev+EZ46?Qi1=(6RCFk`3dA3ZO5cDKoY!BTQM-6jY`O@L#GhcY4cL+&+en zvw`v$oafVTG!9V(wY-4%a}dZ?C0*NKRe&h`7Q^jONL4odHvQhrZ)6OL`K1DH+-Dkd zs;5UpX6OgwQm(y2r#Z)p!=F}1&3r-Di);(f=g%LZ-OtbSWVH0k zaPS%{3I~(y(AYfLOT!P@zapFm+1vjl@pwRF*G6}UtDeI%LTh9$L2G`&Q+jRu!I`!RXqE@RE$IPN|CZgr> z%AeGknGw;hEg7DIGCD1nQ7L}uLT)=MoF3~4>Jj;N{u?q4jPLF0Cwz(SQ|$EyVbhna zcTmibvMNR}`zGygrOgk8k+S+JIu$^`Ou83wELBe?zo$}mC?+ZW^dAVB7o3^f}3(OG`%7 z?@yyML?=jFg%D^7w1KSQwZg5~|3E?y>2@qEBnDYuu})0X(ZZW%!9ekT z-fm1Zl4%nFIle?rWn*g<$=pG}AoFiCV`^|EgI9NeM#85IGlXKnsB$VUQ;o~mrhW?8 z73UZZp9v4TG)4zmo)IoCn_^HYj(f?$8NYu_NUdRKM7q4r)F^|FCkz`Knd=C7*YF=t z)B2H<+Hg`l4l97E$HW)JQw(h1 zL*NqEb*)2E3=sq^^Gr} zc)Z`L63}b{N?p9XyeK%#%FIFy_Q7NmVF1DJJypx4Kpc#Uj4H zwGhaggZe;bYE8tG?WwiJvCNb>K5)SkQB)%)j%&Ynfn7{FR7_g->wqP*Ti;v)O;zxz z8LaRRIVqwr;yIZ)TD&gG$g#x&AJ3D3=(8AXudc*@uwC)gfY`5AIWRBZocZg?yvLFl zjHpJ;AsrX!@kKH+Gee@0H!YKxO?rc2MYCPlvhuaBIn@xH{wUnUFHN4g8(5Sn+@yVE zANBh!BB&>(ND^KFmGekK16_p@igYAgiJV=&HO%q|c)??JY6*Pb^|e@xgI_m~XDie1 zPv<00_GS|+>7Bi_YCAwXsi7y^8Oxw6z~bnCe64Wb9;6He1KFceW&HvdPFZ#)Dyt&} z2$3aOfR*ps9ZCD1A&Hstt~&@$jZyP5xj(Bc5>Smh|C2$xB<>k>zN4EZ0c3gVmWJ9w z5t9;=tj>F=mt`vV)EYM#fb?FVAmF0ykUH`7S`QY3?U&~%lNO3wd`&2u7(5(fRAnKE zgvT!RN)k4XjeklqQ9!Wt8Ynu02_BSGLJr*nl806DrGU&f;E%KE8>OGyIIuN?8v@_D zQtLSWR*MuA1jIE*pcE6{+w_b<_P1-ady5E&k)?l z6X$#xr*8G^!071^a({33IDMTV1uyE;GkqE~R{O)AfN9a?Vfl$_-ntd+gokGCSmH ztUGMwRAthDhui6<7#go|`18nZ!0=kj>F8Rtk)>!Iggc0{`W*(a2&-}lq0ul|39Sz2f2Ehc9y2~2Z>EtADt=^8pKiW+UlwAYqAWg z&RCMNqwYeEqOgq_&`hDZ1J?cJb?DLbi+2V zNhX}5RP1i%I+I|clk6@V^>Rut*GmlE`i%jhKer`|jL;Lo@-`9O1BDX~XB(i(O-6mx zPkQM5yV)XRfbJ)Ev+JTUBb46uX$*33_hs|x^Pp&3*?8hrrr-Jvny29N789u|1i%J0 zEebFn<4hm@71wZwJ%X8{QNvn6<_-1SayZqt`E>2|(rR$i7AJK0d05SdpZ&Su$KH*v zb^44PMyBFBJT5~esp;yPt1IBt7A|LhpZ>Ytb+0M?Wtyw4Xu{@SkBJs^2nYXu&^Vxm z6$Cn0y8Gw*e30Lj8Hju~A#4J?8eIS~zMOfEhb>H5myVM3#80Z&0*AY?biK?W*H)WZfYFC=3N zkC26=m@H50ddE%~orY;kao4j{tJbI2Ldrw9gRo_>YnQZ$bnKmIxi#0nNG?wLRr4P9 zm#QSn+YzaX#^!wH&UFSQ{H}@R54d3K;-fVdHso`v(%frN2zYn=e1?VGp780MFoD9x zZgIE?tYa!-*G2R{ciBc4f=-zNixkI~>Wdz{k>BH${6T>Gs7JWcDVfL8qF3;*taMC;F}l0G)+M&@Z?1 zN$Bb7BYf%Mi~d&VIMHWp-Hp!Bo0&hquX4h2yYs5e2`X3F962Ze<;mP4~B%p5(_Hr=T&TU|hhV$7b>-cY_BUod!8NS9Bi(6@d zLBiHEqc+{zWT}SQ;<@~A%0W$iH=%Pr)7r@@462nPXqSgli*N^NfL3~7Fv9kntN=R- z4Y_fgR@lu&0llge*Sz;016?KkH!5ttFZ8eaIVmZQu zC93kRVi((<8)>^xBpG9L^Zh-JZ*CrwJv^W%YyKNbc>Ax%Ka zx)AVU=)>v>Fgeaa>Nav}`HAIik(jX^pcIR;zDrBhoc!AWb5BR`cEr@ra(41Qag{jm zH;5xR0M6YNK@*XY`m5XoUa0}y;BSS(k^9Qd6P_!&MFraJ=j)JKzLc7jfv1MJW4T$( zYrPv$SAQT@s#ZJK65ny?8VtN@MC|yvN884dlWy^whA|QFlsn3Nzjt}c*$a6wE*JF@63b?F$>jNde5exv010Iq3{ajFD(PiVg-uvS7$L@Iz~? z71W_EP69!13^xQ-7*}W!M|))FpntsbfcZSZ4-& zA^N4csejlin+W7ha-?b%#!_@beh!dJYy!0Y(9<~*`Dx*E>x((~5F0HN2Xm`o6t-8< z>9+&~l7zXqIU--d6iN8IHO}`^)z*cLa>!Q+6(zqC3o!EK3S|s%*3OIUX+@`T?03iK zm$m-se8G?W+O#9|N&ldm(d#Pm!XZ<75%e;AiY7r(URk+3p+_>7JI!MDXiJ0awWl+r zAcJ?ET{>$L_4I$9Bl?t_td&5bvC8+a?c4U*Xm`rZUWhe3yN0k(>o_b@{M&Zb2b4x# z_ziqoktN7ZxQsoG7vBoV#rh_5pcHIt-%!b=vc&F_!`?nonlXR9+0TnMR~kX<{<{yq zPD*#@5C~I){R2r5eJX0QAD|^0&M#%><(iD+1B`rlpaMTBRS?}0Y1KThR0`_TFwa>>C9^OM5KivAs7Cy?Gt!d@o_UZnW6`3Ds`!HZikQ z4O|W=9#HM=?fdhkD$2ReRvu8D#Z(A%_UA$<^0U+Ht9^Z9?>#~j*?hnISHU-#{M8v1 z6jn};EUIq(yei-u1NU@%%-n8zjic`@!3V~gQYa!;Y)I6`&@2>mzqrWXY~ zZcUF#24-&T+)9_`{%r-b1G^Jn)A0U;{w@28vp|*eV!-Y@<@STK&U~(wt#n1qpwzvE z#D9PwCl(=0DeB3?_@3m#sGlSaPub+Q- z4v0q%fD)D}>vulzyD-?2l;ji^y~D#PItNhSsH!!Ro7|$ky}dj6Bgu#gt$Onj+jj^; zZW83&I8;LRUw^y6jax(>k>*XoaU?eWMciqKO68el0{=)xfcB!|f9W|WTJvvzSM)PI ztMCDo?9iZ}*Q^SqLQL;w%icla*lsF! ze1*iE7MavAp}+b$VBc1&mXwugKjVJQPw`#&;U5n&;BJ`9hVr5FBzC2D^*4-xflLNe zwNziMHYIv0dgHgURU1pH7Qi?GgY8KqMAXq^ zbJcHSOgBu4hY!Wbwnp&ZxF)m&-5Q*7_xB#n>X4le`KY>^qpAaM!3&CfJXl@mX%VFB zFhp<1p9nI`DQzQe-@dD%`Isl)+&tiYX#I=FX4?asiBEGKT(9GQJz75`ph|e-ppdK^ zGYAS`gw0ik@jqCNgEJsYUKK}~Sh~H;oRZBbdRT&Mi8$|URjq=m#gg{RH8H%ny zVGt6c{q%xYGGx-A!;Nq zH`OR{@`cr;pa5Kk-Tu^WvTb|jIbz-nEI5e|qiSWtuH5BHOdi}7nMa~uV|IXci&hA< z= t*NuW|-YYo7{pBB~$JZ&jQtKK}0$nyD z$&^;EWWS48_R<{f|FQ#O{{ek*w3deE|7sa~te)#w$vmj2B!J#v>o0d7<> z^mby5;dVWuqFOaL%wGQqbl}Zh%!D=EyQw%=G^wQPUvj|C+i-+zw5V9s`W>y?wK8VRn|8v)z zhU}Jv&J0OhV^OS%hrxSsmeAGlEXP0x=@U7k|EWiODeS56Z-4xsK7$q%d*KdU+Ya%Y zqs3$zomTx((qjjeR2IKSKc9x+#F>|i%3_cHV*O|V;P-I;Ju@u7x2mY9XfMMO)89D! z@3krTmrdqVb)R+>2deJC=4qPv9HA@~IUloob;Z=?c9rz{U>)W5Q!k-q(6N;Jnu!O) zUEK5G@(s!B!%-s|pQ~wIkhn9!>uU5%1TI|+bM}9BtAD?Llj-lb8*JXI$D3{g`}MOm zH(a~>yNpx{nep^$77;!H0i&D`LxMgO=(I_kO)=Ist$LWx_Oau_3mRckNAiRR?;oX( z)@us4_aB(Buqotk*qpzxr-;YSd7KUuQYin!?)guO^FMChs1i_h9*1#cl1NcFe$oS= zeliWmxh7@LBdo(kLbp*izSRJoPoVu*e+(htdR_I6#1m1+!BKXo^mt0`!SdjyqxBoW zkpadfl3+mn; zj!_N85Mq}%OV8_Y1%6(}D3~Ve`THL1HyJt7nHGC~zWn5?^Rvf1S?Q>6DSz^8ci0QP zKb}$1{%uc|&h_25+Q)l5+VlRL0lkqznYKjKlGP>C@@p3;H|xHTANJ@M+K!er^ox0XjFykt?r7E4LtO) z%I0W}3O+-g(q9y@&{jM~GNZgg7S?Ii%EydVJ%1JeenGocO9Mwe7l;ITUU`dHOl2j0 z*Y;*Qnlwm=+g3?nlmw5+oR%JpE~lcom>oepu4Xmv4`&>TfuMa`auXbeUfl-TFWg@5 zh~?60RA|Hv0#K{dbuF z7fSly1^<0AUY{%y!QFg{W~APi&aFB#fq=t;u4Zfjy=atHi|(B=OvCM$VOMRPOUCbI z4^=EKE)9>@`_l8Lr^K@*M%gK%jlAWzv#nOIrz)@-4U^|^pOMtvUtK{ND{RuUMz2C& z>1{mjNwYA{0LpOQZ7M%3YX>+w!ZLVWP9ON*kdtTC%B=2^cF#{4Tkeuk=;-LaD8}N< z-rD@==PQFRImixWq@+}xc39= zk<^Vn@+6mCfX!f?JoytNaU9U@D_8p^C}W*hk=HIWhr7*ct_bn>Wm~)DbV+J6)-g3B zByZ^iTETIc$$FB%hYN`VrE-H_oVI-?b2Nq>KKWT_;m>g`frFF1uq($DzYhD2*J#tT z%`xTMur))c{ud-VSaCm>k+d(6M;x>GOfUOV2D#5YhJB%SNvpkA`h;;Y1c zSqLrc`^#c>yvsElR?WDpuZ~YZ+q6GJj>fw z8k%*PFdZT)5!zh5VDaDaTYjGc=N;u5)iT1u{<>|h47RB+!LFU&-+}HIx9=}bPB(l) zjM~k@{5FiLhROKFk0s=#>tkb)m~_1tHn;s-`!|()b@qzNu-b}RkMc~6&A zMpMsdcjo|_Ot#MTF2B#lU*Q10x&N~Pe*AMDNXpy?e%88S8migqIhXneHx%RrlYSx1 zBXOm3<#JuBZ)@|Jy1bOPl~Ae$2X8}#fW%Zp+4=Ay{%F~Rhr*dU@^X5=md|i9H{VL- zdpoax)W)st9v3RkRZA}eP=7#QW@f|?igCpCRict!5(URMQmtE$i@OV3=yrJqTsLU3 z&OTV2VbPq&bQGKSvb(XEWyMWMNzZpAn4y+NX$ysvXfi*o zEG^^f%VSpLWMl>pC(==|utJ;c*5Dd>?Ck9NyS$>np^>&9&X%avZ8;tHhrh(s8Ncj0 z6UkLk>IgUa+k&ou)j^uVdryMZ^}X?o4X@3a1yIW2i76-`Po%wkLC2UT4-H+~>8ZK9 z1Otj&hHnHQ$jI`Y9}+iZRHziX-)&b=-gc23J=`Rh6V0S#!bNuP@&OJGgPjqJfHG!0 zSeBiBvo@5M(P-iGdbS$sEDr#!!|&64RO#w@)xFt4Az#|!1q8JUDTCnwUd-(8uR z-9*e82!jQ

    (R{snzTF?e)8U8ND{}x||se*}Cfl_Ddh#+f5*b$Z0=4)2?M0D~^HWpJxs5YlAeE>g)Q0|AAjsZ9ah) z9^nxZhrbl}4J9+wJ!Lr)KSsah|$)SZF5t@#TJ%T3!rHrAA%ci@_w*o@aA%mgUOKLVa5QprUh)w1WjOb zN!#>z8PlZ2_4Ewsso?!FdL{OU^A&3$ndjR-) zNN4D*f$#{tZ?70qG~BC@HYfVLtalM|#?SoRHAzi766W+VIX*rmg_p=pU6f<|`xgH` z>h;v`Zs4grV7on6tl;-L!irGqardL1TAFI`x_fUZR<<1X10!OK9ep$)msrU(>`78n z=~7IS2zaEH}0!N@d%ah%ti~t67Rv^5wRvY1qIHivN^8*lA#3L!-U=pyE z`>=H)u|xowY2schL?R+0LU~?*k5M24 zdwVGv8MK%V)hjO{v#=*G2I}7$^&mpjOf=Rb(~u_hy1k{!m2q*uFn?0Y4Td7(t8#tb zA9QyMH`s1K=~u>lVH@R{*k%C6*@KLjHZ~m(a%t7ICFd#>>ka zaw1apj+iaDndR3+_u}G7yXx zu3Tl|YdA-dH9K3Z)O`PhaXOi0FZX(`F+{UoZ>|j=twTn^!-I>N-|X_srWV62(eL0L zjK-(hDV93cb6B7e?= z-y-=@tD2ehNmvy|j75|SNx&DQR<16lAjFqvz#rfu&$rIc3MGFK8Zia~zakB1n+)KY zCw$Xxl1Q%F0Gyc*bM-(9nqm9qGy_D{tt$ZOu9-U*M+#-%A$OELz+xsDgLmzaV2688 z)E44Vp3t7Q#9_?1P11i^+F#tjWn`RDTJ}F1y=SpH4};K;X5xR(C+eZ1JKY-o195*#{6$N>QD!h{C6wP}B!Hlk%Fk>jKO@Th)=5;Q#_n#~g0bQ)4d@gQV|@m5Zw@mOO*l7X(DanH&*tR1gza z@}fP{_nUmlScndDU``S8YI!u7Iq)R~HX_r!v|@`LsPmcBDrxv_ntccB372CA>!@*_S{S zUZL9ZtXMIM2jfgc<<*m$b1KR`=%R546VPydX2ix|LtPva07=zPktFpd?S zKij-XYIXp?=+Z=C#3E~wpTUFaI^ayCCW>hhoz^J}SjpL#kj zVQE!~REs0UCM?%}qjlK)@CQ}0dfy-!1sw;^33wIsx3DgIIRqk3tQDu$ot{Q9_KP|= z25nP*r^K!$q0fveSAD-DI4aE0^=A2bJ4W}HZR!mRJRDAEskDMXzrOl=w^fdZ+5+so zDbFMo;;XIZ$$04(!S~MZNf%UW*KfANQ+4-GJ_0^|XH6HYJ1i2Cl|wNh`Gt_X;d7Zc zRgaI4TN^DwK|y#rQ^0&Fn5}G;WlhB8P}Swo5U345UaHQ{`IEut#t2kk{-V?fqhY=~ znu_Isn23WDIx;smCw(o?&nL6{u*$ymUQ=MZ5GvkNx8u!oFO9UEvqPY#r>}9COCol3 z)M>I0qT{JNKbI*~Emnc)NC>$2*6hzJn3&|6IGZ~gpH7IJL=thCi<4tb5;6+`OA|&JYStU31 zC63ALb8&Ex#dmBaG_=-$LlxJ1RPPI@8N{Prw?t&Ly(J6tNdb8O8A|J(<;9-V_waZ0 z5!>0kCviC4{5qE8+yB*pQ}1Xbkz1R?Vv^to9*0bXf{fc9v2Hxs{Coa@Ev7>)i&e%3 zu{U=M-~a6OB3L*QDH`&OYd-uazljA^qmq25zML+UOV<0XL2M>jKxw1l_X88-g;vuc zRSs#ptxg|fA?R70m~NCR;Q5%ZkS!>4lxm^P!#xo41wF$M8xxZvIFV@f=$nqkMF>H&=rzM<-U_a=kg; zk@$B+jAww$*`m>4c70Cb9GcsALaNDa4^dsxQwdn{bsm4(pk7o_)YFu3lmv+w5nEk# zjK?+kCRwG3u_OT|I7QL5v_|~df%R@OO-ZU<;zjbyH3AA|M^n39GS{K#v*g4hN`{(s zmd~7;_d4JNiH4UjKN&WdE_CO^Fnp0q#eXY{u3X6HKiz&pb*h!xYK8zOl`L2`yhJ7g zePMLfFNnUrzQ6M8Wojq^>`nAD`3^>sDP-*kYKA!2eEYIV1>~04IsVvhF$gZrE@xOp z3fVD0Ar+ZMl`g5HATU|&!gTx@p+8KMDwthEw5PF5WBg945X8EjQrw@a!=RAGKZ@lY zpCLB{a$umALXavl*X3kn$d639jJi`DA}Pv`*o}j`(7Oc=|Am=77ntglwawD6@p6+X zOjJ&Dxv5{ad3mFiwR8=N_d5G3?3gyT$H-I9dLxe$jFPf^a3D?1dMxSsU=W2Yax#XBANB71Q3T@Ckd?Xb3w$)RO0H#?#PydHD>K0me=XTHxy z`k-`fGSL87^O5;l5R#?!+zqUU$=_Ii3?<)MKWFW`Aw1oJAn>xdtBG?lE*fUe4?xr)VutJA2Br7+cRZ1>FjxQ_4%!q8%{1ZYs@JE}4zlF+XB3@hi;vfxp zp-Enf>8{S=aUmg~`n<%lQFU%r)HvRTG`d74tWe48*vjClDpEebVT5T+EhqKk=#$+p z+FJ%!iL zL_5yy5(HaaKlkdPFIQU#!OXqlNn8m58R?i25y8?! zW?zyiy8j2{80QF*3JS1NX9ll3iX4<%m|mx!YM)%27RrA1GY4r-FoteA>j{c&zN+Y2+9}j13^)(6mYnd#hnT>$FKOZt0uZx z8O)^D&j2iM-Toev>WSR%p7$x~j4WY5(LTxbGs|=AL<~Ki_I0H?`We#@oV)z^PeNxn zv3@J&z2ICkk&LZn0!+`%9EkRIW3PCuHwWt~y2q<6CeoV!S z`88H!u156|cNXTyZSN~bR8LI*`zQMbLw3Sg8P@&r_Xk11WfeEnEC5eSN!bS0wxVz` zWF0?#C&&)ccc6@tekGL<7;m`_m?c8uG#gH z7F43Gh)b&0lE$zoGlnel!d z#JS`+LOb6Rutzh)-YZNc*CE@1t+Ka?=Gs{r7TE~D!^czcAuOz?%glC=SNK7dB3=2) zz+$umJL9_11hVd}ftCRS_}In#mdT3=OhLN?Mp~}l9|duA+WJV+IrZFhX5@ecGeF1^ ziTideB>yIvb6zs`GIQW{>YXXu$#-1825Rvji6qKI$Q|Pr1A|5AF2!-{zhDp$3%F|P z#wOH{`R1TbL}z*}tJ8Qr&n`L7O%_|+aB%AZ52Sg6O0>&%3s%!D_n25jL8HAyHmS-| z&T%wJV!(2iU}4#~|2gM(JZKUtO`y2mz9-;sOA=+Dh)^$1QVWoiw^^Xf);*-ArXnbk z_kS}z=&~Zad#=){2jlqKK~c4-4OXYvdWZYmXdCwYi~$2>GPw11BT%8d!`;yX(-mp1 zH;aYR&~k7DeW>&08=uQ1k{CR;JNqV5TV5ul{o?{3gE4t3#jmZ)4MY(dE{653ITY!q z4=}z>_25!pZ>z-H6xiDMW*1M)7-#~~8%C~eZ6{dkXgRc?g#KWz65e}ACe!r^1_%2Cu1J<^cebVrqZ4I2OURSes_{NdQD-YnO@3;+EaaGZJqd|z0t2Rpz* z7Z*Y1hLI*9{1%UO=7DwUx-#D+E)4Aqp%NaR5*B`l)*WCDT6K9ENe2B?FtTaEiQ#&i zE$Bm=1L+4X3pSU-lYCm{8vS*V$X#~jhPBNC>Qmr&Ih(RI_f&%) z-(Ux4#99g(h0V6`uC1HYO5AW2#b+8<38?S&rYm*a+F`oLNRz&285EZoa#vlQ3a5VR z#iOtya{X47Wc*{X-0s1~m?;!eI`={P!-{Yj%Nh!?(sm!iChqP){u~$kQz=E32*(49 z2I}Xz`Z1p|5fD|TvRqtlk<-JGBybQ?ecm47s4}fo zl(D(ExLB^s_2}tjR)l(i;uFQ`4Mf=5)1aPbuH5NyYvJZ~a`AP6@QQwc@qx)UG6I^i zF0ZG{dA%r?qJllsuCBh71Mpk6xARw|K*e^IEQMzVzjg)p^si=;S|a-Yg|~sh2u!#; z@pjZYC}UP(`FBTticZ=C`OATZDTy37k~F|*bbn$59pv1!=A$Pl-(9F5yC%f=nj-IK ztV9h#s3+ijvJRRr8U0NRzBguJ`U`kJMoUr^jjlDl=r%u-yC;??ko>*y`jJRSklWDk z&EXP`OFJs#Qm+35Vw{FPZ$5q}HkX$8_~0Ofx3SC^wg)4!X<0(Xc1B!d5$WUO159+f zO#@lkI7(c-;~WqjO|oJPPp`vD43yxHU7N9ndQ5MBfkEnwe6M1};V`brS(?k)ubs9@ zzsY*77Gw>zoM4Bv?VspiRw~(0 z!hX_P7aKV5A|Q)L{Nd5%cznzG^w#KKRQ+!QK{%8??h=Lxz0}Ly-4LkO2~1Be*7sOV z&D@+Vl(jg{`79iTf?5ICR$+r3y3^cb11q@#a(XiU&SnCvm$IH=S|POEE#t?Gm);&3 zLcR5lwd`eF%CcHEcg{_5Fp_cd>nR$QqHm~6##z7XW>*gC={8>IHwQXU&rwRJTyJ`L zG@Aja4cU_+4{w?MX(%MrSLRcCfuwR=@D|ByK+KbI5u5QNJXdaG>1dHhggLnqT)j#& z=IQVO^`4{+;ELOqhQdm?!_}1Uz9!bYav*pf=_-+z#6YQ#^$s*(TH`q#Q`+f<9EfQB zMqI41fH8SB5hRxTT}sm=@>=F#uxF>)$yKfuW3_-&=u)pyvl%ta1d{{B4{6*poAR0a8@TZz=Rb<#ilwQN* z|AE2I3o7fAPDr*aA<9UVrPVo|k?_eollg(Dc9vN@qaw>Mi}~zj4AlF(YUU+zRH$HM zp&Nz8!sY_8+&3|d=sbgt(5g~+3G0O&5IBhhsbv`-q*>3m$BS;iG6@(ETA1;2ZA(3o zPgZ4a5oTb$nJ4`(M8%XOXD6E{*EUHSX_J--LC4;(&^l4}JwPe{Yrf~hUyB^owPepi z|$Wv8BM-=KbS;zpxUTMB6C(^75Bk?TvjV6*=6GwGUA_zbB3! z=0WMcy$rtz5}NHS)chOvqVjZSt%6gd$usJ$+VGj=B@YF<8z6@_0q8Rftu4U$AAgjv z<&q*W1v^~$C=*_6Sk3iwYtoCWu>tmE`u*|{vT~Y_r5JP`eRnu`9&S ze7;tHXm}sbjc054wG~7nC5mi3@AZ+8Pn(!LaguwnE&k7w$O~RheHbm+*8UZJz3;*|{S0_4$jLib}5} z5IHHHC$`PWzif=7uXuti8t3($ig6O(DcBL%N-5K;Wp?CE9ht1#teZBC(BtKZ02!Z- zw_38Hzyy8rS%t&h0oj+)P9W4sK@2AxIj!y4wpLrEnWiajXFlf z5I}bv#mZC#lAa0g8rEk}ixu(H7F&XM3QtFxmWoE77#Uc@_3c(qgyBKRHoq`lDJJGf z6ZN5Dmpe0xOX|hFc}#{&{%iXN`g&m0+uFLgb5Mz{A7W*-Y{jaPvlksa!dDn#yJA?4lR*Xd3N=Wg8})T#4c( zrk<9r6L6cFs|EaH4kruz=+<3u5ikx^t5IgZENjJw17^=Z8U0(XJE@Rn16gZHZY#-a z96%T1v)U6CH`yLpK=E3Tx$96-5C8^2y3Z<@R>5w6txtr6xOKlQSrS;i^z2rQ_ywMN8LsWvX`! zhBBo6eHi8QphXg!kB>ChUOJ9|pN8Z>Tg!zy@(W)59WM`*I|vf<2H1c2?YhM4dPTK{ zqr1g7-!-Uszb)FsF8qvQr|6}N>e$9k2GM+efWFqxuzN|NUZqRA!krMOwzX!IBz@FP z8mO{Xsz+228!j?qOloMADj}L#%p-X5$A~^lH6tSNo{O3OYlVO-1qal%qxfLkkVkC+d`&W()Rm1Va<_y6Aq`V<;}aMzqOBn=hj(Ro2C(R@>Vlo6HhJHOsH z(kNrT&t80Fe(H7F2G#wsN~VTAjXXq8XK$d9y`H3&G!$0y=tC1*Hd2bzg}8{~898}@ z?F3y${|GIK%*$KM1tf1r$>0wLF;5 zp61pCk<>=I0$+Uim_}OoXjzQH(P$Yb?SKEge)pya7F@xqIN=RvwLb>avo$+o0AU3+ zRlI-F3AIy(_xRkNtt6Yjl+!j+6w#}?74uCjNUf7QC7~cTWoF6Z76cMwB0Oc4OcmSK z^n1+12Y5=mxu613sbpp8MZE+dS64Zv%Bj|g6|3XA1n@C{>(nKkcFH;L8r5q8YX_FA z^9uAjU14#rifRgUDa~NTIKWKA2yR9{ zrG`VP`rS=C%4&1vG@T8q&^YYsD-G?tyC>y%&5(xL3(~_eUmn;>K#OuRTP}FE5;A9_ zvCcaSY#=L@y!xx!ul#43REFa6&raL$s3?`XYpH+-x9(sA-yQI2kZ15 zS(=w#xciRk``$h}G(<&Zk)NkaJ`7wn;`{zSMtSFhIX4zgxm{}@*x&B;@5_T&ZIVlo zkTCb#+W7>?OsqAUBViM2_3-sWOD6e;U=}SDIf!trZ5DXOY=nFFtE{BoJ^Vw-r%Mr2 zkx-=-wT6SK-I{N7LSrV^?RXksTo6P6umLtG>)5RF6|VvTY40SEjcXP`1#sWfUdgJEO8|KQz^e^Bkb^9Xds4MuaTNl{;c0h5(ASCgx) zu=-+RRI46BjF}*jt%8V!0BWhD`PzPjhp$B)59%gHDyRaE&Y`7Rj58D>|E zSsN7q8T)h=^RiBsQ&$}AW&yDF}R=@t7JuBxn zb}{@nP!tKlB}hd=A{-BHkGMQbM@&qN&1nlzuhsu67qt>Vr>Yd z^HEqUEB-CFX3a_5(&1O9M_L1O!F%A80x%pSz#;;8V!#8Jd{N@_e|Z7748?z(xcpU)h>Gfu z`jil3$?9oGgQt5elx>Y_v)|{#_Ec=PR4Yi=R`9N)lu|X!Y^a1XKRL9KP1+mhZ}Y=y zFmIRm=Z0A<%dBzq+s!OutirC?`ZcjAwz-*wjX}BP?*?e)TzZ<8$;$%&8Y(vB*)@-w zR6mMeb#+rNF-)`!!|G*99>XGQy~w@%>39SIl6=XB>i#vK#UV&|&ToQd8qX7mI|gE$ z90ZMW8*}VFs{{EHkbzB&IQv&o*x&%#ZT@%4onD^+G#MI0EFq~U`YrpLui*nn=bH9iVs?92i_}Ky8XOimxkX*Ti|x(R9xX! zv9S_8j)M+~H6nqAbMT-$LqpQr6+Rg{X@}dFqn4ZcVS0g4jfER6OSE+E{o~2CCMNf3 zs4LhEHezug?-eTa=qDV0vws+*v_;w z+H5ol0fRbo1!8dab;+L}JBhXmCj%jHNn~nSB<8mvDk<7DDdo9jAEmea<$j)Cu9iR> zMTBwnYn0?(`m&2?AljjbjUzA7g;-nPilgIVL5LGI?>7bz3fKpZd%4jt#G2}4Qx^|d z48rvKx1%-{tJbQV^<38%itUN+I<#2;i|OfUynDk@SO>&q8npy7xh}}^?gX&aUo31)Qll zRg^5cS{X^}#_Eq0 z9h5UHjY1X(wJ%UvHf%yjDfXt}gXU9Mc6S`b05j#_Rcn7B zWc-$z;^RO|Fb9F(=c6g@91#{4Ro?b`qj~t>&30$h9*s(wuYy$T;AHwI-*ubau7Hrq zGe6Yd?adrsH^lZV>3NwRe?ycz+a7#%hUOu3c8TjR?Us>H7c2X_IU_C&0Bx4uc?LgT z)ewkd%1m`N6qt%mFd#E_TBjwVh`|-KSN&ur8{#s{)m?1KU_sS;XnQc+-BXS}D5saU zXZ{V+%!QSJy1XLm-T^&QmZ`y6T=o}qfygY}`6lluWubmGO`Br@ErPY|(34XR--Xg# zZMKQ$%cD<`&rtR zG!)iMcFa}-_P#!0jdKTJ7fum7%yOet)MEWk^F+F!ESqm(${JK`!XBAq*FV_!IQ*L+ z!$Q2F|L7@&CXPUlH$2Sk`lC8Lrj7W;i*p;CHOz6s%ZRC-{ivyBAVbdUo>(ftQ4cJn zaWdH^s%fw?4BUY_0bivw8tYo{l`!taM1PBtrWvWg4hA+M30pzl2HW`=emE|6DTh0Q zGMX@sm~>02%Eli%En7z?v*w-L{U@7gzre@+f`6>g1~qf2neN6)P99dm97S@c&U{PY zPL1?(##$$(*j15E+>WNO?(By+<}WW!>8VB0oUWO@vhJxh5+AsS(*G(|e4`=MYYZT+ z3Cw_PAOd!}X2ZFZ9s0{vU*JPeN`&V%45y*Be7RazncAz&c?Z5@Au2T7T~~Vzf#<-( zY50n6a0!5qKi}qH0$YTDcAGvor^sZTfUldgexhZKsLTwWblGgTtG{GA_Ma?9A2LFy zo_y{<2gu~v0Q^(J{HJu=u+-mw);7&13cfw}%Z#=v75NbK6)JSMgBvF~j3|Q>=j%*8 z1wcNT*ybo@&mSwb_b5=VvA5z zP;K#Xz@oMwAchX!?tdoHX$e0Kv$O$$D-3KC={zMKX+ZJqrW=u57+qM41A*hjC>6J5 zvopNWZM;9bm3qmgcUnbkDc@QLR)os|z2fqpl3>l8v5UsNQj$%7o)Ar8yP+$ayoR#TLOQOM*G zTX!A^ju;d9Tw6abkVB-83e3{g7MdIMSkj3syu>q^^WOwNe9 zjg4ge`~BHG(oeF(Xvb+}M!XLpuyg!24{ zdSZ6|ER$1Y2-@?kEmB@H>7YVzKek5^gS9pIFr*JZG`z41{v*@>ITIzVK=dZu+@A$7y6E&l z_*uJ~l3CkA96I=T#{$)Kx%vi_H0bGp(W@cEYalTRF_S8myjE^X1gvEBu$^gnk&r;n2VW zl~^orl!G^Zew9gVuE7&;mpozogyH4IofBp)60*~}zj%)-M284n2C=KCjKk~*Y%RnX z8Cz16kh<>`l%^u!y<|zubA&}CRx!$1p#cv5F&Er;iYRrb8lGy>Of^oq%PiY0^k|WV zT*0AxEi9(!g{wnLVw{*9TMY z1S8;a8cmkVrZtoN6fNdf{#*RO!2$X1BgoT2_mq%XQ0n!HuW04Ua#of0Ph&exOeK?~ zhJwu80hZ#K7X|j^?z93CY`;5d|+y!MCg!e*ZuGHE0^UuvSC&HX)e&2y5`KkJ+8c&C^|#so;&e&pcB1%ry=C0< z=|rATP~F^)5?KOsO-htb^Y8Gu9)wO^ z?KN>FEx14lQ6<#8Z%tNd-$$XR!a~h<%WF!)r&)aSr?LDpWM{~GyPSo0N|N(yG*myX zzy{Mvn#{W&$L@PlZL1kk@j-(q&qvXU9wsHRbCsE6In#=5^V*JmDh0PK`uNZc4pCf@ zw~9rt9c>x~xjFd(nIDEX*OR<;tjwr)AyaH+D)d!Fqoc|H+t2%QhikIhL_{LsA9|xW zG_!@W?6hPQzWMG=}E?^~Y_7Qc4 zz~Mu=XaSpW?Vj{Bdh*S|L@Axb{p!lmD6(Fn)VzN{4F3&ZCKjGoq(>xzA!=!l;PyUU_*nnY0LyU zIzJzJZ11dgM63U$s;7knL8YLYWud{v%`!@(cs*0o%fl;@^-8==Z~S`WC1t7|sYc}&^B#=t9~X7S2Z@wl6V&rY5>ZUa_D2)0z9J0>@Pz$dG&i1sr&J}~ zM_^zi%pQm-{G;eMuUDTl|D9$W<|nISQp36tr~5ybe>1pfJbujX?=y1INUno&X|Z?y z)oBm>M)O(BDd?-ThCFQEx|EcZ3EOq%<0DpvtfCPQEz9lMKi9-vutBjduq9SCIrrILf_R@E69`mHP6h6isV zdS#5E>RV!Wi}f~xyH9J*{7{6~iDY;jG51~&)skUI8m!xMc65b^0jxP^tA<3tVwYFo z+5SuoDkuKybcARI&&8W!h&aaX8{@ zVw!P65HYTz+;;@|u^x|3C?xIp8q%nfoORqfA2)XHH?b_{@%=*HkHG*pRn|oROv!u7 zhcFP~z-NVwhf<{;f`f!zI61D!$FcknYET?J8{1l3xx%35_1Ki@`G;9x{AK1SI#!UaH{4}6>?qqz?I<2L}7RU+t1MUQAFXi)z zMDf;7MsBvXHWGzRp>8}@H$P$W0J^y}*-17~V~3&i*%_b$y~~HDFUOJKxPgMwkGQie zvK}h2j>XwZM(Kv-n&8~*tLq&+I<LQxE`)EMnxn4e6%{rI4 zq&o0!ns<&=yV2$GXh$I-KRXWnaA;P&ub_1?E=4FRyrfwGvp?WUguyDExrD|gMRD2c zSVIk<(wlbw^-2&0c)z4Za`M&lL9dG#l}+qYb3sij4#>uEy>SOuE!iZ;)+!Z+=f3cC zkg)<*-7-wD@-Gi%o#AhW=Fp{&&y7*;p9i@Ah~Bp&&?v)AmMa#aOKW@b=>DP;y{$JR zL^xU^-Ct=R&~sNz(PwJi6S&Dwqd2y8h!c`N5r>5?GUvpLG|PJI0LPX=g(pf?2Cd4- z2B$49{yydT?w%e96Ms=;lT>BwJ#=_87z`*A`(~=GejXr(o-KA#3g?RTEt4}ACFC}! zBtwkAoH{Z5K&YG;Q}Ij-PlKYT1~VZQ5$%aaRUXIHLKxc_zq4AwmPw^kHI{A1!~C&d z!~zEghr+CWu5FV*NH&9e9F|EanlfP)``fpzjUFq9#&V$pscVzf;C9r}J&`+yuj5gw z9s~09(Sj{Z1taaKJW@hvQL(8GuS71}AGRlEZ}IqJG}a=5+y33_mjnwxl9TDKb~wlH zd{;(h5s8E6c`mPyH0@o!i<2TT2IZ&R)OY=7Li1SB1B4ZldpNIyu#jdQ0o@3`>S4jy^YnT}o5{(qP9tGZ>|!3sNIk4p z$vzr>|Fy}fZj+!Y-iv*aiAf*^84LC`gxybq3#aqHie#Y5nJ8in7?4- z`#oWlM^77=zh#mPMy0xpd+cX$Ht{52Oj%EAh9{OU=j`_EJ0STT8fE@g__9!1jXh5? zdHNxOuwEfI6k{Ij_5`-bu_xVltE)}}bDGjENJKO#^v3q_Nl8UlfrQGwWdhGcG_>=e z5`WUs;#e@{gzeWO4gYg6d~F)?U*83!R6wO7U0@iQg<&e=Dh=aZ-X3?P?(*Z zj=MOR!@8%KYKSGVjoFs*{XKfgu1Zy^*x)cL#kpa~*PCF)CI2P=N>Ezo#V9H9MS9mDVVc)n8+gtLK)^Fm! zNAG>RCLkv}e}VsxdH?Od*=`dR-cH@z|8Uf`tZe%lT%F$5zQ0Qfo90qV z?pg!&U129?R218^gp|gepa1Mgi`o_E%_kW@9F3nZfY|{*h@PD@_Wa6kir8kYYRGtj z1BExJAsUU|8yU)l+nwWWrXJC#FTpVA_2BB=;$%37U$^>;Cf0P zhGl_uNwAR?)X<~U|ET(9uHfL|(S4AU!wPKwibn!!T+p=|wP=8xqw-2MH;>R#_0o6! z+tH(aExQ6;=V}I{0Cgheh0Yp=8W1@)C{P$!rh1aILC@f!h?M?INd0-}L?q2_WDr?G z^}xduC1CydNz-6)L9JUMtA?%F7Gc9d;0vn<#wzwI_)$`i-%76C@V#o44-9~lq>Sfd zwu}{&S2B&O$qKQIMHbMzM)+7GMb?#^(>_Dus!~@y7Oh3SxnS)0@-EK^hN*Bvm^#p8 z&W|Yxq3A=zOeAmixCDrIz{*(ZKya^3m~^ND=w}2AeHPBt_iy&;H_TX_h`rD?&eD&R zkVCQq-~2GvuP10OIIS~kY<((MQ2(|iUDS-(UKaszkAepLm<)^|hceyML+#@_(#~6T zeK5jDm6ux0^2k8c*`(*UokfnZd|-`KOSO7fF)+3!E2M-dX4~lvt0LnyFJZcS5xkM7 zdB>R)8k0c3uyO$awoFnxM0J-Pyz(s}F#F zdHrPNZ(#2k1pOk&BMJ=!MU9mDL*XN#;JD})2(f^_e;m$GsdtyeW*+jWdh+%D7&6lk z78W*ERETwsM4eSX>KEO9bjPFe%O3kn1LGuVk-3h-R>LhgON8|9SBQ%Na31nHKOMICaCGhiku8EHX_Cm=#|AB?8e{$K4CWFl?f9r*g z4i%U{`2%jv4lq#6VmY-tL~y9O0pwteaPy%^N=c`)I}dRO1F*qKf!sD9Um_92YH~ss zASc`YTzcY(+r$+9scDExh6$M}P81FtVQ*mm9H>MJ|NV7dxM}iIbv{Hhk0l=ZF;?*h zA+`jCtILnl?B9FBhYZ`7pH8eIht*CZ5eBhvbWnK>_JTuzeLmd}rHVzVI{1cS6&D~b z?qB73a<>jR|DPs+toaQp>7@!`G@AywgU6t!!NIAulE=F?aY02(P zGhxSr>Kr7CJTg=eoQDBqk`)Cf&sd zO;(}^TK)$0=rqyHHCtz+}sxCwX>NTJ}tXK79 zHd9V9#>w3^q%Gj~YVdq`I3eWC{5sNA-D)I4op5KA_{yVb<3*vm4p+uvOrRe*&+bMT zdp|A+qQ)XYUj$Z@#Nn)Nzi#p{P`4%4o?cN?b`a3<1yYZRU+?~`&*XjJ zGzVVJ$ji$cK&s2*#kE489X*K^xL_EBvpHOV+`5Y??i~xMQ9hR}A$w$$uprRS_rO z=jFqgrn8B{KjnSjT|a2B^^e<;3K4E1%~p@M_!8zUXk2B-rV|B5RFgBYeFGnj?>@=;kERk18G`oVwxY+;60ZGCY zWu`v{0r0(2NNp?O`=5im~>Yi~yGDA&{!a*4*_`!{}UzR2Wi)TH2?s zS#%Gqu&kGtwz7VG7zNc|S^Ps9OC%~RhQQrD_YZ0ut&%lQ^M z2>F)9#a4lHRytJY)->av9pPj&^18U}j@T*jp4g3qM=uwlueElE_siMPu%2Xfj9cZw zI>*+d$&;z!0Rf>c0^Iw<_e>U$`g}Yxv16vz8?MMG`J51cM?)UX70c>4H9s_G*^p2r zV^^j|@F(4N`tyWp((X@X2fTMiOQv;(9bhr07$Mnvdej#D=aw0+zG<(D>F7mK9gENJ z)_oiFp9*T)CcyF5mdhyR#<3Z7#r+2$83 z=!F1^4poZ&{+jcE2e6=eLSmAk`G}OQIyeis7~#EMu==mz2f{#^3Rl?s82(DZBj+u# zCt%T!R9kzA<{0reLZezBq=PKMFNGFyB`-%r^spx84OYys-F#FMJ1_f`wh4}CZnfoSsP>QSPbRp{duDtmDV^4 zzbpUOktz>ioX7davR$~p$>IGGI=AUPIzCw`<$VyS2hD7toON&>Nd3%jg(ZTHqr9%r z9B}|0EQff&MpQf85d$-z+v}9PeEW)O{vJIM)!4z^10$>VkLVK#E3@IA;@5m(RM}_q zx98JYjk@V-4%iyEY!qPn-5t#V0cn#GpWo(|d0xFz2x7tvzAAfzD<2nrf+4fQJK@1ha^yk~PKWw0ZEZd{YBzfr7$ zVphExo`f0=mJDz1B;*dFO}<{1=K-VrVo4B{C^Ca=pICV1#DSBnpRTOqML@*cn~S8e zujYW;p?6K((3iqqgbz?pA+sQtP*T>U2iNzEg#{ylcnV%;>gw+9zu^4hdpcVt%pW4@ z2P>H?MKaPTLb#%-rVxry5gwVJ_;>hIkq1iNc&g}kIJ*_+f!>u2IvLgUwLc6S_9CUk z6}_-%L;)??NP%6aD+*+Jf0x2-=zEymya_rn=@+xcQ9V)uZ?y*?DC9-N+(?bMvbW0R#a zB`^>WkcqRgU>G#frUd40Wg{p}_JfhNgWO?EAt@`1wKi^t^cfP0K-WOx0DNtJIg(c- zFPba|r~$c?a;~6X>X~SW%#mp*Q+YzLX5wZq;ZeS_@&JkVL==2{u?cfBq__QSY-xNniso2sCOuwuj7`$zy^|nI|(EdqAND0ca5ST z7rxXGCEyTFI=+xwK{3RGom3rRbpsU1+u2pf`1hJvtV|>c_9SesrmnasCHW@{+|Z5# zCe`jIh5YpEP=bgT(2+!aJu^pHS^V|B3fQ+$qcXq*+E-AzJS(!BES52?G-~}7Dt$m- z9BgfT=nU#nr!(2rs$bSk;U=@}?Oen2@TsNkb?+x;Zm1nQOrfG&OH(vLvfa${nOvP+ ziP_4u)9lY4mp*>oM=c+b;VKR}7=8;#uf=MUCu6LF<}le43b#~K5@9OTR*_>gDF$rL z*lOUOu5uQE=wgy7FDb~(2BxtPkV?qwIKGu5jH9z!2btzhK6&O*v^h8_P&QQ%OQPX+sE2z3 zMB#BI@~x7h(%3_xtJ)Fi&EM}(-E8&11`~^fBkU|$hP$%y;}%S554O_(fR;|r0sdae z-w|zekovU;{vZi=C#Z4tlm7d6Rp8w%AzRO^Hvac`&-G@i*_CF362q<;h_8gBv-0!$ zzm}YToz-dVQU&BDRHwb!DObDy86ewtbumtA@(8O{5 zaiVadcZ3&Bs)ITVK?#r|8&w`HFOK16`DoNcB1&2tqemzwQL8|{?BE;SsN$`@z6hPrIRNeU*(lW>)Er z%wTl#Q$lD8nGC-Z#9Vz@d>nCfXm`9gc~8}-$=>yy2r}hespwuj@+C%trwh={F{vWN zQvLQTnT@{t%2^wSUA5%2MRe!#}9uiIzO~u=F zy23tiX`UJm{+YJHzZe&cUm~AQ1TMNG(S@A$JXq8*vZRwsOPflMKCdaKry_0{e$>@f z{1HStp$p5d8AQt~8R&7RQt*ovdBS{D5+nBaocrDwIjvIjyc~H-@i#VUXNu~3)vF?a4J_>STPt>)56ReRP-mj)I3HZzDz7{YnoqzJDaB z?$KCOBn+fZk>#b*zOvR&9VjN+H`4ficZIW53dj_S$B~lU)jJzd`q!%H2tsYEkV1d# z(a%)6Z;}@2YoH?FzW4jRs-L6&Ys~$EcQV4O*ti$8innXC&k;!Rh3n04-wLMdyQBE` z=eFOj7r)4@;YrrdOTlpxSU&cg-LXV`0~aR_do<)Q$F*odsyEw{1?3|MCT?Z?an!6x zOXkuH4tN*Usz21gNO8ViD94{jrVfZots&|xulIK@ODu3|su?BpVe;z-J)#vveHB)K zF<&K7(BewM{f|k23dM#Ru>QN$iRxX*_B3u|~D-=22W7BDS_J zb%h@JJtC@0Ss!qE)TJ5!u|h1$4~yDn#E<5s#CdQ-j8Z;TVIDf#uVb{)U8PMZ=ooT+ zsoB=kx1F=Qrc34PK!SCcH>!{WQ7|H$gX+U%_l#={fg_{zV37~5UTkU8<&7bNxZ`xD zb5sg0XplteVZ>1N=6ZRi*$>^%((W*%AAMG1&a`w1BDh$B3!2w{wMGI25K687Y5i4;`&|t z^I5R|*Enoo6gql>N?agBon2rvm)l50Sjd&I!Ew6ARrcG92$$9z>I+oZwf3E zII(0leE>h$)C)_dO@aLc+Fb}Z?RLeSvmhN51Tof})niRcP)!aZQX(mgR@m8|?P<=M zkjWAtD;9j;RsK&^U}*H3(Y~4$(^^XagMS`|L>L*)QK=?{qM8$WaOLCbx=wBCu?plAY3mDs zLyJJW=Z?9t0wM`hwDSCF$G)lhNO??#RKLqR%4{X3L>s`}{^lansM3@;cT1vtnpw z-fdmY_!;lb`H}}5xIgLgC4b{N#7LZ?Q~f)9`B77FfW$j*s$s)9lCek@HIpP!mp#OP$_dj^loT;96lxG0NU7P)hcMl zNKp2*bM4asQ+@!nOb#_m2yz9V5^p+ie-wxNKl(pia0uca{1WFdJ~ym>1VUOSo3Z?4 z&hvz}%O!{W^S%y(6~iP3?Dj0glw0^|qD)b+$suVlhfD2snlOV-ZFQm!WYZLU9d)XG zUhbR8*?Qv%uO(Wcq<2)h@Mi0Bb9KHp4t}bY>T+X}j{N^up=e+V)Ma#eEB|LKc`6S6 zO;VUy7$w+Qcd!if!-o8sMnvOv=q+F}D>X21JQ)XBEI4<>8fcEivk4Boc~7Rp0Omk7 zJB;b6)wTmw(*Ic^{*gJ32&_%j!sBWv)utP(_Y#`9J6gvxI@SbP{Z!4fFqWY+=uq4v z;)na(ySO1p+EUHB%XCSSM|uU??;Nl23gh0~>c^Dwn7PX?bejOCzc532161l<5lpXc z`NNk7oA;F~;J5=Nprf>4y#BgHosn#&?4x|0AFE*l?MH))lnLSOnfR@4t-^8xDzmw6 zvK|*0G-`vzdpbvRBPd@#Gf}tn|2TbQ+>J6zvnT(@-KCa^$R<-8(#DBWrc;a3VlA(9 zq3l}J(1++0(m-DS*$0DebEx;ZE!mnh2p>|3ISY21wRz!O` z&cw_=OOJ|x>~nGDLGz)Xf$!C)vj+a#q|d?d&P&%e0}gHuu0!P_U}v9)Q~R<*D~3W3 zW3!@|%$F%n^^Kp{%Yt=orIKuN;XPupFHl|H*k#V@?KiBrYzcK?;SW7N_@R-13FfN& z>F>dE(VUIEXDXW9*29kvA6j1A#py_+rOd*?WYjy=(}n9YAfbD&E*76t#rT^Dn2^1EjY7#kl#%&ZzATcNB?0g6o%JO2cQb$rMPtG5V1mKZ0 zbjl8{a`=v-!sF+7U1d4n18jg`X|U)fdMv8l=9Rc?+gBczvn6BvEzXB+P=pd zT30yq@B;axm}-&{dHdDF!JUwwD1R>$UK}P_@z;+Yk-{;Yi8!EMDe|!Kr&J-uG}S>G z6*jSCGlEX5b^&mgKPxA5>MN81cVld{mZs%tkN`SLc2?X;0cMix_`@rfmY? zfeRFjfjCJTtQ}FVy!UG4WBo^NN8X2zhUidI#2Fq1A1ZP$7~iUD5Ga2{G39AKKoEzj zJAdr8U36QJowu#xO2YVmY_GlRpy#gcf^Pa6wfY!RjARgB?KHjDu5yvy4Nm3S?s|W? zTyP?poX3790Dh^|QH$xNMwAgK+_J#$|HsiOKQ0xWKdn|q&ixavj}8QBmSLd3+=F@} zbx5Mp=zm-Q7!1i2RGl*g<#O`_)N8HZ$Rnu11An-j+J}0&DC?St!^Fc~(`2p*E-dMdExaku`S457tJ?ULJ$RRCz?cTiox63=3o5juQ^)hwkG&8kf<#YL2 zW$jqtlKC=FG+(Yl*@fU4w^j45)TpmhzVrOJN%i+%rJ(NhWL?l$8ocyxMzr~uz@EnC zPF3=)t83oZBL8UW1+IhCoD3pqJ-WPp6Z@yN-_92tKPi~5yvwb-cPS#w1mf-kd&Kk) z;@Gk1nC<*LOzYXaT+K-OG4xRy`&^X|EycMOtKA)KYnYJAKH9r0>764I_NLd328<>{ zf_s-+Z1v;Bh9t7y4Ef-LG*D#*kq?3qG32*vKaDvMO0GK^D?>!pJ$U_Ily2<|4M!t` zKYe18Wll-o`sE{d{xmf(xiiTc&JRqD$JIx?b2_`t2ZNd6_Ee4J;=#$$X)+O#Yug4T zs0k=n@mAU@*X`o@^wbyG>(IM6S$(&5HgQg2cm^))IXr0k=bMo!;_zUR zUcKwwYBOCp1GtLFLrHk$HqyIZK2TstQ><7!S*g*N9wq2poSj7P zytlXa`}?8JqDGGu)bAYnO9v<==HGgUA6x~@$=Hp0oqnZf! zIcovsmS}2K-eMPJS!vm5`*Ci_%Ska@L%zJT0nD8t7c*Em%Vm3+l6h=Q zyj`JYi0h$bH-k3d-tM6yql|@;h3tWa$4#EFVhr5EUteF&py!sv2J0YHi}%>R8PX6o zpB;VO2gs3_nen8K;WVc(utL<&Z)2QgTdys95{v|AffUo)CS!R5MFlI_uJ@pzv0W>^OOULM+I1Slc-BQxw2?xR{ zs`6g|DwLnDk!t`rj^TT)_PuRmtek9IG5fHbwPq7m&EhJZRrxaRC-MlRqdzUPz+W2q zo#i1-$}vR9ZnYZp{Tu_`ekrl!Tq7Jb3J)dW#}n%5GD)nEpAr7|3G&94A+5=nR##8Y z@4gco2ZtKg5kCE$yn|GI>hN2wVwoZ(y1Q;l2d=gzhLZb03H%v)O8veopkPe)-T;2XZf12O_sj~I|Dr|@*mU#YTlCq7o<6A%5(T zf*7MOxKeOP_&m_f5;5>X| z3#P7rX+27?f_`6;&iN_&(dl%-W1{Kh713~Qw=zD_rVG`^Gk;CgjF!-6&gJVt;ZQJ~ z9gmZ!L@ifop~>F6pHGl0f2r>s9fAA)1M)rZomyqLF|4~z=^*2ai;sfpSdZP03ssBJ zeY-56szXl(MxtKNsk);RYF6Rau+lZ& z-*TiWg-3&{yw!DC*;=`wl%K`|jKPV?$VikgyrwKzXm%H~rNzZH-ptVf$0 zW(!rTbXBOAJr!D>(V0~<^$ulL zwS6|dm(UyV#)%YC&=+kp{)K^qQ-Kz#R#X+uP^`}to+5$Wx9VLtoj)j!%ugscwmqfr z`C~u9X`@P;!e~HjbM?CmVJZvVMf zwO0z)U!qt#`Ov;*@*TBy@lo{j^ws_UFDwvLNWO=}CHuc{xqrzulERfjnWev^@Bd_{ z#5$Du``TSVu|HT){@ZMDS8^C@DYjcZ6zkRb6%$Jnxu+aCdPFg%W!nmlik_LiqNS~+ z7}y#q`c=)P4?|x|#iF#WEK?EjHxuRpJtLQl!%0BfQ)>ky&QT6bA zcY#=_6e`wN9zA-b%$_~_yKVmNl_Wo}kYJEPlcB%-&`+K`QT~W;#m__vr2Ve*WdEsM zyLL+J)~$bcA73B%4@Y?a7O(t2co2?=wrtT1i{ z;=gT30t-vkr2VW+7xSSzMRunUrZE$%`Q%t88w(fAL*U!@xOJ#E3e=iK zILbU=h(uO1w{@dJvqXy8>StX|k!C%-3w(!td$th{b1cYLoblfG}CbJOed7YED546BdVh;Bpu|8x zMqfH&0oV+uqHQRJAF0OVawIt_UAd1@hjwWFQqG5{;y^neGyb<*N14Wv*sG6x?8GfNd5p%{1`w|@&+vRoD zv3Th!%%8tNl;Rjt(z91@#Kp#_`J&Ywe6_&Jg#7<|*1vxrOqnuKxPP6CWpWiC7?Xow zBW0-wY$nQ8s4DWrIyzb;g5iO?yIT^?*)Az=<3ce#eLdJ&XyY+Oug_n&ND6!Du*q8u zcPa9p6dNLRb%y57#K-$g@Ww&(IlR5Ik;WoK3M~0^szL>Wj~``95T849QZT|?l-Hug z2{f7>t;W%F;hJN?=CC&mf`9Nk^>s6zIgyGOxv=$3U=UtuIpEaE$2h+rHySl=3cqz< ziXOi=2AXx65%^yj0cN+c_n|C{{ueZ%wv{flZFG?loemu*eQ3LyNfxnHt5&dDkQZ9{ z3}H$CJ`H$@3E3~sI14-EdMnl(4kXz96E9gHo1!6)q`VLv(69QyLSF-4o1Dk z#KZ_h@b?~oMY~q4Sb@{0PyePa$f-w<9zBS@bG608?ByBU+C`Y)X6w~AFD@!8PHI~>wznXbg_DFE z&Xk~iNSvtq_8&k7Ih5VHw8w$^^^q9)Tne||KiCDQB0tD+xX|d$qf;2YW(|Fb8iJyA zLOaFOUpIF!U6~$SN^}w72Bs`yoNmGTOT}T~4mhReK(K@YHK$5{j$V!N@%afl&(^r@ ze;Qt1Ub3G5+`f55m;^4YC`E-(+ds)x>|yZ~~@D>)5elwieT8 zEfCx(JG*S=4n;|7cO4EM9xgv-mhsJM2KqYU9IBjM-d3U88Ju3|1s_tbW1ibb$A*)d z*%pF(49AM)nONhjeW;dM9D^PHuOBF^OvpuPoTB7HHI=i=`(=to6r^)pi=Yfsl6$^@ z&%~H;byHoGEng8gH&lYXLvA#vUkP10cLWz31_uYDTGc8fHgXx(uI1(M7gv=R$Co0& zgsD!#g{59d%g}}o6=JHmhIvxrPRtjZw`|3f$&;kGk&7AmyGfCF!5HfkPp`_NKio%1 z)YKYjHxe*?1_{ed$-K9#chW5U<3?Z#2>|_c<|e6f1_|UWZ>`tp(Jdbe zd3j2W&L2HthPtq0%FiVZB(a)qR%5Aq-o{e&Y!v+!s@mekiwkQJ7p1dOE*F6FGnJ`H zFJHb)bub@Aw!T)aTB7{N%vP^ozZUT&F5YHi1z&zfGKM{O?%V>qnKy5qKuUQ#GZtwa zULJ}6uyyRv9{ite#~^GwZg& zgt0qv>`c~GvdmFmEut)Ad~4x)^Qma=im+;Y?eOwvOE3}Kx^d;_Xf{#55u-+r?p?8X z(E|B=nzw8xj0?$0@o*`ed97a#m_x9)oH1bRH-DE{bfQSZl}P=t6|pgqUz*Yq-z-+G zT7~>&I;)*sZcw57c^sZ-OnBQ}Xxg+Ts#K|jkz*!)GZq9xp_zOHe9Bfv=%+;4{w|<7 z`t=`#^~+133Sq(Z46TH%fg{BPwIPi0ly4l~Y$v68qZt9s2z)aF{4k$5W&(z{9S+k0 z4oJBjkK`*c;>4!CPD0e!K=d8h4=ye)(7Ka-cO@x9GJxqHS(N9CWyGh`Gb3{X{bgy{LRvFcf&`pXcRpere2p7p4l-OZb~BA!Ne zD_3v8r{KrpnwJd|n+{qm6^ev%HT)gw);#CWNJ5GuNIBLXD`SSTK9fRBKkWtiG$Cc!km@G0w2@t7e&IdaqFhPOenZ9i=FtCsep2oYT?IYHxU#0LEQ&0q@~2k=c}V{Lf2G=WWoDl#IQj) zPYQ2*^I?l4Xv(8wBe0Gb9AfoLqg2Fqv@7=o>N$Vn@O&J%H7IsLw z5DkO%DOk6D9hNOxDhixQ*GWb4;%C{LBfsnn>$w?G6j(vbiV$QZlA{}*g1BMtFm}SY zZ?Z_L!|EF7F+whzWh7=G#XlDKn1(_g1+#6_y!mI2fRT~0Kqs@FU3zjXjE%pI>St~9 zYnG=^pDxiY9PM2sdAIHJL0W4~za&~#0>Rif~FAo)*l-K`W(>T1pcjUg> zkE`ez8t}ClS-47=U$vf7!5urchZAwL)*kVe_;=%AM5O=Mh_Xy&+B)P!<QA7!NM&|77Ot@PEp;J>Gn_oW=MODAPz0sgSeW6I3w~!*o`lb{u zG?G;Q#g%2L%|3(%2W8#uyUQ%z@zaq5a;+s>ZiNT&21mWSPN{X^FtJe_^N*7K{5REu zP0qZuoP*TqvPV}R69w6kqsL)pVMEko2B_srPzbt40`9}LL zaFqZ?`0Mi`wy=5Qdf9#3w(Y1=qaKPBD+Aj+;%pD1Clc|Qt8zxO0 zN8G$sgjwRj4qx2#tALHfHOzt(1xPqTWv->V5*`@D9$`cH;;m>nC5f==#|7KW(%8w# ziO88N4_t|x+0Nbpdk&sM=^l4cto?b6oitazH>$ogubL6ij6n7g7(}coMlGyiI*NXu z?QB5>YlsMofTu@hB$n$No<4knnEAo@-0l@3+r7Y$4g*oiwHz!{Op$Rp5s~d*B5lkk zOc^>E(3Y)rwnF~UCN?d>gm`&nU*sy^8F zp#o=hB)MtRrV@BjsrPaq=xbxgm@}pfui$g~qo%>|{=pIClo6Bu-+%awI7bTzk8I^W z90@Fmn2%5J{KhtXY+8gcmoA9@96_@&W0>VEB2;CnL)RQelDL!1aBXt~q*C;ei>itg zEruWW?jXvre5z(RfA+W(KXF8si<(r%JiNzd

    >v_%W?fP9if}K^|L3iwc z49rj~0?M+mWqU#e(~#`G>{iRXkhlYC^%wZ1j-I%_Jb6Dtjen{Rg)@uZD}5VsGZsF* z&W>1vVXpTBgfvfAG&YBjs1xru>#~KLMG_UGK13IK{)1lKVFKSbpki+^-R$&PAtRsZxY} zwt64IQ(Bk*3~T{q5(%Aq)|wU+x4}-ST$)^%gl1lxtvJ=wrcR8_lY4HL>f-j? z_~+@_Kl4?8Kb@$+A_>#sqzFJbEdH>V*&MBssTKZ|XRxeHWslit7#O>?5T!!QGLB() z6qAYRMZORO$I|G@^k&~0COZvZ@~ckbtUM8Q-1g%Ay>E&CT{$HI&sR>F>p0^K-?&{m zaY5o)t8GCCxId2zXDqz9dFn6q`hp_Tfo)mbkk<(;Lip@?<1mk zX^8Twl0?Dr!8@`rXsQd2nZJyxn~?CI$+MF4Uhu*syHie1h>zBYNp{xZs12(;EDy>o zLfpbOQei84WzNkqkt#kr{bkpEdO163bKB+3((DnH(zf2+z5=Ug$qytJ@qB6`AiHM) z0|k{nXK}k01lL=WTpWu)nSp`5L-cUYv}-doFp$X#w2+WDNN3%}<3!o)J$Qbo%e_aA zI#b$(aS-Jbz(XJ*aK-d!??0Q6dI~Oqz017`oGrU#^l7I#*Yk$Q;})otzg75K{ybHI zlsU>Z4IiGDFfuZP3B%He*lCByE7iK}^Hb^vY2-t7S<-a@^T_zSg|dpIep#tI6m_N* ztl&_f#&bDp4XcON17cB)RV@x?V2UabhW9265g@NTYo+hi8 z!J+A{yC*!m*qY`P?s7U&BC>Spafxk+HqBHS_7%{s&}Q){UmL#a%K6*P%V>s#xr7EG`@koBRww`2i|IqBpLdk{7dV@g^MJ}D$hf#kmr~=vS z#2au9PUh-*6CKiyZ)l@^gYXG8ir@rG%hrK!Wuct=$6BqB@N0DA3RFuh9Gaa{qs!dg z^S3R_SQBV-cR_0iA2~bU@Glv1iRf|mcJL5U{!Ywz!e~>1D`wyVb^00=Bw&8d&BeX1 zwgYE$NI^*S>j^SPE6)E5HOcv@0PKet^E@ zVQ98xD^eDRGni%?voZ5IUY6a>3@*6ddcavJx=6k$6kbRBU98>@WmB)jmNVJ4;Xkg# zy$=JqC}iHva95(nT*Q@Ps(`YEO@&~tNQ&;5XB}!Q)591Gmd~8}cB6cLl-~hgNco8H zC9^n<{f3WszJRM?fLP`{-kBxnsXMr!UpE}?)8}}t5Qq5Bd-+xpUXEXqFKC|W(HETv zX`X1jFC(+>l*qr7B~fk=a!OWb7YrKQb zAcrTIWH^R_Yz+D+Hk&~@2^oTjvt#0sCiw=Hk4!oogU1LL#AdM~S;1)MYgYuj8plu5 ztk3QhDWehjp=3I5+K12;e_RfmtUN3`($vDTbI}In@nM!-T*3pNRS5%p2A zX>KuvT8%bU4zWgwu<Fp*}>&kr|-}>j` zXR+#-{i<=Ma?wu9Ip=Dat|uN9JjS&SXO<_E3EbvlnOFtp0JfV3^Z;kf*T*XgHw_eu zZV~u=kgCbI9sNB>>tK3&h5h{6QU*6;)2S?U-nzO$!#$zaJW7OTvHCVV0#U^Y+$?_k zioy1b3`~*;N{G5U1(DoDbP4Oo(m|Lz6)9Up4$E$##@`uSc!tNJWOPg#qH%KXXZ;<@ zJV9Qcg>C++F&+_A%?scDGP&jZ2`Dpb*jRzyUqn)=L!c%X3s~(!S-yMH+GHYS6Mk$F zIAv?VP(}D8J!d#5;W&DB#=&1&NQ2I@aRk=aVlac+5IyHA+c{Vg`6P{>-Yr82L^Aht zY-vG~Fh~^X!1#;Qg3PqK2p;?)<0Yl8mOU*0l^y?m-}Nui6x-NnwNAUHs3me@1jC5*$08KbZ}UTC+}&{E*wPX#=%$t%rLIvT!sLD@VKO*76<3 z&rCT>rWA1#!*@;sdhX)fHhTfF`(pY)EPxVf-65<%{eQ7EUJ{?S+UStGsP$?PS1 zjK9yTTepxGzS>O08$N(Mwv#s0^#D4d>^Jy5V z1MzR3CJ{v!_`T(-kurd})e|eweg>PIo*qt)y0~Pn8e7mRH?}G#aUWY5pQ?KfzJ7lq zd+5@P)MJi-&2AYnv!SBVBfg>Ekv}rI9#)l!v?rwN{MHGtU;!ba)t$ox8!XyMN&K}x zqktA`6+%JDpgE_8N}IQHXLxmJPok8CYtR@=J^aOZzy#AxIUmN9T15!jhKortZ1a28 z@nH-xI0);>veX`*=VO0?BCJNMMd>9s0~xfG)-nla9jTb; z=8iyJ?-cH*WF>yq2UzLbOzEg^XB5Kpg2Vm2l<1{O;6WMXr?sPlsx#AYAjw2ko5I!= z+}HONqNCTP0nEo~cxIrdktru0I6Nuj-8TwNx#}|}E4pEN^7$R!fB4L|C&|Rqp0Tlc z8+B*Drt%}`Q8)0hz9B_-y3X za&x)4l$*$PmMNkcc)ECd{k2GxbFKnqiW3w_9*es?%$W{(=N-uRZByB^kZ3#oYOePMRB{dIGiW`bMTPgm~cl zS0+&%O}$AHq_`8!yvOw<^o^~_z~|c+%vy8!>aMa0@+4SeTJY8k&)O}8J4&m%Wok1y zt|YuZ4%O{!If9A?q7WV31<*XgNNXJ7&vi0{wnyQK)R&c(9_|cI>+e4*rfI`IQMjf; za+(1ZOb9QvoR{YrHD}Z*9X@Fx#=F08gi_}eKH0&a`*XUyNrv8!zpp2KejfP*r^w>V z%H^~#-#__oRW1rSiOKA|#s#juGYbd<7wI{fE6Ciu~MY zyQ#aeCd<;<646@z5)=LUlSa&~-KgjkI@i7NE%0aQ85OrlwfItsQMbB#6iZrrRKvI% zbu3APm*XEv5p$1#3Ot@3e-4{6e*Wuhygxy0Pn~Oraf!NX4-mPT07Gd|oS z>~0^=v+6ImC#DC;nd*9{8RV9 zfVh~X$CikU{mdvSt`2l^kX(f}n!@gJL|s|WQzbnd;7KKg1cq$wl?mzKAlt zU|r0K;UA%0%sO)BAkakt9ksv9+i_0WMf|!6ZL|%W-bISf11$wkTas2Dwj@U_Y^wz% zzh_$FdfG8B8khIG)7O6tGr_;2egyaFQ-sx4;1$IK6WTgz#yhZ&V-&ezRl^iQz{O77 zuJ%utq5;l1zq~Yu#iWiv$iO0YK6M{C%CbINy^eRGF3-ET%pOvFi8qy<9z*xdNw#kc z>ys=~+#R~5n=a4RBDyHg@l@G#wPj(3hOzDjaf~+O8SYg4P$P}a5K>VBa&Kdj#15b1 zn_3aK{^l<@ZSrp;7rCw^79a9Oc)uXGTX~dj5TtKmrGyL1FJ|qOSO6s(3TZM4k`vz=3Vv=OgtUmGrksK|Bn}f4+m0$ za)4&kw^_jk`uTxXqJm0H!RJ4|VX~k3V`#N!gXMeY5yl~ueEI2B7T*4Oz(Qz54F4Ks z<+AP=RXOTvafPi7oW0{V@j=n>tSQZ)?%LONZtI`wt$ehUg9^g0g5l* zDAVaG4f@?oZvMV^jj^cMgwx%WD^JB*>Scf+H8TXr$~kV$ri7aqm*=9c-01 z!)eRG-HgheA6!15GUZW?I*r}L>2&vmW7S+Mun|J;Bg4rle?Ayf@rfS@*`mvc6=57a z_>fvnI@19CEZazBZImd0Q%H+$PptP?0Xzv9@FWP8`1tV@^%V1yTd-EAcxu?~ieq)% z-xY#7_{zY^ZG#1=p&zUrVX6rjf`R)Jo!P(t+&xO-E<$fOHpRM}!(cs$u{2M$bg62s zY=#v%E>bc5{Uuw~;%R6&qq~E&x+QMBg!z}{Q=HI~yU=suGymr)EReN$sH){bs1+Yt z@FtwLdP;QY_N8mvGY7^vOX#g0hZw86q73&tww`-eDVTphI5m~7Q>*MxvFz*^u-^@o zRx}kntKZoK1(mQX`o!Wy;-KCzkah|XYn7oVg;ZL9IqjVm?lA$>Cd`DVcAcY|nI(=q z7(;qHd`@s!pXXv(zO5Ra4kF?QzZbjbBr^;wZ{)`c-4dH8aE$I}6LhKeVq!WrAe!=> z+G%{k@d+SI?lper7fU37?01#rVJ!?|jr5RLz&uVsffMy=#=FQmgPw9wm1#>p@-o5+ z_ag^Yxr2WmANQPXtZOR$2G9k)$LY&>@xle=1b5z^?+Wlcoik%*h)0|T{6O4NSxt@< zxHd+Z=#>l)c2x@imSez9g{?7{bLDassxdPx?EFuQy@-`3nKU6X?<@7qYSE*`r-94O z&RzaGEGN0kYx{Rehx4}uft|&vuZb^FBN`q%apXv4;ZO(hjg>{}#;e&q8ROgm=Z{h( z0D+q#x{Wsn(00XqNrktaD}v6_#f2nU-b=_NZ$8~w-u4+#nAIxq|p8dNJ>I&vK1isoyoyaX&$XLa-^1&q-?O^F7-n+ z`U~hsSA?kvud+er8zEAe6x0D4)v-{^Ev_#7^;~X5Qz;Zc)!`SzP|k@E%>yXP;}_VO zW!XCTjl${(CR;uQ4SV~XUBKp>Kcz-H9LLdg;540mlt?w;d=v_IrS&l<;2b6x6j;^O zK+o_kU~YSy(M=NmHuQFNTyd?5K2KB8{;;5cX}n`PTmRAEaVU~cg`>^^4l{~JN2)1e zjFq~V^58@SJdDyakMYKMC>2j|&Sz;YE&r}T@Z%rrVK)x9D;F#j`lgT1hOwV7hZ6BSfc3>%gkS8v% z*sYO}Gt+Uu17X`eKg0w+HtY+J+P1>nBB1*Y1%l{ReolYaQwR7HD2x5tC^iF6w?DjC zjhUyiiLeO&FHam7N~J^??2+!`L_|>BEw|f}db$h-@uzMD4cX85ajI{!+SdSTpntjH z&gp*Zh89&~f}7CZK@p2ri4_QJC4qad0uA(8)N}{FtRiHw}(Rj5X;y5i+PNr7~K$c z7g)}sWg(r57EHll@EYA;9;PFuUSn~{^$je*&e2%Y0Z4Xak*-Q409IoEWE49$NTVdN zNy*sMXR7!={()%uKupwP1@rzs$?N?CAy?P;tLEx!7Oh_%Y~tStK*-+j#0@DO&;Vy6 z;(MoiMJ*|2iO;$6sHVxC3O!h@7Ayar9^c^DLT;C*KbeLQ-a`4+Ur7vkM8V&qqYe%{ci<7Xq?UNVoiCIt3yVicEPlbu58dmJl$$}rfO#O1h==B@<{83F zUJGVqWv$YsP?Rcs-YJY_JX&8>S(U-aUv7;{tc)(`=XKL+Dw#_aGXvP(0P@6y#^KhS zAWqns{2#6QlMdX5yjDV9$e=vYr-`&Bu1Tl(1w?!Db+cK%nV5$MhoR?BG-X~09(T$7}X5Hwn%vlnqoy4wvq9*)MzudIYksdaF2@=CJF8Rehn z|GLzDIh0wT+;rruN-P`k1834MQY`1lzf=N1}XXI%^ zcOe7p@Vm{VFKzJ~;vhX~JhLJ{VNHhrFt##|Eb^)M6+9j`0|=D1^!r|Tc9EgyBWhXC_gB}Znq=qkv6+#H39x_zyES|6g z0EoaJ%N8KU!Ub!qht4l+!;DO<5-KW5PHtF;|GNuzn2>%}Ypa=;(RLCP=F4Yu?`%UP z)BR`=Rd{N#*{skc+pZ)6CG-7Nx%=fXt^(4(sfl&>T$36%UI|r(HDu}3-z^WGehFT!<9g$EulWewlyVU`%+c>BNaBvkEI5zz%hp0s`|8Y;= z3j8AqiJLGe?H(Vzhm#dBOyoVT znfZ%0GFokQKv!#R=kxH6&t$S$Mu;F$>?kQ{{qp3ji8ri_JkH9rW4%T@yNh&)(?FD} zsRN6_dzMhZS!*?qeL4m|_;Ump0ANv3Q899GV948~PU++;7e!WeeKR{T3nv8wo137E zrAn4QKEsJ?)VfV)#3D8^!< zRwb^k*perO8&hh}DoSwaj|_E{+J@XxQ2*pg^}MT@qn|b=LiK784e?Y39nPbx#SJKu zQ?dc!;bVrmXVX3OqOwAi0Z!9I{u+H8O|dASs-d_N5~6>!#T5RSiyCkD1~+XUfS#dj z_Q5>By95X$x$~iuQ?)RTH{~^PlQ@~JgB(p|i&Uad3#M1gOquc9TR8gRT7Sc4Y}+tA zJZJ(Og@~?Cng8;Sg)bxFc%$)rZp1F@5`cMnezhY_s|LIkFgfk=)>c)oRD@u&KqkW- zX?;oL{yQ;m%Set?+~Ews3D4EHLAlri|PpvNkoKHaNk!Us;lN# z+dU~x7b{~OIUa>Fn_PaBOxBh`&%!q$B_c))1AZ&x%``JhOFl(Jbrl1X=`2@k%ZrPu zqHI7?Ph_Tl>rX@5AZr;0MWL@`Ffe!V@}iL@ErH;Fdsi0-I1(OEYH3g&LWWqOE@wun z(CA4o1%2?vJP7*JKH?G+qk(~=0LW#yZoLE{*)*uJXL%KBlk~RPYCzNTx)~C=f3cIp zpw%E8=U65_+LWD!$9fJ=*xt?2%nLvxV9RirGFow?_>t7(lYYxDr! z68E{~LVP=vs9-M~DLHvTUfGxChzunx7`%9mKN>sX2gfQ_+ugsErp8uQFg+iy#59a3 z<#YMOVqE#&TFjW38(DU3ma4#~mo}rC{LQ__+FOz09Ke?o5eQQvejd;`&b*{A6{HOf zz$dU_{B@3An4-U$-q1C~qd872)cv8Rpx|e3``s^7%5eAm)?U`Bde>&|+k8)k;*Zee z_kXkUKk(ZRU~s?6s9Zo&l5{OzCa7$Kkdcyx-G+A*@l@(4FehYY=R`i=9Ss1CJD^D{ zUr0P&Eu@gg&8|Uo2C5!JjVVd8(U zc7b3)AEI*B85sbk?SkTEgJ+;Xun+N(W5Q>Uu_#Z-sW@w6(CPR$H$0Y_e}`^Mc2L1>CE`{H(6Ya8rs5`1xMGbV5TGv@h-I!D>S5@IW#}U0 z?COBw124_#-4POzOl=h^_P%<0OQsZ7Sc7J*KVityD{-9xdRa(g#47zkN8xe3oL)vXv?C@;gElb2Hq+Zb=yvt=7W#S(OTRbfbI5WTtnQR6ulFY;O+KbmX~FkRPLp2dzwG=7DiTAjCby6DMM9ymnpkddep>JN zFLYs2hKb-|VU@f1txAvfCbU`}z!q>jxZ+-?Co0`H> z^`CkHBtR^c549zMqpWW!R#mcq6x8qke=_c;t>j|1D?+u$OpYKSPfu=)M@b}pv4*nW zHJYB(BZ^#*;7KsjIb+{R-;Cj>1AzR&OaI~&6yjw6vWq8NgZY|x*&md2kHYZ{UkH4j zh`3VJFnL^L+e47h&>-{(1dNW1`lf4OFA9U@GTHUdQmiFqr4iRUHsU)wd8{t1kkC95 zq2RjvPn`V;Y<6)s-(c!ow{`33!ODfXqaUgAh_UpggxtLEF)>fl2+7G{__w;-eD<+5 ze5$(s0Gwqsn$*-*_u!`eePa`opA$=TlH+iJk&Uo6TOH;291?CcFPoBrp9)G7X!%cViR+ZUfQ~0O@y1-@jr>qyRP|L5=Gx&XkjII>(1m z(Ui=6?{$G5J2O7mVu+x2FnyY-!HvMKT7(XTiT(TD>u{m082vQj ze3$au04CWKyq~0>hR;Ds(J=M>f8E=-a9&u1yvm=-hGDwbYHo1+3l1l=sFq7y9s)@&DJQ2|-Eo%9HL30U z2K?0^e}ASZxbwWiHWs*&>X~5w7_R%~s4x^>onJkfnVEJ)r9NEH=s6*Eb#(#lF>I&Q zTF}uyOEjM>n@PsS*oWK`2Ypgtcp~I5&K_=Ie2p!uel)6W9{oa3NKD*4-3#H;qaQ4= zUC!6(ba69(ns8+^jQ~kSnejU&@Qv9*$e&-`-;evXyx8;sGJ}x7y#APm^vdUF7j*gn)$dn4ETUa#v%A zY-&5QUt~^sd!$ta!?_;o_;P z+gWw%VyBHp56Is)oS&1U&}Lg*Tx%`n6vXqVkPbrsHD!|E)Tn@?0g!G|Dg2d&rxG1% zV|iDn%dH;q9RUGh1b8n>g|Z3SQT+%KASN!*%o3Et2mk&Ui^qe$q()jNwjoPD&jW~D z?WFBc_yM(T?^f4+LS;ZQWvEooif%1;jm8fHH0?^6 z<4hcWOxXD(4b5|LWdx8~*6IsNO~e)=sC%PmCdzX?gw>G-?mN9g!gL~Dl>0qTL2fH2 zo|Ub~O5kftGdMk;-QYw-M8pL=X4iymSWUr&^02IqxDoplG5d+%KT5YG{^zL&AXh`g z3K~UX8D|mFo{BD_L+~08YKQ+G=OJmCKiJm_l)SgMw>n^gisxJalHy+F)zzQVRR=)q zMB@pF|4gQnkT!5iSq{tz=!=c1ySujod{y$7QKvbVcYrPCM;ilmlkSk)llCdNl z`j9=&TX};rvd?X=rivQm6k#cjzSV!cES|dB-9;l2gG+_)R6cm%!sD4pT zMqwDmUTt~rmuBcIUmJKEO+Pn9P54Ab!VS;ukq!~6WJ+tj{w<;11Jk4Pd$DOPhI(|{ z>&qYH=Y|yV#BuLy;KNj$sC(iw3y+11OVUwIj>t(TfF(htiKd4%;uG`Gqr*mhEYc(j z9``d_F4@Uub?DQ3>;UFobZLKj4Q=cbgll|p*S(?i_4Tu+@U1e7r$49@ z_?|aib}=`AUvRefJ7!dJrf*bhnp{j_FrdrLt8TgyeUa2qo8ShK=p*=J~4LOLitk%+P`J15%7Q;UWl zUK&KxHKiS$ryE&?l;?^o@cq$5nU$298VY;DK*&V}0ki=P#%3@pE!@kk&el=+e0IAmN$vaFTjX*FGc&TX>h{qe z65d=B`s<&_mTN`mcPepv#*2ciu}cU+aX}VQxfk$Vm023tYKRlTMX99HNy#v3voR!* zW@`%f0Yl9R0-!v$7mDdCQgqdIBYLf76Bux~j8L`imr_~cm?Yw{eZ#OBw^OYw5Dw{V zN_etod*(L;6-O+gXaugv$bR6r&_YFY8BFGU`sxyt3FCvKO2rTcYis2!ca0`aBsbBV z-#ZnWq7&(K!+sNyxZ9iqymgE?_~ddjIYst`RAqiIOtO`#j@~d0X=zT5%vBP}mK&M> zVleeDA_UmKgjUZLO*0O+?*g3;D4;BINM;s#^FU1Ocz&O*&BAjMAZJoAotzt6OGkmJ z^+f9W{#aTCLgUxW~uUo5g8G&oXSjHov3Pd4yB%W(Q-@tMB+= z8v_CcSq!l^y0k}oMw57i8^>e0U{o*Z89)xv_yT=^&5-sRAgZi0sxNZ?5>Y;O2L}gSF7IC}s858H=MK8^o6%9%aU;O} zRLd_eMwi3w7VR4TEpC#(Qn8-PH~BTQt=1={2Dr9p>Fmrf%UCTHf|i1SRq6wU6J_G( zLDKpDYvExCOZkgcx}0_XLV06rtNZ(e?;saGN=>Nm8sC3#akWy{3Kgp1m%> zW~p|ydA|o>FSCB-)HUqqo&RO!gePZQJ%Gxq=?5w$fytzPHX-sAT${D1=bES4?djqP23 z?ZdCOj<$h3-}&(lVoq(J%6jnjhvB`hG~IQM5I&ZeOf?Csxa^2RuyB*Hd9k*7gMgvG zVkDi1fytmOij(g#3Q<$m|C}j=kn-i7!M~kEg%KWU)5eqyD@=9D5(okj+hpS<@?W}8oM@HZ1Hr;@SZ}|| zHrc~mlf>CxXWjqUQ)^)KaHTci7T<|mup@xP5-ysAM)SmA@7d;324F%atG7LvaqtM%mOCuB%_IT zznxV}yX^u)IQi_4zO;H;nw;M@H+fe%m|`}9t$A-EMB}~Y-T5?2$hq(Do zXll-5nW*H{KRu0*@Ap-yy$}7^{d-M?X2{}CpDB00p3^XTz4e0-B&LaxP8L^Cr5%WQ z0MEIC5|**CF=5wT?1L=auT_Gl7P(PrO*wimRO)D!xteb<>I0qMI3cx3N|L3-p-oLq zRKCg3X*0FUEe;z&nJhgb6fs}X>?j)FIN&!J>ZL+xSOb0%R-MVk8;*bJSmY>d?hAm> zSqTGggam;fc>lJ@m|U%d_?LWXJW=3#wnLASa}a2k4hD3~KkT-RGMf5sF^?yP-(Q= z>hy>}v;M5R_Y`o5| zgmTc-M%;1A;r!h{(g2$b(^?p`=44}ogSxuZ(cE0G@c^Nuf)v$sz^2rL#1gmN?QQZM z^yygUq7$Npr%t!lC;JF~A)jk^sB|A-GhXrf^0Iq6SDYAoo@q~PL4k@e_7UUP3hW3b zk=SpXpjRo!kbi8pN?_T@jknj}D{S#{#SJW(GB}vx*ctjy@thG(iJA@zUD8eLQ&iX? zZFVsnDE>0zy#Txz1rz$#;sbwL&n$DQ*Xh?VCMr%Ha@?F%*QwJaSlIBsc`4upxm$Ra za$W)r_(ae1RcdtuQMl~3zmutK9tXZxQ9+2GcLE3oNF0LrV4H2*c~OwrkdHCgbvq61G739_x|D}8T&!Oe^6XmNlf~Ow3Wf*^R}sp z=6k(q={ny^`hKnB^1i>sz#u_aEUp)TgfJeJ@!V{y4_Ngj`&_ zmu((md`Ps@G!qp|Hr*g)-uKO>@(XFf_6mPd3tGm@Z1pxAEib9dbmyp;n2>G&325#+ zWqq~V;q@je(6CEbK@jqCdJUMWpq(hn-td3n6x#>v;9bZv+yw=SRW_p!#ww98n3Zut zY}*Ts(oFSVT$@)r;qiHkUY=P0i_xFXDDGUK1mAcnNOMFB?Q|pGn9k)v#zqMrrQg~+ z!3pfN4?t6peXnB<=5p*iMWZ+|Xf+}ce&1QOro7q7>%NXHSE+QGo|Y=?cWtjZwWH{X{StH z(KO#(TJz-~*tt(Ci5^Nq3H% z`^uMwr9Q9>00nl}UaIFM&KTN>u#MYf#Vj83rUAsN5*#dMMAf_yiadM+OMXL0MrKAp z)g{$4c__QW*vW3RI%r6v27wTPyJJ>eJcq+)Bkg%&(FH>mqt?VrB;eQV(__aNi{lz^ z$nfBT`oq(v-#pxq-mn{9ZMK)K$ghBDNg-DSi`a2WPsAYYIuQl)i7WTM5Qo0T1AC7# zvwyVWq!C$<-|OUdMC+O>B$)GSnV68&_L$SsM0PeQUK?YZui`xed!&~9{UVOx zS~kK&l0gGJ_AEV4#Y9&*9w;sk!>CLFn}15&+@YJ+59%A{gyYEBr9=jk);^D}BF z>G*!}Dyb<;Bf*7`wl23*RM#fuA4qH=FJ17S{&%fqt5AX3^^PEE2-rlap&R9!LJ=*L zsp;rcZh=b0;znR`kf4{Hgf-kh+2GMnt@xB5Gn4}0y1gI5A*1g1PW$;Y`$-wyNOFnc zwvzIbK`1CFI5#>5w_@KK;yO>KpO{3YYifM5tps}o63uY5v@sni(mU>S`B4MJgJnpU zh9rf}|0Wxu!Nk%owYEwX9@4dLTGLKbZ^JS~$gB2Iiu(48qgM-oL8dGlR@-LfdM*)d zcfW*b#;gvo)pIXuP4)GD?Ar|Ca)u7f^R{t$2-i(}RL(dHuQQWoTnJZ8ggG`o2_^b? zLjL0-e;)KVoO?DHK}ktz#P2#RM%`d3tBJ;ml7?1MaE%q|GYB8#zsql089bF1tEtQ4 zPi~R5od1k@<6j|lk1+XF_s93xIGO7g28n{LKn>~(1Mh!iyx$-9Wk-rh7AOUzT8v3K zZwB_Do9W5|8ZhtFU^hKS7CDe)Dh_%FK*al$WRtOlz&CywL^wktnI=MM>cM zKeRR44@9LyhbPz|rmB`JO;5(xYG;@LQ%Dp8hq_Q89{-)%`DKEdqWA>F$d6LT3+2k- zSz9h-&!s{^au$Qd8jc~;PqOH!bd&~`A%W1w!z#MBd&qag#$Yh;9&J#dR{&4{Z>ndW zB?OB7dFv5q2H*M6?8KZLQR_&$7W)nBNRD_ZnD5YH+zT({ zju*Xz#wuA-(>ftF6@)vP`CXeGbhXSD@QK#G{&{$R^;|_e_|Ufm)$&v+am`(HPR9pW z@DzF@^LoPi8Vv*EyY~F2)q_=yMmRs+T48xP;)%6QD33UDV)lB8k+*Hn!$Jus=02L; zhqUjWa90fSr^^*chMVhCPiFJG9$-cSqn z%U{>cRtu``4nPcBy2fZY8XZahXoo7&dcGrkLxHUFaCkVmILF?5%?}K5d zq_;a(u-O2-D+s*j_{H_DvsEjOTK$c-lUQO4i||kmD_Hk8ZvP`IlM_zZS4jY>_eMBx z0cXH2f?K+k+Re)H4T*ZfSgjcDjghphbg(9f4viH6?B_CX({mcRY^{XrTCVezuesEf zGt_A5eD{dJ5=go8;@973_UFTuxlejn!x{au|4FXzg|*x$Df0jQ!I;F3EmZI)!f+2v zAMH@hJcBe_Fm;O5sHN5h>6{6SF{B(;172{5h#CpsHQ!P}DHVvGTw(<+wb%;0Mt`C+ zhzSZ|B;VbiT7iTO(I2>dV-KwHF@~DDqvVJ*Ck)DGH#b0e4k_9!T46IYeD|dIKn|9K zRqhH?-NrO89w7Qsg)U>&vw4SH996IB(K8E3l{`s zbr!8Vf#w=>X3niJ0VxdDesa~hSayS~VsvSFxU}90No;k^?2k~}Kb|(Rc+RZlTo%^Q zWOr{Jm79iBHw96urnQRmorc{h+3$8>Aw-F>hStl2@yypDx+&^s2&*iLOPCU#F6YOd zEoox8U|k(;_2y)jUGulRkvBs&4ADy%v)%p(GKR;$y=6{GU$2 z$j(xkkg4gxgOb~PhDbUN8u?0wS%$ZJQHiKQ+?KyeZq9ePncQe2I+Kx?ErGTCT(aV#J8SqzjrY@)Uo zQm4N?e4;#S*^@0|`In8gH?y}6b|r?;aT2F;D}>5*n+ld}PF2E3m+*VNjb-otIk)DI zWX!xm+#s zPH737UKN_U$T1Og@t{0btGDtq`9o9XcP`k#*xWNqpXdIbgibWHQPEu zej@bcg~TBJk_wzy9k%r)(CZKvwoOu4UYFj=wKe!;``;Y;p@LlDz*tXzJPD#-xjwtm zO9MQOtIFGIfg_V9-CCV)`(42NU)9Dc{96Bd6A*3LCuLXowr~_J{Bdy)g?U+CAo7R= ztD|uLLz9Em#XEQoy>mi?=-^Zvv`$|SHu_z| zUaZW@m`G4ounDadnh?`Z-C*Z9wydmg*YF@FxQtjc3-zS|gR0TTVljCHXYV`?z+$`v zer#%Db#0RjFKgDqHrr)GQzcd*#_-Ygkg&FP@aV&pF>SDU%ZyG}HOBd*-VArfT;Or~ zSmT~iRBPa`8AKlkw&V`-*m=+!m~Z2NrcOGKuo|D%v{i4j0u$N^r}Pu0K@4Z9ZJ*kM zG36{;@S9LJ`|Ed+-VmO=sFevn?&=wTvLiF>mqs^CY4JC7E90~{UhhFjAnaNEQ zA`*L{kC|(dW5>VHO)CR-b+imbaiWgoy~12pNz0OfTYZxPoJvU-t*l-G1pcSUzIS_= zr@QRBP96!zbS94ujCan^FJ4`m+%n-EW-0q4&41)_Vlf7R4hDjrFNiXQ{OL)L#;ljv zo;U1^G9fWCcoXo`=-hi%^Lc^Khm`cK(}YJL5;;raxGh?cwA>qK(O`Mm1)a*Tr~R0%c$M#sXSAcf`F?1=TMo$Vqmt@?NzxZ z3Omx%&tg1B-35DE{d#Z+2-+5tq^#!a6aR#YG9mB)@gHk=n0vpTih{!e`PGdiYgdcO zf1r%eu|Dnom<7mSUTk;58XFQ}%>sjU+~A8C@UZ7Wuv8_W952H{yW~>&Cysv6?b-f| z?J9Bwe~TyFo}8tZ+JZezySN!ke=i+9|Ngp$;FY2|ERoyk@13#42wEa?8v(_3YD2of z$cCd8%{-WD-7aVk1B*9hAW`_8Y2h3V^u^Y~oE(3)2|7iIVaTg;geK?-DvNNzR~(rf zo8iS9;*bD}#+G3)5qm>vkkl&7!`EyEa;+!VXfOs=#^Hd0EqhWUTW7-mo0x!@^9nJc z;j=90w#%jWKRI@yKZV3+)KayJb_Yyg?E-)ZV)JYAyA;l}3@z-ymX43j~7zziU z5*%Z6%}OygX!s4JezPw&n-$71Fs&AQhtAz#*wia4cM}w8JnFg1jj7YwBMk7+SixS{ zHySy;f9E37gYAkjOCu`^Ae>(L;00M0oJA%kh^(sVDes-B6JG#b&??nNz4c$! zX|QFGbb3+M7LmV>Kgm4bqA*iw;?kFFy}Ee6{*~wNn%}Sm>8&jz`*B`r59_6$fU1+} ztgHXpOlL*0ka6%_4=w7PI08R1Fgd8h$<(V+S@CB)4#aMq${aOJa{7G%jsdg^li?W=DV%91eSq;R?P|Ey-&Kj!S!bJ)>q7^hi$oPJd57 zG#^uFN|3)Kq0$kOJMk7RzEaS^-X*RS86wSP>P^$7Y?fSnM>~A`V)NF?ofD-=hu8UX zO_|*r*#AL<4#))rsE@NVo0q;Z5&YXKz_AEx8%W(61G)BbV_?ZcVZi7^bj)(^mb)vE z^BoPt6}4idkJ^Ap96T>#c9d#g>;OO)KAyXqDQ(bI@jOw~M!?tDUw3^Xl&bljwHA3L z00Xb!7s}-{%HZ~p_k8=|`uB?E$}sYJ{5YGYhQ;sP!sc&Y9w?BV$5b`fxr=C75Hbwh zA%u((&3|;OmKUay@hrCCK{{h3q1uSE>}r>q0XaZwW%zUyPql@y2}I~9Xltu4U{n-E zq(6b*=3iy#g7g9!{1(<(CJ1#Zc zQXV1JrAo53x?NO(#!!@K&X%Pn@w$xu>Oy^F9Chr+3LDeAo$O}S3eKq-h5JMnX}W16 z-6Wl3fe|WzhF<9%EhRrEhV`NTsy1&Tz?kC?n^R#5Fo>2H3oB^_78+jM+?QT>D%MXk z1O~^vJJBIKwm3?F5n)+!`vnizcRGKp31neIj5Pm32|t90aDdyq7B{Jp5D5QRF8W4n-OEjY)5 zwMo@DX_TCuVf~qjl&Uh;-#@(6Eax*TX+fBIdMXFR-GS5bi5>XpUfAYCnM6S@vL(l^ zAMo4*N~)CHQfPHI$Tz+&12xiXTV1@o7Rie1&9{8#v3ZsBG++?9E2D7Jb8|DDKi<9~ z+S?wF$EtR%h8xjGy}7H=TU+cd4%;QWYqXj$Y$}4CVp&18sxkszp~)sORt|2q85W)0 zO|LtR#C*22?*z=+zk1#YLJhueVJ@Tv;{ErmskVC>GQE|jl>yZBz7kGr2CgPYx2aUE zsP&!1^WQ(y8m1|?qYA-IH#}^I5qG{L6(js%Oz|o8f8wx6c=|l1UCB)?0a)BWTSgvq zeF)da4^vIaG$^|E5&2(`&N1*+4K+4KW@;&xYxK(b?A!uY^gQ;~%7H<1rTxBeg_Z^Q zS4y_!cOt(!5|at#+G_oPG0nBPo%NkoamhB-#JyajwGl;*P^%La0)fyewHoie@6(;0 zZ(?b|jf&Ut~rm)l-vL_uXt37+u&z2!4CEMxb@SYF z$X5FO>$#kcF-)GgK)3PW{||#s-{RXin4Jmu5-r$D{Yj;r@@F>6eg!DLcy(C{a48Y^ z7_!ZW5Q=PvXSP)=8K$oqqo-5Y5c9e=;vtu_h~gqOEO+3e)B>Uc$C2{u`MyST6dS& zo12Be4I%SmHF>T{8oSp=fOazf)Cn#}!dO_->OjG5f{OlF{;~2UDKD#01u{)P4Xy$h zt&J}Ik&cOrldB{<(w0s~@yyZI!4`6sUN>fyV3Sxy-Im#MC_FFILQ#0mEgh9~PxT__m!=T-oi_FSeip?>oyNNF+H>Z+Q$liIu z9k*6Hs`_u7ar&FcAH7bD1l~6&VrzOqNhyWn4oG0BEA_=rZ?9Uwo$0Jth@x%oE05m5 zi*piJ>40wT-t|0mUe2m!=ElH83)sLVYZ*;W|weCss?W$lz9!Zw^1zzOOeCyX$^up-r1%)IVAGkZlF;b`>t)A06TCe-D= zv1$rb%K%H{=A)rYsR&64^keLLcUBEYL{z#yoohPl)tCIRl+km1IGjSu% zeTaYCziL#0pT>;Ve#9GtVHE+d32Ya2yl{YjKsH(D!cp|HYGq$)RN16FGs z&8?kAt=}7zjQ58r3WRaaW}vc{r!>b22%`+qLb?OK$>IF+JR3c%Qy5N?C?)_%Rl>J!GiR=BqbuoIu?zWGSSkNn z>ofCU5(A2Thr;7@=N%SAb=1iXXw*N0+waY3qS)s|^c#Iao(NVW9L)WS<2}DJF)0t0 zBCbOL-t>k$y-c|Ies5mc_(4)Bg!t|8-G| z#BQ7fuu);=Jl{JhaEPBKJKKCvH;97j?({+~0;c8``?(%F>Zn+Iu`)T!b-M9kO%}vo zt8)SXlmpR>zR6JI2WPwx{gTp`HFvQDd%mUj1?P)5lm8prijfn2r!%`gi!qDyFY+V% z@G)WPtl*tCQS_q_BEg7Gl zvj}1dOR~#7Ryz9tLMt%N%vJtXEaI2(al>Et+_SR)%sHEP*>H8<@NI4E=4c+wAK)@Y zQQn>Hs~qG%XYsN6 z8>(0}I^LS#xv@RsLo!uItSC5?K~cMWz6{5_Z|vKtA{ zyB+6$iAc<9_I+&XM)2N1ICKT{eX6d)dT9eR^zHG`G?(;2Pl`0jve76+wh=iU1av=C*=TxCZ4 zPzwH+$~nFy%iBQe%cu9`U7WXmFz^=Nfq5 z++T$`3}BF_LFwb0_FzkN4MW!s#HS$b>|jRJlvK5KX?=ly9*rq|1Cj+oYt zJM4moIfM~RTL#L_9{COUj;-}a$jvcO)5z%+g0I*~&_)(xq4%f5gP>R*_L1eJ$M!tc z0m%(~7(QsFW@Po`yD*3yKi6J6cWwKHIXCd@DcD4>KJB;NL9HR%%iO`gFFY)9QcL`wySP?+rEb zbQSv3+n|Dy4Ga>F*Nj}7C*PfcyJug1rRA2S;HAs1^?c@kv;U2PSf8NuAn;gFSt-mv z$&UeE8g-_5SH0iX5F;eA;cIkuFJ`=^L@4_b+H$xG&<`{xTLhsf=C_>hO&=>5f=XN+!{W(Ls}nA2%_=uE+c2@^Q&5daQU3N-4CS4SZj=lAxW^=)C8Z9?> zR@UqRqv;J}*Znk4&6CypVPORR(2LVS=8k@dZYwzH`t@)GZ3${heEMbQbx$$e24yS( zkG@oxRh?8gCn+iT69!&o#~uR3Of3{bC#Vtf!QLqv6hSY@bb{X_`38WoDP;P zBI$9BuzLP8Zc<@Q`8sGZ+#K@tpUww3Z+we_lfu#nI9Qx5cl~%%(2ett4LT7cQ8_RCrUIA5#4fZDNQ2N7e($+dIfJ)*l;2Kd+_BVu5NJsjw4JSJ zhveu41oF=iXfl261X+dJmziNaii@}noQxnWrIFWuGnt&$vw^SpnzKuhQb9?IUO4Gt3To*zWuC-MC&SjOYwAS0pa|G6*8VYw?-W)lBw z_!azGC3zWhEzloy`l;H|R<~rIJl6YqoSoFn59xzJ5F~4EIzT2j$>G~2ym!8y(iB0? z+3p$`ViNez)1}H~QMp5|f|j{(mKjinr_GDRC7=b5#plgBMe4rWvSBY`Y331{_PAeu zBCPB5ir$ty4wEv9g^|126JqtkG@4(9GLeaVwNpfafuDS(q_UI+rmLMQIvx!9I(h!@ z*9oFPHI!SdqChYl-|eNx&R1pBL4{H=qv@$3+EN*bcH;(FFLBddeRP~@_hZ@rv|vpb zAXM5sDXmTJMsHCws^D436I9bk$jJRw*9Mest`Hcsnm^>y_JA5ZU<&e8=XG9D#8WqI zpKN->@Gn7|eaiIYWKbsK+4Xcf9c?<22`36>mf84MmS@oBv$J!gA0(EECY2C^+CdCQ zgUj`br$4y8VpVlzl2WW~o~e_K=l7*s2nSw?uPnlc=5s6T3xq*vK8G*QfdO=CDUsUa zieBqs$t)X^UJc@sWePUVdjH9mnbSk|J&a;S#klpKb!}$ z^vE6;60X-?b>2Hb;X`6xOVF@S$ZWBM!>S@=dp)5_kSWL%UG_~6&^f1cvEB`-pNCHy z%u*qh1V2MA7yU2T(xbus=%;kw>+F0RfxG>?oSi|JCmJkPx6{H@%FX-)L*=J{=Qp2h z>AjxkwN!m0(evx7wW`M9eYfk0n|MK4pou*bWZH~{onG8NeaxJ=Pqu6e|LY;@WY!}c z%V&#gaCY4(J)OzwcF**({~ZUZ9C^h0K@(fL%WIc1r8j?fodr#Lk#5n*zoEH|7sWncV=9{XYz{9|t7d@wv6+nH}*)#ygC9a`Aspg4pxUQM@>v>B)iSQHd%RlO;DTVxeP zBP#=hD9RwF{)@oj@!?)D>^t?1H*d9eQgRlMi07=o{t;xG>r9U-X(v*E)?d{AscP!z z?sSmgjZTFk&ToksVdPlw@VhyLtU9&FCiPyD-$vN@l|EPvHgyGacY>j32wg+J@X6*n zz(cMZM}R?ReA1|-h!YrGL@V8x%w^Bz|EfD#T3g2^$BFN|tFKa~%$%bv3&{RaPgwUO zNC?F9B`IQQzGsylR$?882#VEJ$-7CSVwffcULeGYI8`>E333L>lhZ?7d)s}}>H3$M z*5>xD%{!ez4=w}$n}KJV>n!^%Pc!n|vCgTvL@VHj0Pbo4Qt2zZqswWeX;!SN^8NA{ z7dW5`@m!LlC5IZ^wM{!{H+a*sguHerkI(1k%jeo;EV!gAKDsL(S2uggP>4)9@<_o31KbHQi@sd+Q7-GjQAI+V5;+ zcxft^caH{2{C#%U7|Q$cB8(6=Z)V=$GF!Eq04Uq|ubgvnC&OL-Q~!V0nFTSZFe(nv zzfYachx&==eUGkupJjt5|IF1Q?~?_fkEgg)cO38Xx?jA0357;={8yUM^7hH|um3IP z+Y@{}_bdrmOKCDfh^426jroJRK+!XbxQbydML-3_zla7suV@mn)#%@b-O>_G4>Fhz;nA$RVTv>eyV_$QcTJo_|7TfeEt;yF#lLC|3-KFPy zjmOR3a|gwr=jOg&!xm+Gu&Zfgmp?}AE2>KP7+;(4EJ^l6y+z2AHECP5F3*nz;HIze zl+=X0hw?HlnW5UFGHb$}A>7|P;?;I#THM^QV_9WU)@;cE0!cTiJ z-vn8b0IzkWXFyeqw_F8kZZ>^M=2ac-1`DYESV7EfaC6SS6fD5YdbgS95A$D z|8}ID>dG6~Ad0;F$gZNh)!mV#tsEI6p({Kt#7E4_AcldCe}QYayK~FTrmy3pkcwGK z$nHP@u@K&5!ICT_%5{LWSre?JV;~RR`tuNn8TrVCZO;QN{`e31O^t++f5ZM%FEFe` zdQZd>d7rQx9cLW+u!$$N8uWbmkGgkH+@Xh#4maWafi*9`9rw3+02z|OpTBp#H~AmA zQn4kT%AWtcdHlge*&B{dPG5XJ9URcj@RUN6vbW<2K$QBB-S8kGAs3$aZ=XN1b!MEy zJ%GB|Gak*Jm?P~lf2!Y-D1qKQ9RDx1t~-{Ph@{q5rWYNkGDZ$v{+J|zU$}H}xh@m% zs$WtG&I-+-23D{9hcsE5F8jk1U<(=_cJ9-W^#F*gHEHDSN?20?(Y(86k`99I%V76; zqLt0zO!8Ib33j36{|EGl!BeDf;~z~==oObwT&+ZnNG4$oGjM4>6JT%MJp3&F&? z+eP(F0>Xs!AgV-qe-#DXAi1?XDMNlTjUmyOFNYc%nV8Q^Hj(9wmZz0|78DR(9=UH# z046Ry<sj3>KcyB?r8i5>m&K3XGlF6mO^{x;lon*oB_0Kl! zE~RZ%;k4-5syfiSjwt&%hFuJRkNB-W=p~G38~lL_*bun+cEUZ=TNTYM6@`rR*1Cnk zDWi$jtcD1k`P$0zGU|4G?w+AtbLQ196F5zJ-J$j9NKPAH!P|H1cez{+nYeb&*X7EG zMr|E%nbqNb_d3Vom#6eD+&!0V$@iS>_^Q2hTFh&|pxNwH|BL1ZHrQY&8WhuuM!x~w zTQ+z%UsJ7*viSbWeKaVhKy0#+ySIW-vTz)zqSlU+(9Iydr@<~NuZI4CQoZkU)eZ?v zSd)~LR1A|Yul{~|B3U7a5ZPZ=Q_%})IP8SUSGNJCVrgg@#{7iTT;vh%s~zQpV0SgD zwWr~3(+B4XF1=_Jp{$T4g*PqV7qA|g_%sjh&8ot7b-*oSA5j*rF02Ld;TS5=X|?w} zI?_;7*ADL(FLtbd6c4>FweIbEgLNW2^0|w~L$?I9Sn+|>*PAM#w)fA|TB_(w{c+(k zTg0W^T56f^;8kTsqnY&~6+q6*%d>v}_oh$*4?>hQ$v%I~?#(nFo!tIFui{+sygbr^ zI<7p=Wc&)%b^p|PDzGbjmoPG)Q!GoxIqJVHrz*k7IU!QQa!>u^%5gzmo_O5IY%la; z-*56xeSwQsEQo(iVY}KO{d;oqU#U3ZI0GFOd6)giV`Q8Fd1tfrotJ)>WyAjEauTPa zYOc6dYmDrBB(5IEHB;GF_XWw13F={!Zy>lI0xRXC+5Lv3|&_-yxc(=1E^d5JE1*NZ^+GI($1JSp}uX+CaJw4*GGal(5H>MQ>k}eR?%i z+vH$32=TYow*g4kI^g{IKT+O?4>4n-4Cz@#NeQ58o%_RiH}L5}VGD5|riB1c{9D#% zKZ-*8lHN^B`S3qGLgS?1{r{H*07?PTb$2`_dpTPuGEOFI32O%g9ZbUH35RWgD@nrx z*!k4F(X9^xKZf5rb(&Y}f>%dSsH)3-$9!R7l!XprD=(EE9dwG&YOA5^PiA}8y=#L< zH4k^w64w{>kqg8zX@3$jQi}JcV{?bd;p48fEuU>XK=hwE z(!sf))*gauh9{TL3cS`Vy>?g;qw}&*BM_;ua}dp_6S~&-lZ6N}jwP}N8=%8b0~yp)Uu#V*QY?lyATr=|qNkGPx^g_F^9xf#jKKiAD}XFmax70xvZ&Mv494y@Xy*FhZWo^&gZjtpj+(bRZk|CgKtA>}^IqN+J_ z=S0-zo-ptILzCzEB}Y4`V4{uz1jrn*4kp^K;JYl}yFXK$Qn!pjdRQe~W?Q5t*DH%j zjh;SE&w3s%)v3#D#G?&}xHYkBx*9mtY^xGPFXRU>6_R3>mJ+qI zaLU8JjmjkdKUJA;WFLrsM4Br0xteL$V~O)E%?$&f7)wiXY|6pyLZn!mkMCc~e`QbA z>NU!}xfEMU0k?m|cS`~_#LLiw|Lc&ud3;n8yp&DQ{832z30p23SW8RvnNp)MvrQSv zAf{Qv#9}T}YpZa_-egI3esxv5S#R#o7bE7ffwVW9bBpe{Z?gk|h0bJ+)phh+&-PPE zJtq!}!B5U{v*NJQ^p0@a5IwGxwVqP773vJaaw?gUJCV%FDwUwA#a*ci7St7>u0qj* z`7f0Fr>@7P+hk5pTtPjol73D!GG@Y12cQ~VL35u1H3is;h5*cbP@)Ev^O07vOAm=~ z@Q%b?Sy9XQejbSNOkwYT1kef;M+Z6vLX^NzVotZr%6dPYh6R5J?^lxtFH%EbCr~J% zqo4#&Fc5_0W7d+s5LCUj9G~Kkw_qBC&CFzLS1z4t&c%&dIaT)@MQ&LUl-3UB-G-o2z}v};v4$=&8gON( zJd>uw-x~hbKAboi;O5289ic1Z(ZW5M%aZUkeB}u=sJHWSeoj6947o z)!(8xP}npEfq*M?TW$~_V-RvNxSLU6g z=M5!P`?+W`)>ejoP4w9Z@#U5~bQOcNgt8Kg6*DM-xEEDkCXy~8>Rqj`Z#!o_WnFP) zI0N(j#hKoSq6Bh~dZ@_`3xF9v*gZTA4IKg(qw?AfdQUybm6auBp$XI`-D(zQ9vhVo zZ?{9`DrzV}{ph-|cuek;gW_&`&`3zYs2wCD5vS&FGF1+fp%GIxwYqf!E9!6`?7Z$R z_LQNcATMem;{KbS&OTl_y*yrlVKk=6#tP{9dxwpI25@>{W{jb#wFktJRV9{@t=jQ? zrO$*ZJnD|#ui`ZY!=1oplGK?We-Or7#1i8^q?@GslMd3?wDf>Rah)422E~a!vrp8kkG(;)$TEJHdKH6TqZ;z` z+fjr~k|pf;!UQKyWpK?2df;p>{|^8ILHxcmQCyP=F*y+mNn*(krN^6JlMZuR3)EJY zqfgiSWXP&TcASKRvEQJ3&_ulV-g{iBxeUXG4g397{Z5a79sxZ9=VkD$?~(<`ig3U0Myu$&FJJZ6vETYuBLr%O)ea)Jdr~uGs(m`GqamndQbtW zmYTkzHV~8YD;}XX>xUnHs7}PZAL3{LER+T@ugGKeHm5NKs4<7NEtkdv`eT2}9MzW% z9nJ!&ACXy^KuND)gan6R+qNyLpzfxLH!GlJWnqot@(j4+@bTMOsEGZklils_U**CJ}ZtL=aAQ zuU@_3?ic|(Yahg9FGaZL#Y)X0i?I+`DSTonm^(%@gP_1bq^1c+JdE@UR|2&rW_Onn zL^i@Z#2VYSr=Mu($K8G~`T(AL?s+Vnw-BzRJzO*BAqc-pDyzjkOl!i&ZnUXooYR;Q z4pf_y%?}{JCjf81^ER`t`MB@Cdzo{;7**sAm)Do@|9tlSEX^TqA-HUv6{xEzfwOb- zm!2pmHC&Of41}L`Cz#te zq4$uk*tN4YkJ-YU8Ft?Iv4@XyH>Ihq1KySq)gPa45fFuzufF)2y3uxs>Jf>AIMyh5 zd*ZFP-ZZVCoNw2pkM}qc5c+~qi0C*ko`y}V|2SEbRp_~M=c>%E)G!I zc6ML;+kjV86~w(umXiMsO{%zWq@Lb4EC%XBpd&4tiU1j;L^-mM9@oOo*$*Yzhbg_~ zi(x~DVc+H$bgd_ipdQFHi-(woh@6f9UvbG3;CIIzcc}Yq+qN-798b;LV4k1K5p4jJ zTz?Ih-*;@^!3?#tg83ozo|EPZFB&NChE0NpeKcI8x&ItFr9M1MZYCm_U z2pmga3O6TT)SHzfBq#)lS=(vUV1tJqxgW2+{+cp2m@;KDmxQ{|UOAUVY(2Tm{|W@&8m&R(QtGCz~6(#i3M$jX;87feG1RPEB$lH#K{VjOoHWmTlD2+Njf{5^$^rB@6@T2 z(vNKqr(OCH*+`MiY%864zQ*vp8Mo%Lc9sVG(n~L?&r={1Hd>P;hpg=B?c9t&yNxH# z&EYqXN|upD==yXtp*8eohB7)P8tzUW)KIm~2S_Us~&HytT;ZxU^~ZVVr2nXE6CGL`Ge?fY1!1m6 z8Mq?_Yg9JY#nBZtW%Y!`U1)XD42lZrdR9W0v>=;qINY$2l!{nHcI}Q%zBg#YQujyG zmY}>k8{@}ai}?%YwR%l^BKFm?Vj$FsK7INS_?D@-3Pq!36Vr>CGru9Mvp`jSrJ|Y$ z-?eR%Y_qc=2nE%tDw`}WcT(^*bJjPc4kRmZCoXj|$&pwH#X*z8YuT5KOE|WYt<^ZT z^17H-2wzu<+6)A#jg7UC%)6I)FmlZkk&&5>f`S6-R`)^2fa`H6{#yi+=HlsKEQre} z*@aq*To&pDV&B2N2qV|oi7NsYl%7k>XHg#Qf!$d=S6y3z_{^2;pKAbA-neS?7%W-3 zSj9%hV?{F)D@x2&P*2#JpBO)cDw7VGIEiFlMO`r#Q+HP^jlcP3Cbc7PgTMDcG}Kok zr*Jrct6db#;xU;yr0Ap3k~BI*eTqYo-j^y{{b zh);}D{2Vddm@sJqNe63KU{-)40McBQ>1SySQ7x_i1Hp=g_F9C1aPnB^_S(byw! z3wOXlvkf?ExgC{t#y`~3raZV)`?ZVv2y!(0pqJ-ZE}xewzHcHGfDcpN>;TrQrIHyl zJ|RG=KxI>@0?pPAZl?3d19KZU0y^VTcgq**$qXUGiyCVLR7TRXEDTp(K3bV4 zWS3?r(}hmBKq)>H)}&!y?qVD(TZPD;;R<-(e&-YtE@Wi+ExTp}QmG(7?lCDJB0(kq ztg5;~6-2e%vAjBmMj0L~_*<+5x?8@cJ(di~WtUy1z^=Bf?Y(4hew;ZU-Rg%SvVJg$ z2%VL?&Emz2TkR@J8&y@+1ol*;a2Y^pv8&LBAiRN~@#dRv!E?_(M`Mf!6#$ar$l&1M zeLCwQ6% zp@;oQ^mVujTi5SY1`_h4E0eSDewc;G-eJlHJBoA|aio*hfjn~o$Z_#;3hc_Z+ishz z915?W*dK#OaJ9mmme={K(6y(J0`)o|lql)#e2johT7%rfOkh{8!OCE(Ryu?(=H3** zzqi9meI}r?3%rZN(W$yWC-5#Pq#}y5cV|TOx(R+AhNIiS2Nl&!Y~+vE?zm$rSD>D! z(vFJ)yZ-(|uy6lfWxgaPCwlt_A|R9oEz5f*?wM%P+rKLUI^aFY`zatuKx|78Fyqrt zXsGZBT>Dxec$gc$oAWIJ?@ShFS*c9n0}tJY!s-+xRIWp6?Ir|iw z4%bfqZi(5=8@IZ`Rzxo+Rdizg^gLHRwOcO%uFDcxRdBtCK|#1?Df#$7)bWAv8jRd zjmxO$>&~3=r99^)1ctSE_^}7D2<`_6l&F}8gm+QfI!f=xud zV@N4z*=En4jgb0ojGOVxNT?VdgnBnkx=Fd*X!}Y$By;QQ5D8}+BLEbtK&0p8<{=N+w$*^P0@$7ofRG!Cp;W4VP=*Zr;d8l5u&5 z9A(kEmWhF=ZLHt0_Oxngw>qKzM32Bf5CK_%DXz{}lW*;GHBFWLD=1g>78U%ilJB}8 z$Bz82Yfct)qBXk|3wsAQXClp6|KJtapT((v1iZ4c^VL^hqI=|>=+yBBM0L4?-=mx0 z>o<@E%ntnCdR#lbet#w-pa3sVaHj6hLKLOssF(8VQ{ZIgjxYHmz`>GwaS5HxXvCZ{U%^uOk?Gvwdf3xA zLz=TgFkX1!|EOee4MIXf)HdzETW^_+@8|wVYhO=J9MUNB^#$I2_Z>X=(1U6h8KPGQkjTUfdo^sI_RqZ>8v(+Tvjs%H{ri?AY0yk(U?5@onObld$xc zr7CMJ+hmFK{s-QBsO~ul$HXP|? zNAUCVC2CC4pD1H2TC|86A}jcKULc!Pb90G6eo+kK^VT3Vr~_9F+>sJ(jI*|nTz@&$ z7P@qfq#+7FKjc{F6{M+`ZPeO;*Y6XO18}nr!dEOP71ukx=@IxhM?e7YQ%^rh)te_c zDU4E%j73dZT-gfdYFrK{>d|=hnOE`2YhSbqgZ#bn4;Z!8#r$4vmVK(RmuYGXrS+a~zOnZ>P zb0=&XEs&Q~sIqk1cWkG!!8XiY_^kqz5zJt;Y?9s0HKZsPH(8c%G^^(iLbhoad0gF8 zjvH^h(X>r_Fo6Yq2V)K*Avqo$Lc{3dW=+no8}b`7S;XeU;sRi-`syo6bj?C{x6uf58i2l@*Q%Gr*kt!^Q78blX-CqY zV~ct$|A~IF&?+iPqi9=jB~{rOjAs?O($ZuCl32VAF68TJ&C<+HZP%X5y<|++{=6Rk zja>4ll7y>mFhRCCGt=*}IL{iNv-l;#Y$$r#Ud}0tD-M_aYC1fra*ulK##rQ1W#a%R z7tze97nK(%1q69fxNW{Z{TIC6Tk z%MWw$tp;~Zy$h>pEFp#go-E7~PH{?H&-O+;JKJQ+A->Q`7g|-FZP$OM0^7+qU);RAM6K1fh&zNiqu4)kK=GfcSx-`h!_9w zWh|J#kj0P(X;9J?A&%XV+_($zDNE5YSnP|0p(v0oL#O09)Zxy0Nk z%PK*AcgrMx%jT^pC^SRtzF9Em_fh`~2jal4Z1o-5HUv|rPElIh-6QYeR zzw_$&4gU^Tr1W;?BS2py7+Or`PyZR469uQgZ@tH}5dj_W{)MOupdEbCFl1%sp^R0c z`}02_rC}<0ybj1O+)YP1AJQCrnB^pgwWbcj)fKQS&4NtYj%3NEFt1R+OlmRVWq^MW z7A~5Pe*KJ@SXu5~wtN{Xa;;5ZSB@1f?>-i=btnIK0YRu8{~|Ni&C`0%3-5ET`r&g(#kU1-Qeep5Q)*Tg7*Xm91AxU7M;{IV}t z3oG8QU9whXIY0jRW0f(!;f5RJ^sU;*AI)GEcAz2$>@QdfAN$VeXg?UqCBIRPAs>B$ zZ^4o5C73wzdi6u|^2;w#-*zyHisM++mdC!#5Ewq5l3t`P zl8Z7$utQ(CHu@nZX%z(QI$3(DW4z45>7-XlKJPo!7JjZ(fBF+W0_S4{L`}uc#vZP9 zMzAZ_V9V7KS8Gq@Fez?^!kd?bg{V>pC9S=tHd;JHhEph6FTC(Px%sZ-!I$%I)Dl-+ zHCoxX%XgIC&U^$UyW6I0;k2IAa9VrQJ3AL5p#Nq5g?B;hj-71%D7|$#$Vxz3!EaPy zm;*OAKUUQjQ_qnSNDdJQap{B9f}Jo>1GZ(8XBPa|;82aMxGd`D`luypk-QOLCttwd zefKSH9zPjqp}Hd6(*|Y`M2@Q?%gcUQLQq^?4p*xH_%mZDO|p@lU54S~k3LaAPKxg0 z;^L^!I~*ld8Pwzr$Lg6!uyEl*mC3BDt3X`ddPs3cPoHa%)36KQ%$!XbtEF)A>VUko zL(G`mMSg6a$+1lexwdZILa^2cNu|Fbz@a;Q=^!Sphu0Xy6>fq!!39y;Z1biqR8bfS zd(s-xvo|Bi5Ji4)AmW;KAuWD2B6>`Mn`al)*HEp(!yTz*)Cs0Uo4utg<2X5mQ} zypF05kzEs`2{8_7*`(-AT;g(S6X9*uLA{h;mxf#}WlowjN$DEPM$z}QFj%!bR6Q1{ zICD;Tn)ppEGzQ7&%9uL44M%j|a!yt%=!!;@2sw{cy&7|%YY&vw=F>Ai8~#4sP*{?r z-17QS{UIZnE^6*ZN4!GXPiyD2uyaK=dDV3+eKhd1B3xz3n#=iY%v;OsnAh4W$*w;P z_5>RwgC>q_$Ef_!Avi=i1Zo9)CpbjktViG9Z~eITML^LRnB_fVO;7NivCy8aj+?&`&ejOd zv-2h=C&SUfg&-mVNqL(o17-z(*WM&5 zt5Qi2z#2zVgPp+<)s)Th^YiD;m&H$($Yaq}MO8VbJvI%m{Pz`DJ6n>%kPM%u5JKH1 zmYMBW{RrSyj%S{}YP&7LWXmR!R#H$W>H@+o6HDRr3}aD~7*Jf$_d-5Thf9-}qD;uK zDL8^7xhr64V?k=cY&g1iKz{NO0wyyWJd`kdF@}7$hg24N#*7)TwzNh{*&f(X@xbqQ zu&a&1mA1BJ4F#~Kp@9!42a6UgMkT>xgyBLs8Qj%weGOOOP}Nox7sSEEJsbvBH_H#l z3;*|m0(3&HkZZQ3?2lwAXE3f0{a(1HokzQuO6vRWeSlPwVwGk6Y2J_MK~2o`EM}6q z)L&JYq!b^d7)>%d*IsMn25ZNsrKG{N-bZ^%#&jYpyD2YLnG7eYC3rZ5smyt7{yN6J z0co`{w3@C`{NA*RSR6cf&;)jW`Q;bv-Md%);HH%CXLhxx>NmGK@&DQT4!|g@?E5q6 zz4zV|N(jB96lpfFVDGZ_wXR~tEW+Qb6ap3!S`qC!MnCVS(_PqlfHX~i?OFeLFQnbBy7Fp#{`qG* zVQ`O&g8e|!)va8iVjeO9I-dB)@%GiftiJ_LWD7{J;J*9r!wU;vLYQ%g1_!bYyQo^| z!A#F-|IYFEhfd3KT_Ja5Vz}0$C#K^7J79U+A+xK zGl6TF@}-AN|L9OQ`cBS@^okTc=?bPtOKqj&n_t`Q8<8L*L>{46}uKe5o3#qphRXj z;Rr4DBvN;RU7Zo})>DWhZc#CH$A$Bx_|4FV3P@IVGx@;S-ar8aBZ_j@6l$>aop+Dx@NU?!LAiTl7}fT(iNn?n2M8w#L{)VK1w-h>))&E*3=-{Zvr|u* zqEukI^Ii{$Lk45}*Sp}^?njZ~Y=TURmBvV@i}J{+oL9R|p$5*50V>$gZIgchn+9KKdQ|+mcZ}I^JFpHM-4&c(p7|%JcxxQ%@^&;o^B0QZ4b7pW3AVv)^G07`ja?TI&zP{tmyoU+t9p z9p3-2=|wis*wISK*ZCTq^K%~vhiW&JG74vHW835G%5LqP2z~I2MO|sSR_2QWjYP{9 zELcFHf-{I$ZAW2SsEOz5{ zHxaL9E~wgHy@u|T6$`mMD1Jc3$+}h|e$6<~(#9N2rnC3&H{T#7m=_F2Gqsmc^$44Q z#SB&k%$zY3Yrk5H2-`%J+C9*@k!ysjsDZ3kBo1L!0lYm2AwG02vZ$aY4z5tEc{@_F zvnhj4a04A)2dw#E4F(JtfXAQw8_t{SawO9t7Ja4v9AQ}iii3*#IGD1{_ zjf_)nWhsD>sI=IUB}?!bY0O5j&82mPA2^-W-*#l~@N|ttd(|$D2qy#x&+b}I7V7zJ z*&xs^jzSgn9GE*%&~|{o1y5}!iEskj$`^%K6K{%&F+>$WJ^GtQd z1?#-w+YKl$FNd?eD`IWO;$YWq_|H4N_o={n{BUgFy{pf%{x|(C@V{ySQC=K9YBVSG z!R#+N!D~2IC-1!@tDB|8hql+u7T50P^a$;hBYh*YmVIEPQ4mLRswB)!D65$g;en zs|{(DYY^%?o=_88gxMaAV9PlN+r~i(%8oT*LTGMoCXTrcgRLeh?83?5#t8QqekX*6 zkk_KKs};qSq$;XQ!RKo}#Z!;Iga`iexJHsh;py|w*1#+zA_#4>g)?g3PFY})2Ob!9 zF50_T+`{u36m&MCd{1S-*96aKYj{UE^VrRdw~t2*&&Kqb(@;%Jub=O542roF z{@%j~foNs~cY^NovBw^RzgvtlM@Yokg@ueUjI96p7J-TI{G9@IJzG-WwdNM;Ys*7x zMh*K81#2hr@3(WM{b%yOYJvU;?|;~mlD_Wf?klg`LRm@%Mj?huX+KfVZXD;~$ z%#>yZlL2?!eg~bh0bCZWS1ojB`x!B=XA<8p&=2|B^C4BtBS(%v>hAC1Zt!Jn`G+8> z4mySjVHcpN{Ch$mN)a6$jjZgLT(6Vc1KnhAx6H$fmhAAI<}vY`lsLhc#K ze28-`lXj69@3-Gj3rO*T{PkOZ3;em-3_8sLm z8oMh$Las|PMG7b&L8nxlT`_?Tpd!@|IqIW3r`*B5O{L`u_U74DEWa&|F0_<`OdkX`XT2HH=89gFzN zI&%4U_y02D@yBrM_GEjGQ$pa_ zj1v+P5bHV~9(I8$qq=1AQWmns=%6iBbq5Zlao|3Uv~^p1ST|kwA^jCE(4nEYjUuztM zX(rTts5-lrW5zK9CQ)BeXZ$e}Id0(|PY69%S22>QhD?xDR{R|Hj!v8uvR{mwfM%)} zHkRkGsCWo&y6GnE!y+Ogez04KM1T3^mkL*ttd`K8_1lSW0Rv+(!o_>StlyVDVNLsM z?YJM(@E^9kU?&ezV)wMuN20!q9kg$S;zGsQ6`R9IfUA=$M!21cD97RIK=|56z>$SY z6UI-}f;SKH!3uu2w}~SwcI}Nk-wrHwiJknz(bhp zFpTt@haui)5=>E#-T0auz~92r$rnjv3=k`=+(p&_Yus?t4f_7a9tsKyAc}5=N?*j< zPlZ!UC}iM}<)T(Mefo6lNG4~oAsV&yIY`ZZmnr-M$jJSWlLL1|4mcO*F?uP*f+7&% z;c~Qn>=>IAta2yMaq!3}l-BIkNr<;w9D;quAf;_R_O^Zrw`htws74HQEyB~al?8zxHnKdW33jgNr9ln+!Z4nz)8trjpWO6DQuMe8weHo z_S^=OpK-=nxS8l#Iw&l zNB-f-D%tGi<;ls-vpu}VvYznzo^|$F*h7Be^0sthiNA-duQlF&=WY2IH{WuzPUz;} zb209C=mu1lmErKgY<&IYR~iA+mHHq0Ti{3w$mCxX{bX|bVL4+z;%!xf*0Pm)1 zGNXvO6SLdO32-|p#suP3!E#c`*pMGbYYJrlQcQU)5vycTni?r`Lq$X>>g;V25gs*S zwDv{KEe)uwqliyuD^habg*C-&{KCg_6555hnK#2HZY;vb&7%GcxUrX>pWZEBi-~oK_!3W1(=h%f3X_iU% z_%RbOhXt~d;rSz*I=tfao}j-!a@(G)*WMrD{V%>*!MDD1#2GktbLoUTyI53a+xHVA z1r!{Nwn|y`_SctPp|oggQJF;b#KjGZ z4n}eLZaBL+BfViO)8GTuF&2&ZAw!aIAcc?!_esRm+M}>#A0pxc3A6Ysrc9ZlQMko# z{u^hWc_t&2jEXQlDD-FoStv|vz~c`-%j4gPn{U3EG-L7bb&S>vu(x(boX4ps>DtSV zzYaEbPH1c?VR}3nMlv+GI=c~jJFoA>9`jBjyJ5~l3CTDDrLd=LGPj*EeFmeOSr|0p zdOEh|D50x+1TvEUji#;|cm*cHC(x{lR-XTjI=hlqbYx0Bt7#A2!X{q7l}1M!+v=5H z_e(lq*Is)KLW2g9-JzOd7Sk1TD>z+&Ega99nwl{8thv}iZeg)b_eM;fJ{Ff;`VS6r zXXwB!e8v%;W8v!@tC7~-#mi8FJW30@P$rlvW{g_P0Gpea(?d~~mzSqodWm0EZ*8kk!0=-*61anTCavEjLx6_eiMvDK!!y}NDmGJ}G zIyVdM?W^VG`1_7s53roW-4P8r%@hZ871b4had-KDvk# zRw*VHVWFv$ry(yt_eUq!!k7~q6-VxI%8GM89qh?2B3p{^h40!;UUTmAcorHOhNkKk z_?u#pZ^}^TT8jEaSm+OF!qCvq((s4;>i^q|K050Dw|nT{u1^a{)%=vnlabxLLm>z< zlTUBl1i`&_FcmErUJ*OkwE0_4F8(5t+;5CMirro>a26yM6o z>ISksI3Xi59W}MpsH?A0$Ky=KGBjzt*61;@LcisFJYt>zc* zSut_m!a~AyzY?W1a)=q?a~8rVwHr+Zt{~!PKm6chSeuUGUS&Js^%ach)mL4O>bfkH zmN6aPX+WIYDJ)QHRa!2AC7d$xR63er7(-En-qD@%GE#(*L7=xek-s;EsvPvd~u5rO_7=7!i{QOo-1wb#~>wL|TUi zp0D&}IsA@pzV#*~#1Eiz8m>ib%<`{L(zb;{A8Qd5%CxUz-x-y#Jct!G zr;_uyUSG?8a+`L+)t(a8bkv>gypZTS2LYauO!=A}0bTLP!>n1eltDybJ3rN4y|?Lq z-QNPz0ut#A2@b`^?>3Tl&mF@;FUFAI^H5S$4i{&aK62}_{;jv)iUQsT!fP#Z>#2tA zFxqu-Qs#|xN_ZF7^M16Q3=b=RxLf(M5O=mtD#eTie@A?RHvhAx`3pFTSK739ErbUV_M2Af0pX zZGxQ>mA|%-f(a5Wu~T#JZ-V2Wo<`pkf=r9tKYgw4Q*)|9;c53q(Xj5CU-?CUfHPb0&_d zo1;78OvCkjB$^b<2)LY^NCh80d{`qnLhIGr41^1G89ERa9FB+Xe^}uX?Z$R^ID{ZC ztq!N0a*9Ur-CW)Eyv13U%J6>@TR3*wC{8yv;Gpv^G&ol3ZoTco^gA?mHNwT#6|GLy zF707%=q6WlHj8z9>?7e!!IQN5Z%}HLjI8$c zFtJcC+~a7$pB&7t%bQW(BHVWCZAgesz(hiA^7He1Uta&~{uaP%uf2xLE@h!9RSHF1 zVj!sweO;x1(;jxj!&^);71GbNlg>}zUy_yavEBD%huQPp;h6wCe_s&n-)UV($r+17%hy=%}x1{P>m%q0J5wYlm<%c+TYRjEa~))BcFZlGd06{v|73ap zM|(E#f=P69!u~i+{;UbR&!7JEC%pOQoBEsl*$w(v_*Gk=?#D-$P}5dO zXK_ZMMNWdn~~8DnXO8sCb@Vu_Z2~T-zw65wIb1d2J9G> zXr)8e+r;q`Sb?M&{Y>U#+jobe-KrH+r%omPS*%XN+gZl7yJ{5z$cJ0oUQ8f>r$Q2( zP3}0b>tBdUkOC4$Br{jBo&Ks3>n&TpfhVJ^%in(&=bmdWFp;8wLbRO$ME&KZ{X|eqZ0*-ScD9muEYs5*xh5|?8-F-*oP@ql3pYIj{ZVSnPzU$` z`Eu8+`J7VCRMlf=Dbb#1DBAGw!;cV~9Ku1*pHkI3Fk$p0Tz2_oJ?G@>>#GrZ%YqL+ zc%PJGGnFYr26|unXb${|*j=+yIZ5SrC)?cpmj%e!#ljnxA(l;1(6E~mh&}MIB_7fk zNr~rbog{q!{rAes(6eIyi$81&3?7t7=7LgqSx2I|d$Sg`%A`wvQ^(ry;Uh=^n1lk> z5lA+nw+XyT{D#ufzL8T|=eg&f!w1VhgsIC4(f(6LfO| zp{oLM#I3tJ@P2AYMQMEsWz?r~g6O5&3X4r@%{tzfg#9$^(!2P;wrpIzjo z-HG_(i!bon>#y>2ig%Owq_>G+P78~fg?VBSCb7Wuc`8(nRQd7R+FCuY-s{V2kwO-; zv2ua1rW|WBp=h&b=El65e%#PirJ_Q|uKS01&*<)nELszX`sXY$F_DuhW;R1Ze{R+O z&wm3g&>!LbAAAW?3?VbT_uhL?qj<7QakNUyN{O$cfCHndZH3*GXT6F}aD-OO%Q~`+ zr-v8Q$JP`O5SdEiQ&}ZEh=YwdX(L9AP*w+7S8U0WCCX8G@4ff+iMYhaC(wQLM{eUz z6gKTgIi+Nit3QFKq{_%AE0L1ut`T_f{)h15OE0k4!x6-aveY!SuKPUS&kt%Jqt!oq=hrezQq2L z6^sBi>M@N5Ba*w;X&VH&AH~wiKp(&Yvii<)ZKJa09AX(WH6NpsCYF8sJK3*X+;-n89I+TTHZ?S0Z0A--JvmhuB2kX~Ti7tQxzayfJ zL#h4euH2^4B)Yru@~e9G-~Zx|+X9OhFJ_i074gnfnbCO6rBrFVXZ%B})b zcNJq_$2vla;#tfVq{W!Q?n#PiZ&n3E^XB5nibGq}U@jUP=r$EGuH&@tu{MyQhS=ai z{-@Jvo{D(y)5uL-iaB%Vkh{7JAzp1TR&B$uA<=l|AAiRyFaHaT^|hQBzC<^}3(0U{X)zF{&!-;OjLU&25|U_rE`_X>N(QEM4}FDw_El!WkJRagX6J z-ANlnTbrYe(yjzNkb9LyXLPWdnwzvb_?3UXirVG^)Ks%jgy(wRymPU1={p?U5|tiE zD1yY??EI13l!@k+ED(Y@Bc~e>LowhCkeqs_DX5l7e0>C9|C7^qN~-ysPDjpfuwo+haTt09)z7?C~4ga4i}KAp-mOb_H})Y zU_-nfr`kj+F|tR@8*DNA}_)?9@7=>lrt7FjVms_61$Uk zDb7!vTA>Fc_W;|?mcws1SvA}#y<3cj9(tIp2Y#rhY_o75w{T)0(eXn}#zwo0A-!CP zP5@HszS4-frOo788Yny6Ole_1!ax#TM=G}V_19l#(b(&BayM#ZK-NoPv7w*SM0u$u z1FDzPK=LNviR!9q1lUHiZ8I@)_$VYM4#w(FS8GIe#zK~qnlFeEw!=jiUWEG} zyiaM=q%8zLEQLA}#lD-|q-DfXPo8q24%CYtdB<`%eRk!P>2OtkpJn}T{+KPWFL@ur zT#iOGr4@YaqOf<*QCL#%mholgqlp=XF#92B>1x1%l9li!mbRmdTrzDXEUpSrSVZq_ zEU)Fa?Cs@?yvi+z^fliD>BXP1A2mWU4o|SZk%_EWsOLz_X8P>FIsnN^SxhFyO`TO{ zo^f*MN-cxMB!U{|KFabIZj3~GJ4TV7?{C<%I~luo?bQ42)mK;#vHbv}%T2h7H4E>* z|DI;6%DWH4-zq}4FX=v{eT2Lj$;j=lJ!H6{TB4o78P!xXj3#f417C}je3Pk$eM=Q= z*@ueFnKK8o&zP;MjLF7z92E$S;`G|zZ7|1%m6$d2bS)T_bp-+?tUwYx5tD-0zy0lT zeDwt{=|eGaf5HUWv@?OcJJ_O%6#HWK^wHXV=9sKv(l;TD+vDQ7OA5<$d|( zS29i4h2ew#td;Y=NQ9mB7F>DdHB7C22H{?n6#1WT`7@AThfyQYN>Rov^t8 zt=xubZ93VPUUI4OM2eK|6Hh#0IW2vjK5Yg`vgjbS_ocgO>8Q~t%t)#c-F?qr)ZrZv zbs=SqeRR9w18zpzp?4AMHJJI8de`?9^%zNRV;|OeGa8<^Po2(-FS!_l4X2`+(d$B1KFfF2#pte|Qyl-I zvA^;Ybc?FUk)Bn!kwyJ3z#&eZT{&HeEXjK*EF0*51`An8jL&uuXV=Zv58+3g2Pr6w zb(=s)!Cu7|3vN~*7~bAqkJi&yS5y^|M`#G0-4N2)V0%5b&Tn01c{`&`ndMI@BQMFxr81h7O6yXXLS( zzu%D~M-xkbi)L_ouP?trk*r?!-urlW+4~5Mh(LZWbtMazvQKfr&=G_1)!H1zzOVUm zjb?R(Z6*KUHbi<&(p?G6s)CbnDH?M(`fEfuv+e-+KnK5DW^)43ULgW6UA+&fqCB!p zsQN4>>^KoVldx^;PVI+Yc;N;8$k!(cwry3YY0AMnOWt9oNLX(&R3TDU=(6Iz`G3rq zvFISvL;^;WYn_;SW`+_lR_h8Z#}L+rG8U#j@X#{LB7FMUCy>bCKc4;vvo`y*&owpF z!(`o|bc2UkH*nDf7Za<`>>C+>ZlE*!>TBlv_o0U#l62w7&u ztwkgLvdb`$^bdhU(HiiEGyb_IZ%vJg)!lO z75wp!nLtE@;lQswl8#wCxi|~7l|_QLlKTmF8BQE3>AFH4RF!Fe%06{iv#Y;VRWNUB zRzn-?;A+P;beVra(kPXU5LI-uULcBiWNvmGGl$+?E-tRrjcXe6AgBX?2$QM zwCGiemymXi(RO2JGcml|)Y%QRjU{felF_Dmy1EkyKJcci9tNS6yZFLO6uRL_{?ORi zSloZ#{fhBTphBC!F#-YYQR*O{G5gFuZS3vkjjvXH!)kR-7)S%Pm&J33tII3rNQ3jW^!VVlK&U^tQJsp0ah*cC>WV5(cwZvl5l9dB|zlP8G7{ zT31k6X)d(1Y$rvPSy@@|8f*n)KnbqDWxhhLcI?=Od+xcXProJEuK|MwBRn#iv|)ci zlMCqs-3GC^(jGV7cq0`X)0w7c5t|EV#7E5C-CfyMs+w|0%iDJ=eFd^YA(1-E7qvOpGDozA;eV?oo+N@o<7}_>i~j-PGMcZLV0^qn}HF11Ebm}>Q4velez`} zco)|n;r;*k&V^w?I=S8^#bXi=3<&UNN-Y;9ow;-(r9{iDzLiI!u`k}vz@O${kL>+> zNC`Fyu8jN@QWZ=(Sus)4DyrDY$Xy_OBS(`L(h-eig>-g~rWspWE3^nLGgDICBhl3= zT)iwM=3QD@RjJPJw9}?x%a$!v*E*oW5+gBF_wUmYqE*G`&OHxXwtm+`LG{qX4hw zT0quJH`|Tt?5sgRUmdsh=|7{C@Kuos_yNhcqz9d#VkI^kmNspn>S zaI#`#nU&D{Srsl3-a)1b#1~V-ng1$H`G~Yi(tXPMf_aXxN~BbAj(#^<;76RVhg|?t zjo-0_IYptuoVR^wkKO&;6@J-e5}+MT&Y)mhKGL=eBB1nF*d^oWPgE# zkCjyKq43I0h);;){@zvR{krQHt5{EfZ78{P=}hyE7K`GvR4619o0TmC-jdz`bdvD zqGX38JLSltJ{#!-dzlp{*A8 zBrEcC@TK%##M@`Ljn;9mPNx$&L)2 ziNezFP+gx6Ki6_>Gdh!E@A-~|T7V>qqnK)sX$nTVl7(54Cdlyc+hGTE#3PeVo zMaPHGjEpyN)m0bkq@!nNzvCBz0T=j@2x=V93H%*jTF;ea%V*j^@oie}A>J@t^e)8E03>$WI zV&7+l|Kg4G4U&Pf^o5e4lIUuv*H}2%xe+_OQTw+pLI;#zJNhc6RBLUoK_fBv1r^`v zn|Q+pK*K`&#~7d6TWvi z!5TYu?6Dv9zyA%jz)2I~6+&;BHUD2)L_`Fhdip8cv*2zmNE2?yI_olIq-LnHSz%!z z&O7IPSQmC`@sQBi2zKqyf4)_tvj-0zREU5S6-}BnNin+{zum;NlnWy&w(1y5)TX<$ z1L4EZMOEG|WKwRoySodw-FBNsZiVT<;_S+`vwJ~u%eVOGqmM9m?p$pSFJeSHoESOm z)jT2>Y-6%hXHU3fC7RbtK45ouH$BIN3m0m{C=7Ajf2cZJGT`}=mP?!mi7Y?-@T2P3 zw|Dz1)5OF{8Jf#=M~R~IAJ5@9jWarJPCA#=qU zIvCbgXQICPAg|R9H4RyCCLX!7wUcSzCd4?8CZ1T>BaAF=J5|p^@V<5&tR&6ZMcOnw z#)4qw$q7-W&~7pV5XN+56qdfbRE0f;cAK45iM$RV7BHF4YI7HPNBO(j!`Fi06-Z1G z&)DBJN{?ZAkf>ERp(9y_-H0$TMa+MxocwsZ#-XmZhD9wms5J9%Ot);J*Ph(I0m0p5 zh;SQ+%F0x7sqQ4KqK#rEujrt?V#UWgkoIi!JA7eD+e;<8<@N9IGJf=w1zOeKVnl+8 zjv{X>ug)M&L^E*xpRUJSRCTo2si#aqu>An|lX*cb*fBv1E_dwMt~gn7hUHln?$2KFxId%m@<3>C$BT3>J?`f-U4iwUQ>;9Kvy>uy!1 zwBv*?I^h!be-0=u-h!08_f+YvjuUqWlNoXr6BWzC;vf`P<|%je3opK)@S~Nrj~Tqh>^qb`RAW2XYMuET+_oAgV_OEW65hvvE;3{;pGtwQ*9%1 z@|QCGXT#_NouL51k+(zLAVn4-->a#KLym?r;dL^Fw=X3Dx3hHrA<@4&c3YE+hHiWk*eDPx@Y5K8a zMq>MpkKi9Pl@6W}g?XQ8QHph2-=CeFu|3_--sVjAw}#GVruFv->l~~DLKX)VPj@f; z}7v6{=Yj<6`fnDP|{LZ*LO^UGU-3 zE>c_;>No_I9aPR^n*>_Lp|tTJxpxP^k(KIVg~VIh5{eY{!AL!jW_gRq@JLGawks!e&qBU%rLtL7M?ue|=7}fC0zg)T z-G|m9#61!n^@KBU($?Dq-qgq+lAWVBe8R>usx_YV1iQ$%!UA1RMCCrID{fZ&eQ;nf zG3G4r^!CIJH{O7fjGeHjpiY3#Xk>4A9f5AhW+wtyk z8ajj%>F1S&rT2OKx348ov7A{dfk`9||1Qc_u1MzI}6l)wD)OJrnZU@|8n`zzODg!OFw9;&;GQDZ8BH(7TYt!v;J>Vkti zv($l#4tb=N{DfuN2Z;H3y<$$|F`Y+o83<866LSo`di=^ zwm@Ic;}>r9TU<@j@zN3e8a8$6)IO1nBdhdc*ljwfVvpcxg*9O) zVFMOCn56Pk+BYIPoW$y6ZwU3Dh<({_;*PuS=%Mkt;DQUNG;{-syK@L=h}OgAK?XU4 zrtPF4?7Z_Xz}BsVF0g|gHgq`oU3c;L4oI*XM?bHNu?2fZ6V1-9>>#8w76ons z{rBIG=l}5{BHD*=%}(T6rJ$8EzvrKSz8>r69)v;S*4u8!>Q$d`GT??qi~faOJ9gpa zmtRqcglykPG^sdrf^8l`?n*Ipy8VC-CRbi{Iri)ne5?VB|Gc<|vggVxuEM9Ed`@Mv zKpd_}MQltQatgL0!Fh^0d!;Q|WO1m2w7c-pdQp(0rmX;x0aI9%*MOAj&G2#chnGJU z@b)(7WaZ&U9#*`oFek{2U8I<;8O?2JE+rHrmDp;gM>!12AQ$I2Ug02l?a8DbswD+k z1*6WC1!hZeh}Y|ohk7P~11UFMQdWZa;jE-~@zc+SOuUPN5O1KNr3?-&p>$Lm`LC8S zXEXM=mg!Mxb7>#3qSgZ#=5ba}wRw%H0I5}L5adN6kNOIp5y&?>6S>X1;N%v9Kq@v_ ztVJl*A|tTw;Ma`QmGKC4d}*bOthX~tB-eGgaW@)(-{FI#j|JB$T$v{$q#-;!4Bt8IU`1?D&$rWTRfo8cVC@q{F|DGif>W;$%2Q_{ zmUMa+%Wc_%Q%^ZnGg1?~~Bv`HZj%a$&~hR-%5rpr9>lRksmhbn*&9(V>k z0|vpG*%4u6aJKV7qp=)G_Ea9@!PQs5JN-?!4nJPRk0B5J${@ z1({Jei4?o+vP<-Q1*0nr10lYn;NlR9RUdyvXRyOPqvZ? z#nmmeXLly{ld*(v$aGUo`r}CUOwxCFx&s{4v}R|9 zCJjS%WewVyfstNP#CSx3Gp%APJls9;#JzvRT|a_>KK6W11ba$s#k%`8_*F-uwm=6~)%6uz_?se!fF7DB*gv zQ~4)(-+PRJ^7tkLmBF?l#%iQSD=ho7JU2Bq;lT$VG-IMU776z*`&YP89=VlK%A_Gl z+?TmX%d*Y!o+WiSch1?kcfmah>5z4#NM;?+Z+G@O#xC77MK8;(>?`ZFh1{T=uOG)m*AVx+;LjJ@AdgA2Zgo?b)1Q9fH*mFRV z)eJg`d8i;Kr{HljJHCS>xr&E{U!~g|F5ifHGA-;jt>yG%sHT1e@3?>Me&Qs@_c*(< zvWShic!Z(0JdJLMSvVw%k!NvAtZl7GwqHWXgAWD-oUYecT$hZ@#?2V$IvI6@PDu7( z>$X&_f?xO9w zeY{0a_yBpH!-yNFa4nKMzeXx?=6?23C~wbI_JWO@HvZtkq$o^GQsWXxNVDDww=N&; zXGF2gH*};ryRwdv1!zr8jidwghex+}kFzVECD@Haj&ToS4CJOI7vVqu@lWE`>2#A> zq?5FQUYAL^PgRs}!yWl=f@VFJ7Q6IlV9Lij-aI1)DvYF8NH5#R;v#%2+PQEy=Vv?$t_vHjC zS&B)8zgw6f?CqFcVvpL}8jTg4FgLiwRb)KGqn?+K4&VgZlhoaE3hrju59D!LdjGLa9E;CvP>|Z(v~?nIhZ(cB0|~*uvly?uX#E@HIb(` z6Tw!oRIhVIVMiLHt@iLGZmzseBHz^-J?0MK=bV5FyHYebS16uQ3L30!tkKd~Du+=M zspIn6t2o9?A&0yU9zP^E}d=9V%Y|XYVSdtn>HxCpO#-gG0`R$;kl?h8jfqk(SMG z0*}?k2vHmwD-NNd{OE6?B6B^0foq$t0)*6b2T&2Mhzu!>gdA=A$@3Acs7!dCf8{w`dCx^i95w_@d%!

    1pR?e_%Al;AG>;q@41HJ#G|Ys5y!^-NtRdEM#3dP6n3RQZ$Du06E2n60MLFQwjGib+@6#4lt^4k~kC?9j_?kknGh?4B z`S|+{@4XsROs*`dYS(2U4g=88SpomTFB#M3G1^yBB^G< z;Yx~8Oa{R*W5#G?xuUWh#l=)mqr-Zvd3X@7%QUJMMs&9zrRp>IQ<681xZRwRb(lZ@ z239lMaQ`h@R5xHy0#f#6==v51x3!(j3M?eEycZ1hqmMp{u1*B)xhE!hI%kaJNE5GpWd2V=;E}SdAD9wFCu~f<122 zbFQyH#B_Ez@^^g%7w-rdso0k|Fb>~uIqHb?-dF$YU$+HbdF2)I&c2|I?wmPiQ3Cfx z&3YW~tlS7Esv@Vfq}7QmrMqU!oJBREMKAv%c!1m^*Ijp=?)ve^J2VBK@|~H3yqgZK zsQ6V?RpYHCZ|ZN!)ykU?25)q*uQ_C75vA2&-L}QlpcC6c0|!%yElPuP1=XM9iYqSf zbJ~Lj4Zw#ix(y?4-OoNkKl8JXL`uUtxRJFa&S4y0du0(R%>L46yPtaV@Pm&cjzz7- z?HPz2aB3|&^}-v8Hx|(diROysHSXdBff004GM1K?vVRn} z*Ou;ZEgknMT0|`CEoHxV`Q?`(*e{CNo+^wUHxlXD`EU&wLS~mQ;B5+~!)lHKS2^V4 zf;s1~UmU1B#*-#aLVisuth<G72?b%7yuzC1)!?#*w_3ERq z;_9ofRvNFhU#-Q6VIx(vLMWts?IL@eUD=nnT_~FEOBHJ;?*%6%1CcnKA}=dNUXiTM z7jx-$*J7m7iv95S9n({kQC_~2X+?99ldLDoaNC zHPz|>3XPc<87y@WFp=(CM*&e*rrSr zf(sTX#^z1m@ox(}Z9+*TpN$)DxDk;NQQXf#MqwC%Vw7XWij^2WYBVu$_iD6Opc`UW zUvm{cUU4Rh8dEg#Bg=%2Cq4fob=qPRE|NubcDFIQ97b5gBS=k6!=CI#h!35^sCpX? zm#@bspM0WNGf|LB-kZ#QNwn3P=WeDH)14f7kk2H_BxLfX?T5)n+@$HoAXAjCA?eKn zRp0A6F^sn6^4ylZEjU5o(4j-{CN-GTDKk;KZ8N%?Nuze^beIkwMCIXJblY^pvoiqo z4&`WRYsBM^KThG2uaS3g2lc4j@ywKaS2MvDVx`trh+ny z7A@*=VtZea>|aDoR!|L6BE*Z|`nN)+EbA;@{3a#ME6M&5i#GmFno0ln;`9H)B68^N zP2S6F!aigfx2r=aYJc)iqK{IDb=Y)3cN5|`h71IO`r66cpRlKMkbUT2&+qz`S6^0< z3tzi%%VCMjw}ZDW`#^Ge3p7H0zyFEJq|?ga!YH>bBfKnB?PcxE0F@OND%|1Y6(5oR z`+D{_kvQk9bKz%b0kO?5viEtp=6Hh;`Y&Al;C33+QyX>+{Sx|PG7BRoT zLgDZXzfDz7M4eqWjN%f#8@?8*wB zjv+WmK^=dG7;Ot#R>J79lfm4d*Dxk5a_$EYW@-N_eU4;+PG(c#iIam>^<@5nvq?!M)7dpeDgI10T|G{L<+w?SNhnM? zgfLT_E)qCOvGMQ^l$|W=zsN}7-~aJawsYG$uBENn&3>{YRW)bn; z-O2diqvgjvw)E}u=g-%Dy4l2VLhDF~QyxMCU11ZNgwv)?!|>t5wVt8(4y4Ff7#%il z+=$7OSzO!I40~%cu3mV~2|Pw}?Pm;xM6rgT79A{Ji!+SI!LD8E><;%O1tz1trOYr% zq_>iVic+X~(i-VGPiTar-e2J>6~{%2u_Q_>7~IDCCJeQqBg%}GJDnwA zQ7GyrI;{2+rs2ku=d})nZK;&e4MIeCl!_p@*atE#U5szP-Ut`s-KslF>9R?uXtrVk z6=s||RV#;^sETG|a9~8Q9s66pq5y#_Q{(Zt?uNhPW^y*h8ON%#D_eRP{NQN{L|*$I zY~H+Cc`L<<8*Dg5cPtKa6#*ArES@{-jI$|dkPjpAX|Z(vxwu!bHhD_5=4Dp(+i&AR8KvLo` zUS}}(-mcEBd>|2|I38a_H;y&I$NDiU(qU{z6xGxus+}Y711dhvnmG$?Rh{I`HD6mB z9p+RDQAjj9iVn9pxdQEwYZ7WEaoiiM+SS>WDsI6)OWRmXira**RMxLt13MG#M7*rAK81=KCdmfOmFw2RsFJp6aYFoIpf8b zo>yMxJ{$GF`9E&~q2>~LL5b8^D&B=&PKpVgSs>Qi?5LP06RcxRCe;!x>}>*->FDU} zy+~gRwPJB`5r(^*+4I=|r&Dmv)z_l5Y_=AgdJy~W3Tqbq$RCCi%{x1iYgjD#3di_EnH^#ySX_HgEdT!=H8L*@$u)saZK$DS#QH zPWBt;ojX_i{bM(jz{Q`)wzKTrrHYppMjZ(zq*Z)Dn3kD!MzSxm>@vb7r1(@=bOhFt zX8KNdH`I5oI=k{F&^duZKNTtyE=)crt@RhJowQ%=iMp_(9?6M1LjQjIw1B9=U4HrH zJ=MCx#pq)Q?X!-jbpZKeb6BxY;_;?56UXZeRnC`+_d%-k>XL>YBE7j2f zh-7jwkL84|y1t{jk$x=fJE(2!V)8&6xqD5--KJwZ#MZ*F)}g|&J?BTq98&=bqWG}N9egoaa0N6N`nVK z^n-JYj%JlV`EG|rUrmR|j&PoKx7NaDDXN zCkSyGO9#0N=~Z9C+lxwvzP>%XUHFe@5$(jHI0qJxHtphi-LR$7;iZ>eO5E~4d+sSI zGL?HrCIc1)vYwqB=fz4+B5%3n7R4@0fv6n=3*0#;%9~01mqt!vA7E!$t(P0R##gGcd5nbWp*8IC@m@NwdCl_DO0B*C94o|Q*LG7V1>$@ zt*9&5!$1NR7i%|>c!x!;j4HP^=c&Uiw25Lbz4Ve&o2^^BjscCM{iJ+mM{Z%6D4)z` zDOx*m*VrH8J#lUO>+Jbhzv0(8i<9`Md-m*M)Gm?qJ3ferh*D=anix;vS(LwcI!r<` zE|Euz)l)e~^y?d#S{Hs+iBgstvs7X>GK7)fBj)VHA~i}4TPmZi*g+Q?^0dlVqOiHTlLB=Sd{E4zH}rf~K!?N2h9=C$~eZ&#cNi%Fzy_N-a>ni1Q=yxbmV zS3Vz*Fi@{7%wZ5B9FFqm&YgRXW%D0Azq@pqE{hMC#YqVVVLH1)Z-!zg#aw>+=})J8 zrKsgi;xi9cuSdBt85Nz$q$$f#$cz+0_S>)50`tzl0Bb)d1)cACi19cRAs)k(#;dlr zmJ`%l83k-cNyT>T%UFcegKuMB`XWr5I=yESYdLd~H<#>zuWclfbKXK$;ipJFEMhg* zq{DPd@n+1V>ucR>Xd$(XtCw4-^GIal%DZ!HR-8#g#ksbHT!A z92SU{6@&@mv(G=J+S^E-07^lZ2r_J9#EjDym5<;W=kXHQ}4pe*wFULSmGkx`b zls-#LoLGU_c-RFZ$?J3s^*)m@f^dkVClg3f%abBq4|fmvc=@QqE3m5GCRwzhLxz#1 zCY1Nx=?WoBO-)s2SD;stv5|gNqTg}kVX0`(L3YztGA&%J5#&tPB#0AP-J0LC+YVlD zy|GmLj6s9V^%6ZF_IfdL)JRlz<@Qa*_CxI&aSK{5no}rk!#4VGq;^AZy*^pnSVS(rLMctP71936|2cB z>&B|TGj;xZM!HpYK3A`77{u}62hIBC`p0+11t@{mE_G31@ph z4o-&|NA+bP+%Cpny?A7%069Pov70KFfW5}Ah>xy^n{5CxYd3I52Avetc9$WidoLE; zb1$9ZRQUUI;4R;aL8fuM0vn!vkxmvI8Lu8_Jyjihal8df>_8?2amq!ZPNG8L9;4J* z_jifY6V0!qpht^ImDPl+x2~>Ai(2GENli}}KZy=-E!xN&A-0gbsduoLNK6WL;vFZz z)y7-jk90j7sm&WGnz3KsAMe4=&Q?|B9Bn<2S@s2K<0jBSchgk`T5`o@S0I-Kae{|D z*0yZff^*L~kFXRD7PR3L;&9G6a}}p4{J#D6>$QNu0zUb4HIjlZ(%+w)Nuc`>SUDK+ z*=L_I%6SRyy>|h^2c88NcUI<;$GIZ^d#ZfB_k)v`!X+OUGPxQONkbS#=e3L(9~Vw; z4x^;988IU+*KOQ_#?#5WpAlm6z|y(RY^6{QC#1oSaVRt9C_SLi2@0D^V`Ck=hJ9K9 zCytg(LH+E4v1;)byn}3crWvW>o2^99e%N~7OG3)kEJz4#5i@BSZq zUjZN0wSB!O6L)tv2n2^x#cDw9m3m8+x|jNU75XaF-5+&&&;- z9&SkZ(?0sucx^U6GBbCsp1Jp&efC~^txkx#cp#V8U@B6m5~JHwPnaqj)@>9gL|`i$ z%5^h41QiTMmiFcvjqoO%F&q7&vwrX57b?Xo79cu(qhw@&#R0#CVT32u)Kx1aB)$GS z2zB^KQ%9u=hlGaqhb$S}{AFH=;pP7U8)$)pY=HrX_aGbU|7W#}F1kd*1CJCxPg_*e z-)pdxSEp!4Z{X@UU{IU>+;h&A?b}kNKDQJ)_D3lYF5@6VC2l3$crn>YidmZA(PlP!843lBhNmow-YA zE22Jj78&M09gZIy>(+e9Z`_0q-bb&8g}#>}fQ}#%SAQ1%^&X450jH z#sE4(_r>pAOdgPe9)u`-nMRaZ#6w4d4gt3@jI=>5c1@~!7lGg03%?zqEBUC>zW2U+ zkWO|&p`SD4S1(ie!QFS?kKdqK?!$My7u?PL9aGXTi3=w)HX}E1N=l02cqdPuj0oM0 zprLwCS~{!6&4dCRtIgTv+H`zf?SYZTHv2oggmN5n%rTPahI7O{73J9}ix(|{dfplR zCPI4;JMi)cw*a377Hlz#($C;HQgr5QJVTL#r;ATul71Z&3Dq=20O!nk05o(j^xK5R zlEk4}oh?$yBOT`d$92cOuxu03E&lmyP&og>3T&d}w%D;GI3(4-VEL{Dc$)D+JQ zCgR=5cn~g>kL*i3BFb$&jXG(js0`)TDYmeA%V$tqi`i_R`R)wJ$MZ3lU$)>^khA<~$zS%#Jcl$4I91!?_zy@02AX{L- z;XTNP`u|yt6kTr4a76c-BPyjmTtU&*YQv5)8bSzxJ0hL)7tGgc=o>GaElzbHdq>=X z_|>$o<>KQMfofe3@p23jf0r1^f~pvuOuA>>haa3=!x-uGHHD%`t5d}#LZHl(+P+Lo ztsRJ4y2D+qSLgPcYpz9T1H~(VFL--`)trslr> z=4)NQ?;k2JvErKr8pP-g9hxjD`R|H{b1?9y)iNmP1ld!uSW4jJ+IiS;%r!_k`ci!e zr1(s!vKX$?R3NOn-qn-Xh+CF;bkf9hKaJ5$Q>n8*Ts|@x|AG@v{Lv=&aLt@08UQ_hKD&;od*bKmUS6 zxDHikmx~A~iE>sLlDTYb^k0@=k>;Jo?xZ z;_MmU@5CH{Nw2J`?zgP4uux7z#FY5g?ahmk1L=~H!)`4;32tl)xWl_p=+)TJ$V1_^3D3PPE2InX$Dz$lLI(TG zuJla3)+|&W@cGBIUD;*$?DXLLy)CxwSU=GS$?#oGD|HvHW<+*z)S+&ZY)(5q4R$?B zQb9Au!qTaLEA=(virMEGMwrI-)NL}NXQHtPXBZ}>raYX1RifigLRP9tiuNoPJ9|e2 zkujk_zeww9ZNzVc%pUp?N+Tc0I6?X;y#ImL|4S@GzxTU3yxjkQ{iRyK_C)=qF6q#@ zm=mWS4;8LW{Z6O>e5zi-?kIR#D;cJ>GJ50~scW!NkWnYT$Ej1QOeIQfmD{r&oim); zPNZ#GJ7stM3Pkkkke2ij4@C6h?M7?oO$LO%Rtp>~DaR_h^T3I@UK{~UAl^0#iEr}7 zUU~VI;?!*$pt%3~hFUpk8nA+qVUlmzfk6^3AO7#``4L^Q1<}=ZIFF+x%9O0mG}W3o z>d{&1YmR1T#7x5U+{tAdE(!AaC!Zso7%a~|@`4nuua;E{*DJLaqss?l95_gMM!KF( zFfI6@Sfl|1cCc@}l(lY_v(GwL1uEvgFh^c~>p8gz4rC2rBXqjy>=FlE*pVfVfi`LS zaVN_^Z@O0x+XBa*M*dM)w)Dn>=Zf)D*ApcV>mVzmqAGCxU}D6U-yi zl*xoFBrSPXI9O9~cRNCAdx|={+%U+0oaAl)Ou9O3zj;FiCXARU?{6(AdiwA~+oX%% z#ekc(!PGyRS&C;P)OV~5k3C;vgOAr;blSCJBIwX>cN(!~NO*7LnskI=D7JJ(Ul!mJ zrx9&;2S17PJX}sZVVV|vjvF^lrH$$A(pD^634p=~%{ZkZE0ZEiwN`+&02P*8IrFSD zbv@6?umlWRqA=&v!2nK^T&Ds&x6zZ+-uK0dzE0VqHql)&1$iX=2VK+@8- zYs!m-OsstFYbNK%-JIv(A^DMFyMdb z*cM=LY_`UEmOd=e4D$R$h7SCAsR#tKjS* z^@xA&a2dVfBIo0%BjtE>_WKe7>4>bra>Yfjjerf#SX^`7KZ(}TYMxQu^}1|1Y@ zkG|U`{xRcqJO1ftsguU+Z;>u7(uoP9;PdA%kXK)NRii>zUVVi|e|tCR^JeABm74M# z;W-s_PtLl1R_7YI>GtapL7UTO&A-lDrkB}9Oz|7^UjGYM$AVX4@kueq0!tdXT3uaT z#oaSNJOhSFOKk@3DL`T%F`b*2i>yvOXtM$&s|}(d_%~9H)qC6G=Oq#0Q+hAEsAL6L zK(>hsvP)!0Ag;Bw-XsbBlXacKx-H=0&Vb_z(Flmo5Zg`G5k`B1%`xI(@yE0>TUx9Q zGA91=-u)KWY?kp8A|bA`QamkD65={Yzbk4^1-n6xjE%amciqC;O;Ss+?1L)_u0+PO(}XAz(U+vMu2u96vN%uomwi!N`) zbK~O}C?1{uQtwL27v)LfF3gKc1T?4 z2?__Rs^2BW)f*(zd6)`da7P_bdEC*mRF*DXD#spsEQ)-G;y@k0^o%OLWdnl2qG3~Ec%oa8NJrbxR2E#yjbakNkYLhYUr)cDaJ76Rt zvvr+DUwz=j8a6}@mu+1uu%4Y(g5P}8&GPiKPb)na6d|Or8~X<>&UX1h%n+3r1c#Q+ zVFx0{7Rd0XRD7y*V+|;VBWGHp%rj zT&J)JIyrQh38UyM%)!Y5QMlOPQVLT3>A(}t1B4?Ku!W3WZ%S~`;mE>u zz~S8uSV9Jr>V`4j>6v(6rlclOA2e7F&NenpII5mBBL_w`PDE9o}MCazFNmW~}26a2JKYL^~ zdT=i@`b(HbMN@`miI@Q~ineyuFT?pp$aX+!AS@*)HLA`aC*&vLi8zoA)h9Vk&M1Z$bzyhAcar$pNSJE%0#3`zg+kw=*v(PmtG?Y zL8mD0uBdvGWHhXmaJONot{#O#j(n+T%~bpW$oIvz0m+V{NyNRREds1o!t?LjF9t| z=7y`x+`S!@)xIjpNg2;4pLkNd?Sc^XDFF`7PA3~vrW}i5%1*CRH{AP&kz3Giihr!L zJbV8a^46Pg%hsaY-c?9;PtHyAUXJ2UL~|G^oIiiQPFm;ya8PURhMEy7%u6$tNi-l0 zG~(|{cm5#EI?$=75svZcr=Ox|Z;et5@!FZ9W|Tj`)8_1QJ;Fr%T%t8nMTedD&fG^I z6DO~5@$ipEB(6ufE9D|G$jv5dZkcX^Lm&IWToRV1HfFfG_66@p zu3C1L1iPYm36a|6%b$?BkIYpe2ZJt-{R1PIZ@lpaCY=IBvNrL8^lVcXaJ=|TPHOU6 zH=|!5WQWg;zkRTjl&z4`aujId9&>hdk!zuPR*%Us?`1kvw8);pm`vLv@8PA-4Pi2N zz|Ws`#@Vv)t1om?8sZ4q^X_;|ybEMc$yYKW`XW#sI!i}a6R^hX5Gh?JkzQkEOvu?% z2XUOddekgX^- zBTGW~kpnUlhBe^%Yqr#&Zu|C-%+);}V={im# zfs|-Q(PtKzTnL+@v9IZydAjV!sUNU>p{U9|Nn_bdN~HPn2EXa$}9i+ zRB(S{TmKe^woQe9i#-kO<2P@C=bnF7vh6oZtF=+#3E9@I=+0Xad5J-Kek8`WPN{9J zL9v1@B^F|dkx&$sG}+Ziw<993dvT~dF>25&{f@f@K!|cZS3)DQ5W8iRf|#>hq|j)m zo_eahhKRxDEt`6sT`q6ytd(FyKB?s6YVRdME(u(WIP(+~uLNTt@m3*%f`Wyc%m-Wu*6X8HQr7aF-z(F`=>>Asg{_W0aQY^wVZ2e`Z8jq+E8%fm5Dp*LWvr8rZiP#N#@FVQkk_*a({eXPCf1PUT2pZu;`A_{g+;PNh8B# zdZ1J9?BpzM-A%er<4+y9P%S9J;e>^}o7+-wZkrcK?wVI5YxOH~-@SML>H;%H>saJ6 z;OrW${^z{X@!|cOOw zPrTo}@LUnf#7QEJ_*OzBHf&rE8SWruHwc4M%zea}MoWNQgrw%bCl$b-7t}6-?DxqM z3O1S`w?u_6`ME|xvU)P`_8F>X=Hc#%N$p`!DqErV9-q4iIH65|5w-R-h@WdL&OJ_{ zHpd@#V!umXv0|m3S9a^Zx(Gs#$jCrvmqzEFIA0Uqo4UgClBej>~He{6AUd{Ga|je^{e&gTat8>tg|5N4Vg12Nlh5ifE~ImFc9HAbblKi z2q_S7=_QvU71ye8gi(lc+K^|0uH6N6KFzZ5%Y_;(j7tjE^!^K%KdKSSFBX0-vCd=R zEO$t8XSzxSv$JIsqspZ~+JQBThzJ)`Rku8N_gpEdE0Bp3CdrDG%XPq^L&u70!kF{3SY-4!y%`!r)U2?1?bD`?Uhd#bb$ zj`(EqNpAc;Lq#^Y;&7K^RaTTK#H{vBaF?yU*G_^oI{(gH?y@6or;wVAXwnQj7t7UGUZd;~R-}Vjw8NBTO5Il~3EI$AiBD!J zZA%wIFrtx0B>vdmY}P|$=j2Lg@(KFh3>e+XXN(~VQ<_d4_Z z3pIM~foKky6mGoXM$k#UB!j#sYUC=Xaig}Yha21u&>PVheKK&U#C-41``PaRzv2Ti zf|p)$8Pe+QGJHg`tX;SESL|(I(}QUNs+;+G`J-5}4Xay$3vI^4DyiS5?$%&gwsbj| zJnG~#6oLBq`p6p)4WY9fjEEm00-Tgpwr3-%dX98}BCiYdS@Av-A-b|rKK$%`#kw<_ zuztgO8Dj@$iXI^>(r$=U+GVQ4H{s}slC~yI;;bX}yEep#tE5Q$@O*S*0_I@{@p99? zYy?;G!9+KFIQUzlBapgxmh_$JfIivoTipr%IG~udqo+m6kqwIVK0;F0l*r)0gJt#V z)ha(+SX3yU9$PE3dqw z5#QhMoCfy%Yg%9+!uxAl?+@6P4^%y(5%s4?q4u=7X%B;sg;bAf~TNf|}Tg zaEezUf_R@sBw75GSG7|2!#|GpZWy%o^nP|Sy8*M?q(vljMrj-*+u?}T6*nrDmkux) z6X;Ct9bh8AdoKHg>^oIP`JW0LZ;)g+t`!!9U5@JLC5snJBci&7vF)8)y^y** z;wPQm8?L`W7A^ci26ZD6-7;JT+aIA3qPdSg0)dQGvJ(_XWY-uo79u5x{?b^a^wCF< zgMR;g#cuvy&MqTdN^8{YE_1JS_&i9k5t?fDqVxdwy3P5QcnE3jF0tiW&5O68W6a8GifSx1hFHAv;a0B^S`73>35mI>bp$SD{iIl4^{6 z)P1eWu28n6ZIks&wn)bwaK#q4OHpHrMxKrJiW;`5lQ}y0Oem{GN-#1+iEzfxJ@TgiLA&^c5g5d6Hqak9(b>B7s-kl0a9a?T~wb<$%%UG`t! z_{?-WY3kUQ{H3f1qsQ<0|GzXAdCnQBH;nIh?Mv5BEL*(YO36P<1Iqo z$&*f=E{{I;sO0D8%jL7KLwf0P;~R<;z~e4s>&o1HC<8Qz@)CuNN+Td`DP zT*ruiccg@PkAQ;OmvZzmNB2IMOvPVy)io%F@{_W1L@5D|AOSqhgnvWjXnE(YcL5Q2 zP`-de$j;hgY7ti_UoA9Y6so(S4VsKBB&*;s?p!8b~XXVSgSm zGg7aC(%@7fLt=&~Kj*2ZoC<{`Z}GDahZE2unNV`0!}|8TcO}vF2*@S3DfQRI7hJ4Z zD>6KI+6O4^+26@F&~lI+gFRr(E zb_JlQuSK?Q*{I?cWT!}mEH#P!O%^+u)i_I|^h}}s)^_3vQ&CZ$1bns)%joMAF1zZN zBNBd*R0oT1=3ad0^&etw+*TOFu(EAR#ya( z5pVs^=jD@+KNV+hCn;&(sj!23a9~>ibQ+C`D<_(YX9bV<#*G^lro@RZ<#=}iXFJ4v zl>P)&mLe&tx5>~_(w6@zLc`)!bTv{1YC{?)tf9D9w{?97=ekXT?NC4l=a&w$n}a7N zwTKF1BFQLlCd4SVm47M`enX_Hp-4KhzAvB+eW}kJz-&@hS|(GEKSiqR%EZ;hT@}K7 zfJHW}sy#;;B#h6mz5c3Zr~DE9jqn@^7)7SEbl2$FrOI-JUoa3r(Fiiw40D*Q{mAa_ z^}@;KF%ymf9{v#&>{S77H4kl$egqukE4f$S><+;?AeQdz7=N8Ny9@cXisqJA9ZeYfFzLZhC0{<-}Z z|K#U8?zjWciD$$KEFP^*jlWy}@slU;JAQHYl{P4!afp`2R(bcyPmPbi=ym!9QzUB8 zzI*RrHs&Ov?_`DoAk5ed*rD431GHp+(r?2Kk+XHq+9`9(C`^>o2vAeGNG2$SxST1= zNcZ7V(^@QHmN<0dkOf7Gk%JnCAYyW(>}=5+a`962h#b9bP%a{jfe}mM;_M^qByDG^ zY}v9!adXMB=c8!FTZ${!Lv^V^iPw#0phMjfQ39@4+d#*t014C|dE^lZa*h(0PH!my zSFc83oPs3*_&i!wOO6ybY(+YBxZ?b{ECmj)yGH~lwh+O=Xh;W?4zmkXz&w0hRVMX^ zB}+9$pO%&?@%Be)WOjG!YF$4TvZFpoTQXXk-nt4A-9$LfK|mlENC_Agh!PKk; zhpZD=3rOQer(L7Th!~O3odTw=cHWTgJrc6bbyDfHOKR(CB*1sLG}Pyaw?mLb0WWD7 zF_CF-%)^|Mq}r4tMa4y6TPW2c!efq}Anjl;^S6fS>b#z9cB}DIC_|?XVElq&9>nTi zd+jyGZuK=HG*Y~)W5n6CFMV1H7rwkJU&5{Nh)uO=l!xcP=ZiU1hP{uf^jILM(!OE&X@ z3+0Oi-yj+a-deal%$CHsjgf+uRNT*=aL63R6`~U1{^L>6UntcTX_5e}yJ1_qzn7NQ zX21fDK}G*g=|(YCJltL4YYnTm7R%x1Bmb=bm+e!~&wkeuHp}?T{Le^PdEWRE$QRw-mmu&uy&N;gH?+ zkmBZT($ra{8HT=2<-PabD~~?>xI(F1tR4UX#7nt-j*Oc&TtAko>-hqDna5cc~69eg-df|hYSlR&etl%_3LHS_&E7)5em=_VAo!Iy}bR_ z+Y$hgjJl3uX=jEYyZ6laMYvNk(+q=6kK>0o#Fi`V10^+(W>O$|9;YRc<=@%bI>2H%%`D1O2H z;W>S`oib<yxDea@JWkoHzwYsIEuu^Z`3GTVMdva0vV^$6&ysT&0ggu;h27iMLa@ z*mc=>H{H$t=(vd+B{#04GBkvP9E?$3I;XTwM1yu&*Gatl;WF5BqKxu6S*e9~G%Q85 zXcq)}SzI3VO8E?Zk)i-?Pd1o#DkMk`cB8(6j7 z0!5}`%PuVpVL@EH??l~>e*)a%5a|J>nmXgM*D>!wWpxq0wMrx+GQlWhp*{HM{gRiT zi^#*%vLiiBHf&li&qEfKoR*Bl1|f|~XELW_i=?zHlC-v^=%_($26vF`6m)h+ju<5? zepo5d%_C)$^;kr-Bfwqk3hqlYwnci-$w!7k#&=lKmEr&jpzMy#D&N}-UQAz5hD8KV zP(>paz0`H?OCjgBAi@LOGM(Lm!UCPa6GKaGY<#&l-gu)7PE5jiAUcado_NJ;ufIlicKwL-uI=||uvCFYDn}jVYWxyS_$5m4 z3lxGSxFEj(mG2I{&MuGV33uPuDNxg-{QO&*i<^s(TCT5=fg>R?zVD)e_rGBaEc)&{ zak01p#W@j~l_PBs9WWU%gJIWYk>>Vt2?BpN)BQPRKj7Z;?>%~*rCgs8($f*2+S%2C z$gig^>s<+N_)I%HJIgr`Xz?-yNV&D3_iG#lvop|Y^&BlpJ%_RTWQgW@C&v{|D@kCaxY8g*Jr!Bw5vxk>W7p$0g35Hd;N z#s&VC3=qRc43#bA3#1YESW(k<@k4(>XP3s~j0igi^#|bkg>#)^>^_Y&~! zeJwjPM4)m7k^CP8`kd%K5$jx(ECD zw%c!$=U#qR%6#@nkyo0Wb>SJB;XByv540ZPAxT4$@!SqpXE*AkSrT;Ei4s2PEb&b~ zO6bOkuJq9J3+D@3h7~6@dFtJ zIM5NB>TdRxjNLmGD@Q>II%(v>%q;v$@=Cz1i{cGx$?r6+Q3wK~jIGV>66rKX0xZeW z-qMK{vV)_E3Tn996l5teU4SeIr4Vu04cI|fP=iK{cpjqz&p!9(lg?JF}co+<7larT4T(2+l_ zGM(|AW8eh4;Os!-))On{4o7vyS(G*?{v4zxU4TP%gx>vhX}7jY1)NJ3-!wJXVleHI zp$Rj^$0J^{TQ(x9y95q5+CSDu?tS2H9rWqs_O-ykKscrQM-;4DY?kDAtT-bw<%y_w zlHYM~f-TZs0%ykUBuVm|jAFovGGXEbIrp6NB&F+n$#>Z*wH|p|v_l8o*1lm9i_|cY z&5ekXaJj)OVVp-f@P_{lvuCXPOI`_IDQ?|?BBxXo!_-Q4!+K-~>Xj(}m+WU?-GgfZ zLI;S=rx=W3$Tc8`<12pVFiCPg3Wb=1WLN%YvLk1{W(5kZ=~8VemXe-K$+2wH%^1y_ zbKk#_9YMjD8M5Q(CzuhTwOTU$~xG>Q^eP_#E#>n#y> zNiy$0^OT?4$2+LsIq-u63Q)=2y}vD4yaZHnNwTXJ6Ay3nWf1YOnyj)lWs5{dMfY2s z5x%d!`brfbjW3AVoik?+1TwBsK?Y+v3wvv7t2M|#Mu`3SwT<--=9T9i9UTn}IONeW z0e1~SHpyq-H3p2FC_Tss)PU~ruVA(s5a#iIpZ^Th{G6S0&N&MIAykNhQE$Harb35) zZkvJc{@fO@<$V6!bNJgHogA|lUT_hh4P8>nG$WkPAP<`}$wu*Z2@^L*&~c&4Im8+G zx%Opn@4(Fq_b3XT?97=LC=onyT}!`4MLj0F4V~rE2yV);UZ-IXR#i1~v-gu@ryM5> zKAMjQbeiOYi_^vIDI@%B7^w7`9~iC_D}*Fy!%(Qj6gO?S?{rD2{sM^H7#$?JjD;4R zaC%uBGb+@U&Z!2Zp{cV%qL7j-1-;k&dGE=tUAwdprLWAWKLi%G7jILnAO`_<(BT1x zfk$+Nlq0ISW$Plj|Ni^sUKGwXH*~=HpQbpxj~9F{cic4_%kSYSC`rD9rT?JmgeZ!75Dxz!}%>jDmFcRCkC8%KraUDZNL->3r57IIalJ7Vo@A6Uxp6d=YaIx zp6^-I!-{KSBPm`{1owgs=hLUyhU*bl!p^v$b(>bs5AixyV%-mu+h*UcLK%-g@t9)$ zNCkD`@l(}dkCRavf#ddLWttY{jX!FvY+AJmEj>=xfn0|=DX+gaPa|hs_qQ@CMUj?n z^28|+1W1*UM-G>-zTWk_IM=_`IsdQkhl~OAP4VdUF>5a_pSbm^oQ0|#}0gxd|4R15H|RyRDOZE`W#NGQu)Q(uESYzkak zTbEDSZ*qFmS)f=<1}3SL9S^p|!YR!H?tYaFLSY%L42oXWEoD-;JV(|4jFY9)&YFNz zPCZ3F{rIz9Trjz6t9lBgHmws`i73e`DVAH-+=6UTf`ob>3nj8f*^&Fc_HX15rWMqa z5yUFKC@dw8J-cG5g!_yWf3GNoVv*H>cF#TcD7>oKu2B^wLtTfWh;4{|S7b^9w=aYk z{xw@3oBJ5DFBV*{gF3rT5YwQUAfl6F%=R`$o}b$H^y$;(%P+rF#u2i7oOar2 zLMM2@4&4?QaCrZO--Z?U#O*%z*kd}7F*R4vm9B$UU)3R=S}US$P3WviJH(+e+B8C% zt#xp8GvxI*zSjY-q;S1>f!4>~;;GJIkduv5b4&f#;_ey({ONe9X~Y{`W+7?rf>DL6Vh~sv&#jHywDMM-;ZjDbY!IWNh$qUT+q39bhm&MJywbu zHe(3w0aL+QaBAC;_H*k!4&P9Mn9K;oFVC8FxdeF+L3%Sm@ruDdBY^K~m$|^`ah*`_ z;ZohS2dYFdhvl<`#WpxGGF<~eK$7`rsRMz1W%YKbprMck zMhtOldxZ{^9L%18!x1cIw;jc|tOB>ec}YNa{5^UgbD>eQ(R+$<(0 zrWdrE1I!NAm_Z>NX#_3w1Ww!M1 z?#WrpRDZf`fcrZdjWZtGxH_dnn#? z!SimB5K}_$Ip_7HVh?c|?d8Hy?48$9Q(FM2RXUv5p^_MWs$>>_C0=fU*t%1iTS2jg zNqtfCc04&yXT-nax-Hn+s&FDYuh(6B9hAqul7#p{c<%gU+ZNCf?sax~oCwrAaq|)-y#>SzgX5U-z@Rnha>$3$e1}oW?ncGDro;f^Ppq~pg2%M*hw-hYAT9pi;McP zbhM+u*eg_G#-1bDo8Fi54T~gjEHX}jyc8~e7YdHY>NwDQ0sq5qURn0!pL+Hj8()9@ zb&RJ^X<&dVhy!+Lx4=Nr+8_M;B*Z65ePxrX2GKEO$Id7V({uJ5fKaS5DBw6OwUf-6 zWzq;7ACmgwV+xWWQ#97>k!_YABzDm0;^iB!XHPlGisJ8qNrT!NXopO|mjyV+NJUqk zFbZK+e$T}%!pJOaIFb}$4hDR2FcCKR%IimkO(>O zcMTF3D+*~kaul~W#CeiB{X1J%AcY#QMH;pByCu*sK^}N$wp@Mn)y5_KX0KOXaW$lj zU(;)B!^ETp4(~9ej_FX)Qe_n)v+Z){9d|1GM&ARo(l;h57V*1b;3MA0C%VPDNJfnu zCHcAKh#)74k9!OpYCE)br)P%T=c5JJ-6B#o^5c?O^`tzO(Pv5a%H6{hXzSfP&MU3XzZ1`gJrv$3PcszMlx zwc0^#7wnvXtWbi&2a2pIDA0l=d1iye;69_Zz_s25N0-KDjM3k|R_T=^Gp{>GAva_N zF?ebj)n!JBlVG#eUhl~sVA6@NPqIH!cd@H`9RL$a3YReUS&OH*(WeBA3{`LrptK05 z@6t;zlM64rKvk+Pnt3Vc*=n>1Ed);kElt)4>&_Zm8Wh$<@wLQ|X?ODjryu?)x)g!X(Ms)gobmaA^11){Ga$)zM3Cy7fA!A3{RBahN!PLBp_8OO{k1 zdpE>=GUUnKr5H68HJwG0Xn&Ztd$~DNVn&34A984JdE}3bq66kGNSge4uX9JN^+-jVj^8lBAF0;m0{ zr+$AY@sBE6>us=sHv=tjkS#Fa@E&AC{o2*ofiVTL`1>UifSG?KQhvnG4MqZ+mWgyV zqm-1q?ZJOWa|uIu=;41W-3<#ah(T)xUM|;Rrwkp_-*GELYHj|9^AyK6ecDMVDA^&A z!4t*bdtWtfTStxT#(JdHvZA=7!jdNmUK3Orm=r)PtTHIC!d!=eyVgMpnp5Dop_&`6 zHkI8Nt!c2UmM;4qNk~3dGPeCkBL?500B4MOTE8gi4(pE+5PrB+lz~bN&YBs}40rD+ zX{gz*$09snsQ2+mp{8R{s>dKy zZz-DvQ}W+_{jJ<{-#yA1+74b)VhTh3$BBn)sO&EMT+%@AW^j_S&413wXmQ!4mrEt^ zSxjf%cKfY5pb($u>FEjS&s$KCW^-t{pM?t-%7-7!SNUKTA@!viBA=;~w;AjZ2gc43 z`$a5Y7+5Gs5l7r5qh`b+d&BLo6Q(X5WLV_6k`J!l3sBth0*d@-KjrZ9T1Si+iQf?H zo{qk7{-eduBSF&gK16Y!qoko&kRl|12Rl?9UZd?ZGeNI~sOb&Y-6WgV1OJZajJR4) zL|pxFSNM*#myMfk&Z)7@{;zxX?2*yK$4Xacw+!|;TAeGd)6@;=Tuc-_!4X{tRYp$2 zyg(gRV=dEkEGLaDnoYJG)9;?$B1=?^;<)3EQ(o9xZk~-uW`lV8fK_JO9%<>Umsq!P zV3l!|T~H+C1l?6`_7-2!%O{>J$-xqXGl`<~wa^ow_6zwef1QYi-s5Xwkgc*2VPzW+|e)^1m z$byd-AV>h}LNJ>Q_CEoW;7(xdJ*BKET^zhxq`0K0cVB#SE#M0*>Hlc9lVHN9#ns6#I!E77k~A z57g+!^dwEZRvesd=TV)vP8>RlBtJjTIOOm8 zI^gjBuFX5J^Iy>d{c~KuVn+j;{(K9tu%Q~!21fGeh|%KqMqBtk5iu4W_7u1$YH%TTsZAu8o zdK@k}O~9K$-gAWiKXlX5rkzsWv|9%#GEvankZg4Z0?y9fB%}Z$4Hs3&7-^z@xnUzm zj+CP(94()G@`+;V0(}#}7-mst_o*kJK4@n*KR;jT+hRS&Lxf?JRDq)H%FD09@N1PY z&tWKrsgb+yzFXTWAix$0|HnW6p>m*~efk-Yk;O>q+MG!`t7Mj#`@m0gXOeH%)5S;1 z+w)Pd<>|(gJKLjp8r? z!0^`Kd7yOyrnGtE4sZ%1Vhp)t4~IhSbNIXk1qDiTxvkhvSKj-FQr~oTy}{$#*O&<+ zk8Z2EQnuAC)QnM(DMGxvgJkh1%XL*o%iBz?l2P@Ygt#Y5d1nUtu{uOx9s2GH!W7SG zgms+n8M-{k2lWXx%jMtT-JbKnoZfXA`Q>wS&pr3b(jQ2<=zunwA+NsniuOgbZ@WeA zx#K=S8pf-WT5BmqZ3Y-E;KXOOrD&Ton$GCBVeGrB8!KeVXDh_FD-7kxRFG`buZMaZ ztNY=HNW0OJxoaJ;*j2!6uaxBIbEKj^O-6%y(qN>BaT_f=P<-p`>?gZcy)1qaqxARi zaJEP~9O(fYXo0_b3k*bf|A0Gyi~~%ivlz*+A|w<$kXR&sw-%IC97M>mo9KQt=)HWD zo+}SdPD7(D^+rdO+^d8U#L3yacX@H{LPTynB{d~gLhTYI$SzvHBW+TSB}L!gbkj|s+o=^lKVP}yj@yx5 z4U_1|7;$KTlxE{P84Ed7!+GZhyQ`O?V%!7K|n#vlV{9g$4DS zB{bd*T)DPuH1@$t_6-}?BQhHZ*TEixeW`v$Y+zp!dXm?Z;Gf2c#+hfFg*4?TA&z-Z z;n(8b?x96Qx&r=?nPZRL77W1m%fIgVm$CT&M0go#V&vJ=jEGr}dq0llbkln2G+_c_ z>G(y_?%sp_kG}b{BE0|l=RI&HA5&%!Mrw(X&BL@dC@2^#ASL~>A#7UW!+DRyn1+dm z)lce8m5Mo~b4w0k!#Lp!2@VlIyKrD=-GKk!0nrLqII^v9k`coNmvp+V(PT^ zy9YS=qKev3^90Fr-7NDz{Xi&^LN&kJQB>K9tjT%jpC?Z~^@QR|?Gd$&w~Xnhe>(HQs7q`Q5=>D))H^9Lv$zya9tH5#Gpp2wiW`rKTINm zjsnbPHL^O@;KXh~)D{zCILIuhqfyXCd^%9zS+Dr`VNqvm0WZI+M+PXXe6cXgbMZx& z$PzfY(cSwd1_j`XA>AU6=W7Z@PYY%Uv<);ICByt9Y6$i@*T)}wqU3LCL}f@ zbr{X>G<8aJ@Fb~2F>Za^ZnR%*zigDT?(g+F5aIp3T6SQ+zqSSJe(er^?e>g*u&8E# z`}*szg~dcqJn_V@<|f>K-+%Py9cepJ|J=Xwm-IcPxY~iJF1c%&!X})7f)TV%3|{sQ z`vUOna7jUQ*{loU=t6!W&{fI`7fSA~4-j2&lJ)D>N^DG=a$ZvHhfWXic9+gNUo7?+ z($JcX4$>?MF{i1s%VT)DMXz0NL|vp^$paJc_3~l_V~#spOE}L zA0utr%+;i{V7XL5UN>u3o+SAmFGUt8kM(SooStoaon6o!nat`yzyJQbD)C8Ymo{ng zM3w3_q7%B%_+v%k7Yfj_;O3^tQvClxp$%lH2m$@rnzd_$2A zyH!4PF=UAQI=hP&Ez+v$51;%>K78^^rLq|@a)eaY?Ud%W3TbLD(>PDx{W8r>jQ5j| zJ_q%^EBb!b?>!v=cUKQM5gke+*Z0dHYb1*FI>E_$&Ot}J`))t*{@`1H%3d!%^@_Ol z_~^uq5mGu^V`Qqd*LTT_FTVJHcE)r$DULjbnxrytkA#l%QcAAA&Mr4%!Da|1mtmmT zqTs_A=jp&}3V!bpa7a6%AL*71zzixo3p7gH_ds-#7(?U)n}w43h_2FDT~3MM^2#!K z=Gmv!+2wNL#H%n7&j#cQ?zghFu#CTHXsr>M+UsHSa`mEs=ms4yVHay&5s z*q)CfENoX)y$R0l5{ZwAR|rFCNtyU`2OFoOuY>~i;9rfkL_dexCFo?l5N_w;v? zU6RwaRVwVVrP5M>yTaz+8$0#K-}6Or0C5*9XK11<1(Y=M0q)t_+n>};u=L;PA_ zqqEEZjEa(ig$@{_Vbo3kU$oG$5b1DfVwkSinh@8elN+l8p{=v_MocdolwPr*p~`LF zAd9|VBr8|0M5OXH-R|nEuaK8swhfewS}}qfjEHKmB?cu?NMGh}lH&Xl6-!_Qk!m_G zyzsnG0cPgRS%_-1^+qU-6S22pwbsdOab((P=Loi_N>yV9O^7ZX^-UjsGQ)zE& zm(+@{WMr@{Qc>2NAx&MCx+*KkhePU^1$}!k4AKcE?=GPXhOzS|x8?l#AA+UANg_={ z5kV>iZCjLL56AB}xN$ocbFqCmiRi0^ZtU}jBae_3-)sc5WQ;E2;79ekD33A1qO|Q5 zpGlmLt$>g43Bnr;Bfggt6T(m!Wu82FvdW5>F%beEK5gCHv6j_CeJ3qF=xZ<~EUwIpH~&GsPeN94cBTB{QU zN%4)wvVqs%z6Chxc=4qd;qDxVIO9e{EC=^Hh*w9jq;5~^x6Js!domS* z4t0b6hh`NSJ zarHXA$IGq6&icqm`{OiYk#9+pPS<8AD7L_PbCxhnF7s>FqTp`0G}V+KP*97hyIBeg zi!@3;5!tOqM@&jP_eH@ePD7`jmSutH46()NM|$kKWyQ)OU2gm#LrdI8ICoH%c{_wi zBl@3;j%+rgZ!&Flv5+sK||B&X{TGuefBohwkhNB28rroHUl?PT5?{{f9pom_j()e@O7T|3)? z%x~fRz5+SJt2L6lacK$w5&H%{4op<(qEl$^V+9VkvUid&Wyie(Wg{(Kxc-YNg&g%;k&n}8^C)B%=uDKu)gios_hR1(L%);wi+=c{Aq{jAU7THHl;wC# z)PTjuL^g0Q^8lMT!?adzyZ2_$>^*S67GH}D#tsyn62f%y$xuynbdI?RUW~exZNj0Dj zEJ!`!#1s16`(!@p8%<`RsS6zCSUVJj!CB0*Y=N6;FGGeUsjviDNA~Q_lr`&Ci>o*2 z4~HBlZ8iB)wr906FL3fl8#R2i)b8j+-;^#fm_+(J?t=7Rl$=*oNlY~8w5js(QX)XlPASHKuBDZuZ*s4lZ%6v5%W!oY>Q*-OHD z2BFBVN}tuRup#*E%H_rzuh;KSIpq|kA7gPWvsZkES#U_zxPSihpUCQXX@5jUkCxUJ zb!Hhbnm%>9ly8D)kTs2j1N5rGQ;TnFtT#D7aa}5rLYS)-6kskBX%X0UMl$&n41=ZX)pmVdL z3y>ZRYGRhSGg!TI1TbY zUOb&`(dMyX7s&UEzE(+1^0pE~oQf3wxUiXe%(6zL-#e-$&;?3m4QpkX-!yg78X-PW z(y~JwyIgR5n?S;WeiugdxzA^xdsg0f^9@bAaT)IivRQyazu&cSa=>dNJb(iZ_j&56 zr(*a;v=@P#U{n9LAYO8JIf~!*-V>#zr7{hje|pAF85VY?I6D9%8+D|7x9Dwo{7xKo33ika8>r;2I5Qm+J(8Z@8dw3rbN=zzz%k<-7b;VA#n57;Lhy=hBpwdSgtxx|N7Uz4tOs7%|3YlL-93-Ai}pt zJls9R%O?^Mzi?>;e$&Yr%nd<9Ak45uVjV__i=BrQb%9%!rICnoCMOJ&o$2puLD$4d zD0;LTCMoNo#AqLlUdA43df>=~T=;!+?$va6-}dNxA5l<(5U3$$+oY3yOA?r3_E=zV`ZS`kW9$yYQXVexXN&L`FnUe1gHQG zX$|)`LZQg&;^&(LPVQ!DsV|Vkz!M~=a(S<_%Wc9OQ1hkBoN-^7Ufa_n%!`eg@o4P5`1nlTm|&)qNGeqjB97Wlnd z;7@aS>CDmS;Pf>XXs{FLOZh}cf~nxXcH3>YDW#3EEIBz@9Vp}Tq4>&lSWIk;{Cmz^ z@ql9);F%=5n>I_VHCZuR>85oua`-4=)jlKOLBTP-&MvRV!4Wt&L~h!Ua*H#MmV%z0 zTG+&DZdwKKZ=|&<)pVZ719v?x#Wh)yn2;zJUvjbJ6`+Eu0bnx8l0yV26Dbbpr=l+_YUrfmy-c4#gQrcW$d* zXk&grCmxSN4Gu!@zx#nY+uUDYd*r z#SrbNn^xPEh`*1&Vo&KP-*wmBLMk*C{k0(aQj4n&vx1cY>0KHlCC-Slaa}s2oInu{ zK=md%yELvlH1sr?H}5UE^s-BJS>Hd`UVE*c&p+?Dzwcs5@78FVl2LA-?hqlRScH25 zqF`;{7QIv$#Wn8lejDNgqd8Q_`{e!4CA2e1)60w;oqF=AN_TeSjW;0L^pR{Xd`BX| zgkkS!M#0=l2wMzO2c!_~PW&g&o!4eq-}jt2F!FQJB^N45J)LYC2iCsp8QcC{Uia@q ze$VTEeco%Tz|@ZPvPX{}qIS7bX+p79NRVt^mGyu6J)X-q-+Tl0v{xV?0rkCZvjjNA zNop%ZN9^jP3&ov2a9m1}p0@(SDTw+z#gwG8vSUJB7ytj9u^q{EJ;LJzIMz647+EdSo0e-E(or?qn&18Fo`3SCpY=V?1?OKNMH!V6 z);$d8)dOm|F#L|UNJ3(~j2SaV`vW?=k(198H;fxJi<`ex?}0=(&O5qiUkyn&~` z4a_b(WTV*0SoQMDFYl*YysAF8k9Z+!)r+%36pf<*m9L;#v4qjf##w%p{# zD{cVq?nBynF{<6vSS0~nZE$jJ9VV5_+FHTZU>74k=3uF}R7#3t!UG#t1J979V{0L80;+`G2j5#QgB_68(+Ic<}DK z?|`i9C`}b|n+#wjw_3he8Br4Nmmt--mr2VKt`y{ zFUfg^I3!n-w zXoTBXm#-XH3}FBkfgUz)yx0NH%-^S?{#uRp63_j2HD-tVaZa7G7nR@knz1EWQALL>SVb6bQbu-DU6eh9z={m*Hu(p z2u|knC1p#B`1$+EjW^xc?>=T~nf>mF5h%P043aNCUnr}WZIVwuJwi@A;Y9iTi_bMX zar=OklShGNcH=sDN^QBc@*>%^4jV=DkNiHDt!I@N?0IoLyR!p{aJBHSU~ zbBet3%FA-!{rC1pCzmZ-2Hx9ZjWDM*F5ZicwJNlW6SueDep?7z>vV0xvtp4ZUhmLr zv>)Vg^9sJg#Cw`_wsmTdBd;?}VobyNl@wUh(eE{3vh4te+ahP6KyJ}@SBNh}XKL#q z>HtU&G0QZ<3L+#Cl>iX3fwOBfYd>X4E+eFYnYZ264Pb^L$1R*^Yp&FSO@UA$24gsJ z{W;6d&ISi~q-MH|^~j##>f|9Ge)_J$RgC2a^SWirR&nbJknNVGI3E-yf}S!6QG3?7 z@LbM3>uhoM3F>urxliB3vC@{eO{$yAq{{(J8Q8wjr3xx-iT(PUgE{^$S%<+9LN0h- z{Cx*(pal+<7WhMYf8xSeykpqUJp>#m_^>e2OV|Ug3PjwbZt81C9%*z~wxz@^lB4y1 z!HP=?WyXvdvh0Ty;^^WiFF*aVTy@n|{Z5^t0CVQtuQXmUNvGpGljQCC9P9yp;Ki-e zbz>ZcLq;@MYI{mipi~F<)n1zIY9+#XI6Cot9dd%(QIcD`4ln`te#aoS89VbXIJfVA z@SgH+MtP4{wX@vXHCWqQqO3`>Zryre@t2#u4+J8zKy_1!;h+nG6=lE#+OT1i8Eyo> zYbf9p#ELTN?BW3RHDE@K--R%gxsN<5(PjurAQekvrExScg3mnltVWZ$4waAM5>P|} z^Nt<~KFQJ2+E6M?@lgbi{Z@c&QQ ztC$pR+nNTh(qJj5c|k@DAF2Gx`>)T5Nn2Z+wlP!4@o@#g4F>+V71QV<-1(zqPb+Zfn3Sfc zr%QlWf9Mg5+b}Pav17(UxS>E#o6cXPQ-TzBWGO>KEYSHhQk;?bfzIw2tpCtM59);E z!kHII`tJWoaNv=kNh=2Cr$@d5WFl5ZpolXPnJK`jP>@Nef(1O=Nl-D%0nap}&fM1z z;K=>pgLw*BAWW>U(UGM?YnYc~u;evwQOY=9bEqyZvD+odLzDHM*_OWqeW{~FMny`_ z(j1NOa(vpqk1+OUyvD@DKs={bf*iWk8Rv3l#+raBW<>VCZEx(ycxCjx)>JMdqi2GN z!wIZApk*stB1@Mp2j}>!$YM2#gS#!0V{Bu^57Af)jt$V=QQU?FawA8L?8jYhtovKO zvLE84;E#URe#>hZ*wFY4xIYojE?-3 zj2OA%(n1uL0nfFcvuj-E?YG~i3=7VtY$?fEtTTJ2Gs!8L+O-@42#x5zd!Xclbbe?! zX8m1q%j}yGy6qpu?7?#XzyJ&_yAV~eK|=@v;Ae3F)!Aj2sx!&rhl(a}JwmQB*b;^M z;&F%>HvvOu%OU!M_cPpa2waD9~-lbVe?DM4p zPAWTo!>Cl`fX>>0U>M7ZVI~HRzja7RsN8k?V<=Lb4NTq;35q)kX?+aFr~;2jK1nXW z;woj5ptGKfigONNG^SdKlcYFBMp~wf9Xl2d>^u71i73t~$9a;FKhbBRq?djvsl}g2 zO5ulMc61XD?@>}xTrHC(Oh#17T?+$s!@Yla-V-OmiT>&f*}QcVQpw#?9hfC!CXSFm zuh4!`3`UH3PVtb39usvD3J-T8QV$N^@Y9rOg!}q$_WbkD%d!UoD|1 zn#{7>F7y8LhB7cP2vOTy0@bzJ-m|N2$yJC#T~#9{cdzSm1}>WHA$yJ~s^RSNi%|K0 z>|FAm-!kP3v}6(k@6cE#RD9lO}e*hfd5vG=hz6a@qoMUf&3sPu#u2q7W8 zkluUV``6yj`*=Y>ahy^4-{B+ozFW?{_uO*!*?aA^5;<)2LR#o_WMyVy>5^q?XjfF0 z(|COaC!UpAkKiChLy5N=Vc(jr*|`Qde&fb*Vp7PF2x5Q&elPqca zOR#Hq&S43)h)9Lx1!OgSNvg0){h!smSj8*^vi56Aa>R5sc4c2b4%$O}(~y<52@$c= z;1R&2JSP2?e*Xy*lRMGV(Tc*Q?~wj+vU=?AzyE&xo1S-Dp`KrJ4)%TQE%0Y2}DBv z$uTFBT_8rQ+m!Q)dMZ3z{Lo5FsThp%AuTK{Bxi0iiRYQ<t*sRAJ1F5COnj_A(xXn}eRD)!)z^rM_tV6ij?NBTaN+s5{kGfHC>!Q7O})!v zAZB)dMcw=HB2oT^*@$vrwzD~yA;xl5jZ0(~ zDCa5HHPr7!4dsip@V2Ia)*1gV=y{daD{pTwhHoR4;^t4MkHe%lVxtjd-;fHgWU~&!o{Fwn?oXzKO5;L_|=qU;8#)s5Eo}B?yLK;X@ zvlqF&>lA_!;G2ZlpwaZil%b+^CldzGKvC&j?z_b5c{Z+V|7pg=$tc^_g8=t^-m^w} z(*qJauy*~LKAVe&SG?j9MHxGK9BMc9z@OM_qtw%QD&oLk)py?>HXpH3$De&F9$ur3 z{)k>DLvSLQ>>O?mUfABfl20;?Q3qE<`qAS`7?C79`H566VN8W)dj9F_Y-TJa-FFHT zzbw&`PI7nGcx0ojqC`EV!{RQ{_b|V51^k^usgM|Fy_Izx#VBZ64;d60MQH5udowZf z=IikE(-!!RtP_Zt&_aswcieHu^?81UQ(C;ep`OIBn>x_gQO?x7SR&|)A&yk>^u6)M z>v-fJkC1vVk9gV)<8V6N>aZF~p_5fcx3qJmIsjyaz;xu>=h?Au%`{rSF*#&2kz_t8!r?8@C~un00{JpLzoIzlN&~o`_b3kDccZ#% zkG8FouL*@zSll1#^mD=!w&y7GLQnYO^Bh3X(R}U9YxJA4|2DtmcSvv;BE61<8|mhZ zQeM9aO_Z8XNID5Sw!MX*^a-fny#ZYizx8=>QQhq$gc-grZ0Vkb_V`1_vZ?|gK@0Y-)nwHmu}I)jrg7L)^x z-8xn2GQ0-y@$tya%EYdw)!5O#6gykL#^X;urf`9=W5+7QpoJg7?K`$9uFl}~l{&>3 zC@Lw0Lr6DvI&MO_YY7d|iS!_aT8&-V&co5ylAy-_pYm6VKHQ9s?gkXq zt&`1=7&4g|cX|k$k0e>UrA<@%<3TF^K{*XsEBAJd5=?LSGE^k%6QM=c=Z*Fmr2O< zSFc`;Ywx@eRSm=w(%Tyl)E}i3&qxnGLFJ7-oPE)sOchS-0B^tjZxD&z^UpsIG0A5k zB<2JRJ?b{BTD=MnQqon5Q0cXIv@z?t5}CbUVM{ONMj03u++bTrm2M*jy@Yvd>av-r zRNjYuL^n9VpTIy-+UuJX)6vsRqx--(W1|W&dVBZF=;>jXZ!-1vF$|3D?bAO-3%vX8 zyNGs6VIoo}4LmQ5a5(8~9akRij^l`CnY zWVy%_OOZ%LM|YFXhxnyoPvcs2Fke85NDk*WuHlm!qQ8wlLYXDckFcNE775{Be);8) z`~zD&zHB2=y8-=~Fxc)$v%)Al ziM#JIx5LXdNDWY1^)q2(3HFKL;FP#to|CX97)6rw%Ib;~!eJ~E4|xUg>**#&ga|ki z$Wa&#ZxOi|;y799#rio6W2QqT63E6d&}|}uoT3Tm>d?qfN!vCw_EchU=xJzmXheHU zJ7%0V1G%}m#vy)o`oaq@z>kT&f+u!yb|EXw@en$(WnVAFvK32zwXrJ)KJD~VkyHM; z^&I5hmepkvrsG57){V}LL8#ue3~n7vVCMU7qLSS9ZCn56#;)}Q?KAck_ye}U?{4rO zs!b%j{7`t`L+yK{tury1!?uWLPq1i$!Ck(B9wBIAILr%_RQQwn$RX=`&74XvhHcPd=aAxN$1BAPFHx5r{+=F@2ht5s`+- z@S}`XJ1aHjHtXxAUjl1@?4kn>ZAgl0H zM3ZfyvYH7oG)lKEdmL2-Yq5LXduXa69T%YjzC5R`?EKrzjq3F}?zpK8Hzu+!F$4A$ z!OS&KmeeTX>6Lc#^$8<26TP8TTNomAx5||o+j)|Ix0Qo}56IaYosdEJhQF?oHclOK zF$ZI_^!JxvET&-|sGW771EpSRd{>bPwTgjLp;YSXVH;H~hpW2_agj@vdE@7jU8Lei z9(|a!Lzxh-uAFZJy=KKtoABz7_+LHv0sh>5?_Kn(ZCAckS=~xcc9Chj!Y~f7xqZOdJV5BYW9D9>yfaq0ueO)b=g!ny4m;EfISpP-(?C>7l~ zC~n<~ua+#-mQrkNv>lS>2M;?9zk&%(s?Hd~#5wRbh zSRfPvV{oAt*Mr}lJ?70waT%lh#cs?Uh;vDYw__lBhy(WbibHzn$;@ByLIjg?-Az8o zTUALMbSiPO%dN*b*o=rH-FU-|2yBg^nLR*Z7^{~4fYVNq{EPprNYbTv$$LpPwjuv@ zrL)W~SwI8&4AfO`$KJBFs4QE9L4H$^=5-WC`k$thhab(`$D#h8oq>ICdkY*HE%1jn zc#n)G{?D&MxLrktv#x2kRwhPJLHRQHItA01@<&42CFJT%#4!wo%Q`9Il@X7hZE}Pd zyOIzRLTZ}<-qX=gY^L$sPbtTAryu_aA$}E)S4}Qo;luRu49B+iubDkvOD|Flvf7s5 z?z>2KPP#ZzYU^8=;mnRoI;))(i^$WPjI8QU;ML=ebn|$E4<<1f8^!L?K{3LyQ~(k~ zHI;Z_c1v1SD08U;h}Uatt5k1)aY{TM-Ic4 zSN|2cE#IS;Mz;Ll(ey1UJ9gpQ{RRV-m3wLMQgz5bh2j9AJlAg2wijA2p}V&o_3cGW zDm)#YUY>d_)|H$w6A#%!sEri=06(;K)zH)2pPZ<}5zi#TH0Pt(#S$*z+K$|s&vC|# zGjad@*HhW3;up*L3ZsGu4-}J>e{0<*=<+F2?{s{8ydL*pe*{zc$)}%Sd+#dbx_yr- z-(AY1EVNMe^2cofdB01#cA}M-T`Bs06I1Hx&bJ^a87&=DW#luxi+I$X4&=clCy5M9 zCAsX;M;}GMasHTe`Y4Uq7!-7py!F9{@1vw?1$I|2#MJ2-8nN*3A~y?Dm0e8r2ni3y zCPpS|O=V;u$VZ+jlZj~C54)j6iBaG@X&9?Uudi!ZpE_KfJT(DK;0>i^C4?2k0Hz`&pr1Xdsq%vXY_)m&NI|DsJA`yU< z56a7H-EqGe2_3h0v=i&yfx@B!hU7~XW_ zO&kc_ueex=$Oy~K&Ytg3?zIh@yO+Yz#T{u8ry|CGB9gY&iaCmtU3Vh&2V99}el zZn)tl6&F~t>?;~K?<$7h_9}!4rm?Ysc-STmgcfKbr$l^SCQV;W^~*d zM@NtWWy2w*hHdM%ozKXaq~|Ber;@l@(_TRKl6{e*>W)0kA29Y2qg)tQ1QTqcLRuj4 z#Vt7|2-W0(v;n%A2;uC^*{M9exlP|GR4Ir?X;TkrwfJT~PswyqoivJkvp!`~=`P}S zt2_%(4k45hm5bnnZ)~ixJA_VPCxxj z95-c};((hv8woKhMulS$;Vt>fDiPV6tlzyUQ;uamLf<0@l&X~M41RtAmYfdefPB4V zEdm@zqq8PdnLJjmT-kRg`!9P79N{fsH+cUbH(01#?!NmTh*a&g!eOuD14y9A-pV<|V9V%@Bp*|{>hKUk4HImtB1E#k#3@kT-4GNZjvIlvgf9aoIeirUfuTs0P!gP9qIZH)+k% zXwF(ZC${xd^NL73VOrR#>+^q1j+1Q!qbEfD5|$NSW)~)4)KaF{w$!&3l6y2zjY8v^ zpL+T!<)!p=qbih*@vhehahw7vudcDnbablr{m8WhxDVuc+BUC zJKm~?l2EfV-C?`7zK8AW|BY?yUPN#=Wnz88HL+4WTTV{&XtQ&%Ev-y?OG`_G;cc^B zCy9Y_AB8_t=KmW-U=wn0ehGZyzj1tfod<6LdB>;n-B|G9dc6L!g&Ism9?m%941K2l z@#F*W@*$QyW*?5WvT-{jHr|Z1gmJJ|hAp|TAtHDJ7Jc4V68qps-M2=>4lcj^G7L<) z1R+cgO^BIJ{QG#UUAOjEGkH{3Rr4Jt{-5|lqWro!A}9Y~*Y(y5w+8513apeQejuaFU@IU6aYMH3ap{xnpdf9Cmp z7sffs^$<_yEstK0yPmie1%-Q5Me?MRPeK>f+yXrlP}NHmap!6>L?mf)olqN6f`U;e zQWn-MLVaf;20KpHq+Y4KlNjUr<~l3Sb)N(BM^;uAvHbHfB>j3)5Dq|i*k~jr%s_!d zwu;|0cQjz=(4qV9cF5l%ADqGD*e&ZCIly*Qo^&sdaHPebj-kxm@N^47qeHDSRtS5A zh>DbTcsArHB5l?rJ>${J^6)%YEVft;&{Sa{1M<4uY;&dFTMPb=V4!I zZ-FDN1%7IY9BEhhC%K-G;1FilGQp|WgQie1Uc$+-2_+xXEcAntaEW-kj? zclz`bQ9?f7P(lHu?8*5UjrCPZ7j&>oKAKDj+3U9<*2@y&7L02#JJX31U+S~V%P+r- z)hkycJThEEriU_|1`ZskY#PFkEAR=Cf6mFt!J;o0QPpjVdVW0E4er1Xia(SC36G|D zK!jE-nq8Rie-?6nGqHKnnMq>FX{Vmf>m3I9__wjsFp+|3L-9LE49-9+C5jnU#HNi|h>1<7r)|Ygj8h>`pF)hY zWOGXxvAtWQNlWR6_C!J5ZX_fmXeW3BaeHsSG7E7%!|2~~LY{d8TDqDvna4PuF%>@P z5kp6yrO}c(Uf)`)1Dk`XvKjl?r$-9$<-@?QIT#iFVvi@_5|czZ;mym}oXqxU`chiaisn>Hy+g+N=xxQ>iW zhP#^um!6Y12PO`b16*Pt%7Smc@fJ32+Hk1q`m7Utsd!EY22aD5n$P&owbIaHXr0Ka zy{$RK?%o1{NEyN?wmW~f`g{0yS`;^p<)P+S#mox*SR}su7{`r(;*;68M=z`fTIFSkw5EM(KIJ|G|4a z@)%xK4~iVNDno@WG|YC#-Me=qE_MV5z7`Q4S?B8;j~)k7IkFAbtYLDX&G*T6-viCd z_e`Y0)BByz@0jHt4Ntie+xE;>JhrD>5c=7P#*TQe}~G>9msB6jKAG^S0DAKwAB8%>y~@4X6_ce_u?G&uu6w3{XCnQsIt@fdrdx(<;fUMKtlpe+(?x?mL8(Rv7H@_ zi6P79)ByN+&N77ij8H{7fe#eaevf+6k)=$%7CvG9aPq0ANmbSoPn>H*a|8XxYlz+3 zOw+l9^WUSfycHZ8vnD|7RFM4#P2n=ap%;`u7 zIhukd6q;!*AxG{kU3aiQ0^vF7gp)BP<2d|h6=@|S5|FAYx`cL`%giT zTO6W22VvXRZFu5|Ck|HSPnJs*L>LK#+jd0gndGHT<$D&X0y)l(E=q5Y z+sKGuTPis86(~SB-#AG+^Cy#pU{|ZmrR3Dz$agvuyZK-EzKcqWG!fKx{{zhnhkJcX zxxy?YiB5!PB!XmH3iy>6d(;@b{OZ5)%rnozcZdnm<9+eP;xBN~MHks_+Gkz{*iFr) z*83+bI|)B9(U~A^EzCHFQ^c7O;2&%?c4c3YN%p3Px3k-lJ0RalF~%kLLHNf@YYQ=r z@T>dpyPuxy4koWnRbyB774C6=mq-qra(Ip=S)`@5WjDej`VKaXb@r*f1&-7f_}zJU zf2)T5GxP8YPE{m#hXkFZe3a5A5+={8SqOJWZww5WVr{1U=C!!=x^wX4Q%~x$9XodD zR1%$x(7tu!1I$PVCB*WAE0b(&Tgo@V@(MBeNP1?CQtp(85z`0Zvqhg7i~3Cea>=Eb zKW_niyF*diTSk9s2d?<*6_`6`9->?Nv-7fWgo@BbE;gyh<2@!*i2UdXhA?f5B;z!= zRFbRqTYR?gGyMC7H<1=@3GIp@omaI22=YVph!d>4;?6EYEWI z8jUolMW*&}itw09A`!)9wIi2(w_qh)-CVHhhm}8(3l_s%l3@fIvA-Oxc!7jl*5BXa z0Wvsd59fUTKW+O*;o%iAohvTCmd~aaG4!s4C5+%Z>xAtEAL#uwID+L__w?{q$cwO} zh=G-$6-y`zzniIUg<{dzCYV zWKvW`t)yi$0^*0Ey{-)Hjg{&VKF~n$K*t$AYy@()=ONku7)pVA5yM+Zj^A}0=1$}= zw+?%WsVy!kLSSHEpWOuxAYSJL^0Rmo`&&t4S5z8>a?nguPNFlznB*#gGCLd?qBnc% zdn=OYu1s(h@Kz)D5O~mp34M8bjROf!@O9VDL{-&ZCc(BL+J6L0^uCtWZ&q&J5c-Wp zL9W-Oiv}ejVf-fpU4edtg!J_SOPvSe;XRduZ!y+f2>POl3AGw)jf1#-CcIaW0st$3%N29f)nhY?7{JvBu)6RpBJd6hR z2j_F3b=|dnzk{;>;TAg&@8PzXef$4a3)nrp|Erch#Bt=q>cR|L$!0c+2t#-}6K~}f zZ7kBMcw*MBS!Z1~V88&#|6gM4%1*-GAQU=+85G5&Q%*irRqbS*h%-po(6$8iMyU#t z?J{FtSRdZyhds6XD2hR(VzBdMg(u8<>wQW|XV83Ii@i=o`d^IQWy_YS$3wV(g-b&4 zyT$a|80v2n!BlUG$VPA5mW?oB+!+Y;NusJ&-*14(Vhcw5=ZXv*BRf;9n@QL{)+2?3s8p(MJ%Q!a&n+#rlQYCOaclgPxuig=KZoiqi-1*Q5fZ6yYFOZ6g@ zHf?4+WUNLo0vR6(atwzkOBzM6>*t+&KIP&qMryG`4!;8H$!$`iNpCVJ6gC&Z0}Gs? z&bgfLU9Tpo3hRQv9R$mp%>RiTkY*f{p~-IVz4xAR2%XCJ<|G>Zu8pze1D?e1Ng^71 zcjJUJN9lTjI*F2vurjxt}Ww7k+}r9(x?_Ub%>fYQUF-bNy0d z_o^$d(rxQ9yWrOnj>^6CM6-Re3+AG>k>2>`0yTDJkX};92wCX|7&s&bqmE{D>?kkD zHB0WoyKm3pz+oU`WeLb>TB(9Va^9tF*(&)i#;&Wg4@zp+VO&P48oRafoUmK9a) zc^DjdU~k4Ry%d2Th({#Gp+B6=&Nye$Ihgao9JIEzkh8KLq2?HCRbq^~?`M!1E0--> zju^-O)&vh(E;6M#y=$@ftHluS%HJP&P(3SGoc)l>hRQaAYm?&c6{K0rIW6nhIa2Y+ z+0%+aPUshhtaab8>xtEEHO@`+gdz zT^G-Nc;Lw4$79DQkK@{_Z&qVW!tDDij!9iYbG2<_F8aCgd&JLHM{hH>H7sR1*bw!e z$~ICsMzr#MFIuz+r&G|uOicc;ICAiEeQEs<*xNwKU!G+$<32{|PosG&qaaQ0z3}Mv zpclMLpZjn^jEoXMgL*Fw<*Ho`noRrJE3aeq_p5ZZD8Qu!91AbWbRf*XkB_(B+Yn|&NOW*Z!5V>msR(s_snw}0RiMERtXh?A#`$C4#qShEk`G;nZ+t%?*=LITK<6Np8s_Y}-+B}CWy#4N5eX5xM(E{`jm~34pp8gmr z#?6~MAMek8pW*2tY+uW38)AxuW4jx^`f6VrSa|!LFhSR8vC7fq9 zhj!$!rD0gwp09&S@mvb^-QWNIceK@)k&}Bn+Gv}7lpbP_JP=n|ZI@@a4*GfXd;1geNDbz~A= zY~Xk@Pt^g`ojSWZQQdH*hU*2nDn_YHZHqu2gx+uj4aZIEGu7*<>&*@j^+em^ zNE*iax_UnA7O0i1t0XeNlV3b(E0G@_l%mOk`|l_TZ;@W{eVz%Sb(6t-fO`z`^LL|nuLCO9H9!WZ*Ij#Xdc(-*NM1#b zCJoAUh=*OutoPr=ga5h}Pd)#L!b-#;AVoa)9yF2-V^@|rI6A;PH35Z%h4Ry0>@9G_ zwSe8={e#@nbI(0jJvJkz#v$dX0EHRc|Mv&A`yE?Kd^7Z=9PjE4VRB*^=Q+Y9uDfW#c<~ z(bh9;>8*G-V_T7G6>m-hbxF_Glaw9%@M3LS?|UdMSCo=^N+7hZaKmL{vs zp8bJQ%`cwD#>SF$W0T^TcY6GQY$osh^YKTm6mLdFe#GT=n=JTZV_6q7-$mp?DAEjL z*I4IBg|7Y8@{Dx{n-&)rW6s<;DgYupqee+{9IM{tLxr)8ZSB*;Yk~N9CR36&N)j@S z(k5PYs(f{Oxg&E&je2NrzvE70H4`fzQOHXEp4}Q*xcI8$aOb_(W5un2Qnao32q4fy+qpmq_a-G4wB<-g3u0CY43v%+t=+_eQv7h5g0U+Kl$x zT`2hWJru2;i-K?7MQq4;J&%OY$@u15s-n?AmIT)T{~&&U+!>W1hqt4XzW3G>=1eE~ zcf|nRgcTfgZeoOFgF>a2FaH|zKA6ul$zZ%>G{0x#QCzzgP3;xByE~}_Ln4DXz}{-D zPLk8wx>}Xi>rKAvMv;UyqaAniE$`s_Ay+B`*N~nVinM&En>z7*DR0R(cGGj+OAhX^ zh)`6z7Fd@z62&VCwBqGWaN7r?k_|-eVb#i2)@=_qW8_9W^w2}fn=4+}Ro|{dcQcLq z`Y`pX?k_+g35v}W0Ffw#aO)*!W_hoK`^LN;z;aO*0dAvzyH3D_>JujXDS$8 zvx6D!)TsAxuy{G7GplMXV|a52cIHxgID9fWbUTq(wivhHe#ZfmH{_UNU><+`@mRcQ zF-m*rt)ag(*e!w#5PJ~rk%kx_3){r5`frg}`XvH=ld*eu9-7-4(c{*oWb#sv9ADrY zOO}3x7?%O$!JMLc_NS78VZnm=R6Uy^n^{X(m?Z>fUGU?KgyCAKs00+Mmp71Dzp@{_ z)dT495P8x}EMw@@RXb%df+dXa?;He=NIx1E4SlNY?xwH>4eWXIKSR=xD~Ka@gl}jK z$=)xZ!gE)$S2EoD#d?tkR(d`!aOs?a4 z3>`cS1x0%>BK2y0w&lIg%zYic9?>+62S|1L9gsn$zz|k_vmWte0C4mrTT1cwXeI7- zSMO>J@;^>t0M#7@sO>CLOsp8atsGK{vG(R0Z!%#t2Jt558t|VKVPJ?OuD-T8Uugzw z>npK!dl|9IQRMYvi>VgzKh~!wV)IAn8yA216#|0-@ipOHJPceqJW<;F5C^B82n!(vVOu$A48KE^ z-w0fN)iqeN_6KVX63sg4loRpc+z*IJ9-;S0s2U}AL(VzS9B$oKuFtnKL|G|pzlQ=r zy6(E`^m(WyZK4!udl?x2@cq7HSu6T+MvUJNX1yedP%8icKmbWZK~$$Ov)~!W!r9*k z)$f0SQ%*mP*y^MA-`xJ&-U3HN3)nrpf8g6FNlB88Y+GDCPkpM~-=@A|4Cj5G`S7FUM^S z*?w2iB&gP1B-v#c6V?P5=tEzK7yx1jxDz8?=T@rw1qFMeyk@m#T6c8TGaGsVLc<~u z9#5q!8oN^5Jqe6RoQw}X_)vcz?jPxBBuR09V|U)%c}Pi0#p91XsRMxQ`lZ-XzYq?= zb;`#q^hcs3Rd1@oZqN0o^vgw=$4(WokadSsgsYU`ZS@Y;m@FP1VFTDj?|lE%0e!sY zhf}Y8+e5d&tFOO;haY}e`KL>%mc<*5;OODjot&wz792ZT)$v|?;%%&*vlUM~{In)X z%0S5|!bBn-PG<*!N25b~ zmVNsb7A%^FBn~PQ6O$1c5rwsD*FutA$7GD)n@p}>zP(8fBNTci$)&;$Q$&AqLvOVX z5ClHe(rSTQNnV5~zeRct zDe2mQx%1{2r)-^$961_y+VgbF6ln6cGL)VO7sF5MU1xMw%rG%;4!w7sf5_lQu^a>H{Xw^|NbgQ zjT(iA|M7@!V!$Un(nzds-iAneV|!}pafyp#=<6cX)K;OC9G6#LeYI_sedfNy=q4$nMsCzVw4{)E2`J=}~sfpGq{Oxal!@c+2i&tKI3E)S*&1W||sC(5* z=|U`{ZIL9F{5|BDoO&|OJ?ApzAU0^&Y`3$Wmr$Z4eu)7$%AQ9%Cj3&n#q>hWnmaSXxuYdiE=P(g|fnC^DJR8+5Uvr@F1Vj)-JkYj9*db&v z@>>;YvvUY(aWpw$utNrhI8Nd)hu%4M^f|kBXmXJpOALDPw#}aR9-e;vG2|24aWFcj zL!F!Ou}X+o@QQ`z?a1t1icHf|cm}#*2RUKw<=3@<7@{)3ln9I%8et(}gvhv3fh&kI z(`Cvaavuk9Vwfa24pI#Lu61vrgA`LnX>BNB;;0*9ItK8qibVgOu?TUC)Mwh*MzEiP zKOY)=3dCc%r*^fj5+yPblj+~@Yy|nIAuZudjjB{Rlu`VES!Mf`Zf@Jt(-%I|O)hXT zd^7Xk#Llw0xc$zXC`fS){CtC~hOtqNE1^iiLB!#Qjm5x0{nbcLA^b`pLNZVn!`GWe zV z{R>uo$hoWm>};7>jEG!@V`Vc_s<;YZwb1(W<5 zJ1bDpmV@B%bgQD=<(FTMAAa~=>HlUB1D#K=xV-5V-Mf+9u@Zi14yvTK|A12N?IsSa z1Kg6~MQE1LhDD;EHj5;GMuv=GTUk8WvQQN5+It%4IUT3l?Egm~2NhN2ss`6i{Pg0* zUn;hLH=!H#Ov#fv_c(7s8>Nq1b~>PDeU}P)95-buVK4tAdYKAxH1|Ut5AA9%U;fEek@x>P-eqLgG%TunS?BHF5$nM^M!oj|0o?T7pBzmIf7 zV<98^`1p8i-?0t-eKO$f9H`ZKc>CkzlTJZNY4Oiy>K73E=iM7%oQ6)lIs)*`@^6Wi zGojOE6;c9@(d9)=8$}?B9YGZNMLkJ} zKq^Cag&mg5kkQa2eUhAdv@Zkzuk>T|7jT<^s>{C4u9~t zo8johkY{r_$_iF;Fz|++)1m%I^2Y}se4rTHv(7pTLV$muBB4SNC^33R%U= z6vHVVVWUV#dg6&E8b5zxj0;ZiU;liJu!$yI$jp7)P`Gs`&PdWzQc@y4%1xzxPjhc1jlMysYp6uOgnl@mObn86HRQ+p z9N-WRH{#rjwk|}KEL3(X-F$V!-v>y2*;vT|}@%B4!S(p9XjPRrH+O-R3 zpLsUF0p+MKttQTxg9(RV-F1X{IySA_fcV5X%}=Oes&SZ8ytP`nf1!@?aOieHvQGkO zA}6D$sPLfhH0zG`8G8#H!7X4Hp7@<^u7oIsk5asLhbrRnc=5#-)jKqG>Qwb~2-mC_ zx}Sc!5HB+T>p&F0VIj&n2~7^QXe2~HsEPzHC|S>`u9K`Ea5+Y4`wqBAbW?9WU#Vx# zopBMOO_mPOIENx8JuLlZF+1-e#-amG&zNy0)_uMO5%lmHMY6#?-2%}-Z;E)J++01? zz)ej}#@h93xEV9jC2N`naYt_xB+EM^BSUu=l{gWx`0VqAls-;lxV@GTh-wTUczqww zQt95MREjD_TFCLl$+@GVc`G|&h9lj5(9+q4feGg#d(Vd$=rTb)WyZOcn{tsjCY%z& zflSVzaXBPiJ70f)a&G#Jq`{k_n~H~Q*WOR@^@^odl_Zf5e&L1Z5fa8MZYI&pnezeU zUL2~3>fBM|jzYL+3XM_+lr(KqndDPXJ@qHM-EhMVc>BfoAxUGlC98Kia(3^aVVY#S zxX-*835M{*%9ShGu}z{u5ewmJEpNyozHcUD>6J zu7n_WV!GoTbIaSldWpvAbAto|~3F{?Ur5fYGwsE~=ot-F+IlwyR-yCj}nfhqL#w8D!9u&|?e`GsN9F=O%c zQ%@izC4~$o$$SUQsHI|KO20E{+}EO{{2OiGj0uxao=wavg(Rd%LTDaQ^H*GP1=R^( z(Wr2jJ@68VQ*EXb(ze#F`+i3JC3P<3A$V)(z8ijC`FQsh0{0NVGTUJ z2`va6gZ9ok6qYW9cvwYt{ZK`|_2RvM=)r#=XGadDqazhgA(U|LOcWg4b8Mg8YbfZE zan@MOdS{kK4f;6`gSX>8C&bR~?-A$`&wPqxRB}M@#0wAMoO90UQ^$Yfhh2E$ztO7p zI)956aQrPQvDfk6YXM2txb3#vls-u4yaaQVn2>}E&-e>oed#p~-PbeWtD9a;UzadV zr26#JPuY2TS;@zZvuiUoQz@uY*$yPE-PFbmVViKhzyPZ1D}E8F{l8y+31vNbD00qL zoNO*-KPB-a(f??S3_pvZ)?j)>!929v_bOFh9+zQZVE8puSr7No?SOqo*;1bFwu zt}aU_B>QxjT2S7#Td{Hr7k*0BxKBwj_OS8;cXYH{ja}JRJUoH)h{(XfD9=CtoQ9-V zEdPRDl7gQ#cBSJQIdUZWc^!=~w*d%u?~nArX{2TPi+ZAsdX1^DU9{7eCoC66X)sqQ zw(zn`|H=?+j8Bh@ zqB*h{!>10w_U+r%pfnT9nw)wrN(+~xsiBZ#>t58?*p*}X2l&J6 zv=1XK%LLlt#&54}5eG#V*;))^SJnyiNGQ=bibtW_R_t>sV!hP zc>hFqRz}XLsi|8D~(_Zn`~f_9R|Z)*4y7hZ5-AMeM(nnyfM;@LX>yvZna z$$^WzFGhr&WepdGdC{|Jg4VS&haOmuNW_OtB-d{=k|L)u3w$7jF4~ZioPxDWGvU!5 zfSzu;URnP6=)Vx_HV8p3G1$E0W$P(aRIO+Dv;qP2TG$phDhNr3rSw$YC=IoHpS@CYcQ#I#k=@o_p>kt}+;*#8^sa-$pNtZKCbuO zr5^Dx3H6$f>pm!gB+mHI(3kM({v|#>9`iq*&!n++C^T&&^kNG`wA*yEZ5#J!LeHmE zbMjz9i%6Rus0aozz$F6xy(dsjD;>lAPE?*#H`2YyAjw|-do3W(L}zEK^#FbxFcmU^ z$|z!3N>bGAciaxYP;YGPU95wfDpN6bn>I4;;iUNbi!Z(e3BF?x6d6#(IS+z!k0bWb=&fq8++X3keU1sL<<*(UEBu_vN|t9$46WMQS`|2H z-%U?s_gKZ!N+y4MZzDzqorXbvQwVMHry|)HCd0X)hHMLaS~tMkDTt7Y9*r=Gl(pbq z=gpg|1J#CxdQzlqQ_rvD3<$q>66w8!1w{<`p`oWDnoKQezEk1r8i6PO^(@wYk%PbA zPbEWshs5jq90!w8K0`4g{2cTTnu>bL-tO%!M1D^uih8!8(PT;V3S=_YP{(8O#%pgW z1($q#!ubsnL%X4|0b@sx)Ap*bWfaSuIRyhQK|$^(*t+pKIGT4Uw5X({*c!Dl?u|@u zyzxe2_H$9wny-u7nMj*YRkOF>e$#d{{k92ju&^N57NIi}v5GZo*PyMv4XeIeg}2^% z19|zou#S-}$)6CZVqs~i$Th>KYY4WiEhGHGpFHAA)Z;9QXTCL29OO*a{{m+bxJwM9 z0WwGsCWkzxAQE&!!*?&XJFmpVV=^#p+B7WSx8v)tzgG5%BInI~@>Y}OrU66!Pgbw} zp4N4!ZK^zEq{#Mq?DO^(I8s}{Zt(tz?(B*cl&AHNCpIhAde##9jPtR0Tx6k_3$@7t z(;>XCzW%=0*0dBG8y2F)wGH7h_x^jj z?w9-#YOQx?y^GP~Mw8~s$BMm`eQVkaF=((QwCTfynXrJq5D9;8h6EYv7f($a862w2 zMZ`89ixE!KX@oi;z&R3eu7i}HchmOgu{GySR90`K=gbSG4Vl){lh9*zTON^v{>Ux< zOqWa6`hbM9)iX5nuB)&udn?W*W>t#l-V48Jtj{zIiav)FOp(}G{yD?9dr5cHj2)#5 z)k7!PSMliFNDovBlVk?;AE=%wt>kC^NGIG(Pqc~QYNLoprnGv`LA~cH(m_wo?f;sI zd#HFMNk-nTVHz?{Hy=eaVhY)f|Zu)*oY_(3zd|tQ?)4fG8I-xMQA_)x3di;(NFLE$=QpM5r^V=MV|6HjZR@nSCE zoOoK9)gN~b9J>5b-kMFiuR8AE(C6fYI;*Fr8w)=8R6V}CI8b#b^FpL^vU>F{yx<}o zOkH*LRY*6F#Q;K;0!*QND?;f_JPEguX(5sfD4|3ZyYelPB&!PYMRfJHp`h6k%@AmW zc$}TGIKGfto~~1X^LpYzxdvJkN4G5p#+0ra%gDq(+JN8>#O@ z1ubqD4orLLc@?-#C?P*#Udd`q3O9FBzyy@_?jjpWCDL6o(9dNkhPzBhjkyGkX7c4a zj>LWU+z&~%+PR__CEKd7?t5Zc+lCS?JrPbV6m-d%2M^B>qz$-OAxwh@4#eGe-9w)3 zSoNZcp>112Lqn05x0|$O>ycUZK8jnu!5eSBuDK4j+X(GZMttB=2=S)F!o`n*J44{(5{>E8r&B;=ETWx~*>;uzve2W6G`a|d zc$)&qrctg`VFGCxc2Wu=$NS)krys+&E5ETGLe5L_AjIJA=xoQd6Q*Eu!{^xC_!*je zstI+8Pzm~p6El7iHM3S?pRu>V5#9oJ4DauBgMTT8*Y@-zOZmzRu0vR3s&(;}-W3=? z&xos&hjm$5cP8$ABR_Atu)`SVr!SUoA^j{M@w zMb?f^s*#YJ;7ns_c>B^wD{jt0bJt#6cm4I$qkjkwJn(nC_tqjLMoh6DHMevT;u3>U zw5N#B3VNBGPtYWqVpBG1&E@oYxiBGS7!%Aw6`GOV`YjEE9(HQuNlm|6v!gv|+>2Mn z-!%#iU8TB@(2Ye7=*b~3hRsK?CMcqc=}VoV7ZGAJlWJ1@bfjvhG%t~HUwb_N-nVt310 z1jc&t{^VJg{ePVKZ)13+O?!HJh_63dv-$<+c_F2H$BY@J*i=bYoHE7o?9Z7qN9B5D z03#k&DRNIuE{;f!n2K%1^B5wJ)MPao#6{6(Dk@<4j8sTOBCsls%(D~>paEP#nFg6o zIcXAVNI|tdI|t@w6M34`$>#bUSstQjdb%qcLPS_3>h?C$Olzl^WYC|=t#c_S zjTwz@8oT1DHZZHHe$#z_WsKhDQTS2a1GQ&7hK3$ARVT};avl#jr z$4tUED_0o1=u`%!@?Y-d!QO8XZAnc|rLay1_i-R2MUb-8l#uURyw2hTI8YH-l1od9 zV(X3dH7yjssoTRd+N<|j2DC;IY_J&9?)r9?_95{K zKNeBu5d$nb-2+9PKcJ0wHf&gb$bDp` z80A7?({R%+<<6oCWO86%D-{xrI#vwlws`3fxi6WOQLf7Ta8^=7EdAAE=Cu& z7SClW)FA$+_zEVd2XO}zqRjo8@zs*AG%-%Lmm+Kk{kUx~8Az(gey}^A#$dmb)HvRb zAM_X^R1?mvBup-1BYvbeOZT4!KVtob@~WIB)eSezWHh3Q@S+wx^60~)z#Fau$1<)H zS#jaAneDJ3Uw5QQA}hYg7Om>A#%g!{-KxSz)el$dwwx!M}LQjd$t6~#qg zQRR_sVoug?M>+?}eyYKkOt8p6tX{R6qBaYR!|GHRP?Y=p5Q&ZA<=vQR@rZ|dMv|`0 z4^^&(ieo;Iu`41W;(6_tn82u4PM_n6AcYJlVrhtr!7Nrt#9#^a|?LkN|CUVZfydLKQBnT8uij@6Z){t;TGC^3ly>5lI840|RKyIV_Ug(29wc^hI#$yD84Onl%V&0usbr^-*p#_RL#Rgb&nc&zf_Wd!Q&l?YD2EOm zj%8XLt8wdXx6-gYRt@GB!X8R`3CgYLLSSSD6Uaj0=^Kg0hJ5wz z8V8X!BZu<9 z9Zju2!L>{MGB6DC2t{mrnjX%BkRyF>xzFB?Jt%9*W~9U&f#d}i%&~2;KpxE4R5@3n z4NYB@l+|v-L-#z1TW`6QN|4^F2H9w03ZE%Qja%7YJhpBQOx!bfYdhs|P$1mDV%&=; zMU#llbOGLO;Dj5BOk{i1n+i^;u|h?@vy$o-c0eE)LW zEw|ydS6@dEy{m=wyL5Fc1#QIeui`gI2CtHoDBsoKK&q(KtyFJu8<&WPj|{+%9eJz{ zR`yS{+y7Vx`YqV~#&(L7bmfr6V;heZN0PX3=51`({z2F=jBn3@_O~yyx4@Cs0(OJ< zPj*Ko(_22WMMXs#J~KMjC!c&mv7KUg8o0Xu^wOl$5mNJDhiI)z1SaCmOuT5zSH=VJ zh=^9ZQG^3FE^L_9*p=mBz5}o^{~e?cOhE+z4NW|rTNEP7)F2TAaN zEVdSRb_f!Fts+KONY+J~^{yKp(oF8Q9t*>SLGUh8$jz+{nn076m#2F0vuDr7v(G%w zgrY87b@dg*3|@<+%f7-uV)}X<8x-eSv^T2{J(_WFNe*o2E#(1(Wo@<(aual+rqvfMFb0E za3TD<{plfVqmhws&f+j5gC@xe{%&SV_%H*W;b(S}1x)4<516#cci*qpI^@sk%+{8W ztiAkiTR;ql!GnfUs#%oJoN-abMal*snfVeS`Fhz34oZVDXYL$TM-zTo$?lgyq+oT$ zs7%8cWi}8o5D}&@N&|7LhG+E_^5JgI+Kl&RzlZRENOIY>W7+&=xZ{qyn2>5onhT>m zaZ^@-4vuU&afKqx+~KH$r(hme%19iCoPu@Al3?yJ^NH$GZ?0kN$~H;#4{xDjp_FHz zc^3EFdymc=e}<81 zlYEn8kWfyaXc_(1QWAVdYgA@?-4YtYjx;Cf>9sL>h1*!XsJ8spy5oL-WDs-hHP>0* zbMlA3H+zoxp8bA8zBRuuYQyAtn4NhH72y*I&EvDrdJe(AbYu1x* zJd&pFNVa$<3Z1v1v#x_@I9$JtMdob2 z?e(2yx+;QqUj{$oi7zs3C)MH$ny_cPpMBom0!MNS*bUx4;oX%Ftau}Bi|~NT|KGCI zRM*nb^6OKjcqK&ftt7iyVH5K|T7XYJ6^|zsg(#5FMv64s(%vOuP$q2csfLetoYmNs zZG=$XY<9F7Y4!BXM6+iT#GMrBJSAM|Mvl;tBS%;`h$$T!;hY8^rx0wb{gTNs!4!Lb~mRwO**maC!`Kq07sFHxQt|5wr)vsL5_#@($zdz+ zjtIpVW!C$%@Q+9Sp%DYY%?lp?vB%6f{)7{eJmg|{(8zQk%xQ;t4RN}o)PNOFt_+Y| z9Neu?8L3Z1SX#Q86wfQ6b&>krPRI}u;`$yL#}t-{{{B-`Au)YWx*B@MIytuoA9#>Y zYzN<7Dj4!9u5l<+aawFg)TM9iT_EjrP=ikHYqy9Ka0L-8|d;v2({hCXs{HWnXS@fg`B}9FL@n z`Tuw=^6?c<$kF2_K&Yt%OZ!`u(`KBCa%U3L+jtF0w4=PYl7&4o zBQZQO5V@60(biQ@F5MDjmw$#7pYcfW8c7dy1r0R|PEB@bX)UL>x>Hrx!u_MQvy{yC z3KTMwpF=7q66rIY!@buFv)-Mhv`WuD_bj%OdBT;6L7k*r%WGT>mrgUgy99Q)CG47e z7`6*jV|Q5mh3YZ#b`QmX$QgL^&9~L_CSLMuuDJ#x_;4U&*J!`2&6(P^g~YzqbmkN5 z>x2t0K8x7Dk1#Og1cbQ`MwB~gq{s_AZR+t>T=RnYAJcm?K#dj&S4skoZHcBNvlujz znAc`%piyMT(j`l|#6suf?BI$)0mmc3Z#1I)24is0iSz_E!pkiP!{aW(pqMj|5Ili+ z-3CHSW~c)&v2SHUTWy>B$utQH;5-v==5xhNPrI?&IHjPlTRh2KA&)w zoK0^cd+l>f2cG>B{| z)dUYL=ix2MWxhw_r59c{cGu}xCb7=EVWt|pVo(ZgR(j;=7#MjfM#Nr3wYFvq9_EX; z-hLIC#J&oa_?_9WVCnM3_a3Bz=rcvsBzUjuBX`oN%yLbsPvPTg@m7)QBSVhB5^PHk+g~uh5@A}sdNscIY7uJdY9WSqb9N!j46F<7GxioZ!dt*@@czkfa8zUzo__Rs zRIl%#^4T`^vgVNY_SY2IZ|IQW3`P3T8|$Oenq!U{O~1)kD0j-mcJnH@I(S+Yo+38IWSa1T$D$1CUb|J33>PjYmZNNp>oz8tF+k6DQ!YTBe zN(#>e8p*rVODYu$%)uyfuAZ&|xSH~$hg0sm?>>_8)1ysEQ|X*0Oc;-t&{WMXH|mKb zmbjp>Kr`}XnU9Y*Oiq^0PQ2Ca<|boPowk_kmFrYU_QjYG$b}~}(nXa@3|kpsRJD_8 z&4n4@uA!7Jr3x1JObnfD^^gbqBqP)(jn`^ApqNFU1KNN5*IGc5)f^lhl;uDUBKNMM zE{o4XDW70>g$c-VSISlk?U#5@ZHwS=3ay=l;Gcf_NyPBk2zH9XU@9#RaXpqY+Y`{xRFCKA^(&+gS=b#Unj&81FmL*k z!)9Q3$PCmw*68_(p+=w&&0vZ(I8(Zp#$A0U=>rKRFd#&>*D&LZ8B{5YCcb zQ5ab-7~Ryc>1e2L#+hfHsk;c~Tv!kU#$)+jkYR#UY$hhR8Kt6OGd#`S2sOo!e_ z&O93hMFk2IdE^l$>BU}v0MA$idc|W%%(=MpZ+GdrNfap5*#hM<4lFQ~j&?#1LXIP~ zn6EAl@=jD)a)AffmfLQ>4W;HBw3sdQa_wfaE|@ZLyl^2lkN6PiwuNJe2#2O2ir`ZGckG#UAL3^u32*mY`3w`+gspB zZvnf(`zOA`Z@u*vKhE?b^^Sp`V<;jWQV{2uj*Bn2_@Gzy#TQ@T%(KqH#gy?i3{}}! zKJX&f*-+qwH1FdPsU!P$EKNRuTJs>0qNrLlY)TJ~BbO`m@1X&it2@vPgONi>UDrvj zUtxyWv2%xY*)N?DOmuj7xO&v2GwJNHBptPM)gZ5K6?WBpO=F{-g!k@Ry@pBHR5)!>zyn+@}9owdgzCC|-Nj)@py4b<*#_opi zQPWY#WR}G=swn$PqusW!Z`2|ob$j`JT0jiA%P;>c_Uv73q1q~(gPPiG#F_i6XIC)T zLLDa0fyiwOW;Y98b4i1GMf3Pe26qMZt9AcDk*Dz)FkwLY0Bp+IsDqg#axV`ZG+YO> z7o2~=K`&IOv?O_|$8q04Pd1k4P7LuYue?%)O9oEqhmMG91h_{doHE{0#2c6zI8l=# zLzx77_kDNK?Cn69M-nOZzD8AZF0u5x>6!iNCp^#suWF%ZRo*)>T=zDSDTYRCV|$qz z`3A;S7)bghB;wk?-ioU(yGbEfB3FFYS!ZBV;k&48%tA@yx2PpuS1P^5QiOlli|@1` zj5pLSKoO|{w>K_>yLTj&(3r2lXh{FSDg54e>)>!ez!VfVZ$d%$Y9tPfQfXePN6t~$ zG6b71MdgLVla!%F7x0g(Grt~Qf!gNsjS+f88GIO})}frJ69@7L_oW_lFu8GH(rj#| zQ-MQFo;(@3y=$@EVFijkw&35CftN&Izq%;IHV!3%ce<(|-b|120}tGff4}}B{89<$ za_vaWh3Ne&|#Gp?(Myq?31JFU5vLDqX%)xwXqMYV=6>k95I>*PN^3 zCB}U@R9*IU_7*szT7VzIBcd>Q>Q8kYqzf}M;p0C#XL=vaQI4r*a@bn`Q@p`Usm=q| zd*A&Jh>c{99(JXUi=(G#q7QO!s9N%9+S zP7gfZ9OxCLzX_`_Uw{2fv!7?Uc~sPe*8l$QF=ls1UvrG-V6(H6i}|W6uQn6kYCeAI z3FhOconU5GyR~i_+*%jI`I3WeCU>oQNYY=-Bh#+6{*MkBVB*~Qt#JQS16 zBQe$bU#>6KdzhINVwAOTGDioFGLs@r>yC6yWxYy0Z9VSc&d9Y6A2!k)=o!uW9n4IS zF_Y&~>%aW6E3`U#+RW~*9=ePeO`?>Y%=Gr@l&}Re`9*advB|8%QR|6B60c#J{_l^m zT+gf@{%4Yj*$X~qdfv_Sn3+c_#!L6UF!|h^>g2*eF;aND2r@EwF5| z-Q6AUf4=*CkGH@Q76^0q_x8=3xpU{v_ukBW_q*piM}B+qoiQ2A_+kQ>ju>5Cuz6SY zeMucg3K{Qp(9zLV^<~}ovnS|mZESTe&aS%KZ=a##08&ROU$sxLT`%1L*9&z0T+Y+E z+I#69f9#1)PlM55T~I)f&fU^a7iBR}*VAg0&feNlH*em&4*PK6rt`7uqU-K4LFZ)~ zu5-5u*2(p5$!p3`X3e@^9p4uby1sIanN8wv*Iiw^hB}7#=bwLG)s^3~lbMH(^1H^* zFTVJqjv_Alwj8?~?+*davAi!>>+J0u)iy?fbuYZ|g3j8?TGtE1bslE^I!iMfot>4t z+Rh{~_1-OPnyz2B8M;94;W}@g!vOEgjIaJ)m+I)q={T@AbnS@mR72D`IlAb21YDqV zvi4Eeq5k`Wj<5^0&&)e#s^bMBS{Gmwp(Bh+ci{yW>74Dobpyh0P_I5ASE)LmeDaCz zip#IijT>{e?ujR!(C=p+sf$2QwcItTtL~uF17V1`pll&71$W zcD05y3;b0JoHoJ}!WJO7tN%(76)%~pG|)=@nSM)z_tATwL`dU7jA%Kd5(utAN@~Xh zhxGJx#b6LK;cle<`T>(ItkBk2OA0KBD7GpkvBo@Rj@yMAyCRVR_!MAYydJV38xj)} zaoMGptEtwr&mM=@-*`<$Hb;*leNLh!Tx|V}`&TyRA*Xyh+ANw?5(RJg#%)Jh;E$OR zDtFjhhN7Y-4WWKx;o_)Qg_HVe1>fWT2XALq`U7hBXP|KEwb zvnMz2c|$)kpq)Ya+>3D^>pHTU7Ydd7hiMQxr|XY;%8T_#K@5&kJP0j zt`q#9MAC!<*pNUYT%rdW*JAn4KPb$lzh40StGhAgEV9RRgV;lXh6rw0BC--OmiH@} zj3SXgI=dZ?C5cAPio!pDah@EEy=Ew(96PW-AzmppHMiE`%B!xRgy|wwR#qO77O6vn zXYdEP*2G3)@6H4T{)%~`qr1VPA&NN60+>})F`650Y)+EJ;>|Z>?6|Q^E_?-|>eahf zA3|hg+FcO3{LQ<%AuC(Yx?kL|7zTsqPj^&Iu_3*NG!6;+bck zR5 zKOZWM@%olhQ%`P&oaN}{KG}#@Ep5zTvTHIS3uUU#(f(b1^>lpx`Dco>V>Ns1O$=CEsVRyb+HdST^Aw%tO`VEy@tScF8OW60Jb^H)+bC^O!D zXcX42Ut`#<(|4Jv6Zz@f>^$`B-IEE8FZ^w+J)Iu(kPSlFCfC`AAAYFVcZLofdPoiJ zqh^7VV}a9#r9qOn#1Z+g6rmQAKFjOR7U6Myg0x;cYL`=Ta{wC6Yst%*i1;7k53_~v zzXpW&Kv~vqv@k(Jitv1jDw0s+>`&qinVHJ&%y2f~^b#vpW9Ia`JG3Qu+s(giGtFfNY08a4}6^Yc` z9}pQZnbbty$S>WBimF_Q(`@*j?_#oykkr5U!b?i9L8enZ90Mu9u$DUWqw&K3p2N@~ zLpd#4$q7E8OKPVSvJ8rJ2xQV-FOLyqm8euxokG%nynMytJUKcz8=YP0J|i-4we?X0 zf|!^Xyz%DixSDEPLi;aCN|_dW(WgfrIwiCJI9vUji;D|0(W}&;L!1sn5zbvVW@rml zR1VXark?w}62y@2Q4*zk_UsASS8O4_C4)^2`)lt9Eg<%hB9hF4bN#zZ4X3lc?Hpi3 zTxW?{I>inSI=s~c2?#{si!VPn9`>B6=V0-o&k)h9XJaU=NhecBZ*1GXwSyBW-?P9S zObcf|lzgn|_bmfOVMr19kgr1w+--!)FI6SPCAM!vVL^fM_aV?DadsV;^i|hVLK?h5 zgbe6e4yynyDZ^w}`En+UL+?%I8Ik7IDz~6=WdXsH?|r-D)M! z5k+Q;xLv!|0C+(Efmpff=MIBmxnE~;YlVDW8n5@BYVhsKTm;ji z_?27Cco#~iwY}&J>+h3!Hc84hhW<(duoDvmv)fW&$@!g7T?|60oVRH+&%M07!|%hi zeOVS~+|SPsUS`3(ulr!@uZ!>s6(a>oA~MkbR*~m{{LcP~Ywh1U2kkhgrv*-%2(MtH z7B61>pZS*LW+0I#!M*;~^3+pLVb#ySz}v^0k%@T-4?p<8HMG5d|9%V^HUhA51DUPh zKmp% zQOpC~{LWF>zO1SZn0D0#jE1~^SX-PHR!JOsDP0@2J(&?(p^>+?wNVd+Pd@obIeCZe z{KpF6wv|Ye-~vTf`Nr#S#HtTBF=?zu(GkhqpgAL6k_8^_I@s8ZM51j2tFU)poN?XJ z7UaPa;4iEay;WkF)RhSDPRe$g@?}b->W3CTNYpzTdMD`p31mujqTUwAG`p!z9&I zZ5vqxg3FPZoWQ|@9U{r@;$UUcR^=vCw-m$4p28UZW7It*C3_hiL(bw@GNH`8gwg3t zbssvkZ>FCgf9!G0d3FwEzk85rMSl-GP`{mhX+Q*n074lTYc>{p&DP-2#~;Cy6tgju z0uCNBGc&2ScoWjo4yf-d+Hx@I%iPgK$2q=*iM<@)irw9qa%U(ziRBgnA7SB0Wc#l6 z9LzGQ_M9n`@x@nPsKJ8a9_r*2LdSIo2euhZ?%ihOXck9Ok|aATg9Z*p^7afynj@9d zZD;00{O>N@_Tcpt1$wr#-TwCV;=Idm{DTiZPy=%BFYrSFT)%KnqefwdtK**-4_KDK=Xf z(bALZ%Q}hHiDN5K)?vejb)amTHf@?zF_s!mt(g%yD}oK8P9>CQW_<8^IvjNLrLqlq zZOh9ujQbsHL6XxJfBFd~Po9iWr~a_y)N5MRZ@84nfFd?vD7||1!p6 zVCT+VN;+1OnIt0KGo}aLoAaiM*hm}l-D&02wZQAIzos7U`?43q$FnO6n6y^wUWEQk z5?b@}k49(La0U_ywP5tlP$WsSf&9E(>jtZ&%kq+Z1P6s6H!nx2c}<)+5dmZ>X=tuR zZ2zA4Wz8zXuIl~0_uhxUqaOAkNlM~GI@|c5xGqH{!Woh&rLqi=tgUPrcMYPrNgUJC z>XZ|vwsGbot1=bdW&^n2!DKDNe!?3)Zpt}K1p87}9ai36@D?Udnv5tSeuZ0D*dT;q zpl{n4WLYK<2GGuda5_r)vM{q$gT!8TV^llRucXG!c>1bm)MtTu>6O?H9;T77h6oDZ z6xZcq|A9|9U=U=y9U3eeIFP6VVgH9E)E(Sgza&ACIfO#llmFV_?8=r%`vKThvz!!X z@haji-%+G)0A8hVjj6*c>=NR@h5C(wlWi;P+Rc@-D{a`2!6w|Y53*b1>1a|BlEWUc zgUry#U|XWV5>59YSMnoIKd1)fUAlCUUDZHc21VAKCFs)S61C2evsIQ%q)W};jQ)KG z9M#zsXL$!9PeN^&Wwsy9{H}zhCX5dJY6_q5l(nK+;EcDx!MpAmZ;I330P|m-2Y)|b zg@Mf>GE}D7M9x=mg!wiHaQhXvnqd1*+#d2^74F)F3l}P4cC#k^RH>mQnf4bX&0`hQl)xfLjnaT&NkWe*o(p}AyM;(A9_SV3?7=k5I5X# z!?AZfq=r0LSNyyjg5492Qo-+O(b_|dbc%nJsBv?1lbT@?$3xgnL{|DpMe6qI5sS=y z@r?NOP*o(NFH`A`W^U@UCtal$vj#BPOT9#ePh@Zf!g3_ojX*Uj8#&$0fmaqeqeYmc zo)7?W2(zpc@cHwf8oM%JzyLV8+oPm{)7-oo;>lkd$#}EWJz%yA<3^9ebvImx=~rEY z?3&#acImC|52+QuawukwCEqMDwsq)&P=Nii`WJFiPf*USBL~&77@?w#{;iP|o!Esy z&q#Q+#i(8L>i1($!!K~N^n=c}NkxDkfBZ4E?arAq@C^CI`*~fgqMzdI3j9ItRphLg zJGk-y06+jqL_t)LOIg8v_HYmz>^~l^E|I9N$%1eck6|P^I3$=1GxIvgAq(xI4B|sP zhN7%W;8q8VINZXJQpK4q!759U&vms8REg}#JchlhA9LnBivX_y@O0^l^2%gJvpYf; zByb=C9#KT)3n#JAzlof$2iFS?Tp`!h)Rlorb1Dj|jzgG)K*gjjm!Md6Y{NfSS5mSu z%G*kK$I;5poqC!!fuIE1=?BR1)oTcGOQKR{$2O1FjBN>Eu-}QZ#tnt=QvMx9aJG^(XJOrpY9{g+N?C0hqqU@H^7l8aGQNut zM73E7F_5B6rlYIdfOM%+4J}o1*`kr_sg(;!@57^ z?3x}WA|gUXjx=Z2)GGh2Wr0=AoH?^oXIIWfaJhR3ohhZ>SCZN9$TUl!=15wjlgf!CFb@e!#q9~Kl+vg&>T`joy(hEB%qsajB zqs1R7=Sx(_e61poYeot@rd0X|P=GfwLPZ{BO1g-Uq#eayVOQ}tsHKA9%)9SW{W;n{ zq2dzgjxQarC~{;AeqBlvN3t@gt*9^LRDOes@CG}?BFL^6Dq0Kh#gfmkcAd;{=*#Tc zPhs%jAu9PaqhT}B>VL)Hp@WfSF7|3xmD0`P;p;O9o*qnkv$TV|TUQR~hhyW0E%^MS zuejb50^u-}M;>_;fo}cDn;S*NLLKs&^iHohyXnLyOMoqrj>^BOwT z!AuhT`n4aGbN<_Jzp0rqGR|;#;DL(Lj_PNXjJR7+07Imyk5;m?vlY*|!P%9%J)Fn# zj@O1MjLK_8vw&s+nPt(+8D{~(+U6JJLLwfL1SRl=&LUEO);RKz{_&?D6fQT|htsWQ z?Wk=lR8x1R$u5TWC3=;Xk%q{KNMsRz=wR=F|2_W#Bd>Z$gw)%`C`LD@35H!5$+APB zb9a?dK4i!c<9gGD7hn1xWmhLEPD~5Nu_S67PBkeHK870VYhZ5GhKC<{$aEKNS+l@l z7WnnoU)4ZS;01q$S>=~senFsL47{DsLV0zn!lAa;*&wraADtsTuDo5>#%b^bOq`^j z-ao7}f2#x3n`|i6>MI$>jddP=+DeFCN?#rCb zv4uyQpTf_ln(fAx@3tT_BNNjupT@{BqmUL%u4_wI_aTu<-mzncYDpsG60zL6Z43Nd z!%^2zP3N+XQSmZ5e^%JjzJU=|Zzj0b!^a_@!_n>Ryg-gI@*u|${a>ceH6bBEaf~-M zHZe*|iEhp``MSg+y>uOlo70r-M8a2?5t5iUkgZElgX2KQUU0N@C!cUG;^X60f^be& z4zdbU;K1C3KE4+ryK)D1*RO($8Iu6Xt1YT%o<#7b537 zP(yojc!BfJy#UFnNh*5mO3ZJ5Lk1P;US=M~RMghwptxk0+HdjVkJWo;{{-u8#o2>H zi!i`Q!mw5}3uqS59NshfH_)|fS5oZgDTMwBLr6qQA`j%-Rn%n{TyTL=4)xIE$%Ff& z4?p2UelqdMPpAi!BtHoJ!BAXWT+u>lV!_NBO0!w*F%$nrj~=ZOfM(n=1D}5K8KNlE zA%YdvOmeAhsWv_kl9Q8F_O)c3UwiGfN6m;f9AA4sy)7Vcf$*?MI=jUx($+#cxb^GT zcgWm75evv*udcoldx}3)vf5Ub4(Jwg5%$)8j5ysI_*s*Z&%6NFPrDu$UU)DG?a*Uv z*suYkMvY?PRWzM5DFhtQnKLco*tNCk75@zDC3(-*#vV3p&dS*}tar3(ZH%ZJC=#5OjAFasXRq)3H`VByG{x-sw-0|akKkAhm2Mt10bQFXY zMVJGoPoJ))_Ivf}OB{Wz>TgMj-Z>=SH{5LK(DHIGs7oaFm$JoPQ;=T$8wL#Ng}(iI zGYs zDRl2E;b#{EKgX`fA@nJ(^ao{^`Sa(i0d}xWEZnU8QQn+`W+u4>yY^>JKm_t?_Mx@0 zg>Z|0sxJ~*-NzX;fq^(XIpdAz-@uEHzf9UXbCnclP2{wEZ#891(j(R5oH=ta`-x}J zwW+_#ImpgjsW7-bd&c6^Pd`y~cE*!D!h+;8xOq7uvuHO$9r~ymnf1F>0-pppw4zx+ zvw-ICYQKSh*aAU8LAd3XTaJ2^n{T=W3*UPe5tLSKr8H>FS1~GC=g{ol=bnESGj6{N zT^vU<(aausb^B0Mmx(*>xZ|kp%SKT?djEs>G5oCI3Vt9IY{P~O!~SJE6=&pIZ@z^) z@4A~wJ#9)I>gJnoQBIEbusEh^PwNU41t4Ppqj^y`t0-J?#eU^zW@Tj|I9N~Fbvy;{B`3-RM(XwYVh^2vT;Ol<~Ho7I-8f5H)6WSsEDi=qlH$s*2=LKr`EJQN>-2g zFV9CqV?DZ94p8tM*=}ZTfsD#6Ojh$%T+|XJPA*%6k8kT38I=+-HxSK2p7Aj{0np@l*NYRX@vf(6?y5nACqPEFG@LmXOP zw#!S3zyL(?%hk0D2NrqnqO70ppaU#X(}H$JN-JC`O@0M#z4bP{^Um9f8cY}&gb7B}@WcTX z&SXiR6)bXTQ<`E?h;|qTXG=zn+0Px--!Zwcid@12VAEia?5Z7zbU#bUjLU4302w3_ zF4$<9L6T!jBC3a%Cj>iP*;I~f(vrzGCvK(18SS;i#TQd2oiTlU=pdngz}n3z(lVXR4j( zDQSVYxH#qP_6xff?vCN`cIk$00q0VJbGl+FFzxj9*I$o$^XFo3*^k&+x&(gFjw<;> zoY~_o(uO=xgiCb8#`P*eO!{yKiTVB9`=Vc$n-Cj5T}h4(B+ZXj&Rh#fMt*BsDIOpPNczwZpXyYt}xrMcwTK5SX!X&aFHMojT zDTKL4Ka@9EW5GM`KxQW1;6O}@P^*m@Jr=Lbdk4X8qlnjZp`7?Z=hMeB6i#-o*i*C= zh3&s1sp?0SIC?14ild_=6H_lx&g{;*pE$K%j%rfh#n-Pxpc85KY&?-#w~gCLvxn7+ zWkIIoldv6=CQgFj)=i5f)Cr@++^62ef)^Gm(T4XIePCMUsLL{|;^N{oy<>D_ZPzv0 zQOCAAcG5|Q72CFL+v?c1ZQHhO+fK*$>VDpH{_jzv#@-j!nrlMb^qI@BD>gRF$={kv zTE|$6Vx=;>VFe|=*F>^hz&`Qe;bHXS{7YYc6uP+L+H$!3=)5rY*P z$>Le~gl4YvelEi3=|)lYA9ae@h4CMVPXQ)#kEJT?-sGPwI6Qy2T{Wl}HXj+l`QVQbJx! zBcBkjWy^&I|I>m@pzft%Xyocrg2ISZDpPw*zIKKE{;2T9Q}we`gN&;@+TxoTHgoTP z7taTz9dQXg_Gvz~vFXiV86yEpmpk!$#&S|=tdJrlZ`h9;8!tEfzy!{9kAkAMCa}!D z+8Qo2IJ{v_moJ&Vh-fSx!7fyH-}JRz8>i;a&9u)cgCX$L(_Y88q_iS8McG2Ss_QdD z5PJtBiFG6hZZ{K9bi#sBd$ckN`8j_TNkCK=oPNp8r|o?}M`wpX&PXxopUqUl4qknF1x3ZX zYXO6TwL-aIVfgl+Jb8k%o{yikjrRHb8<^!=yzjEPx=*YK<5L)ai1vOY3kgNINTQ*k zeXN-@eFE2n3I^cRI8&vhC~I=Z8bsVhz8^(L8+rZ{WllW+JlG={# z=FsTZ8$R<=3JpWyPy*8dEJefFp~!EXQ;%IM7&uIw2ezZ zx?&$*WmB&;Qc`#^AZueXi{)IlR@>0;*b9K;I(mC-M3k?Hzwk92Y)u?h=Ur@6ilx&> z1?IJfO=+@H?IG%ys(p+Zbl!e^?;6|$``>GY&vpu%iT#LI#311~r(T-&Ya}xxKCx4B z0=V3KC#&f~hVQDC``I)(6Z^cKi5l)_<tJQWZ@jb7z*k;Qj>HR!Zh5=2Shl9 zD*_n8=vsI{Af&~^iRFDrFm)Y}1C7bU!$PT|aFq*N5vPy0q;D8t2Z5N|6U8uUbMIs8 ztbOoxx$F1nTp_pQY3;Qe50sP$X>QQBmXB%t>PkSE1F?;~l&Wt2*bzKgs`Cyl1j}p3 zO~%NAXjQa{pW+y3`hX|3H*SfYZhk?&{>f?7?6rqfYF2^Nzovuz2zo(h=OO!NEmH2B zjL*(=5v2vsMKno$QUlp#%+N>t5lBf~MoHhHcrr;Pg$VQcb$fzCa2g4f*IV0=feEtU z!J9YItjql=D0uiKlogrTAJF<#?L)jF1e=|MJPeL>EXSFC$} zUWrxhh6M@SesN?q;Jv#LuhK;0%Hu^H44hF{`jJKHNf#&SM;5sL=og}#>(DRcbezS8 z*}Fk3$LP|%>;n4R(gPp2%t+gP5$@_lj>DOpk6n?-0c(h4Py?CqWld(>@$kub8h4mmFN zASI*UWw{aC3nHx4?hqww4Hu-F4MN3s1KQhxO7>_6yNFnzy8Kp}AAGt(urqCJO0|N< zXjY-_t7##5^~bKOvZfQ|DH!{mXp(GJ3Wv2mnK70(i%9iPlag}pM;}0PKRc9NX^xRm zt!Bs4kJRxPsj@4f+-|@uL}ch(Z|B^|$z|vl50tRhxrO>5l0wB087A^DN;%I&Pw=^y zn=n2%@~qlxOi*GX8b@1~QhW~2xfKE%C*mqAfU;WG-mN1Iv1q|Es{fLC=#v)VIS$JK z!CLdZQhnE{30To)SMOZzc+&Ft zhk8uVuH~K%U~so<828~m9?72m@XfC`0?cG_A~u+8L8^uziKJHS?wtiLf?@mSvskAr zjDhyA&TVf81A}-~gsFgjBp(G5E5YC)jCqy#b=tNHa-qe?)Pp5nftSWNL@yt>N#+i| zFGyEYQEsQ%mPoeH? zIVp6-a{pUqu&Pt=Qc8p4h|XpstymY10+T5CGvBc$edTP0DommO_bu8Q#K#()^*>K&!?Z zW4tsT%eMlKui_*^S`w9n-GGMa1XCT!q&@|<(>sZ3ijZYwuchRQG1otusuo%nZI6=IBhP>Sd%U^9+IYsVbUAec3k!B$XPiZ!Q?iEZD* z8aNLA7R_g~M~>$G&Pt1oe1(o2&0;Pd3(lB!hsA2u8g9_cszU7etgyP_K}>2DZzPdd z{PyFnc6oFn|IuX?oS6;fS}{R-WJ;O6!@(-<4BqlQppAY?8R@6}v`4TGzY8?QQd8n) zjvU_zTdGvU@dr~Pk~U&_#g$0p090bL5lM-8&$`luM&#zQf)?PK`2Kp^veakrS^as& zp9OyhlG2Q10m@Eha5>-{-lXkn;= zzB>%;*hc0ShBu3tY^-YH<}xYFi80-pb+l#}T?9Bd;YBhsX!`0W(^d^27s;!2(YKH^ zFk8M~5mW30Afb$@Zq(N|u4gnETW4qQ!tWu%QJa$4!eJ?xaPBp4(cGIAX2t5{fji1f z!qw>?fI%M2OuhQ~cpzKeZI>fSC8jQ$X^Ts8_;w@qk`}Xq?fp0>nq;_Ba57a+_qsxM zt}uAz1L5i1Q||oJbVaVOeM@Gn4wuLB2H3+0!QyqkXN8&8WIfme4S*dESXmQEY(68# z=cZ(|qVqGW)LK+{m0dgGop0u{%t<#QmxTSq<0VNgHSFvt8lWidoL976wWhC&r859W z=hg97lj6|8=z4TkuFMuM+5noOl5l!xSSThk%>=UH7$E#(`Hj{^h))TBU1LRy$xkp49854>DZpOQ`(`7<5}f#XDArQC{%5 zIzE!bZaYkJ*Yn+FM=YJy*bdD7mf)YxMk(TcpW!o_G#;1tdB19r)yQcC%khF;Rr|9R zp*Gi;c{HeUeq?KTejlsb8I+@Ge{`fu<#Ps0-->l2#e=z`8HcL(H@uhy^}|N6D;frF#`r~ueASBRNu zxkDcVeVJarCNP1sM-7g42e~W}wia}CCz%WAN;76#z9eI4p4UTEn1heP+x~i8&Tpv* zAu}>)`DyRT(mJ(|FVj*(fh~ke(!{*L=b9a{6O0JCdM&qwv#T3VY`jpxuiFDeIoV7X z3lD0k1dkvHfqOKm2%yJs;)k1LkI!dnuc~<3fziS5APCJcf*J}XvRM0%K2nhhK8Xz% zqZSH1f}}GHTDNBg3HF2Ob$=5-rosPC{a~*--w|`4$GZ>-cI)@(DzBI1gLKPk_C1rJ z5yyd=izOfHW;&GXJ}GKK>(yLc*M9iyK>TTTQy8ty_Fi7M!0{ihPB21lkHUjLc->Gu z3h?ih>i%|gKqBY=a^k{4PI*CiD)I7<%tSBjjL=J5__@>pBLBY8`Wsr@Q#0``$8J!f ztZF(ap^9MBIv}b9b$=6)y>O0kR$}b23yNcLd69V55J|gb2cX>@qPDpsZ!Mp9i14O| zhdKZwuSA8Wt{1Nj7VprlIPq}O<8SfIb=jm9AyvU`p{=c1)c<#U(MQG*)Q0Rz*K}xy z_XqG9Dbp3yx-L@`UJoX0c&A!6MB$y;io5d-({yx^M6b)pb5(V@UxK7s z2-sTeic;xDql1YCA7u{D`@SL>1`*bh!Y~?{XLnasmH=p5q)zrwn3v>HCYg$@aO{m; zD@PCs&8w%-Q)i}3A$ma)zAtaRFHjL4f5h5!J}OUgyEd{@V7i**WCOd{ZT?Dg7ARa{ z__zo^k{$0nO0`xAun~>=Rb(Rj_H^I(aHb^OjWss0=44ORK*7F!ec7LX6wtRrU4pz}mXp}OU z(hvCV<~gWB1?{Yl^U3(V<--w57kJ(y;=N~ZvIU#<1(1|*V_xZk@@*- z#VD#cy!MBLu&|Qf$bdj)e}l}+8ML}Hb;?eN_fG9Y zxU@}1wUOHRHy}X z{1U_Ak&+{VlO+n3Z4U_x?`ypRfnI1Kb}=;as_0OV8$Nh?FGR(nX!VYaG1%VTQIoh2 zC*3fX^94b1xNAtrEhUchsoLziV}5RFbI)Z96!~QNcsyWPi5{9QHXiNlf;mmDQ=q2x z5R<2*ADlYZZpw4rN$~f$>v5ldVA9-<4-N{> zf4#~6OkB}%g;gh^Mq2pP7~gI$r-p#okkfkMd<)bH11p-aKcG`RC`!@ca(b5GmF@B1 z;8Fj8rZbdeYliTqqi`zC$cqpZ)j4)H8h9Ft<01l@@(ZA%n728H@e*-e1Z z-J~nVeM7Ehu(`xqzbi+u{&g{s#dO^dnJ9{Z1u=qOTQs0uWazZf552Wc%08{NmnS?V z?W0Ou<25#vl3$;XVj9B>^zr&95>nbZX)?w=wmcm0911h!P5VquLBU3=*(@Z#fL|rc zv)z4ba~d7_wgqJoW5BgBrKY_~R!)ayOin6{0tG?hRUfh05>$T;cI-CVYjQdp(9@K# z#dh^#+6=)gHjwuD`E5G$^|WDoGO(}d^qdavN%ILtSmwks&3hy8QSWiY>!Twq{3VE}uZ14)3*Is+#G2NPZK@XqNw_n}_t2YK4^-@5 zdO4mg|Es|L;QQ?b_cekAc$l2^tok>< zpP7MRvZ)T^OrY~t?0uZ4DjZ#3h4=4^xM>Cv&XS8*Tjbsb2syM^t>v3dfr5f2GVq(m zsq}T8D8BF!=XX*05W+z~V$Gn3j4n;%KmCh#^8JLivs1aEK(p?fV%zFZi@ga&wh2h9 z4nk=h^iUb@+aXh-3L!)L_$yyPS!f3ixiRbOzSDT7df(+Dtm6YQL|=+=j1!LI01CTe z6YDKY_LpeUr$VJlLH=lVR&HS{Y68sbmy=n$`q+P;x4-!2lCyaC3|`*e4CXu|BAul$4GgjE zjgaFY!gj|KebCxqjBs>Kw?$0ZW=}6+Oj^6^ens%UqV=`&L$Tn(aY|AIy-(Gw3t|n3 zt|mOAS6WTgMvrNXCEuQXx`Ir7!{je%sK^ILwP;RbGTl$s zw2_~#epDtTd@B6G1n8)j!Q&OBkzH(xZ;r4Fc#^_J8&aiy8$^uhOQO4^S!-K6HDuBG zCw*zEp)r-A#LNZ&yrc$zEqr1CweCFxl4Pbf}sOBTIroVcORdko))=K{S z>q>5%F7nvdVMP^`k{*|o(^MWB8Z9!Yu!+gZd7d{Lu}M!P<2cU_k7G=aJ;$z%{)X0|2ye^Dr#kt&i@<+A)PS2i4rzfbo_Xp#67#;D%$SX{!(U}kGK&dt^yn;Y zb`9`K%0{!A>#2FkS=fIt${B5oUDh11>>l7-fWQfT&?j=H6m}sLK~0GIkAgatTNXq? ziFcVHbDDr~(D+z%W}|~}nreW8Du;GTYHH{|+~qsmdOm?6`qLX{XlwoG;${tU%4_nb zgNv+d%T>bLWH{>1&$o*j>Up~8Zornt9Br=p?jUV0dnbhnebp0{o*$3*Tkq5a_7zL? zD6t8Bhet@As%EK45&9G;#R6z@vWk=pwWv{xWYm_JG*VnL&Fxi-WZY^k^q(iwzW9aB zv?xzG(SMC*#jQ&T4^3febByh(pz3b6UlgTA{mC89gp;^kXPF`uPo4Pra+WF~oyGqm z{auK@mJpPklU6&OnTlo7B=&;o?1*(--yl@?LdXUiGNe308;P*LCRr39FE z*Dwju6~*Otmu8*NCf>k;P1x~KiNk4u^4+ZS-Qw=uYgEjB{H~%9?~MM5uE!{6mtaMMq%799n)Ae z3*x>5Z{R(1?9sy->ZY*~#!RpAsnxCSaMC*yihFUIgPm%u0^3V&kTR0ip)h{|~tG1vOWO`$B zn&5>;gu7p*+GkLVXQX)zcf%O*DNPEgOJ&yO{_TSyCzXf*rdJjlpdn>muju-gAuKeA z(vx29z_C^QSZr3sLa_F-HP?^FGfsg&8e5aq>wkehU1#NE?*uvvD`{@c>FER*X#aMA zqCzSGaC2*uW#UIXXanp+d02tS{(`ZrUkG#JBH2xxR#<B;{4P3qKXZZaNUr0@XwUAZW!1*uVJ_^m~mSP4Wx=$ zdLV}^I6QGb$y{kg5IXkHK=r&4f_*e?tDiVTKl~peYp)~ji}3(|7|qOWqQKB`kq@|j z?nQ&mE;xg7S^3+oM5cwPuPrQ~N~U-R6sE&dT1e&#rUg!7d|HWF7J=cPm<)1A@daA@ zK02m{{}fU3&h*qf9F-qmi-KZD)VU7W+Y?#Sis4D+Z~wjLoaM5{d{Fl^bTbs2Cy14@ z#3WIeY|UUZQMnm>+|2QK?Jd`>h6N2wkcBKo2;x1_2w)C&@DJAPn$u+4d`3g(puvJh?pG6g!){9hB@9MyQlk&lNMGbr8 z?~DA1-wL%*VISixv~g!W1!DW#9k4q^w0A~EESEtQ-cbHs|6)NPHOZHd-@R6{nC||? z*WAtuA{uTacR@XLsNt`(l=D6n(h8{6FdQB#5stF_4b!(RFJzE6s-PtssY;`%pLpJ{ zmlO|sIyxEIIy%vDL)dC}9T*|_O-|a6a5IxW!#^~7u)QN^|NeB<`kvhpX7>yFLPgUc zVIWSw4pLRB1C;mUF(5DfsT#=mkl87xxz)9NT`&)(_>Z{_9NJB4^@P!@!P$D zq*Ga%=al(Xg{a_V2j^*^ydY1*^i9^T3Ps-gy6vRab_bZAHGI_G&QYn}Aks$@NfTqZ zciAvA49xKPd!NkZ){bX15UY)!wwj!gQlp`M|Bvm~9@oN3-pwn(Ta@xRr2bw3PfT{` zco4aYZwa{e3b39cWQ1ET*|h!v>)cY_$weIc`|09$FS--y|Do{C; z=u2~nwQRYoG7=J)G)`ABlZJ?T4qX=)kK(Bc{N~4=EC|GHZ~=M@Jl`LVXevedvB>sR zpnvY_Zv4<`d{lA}KU0#Dg8V)q9sU|rlum$Kz5^B3iYaD~p=V(>@_)`-4R%~AqLs{v zsWztz1*(8lX<9ogShLt*!ws>Dy#Lz>2hF{B^)QpE_K>9JmvZEbq{Tbua3l{VXtC68my-gSYFZjC&$9lBV=iU1Ff4C8I9Sjw>zEX_O?!B z{fSY`VFjLTQwX9@SVB%9kPfb>x(bg?s$<}G?&bRO63$)RNUgN7bBlOy`1IBea^-EcI%sQH#Y z15?Xxt|{Ix&&xSMSI*0aNY3lQ4co3NA6)50w+BMZ5K>kNrOmauAo&+sw~4R%T(_Ik3qtI7(TyuXr4ki(j*Y(EJ`)uuzL|yWp3>6 z>{0qqMM?x)gJBHxF7G{G`ce*LWaLPxW`?sf#h2Gt{y@s;!WS}xlBy^m>A(I|A-L3A zb53A;!zxX`M`IQ%!g$b6Lv0Z3%|6bH|Ak$Sz-`a=q7tR0ME60}u1pAS zC{zN~M_8oFmBJRUKlc+KC~3Z4^g}Sp+4}S_8}aybBpKT`qWKD)eXYK^5&V!3?p_XJ z{2guj zsVI83QF%dlCjwrpT1BC!*%|?6VlRumAS33!8RBVcK=jy2UaJ=$u)yniP!`j`sk6Q_LT41b~1 zxL=W1S000M4(r!hSzNkpbJsMLHoss2N=pEPpcF%UNmTUmxoLk4f3~~cME{rlE^UZS zsY|*hU_=V6Jt{J_+uSGMg=x|u{!^p8)Tj~C(!!~*CR36WrRFU*CKC5BqtYaQOSvwG z=cDvRF1p8|=fO7vJG6H5Qkt9nM^-jA{iE?DsoZv$h8!Q5y(aHnZREV-wjq8gowN{^ z9H4pcEo7LSL>y)9rfSdIIgJGF3E>QFQmmgI5R)Vs=tX$}M-A36`*A;$CK@pp59a3d_+F$ydw}15utU?Mszz}U`U(q z1f0-XFR~up=@1A8wS?IBnowweTF8v9=*PTzJYH<*LNFg{bzJ;(Ebj&;z{7tSLHkbp zwqtNroZDtRq!OLk{gCVsrE&O$P)Nx{7higEFh7Uw>Ifz5Xi0aj8IDFO*c$(EftpI{ z#=y?dVneXC%vy9xX%`|mQN^}13}sb`oWCz{8cNU~I}|7=dJ<4>#%dHjIytFyLNw;- zkB(tgU3weV8&azxX0+3ITUy)Tpd5gqs;asmy{GX{CLB66gxyfUyV3-iNYl<>DF1ecYd zGGivZyM562^2P-2)3Q-)DP2kL;7Vpt2TZn$el62;e+=(*ACoL^06E8AwF|$QRe4a4 zrR{v7yTZ{G*X3pt{)z(Jf0@vt*4o&hn?L8`XodJ+d8|^ull+OroF4zF>QLYcG1+t- zVsJ@lT?|Lzu4QvhX3&KiJjn^*d0Uesi|EU^36}ap88wj=bk!^WyEE%?)t5tBuUpq( z)V{57ZGuq=fd2FM7BpoE?{7j@&D^h7^bYl?=lx>`GH%+2@RUDua-}0&)&p~k8daG) z-7ctgHRkxgOg3bve8yXQXcJSC7T)l)EW?&zBS~8)j10H(H|ZjSMHT9%A(xa{Box}a zy5N_AtR+hurJ12LO;chOHjy#em5XwKmUv)58XNUgc&*Lrwc?jX%6s$VGR&_HyDMz? zTsq)J4#NNd2kU3A;{zI}=HLP)PTv=?T3mXk81Isyr|$HZ147og2G{+lVIZ8F{`q2A>wo66t@I$y z(*I7EZ$tncAqDNk@W$$CZbr*YsZ8(cPS*G^6(+b4R7kU2O>CyI^*Il=Wr_)Dd64+8WZFj@Ci;^ra zBR%{9KjUn3{eA=sWZT1g(Ge##Se71GV*B+sGY@IlG5cYM1k5=)BXrERH#M{56_SgWExEJ13X3~4o@Y$B(Mmc%#~7i#g95GRKx}&+FqXFGV;h-J ze<ntWsbCZ2tO6qf_ zCE609dD(x&&(>*4Nh>|vy>JKH)+QsANnJk$`SV|kb-)hGS366)!b(6FL9@r9_B5Q6H>%I!8*O*hq-NjF8!!* zl#i6|72kJH)DYF$jQ=}BEDcE7mSu)}`MNViM+@~dj%R$aVYhuS&6PFLd#bD^Y9t9! z`SBBqJaY4?F#n<1*tI|h876c&xWK=M#9Gl}Z-m*=6-8_e)#5ZozBD&B_wH2Cb7|!- zdRWqk2ENMZ1%GQnD66&T(<$Z*=fOdUt==J2R^q$oEFDPby1yz1Ha-~@u8LgIj2VKo zi!n2xSW-4k6`5I8@$1Gsj2%_@dabIr5>^?3wYkzDOwHzu2 zdsJR98Y?o2upcy7I@oa$#L0VP1w3t(LS>>hcr!fjmGai2D43+@REa#n3JMDOjPdaQ z8=C)j%YUTM5eB?=`r}cj7!$R*urQ7lZJf(Vr2pY0Be^uI%K2q$Rbh0fm@{b!&m_*1?Rmzd^DA9ao zYe4T2Gzc165CnUm)npe=-0|nB-p{+pirDqWfJ$U=n?`h^Hus2q3K!=Kyn*xM<7qx< zX~Db5Vhlgn#?orFboTz05k&MT^~mI(C>+RqATdgSwU^$0g_2Bd+zwenY1XkumyZ;r-I9_jtAg8MJg4 zS(wrvG-A2?o=9~vKUQQ12`p-%5pn{{fwqW|`!sh*>vDLmd4vgnV@Z*Ruh#zM*t@`= z6afoo06N`m4WLtijmdnT^gz<)DSnMc(X+v1NC@i@(tlJlYY&Ac>H?yX%OJ@>Pw`VumE! z%W||Fkuq)s<)~KiIa{;*^4jHB8(Jheq?H{U8rlQ$HUwnu$Yr+JaNd3h(qOnR8&sq2);yXTgsj~hMdP_ODMfcZT{kZsBxuWeG+ zY#)|{!^%%}#D!8=P~aWzjl>NoYzg_3J2M2@1?^>}9o!^Uc~y02d$)X{?ylge!c-+} zb;eBf>-)-%NsWW;|14ux8~L^iwQ+G>Ne{gu7X5STI6uJ>6MWfP9$h;dcC8nglL*^@ zsOOdD?)9;senPw6`o9Dv&)?VDvzEJAq4-|(I2V$ywDoe0CY-KULJ|wCB8zOqdB$KS z+;;RrIBRkSp3i=Ys^K9{xG*cfy^)>QK3Cg35%oPBZ|^7Q2RJ)HxFOHXSK5Vy^Rwpc z7v|@+s!mUZ`rEq8f4F0NCS}$w#_|8{>gxIl%fOQQAD@U`tv8Yl`g7}wp4lP417>h< z7}u7|icQ^hie;tLyaJfHEhp?phU0aT<@!r8TAmOd$VK6)oKkcS`e_b$Vl({947F4G zA0MU7i%h|VS?eI~nagn*hY;SNAOXZ2pd;DQ=0P}`Nv-Yl1y@wM_oKY5Qe{C)YNRv> z+L-4BNT4K?0?kSSrf`I(uB|~KgbD+f-UErj?ed20ZswR`oXFVb@5n0&12q;u__9^$ zN{e2V`ib?p9l9@H}1 zi|0G1*Ud~0IB=e#n$#&pSQ}gl1oRzNI4bl&j6Z_m=n{Q};IC)~edlCAuxU`mEKMmtP67@s^J_CmPrW$Zb&V$6(zRUU%IosX^MNMB; z;4hSTBI=mF`yjvy_x`g*f({l8LHI<>4q83}3I`xhRKA89BBG;J)Z4P~=SM=={vq-z zsV{-L&;Gs1QkT%I0Rl|DW3_(|vAA9b6{SQpLD^&)dOGa<7K2RwZhtldtnm-d8Xfmv@ui)?Tp?$vtm<{$%(=q&% z)HK*rs}*9Q@P+x{!sZ#p7)v{#m(ub^FAZVurnWXk#q6|k0a&g08chr#@5~uMPaPLsfFhqIbCh_?08m0 z*#aK!VuqZWjuzvhD|Gfoq<|@@Wluo9nM6`;%|h)wG|DC`oc$Yu_xCry^jVEsx57Wu z?N0X))|EX+IlEj36=_w8c~$K!9g#JsE`9aVb7~1xdCe?KwV=(%C9i9>*zqe1hrZ{4 z+kT*V>{{zq?d{}(BNX=;@TyWbHQWoeJL$7CKuM3WES2D3T4d>zymw|l+aHv-v9T%q zA;xHaa6Es;E$iq4FEYQ)0{bC|0Vu-X_C3vPGWoCf2foh|x?A9MmB}N`|9TrUwxB6l zLZ4IL_83M#y6t9L-M3s@e7R{)$&GJTj8v(*Z@S*t=}SUMbHCF?1qB7A*5}hh%)r*P zC=##E+M3Qu{ofUo4coL8{%b9*e7bFjyQ6MNf!XxePT*)L<>L(-)Idm15Z`$xG=<$C z=;q9{W0mE^u=8W$1O5B-eKCHF0jM(jB>TMla|e)Dp;;7puDwNWmva>8A$8`S#S_38D7->__Y#G# zeZX#N!~Kd}`WMcE1%9%%mDQf`deh>|%*+hhp=)NQ@J_#6Q>aWgT1 zf#*M!iD{YX@iJE@J0&F>e4GWI|GnWB4d9sITgA~L>c0hS*RIJIXfNR9Q4o!$eP)b1 ztIYP}Pdk64V)PJ@=8dn+(af{~mHik&&m*Wa?E(HXM#SzEd~pdgzIzUb+v5?CpLy-P zvJ=W55WF96zEVN;yxsM#|L=ThSP)7_`E=IEqr2_%`zj04OKE9&NY&$}OH}}x?2%fb zNK;M-{4Q_5gpyV1k_UH{k54Ik#veT!LYM=p6v+b~8U#fQC@C0gc@ASTBIM&Ev?lNo zx8Z)?{LTvG_FPua;Ksif1LP7dU8}^SD&<KmQ~!C$ZzB#dZ7*|*_0 zn`Dczg$i~HgGg92D}5R826gfP(!L=TET8w7(e+MOw_@_3t1cV< z8a$FXc%PWTwcm;SR?L|Xe2)bmyOCHgrGfwRip@6R|lBuw@Kw5s1bm<=F>aenhg zC2@S&fbZ|P(E?0N9G%^?Tf!g+`wD$^Y#^t+q4KD;p5}X;h$me0sn}QIgqP)^cXEg1 zY0nxtxRvtB=#chr+K^<_ZJ%DdKsH@X?H#XPZE!`Lp7mZ?RH=AaGbSqD zrLX6w5#S8ShAO@E`}TPuyR^nPbI>WRx7v6YCAE^|AUaoL28w`XZH2_%r3|9i6-ed@ zIV&8d{UbxPn}{@e!S@KZ`e!Pqa1W{l?PajKn+T>(=EhMsA@ zAYrM^^sKJ^pSD7FPxt8mI2?-6YBXYTAsUP)cI+B1`jIQk$Kj5jlPiveYXvxs*QWPw zH1%X_O|DoY$&gnrTho+_k?`*D+}c$xz;z_M@-rLDt_j3b*s^nQl*fFy)ArbIRWc@r z$oL38Y5cSh$V3ez+^5dp-CKkWDxzw2@2^?~I`0^ZOzmDC`YU3;qtpB@MwVcxg$lWB3OB9vx@1XEt>ll9R6QdZy6TXvPFvqcXto&65QPh!QGl*!QI^n!QCMN zg1fsr!Gb%%g1g&Yz0W!KzWw+|ebB2{)vT#wj*0H8Qu4LF!GZ1Ody&e%EpfnvLrCT! z$Jceu>%(;!hnGp~Apz)LcA@Q>w_sQKJTYq(CKrkcpZmP` z5jxx&xzDNKphWVO=Q61^RuS3Y`v4$|#?di<4XEdd4GlR=D)!UxC~tt8Ojlsr8H$7B z@lVb+;^VN-=&PI%4ppeqZ1nEY#*v6nm&=8*TVt;*L3t#0Is;4cDOrVP3oy3TV?){* z0)5lM@5q?6LmuAz@M48I^jVXpw4Gd2cC7XzY|<=qsJ(bcao~caksXxWo4``sow> za(G+OCzT_-r$K@X02X)<)Wf3Hc{EpsSBs|E%|4CwKv0m|IO`ttfvcf#+%`Lw)##g$ zZwtE2i*z9lNILytcv#lwdf>^$2L_{Y3Z~76X;SP1E!n2kD861s0#Z1XL6e}NtBJ{G zF_N2SFk1ZYFIFW!SGo;God^*BY<9P|tEarZxF~!*1mxSxv53d+Tw{B|o4ikfx zsQ2;6(p!Y6ogL{%PFyeFG{Q7Wkt!CtZ0;As#k;?73&tkKB&!e*Xo3jN?yT5&R163q zp)DvH50_z~fzg#{-cVXx2jjEdL4sc-;?l`NqgLSyoqw@L_NC7%GSCTNzMX6kYC{#6 zp2^713uC7O#Rbjatmofs6AeL1ezYM;w?E%a0o@8AC7`4=q~i(_kj|uW5N(T2Vq;4= zML6Uj;ci){=a~6D(Qi|(1cd8q!f$M4D%G6z5|zd@t*V}X(z2NG`EBT8NCc$QPqiGW zc4bV}PlhgR7&0*a1pB=_9-fxeAZ_@+2^o4FP&4V&N=CcxoX1=JAWr?fw@V*JiwEwN z=d>0yz8lCOPOw@m1IGBYM3Q{tL6)oWx%FyKtn1THNZVze0R+7H5t?eVMKyqlc*J|pXs-H`dYaZxZdJ6 zuxHW$Fl=1@{Rm63*1!CYtmMSqYl&=#BY0Z;#sO=cLu;X=JDpE9yyMbw)Zo z$Nu(sdl(p1@Obf>X-P1tCV+Y7qm@rO>c6kqo_lycX=$09-eI?B=51kU3AG#AKzez+ z9ijx7(W-EtgYa^Eb)p-}%d@nT)Esv?c2MF!CGM@NpZigLMyPe_jZeDdX!m8R$>wYu zs^fXjV9zzGIK$?!DLN`|FA-)bh*^;j+Ex_qG-B1#dIXALE!r7~+9sS&@%qk~C0rjO zDiLI=uav7{TQVU3HfNDsBYy+|n3Kq5Rj)o5d6?GmL+p~WbQCftQehZ+Ipv^Cyd!E8NiYVI|#HoG@xxI@hRf zGKvjIn2AdCLKVTD@a@@;#eNS&aGf$(UEy6r4!kQ3S}O*}0$YpeXLOrFB3HvYa&TC9 z?H7+k+P4SnAG7(BpYizB>=x24zsu0YT1Fh)eflYHK~~m%8zvT9V?RV1l6IrzyRTVP zI@19F_hscjQOQA@#V{U@ViEnmIc>dS(NKx8oz>pAwut){o$03)gJ5P>xY%LAvx*X& zq#s<@+}7uwn5~mdwJGxUfOdPj0%h;)l)%O&MO*is*Q6Qk0fx_1Sp~w|*(i%%Se(3y zM4ldN4C~qB559j*Aragk{eqyfts0x)V6O?>p~1n@+CC2Rapj?EgJod;nRpJauO%@} zgbcQmRU!e8nQt^kW(UdZ&+K@Gd5i6#c!l6DkyW8pb(&PhXmbiVnAXPmM%ie&!kQ8P zvBLrKjgW2)n)h8gS_H)|w9p}D}@=p5ktj!BMZ-1y6Pjf(xASM(?Ud6+l4+^X6GFH;IM zbJalcwdnta7=63x;OUyW8AEcV{)*z-!(zW(YKA%w0XmQ%hH-`{K;27`g+!f@ZB>6T z*^hBx(r$hS6u&$!9#V%bzvJI++;T@-q*O8xsr0vrt(c=kgGxP1PX3bhIz z@Nj#8&OWfryW@GLjE%csy!0ysyZop3oyYK5iqFa#24C6E1RgNY8_%TEca1i;4^}{7 zX~FuhGu$lRBF4SYYeLD%$$`Q1c6m%J^d2ptafbW}@)&5u{O^u<%AwlK9FiN{PL{u` z(Y}m71KHGBNh#D)Pci{*Su9BL&1LksfV*XfWW&$^u%{)N$D#2jk~&ta>xoolf5?6# zLZIklkJ8&yuI@fExfVnwzc0TkmJ;YX8tS4aP>A7+4}doOaMcM{0&N#~8FBKLTb>6t zhgZW;rBW~V)BYs2TtG!A4{`Z(vN;z`HbcNPhQ?eW+lR(k5)y%+o`m{w#&6D?&~c`#EZ4Fe*iKGXeAGm^mkgnfwUrzy!ADb zAtUCPSIfwvQV4MoMdowpsEST1I7I8Hj|sE-Xjm5nAuwOVZ!kDMB# zt@az=j$)Q>Brsy6o_6&{mqt=s^{ zR2UeTk`w*n&nJg-ttKAE&&?OwO@1W&(=tb4*ik=~g>ThwjNlzf%VQMi1wwjwW|^;G zC*&v7udvs>&xA%p5@1tlY(2HzRdMy>Ejo)3tzOx93K7ggi!`Q&#VoC?7}`5JGEdqBs?a**Vr6kC>ZEFuU8|R8N4k*{nc;|J&=|l`bCCS5NF595MN@_%FE8HGMO&a?;XljgV{CeauXL5=Hb_S33 zed0XJgv>1>1Yj!(sk(Oq_(XTbv9-z^b0<3e_FXNclbd>JcBi^@wIkLqD9D zPs1JWB~2GpH`xe$j^z2i(5=iby>WTC=Dsly@CubI0rX(PM_MKRHE}gr7P!RR>LE~VzJ|ueqTQaXENrrAm1_rX zNtEa={dK$ty2~a6%t?HoH|$MWvl{t>m=<^iU;d~8Y(LCyr>k=5hKLkbKdvW?J*Djw z5hFQU=&G2dC3m@-TboOxK6sOQ@Wl~@tT;foph{IAIZ*AK1eRqoVqVG(>7{&x@Z+jg z_(WOw9+J$r9vEXcSm{8HqUWrox|LJVgcmPMt+fUJEXQX=$@FrbKj=m|1orSq;AOkL zN#2i9gWYKZXm0y;WMFRJ^}!rjjw!<6?&lVlV-Z_@>BYQSNGaObqgDo9H~bd*k<#U5 z68BGo+dwgjM(qGKFZB4>rg_P86Tf%s%imD+#LmB8_|aLy{OA})hFYVo)vJLAOxkX> zxqV(~wDmZsp#5+Wqc@V)1MNpb+p|;$$A9OIox+`S|6HcADUQk{5+Rfx2#WnMs<5!S zs=|jwl|mfYCIuf<@w6Ql7<`cL!;z6>_I;G}>L$m_DaNTvmR~t6?VQ*l%zcS=>^iL1 zxKI?w2oe1@aWIyJpEA}q6S6J3S_j$%O*ot9 zGF8FP!cqkDW9}_0Z*J=&&@LQ@2~qp`pQ}Sf`4}2VTBP}&*>e6f_u_^sZ1E?ie4M|ceqC`i5)ep5>CNXZKSgfrmTKTP@w^8tUeC*d+93vJ z3SUbz=H(@1QQMS?3|}%*($`qK?wJ`(J^HkX#b&|*e><^}n2q=bTgqRDcl~-u!u_W^ zPCi#h<{Doa8IQ_0tcPMqN`S~=*QH|1%!hmGisLkDnE`55;KgW%qpW3f(Sv>dq-i7O zw*}_r%4_)vUhd|eK!7QPG(2i1qy&TO@$M`dZGxXvz~mPf#7-h1fytj%c44wiLWtgK zN;AOJ1-(EV&bhEnzrNnq?O-XS>Ao%8)RCbCH!hjP}jZB=#%-X|(TDP3&ans7rzlR(P4W=Q7P0w5Lnc_+*D_ z8G(f1cpR~;`PMw9b9;W?Z4xUK7SbC$O#e+n(~`+1DmzXo{bt(4t~IN2M;o}&l^-Aw zJgPo`4h#VgYhG$oWb9QU2JW?(>THq4jk2V?9BGv)Xey>Q^X_A&pAHWZ4i3z%gBf#i zqoeX*&vE;Zx$*k34roctOP8=cOes9u-=Z0<8HFYLaqAV1bT$VP4i1j#8T5U$@sRtq zLs_wO<~hpe`T1&c|5WuzFffX_o!9#06WK#*YQYhSR+=}VG!3@=%2Rim-yZJ3)K1OB z&cjie089Ov`i>^m_u^KT#d_Ko`=)NozXXCLxatD}2jL~`h{NRE zR}oU2IA<3-HiyXk`-$w^ztaTxir#5!ss*%XsPD{DnXE24%A0=|O63FUo?{O6hy|Ae zdUV4@rH-6(Ec~u0ql^k{0EO_$_d|=%pDBc2?@gGDI*9>O;PnIy`BZemVxdwIOFV7n z*K?z`ctn}1Q5za`BmeKcA1-J(dZ)ue4md$aj(GI2c!-rmRQ-QT zrQ)#~isKrx_AZ4T_tt*u{`HIGs~o~;cyb45X+L=dz()mnpG|xDF2RP8Q#gHF|EKG! zZ$Kd)+m~2)(DhbJhOvo3CRBH{u~XE|n2bq3NX9~>oH6FZ&8ek!mmB5rNC~;{RWYH2 zv^2k&(=THaB|G#b+W2fQcmr6WPsuY3DmsP{pGzanZJg$N0^xd=)HN(C&si^_+`>|w z?YX#bYf)T?0{`}Fl%5BDNaotpG*pZFQR|cRbJ@f~9NNa#Ha;n-fTq6$>MxPf%+Xv2 z4@}>{Xh~060qz`U4GSM1fj%=cB_C3}{~)OU5d%n%Fl)c8RNbGp;hejZ!do1n_nX`G z^@LQF&_Yqy+ylH%-S%wl?d?gN!NJ=#CPS)m8|jfY*o^D?G-)S&+LI!-GHs1zNx_X!EDs$^#uH+3)x5TF(m z2{nbDt;@wgIPz+@K!h{$l>LFz@8vEMgbEvg7>=&f93ao}e}(Y@_&V?X2HfEr31ILN zS^l1Ip|t2cRFl70jvm-X@I9iy03;cUyQoR2dz*_fQUFbMIvsuDB$!XqZc>mjI5y$|68^l(c_$_-na>V==l*EI zD0~%ZS&!)+ydhFgnGd6x zv!ojv4QwQnV?~x7J35{tsq_mzKkq}!SLzaDAQE=o3&!VpHTQBhmO{m%RWUHkuUsos z;Mr|^0sw$VgHAOtq!z|1!u(!pM%OffWkWE{s9_L_&y36h*6D6F!lt=^E?x)^fNoz1 zuhW+T4g^;+fVmkwQw3=1K5LI{Z7J>%QfEjNW*rJ_H=;XN6th~A>&HD)!TQPKmI<_m z{$MJF3qvD=V9m5scbXS>_sBZ|jUv7l>n*SVC@H)pM-|z{XBa0FR0{LC&jlwsXi$&E zIY?x)_V%3@H08gDG4=!@46=vF$9K(nGakA_*>mR2S*kf*CDC$A?j1%{eHxyLp!tzi z8x59)AxZ4>HtPvHR?iB`3#p~oIFVt^FhnoJaOluT_@OH&D&Z@st3ZfOv6B9gltZaK zwX4VmAMguzW-^s>Iy?tld)V$W<606UwHBu&o2GX*GedW3>6-PzdzVTlK1avaaNLNm zrq}IPNA-j@wh+Lc+aXe+VAxD0BATdE@G}selu%?g)?{^;{S@;15p_rzJ0ULrN}i-{ zO3A*fG26=w zdf)kYE0ZAIUfR(QVq8Xs$Gg5$qQ5-X>WC4^C2W7QG zkGMw3QJYj*&2`1(VHQGhmd(rHCrECG0v~fYQ@q^o-5jZ-e{L!7LLwi-518wu-7a_9 zHaBG<(wyDRU{Z{7g7S6B9NAvrB+cx=1{EZ8x$hW!fX5*dXW%QKMuqF7EaT4~e z3aZuRH0rmd9(ryE#!#ZasIeucxG!zb`Y2u}3zTvpy@XtHXRw%|4n*eUhp4$`0EVO=6{&=$ML-?G2a@_xKW&SiH?{ zL197W_HXfY!;yipW1^$7dKY%dIH!Moi7tP~CayO@+IMoHB?6y+Xw zj`o%e|E|t!f?D$Y>Tz;|ry{2_t9H=!o|=^y1A%e4avVkq8{J9H=(aCoL&8qp`O# z-Gg8z^@w%u#6cl92olrPql|HwE8upW+1Rj>%{0&eXsOQ7>$`Rl@V)K=cwp-F9rC~9 zVqpcREhfs2iHP4d6I|#BI8wMW|J-n9UDOc=M~c6|O6}La&af=luzZHp=j>Sk%!|5^ z!piDLNQW@?EG9CLHERy%01UGJuNTL#QDou)RN`K4bwc$YT4#pKzpwpj)kGDe!>+%( zw(6-NVlp!uU`(BAYOi>d9RCPbgY$U21}G~!3*9T-3QJ1~_h{UfHEw=K9Je?*O~8g; zZREtx_Nwu!)gwtIFUc~;s-Gg9RKOmxcgC2K?AaW~?qms7Um*^Z=x3}ZH)4Kx@Gq9r z(r4glpu!|Dg#appJog^g$~X)4c&OL-g^+{kN-s#1uUzlGrLah{KR{>B>vsQ`4-Gg!H{Wpznl zMEm~zyRNraflpSq6uNapGS-dXhuPr9x(q)p@6%RWUePf4)Zm4qH2s)mCJIL-`C-#k znR^+?WIw#0gJ^4qAZ&K^g^s?e&b_RZMZ)G# zda)ITa({=k-}VKuvGcpb3GchA*Qbrv&WC6;i`6C7=rPDlf)$4Jh~Q9Grl^zYk!|zx z=MDJ;CH2FJco?w$%K_`ZH)K<2Adkq21sM|)L-!l|F#2a{W03iUR_Py91AcdjqL}Ov zh9fxBlp(b*U*H+B;L-?mev~(gCeP0aq-z3$sx(|{YiHQ0Xzb=r=Hs>lO42Lrvhkv# zY|iHvHoE)zkj~l-Qfp>OyJ7HW6k;s3=qYuBcY^xxIltuD5#fb_3=Zz)C_y;NA?$s~ z%Q7r5H;^8}i;Lar*=N7KA;oD0gJZDv@?I8)KnH&V`y(Aft{pT2h5SvczB5>?a%K>6 ziB*)gs=s83_zMfaT{^G&T>Yx9sh5IzSbbEH)?cyNl6(_PI#~b;mBFWLZTWN}u#M`| zCjiDE=Om2bunh@j$d3x;Ko0Y3^iEbcuJI~hY%7nK{Is7)8so_v&0Jxc$tv&NR&22j zGCu7%Ok*4nSbCf^@XYevbk)pu_m0AjII3Hop5M_iPbf=q#*n>4rJ+d6kK;BsKT+~q z;!ynQ>X~k~-z1zR>ol;JUdY`0kpj80s`dmjwN#p9MiBD8RvnNgCdp3zCh>Gj0q_%jy)TdegzRu3ha&LcKzEZB7+Pxb5X19u3Q{PyB ziE|J{vCDAd^ew}5%n0^)saQ~NocZ;G#K*QZQ8Eu%#(DmIzxjKOIVUxT$)sZ$2Oj(5 zr8Wh)%&K2Y(nK8YyK9+oN?0qy!Sl1LIp!A@DuWBSByDR|G5Z0Re_uo8wX7_5gVjd5 zde(bz-9NUH0LA0VNADiLwwU>xYEGy85vQ60EE1)q{xjEwvaYFQVz^I|IR%*L*w91? z7S$&X4Vf>WDI*)>e$HW&42hJ~jxAr+qP~Xg=K4iU=O5WjX)BCr>~Lzh4YPhy#|+SY zTzpF}%KcuxU&hdE9$k~4kA>6xj$h5vB*pWK9#c%-U~3dH@<(NLZDchlXAP#_(PbjD z0ZS@41j>tGD44O`(fRTuQ$!LOIM5pG3+C|hD=L|A6sgc~c25VbS$cGQd@J6`s*H-~ z=Gwi}gTEty(Xv7t017#5mWRmA*X1jkItemPp_ryJtiw@apO#gyEwVHLTFJ~X-5I5g%K2^CA1a^NV`>i}L%gEGLra2}b2Nu_Zno*@ zEi+kAp4~Hzu#O>nb7llb)H2Y&ph8pitq|t~MTr3x(p&<>15@rB9v&}!^FA^g>tedL zaFk+fZCVMYO>pW*Dbr%6$6=7cI_{S_qVQPa8O9$D8&OYl$bM?k^t_9^QAN2l&|HO~ zNf71Iu2Kjw$9fUhJ0j?w_a?k6t|6Hcc>RU;MeXGnOl8j(FL-5gch-eL3M~ESG}Naj=c7ZfE=X_NUY~}BwE4qZ)u^7 z9W9C-Qy2=-&o#+fB!y94f4N;B6AVl*p58~{uK{s-7q3AuoEH-?IZ0plcuuN1FC$Cs za3%i4uww__G?ZIT$iT`+Dk$rjMzMX1|7+?8B|iQ*-Do<;V-dQI^22czMD{s4CZ79_ z*Yi1{voUZm-5S;HC1|Ke0E9320!vwN#o2H62IGANdVbh9^0K%&T_XzP!WoWS%5Tin z<$KS%1s{ociH?t7oO4jDlAmPL7rcY6fg|O$pSo9+Mn#8#wyN?S-IYh!+-}T2{T|I zBqSslK3D77GcjtG2hcy1TM-EmI9z;vjHWfXkXfRkp#l6;<>ax&eeUrL_Bb3`5S#^c zTx)WsP>H6A+>4%-GBOs2S_bw4iO5?TtbZy|yaeGYX2!wBigPLd`~Z6dO)3cuW4(9H z?w#T&i{eRhKMxWI(qc;6j4SGNed`u>koor@mr_sc$aU|HwbJfh0ri2C{$-eISC_!- z2I?5qJU2UBpNZd-6vcfcY_tdvJl;cY4i|r6pdL+o78;2TLSjt_G;)a?B>Y3p77Obe zvUV#9K=T2Y9SuosH#|o_i7G1MIXuyx@_Tv75O^VooRwVeN*HV7Q@o+A=PNZHwI|FM z>=6(UcKSurol@&+5g3WkM)L%|ru1ev3HBUMFU6AQ#8@=Seb^dS;)RE!MO%!U z;14TZyrAlSJP8gxqvYho9yI5!c01Sjgraldt%1|7NW^1uWFM~K`1NuBycS_8mKv8N zC{qJo-s($jo+HW#8@u|!zH@A{>wlbn#`F##-qO%@M#$SR&3bge8nICRjeHR9U@3j=FrWPH*A`!WkS0{ z_YDP(3}j&;gIOe4NIjn|iZqbK%)&I%eKjdkMWw7SXS;BrPAu&4uH|RSdFKh~;>~gR zbx7i3wH=Dt&m+j~M_-r2SpC?FY&mWZ%{Yrh6Sgjl|50oG z%^vwf#ZV)ps`C*sc04;Q^xKA%isN_aHhyuyx6iK$WqzhLY;`O&^NK*@dtMSXr$ev@1h*2Z5f zK`uktb!%WA;>EdJ<2OjgG$%P&*kBrBZd!#TLQ=v9^3`oOOCQY<_*k@;wXKwFXD7-0 zfN@ts1}b9f-EK57#at!b%Q)6-=HvKl55Vm30U)!!wdMryi{Ab`E2oHww6jJLd8A-Z_yJKSmblQyoH;%DCDblyxBln5h0NaW zon`#TfUW@HJytDTeVCu=!$t3JPu$n%*9h83Bqb$5_thAqR!lKLj5jKtW-Nb@ZZ~Jw z>y`#wkLI_oCOZSTl4r87uGQqjOOO7Z!AxA@;^GzyFR4}lq##~PGH$V(pr)4y9kzyI z=Wo?+mpygPxqba#o3?u3$f%yGqSbqwDI*mU98Aw37ZY7|jfEeM2?e^B`@eGb4sL={ ziH<@iZ5fb0+M_Pw{83)=!sM@J>PHub&8~Jm(lnE3^!y#Geqs~J&lNk0Lpvi`gMh{R zPNa+3uwB;7OGmutcZJ2IA2yO)OgB5Wog8-7%7crv;b&+YiN0%ow!2#yuN}h<+h~J_ zhkY`Dyo`ox4=6emI-6I4+y>%+GQ8;6`zb3(!&|BGkr7LRS<9s3{Sl7ifwGI<*r;6k zrj%=aRv(@PbF{87-DT^y<+x^ts^_-Bio85gJbZ)uzY1puD@|4W5!qz*(IPZWR9%6m z_&>R+;}UN0-BfQHIHYbrv|=Y@v)B)BJ^c-JUGJRqAW(qOBG|qYMNQL?IDl*Rp3=|mxVhVC z+3k4oL$fE`0pJ_hi3e6CcOapX3d+_7ZGbGdq%Wgdqa6Iim_|qIRAeus*%K_O=8x4> zLv?lcnJN-%@M1LWY46si4>3JCjhW%-9jdAE!g>jnl^i}?f6q%r6q&kc*pXKev&TLr zW^$yv6Mb7w3Jl*Q6LPz#?6B3 zw#;`HCCu%QtWBu?{QjRUicET{0udlCGMiLv%f_4(oLSOh6QTotFD>8~Dw0WL( zwv|*hQ`#+A`}V3$WJXu_EP84ZZ2CSjs~gSLXXW7M(>PqfT9>tg(o;`Pf{d-VmF70x z%6N3Lz8jpsiW9GT;`=qMZJEtrEX|F8I;zXE1vsU-c&i@*5(r(6FkxBy(9?*rDkLrJ zK#CbFm<4LCe5lnAcO4d!IjOE_f|ZXaiLoN8I$C;7@6`9qx2|jNHu+tUOI5K{u$_q| zes-4Ct{w|JQUk4cirM~rSyemy%n!sB%mf^JN}>e_Kt3h!)H!dDosb~>pZZWJ#->dQ zg0HE+-S!V`VNC;L=@uhvMEN@Um695AG(#dSo5gyFV}6GgW^Qg=;TQ;@?mxLdUW)wAaOUb%Kj^apEO{oP7BO`p*HRIu!nN`eIkp-#p>OrfduWwV?!xz1u4m$3jDKRc8 zJnk)4F~PvW`5rVhxQ?WSHpV(h{#7zBLH^wH*dxv$ZYl4nyYSK1?zHajGGN5DpUGhw zHMH-qCK=Sm_oYZhq%o0Li3MKCcm-VZV@sTeBbjp{k6a9zvU*IAcv8$SWS((xUDH3$ zQ`{Z>&MoixW0}d<>mF({w)czI!5qrx<4XQ4Cz`=?+vn5Ome$V7c}R9klZPJ%s&=$AnWVumSp%kb>mpKWej{ z@h_8vQ)$0w5UEp+U*KYE{!E-m;q3ou{&)4pZw+3s9ab5qK31dUGfz{iylrbXo(_nh z_l4suKfo44G4$yB<0sCTL9AHeKs~$8Xqq`3&|!TW3u7FSfE&~Ox0~XdU5VpJWfhgm z@|I6If^s-@c0Un5BPC02t&-2DMpnZ)HrcIp=k%S(PU~qWd_$j^sQtAtoiBrdhZi0Y z@NR})Nw_JqtaHK(q*wJ`Jyo;2Xq#@X>%)jrke5;)P_g#Z$*O$ZERX=4wMs^C6^_xa zB@H;xifGXd;g?PQ1DT*u?cH8wO}(i1nGiclMBzIL@Y?u%c`484M=SQ0R;9|Cnm>dM zyYxxPm>%C{(=$E|_;&?RYk)G@9U%AO@2a}i-Z6x1Mp@+g;`+bVKv^%mxV0GMx(nh> zYqvPpaW6`0gLRR^LoYti?7^k0JnSRFtzh4>)jFW(COP|DJO4Z+cI_goH{ z8TwloA<~f|d|O3zAo}6Yrz)zd6`fJdWBIWD$ECnvxL%QNGW+%mSbqN4(ELI&oAK4D zF>6A%(6b&ugE~?hylp$z);WW|*GwM`mCs}H=`4AzR1S?s5paOS8^7?$$tW8-%@5GN zT%%42p!+;-OjZuD?GS%Q?1=f3zGg?G-Jp`)MG@1?DOlB<_sp$pJXk=LCV;1{=4%rT{0eH zracl5qT6Ja)~nCO?HAXX8?zNgRWS3|Lqpktx&H4zojxMp8fL3#sDzXrV%~rBg^v~H zCfXi~)^KxJu>R;o0(R)bz*($5gGvVAbr{LdHzq{}nrpU`3>%PeG9$=MDs`c-)UD)| z)e}(3*r^%GUG2#qW-@$0MOjU!`F1#*di# zIUBelltjW{kc7LBWyoaAG+-DQOOx(+hWQqH6KGOYreS3`lnPW@Ora<_>g{=?k|zK* zBCYP%UM<3?E1?TXPL@c=&1>9y{3eMK9f)P`2CW!$EvL!-oW8`P=9<+YqErcUC1d|u z&!g%5aG*F%Bp_1$>WUK0?JtP3MV}qY!VJZz^>n8e^+# zZp#aT0FDiz`v+JcIfpeUO;gQN^1HwZB3!hLlsCBpT5AXNL!HcX-Hl`ntAv9kf zF_t$X5ao9FRZVs$D2a4`O{A@?7g+N=I5=oNnO`xMDGXsAXWrc2hO@Ufa)CbxC}~oX zsmkdX_UtL?`7A8xsVH&lINw8JjD=YmWPsA)Sv)R36!uHcWg!lnyVPX`B8tX!3r2S^ zBGQ$jdtR%=lD@UBm9p5P;JM(3YcTFbPF?C&%?7)lT+O5vnQW-pMaG&yW+ z+@Vdr1|+kO(GG%5}i5|y_}Tiz|u@ROsM0I zp>m#u(odnH62FP8hxeUNpQ&qR^SsY}hsR^Z#pEbjz1C3uiy;2)db2VhkIAuN#Ik>GsRTpQUaXo4BS^RD`s0iqMrO-uh4hwtg03-ICT9-ed7~W8;nAhMawF4@FtGd& zJdO{aL<;12_)vq(3$wEel^X-tG&*lyqY<$KF_S%EVDFt4jZ@JG}o z-^U?qy@tD5#!rzv63D;krNtx`)e)9g-d6d)AdPiBBl^GI5UifGQgpl*Hw#0f@rOgp zoS-W$7;#QXTB~4?^i*UCLm`O~_Vw;tT*R+4e_7tdzkzj1XY31)?tb+R|B_(v-mFmV zycdae6BsM{!|ICy$YL*IXVqf{rOUDBt5X9Z$|uWPda~{7_WYz|E-C63rdj)47gp(p z!JQBvXqzQ-NvxR(+wGxP8BI;x-o8GKDPLedBKPpw>XoSh@V4_}qLAzJ7sR_P;5* zMZMcu0H-f$?1)H)zW)8m!xDn$$bOc~i zFWCVc8E^&311*35+*;5mySQQ%>6v7J9te9luelLZmB;)T%@iO0QGGT=<)+>M#1pYM z%j@0Y`P+PPX~h_z1>#*;>Y1B^nG1WQ_Tf^GjcI7SA*#w$KG*G%l9rmGswZ;EJeHk4 z7Vq(I@N7X8J#R#L_YMP1PEt($k;i5+Z-o{Kcs_if0>;!El5itM>FgsTbK;Tk$VmOgSr#nR0X$8V3RMgg7b;ZsL;F-Wn{xB_-yZ< z=ZJ}{1Du^Wru$w#Wk_mjT`+}akv(3YhO;|~O>s}$o0}Gx>pZD~=D zMFMDZd>~J64LK32-sJ)T926YtY|c-=^|x+c?bnMY_;O@5rx=%7k}=Aw5A!fjkB^5W zjEw)?B>?QK8e;n2P5O(W-Q@?RU$J}yg!u<@sOTk@@m@n0h*~K~Xd5L>*}*H8cORj& zl&-F?LxO{Y*ZmB2svRJH#LAd#??qR$*M+6G(EGhTxFeGZKewBh1%tQ#-!F>}=>^6- z#Yy5C-RS9XS-aj)!{6NHwjJ;6xJ*Oh9aps(|Ark!wuBwrHuM zYe}2)-u_M&;BOAVLX#1ynRRtEgeP`R#DNCNNCtLCL2IZmR1&Y`D(L1G75be`5Q1A3 zzs`X&ILrh5SG`HSQ%&&yp2s4bL$~G+#pGG1+6^-+sS~ac!J_p7Gece-H)aC=`P#Z* z9JsD>vhY7R@QN%^fUi&`zeL*4PxzyvqOqCT+~}FMof05wDIbB`neu#Xdi>9x(ol8t zuY}QLac#xz%>1(gix3gkB*s*$0)F;;@R@_bmJPrIni>SAd=mI%OY3?fABQ2&1ZduSH%yb<*6_AA~QQglm2}|6IBM_p;H{Q>GC1 zii#)zwcm$&`wdd}4PTzmCMGJ{+Qow}zj!t_!SqV8q(a?2mGSWyzyy@3Mel^||7_I% zeX$tPL^(oIzk6e@h=KwtfDayWt<62WqJp`!tPD`wft#D4wfDh6L2+?$0RTnz-$q}c z*vTL}Z&zGiE-5A!=+?0GwiA%sMdj?fB{MLYq^ICjiPxEFU02lDsQEGhpO194yTM^M zFfefV>nb$XX2tv7zN$Tj<%O`gxHztB1+S;yzp1RWw7XWyQaq0j<4bKoD*3tpJm8?< ze*XL!7=j&Jd;{eB@QH}}#>YPnjVv$g&RH+m=7si!qnT`U`nD=oR#q|};zgZhXFjV; z3H4s#*4x8|OnZL0=4PWcE(n*jmwIX&e8X_2*SAE$id#_W)1O!ywMVYE|1q&fd*u37 zb!GiE*zn{m#{mQKS75g*f`?L$;8&m%K;OOVYJXBI9rtz8VyV`Qp^ObE_5$Enpzxvo z^5dK}>br6FpP&tutNzAE+nykp8?B!Gww9IyTk8o%AEjrq>gZ@iXHxUTn2O?JS+iZ; z8Rw4m?t77>)m437K0bppg{HKli!(wFCl?p>D;VAJ?y4(MXD6o}R~LjmfI6hQwl)FS zpe2eMnnsAmzXc>1EM#}PPM=@;4+8uLbG{b>I}O$grLmtMVor{alM2Wg8048V z)6xPsI+jzClVQ-%&`wI9|0T-kkkK>_2JG!N%-lfky+f>qn!v&l;G{M$TmsI%>J%R} z#vdSdte&`=Em7n3edKI)J1KSVEdPI^_s<0!L}$y3l|1S%h~|4_AnjuhFH}fnuw}7! zqy3l`@D+=;l<~Zvp~ZPWNQ7`JR?>VjCmKMyUi{D^132;zw|~HKq;NrQ&bp378Vv>@>}6Y+cCc7np#U$=B7i9+RZJ{-mPG7ps6bi z!Sd1RPd~!LWZ|yJC`|`c&NCqiNpyF&=np%0AggObUUwS9~heo zPSst}0C5fYc~&m^RvEr5WWLubAz@*qwZBi68~SqnUrU}nurM*t0oX4C>l~hukBXVM zwUyN}Hf77wAQlMC!t)nrPAaiy$~*6XD!er z-QLkr+30{1moT6b$ssQ@EF&UqtdSuqN8JJCdxRPt5uxlK?h$(e$wuFH9Hgru$RF4M|s$32(##<=jLvh6O2R~Wq~&iXqe%S=}uwR z12Z-QlV2pV9ZrwrUs1VY@`RKPtPK8xXwl+QT>(7tZC^0DMd+#P|%|gcm zoDBvTwe|Jti86=Ve~_!QvkhJpYnh;3pm(_PCCHJqWdA|7N8&J6n~q>MH#Zj>GBGhJ z>*$mm)wH+kxA(eonu@`58bM;7b8lGuK9t$p*(s=ZSSI3PV-rPWEQ$^U!bQ91tV_ZqlCJto(aNv=0$~G)8~Vk!t?9v+3dZ; z!$`nVtnt4YT%Mm#Rg47zQvEA2K$b9L-`Nr?|Fi9B+6NOCqw+0Zpk9oQjvi2y>qp3B zy~)G^*C^zDtG?VqDH9Vw+fDRX|-sqc8@T9gELxw_0q2*>Xv!WKP8SMY*HS4De3C$Iei}HB>YsJ=BjG4oB*- z+1|Eqd$;agAU}}{Nr6LBmm0`36z~Avw<~`K^N527{dJ3@I zk>XNlPd){UP>r&fYUHi!C}Mr^KLRw;7h|EG@zh<}j4^73uyeK6p;hQCWS-MySr zoOU}~kCscM`3}JI=~-A8{$uF^&EP-GzaU+nrCRYB<+6Ha6hewyBxf zK@6YIJsU6%5Xsuw`i9Hz*`uJK;P34fWGaSXoq6=3f_?aZjjL!TEufn+{Sn~bkvrVL z1Fhp2lR|gI$0sL_=bK{JM+;~QDNH@Utwkp#jRCwO;E8Z`7L$WOQhzR#@2Cyb1F7*N znHqt({&cwk>1ywn+7kymJGfT_7)r1W@L2$%h|uNbWw%(BbpA9-PVi^cq{4sVOyJ;n zQv)tqh`=#F5C{}P^Fkf%>_AgeQUWB*C3d`OV=D&w`m@5Q9(;OZ5ao>*H9-2iCPCcg zWEp3BFj_)VGGzG$pzI0SMF&FulF@fp(qv?0V84`z$F6^|#-w3wSm}QPg#w7vf1UTh zGO10V%H03EGE!jq2fO~{VCj&QY6N$;&A~&%!BO(_>&oHqQjW2po^`zmYgQRX1N&5V z1il34UgZ$r?xPk6)+%RiZE$+;AE!nEaGCi0wD+eDmqiPy&Daxen} z&;oR@Y|fFac0(%QHQH~W&cm%NEtOCrA|Zh}8z@m0fPjMC1Qc8^P>)bIznc&^3n?t5hD9L^0a6*@2*G}~PzSST0!6_6R9)97XLE1@ z1;|R1@HT_XTK{o2RH2do<`3273K<@L`A>NLg$iQgvKIQgA4X(D885@Xg1D{mcJE=bvL51j|oN!4B`gR&nKk8;kp}Xgc*TbrcQGW17f~IR0yu8LXt3 uFKb5f{-x3g6@bqeO!)uBNxD>lZ*Z}85?T*^8UDZ`tnf3C$>_}xrDFj$tSP&2p1Q}^@RS*!cE)WpVKhR%*XSQ`dwn0E35N*W7 zlJw{@iou|Gus>K$Y(+qOG=UuKR8mF z>{aK()=xex8XbPoC)+oPB#d8dX4_D*?Y|Y-&~p&KgU29mr9#T35vHr(7S$lO+2!-^3eMDX?0$sECm{|30SS-o*><`0QtZe zZZHUf5P2PgSuuTr8RE0gBHlwCYzEQ7&Oy3qnEjE+8et?sPhAo7F|-i@bxii43jyVN zvk}M7QC3YuIw>*ES(%|o_OmK)+KHC8*;A3!7sOn zT1K13VdPJXb{m*mG7y8#E`ST{t>BQEhHn@CiCcLE*L)vc>EaJ74`X1smFk$yhCG&e6Mwr?w+ZOECW{1}huhl{ubb z%P0~0tLXhZ6wOk>A+7S9bkTPshF0_u3W0FLEO@suX7{)I7Z0uMAJBVAJXmnJF%(Ri z&9|asfm+Q}MaV`iZh`T8zs3|ck|#iOdvkFQm6M5*FZBh7Fuuo*3-^b4UtlmBqlqUF zBiZ=r85fqq;+|ONpA=i?KP~NCY!A>pe}J^A+kT9lpUg9hmVA=k%vB6rTWgSY!3TI- zSGv!^SUQs}vdA#WB!xcVlO`W97na7yV^U5M}jHZ#gn*VN}U-SkgQ_bay z?utI~6dC!jGXK8QG&?Mt%Z0o;yE;HnzT) z?K1m0V064vXLQV^3;zKX03LY0q1noD&OW6H>)+v|Hzf62K+#;Vm_ftdq_MC-hePuP zjA#lTu1oIM?VvG(9Yz-;7o)F4uDMdS zi{97lc2~89^{_`a=_U>$b2b^R+-mx~ki!EGpzi_`%@jdFc@F49}fzQ2KPjUuX?RQ^; zR0)=NJ*aw74Vi9(aW91q_G>BO&Q=ng-|KlfQfz^&`gI$AzP|hT{{~;&25HOt1plP) zf*Uqlo&*L6ZVPQ0O9cfGTHrA>24Db(0wN3|BQB!u1$tos<%hnsBCydQ!p?_wU#a5y4`(DYp+fmEiOz- zjFJE?4M7fu3K|(Cz5_2I>>Zwy&d&h+@qbt`BkhNXFw^^V^RBa1$QOPl?%yjJ zPlzBS)EkFHYDWQ9iXF@reiLxh57o9Cj;F}tM?f@V&pBw$+CMy8y#M9%RyTmz#@05Z zw6yfCpJ&V}zo&@m0o38)JuK~pqiPYTO(7|!@nwA#Knwpw9 z+h!=IC!#G=X6&7V1Bg^v_bF<6qaJ(`5|X4FLbec>QMA}ToZoi+LIFQZ6!_+!@YMnt z7#IfDFRrcv}7`B-#zi4OYugk`*tTbke|4 z5^{6FS?X7qcY$|9Zs#6~6%(XBTt7g8#Y+AR7*wgkz{Dh!uv=3nb-qJMaGjtcGV_M` zznS4@L=bsbDT<%B_5bZcay;=b(JTCvN<2-;;R$VQjuaDnku@zBv`7QW+*u|8+zR+tpS^)i8{yzuf)_|5C@U2Kl z8%_M@%LX996496>ivqX-(5^9@^PFGcuo%OJO}{RVL;h=ZE)_W;td-7yfk*SdUSN@x zMcn&TVx~vH&&&b;8a<%}HoBovlY(FRUnh{z@;UrC-tIWmVmbTPYpal%)8ScJ_)^*W z|GBOK4A8wh7nYLDQvW>#6%MGAlM_l-+BbpKIE>XO3+r%DlNpw$=i^+ZyLpSp|02!- zvGYjSuLdU_1%>HxkyC2lX5H$6mFmWrW9n~#3z?bnlwaXTr1F)s{_MLCgMXhsQvB_G zW&gDHE{%tao2Ncu^$=Gxd+QgVtE+3wnz>VsD4yVoq~45P&_sbo>q@t5@ZK|$X3MCc zpis9R%{y?@t3R3x`jJC0`xt$jDnUB;1DV?lnkkTF^Vct4$QC~|2S>*%_We`zye6Em zeq)eN;@|g4VXX+v4w#ouP31|^pQL?4BX8Gxdq9sP`+5ozy#M?bLnwgDDC_CwiAU<= zq2?=A=q8!?m5H(Qf_2p2VW~pHYrh%N+S+=kxv_R+>IWMiw#;#*>A)oJprWFpv%CAH zANU0XSw(Fv)^_cFV!oN5MIy8tCBzK&z~s=WS5FqzT|pfn9mdNFXEu_*6>UC!)3)yk zXd9M-?9<=BZlRTosy7EJRm%@NFNo83y#$2-&j9E-54)AdQc95F5%m){-r#2~BY!|; zZO51076@wUzRRdoEn}q#L;mMQw9AM6)Q}J`XJ1D7?}Gym{_O@?un^?C z0vObjX8*RMV8)QXxqh)Z>+=4V42d#F8qpdPs;CUL-Sd6AlJD7@=cf?taL%a02uuO%Nr3kYpS#%}n3Q3Km0}CAI@X99zTc)L7+|u(^3r z;Z;edBk2kwg6V7rCT=yJzFSWOfg1y4RI~A98bh3ii^%`mh`JxQqFu~b>}lBw=FmPe zm=|eiZ=bPpBiVM0f3|LW!*w!Ls@O1yHaDYhFibK#T`@$&$9rZ`K!vw^OK>lHi|iMH z^IVD5uC!LB)BQIXb28vy#wE2MnEq|#9mrt#@)N-Zk5ivQf4*afjBCY-=;)L?Th--$ zdA)J`)rR6uoN4=#M*nm3QdH1~bb}s0o{-Q`7So{!H4ke|Z?Ct=Q6%p!k5ZDnP(xVQ{m9ELXkS$?t~`nWxOAcJ;uJ4!UTDF9pB)qoEQ3R=21cZdCN zGV%z(7K-x;@c-wE3V`sqTnEtAw1EjiixpVXf8kaL9=GoA`>@JR>96k)RaS;Br{;#q z-lULA%c|Sgcbk{cZn92v_DwK<4C|-mO9IBRI8&4D&>)`AsdfSY#q)81IV46w;h1&FJjS4MX2N@a5yPmlyF zMM@z5e~vY7JRz# zC+)IXb$G$+l&8zPvlG#9Pp#_^d_G9V=Jev8$>t;|E-oJB5asHoV^6Up#k3NE(`p;U z`-%+#`EJv^PImSBxE&~^EzKm80~vZdwa`OkI(Z-=pN=6v(Q=sPf7ES2BSC3j&3j=vF; zo_dJ;H)wd?9gK^oeCvzFClwuI2(g%6-Q%-3LysZgOM59qjIY=|Owaug$Id=GZwoh6lDPHnkzC zAGGw(r2h4~m7#%C$RvSB*3Rf~_5_CYrjXi?+JB?_&Xl+?>K5DYj)}&g%V?sbl^zyE&O zzwNZ|M{p3lE+1P>AwS&Tbt4oa>}-roD{HGPsrHI*z6?iJpBZt4Q0T}_4;J`-k9D-k zi{$TDLe}g<(cmCcO}UJK_g zVoNt{54_bvj=q!BIz?C9Rn3d2;dLIQx=0oG8r46MEU6H+Rl%X zEbMQo*6Ryv@9M&Tf4LX4wm!-CICaikvnOc{e^?*U%*3hUzMT_8a&L>TO8ILIO0b22 z4UXDO{N{h5M8bG8+}-@p0sRWRN;M(aVeb5o*LC+JV)Pi7QDCUEe;{|c!Q7-LD|*p+ zX3c7xXsLRYK_{kFw)@HA@Wp`h;00b-Y8ttJRHb?y?5Xp%Up1?ZTew^bg zZ=T)>Q}FGZf%i7Aw3CJyCheJ;38#Ba7@mWo4x=nEFpowAHQf-BIlFNEhtYVEBO)S@ zBQa8Ns zoxMFcUUX$FV?I_hGF9v0yWdLsRwz&pr)}^nB=yv>gJ8(rmPH9i0L-=um*(S5v|J6Z zx)MZw%2Wm8yW;-ojL+{0X52Zk_;U|C;7F#g%LF&SABXj>y8wxWQh9ZG@Olk`A&n!U ztZOvRM6>b*bYA;&PVs8Cv zink}`M=vKj;WVhUW^w;Dln@ZkVi5&Af%3cW-gv}HHWtGIG&+H-!gcGW0izty2v#6K zzs>>0QppJc4hKk+phEckISFn)Uk)(<<=^a{H@6@9Im;hw^RtA&?Qw6<{V z)fZ~5`MNJ{D``ZX{rg0@EQz1HTGjb(h4VMSn@Og!63%?ns^Kl0s9SfWI%mPccLj!2 z@puK%#?~A^FSxOvo^PwS503Fq@87Ni`>J%bi2Hcpn@eQ%eNKyk065gJ*7MKps#&~9 z?Sr_NtCGsG$t_7MA_HN-2?~jY$NN1ODTOyuhkNv32v<6c%f+hBKL}_A@pmvN=_)y4 z{|$x};tLWXeBnGb*z9-o7K(6!`#Rr8$1sRt(c?3uZae4&cs-i(A>sL^j4WJR`(o#2 zFA=$bezn=`7^1)z6wnFkuyVa|i#Ttr3VI3W72kqk`=GQpFM+HOm7l88CN6<$QLqea z9ttNvONl>IA$cL=UDy1CUIb2*_*V_%7HbiRvVip5jP@JaaVy0aDuKxz&1JR_*07S7! zavtqgnr7D4Rmd{91p`#c-7TmxQ5;1bouJPd=ubY+r0l#POx-V}gkCqGZDpJI=IM{| z>Qn>60mm6FC0LV}-nt{1EI)dXwyj+7ckp`bvv=9j`Z zK(ct)xlf-&{cHxF#cAjv-Fm0*(0zEk?7H`J1W1`(&UFba zgVr6aghlQr8vKEiiNZl9@~27B<&aboz#FEJpsuBrvV9>0Qi53WMfZ-5Q1}xiO?%^| zIl>;Bltt>*!j{uM>MiDQx!YYK{Q3dUhnEk}Kval=jSL|~6gYo;G@ZHO&|2FzUr$e) z?61+)*u2`6%XAZpBp9J;CYXeAF5$E1cTsHbKygDt!og6iQPYI3me#Id-M~SrzlP@O zl(A8x)J_V_S={`ANxtgK&G+Fb)59Sj+gi9w+&)0}8JIV)x_ z?Z>wjh1`66gFsTTghfSl&;E{pGue4v8da_m71c=~B^0?5Uq0AFqpTGbgOSnwf)491 z0%QaKON+*wQ_qS5W5o$MH2>o-SK@ZvKX*CAZdRMpo-OGs5WsW4M^kklrIoI;J-1Lk zDh1P!ht_69$-Uc3ii`K+Hm*xtv64xnt4EHh0rNhh1uLRR)vWZRYGC5BJJQ4=7G@#z`b{(o)U;+?y!>o zQRLpyZumF;^}n=Jb8Rku_kYVlT0xJ-vREVWqk4LICdtOB?>=ko{BDv_DlZVZ zi@%Hccaj{EO=9!)#{4Url91dfH5iI0sD2j2z&BK+Z;2z9QbhhP!mba=1T3ZyK3;J} zVd(xSXUljn;)^;f=?0{T8sASIWGPEWRhQdojnety zYno$YyU~1sm=^EN!-0OhP!jKe(yY<<7Jf}P^p6Z#_lTHssY1B`^XKa|p}g?B`0PBs z0)I%w0Ag6-6-gihukn9BH~~_L!HVG^R&2QxYrj%d~R&4 zoIsX^kbsHmvo znmhcXoQ7p(zZl4;xKo+rQf{%Kl16IRD@006spjW3->MEyGbP58nY#TfJKwzlqkDUM zvf6n0>SaShD=Rp1ySpOC@)ke}T)W4wop|Je_V)BRSJmlUBAh3AA;L#5)q0ePqlJ~X z1|@x_3qPReqwQuOdWfYBX<5KBiRrIiF~@ZfgSjI z$yFaq7FOH+po>CdzfHOQkAfAplGr)QbQ*!1?F}Q~=}o$_XKK>UP&Szw=)CUn4eGJG zHjFGQSIsYP2YqLWvo@+kAZ=*p(yZ2xWzcIuCUHy!;am9KeRrng_55RHYy$6Kl>(ga zE6VfTmC-8eWI(MvZ)%jk5Y&B9`J^r6D;A~Sae}6!>H=d!tWRR0h|qjd3@XeqN9kVU ztkB>&oFNtJ*@EK=*OphTv=g+heC)x(Tr~N7l8RPt?8%MJs@@+wFo)d&fypeKve@Kx zj81vGo$~u&4U3WcbVDUal*aY@ak@8<+k<4Koy2d1QhBbV8S+bIHjH_Kwqdh3tMmJH zuCI(P3|}Q>+(BC$H=};AS(*MhnJ1Nj+@G8@Stq=R5B4*oRhPxcq7_B1is^qjWMI?4Nqb?(RU4XLl$V3+V00SyF%JGKxF4Q$T$ODlQf<=BdX(@!3|t!==}3h9JO zfDA$KDsqn29kIdAspw}LOtt>&OJa}E{i50p%-s+seIZCS|AQmNCKy@I+u0;|2Q)0~ zz-ql&eWxu>##ndWnrUClUGDf^MITu_|3ZyGClWCKA@=a*BOmwOE< zZa6N~){a8te}}SY%P}#@(=PGqvSQ$AGPQ~_R$&O|D#oCW39x21?h`JupAl_x#}-w1 zN4exz=I2jIN#W)--kVrH(<97{^^P~7JKMiE%U^j)GOR;1$>^!WPQ7W7Bw1ZRs&^cO z6q%W}h<@Ll^xXFUW|ixYnH%`gF75pFNx=MH4rNYKcb)iQPLLlOur_Nqn;IanAkNPG7Bc&#LauLUPJnkN#Mz*0q3$&QXeaXY(1HTgKW9s5aJ{dZ(gD@l_4vm*d<1fst(3OFD+k5Iz}s*47__m==L#CI zo7vp~y9TVU>;Ab|L*wA!NI4}Ph?GAM6pFVT1L81?Jv%%+EY~Y2^*CcX{?7; zh^2srix&=*RYoBq`qsMTEfsfrQSh60@#zgb2m(_USO) z$Qg)lZjTV<%*@E{e?;6Z&|+u8n~SvWR8-a!2n!(HetgmC2NLzt5Q+?7rGOjSRN1bF zb-OsW!#&?S8}W;zY7}zqYQ_yMXcr zO4fqTh%4>Pvvr(FI|EvqDR6IoVE{)^(OD*1#d=J*e14GH7(40 z8oG6GB>tdT!Pl&+&MotMH_XefamviF=9B2H-xg)$nE+G^)by(j2c}xb*PG zIY^N^JuZiW0>D+Y)j=?pG99J|iXB$#Oa|hg@}Y=EXknAo7Motce~ZB4CG8NoVKzLz zK`=>xR8&bEKsrc_jQABfj+0i_He%E1mHE?%$FsGp$(3Wde{H4Vil`z$}Mlw?yltVk7w7Up9C5dwOdNFD~OUanj1 z$H|y=k#UY<@TlXZ>*@SSnRT53WP*N=X7(E$2y|NShbN7V3^xK9y+&^!u2sVy0s_nL zhXJU;K=sy!q{~4mq*q%>=$*Yd^#UC6Vds>x=SN*odv~2hP&KFn+;yYlCa;u6t>Fch z=Bf5IJltC-`D8yz0w^)mXn3nz%k1xbDc`f!7XKZAdnutO6z{W-B`u@jc%e6P=)pV@ ztKI6>ZQ!od6@8rJj|f{Cr4O$Q-cZvWzK8a9A96v9Q6!#M7FLS(ytPohe`Z%Bcwl9G zcR(}u9USFg%NFv%^*mBZ@EL+kDm#|NY@}(!b3`J&Z-oO_;=XfSYAI6njk8Y=D+-Fp z5Bl?U+bk}57mA_9t737cZZU1px-6*F3BTQJsy~S$dalZz)HXBJS=HYdVS_=NF@^X$ z#E2O)kgs9J#GM=TZK|`iRIeq045t($B$8$a}Dw*8! zD-C?M&E82r1hm6-IMiK6?h7m~D}WZ#X`kNlE%3Cs5gCm$c7YPgmE*13H(AM@f)$su zU|to*Y6Abb#C8df(QZaGnB)?~Z#eGHfTlxB#J40LXM(kh&9R?9#u>3Rry@wW66jr7 zRXwhUSBwG~Otpqa6rTpd%l2tvE^m>K_IX-pw-0f+9Ig0(Bg^l93DdH}J+@=nnsl@_<%7L~Sxvpy%$K&wLsh8ZHd@67v^? zk7spuzKXPbv{pWU^c5xD?ta^!QD05sb?(zq=Hx}||0?l=0qXo?Jv{6Q;(NxlblqK3 zCt6|)uWUjc3Q_U~xLnXz_|WL(AJW#$6KAfs{jWq(ogwI15xq7VWMynFj+$<%-0g*XVT%cKk| zC*YT|ADObY?$q{bqRuuakc9*f94(ATbIbC}U-Vn@zfLuh@{Fvz_x7t@BX9{3B&Ac3 z(bLPf1>L;=KvQK$Vfj7ZOv@V)cRCCRIeY_iNHN~`?|Qs?)o%D>bv6jatAus2UI%BN zz1@4`|JikVoX=;Y;DtQyKx(?Rd^UBd;l>#QSt@$un@8~a{>r;~ev#BKS-Srmz|!OL z<=V|i#`~=WI;+J9uBW{oiD}#Ks`FZK6f3&eoLjlNpkRQ+W-u6b@Ut6b18SCQvjtFE zzOD<{aO7K>e50_MbO(yE<$|As1haw|(@$e~rlZ!kgE?<+ZZWalY1e3qikJ7gmm7+s ze0q(fq@>6tCoq97csqMe(ZaGndGCHM5l^h^A&b=<7r|B~Z{pq)`RPIUl4|h6Rohi+HpP6|2U!39b+eJllO0I{I3# zH)0kqK>08}IX$>X5#3HR)`=lmY6(?-$lDTEk*cd&!Hhg@M?_Xl{92Tk6sx)oNr)Kp(Qg44i@`)b^PC*;D& z&VD#MJk5uXb1noZ)q~iyG6=I1b9Sz@NKS=l^Lidx@b}8)!&#{(s*IH;h047hwA~hb zpI8{pJ*bE53DwtOX;F^*6HKDj&D`5>S#Zng{tvP0nM`bE1qE}7oMT)}T zbj*p=nDK`jd*0`Ye;7oft`s!5N+>wjKty%yZz)j&H{h^Og9RkdFch#X@${(9~%Y&nVtRy zHvF#t%|wa&P#(VGz5ZGE%d{D1Tv6p-zQ`C<8e@eSymCKo+?(|XE?=AciTEt>G2iR( zyML7y)ILH&yTp#_q*R4~R|k}$ceFRB45Swg`5?ffv6OE74IU(t6>fyf~U#Pd*A(An`}4;)4QR3ofQv z{8xg9geAQ~kAVadF>%pv!rRR1oQK5KM^0^-{3qLL5dNp^SLV|S1DZ+Na{WR@u^VFA zvKj~1_MY*`;DuOJ#c*$KEQ__c^u9dq6YVM8j+j8P?m_|o`XafDj|Nz@!{v+;R=RgT&(Ch$lUO@b9<1Vob7mfd z+NIN?R?EIrGgnZ?0@>e@Q{d2D4%W;t9I*&5VX48O(|#?Ua;!Yjrx{V^R3MH@)~Sat zm(QU42k&KgmLfe?(`f$+<(QP_ovqCaqDc+fbeK5D;2@~o7*V{k1|5dyDY$@a@>UE< zAdI7Od2jYGaDh5|JW+&BAKPc&Ue`kupyyb6zkwkq(#C+4Q1ZJUT?|q$2j(=^xJj46v|p{YQ&NKXU?yoqa@ZoFCgzAHkPvH z+3|aZFLJR5x?767>uoR5d0F55>H~AL)01p}h}M^_&9|*^OLj2nwpm5%x!78?|<2T^yh_hWb{PD|U9wiVtwl zEIWGWmmbOs4K@HmA8!WQ-<`TXBxNghMMUi1fhs&FkGsu|xZFR=zLYRnQNc?|0RJxH zpDevIhWxZ2FVu%A+!EJNRM7p)|8aBYvjt!PzPGnu=l+WMoh}o3R|vJ3Lx#F$Jv`e+ z!y%J5Z4LEILDiJu$j5xiLA1%&ZZBKbj1cymbsWk)rO-hNE?(dT8rAo401s{pGm4Ap z{U&s6 zmYD%9h~e$|!X4JHTbE%dR-xG1o|dw_&S_|Bull!RG01@K zh2oaN6*VUb08`r39^bx<<6K#kckml+7JVelM{&BLEaBKk$jwn%QsOEbN;2hTV**hH z(to>4KlEJeQw(*ARrk*ZJCcF{OEPVD(}TYqpqCoFGcIl8UpQR{TK z_m;^w(T*a{*pcxP)d~mO)MZR`Y*RASy{C-KbL(Ya@QM^fQ4FF$+hI_alG;t!! z%9*8V%m8f~2lVZo)!IUU+56i~{Ys4iT^v@$wHY3^+Yg3;eR|%Ks55lVB>u+tm-AXv zzId_c>*wDt+c!EbjRjU41ODMrmw%X@`{t;36JpWnh8}L}VD>ggTU)0$$ui>dkVSlpv2{HDnUfNI9?6f ztGtL*Po6MrQ7L8E-_UaA7_2lOQftAhcUNn>9Wc{NMwbjmUghP2@hY)M^ z`JX{X@&GSer57vD7!<1Po7>w{ul>NTGz4p=E$=BVC&yU)89Go^%pf)U~%e@ zGg4|w$>EmBeTD(xKiMs<{wO1&e*8FHo<1nu01A?C!Bx4{3!2|}1xrCK*O=3co6>80 zUSL;#qPH#C7v`~&m1FW#(1&?$-v^#xxs*HGlyP9@w{glqXf5Hu{?&YUfmLpep7U4l zz`Dz<<@ao@9^tTn2x)Z{?OwRV0}o@$Xa^BBRG>IVHr3qmA&PM<>*4>f~z~g&b=oPu+HHt#6hy z!Msfu^3^id#dYR(T`0f3drD3LO8Tks7GY_&@05PhdUi3#1z6cUW z!7C-3#dxKm$Q80I?2M~Ogewudj%|5u_G*)j8XsM+Kfl3!cJZ;c)T5XAxHe|I8mB9# zfDVu}1`U3QGs!j)cY*&e=CKpkxu0t$0FXkV5G3RPVAGal7SFf}XbUFd!7s>=QQ?}W zUy^JjlqeucRCZFL2V&E{C2v#T3?EB9^i9{pIE*u**=OXFa)FT=l~}7b#$pNf9a>=g znY#$ChBPAWwZw}$Pcqifo)<7jJ>BrxY0-1SLRzLmt?2!Dks}Xf=ER#@72Puu_jvVI z2+egxFBkhGjP$-1V(#fFgqPo82<@D&j=Xh@@|C@Ba2kA@@eQ}!#uri6!@H`#pM>1i zk~BR`8Hfmddiy}w5RbGoEU)T}9iJ4!(NX{gr#QU~BQ0xcL&6K*w-Yl`T*sim95Z zFN)rg^??P4CQ@|BFF6d}i>gNoZl;W6 zb!|@2lB+d{Ms}d@XwQ)_n^#*m z>&VvGl{^mL(xK9T_=y~>6bp35nDgtNIJuWX5S@-<`}b-|b&exd&L;n1;Wz~SsucPV z7%jSaNZM-lZbkOfNUGe`l_%=73fjs%HLrp3W!ll<&ZJ9hT~(SLd41QTseZoep4jg@ zk!3bxl9so*z#48boYP+on%*e|wZv{lejLK&7dDy9{em%hea6c8I9ahi2bn*a&2N;e zwr}G78|MV9xT3@nCPUht5%o`|a;OUqkR5(@Wme;xTNcMSA~-vWz0vBqh~z=2fgLWv4i5(&~uE5_JRv0Ttou54dhdST6bw>Mq29bx$L)mf#P@;YKAURZV0 zMV$)^`Sdu(`BPb0zx`x;Ez&Kh8w{Y)Rz{1}Nt5j=Dk^#|yx!%KHlKO?E5_Y!rGIz{ z(rgxoj`e)g=e*iMcUuF6{OU*)hE_=Zp*Wo;Hr>=HQq5pG7sHDk$X zBlRihtG8xh3@WTWrCli-DOo{+sa`ag9Bo5&C$)inQe6{kJ6{^>dDLXsCtc}aGZtH7 z$Co=C3xUnQ1=~O=Q_OPS66xJupCQAvX8k^aCs4we0dAmQteu?iz4!M4EsG8?YgZtVJieF9s= zts0b@ud%3BAB$>ABqpZhdr%UIaG?_-9+$?a*?wWZVycIxWx7=-026jxHUlhzUoj%k zERPZ?u7NJGIHZ2lm#?>crQt`baYDUDkOl$F8LApyzo)qX3lLO$JF7^*y#zHlIrQ&4 zNl;pAm47WLf&4x2Gc*MMviuznqlBMaEo!~$WqKfKEZCN2Rd}t(BNE0%G5PheB9&Cy z<{>nFH*VBPRKz5hxMMi(wlUA>buCPB z9XZmRdbut~o$k4=awWx1J@O`*&vf3XLcgKo*jlblO)aYvDl z&lINgZ=y)UuyVV9HSvdSH?)QXKJ4tZe4GEGiT2a9r?zMfx!s3OsN*~fwG-v}eebYn z+KG!G>aI;VU{7@gMH!Syp845y9Z=lby{QI{ylu!SX>0nSvV!8SF==$fBMLOKFqXKcSA!V~Xv=~iY_3HOHXTY#Yv3ZEDp&A&lhTKG^ zDL!(E-X&7JQze|s*G6?|P^b?H=y!aEf$#1OS6?FjjN(vE6qP6v8(FyEF*}KSc|r65 z%bH=!>`<>@ef-ZCKd2W#6lJ$8t`)mVi;9e2A1>Q~QXgO`nFv!>k2O#0)!1r~wc+6l z*%(c@I)O*BqtkcdpYJSbRb8~Vef>4CwxT|A^XVs7Y~dka@TjdF*zOg?+h~+dUMf;j zRKI^9wBROI$H|bT^ZF<=Co+7GmM}pc%B}7b5j==D$c>E|D27%UCe>a-kVtcbS_ zwueCl*F!U_({$1?qb+E9r_pe!aNbugR}XuISYQbdI{|e?jp?EcxKRmdZ1I1&wUV}3 zlXhehKo-XB)_*&hApfzFx2zwInR*)p??W+M?Cf-l=5Wd6XAnitb3zb+;&EwUU7L3O z7g@mktwKSAx7IqnnwKJ^I4!i=xjGB3=!jxd)GV#khvJ#}86VV{lLYe=hislMHK;Rf z3Qk2JLL5hNgSd3pBF0B}e^af;I z%F#(X6&GL+r`dm37_19IWqG0*P@#BB2-elZDgMnsg<36cx-D+M-c@gaoY6h|zHQ|F ztigXbM|P8M%*=>mUU(HrLS26Z+kjUPDVC?!v^r9QAQO%;5He$)4yV`3GZX`3Ei*`% zvLK|VZxBiEYa6P((1x|qAQT*(%oW4HvFDd8!#PEiD4w)Lu9`;DkU2a&46|)ac>*l% zV53N;rqW6%j!;Y1&|Z^$+Qcvi<#YmLpI#M(#lBhxQ7tMH^*kn#=5h>5YS`Hf{Pg4h zd~-F=H;BY;H6gdq440Hc=x9gyqUTK%aDy^1D}HQDLU$>sb5D2^2Fk|>TGUdLEv%1=Wzi7Q%=T9`z1XYJ$~4f=R&X{SUiu7 zjM?jkSj2QaE-|z$i`s$#3(@@dk~j(7@0;!T7Js*vo|GobuG_Des0s=8UU)$=T+ z+%&4!!FTzNkkg!-F-H*X({r-h9JIMlI_(IZ)Z2ck=$GRGEVDedjQM&CiE|mE(EA-3 zu&i*U1+RWe)gYw^wD<+SsKXvY6k)*X&tz?{c!4cEse1REl7L7V$&-pU_Hm%}Y*Ag^ zr5+!7XYc0+AJ}{7P89{idLFU~MbG&a-+Z+V$eV3vBISTMZgr}(HRgCoEG4O2nvy~# zWD3-f`Fi>?Pl7#FJ9rV=CPox&l;$1Y31+~@b(gNFCPyn`vHxox8Fk` z>>ZLytGwK{>`@z0fKmN@&svGSAiGQ`u13)F%q<32@JqUUufBFbO~)B6KXag9NTwM; zgIuOQyoB#j*y$F%+7w6R31W<~?|48Jh3(Jppq}cwFqQwo zI&A3Q$43Ryc2;30ZKsJ~(b(y12CXr|v+#6>xT*e5y%_ChIX*GAU!UI9#qam9X7#sZ zBdqrNU_5zOhcGIKVbFx(E2{t3hA%C|8*)gnG-i8RdnsfUxYgCG>#bTDzinQGva&#D zP(^I64j|7he-F&;5nU=I=ygZ>InpT$M-piN=1v+JJeO}nf6;Uf?2)!jx1Nb@+qP}n zwylY6+Y{Ti?M!Ujwv*k@yN~ZT+}(9mty=3WFlRM=kxtk^v8zb5#CixQY{hGx~T2Ts?B7*ruiSOm3Th-8T1F`4sW9uZaMD0T6jGtZa4)zwU z&bQ6=X7~SN0qh+C#31pq5_+hNq!5>kqZ4<0xx9P=>F3xi`g|5`$~{pEB+qB7lf?aB zBLDMm|KID&^)ii2E+aC(uHtNuNd#6=n43Ps|D!{rt~}Hp>OH@zG;dLo$@=w+<+4h2 zZ(54+ifu0|;`LzWc}V@#vIDj#{K`p1X%}n~seF9>abB8!uOA%$a?@aJ4zOMe?CT2v zj`;UQ12ogc^QoY$PO625`K;um$?UWIaLTO|@{fghDz=LnC>3sgiLjDWQ7F%zVqDF# zuF(mz<1HqDom6Fa{|qY@;3FYsrx$-+I5|Ad%e9SOJ(gn$$CnyZg)D-p7ndpA(EZ&e zh>X}g__q5;DHPPcC-(Pm=HN>Ixuxi1vY^wQ?*Wl1DJx)kp1Yz!rZ<3uwEyjO5=CZ{ zV7f0+PIjs-zuqW;*3)R?NCyNOrHG5HPFJP1dvp-O>82yAx%AiuaIzs3lHzK2oE)-| zC!{P&4Dsq|ICQSP&#hIX(;;|OXVw+pS}P6C#_KnyWZ`J=3WIi6sQ$EOFqOGHU{F3E z95}@5ah#E%FWwYITUC!9AF#GIBDX7myL#%vn z!g@CuI;gf2Q$LZXYn@Ac^k+g?V$LfuF_@epRDGCZI@39aX0Zf&+ciJY8R_t}xI3kd zvE87kxj)ydDcr8sKkPUIcmOLmG z)On`Gr*(ebPl{r{{kH806dMjJSmXicvdDR93MB~X^*!c7@c-uzpZ zq`;p$ zT2bR~tlI0-H>2QWV|z%C0w`Vt126A=13K`^>W&KMmBuP9h(bc0C(Wb?1e0kvBo^zj z7kOVcgD6@XXTut*9X$;*w#d0_s1a{b7+G^A1kGu}mV;CXRy)SkFC+5#~GXY-)9zVb@h5#!cz#mtX*N{I}`<@B3^$&tjn!Yp0go3SbnH}40 z%LBcut9!59hMstoGB|TQt+mw%rGpyW$ls^|Vtb>`H^_mLvXVknO^&Rl=bg%F_%(9` zOOS6uQ{*ahZqky((*g|A`XP@0i$Dk2-A0Gws;)MU-s+#|K!tW`S%G*6tO=wY;e1t5 zw*yIA@mR!D_v^I^o_4N;1aVjr7W>Z!paX*BA7 z(R4TZetCMifp_)Z-&5~WZp7~@BvkTpbAR}=0qoum6^N%hwfv@R+Cs~%dLp}E2ulTP z@JNsc5Z>Q>w=V_x^?T`IN3tXrODlS!VpCX*K6bfgts2@2D=N|Rk=}-aCcR5*D>Gs> zY#}|})jK<2Sm5~j<%FZZrGh$R0=r&&VLS$=`j(cS;t%d0?+KoOk}MWPw3`1mV-H=* zwb+ukWTX)-H3$~5xH_o`i~CmVnCZLm4(NQu*V=?jl;GqlSKa0y&Et^;1B7|RZ*)ENV8Fn(+li09f26J_Hb1>Z!D_}aG75b(r3s-t z1pNZ3ck(An83tADD%ba2vW>$6;>T`l+$X5&QBs3+%&)@(x~2Iuz+?fd>!;s~2qFO= zP2+1H(7BCLtp^imvp?2lha|&V zp01SQ!xs(?`1aVa#DfLF?Iolj1;G6m*%H>6j-Ift?GCk}pvL*O9w;!T_D}nRVVY=# z#{T$gf_g@YKZ~=%Hh+WC^?IFh-gNz9P-t-X2FF$(^=2D|V<7MhphyYD|NITp@2`~a zjxrn!-5bF^ZnB=F2IN}!a(vD`9vfhUYmW^N-&U}B50J;qYcBm;MwR-}0G{ocVO4d# z82<0q1An^6sBtVn`VxcNDyxofO%nWr`%gS%ZWzrEFGylyVtm41Nf9>!Su^km6R@qh zT!@(1O;?sccQmU7#)o<7Sm>;anohKf!6|)0a)llSlyt zvXLOMCvxp;sG<(LKsv3M!{jZ7^f9gqTd_KQ_O_0*I@1j_!?`B-$SpEJ{2AH%>uIGd z|IE*;{pb5*sL4;$n9Eh2CM3*@MF==Fa_W*TK0JYe;#@&Xp9JX4T{x*90=Ia|RvReG zxbHA?3G&ipvq#tBS;^K`m)5S`RR0!7dwQitJ1Dp=>Qrx!=$d`*w{hOmsbnre)V1QI z;|=diepgi>&6-c}L;$m*4sW}}sx;2qJJuMe@!?nk$esP{|l)cJC2xo25U;I%D2dRcl((An%s*( z5C{DSl_rP6|HWq6BPG-EX-PQ!=+|%-`ygCz@c`xHS1t%z66l)#A?0gNLk%US}J%^yfCD&#HHNW^&>;Lwcu4 ztLW2U`YdcL1*w62n`h=x)wp<`^Z<(l0wBpBVBt5j#Ui>c#FhK_pd`~R| z*h>33IK}R|Oa_3A*mj=fO;)N^3+3|p)W2?}XnYN$%oj%sh?=n=AIC0R`{4+D;1Y zw)8^4$EP2=b>sJrVc+pe(1~aeMJV?{s2W1RzzBb9>k3shhMxO3S)w?98j3@AiJSxO;h@Q5}%eU z-BF;1q(e^%9U0lcJjYTx0q+9KN+D4@nBBT1Z3n|UJ~1z#md*3dxDg6O>UF1h=pn7l zJxTQeFD@!_P@|29(2wuvcxNQlur+?wI&h6rC>|%4<$~~Oi-?kgF4j`O=zbay77|Oz zp6h$Tq{AOkhB&EvV`&I_BUFT|65K94gS&%q}`K@c(zm? zU(kIr0%{Ffn_&%T9Ns+F`;M_k^EJk2!Lj$@#pQC95n{oGc;fKll)j%WIZ&+Ewd&*j zUFkl|fylqwB%ycVU^EVW;rNoskX~l>%`mPy4fe^U$TSlg|6UQ7*D6|AG{i?crD#6S z4YuWmOri|Dcqt}2y3bY0*H9g87i^~YmM3cyWmQUT7HH7!vPzFg1rN!mG{5vk1nT}C z1%9E^hB`qStB+>{)vv06pl0ro9}2(g2{K{ZYxm}cUWo)<^@?}~c7)04fTGWBhaRMo z&!PS7m=gdKDCqR%@a%{i(bPlllZx$n6Oq&GnOs;<2Kl4wb;UYHegv|7W?C>7pl=IZ zi++e6F2L8Fx$S6gc!`1E^D&gv%oI-EbO3Nf5J=x7Ww<3BAn?RGNYQ5(ZH9NBS5r7khYYtua=Tvl)%Jc$*&*_VKtp^4G_q##D}PRe zd}X%Z1_`Mxae-7ABUD^T+L>AHqu7!F{jxOyXp{<1xY*o+xTisOq()AKIhO6Roa*5<0|eA80I z-})j77K=vy3FtQo$%~J`nJ`P1RSu#tnGs=6F8OG%Xo!LSVc38c=l`RxzU@xwnROLZ zY1e^a)2&#!1c>?OtuInRA6_AaazqxzK4An!5nZ>;6dVuSBKd1gsfO9v$zmZj3 zx2-0jQ9V36qz2M-59`X}Nz~t9mz{8_kvN5j*TkzwV1JNJ?P zXQw!w_r!{kSZOgnnhe>Lt8tM~Xd}%zvRh(Q<2U*Vff9~I-mk`PA>RBBsZLO8^%|508^h~62kQf|1c8?rrwscFGA<2u z<+#$H8&RImG2wJBAEcHP8j_ipdv3x=)Agpq?8xPmL3&1zGmJ<`q5Uo@PP4{IWlk{i-Xvk`p-Wkyn>U!>O)G zv^ZPHW&>42s&wk;Wike3v+_EcD_rC8R*Rw>qGrE_cJ2HwPx_iuE+bRN8=R< z5Wx_GG>%ceo^=RANF!cZICsOHUWF5o%Q9^t{;rg|#5i2^&gUC|Rw9FVxV2ZZX5KAz zizoj@bvO5c&-uRP*B=D3k4;HYTusmP({`k44mJ11$-Yf8-K;fdWm$itU-7RPAA$U% z!u{kA0}E?QWfHYH9}vJ~SyN|_5h1_Gp(7L7iE2hpzDS6WH3^aJ57b~ z*M>}6rgJ`weFbw`L{vA#u*!y$$?JUQIPBdpg?TTrF8kwqwsUZD&bhsyUQYc$rnp#^ zF{2onAD24+DC~dW_n_NydG4w7XR_IqG>zs8nnM#bNUt|NVaMlT(?WQ~v|~ivtrUts zik@aNz#o;^sANC|Kcy!R_i64B5fg_%jU>%%g>@e5#{hV8hQE1LeCv17KcDZc8eHRs zh2i-`+_l$X16EW`d~i>Fe(PeBv#@6b=iW5zq(z8uQma=ZTxl-TNY=~o6t&HM(Wop5 zFLrA1D(LA1j3<>4BzZTjRZMf-=&wTA(zkB8X13wOVr+vSkjwRvGSj0)G68^LWcd4Y z;o*OQcKW^#g>l1Qdm8ufQBLaWwgJXDisoa2Fci{>Q@Qo9PcKdgCxSP$Mt+CZbc+so zHG*`SPRB$zo7CXl>CmM0BBe`Xn z{_g)rnh1>kmq2Eu%Wg@ft)Th!1Nidstc|R--9B|#IYQQ#uadb>#Mq}LRxj<1H-M>a zY&k*qHLSvhh-gb>!R|9?cr6~S>${|Ge|-c0@+-r-rhn^YlhRk_nLl)GSxC^y8Hc%) zTa}>u4nLS`AEEp*1mfKsGS9x}UG1}Mab;!DhOw0!=EBiQv)MD|w%HWsncmLM&i%RF zJfUPw!d#iM1gSN_E3~#1KgWAt^Yi-)jtEpBpBA`XDlvnoQaaYPb+)g{vW8$hPpvX7 z0Z5aHLW`@fSCz&0=V0uK8U1(avr!6|IsJY4BI`kc^z>k+eNP1UO&cnHrQOzVkysyLpDxOJp~s#uofd<8 zVN>5>E)&!rLEoNhA|Hm27W}GDfKI8=;LHeGm-q)<5-~%QDO!TboWHUqnSjeE!y#q& zYt1xprP5-#WL|{=qUtL@z529u(z=on?QlPs0 zsdJ1G3=wsnc z>4`Ojz}U3M0Um?h7YA`dg)ny{=5Mf)9OtIbjV?gPeFG#uf`5KGNVV(FR!r(lIapW% zl~8wLE-!UXAFt}?6NlMoyH)Q9DJa4N@tIHIR3Oxzcf-uR&H#L!t)9?aA2t{%sW_Qs zm!8%ui&tDm#w|otR8ij{>@k7efNx*)Jbdz%TMRlSqzzSjJ>NId({7#m=5z97%EW}_ zrbHFToMC|F-IzbxI}K3wzH_^8{F5ridib`I{!DX%V;DdH0ZAdDp#GVTFw^D|6IcF1G*7 za0!7;@Wg&kh{23dYDLQUOpgstdV`&(|?L8-@RfIn?v zaWy7#A^mal*g9PdlzJy-XpxXoAa)6vvd%%K{oKkzT;jIwEL;XT`CY0TdlR$wg;cG| z34@&M#={!_&z+~hE{n^PS)8@E4v?D9Gc3xi~aBAcyy}yg>5vhGJz4`}ebMF&in!K4ikQ!DMon_;)Uc zO1Ng7CS85wzP0yD*Tc^zd!QyHG_r+rCi=he%k17c4)47;bcd~{6~aY! zAYI_AwwGrw$K$`|6$jK*R1VW?Csfh=_R(gQoQ7;PCUAdg_uF3eBaTD6!=tmy&nKl_ z-n6?|Wp z-x?c}2<8|nT-Fe?3qm*_9YscO(VU~O)Rl37b{0}JoI|XAsczlQ8~I#%H5n#{Nqg%1 zOQ`*0V9)Vlfw1o3P>@nrhS9wwEE?`i%nZB+>uaakX$K2_Tv-3-q}1ULVL|F=ZW?VH zPE<{o5Gx@b<{eyw+aMbA>Z)qge|Gdua=dS{ZS@naP$p4ZNit>F7*BaQpxCY-k!`=; z`z}bz?|f0ALO?z|UrHp&XRqfkc(m@HDTJ9hii>xwT<`aKsiKIN44Ila3ui92g0eqJ z`+G2RBNY>zLD&qY^C~7smyGx}eqRfZ{ul~JsHW+s?Fz~GuT8^+flcs#K5mSRt|#+6QLBHO%&t7 zNfxJ*ncO(pOg6(g)TsD<)=U)rZ3{rUjFS^|P6Z$Npry1F+b~BGg9xSBH!n1+zHlzT zbVW(Ox~z=^iDa|>2-s`)1R-D|gZ0({UiGu@3z)X7>7tmrB zBoaX}de_!CI+W!?D=??3T}!UZ&qk{UVsHuf4lF|f3zgG>caONzWp%0|X~vo%Qz95M z+HG=d)F|Yt`#yn^{I&0E29M=3H!}Y-{!poG9D(uAm(1@Uhgm4nYrLZ@5)h~yD!#a$ zfv>%-wIQ4^(&)0qQjW-!Gauc=Y6|QeVq-nMA10U!?k%i@pz_oU%C)0-)`fdk+pdVG zXB0t1D9~5MQd)TykYxN7F}W;dJ6}%QHDohAyIXF7cQT`b!;(_4p>U5h(AI51{eTk9 z#;~v*{WD(OOCSBke?P;?_X~bK?a~E7rYcerd&sXCXCz6UyB9cg3ngkamaCu)5~K0huuSBLO*jU@RcU>1?xNbjdT8Y zO(b0tp``J_L=AH<|IM4b2f5v%PP7t2ET0Fwk~-ge+~qkarldYgY@cf*>s0-Vd@O??qI5 zFq|dzy&8(;n$fyzsrlIvRhz6-dq)bw!p|F%_^seQ8+DL(bjYDw1_&|RH*9uTEmsoy z03b<3n!cwfCPV9{Ya>*Y^gyWq@%cGc`fGB*z=t^3c7tvKS1An-?An^wScy>)`2)Vp zbH`ePHm3AO?@mcHjXiuLIV-OLUdpDoN_N&U{odxu@3itGtUnCIj8N2}sa@AP;h#i2#7?-n zdd?@GExL>t@(k;!XN}@v=@gTVi9V3+b#vS8CG_n)p>euZGCj~1(pZwaPtYb3;)U%u zY}AINz1XXOmwY#t{ct8OHg=`M5Ik=ih@;-Zo+#g);0f+&$$G}{ZVHJ8u4z2&@c1|| z=9&8ZsSjw!wAgEW1lfdf#d~%(c=xIq4*D_Hv5Zb&+_sh=V+4)qrgp4;mwWwDA(MBt z{;MDXK66}lM0Mt}fy{1%mHLYTvqvB`K|JGz5lcq>G}HEaR5$n~@9l%9z<$^BJ^%Ud ze$!!*VIodKQP^4fuDZu?bt2%lfP5j~9}k3KGs*!{%59Bq!`mIWZuB%%=0;BKyM3sV z>Wm!`NlGHm7B1PnIQJOZ701&~k_m{Yp?pyiF?R1(JjrWi#_10bQWM4^Rsw2n=>6t0 zs~!1?Mo&4cWObKEu?2&__Yj>H;Toz_GZP(wslaR)=mZB|=!}e3zNA$8TWWaBjehC2oFdWfi)qK`mM5Vxs2i?_(6cRZ zB;eGr7gRMx1EJZ5V@rvbF+zDPvtSx4il!Yz* zN^vEHBFULbk3S1mj2QuVF8&?PZlT0m67a6zc?5p*af25& ztKb$|VvDfp+_j;-T<&r%4_c0a{aKf!H6-;WQiLj`i2UTT{6RyxJnA zyOWT~q|q6P@7yA*#pO=uV(3dV)|7cTOVi@Obh=lXYE zcYu#hWyUQ&!esf5XsQK?M;qS_t)ppsS3?6|etiL-dte1&LdnaE*%57!BQGlq53$Q* zjsA1guep>!>NSjRW4{m zPe+0oiN*~BJ-2mPb0ikxLRfCMABF;8gH_S{D3Qc-1iTD zi1JzF3AD)TXS)FkK^4r^u0TlF8FU%p^w#sQ8Yi^ydOF;E4;0U^>7D5xgL*UAKo1;$6u7-;gE$ zCOOmfk~vInzSS^Ci3X_^A_+sKF2bZxebSegkR!^E0oQ+KhljzhS;9q2RD|q$TOMB+ z=j1LJt1zo`Fou@dnr$bNDbIBRPf+RWF-nc9elGNXl=3C|fBmS4-4CPdN7t(P#K7~v z{sQ&V4~VLyC+Eh^(SHZ3;p{7=jKKSE={e2&q9dYI(j1l45uvUij~0ez+?)|SXz8D( znheva_L0Uf4i5qfia4`YvCF=+6aoPaPwcbIM_O=e%&VZQ8xx+V!ErVBsjPL3f$p~3hPL&(?7$ShycMGV%DSFrf%7o!esD zB1!#5pncJVwIyQU2^0I$F7x*KkW?}5gy z>r5<`K3awq4!)DSk)9-x1fc@Yr`{+gUW7}!{WUSF?lb1-&?wxfs61t)Q~)a79Dx&e zigu&kbTSn`<`yEhw>b>bcNaGyDsgK~=qv&pOcJ@Q;8_ip>0)FZS0xFy(;+qud< zdTK|@4ba=W|3Q*MHe}4I(|#L|AG-z;7C#JJ4ni7Fb(N2?@%+mvq0)yVVBU z#&nCyJ;tqw3VOYVNzjj}px@s3ky`nLF04fP_hj5W+a9;EtSQ`!-eXyw7iM(7a# zgAygQHn0X~l!ycXTwdy6TOlS(Az!WbC7l5hT2s!^PK*K3X9Pnqt{@F5ym02v~k(HQJ5 zVXfjvhl#g`>>oBvQ_PTsHo*4 zVIX;5mNI)SZ{!l0?1IJhX^t6|Y}q56v#fN5)an}9Jopw-i#3wky@eS* zQW`^~Pu;>ZRC^)C>y6t-s8>n*k~*Qw^=4&A5tb)ZYK-Ir2L?t_&`5%j8Wdbe%%H8r zs*xHSXtL|p4)Q3sL(zjB?5h$_6LV8))OG+4%Vo=GRw`El@fh@tUT3>mScfKQrT-t4 zVF95RS&sL;WJqnx@NT60a9NXL*C?HyY#x)&aHb!1;V=2G1Indq3HpXx^fL8$$_cAW zscsXZ9KY3e(<0%^jsJ%0-p^i%&ZpK0yPfW(^n|MR|<0>vCfQZRXV*tktBtWg@s;b&gy5AhWn%1_V|uM5RAQwp6v?= z-zTVR`%-fD>5LYkprGQDlTExT40DHt_nzQTHz+pFPEZ2aJeBEtPLV=9aLRoq`x9@8 zk4j;zqtPWe&BNAq0t5Kk${LW8th8clW^vRaar>I?n-h`lJmH% z(t3a~?^S()yLW&P4=@L@sLipcJOx9)8reUfTgaX|({uZ~qWbj_VOWTzb+~ zP|Eb5DzNWCB7e%MjwG{Oilqnax+(LN=9hUvzd_9-7{G{^E2Htb{|LXfhY$wb_bOR= zIVrBF_bFZyj4Wy%gi@56RB1Iw4zT(G91%YyP^X7p0N?_LHnqq1TFj zV0t1G%@s4ZI`IjgNb*>iR)xY28xpz&@*Zj271g zLO3y-XhH)(k~(Bmp1LYljkG?Yu1}dyjp}mz=J|nu;6qUv70}NF4mX|`*K+)*V9^?- z*JXO#8uPJ$!=RQpxrrye%2)bIJzN~E2aw@(y@iQT{VjfLYb*7jCP$p9AW}ccSUj)| z0^y?>wC=hjw0uF^@ZPp=`>z1H;E<5QUO98Gah>qfv)9>AlUx|?Q}Uj%*9Yrd`pG}< z$fXT8EiZk3)!^R@V6{9tNM!H4D3bzr#_(MZRMXka=+-NWLW$dmh<*rvCmlvjE@)3N zL){2VCY|(w1Xp{qHHUzwR=1wu%Kdo|vCtyBa6KXs1vL=GsF2i9=&Rw2`Du&0cX(#Q z#L~&>CS8C0RajK)2VNDZ-kog+%f|mk{>(YSrh4A{uJFF>e$lHFTFuGAcyRRV!)q2*_?NfMh zSSutbOB0ONIVMu2)$GF7M8oxl%c0MdN^W<=6S{n9G8q&lb~*#rC5k<(YlwMkZkuZY zz?|5eVTSQn#sWtQa)JE6OfKOs@VgPjqPL6UgjE&|Q9k?r^=GP^TJro~NPiQ0_b%+) z;1U!O+s-2^_iUj`64C_9e)&|dBi#Gcid#CK8Twts#K=xy*T{MA4#!AV)f`>`&US_U zM*~{F#(LI-S+K6{iPf9QKG#Ajlv7EzOdwQF(EY@k+ERMJgLM z0%?Z4Fgmr+iw7!tLjsW<^``5CZBv(bmVZ|M@lntsLgWQV#*j+TmZXDq64v+mt(3!R zUU4D`ha$p{#Z4Nw(E)zcXwpUN{5!+#uk<132kT5)^wzV{O~8&ayah)*l=I!shtpmN z`aYmX|JL0M!_W$BZIJN9J1a<~(F_#7@lx_oCjJYiI06!35vB;?9Im8M|20zmYB3y! z;H@nz9E9b6usJ$78S!^8lxvYGm{O9dr6HX-yRxhdV!t^2ak?lSxVr*awd`VA(D@do z=@E_C^ii8u+5I;NSU-L=R^W@}va|iYA3RKuI7zrBnlxy;&`+#&Av)7;W8ut$c zQ)P(B)3F)6)NE92D#pua5u+6iHmGRwnp;=_rT=kw6)`R7&cJEDYR1TPrF}l;hrfw8 z8IobaE+W-V9pspW-11+$O(|lEFpDN$Zc6nJG*jtM)6h3$7{C1+g+^ABqU=v9lT_x= zSY3jZl1$2>N-5+=VVsQ7Wk!hpkb>%FBRXnOy~L3k+`=?~dWcz%v983NVP#s~j4R=m zRRc%E;w{f_MXd_^_Yf5&urKdd*TXiqm5%#)d8xzA7QB&jU&L|Jt&92KNAevnRJZP1 zB=u^?;Bk-uA;>(!87EpmO?|LXQ(lubwb*dBv_?2TmR2JqJ*5f&@FdSIDo9?_eyk+~ zvUz6bpc2h48>`B3lE_?lnPSRD`|v)le7Py%-89%wp_6adS-@mOTVCFtMCplnEx+Q^?x#g}gD5vAWxAgEh44K`SJ-30|gF)?tD zfs=vf-yb)l`Zr$};VwU0G4pXkNpF8}pvAdH0YD&-fB*@nmhM%r-IrP5UjCP{n|$?e z=@kMQU>_J&sr1@JhfoDDOzP;5I_q0%6l*twvj+6!dg?UdbAH7~A&`zCia7Z?<~3NI z14lqW_UCXZaw5Z>Hv{~+Fz*Pv=`qDnW-|oh88@Uq0M5kc2c(0WdQPPm`e-au*-`GW`PNOw-ap#*Qwu&qT9`lP7aN~wlS5_H&f z9>iV8S%QQX-mK3sLq@;xw@a5F4c^<8-tDLvb?=zP_(q5wOmMe-H&FHs&ec2&;6uA% z>$3wSvDE=Q)a_J}B8D)Hs-3!Rt>XX_#c&2un>-wcaP&9cqrfikV!;#U?M}OgE+@c?m+@x4D0A z~(-lSth#51~W)CP> zLtLsolne)0J?_`yu^)85ur`lgHLxj_hkeoW<;J%T@9nep4Z*w{7N?!dSoL?h#gy~= z!~86hMp)IcJR_S!zLZVU;R3|_2h9LI?}(hIXQ9NPdQ~ti&sY{g`li+4Zt+Jd70xN3 z>$JF%0UWh@_{Z%2c{cc0i{#J_a^K^_-FQq=eu-s2a4jSF>C57>89V)R!h9n8AYwLD zQ!0-Qij|BmF}t;YCvJPCbh|$#O<#0;$G7Q84Jm8~{!RyqB*?Nhb#Sqh8a;@XwtCrC zGnjMy&-Z2HjM0KyW_*(DIa4*H>JjTL6G(x(MH*Ar5dcc7HS-C^pVIWQ8w5XRFcYFL zfb$2c>GlC{$aA1CRwV-~b5D{Hg3%S4n~h-nM#G)ytoCozXZP@=r4v?)I13REkg(4X zq&4!mf^tFhGzyuYB%&IGc;vzuhU0hpiSoz`bu+@v`IU%&C%pG2k-~NdDy&M^qH;2k z95YydhQ=kXPM98(#Te(1*R@^Z9C=oWJ^0s|mxT=SzdaVbr4b-g4(Lx|Brx2FFW$4E zq}yd~dps~gcK|9`#aW(VJki~n5{UJ+9HOAO=Km|M3@`p$yI=S}q?$`ekD=WU zK($5{FEWUrg|Y{nFQD3!x!~)gaUu(Uv!2zPn~sn$-Uxnrkf!hQw@+75f8R8QkdzVh zlRhvcIa{9KzZV?nxw|tj$QpMl_iY4J>LuV!quI(*6-)cy%n4H%LtJ3e+MSv3Nk%E- zlGjr+oY4`)=!9~xgp+4cprwS-rS{d3XqxGV`9^0P>W!67W;p${Ln{xZ`z+d9j z#_CkY(_h&9f%uE_MZoj{vy0+ zN$g%r>Xo|(7lp4L3kwTjTX_r>Fi(nQd4{;W6=#pQ8IG+)y3~Ka0#8y%C=G?`b~&xv zBreF@2_mE-zgfJXowZX4X~fbcEcG4wL6`qPpnXTt|I3k3eD?etFIDVLGak}lhRO3D z^*SXyR^jL>-gI7&b-%ocn!yi9hKfTfF*&i`2M^zQ{|ANNeNOKY<*Uxag30pS&MS&;KL~ zA(<=5zX#!2yWh%~jw1)GeypvIW-(p?qBG}W$XKmRR&aKAAI*|Dbw>x zMcO*~(Y+b`}D!kn)*d5?DnEM4d^vJo`^MC&ag;85d2QO7Bnj^W(%`ydF9;r^$XJ>;sz|9 z+7+|Sey|mlRH)hkR;Lj3J$$}Y;sz?akW!a}O4Si>P_jWGk7^%%ot$8JT27aE6xAbI zDoAo8d&vh?*tOltoOmN%Gy(?(oLDf$641N>O?Ex0!n5MZ;y5_h_;R9sNSY?AnSXQ@_iSB`?~O!7y|$!58_OxPw?XX;(?)gVn){|J zsH8`$%_$ISd8khxIRNs29O(kP+M&0;9x^gjmPe#TG#W`1`ltmNvv9Ob_l$+)6GQ9q z@B+k4Q9V_SQh4~8 z2skiVDCg?NjC1-M@JRedWNGuboBD+PsmSRi)~%nth0L`L^u_sd9k|5$2QdVq<2rsc z2nPv8bd}zS&l`oyqCJ%^FCF4^Ie6u^8Oy8Lc?|)Gb3KGrOSK~&aoLoa;QiA1_tx^n_&yPlE8V?sqO#L!Q=?L|&D>S1h8DEB#F zb-o8$m-KWBBQ=-tA-xn@%NJ4#%dOzkc;90(y|MRqgbY@X7Wft7t>r1wk^RK?rGD-A z)c3|RN+${EnlPd;q!MoVNY@b*lNwr z0{~zz{+C))pk5rWN9A@|a5RnW@7;~!DQ7l5 z=n0r!c^;y6N91g4k-er6j~hc7ZH)*juLSq^xHhr29DLA6-OgR;SM12HGG8A3?8cq-o>?VDT6CUfG;M<}c&0uD5mCs|wKG|!GA z!1Di{e3(jvVaN~vVBVkD*$Hz07OoI_*x_PINT zc#Mc~*_dZw>z{Y897?t1;m$`5zU$!d#_t&6;`1&b4~mt`0mujWJhxVi10Z<-YCuH9 zBStv#MQ79X!ZuRAt%VUi&f` zQd6?5#V-!Ep;IAJxKIehcm4YS3uj9}(3eYq_RwawwlWFA{{H|1LH)iLs`j17zn6*Q zCn0PoksujzB-5`x5yzt>uMC3uwHJF2*n42)9X3m_2b?eq1hNU~}jI(K=u7S6kKWduGl<_Uz>Ps)V3{j+FlF9gt z)n_OS-F4R=q%9Ndu}pyC$rTTdq7~w`h!;z!xo)`bMozM2NOzcy4pSqIet#rIoS-h% z(=AjH%XfEHko&S5<$b%+q$^h*5y{FPhnbwJ`tj)}pR&G*Q#)1Z=;4(j#&8>bZ>g!n ziTu@0zARpRBYAbl;RRxq1+uYl;k8Vd*?=9Z3gF{pZli6GiF)+pq`S{KfOU?cDwP|P zT`s_Pn>SjTvcLb1d!V$mluCY!F*ax+y{qOZfeYaWC!M&EhG^+wupUw5>u_vBkUpAE zso7`H#)YT9zu&OC6gt6M7T*E~$^%buIv%x5LTl8PW6XpM?AWoL)P2|UnO}x5e}=xD z{js<6YswJ2Bf>Qe@qAu#yIY~v5BEt3=s`+HXEQ8$obFD3sO;RuWU^lMEXe-OKFZ)y z&_b@^?z`@x@k^kDhU^T4E94J-&xlZ}T0EAM1kJ;RPyZzwy zzdroP!+7_-_pq~KIegush~aHuA9zqeV-za8_aNGTGSb6OMpos!3iGNh@x|uKo$&q4 z7Y&UKR=9@cn?lRsSLUXPpNJhTP6L>l}PPLPCU)kBiai;Tb{l_Hc#- zov}Bkg0w+bQas{S>#44|Vi7icy9LQEH2h2&Ci2AN%rnna`^N;I0vDzT(?d8xOqLCgj*|pEhF}s!QrgR_~2wQ#I+-GHiFlhbl^~9fe48n}kZ!ZcZ&m zg!acXQ0vFf;@9<}=!QQ|IB^P%@Q*lgnls{MvcH5XZ?0@?xu;x{1fKk;}st%D3Q@w$LK>fs`m_6?Go(lK4NG^S*y{hgkC~} zqT71@g@0k&wrzNks)LzHSD>hBC6l?jksfe7pKCpe+c%??3Sj-j8h#W~h~?s4iikAiViTbs<5BA*yx__7 z3@=cN=F?9<4ez}A2@UOV-p^=7)h5SOcGFABe=-J22_yPmiaR-Ojie`g;DHD5^wUqP zZI%}qtAsmtf6eDKc&|i=-x%dJ-dpyj61x!EjTl=pDt_4UIS&dcv3r z_q~O%z=?3C%3Ec_MmDXn8oP2HS95-cY8EL8oM-L(p_ z4r3AEV0J3()2%0M+g*6?gLlmb@b#Ljuf_7^%i-nXgO=__I5|3_nBHK)bUSKXWW7#U z%ds?i9hg?Pj-GjPQM1o1MF21wZMx;F{oURJ_8vH-2S$Ec52Qb~g5HhzKH!ObXW`QRllKjoxKS z-g2bynq2)i-+YS@H?xOAzKaJW(q{s?Yl`8QHidfeyJhoXWzCv3#Jn*{uBQ&ZMqjx0 zGXa?y+3%4c{-Ea>So!%%M38IL!ssBfrcqv_;qK;XHFl+O2Tqbc9>L1fBF3i33jgo} zLzwg;OCpYBZy#C~FTRP2Py@;fEYwYH^wijv_MS3kO1mqHAi)t2==-h4uAY-xC48yK5Kfoom>H2}0Er9YI_$Ie^bO=UjCTOWP9Co;Gb7v)3cx89E1RHs)aa z_dAHo+hv`E9W>6Qd1|m6qTYLqZE$jN8n(^;<@ehI@(eb2)DF8qfe9FCe11nGG0kHh z|Ifv%OW(weH{7J^ee}tPDk3rC{0TVg+J&g8tr_O66Ry>3uelCm$BaW*Xat^o`U!d@ z>+!lLWIwC$fX~9TRvyF{!{q*25=n7Kz-XTLW9Z__iSP728Pgk5#%Ne3)L_>7_i6q zEeeLVqenv~h?rARThoYBPFu)0M;U5-a#8QUA3-sGm^%4rWOuH@zOFUM>0ZsGwZCKf z^y!KxHaYncMq!faU5%r##I2MbU(E!xtB~FN85(*E(J+utCYc_F+Yd%ggvmg7dIdfq zxd-CC-1zM#tX;ic8Le%-^~5^|TaDdz@&k+UFQu@a_B598zpVQQh5fZqnh9Rf(5b4@4l`bUpB8~a>+i$_u&7G5I2=TOK-1jIci0-ytj)aiUKId$F`N`La zG^C?$pcq-DuOl{O7P=X_ZSKrRirX|4_HV_`Pj}*-x8K3*FTRPefq3laL?B`v@lF#_ z*0YN&6b%?N_69W(wY3#s>C$CLHBMH(;Pszx!orhI!OE}9R8O<#%tgYOvlacATuf-f zai}Z&j7fS4oYX!?Y)~4y92#Mwhp)zv!^KIA^7x8DoV&y9rMKRM{lo9J2ePuVnZ4zJ z{MI#y=b}>#-NLqwyj~5)_@8iK5$A+dpV@@BJdZCZN+A5qBI~`K&;);fGewu}4TdqH zNY`gVe9&?9@C^{pdItpu45S9TQB{+LSsx8uN0$InXGI-2hq(nOjt5?zOoa;$W+K$> zis`}RsO3`6S1lN8+IOjnPQHocdSwDsODTc^=aM4JKo4Ir9F2}hp>fn_>Ox-g*Kl+2 zLDPP7l2%5-g$i3*R<{=IUByU_J&m}}x0T}98E2fOFt_^7L6lXNVwA^h)amvs52-|% z_T}Voj0qtWfe?rTMPN#x0Vz_*k3RY+-hJmiMuXhZkw-6Vk6w8vEp>%=Ru--XLI$L7 zJ-wqSvm1n}rp?MDn%(?47s*U;)9O*vS-^ds*i-p74L)Di9uDWK)a2u;N#|Rdw!RCt zcgd26X+-}+iA8vNYH`~Y_bN`{(@r}L9&Thp_B~G3cjRI7@a_0Z@$8W zR}mLp4TDC9d2{AL#Ek64-UId?7`X>*%%71f*th<6J#YoZ7G7VzTn*-u;9#CS%;)RY zH!*}4t-eU|LPt-Vnpnj{VatXvapJ_Eb%75*@*usbmm-A|xWEgVdWz7@|Fj6vUbqu$ z)_gl+JA$qCcZsqZu~Ny;B?6`{lQO&?d1MK*!5h?|UCpqd49W?fQ`A7-G*HUqoM`N; z`GS(hkr0A?Cykprk7PY3yG>D;#X3?2br>kC8gVK^hdSbz?;*Wf8csdcEN?6ay#4N5 zxb>D>@xl8aBGxqy$*D;+#0N>CwqKpA&T$_;B3wZXfB7%6#Sh&7Ac^Hu5adE-A{sH7 zekY=^XFIAYzk#P$6q*}%D}&q|YMq2w-8gLdZj0h57MR1(kO^*H!#zt*#0<}yHw(`_ z_biHwixELeBJq3)<{tT|ip}mxH-=Sfs ztFKePyX98C{PIh5c61^$){LbTk79E0$+-2_Tk+N#Zy`7|7_YqYG9sdaP+d`kp2245 z=!vz^@pbciS5LcYQ=WAZS_vk{t-y1N2X~VX+8rK2iSPivCUbiUrH+=;VMq@4VA`Kk`A6YR6`bV~zsH7?YOYTL>Y!9QWOK9|C<+ z)jenoF2jzI#ks%|;^Gsb_Mtk|8@;Ham!Rs@IObvYF|!q9YR8Tp@S@`(z<6-1 ziRO}}jsDxw8R>+O?Nz^d$v`&QI*wJ|T>)xInR(m{LO7gp+8L+f^2^QMXtl%sV($Ta z4;IKIbiiL>$%NZBNfV~9dU-vYc@77}X~^x_ zQKcrYH(z@PW8LSe``gv~CDPnyK$1nIM7xZp3fxY#wd_M+FhjtRGqCvPTNDk_;>C-t zyqiK7B>!!TV2owLk`S^jjoKY|-hr22dIfDY-N@}<%jv;cO_dTQ6j$v+NbGcVN?DZDmTkh=u{T={Ys<9=zp1c2 zNH)B1@k$YTq7551&@(@e@R9M{qU8c-7O|TzsSvQLWPkae_JDW1RCceesE$ZA#LuM?aE`e%)&`=Z%j^a^VG7L*9hF5s-!EnA*-e316{{~&r zRqBfR!U~1!70ALf|9qBS(RY#4`~@OC$8uq2Ks^Nuq)n0NzUG>%X|j?Jn;~o|<4H}H ztKUY$TZ^XB?OeD;Ta8`W??~xip*0h#Fp&@z+BAg$bv9$@rH&MNmYulpt*l)O7guK{ zyBgr-9Y)DoV$?~Z+dtH${!7ACfoU7B+!OJGpU*DW>Zl4l$7NNfrk&-s2H03lut3U3`KF z1$zqK^n`cue1p19UW+pq-c7{G2CFuk`$|bWNaz3=BgA_f9X<;M6(14SZ~_fU50uxf zL2PU+KKkfGRsTpY^4v>t;GL&ardWzlzzL;XLH`bZ)1cP4AARo4Tx9EU?5tzSl5@4< z?3FRv$(2#DUUisy5s$Ns&4L*hr-tyb3mu-Y>IC^v0g}Ay;_&@u%{N%`$P&A;d$8;5 zpX@zw#2&B8^>P@#95*&oO_t(~6{dq!-&qVt>QLIXUD*V_R5jBZ2jE3)Z=@#0 zawwS;nussk%kMOM>75b@Qa73j{!XC?b56qU-c`u-AO#aALQAP0%!f8OoD+``jdeRz zf{KBF;iiFFWk`z0_Lr9M& zaR=6m>uFOECcwXc2aOZO5Qw+OQObz4RBA#Ej=gXq z-hAs#%O)iNbJV2CNMf?4a6`9r7o)ss6D9?pX|2;bPzm?Qe!TknD=KL+g^R5Y{)Ni3 zCfNN3j}qd=w`10{*@)>JV?9nj6gy<0d#DqEp2=wGB|}K+rB;|h|3E7W_Alo`n%+bH zt7PE21$7it@T6CD7QE@vmD1W-g!1}zyf-dp`7g$60tSpdXzZha1r1>*vH|q*9I|Nj z)cTROs|HP`3R0eVphwrks86Ii&fh5lJyaMZiUP6zQ&ijXB8$U4weO*e0uHhub#a=>l$3Z_co;p+73vh;Yp}QZ9D1ci1QXlN5eiYlt?wk-lK~n8=*-- zC@k7P?6fjANmMCV6RDyQVicD;XW_xWJ)j~8!z%xZFLvRHU(tE?Lw~nDAOI|T`5*Lv zU}{Zn=A;Zcy$h4B5+fF1T*9S@4w<36HeTe?l)C*+CLCq0JJJW4ASK~VpaZt0ox1kok+b0cf(a4vrztJE z$sU|+Y>R}G#i$n^QH8tcoOzfzITW|td_A^q*^CDtTZY^2enctX$pj>m zcye+wBIuzH@tcAW{|OkKa1o_vZ-Jjrpw-xw^GVjcuV<*j7uufR{`r5?19|!T5fE_{ zBGZni>AIh2$o(o}QGo3VdL#a$us>!Q>)cg|d_{$>@5s=q)( z$M>jc_)ZzS?(QDy86O{XI+Y9)5$#1W3-2k4maCt%SFxHgOtd093&*Aihh+F@g6SRY zB;$!MTFH0q;~2~_pr1)SXcRD6I zE;p7SVvY49e)i(aBc!XBJWOajsP(ED78!hvmMoG3sJjbQOK)z@xgusBME zVl4+pA{jMx)wuVs_gXd$dl%l`QE8(wf93*ApK^?v7`wW8BtlZZhUFNu|A= z#QpAG!;)QGoV^J{iQ$CWrM%#lMrA^-s^341l5N$hRZQG_d&G&=a-9ABx9NfS_*nF| zmy(a#7o(@&gnO{25jEE8L??J#2m@@tgl5)PcEvvbC`_UPN~@jWeiHDejiP2BmY^7eDCb( zz{w{rgnnR%Pt$hgr4>wPHZ~rhCNwYDf;q1p(SndcS*7)k#Bi}B<|^xS)5(G^#!1l%C+VDd^Fg@8UWC^_z;R3+mbGvin_23yW6 z(YxqqLP_-DOg5f_=)jW@NJfYD?lJ`UrXdS!`Ae0fg1=mqwt!yRLd&7}71e{ z7A+gowA0CY^PZA3mgK)1Z@LNJZTb$4g*x=tc#$LeW*jxiyy##0!cw@JhC3Jpx*`j6 zDXUkn=0bZh?!W(j>o&`I?CJO+MmO(kv8ag6}6lIsiJ2KK`-hbcy zc=E}ol&7_wq6{?#CUGet1^5oH8!r=hSjT>sOjxVmX{{w zWt4sL?DP<$Y+D8tK3^nnxBwq2MI5iN2pH(&1ya36JzML zO~$tERFWelnv@tWiUpd{MQ^mIy$QTW7zFf$6g0Q&MQ8|RjHx~*rMWpvd0E91EO=Fc zkZ8FuZRp;s6yyBdqgB1i*3BHJj!~aSdRg}JOJq+OgWUxms|b^qQxL}co=jGkLJlb= z1h_`RNGdfK;`A*gA@XE=_Sr{xk!p`{GIBKQWxUFVK#*-5sbU$cazk}v0cFf1QCe1l zxVSioQ63x=jc_L3SxRi^EcEtMgoYmd0Pkdaz#EuYH-ws^YHP$u>bkga5iV|~A)t+k zY*j<~st=jxM|pK}IrIOMPd$Qtxfb8|K!TTHh1;{G9p`l(8!Z)_d zM5QH;b$}u9TbNvMnF_zjX(im3UvMzAFCn?dAAg+e2Nfh{U#M30KW6Mo`2C@WAA*D= z1uLs_>BYX*Rq$i-SiDoFy0cbe4Jx{F=#ia_TW-0T30GsVYxhnnJ?%gRJwE51cOJYo z6EJG>=@{s1#>poyB(LU|Ojdh%D&=1H&oG%PIHl=;(;C$yd(6#A$3r%pFOGRJ2!$;Uj|Sueo;;Wz04G5Q3HxoFWOsx~4I0s-yfliSeKl(7_#3)F8 z9a}J=zI&e%sp%gi2A0yiTeoh-MHgIz{`MYa@TwE>rHhu7H&p>sU1y+pU@IPe_+dQo zzyoTxaN&xk>1@K)fnPO z$ct_9ag3l~MiKn|{NdIYq!JfJ-kLsO3}||B&M9Vxioj2V%FKgL3gig(|B7qe!~QrXfgR(y((h)mLf znZspn6oiOPI~_OEQ&5nfs|eJEo=XgNnFM4qZg40?qVa&oisve0a+;e1`9W!Lr=+A{ z9r-;~q1xK+zOR*lhCl~|W3q?}PJ-7JysJPyEJf7J#MqUPrSO90mAzsbptn`}Tny>5vQp9@?NPL8B2_FCk%!g? zDK1k~bur9E9yo>ln6>v)W&Bu}EiCOxxKKngjLZ!0>&inz@plMKJQf3;6_`15CPSi& zkm_*^c|)m?#BBAV$`z`AM~xn>7A=Coiwc?ye^);m;H$Yr2vSX_cpMEc$3XQt%r!}Q zne|K@`r?Z(aN~_PT260&|BZV<448M`d285NL;*`Yzj~JexDEQCo^S#2SSn-pKuu3B z1{>-dh8=h47cmM2(=Ntt=TI{$hw{`jKu0b%Zrq5^S2BFh02a^%UXHMWUV7xMRWqSZYW0L0}jtJ?S&OwS*&?9Xr z4Sj_wS#8PR9>Jv-UrtrYsY={q$k>iCZgBS7z@GJh%+!I{B(L_lGMumjW^!-x6b&&3oqc5g{RUJb)}*T z6W+|d*?ZZRn79Xvz!)TaXIo^V5rfr4Q3!X>gZQuZ_6`!?5BJzQkyKtVsZzw)6$+;D zm`(KUEShN%=rA@D!?=-Lm_(>)w$c0Iix6L828{;n-n19v9gatacBYy*1D#_OLxY^V zk?BBvoCZCH{BYI9*QtSDm3_af=ag_`L=egUdCfttB=6_+D@iWBeGS%x zl;D7|=+<-*sW^=WKsO3a2febAY$Qg3?V>^^9WnAN=+XA|^tT$ja>5MPS;QT7qtDRE z3Cl3zq!1q)k5;k*xHLoiy&o3w)^a#|GPaPo?kIuF1g`6 zRGSK9>BS46HD*(4913yNRP$odX7jL*Pdxqv|C05}Xe>7Dq?hyrj7z^7QQ5i$rLit@RM+c^(LO+y1U`{Trit`9rqcM-;nv%3 zRuCkqH+%MMWiYk+l`ByKNzfdRxyp-JOlja2eI-IdgQcn}G8PpS7a@4gi3pl^l8UHk z$mts4no6~@NZzfao{F(&KBlg`k-`ecBaY9*KcD;;4E4dN$)N%w|2caHAvyju1cyve z7-xZIc=Jdp-86pne3CO9W)j;Ui4aX3TXj~?z;)MOiyLmZUe%Mtvwsp|($8nHksRJ> z-ZPQnJwxGeWemB3SlhIebR;q-V#c&%l%XvLK0)bZfk%y}OtZ6-ClVu%hb-Q6yVjzx zZwEcN8dP@vKo4&#QUj0USo1CR6uiKN^>W;G_w8I<-k{DeFCyOK>gvW(r`x(sKD09V zY+R-}k|c}imbPXzwC%y}!WWTM{0ck*2ysZ81If*3t@VZnqh@7A?Rew$cNCxawbz>O zQQDG)x1X;cd*C4aNgN~X8epQ7UqB>@Bw~Msfdk z)RE>aIKfMKeg(E*AlG=fYl@sgmA1iJ_L>IA9y?Qwv%)%KFZLezGxvbq!}}Zj`jL^c zGG|zl8T*zZls$b+R{3`ZolMe$?awd7kU_W^nej}#XGX;7ip#R7Wg{{JPbGYUJhM#D zkjW=Y{|zQOFHom$FqRQ=&`4u74CVAL`T3o1xg>fX7GU}Evk?$7hMbz_&|6!>_ng#@ zQ%O{!M5H67SS>MPk@QEzND`ax5XMazqmm>1J)@bd<%5RKoyyaiXqcqhmatlyW*V{v z*C<0Fjl7g1k19zlG>^espl3K6NlB?ptmsnMVKF93@FBd(V9-R$q@_!jDiyiq#NakG z(Ca~4qhH^Fv8h*bve~D&Mq3RHh+uL{b$=;JJ$_Jw`e?SfcEcL$J=%T{54(#KCmDL% zZHsuWD+hK`Hugp<+{CiKq@)DRt<4zaI~O9CETx!ytU7vPKl^Njnz)_34tnF72~8L@ z_N%aT3KN}5d7nNWW(=L#Q*K^kdJ`H_)t7@LigZX3FL?Dpp871|U%@Ba%m20q!~kn< zYC)J|0>Vwn#HoMFgrtp3*GfXCrUgC5Enm7?-3ZC_8&(-Cp*7a^4_iI-FwbHd#}Bg zRSa55S6DKXjS%}p;{AhB*I)cMDs=(_$j!~g3rk-h`$HaYduxr5O95?BQ4Y_WQs6wB zQaaz_y(y8kmsfhW=R zG-HPDqma{vny!3CxSg2gazkQTBo>{!h}X$#o~vo1ykWz)rpP|=(aT7J^ejOStgRhx7>L(et*YhEQWiA@~EcNye`BifjC$* z65>Y(wu1wnr190+<#*zgOU3yh6P(G%-H6f0T~BiOK+K*q0}nrT3l1MHptGBSWy_Yq z!yy=>edc1c_gtpCZ!XL7floZrA zQ>UrV9PiC zaZpj`9$ig--8TFO|gU9%SURPK^{d7SNB1krJ8VZ6`IhZ8VH zfF(om_iVwr=di%7nfC%?nq=-6ZZ;HNd41U%_;S_Ph<7`MIMX>86L1zMLidyMBP zEavjUQ_nm}jHwgvpfFxp%!EFt?|M~MzMV&_h zik$Xf+~id9s&f)cliyq-=}9q*5a2tOk2FrgucQbFC*@>@aB)1^@fK>yhVEicRE|UH z;4D~Gxgb0&oB;+Kt%=B_qbts>lo*d@U_c_W@)ygtm+eJ6r^A!{|iRok~`j1uTUAEt>6O5I*hj4Yzgpjj?}>` z*p1}w->p}gG$~qn_0>PCgDaKCqEsZ*K7#cUwIGQMiN!P0Ayvx<2^WweEy1vfjTysE znI;45?`|TIx)I1!o+-62YzPt+s_7~x`pt>X?SL*TPeQP7Pv}C-=yUZmTRYM|C7p+r zD_+98B=8p&hGkSPb6}(^#^XqoT;69je2K*Hvv8>FGdR;>=we$47V=ptR)vHFDeaFL zgS&h8ZaU|Wqot*l=XJhT%X_$bQdYSHf@_q4MVwS`H(#8;c#-A!qNAeGT+czeyGsjs zT*bQ?W+GE8CY-4<2=5!(fW0kW&=oPAqeNsxT}mvHj%`leCPtdt;p)gjH`{)?OLcry z>O`cUVg?RD{do7Wx3O^H!hh&M=|)GMezF!2Y`Hjv{*03O^pOXf*RIg+xefWi(b@%p zHqqEKuo`za9Q^nGfn(sx*4r+1W+@fFc&o9ae|0lao-nwxn>0-XQjuZN%l5U4cg*e?$wX zBr+!5K<(_UItU-X0tdjuwzNNQH9aHnNMT86pp4Eq<6f(JO>@U}Q&DGkQ5QA-;`1JP>^8p0; zj??di8m+o<505&|(wF)VMG%kN1LrVXv=;ZkWzdViYYW2|&X(<&-v~Udi>w*N-5Idy zw&8YS6dod3hE$w@FvnP|Sn)YV&$~?v?_|Bi+1Da({mbmv42!dSWP1*jkpBiZ-+Z(A zqmkE<7WkiPfsqLBPxNz_m6a-lA+z!$9H?G}da5n?xrORr^snsFq>^SZ9$Jhs?sKWj zo{Tt`iNtCpqOfiQdiy(3*^)si-W#y=g%@$Sn3d%hUW3q!ev9q7`RMHJg&&JG%#j+2 zRJq#*YYNYN976T;yWjmz`9$S=d*b-a&aQbGiK_U7deM1oF@I!vl|qb9K3$I7!ELB> zI*eMEJal>1Y82^AMv*HR=aGuxOu`xjJ|KgzqsuW7VHW^>`up_QxPDKl=uHHMJ=ld*X>FP+U^XbZ7&mUQ?0cJCB&cHdM1{L~M{8 zrMaye^nEQ|A*n_ek3*d2Ao2}MHGB^_NxLb3Dkjcv0{L8Pn)cD(C}ct4Rg8ww388}0 z2OqzO%zb-N%->9^xBpSJP&YX8^pm#0{rBI`h?+0L`$o|{^k5t@Ug11BLtDtoP)Ncs z%Iw-Z!o%a}XzkxSsOzr3mS3}Ys;2?_4!(l&>dnYH^g4X3LU?@$ZuiJ!P_{F`YpjQ? z1X->I+ zY5_WjS~&TQWW071U!zzTFpb|ZW=&90Dz}}4i!Z)NC4l8S;ro?BzWSyET2~;S$)vfJikR{{ zRyOQH87H_6Er*bG_-);m&?XKyt8RPZfz!}1D5ZQ^oc@++#J+}846_L}ov^r64DFW| zV!U@6BmAbQb}(bxlChJ%(9X%j;_S-0c8+eW%Wy$}e*p5UR+~4+aiR^iEmXW)kjLK{@x+20{&NaDd{SS*7%T`NLU!mCWR%P zEW#+JOzo?${zZ!|3P^Asx#V}Sws(LH3orcUFJvb?i2AOhJGn9rOyZ=93DwQH3(v!e zEF63B#TWIn=%^SDE*1J-o&>*E&;Q?f_icRe!3VhF@+)xPefMb!RrqwHB4cshx#yEs zCk|)+=43qZr@K*HT8ztnvjl5C|C*ikiF7gvNnku>9|z$o7W=ff6r-!7*0PVf$~_pO zvn$bAiLl9_V@oBbgH7u!%gFlyMo0emDr6@u3U=>2`7~Q9XR6A6{ z2L(2aUGTFFCtTqWyjhVij%{3A92P8Cpy^o4368w^*;}Bzv;v;}fkz#OAZmjGf>6k6DCZ+s#Pl~ zov;N5?fAe}-M3(2h3{5i4+)dJG3~Sz6-;^YrKMPK!Esn}g(+(jPJC-r$ZUiMO+!-T zLKc~}s^jKQr_F34nBYU#*N*bbVls&h51gaUa&f~JhK}3O(Nu=a(sxvBL#E1m2mxrM z<6F*&W~q^nE!()<_x2iL3su!s@bdPggWRK^iqK6r8EQoS*lhAXfEZ~pb<7!UmqIzS zNp!S{&b;)uPB!kOElk5Z@4TyD-*(&WvGc+#8}AAwLwrmMop!^a??X3MK#~zVEHEq z@*Jc6kDkcL(?|>a54M2q|KK_QS57$~Ab=#|^+-vf!^(lGx33L32mivzkSXHv&mM%p z3xrShrr+Lr)GB>+{G^jyy=E1J;9gXne5fUVtl2m)CEK2%%R1V6pt3829Iug(<2&c< z1^D!{PY`AmuL@|_ZM+UEKVOCApMH$dq|_3%DZwvRTIVAnCJ}RH&!q!xP=+*~gGi%t zdODKTA=+;iBE6|lRlX5Rm%fNs{`|7a{I2?9rAAX_kQR$z3RWV$BJv=Xzwa%02adsD zKhw4Cl?V-sRCt1)pARakKSC@i$_k1isf4z5dx-_3yJyc{Dke?WZJD0} zyvLxV`ddbN-H%E;3Kr1QJ)DuNYam>rhn%)4ckbxKB<$L~laBc=xKj9{x}Hw>5IK_V zk3^uQATXLl@XbBti1wJI5uMD273vVXGZIwXvV((gHP3De_V<5_WTzP@??1qSjSjAD zD3a_?fGg#cgNG7u&)xUX(LF~~%I0GpdHvx$$#)=tjl?;Q~aVsY5!iEl`WJr2Do6uB|4HvIa zv{W8(w#?fY5;`s;NB1paCt;3BI$0C=fjEA4q#YBRH*cOsHpTgk_n8G_=~cD>06+jq zL_t({dn(P*5sZwCRO-Byq*N1%GBGpHZULR;C!Tl`KIF|dn~S3#Dc6|t@2Vnhm8>g_ zs+vs;+HB&@|DuQeq)f0yUR>ZpVwH3RYkNv4OydoI7J#<&HqrUErYIo`p+!JLry zA>I2djlyO$t}n_>ABV0YlPtBs9i(tgP}T>q4U=Y1WL?Fj$|@u9n&RSO zG!9i0&Jm`^D(xZ8u3y>-ol}(J;NDKT=w!lb)_b2+^eKUl1j}1&ph`OCQKZU z`6r)>E3dpt`9OVqyeV&5X5O^EHj&{$U>gdbXKb-=KN(CMr^BB(*>vwSSX9}IdQys+t-h~VnGwoaw06L1 zJN8>`f)xwW{Cz^1X*rLMp%W^yzoaznX7o`FuBv#Gt}54k_V(vtXV}x_bXSM6k-X7a zEnlI7T)TDLZehnREPLZM^R95g`4{rK_eMqAJ`^@@g{MO(o&GqSLq}8az%?~T!wiCg zg4C&$dvLh5_tY{@9!zl4ZaSNk+opq8z>yQ{OjO=sT|iDw4o<&h z29hR+Qt@pr_uk8B@i+P#cZwPft*m7)4mWS(z0C+XqupX6NK@9CjjOM@8u#3FFOMWm zon86PL)mkqG!iTSn{E5n9f&6EOiZ9;q#f+g+h7&vP0Qm7);)<0$vowc|HM z2C`Uf4|=L?spxfxgGfAMl7)(`GarvcqTE@WBQOVv?!5f+OB%rvZTm#G8M>IH_~dR^K7N@k%KWSndRplX4EZN zk58WLZCw!QcLGZ4w_qP5%Yn`bXg4b1=IV~hjvO8A#$c8f8&w;HEJ$08(E+Ez-<5Kr zEd?CNI{7=0(4T|XL1R10NHx|tP_B_4Cu?_fwYMnF(z3&mH@~PB5V%QOdz&(m?D=jl zf>{Xp(8CWY)Win{V$XsF20 z$+ytq2>>UHPz7ydw$f(Ksd>R>i^Fs{r#}#=xT~Nkayad zg{k?)%Zb@fBqXB+F0R&S>oVcrbs;_p7q?hp?M4K7rE03aq+u((JVFubH$}g5wD&|z z@M$c_x>cjRGWigAln6ue~lG1$P~a6G2~UW9J! z;&&d%XkGzFwwj@xkZoKujwHz^}0dMjYOM@mCe4At{Iwj!r4|`Z4vI ztFF47o$u|4i@At{p97-}m8huPL<$)b59SZ;HkKVtU1J+U#-4#LVzXwlqkfHexpvYd z-E!;g2u?qPT#NRo%vg=K-fDK-j83}7AgAg(&fH0AA37Ul)th14NXObe7-18Ci_*N6 zj08-f6a4|kx}Qb~+d_??P<&V;k}~K?L5bN)yYnshUinO@f`VLP&0p)QtF5Hk)A|Ke>X(i#6oBQYGIs3bHV)ul|au~@5{PM{1l4T5(KK2EW@L#*P?-S{HO_9wx~ z%^&3lR>LECqB^_go%v5b1>4_#3UlY23@@7ig!D5_%2CUGkX7FHhln|TNwI3NvGJ%W z-^+-Tt@8H@)tcCW0|#*X?RTM-EDg8Z@dB>C`fBs0l?q7;T_U5xQCg4^xH=-Nikb@C)%&{!rb($kQ*j1%!@nxV`nxn~Jv{AcdU^)$yu(b9fJM;xw3OSu9{E zoX+2Os`@pS6EP_wTl(Tsy!QHQbnYB+xPAk#9XqDt=_GqirsQoMiaYi)8riLrGJ!t1 zI58bgS8TWm#i6S+i;3%QVTNi%lV(sNrxInA!ci$)+qy2(;_S*kBgq}UXV1IH&n<$FeY|EcDx3Gh z&piRb-jpAvG;cX0hS3D@coP&*-C3Zp2gx)^PQx^?OZPNB5%*Q?hNZZTE2A-_{Ow{pb=SL%e^ zn|#ZugVWj1v9BkGZhaTwS7dk*+P2EhTx7ksm5!)ED8hDKUkZ_>5KR~>#L77p5KON` zoKt;Ix)Prx(z|2lHcUNXI(F^aNeuRf{GGZmI_Yv0 zmaL#~j}rp=qToAZatE03;fzz zV8r457k*KJ4osXdN%3N4KFsRsDvh2VyP3s{&sS&Zfd}rV{AY+pIKKXxe4Fv{$1bY> zfAPf^C@m?$=u>aEd>?(nCAgMi2%SvJC7euxct=;XR1lYDPe-b`0#!|!@NtVJeO3oC zx&Fw>%E74EMaa&318q%(s4QBq&eb>$zI(Utr$hQB2k9XWkk;y$MiPxCgGm_Uk%Fr$ zwaR5`HUVd!eYWKognF#8zYMfR8UDH%+yc{mPquMnfgiv3K`=Iu?u) z58I_HBfWZvCc|0myx#=TVR%RppycI9(1iSX2Q=ApB{Q5|f-J{Q>RhUZ`q2l7^=JD;k9 zzAPK-Gy%ngMu=k|lcf>+|EC3n!@0J$RCzV)DP&y|?oU$ zD+~jv)+fSd$QEG^Dahzr3y~j}Xs%#md)TnTFd>ev6b%XlBHU_}?n|D^9J5eMri6YL zY{@n~T_aFWM?5KM6wW_?F^g;8$0)*+5`*JVB&-Q!$q{yl;TA%-y|n)@0_oUyvPYCj zfE4G7qn$%MtvG#udGI7B=@Wz82ZScpwu?!Z`^IjA2jL$4B!AK`B(u&3lUs6TczM z<1P3Mg_;*-i`v8ACJd!zhcV8WW%)cnaKerQka0@HOh#;^1%7QUFyiq3lfS6YaixzN z&rW9uV*?j*FtA1u(|-}+blSSwEY8vJ&E0?hA5^wdX5=#X3C!WgOa{}?1QYJdyo>{7 za77)=&BI%r-MWKYP?x_=3rOG@jr_)MsdBa-Z@>Mvc2J_?V@n>-QLz`GnON59`rVWt z&Y;s9Nj}Pc_>nNaz9mN;uv|L2iH0c^TW4FXv`4l~;pG+N>A)_K0I?HKJQ3$CI2&)h z{U#!u)3o5MuD3{s&9gcbJmYR z;(do|Du};rXZzVA+JA-~OL5(161q2`r@01=dp5#r%w%OG77&iAoFbJ3KI@FL@#U9aqQWXqVI@Mt zCZzIab7FL>wbg_fG=Dbo`u|4@2u0xPHD6i|cKfy+D9p-6jFFV#y`SX|^6x-UYhEBfvS10tGBmYv0SvLL3ek?oh{6oKLxs zq%c)1CMJfs^%_De`r%0!k34$%T9IA$kz&I`gA>)+m1PH6oF@I%;f9SW;Nrw+W)JzG z1A~LGckgbc^t$(+`%vAmpDB3CgVQO_Z~O*sj7Sd0-uv_Tq^}W^do{=i*Y_oi6*sii zC`?H3yn^XB=rAWU0xA`Ej{s(v-gk=!>DvowZeWp6EF?Q)1rIigSY{PE6;*@1M z;pY_47&@P-lG9Z!GPc z9C{`)OWvV_>YzNf;!q36t=!MHjGh;@e@FNMrP{GcvDksZfvDVEfOz+58l9E>mUZkW z4I6*o-fmoW*=1BMOH?L{88gUzPT6-4TN79JVHOig5gNH>^l)Q%4&}Bv`0l&!6c+K- z+OH7Z&wiehcR!nOxEbCk9Xy~>WpT)bfue` z?%cj(8^#BoXIV|CDEnA!dDdB{lLz`^X0+OL(r#X$iCoHdwuEQ&%k_06k}$xD$Vhb8 z+)5*_zqS_m*&SXfdU)Z57w|AsEW>Tps#Vy!b*pyDlA;z-grC!%dg>`1JjMqtwsZ)w z-X~yR&8IAict;h>e(3ll0x6GwWa8M?m9la=ax!e}9CY!v+Cua(%_nM0&1Ko@?2ZjO zS7n4{fpL7F)3_4S>B?aI>8GENu>E=zmXYF%18abPkP@3#{L;PNR0ku36~r=;8I* zgH(@`EzY91eJDyh_haWb1%x-8iOG{rKz`PDh_Iii*N5P8Mdi=WF-Gy>1BMC8P*v56 zvEzQPysqVC-=Mv<6tiZ|rX;OIFbS%eJPB*oGIAR@o6Gd0ym344eTps+r{B>@$}LY* zyOmXKVDZ!hc-RH#wP$T_gL-n%c6M~?WVENJS2g>t}q<~W#HGu#~QI^qmBq;gbq+s2%M*(MT+;uwu|v)&46Vdm+-jX{lo|`Gm>5=jKEDi?wUlGFn;= zcPoF(A%?q-QN=W&R{V0+YE^fXF>2w0b2+gXL{)bwC**;8{7#%64>t!Mn<(3f$;5!C zWHISKga>$#zr94ar5(D+lu^>Qm#h-0Wbo)!YDPH+fkTJ@QCM4ouAkMsnNsYYTF5MY zR1;Zbq{9{tVOwSkq%E(#_IeET4{&O-Q=`%%4_`(HyputP3l?9958wZga>mnjdop3G zAH&Q3 zH+~B#O0Z=i$+5Fv=~%?U`oGxt@e|0jkfobAxb|5Dk3I>;Ko{x`?^IoRi4Y4;OJr$< zBFk(xd@n^XGHH1Jxuxm=O8V5r!Iy*KiHhTT@r9RJJTlWV2+O+B!6&H$>BVA+Rt=k8JieUBJ;vA zYGhKCT;7(!Xi<|WO51^s=tgCE+-Ynqxe z1|Ki~h}F-eB^tCwxb0|Nws0_0d2^G}mcSSsV6odWa_A-@kOd-xOfhHntcAaIB!X?? zlr%qYaHp;(m_w0vm57TtzdN_@WM#A~BmJE$eVMDv$djZ-n++k4+N%zBS@$8u1InN} z+(hi+p1bemK@;X-A5O_(DpT25p{=cz(eWd{_waQ_-v9h9;N|6|Yyd(Dc*YrLqQA|C zsc2`*fl1n492P(482CCxvB>gk78^}sVbfJ!?#nh-$= z?auxNl(u|FuI@z`KVckx|NGx-Bv~r@C8aJ!e&WnIvG~j+IB_I;EzX3C{N3`dJ4VBD%;~F2^Ba6Jj!9O=MwdLH}NC zC;nBO$!XJs%Bz;yCUT~C^diW#x-KsPgh9IBfwr-9Ml-ZOeC+W@$y$@Hp9}Uln~u1H zl@n@=63g*WN(W`#1*-BW8@g=C53`>#Em^YUxD7-Nx(SHi{`c2Rk=P+0xl`4%d{Yc^!G}8(-s&*G$$=!n}7DV3ofdus1_IysMKin z-Av(sZ!&m@vn%RQiN3RyU$mFP8^f)4s7tYY11y5ct^6Dwp2W8;oU4tr%W6JAZX{Wq&pOg&MsMwN2E?f*UcF z@wTR7G)E4{DK^uQYBQ4qrxOcCc4B}9HG(%h);vADaM2a#;ns(*RZdNThzz$iYt|^X zQwGd2-lrnMZ7jxkozCsL^4kC1@I^=7{{mY;`X{y#HA;7&^&1v^ zj?zi09gEhi1{^RhJ)O`QkLDTe~&%Qp`kuXXm>I~JOv-W z|A~Ix)K!dlvOc5)or4W5RLjlH)z4S1{2Zs9F^k2bYvAZ?g_7>Q`nfpYWnKG_;yssz zRNgGsazi4;QwAuy;_4X=N4IeHx9ODmjU}ANS+T=iPKOYd?5LDpAAa;cZoTzZ?Te$L zn0%*nx}5umAAX4Iuf35IRXU=EEhCA$)M1mI3YI^3i{OdQ#aj0|ScJgHLIh>o@%bg=ME=pRc6FOhvo z+Z}4z0B`GH9zFX`2YXJqAH`VWv3(uF5#YeS#%&tpUcdh4YxQ`97rB_xj*rH*YbPU3)1Vte(mA2H#er3FXRsSP0oq(CCw(WieqcoUB=_M@9`Xi4Z4v%~X0lDPR@`3*k^MI9#BQ^;_1V zkU<0aZAWaR1%9n9@UumDB?bTPyYDIsfN&0)P52W9&l(#WYyL=aYo(>7T99G>@L4)w z!mVgF8AK#4{8O0}96bBnpH#QKl?(||Io-rG)<++Gq`MrxZ;7(XL(b*znH=+b@4bgn z370am;*FNp!;D&zFPG8XJW_+nHiRNfqTDvNtl(yZH>>t@M0!r5V@Et4XY%p!2};iu zPTs|#fk8TYM|W7ERCdZLdmqk@zVLRBMMoFO$ST)pns8Kd6u#ZCo<(m>@b?_cG*>yJ zlnsg}8&1C?Q3f}AFSh@22y%*1x-lun2qqIm_5ngI7-f}ItEkDjl1-ty^MFQEycyLJ z3vx@=<8~wsk+*FKX@DA0*u7i7%d7nqzrW>1h@y~KPfrg{KmBxl$b{$0E3agmFw#X) zjqTgFD=UV%tzUWN6*~3)i13@N>xz>vT)>B_zN8~x0g3F0)1MG@DhI$%I6&JW&~+3C zu^~b#wvhi*Bu7niK2dox#YuEi>b!^~>2P!4BtdMH%?TVptXYIZl7GgSBuy$L_9Xrx z+Axd5aH=jRvE7>13YBe^^IEZDg$|&SGBihd@4xo}I1RcZm~=uiD48vsk)xHLuO!sx zA@fHguiv+T+!tbPZEZiwlJfnc|MH7CIHJ1u@kh(mDY*B(yLF=Xk2Vw?9gY2j9E=;A zjsvahxVRO6)6ocWH)T*H!X|}{PdxEBBeHXq@!=1DxDT(q@+xXLiLNH)oxlQ|S=f0f z_Z=iAU8K7#Em?zZ3N46PH+v$@-Q)=FZCyorvmJ=?ox%)=kEY?Jj})4|r=NZbk3IIN zIy7S_VzHGfr%JJSvF$(gDC0a6Hx(_2@YFFqFO!MYF|bTST?t;Gv3J+Dv+ z^F3!?PhOvY{&_t7(4+7mm7(Bm#RS8;m;AO;#kega#@ucy;Syq<#3?`i_~R7*snF}=yz`!caLrzK%?-@Du=tiPrI@fO$nPW> zG`XZ&S?C+@IUPfGgDRKY)LVi2o+4e|$2wG_&V`&T)4QhV4C^I^W!v0{;jLx%X#KkN zCTubbVmYPe)~yg78-3K+B=XFX-IOS*6frxILwU*Nm*XX7`TS}W; zcG(gLSM;dlQTXJO<(66$f!N98|B_Xe%%|K>BR0|kzmyjE*&JTMn~4eS)o>F^8<}}J zI5=277H&r=8XInsQWKcLa5E2t!$12^zL!X@6puXlT5E|uQ*zrW`CbpMt3`zp0Cr$ObcnS2FPnE zwuYVmS6_XF9;Wy_ZQ_Z=+t2h}vqpF$d{5vyk}hL`UDY=zu3D!NB#B7WlAdho3#$|x z{UitY{Cx7!(s6w6-BMOQ3mUPL!-%QKPAZSZadTy-?rjx@L3^PS@}i!65up$7*EWMB?m< z9Uj`PgRMDDnoM}cK5W!9s|+?hd?$9={L_&|iZqdMvnMP@#0`YnPAdNe&Lg-)DJB|j z5+!uub$@KT3}5Dd^}V@G%&-5+b~t(NDHIaOMuPtw40aEYm0=0)z3(oac>SaONS_uP z8-tER;*c}T(Xo%$r>9E>`}Zk4th&0I`+J^g?@~rfBlJ|H7^<1@>2AglXF0$ zu&=-VI)ZtBejnJ>-AYtfBF6%uIBZQCL{d5~S+c}@Nct-9i$@-O6dBd)m2yn(O({5a zaAb~#4(A{=NHONXLNa3W z#YC(|7+;$AH6q>mWMZSg|J>-tefQp{edO?>WwW%qtSi^?op;@V=a)XmmXzW?)4INF zS?PNP-77NB5rlj=5{i+>DTQR%M9e5QdI8yLKG5;Td@Qm}$^LaSGA-;9X2rPbo^1A^ z@wz{m9L=0Di~Scl&)I%kw{9VSZ#WJY6=-|NHvXA0OqTmG8*z4jtYt<%|G8SgiWlY2 zIt7#BqT6r3owG|*s!lr6(^%EKapOkI?DDb49)mh3s_)Q2D&(M(NF)~<3?5sN3%z`{WA##_s9 z&N=5;_9bs*<{umsf?%s86!&JT6tH0AglH$!ElnN9s*Y?93U*8zMxdeVuol!cHa1v( zE7^`XqC(H*OH^J1;}9WCtM$^MYheUgI38tyk;#fU2*W#RSy$|-r=G@x_dkwE-#Msk z*oltrIywP8$lRZSOG&d+QCJDMmh$|pd47w??P-d>mNo2Bj^geflF2hlB{<## z<)0{?S+*@jB90Co2=+)r3n3|0ZCUUSnxIZeZPhMWgisGwn==aR#57}bYa^vs6VY$S zG_02`+FIM-(N47~Mtt@UtS5djM!7U~MLtP!+aacPLpgK_#gGhM`$=&W8GRaDoP!v3 zT8Ca%wmW&+qNJ>ZT%pV80Ns>fx7i9>w^2H`LMiTKG9>rWJ@?$h$=?f{LOH<2a8-4%XvcIE z^)T8<$2!<58o@@iZlaQ6G7UDhoZ}9ls;cs+Vqb~qrBeJLh!6@JgAQg_7TmpK(A`qhuMoMt)9Ulubi*=O5N z9Q`0X0$s>Bk*^M|`FnYN?X}nN%u~;*6566g=Tb1^NtNz>`2Lr`I$gAOaB|6rw+|`D zs#)CHMSQ#jL4^M7^i$465}6Lnj-jwFh-#bs@9!6Y4+y`QF=NK?-RXPjZ)0QQh=nd; zhRz0Fgi*D&x3W(hB)76R58 zUb1Wb-3=T+5*eYbrh1+W;{0ZEU27buSxMMhJNu<@!YWD- z<`+kpO&7uc#DHknMUBemVxSiXF@MxO=tphb4(o&Jljl7W*+ zz0{wK*hmZf5?bKM9sEl;8Xkj(hlk!|66rOY6h%lR^_OHjiQAM2hp;z@!};%+I5Y$O zy(ng6caTC14vycKSAV}TCzk-G{Ek%oh6j)xfiQ?wilT%cdWMBy=RAK@hgPyJd+}_Z%7b^P z9ct@Hr*urg)=?{d|IcHOK2DniN0enhbAGLFiyS#$gtZ z1lZ5zglkiv49$#K^^yKeBDzAMw2$BUd!-;P_A(Zhxx+7*gIrGy3hLIAJ)#_vifyYt zh_tUp~|fr3c-)Wh13gK9q`*^Y>cIu(Yk4G0lb?BGo|-G~KeFQD5pL}mJ} zl}wuo)Mdok9p17({d<8@MFfqqIJ>e(nMgS~y8KNx>Bo*nu>K)YL5g#i$XV}TJK}t2 zsIyzwk%xxPA|x1-kz^|vb)wW6Zzyctf&6B&mT)pD>Ry*za*3*E38(JTr7z-7fBKV( zH3(yYNXrUSiHMj;p`@d|lRCQ+;jH7tRIWLDgUW-hk($;Yew-FA;Tsl!el9VgPLv*R zBC1!gSmn+3qLLt`3 zw0rwNJp$~b!635YPlvC2&)xUnrt5EpRfR7+TVt{8<+oI&OtNRSjd`eJmder9k1CAm zsNw`x+DNiMVuFE>Pm1Lpzty&=;hiYXZV0iwLdodrFcvds&cvH5}L15KDHsN6W{aNg1HjzyhXE!uB6i%^S z2uicZXP*=@EJ83Su84R?P&hN;K!0HuEdmSGqB{kTQz$nPVXUW z)1+JW)yURt=IZ5Ov$421{advm? z*nzmwVXS{>WnpiT!bW5}Z7pqDv}fL?z)gggJ!4O%`J<87krw#XwZP8?Y503BDIJzz zV@2IcFsy~FP?pHVFU6jI`WdGBZbgV^3i>FxAjKS&m6b{-_0Jxo%<3mhn4q$u5v=w; z)V2j>MPDH%(G+zR2e`U?3t~g(TQ(_CM@jEX`p<0Qqz2n1z}adDK6LDcnGTLVcPcL^y6_T-i z+fIc0o~YPmsdg9h@ruBUe|`*~eexNWy|E1bRJ^M07fxYo4%qG7gQphSl~pPdL5>gWCA zgR;R~1X@RPb5_V{{)(kk(Zq-PqOgCzPNGgb?P1-Oq@C}$<2HTo*B{7;9r5ps_lbk) zZsmi!@4F2TKkx|e?M`MDcEiUpQYU(y-NcR(_xabqen6_bwWLhzKy_`k7HA3e-J_2_ z!h+%7A|XBzVIE{EsQm_ojOcc>l`3;W+Yp^QdRgASgiut~Fl|o7GvYY~64cz%toN*> z=l}ZNyGmi@?GlZg&TV>}4&>ss95Jf$rINvF22 zVFjYxChFv~qzj8u{8xuk<)JL%UXk&c( zM9aPyg*6y?wft{>LxOT+-YN5qi!Zv^pi^Unc_tYXe9qCwIPWubyNvQ0p%GIICucXq z&o|KU@rX4-{U#e>0Vf!a_U?wSPk?dnJ@*>KeHnxW7%a9j#=D$q1lq+KUarx`_{85@ z9xhIShKrMj!J;qSwvSbq;bRr5??*)}G@P7V45m%Zhi7?Ry7UDSWLfKSETl0Kyl3hA zROge7@vf&C>D(WkO(WQSj6tlUk(!cba3C{?OEsuQXW7n=ysuS7&@t@nopsxC z9hmLni!Lz;n=l9$Fvf%X{Qg0HOM}GpmjC5*N^=^HHXeqxjh*4_7O2~@va&HKS*q^? zJX4MI_^XTnj}$#8Z%=Q7SYu<;rcK6~XP(KVqn$1nYMo?^x1FbtSnG7d%fs6sZrprG zKl&=?EY|}EZ^O;S-MIViyY>GlB(r{w|qcL;(EF*pF1cT6z;a~mFyeC}9;DqUK+U7se0M9@7 zyy^GxI?f398E@Fw*cz;mw`^MO>*J4`Y}neGuA4K@Jj-A)C9h*g!^zd(@C{AZ^%pO` z(6SDT>-00Klo@d$^9?_bWYcfVSS(8}jRZ_E#$h(E>$!#-ub1bZdrsG7`rdGH_U1C- z{BDlrK}9mX-iV(!X3siFw-xU--Ix%#NFNbyB% z5MlT`#Tp?lqYXPN2gA+EbPvk?!Hka~zZ-)WhPQ{WF~Q@^qaN;d0eTFl^cn2U_G z6K=CSA`(tFrcIw|khR1h{LQ%KmRk&G_LD(gV+~h_0K?Ncf^9m=@N|nd(vz;$hnJ_H zA$>I=Q%0!ISR>kRhHiht_~Q&Z&qkPYoaJ2QoQb>D?-wpO&mcdo_GRXKPsX1Bk6^>s zI@};rgArq!Zj85|Z`iY6W%kk17W3wxW(35XVAwmjv(I(a?fFMfVZX$6{lbjZt5;i= zjfjddqGn!XBrmwr@(3DtGRM8&7{oE_y56<{MikrK-QH9G54Mgba3#fX;kJqE)@@Ch za)Ln|wJ|RILiQn{>^E(6S!r`pwHYk#V{UAmewOGr*BBSPh}W*ILAZf_HVTvVx?`qG z|95eAHwd%PzK_s6%klm@Zx{?P2ow5uRvlSqqy>JG7WmmCyu!v{#_#ebRg-j?q@*Mo zAapT5g!42n``>;QF^q7((OQUQ-ggM`t$Q-wQ?hQM>iHo%ZsPHj{w0o!E?c+NA-vuD zwpLCvNU0{;@Ts1sAirlLuDNm^BOMRm_19jW+no1fYJLL84(Fp656Q-iPtW+Tc zpMUl_x8;l~qfn!!@i6fLyD&mgIIy2*avV!7D8b6;sYrnmS%A3l7s18d1bfNe{Ja*} zCAgh{jFy#DgUW*y3qyz|!%)i*9(&*kTyx`9nmS&+YAvi;T^(p0C5NZxX-%p#MpT3@ zZq}?>=8u2yRk9JhGmrXCq?s3)KdaQ5FEP*bbtQ&XUe|eLHXXu z(P!v>gJY)SqmN(2nP;9(s=b9|Vt9qH2zMlenZEa+I+~4*1Eq1Z&}3DEI-^wAlj1M0 zp+IsquV=MC3o40o@9AkLJSJGbH$O?XL+G?5f+;YCwA6Ivx;B4b%IIVw*-F}|Mkcbg zVcf2m3v(uMLt}95HP;bFRm6zr92IC03dqc_h*>8-*ldZ`lW<^Y6APw#kYn{7d7*8Y z>G48NZVs{NuDq`uwQy9f{Sf~M9^nM@s`^^rT}0Tx0QYU84ZCph#pq?UQyF=z4C47~ z;YmRZF`+DM>#s#(#6lEQtU!=MC5uRpK-k)v@~}BCAH{nbH3D8qs70V>DnfjZ?6bSK z8AY`lbbG>T(cDsxv(7x5bpTV~OYF3m52efx=YOfNu)XnHlaQ)3S?~!_6~_ z?M3YM_bfthyzvGL^r+AncC`2gSUBh6>Y}Qdk}avvTv58AE90 z+}*r!uzkDszrx-zDu~w%vkwC8k?hupjkLh8tp$E@7~bIxENR4FlCvwvCaL$nq4wd2 zNuJ0~Iz2>mazOkclOllccJD%>^;FVw1tY{J3E}pmNi$Q#j=x%0k%2?-VlqJ9b=O@w zn7sGFdrXv1V#+g;r4KXcG3|Z?yY);9VzZ7od7>7wzAad5WPoli06=RjcMLFCA zzbX#15Tc7fh;M5&LRylw2%@2`2}Z9YVp(+N=a|YOyGTMD&c$`aH%j55uo-yqh$J1E zPDf8@g&OMW@t42+MGF=~sYyS|_5`Hc&C?X_VS)xK9P`lU)J6RADkd^XmX7tTu`YnW zdoujPCR&_bImX1}E<;m)h0+7Xx=d2J(=>`?$bO{CIi@F#00qV*82PFEAfR zM=vCk+Ao^UV_L8YZ|>6LN#5{y+;zv@WNYDMoc*8K?nMwF4F12T@JdiLCZ-c&*Q(BORbP`-&psbL+CvOS;6G(#>eD&qFfV5dxj! z5$u%2;wTWeQ@ zYUe}fa<8ZJUqDE}kk%x~xlKr)NI{@Xoow#fy%UW?6)3RZjzWi>h?^LueYKC5FZ_J` zRorF+C!ZnSoP2!G9WFG9kz~s0>ZnF##X$6e4I#s>}GGxk!(`1gVkd@w&A`MU4q6F?`*T_aiOvYiWU_ zd%0iBS^b3PA=G5<-cFXKT|SEuD9=-E<5%_27zIFHwev`Sa&%1+lCbP8u~C zRHPbwxDEfGwDD5LGyH2Ffej}Nu4K9h!R1#{WsQINLnaj`aqP1Ozg0YTIzCA z+S}XRa@3AHTPyL&@{e)n9d{x+CJH@+RhIAj2c^i>N*%y37Z!o?cXY6EL6V0QVOr7o zSjfE9N4MH_0+iq+x zVDV}Q%brSk2OPOS8tf~nm^R*WEb>MQRU3z@s0vua^BE+?VHfX*-7JoaW^Snq;hsk# zsZ!_`OsYW};&hv9`*Oaq002M$Nklze7#1Yhf&(rwg#=)@O5iI4-5Gksx#qC z1_fu^BSl;8jAV*af3WOh3hz{+re!ZGSll*!)eZI&hp1mvgv)zCJB9;MBM-Ihd*dR^l%kYk&nLO@~hxyGa6(47sAIn5p@l9 zoHq5Sth0H)?hfp)iEx%eShLChQpj7_xLH4v2=Zs2e}eq#uPD&5A9Zax%4YNKyMMK0 zp@b&D5e&@QPEU_ ztFOEoFTe7#Zd&NK+DRu?K{YZ}4q^vYL=qTxH+O|@JpZSqu%%PDXfc(-IQWTWW$kAP zK`Wv|Pa$ntD4JUHQC`i?YLMx`_7YUq?^Z`H@q4LEp{|h*F4T1_qdf!475wU--yrP{ z>A7MPm_pA)b@yW<*624aRinu{P(Vx!AUT4`Q5-)31bIvWawJexFmjT;&{3oQ+WEaIw_ zQWIT9BE>>`W;PjchnqOUHa6CH@WBW5V~JYNKjl=urxa&j3sajZ$Sz+FcmG(pu_#Rn z-iot6gRfnrDqa77KkEl5{Yh@sd8eMM zv`pz%)U3Dar#v(F%hiIw~?@lSz@Yjmc>f$=Lj}(!Us}xm2>a_qN1XBesYGkyenB?$LKDTJDSO{=iOtrp8hsot&~w_ zU*OECZm3Nn%7zXizh#q7$|ag8eS%c|iwSFk50%nF-Aow|p<$ye4=Dk2D344oZKnV# z$<>pQVY_k$3tPe7J>TiN(&l}JNx;C|H%j~WvtPREimQ=xAeRh2G5FK7EA)QWmA-#^ z>+LtR2(I6|TjkcP+Zk228cLOF2S@mjc-@Fr<-yT%vmjLNYDcm6i(Pd?2O69odybD*d5HNhnStO7xCpPkCqy>IOE%3AR@cyUT^5^8?UAJzXR`QQw+T4y^ zzBq9iq|K3(^~D!otdU=dHpH`w6scaZGNvh;tg4wB?bpvFQY(}`4?gf9iSF;!^ioK` zWCZx8S(>P#no*qgdd0g5IXw%uIE*D~nlpS;69OQq*#hn-%6~eeV8j+y zd`874XF>pa)ZG^N!T=-D!Y}Dd@redfkqI=!*1?vT$qMY*yITi)aa1J=E{}iLq=H?X z2UkjY+LKl)#`Q=i#aPcJ?LqxCRMCNFZ*LnPlAE zUCvu;U(U^)$pqR5Z69>@e0T1-NB-mgzh&*U_sDR^>4F3`J(fL=>%^%C%5rxP4Eu1r z<4HRIpu=`la!eIJ*TY!khW0Y?iffV)qlU?j?Ym^q;6ZZz_17MuaD|4Tv~Y_XAU$=G zfcJ{n<&63-QDXRb`S7C;wSDv7jmQmn?X}ek*e=1-2!UC8tDPl%*ELi(5s7- z@0U&sD!hbyk!^yEF{DvsCC887Su2(fXGwB69NlR$>ZCccSPF{rbyqBoalvU9OGMq_ z`@#jgZp-{2_u-E8d}M~)ncJ{#QMuu>R# zBs7YOE)5Ryf)nOIPcMr*BXEF%CFQpL_njc!CHuqy9^SrJX5ja)`3fAV@%)<4=09}o z&py2zT}zrOyF3J{gvnruUHSRqw$*TWEX3U)4ud>T+S=EkMWR`s<){hDn`C!S7>(BsRQYexvc}b<79$c2Iq@)MV zmF@86GKnk*^hmKj)&YYR#F#YUhcnID{{}cpXCXWoB!+XF6qFZfnd0d1DeA@MV4h#{ z6%x~+FyopKuNVRqI*$&gel=~ctI`ezMwM$`v4WCY5EK5~In#aX( zY_(smJoxCndM;GvIlz%JjohZsKfeOr6$9S+CVB3;=TK(z@BpNZ{=`30Q!%mV@y8!W z0#1;4b^=f5K$8qQ>IK&kIWx_{|BWOy6enq)bc4oV3DiJR)R|?d4Jb0Cp(Bl5DJZ@&Gcu&ByGsZYq5`<9<^u_FL-B|1 z1{9>I0WDad?8zXN#5kl&e*JFoLmol0uQh^`(fJKlyB&}wxD4jfRbve@n+ID%9ihqx~3 z9O<>+E$hV}-d{%tcO=3VqR3E$6cpl_>BsTG?FMAv3jEftz<|R03*1p!!DblWY>t+? zX&uvJ+6DE^Ug&w`A1!YV3JhoOL5JjJ@kY|bZPZ$&uL;lLzj4SO#^CRj+{?j?+|jxt#bgdVtz6 z5QKOn>Ty)J6-X&q9ENGan5&c`8$IvPdt6;W(I&V2;Vu-yIOXtQju0-@#b8UM1S9-L zCIWggd2L%-QS+^#5ejXBZqI)lh?oW54qd*YDGSKgTBx}7>dAc%P^j*QfOU)l=kpaB+GUl$e?*AczTx`oQMJtjxWhX2v~%#=*YPbv ziqW=^cW%pe4TTrht_4HI8#*wt%;^)4|4GWa4vJrA1dh2ua-i(SrJn@l1PMoV*>c&1 zi?za5-(!i7kJm(&zViou|Ld**lblTUm9?L*RZKMt;m|`!96U>)(5Ryj%YLwXr=&Xq zdyaQLw|f_gPNXU>(;r^`NXH>yC1{a@9h)V{Jwb*9&Oy-wD6x2NS=^wVY*vkU{oV7S zh^0b_>y)jT?@6-zc!lT`bnKBhpK-R6&8gq4<-*IG4HH3iHC8^k}*AF!JcTf3Z~a!ZA}p#FRD_YOn*Er3H@ zF3j*>^XA(c5(l}LLOk*v_UN`Ff!Sq$#&?#LyT~!z<=O^sXNByAavzFZh8DoPT00uy zZGEKI{>&d+w{Dd=v*#kA3yNe*wN`($SlYoGYe-s3ntZkHD|1!-W?#Z;ZbRW2WuL(J zDbun;29G#Lm$OfdNuCF8?q^YDEnn~Dk`qrsx$j-l+SV!&u7hA$55fs!bvKI?wPh%y zjmZ;S;hftG_xucSw(c;TGaA1|&Oss~OBSik|LaIH@TshGAQd$d47;RRdTI`OO&#GX=m6^%{p+5&(3nHfP(uJ5WCO zvdbJbLIe)?C)_Iy)iHB${%#T*JV`2QGIWe0 zm-xjOUunxKv(#72!>&Q1nb9M;U6=PWjudpK0qeXU+r; z4IWK|@1tRPQ_;EOVXI7pDSptc#EU}KWRhbBmN*;?6kV7Y_@j6i5ELz6d3 z+xAP^kaYQG{nzU4%gf7C`mE1BT`O4!;CXT&6rfYm{pahxSx23W3wbCjJT!EHGx^R(%w-o z#TDPmG2@O=j2u1RRCX!lmOKdw3`J(~P}x!E>g z{k7L4q&*#8bq^_U+XY-*J`jr&;inxg#O?Yxg-Ew!o1_g-m1mZJ45o@$TcHV-RxT|o zQQD-npRGkmz!lYy&IHp0&I8`3>|L(|ZgG>{-UlZC6IXy<#*1-z}DT5-+S zD-c-R8fil{KfZ?no3(sYPI2E}_Uc+}% z-U8MVB)_@1`%7T-F;blUxx|3gqr7^jxH~U)s?+_39Y^}8~pF8(>FhG1PgT|dNZb1MG z9Q+&!s1v1oe=|JzB?=c{A4IXDp`B&?_|fP$LJ&#vk{L6ulG|>-LjvMQNk-OtfO@3C za>%Oh>VcupLkscoOvf|(l6Ha zwpFiD?+T#=Z@#fcSP3c@%Db13zf_eK={hl9N$^&+i;J%X{GWTZBq$RAgHR#OtCM&% zctspLm4*i-LTWH@LsB6z5sm{0OLLAHJx0FY3Qq?lDm+U3%A(;fDaBA%uZ9K9{LmwyI0}~hiY)MThDc!7AcUo@-Wht%R%ZOV6M) z3>xAqyFuyX1jA%_>(LHg`6EswIa>2SqGyn@hWR4NezlPjE1AcwajDynn=s$HV~JT~?}(K{ULU zf#KHoytBPgGPkXe)cB>6k@Gr~C{&9B8%TT@l3qO`BqR3?yffZ-=Brg9PV}@Y-v^r3 zqYQAB#DtHPQc!_W`Hl%pmRfipY2@Dghu_;CIrbZS_wLmMDtZ&`g{9W#%{oC6o2;DK zT-FA4axZcV_#RA}1U_6)sQr{M!S8`v{(?x>DBG&^T<@z{E8(8FrcL0Tg@>{OP$`y1 zXGG?*%Py0*p8605Z>nxX<$kZ@CKv*vB`j*Z&MP?dsZ^Km78I_K7oK=YVmhq&Tf&}* zYpr*vku>jV8X5b(?j2!&&c2M)n9Rdq*nju#-3sp-KJ6wo3fOQ@cc)~)gUfqEHW(_E z^!U@rCx*HaJ~0w0$ZTJS(tdbpLO^{kqJbZ*^>FgFo^Q#epO*t4xCY21}6l z;peagoWOf_*WtAPnDb zDUs@$D*Hu8OuM?cNtkDqCElWHeMLj&*tyE^UC>T+O0jyVOb=x`_HFA`E{K>}%KRQAA z-mJ$HiJ_?x3IJgZmS*IkLm^<8IxjCzJ+eIeci(*%1OFdnnD0C(uH9!%M8bXW0f{|v z(qyq9ydw&Vf6yTCS|$&Y$mj@#Be1QX5@vmqKJE{HxCQsORu^ zL&~Q>3q-u~(rXgzm|%keRdp4jZ8wPtI7ZvvQM?*PCb)CkTBPFJPizb--+%wT+<5&> z8dX?)(qeG$mY`(t%iy%W-lpub0cTflFhqpG^IQ+*yb~0ER|3j&fkJ3}d;*j^yb4Mk z`ht@D}@_%y8j*5*XtnAHVdDLKpPl@Qb_0!I zsCDR18XD^r^Urn0j~_4dPM9mNu6_mJfH4YtVnmC$)TJk#uDrbDkG=o?`?&g1g?$zc z$X z;CEMpmIP<=tt-kdQ;56GlI@B)_BQ-vXT!(1I*u^r$M%AJna9HSG&1Heo|^Mf;ZfY& zy(AbO<*MdN@dw+^!OopnV(9&c?k#`*^PgmJ^ogJtMBfR=a}FFEBgZCbsbiK)CXJ(O zhn1mYKRA}#+M3K=DmFZ$eUl7w9WSHY=1NxkW@+lFmFU=!>Hx5<_!AS)J^!qX8wbpF z3yN6VDZI@vY?x%}j0gn#JyYTRiRK0t4_tv??HEyJy? zgG!84Tv5obZ|COQ=k-t^$-ikzY3)w@j*_X52krFy$4tRIV<&USIuG^dc2nS&M z_QJvznOWa!IFW-Ly{v?YP`KY@sK2{*Zd32Bk4u2gYlE+gm|Ma~2%TV6x51uMrPT3& z%s+mC?Ao(aVI3=;e^KH*#>npaj}?NFjKRDWYI07~cbZ-A3+O^#$2PR-D1W>6gCF(i zvg#cGkbzw}FN5XapcK_@ z1$bo&o*frJl`>(xey@syACkwMx~vMDw^JahTkQ}+noe1|L{_}`f<(KdA!^YAR);)E z37Mtbx!G0g)FazeohwbX1>ys$L*iJe>{3aIcN+y*l8@Yb?>&fyys2=ewzl6%7b=%I zIlJrO5qsZQm&>;w&n=)lcipKG0ve`-BQTGE1{jkp866^DGz-1F^X3*+cFl84h@30? z_pj=u>=MHq5fQ0{T#^H(Vtb3^)P5@geu2`8!U-n6`IXmRmNDbT$f^~qBy-PRZ8Fuz zTC9Ub4<2~nekfEa>M=F<*Y|tgym@lfRaXIG5Gny~QL6lsZN}Nj9gq#M7eLvixViXA zMBoH@`tQ%m^5>qB-FtRx!j=mRlrAW{=bn46loXeM(yLIWOr5Mrsx0O(W9AHb@r9M* z-x;dPE|qh$NCO#ksyy<+hVpga!_wc3#5B~E0&-R%&ZwMcadO4|%7YP5s|jpL@a$%F zZk0eNz4Z2$cV@#C5Uo+B1BGv^;pE{K2x_`%*vBd;?2Cm_EY~LMJ!EkaIzNVJ)jDg@ z4p!I?)2%?6(&OO{LrDOxK`~6 zr5DD2Yl-B83T|llNwTMO4aSDVqct}$f8YxICa%DM!ut!~Muz>WtE*(RBNRagcoB?h zq?eV-DEE0b?~Z$iw-$2P4Zd442c)N`%jm=lrMbOI4ivp3QGqC(>l!EpmFqExx{7a* zi}JgghsqG)t-#sVH`HUmb3vKPLP-pqCT=}(P{h_FnJrWkV)B~6cHrzMi9u75&AS;~ zmkm0YEMLAH{s+X%AYne~l9ltmc%+BHW9zH*KY4i{q0-bdT0n#4o!QY-(X)Q>S|%YEAPr) zDGpG$o0=Vk2^II%Ni9`;AnO2z2{)*@6QO(@0B{004LdOt z23cCU5#;u)9z}(>5Nb*+wxWl+)FD@se(F*3v}k{o?ql}sIkFR!NmVVCKnHrmi#I}B zr5Bl@%c0&g)r(Hv-5m`ds;Aa&x4kCMKlcK8>y0(y(-VZG7n%DYwC^`M`sZNO_W#pe8j0$P@0Vhw0z|rKX zr=CJ$Z2%}0H%W1ekG_*U9>Pfoow64y-c2ayOJO1%6?5Y2X;2=`aAYOR*I#>G-dywM z4+igH{B;nJzzvo%O>E=+?<-7HoHb*Hta*Ed8qMqjC}e55?Up-H7JjS#cJD%!O8gB) z;v(5PI)SyN0$hLy!Qj{v)wm%e1S_R=0_RU*f?5+IV54P*Zp(R0$R)pegKMR@utEo5 z6@lR+RoT7ozWcRb=6ZdFyuIl|03~a4MllRexu)wH`RkK^mCG)_3~;mpiH?eqiuw#V zSUe@#Z>%c2*IjqL5UV{P16Sa;da`0fLdS$rniWMv5 zRA6trGu_0c)KBsY5WbH*U3}dmCD1bwwbB>Bt6L|b@t!j8_<1sJ;&AbaYLv6jU!pJs zh74KWw-HoIRj9_~i)u_Uf#X5o{;cfX^NbwWzfuBRVzgvvdfG6VGvfs1V`S*<>8GF8 zDrY~kFJRaaai<)xLNVT+MXUw@}qIvNQS!W(!lI=HB}%@sM)NeWSD zgqcBM)iNd!GNFa^JmHRs$dpgf0j3&?D}{JlR+rmZ_o29VdunDm=Wkm3op{!U;$C$F z4SZN>s0Vmskmn>DWQ0mkocl<5?bX%X>#Q&7x`TK7o~7&^9W*=$?wtJ@U^R7dkKsn z1u%5?gTwX)6oGk1mYud#8BqR_>U+%0Z||&-3Ph0zQDCLBoZ|P<$Gl+MB@M7U?zjWd z3=f;K%Z2PmSOJa4(x0$DBi)|8FmE9{Cr9Gr;x&)JewjI4URELg-4O`$PZdiS6kIsV zT>%*)V?q|-7CcT$7qG^8rC-Up=N?v`X@rM{qCD|WL`hb^u^Qg;d!@(OYV@1?rU6=m zLOn-=A`y1<#ixKr`7e+$0gI7<3w91~UlhIwM=~Gyc48KzDF@}(4t0#TQPUCjLeFhy zS1Yi`%}7T6NN6Om@A3?ChvAJ%is&h+6tge0mq5QDdF1hj<&!Tzk}Iyd80F;Cghnv$ ze}BS0F)lVvJevI_rF)D-ccm(O#T6)7ObRv{KP|w9FFEBT2@LTS&(LOh_0?CwwfOxB|baE6}?~`c0kMf97P^>E3$lZSv54k4R$YXmn!EQqx`9>tI@;1hXf9`=k9* zU%g*i8Y-kGz(?E>ZZE3(Rt6&sNL*+oLSpo8{_c0bQ$??>txe85?>uy1lhmV$O7mL5 zh=YqMEI-O>VH-Anqaky1zWp~l^!@wyYWdv4nr{IS?na&ZLFyHz;+NmJRoZcgL%e25 zLsuny3}y2C@{iE2qjF+097^xdm+QXJP-&gZ59ik@GO}m7?#dmU6_N0Ru@ow~f~okj z(1x3vC%j#+z}ws?9j>kF*=z&%rRh!U=xhRA&TfP*-GHBc4_B#2MhBDc*HI$9hRDIX z4Kiusv8ZylQ#PODO9+JB6 z3*{^@UMz?An)qf@-hBNnVDaLS!tyoR?~<`m=UNxJg~Q9@CAn1_Wth_p32}}W!=+VA zdwKu|+74!q(K1IN6jb2p1)|KEHCHODEA*MLHZ<`6m%aiFe{cEjTZxa42g6FahVdQo zyl&jMQ59BJ(pAQdY`cN$a+*i3INBFyMy(dBKQIhHaDmLUl?CC;zUe6>o zhPP)vBLTiK@ccH&<9~cY=FXklclY|6ktr6_AZ&;w!r52QqrU!Y^o#JYKlALOp{HMSpd*Ou_qUU1IB}`*K%o2y_7_h@APQhn;_3GD-*37{Cfh+Kv zy#fOY@4w*I-gwgu${S0}8ij-3p>|+MoxvGvw93JD;O0DnrJ`VylE#O44U#H^m`E8j z#Alj#I{E8%VJ?HD7|IlRCU3am2CUnIL>C}VyR8ZyX}=mfaxuVlsp80unmekcv8nzD z2m+U}su=0Dm@Q43EGoLB7P|M2hf&SR8m{Mhb@2WU^92v4(IHt)8zd#+6!8MVKE=_& zADF~B2)$=$=#a-mFVE`LtL2Hio)imkxTXX`&7=2X{7EA;>1EHpPDvbgHU_^Q*}L&C zva9xERV*_L-jzY{j*wh^4_GO}0!ItIyv=PDa;WeFY3-^LPiL#AE5>^y2JA%+dzp16djdais@DELD!$;J5gBtq8TMxO=XwsP=R)bQdw=3U@(eSzT#%2u~5jM z*@}Uz(HSXiZKy$yJIG=m+j_u*41^sA$DEd};tr$46%IMi!vPKH_%O;o%L!pj` z;&&Hl&o(Lk^3qE$H8)c@1^3Bt?wmPuY!Lz53Ih}W^c9GUi&MxEvDd`CvIq;IJ!A*C z@Pdo9{B(2xI8_08@kDWj%Jv*6W5|L>n7Fk3I~a9!8Xk{|iu%!g^Bvl?%gS;>r~&sy zS^fHJpyC?_b-G0p;YzwPWXANFO2@^7t*WXTS-f}wIHWJt;tBDQv$6ja-PXe;T5^g$ z0Zn1LCa$sA$??Y@uglDTR0>xhVsz=H7pvmTec20@MD^f07?R*WQ4Ump4x@9ZVw(#Z zw#m@+;c9^Az-!ASKPs;$o_L~OBXZo*^SK-ExF?EOwDmNh7j!|H@&XC-PLuM2CJpH` z7r;JIiU$31P!?|5{E0*wgQU}=35IyEEL=QQ+S}S?*zloxJ~X&ZS~B}%=JfjY>t*5m zMc~5rmJ(p18F6Etgui2`MD!#`Lt&F*qrdp#3;DC_pA{lPW`r~6o+)2`@s+MmrvZ&> z_LGE4Fsf#tNDZM#_TtcE?eD(%W}O-p5n+R*q@_@Hcdyg_h=!^U&Yv)-3(vnm&ov|@ zSo08g&p-a?6Xh58MB-a>D~x>@-(-(*ad4Fur$*VmZMR-0`+fE|eeJc^$)Eo8gd~hP zO=`h_)78^XlgqYhvjKkcAK)yunFA98SKzN%iB0iu`U=N+$QhS?^i zrXCbyl{+NW-|9K8N4d^J^_xKTbegPsd8Jl_JLjx(b$=weXPc}9$Ar4cGbhNpFTMdz z5%7oRMoH=!tK|D^w*!X9?w)nZE?z`pAJMYviZJ)?gi5hWOnJC)vp){0ah(EkbB_+jj*`=4s$1koIPm~@m=*f_w zktf;U5cRF#h^Y8dMtPk8-qYRi>Vsj!B?$_86RwFPhQ2CQbcqu+h1{X7u@#b&m#wo1 zahN`Bh6I4OvX z;!C6Aroq_rlbp=Ap%jmh;-Yei3+w%!X6C*rk^ZC!1Kgr}D~`3qb`0d;P6g|NzfU6O zxkzEj7KFCRp?#{ZLkg~$GiHkeN(EQeluCl%L^V3e|69|VFXJYRkqsNx%Nwu1iKxa| zFi?~5u0mOBK^a~~Uf?}u;?&hwUoEe%d{>;ieZW8k zVas7dnFl~V?+-rsK;C`leXQ?>>rx>s9sJ0nkLd9o?O$$guHKIn$8qB05U8td>;4oG zF?Z$3Hn*z*U7_osPT7B8zs_PZDX*)Q-Y`HF)I7&Ml9!h!6UI*ftg1q*pmjQR2@~-s zEilB%xy@};Qc~3D{OYT(G`hoQl*z$+ckh+0+qX)DL!wfSu{s-t20SBr70sEF;5{Bp z5?xZ*v;)onL1ZZgcg#V`x^py|Mb3582-1!F{9`c<8fWP`A#EmHrcV<`{2ZVqJK~ZI%=isl0jn$FH*g~VpHG2_5`{&Da{h(qYR5&7 zZzGbUBD{y$lwBS_E1~7L9L5ZGqku#a1_V=iB^Ts1*Ixt0Y(F}&gXppgRoV3gt3yfS z9&rh%QNCGoee;^o1H*a2Bj!ue%!?&$(eEWMHwOx9g04cUBjVHCW9ublTp+MzOJ#S% zC#s-#c9MqZu=Iezp#jAE^d#B~m8*Rj`y|)cD|=kl%Wlgza^9t9tFp`WIG|;r zfIoQ9V6+ejdP?|^fHe$ph|{FGjqA7KID?^dRLe~_|6ca@Y?ShzJgMw~2L{S6Aq=Ln z%bk+Pvj^YN-lJ^FF6SrvPf?F>Bk+!=p0!xLKB z);Z^50CdwZs4uHsLAl;q@FM8k@}v|4epba=J)eVsegr3a%A0S#X@!2kTTQPJxr7O? zuon~|g;HU~F_SBlVev?}F%sr9Mv}Z{ia+q&^l%NxzxE1H$)N&D4{m&XqJ)Qz@3q4~ zzac0=903N7Woi)iT8JME^HZ@c%Bhn`m&w3{&XfT6IGGFun8{bnvS%2Y2IGexe;~yD z9&^liNf>;R1c#3iUnrR)C)|j>r5p*Y)fzdm-$zqxnc{Al8&HEpS_-28k{4L)Du zJ$*o@7XoUuwB)lpMU;&WwPkI9TR$^J(6w8E|&)ZPQVIi_Tq(9 z)vC&B+bkN*@t~ID`$pJO02~St4oPzJ?{8Mf!U*Fy^jkyJ39z&FBgtyqDB11b3LziC z!NFQsgX>bsU$}6gu+QhYQ`t=i?U;k%2yT}eL~Vv5%V3yR)gzNkdhmS7M{=>3Q!uF1 zx@Cy-WQhTrPn2`2jB=eTn>TIIzLN^{(S&_KL`;e*yIdzQW|RacPXa{aYj8q;rjRXS zy8lsS_h|bWm_Kj@e(hIa0MhVpx`U(udiljykVrsWuao3;9{|14A&K-otSp6k4VJ9x zFU3HS3NObXsc6rJcjtPUK7G3FD5+@Oci)53h0wTRagijSh2o1s6~z@_$*Id0YiQH9 z@(&XXTLvW`g9M2fo#Wu>C`mIelDzdV$=h$gtzk&QFH8sqp$_}^?+4Y-HyAM8Bs>2D ziHn-0@QcFIkL2{z&ghp!o<$+JE%_=L`n3mW-s3>1qko0*yL&M-o1^LL78;Nh@!>Ao+-JupIIjz#f}cb}Bc*M0_Uub zM@fZ4zT{VLQcr(OOgyS3{f~xWnQTMGjx)|YU7mgJSqzPn;jiw%*>1rw9EvluhA4|& z56Ov(7V6fLIvS)3cxQ)og4=mBNY)b4%Yb$0R4(!x7S--5!^E<-|&m&)>; zntT-*G+32la(t5}jn4)ZA0OYiUMJ+`n+X2rSd<9VwCv~$AqM5egJnwocYMeQza9{ zYf4JNC62b3I7$z&r%MouDHMU~YKx>rohXT*TKn*$S8d0~B(iPWw`r2A(dB5H&k0r- zBPF7lglfN#1!iRUwb|ix*3sGh$8$Vc<_j|70~@ zN!PfudA(G(;` zVAB$y=na?M#zx7l*^F%cvB>O&F~2>AQ*TH$!h!KKqIbwk79nUvDKlduAvTia;++O?SC$Kkzq+2p%sDO$ER~ zRw%|c9KMlu;B+$t{GY%E*SFO|K@O1mswO$}468>e4k}^~+BpcnMnc#$+adURMj_mv z2y%BPiABMHUAwnwF@P-&-%GJ^P!r0i>}G;Xl~}%t)-3UM0Z%RxbXbM%Q0>iM*GWLaD5)>pC!HYmk3M#(Dl6^44w7cS>vAJ0G=e@1bfFQ4A z32_CrA;c*#K&DNd0sh@}P=v#!zBXI@0#kGu{}twLkUu{Bx@_9`EfPXkKq>A}Z*QPi z3Ze*Gk#M#T3U{t7JN*m^AAP)dhQ#T%K9MOBl6D+Q;(jM_k+Yokue7$d!7JJu=0F9o4LIIZzXiIwPjG_#?a9B%t1qlZ|IsOR&9zGFcjc8= zLg{rup^s?24z)&^uD?~*Lghu7Ucd^PoNDB|_rF$*^#k`mAbDWB=>#(`4d!$(z7SH7 zhqvyIGp+^gV-ZRkXW%_d)plCZ0;_28_hjOv$?A0IYY-f*-CyH;MlEQZ_KiUP8qa0m zn1A^z(7RXr<=g+SX_1Nxal8FVT3WieIC)4)>_Ul;o+bH?Sx8POM0bazsn%TCR{WY& z0Au&s>Q`mqloWtZ(UT(*4qGqU&KO4*h9ckv0VSMQBE81+4drAwDe<$(>- zQeC8r*dY{cMJe2lR?T4MOddZmi5%?a%{gAKx#k*4?U|rnku;eAKkO_}pZURqJhE@| z`kNgMwA*6CkLVAZY^Ccdn-SZ5XU&h{FbyI z(kgFeyYyne_L|k3Wr6pqHfy^yR%A=y;0fa98zhz6J_HR=w8TWm$`gKs_fR`5r|OawTie3rK`Y)jokr zcU@f#ICz_sg<$Fl$#U}PQ&4;%U-w^M-yp8uy}g*uUVd6mI4kdUcy>E9d5sk#^UL-~ z1vrIGDQemxb7s%cpLKP0h-^4ZxR+Jg<;(#07#N8`l2iGa+;jJl260+i8W>Z0kR#9} zdrH>ex4LI?$U%)E@PjS11@ntS1UAu&-tE8RE5L45#KyY zlA4cE7{eK-ohkd^InM{Q>VWe`+1|4j3Z;W8t2D0pPR%=OhHT%lU05-Cp_Q+`k8luSi5=0&qpP%o$#!* zssi%D3(wmg{!c&sR0~6lNx9gzry+4mWKYg3Q1^O-p(?@@j+T@_4BxlkeycC&<(FTs z9Y4w0Uw-Kozzv*X&37rq*y*R8E*m#(?ANQu!G;{VZRffPaeig zes?JuN&8e#ol+10ZS2)ZEc@GVXjJ%=%)$ATO3Wc8YUz3yxI`jzi(A;?r2 zkHMk^1Y#RC#6LD-nYQVJQmk&yK9XItPC7h+X$9Pv_&ZVnWfgrOgQ6EI_BONVLwM(! zWQ^ZpRj%VaM#{Fj_fUQ!RO;YS_V;GF=T;2%bJTN61^o8g?||3rkK)+jBBkAjpp1CS zzFqrlo;vg7n2f|s^G68>;hy0LeI5{<+ek(J(54_vt1m z$QN92fn0I<6|!o@Ye;sPDvs_5m$qz^{JL#Y(nRAyFi4*-PyPLG<{=Jz|I90}anojr zNuS@VmB6U6vI_6u;>C;bS&S-Q>C({SEvfUa)%7Y5ZI+^}b>KIBT&}y$I*$vsBQxKB z!Zcl{2gaeZS8vFPGl~IN`b1;6ax)?tVSyu2rLkBXQMs|CV1pK0xaAMm$t}11LEE$c zN45kGH1@I(g)bie%ikq#rgc8qQi`{{3&Y421Nsu+VwWqNVbQ`9k<1n>`L$c5qyZJ@ zFiOl{Fke=#T%n1xj2t*33dHU0DG^&yviRgv7oimQE%v+BX)3IIH;1I0(Q6sGe@{B; zB<)X#g?;|H7gVt$S1b!J?5X)!d{E7>xw{tZCjcFI#Od}eoz+M{^_5s-h(efH+{fMU zk<1KhB||zNs5rA?-MMFgP!TEp-nI2ujr6^I@XQyk6 zTy*t$^5BCH>O3A7vAInArE*2Z$@CynscA-Z$JZfP*X6%@r*f@w$LY_%Tq~qH`|v{~ zu%Rq)EDUod5i$=WT2cUTaN}xt!~LK%xygGUyeo5O&r@FT2$#XqW9dY4bH2D{I?Fq| zK2=to^UgU>o<|`QGGk0VZmPruP7)WCv3_zJSaL8XpmW!8LL0XG*MffEo-WaD(XV!r z3@7KDbB;1?@OfvE6efZ)>G6y+&XBmcICU!U1Q}@^I&`Q~Yw|b8ZsxZT?#9G&8V~k3 zXSPjamz6z<%kED&Hq!yspRVO>+RC;@Q(F?dAng%AC*rORZ?W(=g|@Qk=bpb}Fscyc3TciqQw>n*p*efQrh z#HBLK$)q+j49K#ZO%8Pcr9fK066BF2aR`Z;!hv*G*=mGaJ3tZUF7Z9XbpWI%nFfU$ zAPOA_@g{kW1I{(n+ziP##fqPca2O=nPT$LyUwt90Y(*iinS=01nGTJ_pto z)ru~=%+^MK6Ff&^B?&bkhwCT{D8dkmrO@lV9U0?8z!OX*mcr}07cdP+3{=D8PSbhj zzx@U8i6fpd681O1$3!m%sinv(Ix1`_1~+ITKS);nT4`xV2a9lKP+$-WlH}_#n9F}l z-~Vow2GV}L^XWDTO`LAKjAhyDrKvJsnwyGspqwyaB9z_h)u1w0s@(maOdUT=5)u=^ zZM#e{xC@{hZ!WJBzcG`fcIzgo-};>lOF3V+>wyuvBjYJhW*sAWSyf1$oB#{XQT7zS zrG}3MifQz?lT_I(-1?q$wKjmg0T|PM=%$#Yv=c@+pGO*HOe*C7o{*R%`FVK~JZK!? zHyIKZ94MQ=-KZ2|Jnoq@X35^~vVoT!qt9zyd#PkMeXIS(BM(1{_JF&^-^nMRB42*8 z35j+SRq4&C+obOk`$QUmG}L)qR7TiG@}32Q7dR$-5h6JL<|UGy`<_DNC`7Kf{(OyY zQJExUi3z33T?P=bn46 zkdxLFVv^}lpz=Y5hSy=l(2>%S?ID?;Thi0jE!~b?@bHe6@aRc8 zKlk8!z-SvtxXt3KKPkT!mIgYDXqeC#G5c?x9IplM3lsXtQB6gk82VA8M#+j5D|($j z4F~qC^q`wY4&R?;%a&;_3n3%)7{B}OyS=uf=a;meY?I?CpK*JInT``G-YhUeocd1{ zM6qw23N)dGe0Tn@!l>(y<#2Ex(G1N-~Q~|`bVc7|Irl();sbFkTxeUI7XFSE@g?&#G$8YCpKjKrSjP0;F^U; zr@B5Lib#vCf%@hGypY{8XYL%uhuId`O?>?E$MW}Q{w{-^rhvaSNd`F|D}I(Rsjjdp zyQ5{cDueV)AXgg+P~Gy$C!e5nWT9Ovy(g)Fz4+pbvTD^zRVcai@yDJ}>}(d)*&PV& z@00JK>RKelZ!*Gv`z0TrGN{x$0VxO#jgafEzfm)igM$ZSkUSPtN8d_vz;UYVvOOO# zO+@+(MS{;${Mk$RaIbl1jVwITYArjv0Nv);uF7sAsCiy^VTGJhc+enRpWc>s zCk%!LqXvVNhxmC~LtJK?FTSu+;(-UIvP+>yCItb{7oT5guF~t9m5*M3{dM3Z^YjH~ znNx<#82071rZ54G7(r9n<$T^h8XDw0W+!b*8@y$$T{WO9GBDsb>g*>Ud{LEMXJ?mQ z$}Sfgs7e*l#T39<;#%h?!@!YBh^cxRH}jl&F|# z^5V)>;*4jT3YRI()rC@)zh5?dl`X55f1#eG_uv0O{sydN)#k6IX2a*=9+Q9)+7{Wq z|4Hz0e=CQIUIQoY<%sBPlHp?#Wk>NVvbX#VrNZk0OG(o73&q1f98sDONt$+nD#N$k zcAL3N+cyXKv7^Vy73W+d*IaO;4p3A=sq}4F{|&w!q!mV)Ul+=k=jTdfM3jy3VAG~e zM3zc<>mfuAGElIkSlpd_v?Oq%(?l8RJzrv7N60%c3R8#00rvBn?5%lM5{85-Yss_E zF4uE?;O?j8>ML&6_ko@?Dja|L%b#Wc!Iu@QOwTT-@z8^J9Pc&Y7E}(R9a8X4SdC1c z5Ivxb1`*317#JukSG_2ED&CU=RckfsLuEJBG6{th67WH#Nz1YF;)<2P3y-v24=N5E zFzuBQD(y5Tyd4A3yICPb+@J;TT0z4>RhDcG{4l}(p2a+v%i!nh2Zc0SVP|{y?iI&` zCaDR|mgASs(!Qu~#Ey!~nz!FVA)g8@#=!zV+u%T`1XQBbB?pRfj%?VpLH9&w!rSk@ zExY%k0v?p}Ks(3;`{uyzaJ^q-fAMq;vK=PR(HnUORH1u%fa5LRB)hi!N%nmI7rF5|FQFBt_&S4D_0)w-|6io2Q!UEIvDyB zD%spW6IhQXj4)7HrV_|1nSEgveYc}>PLC*+V}4jzrntCRS7UUQ%rN%+>ntgX62z~Q5Iew3cp!}kA^X^=Y&++j~~mIFW0si(cn5v zq@__rp`y=n;Z#hyjPNZQ0;Vvs%=Jy7k;voX`SDq&u|aA*Q+N*S3&xHetLH!ko5%A@ z$l=lWmuT(3tPQoGJbPo}Sl^wV8Ygf^#-^PD8l7i=6}w+{<*btO+FeK>*(y0@YsC#j z<3r(Ph>J@=CmNy;js4~0gB<0OstGLS{8-mv>Vb7Z=Wluj%w;THX~BTTWBO+#BV#`h zVx?%e1L3wbAvF&Zzp4>N8yUDrEbbms;*f*$aTV{-;Qs`^4J7coPHoB@+x7%v@*r z(LIH4NTg+uq&iQM;Vv`9+aX9=IvQk%-%PMp7*bHb-E2adJ8NJFl;H@wKxI}gq200Y zB(-bejBTZXiU0EzprS?3MiW>8a<{)F^`%*ontnd+vAed(dp&>t0?GW`YUK4G+K{v9 zWl4@aUc&sxNT~lv84`PnoOR~e>QUi9F)kul{IYh)NhlmaD!O~_zY<>2k6)Fw+_vB#C z8u3P(Lqq0EVf_w;Ot8|MSfJp+Z_A2fWLu#y3X%o&@YXwSQLh^-sJX!C^9Lk}=A$Q| z4W@WF_$b%*fqj{PCoMN;AMt%QN)l(bZIXCg3*vJ#WHUU)JLQ1GxANATZ)qh-`;Dl$ z5Zg?p!`BEFhej~uBqa&)$Lwn|4<3->(jryJkLFdQQkDm!c;bQ~a_sc+axOg46PJyY zC6_Fe;u3I&L(%9fzCOO_9jfqF7vO&h`lB9cuvpm^LPNr&uC>Uv2|dSEO7kh{3BjcDw%}onMxcnyQBrA(t9+a zayoC`yrV7F`DAt>ogkqTOO`Cr=XcANE&XmoLv`xZsn7}H6a!AWKEgAo^m43W!6+Kv z96uRBp&>~{laMO&IQV?tbkj{*x|-8WtfaEZ=a)hc?w|hjC%tBjShASTs#U8ra(Vsr z*Q>*fkwhxZrnj4sVOD!p!@s&(9c!cpeDu*rwM~}EUb}X!GQ4n~Y=_=*vzQL|$q$A7 z72hK&?tG6)BgotzMxm%UQ`iQ#KmYvmHLvKp>#ox}1T@Bfw!o|On-Ji2{_W>cT3TuV z|7IknFEvI?zDYk}vBw$?4i;m?)SHZ9Q?4_R?X1VOZrwTqB<#lQIdcqzuZ_fEry40E z&oqW4spVXOR0ux+O5*!+;0UKqyW>@bF^3 zx|a-u&TQ@c)C81I+ji+P8Ewtg50W(P;~X80 zVMDJl!a^q)pe{4UMxLpk5n)SoeQ!$u&~+2RM=?x)gYHNV2Ntv8=M!v;kmGdwgs_>$sKg76 zjxEqR#_)9t)!*S>u?DzGZO8gsnm{Pdz~E${gZ#Ii7I2?>ZAXl`-WWOdMq_aLdHS2r zG>;`bBEqmZIT^lzA%?4qw=rhWrM*58VMzwO8~^k%v!8LWI2myhPBqdO-K?LKnV0Ck z@4D-*UhM%+V}M4>);E}aM1+5|0jLn3eJ5j#?;>NY-(uS*%r(jI_VhP~4I6F*dnOoT zBhJu|zk95K2!#O#2O~WA7~Nm0*KxXCw0oLyQ zU_-_jr{ncA$}(5yN21^4d)1%7DA4EU!V9g(78VeN<8U{Ck2jFG+utTeLVS|88!gGW zwlnmDVlal6hqu9g^v47Px`E;p1{Aa(Tdm(^x88EA?iVDF=#$-antc+_fqg2cqy5Ji zC_JS7hQCLw;pZM>fU(Aa!fX2^ApO^VjOll0b~9n%8SI09jzBTfWBfU7{Mfd9?|A<3 zy#Ls0wq?NY8Zf$SzwIXgW7D>vq}k8bX_VSFfZ;u2zBvPlX}WFS{)op0ID@&Gegm>& z98Fib_10SrcsvbWdsFz_upKCv<}3pWtPvj{Z$QyC5KZj$TygA!Vr^TO6Nok%P`Y&< z6nO(mya5H;whoj}1DJo?Z%#nzHQ<5O=M3I%JqBJQb2~&e3@F07&5bwSXu$Zh{pL(m zJG7k#uiv6Yi*#KiR_gl?$DID=zYQBUX!}sSbso*MhzWnkFwIU;;(_xKON)MADjwG_?bZd76fh2)kej(?qwax()xecGv5Mh{!0r_RF07Jstx9>ox^p6rAfogco)$-O`YcxE^ zJ(M8yNTw5p=N2qj2(JvWqZZvc?_WvTp(BzW|B)kOKl8{#4+;hr2~L?Lj__`l@B0dy zGP&~hUQIBpNKap1A&nM2kMtNe<6ZOmp?o>ltL(^^?)FZ}JkTmb0<6h-O&yhZ&Jg7p zdDu?_+=K_MJy>@cj=wptFMl(-fvqT)Rz~ zB?y@?J;oPZ_&bb4UuiO|1>Ec`V8Of&Pw<+ve0r-%E_Z{8i-FM%=hTrtC^E$8} z{JBE!E`{Z=e@S7u-d+fgAZEBfA-f2nKg9gn3nNJ6#W&j`T!5V1EOAcAMc;_R+_`h@ zH`k~Nz0sx+VquQGe4m(eLfDV}cI0d(?wFK(JZ2`r^25G}-el&u(DO{8_m@x&DB)W6 zo5xA7a(}E*JP)!@v7a)9MP}%|=J}gqUv8ZDm{B(N8$VYD6yBeC1t(3Kq#YtWH?n2R zcUsT9ws?bdwl|0;4Dx+@58p&SK%VHxO=Xw6=7ZxxYs zAyg_8;u9t3P!7WC;I&1NkizhNjZp$zuB+4#BWt)SOv4=bn(7M?Zf(^Umtg&XfJ=no zBMx9pIQ!_Cb=r>kj~U2&4((RB1=pj}pIPy#Bm_>;^WTl692c-Hbaq(b1Lk(jSdNa0 z1^a^)K4H#x1*VYuqSWJjo$SckInN33hsFkL2!+2*2}wdWvpd43KS*fGu~J{OTVM9^ z@e9bhX2OnvYr^wuL3JvY79}>3 zlGC+A+bL|?4H_#?4FPdJLrW0>ak#>VJL+hUp_5)zzW=_JMOqm-z_R= z?5OR9p*ns@5%t`&t8j0Q!+mpb7x94n*h_K}_^Rt&CCS~o@BE(aQi&4nncZ8!bM7wT zPFN1Zw6Uv7uD$kJ`%U|uW`D%b(S&_6m7s9sQ3N2lwxPR9cJ_RYK6(=RXg8DqKYEf6 zL*ftL|1hwSof3|`1_yUX4L4_H9h7IEwPGiawqMR?@+?eU85VP@twNnQl7zEzK2ar) z$3-0G+Rs0e1pkTR!X__2{jwSoKeoSL+cJ(LRNjc8 z?oSxTM+5`~l^)P>u)lT8dE|-awKNSYbNXcsw-F z*bap(5oDgQ7h-qqg-#~>#4!8iOr|7Uf`%uZa(#t3TPmESS7T8cVwRaJgs7-ui3!=D z;lbJg<}wzIdF-*rG|A6iiDui}pZ)&r_s9EbN?$e+Q$aVE|6jikkL>@~76!J{sz}V} zeBz16HADHPYtEMY?z#~kll?Z&A}(VN6H|w5YQ7r;Y*Pt72tD-~v>6+aX1bJEg6?rI)hH#%MSp zL?nJOpv4C#Ft1xtcZTff_)NBUd@6>klZ-&MD?j(BUYIp@61D$$5%-$nU-FT4Cw zaNUA>3ra7Os;tSij5b=OwXIsch+lm5x!ew=-(EP7oqyg1;t8X!tY(L7L$M7~FLncS zpObsIzq8+_ziAHojBru04FucBwbvY0T8XbLEiFMA?ZcFZu_yx`>=%W%1!^4(iQ z@F`NZiT(!g{`UD}^Jv@#J4Y*?-rd1lLY?9z+%Z`S5%<}FWLjPwQ~BuI&I9*82*aUO zQiJA5m{%$s7K3D1$Rbd$J+J*|-}U?c=J~QLw5#)B1;*Pw961xNGAL!RdiG9TdMb+a zBuJopoH(N&3WHN5H3)dfwhr|QW*kJ)ae1jaQu?<4Tlh`hruzybB6Pqof%wOS z9^w@%Rvba&_hZ}qqs!=lHHG~$X-e(Am*z5lb3QSy^qw-gj2~i&nTT#GiHxG0dFGiy zuPDbYj=u*FTAeFqTa5nM3$d~^B>NL8v`khbR@mGpzj-Y5@^Zh#Ni#~peLnQiL+Vv# z;v26SbqXeI)A2&ZoQg1ym)>3)e0_!O@}7`A#uOSRbYPJp^r_K`+t%tRw9X_iihhea9ybt`6yxKHBOOq|%rA26)&@F))K#Kk8WQzlO} z0{w!FG)LfWEx>90@QHOuSIix;zhD(GM#@wJ-c_Ni?>)U`JjEL?2B!(<@zV4L6HL~u|r@MO+7H&6`FMFAXO zTG#?3BqU5%N0>zC`}sy2F;O#tUyU^4;}UF5VenK8(b6TS8mLfa3?DW^*N+JuV+8s~ z7$ZlHwyn#F}RA79s(S(iyjlN-|z^u6LXI36XYMJ z7%6T;OcgTnjc_ku3;jv9R?76=Iya^_Q#Kb zRiCe<;ORzk@JwLQ)AaW>S6{2&#O@MH&gXAX+{p$CWGMa@i8S`j*rw;qnP-G~CtKI| zpJt2=JIxp!x>SE7sl`Ba%Q$h-NrtDpr{U%4Z6E|{+tz-9_+BrU0Ap0}NydmE;MF}t z43t;bRfui$^7OG`=1uH;L{Pke1RP`L^jXHZF~=C(-;arj;pH*?l+2zn$4GJ-(+f*K z$Z0%kz&RN~p2i~-JllwT@3cm&nFOQvL1)MF4 zQzgce7;IvCi6`f?`}pIJ+fI=fUPL7n4@*oe$Fw`|yc2zLut6LvJg2sG?I(T?h8Lx^ z4JdR5j3NWcWSW-(c!7QMwrMD?idBU|Yj7G#Yz88}29ntH{o#r{UMQgk;4X@<1+2w@ zch;7>15c;{$C&{o)PTZj0PE+#bUVPdfS$ivbvf0qB>m3n!TY zCxQW`Ti53~Kv~vl^B;K3{lG z%!+cDVD)^h=6 zjKLQZR;2+8(gvP4w*y6tc3=e9+Y8rEj7u_t0)mZYr!F(X!z1;0;3?PR1eY<+c`lOU ztV%ODZ`Ej^BJ6>L8lDT2%@RGv8UfCc`rF0XOB3VfpRmwK^q*`SXa)z))a3|Ys@{_u{Nh6Rsp9aZ7=kw63N6gEZIRC*&rlC&cO2PG1I?lyStk&#i_ zK1w4);lJvL>vP18e#J8e6yBe{c~p3ROpcv2*@*HRg#=hnJm2mx{H)3?2ey$TMj5fu zamH!OPB(76@g^fZeYi1c(iDSk0}Z4U7)U8l&xaf6 zncB$+umZRO`eg7Y0Ns@EErBWli;@gzDwG>k>&f?2ifku>>yX>^Kwtxw1OPHAVi%Rg3 z=}&p^3$Kz`q`yr2ktCe=-hH2(R8KXnU%|vYC#^fLPPD{mXk@=Oa~o^akvl7WAiS%? z6>+hf^TAw%H}_|Xi6!!^Ikjrn495yTlpE-rzn37>jFIj=&WM`*Z^gsP;8X}*8n?g-M+Oo$wk%|`J{o-gPHv4MHe<3 zlv1wE%2Ee=x+ps6I9KFg{I1Hn!fnrK-b#~T{{zU5r5?H>*C8x^||2!u*YGolaGU1cxy{qZS+(bA2ri z7XPGvuR`+>ZspO6aELjWr8PaNY^0f4Ft!}!dO_=Evj1Hr-;#UkMQ&#SIN(*zUvIzj z)?e-~ts5P~3z>43YjVeX)G=(@x(b60>ORp?Be!*hE_fmQR+(m(Dp$n{E+zvO#+ zto!$(BM_IM#A3?G$dk;F``7(quoGnVCw5*K|KW(!NDs zSnl6#xw}VN|73i2#w4xDiIy+OsZa#W$pu5&BYc&opM47bv}4poGsvPh_GSErr=NTp zZ@l$JYjfp7E)Hg%bT%7+v5J!x*Rll-%|`850Wr?D{z`;e>J@VX(b0S0zcW#*twoK# z6a%dpPh6B_Hu0oLnKTVF(1GdtAjtJU$z7nac<1@cAv(${Br+uiZPX~+H8C=QT( zAjc{^BTkyIn{M{uDuFDIxy3e2rIU>7ZdRknZ+24&D*3eu@N(-% zB7Z;fj&1_w-rDiBI5NeU(PI%8dr;k6L}Rl*&PPZ?A0%maAWgrIfZCg%wJ*Ze6|OO- z5jp<1KweHB?z#DX6xQUziGz*+?{iyS)9kH+=-~4^x6oj3{&xs)>W}jJ9Mm>d;QM8p z6v2P`^y$c>c)#4JoUMFN*;IgsA9?tw-&5g2iD-H$3K7YeSPWgPYS`ym@{EgXl2xO7 zkrON>*m($c=Y0(^zYs2)*iWD7MSfcXc;)+hG{ADE_r>9kPp&~nx*iT4Iv8n5X$pi1 z*p-q{{u?-5PcsH%l4wv%Uu5L(RvbOy^+}QIh75EABQAuyPhYjn-FE-lIc4ENben{SyrPek5lRO2{pzi*s1Eq&92!YdR|FUdR|6I@LDINY-d@XC!_vc*L)LVj<;;Cc>}EqG0J zrMk=dV+JCkh3e(j9YJ2_qoJt^u_<4mnzqWKMk6J!Ax?qa?CdNRM3DR7$ruEh?hnTT zTulAc@%i8QZHj5ZsaE8C97)f&v-Xk-(b?i-UMBlI99r z-2U&pKVtx|0K$Lc2i94q%LP>;1Ja(?Uwd8IUP^?(R3f#5>0AE^X1_NZBBm^$c)@~& z>cUx}DM68bEwg|}F}^n#2P?KQx)-Hx9vKDulpwn4IK}2xl3_|piWKmY3vk=gV5n8# zww%C8ObJZRVU^S!sI52J4w~wcq^W|!{I;8`*VkVA9|E}LaB}T|%BnatHw zvAZo%nc5ZvV!naV$W7nD7HE-|znKX=eHryJ4nT7AH!uTqbnE#M85B}b(8KXOggAPj zqA_13Vu=VfxyCAyEQSdoe$M^SQdNp>PNU#r?Wfw~$LLW7?M@3z_rce(H$MMpnesZH z_0TN5`r4~%9Z4nqJ+N-ZKx_d5MdGj}w%=(=QJcu1;+ad!18PQ9`M@GE!=6|Hzwi0O1+(6+uQd^Ky zpQ4h}1Uz?lKNR8NbS6SvhN7fC9bbO21Y&o2rWd&xOOczg>HB-8AM^1Z-{G!@lH7Cc zb^qb_Kb7D421aEMnH|V)*G|)Z#>A${StYcX`q?<^qiY4b(k^>PUpP4jqq(sV)&!9U zO4ca5;ATyok}|sQ{(HeGcK#yiKFHsiltK#r(KuDTHvMzc1j4twI~~S;r6CQY#9BRP zVsh22QpafZ;mih1bsg#1^!OR(R_OoYVak}~)n9kAR>OG$20-R6u_a*&n zF6JIMm3rWe0lcSDr?zd2OtEy#qL=p)r6P9?%f4Gq6>)-f8)x+IK3zp<%PLcFF!xvV zGz?|taUakNbqiZHUwjC2-avsc{D(Tphvb z7@7lbVMg(<1Wr-V(_=lC&~D$JeXU?Y99@K}AaY8gvS2DSS>QDJBJ?}w0d;Zr4;_uf z{a+%xIvK%~hbPCBanc}wE@$>m-FVB`s;q7EH5s(_odXY--l(q2rAu22B})#;v)y;^ z{Rp)m1jj$4I5O4eVBvz*>THV+N7X;zG6At zG`>uwiz0B}MXE%7yE=@s0JIf#a%{KU{Knh^ZF@kpMn&V+)0c`Ol=35)ol<(`$g4RB zU;Cc?ojG%`ozW_VC%`MKK3>fxnd%YXDf+^qH!d>{rczU#Px&z$eus2yJ!0h1mE?^i|}`jzn8(yZ!OLmZ{%g ze_2NePTOLQzf!%CIy^N&NI3Wh7A{&Z1Fft%CFk0oEpoIA@0-74Z!Ycg7P>{7*S)nSo`yQ*>6p5em%F22^Kr z2blryVa~oxn~4NRetrRU?s_X-&BLsE#Kj{X zVU3FRO4PD9Mi53>(B9Jn7fl_Dy4rejZ=CSZtRGaQSQkhZ(!2q74DLk&S+ zDW%$H-1T1q(l@br(-sQ$d(*nNjFbrDlx0C(GLLhgT3_f3-58gZLKh?Kt^S>yKyL!< z{SdPaDbEWWKr){)_aOcT*5Dt>WMk zY>%S+YIxiB<{-feafPc9pShfXww~s{)m+!P73@k~Ar^hGw|Sic!_S)$R&VT=0Hzlvlx;*W%Zt^taVgCKa;sz1K3;omW$V7o zFU&pAu?OzG_dYngb)&ps3?dze)2>*D%-a3Pt>JgKA)5eJgY1TbXtp5#x5W_!+GLC$ zJ6>6Vn(7i6quX!41D}#U6Vc~tZlgm=%o5K0)KI$Ub?RmZp`p5kza0*D;w0d+yC9yBF9#nMe`z@qawYTNI;2!Qjv-CIC~ULBcM{ALme%RxA3~G{kyv{ zZ+C|FfD97NP$2vB{9jnF-p}Z5l#)KrrQ?1Mh`nr9WpX=TO+Y;KX3cGxTF}A?!oGnt58hs zysGkQ!p8H|D)~r9UR9>@&+bTof9a){$u-@Gfj#b0?QkbJ`}yZj*xm)|0`B5UP1&YH zky)v*p}w5QVf@-ukkTMilYthIu(kI>1E(-+4OI$M+7rUcamr)y;w7LgEL?56V{_wv z6jd-;j&z3}7UwIl+ZQ8wS>K5W90G#^)B~ADSFWKlZbJ@s7ko!IHCNO$Q@EQNp>2yq zJY`B!G&&_p?HA~a#DlxIb+lS7nelCzzNPG1>t>z=z15^fTrmDzeEZ!}_OTA5&%1!4 z{o|D5%aSjb&=B~q7Z0I^Ff9jJ<=YjV!QXX&N@A`Dw5~0?T7ie$ifR7iP^I+nS5H2io>P5tC3WN|VsfF&GlQb6;r zyJjfP-uwbYI+~9IT{2&0zOL zdfB|~+1dlzUvsJku7!Fe$E<hT3s>F=e503ESO(wu4Bqt!RAQx_4 zF4$}FD>9t-p~bseSqF9myHeFR-+YV6pvemC%6qwa1$v!_Z@&Ik-r|3cKaS%3J$%pz zfz$X^bXZG0_#IuqXy-}#LORJ3p#-VfslSrHyFm%o3w;Nppg93 z2#<^4PJ7@Gw^4MT>PHHPCH9uDW>naTv1l9Ka;${tq4sO~SIgT_CBbf}>u^MRT)>Nd z0ld6D8B%UWa>+&}j?_Xdi4PS10C($PPAfX8W7)iAlTxe@xs6cSY?X6uk(}`y;jK`;jp^`v0bRTsfmAB1{xs{8dbMrx(fn(7+1 zxBZw?rZ1%}rXuDZh5Agw>_dIiWKqW{)nIa}E0CL)jiTbhzqs?5wl_bUd%)BK6EC?) z0X&^W`{Z6{TTeAm95-&9GST^P?uTmjsWY%^s_XO5KT}j3G0O3F55Rlxy^G|8Y|d0& zu97?BDt<$GQyzSDQCP9O{mg?zSf73N8RiCjiQsV5c4 z?bGWHMMIL@g6`d}K}~H9hsn*H&8b0}VIL!@If`zPO!u~GQawamzq2x9#&i{ZmB7fl zbw8a{%7u;tZ*fMeBmfr^oB^(rn4sncU%MXYN3QusePZf$tKeW&cb!p9ob&uO8x| zu5Vl25nl^`C!YX&-~N4Ay>_MAAGP>8-Nwbm8I6CcK$uo&pvr)=i;*)c8JWWEEy&t{ z{aa@vGk%qlF!DnfV~a+hmW6{V;#*!6kKX>5t4Fhgm2z!+hBvjU%4$X}hncEZ&+c~J zn4skjQFLgwq|_L1I-<;w1X}d+GB2fokhz$azTN2>GyR+WwuDwnr4Zc73Jq#N;1Y^gKL9G>2_bf9AV(S=}7B+7z zmaX_+?Msq9BpFAN*?wI93-)X|fE6p3!!N)O#TJ>^qyGteT7D)O!iC9%Bh)r7oU#>= zet>Rq7hik{GsSHfxmIl= zk*A!pO}P1%o78*xC&`4f9-gJR#`%`1$hD70jdL+#55%Zwm}DiJr?FbQ%lzU9Juq|T zOv+Z-qJRmIrqZNuKz>!KvKBQhJC^5r?!E`>e%yc_u9w25*_U?2Hs~2}8EkYea3(#f zXTW4+)bRR7ZoHe@(dD;}WuM2o4vi-m$?c1tJ$f^tbv6gWuC(KBpS>@GdvPpt(;foZ z>4q32TkgQvD@K4?;U`7y;8@#iTJMfK@1X1DP7ZJD;ZBD)86233jRkF9IY1VL5_2*4 zfVl^bzX#ffmyUn?Gja>L#$+e{0t3Cz1E=1pj?sEw0CG0}icdcK63v{S|Af>2@4ojw z?%@=dME|B-ISs%3wjK`79*lOzW66@Q7= z@}ae_6+8@qIFP$RsW?dV<#>w7mPw%z1E(72si?rMx897=qerXd^6%xBUsM*UHaa&- zetDs+G8H+6TbT&=P3t-$k5W`rsC4)2Y^i@sMS)yGMt`gB$Z1MYGHM>=zm<{Pa3JS< z*fP3lZ|y-|YhUW=zK6TmKMe*+66?`gXLUmXoPC@WZ6Yf(3(r3HtcsZ0kp^*q7RSP? zb9QuwMGa+qtlP`8*iw5omRZkIA{@_Q;+rROYK4QCLm1v04YhUH{L?liFO-y$qy{Lm zu8{dJzVH&ziAN=OefHF6YRXb1i8gH5pj0wsJ#T_>DOI!`E-om6fCQ0Rx##YCS$`k4 z%y&b|10WP0%DY=F-m93*{2>(6*!gJhytQusA?lDEZk0?21+RprZYW08s716rvOup)$ zXsIMO?b)|m$%-|QdSu0+SaxkJo_qFrCGT}SZIIa^fBT^dkTnxDdpI5X-b+1p*6y6~ zX&|j90k6NY`FN^6p>@UH_>+YT5an?p2j#%qufM1Cup67I`J2up_%$ZVRaB-?4W^dV z0C#k=9t?}nD#RUZPv1JBhWyQqXTLjJ1sRqtU&e_nOVXyOS5B!!DOF6?t*WW`*SCQMT zFFXW*zPd;_TQbS4;Q*%uOBq#hU_wW+(o40saYL}%2=ZnNkXf<~v@c{bAOR#t7vFyS zEpET{4wO}tqPNWj3RLD0`ZinE!^5f<-0ebDd-WU;?8;pXf7fXCR=SG9Nc3A&6N1r` zY~lna=tZEB(ef&4;=cA8kCjFkrXsqXv>!$MfdsXW;>tqU>g?ds=&fSD{U}MMBhRm> zE*(m9f;9jDKmbWZK~&i_`&DGNic^cddiLUt(E_Ol(iP~H`eLw|Tw*&kF+#s~?OMgT z?a{p_5)$JP>O73+vjPR284y46j^-Su_L!bUA}t{yK}{!{{KREDT11*wF+aEI0RfIO zRW1EE*?~;O?yzGCXna8vbnQ?mbk;fD_Kg50@ z^qOYm)G-`DgNx{BV{XDRRrEJkqLZEi)+Zu$Hh1n^b&c;TTrpLwH!Bm7JDl`reS5F|9?r>U? z0!&5w(%0LUHwaHOQ!b5m#q>eTq?UmPysYSuWZi@EVy@_6Hv%p+zG!M{Wajq&DM9pW zub%>~OFAO@IzXr&Z3V0a>lw9*nJq0PgVc(M;7bt_I3AHaiQCvF@o^NuL;~0gOzSLOg zF?i4rrI{&-BoZNd=bd*ja7+LuUw6LR=h48fv@J9=6!a#C3GB);b2&45KtQD=D!N;S zW02=m^l`h0iJy%K3kz2>L;vJaN_1IfDtdH}!omfgDv7eTGK9z478#%lct23E3Wend z;M(9q$y_aVr+$LMia6v|?BHWNGMVK2Pk~)&yHLq|J%d`ot}GLsYBy(ZCeF>5x2P^l zfu_6^HcUtrg&7}RIEu8XR707dK0j6dNsh<-kLO|e^5r;ZQV(2s%{eNW_MZT|r%E3j ztsTvb;WyC~yQ>}?51Gpu)&pk1+sO$P5ct~5FQH)d*JvRS)DyV1)tr<~OS^b;yLYL&;Hrk`>5 zU3c^57^c=ao__-HygdU^RhNf~+HCaqpN5{^7ooTBWlHjA$BrGX)d|Qq35~Zd?Bs<= zwTaGVPGdZ6ZC#jBQAjGnKr(Qf6yL1vCazX~ur@g0UO8KG+Cai^cjzAcb>KdDwY{J2St7ACjjhLv$ zKS#RIIoThQ77Fwkfl@|EhYUVf)hjxf&Aj1P5~5r4&y7iJm1GHv(m@l48jUS=Y6@1U z5&j&8NFtr7MCu1&;lfX0X9z=t*9D4mY+>D?Oe}Wo+Kn$3EyiuP-KNg>t>kx0BAmG3 znIp8O9z1)W1yH(L2f)w4sK{bt=}6w|`6$RMRPKiVWY75f`D5PP1=JWB4CjU@+;Qu4 zWsGyYZIFny3ndnX*3*jvLr?x<`eL{;d&w@|hKZLC<+OaJvI0Kdx=&<%$yKOrsAROc zthJh&MjD0}Whes-F?jjU9oNG#*p_K(956eDA;W4nf_wTglKOG$HmA~yOE0|?UoQRv zb3gj#W-TgHT z6kM0m(%gv5n3aeK4^uwS?tKPAqdnA>c0pl`95yI7vCgU&vw=Z_218%(h(t=y2w=?O zt9-^OrKC3RMhYKN!nlv46`^6sqiu0>b0a6T1jSW}2y-|3xXb6ZwEPTm8$$ZW7j0KR z>T97i2=_28K97K}1(^-8>V_x$W3ehOY07L@hl$n@tm_LWo#$Z{E`*Y>@RNm9!6-s* zV^hZ%TZRjW5ImQb`t{Khr)uq>l<&lsqLob*JpVTspwk*{b;Sbv zpDGI%E~JxU0s47fN)2lVYB;;1yUTby_Sj>J-+nyp5KGW{ZI$}{wB1fX zH+_inMqfbQWxVppZYj)dH$7QTX)uQWR8o`xQHcVJo~m#UC4*QJ)`DEmK`5u>b7b1|VSfAmzyd z2^H2@oTU8Ta0dCR;|9y^9b;d(IMa1mjYuXpyr{MP?-_B{T1Lbsi+q zBQfne0%6LXX?5u7cZmYOVmi@>k*El&6w7la^P#QD)Rlb;XqOV&+Xn@jbjE*5)O(Qw zOJdfvzsmsiUjCKU$iRd;$xO_N&G?3orJOn?@Ygv*Tqbh{UsfRy@L}RT>Rk~FbL_{ zo9LQDHwG5D`3Wc!sT?V8)T=G4%|uB<1}t0bu;k0H5NJaM0!=liwiv~r%h7}P&*YSS zshVC7qb95qrx@qGzW@%7judr&TGjLDqmNMGVI8$1f55j?lYQPV(5Ld9+h#D}VN zL`(9GH{L*Maw-)CyqHCe&_`w{kxRBH`*B$$66Y<(2Pc zUyM-aFQsHJ3|b8=t&QhUK!gl#q~AnZZ2b7~8^5&l6W$@&As%+a}OMA510Y(vGx?#lcb`~5{p(*LPo&N5{iO5J2~R1&6|{ndPqnJeEW`L z!rL??|3*~@r$G3IpRe}l9egh0w#;FsKb^TWx>m58QTzwWYqKcF<-^EOi~?5CPKUrS zbXw)MBgt;T1eIcraDa*d5quxkIEePTFXMmzd%V@1&4)>50wi~5FH%#hV%8AE*z1n% zJ5@APz@rzrueS9r$ZbjDXt{wFmc!KX%zo!x-22~qRC@(PMKXgI6oqm371tIhMz?V%ZAp z+_WEA#mO|u_(nxzo_+RNYVx`>L)@rlAycygW^)-u>+g9PkI5L#E~e6gC2dco9L!zK z|4c&U@StsxV;vMd2s?Hj;xo(V;x={DO*hj)X%%{fUriS!J7i|BLrm^6M&<{juv+LG zdLHS8Ja5JeZj@m-_O`604AT3`EF_2)tGWhzXlt#NT7=HZ8t&|8>lRncoBt8d)2m3& zNNe4`ZM%;4`j0>Uz^IX;$&B?be&=E=F~fq80FWpzgP!0fjY*@DIKKF0S2B zUYV{2N-{_f<_yZwiUa~`>uRWA(i`z9+vUrLabw1-0oc*DJsUp{4hrE+A9cl@Mxm1V z2N#?_2JgN9ZmVqK+1Mv1dd!ln*33s&mE)TO?W$Io>phu0&~@LIliAACpf2%#|6}6@ ztXaKU$;N#B_1Ex;7zp<;N~f?iR+qp#=+G3VB^4e#1ER^Nb5!6-q`FF~Q&3nHk3K$^ zBFybv4D!E@QCS*EG$gn7K$D@4s<)A?08s#E7^mp-4ZN8WJk~d~pVs#9a3?@?QqpH3 z%{|cDa4sP$Bc!gbc=+K*lp;b>voE@*B-zlfX2?|WRS90+ydmRoLt zpRPN??FOl+vP4ExDb6L}IhXunu|^i#TZ#CV(KbR%BjWG}B3fLAUijGB+ zVT|BZ10O>_^l~1HsZ*z7{J05t@&8_ihi!W!4H+D0EwtEC@D=rVvyopPkMyb?O2cwr z##iiudjUuq(}%q{_>$Fi!1P(gwSvKAkfTFPv~OE}C%3KTZKU+A(#-=c7iQrxYs&x=mKDY0f%t^mH79 z`|o=Il1OJRf3F9+N}a(}@84^cd8<>o2h4!?B%PgQ%a#!o-iimv`<2M0@F}$fwWeah z>G8(;3e#KlTve6<2L>n~oOwSADi0v5bO(X%a3!T9D@gP(f(d73&H1g{HR|h?99ZiD zz7Q_0SY#GZUPr8q3ZBU#_m+c=WMH@a30ZqE25$%0#v4 zBh-*SQC(k&z(AUX9EgKklYi@HwVEp04ZC4~@hW6h?m=3`R#em!Ig5J9F zQC}M!Qb}!V*Jo0b_je`7 zBTi?z2me4_xe=^-_dXvizqPC_ME;N*ATU;nR zCQeP~j~|6gCSHQ|zyC&iUP9NL92|^~Qx?mT!1chr4i_vUU5n@SxakTP4Fu|~tqJ}hBYbkW^a1N}fwjjz3JMtDofNom( zHssgDD;cEKOMgaMVg@s{KUW#)0&pcc&5h&>SH?v9gKZ$;V)55sD$C{m{rk5)Bqhe* zEj$uK2MvRbwKe}ffvI*la=9p}(|MgAfyd|NQ4aG@O`-(xUcMp0woUZTIqn)Yud z`2CCBa#D8Pm6Bvq_pz3Yj0{ChiHV6h)=kXo{YyP?>}T~~YT&89TZx#=ojV7;qVI;M z&j9!Zk3m4l81iVJA_w$aq^$o0rTbT+CVe}V5t@;(b0K0jzl%m1RrHCzhg0#6SigR~ z0x9$6eS{oF04wVWgjuQ^i;-Ho8Pl$rf(FkVID|J7h}poA8n}CyD3(Nc7;n7=0|!Lo z!N=~y5GKz}zVtEzZa*wsybjy;S1Qe2cMmU&n=lS5RxL+vel9%9LJ?Ur4Bf~=&1p(P zL365#R^~P*GQlhhrB&3~q;W)d$Kmj1qKysPSl)Cf$}DZmYfNB-u~tQJ2BEsP8qYoV96Xx>l@fxMK-0S=2>J>QUVVNxo_gvjlvkCi?QAWb5$$;;y1AaG z$P6x4{tDm=u|Y~jV?Gn+jEPttHX$nd8=w^{-fTwAjVct*O#$$(?}gx&K`Q#}N7{!i zVWCllK~=*zxFzhhjw*{>R4qj5!X)Q*+by?oI`={7Qb_^H_JzJykG%Y?$S+)rqLNKW zNLq{)D^@CJFO9*%2wn-mTO^2YBUE?;26OlC z60wf5AB8$i4cX7#&`{M(jm;j$MjqwAv$He5TTkFX^9BT1L@6!g-B`;Z&<5_Q9xuN1 z;!$cae|#qP!2J31X)19Ko`3#%WnVmf#@!e+WEd{L`ajART&^)~i~RnY8q08C&-*CM z+lg$dn%LXfs>IN?>z&Nkxw*OU^9q3#jb%*5(!v_f4zvg7K-pCG?%j(XJ$k~Qvqjfl zd#!2lY56SLz&dM7INSJB_HYG?>eG-{n}CBAzu~8!eo_iMr{#g20*yWuBD^B2dE<>Y zV&cS!r$CRGn{c!qFej}Yt%r{C`R~8~PX1eO#q%_+>ghWWd$+wovGdE+gCvMHcJ11w660)a>|o1;7va0fk4e^%I>N}tm58Mzh*gnP zP-w`&ozw47Q{w@iBavOa72aW^$qyc=>U8t#g9DpBz?|80@h+2PL_$oswo)XSErcmz z8G5=S=~L7)4?-~3s(`Lqz<;530})sC8|tYlVNbA~S-+o=QVjw~QCR-{3PM>+))Upr zCzbkzXDsxIJjSEF_|8-Wgj$jR8s;+!dkeoqYV~FW*$q}7$Cduf#5xyv+JzvoA{)C( zm+>a-2q$+((nN9?A&G*&T~9QSrjXrukbAXaD2?1r= z-((^oQ~uTZ3Z)Tx@kJBy>u`6t<;{#hJE$p3S5iXCO3Sfz>sCy>cp?FHGeQCakQiT2 zj_4JcGUIU(c<~jC(4lcATp_d*W zp7jW1X2D#}t{&(W)f>54MR3+qsiZkm4JMs^f)RM(4D~&;2}@V@!NSEinb^p+q^hbC zbLPyUykROSK~qjxIpk=)9uyRWs@hUCTGm3xL{KSBGu`4p=4@3um2yhy{PwX@ZaEDO;goG+BRL16 z)X-JsSY*jWc}KpllISe7Msqo}d%z5MPw@PtrKO>+x_$JsuC|!bT*4qqX!-g1DZhHz z%}_>Qx9?bl$X?g0y%ywdM^Rx4X3m_2i!QoI-JE2aU80U+^dJw3L`o6RWn*m%#|Bpg zw#3#~oY^RHi#zYU6TL&P;pdbID%=2f-$T4y;h}o?^+R#yPHtgOh__MWw8Us#EC95Clkicx9_m;F9ix$3w+DMmmaBCI#M#(e(dsjf@;#rbo8U)t=b@RP zQKs#el7r}HD}YX~Kz29HV8k1?GLmagHxL6-n|7g4n}!J6A=umW6I?C4u)k#!2MK*x zzlPl4{q(1Q6uo=*hON#Gef+Lfz%eCZ9XYn->^2>m@R0Q#=;HR?dmqrj&6835k5pv1 zqN1GI80QmaTPRw|p8EBQZXvV`DK&;dN<4Y0b6r$Yqy{SY-FqJn9*oDn%AXNn(+lo8 ze+s78qP(Sm!;1(GFZS?wEU^5$<=FkeZe`)DD(mFm!Gi~pnVHFH>FcS_d>x(aURG1q z*WYkG0r{j(wlFU`lY8L94?k3v)`NYnR)^`u8G~f~CbSSxniNFry{Q({XQVPJ*O-h-Ra2W8kVz>!dcdHw^BsrZgD$@0bmpjT?b&6@sHC5x{KbMgMihyOnh%`qHt8yisFgBVsjM z2yETRs# zJCV$Eu>KgWfTeIt)5vi3qK1R)H`R6@EE{Z4q|ZeVL2d(i$*Bcf2>NOiC)d%+Tj`TB z#f%4_hlUvWo;&|bSG98ZYr1nC9n$qNxc<89vFM9MjEH(5QZopdhB(%)M=#w-b*z3& zPK#;!4JnP=)eR*qBozDh?Wb}>j*5J~^x)S@a%uML_YvhgS#2Z0Hq>J@_NITSBIb_d z#!3p!+giV%_$syF4PB3TtIl*Pk~)oN0J4@38o7)5`C^m0iEJXYI52oFGP0h zj@-;VB_AgJom9Vzu5{U`XvtRt2Qlt&u=3;pqlm@;#;IMoL3UPVGJ}2|2LP_Np2#do z!4sr5%=>s=XRDf*oh3c6Y2#*uI1OocwEp&ekW_kze=Z*iok|AKU0Gxn>eW|Y#kQ?G zIMDaO8*jb=iEy?pGiFTZZ?Pw4zw@42{K1_+V#0(8t*f*U5W2WUw!W7aGJ_`C*r#)m zoNb zz&18aH}Z={Y3_by@mZ9%oqCp~_?FQUg!R1=I$IZH$N!{2xYVm*9M*PimPc4zhoM7;(jBe>soC+os2CIJVhz7@3ciVy2zT^t8Lj97i@#W`WY`4s z?jo1em2qdGS~zN4QL1GeI6ettr7Q_FZ@u-FO3KTw+DpPiv;vF=41ch{LJ;C{A!=!g zk({-X9N=i~!xiaF1uHRRBT74hoMLaRSiTCockjmJNt2P1yGKQ5dsrTldXtD&fJF~f zIpuPy_5-Y2yAC~i_QZA9U#rY3qz|Mm&W;}Pl2eO}z*0`h&f0@FW;-O*Nfg|Uu(Xlg zYNVND6#NcHJ0|E^l8j;Nr?|ap<3ImN!;aKxtwV3i(TFWwk8a(%sn0t8Td-gO-hAr~4AgSa z(V&H!HWV-X-wPNzY^a$(*0HnBqW9i3i)qxhPd=+@CT)N@0y4`amgm)ZDab#tg;wWF zyR>KA-P}1|wS%iR7@M1SVa|thlyQs(29uPW1S5g{|)XVAV=}L`BK(7=5z@p3~gSYM5w;yR!^Jo8J4;-4q z{TCZ?I`3Ni+mn)#P~DJEDJvb}PYotsHXaKWeEgTgx{$7G27?vyQh!$_5Iy}TBP!rB zc)Rq&zCC*sNRlY7WL3AdiGARKnViylh*SLI71))EMH@CEVk(oc+@Q14AvX0(lvXA) z0&6^_X|c2z7OR zNR_Z+onBsyJl0mCw|)epw->-hZ?6EMxS|PNLBOGZOLz2O!qxiU*W=MgAH~?IqcC>D z1-S99>u9Wyt|F~>+;IoqeDh7kYt5@Uz&#D)KAj1R^WkXgk6_;mxIebgAsFES7b8=X zr20<9#;6U~=q!j#yoYGy`lm0ns>Z;V|&h(9v(u;-;(HIMVeHi<8F@b&q z++89WxjsNR+@RK}=ed^mD^@LIa$6oAnl%%bPP!D82Q;wF@y8F#*QjW;TKUg^LiMn- zu~!^EaoV%jJHl5JirD7$$~jGV+?|yL^B1CJ@Dj{ zPolIw69x4L(a>Ct;yNmqRBS`9K2eBY`U;9Reu3Kf_3F1L^s25ZGMKHYsYAH!2ug4T zB9v+*ehxiw$L)6>*DhzzehcZzs~~i*YR+CI#C*=deLWT}T6A3Xm{&gYdqDJZyHcs) zNb?~*8AuVDis>QWe>2!U^}loG2=7TaM`ATB$!C&y6ufYAVFnFF;L?R996%Nq3R=_V(Lv(uTB`Y4tYG2EtA)8t7yuqsphB zdKOijUYYgON4WXso0U7+y?6f?GR-0p%OFBcBh7%*goL%Jg+hzO>VZOCFu|D7Nj~rV@j?GvX|!6wNf$ zFex;&O`NNs;&3&=wJ2MNMAS><;8t@w?46rmQ2M0CUij;OdpkQuv}@XZAm`MM%gyEN z?E#UgD=8_)#7ib2DRCbf$p^CJU^O{abgi|xY~lpG&6}|}qjhCD5F3X8+rI5~;bs*~ z4OWIR9afNi;29E)DBK*NEK#++P85Qe^5sjqvZeD`qJt zwyex7j6Q!fWwZXL1l1>uy%2E+4ywehikdR&^cKU(!3lYlX{1ktswi)E@osp!GO6s( z$aG=pKGiO%KO2mkQ-45Dvx(h?wOq%7$zyZXx*@%;K-R(KRI;!`YU6Gt;tqZ;(q>te zyIaAo)MGAW)%5mAVS0r(+V*;KvTa;U}gTsIT4jKkh z3~oKw(Q$o8B`cN?AFK3^rLRQALW+Q4iGWMAd_ULsCy7Ir74S^lb=O_W97LkIpMJJb zt$(zC_dWPuT(Mya>{^_mqZVSbRV0v!iWl{`?H@0U7j&;>f&t^OPQ_n@>Nu zxJRNeX9wnU*|@P|F>TtkF6{;X06)}gf8jntTlZ7bQVf625*=@myoieOj@-=St;M|l zncf2?S+cG=&Lc&5JML2gO!6?7Q@aPufcGCfKkvQw4x@OJ3DUf%rm%^8TO-dmK5GRD z@0FAj8xChLBZpIG>x{rYld*|9zg6Y+sH-i3r^f(-wvP#T-O$)T^8s>sU3?v}ZAbeA z6*;77S6+nxO?P-00tip*6xb3l*A~2rw3$2U4JCxQ`|*cTJE$blK+@YJa%-b;B%qC< z%7HO*BbLE3jh{reZlGHzDk!gWj&5B`rnh2=v$(v1U+)tn% zfbbqu6xhwl+<=0NP3S)OcA9y7jFQq4y!-CEnD@p~sx7$EU9DDeb1k%1>gQ3wTX|j8K!f43oqVN1l70t?7M_Iru`0?dpGzA=T1}vSFqiJ7-mN6!c~O3> z!BC4>a*(yP7WnU7kElK?Y)OZ=WvBwpGKi5#vFH+)Q;R|RU;h4%W}`UPz4gvpD#P8w z*-J%`mo8YUBypsj=3?%Fr=EV6$*RE!iZIT~IJt%*GieRY9-ioO!28%^k15^l8tY0% zdi$Z8U^lC3KX$G#16T7mvuk>wNw4Ak<4`cBYxZKU^-SskBjNK*I-*nfSj0y2haXm> zjv%YBA`ZKf=VMRGLNsfe;NsmAmP}}CTP$czTv%AdBoKc%wK$-tcn@9DdJ!B~FcIr& zy#LW`8Y0BEN|&|Wwz#Mmjs`ciNX!>p8EZ_WBbxv?iRy}Rg+w5O83C4}618+%4D^|T zL6kTW2Q<-_EhXH`cSuB$V=866_G0JGok&PXz$ahN!?dfXF+%w%!VGHS&~{0e_plK*bI?KbSmUQAj<5#kHhz{@~&V%<3^qAiqzDjxMd zQa6O38$V)I`CmHVI+_Y`?7G&jQLXO#7%spW00hyKY@^7!$;NsDP z2{pzU8Pj@Q@hmDbLS4H0hAGemmLcjKKkECYkcwrz26e?g&2^sLJs^~Z2J(2j>TxVO zyl3|rIQ@>^9O3b6|F>aV+iDg8lYto7&tnX z#4#xnjqL7rek-U9bQ*y2`dmEw?6XP_S8iq!nG|^)DWV5EpORPtSj7NBs0Y#H`x?O^ z2%|?59{-9ULr=Aj-7P;7c00naF@kL=L4I8__o+vJ&&f2RV4qNdVpri(Or1JK=?X7c z@G0A(A*F(b8&-!jMb*yvPfH*Ax|$-CmgK|R+gr&Wtyr-_@nHQtL#U~%M^57oR92TG z+&UVrmcD4z*J1h{Gw}7&udsLDK5~KAAku0WoGjc`wGp~Oh-=tLxLEEr)XIgFyFWtCU9}DK?({`wl=I=^;UZfw=0LY4Ep+RA5)O(`juHVmScMFuCuRTW+GxFnPP$_TbS; z>qR%WUJwgoAG=6&b2^8dYfH?VKTjD}R2fQI^-LvUQ250y1jv%iCM8@uKt+11H~`2Y z&>c5+9I~=$*Gx{LC{@(d)X-sR0_-S*=H%#PcIQ#Oc6R*}j=v;f${_M&mc@&|Kw04d zB*!d4Wmy_B5?7<9G7F!7{@Kagjkzv!51bM`(8xQEDRHeUo_TXKmouyf%z*bFKB3Lc z;%hQLcWn%lN*!5+$!z5MJ0_~NsVsr_m}4cuzeYU(DLUy(vR&FhqsL+b|} zUJRjzZn*m>3<|g&p3XhcWG_&Z)B(DQwJjblLAdMg87he?oJtcJmBM8;ma_URl-K5C z>K%$f;Lj#XT zy=?twV3b!JjM?)p6Zl9?D2hP_llJm5SJBAf7pffGKr#A#t;!IR z5Z9|$FO==CLqJ6o8dEG)!j6UBxPQ}51c-|}o~R_~Xa`)_oUZt=_4;ZR(amp3ro)^O z1RDru<>BP$tW-EecBWr+U+ijGgGzk~Yz+2DEcu1JVRz&is77JnC74m^P>a5BXGA%A zP&9sC`?FGpko}9xk|UG$eqHw)EGb7;Rb7RtQ>J0z!iA>hnV-+_9$2$x4QEV3U~6Yj zF1d|Lq&!)NEDABA7BlqcrD5gDmDsdt6U2^EvLEI7OenY9bb|t{JuaUKt)&jl z4YkPGx(xGqBa|W$Re4C6{q8%s^N#5VcRZKTNGl|kZ-j%rKdfz>7;(J=UwyS$t=I8i zO?3@|+yfN&@^$K^KwEKLDw6WnQuo#u-p)}>>S{(t-aho}*H5jt?w6kxH9(`QCor~0 zA-S(&^5E)fbRIM9L%?o8KmfdKBS^J~LVDFs#&PWxUsa;XqDCOxUx_OB#8ARp3$>|C z{|oq)q^&s3Rz_|$C~8cCM{@{O6llIct<5AJpP`)0sa!WkPRo!?+hJd(%(?1mWo(^* zZlQjd^~giy`Cg#fwQbury!hgaULelTTdQn5~XQh6|>1BH8dSz4Q{k zTKqNqICVU^`*>!@f5hZEC+w~J1^(6%XtAz`gS$00|FOx`ZR%MxdS%ejJKzd6=&5Tg zLu~eUxaaPBRTRD5%H}s`Tn`8hNCvju23!Za8z|Cy(sQFg}mIwurY=HtD0-^1Pa+L&$zD) z6XLttZ}M;SnSfn+OrJg-8#ZiEiBg|^_L;KlJzRCyUr*cFQ$(CxrYuE=S0XN*m6>!@ zdy`hee&JE5D$b>T?o*igVCS}z6DLl>FYBlTps`ezn?An7Sa&Jn4}Q+1kVJ%pg#2X} z;bGmNt@MY;ZAnQl+oqDYJbeeCq9hshb;WA=tcM=PtFOJHUdume_YXh(pj>0dQp%{K zLz1i$5=?$X&L9OGwQ`UQtT{{0Jwsj-5hdRrHJW* z$PRrpe=eQk_Th>vu7IbTFDk0(4n@bfXvayd<_h&RW{9g^PmPGt3OJ`a?8NdPzE@G_ z*I#>sMi-C3&ng`C7F8&s!h_HXx?>0dubz9OR2gAx9YL%_p4~{lsMVLVy#_|soDk_Y zMkzGJm#k&|=Mjq2Qkm<n~MzpQh3|QLsM*G(i#gzUQKzBMt zFGr0!9~njVaPv8&sa=${9b<+E8I5c z^}vAxapR3QD$pxg_Gdx~CcktT?PslRba;Kqr^=AwaK|On^t*Ot(=1_Z>ne41MS?UD zJ#Y~6@^k-k)Bk+Yrx-qbID%RRD|xP>>O}M#dcR8a@(UV?wD{$yC`&<3ZjPc*Y~8w5 zQ6$8jOstZRR7y%p5otfDbrqp!_&U&3VoU@kPoAtIl~IiBiX2x4BdwzUTTj5LB@gz^ zH{RgqH}Yn~C@ResWMAScC)0`&O@8>^CzWlksd5{wJ(Uow6;(hKB^)hX6`kUbKmNe1 zhaW;eEgjmLt$EQarmjLUBg(`6+*C`LJ&2I^7iFRmj((_XsfGuYDnu!vy0KJ6xC^S| z89(l?z^-g4k?K&w-wd{SfNq?r83;7=#+J=nRHB|Z>~t&wyyPKKI*C3Xt_awczqUos zNV_HNRL$kg?}1Vp!02rJ+8wB+&Vk^)tlcv6o387D=bwF^+#&;lAG;kEcD88dY*^Y$ zAK>}tUN8gRuIu(Lsky~q!Tbq}E~(pG>6zIBM+Cf*U?U(`B3ELnAY8*abLOZ-8*vvi zmDQ_PO__IW_^eqEsbnXO#t!ZteVFu=i?r002-ig; zqasEDRv8quEn-3;u5Y)K_7D>j1Ha%=3hbKJ2?!g5>b+SsOZWnd7cYT_b1-a~81~2` zk8p7FE+gxAnpRcM;uHSJBadS5o_!)gOTbv%&e$QJDg~oP-2wrFKCXVSD>KTgiCwXj zG`szHbI$9y=9+8N``TI~*H`*Sc#IOIme=KVh49dHg9UAKrPLFoHW+Fcsnt>SpnGzcUvs?z^*L%7A6hzVJ_w#IMyCG zBH;b_x=@J~PegdH@A5Kz@(Nj2P-I@QXnuDXWDVw_6vtl1(5wr0gz zloak$)AT*8&sBE1!owAyB#AIT{`jMsg1YIZn^d$>rlY?2auIEb-^OQO98x%t`Wx!X zpdsMW(n-zNr4PBN1JrI^Y`c?MF_WqXHdGQAucou)!Y7tRB7NMe7@*2b(}wQ8Z()3-~kxR)>`tTX6h>Jg|nRt3TkK|VG*M0DriYV zaRr_0uD%XU^?Fp)l&a|b{{8#geNWZONBH;h%P(@j4`EmOr?9qkV!s)I|J`@r{g=Lx zYUH{8GM{hMFx_Kmn^~F^{*l@d>G1$5^?zzS1Mj_SDfpvsPlB{@6Oul>*tH2 zzh=uKfDVl2{%YT29q(W5KRx<837B;yV^U8JZ;QU`0Iz}do6DKi14jhB2M!#dF6vYT zcIB`mBO|eH-8#tB_eB?7qyXp1)&v!aDFJZ;w6t2|msvP_VhP)}+<*W5it1om_Th&g z{w2Z6^w~fCEF)v#!wTqZTauEDJl5`>Sat=ORCA3p{-X(y^@=Ne7mo zTc2x?6tkFsw_j@$t!csQY#W0A-g7@qAZnDs#Ej`PV54(EH@}P2dQNr$NX!2XX_ea* z=ytO5M5N0($Ztx-rwc!&oY=jX^X`Z6Z!pdPBoI*EcI)l<{=4rnm+h#jt3_1LD6Cwy zLM0-$jnF;&+%p&$JpiA7wg~q2_IP#Lv}w2ufzF9P9Mwwso}_B=KhC#+ccJ7mUS+45!T`}_1$ zPcyk}9RgfKn5b5QXCHnJS4_EFanJM)bu^=}q|R=p0?L{SXN1_2(m=6`n2H~9_g(km z+wZ<FG26O}F~=I>AEo%-C9PvP>*FNf`;GhpfHfac0- z>jJCbJjG(Zns7P^A+wP}tU!&cvX_@%Q%k=oE zPz3A>!0Ff?xk)>d!)F4!($)~SVJOZ{Q2_aHNp2#C^~C?4#0&rTJX|gOP^Yhit&=r& zY}&4XS?{RZ$>TL9$XQu=(1B|jqwxn77?3vPWM?6wTO?w3Y=NcD9$`JFP@gkLMVcF% zCCX?(THyxj*Oqa_+z4OCUU22Ce*b>`IYQUK*VV+0HTJHTOK(OwGttL+tZ@PV+i6^p zpI6A}>E{ZxzWLf)YIHw$`dqC4Z9SGQ`VPSj{TSP}Ku&xjrIV&%%l1G1azPY6xI9dy zBUMIb7b;sy5y12`iN+S_(^b^lOA}18LOQ10K8a=&r8p29ry|{-y|`X+!KLp-zgPxQ z@4WL4DIckfI(NgyO&gJ#nhKf45I`Cl8me|JGYS$pmn5{e-gukswnT1SJSrLs(8FmI zdOJn??gtgNtY0Y%rI)0~3%TMOB`TNs(Z%W?4E3dwaM;?9{?qR{GFD}D-AG{B_#+u8a z9*}F6{I*UcY3)R|J=BuJztYpqQy%7G?tx?Nfg=LmNs}f~zU6iN?|=VOR0b2TR_r3z zu3d`}BSxr5?}>7KIyP27&DURljTtj$C>n)WRCWZo9k)3h-iz|Vg1KL|YpOVmNp$jP z7l-FxFh(9XZrrHU6Ry7cYAoUOXkb9URQ%UO(q$?^ zEG>SSno{?5>Wu^0%LsDo;cwp;5d_~g%z90%_#HhxCcw(R1$iYYD62|=yHmH;b{CZG zCzx$PYV|IJIYg`FnWP_FbcVvj+ub@d(zpK~YTx(ko9Ox%Qxd6}&g&z4}8D%bZ!YGPgDcyM_i93QKXrF?_E7 z{>JNXU?AO)R?b?t~+zth~$-o#cZl&#NLakWwU8?iUz##+TQ( z&p-Pdc4|BN+qj4fdq6-Sii(R!YPly`>bn!jqKA0EaV5Y-M+^`&YRr7HWy_ZO-AK!l z2ZRUsI^-E6$*!&k__vb_g{5Hk>iYFs_NLXzsPJ3fWG`Zbzm}&X9qSr+;GzL9AODd@ z9w9}mqj>k-ch4CPXM7ni%0V%+IIzv1KVM|-&S`uZE4V<886i0HwRGuH^y$;*GWNc4 zn{u}AaAX9k%`y>@@e7U@{EdlI#$nOV3om=nd?TFy-47@(B1~@lQdE zdv!2n0nD_R>eYYSxd*RFv1f!lggRV{&x<* zq=}P7CNzuS1_mo76}F7x6oiMHLM3?n2OoTZk7-|u3X!c(fxE_EaQO}&I>IEI%2SZV ziY%g~IV;avAWNf6uCw7V=e)05w-J86gG|=DyM+@R!%jd$3>a%}z}QeTg%Z{>dz1ER zA~)loLC-)3ntg~h*~UelZ@={}T3Qc4Tk9bRwCaqMq!aCMKc1+x<9QydNhi&?V{xc)9naX?q)DGgyhxfCoqc%w2S0 zXXA&&wDoA^_mEI+voLcLML&ZE55(UqpB7nO12!_F{5S=Y8WDi;wEn61I5;^t!$IRp zBwk*W>n$nlbisQRR4@ja zjWO6BZXPJe%oI!!ypCmt87IuPaq~t2j}RZu{P)VsuOd*@mDnK6shC2GyxJ5})3ZR1 zECXpZvBU=4kIr5tvfcIhc*TQ5ZV@ufE(g1r6j1qi`(XXD{W!8U0}ST~4GBZTDfap!=Kwh&F+s@V z%H;|KIdn${_Xmh3%$lGP&PYmKPeGl#G1%pOZLPiOcvb*sL72X%t|=C9inP1~A}e24 ztf9rB+&_^~7K4+8TL`CG0#`>*k+tQ08H>8)*Toc0o<=r__ogF(NWu=lPVPzpoH_Mb zWz6n!W*H(REwT{eQ%WVaUqakDT1YlyxpdR`!166&!`1z6FJ$mQ?I^Rset>+^8p$E}v z)1DTyW8vL;2;S_1k~l=hen*9tN(6We$9pqo+-)6)ceKqa>#EL0U7Ro-Z2 z*PoVajNS6WefQmmAAkHw1iS^5=VTawMqde)%o1glr9x$l+c8(Omp+&mjpjrlE>Gb* z%e+K@oI%3Bk&#ERch6olbH0-b=&WI3W=lHPavEPca*AS5BiJKA7+W`xWKc@svI8BQmauh$6|+`wiWS zcRp5ndOF$4vjezitCO)Ljf8={sNpZ>P=}GGr*CV@{yOz!%VR@Jn#??|@Tj|IouKea{FF&&IP4 z{LouS%59QK9=KgSpw|&gLleF(mEetxjKot&b`sr>j6Cf!t>a_fB!inM!6~wUc z`Ww?I;H|}j4-nKLbEU{+R#q3_@QH85O*5x73Lktl9lLhz0MnrDUVjKIWZ^9HMs`&K zN^9~FU%C&ug_$PGc6^X0o_JgcKQPO!UPUTtHY&94945p`41;7kxpI~1jhJB#RC8H{r-FxKeKxWv-x`IjxPRmW7&mU*IemG0dg9+T z{~|3T6)eGQz^XTFxM0BoETurajLzdo@xMaYqhT9<=y-V4L&R({5M8^3qky0eKA=KE z;;>-jAUVA-<)T^YhJ8w(ufGSlFqBz0T3Pf%N2?)l*839^h{Hv%QO3Np(qet9t|=9> zDq;PfG0vEHwCG1=rPW9y+CV>FKQSZJx@8+Q3v3Q%%du126N}E9^}CUlB@f&d9?-Jz zL=(O)8;k|KB;pQG0SM!$^=Ayi|5W#MD8Baz< zSx+Cw_JRwxYuB#E^(^zu!U>+TKsahG1b#QWG6oh_Dln5lU|^tVyMP1@m~!j4-~JGv zhYlTvp+koVh6fIGKm71R;skbrpS%qUYBP|bjf0PEdl7V{l^(&*KmUAQ(s5R_WBeh1 z+1U)o10eA*i7Rfe*vY}gXNaJjY^C(BpTP2O3^{2DlO`Phv$ z9)C$m3GNwjFLCvf#IwC6X1w@~pxtY19}U~Fkieu#QxOz8n(*rm$j^;Ndde1@j9!G$ z){lwi=_%V$RhdUrXbX($Y_Ab(#JsQPLsex-Szj6Ddk^650e1`O%zOg*O zg_f-??}X~iHSMWthEi=lL6bs}nwEObV7cJ5f|yiJWo$qz!mFE+a$sJ`Ddd)%gtbjw zfoc7n^fEn^7DZI>8ZCm{I-pQ@@m-BAJB*L$yS!w{5|Up}s=u4GEP3FT_JFOD3W{}S zLl`a9SQJ)Ynfjuw(uN>`N>hJbLTQa>J=u7sh4l!yxc|HFzBBDZ`gB8i;Oy0MLk;Wp z8O*{(KM77*GrC#U=t$X%Zhi(MJ*jh4xH@(01V3FEg@YcVnIqw3<75Z%?c6yg!6$EI zd@R4tXW7{~P;1>#Bhw&J6Ny&NgJ8)&AY^vt?xeQ%ESQIxv!drSUteDl5cAEO@yIW| z_!3SXO+r9TC-^J$NYkDm;KE_SpZxEVXz|XN-g0?~G1%pPIY=;*si4p+>Vn-f2jjLG zGMeJI^h9ZO7D8-$iY=!o`&?3z^PjSy%uBp^%O=d8Jx7fD zY$H5d^%vdcoZ5rxvV6p5mJ0cB4{GC8Qdb-*qlcvC`gS-X+er$Bdcl^%ctXh}58MtO zXz3V6vm~Syf5xh6tFbwCkKyBGy*INDf~%D&!_TE44Tb}-y6I0p{UpS(4BYpIZPNRV z#m~lq-_I4;yX2Du(4;wQlW3bEnni0!Db#*O9j~*>DM-ACB7`yZ!skx=5 zrxG1nHMVWrM$*A6;i?JXgshm3^)YJ!bDfQ#MhgiEfl5g?b&Zl#;>rk8pfO4$vkY*x zzKk-QigSitsV{-MGK^pXXN4r1*@h#c@NWUzIA@1?EBL9KvtEpM9y)aBIZy;vQG5Bt zR}ktr7%GJoN-VR8tGKhE8mphRuGi%S7d0I86EjAAQz&eSKl()ylz4)CSuL`*=Mxv1 zGG#LTjVIUNRa(BuJivvDr>l=3$fBbdd9|(rxwT33KzRP2R~A3H>(0BdZNm<uW{ZvM zw~8s$sHiAoZ_Fye#az16mT0Z%gD_$iV6`-!x~MJH;<*_ zEPos+TZh7$O!0~;Uk_{I{bh^8LBcC)=v70x;f=5~vloyJJF~Mq!AuRt_~na9%5tHZ zpRYeYduI;je6Uai-7AOzqP}sk>#rsXHwt#y)RfisQn$uz@{_?Bvm59iB(iZ#*~UR~ zPR`lj+t6<4kReD*V)#X!F^yDu>JG}}=`d^7Ea7YZQIuc`1`pj@@6+FV8-?0T#8mD; zvgR0$Rc@mblo7?)(-%C^rOW<=MplWF*oADX6R5Dyh7*0a-TeBZZLb&M;nM@I9-ZiO z4;(yrNc6*uDw!22D59cKgQe29hS^s#l6J#D3uxFTy-Oarl|8_eWKH?Hl0TvxPj=#H08tvdk2&{bAkUm zOu=T)9z7`#E5z}{weYlRgM^}82=g2c8w(fF)rpLMsZDQE3o8&1hKC;-MPP~mqSdN{ zR9F+*HV|!)sZYjf{ZZ=M5^A{<@^ooL=XHwM6LyP!KArgq1&i4vvayIl0U462A}Nz? zP8_7R=+(OiM%+6bQzlOp1!Np7m@8~hqvfI=YE2YnY&;blTe=(JUAvtF^$-o{Kdn{^ zZ*Ok|SayK3!iRT<+Qyx@qQ~I)i5U11gn+G_vSrpp_he#J@oNZZS%ji{x9-HJprThD zd+yM|LxtaXpU5MT;0FN?Mgju-NB|@SvB%~UoFN2xImhAX$1m3!b~nM>}qckkW;0x|lLM^Ttxfbm1ekuurG zCZY^QMMXj#jd8w;Y71h{Jq~li6#5b;u9EPAY@D$S)px_bJqM7JpGC!OzvIpSy#+^` zAY-u0?Ls^TA>#BxF`dfT*IiVF%F1B%ji*`VG6iKwTOqFG0A)={zSrLu(SJu9GtV5X zs%_O&yk<#L{8eypvd0fU{vh~l4MllOwtwG!_tPY8-9IapHA<=}TUvP>8C54a^aaZ^ z|GjEu{ll9q^EIkcs^F}mVE2q!QU=-C+>@9ob{PZS(G-w;HuFogaUCgI)o81bQhW%% z{CWt}o}DIw3N<06eGp1W>H;dYJ0Xhj)D-F$k#q)QeQhl5;iwEki8f92@zqzK2?)ii zRsY~nR03T5d%;TW4v)Z|h}k&@&gxKtSByYx>~Z7w#V|(c{pR+-OE0~Ir=NaW2(Z}M z*@4+T8e<&j8tjYDXVUdC48iRlg@v^Xa?=kXJ2jHz)wda%2<8-?DOj^+4HZBxBsLHQ zh7TJeW>AccuF}HZy?Zf_;1vAbeQNx8u++R{k_T=S4{)%{(!xz;^f-A@V@dc!hYpDu zME;Hp7%wJ<#ZYx45`iOl6mrmcrlPUre_%ri_E$RjXEsAo!Y&{5C#V zKtKTY?A;><2rVS~?8C?oCnf z_VPhWaw<`l)hT)Lh&aG>p2!hM`F|J zYH=cCHG1{xZIp}d)UgX?P;CY6SQ2H9V`O__O+{}OW_Cy_+Aj*&Mm;==?vZCNErwUD zTfYwe)oo}b3L1|LUbW4UdOBUS7YC#NxOh)(V{Z(0dA)~aC{SxAwlxfPc^YZx;9+Rf zx-C(R#lg?}UO3wKqrDV3PB=;~9;&6l_e8}Gf^$^ht=HcHU$b4ibQROjc{#a4CfT9J z86onnaFY{%s@x4Sf;Lc2m=7;ZOQ>QC5{0O5{JBa~f}=UBP*s)(vuZP}qK6GGTJY*P z3_*RyqSZaGQs$k$GjSVHQIszJ4z;x!BQ06|{-kBe1MGnzga_wrQ4PTzjzmVB!@R<6 zHg4RA@GjlZBBUi|%y^$yT~#Y6C=kJ}A3aRl(M*P2n>O&DJO$6wOkP%2)>S>0)S2Xg zEA;?pcboFn*m1EEsTAxs)?3%NU86I+hYugd$f2^Pg0i{Al##5%;j#zvND!E5$4=Djftg-Oxm~TO z4!`q`yNnD5TnV0onA*LXfFuPQz7HpU-E z9E=p_(YobR#$8*4jzi4J9}%b7De%8lBz^2FYXQe{FG|MlN7TU>dL0w$Zwi>fLFO(X z9^3&38>Ll6(3z8es`Vl`=gck#_pQ-G9D@ZSSRR;MC<0|$nIk_{AfBkj^xjTTdo(kS zrP*CiA$Hvyq8-yvHr<>u&^E@02V)~?LGnN&J+O4?QX#SJFKbIzu07s<`z>tQyoF{J zwluPbOE=@9PgmmeRym)2=u=W%h7HMSpFVy1yt3Mt?p10bdEn}L;Ce$EuI|}Lyi&FQ5QE)h&>GDwVK@Z;9!9#xwFO z4iPk>6dFsFz`>>$B@6CC!vLJ=2J7hPfYW6MMc~QnPnK*)aajRThIKMD6YreeJ#g>< zfeHv#V0Sja)Vu#Rfq>QdP1+G2m)r&wGeiXV=A)I!< zkV&p4spJUlS_~UH9R2R4W5f#(JQtstON2_#i^%J;Y3ejobkpm4k8ga5Oe; z+SJ%?F4>NM>r1k;p{3&)Oh>bOnN*SPPC>6^k_T=C57d$reN(<}gmaX}aCJS<=nOCa z(2g8A63nT})76{_<3M-z?Ad~6l;!m#yLKM9Z{)q0GkY%46ve_$<%aaKV?vsjDaL}G z`oP1sC64E;B~D!h9333-+#}B+o-nSA6Xd^JeaJz>QFB3?;Q?mI;31UZU4wSE10lDN zBld6%9=Pv8tlzj!?8brT+`02$URy`+W#~&*p~Tmp&lWHVmRrmsh6V*Gq?IuSxOfKz zjB@PRy~hZr;OmJoQI3`##JgLBL)FU#{Gna@cG$in(a^2&U9>0i{u+&z0`nA_0xmxj z=mI6BNg~MPj5Uvsv$$1y+D^cP;4?D5+z}U~l~6$%W1C}iJHbVHZ%um(@6C8mT;J@Y zTxA+mMA2rhvxbJ~#_|=J#JQ`)oUiBM*-6hE$HNPD1cOM<*oORsLvRYJ3(!;cFC$-@ z5qm^AJ|so12@@um>?3`+bv=-gk%3P?`4mM(#TY(fnE3r{c(y4iDMG0!I5_x%%p-<< zIJ;{mS0S=K%)a*u8yBEV+P)N=N(ar&Td%0 ze!Zx|=K_buRwdtB?z?_x^BF0qEm^V{nRzi3^u{1i-kt(83o5VLi_DT}8knBc%jEFa zwuC09Qt-jLs#~J4;&-Yf{eW)1_YlLz_o5(%iS2*-aS@T*TjT9_-XzR!FL7dw*W+Nf zlX|#u%HP+l9S-i_C8|?7>&ii4NV5=Rok$WKySyWF=`vn8tg;JXVT(k6fj)!bU>7X< zb#iEdgyerrg6^-r`U+MmTLhVhgOad>&7wYPQYm1q5v2QK$9n&95#10HlvuHBB?Y&& zh(10aUY@m-5M-m?X-SK>hzB^34GIc|yIo8A9$FF|-$Fca|AYAC(~pfo3jDh%q%Pk2VMeZMF;F9V#phqpjLcgIvI!Tn3yGx%P(WPP%@tjdRCw|~70aFH zaCqx~|3ll>t?>!bF7b@d3{sMM{PD-n*Hl_3dEmNuKu6NQy6af9c3n7#W`0jbKrd=m_|dB_B0*Xu)6wckByJRQng`<913JFpW2`d{9xO#R%PUaz$6LUeozRW7H70tbdkf1{?;xpEh z9{7Ab_0$BS&x%F&EtHZAH_)BW@kXU(;vYck{BK-Eg{d2F^!IbSBoRa z%+4^`*YJVQ-`mTZc!Udt7=@Db(6vM_#{q~EYnFu79ACYB@YbiK3BV{Zf%T_4Y z79y)UUbLG}=RASVnKQy1C_BkK;jH%|0K8DqN9(( z(!z=|%_Xq1wxvEaxclxw`0A@K;P3Bm9LMD>F!huqQ+a-mF^q}}tJps`YO#oojV;_P zJHp92097?5h|Ae19;`IA<)pgT8iR;YW#*@!!pc7o)`3CD-L_erYy$B=H&ps#_!9rd zwsRatvfT7ENX9?gkp-&+8_A@JlQDPRw_?5FKk520c;ei54&bv1vcbR44GUqj@*jUD;?e?_uDsiI$W%5FWF9NaPxSe(HUMo zC1z+~brJpn<{w;UXW$nb%eOXbW{Ra08>Ii5%me&mWTr4P33mBljHOl3KSM^7*Vz)8 z7H53}Lhr@Ns0FZ9`@q`0vj}#*UAjYU?aj^5I^Ypv8h9R~Mm;PtQC2pV$SF7tSMvZ= zYD*DYzMJ@HJHook9)*dS@bK_NLPER{Y?wK7CT4vx3(d40j1*qX%D`+7tU6{8kl^D~ zROQ0K)=3cWKRNzMQi{q#puQC}6tEsE-Hc||;iR`#1$U1NV+J|c$;r(@baXUPlARL4 zKL-m9siF9xjJb(f^PFcX+Ng(!jI|@twJBwmkhzrLzWeXvVSz;i?3K<4sA)qv>UiQ} zAYaPNU_}Lg_03#vjr_cP5(3yMaLNpy;J*idNBAbncx1_LUk`9l?&#!C*S-eP8O!10 z)D7XD7bu?W4FF>@Zo6ZYz%gJ8_zn}DqT^l zs6^{Fb^X@gM_QIVaI1SjM&%Oxl1%bIV?EI5fHxu{LKGNrR*i4w4WIlt*p&j_#=8CL zv}3+mf4>0aCuP7%UPpA#62W=;G%;PzQ}s+q#>P|loXS6Okk0lU{8fSsm}vo=*0%ZI_q#6Qu@?;e6N5M@~WZz344uBj9OZ$e@M@jKil+A$JV zMOfQYJGwUz>##sb@UCcN`#u!~+!ZvfTz?QE`LuOShuW1on<~>TTe8o*)8q;$KY_%&+r_2zloO|i9b6rKF(wvf8gI+xk5%znp~)r zb<8U@H2YDcNhhp+3sQTUg+YS`8KDyAbReyeJa8*|fH1t^mt>L$8tH*XBfjU%nIqJt zcq)tF*_nqp#T$TBLVHE-TrKo;Ja`6{e!EzjYj zWr~eZ>P&Pm&2PCK5DeG&rUtWwSP(ByF5S{aGXGMp*>~ ziR(8|saIWqX&96Z1-+2#1Z>7oJZISUU)~vKUMVjSU6j`rA+h2RLY3XnMtKLl?!=2P zy$FR;j#A59(S}5l1>V;U0W=&14(9!Z)beP=6mLLC^H5S{`vqR5p=e&-nKbOWih@9v zij_?Azz;vn$BFFKBIxC!MH8cfO`h?n%1Ad^T^@f5ty`X(t!3=@U(1&wws<=-Do!G& zG66>lR@1D5BeKilkeOaAU=Uo4Dw*Vg+rTf7B&qI-UG5l!iG|06tf?e;Rsd#f_TPC6F$hIU4+M7fwvM9T$ zAZ7!mG&^f0B}u5PCc)g|lQ@~W3@cZzG{Ls<-<)L>N8B?4S;{)hEAP#eUMyQ|t8$?r z)(O5=ZSnGpufR{!T5$5pYm_28#mZ3e32{QHPe(!!<=PB%?AnSjj5D!w2VsEad5D(p z!*SUGK>=1o0W)V|nI7qKjrpQ??ARfskQ?qhdh}>ms#Q2xv{FbF`zcz(LS`eHalv1( zStq06 z^6{q)4=a7X4Lxx0z4waQ3$INAmwz_ky-gK~)H+8vLO+&GH^NhW#Vw(tNK ztQoSrP4RwN)lIjB$8Y+RY>;}m@cD4%{@S%`@!D&zUAU37<+^x)F{%VJg|A&#sLbl< z!77Q`ORKMjt(6-UV?9YlRCf#9wc6GWC!>Ex^OmEj@XQ8D@vEV!E=HkNLzvktDgshs z+}Lqgvu=&Jd4BrwOd$?2cH9_I7_)GZC8||>pw_rjSeizn6U6(g^bphjW)w6sepn3> zVjydQZrHVLm*5Cx+Pa8{LxSOhSrAx^A}q8e7}ntK-2+Z8tx#H=f}@FR#lAhe^%jMH zjV&r+sLh>s^v8+gaWFHZKtDGbE>5nnprXD>Qzr?g28J~xrzGKj|9cbP5~Z8G-1K>m z@x~l5R905v1ELT+d?*q_yn7)iIEYlQqTuH4iZ|YPLlnF4{$}*AzA@`VX|d_UME&j3 z^6lk;jvYH9Hm**EvSrJbsL&_T^;LyVojVZw$!bwJ)#r{oP!bi1Hlbnoh49~u1;3Ep zL2ZkQ3gP7Fgl6soU~la!nmSmI$1!?PO;69IYv1&myii}#ddUMfy$2Y-D`9wV`ak2f zJb_04I&#Kh;lhP@_~D1a*@lLh-kv>s!pFzwT8>>h))@~lTgLS1Z;L5;KZkG>Ri>h( zDvQv&W+*Jq6?j~3%2`upBKZ32IXHQ2k-*W~ItQXfpJ#A<`!_HzbwPl>0|k6#qOw*& zcw0YRE9ysq@jJ&O^6(KsQN-|;)vH$%93hb)5_vdMxQ2drYQ<>$D9q(RxR%0ahC7&R zt#RbY5g2%yd3u(y#~~r1f)T;dxfMLTyNi9DTwBq)O5|o8Msm7b1eQ#VcBxD+R|8L- z`ZOG^gAnL4RP<#@1Z~N=dx$E{k0_SjrXcr!Sg~S-n5FpOgZC-p-2+UurZb}bG0q;%u zXS<$*ZgjvqYt}5PET$=Mdj0w5pXZF3*GU2IIc~XTE1rMhd3^irTqGqPHU^&zIjE)p za>A1nFk-|AakKs8laKM$*WbWBxEEagx`^>*C+?xltRqd@x1^{Tu+rC2oQ3JS8!@{b zFaV1eEy4IFpAePgoNeN)mA||lN%Oj)T3>-^9bpV*r(tek4{MShj>|nHAQXIKuWy`< z<;rslDw4Bv2&%t{aKfG_%s&BVx6X9)uD~m=yov=2ellrOSXhX+-+CJv>6ysN&cvR* zd&G7>=bpxP&bA>)%R7V;f+sl1y^yO*!N_|@BI0la7zV;cJ|BMg5oK&&hqqGzJtXAe z+I&3w__JVoJjo;vH1q&dJn>A-)i66d zdz4ht>`J|$mxEn~oHZ;az8c4q`j9+uBYHqakOqE9CV8N-9x$ELy~tji)nop`3%%~Y z-?ZZRB3((Fn!p2`<(WO_8(dU zpMI1G@AHwD5Azi_72Ud;HEBE6`j(5r{f4eZ0m)z z4;Z?9APfT%3SqEC0eQ5}1%o@&J2)3&{M4W0&Q)`8zj~ejnd{`)!edZLEiw^@I}* z27Yn={=E3&i(>b<%=O4FK8})#3>;1Qlh{?%#0j0#*si5^k_T>n4{(N8+k`I(!+Y~z zBMr`=(E)FR{lrJ+;=N4Wit}|Nt-DGdm_B_vg{W%yQvk?#QZA$lCC*%WOre`$mhmV| zAIDGuS4#pP9Q{Kmv}J?jc&T!njiC@6^i~j=nZZ~|EV;0b6raTz^79G=eVAc8zgNl1 z;OW)NxQeUOy}Wy4(W0N>?dgL+zaSwp@$0X@lH9QqWqA__5>bUC`@bL|j0nWV{EFI| z3gi)_p@xp`7S@Lf+^oeud3kxF-$x#P1g?5tcv7(G2saw3lG;|&n2EM2KLH6@n-G=s z8%nD(;jIWYj>U|W);#6SjRCu11Iws#_B$mi8y)lm&=z;#H*da4JL$vi>w%=CB%v;-_vr*!*g$UQfL+BE_;SG_5&SZb z`K9cYS6@Sa5-<6D-k*4C($nH0(bLllzc1ZM1*Qskx^_cxRR+?FkHE>HB|KciNt{A` zscxn1k_T=b4{&z3DPOmar=&AE$!Hx=G4r4ts^%OLcA{z(E$FWD?aSMss z>@d-cJ^93wVEiFxth66+=e(>RaG(>Aw-!#>^ShsF1TnYn;zN;&NCb|o} zZB3aC%t!~lMpG)9SCm8vnvUZH*Hh zNlRgFCH=2OCKAzF(GNk24(Mn$2r?}_n$vh{sA#XgRp^V+HN0#6RU&)lM1_5RI^yT0 ze@Y7DgQ`0cCi-k9xc&}&d{^^k^;f}8;YG!ACr#E#A8ri~FylwxJMKig4xMP0)7i`lw$>xjYR69n`a569p>Xx4W! zWO5}bB=&%tS6_Jh--V2v{qS__hLFJfVQ1@)r1TB=lw^w~lRR+Sc))<+ZL0U%#*w$r zi8eamUA1Zz#*G^%xKVjp`H3f<02gCC_Sj>XIB}v-y1ISbc4M9?XDYLiO1as(0x}+D zCS`6JR`B@akMlZq`3Ns2jX-vscf8*$yk14ROg0*WitlzLn6#jU4dLUnx zj$_!1I5`LAweXgO3b|nJpRJjKpd9q@AE(_fu*JMCLwgEE`fQ=L#-9zwj1kr{)6AF| z1-<1JW#V{-cKpuRVYQtt(UxV`UrhoQr-{iS&}5zT;pX=Mv(ogVVE0t59SWR6>Dqr4 zcMlqT(Gz1zzc?yHlaT^qWf9Gy^fzs9-L4bKaUVFR4}M_eKzHfVrS$p>9-;l{yHF=1 z%#B&4kPAH7tZdv79CklWB>aYBr+z?2-a0H>whV3CwiVl@|0ECG79MEI>~15m!Auo6 zY0@N&9XnRASn)kovK!X}jShG@qx;M=&*1szpU0LhTZB~Wym|8keG?Y}aVA8v>+6Ac z-+h;qzua*I+bQggr%*Lg1i-Oz=g&SW6bcL*Ivg?SE5yK==E&OI85K486qd3SG0+Bm z2_|8Or>8taT%R^rvUmx+b#+jIwzSP2E+{AH1LI>mS`0*URTnC3TtYNnv*7Mljc#4L zQTS*n`ZD~-a0{)jjxSUpR}qh|2L;DDqH5j7zcu^^J%ONMlVRl^fYTAnkef)E=xVK? zY-$$L4B7fr_&Rn$8~1zQW)(t^hAKnX;=P7&%oIQ1%dfsbbj?;Au3Zbq5OX9aCkwT; z`i+@ABCR5UdMG!p&Y&E(LT--Eox=sA1aDwiMu1-+{#m{jIi<;n%KsN7njBJUBVN?< z1QMZGV%%R^xcNN5Fas71`Qe8j#4Hx$WtqjpchET4`i0T8=!fQ`U&n!nNI|pL@C^Az z*ST9bo_z5+6xo?0Gh!`ji0!13sK)A>CWlx@8puv_0wJh*2<{#I7{*cIi^iu59i6U}fzGRXtC zqz9TRvuo)05>8{zcTW5b95_$}yf44}vf!}4#BS2&>*#?-vovt_Ej&D243#qys)J;sxok&0)ZeHLritb>n3AeQ{H1VKSTqS)|!f1jThFN7Nf z$q`A5U}nf->}g+!9iZf z77?#K1Sgf7C=g;!T@LKIP>ze|8vac}Lqn<9Zw{tRnM|2pM*>J_pd%UAR;?ydu&`E; z{WCY}xN(o6jr|~)Q~2-hK)B<=)iCqOM|YAm{_@L>0%zQ?Z{vwv!GeH@NZEq(dX9a= z#{RwRx8x_v9N zQ<1iAF^;YK9Kk)tk*u(SW;)7|aAGL}L++(QI0s~>Z>O1*LcH+83&!i3XW=G1H3@;? zW1*s8xG*gW0f9kCNlwDmP%Py0{`>D$f-dltS6&AH?%#}N@V)dMyYOG{YTUyNe!lQg z{^J(T!ZxL}@Fj}YHf-1c4sw|tg^d$}KmGKR@!|77o}ILN6L_G}0WV9;GWRNHJ$U-e zz{+s+=uwgJ{qoB%n_zg2?~)6tnCj|AF#e)5*KCu2;V*Eq@4fdP_+_w5`6VSK8C(%Q zdGZv36%-&*A4S1#bK-6A7TDbuw*6pjR+sU$SB^k5N$Uopy(k!q(eI?(t_}*F5~bP# zl*I0D2EwjQJF#4FU>^$h>_+a99dK#a z8|7Ka$k@3YDo1C0J$D|yB=&?c5?w4-^^|n8!}`FQFJAX;dX4_ z3Gq=$aMF8Q& z_&?_EtqXWvi7+jI;1YI-l^=qwMN)Xb%SGC)kiLQP4JI0 zbMpFHwuPHT9Vf7p(hCXk%TcSV#?YZdv2w*K>YuU+^^A`vqg73H&GD3aQ}tc%G;Yd8 z{+n^YXlrXLXymTsB+>|KF!u2$uy5Z!%Gz2|7M8BcGr=zR=h!72B@_%79N!Ba;mC_( z55a5XSXj8%%`9a6wE)jN_Z_b&{IJdb;Tn%CH5M7-S+%CJsN@tB(|68bwe)wT+{+c& zNt#_u&dD>`_qhQkA20ghx8HsfGe41$kr!FEE}16#LmA^e{m;>`C$SFJ;NZJ{y4%TMfiHOX+2d5FU(h}VFb z656zAh2491o%hf@GvJM8lrgS*`mG?4M6F&cuBTbEzQTR?-6z;ScJJISg1q##^Taf6 zZB+%FDd_gswif+n61FxucPIRux+6Mg6=8qfP)0af2bDK$%p7sLA__SwTM8WHSohaD z!L57V0o7ZXn3xC$wKLolb-^xgQY&2rRok5Jz7~ptPmCXjA<(CTY(s&qF# zoVv7LPtxMG_5kBknKh=OqC!y185GPeHIA~fGI6~*b?yz3=3AKd@=I`g<`D{>tx>q+Ao33$#nYR18ryX2 z)EU;no#5QEN8LL5E>+75QBzQe^!0>|AN&|y_h!gFv>6rYiE!&V4B0zZp-tZxDAQK= zQ|%GlAIZo6#Kw&q(Z7FxW8b_mWXMqbyWwB>b$(c^ucbgeGj=-$fBUvcyUY2ob?a8F zS+g4L+B|C%xJmyMs`diU-v0^nbM`Q;i6S31PC z@Bn9~Ij}u^G=d28N8)(tR+{EdMsZCxB8pZ~e%6&lCL9HC?9ZjJT@Jr1bWV5!O?`KWX{ecpxb$3C%-8FlX~(EQtJDFcd6b zvAj_Sf01UV?8Dl@zGF|AS(CDI=?;jH3-hOBLIe25^4vkpg1c#?bXOl5FJGY}E(mcY**IYN)RwITkHMzw-z_jsA`D%>& z-g)O8uqYQ7?X&WzWH+`4On=22j5Q-815C8f#(z)_gc|Pg(}SbB88q5bk`R84j`fG=f{W}JpJ`@B(`j{avaxF`YfBVWou=YAF9EM` zF%K|qV|q1vg%1`jT-0cZU&dUq9Po-i{)LaCoq$Hflx;#lK%g<;zc_Yb+#%Ffmcl9^06t?!BX!YYdc*^&^D>dQbr}>S z%EH%YX5ub*1ojmBlozEVKRaF&rXD;Lfxdlu3(7%079W!z7?~HH6$EQ)1|l^zm9E{_ z!8hhBnSpb0aY0ROt~j>gze<8N=xK(AkHd<3`KL!<1l}dG0haq)#^*nIVfR}%4`G+(nCPr|O@*lKez{?mP zrYhqsm}Ix62bjaRK94VFed6Qe;pgXP5)|^;Gxb*#6%O!?vRk)q!Xf-)a60KUIDoFK zs3wKCt|pGMP&y(v$MmLp7bJ-w{*gjAJvH zx3@R=CE4}$0OOmj>}-s|E|12_%N~wlUN~^zz$F9TJNxy;=J!7o!K>j+ayP9&j~+b; zE3QXu+$lJ#Eim=lZ!u-^WKop+>Bk@Asi&So>Ao$fC5-;mr=P)>pMPf9o!CR>WB$Sg z^pIwT*Isy$B(XQ+mtTGrzn>E)PQXVWen`b}4`CraJo*s(h_<>?1iQ_fjY8a?zrn)E z9de}w1(LN`_0K;dxxnA0v11>jVRNb!ztrc$Oa8Lt7fhKn6?Q5oq!uQkL;H?6Nbm%H zXyR*!X9M1*Y2UAAeGj$u*&m7cv^5w%^&{iZIlJ4lCug)|0v~)xzYgXyYhs|O#_zxV zE`miKtKXz)bz+N$P&T8{Q2ME9||_cJ^ln%{<9iI1-SyYz&HJS@4eSJK560ldVn87 zG!<3QR#Bms10yd!z-r1$1XGD~x2~wM zwZ`%2D2$}PdCz{ma4PLIES+sccX#){3o1)<*b@r_7eDc}Jz>&B{P5j;cs=#7fJEFo z@;;a;Ez!K&loXkN9*`_rWu)KSG=JfXb?_n%v$!47N%SqEAbv0!_jc|MRyP zTIX%Qp!r*uA;_xYu&DOi}bGP5Jwkw}V?z z2s&aQqNAemzc=1A8OA%)-+{TM4w0w6M^-@uPG_$oYNO_)V)dG6w|)C|cu=7bvmme} za;PF4eln_7*H^*axtR!>ITOd(S+%zw7L*k`U3v&7i?-7gupI5>1E3%#3EqG1H$Ncp zU>UajeNY5Kh94--J|~?jgTM1|1UQd?i(Lzv3hzREx?f`W@Zp5B9E?hh4py$d*czKH zSV+8le9yu8nw*&Q;hK4XGnvzfHRjlxt5KOn^1VeBIQ+t2qTrE*L@s3vIfywH4W5#G zvR6kuI&`4e#qa6KQ1|W$r-$x`L#K`iY1slv1i=aYa3K6%=!uqZ+)WwPmH6|IrI_*Y z2ZEh|XTLbu4SN3tSO)qCI0OR=TlRe#N^@%pR@Lxn_mEI3WSBuNWm#SN4Iun*SHh0x zQJ`Bu{iuj7z>{V)iYQY{)PD59$H8u^@M*AfYKEd*Qf?zGuf1mrW3bBut|-o=A~zL$ zeD4-TY|LE2vv5p^@2zfcQX%hV87kIa$~WiR&VE|4dF+{mt%bY?0_1JPPt+;hA<7KbpoRTFI9m9?+qyk` zZQJ9qv5%7~RVEeN=-^4yvj+2X>xKNha=h`s>F{cCHwx3EVeae>p8=1;xot0@u$7&c zk6yj|7zwvCQ$ z+a24sZKGq`wr!_l+fF)8?mpib_b=?)^;Xqd^O@^pKtgS%P+cei(zVLX0p=DQGYOyH?|{<87Notc6;smq%{nbz4zOiaF~^>pA}4Y?(4Yh$gr2~Y}ESwM{ z0@C6ZRd40|Ko)^(TOb*rE!+PFv`^+V8KLYyl<>M*+hb~Kpd<)xf2n0x$MNfwmmdRk zZ73Y(W)63b@ZlSc_@-)}QBR$=eYoUQMW44&A?t;z%o=Y+DLohcrM7<9hUR=fCS7ksRi&v1zjjNm0s_#|qV$?wyH zP7^EAwz)4Zimht$vHVqzw6SlXhEQC6l0aDRY9zA8`RtWN^LIzSTvyqDY{k`t{yvI0 zu#1JeD*7pr-(!4G6G!~r4V{9G{dsWVq^c0L)(;+I%e2n{;6xX-enQ!$w!5u@C#8Pi zJKJhtB_SbYSPpI0eGps%xIsBICc8Gvg&cp9wv`E9=dks9-T@&)^KBJSJ&}GCr663@fhaUz|!vq*2VGJK@ciTeV%WH@vXN5n3M=QvBVj2-ZdD`vARyT30)j18TV2!*R9Y7LaSEQuH!A zc#cY&=<&%2 zhxeCNjMuVF80g2{+rSy8ya6}%t|yooxjZp5t@i@RwAwUClaw}#$<=3W#`AW$)4(6R zJNE7Q;#_+QL_m2-1;RzZsDZGo`enb}2~yAJ*prD|YxrAoQXRRE+7LG!9$$Wh(KXQ8 zjKUD4=2K2y#r9e*V@J3ljymW0sa2fCiI__ zoT;rAl;e!Df@M`=#>}9SVT(**22{nU_c4G<#Rjo{%lr{zMijZ2ydi3>IUkOKX8|%5NS>A}5J&gVxHK1yZ-tFq;Af?YOFg0ZK&=2Ty~zAlDP&Srd|~jj z0q1(>-b|Z*K@hP_3OZRd17EP^#>N7Gr>9S7Jw_y}O^;n%k{Dqht3KfQBB3f9xBBrU_d* zGAFgau2aM?>8BG2J{zV>kViA#YEyaPp>F!%OTwHHXJZzz*=UCb%vTEx~Ne7z3V1 zh=yOm^ytjJqJ<-n9CrFv@3ag9f=zyaMk2O{8+v`$Y5|@j42ror`r@2hTcVZ(`JD{O z*+pwVh$+`7=@$LJ^=l9~d*;UO zYnZ43A!cVrdjLTgmjc{cJjnRR7(XmK>$f6tNfONLD5^;~^obg7VdD41ZTSopMt#KA zmPxucr=r2O2G}3E@BV>fh@?Z^*O|1}aG1kiPe^B6@5EHs_z7*+q`Z*4a6d|ODDDnS zks^O1ZYM|z>1YMeVe393H>$+}n7E-3?-_*3;)~SzQAFh=%)r}JiiM4e)Ta@aX=Hre zE7*j0s&aNU@t>BjavDC^iHVpEAZuI&FVFtX7lsrJjeJiBs+F29m#|dNvei0$#yw#i zQ+PfmH%fo2MBUsFK&yC_iT7Ohp`Yy~Ab>T3j?vt!?psFsPVZ5`GMP{j#v^NMr0o{C zeNBeEiODel&kQ8Gyt)~UgrZe+)1<6H#8aN+s?r82ptCTaWl$SXNXnu3VE;@=P9_~@ zMELXtTlbc3@L6}_R8(Yk{s))nszOcWtgS7$Ue~0evfK${@$^S>iC_pIg&BTgy3A|x zTAe^;9zIA2?AT300*}pEbrxjK7>3;1x&S#2Gfv>&Z6^Rc6~lAt*lhTwm5>RoS>_KS zpy2Q&U5wF=8t->EV+d9%A0@@EWSJ%|UC|Ow7J?C@%b0@48+U&~^i)7uVFZIqdxH8a z7=><%#if7a92^{YU>as?5lDVLwwQ}oBVnjAX{e||-4+}g-0Z=GPJ%G#ek^&}AGGIy zxVyU_+^C_{WWYG#NYLy4{Dw(^AN^8Iw8}gT(DQg+)&M8RiI%JXk`sCc#Fia3Jghyu z9TMn7K2r%3dQdmvw3X1-k1v zhEFwbny(|VUeB6ZT4HJ3Nt~wk=U{I@r2S{$qhFJ!jVIn-2B>7RO;)Ssez5*G%u~S-09YE2+`&J5iH9MTh!xT%|o!4(wJ>Lq53vM>a1M}799bRhCB8)uIbG{Vi zwh+jL>7t2J5*oM>Ja9N!4}5Q2U}tCNly+LdGoXR;&TTnBM6=h7?RY%df1ESJ!5_&! zl!jcgmKT?WsLmb@qIixyZu5S*k*kIm*<*WPKDc%jyy=Y{rPz=rS%~HbVjWDVioo>X zo-ouXE+e_`s#DC!fT6$tccT1{-T0i);R+X_j*<}V9))%63 za;p5~_>@u@G$br=exrN^RZ_~5F{Dp* z#`FCHoUSLuidLEm|3<{c#nahcVa_u!odwmMy5tJLd8 zwGQI#cRTQVtP}}fyEHO$qXy5QsC5497Hn;DM7V1+M3GyIH`@OI*WWNhLEOL(TYU%> zAvL{gr%Tagu^|CYe&z2`40SWO# z7!lY_&D>niG@SKxcJHJF3ZxH4^P-b#;Km+5+r*C(w;eLN_Y=n1tPeWtgpZ0AJ@&Tu zdDsgOm~=HnoBSn3+A;}--3fhUQbNv|*v+FopUdTqBbWJ$IC_<)wUupM$k{oA^rJkMwI(}Gq{ zYZ$-SP8sam3XK2#l{93lCpMn{4GKN#;CI&;X$(t!*d2=xf|ISWlA?MOC}z52YTQ7r zd7mZIvjsvEgzX+06NpOL44^PN?AhiVC`QXgF_!_js%(rR(Y5BuEQM{NhM?oh~YSv%7 zYQc$+3nqf7kF~}HZRcsJZ2K;Mut4i^TH~3{?Mk!wf+seMT_}jO>+?CjuPKJN+qX!e z;HO)zWU+}sB14M1Lm*;kb3_p~zqkk>pT706Sgk|sgO&_eSoJ5fshgho(7qtQVB)04}u zvCrqfZ~T-!LLIx$nd=*!SfVtvFq6fuR3ON_H`wdwjHJQ|QPl(9P`*V+NS1V13W=WmMJ&J)tign2!BdgvXpMqMj}>oYm{OKL7LAYX zT;NfBR5wu`r&EZ_8%fCzLEndq@Ng_%!q2Plw_Y_7IS#cDSn&f491{7E$6_~$nRn;~*bs8$dm8jni?vk;FNXph@|Hn+AH$6n zLn1W=+57$t<%K^M-#Fy#K)Ma(4lN@h3ds|xEbn-J*m81p5&fL0sqT&knolV`ZC4BH znc*!!U=&HToW|KC%t5HT9O>JeMU5Xx>%ecw|~2WN=Lzr zG=R=!hpw-KS=jW(oF7t<2nY~XP`uZt-=Q>$3=)+c{*J{0$EH?vxm^%3DOY>+`b$0) zP)Z8oALt)k(eGx*YDq*L8A^_){rdH#>o0;F;P|}BAWvu zkYJ|?_*?HU*TEsiRf@7VYU{`v28X+-8(z}*iYKz%?zpinmmItRL6Tfgyx?4JkHg!R ztw$nhZm^$(ho%e2ltBZimTpVLor9AqDQf6$W^XXI?C*BrxecsTU7RZQp-v4}kR}|> zCaYL4eE)F9Y(!BhJ#J|yl>{8@h;&?@1)!R8q9$5~oIbi~G7re!@sHh~Z-7npRcOm} z&y~mRiU_hLuKs)-@q|p^gxiwB#k3O&4h{`_I1`W00LL< zIy?@DEvU$uN?^|RU1GW<&Vqkg&&zjLyUeVUu|BqBlIdH$?L79Z9Ay6rEf7CGr7>V$ z9RTXy-o^gCAraNzhZ@+aYO&Wq*l>@Zm8x|QJ+_nsu(p^Zg)B?U1VafvoFshaAITURy8a}SzSTt)6~nFO5---v_smyz z^Z<>XBt4xTFLWH$6m>P_sBYReN%X;*6SFfEHA;>$cJm(fZ~@ODxA9649_KN$iydyS zFs26EkXz_t8M!Dy-&mluFe}BNwpxPtgJyNf=1ze06~1bmI&mhcSiO%F@JqaZz40bD z8Rr()wt^6>dTo9YHFbls8uZw%)Qw2X;&TspWuJQ zqyuo<&Us--m8GafA)%+@pxat1qolX8>+$s9yTRRGzK5EwGGbfkUGilRxx;sV8+raE z#9uj@|EGXM znB3wy74>KZuabZ*$6|d1M#=`bkFbHHgx0{y7(S=RJM8G7&8Q#P{3dGwoU71xD?f8* z8Ck^Uf6$zUAZM#GVU~Np{%Ke1HQ{J|=g#A8K=$w z8mA_!YNDZ6og>|?2%a2E>iC;N3zyZ6L?Dwo@Vu^oKEC=4`24asfb~@Y72V@rObGBX zAyqwP!B*6a_-cQRi@wubZ8OW_aA!DRuNA#m0HunG6<@5ap(1ks)%squo<6zsw~cvw zraa{1a>-z;9h#)?3r7ocmeg~O!6fmBAj|YqkCuU96kt}3DKW`Sl-4>9XG^tNBK33f z*rQ27Gs!Qk#!5_U%g?qzAoP757;;NokwPvfL@t;4W{CfSvb|iX5k3}UVetwvSPo|J zXE@MAq@b4DUylOPN6*s2BB8lP+p6Y{O72Q-M*O2@3TSOZ;F&8a#RV((sj^ohqNH8* zm&#> zd(qLx<8{Kygm6kJHWA*O2WnLTjGi{j;|yKoagQ`}AW$)v9Yb*|wNgV+ zKWG*(v$C}*X-6Nbb9hDr@*4)Uz-2JW8ZbyuxhA3U#=%aWz1qeG8KeDob`i!zDZOSr z5??u0t(o!I5a1SEzlpa*TudRhCnavMCU~$%OI|nf3kFuE-t4iWkFA7%J8NKM;)3yZ z6A-5C>yB?8O8)Qo&C|L1X_7E&_}upP3#_YSRC`8?&|cN!kK^>D$quOJ3Jl*6;N_lW zAEdtg4mejao7~y?{$5`ED5C?J4(<}vlF{Ys?2&ImM{a`%o!FbX(`9N##$HL*@hVog+=yt ze7ue8Xr|?41Uk?h$w*2D@N^LD)T#CO|M+$DUYSx!((+LA#P$35U#)j(`}&-Rq6PZ% zfM~ZulCWOhTS)wP?QMWA`4_bPfL<1(E4YJ^Ne?Z3z45g)onGmRiGj!Ea8eNnX)wZ? zH-~{KJI(2+X#{x^{b4d=UudYK2;hY^W_!hs zf;%Cc)l^1PKeg$CHp=93C;Z-Ge74XMUD@R|;Wmc5S}V4-@kdg?6~s~k5jn@OOwslA z$e7$brveoo=MARbdWTieB(R3t9n;uBD0@hTR1wJ$lVWBQY42N}@81{Wnre|snLJ{^ zb}%FWYsllTXS9Ip($R08KMU>o__w#Dz~AE!b>0K`Y3V_5ToTKK{swn?@k%dj^tm-I z1`@~st~?)_gH-Sj?j-#W@_v4Pld`w=pjTU+@Yr1nMAl=>M-X}vTaYpn$5z#^@vpad zA{%Aj5(Y0jz9w~>xD;~Q$#m)X9SL$lTMM9x$ou}54~ONyH|B>>OLMvg15)D-DH3S& z5Krdve)>62C`!wxsgN#RYvl5&mxMP4hA#XvC>4t6*x)wombXGahaEUM zxuLn^tw4ics;lW(f~hccPH;Kw`t$nR;&l*j`yLshV50w`!LEG7%FBi+InUx)3$AVn zv&Cpyp`6vw&l+=7eL=Y{`JyBl&@y;>lpr3X=!A)!D@*#|^XoTuG{jjEQvr(CXS zx>($!iNnbu=%voY;yg6$y(7Tzh2=P}PtiG4Cdu22P~w?UPDL;LG@u5!-T+Imq@>I1 zY(G3WO_vn1!&=L5c5=a1@SPm7TP}kAr;+nKK=21lys-k0PEW@gkClZwwJIQ^28U75 zIMRa^#$F&&rGK23D%j5QK7{$c{rOg?Hp78l!c2$!@s4FZ^f4ciz4<4YW+m-^e0)*_ z_$&_;s^(clyOU%-A zl|`GzX%+MP)D>mamjsdrCG`3EBE6o=5suW)5|Rd^NI_pAjnz?`>h*!f0EH~yi6XC} zc)H%iZ2k5nVr>+>x{vK|$TG;i0Cy7puzSWiLL!>xbi;AdFgMBNrF?Sm?e2C6%?5eC z#`}ACyxSR95DcM|xJ{s{1fda4w$dyWINWes6|vI>BbA{+)sz(vs6-k~B#jsekkT|} zv%b(1o2x1(AYO`JClnt?{JCt~^FDaJNY`3$#LeG(H`V051vK}<4kJ3=L~fn#bdw4{ zb+A5Oi^$k8xK3;P8}&JcYxNL9!!akFofQ+aWIT7R@HicSW@l%GI}8V{Q48cs8MV01 z_oN>IK2;@O`AW=e)70dgwwwyWplG+G*?R1lU(*%k^)L&|9EPO!K)$x5-3nqJHfSUj z#pNWF^gpps<>hccqYd9zScZm^(VGI7l(znj$Q}pSdP*&yH(iLLhPOLC9?>oum<&1* zF)=ZatunO5P?E?V@1*_e-6bwv+a;@+-zFk60&vs(+J{zwm;kVFOv!2DtM^|OC zW??ooOfux*y$2y4#aG+Gizz0+?A8d21;!GbyaHIG46y~~R>2U#r~O;AVkW%iv&D3@ z8C>Ztw=oxsR%lzXfzyA3{*pE~_?)8@L*`Nd`J|}gCnd^F34>e!l2ro$NIJpKCwg4| zvB62CE=r`aD8IIr-P9bhvWy8Zkf|VMz5ukNh7BR0LIZbv=6ZkeSPg5^VMo{IuocBX z?|HsjNBu9!!DC z7#5p@YIktRy4V`Z#>WdNKSX-|=zy&Ce7pqr3Ilfpf&j)PRB}~6{f_ECj08HrD`X&y zH&0!pdZq$VK)ZXmZU@XFg{sKPWHzjyLQI|ChcWtAh}iA`Tu=m~`kT-LH;LU1mK$3? z)ui-rennPgN((wJ42n72KfNv`pG=#oiBV@ZrvuLvvmD`Z!)mq4UX6`tR;G$eLjlzA zlAX<%1w5GhH~+w?CZvK>Gl~-6SecjvWqwk}J3KH(8WyO!aX~1P=%+}e7#N5SK^j^S z*qLBq#pA_yg3PBN(DIVbC+-5jkUAWRNjT^P4X^MENvW7T90Y)Y)W+&M;Cj(xp1LrR zdv7JS*5AORnj*t5_kyE@O^-WD;~1ttd5CW1VJ3=n0|-pR;vE)2)bbdhb3AGxY|Udw7Ao^_`DwVzgusI5Ctfx`+-DD^2Ejcuy8o?!b-pGN%|Dy z2>86K#*Q(ogC1r$hL_~FryhpynlIv5Qt}I=IHDr+I_)h@iG}^A9FA35b8qLtM#To) zPCPVYJdqibxQ9<>vX;L}FqOdohu>Otn4^#`UnSubU5U_z5?C(QUXSM^1t9%KVi&qi z82@~^8V!Pgp=Vw{^=E}ni45?hQ3lJcfm+klR=U^BelK2}5UTrK1XsI6IaKPe-#(KO zxfUVm1Mp&8@FRNv7Xv7SN+Du+Cow7kNrllkD+CfyenpR1$guH9H>i5u@dh#SJQ6?AMPyH9js$mVAX}&HvMBj%YW3 zyCD9a!@@>B)3Ce2G6~eQ?Z6*+05ka;69dEG>zysdQys)!O+e3ySrg>^ypsbbYP6gIoiNotpktttl+j^s|RM? z&6Zm?!X{aYC#ASVdop>CplK(wfZt+d`2mTdbv87!qdp^Qb^ABp(im`@&^y1l8a%y% z(^}UPW65e>9`+{{ur>-{Sa&POhxgOUI3)ytnxdnJR(H0)qSo{$Kty|yP_K&K1>%`- zQ&QM`X2|5LS=c6ts1?PA$XG<4Xt3}ZQBg_yxYr90x)+p|Xb(UhvcMz)*@0&UwL zTB)hj?_)EG{`ocR(NcnO**+HSis{SDS%fsMs8I7<#R!CWS(KCP>XYpxG3D#U4;Zr%%$(W2}*aJaM{ zq4kPtr!u(57qwZ@SD28iF*CNiie`ilPSruM<>O*8CULypXxU{GpCAS*FVfZy6_(Hts)U+x zu>GJ>YAzGX?7?BtWm`Kww6w4i+|6h#@0DxFh?*%?$fCFj*oHw6_wnK7cDsPPyfGfZ zQ+-Tc_a+Y7+T--o$##n(TW!5wlM=^HGqA0aB{3=978UZN;U_7IlgnyV{9(dM1db@v zl2A>0+}@r)WO^c2#K$2Mv{zLHo38eW6i*Uk-_Im@v^~AULkpWVk?RI6#n+C8W1J)Y z8B|-_Sg#NeSngJpiQ^f|_8WQL6WDe~4d-oet>eIU%dxJYVhd*QM21>7B5+z7dx z$UN7ySAM?~@7y7B{!r4bZ}WemQc+O>nV-HsDhEb~zkJ@-9>WSbgLwY@X*K-fcC6I* zxd%Tqd>KTKh2!bqnSdpPVy1d+y~3l|xBEP$CTvNZZGSfG%K1;NRkvcX=>68phE zB;mvkR#|HvB@%e~7Vd{{9d(W~?=KEqj_=>G$zEq@0+pLD{_k#A*wG{-5x}L4`Vj}* z79SjaL9D;)n)B=ooA~H2;{3wj@HS6M=CIN*IC#0P{oi-;lNTU>66`QRp(|5_n~TdZ zpfhrhF%kf~2PY{#KiNrMDDZ($ioa1vM-K1B<=Kvp4KAy$Kr2Evfd8G5 zOJFveE`*}r$yB%tI-9$p6qbPN{PU&V5>{dEeDH1+#OTxF`WzwO|Aa-4c0ws!tGEc3 zgfdIQM-HWa{bBU-ENL}&;t`xo2L zY+E+=QaVy_BaJf@Xtz|3j%dPS(gm<(D48Up;$UVr)Y^UL;LbNVqh)LQ|3K19pU!y0 zcDdb-jyS^_8tn%MZD~%vPBs8W<+Zz%!qvz!Anfl6Bs5NE8SKyou#~bC-;xVTin)X$ z7eJBoGyLcQ((jB|oDTVCeRj_@N|=Uf*@zh#^iFo!Aq40@vA7%vkuD2N$yc$-Nhx@GmaqiRM?vv38>r?JMvHl-WP_fq2lLNwjFx>BZyWLyT3!zX8&P z!Oz#6MMHy^%E=@|VtecH{cw#qxsn<3v%~izi~^c&Hj^>u5$(7zWelW5ZB7`037ek8 z|IWBMUGb?|3K#kqDDx*js1h`pLsDZrYW}*=+a!8fVZwFygxX+ZhD=P)+<{10 zRN(CDHo6yTKaP?usb$8W)o(N1*+7M6rJW^tpD=ZRva7j{8G)3WnTRL488Gr@_Q3IV zU@smp64T$XJg_K>rN;2ECh+;ZVpUHl8Vv-!k#xPTm*wTlq%kCHau0M1$&AZgBYV2> zH4ZWg?RW)nh6T+oZ55GA#pYnFvkaZ|))SN$+nC_-hIUsGdjMv+iYnOy3UQ)2pendw zJ-i?t)B{-j|4fw=UPbTR(ijTX=EZ_?BiU+odIACJ-XsQwrviJ63WzSB`N1tRqtnI4 z>@yf{Ga~|OaCb|s*t2q~d%vyr)q2+{b~Lo(!JR7HY+HIHPg~X-usRZQXmeHdBjf%6 zekO83egHe(-tkm4*Q83upkA#hbrTgE;U?5N#@I(QTGY%C_zwK)dK@n)Ev>A-N5vsM z2e=!d0ILmbh_Fjl0k#z#$Pdh(?^@uG1^(l;W^kIlh7)@_8-vz`xYd8#?vsNgUqVaI zE_=at7ckF+rODuE7mYiN!U|B2dY-lkNwqVzWPX~t-n$=kA6Y4a(C|+SyhE8K7t^|j>ZymYn+aDA(+XV6>MDSzUmL}6cAX>UCUC-m#D zRHMx=p$@i2ZB%Y`z#OyPc%$Fq>q~-xJiI3lJl`ZH)@=2m{`4tB%2iwBMuX8--ti2E zNnIUSJL$dRiY=78H^JnrkV1ZKf|3-o_QxQ${P+Sqy#vygvD~iKl&tmW@SDwMa2%&% z18)eGh^(%udJ_NJb{UaCOPQaNelj=v5THq&EVr+`MzuS_YUFD1$;_dZ=;mZd^=dnD z=B6N7t-eV9CVXl#rqs`t=Y<*CVul2jk_>d7rwA5Fzk{b2A>>IZNIh@GV=~ymM-kj4 zd!6tZ*sO&FKRaJ_y^JqZvw59jfJ|(c zK|2EBN8>Uz<0H5Dv?XdNr?3Qv@4%3*uoGNP*XMD1!aAdgNytExz(bJx#dHZG zqH7u}B6FGM!0O95*&@lh8U`~b&6?Itp13|r#=ld|e!UErru@a~A=*KA}be!!|U|tBE2D+(G2VezBzK`aF&qs#mffB3ugMD|IO+K`vVv@W1 zGn<)VV6nWYh13^&XA-zJ2i-gb8v2~aQrDi2VQe;A<;FAa!8sn)I_hPjqsF25Na%iL z!ff#lNP~a9KL=wfk)aF$Qb30K%;Myx<|@XZ)J^Zetv2f*_`akd(E><pK2yy`KCboS_o7wUJta`l@wAEJ+?a-1I&OpEfF6p10_>~6j z-ouHtk?+ZZGgVxi2=l?+BuDfxcdHx$lL5dPkyg$b0hTWlVU!Qjoh`_;>@KSANn#pX z!MWHAo%_NnWPR{ltKFmSV2#-)V}`1V^f#++K)prc;H?={@PalZe;-yU4`leDlR^bCRk0%gTAQH+Q7(pwh&2B+ z3X{3S45F17E)UcPytDY1j58jmF1N6@gIadu=aZET)o{(RoG9cUI> zf}MndBC{Min%VQgBpZZP+t>|(Sv++gzb&o~N9-iDwY-2Q)Q=Y59#lsWz@%m9wVUm&&{{FE^;c#*dk zD^F@*dYv*_3;T%IQ?x};ug|z^kTajY`>WN^vcK7br8d=%n9RUP`$p@pPy){Fr$u3% z_@;V1LOI)JnMfn6${BklE^a`DE2}dFGyc#5x2J&lNNzN2RYunC@jAhnim!`Z+p3-% z53TJY9+SO2FMQlWW7qy9YKbWQ)jiVX0%VMSSy)&v(EFOYX~GFBpnHZUAZwb~F=icD zBoWlg>^cf>s;|zY&H9clUB6p(4=|Xd&>t6eRxFt#*>k{8ESwq`S%on6=|niHdW`89 ziVzZlly)+aQF1&Y07pcZ9kd{PEo8u~q*Ek_?WF-1V_=KR=JJM8Aqly}twQUhRh5PW zC0IMuy9b2+0p;C{3Cz*P05I_w)K24axaEMn>w&tun`*f_a$PUv znW@B_2JlVN$o9P68L%=FxF8+vwWO<=IM8`oe}Z1uIJpV&JvguetyhckOA4wWx_DC& z9Nl7F>A~7>H(FRHYBG>cJy|B5ni5bP!|-losZeW0q}n#_=@=PB9n}y}mgEhwbR}i8 zITOQCV{Z=}Yap_WBvA}2%O$5IqJU(QDg^Cy>BuLVB;K)dOXX4ad^7p!Eo+s*F0{Y~ zhlU*A7R7$Srw3<0F%9pmM>j@UUG4fOP{9-+PN!}kYTmYPys>jn{}t`9gK(}C zz#6;EoTwh4cC!o-dc8z0 zv0{JAlg-*PEMQyVax$&CIXQ_sIYK4Tk{TZF5Zuh@3)?|tC@HS|$!f7g{pDB$i*Y#% z)zg)zin0MS1Pw7+IhwH_az!P?@dgkNO3Cg2G7X+Od&GmvgD|F&(T=>?<|btbdL8JC z%}T}&YaW)Fr(zuanaPsD8O>4~l9HhY`Jn@G1$MHIdz&+(yw*khkA(4hEs#`6BDrf8 z4WNcjU5Sf;UJo9QDEbeW49%fkZ#_Xi+y3ddgd^VE!`yKbIlcdvQt)dyYcq4OESS1+ zE?474uEfT8%;VKUfW2%U+k zVF$NZ9f55tW~tw~+1%WN+GCs>ITcdajMCXQoj6ArUe4Y9yU_uFMGHftavI!^q(p{R0u zn8owd4U3cd9ELlEewJthqAQclicL&1m>Il(!J0{lo21_D`ge@oCfrhZZ-8hL&Y|;H zs0FqXCOawpC)^?l2(q6Uy3TlEdtp#|cVc*fQi%|_oi_DU5UFq1E7}7si;`+av^BUW z{Jj+sUC8>0??{wdyDtE7PVoj>_2}n5>zyJah`Kz zh@?E>=~>Mk5LSl~aw2Tohb`3AZR}=@hc38bmum#8JS164JIib$1Utgyq63){u&9?Bu9^riP^+b*|L;`(yF%!Yy>A_5UqnGYx`GBqW51=kMbx zZZHBvZ?Z(f7h0BXOj1%;1!~jS5#Rbp4yFGDF00)pHjuL^%3L2-VUN4evNtRCizrjX zMkmZlqv7bPLB~$i$?SV@r20g>lzuwnBQ;+epz9u3a_4k04Qt15#&hG}Hn3eJU>4d$ ze%{8cw>pb1EEe^7nkW;lN*gnjd)zkh7_bFkN?80pU@=eEBi_r&y|vhrlalm>m3Sv| zog@qw5IG7Amj5me#zqA8n&$XHRglv&=ZhpbKziCnz`+^EVtm0HhV65Iox6f8eG3P_ z7|J_W8vnP=01O39!bclqg4<`Em>@{^Pm6*Mw>~vUJTr)m!28M;SNhL34xkLVk8Xw_ zNvf+2QN{*b*QOz&v*kztdfHKG-e7GA*O8PVM1UR3N%Ol2ZwosUUf1zOJ!LPt5gFM0 zw||`{ia{)82UA8Y7mB}@j1|JWbQDMhlxmuF0<s@W1^;}5T)oaD!53|fpaJpJ0eP!(1vvR zf7^n}_VdE;vB~vMut=8=sHEU`Cxv`z1u6-Ip0LN@9Y6~dlhRHJ-iL6NjVcEDN|Ah& zvnoQmB1Zrylj+{7!?ajO!cF}`&>Lyb_308(r7O&( z_Q=ibJn*v_3Wo}`?`DU*y~oJF%jojoG8wJg%ME^k{Z8mXVu~vQ#wa`(e8>m6xh}b# zeF@Xl>ne?xBKV}*BL6=LJttmy z_ta`N_Uiba03{$n%D zk&{|wkP}Gm!jTR7n+z6K$75iG#fQZ}bith9XOv{MRx%CJAhkZflnuiY5*35gL8~2% zd|~eSpi{(42P);P(b}~J%7Ygpgedd5CYzj@!)-iPYxExHxtOrz0Zh(^gnh(yhtL3( zoUGW+Gt$8wLRhv1G}kHUz0X)&yW1N}lCpCC_FqV;503txZHu$4wS$#j@F&7lh)B>m`M7FbB^y zhI}sXo8XlP!R}8z7DF#+XfCHNF>(Df5v$gqM;FxTwdaDvQmDbk3us|TRpF+%TAK6W^_-lopJUP-uNpzG# za0|-<@blwByt}zLIx1BsD^UQbkJ?}6jb*LW2ii0rd#zV4|V;8IQ&c^!k4E$Av3b#)( zVl63T4=a-SR@?vM>YW-RZKJf&*tTukwr!__j&0kvopfv`9ox2TCmm9%um&(&Nz-`RY#nDIR$5xRlJ?Fb+SaLCHa0(W;RIWC^KGm6ZPVR?~JzKnl{ zY5}aJpL|kk^(&KCo!$HTMJ3hj3AGw|vkF61IHEam+AQGaf`u6?A|uU3XizG|65E}Q zqsGuA^#mcSAn?H;TZ!nimLOvG&zZ%ZQpaQVkGbLI8+uXPmLbg#1?)`V(s;ErENT1bulW-FjBQ1L(dmtt)uY?-=M?L7FN}y zf+1(P8?>Ts0w7I7!E};((re~xB+RT|s zSL4Y+mY>{5_1-(J{bM}V9TO~tO-AF;Rrg?T$z{_bdYd}4li3~wBLOVGAL*wO-%i{6;-%je_R^0~6TH^h2DM%>(#JF3SUJ=XdzZnY21R^cK zTPy9#3rK4JNhQe{7YHF!bD)un56*4IKbiOzjuF#u;>a8BMlHcc6((d7xef}bm6(f6 zZh>X;#{GINPXvisIb&$Hho83H-!hKzY60-L(L?aVA?^*M$7s@7d#+SQ+p{&7v& z6niI^jMHViQBXGudAyV!uy3?QY#s6_xxFw@^Lu!CRgV7kc_Ud^q{6+~O3RralaBjd zWSmh%M#RRp(#k~HtDA=_hoYx{W^iE6L1pky(s2r2cvJF0O4d7HD>;^)4t&K zKYc3|OzQ1E1m|&Iz1Nlx+%1$(tc+Wws`r0t=F6re6HqfWBz@v0ot-S~YwGekipC6A z{cm52w0;A)O*=#h8X`=w`PLum#2^CVHxxhQmIvg3UfJoiEleEDlhq$OHO1mwUzX z8lSLmS|>a1qmRkLVu)|UU^(?K)q@#VsIv`tO(_Gp)Cx1Ay3)GftNKR=4?n;Twxw;i z4>T!pT_I(|+(XQ7WCw7SMP)hD!eODQj^;p;#BfH+W5vm51!OgU-a|R_38B(We@xKQdS-F1 z{6rJlq~oQ6lvGO?)DbQyvuQ%5*r;|<;pxNL33WxNz(F;`yaJ?cUB@R6D{x$35Xut zi2@KS`wK~Ru5L7UI>srHz(r*{`D`T+>rPHw53O$hoI>2#ptR}erS$TrV^L>*KOJbF z8=1JdG){M@i+494J7k!jfN5^FRA;*k|JI-+LNbkz;z0Rwz3)Ewk#cK>J@t1ymy4m_ z7x~W5o$p#py@Y}uH;f5MLW3u1CJPo(yc+0~H&|bDt{}>)O>wmnx!&(7G;z0zaD)Oj zYV1{eAJGwnTqV6E;m_sGdJ5~qr4%w7A{wA(cI0MvLI(Zrko!7$Apqmp;pxsevE~Gj z`VE2ow)+jl>aOBPlni61J!H005)BkySQqv0(^SxcO@xD9)WLxXn}e;;Qf(j_=7x^f zOO=C5bS$fa_Ysy}zeJfsbJ|Ej@@_yB+$fLbLd)6ViYI3gucr0 zd1TeWiL5E|f$iuhOgW7oKdzRc9&0XA?b0F+l(E&u`p?%~O1FnuKCiyR(VZiwIAOG1= z(&)0SD>2ha5#UJ>)9Wv9`zAzS-M1#lAauCPe==O9qpXZPHGLkWWA%TU!dNzDfH+AK zOe@ytr_MW+!_L){W1mfwOd_v1<_Jc4YPrza+eLp#EkIv@^xuu!7y>nlTEJzS-TvA< zDZo%jB)QCw%l#n*C~&2x1Sdfr0ydO9VtR_KKM?NethR)%T}eYT9FA-VkVu_adIPd> zN^U-8M8eYSEMP#+s)&K7uNlRQbET?0ome%COOgy^gLf<6)5Ls$!zw(~C#DL?-f*;|vw5G(@8U@XkR^9{-M z`oRH6$d$fWfqFd5n2qv8+tV$m*IQvf6)jyKz-~1DNEo zkktUrp)DGzZ@T9VV;ks|k>diQt&)MJvka^Z$OQWPibDX@!aPS(+Yoa!Gchi+UKEJf znJ_P5Y02&A@^v@EODTOI$3TT&*7J`Ga!PWAEVIFC0?GYyB^i#GgD-_;;4nQQv;o=j z$*C)|2NJ`{-4uN^=}laei{pxXGupU7yB8!sx|p(COWA`jZW;m7-%Alr&vbG zpHUp(lNs8#$9UH@K(_9!60^PL@@q@gCI2(_vX`Z{KgoY$lt*nTRsg4UNg|-5c}h{g z)h2Vy>*@S4cg*JjIyF62bXN~LLyfZBq&84d;0uifR+X#gi>Ibm;&W!u!(;}ppPFBu z4P*wc@rKUXk6YGe|2VFD%LlMuG^~lssTziznCOA8smBuDiCgD<-@$Rz?t=fb-?;Opr#1?t%xP$UUiUKW_u-f&`{Wyf>na{(Qyupog| z4ljB{>u+|XIH4-NtA0r9RFIShH?41C@eaa{<|s!u1oalH1es*nBY+>#JA!LzQC7}S zjOR--R1NyBjB-LF7wZR15es%;#{J*?MOyXdt>e)aunq1-#-BO)T;XG$yF$jMh`e=y z5pq%?fB*h1pmzX1_?q7BB}c&9Li`i3e`NYc2moMJ){6J{OL_tid`(~BkcPJpumeY6 zoTE<0<}%rRTDvqXAF2Q23Q!1 z=Y6{Kn}j9tJZa8~U;NyP{kP*O#Zf|i2VH4Rsm`-0UX|K*>Q-VTKA8xzU=2|LN zT=cgVSFcIfNohe1Xrnhlvgxu;h~o-4F16W3|0BAbe+1GR7SUeiPia z_hb&+G5cZ4CBtB$GMKB%6IB_bxLAyVF~7BvQb8K02jfLq?I*L9N_@L&T{#p3rz44w z0xAI*^-^++E%&^&?JzWwqM2$m1s8_a61)2y1-5q&Bply4!qwll!p2^BXn6+pmx4-9 z>B`Cm=<@;-MM()>4un%1NgYG8yMtwqM*aKp0uQWc7#dXFE;3Xk4vvNtX2aI4fQh6~ zxmconiV@8UWup_u<2@EhA5CJ&c13yb%?;my{j4#8sjB0)nsc{rz9~>?tvzCyh1A(} zi;uJ<1CWbjr=Ds?#i*`>UZqh+j-)TrMW6QFoCqg|5fJ@^)eR7S^$ErX=!!~aXj3!3 zf1hh1ZstF?{FFDy5gJA`dBQE?Lcn1GLG=IsrWp#7`qyysHH$`QTyKJ4UtQRt+}RN2 zQwl10%Jce_;VprRrO3Z$`*J`<46I=D&h zX;~bYSVARFHHQQ;8-%5_da*UWyj3;U(6ogEnXK<~)->|cWz7LO4!xG3rcZ?U@n*}% zc}rM})$gu{az=wF_r%$RlbK>qM`3|sg;E# zwfLUBq|tbTxWD)AXangFJ)L0>9>6)dbnLECu5jrBAUo;P?G+@nbOR7S-=Ubu3){=F zT1_1i42+?xGII+}Ou~l#t&&jQ(a7alGt4j_?pc~rmO>#g*6rC4?OL^2{NqF8_wHj7 zAgK88BR49GtTq|lJGclsCi7mYGZc&=4TUr`Ou}MKOU~Bj4(s7Uo6e#ZChhXW7xcsX z@_NQ#5y=x6awG=_*M~I=ly)^Hf3ndp(61EE>P#(Rx`U;LFDb6$WLuRjR|E z-rO+QZQAX2L8sAkKh_GPC0dIq&JD&E!w&geUE3hx;zl1GnRW|!(umxK^!F`cE5P5X zFW_cy_D%0?RvMR7Km{r_Iem3+#;PGoV?~X}zHApY$=g zfCEdY7$9UQlq{_O^+BF5_47mnc^HvD3mr)!LXow zzs$gb)d|K$Z@=E@P*oFS%{UopyYw`)2k39f9$S*1m^kg$B5Jog56RF6w7r^1_A(1v3o=R0#MJg%J zrQ#0u4PbXj7fM0%2bca)wX~yTJ{!i2jJFPWTEl9-oJ00Xp{9XDl!O~zsdm*x3)vDD z7Z#wAmk~>2f4gyn%j&u)Gy?D|zA{+d^CCh+JFq2```7R$fL2S8V{q7EU@?6oFMszS zF#}K!TnT}R=-}6y$p*Va3gDsQ;v#AJL0DCQ6Z1rV8fhBYvH}6gr8$jJ6RRzP_o6vf z6_uFO0>Tz_2YDY4t|JruucwR#E}4b{x{S)>lC2O~S+iEn76ly{zzqw)Y}kzofY>g3 zH!*+dWl#3^$N@yO`~u}>Uk)E3xut6v>K3iw#|i{FFg`g&JxwghxB3o$HJbgo!8tKn zq2sAUOf*{0O_z)(=~^?aK&pv>kpOBN*B_UzMr){2Fu6|}_V8V}?B!K2qjVTqxf(_Q z1JhSVLkqj&KMk#|MFd_3+-qQXb(ev@AP|Po2V@}xCMx|63`Gh!0QGaV)(GzV{)7x} z+nu*Pv$iC1a}JTbLZ9Hz8bUB(Q>4g9!$tZGW*51NSkO*`8h2=bar;L7k7nF9k##e+ zYL&{f0{EZij)p%YDxz&bEkAH~LvFbTJ(lGr$bM@C+4Px~`Z0P$-bW3VWbS{e}$y#J&_GUSEIZ<27&=(n~h6YVQWnp4q0gG5j*ueKN@|?Q^%ICqDJ*H4P zR~G`QB+%9hWSrqq)cTC-}ks!AB6+ z?rT@L7(`oVr3jXLJ+I#MN_iqd{f z7jSY&poF6s6#yu0RuDLZxSejek6Frr^To)y1}2Gt6CpC&UMd9-3Utn|#5 zPYs;Lo;UE$)nAT)RFx^xQc#B1c0!*aBuES~AH!#_l?+N`uq*L3U%SP!R>l`;x3rA>v6?VgF&E}SN#6n12oy#_E+XfQK z4j=<%bz&zyRrQ%nQUUrm#nR&LD|JtQf;fEJT?k?8`t1j-$80jZKMqI9C#CpuPFi`xXd$m4ml`eD8qerlyP(63!L(VFd<;IZCEd7SsxM>hoAM;Qui7 z3#$KYWQzM_24#>v(n$VG-57&b+L-cC2I7|ou|KxtcDdZe=jVWvn7tO2<`%}Z?|pnB z%;WgIJaC5LtE|DG5-~7WDvLS)12DXDxOWJS5h}_Fcm`NXhwGYl=%(eyM!XpkQJ&Ex zwc3e_+Y#Uy;v#G+2Q$Sq7OYCWTaQd-u063*qqE&ry4v_c>Nd8^tJh7+LQCS^J99^8 z`|iVNInjM=kslfMg8!t^i}z~+t^ZJ5=@7qAE658?L>ek7WL|Gw;kn$dpsNp)U);Zn zs~a=Bz^CdNEkl4x680my<@1BKib6mYR9zPqbe#4zn|ZH2;YBUHqM@l^;OP8on6R+Z z*eu7POru8+eTEFX=&MkMjYewGY zVP$Ybn?+ZpGgOrQG3a@m@izUH7&FyJdf{3j=_X`2n=^HG^R;SZHW$*Iq&Np2iM*BL zH8|f&x&R}RXqX10s*3C3?OpY+?k%WkCY!^qFZA*E{o`ylvVzV;94f`2?MU|AvlUPm z4&HIrhjiV4*UAJEB}@Qc3E-z!ENk-LgL@|@7QpTn%ZI;ws^W0WP`%03?_ADkIf6m# zu;YkUiiy1HO#Xel?Y{K&eFh%SZG6DhY_SanY^tEVGYDBLC>QV+Qu}K9eVQV@98%H7 z-3$+(;0>T=+vD%w&u6DVlM}7>;je42-%)ln(D%0~?OiBBDH8=lX%gE_S~D%N=NFOQ^yX9FQA)rQ-!p{fgCA3#DUW1a|Jex;mt--s z*nsd_adW`ofOf)EJksL}PdXA~CRl_9Af=&^uCqD_@x@V<18sYgp{ z*Q|}2tyo-GrAI?$wRl3t7Tl-WCh%a}z67Rj~ zNNxL&L$z;Njk}Rd%g(jy=-lFtRCF{U(b1?Rhc5#YTZnnJpu~&p6qjdc^)MrZ?5z~$ zH74QdH}g`}UC%-UnGSch_5e!Y|LcYkeZJ?R{)Y(*%>TnG+aT#n((FK`6yg25+;xu4u19GxYC3laqY?-n{io57#p=VBjjWh1@85lw%!p z*WJH5_;N6Og*k%9lR7CtsS&siEMa9XUvL&uwqZlBd#mawF0H_(qF`uW%+T!PY1x7U zU@>mTP7_&Hg>>YpePqC5Ac-(E7F9I#;*J_Y4&=$Y+`|5SY+_%XXlB?$U8QMa7a&_& zIu_d-EhNbszlOQUuF2U!_-##*p#;+L6+=dnynW~&0r?A=G6XQBCSDJz;! z_>~gSBCqCTnJm@K*(&gA@!YQ7f@y>$sq{W zI@=_@w$LY_PK!)NU+zlZKHlCcEJ4$$bSDw)Q&ZN>aKJcE&~)R^!!w4n$9FpDU7p|) zk-Rd5nC59Bit7EYapo1Dn-gIco7v6EsTjiy!`G?k$1$2C&vbiiHeVVR+j(w zLK1wS?lEvOq&nHVeg}irBF2dcH0j#NIgoIfo(;1(nB#Q z9p4??>7AR9qHK5Ltrqkc->rz%%D`5`XVOdtNtbPotfxTsp|!UPV-gcRH2i1)OG-5N0u$d2PQTN=zXCQ;%lVOQ zMA0)hYSe|<^i1|_r3&$h9v`XKu4U{_;{=_=>`;JZmS|$UijjzYp9RIzU!)!l4asA9 z1eUS8fTvokF(pZ46AaG59{f8XW3wv}&o_;MBn2&@xe+SFd~Pd|;{A5F7cm<_KQPuF z=%Jj;e&uQ$3b8l(19smE|EP^qKAS__)e(6?F;~f6VWTBE3Ln-#9ii}s>hFJb2~b>` zL;-!_$;bod5OH>Nvo%bp9mPiI1>8PNvhcNM3O)$<+XzuV< zLzIZKLDKCLo-8~c11%Wf4*m<^&{psMPuxzYo6CRog>-CMKC@6GA@6Q9-zQ4b&{KSD zyx~CvN12vyyk~7;LFK9LZ3ufWpVJO4G;BEKZM8t8=b;;K9w3I7X77^uzvlS+KOiYL zR0BsVs&5f9kXEyH@8NhdD2mDDYz|T(Kv-VB*W)Az0t~FLT%Q%V)+2n1|BuwfBwiT( zUnO4w5P(4Xzf=>e*yF=(EZu*3Vv{>EedDN?WpIm9_sAfU+E#f>Y;Nk+AZLx|a z-Nh53zE5|Re-?hX09c4sw`MW}SWLtKS^flyV(4~3y2JexG@9A(e%FcY=5H{VU!ul) z=dp4$SSGqEc5oh`JZ@sN2ZIFUs@%_I%(tm#6()Lw#w$?~)ZRHNBZNzk4a3vXkx-+@7Zul6KROv9;ya^y zFccRWoIoQ#&t!M;@cfw-$Onb&{hs4=-fv@awu^d5!s{%69_$Z>9P>D^{x6@jqhbD# zlD3b*zRJu3+SXT9SP~FPgXDI-0WR8TsvrkLS>SW#ey!dyF!dDb2MR&L$cgxOG^W3^ z#TxB2Y&2D5A|M5r8r0tm0zkLWG}pw@o#^vU2@Kt(A9+BhHJa-K&5REk=QDzHijMVJPU>hiY z`mJV5FZxhw;?AsI>e{lKzzN9T8@KV%#!)q4Hm$fPhLP)1%(4= zLCsQ8q$}YPode0}$j7OK=e!kyct4c?UgzejOB7hQI6sG;bsIEXw6}@cfw!y-ZNIV`F*U0%}8O;(4z^87CKT)LiqBf2T8syY>v^Y$7WfLMQpNPAvXe#KoV&7;M%tJZ?sUAx zc6W#L&H+#KTqUf~jVBBq7s3w6X05((t@Rx=_#?q6lf&uxc)^+)R0X00?h_vyKwk5g zOe-~!!Y)6?ZkJIX27l}c9o|x&JKu$HlNAU{>LBKEzZ7XJ@;13S(u%ptk3+BWBRXet zofksKlWWugjAGB^7mD|xX(|NjB(%o7zw3d@9e44?ER_X%4F6(%8~?c*#x$JkDIrV9 zrGNPi8gNcHD|`cL|Em2Dbx$Vw97!$pxZc_pG@YQ4#(JBvvuHJFU5@a<+u#zHhQtKqITO(` zSh2YnGM6`8CgKgz?X#?y-Dl!e&@$AShO(=+{%1l2y`2JAP=<4V1Q%KeB`jmH_9TV~ zi|tCawoyeZ?C)7pe!vh|-UxE_uodgw9KfTlnLL{(X3sLV*5FE8=Ff#7<6bNJHIH9S zmb>X@?q<#R@H+lvKH0&e<7=}g|27e*<+StdMQw}A7LwG3 z=9ernzA_Nh^1dWKP@w3b@+2kNqrgT<>90&A*Yob$d-?2&$Y>1gD~6G)sGzGUK_RVc zLst2P{`j}P_*(rn;h+z@^7Z}g&G@?w*2?ED?wWV+KI*r{YX>8Z4DG##EfUVx6EIth z8J~VWxbL0m3No1<^zfy;yD_f`8k;S>lmachqxH)`?T3ZcSz}mM9&+Fw3f4yph9Gwx zK@k%hR1;-Pu%LQ%u+*XEXct1%xE&W`22C?qW2W=ur{-m3aEPVYdxbR>RHWF#xKcY8 z?;-klzAF)DJNcwP(K<7#&5tK#*(?zzXQhiKvX*%P!ym=FaGF25|7KP+UOl_yR^9K5 z#P{+q`s0GDn+wED*5C=LHO@P{iHr2j#C*%%UY}Ys6qWsa0$(Z^m23Wfr^&NGjwPAvsiPv(snJ zGy7LK*XoX5XM*?%2I|XywD8&h+uCouPu9Tqbp)?sBsF;byPtiAly|xT6r0nXxg~ge zBqQB=qbzqVo^YzmRdT3v86@PfGiP+xXijMbOA84@ny2raN}T7(6@OSjZ+e-DjS@93 z^~lJafoz0s1d?`Z~Bh$;Kbb@sg=;KvRC||(Ws`@ln8vww3 z!&hJa3)Sv|{?+|-*CpcV@%h>iRCI94Ek1`26QzQj?-OnTU**plx7LuxH+DYTHl|k-K=!{hxa?i!-Yr{niN@nTjAC4U_z!rC<_bwu|P&9G|?%pGi0^P$9?3Gj@6gq`L5hQ!U`n zT30l#Mj5s6i^y2Pp%cXniIB$R4T#c2gl)JQ^S02sw`dp*#S(p)7HRpq{~{~KI`Bs7 z^rem2piiYlUi3Eu$&1ozwVp-3(uOM;=oA1%8M)U9(qxFOI%9FnHN;LUI$7BiQ*beN zIU^iQOh|**2I*5x&2v$;c5}MZaAItRB06W;*Ue10XD= zG<&hWb_sq~-4=f~ze=x5;Xc=~m5K!Yu#InK3Eu1p;_Zh4@Zhbz0N^hW*AHX3-56Vm z);kRZirtfHZD~mj_y?3p(i!*t7D)-{rOo5>6si54e3y}jJ=C}!bQ%ty;3f!6t%y2T znFx_5sbO?cYW_>+*oF2ZysT}Xr-HnicRXuKrU~|bFPT)S_=LKx(>}x@pcTP0HY$rltuBx;9yV^ zsh5eKd_pzpY)+?t`W_yhMcRjDYfbiyIX&47G$nMw8286kNes>*%7YSPWJ+2&^5!t6 zZIhi{a_aSj>;yRGjg`O2WAR(ADYfFU16X+cPD+7ToTvho(=nK=wxy>2(2?RYPqq!# zj$)Nx;t(^wz-P+vg={Cpqx}h`9d-0xUC@)Qh`i(@At6z!GvKdR4#%S#8W|brpO37p zH+Q&V(U{`oeE?S>Fc>Y*0uZD?S|3drMf6!{d8 z%VLve>%0fkI$WEr16HS=1kY$AbB5yoZLbn1C2_^gGCH>$R2d1ZHby3vo+zjc?-VIG zZQ^9My``51I~-n!3CQk1oQ?UxPQ12Du&N&kUpZj8>0k4MyLwz%H} zm68RFa-i6+f~xypkWQ5NDieJ_k#Kli9!R7DuRsc-*+B7?WA7Tc1SU8{r=B=TghRwE zEGV=Zbc2&~gReWc6gqJZ!;6p1b8IUB#*#uvXCVihylbRtCA4d0J7lRVW z;}btybrQFoXtr!uY;@276Z0?1VP!f#+v;d~MYgZxXUd?WWSU);Nke+HokVB$IqAB6 z(bq0-O$N!2S&2z15mVmN;bCiH0{Wf!zl&E3Hz)vMnEox9m7NmU%LNLTf_265ng|DF z6C(w1CKBP)AHAfHpQ|z9(uOf(UC#^tjm zUU}df2`HDXRw?#zx~(g#om&$#vg69*aw5C+b~Dd*PzFj>DVHb}RKg7x;yPgcV`i_wCO&@f)KX6)UHaj=PpjyNw}2Lvva@+q6pWlGvutXet9KslQT<)- z`e+U;)`kj&K+FnP##=w^@T^4KrB4q^Tdmzi0C*DrSly0XRQ+6AbNq05KA;5!ZQTo)dj(rR3Cl3R&bVL&8VO0i(OFk$6$c(Mo( z_f2;js6%GT&(xy2WiAsDzu{A{bk181dv}B%7?ekwKj#tb+NKt*BGyDDXuN0B^_n(JwTh9 zFVwss;PV)b^$9CcP9CoDZzf_sMA0-OLm9S-1aL(Y>sNT`$^>W-b|B^tI*BQQ^iCVe zEkTGDabUUHgmrVWTx&(o@Fyn8H0sqE>|b){8*|(nQlbE4!8Tk|y6$1d#c5=*=CGH- zCdOC$u>e~Lm_@-iFgL^4;5bG6A-x^ad;*y9PZG`x^5!S{yQrD|&$q`==HOq!{*S*d zC>Q73et>d%2*VPFY;wqqCULq31H$zG@VNQ<5WL;pwW($D_44P@`Mh5n@S`Cl&F*tvK%fSymQNQGFOUXygQ;a!hd2tR^)cuo#b3y;B~*y zOdg}Rbo^r;Az4Q23*AnGJ z$%Zk<3KLBI*bFYO6;sw%Y&S%Hc!%sRT&`yBK?kc3ro02#n;2@RuRw&sA2H*~i z3?uzOBS3?}C?#;o{lygV?aCynzNvJ}DIWzlv0|?UNzadNiiarnlKN+;P+t6DW|GPW zKf1e%vEKEA!)BuqJ1zFAP(*JpXHJhRHXkA#+gW zs6P^%o=tL4j#itkcEO|n2#C@JoWa=5zv_LsTWz;Oj`9^nR%erOx}}oSvX*{Hhso`X z>f+_cOicz3nUq3w&mlE3>`24AEkT{CK|*Z5_Z3*uaw+D8UQN-NCTEI0kF~qwOI-hr zcvgxFO5Yc2Pzs%#&}PD4fflE3m|I#Qhu`u!^YrTPw)e+kvj^^)H(^dWBR`j8eZ}nO zm`*dGAM*(2nztX^%ATU3p;Z!#EwF*5kN0}^Nputd@_Oc1MneuS2Nxv%+JYZqScjnR z^qBLfZ5r8Z`phHJGH3NrB|AH|bW3+3l^}F1nOvVhEkbZMF zUX@s2c_NSb;*xuwvpv#aWp%+GL%coEs?h`JRo#E;jP8vU52#KHx!B@PG{m-yT~mv3&zr-r z%H_2oG36c>oxJ^?<8lL?siuyfAlT`4gI*&{R#H_(5FDsvw%iDyhcwOlJ2H4IZ;m+g z{EcHL|8gN596@4DtYQzuicBrigxUhp@lK!7mTlmzO&0E#C3$^uiD@~WCRT$0ye|x{u_`L=+Q$C)+Cr83xCOB zl)1v9Vm3#zx!qKMwWB#znzB7;z!zND!tIrivm%=Gyim_7>gU2j_rWf50bV3!iYYoN z2K)XZR#9-_+S}r9ojXXNw=Vs4r?rDdd3mFhu>b2|95QgawLib(J^ zsa+4w609$Kakom^H<|dn2mA>&XO2pkO53wsOw1jvj);kgdH*sqp;UfeDLkuziSK6- zC&SWKe`yiAm)sA6)$}$nwVqGR5M+VG%bBE6P5NLkuLs#IOrcJnpYRr}{12m?u0Z!C zZ$?T09qKU670H(yBX4j^Sy@N;!8EnmSN47?ZLEk`KFoa>Z{iVVygZ04fZ7Q(e-Up& zDa8N`lrnQ7P+k^Si!Da@vmda*SZQ+)yaj8kd6pG1Vb3&MEW!k$`US9)F5 z)UTR3*qW+h-sB1jYdZ>*`LU>$|7McR4rWwq|7CM6jNm{JJIrFSEg79wgG}%uQTa5% zLc%WtnDdmPS(UDE2oK;iA=u$-E1J;yE|7C zQ$oL8Z~D#NTJ;@Ntwgjb~UA zU;ZLei!4%3%93pRGJ`=2+}$Qchae}b;SO8MXB3%S#ZH9fq$*2Cze{+D7u^VyjrjIL zWnly>Dk?!~JKYsmXr6*+I1nMrbR;X@%rjtmW)9BEW0)sbOLRMCdPl^I;01026ZG(S zWO%jNfC~xje$!uss!gaovji;8iX!UWfAF}v4(^bP?3M1^7RO#X$hq6h5`uL^4(Pj! zF6=~9fR>iV%Ln_w->{X>Hd<%}$gvv@N3&9^5?PqHP#0??1=cXg5>et!9J8`kR5Gdh)PB=TIi<78<7(| zD7?m+TgJ@i+lpE#nJPH8gN?q|AKr)K{3EXi{X4q#!QJ%8Dq21#qO(UqjVBc zLGsTM;#2n=JpF_+E0Uq2t{Ct;5;GNmDS@byJGel}&!jNtwgLJS<`pC zX`cJ#Xq|)afH$mce|JBc+~Bn=<9MZz%kwpPBH+m|5{Dn{S@KsmEmbjXp!1ibx*0mP z>X7j6rdDE`o#~hW4;Am;|C78!ofEqz1 zq^blKTV1i0qmB*^AEZ1ACc=(i&zL$51`+SejBLi*a!n8JQUpz6IxXm1w@7f-MSIlO zB^AR|YGqfiLe!JNf89$b^S|yju}C5>1L$7)z~toQTV1Y@2nul#S&ey9*yY%A(%7jd zWf9wr(Kto&B zrhhQt{qd+;nO~YnSws0u`69zL@FCH{hJ{9_K`$uE>aR8=ZBU!SOXk8*1y^>$mf+wD z?F&IfA#Fo)qlG<9mggnMbx#))hbBvgfI~# zC`KZ(+Auj(y`d58uO5nrm^Fkg<;XNtms2g_(swT|coat&s!tqxji>B4Rim^>1ZN6Y@WoU^u!t=c zq?1HC?_D8Ru=u`QRfAR!35V0dUTG3v+Ubgbf~KsX z)3;CoZ}CD?M%9uwCe{o0r@^>fy%)aNHcaq(=7TYbfDvxg?dj>6t1^*z|4TjRz@&L) z@X7*HIYh`oc}~BQ?uxY~)WE<>MR4v;y8k)Nmc+G)lCyK?Ntx-iE(Bh{GD#I7vGt;xa#g}rwjH_=GbE{yKV+?Nwb)zpQz}&zh zsvXIQW=x93M{372mu5UwY`mOICXnXD|Et9UD>^ndG%F1QPPY|s!5Q7#szk*v?XHg4 zr75arLxg~6d@RzEV$}L+PiY^9^Xk~xtX6lfx5@t4qllV*;;S~E-@-?3b6X6RgH=mC zD(ogoZSN?IvV9#MM;$!_8AYwDtD(R*#`o~{+)s}n0>7(mXn2zNe>960y8o_yW|U%C zaVdfRB%p8>Z!7LZ9m(7b8I>79${%HOV+?(OKGh$fUgL*9%;Q&RS`-}hNmeN=qz-zVKPXLloc@g+S4nb7>Wsc_upA z^(TG#6<#j_G94P86zJFUOZ%b*N(=6S0RZe7{bRP(}==LE>l?2gvs0~q6>aXVJ7IL^fMExm|s{h<` zGYKTGv(08N`ozS-B0~elSVD8lqjYU=@jK)On%KDys78tdOb=U30Ts zQZ9OY=u5U%BU$O2`Cw)HbD%#UdZ_TY6~*;>1Keo@y5zM=X2$dAK~CPsp_rx(Y)82z zH+$7}-0DiSQEtV*%8hO(JV26!WN>5zbSmX8EEMg(^KwrE7Jw=A`AAOsZz{_zrbQs{ z9lO@SQ;l5uhvUzOVA?Ryx2GY*>=jX)dCP`q?lLPKMnfWLEvM6q3s|M8y3G73b2RT> zh5Fnr%!aDj{lTGks@X{-{BK>S!(EDw{ZLz~iV7ljQur*MjmXRv=(NW_NtoH8@g)?< zXtV|T{gOZe$81Ok2#FMC@)FhHCR18wc> zwvgR@mo%qvS*1q~CrV+FVK#+E)$;O|IJX&M>T?-%V))R54JKnuwuee+C77amitv;Y zU`ivI{kLT)k$FntYg=Q5H)c^ZEXRg6yMci~&4oJO_x}p6lY=N+@#GF;hMP(|2pU0( z`_+P4!2VQ0hDfiln&XTnOr=Lbu-ftZ7@;UjFK<*sKA*CJ)EQi(xkAWJvT{N;{%qpQ zKp6PTj4%C=gxwQ~m>WS0>oH&w%E>-?M(Vnb-5#)>Zkwq-fx`o2r3U{E2ucnpE+;0e zdtEVr6n%KOpcW;w%Nf^ zFzd_xMIGAagn=XZ#%7xUOr_d*rab1vETIvOQwC?XfnqZR>E5pSS~oLXc2YC0UIALp zR1>nqa!Ygrtw(Vt%62c5}SKDD?vfQ-PsF!1#t+L6u{MT^a@>Zx~XM}h% zrR!_!_!h<&-oxtwhifQm~$d1KCLI2W8mv2?(ATb}{1x#vBZnlVXwWF}umfc3io;-%ofn;0L|rT8!tLIluG+m1Xky`Fm2z?r)a~H^;CA3^@cSly zvp_2_{C@fBB43tB?s0W?mk6uD)dOorfwkTGs5csdC`Vcj#NU?d@}QXD6iiipY@?%v z93h(>T>>plz73PGNoG8V3GM#iE6QGS?KH75p{m*)7{o2-Z6J=_lD{)v6t(X3spabH z%T#Is_k|3k&+NFTb4{nWIWF2LU6B1RkF?YYCl%PXl8a&`0{C8k;BK$%G&MEZ^3I{N zdnLFU?x6sIEaJ+_NtUMj#XnIa+$Jei>pi~pQ&BusOOG3x>!pl7bv`w?RdG2!njzXi zZeUo$K^lkYC#VN<$AQ@Fx1l)ewou?5&B5HcQ>8nrlVed12h<>9{P~k`A7FX`QzUbE zt*7#c*mvZjdmW^o;YG}il_kD}$3MeWK-JN)Ww{u$Yb=vhIN3=$2cQ7PH1uCqeb)Pv zv=oX_FwOR>5au&iNuLzxVLC1&iKL^k!@YVwVJ>(fVgUgGaM&DRN3XvQGoBPII8NMX zXwLpRlY3odxt;Df0ChfJi=)MwT5gQ@>kC_=O*U!&kb|T?2}zU%TKY4IM=ry*IzTY) zeJ6zHa@P$Gg@Ayu+k7?Nily*p+W_)}<7aa*3ppb}UTWmXpju}P85m9TR%jIH9_hg28`^C=S)#mhdTbGaO?XI2pKjk*6}GP)&pQz|ipKNN8*t9vh6yoS6`TsMQ)1!|?zOzE$ADk| zgg`=*{qKnYsNRccA)Qs68uU#9`U&|c+N8ZrMN1<&cP)k0o=Eqz10jt;CprukBRa`X zI{i`J5-Rp0tKe!O4dgbQ08unM-tPAJ2saaf)^5E}ROe5(7i3MJ1AGhw%X($iV#S1P z4WRESO2j}@UR3Y&#raWnY9Lk({2|f#jbz%#1C@xu`IW~Lsqf)5XlPJ{>#q@;49k7R z+h*9Mdq}@NK5w>>e5J73_??Hkn; z?Ld=PdL)Z-SZVf~(4v^6@2G{KZka|i3?8{^gaE(yzcS02vnZdz zH&V~+xarU(FR$pL2xOn`C-^F33eHd;ls%MbFJN|{j;&idTR7T?LWaj5IGK!Mxy~gN zS2>c#A5Q$bkGzKX5~+Izhtzuld5D3Qd>6qjT{-_s)W4Y%cot)!c=y=$xBl?&$ei72 z{6Z?+KBY}^rj(BpTvg}qwGQ(tOFow}7v%iZP#EiY+OpZ6r}a;bYL;3KWO`ZLm?C92st z0+q-ooX71v&nFUZX7!j3@+$~@i@o_Iwh}Hko0>OdN0j(Pb6W+lXm>(@H zr3%N%_~#kr=^iRpna%F?Fe#LtFDSlFON8ibCrmx#*c{ zPms~d)8;0|Xcd@U?omzP=}ZVE6(te|ly>4en`e6w_~N&L^~j;^dFcFrzMRTd?|N(@ z!%Tsc=u!;Zh`6Fj7Y0|ntzm#BWuu_FmbkyRJV$jgKfa2x+S?x}#TW$7e>~C zn%cOcSmXBUTsnz`#~M&{Q9nNK54G;u!f1jj9I7f5&yxIec9&=1$clT1mx!AQFZ!G%18VU56NOZfGpIJK)HvUT)xgmC zW>&mqacve|;u9xP-7#3n$n))i`h2x6A)_5@AMa$qEHD<1bwnd6~UzSxrm!ct#y*y zbLI5pORpgN1~Osj;M@)Vj<&ccD#W8spfH=H&w{#shcUQ7<`XoqCHo!*X45rD@7u8r zaa5_oPu(~kccu%{s*m&O+`wVGvD+g}10(dK?aeX**BV_T^}Z%7MZK{^DjKkieEmQK z=?1GLh5G+}Fc7jR{S9b)HX2>P`vn+4zZjSmn8j!?oxLm2#CWWb+FKB)-*C0R#sL4U z?LxQrN2N-;6CKPIBjb}J!x4oXX#`Z05G0wh+vKFu|@W0u(g&CQy{fRx6s!5qg4M$ znb;wjB66;dcEiu>TvLB$^xB=7@c49E7}BBg33_GbgiA`qFc-bOgKR0m7T7SdiPDn; z2s0P>5{R7e=uQgu`gw5K7Al2k^b@sSOPr4Rt#&6+{W}^**t%iBAK74f=TXFh@QVfu zNxj7Tl>I?Oj4hWn`Y=@uE3ruYagL*b+~&ZxgfjGCa@l5C6JQ(tk7Pi}h86JW`{83< z5(U_SE-bs}`_Ywip*SJvVPm5COYmH4mVs`LaX(hY??X&=Uv6RSef=;!(ggzJ_|?D1 z*JTNCR~#s6^x^q_yh2%o=L}Q;mz8(wAZ(^_+`2xeI)uL`To-Q-ceXQq;o$i!3-7Rk z&ingO76#uACD5XwOI<(REEE>+W|VFvC|}Mp?kn^V_2@zFCv*~(lpvK7#swezQ8ZlW zMOP{Bn2JA~{8DGSS*n!Q1L>}Fbh{-0^LIuudnK3hO9fN)AuY74+8zR`b@6qgy=Gu@ zV|RM3LK<=8z7zL!q9b_aAqQh&jnYu6*3uL=U71@Y_WVT{3YTEoz-N1d3MR*o_?<+_ z4WwO_5UzTp9zs($S&z3AcbOW86yV62 zJex1FpGi6n1s7PF$DoqOFQfqDS4!+>w9$b-nY>sovjvqF*F|#n$3NA)6lQZTwttFB zA$D}B;$~XZGZ;{)H4>(3u@~?~0s)UhcKoM67_>ZP#%UmibKlR*iJDp}l=NUw-gC(b zb;>m=Jc+>DpgT>_R6-!AH;(uGDL(}C{n=(ZBTs>(NU{G>H;;E0gy$(>Vh8 zcXxMKia)v>A}_2Yl1)Y>MsI)Y2}{782cJ~dR>jw+>R2O(Ff-yQ8eFSIw8TfX*18%8qdD1r0#cQd*ZMjX&n*mi^QVl*gbqKl>(XsEa1 z2jam%V49ef_?Wi~elrw03E$e(THhB0Ulh9D?k2B1{AHy*97VxzY$IEa(*I@j>U_uQ zu+8V&cIea1(~6e%*hM7B4KlJ$?Rdfblje2O@tO-kr}c*DtQGtF%n=Zj_+RTv@jqL` zx8>Wf5P&q{f_1K4TlEw*k=c3yN&5s;S){d#uEos8ri$z3ETv5Bh~st5&vY9KW5zJg zjeow-4^mm$Pfe-~P%bT0oe7L$jDp1UjL|IL(r?(t)di-=$v;*Q)Hq3u*y;31VH#>G zJi9IA1m|BU{+^1CJ~ThyFna%JTAe5+158jK799W)-h2sfqAHrx(FC1Kxk2RgY-Ebc zl_JRE9!VC(h51dezDJ`mmz3=jjb9tdk+awHluOO9YVhL?cf>l^Z@9o>6 zDeJ=qi%Jv3%27%o3$Ol`0d{w>7c8Xdt_11^C!U{cauPMa;DO|LcdYB=A!x}uk(gwYR8$`mJEi^l=!f-W{(sDNK;e!Tm9 zmSxUgB503dI2utma?vf@GzE4a;Zhe9^xxFd^3y$Q`JdgY1M%g8UC=tCm6h=Cm+u2O zx?-8FMacwZivhfb1gEmrNP{+bi{Ci|7WsaqSP`_rBVZ(LDyrC;u3LZp%(Xk25EGW( zoRC_AbvN*AIa{1nUiL$BEgXU6`~Vb1IiXBL=g{jmYOy&t+yT=9GG6PUQ=~UnYkT;e zsi|R&s59ioJ)v#{4L2f+6YbJ!1V}4h6bQt z9iV)}LuqJ+yMZsRRx;HVLc+4{97cAkE3F1*V)=uI&xuh?Ly9iFsFuf}t z<>_T>JM2nu+CP+TSH9MgeXe?>9r?%Gq8 zc9zqy`|agK$p8K@K)-+KYyuFlTp6z0K{ZRMAFN-D9saOLXwR@L?3+e+(l9cNZ${3H z%V@SE1`NJOYqE&HCv3E|ILGq%-@^!)IicR(-ipXL;eSYIfP9qlcSVZtOsii~_Wbwd zDr7eU5U|)>WF{Sxo9!x&_fsc-HWF~Rk4i~w@fgl8{MvQfQQ`DYXV62tsM-X(z{L_; zoW|j~u8n^D5ZT8`t*Aq z`c+1|kXJS!wS}Z@W_4?`A2OY)3rENd2l<3QJhvwr8lto5;Fp-J8ydP8Wm!sJED~vQ zUR9(ms0v2FrO@_FYpKt3`}c1M4mG0fn-wa|gxJu+ROu*Ri*L>D;b|y))oTCT91_Eh zFTm*HV9M?bL=vzT2(wWC$x*=U3b&jnjJ`qWEg)*PEqp6qBNfnr3{{61k-~QRfjM2=mTxr2>7MioBT{mxb{;ZL|{XXjiP(v!I5e z^89>A_vJIRM%{-{1#=?D5(rH^1{s{6yv6_Q%B-=o^+!#FGCEC5?zTzKr{= zq?|I37Mttl^oF}|ZdVN{i<#*(oZYX>Qc6V(Yv^;>Elo=Q!_C_uyn>Z-C@0YCI7BKV zWu%^OKb}8SwayCU;|vR%roYyg9~#f_lm!vMV`N6vP(Uy`k1*P#Ozd-|(?$OT2;zUO z{RvQ}DgqgD{2qkW;-~=S2lWGE@T#5zN9fBAGrPJ;nPF1*llEC{iem;5=#$RsQm=QO z8~)wZOLj)_ZabCWZ8*khmce@h%lu^7C{OUb2X?v90icL{4c8jEw~-vU)A5#5rP8Kd z4IvK&5lQVGfX}DX)X#xgGu$pit07DFmFQ`rW0X|XsG9v>Kd>{#JtyzwY2asWNhji{ zz19a@zo^#t|9T`TvZX&X_4SvOUG7tQ&zQ4(&I$QH;Wk@t>-KgP_|>Q4P31L&*M)?H z80S9xe|>tR!|n#3sFnSH=!ZSH522rbmSEGBh0xb&7QAPC(1WKh+KkrQFkN+Xb|22z zrr)1*Op)974U0p0J+7g;^lWT!_q(%-+1Npmr&fsH_f*L)d1Y9%UYW?P#jHd~VmEt1 zGrIfi^>oBk!x}ra!D+#!DTH#B&=LyMy-hL#3}{eo4)&8B;dD>JO~w)iTVh%OcOO^l z%yfa+?CLXFAyFAzmms2~j2dzCL<=1`6Na6pn@CyBmeF>QpY)6lV$vfU zL|q@BusH%k5za)dQR(RDxc_Zx1cq|5TIGB^3jF0}Q@Z^bEiz%dh*WLGW>(R*W^N*8KBAr-po1Y9SdUb_zS=39 zAbhTD^`45pR!xiNZzCXJdl#tVw^b5JnD`CBTs>2Szo=k_t1Y6sogNy5WoFKgWax9F3rNH2egbW?&Ik8;s!Z ze5X9Eb!AtOh%?KDi#Zdp>UxX!-`5%^qZjE)I!zJ|4vc(%4p>D6l}V z>og%cc0F}5F%fEZe3=JsReK1Le4JBv1;04)Ao;?=;^03^DtKQ!a4D3EqaC>H!UO>b z?)ptuifr-pjB{-c2JHchh@JKt<372ObHB=zkupIU2^smkZ=vvcT801&kD+BrLNTuD z?xqT1tpLyX6vNmgw$re~_K0ZoT91!lvujO(u)W1HU?zm@1t=i!#g9S(DJBwdGTTHD z6IH^@K8grK0q=nOg9?w!oCwD5vagh`o*4IP|(ADeRQM$KBZAsLSzm<`P$f$G4{VB-MI_SuspVuf%Jg)eF z)Ps`0S>aIt&jKU6m=kygcLSY=xv6#V$pPoU)6i215mLgR0;&vndvNx*v4McikG5J9 zhGO!_FbBf5<*UhPsf-L9;_O&BfBU0^>kFJhswOnfJ|E)NPHaaVH5%G-o-36xejW1uoTM%dffT}z?7zy93N{J#!YiK{ z?~pbV>|lWEySXorgL6j8-WZv+pvGkJ8!zYkh>qYoUi^UhX`jiXO^lS6C!Y%Kh>C2x zZs^4wa16=tE848Z*+LJczj}VLN!b#5zUO%!NA&j#)o<6=gdi`d!b&|F3Rvy+9;jEL z2C8e$OI!~ToxXe0K27<2f&3H~Gr@W!KZATH6=Xm|w$U7jB|D6Kh^dZvu9#4W;OeGO zV)hVIFhyE}u3_TFN$cd<=XF_cG!ywO%4rUf?`j<$41?Wcv%}HGx*&;Np-!*pZ#V&S znjX%koJ&f@(-(jh8H>k9|6BeQTod|?&jZAdujk8Q;~qCUaK8C}{KqECZ357?OlQkz z9DRPkS4X16{&!-Xeh*CA+}U;y@4s3c0Qnb^-o*8m!EADSI#0@GwNTP}qzC})LC+MR zsDf`$S*DUU+fGb-dS<4otNsfECS0zkNYX|XN%8gwco5ARz63qT`c!0Lpn9kvM#GFy zBtWfZf6X5X%&ENaczwbApukSLBPkcb_}6B!BTvI1@35WR84WsO8FIUXrdHt0u(cz* z(Lhh^S$V91kGX&hB@x0L}ttyQM5{Ce^L?#vG<^A6a z>Pt16m`Q5K(Li0gBl=C|@YG1dg;RI)#<_Z!oO}juplzDs1)rMsR zLU({s-1tNrh^(eBB>WYKuXh9T{esNhtrAUgzFIV|0SO{>PuWk4BKKaOMbGq03aS@y*(?CHYXx%@8gZ% zDuY%t5-gzT@O_LPV3~`iFQEW*b+a28&`}Wa|JRjKfMKyq2;A)(V@vP%IvHZ-q(x$J zIG#jBDKGhzFtEI=-iyP)zz`V~RRQd&t((i6eKbIn^;`o#@SV9*`nnXJqm~bP5*{*} z{(<5C__$z$y|p|0;dfklj2;ls9-9mBjGe5_H4!J`koGgUc(9*p2$oO444eFv6bHW3 zol%!+5W;MzyD=fHfU0Lh*MV}m1wU^jOpAe_W5wj%kCZUH>Gi8GwRRc`hmV4lJ%^AH zS7Kis?Lk*W_Tr9L#$u5!P9L(_6XMHuQ&O{oB(RNmNW?=+I@Da)lJoRgt-9l!dDZGQ z?MPIWMJy_1$5#){hekg~s2+H~Dtf)md_}1L`x5`@i`097(H9yX1Y>n*PCMG||61B^ z_iY$J6C{t$X7>lqV^A^jv08b0Q@__2dx!CzzzkwSsZ*2gnu{6TWacUHPoNGE?jz)QYh(Lj)q}-&HOM$uaMkyEZu8-K z2$x!&qpU5XmVB&NP+1&NzBP5XoNiz|^ac-dX&%Ne@ixUQ{hp7tpYDiV# zBDS(i_U%2r@st;^%KhT=wwmA6I`f#HmGJRh_kH}H`4=FC4%$c!^4RhJo~wRI*nht{ z6GVJdOvNQWWDv%|X=GH-OJh(cdlAe(zeAs(zN=C9st@G(i)5q9q^KPokQ?;y@DR|W z^5bvWmjI?}NLm)pr#$k{LT@xQj35V9&N77${T`ozfOl{##dGRF&Cz*WDujeE^O(X& z?)I$8n752J3)-L!ir#gLqg-D+%yndO~h=eyJuUEdqCE%WyK`~djKk4KeW(1j~W}(qnLS#uW|`EjQLYVtjup z%`p5K?-L69xK)x*9!@SPx}M$e+f9gHdXn+Oq0dQD3Kp!7&pQscaeY_7x4+i1i&CK8 z_Q3cQOv9u)6fA7WuU|)-*u8>^;Nal9gw+0mpdYz+J76ao{!Vv0v7}f3Y;=?TJ0PB~ zur7ehB$}J?*Kem@@rl4&opYp<=$j((#&5n3r|>Fe-!N*2v|X6`xVTF}o>!uOskw87 zqDKx5E+@Zt{?MpZe`FgtE(Z#N24MWNGk=jB5kg3O%Y*N=k$&%J4~7Hz7Cu{qN0d^RfbGBL5Za2Z=b)Xb}MN+q&J&SJ26aAuw3j0y=PM-eD!;^K?o;n>co2L&G= z3_+@(smdd*Odr^#$c9JEW%BQ#Y~h*%T>{vONch2`qEi{o{_MLOmhGMnmU{}R;Z-Hf zA8KqH6^qQriypP)*fCTmM@3AGh*2kPA}LvzGtDixIoBoXoS@i}JYABJt%GsS=nsCm zoX>DLj2EP%48*vn)5EUJ>4NVb>Ug`1-iAn{m~bDTx;^#xnE2N{cxg9z&h{_QF9{GQ zns5H!#p@|g@3btpZ9w{8Aa*;wJ;q-jlKoHV(|avVO+%OlzJ<5`7D&U(7_}G;zeyoA z9oiRE_;J{i?^X_{GM;sGfG9RS?$fR9G86bDTaGfT-ahiXAHrVhW}&_#{#ty0#S(I+ z$$^-YysasMS;hf;$zUPjafzr8Xd!}F;cJmpeB{^kJ7#--QBhDx$|b)FE19nTA{0>D zBy!m9#Ake+$+g2*M9`QSx}40cwVL2kB<9gUf)=D5T%r*w>FI=-_FHQ#(nL>!t<@at zg>%;J?1s#fI_)n>Tc$|Zz708YDZGT*?@bByO;H*US#R>BmXr#Gc ztZK~D&l~?e6)0~bOQ!1|a@tg9Xk!gQxf!BN zYPxH{JpVlaD_d!dS&Es=BO(y1ee#qOO>}JtmaT)g|r< z>>wUz?FEJdiS+Hx53JiU0cr5Zu|BuX$VBjt=TipAIlr4IO9Y!G?+;mj6(s%`4;2M# zWI+MZT~~wex(djotJ6Kk<$XLkxpuvKfJd!oW|TZXnt5n6uca;@6fQr^uaZe7J6^rr zW_x-yz88mNABr_6MFLz7+x|UJ$i3S;Nz+cFNMjYp$ek`iMoohVH%QLV>W(Nt>|l_~ zy8t+*D%S1&H*3Jt&f0rwL;$DemtZU~2lXh72qA%AIeK0q6r4!q9!*tfZ_s5RCG zlX*e;y*F8NicwmM)XI6psPjdV_O}8Hujw6$@#L7}`oTP%kouqh_vHZl_UvYVovq;)XTM(|LXKK5@6g#&QK+#*W$NU@g7S*vD3<4EvmrZ znxK+=**h7&Q!kFb5F;iZPiwv4v=^%X=AD$;QYanw&JEA_Tc@0*6PpU@)c*WR?s~p} zT?po$3F4I4pSqbqDorCxSo!7+1JGU^Q1HT|vZi8=_ZyLKi5n@+w8_)gi~|jHK@FAZ z5IuQ=G)E2^9+o4zY~%@w0>HMIiC)CA{2u!PdY)*`{EZ%H$HJ!-oV@l)U3dt&<`Y*C{N^=`i=;u=c$gt9AOV3Oe}dUkSgWRBw1Iw zu?f`z;eMs;Q;?OVP~KbyzL%ol5VJuxDI5g^cQ5PY9V`gIKcOubOXGH_ zSn*@2&6WokZrU?w<~2ef3z=wOlB!mS{AUHIlw0@@ltEnWF?YxP*TE&@LZlu3Yt>eg z1<(-AUk*7$s(9BazDQ%-jhsKnLZMMZNrr}_P{o%$0P3IpwDD@~CTn;-VFArEZGiYG z4Y)UMd%R7+UbhqIqIU?|mpdw<;NmnJ7+6mF$WSx+}97Fu02S z138<7`hphT!=L0V2pq?eAYt8)YbqEc{vMC7q+kv5C}0z^rpnkbeuEKSQzQHHw}`a_ z?a0Md0#YMoWY$`&($n`^7tC#CZFSfF^>wXOC{z#_r)Jt1EM4#zfez5M7cyX| z*jb|prlX4O_EWulTCUi-7WkfETUdG;*S=UIDM?~kLf%wgAYw5n=yZJ(F+X;7IFdUq zIXJJ_m8l0;{53f&!&VZUZl?=x`b}w336v*3YhP7$MKd%ngabf}e?|bqq?F2$w`CM3 zs;P*}Ycuy6G$dzz)w*;sti+CeSVzQT$zYGPQ1RSjad5P*Ile%Nl>ewbxPS*|HSw=5 z8aw0>wug|9h|S`utZ<%cuDg_kf*n;No9KTJ86m*U$Pg*gqr4+=_mJx;Cj1R(i;Byh za2sesTnJ%A^7-tR!BJslbnQ%8;NT{>IuH;yyZD=U3KqvI3eme zoS~S6k`G0m%+@WaHBiXI4o_ZKXLNr?R;g80#1tCLAAEE0_Nyv@rbC)66Sk`8$B!Sq zeX@H^f&W&&L3qD`h^MyXV+dqi?qY!JarNC10C(_xMx9-N;m;8klKD~+-F{0N5~{!A zMLtB2Gi-)*_Y$W9qH=R{KfCZ7H;*F_v4v*FF(z;klt$8N2AAl_=}F^KFPI&-_+S{1 z@j@CqFq$`XigLV+j#iaKQv_VMR}-3LpB%*d?!4RGn{clBuKN4Z+SG&&lK|zS$u;TD2lPKAu8ToU3Y#<_VS9gsno!1v zyzbR%wdU~3;jOi$J5&{vA*!JXYiQ#8`}=D(ztC3e{UtS^JQYSVi1@W6pU)2~o5m>a zP4k#t+85j01Fu$iz1@YmZ?YX6#>X_(kQ10acYQFH%d)TG z5KMgLdUbV$EWrW+PRg1(Dqcv(48acWmH7OyyKD!21u<@IS=>y5f7H^U)MgbSK!EVa zgPVaE#NB;#%|C^v*;Q`H9l^M9>bT6%ERZEy#QZSVh#E(y)qVs~3{d2eRFjA2A~&WG z6kCa7P`!5^)LHF{2k@Tdr=+!?8M5Tq^M4}Y~e*7~Hgm zDPv*^{mxu`S^kDg^X&n{ULC67t|6#Ne>%#>arGF!xMAEIkdqN4jjJ6y*PpX<2yd$j z=5A26vxpcBq;%9<%uhMIByu)cbH+Sj)C;eqvC?Pk35DP$%uu+AZ)dlNqDmV&t{U05 z%9PKFeW}SVJh6uoth{C^3tp>du{`UmO5E;CgtVLWSQhU>Mu_Cb4T(X$E}DYzxL^J` z`k0A0H(y4orK+I|1Mc9w141S`?3bKCV(j!VR1z7+*Ze!5)X6YP=QP za=Ot0n=Vr?%}k9UOSX9HR7CN|Sk1z;P=FabjB(INzyrnV*H2>Urx|2V>s4m9CzzQ7!MA65ie&v@{SQ94@bp& zHjTlf7|h*^Rs1#wz0kc&|HQTx$-5!WasGFxo^-#7BNO@TSuAXNh3P;TJz5GxqvG1` zXq))#+P0jmixr1;h$}@2A$0|UD9AQPTDIN+2St^`@V%Rx*&5PpZ-6`{DmaNpmlJ-^ zCcLgQ__x2_-Tj1%6R7jzC)5o%*uV9a4JDN%VD}pEH}Jc{B$wX@BLouhOY!RKyT!nr zHt{Se3}II=JdRzg9`YTrM5*W7BsL=iS{DDq1JV70hp`VR;dfqebrLsaFSVrmz~CRa zisGCq4p!05EPy`eBHOz0s@eHJP?WfD$|+HQm98e+E)!^yU!6dBcGMS9+0-dbO?d|mY@H9R>ABB|dxl^oOP`f?Wen+grOPaqJ@ zj@4(BZusy-H18TJ3ZjY$v(G>3X{tNPm6ITPfu`M?1lZgi=1_qs$d5J!8AA>3=BEJF zEH$Ozj%x|OobVH@wR;nr*ku@3H-A15Xr-mYPA5L@N?pXr8+W3L3Xun-8I?EJ{_>ZB zw1DilYHHZ;+b5+W8fsh>m`1eh>bMsjMJDql%dagF8M7F=S>gFb&O?eqpqPoKg7s}& zb?r>GhMo~nf=brL!n4h!g>&cE=a#S$rc7pt*C55jyhNzK@~nl1c3^S(1c}T`BGOWD zhaZ0uN%azZ#%6C1mJW{w&)*pf4UK`sZCFWme?<2BA$F>Ii;OHs%L=2}!YQX4z+8E2 zudQ!5wSgxs!rRcr6k8q@;Fq25P$biooDh3GV$*%vV+*{}ONAyqUyDt~3FQ8kt}SV1 zOQ2`)!-Yog0&s|OqPfV97>`elYp+8bC8j0DLVaHuOimz!MI^g-F2%fHI@+sa5EH9I zyBAwwl&^RA&4H8}TNWD*PdBVp=dcIQQ1yM_E3Qvtb_*&n1!o}$ig@~CbF?ax;!|?C3{DTz++zQT%;>& zC#~2h?_u65%j+tRS%NtCkoT?X>oe&Ezv05V`NoqMVR6ltgw$2VOvUvGGM%vJniqnn za@^NC_;OSx#$l8Uuz9W??sl`^sUjyMih$W$f29wawnKV7lor$V;kgghAp7xPH1%b` zgFbV_y~jnCsdZpUC5CJ1XYPAP-KL=(tEOoD?bSaXSJKyq35R_*!p%lPq^9+gn%A8k zl{$_ZoS@CtJCvN;Ldbs2M1?n2 z(K{#X1a*fItE>`)ujdGuN@@hDya5wazt@`Rk4zA(pHLSJ-fkhnw<2o0=zYljHuB43 z`rj-7==W#BBB(=@?bI<}x6G!Yqd*{;7Fvmsb;D$}rGe!wctN^veb-Y7TB$c-VsU8O zqQcD@#tsu(p^bUJ#9!zBPOe~=ls-x#+4Pr`%|i{+l7)12!&lp;%R6?I8@ zk^Zw@s*o+e>Rt`_ara(80P7naY(;5J7FhcmUFpd2WOnnrIoaj%0h(+2@yN7|rVfq~ z^JU1mgf=JbQ9{oRoQ4#&kh>ao0t-YbO(U>*sxHZ&9M07sFFzu+h)-8n*Q-4wGn?LZ zLx;$D5&w>RMSXeys+UNLc6@g{s(AkZ23fkKY^EmwalOr+irIe$?y!Y)TES{KfrkobWP;)%&pZiH8fWej?)wEm{+;F&;l>D;}$pW1D=nW!dGHX z-Z6UBrRDC+nU=p1F?GUNK=J}#vivPnCbJL(0y8$z=?ncMRjy0|!$v)-VjN&It8smp zA05F~ht8bI0=IFFQBoY6>hmOgEAB2lx0aUomMNE;K{6TIRy#@TO_Q?O>yY4QeUDdX zXiE6Ax3kJ7)j$4=@kg7}{*yBUgQ>^LBDOiMg|Gw8*)OYZ-zU7yR=b0n^_1>zz8@(% zqF;;e`#0y2f0`O>2l&)R#fz6+InlB|uXu~)D1~a@YSM=iZ6c*u-i)b$@ErCHC z#gmxcmW0Z42dQ-LWWry=Pz=d4+zx*I&{7afUKr;R^0>poV#JC0QQ?d>Pp=|w<|Sqa z6K0x3hBwNwZGM6~my(nKeOPh7>7Io;?W3LiiLD;@&h11UY>A&zcs&j~d!&LhcGp_p z*eW*PgY@v}21NNAp%{O!rJGbD0XME_5Cjg34auQzEvDM-B&jhJid)^YCEO!y|Ms_1 zQN(s^PnpzKzrQM(#LF0o`|fn_(GvVn!^RK^_ae-8 z3gau6&ukP6k|Q0w#7I=q3B$cT6rD@T!-E?*cJeDzxY@I*NzGQ7)k;kZ=x7L}vk~{x zK_R7S@j{w!6o_snS%(?d5UF9{=5d*U9?6gxres4agWv`5c_DE8dI~P>XRD^8Yv^CO z$Fs9`kw%1KAgbgbb=w0$lIsq2`9uCdt|s}~VyaDqc#Otk&&{bxzC4XtCTfZ~IYUpf zOlW4-b`5|LT6%33l60ZHGA7>{e_3_E9pg0;4m)$^JzxD68$;FqKPUhd`rH@Q>PQD1 zga{XOB-Ue2k&;@_h{4T^U_uZ! z1y@`Eo|fAFHP+(Eae_82*(ux=Le63@F<={ss;l`FCjHHEyTO`liqYjM&O*ThQ~BBR z+He@_R>)h#`_SoSczl=%#pQ;5FcvR5xpipnA`M@n#!~s#SXzC)PcvRQUc`5ni^-(Z z5nMT^26aUG?#4heL{e~LB(yx?@k0SrQ8YDKH2Z(lxhl}}p%KT!%g*N!n&hcPxm)iw~ zzg7ndfm$4cf_Kb)EY~%-uFOwgH~Pk4*{RUwrQhT2I0!AZ_=X>^mQpDeE-!ybnZA~A zAJx>&MdPv%$;T@Wy!+MfzaMvZpcVg}#2_F6>>wa}pH+2%j=sP_7_mZ-FcleGP9)M8 z48_q8b!Tl^5jevHp0P!njC*2jCv~6R2+T zUdvjAbYuXDG7A%V5iO3~X4UF%yy|uFs7S07BsP3EvC7Q0s^VhOcs%~l=u{G2Jh`94 ziFAATOlB8r)ai`^cY+vlJ^ke=?QWhYrl5_JeH1z} z=lU2FT!<|PAy1xvc%qA$OYn&%8YPDL3VDAJmB-SSEAFO&ppilgic7m%Edk&moI2Q0 z?y^F8M?@~-u3#_nF>bYtuq5M7O6qo=FNfTi_uO za6(115sAL+@IHJ$#UlQ1TRMZ4eBWb3q5ivgEgPVig1v9&gs~9Ip!Ub%N^%0^?|RAS zoH<4J&(hVDe-0i}t2UTiaMXf6o$beI8Zk0C{z8XYXrxXY2-if&{AR$V+lt{op3Z^y zxKB27jw+S6je6b@vWP-p@1P&f%5M__sEnM662-rMMNoM@hL;UoZTDp3G)~^0{({Gt zo$cQ`LX=k2P570tA*vvav+i`X#&bwM_#EcE*%*CkX}T2?o=StP)X419_yiuiS-x8Z zq-lvWWfHan`zO;6mLb1Q)Xob&uhush6cX`PDOyo7LD*N9t}_R3)@}L{kFO13q-g}R zaMv=vSzXf5+=_Um;(DtoebbG)xiMIU)<$iZg7kg$V!ZU~4euJ7+>g9652N@y@Cyn7 z1|mkvBKPugK*HFVBtgXeZ5pFAyyn*Nk(O%out-+}_=gMiY0(70*jHHE{)G0LJup#j znN(7ZN4`UiYE?7z2q@m8E5-$>)f0V*jZ?bVlbG>x(%q={ShXiu|Ghw$?*9po*Q(SW zYHf0mSrkUV60d(eyk)v=A@yOzNjA|^)Z0qnJUUY~0>g1k6(uL3EJfmOu6ro$SJVMj z_urjK4-Oo3+nP#CJPkm};3WUL%$l{CktQ`dnXsj{YnDtgIBwYFF5K#kzgT>wkvm8( zin2K!_6I&CwFnlJZ8^(K3M21QMpZ@_qc-sxR85mQZ35nqSr$}E_V}UgJXEz}-9?Ab zb(q?iL{EO_dbKcTKh)}A+J~d9lLpa^nI8Ufe7j>F51mY8D}do`J=$MUZ+vl93EGik zRd8Sba;rg`|Hh>~J$9Ag)%2j#eL$C)kZrGR$D6d9nX@S%`}20usQ#MKK7-I@F}%B% z{O%fKfc;hWyMJIH2vze@gJABd9xX+$HK-^Epf#5vdd==xLR-Nxm@yb%+{f}VL$^#L zJCm`peJ!gMl~lz1ZU0;8ysUrX`oeE7vMVbRV&USC9=)(HUKDg{8oLE7+5b%Y}2I+o?0ITi8kn%3fzut+wUUD0kl`L}qVdpwgJ~<^O zZ$vOSIM{C-vJO?uwGWsR-+GtoNtLWRZ$5hU=KH!S@R@U@JBf(mUT*GD%}0Kg(J04!ou zZCpa0m5@=uc@ucT+A>3paS8M;#PAy&v$!lT`sFSmj|< z+}g_oFjZ1=vct=m<7v#b{E%{Zb+=K1_bYtTPnRsDog5Jj z*VW+}FjVD$CTTn5k@$Rw)WrQx{JJzdcfA&kve@+p$3)sqK*sHtTy~Vc zg!a^jI}Ub<1hrBqJL5b@y*oiZ$-^nF^jJ`s#|Y_Qff?5mNFWsN!t+Zq`C8gVA{_Y( zk=vKw(jltQeA>e9HD9Umjp{Yqk*OqWy(z`fF-a{z_M&`Aw9GU<}o|uqQe12RQ zmynjcucqef_aq{!3C8rmJpXAx|Jcg`Dd((XaA6=GY4>Z7c^UQIiU|P6Jr&Z%N(j2aW?xcZO-7m}Ca!MC@=8cjE~s>4#rJUo&3xV={%ZxQ=i>~e z)PVY1<{GsHheFueNPX=lEAq2*yz%8wlC9h9piwcO=+@ea53&@rjc&W}>Hq@mU9CQ^ zGX$8vynj*y#OW~q;`$mM>mFzZy42&CoaE94wnSS~z<+~qDUn>WclU?JtTtrw>_{;a zFPdjRLgDpsFa_&`=0#h$hol*V2V*;Wk4gH>GUH53#jg zC84|x6ma9@8b}5p(E`$90)$<(uji1?D2OjGNR;FYzeGZQ?kOPR$8U$X`38EhK45~w z;Z0Q)+{o8xx7yu4T?XB3@(Qgjmxj2`AazFq?*U~&Z4!NMzHVc>#-Fl5 zy*q2u8C5JX;vK> zsz8|=ZiUfM){>Hf)*s1QKWtVdEUtt!<%ammJ(Zju2fIIfGw5+aRq4J|)Y6O0ejp&Z z_JVdIhH= zp1oeF(MCc;3Jp977g!ZV7|E6S(^>^_Pq!U*JSJandjdbt;_z4L$H-r-s4NosLJwYe zaRgj37ZK80{q`ufIQX$OXSn4|FrUwfp`R)urAk@Zto9bDHzFP+fCWcLI2VM32x$+~ z!!fV~Kp7Q5gMxw_4#$vqiVA}LM-9$2tgNgc>1P6mqcj=vxY0Qg4j6pq6mmY7zvU4e z-$MA+l#gx~qClgjQ$swxo%IA`qDi7@{?&Smo2lS0dU@AG2Fg@S{>II@}FBsS7DUo+REfD;+#mQDlgd0MZil4-^wG+ zJun5T;ou$Sc2ECpVyc`5p({E2fE&N3Wg!Jkr`JE0^<_4j9&kVGsWU9M* z<+3(C%QcxRi9lEk1$8+zePLs0x3*xdN};NEuDgR3bcISRRp(6^*RbUu+IKn=Oj3^a ziiAr5r`$?idZEo?`7cv7E6d)zp>!O!TUYnXtw_zKn6kyy_@cE+sBoV#(Fvr;S`tfe z^L9$o`gD7zxsfm4cY|}AsIF6+ zm<*P@I9BPV%vsw2G$biJdT3YE*;hhh(z%sYtOgAs{5Xs$lx3#XWaOPTyca-#;^(^1++4gC#TZ5s z#iSICGJ$(AUv)g#w^ACF7}NxU)Oc%SI%1be<*htFxCyO>l&G{=uW>Cor_8^YRrvf+ zenF%0d42ZU?3i9yLW5!;dQ}@FjNCwt=Cffvg+L33(F)iof38U5FwbTG%rL;LaUi&&=sqpL+=w&WX z$*tv#H5M9Zp6JC7=9qrqU_K*Dyz6w^&@d_*C2Gf|ftHu33*|JMV1EUTRu|{<+dKSe ztNtSs_ySi6J-Ii( zgObf=0}6v`$+gCc#ZoZQ zEGSTZ>&K8Tl~Eqh#|?_l?+43ELUZ~p=C+P(T{mA&HCC+ho2Ns!?#b@Re}5a0>sU}z z6&zwpiUjEqFg1v3>3zTmNVX)ABYZF3&dSan>?~#%V(U6={a&|yzDTYs3ZEw5Fks`^6nxRXVlF#-VyJB3VW3wF>=gkT+nnwoklqR zQp~cVrXrB3scE%dJM>$wu3@_=cuX&T$=bGF;c$)nsJj-Op31 zJW$>*ymix5-Q%SKzNJv5eU@R9^ec%d9XgY7X%1G_)EjjV__NyZ0;HbyaB zoAQJtG|{i9OuzlEI(j=d8-L9xMP+f%JpDZpQQa9xkVqj_iA{Z}dDVyi46;x28T{Kd zH4y^`0|VpX>1kNo1vhn>>R>6)6?HEGZn)bORb?Ykk~XvLRRCu++fDWkE>M+9ZbUyk zXf{qbWZM=I)kI8*Twx+CrU`#E4yK}NOXz8XS07cbwhU6!*?!+KuUBZzcp*aubHXYAtf&%C6EL;S z03ZslyT46%tQCrKiTla(z5J#COwPPQBDQtnlCbbSA{YFTDh&{%p~|wBd{0HCd=8>qHrW?6*H5d z=UuHja{q4)3Jd*PgA(e}85iHEz(3ok5|bL-_&ehDh4Kdn2SI+xlB-QR#EKs!+Uyq`esu5`AWkcE`&~bSWwjUK|tJjSs-(N8zrH`o%F-v=_2et zLxlsjHEh<(-er9aZl+OpPgtbBDJ84P59iW{n1sa9(U^55Ryy1%mD^9N6{*f$ob};v zH{&~y3|Dp$Evs8Q?JeO&y^w~f=HS*;&cg77!6TJwdIe)O2RTeCDTPP#BeJhPJX}^Z z&zW0h%Kq#~%sMk?WK9jYjF@YHA-_4Q=n>(b4yF-2zxba|Z%98(P*-((OgK#GKwLSA zP9(ToJKn7$PU}wNa%|l zgucc6Nypa(3ei>?&#g8cSWUPr?cxkoBYB(7n6)!>fN&9;7CBbU+RV0uN1{`xtqSU? zF*=;{G%E!*RpHsM{Jy!h2>uLGF&1d5GugDq5v3?625dPkizJ4W?pR?@A!H+U`@Rgv zgRePv&8F`EZBT9jaudWIggt5~=Z}2hfOV%HHMfj{)mBR2f2W`e$cn zIV#`~yaI+JIHce=!uQD_4owQ;f`0hB*Sk=dRZk70-|iOH)(^5KOQ;6Rt-q5dd+I-i zprPNQ3>sp}f`?!Ax*Wiq&1ORFSMva7TVO6PuLG0#Xpi3{xIoD_w;nrc2b;IkGQQIa zl0D7gPXq&b`R>Gyo2--xodLrqzKE}jcwHHQ45!g1L(UuN^2DzuCR)6Xj%nV2Y<&Lw zExglb;Eifr;O3PP2CQ@V=yARX{s-)C3M@iK-n@t!43?ZtWy(-^mThj~;TAY*=7r(T z#FW(HK5)&HuBd=0YaCQQzqtDsk)E#FB4o=^Ipf#X-Tl5m5P)U|hJ;J(?G;0U7af#V zog}Y-T(ZL6vcH78OiW~6!e7d<-$ZkydS)#?7*D&E==~JH3drus+KVFS7yh}H_K0N< z`^nluWkGW*n^|(W)hBJCpc1yd66vtU3+LLh@e*PbD{6e0U?{QUoc*im?4>1adLL+v z!y9QKKL76gZ=!IxNEP(|fJ}m)z(FN@!QCzcL;U2Rn2d%{`e-FrUDByT!N1~!#gy^x z#lZI$QqNb)Mk02~(F#|3Yu`sQL3{u^=FiTITb&ST|Ki9BOo>ZsaRskN_4b@C4X{t`1;dOQN zGkJF>NucQAKS?O0vsSn$m5Fssy}%bLBI6~A0A4$iojk)Cm!Y4~>l+(cv*H!m%^sZI z#p^S;XTO3Nt$G;s_=#_Hr8~_g(PU{AG2i0aq~{QVxhi$cU-bjCC^+%j6wzKzsgkfL zZ-2m&EnN9Yhq#|VS|&6uh}jvSGSP+g-7HyDLQ3!5Z9OEE*911jVf$S<1LZ|;6cX1V z*8#*>2YfyfE4I2Febdu$yNmHfH$D3BSfZ8|SyYCVy*N*>p78p;wH}Yg3~#yDu>)&D z&_fD=N9w^t4=e9e5cFv|haEaAFJn5)bl^H8%TS#LE5VNgNEMiKz4SAmaJ{B?Ga>B% zJ+%=){$qUv=u#M_<1v8JhL)%6P@*OlE0Ul^!b}AHKL}0mI)?_qNh7;{_d{xld6+a( zlaW|YU00FC0Tk1J6de#bDL!KUpb1)hH)Ci(4g`ljD5XkM z<8b7r4K@-=Caibv9@e@%nV)X9#o-K@4lAl)R_%Q`*G;*banGV|rvuAnCj(ltk&0$0 z3OV=?;CWsCY^h@~AIl78*IW4c9JAadmC#|#=mo`gqSw+&2Zg3`0!kKwpYS#hR`X5_ z_H5D$wb#a*=lt zkS!PTj=KC#6nlH?09(ef-#Tw!SY8P#FOQ&8qJ2D7D!`J_@)WHaP1!|+71zksx3-Es z4E5^qHtjm5i7nKl2MnednZaZWZMW3{L}p4>tlX$2 zfDPw+VZp)*F1bG2&W5~(Cw9%_R6=TEV9Jom8trB5!i!DGYj59iC#t-RtckR^7(h#s zrGo6GV0#c(bbC@hGa1&BjL+(s7|-AdeoBtr++~f1>jn&S zvVt2rG$^g4_WuSGH@z<4bl~4qKGd-%(})=We>)P^kq6Hx$L{e3<&ZN`-(57Blu($n z@rrH%vaIaOB@=T=-UIu>EX>z zPm4M^ITcTD?B)56Nu zx}7na@Tv=VClHjVqe^yVjXE*nqY@m(lv?bqqZsqL*Rf~#s8dLvf24YnrWYjM5#}Z9 zF3zaUS=59_eORrzSlRG-yRpE~$=y`W7UeS4JOivNMC6^9@8gT)2fu8y6;3K(b=^@8 zLA&}kZ{&&1&Y;TCRvd)@xl#a62Lud`^&=K%49aoy#a9nZ_-Wff)ju6`Kwo%B0HNhe zLTwtuDgtsKP%wnjas$d^r&e)GHTL>!vH_0^avf>|iV{mRF-_IB1gG4g@wv_xcLN@_ z7V_B64FU*-_?Ys;!d;{J{Bv>-!QpE(`LxT(B@uS@!bo*H*Q<+AY%{bDdaMwjwtW9- zOI$M)70HkH@UjKg19>+$}@1GOlEFoa6Yo9YknzyTaBiWX&sHxuui%{6ef$V(!zyId^(c z%u0wE&TdJ1=$Gj7(g?Xv;>zHrCU%&>szjblB-23C>Ai;Kl}GWbUQ;&YVEAI48Y?Yi z0BR#}zw6fg{yIpdQFqw+=JAn_+f#yCa4^*EnuUYLZi!sapDvnmK(zm@;^Tx8AwR9o%k~==#zzgL`rgbWwTb*oQ&{+F_|tc z*W|3Wr6H4aSq&}CR3Brwg5!edk3XGDe@a3wm#h|yc7|q-st`q!0uXX9d;ASE7DI}a zaX31fM3sz?Wky@YJ+*-L-L`|bv*sBxPo)Ln1`F0p(Hfq?3tGxyGez8V0m_pD8-k|K zO75vJE|Q~1=JFPDcMw`I4uTx`BRzPAW`^KID9!YC&j3{q_xYOTvfypA)CwS_XFUx6 z+^#d=R{BZO@$tioj@WY^{&bnSx-eOr`*^C9leNV>s6;DJfTPv zQ%6fmcv!N}T5yxc<~H99k#1BeV-$uIm+7>$G|Ey`R#gIswVBI^5_XmC)E{iM8v-px z=m7Qz-h{UZ4$NcBK;c(p#4m=(-c+Yi6CoKXG-PDp3qv|1U53s0;ewU&G0LE*RQLtv zg*A1J-a87)4K2c(b6e7CvY3cp*6^1hXf$dD{rjRmczcrn`w9sHh!ld!RMeT`VWK{l zAge5`^70DNjT()vk83U~t0T(emLU8a?68b>e=OCnpWsa5fg&o3m1(rEr%We6D-pwX zCI@7q*y~1t3G57#$&acu}Bp(G+e)mJ)ZvM}|vNdki1yMURki^Abc| zu9?Dw5o`sWMHvZ2qQg%3edcQc2<6{^mSj=?+=*&?e9r;J_rMT~ zgFwmb8ivMZvkf$Nf~V!X4-}EqFxsV}HQ0yj52tiPX0{NRDrRk;xMiZYn@$ z&&$mf9XIB)+5C_mQ%*??MrXx}3M*k5hW7R@&I;mTxx#jBFEX{VrId}$da;?dL2Un| z`UXIbA^FcDqKj9T67H*uC2f^T|*a-7;{Y5Gffd{8@oG z&z)buQ;f+;uXK00S(V~N(eJO5!|x3bFn)#%GT?al9zi?nI}Nt+{h$WFr|iKQNZw%K zUNfXkd@kch9fCmH`QN+>0I>YeAYB#%DcWqnQyY=tbP7i+Rx8M3<>d>)u`Znl3U6HC z)H6?WIP(yi>@&pQl0T}&I|a7YV37DBihDZXxx6+M6csJkDPHNP;u8C*B-I@`g*9!+ndEqjDF1LRp{6JmFI$##Vk<0WlCqXd?oU6xmseE_I_l7=baq?+ zNh&xx2bitA9*HVXSGr$|Dj4)Rz?zpsDdS)TE!R6$*x6juw9GBdVlQujxAYwlR>`*o z6m@`NY*GtMDMuH#M}D@V=9jAb<27BEz+**nX=Km zf(HEpGtgM=FKNsL-@Wb`bE6cNRrj3A;)FpVm;dA3DS~E9%dLEm!zRSTT6&f;B&61X zEb5ZpS1yEN?*}QeCjU$%TVZb|Mh*!Bbu>Sa2q-1Iv-LaaYsts5YJ7O{i_RM=_y*Oj z)_m{A1lf!IzXjAMzTC93fV-l#;iEM{Pzi}KZ!Mj<+G~tI1w6U20)Nj{LL-XT+KYUZ zu4yQ#j8<3M6{OULtEj9JGq5Qraf@)!ntkMYxYxRcbf@mLw|5kl!Tx)C3rytwbxvRY z{X0sjfuJg4mh^&F(r>e8)l440UO`hQSUMS>_{0j*kPM+%u$JL+8$0s-W>Df6|@3@cGFp2S;nBl5%V<{Z)Y$UF3b)%E^oQj$CA+poc=!!jOS#D=A@;{k&{( z)g$P!N_Ms?%hpx_;@1;967Bly!vX`Dw8#dNXVu3?s(bz35o@ouHtt}}IIL#n(aHRV z0`uxCQ`V zFjdRTd=1cPwh|EfNC7`Lq~{e=FOzwL?_TCPW`UttGQZz?1>u8}bfZ_ovi z%WdCf#}CQz8wZrD6JcMp&(1+T(Hs6H=U4fecl}|2H<{nlHN^Lu8PbO(q!myniQc6y z`)dB<)!k;WV|G1wS`xEYTp$FdQ!fV8PsaFWr#r=m3}L!uXABx%z|)DRoq{W>iP5r&%F91{*w*3Cfy$@T^FaP+$P^yQLbGmT#ZPvy;I<;XAJRVT zB~p*>Vsg1x9vvE%doeS?6@$zB%e|E~b0h3SPi!Ys%5d1V~ODS1IlGw$iWJ=+hSj zp1NOyPCnn;&vTf6z-ZmQQAJ1xMn=FRO&Y+mk=$8xBA+UVc=f(R8kik zoYak`Uw3LrN&Nux2Oyd8d_7h(DHe+zNW0RGxa140Z3HLAPg68ig>G<~;BdTT(b36e z=$`K$YBz3rMVzk*L@B5TC@9}>+Wb358F9Jz)`eId33eNcj#ew}2*2(sG zu^J!2GTl6$!R8GOXp#`~=`J-Tn|Ds-rPJ*Wz+yII(MPTgR{!(VkK84p&PJ-lM_MFdf39O*#jy&TZI-9Y9U_;(T< z^xpW#WZYhb2lR;xd+>wShjRLTKt7%=LPYoKMirf6EZylt^WOMT`aHm@db+&p$zf-< z5*xCPXJao>BX%6(mQ-|TD{96?C{sD)E_rNbZcF)haHC7la5i)FX}HjLPS5N+X2OI5 zie}5?a;ftu-ml*Y)C7h*(U$lvtK%xqxQct4fQ8Gg-uBO!*J{2{@58W7c2gtQQok6k z?0}xh^ddM=I`5ti!v!=gZ0bH@YmGPzY(Maimt>P&;*CBt@5BLe$-A6t+FT|7OOn z0VVr-xN>SYc{Z+gO*NP;>&^?&($a2qxJf@I_R3+hXKtRJ&90tQ_)Vij6a3e&!DsN# zuK}dbV|Y%B0CarERqxNA^Q!<-5==COv^y{+jE$lzOV?K+H76(`)Lhb?N}fy4T*a&` z$vYT3?~epmTr-U79YY}*FI6qnlxwOgW<+iYrWH}3vD zy;QnK_=JvcuAvZ|Q<|)VhgRTE7{|~^&jZ-X(n?5HD6q^Y3z92I?#)ooTuPVA({jV@yN@vmA=N?qd7UQ-nV_X<#Hw3nlR@7 zkXoF7NbOo}xdWd+C-BL~=lt(vgdlvrfUrog^ZNxuQ`^|4TXu%b`#4BICpwHNhVv=x zlhA84$72Id)Yc=e%=!zf*YovfdcOD~RK0dDlNZg%E#+@O#dn3%H9=sF>Yzu9kj!?_~6;_O-%b>fS{_(B3*cb%sOCG894EoSkwm?E8F;SN-W3}chA#tt2 zb#ixDTvr(+RdPLneMJnU9oa;$`{xe%_BTtEHu!DBY5;RxP1h~M*nQ?EB`P2<|y+KMPq z3K*<%i2AyUSdumbFv^jmi*f?f%fRrH5XDzz^K+L5!AnyvZSD>SXwuf)+7|DCm?lkE zDh+I5dk1>rVkT6)YPjUH{3NpipsKXGzR7g@*9zV6Fo{=kocy%S`;a{^Hoi^GRhzbHQ=f-SY=5DtR&?Ibj=< z?|xHkef@ELNkztOeKkpiRh^X$oTOZK^jy^%aW6llo((R3fcL)?1;A7x19*1Q<uyJxk-i-?OGAD=KMX68oDpni9HpIr09y&71WRSRtv3PWfl zqj#RIbz0L0ZSV~k?rMu1lNBD74`aOly&YV4K4Ea%2eq)YSZJ>iN3*oF9`n`|6V9zu zR@V%DymiRP&Su{xlNX|){y8v*B#hWW4L=e#VnXAFl-*);jApn^)IF4h+)}6|Z@*O% z!uCJp7!vY>^WW#v*(QYS-{-TJ2od!KF>OU{j4)msOB1UB{z1S-Y~kj%g0?EGteGiK zsd6oeOd2s8G5#-qZD>dnDvJ-#(6r&JJAts2G}wgx69ft=Dg8#UY)NM-F~U~CEd9L$ zn5Qi-=6jsj`E>D^H>&K;Fw>TmOl3KA(xDL{5e)=wD}KV_lBlN^G14}1N}7mJm9jcO zQFv&=+ElRENUv7=inJQJ*3e&B1JH{&VR(+S@A*u_K2sC27toIrFZ%{_N_zotsOUwyk@}j+f0id#U(C(GM(bzmD8s73 zIQ>chtcC5+h1$uXa9yZJLNor5<-gdOP%En;ToZ}-HzeHa;EpZqZ>!B+AolmzqVh= z$=KoMPhfQeu0**s$)_sun~yn6df?k_Mp10!Cq;in4YQ7}u4v~$oelSsLGUZksM1_8 z<-W%JMoeW#C5Pi1YEW?SZ@UBe5M#75~%c`<(nOxBu)T|9-cl{~*D5N2DG!zVF z2)%Jgqn$)2Y-!9iZL_Qqas%&#@{(fYoOvM3u|3jTTs+m>T_nu1q=?JTD}}OCP$>)1 z@NOl8HVFe)a?A!*4=!-byXp2|F=knHJDo!7n&9$6ojt+2!CSV zd3$5qkmG22?s>XN-QTAOmP?5XxU4_!A?bA=n<$Hi=dW%yZ)ho(KNEe9vEzaHq_eL0 zaRAagkC$7bR^iQ_3v(T~wt-oFa}k8{wpO7PdZ2Q$d%b%mP|wwC;WVBcRh^%=XKjFZ zYPff0&5?XO`IrBxAN|3A#=lch&}NkXX(4x`e>9#OE$>vIkOQIp9gF`tNTCZsOu_w( zfN*$q6pNrU|2V&_N4ZqXJAZ5hu^azrblB8MA+y4oQ*@ zS=P>awk8Fb-(eekZlt~mLi>ra5*!^!mM72sb>8kVub0e2wz~26o$Lv|k3U}b#ls61)8rK#&hVpx zg$ke7DNto~LGX50NTU-%t|k;2zCTb7)6qzxs&D=itn+{G6xt5|i0F&jzxzWVVlWz) zYY^}6QZJz`W^i?Rsqh{^-9c80$!CKJf5qJ=ng1&s!qOoA!KxHF@%*=l#$-8GO*tjR zn=HJNwpwV%J@r>?nmdJ)i$wnww|jqO#}j;<#@DjY4&syF#M(}-x2Lg&rx?~FHx}Wm z5pstA?d5voZ=-1`73G-UG54JTG50PDGg%YFrvgkub!Geg6%_!7^fm3nh;D-ml*V9Y zQwXV1@A{7`Kfm(napAoKM8BDv6+55SNaCzs-M_q#y?6j+uIQnzU(}R$U7<-e^mD21 ztJFjk(`j2F1^!ew_%gg)ISrloIelQg?gO1|O?APk{RmdCzs~=qPkmzpwk6O0S5Yu0 zG=y`&hz5?`Q#5R+$9O{`UHyBX5W_Pd)j}OM>rA9bfw}KT>0`ee#67jyQ&8rk0lk$b zFvFDc6QYmo=0tVnKL&{g6@=b)lJ|7`#E z%-imEzn}~gczT9FyQMqQq{MrsDVqt{SpUFuzm(ZoBr|%ZHdi9zu7LxFcIpqdE znave-wAdPsIZDNDl_w(y z>a!r&(m(mx4B`-%w^nzMxLv$1nJD)3YMy89JQ9Z%0o){Yy&kOj52=T!ZEn4&@IDJM6X7e z_~)N-nki1S`a@r6i>^)FcL@&0$l8YhCOET^j9L$bwNb}b!MS7>elRU>GNnBv6~2-v z6#mOg!rQH0Es)$!rlO)^!dVzm%lGqVPIqIF!ID=MkP)~@;d!*`-ev=_P-|#`bUK|y z@dvH++MeD7zUIdd?e+Ej%eG-nw+>zWVDH9r2g;Msdc0qXrQWn0X=Bh?j>qA~9sG7J zPaOCaW*yz#jz_DF^{RO^S)faUS*o7z*ge1NwkUv*34w}{3kIy05`S%x8uWt>3=Zzq z0E=g&=$=)^Mim?%DdY3gy@CVE))5yYG8@egwiwY|rv_=#S=6LBW4ej7v}%P`nYEhi zBDIY3M5LC`bfi1W%rtWi)w|m6Id!noTfbw(WV4C&UiYVI0F7L-?LqZSG@WHk_{&`h zZmhC5Z!P5k83&AO4etC>O%_4TRzUfrqtK=bW%lB%-q|7bSd$6(c<~{BP#h{w18W3n z6x)?u(RyB>i~M>+(iXK0H~-XFY*hcw!^3E`Od7%sjs%qm0G0T24C*AWzSYGOpY#JN zq0g6s&amM{O&?m0zH@k_54Vm~SM0Hu_ox_iQXPp^vA$<|H0s3J zO!z$E=0niN5WmDOlp#WHu!$Omf7u#QzAeu}ix8SvU(@PenMSi?ttwoCxiY*ugv{>` ztao$`^R<*m+i&~Tve)cbKbYE>zNfm06GvUypw8;vl)H*<$7eUe$BB|&B)l~Bq^&hy z+CXEH`Jby?0WH7X$wHD&_yP4X2|ARzK2_H<(C*2M!m>A=?{mQ2s~q!CHd=s!5p zmpY-E1-JFtcxgkQAJHF~I{Nprwka{Qtc#aNg~;1^f@KhlZH4Xh$w)oL^zI zb-h4plzIdIrO*F)kiP&kjJ`51Q-8KE4v*Vu=>#4MaD52^U!WEX3H&(tL_o-tBEZ|7 zuEJ=ni|@Uj4=(g?a(N+uo^f8B>~8Hw^J$T0tK~n-hn6NKrNn=g%K5qs`hzZqr#4qp zFv9Pp)@kuxV(tyKWluV(30jGg%?7EJMS0|;6k!gE{;2GX>QGz_ka@iF+w5R;>S}(F zkKfenZJgBEYHWx0ar#LK+{YZ-2 zvurs!I3wq(#qv6sh&Uu_$#c2Kj`yh6Fz*-ebBKtP4Z5qix6$#mnN zt53vZG79ni(W~pxTwi{t2G)LjqCKszPvz_Je9>DQ<=nfvD`xasvfy}43vJe7a5vmz zTH|UXI{ehUwOEG4`W+d;|48Ad)hpO(oed~qYw6j!_4cPsk_#vH8ISjPU6hK5mFQ0? zD3(z5izkD_;eyodbO{a@Uy*5;ImG$z&t@o*+G1cyopAVdBa>Mxha14TeUpi-W& zh+AN@-oW8QNs};K^F{}RZ==!|_1Gq|hWSi zxiw2{MkIFQGr@%n_-<5waAO074Nzlj;-dsM%i(fc5Jz{SGX-}>RWYW(Jn_k;qW>5PJ;z_F}mx>4tdzH%yXUUkI{ymyp8}kvS(Rgi@wR#+PSRUZEgv4bS{)!oCt0dv z6Wk;flP0y<7V%1G3B_JR;mh^k%9*q&qFx(lZEdOZ^i=*I@u8HpJi-#lnDCcg^{XWab&R)SCLRaL{`;o{hY$KLy?$hS&B=cAs$OUD z4uX>6G9Z_U(PNFF)T8WR_#}UD3Rol>hv8KAr@~&mu2h=XM+FMyW;04{9(@1sGC$?2 zk-FiHNqie3T7Qk5B!HOeQ8?< z;p38+j$~U%K>=YSkDHsDgS-3cJ92rk^C-sM=x?;+g9bx$^U@vW=4>W&^Ap_BHeuj@ z8-ZH{AVB$F{U3C|upvS|EjP0jUZ5*H4wpaEOSx7-qXDNAUzQJE8mRrb2y#<9oq&oA zwJJVgJl`sPt+AJi;&QX1+Y3#74~Uh$J$kgf#bLl!qy7Jy-1*db~1UwYh=j1W`Fk${t~;Bi{Vaq~&62WJsryk2sYxxHXISrDHW0 zdJU>Zr%xxd=l!p86;CWTTUiBv*e#cKF#SvrN@aF74If3PwE&~jsQT+6TqBKxL##H-?BKs!t55v zje*J*eyOku8bYsdfJ*v74QlM$2Yk8V*+9~0i$b|Kgn^NDTC$ zSZrsnVb>qQ!IjLt=> zz<{s2ru*w*F2Al}FQ1_#2>p%uR7vd2xgV0^;GY94WKj?y#p#WZn6C7vn=H}`I^CVK z%P%o*j+nx13Vi#cbi%z@JLXg&wi%_grnt;wOX$yWq8hzrhGT{o7g8bvDrOEqoQC;7 zh^F(TDA?nZiRxWQMOwr;hi5JOlfJ`~-@PLA+1FHvRU1KOWonq+dn!8Q7DFo@QSY*` zjs83^FwkbQC>5@2Oif}`>~pr~MPp8TYjh>huHn^RzaUj2Y}HR=qP+aemE~F4Ca6v1 zaEn4$@ZXl$8nxQ)om3aslzAN!F9;tWpXbF|?b7OYFn|B|lutdKc6k9LsrT%i_)8i@ z>8%E6J*%CtL&uD<(tp!U18fu zWHV~0dRh2D>mq;mueZNAst?04iZS+f=pC9%^%FQw-nF!>*qtZnsr}s!saZ5jqfAKO z`~b^e5V3;#(x~y~(Os|$8bgPU=Lz%(58AY#(d20Pc;j>J^X2ZyFpX=EVtf0gA9iGyKCy4?ATOx2ndK|ReU8;1F{(12%*%S#*kbIr zot9}vI7}qCVeQP~6B83}aypJAsW`#29v$HCp#L>vEO$S7{^}Z@1a){3dJBQ~5comV zuSf+fKO~fPO!t)mwdS&&3m8P~E@a`|16a3JRvzglDuokk)cG?`3>E161?Q09;LYKx zs{7Lv!*C*{)WMGWmvE@HYvBp6Hm5;Mrl?0palC(w#W%mjK844c5fx)eZ!t@|d|Q_o zBwL}DjvgCdvi-&c8vVrIJRin2uQVta9S>8fd+mF1nwsvjQ{Kz#aPHbnclup3<6_ev z3*O2zvi8-zpYT9lq%XKK?K{`Zk>a$Gha}4)-7D|ouED=Ue6^kUw?b@Wjr%>dx;JNm zi?AqhkpW+HsCMwb!DN5n-S zq;8VaQykj274yz|GrH`OP5$pauZoT|6(2+IxfX;=#?r}{KS5KfDYQ8KL{xdf1L>cl zR*_R08OQ)6>fNV_-CW5ht6$CVqYGU5kQ4= ztV@_v-u#((ySlX%e!RNMX=%7&=&#ieADU0J~eUsP3Z1+Qi^cFU!N=;$`2iFI~ z`j?x4qAO-3v+%n`GiX#+*v(};OV#*_KOPBNECp@R_e^rz=NesKuvT_+hHb(pmn4Dv zOULBQWYJE_9uI2=vh;{(V6ULFOjsFZ8jvXVN0J>Slq1g(X$V5?${0+e#Szr(<-E zdMatbY4!ZU9~k`75+EV43hO-3aE3mawZBHkA|R0a(c)`Xx-@!U%?2xo*@9%Hq}SzOFviXTh7U5De9hPH!8B2c^k&cBXf<0Z>wF*?G$w0s z-zw$P3BXPM)>&A(WzD9B1X5=UN@&PZv!nq`I zBeix@j*|=Nyi2}CCbg=*X9GX?)oMR(m-SXtbz~>j-rYWyt+E;I;Oz0)kL?W!2Hj(- zNclAdoDUWr6mSxG9HSJK5!KpP`1-2DChUG}dg?vm>DB^WJ1{IiyI7n3x< ze{7qc)*W|z?-#+(!=1pHD;a{r7@Ig?&ZO8O?{|>;k~D7rkw%Lj1_2b!>#Iku!-f0w zj00^(WPOfz^c^gTMjFs??oI^T+e&NS=w9-Z*U`R{yW8b(@pAtWkG%0#@(zD|ove0# zVvloveog+t{*ou|94ld=+1#P{)PgxXZWPw_ia)$!g3$yQdSNk*G&~^ESV(PjkiWye zJvE#en`94jeb4@VY!eoeGA6`Jw8- zL#nQmIsN$ILsfJp>;XTs7aky7Z%Y-h28Y<=S-Q4^ju z;1p3P^T^YceGXys1ghUf3?%7gTf6z;!c~Qk3``g%ii`ijT zU1sQ@uhkLWk$P>^PxzkGejp2`@h$693yi)Zm`QT7f=z8uAO%S2?GAqs>xyiM5NIb! zEUTt{NG%?|TN)W8zzw=0?62#o`I4y0Gb}wJKHm?5yS3ZkL`K#T?gMI^YHxZ-*m=St|Kyy$LdV#*jkP#N9mj_3LYz5FqQ&O|KXu` z4@2aCnrL{gg^D(+WL>(D5#l?{R*hEHAAMwD!6z}VR7_+!S7s4tW2lm}uYTjWb@%GxEPWvC z<>i9M58Dgj@^Nvu?WF7Wfl(w6fF|)C2!sJ*nswY z-tTm@9|}3n>r(ixz187;KEbw|CQln4Ho$-OD?aS#d88K@u55aMCl95FYaY4g;|z0i z^D3R>Y5wLFM(sh&1RBMVMU?)*=~4*Vlmg)DkL;9)>|g)&|0J$uvBLhbG<+wm%{ zjp)5sO3B>OUcc9uj@AZ1&WR?joJUhh4aJL?$R!l=gKO#+5=Ja##4!`3uY=vLU0=!d z?%i*Oyy>!QPqPuD0N)-4bsL;g?89h~X)}@NZWp~tY|KZs{VHvZ=}TdY+Wk!@CRPXG z9~W@;{zj|dOwA2#rg})ri0~IHM0GB#K0RhIMF3SfqXMS?_`G|v*KhBj-rvZy=vgeO zU96AZ3fe+Ou!pEn`$-RHiE|ZA?fjD~G9zX?rdsSE$=F~lMUZ!%L1Q{fEUuVSQ69h{wA*&jRlvD(-^O%y4Y zp{ycO377&ZmY5t__?)6DIU0sLdNj zsgNmW8P&ksdgQul2MIDBbTp00Tb%R><) zjgvA45?_}M`Nx#p%2W1@RDAgo7eAvp(xYdiX`B&k#!Yp|pK`;%O6Al~>>V?w_7sYI zzUS6Dy%;1z&&^Gss;X*Ob@~&J%0~&sLnQ!b--z)U>i?7j*!IT(EcoxlM0ReolDC@L zW<<)yZ+vGj4UM|46s^l?yT)Oz%;(JUNs%tGn)pf5by8waSC{Gcf~VeVuHa=xnteRH zo$5+I9{v>kW(NqB8auY@>xzK4Hh?*>bU}xMZVD6AsS=|GO;1nZo@naO*=jqxvuB`+ z5u9X=NJ*xFc_kluQO%YQXbC@CJ7E$)!$6N-DJ#u_C;12jA*$43lP-U*cj0+u(h@I zVSz6EXw7X}7aKAJLz%%o(Eq9$G>6V`Fs97&9yI$~|3Gpqwrl|Fe zwUi-5~_tRkb7vAmzO_00*SsRZBP7p{6K&b zmcY(lEF7G%p?Od7!xk4ISG{C3&TJ%#V!dlhac6Nd(YhV?I&&G;Yfa0g+39kNlh^Tw zE4_C08JU?U<_SB}{dl~-$5yNz4h(H}Aye&{B)T>BRPQ+TUgv9l`S9#(LIc%dXL?%N zb4SfrK@=R?gH6LAkPZ9*45QQN9ks}~p7C+5xt>%J3rkB7b)!X5@}Yn-8ztzMZ0}IX zEe<~nkBYhvkp-t-naTpH+W#{j%=G>(we~Zwx5mGG1c~zX=ebI6rD3pOFOxkPkRamQ zcL_pM$gv^LQIxrPlAQhOY>k7RUpW50&wg{L(%XAxfR~P_5+k)6(k)0&FEuwtBjSox zQRlEVmTNQiDSXBuP8O?6RTmA2oSYAj@ChqmNW|o`M37LNWZTs5f6C3ZrP8ml4+m;z zQyaF-EJt1m%+F3>LTo1RxNO46a{3&?9PgTBP|TMB$6~8tHFK%Q{^G1b(DX_FN*4*U zlGHqED*3zBf-XE6QZT!rHOL#)=9>dKZ5q9bDRxA?Ne=K%C z>I_oDW@rTMbz>^#5oI6|gfeHAzsg~b*E8X>&e`2V6_5I>wBc2J3HGSFkQ`!i+u=c> zP&`HfbY^5mM4_`wLKwo1y0h}^i2c}Gx7iv{d)su`zq$od3kKEd-GKO*YGa{_f5ln zpJgMwVgTBnBpB*hHs3HneQ5!M2l{$?YY7_A^Dm!2ulEmUF<3G!KlNjO_;3b_BiPCh zUjwvUcR=7L4|uU;o^D`Uecg=!S4`?%*y>AM%czeJ6@L1WY)<5p%Ei*+dw6&h zPaw)AzURk*fa2&|#>1eM-q?>Izy?*=(0XcfD_)xsdLz{sLTW)gaAhhYpA3hPu$NR# zEHDDXv0VGZud~7JmoxmxGHlETbR%{Vt(^r<7z6YKKou2jG=QwVxRFiZUDdXlumSl) z#5^)0rv{!J9|uQA$@^+JGAyB4aP4`g0l?AFfydR;%JB6xXq#USAd%usYFt+zrg zR~9unk8#mL#=@t2gtuTmPAUt4r;mM?%`F?C{)N!fxb%R*Bk+Io&|qm$17T!bT3JbK zbVhc8jk>wJe`c3K_9~~mF#%GG2+T4RQvW~u0@h_P0LKykh6f;E1Uy?SpLz5)dtm>V zml+Up2#Ml50x+$6A33~=T#lo%=t=CK}v1N^m(T z`5*ZKZNQTQu)7^2WBEU@dlUh?XT!7r+W6Nh@lpc2fkEvY@gLYNhk)HSjH+J$F>$77 a*L2)}6)*c9IzC4NA4OSJSc$ah>;D4_uOXxW diff --git a/reference/figures/README-unnamed-chunk-30-1.png b/reference/figures/README-unnamed-chunk-30-1.png index 86990235415aa9a0d47fcd7676e6671a21d0f577..c47bd434a6d035fe74dcde4880d877d84de192f5 100644 GIT binary patch delta 57652 zcmZs?1yogC7c~r*OM|4ObazMyNJ@7|r$~x~G!h381f?5km5@fdL`qTw5x6uLkWi2Y zX}*2m_j%s$8{_}SxDFlOd(PQs@3q&OYtFgnU%^LS!D|ZPkg=Z7fzg+m;u80Ki6~2! zV$qFg+}pvg(J|O{2PHNHdjvJ}LjJZ%HJUG_$)A5<~g9s)Keae3?LWahW&+mD! z`&Nb#k#N<}|NFV4&N%Y+%C_nM{XbPXvI68SZ%(4)TfwS1MYZCw|JG1-@ZLl8$9Ur(9A3g z8K|eLTkx57@Ln-pLQ-BH|DU<03_2-aRW-F&blI7yV)k}+s^D_Fi<3Y4;PR;=xRRG=$f6HCYUz!@s*mhfss*qz4H&{?aQ|Ki+eF%xMSU0^IpSwNocr<|9&`O z0fhe>D{E>fVr%k3{6_?R ztQ1EWG5Gd@+%oe&7c+*PlI{85-(TYTs|rhbi$@08MDX*qA3F~4(JF_AH$A#+7XA0V z<;Y>=t$JwBe7bRU_t@_U5&drk!9T__!HsECWD>OgSy_H&8w*;C347m3cJPg>C-XGH zKhN~wM#r-($(xz@MTzPDJBOz+_5X&9DpWuZe!hhsm;JvtFyXMls(e#=%x9VcUwIH3 zE-rJYh4SC=qb4bvv;f)g>(!&W|2NS7KfeqUgl`TJV-Zkt#GzrjkLw=F{S$&nZCLC$ z^4p4!!Ki)RtliwIL|mr6rfc>7c%rQxZ|C4J z3nK6-`8N5b&ZVH&2F9M%5`~z&CvKW^uJ+V)YY<)E)B8#8+OEk>2BsC zFXKGe(DAH{^L%}?{_ir)gJnQSZ)8cc{rA^l%4|pn*>z>i(HHob0s^pqS0^ljv|vn& z(`siP25y3%X!5@VQE-h~=Fxcbz9_I7LH9fb{yXOo_)8B*_f#3ZcM_LHt}9!xeqQL` z2n72tlnzICZ+4lthVb7tvVj>I8n*h??@6Ar&b7Ocw~NWjKc)ZYl0r%JzGbcByP4;I zN|0JtUIX<1gjHxI*w`*xKUQD&>Fu?yh}5P0`}{F~cr4G0H)2*A{&r0uvV6AQIDY+=GcKjZR{l6DgBrec+!2H28|08h$GA@#0EBW7K(W}{M;v2UY7l1t< z3a3#8n<@;gMdIIAlCy&;Z-UrSt{P}yO=N^YUj?z76w^QhfT183C`Mxt7QLY8B>|S{;wkG;QHYqHX#HqrSsyRA^GRh8V+AL$1U^vBD50s_?=^v%?`BC#M?dQP9Y z{BvW*Fiv>=*jhmYXKJ%#5_l?^TE@jcFN01>jAK>pf0TMpwLl02jTn{>eab&iwNNam zsL(u44@W4K%==mvAsZIB9=$-N4+#9}G=;0DA&z~bb=q6&RD%=|YbnPIcFTWaqk5lS2LZm7G@Q9la&CpmRKg2y8H z_=+MCk4nVsTOV{~3zxhm{C6KsK&)VUmRZo)EE^h7kUGJ^Y{jAFM*Z_(ba9eUqH1xz zTz*0~$zNhyJebuZ+Bn%M&*8+@o?kPC4!%%Y7h0{(*rMh~6&7~jxi*xDg)eZok_}y) zh$I}$9uB94BJ3kECl^;zg9~CPOVq`7Ce{ZP-<`MN?N(6rL&l<-+P(B2MP0Wy=Hqh< zkqxV+kFxb&%NZJ`xd}uF;QuFdLxCspEn54gFx;jqj|c(N8FOF9Mx1;tQ%z~RwS zUmUGHvNNpq=K4YdQDymfhHxu6^gT{y_TTX$4Z2AI-UMcU4pIXXD_ zs=o?qAtJ5O>`X@H%0e9$ehWSa-&GiX(TTfEX__@WDY9PeZk+@vjau9-XWnoh2xDg5%^r8HPr^v;C^OK$QHe!Jb$ucT+-|oMHx+$ukbEELM&@|99JU zqcXxSQ@n$tqZzqUenVx3<#vB}77jM@A!sO-%b>8i*#wJ#iV;-nw(C1C4@~m^4cE>9 zcx)shJE>I4aXlAda5C@>&WyLnQ`M|+OZrIHw8kcEK42qP`02Eu^Y?d=pJiueW@amw zQw_9}jIDzW9Y*u`XvLl;2JW=@}W7`#To3%Ot%DhR*2@C;rJb;wAq zim~eIz(_1jOh+JeAuj=1`mWuXkI0%*lLza?(^g`#=DS8qkWTX`!}mSRvV-x%ZE{ zqmNgIYVNoY(WV281ao&aL6%=f_Ntyu#=YaLIF>XXyIMvFS0-ha164tXEWAQi6YN0&dt1k$tGBAo!f@g4!;fYw+04V~11Q-SMKX zHA+PmAK7vjaE)b;7AJ&6CVY>zzn9i7m0%l>>@-$b}- z0s4RLa1O5~=_H(H6K4y{#5JL4m%ToHAA3haKgPl&`0m}iSKUp}&9&z@iH%&KAj!_Fpj0GvF#R5ewaNM>dYiTvQNH3oG`| z>LlP%R~dObjDnEiI*qEQTOK=3I5E z!jxsV{V+a7n_P+XU|1j{AG$Ve_1P-UpQ`FOe^OUOE{YCGUu@S2+YJ!U)I53--ye8& zjKI$u+xhg@iZ1=>&DCEWxx;1+(i&Ni!$rFh*L)86s6@jk0l!SQNHJ?R+dI$TD51WO zhZ}9*)#kaTPAwbKUhlqS#pvevEr&}hOC-sqszv$nCD^agDR2ulv~a}gz92;d&!~(P z0Ghy7$M^T~RuH4!MH!-(n{qTi^JW zn;m`fET7dT5T@FYo0Rm{z-_MM<5NadMq^D1^>zNx_&clTxp3{5X30$Zx5Z;rRJ4!k zl|M*YD8r0UaTEOwtqIG{^u;KDg<18dlPqgq>kbQ1LLkC5}g=ylGqwI4!U}kh+m{Rz?TOw6#D%Y25QJ$ch+kGFZ^3Y3qd zbQ_<}FcZmM*062WEQa1B$)TYSKN_qVSs%$>3&W;QWC%Hx_uZamf>24vKwCn|+#lm) zFo6}x4P#?tYk&)o*4F$NOhuEHM6QfHF~Cc4q1tlLhZX^JnSz1H057EVvzE!`1$jv6aKEm zM$Y@n4)^wbWvCb985{1sG&H!oZ{uiqSRpT;d879e;~4=|k&AvM_r1z;#dWD=N{n8o zRk)zCyn*2E+1Z(J(5c6pyN>afAau`(hOPaVF*T2n$l$*V#+j4)t4K(Qw1(Gz_w!8% z-Ae);oArLW{_|fY`A3+~yD%vSNL22StS+18!u9hZG8;22F-GepA#Jfh_Y!m?Jw)G}1u$kT@rrPEQ zpOn_cNh!#K9R3@Rp*K|mM<$&30;ieBT@}Qbzb|$_BlHULpz8o?3D3d` zlaC7Q+BvH46$E*|nX?mrFG7c8M26G(en>qy{TN06T$MQC@ATt@$!C5WBiS6gpZ@06 zyUrOoTE}=l#6ef|k$c%lFa3NVNrk?&B&l&(l2jEF*4&sa=317mj_=N$Bh;7#_CGb; zrpxtv)%)#RkCzGA{F_|o*gs#Nm%A;xHZ2sh$Sr_HnzbkG6IG0~oxg$Xa-=utSl%In zf0vg01WQyk>4IZ)iJ4K|ajsrMf6K~kec3xc=D4En+c@(%NP6j@YR}zpPfx6-!u8`o z*wi_Uc-Q&uF6KTNaSZ%V0%C&WJ>2{l&PS^xNmTmj=1IQQ=ivvPvtq8Z14qAp_$XqL zEqykwwmLXnO&Cr&r(wZ({;Md3k+vT`Eb!SPWsBAozTZdNkYaHs3d3teG-drxARLtU zh7@}`Nv4e)FT25HHpvtk{d2mI)8*^$n;$()>z$Ic$)a6l&No?7I_YHLKXhc%QZVTA z&>K_U(FLh#loF}|r@+mu@0z2yqVbHO8{W|PVH6-4 z%QW9*qRRLkZd<#@-YPUNi(5#8j$`FjCl;PT5%W+g=BWTKlqlDZOVwq5n;px`Fj7FQ zu9R|j)eB-J24G)26K6w>5ertcne{Y~7=)pljxs5Rj1hpY9-Qbbc3y2qhHh;>Mapg& zGOZiMc@KnY%*B{>|8m#stxl7Z)<~h7_%nIyeNA;E^p$ma$^h`rJ6tNJxuDLlWnwfU%3(e1qdkEUx?FnxjQnQGmiSMGDmvN!#4oNFahW! z(E1oIklx@rH^n4vCys&)jJ`1C0p=fO7tbg)_Ol}OTX?L6vl`NKq)*7*pM@=!mQr4j zG-KlSDl>wB+Nx~&dA5=Ncb6oc$4=!zh&OauY4yph+GVNZ)Aq-Hdh+%V{YxYT%){Dg zvMg<v&gqht$tUT#!59{x98YG-W4Z*%PJpp!s?JgkwKc(cbPD1gh~)#vpz6$JLY zG9!|*_Sahj{FvIycT|t&akPFiS)ztZXt%%lK4HkYB)6DMD|5}V%{PtKtyvy_nMmfe zlXpE8Zh`8`MN6{iz>-9VfwToGBcaJ*#3DDJWt_bR0=GiJ7^zPhEr328PFd|n;v&-g z(8y>=d%fpYUw1$TaVQc}x?@GY+M|JAt)VT`rUvRrdT8UGk@>S8BmHoy$Mhh6sNuZ$ zi;v?al=Fg5Owaauh%lL()a^Cjh`OX}=G`|%E`}cSvLe}Gr}U|5X=j+#Bpn1A>&4}v z!C+80N@xmGwBK^Oo)%19STcMS)>dPbhcn+Y!@s{CflFq01|6(PHh2I!0~CQxj=HHz z^I=dL`2iJzQ}Jz-73mLS;}&IqP14#Il@X5EFUg|=D-o@L7TzSxSKIqRA4KvZCu57G z8=ToX4m~PNsz*zFffa>$X6hV=XB%8lJ&7mCl}-$cp=Fnt+& zXUnK%BQMbV>EgYnm^K#lIWoa+NKALn!O`(Yx68%dek?!&ux806(TvfKL{V<}{aGn! zP|U~QSyJh&MJnB2ygHfF$@5>qr4uLOC!~rCL0I|?e$abA0DuyR&Bcm}EQBv{yF<%X zXiX2QGu729P*n1L&F;^}V(>b~FNGSHH4;@i08Y~g2xvK3$Q6N{lie(u+!pM1=38oQ zx?pc)p%8tVuP+iqEpezG;U~G^$*_20fJzuTFe-cVRXmixotXGbDM6LxP&jR=95F4T zM)kNk9`to!h*y7_mVWL+H*IjUx-qmua!?rR<0ps{u%0onCUV1LYX~p3k#!{9rQ<}6 zDR5GGo8@jOGJI3UI{4U-*>^N}HZ$~<68&U%Io#dQ$6tlkFG|Y`2ZU}DhB`%DW%!NvxUH^{UY4<@NRjtq394YehIvCcp))t}(c{6AS$Q?#l|5PT0jU5>(@ zSXUwSkO_PJ8gF4x4qpIXZMqW#+h)Rz;II+)a9eDb2x6;x#){5j^WN0|(_}c+v3b4I zvMR-PYA_Cfb_0c=O>O#R(!Oq+CllP-d2j&$i3Wh8e}3>ZM!=KhI!*jZ0uiaPu>`Fm z5EWHUYZh88GpEDvCsh1f?cZ@o+4dv$_m2^N)EvIzEnxFmiEN>|3mMbTmj^Kw)}O8V zSEV-#Ucjk~iJ!^}-Z$`U>w2FgcYsT!!LL{aX2NPM%O1cFT3kj`5d%ihnNm1((x0vNO_qK7yBIhud%aI2adUa- z!nZ*HCRwhC=4lwI)AAR`y7|Fi$0b!p8uZu+mAA+^<)MJBE0|d2`XA!~E2B1%)2*nA z-bhwr2GCIoR5YWyX_;~Hr687(Y;gqB0F21;!#Fm-S-t9PqbqH5X1*HKxewoa5zpYo zYAt`tMli2Pp@3)Apa0x<42FIvE!d6dX0KQwhV>~iWkn*I@9XYK{_LG=rv-Pv^c0dK z{7x-6PC?0LyMskRFy3-7#Dgi*@!w>`WL<0bs=}g0zyE{s5_GzZO)X>_ku6wL%}Sgc zN+P6u`VtH@o)tn8jZl4wLYTXvpCJ5L34Mq7K`(73LaIllOCNIj=+{JP3h0HcMh|64 zJ*3dvkL843AP5pbubr6y=GX<)PM4qsOZ@IgI&s((&TI`%8D@2hQTNm;9%(d2*oSb$ zoz>c5{<{pQM4<~uej_UryyecxZLux}TW=8i3=z3W9qN;nvX@07IOJpHd>Ob-?!EcX zqCfdHUIZ(raI@R9>}7Cs0M#TJ^ypT7vD7JF8xKub$3DPko7@GcUeVv@dXoy5u%i7vkv4*`Q0Z16S+*hH700g{# z*01V)`GIzM?lS}d816+gMe3#n<5IQ(RqNn)dG&cEHM;_a!tuw%&^g>qaYpsMh(NLx zUm5M4&lENEY`*)Hr4R9K@fKARoB6F!)xt49*ytqzH8bcx!syfDNq$jPh}jR32Y|$5 z5B?+=XE!sDs^Y?ko1y3-k0GuSoJ(Kx#;06V1APpqsrQ1P+J)n8YPzWJZBHlVBUzsP z^<_ar-@;WLAZrXZBM;1sm*!=xislI8Ot2P>>Q?n8FzIozh@J!JUp<9g%Uc+4;v6)P zPq+`saGOKXm@^ASR(mI zZ!DP*N|x}LH6YpVJJ@N+hlJfUF=J+pu=j<9QnY`cr~djZ6l@Sg^R-Pys~0e~sP1@bRQXS8>+;ZIdM3(0TQ zgY0SQ)`nFl&zh(RGuv}mFMGydC>b9}N;L97R2V&2Csxd6q+V|lzdb7JOHML?b|4?A z(#D3K|NoE>E-_P^-=X)b3t~G7@TXdxICGuZq81^b;dj{bt$W6r=mf*W#MG~fWj2%; zIeH7Aa_Z&-&l@pj;*?0lgA6R%TuBx2F9!vpr#v0k=UeZvnK@a-7rawqX++g!TM}r+ z){H>laBx4TKpiCP(pt5FN(T9y-XYtYykky(QM~I68&o@iQ{79ffh&VCA3Q`l01XZ%g<)V% z9mu{we(|Ir^|%{m&;48{z}G9TGkZ?KsLHIW&YStRU*Y&WCHzmVmQwjViiNEfj@B^1 zj1{FRbLCvP4!rDM$)2msH`{nL-I^HDEVziGBRgL(eebaR@2m0l79Ban3_9g>JWBQC=W{ao^6d}PoUy6N zCktu#o6Kt_9#1CR-d6zkfEn8zx;uJ*RhE~33_yxsXC1-N#gmU3U0eMn#yU=~2p&J`H?#Ix&kxDpYraL3CCP zU1<=Te}^t_Q&9X)v@?k>*#~cVuSQZfC3F>+>X8dvpqJn6$lKZDvNT~Rnp_xyKhSGMP3A3O*)wb3)@-RUv7^V7=@ zIvcm0TQnt8^#q^*TBw4h5;IAo?&rVbW|^n5(MLR|S|Gb0~v-vnbWuHsBCg z2tIuOhn-^Eg%Ex92jNx`?Ql3Iej)Rypb;|Bn`=~<# z>E5?DcUAVXzL8rLoQCz=G@8~q3|{?RayNRW4y$4c6`51s%;LhVcF~3g;%T~EL{FX$ zM!#merW_PAlfPvq2a4bz<2yihC*j4S3Z6iNmjVkKOShtnyC) z)_aqc$-k-1ua!C>SLW22`LPlG(ww4QNBTH*>GROh9VQ3CvXgI8yM;v6Vcn(WI1!}n zCVeYbus$>UVmIb6@!+&4iPUg6o6?Fr>t>Hfxv@EOjjk!y(3PR_=Rb{e-o@Q*yB+57 z_f~M|KKt#jd=YjUE9hLxS!W{rBr{dy{kk z_FKJ)BM{XnQpjQtl*6wi_C ztzY>?g+9QpGT>X`tuPaYbKA;%N!Dq7DHOyh(az-t`MmXx*H@wO5}ka>^aY2JAfe;! z35mu?IH?xe3gino<8wiFeo;lim_Xc2ky1DE_81Dj^aBg)`2{2o+P*)faTLJd{Q-_7 z(Mp|VRD`4&!H!9`?#XJXX#<3UH;(WvZH@I`%OAJ3(N-v^3w1ZgZT{A!<(x3-!CueR zs>p9vo0KMN*U#N$b&6o;S!`AXwUiar;+jT5__>N``;;Kx$iR8~m;cPS)XCOm1!s+> zC(5moh9X53C=E{Q@2Wpo%}eQ%d2VX@#w~mfz6*H7LIow~4?`~02jmae&eN+cT7-W- z=l8yaK93!&=g)Vf)}rCbn~14hF>ZsJbyCeBK)6a8t$@^N2YQi)>sZ70U3@FhEmg)y zoX(=I(;bDqaY#H;+bTTkb!;G~8(Dj~arM;I$+{Tg2lA$@ETh`2f!qJ~2A#588z(1| zOOYHEPz>?7rkpuZ?1JpiO0$M>H^RMT*YEF?DrHYkYXMqBAtReJVsY|zH>r!a7cRW* zZg*i7mTg8DLfwtGa$|X+eY>@D%h2By8?b)jJyZWmT&pzSa0;vboPa>T-ddtvzzlNK zY}-oObcRam{D(CD6gV`MBnQKxisA3&zrJU~hn{HgG=u#xZw@XHQ_Lz4c-XWBIS{s=jT;n@fvFf*vI5<>=kcU*iChyjtw^eR3!TM-tFNwo( z!mkFP#gIto$`r-70klZMqKq?+UkB*&31UGQr7fT-X!zZ(Beu|FPy3qY_;`u)s)ZLa z?n7eGl*r7dpW=Fqz2;Wj)RmH|fXIpwzpE0tKet1{TJ@(yr_;>a8Cf8Tu;LipX$I~4 z!63)5*Qj*Kix&)@15AQF1><29BFYMh-)nGTB{kAQ`Aa*{;;n@YM!VIlgYq} z3D1ye$Caj>4v2!Hg@yl)!UHO{Z&(^ca+q-n{?fS!j596A=f4)nB?XtG6&WAiZ zQ(SwQP+eWUw;TWxo|}p}eETmvR{K$^b3KI>Un#%5b7SLwh8JdHK@&j%S(W7Y&i(E2 zOnnJtPR#_xey1Z{s3gbp^&hEWEEIyJ>cTIlw|bO)=Fbpyp+Sejr00@yo66#82cBsj zJt^$YrV?dyKJROu*H~1lU`eLLebWk>pD_M2Uhu81=-uz{Q3z5lqbH0g9wDrMd7Txh z3R6ZZ?5&J`m8z|Swo}<)Ks*S4xK-od>WZX66Q%Q4Rn_K;VxaVtpak83&YqF!@63L4 zr7o9OUzKJa^#nM!~^mI3pz>^BnFQa*c*vN1}{fa{(QxehZ8u4 zu!eHO#d+zffZZxZnaW6-{O<0=b**(0Zs!6%LLurFowriNZ_gNHD^J84O&gT<0A}*2tv1dHt42$L`Opv{9M!t+Y z0IVb)tTgKU!TjLk1nI`NuFEH^iJoxcQdSO*ep$I!6pN`+k_9x(H@ zQ{4Ng{sLE#yge-N^Y5~9P^9Q_Eq>nI2XzG~m&TWepi;Xrqm@@t7r^(2K}9q#OW~%< zcnRo+HY}{m^dA^-_Yd)b+(SjqKiJBWkiZrj+M{RSCZ@oL(SuihoBX-Ed zBlVOigkd}tQ{1+cGcEm(nQ}#UTB(kl`O~zuDfKX-Y5}+EwAr1q7vhTkiC@cnG4S&I zDC1uK6?+#6HF<4(J6DJp_);!u!m}r_MzOZ`UIsFTk+Xu=8!S`8cgM@? zyeAg0+86iS-Llm?3HT#ly-8SQdfHY_!Dklzq2fuBx+L6P!!Y5?ci^yT_&ttH<|G8x z!z80hv&bu{m1ver1RMrG`aP*ZODgn|+keseBZSW20EAb3O8%#v^!n~UqA9Gru{+v0 zQ8HmiSi(Qd2O~N|m|PbiiQB62+Hbqe)E320p}#<1U(jdtPf|7^dT5YDt#I2Uv@7b% z3_K_tu~HzKq3A4#VOHI|f=4as?UakpxW^|!8q8F*<}< zaA4iUXLbobTgw=)w*E}jq`mN453~B$tbK;1gUoq}|Lri+Oxx+t$-qCs1_Fd6odA<% z(sW(}4MsU-Nq(uzl=I&FHAyW!+w)JRkFbiNGdX0Z~>DI$3P|8>Q~?pDJswP=*B%r zfG&HUuAG(vQI$;a*^1)T>szur8@YaY1XO}@z~FEPrNZ)>*7ok#Ov|GP`S7NSui_^C z1pGLL3Byp178(LA$QS4|n#}akHsa)$d++?aajbZ&^{1>~?s#2KBAcd-@MmkJtE_gb z85-Yt8C?P=0w7cBC82eheSqW!Gld?*Wj=ktU#7iBw1CO73Oq@?(Rr9l$T_z*En?-9 zsncW3WSBz#_(QFjj*L|h#|7k>s_zCrb~Pa$tz;Jd#k z%TZlVW$EUa4$4a)!g>dXGOOab1ZMREfzVL5GrmURdTyhD(-p6nBLtE4cOl4Sr{iKL z(X9Yw>&OW{nK>Vk=wPw2T?xP*WqCgJte6?}3Ae&@Or}W=>mYYM_8y1wI$8Rav z7|-8CPHr_=U*j#^1U1O^{XbHmAEz9WN=iC()L0pHiJpv0<(VrkRX_J zS?b@J_@t$6y30@t~Ame)-Jr+-{e-C6gFay*r1F%pZO*EdOn{+bP&&O5QxXqOA#upd|P zSDUn+Dd!W(Ne`5wGxlt|!`!6a1Ip8UV%gRtPV(o)^cQoYc_-qrxk^m&CqV*(sUByMHeY7i(xUnSK@rS!orY`OfV;57`k~2s^Fx z7&f82WZxuJ+AHH_Yo*zt^lfI}3ryei?5FdKkcQtg2@q61z_ZZt{}JD`3+;`5$@V3P zzPomeutrQ-JBbk#qhuo+n>&|9k5ccg#@_Yjyc@j;oM{tJ*EgL3_!8(iRk(G3PcAG) zwAZq*7MO@yj>a__2IryGn0jwy)jwp4d=+iQ z?Ldrp9vG41qw&gVSxHi=*RyS>b?fKl;b_MDcu936ZFsh1#iwB?Ljci|nUrw$cL~aP z#jPz+T;o;)stgX*TbGDx^Yf9ADPlQZO>!2G5gOKwuH#3xPqWsvb5>L+zhtLTwgytq ztf-9=-@j9HFFQ1V=P7S9?P9Y^`)&K*fO2x!*cK>UQ0E;(Eu`Elz9)rXf8eyjZn89=hszIfG) zOMjsbW3+Lba;wqbi;ZHpfxFs7V0pQEZ%==}9ZpHW=+uK}h1r|^WBxX;f;HQY1>Q4r zL;Z*4hnWJGhqTTg5yV_v(^dU)6J?#$q^fBDkw(ZuAjYukHviy$#*3G?O5E6Oc-tL* zJ5ad&k(zJblO&yq4acu&_b=K!3O6n{4B%t&tz&L#;WhhOkwd~HVPhW`X2c}hqiQtye(?1#u5h-NO(R|PBh4eLnfoFb zKl00dAJ;iz6IclINcgaZrT4_^UE#&|Z>6PULv*_X*R=*GY;s*LOI|(cML59Z?Yyj& zM3x@vz--8&pcBc>E&?+KEa=D^2ZtQ0>y=R}XwT9u{+qoQ?s=_y2shs>SGp3+i z2DBr0q!Qo=>oi*svm@GEtlM`7iZd&e3z->v}Rki$p;!~bI z={H_(EYJdcZa?2R<|UO^wGPSZOG`i_>w2o4A@JBDL__nkg{JQDHPfr**k{$a(_y6$h_8nZg%( zzxijS(QKuzjlBNP>K37!E1!ZDkWn_rga`0o-(xzz5O?vS*eIkJjD4698h_7xL82eh zt#X_H*1%J{@d`;%o>g!h=;0L7yVU8&!gy)*lka->XSCpRdV6LH>7Hp%;7`djFzxqM zN=x%SEgR;M8+pOXVs7f11iytI_v!AL-9xbqyltw7F(xr682RlotmJiz*T(PdCx;uO z8R!^TCihs&QBJy0F9;`7WN6P^ao)4NxF1clkOrll{RAW+$jxQ)F=`TL3&TKXM{}_9JR%E;` z$=B|$frf=I55%O?q~@dIk6p!rl?Gae`P(!#&z*rhZE%J8q-)HI5X zLCO7XLMZ$AxhQ$aJd^h*z{O#k(wBQs4{e*keHmO4Jk;TedOe!17h*K%hn+tF;v5_t zESH*j%pY`MTOVrOwk#htavYlUEwV2<0JXquft79R3Mh8M!ROw_ zx3oCx(a_}3)D-0(M%vz8!i^}4F|lx1jvEN)A=3t|q4av@W4JBli;3$qXcYP_AgE6W zf!^l;_yq9B9RY7fi%Yc?@dF-5J8B<%{Ley<H*7#{{CUf0=6mEN#M%y5V39)^w+~eph}K{I*Jo-2>QV`Ct{jMnAf=d) z0y6$)&=`-W9Xx^Ls)KG(Z`iboMXQ81>*^M`kt2eD3TZ^58au zN%bIH(ZYwB9Q&hpPLS z&uh%gURGGu^?B-Ol9HvQ&mO!KE5+%e9eQV751 z^UcNQxA9->QG8n8O{}=9O5Wm!T;W%2HfIEejQ)?5gqYbM<~}sVGHz^I3^5-vykqH} zC-B0;V{TZi@|IQMingKp%sM0(E^t>xU22zaDdeIOczaZ^i0Cc+F37EFJ-*wPejQ2y zTJQM+xq{C|7dAuc`ve&?B2N(oN_RY68@3QFrQXbY&)$i+FW#S6Z!~k5=`J@TeDrkZ zZR2l67LoM|>y5#_WZ}|yTV5i5bC$WZ&zGi_QeTQhiCa!-rJs9OUUfmi>yK~i1OmYw zWok!xL?G!9#NI;habPcrit1>d^zj@|knvm03_f#ql)i@~G-?h;(ntFMcAO&R_P6G6 zrb50WHVeCDX`6J=wi|MkbY<6leB7@NsDUfjvfZdwZNo<=BHo+2SN2N8KJ8g&z{O!# zcd)Erwj725VgD9jy=)cy@CN`uqB=@`cJvJrxjROMw~LWJi!BY~@7vq&cZJq_yhu(g zBK@m4p>Zq>oD|28bJ*<{x?{$V+KXr3(at04EgJ4?a_tr}n{rw&MbU@!>Is?dV^}AC zeh}rxW4OZ?Ln&}e4eeF7jqdrd_4T{E4v*+Dm5bC;AogEPC7_q}8|rOCd@OxWXmXb| z^?0ebRxD=zUT&^6=N3jUKUFGE%&u3t*uc*3u_(gjaBS{o!sVy)}X$7>-q$6 zw-xiCSvLET8*={ZTAYu#8@iZVIy&XMzs>x94zw>NN;@EZR(jp-yrC!JT|Pl?;*RdiNA0-zcr~kI`6cbqSwC$a%I6{w)!Zj$9kd^bq8rR2Zh$OF_^V@asy6a3 zumn#5Gtr^wgI6pcB*~@b=?cDqovC{U^tA@1_g$5%K-Iv+K{^mN(XaNrfoVCAt!kn< zN3!5r-QmB@>y=c4q)*UIwO{ya44FJQA@?r#3Dn6D zR6|FRK&9z&xh4xN!@&#kXb*l^0^(uzb&TR;e_a(;{`Ntnh`%O5G83}b*H+Rvh##JVZ|l11+UAaBI~=}4dMoC0>4ZtnISMng2sIbiZ?(*`GU zI?>j2PvKWoE9Xau0P2GXtN)(XPbC_3yBeTQ%9iDRJZ++^ULGlLMt;gpG%wvAM|*ob z)R-=sz^#w3VROI69D}~{o z&|a4rG}e6=jl$tQ2~+nYy*@Op`#(|Q(77wuJew}IUZ<|0LnrIrcl_UH`5+fkrBF?Z zgM(gOj^5-$SAdV2>Y$~nc{#r+D9>UAj>$DgqFK$zZ6mSqWIfl{k?GfU`S1FLks(xN za(mqh8AC9)*?Q;NCu{0lGcMk$ev!x!7KrA-9191QK)j^&_~YopD~5x0TpZ@t-`le18|=~;Emd02N6U+EsOPPPCtv71!0R*Z$}Om=8Iw)#jFkvwfcWS2 ztpnC>-!OU5btl}}Dff6RiuqEjnF_hgBRHsC7|e)7r$5+f*`WUei-}G3Sdj1XAw(ze z!(=T8yJrPF?u+8dSzWm>%s;PG{AGs8A0@w}iP}_h62`HTi(omJdqRxiwth_baJ6(1*-gx$7`oT;K0Ih9yY*(Wi(f}^J^ zF)*^<&p);jV01h`{$0et`jL4rHE+D$t{g-<8m z-QVvelgxUZhkGh8E(1={aG=h#bZ$^$EGB;VYI5{w67Y$R$NPfU_>!c5^$6m#0i^CU zB$(QSZZ4K)i-_QdiicxzKbvBIW<|pj-%cpkwt-4b_)`PQ+ z`hsph`)J)YhlExGh?{Q~z$wMqETh^{p$1>e*~gi7ml9fThLF4b&2cBj?14LXXBO5L zHQr+KN+k)_F|wb58IG}tMMz^;HuoG4-F)ri2@O545xHnP-Z*H%p?!Yh#J!A2|A@qS zkll}&kn4LWOA9TJ5IuhS1mJls5b~G=4liuJNHz;yZphx0k{L*j%Y2jE;tc?v=pz}M zQt9OgGN^tI78Lp{waXI&7gJw1 zN*9%>mH*6fh~V0qwkAsN%Kq~3?mNab5$MuGBaqOzqmA#0(BZmB+Dabw5X0xuRP0n_ zq!NPMZoOw~3DDDu$_ez9ls(+o`{)eM$liUOXgaJfEPPneD$+@+*_C}-Cjks>e}-eQ zc`RJQFfk^P3K2f+ta+vhYs5t!QG)JeHrt9gb)BSc4ATr9MAPDZLY<$sP$UwRt?;#* zfy%whWML@m=d5#`6PAzWeXTfY_UL`!|`Ddk-P+ZTyNh(3!WehrTXm%%w$vi5*eux zEK={{Spr@_m7#|g%Xn$>{LsVFr*jX6)bSc>B6%im8(X~Pv-*I)q-wGZ!&mMrG2`Or zG6F^SXQc5YPce_lxc0M}X;JK#_TnbnSw6(2%G+7s)LhaD$xidMPIEBr1N{$=Cmr83 z@aX@c)~WO#x&&3*;QZJknDH4cX|y65i>j9H(;$au4CrKGOkj%FAaN^-*LKND*2UVv zIzw|Oq=jhl4gQ9;xRw(xnmVm(`7}#nzupWD&FMtxb#GmQM*cK??g%<%?Y50s>OauF zDr&z7Au%`W=$DbSqs4-Ey^c32)K-&@i+90yf9|V@b)EKmmXm9J8e5hqM3oAC_{9{` z8ht6|;faz4mD0{MGzn+)93kVztdo-C?Lc^-{Z;*ts7ES|1#ks1{?HblLWy3iWNN9aq?9W>PUtz~B`v zwK(I>IHBUUE}w4C_&`-iEACcbZ^`|z+vo8@ce$aV`r%VM~nEF#5t3_5yLrJo?M)lS*-0v7{nZN8J< zu60d)evgU@Y87~tZsa|yp?*%sK5SH#e)tg1n(~2J^ElPCf<@iL+c{LQSmVJ^&TOjN zhqb?&sI%0!Qou$dL6FBUB&RTOkp|!3kF%+QeQC0}o1PY5~ zQT!Rn0(ytjuLBN`o`|p+>Ign|1inAHNDR{cS#r99q0h zx`>Y4E~#jrNKNUURX8F3rFnPQP1m(p8~qMbSV4sF@5xPo#^&!F87b#No%gDr@(IEI zAjU+NHKuHUB~;MAR{UixWlXD-Wo5qND63Wcl>WMsmg$5iRRGwU+`mXbdG10VH1RkR^Ss!k6c*|+g(cV@ zYZ5sm0QP??77lU#0anPG!1OKf`avI{-&=+Z$~n zoVlLuQ6iM}qxh?Q65zlbox$b6Yf^Q#!A3-mPjdM*^Vq7rgjLQF{%u4eN-ufuZO*aR zVuFt2NCEv9Q!-#p>OW?)5@YaHOSr)iT?PW+#kLqNeAfh9{Q7uXWzn;X)nJPcR4*t! zrYY+-wmWQCxNhRctJ`=ee6)Ps3aXQe(992a_y3|k9_8kc@O%i6@9mh@9Ssc3Q2F!Z z;+hDLiV3T3-m7vp$)M71nvlnDLsur9nTM99jqR;GomcnGiLj)!?Q$!U!*byJh%T_* z*by_WT|sUCH6cm*tj}a!YO*RL0sfSmId^X7b2`qqWRPs90W$)<4>!ko8GW=KarZEa z*NvP`H2o9?^B`R$7bEuK0qp{gs&Jv2g>bHp*0T+;eS}zpw~qdX?qv@9e+eEL9rN6cpXXGL4{WA{k%$LL)clH`Vd-2*>$;VZo zo*e^V&3z3~_(`(rtbgf{uzc|6?QtbK ztM`If$?*Bd?`U!8Bzyx~g9+Q<$zoPJ6XKgLbNoJ@59F!)Gi~sL2I9_nI9kiJOWKz%_!ifO-(v*zUZ}{)7 ztLo5xPVes!yK(Brj%Ra+dr>$%_j zEJ||frK|DnH0GHRk3#25&aP1#UPsKo(|?`@I;n?wRq|vV2Fzmyc@_^l^&w_iDQg3}0;?RUd`nXK#IU?BV8p@&h*%2SZtUg}X4T`-tDuK?FU z4OikdDWqXL008X%`LQhCD9@~P$T_*mH*LlUZGm@Z0$lVw389$DzL!v;NOttvvp!^D zcig16A1DPIN1Hpa!VM?dLRfmUU{kR#Avh4s{Z;w-!>FVk70VC*&&ZuwWE(TI8Q`c; zmg$3C#ERR<`}34^eg}gBJFR3nWZ7ZYBc`Hs`X)tS_XF#|!9SY6DsjX0-obk0cE3N} zLzzPTw9>47s45Rd?FV5u7I2DLA5kJC-rr*v_F65_{t10S&LO9Iis&~cg#l_D+3-!= zpUNBjTM8O;<|v}>JgT~?CIlM0lqlCe6`T2PU6IBSj>Lp<8S*+H;^mRQr|jck&{BXhz?>q57s=_rH(jjT>^Q z@3*-!uE#GhHuT0h^w>atiW!jm_-@7kufJt2MM)j)Q0!{ae<$db`tyx2<&egV28GK% z3Bj}@7^RvNe7gBjKG1^%T%K7~DD11?P8WthN*fZ4F=JzQe#S1u3O1D)rvC47T{npF2!EmOeokV^+j3x%l7O`jN zmw+>zDGnCqBlzyk$bJxgxidYUi9j+qgW@#rjlc^uV^PW5bY%?O2;!3$FcPT7zxs^v`FQq4fiy$!YT<*`dY9c`2#A@udxDWU zd_ubcBi!4(FX6y|1@3m)JwJiS@HenMznh6GTuZs^S&bT865eWbKliRxC7=9ASX+SE z%~h7oR;GD_jU)2@vwT?w+=%$FNhMADX5|byNO(7c2MF#hu&_UcxknfqXtM{>_9-Ga zb00gJp1@?|iqcM)vwI_wwWadk8_~0XgC-F*wG}IJ^V4wHq#x-PF(4XntOt?uc)b#Y zaD!r>Q7+|oK^+cF+xTqR1%;9vjGX1*bmBG2yHOW{Z}8OE(=1W^>*BgvZyz6;9;$5M=LWNH=r_O2iQpj{rno017Fdbhx>BF^kvr#)xpAs7hh6@5Rrh^ zQ5K@%Ah)5l<_BLD8Ho6;hn)JRvIk=_sG7-I62OHWzLparqYsK73Oo4; zsqwpAy8_{LgnOW%z*ExW3CmlcSsv+2IS1YSx}NC~62Tf6W+>AU18SNgeb+H(R>fYF z{f3>`!3b1gDy$8ZWzkYTBw^?g1X4hq(?+Eu8sJqm20_`MG|rP4lPuY6ZrULTAXGFQ z3O`-kECcS9TcwYx&sZtC_7)(Me9zh~h)}kG_5~#|^hr1``$xcZx{80wCP!~<`nma*RQnd9h~44$MDwlC<*dC$gs!Ffe;0d4NXbH-xu4vtSkEx=jT+wlYE5@&*UkbI z8m>~GOFu)wPOkL_Yjy;{SCl$&ca@OiyMwYd{1dj{C_b&{3u9BL>iy*qaKMYRUs%3h z$~#lWwk^c>C~0q0khoVipb241jvA5g&F#+7_c>pE4zgmkC$1tUSK%+5ZNe+F0UT)T z)y9$x@WlR8D?;%yCo5L`n4(_0&ko#MXJbDxCg`7a8sg=KG{}VuHJ}>&Drj8^%3tOp zkezJ9Ot!Gj*6B~ENF3HUPH;ns6+B=R$sUdx^x6n#sIB8|gbt+fku*eYlCE(tCUoFT0H5QB>@rFM2 z!`TZsGs3F4| zk1zum_fY%gW-ES#z0S4Dh<_qT299T4h=*Q{{URWQr&HN&2Mq+RRFc7QKKVzxLm>=w z#Xo|dqmBGU6SK(8T2~PKEm4^5R~e+QOY&f4e!7t+jL~ELQ-E0V0-PfbB*}H`>EE;g zM1UX5zYaqww~+~s0PQ3=S1eKpX-!9bVNoXNofEE-R97Uo$G8;1Aph#$I3Pe&0UsN~_0| z(Jv1(mB^XAAx?Y)vIDk-K6L$x98*g0{cE+FNM5Kdo%70ub8te2cd-3uQqtyeZt{u{ zFbnV31EZQ{x<(|)gyvnQb5HJQJcrD;(di29O7$I<2Ecn`TD>}n`*`8l`@5*}xX#dx zM;*s_s0M$Gl1i&KDjWH8`03()p>F007NqP}_!+2W9q>YK(KK1GGmWZ<7Ab_>`3w@O)Q}s5)t0}rmJHcbH+P`V%Zk*qF)`tBJSo9O5Ukhjj3$za`7pNZykb@M z-Hw-#f2bsj6hT^Z9|>EQVG9JuX;V3(dPE-pHvY%%_UJiY2xo|pQO;lX8wc$(>S3I2 zxlZ?8c1;H zwA$&*gNN#KvX+pNk5HMa))Dux{zWX94fCnw;!~?~=*|V5aae80LmVqx{F1sDgpwDi zCdqBb{bHnDJTRd6xBT$vt;EQts&SIN5q=r=n7#aH$)YaSP=t7DmQwwmPEUObUX^pl z{8_$XK#^C=;dUd-mA=Z=nw)yhFfpW|HZgE^EQkW<1IRo`of!v*i<26tuBp8VnouXu z5Fb5$3M&5Uo{Ck;89rq_p@CWt1mf<;;T%lS2%T2vzb=uRz7y__hJQHSn5HrqquR-1 zvhZcb(Bt;~3F5)^3tQ}}CxUfP&YzwO#a3H9rog`o`Ow2ZD8j5gw&=<7}yH^1)kXL<-L9a z*H=S8wk=-lq;d1gQmb+JK`pYE#3T8v`5fT-*6dMWRu zUNq1kX^WBw>=Kf^5m$n#P;g{8Uuwy`1LXe3%{hL3Y0ob@GLK#((2e2Gf@Vi=Z|sri zHq>^P=P$e9$79FZHlO*pde6Uw2&!DfM*#0oMv^W=Y-7ei)DPSvpk1p)2(H5U08B`f zIf?OJS_97ae=S(vlzjKcu3m@Zur|?OqYOwZyC0N=GurMx_&JKO=X+rGET zDx!A(gV zfA+}h3@Q%Jy<1gwTKO-J%w}Jw>y_wf z^f-9MPqCHF60nC!_Ikgo%i8GFx0#Cqzrk8L-_6HQ<}1P8TH9SR1KT}|`8Mu0NtAjZLPB;a9JfBK$xE+Z8u46HdqWIsB=c?O`nZ zSw2Km8+3uxMN$5xH-ldyatxrJCf&$yqC?=JX&JG*V9nR}Ap#b&z3b+Hz4;BVzju@%jU z3H6`F_?IXXUJg5IZ9ZzBu3w)h?mWN?KJ?Tztg^G|)E3_QmDjAd3^>3@6DVR5rh zDVxkHnXa{ay^a57^Pf`nB7;HLAN9lmucWUusl7-B=0i6W_y9X8nbM=f{7tXCN?nWc z`^4#%{0mb>NGXxD6-pkyUm1M9DMHr&#jie=E`__y`UnAVvR1AoJ2DY;J)S}w=^WD$|J#Zk8c9^R*7pS)O4JGV zjuG%H42K4-3D1tq#J5Y%D!)JcA)Qj)l&TK^DxMeAmKy`7mmvymtgE9 zLS_J7Tz>HCCd)guyjq?Lt}QW^-?psSW%=6gu0Rs1oR|Q&cE4t!=T-iRfr%Bl29|xr zmJ-j7)r{Jjni_5g&6d?x&r|P=AUC1Z+X8M5t`&l+ceG7Vn?onAhRU+1xC0~eojGjC zgAyu)kLFa7I|8`Oa*Q_1)Yi%AEFST>^KP_u>Ud-pq8sAP?YbES$6U>ls}h?;Be~p@EMWVrp6}=ZN(PNaS~R_r|+wosn1Bplwg|vxVmO z9n#W2NeS;&tz@OppC1Dd_p16S2qdrG=QB=3V1P1BTFXwSu(fuOncl}m82Cq5Sn@|H ztK4n^f3cB*G6@f_e$OE<g7BH#IDcWi2056hL_jHE8a9DdXH=6&Aq zrTuaEHl~pa*|D_rq3v;e|K;JjOD1k6i73dh2+?u-*F~Y~D_^^~InicYa$cbqpJm@- zWxy(1lt-DQ?LGru79PturXvKE0Oe&FtdT@jwss`dL_?pgfLSKY6SdB4xJuuzmYV-i zmANsLg?QyxLueApTDhy^t$1NK!PcIBA+%uk1d&Xwg!v74&5yVsF!YIgD+rypfs)dC zw~0?1$TFz}cM<4_uR&4+g+f7ULBqhnpF59y>0g(~2pCXW+<^~@1NDFSE$+?(p{e%6 zUR3-{1|_hU=nwXJ|8<&k@(Di-^du%Ef6y-3RiSQyl~g6hOzj@&;>QE}Y2AlwO-a7o zB`a&lXxoSul>R05I_m=Zr_O>)gLI0D7$@<=?b^PzZMtG=gvh}ff6cyGCdvci`scqP ziu5^`7VKSJ`{c``~phX&iy>{xM9915x*N7knuu6w@j-Balsfcl9vF3 zqa0A56ZRJt^vu%ZmU`<^odrn?8bDEMd5#$y^0h>4;Y!_b6`($`W7pC{myVxPAM;e( z4F=;$$EseJRzO3o_$Zng0n$H^K(!YvEv)DWsm*mWk^y9B^miV$FU9oV+{_EmX`y4m zcvkf~h8wGTxg?#~WWi2Hwt`pJPM2@_x|+LdX42^5m;bc#+`DDd$+4 zR->l>HGQhp73e%n^Aip6T*wZk`k{-YxNb}0x(>n%SWQLflfU$#;d>B$z;Z<~ zG}t?B+>F7kH8Zkxgpmox6N;m7ltS~MV{p(HtUi1Jm93HGLBIb-<>loeMMhSirH!YF z90aEJvaW@wV~@cB_db>VGSSyKr=bQ%HJQW6m{+t#TUd2ws14I5_-iq@?j4_r1Id=KtG`GZ2@;0V3-u-$;9dyqB>~DxKS6CMk8{rN zy)&i$nF;`mMNNP4!^{*Ey|?3j7jp^`bYoy=%4+yTk?JQoR-s}cp1kH`+wsmFu!L6~ za>bR_X_Y-$|0G^Sl0ulHHA(i>m*73%$XsBqxLBL`otva5q1EIoy<@d#%Pwpwam*%u zfx$@UD~z@97M!) zeu(K*!Gt&uFIIeh*Q=yfc{3OnAOXpPS$+@UZbx$xz7JQwyMho=DGXkl-CkZmviIMz z`?8dN0`6Y1v{fRjZ@dCpF>Z@k=fvY&dB#+k4MFq6K}qVZQ{Y!<{10%I=!Be|6PN%^ z&vMVEP2WSnED4O0*X@bj7N_nE^cwuN%6~A2qGn+4HL!~27ig)UndsaZ0n(*H1>KIm z7MmiOgiurnuS|9E6|yel;SgRmd)_Y?E}_lPQZxZg)9oNb*lQwnV$Y{STmFzJ*AknX zc4WbIYVlzod&rEqF0uGq^L7OgEl`)9`N3!kd!t+kTDJ4tAhPoG&OgKYqZOqfF%q%| zw5@UY6z*M4mkBROn^t)PgdAnr!=o?=5#IAKsK9b+^yCMGqG{gI%%VY_gnd^EOZv#B zCH6ayblyv0o@dzC1MB|c$Mu>P%Tv*VtYn!IJvGZe0wpm$G9BU_2;#BR(T*KxqT8+o?3ol*^h$2zIQ4+g;x9kHc ztBobX8WN1nK4^_GcFk{Y4PIVCVPZ;vedykL{47`-^q$Y}^XGJ)Kfvfi!@vfihULLM zC56#+BhOkb-C+u{2(9I=ip4B+fXEkreq{>l5`(uN_ih|yF%23R`an>fz9^$EKO^zl zmH96;;6NSCO|=K8JhDba_~$KBaW7WyjHnOMSV1KBQ9i@7Ih=PQffky6f`RN3`5NFM zi`ff-e`QuauOf^lP5<32^e#iPm$}f(2y1uWsVjPbTlYz-f^>TgWSp$xuP z;bbPr;UR7Rrf=o~lPhcK?U?8#&-1YZkh=}($dSAG>;}|vHw>v(pCB?ny{J+v@&zck zL?bBX{qoz)*Ff{7Kh^nYrJM3)%%Ck5;flieb2VB9BTAAFF7ZgP@lv3P*zj7cf$T$ivG*SM>XD`6FbYN zq-LjRAGm=Q=|pltM)8XAVb=?f5;kP`2geCf9TvS9S{T!Kofk65Dipqnb$2LPENDo{j_6@cN5wSn z7SQZC4#m3-_K%rd`%&cdU+dP5>LYx0_Xpx{;ei3zxe(H4E72r7-4gZa7d~APReoQV z&J$4Vy@$PnhG8is(Q*F3lmu#swSK{ymNT*31n4KKU%HJCahy-npm`+Z3k9>PzWsvD zh|6@MB7S52LU^CRUB`G^VUYe&ZV7NyL55rTJSy`W(tR~wR+4Z$C$)i(FtNX#e-#QU zj5Cwj^>t>cl2Dyb?oT__T?LvA;X37&>q-d3!{VkAY|=xkmPd}GFZZa zIxyBNbzi6lxz#m@Lg8{j{c%1tlsa5i$l)ZL@3Ll@j(J4@$sSw$JBg)1!LD{DE9&sL z01H-ic;N*A9KB0@A5Mf#XWC2&kpv9n%?o4jD-3d4T0F`Eb^%vB)x4^Xla*_iLAsQG z#|o}YU3vDo_{<8j<{G)g1~->-_llVLxl8z2XpSsy5| zz!=y~hW+hFCFAhaYFV2^Qk*x1Xf4oKJM<9Xh^=U$dN?{XpG$Yuc=ItN{RgDa6CU8! z?s9Rq7C8yl{U(kp-2}1am^u_{!B=ZPZFjRnb`KAs0$LSx-JuMVwi#vwB6xF`wpUSF zqOSPb*Y|Ax9Dzc0fnWXZU?_w=lw0KO78PK@@@`G#OsLJeR1UeYSX_3WRp6sgKmc3v zS)EG4FZ;vC*VfBX+>YbKcmS5VMmqxygSY~tOf=9wDBSq6A@Q3F<}%nCze-ZZyZv7`l=U zM)D362w`A|L(v8v;p6y-5;oVpksKG3pgHoKzu~|dQbPqa!zIwbwWg-hPET9-CWQHY zFq(vNw3g>hIW<}ZgizxVMLMN3uhPB^Ewm=$42kSdU-uBe*iN2nl7 zIy03yGAz5Fw$*Pn5Omh<%sE#Layni)|1pJN$+V1k(^b+hDyc)_MeL4{v=g=;nPHlay-S%sSD>Q8SmLF=MnEZ%-1D2}r zt$N3{6W3+l!xDeWy4y!{iP19GX-R$-cpma~J?}kon1^Xzs&*w&&)>#+Z<()tUIRIO zDUo%M^u{{U0fvhPo`-sWy1Fn81wHo#?W1k~3(^=qct7{tzYUujb6NF?A|Jnq7v>jz zB3?ulz12zj6`y|5ezt5519H(XolM`K&IqJRM8{rX58-JK;pS3PF4LBYQtV!Lze8ib z5Dq=Q|2bN_-Q|K`D*Tf@XrEQ9>GlOOJZyw|TD7aAp+RkG?Yu+5$W?<)=cu!t_@}I> zm#Cv)I8jaR2B8Fdc5G|0vDeHBsDm(M9l1rPYn3eVdIYx|4A3Zkm zi<&X#mIurteZQx7pr03c!_Nn_MEN}G!+vir8BL?Af0JTxkw+l|(JCs-Xc0c((~*>P z=(c=8;4UE%@CaJCa2^R|yj^-s&r;I#TZFgA#%?&=W=r+90VYebdsLUO$HpB<#Z%<+ zwDZd@)2_`L$Mo3CtZKVuEKt?*u!1PO?GybBf9uaukP5`z8Mxl7+Y_t`y;OrflUs)Q z&r9hS7tfKs?z4BYC(P~qb%EZE2TQ26z4n@ZpZHIF%hvc+Tp!7xdwJ>Ta!#i)MToUV zJKXpFJoKgju#lA3Bc|80P5+C7dsJb;I}2H(d)-ryAwYk(kMKN72b8Y1JQP_9Z$I8f zKK%N^wPx_+7Or9^>{%UX9z3?5_~66A%#3r}1G?_^${$8fm&)1OU`E5Eizojy>3{q* z&Fmg6FskpmQB()C;4JfWBgHE zXj(~lpGnN;zsjc*@1^qK+W-9nUl|(YcSTE@_xSBKZvz*ul?0ZLi3Q3vnruG&6)XiS zeZc=ZeSfvw@lGdE77Cm18Wv0%O0;d9?2pzurEWo!*|NyPmAmGJ@68xA!(Cql*KJx? z2N`>Z{TlMg4#Vr{@tb$(^(H&}+b-35D)lxC5h=u5 zDp4;`a?kP|6*w8~p}*^^=W5A+oG$<9yLjRE-;arbXUVSrzO0xJXx&N?=x>!5mE-$X zWV$+tU-CYY;C5^mWTCUZZfhzDyh=ake+PPUUIIg2dQT28MRB%ypU}<-glUuk!|)p3 zAAeKLPqq-9Gu{^UAj{7R*fyOJXqm4kpk~g4*Y1Z?lsgP-dbpR)3@C^%c7Yn*|H{GWW2E0@h&~3VAB6bDGyTc`n>+qkbSP%-MKT)<#JSqa z{kGg?JsS8^-4nW}^y^&?IwGK>ey-wUY%2PFzbCJ8o?*K8G3J}6dITUqqSv^R@d;)B z96WH%#;ZJpu;Go7{im?GSf3ZXL|SajQt+-;H8b;rltAj1;uVXf%~x&dV#d>vne7ku zyJZw9syex(2R+Sfhl>o^r_;7vrA&LD&D*>Yl50-Cx~{@7gS*$VTfYOYTId;01|CHm zzqx08r?UgpR@(KA1YG#cIFoi8Fc{r0uW_1f$Cor?_O6K8fwe`t#Pq#C#=@dZh@Mdu z&W5Us_1G`r|5?)MzFYEnT1|PCOdXbp3bUkj6bD^Ws&{^=qS5sPtnfEM!(%Pft%109}_;uN1O8ul*O(stD#> zyQiFNzI7@(kF}c3$uNdgk%HBb{p1{!cp&fK@*n1Y`|HT;kOmx<=nif=ayQuYp8Zzq zx(&9?jc3F9XAW;zf-+i43(>dja@<__EzG;EC2%-6GTZ#?QM=3QVtV&+V&qo(UVMg# zf(24Cw_E)kpxO30RXcM{-ku&DRO@+QK2%*}=@DH@nby-7^-6ZFinu)Q4pCdE5pvCP z`%^*sXftvDLIQN&(iwizHcb4O()fDUe$GK4NFo?Kq}zbPYPsAjedf^Gw5zj5xRi3z z7p-O4Q%KzqUg4J?dD>y|k1pksTfE+IaE6vY6Z@mK5xzi>#+>Z&HaEoppxAoJ!k&QeM#Rnpc> z+^Tbc{xLrTj@v{m3LJY6_f0VQ~wmX z-;CE!EpJXj#yx3ulfCk7@@n@rf@N=0B?U=QT(UgLTp+0au%aWg+%{1$Xr8Ud@Z>)| z#j?j6ntDLzK4QHeNsesb2i3=~pbI+?0b}#;*6y3CS+s4yR17S8uR3YmzXx7?KInYC z)0G#~o9A!L^{+<4R0W{ZVXyM=_RufhB7AoNlSgog4_*SnU4fue)R|EKUqsx;j&FZh z%HFnzb$^yU%vuS8Ui^@W^i}ErmE9PcoqGX@;G37GWH-T;L(G&oap~{}b@hMdhh9$5 z1z%f^{0hTftjGW(F7v#l`}J;OMw)o+B{!BWyBmQ4 z@}H1Zwt{%Sg1hf3Ro=K{I!}Dl{+ZDXvLgisQbi*dzK=C29ZC#QB(e=FUL_T*_=dm_ z_%GqkypF?HTK$CQ*`NM0?rDoRV%RK)Vbj3n6Npz}SL*gN9hmb6emL1GytflR6y~P$ zsf-+b*3px*3LBjmm{GYwju0OmP|W2*Bge)Ho9ffRH_L^X$-8ybE+l+kFADGOt^i^Gt7$(M{n-+$?JCrIGY`h5lWU!m6=Ike4HGX!jZFw71YhQK#~{F))i%B zF){AuiZy$Z4GXH8z=}L-)}pOJ739er`q2zg(LcyQ0b^>&ETZNr*xKs{U~2XY%8g5- zbcbGzBC@SW(CY`raK>j|q_fM1qm$P&rf+1TH<^^>v73pE=u-u67f3DE$|p2vg8kFf zkNC-YTC|n1&&1)r-&~h*4{9bY7QUO?6LD}G3{RP6%&Sx3SPipdWUo&|=;~ti-M}kE z&P40epKKe6!^vuYf!e|chO<8P{HMhx^$C;4_*5(i0+BdAn$-m9qSA74 zeW8667btDj(IoQpDHVg>sGd9i$U!p$qT4pmu27_TG1Itt$p}W@ij8s-x^O?xZaU_4 zF2p_(SWR8SB`?hycz-_nfP(|aNv+JUC1<^axppDdqWA+m4x?xS-<3^^hOFgmQrCOe zx=jlIu-0KBWIfI|XQ=2a5*-rEVhl{*Bxfb;A9m#BUF3pmQbmj{k0<$TLhQN>HV_|T zeI9??H~jeVAtL<{(NrYP^=*up_clx;;4n}C36`Y)`r8!ZV9o}hNnF5*DXKh2X}ec) zg^Unh*=7SLE`N`_tt=c(x1$&^>A0BnGezF($Ng=_;`hb8(?(i^A1S+)6(j|Qe{EMI z0_h+Tas;0TjEqWXniA?_XaHkFX%T3xxD%2>SXB5Sqqdm@y&H+1yE=9(FV|zOdecWY z>*33;_ipEo#H*YqmRcspNz>_11BbkRPac6|CtxM|)7cn2x+!Bo3+BP**eDDI1YGN? z;yS}cq0x3eb@rn2GJ;r{w5MKcOthi&@@>&BQL8aUrGX7qATaTm1z_AiV?QTH$9u%7 z#*RFJb9AlAYOURwQL7{gin$vqnIj%PMTGZoP0WkPDGvDIPwP)>E`+CC($3Rv2o9fM)@&^qe-m(TF&SSPcj>C*#o+`aEk4F}X54B13>-^Z; z;GzGbBMDCa)}clU=wQ(O{qbI0Y3qez$5#H$I4pj<-Z1jzD6qrj=4hUp(FxT2Q2#_M zht^0^_9yWDZYXr(n^)kspPvF}PEk7RMIBHxES;~}UvB=hbIq%M-J8(F9jc%Wqp>dx z{y(s}SKDH3XDS8t9U4wxhR!k8pN_EngByOH&i6;H&u%rqkDkJt6ZbUTAX1)khD>Cp z7Qk5i@RI~1%bDfI7lgk;nh{z*6BGpp9b&oLyO*)!p(r8o<3$_}QwBsMd&AqT)tSPI z?}`CA*z0WQXa1U7NreNEK^vjy{n>f>3pD*bP&UiT9zXY}W1$&XI{#l0Flc4+#( zL{;8AgC3n66qwGlz)zAw$)Uy}pNcg~P$oYi1J}yWJ>TdJzJWVs(9}mPyZ*^5U|)!n z90fyE1$5m|=Nd>V__{c3g8WF1sWteqq6qD5NK179aK9fu0=x*|nEM>*D$+f2w zWlJv^+>hSLcMgv$oT&%Hqqa9!`ipm7K$kF5KS0x#GN0+rRC5O}Y7!-4vlg-~xs^Ho z%G*2`xs~yz-!jDL@Eq;jgX;=LXGbB>a|8m;L}G7#{@m1i(lC-jAj>6#hvK7(W+IF; z>SEEF=`(~;U4h<0THn=m{c{O3yY=%t_17;2erNyNBu#xOCLzs)l4qz@do91BBgTTd z4xv1os8c8saG8Q2ZI}89q+(_xk)_aQ*Q=PFDR1l7pTwEw8V56E1HjPpmqX}74iA83 zjvicl_K=0DM&kzEvUiK3=)4%f7A><&!nVKqGgm2hS}V*ArE!(l_H!s^Hn<3NaFM7} zv8<<=@#IkbEfH~s&(gPH0__B!wm1B0mz8WdX>+8X0X!mzP%A@oQN5B!T z)z~8DL}tTDfqunH23V3gJ1!Zul{-w$oUkqlY{!sZM};9&TFaiP6+v@s^T(K3sa>}D zn}>kwTM*&09G|Q!FnYze%vkdH1FDkcM%`0yVauty{Xva5tR4XkcI9hUBhbG15$baZ zW1#+3gFi0%9@qQY&$~u7jB+*=6nS_sLY2c0-M}lv9%Yc4a%6y0qRvIf0>#d>0q4$d zQ5(yQK9w#o8aA7pvYy@0Y#w95CEnk28dlsXz#nPQdY7BN&}R|a&E z|6yb2)O6zid7S31HwrPmUZVvT0Oq(I9fI;@l-mit>&aV`&53<4>t2MhC1 z>MCdR&765iZ{nZHopQ#9vkmG$o-O(W{wTYF=^{HIC|$6uz|YH81K4XKyw-Qk{0or) z6}=)1)mwL`HIwd=S)ma_yDrn+pJ5?RYyz9$SY8Cr#iN?6po*vSJ@P-Xi9=DiLqFXY zZ*YwfYB6dPY`?Jz9oP(MQWuRAhYN@QVOt;y?@zEsJY&{^OusYT_&qf<|0ri0)e|Yr zk|Xx>gz~hRmzEL~5TC*72u;fK6)T^7j`e%0ml3Y3C4>WpID_>}zMobRX1=*E!mH>= z6uI1u4*ZfUg6@Y|iHcHS-c-d)CpS?=JiB8Tc2v5(V*km8Nn~lI)B2v8p~v5l zevW8(h^PMIWb-fj0HgUQXr!QPl%-~`Kz}}Pi_VQWk>iyTu=52$sV;NC4Js#t`e$NW z&k@>*|cMwN}R?lI+3m)CpkI?@S z6`DwiIw*W?f4Y#DkV3GCd%y>smctb($<6I!WU`M&e*>oSy!~x0c3+xD%w0})nUpqU zd@&po`u8>5WPU5C#J4)+62>jL4V(pH(ubu%EzVe09 zAU+2GBV1|(9V~@vcBqkH(B?HBQ%uYpOT9N@)Oj(n2D9Fe+FR9?GHN{;SRVdi0~vTO zt0=`!NAd|vqST$yMYH%JQpN_G;<)`ELTlwkVD5}P%ptoZjJn;c@$wXG#hve7xNUzi zanX2*Q(C)<~|uS(a2JqZftv9Of6P(b4ry!yi`E07f5hlXC12zn2Q zuZ3Tc_&-(UGht_b+rTcWIV9V zl@R+DG0cDw!(%5bX4sK7RI{dmXZ{{RGBp_V(EZ0hTdJ+P>dQO*a<<-6l=j@Gq4upW zg%M=}m4j5|hbZZImMFP^fBD`VeMFgen$Ah_Z}OvEJb8wf-MQO(XKCV$xcrV^4le)L z5^$}AEt?)GT6pKCbAspuMY`ld0l408Vh1KxI!b0AP#B;LqSmu&EWY3YhsZi#8}vE;I!QwwxIcn=a4Gz z5#edw8N+qnaguYV!Wm0REiEld7>G{$-0FWp zkEk*=&AGO`eU{Bz)N!)htfFGh=nLCU2%+;1k#)HVA1~p8Xj=Z(a&^bzId| zACnNM-#)gMsN70$<>i6SOVk=;2B&c#oq_Vpf`3Q@FCwjw-$7yqwLnEdIS{*R1#6 z8r5ojLPyxHF zz3~K=$8(mJOaam;>>DQLP}s!G?zm~2IT0wz3HIvBVJW5~Zfn{QE8l2jzZ8L^b}l;A z)o-Dfe$ItI*dLsDMJoMBma8pbGtNeo)CM)gM4$;S!flUrTRp1AatbuZtj%4uO`*P; zQKkW_K}`-a5PSXOhX(WBQ;=B2VQ1b2x3c;JXDUB4)M;b=dq(UTAnFkGIp>bk7iMSspOuEh z98-s4Qqa3cG$B2v)v{X8H%FJt|IqKVtIg`R3k}GC3XsOE_7sWBz+*RFx$2e(g>68b zK|f&m0uUEEpc5jrdO*Le7YUxKL@M>CLlwV`muIK)Uy4Zz$G?SEI`>3(XrZM zZ&N8Rfjgg7gRI+|<@vCm?OIy@@nOk&8Q)9{_)=~Ok0C8Y4_)D6_v3hO-x+MHxr~Xu zNG#8*uP+_(eAGYf5pAEG8;XUae{(PYhu{^&!BLv3)fZ}yb!6EG-}!H_r}PT6!lJq( za4)qO9sXNkA)Eza9<*B+f1(5!Gq=f0O#UThSPfQoW_td|{WP4>_IlSzFZny`^aH@1 zFv+}|$j;w}@bml*7V-(M-fw|^+_pz^-$gWK*QsP;PBaf}3A9So*IKZLr=J%=CgjG- z23`>iKpW2T_Og}@9QGP`I*4vJ#_}A1_+TB1h6ujyq7Cb#!GXP>R^{mf*HvdUnKUj= zvcqk)X`y+Q`jfznZbPHR=YxOPz-x~GX(5233zy=IAl%qL_jdlj`z%9`C_vsir6_zZ z*+g{4)b+!b->3kc59_NNYJq}XSISG8v{i5?Pwx8=Xbu>{uBUUbX*>QuI?BOzT9OjR(22F-D1c*g%cdb0=9)E(}4$ymU z1@bn*W^hI}of9<4%!lcTBJowQ!t@sxPyKW=^%wXxAubZ0b!S9y#-6NjqDdtJg-D$| z?|#Z|r+CC;%&h}d!HMHXGfN?n9O;J3La;g|=m zH_0B{9H!Ue#`YYZvg7=p$ia2A3KMtOwb&GsMWqd_mRMda%Yg|Fx-X?Nx*kL!K_oxR2pm3--z3)tDk|jmE&jY>UvL<=`kR#gm4=jv+R}TW|b|8nH%Kt z%9(4~G98jGr|b8pKLHOHim$^|Q?Z0pa8UFzFR5QY|{8M;wIr5nkirMtTu2Bh;Ie(S#XUCiRoGjq=Q*53Qs&u3ch z{#@8iF%kpU71OD0#ONHI*w3>t+ZnAH==E}?)AjoI4m|Thz2mfi;~4K0(ngOJUeZk^5h+YGuI;SI zP9zAm#BsT0jyY)_ZD&%)`Ccg8>dPGtTn@4lnv-utH(x=%a-UjqT30DeY;>t?Hwz)k zBepwu)${qDL4b-stnB(0d=b+{4OYZJ1W-%4uP>a7(Fy1K;M$6J_${Y`5R+##4EvLrk6EI zNUIS>IPa?+6LSrm+E5dq?GsGLGHrdg?Nj=$9ew9#H$%;5W3?i#WAWLTcBpZG@zK_> zQa+eG;|K{lry~wD%FUh?bNTEYUwS^(svMP)cG%TM#fg-ICAwCX8gq4ubNw*s+8SfR zxfsTT0azn79QhRy(Y-1uO@2;wwDSFEyiob?QNQ~E*mKq0X+8T9s`v-n-O(gm;C^TaP51Nui<=iYoL zv8OB-GU6TFqbt)F=c9U=dEwo070v%SGHSn5SA{q$eKx~HOUEflU+}j} zS(7X*^eF%XeC>~+!Tv;21quNi97(Q#(i2C}6OqGOyTD`-W0~p8=i8t2SrZ%yX?>nJ z5-~4e6eANRb~XR*p&g_b_qQjX-J~@lMaRQgpL_O3L@@Zc^znsmUjEpZt(ShjR@65} zp3sgjok)MzNk5^;(q4`3A!qAhetLOWgl$o!fan9%h*0Lc^LfVl-QlS5U-&_PtT2iT zN%-UoVQ*vcFBiq$VkkBENd35%o%c`V({PZkJbo+ob96)GWq-*9rawpLEi2E0n4@pw zO%*wnC57fdzpVoXqSk6uIJzb;bSajM^A1f?>6)dqK5)g55tXA9U|VMb&YUDj!JB?8 zzF7dR0NQRs7@p`cIZB{^v=!^a8s0o9(?tYFJ>DI?E8l9vlCnM$A*E;@Ezo% zN-DmiuUAv5q`JP3RSpBnY@VPNS-gONG?x3l>UW+Iyr+F(6{`^ddh7TGnxlz2YGnV~ zMx6Fx;~42`s7lZ4Gg1#Nsct*nd}3X;?K0h-Od^|q2wP;0pHY79KvEGeJ#ekvDRP?oXOs9CGBF~1LS72L$2uYt@<6-!lWwh?C8m{T!)-rlsee`f@>R;)ia=61 z#ME@9PKveUWKAs^r!}nFw9WfjG8$Ci50-{ZA`3)H;YpecXvi={8)XHsE>TrjX(@NI zXIpVQ*Z<;~xd9ILf}3WR<6oUDM*(sUg`uJ)+~XM2MvM_|4)k^_2me{AY7DMh1R?>8kYvruLzMh5Um zG5YQRk4l21=#A?`yotorRB22%h8H6?ZMtIV**)?Zzd$c~7l;&vNCp-|O74#OK2wLJ za@XX%H)nV{@vKmUY@$y^xNH})q-eY@PcJnYI6{*K_&kkHk6oyI(%NEcw@#oN|i}=*0T1e@8`4yFA z<&QsjFz02!tQYToSACAOsOi2-qYgWN+{Jk^oi{7D=gwBmZ zV4}Eb=Ts57B5lFz6hcRyr25)~KPe))Bp1bQmTldXHUgI-_Yp9NsK$)zD$$jv^R09J zwQ6djia(`=lwuWT*YnMv1a7yq@W&M`NFQlQOP2qFR*Vh$EA--cj_obfv?c==FEl(y z`^oy-6*qvRT03sL4uxjGcB*;^j52qEa=_!TAf;PeOPL4S{Y?{4;%*h+CNVXBq&Y8- zGCJk|8Xf^N#k4uw8Fd9%N6(lU8`B+--~_H7zd$cTI2Wv4*~%$TZygPF9;ko5G%iyzd|=qvNr$LjQxy(eO~5Y^HyC>Cdng;dcY&i}l67 zvo#z2ixX{-PoyiKkSAr8Uzhl4xLCuVK^V(Fri!d@ya>?$H9z!4dB9BJc<69`r&iYy z(i^}U6Mn(85P?^3p;2o;U*IGAb~paAsu7nysZjw8Yso0+Q&?fheoc|)jfn!l)3(0FHMd~nAG*bgIlX!jCa zXB-NH>_iJj5P%<2rt-cwgKoNfAxok!B;k?E}erdsf~u| zUCUksho!l{J8nDO`*)#v8+I}3{P~r^r@EKLmo2{tJC#t{^8=JQ0!nI`D)s*VH~`WJ zFJ)9aDzR)Bb^%j9Qh)tMB!hZ9MT_{`>j45MouqlEv1m)x;)~Imw#^a>ehga&!SQ_ z$7n8E>3D)NO3s|Vl6S#+{UPJ zyFAuEF0m~wB2S?Gf~BnkSTby=#P;Dct;mfyTTA2qKCyBf0CBwRYkPSLI&RNp}=V~4<);jJ4F<$ z-%cqOpkIvwcw{U5pkXqRs*)j^bQkvurW-dBpGtxD7e`QtNEP>PYCw1LmPWnJtJEM9 zI3|VdY_m_@&bur*xKMDwV*>F9-$nEtWpjj}Pb|}7x#QOWjzLn(!=;*j@xhr-K<5Ec zn-qguK*%)nLu2_-OV8A}sNJwcl<_%NJ(A`J!_}a%QF##3jwFEs=}u+d1{Yj;LecM9 zr(naIVE?bTCmM@$Et(FGqeM8i-8qwc08l51-X2ti?r8>P0Bloq z0X%yMdO2xg;QQILwlKdleuL8H)*Nz?rPi;dfIMEy2dh6NM})0eBH1eFTpDeQ$GF@^ z!@=xmwe@mOv9PZ12dTZz$h_pOnkkIfAcJswX_y5~gUC8ADpVH*smzXJY8{nQ4^{Uv zhC4-G@Do(XJa7Lfy3>Z0{Gk7#$*buZC(sC?{pmOxk&e1EsZdS0w^3hEIw)bT8nc-aQ(HiT%!U}y5?U_ffj!_V@{(c@Um5a z?d?v*(RCf~8^uTcM?NEl!!C(Lmf5}8Smg2>pi^v=-N5(n@G$=u8!ZoN?;YAW*|Zm! zUIR)A6&)~*Yo~c$IUau%XzG#fLBytl6+y< zYRPlq!P(6%4DJr2)Ye?&2S$Vo$QkQzMyMG9gkh!YJ!3zhW^c(=B2E1F1dKye5)!D; z`@|>lkU3>I%)f@cDHYbP5CfBL#J{-m>ouwtMLjcDm~k@^Zk4T>I=K;c{8_u2p4MlY z+!C6*H#IHF>Z9rGufp@iZ2w0LK~7rD#O`^Qyg$iwh6~NE+qf&~UEMhq{iwVGYjYv_ zDXhDc8cj{r>R~MywqHsG!hk(1qkb-VCh&V3NqW}Gz31vCy=<3(k)x#agP(Xk_`xgpfNORz zs7)SbvJCmyLxLcBsp7a<>-*fMg!N>{z-B;E%znPME-Z!jQlVHK+7KnvMSw{|Zctw!izB5!lXSPlLqA4d5K)hp$Xd?))s6#Zl}i>m|dY9d!b! z0UnY!mT9Ch1Jy*3WHc7gQbqw8D#mNtQ%!GwpE6HL>eyfGSz@8<*xzL<(u~c zv(Ugbma*D)frsjGCBjJN^3dr*e@2`fvQOdeL~Y~)aD9J+Oo=c>J9FtN-OaJxBIa+= zXmC4NH&2F>HG;&>@*nr#-=R2$p{kN&j*bd7*5v)R%i&K zI2L_#l>kz?AuSSbwEBv0|GmVXp%@lz8Z#s@cG?vVuLrTAbmD)-Hd(0o%_?>&2!PJ9#o3TN-O|-&pdtS+r?MkFGl8rS`863R%7@P` zZlJQtqwZl5qr^BeAPCD3)FdNp^-T5{O`hk zo0v4dnDL%Sb=@5Md92(sj;r};2WB+aot(uI78c z(8f5q zJ;7}@V?X1VY-)Kbi4Ma;)%*NO`u8;wt+YM$*^@D@stHy?hMrgJsSq@Pw|4wo!>|hOc;};T| z=ek=k#*w7pOIchDygp%mT$JUpT{f+d|2|lo)cIwQ*=Vq3dZJW>|4t(?dmoTQvL{_| z&IldV2NARD$$DbK-x>3hQ8r^SN(d#Xp3@WdyK(N?&_6f0gZ8Sw47^9Yt4foF>rzN! zIldWYBXgdpRhLGdkY#H+^_}q z{TQ3_320<$D9}()*+BwWZU#+Us?WIaZC0JdT=@{C(AaR|4adWJ`t~;|$b-D(TCjpA zsiv|!x4*wo#|tbSk5R)^q?Zeu2bb=Lg<{28GEm*daQS_N>C`xG-?y39oqf2X0&y^Z z-kG<1%*j2v5XARopfmqXekJw!t!nw{R6hF4+hp}mRZtccqWhyh7PfzOq$1utw9%_T zvh@uYxWf(aAVLd6SSFJur!mNxes`zEf0f?5j!mZj#fUXToT9!KXjw_20j_AGIxOVWyiN=M@dJzN3M9Ie{|I z7v+}>C80=-2<@hNU)x1vQ#oRjN%7~TJWdHcCK{!>4_GD4qQsq5S1b75<|-UE>8ZxQ zUuWoEbW8+5v`A^xk*A!LSz_wwR=PU3SuZ~NZf+*;@?_=J$X;ZRg$S)7Vs68Nb_CrH zXc#9}>j)NKg4Sa3)&TrQ0kD-whX`W-ieDXaf&$K8&p0U;sd@@(A|tW)`q*h~FTtlL zj6{b&iVrB%9vUnDuvZ8daTX&T&>gxydqFPz&@{F}(BJaQr6>7GHYpqlAR7+HF}^39 z#5ye0S6p=jQ6vB6VvQ06A#lj~BA;q9Iz36Veu8qZDq*mlaaEL`efwy5%$%0IwFqGXIw~mPN}_0+nx)3I6ntWzBDf*8ZR?Lfh3TMHPirdW-F)NW9TqDI z9JMZp#K1EEK!o`=0BAnC7FW(!6oRg@<>FEcDIsJ#({&sr%U4-F-+SJJWS{-}cX6m| z^vBkQwnm_qWh@>mXa54FsdAwLMH8he1MOYfXDY7^d}dbG=TInu8%6x)plWyrFodJa zSSH1j{f<+Jfs|T*XHdjS z8C=LDWK;}mgU(836CCO7Ovf`Q(A8c6=#wFUC4t||_%3_az~=ka&{iAS%u|6Joz+jg`P%0S6yy*jwI(ropYR`hu89-Z}Z zB}iSPfj(Hsp?BR@IvGu%-~`+AjrA;9$4ZU*U1N}LoccMq4$UlGiuqI)Y|pA&s|YTd zP5q{*jGj{xOix7pJUg7>t{3)7oBi2jYyBvaMldbGPCUs~-)X&SFqzc=FAyLlB_{5& z%c%c@Vx8`c{&+(z%Oj)$2k*@bU|?y?Ihk{F^uH^1nB3`_N@1s;oPYLUeE0?? z@N+nl;^GFUgQ2^R-~)hi*C)$?_U5x4FNU@-=Af`{EbAK@5Y+u%xr`(Vmlg05yFdGg zzrYJ%c#3d%5BzAa_+bJqs3V&i1PVCewc^Ln0{RCYAdz*pm>3E9zlRBI7Ek;jS>Y1^ zWP~TqP8ZR7f1#TOgosX#aKA#?7%CB|shUiDtp+0o+o8K4jmwY7Ur(PY{WN}`mRB%h zD~X)U6tiuo3*9wlw>rUVE6lgF~JX9AX}$Rj_~h

    Sx6SEwNLTfZZ1xmv{Uqy-v_LFEG zJ20_f&v15WQS9EmTcm=SOLqRexfn6JBz!ua05L(}_Kv260gfR)S`w%reDL^jqfxQv z72#8TL(bIG6Qjt{B7ue{p#lfEb?cVQyr_~=bvoHz*R0(D@5Zaiak9cs(`+dn?j{ak z_^Z?8(zqD5^= z(Xv&0G^kgLWREi;9;$({;O^=-2a$Qc+gr_Q|O_@Lv z$~BO$!eE+cQ6VDzuiEdf$VGE@fcc_zbd97KGCCp(Jn>-Y0~aBT89f{|YgCbRQ-U@y0QXyVWFf@d}?;6vLfMx`;kHCk}53p*GU%gVxR0qbjtR(uy(JVHGhw<}; z=@ePo{A+%0_0IohVbi)zxO(|2-Zps*Eo)sUap}-C)12BOH}Cp0#*9oBmC(;aKYB2gWYg;aY0H=wZR06##wl@N5#JP zVUV*t;Xrl2Jt|>c(_-G>hkD+KkBubU)eUiW8N zpx=NY6wx!q!=r=AS+${Pp%V!oY^Aid6K2kuPaL@ov3SdEbney%L`x;JH&ws<%GlY1 z2ltBtS|AA=@HtlQeN9s0%sf%J{$g^VdJA6H%+5oKE|}?ojpcb+iLO+uodi>;E$Mk? zZ_uH2#aiyhnR6Ef$et2$Uli$hpR|;CaR!+|Vcwi+yegaVjPlu&`*{8G33202`o$YP z(V@_6atJwXQ{)HA5C?X6iJk__W)H-aL3Qyq@C~JXhKtw(JG)#6XqUehU7IgOb3Y@B zob|-$_t}o093L)@=>3De)$j^#@Z!v9v}o2?)YnwbF0U84W(yZyR2xy3NgsCkDp8T4 z1r`0pskd=ao;M49(09qwp&;C=Pek4-lTfPde$;Ew7;E<2$9{hu)T!4Pi`E{(+573j z?YUyrS~O`wFcyj)sBUr(4)+(lAVXK!qTb!0ab6;m4+B#>iquaKXPzk1L|IOK612cr zY@*2%?0VMqzh;>yV;wtn!;m4vvSmho&Ays8ni2T_G6E)MCP)v>ejiW0pP**=QC$Z= z?Aamsz0NN8!!WAASAhgE3m~5DA93U2b;L!+QnBp{Vb)O{OY{2A9|3-DadFw@vxi9B zC_n-(f5ure-j-ET+1KFgDHnb}ew>*VR`t){Lsms)V-_ENPO`D1%y0xQSZm(AIdQ%Z zRXfiNZ{)UY96@FkQJ%o%%9V?p_dvl6bJX{1BlO+A3+qR@_hWd-EV!bad?00 zh<(-m{{4HfE6@!0_V*+wZMZ~U^Ofp|VlFWxOS=iXc5R0GAPVgw07rM95=o*|rN7mNuwdr8=rsuLBoXcbJ-)qi~U8GP`1+ci8jecz=I~ z?9a+;*9Z=fhvZz@7`Mr3EXE9{lLKgC{UwUP+YP8tD=s!poJ;=V@t3L94=oWM7DCX6 zFsxX%2xTi&L#qz`5%T^GYK?r0Dt)elmBMcCZim?L0Kx~8Z1MC-Fn6sk_)~3tOC%>H zic`fu8YVY?^X3hRYnU*u=7Rr?47vt)qBYBEj)j^dfhzvlLSNq!F^JuJ4^ZT?CQ)lu zMTzDcX}PMvH}aC$24hWCW@KU`=YIR z*8-J<^@87LkO0K(-5o^wIOw(?g6?kR)goGQWqmcFTr)N?6L`h*;{#}t;f=fm&7MB( z%Or%;OS5Lp66f>TnMrg_@1zg@bDt&%tdbTR@eX;)^u?Whoz(@7oEfe=8FvsVQ z0Z5Dr#H-5-acf6Qc-5GKBF(nrBc;Ju7P@>7e|XkgC1MmqC=%PJS65i;1PRpP`~nxk zT5o_`#o_ow@REj8Q&7Ik2`XN@K~eTlB*%YJJM)&#r4d0zGFAsk1BzKSE7X&pK;n6(~Q7>+XyUOxD+uXgOK_<5g8P5 zjhh>SxL46q#Pe5OD;E?ogo}lHRDp%R>R6h7|GE)iEGuJVzsJb&dymQm;hfdvEM~!i z1*Oh}qpDf0ef##pxWLaoW@b=jBG?h;2rn1CF{FW2L6HuU$a5*j{J;eDo;Ka?t=qPjOYEsMiHI=3i~7E$bV!2^o=q}z>73oE`kyC zfhbO%HI(JcmvfnbQm)G>HQ_&t2@s}N$y2QRKgwqe5wES;wLh^(My1vQ_SK zvTvj58H#K1wj{*xgVLi{e-gZKlbKQ-KFRn4%7ZQ?yi#q@6NM)<$g`mU)4s39;O=mog=`NiOC7k zR7?~h7*+0u@wrU;@9aDP&hF)4=T<}AJM-c`J2M$??rax+I!*O``}glJ7~JU4 z2NV_DB*j9^smjI```*pB;?zuAiky8yjiE1)6dgh-eg>KpNLE?M_wybtc(Zu?+P7>j;=mMqvH@m z6kng-T#yvK>H=6kxpe6=G`n=8i0E!q>6e+_xZ+of((C4^I{dYqD^sQ&pXq?eu-7EG zF?>Dr}ZHmT*u$4BBr zz%h!-wx>w$EBgLS65$D!Yrak_5|54zBTTI!9E-Gseg4|Aj=zHs4)qmAiI7KogkL!> z;swle78V?Ea_mQ<8M9PfI^mKZQFOhsyyxrTS#{LMSCS1#h&#dHTp^CUq z&vAZvNuf*&dvTI*=iwxPa#M=n8Jx{R6)~Rzv+cr-(Dl{c`b}SFIVO5VuSUn$l9KJz;Gb8Q?Ohz&ujj$j>=76kA0Hcy9osevT!0V6;Q6bUFNza?et9W;cy^T1_}$2%KZW_z zhhb#*iiBYb2V-4X*~`kYAUV*7#d*)^QCAAbZc+;0-Q83DV37-;KTPA5FTWS+H*A8O z9=@v8#A*BySEvxoyUA+86E_yY2X=N*e8!FUmPmT@76LMfb6E3^o&}mq{>#1O9n^Q`kjppjSEEEpA5!;wfLg;|6P|oG;fbTE zurCVdmz5CpyL=Uh@ncOzH6-E5i7^Ozcu3Mqs$=p4dGO#txV5<^VZa9w7QK+rrZJ?1 z@#*^y9K_tYbMfNbMB@Feh(^=Wq)3w?DseI4;6ej7rd~3$&W*BN&WO;3u~i;aAlkkO z6DJ59h4Jb3?zN;X7vx0*UXo?ipJ-y8NT=_Y#xx`FcaH$$3i*D)lVis2^Kz%|ozb;d zHxXUo^I=l`0euI+WU(`p=7zAC?}|91MD!m_`1hZUi+p@4mPVVw?a_DfAPFiQJ8?|4 z`QN_sc{FX+4AwbqU}|m(Cl@FA?flyvH4QW)pc#R0MnDtc{boph{R*DVM83bBZ3iw? z;-WLgxKyuR1vj?VL!m}~;tVmLDi{3Bn>&l-ikpf;7VpgXmgtCJd_34oFqMYpxuj2~ zmAXrq%u-Y-|K|ECB*jM{>Ddt}isHhc#F$W=Aj#o;W&26{r>7>sf_P$m+U$|{Rus_< zBh027IXSupX0nbWy)1?Nf*2BVm+T_zbPTP@*}YG=;Toi}wuG>uePlhWuN^1WhZA%1 zKu3wg>b2|DAbDS+20KOcUd#-@#@OMkmXh#^qTPik8o3>(2)nG1BR+@-)u&INmbKY; zm&=qXBLz<*M~%j_=WF0y!UZ!=LkgE%L(YP&v#z4+FGWsx0vIX&cqmTbwh2z)fy5*Lg39cV2rS{cUy7ZQ>eHst0l*WeZ%^YbvrNf1cw#VvYJJ% z;=)}UMiJgdOjcdv zWIZ!FFs&OKW53_tUQaY=m2lJlEO8Hygx|(3Bsg(FO-|0AdvU@-2VWVFd)s~GVM+5Y z;`SvBat>{Z`WB(6s-8rgZES4h!Ojoa$&i98RDam9P31`yMZK8zX3W@0aIG*_ zaK&5{cYRxP6d=5DLev{v-`WUgPM=cks(ICnz~3?gTomL}sWjpZlW4+~j)(^z<+x`3 z9HFEs@GHI^yY}qD%^Npi(%KHOD?I{MqB zNs~W?v-EEnY|TM5Bk(tlfX3nd1A|?&W=$0J$_szL$|z80sYKFlZf}Hj>-^;Avv=24 zv})ZJd*^bx+g#H7p4BHvK~UN9RVb2qPKwJoBCJiZ_I%|Blk<@2?DA=qBFFWo={8`# z)c8+Np`~krQa@~!DtO+`oUH6Hv6IcIbY=m_`?Isk+u4}omkZmn8W+fE>t<4bq*8?V zE)_maB9)V)M~|Qo6*Q@gqlkHYdcemiNQ$UffkkC=XHP@15@m_K!BU)gb|7nyAYybn zr%>XreNGUBS|ftwTn){gVL+5;EP?!Mj0?ejXx$Mvu3x3-Wd=qJJ($he<;daYt-JA= zXx`pE2!I= z^=|YToFR(SjxX3IbA_`$2f<#Ttsm4ZvC=?PWnqex> z&rZU;`3taf*FIA3BT2}Z4`9M@hTNE#7^7pi{-{0r13Bpy6g_@~di6`;_O0s}LXj*_ zk9_o5?1G7 zu+8O#cMlIDAm*M-AlTXENs7iaBk*^P09S=`y49enIm`z+f$u8D+tQJAiG(4lm?MX- z7W4`lpH&&2TK_|XG23OOwdKF(QOUUv>S7VwH_+J35bMf8#sae(uo2O%ZP~m@BKE3% zzxT?{+Yc?8VC^Jh;#gjR+2Cd7PYSN9-IHFw{%O(^KP+5&s$?PYz2&v|insXy2)az&BJv z7#zth`NMW$vS3IDW3-Kk(k%S-d5XLaBM#mC#2B(msN-09O|>6iivn#@fm=>^5S7jz`?U77E4XMu)$=NlAj*9_cYk*sKZpq{=BQ6ao zuM(kSuLtvfxsdoFRNzS*5HU1mWwZ?B(EoxSOo~Xv>XWMxOO%4!HhgSV-8v#B zDw?uY8AuBvIz~EXc&7m9RMPr*4@(`=H+ZD0Fi+X9XbdBe#!*>oml8OA`n0TGyJm$HcfGp0RNAr=d4UwoSS^ijoLbDsn5QyfYMT)z z^n>ifeK7Ua(1AU1!>>GouFXU2hr9S`swILS?!lwOy%F+Y2fB6bEcjc`>Jy3L>o6QV z>yWgu7bXv`k4xu|W8(PH(x2bDm88y9Q_h1Un-^A=6FhNr4tH!h9VA!`@ zSGub>ySyVurOS6a2VyHgjVfiyp?*u0SZ@*hXdgv@ISOq^v}(mgXIl>RFa9t#)VWYY zc-5XIQD{qoD3tAV5-omcCnVeK>@w$VuEH(gTB;i=^}0%#c|GBYWfe1GOQ0yTCBZWK z(T)6}`bbr(RKl&DEvcx@8>i;w7sv3`l?50xY6LcI+OuHdyjfF*0p2;!*BrRL+0-Y7q(o!c#aCYh^8()6p^38aEP4!;a$q$%*n$wwizIpM@L$X}Ca+ow}lE5T>P0_?R2hpt1jKIGbf!nul!^zbNzD?_p40m}F zvCM&9y?cFk56-sn#51cYL?)6JmWrq`fk+D>m_tk&BA$ie;wOJtOr-3cqduaByheE2 zXGr*os2*dJz>XpR-UbaAgoMeVP*Mm-L>9Lr3@NwcV7tWw`}Xe>=P~QCSapgEanlEw zz;b7PSd4Q)#DG_{AHgb86j;s43xhId;y_!B&z*Hwf>+og^>I85t6CscFHP>3Ouwiy zjv6!VREE0_!mo$o)7cPcS!kn5t*Rh40#&nLd@WVZ2i`u#Fm1z33>Yu~_POj~Y;KHZ zKQve0PrkP^L!_AUYFFR^JS_hfTdwUCS~R}bX-qQ$f9D8f|7HK3NB$o<7FWI3spBiv z^Q!3V#noIi6hu)yMUA^+e#C8CH{#LJ!NP@ldVW5P8#M@h`)1;4dv)&sW-2I9Yq~HX zoL@#VwDaA`Nf;rx*jRGT;^U}5DJ2OL#*Tnf>H*X$u1lEAvsk-!4RPt-q(ZH_l*;yk zPrHLi${@~Kx*@9yjQHcIUcEXwdi4Z1%!P4W{Nz=8rbrmGP=xR3P>dZnPI&bUEHg1> zs*h2hoXt48X?}`~M$cZo={g32#U_}gftd=J#M+D^;G8BOI&2gbU${{LSwT^AQ}w~G zk&&NanyY-)Rgw-*N=inRDpioTXhSvUEjO}o^d{JZ1*}{vpPTeJt<{v8{F16O zG|ICfB?Bb=7}SH_Ot z^w~>@uQ&vC#>WbS0#9OCrA}3e$`Fm%xOfz4MA7n}tt_1bM_K*1G?Yj_AE!`}k~A)P zB??udL@DgqvqxIjt5;8y@i?lkvLOR|;oiOufq;Eh!p7fzN5;Q(B!_;7Qhf zf>l`M@XJI6)4U=umk;{=)Z5v(axEUa#_bYsA zPwxqjZ!y6IdIgMN+BqjoI@?3HFp=zU`hb-1B+OhtM;J=lwrT?px>tsgGyJi|V7iY%0LJ ze*L=q&*~)0j`XKg86Vtzd!NRy0IZj|!D?P!nqkxV4Y$RqH|Nl-b#qnIZ(jQk9sr{f z<}mDK3w>`Bm`-wnS#3Lv8awKnwwe{15%?=dAO}6zvWFi3%A@^-eYb1ZP6~hi!bAM- zt{E%k=;TTm%J-BeH-UAYDpb5?kGHqh3)V|T0?xB+c6?Y}hxbvfR~>lT^jRYHn=5ZA zd=7s}QLzaaHsoLHOS6at_uF7H(b^EKL1mAB8bq?ND@nRCRiF$(Z{Nrbx<>5=xPJGQ zh(25(r?=76Axu+Eq;k|WNf7r8;jMp_gJjDAn}vh+BV>~xW^s+rg` zJ|sK#Gu_YFD#)hl0u=hzG z`Q5#(geUGzW44AOq@n7RJUd`gfJMhB)oK?^i9U-{_#a7}gU67gHSBOQOoF&*DQZmV zNHS*3I6*XT*RP%vVryCXJN{VPI-pp)b9Akq>b>tD>Q9mP4QSV{tvgqrBaN?&Q(YOC#ym%Q1x4gLtDzZ*p#HMQd-~P%INlxK%x|e^;8vE@dz>>Pe z!I`aClvVilAEtD=g%zewo+4@Wf7P>tlLMkMC)oc;do0 z5C?`I<#f!6=$L2_(g=E`O<_64MfT+gZNlLQm~^y%y?E72-CA!L*4o_$qkz+b32xehMC_s!d-Me;2g9Z&ywn{k! zH;hFNawegd1A2vx1wU-ESHUOqXjo2nm18o@A)@~)m<=Q6xUdNlPevksTR61IDc823 z%nL<^8B&*UG!o{gb@1ZxbAr!>2n&wt_^OkS81xDzF$NT=HXzth3O>J%B+P$=dVCoM z;p&+OmNWA}H&5pMllP7P@e^HZI!xNzBd*(9_@BKdP&ZY-s@KZCRq&u(pg6m#b;);P z;e8_?&i$0#;a6?{r@XRC7(*{uOo?&NBSwt)r<|JRJbuRrXd=A7W6*x?-2Q84mybD)X2g8cI=Fi!$>Tozx6Ur_!&GJ@_&~C- zi}|fsdTJ8kOBbVftKDccJsmlV^+C~MrA5iDd6W9Y@%xV0CvFgxlo=9eIjenqc}CbJ znBMEy3_IK+^|dpLyo76(v7H5c7a)}?nK`$m9Jux3~Z{ zZrm&sSYg-4o&+E$=s}(qw>4W)-RmKwlhK+m-4MMVU zDbyj{F&C$CRJCfq+Z0)!Aw0oBA7b$#&H{BO#tS>gl9ii4;tkSGSAwc=TJZXn6L|Ob zrKsn5yQUFzqcy=z`ogQ`6nuDd6C;KX$>!|x&aA}8kz-cP;c>cjo|ro>%pwIiBY~mt z#H>=UYltUjc?d;lm~(pdf}wbL|0WvM_eJnsDn83%&rXg+p@QxbQF{2%36^D-;MQv$ znM4uEc$Su$Ma>BO_7P~?sU6yMYKx<0=dmSlx3CZ}hxsoVQx<;w@Dcj0=(m{x=;Y3R zKhkm17pL=k-%W-!_+Ry>i6>#*t#s7RE+30o8FCnFBkA<#Y==(rk3mLkx9+#~*(r zjN>Z!`}?bVXD8PG>LtQz_CtIO(bVLsfdy-h3Z#M5N!0CDtXu^PD?5@0)`MGq50oRB zUkgh+SX$W%|06q3B}$aYhJ!qD;sm<)=uJ=os`&rPx!^u>dXhlFPeXB+ir1LljB&Lb zWp?yxBsWI)YLk$z=LkOUUcGvvOzBd1Nc^!51)CA?D)G90d?G9WH?}oGWav{cj`!7z zC#clt25hLG0ySq)k=bb6+}<29p?3)<<|NTeb|6`p;4*RCzM=xI&?ox|a$ts6SH3uo z%-PFMBlF4L*-M(v#niTVn`o2%}J5(UGb{(|eEQD3m792gi zpLD<5gSEilP(j4K+t;vs*!Oo|OZfBxPh4DGfp~^@3lxKt@<_1ZCvoCKpB|KP$a;XH4VTep zq=nDHw}~sbx;Wz_Mvj((JdPqV=9Sa1EbzdQh{K0|q~f(5R8Y7C`ROxZ7|N{K^953J z^X5$yFHw>rv|boKVr16C$isHjnDMYAA&447UkQfy(a}M8A8=k68yHT(kQa84M~)=P z;lL{tAIEm4^w0 zCELL?Z!{zD8%E&#`SaMmX&bD!ken(-RgJn+L1!-qG;Q7N7kjz=@D5D-ItU~{NytFV z$`Ey1zAr`3eutEgNg}eM-jHR1pU*(BzwONWPWnu$mBD!E#(~SWb2oSj3L)J7C(! z5tf7vX6S&Pk12G`^d(Ee8LN(s+rxB&0@sIjm@r`iMhqT~bH_<&CnN&F?}7o{9OBew zJ!l#gI&(&cN&LM_6+;X;+$u{AOhO8skIiy7*sRHq*yW+ZP!Sv%Dp5^t$Mk8siVh+P zr>vyX?13!xMIz$pni&$2e4C(bk3NbVt!(`2&zu>v5pz5Yu@m1T`3}k2FAqoJ{TM8o zzewGZqxl?J*O+Dm{>l;1`71mBU+mk{t1w=_Ar=IxfaPMf-aUI``SQ#kwr|~rgbh6` zA`#{eMP+#O$f>B`usLq{U&NB7%P@QX3Y6)3og$jX6hS3im}^^97_eVN1DM;Fo#@h~ zOUu5D$?Dj-n-n=QV?xUF_gFxfVJ?{9R5jbyO=~61l)u7IQX+dn75`%e*IBXqIoYoI zqi^Z}PT#Oyx_DL`s=-4?LSILrBBx^Hfa?-l0&xmAomQFsx#i~z~W_imEA_0mX2o8QP@PzK&x=OoW`oqzNLPbg-E-?cMagikC zVMfv7TB7E~(aWc&$5YW;PuST;%XPC>w`cW9s5yKuZtrQ2K|_W~@mK!JW7Nf5B=L-^ z%e`>?_;L99`pN_0)af%+P-uwDYb#UH7-8si4at$U#5+>UW6^|q^&2561u%E=LZSLg z3CiL?{iYz{bC66bd`E={EQF)j{#zT1$b^bIjjxTN0!$so%4Y1yl5{f_1MWuaHf{OI z3ogjv?*$vD()A5Y;8>`syyrhWp~&S`4_mfu!JN4ZgtjhSH-!oh7h}b$4d~aW8)nU% zE)$=b^tpZr4aLUk)&!$4MxnyqqMd&D@L~B*F($cRzkc*x&>?3&0W)XKCYFYi$W_@M z6VJw?N%MB3_|{u}Y+kU=N73M*FAuhC8#QkT^m-5@)Gv;B|bKN45NnDNV*y$j^S+j{;KE#RsCjtJ%92XEbJ{2y(Ads z12X9%BgX|o`IH8pAp33b!Z69a>um$5{HRqHIrx*)9eQ!1Qojfc-3!EddfK-BVkxnu6eg-~=A5{Vg% zjaxRMX`?1|pVLO<*f+46o=3V!JRJo-2giYqk`2n|niqF>-a*FeWa#EHK-}2~n2&KL z2nL0s$;?MPBYqb_BcdovN0}cs#@!$O@epd(sfn=WPvyGO2?wlO#0W`*Esp;wLNLH8 zd_EV)v8h-X%n7o^S+hYy2jSVx0C>84VD{eGvYnw5bsE>jT?#y;C8wfmkFHp^dY$aA z`J)+uKYIi;5#B#>L>o13ihyTNi0}2F$iuQq)v7hCK$__|a^#3OyG}*hK;`W6p;;35 z9`VI;v~JwkF(}{j7NyeiAmIEAxD@Y9>RJfg6iU7@L|) z(bf5LfxYTi9k;eOrl_r*Ob(oiWM@NQCB#|D!#eUO+95`>kY0IACb-dv3t z(bK%62-2=jW%9BR@^L=QN>>TTNjd2o4S=iRJvTD=}Os z*vuV@LC@F*IcN-sEfW>HUm)7CNE|YWT7(aE1JOr6Kj>lrm=uz0d)sIxyX46C@7@;9S#1q^{qQ0tQKP52= z?;>BY+^Y4OSIr3g+7Y;X^)jMw5j-G^rM*rfcv$8=F3W25;+WB6pxmeXmS2QmYE3)l zq**!O8I&8j@qjzAp_o3_!>1Mji0>8zZ}Wme z%jo3fgbCv(;KjoLyn6l$#Yz=N+{zEC0Lwr$ziyBom5M~d&uWL#?{Q0n2va2Ni$L7I zF!avC-tnsf)OC5illZ2ZPdI3Q4&b zE-fe-DKW{}CIdBU)Ib1H5Hh<(dT0s^+$p1!--zzbna(Yb8Be&mc+JepOlnbz)0n89 zLk!Vdv2+E_9z7$koS9;H9&-Rc(kHIs-R`j4T>v}J@5QKbqqB^FW>GT&f8Gda9Ns@~ zEXk=oii$lh!6t8Ia!l+{$agkHp-3yhI#aReN^KSVB1Fa~M{wT&Bj9skVRbwS0xjm_C0aiZ)(J)L(U}fNd!9R~!nT zw)^q$=n&$)orgT7dm-rRY>CvaT(uS-A}BIT(1Ke#TamPI6Dizc0S%sH__W!FmzU;< z6B!r&0?)7cVe0g`;0K;V{%WF1cXWz{P^i@%`;mko5=F7?Iz_A*p5fE>M}jgOC)meS zDW(f~d_d^L`157H;;d$3?FJK53q07@8fWG@Ao=+cOr16Zv4r(y3Fxe5LBbe3>B!^V z6bxx$W9;F)xpQ!Fc~OBtFuda2VlS8x7bss3Pdct|Z9;szt7Rg^@3}b8(Y=~D#8s=; zp#nN9DQxN4yB{`f+Jxgj9Ym!8&yk;`rmGHq0mlM$MNA^=xiHSTfLB2vS1Wi_oq$`r zTI1ZZQdE%G08s=T@o>+lW}L{npJrJz0$fnKapOkGD5>sQSx05mvk)5-i@HYDV86uxKH-JLDP6N-4dO3G(LE;zKF_CYAk{pu zW6M}wd`w5ej}dY{44sH3JTJ39Xi*`Wk%y@`dMT9f$)555UOF3`PU(q33P{b7F!ptU);A?cvCvLOV8wdc>>< zMJ{{C@6wdHySu~F!xIKh#xS3r8^+CTpoFDC+gTsoNA?m})xpz;V756gZ1)wwE3N?=>UvM@B#cY4{_f_tn1a zu$od@KC4+!L@!6|aVfIMk@}gU67l4C4Hc(~oyH5R%3{dS5fT+GMHo`1^J4s^ZN92f zw8bJ7+%H?;)j6m|mG&!EuB7z)M2Z%crj+u&tcN3q`aKfj$(bSt`p}`nq*&ITinCk@ zhx?G686qbS50P`>8wv{%Fm~!m8B45Qw-u#2oRYqBm*|AsJDZ_X=dL8WurV8X`LxMn zQN2bjRPKA1aJlmcS6WSk6gZk|O6px7UtJ=3+mD&jvmoxucQ?dA=8oC94f#JkEmvAFp(aLphzz_)6M{B^W#woli&X@ZQrR`aJ?Hl*gy^_b#6-M>iJ2A7ojD;7 zxHj#&5ZCQ1fgUVexIha1-n@Px#a?_om*PaKes}=xAM8uiXgi5cs}G%PG?b)JOq)6h zwQJW#=PtcyauF>KZAwA}+$bua)y#4hrf4RKc3fXUieyt!h$y&NsyX=4Uc4b8kLb{Q zgfn)R=&5Qy#@(Kro0nhRj|qcavFBygA;hUPwJ(hDpgZK~Hc_wd*RK!Z zdX3Sizb_KwqG-K>+9YLq;smi)P}DdzF_I#~HPr2S!7_g%j2k})4g^c7Hz`4)?dLbw zA{fJBagJ5rKW z1z8mxC(W1)!_hfm=4yagD&mTs|6U@a4$h9KRi`%nzB1^$XMp7BB=F?k+WHF<1K$I; z_-)R5$X{F@K57J3?_USQ*49X*f;7g^vWduqP7VwjF&F_4pZ((g%rncs1s3SxLei>Z zs;Z^q8Grn>af*NN&>`5ddk4arJs~AZL$qwt0?QUIm8hri?oxr7et9!kj&c_9im;3C zk$VZ97p*s{^W{3(ac1Z9-HUfpjLNJEQ)f&iipU5w+1wcI+qXx%F72UJ+EAQZRneMJ z11sp=R}kL%8SH$Wk@zGQW%HN9#nTtQK3(;Dt`X6xVIuE&Kixt`uvz9N@1vInBbkf$ zqR0s*8aG37t}k}KB+##{&=DS|eEISbiv_84QuI2jHUbnM+e&6aiOOQp7V61t~fh{q7v}(?8%vz#|MAGz6!f+E6rYEUs>>OVNQ;f<`Q) z8$~3pZK{K{)L&^TJYzURm40`KtG1Xt7!HopChl7=ynOyR+f_Gc)Dq!lZ7I6hNWDIS zijr>aXoketj}k@U2Z`!|a`x;wG-}jPm>9IQsYpYM(qQDsb99rVyeDQkV8xQz0zY8s zN>)K*1-9G7=#aZq4^khpC78f;!On6dhV|fQtUOClkRL^?BI3M||XK8k72{(Cw`77rR#; zh3CXZz<6aoHmBxU!VMAr<`R+;;z%Lwv8dhMKiFH~DJ%hfZDSo7Yds?ylAj((P=_sqjW(p{a&I}m z97-zjXZlMqBRd@Ypm(Nhf_JlxRO}Zb_}?^|Y#3R(l1PZN;D9{{(x9?qBwwvd80{J( zLshFJ(tdQZ3E`Z(5Z~@9_4<%UKMFHPm(HEBcFl6hHn2)lh3*%rfU%+!DPE=XtxigB zJb}2hy1c-9Si$ZxEtmCnz`^}{WZc!A{+BJVQ~$q8OJ-$bg)|31tF|%HF2o`J*5_;# zSE`SiVKeLmnRKy-ekoIl+Qx18hX9rvN=2%ck{{*Ori|R&lppVgfer1epyqI z{!J&fvB)uR!1!0Y6e}FqwO{RMs*d$*UJZ;5VY=J}(R1EOp_oZiTlH?~pVOd>iomCk zaP_)Bb3v8%=ijZ$R;^xz-o1JgXE0%rDe@UTgU*Wr0~vJvX(_2N?co3;qCI0vd72|mE#qi<7C5p_943?IbGL9E6TtM5-?U1USh77tE(>}B>75^n|i$s--(wI1A0?t!m zAj1pTIsRA1>XqF`^@9EwTSSctgzZL;Y|SGEzd{-n!r82Mhqje2lKRvA=ipg*dwZ+f zG5m?)B1Ur@@u}BKp<2`PG?MKJ+de`2G*P^f6#75GG_+*@giqnmJBKg7us^TQ|42_< z>HobH{NH&p`}gex7e8?dn$zhoF3u)AZA-AI1kY+8KfH^!?K&bZNI`DLqF69*rl@Ak znl+0Gy~4=Z%_Dfs?c2ADLso6(87Wd*w0J2+Z4;4~D&?8cp=r~`SW=~msGxB)ky#He zuBkw@F&Svyq#;Q@wxB|WA@Ha+QJh^K1CG*FAM}(Qkg@`=U}somHr8f%{^D#lhc|>G zn3lOKA~!i`UImMgbFK{oV{3$myugMH8%ZD{5`KPu7&c-w@|EpRP=UFbP7Fmu3)WeH z{ggu6xqY(~Rn4cUMPy_YNm_a#J^C8**yY0!;x%MvlRqJHxRWEO z551_4Qb?lD&mo z|Jt={!sNjb;t~{1W@9{f)&6(o`t96(#d-hq`m6|_B0WrF z6nN7QhSnZ%Db@jzLH?rjSGE6rZ1t;*+O?`;@zPZ&*33_wUEa?we=YegJSPk~JN9|$ zyTR-eaRhz&{NWLP`stoT^SJ1TXD6tV zIkeX35(d0Swn!^SH;a@g3d4q0l9K0sbQ+N$!sm1Z9t#wK1QzUJN3dn{7FaWS9jyJx z@gSk@rk5#_D5{!%6APJ`$DdRz>2cc)^D^6k zvlq=lNN@=5>AZ)@OlK-$HV|eAW|;szy^}7G{4l{5au{g|q+!L{l`zY1fv`KFXxFJd zDwnS$*K0W|kBC_?wwMd}(ykJQ_<1sxJY9^&t(xHV`!`65O%|zPe#Wo_^Y@G;=ohV6 zjO#u9p=JH8`@lTJ`t-ST;Tu!B#Ro;f)zvlI*zs>7B`%q=b;K7u-UU%3-$1{j8PY>i zV4G%z`_G;NH5Ys6hWj( zwIYZJC`Co2DxgU3C`Cl+E%cTU5>g>K|Fw6VAwhh<=To2h{yE>5%*?&#o^$S*nLGQg zv-Vm-w-L%mcKK(|z%M_s|LpVmOGhs#sHg)7hc!O_E++O_q&AV3LCGEbiccReZ^;)) z$opYM8o?`1BiaZL#yfN7F^TPv9wKdt?P{^6Z%|6ADQ=%ykDTO=`uYVk5NxW(0N>2Y zM~y@m*gLo)z~7BQ=t4bKkUnFwCUvBzOM*d0kZBo{JibZ;i@ZdZ9bCv;E!>hxQ(ux# z`=;u?CPbgZDJm)mVkbrt!VB%wuLy#JgV4W!f2>@!9%)SS%Dn6?_QpQ>GJb4C-eMrHyIa&<*=eXRU5)>%cQ0b%bNdTqLk_@d_nh zb_-5y9D>l&y%8O?n{4TDpsn>`5UM7h=gm~U`J%w+aVc& zCCb66@JNJaGG{PUXApXXSpRNipj?g!aL!^Gww&L6+KE5N35qZ~QCY#&JD2tJ#M(D! z{wg^C{W=EM-sDVgVt_vvxk`1VgWof_di+yOx*ITXusXWA2UoTpD^Hv~a_~G-D1WvI zPHsVn;0;O4@d`lUwh{H-&OmjtxBV!-C`16O?P7-00Z)*uks9V-!{E(zPs+8UL9nFViMZ z!={a2;bQZj5KtutQjf&Kt+uzdJ$Ygm-~dBMG~^-$;CX+fe_@M;%^P9=j(vEhRdZ}* z04h`2x%Q6oaMHfdnDRw>%@EV;9E=wNb2xS}v zY;Y{@2A?_Mkk%iKxPT_Dn_~N>ZFrNm_FH#t#ZMDOq@9J-x|iiK||r@9fs1K zH){QSm7mA1IYns&`~ikAxvX7>E{ZFU_bS7YK;%=9w$dHH&}|XbM-jEHjEUn% zQ6Dt}sgxbVh7H9+BEtURHHf;^)1dC~icUyPj#HkO{HQEjwwxE95wrxpPcCh4x~(xSh1o8o8CFg;l$>b zh&aEFua{i>P4CAZURe9~8;A{`H=*yk53~Olqe_)346K7GZPmo;>UDHYZ`e|@?dYnW z2p)S|Q5d=N-nX~`T)jf5955O`ojijho4X(=&|eewES9`G7@*a!-vD_^wLwD6B}FrO z_3n>#i)*1`4+g6YEDtVi!GQaga)gHr8G(gMKEt(B+sH5OtV$SienJfq2eJZrL&zuI zp>A4&T1jG}=q;BkS5B>k+qP|^=yF2Lc_zNiQpyPl8MyMp3Qcm8U^nH#Z5&+Qid^7h z-wNZ|ASU;^|?Lns9QN7QQNwRDBF(7KIDPNM(GWY zdzE(zwp`=lL8wOYu2XOhN|fiw%s zY@vzdsW=D^qQ1uN-MdMR$%-sn+W)6N3c4%bG5I|F|5Czp=B5-F(e2ug&-l@aWaJ3U zZ@m@_A2mW{t(@pymhjmfI2O%N8IU9HGl46Acz$*M6Li-C2wXUO9=mq!(x6F{NZNF0 z3&*ykIWTyWlDICK0j(__{**{rFIRQ+y8QeVeDcXB*!uMrCRI7Yp&%2rp3kZEMML(3 zksrXlFO?e}7!AN=b!5{Q8}T4H0Uo{lkY2+}sRH~msur&#xmkW+TDNbF)t{|~&*X6C z14QeMbI)GAP@L4BR;^lTLaTQ4JN`+4DAyE`p}cYJ2GZlQ{b7?&s0eJ&em#|wJ#ZlD6EBWJ(go@fcRK}9caWP3*Oq=rT*IV0@`?j; z`03oPTD=NAdi6kxNkv-XBc)Fb=r;gG2wEKDYLUH@1G=^AiurTivr3s|9`9fITt0*H znUfoH3*!G*jwieC-!}vQGXd}Kn})yU=pDQEqHL$nvvi)f+F0z^wN3-xJ9qCPuxR5f z`~CCQQkSuBKWPtlCI=O+I}!Oxx6!~bb48&n$OXS+$NIX2o*aKee|*oKJ*_{)D_4F_ zlw%;O^x3QXFYKL7e?OJ2@tm#>n(?n-hkPgx9O?#N2L3mnH zG{W=dqt34_IjuvLH!3J*;{EG*?z!g}FncS4o4H%b2Cr4K2D!ZCs!>Hliv8+d`2N^& z)UJ>RE5YI%1*|{D)PH?&wi>(RDm-&x@Frh(_=zOC)m&6x=#5(EGK$mDS~21 zfNm|M8o0RmD6J*-+93w0l{M*1__yD$?W-tna{NuDXM~sUhw4m76WwOfDi#!W`#U8V zWPZS;FAs>#@9+^XXmXf?ql-1zmA)j149s62m)UNWo?GCXtGsF-i`{Z~`M$78xrMmv z2NkKVJN%3~+zHJ?%r9yWKBhM^!do7}m4TTvrt5p!r%yk4lYX&zM!23%!8#L|bXS+- z-^==uIJ5N?Ts^UoH(0Cj&O1cAx%4aC>hSV?R8q~B{9?H=uye==W+XvRR4}p>BK1$p z%Fj|K`^7(M2FAWL7E|4(BIQ<+nnOG~o`kr?H?TJ5F~WQ3hePn_OH`4`PNM00r`H*{ zwf096X#;p@gEJ?dSkn1<2C7%DZk>xMQ>I{a_fc@6i~lL|;l~T%5bDC~_7J>1=N&vhFeB%{(&xYX zD1m;b?w$BO+(`XyCbxPsh%Dua_}8x??FwlCU4k@$E&jb5%mZ+NNu|?ThJ>zmkxr!B z#vx-4@Q6$BOmK^Phg#pf!LaqPS2c)xFJ40T5ySL`!qLO&7eh;mO+-p!3fvm`!^z77 zD(S{r_PLzkF)AS)HTA=7I?Yw7Ruu>L zAJ9HT@7Jk}2U3qdz+01P4%FNiDF^9n$rZL2M~?a11-rkPnCuPz_!;>5oAHl7kALI| z1P1uwJ~ePNm%HaS5t;PUO_eK_#l=0-Gw)XPOysP>xSTD{Wr8-|y>cW=kZ3ueLx&D( z0`by_o~Tr@0*VwZNkfIvno#p>_a3O+dpGrPizwO{QS)W^Q$j7Ico)$geBha#Sd&&u|P}DJv7wWu3?rIG_jtV{ZD6g|rnF`vM zWjs%N6pmDdO4U)TUQ@K`)K@7UKmGKRwW^pZNY?Y{!JSd7YH4(BTL%{}5-~k<60g1X z8gBpaA+xrxqiLgBDy8#loXPFmw z$AA6|2m&g(3hgWN27I{-%H1rY%h-}UWhprWb0F;)b(|TL1+I!t z9t^mQ!IT>7%Nx_AX*V^9l`axKCn`)+4X27sh9#Hw-nb|d$&K0>-|0dQ{q!ri%Nq>v zyeChbjL67H_&R#4v4&-cQYSe+Nof%2R8X+bpOtcCOZv$Dd-t{a+&AAv+_=lCb8PEl zkGMJ4@#t(a((gP(@^?&&r=ta`sTRJ@QRMfV;I-0!6!@bkj@{zMjy z)SL>-IIWj0lp&=;kD-mQq5PDgBbnA=@{;in%wfniHuer#$0hCg zg;z5#zx?u3$7R`=BWEscJ5PlHCTFqs`kc1PhRbc1D*DJ^(ooI8Or1K_aQV@?PoC5D z%+#ybz|aBBP|Vy|=FeJ*Pu8zrZ^8;z*Ks$U@W52+@wFj3YO43!ZyLRH$9M)6GgOi= zbQm-49-fAY8-{_mp$dhGs4>PmCvsjni!?WV`wp-+PaRNGs7NV8gxJtg&X5{m3fG&G zaLOmvL*J5GyhZ1sV<b-*xu3?yE#ot{Y}qnH-Cf=8T+iDO zg*7xbFhT2z7@95U_P`YxuYIP3^E+#2YB#K7Ji@$;cZU#T>u6^Jf&y-tE_h`>We6-*4*b8rwhz<2N_IwSDQsy=SnAC>UY( z?%k_x$b2?x)>y|P=gq`5eQux6+0bIx_=otL1q&AFHm9nd#<7%}KF|CFkow`OTgj3+7-cC%)K3t}p~K?`@#KOhL+Im<9X>N7pgH&+EXktcfRhxs_Z zz8^}r`&hT9CdSbHYpTjiSvrv9F$bc_`N62MC`rjjHM_d zGbz-YeUw6kftswMVjxmwJ9h4~G?&p2$2XDa!uQm)^rn91^=ns9`ME9DWGO*BB}uMO z;UXBxWj9&&mgKV5Z9Bp>s0^HaBJk2n8QR5y^sZU6mJ(bY5qJA11nz|zhR;m=ct@o9m^n(t$!Xla^=OmId76<%4C++ z)5z<+Ly0b08y{PWYd@{Sn}?G0e8j=*#h1os@Kf1li5Bl6DfSXkQgRtH6`?E0vcB+f zj}tK+zjCFz*_Cedk)pm*Rh-lIF0Mx&uRp2~CEfjgbsRmMu^cG-McE)QXCV}Czn(nZ z7dXEUl+qG=ZWY=!DM!_kue_`UXXeEmR19fqp_DNKHBLQCm2M6F}7 z=YyI=d?zC6&;rEYIILVup`B!xf9?!?v-KM^Y}}Auv`o@`F&8ezMRTR50+uaVrZ%`w zJG1tkJ75b}Cjve#q-bFBwpfTotvr!= zt#YaqI8z-UY4be@3fZkkH|*TDQ_U&r)vE_PDgxYYM_XJMds3G&xWB2V6On$K`rbq) z$BY>RQOgn3S-v9y9eoiuGz#Nh8Amt9sn+hq2&YEn8rc4De->`6TYI5S+|hdCpyuN3 zVm;>HeInOxXVMfzSJ&2^$*q(SqwI|J@JCU}ID6(M`V8ocAHP4YoN*T(T9Ihui&@Y&nolT_Cg{NA$y1Dz zlZ&AYm+|oMQbg2_$Xw~ROR^jz$ZTY>vf5@quF|GJwP8d!oJ~-H2G)8`?m=wV&J?Wq zg4PqXQINsrlhX_XGb2b|vBon^?(lp%UN4^@MMK>K3Tgeohz9!Drd=1^FaHFE=BL(# zMm8}OyM198d>ikaWvzWm`|{`P8EPEei2#L`Ch9#l;~1j9mi@F()@{;O%|S=4+rvsf zYh1j;6lL`fE2niB^eI{_bzO;A)A`QO;#iNN{;r`(0#WOn);27CxDk!Cv2`>#Bbyq! zv>7IV8G9m^H1aU?f7f&B(5agutT~Fd(Y_co8%MVQ9g`sOH3uHjb_G#(@d`7(M7-U+ z0?e=xV+;lAjhj#IU-rxKROz){w}(blG<){!vCf~M&Q3(2o4uN3J&tqPs)Ok_ z;CV}xr#=eWB#4|KYreq+t;foIQc6zI^jdWq8u^_5ub2OIgjZHHIQaWvY}lbsE(*4E9W;=8cWlh*0af zNIR7BGDS)kwf1FsGJE!Hl`!;OqZ&{IKuUEBDZ0>ujc0;#qh z{PUA)L~U)IY>m8!KGX9UCqEZcp-M$ltXy$ZwqjYs8v=cwMB2c!=m%2|Rwhj@A z%v>bPKRNEIa!?O0Yk`7wCQ~D}hngoOM4x9yuLlmV>RNchYPy7cC4Ky z+i^*q?cBid;W;=DBj80VUU6@$JK`KQH#0u=qQ5ILW{LMMTHAR1goYILC*%IjA5`yG zG=G0s+mq67o+_)vz)p3B8GI_gRS?`SnE2)yTvF#>koX<%mQ}R-A<=UWa;4pT^5EX( zeP~a+O;NURaQUSUZ9?=}x-OC5#<{wB_JGRxSjH3>7|5g;s&C9MhZ1c+)#S9TZxuo1 zDmARa?jnyQ@;@CrcENywLr}X`4a}cE4|{fPQp@e(ys5Qi>H@fsDXeAOFHH+7RJ z9!OH!spBX4y)xLgbsN=OUeZ6yG5$V&FgJ;)W-5ZH`eu>`lwD$mF=E6B)u0t;G53yv zic;Sjdr48*_^H z??aOJq{vFvgUfO7f1eJAKO1!TjLVHXea^sv9NbGAFKK?kuW9Rk`|Y>by?vJz-Ig}( z-weaiK1Xo-#%*g(gKW=S#9XCu%O*Jd-C?foC8K8DTBuUF3id4DO$7~ml{-t`8;9ht zV^OAZ8MJTFUUM8=D!E|nD=*`2-?M6}LCOhSYx`)^VxjEwYHm!LIT_DB`)ua!vY%(q z!0(=c$5)Bp-Bfl1|LF|WYtRe>2Mxg;$J+SzbgBkJ;YAx*gI#G?bZ12?w)W5ynp7l9 z+Sh+vh1x?-Aa9kCIDhs8>I^%HO3!WpQCJ!q`~*k$5Q>RkQwqYyDM75i8b??6rbO0k zOqw`OgWXz#e?XPqdr+zOUQINTq>Yn59>S&#Yf!CPHAoVZhtK05I~mI(N}HuUN}|)& zTuoY5ScMrZ)~Hz*{rdGoP?Z^I`0{;b{#Qf(8snsj7D=9R@yyAj zxHh`fFSLq13u+)oG1`sNh0cb5QpBZ8>~Lc)??>#l!@Be@j%CS|*~(lVa$G`H5KUq! z&YmIaRz|c|4G`=dnW_A9uxmNau)ZYb$$VPMk@P; z{%F}}bb4E@!LDo&Ni%Y4^*E6f%TOh-WuRRKk-S-uU|SN`3e_Bg*6lje6l4OAGT6JQ zfjW|1# zUi$%kdOiDZB@@XYYSpTROUG98M&WU0{)K&SDaFPj>tr2l_LINu42Wb^@p2_lwsv{s ziO7SXkRZL8kpYWDlO0{ZQofBxdJ^w+e=ec}o679|UrRi*ceK|a$5KD}U>xplx~A6{ zawH*!JKucsjb*nww8>I>=Hghy714L@S~vMnZ#Ipzgv=%Veukr1%f>ChRR>7$d7;Qn zcrVKbcS>+ouTfoP&N3e}X~HDLe|!tcyJ?$uXcRr*L;$|Fe9n@tLXYnq2-E;g=q8SP}=nEgC^2L6B<$PRe_fJyu4_h~KsCUsXc0#iX@YYaF$t~j$b$GEV6NqMP zM47hC>@Q{=exW+!5q0rG7Bc|3cuN2y!LpQCI(&UID=(e3YGB~-i5kenQ^!{e@;zeNTQfUeyaESQbQ;^a87igd8ho8}`ngxJkD!CQRYrvR0NR zas8*Y5Z5tMAt)a7jgO>rOrq zl?75XD3i8H)igXP@pk+4m&nPna%rDIF~=Sgr7l9Jw@uKX*U{CN@?UxI&CI+SBy%lC zQE!>IT#*gb(Jpfzqy(U9l}h+}(>h#@I*X}OCT97e%9p<&1LlXE!+9vq&xDjTqFR!9 z{;vv?PvGH~7kQ}#U532k<6k^a=e?G+U7n3GV_)TG)mMLr|5Y2ZPf*^s-+GIm)8aU_ zp+AnVY=v8gU#F@=2HN(29iP4bub%ai{xf+?#S4_a|L}D6Bj!xDr=J2?lMcmwT%v?XxLgC4nMHr=2`~3M$m7 zh+!YSpuu8fu}J-_Nuc_0TO1zUejMB-?~2nv%Q8z-CQU)&>bn|z%eIF!h!OP!k>rwV zZR4hmRi!|k)2Iv~7PcNEbE4~W-PDcE(vI-syFb?*sq><7@7Z&RfBy!&8wF$9$Fr3C zDmMU9WCcU`!Zvm`@E#imF2Td^?fm4eKT?3ea#Oc@^=gDigu}<*M^`mw%$jNG%KCWq z>Q&Tl+5lk%a-)3J3ToXhJ7>+Fg)Muwz;j3ra*rwL$G&XsZQ(sWOdZVPm))W&O;a2@ zb_~Nt(){60v`T^{ejQ_NTja@7_QWYF926F;$h39m6Hg?UBc zy25nk%o&g}WxXCTSxyZg-*t?2sgHj6D1@6UQf4M5jh~Z5wCmIky?XYtG;Mtp z4FZbufkNzG{j!eOucb_sT>g9K4=Adm1nQ@GN{#X-~!{9K_6p8o9bXSApso zW9qcZ+E++q3lkca!C$lRJ{!DnMe7wPRFoW7X6@SA>mTLRbh~>Xd3ID5$W^L~adh?9 zZNfp7zCC?{jh&r?ad!7Nb%&p(g2HX%lcR)jc6QNov3Fp$bx64Kfa{ICz~eKrylre9 zj89l4Z9|Tcd8{|$oW8EwdzU^6Usw8Y_04N&{milXk#BoM>lSPF4!7si{ecA4XGBU0vll zSFTc(st`r3bu90_lY6kKH}X8yGh$6xnVvdFBSwt0z7>)w92gQto@7q$bD^SyyO}-v z4eS2PmoMuW8jp*ywk`ZwBHN~Xg^JdCPkSPqIVU%NReH!wDpV;+J=kPMY$#@s=%fiDHE~cBGyOFGZ zDIuXb46S92|AGkRebNNNjC^6#ufBiJ4;^eg$U~KOM4f^9xW=`GFEz6=xSavZ3R?Sf z@N+V~`}H*$ON1wCZ)2#%YrM+% z8&OLT9<0ZJ5Nq4QQI&Di_Ey_%*`}p={p~mOxl3Ii<5t~ApL>nXWj)5Nfv>4pqmp(> zN)W&IHp;QJ@KinO2bhRL1$4h$ABvPLsytNNAO~&B`_lmaj;q_9N*Le7On$>GoYdy~%A$pG9Q*!HTY7?uP zgS72X$~A+_E9woLn}5ZNeSgscJ>H{Ni1F+e%xi|d<^;%qX*R(e1Q+99EQ3efxocSnGBT$85+!1F^#;#7KGDlr5iXWlZnd*iIq66E}a=5gfn?xaE7R22a+ zUtn-alLvoQZ4g8=XYme-=$_d&5&5f*pvi?BT<>p&^VK=1S2`SrzrK$_gNM^9c^*o( z`hY027g6CzBI~(G@kl21q5x6nD=5}@mX1^Y32Gj5j@X+9yXRUQC zPf{M-!l|!_?w{PCW1(~y-kQ@3i$DAbr%#=LIL0|s0fUf_a*;(b$_VToJqmN8#Q+?yARjaDPLhIJ8TI7mM002M$Nkl)EOM<68Gq8iYgn(*i#lpqgBgR@a0OI&=%4e z&&IuZ9lmepgD77leU*XqK0KPp_Wj{GfR@ZB6VbhUcZe#3m<2sqdiUssg82&Ilg~ck zHPaP+e&_=+4H`$=`4!tfhsTF`h{4#v_pB?Hk6aGN8Z?mD{~&`WT)+ixZ39TDaL7VW z5TyyRG!~S43Q_zei!y%qp6vUB`3o>|*a)sX9@X)Qsz!Fno`FAO25cmr{xcf>Z@1Z{ zOBY(@F8gnH`l&@HoPCqtkhbu`a*REcMxSsVH zJ`?4;@31sSy2L{UypG6`GhCC{E<|1DGWc{P-@lC0+b1anp&Em3pHTA5el9 zy~8oQ$Ha^P2EeT-mF9)ygjlWd?%a7;xoSOwG!MK^!v#so_;-qYl*Lg^ICH|ClZ$(3 zXfBSyon{MF$f5lX<>_oEJmKIRxp4FP6%?w}9oJ8N1v{Rjdl==5n6M{H`BbdHS&qMT zrF8V~-xt)r)PQpE;K3kTtFmh{rY|OV((x|8N`(0`LGaco(o=r6JhqH^`y3{(k-8u^ zHo^y#CExOuY9P+3A|gp$kOZ|aU-d*tus?q+>E6U3z}YhgrO6mth2g>vQ2kLrVd;Ez_AR!O84_2wC25W#$rXp>;3O7*(9 zcALQm1NC!9*W$|!o6v+3QxXJ=%#cs6ikyQMYHMxj=g4QB(4d?bKa=w;o3cFm2j)bn zZaZ}@EIZD8Jpw(NhA3^vvhDweN1>faLXRXFTI2!$N#`vFD*1~<;C_WvP0Et7Cw+Ps zai84M;FBvH7&vDbY)5!!IjslJMdAEU=MWSWlx6$SkwY<;-|0t>9>R{UWRK1zgD9ZZ ziCc67woEv4@AUYX_$9ZH9+e8OaT&|yQc;W);`>C=1v1gvHdi!IqH0Mv&BaOO| zCj_?Sx5m+R%{QD5ant-QhpKr*vbfdpRPD%#bzl%GTx9Q&kLNIPQw;pJI^*Kcc?i~n z|HTubTOjvn1QTZ3JxH+sY%99hwp=;SR8M8w)w61qf*z|a+I=iG8sBoM`d z(yAw0ru}k+Qk6jvKv62N6uFq+VbGQQ;3neloW_AA&nWsR`ne&6o6!-BoGV*j6e(5) zb{_c{j1qk?Y2?6qBM+4pDp#(I)Yx;>>z$@eilTx9*?|!anP75{fPWh-sQVypcs~MI5U|pv_vO$1j|vRC7zkYA0_%@il2RhM$Ir{)L6uNw#4z< zp_*{AYu7Hzq5syS1RCOK)n#nivIXM?)uUeL zCX67ma^>hpDDli(4R$3s{)zlxJ3CwC3XeeVp))b!g$cjt-;Y7AyceRbAlk#imzMX@ zQjV<~$b_}SNVxf({z%HjQ<6h=ZT}iq56{Df39k5hsxNYdh2iRz%P3H9Hb~__M72?D zhjz)l0SYPE3zx54=X;%w;6hosZT3#?aQ6;WmpKXWhYfvRErAa#ZGrRq-qv7u`ixmt zJ>oKDDO0_A%hLeaKsKr<3FZPEzm&!0zw1`YJl%OM6Qz8=HR>Rj@rPvIn=U;h3R zy!qyA%W3`MQ9fJtKU)b~capRGTM~Ax$7MhHOJ~5v#RUg<9Z*fzhhumnHHI40=Y#bo zQU)d~K8eTgBkdNyw?7w2SWAe0pb93!O>Nn>CCb;RfRg1(;e+*y;j@&9rz;90?Pe;x zU&*)`lSAEz_=!ATay!#uw%!LpL?WZpr0Qe#XrO&TJBnk zNl8a4QCiQzIpP0q1Sox#5xla3%{AKYItd>A0Lwr$zqm-df?P_lD@DGWey`_a+-L*O z=W|eLz+JaFSMmf6D^R>taZL;r_c-~!Sb|+ScFWc+aO*{WSE^+=47S`9k^F z%mK(;Qt6^bBMW%;q(yXbH~3D^tFL7_?(TDEkiz|`KO|_dD>}XjOK+n?>kc|^&AAdM zeC-jVN9xT*=6186XV1W&J_G!r`kyHO1P-rE^pK&WrOCvOSe_0GK(`IvI zsoHy|a)Ra9Ca*luW0^2zE2NYu zM6Pw_IVn_kqRCaVs|n0g#S9%bT*o5sA?YF3dbA?e?J_^}-pkIZ@u-FwVt@#30Jd9wb~|s!4jrf^EQUaxpn{3o(vc?)VNZs*wU_r z(=5E>|KG|#ox^K+zeHPAbfAU9|D==S;w2yI=gzZBu<>pcVnk!NX^Up2NV#Il7xicr zXnbA^H}>Hf9NfT_8Lnouy)~jKYvFmyqia)gdHGr8Qo3<=bEf;>bbakL<}r_!_P>Uf zxW^(>LMpxT)q~L^@tZn7}s1L#&<>@ zLu!ML*PC2n=~Fa`g&S=b>X>Exw*K}eZ=np`bm`-jNfVThtnPHu2iq1+;>?A~c6vUv z0M@qTJ$>rjaE_hAT+OIaql|kXHGy5I1z+69xCeQd-UIqrwb14BBJ*$W>!|HYUd!LP zWOI1`&hO4|A6qu1fmf&hb`fMzoNpwfeZYVLR*oaTT$&MV;i^74E?Hg?o@UWvCD3F7 zmyj}*gXG2D_-Qp{S-oP{FR^uYI4V~vgI#;L?B*AtY6T+Yb?w;4s{dNznRk^FY-wWm zf|^upC{78py{I+luw}D8Zh9?5UDRGBpKJX1@#x(3IeffqF^V>R9jS2_skZPwT*=Xk zkBcM1nWCtnC>Ds+*8^(jN&zy$X-lNCDav*DSlbuma^1^zx?Hqq#SWsf z04;x&i+qz5fupORQzxMH>%YX0C(j~p?wr)1ob-!qaDM!i(jd}4ZfskXJtSk4nv76@>5nEb!$E#4T>R}N$8l0|67EcyT6%0H3P5ET`Lq0IQd6@44E ztJXx_+I2B+;d{Jpq(LO5>eQ+8i?>mh^qD*b7iSktm@om(r95F1V26iSlJV#yuTRdz zNu6vV`niHGx_1tQXxl~)J`VsPE;fx)AOkb*@XJ=I|nJKDjys+V=VDMucl$evv2 z)wL)35A08*I9aI`=6;$|B}CDI!L4#-g*qV)Yjw)k#y3Z{!gp>yZO5c>dA`*Nc=V^# zIH3;npqy?(G7t{U`09I>jdmNZ~aw#iSzr?$3I^1e>Q%osKB3 zHid`g#;{?-tk*OeWT1H25-?$Qi2j}wkK{D?1^Qv(dkd}Zi0?0WA8)?*Hr0A;P_l3d zEMK}@UF>XKc+BwgNT+OC`kjZMB{5QuK0qqxVbthRm@$0@coTzi<*1iU>a-xV_IaF< zw4HosO0nI#e#@%PAScnaM^`NSa2fmx1R(C(eWd%@K;+>(`#q+TL=Qa=2THTOJ?0Jc z>eUOhdDm-kfdU0|Ww1iEia1^DDx4cWrokjnxrMQ9Myp(zb+Z0uPqHZuf3r8_cMj)q zroiuPDEsh#e+I-VSN?u$5x$t^BA-IrUrD&Klso6QYGC&;ITo8|<|a3EI@0cc&Opdj zlaT0MrU^+@3ZS*^5cubg+Gpu9<&e8rGXz9-z|NKLV8#pw zUBV`xdQ`*Ju)+Y&&t{ggh{Q<#HtLpMTsq9JQW5s@vqB7;ls* zR{`5E9@QU03CI%@;?)v(@7{gq@~N$_;^Oyf(5cf>IpjYsvh;cJ!ddLzy<6p=WZ66OO~rrQaQ1H@XzC4GLnnTjt=XF2FJ9Fn?Q2&8h#!|j~c}?CL`20ZF zdeJufUJ9Ixl8e8O$yyBNgnKG{P6@Om_?2RkGnV0#r;`WD#9S9oS0;x#plz@Ah>eQT zL|LIDHEYsL177#;OlV{BlO$(JxqBiJ4i#L{vO_Bz+WQ?gZ{Doh(!y`G%ju09Oc2AH z49H5mE8kU?{bOH^LY2|&(Yt>ic)gLELA5;+*WE<|<;?uZIlVvlBJPd82(M5dB;HNH zi!Y90^4%-&5As(DHP;sYNZw27Me>hR4#!i6{4te72lewmxly#``Pv6(P567T{5G75 zx>05dlC3 zbgk=yM`x2TlM-qY6kE#D#Y-`H!eqS>mhZXfcqdU4IE6v9B&DS@+3wLr-sJEAu?ChR zxd55V&D%F&Um`0_CB3u*E<|0(TrK-~_6+=~Gmstd{;AXZ$2TtgI^kPQnpy_sp54q~ z&KLVWY>4!S$;eZouXdOaeGXTJk6N=3d8|3G;*+K1)J|fSbrOD9*N?7jrE%?tPmr(5 zFzWzMY<>yV$T7ZgD;nqbybj8p>ApiNIt#IlZe^o1kdZrH2{J{CQ~sJXYo&p7Bt9)n;zM)p6KE!(!L(n8$3*Wgr%j%W_H zNKeT?Sv|-HwiNgFM7l2|L-?&XXJ5mpF{3ea+T#H8(xppq5AxJt*K&+YExtE9V{q`` z!CwVSX1+E9Lk133WK~v<#OUe5!6?>4cAB0udXR zm0K*kbLY;jfAYNRb3}YUUJe;k>aheoh+axcfNl+hxqZ z>`z`1jY6*!da`Qv>+Bi$(`Fz$;QiC4_Rnj0PcAp}Xvg9u%HZ~5f`NFJy3lePa$V4hC7i2Efr=!G`Fr+(bOM zb4rymZWD1QuU8EvL`tkm&uvQ4uuFXW19|1@Efj6|j*eFx;F^q&Q763UAKt~RnbXj< zYu7CEmHEY_$SaehS#ReM2RB#Xg^(@bM>KBwZo0psNI zeWoUq$q!%VAMMQb{;1~?z%-;#e$-XEU3s|T!2aDL(NvqV@MY3nAe(yJK+KBf)oUiu5FAN!t)~#A=K;<<$L-{}q4J`%Nf`tp`dE*AAb5lCHQQ8d^1;5 z1X`341cA2ep99}Hox)ZcAzZ$G1uu^otLJzv>KY;AwD31PEl&&2(hSSBjJuT|vcGo4OkLea8Z zyJSav)P1FDWp3xm=i-zpe^LaEJ^JmDrv{;&I(5SHBL*Yx4Jtm+^hS!H@9`hpM3c3@ zPD2tp-qJ-&t<(v0;Of=9n<$=MOcRB*p{M*?Jb#g{P8w1y?9031(b_oJr`XXdeaKU4 zXK%`$fj?&kxL}oC{)sctw{LGE40mZmT!{!C<$j2aN|B4CPzZtxKZE*X@1en%Ygqfm zSLoa8Sxlcc32oYS!SJ!O;Xp-!%ZC=g^X?+NFti)3iBIYAVizfrJD)CJgnhfWASv+y z;vGw(QvV-OrpI0)mWv^o{xLBbT90j8KZB#Ix^WEYdOYD^9mCZhR{Z>$rbm>{606;l z+g?>9Q+A|1O2H)tyW%dl`RlJ#%1kH$qE6sMz1|FKUTYH>uek&&CH+w?OIj8c3px0~ z-7|D9x&^U14GN~FX4HOa9oOPt4e1%{*RE7~HVJm6&{zWv$eV3C{vOfVIvV`uD%B0X zx!69(RA<-;>iwRDM?fLEueHU9VFR#q=~A?4)lMk@x6XW}?O6UL-8+kJUAz3tU{`1n zg3Ip=)9Fk_$|CRW)xn0VK^dl+tGcm81^l!%YZ!wo!dWySBUCbick&~E?lTc z(SJiWOSDpRh2_PCYw;*h{|(p#)>f2I_@CM3ub+X<-)vTgFInD?9z=&R>d&TKPf^6y zGCJY4KDv~GdQI!2cdy>K(D*LS)w@mY>o&YOd<7MGJ$QINS*wd$fGpLE4Q|ZP3+jS) zZ)_ArSZq{YP(E{(Vn@AM8bw%M>Z7quSH8MPA+BG!4vDMoB9_O;&bWeD%8j`_8;IC( zQSw!U*Qij^7@Uwy9&qLo`{@lFJaiCD#KfhBG59u;^rUE71y6fS9gx6W9KKS&d!UkJ zF7@b$R-N<#N{Y>RbEZ;rm}I7bvI}q0JbF|AI#aQ2=!V0`k7U{c6wFfqE`j8>_6>nU zVHXYd?MR;p$&~{!ea>0yCVYM;gHuawT%>XHBL@E;EI`k`y|j+d8H7HTG=r-%ya6!` ziti1-h~$_=f)6FF?fjl6a+7=Q;#E8(h2eJRQ|c^tzwbr#A2Pto5q?_x;>2o7 zGw|E<-2R?N{8LmK{?+U~snS3#Pt&tkKU1z^P1C$(TXpA=&U-w&-9sKB|Chl|vYmQOJ zGC8-J0}mUokkYCcAx?3!&GN?tJ`+;3wV|vU`|~up%l0-o3)L|Wj!ulv)6Kwv0|}wn z(rxXi9wUx+GM^5P&U7*JFqNL&NEM4+8Rt^CgrN?xVZf-beZ#BiTwD6GJTftmiWuLk z+nN*I;iSFLd}WP?r=OWSZ@y{Ox`T0|f<~Ek%cz#oPxt4qHcHQffwI1q{+R${o!=*) z)N9z>RP6SJ^*p8TvK>CMmBiO1cl`Oqq_LpwewF=X%NRn`Fwbd$Z340=P~{t zXSijlJCd<(V{G%Y6-|sVsCsKg&3mG#?IMJ)dDR2 zTOM7*J&c2^qwy~kq-~cdTaxZ$kI!4`xs~-cgNF{Wo{v1SxTiUla5vr)a~qdN8P_`* zpO=r9v2&usTY!U}vt1r1LnK`l733V`e5kQ&Xi2PXib_NE+SRpxnd9(+d3gPF%~jizQ2!{E^N7pKWEUH2j}a^pC2Ljqvhn^mi;`5FjcJ+m0o} zrPMSWI%^>61H#{}P@w{B^ACZ2Kvm_1($ZHGlu{G!Fyp^BQOC!eO*uEw@4a;CBFz`b z(LJ#i>&9}ak*I5(VW+Y2%P$mBk$RG-)u>TJ6mS0p%2B745?hL_8madxcWNxHfsp8A#L7)xGI%wio5vf1>CsEq)Poco8~3QwGI~mw~g38^rm}&CMM< z=9Hr2oEuJUoxo*GM<$I>%QN`_#2`ZqGsLCsPV{|6D1@V0wDB9NoZ#@31V5o=Jmk{m z`8~6-jt))?99v#1{KT{{fQ#xZfw zAMHDI#uR37KdlJ*CH-VBlK6Ir#vq03zCzT@g-G=&6rqYnIC;!droM*7ix*?bhYL`3 z;7Jr{G?$vo={S1qBxaEo@n@EsH*YI?pSh3RWqPVHL*{MS&;R=~uzdM)IOKIf{K8v^ zUvL9=JDq~pm{7)*8BDjt_0dS$d=FkDLsenHF31s-8L$piOc2t&d3~YL%eAZ5;P(|X z{a+x8%FBi5(c06oOp55-`n{7MYra^cuSJ0%A|e7Ym6=S%WVc(*f5P3t=a4j&&Wv8} zRQrfPWU)wy0funa=aYhymfr?}DUdwxhP#qzU(mv!IL?t2pVH#SsYK5A0YATgs=T_3H_&d<9 zT|3;diGj}&Y8kIC44006C|bIhQZ{}*y?Qf|qzr7(Txo0z;~mgXev*tz2u^<;x^ zmWK}?jv6&;JavEOjeYy}h2s@lBrlEDRRD2tiyafim9KS~tNpI$qH-ceIdkXE#en_; zU{j4I8pSd`lRbJqr@0fqtAp%=|G%Aq?11-g`qqyfI}U*i6ic*RtaiN7QOwHcQn`qP zyZYp%)KxnTYz>$BCE$ywJ_KoE^nb!glc_uqy8vL0#U7C z+uOw6?S53_AEad94i8i27=m!~3_!i64((=#b~Jj51e;zukqkYgST%XR$h_UHWc;p8JD4CsheS ztdhm*IN{3I@D40Ub%5o4b;h`y2A{l__sjAm*Y@#&=LNqCUVI=oO5UkNse=* z@xESWp2Lvv?DpZCvjkL zeGDBoN`>i#BP&_w@<_x5ku`^BQFF*!u|N5?lr6HcWw33>WWLQPOXCosbWE5qfysg| zz|)(qO62%TvYa@z4IbD_-RZ<8SxVx)sEnHgnq-{WIRkMwk8801?Z<6#|LzrBymS?x zeZC&$I(|l8F@qKs;Rcp&_c1Pu@&c^HOWu46;#Sdkl&ex+=~a7o?S;$eU`>FN<6YbMgGedTAEc{_f>`%HBBkQs&I6?HyrSwW ziKpU~lPVnD`)^*wy$P3a|LQ%Z3Q5pbwrp9IKzr-;w{W-5StQd2SX2kZN|<`P)+Kw9 zQ|G?96{zxBD3lM^nTy@-O>b0cZ+b-2xc zh_$QMXp-S?ZR=_EMItgZPbebG7Xeq`RKCuW{A#b^p`?`r!+284?ajvteot#7dt3Gl z{Mrm;|LXkO%>2dMzdP~+!paT6^`F)-`RX;)9dU-qNFS-90Aw==IW!f&LD#k$EJoN?VIs|*(Erzt{1Db@fY2$h(h5hoP ztQx-;x9MD4{@uHJNM=O2zqJP+gS&qL_~)q(c`iS83zw~@Ztig+5UD;1t%+p*Qa7Rk~V-BPA zpLG9<2K<(>{27ny*R7?S-$Aubj=6k*a&vPTthc24#Qr~{yX-c9!wkr(kC#Y~{al=@ zc)_`@Hynz(!e?x5MN^Zv#3JU!i`33N2bU&3kl-@$s~99~h(-+E#Q4#*T7OTN_9{p# zfNNu4Bz$s56SkyjaX(9X;}%8_9i=^;Idg_Qn{@bpPym6SN5ZMJ2S5Lh;84|rDhiGo z*x5!p;tr)3J9O+oPQSA?IQ)62@D27wi)UJ(e3c5Q6Il}%PMueYG}$lmeZvM0!R-#@ z?oyJ>kxCCP^%;b-^dHn81&S6#U}z9Jb?t=CoieV0$=hO)xaO|Piv5CDOuFjVTQ&ne zwy+~=EmC2mHQ?0sGx*?x542s&Kaq`0q05+DL#4#czk%4PmtkAP38hPy#^h;}F>ufz z@};S*eLhKbiEp>0JRvWU-Y?|R8_|G|3t{1+MS8qk1MD5`$$@_2r`pX%xvg61iGQNP zA}S9FpWZ>@#u#`oV0UXySGvT9isG(YpEXbxe(V=te4)Jl%uR_dyy&j?9ncrcmMydH za&~sc!Mz6%e=iPKE?hygX3eboe$Nxhn`qv=InsObX2>Q~1OLekJn=31PnyU+=8v2KK?o{Wt%Y4gOD}ylU(wx?Ef?^j_c#-|Lg&>CgjW-Z zEr+rlRuHW%#=nx-I3)ni4(TXWvY2K$S1N3WVbAx3n@a{NBg_5!xO7g=Ds6px!;OX% zp$zoinfo4%9H#K%-<}%1!8#O}w@!~Xt#JzR_z1evkPGXN1S*5Pz?D7G-^rg6i%c&1rXkjIVC8gHQT zfRk{F=*uL%>1rGN?fxB9s_4LW;`u|6HR*#+XsQ`pwAoz#c#~F()E^e~K0Z1MUr*0TE9g@w+H?-?#2NK;A2EC=L_c-I>V>#Ox z{zIS3lJp}YcjdUe`qS!mcyQt!H4za6D!cr(GvMHqf%az^#Uo>t_>v%tE@c{+xwZ7C z9GIsn8$4Kc3lC2x>0vEew?ue&xIUNUA~?{dH-{7G$VL6z%edS33~qNiiGqOz(64Vl zrT7SCz-KbQcces!f`K5R5)_N7gOvD>ZXx!yD{yG!iM=U@cx_46wsa@|iIKyd12?dE z;Ucv_{%Ye_s=F=w6%l1{=I+cuiNTToyZIri3eJ^1;q_uJEcs{&?zCf4-dInpKKCVx zlqy2$LPt%2^O+b9*CxKW_rgWq{AL8KkBC6WGibejiBe;Yy!xZv($>;^;NKKNFxUqEfZW8mtSgAP1A}-q|-F|Bt<^0FUBY z+i%?62!Rkh5Zv9}-QC?O#oetq#ag^jw3OoR6nA%x8%c;T|NEV=%Pvx&_ujVmzd1Z) zXJ^iwnK`>V^PTU!vi8k3l^HKrrM&F&FBLHuN#*MeYkOvou{u0#&$w>U$-<<>prkxoXZ<$_K}mmdB`x3mMRMqLIWb z2(H)D+n040G61R%Ye!BGrOK%SpJPkQalbj#r>%!!!x~b9Hxz5vu0yltEl`E(4l>Oz zC1dg4#Fw7IrHw5Zka`en>!pG;U1vzPRD$QY$frir^|Ia0H62wFE~pHjqgM`y1DPm2 zi0-e{A3bI)W-VBS@W8v2A>))4Gb1`F9+|R#6&a-Db)>DT)oVjAz@C{ZDnkoe8dF^T z8754g#Vqmn@Xg;2VNZUi16nB37wL|;@Vgi_dMxJ6oh`egYL$vu(Yy^cb=xZi2U&Mx z&k$x+v+}&nRc7_lww}mcYp!gfOWYmGyDdlc>eU%Mk5lVreK!rB9+PP1P@CsziV-8n zK(uXj=d3FI!Jn&FE@0U3k=U}e2Q%M5g9Z(hyWYC>n~}iJP=^bCdU*rc*-5B1CJsUO z4iIOY59Rw@Q^pdKd6DAo?rtPGWJk9235}s*gs3G* zKrF??*8*bJ5ZCWHtURq@dN&4FuU>^H%IJzXC3f%K13UNZ0KCj$?PCjp5}0|u3+g41 zqHVBpev|#22m9g?v(!Zj7Q%(mS719THEapT5K{KWv1W6Tr% zuTJ9aAGt4-=6=UDV-*R3X9(29(!*M*9tdZnRr8i`Uql^b;8wVT8o~2b8UeW&knj*O3N|h>6rp^z}IWi&cRHV9gSuZY; z5s?vyzY$GHjEl-jCq93Oh-pvY(2WWi9EgQ+b|IsGM)c~{>uV01Qa7as^gWOg@antb z?^zH6hZqc`%2pfC?-Hv<($dQtJMj4YYIQ=k)U&<5Z={mn^2}UGK@5H;CO2n}06aLe z2wBUIM7sQKRNd=z%}R=oMx{~70a2FHgK%O=Db%W*3kw%?#jSlqNXCj)0jLB%rMvyE z$Lprb7KgQS{gE>uIrDbw@D%tJ>_9oK zsV-7M9xSYERX`|>2m$KeMh2_Qc8laz@pgL^#@Lp9_TcnFIN}m@akD8mwVV6KAWJ!7 zgG1j1T9RRH)@(O^9BGSeW%?uX$qASz1tUHxLJbzE4xykR;m^*&(JLn&k>r*pcQcY` z-UR@19z%zItNzRKpDE+Uj)wd zOO%*yxT}77+SJMD)}yx?REX1?6tO>ke&-l||NVDZ5`UMm^a!Lc)L8}mg6DmCl>+iM zdG&34Zb77leA4>C+C47^2(@vMM87j<&SLGlO*puJ*XMRm+5Qjeftgch@OyC@Cu*O7 zOD1=K!L0;$;+!SUY4JB=R5tUba}@61A~uyo(LXAJPhGQqEsi!g0t;HtiZq#hTQAtr zsZ1QtHg(*Ba;3^qi<#1gE2*z5{ziG&~$}$4PK}H*mRlyIgUb(6WZC+l<{U~*HW%S6=C|9ez>US}~kRrrBfs%yW z2vh^*DbuFFp=~OC|Hz=-WvU-04VeNHCb*s2_^JI8pS(u+h=(e8w;&cc=s=`$b$cd6 zMRF5#MXpD1+9EmFx?>vza|X)A*##$$o>Um`Hl5qTu~%wX=188c6fz_1O_A9@3yp_t zk&9f1c%GxU=1FlL;)}51G!bcilkJ*NPrNObEL^NRT*_-o4}5hGB>xh=dbgAv{vACa zSqh&t>0s`h4bB;Ba@zVPTzm>JlXnGG2R~y#Sy-MwoL2W$4qv~FpzY_?9i~Y=6pA8J$|zN>gz3*lA@~dHcp?ELk+4M6A4u@Fofbx*|HhPHBpw zOP4O7Ocqyb*f-N3FK_Ka;O*Ubbbh&V_geoGUBzO8acF)a+@=zN1ZKOZ_%g$3j?_8o z6AsZxnI~M`HJHIGr^wpupc276*mL@7;J|?}4L?PNhFL1um1BEmDzEH?W5Vu(GGfH* zrD9;$8rQhLWN8y#$EfUNH#!KJ+Ipk%;O7c^YwMbkM6FgdspzBZhehcjZ@ned@g2ad zDDhv`%qnf_z~jEl@W}CgSh`TLd^^-kjq$@e;r`tl!~#~wHukLq&7N7RBI@Ne*tw*q zDaA=Vxwr;pN|%ydzp9AEv48eF@bL0Mp~A%!22L_6LYfo!h!EHe%lNS)l`V3~bocQ5 z;*Z4Nu3~mPy}pVBuu(zRu=ST;_4d;Gjc*q^ckV=JM|FN4=^)UNr&l)Ox3R8pp~1%h zI^{X~R#2GZ?PDp3&(HAok!iShW;Hr??D&3DAANu97UEBi^%rTLhmYtOED1!i$KP+xbzeNNRsqrUDV$ahO-4w_VK z$P6y!4Gc=s(|E$Dk`z>^R;^lU0NjZ-!P)Z#pls!GXwb9)tn)fBSWIMQFcqA7q(;)C zc$nClBAD93p$wV?cPz>dueJp1TNW5a%rBvECf>hsqsIKr+rv4#J8n?DWEca{5_F!F zVA72JMA`2-;zbpZzM=Ah+w4p*r!KGhedFW9&6QW;=MtRdv|OTxUe>(5nYN$S?EtJEz7 zdN76xIHPt=gzy4B21$~0Z(O&rGQbcBNc5&4gpYct+Uql*ugVUK!G&qOJYn7yF~rcA zI8U-Ak?wY^+7L10iGqWO>z%0`NsKk9Sxl_=;K74c*1lB5(lqBFY{S!4K`>-M64o#g z*7JQ3Q7s8+(x!oA;4faf2s2`|rO5XqeB2|2`S$qPA7&k#aN;-<5DfaGmcB?1)alaa zI)R*w0&eI)SIwp0FZtq`GEs1QECo6b>5P2-^ zJPBpkpg)Du-A>YO)(bw&isq;?1uuwwy}PR$YSpT#7{=meJ>Dlz+dj#j_ZK^CB;0@0fVfS_-O@Z!|J-eaL5WhS(Pho8L zA36a`LI@0ttqZf-w{|FOaNzA-gcQt2LQEiT9h{)1E~z`o4D~z`+5)k2Qfg!<(u2-r zd{D56{Ft1t5U}i+4cC=y6~|NkVVEM7T)uh}CyyW2Z9>_yWz~P(id8F?qDiB=41^D0 z=H4B2FJs12OTf7`HPNC~`#%(7*R^5zx_$e0)T!G5gV$v$y(;vX$Xr zf+WCU!~C&p_a0QLSV6z5kkRD-N!o`>An%j2fx5wq?XV0a+&sKhK&#*3BMTMEm&JkO zH*j^wKnA)+IS5#$oZ?D!Jft8Svdfhn->AWiOd|?rTrhv1E9-yWz@VTZ16_ONcIU-` z!G+D8Nm87Gj2vXVyt?UwApUc0rfmPu_JGKR2}EewvSrxC?7OGCm$I;x>2br7DO2+A zMuL)rsMqjV!{6r{2C1Bam#k8ueK6N{BARw`ngog0Z*A<>{#F@jUaWBlN8s(U9{tdveFs&oecSe!l5HwXb6P8$uVkOYCz0^h%2Po> z!USJDB(2Iyi{-FkNp#n+crlHOn$jewkR>7}5YxmDNf5jQ6u?h7&_k{NO#I9g`2RrLgCEq2S2?U%q>oa$_A5HfKi0U4dr<9iaDQ%Xt? z{Hr~{J6cNlt9w8)8FJ$)(fJrNlKlxuXiIWYgmO%aprn*Yb=^8R3D@_I;#7MqGE$;T zFs7+V;u5{tOP4OGQ!ZY-xYCBLT&|Fkw#r&=1Ot%C3fn6fU&-=a{;eM+yp|bVV$q^S z@za`>%=G5R;|r^q!QDfQt>8L2)yOIHD&IaPS?v*Mx>*nm8)=TIRaf|)1Ec)iVX$kcv9TqOI!iqrndBsys~Z#@$FENqd=zm^fP zPbAK00-;nbZrpkL0h?O(H7w$6G-JkeHFY?+Zwu5b9FMiD7Gve|C5F|$Xj$4S)%ABp z>a%mpsPu+qKvIC3z>;y#T492MlhmqRUy*p;Z&WbB^7)Bg@}+IPv3F)x;&RiXYnM*% zS5@vqBXc;n`2YYw07*naR7Z|N=Punr0eSfO`SJ4#hI|(a@w1VEfP02A`e0WY$We8Q z!UtPhnZuqI)t@W!pp{_Pn;39E>O2?ZEP`*o)+8uWBbtM(ho=`&`QxI>hJCKBl*p*^c z$N{!g4lpOi)^lTatlhX)kr`!L{mQw^DCb%N8m+cnSD9lorSk-iBxUmC$*@jm2fIOZ zGb1L|u8}(-090|XB3$8Zu&XNaj}?PL3DoRryTfIyAD#!jK!(g2Ac_nL+oNE~S*^-d zDr3r=sjx2ZOi8jA2<~!Q1>iJ;z``ZuLS#*kL%$zk@SenMF}J-f5%VcCMoG5A$B!V% zBnhv7k5Ui{-FDIQm3v&1#!Zx(!W#z1G^1c<)J5T&B_KCTWq~LX070m-`--e8NH!&@ z%xz9ag|ih2Lc=2WeYXHFJ*iN(2^lTXI!Oh`qJAMRnTAC;0vCV3fY2AAxPJbcKG>By zGT=Ra^cWX-*YktF%?i|%sL%LFAYXIRfHH8s!!6BM@EWo$Y+{v{{{ z4mtmnlF|eJjvn~i1Kt-eUNGA=?1O6&nUq0;24U*dsUHmrKG@;EXoawuo!nB>ezvgw ztSzh^;g+r>j?p|}_tf;%(WR~An?zz+sZ#JfIlz_5Pw$*oqzK)PB6hy<=e3wScRtJ> zEkub@6%cZMGEOYWi7UT!fvue*vggRn>Gj+sU)4|;IN7&u-8w38c8~fQPY(7>#^X{I zpm2*V%s40GvfR^`B)s7pW@cMZ&c=9JzfPSxXxOj;4I6B5Ywu8;T|vB9$Z^^P|AxW^ z^Wx&hmdXSoG5!^{4zobE>^ae^C+&c{o#R8;PX%-5nIYUoIE2{q2HoAKG%D-YuTRLv zV$AxErU?w*bS0f%Ch7*)BZ)6LbD&!H$e1wd``UXV zkRMz`d=zW@Lj8rBgx_#tTY@L%5VrT)^8e;WI7be5aA1upn zG__xD#FB6*TF{0iL$O|nqwcdcrIXsVYiGDAW%+OFft9OPV$hhuu652nbdQm+nMF<9>2Vm!d-ML?``)jnthXnQov4fzY?&2x zXwK<)$p%_$FsH4qMLs)~@e3RC5W!s;C{knh5Nw;>Q4y(Ry9B*I zuU(J3lp4Ep^|q1h)#GQ6@y6Xmk(r{Xf*{yn`}QQea=*Cak^1J96xz-(B_k#)Epyo+ zjw&^0PMyJl0|&5b)^g0AJ`1~OyY9Rw101`0D~xVZSOT-0kEjNafM@rg;#D0^zo(^1 z8wqp*t$11gn#vrTok;}UCb9B|6%1HS*uE`-n%+Rnwh(2{969?b3KTA&R3juKEudJ- z?8(_o-ARgETI{9}g?A34^qXBRH`q1sK;q-q2-^2l&GzW(%By7N<6gcpT*YSu$z1nB zP^MBD1Qf}k1~d~UPB5zTM{f!hDx|Q)1G@BwT?Pkrd|mw*o|_pl&)O^6JyU8excx1} zt_#Mi?vG(1JtWP4}Mn5i(*^_tX&w_j>x%au*dO6hk@SxD)DujqllHQ;^l;DN$* zUb}Y9=#(YcmH&+!H&%{befsoKHx8pp|HW@aY9=v02CqWz>90aEof5POKDKa+&BV3N zMD|MK6fEGv=8gz|Mx_G=a(VII*rh*MOziPcJJO5Cy(vNk%POiYsatj zj(?7Pjn|=U|3~mGHiX&ITM8p;Pr`_(K}Zopgq^=_!LY&oVa@4FGYgv!0!m9;XSliZ z!TGibqrYzbrfAfp6}orrfL*(Gp?P^b4DHhhw}=rIT;Rg_-%)z(S9QL>jdepnj$F(H zRYO4K34|SFMCq=_seikT8n>xv-VjWpo-Z8T(<#QT?l|wi9zDDlkXkN{$eFvK!r$$?z-)v6 za2&c6qozwkLPCt{8orS!%>DcKL%zG8D!KC(RC>g^?a!}oLwt0g$~ZfC1*purs4zq_ zE4pj88%L-wlENPM$krnr~N>L$=kR}XU+EjAE&1*OQ@ErR0?T5#A z9^uKI#~4SI6A3_tkkqwjH{>dmn+66IA&@N3iZp0oMp9QK(8kk{1Fb z3?TevW(4-`-3wn|Ulr)@4L^*8A@+D)HCkn+g@l_@QhMO4dw@T@zoiiDuT`s7O`9`k zjz%!P(K$41*ifSgwSFC~54BULPU+u&Y=IiAA6xy8UAJWEG8xKhMOtsyN_IY`QF%b4 zyqIR?;H}k}pc(z=l(c5==%V%P)lW-GO40@l9IW=Gs(?mqT(!J;^A>fj6dl(boZPj- zEq^g;!>@2xjb;RzbLxCrI=_rY{UW~YnX&|EEPYee+1QO{}o0KX%;2 z_TkBHLjUDB%a&s_RjqjM_T^P)ycFfCo) z=4u~G`xv$L{u^dAwX)?ZsJhm6ZW>+BG#h(Yjd)Vc+{#HS-Sw1F``+2>Y91NOsrqtW zy24;rBSbjW zE7WYGR&z|8Mt43Q%Y^;ppk*mDRKHKjPDi!;g-RM7o_5Ga@8!*mnX}Zn%6B$*?S)#o z-dD7A1v{v9gy?)w|9^RfeAk{md#1_n>hCDd9?qKk4_P$F-l;VUe;bX{&HDc?MX-;lVsxF}n8ufR1e>Ky7{`qI4_PY1%t~oVH zr4dq~>guk=b8~jh#LiTsJDFzcZlS+ET|ZLGR&$={r@76}sF`_M@H#v++q!P54La9p z7CCJ-X+!GMy-qW+C8Le~C;uH9Q2c8k*EyMKl=@P2+!kimU~Qri!>ieM=J~K5lR)ZR zckkY<<;tH+qa2quX53h@qA)#IuUrR(fXjE^O(l81?4n=8E|&c9GYwUO?J(nGl)uTEPw6)0a`& zyOJHuojW)9;8U4HaYD0tYtG=Bt{6IZ%}Z^?3VKqDe5QW6Yav_3vFh*-DV-J{ABQ}( zm*C90W=NH_2HgCLt7|+#onf)(EtuO6=lOX`Ch1e3A%igGE5B#=PSvjTgJ7XWj!3YF zrsmdEYcRfMffd9*T!(Y)6S+odTdt!_*>c4E)*x&o5LwC$G3+LIWUYn!wFM5`S*~bW4#z1Mw#?OoF=Vg@<>9h@F!d;IOM<1FFkvFTUo?yGh5(h>)*Z;f(_iTp z=dHI?Wx^XYYJne@Ed(EK3RBy(X;Y<4p{xI?S2s6`IxhsfHF&?$4$kxqoWac z&WT}Z_=YQ!{?nP4mu09b+%)0R#;XK_B(JKQLX3~`~Damq1&UmUM ztv+>bazD}m6AzAX-~sMl@P$&J(A zBs`6O4BLk8%6@mu*fAKu_FuNEd!6BR_v_OS3$iXy3KC9Kl#u(66p_nv>`ekN@vHBXwbXVhHkdim4w?91 zw>g=Vv4+PAe^}(UL&T^@aQU9vyCS*8BJOpsPews>Y_;EFP#(o;0CNeiQ`x|Y@GB`= zWTMJ|C*FyLINRAe*edtBAAa}&?P()!=0zLjm^ak?9uDjLgubmwzRyLkeu-Cv9VDw$ zFjM`u2>#ZljI+9*2+Yawnss$P^}1m30+_j4khtcB1ZI(gTHJ)&f=qaQED}@3%+$9f z+QIUfwCUIuK|6v_k`8Ibs751t-xVrUFe1>&Gbvln?6Aw@q%!d)m<*YfXJulo+_e$)Ss zHdEU8`+DGS3wT9NMauir#}e2`ASMBdt_ZP4%oz;JfB^%Pl#OnkO!Ef@2I}7aSG-D4 zzj6I4CE9=DYN!fenHi`axL!7q@n$X~SwtQB9TEHVhiK60c*!@%Tn zc?(`VdkAKCi8Vc{FvOvh{jzcNCWN60x^-y}zku@kU{@LzbqF(S4;66ARKMVfWw2sp zpIRMP@Vjyzx*)lf%P~&p7f_}VqO&W(rVz^x5SuIei{|C~MF>;XYSyD|?layj6R9H{ z4IyXfM9(ES6NrYKPm%cy;H8Ga( z&Q?=@*gFTuqDqPM`tOp+i*@hW4|X28k+;HV73@l73HtLjT!F<)mm`1v{QCV37y9e~2Ue|`Vn_E+`CnBilv zZuL5ZG`~fgU>i>TM=Pf?3w}>T?LY=(AN$PYwl|+p~)p2RTWjufJ9HvPouscRb(~1=;=xNommAaQpASwUPpFM}F zHLD?bXD|nLcC-^8qI6^>`C)iILe`S{qRt{Xbtxj9X6<8VWU(ulUH*HVcbmDD7D6WVi2A%2*;3cNvn(9AEAQ|?pe&>%Yh^*kPYq#`9Bnp%3X@RgI z4^+Phaq#`Neps~ZgO)@qSpG|q;|nZ-8E|NgnZ#jE$}yh_N>j@0^idAhIT#V>hB#EN zTlJG7FbbyIt%VCB`ai@ie(p)P*cR=obtQ366mn)seje)9{ik2$*&)}GQvSPp;4cYy zC74;dG&vBF?wUApqW*#Te)q{uNFJgxq7po)6v^bh?4V$#&@trC4 zwNE{0gshfaG(5Sm21gF><~fW<$dgON(7w{EA;dWpt(jJVu(*3J7Dx3+O%OU9e~mx^dW=w7_zX5RZWvNJqVl8*DFw{82l@Y zf($C8NZ&|5$p9lOO)6gA*o2pN_G8wWaP_c|I(_>MMA7yKabxdDykYj+u)HBYSR}pv z=zAyII(6!ZnI!iW@4yE#iGkvVM_2&|6RA~(HX-3P%J#gV9Pp(5OTTnOn|7TsZp?5+ z*qrg*eB8cugZm~iYqL{j+@+pi5k()he#54CdL$Nw3g*YrEl-U^`8RF&NoBtTv-~`3 zX%(EyXLS1xHJ}R=Mz5o*_17wGN)aJ{L-hucYpYwYKHSpgMbhh6O1D=A8HVEj$$O^! zl^&3QP5M{{fVz9wU)?jIA)(5sKxF6QE61z*hByXFGT~E2k_zV577TXZ$(BjBP_s3` z8=6RP%3s|dgjf|i>;aV+UgNhNJMiPuAFyg2)m}mZQH;Ma(Tjcmx(^*X1o;kj>ChSH zIh(X&&rZzWzDPOtb>Qz~*39oz@}oiXhB$Ma_qU`s=-szBCXAb)PFJ#lR`C`JyQ-72 zN_<4K3K~{Ouo%5OO8pKcFxk3s3&ibBXSiV3KNT)^xukH%GFa0UnS~iQb{s4V+aqf6 z3z#~ZL9&Ohh5W|x+=3rhD$Fk-cCffaLkJQx#R-hC4m~bfY<}NFCaHjJ{nquk#~GxM zUiaWSKchNK+{s9V-4%m}$dwNjNwhYfTTAOKf#9iMpNfKDjji&%o6&Qfp9$OBY*#7< z66~s?G4m|e%WpHsx@!oaKldsF6*~`mByk`S+<_Qwk_;v2b@TU7gBX!rTfcri zrp%lQN9rf*R6L|z+wPutxZokOrSZqv+GpU&rdLM(Qiwx>NN^bz zk@YexB4?%8u!bxDi+H`h7(fljy;Jj)4zFZELnph>H=ag@H#FQLYU~s2heB|=Y(+fCMf}@nVHR1bFMOx*t@(ma^%W~$Qbe) z=yrB+UO}YFT!GGSQFwNB3vG=_cVNyP=gWgR^T$Hmkvub$q78BzY7g(k$rUw_ zCTlr;uq*rIq7Lzvp=RjVYb*kv-cm%yszU-P{dGyn*_}CaMxRxdnT?y*FY6BV(bpTd z?qc$k>BwBP6Mo&d41o{ND#*pB0#*subiXB0aHvziF&w;d!_+18lZH*&` z_I&hsDJzp*v}Ex9cRnNqCh*mTUwAE^*+NSOSGtn;Mmb~|-nSjvc_Cuz6WI0gK&y_e z;n;+ZT_vn=b@~#_pFL0gE_K26z#-qLfY7#%8{$@lBZ=@+w?!G%w7=UEXDsQy7@Ie5 zLP!u*0hqBhO>YV7eD+xM^HR7o`!{UxQ1yM>xORiOC)zb(ww0ONS1SS)>Fmwk7*wxP zSJjc{hMk9lKG@Y=!W%aeMO2gNbAiZ7kzmXtAQfT*G{m2ZhWnB%>YUz0C90|X9wU1r z;$A2gFIkLqzUkCw`7-b&nl)_($L6VEl3+sPieMBiRTOciZEy z#K6PN!^lzX-PX@9N%l4-g62U<)bCzN4Q2-H(JNmfY)6QKmsPJ(9hTnKFi&r#AUB3B zibR>4t0&H!_#Hp~_#;l7J^`;%UKq4}kje}j*8NW{OaDncBE&w!@Be@5cq#4vhkM{J zzzP51A$Zf#I8|a)hm280X5$os0`K!Cp>Z^BROkIS|81nT_s?J6bNXKUQUcJT#Y?oj z1&V1_ByZ8uS92m6&B`vBOj4-%7EKYtJp4({GS^O?JgE*xIE3bvHb75U(vjoL%q=wr zjT(Q@TA3c_)OI1g@vEnKXQ`l7s8m&dx^?T;(;VD0YpDb3YjjalbqkO@N8GTg?~}8! zBDBdl$^I={wp6d#$_>?WR{u^dTRV7Z?itEyPTqMm!VA>8`VAWEkD*(j#G1w|@dxMY z=#@hw?pqTgM8?bknqNRgElZ(f;#=iGkB#c5$y{7pvSf+Yw0UdI+TLAr_9>uM8y=>w zL!7T>@8GD}*g0w5e!11T(Dg}o3L2pjnomF-RX=Bq*~#b6YcsR3)ffnCMOtkq5imc= zV2&Db#2V$-G-mkp`^y5S0Toe0J_ly4wT6wFX{l1D)3OER)kcgMq51lk(VvfeCd6l} z|D!i&&z@Cn8TN~Bo~Bx*Dz!ej8-oV@Hg^v%Eq#%0 z`tvK*!mEb>w&+UwD#^yzI;i@IYmkr)vTPYHQMiLWaew0o3d+` zx$XFQL$j$#a;O3M&8a_s-y~YmDpoU3Z*9D-kh?}lL3QxMhYzdopT`=1RY!NzO${D0 zSSw$#Jnwr}YCAK^`s2CI$e`If+iSII*W!J`OtWI02F)6%--~=VYB#K-)|r}<;O3A_ z+M{Hg+F$xyk^0hDY7G80%l!8GcFjl(lRlz@oMz_B<64<$HS50n9m{7ZBsICmNFk)= zt4V9LNLI&i8Ske#cJfx&CVl>A3ndLzdxm{0%hcReZBv_Avn*h*IrQYQNFEeIn)HDj zU!EU2^4_04{=d4P^l1ud?O*N1f6o4YNrv}pV|KAR6%F1-jT)&@mFS{=DjW5+ZU29% z-?2k`v})NxjXVVlo4r!949$VL`DxADia1&?b*U{|G(+LS$$Gze^X5gS^xnj}_C>ZT zGk81E=;Y>3OrNish7`H2vSssey3Uej4%V=;aX`7kzF6_&JE+0(Zh8G-%ii&fYn3|H^J;$e0B;Z(P++EekGe%5)E6od+O$V^Djbn%vQRuQNQG__XBo}{XG0f zASEHeoTl#eo&G?szC~%2(vEUuOFo#k)>led_^;~$`Hov=wuQ^`jLKv{G-bgIqhuA` zzR!e^Zg*i$CoSueoZ`L~gNW%*U{%2hk+Yw{jsz#e@+O}J9zA`eRvkHV1kUy8U`Cv) z6tU>l5+s&+SKh=XOOv_I%m9lFHfjTdA_Oy=8B6Ck!_1mwXD^?>1c6A1rLJTUh2*I# zl2zWfW1k{DC)|ux$BWw+4x3u8h&vUDGq*W4?&`pMi!E)HkD)Im*e1`S5eu{0hDEZm z0wEBqV24iLSh0EqWJXC!zI^#0)Bh7mN|jxVmH3wSD@G_{ZvhZk>Ym zr26n)W9MiO6K7_va}(}B-Qj5B!-XgqNk_cMxlh@w33bt1{-IRm=Z>ASJ*5ZU?}5KP z;8nye5-ALe_?OERhG48D&^5f_8P@w>UluLQG+B!4gI(#5vOUf+IC3Y(_qD?H4j!CL zj?nehzTLmltiTW3PcDF^l?`gsrg-(rWPG(?LItxVH)c`A5O|4v7KTM0jDatoAs}a7 z96r4mwl3+FYnZ?Sa@Cw;SQQzH_C&Pog5csM%hF{o8j**l;MS2DO0U=@ zO(9(0HwxLxk5b2oi+YJ0#}_MOi)fOyY@E^}Q*mlK({$nNx+cixp9P7YKFC#nr3!Xs zr&Rvck-gktP(DX_#mfUk0zbi^%XI0GgOP~0%uD=lS)3)QFI&ZNNME?KI-Y;IVT$Z` z@W66VB1!dS`Eq3$u%3XcZxN7Mh+UI>(6e`c>WR)$`v?;|{&hSap8FAZj!x$_lc8O- zJ5m#ieVK3+DWcIVP!JOnGaO!66a&8*tk!?YANjmqM;te*8W;JDkd)68Fywb_rpv--MVSJ#?_zb$OTEk6ni5ycw$|FI%L@$A{N(Qjyfes@Viqk~uMt}v28 zG&uJ0fmLA##9w-)bbp0k5+C~-Gberr*9942=0cn>gUsk3UMh70X`e=FADqK?-_M3s zF~?**Tw3A^HdPn&3br`vWuzJ?8=l|h&6{E4X$Qx#zR9a?%-}kkN)s(_z+;_1-f#+^ z5@v{{6P&5JDV#@;bjP4ulr<9Arn#?`!WzdB%0Njp^;skZ#$({fK{$KU_cj$>5WPMKuSgEGpwWe>LuB&Lh!x9M{5wt|rHzyx(Dwkx@c-N*H_Mb@_m4jx z#-<;XH;Hk)iHE?;H< zooHK}6i?HLb81a=$X!sUmln9C@$mO0%uuINq&L}UROK)*dL^%76go2U{9`ACWoaAejYBqR*pSt^qBHv=zjZl|PL5WKRyBf&^rw{*o+ zhFmfmTefULwle)yuq)f7l<9GS$`R|5-|+9Y-}b=8r+~VqG`X8mL83YCP)Xy#sqgiU zcfT_@7n6>2t17DO`V`tae`#smx;5R}&QZZ(q6%_j!XDzpk`kCVZ~kYSkn8T-w=YgF zFR$F$WQWVlM2m{Y?p-@RyMIcB|BfDzSq5w8j70&##*z4a%8*5Nx{v5#%(~G9 z%Y!&q_t}~F9j6Q6R@z^0+KR|El*gL;0z%M=rs<2lr5(C=@2;9^PsI`I7iNfC9;~vL z7Mb~bvoJv*F|NU#Z!tss6n1UA_!~4q9J89bA^~LF?l5fld4q1%SH1S=(L=erNg!w6 z%v0I%+BNl1#uDP1W?jS)j_tiM;M)O|d7Oq>Q@=xSn_GzL^bldAAHsRKFU(V0A>m#u zB9}f#XOiuV3U9n(z3jvQ+Pb(S4I8ej46@*AL;BoP#z}IYG%TVxW1sWgz)`lT%s2Zw z@&4;%i)33<+V%#*ZC)moDV7Yg%e3^caNvl5Y7~|^scNu1*@jp$&&mS2g$~FZ<#zJ(Xix64ey)w>rRpFdi#cETbl6az;^CQHTuh-;l-GreUL| z$Xe%Tlp7!#l#St+KC{wF)a|Exl?Pf}@CDr1HISL)r6D-flO8*yJpdz$g3)b;9|LZB+ABi?}i19Sd96j40RZA_LB%giTB& zL2U-ane8ee9eHvGsJd-hHOC%mluA}xvYrCNcyM72RbgZO3?ph8F9 zx{FYv<6%6x^b?|=pThpB-bicz5+euq#Dw8pD9`rLu({7J%V&J+<`slonooH$OPu&V zA0~|(Mt#*zpWRm~j2k-&H7n%Dwh`8ZK{&uR`mmbLegC`jMUACY`bYMFzrQ~`D6<#w zolGSsmxx)E<9Zqim)hP;y_zESAxT}%ZU~}eR_HejTt*~+4@E9fB&h18se!^*vtw|} zfr@;lYe#+q_io-p#wTeI-IW^QvtpHG+Ue7$VH-ya;y80S9xy|(g2fRr6olA= z;RtSa6SW)Ep~iP5T~lB6Dv1&^M&-8k-4qN%i%xd9^HGW>$rXH zCVF)3f$*`9kT5V1(L z`J!QUwOpb^2}GU@M&gs#`fYK$!_`1SpbY}KNVpLL69+TBgPqh38~#w;LlYmx!>S0C zKM1LkA}SfCZX{IE(${_{<>YF3qFe87`nLaQppg{&nbqO#}Yo!!8MBeR(z8fsjgH+rV&SX>aK37-uAew=eX|1Ta4g^o35s<^ z1`87>O+-L}9LN-q8Dqwc(QQh3P3eIz?}2{~ocLcmlm9i+ny$B)iIf~KiEBO@13b+$ zb7kcq=Im2YPc#xDTGs4&b-R4>)y36A?pGEq8q)z$1 zH%Nj@b~4ft%jDe3^BSZNIc=}`&>cO)Ee_zk>+ejo@0hZ^(i0xB)i$@+teM~ zH=v3(ckWz`@?RhA`~T!h-T50HLkNPhUivGg{BaNblSymx`H6#CzXAO=!mPNCx>ZTPgRYc#$pIIQJfW%so z-z01#*#yMgjx-UdVe?HArrsgf?+w6K6UQ0!>V{p43I$v;LZ7 znE|2xn4co8jTt{ywJU@}AO~wcLh7 z^9%8|Xnd}c36}F08M7ys*1?P}bf?!eB%~o34iQfSjjKBcVh1%rr5|ig3Y+hBF1`%EF)2BBk zO`fW>dxfYLet!?_9h}j-b0b{3yc?w&mci7izw7lOMKaBlQ?IA?bhvw-33$Jxm;RGdr6{y$*&0`_UMIP0j3V^) zrZwivpfD83n^R4BiL;aFObXN?;`w=EYYQsaz~xP?@NK`gpS_CGrOV(Fr~C6ZSgGoY zTiLZe!!e`(PNRM0K{b;?@mJ`|LZhlCDP_?jUB|^)+Q7~iUhaLPn& zs(=#=fU_;^r`i?citasn;in&H3ejQ*)iG>wY)NTEhZEBAiRoOy2Ny0{8c$w?u)ZCF zo?KSC#3Ih0Qc`;0Q#~Mdzd>{y^!h$PRk5o@OgpFShtsll(u7Hhm?ie@LWVUb`(Ib$ zXvFaPXrv;0z1kA2@V3kZB9agY!G3k>8U9IJ#gr;bx3-9TP)_ zWtUdty9~U?T)Cn&z;);HrLT7$+=bIOX%sn4@WNv5!2BX3Y7;mewN$uWLv@Gu+m(B% zQ-uur)h1M3u&U&Yb(_{<9Zim0XHiGk+z#vKY=nmc^@YouL&#SNggGQWeN8LiBXfC;~!O6r~BrzCMUM5}`2F=DyUnb+g8>K|}GN^L-qvcTA~jn7WuN zoU*C2IbQ!Bh42{+{++1LY~Um(m~Yz*BvAAFoKjMH;7fbp?brNEtEbfat9n4Pwi4`0 zarDZmlo%v{oj74EL_SOc$U|365aHeq-z`|J9#*2NAlbgHza(c$&;C#pdnbFLY5fZ5 z-!GZ*|3~M)YQ<8j1+2ocg#~eoq_6$c{m`>l{||0}E|ja8xo8_MM-|87)%#SoRE!@! zS0sxnIAM9{Nj6Cer&5tI|2u*F995^#CO1E}3^Bpcc_fx??x5=3IyeEe3pl`1iIcn=`eTUaw=OaQ$hQuWPobas;7e8 z>LVhQ>O!8{^H8YSMx0(%PpLHI&Mle^$>qBlQ&787KJ1*}L7QP0lq%?_f&<<5_g~%I zJSq3ahq!xQgoiwZDIN9-6e_9)LGRa1d7sh)x*phn^Z=ZPyj2KzyVA0;6Am0ZsH>u0 zMaB;|5)i#1NLkv({hmC-BTi)Qb27nc00T*q+2Sv}!j!2~^s^;KjlB0p3{28z&45OI zo1$E;3W|&@&TjUO4#}3j3=qX)*J(&vaJn1FZ3(NAjwn&Kq~2cmy(a(gZR*r??Xon5 zW7pJhnL^T6CL36hTqc3iv!~B6Y3d~XJ?LW%Ik`G3jIQA}!4?Z~&xM$ObDBz+r?G-9 z-7&>hIdbkZgbuw=Qq}`y;~Y8T3C^E9r!u*QZT!)4@q)#WxHY-2Epytdfq zPf@HuQFZQuoo-&L3H-M3o)KF}k%MIb{YS;y+Z)k0Bh=@rtM?|H?qwl~*#66Q%$Phw zxB9DJBcqv>&1*ahBuW-S?$Z_R^*d9Oq|gKe-wIUHZF_d^LFRxgYD^-8JqdQDh%BB2 z#xj72zx3`IBW=Ds{uF{gPbn!q@TEPF67YU$PyNO9WaMh+=mno#oC2#p9Ud9WDLq!7 zoQ+VSVpXaGR71Y{%M@8m$X%(jR-t9{WObIcYSvJ}&&JiWaplrk%$_yQ zFT^>?0*Mn&`SRsas_SXWgmt0w+_$JYER?~ZC5qA+u1vR6$|0>lleM^e_nsb7pl^^1 zG0|a4R!r0%iqhJXm|JGZ<1vF8!s*gy!KjJz5g8tgu;6FROj!|L(i{}lH*7+`eCG}= zm-DuQ=nU&h>Kye{R%^nzQMy(7*Y6k3qY^>_vqG;RHp!nNg~^n2Y-}{;+>W78^9`sz zJVYr_SlXph10j8b1`DEDN=&0-jvK7jFG?^^+^PP3%EJH89&mGZMa+g^gim;csHHEU zC2B~x7zLJn%2h;iv@VzFyj(&TMJX7CpM zD$y?%8{)4mVujkfcW;$>9XfObX3txUB8Bo|FmG;B#!i@qeD#ubdv$H6E7BWhPWRQl z{oqw}K0CB;gNl5x*}0}y+pq5#L5%GxG;Z1o-wf=Bk;C1PquO*N#=OA26LT4q-c?Em zQdw-H8#QTx^P4*>sV@I=Ba{h4ETIR#|Ngt0@{}n^XSdYM4(CX2z~y6UZvPqo0!=kZ|y~dGI*)#rskH^1>TQCtLi9~h;;eesP)@MIlv=BS-d2s zc<|6sICf;eS}#zI#fuj!D{Kb`TReDhL}j4`CoJVv=zSzG8~tbSj;aCvQF1$aV+ZToI`XRnQGhdLuC?Vm4RIHNLb0_|wpye%chb`s_h z1HpsexqZ`c_dmTXpScVMB-8da57IwTum_X{_xeqoZgwQ5)fulg2P3flHMP&Y zhx0zzS7wl`tgYa*JOiRvyrfBh@uNcYQUxpjB}E2Y?uEQzR{h<8)p@cXPPICTvg^0t z(xppi(yA$L28Alq3p00fIDeZQyxBMR#O{{6(Wz4>C8H%~M4v0IJGQ~*?OWhb*cGAu z2~A2v+;LbO?AVql07$Xzp9;I%?p9OcItzPQPd7@`ZBh>}pK(AyxJLA(=SVb5f+^*~ zEc4jIWoYtw#W3iSK-77>AHvT)r*1Bl6(TLDBWpty1v5BLOs<#sA|69J55}}i8Y+qeIUA>R)9;@{cAISY_0drmA}wTwZk9R{qJh1#`it9HNSkKE@( z<;S|H6Rc`DB5rd69$$Z}W;2)SJAsKX&u)YGRiSXOu~&mD%Y%tXibzD)?%iUnjq z>bG@{vRW4T$H?$Vcy!K&H(C8 zl)+-qCIl|Sa_8s__;?#gzw`qvs!$$BvSY={l^+D#`i8$?L9*~~5|XDq zb=4CoK_}N*v0_EtD)qX2`ErO;T*+Q{kfoBlz4HJ7KmbWZK~(ZAPyqt>9|vO`h2^EB z_4UKfJ%>=?+h9~56$|UMHBhPQmp}MaBk%o@ekfJCJhJEDAZg-S)Tmh-u5Kjky@jy6 zS3TwJU(^GA`uBlNZbxD)Nf0A0)OCD%SP^SUTVT{|Sc~$2Z;Z~w!omWrT2sS$!V6er zw^f?EhHhl9w}m6%EoOY)ym_crr#f1-Z4D|8s330qgz+d>tvrgCDvrKG`XSWEVeG=FFXg z6-$=GW}Xjhhj@b)$%uRMiUv7$uy6F?{gJk@swo-p)~H<*`Sa&TMBOAfugL`33L`0j zE^v_~`Oy@@iTG1pv8_o$TM0*m4|#x9YgUmkYymCy4a9W9p$j1yZ;N>y!|mAL2lpS|$H{Z2l;oLn|FjC4;nbJ-*z(Eu zSyNYY<+dh-ybBp_qk8q~=slp1uG!DNcI(;=XOEr1k==*BD%h2Vza8=|tTNld>06!; z&)0QQ26bLGHC$otW{I57Gs5L3Q)F~V4>=C)g>iDnaXh~F2=nL8!-)gOad0OkGi%jS z=P6ijDm4I{age?fSvJ942R6LMEP6a_iaW!lAO{6ewm5nC1g>7VqJmwSnG!Ow^Q`o+ z;UG@n543p3il0{E{Q2{r?SqsG|9d@<67c?mKl80ye#V2--{aKES~NQNO&KbLKf3^X zI~&|QI3C-_xkIvzJ13<@_>A zKOUW10m;xtP>1$5v95QHOv8^qkP!BXBH89wA$N?n#>a#ZM;1@P`wR+?+N^mCM407- zS%xm?)~y>_wMkZ2ptKLpo;iUkgPti&Cr;Ogybu&P7imO-&8Ll;XoGu(ZAPZ>q*-km%!)K!s8U;)?Mh?w*QW=S-Q zXn36&wjjh$3x@gOL>$<20ELPdMxT-Wu;UP3As`N1Zq z16sCkrQ79$*B{p|hs)S>iVP;!12aq7oReT@SS)F#GiuZ*G;i7*wd&MHQZTWqNgP2&5o_Xm5AGo-Bnal5{?`>zIS`vsD!Y1+2T(^taNSs(d(KuYmhN}MtJymq8atcW$^m3a^d1@f|j6h<3s+P72j>=`v)W+XJh}ki@xkioogWX*E@!a19yLbCV(Ye@YWn`%x$`uQn4*F* zUAtM!3{@%$LV&B+pcyQ9UZ%wU1`!J<(q#5Q%aC||9A?g#j_tp0Q8(_#5AWjHllxe= zX88yGB-4u4cCN$;7gEHsgLCs@|Li=p0p`QRJu^Zd9A?nGRCjn@M|cfT#)a?)hicq zc6|%%BEfCvcsKOw+?1^IWc;>aGmZ}ScpdfBa1|9OI9{{brHK+qug)n9^@dS@=tOAPX_*|Hs}{z(;X)-xHUO zJ4qmc5J+%$cMVe9DOQR@i#rr6?(P(dySo*N6_-GROI$ae`QLlPF1rv~sC-}h{rB=C zGduI<&CJ`~+57H2_nh<#YQ1x*casRh?L;J7q+rd<%~G7&yiId$8;-oOQ_BUkPwqbv zMwMP(oiVh*Ks={s1XCtnI!^_t5h+NgNE|yGEE(*!EuTXHCz_^ zOT~V4n}<^L7Gs%!GL^~_F4ab!b1Y|`o|=ZV;6xE|2yJ;6aU0$s@n95GEiznioto{mP`sc@N`bHnv3NuHc0 z1snyB8u=I*By_>XGP+5}iKT!<7uYx=8=FA1ZuG2T%ScIwdRykYY@k2vn6un?y_)rq zy!M@wp8AmFg()I$QPhT1>xi9!SRpjV>3mizV~E$M8fSneO`0T-F=p`KiNtg3P$V}n z!QS9QC|9LimR;qf!rj!L6ZH0}={@48v-(gZ!d`_zHPc(J&t{w#Z0oq7+t--^484Qs z1;ZoQ5l+aSiuAZt!4~uT&hpB{O)PLVR?TC@$oK0SI19>Sp8DwB^NNe&-W+?Tmmz%r zoQBu`e@Eb5=;#0M82qE}oTGMJ(4;X=(82} zr#nI)kmKm`j??k!&-2lzTT?7rvYZ^bo=jV}_Jr=!teI*PL7B+6kM-kasV{K5pXkoOaAJIQz-rn8<5nxAzp&aku zEBDDMy@CY-uz{QaTlYd#nAt< z5DgS}z^O||dLL7hGI55|Dg8-HW(Y>s(IQP7!}9MPfoYSbVwvMoB!?!#sy9 zMuNZ_G|UaQ9o(^_<4%&k-UMb5nLTedVu_ZoUCXwTGH0BpF4lAX`t>l&Z%xW!NmS64 z0rwsGwKrkkm*}U+;bry$6IV0hzI7FaFsA?)L|l181#q4)C5Mer_K58DhziJ>WAFC8 zV8t!FrkUSWjtFznlhb^v+J8$)l|eXAe%A1WEqnItuxaH6r$OY*lOox)f#1X0+Xm|I z<6%aQwu!4bQtqk|xAZkEYdFaLriZ0~og$ms&KNvm2r8E&uHPVc;e^#(JWD4>^m{}R z)NDvz8G)9~`wDmMspF^clz4od1KnU6nJ(C4j$E=a1Z2$U(U`jQd!&09A*}5^z}$$a z%Z%Vm*P^|Ca)jeU4SOO}i`wNlw@on6gk+qmZW zZ0&KTwwg0%4py#QDL7V5U(1M8{l?z@xO;d6!b8sD$3i%tag{yBlq^HEAXWNSC(Y-73)fg?#E+5E0 zWHkoflXQIuMN}DA+qZ9DB!ykW-2?p*Pq2s=x3&q)pbt5bF5ZPuqSa=Ym=ZmZqYuh; zzlf>RzLy_EQZf?~{SPiEiw#UI_Va}^Bsu&IPS44MBcxsb`hF%xI^ywJqJ_(c24fRM z_LrTxxX{~F1lAZv8ES;y{sF63F2&s0(?}M%IpLd+lfxH_2PeKm$mP}K+*=T=U_C|T zGjWNg<|=|^9HjK)`Yf*G(>F2pk$-Hna(0J}7=yAEsu9+1q)Z|hmT_Q$4est}0gl4* zj|l%jpFVjQ_m7Xqwe>Y|dutQC`DFo~K7INDG~!dQiu+BDc|wqv)mn@>7wMf_Q3DMd z{P~I4r(TDl-G?Kk@#_!TMSAg6~?^m_C&B)w6iQ>RXHZrwlp zo59%smDe}mnD+&Y|9%2qK79cT;ybr!o*5-}7?}e$Evb%yCLtW9Pa-TeoalWcZ1elZ zpCx{-w2srzay%ARj@Ibcr4M>_`x?e~Go#y@s{2;|QnG;(#ccE;63aKv=g>`1vu3h*o%1h23a?xYe*QHSWMjouA8i`fQR%yC7 zEDa-|Hv)zTuikL{^IvfKCr1unaFJT>3IpYW6Cxhr!Ot5>aDocjKGD|yun8U8w@03G z-4IQMU|qU&k%t>cLi6Ow17stPs~@cCsxTl)qI^Th1gkA<1x;iC|I^UXI{x~w_HGL5JZ zr?5DW!$*!oMna0-bt)NYpTu3NchD!k;E2qWN#o%W7(^l+8>MjW$z}79B z{z#XGV?J>NIF-%();tN~s39{IM21Jg%EA)AkPr)F-8t%i;rs0N;?Os0a%?%leh-++Ela_T#(CT>(XMiEq7DtfaHHN~(7-{9LJgOL%QCQt=U*Ul6% z4(oUyURAyD#TQ>-@NjBV+)Qw`?Ci4Y7)MfPkDiG>efnq)ljWf!hcR)=M8rhJh;wTH zoj1;HxrD&N`Ec*XU94ET96sJTFze=GDME7`?n4gmOQO_zEZE*9a~7jp*KRWLoHuhW z+I1bE7$66;}`6l&dELpNoz?Ir>YH7?~ot{-9Nd{h;B{=fT!ArXO+e;ZcM)el56QR&mS9xae``<{eq>GHf%9 zfZhlg9A3TQ_~*Z1T;2Y?+eN}r9ZK{rw%Kv_#AJGatdVWHcfhGhmXhQjyS8oHYIl)- zJ=(WzP0`f*TG+zXt({S>Vl_OVf&@0ECGsFAFni(FC=j$nwsFDQNy52tM3^7IpJI8po7{HC|*F-Xz zQ=@CwZ6u!B#ZZjQQMw(`8NJ1yvd{-pr7`x{%E3q29tzZ(g&VtjlImRt;kI>gB|0$2 z066DuhF{N2p+dJfav~G74sAEW#Z|6cnVja^+do|b99OLm(Q4P5oUH*lDu)>*+$I4$^lFc`-AZ6f+8JK`Fh zI(Y(oeSNb!wQQR^`+HO@UkZzfUo|ZyiRh%d>V5V;dZ1y)A0B}bV@G1v+*wdna6T0w1GU+vXB+weRI6=VIq4YRqFPB(wX<6Y9N$H>IK| zm9vdFyUe7(j%zwmYZ*D3e4u(39vKejs<{Qb%hA>F?!id@B_0`(X|N-cvyBulXwPzP>IuX3flIYF~*??tpSzRr5(JO&zq)(?5 z|9i%nsH#<~Qu^MDl*=;VYz#|Dof(c9Q>JG*sb5NkY`b>vruTzz`$R<-JLiRnL!=P| zg!z=&u{S1eVU9lQ$`mIah(fy#?Xpyad+)OJUh*|Ygc1y-T`OFjcNGqHZn%z@;@I=O zvY9QlLf?V?uye}}n0s4^!_T518fTZ=Sl1&c8}UFJ^|FU;0iZ&)ium>3qYrSr+}2=* z5%|;*$ovF;YHLHgf5Zsn%9RT-F){e6MIp4VY9+J&FFR*eE_0NJVFvl~7sh~L)3M=r z3fgz*MDPF)ZJ`85^!!VA);haCqHj!it`Ke;m~Afv~N)p*REco;tLXru**(AzIi3e zGK6?0b&WY=r%aiQ!{7Vj{-FW5vAHQi&XE#YKwYh~%k8W6qkG!FN7Ax+f;JM~Hy(a9 zXT!%gC#uwHf~qwdV8f1cBvKJW_}hXKmDD|txs?;LIi#XPgWPD`r~$mw4`R*gl|=Wo z93x1RK8jL~r8=L2U%5W0NlX$hzU47$^jK{dl`2)j>eXv;bY>o0T2TV0=J;dAjM*Ph zh-nXaZ>4$5c7#dmgM+tRF>mD|iO@zxMZMSR-AiLiA3KqAt!ow}%bbyxOoe@)|8=k5 zpfOEuy5U~92X2Pvk)peE=g#SN|G|3m=FM^J$N`)>b;986elR+J?S?~#4q?)`?_e`O z2TZzB5l>Dt*!A~`RQao8 z)siL;Yj;m@xF*C_kQkMKR;?&qPn@Z2ix)2zNCZdl*i78bg()DN_+rcXmV(7I{m&ZH zb)_W}a|uNT@7-dyhj6HSK1Y0Kicr3^gsP4+6bkMok(wFPQ85PAtN>9BQW2P1oe1NA zOkC*Y=U36Lb9;eN_58Xg!dl;hdU>eu?Q*f3{ow3~oAm-Q_alX}YTc@}5^>g5`-)pb z9J^H5##th^{Q2`sivG&UOH_>a96z1;N$c!#wu50l{JfnteHLt{d&|8VlQb`L#Tq-9 zWeQ~weIZk_u`#T`C5=k72Nwid2ik$DAKy1l^^X`boS+q?jz^OmR>`v{Z7V8k zapYLD_=A#4uoH^rMh^T{WPDR;47oVZGlv(}ty%Yems!5%paH|<+I4D=z@qt3t3hon zU$hL5?}cE-m`o8=3xG;SdgSJXCo{UO_BC%l3=hk`+3PleCv-GF?s~XQ{3tCh@UjhEfWb1wGUx%Aql)jZ@j!Vc?)4 zLAQ@Bl!Xq7wH(Mw~03nb7&G4A07vupjnWhK{$yj zuo4^d^|H#9>&m>aDej1&RAj^!{4iLexG~e7gC%!U$ zd?gN1^ciM6CPQjC0?H5!H+$k|PD&NkL$hi&6rxpN|4nv^I+6qEW-6*(#wt^ZemYI? zm6UhVLsBB#zD*|Y3<+RylQETtpo~`uq&-PSM9T*#qy$Pm0}H$qC{TckHw%a|7fU6F zcDN^S0J~Q1G8xNXxB%9!T`SJo?Af!ymH%uE@oCs3NGQ5|a{0o6o`vQra}hV-{X!8& zI9DR55yw9{Bwl#R+41Cw<-MEtP~Wo#OeV#_W2ZHa96llu(6zYW7XCax-4`H#WT@AU2uB>|98dChG>5G@_ zxVw9~BY&BK*sx|jo|lNkWhW}^qq+^wB<9SSQ`F-!66sBSYdragd=xJGE}Xsq_09-! zaHA&DGn^nD9DR=H|44*FG*RLB7qOC=)AV6j8b;ucjDWs(@JD(u9P^JDfo9Dqh4dgE zmHPcE*Aw~dB2F(VLux$}h*LN7;rZg`7E~lrfCm)GRreZzJBLRip!!&n^$o|FB^BXa zv^_b8@1lnb=g*S#o|&b+L}VXdn2V>^x8S?;37>q=ngWOZ1HK_gkeD69lBEDl!wu_G zyfd!v{7T>$tjcxv+<6jFNJY&-nQ2Hj|61hy`r`Voucd02d1xIxi@`adB@(WzmdMM9 zk)!FDG}IdzB?V`EU-@cHlxzHDTN{{|SqW#Z?nT?UEUw{BgG95DhDD8-zURQj0zI4P7PSqc%dA4CSh zHl9AYE>+Cq#*M>hsw~gSII`8JPj8g_@~Gghxs3xsJc7x2PA4@yrW4}AH-r6mN5G!& zn{xt%fk(Ijli z@+Fj2v4s7w>_{IT0#%btwgk-`nl-h@*@I_A%5~9_MM!m3;IbkQVrD&;XdF{`1r!Vv zhwsOAn~*DyAJpUGU_>fq8EF|fb^ery4R9osVFS#MYhS?+k%OuDiXz2Eb`<3#YAY6t z$cRWo45i;~yLm{Yni(HB`fHlU3h7T%wA6Xbu)_Zb4H_iTXBN<4$53Mo2fBIXCLAaG zB7WT)D1-@iSsNg`ty;U_LAPLZ>PguyVu#>!EV5oCFfbPC*t>HN9LD)b6qO}@8QUAT z`W4ZCISREIk2TB)1WOoXXNsOO^rKRhN(iR<1jfg6U4WYhu}IiCV$$?UV3r5Q%X0LR zqq#22{AFU1u;L9IU7Rp|>U3~+YG(*GM597rHXr z3`?IcBQEzh178wZLpsc}SwQuLi%dMCdjAR&x{ddF#&xgNux=QEPZ2A*eCd1=jhKqvqs&OGAwPU5iue55I&|sW zR@+C35+x*6_55T%Tv=HXUS@>GdinCRXWIOrTC{K;(d>+rA~I9+cao%Wq4!A5ECuDu zmzVQ;X7fPqN`tl6z$+dB4Jg7G1Ex2#bMmA}iz`uv-6YY3=Li~~BnoUCu{F1L5D3Eq z66H8F%~wP@-aI%W&N@@6X)K-6`@ihy1``Wgxa6uznA%2~UD`sxp8zVEM8|(jQ~>`t~1$!2Ct2 zkggb**!_J)EA5H1SYga=;v05W-x*WEnVS6e*LM84(K0#cRM!o|zOF;XAtjJR74y+= zZo{`^Hxd#_Le)OMVC=Z@m^*jwyUumi7#ic9r?S@BV2ZKC1d41Cyv1Pu{Sjap zaOOVcC@Y&Ksi(2y5!Uh^QVCb8?)@B1S~iseP*(Y3uG^$@F^Kv8IdSJE%Q0p-D7{Qh zU`Y1Y;xr~wjuDzR z`+;64TDlm58Z^Xa${v-jP#SL8-BG<}4T*f~UMsK9n>7zD$~6@zM`Y^oOUNsu)7?w=ICi8jW6FvYEmXNC9C5!+nCKHT5Q;4pK@}ABuumA#1#R^GdoJHGGtOCd%F`fEq8$;K=^N=+M4{<}^}d zIb_HXJiPai#DwAy8x{k9%bW=N;x1y^K7wfi;kdnQP=qAzRW>StpJ)#@tQbb%Ge+RI ze>p#+BSX{w?g-e}+Uv>U8k-OqJEhh#(&sC6gfq;MjuxLZ*>!&z+Xs;A`=rwrzf}=LI>I6|lBL_*==E9vjcRpyw5rn|p z9yq(K3Sx*E;^pmKI7a-om8;eO7e=vho7Z>rVFIBKkH|ij{j|1qC7E6#MelqF>^MIp z?%c%Kmw0+*6&{?NEXrp=6H-L>H=Q_dlM`blN*PPe9;?#b*wYV(rsjaNZ)H5bxR9bp zrbMB&o3{Dj=9VV7wy7yi2+pHhw{9p@sF0kO|8S}@GBOI)2L^*9-j;URP`T$tie{PO z$>o(ex3VUw;w`1IRSBIMAHzSsoA+IVd*vlC%HB>=s7xouoS2_t?99YGJB|CtMv@Hc zE4uH)MDbNk#58{I_)?`xN%S@}ECN4WzD>g4^hZ0TRYOGta79-1k zgDoq5#P&_wwAVM~`zc`O&vjK^IM48d+xC1&drWWyil*B2$VMMpBg8L%EyZo>9T7;_ zN#Yblsg<}p67f62P^oN1IDC;!qMokH@<7$j4G9E`NZTJP&UB;Zg!vxQjo?KTX{}%{ z4i>AkF>P6fi?Kvw??1SQgu@XCZAJ32ZSG3c(|#}&dYwsvySE1tr@cY?urL(yD}<;K zkC8ydXbz(ZqwGvf3d9(}QRQ!jeDj+$jO^eI8#N5G7R)9t-%vzPdP>Evq$ zBqdml)LWU+Wrl6IZ3vWmGNMVPNw#;H6>e`zue1B)fJH8ASXF-q>$2@c73h%TZ(!Z!%ny`j2STENZ3LcA;vw$)$>=d<yVG% z*%HT(9)qWkm(*uyu2r*Kv2=xGSd!F9#9h4SqX7tx@UC642Jvg(AhhuvV$yghQB&h5 z=_p?=Gr*wfGpi-j&Y6{_D7KCN33j@IeDw6P^#KfbC>e@*^wyrl0I zPalBGKc5ll+dp#8j8FCS&WU5kjv#_4z!ax4QV7CP!uRc`b0^WZQ3(X^YDOXmE#XtR zIbs}IiDFUiJb?lq2*~Azox_bNdODTZ1#;u^rq)t0!({lz>9Il$#?JiD8=4U;V;CxQ zISy9yV(jYWAKT*9?H!^-X05V?g{2BVts)M~G?GWAh%RGWOSIg8irr6&{BO*QEAYsc z154&j#H69E5%TK;qIWC%{$)#aIY&Tcz3mJ&U=a=H?8T8SS1FjLg;9aa6KOMl{(RUt zdZX-@$3?-7DddK$ffPZFN?-dIQJ#f_Av)HRN{=gaGZU$(ZTsBSztzY#dIxC|;+sV-?( z-L{7H|LzEI`aCHy2`Ln{i+B@`jvYFpO`A3tFkrw39NC9Y93gfDH|+&8hpjCO9uSpS zG(!^z?!XSET?Y@r&Z>7sAd!R#3P1K2IcjG0;E1QjY$$qbPa+alR@RtFOc8g~4`4Bc z*ary45Wgu@XsKKl`a>1utSy?lapNZJD5~o;-;bO@E5U1W#QEC+gGu=06%u3A2zd~K zCJmb)Z(v>$6fj1@<}kttKNH7|`?m5>Wf=k0Tvz>|`j|3t3RH8v<$lO*DnE<>ehz#O^K z|LQjakFfdD9dR^q$RL?v^TPU0BRkHl=9cjFQ{>3)163tQB>WU5(PvcyXQ2pl+nJ9< zAWTucb`5Qzpyph>WSlTho`273*RG8jGiOLMhcYCXL6Xq^$v)V(`@;x1H{uM`o;`ac z8&xQvAX0b7>YXBn;4!ATETu3qJvkN8W1eU+#hew0nL#qtlo&|b6NSwi^oy1CI{Jhc z44H5#>JFQ>Zt`2klP_aWGr>bMw%A~X5%}B@FkpB;cf|go?MDnBg5cnXSTouZ&K|j7 zLGSF<%NHGk-Jm z?A0GvE}j3N>)ErWhb7zhtcb)>czNarmh_{i`nl6!S?xbp;>)1Qa4sqf4smN<6lAmlP%wPk| zn>!ngzRSRYNggQHY$b_yWJYI7J-vAW}GnKe$kx4XoiF{i-`69-pJ=aAtJm z)!p4xbQ6sZb+b{iO8~JMEYcQ_gocK}r*t2k9spOr>V(I&#QAfl1%vp$RHk0zw=ej; z>fiTk;kV?-2+O%1BAMPtj~ZAAQrSIvbOTS44EE0& zf#Bd^$v|+SP*70NM=y@E6cOQ6B=t%KGjcRFmKvNSg=$Gu(8dA)>;$uMMAC6mPNar0@Bl>QrFiY69&UDfvM}$b! zmn-`jqLGz7d-eo7J4QFXoipc@;N4I-b1 zi2|Bc11F((GqyC5@5q%~S8;E72rRo0#yNxdWr<(dh{h_4uFc5J4C<}nuqON|!xk8t zkwC?A>|pbKniAs$(}Pi(1qrX?;TlLx1*Alla3NZv=9&v($dEaWZ^E%S;Y9z~y=vP3 z)^cFKfv8in4lZ1{An*Z>wq|9_z)`$h3A{>vLt-6f2s`;gnx*tighgW#E;$=3(#g#9 z!NHVdqKYd~wgfIWyA1OZHX;cP^1-db%~7~=NnF2vU9j3&o$FJ!alj-oObz2b5l|nF zlwwB4TBmxcoeBiY6@uP>t zS>lHobL;-q#D9z1{>Ui;-HvezD_ zcR4xB4Z^4~eQ@*E9cSiePa@LW>kP>4wzZHl0)4E+459@Q?5F=eQ=vN&)Bp@ zs>Au%lP6CK=P&=Tb?(%W3jZGB206LM=N3f05upUTsD(Xatl?YgD@4D%g7nlRL_WJf z{aD~OUDKGc<1udRXzgXlSX}&Y!lG?pSoyDyz?$`IrI5+K4B<#Gg$vzQY)q`cX_$Rr z{gw@|BZiJDak;nK=h1&z>R-CSi$llG9VkL2$VoIR;UmX^i<^S#CFa z;!|?2vkBiS@3Y*M9|^-=A#b4oJp7dyBKY4qVw}ip1&y=I?U*$pv@O9P$Qm|oh%+aN zVMXT|z}val%E8A;9QX7$q(Vjl8_XVIO3w!mKQBZSQj1aTY2;*j1|g)50PX(3qE zy7lYOu5G)Io${mG+jee;9eZ}bxP}U9=7N4n6ZcI4!jfTGnmBuDyxLH`$(8e$KiY?3 zhhYTXAAxt?!uxv+um6=Jz?eRNe}6rUB|k9#4riAKh<{u>{Pgi)jICvCEG#{7^qz+> z0_@niTW>twT%8g5__W@(=f7-#cab(YaQZ&d(lg*lR71MPj19YqM4gr3*pdjl8};lR zY$EK@3B-rpBf7JhaQDnEtO!g?gp^2xK0JmZjTYgjHT5VmyaV@1`uEWHxhQ@56hRYG z5tW_;#Y&VDu1AjMB4=;psJ$Nh&%Ghy{s6(uRiz)hhYug3dt+bpYga_z4_P_8d~Hl! zmfc+?(2VETHgM(Qu;JUrl(qa13~tS#aIgT5V!G9CBHMC8rA zeS+;~hzR|P!o=K`ocyJ5&QYEU?Lq_xO_&!s_2g-DD9X0{{mU@C{)djh)vH(0seMP{ zh9!rij{_Xn=7x!{1-|Uj1+6=@A#8Rh{G9I&4q2WSE^8w%qWf#)45#mNB8rNvIO3Tg z(MV?`5XnCXI>1Z?3ERRX<<4|s%uGq4ls9BWMcjRL4M&eOq2vz;(hT9K;QVb?g z0s7qPnv$YWkzHP#KXV>~h78i(CF{9!=Y}Pb`m!_6Vi+bliM4?u(P>6$c#-gm6yd@U zKjsD0Tf!09IT$^NJOmrfa>6l_pCO*EjUgA|or$G}CI;gsjFYSpPh#sfs)uq_%VFW7g&*8A z!=E;u+lq`)_K4{SRIXM4<32G}m~feoqVxh$gJGvW{C!bXi*5Wn=J;76L5hNWQyK4}CD5#CQ4 zrhjK6E{+;HY$Wanhrr*@2Xki6(36(^EAEOTJ&{j(QpE5Y(S;S2E}vc_eRzU4RNRYDh*4cBld6zH37eGK>KcZ0@C{8Q) z<6r$d9G~e&ZNH~z?YGi3M{E*Eu`LhZ8(DbBDJj&G7jOSCrQDkb2arn43Gv|%$Ppff zI`tYMEIblr3OGt(AS=W%MH|CHQVD+H;8~m^)0=RUoNs5}N`z%TCB2cIXdyd~mX#e~=4%P} z&H3bz#1qj(we^~~TFu}vBs-$V6N>{mrfMouW2`LOl<`w!sr!c~(Og8TYm67&N*M=E znVVXg3CAu&8Cc3)RxXy#cojxi+RJg|9A-LLsa#A(q6@6j7Dftd%ni)+ zWJzaYg`d`GLQXkV?4p;%Zb0;9_C#N{CNEZhvl_F$pQU>l65T$s?+6MOF9aLHCnu8Q zYgSN23<H-Ww?OI-yO8*t*eeLftZVE5o9;1_aZS0WM%=Pj5@iMrX*yAZv2X<&GaM8sRuF-C z1F+@Z)=W$>QI{DdDVQ;BItC6HD5{Kg>eYp9-)ux@W`bT{_rf{Kylhy#Ui#ojzNx)A z>?UQG*P!U9!!#cZ_;vu25|W^J7{g&hZV=xW!IO@obB`~vdg-dnwmN@Rb}GpbFx{EP zxDbz>X&w*eaF?tT74xc8Dw$lXAICwJ;V42Std_>ndyTO}pGG{&%&x=jKh=((JPw=A zgabEwcO6Vm7da$E+XXX-SW*VlV1^O+oDq2UiTa$Q3~m4MBfy-oTxoy!N+Q&ry|D8b z6_d~df+Mnj#`s5;3)HNvZHbK`r}X(F2{N3VUktbR^~TlBt#F+vziNFGBF-+K%g&|FdLI;uH0)0BAJlH*F)%Zu9}GH{jib9U1k=#9ut&!! zrRo4n;=JVXGcvV8g5m=Az{WVcygCVdTqQZyaD-e~NRx^(aL-eR9DP?jy}F9}bJjY$ z+-Id8XK7sG5EGr5M%6u!Vf~*u0_;Q>$Gy8Yg;dGns3JcF{Tdb4+vsJ(M>190lQM9(}lQ!oyxmo^2EuQIe7*}>|P^bLl{zSB_Mj}W5E@( z#4bDIHbk8jHIy72@;6g&s0GFl*6}{l!&BkBD7Qo#ldr|mck3P8Lib`gv*RD&53_vC zMVlgYS(^QFO=aDMUX8hl*%&LImX;=JX)MRiR;@}^r0$5(7G?3a#BDSYpvbM&D56y( znl!taKCtkxLh|lRS~zZ#9+`@msT3`aCsvb7 zbEurZV97$L+N?TiHm)rY3l6667=O{^3nUDBE-(j%uP}5&V@!`1^CDVs!yGg|Nx9*6GqMEmCPwCJeQgoo(mQ$$p>o-8|`s-11Xc%0I4JN18S9o4o zRi{Ujoao-HphS@^h_*{(9G!jo;JlWuYbK?__#qze))568%#*?|b8AZ3zbz(9jCnz# z4`=1@=w}zff*C4%52PeUOXWGI*a8D`lUur6R1FJh@oh_wT=D{B%d~o+8P_Zy9Uj*7?%Ic5$M>lBa(lLBesEPah^h(-<1fd z-5@V0-X;ibL9b)dMAlVBg;xq;RpVE^5vQ0XWLYqR<#<_aB5pXXlVfN>7*gw+PSVed zCoj;xU3+kGkYAu53YRS+pW{wlJOAc@@WeWk50^w1=$yJ1cOy!^2mSk#$V*rlDkK(1 zj$IA{p>Q1MBaRujX9tlBzA|2r2u=N3*tdBvGAJ_25$fpCPZ7U9l%mGbNQh0qPe1*n zdkXD(p?n3Aw2OpvjEw|lk+7ZQj48UyDrt$)Bv-71{cZR~5E`@zLf>WI2*b?S31h(` zE)DB6L};_SNZJ&Elu2PoJ4?}AnjEmP(<%jc4edz`Ba{0$erqVgdk}RYMR+-S&5kc) zTrJCzKnO|d+I^V~W(18$7*1TgeO{t|lLq*fvPW!uJ!Q+5m5I8B_KzdZ)(+MZm6t~J zM;z|Lb~1_QZ7kxEcq*Ex(cX=9(y6HO88%FbC#-GTw*UJ3h>eX^D3$$}+(-3VK}y+92Nc43YX6t(d|0Vkqrpe}A3bIVz#DP^ z06+jqL_t)7LLVNbc#HLlZ>gTNZlpAA`h`NYV{%Nc+<^-5-)j5gzWvMfRE7*0s@LbB zZ-y#P9sx?Fo);A2s+B&!?9xNpym;|KUe_7+O4|<=S1BfD)=JLOy_5oVznA@U<}Q%) zHg4KNDPO6kGI+=^g&zLe^N@bKVq#*dSXw(M7Pg)WIjahZNND@i+_#;hhw|#xEA4Ru z1`JYim+hg~u2{1*in+>7X*e!X@h{s=&Yz=rXN6>R6-zsB#m&FAY`b{zqPCwuvqHM_ z(w|3QBUzSize^#?GFjj7!$xh_ix)3eoV<(5b`lX$9J809>+zzoQpwUiprP!uv~^R= zEbU~S-@hVFmTB)Vu;xU$HxqL^g|NPgjaz=DZvDneK>i|%SE1J0c3uTr%JG{wZ&4^> zq`d~i%IA*&e>N$Dp-{x|^AG;aBXZ`>nfbn(LNW0&SKN2y*Z#K-a#G0gQb4kul&@AnA!k&sgg*=XnIaJe>DO&*pkkfV zRvG`@gx|f=A;X6#=FXOi9i89hhrEhqep~75{R0;)T%eEwnL?bvimI)fVp-K*A*``N ze8I|!6)UvONk&*;^ol|qqVxgLixIq3UfBIB)X_;!Wwf$!18+g#2|0uc&DSY@5> ziPH1Za>S?+icNsMLR4VVCl!=Q8&fk=`p#I&dY?Xh6cTAsI)2$nv1{a}I4|~BjNQx> zlbke;)1gxii9me`--veW3Q^jSuzxFl1Ka`$VYSyl)oH%jf{Y(DfHAQ$8 z7f)Bk;X7Z&s+OZdY!C`f1Qd$ED-@j2w(m2rubi9c&=iM;9*Vi8xpMyedBxtMUn+GP*HtD=oS@XKS4%OoGgs_~WLIq4xl5br)2AyWx2!nibkZKL z`FuI#a8e#UdZax+uTVCPp2;SPg_o6L;b|p(P|bs0n@@c~FbE}Y{s6_=PNjJIdMT7y z{M1AL(smTdR`@-*b?cTgb?Vf=v~NRa|M?Lxr4RrAgwfDRVbQ<&X1IcyC0qIbpEZBK z>^O3DtE90teTDoq6Ada+;Y1ewa~f~_xKRQtxVg8#U_+S&Vb`7m*iMzoWy@8RsDQO& zCYDaqrvQUqiSWzii-k-2O4MS`+nUxx=*u@>6-vWLDzlAK71$^sbR=;?Qhwz0sgo#Lw5Z;BfA0lHCU))Gg+`4Uq2V~S zmL|-eFwi}}E{_KF>j~zK3lL3>Qbid}3eLi{oxrtP# zYsO2{k74=gBcM^!`@6@GeuNS7Fa&Np@`3qLElb$yT_i_CmC0{V;!XfYAKM^!_Afhq ziTYnOpc*bpJyWzV<3$=VffPcAb{)X`bd9fn-MV#ftVPnYwKFpUjH|RBkqvXl%*F5_ z`YbDaEW-lEPn>|ghxg(xv8`C-QX!sM5@w{KVbg~A;ldBv?;^Kn=oMp9P4ZYG^ou*h zS*rp$c2FNA+2cD2B2>ZG!Oy2EwW~@YoDpGt!zc>rJkJjn#cW|#*#id-91t}*?o(sT zu+Xl3d#qo*4o=f^!OTCCij9l0lGaBEjDh>!wEahzcX!q@7%;xpmK4J{dh0OI8%Y;q zv1H~F5%^$QwzXbspzI2TiKjVn?`FU#gS>DP1^W)~CwfLZDcaIp14nb?H-^E!@7t&_ z!5HF}y+*q=Q?>V|X`9uOnNns>nSl-+JHW`^1kP0OW<;)J)YvCz)uA<(FI*a5jIOcc2fMo-Oac0Yg&4N*Ot?5PANpJbBL|nUe4PM?}u&L(?W569sm!?zNy*^>LY;kMv*94C^BKuk7;>Mmn7_?^12Yt3~-I6#f zTWW7Zb4~{b2ZTSrN$GQSCPM(VNRB7z(3e-qIj>J?`0J=rr3$|8)d$~A9Irh-tCcgv zE6P8}6rDs|=xrnr|L)mk)rf0%m0(&gZKzL0V8f&;S#y5=0SSI^pPbq@xV~-);orjG znxh1sUYv>hXXaq$thwmisXZK>h+gQyek#a2BT$FLm?#7U=BL<5I*K-3iPA;e(O8|8 zbRs+GEQ;|t#@M{vMT4}?E+1>_nim$pEm;h9cJSKAKkS1=k@aYty$gBDS%S{oTjF9IrHdRRK4a)RF$T-o*X6z7~VsFqaJm9{qy2!F2`l5*t85rH`HZ%m1@C1GT1 zjJUm_a41Pk2%X%K_Jrh|37f1jW?6`t{hUNZJP_CY0isFtgQb+&7+akZp_U1=<{r+R zIRi@HH&0=80|?)DU*$G#lkL!RfEQ!pZZe zuxQSQtP~&V;xFIKBf}LJ?;^^u5u-oa2Nhk&apk+7 z&|YVrDkCVhZ%-*sE5+9@P+7ES$wvSjLF2xU*X-aiTCiY&q^k&{ESo6;Lid(UX)q>E z&OuBGvgGUIb7%DV%ouCa<>V|$dvdU}X>HrG&PuI%wRO9d^;xrKDa7ocZO466 zwY@@7TY(FhS(+&n3Dh3P5G6hr!!C$UO|k#hTklvtXQ48MC9VE`zuY%5FDMpeGhq^> zDyZ#OcZFdP)}A(c{c6UFpE<-Ot8CxCT`^UeDK4w>NIQlA@IImx(;jEr!9(dcpr3Tj zseY15*6!1cAuK5NO3)J1oR*5qQh&u|bsmMHvWk&|i9%uxiiM-4GGW5+LqRmxKj52z zaviGXF4}Wh)pt}(vRerJ!`O-75_BGhb(mS0=|Q)+51P;lG-dMC$@Dya-T-O% zo5%P++5P`agqOZ7277M=IEuG$!QA(@X8kgM{`}}n0ui%kO(A$d30OH~MlLk1S(S{R zNE}t-bUa4~iw#~S=`u~5PhE~1JCcgd{L%gE&XfwYMXs`a@%rv=l<$%mIc5fdGF{JN z`Xm>O8ZlHNFz@$$?%X-}6|N80TvfEYn11W&r3JY8%e4;_c(!fZCY8w?iDe#9jqw;U zOhMOJlGonF2M^E9f>)td@Ga2=PcN@TYYLOr&Bm zW}3)IOColQF4(x~#}6oc#*7&W{{LIXk;Ie7DV<4a+~>cnBW8B?nLy;VfxYJDz(GYcef3sx2*lvZj|s-)R<4>Y$jhYb~hg@5@VGeTYAU4%O2 zbS%8w0whwd5TzEg8gMjQV`-0*;A-cBUtZpSTO_C1^KMzOVnviLR0@};`~u6bNg*s* zA!W2Du&Uz-j=qNUdW=WEK7ymYBf^OLmYhiNxr|*+g;I=rVj8iywXf0iR8#4gqm{;1 znbF^OXJTeVl4{Cof+*aKoy}lD(f#DYF(79eG&`sQK1BC+Q=Q4foZAGP zedJ<3gBeEP&yIk>;r+8C_&;>~teI0Ob(jnN`wt>`Kro(P-vsZ%t>g}a&rCyNLX6-= zyLHod`u@lev})Co1Q)(Qz50!C=Ily1WUr{#jVZAX(9BQLNxG7`nnt#^wn&V7t$8U+ zPT40VM1P=6RHl3tJb4*M)Li9phn(9UJ^K(3@W&?tg2_z|7hYg@|JuS8oD}y0o&{Ur z=Kg`SY_7%oompBDqehL@yN*wNF=6~DeZ#9tr-2j?F{;gW?(%*K!4N}ibU{qzqe^gDL! zz`Qy0NT|XWaf@C_|GIya#0(^#BG|xC5*&HUdz%)Mg5?`lz|P4YlP64)<_u}zeq4Vb zMM}D-45CZZ@c(N1W3FX(c$vn`vMfPRNPxtM1W267d5xa#Z?{W%0Apyp*koa%i^m(wy+*M#KnWLgV@=wqqy3X;MHKWj~o{Fylm6t9x>&ZEt;S z`ls|~Xk!?GtVY0y!^v6g__u9iWvlh;*Zh;9CiF}8dKp^qymVaFP?)- z&PuQ(B63S599J%#(^6~wmDk6rMtK7Ypj4-0aP-bpS7Ywj>%^(c*zAu*LrRscj7S6` zf4#X#OI73Yx;hli@x;a-)@h@pefkc-uH(Td-gd8CGGm7iOmxDQ%^QUv|6}*@`0-D{a82u%IzGzcXrNnhW?c|@L#@Y zF5uxvDi<9xF8ZHj1f`MUBEBXI!f7(~R}#^hsfhQM)xb2yVijq_NM1Me(|MVjwQi1W z+qP0D7a*nrDc)iykZHY&mnngt&yf%fIpw;>*hpI^J8>4Rnm7whTH2!|dgfT7T$!?H z)~Ff2A}nX2;)O~2`-Wg-S%HlCc?$;?!Y@~T(e3Ux*Xst=#kp+Pi5u8S+fKbc47E)v zlPHWCb`y=C&CpB%2_;=YXwy4#ZenQAlj-Gy`I*HydsS|Vm{MJUD%lEktJT4(HLHa8 zmhrtQkJN}7NJWLDKBjR@`R6vQ-F=wmv_QryD*7V)@x5F3^fFSp^7$dE6)Djbu|edB z5O9&5ZRgA)->|L^L>xlZ%ta!xb`()&F^)tk@?*y~uE!Gu-+3UBSYpIM4qqQQugHza z;UN@)rf4-u^tx@$EKcLdK2z6mB-e;Inw{t5){cwj{!J}RsU9K?b{(@3F*6Xm;uSV; z*^K7RnhP~p`T7-+(a4fi?V{lPHp0uDs1HR#y^EeBiX+~<&<{*#PolGuCx0Hisg?k% znvUA7DL3K~J>?m~pN9QyN}<}5ePo4k_&hP=Vr!=C96WgNM_L*-{~JcY5aIndyi5P# zYh;J};)SzPtxwcB;yhNXR!uKD^H*LH^E__dx*7HBl|(@K?!?O*g}9d&g{Sjl&Mu$- z?5QKjU!XAdjIn}^og;dF)dT(e_13$zJ$nxzcZ1E^Z7h3Sp#E&^+_mpF9bV@8<%eCD zZeQWY#bt%(Rw3uRe3zrbbim4H@evPj^57+H--Z>#2>g{Jz)mw48*#*zql$lpZQQgG zc5OXi(ZGROeGU;?H&%n?rl5G;Yq3mdm1 ziiB6Ou=cXiI=g(0{5%ub1hG3XpD)Wd2LuFwdCWDE>8WX{bWG+%N!8Moc!!@L@lcdR zo<-hxkT*#}hlv0~(#aUG`Wvgxu|sR=ZY>Iv%uT#x)l%XQw*?D!Sk-faU5{*tp8iZ6 zd5-8a7c)_-i3BhgqQ$Lv4Wc!p_fUcQyVs~(y$VhpI|;|hz95P?umft-)dQWoeMzdB zl|;H-9U2b@V#(kL_nStyVNX$K?pIB(+4fz^3^d4#-}qC!cnR#wIH}iyi9|fJdH&a& zUA>Djy!f9O0fWQ)Kk+vHJvYI4(56l42kAdx_3GA^S@c1o17q3JX2i7cTXK|}Hf_SX z4O>v6L@DgvwOw#!96jOmuC6)IJtW1wBK5RF+Rf^S`*853%In`TKK~|)77rjNy8pnz zxVWYUiniEHlDrjhV^A!qSIlC(Frd@rg^FS*h^E4y}`BDD0qWmX1_FYMqLv@ThkP zi8h$gYmyYE{~9xPG!;ktQypH0_^@MHp41wXQljDKpBo!)XHF=%PyP-Q*RFhri!LZC z&pw`XRH#uAuM^%Not)XI;Bbr_H4kxEl))@o( z4?v+3g)_0qB zZb)#C^RaN6l9QM(2(L>JgoGc%VP!{>zohtPnu~-(=D!pX5@Sb`%!xexvfC4-n&L;I z5A&mi?v2my@C`YnL28Md8d(~_o}6xW!Wp|8PSImEL0vf7+k>L&J-dEI>S{G$8elDq z7z~ME@r>l?cr0GJ7-L3_K^LM8TQ}kdIF9y#`e+nl=e(eS1blM)V%5@>^nA|D*zvi4 z%X;_dg-sPU3jUX)<19E4J?05k@7(!YhZ*)6M&PqXz~JzH)^Hgb|D7Y?N4U0Ly?Xub zDHwyhbn$$YY`q09NII8)$k;*9$b{;4Fm3WU!U+eVa<41GL(4M7!DnaVr=6J*2;H_H zTW2b#^Jh<@Q|GSuafUA}EUnO{MRP1(G*=GcA9I#lj*JMUXb?T^=?8qw*a;XrX2i$3 zG;BAFz(+@bC4AY5v#jL+`(9qsF0{iv6ev*;4{rs3^tj*J5gZ&Wlfm^H*CQoFof#1% zFk9@r7vxwxMahCCP`X5E95{Rc$pmRCTB3*)L5&$C!xvn!qKj2N6q1SOP*9mBt;_Sc7jloX?CjjL=aygMW1~v zVO*UeuIuB)LDxi}(?e54GB{VRT$)4lmVDmTt5-{rEk7TEf`Vi}M^Rb!I4fhg1uMYm z8sp+EirTDSfG8lHTV9o+ms9FJMJD-JFfEDbz(j>&% z1QFeW1%8kbkw(ywZ6t%9gtl$k3cQ11B#z%vB$guAT-+Dh`d!H?g)LN#slM61_Dd*qZCw07OwiU&g%@3>`E?GJ5eZVuA5$g1(r*wtF@t zUyX+~O+Lns9*bs8n_(ectL<=GEE~BLRy3LFM$hJ%-_Oi4ny)*q@2@j1+}7S!qT{By zEs_3$0KGKe3>Pt&VFdoN5ugXd|AZN6$^Iwa#^1e(>({T-&ooFCO|7N#VnsJscWOE5)k5lVa1wL$5EUld^Npq%U+W;-OeO zsgyPyKdyqgckf>5kIzRbeub&XnAXe4)nD< zpB3Po=F^x^ADYj>uwlbwjI0{ztD#YmoI=7F+Vc>MLrb$}mV=b`ND*z#nl;jwWo<`M zha+6E(3F|mSSU2X_Iz5R8E7--4&9il%w^T?k8I-tzt=CHqS9CAwbv9-Z4?~5ihn>6^hf$P9P|Hg1o-pLmGZhKSazbz z;v&w^u|5XWDP4!V%QOo)dOt7 zDibO#nJSQrSo(q(q)xpFB~?_Jlgiayw?Tn|v+FjZkf<8wEFuTCuT#i4rUjDX9z07k zaPY^trHO}ff-jufdeXHN!@;A6$b5xp5md!xgM$YJ8-@t?I{K{PVETt#d6z+-^`p`?`5TgDg~QuI5+dcx0}|8ZT^lQEO+TZY93i6Md$p17aZM)8yy~n zlmy}~OCe?8Z_0o)U+_02QX0mZ0anWBNOqo;Tdxsz!EDQ`*0>`hJ^7hB))NvEP~)9C z#P5v|?r9D(1x+C;P^J+{?9g+LjHC$qV7v*IDih97)>A3))24j!s3y1qJ3QeFp(5c( znw<)DfjyMunD%!ctH1%I7ysG}3>-KR3zjV`AbX`>L4d$ao%D}U&)^%d$&)9Gsr)u= z+F<^&1#s#|9NjxET5^BVz3u6TtfOf{N{Rtm`t=m}R3|Q{(_N6w(qxYAayY%^iY=SB z!0&tN(y!$N%QY$j(ij}hjlGaa)9m_h;-ISS4s&!i(k9--5mHm&^W;Xm!9zYJi}88X z2StrozBHbr5*dG{gQ}jO*&3Wbe;%$bu8_ayfSjvYAR`H=Yfv-TonYX@z*kk76eXJH z;-gYs$boU9ZS?~mcYMDC@@`hnY+hO}l0PQtGEy}#{bqneDp0*v4ebB^2f?-Hn`AQN z5kRy~!@5Y#PDA>wH0bF3fBTj6yo-h4w*kMCWLa@>tkeln$d1+v(9CX!WTpY106#eD zJdiUw9>K+mV)fbYg+j-JPL8MOGcz(VZu~eQhj#kc)1ay?SnHPgy_w%9Q_n#b-fQq4 z+^9K?^TADUtQf(ZTSo%KtP#9s%^GsDY%6X=l*Gd}ZcKzS%tg>b7#ycfix!j;=KiKl zk4Cu)<)9$V;~G?eXhYWNEK}$?w>S*_BEJJoCAfa#|K zl4h(89Np^DgD&xjmoYUaB_&1J$n)<5>mB=Y^BqO*&1?bobB#H8=e=6^;ro5h^!@R~ zCnIh6pU8j&c>fb`^FMQu-1O0@b633Cbsv06yeke`wZmo{n)@2q!t?8|zkaF{;c5s= zI~5`0hX!MQBW_wAj<0Nh#A^phnZX5bblyQ?_Gvh?sWYiOY!a1-hXLNFI`C6$tWv2^ zG9(l~uWf_Z+N>3OvgL5>g{_$M-Jee}lC-Im0c!@hYoBd?n>1;HY^r!MfN^tlMLgU5 zJ|b8S&AX5fvdF|l7T_cl26TZWHJ0a6a4!>8|1M-BZy|xZT`}~xvk_hTbt6k$0+n|x zadXKEH!nU1G(C^Jm|UcvB$>5Np)j6JNBWFg(2-p*^GY@CyrExu8=1sGWmAX6ix&$! zTRvcu7EQ5rGc_Gip;1}EMW_<6&aGwHZImcmN>~&-RdYpJDsh2V<-)n77U^HzB0X5^ zd2ppWWkjT~zUA@EE*9uXIpuNT>F$X{0#GdHWmp{#)w}Kj5E2zafIuTjc(E>T_~>wq zpGY_4Ud~9pnF6QkZq(Ej1nou2^|&Ymm7uCJ%^c-sQFXM_HBpH!9Z(#HQVxnLHs4$@ zfaTAIOYle_aQf9kN~ee71EQx zngO!p6;)S{pw|iv4Y2m z`;p90DE98zg_<>M{$=XKlbq9owmI?RAt9ZU7IOwJUL?VEbuZSEV;YP6OCe?8Su)VL zabqFN$0h_UOUADsH)G)G;{|h&19VeE#I`v^H%R>C8ZbNo-fKz=fXd4Z%i|Cp9*)4k zKr~uzHL5sDGK4c*d<8akV4##n&1?)1x$4VJM7d{Z`kto9T}hTIWn`q7l6N9tntf7F zvQ{M__fwK=RR)>5^ujyuyo2pKwqwW9U4p8hD5j?BpbUv0{t4pfQpMH@>B&jCkj1ai?Ik`eOn*=#8#Q#fG$qa1lpN@nliS(BrjJeMoawVg1yklp;Ll)2 z&Si2=B)KdG(j08Ckw;BYW5$n$=b{o~`rPxHhcL6qAXhlf583xZM{;T$8B5|3l2`=m zSFN*ZbCaq8hs{LeabWkSpMFB?4s8$<7lXVkYHGcM6Uj;$veuqZFEb;Pz^wO5Qf{D% zHivoSbuxa40@)x7Dgy(<^r_Kw(?D)|bW^Z7X$w9c@(C0nY67^q;>N&>R2^8oA&UUL zn!r0UX`f}WB7e?pbYff{FQsRMcrRH^fpcUr%@j2mB^z9uG4;d79%(+x~YmAOYV0?tA~YUpapv^VB|@MwF^)<$!UO=Fv;za|Gz(tm z($`l^z3b+egy|B=W|1V7lU#``;<;L8rNVeR6*K3|6gRfK{iA|aRet&97gT?{231B$ zw->okkaSo6pvEX#PQ7q<04C>(!JL7qBLvQEU^nL~f$-Oyab?jJ@i+dsn~wa);OA`V zZ3AgcC2=M_+}!I~NFIDmP*xcH@=b+`td4Ex!uxrQDT4TRmk{6bBAi}#h3SG(*bHYb zNkG`EVK{Q|Fg&LfrCgHY0!7l`2qg8o3TIZ3>Cg^&X%-=6x5I~A(-4o7qo-uYd0Y?J0Y>p72%-A*2+8g?ZSs2 zekiti(jTlY!9bfO)@(Ezw}F93Ae9dNAH;v|nj&wmC zYb~}szh^j68|V|08asOSuznyvVu*ii6<2v$v}o~E#~U_mIKG@Qi>3ytk%ioRu3Ww# z+?$?i5NYH8d>6?gF(A)sg=Qr5(i=4_DtkorZp;nK!h!L%VK0Y37PQk}x88TaR?9vIcVoE4WxCmnp zUe4f}!6h3#a08feM-nx=r9#`y&sxo;ZOlX`0ljxxYT7fAL5L;Yj3)0l63%lxCet)* zV3)^a0LiXt2GYp2f$}qF&fvt)Cvp3D8q{}eq`4Z*6<|$09UO`%gmp3NCbPjq(j4Le zlj%^$rfo3y*SYp_cJJN|UF|@~2Hd4Ra6{ZSnr&k`$J4k8vQ9ZSWZJ+kpF0Q3w8=}U zDA#n8vo{6CUCH9+fYI4>k08? z6LW4o@mM!Qt5G2`HsP7Ze!R7B*@ixFJ31fs~MI4J1u7xT+{ebRaVa~X(=qN(o+H&|{2yc9IO%#rgaRWpmL;5n(Nc+KF5 zZE#yPX(_qQMr$x?rqu>R5%_|{}D}K;Dttl(#f!f-4H?mexJ9qmKr%sl_tX;nr9lCXbIg>ytowrY*FCwp8N4pQ( zQ*+x2G-Olk zat8pjm9OEWD9oNdOK`^X4QYSMH}iMf8SgA6UU?4P)I4oywL~kS9O=J}gKIlqu{&$~ z=F;zlNB?3_7E!~Q&ME1ms{-gMU8&-{BLTa1?|Nt>;M1OiwEcfK0}|l<@4ol{lPhOQ zBBn90qY;1bmMD?$OY9krxOUAqxOFQUKmB+FDrYTpp6)nu=!ch{A3J2|2)yy(_s|us zA+l1U+9ycA{kx!k?BBot88Rj9@?XsW1F(!6dbkYL32r4%gOdiU09sCO5}+g?oBW{} zljlu?CB+Qa{{F~4dkKciiKM1b%$~OFU-ZP=y$j}8Il#4tA2x2;h`M#_itPkop=YeH z;8|RUbc+G;O)fxH%N-^Hg^pfwxODXs^o8Uxku+6)9UkGqqB$!0vum&z@(@H7*CW3j zMx`p1kvfm$!_?F~MUk-~K{Qi2I1^a^DgiB9K6=K4o1cP%X>1DDKK^j6L)0ST>n0Ld z^q5=}K2)_{_t^#%UqBLT1kxu>nuLU;1XP_;RVc~StzQ>=o9=~gwIF0&O2e$Vv#@jb zP8>de3|X-m#5cZsL+w<_6&`i{(6UV{xOutZ^@>%=SY|BFojZrNt=kIPfo>Qzmk|Xd z`Sa`0xM~C?#Cu&CLZQ@rH$F<3e7Fs?-puM((RGvjnk{(zoV97fvCWYr+PJAq{SM`n zlp9!VAzE>L)z1Z9Ok-!uP@Xf6%wKXG-JWycz} zXoNEnXCWgiYa?-ub4ithX&hN}9iBeK)4oXnngB1~1bD9|6O6vsP_uds%(yz^r7mtf zD5ui0=aYf^Zrq;FX-G%?w`G8*{{AZ1<(zQU_{U?1MOX60^S>iH>e@>WcCGKV12oj& zmOtDADj_Z1kbjZ%T*|;>GY}9EfN^8Ok@9&YoXLik!$P0zdD&*s_~kXbxKJnXoKE1@ znJSEO2e@?c5xT2sRPnO~8Cwt_rSe<8a7fC7#^o+Bv#nx>GnSEZrD~za_#&cusG){7 zb^&89FNeq2B2>yF*DsoCPi%D=MHE3at1$)FE=P#wuf4nXz?5l%Aw@4Ly{s;f(Ebuq z+h0Y~iVZRQtJ${0J@Bzvo95&a<}BpV*x`(;r^+(U;ASwxD&pc&CE0nnA7;;=EgH!z9*B8a%KCTGe zAQ{AsncMq5Xx+Re(!PjB=0TE(i^xRgS8>QqHHp56mw6`dp^1@JJeLee72fBPcIlu` zn*pXb@c+Lfc-oH}%vi#VwL*&)wNByw9b-S~82-eW`+ZwqyxHY@u}faA3FmeU0Dmb< zA!XocGcai2Ae0L&hgl0}2K`mN({3SC&4w*r}mQ<1(o9z$;rz3+6m%9lsB!f8}lbZ$v}P?ERG z_?9ZPWU*_r&1EjBQ%yH?R(HVsdGiZMck$nzjqA$QS(^rI=Drj-tTSTHjMog5MTS5hpPA1g^ zra!o}@e$jzdPL^9+hQh5P7-kW!$Rq`X%*X+b1ocRWTaZ*h&-bi7BYfJp$a%x;LTh0 zs9NoHVXNM>X;YLcP4>rgiDT^Qf@O=A3cX<4IQ+;`jZ7(N*{UTjUA+vQn-|)(YloRL zXM%5jST4*l$4Z^B??-@LrB-9!^tnPsgB&Pro@UZP8JxUq)s~M00?_bTJwEs($feRNd;MK}+!pSuV z&K^Y(N4&f>YuBSq>z4oMb(}hJL^v?*rG}xP^6e3MY5~fIRmRw{WB<|fkPi0m$-sN> zy$5b!+p%do$ck267^?zsRgqoHv>#Dp8Z}2Lt7wq1F#)+G%~iB`F-#seNf=dB7*qjQ zu3ka6uH8s;Rt+Ct9~>p>g0HWYYneY&A)y4In`q!w#a961JZh@qimGW(n&4pawru*q zmDVNnuS5F|;^xve1~<&93b`QHk@R=(7#{FC=9DIHN)nD|p`oF+%^&#qO6gY+btOjV z0IS}1vo}H|e|ilr1j0G8=Oqe&_rL)jv2e0*Z9Md)7AU6c^jfQat8Sqep7T3|6l&TMBlMAYktA?&! zyNY2Muo|9VmPbwCb;tG{cc7oHL{>3fPP?$$N;ER5j z!19wUY4^DJ`RAXZ@grHeNrjQn>5^4*H{VXo5jQ7Nh5wWRU3YbbMx(*;BggY?Aw88c z@b_jw0=$23KBduK;0&;2SlO@&DEw+?()L{}&NMyl0@}8D1!3jR<8fcGf9Iw7`S}T6 zVf*&&k(6{C-N$||>_`93V@PBD_cCz&)N!(h^(%1UE-iF|SIU)M&?i3YxpIY)r^T6G zz*SD$v~l(7)dkRD&MSi|o7QZB0qI3t>}|LeDMVGu8(=`i2u@qg3mL~!#1y*|SrliJ zwycJx)>#s)amyySe)*c+5|=A~=8RnAITWN&@NsftvxRHoy~n)w^}^W;M75Kh$JmKX zO>_>PCTGfq>GupI?7IX9lLPvU>3#364}Hy3@XVn)#ijEXADUy^aUS;A^P^rk8%bb0Axm(m-ROpfLwUs=4Ep)MHoy&;$(h7A9)ngb zTZ#2dH#>LwoOu4QA6&ub$c@N?jx2>)uQ!LxAXvGB)hZe^Xz;LI?aLW7t9-2V7Bxwu zrHs8Hq|}(=VW1nX?4#)@RW1bkZtN9c*S@3lM9RSbC<7AU{U0S(8urD@z*}!s7m{Y> z8hm9xIjwIff?w-_ZQHi}qkxxBfWgH2_3Q2DB0Z5Z@K-b7rXjNIXuUDXA#fswk9!8CdjEqEB#qvE`wN%S3Xz85WB4Bd)S!uW%)$8mBnX%62)LSP!I z)vN|%rV*wb6Z-b(iva@$JnE9|>zERW?N%20k|NxqDl3vHn&sfMn8AO=+Jg@z3q z3d)vEiq5vp;~sbH*db))SRwW3Ph>y>y#GX&rDMDh8Mu0#{N+{d$jMBFTxtCx;}c`e zV2vj1g*Zp)B%}=dl?-g%xecZW67gRd2Q{e{G zsS*hEez|8RGN+Q^L?I1~5yUBdt15mv^3y{(ltG0HA*Mz;Y}5Eo6*R&EI4UNJDz`b% z5TLfnk#V&!@$7B1YSl_u6>Itw7Um04!->O63JuvLpBDck*(OtEmd!8XW8$7T1zd$L zQ>F~AREiPTl|kT2@rpA%!-K^b>>{S9sYS=GouCQOLLZrmvE#!rX5{Ds$H>ac62MT? znG7&4({+`1frXmrY$5kjz>%8MxPqIpHbL-)eb$#jM!#qw*~SgJLx&EvZ7v=eSaUVi zy&>_V$%fe$f=5ks50qEp)XYF}#=$l}!LhJlUPK^vQJf{>x zJT>~UELncD26jVZkjoN>PYZVWJi{lBBWq*g0h2ayfuPrFXX{N&f#nZ)!SBuS!#|0< zs?Iq;>);IU;;z{B-7fK-J&k_v1BRCtNf~(R3`n~paq{>{G;7%mGiJ;{ktKWH{jLY#Z{49+xd#igdEQHEtxStLSV2czH*2f(Z$|uOMqriZIu3o*4-5 zRUsHVYRr8zD=f3-QNjx@&2*xQ%MEI*8O#-M4hK&%^`Po5^Kd=J2MZO1)G<-Wh}S>T z5aX3sUP1OTGL9gl23us4S_3!v>1W13SxJLzRx2RW4OY|Gv}F?x9Xe#&^ns66->eFY zpCh>X%E7L9DWf9o+PwN@w~=x(9?hFKf8hR)TX^{JVf=CC9C5JCqH51K4IB*i)2TAu z^TQsG8^XSxW#hO~zk2ctd^>d|u3oq*W)CE=Yfq8%3{VLp_eQn=leR7NA4kEHWV=4? zKM04KA4J;BXlVNqSR#E`t`4$88{7WMf}D_bB#oH`a3qz6-52*^*Oh(9IcF67)9VQd zLMg?OI_u?B0cF{%l%dz*^oA>(TX-XFS~OZM9)s@PyF)XC6b42tgCl8ifBf;sNJ&n{ zCix!QDTznc3QkQ;724BmJM2YKV4iP&_rhcv315YG&zXAsjQWqdjvyFSp+QRN65jO6N38La`J0S+yd3S)F zypWU7xb>P@0tsC%!$6K`paQLes?ThaVdx$Oxk`?(BB3~tzTY;)10T7Ouu`d0)s|Gf0qLA)#r5&d8K>v&!l zKyqW2n3x!g!C-jcDe(HLuUF&mbBlM;Y8IthYneZP;RCn*FE6Aj-hcV>|MIm{MN9l1 zlH1r{9_wiam@sLgMdj}-e!rA#tkIC2MF)7&M8|@^UZxj zk>Y`6?b@}LlP6DF0*eM&+=d2OK&EgmoqQ}*8Me5z_YwORDH&`bdWP7aYfq4tf8dz4XTJ^Zocp=skeMIE*k3asf zOr1LQg*YeaB%VD3?27fT2nq21E8fPxbPc%JXlmU-R#@(etaWI)8PeVUg^CpxuU)$MT8}@rh@%d7-(Ow{UlHT zcV{0Lv5w@}@*m1Fefo5ZrnI}r0iPGSj){GJHie4q8#ifOV0(VSU@oX|kVU4DS)4Q~ zOR3NhON;g`EfXeAu;k?A+_(L+Ea2abuvfz@GCzelA9+!gg(~b8k7-3Md}G1qx_R^F z0z-HIsE38r7A(GXtn1&ZSbCVfvQ!j{+TIWB%vGaC4f}H26P7vCYTcmLIwNOC8alS?h~)HSq*f$*S!xKQN;91D zS?#(F3PODAi}3ieC^n7V2m+x(dW*+P`!X6iS2IPEn(_M-p_BXi+i&19*(Ea-f}?-` z{+PFPJ|bPSsG-Y@#BP5IH#p|yfduQi+>4Zh{-w==)sAvgKd@cRc6m z{naa1qg|D<83j*!(i5)YfQ~GCEQiDafvpLs*st$)8=L4t{bB zqb9EW;TU6nsD7^2O^a_2u7mTm05}cx!NMgAar*b);8?;*xNWh@00#qY@joYzjz!Ce zS1Xgr39!k8k%e(jGO~`Q!E0^_X!`_+20Nl>AkmN{Y=Uj)BbUo@>c~mKJ5@Lk!llT$ zkO_Zpe_Z(e0$4umLBRlX*ofhnGiS~t`LArM@I4t*#K*@!XqZPXW68Hga~DESh9Ii< z+zV{0D6S@{wM;ueU9oN@+=dsjD=;{ak_Ee@9sA`+#6-m)`F0XEt=TB@K700T9Nm8e zPSgFNZ0{jl;u7;x5I%lffnz-Bi@qQA#gF@sVaMj}PYrf&+_-@=XU+(|H6L&LuI*&G z>?gpk?fA~0_~N^5-`QSDk5UHy=NXVHy#MnQO9zlLAZ0+x!2do23{d{KcpeK{&WBfs zH!R6Hm^^thYSpcch>*y{MrV;VY zFF@`jM{x0Ayg%RrgqAKNbW_<-!9sShDI+34bb1VjJLZ6po3CbVtY)r_03h<^;@lsL?uG!v-=)JJ_f zn)G}L@C^yFSD)Fk*KJ@B^yCJ1Z|A>r)}+}J zxsTb#>Cv5(4u~|+cSt`nqaaB!a;f9U{*9C`jM+l!j9; zx5fGM=Rwp9T)uEwEXpE72Xzgr!<)LdH@0oxhVU_CZJQT(WSjK?g9c#rns1S9%mP~* zuUfIne*6L(Kfw#uGVb?re|*3Dd$Lk?L~d3t2KF8Rcda{Qe-<1dkL;D*$X!heDFgph z1|-1yPi0yKDx=$gx zfgEMR%3%BT6A!HLUcP)8s_Iq%W*bBvOwv4+IMP?{Z|gdWkDh2#?s9} zlmY`se1ZY}2B3P)>NvFjkR3qV_IcQ2j~+dQiNnH{3!ohs0CN&){H~5iXt_|a3-uTv zja=Fc-^U3P2vsdNq)oahZU&~FwklpwQ<{+Z()JI4cX(;!5@jR#v+Kw{kq-AEbdKbX z=IQSFuv5URuT{j^Kh8q8kShE#N9>rr2k+IZ1C3S#;w__3*WOR$s>TPHId>L@3>yMV zpd-wtTsV|)hI_{Vd^PMVP{STF2((**WpJwLCX__d$KS*@%9j*U2L7oGSZ^!;siWmP zPG)8%cJ11Q;lqbx(V|7*JH!0JoS)A>{~TX@@rC&C&c9B2E@eQDY$ z)mrg6&qfIzBp1f!3Dl4!oY%B|bgngO+K24fqbJV&dKMYW(1bvrN0i3>dD6@%LwI!vB2nJTsiq5U|}ek^{XZ0(Li#}3<<4IMcQYuB%Z zsvl|f(zPU!#;aQ`HDx95}ci2V76!$5Lm7Q`_WeQ^Yop`oX^k zANLywx4FUaoLWq9j&m;qx-RS%Xcs@O+#Xf%g7s_B)H7gs#SZ`u+lmy z1Al7|9616~SAZW`OtK{HGRn~FjsTV1v3`iM}G9YE( z$uhtdP1d^2ALbwj`1tw=o8R24SzzFqMAQN{Sm4GklJOD-6fz&{e!@Ymr8j2Gylclz zl3XZOx;Q=z?~Ya9A&7g}YPhOClc(?0NFN@wM7^Fk?AoW-Y0_0Kdu_$@+3$zIH_MV99N{s7&Ik15062%O;0 zk8BuQQNmhSLP%PN)_4XuP(9X;hq_mYaMDi(i>QuO+K(bY^IrTuEx-{j2T*rjh zXkM98jxwJB;(Y78@Ryx-JM^E{Z(gNp-u3kDw@Vyj<{Cbr)5G4-yd|#05v_0L_tBVO}vgvagRv7`W0fzl`j-GBQT)B z*%tAnOuNEoap(u+PI;bVzikW_H^_$A@@3%_m)8rG9QLY5(_KYGTqm@;;*McDJIaG( zb>s#R~ znJ06_(H3?cF1sk&&DNnhkaonQD&d*$Y0*DnEk8s`QefGk(ho~bS%9SJ>TAxo`evKu8=loZR}iz<13)3@0@;71 z+%nD<0E-{Z9LJ+%c-g`=z5!WnuNo{Y8K8ZPBoQI8v)+WEe20 zwEuX<<+&#YTstw*c9tzUsp1$r9UMbm`Wji%+I1MwDdW~)EhU;tQ+GDS!yNm&n+W3Q z1+UeuS>4mqA7R9Oq1EM+MMNeXsnjW8q*&WV9C{ zQ~UxUh2eNVYLIIMvx(V!TxDhZSI)BR&UrpM^v zHvxN7GUavVifxY_Hx6!O2?zVh{S1a2T zM^B%Qx7Q!Ng)iGx3WAiIaxajs{_)u!j&()J<*KN{<2U!D7elr=O1_c9$ z!pV&)m`MfXPT*KSmJgqqg34eANCc$zhtbbE{&4^6Kk(7=!Dp{;kQLIkL-`gDq<=MM zis+(KtBL^1Yp09L@74GcioDYX?y#3wG2jFF z3iuyUV4uhu?yqi%Lv(%|4)=)a&L-}y0$Paj^iTWK)#{Jy)o61|&FiJfNqL{CPyRxI zcdFlhZ>PSz3YmQ3s-7yt68*+DwVJ#$>tWSvjz+dTbgh42BR61-|5$Xn}LF0~NN|3#6ytqN}DKfjv=?qqS)$S^nT6ytzVR#Rz%<4Qv6up2bw4K$a z8hHf4tiuEzluAkP+%gcFEkTbv5PJd|g`(cZiXQkQ9M|kccY);X&6fBv4L1{>zf7Ul zB=h#&giCEfNKXm&vz@C_unqeTLRg;e3hx@b=l ziGYvqj9DhmZD0remZDC)&e`@n#(($kR{81hJVyCDLU1?|m2wT==|wikzt4kb27|6^ z@A}%_n;IaB_d$&PQLW9+qYMb0zdJd{JM=4#&z#KNl~;aD(NEu=3C9P#BrS+b@>6N7MFMcitXQ zt)-|Vinia%Kn7_`Fm!l;C+Fp3(53$DR}B@qbny_z!I;^%Re&tyZxD1Y08t4m!9`>G z4BY*(e4BR+=TKN!c)0+U8;=0n!iWKZbOtf#S*!|mTEhx)ur-b$frkN#ZMrdzzVjw* zyp~qiFCIr8Zh=d-DV{YV;+&zL6$zN*oW!vhi=xZhqFh`KLr1Yf%6l$^{z$oqEghN6 zHK+D@q@rP&ZHYi|?>oBYE^@6k+eTOJd*z4qjqEwb?*E*vu{T)HA0h?46X^?OdVWCB zrN<;qOPzumzL+(D=In|QcPyY*NVH^sGaTX6%N62XImB<||4ekAg@R=@l3E=|+#&^K zFLY$HoD=(7Pd-FJa(DNbj&l(Oo8fy?R|BoR6iG)Q&lmtw2;wm`)y*K{V zZ+EI}!TW%4lR|~x0()2NBqSmZH85~QUH^TxfRsSk1wbYPbJnu^;Yn?`EJpA;6 z43gZeG3J)HB~n|;cT|&AZZgo|?Cd6ZGGN3l%bSz3Lg<~O0{exfkI>^}cC*xb{Cx8@ ztaZL?B_Z0I1WIEwR;oj&#UFJmw8Gal}@5xh!CoZ7O{gKq6&wvgYkN7@2 zya+`U{J1d^4el9X6Q~}&BS{T1N=$gA5+mRAl{1=^Tk(>$hCAT}Am*de?TqT;)&2Bpe0;;;u>0`)Ph=)D-?%jOXXGleu;$aS)D4y3kxb^t1>XT* zFCPulusI3<4nCn}K}25^mR#*3cl&v;#@BD)q@Zx960AaL5HC`^iO1gPV zF4Iv>4^7~R1tMT)_Vn_O zq@laFAw=JZz(YX+xwZmk!@mfyDUizf{^WbP?~xDZh=`93cT>z`D&C1A4i<8QhlPhn zpPZ0`Ez@mcAt5E%{geP=`CiyRf0f-iJ`eYVJu)6>h98|^3dX%wmfQ~5LpN__yCrD= z2RZo0l)uw9k(SGw;#UnH)N5g~-m-bPp1;oj^YL%-P?k@J$2&DgJs;2k|DLI-DUrpX ziUVDT`cM&ZBAp+pp5xJqM^uGjqSc@hZg^2jg%YbA4T3C$U2K_AWGO!=x!D+M1#7KxJoPm{Dov32Q&-qGVuknHP9w z^6L}g;H2_8yU)rl!gezTteGxB{Tf|#j!FG>N1J%S7S>RTL3r%&F)~s6u*j?ix`zx& z?V(rTn$t#MAloHi2Hi>~j>~mQGjc+3w^uA-Vc`T?6GeC^6vOm%>Qbxf(}QT1tK!#U zsO~9mSUxxt;=;uRDRrU~)3Uwd-hdd~HqW#a`$n#eifqAFErxWO9(~qIA6?*PNaXAE z6vEc@Fj(2=JKtCSm;DFs6nX=U<#k;Q!}Uq|XsgGHeA5Pu0_0k=$*fmIQhorb-EX$j z2DC*v32~nbkeK{KqX7t)HN>z&R=_N&1T-WY6_6Vtug?RMdezH$gANQkd}-d4k20LY zrv#FT?NBKo@d<}Z^S-yQAfawxp??0=5iFRf42`WCM)}kR_j*{7?U3APiH86z2MuH8$zr?-$(mLquGdk7j6Hg+RmH#1d>Om=P6YT zkIFH_Y+ZLvF7A=seL_7Tigl{Eb(0r)%i*oS?H8J&wP7zSkz>NZ5Ew^Cd^SkW_PbDk zhVv^x*&blCnnhSKSg$ppZgnxcTrjmJT4z_i#`HDQ-aC%PtpFUEzmfgDnOEtzaVzVr zD~RrS)cbe8H}L3YF|Q`m9^S;Kdin8z8Slzujw$}bBEIb)T0PVIs-Me|^4+uQSoEcY zs#e>7{0+KQeKClvCpO)c^J-~hoBTDi%ObyS5V|26>AqF{I%?#(_OWc>KUAjj2Mm2z z377H@#eAbj^-Oh>Z8{5s@=3cs4MwPawH;F4>$0bLe6e0!RF)VI0Se!neFztDtTHVepSedbaa;HnWa={PT37QT(2}Q>#e!h zakOPt9ozgE5A+kJ<7vD!Tt5hmhhu8e*S2C|Bg#MiEk)plU#4OYLk{<+{Yp`N&d}k- z9IMfbO5gv}wKn!{1$vhXSsMk%U4zYfQ8y=>lzrk5ah6XKeC^Lk7*(&X`qJ@+ ze6aIf=g@A`jhHnj#nra*c)3`zMt)pH;~2dy|9dk1)vk>C-wuF5ip=dr+LiwE$d1e|d`JX56D<#iDnCR+akZTC2-xlCO%J)cf58 zBlAl`9~FTr+~{cVX_8W9{J95oi2*AZd0$f@qr(O$1^(aYx79mtTJGl`| ziPe1@m{DL3uC2&j!nw#~z@L}>Y=eLSOv}*^E{J*aADG$$s3SjwhD&t}g~s~KkWVR- zYrj|g=(z5hfI{K3*-_4I1XuR9`V75IeH)P^Gp;D4wwF^auvjwwQh-518Xw-JDk2tM zUMs>a*e6Taa+^DZz9}&u%ug%U81WBsb^ys0hjkFwX+AuX@Wo;DJ|Ouk2y(qCq3cU1 zJ6^ZLmNEHlXO0_@6vJ%RD?425GkA0ZY=^@a*bR9vbC^@kAh)6mMhEr9*H{HU8^G(H znPx@b+w=#DsVkYS({={nqy;u~d|iCIhx?%<Qe{{en%P5-lR_)sXqFtW;^j zEVdoNFf%jC28tcXWQuh<*nJLuFCd90;H-+p{||`&yAIDFYy|_{HcBu1)VFSF^(zMF zp#i!G853gxY-my1GeB)Wbviv2bY(AX^Y2BzE77LToEyHrCf!^DoEAvn;S5WDhM;?Q zDU(L2qOgOdXRtoNAd~y7(C$Z4-e8knNj?wtt9yDQmjn*g?O`>}^Zt0ZP=GL!d9{9p ziwnIT)QT(FmZ>AASdkSE*C9h1b=g?eh%7!9b$vYaURzk8Dzui$dP0!F&2E!AYtAMN zOFYT}{k5+z^}dJ8 zgSUOKG56jzRTy zSdLM5!#7dB$9>0&XH)d#gd)U}EG^Kp|DaI5qgnI)5{EhLL3F$~It#e0|Gl7_b* zKVvfHoo(U|ng3|2XY)MieTsha3Ha*%t>tF%v!ZONp3Eo>eb1rh6GncP-;1-sGHI{< z7nZ_SS&MtQ70LUt~N$kzzPGnoRmTe3t$lGcxlnA zE6<+-R3q=b%o{4I0vZf@k#6{FtMQoF=+N*=9Ii|wNvEKJJeaZQ7xcP~NOqH- zV7>RNC@|N>#0BlS&RbCEs}K!cHGX^ao%d$)%&~$lGsmMHiNTGCHGO=<*jg(4vo!`i z?J@qo7c#9!E}X=xID0OJH6( z`zc7n8Hl95Ox&pH(ric06~M_R^+Eb$G^b8Rd?Jm0ckf6<27`eqA=L59Fe|to?i6Pm zy7`A$6N0#7YAK%1XbhQuMkMG3kuKF8W9q-pamxZ2J@h-D#dt{n$t#NB_}D;=jEo|< z{MBw~S>Gi@cPqu9m;1T0e2Rc-y-$D?Y72ye!&bO_VH=aH&_L{<=KWE_-vk#hy|-H( zK?Q1(RI)hR>NcUd)zGzcmVAE`TRKi0ds6cwvarL&?-c{Ry%+E+@us9RV zY|QPkG{}kSC|6;VpQ^%u>YRNUGc>c^Ph2gcy)+N|q)6nhiiO5Yaf2X?NdB-cUwyeP z0$2NZ{h*C%GG5;8x5jilI^I^~DrGWxFMZ35ucifJtx!@d_Bk7i-Mh$)GOYV)pwwjo z1GY}B6M>WPslp>S@<2vi(pz$Z&y<`G!D;P#e@Wxf<{c%|{Dw~7-PMNeO!K!d2i$qK zB|VkGakn3w&29_K5!w;z0Tzi3Iksd6z8A3DSE@!dawdzo(7!Oa~wzQ^K8=r`7|j5;Ge`V*6YP(eUuJiskWTJb?}`XidBAe9<{q}k4(|? z=AG39=VZ@Yi1M-j>#41T!d% zEe76tFX59^IwzN8t)Cth5!@HCJSN>G_|%6d41q9gun6p>`!G6Q-9IE@28j$Y1_=gP zm)m}}oqRYBoAxQ$PYTc@{;yoVZYEC2|5q;KM|&GMO8I|E)kTq)jcb$zZ2JoY7umKj z`F(iA;Bn7&>+JT2GQaE#XUtfEY-nL}#GfGS7bq5)FzHWL1(CM2jjEb?#iiLq|rG67mgRxXK-elQ|w3cqD$&uNu94&ue7p5 zzZKUhhLnfOWe=rD)|<3Ms9eyO>?nNrfbe@g1TYUo5Dy591nNQVTp|Y{OG@M^7t8d= z{&mCqb!1TQ0^RO@i9qP)8qJnxl{v0iYue2ebF;b+s{XS!bYmNOjpkPbzXPnm`i_bgpTI~LscihGsF@UjftMBv+jA|Z<3I0fVm7v%jU{Da@XF!%x#_ zqv$_%4NIr&9QS{K>JH&J5GcM~$z0=o;Bzet(?|x=*C|(iXTrAF&yST`C~tDO28?Nn zOl`;qoo8_ECM)tOr`0=Ci-me-xKjva2Bv;r38n)9_fy2SgQVf+rq@Ef>}E~opX_`+ zbTn|}aANsPpFfe%O`PSLck0%fk11$4{uoM5mB?qIB)A1}6Nd-XQ7$a#nqxV``aM<} zCRQXE$Yq+XKjz18w!4Vtx}QUVgF{5xcix7rq@5yoip?6{Od76ZlnGLb9LmA#7eysV z*f~}cz7Dii|Iw_wR3JRF7l04>O;7fnfkkFa<0KW3&Xn(w$^C zKN6ZJnQ6{eG@Ws|>&p(~yqx%T2)#Y3dGb5QCh$HyD22XR4GK#dl zN77cRhw`Cl=dd4EmLhD@c;i3IR2eJj)W zeYuPDzmopp&DzT+&*4_OByZ@1wzX2?VE;zYbos?%eHU!4YTm76Gq^YHJhqMvBPOe+Esh$zQ-KR+?E=^L8N$M6r7&Kwy}k0m*Q9JflO*A7A41iF}$XkbQS)5$u6l z0bpoCeTWoz?bID%z~oN^z4^e zEenF6rUnOopO2&echut3|Bm{>U5ZEWza~==qLub{TT`9B^e7wF*cT_%II#Xtt4=~{ z&<{PO4mVpk?6*uN{ZYLnkoi&%u)))iLz|8tm$$*&(3J|S3@JFRJXwO8$V8=5#I@1s z*7pAIH0rvFJ=ef#8$YERBtsR^E#}04){=X2gU5nYAK6#b zb1rObG3b~6v&Inc`N88}TQO~9|1Q9|k?xn5bvELZhy5B|`xRvL8zGdL9F#e+<>n~c zJ}N)%%SF!O>}a#lGFy@@Ebfvw%C=m+3Z{@4boc=-hsSHKdibW**>k~5K|$ef4mT?H z_8{qbIGV|od|*Lo6kGaXsczj|prt+qMnYuH9(J=T)q7otezI6hxkB)4xwkhI-R~LA`*z|wE|1HBt|kE?4cEBs z_ip=QLj?+1-1K7)sYvMFjo#t(Ia-7wI)375keBmX=(LtaLa)@pvj%B&h;md$?JC-F=?$2SLBKvm-$TmyE?j&=sya3d_l$Gs&HS6{@0h zmy}EAc+S!TiR`NBEhfj-LrVBdRAn%oITXqhnE4m`?HL=$`4@JS#$7Ji<*}xIDDi;c zNUP=kY@j*%HE+RFClrd?Rh)ZyM zFqV9>QVq(s>63`!2dZy?9v(wQioJd!ab!pXVME}sy{p-6GhZU#-=0y?)7RJcY ztBDiawD>o2flX@CBhyAvSp1fTv|Qj6Y0gaI<{I?yI!Jr#X zkF)@81Gu9TzJhq8lfV?xsrgexMC9g_GB{BN0yzzjwku$>Z{;;wZ{mw=Vq+$%W@plU ztADk@+_qyE;HbZOd>-0C7rlMWQUa{Wqf&)IpIhFNII2do!eZ?cva=q(9D6#eyJb?N z_Lr5kQ%&1xUxO^9!~k*5qo^IM2FplAqJiO{X25P6Z9|~ghhxz)G=|oxZFU?#!rGw2 ziMPI{{JAiyL?x@;juE?BaogZ=k%;VvDn-E}~iHIP|UFYp>b9Qa{s*w#{GI@k6+iWt$B0$rM$UXXKW2CjF>dLF0aXCR$2=rEfI4Ri6E*kn zc5;6Bdz*t0-Zu^18YD@ZQ6$Sfg@{Q-_U6H9=c!(nQ(0-KrmmG&`Th|% zP(l-Ls+m?VU(ytzOZ1&K$^P4MT*8_JMP868H}#3d`hEFz{rP21VLtVpvt1SKi7yd&#jkw|ARYfslR{ zI;z~V?f>2NkdQ{JfiP}Iq9h+PV%7@VSm;~pcuZjt@+R_;rFcRS#kFdi=zw=hp9;6P z)dQc}gp%ECBQn0LsnkagT-IZb-jt_2Sl3`TFs=stCtfDnStk?51ZxCJ$#zmAg(>d+ zpt{m5&548nxvNHmc$~x<(oGMn9p&b$r88S!KmoUc8lo3iix? zepp_!&5683Ars+v$TT180`6Tw{KHWN(*>n&dO_;3@2qCRe0vz3qd)}z6xI68+h_=p zRw-Wue8EOjR(+Dxlk+Z(a{UC!nMBviqiPe);#1q&LNDhaKKA|jdcyDbk)Vu6ryDht z-Tg$r1XhP z%UtZFqZPGJ2dh0JA$i0rPim43Y}qji68l$)++QarXOSx|{j=+ZGL?u{MiEA_L}*TA ziJdPsa4rRU(tY*KZWyHEFtyr>Ln8PgziY4{nH!!|x5VKpN4^8$lB8xgS9~D}(-NxR z?~ijeig&f7Hpk=zj%{xl@3*?h-rA5)aX4HGjKM3X#8B71;K=;dy+6oIJ)!tF{>qjm zX?4zwlhf;29el>-dg+`Uwbzsr$>LMmLSq_XdbPqBGkG_Z7yF1I8^3j8JLK$;jw70j zgReo9Hh8G38O^KblW+9ls#>kC;7Ozo&Ia$TMRMeQ1Cd4FfYYqY3W7-w1`vbpvK6zj6o#m-GTFCIJ%x{0CAMlz5=3QLSxCO*iKN0PgqqQt&KHO4(I*V~6;eiRFEb9Q zF&4W>!VM%>*3*%=UvS_QT1EZ7{t{vdItDSJi5i|)1dS}C8}hG-ryYNu{`p;>3*Ac5 zkHNS879;{WTH0J+mqhMVg|;M8at=)LrY|0H^O2M#Ea$?8!)_fiSW0(o^AtClEPr1d zgqW4SX|lJ~mTWGb$_76ruG`zl?_AWWMQuQ6k|P5$#L5c=4w7^?j%4bjLct&KMmAHS zV4ob4#lTb@$gYq?4XGiegBicyo4VCLTghz70JB?pJtI-+lxHI<#Zu z`cL+4!tPu+v-?4&c+}Jct#bFGE}E)wt!o#)GuDtz5D4r!#Vv_@0@TtmGO&nfzeX=6 zM@As2{VAY8*9^6D9XZv!6vuk+Ry3jYc`L^EFp!38%@UzT6t#)X!Xn<$$Mn(Oac95F zQ#cyv|D^enL37jJIcZd@V=FBtFrNT?4}2g>_Wklbm)r@mur@ZS6H3W!JFQJQQD#UekyoO zi$?@EtsNmlH~0SfMB?XIVH5OKZC4EO2zW5W=cwL>%0^0rYbMpU`vcZiB>l|vJ^xC9 z!EUvXV1yUQ|JHxzG^H2>=g41$-@sRU2N|&=8s;8HVPnp6hRPW#%sY!&Z4C~Zj`UIC zN6$xHoo=%7<$l454T3`7`Jj5nWp(1(XtxcKN~1RJ2%~QZk|y!5)^!x{5&o-nXn`*; z9;J;U!{yyeY<9RxVHzqEt7vON63kCnY_r#7OwWSJv_KJ z%Dpo=l8+aw!$8>zbgRk()rX_k7H38Wt8bG>vY#eCNhs7UnwHd$H04cwjlX3^S?q|! z!_6MENIt4$r8*Kq(1@4OS!p!w+;XodjU_Gn^0Q}x(aBv^;)jF@a~VY8`#YjNAKPdu z(i6*r1z7NJlSL9x%0z4QyO5k{!N#w&$bHHX%fXJ9`XHT;{`T#71)ijA;aI2DV8}pq zA>R^#wDU%a^iN8r&@sT)*q4(GOa>@m_ywJeTG;5fK=0$k2PhMlkHOPG(|Y5!R+RrMen*Rxh&q0k!k&~G-0o6v`5Q^ezcR*Oh&@kU3(G95e5QQA7@P^r=?Nwe?NRd z!^02BGIo*qiLH#9u)E6cZemqRS1ZrV#Cm zIqep(CLpT<^1GxMP|uJS=AMTNwTo%E-||B@dArl~C*`;8!ullwoz?d^+Hdxh3sj#Z zB+S+bBWDnvA+U|+XzB2>OsFX7Jpy7#u}?O>;C+10tUWU%&VgvIWu-MzawzU*i)4az zAUWkSnEDo60dlfXVXDsNe%$iPOABoU<{{qp%K)Qf;WW__5Jb0on_{vIJ$d+_lwcDp zMyXJwGYAtfoDL`Fp<}+3g_eaS7E6_x7w0oy!9?+vnwnTN8r5)uf`V-V#Kgd{+3XTg z0%|x#OT?KOOm>}A1-A@Nm~nZ8)aVr&{fn@i2k{`j9_>sf=n*-cC{(ueua0Rk)Cro3~HmbJ~z zf%=_2XYAF8rmVMxQXVs>fQKx+ZZ*PMnr9kkQdEm`pTo}#Bu(VsRc%Y+L;QDD$$)7Z znXH%Of&G3#J3uTt%7!7o3gK~{r z!}V#@7DVy!pQx_5i=xXdTf-U5#xrFql#Q5kI@@lq7znm>B2Oe%LIry)I~eO_?mvO@;MAj~cAL%Yb|D*L zHxWZjXcAzVC7njJB0}yxBsvniP8a zgm?PqmOwz%ZPH@Gs>rlCT8j|laZ^%jIK;+L_%f{p*Sw##*6X6z6&Jc6=>@3bJX_Sj zFq?UG^RC3uEu4C5`}flrMlaq22k`_jsQFHFn_&+jR$k2o1pO-Z^m_@XlA;^&&rDx~ z9w(}n1xY&P4_2~>Z*5{ZIc^{bpk0F*B#Cb1S`?47SS|%X;@b66InK_k2$8=t1H@4b zgO^DdX%(WNnF0&M3_l?Ecdw4(B2_2@?F1p+u7b&7(+vm0;2pf%z|eB*V~}OO3a~W7 zd&9{srHOklUF|Jn;Bh(rvRw*(f1m;efe_CRSxbUI99H_CU88__2_r2cYPvEcyBuSV!W!484 zvaxIq(mNEYrYU=XlZNYs6AQL+U0pj>9Bq_WvC60CJ!a-;u#58Oc1bWd+yez1{-fmA_N71cB< z<2ags+Z(OiFFvhOv6W+jG~GC;_yF(s%1=x1u{5O&2<#`E^~wWYZ9@7KYKa)^K-uLQ zB2f>GRIAj74PFfw(KUR040^4QGsF}x-IvOFuvPgim`Pgg*>9yZi9XC zX7=X+sD`&0npugt|NQ;tQ#f~~-ZhKq3D0~FoWjr( z%*l_0&fbrY6i`_+gc8YxAPCjAoh+%6{+62#X{@EG5+4odu&hSV)R0&D076&_XS%%I zW4;XGx?lESsrc*psyPJQ@-+3t1IA4*P~ggH6-7c5ui=L}0a?ty1sT2qZE@ZEjFLE6 z#FU^V69-efR$U$X$DIGv*LamLX42`k^cQwI_J9+Cn`aGxo+RuIKcl$aRbJ@s!7LuKNxf5A8$H(`*zHil`hN zAV~-;OGRIv^dUf6L&GcidyV)}HHgl(^ZhSzTi7^~%1c0V7iAJDY65Z&hz2ohiQJUf zN2m9TMZZZ59tTU!)nU6Dt-3I)b}&3Dr-)HS?~0=_v;7kva)mW~SsZc-(7G4RAbl%r zyqeZ9XPN$>zZ+sUMF1zYbC`p4sVJd7F1@t-Mc%HeKqm zE;g#Xx`6l$cG1d>fzz`p+RpN#hrWjQoF23~EhyHs?ZGJvPBKDzV(~Pj{+eG=MjYw; zBdv~-?zlP6mrkPwlY+IBCk)!E{*V>?2Pjd2!>*466;)?SYD^m4p5mB}?PWoN;~1Ii(U+R1R)%Qi znFWj6sR_Zk*h%mV(9(lb((T}tL0Y;XP^l9hHS3CH3X7O1xd=tVIfGzs`tWOOv&rnw zPF5ErJoB`qw{FM&-sNqDfxci!`P=RR34~x@P$kvEG6-z%kP+{6sInJYz^>sHLTAZI z@F4-gsc5-l{Z5BEp96yM^mI%&7zO(Zj4BglgB4s%ak*x$Son>NL60^rWW(SV zEQyYnOz2q;; zt@73>%iAOCyMBMUcU$@=sboLQl5MoRV^&sB^=3NtR3nkguNAC}lUz>^Q@P70&PZjGv!(E=OL9z?~R6SH~fAWx)2nM`9a z2unBc#TJakh(eDZA0J2t4-PR9o!tw^;BKGjo@r4qu)uGE@}WecE{M54x79Wtn0<6` zaA3N0JNJXS(6&s(PA1;3h#h9Q6moKL(?&-@Mg47Ylf^T!FFv86Bjec!$Ppyw;?ne* zu~w*wrI61$sN<~p2{IHOkP787?Wyo5VyX)uj@E3p(L%=eU8<$l3bm7Uyc7CjAni&m zQ}2w8jrBRG!4!zXT3cIViSR)oDoi98Ot7oz8O5Nnd)KJZ*HhO~VPB9DWpFxSKdp1g z1SlaFiN;UP;)Y?;t8OkzPL-Oh&|~n}L}(cJ>}*^nIzF>6Z;4ponq_p@%GZ%-(<&1} z2~V(K*b}x^miY|TbV5@mm89UMApk&IDhW3oVU`X@e$h~!G^ovN z_zfaBF2BS3_J6U?vCbh!IhYI<^*!#_*J2#HR)vb;kk<^s!vNN-GXe%E7)c!qpT^oa zcEjr_{&*@QtdY0IX_XR%zOaUM!{teFbsc9NnuEcwsQD5Sl38Q>@q}PXau9*Zwi9Q$ zSiuPeQQB)?z|Y@CG%rp72eH-@?=`=ttrC$TGl4#e3FBEk4Oy9}Kb_M^C3+}l5_e1@ z+!iDv!RP_LF-SajOhsudF%3=msDBzvGBsc-zo(1q#~jxgQuNVq_F=5Lu# za7NuS|LXcX#OO8ZFoWG#{nyCH=J@y_4K(8ww-8!CQ*$HeZRyUoVw_rf776N9%v(>< zfGo68`#{~?OUa6=j0LaP0~H1gsAh*$$`QJ0EdCaT5t@jtu%noiE4gW&^rys%uTe{k z>Ej&(@VPbu_kOnc9ggLuG8F_j@l*~sX*7%CY*^5X{;SK@A5FU+yz&{el}KmFh>V|? zO!h>p0U@r4CKpWT*u*t2_nrP!%yH$_=#M?o!_Oi{e93=u{g`HQQ;*v)LYdtJjtjx) zhIf2jtUAM>nSdz_SHY58$L65^GRwAyGMY3~)8a6T8DB+eyTzd%c2E)3XJdN9z^$QbrW2vHm{@W^l& z``dq;vFi#=+mJ3_wgwTOD?(xtSClXf0ym#TnEp_x5=pR@gPUMsjXB(sP<yri)B0NM%)8T@Y8* zb}Y?YW^NHwecp((gkZ*iJttI3d-)8^m%OT_3MVc+Vqp?QC({+BY84n~3uVCoon>!D z3Z^O!I*oc6R1~@X>*8_*o(p{0xj1?Qc|UDCxp0_S=cohP9flv@xv@`+D`xlSk&bSg z5BQSn|J8Ms0a0#S8-@-6N$Ku%KmqBN5CJKrky4~vq&o*eLOP_oL6DY4QVB_EsR8Ny z_UO6iUVnW21ZL0s?zQ%_az9J!VM`oRBJ66hwwfbVf+LE9;c^A=LkKY20v}hD75Nx0 z&MGOMiV(b-E~;vV7^Cu*{H;%T-}|$bbj?1NWad)q6Nc$^W|4)dAKJg?eMfn%0im0F zdeK62dL1&CIU90WW1hh)(-+GuxA5Z)ckKwRqVz$dP)*8rydgttp4hV3k$h|3NDASf z??2{$?=j-J(ReKx7aObc6SrHHVOL=>?y-0~V4z6lGO})v&=4nHKG%3UlRa^ry<$g_e^hRuhq6GSCNwiYn)qn;0 z>0wS#$KAD|j1b-gul;P*p)07Lsf_Qfc~hrCk8JSTx`fE#zoX28Z_RLh;~YA6w`w{i=2}pekcRe>#iZsB({fgdBoHsE4YL?q6)YYnnjef?^PF< zN*y*Bv%Sk!lN)+D<#0tNBqAa~R*0AOU~yzW!}z;m7dGvXh8iD>w|Wn;w26@xCv#o8 zGlK@9ZoO?<EnLR@Q)1g=QC#Qm-yxtCgtzLIK{m@azi(WkPI?FHw6>{RU1nbzPDy%VXIvaq;inB6hG|ft%d5gkI$h{VBE?kcIZ8Ur-Z2=oC4|kq%u(z9j@4?DhHqQ5gSEKFU>Q#q8+t;24v~ zCPa-y+mUI9Ti@|5eIz1yqf7lejL^Oge1X!W)P;C?-v-$SenYP#t>s-%5=d&}C#>-9 zzVdKG1XoBzd_<6o)`gJz>#xY#<8o&PS@X4TmZ0yr^+?ZC*s~>NNT#&LC7({JCrrx) zS9rwZE2Bwl5o?zkqAmE2**m&*pW?H&W#uOdxE9iKidb8PcrscXaFau`L`WmxWr?@d zazzt(p9UY|Q^#bg$Un3Xo#=3((jc_8?q_Tafe4n(`VR3~ZrHL&ip(gy#MTpG&wRND zc|<9wl5%(FX-M+=^#_QQqp_3xU`JBXp6On+m~KnKVmJvH`KO!1b%_~>eVzszgf0faSt zeyyx+H1n;NU7p|&wxJFtw0-=# zTRGqFq1~S^$g0YW;L&1@YuQe1CV>8;u{YFw>-l|dg8JxjpAPk{QUXs-(jA>Qfo=<4 zWK01Gw__n!X_~!`?WUbAe-j&q z^!cgF)%m|NlXcsfyLB^tL|uaN&i?5-Y@#|WG|dZRL1GGj3+mcSOfsRL7cXT|MS}vt z$aMVNZ#7l1#Mn6^6i(PRicbD*5jtsfr*$**;*jUno1IK`OXlxljs)e#5S7J3%!-hc zLcV=ffS4e=CFQGh>-$`-d>$X*qPfb$3r4+q9&sne!lsAEPO?;eAY20l1HUU>%yZ#2##i@JFvX_=8X49tmXSr{^4MJ8(vIXp{I5bqd7+w2qE}h|g_e%_6AlIxA z$MR@#dmTGgim_3^+D-4aU<%fE-&8{jJtGp_ux#S$hb_wbw6;`^33>1z7w$XplPX(- z`*L&WF8j+n8JUm2cA6(-Xm*7Xb(d{fnlA}-li6k@1f9F+bbZ0{>(ImM@nfzq`4udh z56#r^+3%!#M10FZ!C!6W;XDzyf0W!U>`L2HPc-X-bzvmKK2)wGL|N>OgU3rmB1i(F zRixRDk<-nP-9xew-NoQxCtxbk5CodIJ9WG01xY+TJulst`1J3iwRt^}dv)Q0!Nxvx z6j!BoJs|ZuG)?}rZDv$H;UM>*r7TK`j;^1qj+Qlhg$9HCdGaR?@*r)tu~#t%t?pA= zH3}B~YKrhGxsK#is2;JA3NwuQby&ZB2S3H=4M(i2JcCDS%FH$&^&96kF;(6Rq1`L~)^%P=xyVNNSw4dXF;;L*_!6*IOCfSntlo}I@!ZA| zos?mA5rj>@A(H%D|2&;v7EhNl0Yc&V97^&S9F+qRtW_ z=B)Mad|(imS1kg4oYz*~EFle>SGXLmS1*>bsj>U2+C7tyqJf8kj@#=rh*s%%*f6SF z<&HHm7g+gP8@4%~&&bAx>4kCB86Q&&sy?lx zOO%{B-dOpP8zG;PQ^z2#IlZ1dya(XM*<6#G z;I8fKyawH(n&WH=4?D6UBUBi7yxCja2aogW?-gm5LoV)@sqqdbS9kJQPm~!^(hEw{ z+G8CesT}msZ6dQ7F%yG3+1~gv;6Bfzt&Jd!!oaiw?8Hyxxafs} zSrLi}>q9M3MqqQ)PEn^i^-d>!6@J@xHfKmnOUoTmcl&4uwKq0~ck6^*p>aXNPHS`< zrUbJ(5e?7kxt>pyWmA+cSOvV(HNZ1R9iwQu>|u6(Q_Sd{a!Q$MU{K+Dp$al2q^lgL zi-zk1Bj-Y$$~%!pyI3UXCW{t!#OT?IYV=BM##8l9@hJ~^CuhE)*Ox^Qe!;#TPfjCi zwScTi`bxyF*^{{AA}kFu3tS(y&UOJicLe)BMbpIlk3l$uEx7UXTaK&!s~Z{NYTH-d zcF`_11cYxW>+Kfg9UYfkkvvl5uHJU zFaYXnZjan$|M{9o)LH%681GHT=p5)WH1N1|>AlQdpbBw08O@~n`udXbn{33gxf)rr zVO-`R&Bv=Q2x}mY9KFPSY2C&Mjt0Uot~0@R>K8ibaA%VW>t&DX1)gH@9DLe>AN>ky zx{z57S{Hp3-N`P{F+2>5nxoQm_rpp;L|w`2E=%fn5$XyYE`m(BzsTfX<~u(79C`i3 zAi5&$0tU`3F&V*TL}rgv2~-ksK2?Zv|5haj#>M4j6q(m71xdlBYU=L#?5jVzgVq64 zoo_*ICjmgG-;V~OoKkITz~9`6h#-(qg@Wsm=p4!Zy!>zR8$;HV!OFir-4}%-R{rOM ze0~tRHgr2=$rYY|fA#xZA<83bo;L1gf31Ng2|_D~Z?C~`9Q@BGl6XN%c<5vX-us{5 z{QfhxuVhwVZ0?5-#tSW8r(okGXTrSB50T?v3e*9-TTV3ceoNvAK|wLn&81pCJAMBL zUH`1n2E`&y4sp9WKN52JNsNwr2T4RkB$AxJTQ(`u;I;G4j8=FEi~>v^d;dOf=hFXw zKMG=9Za-;$_oLTh@{xD^03T1b0*t1?`|4v!v<%8Zg$as$G*uYrnGA?DproWs756%S zvEFs@M?nAC7i1zoX`B~#pk|>|U7*NcVLm{Lpj*?VW@ThV+WZ7=2#nVED_s^6eTXYFeFWtbwMFWG?l^g z^*Ju-(XfU|2dno)L33%XOV$}NHc`7%M#}ES{ssJuk5J-Vb!FJ`T6k>X`FT@nQc|zm z`(LopSJ7Mo0g0F+Ar8me(+#dW6v24Z9EpsKj9F@InVKArVyLL72q-D7pXHHR4yS(x zW5^$EiHeCyIkd|)-o`)A&c`ROw`4UIaNmqb-=(u3phbR-k9d%43qw8y@`aGX!orHG zDvl)82ov6}w+kU>t?+I>NsA<(;Ax40?#Z*gC>Yl($W3Uw=h08Cl4rI30+Rqk9`dqW z-PNr$4Z1{|Dc0eA$EFU^D%Orir}ff}n!kPCDHUcj{oNl8r;67<`sCoCzp|`=n~90( zp-hHpa-*0C^11YD_#!eDHFeggRr)6sacM%(ZSS9wLOI^c>bJ6Dc9yobwAAiqeb5)< zT?1xxg8?V(8Demg(b3T{zaP81U-%9beMOt<>goGj3yfu8|WH3>d-td4*mFyv?7SVqjoUt1?quW{~)8PySV4zkC)r%-wyH%mUCc zIpKyg_4P)4uY9gRUhVm#3u|25jLL4Ig_?Msl9)Jah9woPmwR9sb3gJcLI7=R4q!NcEb7_h zx?@KBc(!j)P-6qVa#4@H?=|72PU#}t|z)t zce#p_7(LcD^{{Sn-*%CA}`H(%k&RruHXZG`9da=Xa)6w+zq4k5X0xPn% z84Q!m>VYQ{;nFCNvPxiB&$8!Mea2a&QwdmiV!yGS!LS7# zok%`<5AxvQOa_{XzubC=y<%wdQ zVQ0>>jvySs|54BNL`hE7ic*jTo{b5=*pYj?>YX9Gcztytmy2@P0 z`?BGKH@UP^75x*lXpDAUy*8*M~XQ zV31B;C*V;*>$lk$&B5@#KC?s|>6$1bKEEHb0PBA^*K*sJ<*TN}8m)k3iF}qI+7uX6yC&R;JP$yH7_6ht9fm=;^WK1dAsrjxMdoa^9Fx#@Bf?zEYIgFYPGKQ1%M=A z6!o+~#INP&dZ37a#YubfLo}Y3drg#BAp;KSfroyrxd*;ym zQ_lU%lROnEC8h9GWM(5ZLiFGL7htGKJGfY}w6sJ&`Id(FMK%Q`b^h0vQ4t{Ng8dH2 z1DlxD?Kl#Zt;Xc?bRTrmzy>WdJNpJwl9Q8jSf9B%I`&salO;(yAdIs^LqDlNPu`;x z21Z7iFTDc;%HmH5y8&2KI&W$Kmodd+Yjcy`x{p#vR#rCCtS`1(4zwhpDfuqgp@qkZ zc%nmy`{niDxf&(+07o zcQbo?AAaw)fI-hJ?|}!?7I;sB2Fod7PJy_Yf*}Bog_ZOK(oT z)Y;J|guvjS0sTMhov(?Gop@Nev<#C-Skf;mE2Hy}e{Q}xi6ufULAMb{)LtP7O5{rT?nOTSDaC3el8o)$E=~ zCIzVnzQ)oq@HZgH0jDbBW2z|m|02KNEcnWyM}did!4OFEf=q*pum|+7B^t3R+EY?6 zdH=FMy2OYo`%lLMvn0uVdID0?VBj&4%>*idhDVS-w__{1AMX*K6%&R^SR+ z$YuhgKLuQ63GwW~L6t%9uNgkqjfI0p65^QR^nbiXQ6l8e{5wM;enMSD-5K3#2mEG-QIMwxcnb^Qx97%zS+k;eescO;>i{=)f>pC*b0 zKuNS52Zrd2VkH0!t~dz(_mZd8=$cB&GvH!0d`y{FDrdA;A?<;S{n{Y;6W;Xn^r??7 zoIk&naz;HZdT`I>r{=ip>wSQJfXS>!GdRA^(#$OBSlHu$3Hay%;86EDy}u8~`LoA- z){s~5zI$4hMYVM zoR@&(oSo<0k?p{ZgfHA&>+DvWbfPz(%zL`uT%Aaz&jLvO5y9KimMZL|;-xmYyEc@P zJ8J!`kN2Nf-3F4fK28k9=mkNZEo7xst59?7$=22ur(j4($bdQ2`ReK__arg$NqFPE zIzJQ))7}{RF}`%Dc{r}85U7*Sidui;0`adpMF$wb*#SCB5V-Q@ppRAfobUMa@E?h) zIb+)6+Ko19i)w%uPM0)3Kis^-XY6~})^d3;umL;=w#uQI^QFCW;Myj?&OEZUwH?`X ze)#ASg5=2L`SSp9CX$ZBz;#7aQ-E)|7;)IGoUcs&n6=jKorsT9P@DJ zJDJ(W?o2HX1|C&RIznPUfT_24bxlxUkME~app5$l&VDXgJsA37HQ($J?PUdSM=iZ| zY5vFU4#)EgDT8J6ThOp06ikwX>kcluqJMJ@v92bi*>IdO`z;dkKY+;DS4t=OM( zv#_88;LXGE2n3jyXxh2p+As1ar0|_40DX3^c+l_z5&Co+7z_-yFW;uNcXk~1f5@HD zg;jz+DC3phx0xUA#ZvRLRBM$R&bjvzWdI+a`HecD46tf*=^GdTK1LjJ2B|B1;3ND_mp*D!nk5|k$f{ej-kxI#vM6^5 z!I*%9wU@Qe#<$s#xfvKBA8KMU_OarmL9c{&Qyk*&PqW?ueG5!2XJO7SVuNJ3;eXwfzfl{{N*Zn|U$0+<^T5>n0h~ z0JXRW+iJ`C6YTyDS3&Yi3IQ)t#*KRa3vkH4fMF{4(8r+poi_R%$|Is%90s_LLNM$^ TXt}Kc3H&I^smhi~8~gts(8WIU literal 215143 zcmZU)19W9u(=Hs_Hai{Lww-ir+qP||V{~lW?%1}?j&XON^S=MR-}mn^_84odz4n~5 zX4QPE>Zw{03UcD`FgP$kKtS-45+X`KKp>q!K)?@B5P&<|8lT%hKwtmE8R)j`O@kmC$_A(jG`@QR44!oqIjNp z70;i;gg$R$Zs7;n-68{_!KtP_oZo90IT{?~a_;k) zf%loArH)OZO8E|qyWiilc6m)SytVw;^7LhPUacSw9KIQ{Qpxd~WX}ZX6Md*&#~)1a zZ4`Rh@ELlL+d7MA4`rYUNDV6o@uq(IX982Wo+u4PdGzPtdN|}U>7ynXq|?oMEDvjG z6(z~I=oni?h8*d9SJ0bZv*@PP;ChgJTmyp-+BRtGV;YrX>TVcPuFAoNb9fD%MZ*x% zmr0ui^erinPDf{mBg`$|pplAKC*Fy3SvmV`FLlYnPcx+LAa|EOp5Mb)BJWL%dRZ_o zzDikeM~DPKJ9|{LwVqF;1hujjRN><>YUXSscj3>iM;N9cK3BA67F^3SoJFRQf;3lA z`*+ByC47TwWjSd=A9}PcXv1W@p}JXc&Z7)2?|)uh)v|v=?Im(z!s0}e(W^Gy3XS@y zHIe^9(rb41i`&~6m0eHz4V>GPi*u-uM3{7`%{Pdi9y2D;7wmC?&Y+Jf5>JF^;jN`# zSOSA{VxE6eWS;-LxO1`HPxR zo^*jxl3p?~=oybB>3{*7xR5B3d`#Im+IW^r3W0SbmBh*TzHN5F1DI4Pmp!U8>cmZO z_|wcdeW!7HNGg{dX=Qq4+Uj@8vaK$ckF8o%hnQ+^$CA^j^EWdbOIqjAwS{cQ>92mh zp~7S?l?2~`-Mb~~*>@q1o5W4Ecr!U7Fe)mIS0aUh>I z_YNpC2(9;nr!oFStFfm#xenX@qdGfuj(U!I4unp*;+6{@*DO|7 zHHCFBM;2*{8@WQ7E3`Zm#v#1@1O3L*@+at_!O#Zup04Z_s4&U5{5T5_haSBED#mo8VU$F%mN4ua0Lwb;sCw?EXf1;?;ViNJkbAM13&!z5!@BG9tcPP zNK!=bhdc0v4!D5I*wZJ_shkB88nR%Y(BRdSOVy$d_mZ~J7@1O+G#Q3wg zH#}UXV3Pm8lL8(A3{CL=AKG}FO0C6W{`=t2kjdz{B4v+-xw-M^i^+pz(XU_rbxF@Y ztJ#L{EUbqOmuYz;D-H?IKG2^2-q$|Zw&l7g{OBlpkFT`1_6I z!G(nf-0%}!2nC70e}|Bilw@FK{g9CMc-Da$93Bqrd1`EI+;UN0@&N+&-M%$j9vy{R zTU#SEr$p?64LCS3-UXXqUiMqwoi2w(Kp5`wdivG(rcr9rISg10D;t~GpR+|~f_|1l zwHjUMpeHTw8>Rzr-x0~WzPF22=JfP*iNZ@*2jAO0a2i_Lp4unB4lNN8FccINeIuj$ zZHPVC8a^f_l=m)j_~vQI_-(iM)u!6oc*M6{#9ViUnAq6RpFdYIALOiU_W#wDHv-7q&IewjvDW`mpG+7)eaxG*NvNs+*JA$u=NS(S zAP=YcSo8lff}aS$7B{BtTHncO{-?rkI01I^sqI?(-1KEP6hJl<09!O@PE#q0LcwLG88<#=onK95^_p# zdZ~g)D6iO$A866h(cSwRhckfr1yqFuJlz}SHj|f0{#j=|7RbeFQ**OebTi`nx~{+~ zL7e_Bp1+iem02BiN*XEPA#eG=D&n0@G5U|Td)0{TUmq-t-5v!4Uhfz8ldav**lo8& z6%^vz>cA!a` zx)D+bmR^kgP*_j6}{NhZ8PEcE|gvV}`P3W1@HebcsY1y{iKWkdYV)j&T?=H_ao6a$~-5cun z((Li|Ihe}Ua-k6JEbo5n#^`}_VB|MP**@!tyAGiFNf=P0W%m1hnZD-#!vO}63t|Mm z7LHB0Tx}h3=?O`D7Z>zD7h`X2pYjx&rzm*$?19;8v0%~v)}EPkc%98?Z$C; zb|9<1#ExdB_CwY+N>O9u;lWdFwq>mbbWk|j*cXvGpYmZtFz5v>|c>w{))8JmUbuguSluFc?JWawG9iy4dMFtR#80X<7 z%WQi$`95b>hj|4*nTrjtzuAH1n!VJ+uds{)RjoVwx3sjh$;-jTRcsRo!M{AR z+F-Vu)d~K6`fDf<9G21QXu;XWy~JcZ70S;YWj3FEaU^GRMT}sJVxde~T!)+;u=s$= z5P?)hi&4!MQQeq-kbD#i3Je@PAgFU=b5rq`L;@jO*_EF&=$B8ay=rq)MVfCZGzci@ zY{Lj47B3aMW6D{~;EFw1_6uf-Ty|h{^CRTj@1VbMc_a#eOXlmYB<8e#9Kkkvz~=`f zNl6&HrppPupPyfA+wl|%$a|p}!obmF=B|Y!_>iO6?&sz@#gEb%w;?42Isk&ctN%q% zquVsIe@DSa32-@IG8hauxGCd_@k;5)>0^o9mJi4Yon8Ig3Sh_=5p3{3Xn; zrCa{b{sG)_qjU5e>+;NmSVk-K=~?$5xoj?%ghV_@R4u|_aD3!Qn0B#d3XS%Q7QRJx z!t4GJ*iwZuE^lwxLd_;Up#{jqIOgc0&Z@Y<3Wx zELih&cdGJEoTAI_oS&C$eG%Z|XmS~oboAd%v!;Pt?BFaC`n z>c4}?X0Q++1~R9!lo7~ScOqfpgT!fb+TRU2IP_WX{5j_bqwgoZQO?GB-jA!^27{8N zr9GfnLcJQ|in`qZ@fFuTAO*|K`CQ#^aBGt5660`WahakYAlM&@!mO>WeZHvUTO!U= zcR;hMgJt6!k1C$<*y1ljlDUxCIn)9AbG|%OPX^1+7R~e5CcMePeuX`815=0n>-c`+ z2SlKf?<`emVeuE>Hrr~)N*~J$0bJ(sRJQQvdpFclCD6e|#MNd;zVoV-o=cl|PW5K{ zz{)6AyV&Y{jLEJN93S7y+@jC#STh1UZA3=lp9FD(xj}9|Xm|7hixq17JAFa9OoQYt zih01)%ZaCJ>+U~5 z1Bd~Yr@JJO{lJLL6YL%&dY0-o6?lFrvyqUHghMzG@--cmW@6fQqU_c<&lWwoCsV0J8ZYt0Cnx{n z`((v!VDR<%(dv4+mgb!1 z^9|(7;_oTT?f$si`!{YnCe6z)1Gjo&I*Y}@!Kt0lz}6WRerqG+<0A-x#S{~`-yGE_ zN8AA6Dv;_qZf!3_tiHnWPr8@t-`Icyg?M<(PeW;O9bh``Xbl}y^m?}V=~;o5ndS}4p!?% z{l`E6v1kKQsbUq098GzIR@gA?fZK?}|A*o&k zLoG1Avjgwv#Udy^m$Uo0^jr7ss#X@c9pC#_8zvgr&kRba4nHWZP%XpjgZEY+b3CfY zPI?s08>}(t+3>iyAT2t(6|UC3r&yiA8ShWoOg4kNgRxfMkM`2HWWRc|>DUzN)VV*w z2J4Ub5(T$Lxp=*Gr(5=numcGLkbEZTEo(H|jc_lPG64Z?Q5?l(Dez?Lgd@q=PFt4L z)PMbn8!13DZu=xw|4A`+c%d52X9G__JfYg!@ZI8M^U2rxh3v%=d^_$zQGe z^aOy7$>OnaL;GWvi74q%66EPg5_COcwG&Yc?X7)H1er$_ZOA<2p7bZ1nM>7rkZCIM zXHHsdu~oH!z3QeRFtpAKo;UvE*0{9G@e+upJ9pX@o{3kL)k7}$Kd8NOIHJ9^^~BH1KG7s%W|=Hhj2C*Qw013pqZmkCNLjRr_V zdUkE}dWg^4W4`RUYOeQpA0HpbhT-z{hBe_{yY&cDq@cc_S3i^(gU5?i1{RjVvZ%h& z4SG1%F!DqMTktGRO}*&zi)FakX*+@SUJz4+5CiKZNY=37LgNl2iWPn6hv)3gvDpMJgrE_IG~+Yum6O=17C< zU*0Q>Ym}_S;xer)t~~?1@xrFEe{)pU>xxdQewm4JnvM!G^vek$E5h@!L8-V`XnT!0jw(m^K?7J?C5ApX4 zx~tp_;WH@H)^0B%UC|A3?FHuG_!0I;69$jK8stM_5cwKA#a#NmS!_WchUT$~>iw8t zHF~}=Ao=CfnC#6CH>0gi4-UtJQCxA|>#Z&?OacOe)-)ubp)N?VID(M(ZgB9XLgz7o zSq8JQoKdxVLa^+tP?ZW*Se%h_6v0Pse0gARne$2YsAw+9Xk;I>u$LowM~meZlvO`Act@#b(evZ^e3V6nLz zkvjVu23P9ot^JU_bCzPE!yMhUTpOSr#F;siwinoN_(t5s^s3QwI93XYG18eGyWrs6 zle%wQLw8!_?-HVi6CG0ay=vCC*^+$+@dBjzZCvW&d0+xM`{tho6q z;%|Q0Y4^bR#o))8jF$`yE`V`2+X=4Ln{49RC-eSA2kYddmRp!#05{VXs{SiTJ`eCEJ*&W@Nka71(MCY~_2#xLl zHu6>IcIj=TH(9dxkt7=?~a$-$-qK4@NUWOaI5b(@cY! zU9I@5Gz@MTce9O19fI1fqDyGrk4nuh6j)3;Z>v_d8bgDRud)ag$Vn&FkvgN1L0fNc z5JN*lB)QY9ffM<^*~rd3GJrQJF(T9Y4{y@TE+!x?4cpw@{FlQzNU*7#Kz=zvYpg$2 z8gAJL%7%`1vzy@`_OTBQz56EPq09O;o;@Y zk5PA5y2%bvMxJYx&HIIO7y)AtI7b$_v)6|DY&Ail!v4p~(2yiCN#pfmz~r#}4+(WP z6)*(kDEhMnacYhBm#Vm$8aq#0M)&7y&TcxF3)NWF;m8iL@Q%6z@kErI$h~SdgXzRb z*REZ*2tX&Fg-{Yw1AY&~G5#l0qkZ0GQm%{T8scromx(MelI671y>#`>j$c zL$EOka_&t2{DrSvKq&IrLlS)UToLZYz|5|CS+0kv*vyvd;)U*;R^Ny|bXdi!ufL0M zO=aX@=s-KSI~g$0Fy712feEsnJ($PA?u))5BK23y#JDu67Vhoc8;+SVG? zh%71evhC1irdif%p==$fW-n=1%?v|kG``c%km_OsRH0g%(|Rj$jqegnMn=ZrWP$d_ z876UOUrWwe{%Os%S_u|cE4^g+hfrh00-UqFo%K+PjbCEH&^n6Q%iSSr1h?%KA#I{D z$IEBnou4+j&0fRI%p7r9;~~ZN$9EbX5C?NpNvzCOlrCbP%ZGo`_Zx!0!8UL2sO3LE z6Tgb2-eid`l*0!C$z3MZX1iQ#o=zqfhXZ^x@mT|NzVC>XnwTZxXv95eAzx!29Vi+} z`k-;+b=X+`0|4#6%y$&)+39pvz@??7v-tf!tAa5q9lWk4Zrya{oShp>*#V4dO&0Ja zfFTO();B#2R{tHm)ID%rs-90Xi!K)VqbsW`I;t)P^9nDAi0S8Iscy0o8YB@VCwL6* zlJKb#S)Q4Bz+51LAd~4#u--t^3db;xd=8HXd3T%Baj4MyZdZ~|UX|JR)&bk0_5zRb z$5xLIlE$W{ArFPp}nd^iAtu%1$N#K!v15_-V3jYBx#x2xx7i(Rlpn?w7HGGq)Y`$i!#7fL2n{ahWOl-TKg%yI1LR^uV?@>5c-M}xjRaNTh|BXP)E zrZsbZ0wx!Z+-5z+;l2);&z+ynSIzFg^64+~0=ZjVGgV%8>T6z(%q|AD)y>V_P~Vl+ zidQ*&URkv7Q!)E2Q{H$4SLxE?YhJfSoWe!z?d>yCYuLl!aRZH@44S3#M$85 z91oRLioB}SdKfJiK155=)iJO`3odJVS^VS^VV!#SN8;w2KCt>-9I9>&4RnA%wm9wDRv*Ch69=O|mh z)7=@_EmltT37W433z?pPL_8Mnti2HzFB%i|R^eOg%-j+wPh$u&E(Qvi(f$tt`Vx(; z9>1Q9tJxwa@rSPlX4hzk!J|IU!KbGFCVap0utT)57Q`4*yrkV!W_m}@X9fLrXNN3{ zZxj5!xr|i=A^_g^(+KLFK?)T0i<24A3qxB+N3qUO^tQa;4*-aJSbmHST;hwE$!D$J z|8{9c88QPy5$eL$*_Kx&$<8_`# ze4hf>+EH1tc_3uK`kKoAW7;CWcAVTEQN4L1x=Lqmh) z@M+wBTPSP?wVx8R=#~xh0kyb2gpyKy~G0Z4GY#)>%H+uZ|H?N~C z@s8dRaF{^O-z*g#n+lV&_JF4fd_lMSc@d!^(48NlNp4p8h)@) zX7Jt6vul*v)M<94?JS>0!XDuu7G5(n-Vd6=)FVJLF*OY>iaOr!b@tO*?o6}o1=a0#SH*hF7w6jD?c3^a?QSe4Cd)rT+-`Tu6aKlDh`Jx#vREeI zl>D+!;P6X1zJMZ}$f7a)Mj;JM=*kEeIZ(fI*+k0G(|V}TAYOw#WwB+rXo!O9)QA(mG% zj)T99Eo*29_84jA5zZUOR&*%mX*Sez-R4-TW%_kS=6H;waZGaCCO(`2_03MzNq1RBAMZ)o(Kp zkk+zU90|?_BRj(}xM#%x1P8s3^rOlMZhsgVzr1+qvfl*(0g)yZm!nU7wxmjww8^7ojc-sVDgK$Vd$i#HU1kc_XV8J$D_ z;&<%U0WV!}XNq`52cxazs`ZYR9pl|{Mkw>L&~A1OkyJ`mik8C`s z>+CTW!1g0zpVb3+Q%(^6;JG}>Q=FG^X_a)pAtlzH_q(X)y?y7cvpc=Y;SgVcaN%BQQ_Tt z?r$`y)Q;K4b-3BW(9_|%=1=FAZbKs@BilPV1O>SG&i$GU5ex!h$UvcUK3{{b9L|#r zrNbO~j~RtM55^H5P5*Uwa0UUUnA*sLE^c_$8RDExn-E_q8Cpkty0JCjA0Rx_qi4rr zxq*huWkxaO!R=07pt`STCtYmk9u_f?rg)^1?Wi>{ogq$GbXNV3Ex&2PdV7!Q*rRi;U`2cQIQO(24 zD~jC7MHFH~LGsYJx6I_3(t%4BQ0p5<(yvLO(Tf!@?Tb4e!)dl!w#maY)O_g5K%6g; zL*ajw&1f1dl2$_|d{Y9Ga}dB#9ywboi$yom5n<4fQo=JN4U91J1oe4+d^>TY!bP?2 z#IWi{Wox5?^0&EL5Z~7;-`)AtDeF|$jFi{1TquV;2I+yO)x-yt=F&s5c1jtpH5iD9 zoaMDq-UYgS91B|kll=zhnkhW*(7(QC#-0J)&D_QxA=B_s3>WlgBd*y z?$vQ&E{xMU^wML{S`thEDO&2 zOQCSln88(OL{7)R!ay#9N zexc(8ev-&nkukpN)=D@|8VK2l;`J;RC96;luA&vDCqIA{9s~8OSyn&z|{L zy!Ra+=Se|CR8>9-bwA|EBK(*hMXU}Ui0%0-GOt}=kHk1U{;(>omj3PSTtt(MJ6gUD znLqkkqNx)xy@;&toc1w2tt;!j(kj~Oh9SAd&laiYZMBdqeSLz~6`#9gB)+KSF!Uu3 zy~1KNJbrW*G0)K))6pE{zJxae2=`B06FJGq$C=2-gZ$~=zkkPeu*CM2dyoH3(EQ{e z$23X`hX+ti*dM zpmes?`%kKRm9&hn05rO-!1kbSDG5Uh`*Xfc`}K{}@l?L%Ar;FL6xe$^`l^!}@)-m! zr1`*bRdAjt!ylWMyA<=4S|CSvH4&)|=H0$Om)R{a2!t zIta=>NpM1y<*zEUKyTJ!BARCoZ5UQ^QYJ)?*yAJ?EpMvrr(Fvy&7)wSt#;?D&DPdi zw_Q#?r$;;-_Pd~LD?X9njREsJie*3zu=D!4VO)&e>d)P^iEBa5FIsQ>_Z_8me(;L# zdc$|<6%1L?R~K@+#_nOz-Og(%vyDC;naUW{IGz+AUY2<~DK@+j4c0l;*!;=ghUeZ! z8iMmIj2E_7os)|3*%YvuQ!wr`NBGThd-%68lb<>FN1ORE0tiiS?ogekb9jd^_j3I{ zDO2sSU{dXO5!uBz$_pYnSxxly^|^j=e0i+(+YLusD%?TFHQ_Lyz0d8X&o;k=C5~t6 zenqoQNAnQ++9zLk(RT>H2aV-!M+0a*X!n!~^9I@4Kb3TJscFyhG}W-M-2A`HH;81{ zgDjD}t>npLE2*u!ERB9AQ>xcR?|tWL8Ua|cIb~0`!lWX*Tti>L5FXDEBG7yH-T|T_ zGV#uYiRQuOj})&oHzlE9;(m#pX*&K&uEQz>uO3wf*KncH$;$;@d6r}SHXiiQdACnn z)~N|-1PaxxZg$o_Nt~6H!~S~H!>?9KkX;&DKlDpnmQwkLXsvVx1CXX^%KEk#EJf5+ z30yVl5v<28m$6Y9m0YBt8Gcvi%{aOmjP3D>4_U1hD_l&>ik$KKLuv|T9ceVnR+s?r z2M1$0>}Sa2UL*Vvb8uoH4?7jIvlrHH@oA6f9%HL{f9%==uEgPadb+f35~iyxh&xL& z277Ea+i7`tcn0;F%2h=6V1|`V6z=RGFh6;<>z%P75C}qppTSyFu>?-z@Q3Q&MoQ)e zDzU2)W0BqlLXSk3>9R#0S>>4ep=tPjRBv|*cOEPQ$2{`!?~ZQVl|CGU&eGDIQF`nt zw{5n_)fBX5>{@E`vDk`n3?r6zg4_ad;(eyLoe+C>?EtSEF5m~|S=yhEa$Vt2IOL6L zK=>R^i1rwGhnoyrk__nBDJnJd#qvVtI4t;^asO>;yI})~Bj64ESyTu(wip;wz$Bi8 zTo^N~jouxo4k$@`g|!~%2o9C%b%xJ>mi4x+F6y0Av5O#F?VZs>X+|__1D4vHF!3_+ z{nKyW^g%5~D7agXCt?ajqaq!|6U>$exiDeaRz*ThY0=(na2=oBdQFrJ70@54xHvn? zU1uYIQH-&|JoVZRR>}5o<>&vD1uLx6Cd14TH~12`;6n}ZQFCTA9AwaB#FN|F0ZTS_ z6EXILFBtbgyL$IIHoEB94>H@mmMc6F8ZH&SeJGGWJ*Lymccb41}9}~%0~;P2lL3zSW1(-s}Zbe zlBRG&v8;iCMUc+ElagbEfJmq|y8Gl$=1k|ExSg3k9|pFjViB~O+Na!i5d$po{q~)M zxk>lpDoQxFtBN8UiQ!Ui?{e8e{DMUD8Nct%e1?4GesDA!@gny(cI^c1h$S$57w;kC z(A>Pv=W~Mg`6@OlH3Q<&{XJ331=eO#f-;EUX)UgpQfLYCQ^a}*Hd%=6Nw#A-YGRom zYd9rSS)p=lwAS0r(0qKS$N4y!dL3?GpdW8f15fz|K$BKewp1KqNX+r!A zgQ}IY>TtcRv$l13X4RxW0eLG%LmEyfF(Wv*z3X3F6qaby=f#d0`z3Z0&XamoJFW#O zw^k;ocAZH_eG-k!4WaVN#J?oKVid&6s3t=~e=>~6-(F+l9*toB2y$D5PX2QRuA8Wqak$E%K=VT8;r;PmYxxJ~ z{YOo8I_lRzpXz+^XHYq4|3c>)2>;~3r^P2j?S$x-YM1jcT}@*B2(OwxCYmK<5XYJ^ z+Wc<{ayQQ;lu|BeWm$Eqsr3;|GYUy@Hke>g@clM)8+n4$1#8E!udx?7BW>1D07dj~ z3jJ2Llb%^ZKJ918zbf}npXB>8QaZ;jy}9K>eroSo5rwQYtq!wGeICoAoz3I*avF+W zI_cREue&N<&1Q30V!!hL7ybvOAE=~o?f?Tf>97N%L6A_ zvP4RbA?RYskqq9?vxuHA91-35qqE-Tgv3VYf9%ioTB*a7N_xi20V=}OO@5@ zd@+h3G$)LQSTtfvy~O}Gl0{Rl^Z3UUv+@t2+>Hdm8oT`O)J&ux*lRnJ(f+?V|7iye zxQ+m-z_j0kKsfVp`svaC+|%o4hcR`;YV^vo!S{g4Gmc0mJPreCh7r^(HV28S{BX%G zAmLFbI3`K-Bf#z=yUW#_s{GUId{ViqXbqNu}llIkwKI?q_NiP3ILyU*it+YjjbyE2xj@49S`0&JH0 z5BM5gzR;+j4VE0Y8Ocbr$>EiB&HP&BA4_?PGq?$=^CURK@R>%H; z%2dOchA!{XM-sC`?jxJ+h6J$Zs%Y=_?!btId^a=>tIQ#%{aVZ%QeV*qME2=RMcxE&8j+xP?OaSU_^H3fEd z`#Z24>ExXWEJjT*qoQVD#1_&$Q$**=B*jckgTnX@oHZh%FOL?%y>A+=PGE6QbN^ll z|Ev$6$kvq_M@Ip$=|p|iblxiU8>#gEcsICg;=DNVkrf{Lo}xJ z!57Io5lY4KP9Z_<2eV>@n^d7b0~qi(-??{li_Fcm$m(wFKkO=0s+9%t#N}7x`!_FR z6&2MLKZ@G-w9J}?e)fsz@uETwO;yAe{FIfyr9P>#ed>l!jQv5O^yw4EuQ`3a*BRlQrbLlat<=8H8G^z$gZGfKI}jGdC>D!Th_sx1=8Q&b13H_t(Js|%$BlNkMy2u^ zO3^O11OqzlHK`EUv{HqY z-bQ8m2%aJYpGFNlG)|GsC_B3_r|MlUue1@>jC>gZQ^1E==0o94`z{r*5?L0Ktz=}L zrR1buAhduIvVb?pGw#|}8Bd;mWLa|ZlZ!I8yC=Nv;%-TW!e8E6Ih1v1c1-2;#tXAf z@7EaD&{9M33f+cziVzEQ-K5jFPCgGVyj3#iG)b5F`U zI7o7DB03t=5&sO65#inwo1brwXnq($NIjHqRQ>@LKN7HS!6b?(PN&8mTel1H+>Q@y z;&e5jFl#1Ue09^qKCRb=Apo7Z*D+Y%( zGFsY*X#yo!Q1xM%Hj)zCa|%2|xhrC>KxN%|zq9SW34%VZMZXVZXt>Cq!|!k_Zfs^* z)iLE=IX|!Y2M?8s8pU@J9v}r(Rwgd;sMm|Oin%5%%I`yd>{av8V=RW=entZ1;uhR*WW5e|3DS;fhpA1v7YoP*tM%8IvAx>`(+ z0E5HI=!g%fl13z%g&Av%*k6PYEuYq_UUvyOSVEJw(sH1YZv%!QgCrK-RJ@hQZOV87CSFp?DX}%-}>p zbY`T-_iLvbKp)ihEkJ{c3T%vY^K3-VyTzR*I>hkjsywfDb+{C>a@f@j32Jx8Q&MD=iNSyn+ z`t^-eSt7`T6dWW6{S1@m3+#9I(f(xwSY~d--b_ds>fyv*`E!?sg_6)&QTgx08XBkH z5k}pjb65x$>-8qE9J?trKQRLciw812i2vK?s~6V`=(JQE?4g(n!}QnNTulafqM?Ku zEMj)AKgH@N))QXwVE3<1NO8AU&Hf2m_aKYc!v(tA?s6_N%*@u@S@A9^iF2lKqY6`x zecaninQo6``|JgS$z#W1^fn9l6U)6)mF63<(J1uFW*iiS$1Otepjc7f7C<=*=~ zrOAd|Hsf2p6;tk`PmxU9Z}Y`!>OGq?Wi|#IYrMQ5ussy+=LI!41Gq}chOCH?BtR}1 zgtuaHr4Y{4S!8wlrTBJHit(ah@iX|PV|Sx+Az z8Sq3?=McZ_O#iywqgim_E-HTiX(SeYJ7(V5U;-e}lGw^+LDXXr%?IFP8fmo%tr7_*lh; z-JV%z5fAL4p+)k1WWZvxglF`n5ePNDZU2zk9e>;I_vO2mzp(CIjd#_?XtBjt$&nsj zZ!%s$PKny7!Et!`*~P8UHjV0@d={g088$W#M9$LX@Uru6I4H)C>8Mxkz!3n3 zdqCWW*$ZqBSVSWy?CK>2V(YSY99jv+9u6n^-BtFl8tK;1jkQ=U$YCh@*NPjWxqJ9L zCu*W{|9G{AX)Rn4a-yFt@b*(`gtNPSBo+8xCjgSYe@k*}FB#lV7cN)K%bt7={*d}d z07e-jmS$_ocQ8rjviNl`^LJzI;)QPO(emFzve~DCBT5qeD!53IdsT=^t}P`T0$b-O zL!d)GJ5G*kCm-_^_HjS3vm~DW$h|##UM_q9ppX zi^M>kFZqRyd9vjN0|}}2$z_7wK1pt<(IonUd-COT`AG7vg?$bfBLu{R0II}3wHbytw_=EMc2hYNvsz0Vdb65-Q9q*pD<^*n-V<#CrVhpaOmDn zvUeax@AxY&WMVW<5r!!%teo0($f{S@8=QYi6aJX(M=+q65@C!CC|vi3b*|%ce*j}* zV%EX&y<9W4Hu*uZJxq&1Q#%eU3<@YIhBxvL$%RSfYLC!K5R<`DhU9) zkW4Z=_>J|t1ep~%)H+iOKS1zydV2!jGEPfo*i>UhF;8V{zoKeWzTr`m-f-ICXZR1y z-w7}GCZniWtDfIz9#R0u&3y!mWVN+XQfkly&(3R5Br69|Pz-RL`04GlN zKG+L&U11swjz0aCeC`R(^_|lk4z)Fn5H=SgQ?dJvmgTDoJA5Roy2rA_whQ89whOm1 zQa;F`ucy}V(p4s-`^UGYJbytIW&nFKIs+x4Q4i-fP^9=|Lt+xa){W~^4|W=jz9Rl zDJ*Bzb16AV#cE7fkm%Va0HZ6y?ADv%X~&+zsL9v>u1d(MGRS7#E#81jb2F43?~Z*q zM09>`vCP$Wvpqy}2yxS=;3NYsnb@uNf^@>DiACIsR+!V-e*OdjwGbvB!dUE5tso!zyZ)U{TUIWm8g zgAzsCkcp=|6mj+jcb$Alu=-FWI-})-`fqE~7{^U{R90eyFjF*SyfX?WTh2Og%wkmg zB{n*6Urizc)j@=h2A5!X4~LH*9eazB&hEn31ib)idbDsm8b!I0q%aM|o`*+LdxJuu zmdM1xX(+oe$=+oo_vZIGJU%=uQ)SFt%s@t$%=t>Y3!iGjcZUX3*`ZrY*0a5%UFe%? zHo?u$xudCMU^^~0>y5w>u_cN*V_HCuM=0s6u}lP{kLT*NyKhBG-oil@4-BhKb&vLY@iqRc+%8N&L$`8P9iccI9AaWOHp&Z z*T28jBPfPffeBizE}2Ka*Wb?YqP)6PGHF;uuN62c-3N+u13ISsEwHWGqCs1=Qaiie zPBuVoDB)nTincQ_Vk`ryty_*Y+TF+D8tAmY*wk3s&EHiE$bTEWBWtuE20PecI>V_Tp+Z22;{GJpRsF83pY0rG%J7oz}w%;hblX2Y;bp z1FGFV^3zXIRB+?qSFRT<+$Go5DiNIn)VbY7cEM(MsbNK11`n+mihvO6z=)haG)x^* zE$udEf@ZcQlJP96=697rPy>dBJ_16_An^zNJSsph*}x^K-~MyKTEADPmACCKwD0o? zrC1Cegb}JVqx@s?+hQhYi+?PU1q)9{Tg;~`5hoo81cco-I|7dDeOW1>UBvr6&ro2? zHt9l_MUK30Om$MYTMCSc>Th$k;`Ib#4kkV0lATN+iD$Ah?+Lir7b}F{wGYY@!J zs1sRy8d$SD)nQ?fa@jl?S7;Xwysj7Nr5%okIKPwS4`28=I)FOS?5^+xLQgU5*R~2| z*%fy-u?1TIZwU#uJN)3DV7FZk46Z}s zm;JM~u@3eB@N`bmnRQLq?%1|%+qR94I<{?gY}; zTkvFBHy9(1uPuefxMYkz!?2uQ$!f7)_Tq#Exw=B-I||_t@f)E(B`cKos4F4i)d<(~ znpNBXd2^$x_>g3P?5Ga2d)y4U`vVmaSK7dA@iCz^I1n~F5;MXAqelUg=RC`%jK6DK z%rO!$v7W^ODnUn^RGhb?o6vx{Hs_{}ZZFoxzmppBc_tQyG!@ZAbQbC4^1nDM^nwx+ z5Ik;IAX5Lr9r}Y}<154!?gudj=S}45Y`@4miB-;BCI62F@a?Sg$YQT$uD0jTmGkGe zO-vN!ci?j50z@s-Q;AXPHKfNg?zO>7SWdk3nSPGrV#7od?mz(WZGSOvJhb9lM*e@! zLBPe{{d33}b~qYOf;#1;=ksr)#jX%A^iXV16EyorSA}shoEINd=lyn(lyg3Ov!>bZ zO!XOoCV2gsgUMuh=%qDg`9ELkpPf(Pc%rMNQc{P(uEetO5+i?HvGsXmzra!Dl;*7! z>yJYk|2Y&>qD(UZP%>0RaScG6l(O3PRC|Em?;BT-A8fARfRWX5J6jbxA$W!DvX3cC z_X|f71s#Yqct~a|EB^9%d1p885+%owqIB`X-Dwt3s2e_29C7lufV##s2k1RIROxrq z7q>hS%iHXU(g8>}lAv$E=gACC)y9Tp1RlmFTr}h><8q8Fd*=V%QFHVX6 zd;_QPc{MBQGCr9@-n?Jzt+>-*1tr>>t3&mH)XbkS6>m3*<%7#C8QlV$%NC|AgN53p z0qjHwfunV12TD7eVv4epcrXi_DS(No+~L+F4d-goufIiyB?F_YxME+9v#(=;l@sUK zRh?PXj@Di%ZNUvaB}is7;nD!A5)2#;61%1CbM_0cLXTZHM$cagewfkBE-4 zlDT(5!SN>YT2N`!z%QJ63_#$*UjZ5iQBkl|HB7?1jBiWXAS?aVqJ%p^yZWLQUIPvN zlJ~1tP=#Dq;c1b0o=zZu)E^n63Z8a{D;_qhCG>`W{w(43U5$fnpl#pq+ujEiSAdp_nd`7SwZ`;qlk5zi@qLFB}`20Jfo2qa|s~o;VJ8Q z+>Efg?H9!5AO847=Q%HZ0#@r)#H)>#k&l8pk8To)SkXxNYD85M-25JL!^26X*J2Oq znM*IdSX^!5xZjAcg)$I2nk&dmhinJ^K$fK%tR+W#)8{gPlqhsP6B0r4o3h*M=4J%!IQ+ehxe`Z~AnAfMCU-(H+UouKy|Yaq25FkuUp5f2v| zaS4J9hvkfcuO;Q;bPM>>@!<4MF)cQ0guFup8PZc3Y_nw!DwyeOKlN@&y2jn;@|6=g^HeIO`9>>xl&=>;s@FIX_HYc1rL4oU zF#1qTY7V8&9aRbTzAi?an`_x+$O?D++rCQ%ckie7mVLG+ai(7k%fBi>JOJ0p?yl7hiGZexskR z==Q`+$C|o*JiCUrsx@MLF*0n1){^DMdTPQ11xgBe^O7Ox&D7b7e~nKYniwvXh@5Wt z#g(Q00Qx&>;Dq@&z?$#z!ZRp2JAB~U+uQRVTk8Hz zknyH^TSZklMUpu~{@2opnX+i@s4?*XWN_{SfQ*3yu zs=3ZZ#)uGC`PL+i5`^4$nPF=l;lPevLe z(1g+4S(G|G#oll~=sWWpyLFQ};wKaLcVRX>me4U9U^jaMK$v{zX;H1RsfSYdG{6ejRr`YB z@J46JC!eOMIAdOyIoOR(>*4`s0o-=ya!3#or~CFGbMvh_^Cw>id3fIi5@-nv=HrF01vo#0Qm zUw0xzRX32M2=Oh*e{T{2W;xFz(YcxwbTnUc`voFrj@ zugj@lVab{S|16j(U$*`oMr65$pG;kra((~kGAI&AV4lVzsJNUpVgo0r!=1x!UJ?Uc zR(<#x2EZuz4;mN_=aZJSj#`6K2vto^G*}NKYocSM6mm-Ydlt>A8>Ia>M|f!0s&)h5 z7$h>rthY`Dh|_@Cz=+HJ2Uz&nn*GT%o&z=?A0Km?-Vbk`H}=fYbUYMlnF;x8`6byQ zG69M-vV|I>;j8}km-+8*$1cX4{|p$Nitwa7+_e#q&(iWyC}U{Oa18@%L%Nu|n=uXa z+}zy#qeO^m?|c-}LtM$h> zN&IYGS@#UCpbQYKc8xP^dRl5YGIM@FT9xD!dOCQ$ECji>s%?VTphQFU8jtoA&4gQ5 z5EyLyi_fDyulFx6-0*{0Y;a#yI%}vY1$J zvKr%b%lqJqH=cTi)O)&yYCF>+2s3>re?EL#B0S^ZD`2ZC_8JkgX~$$Wms~dhBtr;A zhzR*QvCdsTZ^#D(OtCYt≦oZFHcWdExT3mr?J${>=L_)0)OXR2<-8F1u&vsPnV{ zu{vJpZ#3JOZ?!jhW?il|sQ62ePKK(eHpJ$a&2$qn?1 z!RDGe<&3L~-e`DevmUXS2%k1e4UbPm`cVn1QX@w_b_Azt;p0+@QCbl(JJ?AHdQ*%1 zb*#!+vEYfnuX<@^WuVg!qtN&3y(oDjhxUdv0b?U5V*nX6G_@QFFp)O6Ty-c@t0V_x zTxtGg{%!}4K<%YST|`?9#fXsa_+elu`}4u{>R51-;cv!;*Lu0wJCjelSWzqsTHyok!|4qRe1+ z2q}?pg@BN2t6GKmLQq=Wde-c|%Gz259ky|fT#l~JXeA~Xms`19ARk79{he6`yO36t z_&|=yEPZqz1#M&$6ftnpporr-P5JGUK~!tZIxIfVm)_R7+BOf15AQQ}n3|b%4hX8o z#ntnc6oAjU%bzE9BETmo1YvlhEY)167HPfF{k%~v+pUCkXU2UefTq;yaZasGs zzKK}GjGheC>RO5N$lr+^+}v9B!fv)3g1G`b%)KXqJH4R3zHjw!%La`$J5Z4ruHrR; z0z`+~N{ydgaKo{9$+niX5CAFxb*K9sFq`F~+>~a_v=hQ0T4`ehBg;VP4$Y+y6}E@e zl?DogrQyzV%${cRr5t1)>mpf`fPxIZt@t8-`-@w5=I0J2>7BDyua{;EtG zNI&~P-hH_-t1N1f;XXUxr(=Vg?bn4!wsk4JwYWa}TlD?osy;6n_^pL}qnM7e583io|P zgp)-&DK9ya17I^;nC+545K@zp4MY2vT2oVF*O<_O9B>oVYjtt-5yc=el?RE5gLAN6 zY!&t!E8=9zjT^h43q=^n``2=5Ck4yzz7Hlu* z24#fTW99lpZE;mbd-a%XIZE8-Qnr)nPr_ad_M7&lJgIvxZea*<*BK`;^qx)#dQHs#E~9 zND*@jdsxj1ofTj8EEybCpLIw#74wDSWH49$9i~YW! zk3jK0C|W&!E(+!MK;A+G3;ay*b0`G17XyZ}fB=5G{;4TAk8uQHEam#L`5P=w%E^{# zYlo02?JiG5gbrHW z2O5XV?eKJA^~teXqDKn9M9HYWapb6#Gc-7*4s|vp-jN9G>!Tm> zoQ#KjlhZKZCya`=cHR($r*PDwRL`GDO7j?ii5sz2WMrC=wO$>kV>2b%Sms2SI4$mF zA;n}uBhRfTpK{|0z5>oS7~l&aiA_Zi7M_3TTX>G&0O*zxzp$Wx7q9{XF#~!K9z3X8 z)bF{|H@ABO5s4j%1=W?+h(1DGPRElxGYTQNNLYF1To+*)+sn1K`KK$5l3Obaiq4Ul zl_CzTUPn=qCt+lOwr@p001ZCOW+Fi)ayTC-#2DB38rh+i06 zuR7lH`*f8Xt5r|Rvbb`|hGf8KMgmU3FKs0cwbmaOG+wI#!2RzI0i@YJ>{CR^Lh4IP!`Qq#A!Te=c@DJ^I=lcdyH4iRAvO# zmpApVe31pGRHDH}TSJ4XPz|D>=i&g;ps0L4BxIbNoLh0In#HPTAGBL%JHrUs^Dck|HDPFMV@7FFd)Q=~`~ z^K`wXO~l0-j1P{QAfXZ_Lc6XEZBcygZ|@>7%++DW#)Qy4^9~+zc6)pyNpit!D7#M` z=^KUO2cd**zLbReCME}Y zs5Z?~Te&9_Hk7AKSEz%{)m<=Kg$?J;Q9)+m)8l}k$F}7M9rY+x0{luX)&qc23GL9+ zV+y&(0YV6(=;OO8^k2!|tL?rTdW>SoE zSVgtJum>#~RX|&Q^W_1O@SPw)@H&pJu7f_(iuTTWCi5)1fglT!N-}W!nd*ZnQ#g{^ zOQ(2zJ#uIduTB4o&6?)ykoCkQieNN978~M)U?|Kuw4Nk|-)vXJghMMpzGJ&;e^u?T zx9bh+N)eg^|J{{$SOFH(suH~0zgEYMz>s!eP;V5BHyqm9%0`qVyne6kTEIb$XuL`8 ze(Ch23NxQL@cM3r=ii?w#sbMda z8A9V;s2k|$D%J~B5(`deYuMDlCoQt-pzBp*Ac-;BAWOd+(5ymRUqP!@y(1P8A>{N> zSi)$7dqk)2L6}T0-ECaS)!_DpZwx=oA*8LJO#kVSAJQqp9*jf_&FJ|sTE9X@3qmt2 zuhHS~=gZgSA6BMs4$pxdwNc~we!k&$XSZZ7#umI<(Dh8TkvSZG=wN$nOW8Uq8#2qu zx;HaOT9s{nfETWZkE)r_k^pcH?&~%i&B2pPk3j}5~ zo!_^E>|XDMXKwK5FC5cRDi?+Ap-M%c{;kpFE;Mg|%P4w&-RE8`SHgxsxSZoAHba+* zG*#-542#W|-7t^~^Ljd^eD+I)&@iVbMjtgy^tQjIaMqZB%B3DCe~trsJ8RV_^fbBJ z*yxES`!b?;m9qyCVx)^$u!NrInldPZ~ZW+dZ-SF&%bpL6t z`Mj|xGwac-yNE+d8A>eer-fea?~a5BiN(KLPDI__jsptX+dlxGNErK&6q_(~WprSd z*o>y+gd2x0mCB)3K^bPDGF=!*xiJ? za>l?ABx8&(@;Ts1(DaF2h;DSqCAPKAG;mDx+bAD|pR#kGJwLySF>;m-7kR?0ah;Q@NLVdYq7FEQWx*srsi0={o(K@12 zo;-%Cv>{wC5|4Mqb20})#JU426zeoe;c2Jy1kpOWF@j;k%K(I@-q;BYD>SJ^Pu~NK zY-Dt@0DutdW4_|&)gf6p6wE&h>nmcU(d-LXi_3MVL4}&2nhF4J4yKvTmRkauE7MYD zs-0I>LwY)#AlQ62nu4JWt}DjxYhzR4s@0go_H8h1BqYwmo;)5agP#@rV>CH;zT~_^ zPKRkR<*DW}FAE;unyGmIYYv-g(Ex(RLm<+nL{vw%qLFY=6gHSK8Y&epBq8dKX)=FY zaA1a2Z?WarX!ns!?ugf!33h?-*Aic-eEw*x?8``sRFZbXfS}3Q?qIFDYgFA8^9=TY z(fJh<^5pfgp6}Hb+ydip+7{11TreAp<2j0u@(;AvJV%i+{VN&q!IVAGH+LY3b=`9o(IISJKMiWnBN!0 zrhwewLdBg&`3~>K^J``;Sw88l?gHd1NnhZtl*+J(6rPRkr%x!wu|MuosX3L zrSHc*lr)tDN+wQzxh2x^T&TDxvOgS5qP^8n$Rx-}Zx1v@e|D>t^jgRkL8h$a^55{= zYqLngxPmpZ+DSvm33(}jO=yzDw!ojZJ$wry*IMiZ{yup`tRd3409;HG_;qg z7h)gtX$34PX(QfK|Mj{372g4Z4_YTCJkU6yqgU z-V|6@R}?~TB!jKe#g*EntECI$m*s^XXf1xO8lP5qV$5@QfjZ%w$~+|@;fx}+D_^+T z3Oh>zRxLHGVP#f(qvcY>7auAB711vUZ$C6ds}T%DDftk-FQ-mSpN-e={?mCcs=9}Jn<*Df@JsPMF--j|Kw_^0Vf9cJ$i1rcCOvSXS>ocE?UY? zS+vHQBN<`S2b)+oCg*g%7=~K4Dr9UYW|@><$v=*Gf<=H0;35F%3L5vtDks+&j~|4@ z6!hJ<>UCKIJOt~`c){I46w1dnMV5Ft=aKw%(JJKk{<)ay2Gf@}k8S`tmOFrDe{3^(gJVH_S%)6Tw^YsV8Rlqn~ z=dhBQGmCKM$s{tKp@*|X0H*LZZd!vXm!vn3C$SH!0#cju)$ z&hZ;Sr_GVl988S)YUr&fC~PK*-;FC*NDQzrg;M|72>ovtJ&$LMd(Cwv|)5=F4nx`rx8kE^}#2Z zl1nlvxq`+YOC~gwa6=pWtbb+&Xf$)W0^-#()pq#}f(f&arenDR0zxlP-rGfF*IRAj z00e>@4#}*Dcdrg^2>2qdj0cweOF2|B&2_*w&1SN;g+8P4bxlgFohS%<0+YzpD zBJfa;OK4QE)bFr7=IHA2iZxCL^r#Uim^%fLiMW91&&2!Pc!ue(MN~3v+u?YzuKY%rGmSa6l$&D5;``P23Hm1D6f34A z{T`amm_YNT3Nn&qS=Eb_^yjJN(PSQm>rJVYdK4)ZrgO@ni}=6nRP<}(WpWQ8(V43M zyb`AA8_#!0o=`gJN61xH`(XaNO8>Hi9d@|^Fm5sQs_ylDvC5DOTdztir}D{IbJ z86U9UaJ3=@^`;!iN=>e8k7rvaU1oO&`)G}amk~`OzQV?^nrE8h$ox#L04eODjv{?WRqW!N2U5AS)>#p9=KH58;yoJQpH zsA(d|Kb+iC9u$gr{UN+P{{Fw%8tipX3eiU$yUwh+EaD|A7|_UNtz`|Qr9-Cd5wgyG zu}5O?WIRrbEaC_<*ldQak7tzemC5BxsPr|?Gukr-YVue--7bOw6LV_LI*VQCkGnPf ziLyq&2OQ6uYn*#aW9~gM+U~PQxCnImil-gkoVy0V#e4}Ae_x@~#teu5eEQg6?eAzmqOyQ6EjgO^J4wm-twbsyD@amt2-L;M*@Xw1BTb@f*_yGq zA+=D#pw)z-ug}@Y_;z&sYXRx-@W}t(>=gni8N%9qWuL;~B|F7z^iX{rf#vL10x zkE-%WQG;NLi-cm6hW5;BSJgpsV&bC%wt!B#) zbu3m3w}W@J3ITjJo?L3qO+IF{77Hj`1rIi==j%7s^dKqwGLekH*+Kv*l#t#@EFzV> zl=Ih_ZnneGJeTC*I++#K*3I8EYu*k?pKW6?NSsn@-kEaMt~_gOk141m^N!By4(>Ow zkDNVNb=_tMaiCiJq3lhkeM%trqiZu~MSBwo0m~PBu?|6$&^S6jDVWQZwo5Y zP6v_oH2|AG%_RTlU6f%k3qfSEUEf>j%86FH`BG%+^w}fJFu|`p(!P;gJ_qvTFD%vA z@B3Yp4ub|<&>SysB?H&s#g5PN7hp@WcG7>Wj@fqi-~+8nbIKxTxa2S*#}^N`iLik7PD ziOlwE9fxVoAWHIhZ+9JMDB^JBREffw04DHH=;L-6G{UZn7!}$6T$>5#u!n=Q6dS4q zV=l-YA!Hn_=8YFGABVyN*!|Kc`Zn6T1&&9B?*M7-NNdv#4*9#%wUvj*qyBXNt3#pl z$A;b^KgA1utn6<}C3OU{jOt~}76iHc@<9b^KiA_+4_yi_aN=-rHY_<_^szc&HmVu% zhj8aqhJ?(l%@yS~{p>T=WXbOu7qf2nl*=$0o_FdV^+z`vSFU_;ob-E+!I*j{{hQOM z)lON_t>gldqEh%ZZx4qmI7a1m`{p5OEC!OT zIML=6e4NfQ&(*OV7{UGvzVE$^jUUa$qO0>v|7doXYLa>Mlo*ts{ICq*&0SD}BQfSA zQ%FzKI6JS+Y$6+)IzvmT3amayq&8XAq6nh+;^sjT1W`Zl@RtqxbbIV`1n>qif(O+F}Bu_Nb;@3%-K z$?u3V+`>=aZm0OJ3NDrn7&m#S!J_Rmc%=R)yB8^i%)h6*eelVo)kK>zp6Z;}99iw= zz}v>3RNh0(VN`tOo)Ybtxn>lraG9-=Ua5g<^21UZ%#YFSI(0Pga{h$45GR|_J&!Fx z@QT01KyU$eTftqZGdVcYKwun8(_qcE@ElKl_02ANrOKqz3g-*I)w{Gp$EY=+K(R{b{Uc1qy&m;U<^0;plHU^!NayM3 zte>0~*K?o2znYy8@zqCadG_}bLn)Q>Aj>Gyl>uZ07klf$(BHI2W01g!hA0Li!C)QB zQLoD6lh&^C-dj&r>z3@2C~%S%yMMeJLKiab$f4|Wl4;t&cvM;^#{=l9TkJDfgbVvS zTD~e4f{=7`35R*np}rkP6G&)sw*3PC${B>6SZm*k3s`Ue`yKG~Azuuzn4R-6P%cf= zfLv0|pmXmi2>I4nx7mL`a&2{)PGvw^?4U0XE%a4%76Kb@(k9EHz-H&{2j1NBgSo5{X0SE|>q5w#G0Y@fp4%P7S6Wl2Y{- z;xo z#T(ZnVexRBM#xbnG|RU)v+x7pFG64MV^S6#565EOI#J6CU&QpfC5J204x>6LEM$>L zxBaO~LVLaB3ZWV|ZZafM_-{RVU^iIp(|izY)>t;q!u1R(jC~V{&D}jr=@k%kHWEZK z`KDB%oDC&Zy!RaQGjk3lQTPf+I}i3p$L$>*3l%SsN$ov&yuuYCth)W)D$8o8-l#ky zZPfbwk{nE9Mr98caHzDq(T``kioOV3>b*OlE0ZSl+fZ2uFXaJn0`FZ7)pH2rBTwY(i`YiVe z)w(t<6c|2nN}RFAu*Ih68^AB{^5Tzl`~Btf&d|acoe>8=#nM}$%6zwzv~cDs!n`;C zIx$Z11P7z|u@wYiBKqxlF3lWuLZ20iA`x>@55m0}Xkq~&`hza}C8MEQt@YG(LW(4# z;ii$6S|8-$pq-WNgg&8B+Z#QxvUhe?&QUkIKqPr$35_jpuKjHDhr%Vzq(K<=1X>jS zq;``OKuO)CR6-mfP7r))m%Ps?FHYYkg=2+GCoWtIKG#g4R1%&M+RRa}(J4P!)Yl1O z-M+8Ymidrxj5wiBi?q$|Ao4zgNo&2GAz_A^N{edod^<=5~-q5tw{YF{C2~ zl0SxrWQGy#P317iNQXvcH~@gSCs}t?)(f!&u)KC-`4~;^LCKL#3gBI=494{@Tf<*X z2WJJ;y(h5q@jZ?!vkJDT)vEBA`}&p=r~@5mQGw8#?8F9| z^s_Cvedrbr)t~X}9Hwh*bT{X*&RC3<(11Wzli`q;&^mT8++2xX*SN$T1dNE2jK=RQ z9Q{dP#))>P8N!OyuTl)oP(j~yccfPuMn-?vAbj3j_CJ!dly)FIQ}zdj?_ zJ6y%{oynn2bE<1v9;`?Tc@rnjM8~Bpk}>NqYLOK0#j8sOIa(ZZ&1C;90t)?Nfl=J1 zWf0oHFBTr&0gN1ng^Qg__Q0mpC>{nta zcL3P@uXatw;?r073YOdv^!Wj^6vL|+Gv1y}r}n@%03ioMib(XLkw5r&vm*dks;xu4 zqyAUE+2jFyOH>4AUflcfE5GeC=G-sl%ge3HhU0+S2;ma|`33FtvvT|PiVk)%&OYqD zHLOU83D-EoTtjsNr>fT=QEaf4<23+PDL@ZVE^)@vnG#>CTaOtRkc*I2bqSg*O(fw9 z@wC%M|0u$&!sZ^RF#+GQ9uRHumv4zLRn#LDC411nS~u~hT0#^i=LfQul{As8U3gEx zME7Dz7$Y|z0PW}(K|!QZ1&ycpP>csaU``M<1)4+rEve=tgek}It2@~TzV8K*>oVFU zm2q`blxyErZaQ4gBgWCFMZnPtZZ^u4NWi}Au4(tL9qC4>0vQk>ncn|nv$|eymiM-* zl*$uCQTD8r{MRcML3lo0*8F^1+Ce@6HovhACb&_5%1|lg&)i=2aZL-`BZ`09=%_Nf zSXP!=XbFWI>WrDWX&N071)Z~UB=O&3snuFr=cLp)~0TaIPddd^| zroO#lSG#HVk=TJ`2tDTcR&zBO7bcI;@aj6zP=txun)mXFJ5cOxe_d#HUQqT`@W4;g zSNQWIG}+rFXlT2sQr1r4dz?=mumd*&i7-ZXzW;78%>y`+qT=v1elu~sMs9Q06^ZXfJR$#J3te~%kxO}T`)NZLoI!`|5%<=@Rw!aiU)}DkB`aAG#w(>=uY>9 zSdm?62*R@b8j@I3cvT}ldy*#k)S5E!B%qGzs+NHVzUGz9B5?^uMLdCRyFJ|pm(Aps zx)D$*nd<)EDnGc|{fRhSV9Hw1II8yE7$XmId(QT&1rhGxzp#{sk~OFIFR zuHj(L=gRG}Vme(O2u$$?w>6xQJ#z3-n6jSEZb8cLc(Sh9k%(=Kg-|Kej>0k}MGAgkXR}G`iu*xTbcaeCJE< zeJ+(bU2nEw`HW>dO5bqD{L;kmHABdsb zP(xU(``Xd{=J>Js>{xlOe@VSj8_)fs7kGZ_to6Z?gva3yg9fEPpHEIo@@KKi6i$K+ zfg=b8$tp>$`qEHkjXSM8t%`V9l?kT~>FNjU)p>fM1(Borc)2O<7pD5#**QaX|Hj#p zj|Lhyq=>?9w#WUSQX^fo8bV0>xkLx7!11bzR|5?-x5ps(p)1D<6f z(hnF<8{Xy#tqQO(lrEZ~7-j5ICj)I#&XEm6C^KVNM-@g^3MIiZCwALAn)t9KAx7)+ zw0l+SbOEi@WErtGl2W_yRDVFeJm0kyub24iicoD^^BtjF7z{s-y}xw1Oo%U5YRj{E z1#j}-!H$T!(hmX&fsqmYPFX~&VnZ(A1GD7u!;Y>a#kr<&veHFgIumX z05sO4=`3dFy4&x1hgcSGG5cgPR8NH3_06C3@RnOBH0MkOncjR#`P~_q6pdg5ccKcM zhie{R8f}(xN%Tk2dlLQ5f8M5YctkkbQ~nrywf~Ot77&{L=d7ivVPophvIO4h~)E=5y%|a zKFBxMX`+3(_T*cL3N#oayBrDaRbqpwXIKb)bo{3D-F;~HeAE7dbqx~oz)t_e;q~7y zkW64~Zhq=_)Iul?3hZt&{^L^&NX(g!<4nFUUl`nl<00dZ5C-t-VTh}!q_$EhLDR#n z&`c2Rzy?YvDVjMi!L%YxHn_bD>C;FRxZYybXlQ*PB3owB+_JiNghR5=WJgUI9LG!2m)o_+oGOpsaQeOnM$INcAgz9FuRorZX`wn;dlKNYX2fYQ&pZe_lQ|PZw9M6cHWp08A>~h?fxU$Jji{8X17WumXJXN4Ojzq5X*k9)wkJq; zpe^Duy--4EUXffd3VT~aG`&QoWt-FE9`uHV9Q1BuiAesL>&?jLb!RJ-C$#jG@ASMz z2(WvC$v0C4F&JCPENwAz;9H-C0v^W#98I!loZ8^V84s|F8Rv}(*c8{h1<8P$h4zV8EXi#7- zy{#@b)T36v%uHY^R&Y6S>-?0J76Eh2BRJ9--_iCG-xqPP{LKbG9P(BEwKI3gqcP$0 z2{`Few}X(LJ8MfnEI8jYzx3KX#vf<>jN;F5ffW2g(suInKrT6_%9}0>>~RyKD?kk( zvF{M&3;&U17l%`m4R%GzhhIadp|4?gjMLX;Bmv1Q;3DxJGySzvtKH5;sr=LSI&#=9 zE66fq5Pkdf9acIY07#&P@nc47DJAT?J%lrcQ5y#w6{pZ{C>EYIj~{>k9Z> z!>&FSdJNu-gCFau*V!C}zzNt5PCD*%ISH&0a$towOCLV!BHJX`zW~?+K8#YV8m%S; z_CA-!cuV}Mq@JI@58hi{p3vWH?p}SLU!v|w1&Rb3Z~km`+s_F< zUah1mIpVCk%9SLBWnqCE3-u6vIlNsK_pBdkU&ye(`d#b{Yb(6=m>18g8!O)TEcyXr zLqVU~O`dd~kC!m1lVEqd=luJMPNWH$8Co4r*Y)W|c#{;2VPYY`e+ryKNi;c@1L9}2 zIDPK{crBRKWa1Fe+*uvM$9>Lkx~KjXyaq)d1A4AJrPg*U#+T4K@Sx z(4tuaK(ja0qzlqG#%3jj@@k9EZ00xuz5Y0!r;TdDY&H#i)}eC z&wr@Fqa@K13jgcgk2|^%4TDyXJ)|+vz|Xz;^YdY*)$N5HTV6INKh6pDeK@^IZq(^o zMr+JjSysom3EOeh+8^k0oI9RzBCQq)5H64W)h;{ELjHF;!?C7ZMzdG$>$UrWZIMB{ znHJ~~F536c_Oe zWQVifu#I)O3q*qHQ(xpd_c24(?*gWEH|toNkLH2KR<mh zzj6q9<)6n&bvjNHABDtTS^yg+RpqG!eR}+Wjg{R0>Nx;vaacE8crk;Gt))P!Pr1=z zCtZII4c-|}Mi&|LXiA|lECz4ApC=VV=!u)$ZOu@%Bi9)*2hlS#z5|h(npSSDS}?m@ z61oG(AwJP78ns?%M%yGzJd8|Q$81oB8q!-zu|vV5)G%+?&BqBEGT8_85}?UpCwpbB zSaEh0aFc{2J3Qa}L`Osj2a%njc584DCvev(!;X2}cU#`jyjpa!nEG(=$-xVz(r1_N z|BIe8gkbYQEQAtiyS(s^0^>ed%^&MT;4H9esZs664AJHBUG@r|75R%zJhzHGwXFEj z0v1vuzr4iOcz5jhm{vckoR^=WHd_C8h4%BBOV4?!G{;(WR9j% zXk!!&q=$oA;beK+j`A5=@$P)Omf?5jT2aXF`BxG=+Nw*3Wal&;G;qtq@7IKiN$u5~ z4$2#aWyBXpU5;#V0>27d;@?mjSe z;aCQWc~*7-VhGl7xq?W6+nF>4g)`Q20J^|`00#!)yMtR(M$%r@spM=i;V(0a0E=ym#H_^ei>)) z0rQ`arF?a}%I`iGz=4Qrc*0wzcq*rFZ zZZX|GVXs3`=@OT-Ei^vQCqZXX)_I1R=+%e4FwGxi_FQra?Z;QI{#&X10s_nJ)~!{L zo67(KjT*AhCkQ!PZq`~@-LY##Sv;8>aq=xfyXboCITW1D)zQ?XeeTNnKlA#kj3f=X zS!i$G=@pP+a#f@8!EZZ+u`e`}MuSQbltV@8k@4l9Y z9fc~w+caX!sGd4g7MuK(uCVUYf;_w8wU-4qG~q>41LshWXtmA>bF8uT!3ASRD-_VR zCk48gF}BTuY=~=WeM*KZsp~sjL&U_s(m<#it z`^ZZ!XO;)xYEgN>Qc(Cd?#C!3U)g}e=fcA}2*Bq2qPI{Yvh=tb;eed{iXq7e znTe4<+%5+q9As{Hmwo@a-R$S&l06}Hf!3-qxR+?v68(RAgB6EBLE(i|!a>5f8+JW? zY(}1GJes}zeaHn0@7=_<8U-qrN}KS{SIpGKVyDnCJIaGQNppG)&X!)*x>LWWg!Pmg z->?6V1;E-GGKyD=$TWm-1}|nbF-&)3wcUF4bAX@5WyKDSMi)d(Hg52A-eh+L#o|QX zMLw+9@QfIklVuFbCTQck;H9Qt^uSzt34si{GZ3&QrrOuHNSoeFc(1o&@u=9kC+sL) zIeYKM@2W5z!MEV3{Lw^;(uOYN2&asp#G3y904qV%zBzNIIuLf~(1EgQ*_gnUFQv+z z!&C9#%CBmIVOS~ko?YLjT-0pE+8}@JNw|M}mL{&55V+JqQZ*}^na*-@6zs}Lx3IQptBpc~35krV-c>4vL}Nw0B1=|Jczb)JRqJ-xck&Uc4-SA;hBB%# zTz5nuvKMcs?H8tNoP6gFZr%!9gMH6wLa#XPwP{iT6ndn~T^H<~o{Kuo85w0x&gVG3 zth$^sqyCH4$?lUD8%ZtW>>~{}e4pG;iP&qU-(RLppM|pJDq!t_NK9L}OX(IbUc5+M z#rWRX1OJg8_;8r&KXO{egGw~FOP4Mm>AWN|^tzZZYK)jfnCG&lDaZ@hQwmOOpd+@vMA+iz=+>nh zrtX;vvFkJzV-LL911(#%#hTSCG)YU80($mugBv$*(cNownyMYzwZ?2p=jE+2p6Uk8 zb--n)Alkel6(+X5{m8|wRIvg9Vt!cJI3k|Y&7zAdiDptnw^b+#*M1$uq*xDh`ub}o z!5F>!Iv45Zaw;P zU>%xbh9QkLoS3A>5^}tJH78;pL9u{^zv%FC!YME z=DD=<)mL9((v%svad@(Fer27Z*t_Rb6N`~_zdL{7vL4^CP4YnUe>#QH)-Gy(k&fTP zrHkiu^QMg(P;I~yg4xS>O75~mjSZkxDtMLZjLX}5A)~Vi9_(nUW+8KDPetpmTIv4R zDK~cD_;OV2bcEk`uts>r#`rOF3l8T~9T5@;AdVIuC{dyL%Po)|Uq8=XB%sbG9#?17Ka14h965jyo_ zH7VRIxlu^gu-yElNCL#(oqJ&0%nfz~Xi@??+{PXMdq_Xu8$xz?+2$4+Hfw}kTXyR9 zfA>YQzEisv{n_?JyY}xW4L@s$#WR<|sx_@xM?Ip7gdK!_kQASUpl=@HyA{h39u|(? z1N*?T9wmebjD=2+%f}nue2@vxEjA*C55ag8VC2`tgCI0jNoQdK(J_u1^bEO}z3}oV&s4m1)Q+dSj!J7P6t5z+TTUcrI`NsZHoa(YrnuUN< zhYSS>%0Go9;w2@-qC)v{l%JdThjZKd^Ln0xIWAJQLySI3ez}ebf^`t;cZrmjSGafl zdw!o6^mh~$5%NxODm?8x<-4bVT{%#}y5DIudcmS4==^mDh>|%g4=UGU z8DQ4pwRBGU#oh>Lbqk4w%W;ISE4r}4u{w3;G;DZd>e!*9 zI=uav{*bI#`6uW0z9^++zY7;vI9@`_FceugaoV>C4hcq^=B+gvV%TO_em8XnR*qD|{I@W`G?%`_s`2EgtsMr!YeA<-leFTRL^d8jiY zr#*#v0UKPsd=vKyBRE@MoAfA%jLBMP=k| zMWn1e^HoU!M^Z<4sjeBl^>-)(Q9}{nARwsPAYaw6RSqXPy|Ix2oKBypa$Ev-ckSAR z%|CC$_U${#*=Is|6(i6l z*g26iF9hpJNr~{OGJ=Ux{iT`$v&!TgFI?OOyS8t_?3~`TDlVlFSOMgxSJuOxU$>)1 zjoRd-9)wuu8p`>VHSxm_Kj z`$q;p<^W>2s!6zc*G9Q^yQs{tg}hoSKV&L|rwK3MldmW$RVb^8Uhm54zk2m5)~s2h zNo&EhPu}*8IV15CR3ABzU_YLU6rX>yP-mbd8Z41gm+a;6=*(iurOkz7rebs;dWp?P zBB-KJ8&#{7eOJbT!wsPc3AJ;CJ_!j$U*&wPJ!c%t7Rg-EP zL-^i;3K(IU=qQeIV#wi5PW72JpX17vEANc(iXuY9s~dVO!%I}iQ@%~2eA+;`xjK^; zx0}g<1@K9$ty)Fwp+$Fi$k5@K$%H~H#C*{a8KwH?%9VDod9xrN{Y9Jc@k+ z$0eNl{wV-vmy?j$D+``*I!GcZX4YvVlyc}KPMfDL37m$K_TE(_bGBHS;&>YQ42c=i zA^10cSW$1+BAX4ydydy6jdJD6y=!+}KV{lfmB_Jjq_kN;m}*!SDwH;HL@LV7wPrm= zC8+ukc>N_@oSgCW@l!oU^_n$c-<6zKFH;<7+ZM+tpgv~!Xl>u{BGYNXRA*SXZkj1BhpB1_pF4i`EiD^Y z{jc|cL~8}?)*kAokyN=J`;5hCv)Y*UyjPW9`Q|msZ#&5E8qFQ)*-1!NW0~&RhlR&P0OkJ)Gavj`Csy zbeg_MgSp5}D#6PO(>3Co`dpF|xImD+10IE6540UU3M2UG8I1x9FqR@xSYd%rF?!ro zg0l(ydws5sTcW=!N)D2w6&5g-*W=Ce>jbZyd648%k*;UIs=cpMmXZXRHk5>V<55NJ zTA@Y=HR{ThOURoyFExD$l=;BWw1YczFNzTfaxq_H}g6rAdOHwAet<{4+I+}-&{OIjH)xEnNgXLt zq&V+ImW(2|=5?8JyAP@{>Mi_egFUaKS8W`j)K~^LXXGRxy+^4uSDJE^{wg^KARmGB z&I##Z=io>?^kaX}6gGUXGMIA9l8=fJ-!m!g2ZHW!jx5ZSULjzW#9}->zW`UST-Lre z>}OaCT}|wUt5m6i_z|OVi8O|MH777Q<3}s#3j7{QAez?CJqAujz_Z&lM%iH4RhK!- z_QDQwjAy=Ir83Pv#t+6G_^Ul&Oj`S^J@yaPmt>4woPHm&U<4lJdV#3B;Rt9=ZCFl| z+qY*Vr=%q$S}QVI0=~l6yq?wzo5#c_N{dN!S4!l%m(0A5Of%*A=4Di?Sq%>zpTV3_ z70cdkNWVBYqK}8dtb`4mMrTLEri~za!tW|;)~>MZ0?I8m`^Djw2_IBr7~vnk(4V z6X1)eLfCvknhJrop;*^(#TJQsv7#5;pm*bjf_sN&*5&HB5+Zv)q7IF?k zX}GevH9EHcNSPAygYmU9_ck9q(WG_3ET-C!6 zceHXH_Nx*_QG#zvODnAVX%+hQAB2ikYSXE#4Hhn#hm6^akfYoZReN4SjsAC-2-cR4 zb4;3z4$|XBhtqkk!T_a22`^5OgMzt`<=zUVAle5CfT$dYBsPt}a-WAXgP zR#GyfJM4n1?d9{a1RRS}k(fa)zrRfut`9KUV;+fI*8ww))SEiCcXK z_rs+#7uDn4{0yxWp~8=bLS3@9Y2PvjC^Iym`$ky!e^HA5&Pk{ z(KJR39f7@dtLQPzGFfVbHz|(M+uvykaknFpL?Lw<7$iK4)og8v9GhjgOaaD`zXl@w z&Oo0{C@rJ zokZbO*Cr9e1V+|+_3B07xrbBnRq*WUM&zJP?ZXETG@9A0SrgJ+PGjY&waTMhJ?S#u zq(BHYY1r_QwB7wlBaD+KO{QyBn>74j8ARqS-&w)#rLA4kBpH<>=-o5L6D?b{!Q{!4 z>DsndHEP{B-7WUOVoxmYY|pQ)$IzieFllNJT%c@~DQ8dIGiHJ_XKX@mE<#|0Ir*SY z1k9f^+BY7Bs1&eZVHLFk&YQn5r}CN5$w;jU6(Yn8@0eC903S>!VW z`d&gkCXB|$mc+(6#nliYI`pYVK>PRW0~t7MShqS2ui1%qxjlOq!KDjl^?nr<#01tX z<#G4m7F?=5veE}QRuYtW|dR4eEM6H7u#THjN zD~Bv}Fzc&P?Gnv@GBl}6hwL?IhU1rJo#BJnk(Ve|5T`F#DJaa4ryhbxIVe%AFqTrM zTk+#7bN-j9Q)Z_{(8kbs`|N-0g7x1coH zR(RxVNS^Q+UAK`5bgr2T;}yTV!p-O6>`%=(fH|t$K!X@nNDskwgyOY}nY_!ZwRN0A0cPnT)59{ zX9IV+R=wJABxS;?oTKhz)`9%pzyMUMP!%V}ABTB=6If=pLBiQ^Wb(*};Au=~``iHu z&*Km>`3X*(IHCI)U;gj)z=exf`8R2SZv zwmlv_d4`t({&fAygcHXPzcZ<^beRgw@V|)4Jufmy7lSD?8zYP+FXP9JPU%QVY6~JA zLZY7LR-94!J)_=GA(MAG)Z(mD;xN|A!-)VT*E%i)|!p%fMqxvDd|`tZyWI>XJu{JFESf8QSRp2s0~iN*x( zuODT$E?&G%SSUqG2AwTieTDFci_pDGTLsf{&61#HDB>2DcyYN7oI@fKRL-mb6RqMI z&Az#RG_1*omdI-U+TZg26O9|camliOT2?Canj?MA>QsPOs-WJ`=G7g2F|g?h!^bpB z$#Lk~xg9K)F2{w7F|drigFfF3L`-a)UbFv;r^uS`Q{{Hcj$+Iq8p;RfG7*;NbeVJk zp?ZjF`KRJ%zO&54gbnbL=!N7q74ONUwV-I|k9!UF({wRkqHu_h3pzol5 zI=ydVXG-8hz1CDkbZ5o=%TQuYhryCuI4PEvmTJE%VAt?jK%A%rdRxp`JO2pFK=+~#OCf{h~R4-dMY(b0iO<^`69GL^$2^!j<%$ z>Qs~{SqkFNmJk=Ef4|3<*U@Ng?#!mtjxCR9MjeG_Ar5qTsC`?e?Jm4x67TBOt5L6T zC>obF!Oa_2HEDQI|DL2}l!Q;^VYq#8f;z=LKL4XitL4jI2(4SUPB|yT8=aNP;)x;O zuEniqX7KZUh)o;TFj77gKP>qLCw;xKeaEj#|1j($OG^UVME+i6hRnso2Sv#j7S)8* zKvL8c;-Uhve*Jo!T2>W%C#8pFz$Tp`ds||yi)(u9*}GrCZrKidQK`!bCh$F{<68|? zcJRCYGryOKDW`FHGZiVSR!>oA`1RLck*(-g?1SXriBv2@t>Q4+EPvght#W|_AMWSy zh=v{GnT*Ss2PrRZ?a<}tbt|As+58wWnD_lx0lLokV(fvB*#obK#UJx1#Bk(3B-2$9ay}0G0cmQ+j}uW)egjQ4b-v?9PtnVEpAd)jM3WG?$~>H zpE?BzC)ag0-P5vJA^LPELZ&{Yn_4by)`T;2u0P~bdWT(8chw%2BsUo-$ix2g&p${0 z{P_*1fJO6P1JIO}d?N`jasw8ip1O$Kn#h)o+&m6}-S5G~-jp2M7?piXV8lD>PzYjA zg~6r?6G6VriTEcm2;>y1leo`iGl8g27)mkf_a5DL1~whs4XY5g=sAilE2e{x1`Qgd ztd}?QX3y2>%vrN$sr!>?1&is2l!=qS#qc4+)Mx{NjB@AvL9JThqD zZQ8Jw6rLOkTnuUkaxwy7uI(NQNg6YJzPW!4N`1ABQQw-nE=Souhz`1gNt35w3W03u zB8fv@1!|;3;bfakzsJYL;FWDd*brFeY)UE4Sxc*f zn_-1WqL~sjKR&k@*$Sk+mzWdKizuw$QWLG;T@lplLW&0j~lm95l4#Fg#6X%ex6+}ye2D?9p71!FBOfxlGyUWx8XxwHQp6z2Uz)FT{SvXZh;h@g}+Sl{JSmo@?L7uGk! zl&RCvq)8L~r#rsmMUp0?IjfeG7?Fm~Ql`yz?49P#h<1LeeAufhMZneNl$Q%(A5}xI z9z${L*fGt+P)WP^*8>eXlyJO-cig*oPt2GxO$P=tKLle5(*qFkyq`k^%Npcj(GquQTqgJ${ zG7!-IHZ030bFvB-F8smP1=vZH#;&L{%$qpk&c&x1t-W#M2E+uyPzDYdh{Gq3;83P> zux51DplD#<(*x6HPyd56nnZRzy*w2lTNJj_Y50V%Gs42#no-*4NDPa|^9W{TlinZ^ zRTCF8IFDt0DVFJIxZnx@<~P+|H{oFnPKBI8lfzA5n#}?dy%xZmL<{QfHa zBZd>As1VO6c-WE`cv?Fi)346M$dMzledl)6{j_eHect@=p{RG*kw6`6nETiuF){%G zU*4p&1HTGVJkrr6&AwGK-&QCN&SSD8bj~v*_{K6KRW9XFKQ3OO{hZ_%k8~xikgz=* zg-aAs+R40m^H8c(sgx+1>?Bi+Sv<2M$;S+FIe;mRrl9ecjWKE5Bn7)}Kl;GLG5Jr{ z)Y}qYaNFa%kCbvuD>f=~RAdzJH`$5pND~xhpCumHb?K#B6w$$=m;@EY3Zhj`a{lcvHX-v$T%ZTg= zRT_v2dZhf}n>#z>o%$5 zdwCtt`}JV*+11UO(3XK5-&YThs=lnfdtRxECl}Y~wxlFdstANaEs9ZbpaKDIJ5m@H z>%ic|%H)BcNMuPQJn-=eb%4uJf)Pe*-Ycjb`~2p1E**F+#~7(){sO1>4PaM}BL)%z z5(^c~h^<>T>3~=6i-zLk`E2SPdee=iPZvsi8y)bEV;~dfqZqFY6^2meVM2FxS|Ct$!|jj_NM7WzqcGY zd6gs#3(ZX=BjsGg(M`D6Z_-(uG8IN#zzKBj-3!AQB#|5n0qf0Lv_+dP-ykkF3eWDJ zRoTQL!$zsquvh8sI@ma}upE>9T5Ix}997hFq#W44N9#+HwI>Hh;^Y@gZRly=mw}bF z6%|Wf^Qv_RpFf90s3k!}A}@yW;PC_4G2$#>SBd~^=Wlr)bV3tD3c1$QMJ$8m+WQRb zqiPX`ZE~}h{v0`KBwoDqN4eo;F=x?SbRF9RCSKI=?dFS-V@F}kH=}iz>a{u5TG<>{ zEnUIhQ>BaTU3MZ@_FTwNk&&L?!LC%cK3BMocdv`4H;klt9u|gBouk++U4q1 ziOFHKnhx_*V0Qn+Oaj5{aLYkUU#bQ~20kF&p$5v7Esq<&_D9K9zvy*|UhSoA-7tvL z>~9vywqLqr0X}b(pHajysA}r`B6Z1B~o^FsCGJ3$mvjufvhwC|u8p58b zIj9X=OO+cWxl3$#rPwk$E;NR#j7ERfy%VlIh+^{7Ivq#^+&`$!a00j^f*z{5gzm(b zN3;N*a+b4a!4U-dKNwakpc_lsv`S2#bIwvi*UPbjeb2%)F&Ku~7>SH_>)MIa_$8=d z@V$avsq8|2a)CNiQQhaoA7+gV2eGrWBPfhCd`wwJ@*K}^Y{P*=dbngQ#et3;{BP}q z6{#j-i1Fag0Td)1MIxp0uUZw__O9&#KPoba+n%YpE&F{TcJG_Zh-pf*Y2NJE`7621 zZIM1(Nws-)Cg^qLcN`ZLtb+;xp;81m3+NU{Izuv~(BvdZEnBg6DAstX*1NQ|J4B25 zGTqbUH+OYsU;b81l*Sh!r-NS^Or0_*r9Z@;-8oBfRf3R4EbZJ-y2D|N9b3={ zc(qrJFCV)HIC*U>|5Oi*95WKxeLUe^FgKPiOTKZWK6a;0onZ1H5z%V{sR5gyo8qpL z=a-7NE9wHGD?5GkG@LkmJoWBxeSiJ>b(}nN3g)#LE&9EPv{^a_T1@iBw15A8ouU#Q zUMcNcwnNCoCn-9x~4zSk=KbC0950LKw_#EHnWweAx?x z&-O#)9Dl7J*!MoK!!!l#%1Vj2n&za&XUXDffRWPh8*i2_U#hZi4Z3}<+3)=a4@jvY z34iIVUPq^7gMxD=*;$a9Arf#Bc{Y@A@|-=hdE&b%-x*e=EX4p|3a6e|ELo22zi!7v z`()`i)32T2w$cY{hL?Os9}AT@~d4i6pv1Q4{Jsu z&u{LiHof;x&eh1~&BL?Q)TIBw;YtsXsH>sK^!Tk)tEip(Ek0}90Wt9=YC|m2QNEYg zt73yG6PyfSSN1E>Y!%#dl!w*x<#3KZqF}dD*Hiq>CNL73of@)vQG`?SqehKJ!2)>| zP<=%+mI3WbQKQ-qp&@}Zn+c^fTN}e^=u&vYk1s4&!;8!Xnxxt0N>u_k_l%rA@6ALr zDl!l#OO#hA91q*iM?(-Uo5FFZ&{~Lj2%a*9gj-kOVTec`5w|9Fz z<0ab!$oB2iOREVDN@m1lpu&iN(l8AB%TkgM-}iTyJ$rUku2c~hH?~ld4T-Sso$f=R zXo@PmF5}$#)*7|8an8oXFMre+^aO<)uSJ9L2{?TCsB*96IEmz(75r?rsw((Y`9{?o zB$4g>xih3al=#Da@7lF%s8{z>6l=8y1)KeX`s3peoj|R0e`@O17>|oTf6W0@4@R`7 zs%peo(hLk>SB@w9yJgCq0(NCx;RbUM5o<;z3eM#5I)Z}&)l6gQl0~@nlG@@v1F-a` z-xMetKNY`d*JWt0VCl3yL$2i z?bNJO3**O+M_}1#_~v?r?n8QF7Y(xk=p|i zweb}~h9zh3ckkXk&AxAbkeg7WW}l-}mD1RG>Q{uX@P~ifTcktW!Yd|*3I8|1*B=eq zHA1~M_4URi{8M>|cA`zGe^a{UObn$z`IpU`llbr$LOK64=@_Otu0J9{(6YV;&*$=a(=qXroai!~VLAA+Td) z$&$twkxK*6u4x-pEErs@7sk~Yf&P8_!OFu1wqLm;DT-WN0_@a9_|NIGn$h*hN3Dbh z4H}esvjY4M?Wp@Xg;C{E&T#uF4`xi6j#aBxX}$l)-dDg!b#2}6xVsA>0ukKZ-KBVO zcXutWg#yJXw79!VX>oV=AW0wzakukddk-@tw0)2E|Gn4uzAuL#nVBo+o_p?{JL~MT z_FA3VccS=Jh$??f8e~NYPOLNXH3i_cggluwg|~S~aoFYq_`96Mwr1rIIgasrAI_dT zN5<`Kb*oqr!>W@j?LUA>If@NjikL5)qufjtE@k~1^(k@q8%lo)!;8C#6gLnS%221^ zh!ZEum8n>koZX$NO^3GBx>sA_`u$!~Q;xcGKm08{u>Pl205=`rcm_v70JT)`acwP4 zsB4!_P-SSBqfIt$#Y8)|Q2n`B*PcGS{Dl&tLun0W3jR@HYQwiMf+>h8_GGwZC4@f| ze(uBL;~@uTOr^?{rv?ogz+N~(Ko7fxy|}mp_Ox4tPNB~x4z5ilX{^C`C_@x!E8OB6 z;L&#J+Kmhi^d%aYy$uPGPsB{a0@2#C9rlWCFw2qoR~swQ&?mt$wCkdQ7#Dx~T+r32eM6==k$@raaek?8J*4I3pf?7@i%xoKQ)L5We14Q1Ti~}8FHqFo`jU_}rr8@_Qz~!;MZvWqVvvWI+lXOSi)ecRwlY}qU zr{x60^yCj1IBbUW7&OdVZxr4#*TH<(GT?A;*|uA%Y|*?iJva*2GRy>|B!tloP#XNo z52V0aQxS2!jzNGMvDBEh@Jw7#^)bTx)h?^t2SE@#&o6Im3J0~p6#MovJ^pzTtzW;M zCQiV4W-Cnl;OIOTPPDwTsU_NPDuySEzh5fPZ$4g|Hf_b#t#sQhV#rY)$%r11Hk&wU zvh4fzZHQb?zE8B};faZ&(7?Y}K7O!kUwxQ1A9(>8y{=RM(sj8dw+H@5djR~-{}rWu z`}Y5_=W*`bIUqPv`p!lOXX-0`H@xDrfsuhiV$wftH|&E|?|!}2uo1%)0M0+%o;PUN zw2`u|;HX^o6_o!rBR%Dqd|an3fwByoP+4X>!AqHzu~sE3l+x9WQN04kPqk{>T3Ps7 zDMTZc^Y$QRUEfI+D_b1Fi7bT?x$?@NS6Q^t9Ea;gf}H}5L3dp3@nQU+47^O_c#xk_ z`iA<-ZoZEKZ9|zib=g@Xzx5~vU**X{p%Z=Bqm z6rZ2Xm^`{;Ti0+>Q>IK&J9q9>mUdRsZcsJQH@?cUo}(NS5of8cPrts(($Pv;Ia{kf zefp?|%^N90TVvVAD9}tfZ3Tq8bybK!s%A5l{0CoEA!$qZnV09U&`JP>z`&u(&b_FrHSDqSD$zx`25IhdGjp39$K>N8u}T&HYON|z zxRjbTd#_7AK%ML|YOmR0M2UD?{ZsL$`q z88c?cy$rCY5b;#dftAnvUGwzvQ;;;1&qbRoQ%GJ@<`&k{Z`zLF`i>tzuE0~3XBY3+ zU}Cf!v(Ct1*|${NZA#C;Sou{NriwLNrK{iCDL;(a4CS+P{<^9_otbz(n=2DDD{b|v zdaZ`C-lK3EWtXQs`l^Y1ws9-2pkkr6Zrh>T_V?cKeH2)rD4uduim@|NnMobuIH7=);)Q>Ut) zz4|GSAWi>zm+7OpkNNuXy1!b$J68Pt{huhXgI3U_{-3BSw~oKD2Y7nxe?|FE2E3Rq zQ)C3d3!p22%u@qW_zTUT@_({0=mPgnnObT9kQQ+As{xK{JKjqNws;u>VbjVsvdqfG zT0u5P*Bl0!+(rhv+3T?{;H(ZEIwad6i(46)XaGC`=rYjs^vk0xySeK2(E@9uqUQKv zFjUJ|ELW!HrcyVVVILgBz|~0U+XAe5ppBEflwm$or4Q>JL|qlEICB7AV^d@0yzNt) z47>rdEijO9G*o6y?WI23Z}RGn@4O>O`rWLSovh1O$R9xUGr&6;fVbu+z{@8W5)z`o zJ5!*AsKmrX*%w;Kx_Y_YW)1A+v$>tQY_IFQ&)yU*SxlKYnJME^mQoL&pJitkdCx$H z2LSd9e5EdE1xr67YO4kg9;5~g8lb-a{(A*pwSq3N0A?i6DWgK>%4T#P1(`NooA^38 zt_x6lruqN~CJG$i-vEoxnwIlA-cW}aY*ir>m!hp)gS^4=F z1Q2o19Z!2)YuBQxaO0%_f!4~{%vOMvp^>SwvbI<4J9bk@x|Cz{^9OuRRifoj0K@N< zTfvsNzs=;ogLh@sWLmoN3aF$&<;l@j*xODI zzG1)$ey+UdV{rjjUiBX^SQRT-LDi|(SXHc2Te$=_R%SMN6cW%BTL;NOsqqi}pH!a-r(hYpC0n2Ul?IQw%v-5&<$l9T)VC+ zuwV&Qq*y7{xpOx)dh{3t#U9=M{D%7hJYEHPv>eBSJe)EzHdSz{R3_&3%BO6<9P3>I z8mO+_dPrSAtXZopY+O~PUS|{!T0l{e^WtOW3n(n_D|9=d+n>R)rHzxqOw~UPCgf=B z#}B!H_xF0`|Ms$6N&}uk|LP)22>3d);}`Qb9hc_U$V=hC|G!)%-oI(fX4DnZLCm!( zT&f5aDpQzJ(o#Sz;Acp-f{zN*^Vy4h{&*K8ML|{!(~8={TviiHOl_LvyiE)pjdW9H ztgmYtWJyjtg9sp$>|x9M_W2u1So@A*7rdo}9T6G{vCb}JUf70gF?~5?>`<~?lt-up z7R?=zodwl{K`?{>Jt7Mfg~T0^k_4vjYfOC?48&S^Jt#yO|_5<^*_R3t?wiTZ+eUG~>eqeszgI9pL5 zEQOK8$0ai|oh(o336HRO+poxaLLM^m(QKU==OfzEUid?Y{NV z*)Ho@7?8~{Ps&1qpm9-6!k+e+Y>BKuAxTY0)tO*u*X6$cXZOJJr3=Nm$|db6B)>L^ zgVpOBKjmoj?cLp}Ov!&f-OIYooOH$<)?dCaPH&(QTWi=OsxuPW(Z*iXtw&#>zI;GJ z<#+REQ>CB`N{9_7BabHF+!heYEA4@=ZSN>9Yxf|Vm6{w!rQ7cTZD9}O&Qd54-;a&! z*XUdZy}Z0AG&F>gAAU!_Eb_;Gx2X1rXHu(|(_hR%OeB9zl#(MYkv^Xj@Z{A#_&7AW=3l@o5%*PEXP?%W0&&_MUo1)}_Ct z*Xbqb{FxI_Gk6X&i__qq{zO-|w4tb1=RuE1gH5o8`^-siFJWR)ru}ZX$IXS~T2)NR zSCAw^J8M(8+dawgonA11j_{v9Q55Xt9!@QWc|0 zRchwY%C6s_p}54AgOnPpMHK&PH6cPQw1_h+Dhj2nT)Fbl&#gvAkU_(sMr@-GPqn3M z>#Bl!u{DRH3tyL7wQ7m(F4GLOg?YgrUY@3k6*M#qUe3wT$8aGgZL4G~lr zTYM|p?H3>GlUt1+A*ibc2(@V4;&+{|c)xjb z=Mkd0WbqZiJxbD{50tnwlB{iQ;B?dy*H4e^95m~AJECKegK8s_<>9@03AO*C(rWt&Wkm4-F!-mmMX7DbWgWgg>I*4#~de` z^36Ef4^7?)6Q`4fiw4ZZg+GDe!ck(5>A@*BNNU4?3i`Ol#%AE}Cri>7OL1}Gq`Sk@ z9pQ$yTigv9v~qEEb)`!e&PY;aqmiLHH3Lp=W95ZXrOJvUq-=~oLxzqZ*Zj2voboc( z9A?0D51P83Nb+NCZB|NP`82JX#HmF^@H|!2rArsGaSnir#X+f#6U|sEE%YuswE5`F zEq;b(t*xECNQgOjR}uvVTaS_ey49eT;Uj|!w#bcw&95Q{0ijai$3JXg{wnx6dFAz% z1VUDU&^IuFv{)a}4Za2rueD1d0kdq)>*wbu38_`9R;AZ?Zn*|F&R!iAgv!P93kwm1 zNCP0u#GqpieburZor0^I9`wOGcj-=}M-3+n3kw0-EL+IGAJeDLqZfWD(q>0c z#_DKsLfe0EzsO;6GKYB|XV~XLI~J-EY||?dVKla+{=>c*QrPLg`LI5n4mSR1-rZ*8*iki0<5>pBKvLrWH-l0cAq+O3VqvU z7CpTCfXbCAM`Om1p>xP)cKFtp>}UCq^B!0%L(ez7!y_{EHW5<{c9K(f(;z-ySt3Kn z)*q&451-NGiQi;z(r?~Zs8E3-e+{GLUt@IZSbLYxr(d&Pv}5ZI-Ey`LBlCt1kY3ZLCl4Nz-69_Xr35Z+n&<`hpCrqf!l|yh4F(!6NdD7A**RfN zTTE-&Q8c2`pn{N9cUOw+`BdzXW9GeqjN3c<8p$(9;n-f)9Dx#0Wv7`{%(;0YdS5JiZ)qFf%(1Y@6GvWBj!t24cL{)9lG0V8)b|#ow@O26wmX&Ue2BVs?;~vr@XtptudKje{Zlg8v-97HBwQo7;^isU zUXtVNiwvY%Bc7w*SJ1kj*1)`BA^GMDApZiz$=nha(3pYSaNs_Lnzp2^2XDd-eGU!j z*MaVAZ%nr~*QZvk+fZaUo=YDK|4y7bd6XKAkA&85H-Pa~VqJZGXBPpc-lcnLHB+EG zhe`;WuYj8@V3+I8Q>+6y`Ztv*Gk?x4xjpb#df;;i_E+l2-RBE>fE}|Udp*@{$&tp? zb8*zDQ6t^5Kl6r#!wsB_$-Et8T~@vm$1zq9VBo`%W7g4SdI7khbaMM~`f=r23Vf57 zGGC|R!K6=i%9^fUyarM8OtNQy2rXUn0OCL$zk1MST$Yb|59qCP3}cN~@V97gw;434 z_Gl3gZ``mkRj*Z@Y`^g$o_=R3Fpge>gG+HM!zgCYJDsg2+Z%JVVd&7IGVNHWUL8vO zE=+f-EV&l5BaC|X>`93?qoG282mr zhlfauWk3wVvWtrtR`7P*2M&wM^73Y|=3wEw|lPTd=wEVa6oV>lZ zfb&M}I(|)6>sF&Nfn1E7D7@uE(JU6)$n$_;1Lnv(Wh)*k>2_Sn$BN(T{+r%VE-OOc*lwT@B7C` zbmtm;bq%G&h0y79HvoWEfx4uL%<{3=xFG~;4P2g`nFT%7N-~{(`~(ytAo;a_k_jE1 z?Mbf?A$)s#Gl7#zrMjM@TEm}Gw{BfT1%>x5S-L#FI~drVp35IW(O56j^m>LiG-1L7 zC`c5Q0U^_c0`hs&yZhT^JMEt*0Mky6a9KmZK&V!kp9XxqO%{MrCZdeozVLe+wY$kH zYw~K(i5GA?S-*JI>UB^KXf28itQ||JlXZ}p_Q4KqOp|zfdkeIOKR_v<8+k)Hpmh0K zGJ7*)#%!6I=b5j#EO((ou!_c^Db@lWSwby)VHJgla1H4G2{LF3$3Fy$0&5dr+1!dA zot#9qhCIMCS~D}l5q!UjLlD(>CC_4CgK{vJ)~sCv_qW309OvX)4HSw%D&A%%xflA1 z$|Fk8W)+KWp4sKdi012))-(h#qqG{n?ZxGad4iuy($- zsWFAV2}T6GC;3+yBU;0kH#SGV?V_l-45|!Ay$W5AVIb2*1~NPY!4h@{CtIP81XxdN z)H}5G8(Fy0k)y}7A9G)Gd*Dy^z^8A)pWZchhd z+7-q{EJ^K8q^no23jbBRJp1dWpEgPKS8qTTnHIIC_)`(|?ZWxgxN&1@2=Kpi>Q0%e zk3dw`5%dN&eMo-Ez- zr!v%XMGLA~vnE-J{;v`+zHRq5=o()X4NIn=*tB#dz4FF%ap@(RGi$b39vfL2i|um; zXdMhN4I#T0{?!8=*yYAls8W$KNPe6nSkymRB3b;hVDUVB9avG&W zFrOvjC=DPVc{tWXJ;YfqviCDAkJP!$vGbn3lObhnL<9<)$*v1WLjb>@P-55-i+Oq+ zanJ4?B?rm<^B>;>P;r416-QSyMS_YOTyw}n@NSFJ<+WAF#-l7fIk$-X1B*gm_coO- zUHXg9sYLN&s8@cjV}C^cD_o%=696NTu^@YEpeTD$blalh$wWroH3zg!>xz_98t!w@_#T&(6-L z^n|zc;_?cBZ#-Jk69M9^#MzBc+RmpMrs>bX{9*?+na05YBMPWKjxKFzN^hSYr*a+l z3B4i>(Z|`}7DE5uAS(x7vd&Wl5^BGqE$skM-32^y^fs`@BwRy`*il07?ZmUrQr`14 zd}2ZjHEi6BZrxl-2}vo0gf*SZS!!YgKx_-yR{MwD;+U&kt^XBSWCS<40(Ei%TCb8l zBuZVT`w1CXlqy|8xW_!h#)WAZVGov*Ri3KEy2VCtqKk$ESr)D@k`>7y^BrX9%y8XS zg353hI>v`^e;_ZwOf%S)O7Mqmux)H?z}GH7XICQH3$C!GgBK#~uW)UT>uj&@9T_dp z!&3|Vgg)Y1e;%kfn&>-6m`}|2N5AZ*-Q@y)(@?)%&x_)|TQ8{z#^-SyWuj*R(0rq!$oDh&ux>LWobgVJJCDJ(=mWH<2lAE!gFX*l|qX(tuLOyd&RG4@4LuBtpA<$#SxURV61hF<7(c4+o!^ z*A(+0QaGd9Mr1~((}&05GCj%5_=josoY_>PeocvbB5PeXEl{ukr5w?`*KU^xuJ7s< ztH|5iTc-27_UuO6wr!K`_w3n2-T^)kFn1;oZx3o+3;K+;M$)BomuUFlVN|VFHQIOO zAUUlIAgC%xbTgtWG=p0|CO2~zP%=XBkkxPyxlJ*XUQx3KO{H#rxM!whkZDz0N(6T| z^|s~*ocXo!^FpbRM*&*9WDO#%8MJl%7V6ulFFAbgM;478@ZXUfmgb|&S1v=0{zv+% zZ40vL>Q1H|9RN11$bL;evMJ*z34v)36De_P1p3&L*o7^5VK|koSdLb%T1k~^R;EVK z$9(<*K=ncloY{QHxG)lH?2Hg)#^3{n8w`#a$Qu_&lHZmf@ahbOB9e9|5fO3^p<=`% z*)QdM962oUrLeZ8=i10-x$tDO4QX<~Jfdy_9 zz~)=BbuR%+*9dY1&|~K`?=ro`l`J;ww$zyt7e-e%e?_GWyHmL!Q_*-{x^yYM3w=#h zdYu(|0@ERiHD4*)YjtR~4dTy9nB_Qp>;xj0CK3s3I7u^&U$DV^okcNoQQ6fjI_w_R z8TFc;K7T9V&IU-7--l3sSnR&JuHnuycu)H9m>wM;r`wj_aP*ZU zzS;tX1bX*a!&BBSdv)yxiB|Jx|Ei+^YRd~1gFiFpcEF&K6dnG8E=j_gBR&3gHl0~n z5fS$B(r4lC!)V@|S>&9wTY#t@l76AsK@ZS=ZDCIC<4fyl`0x?*G9+FMNAwYOXRwQ~ zHFS>a(!Cwc>Bjo1WccAYJ$>?+A|u{|ubYlYbw_PAG7w-3<@-lRQ`GwxWDaV}t7~g@ z>-o9<UA=OR ztR{IPQ`wUuk!1Db=AWo~XmxQ(g1io${`oXH??ST1M->BWC@-Xgn!)E1jz|#_fhoNC z12S)H5Ac{MJm6>;WpG>e?b}B_UOw~+)Ck+Dc?AsX!}TpII)m7BVh*MvwdM8e*TM-l z^wLD7csbJw4DkQZk;C-j)eADLXQtg;UR4=mdige(9^82#k!yo18I+ltL3L`?p%0NC zX!!UMWHHEd1Z!1+a5|O$|w0GeXpqLExPO1IVI6Rk8)pPBQS3=x&X{cVx;s6PCo; z3rCiXk=S&3LlY|8bQKH@ngfJRk%%FK@`Q*-6!H8Nc)Sf{H&%aOH3uUjBSaKyAyI2T zr9l~B*1XEXv+dun4~-ekz*bXg*RDaTSTd~C9uXsfXamc|5Yg_^oDk^ zyz;TxIW2o(xyd1#h<}o^Sa@nSgQDE(96!YwWn0s(ySrGb!3%@cY zB01(2BFU2x1>Z$XL4Y)vtmi+e$+1EKVdqR940F`D>hPVSPH_&`>hY<`bnw7|9JwR? z`t_w@!-nEML;eHohLdAM;P~cA(IHpK-n}3_hAZE=@e^smcZJCf~sXsmfz}Sk| zx$nV|5j1XK6FFYpx^?CFOjAiuPm{=ZUU09qCHTs6ar%)abPs-;F$D_-iWPZ3UX?yWwmDf)^?lecX6G2a5 z3I-2`5_VyG%my%TnH}mFC^OjQVp_q5oRIaAr5*C?pzdPHDf2@T@jkxyWfr@k{F>*buk zo^V)CFRwsnS64;!bP0vN3#SF&&ZG#?7?NUwg_9Ze`XW6#H4SoA=cS#giIH?=<5%FR z&ZlH>i4&11Wozd|$L8i0$211wrM^l&B9FqYz&-V$!VMP)*P5NiT>R?@rDEFbB~-r8ZA7c%NzbJ| z6)#y{+Q%|#ad9z7ic5mEZZs`kG@stSc?AycbSmL^hYINg2qSabcb?^q4s!B6Kxb`0)=6 zJIKz-OTaEK;(-y{FH>p+mB||=HqhnDmL@m9@&L?JsZx($1nly*zUBIny-ziO`kCU~ z2OW1fruoxXt-Fx9Q*pWpXTCcJhaw5?zEDt-W8XsQ;+f1m{IGfjS3%KlE+Q(vUhJn+ z;@(P9ot0An!NdY~*u&_>=_zz!btS4%xda9_FJ#t1cFgvNZSF5$zMQK_ldVs3-~P4- zawELI?UR4W5_2({Q6$Sv>JrF|DV zc<`VoF6bHSkwt4qk@TWWq62*o($S+w#qT^d7Mip>z|DhoEd$Bq!%-43%vc{sEQ7Rr z|85FN38UABk(4m&JsE)-VH{{idf>fgFUD1@>B*5NvWTe!OTS+t?|F*SexV;3`Dh}i zw&T2DyZf9XJ3bMeSO)h%u3{;i00}d;9abMQiTSriW^mcqNi*Mv&&>VjZAQMmy3d_{mG@AC7uiw{jtaYNm93 z^-Wr|U=gvjPpcNKXlJio1k(-KFM4dS3EGgq)9HqQXqH*Ii zQ+yC#C(%{Lo}4-E*c4K8AEWDBnPqDyB$P!`GUy&`6Kqn#lG66aQmy*6=;Y>;!qv6x z28pt!j-tj8H53VI&8pt-EOpc%M!dv zB&V>4d&t4wR`jd4Z{I51Tc$uHyt^SP2uuNBE#9=GNTC!kXY=ZoR-gckqL!`N(z!da z;Qbz!V{_8hk?9VifgKziOs7C6*t2^FfE*IZ04kGX-_Wm1N>EwwY&qK8cxnnAo9#~h z`VXO1D>ct0?MZOtG0@Ky0IUn>3rmE8a1H<+#vXKTbv4oVWkCK2fX)z#3oib3!D&4K zxiT-xSG+NOczYW(qOx=#?16xI3vgPsCH&b5Bmjod?fnCxga9k}7rzKln zg6e%sH#XFu9XobNV1buuIrps4G3lEr;I_sIwF0IYWCzK#tc>FTqE!${T>|dyRV0jE zCVNCfS+b4wdRb9p-vlFqQ3km=SrY?JPVi%O2@8Pm?1dA`6s{R30dfSm|A3*ib=x*d zO#$#nG?oV;Y`@IKz{rdu-rT0XeV5BXf@S7DyzS1Jz!L4xUaz@L9;kX8q1tuo(@9V^ zIKk4*F^ht)tV9%kpV$`%L!m++`?6NNHtCY@IJA+Lq=+xP-h%{ zDpO#U!PK~{u}J4#yb(-~6H3yH^J8fEh*1>v0m?z3?bNEBPGrt4 zxjpcC4`@P0pD)e*{6#&$4;7xeIeYf(Ki$4p*PfL0L%3x2^TwF~R7@Y3Fk<{a+?NwJ z_=oFFoft|PW=aR%9wXmCKl!4cK7E?1Rj)?rUCj_x^(CW%7Bbz>6>_xH1e{?W`Ch#N zIsr6tjZ0dJQ30%YMU5e8{|AbD6GOlJ`U~B^eV(-fe zZ{9@@?mZwQFEcW&2~!DxT`q>M#>7;TL_~kNj?_!>lzt*!=qC=}`ANc_X(b!Ve31%W zP-v5G4J249Q`)rz>fWup)RFt=e@_pvvBJ*no9M^2tEf<+LSh=SVcidiWL6fgBS#*O z&vGFLXD z^~Qw*NL2=>w|I^YWNlajBT$qO`OHz$W2kJo3b^?p@fUXuK+T*yi+7YnwA0JV2uNX2 zb8}Y@I&x?)y?OJ7I(F(x{*?w`Dt;=ZV}{48cqg*QF&%uWNb(v}08TG2hv=gjv3%C~ z3zw)6xU<^ANm>OF0q)qT8%>z@J-sAoaTjO~fPYUS(Jle?g$K-BS=Pg4Kv#QYFlYn- z;~xtTaC`R|KydN`2!ydt;#E2}%ZV2L^7Dnuh7B93P|-4E@8m(_znM-|2Hb;uTtNz`Iho3WW9(mTth6s4^ooG$ z6Jd5S7?J4RvM*~5b0S@xkuS)<@^C8XpNEDH?n}(KW+_Alw9&86QTQ_qvOku`;Kwq3 zrA?bQqLA^^`pr}kGGUea-2#=yhE8B+j+4sXJw8H*r`h6qSEBOe%gf%|x9>uoS;A$$ zxbBmbX571bB4Jml_jv)kb=MEh@5Nv4wZHJ-W5OLL()G6UKqx)oW-?E*PmyDp6z+Bh(pWYEG2(Ws9?F281>HM5lE?hy( zTmA0mrDQzFL6V@dVl%-b)+b~9d;jVkHEz*_&fUF0S#ba2$gsYh0f1Ei9yEj`tH)xl zVE0X4p+O}4_+A`%I0~A*6f9AQ-jx0zTvcAq)A-@7ACiHuDLDeXX^SjJ;+D`CGKii& zcp?u$<|A4*bE1s+bmHiyacLMX1X)lD1LJ6zDmWmSqM$jYoQwfw1GI*&oX8eRPCucY z9}80xSf9W{9-twl@PTC=6iDHf5qaSv~SOLL=g?CWb2L4 zPyJf9e{pfC@Ov9hjGYB2Y5(|BEV-J`-d`#Mg88o_#cZ)&eT|^g`R5;`6>fKG6Ps`3!BWgPem{N{oC&*RGrsFwDnJIA%~C8+sFxX)UN* z_n!2_>Xq`l#lLmz>IR!=iG;HeiixGGP;J7W9K&_qAi)0i{{G@Vr)@XC{=BddnL$q) z7RVHezC3z(58CBJzP{NaRP~Ot6o!e;fk`)wV-x>P7 z&2?2rzC26uS4Yx=2Y0C9WcC1QGXrd)^y&8eYi~F*%`jSJDpkt0Fy!j#pfXtG1( z*0MV!&0;d?-nF}8oyq19`mm}stD^zy3gA3u>MMEJnbpNIfcp3~VU%)76Pfto#~-*E zIm+H`dnkU@J4#v^PDw|iDEw=HS|nU$!M>Lj3b=3-lR>aCfUEsnNc#+NM3=NoYu?GZO#0>tF0i=-w#e^TjUv0sKGp{ z-1ArP;uEM;iK3dsGGkL6*yVjVI&Fr8q(g`t+PD_Rw74C>lNl8$ke8l4eJs_^nK>B= zYz+k%@&ZnXdVXmI1=X1@>$QJ;z#EMZzb_x(-q|8*5S;wR<<9PoNXTj|?|b&_C6QmA zB4j{j#K_O!*gT_?_&}e^>&|DPJvV zzolb7$`3Pz+W_IbPw}sQ5U{HcMF}$iI&I9*VG`iBghibU(;%~qP=TU*_zC%L!#6En5X*w2qXD*P zwQJUr$i=eN%Mo#h1?z1@l8ReU`om;NVncuiMj=STt6)uuJ0gYJzyp&kIMgW&KG?8= z^^SM#+C?3DcOU8i-dx+!Luh99mM0B@Y#{=}@;`fl5dL|rQw$`oIA2cW!3$W`I zM}ZBEt>~MHV@=beHWyQc0ND9i0&O7MR`kh2bcK@MZUgHwot37Htdb|5b}CuQ%e9< zFOef-nKaj+CiL#%elf%_gUecl@?|Lq-{<1R3PXRmzL-kzbA9(|@Sz*7)YZj6b04C% z`Kyeg_jlG(Y!n97IKS_{TS#Zlfdg!3Mf(mMBLDiUKLYvuI@JlTBr!Ue?r*6{A#a{b zovqq*q?f9$4v_M~Pz;Q&@8}4Q?p|=J{m{lC6ag+X>*|(jvspkmQxkaBfUhZYggM#G z5p))gjI(^3A=YK!S}>>BC8!y>1T?_?l2_C;_?|hxtN_5VzvOu&B_QX-qm=Nw!=E0N z0UkfAd-okoCx5*piIvEqXM6}tb7c^vgQ;DElMtvr%$0N6DJcVccmvn za2%0Ih0*rv@7Gewt0c083WK(=(F41hvEFRGfLe6M;DQe9@-{4?W#wZ7iJAqpc*XZ* zH5|qj;O6%4*Pre^x<|_vEu%XR?$Wi#cZo1FX$&5({Zc=Q>i?W7RIEUE@@XET+T*cn z8X?&(cKRDK0T{Fdu+Kn(mKN;tcGlh8=zViUbdco7+h)85rxi*DsoMbb%`GV*I-YE6 zI#b*UB#40eVbM&(k#*i4MB(ioQVF9%RJlfFntEo6?jBmcVmS>QGKezM5G4Z`wZxAA zM@=&jEiuY(PFc^>$kNP$-iN)%)Z=uTHhG$;EZCZAs2t2CW(PPs$e^*(!Y}jB(%}P# zB?8U;!5nQim@r2Yp=C=xrxc1B`%=IzU(=K`9DV*Y8!&bHR9doZDJ3CuoO!(rcDXP| z*{Yq3NUhm7b|?L4MJCTPVAc6r)@T322^=lIZUuL({ZPp;BI6PklsqB|=U#=*K=v)S z{O{?3O&flsF{6fwlEcVRn4!_n`6!PMX9q76iL&xk@YY57z+L}IfYP0P{Q&3;$kol0 z@_-k5cm~v0TnYftbVkH-2ds#v16-7p&SJn)ec&y+w!H&w-nvr&?~NNb1nd^9HwV&H zH)MLB`IfIrwT@rT1N5$-cql3(8W$j=7AAI!(fRZH2TW2ql;2i1B z{sE*9*#Wdy zUlP$`Lazgi)#uH?NgXVMiwa#1i*($TO)UgCKLYK5xy*(zk8$(xCc8o%=+gQoh?GZx zKYgC+jSUkAHLm0OwssWx>=+XK_KRgSFH4RK6`3(JTW`u&X*l@0gLtvLreIy{lTCE; z_z_vQY4cVJDp;HxJc`hZdnd@*ubM2^{$Xx0M%e(oV=y4lM610)Z%E3rA)kt4V0^J3 z^t&*$uMxTBuYq>#%K>;pZmgjK1wPG$_3hnNjCz=R&54N&`uQ3$O=i;M#-KAe!jz<> zD1Yz(>BRg1p|r53@19*S^tpJ6_Fg6dyWB>;57=~r<>;73aU0kELolurC>u;4VdW14 zeFZ7Ec#1VDMs>zrl-Z1PtETR*|1@QNYRuiQGyuk@<{F4wQJhdfBWm` z(W5C78n4OVnraIJpe)E;v18c(Z`r$dFU_4b7dE-hWH%kt+lX|gU5KZwt#S0j!c}x+ zzvjWmbbz&M*8)H3Q8Ku#*$Z=Rz4Ca;gMq;=8!fP|Et@*96)-!hna}iqGFBGo068BF ztO#IS$bu|wEGazaDe77m=w0-y#)Mo+gSyJ0lZav7g@#$e9WuXv&B~q=VIQ%ft)u6k=d{`Z10%#EEL#Z|3Rk6#gi>?$e)pZ5$$P!-e|%+2B2ShY4)snHnI z+b&`tP#gvn91RY@y*Y8x6y2_U`}U@FYnRi*-OcF1?$+SVDtdNa!;9qzD<^lco1DE@ zIXHIZgT?Goi8{0FT8UQcsdn8))Tl`_$^$t-Yg;GM&x)tFC%ckm)OLBs?A^1I7B5~X zTHvfoz?@Vq*kw64R}UWnwVB}Ta&p?;L&J1!yScNgL>XDuOItEh6Dat`7SaA?TiksU z4Cn|Vlp%Mw;<;l$_x5z4pTC3I4kXmd0}OLv!-_1JMlg5T9g%KUp16AH3^a%>gxBm{ zrk6Oc@wP87Yb3b%eX+0BQd(*v0AEvjd~$+l0Uw*~L9N=fBQxU+fa`|5nXa%xM^rQq zkcrq;u|s>fySbEs83;7PP3_B3ig`p-7x)7o?`95*sZ1I|{dF{K#=MWBLqA#gsgANmJpD#S&nw+`#{{7oJAv z^7-=Y+hl*=xkqQw>@~x*JcB(07bD69&`gX;lox)*UZStQ`bwP69O{8zh6fBMd$Innwuqb-c(&0Kg8|<`-1=T`PQmin;x}!h-4d6>eRIplEuFL&3)0iduOtn=}m_2 zCQ^ra0|zAJLADL&z;pvvd*CRo&Fs8%yvH$euIT|CNvKl{@DQ1>h&GR;JqAw3vcLQR zP-UR4ElgD~{w(Tlz{g8QgcdXlj@oiD$Y(0AtmA7|+m7N_zoY2UFNH?JKMEWvW}a^w zfQG77tBQu^iWMtl5XcT|*47$+FVkl3+`2;s;CtJF`k^gidePm9w(Z$2{i9u;`}$=) zz|-^m!~Cy)wrtg0e3F#pM+-v)|UmCyZB>W;jIdw1IPC|qPxkl zuj%^LC!*?5dvu7j?ZQtDM5Uk#GW2coRHWB$m&r4bpGQTC6rmb5s^gx#CQ;wu;9#*t zPJVY0k!QF;B7sb+G9i`WkF9%20JaFS^DILt83q())Ce;y2Z@ujSfcCJo*uM!*A`Jn z`J?N>Q~d4PeJvWeji-S21lwa)P~hqH_m2<3w8DfOZS-i{mi5%KWfLk;dny@Qx(NVh zHHY%$N)v0Fd-_+RnDD1mt9A_%s;^@WRSY-|ig zmRnSBOsLK_n3W)oBSP&3RSTZ}X9@(%sBv)Mhc#<4*p8rCkd|acgjTKF(w$RNFs)x* zj=_I8ikyX+CqCz8%U8*AYnMV4fFwJ1L}QC%c4d16t~K+CnKx|fS&GiAsDQzQFZJy= z0N`_xu0DRlmc$PrNyamTA#Z}w$B425XeNMi;^^ceGnLtu4%)V9MYU@o8Vni%Cz!Ei zF-PC)*Q-Yd=XoJ{v7{y{j(hLb^`C^V%(NAoKqtzZ$DN*>Sw`=louY#E=HmL6mKg)j zqU{iYUJR9tJpyRCT^v;}{q=Ubxw|JBm}+L~csUooXHt_B1T%0ybNThxUup2r5wLAe zpej|W(AqVc{^50e-!q>0qkDz7`O?C?XYKF!m+q6h-G5#W02ci{g{LF9FyPHzIJ20w zPPNfEUdMW>%%#g-7(6nyAba62;J>R389W4p`UZ$HEEX-@(Lan9p7HOsfxmcMesA6H zwKp9cCksqvvk3vKB$z>W)p>IeoV?N`GI{&nZHRCGKsMzaDfvk}B}Hf`A*>R>Qe#=6 zX|VWREq%z-d>JoO$k-P4yIB8W@G~-SHinUdJHS*1WxY=)JsSi1(Epi$I97NtuMgk% zBXAJgHe5#Mem;Km-wE- zMtK`|cXxRRnjyb;f$at2F@NO&@z?t@Jhs)XYS70!~5@Z22zM(DKCqm}1qD%*`U%vr#gEUYU zZi3QKklx(hLYFZO?;6;M&Ok1VjSEs@Ly$0K2v9wO7A;;u-evpK)3ftoVOx=STL0Ij zr78B^ZD{GX#^B42y7rqW4skpU@9yD6Com1q;K|Pq~1D)2@ur}@~ zr^S)U*EfC?E8Q0tmyk>Ty3ljwM5d173g-cbFV+d3HG3{C{7&<|{=7e!v(A!REM4Z} zk7;p$T`s0pu2i+(HM+RIAq*>GsAQq)GI+do>lOy+3n?M-9t~Z$PM3S};K2iA|345O zKLd9z0|ySI1q+vmqCr_i&Y3oF3tG5#&VDp+=2&8#Uyd}huDGjLVIA1zeL2Ez>F7@h zkcY$FMCVsmz&R`w;64!+zuLn0*vb{l1cV-)okz}B^o{`{`}XZ8_u%;p7lngeu&~2W^2>Jgkve+pKvDs?_te zj&8t}URhg7f>E3olf7_WgI0w|`+Zo5nW>#SJgE-2ygWeXlDA|RIIQiFd+*%Yb#&&} z6EKlDfk7Bf4?u?j|N!n^E;kpTg7nIoQ^ghbk5as{`S%cJ9CV6tK@ z_<)bkgPRVWdO*sp0NMD~fV|lnDsuf6-MVo}w*RxgyRy?C{L$9+2di@z|F`r2F67@@ zo<4o5@MErP1Awi9ex$-^O1Et0%$W+AoVw4y_XciVzqj~5Vi`Ef3ZvyOZcC-=m6Ul? zdu7?(Re^V_kQ}G`5B{yfw70Tf;Hz6^R>E2Z6bV$t%a>GD>sC{zPMy*n3lUJ2H@`O{ zZUr4)WjEVLnYVP5&%6w-XHt*3gM~s=R2i5WC|g%M1)iR+j_hy1k5Xnf=E`P59;w5s zkDG#gmV%R;GOKK>ta{@;>IJV=8G4&2C_l*OUj2G!uSWMC^a5EAeOh_7=;W+S%2_Eh zOEU$%O1Te0Lqip~(Yk#;e}jRK>}%Q4S%Lqm4D*{Rs7|Po)#_ANHa>RBrm3rJ z2Oh98D)gyeoi+r>a+^_}@`@xq1^%zJACYBcVQ-<#^II!DQ$1W42gTRGyp^U8O{-Wd zi?5wD^`Z~>+%5B1D-%l-6;LQpQ*UcmWmnuudHee)aM2YM8x$xY((mA3E1NNzYoNW( zh|nSotfxS=P!22e%XVhyA3bw@<+L$CIsWLcU{ax=NTED@Jr%&NoM+`)RTN~{W~R0MR@J znJ(p9VX#8NmTrGOuX3FZDjT=rcy{5rrKhjv&YQ2@EypWAbK17+q})AyRX+a$irdKr zff!|GVXKNYU#$?$R2B~Tr5}8YHC3=i*VVz-)7sWi)f)ChcYN6J%K34>B2h~fD_&Y5 zVyN5a^Ea5alkK5ap!D?(R6tNs^dp|n=u7uJ`BjxZ7j<>>xs`6WLwOc$uZlKZp{#72 z6{sRP*7I_CE;;zBs(ml3qUcNh43i3FZegRKlZ$6uK3uPY=;Mv5K&?rNe{=t+@b4MG zrraMGyePN^o)36lpqUXB2;b|0l}5d-v3w zIdlFes>-e7Z|s3j^V_%s{}T%9JhE3hM|!m-A|gUY!`jdPX|Fu0pFMjvEn2ilQ(I_bgvvCZQ7(M zWt~hSfNn~Eks?#>=FJ_+dV~j=)wd&CByzD1t|_9M)}TT-Z3?7S%T|iGysn~;Z#Z%} zV$29i`8kGcgB&Og(qW~Hi;58hJGp&H!4D4ESHbz@g*GnCJS@L|PeP2vfBPQbhK6Dza*<#^AE2Ak-C% zsYXy0M5>&{_#$@h8|WP)`R_YlB%j40@~ctNU|V5RD>FK{VL!cp`<@=%eJJNVy4WC^ z-Df&Id+?Mxc7$wF?fRm$kpLPBC*P%<*YNYS=gO20wjnlegzR{jQ*dEp4vwblTNz5^ z+-{Z+j5{#Pfv5>b&bS=ja|qWXnamt5gr*V!YKO}y3!%RJojS78xZFR#+XFmv<>;1A zqOsZycv{!Nv$#;Zw9CHab?n%&WRevjTCz+Fh=-jk8vyuM9R+zPIIJP+Te9_LD%10( z7*{Zbfn~66?d=0Mtmcy8Zf56A)oaw0h-`%l6^Lz*7k|HudiLxI1p#k~#=S)(*uTak z$ZgFM&g<9BDwAjaa-auHljN)Cn5K3OYK(-f7;-PvlD_@+w@?oLPXGWw07*naR1w*r zpdfixwyI`FMIG+odk2*j=-5WRxhzHyOdDW3Vs?WIzPei6-B@j+e%%@}Ma>imj_7_~ z@_PFr8O@JaJDBZw@!JZAvTI1tYK&?A(y*@$6tfC8UHH84^fyz4E<8-5f^AQbL)qC# z-YOu8(>zm_H?OytO0e4;CzTnQ+R}?#`*LVB^Y7REd9!6oKlthzdUJE5$h!sAo`J(D zDh}zm1oQG@t;_o8zgM($f$(>si0Z8yakA4Rkvj_A6w1(F=*5=raErmHj@%Fwx zRHk%E^w%f8FmHI5<;+mNYE+G)FAXNglq2-;;X`6KGQQVdU0VYgutU(nT@S~*G4$}~ z898QHW#^B7_%|g#OgwrFnn6ulb(7i6DpjjtM&J|OkTs!0@9z>vJy!9^u6V(e4l_%8 z(S~2TU=ocV*o5jJI?j>b{gce-{MtI?UAi~)mwQuke1zO1G*~uB1{TXEXk*}&<&tNY3ShReMor(u9vSJOZSqN>y ztbrZuhYhKH*A5~-rrk&Ty6LBl)UatIIywx=bD*=a{jhm`d*QG~Pkbe>3_cT9ydz@( zb2i4X0>IwAZ;wpEuWr5Q#fuljh8Fx|_<1>T;)L*)*$J&#vt~I~3pW}7 z%Rn^0i5CoZ9Txiu@Z}BI)$LuErZxl2yrsf*ga8$Z>$`HmXO*4;>?$vW^rx=PgV=U~&PzZt9hI zGKL0lN_;X62Y|nJQ8QSmQ>PB`|LoJ%Q=A)9#3gk6Uefv zy>1uQ7>-*ODquYII-J;``OLHiR_BNdiNQ3VW?;b7AEx;X9Xb?0j320Zv*rS@Kc@}p zD$afLxAy=KMD!IBL7)9h&M-0H!WsL|ZtervTKJpxvD^|PrnynKW5!!mq7q{rAjEG{No3?`T^keV1Sv;_uJOkH5kr+1m&;De3@FZC96U$8)1 zH8HRpGg`wZ_JBD9OIO zkz@4B*~`%LPNmmxAmJ4oLv9#2-?)B-X3m%{$4W`fpi2*4Q%L~Avq-vf^sNp(-Y1}1 z6h=~5GCepvn5xyN`~TSc3izn5t@|C9NiuN~2nmD)2%g{`+@U~mcXvvQyE}#AUP^&N zaVu^uu0aC?4RLq5|F!pUhY5xDz5mzuy}s||@FR2Q%DLyBnYnkLb=F>so;`mBb%}gP zsCA{7h?kPb!9gh(PHx_{W2@Xly(BQg6ngN>c*+B+NIsZD@P7+fI`z&3maGqUlT{P)YuU6EXSPfl`x}tOg84JGR4o& zN&ZeHLlc)}+gK8f)en5i_M`IU3eo0G>!mLK!#N;H2{B?ok&%{w0M(3Y54nwGJvSOP zYLtK;fq{Yg{aHKSS~r#(7b~=6Ay5wQu82#%~p}3NgYD+=1eky(Nok%4;<}wy`_Q}4P_?N!UYSGNuwDaVUTk(c4$OkiBJ_3>*1Z!ht6g7r*`IBR zqsNAj^EybUg~R!*h^_F@SWQ7b;loE{QAk5c zvtN;>oePj+S8(A74KrehgM1>1O%IE6M-#N4K zz;fkA9U?Sp&`4_9w5ee;bC>_cJ;2)BY$wbKH^u7D0OATeaM-afUABS@gE0;^8aHi8 zzx{d<8UD#szhM&$!1hqbPTk-}^`kgtv0?zLHt_Fj^ypF2at@Gp?AS>?d-f)F5@Xjf zmV@%G@wK3)tb59V5hKFP<-M}46@`U=m|f#RsC^zE(&Q-*+t$faCo3yd>UIzc58cSU z-3U?Iu{KGPU>CFlz2Sr_c(lK6YDoEtw;*%(25?#%N;Udlk|6fQm6gP3?5mg01?}9j zX{`i#Dbbu5S6Vb(LG2I(G9xvf4o%b2Ztxf(b#5}t)f-?>VsY0kvYhR5R9`6*TF+aaV@q`QRoO+wR4gH`0Dy5m?qqy zl1-Mo z`rV?oFNH_$p}OrVAt6|&grFvJ**oSD9``$_P_U7N52W569O|bJ$khsY7S+3SGvegK z=ognnErE4(Ei`WOUF<(-I6VxyrS2};?@pfO^}#N0sNCZiotp2CSW_lvr00)7`eMAOl9B^;nv0G*vqC+myEg;m0{^fk<&YVJE zy^!jSIRvEt623=`L>{kv*JE^caRE_n8ak*SE&jF!)fskA9Q#cbp8*y7L~RCzZD_NOCei59gUB964!wHy zBLDLK6dm*wH#H+lTo1(8(Uf9ZX3`HQcG6m_HDYbc!FXm$CUN*@g+Q0p2f|wE3??$} zCqddPhAv(}RxYwzIbdYjGE+}WIWwb)akE~LyY|D#*`P_Ze8qD5X686@TvZ4*#HLUd z2&K4ruVoiTa@E2pvSn5Hrz3fbDGP(1527*^{V6mFZeu`~q8~+4hb|pxA9Q0gQq!q= z%^LK}k>iq-rq;odHfC^5a~KTd07eao8z4b*H;AUsm`)QXOq6Ng#;uwN9U?v=P8{aI za}`9Klg`p#rBM1B*exRv<|MGRs|n~cm_-!S1;)->3JY4Ag`_*CGFW$YAv;eGis<-I zXc@^rMUma8d}L9^h9WK}3blqGMpdg;rAgB#2}%xLwAx&$OVc+G?LM&k4+CEP0a$3? zzPn4u4CZInEke@#dB`0@hiVB5R@%s$t@slRdtm!k!ev&88wn_j#Ywj!>J7z3b zms|dqdVmKvJox1d{G_CJ^zE55l2oOhp0mSQnu{q29IzT;>iy)&Q{pm(h=R&@*eR$X z@9$ph3u@4)IX>@)5>#+<533G$M6;~;TZp^DlZd9`u!g@$#q3^W;SUbAW`)otu~=xjW|8TwqjtB#=L$h$%Vn>1+>X*8H!!gX#&^4O%Qv#CVi^AhaxzKo^@ ze7Olz`CBOR*(s6ndVF>^q`+E}vAKg@(P!$^88m4UkW@TBIBu$pq&f~R)xy*FH=*HM zyuoZS(s+AsCk0ffNeMA;1?{X*z8tMwI|2dXDE+y4y5Gj72nGo2Y4g^>Xv_!Dfa_(e z-;DGWV#SnFO_xzJ+!7beFC!`s?m%?;zgk{g-#}>zq0*-C2YcW$S43uaLY_Sll$G~m z*)U5aboJ;pfEF*DO~XfgMPAi|MY@f*zW}|1FK*>`%Rl>E>;r^({=8Wt@x|Bt>ee=T z{OdaUa$h)Cp)bgdpl7!aAYm;KW*f00)pq5FHqbi00c5%|y}1;t-h%-kUd5RvAA2Rp^VV&<5XjrmS`66AmBSzeg#i<$u_VWY zK%Q(M1rEN6!A=>_Pg=-&Hud1b35aD{t`iwNmao&g`bcc>#TPAT?dIM1Zso`4Wr`$A zU#kBVOfz=37D{Apz$@LC`^TUM{_O#;L0f*esAh!zZo}VXg`=Y*rG+Mw6@9n~vNTov z+gRa({ZTVZ`-8eLHa}TZ&`n2MATWFkrGz9*jcbbn#YNUXm$YvqsY%l&G=97;n|Jcm zDPlp(?q`hLaex`w{jtbb*^Gm=@hW4g*(gwCxsnnRDXHTF1b-&NX^kHFjN+HS0lJwD ziJ|K^O<5>PwN@s?9Fiq0kvj3h6^4ZnT6_CPKROF(be&z)Szjbi7%qUhnz z$f^~P*Nx%StAB4A)OR3NtW=RQVEM^%ZA{r8*~qHa9;Y;h$LAvCqeG{Gl~Y9#yn4+ zx@B>84tAMe&2@6&<>>=wQ1>p~|JIy&{RRFXTHvYT1>k;us#L606;u3hQtNhD)DTkR zLj_?yJlz3uPyza2myhM?^5D}G>Fn9FVlsgwEOLY(zZ&fFK5SE)2DFolr+-&MLKvkY zQ~va~WiYL5MOWe>LFU(pyebW+kb65QJvD*uLgSb1ciF<1UBDimoB}g~K=~eV+nI`F zl$D6@Wwt(8OiK(G69qmGn>|>AB4Ai79Q-gH{$cu=XO7s#a>M2yDFb%EhJ{re_!_i% z{ptSku@cx=JLtaa=U3Mt3t0Ou`gT1%34RQumXC$)_^aO}SW@eGaeXuB8$-dX-3q$I zBQnFaROogB8n)A@X6**#QwVnF8dK5WE!Au}0>5j57&iEZWyG@SK}sqWE9gMiw>6`} z^`M)LKD-R&2R>JmNwIq5SL0k<+Q`VXN_|Lefe7wDA+xHt~ z;4pX247z^(x?Bf4&>3YX3$K+G4K7|dhhqsd0fPyNdr*_e2bG4?a(YIND|X&P2d3DH zjx%K?Lnf^w?fCI~8ZvYQ6)4-CqTk#EKYFnq<-NYMBY79{$uR>va-@##pk7n!)~$*E z&zv$5AOI^RIdGx672FZ%tvql=&ni~#e4ho>WdSHPL&z=gS=DKKBi3{F7;nHE!#qbY67re=1Rko(xKMA|h!8H(or%K2=OiO(gI%+{VdO zCT1p-Fbx4UC=Of_HoSu+a0*3+Mu>i_#@R;nZ`I>$yStG|UUNzZZ#4?&s#zN?-Mo8~ z_Gg};P4~A8tp%zG>hAJtUfM>2)Tp>fc_3JNXe2;YcVhDjGuVRGi>^$&ckZTjE7y|0 zzdxpd(~0$y+0=o9KYrzeF~h>P$wu#kbtN6i+>jtLio6qG4CFU#MaJTKgqyb0e6;p zw`ySvVIyM;;g^N%~YDMOybV z#3l*RPmjQs{5qAZR7?28-Fx-}a#xnFZmB06WVVLo043z=8ab`2Pdy}64OE*znJ|P1 zIy#2x)UKspr!I{DW(3{X(GEP+mk4|laLs#Qe!RgD7n$a`x*W)8HJW$0K>~!n)cpMF^p%7ZyP7Y#=p&PHw5D-_pq?Y$oxRYWDw) z?90ud&^K_4L%%*iK+nNo{V^|q25Y3>?d)vm*NdmAVb%QfaCb9`zC0STZYfBz>Z1>A zxjh9d4HQdereUzT#hbf738LP#SqsXab(rduGJ>A%8=;=LySY+a$T2=lU)Xib20G$g zzHHr+IC;2RBUc*Qr6Rp}{zN#s{7i9occ+^n=Jfn^Bpo<-fNUXo$TR^S1fM){R5;4V z4{fK1_iqVB>S=5~syX60Y?_bI>{+wPt9*Y9B8uqG%L|du&jYznBLCJKsQLi7+P$(t zl3EE04T~h#qRoZxegF741k)H8Othf*m#3*q=MF%kM~U;=^y$-OK+VaRhGp=O;WTH# z3M$ol2Q{CbMjG$7v~lxxN{x9WvleV*q81nLTA-bLjX{R)Il}ADt*(misj0Zx@c@JE z-<_PCXzP{@;GtIp>c4=3f%>1ven*ZR{Zqh6Jy-7Qe^(Futr6b;gpcCTo`ck?O)EMz z{1j>6O!jr3G4#z>UsGU%T6F8-Z8Ehnqp17g!Z~8js#+Z2As-11R!Ykj?bi6^NJ@fv zL8a}LMC5$#(s`6=pGhqmH_tJ}|1jtQZnE&Ip9SLt1er1*oG);8DqDl$TASsHqedo=aM|Oq51AZJsD_5=rZ#RX~wuF;)Cu~Qsn>79njU7K$ z&#zV6tiINQ82g1Km&x|)e6orW&Xl7u1UWRST^|pYR`*5Q*Tlt)OpAk03N6|CEgHza zMn6ZA28s@9QD7IW0aw`6Q}4C9XT7C6Y!qCd@888k_|3&T?cSxUz5{vA4yJ22hD@27fvgE1QBJ$ z23AH$+!98Pb3Y(caX^q8FCHn)uUogS1du)Y_M}T+U&M{ulnNE`p$m78%790`#((sc zdCjAcAhdeTYBDYct>i5bZZ`&P1!@k_UxDig)S1uE-;>l6aWv-ESCXLPxB!lCzEE%| zY(eYW}Zh1!;7;rGLtumzNi%zD^{IC|f;J&jYr|yYD_b z(D_HNBX_^Qt_PTsV2PwkBM{ixwv__|HS0YOELd3sm#2UOzT6-I!jYM9XUty->I|!? zUE9*4+q`b=N+4`y5X5Z6bh-l+8NQGPa`0+cxNb&bi`1EaJ_XGt4$g1knWom8%bat~SKj<5Xg>)D<@CcpJ zXGSmcmHblv+k=;UYj<~SF#=Vfy`Zb!2u4-yU$*__Yp&k+tW?LA$B=2GTRXpmNl+qG zC}twjuNVU6yY%$@JOK%K$2F_Jll>V*ZP2uXppLTQ{h!3hC(r`V5WVq@2*}LM%|xx` zujjtzzNVQ4M05)n`E$M^otu?1^MT}N!a5f64>&L z57X)RH_n9>gz^@yLnWK*+RYqnb}i%2jR!-FHhY!pDf?d9SYLS7ybqTW&DYTNEp_1l zXGG_~u}y>iaLoZ%U=LlAo?}3B@6bqEy8{V{7B2Ma#v&P%D5=kIO%5{i#O*i&L#9=$ z*W!Cw5rdEh!r^AV_^oYM;n+Enh7KDc-^nHuqGj;q3CBNHme@Dm7`*W*^cK8aQ!@>C z*UcyZfjFC!bn4oLUOan*9Gb?GxVUBOHrNpx)6T^~qO2i}&;66z10VH(5lfrPELKIpHRv5N4T4MC4(({~%>zhy(*;u;kT7pl z1D;b-d?K0q+ejeH4r(mh#YzUyO~h1CesWx>v$U0p@F!;a3oVltOuum!(+1}EhIe=XX$gfmC}SQ&-2B&YgR>D-Hg@() zO8YH=Tz|&28v?t?!9bpXu(ITr^I9aj0db51U4yN1wWB;FfsBnc*qYaMcQH!X7Dj2O zW8p++t`ADNjw~dl<@Lx*Pai&&2PwCexzc9kkO21G8#x!-04JfYWN@3go!LlYqcq3~ z194_m1Ombf?Ockv1BozL`)XRj-t^aW^0M`yJ2&n~z1$C+bj19_zoKYtHG>k#%Gy@fq_=~Y~JYEqE-&1>(;dSmvr&^ zGciv%v!WbvG8h{VWPoaLXc{=Zm;y$mDuFP|fCV71W$xy~lT+!{<;6%oeJvc}$>7E& zfU|F`q|@0;H(>!AOZ7%S1)}RIA2ZwUvgDW+JjyEFkI1?w=jJ2PDq482>USXv$#F+! zx`6ljfp)-&Pwa^H@W@~);Nc46h9IglG8o9Po7mpIxVjFgZlXw1#YY4q!`_NKi#4Fv zkIw_JGnIt3sCQ3AhRWI5nfk)rasMwjsX~u4Lcs{Z@plgm$8K8hO6dOk@3>+hy~{I7xgOzJM$74NH{_wYYtQc!r?yGfR-&? zNP`9qGTdF9Ham8La>R|BG9X?JL!J&DyCc~Pv@=t48Prs&SRTRt3JL!Cd&jeI{LJ8l zJbu4s%^Hzq+q?e=g@o%UDFvZOp%(tUN;=%7?LTZ$SJ9X;U(=!6S|lxw)34)p{<6?l z5*L$Uh~ZqQjv%`%xdu&WLABMLAD@~;E*aFK3!VT!bdrcD_~9XocE*#lO};Bt6|3k*fNl1XL+jp=z=@E!z8 z9w#Pp;$m+3&+UO+g!eE0?D$9a=)og$nXdccbMCs1$#mE>m)O>ir859n7$;_C{ynv>{g4n!- zwO9>vz?%toHZvfmYC;+xmW_Z;K|QG_L3@B2fi?K9{6GCcGAWBGp6VYfB9c9W{g&u2_T^G(!SDTc|)7nS$qx>tpw`jE5YMSrX{4(x68k!!Gn;{^8Zn||M)?6 z;J^XOFv=wDq=J+_6oEfORR)FicWpZ5L9iPSo9T4P#^+<%WzQU_yh=?lg)5r^^$7)W zttn9741A_W!CBO(UPIcqXP-fhME&~oBflbk^xe9ZvcBJ`zIqMk96RQ|`M34}OKoX1 zHWG+w9P-l>Ox>nM+@v>8&I*T@-N=|z3s_MQFb;OPFm1q6n_ujH`8UhRUrbCiIb(K- z0}7VZIzG<}?r8%k38*Az!2C!LMIno`Mf1dVXC>ZSn;y0v5QY#v~9h}WgVaA2@djcAk)poNv%|~rPAITyL(Zk zsVvW#ZroV! zyvB8XTv!E%X$AfJ_oEHp?}2W%3p8ZwVGt5W_3GFCU9ihYy^S62GmuDgE?ASUUD-k9 zkO*iGl)c%MBnfy~b>hk88G6+f!*lXIqL7atncDl2wQCu=fBiQEfXXt*Eqq@$xR z7_Oqgz?!sTRX51R4M%XQqi8+9v=B3e$&`s;mu1!>@R_nR9lN%%zA`I@aN)tt{S(vi zc^i|3tvgx0=S{08U<8~U(O7R+4R(23p(;b@@X3iHJ5~tEXKJv^+iDNJL#LMqh^BL` zAExjsx^V6k&7M7*<}F%76+7+L@6VJLrcf}-&vwJCvf*3v8?uCLv5#+2IMb~VjcBPP z_fKvQ{7Dadbl3Wmy>mDJX%BFqVquK{lzFW06QcMa1qd!DBB@0S^@*4`pp^zC3yEKh z?ApROfr}+n8QAjIKEDGkTD*w1L3@w`+l0+wdfqA{ldQntFx`uieh8N-!OVT2HKb-z zSj!+{4s0gOA(&UoNleMdV<>UsJJOE!5RPgLXavmJWhpUpBwl6MCCJoW@#4h|T1FyC z)4g{OL7y$HEa4Y_AKBmCbL_)j@b;Ou6t)+%g)g8k5t&XVZf5#mmv`niuz5yFmtqub z@e*8AJSLIo#|jC?NP;s%z{daCRycOb3#p%NJG1aG|L)9MvL60nkdU+!Q<;%?(4x;B zKs(?d*u?pLA3LI-kXigD{4JR^)g=bX`LQpn7BJ`83jG@k6NyyxNt(t47S0Z2UEcxy zm`t{qMrK(&!@~9D^U6nQKF};~YDH<=BE)E8)VR^)3R8-Y_cuKD<7MV%cI(|8l2SiO zc6vri2HCfDCle&)nYf!%+@jZ{9qA#5F~>XoP7+zgn3I>IJDm%EEWAlZE+)X5bk4|m zWHlPI3FgKWJ?a?{bdAtN811Kx@pNkMN#QYn+y;Kna#;L7xBR_&faSzENaA}2OY@yN zbyBRc*(`vkxCaav1auTu--EA9!+oj_M-Wj~&@c{GLhtXR;PdmTV5w%p0bQ_gF*Icl zQa*=*^yKsudVPH(!I=tK_m!Z0a9Yqko`$~*?N~DeQdTBuWEQfBs+V-4AQLU^9cKj9 zgCk-z!PCufbklbjYrTd)IR;*B0eT4~0xob`BX^+9%wuKFW#Hf&vYxrN`Te_rJ6c%i z6Kb%_8#y4pwY8S;(oM}cCm`p{30w4eW(uo^t(e_wD>~wgd2X7fZ)wU zC?1EW*@HrHLV{gBpg@Jb;6@)3O=UQT3M${JYcF~l{DhK|5=FtGOzX{3w|BK~=3z^A{|`{lbI}PSL>5cQU0$+@|F4>*N8A+k7?V z3;#H8aUIR2RPz;dZF?IGfF6)zftnP2W*SiFZuHYnJD?L?k8T0c9`@l;qVDnb z-Y!|E{<-o)JIoBkksr`==3N_>>?|ZWV|HQJu01&rT283lyZZT4GW!jyqO#)pY@nSeNIod>jmcCv4Kz3@7&M3jd0zBMUO5Phq&YO$q_hHly zcEA*UHj*}kZ6-}$SF(NxnV{WKlo^sLMhD41N0C(ndrDXoN`;FRp+`XvMGuk97?@+m z&Nvs6F4E=USIMHcBPFbOOR%ODw=O;rEN(^SDxdUCOt`_g5Cx3V0cA_(l7jQzINfN_^qexio!!Q6VEy$;)E{qqB>+D^JOa9o<;{Q z9H7qKyU^M8XGA%{qK2022I!{dIXKUb%_8jtPs)zYpf5YNq1#t)(cC$6DQz&E#JV_B z+OIHZxSmMedSXiO*%P|;eGu8g>5U7YBkIr_s<*Hn-MxR89v|K585A=D4V02rjPv*j~7mCZ?7M zHfGa<<6~(-&|&a0uRxbJK=$`(BMZq6GH6^_;Qz=hXoiCmoErCZdsrNQlrM*ldFx$ylXD zEo=%=rBZp?_TwCK05$B?sb6UDu&>Fjnr`6A1LL|Q?o0BVdDH=#H+3*|>(-6fsqx6s z6XfFUNZ;&w@rU%45+%z36aaEP3il3_N2h1ef`wDbr9cJBTeb_GI5$Ul$to2=ZQHe* zL6BuTBf&1OV@@h3$8ivESd2`pWj2YaG;F9*vdJQ<(WH;K&T*h$u+mU`j%ATAU?Vh+ zkW2F=fG=EQB!cC`;6*p1fdh3E2d;w?bxSmwPZfKvpx}#(Fd&)=>9$GqHq?zaY}`aP zZ*KzeZmw@aVt5eQJa8uD?QF#tMBe)VRMXFzwj&J}^tNi%XOR0~0WI<%gfQ@_5w>B}!$ z>d&h#T)J?IYSyYtC+FuUJFNpv_<9tL8aW*MwxJuZorJzpxjS+s3OA5LJj!&!Y=n{2+22N7z+p#yTT%nr|H>{A62IjXhGF7-J9!LlvH65WN3IsB7Qy2q2 z6#OJuZc^M=)#_BIyC#oFGZ6ZjNJxvB3}hGkIKAgLrw(~b$95i}^5x6Z_=)4`I$Vzu zq7x|SVGx{rA+NZF`w^WY;3A!nS1A2%Kf0r991V zZUuFSWNtZw z{#x8n==_QERH8%)-Ze)#_RBG9(*gRLJ~kA2EmZ1#_x7EhyR7aU+vgdjg+nfFFarP3 zEK1xPLF?D87k4M-A^%xfj_JK20|t}rK%n3mu#4UlP6ziNlz!uk=G^kn_rU))hnJOI zIJuRlt682Y6$xWS>rBP}Nz(X3(;Y!YfDZS|3&P1%%^-LqBd=^BYysZvD+C=5PI>6e zspC|>LM3WA0css4AMlN!qhCw%kEyvWnOfQbRFV+$qU1th;u5&*8xYyVe zWB9PaGrsd5(o=isz_`yc4UVn0bJ>yPi`&quE#=sGLOTuh@VT6d~Y z6gUA%MX9+>PtMH~RNCCG06n_!EfRs<$<4b0y$e1^2M_F}z?wC3G>4_RIKhh*W!&7{ za%|%_tV#Tqs*(>7LA6|1Rgvmd^QCS`d}5`Ye^maG?`IktTU>97K5*qaFRrgA$_&hl zy$@?%c6LjNeSulAz2Momkkk4V_a|-HX?i*ZuVh4?2PQT8UzB~AR&a5B9m&<0GG#iQ z4l<^a&2(sOI+De1?;nB$IacgAfW)t2P{e3R1H06apr2(1c`(dW47GgOrUTu6=LQ3Z z#p)`0d~!1R*xaN2FfB2M+gmzZ_X6N3sOFy`1eoE!9dKG>@dhkPD#e?-i-42A(+K;z`xa6 z4215{sbwWa{Uap-COX!(lo+3Lc2nQL&n#@;zMV#nUj)UUC)5-YaE67cFwCJ&3i%0% zY>)Lbskt0p!(Pf=<{tQP2h8n{zpMusfxCVEmfVP$XUR9z3e_r7lr_{8oRDE3g6Z_; zj+BaoE4HT9v~i)h*{{gR9!Xk5Kw+5RCAP6_`D=`+D63{Ukr1ouT1o`J*9LTjo~|84 zy#3D_U$8(yvTfl?Nynoo9j<7q+!oUrSQacB8T#fLbDB1Js!Xvndcu0V=1BB1x@D{n zcKJLu9dM%rclJqe@F!2pNQx?HmJUM+a|;BQHxeZYj}z|F?_D9;Zs2q3 z)2yfHFVBRh|UOf~P_x0hNp*FEI84weCH zSihkp?WF`Ikx7IFoU9_q*a9dmknGfpP@RAr8q*N$3fjY^slU)LoZXyg{LAq<5Ol8Z zkIG=6f<=9b&}Jm8Xsk8V|4KhmabUD5xBO@HK(9UnrJ+@N{vx`h@nQE782LjYte%(w zl>KrGP~3LHr)1tPOJ}+IHW1mYrx%xirtnTA#H?&ws8pWUqEu44OgRcZHQ-B(`Z*)sy;v(jVy|p#js5T*vR7PKT5-zsxfB;02kq-tH0G;O)U0VE z8aEEkU@=|v!7lI1DhMH$S787OvH+%}=ggZ=BZm*8n65o&$3$pdYhB69!;S9j9|UeK zIOgdobbNLmu|JMLFjKhZ*FcNsa8*I&Y3%(CQh1$bAc8G z`bTrLY0sXVQ|qg~TPjoC99ZWq(H8tvP#NCbrd>Y;(cVMnC?)O{0=tzoa6o@K=b!yC zHM98SE-Zca@We!F@bxQk{bJO-O`B45@!~lNs+TR9M-3Y{1H$}BB-J9HpA$DSuI%V+ zSS5qv5e?no^A|2ka$Iz5JlT8bf>+k?WsPL!$+{J3N~e|<$7j`?LLVN31@JyeX!}&7 z!Xsml;Mgn2CT;%8kV-pEZk{E`%qc*$goDp708e&2+O3-*+qP{xg4<-VVP+lSA`O?( z`IY6VOXG^vs9{}NzhM&{49TKe!=FgqK7rHd@GMtJreh-%&f{>0gxU37UBvBQ4A=K)?DWnvY_@`Lcmwg|Wt1rqUUGwS=89^M%=kixCrz3sBJp4kB^J2=vD#D<+d_ zbg2IE>fgQRfZyEGTsXGsMl&B|T0e-TB}>~Xwm&EpxNbJ;VB?FJi6NwE??RdpZgl(B9a^wpfqEMKD?35W zoH0}Xo)WxhzI&ON)(gIo9Yi6{H^?IVX)NJd;A3S>Ej9G4W5KsRR2OQ9{8 z6^EGy64FGL4%JUSHd%suKL6(m(@Z!4iIoFXREv=+M&pa=(nxSL{iGdJ5V0{tRu_lmMw(&S(n!W$x~chd>c_j z$U<5EY3KJMQI#D1kZj#6faZXtAINcWu$&YVf&i){j)&Ij{XH@j%|XKhP=T1Dw158r zYSp?81+?7;?Nk@~dQ43^cm5J)4t5h$b1r?iALke==ixumuP);U3`etFonSd!fd=&J zE8BkD{ynW)xm;*c{Jmw9iI|ue(V}JA6?2x$mxt*L&}_A^HgMsp10{%2zvt?3Zf(40D`c9pD(2Gk$5bRx%ZGpq@iF+Aq z{SF%FMTJ1o;#`40Dy)>CwRfVUaQ136_O0y7N)HiFnTKm39BC^p=us#fz?Oh{#md#| zCE%@BuO4lNIZT(%1%Qyc0x``HRiU5v9;8Q)5$O9k)3WoydL@X4^=r|{ufGvFwd3=l zi`-$CNUd?*%=JAF?OC>v<~Dt<4yZMce%stw zxYwNc$gXnv1A5TgyF2iGC<%%}3%w~tK-(W_-w(BsB(|I;PM!rRw+s5yo?la4j3O#_ z{#lUkpu@xI>W=oX{CyyUH6GkBZ@F--i9mfpRnyw*kNw;NCkgM`wM%B`_;X=u#?5QL zQq92H&`vH6DYioZXq=Jw*h~`lOrT4hk(MI7cm8hWmfRlrR1f3^yr1fozj)o-S8vD# z(|cT)pUTNt_TZ;ll(&_2Vi()*3Du}sosJ$nDp~t{BXe9@ND{cBMm-ht0S>@eg@Mss zQ&@fu88ZxSM|GqQ{=-OK?}2?Fdvl!}>>cRoqo<_g17h0Qkurd)CjNkEZ6?rC=((~f zM0P@!s6a3`H+J}QJSg_d1BmT>vq7)m!T})b;)F!VgUob5jZ6RW%0QCoVLG=6*MyG`@Be{``$3e=(O;Ei4bFBxTW%5krvsXG)iU zyFz)^>G;M%uV}4%unUhCR=XVZifRFFls)_PqC*D`;z4OjlP64~5hF&Z)#_hMmMKLU zpfqSIfEV4+QC!usqjda4btl#&HnK97K}l9AQ*n}G8cM=|Ttg(1Ji!7dj@xvKX) zFPv1ba=jqubXL~$pL>UfP|uFKoB~d%m!j(9@4ZO+aTNzd+wR#n7U53_R!x= z3qx{JNAiOfZohv0WH7~3_$^vA&mlL}Vn!BST;V6&{{H>@BbjzN-PzNXJS&Y94)2Yh zkdOuxw{i(B?b>lbev@jWILXpbB1+{4s|m7pa3^F6hsMB>jp-3KHoes<I{B3awHi{i!MBgcR)*Qc{*PSFg27gMJ5ELt`Y?x}IXRF>A@W@JVqM~@W! zM>B9tS*?JJTOA}Ghb5D`Y@_fw+{Vs_&6<^yGXY4AAUG-a?**!^OQW=oE~dm zP;w^J27pGGmqgY+SOL| z!v+m0dBHmg&^bWPM(`Qd`aVVUe1xR1G_v)zr~1f_E>fZ>)$iC)oNY#q94V$2e8W-; z^Jg11YD6hZ!qioQW~Mz)Cd~?XppUjEJJg?YDpu4Y)Sbj|!bU@FTDGB6NMx`dmtQtz zaiG}z10R(W`>dd>kcfWi-KCe@lz0BTi_!}!l-UUVi8ht5QeLfAURkd>JR+Pdk?d#l zCG>Sshiy+c;U%+q2bZj<42qfhLITvR7wKYh!Q5KQ_cp`HhoWS^RL~ksU;x6e3G3g9 zZL(=uXcNc8(aw;46x|LEe6bmzb69-{cEP)5-CH%-<%*bMVqeu&5(K5C%B+?^%SaLS?CbS3%* z9XoJTq|N**=n|Peak|`9|ArnIJ7$E)b+H^27k*`B;$dpaJ9@RB}+oLE`lt zokUOf^_}gI>}m!>iu*Kw-faC9aDX*u_AFWjp7$4Dd_fbzg=fp)3uk|!AGfTakY|tR zhi%)iexg2Ui>W|1cFsBErdaaK#k+=B3UhGrH24A4FK=Y8XW0H_S=}MeBlA zfqI#L%Sl;W(xDQ;Q~KSyw3qkl9|jYcF2=#`pOsUXnOnYmxu`p+fwg+fs|P1?3?9_= z>Z_XcR;=DkYBn`V=m}XFN%&0W3Cix^oL@AU*)rMPuLTvUJwbw9KAvX`*cRCV!EhQl zzD%pRyrmJXTeCu{U$kJh$hmO>TSi(OC^WkJk9ux?wY7JpEnBwGq1~%!&8lyyPHAIm zTG31tFjT6H;r{CKy?ghlYE^KqYfpo8-BBvlawC)(u3?tpOUVo2{aBgi=CzAdzFYuh z$6P0E++J~B3kb-)m#O`j`}&z4VB?AZ3k4(PzwKqrnKxIl%ww%MZz`;~>?o>$BA__0 z@l}wBrvH!or2?B=#kRMbVq#|o-76ynHo=O^Za*G6E9U+h#pQ>hiqi@o#lpc-S-xU< zj_V!$)o8`qU#qVV0j{Fy>Z*Uw=W^LnL~(R;%5mK1-r!-UAn{JlZDekwn3dKja3Pa+ zyY4NffZMBB7Sbp%fKZV5r5HP#DrSDxihWCWIcDP2iTbL6$SA%=eG%y!DYkBQiix#} z;<(g1N88LwXyiEP4lCg8DsU}RfLJQdCG)@yf)wjEPI7MWoE4{Kh4jY)HC2qXCW@K0 znPTH$qX3ar5Xk1-Zfl~zT~6N~=shaXt5xhq)c*}LWaJ*>O!LyjTO*fq%J-WG>rAf^D>M&6z2_v zWu5anUj;#~e1_0?mUcPLD=6FG!YAJ^47_Ch(xpq)Q{=vW)B~7ySD>)*(b|9Q+m4;P z%jZ(COe;m}~0G)zGtpa4;o^>v0nP=Kf@KwA}PpDM72RjTzqt7zT*6^)~h;^f3uKmbWZK~zW#q7@HM9|inKIUk?1+0+zi0~AL-SwCFU6l)u;;#YmJ z;#X^o>|3aC32D!SiIYEhjN!^PYt|{?fGQ>?W=g#V%@po`!ve~VY%kYtyJGEFNNF)M zTi-S)PAHhVSGe7uDlqPm_V90~@x&N84heU%u2i$-in+Cm;^LA=Id<&Wrw&)*;^Gu1 zm%IvG%Jk=i5{4XKywP063H{D>dlsv&XdT^^`3shOvL1CMWDXV3lawo0uBfY&ix)2{ z0p+SFUImLN-MaTukc_5`9XC;NbT6jB=2&SwAxg1#E1}rhYW2r_YGKNhDT;T6Zu)le zXUE?g{ye!4{YnHVg{llwDs?>|ZEi9tR`%uobo8vEz@$Rf^Jk&8cUHdtep`;yT)TEn zfpnY#8jWIR<)jpOK)% zCTPVXVJQmc0``-<1l?t)H0G|d@j%*+a4aZf-Pn=Rt|w4LYq;=0x7J}w0coZ&rm$@> zRrJ+}G1RAbAK~2chS%?2lW8^GloP*a{oCY2(K%2=mhp0NaOBOOEX)CAbp;-QGiUDl zOGt4)T~1_Yt|Gl z;Nu66MVW%RdX)pKP=;yF$puY58>-=5hm4br$sWmDo6c?`v#BuP0Bykjp%ukW3Zc|f zNcscKAZqk8a)e#3iK`h!uzoLiwAv*FNrAIiGWIjF_)s@f2v~P_%-As^LB#w)A0Hp+ z_d*3>OPD0Z>5w0t(-*k#Lk_NwI`# z#?Hb$x0bR!!GICGnobVZVpZd^e& zHBjIH$3Qs0G$baP0Yzpi3nvY_{s_Yls8gg~ghlcAF~o)_>J+njt;dfa7ye_#iWT)X zrRuia*MD6PY}>k#MuE!1+*WVz33?4>wgInJtp+|TKk_b7k0RgPrMzxPAhoSX7uMH; z)7Lzpyk2w_I;yF*j`Dl^nEU#&< z@7Y&4;VFSstb~A&7zuRZ}^YTZxW9KI>9haDZ2D9#0P*1=CME zzW-!1wgF*|hzNrv?+>4p_+!NR)~#D)VQEcyU~&BF);6)9E%OCTCthC_4dAn9PfNQQ z;pFcxqtHCV#EyupVSM%KRjN?23LTyf`9C0-iII;ef7xDi@9;>d~htJ$ZOn__~Fv`qBA|bE#@|7;)UWfh1IGnmwnKB!qnd z`89L1>ZEnRXAjKC04_+?_HJ@U_#Hln3vpPQ2zcM%@#DJ{qk$4y_oaj@(9FqHd zdh~5_%v%Byb@rmp5f^$B2(J^89OqG~(*9JXaz#mew1ol#Ck=;&hJwTWDG|Jio^oe^FPJBX&v5l$xXEc%DYq|o> z#497YDxzpw&{DCg^#QTu^^CCcemqiF3lhKtSyYeXS4I_iKkc~uid{!HS$_NWt$Ij~ z*A1ICD3*3sikXL{>{p>m1^xEBckjwNn~tuE!^{GTrW8iuKnEFZmh+(fhG-+N)3$e0 zCQqKMufuR*$|BIEP)oywVC(N6p!ST^BiT`p z=JNi|>k3OD;xm;#wu20=~FnS_tO`N-uqbefSvlzqXF6f`^&DZ}@wK zL5bqv>#Vre$S3t~+ny8Q(eM0!eBs}L@cvnsBIr;~o;<1W?~;Gd7)9qmVHx?gviFkD z4KincSRK#4)T!4*ad!7n@)it`V~`M;;}`_qN@t*N&A(`?K(ki1d3t#(j`>OfAv~xQ z2^=fOFRpdK0RGwG?AA$$zMtd9DGv{MOY5&+YO})1^TiIoFw(f7%p&sfJdrSs!~INF0$g3M>n&> z=lw?ts1ed8Bq!?6Y2$)fGMuwY&lCD}+xerQ!ob zp8L31y&1R%`e3%r7XP)1#=%>U{6f(~sW-FuSFLJx9W zQHWf&7NIMbt`LG=se`p;**KwcY#H+0XHWeb_NIwnPZU)LR+BJ-9<899vbXM!@)!wW z?~@!1R?FhBp~GlMx4{(A;UUF$drpq0EQIT)B8;46n+|h}*y%6D?80@2ALZFyj5JWS zi252%Vvq&Pv!fVkhvgFqGsF6gtxW{EOuv~ZoZtkYxQuQph;8vemZUA_wO%-T0sOBl zo#imD!4k$7Ru$~X+Ezm&ri>ypUn}^yC(_7Kqo|0RkMt|cq@`|xRxkL%%&As6)_i{J zCg2t0ww(PYo!I(VE!-a40eFwO6jpKQSfLI5a^x4U z#~9*-tI?8#kbPS&ztkK^`(1WlwAe-Kj$- zx^w4_x=Zfszp)1xwXI#dwrD={@7dhkQl!b$CNa;J^-=Q&bf=cBJBTcwy6xlFlBN9V zd2Al4-2X0>?Qw}PwNItXloe#3`IO&%_njD~Y~8Yf_WitrSRM*f%c2!qW6*6NxlLej zF^fvKSV^PDjHi^u7?CzJJWu$O-oag6< z`$h4NRH**9RHow*N%X5-x3S!FxjxP-U{^0|(=<^gU>>V?rNO*OiY0VrJp;PY^cf#G z(CRjREl{8Uqy;1Cd1wYT93Ml~hdmQntg_`RiTVr6xNY3Hk=O{~Q-x=4e9N}MIlAgM z*BN$Cmf2Lou-JLk7WEZ%9V;^gKY2)v#)pg9g9Vfd%5^>}iUzE%Gk4wsD%J>m4^XlN?$fXT@oD0)0Y@^L0%pg~bDE{GXM#a`!N3w(xZ4}SoIi+T7z7o6c_ zx_#%qpz1tp_-ExUl6pM?dg*s#7d$OgN)FF(M$(=ICA_;T-$!*OPQPRBLT(TIlRc0d z@cxq>_E+uB0dK2Tt>}r4(B+Mz^m`uy4?dR>0wxPf=)WSkN!tpCwPnz% z-JML&f}iDR3Qs>Snzu-T&&(HTnBKM^m$ijS)6yA%UnXtduvxE-o8v&dnZI;C*$vAJ zihwSegOli3MdIdz+t88JiJ~(V;P|0qbnEg>S}=D$O`SA_nzU$2;Vtiz5pu9%5Qt{J zP7|Bpq_trbe74aHU+2N5&3fwXvQ;1L18p zoe_Y6uE6%YTsSCAe*i!DH)-;o|D;_-a0^}AcsQm-4tyfE%9eF7z<|y1>4ZzvdrV&$ zD6ls2i4!L%8730xHFk#OtSnouO!ofXHETj_oZjAL&(zJisIo?*FxKX zMvodzN*o$zP!uGhF_nR#2v)x^ELq_hWL4LJY|(xvXD10()a@K-@@JQP910o+g%jYI zroh*n;gl_(L)T7SDPc`0Wrd}S4YK_VFQF*#wOZO(VfuMHEuOZB2J{_3PFg1k5>|b? zl48FJ5#4A0F0hy4;2T zogQF2>j@JkQlEYU2{R9$JgJMT8>F#L=GYc|VWA`=aiSF~G#C~RjQZj`(z11X1ey;h z?Adu}!Q%6s1Wj-!AMz~Oj7ER;HI=VemA?Jq7WEtajZBxTgCbV@C|YNVVU7t2dou6H>*hS8X&Wjor9*iJt$qT$0$5V?)$U@){9*0(R!Ov3;g& z-n@nU+wI1&X0k_~!VSsGzcV#%(wthi?@bFfUZGmGYEh#mEyUiJ@1sEDWncci1CY*9 zvjVv;BgnZugZ!LY6wn3kAD<|c0(BjKo*urHVc_vWQHBRN)^^ZxNASuwAeQLj;#IZ> z)gAQ&DmMx>t6z~Wo-#EA(!WxLl>9TDxACnDKE5w`wtwZulsWgrAic` zw>NXrN7$@_)i4~rs=xuzQ4;i+rjlE7d*FZ41Gxe3|D^Z+2gmYgnz^URS7ITF6)L6- z_EWqdZ3X!-SP?7f*^~h{ulR82H>1CnLoDiQft0!k;v3!; zBmH<^K|20OBa#nfq=gkBK9-VUE}?w@)DxU_fvsV?xJ@Z1VkD^L0Nt*iJ4Fo)ri85s zvRA&P*m*i+TRX&qoWJu0s;QyWld)tCHHL)nILge&iU=BN+qoTWg*K>VF&ol+=}dNm z5ah!2LTrZLpU@-^q=!1WP*x=~vK;0@tRH;gGO~lqmnRd&Sk9FVIj}64c0`SQ3KZ9f zc5U5BaWh|0<~v=sb}G>MOgyMkBw>vf6_kD}8T&d|USgJ@&a4w|ubj&Og2 z9|z0lXi-*|-EY_5owA`o5#H`T#f^VSne%bnnbX2KR2yciwSg+fM-ThxY&az89;E7i zxv&4)9$;(ld>&r(y__cVe`Z_>J#fl);z zN{EZd@wsuZ>h0}A7oWM(xGBeH?&E~6%sVyO1eyHJQ|3K^-VaQIt8HHQRI(I#uC z*2w4N=3AG#cJCvzL_D(;`!wg^CnESH*;rfA9B@a6^leL5)|RIW%ZmyUTd-UYdiLuI zSP|y|0=ZB)^n-_v6wYzp;$L7uYb*)@j4rd82A8-u*U806H|v4`gx@_rNkK=yQ4ghSKXxE3(A|e8C&O5zqkNVp=6g`B+V!C=++1eZR;^k^oxAp; zx6iHt`8224H#g+?=P>$+c=JficG|RULl@Rm)z_O1wTn0R_tRHj>G-_WzzO!PHI<4t zTLpKx0YGar=-kDtaE1F>j2JIowvVG~!-5_=KXJ5yUA4{+AAE6V_8-9KJM?s|H-`&OlX9?BlcOF*N z`2H1bMxfq&wvOBlxjpa?^}zoXGRNPE!^@mq=Ke7klFP>&Ugo+Xz*Ov~dWrG?^EFL8 z%oV4#z6z)f3Z|Wr{c5Z@=5bPBsrXNQM4X|V-zz_OY2bz0SSbUC4a&iV`&4Cz4jp2+ zLC*;_1 zZ_>X9qNCVA&B4^yQn9T2fxoPBeYLJyX|F@;yoy5^7bUNkj%UgW53F{;++t%VQ&DU% zv4(ntr=Y)%jI=eP<((Ev8Yn8G6f&&>Eop! zxlQ=R%w;xqHd8G8G>T^dPq~I4w*MgeG546&E3{+tD>l7!9BTevd|cH2XC)5i60`CH zf?erXt2*{lS3u>miZwXJyv+#QW4lrL6zk?tTL65+>J0-24wU^s|4`LEkZcjOO}4C*w{MC{&3)vx>zZK+gz~Bm$Dv7 zaMD)ht>(>#`~+iDrBIn>iXA?$z55R6ufyKK6$%y6`ZjVu6{|l}nJ{63?8DD0XBT&+ zaE;Llka?xnkX!nFnJ>(3X6`N@$BGUXHhGlc!$-(^BqoBZ{j)3=sxn;hZ@ES(R=l(_ zbm(x@KT-Mk{sCKPrG3Y)O0}8|6xdHA=VPi;wR#=-3|xHb>CdZvmKs|pd3NY8=1&%K zIlO<;LH~uDe-EMI8=YJJ|9b#|0}L6)iP=J0VyalnGUpE8Eq(TLqb7}@a8Q8E3hNLv zw(yOa6hev1Ln*IIURt(rsn8w%s1@u&!){x7^X8=YgqFqb6eeD*weOaOho0^^~{Mdzy7ShNO zBXbC?#4!jc>sI!KnX12V;J z+P+6401UZoC_=HbUy}6`Q;LB#F%r3S{8iL%w$7I#`v+4VhdlJ`7SMI57jUs|>L{il z%vohRLGsxcxTwXFZGShiZsa8UB*Rth^$)Mfs-*)Q-++R6+mmso5tVQ+PN$COrj@y` ze?G96_8;3%+3v>Tr00~^g>F81@=5JX?*E{mAX>O|A;l%c)3KK@AK4cV)Hjp79Np<5 z#nOFxLfQ>p#5ir-qSr9HND%slRegK9=zW`xEIv%eusBv=7!orsgzTq!kwqCBX>-!v zNSKa=HjXsNu->s_hisoPc_J-Zzl1dN^O7@W9a6VNk=1YJ6w&@6#Qm*B zv4h*r0{*$>f3F7~JbX;W+O5cOLeC0AY4DI?_+1vDCQTZPu>-4)Fd9~+s&4xD*gP+~ zzqbo*T=yNdYxiNgnk!08O{2WUTT7i;>51a9Wq1N}YiG>5xIw8TC-*Wn0Y)_d{Y$sm zMRyO4K*oQXSO>p3JB&(|EJnL=FJf-%$0dLM{Ip>HT$!OT+}5ILLz*&k0H({Kbq$IF z-yeV7)Clw~4P`yUbUOIrOry%m%A%UJ8&Z0<1%==Gp2D6S15&G@lEr-KR(P23llgc? zomstsb#M)l*F-q51=gxV$B!K{JbjMk->%#Q-*vrE0MrdUrG8;uAh@pMY2I9&OCth$ zs$8`eg@wYRyyiGKlI^6uI;CPns+N~GHj8~T61wR5<<(-$!ARx$ zjo;JO&FiG?Y-Yg-bs&)3D?hYC2%ABjyL6{b8`sFSvs2^nVMAaM+=#quHPvh7x_Ac) zGH)9CJza)tBr8L3;n}h`uV08AG}9j{R9LBZZ{zKbP(z4?qJ^t(eSRw?^v?I>+_;}C z^DNHG7f;b=^~g9oRV$E=#UeGoBA3FwY4_1_6!H85+F%Nr2$XU_ zl`t%99i5aA^$+P68y=UtoZAD2Jz&H^zTt}h)Mb`cVncy{XIZ;$Ee#z%oNO267rR)N ze2QQ6Ms7kGsTp+U%o&mCV!owzBP6{rJ+GF8%?J{INulV7D7_4oy6xlFiV$^w2;X_5 zN*0v(a|BsJe7=3B_Oxl!X39#9lRvHnB#m&RHH@>(liCPHPDVSP9#vmaU_x9!EWOU2esrh%0!Ze>vq2!$3~BXmpfBNm@~3G zflh#HShj3g{XWoLrs*qZlFecmYk(@kw1YjF2Kkl+y9gS)#s!JUv0Btb$*@ZbDirq{kmS2eKXw;o$L%Dw8M&`7by=C;WE`* zmDB$TW>TAF5nFZ763@n5kjq%|f{jJCqp3t)tW7|MO-XKXyoo1*CVt;Emvi z1%oTenfdbNgP}M;>9Q4Z{)g|8x5^;O8dK%bECG9WZ_gl$UA1~GJdXClJ1xFY*Y)hi zZVGWURtaxo$4|x4BL|R@oQNL8IGdSUV8_8LDBWQnohEZ$TQ`L{mHQ`(k21lNLD7^?`AF9BG9%u9X2*Q#Uk=Z8(L5g$!@H&a4p z=#-NS7-RrZV=pqt+3kby;}2)j%m30F>5mABya~?tOLgdvOF)7vaTqaTgnpOt^3ocJQnIu9YNJ*?RlKN{jJAahyN~awLN;XdP+ajOri}PdF~REwwY;uy zRPv)Be2mmw4W~t>z-6{C!sujK6r#i~o!G>0B4Cwf0g39oSE~*j z?Hn=x$Wqu2^Fqw$f#gx6K0{|6SFg06d@~LnUyz~U;tTxO%l#5Y1xHWf%CrPJ@y=u= zh(sEBZyh>%p?9{9m`yHFF^Ogfmm{GeD)}zyVhkt zNeB`S$o5^@BOv4%ismnZB@31)hhKiEL6SEZn) z-zTp@t*%9ksHQ8PE8aI>xHw;($BCXOsBg8Wqmz|6)|VMP}&U4j06dqF-= zGU*atTnCT*l$UM51g}68tkfMrRL&|>q7c5_vt42Ey}f;rn3Tu~xHX*_I%DRxDAV?< zbZKL0@c61Ka4`>LIUQ9ikl>$*p}J_bwT(UTrYjh^O+ac=JXOE0AUg08!XBR^uCqR!@7+o^_uSf= z=+L63Vtd&`r`gut1qBNh!oI!R6;8fLv66TkM7~#_>P%Eyj+U+3;mggs@1oq}EMD2* zTX`gzEjl6e{&DgRcfxz4p5VwlKRWBrlx%J1J`+)-`8FI`@(${aewyKG&wgAATh=dB z`(zR=*I`CU=wxDH#kef5Uggh^TiR2y_bbJK(X&U_^!+ctF?4t(!hZY2N2tp_$+Ji% zH9N+cQ7(Bo`t<4j@~Mi6p=GNMICk^^qot`BGj=SdaaBxA98^hIjE#+B0&R7yShnaD ze6y4j6X|$wM(+K}_kyKkZd^YwnyPFQnIxNq5!^nQJY@zZj32ElZ17h&qZfa1i5T#e z277@$lWY(d8;y!pYQwttbm-LabVZ(A*@oN4sU~RUL@fG2wUa^={LP_sIb}PQUNhyvmP~1TqsTT0s>vMFl3T2+=DkI~>mFC+Wgsw+17I z%jO!{2&{X%ARu=f7EWBm#VIZ`w$}AWqQO)x%h0q5>DR(T!%?+XRRjb*LkUtOeL;s% zqA_|Ch=$OEQJqZDjoG)$g7EPap`Zk?X>$(NbCU!VVG(HBvMH=vIw`uc*v-L;p+XY! zg4^DJ6QjQ}xrkdGtfD=GM-0J+_3J4Enxr21-yc4m4m;74rZ;Qa4EyICf!(mI$}tQZ zeP1y&2&6zL&ysnr;UbA78byUgBKDgoq?UG2k#^O^7{YD2RQIyU_?D?$76FNYieV$T z)l(cfdIUA9*HA?(SFQ{#AVslA=p~g^be&Xci9d5mx+d`(&n@}eXn2{r!$159BIZ6; ziFn{7Be>fwH6d~8uZzTs407aLe|UVF57Bd;!Y-UE1#1Ff-&N;m3)_ZJx!L#dQWSUc z*>#wZ1H;FS_|G}K`my~xUL`qFmb?oWEk!tv6WqM3GPx{*&J@2N&;6&`wQHkum+mk> zGEK?DO7{NY1qDsV3d(i)4ohYbk`x}QqLs2bB2w#OANJ^lz*uM09C$=+ zQ;`i{GcqZx7qSv15x^^#FQHJ85_ow2GuTjIqk6v!OuX90>nDtg0SF}p%+(%A;&RPd z4*O^4#(N_ls`}1<*#Q9$E+|?w`HstXx?IKTh-fO zHUc$kR8h%h`eQG@wr$;vD`0Jv^Br*Q8x?`iMWKwSN0fqZ+#*wFS0HHeJhXN3=Knl& z@~dJxSIdqZJ&w~SkEwCJaqZH}O=Y^BJ9loy{vZ@)K_O?*fPGF#h(K&y0A`b3?Y;M2 zM4SyPkl;fkuTfSJk{JmW*az{xNG6<3BH0D<`{Db`8#6e(H;+u!tvp;B3STZx>`m@xxk5#iXIWiM_$ybYHr-q2!Gi9LOcy}R~c%!IL+Idz6QR~}-+ zMh(a5GvAXwi?n08trhi{98A8;C?*{_t1=FXrb?o%qA(^V6jT&lK-(5=)b_9a!=yQw zx-gp)1+RB!ij?}QQC=< zCt>ECnXo8o3#+1bYJB1kgez*X==IOA-h4gElq!RMRNm8@kDm`>OQ*u7t1jB_a>Ww0 z-hCIf>oV)!pSbQQI{S1!u6}w2iDY~bCJ3QFGq<-u^dd%?qBxmidr6zak>DSTM`=`4 zvtoZZ`3P=*lgtzR98h&lSSa*nUBMCYCCOfKE(*3i2sc@nfY2R;-uQDU7$Fba@l-Kn z2)l()zeSTp#HN7@!o%YARTy9Yq7m@%@u9OaiCFi6s6F(KTJDVu_!(FBjl`ypF01d! zWh!w=6fX3}MkK~YlF`71s#!W`SGsBK;Du}j>#EOcp+be!^7Hqnj%K)mN|h>Q*w%08 zC!d=)u7$mmyMi@~@Vbc(3X{1Mqk$X{$FyY2^~!M(hxh7r zvKcg+o8cVa3jOf-{3nongeq04!mr9G6;YHzw~o!Cve|gDJIq#fNp!kc!zGY&%*b>i z-$99r3f5d0VDz?e(^i!0d`Q1Zc!3p)y}uaqxtb#mub3#r?cK8zb!yi_u7Wk;e|j2X z122GLIO>^KzI=I5xg58SOa^6*v2Rv(?3!o`OLEob@ymq^gly<1v_dc0)_?X(r(`%T+`gST zsR}0(g%v-4m-h@JZ?GfQlFm)odloJDNIB*45s#3gRChc$yMh?!OQ^w#hD-)h2w@Ww zPGqqZI@u2HFYc+@Y5ZdxfnPZSMu+!T4%nND3+L(AUSA`$^-b89c0t5h%D|G}R+7^s zN)kT)Ax6&DEk8+ez_e-8AegEZT$ZAGntCuv{cel=5JDN+6|0t~JG?G*1SJ8=W{d~S z=*)!ny#r?dt4L4GCxL*CiE{2Fnk>$lf*}0NhlaH&iuo47#PJi~)b-aMlLx+~4+RgZ zTBi3;3QIy%M0m0~PaOL+CQDfo+F)oVRcui9ULl-ma|W(WvcV>&9YjLcvpS`2@5jL+ z$plV4v%~s5E?d#eJ6Iz%BpK7DPs8k4I;es*N$Dk7&CrC0R+jbT2hPw0a~#u$j^9s- zaGlPiKyO__on2#hBs~JkmncV0({XCK@7SSZkY#-R#K5MbI|9ZADsc*ZluPQCBoGfz z4@4wI!hJgzPV{y8Hsc+dd+ z_~Qj^9A~bao~Y1!*s*h$5}uG2#VL`fqR7>X(^aNy1r-_7I}1|g?)j~Zc(#_ezsV%R zdH&ofyz|aGN{-jV?_J!W^G9_s9N4!v(>fiU9Fdd|p5a&$F`ABEI>*JsgF-S7PQjks zzk2h(Bu+aezu8_AC;75`E+$l0*SMTsbKq4tX3>3LM85d&qM}Ubs*9kTdli;foU@lr zvQ*;2ACjN9MEaq~z{{{?G~Cc?zgttuISaf<@Vd>KeV)GJBa`4$#}BCq#{KUXz>1UH z%1rE<_t8u>fiRpT_w3al8$SOWUb&0m*~6bHf&4k6n_kFWx+_BH{9gQ~JL--OP~683 z4*d+fkm>vW{raL~hxSVLUF4D9Bo{4_?RD!nQUD}WVZCERZ<9(apNfzR{&wrOZ~Jpi8TonF0BqsPgwc#6@OwtU z=h zU)GfHfy8*i325tO*`3+Dt{>?l0TzBXFqx7Y5z`;h0W$@ur{K^j3ql9ng$o@$^ITSl z+r@}0lh;hlO>utSdCZwN2P1~+0QVxeAVlaA3F+6bpK|Ilbjn~u9&~AQlaTx@5%!%a z{6KhsSR$3oK&V9O@(4tq41tfY4?>Pa!nTQy%|Ob;aLK>l=kqXk)?CFS?8ak4Hm}dX z?mnO=!V8eR(!flMTVoY7l=Tj8>sGC?veqhC&=I7>GLmn{BVx)UxD@nIi7=8Zp*M+! zty#SWZQ8YA1XdS`)gMdYb5WyZSQ1!z+>Zmn|tJ2`*!Dr8~QF+`hFZ zvYpjMO(j`UNaanuEXd}N5mF)?zsa}aVf!3vBFq+pMh;dEuhe7XV1pF0V#IC;Qfhiy zOe#buLlpAFQtmOD&uh19>4C&kQDl*L1a}IRm@wKbEF32eA6MlJ|E&3V4VR0X!g(zF zOpLEM_2H8rszf%qf6-qMig8JIoso0=u}_31=wJvpwAifqvk76){V>V462KtbA+Jq7 z*)-bUFalqEz7|s^k5`|0i3rM)v7t#+QJhh+IZT=yGp;xlxORh7WjMQ@!U0^~Z_uED z;VHlRy(Bp*!HDveasT*9Vv4Xwx%N90@2`oOB?OZ4HYTe)zmzyB zeG@fCuYB*KTJJN6CPT%c`T0Q#GljbrZejgo<8^J8uTU9xpTr|RHj3(bD;1Bj1QLW5 zNTTv@Ye$cL$F_>2T)S=R6z?+KaBNu_s@F{?b3|D+e$rQpN5j%NKN|GEN7%w1ggiKo zuqQuZ;Gn@+M79yPEZ!srN>MouhR^!9?T4|PaRdxU!07NAj>aGKUYG&II&|m&YLu&N z>Kxs2pmF0D%Z&P_M7B5iD%G~==!jz>mUJbSEC#8lT(_p$mJDb620A>N+QC1Th3$w( zp=2zhhDkrfAUa+n2Ga}SqaUauq7tT(l%#AadyMNj9*w91w0!jneEjLhu&(Qj)Jq8% zJb18D9FqsV2pha?b?VeXvnEZknHkQas^&B*CsLX86|*)FHug4{`2Hx=T2MpWV zQeaw`KTw+@P>AdfS8m%B6LCODtHp0E79^ zlOJ(=3L(Uj6++rHrNbyJ6yeJQRMz*){cYW{71pdFDe0}|JZ{-tGj_IPY!l)5>E5oqbM8_pAI!q<<3OI+(#E_mTjvN_K4daEN@jbuKS1GvAEx2*tPNCe@|kuA1f6# zIWCY1{vyDQi8EpX7ZE5$)Z!EBCj}5FWaoy^Y~r(QHdxVTUMG*C~2<5*V@vh z%Q0@kBnol?%Oa$_a#YL6{=Ol{yqEDDT2F8K0(P`E>G)C6uBr8z(kVW zD(cg{W@nUpR)lmfZQ$(Vn(pjMdBskU(_AGhESbL;Rz2Kc-PR4}ExGhf=chrpM#xhz zFQX?;s8pk}%Fx!gBd>jX^o4_$qr!>`pQ}V!DeeFpFFQp?B*`VdzP?KDys2jcRJd6b zGlx#Y)k{|lt9j+UKtSRSg&~O7E(&b|#V~O+gI(_|*mF>~Oe$F3kC(1OT38C~TT;T3 z6k^eIcGs>WJq{gLy$R;8L)Q-Yu-Au}GHx;wC`}yQ?;(=bQChXv0}LBIJUyBsaEQZu zDJ#tJ7W%EUc@aol76PGV%Z$Qi#iHeu^nC^ybAepMYzjicu}I3^ zMtMIac`Wo-6jQ){VrK(y?L)}D@2ECr!DPDj7&&rerVf#;B#j<54BlmW(0OxZ@>~l4 zCoBB!%^O!CI90JJ%#+BL(+{rhS(yO%VTL4B!_F>PxR`krGf}Slc{G?53u~WND$z}F z!+Nu@wBl-A#-CN${;*pYEL^wrF~YV^1aW%L`8OlDzagBfr$0&+FG;D}4Tw*SN5^d)$(`9Gz4m(b>Y-M}TG-KSI~@CGL(1bs zm9;Mp*8A_jkA+JXV(Fr#s=PQ-*>h)yIUO@SWtHH1ldr|;D7%<+74;FFGCE#K=VIV8 z*9YOGOB2kmMN@ZNzIk6gWT=n?amK|Y+c|~I5iX0o(;*E)F&1#=ctMInMybwA2F_M3ZO(#;9x~f;NjtdtqV8cdc{1VsK;cN%BET(T~!QzD& zGH@`c%BB+RKCSR6wtc+~p&_9PuUn`~A+>ZWOMZHKF7`#dRhKa;cVqlgNdn4kC1* zTGeVeXMa{v&Iv<=uqsF*80xsINXc!AIrs-Yfpwi1kyCp@Q-a&vK-x1BwtJW(`4Qn4 z1~7>v;}f4&9!S*Wg=T8toV4bN~n@(Yu~=T_0=dygK&V0 zK!i}Qi36CwVprVz=__J?FQ-Rc1xuR{{F7RyKla@ze7$W8>I{Ftmgx zy$}bpP@%%OdH0xd`t{Gs_(*@GBt~UO1bp@EjC;0j`9dWET39)fd4W`Lq?~(peFqv& zj#C9CdR(^C0bE#L9p^r8i0b_>6K0m1EE#KY>%;<#+!mCvLgSWk1pa^#_`h*@Wp)}F z$*9{u&?FH+OdkoLtR%`-DhIQCRw`;6-7HK+7nd(yp5A-IYne84x?*hr{gkMc0kEpT zDBUOd6u+-^MJE!Tk44?ubyYHhJfx;hnu?*_hN`4C6DBG}OnwAP%ffB0ZfQK}8buk# zK7dtu2L*?)C_o{M!8ughlIUf^W%SNHy5P{>gKA&atXa{xVPotbvlmta7_DTkm?X`$ zXw^dDfDQX9SXR+xmxMBLm?gnNAPj~{9r}xG*rE}f$K_PcuI#fWlS6Vdcf@@af*E(G ztNSTVs+e&5P8d5u)hmfP`Zh($ZODirDtalH;<&9Lux;vwb{*R(#)nV}c}QQ(EzOY_ zm7sVf#WB~LIMaI5*LnW@d9{4!(9H{09UbxDLWmNUC|0I89@Psc zc@8U;z$UNJpFV?4O=n`ebxvewF~jPCy^8zl%AM&>$};QF>@lL zzB`fC#sy#Q>Vv!YA7RJWoAjrq-xr~86H$xoML(cpXO5LCn;>hp97wb9P!I-F(~L{_ z)OLqFhsD`#G?fXUJV&g2mm~Ogh8G1_&cm-_f5avh!DfoHZ2fA7nqX2+IK6FoW9{Ul z#4Plmk5MCr;^fJbiasp6Um3zM9&;6Lk76Xym&s7U8#ZLz#3Zjk;0C{BHEY&HnUaOb z&r3mvCaVw`aDhS>YseWKpqyPfKm5sgLQAaE$L-}h_wL?-oZfkHY-uS%5~v18c7!wQ z8?u;*dIrAjHHh-tq{)*pedb75JBk3087P~~3G@rti3RU@LVT=ZZ0OzF8&>38&YnFd zzGqH>V5Hx+t(UJszb)Te36T8WdZa#qR!DtD`*)AP|Bdj3U`5xiUHgx`8}hIcM^xxo z9f+5TYyY}wFzQg36! z@{kdxi0QLu@cw?r%-?wU`uXD0PnXm~v0lUaI1zLPE|YR2c4vrk3X{koD|l#^X^cpd z>oyD7~&tO4^)@4$zbb7Tk zVzv|dKSgv{lqxScU)x4*NH|VqFGje7C>JX53f}^L@PGIi=Dti+BvV5wBflE)-HEZk z`~xTzf5tKE*`ueL5V$S&L)1J*_X*9gZR|?8MJ!y>91-W94Erg%s8t$8I)t;>%+?%3 z`wzji$z2XryQ_bu7O6iUc`6T9WdpA7qQFBNm8=(^YKOSUr{pjW zSI2_y9mAvClQNU;js#AF||cfFjT7*R-@$d`IS-Y@QUpu`Pq*O;@X; z!u)XHBX70(BkFC2Cf6ilI08q@3?^k*_I2;|&YECY#Q~IwxCjqP-6FwUx>N~9z{kGw z+1#*U137n3Af7zRUw{1--f8wJvKMJV7|2no)HOkglI3vr%!$`EtDb{dyvU@Jl*-j4 zOL%2*!H8-SE#b8lxm~>pZC1$M+e$7|5(7?CjZKo>u3Wu>FScwX9+wVRx7!r1 z$PWAF9txh2a5@S$)t!+RP1)Lu0cyF-@cP$(woWDxUoA;=i#OPtE0Em9-W2Vs$8(A zlOObPFlyDWg)`rsQS1*E^=%N;_Bs>V%oR&S()ZB{V=R$WG3U{_D7$-G$uLWFbM@0N zu&B-=xMp$3(}(_QA|mBPLOCEOCll**{SmBg*wA|_dYkw-j**-o6fgD;E_`!dibK@% zBqA;V$Ury0@Q%oN{;+-DRqc;jMF*RSVlE2_7a8+_| zizRArmYdkx()LKc&d4zxV}}GgmCPfo68`rdXP{40ZFRnSYs0SswC&jg%jb z9^HH3;?EaJakmmdO>{|z@|lSvZ?c8C1tKgX;Xt`(y_xbeB8hy0J>LA)7R;V8TYu<3 z`Kpgh8h*F_lLPS^FIrY(m;wG?kh{g*S55>YZKL zC(lq1?@DR{Y*?Q_gY2ENr#rh+HfzC#%t? z|K-b<`}D_w#Mqd7Cowd6Dn$ zA5piAmDFdnfA;aa=+7vobc~?3--huo4@ajC?@48RsvFOh4i|Oz-CvKqnt=5 zz6q7mnl{z__()w6B{{%MUQu+@FT|)s#d5WzoIqBFO zo;$lzhd7C;Pm&0q$fd+NWS>x+i8K3d{dY<2#b^j|ymxNhfyc~(a#)!NY9!x_r?Y%V zVVtAiO+~AJXm>Wq)(GEu<)={_(Vg8SL*4} zw3JM|+m$9UHlIV~`)h}IotRm~?bhKp*(#Y0eXp$_)72j7@ z8w|@B-y28Z_l$t7+6dIiui`*LbmE|yk%cArCca-+Ur8sMQ?S9z!j4o`yP3KFzG^Bd zJ_6UjUyFh(24!ekBA`hLQ5kTjQXsqZ*XaCV7YrUcI6b>Q(}HiYQxXe6XjbGRf8``;#LEWvxTT!3tJkjLtBqUX z{D~jTNIxZsPU7r}nNgNkq+tdAAbhN4(~6oH7AF{=AG5N@B4U7~k31=$cP zH(_3ou~L*?&)ZIUKu8HE2ckr$H}mXPFwbL6rK2AemQQBy*5t%}*(CaHQ`;F%{jw_v zgU6-<*hx4>zh3>wA4wR(2Oe;p?+1&5wu)&Z;d3f8(O*n`z;UNTY2W?@%Yx&FSydEU z+K@y-x%bkp^U$0~A}?;@`DhgdE?co28Z>_&oqKmt_fM4c^plMv5s9j zV$12T;QVPK??XD^)E0^D1;wLf;e^@JvBHEZJYd3p@14N9yR2K{*Gg=%?CA1uTzL;bB)JZBCQ=GS* zoX8)#q^aBjQAiXkUAnYdE%~rI1OoHa*5Br-keH|}iK;sZPkwI+n&zQSCWZTB^! z^vSq)W(C`J#T>NDdu)q8uh@zY6bID+P?^IN;Qyq7%-BC+zf=^2fqOgL&$>PXKMAhWEDp>?! z3lgE$gd2+{&S5k~Dcs1;ASV2>5~=Rcse_^xJ9hFrSa)@Y_9z+aN~}dT@9c;qyui8= z@uqafJT@0l^j}WHo#V65MsAeC62PY35O$9#4;_8$urOU zB<%|Su_+_o0s#<*P?#F__WTy^bi&1AiI+~k5f5kLgY_oo+c1*rmBkCQC(Tq`!RA&L z$X6&I#%~%2iN^et_7nDQ*auBFSJ9uUUWF6brjaY+cZMOfKkvmd9el!ssz$C`&5`|` zA~<*YEL>*!D5n@dX$Tu~5B41if#LAQP@uxr&Hk0;wM`p0!F6rk^zjgRY3(u;`+}k1 zKw@$dWuafNLI^LgbrnaIgecG#Q%f#E^Lpmbn#YMy{S19KZWu@4j~aon2;%y0?n7mY zBDnijQ`Hu0xR_Di>u6Hb7m|QgxbR$+6gy+)97ILm!_-}T?va%yGZR*Tdi5LP+i4W> zG1Dbl4jwd!lvY;62Uq4~HX9O>O;Ehi64Ex-L%jw~6dju2JH;86;DDGovNOruo8Pq& z)#)Z7jNiG|jq8xr;CN=u{$cwBC$3MXElL?+pK`qr{`eeOC@PcBy`y4DNKK&x_`{PK z+Kddih~%Wq@%*w3f92ATC|axp_Dq=%2S*o7o;V(Z{sg9o!-tQdd=K3uBJ|;Docp3V z%Cy-+NJB3CyuBMDZ+}VL@M)F!mf-@78^#g%3rE1{@V;TN4<0;l(*y84DQ-+X8dabK=3u2{QaEiA1p(Y0e2#jH?`j$~R~h&tK2suLn-JcbpQ zy(Ky+5kc7&6J~<9HNh~gTD~g1`0&vqFt_zb@O+0q01u3xon1LWA`9-tsrmlg z*_C~EEj$o@_=%$a5!{%N$5-W2*5N6~;V_61Ofn^ebiJi;!=Z!jD!j5VML3PkiSUu+ zR~(uh@y8>f38s~}TifRDNIMyaoIW|xwsl(w1)HJdFTBiQb(l-^o1eh+r({@_cAyHK znVKjFC$6E10&}tK~s~d#qWr z21iaEg_DC5TGju6G-~S=D}t~+hzZ+*Ks+3~Wrc&t^>)4qNzw!15NRCJw`9TrW#j~3{ANCRO9MJLb?*699*${Nrp0+ZODXI zlApSC>xr)@pX;8z2%Xe9WM{EOg^qh*Y3G3}-wwm6HFZ#_>j6AIokJ-;8Vce_z4`O! z$J#X?XV%1@x^K#qsjzj*hAah}DRu~H%#C>EGHteEKJ`Bn;l>v+vI~iAECn`YuXnA++BeB%F*y^5s}uzjzJ17;WgG)lPyWWIVHAk3xTcJ#7hDseCF zYto3tSmDvVN01~I*OuARqm**42rWE$^h8nr3~x6CCihbn6hx$UMR`q09J8FL(?u<% zS`%Rn0z0szsDe1hZY%R*laX_F`~%fT>v9gnv3e^=N4{eDkt<(rEL^+@ z(NW|_{`Md$a~bHNr98Wj}gC# zf)YI+pi9rLXx6Nmx(=ZeGCI4@2hsTQr;UK9P`bN&;`-r9>20K?CMz{C!PNd1n>KAG zb{{y0TEhcSwAEf#p;6ZOii#kMByq*gdns}d2w`w|a)&a*T%G#6Z29t)DEdx06e?O8 z^A{|_v%nBoIpic$1rzBE%+Ae^t2t&U-D)$RRi=muVa~(NZ*gK(MFgK7K`!@$YGumc zl)vTexG}>C19_K;hasduv*dMTyoatnwO$c4`dd0`Z1g`p0>%jM8*YDO48<9kogcq9 z94<4wm7K2>7tC#=CXIA(1SU%@<^ya0{{87{Y7ZYiM1|@Vk>Zqw#IOWJJ&sUG6ThSw zBTMR^uiJpOZQ7Dfi*pg88YForm61x&Bt$llQX*B%ngoBWr= zg}HO*;^etg@N)OU{JHZo$Yho;Umit#3*+Y{H(=e16kP02+{|aFN&$*%}qWwWQM;G5MhyBTH*brS*O&=tPF)e)FuB zNHtGWxVyYX@*yyLIIKFjD(U8M>bJ`^MK()A3URU%=S{-XXHT(+OccVFp|>ubyP!k2 zj!bNe!Mo+EWAcW{>d?`nN3mnq4upq>WA`_^U|q`@))gEP`;9J2-=j}YoFS*AB%tNW zn;XK$p{J6Q3X+)IrZIABYEB+sS63BXin|sC>nJ{rAxgos$9XRDDTg0OT#b+r{4RNORCX{%xe7bDeGKKFg*SQ?td+$B{VdLxn z=?F-+y+C&)djIld>F>Ja%a?voD;4n}H{hPP9v+9nP@kRK*aF2%luj4c$xz@g*yz)DfQniRZdt@Grhn9)3T$3TjDCzO zdxjwAI~~$_fo~j|#3VXWQd&EpOzX|Ce!3dRj~)06dim>`=-00=b0MB$)^ra>)g6er zUIpI@eN`nQ0e$uGOcWlz@7GmoENvWtKY9chef+;L^6>uQ*D+x50F5|Q&8o7amSsm_ z^`A@dnz^5~=J{1YwM`tUM(0#>baT|0bfED^g{UuROo-A*HKo~o;Gt12Rx4Mv{9E;p z>TBwJO82TZNNJ@J*PGtH^n+{znrjZXx2o?=g|g+$rrGCr(wN|+*_3ot?J^-P!ztvr z)Cv?Xpi#zHvvso5dJpKM5f_}HjNt~O#~NwMG`Fno8kgTS`_5T3a?EN@BREbDW*TwH znyH()#^|a>RtVK56Y4aQwX15p^LVR$F0*|!$054ojHYW`YEN%w>9VC785%TmPfN{h zMIOy#Lw?Pns+(4{WKqq|-CkpaH+{UM9=RX(tvt2TmC9(Yo~{}b;52hv3*G*%S=9Zr zspF!VII({$d*{xb^tSYGWL&cQ_nvS%*$unwf{CW>Lg8y-n*HP8zA_ zG>TKGGNZSBbzH(JT+p}knMkhDDY)D8*`g`M>UpE3|A<@XJ^6O6e2bGrZYMF8s`8l%I7%9|D zOf57{&i}F=G7mtLXUOY}D`DD%2@|z`{Re7Ww{Cr1vA5c9=jf?b>wQ)$*>b&>t5g?_ zxLvJ8^EFzN8JhZEe|)(5ZnbLN?v2l|w`%M+7Lwyx7sL;vcQ^Cwo+>Q-66NMDm_nWMc*m=8(aQsPNUMNx{q>=c`FT2<8Nc{rZsHb z{IBVNK`W#K)#Us8M;Mhywb`?0{}ELg>-ZZ-zzAvJH}iEigBt4^6P*MLs<-$(VQ?P* zLO?*E2i6rGkz$&rRJ;xx(9OOj8OXN2t6~jEBERb8tC!WXyuO~-y{=fZQsG=h6-)4* zrY;sp{2@9+alw5SFYx>5aD<~V;AsGCr)5L@L8^xZCsKOY3f|t{iWx!Qpd`Lszj7T( ziAjhFkH+#v%igG(B$4B)RjV>V!T}b!iFoGN2?bZ=9Dmp|!iz)=9&7T$vXGsk2Ghd| z#!eZh7$@%EzK@Y(Mj^{4YZN}8TP@$ejQi@`sWSo}k!@g+F6u3OyS78U;2#r!M)evh zY2Nt5;Y?Z!Ar07lxXkfUiDEyJks+m$Ib0X|!K$_sOv&aDvnCMk%gOZ6mrM`q3&0|; z4Z8LEP~rRZ3VDLfm2nC7h(xqC>EMc3BH5Nq6J>diiRCq=1h7CX#H3BZ#JaD^2bYPt z;qgTQ%$hb!k;B)mUk?%E9w3+)XHjc&szep2A5zeanc0JwU?UusLk0}S-o1PAesm4A zv1o*!&R3!INpuND zf7b{}GHu^}1CiS&AM*%4N5zU2)C$dS?a!u7n-Cinj1#M?;oAPuaLrjBj#-Q2r)^zv zc~^h3K`c=$52MFSz~)V#zwsINTl?@f=ZV~LcHdHpg+X85lu35(*$QFf7wgfTD@kH8 z!Bkgd|0AECM}b-4X45*Dle)}}&aHVaYb0KbA=H7G;LbY7)Vz=l(sqZyt}UHT@)YY$7%7hTI*zK1 zsw47YIJRurg6_S#!^G80K@jXH7$U+UiR3R%`kDNpWYaMBwpRFVp=J}xIAK^2rVTMs zd~@ud4XxU@hEpvMI8De!>@2C}uE(NC-h4QnbOy^lTdsJ77cE;vZqkCd_VZPhK&J1L z@zpp2zhwljUcHJ(5AUM!baGV7ho4rq?U&d$GdntV?uzT2g#TUUl{Gu!lC4qc!|#-Q z?T0<<5!Un!Lk180OLg!ZUnZM9K{z>rU2>FB)kX&VjE6T)D5%nk70b!Y&fA)@KDN%E12 zW`b~X4eBlV7BRkz`gZN!4PIVe5ZtdJ->Z}pIxWHh-YCsDf8l)8u3a0UMdK9ZR%&n( z;*UijbiiGOQB9zFSR@$-;txl_!HL+_2xi3of{DVLL@7mj^JVk$@Pg@&Ny=fmye(D2-OJ~^&9;bC2y;VHV>*TBV-WLskV*^_Ixq9=mPj~5f_SnL=uJc#M2I7L z-cz`5$d8$GXF-0vUT1PG1BqWwN=ZWGvM11U)Qb2+(05N1JNI{IQ zNa;pU+02eY5_(IEOo3?@;(IC8YiJ_EU}8@Ji^bWPu;_}mUE9H;ii2`UMNmWda-&J* z<|I^Qybj?Gwr}T&go6J%GZxS z{um)4!KgEW0yM5ZR4prkYW*%_)TmJkXZ&0GB3Sjv$0t=ZRFu*5R-o1dV&tt*woJ*t z-Px5sNd)wZ4WHq=Y~Hd}1x%z&ks?L#*{7>;_tq7~p3=8f0ere* z7V`m)%VDD#N5D7&zi|YN4)0qGoFpAdr16>mGXy^&A8eEbLR#NI#Mp<3nD7Wgh7G}| zAAh21^2zOk8&Es`UZp{LK3R-6wV8KCws*t zAo9P4Hge=hME*dL1bzYtsWCi+sNl#~ek3y#c*92151PSoKz52w(2=w?QL@P5&_+yq zr1*D5a3ZMLHN<}xff(}KMofPMx5b1QlyyKnMI-F;IVqmw*EQkh;f5{ywkjuDIC6!f zHmK7L2#dzL4eQ|T?X4o|_sBreJWnIoFHM2(2~YIs*#k-YA`v?HF2V?NNQLGc_WlgTBA%S*q&Ha!=43eVH*VCcR~Of=T|>QM z5vX0@8GiinN3{B&MW#Ixe)MkLy1kZvIMb7iJB=e?9Dz(n;Kf>QriYC?^&=or50lmd4UCIgA=>g}^tI=p9EcnZwR*db*{lyano4rC z-A=|T=asl|;|3;7n}{9XY)4{zqGFNoSeG9uj}lR%W(}M^bz1dT`YMV+68&}bbV3N} z#5~sKSC=44W(l`rGEm3}-tTkb-pr_6RIYScoc-Y}?8v()9JHdsW@tg7loU=$L);FX zK!kASiUqa5u2jUB0LYNH31YScE9EsN=PC9HE3z91^;h8OVCA$L)~SCl^2YIrWNl!? zR0KMh45$tTwY#pOvRk%&2|F7*g_o^K;`&cl=_Vmks7!@2NRCc|%P?=nsVt7Rz*8It zW<%7XryN((rcoVEm=@9~lA$+~MC!3SnZc>gi|dpqc;Z<`rUN)p_$U%i&Q4gidOcdV zZmmxHH>~G>K4$55A|IXyNhI zo6y?r*s(*=!1e0YOWik7ObZAKK-p4d75jv~?C*J%sQPq9mgPP>RB}}U6n*>lRT%2b zL`i;6TgG$$nh}uY^Y`o3;pb-%Lhc`fg^ddyo&Stk^wwa4*k99$Oj;3Uf{rea}jub3d5OZeF{2N;SbxqEmGZ!1kPcG~(b7oFb`5C{i24iXC2>gRa;BQQr z`$L=lGgumaYX>D$wQ0*{T7{aGw4o!0sZ3E}8Q^W#tjp>cA6&^UAlr=Crf2utwshAl z^4VzCb)6Ms03)C3nESf?nyI_F#we&}Rlz}>C+AY2ApKm2E?%0Yt(8XTfadv4AN;}dh^kx0M9;S2wkoe?Ze_07RCLyj*EWtBnK$J6$serB**0@m=Lx%n{yhDw zFmrHeHbY+xH)__dsm^u(G_U5dv4CRiFmtoenDD4M*7a1!%yL;}sMmR7ZVkK-_wL!mrpr#r{a$zF4+?x8vK$*PVOC{oa{*-YR65=#T+qZJ#3jK9;EoaudX zo}62A@^H?;_>gG>|HnK3?JNy)Yi2RK+}g%Lv#_$$%9g9}mogM&#?r80!6JV5bkDIu zb!KXLstnVpjz$)k99r$6ceLvLE@%!eIkY(+&HL4#EO}m(uUJ*F9hh0zY9&io(0=Lj z|EnAMi%yW|mpuEJv+x(S_@WsZ$6Vfd6uU>&-ey2~O+lFSn&vEBu$IPMw0Iw+n2>>LP_HWNxso=0sepE`lqC9olC> z;5XMmhZhNlA`mg_F(d*S(&;7~24sV6Ey~!?gtZ}Zp}%5~Fmce`Ld!CY{xUk7WqV;& zM*avkH-z%Ff^!wl+lc7M^ke!rF3v7UXm3GL1Zxt*rooK;iJ$Wf?lq`578r;Q?K{A2 zDWkB@Bh41YYzRYm47(Ls;N)k422I~5#`%GQO;o5_5f^Vnx+ZVMkDA0<)Tr)M9^9OtF#o24ojdyjo8Xa$Sr zuEY|@fX*o%Z}ew!$SU;g*)v03Z@VFwXko#Sq{0|NFRaTM$PRPWAuVST&YnGMOrm?+ z0sRM-8#!VGTxfp#yvI?CNGjhu$HsKN)pKzJSnF>3b35#^t2QPR|U< zv%ho=!U_KUsf_TgUphyBTwrEHhmFFmI}eaQuMd_piBwj?{)<+qP*FU3a0iX2QQ?te zDps}M&lonmFgj5J-Y8D)xE;r$ctA^CVQddz5ap%UAtpMI)Z5L~U52c632 zMt)y~{nT&EtKdon?^^7NA2zPv2#Y8)g?AN&GQG1aOi9A&|<>P?d8Or2hxzlhvy z8kq#b$3H~trmghF(_cScx=KkFi!86O55#QAkD*@!8R5IxObsl&A>*a+@Bt>BZ- z7v4cx@y=Oa45-@&jAkGm8nPJGFwxRdczy31{jB#xCD-{%zyd?Fzt9)h8+TlifRyWoR9 zmAauzkFLt8P7`OmjtlIX6EZ?-I$_5MZgB%KT_2)K{)&i=jn#MUl~=j{PPtyd7xV=j zayVnwtI%tbAD zg4id~7(Q_X>Nc$Vn-YEmmSgYk0D;VC@tiamBos=Up;rR`Rz)i5gVFx~M&RK7Jvesk z7#7YPiizV!BX6mU7*W3e*D+$ z=bwM3>g6?LEBZmYvnyj@>zor-woZs<5W#515%@Qbz^fk8zws*mL46j-Hfs)IZ_C<3 z%WsagA2I=G^$P6U^(}#FsfgPX3R}{PiL)59=9!8dI(+EGh+!(i#y(Jt3>C{&K$|vg z)c*||HlSG>|O#)983|^`Z_E~$+gvFFICloVN;Lg7y;FrRe1+QF7T(P25kTG8x${I z9L-y|K(Yz(tHNZ!e>d*lpvqeoto~#*hD{g_``J0*?vfo*Ux&jtzb{4%9+A$O>HZ!a zK+>4GF7iXzz`Kau76OUJf-qq-R|~4)`RJQQ-0m>NscYBI3&}Gd!7Q64g4^8yp#Um! zE9?;kix)zL8Wmwz$O(bR{Sgryj>{J>!?FbN(&SMVWi&C*^#u_=_CBg-uZ&F_H>G2_ z(;MR(QP=C#y)$m#xeZrmS6HQ4B94x^EuCgDVWWt+^h`xl-)&GEj$?Bo;Yb96nqPxG zBk{?1;*rRxa&)qWuD!aUWn+%hW74mwvvq$=tW1=XYeK3sHJPw8L)5aTNH9;uNyiH+ z>LQbr!i8T%`3+9b^sOjwCB-Jenrs%5m={h8J!ei-z=?y5v5l3DV!p`qWaCcb2)xAz z$fWr8ZGJCERaKxsf%G$~Rja1n3!B93j~2l<(w~^#9BNxZ-nSg6w=Gt$QGJ*;pr`^f?!|21bH%kj*OjQk>7%ERH*a28 zou^-`QBKy(8DSR~IqY~7rgUDY;szVS96lbp8gpjMQRj>1{IOHVuyxvY*o0 zBOg-GAqCy)bjF_5yWvU-u7_TUNOVX++&5v0I!jms%pPf&F=GZqJmTENAMk$jhB$fb zBobXyU{S|`iDh9*Vz%D<^)O+~ctsd4!V%(3IaKh5EuBeWKM3t}TS)**^e=qGedSs{ygs(zZfTOj(=XUd`0JH5#iR{$M2k^L3fWJ!DwvwqhZPW`hZjgiyv(f6_K z)OOPHY=PSnzx0Tvbt^Z7UAm7+>!;E8GDqakp>QqXDZZ_8vOTvJR8C^}=m&5boeNQO z9wYHww37A}r#$&k6s#IJtM+Vo4w#(lxk$mJgt_>^Z~{S6WQxg z3ar_fB4Xzg1#1zwOJr0e9rYyGG;mdn93r1AQDm#~j&NchH}~3%*3DX>VD@~tGW!;+ zK6Fz~dfJl|HF>^jp2A-q491#OYW`ihk-2LA{C8Kj>LujA$SvNSno)@%&v zKa@^5nLu_WBbX2x$OMNIm9-l;zI=*t+c*N5j({-P2y@Kcdk^8`of88G4#dfmr_iBO zH`u!5hX3s|c(-;v9AI=;|BR4|^5n^b1@k|`huw0baNSu*ONu13#6k#LwI5=1KM3%1#LD&@RM3jM!MtlsNG6VZ$#V2^zuR4N0xQ_7F zw^6fTHMP{Yc>W^Xy>=IMYSuyUGe%hFQZ4MOg0QDJLaKif#*7$^T)A^$^!U-(?{Nx; zLr)-*(H5t9xs@aCPJFOLnuYy9qN}<6ykY-=r*aylc{2|SI5QHNDvs&I2Z~xuRK;BA zWJ&!_BN+*NZi4+3$1bSJH6&h$fvCZSk9(jT%cBR6Le$F4$VF>TB{Ok$#e|zzqOvK^ zNbBWm^@^gL2s)UQvWE3kFZS03f?}>i;Be3q#?2g%r%9X5E@_bahhrzS_)!@7bp(?CZHJ)iuftD~H~(qZew|uYjHV#SJz{URhdgm8v%#qAt5?+I)h5|jHw46Lhg49UYbvnUDeTegJ>uT}5t>icHlOPn$JgGKm)vna)!Avof4Ia41?Hb)yH$`Ixs6Eel&@4>eYVy{QOiD#Q7aFSe4dA z6r&bBQ9=>oq|ThGqpcBVOp@Rvf+GLT%`@J%y@&R~c~UMU-;RfgH612me6=1L4jem( z?+zSGPkfSPb*G`aB}3I2{;_M}j^u}2IpbjkTEV=XZHDVI%WDn) z%l?=$YpTLquUNH0MS`9^eWoJ2Zaw@|c}a!~BORG7Wta5{V~HoD;aZi{U`!U-{?#|C zoJ5gD#ZSa8g1g*=%cR^Y(NLUqaoX*8zQ`zxn1(3M^&8wD+qde@&Cs!zHopJ*r5>3O%KyK^W=x-gr4$*83B3=WibD`|?MnpSJ%;)74yJdf zQ>RXRHYcF|plfPh_M$B)oZ*MM4VohG>4Wrg{||4fRjaB5fJE-x)U*m(wrmMm{WF?z z1pdth(CRrg~dCyN6l|6ewHYdc0eFRR2YaY!WsND466TG_(Y*FD|& zHg#n3*5z1OSAG$J7RCqRpOqzkjm%)tD+3s5{2zPQ0UkxwMNhKHrfqts_g(}AM0ytx zDN>{e(m@oEUZht+Iw&1MDbhPAD2Ox>q)6{Ag!JCa{`b7NOA zJ9FQC=bq!NByl-?7xDQW;RM!;RI)pwmI-7*f>W|A#0w8?^y)yhFJfNfMN&6Tf=H^R z>100%Cj_%9#cJPs?NOP~@4x?EGPwyz4oE;!<2Z${<$1)c3W9}`@YJpjQl}L=Z zStDY1ARK%6s(nXHzpGdYh%41qvxoIC>AdkPTX!?p(|_)*O9ppFF`+pU7-L|nP2WyFBxF+@>&Ul#JUyVVZ)XU z*mZBWw2ephAV>KgT44N<@t}BzA-fYC#{HSumS2zEFp*~#1wNbg_8AoRBB$I%SWGfp zM&yQ0`uBu8fF08Nd^mrN*x zp_aRXeI(yXPzrp+Ofyq#Q`HGki~JS8aO&kaIEYBetwXm>n`imTK5I3ojWbvNfVH~~ zf=>9W^D_ykWVw;HQuDwgJaF*HalHQinhc*7s6G;Bw)M)e4iW$-CdqI2Z!}7s&z?J9 zimjsYLEDyi_uY3N+PkBpqe?Uk7&ru1t}R1_%6Tw;pA3G}B^UlUdjTaIOwX`w?l(H& z`r#QF*8Nu&$m861gMnd4O6`n!QX94E%H;`t|)(2}2M|N^C2Q*@3J~1+Wss z+SYSH>>82#l=loeQ{$4bd-v`P0dH2@3&*U&<+AY2zL7v8#DYY5EKahR*Na?7T(Gb= zh=Le1&IXyXCq9#G47OFBk$5s%0&>}>7=zpxDX6oO%p{AuC=ii+BVHBDk(w(^D8-zG zx{3u;q!*)j1Ro?Uu)4A32I57GgI81V2bZAt5y6E>se1lAuM(HAl47iuZCl|>$#Q-q zVilnSu0#KZP+kcvfdU$h$|LVN;h)~kg>BMzwm zolFOWIhc%@)u=`H(XxIE|SwBEGB$J+zP&TT;cN_|YL5OjS%bV56>ndSk_1FyaZEXe)) z>L2ElkFZ_4cKG(&Z=c-oZ)nlAM>i~9un4Ys-C+?2tP^@Hs#V$9*=5)}@w`qlji!Pm zfekRDX$>kfE?DX|JZZO`Ws2j6o~+ z-=RNhV=SObI1&ZNk9`p} z*I#v;o{QI*YD93S%hQSZymfOpeIc1l$ppu33_;Y&0Jup3nstr`G;GE>5t#nr zWaS4=ld&@U*6mwxa&^Mnwcmb-e^;?xWb;L|Ar2n%3aVou_b_q7PTkYEjJYye;1h&a zxJcoeT3!{X&dbosQ)NtTr^MsVmD@_P)WuzRkcWCBQZn$KD;`vf^LzrEo`+LTXGHo% zz_GCx;Ax4dh4(RJ#1Kpxn+7dmwRxU`c@X28AVp*{n2~`)()l#Jb9aBP@7ToI!jQ+_;NlsDAEQaHC;`pu?tZPZu zN%(f7mj%Ee?H!t?!9Cb8B{T`CLql-?w!g}t>zu7&-^K%$SA;WoZ;;AXnF@YFLPFr~ zo;Da#JCQ#uBy?R-KtW(k>rxhlV{C)r=-IQUY1RMzE5CDc6?=KfHKExfJ>ci(r>4A1 zH<|-433~6J--JJQ4#0>JBQS2ULsxzAy5nz` z>=x*r%AwKIDIiLU6Z6zJ0*~|98qWKFU z3OP8m;}_hycH1oHn|VL{5xEudgnbQHSWA_?DcEH@x5@bs6cnTa;)c!Mfs2O=>KwK%2h27H!n9te|}H6 zY$anYMR>%&5-ZGL*Sdtg3U-|b=7jx+@|_5EoagEym_2WfDj;Luym4mt&7rd89`g%| zBye6ekl<%`Zr+CTxLhjO6*V@6VHQ<5xJV{C>1I3@K?x}@mT zQf1JwZQC|>gHQW^3cEL*Vc*$Pu~FzaLm-*r*d3u6ICA55hN3|J0;({GxbES7hoV;4 zo9IxYjbe>31-q)#EdJOz3T+#S{^;ai}ZqDkZOvltmo zM7;|I@@2<~)lJ~{>r`yry7ey!cAw?Aw6>ZDG!HzT2dtj1nbzuAJ>cu>Yo>;x(ppx= z04hE(7J8xJN|vA~y)jG6pcMv7?Ap6qGLnT=;1jwq7UD$=kX9{vbFkop0}*2pfC2pnKxBMX2HkR+ z6bRn36q=nRM1Fh=mOANI;1wcyELhx&uzgE1?tdCtBpfQbsw!+2-q9{!x&*gx(=yIn zW&j%__-kwVPkb}8+?kDmFAK`->PTj{n{e)4kAtP)mMM~Rw5*Xt`JTUe<%WbLawP@u^4E~=rNgh``G1fUAkiaq{Xlw3J*ba z002M$NklG&BYXCK&$T~dde5Hu z{kgW)HqtzxdElS*fEMungZ?K8`#TL9V&}F!Qp_aevtDhFUQ9aBmuPu^AqStF< zar05y_3*@Lk$5bUw=iOki||B3oQNr8L!`8i-5#Q_qt;G(r1&L>eCG}o?3y?J^9|L- zD7R~pzNLh2tO#GEHwN6P!cw4fw-R;*3sGv5hekUuBuH^uvamYPEJa#4`FuR0rrd+e z=egB7@&hv{wRf;bXzR;xE+nvyd+}JgawUqEEQ*u@mP)>O?~)(!)zbN>TB#}y{PZ*I z-gbpk&un107}E6$D%Yxl4)3=Ye4MDwHNOCZFho$UI9ZC-0$PYzgV2#BNZ}ln>0(8I zf*ia`ElyY;#jEnr%Z?8^x5rld zA7LSxVFsq`pLk%Ch5T?2&L2F;GTYeMq=|q?1F|?oEflh3!>QpoN1aezUxf_XoB^$i)CyC)=5+;dl-d z$?#lSNS!Yg^^`hWvcM8vK=zb8&lfLV#P(*};ppQ8H-igK3Cx7Wahho!co7eb963rh zH=<@e|45W|1*W z6*h&13l~D)zzJk`V6f{T1!%HZp}1!`ZBJD;s>8W2 zDu~}t{f;p!CLlQ~3HnNoD#Mv_Q>euxGioXHV$5pm?^>WgJ4*|upL?%%(UQ-@CC>iMf6O`c|&2VT?zu_6&(xW)|5UkQ@5qX?Rw0_=bEW z@|@!)0AWF%zGL8khpUe>pCSp}qpphV?M7_>xAEi7y*PF96b^jwi-HesK2QIi*; zNUf3PZYdRPFr-1E%q#z0WHJ(3VbumSFC_dU&+u) z5Xo$xLnA5tk{~B$$X#@7+fiXrQznD}Gh}*veH2`BizMxz!7dM<#c76uE+}29^i!Qp z*>YuJlwghlWAt}{!msO(gr6eRw7K`XV(=0M1J9+xrz;ublE3A_z~-M~#qt$!%9pX) zl|iqig|H?F(*z}u`}XZ?4t7lkvUS^5I5hE4FaW{~j3PBme&Y0|FKv+X5jkec_e%EI z(orYO1`_ZJpD%I6?lpuuE7Yj6v>YJN7^pk9^}+h}>(%m`Z@vjHYY#*S1A}$`H03cu z3rrSC=s{qTNDSY_rp=o&RPMf3vNUoR%#GM4lT$ zPbnBc`?l?2aCgkWXUzTZSS>}S*r|gr>}t8fK?>j8MS58;Fo@y9hN}!JX~q(Nk1-vV zVo9J+j6!9mmrOg2SZUYEc~wT5#cGactQB2ba&!{>ZrxSEF3D9s>DwD_KJKa*kAe}J zX&!hQ53oR#|NkoM*RLO3?Gmtgm<0kZ@5beyC*$~GwoNhDqZmV)6V%ivM-d(68`S?^!r^`mEyCC1Zifh_{XUBNX-O z)l*qk)B3DlDa3GJio{&L$_KYuGKDQzP-Y>iLT2gsAmPs-&$XB*2KE+eq0dHunb5e? zks`|*ZSFR9y<}o#-z*Nv%7_vD<=GJ4!C$8Z~Mlyp;r;pL^q4-g~H2trGNJ87btrI}4E`?mOU9 zbm`IsNqLO|zYv*Y$tF|mgEV20Uy5jkiv;U`nqonaZBmmSd{$V|Fm(7xxVUKb^)UoM}ggMM17=^{PtNH&xID(ZXqK z{hCPk-WUE@`A->NTVa@pT_-nkM@x9jDPZm)r2jSOMY7njoj0Nu-xnNf2*!*Xi_aHL zg<)C_bpN(T7WMpzs_^ahp@0>_|K+YHX*XU})(n(#xLexL62BxnY{uhGNoIxO-b% zP=UOKWTcrr2FD9BfN+_ZM?^#6vy6YUlE2$&w{1=q7WArL&d7_L5=3%GMf} z&tEcsU#9k1@$i~H(_SC%f&UT@Z@UjV;)h?(p?rru&{;d+!tQ=>h(C_se>e2HPtoY_zVZq5IgWfY(w|*m@*(Um*~v@ zNLLS1dauw4G1%q*9zA*}3@E3{SID$~R zY7sWz2CM~xs`C~}UkMVUvjrkWaJ4gL&&UuwRjFJB{{H@;dJ#D(sX~?&Qvk&ih?{ep znitlE?A1Q(M9w(4+ZADG(8E!9W@CPjfJK1Nb4gWLk_4NSDYhx^s4&VDZs7lv@1qsh z?8;L=qCkNH@bmY>!WIkQlFJQNNokW4E;IA0AeTGw+E@(1J+3HTUIy(LVu7z$Eysn^ z=hZQg9KT43qOhqTMR39kI%LQYwcg=SMz?emVvBUi^V)RIi8$DKS z!@=7RJAP2_O@GFZ8LzVQB%9y2Z=WK#fB*gW)vKwE>2>(n&*1cFb`|V$ou!>lq>^(X zYL>qW=uHC@Q+w@I^8g9>SAP378jX#I&MJ+Cq(U1(@1oU^-_gI%s;CepKlFZwj; zg(U;#W9IZ3hzyB<+wy|&{HCxfS__|a2T7+Sz!W&e<}I6X`^qhxI(E{makpq?;h1udGSLizkY@(51 zp(VH_UobQ9iY;MW9wbPH*Fum9Uf&f}bZNHLo#86$X>sSHmA~Q+M8K}TD7Q(lOXI#h zgk6F@vCr?Q@WxzEE?@ic+402}Q^AbGql`*kMT-_i>C&auHBZ2_MTGn1)4G+wmHBW9Hdb~Zd@*hMt8swZQT!tw;B#!zqD5-v^84?<|I3eoVo;nte_o>~5)0R#*I27U zW~8%c(N|AhpckbL#GK^n;{WYkNwR!Vqm2oq5Ldm`6&6}GRU+9%V z0fh*d(K8w8k~qC@s{ZHt+qZ9LxKY!wRKa-_%~T+g)$uW-M*#}^@{%PKIolIIpTru^ zHHe6ifJ&wUA7#vbkDELm@r(W8(AY!q^@fkV4cAF|1P*Zvl<)1`yLXnGb2@+Ekb(Gl z^8sA-6Tyl}dClz@_&I*)gV?=c>W8&x*&=}rSi$LSFTuw~2&ZLNB_~Xd%gn~>VD`c} zq~Ju12uN6ql9|p`l)}W6eDBYGXgI1NDp#(I0fPp>QE0$uEKYMBm0R)JCJeog-%p%C z?%cW6XC~kAmHs2SJ^%9oZmYKi#U_Y%rIEfXet(2wgWz(~k5MR?JCE9~XRn?T0Sm08 zdRlItAZqzp-=_@!|N-l>Ey#bHxUZ_^JDmJuO58E2f<_xQO zdl8Z#CfB}zlX(^2SUTtsA0ujO@?G-=LP_ZoB}zQ@`_0fnrUf5QAKaLAU8(a~`P!(= ze)xpjs8+q2k|51|oxRGxjZCNZ$}Q4&w9Gzz*USq8I<(FS7>d!OfQRkn950UCqn>tz+x)WdRfTKS>nkUxP4PVO`Gf6OCi~qyJ+6JIVO&o zs4}Le1DZH#BIeGS3+F*OB*K$vxbKq?{>cqE4#}6547=->#8 z!!kfghrFPug1d{mf=gunE_w0ue|noceGWM7Pe=!q%P8Fo2|B4nma;oq(X6dLeE@_q zELpTf1-yh9FzZSqPMBC}X2_X=rbSDTOU4Mp2c8HWbOThNvoz?Sla%kMp(F5Kv-gk? zn}F@Rwuy6unc+<*bHE)xF9>hF`4)cO_cNU9*(kOM_8GS(1WqnaXxy?1jvPAzYezl8 zuZQC2pMOTdf(6;+nT!w^X7NLMTopw<5g8Ey4ARIgS-j+tzk$sDe5M_0jUVaPf0Jvz zS-uEm%9KHT$Z6O)<-nC=%dzIWwF+PRS6&~4IBE859&mM~08GXJ%b1!hiGW=HiEHuM zyzyeKnH+ghWBg%CzPxB(&%1r6_U%zZu8Bp}DyuFA6)S>*8@FQZ+O=revgPx3Yu=9c z0CL(BI!cIB=3;azDDpGXfYQ#NKM(%4ITO#=X5+?g&vzGm2OK=+UDp*;TDtHMJkUzRWoDu>tS7bLY^aMGF<| z@~9~FN{7^`Q%5<30q4tBW@1*8*%StBCd@7`SgK;BH{yCbbm(ASHGlqmxVk>5>^Fb# z3cTU*Gjp011mM{5-;gY-XkP1zs$wjs9@!Ao;2x63ChBF1)`coBhQskkZT2%}O8u_K5p2 zTq%-yt}KF(Pp=9Wu$KyUP3;|edE>{AenOQ)RbiQI0l&L`YCyzb*F)66NRdX<3rrzM z*b*XU`>6oaAUIiv_dF3dKM1qu&c@`4ld({;$MIhULHD+!V0Pn_0K`$rfNt5k1%u_h zq9dZ=<>QV0Kkif4U}m9(#*G^*8B=DuBm5%JX4yD(?fiV`0K7|jVbF>}>iT3x+tSJs zb}c-VpoZ(1+=9#1se(Al`v$eY1c%y^HNG07Xww`ds~bM(mMTDV%I=J~kXVKH?b5l6 zI=6Le*5bF{e#7D=i?L$J3V6KcjfDGgs8+Em)~#HNUAuRwz}Ta<6!(Rv!X?}WKE-n5 zSoBF47Ux!dIDT(~>NTq4?wz|TW35&`#UExGc;lTkaS}eCHU*?AD_*V)RxMwZrK%pg z79|uNJtXQ$4dX6x@;%sDkV;vQr!KQ$h_Ytxr zF@wv%lu1X%h)hC_7$M1__uf;&7?3xbIMY5!!(?YXsZ)(F=!ajCv+m5&E zz73m-QivrgVz`-%OP4MwA%^v<*DFOd^5ufXy$f{c*u4{e*!}?f!;u*AG3DMYhlpg6 zz|Ch1_xS}8BVre+ff8K#OBz!wZciAZ*9O5DDN{RgF3w-)LujvSXx92Ylr3IHl-lH> z_Ghrm_M|vtMps|S368DOzDKUND51yw+W{(oxPQkVU3zrEfrY=o%Of}DpWcPzCyt}f z;J$F2oD&{iIS{uk3~yGhsMrU1J!Upu2kTa?&9It3qVz_;m#y$R&WB!uwLlnxyI%o) zqJLc&De^eLzS9Q>4*bg(n7WfEPpZ#ffBki}+h$Fh;l_;{s<@8>jH$D~z#YFk5=^He=2|4&r{#xzJ;4xP z)2TM(Fn${2jiYqA*AQkI37uq}!-K;xVZsCz%<}h=FJHbayWw_OU3*zJ)>dZl03Voq zaQ;{P$MYa2?(Z_fcsS74SQ?(qWN%pPrkPoA=f4Znl6>o%y&*|YWZ|J#}a zRVL3~#&4I`FrVT7q`3)<;YL(63d{4zWXD3okwYMUFKT>_)UI7y)#uMW%_>Qk zd0%|K{PD*hDrjXL3WHigA^6;6!jvpQgkX}0fHa_lr}BQ#t5+{o6wjGwny;^~dLEkk z|10Fb9~+oTZjtIFCf{;%{A~&xc+~(y+Xy5BdjS(E4U}aq=sDd&y3OiFk=1srre^V(Q{U`x5o$8h$E8N4Ao!E3@c6O-Qia2pgQ2X9H);l3 zyfK(=*ajCz1zliqUCMcxHE`GAv(HDuNKR(yhWxW~C;LK}Q^+QYyaRAIrvdNhBHD!{S+5M~SK{S-bo>*K&#so&@41CiY zM*yU!VxaLdFf!@;W`>TLWv1zw?xu22R@uGu+x%PKj~+1!ace`6@Ov7*H|csDA|~I# zqPYv7`jlAU#lZnHH>N^2H3f5B0-u=9;+6<7nTLmohvK|&tb)o@V(zxS5n;#+GaksLAS9)kDXQ@+c* zEpI*riWPu&PH**nmakYIKDm4)gKh;cftq;CEdZC{xnK-QQ5kEm^~K=1yfBWOJBE&( zJ7(@qTh=`A+#cY-iwO-rs5JZgJ&-M1Hbq0G1-pO0?_ae&RFcT(r!f}%?6c3*>@wk&nT?4X z!XBuOYWmOpn8*lBu}kLdUgq*+177Zk8ACqM$BY^C(0-ZmrE(R6;$p>$sm~WKT&Rk1 z9%}pyD_9`+_19mk^!mDW>lB{j88-h{HRXkN=JXkakGX}g)>n``E(B{Jf!n4D`Vfm{5~5r_?oQ5nwf)_kWvV)mCxVpatN8Zk>UsREIpbZ+DV ze-v>lh@gN6KPqm(A4#XKo$+>)`sg>HKa!*{BT|Avlck0yBVzr1@W-B&5jdYCe@-MM zB_Mof0Ia3>&U1AUe6?`C5-v%<4Kv`c2_%3DaVBH-I%Kn-`A273pZWF1EfM#q{Qy!y z8ZwG^SXVZv?}|RpY{Ul>7oFa0q)^UM#6ql2CaaNc=7Agm{>%)AH%fuiihS@`QV74D zJdVKdAQ-xdz=mu~BWJOFa}PORJ4K0R>0$-_?{Vv^OXSF2gH z%x#(7DO~I|Q8{!~13U6VYo>WX^T0pn0cJLNeBy1%>_m71pB=1^ zVhvY%qW}`)JsOMDcJEG`nP#9&I09!u33Kh=zrQ(nCYzI~Sf7xIBXZ2FBVbJyXQqi6 z{yPWLPYifXC(Ix;DBK3~E7QUn-gUeD>9n03KOx)_I@+jgQzks{{LOmC)qF$GRdz0CA!go;?& zT8fgKrDWW1BYe_rQ&S0kEtJ1ZE0}#ZCa2=_mD3c{iRngT`doX}JYezwuf-a*>Z5&^ z{unhqjb?Je!X>7URRGLlR`)kXqW*{|RPS{{2DWuyD&M+!XWARh1DXf^Q4df=ipdww z7W0`(cmbga>5a7}OvrF{pUe!Vx+(_3%4uUbjK)@*pGyCt&5u zl`7+&xqbTO&p-bhllRYnO-~Q=>g2nU{hWAPaH9ngAZl*Dd9xwDn-r8u5Nfh`p*D-( z7Y>(UxsWQD(4e*#RWTbceqy*MPMjzdTq5+4(?$ht4sAT)c*qL=Hy>nU*;k?Bg>mKl zWfcS_o{9mf#*8tkaO~!T_~ju;jDIjSN*KjK!wJ|ne}GL3{p<$xWhD!0kl;+68=zjjdZx`E`C6@JbsQkw*sz?+2hozrPWUwnUYm+3TDbD(ie)GU zWJeq!^M`HU#2r@oZ4tHTJ_!97G3+yp9W^$~eRb>E4Qo=j!M>rp(2XS`xXTr|2&;t6 zYX-BLn?oBf*vfYi()${mhvty?X+;dt8-ftKR*F5pD~gzD_t7}-+xYhDZ&lGidS;F+ zcdV_<(gU2fV+O)hK$~Twf8olOt=izI2+zFUW{W!dn6R7JBg%*zBobF%t4;$^#kNL5 zbO1^=oQeFE`rz*A)i4CDz`h@MJ@pxD(!x*es)ri#x?{l);SA|%Iv;ANt;o^?e2(&7 zpLrH7%f?Sw$$L2q^dDD8@`Nt_6(5t)Cw<*WRtFsz7^onEStTR+S>}5s2iHt)nYjCT zf8lk_K>6>sr_S*H-3RvnyuV((d%?DdFbI6=g%p|6PmYsHQ&Ics(DOr;xqBRDnip28 zi$sa(jM>4|uw=vy@kg$FGJ-2o3@O(#auX(;h(bze5@LmSmcj0j&xWXx-qK}Dv2^t^ z!PQCtD$oQWq=nlT`BVlnDGOZR<#U%%v}7?vFAGqD2#|f-y)BvgQ%QKYNyZW5omMOtmI(hw(byLDgSz2y`ov_!JW)Mx){I$C73^}m1z*k=j$f!ud1$}ug2UCR zz>*Yjlw)q$q=l(_^D74nyaCkJRe@mxP`2P}*!TTUj|_IXVe_WV5w-BX6t^WKUew&| zo4TuDm!By$w}k~I6EB(Rf!75#VuOfDcM&oDE;vw#+Zn2;;n>!ug$oY3m#7m)C{2?h!n;C?*@3&3AYxDc_XU-{# zlH}|067PzV+0g_vEK(2aRmLpruCcPcjK-q#C#MMncME# zwF~V!eE^+}4lMdh-Y>q9fI5T85Y?D$#Fn+2(WHDMRIXVC1wwK{m#TxuR|S;-3EL-$ z?>*A-EobOMTli0SfSD6QjzSZC&}eMD3QqU@d>SQ7z4pZOi;WWomG}q2D>sMJy;_J`7lFJUUT8X^yPAGC5m*z5 zK6%1qRRBh1GGc03*yhm49dQDENID;j(FaFo*nj$kwr$%g06S^rIBGP}d$G;F{rga- zZXGyR^icA>$&!t=6~5l&?NLa+lYkB%c2FF*cJ*D6az9B0``pgv4M&yDj9Mia+%2JS z{3ILfYp02g*wqnI{Xy47O-&j~Adqk<68aJjh?4+1-oX+V-Cn$ii~NEl+NL_)E&VNc z+;hi(8PgSkHjnQ`jMOZ|QMpde3y-3nNcb&E*ewLFdpkxc!YN3DoLA&jKXh#OAy@@# zs)S{xEnALkNZ1?>>uLrh%6Ahv(+`{O{`w+^q;30(dw|@TwxXE!R>w4m0fW;Ty-#7s z7-wwXzFqNQW_1e0!pFx(;PCSLsM%Y%Htk$-^S8ygbz&(B)~<(W+XrwcZf~VGh*bC` zk*=i;=Lo%@61t95<7^F%DHocLxKri^-%tqeg<41mj(^t7+SIq@Zy|TgaLmy;!%Z3Ac zel`cYrtNa&%7v>Jt{~vnef)9a4>iSa3U=9s7#r8T?n)&s_WMvNeoKJI>;hn5=_bWt zjtxA~S(Mx!XT+TmtWF@jY1)$%Vl`{jgwyDpu%6ug1A?Kmui~V2pOs%_rM)&6Q(4m3sMrks zJnsUlQGfmADCW=p3V!~6=smcPq7M6B)NWqHI``}hr%$t+`HF4IIl`&E59$c#V)&?A zNE#f7$o4nT@~!ulQ4SFWBF0D%jFSMkOeP@)*Rb?o@kX)4uDwLh8%G!JMV zctH<5NFBalN808u&jaLMBsQ;Et7h1{=SPKQwW}rB&cH-OkM_f=r7IuW8P(Ms+xcX` z)^J+if4l!fZ6CLS8QCjWuBaj}7MmrC;6(C`csTZuKr)@_D%xY$l$~JZCMzwo;sT^1 zU&n5p5GA-jqp&ZWKX+cyns`>u2207l(kvZhDqd*N!rNXGZ0i^mJi0hJ3x?GXI^pAu zKN@ndqpDHWMolbKu#k~7mfHK*GYMiI4)2vKj{x4A&V9* zQtT6~Iwco%W+P2s)22<~Ha#C~^4mdwJ01<*X@J8A4?njO5(P6TD3QTLSi&~iR?)qX zevQQ|kCIs=Mr!|_eHk{_7XI5Fpf>%6O&=rt-YE%u(_jqO4ht^Vn5r079(DGdae1@C zn>cw%vaupvo01fVJHM~M*tnftMn;$Px3{!5-kvV`v`2UQ?Po~Z|3fFR@Shz zwly#FjfJ%XysYfhfR#bAW|{{y4`?2E)jXhOcwe<|<_0Qtj?A8_~P9mLHKLU8ko zi23v`W>1}^G^#TnwvUewbZ0Uu-X&d%g_Z8fV;W{(`}Xe(gS#V&mMw->quQZLl`6=S zJCCCIO1Ybe#4``Dw#4v8OcIQ6K`X3Ww-Sy{jt}v8Qfg4qnhbD)+joUPC`O^eh0wiM z4FTmG(5G)-3qTT_6uetsal5r{*djd^Y+sQ#a<< zVWWq`sZVxTOR!6`%4G{fFCR?$Vv@NH-~95+FUVCOmrNP!l@2?FT1e57p1j+%L9<59 z5IZNpw5V{pku&^Ixk6yp4=~#s9~ZA60i23_6g>@#ruvI;Ltx7ba2=mpF%?A4z4ypMl2xl# zVb8w3@N)OWhRqvs!|$dl0Q3B|Fv#cXkdh6jnw>=JwyohIg;xti$RT!F5G;!bGk~xX zxQjHdRdyS7k|DjXqI{JKN~FSc)-~(bQWRd+Qe;Q7tsofP_dOAJF&2p@!(o_fgnch> z7~@hAH`X8Tw`&bb6w*j*w{`PYg$1;AwnM^633dhEVdG>6gR3LfuKo@NdjqOguZrN# zm*oL38C}Va>I&Hi!+~V9CEz8-SYO;h1;pXPU%O?^X4UuO{=D(#8;GwY$J!J_wtCcVSVs;_ z4o(u(Q>ISAM?F8nv}w~27#xTSR=e|sP#$PYd~*%bcP($Wex)_QFJemnBz%lBBv@VCZ+6KTje z&?{H2oEo6TMSi2UGk6pP|1W_ z720+ASl4SGY97!$@DF+5nKHcOR2(^SBx=>F1!fmG>L>3j`R+_c<*a>8^B|Fu`r zc#s?KQNb?Hms9tV0v+i6ac_8hqesbe`4oy;V6lK|?Ur?*{4qr_>ey64;@sdgUfDl`UAA={p9i7Ap?s^1INe~u0PEbW zO{>%^Aqu1vbL!xWq$4p1Y;qn^U2maBdc(1N-ZJd} zVILen@`a(jmlE^f`&3CP+mtk5ps3|(rg?zB`+xv{1l;!*$j})C1q(*LX3eK|3}rp5 zRjZ}~T0$gz-EHv4)*ce*#v>sn7)KUYLgy~sGeDMjABv0&#~ul++c&F#YL&_(TCVrg zq8MqC34Q7Vc!q|AT6O;LL$ne&(YN1z`wUxZO*Ic_9?(1>iLs}30%ha)5T8GPzQUK1 zf01fnlO|32PfPzkt$$vXb~C@2feRM@;BB*9WBvItMGva-U4HS5u&Q4`5FW@J1_6|Ap<5&XF= zSp#e&_>7ow*W4R}LP`dcX~8m=HQuQ3h9dNj4v)grNmI@3_~zijgXq|`6Kp1UD>wwj z9y)dIqTJT@0RzAl8Ni=(1VzMu_Uu{2#|t%@7_;fkTeU#od*_8Z?KXmY zUWI*QcU6ElYxXQ9%ScuQr;oC!EVxC25!S_IK+!Xs8c10A>ftsu9}H}XNC{G zaroE~CCSJ^W51#O6{m2V@FFv7pX@K{arN9_l)h~0yI|X{ZRrnFd;fp#0rFpRaBG?+ zc^-E#cs}%t)C@!%!j7?yI5@WmKI+sIix&w8br!}zdFITS*s*snR>+JIMOOYQ2!Lvw)| z>OwhK-<=BOx-C~ z27|2uVX@%|XmSpAA|gRy3kpzJ7qvrhud6uY6pqqwyoSBI_JFXB^w#Z@?r zZQgVO{byYu4bN-ezzydwU4TusH1#v?KUH8G)`inPHyw`>@{r7R?5f{_$Jle z0^PcGlR<_hY-%{eqh}%2Ja$Kj;FWK{eO`W~iqvrO)i_bCOUo{s`qN%D54;Qy5RP!+ z{2x#3iUY=vd-oIG-ZSv>bjP~yzEwq)Pu%c18gK@&WXY1)RI55_XHUCVG|Qa}Wn}Pv zpnZo7aHHqwUfV?TfaZb!6AwIf!2A2}zbozI%=oMvIdXtx`g`{5(E{FA;G*&O_s4;s z4yYsXTvNo%V&FPEAJ(_qAYu>ll?$fSzQqHs&E)Hn-Ibuswu%cv`&@&CvraOJlC>3V zY_%HIGGuNDSGjWW3YdkAl8h~<^;@)Pfp1rQYd(7xi0#<4T`4x%m3Kzm{&0v+DRcr6 zpj0kpiEV1SN{|@=QfHAFqF}*-=I!|~)wu{fA)Td4{75E)%;sQl5aRue1o{@yMmYL9 zW^SsM$v@13Jkh*>ZB-{Ye&DUvTlwgfGF;A+?zr;lW$3J};GJCt28EMhKPkJ=vcVp)&M2TXJ3b$*O+g4GcnRb?ZDi(!H6~YY(55IF8!9j86-|@>jC_=gnwzlSAm;LH>Iy4k&MedVqDw=5?&^(}d z;7J~k9M#hq1D&jtbV%dGjG3!z8XeTr^`^D@t2{tbc?VAebUAIz!7lejOs;hyJJ=8O zLGo=;W1H=#)GKT)AEK^BBtSK z4O_vqQU$Gb`!+ay_^^3D%^EjD#Hc%n5eZ$YyQK=t0_Aq!ll7Ucc)?vVH~$X@Xg}?pbnQ1 z`PDrY{OXUU!YHf~b`9NN3U+x6PCbSGjSLeR(Ivt@ku2HtR4FV>`(X6Q(QK}n=7GQ6 z10zR`hF9K7DE;1Y#RFWl&N!58I33-4_Wnzbh4&hR6xsb2^nfXXJNoL>X(`zA`Ahbx zb*gzl^T2=415cgdr6@tOX3Z2%j3aJV_%hI)J9n-s(y3j$_J7Yi|H3oMlP3>cg;d@z z&`(Jdr$(nB?)xwmv?X7OQ*>IMD+(j5%QZy)dRsD?I<$Ph6^RPnGEUXOH=s&psLkdnc>(<19gTKi1zmt;UwJ_-5 zXlKBoLx&WsBEyc-Em+veI8WdNF&lzl`82xdjl^?jkINg&}P44G{y;qh_62SQD{Y;hk?>xvr?l5;lhcIjmqU8SA9*L?rB$ zEVZB!#?PLDkl+wZT%QrYY>Z0FtWzb=>${?AZ_(cbfZv_1uvB>JJ+bxV7VSZA`qH%5 zEIq)Q3)WYJ1O%Xhu%0|h`kFHy#N2a+CB5E#mYvGV6DLk!$GYYx|-lY^MA?w8bx5>sr&e=8j6(dU)A*s_bXXfqZIhPa6eDmfpER1eLq58 zU}0}*6s7>9>x4XNoqZ!WquZ?f>b+yHZ07YM8*DUm_mO#e7(H`&8C!qQ#uyzPt#&DL zy2fU$-ZQ>YwVbg__b$f7#Ka7TQnA`wM#+8}y|)xM|95KZW9-oB!wl^vO`c?QDCA^r z!}btnRE)fq(r&1hTQ+32;Q zn9-rNr_rX0lhL-Gt2!emd-l$J?L`i)psER8pb?@^BQI9)+m9=L%uif z^f7OQP31A4Y9Bq$17Trd#(;o;$2EE7KI8A!(ZRvkp=c4~>^IA+Ywz_^rHm&}o-_&t znfZ8ocIjfYv9dCH8Pcx(-+uee{8?6ScwO_}U$(_^V~tNv8-=IWXl?6atT))tShUt~ zV~bV~--9Laey(datNlyytg%*=%EodfOB%3Y`+k-XpBT~O$B#pPh$@R#v0_D~%JnRL{1t86 zwQKjvQq_>nf)&tDBYyC*d?SIIDk>yD)>2wRl3L;R``#GR1>FTvTG)YXcXDTaX7vTczx z&Rw2E#LT-eo=A|{d7bd;R>rPvJJqRW&y`(xXMn+8a&_Y-ew*Iso7TJa7tedYAf8Y*cyWYXg3pdQ! zXSLHze|GNLiG~dts_d;yRS0HTcyi;Qu+O}nO-A11vgKdL=@X|+tDtAGp1?9#mu%?d1M4ET2pe=0x@>|+mUbTV9^jNyf|8VwNZ`Ey6fIE{ zes}y74O@&rL~I;vpwnBSM9~sT!nkZl-G(L+S)S3*K`KJq)Z+~)P=jj+ILxOnj*7K%FJbSXfso6Q$>b7aGy-%bdu z-2zu{-c=G5jG8UQ$`|zDHU`&7REz zyzcnh0hRCQMiBnlx;JnP1L^es&(U9JTzuDzb8& zl1Jf)k1RZnDz&TP$DMm|^V&@nAgU{E zt?yo>Fe+@_fnL3OVcWKCSss5vViH_)l+W;)cj1Nti?T;Hr?7{D-3$%21UQ}DRzCZWOiLa94m{roO)$b2V@X+G!|R2xQ#)cva&X~ zar3(QfG3O{j};fxIe9 z%3zjk5AmM|qDHkE*gxQBxJ}O|L7_FG7WpITk61X?_msjF12%5lC_(cLcyBJQ_HSKS zf=4fFgiGO?MVwJ(fuAND!r+qE^V8UCue}DNB&ZA>(ik1M4YS{g$D;77^>O(6`l3ts zu2?jGA;KlIW?ejOFkzHpH@jLw#a7Y*(ccEbp{1u9NO1f3tzmF+bH&&R<1lv27$u+) z7ZHo=*RLaQ-n?w0ndX7#@&J_)4+jLHWj+V&_47lW;it|0Lv2RRXgl!}};JDcs)IkIVs!)M&hKoZCGJr5eq{rJp{-;DG}%NrZ@AGz;^n{cGzr z5BxuSpxuWbAjl^iwtdoOo4i`MU~|VUSi5#DSY!2~MjR(o z`#N*x3~Xf(e)Q;3g&a6?KRV)h>N0q4E-5*Hr&x=L=qSCZS@#Jorun{^@U$acIMECC9FlWXbbm-UtE4rqCsyJ?4zon@an!a4^^_e{|Z_y(4(9y}viM13{T39}u*DyFal=FN*Pq^dG zT@;w(nnr=W>ihH_oky z4>WApP+dq}`*%ZfaXnl{F2D>!gc--gY$Lu+?ab*8t^}{p2#gy$4!wK# zMvhFq19v7&lm-~vw#|-h+g1l1+qP}nX2-T|+jctK_nVnLyT9R{x>fa%m+QB{iUxS+ zRTwDDb~~CkJ^DG`wq>cuo(HdDtuEJAvaHSHNK65y^)(_%@xopct2ARTiz|SYf8kV=HFDKHUOa|e_*?wLQ}v z8l*^A6C8Pv8JfH2^VNO8hfcv~&qKHVJ?`D4>)3zsGM2YtH1R`0qf}o!tOHFJssf#! zorI&*r3@A1A<|H9DL_7p*lYg6S+Vs`AQeCOsOemmRB#&%CmU5AvW5%%g)jLlhr*m# z77T?2NGR|X|6=^xAXsnc z8dk&EM3TACyu#>r0fArntP$Q=w^|bl30+YPwjrvN*C;z2&a~;};>Cg1 z<9e->_1{$iU~lCSr*il)*{qg>Cy#iguc%y|s0#gHM$YJq@|s2=vylIP!fLO9{}EOP zJehY2H!-vv}6Lm;IL4dE209a9W&pz#D&UL4!;*RlZP>J9$+9IFiPK?VI*z zoybGWVX+vocD!7K)*EuDDM~lM#Qh0Lz7tBP@@e3lQa5qDm8w5KybKx&7Ugt(K!)DqBp?cO-)qfit)WkL3bBqLsWWjYue<89iaa5hmHU;5%}w_{q7bl0C@ohBS4lL zCuF}$E7_A5UL55Bb?%FvilJo?3zx|^ff`mFq{h#)SWv0q!{jy0Yp5Zox*3dLpb|HO z&Cfyq%Zu;N1sbcxG8&)Pb8t{n5R9u!k0-!Nw9yVXRiV0Rqz=(vnwVsi{cSqT@#cMT zT1r6_YVkGlEbT+@B1>h|u_OMq;KF3pk$tIxBlM1kR=lGitT-9qV2 z{7Ru6w+5heIR-|U(=4`taWzxz{W++GLmZCJ3NuNi!X}gni1;6dzsno(7f&Wu zp8wk!C*H^Ls)RBW|7C7O>-JxZq)a99XRR;|(#aKC*($C~DSH#mB(%j=gUj>gCqZnFgocP1y(D0Z}<6L_MsZFuJ z8rLGltl)46p7SUx*Q+iAmUpW`$okaWRg|Ee@>B%Do9i2fAafQuP2?o}_P4+}AvQ@o zcYJr&>=%V6REcebi%UH?|Gwh7tNdphy*tC0M%G5o=6`i`Caei|@FXh^ z38IM!mLw>PLW>Ctb?9_-c1pNKqyHL#0PS(Ibsw4J7rdzRpMCzYvE%dTzR&*Xm~}yD zuV=LtJPYgyfl8!B1E~w5uqn+Jer#F1m4e%OJriAe)B9sQg?@Z^@45GRM zJ}+q5=BE2tZh=s_-NvM@xsbD+^Hap1b@o$P9EdjD-U0c0M8V*Cql~@Zfk?4 z$p;DbM^5pr^fr9?!!U<$*0%77tWIHvn9L3bsee#8(mnTP)JTKJ{hGh@J5}2@uA>jB z(?1e@v)G+*DClzG;tVY;tgb}=H3%NjCnA2hU9qeT%xj>er&-Gc_Uzb?``Xnbd6~N6 zSs$8-cQIOBP`vwIkN(8KjbTZ~q#4Vk^id-abzZH7kbEM%6Y>PA3Va3ATYr0Rz)DCh zgxBWrM4_lUzIm?_bPbj+WjLJ{nkzG^K1dI&$8C=3_aH9gc=mC%PhSn)kZvQ+aY0u=FziwG<=|&r=5t)JS4By#8DeMB}#(vR}6v8)Y~h+?dmDyzAcnY z3j#4_8?9MjOtMthO9fJEFvpg;;Qer!!NJS3B-z=ajr;H(g>7DE1lr}{Ar9{F3?X0K zSkbIWwi$zQ(n`Nf_ypQk4{ycL0!FxjZ zF%B)v)rCtpVuQt}1K`UG00P7fhJ8N?C;f4zJDe|qkBNCefT zrTvt^N&eg*;C9*GbP~9Lai|CH$=j2qGU(zw>pt-u%=FQR0w?M>HIm8?2e*0UETvwy zCivG{+m}TQ7a|2e2?Q}_we&OfdXY9wuvPYzc=D3vUt#gdAkR%95)0%C^+`ySBMD6! zItGip=Z0Pd+o68Guks5*HpAUjXQ9=SA7l(7ef2lVSgH)8r=v@7-j7X%qt4>1P|Ej5 z6j8>L=t&zZ5?2NRwUfSY2H*v*!f41H7 z{Yng%N`iHx(L$r{tHiKL8MN@Kj(3odyj|4fwu|t%dQ({JoMD(z`n~E&zr;0V4x=4c zqvH_IDjbU`up@FCWGc-t%Li*`XJ@7K@gk5N5X>s3B}CwTn>?DpbHI5zVoRWLCX zjm=^oK9gp#wOud33D&$&8UfO&-RhaS)Q0T2ZGTPBOs_-?u$$Pb;+@PBS6IzlDMhv0 z17-8&Qi^w}v0k(jhdh!TFL$SJ4ueN|dXf}j_R?CL%!5xO@PN8PT)}l&V!K}$P#|Zj zHGTuOKYX5yfc0P~JPZHiMPyoS5q_O5#8Ae+>SZ&i8)p=au$<9l;!}H{mx)=49y(D;f+ z;%WVCgAsbMo)>CJIqaPzs3-uX8KvRXm}Ff!#5&^16<_Qi3=l+Zmr}Y0Na5l5t4Lc{ zR67sU0f1kIR@7$ePXJu`y2x~o@kn%kGPR1VQ<(Fw9Ibsl{T{f;hK|k5JcoHyev^iM z2jclRR%;OK-4d3>x%1ni=Paa|{xyD>E}g$DHC_=cD5w9jjhlxzOq)hxlp0K+qdy;D z7g;?rYGrspKx)#aujLS?R^A29j$Dn7OVc$-mTL85{+2swHd#s~^R>>OJ zgot-K@c$e08ul9pi@ja!Kk8UPcto+N9o%ghPhq0*MilwnnQ)7wY$)DZ%?6O(v=97R^27df{;&ND#?$>P!C^&k4*N?FlcV9MrHCZSg&$x_E#BV& zasm1l&mAZxjJ7>ke$&}joP+nh()iE!cjh-CM1en|)_bVS2k&qf@O7P$S?4*^W?WaE z=^nE~?I~|BhdZ6%O((dvDsMAYNF1CGcYK~9oPFExt{kTHl|51~Vk<*8&FfHMM{Prq zu3dku9Z9c?gj(6(3a2sSwk4K?1Wxe-a!2uhoNONinliz$3|zlG=jGo4fE5R`fL)nn zEL5O`6o2Kv*QP5if(bhuM7L}*Obz@Q@!Z*cwP~F4`6HbT5I3?EA*R5UTN`#8q0BY{ zs^;HJp_q)3NDQm)*AQ@~gBdu2c(Z0e?cK)IHw20TN%7O z*_ykmkxI%1a<&=tVFUv{J*KJ;CpTWI>hVWsb5k}o_S^K+jO!guw|mAMdZTT+#=fsz z4CEnlaqcFV<>AFHP8OFkN+yUr$bnOUK_R-bNj+z3!e1%0qBWSDtq&T)VIJ(l%HiLe z4lEo?DXs3I^bn(5A2gTu7)GF6(kI1Z|4}U2TSBB_Ji;j#5KgDEeknF7!qYtDB%)u=& zb)?9cZ*7Y<`#ZsbhNH%f1&{Rv#Fw?1s8rWOy{;IK>ZsN69(e7E(}5gj-$2}jPQ#P6 z$(i!UaWncDpkOG3YBt|;&06@>jcXyleM?ru(xF%@@OhpnkR6ONhPpX&9i#_hYy+_4c@gom|X4sHN_gHODv2VypXP{8$PR zX^?PQRhlebeQ_bY)8u3(ORKWsuUB&`{XPJemzZw<#EFs37iMzwKuI!9LJ&v$B+lu} zX%B@85>z3XxG_igH`ds9!;#{y6U0M_O^&8JxOMHQ^zlk~vGBgyq&Hd-xb$}ciT%A~ z0GNf0;o4j(*3+b2H8Z0hc9tJ`i(vpAmln3=I<13h-K-FmALC`K!h-h7$NjrWAOFG` zw!3BDW~m(Rn2j8IFF-UUgj40~>uWm10POP>|D8oFRSx#4+wqj>ygM?3vAcPfhG9<+lH>&MRsS&xZ0lV{k3H zWdPoR@1St-D&fZt=f`P*;oW<6Q?j%jwXNf*6m6Z%udTW#=yk^jGNzS-J&|g|HYgPS zSIfSpyIk)m8(fa#`Wl=>Zd6|lpCM8=kh61=wbt2K6qF7USnI@V=4|b!_e#0?kSr!H zbVn&0`mvQ?eO9u(6|>U(>A6Lr@o6j+Jha#X(<@M<#A0!1o%dJRqkG+W*$GR<>-IX| z#>-l{D+}F#WIyk9Pwt63L31>>k-_rqNKx#ony35{eZWpyLa$-+-oKRPrA24X$$f0h z2o&;YkWTK?mZPayWAbMZ+BAnzc~PFgo$rsAL)9Q|$+3Wx?0;bVerBW=kbx2*++}v0 z;r&^Z|8BwJym-B6@wTH%6|ziagF5O_ymNx?cm+OxW6a9K&dr%`LLKaF1#NGb;jDPd!PNvcmZoFQ;3+D0oxGhT-2Q=f)rUIj9f~gi| znec6@-_T#5pIbOB=21G-t#KnXH&7C0oWX*$9b6EU^29yOgZXOIXoGv;Z<5YYp5DrN zx$Iwo_YH5hZG3{++9HNLS>cmLe=em*7>V&6qvb6@{A`ZpQ3|lvY?x>E5e#c>*BgQ+ zqR9Zqh3Z3GWy05k;Nqb~3y8-J*$w(d9gu%BJt3M*X2PdgUP-uLKH7IGkiLEraiM&t z6G)kz{-VHK4Q<5P-rQ7m4(j0p{y7PYwymRrXjDLOzx_qh2}U%Y&?YW?tOay-1@08T z_u;H`S`i?pd$YU9#qj=fSLD$HaPvdyx&U*es;nRQ1|xPyTVHwmrTS=HZnXY*LkuOQ z440J7x%_B}RKo5q`Z}SV!(7s82!d7J94v{)6=~EJAo=NlZiebXP|M zOJvhx8}*)BDXee2F0ERjwrN;#+MC6rz<*T50>ef76YMO;FWh`P;BY_ZO(v;w`mtBJ|=3l$Zb_$^2yavMTs5u&LB~Mxv9e&o)iy%e)z@7|YrsQWxrq!WR}VgYgjeuX{PIg1K7>y3d|R;}IV zfr2Kr2B}%QP&A@GON}YRWb1uo*Z=WTo~yxWbEf>y6%XJETpUl7d-X5k(82Xn)5#AY zELHI7TPV6&E<()JMi{wrC{aKQF~G?pNMxA+yz}L{Moj-qoyD}`u?x33CVi$Mf!oelm%kB6YF*SUEC=|%9{@p0K$zcf zA-%)*r^nO9@+5E7MD4^oB(>KemgShzF$WVa`PJL)A3=1AFN=#BJjS!rpDzDw3#Z>@ zr}ALze8T^jG(fh0nM`D0N1f0`UmW=AmYN8p^E+_A!E-^UWflt~NqWtv3u!k;a&9LX z-+VYZ?DYYYMwOkiZsseRwPjA>2`pKbM|rG5TeOf5?DJ3}mq9RwBU_U^<*RRe*`GR< ziQjU_tIkSKW8V$VijN7HqF@e9oIpr*hs@lKDtrrQWpT7R*3Ca{)arH02F*@d?|7I? zyac6X0^d_ssa6Dz_mn7-Kl903a#d0;6?sMw;s-xvy}1$hWhEvPDWpNN5NK1P{^>DI zu;TgmCe?uBgA?z&o8u(Z77Sv)8()V6pV@8$%WnWG=Wh&w*AQ^{ zc;Xw0Mh#~t7K7ZM+=OgH%)Pf9S5-W*G-W#K#{sH*vDWkFLj*d$BZxEpVy#86qS+q@ zNd2*pN|1P_nsnB3aN>C^hmqq``y=Co1@_8PkJKn}A25F$zxVCU*8OrBYv;?IoR|W= z=&K##iNoiQ1_9~ES2ng@gZ^T{PeJYfazBe)D*{S0hhp(~{Y@&AjnSq9Iuf~=o_(Fx z!kpROW5r-A$cBuETb4e>u!d(ZY!@(GA31#NYA(jaV1`81Q&b)wJulS@^~^RQ<-9mZZx8Oh zBt9hY0Up>7>0$MTb<3xDI#GO&*My{@_4hCIXg1t&nOhYN#-1uKkii+IDp{BBQ|Es* z>RImc#`{o#>l*Ja>v}Uy;0SovSS6PZp|%14d4;3^2?yuqTvf!#e;A|fbFkt2C&80C zjOkH5eMQ1S2^uxJn{y*?U9z^fj7Q&#OTMba``pE_X($e~l0iHZO5$%z zl{VDsjMk22KIf7*xRU$d=*(kE%;JY#rHIIbW80$;VAyg-5&FGAdyfIoWDv)pW~gu& z)oxE0kuL{c{f}<|sHi4B8!vOIiH%O_a(T`&M|5i;+~~S^`uzt&LWc`Tc5K#7L0#4= zsqu~lca(o76&yGjbW;>|cG((Euho^_Qdz3xS5}bQ;#<>%7bLQ%)PlDLd*JFGduT|@ zRY3xEd)S4@r2~YhhhpHJ&xb!sk$aj-X`@=fl}LYRRoyECO0=jq1k|?JR2GUoWOUmc z(d91H`W3!f`5PPYZPY#r{#(pH`*6H$VXscHV>b04gx|$oLn;arFzXS?r^rnTMw~A4 z;qC@y;teRnaQ4nyF*Jp+Cv<{P{T4%1nXJ(O7v^b_W{@;ipEH%E5C1)ok%+Wp#*4qCk-k&PWg0k_Su%DtCSbUX)58` zP%Nt>7i?EU-|UpJRC?T0IxQ3z%}PytX;&Bq&?MrQ-wz>^BN7PtMUP- zP9aVV?8gNuKkzj z(^6H;^}&jAKHG@7s^yxBIyG=lsR`1+!j#?y=cx!xlb?ovsUS(4tp9DFn=K)@(YR9B zsTLL3;aRvY+~&18e%v{=$-cYtS& z-QmhCFQ-3RDg(7si zl8CX();%`1EZ{y{H56>{P`4egRn-!xy@Vn5X0Yt8cm{$E3kO(Bu%|UsTLqV8)G(_sq zXm&nO8C9`N=zo+Luj>Ej#_daDzH3bmrL3u5J-8p$RcSf+*!bUxLS(HuP&J`R=>xMl z*0kY!KQ?d=FZf_6a(X-zS0q=ESRD^eoO9z9uaGC0^+{|&i zFZRf-Fc5U;32L#qsh51>5(eWP*)FPMIh3zwP2)G>w+w{Dm=|z>Dwc~H;%zwrxe@M} zSs{z=M2coBbomo#Oml4`L`NSWSrM1DT{+ezA|+AC4%HKj{1~M9EQJE*W)0y>ajWV# zi?Tg7ob$G6w_5>ZwcICrL}(G0*ev~j+_>QL2)wPF$m}!L>WYS zrwnZAUOs9|)kss$KP@k)Kf!nuD=3V%7%|)QS&P8}q}b9?g-*Z^*z7!>BEEdrQeX!Y zQv-d!Ri#vrP~D5icGrULfF+tR4!fGyE#G+~z*vGQj;I;aK;u)p3+kZZ-1eEx;2-F&Fr+W5s?uJ*DfaI8$`pxDyyW{pYoY@S`!)aROq;vsDU^-h4b z)41iM`lsi54SNSXlSn3`)>N%d_E@RDpG>t{7ysk+#@jY?sEHt~yX(JYTL%z|>8|HJ zuCaZQ|G2rJ|KD+xUhS02BC5U>GnT48u7mIO&)+VlxMNX$xK<8F=Sc;wccgNPZmj@8 z?v=qAqQ)njvCu=VlcV7@a~50s>?@X>Fbhs6J@aqL9H@z$HLVTFLUf*M^KoEf9pF43tp;&n(pn61vmI z&7)6Ol6-yf=HTq6Q$w5-0x(I5R61KA3$wsA1ZxtTdPg=uIfE&haIr&DY#!{u@2%@w$ z%BsHQ)LOC-bDGqDkXWtk0eT^o10bE2)}3qRxefH+;RyD&#hlig|2`eP1B8gf^G<{o zb6?OoED+k-$SKaqXEWOW4$kytWdd`Jetm!3j--0u9}NFIE~+}cbY@q0>>xc$!x+q> za`#fmW#%*C6X&_%&cA*P_;b8NT#vd!d^3O!`r(HLLO=BNz5wfb-I6Wn$p)w#9ag|J z2cWNyVYN)?f=R*mH5mHx`!&5xyw&v()mB|tR$^M+*W;{uI* zSxa(1CM(WPzmryBZzbU3Yqu>%WC7nAyW5vDw;7*WzY-B0{`dGJ_bIdsxGrKNB{%P| z?I=&i>6K*x#AGerbix^rGG#O>kBg0eVq-N1O{l zhFo0G;|wod;gd|p^toQ#5*##YArXhYX$8-UsC-h#NR7@du9k9Hrz`f{rz|y|);j&flJF#f-X@_`le!qvzo7%E|Bj^Glz)%ay3@&^n}A$j z+wm$fdU9w?=C^`^T4H44hxbmp9PZO?&&N%M#_qUK!{4ziHmlJ8N<=8KTuU%s3JpPb zFsJjozgf%#mGx+~uoH_H61u}0%r0%Ci?S03$isLN<);zqEY^`&Y^+%=ch)4c&e>dw z!<2mbVZMNL2@m74HfxEG%9^0Aoe>;bM+X|kChOnoh7qL#wJt?_Z4_I9g@2w#w{c$? zZffmR((`1atVCu8i^Q1S6B&?4Dfzoh&BCZqkaeK6OHD+g!#g$EoWOVNUie9Ti%7tp zeU00=`)e$PD@C@1=+(0Vp*%r%9tXFRTK5QMK^sM5#w*kC?Mxxa1~uyB@m1q6(-yzv z*Cc5~JQg5)sZ{&?r5vnBuQm}a*SQR*mopGhfW$UUu(^@x@XF<8e4>d0ovqrHul7*}O48i>)}DioP(ARuCh+ z<%ym21t2?>fV3c(n9tgs&y`gVTOrOKPo{%Zdsz=nh6&imCi*ot<8{v+FhGwiD|V%o zOiT9ure3fy;;`@e%)@P53b;X#U7A?%RWYArGq790P*1-YwQ&*~-a1#O?l3{1Qc^t_ zR9K4zD~WI%jj}-LphWv4#u2Hza+qtemBW9$V`g)?zE=ca|9n0wys6#|?-lgs%WX2+ zw_^vK17(Uo@rSt^lrZnHA*A3|$A8-a@NZ-f29W(jkc6BVv3AGffpFqMrC zWqUph?G?-bIUK4l0&GmY#oj%0HQf0{S@g&xGU95+rfODWS z_ZlHy;CWZN{=cV80xKqe9?K5Qf#@)$f7Fh*@Vw47d&pb52#W@g9;9Bar)imVu_{vg~8Km>088}z|1bjZ9Q7cVmUd>5jj$)7ruZ- z21oU$J>NuRswfbpv_1_q*zuoc;bT0P4*cgB}YXKz7XJucj)<*1;XxR}R#G-Z2s}QyI_Rwv?obtS;udRIU`N zU%dNk+8nyCQcx|$F{*ogjJC>&eznO=p{WOAewk{KGt`omJCvIaPZC`=ro~gve~kt$ z9XM9=J9#3QiabqJf>=0<}+ z5j*Hpmb)9CtmGM3Ly zRE_`Z&L%!a;i9+f?R>dm!R#)uUYe};BYgRXKSBlS7!)(P6)KYkzlLG{Rpe9gKUV>PuZgk!Er8)&XYZFs1}c%s__OP`((oJIe)Kdi2r&>VvN4A+rp4?DB0Bt zriU7;DdIp9o!;RQN}x(91ADpM`uTAdcs5Q3_*kgwKZ=d(4ZK)b6e~rco!8rO>9zW| zB!k>zth8NLNIzjVQt8;ZLI zQFw4X#-NJ5{Y_9sNXt_wctirJwPl3Ah_QeVGpqNzc)qg!p|ivjz0DzBJ2eyFCTS|P zUT;j7x4qdB@qK+82D|Jp7Ser+HiL*_;JpbdR)e~N=-osbZYLyEZ;xB8i@9;mSscEz z5C-y^5A3CKzzU2yRoM9bYLRHl_^566`>xM-jkgCPP~L9fT4$fLtC2(AmN4vQ`-VET zYivBCc283%g+>|B{FP^!v@m%q={EZL?~#=8-@nRF)7jjwpBg|Z!j!r6J%lMsxl5);DJkjCAb8QW{fgg_3lqKO7ghVbGpIN)i#H&FPeaac>2F7!B<4HcN#tP7J6 z&2dxJUq|K-=4v6FC^(_&#o%yc?$(nhHC@SwJnS~14wcSRiDd7obvkx!=i|_xy9FaP zs6t0x)+=uTpKPN@uhUU`Yn3h9b;HIbqG~B;#7HzXn+ooDHL&UsS#nhh+uyz{bLgv-?2yb`g)PzU-`27OchfM3N|v}< z{@tj%Ug_|F`U9fH)N6Ew^m`eNxJQL^yTGS_lrZ)faWYHh^EV=mM`QVxuqsd4#++4! zp!fThBN_BM^7+inFcv~TIcDx8F}=RtpI0VN)MGlB_cDGN3NJl^biL;&KWp@&s*hbs z!TfgQTE6v%ILukAx+}cj!#ovhHL0^R+XH9LpZ{||Fg%T6q?o7i1i|JN12mxwzZeaJHXW9IaDP?F5LAhrF9I|RQq4+R3$SOE+}n>rYB3jy zl}1xNtb#a`;g?;X)VziN4Ls;t!z;3_V-W8^!awl07qAH|dEJbgb_JQjmYi-Mj?xQJ zr7m=BidBuA1e+M;();%pbIUD@eYjLE%br|8|LVZuL*>r^OomnVq5q?G5O=uGI~xDL zJ~Ul>R}8J$xCk z6w9Th+QPN}Zwvp0tJeIB*ZuL*Uwocqe|^E0?NkKVF_6j<@&ru#sT{fg63aI(v}aJ6 zK2?35qq!l{u5Q|r_y=?~TkG3PG~)EbKcHi%18;ttXYR_HndewGGj+`5h3`_s-$*vS zuEHYyS`pigR3a5O;*zMq?BR?RMOWT?5B=@EzAwYF@He%=?ix;X)}JP0c4AZg*n~Q3 zaU=1TZ@3lh*(yh|N{RGMDYR_!s}w%-Ed@lkxKSB5#T4^17jpu zSZF4>TM$!~$=LEVx6Lw}3HJa??Onj1UZ;lW(p6)E@FlCSQ7-_oOthmUg#kACqIM*g z^k=qOJ$z)`Bthru35vvESGMSO$E)B>@rYT*WV7S9L8Dd%6QhtDxLtynxf`c^Yt}^G z$}g>R4k}YB5r#oaItNP2WS;;n|5b3V%=16;vR%`BfCw%$D2v@jo8^$qGO@BUHqm5Z z2>lMNS7TYzz`(#s5oDn94kp^_j+SP5EP-^|Dw7RmT2am(APsrTVBtSFtn{qf?FNKr z;B*K-HGTMl>d#j@9*r5&Odn6CNyHKG6*9g|#TnNZf95YePgV7D(@Ns~Q*z|08$hWXE1SuFVHIWnt{@sEMx(FZ)eNh`vjFnZ3*r` zoc@bK{p4xBI^%MSy+26b2BS`X^TsQGb7+tn75uP?#lYlV&j<2hBTFxzz9k*)6z7Fi z-R()r*r@xxADCti{BJj8#ayEN{YVl=g7W+F0pqi_p>34vjHrXy)zw!ZpG36fS zIXfnOWT8t{$a$x(j6*}U{Ztjq=J4ZYaw+y)ySKoJIuexx6q-utv#MTa3;6MKD?Yx< zA&e(j%-v{yM)>w9Ya)%s$k#16deXn!mDFx_=vyv+JTN3 z%BkOkvK(em=eWps{3^C93k7#|0hw8P?#6S+zV&-07M~^zdZt}5oVqO{gmrC>1*-%2 zLjP?9>g5FCBQoa`I=8=+>%8T~rW}=+l9iZRt}?u(dN#fjr(MO;5LH^wke9jgRe*3= z;L}YA>USjPkdq4+NS{)vYtYc?hema|ORfw4)>zQb;M=PA$K#Yh$Q9i@EG+~cS&R4! z`XZt-5j0)AZD-I?^bfUO8rx_iLgj2wx<+>g;epLX`L-81mc5v_TuIK>&eA)c<%0s*Oom)7?m(=djQLPgh{wY~xkaK=!>8~OYslm6ey zG83FOQ~=0=K!7(S0`xAM&m=1T(AQV3s;>Ls)K~p!-kAjHG~Im%Q2GHHOrZ1v<`Kh> z7^K5=ZbJlUwlp0~-A2ULJD`sdZMT#I9Fh$GZx+B|!S3*%jzT>P2fXLW0}x70v~kMqEBpSeB~z-HeZ-h@J)NKqmZ*_3{*-;F6uO6 zj+37pkG?H8?)hf4KmYy!wdf%X;W7N!jy#>!yFfC}_siyaMD*)4q@2=rpD%_)k{BeF za`xMrLARMrCqZ(VO*8dzCGN%@JYtZTt_rUGJ1fv;p&o_+` zCr^QSM4>6n(*4q@d|psX%qG!%-i%}eIscaN&kscUC2)ZsPsm}L9DpLu0B(O}oy;Hw zI3ws>SIa}Go%uf~g|oK>LBvPf zxgmpCCf>2?t1x%R;}OERIK7p_U*e+!?*Ob`V+M7Eda!oeLU}AfWn^cfr$fppX$Vw? zrRHyqNy`pqrvp*MdFn#DLkohc1={xkk6fL9XyZkFwJSDBq&y^cyG#hO3QhE0*#E1l z=cNG!z(lI*SEu?FaMe1!2)55CgXEih>-AVn#zgabaN!PV^e3yg`Nki13DKD2&g%wPy3J&9Rpxny!*wy!+)tTnBMti0=w>%aYXxiu-+-|c98 z41eYOayk*&JZ+wOqjjuJy_Ca?FeMRg+0;GpjraFSL%H|fvTr8o$79gON=+U!ofq>);HSxpPopc477!AJ<4QO|CMmu z9}~D@aoF6LWr7BJNEZQtHD}AAiXvdr>>kPaj+fPi{uLuaU5B{vb3_d{8ccd<3yHIH zD6lS$(G)M!mfmQ$ryo0>B(T`_p+4hYL>UN;P%)~-wMP4AOe;#fK7g5rIpQrg#;6e@ z^{=KdNLLLm2T}3_Yz2h^3p{?~JG_ZVdgeyqsHW$1Tw#4@IltNXrkYCTm4|{Z?C>Zq zJ2o|84XGNWni-#k3!McKEtvb|+&+~pZ@t<(2FNWJs2 z<>5n13Q#NE_G(W)znyhidNIz`psxCC3G;p1+)^W5I6xweZ@msBz%Vk`RYb!zEvH^L zJSzs1G2ymM&RVe7Czx8|x`zE9Yq;mZa`)q>l;)13H8;joF{_CFsVHbqaxCdVC!F=O}ckl@;H8c+5 zQiY)_z0QHwH!xJ8i2@(U6ZB$fhVkFnD%fitujlJ1@Z(7w|99kbSn_hK&Er4;l(|0P zj+92)omM+Sng)>UEjD)72AnGFXk*ntq_bQ(`8$&ZPB6`{iZP;+u=n#WhqT==fM6Vp zPtMA3#b)-_udm_Z7|y4_K5>Y1>@Y{tY7aRKffT!BsItKmpO5U2H3(yHl1jceWfZ;N zDfPvUtZLyNs^iNe_8mby?!UYT0m9?ksB1(5N8eU~<xla6m zWb&1xj6gMSuKvDlGMcYvTBySU^jK1bEucfC4O4aS(7Y~Kmih^fRC|QI^Fm56U^2mS zIqDW~d~Eh&LO$OoQpv{a_Q1yyhkN1utFR$=jUovj#EvxDu4^Ya%@tvY{KWj~59MNk z#xshsEW%2y@Oh=N(bX(dK6-|;$m58&hrJUJyp6b-3J5wn*(;?z?ksRxj7PC8e^BH!%AQpNNao5s+Resre-vV8 z^_1gWI*K+Uu(sE>=>`K9q(dz~x!|!##hNk2($sDo=!D#1Uha%&J#m7%c5aw#@pPG#+XpaWH zFDp-XC-wN7M*b-oW!mxix5NXhx_+T72R?q&s?GDE;Ur(8Y0WX)lUzf3w(|*V-BD$U zTKJ48Cs{Ft-L~*jW`UYE6=bA*GA3aDxK!4UHOFUg1z6aXEz<9ZYS8m&Ig0Ik1du9 z+*1!j8)2XbvHh{0D1>i#l4)@?1LaTs}1dQ?x{&%B09PB}-93(K_iaYh5A zDAuQ?k5VRRwA#(~c5s6;OSNQc|H-9022_G%?r{3`D8HOtFYfr?I4s#tB!RyVMaXuA z$VAI`4!H%nUmXpM;ff@61GxepbeanH+fX%S{C_c)T@O>a+1mTA>Rl9@+Ytn-cmPc+ z>1F(@ID_)UjPF!Jic3zACvxJOSMG{WESy!L!(K_G2&}hLbGs3`Z$Eb0xC>3YX-Pzb zTJ|bQsg>{BJJ1QI8qOa%Ec)}fN-Xb3=za~KIG9=AFpicgMA96xZd=^^sC+WqHUD8j zr6~(^ysfbYn_|6nO_Q?;H<0GK`20@h5!#($$&wyEi5vQ+FZOj65%-()>2S;j%wG{; zW1Dh$mn!GQDT1)k2{`(>0<~Wgb|eLI|K6`9^2yjce}P&k6=4?99hT&l`E zDFX}$DfYN!_Pl(X064o9O0$}$-uI47tNbAEVFA{VL%E;xfQjs7V1@*Q5N9k2*rSM& zMbFL?x7gKZ6~!JOYd$uWD@6h2⋘`A6DLIT_}*X)}?b7D3usEik?*t{Ibb^%NDm_ z0J%16=6j77ly6MSfZ$f9@XdAw$+OL88%F#9zDza0$%Yw4t5&GocrBaQkQeF&7UowD zV$*GMvQL7dbKRN0Is$ecIsDVZ`FY1D9z*EM2qAD^jQCy7%vBqeIULcXUy-Y#> za-B)|$~fBQqS>4db;TbGgz|RxizYH!lhaygW-quVDe94_)$pkw3M?rF9Y`Bb{A+=>!WwV2Fwuold#Y& z=)G_HTnc}CkYef@D@nZG9TIJb)z}X@Z+LjS{JxjQ>U09OX1n7(-0oj@Uo_BuR0Xbj zL-npd9z#*=-I!CgC`gf*qoaHHUR~2Yff2NS4T1rcDZ44QJ|ul1J$1B8IX#RZ=Adeq z%#ZiR(;Z2gusN8>IQHbXl{U8%@(5R?YkLz+VmZ#o_Z*+)1h*Mx?anW-y6dgbT}6z) zZoE@EHU`u+r!5R{RQU7#vRRl2T~7SD9{Er5^Stx{v&PT2h13`MKDoMZflHL#Ks65? zgsZvQm-eY%`{nBvZNEE=IA-0zNSbJ(1$fBE#fHa}i*vpkW1LRgjYms{cOT=RRDXt71w(f5s3i7FvcSeVvMX zrB>GG=~87f8vtj`Q$iTYA!~NHMaPq7tvRY{ecO9^82F(ZU&j3N``HI;=|h776^zaN z>chjw_tMQY0@ePaCJ|9&(?5rORr}v~naT`e%C1tD?=cSoTd;bi7sZq7P*+x<8+>tXN?v3N@@eT)&}sGO%mBb}+FlC6;41NKC!wbiVg-niNlb&{GX? z(^%}I*n4)je#GgZKTrE!Wto?tafV-j>s9lma{8UZRzXl3>?C)}_s)V?1-nid<^Ji1 zV(~?Y?VR_&(*^9NV4=!z(Wi^mm ziNI24Oz5~tD66BKSu2k3%}y1-&i99Q@f(F0?qJ+EY4=u;e>sMt;e~FW_j1pPef`2| z0pBm^fDeM(q4+*8pfq}7pWsR}cJMD2CO5ciD>KTU1ZWJDpp7n)!ofH{8K82?oQ+Vk z3adv-0EN)fZ4usG>DP>bWH%w&4ZQTt(QdE((Lbgk0-7?PjwD{hmq^+Zf)tH_!ykM< z7ETq_8;;}yMXSED!+i3Mr(K|gOjE;Aq^R8b5*kgu1ZrI@f3kd+BBmTD^3X-URlVmb)0&tJHdw|!!e8^cc&@kLop9_!BmVL%DZi7) zh-%h++|*)MTE@I}@NSA#`a3dTP_bNHYUZcc?qEWObTyP$?5w2FO*B!_trQ(Fvfce; zuLb$F>!0-R;0Txfx6(yz{|h#ZV)JOw5Yl^~HQ`h(mZ(G+N{PgBt-#fqL$`2|Pnne{ zKv;iZn!oJiXBj{+mj(Ld0~mo@z#t-+D+~>#RDI&HyE1j~ym++I&g<;|T)Z>gR$s>y zcUJq-Sja9zzC*y7$6ADr#}0Ry8xkpW+3!P8;yb>nYS&1SVm%mA{R^)&kAx-V02UNbp? zyu1}VMsE{I?~b98V=?d7O__W6TkyYU=O+YDKf`eHmPf@?LujD9-YT0G>uQ!;)qjfr zfer{&W*dss)BBdSe*B=G@>H}BkN+?vQ}5e)v;S?UG%q14#fW7We*{5}4r@DLT&}LC zi?IPPmc}_B3Kmj`x+|u7<5A3D@>IqlBvNP=OhSa^?@_FF$^U*W( z+&ahD+Lo^kt_yTE$5sDbd#uz_B(OPpoQks;3%n_{xg7HhSWvO*B%5-_eweLRh5O*{ zVOpXHg{U@xsp0sE_PU%6)$j!;^C)L(R!7M1rJ*t6r--v;)UDzfD1TvDi z6i?-SfDT=|(Nm!QV5(0Dx}Xj5+vR;n)rxwH#QNEXXQyI4q$I(cp!N0O=^CMl)E$Ad ztwC4+4Pd9S7Nh8=&17D?G8)f_Mt8En@%k+UC@B|KNh_AhU29^=#u=D@&09{pXQZ}< z%Sb_e$Zu=JeJ3kN1Ad1F;fWWTP@5FD5RK;vwS}oX6phK>d9Cuu=P;~#=zug}T4-$HKIA8lYQ_j7tUs%qc zO^*Ayt9Y^cbNtlWTGrd)YC5M44?K(#pDNfC9=Dx*pXHbvYoAeOrW>i~pf;SWB+lyI zx;IiA^IQ(7%C4pSNXRyjo$>3oAnP)t@v>X+3Bfo&$^qES+_qm9#0{OT@8oUbK`H`9 z^a>%J!v{VrJQ@Q+UBfG1|JLVp1`z=#?=1X04EC_kAGamz9#258@eul=qM|XxUJmNj zYL{ctle;CWT*9SfPLRZIAB^gq3j@9EZ622wPhcAEUj98}*v3D_LzD=7`IF7G30Qt& zK>GJo(FV9!o*0%dD#>{xJ2v;zmPkDH2Wr<=CtmcjDR-0=Dwp2Xvdb_UOubC!NZzL-itb&7WI4>qUhu89brHYj=xtniG_gj8K|G zTgNoVLe9?S8~TD5iI^`TA|{x9+98WA*po*C!3V4{hQb)XC-zwi z8pA}@p0q_8Hls9p5S82x!UAcEbMwU`?gf_viRZf1v95@DNATrjihB!qH4n>AN~mb$ zaOmDecI zHqmC+p*NG3+qohyFZUKh9GNIswDW=#L_FR#U?V}kz?O;ilvl{L%3Q9mY42Dm%X!>s z@tGsJ>yxl+*BWA+yc(xw>)ZFte&^(525?v8_xb8QrdKGX0A{_dJVmDZSIE>a(wVe{ zP0?ZTR8y^Y!i5x$2J(SIs1y!tMwMURYM{k$IBv>|wZ8@X{(0iMu$0h_`In^8kxSso z7XKhBdx1pXh(*RL5~e#1!l-iA;%*JP0c4 z{wiT9zD=Xiu=)P710Fb+2=Ha)UsCbd$w~tST5S;XksQe{IRn_yKD|AxG=_WE2VI%W zY4zP5U&$v19}P0@w-W6PQnv6hmB1sMB()6k2y{Br)PI@K(JJ$54_dRGDnBT-T~>w8 zAgsZ*Zb}Z4*rinj0rE?>V)nMGC=zskkKUD7r_=1?lP6N1 z*T{$MsgkCHSTdPZEl#)Ra`gd^pkBTo0+j?R5ris1wD`}O@A|EdkR4j%Pmx~kG%6yK zk7Bet;4Al!N9TN}*GauTx>U?CoWgkGfp5+_=p+Kz+_!TLMiTR7>KK=EVuiZn_~~M; zjVQ$PX9qm0${9g&HoV4G!vN@rcoP0#Fn+91TZYYA7nQx^RNR(S-IAw{@pgK@Yb88$ z{UD7YmJDJ0-?DN0exgTIb;obIRt{uz zRv9T|-k$-dA1NyhFtU|a9gZQ;_CX{}UzzZ|p6D4JSM}Hvt&ws@xLN8Q*@X}d+iR1o z0Cx8;udWiWiE1~Hyj07~htcor;Xh#aKJg^tm@6v*kR5FvP8cg>s9 z>ZN{zTe2m65mE1XdhEk%t)IsLt93blrgTM9pe;z7fPqfA&!WhH9>$R=Icz3*TL-Y) zjL0L6LK2l)q!&>>lMV4Ymc3HBaII7OJ7TE(vH^>(j5+ZWm@UFyXKDm;-lWhgz-C(P zuKi;-!!nz=c%^eqDW&1L`Db8|MN!cl$tfa$Tw0?Ow>;ZM3?oa?hgULk8{!M9IqDI| zQabeaU66G+@p6122!U6t9Wuw|ut!!zBd>bOq;HE57%WQZ;6YJ_&|jDC^j2hLI+jEe zy`n)j%jpi%jO&0oz!@&S=zaWB8wVX^ZnJ2V5&$vkM4rrPp@c%n20^8{Bdpqto0JF* z;u|?}=p_|a$rI@FRyKwDgJ1U*&3rfMKe5&Y?g${O=kd)G0zvC*U^N zkoQuU(}(ou-22np{c7duFVCA3(O)&JU>XL5j6 zMM!3|ny*Yxwh+M-wv9hcRC0T{QHQraT({xCZJ!?ulvD-s?0~-CHQ@^)wNpcvjy?UF-ge(dCDI4^A*I&|BPKz(@JgUcCI5}nX`BtwY zus3Rry#tQkS+&2JSS#nDSd%N-b6jDaTz6~uZDC^3u_<7}yNbB_O^clcTMM%gk<^rO z?Nd`K9X4<(*uN9+_`<}bfj3}=xLFrqR`eC)G4Hr~v5p&ZyK$7E7s_{q(q_luEthXq z3R-^>A|p?cPtuLlL{*X@42-L=h`)FOx!Ke^yt7Ug!>j^H)97)4%;vk9e5H(p5xI#G z*zkb-&gD-$r+ZeO*G}S$d%qGjIW0>Wt{1>2nXi};`o?DUXR|3s0|%g!>Nfjnmwt<;F(VUTs`5uX_?4H@AH(~#Lag9hRgQ-NDmXLr$HXqsSF^dnkQxoP;D>XD?rHlsF zP;@KD^F&j5`K{L z@VHQ|eieuMP3eM1&f?N^?@S&`FQk%^V!};at=%{ZdU0wR=Tqu(fPf4DBb}1N&q2OA z7-IPhq;+Q*ymgdsMDSQ6YNg^}Br03PdzpN74C4efWbaR^=vv9U`^kE(v!vfP(9KoK28gN`X z$wj=e2jXDbq%e3v@an=@_2_91fivNB3tUk6&&0Lb0q(<1uJ1HU;C1-?AIz75g;K88X{wSzx~kj`W;yIcItZicvFl?|C4xcUjO|SnE%6r}3H8W<7baVY zbk^4f-J5kA^fY%n*l&A87@A$~cJn_QX=_-=#F?)g=r5Jz!oDCr@8KY z6QbqTJ1?r=^8s-LIOQ4Wq$U~mZ81hQS?g2X?@$9si#!ve^Lg;RK+umDeIy5_07xyjGb`c1-2DevE?eI zEzqAX*v!jVb_3_l%^uq?Hfq0zeIjdXr{ov+HhfY9+U{;Mi|;$YzbCxT!ct)^7Dyuh zP)-R}^n5%5581|&%v6Bm8c@zZ;S#m&XrmvF^fCtYw;YOCPN1kPkwinF6-CvB)w+Ar|#owqQENHNg74>aOl9J zpHs8i&LPqXY3~^K-hz%|d-w%w{DkEEUFQFd(y>6WQv7|B^EKie<;{YF+&@4&xUm&R zJ^(Y_cbril_eRtQT!y?<$0M~;mWea2t;`*zFe6r}6pLZ_zvi9U1nl2jQ`^v!5Dm+TTK?Ru!?(I6s5X@ou1~4|H z+X7AQ3NAdSdP8Oe**3w#)??Hl z8KOVmYq%CZ_fZ0sl$R<)XV*t!7}OkvvR@9>%+nbyTXAd>f`{fqiT@PP$Q$2XC)1Bw zJEU-x#q3BWbDw_WF>`huPez80!u>s3EMF$$G?maN5XQ%zyi4s*t}%hJx7CWC_X{P~57Ww9VwrRajM70_vuK2h_%- zOwd*=)d{rW^o{JOgG_Lo;46B{!{lhMg_!)HHA(a)knCqc>IjB3YUW6)4hc*}#fVjI zunja5IKog*9ehO?%@@}?BnI8$Y-!nR(RqCAFA1XADOC=LvQ!B)PT%BGb4oXDL}sDe znk=niJTM(wCr=j(#04&YiG)Q(rxgg?8x<1?<&DDDT~$soUTHj5^pqi5{-q2ANeF8P z00SD&tF?@9020^8S*NoJ{)UpYj2M=VGCF-X$Ux$h!%-nyE3 zi*gH(CU)Z|mYkDjuNe4e)XI*wB^@iQFT@XQXz#s3GQt_grLlk$Ta=>O*Utwm!;&fA zH;amX&}lwi-%HY#i!f7@7}GZYgNiXN^{)!7Izo>MYS67}@FZw@+A0*6;r;?x3zo$+ zy84jNR9pz7QP)tBsWl?a`a4jyp%6JMb02BWk`fZ0`nAU`Y}@}~@y{EOC<~J4s;kza($5$?Li~#|tOZ(-CZotEzhSIM|5GA|%M3k% zq3yKld%5F-Y8q$ZouPJThuALCokL3$y*IGW(5BWs}as4NdK zlSE>Ovc{*($xnj)Dpvs74l%+57Ou9JB@hX*ar{qt30g_}ddZFmZRu*7i7EB=yx}hA z$)glHeX5@GdI!<9M@p^^95+_+?GK;uJ}Jdj~GzS1{u;Yo*UIkA?#<4gP}f6L`a zh>2sqfY3C`v={g|FATeiuc$grxM^}t-9+e)$rh{^zk;{@C5ZUF9F>~=E7{maoeG>I z^7nr@UI9;buLv!`6O^B*%l-El3s5lbmA@3GePTHD;-eHmm>;r%d-yrab_O{=g1(hb z{qan-Es=ZS>^(40muqSDV?x>+H7gH{I~6+dkFV0J_51^aLX-EP0aU;O+oGLkxxPA< zZ^q&P%1A(3tsK@186Z~HLY!+6o}LkMpgW=Jk>+acZ!mc^ zQX()QW?Ka~>_*SKn1X4rVm>+Wm_3R|woAqZfOo*+$2MeFlc*%nQ zaN0(=#O;^{dPxF}hh{OKLzuxE7n~>?%u|Fhn7XBZSM5TN`mz`_PjZoHuVLcnOuf18 z*_4;?f;8eUC6w;A`L&!f6#WB;MWEujtZF4g!gfm?b9=fySL*oug4~BdSIXy)(7`22 zQvAT!3N=*)XG;;7`9A@NqlwV9xSzi&Ir|JHW_4UoB~Dvde}-rISGIJuH41(&y*qSn zJ*=z}c%E~pBqO1c;IZ_7enmI_zJ)>6o)Y=e^fyo4@p9h31QpaXk9fnWV>)6vPRWXa zePIGyM^bvZhGke;EmsNPDPZ{6Zt$`q{1Q`)4RFcC5@LW;-7r#nu9F#I+-o8PP&|GH z7z`Zeh}oZ^^3>xHaS~ctHot0R@kp`%q{>?Jl^vO8m#-CzLeu zMvrnIWdrQ=q+j-*WskFZ9LgUy(kKr>HQXhi1! zDjL}Ig-2+k7K-P=g;;M6ovl80`h2hl^W5v90@E@zG^6TL_kC4qO~>U~ZY<8e4ISFD zPIN5Hz5Vm6-FLs$CCezlkfCd5`J`f>+L;d?wC`y`smw{ur}HaYQ>|Rx+aP?M{)%>o77@Pgc+M8%dfQE)_7>l!|gWg$p!Y-1T zJi3Ve9LUx0Wij4F0kK3{)9O_+)wDw$J>o2n8QQG*=dlO8VHi_7l3GSM3L?&IhUWZI z?91nJXe27e+VR8yy0r~jLLr|Yhus36U{=<)!+B^lYbUdytqc20J>m8WqBKgV(XYW+ zB8$kxZ`r>$c8<-M&Mc}FuP00(-w3IhH@ZRwerc_N9j7>O?i+?KeJ;j4Axxryt)IP@pO}}1Ul%$}xG7og>pxcS(5}zx8CNfrh9lz8%vVlU_QtD-fJ92QEd6xr^S3K9gJtUiEnN zSa^~>H7|FIbwfXT!1p7GKxUl;>0MfX@lxuOV}#srM`<1iM~n>%u%EPD(X9!FOXC{f z3(~V&%eUh6aX59i360sl74~8I9#n5JS5kW_uB~au>-6Vq1$+-n>|&F^h=~P6HMF6~ zXJ~ya3R(KF98K`ZHt-jen)krDH{>>b50TXbV};YcPdnlo^Me|X>A>N*i>$5i^f25K z`B?+@T03fU#EW8Pi|5)mYQ?t%-frl2uvrm#Q|RpVlset4n`+`JcN{%I7utsC@&rdP zR@V^zL01kpIXY;0ZW|M;YMwjD4ptH2tQ@<8Ju3@ID^(WxG^HbesFzV5uLFZT;JXP| zkk(|{6Hi}fqZE!HnoT>xBa9caPa{&GZ`=|iMkQbjx5|PWG0~INPXO-|#TeI0{5wj* zJChg}_DBS*fBTr*m!Vk|V`d<}5Wk4gW3 zpZJw)5B&fCB?nJ~>-g9rsUFBs1Oo<+Cn>(kceRuU`;rK`{vs*YT9`DsPJwl=_6|id zTH6v^B(I@0T!#@mUJwuKm8zruK!*5?+-I-9Ka$vI>fr7?C-q8C9l9^zvzkP!Xx%RJ zp&gYihH{fEgT&!t9~|Kiqz!@;<{aDreF{Euj@?8w+<$>7gY*bHY) z8o$1PX14fN#7Ts_%+7H#DGF(1)2A0v$jrU?Hb)z6>{vqdTOlu%Z+snz>pXH>TQ5j0 zvxJomgsZ7rLRv6mz_uJQ9hxkj;)K}l!caHmn`4IM3qs592GYF5P?{*Lvb_Ef9gN45 z6%LTIZJRG;UzlNf_}X;|DguRevoHrhRA*P=GW4cQC0{#!?9#2UaV>Qk%~d$Z5+xdc z-8VNqXgGd=ec4(vG8s^4@8^QJOSD-cp}HhFjqjSIaXUxxAF<;oYCdeSx|UPuv>l6c z#>(g0iEk}asnZKdv8iOvG`8}+ug7{L~xkF>UK`H5@j^+&oDWhsm}ILL%&)y= z32`(SIAy=$AkWgZ*TG6EYR<$2s5u4SO~CoREH5x=oOKG$jDm4pb&VAoYg%EOgJ+_K zp<1h=kQLe;DimuqMj<9v8?sl&!zmT+37h91Z!Q(lM8UqH0~h+H_*J}0XmpTSP|>I} zSn|mrZ!ebDd<)r@m0y4F=6JG=>QW#aM@U&+vYVaXM088faVkN6zY1pKcWU~WQkiR) zYtGsS6%mq6BG^;k$XmGX9;y1=@5_OWP5m$$`=?|JG-2~6l)VYSr|i3xbv~}}pMNtU zzZ~{|YpC%#{!ust;;+I!Y_W%R@!am_#Y{X{A7>W7*-6`i?1n~HhWG7xz3N!{NO>V? zaS%+PkbuLQCV)M{)M?+XsAiE*UF%UnF(ri1eTssb(?)wOAJTdeiAWA?$lgUGt3A^M zkn|uaV1@z$Nk>TK>T@()N|ftMtW-l`**&MCN6sSrG!Vsp!n@zsLuzIf8?h|VOgj5fU0MdwK=Spvz2n3DNlT-$ zEwE7bX?3ySb)+GxnnF5gb{{5R?b#lk^1uN-9-)giw0(s>Oc$6#+d=v{-!h7ft5b1z zT%-KD-$Vt?3zcy!fr7te0GUsCl&M$M05BGmCEClXpyoJ^kbo$39+814d}YF$!3XkL z#T@Y*_A}rOo#`#ja$0QUr`z@yC8q33l2B6+Rw27fAc)7+q;HOKi{I034$N+xJk_~X z47PUP51uaO5Jf~V@5?hwH?zNl}aEZ&xUQ5Ef zgs*Ek4PntC5p#3jtY_70-z?^RXu9ow`R4^<=+=|QC8T*-8o=!jPr8gYY<*@%`@YYy z9i*pco5^K$h7n9?s&kNX_WJ>{&Hrh~Crhi&b9q}8x~IG#r2Fkg9?w;!-Tk~BT%VB9 z*$W-AFp=ZvB45wM2EpCK^)R+jYbA&P#_r3-`@(fBOkrmcqB#3D2zB`%Ub$2aQKPX^7BTDrdW zSdV!$i&ts`Kczm>O{&!)25s;M%7U40>*QTue}5x!*9kGWH}WZ#21c&Q;j<3dTpK*K{AUm`6<(5v6?j0)a92>ck{S6WP0}r<;R#Ey!dVeBI&}lkHhpuySA3 z`)UGgqF^(8W9Sk`OJG`VVa$dneqxt-(-F?s>I-{o7vJn(%%c0eV$S8|WaWql>Y(-j ziUU~YN*mKbFmIU5B?qt?t%L6x4uTS%)mtbP?@UumT`wW`7KY01R+}}2&9Q&Mw(YGT z_-bg3zmncpRdd~x-O%83m`0OP7IYX<^}*@^gt&fQ(QTAaZbyq>!%w8tAr91br14~S zP8Uvn>{y4+b+`rLguX$27gGKWW5fY#M|Z#}Ag4={gP3g*bd19`$>Z^}QY!zIdQCd|jviOP`Q4_| z4>>_9fH{eUqP+E`pg0u<=qcLsR4n{@{&n?^$9Yf2=lxc^$?kHqM&Gj<^@EZ2ZEqyG zDOlt|#Aovc(i!%kQ=pIAI^uk|MDbyftc828SHe?}mq1^(N+ltvf!f3$Qm;_6PT zWg%H;Z$Ro6JZhcnfl4Up)DVk=*t5(=Ch!x#>{gdwr{1%{`#;sJnBX?_Cj4FO{pYdE zp1yg=RyKMSBRu&vt?6vW6CSKySSaoVNIrepp;f$tMmfHCEtdAnT;8bz2oZR*3DbDU zCp7kLY#L|k)4&)bi2^!eF%(o(x7Des1T^YE0!0z4%=c`{VmI39-xd6pVep^)zr`7T zPa)#f3Tv?1aDLT?SXE=|PeS4{J~~ATY~(mBJweh8fE8oD)XZ@hc#ghCinD_?R7oj$ zV2p7R?&)A0=n@9Pi>@?#ePC~^a4M|Bd+_;`xf@Z=WJJ`*-#x`oH$Xim z>Iun#8RQf6=&Dw-rU9|uhjMv7n99nYlyV4h@Y!MY1mCH4QGX%aPPE0M`EeTD!S!7B zK(7XEIaH8MBj14^JUBRBtD&K)9Uv*=FSZ@aJ>6VBiae6h)-G?R;-wDbKf zm|tNK)bRk*!^I#{jWb(P8wyeA1fu{`8WEY{o3u1J5GGI496W$Cs@1r^wTiL4k!K{w zy|)iQ5i7&rv4(1h##=kq6C??oM5sYUMXa4TU0ki#bVC*J|1IEpw5{JnbO?293ecMd zHCePUvA%v&k$@`t6b)%3J-sFsiH(T(o3a9d+;+%une=Rex)MMBK~up^E1UAAN7q`$ z#&qV(BCgk0*=&kIHhessgj~N><}nHKp@xxU7Rh;fR>dkdkOK?;%2Xo6`j@F}ryJJ_ z32!|x5ZU&#t!=1kG4lZxb%_&Nor@2YbcAIhRlCbNs>~G1u%BNaEpNXEZcUZ9{Q}`D zSV*miMu?FT2D>Kmm`wtYA}vv`Tc+)1vk1zN4It8W?mFsa)0fi4DktaWcioRV4|l^c zY5yBe#`1Wl)nvaRpc8E}z}{m+e}fZhLA^)3KcA3Gl%p>rk>ngBS=02KsLd?mHrQ71 zd9%UAV)=61A_T6z4=7ISbTd1!tyUx6FR1ZZ?V{@N4Ia#OLKE^Nxq`e5dCYy$*z?%# zIt^6qZ}1hiJyL0hOYeXkwvAw|$1t?(`7weETcS*^ng1|#Vv|io%@7f4`;-0#=2)?~ z_C0~dhCP$)r=4Psz`b63ivqQSUFvfP6VusMip^3bpaS?nU=O`hLE+TQY2@4uXDOG) z#2aWLjkZR*+#jvH1n(e5%vyBgcCYT^2 z{!&m65YQHw-Im)$qks?H_0=6*RQPDg>-{pO#zUL0F0et(UZ6Fj<&qQcz;iaR>3c|0 zq5uAnu&Mgy7>>vA)%Du?Q1%r$kQXce8sfp)Odh*ga!g~n^edBS7Hh0vQxTp8#I~Az zn&C2Qm~gvsqlvfA!Nhsk6?WzfUaNGME`MK7hd#Ytt-VZ9Xb#FUZVO4j*MVt%bvNZt zcr;hg<1)Jm2r>@6ccDWP`EYN#!w4F0e5aM6NFwuEBq{z6j5&5bIv{x)OUU+Dr=-I5 zzTn4L8pPhLfbt*T&eh@942%q^ue>sOsL#LqXY(xRtKrVtdM=uf@oaf6>!IXwjq{Z- z3I5Z-UkUt^@-Bt%tA{Up{FWe5=_d>tmg5$x&&4)w*&?#E+{vcu+=4Be!+UeXVc%%8 z<87ai0hlXZwrx=dQx0Uc>m+IvC^n0lK~S*29S9#hk#Y6wYY0!F#O{ByNRbKcK@|U{ zQz8+zt|;2*RI3vw8oDK{x>4=8>2*EG5SbH!8%H|xUJz8aH$|-P48N$*RP|aJoe}>@ zNC44!vwzPhdt#x!NUwe&B_j+Ac_j}aDa^VAlILhi@)!DUCXk6i%3P0j%1NfY4Y$gGp+~|`W z@bX0{fxVH6-M^!#(o69^%X1!LrvOtj=kJ>G0bSCmpX5V)vg<+1)O6oadymB*j80i~ z8+a_EZ+~{9qCw5@5R&?`yA#`!UZh&+N=m=e=lkQnstLzG+FONPnUbWzxVJz)n3^D> zkMP@-+?z)zpItzZ8bEJLtGD&4yy(kAJi`yO*QHb&Rvss(8>4pS>=N!ZW;3XjMCf0L z9{!UY{njB3`h3W`y*|obNjyIZkaw2#RCTECLZ=%;3R(9xLqq&bWKvbrQ`6 zL}s&r--7$gE{kHN2GpvTVM(|lz#VrfWNHA$B_~w#VCg{=l9uiV!6VoqG%;qFRU{ zuS8-P4T8W%?`(ppoqKU!^i7`GPk99%1IMvY)ao}Y=e2g>ewm_q%^9yR0;=%?PxOC( zdkvW7y>uqdg;M5DZFCs1Cq~J*-$>Jx1pH~RYO>uBXpTpnD_ND@qpqvUk_m7&pEzmg z4!HCF>-A3!cQJ+b6!`ezyY*K80KTVj6&u^RnYmA`b2I8hfS=}QOnucbNxr9~KwwW~ z7>@TCj3Ed(UG?$3OT-z@=u>r!iT8PIQnVCCUnn8q*Ndex>!mf?gJ>x+zSH~H2ny1xZX8E6ePZ3ws$%Cv% zy2aI=YbZ;^#%?kTY;M3R)#T4*%HfKn`AyJMu~e&70V_{udc>d9xYZwKcLIMRX>aY3r|}aZr}ZAk?#-He}E#t=d3L5yoa|jveOS@-!}d*Do>+ zw9{{$ZGt)eezuwE)ae{H&8Fqp8Dy{3=WWy4n)t!f0;9`hoV*BgX;R!M>ym>fJ5)dX z^=^~6-JRRhC2PvdKx&kHWsrQ*261)Q19BDWme;5z8kfO&=^@}j?7<*@OC4(4ZbWs3H)s3S+lA9*ZK`@-Gjt&Y%P#!V0u&;KqJq>-Z`Yn@mVw=aqdSH z&5ve#iqtcluKXaj5vUIk5|tev0;gamWHqOzANSvff=bDHEdoa#C^)Xo9V)ad87T5g zE%r=8-y2ix)ki#dwAGOb9Xq#_sL7vVQvk(`^*XFGaxq-IRP|Idg6V8Ihc$AyUv?0t zQKjSPYs90UvhSJ+AnF;MtkQk&TFl0O%%G799SMDJ>`pZBGgC7p#knJw4S91bp3#f+ z*GdXm3DiP$q}jgbHS#O2?L;(TIu3fXw&6Uy| z^1*~tkNafoZ=l(^xKhQC%g2iX#^SijetNiSJ7p(r#xrUhkn&Mz)elGwss;N(ozG?P zf5}*KScX>oltkixlb}~91#c0Pn#FjB z&0p|w#VF592c+d&u356p(-YAP@jk_CI0r{FVb-?%&fN^=K%`07mDw5FEttE~36y6Lyc@%9vO)7qF< zHJE{VAtt^Nht>EiUm*^KAfEJ}o!kA@AziDDveJxv40M|}XM4_~P%mN%gZBt7O>}6t zR?2IJ1Z$4kTyN{`ty8>`r+*b|w@@!8k? z)7dAioeC3Ero(CY)JzXgPuLAsMDAu~`BP_CfO+kP4mTfVsgSy9eI1N}yVPeM*u>NY z6r$;DR;tVVo?F9%%!ItWQKJ6AMnb4(42_lZ>#)H4IKOpX_;}6pfwAnYP<>vv7nH2| z_OyKw=V469b>6}u5>cBb#hu-FsLvg{umKBE;#~yYHlQ?@b&R7yiJ7~X|D7M%mB@cD z8ZO4riiW(;1i>nT4kA_LkJiUd z&EeFQ`VAZ+roRAKIpT1BRurFKntHXvvvqOI+W6C*Gc1+S0PN-1Y@Qsu&5o5x2(-`n z3=eW=yS}sQBCmgtvtSCBTddSh6ND>>=x>{>#tfH%fhE?&Ye=RJm0An6l}Q3JY3nB$ z7TNVd%bUm$edd97Uh6zNhe@=qBZ(6*w(wMWzX%D96CuN+KfhIBrK(e~Pw9n~0TBAx zmKUh*t=Hl*7eL@8N09HYYh_f@XI7er35dyxh_0**u{O#$ain&I&-hS* zWMnL1sNqheea?Sbx#rfa)f?^k>(?N~9<3T?ij6FX@J20?jfOvqZ1mjuV@vsDg=Qu7 zqWm=*gnqQD+J$duDNcw|*!B~c$*)QoAd!F$-I4G4i}0eye%hXxbQC7m)i2kO#qL6D zYcHWQm9Ix%Mdag&UJfWXg`D)^39+p_u2ns8rc*Fh^$oBt@z+@7Yn`M0Fvb$^OZT5nwF$f@duSg|$ zE7~NL``n`4B0*~HLU|+e*54C-%6zRz$eI%rhRFLAy@lp2f1;TS;t+xOpWIeDowMZg z=z+z$H4*1C(W6kHPqqhguD@rI=_EPW&=UOM!1c`)F8&|gR_7I$Wgt$V)BGtfRM#KK z1Y@YXHn(HrI`wFH2{181!ttD(M)9z+h(}L?s7K2YM_Snj%}a7esMQWeV3*9v_7fPz zLXR!Jh8L{Yg@X0EKe@4p5-3CvDfw;E4CnA|Vu#B9m%=QpRvEWW?QES=hS7*&0!_ST zlVQ-n;XR^}xLZg~@U4b-7G(%BF6&t^U5883($yS`_G%U%`8~3KbVSv*uIgO)9O`MCkpzhYuJ>9STfLWKe0pGm zc&gLRDY89b9fZ5tH7!FV=4Proql5DLai67cGB?}u^X-(~ZXC%2mJ*Ul6i$~7Z}sf| zA?hu|n&AJw;cavy-5@D2Qo0op0V(P3?(UKXX$hqjM7l@AXpjcU(IK6}$iXwu|8*bF zyS?0w?|$`3m=~vZ^KKL_m8Ga@fr-=d!iUX~Wm4*TX^ws^6O6MAl)n6UsxkMT0tem? z6Zijb5t{Vgn|995zuC;uC1Em8^QvI_&i~^PkR|3d9i`&wRJo`N4E66 z64g7)nkGu02zfpqhWHyqsW`^s?W<*$^kK zWlxk=+W!DXlrqCppH_DHT4#Pz!_M>mmilbgjmLJ9N zgCT6=)8$1KV8ynJ0j*OdU{T!Fgs+p--pyjw`LR?f`Ggl$~@yI_ve?>FNra@(V{9{z!E>9C3)NcC zzyGn=(yxV(-N2kEoq`o2%wGj)sk0Kc;5|U(EE+O|!K1KF;iC` zi5e27p~0_PCvjqBcEL?3=y5>j`!ta`2_q^ea~G8H9nDFPK^3aTfOp8w?IlIh93%(^nIn!D)Qg^q zYg4Qv@Y{vRMV;dkVWzjo&bxCzn?^(2*Fh zUy?0EKIiXQ%Qy~veP@f8Gfb{S=8>w>KC+(E!`Gg=qeDL)!VqfIYhQ-!L)6QL9E0_$ zjp3|8(h(Boe1lREiQ+wsT+UwU*eWh7^evG&JbgE7pe$*SZ1o{Q)tc|kI}rxD2al(K z|CV4Pz65Wm&Qq+N!e3)B*Q;L>8YYOl09wMdlGfqr>Q#%b$6yRp)W^~g>aST{m`c>0 z+rw0m`B*ugYppA*LmB-*eWy%3;RyAb=0*-3NWQ6t1yo2eQ(v69IN^o<0{XLxWWwsX zhW865BA&dsM+c47wfWWO>9kOOh$X(D-fMca0vwYWvjk*uhBFHM7-LkObb2qsi#y-|ucXn-9n)pYI0--e-FWDo;NcR3`kW7UH@=V6 zWao57BC60l@<$z|Ng`yq#lye=aB5D2$B*(=i~i5>&hm3hpE>ZX#@qwq+UfV%hBxRs zv^tL5tqN~Rh0JQJrD~RUd`SpH7|qGdM$0_Wz4rSy=eQ8Vq7TYY!j&%?^pB z#-CLP?&3#UHE^W&U8D=Wsy^0-drmxW)*t%v`hC-8BGXc4(?q~|`SrC*Iddy_*P}5; zQRVzo%TxTd5vTG}z6nxNK}P{Cf6~2*elP}y83oyv&Q*8K0}&}x^nv?FC$rbrr$$px zPn99)z6gyD;-5ImnX6w>dZI|U*U`H_B<4FV0vmOLTXtTfRMq^>=kVTaqx#GIlyQ}x z4tidcnd`g#GeN?2NNy|9`b$UP{s;I~vs(sLrQOXmf0H2=I^Yw_^C5z?y9>_h<;E{} zg`Gpgub#L~wssNo)s4?<+Kt&;g)NpBP+6BfRZv&|-jx*x)i#u#&nZV__ppgyHy3*% z#L3$@@v6&S9c5*(TYEZ$2Fji{#(`nsaEO?;*;;B5>!05^ajrb;X@C%BxCZiZ#MfF( zsaB4*kSX^?=MWH}FrZvls!<}wdhaFBlK-sqo=LJYG`^c8b%POTsnxon{`sVj(j!(N zxX&5k*`7D=0O)Xx~{Q}?)LqS6(LXFKFw8U-u7DkHc1Mwv%B~V zD=32J76GweUFPm_bx5wE66Ra;2yWdk4GV(378sWGO^PSyIWZQ?I<0qSN{J4p-IhGK zJ(t%`pI>$n5yriH+6p;uQVn6cbb(dhx1snv^|vHd%XNJM z$z7Z86U=u6249;`w0m5flwIXtcicVt@A_8s7WMu{{p-WG zxxYhH4G$|HiyvFxkuIg2Y2k!!MlyW{3P=IBMCcI3idbe;$p=ZZ+TNDf%K1)ae5(17 zQ@6m$Q0@E&KN^D^5aG|AOJ|>`UJ|k?@5@a1(qVOUha{}Y#b>wPdX_`{Bi*IWqXzgx z!_Tp(eu+iF$yx>5iib*;VPz!i@QFRFhLXVmZ@t3S8mQJ{g30?sA&u2nLy45goNXVe9jDj5OLbYQ zZVIlmLUCW*;@et?-ICAw;VqS6jFl2Ml>X{jpShg$K5Sn9dHiJbw~&%&gPeAK>Nx@e zs3p_bqplQt{1W8R4xLfR9>q@(W^|URw@Mg@b2x3HlQQOlq(7prV+d+wd$A3t#dUq_ zIesYQ{2cPcDLIjg7e-Xrs`Q3F_u}wpmGipE?FDPoUnA*o&9T@eaKt!LWv(O zO~Osyc@yyve0xyoygvX%MiN}F2_jaApTWEKa#vA~C;t5d2yoXsy4KL2ju8Jy47IG+ z>gcJ)Z`sQGD))KaP|S>q$w?Pz`_Ht3Gy40-iy2#mfuZGs+@N^XTz7VhQ-FTB(!O;# zAROb%MN)6wHC@JR7nf1a4q}mvo>fQbeChhgy||X~evHfO=@M4`P~wwa`MWb?eO&EX z(Ahn%WpRK+s~5nNeZhRJvqKx>EbF;}5Df1S_QOrXAznqBYO@p^t)xvzEn|QeRGx83 zs&+n1E2N9!C~vk|25~rD_ULJyPYS%a~ns;7E6BFXYqg`hE*Dox}Ec8 zeVDCcZG5FDx8FzKsrew1CqG^I(hIdL&82iWnh z=VHE)h-Nz`w&N5*qULgOG_!FMO~1+D*tPAV?hD4wimdOym@_pG0CAt>(Do+Y_&>J` z)j_@nc!S<(QoT<58UA8U4;f1xE4y zGnWCn?i_hal;LKxv4V6d%Z`|!y)JVRr*!Z8YV&olXt;G50fopiaO4SDZvhLGfi!gZ z-E>gmsF9b$CGQo}ADl<{@k;xn6{Im7j{j5o1Y)oTVG@-=JBuZVYcQbLE(lHacd5o8#Ec&D(KOQ2))I|oC$0Rl z{d=;TB32-rKXU7ITC4Cfu;>M4vMp)9I|5tgVwd*mA~hO6G+IBe177Tx^L z^v$~-R3AB192xRZ(v_#)q>RrV#P2l6LQ^VmMVyCPeye5<@bi9R$xz32c-8q!dz8}; z=bDL`iDx=NbI&v153YCr%ygcJVcutuTf@*PSf&yEvTsQ$O$hI9$E0RF?hny#*3V#P zBS5f`88lJ;L9V=P?|vq~*yRaO?}?k?`Dr=Jv{?}aGG_oN1(>eznTgFlmv$|V}8 z-@p08D$>06f$2-~Kr6P4ULmbH20qUlw$am$Gl>0nR2Q?3Pv`o%=+yb7|IOov1ki6}kn6q7qIzixhU2K*d;W zl7?F!3IF0!YH_oVxvZ6r^WCy4bSXqK;EocV!!oTpCJ{aw5mzX%RRhqt?vWa-^C8~C z)@PoPatIi6Fkh0SRc*XNg}AGiL7{0mtI)Mkj0a4}oIw<*;kYYNK;1neHpdxu+Dvx8|z_v-;oxq#`j;^H%QTtx*A*UuYu6aZtq z=LmHL*{|#4AN z&+Uqt*h`WO>uG^|w8@ZUhZ)yw#no=u86RDY<0dJxPBXvqht;xSf`VH-k_&M^Woq7L*Mp32Pn$J1{I7OtNp=l9#XkTe*? z369ha{N%08!dvyKlGE0S9-~?Cr`F6|aNBfhw`UxmaqLxAYM=Mf!iFU}m+8lRxx{3O zL2SMj>`7k|6!c@ASjRTg&)?mv;#kOH!2KRxGewX^Y9aj)8n$--Pfo4Y6ZX|0dk>ZD z9nWrc`h>oVC#u5~;Y>j}q1uxNxwJ@w=Q%|B#mY_=emv%UN5Zs~M=413`wD)XYm~K3 z>7Ho|JR3tn;k4_`2O8T2({BvO*g0TlpV`A>)5dX{ImMh5WF?^G*`L(`bFX>3&YKl< zyP-?3Lm%Hj0~5h|V0LM8-lz5P~mLH;MRvlQ41o z-1X((B%V4^kd-QpANCX+Hj$1w^baQWn=NGpu}(Gqpf9OtzGTu43S4cE?^2W_3$@65%>>WdNr`VIt5Z${PypV-vU+7`rLvWn zX4tf5OeKl*E-k=&jq_i}dEzCFa`+6&E}fJf6zg#t65$gyNhPMeyWPoM&CcKP-i{pl zo&G`Bqz@fd#-Ki)rSfO9_FP^33;*+@QadcmWHFANL+?t2LHo!qHY&l9N3zPGy3lKH zvODZ)bcku&$-sIX`QE*yH;)r;e&dmLDRV3k~h#XGpsgW5AwO5<`AkJPs5Uj zW_vBGT6rzfyp0F8XvCZ4Y@?3Nu`M-WVJ_l5pY$^OoxMQ}CTkXuJcvgv7K6=K8HxLn zhum~96Hj9eM(uES-|zk3$9Y7y1P52X#DGUD2Bzwh zF@Zs!JaJ5FbIMZS2|`%I1P^I+Z+$Sb!x{?FQ&I5}a$AGP@S28gwCwD<)3YMDZjD{u zc9ne)`AA`oMk{f>?4gbO!%ep^kbB{ksYV#S2~mQ9`#C?gp#5jbzoReb=qJ|i@Ti(y zV~deqJGSh;VWbekS@+$G~2*c6*CeG@kod$?Ni$U_8B`BE`b2N51*4w%a3Pwn-kUKTGPqc%iDW~cZGIRQJ&9@T0MO_G~J1B zsW1)`8eg%ll80H?1+NY2Z2|_57tdL)?`SAriiygS=x(H!>lmPWwrx1{U+iepYfDm- zSvn-<*Sw>Vb;pt3W(zEN82oR+gw8)9wZBLTJY)_SiR#I$%fN%1hvD7$ms^Ao7gp`N z)Bwk!YoU@6!~R~v8xBIle%L=(wUE|A7H|^O=ukwXre}=dY>%3;nTkq67GSYi#(Li( ztI^+K-SJ^+nXNJ^#nIi6K7^qapgq{veCDx1(PCewBvEL`7kxd}uVhqo?n0QsIg#7s zgA^16?Td42{P@%{B4`vUT8TB39{whPXagx0vh05BZZm6?2fi+z&|+5+ZSD*IRlCtM zM$KDSdjzZBJxW^%pot+tIU1JUCValOs)$1-J}kTX2FnTQtWkm2$lICI2RV+JDeTDS zR9Qz3Qk9@uPSz)6Tf$T zQPHC4j(b%jKHo{sJ9x?Bt~4>!cgwPsI%tWy6j>`+rnb$_fTgd)xD5 ze@xN?%C}zl`*2=hhj~@&^A)gW2p<0al3{lt;7}L1lS_|QanQqpkNbo=IT|JY3cO4{ z&cFP_gJ>k1r0Ju+Z4d!NX>xg=Pt72cd=lh0DaR70QQJ~jul)PgKQW3UPjLhp>0fmC zM7#JUv|SQG`V)k@h0_7^x5b%YZkg-lew?`rn3guNwT`S?hnwyTJQy`OnYOk)XR`t( z9^REVC0q-9&)m?PE9_V&bSS(yX#4Y}Ye#<2T`5ZKh?)K1Gt$a1X;I^L`BN{Z!k-p= zlk{elb5{w%J@672lEibGI!p}j(+5lT;9qGiu^0cSPUIP~A&&I2ZHRA5!~d<5t^?>{ z-_1C>Aw+h5k)A*g@A<4=D@b)&gp7I;f+57qT^GF!jtv)XaXTm*GyQWKixe2umtrK%Y+~{Sw~LtLmO>(=6&6pPey(tCp}G z_*uJ&yoScuq%yxmIeQMTJ}9woi$lnv90R}ZBN~prWV?4$g`U%`nH@DKLIVk8C(M*g zDfMtT9qB?Y+eXZit`ZX6!s*a6?@HEa{}U>ni4%4rA1-)n&z@@kJ7&Bv$a*iWnEg1V z+`5x`KU$A}9u8*d5!!9|!keq^$P=oFyEPIjpPq#zIn$Puz$vN@y5utcvx?9nDG);t zmbaVC=_;H*!&LI`4#eRdVHsF=GvkKIoj6PWy_;OU*;J;=@iZ zsYJrG7~v&u)1w&Kg8;Ek)PhfPW8RbsJp-j z;CeGen{a}gL-wJ^meWe5n;gqGiON;uTX#F+oig_Gmudpl%Va;sa(3`*u`@CGMpkR` zi6$g!%JIGuPoD3TzC2k%vt;5}Z0NZClWivL|HDoL)@EPqRHZu}2B+K0F1B;-btCv) zMF%mW%{nr+O$k?$b*g@OCX`Oih9_^&Pz(HY>!DkI`;T%)3b@aZmot}}#G9mlvih59 zaYD2|e+k3YskDjiU%0F$Cliu~m22{brJ;tJ5!3|zn)dFWBn&uB6inBh6UCJmM46;9 z7jXhAt;*q$zD8PzzR4w8x>*d?jx>`+@QAWv9&uaRwE^l-v=lOy+ng5d@GDTtk~`iHemtz_Qzma6s44 zg2WOC+HiOMiTMH!t%5kUKNtwd2>m>B8mj}tETw-~NC6E>sTeY{R##-^vmNfh_gTdc z5ZiFAtJkua8@l^Md$#tvr^^IPH$_GKczIZ+CN?3_hjZ?ZZrNVcwB=$+-EGKPl=Z)D z-7E!0kNZDR*7Sa*H$C?$Vy*iUA8WWlI{wO3rp#rY4s0c=bFgT3{V;59hTG`OC}kmYD%sFk`!>X)`rAyN(l6vAh(O%yByisOs;wRi zD$R)u^`Wufkio;6u8q5E`ex6lhM6LY_Ir`s_o(fQ?7}A10Mzi?fjE+B$|LlrC zNWZj`NFpZ3V${x?3qr$T(^ovtan$T;j=>kvwR;k5D%sA1fL9>x6@^X3p+i)G8Q`ka z!ic z=8C56KwAoYME=acx>A2#0O3iD^f!eHvPuy`!cyyAG=Gymh9c>s0ddQ&#^I`3U^_i*3QvsN)INY6z7}VDx+qF*kel; zP`gnqzj5Mw#+SlE?wy!b9)PW-n&~(Rm6&4vCSd;J*97WtVXS-OpbXBzx8HuMK94=` zcGh)xaQXMF#GFS8-SFlKp9=rm+V1gfd!)roxthNbes;xU4=)2_S?>5>*331F^z|Ca zT=9ilws`EguN|gkEF8{P)5Dwf(>Wkk{n*rc3`tI)&v01FAS99ACO~h1fV*~h`si&E z$s!#Z4IT}DpZm8%((o*TP`{5X4^y}S9Z~X?p+?){yX*|!pYqvbx=}*eF-s_XZeoU; zyeR>k_rERPangC|ufS`j@TLaJwmBxTpH}(+XXm_G!p?{T8mi#V`Vd-qfR1|m$JG3- z7Eb!r`Lmu%tcA8=zr=3VF%SC}3ceBTVNJ6Y*wBYDQN|)PnO~bne%o|xuHa;Zo+|?2 zJN8Rx&5U%nMbcMVb>J_k&291&emp-BAa+!qL$%y&7_Ss`dO`ztE-TRsm z#UDGHP=iOil{MUhsks)*B-bQ(kxZ4sMLzk3EpOG@iR4_H3;pf}CzrPd`qi9Pxg)#T zbiaRBmtQ$;F8|nyK*XBPnM zGhbJb;l)I?-Aq1lZ7jwn*OAw&qoJ{*Sa)%F>LVkj64oD5*U*>GqC{q3T-v^)m<8o> z%Cr%cR=uK{qj#z}Fw%wkw1${EO|71Q3i2=toL4$vbSTV`JPJ6F9>QN*rnq+IWynJE z?{W$DW4dtZkS*4{hR7o}XyL;0UE%ZbvT|gUk+WXN9aD9bR8&fB+!|qzaT*`oQ?bqnmh|GqMiXaX;Do-zGKTlj$~{jf)EqL{ne-4U7o1oDH}M_!PA`Bs_fz;L%&of4s2q!_jf=G~I3q@>NqL6RQo~g1CRjcAk+E(1 zQYdQ<*`mols9J|NTc%5t1yeJmoBK|k@us`HSSeF~7Mm0dM5Jjq^Yz+t$WhKmy~>ah z7P(spSQ*`)spLNIXl%J%7(N~M9^a>S?4;r&B*&KN3Pp+Dj4{~_YCS*X@*Eg+vO&7O z_(3)0lLUwpG=iIbk)7J8G*a01G|M^ez%39WL053AE@jQFyN=vM{`%>5DW-l4X*-{K z5r7gw;K1{kc9@Z)*qibUk@&QN*k9`)LKmz#m`A{nYpWwd_FX)JJmi`^xKEJdDQ8FxZX)J)E9K!A1WmD4G4}71Xqv^^E;e6wJo^0EIl4q zV&E+e+&Vi2Bd|rDgx_+N^wH`{ku)O3%75kEF9L063{V@#?dlxHdm9^>6Lo+CW5#*^ z8>#%~xgAjGyr1q)a7`R&z59xC^i&4wGUM#hw)5yt(}o3TVcjLhfZm}z`6&`plb41e zcVeoQU+ifH>N17XotOFLG>rH(BBsx6m5>eKb}z}fJz)obDzO2Y-1xP+b3E_C)#x+G zqdcLnz?czV&po`f-dc})Tt1B0y&03cb~4rE0q`RAk_pdW8_f;#45=($(EjeHlEoa` z7-n^XYyg4x95g~G-s%TKzZ1~ZX}zOj1c9)NenvU;@ULXK2AgMPqr4S&eMuNDMF%YK zk(uB$5J9{jZ7HIf63xu6S>-fc?k^&Zw`3p08AN{5)q zVT(-$WMxOiIF5a+mb?k*7YiAY$;;Yv_r(ZsChdm(zgLh9^4d`S6!0H=5b`@Lg4bt% z(j7kfWd%Yc!Vua-H7EEG@n~bKuqFfZ$8ja2S8GMz4GRvsUy5($iKylp!jQVXvB3C1 zTz5<|8|};ERVe2vMw!YutED62CE@x zg%vT@babs4OJ#B`HLigYSMUh#6nkm9J{p8KK=3rytlxx0=y6HlM57j=R8q#Zj(fde zT*OJ6bj$Qm7EU2KvWO`&M3&7xhG!6}aqi0=l5sgs)|idIcEUd@mif93;=+u3_enYX zvO3SA&sZX;y5=dtR+|%$*i@jL9&%P6VO`NP+x?d@qvADDv?gy=oZ~7~t-umPZ}M`r zhqH<4=&0Sx!AUH`q0Yu2X*SyuTh!HLFVXlKne~n%(zSWBYOkwmst>VuDA#Uyc=>0+ zFUyu?hjjh^2)AaRs+zGw&2?a^P}WJPvzc%2d}2r#zxU`DlisLb={LDbcA}W6<(QvB zOwyEte#bxc#ze(!U3pkOq~K8tiPUfgv}){qzRF4c`}lLN%E%!d*n;-11s0G3#aU2W zdGRncxlDgN7_$2B-WOejk}4p98F{@e89>=riJmODT)*qXlTWcU0T@;SX8btWnQ1SX zz}x-!bbE_OFC{@Jtlt1&*9jXa)j*>v#>Z<<;ZkByLc$-k4l+-VVW?Bzm4rxdAnuWX zkqh9aCyF|gJU*e2>pTS9jln2+@oxP~L+Oh5lDFbM5%41=$U=z(FM?U=4}?dr#?+L5 z;&Atl!EMwjTzgJ(Rj*v10e@G>WmTdHK^#kjMz?Vz7Tx4wi4&MCZnN%|SdGkKYFqWf zM`~Jepl{Lf=PD^7A+%cvLs3wrexp0A6ESBH_CA&f9ge&PLq~*@`GVVJ8h)y;Ja#!O zGaPx9n)lnfk>Iu}}5So@D3D8`zyV_rTN%+#gLFQti7R1LWkL_tY&;4x%uYI!B zi-BxVBWZ2?%h++b;3(?f+5%PnpD=``}51Ea}Vn*zEH>A5O+FppA+26 zy{WB`I-U@=Cqs60JRVP=xqO|G!^_##IB)&&r6Clz{mEGh%aC+l?jP8@3A znW%6a@`m{-xOX%#Kl-tn?CbKnVlH=wcs^)|%Gj#y=Mc%anl4%qHIhium63~Jd1kCk zk*9}d{&%c}FRbzGxW+Taes#ZfuyqoAY}PX~B*mPfM!30JS(b(@^q{FEGEi5K@lL7| z#yvAkW!#qce-^J7zLm+nv_RAkCYZ+4vRW_>tsIl|<2YI(Vv;~8U#z6dhz=|cO6SV^Kf(j^1c~j2 zw{3)+{$q4a4nmL0exP7mas6TOV*epT-K%l2tehv&0!uRY*s5`)H|{O9LmY}QMDPHo z^L00qfXU|vAos{Ca_%TD7n~vd!EOfCtrALZ99{q59nj4#&_t^gdp8Z>>6%L)Q>PiBJXg#UblFNL)QV`;Hd| z%Bw=1gM6>R7ZF<}s{RBk^Gx9C!`3FiZ(@w%FMiZs{yU@wCN1A0`|ehnAkPaV3#c-Ur1KW*ZqWmZCSWQ=eZ1NbKYv?wymScso)@AFQ!kO3ZgzIrh? zq&Ma)JAOiBSD&twCMWy-R)`-a}-z4<|8c#!V=q1~VOECgp9 zo{*4@7d6Xx-r=l?JfV+Y`x%@13Cl)vv>1ARH)*4+7!mUN+P(a;Am z15J9bUq5NlEs@=jpZuHF+Of=PyC3b)B{Hai2l|;hnW^%pPHhcEIX%@T4S_SDOtbD= zs&hSe>+f}Yd_v+j9lOU(-Zh=Du}J15Ws$(&bKg&q{!4wWuodFIdk$}38dDYURvZ%Z z;1!Eg)^SC4lq?M(3#BLldB}LE2~w{dyaLY{5|P;w+jxwtQc5JblQNZ{wRI5 zT&R40ky+puZIfeDV7st^$lJUKEHDZD1}|%0N7&iD)UTBfi+iQWvVf;skWTWv1a~UP z`>#zlHCtz;^|)N_syZZMw|`b^`gr z?^kz!5c1E620fK=MedTq&D4+A|KRzDVtiY@hfSU)8YQ-Z@@a;7cNwcQ8O=)(w_|yz zu2R%bWGIqaJf?0~9RAfHY>v^0irVL)h&uEFvNkXs zm(wF{xGESyfAs|4PTGI*GfYt4Xi%3{r0{O4$}E4&19qojqAVS>R%B6{Di0X zJ^)Y+cpD<|7is_gtitm4XXB3nwYck{L(-QwIx1nuB7@YSMQ>P|Fi1S-#6#%fRg=gw zxb~ejFYD)H+5uCb;Etrjd|5j6=$W_>wlyvNP=fDqg&9KgKM<0@=3l;zYv<{s z);$vD5@QIc`UCi^X=`NwddJDCYTan&wBt(X$SFt|U-4DYL0@zmfBJkJ)sUlx!K%*k zufQTR0!Uaw%I5KS! z0ihJ{XJsz?X1QNr8BC7=0bT)XheIC&dB`%}0-+o<64pgEd_UqlZTWW?zp^~e>L$8W21=?a+m zc>QFvc8G4vF`Y1prE$cPc-`NLqK)aTUq`5*++fo3?v1Q5qsgXly^Yu4DSExs4_|eR zWv{=pD6u2+-{tQ^uP449KaHM3Wfy=Z(`SU8`;RQh>A8qcrlHmrhAu*I1uB6JSV#Db ztj)qBv)x+Z#Siml%9-5<_zY%;>!hF7f$t1_j(GR^W=d3Dtg1{JT>#c{ArGr!{M&Fr zEQfoFw`mgK%aRRHY8G!~WI0lpl%g{wr)N#bl^3N#qdz#+?xRMId#ymmCa_A7(vKnmOR2$Q;ncw8DdY=CR zsIX|L#SFXwx1(+r&t4%t-Ev82F$AE7Mg%7STKSH}c_EuWJb}!vuDwP_CZ(G$&)CXSsLYpl}3`ro4*;+C^kLY^88JPFhVVOylTWNgj z91w8jh+c;hHaQBo^D=;BO<%Q73wGVZVHr})eRVwz1RFkV-@b~v-rv7HZ2p?rM=u9b)Mj7mnJwa4Yco_mw*2!vs8DA>^WaDPk9d^Ynm+_G+IS5 z3juGG8%NBx#YA~B0a}mRBemHD`c!J(1jTLeD7;u|@(U}7o1mR3InJyyv}5-(_SfS2 zTi)=y0~6X}@d(;Q;Z)UT(ef+y&E#gVHTh14!d;Cfa? zoae%u$$K?*+gc{EoMtfOqe=GOmGnNADMANWtwPE-`#hYn5$6k%=e=6HGvbZ!u?9oo zAlE;6QX_LZm6lXFZE+7w$jm5hno?OU=sg;=vgf5HXutr_n~J;KH=~V@g*UkxoH%O6 zGOx2e{-F~>8;bh+=*I!MadhPuoN&xJcAn>0Dg`3k{s-y+ebE;*e+DdYaI2*7dp4~x z)`R=;hJDc=nKzO>!kOvBqk=ZzMq$^od?TmRHVT>~I}g)$2`7f1Q-8Dq+A0fs=Ybu_ z&OM0jQs3J^!2v`C3GU5Oql2T?PMk{b%66sjG1C6HdA;f*E$w}jb?9bagjwcY)EtX- zZLk03LpzU#lV@!YoDL~lT`;~vt9bbPFh1K~uGeZjY_R>Q)@#r8wD?iy-#j1ioBv5W zpXC0dt6jWg!ey%)Gz~=lUlss>Q1ZCSc$r=}tVB1CJ5@ZBMIo=Jf0X0-Sot)r*}g2x z zSqa1223cgNI{u_5=_I+}^mn0c#C3(o?l>7i$;X}0BVzfag%QeAx`DEfqozl2BcaUI zg@98%62lkTS{xX*@rQ5(-LPdgu+}bxoCJem%jGcdiG=m9(^2z9VVf2x`@?9|sq`K* z#*(Szrv{4md@a*!_JmIFHb7*cWS7`SVcK10Zw*;@#G=leuUqAxZ^c6NHt0@IKq})E zK#q&%gr^fIoRo|kGO1Z=wDc7u+4-vOoN3N{;$@5oEv#OOKFC%b>+etP>O8!a&Kd6< zQ5y#yL)T$%S@?;Mzg}SS3N(M=@Hg&~pknT?Fe4xJz`M}wf z*JNHth4MZA+~M~mM~YKbs$hDd0?Ld)WFc&0rK00C*Pi<@Td+vLHasoRxxZj*{1^t_ z*bN8Mk6x(<69_c?2$TAM^u#id{tVrx_vt?%Ap{n-5L%INlZT!e`dt7*Z_XrW{UkLb z^tIwTD&b?3Wc-99WP7**0Jbw>Mm6@&g7{hYD-IG`53I=ems8@(V=ZNy zMZe?F95yw_@~({~X8Wq!)3A`<5sjFg$iXSZog}3wRA6j&LF@w;5m-*G!2QY;T59 zW+M#{R842Gpt25bt^>RktP#e}nC7&z=+7{gGoGY_)$^d^xl1*cHtVU?>F=P$AKRfr zFM40gf0Rok2n|kp)qJWDKLcHgb&%Hg-t-H(xh0REaOm46dNiGFVdXlOjxynXPKAGT zkVU^c=ET|ZjN<(_ekWyUB+UYqJi|NP;(o4CUvM@{ORa%yA*%!-R}AIw;5tqNU>B2n}I%N;^b5H zTUZ#C7L6?DVC-hmbpMuqXQ2t|*Q_XvayLoy#5R-z&biV<+JPX_!?oKh;rFYPr5}o0 z`e7Izl!eYsawO)d+j%)d6A0O^pA2K_3{1FU?0Y`rsQaHw7vBOpvK>MfTH z0Hh3Ypn6XTR5-}FrN0=eS@^?2dW3ooo%q(04t~u|qk18Rgru*im`Ct=jqpWI@v{SC z!`=X|6aiO+%v5y@{|b(d0hb5YedP%fQbXP|lUv?B_{wwc9C%}mVUpG3XPbYAEQx|8 zS3gYdzLAiobvjQ+#X7cNX5CO4XFyU`8PySM1OIV@(B74>5Zto^=_pZ;KO!c>Ji6mZ zOXHr=X#~2yF_YKe%*4vo{|)&`7Xy{|noh#f#Hig-!R$Kj`|0N>e(7+lH54i>D>Eye z98p^DL`kGhCJyjUYJYMSo8*N|Xpi#9>vxe0Dro5K_>;fu{BWQXBiT)QZ3zZon?xFJ zxiQ#qbxkC_)0&x;nZr&Qp`q-gyAVJoo=*$wOj-W=c6eOUx9=_FwA#3qqGr4vSl=xe z!{YyA`d^M={peSl5>q>*gT|%n;Vye8Tr2%Bd|_xbv^5gk8$bMrzj7!DZW8Of`x@kb z{6o3*GPhqwCFRp$67kC))KzWh6tq||JYBvm9Zf+cR$qliu-y+?{ zrf7LhL))Guj|(+l>I#!ixH`F+`ShC#1uzx{tu>?^R~fC?xt0)Lo}(K#zcjT=%9lFc zekKiiv&BT9kRg`P5jL<`{*iavhC&4gj*L-orU_C#eF!GS+)Ri19W2yNzF_k<6+{%3 z0u1XH*;M?qMW}hhRy29LTQe#&N?=T=G2EDv=}P6fiYSno(r@$J=H719@h0cxpi!vqy#0pXae_K&)Zu2aP>cAF zene(M`iPw+DNqeL`7ksgEk5IyM&aNz3d^aGAILW0Nx*0vDd$l?xk8?9Q55?F8y~0YeDv`PXyo3JK`#2$ZVpk4Bbrialai+Y(iW8LvR`_ zxl1CEc_jMYGS063C=uA9P5K=J?z`hoN*UEPq>iq1WFM4vm?nR5(7a;F=Ie)*6{*jC z2#`hZ|ERQY2Fhm{`Rt}j&ZFM5D$DagR^j%EjcCyz!ZHvmG;~bv#KhU*!nUxv z%=`Ol=0|rOXPS5?4UzS8>7R|}>1iI!rf2UPoo86DwesJ9nbBjCdd!{+9XSd)GtP~D zC53wg5o5{FAJz_er(Qb~jCPcWOJNf8gut#LCpAo04hG~^F27PN<^a)A^Uchhl~{JB-}6jdV=OfPd~R&r=k%jtB_eDX1{5vyBiB>?VF^p zJJQIF+UykI&G)nxFa045X?H`NyosbWNHPmt*=qGVL_eFty{DwAhax}s(8*uo`5ix# z3{sVd9^eh-LrA)DU&9pke0DDPXMoTNg!jSq=Y*&> zGIbPuybpB%hH2U+mDw_2yUEH#V}cZG1_#~GWQo%IPR|2PptCKL#9*Qm%$&g*2(>YF zEd+%H-~Mgg+9;(49HG}0snTP{QVS2NIL=_e2sG=ozU zwU{{Tr_}FmZ?=FRUw~{wo^}?LZv%Ru`k{nzHHeLMLSG4cO&>#q)IqCFIu|MYZ>3-v zI>j~)VFI zSLQJ4F+3kMkKt02(ED(0SfY{(a@qYw=PhyNh7>1;H5(3gab8x2{oS3AZ(i&U$5?r6 zQFk+`rN+4&%Nz`Pa&B@y;god`vu97k*mQktA!fxa!o$L9pDfb?r1l^J-+o!UFF-IT zHzQgthe44V%mkjp>AjNNCS{++qsj9e_WwVc-h!bGwdvYTa0^=8y~Sy9m*Nh^-6<}` zEjY!cNO34qJh(%!V#SNQyStz4=lxFd6DFB^X4cHLRu#_f@|l+WGz#_&=Xfe)yT!JA zZfJz8&xT+^HZmHc3IUOBy=oqU@l6iLyMvee&R6-E`lqD`^FRLn32OX5ASZDk;2vqp#;u z2hv904-!32jaX{1&FoKSuG$EFce9gMwP!k>|L=No$Ep8q;Vfrc)}hv-aZ#4!iym$o zzIGkCZ%@Ep|NhJK%8H~C?>#SdDVT{qrc%q5%P*DR&5BtElILrb>vMZzC+K-nTQicn zAZ=e05TdzUV;=F{)Ny80cPVfkjII)?)T-@zo16k<0~M2tmy{J&r(?vk4vgOrZ@L!w zf`W>Kqs_Yo(hbA7znBvnQj>JQ@!WV8;V`SD=_&`J4M`)X@2_BlIP6F!0bhJY(Au)8 z<&q#l0@>xMZ#zj;qWb+?(p!%K>%Q^c_#wii3*x3kn_Pn+<*Pd0n!PgJa;^D`G+Lm} zpN1-i2{Ycm``?IWYj>FESyJy>4w^nfevWehcKIzL-8($CTJfbAXfhi`nN*fY{IXXY zRj6?$ITfHf(Lve?A@a<27bdZ}L26ZSA^taM`m?-&M(~mPJvDeWk)-=X54F#gY(Kfa z`^ThuZwH02b(}K3uKbCk7{z__n@$>tu`KZx)yhY$>hLRqX=_;&xHLU$ed|%rC`~-# z^jN!V`|h9jDn>1^2-n}@yo<`3wP#R4HJGsV$!LeAMGh_Ov%9IYpYq0Uzme~rxL=KP zx_oZC9s?!Mf?neu-2-8`31E9S>oj{3LzN|MGNC>haAELShT7b-db_B!bbDRB_?hX| z?OZ+thfs&DEloioGvLLVeB!cEv%%ZaFA zmq>`}cf-PJsEr0Vo~yZ1pRQZRiRx+sR=s^~?Z@NvJ{P&nEZnCiX|g*lKpoZAB=Vu|>({!hZ(_Z^ zfrW6YuVPHW)O-v#t=epBFD)Ht_uoUbpPIi4Pn&%2qGimaIV;nUO=;1Esx0r#TY z`h>bMKOrIVMU8#;?@#mOKe4pWG&0UQr%%1InmHyA_D#1c?}@HsLPM^H$1U=E=2i4s z^?$xAb6sulbFW2@nPZkqjSi<}BJ=IV6)8q^{<@4)o_+ToN3)|VtUQrLD4v!C``6bp z(zlZN^rKF~uaQVIgz(-V_vI*h|2!sK%I(eoW8`m|l~{fq>=Nw30c%>XOYyT|!E7XN zab+WKAz`MJc3VMA;TlExMa=-!$|)+Dn#-M$r2&i-OBw+lP@X5H*n8H;nGHU!YfJD4 ztX|V;U{_fauv!k#Z0QV|kUG`7{_O(HBr$=3LVU7B@RZ@fiO57rh$|NH*0OtK2o#n8 z=HE4z@;WI8b%tUgL@?T>OUV40shB5O9R0^Pm4M~ClISJ;2_~#^rnf~@A(a~{F-PLB zHg2gbE-~(ql}eo~%h9A6n1uakl2$wsB7qV5L9t-#F}CsK8BxE#rt59h*CRB%GSK8eeGDd1q3`svv z?){j^TFXd|x$mMjOv*WSK*AkZkMM)@#8~)Qy2^OU$87(!+S;((AL%$k&Kq}yQho{&WdaX@GhG+wO;g{Z$3M&BXjH zMs4Tc%Ddoze>qkrAO2)}&eMMAwVyA9cf^+!Q_jU=>R>MbsKP_am+Dz-;`7~c*B{6U zCx!s&XF!pLjL_4$k6Wn;`>+O_h;Zx3?h7}lu(Z<`0*nKi8<^>f>#PI&(e%SnHJ10( zTsQ3zB@S^0IZT(wzuMOjHz&zdh-@*z_g!v}>}i$P!mvNOCSOT=`ikKZc-MoUIf<6y z0hxjIoABGaEXGlqi!a4=4TlC62sfzkUfCIpH7y*uW`oH9b?vh?rv?+h0chwjH#Lh; zOGk&>oiq z`t$TTkQQ^DkDA9=F+hTjHlJS0V1quprrj3_Ir7Zg5dD170$E3eMPqo^HIQ*x7~%M> z>dtrn;(0|h`aRD2Oju{v{M*aQ>{~g__-oW%@FV2~&BYyMV&I?AQ)oj$Y1e^GAJ-Qu zJ+AvHWCz&2(h34k2$5r{SWN6{9+Uq$>`7c+VT+f2@Eks0Njn3dK`ZBi3}h22EK3Et zJMI?dAXWIu44e;R@*@JI4mPT0a)kr&5q99zqcf!XVNcDGxqN!|rQCb}1@&cqI)){0}0hI{10$YsFf2UOh$({DijeW0_ zo?@;>5NX+VA2b3|a~=4{)WnQ)Gx1FgWbpr5U&+67QR}L`PWo0TR4wNNI3eVyhT$14 z^>ENDHLjn@*|>s};6r;DI=jA2)=QLZ*Tr&|x2~fhjUIE=K%F4!C67rC-yO(f_FPn_ zRH~7^Ir z^-~zm2*x3@Z)yke8}iQtM?Hn#j^`&~BWO>37B#8kkhc}jb&q|qaib2!#JU&V!&SYu zaCbTuaSvUGkCqV1>Ot=+&m0#NzCnbeJAj;-zVd5@23f0b{Pco{6{+58s+BvuSh?YD zj0fR*F-D#;;lxIX@}jej0wUS9)f(RU-01fRyNzJPN(#M+zmR~lUvt9!uQKbO1RWN+ zJWkiXJE~3#LUkpyNLe`qso;aQ98=ZIOBC;%hhA--|8J=ooAV6~*=4RyxihnSl zsLx`W)G;Vj{*eF7;AuP&m-#YdUXwdb9pgH?wYf8ZMXovG)AB z#%|A5Gf)&w(2&$0C6G`(aM+HhIBqp&y8w7QGsU^xjuTGpQZ_7cI+c{roipHPAw6!e zr3GKH>0H`t(@~yEzYYy>c7^$C+w@y61x2_zKPlh3hl@9ywLlZN_1^c+(0a0E3It>& z7r9#lyd@5B5u{ieW~0*hB&Fbk4> zI>ur9v3M!+Q_4(VgKKK)>zn$4nM^k!u}r*M;=d%-iYl!Ia&0>{Y=%pcqu@iIqB;1q zm?ilo-;S&6rU%S>%x70*N3?aNfruN}fynEcb~1y~aw3CR-CVq7?f3&g+rozPn{}rj zvLCYJC?=i6)H##D7}6ltwlem=5peZ1V9Xc>pWb_+;Q2O3Q9h8TwtA7wg1Nr`0Z=T0 zY*i=3%6bw3Ng+m|$2PApt>gD|q%)CwQvzsr-e1^*66?{iC~Hyym7YMO+`R4=nCSuU z>4uxN;nX~5A$H0nj_81`I>xsWl3R6dx#Z!mvE^e~4h`0$E^?-l01vo%lFteP-$G+| z?&KsCVt_xu&5kDE0Cg zYVmY67Jg$zW(P)9czQlFFv^DoH7V*fbaB+ITf|AHae1hN?n3>mw+BkVj@=|SrP$#N z{;cQBR8cBr;EL3BxZ0(O=a@O)r2pMg1O_5f(U+#2=PJ!Q-fE6|G(c1wous`N73!o^ z=+xeA0b<;czpwM4>W9ZW;_#PMy{_)_oCohAqFZ0|54IbF@41>8!1|aUWZ0L9jJ!4w zeP8C~NS!_DNCCYseCqf(6h+hP!hTZH1t(0~l7zfTT%RjW`84PXoO16@9sCm=|Dh>3 z9<~9zNT6*632Xgb_i45WPfFjvRhd4xo^I~!uo(s%ffCg?_{=-$+b)5b*lX- zg|@i#Rb7C%55~6utr?NR4gMhD0SW9mKz7jlQ~}bjWc&tv(hw~FHzIvV1m9jp)(WQq zCl8L|B(Y2spTEyE`?rx_RPAj@GI^+ zgfHP(ln$s7vGsSrss|Sv8)PvDOwy;GD9zb02f|FDQFU6xM9_)^_!i;1`vTZ^cxPhq zj=5aZb)XY$v%lFNy>vA$>g49V-28RA(sd{Iq_;2CsW9HP0Y$!MER)FjAELNT$KaJH z(%-RN?$x0%lz1;`{g8SS(FDJk^i9%F8e02F* z@PK|(V`)+JlE#RZ4(~E6T}=XWk63*@v1xxUeBm&ha){gACJiU@u4dv8Wp{>xTlvrL zMv!9WGOb#fNn)%5YX#?y`|s#c(e_>b75fC<)6(SzRapmE{cU`qG@&mJc(RD7(Wj^IbhD^C^Pn+*URo@L*N&UTZ9Wdu>(0Tj|-TP}8 zAu`ij-1ZLwFB!&-^`ukLz+@JyH_hh&m8`dg2kH2uW}jGkF@1l(d)2gA#*vRH;n|cX zqE355I|cdfnOS@cKR$fT-D24s@r1(8C1--(CUM^?uWqf61lI-62|dJ8h0A&DA!f}y zg_MGmW*f!l0!d*JktnZ4Npas6j~Aqwe(Db${JHj*&H`>i>;nm*jRA{XvwT~`a)0TB^)gNYnOz|f7Fcu-Jw8Et5EkLMjJ3u_EPudvv90kSs(jm6bz0++6@zbN{`1yj-Ce8B9@ zpuFYBXTx1EE#dx4@Wm=XMLOOhkO9e$MX~z2AuXWQKAx5o=QoInUeQS}&Xmhy5`a(y zj=lyTY(pmEY3y{G&j2ptY4+|nOpfaivexsA&p4juP$hdOz1u)`Ldtxpsnr?a!Nk(b zcqe=(e3K`#P_M6VSLf?7ED_gW4i1^19v|F++g~_*yO2EGRcRwIYUK9W>Gh|$x>BbR zC;n`XsivL5wS7Kcq%$Bi3R7AE{jTKo%{dVx$+L7%`Brr>RpKe8g&M1rDEhCDJ0JD0 zlj@!ci$1&VF49;y2ALOV>-}EXM~sLS|BZHGblS)BV5wOUfp&~oGKt&(uzRBGWioR6 z=z%mXve+_00+2N}XjqKO+rqc=$5z!L<+&t=bKj0sg*y;abpoOh(%{$(_4j7owJrG| zE&dSj&UtZ!e?NdM8=>_jSnQjAMD-ppocr)!&5LyaB(3Qb@^`-|S7sms_XR@6 zS>KiSuiPYal#tD%H-aQs!8P#Rou6(HVo`oQeQ3071dEp7Z%M$VTGp@mA9x%ub-=%t zM9M~80Ue}^$)RQ_tNqBPg>4&VE?x81>YFqIGJ~CLtdcfPPV+?ei;W+bn{jpnVT;uS zzx@#;`68Ft ztWPE3Kb7E~eBKpn-gwL^Y6%J{it3T4k0F~F47hYYPF={3l=`>ctVyo@chlATr=@a%APNFE{J^McGTxkA4$E!b+xY!cM?~-!JEinI~b;jem(5 z81AeTigyT)cZ^WZHXIxjfChYI6I(3^JmAme^@5#_-2+YTHOD##7wsPq;`=A_q4>nI z(civiOGbq6gx{W7k7jVYJxz=1aTCR^IqB%6SBiKK)h+J}>qo8)*)o$ngKrTV)X*t)ln)$9XNbKD>ujZc3;C}f3M_!f5&83m zw|A^E^sU}S!{_25|l z`1Fr>7Qy+xFIlCvX~4)_D7&jewerTg@=KZK+$#COg#s0g9)7wAaWRcv9&>4nU& z9mVRxL9A5%aZKA;&npPV*mSTH4hJ$;tfzHhnL;a(>V;{k9?>-?~!&2;BJ5XWB4gun(&P$ z%xv50;dNR?v?1w!p;)p`pM1UYy=At{ou4gM|=gVkX3c*B+oc`!pTUTV*b+N~lzj@T1xml9}{U2Q*Lv;kMh**WluPrBvsS{hvl z?F0gK#JXiwG3M-x!cDd7U1_(no5?XKD81Ikes zad?}_22G>s(cAp~#LGjj|9>sZ8KzhG-EDyX%fbWZaxJ;)He_lJ&AiSX3v7cta^-Hi z6O7yDOK5XbSGklOQC45>8nO=>Bt`!8Q$SMMu6yE(O~*n<+YZuTEIH@07C_!|gnq@r zMi?1|q{Sr2l-h*zmy8>{>g6`bc5T5el|R4_53JRyEy{wcNh}lFpfb_OWMYa@QOZ^G z6PRw9Oy>%9W->XNu3S3i=IX}+uFm14tC6l3ts{Hi3_CTOmN}D#dU%RJh3hTu=%u;e zA4Kiwsig$9xo{LrP02TviF1Cn)>N2e7Dd+Qk2V!uh~b8NPTT5ix_V`AQ3khBEtQ5A znjEE$dW2F~e}=2|SrH&Cn8eO@K!p2rd$xAQ(q_R~VjIQ1T=7BUn1jWWM`y*BW3Ypm z15Y(=#XwbQ@{=cwXd@yn;+(jJrDM0!)hxZY?NtHHiJ` zu4$+bvupVBYFRSEfk4qD%Ji4wWKXhgPEOF0gvb0??$XIHd{-mJMpXkfBhru~<*C6xBCSGTayOd!2aJ41nNLcA zU~_`fd>Zs+Gr$6l^L`OI50}&s>*RzO`n%mY8VWIzz#~C_TOWipTbg8Ec-Ug{aMxq6{XL z_U5rq&7gHhj;0hb2A7Abwrc4{X6Frbur~wJ85zaoYM4Vzr)hj18Y1s+=?I2=F`r#AwQBCHmZvi=Y95@ zldVkW?%|UBoc#XG0}8+Tc4~JvzU;YP>@KFIsg%LfFv?xdKT^v0$@1G|#|B+Ch`x}@ zVTZ{BZVryMOTn&O-6RNlYHH?#kCCsgr>zDsQ#$@zs05OSUeJRp42b*Q#aqbvQHi+_ z`K$uxqsWb0|DK$wrFU)7eJ}Dlpx;ArW(4pMS2$HStu+nc*B^=0z^jRWqt8t6oq?%>T!lUQ&X5nYSOhI2HQ5~ZCX8@Y& z&ykk=47Z$YPz?f$oy~!UB<=axb?+UMPirfX1^Nm6^_uZU8`G^8liyJo;`A%kNWGW& z{8|7huc<-?T``sPX;X~l4?QhFF<-$Di@k#g3lw})PkMK3lQ<00R@)h-qlb%uTcwaz z0z|6P;h4Dluu_c*vxQo%P}5c^fbtAS`XT31V;jZ0{)c>K0sDSr)9*0Uyg} z9(9yE%#6{rZv4L%DW!6yxh73n)xSA=a5S%?uF1L2Afu_^YhnQHB_6RdSb6S|2%HkwfUkj zmTrz}BJzovR~9Y(8OUn0gNAQUhO-ynXuBh1V)yHY?7QDOk)APdB?s|R*CX}X4wo#E zbe4mRqhfGl0>(3ucxR-Q2jm>VJI`0@=DZOTWb)-`A>QXFxmF*dQRJ~I(>75g9EjQi zY@~CVAG1(-eKuYYeG1#(F4?t-}>7orW`h1YKXnW z2x|E30ZFu3B`5Pt>h3k12)~|T(v48U%ZyQw8pipR-4^B-U>rb)%35nQiJJ|LE&%}*S{!55ZPcicQwSS>!5wKzeR*s1N19Dd1UDD^h z`;p#4P0Gt({IQw!x=m-0+eTg`LdX21_tFl1D&pS8F=TOAbxQiU%fgp_onhRFGm8*l zvt)|To>`&u}qAF0j8hv@uTeR)++o4U2=uLnbyTC;Gu?pI^8^racA(HeSWgv}egZrDM zGklZ+aLTmKsp*3Y0@o61RfYR!+njaXQQ*CbV!0l8uhm%O#_qgD;v;HtTxNR$YncQq zOTRVsM!kb1VvK$e(8(})I2~@Fs_%q5rWdDB{n1^m42A?qq3h~ix02+@!$C$3apd47 zjmpN+@W07@#mX1-#~`im;6pu;z7vqqT9>#@Cm2R-&05cUbbPFN34M? zim!4@EI%QMf_u*~*4lLbu~$j({d|C9;Y1TVjiSbxJL#I%K61+LTct)*ar(_*I?+76 zMz<-Aqqd5^RWY=wF4ce||9(B?__UZElv~rKWV!}vS-$X)f7<3-jiv*bnf%sOpm5Z; zMDrgn8DqxA{ia?G66Zqj-;%!G|Mx7NlSj@2*}q24j&Ghu`V2YnuTh z+OO%+1pYd5Lex6!s7j&7>ER+@R36zw%Ne2}g}U-(hFD*OEH7^M3{#jWN*_oz!q7nKD& zzFskC4lPo&G>6fF=UYbP3_b#uv0l$B>-5}IF5m89YQ#O}=Y6oX7cE!c+o9mO@fmcz zJA{?r#OZTW)vZxmBc>lp;j5-5a^~+nK-g3Xnt`Si?~`p68QbS|>D!ABlA4IXX6Bkw z5-@Uk4<*Sbz#QcqGHbuW$fMQWUHY-HE$ex(CS2N7l6o#O>U+0ZlXx<;2q1_r9!}?9L zgcPe{?8ph*KWCYM9412{8xtp@MXezMm@519?upsFl2A@x!KkRrVOwX*1!KhJ=RRz? zRY58FW&thW3=2F*wW5{!+?20DFh9eQt-flN%5>U89+gDp8M(jdHON%x9)Q50y@cnS z9ikCNbVCT(^~qsE0Vc+nnA8;TU@i28ex$F&glwzsT|9Fa|q+`F@};9lwpN9{I>)FvIx0DM^fbiEx_FW8;r zx)T}=Ot7l_6khWFw72W87x{YH>O6^1ix}nqpH_5_X;2LtZFCrEKRa~7zjb38fG^6y z4*!a0%2`++7i$#PtF0co<~kB9(eNG>h;7lx@Lm;tF**EFdAG*(W=sUl_T%gq2%aCy z*V6JqhAQ?>s-;A9z8}qz?C$2xXWy+e%SpnT_!I9Qf_F=qlnD%itiVs4Ka?PVOtAEq zUVHQ|{>|gTxExwOxZ(?aaOS^q80rY}sN;z`!5~hNzrkA+TS@>YP-l+LV=;(*bhlv5 zgTP2uE?kxI74N0V!c=~Ed)IurY>mKmmLYTtvKD$AWt$JAgRIJ&2<-gr? z;g(g&EsA&vn!o^63|)w+W418coFAPCwPa~|jUP<+@eH8y?5S_x_VS_g4Fun4TDZ7_ z&x>-|mX>>EP8#Nn>O9x{=L}KaQKLxCn#zx8r0nRRDQB5&9kguYWV>0=vOR*M&EqJ! zqcqD62NtO{zw4NlWJ34LD3mh)&|K(=)Y^QyN^!8<|a=kPnz_QmE2N#n0se z!B90%r`dDKIImN!A zsM~0}TYSpo5#)Kob;Rn&qlc(8r>lyEjES=Cwb*SjAitX~Qg#qF@i(WnQzcn+)UjOf zA7XRxJHS=mghZOQI_=9TFB3e{Qrlo^7~p9I@F-qTP*fwpwtkRx>)TH2vuq%E(-DB< zLoau68U_y$HayW4|1@`-yP=v<4N^?y4?q^Z+e5=Sse?ik;I;M+w_yRFoSvy`;j zM;D2aVY>#;Gb40#^iN@F|L^H)PQ>(r`qCO+#$S*(j|x(Gc%F6o&t{iCH;!)A;tMdrQPPQgLmDM5qf3sKCt`&ce9jQ*PufD6M+i7#L}&aJ_P4F_>lVFeqW=3 zOZOtECbWqRpTqKnqpNtCUaMt*KjBhHR+F~H^j4H@e9^auwsJHmMGaHZ|5-Mp7b1Q} zrpDTUq?^4jidQ1p39w$^MhCM1%JpJ2`qWdem#l_m1r~S835?<`Wu11C=o$^o83h~; z1~BqwerwEi8aJ(;Zq7?6u$=jNZNs=_y<^|StKbDvt!rjmLy)7Wb7Y&PllO9)PHi#~ zG1lO>Zx=dyK{MHAs9m(eU{`A|M;fs^$8v7FxP$i9WymBFKJ%tnc_EF8)$qCp>(_|+ zJtDPVEnAaE{L#_Dmtp7&KHC(vD&+#^jng6{15GS>O~55mXk+-pzD*&}JIm z<+6b32NoU^-9{7lp5A4DP%`5V&DYk^4PgzqJLHAr4-oT7eALg&^#{k_OLAPrxc~7k z2tN#qvb&C%PrfNL>kltdd7{8NA}yL6qw64DKe8&PaxrG!pAUEg$q?Pc|d4|>(W`dBNw|joEjM3%q2NO>m?G}i-);(a+Nxm zZi+a-*sy=Xl{_fdtJk37yh6_ZGJrKszS-P%1HG+FRk-X>cmElR@SGwVQbgyzU~G0FZq>_sPjpe$!8*eoO#Tw!;r5E_d;{1$(XQ>(<{{KzUF^&x%-kGO*LNR^tI+{2?>kU*&SLLQ zk+1bDYUbz73;RFl6mY30$H_9*S5#M9*ILx_x>!s=<|Ebn6X~)VA_!PqC2iU!E*vEz zn7yT7UDaDWL|j4CwIW**E)Umy?K0o0k&^%OF;LQ;Zt15y#wBFMw*vpsx`pZb&!Zy! zA0D=f+j>DcPxy&l_+!TirFeN!*yB3zJ&bM4P8D=6jKIwIfPKVgVajmu*${dr6i&S} z>Z``$zufGzIFnS~ccc?_QmH>8r|dync~3CD3m%>0nWYfjpee2v8G8F)S`>7KCqI|8 zV@@mWj z6?vMI0t3GFB|Ya;`>Uyjk>R`Mh*%;o{Nb42CP5G=WXO`BCZ7_C-oUCOWzUi3;c%M4b8=ohCtPr2yi>Oor;9*z6aaOP!12- z4t(gRe?sC7^$ScL+_)Yj=Sd_hhDO2Y z7E8V>ZTgRlInZPtR)JZKMpWHUKc^7ep90IX@U=eEw1z^3AWFxMrnCAYjHIt%h1y`9 zX6pBy%^0=emf%jPsNq z#2w1_3ty6y?t5Qm^cnj(^^u~2 z=lY+0udg=r5N^R-f!GCY-<7TFc>4)gT0Cz?C$_uS#qzQjxwEJe3V8$f@cvt zV}qp71qB!eCUYKafN{;Q@%yiu@O$Dt^|b^q05_?Uo|=uqZkLZ!jPQHQ(rZc;6H~H5tvMye1Q>* zkKTL#xhdoEnb*YdO#%MvYIjQ$ejKE2#BB7MDbr*_Yoa{9$n zv2NR{h=qv~{8!Pbcn9Cx=7E5Yz^q{h;+3#(pPc@Uv~&&{*8sMzhYs!gcRB*hy~)Ax&r#|^kXa}pvGTbmBJg0r^P(=u99+fR+aqBPa4sk_?wUrBc^ z1FP!JC{MBibIzcw^FfB6_flED3?@OR{G}$kyOY-zWcKw-;B>SAkx_Zo7`90EMp?_= zA;#4KD&1lWUHM!nJnmy;$YhoynlWzW$aSUkwTks9O$SO}FLgx`a40-2NZ}Xae~s{-^sB1zpc&1&bglX|H%$l&6J zO6>EywRlAWo#)mK?R5^?`F!d(X%t9y&d;5hzrQw99A7gurZGx?6W*~s$WqCh2C;(b ziNGVB_`wXFuRd#UxGjAFl z>J(hORHtf_qoHpG{j(dmVK3LtDO&l}yY5^R&h)&SqOrI1#SJ8vL2_sHLCR_Ehy z#td*wHhGt#&ai$jGTHP~E=*9IvOiU(Vq$5G!@wOb{0qJdR3*l@S31^S>1H@J!=Fqv zcS-%*;kMWcyi%sl@@g)BT4eHklJJn~vQGV=nIb(W_PLPf!|xM@;`_wwuM_A8*Z)5Y z;8??`iE?sJIwa^c^;4#T=hEM>(Pu>T3g?ZUSzM$BuZ%AQ1l+^ignXkghl{fIRq{m0 zKjoAuDHKm+1X1_?ermp^IoF-~BuKlbb4bO&6f}pOVO!GW56x)F#VR_hocfsSDZFgK zQ|c4a1bdKyW|cvUV&_mc|J+uVj4|9Nl0r03AVKRJY)#^l6H1^rC9IJ7;_JSWzjQA8 z^uIp!^D!(cID(sjcjV1df{=)veKMGL7Ng?Q-tdnx5#5F>%sLx^hrq9V^f-#b+&*z8S{H+X(9Iz zCe7?$;!ldk2f*O6fixEP19NiiYT9O+j*bk$lD3!VdCp3l^#}LhcMOW@CeylqR5IS< z#G!q)pPaIEd^!!9dtjuQ08w0im^Gt>*25Z?ZC^nW)u;D9|C}IxBl^D~pfF$@32%_) zU+2ZL-ghO8onGbkGhU#b^gQaGG!vI(+MVXeQ(pL_7*^N@;W@+4ZXOE)sh*x=2d>() z%>d45>S{5OJbyM=4^{9v+L19)^BrT%FVs9fRAp?Zt9dlJWF6{8MvwN7XK4u6)pUf? z{t1$@#nh1UG6Ak&-kspQKt4Cq3zex-I6ZS>uonvZm1dz?@}B2blLTP5qZ`_K7DQweDVL^%8N2` znMv&%eTYzOlC zmfOW2vu=3pkcgJEchCpRr{<}B|trsmSA@N<0tu*30w29KfQDLw1 zykuU3vo8S!XLrjkCj%!d&#!p3A(;1QyniZ9p6kEzq+33>x47vWfNjt$J}3c;Tul=U z#CmOyU?vtFUK8>kYfxfO7U~a_YQ|kzRX26)bAH)^z{bcrRh;H=!szA9N-m#Rx)~I+ zZKX_&+u(AFX0n6-6*=+&F`voeBxR;dX}!;~>fAB5Zo~#Euw!ljhplycdIt+vti)rO zh6!fNvU0omK~Ryf%eMXf0si6_K8eqJa7Ac(Yeas5*p!>lUpmm+G59A3%Y~#_m}dFT zAl(9PIq+(fm$z2%jp#qsXD!J11lo`b?Rr!VEcq{ujUIxL%5DpumWQWqOvUuji|6s9 z^%K5*zn(B@Jqx;<@0`m0{gPU@w0o!v9#R!ZN*OvM{R-83xgQe5 z?Y}b5KVY?aHpPoR4hl<=EVFk$Pl<$q#=gUc84yY+j3HS&+t_^DQ_(_m7Q{i)>vg*D zvZs*X-tCDCK=n%FX{4*T){B$s?5IskRuqfJFMlJ?(^5yuURz)BWg%fXRb)ep+8(#= zJs$@xQ(nJ(YWKQZ#v9V3!dV!Au2iR7|Bdnx8Q~nhJQZQXkU%~)yY#h$S#$iLhx_NW z+&t-^{4reTnId=V{U^&-%}~Ttu3u>OzBFT!XMx85{r)@Q1B>B}rp~Qf_i~Q}&#}I( zUyX~@G3vjN;a;5nQM&!}2pU`C68sq6!lGXiLX3Wh4mR*EzCvGjd0hR&>PU2`$@2T7 z_1JM|@W2aUXEdiGNTIpImYz9cbk6&@_KUpIQKD$|^dOS|ewbq6Mmu8M_h*YE9!6S} z($^-GGtG3-=uBBk81YXVHtfE@P6Q9R%86VWl--bM)S`2&)(TOP*EwOW>j}M z9eDKm*B?E#@T2YUJkuHo4819)OIR^gaCs$5v`S>-hL6aSz*NpY1RB1eN79pY(M+Ou zkHe0-J{h6P6bkjsKO0S?j~>-;9;_)lgZJ^wD|t!X778*R;vVKKWb|z{>cg+DG}Sz{*CaHOEO>8CMVeUS}57&$X$$cG!{FDMi;S z`%;p2qCV=NYWkiVu~Uqv&bJ)0rTbHAOJ{N~+_a!uK7rr$T-ALafs=xOp0(ab28xe8 zz`39J!}EWWOY8}#nsL|J>xZ=~Y>cl@qOZhho|;WW25wU&9H>IPBBhLne=)L%S(fuF;X@lmPxtUy}ek(^tEHu1bi_uZxkjDm>7f@0|wwwglRw zh%Jet4zkDdo-1G!Aks_oqPoWO{QRg_9cAetp#GhLV@4_pzpkgw z0Xx#!<~oX6z64@s)L%0soB>9YDf$&JDouG$oVg^oOv9S2XoY~(jmDnlc>C4boicho zh|~WRHds)k1=i_7yi@eBv=x*&5hQQppsCDLWq0FM}DLjE!n zP>$y7nHX9XmNKkAA35nET9E^As`R;W>`7dEHaxZd`WApGsc@{a?n8CNMjxP=ud>y- zxL45_4i~yJ(?-Ul*6TNuK>z!Z&~y-ueTg1yvC>6&&U_%Qsu$;!!v=coGS>Ihxz2&a zPZir97!y*7LLKFmacU5-5p|4>ySgvWo2}3ZHh#M>ieuP#oWjxRm7=pW6 z03tQ**|nCIUd*lLirfhdsdso{Tf=23*%o2do^P?&c_ZwXYEE+bH%Znr9*8qiC1h92&A(m!$xzSnQup&OT*CZ%LwX>8X1+gq&E`M0(D+LQ74 zL1(hkd~Yl@)*pe}>)eDn_iq_D;s#!rkK-U5mvE^lw-*$-j-x$t*G?V)^q{L*Loku zynYi<=+i^ep3>wF56%g7@O_8(#siLLkHA1(>2r8<3-q&Mzj9F}_z+^hs0{5H{wk*M zj2wwgux=MttkvjXMiEhHG?5(W=7;|{tWU-w6YSA@m{j)PjzS#U5)H-jY= z;3Ga1NH=uv$FUnW+tdIPBLHACOU(#xO1d_<1pMs;OJBlhRPD6sm`@yKnNXaG3Z0YO%`tqJ3s7PT^QRa>q$N0O;Vg=3<3K;T z`?iH#vH!Q_KafQEfYi(#_#mAxL@4s@V%RoixnIXTfI!tyz!~f?FmR7v$UjP?j?Q|b zg3}uUSjnenZoIlSqpyt-sM~G%#?!$gqn!I1=nwK=J-K!}f1SKr-&;C(em!+V^&#+k z`}Fk0+<0MqdzSk&_ieoq*#40TONiqwWA@oyf07cE@;Y(<=ueI!VpDIy)HU-a?|*(V zkctMO!Je^rrST26v}f%vUtOzTU<=x<42G83 zisubdV;a8rxBW<+%lw4m@xv`1j_MhOqX-h27e_8^reYy$P4d|;jX&AE?+UKsU0Gg2 zMBH*t@ES5leeqH-6G(#znwiwiW+*}k#Z-hU#Ozt5yLT{*L)zJHIrSf}=lY24NR!aE zdwzuexKlGo6+xmQySaYfTJW#%)y z#q~lU#R!<3@?RKddNYf4@SN`?z_2q!3&`{=5@n}C5g2jw_fD`G>h*L-(|#yr zKfNX=*Z$rcuY^CM^=(gtn0FENS*=!z8ty@jZbQeH6OYAIHW zc_-9P`_51=sjPY2U!eSiJmfZPM&7^;yPeF`da?|A@p9_7@y}00n)4I+Y3BBU?VV{h zlBETOLY|u>ax59Wo=W2Ux@A8z5L`%Tqos3=uWp1A^_KL z+)|%9gVRU#jD_>GhyGK-SyvXk-LVH7OAue#$Zh4q$w;dQRh=#9Xvq58N+pnxxf0NX ztmqv|!cBZ%uTR3F=+Grv$8EzCc9@U|iP+k^cRzX4LR$taaARZZ-RbnX=MPOM^8fOS zmQ?4x!JU|FrUxv^$kR1|!J0jo;Du7nQxHU9`C9_sEt{pG#s*K;IO9X?OX6bm^5z?) z%XJ{BMksNL$T=qG8;rbiyRMz1kA!42HOc{8cd1lWdDMC&iF4ub?HHewIP+-HHvgKz z0~GC%yrce>Yz1`<0Hw)rErfd0xitwuqOrnjN2}SjD!Q~cCWPHr!4Vf*243V*i_9YV zPgtE(YiykjJ6XAZhLQ(O-NUSHszE>gqtrm>1Nka(z=6pro_5y$IBj_{4?E%}t z*Z_xQEKhMn2W!Fapo57*$)pTXz!zpT&cW0WJngHw`2z$SC7kuVtDaem){eY6hsWSj z*+hNSX79*gD9WaF`mEyr=b1mxR&@K9^2EDYt&juBeI3vT8@)LFLVg2}bK=QZVwN;t zO|gF6Q7m(yJ5SvJ;68Z7k6bNL)djJ*7BAlI!`@}f@CNMChbQ|5*4y z*a-`}j%O8*SQ1508GXn#M=<6#KyKU_2-;|KZcuH~s;>hXz z#Uau$-~``Rs7|u5VO!>XKG%-a;fL*RQsdaF14G&ZK2N-4vebas|>I z2U>r?S@J!aeXI9tOB<`ADiuUThu^B3(q$&V3QJ>b$-4;g-)iYdj(*;Yj25v6ZkQ8!qju+u?+x&Tx{L$&(Xv8NBp<`nbEb> z-H{78%V49%mR*8{dlmj#wVn|1N5xv)4MLcuwcMho_`}HEXj@9`j8jjfak8NljiJ2X zT?#LBGnAWeXUMGtA)?j@jhk@Rfvl~C9Ky#2)pstdRt0}7)clSNA%sAG(B1+4JKwPS@96Isek6QIPQ49xPklmBr zLu`98Yt&LE+4bCUBuEeg3HIqpdB0J1>HK6k)B8ldN6l^%JC7bR^Bs@OXpT&2!FTgV zB%6B2n>Af){|6i69vwCCHirN8IXiByg!fbB?Q1#mjxoXkA_3IT)`T@2Z(Tr8S4Ej< z8JF(obxe0Eya;OMsXRlTXM3lxtQP!E2M=eH+Kwc4a+`1_DxvXWF*(c%&vPq0s4oAV z_~Q+iKl?F2@VVsH=LUBXjHa6VW-CNJo{I^`c{ojQsj`Ard6cW6gNWyhClcdIHzx$+ z1>0g}ucz6t4ba|kbxPF2@&>}DWdUFRs{HC)Jm~aA2#pOerNLNy?^d(sI6*a8XO>Z6 zWG%2SB}yzp-ZHJq8b#s;@gyf`uh*C}VfMTtFZIQH977bU>Vnri$ZcrY*)*LP{Nrw6(aK7r6U{d@#sujo^u$L~I zd6Ml%1**K^(_R%qmKG@U+G>xriGL1WFX*MI9JxKm<8wUslJrbQTwP>#meq0Dt}5Q9 zzFye|i)BCkG^(0rf0w3Jy3AM`-ecI8J|NX*qyVK8=GyCIvQ?=Ii`~u}O5btGcZ`wi zdMy^itN@`1Qj`&r``5p~4?~*q?O!U&KE6E%Bv_pt8qcm~ox_^-;ex-tWvO2C0e46y zZpX>nmpbEbPX>@`43?X4+diCr)VU%>A!lrQ*fCVP#%7sf`Qa-J6%q`jB(ma;&-=7! zuBqyMem-N%VW1FXO=CA_<=W9MY@P(rbhWzcDt&!wE(=wNm<)rPW_ zW~KHrWuZmXZ5d~a&BTDi$fpOq;*rDd{2L3Bu=ydjVhOsNLAu&VQNHfPezLi02_gA`;Ouf{>|aZ(ZR8<@z$@_svhQ#IGw_?5L6aTZU}MCd)zmkTgY9^xBs9q z>xhL`pDydHsUPocL&yU7>by9(*_;7wLI4-_~mJP*ybPyT; z9!yLl)b%WhEwc9a(zMIH9v@uwm&PagXna1g>BXT(MX$v*s&=C|Y*x<*4@T<-j4vnnBjMzg6$%{w8h zVuIe2^Y>|A4xqURKgnK|!nGW*nG8k}{HL>^Y{Ek-It5&&a5UB78>HD*@DU{qv`&C9 zDvK*SY`6y{f}NF7^!GmzKnK_(&_oAL{JVEU_?TwD?Wf~L5jw4-ki!0D#TgsT93yA# z4)mxlkI2ZhGh3#*w2UO~Gz_(Jx~z(t#@0&lk1LAz4A&s3nv|xzW#DrXwoN-iV=WYi zbVPHMZuWdKzVSZB__7PNJnZSfuJT17Yv*WP6VyNhiXGpBC?|G#T;hVTNk7q$F4Qu} zakRJ<9b+~{_tIvgH#rKw+N}oVV|V|?j7C#0_#l|dYn}MED;0uaEffBvd^ywCijCTX z(f!kD2C=3nM%+AtM&!wwVGT}w&{;X+F9O~&kLV{rUx9jW!G)+0_v>`G1>kN6e+9aW zm5HzcVIO>(SP>L1?TdT9@QVFe&K-3C&OB-$cf+fL7gUEF>YjnT(>9Bnha|9DgHAM? zt{-E3AmOIaF?c_(w2h|<_o%U(1m@a52>VsYLED2^v0ZoeY47GE(qO?2e6VFyREJ!+ z$w)i&i~Pg0&05&U;iS|z+^2r+^p63(lT+C%*&Rj3XtwU%gj14=Mhgu21SNv27tB|TSFZ~)-l(kH-F zsPkO{Gc8=R({2k&5$(oEWfV4w4TelesMSxNK~K*1E|!9DO2nYXLxqqmTOI4!A2Gr! zp<_=+(uGhSHb2(M+8}H8R{DDQQmfj0OxH*+RJRqP6*7|NZ*sp5hw+b?qT7-WI_$P| zxd6R*ZTTxg+zgV%Q-R1~aDIhoc8@@66-@a)n1-hfg8WR73xO;-T0sPzq2x*9dR)HX z(3y`kCTWU5_j>!uOUI#qrC{+aLg`vFu|Bb%;$JK%x&!lL9%X)hAlc&;UT0I2v^ z7EzEh4?$MiwP+Il7YN%tWi?(1E_Z0yWdi3kWqHct#s!AH4AbQkD>~=%u0>Sy3rB|9 zL7sNqFEtk0>U=tk1b_zka znmrWdqc~bssSgAhrz<`!4b&Bd^cj~woqjKrf!crLum}VCq2W21xEi=3ftoI-;dYfs z2-l|ucJ_=ZAM6O;R<0(3f~eG}ZKiWrrn{v>lk}X}F{Kb;cbm3A9S?E7uHc@~4rRfZ4Q$mqodUsm|CMio%{#c z0~G;3-+in$qS|v^Z&Yyc;1S+fsgKa=_cthY09H&KtzFH$^-?H0I=en)BN;f@>rt+0 zycU&WZ==wLsF!lIl$q_C19d*Ff*mwQ@io=Yn)6%5ZFd~aG<^=bczxU6N6Q_6YhhLx z`(As!1JlOcPDxdHo3%CA<6*A%v4$LQ?kdJ8i@9T+H*?pNnHfYl zqh4pL0i*c>{GZ6&xBFqW{b?u{4ikB;U$gRfI!H5orbBR^8pVLln8))f1#*U)GdZG| zsSbmNbkb`sJuz(FM2|<$VWT3Rwj)Q;&wfV<3K%o$E_*KDNVEz`=;%3+`qE6)D_Y}% zA&l6miT+zs90@PqWaVe`i2WGMw^U{Qu+LQh1 zx9#KWv&U_V*L>lf{VWdjidD+u>F+fv*_S$MO`aN;dpm*T zIqJ(mtxud#;^B}1Y4-7xM0!$-W|QP4ls*zuzR`ON{;$jGYT<>STlx3RzqD_WRQ=0ln<9rm&E>CuCw}L zCE?OA$ZkuVwf>_OsU30T*aiD_(%gD*M&`pDz%Z*9hd>;^_HuuJWY}$0d?n!c_*nlS zAY_2r^U83czrvf45u?!b>fY>`Z0$sesM&&>_Dd7Qlk#HiywAkupNjdo!hYu}5bpeO zcAAyiQ(Xu*UTJWMVApM^v;A})@v z`|GS}0333*%3d_fxPYI{;#2L@{l&uywMp-|#sU zAxd8>Ggmf3*nI|9*zfwag12cMyTDIC(muzqxDr)I0I@;Uhtb%cdhf@J!d!J4m*)** zY9h-bLdT{^UVfO(LAcK?ltR=cP+gN`L0uztJc>N{EyNeV8`pCVYDB?xLZNi^rK>*{k zu3?fb^}6~=a7&#WI==7AV#srq2{rTG}@e-yHAXv+e}#X~r|ZgCpwI zctmr`Nvhz>14*Sd^HZgPdr5OZmIo4#*)5b2HYErP~&+Wy7`3S}GJHkUDh|zt!r) zaN!F&Q{lw$mgEUrj}@^C-b4H)M2 zsdt!HcaKny#YtQ_w+6rg32Xli0AAPOvE3VR`j zxZ$)vZG~WwvRBQZ`^@UMUZ`sX4O@hGtz{jvmEac`Mrs(nC(#ZqBP9AcxvFcSUZB#R zr$us@zb#NA=){if0Ylh<+BtUDL6~01yW>7up`t!0r zX>yuBYel&oza?lj?pvs$S$|rwE_}t9#@Xw7-^C>^SyjPE>Qv=UyJNUDa*?5`gPa{f!>BC&k7%&}v%*&G;r@$H&Dy;)Lf;a%5z!K3 zEj$^m@mkS<&QQ5&Ym1o8yaGLoW=;wbfB!axr`%27Z)x7}d@2JRdMAAc=~-3`GM8Y+ zuwCwuX)k>^YHa)Qfq>D$JxV1k)&d%u^ukO&MpmTCAVydA2EYF%qsd{JouT$cJTI*A z=*5nA8XdonX`2;XXA^7A!C^G%n^ zk+!R&-yqqtkreZbamCtmWkB*B1$7;%p=K{Wc6ptXhjpV(Zk)LHh{1wS9jD@K?MgkT zTy|=*VS@{HTJevI%1iqo!BbYYHHwuq5zDBG<_@1*!i;yz>#N(NX)e`6ptX>z`;f$% zg3>Hh{Gc?7Q40U1)r%`RQD5-P{(pBd_~TjqV%doLTMvTc$lu6)gP`dc;Z^^iAK}$z(tN4buJD^^Da076rPc!@u z1@kq&DASB{y5vdMR!Gxl0%<&ZZhr790C!{KS_k^UXDsC380fXDSJc1UqiVagldq1Iq2Mq}49yz6wvr3Bf#O@T$^OqpbXA*rW!U>=8v;)$ z>G`hAru+d6kn-sk)Ig&*Yr~UNUP@{cH8t$5UX@Yq>ACv%v`w@Kgc94aNm&!a^F;-5 z-I}>85KIWVw@yjR-cF{B`blBhk>R{MNq?T*+n3nu&uIS?#N>vR;%AvY0HCzn+`E7E zk0RpFeI%dwn%nf7M}hqr*TO?Di{ty$j38LQF#%R0n1kxPL(~-A*04Qj=W)7SeSNy4 z@9ekBK`x+EYnM&|wbpEHQJ1Fvt>H1*|8yO3(8c1e?cT_MfaIM{Q9uJwj+8|;=TrJt zS|NQVdLd4qWuu|-<ns z;vR@Eg|%0(X7|<`ggE7tvOSZmbqI8y&QgLupgno6lx88wWmYBdE?ax9Be)3DvAq)% z7|E_*Ww+Fzg=m6A(C*r0d{exVD*pSUdZ3JG`|pBj`bu{MvucO(^)F-1%cm%Bju>%l zai!e$UVo|nv+;ZZfAPt)L}tqZpm_m2OruK00vRnxar|E?}tOv7e3a74WF$v~3!elJa}z}3&`0=*>^1?1ab!WPl# zifLU&fPW!OGchU?ZjQI)4QdBc!0YKskU85!9eLdymL;v@UnT%$x|*pNb>Zo?_oOr; zpTAXlR$I+k_YpR3mZw>mJ7=Lm&W^#X9ZF)eZK^A7r9R z=!w7n^)cTTH2tVQf#qRkd!#Rb&e13W<@jw#gp~Ie<7ae)-God$I8`W2XyIydbe>HY zDaGXC!{n7in%E6{9qs=*2jG*B^e^0;a{mEH59p+FFFfB!L>(1uazKD#zxa$q_6NOq zf4KBgC;SO>k+{&r56C?ss#) zMhoIZZ)S}XsUph1{v@fHDFnb;OU4_HrZ2v7WWpu$vW`Dz0i9ON*w9Pm0@G(@2*=FY z4hn(xmHm)Iaf563FT?s$7KPL(r^0NNz9bBb(d|_P8$Ej({~3BRkES}Co~$3?;{mgf zaMUa#a}0K=+AQ;j!k=JU8!**`%q~Nt#H^U!=T;G<^64&ea?4L45Fwue@b%Y=}>`G)2tEvyqgxs4Zl)pNO9weAy&#?1lEw+-M1NwOM36 zqw~8m4>->b#arN7Bu9p-JH=W26m$(nxc_rHQfenm9%PFZ&6d+{uR+Xb6W_gxNXtct zg|jMul7-Ns$+^n3-d&FgJ)Z@t3~R@(Wxs7O5mfju>5xijReZ=URAVgju?CiZ_ZQNY zL>f^uH=^ic_YfD2_Ctp%7(>~y&oc8;iZo%hQm9gc9(OvF*)YOc2Y@bm3D(>#g$haZGwA-zcwQO4HugTzuY4cts znCq+hJ9OB*!x*73O3-41tF_xh=G_jxUZb0n-I$@f6bp1y4jN4x@rlW{IPfKjGo1rj zRvMiY>HwxxQ9EA(_&0M~i@%43uH=mO7atT-tZ$e9)Pe%&u$ZdO(qDtTlKFk!EZ{@_ zaF(kXr}?!UjW=L-__5i|2eLS`p_KZgcAvksko}LqUARpTW3Ln0b%Bq8tt7)4ucgvBn!}sNAq%PLoq?cvoI@gJ@!_mgD4cN5dO^w891qE)(@^L( zdq3e&eGOamWT%?O(Sz*unZt#M$3Y(gk`0mst|dYgT%)K0xvXqpB(2)JPUs1;%1D66 z9qbK=7lVAU;=TF&Jh}R!nH!<7gT(00&`w!xb!V&&3nf)vC6yp$JjkJjVX5efD#>;tzR!JW*?8Z;M_;eD zUFKd%zv}13+AmHD$T=};J0c(N>`3Nai_snG!hmB>z_*fikPh9tzgNpc3o-kLD?Hnq zYW|ffQel^}B#bX|K$F-Cf^0U~WpBQ%aE&9H`5%6<|M*RS6qwYWV=K)~`Jy1gXNtQm zs6?qAm^Ji5dB;cwZ-uxiV}WL$1IgU^%%OU5KTkT&{!OD%ppuJ!5yPf?UYTik>9$fG z)$^tNCuogtSL?JZ!ulzh)dC^|3(0%Z#c!@@7E4Olp*~tgWeLc$P_5?ao5NWY2JcXu zmD2<&z#K1@#QLMOyolW;Q$fA!+-j>iLa%Qq$ujt-_2Lk@rtl@s>Xk-~_6zG6M7HSg z{z196@AT;vKcCr3k~=c4lZ3oW&U%ILsvRXbY#Ai>OzvY?&F4&L$ZZQ}R&Q61&B;&s`4D=vRq<253><7Q_+B7DiJW14Jfsz)s>Z#5l8^1StkzO_lfu%S`Te29wzy`&+_)&-A zLWG=Q@%U-}_PFn6Kyqpt~(vql!~oT+yTF# z100k*)ju;8Bc`o;{i8gTFhK??#l@uF1s94^(HZBFOa6oErqC3ilDyvS*_Rh|?g;rM zJ~!P%!2I(AMHlJuV=#}_IzvqX-o6*ve?Oia-EQit3qcY?=vm3*M3XKNCw*0i&; z1HW{A!)4n%FfdTb=1${t7UM@zOx9{Sojv2*GOt`)RP@=85y7(w7?zK67I7gsq2Y9W zvh`iRVkcFsh3J`LG!h!_&rbvlo2qaRLBs7vs@vsfbDVZnpZAs&sA;Y`{mYBq()7<| ze#M&E;~}I$M5py{OTduM>9~C_Kk<|t6AQ}}K3`oka!50Te5|FV1)T_`@zs3n3X^m+ zSppI=O(v>k@_k9w6beE_=OO+o=F{+y`-N(BZ}@Eb&w*Cu=1iXTw0fTK^pA{!d)u?V zk9q}A1KYOL#~CBzJ4Avf0d|)7^H{V7Eym(uFprLxS3NvDJZF4SXfm9g<(_A1O%M@X zS{q#YZeVB-_x;cTdTXk{yZhhW7|ABvyHi;{J`WXcnKoZn#K-&A-GTXo5ZRu5(hi29SS?cHhCZ zU#zYfHX;JBB5+$X;ye2_R}LIzDG)*_mWW9MXOnfJAk9Q$zOMgz=I!OcPs2`=TCE}Y zk$o%NmHH$K_{FZzAhxDg@6{NeARyB-XPt_-HZLo_GfO1Ye;d z(aMhURY~bLTr7fvnz?e6P z46nb$Z=UgZn2ogBVzQ?MJGor1?w8c};C_futq@@SOD)9coEC7*(ODD(cr>TJU`) zb3;oTe!c8ne?|{X7ZmUlLuD;8jrX-AD1eOE!Y&|2Q=7Fe|i6PQL%nV3IW=8=FN z_o3-IFl8@Or7wS(=kbv;F!)@}F;45BF93()g{bDlm}Yit)9xP0uC)QpX@(*&Jm35keubsM2}N`=-F(8EPR%axX9 z>xrH1kLlumdhB{lFZ%lW?3D7XCm=dH)}>y>I<-(+@}(3`(W5haer9I*`Kqu~zbS%^ z7MH!)$*C!=Ru#OPA^sHsLggQO1`ngigo?r6Usb(WEWgYU^~(A7t(_{2j`$14E{gT< z^=_wIc&&n&S)TE4PiFc%q8W}4A6HS9J$9(BZ}v;KzJ*d_`kG&WX^{iso-6kks>4hG zC&+lIek;C_k;Zf6@rj9Cf>{JvGoV5k{3vR_7`hfeqrtu_Q=zZ zjO`Bb$1F9E$oS0gm(78H%lMyCAHT$Yw558R>HBbZ32g%fO*d)Wj}5;Hn*OefxGdU& zt383xNG0TAFq-0~jO28f1&|Kft1!&}XbIfrgXm)Epr0K5mv;YojE1sqmWYb>_ESF! zqR`Odbg>RxBz&VMGVYsH=o=VB+*@4OVb$MevF_b)hA4}NhsOmsDPuBYS2AcvD~(L@jr8cez3nJup75`oPw7a&qF||5%oYg~soXW7|a& zm{tv8xKagWPMj3=$iA+ugb7?3y9^gdr{j=2xun7en5 zL#OYLkpr@jE!J?tBO*KLju)LrBX2Ui4r2xf6>q%(Mfiv`^w>(!*!%@6tvLep zw!Du|v-r~neIP9Sr_>|RpXhO)Ul6`7Lrl^?1JxbF%8lL|8JXa-UsD4Q zDbLXb=-NECKhirQGaSF4X&O!!UI?(7ABXMapf+!tnwz5$@h;H&1Fu&=%9of#ap6qC zRXN2`^#V>y#(tkouSru?RrR2a$98L!(`=Az41s#Z=Q7=5|Fxr|BRF&Uhj|EcS1>?+ zAD$QwntZRfUfvzc-U4|4iLM76U_Mm{NH>C`b zJ-=dQmn_+L?_zdUJ0IgJ&S$@D&C}D@e)rPg%_fqfe|*{IK~hM2i^ebtQ1)%yJ}V9{ zFK=vgG;NgV#n;c|yf44*&XFJ>e+IZqDd_7H0k^}n^pc`IgD+nP(ZitCpq*q`MDP1B zSW!_t5J;VUQ<~4EWJcg12k^91v~v0dP+_m*GB|8A`D_nl~f$`$$~uLhVM)Cjs-%1K%G0M&Fj`{NrgHG9=6 zW{7B6SzAke4qN)GxH{;-!TgkkU4XRug88ArWzT#AR#;fUa(s7yx*f!AKFo7juG?KW zhm&&c0N7tOTp2MjV}lUykB4+57BE*L5T~Z5xD47rjZ0K+i);FCZX)@Y zqk$%$azKx)T!7|J+K})**})6}Y2>sK$^R&bbKH)W$IFdhH;SA;N~)a}{edKoq^c^O zM!#CSC6nbQpbSO_%1SSr=VFUbqv-N`Wznhc@HzBHSx0*UY%YWSFaZIW79F9u$ZoEp z`>@<*jw@N%t%On-s+gyo$r^6dt9!+)P7f!SestOyrzzst27@-()VQ^5r1fEy1&_1RT0y~dI|y|@yJU{sHxyf z|B}8qTwexlTu($9V|^K#H~HGsS!klnM$8zO$8^nwr*71eFH! z3k&N&4`%5AnST7bgsr-?`631TDOXoZzAoNj)2UJcKw|OnPjs|~2L?`S$;5AVvo9)> z^gQJ=Jhq>XZ4mx7JJzKDL&iIvp&s1!9+7{^B~CGgr|qgjhgm+ep;hG6B_&V>#i61@$BfRK_eeFm5>_X?j=4> zZjn<`x*zju3iwMDjfjht5la;eTj=hxv~+as+tuaeV`7IZt@%YqDG#r8K2|4a+~N@Zv*g#nlK;dr2};nGAa9Rk za!>&MK0L-zsCX^wZ`U5=J@^}K(}2+I}c<@L1WCoBgbq1DtK!Ha;4K=b8tC0hsi zYfH-l#bmB-+)vgEHN~RTt^c3Rq&-B|^Sw5mtFnw6(zv~VZ!LQrRZoP7Uaba=!!$UU zSy|(Gt*2-EOL46x66dC18nv?$Xyu}JXA>t~M9Q-P4uHr{Sg>mxsv)ZtAmo#Nv=TpI z1Ry&{9EW;+d=>M75MVGp5&^G^B8z=%U~B(i6B83(xb6(6-yNZxZUR_8XmkoBB{`Xn zOt9wB$TWIf^+7x_^Z!|#_;rW~4LlzZ$QywJ^Tx8!K+|n6uFpK*pXudCtOx9Va0)pk9i$3^&f`tx!G?xxp1p2>UacBiZ z;bjs5^WQ~0n!5Pt62M&0-4DY5C+&Oz&OhW}Q2q3OkMILQ#LM`{v&8>cA^YNR%|Do+WS3yy3d#X1O4G1H^&;|S!=F2 z=Y{8&oQx*ms`-WE!3LHTO>f#SXDHK^LzEfM*{;KPQBhUu--E? zRMAP4Nu+?-`+ePO7gq#BTg#8lPhX~IRdS+$VVl7#6>MWfd&U5tsDpLdejxmBBaq7m z&yWM0R+$8QNd1ifsugl~vwt-t7Qz#vhcS8|!ln*wX!m4S_>jx3Oj9bki zZ-@c3+dG0Cpl)~u43#}Qa88^`%UEZ7sD3Y`nIdclx;gi9jSXE2y*D!GW`~Ixcsvo~)kvFDhK)z5n*AKU4SQ}mLNfvKzN9fV=UAR$FER<|r@oBXzeQB} z%`>1{nw=u>p-a<@GDN~1qLT^ZG(zwE{_yIenw18z7tf9kjTK2kr_y*MFygD)NLGlT z+vMaMv$ruKy`C@znA4qubtspBpKzhYGk}^JHOki;xC6$=-K^Ys2GYcic!5Ej zPCP#F8HXt0fF6^ufFPc1RM9BXXqH0)j%7HR$kFJob#}oWkXRvyHKHTp#Fc;O)6^(+ zr(t?fB8L@WWqM`Wax7`tMu)@OMm3^cL?x$v$???bhbfi?jnl~5LYBkySD)_ja*ggW zs|L&`xDT-J*}6(I%Ng^83Y2%7t>%E}9k+}TPZ5o>m41CezB-G_D-ixTfOo4~JA^5i z=KI0ZC~v&w=uUzGIH4#e(}4v*l%VK`qpg zd5Zi-j)2Ar4HvmlFn3>npOK{O32I0Xq&}U83u`%Y6uNdh*l>-lQMq@8A9|_dxlKj= z(k`!(NHQ3iSMmN86R?cUeh{%ZFD6m2b-PE<#Y3@+k0ke6wf~UgjTINDftRiqGY<-H zpIsp4c0`x_`OSjEY27&7UZi z+(cR$fb#nq0st`79026|3h?{D`aZsMNiNWTJpt;-1^%yV!27>1L0z!x008&^#D(~k z+yKwBK)q0g(T9EQU7rx(3Hbv+p>+uO;`THO%_Kps^Z3l|X%sfNTiQv*{P<>m1hurc zzi&%e+(U{>IL@SWBwhQ#~kQ3XKWRh+XLn0;MWAic9V#+$1{87cOA>E4t5wA7@ci(D@2g8*d8*& z>nh!Dy#7%5Y5}J&tFrujA{2CVL1E#;9N2rvtE`li(0~A-lamv#KGTsRp6iKG& znV68mY_ZlLWt1iNkU2h>>YCtkx>RU*eCho(89_xuyQSOprJo?{qO1*@IG zvNZ__$&VjDI`UFhen2R31KL-&{7H+z1pVKO^mjtbV!v0f9HA*y;{RH|+&|xI()|BF z|9{NP4zC2kj~^gDK0YI3W3Mqt2)}9mMte^v;dk`I_iIm3e&2pE00oA?_-kIQUH@4` zPESv7@%ec5jr3#F{%5!F-~hhBvo@xx|6Kt8GO`-yGZm|q21v@WF}06j{FxFyDO|Qcj-V#IkpYpBFergJdGZA!5b*G!NlA;IS-LQ!|8BZ# zMnL`Rt_h(E#P6YH6ZukXHth~p7%&=aq5^_Il*(0L$z-#I+FdTT#xd#CxbW+br$l~P zQ8?U5z1We?JK+$tb1Ad<$O4pdzLN zS2nc_qI&`U-jH6;nX&Y@@2~wOmSj$sYp5x7x<|fgX=&sX6uTc#(9lJpw&}?nvtaXL7r{yK_Is z8CUwr#MIy851dy}K+L^XAQ}_kZgl_faC4ZVduw_sQu|L1@7exA@AYgamBj$e;Q7cm zJ&!ziARWbN=NHq5H1cVV&H2Z2p|Tqk4_Rx6=?Mfy`XSdWKW1ZCUyR!emDP4j2swQ@ z*P4nP6N^tp9CCL3iBD!6g0#}}`qa1|7|~vzw=4=PBECb5+AxI1J=j`A+OMJm$O@~u zZ|o3ycBLQK`}O|icPRBE`rnAz;T7Bo3}&v8I@N5p(Lb5VlT%U}c-r=*3!aM9eq1hB zr6VUN-_ZqYv`6#5WkVw(p#R8CZ07O@+Pytm*U-Vt{<|+!fo^Ya!(yU@b#(B;!^58+ zjx3$C|xhsg4Ytc`XVPCsK}v)T#(k^sBh{|S>mW0h#_zF_;B{uuabX6@!YZ=-qf@pP1}RYoY$_&Wv0 zzej1KyFVVWvw6J384QQ6mq$lO-y_1@MSnz*1Q!1OEva*RY(8JyyS%L0RwWXJrT6Az z73H2T; zI-)<{K*MsjBs}{h9@$9f_sAh8-|R#U1cyHoW?o@=w$|AG{IEOi6JF3=1!t^dWNRKm z=YDnW%3l05C2B3KH9bH;NbA=>VYatQ;ZCvBe@fZ)iJSN=kZ`s zLzn;g@pd-@hBnm0g?=tDVFOw>#05%STWNqT*$hfWYHhVrlczAJIoS0TGk%V$_6 zt7BebWx(7$m(_Mx*7ok);^Lt`5*_SqG!+sua-PuQ4)f>=jhL7~U)R1}CNDsEh=$j| zZ$;PqHci+>G}QiR+;wSQbGM-g#poQiZ0vSv7q}!3CtT8|z8411-XnV_ColVym`fID zW%*(#@4dE<*XC&LX7x*0!yl~$x362@^-9heCu}qNB%MEp)_;6`zGzXeSCB` z-roO)0bjBpJYf>RZ!tY%?%8bi0rh$e?NW82!6Y?H`NGiWo9!vXEsS{&rqkKIlao=l z$ngJWY;7Q^y_v05K-@PM|D+_;5E%Sd6~P)1ji@2oL^YL=$U9ekZeNTtnpdbJ-Ut4> zWEunvjORJF2}R2@Gs&S#trE3UejRzZI)}QFE;jG_?GCd73pjTfk5piEh8i;rF|u5EBvtuo|^q?43^* z@FZ1f2IDIwYb^#TSK!KH`kbIXR!$=BLueK{=qZ;@O(RgZf>jY zjKLwOR4P5|>lwr6(HIOsc!e~hSo7mX&48Yd=cApVQgxAoQ@{S{x_Y)rdJJq=8w(%l zaC0xLU_$p4tp3y^+OTNdT(sC0_19jfF>FT;p4OY@=2iK3a=PAeN>8jv^6ta$$LSoL zQg;&h_8vk%Zr$viu)XG0`fU;bv zIc&TB-F4uQ6p@TXj)kZjDz?N_j^<%5v-CA?zaw1X58WYu=2V%VtGQfl1aGI%?hjiS znntu}^TaBv@WF6rJW#-|kHkm{mf6zdc(?|Z{UVM3Alm8PBi!h22rBDBs-ks+%GjMm zXnjLl$f}6L#eidygswpvJ^$I3~r*ZAQ6IN|oR3FTfD=a1ghr#Fm(DUB?JUb!+NmGcMFxfW%xn;gj{42#g+lNnJ* zl^VI^6oF9U=SO+46~6WsXz?z(Lq|~=dP0Z(=;!PHsH(EP36!O^^g-v(IBbsuvSz_1 zs}nHBpus0w`_NmV)&@fal5(8Re-^-}-%W=nZ%OMYhMrx^u2s@?g|@Z;f@rw{N~F;d znS+s5hFJE8XgOWf-7!ZfM)P;gu({e3fyTEU5Zf-Hs72rdMtksT-X6dQghcYb3oaLR zAW7AKA~%%ix)*i}-g(bJ=kM>gMIg_W3$EGx9D$NPBAY;Jz@zO7%MT!`!s}6~`=S0( z?2_bXwt_YDilW8gi%82-cE`41N}NpSv4tlzxdvKLh1+6N>7fa4=41(4*%YP!F%K~k zOPGqA6?j6$kTm4kK?N}dx47GBN~b#=Z$C*>IrGh@z+fenk zzTMiz)V07EZ9xHtvR^xH5o<`^?5Fk}tEUDEzL8@gv7@vVnE4bQnayR9I!e zUxg6>aTIHnJQ6n!I?S(>0s1OiU!s0SY>>QGj~EwhFYNxruw8>QqxSLOs)>Vqk&Y z1N)+~HNG*d7K_eg{nK!0g5Z4pgK4V#^N%IkTfgwqYJbZj>Ds`tAbJsibTQcy^ztG$ zA3YOu|G;&5F0l*qhl?i`%+o)HiXoMDM`b(pv#muCKm5g+V5PAs zg7<8(Aclwkj@JHRoKh5#Y{%ZH$-`Rfd*yQ=QnddkrQPl>v>#%1FBFU^BcWLpnA77q zZwmq12#gFN=GK5AzE?eo4HF8K;d~D5S81u%xLTbw7xZ6tM=l8@s8=(oVNmPu1XUx> zEHC%QeK^h*ElL~x@NkTwNI-Qg)w#@S%;v^Q$JOXD(!w|USvF`WK{8sSqoZTC{K}+- zT?1Hainlv7LnAk%EEq`BFPHPloGE>cdpc1j&zMn{#(>f=?rdRsboT+k(?G6IZ} znAkf#eN~CUaAB_!kX0(9H7&_6ppAXb<{X)`yiF0=(?>Dn%^B@OJ+V8iX78Ya)jHj? z^=z_crsUYnC$9o1rx3Y>&Cy>I4asHF%eGTK0a7tmq#y`;o7lk$7mdj`W77&qR6 z*3v^B=+L?(3aQ~oe;sYriC1Sd-7i&moh;72@&xo~65Zh{P0>~<%sUK8EY48I-&zf7 z>d4uW+OuwTR8Zo<{-X`Gq}9|hM^v49xwetmDIazxJ%B>A>p@|lmWV%XSsJig=i$L= zxZa#G#V*i)!aa(S^sD}hNXpWCpv{MsxjR#3|6w_NMf@lL-tXsS?aqvXqPyAhTWU}| zL$(Dai-WRTRq5s^?R+##6t;Hvt=&~OaCVcOGcczLN* z6*cDU?a4+fQ+9B$J}u@-NYi5M2Q^Ib{Hx$-z}TmPqDuqcXHx`MW`Mh>y5TM~KR-X0 z{N(Ct+BkigrG=b=8lVxyqw-w%JQKxI$hUCGVPRD`ywquew-eE$b?NN!$O^M=j=m%1 z$>>dTjEj8B*_(F9L)P>Ukm~H13!i`7Z?ig6K(n)=g>M5vQr*<9cMYaP`X?Jnfq;PA z5TR5SX_=W(zHzO<7(0GpW*1PxXSSScEnm7V0Zb%JTzn#RAt{M%h#T5B2SG_lz}2A~ zpe{x9U6HOLdM47C^2~EVQLS0R-5+{-1HtwG6i!BI{|xQOr}n5S{dMu?FtS2Zy)@Eb zkGzk3V&etLs4(wFakq>MKmS1+J}UI5lHNR}1^G!nHDg*C=IH$qn-28-tdN4KwXl<8L%~P zcjHV`Xbe$`KY+zk)bo6!5xMBLXrmkp1wSlGleN!L-mxo-o1O%FnUEzGAFFq{D60i( z`Onnc1s!dTnyE4+*+iuF9h{7UVah}O$)6BE&ZlSEb2ZdNREnjSX}%*~aLNhlp^H@> z2x8giKv18sP7Hr4Ra%3!J=@t+M>;jN^gG7B;b`1Iq*{8+9mq}<8#%@$e|uMn>vGf3 zoMPz@N9LO!f2lIQMFh7?os#sI0qXA@NC45nIo)@4;Lt? z*ePL1Nj@G2C5Y*AUV+mjS2}O0L(e{7sp{1;mXg6@7eKw)l_E`b(6$q=Jux}yKDwLv z>z7=?1!LWz1t_&S6+3gdXHwel7R3}9`YP)%k#6SQ5c7c-2sNd8zq$ZMu8g1krLBeD zl6i<@#X}{J{bo?j@tNfBg1347A>lsBi0TV^NbJxsQ*J zGjGX3N!SO&J^~|8DsZH-nbjRi=(w3i8LYKIQ<-N4wd~wGDhm~Dq`x z$hTh!9G8(3;Ymh}XwRw5FgUmNKM-oocnRcV%j@I1P<>e?2PMyi=~Y zw~D^mPHf!83T3D$hmaI>J=<+~qT2t`;dt~RQ3h&!ow}8Z9dXW9p`qT}lFd-juCa%b zq-wiXfyq26t-sQWD^cf&(CmUeB%2Ar&CPwj)(BlJJ<(b_{+Og1C%V7Q<(^c}8F5AM z>B1H6Kw-7tqZoweDN>7^CO0`1TAx9zWuZLWCk(x6L&xHxBjZwGR10Gy35C$`hw(O{ zJ`NEB{!2Wx)>hYDi=OIis-v9(zP_etRUGGBL}wG)-t4^-x6Q^?Fp3atrOp`o0Wdnd zIH+|~rNw?5F>N$hX~aObm6YL^&JWyf#Z!#@H)k$Vc9{5RsRc+7*Eum3pNN z^%1Cv@3A)0oU!(0+DzMScOi#MNT{`0VNx)A^}GIx`gN4vfpk@Ego7C#q0Fi%T9AWH za3%!S)?^jcsp;w{TU}hnakv&15-Ey3SY5iXCs z8>L+J)BnR)zj30e<|ZnYoNaV zH(O-1{qHWP$CI$fKq7+iE;c8X1h+a?hsjViVowme`VLap&U zsabOc+pllpsGU4X7?Wj6i4oAs3J5s34B~0RJfmSfK1~G&nKb5C}oi{UMmi!#HvE{5H`lp^@H5sVzKOo zwyCL!%iPxP?b1xcEa(OKH*tDd^}j7YpE5E6-c}hY?a?>R^LHic8GEFRn>}N7p~D&e zNvuw<4no^5#A0K7vgAXE(vUdHR)1)if|f+^DE>p1(ewAHPCc@sG@Jb%$T$5oQ)euR zfr;5!Ojf>?3^KjyZ0~S@igW4?qOp`d5;+pYo`j(?r_@)_=ub{f88XNxd(u?VJ8Z9g zhbnM{8=xVLz0ro`XU;3zUol&+w`UU`xgzC>wgau z$7W>4U@O}2GiV}?q1fc96mSXgG5&69r*S}L%+smIl9HC{b+T8t50ftt6)acRMj0%Q z7j1$Nr-C#5DjN4NR%<``)XMhoJqP`R-l9HD0McP$k#IyX% zN&3Enau*gBUJF<4CZncK^o(CzT-<$5LzTil+j)vI zjm66TwL{@x)?5a8pXqe%_M|AJ6TP3_J5ge?3tYL@$REZ_veH;i!o36{aXa@hfy>Zd z-D5Dpe7mP{-Id~9ZEzf&H8LkBBCi3bRtqaCDq8hYE}p%uz3y6|-R@HImPCw%|C@i6 z5B8FYXMf)!ZnsQK=a5hrcCd5ZwaBs4g8!F69BbwJ2urA?*D{O*N7)Zv7f6S2haXWY z;jcEZyLq!9W86vl*4D7BtgKV9nDgh2fr0(yA*g5ns0+`z->B`4|0ZJeThZOQLec|U zJQ$@LxAFekeA4sv{ayRV7z_+-hNYOXn*}VFfDTvIrYi6$Z9P^|LGZl*x+d$ECRlnT zeoufw>XX@J6$gt$g`T-Qy54kp@2C=+-epm6-~8~kc~Jvve=ZTc#BvS8vwIC1lmv94 z;zDG|9)lH%WVpqC(xZlLIe!7Cq+Ok8cf=aS^nmE&UVEWT6TISp!E!t53y{oKC**9c z+6^(X0lOC^|$mAjVhSwWy3>Dq3@I7Iq71%4$xxO*7pJOb5_=V$7L zYF+T2HoB`>PV_7zHTPcIZ*caPctD$_DaeDdIFC?LIH)sVvMY#@(^N6DFvX^sK7H;3EMThR@lv1a z?HdanMmxT=1iu8gIDfd1{B2TeYjC@j_i#{)p?UYUv%i9#7}QfXoe8pYQsAc#b#PQa$RAQ-8VyZlCIZ;J20NoYBXaCnu`kPSD+rBPEq4yBJUl#eA6q7Q`u!oXG~;){GbaZX<2<$eqWOJkkb zNN_lUlu4gS1&r;j4Hut>!fsv{t}ALKH!F)2ywZff7`VAs5JSrA@d-}tIlR!h1fCb! zsI>)>7Ie%ea+&Jshszv8Yk0Xa0>NMf45x2fcEYvQ^Dz|JRvhjzA~{^iKJ+cQUQLK^ z4Ha&l+iA$hDE%bnImDnR{cOLa>CFrx7$wTukrM(UZqi03r-JjNu>_trMNe+PTU?*; zo|NiabXP4%#AGM@&gfZ3mX!|}4ZaN$sK1ZL@r)vQVMc~JIa}wfgM*DbCTg8PX%ZD0 z*~JYR7G6MwwYH?{F0FIY$TV}}ksrt>gyiKBD>SnHm4G|o|F&~HM5_rOMV}*OVvPh4*xc^-uLKRe43k%Y6&O%YfGFc1LVR zr*iF4wGaspz-*dy!ktU+n)RD%OX}#KgoOT{Khtjeqp-U=7&XlKsTY(Mug}NO)L2dc zL5-aUHaI0jYPb>&_Vi`KAq7bzMemL#-PQHc1bWs2dqnBYjUyswjD$iHiA=Vb5>etq z6^b^1U-#^t-aD93u$4ni$l$xg$LrDFeYb+F*PHZv`~c@JCB-lWghkOqv^}n!DT|L{ z3lJiHGd(3p2ohQyc@HjIx+#g?PTfJIdcdqXWARsak?B^SYC+3yS?b-mJEJIAT{zu_ zH`}hmHBD0AoO}IPv%U!^(|1RN_eS@I!C^$W&}inj@Id<0%G%dp&g)p++We&7U^a`? z`IZq^OdFe~5{b*yzayuLEV4v7GEO^mMGVC7Fnp^p?1)~RVA^(2H0Csi>^T`wT}>C_ z{eUX<21hEW4d1H797r+{92C@n0(F~CIAHNlUeS^K-UYf5B36H0EWQ~42|!F0he3N% zl;!PSbos|N{Bu)GBSo4oy7zxZsfrk6P3QWJP>y+Ha%d)~`})aZ;&Rd=l6g4`&Ny7X zoC{!477u4DO_!JP9-qbccU6W_y@&6Qu-YaHMh@E4PI}@5J?(D#%r^?v^rJTP1~yk^ z7d;g9?xkIS92xK1m_hv1X&({9=)&QV;s`A&1O_m6$!8F)2>@{$e6f0O+=ohj$ulp3a92%Jz7f{+_XKRW9po*vvi?==h zFyHC`rQ4Zp=`|WjToQ!rgmq3YG4%Ki@IJ=^fXsC@69a^))kYmU-8~X8?M!SG*EhIr zUC{N36@uIT?Yy}tx3C7@43RDoy3OzAOg#DSoxbsm1GmC@kkh=)gx0AV6xE16$|e^%>)+VcZOA-D9geNX&UuzE201UcVwtw|Wfgzz06 z7=43MNI?QI1>L}1Y-p|Fa6E_xmXEq3tRw5H{vn~~J-)tQEpLW{aY#cnkR*U-` z&lZVG${@>lDHk2~WQ?@n zI+xzhpv|}%rrzE=_m2_mCaseHxua~N98TFH9kBjPHHl0NS4=KyZ;QtR<+=4mt7`oo zLn4}@7e!K=cT%YR#Slvg=N761)L{y@G_>;q_Hl?cXOjv}09}17xFIW<&LqvTJ~_3> zL&9TRTuPwMFdCcN0fg=_QU%WWMO@1xNceo+3rDePhD#5)^Vw3;RHFsJQtu{JNfW}6M6*#tAA z%O`$*CnQF?4dL4+#}X4`|3YZdIMjQ9;8O80UT*+U$eVj&B5Vry{92Di3!SjQTB;H1 zo)>vjx7EFc9+XU6AE?SVOnr;yP&X`vFhIQZG{BsA>Qx?NfxQXWc47pwcX0(g(K z7G|5m=)Y=7xWuE)0a&fq5|Lg%Uo8*cU+(@=We$4#olys!YZO$CE+VFO$;z>JAqZ33pxPMRcxU-{`SE zV#-DZ4-&zfZq&6Z?RNScn*y@<<5gx3#5&3`6bE^m5s5a`--Z0^LnyM@T>RfoHT{h_ zT&Nemg+k{UD{b&WK>g>5a$veh!qrf2*|b;UNROW)JQUQ0Zn_8dqh(D)b~-Pp;q`a+ zwwsILn~36Iw@Mt-hGa4Vy0Yl&`T1_{J17dS7|aKf8ys%nKSM;+1oe@orl#l_e+txH znUkND#bu^bD@8HqCd&;iqWuU5kJNVXVibwNh0OuwnVFvtEDK-+sw(X7{7sP_)vz}# zSKUmJ+;mq^H~3UI%>C_TsH+c=YFNTzky4yrB< zT*&P?(oS`%;LN7HrdfKwOg|NSR2$v&bD6+r)AL>R zF5==ZINtv8S7bYSqn*+~c-{eN7_}QMKmbE!(hkChFHTip`Jn|>eB0_=IGp_U1I7XC zaMa4mnBsI*0tUDEd?s9CC0o}H>{F9SE>(HpX`N5G?}v9G@N8dAZ~x8Wb@j|$3pz>S zC^0uRa&z+baGU2L-c~~cvyv+@aAu_V$4{DEoj+0xgX?))xg2{gc)L0}#?Z({Tkd{| z5v=syci9g6)wa+jjU|wzHpM#Ikfmp`hA(?X9UNFGn(JM`Wc{!w^YH$KgjxpF(89n_ zlDW4%$%Y(a@C;N0I6o>Ps=HsnL=vTj!!5P)DQzQCX#JZaaI-<5@7xTJI!)HPIh$+} zF2~U>H`_x|;!Q22q+i%`44 zFa=N&Bakisx+2(x3hU88@946TqCEd1%;HK-8k#_^#ON532Xhv)pt%8%_is05SakH! zXozjPtkplNKA*t1qY?>e@2~T;ED?Z7&H8wfUrYx`0G`KRUeNJCbnZ52Tc4{CxqC9l z>A)NG^eHEw2D3HZAd)pFAv6H#-SP#)LXkyyAx3J+i|aI z{X5)T!s`V`nb5HL;Bb^mT}7+UxGgn2s4N0iqEcGl)HL*z$@DrFwj8li9Gn$ly|YPh zehLDUY|rfk3_3V$(+9IHn|7oqb))4%HMh7jqH`HY+~b_S^oP{`aK8XoVtHD?OU1a# zh2Y&14I(aTpcA9bDh8m@3F8%Qgg;Au%Px9Ge)=4hAQ$DMCSQ6_Mw3;Kzc{}cTNh~( zV)EeUFV~Xi5GWs zaP0O9T^A+#1>8)%m0PB+jPxj6131t9M{Qp(77u2k0;0U)iU2!>yP6LVE~Br7!=%}{ zyuzWamP^G|;?KQ}y~gjN0|A8eO+6*WBK$2#a)%&Zbh^UBQ&~F&SwWe@m?hF!9j|R* zBakw|dD-ljoGbgQPnLPc1_0iS4tQ}6{z#ZvsOw5?7n7flxGSMu-mg84NqG7A#s#id zTY4dCgP($6@V()Og?VR0@Ri9PsZzqY71T6hQ3R2F08Y6IoBr7C@i)$5+pG`y@X8DY znwO}3gdIFrL5e7$Wryn6>O3)Vbx%-bH2ARUbAP1WF#2Gn&~nb(EFkDmacYlnHcVWJ z=}cP57QWWCm97PF*_*TTc5FbTU?WG&X#LgOc@5og&-fo-5m62X91T@HxU@6&r#fip zua@DHkI+U4Q9;q;^`J?o8RqF|#YTlU7U@%&D~DVmxvvo@I*3$BA9wSq-&7WL$cUl}i0VKW=Zsv(C z077#|oJ|Uuj)@`@Y(N16o3>rO+Umq6i^d6@+_P=9uUM}_++)Sz-&=AdhlnJFui>V{ z(C5!XxJ?X7aX4j=>ewh8qRr@eNU3sT^TChC<%(P?WaY{fpkZVli&7c|JXtUcC~-_e z{uA$#z8ux6I#d5PhYiSo5! zY?KYT>l47=)`YNiO`RKS&duZ$=47@a(QFm8#~uwGF=mN62RVdH5KBi%5CtGirXD7N z{an#qxVl19&BRwN!PE;yiExzL23{r?btYzJKJ_KsE^2pjF-ZV%41#%904!K-#O7B3 z)L1cpfq4f*?KxThXzm+vM&%%K;k%2@SV59t+fTay(!9-x@L9iuC8EB5T}+#vAw6CY zwbT(mW!f6c!v0WaYg@lY;45O@PKd>&Wb8euY^%?J7qMxvP*qPln+0r6tb(mX2l&dr z4y>;^1WgZ{-iNbgglvS6V%|lf)m9j;^ll&(L-D0beq1B%d*Ky-*M zGw@i_=&VLt?NNP&LM833u_Z@`p&!US);i?xQ{ZvzEEL5bf9jps<9 z8jPnX+1$bAWO;}Fg@lX;BC4EL`FUO12@**QR5lLf-ONZ zyf)Zbtu^AAH}V?GWZs$0jG*9$8Cv`FR^ zAtO$8VA7K`k6m0x;nGaiCcw=BV)ajlA2~VhIr}kq{FU|(h|WAXv&RCl$SIJR%BUPZ zb6`Jb1r?Nln4KHq(i115l)4OqLt9$d%;w<%f7OovJXJ62S&>0~^muR=ZnI-d#m&Ug z+aAR#Ls@P=jgU55EGAhH2hBG~NJ=;yq`BPo_TyLWcqXNiMK((<+3N*VNIzKt1XZev zqHvN*WlSpwaU8V>5OZKv*PqbIA@&%ZJcUO#HHL)k86 zV|wn&KSh0P&WRE;GTvr0LEACBtcJA~?MQSf@#o((79&$@hj}D@QxM1POm8X|%alEf z^7)l>hI!MfQ89UCM+(YHs=^{N3}+2$D3rwt9GZdgQKjfk^aodXaycd zcFBF#p9J-X*hAzTMtK{tP3L3iC>kP5WxX(=h?7#A&0>y}Q{}NWBRIdN_70AtU2ryp zMil_hMcj=NGzkW5JEIJO-VD@OA5YyFF{@~#ko2ZG(b6$wBHx0@Qmo39tI!yMgZJk~ zQ&g<25U|E|OqjQZaVccWnXpw5FPyR2HS8jP=BlmBu(_OEOO~joioty#kdIJ=#IM~| z2VJjYK7WiXzt=05%g|6BYXSevQNR7LUf0}{i(!hTNC@tg7EEO(hZlFNyJLX2w!_v_ zHOI^NS={m=ije=cGLi6sgM%a2Kltrl7a4KI^8S!$(f^WFjlm%$S@cY#yFfz{_e zU^*Z(BDh}GmTRsN#N{yc_4PeKQpFtE1Hf#Vn6J80!6(5qe@-uJWVmXJi<2*U**=DL z(Jp&-cgr#Kg)(H|*%R&keJ$hTaZDhnn@R_v=#xpd+U@IWepnE*3!_Ftu5whLuQW4k zx1sDFDdqFaIJ>^WZdOOy@8e0j$jZC8=(Wjug4M8AzaPvD>yMm(9FEOq+k=9CP&4kC z;FIA{OnW;g1(g&Cl@dai6$w0gY*NB5R`ZtULA z|0|@g+bP?Pgwgre;X!FaTzb3&q_s+m#4l&MPu|JGKe~@f!PIeOJ?s@9ZAc+jS7#W@ z`J72BodE>5D(UH|arUI4>rd~ao?3n~cR2c5+6hwzmA?qB+S&F_jy>fa1(-mnJD?iZ;9}<$ zgw=Hb6LG1Z&%%EB?l>}@gu-IM&{aEJodGLk=z;Q0WpYP-47=nnGlDaE9M;%h3!ao> z6Caq9=O||PF?wWQ?@5t>+n+rFs2Q#9d~3w?cC2~VzZegSQ3M7D0gGhu^T*L-#Z`rL zCHN@{wXjn$8U1kEoJkDGyo5IF^^L#c+LpFO)!-6~yub2%jvUHwEGUbxfa0Ra;e5<22msH7P~WNq-y- z$?l5oiHg4)wCz5?8_9R)9<^(77Id8;PhSvJellXFU_s8Ru-ak8PRa-ccThCZfeA7R z7H!3nLLR|=7%G0RYFk2M@h~SEsf**40#YEHaU^FcjJokHbg6%x7XqotTKA&4E7mav z*q3{-xtwF9lBKaIDk`qTlJWdGx5sFtU{#WYzNMgLgEeNv8i7$ASOpXn8{|V<{T$^o zVLR5Lms+1=UppgkyD&f4f;}2`A-tr3i^JJ?{)OB^c7K1WD94~gW*nl_BDZm#cV!?i z3dGkQ9iMMy&p?LC=i@3{YxoIcR3`-umGwcg)`*faHkmNo30%te5$R6P-tRIt>g zl`L(tKRvvamSmUWS`Nq=T=YO8O!)n#KyHpj08-JH%@;xCqdV9pPz7RzEv5VT%f(Fa zCGMB#Ujjw#uO@5g{(Hb43h2te=QRpjk2?*iYGlQDvZo&mboW$m3>cYI>RFR%p-L6I z)_j)Ux-bHKUf`No84;S;y*hlYxf(k*Sh3;kB>3$KUrx%J6iaTS{7N}zxs1NU2IpJF zJWwdr865aQF29Fv33>xbUi`cQ2n^QY&^&qevuA!DnY4dRU{($LS9_J*7Z>?5tAK=Yhzv{>|QCDuba&(annWdSruBVHJ09Kq?A3mbqfuPDD*py??kP z;6``d-iNdGLP?@6175aU*aDUL3>hjUx5lt-)$E&`$RKm>^}B*rW-9bwi7_~(bM(3j zliwPaQf39x%5ZT6Z%_Ih4|SA*F^ErxcByjvM8<<(cr=B5bpiJbi|@QB zKkjq+*f0ELa9ANm;ur?%PN`TtUYa0D&s9F-NhEhVr?F!K14hfqLI7iQ+Q=v({?)@JL%ZA?WAMd z9ox2TcWm3VU>Q2oHp0 zgW18PTJ`FZzylQ}LHB%@vpX&ib{l=sU04f>TEzwpQV$`tyuwP5ee|#cKNz*#vjnB`O!mqwjA zk&2{aRkjz3b$18y1dnc`t8DOaNdE9jJ5(+Tw2?f|>DR?bj0KMPU=E@fbh3n;A5vgw zW)G>+-zK;FDEs~KNyh7|*cGE^rih2=uIJ0J>BUM$ds`U+u)pqD+rWTk0m=|i4&spu zx6XXBVmTKVs82}kqw0&0a}BP!^ME>*6SRgeP_VmnGQ8CEn1Wiy%JqA*$c;r@V) zlc%1mTUT-)`!5=pZa`wq%B{2?G^(U>|Nkz4%jZG`I4MBk4b*o&j{Z_1zZ6PCf|CG* zB67mb?d|R^<{JHDF)$#YI4&oQH}@IMS_)&T|jOyBooPefl7ScBNU17Q#TanTUV8fu1NE4XQ{+gQ2Y2 z*;|OQCpZm8A;o)Chqz9rQO~onjWm=Zmge_GF5&Zx-%XAi4@2lH)O0c~E#3hpS9x)F zT_A^~7N)Y;V9C2WglgL9RAS?gnb|>tAQ42iC)f3DY(Cp{m<;wrtn;WX)QmE)sBSaKkiDa}^_MWbv^|eR*_aqPP?H)lt0B+bo&@uWGQXaoA+S%yydMo5? zbSi#XDNOMC?#%8K!&aD`98%s@yuaes>2gcDhd;oBMM~w|2oV%RXCn*C-zKy5K5aLD zAk1i=V|;8!l{hG&vugo8LEK|)p?uCspL;N|L}sun?3t3hjgLJ(HDl;+gKIcov&W4f zJN9X}7Ht7F;guD-y?Nr*>Iun>2s4C=OMz`BXdcl9P(QvjPDRsu+OY(s>jK?=$tU@( zhM~UXA*`s3=qVSYi7{GXzQ4TcWPf$RMPFD_BFQwv1hWAi4lgml5)|c<)VbgzR6$7cQKa~QH3C+L95??msceADqW8#GW zgHbxLoA9@rpA6qclM$-LIIHZhL&fd^*to#}U)T3t2 zFPMn&{XEK{OjH;4r6(g*>;JiN+^`3o)we_x4+6~rQrt5bpW~|z3 zg&srYP9VV2J4K4h9V*}(vliWu>aU^axIM6^jg9RJs{(j0;OpWW>YtQAk||l0iAI9* zxL)j-#IF)!yV};_+>ul~z9TqcFp$Z6dce`$ceCt2JtXccd}>2HH`qDs$B{MGqXQ%R z#|#@UcU?ovgv#3Ckd4!Xr(&Fr1#?I@^3SkL`;Q-1tO@#J+4#n4TB zmcoluFs}E*iB;*mLy!D>d=EMqyGxTeyiZRzy91~lxKZ&GMEW_7OKHv-Eo~r8l(>S1 z7Y&aHJ&*Y!{f5D~F#YL$BMBdr;4vHzA;+lMCDGXMn6w=k{(h` zuv?khG_E@Y8_t@ifn}zspb~WmE2orEgr=D(=Xm@wa7>Q@0l#keIUJ)QX#mO4a>du3 z=dJ=?q;oIqi;A_H6O*^x34H+f*xPWjy`ZsCMLVW3mSEOus7we!3r%Z!t=o_%MI_(e zEJjt5)?x6=ZnA2}m1G(mQ z<)23pFv?#VxzMZqz`v+iVIQBX_InL5*7*}#Id!&tIXF^RM48v6EmcEK6Ai-V-4Mc~ zzUTc)OD3BgO^p7{{6$%ozg1C|uk3`{0C*j;H~%K0*GvI0B1olFgtub`We{rmjs^8U?cweTc(q|7$7$ z0GY!d>~}C1o;sXrN~ENr3{1%+yQ4~w2L>G|@d5n+8At1#8HRj2>)%A!UQ}Niu%fRX zyi@K=ReGcy5&wti=@J83ZU!P`8sN*G`-8<Ig>WQq&0n?n_}^%)4P$9!MoDn@1^vhCq(1aI z?ZJ>B&jt(CBomO&0h2`z5?$W#SkL%`pNfPP>b3NzZ~x55rPXp_xJa`(sWx@vAncY^2WIiWJ)|6z=~aJOJq!dymm~HxO~YisLhSc znMltzi*pQe8Vk2I6O9?YqM)#3VeLj8jFgA>WCkY+(;JP=k-c~vF)-S0XD^_k=9hi) zegwqOl~x62RXGN+@KWQt>QGmrr?E4Oh&XeeM?PJy7t)uL@@n{^;FYc_;xd)nX_Olt z)cnD0FNYX)8Aiv1n{|HT=}&UJp1uV?7~M<%F*RUAxa=xVARZe zsveMv6aO>gc<5jcgOMz?i2cC*BWsnoCt_u>;RXbA^hHK;T?BsJzSrCntsq8?s+LOZ zYh>ayIa0%P?t~h9KhX+{vEKiv)H>^}$>s6zR!wjv0h4+#DkSAe<+q9m*J?w_WVhSv zU=l^7Xh%VkIxe|u#(?u=7x#4~zk1sys{Q0|z+VWM)QD`BCGDDI@O<3M|5>|st$LouZpQNF)nbm^Ac04i-H$lcQ$U%94$Yu5PZBoXh-}{&43tONM|H&(xb{) zUTih%pSwr1y5<%^DJ5p+Q66vmT8{4GJv97rZU^w7JR6l?D}5;=l_{oUgsw)|jtHrS z>%*6wdJtqk{!y3z9-4!|iYqU&HLY;|nDA0JFw?__J-^tAUKy91v$5XYjV+y-n@OqR zak(JPV6_b`GV_>ou_mG``LV{}e)9=>rBKX;CUs%x>H~cWhC}qagC$bCA}3~rWQeXr zjQdGB2G<^$C2p2)VA0qs*`ry?hqV4$W8GD_3t$%a@id}6<`-%2;1&SIaYf!+>(}E*h1ak-Pc8(PXBguqq_9bW4Hz zH@LNS7kUsR{LwocCNC5>9`^6~dHB2bj2Uy)%)M9~{i_cTKm2s}|C>-ef{92BoUew{ z{Wm@e_(600FH*(1umFTw1-}Kv?A@190N#v|0l^5XfSvc(r^T9zquYqI5F_?V}Ujm!|O%`O07)wHSyTwBRU#U%RkH8#}{WF?TP|MCT=*bc{0f!?aIlLCkCEvVw zl0Hfb&zaca-3h^El@1aLHd!ik3ZuQ(&qlY)m~l(jotV=&k>>s?3) zdiI3HyorZ>1Q23OIYNTEVFFvg`KD z#KHsdB5SS3(^*3^`NH2R_2Y2Ayu7^3n=KI^$?5cGUSZRGW-&b4JT`jowwe$G;|L6P z{J;KEy*d$&rC6L|^lPjKh6NjBduy{r_&fisGfbcA@5=#LSE+b zl=0XB6l4`l<+a&GON`Dp`UhYkep;Np#MX0Cv zJ`%%+P2{|Yi#igjTy6xvU`iJ0#Da{EJS;46G?h65{{S?#knj*;xVe=Qamk^uC-&rv zbO~Y#`10PJj6hn^mar4^{%Tz^HMFSY0WdSbTldV&C{UO4Vugx90FL~ib&h$6D2NDj zy4L$zg4nX!*Yhu7;{~=bCz53V`C6|!o@MAOsXZ{ufC?b4QA+BbKKrT2N4X(+6vw`GJ$x+cu zQ-CwZE(~Hll!T$1H_LE$PqelQ6B7p~NfWHd|WphhW)oFX$ix-t7QGd&Im(#XtLX)|M@>`B|4%ik9xB(d5*nE*V*H&t^ zVm5c2aoAkH#B$(0vK&oCP&rt?^R&(?ik!SWZs=i@DFbf(<&{-lo7e?5%D=|)V2N6MwOFNgjqW&cam2luM9ssvbcAxURtiHzDpaB^}Q6d93x zhr{QFdPndaC=cT@euyeJ7vB9|c}I9DtGGN*-txLe`zd*XD{O&FQ-Bc&p>u*fiH?Nf)*_ z1ntKBe6+unx)0jIT5lU76di)m@W#{TTC_=%UCE@8PmDwSW!)>m?~U5ApMD^oGo0e> zaiB!HRsTvY(`sdI8iqXue}(Oueb@)ZKk3Bq1X5EaH;VQ|Dj+w83JyP92TI(&E7dFC zQ5{t`i>Xmf%fo56A6!)UXtolZTJt5vj|ZW+)*Choe^SAN3|)?X$~|bK&+sxrlHtxF z^l@Jmq>c)bFxQ(A7`k&+c6V8ncrSYNUjqHsKs0CR{9e(j?Xs_i#P`fg%PQ;FJL7dh zMH{$4lUsJRM;!cB*#I)X6JZcr|at&wqMLZWkj4R z(Wh?r(>9Fv`#UL~as?(6NvCL>}c<{KtpnWbUIJazOA!RMnA-IXXpD)-% z(0T95Ce~GA7!fxcG;y`|KmDb6IArWb%dH>jr33CUs%hJi1wy3PuOP)-ZPfEs7RP&g zKk-cYx&*S|w%ZtbS4PmdgGJI79~EUECS-TnbLzrY?FxXJwb6)hArF40`lf$#N+N#k zV7h!hJM2?9$U_NIb^9X(ek$vSl2@}8*J?&LOD*Of(F|{NcJSZ2HJsl*zeGta8wpU4 zlL#5;5iO4QciD;}U|iYoz-6wXP?VJi85?^Z#)sSsp7+fcnvk!&)>rOVboup<+y3$>ak#Kq4 z>pZhv1TV~hM3qo&CD!!FTgp)C#~6Ho5y-l(h!! zG@wVWx+H~7{gZrncIWIE<7^^i2X}K|p@}*K(R`atdk!ZuQjSdark19YC4%@(?5eTZ zj6l}FtGXQPP3QlN=LDM@GiZlT%rr9AHHWaJV>phgDadHo>hrNx*urD8_97d4>Ab=F zmz$}!EHP7J7F(2$7FgGUwX;pmjOdtHZ*FKKx1B+1G+RK7mk9EPCijz!*lC0FnI_Ue za{=^p`v~hJ_BONmyx0p0srqC#>epchDmt7q*>N4N8HBHf&g-rh1*=mp>?9TI4RhVE zv)$6bvq8dgbm9qo;jglJkw3ImnKVanY#dIboK6JldVUon<-&FdHr{?o!OJ_v$5Xk~ zAC4)2J-ZAKUkMbf2R^~&&>%g1d2q72ne=8tfl?PQHqFW0k+Yy^h1rATK5a>f>`lEw z?eNZG+=ejTGmlKNE#Fd$5`c*@W`mZRjHfc~&=Ka=A{&;{g?eNXCdC)7#CvzGVi+kR zCCYU+@ELMs3C`uv1Or$DY_+K)ZAXmy4#NX0WeE zARdQbt*TG@vN3Bkq7Mv-QIhBURb+@>u~XDlRhzp^r!Y8EMw7_++qJXRYQ_1e2N74A zLjqY_$Sqp9^@-f*0?KZ?5pFPm4-wQb>yM>dYc`Sy`9jYu7a~;pTOGWkE8T(B1maH7 z^<;)fCYu}WD3*UzJ}TgNe!9#wr4K&7#g2ize#h!_t=Tdg>d!{IQy5?&?~e{voravs zj3Y3a&s>zh=9+6CXsqPcf0H`Aq1u&4d|$>_)h_zh&nChF_c#hszVW zu_r{j&^TO>jl*a*g^Md9fZ8rU^> z*zWSIcFrbWQw?nf)fLv-oi*vi`1|73+`W~891waqh|Wx-3(evL!+Ua0{9qHHf+;jT z2ZjnB`rK%P)bYe>9jLv#(1xHob7yZfC5U>AmcP3K0fnig{%ATo^YfW~#K?WzfYKP^ z{eCl7C=y$TZzJJv3dA%Ob9+UA8aLI}6$Po{8~_X!gP}lf*axu4>8D96Ij)$?H}jgFNF1j<+|gk;v15$E}{VXY68$gnxY7>Rgb5? zc+P-Qx>)N5#d?n=F}VGs0R}NpqpDSrkd9<`4mpz3mEe0;dUiEOeEmC@7@2J{7pr%Y zr=`Cr7JdR$d*&wdw(R+^(Vk#6=M$4j_>Iw-$+3t#v#0h~zzkSNMt8Kfc0xu*g@@KB zceLi=3Ys3#=ZgHzDL=Na4|!kfG}y&vDYVrt7op({Bd%(3JZhswH8&|TcW&wrmw!X3V$hs*6h4j zEUoxmOy2-A3+q})$q&jTjY#Odu^haPS-A?@TtA!$7r#`a9Rl#6LE`aZ`sp&cxHBEj zg7IhG^Y?$}PZLP(6HDG>@3%iBy>4eX#aM{dqTdf|uFZ2{+A4iRJPkPZ$Jb-OWwf`K zmolm^Zd!k4vRX^o#Jr}zk!sImR;^wn)G+t;7XgI+O(+(w^z+#){ymIpov+#Y zD;Xs&hNigMBb>&_V>y3r5R;JXo}7U@c`+Q2Zvnx1m1=TPUOgqscrrsc7#P@HW^cj` zF?cd9VQ%6c?eK@fFy#Bm<+>aAV4WcL8yt4Lkloo)E?@W-SstQP_dm--@=Is)B|ea( z%mX#`PRG+MgtoOJ=&a|~Z^4u)LGP$bqdo4hOxNB)0K}AiUuR~pSzcMd#oIhCA+~(3bubB}0>q>7VQ)N*W_G?Psp!P)&D0m5 z>qj=?1jH0=(NKcVUiy^hHV-Vv^zuzQoO3?9UAipUcYh1#2L3|7@#%(?v8L7FT@uuZ zo1g@=|7y%i(5vkF)w}bmwd7Fr5(?6|4na9RHIU80!OUU}T1wQF{z*6Nc3|zB1b>(( zvBPSTWdOAg7yO&YGQ*yRhm(h@n9qju%Q%#oQXKos|Nktwh zRPsz!wI>?ap3q#z=SFZV2L}y2+Mx-IuA)81Pm7UQdnsO71IKxU3w0f=wG}49#ULz} zDehpBm+1^a+ie8Y0RYsw|B?Nv!q7WSU1-Aw?cI%Qm`hN~Lo<$)5&=Z3IaIw`pYN%qQ7|Qh zjG5YkT@;cEr9EryP(v~-Z+0x6v>F}07BufL2}HGrsnG8ad%FU_Z%0hbnftN%bnjGu z5*+h$%X5l=8(<`_uo)t5Xm28+s(^nZJ;ArS!YgDXh5juHTYW7^b5E-8>BzknJSwIn zB`b}uO_j1SmOEJ}N0GT7kADtaQN-E z@_Ydm1p!iaKRZ5JO{waBlCgZNHU50HDLmd{6EA6s7)GQLbH1YeYIwd>-P2s@+VQ^= z3ei39DeK_77u8cnNe3E0)RZ+n! z%n)*wmhimQ0TcoOw`|EOC-_*cT_lnzb`6je;9nR;*tYCreeC zY(i@_pArIo5|ZC%nQ26~qlk>puz~ePXsiPh0|cjVOXCg92IC;2Uz0eaMH+)Qt9E_! z%P8ET+!99iR;CsK4Ugjbi`CFld-L%P&K$hDo}pOM!l<}y3ex(**%Q+_U^sNE3aKMF zeI_C_&8lv3biWYA>cVTmfVVFLV=F2A&7YhhoPygbdhlup(W{UwIc^5{n&c-qW8PAx zsxpy}B6)(0+r+Zo5mIhbIY&^|Mxi$-n&u1h0YkRj8hlsOZ{3%OT4t~srkVy`Jp=|a z<$FNDME|fMxq`vt7pH`;2=Ruvo6tmoYTf0A)Fgy)h>pK(?h@mjqu5%-C%}mT`3cX9 zIDL=!>+1_9ipS#&b;IKn$1w6yV@LgG>yaIl~)MK)m&k&qSt*ia-qZNu@_6hsS(fQ+&%8D=V z@kbi87eogZWyb3-4Cx6&GSI9+x=aIu>$rt#4h@4>YR2gO8*D#T+dM|w+_9Dp0+V~GjMn2&r5J@# zn5j{X%?d3VO*y@H;{Uz0g}o4cNs-!iHlT}5smw;oiOz%tB{bf1JG1;l!a#{xwd)Gu zG~MX_e6t$Tm`UOV$jQl3+h=fE{PJ+QX9{NS|9pQIpT_4~Pv-GE3X5d{Q9Lv`BjMr=x1*MN0Lq0{#+CyAu!FOSuOA39efW3=X~7$!@J ztr(rSFSeR=4NGj)C0{`4q_;JT|BLfN+b~2d@6x51uGEiAT*-AAfW%r3%2dcmhB-f? zOK^Jq={PWeEHpX<@g{3OkbTq~CM*mIQB=%%vq5wasv{1(r_$Ot2CUx?7#v8o1kOZ3 zRp@&G(>s zRNu&WuEv&EvGvMB75yQL{?wA0sBJy>XuPShlXjDYcJkJCNYvYHS99b{rE184u}u!HfDg8rdWk~f#x zI-?boBiy6wmoFMSz6-M7Cv85`gdD%WPL*CGI>T)S3{2$C-mEToha)4XFv|-BTyNJy z;RGduGAF(WPZpU~a>6>sPT$+3Or z40!#+gR?e~Y6cklU%Fb0{@;q4YRM5bZTvL+XjdTUX@Ca9pFWBC~~QEVX>=^v z)EgjrM83O}Z&g#0E1DEks()ah1Bt1i?BJ`>&oo|-hCp}=1QZMmNN7uN-}!{061K}v zE&~0lPWhd=VT@Y?WK3Cz$f^livT&uwY*)?yK8U`#kWH9d+s70(G{BD29sWx&NV$Q5=H`$b@A$`X%G^?K^~XeJL)e442AXn zU}X=O2`wC)a=oh)G1KD#I;HWXp?3ZZM7{yFO# z>7a>>dFkxARKM!#o?|&=2xJ46ulOW7jzBTcKQ-fZ1cAZ8Mx@%3E;$cfgKkQ>l74jt zDFgw3ISCvbDd_8suFN63gDN(IgO^^%0w?_=1MunYKJy-L&Q3@Uk+GqB%5Hm|u`ie^ zV}bg??qDTeHlJwfC0JWbxP-CAG*pxp+f^8c?a&I4VB?kA?uLlfOUI^@XN4P~H81c? zrVIWpSKq#8ef89W6?6@QhX(&NQHRO ziF;5QGjiUqKl~})ZD62Wmkd>KT*Ze6%grL_pbAtliFvX{B;v7ySC>3QLCGe1enCk? zMP*TPf%ve?ch}nUtje|EOvsC(cFpWJll;tf?l128Gi8D>+$cAvER?ZPg2MqMjEIJ& z86VyKB6s4}Xpp}>hfDxG_sXcELnPN9@T9bVz9mBA1m>=5o6*b_D%GlQCd>C<+&?YB zza3nilnV&gTfY6tCj)O+)#ssCPr>vA>>gh$lxz8|BZhK6m)6a>dl+~}SVc3ha}KKf zxya?xiyF3iTxBlVfj3Wl_a;c^m&4b_U-9A`AC~_J$K8rZ#jH z>qYe^w5iJPjyutDv6C@e@Ff`+E9@;{Cl3!^DA}Xava-Ne zh==!bEqJ`LHT$idp>dAEe7pt2Vg99_81W(u>ZQJ@W(7EVfILX5E~OJ=79^oh-8Y>s z;?!@`2i3zn)D5GnXm>z~|HB9FZ%AD^dW^St+D9!pSt&=cP8(~oyJsXxb-IM{zH7L> z%|b-m0!+8-GS+hlx}tI!=|KxOa`|xXFq-A*CL3{bd$ZYY0-*bjrFPXvfh#CZ?P_<3 z!@{anMO`I}SQ2GA(weMfIL9W>ISfQ-ol|Rc7y;YACp_J_bytzYnN6*038wptyVC0@ zD}zw-RaH!B)N2OCagOr+kC$e8aE(koD!vXZ`o?D^SX_S3oP+|pPRU^g?q=G2D5_p; z$#QhC2QQlFQv}@5_`KXo|EwAy{fLh2^w#i%9B6hy%Odo=X6F2pPMs#@GQx&#+`G^* zy&nlb;4kXe_EE*{axMSXOlzD4D+&iGrR1+ZPddK|a4>St*#6 z{B}rk(sc6=u|+~A$4ziHX+mY1_KyiOd$r!RcIu!nt>aI>HXYz!!^lB|^)t?u$Yy?z z4_L(&KlUoyfrQq;TjEDXtC)hf-)siAooU47DYQpDbZ(MI1A4^|%W zxxo=^yn2mxG^m{yg)O-JR3b_k_1PDP2PD8dt_pJ$ea!wE5N9sv1C=vpKA9~x4itu< zwN!!g2UGwDtKxsZV9{TstU+qTi-{A5tQC{^TAnQ6o?V4^HaaQ1J>`E}N-@_Q7*`4| z0~KtQB77MO!b_{l!GhY#X}f`GltuU}L92G%0djDm+rG~>7uanWVZ(TR3F#y0HVh*k zcdPh#EifUdj!-y_f+lmK^sf#OL0duCW%}xJYDF&V-c0@>p<*X1)lo{-iH|_y7=Z5! z500x~TvAd=TVXs0dd}K6F%V@WD8)B5v)0YMlKkoI z86!%)N)`-~Um|I65Jun|4ho5|Gnzj@n?=&YxQnC5xW6h zFqFW=c^?cZBq`hhh91c4^tIiL&X`4Hv?8`H+ZXa>O{K>`55{-&#(&q=_=pp65W^avuCibrBfUSeGMvPks zsxxL_ys|Sa|mUEf5ghxUK;8~`Wv00t}ZyRRb;%$74u=-K*IS>7xte&CSXwlBsL9ySR_Ym)bHi+ST2R+BC} z%wvhm@M`+{OsgA#2;MGi-88tM<@0iRm#Fq-5+&l@c$e5DHQ!8drM( zmfEIx$?lWJIwJ0FUC1MPa`&%lEcYrud7!Lvzgb;R7@cJjlD)XHC8IRiX`gGfj&NU; zi{9Hc6l+r|+S4<*|1bVK6&!^o=2C7yR*Nk?Ex$A2{7(<3bmi~1(}kUg4&P61&xb2; z4tY0k4{untZLWfn2eVF2Wrr;oQp4|@O^puI$(~WA>DL#MiPt?RfFCyqzg{A?tp>#f zo?G~_dO)7y;|xHQVK`KN#2=Cb$K}--N05my}??&fCGZo-K{^7xPv1KNrB$= z$kj9YTuG)c%Vvw8G@j0l*N zQwL7Z0JSN^Q7Sr;m1-5TQ=o4Hm!}DguJ``P`4AZCA)RjCB!A_tO;?J9$=G1{gYiZ7 zVjoA_JV9LXxC?lDsQqUivPD9{Qb%%w+x!Tp2XgvM2pZry`@-S*bNJzZ9wTj34uhRz z0U4Ci9PD8kDx<@@Un}nH!2u4cim6RbW$P(@&G`Q!N5znxlHrh!cllhYy@%xs8HXf{ zvw34Wiu(RWABYopkM4EZyHDam_N+44SNPE4dO8=K{0x#4;?g#S3p^Z^85E5IYN(p|uK`9on*gR`N^n$mTq(`GIY54& zT<&*IzVOXz&1D+rC3vwj#fv5jIsyc|{h^Dhp-HWBoz+!POVnHbQ2$n)-9;#Y+a)Pn zAuNK8)PR?f?fydmZ716q`YyOh5tCEj6o^2tRP7IWhO)4AuE9~qf4a;~hRi0qX~~mT zV___!1XA~n@y@PsYvl4w?-3T{g`xUAA!{-}FF?JX`>Y(@I0aT=UKPh8)!oJ_sK4~= z?CeyvH8%xgLR!br4LE{UZRTB#D3DDo6 zpVqt0e6k3gkDfD7necfW(?C<-%a$F8u^&9q*te>8c2BF_(?Sde6Gg*M*Pj$6|n@ zH;`-n{uJlnp9Z-s7bGca7Hu}HGHI{kmZviV9L5Cv!FPYzR<>$>iuvEe%i#X|XWem* z7Xp(a&+gtDYWwNnyHXc*5XdD)F2nDCfAK~IykN;xo}|*AyDCaB078>6FFh zQ+=R9$8ebI=xvbVYNHPSww{SPO1&!qmKmHua8vv4oL~B1gQ1*Rhrm1P#MukekA@(f z?U4jgi4X;PXnr;lK6sAsSD%arOHXJ;TDYh%#1Qf->_p(g5oAquIm)NdhECj}3jKo} z?R)!)-%4ckERa^=&D9ZBNzsKebkgiDyMf??4M)Ajif%~-_2UyAuNSTxC5^HXHw_?ZQcRKfzKW67tcNmR*~zst&A;Wq z1kvo_2w?0`n&D8DH8#|%1(J9#)A8zM4Z`K(Y8*oXZnj+Es~cDX)$oOz-K-De!<&95X42I!SOhB>Bc^=@(+m) z15p{VmLfC3YXvIT_YPXu;}C5~PQj-@duEm>j2X1`j~Ky*woh2!7bovG4=U(kBkA*7 z>qO`mL#O&Xi-J2_`cO;{0m}QQsbPeLZ?#xOU*beO=W8pu+9rY$A;mS&=ow==F-K0X z6X7+!)H^r=&rM4_xrsB}&q{$n4m0YX@Y6`kiPg6lR0;7~mLFF7BiS|D7@&=vv_=`Jqt?`c!_;OW%7RZ>zZ zX|izH%FfSns5k?`+@XBMdDEgtYQcpph6IlbR_perU`c-r=IKPif~3CpC50mTZAf7= z9BogVjx(_-Cd*6Be?PYSuX3LXRxvk6`+tAE3F$)K~U8qh{^l991~a zzChnAy%Y^~euQmpCJC?}o2<9;Jl%VS)L33OX_ZkL#cJ15XI5E|)OxJ8o%u@dSXx*G zku$W4b?pY2^EZNLWpWqnHzG#87WwF7&}8wu{l&a_jr4P0gJswOCRlD_<$~_3-MyzC zOXCOxPx3zj_D|6;8;2|f;<>8!YdVz2QjM?@n<)X@`|DDv|9Bx;LxH``s`aLR;<-KO zZh-P~MIf!kOqBc4Lvcq1_Pu7(vSVC`(dXGC(9Yw~WAfLb*|?WFh>pi_g$(JN?A`NL z9q>Aff3P7Tf@QI9m=Z$t`3G0m_w`V3?ND#2awko&n&0BiG9y2tnR+Y9WiK`8{h0+; z*I)P@ai^`Oi>Y21aU&{*MEnloFKD zs*PhH!R0jCP@gKg&~o!?(%x1)G-+iWMqTgUdoA04&4m{e#FOtk@=Nsp{m{GpT`HGN z7?-|shM9-wL!PW zC)y|W1wvo^aWRS)yV_%Jkf^&h+O7?q4nC!pR!_+cnn)Dad@&1hG^C9h6SSJ;#Y~2? zh3&W7=Qol$XE$!wC#SbKbWI~aR3s((f%Posh@B}aE?-*|na2N6)ZXJjct@XzaNbMz z0%r@?x)nefG0`{b3W|zwFIzF~qBD>9Mh;PASUDIAg0nljhM%IV;u%$)oj_|wXk}^| zNv20Tbd#X@;@eNIRB*b#mo;F{T^Z$Qb&_O5{eCq|2M!pTP|R&i;!y8n?oGU#Zmsv- z7b`w{k{(&C!YJ;R@791Sbtr_gt2ad6$6A0z5L(EFdTd*2n(vI{3^x{efAacil9ZFu zKWv4SzX-6C?a=eezVCZCU;g5}(piPBEdf=TpDVyE8q)4Hic^Kpv%F&9PYN3jo|8T3 z^m0NksRE!T;LwwN{?e2kJy4W56t15D+6T>uEY_ZcQE@E%7mO(4J>JsROi?x<+Gdv% zTrN>@I}rSx#G?Py`po@z#*2IXmX>}p@A+6>wzL@YT_5_JKRfsLvprYE^&Yv&xTkxW z!7iD~AU*Q4?QhBjQHXva6c=DJkOl?a36ICKCV#r?s1_Wdp-aL21!n(BJXq``a_9u^)ma;r1l1Lxu=v?v|v z%Ul}R+$B^qV9Y|7#ci6li~JRVCnj!C{!=Fdm__3X?z&M~yK z{p00?bsi$~yd5#!E^gINt-7CEzlJ!bcmIU|;XC`hfBKo8?g=n-n)OU8%KF6F4_0ym zp2|%m3V00HbFxLYtB5Fm@_=Z3|Iy{+0lO)OV zRCC@A4C_E0q}C(i;a0p@6f?P<9C_{yZqG{ByChdGtW!-^@ITUt_L;RNC$Bz|pk>eI>pL^5hU&t)VVRF~rI!f&=C$Q6)SnTi>a)ZK9 zjHyQh>sujly_l_hDB)(^t|;N^?775I-ZwivoQARp?*@8IZf|dI_WZ@eKzu|EplPue zg68wOCG?&_(K~O^b9T+11WW`<$xw2P@>y6|n*-Xac^s8(jc)fCn0z+?+diYql%~vX zTiSu+*EF*|_|88A=BcMXUOL6@_4Mt*_8Z`p27`nr!1wNbJ^c!@{yD!$ALrk`jDWy8a z%>x90n#U4=SS1d>Mmzx@m0=^!aBqW?k%WiF$A#)>mn&!rW3W-HE@Q1$Zh&!m25~O4 z$1k;7UHHtmjpN%2+O&j9l#LO1;lrGnKYca0LNKRAb3H_=V{qA&mC`iRG{3RY+8|;) z5HO~*)#tx;Q3$|(7+c?9exgqKF%!h%6WKdky& zf>BN>bT_5zL&@nRtizEtlKnkC%+++FyOHse$3Dy8ZNNWkYnv=n4@InKYnfRe8#`0u zMkH<@0wuRAWuyeTZ0;Q(8N3K`ZG}4g;&_@0g^3B(L5@)I`FP!rjIYJUr`v1c62=a1 zu-bxbXyylhoj_FNc^@_sj}B-(g=3%U2FKe=65yNF2F~hgCcRdT#y2omo>_V)ZIC&; z?y9On%X1n2h70<{GT4{KnN87L-iC1}b07qFs-fkqWC>l+ zrQPVbyV5oOa7INV7mGx{e10gDyZGLh)SxiFX$A^w8XOO(H7%$%-n+;_C)$DyA9PoO z8PTPs6jKYE>Tn@*1R|LVNAxG3V$7M{kU+ISMXEXT19dVHsw40OqWV{OREDg=tGdo_ z`kPK)Xuvvpp4*!*frmQ_Z{E8Zu1YLbo-dI@>V!X1dlYk`w?nvO9ZeiXuD8CTkS(W)2UjL~aQa6o%KjD}-O}@0`QMInpLjPHYL++iYw=4Aj0U$x&zL!@306+jq zL_t*Xv8rHK*6ZpUz>5F>!mJ=cwVu1P!hxo2JAj0hTaj~?j0u!eeUt@K5$*7yL%6qi zHPRQYM#AUIG5hsdSh#Q@E82UK3Bs+`ZUQTiA~G{e7M0a7OB){wO&Fp6>?dGZ-xVKx zG)HZfKuP#nMe4T&GmcU;RPhM01Ia{}r)Lx15CL;S86>l+v78f^6vbEtgYlYHl9Y=4 z>#4Z(>Q1a)yIK+SPoFvs*T1@eytpb>iu}Y}T=*yy4X0LRaI>zbFwoUO$UrAJcpKu# z;bSVuY2CJJy9@$S*>3}bASA6Jd&6xL1xJV!b_rizv(A0Q&RUGJ3>N+|s4Py&LEI)v zDKlf}Ijj}zIt8JeI8alosyv9OtSx&r3VB)g5&FSZq~FMaZO>+;)UtrvfT6Hz&Z4MX?ZlG;G{ZVYH>csZ*!I!rws!yYgO_ z81$f*x*+@PB?>&;z`+xH)xc}~r17%(zha^;IA+Wk$nVr233laVWI$!@U_b}+Iq zfQ2guL;eM>$T9UWt>VmLvOC7JOcwLKu&$!Yaqa#9+;r^KtI&=e*7k8V1G{gCldo4U%gB2^&6_FEIsKmMG)?yAU9EMi@UQI z1uU?-GJPHNER0zQcA$D6&BCr7JII4tq&QR)R}dFlRKn@=V%&Z0a~OHJz-!ic1)Ipf zd<)4NcB3dZ5vkjMLgAelW}b@(KlmPHgaL?U9y^2ltG6+z%M%D@f#AH)Kf_!W+Q~Hj zuARGZZ0c^DoVXvSW*&rdYY*52*i-c_1J}O3h}ZTs#h}@Kn6afX8Z-M^uahleQzBFX zLHZUb%I1xmD69~LGZdf@taTR_?s<*#!4umDpy~6C5%=CQW>HHJpc99-uF1GIdpn^T zH<9ooi|!ckelhMga?(mMtJ`H<2`zx{$1lKd?sS+3`yub_T{U2lV`C@OY1&DvRsVkQ8%{Rce7!2$)45)t}lPSxxoO zt5+|4xqK-aeclJHz8Q*ivqEOv+bOt{(C3MQoyOvb6Fxop`)Vqfn;DZ*}u*iRSHJ{#CG-VuF{{+M_)n10yjJNcbn3P+-YmP*>Lw)>i)VVWEuh zb^P$d54Gev#ZQ04N3Xp0Dt4SW2KzCCRA7*MHXNy255W74NzA&LBX-`mFn08TL%ZH6 zN{B|%p7jXoMBZ1!Dw?iaCzr$6he8oIFB7Xc7Vo_M_P^X7$qF}b)eQNs>IJ) zc>v~#d89FmgF~0@N^n60Fr*kw=+ng7GJs8DX3?0EzWJB0pl*{xl1d!hI=4dp8mm!Hs#|;lvR; zp*T98um^s}Fl*}j;S`=v1tMQw0B3hMd^YzJe7kZ5xos;j`l+YTyLWGOevA1X^F9^C zNTD} zAqK=|X5UIdc|j?BnJGPX_^2w%`}*szk&qD2qNcs*wrT+44@JSIBnACv`Kt4fr!opM zyxs0By3g=|dv+JR|K11H+cXPL40r++t?$F@F>lQ(Twiq!2E6uigw=(hXDs4Vr6+HIQ_y_xU;}7=7%fHpzAYhT&V^aL4*(7VDQ{vRu2@V zJnp9T3}lke>R%PWg^8#UDrjH-TU%>rBJ(%}z39EL2RF{)LU5EZ7ukqEJFehx|8lfzIRnz>otzEko zty{NN(3HRGxoXerpXC95bNsnh!5^79B&k=^hAmns!gI+|Xo6iiJ0U`^DRnCABpV{r zuo{!8S*afXyO>@3zCQX&{`gwK_DQfS=H=Ow{Ge6AiM?F| z3Mf2_D_1U7LPQ7+sE^iszzh>d_t z-Okm)uB`NFJP;9QR>6!xkO)jX>c?Ns=TvA|l^Dg1c*Qu-o)CexJ69>(=~`koWxrAH z9!2BEjn%Q_serUrHm%wtVe>i!wVBN0nyPJ1UagUICmk(97)0M^Fi^Jz3(PKH6>-J4 zC?X&OUNJfD{Len)RR43t3HPNaMR%khKL8yLo(&xwk$dF=JZFs|7S~4c1V_J4uG6+n z)xJ{nQa~OcV{WU6WZDHx@4TruQuruJTB>!;qlFwk~X@ku01hkmjS1~DE z`S2jzsZeG_ym9>}Twq#9PxW(n>~`4KaYDIyZTZ-olu}jDbmhl1G#l*v$j?BI@D6*_ zhIUxETfiXu;rEWcvmsh^wnBM5SA4hlJKQF#g%l|E9?+MfB4Lyru7min7(~8u20CWs zV`i|bYec3FUq2K^+#yHuC2SBj4W4&GLV}u^%RGKq-QTI?&V7f)bn-bFK57&$kb_t< z|KnJw`0+;{DdvbaZQ7tSgW&^9)+#82xu0WouqzHQurPv&lLcaT-Jp{zRe_>ouWo99 z61QeE%=r5d{sD2#W`?NuCK)am?21`6@`O|OAO?sjxV!Bwbm(`U z?Vr<3zPn^rR($lR?}k6;th7hfdVu+eKhp_PxF(gwlAV$)u9)DV50 z3HG<9jpCQ76|0c{E~aH^`0YETVQKg~-Phl~s^8Z_4TgmKmH(oeU|04uH*}jQrpTb+kNC)df(bPho1|YO28!v&&%&5#KDA9|AQ+GeA8lDdzBH+}^3p;W5=)uQ zO8Z~SEXz5`xrqXoNEJ(QkqlBhb$T>KnjApbA2Mz+u;H=w4XT1&&4KUh7$KdN|Mf=9 zQmd@IgQ+lOsc^*m_wG@6NP#{D1qDK&Aag(c3uFK4o1NuS?9LPGjOz11L~%SBX{#@2X2cBbYjS!@6#BBrM%X0f=W6 z#a7lKN+e&utM*G+L;(-dw+Ul_k)u7#gE*kz{nBBeq>MrldK6eFh|5BkEzef1<8!Np z190r=^=R?D2O17>SL^HdcfrPi7cr{m2z;?*Ar5^Tk4~fAkeytDCC^@kb3Jn;UeCij z@4SQeNRzdE<#LpeBX|f4#Fl)y7~MK|!@7m*&}Hdks=xbW0yzKaS&V(Xb`X3iEEhI8 z22_4C#70tq$>*<>Pz>Kb^~e)U+OFBH5WXxNaff0dtO8pYxRxa)pn2W8_?E%0(4L72 z)t2ll@DmAmWMDt*%{LIv>-Xjq{C+YIJZfyM+=nPPKE@#VlqH+961OH3%Mc< zKbmC;cqJJlP=x=a&73h4@~COwZ{30uV;8|;a68<;n+oen1DxZ`#;^U))!hHjTGp^M zJnBCGS?8oZuGRzMfj=$am46B$`IaBSS6_X#ng&UJB;|`z!2I&%DJBIiQb3|Ltq1-I z9*`h5CnpC^&Q8pjB{G1h;E!BYwok4Fd`P|VdoJV z8ma>6l{#y1e*GeNj+ze3pys%@VKL=v-C*q$KsJLML|yovSxRPcn9(ccp!L_XU4qr` z`dD|EIk}@KCzF9%LUlm-#TQ?w>lAKM!6M3F_tlqP#Kegc8OT~7=EhF=1ouq>DL6;F8rt%U-}Oo3=;|tq};v@Z(mHC zOtY(c6`_c7DqmF;6e$(3w6%K_kF1%05Uhe*s5X}Mn-X%6hpk(GP%3YgWhKbCbQC7u zeu#c|iQ@Q`LbXksHetrgFCm#(&Q9~%!^GYMS62`ldm;>al?=LWUx!6NkQz`353x-n z*IMTy!I}ZHl-_Ntu&lDt$Xp-wdJ-edU~&Fu3o&i_3plWt!XbuKB{R@PN<@JYhZrzu z0Cw)!3A<+QD9)_J3i1exobsVVKcP~m0^6V13g5^5kamVeZA}_r+w!|;+}0A7Hu`vH zTqKH%?jtokTglsgcVsQ@9=@s0Eu+8!WidIp_T3J2{InAa!wb}moXpDolF6V!zQ-kT zAsAx27L8!sAOKg+oyKb3WBG2kvwL`rntpC@n%%heE zlMoXdjdD(Xa}Hc(bp3n>s-XAQopsER-6zDSDhnyWapoW7;gzggaKnbUb>jvc1N>Dn z)y{3(s|S?=CGqq3M`B_ktR0;1xH#4i3?VTr>SP(I2eQ)!;h`_N?`AnK%R{zHY?Omg3$gtDy&D7F*?`jMr)9L)qhIu87)r84jJuw;Rwz zop)i}U3hY!AzAHvnN%*bvxQU7KI&NanTIckj)Eic&R3bu?)6=Fn7chJq&hI^5Q1DA z;1sLr?~}4jGIZU#bj44{4k2V-UzoaDsbgf_Am{GveHgl~864_94D42RKaDRxU#g0? zHj~cl`KixCmjQOmwym&j(+{d>&zAwdn03z(m^H40to>(Dc=uyfn zlalhx#d9!bHg(+Sv6MsJj_)?CQ`B>=!w13C*IVtLd61tSUXK(k%IDfYfLY?mXjlZg zq9`T}miDG_vvWuI#cRKGxIeW1=RCZBXy<=OV@-y4#flY*eMBHDTGM*qui$|{CBu80 znHQlu65F+FSG6C6M^H$@$C0#Kvc5xy4pq~RLOB0x!ESX2+6Ao#{-z#~AL~B7`(odL zy>NmT8lwv;P>u-0^9=ebasB2uYA`r>@KCH+vFzWvN*P$* zm-!W3+Vn$lMiP?G?Nfv11q&9yHl#fRREjdBr{LcAD_GpN7KcL5Au;L(g#nCVl8_0v zr#c}1i;bjLvr>g@c7bhRAJh&JKP-UnkOuG@+(@01TNi(vn!bw#W}Yy#wnOs%&6q&= z)hnEp68T#51`Sj@3Dl+R)X3J3c-#vr5H)i#Q`f|Z#9@0n^R>kkR$xNOXwvN7peoGp`%-#@(-@ZfX<1)N5>s8Er{Y7LYXJYNT zwHP^Kq^5gS^kr;q4ue376FkvQt+(sf9`^-mz+hLbZciumD2k3$@RDbr9gT(L>@^(Z z0xN%e92~kDF0DNfvGJ-3%B|bftqyi&e|yrArEWci&1a9wTe5cS$Ce*9!@}GGFV1|a z8geFC-R7-ZA~rPES}AMW0YQhof=Q%%T=z$2tc(ci}x zHWXP%rFcognoThA@*ryn;LZWnd45*KT zv>x~edEie8cmo0g)b!~u`Ps?I2`g8wR8ybwL#ze9|B|P)>;G3g(5-7XTsVD|q73%% zK!Ca|&Ue7Kl)+%>WoEA=+xzd^?%lf;3qW0BFNMi_4xB;~q%#oH6PlkZQ zDu}H)`=jYZaQ|JqJ%)(O`{C^5h(iqA$B|;qx>;)#>`FT$dnY*e8i>?`J7L?XA8Z=- z#r5rT5xrnH9GdzwfVGEv`=Nwn81YfXJW*L*3b)Swn!`}3%na7`Ne6Zz6gowDu;&!K zuu+K6Lj{AnjId*bdo)xyQrRi%R44{^?ZSb{Roq;63xQA7SACV_mLO_xG~CBO#X>Jb z>Sj6dj)q|Tle*U;{ z>ZZC@!EI;XE8;-F6p0kVFm``fj3@h+ld(aV5ri%0y${~O+i$ v0g%92en%dA?6K-;ewk4aUsyB@g!N+`NHJ%Iw|UQc^yq<>EnEKT zv9uet9?*K=f8PUtO2GSj-CC1{;rH&NZKw6X-_ZjnPo08;t{=*fSL^g8=q)I$Em}~k z!5?_jmX+`~Bco8MZ$t^ydvIZ8_(aa8e6##Jb_&+PtyzeaM&SfX-m*%+ln@D{ z2N-?XC!f{+whh`6+F+oBFlzQA%Tfd-1w)M~Y*18K2}2!AO8;KQr}I7|9@HL&`L(gR z`ex>&$TC#j=;-Leuk&bB#)aY4@h{@TkLDsj?gsI|Ra32ZcYL8L{&n@MaMGz~<8W_Z z1nI)k(6pfoo_ldBCNQWL6Fjhcoe*SYrXX_BC$Mhb3Po`-D9udA;!Ef8&b#m8v(M)v zAv6i@on3Kb%`KSNSTKNeK_O+2Q@-Dh-b>rS#@7P3cEn=v(7|e8FGYQVWws8fgSwM? zs)D!pxjPVXHxl*7l97hNu9&HlIf7@l!AGBdTpjQVi_H_g9><=e7hn?LsoLpVnvpim z5I;P789hD?B(<9kz8`)8^@HjuWj2{*3$7Q0&2N*lcgI!uJl6qEovQ+7r>=px^2%lk zdhCYFsLrGcD?;LeUFh|AZ#5A4=9_OY<8W)3+Efj890H8d=ZRkUe!~{Bhg^YWhd_8d z8KQz+IT<}80|dR(A9ofVB77zfOE1@k7YLQyC!c(RG{RY0F))3aFch&TNL87xXAGOi z`>Xe6Ow$l^2maCl??3z2Xs`aCB2ck(3}%~l1Nw5h8dZ`!KoEu*RFvZMIsD{;Z5GN3*|Z4 z&@nVd@}28w-@biyf0D_2a`*`BCogwVexaJ}v9j_*R&ETT1iF-@-9V9=so2dR)4XmF zgWRgGwDjW#VdL3Q^^+NM38}Zks4iBFbsIO}%B2emTbvtl9wih;FeIO^Rhy<1diYV{ zS>s55Wlh>cV-I7TC)4>NGBGPe$9(9w;lSz`2dd$g3>H@Cn0EE=7QOh0t}b&9EVZ zoC;FTO=HbQP0C53)N}K2hk=g=ble=VbjcEYOVx19eT6R#% zYceE7cM{w zIu(?H+`8R3Wu2{W4%<$H5x?_0)Ne4B6lztt)Z5qBK!?-p5)=;`J{;?pegelPAt+9~ zhmwpmxcGNMdgM8zMW2Gp%R@*XW`gTGPNIF6PG}wyg3IAoS^aN7MYbfk4j-%ns<>ST zIQ4FaY>FZ1OQ1(PdGP|mPM%w@YRPbC=qIptYYlu3f(hDa`L5Sa)ep* z`&iDve8K$rn#16U0sUdrI1pBkwN>k^TQ^1c!j)LfqBbilYownzpzfy>Fj_SV!F|e4 z-y=5Jo`Z}$F8e&$1YQFgA!5}T=%=J3W?vMn>)67=%>oXM9AV*ZhF~&dJjzm8=q3z6 zLaFvgX#F15mv)`j16mLK^*!(q-1XN#SM3>UJ@7y4f%yyOqfP5Jh$=h>8w(bPS(f0F zMRSM=y`~Da{@n|=7MiH+bXYbg?v&X!jg=&(z`1Xgz=f={q;i!-U?3JPTBMpxnf3x! ztXl)?j={)_xPsh>aJ627n508nVC3eF9N(sR>&-V|W$%C{Ekdw-`Eu1prngTKsv!Za zur)|fas2oZvP#_K<0R~Dogg^UH)qX4-}WKQ?k&beW-bE)gD{wt`GO&iA+?qr3*8D6 zBH`fNygJyG1Na3DMqx>&;(a|zS#k>-JEUGZ3nx-n?b*2#(P8V59R3sB-WUZ#XImBU zT953C8`p2*($(uMeDbGUFogt&NseE&9wu(C&}BAPRM~tdJP)7oq-|qnRF8q6&nM5r z`{OAnFwrA!7c9oISJ$X{5|uXl&Q;UwnswIALKsjR!n3P4Ixp_7@V=)$eK?(8PNlR9 zOK%}Kr~$fn?~dfqtAt0SX?CYHF@+w;#$e^|jGu;Y#QFCQBXr6RbbYN3I?nJzyD+{d?86T}#Ktx2RH2q5G0uBJ_fVfsjU){{ie>SnY#klq1E))>LqEWUK<_z~<{?+GYXlVo&GCN%TF@+EmT{If| zFrW;6svevJo#;2<%FEy5+Iu^3e$pBk`}@L$%6<-BcP~%Hm3)mDY|~~B_m_j1 zv}}Zv%dcFq3iM%0`R!ofM~e`SRs;ckABkBA|=FLl^;FhW8v(4}iv7V=oCY@ZhNig>@08K@gFa$Y~6eXeMwF8*>6g1??l z4OH42cWr{Wch(~3;!$QEi|Dk~7|z`WBm3+jb+lFYzQ`azeBqT>@sC$tL#0L!CIpaK zDGBPnL`zo2lwu^Yla;n|^(uU}coDT)1F&q`4~k3cGie4bj;-O>Z6NM^_X+X{wDrmD zt*m0^1=OCakOmqO-;@(c3iO&dl5#*D+)ZPS!Y9lX(K`}U z)>n%2q&RmIjRuAe8A?+NY8Gc^Q7WwxKI7ZMzLg&?&RhdyX8R59WFffsy-cta^fn&o zf~cJZ5Y1z)JlX#J`<2ac_r*Qb^%z+gq0_=n_+{iySi5@tN|>p+RO_G+>hm7J)z>zv z?}B9HM~oPOA>`2Z>)RI=EdDCKTL4Q>o7#KJxt5ONDuRE0SEPU4!eYHjP7(;Dtva@V zMUw#7TbL`G<(O9&!Xh{jR(*Pr%bSfhtd_@gu_6-M?oG!HpJS>$b$*t(-2zW`(R z4X8OMPu*ywKhA!BO??;3NMDe4bv}8)1*Pb{a)|mY(rTuZBD?ejGrneqjA2zhii~s; z)rYTSHD%mv@{7%wHBZIVsZ;58=7IqOem$QWP4`O|0bK+hrU>XVybsgU)ZNS9J_5eJ zzKTEl--2Dqt~#+8O`OwOw0uluS0yN&I(5Q+@?a%jf`9!|}>qGhYrC@d^grxD(!fKibo{OXHE2>N&goW`|*L&pYi>NY@u zUFj$w*KNo+TGyVS>lrBzxiQGfsL7C466{7ttz$1TdD+jVacecU{PLgpveNCAjB?{< zO_1{oHGSD~_g_E`DGe^Y9#>#jwuw4{Yu^!!LmARYv5<*}))B3mnQ0Tx8p~qoD@_2b zWL<>{kxP|@*hQZsb@>uiaF%=dJaW#SB%e18StpMnKjI49!balK=jRZ$CISsc2B|U1 ziVTr(xP+Y6YMecFu2wanZ5x7H7t$$iC86V+EfMxndt@BAhS;S?ndNQ(w?QqbkYSF* z^SNpq?XOEeB_W5BYa2IjQkz6hPShkkLp`)z)T>Y;L=D2x!W22@4x*ZR#g)ahKi;~O z_vr?|*Pes#%g++L8e+%MW7v1@B18+lfY0sZOS_Rzt=@8~PF#BbD4omlkd~4`K->>I z#_p><&-pK}An95%{xN3`a*v&(^|FJqU(O4^M6R?0+(!-PJy^rs&leu!N3#I21gSso zK;iXUq=n=mYwJGb-;Ptdy%7SB;Fxa)H0SSS2)`bN44s1|+ zetF~2#F-O@V$vGS;nUj_-hSS-{~yTyS#w^7N1w3@?8;|T2Uj??>rKbLm*k_a=^~(u zz(X1VU557|eXzRQdh{Z&WXTfDoIM8~oyWq?$P|f@#}L$@A!2VwD-GWsJ$j(Ds2EaZ zzm^6D)+|syAoz(1*nVtae$&`;` z6~AhvT8ODdy{4%qFf2mBu`O`)@2K+be-^ZEA(X^KYZHpc0)v?~m=D?Su=pk}Il;6wM6ys6oyTH68(do* zOD*LXs$GnWk<@11Q?kcqVv0LRlnn}pHZs-;_NA{ zg5OcCiHh35U-DTLA9PI@0bK+h-U#Rb@5B3Sb$9lNMc`@5H3jy6mYKT>#2xvOstDD{ zD#$}O0^Q@}xJnb_h8Z(vs2^E|Hnn#}@Q9aDlAVH_n`cp8UPykb6LJXj1`Qm9?K`(a zZ}&x5ccY<0N;Z-fY{7m4JOOv@nPszU(TQpgIW&7nXLWx~QJZ93?{8(4R;y%2(c9Y_ z&cU5v*Ps(hGzTb8b`MZHb`D0=dt0akK~n(-Ck34EZvPpZH*Z$_U*Q7Jn*9${*|&t5 zt*hdn%6S}oA466GZE1f6yt!xhq6Gn+6v@f?#LBi|v!<{a`#1rf0g}EWr_|XUCQh!r z?o^~7+Rn`5D3$$oCpR}NEDT2$e#{~=f?Qs6%2yj;*|GujS#(tp84KST&nd7g=eBIv z0D6>qJAC*sh7TW(aK?G|OLJJ5wGc(r1I~@P3b$#)VbRb}x~pd5=7c+m2^cwMB+g%< zRM^ukaN(EBYM+g_MJ?Es4dSR~6KIF*o0&-4bA|41A!sshEKYo|nMHIJ5QB_9@3iEE z!vJ~A@^%~PhzW1h0Lvw>$KdS0Xn4_^8PEzK`DC&xS`$gKpa#J#Zo2~`XKVPsGgh5D z?_4yJzu8?2c4ecbe*?;?U4u7tzK3m|R*A0v~+%A>L$hn6^n)&BEFiE**yZU*O%StaK9`HDF=63+eEroT zv~EY|tX(T%LlClY{RXvsFXIS^dFNmM!VNPGPOo0ZrDpO)nJJS3uIQ~_BKYxH>U3$B zS*VuG>UkdT{CLH4m6*Ku{`*#rXJwUX3-GSl!)E2nDS$-;psn7Nrc^qS_$)zW*nnA`m=!NAVJ2>$okng zZCE9Hx}2J+(u6bmEvXWRj~r#ekrPUb3lOz_zT!#h6Feso*oX|2@GiB@n3*|yZ#v0+ zf0%|8rUcw2uxlL#tA;I*xb`b*$Lhn*?p`sI9QWO~i(jOobm;n$;N6$@zUJg~dQ2UQ0Zqpi1oTSOYmMvT1Ksha$V5Du^j)M3Ee7kfBO(aGV92+T3Tmk8lDHe&hAw!11 zzE4NwpS*~`m-;C~h@>Bm!OH8Ni=-hX%Yr)EW7xYv`03drXfeGBV`qT#UtGmVj=Sck zH41o(6|`jOrBG}~z;YOSOfRLX72-LyrMwxoh4tQ2Nfkw9zPDp z5I@*-4aNy7K`b`?T4hm1jiYW`LQeV9w2XHq)kDLgMIvsrrn_C+L0vI>_G~3vSGWKD z@5R|oex!-(TFlB79IGE`E+x22&hiRQPK56+mh{3?4-5*#ojnOC%_)alDohzqScjFDI?#U!1JP#>Og|ja-Ya=^~(uz{4E@J^tam_b<@j_+BSWn1I!*SO0D9 zK$d6A$t4q=QeAs+1VpVs3Y|owRM#FH0r}roz^kYqh<2_kRS9fcwt-_;W?O%4l`K@t zTDKBUN%nH}DuU4xuGCk-fE-FaL)zWmj3S5}2TKcgekTc3V^_nEnM`p%^Psr@xzne# zL;b1OXP8MHpSigS#u!K#91e1vhAf{L*UJxHl#ZR}Wb+=h3j`6lN`rP?(p9 zn8*$A8Z{l&%-p5zUQZf935(To>tzq+en*TPja1%m3-UtSv~Hywz`XpZjce=A{;^2B zvj?|t-&WFQ^8cC?$qgasIZwdq-ZBLFcPQaSz;pQU5u|XO)&#zvut=|NruIQMTg_~3 zuReWnh!X)b0%genUpRXf)*->LAK4R?xdljDyb()jI5BDBBsGL&Lg&8yHbTB)!JqZL zOz_ngSK+ZaG@@wkf@3ex$?OFWH16Su^q69t+mwoP>r*As&WS*!$^zeiJ>lWuN`auk zm=G2g8X$JvWw-^H;hptORM($AipTyR)9?eeZzoTltR@3uBH{abP3B!YUizK`Fb}q2 z2DcpP>rbEsErKsm4_PKldQ@BRdEyy@^m`h;ao;XvVWA0{E*!5N0?DgSBFwodX$bfJ z2FnCTln;F9QfF*ON(5UO=_NVjEyuC2?tXAwJJ`Q@BgPe*wr*9c1@pOT(Z7Fx2t{K6 zClxW#(WstPRp z5Pf1=0+;?3>Hwdg0y*(38yK zpJ}3}D?fFcm_xX7;$rDWVCe0Ilnc9|N7=IA(1{A{N?%JGFH#;JL*Z>|j&xt_q7k%O2ZH8;V zWRQRCfm=~AwP08DXC+fEoL2#QlF__#=MJ8uxy7OFhf&6fMBMcvJm3BzZGVkXkXeq- z-MT8y?RI9crHP3|(d|312&~~0YpONKJADxqw`^d??}I2jNL;2p^AvvCvWBE@n|feZ z4PvMVw~_VT-)uVt;mGo%kn;>CMMPR$TpZlUv(5Dp=$kcno2r3@M*xbFZlfTo9C8cK1jlX!ammQd zkA^8_&7>8a3`ZriqsGkEh|$Cg6!3q61#bel{?qovq2JY zjOq;~pQ}oXk+zR25{`k$FUf^i6l5rkjn>#WiFDsy)lAK%*pgm2wt_>SD zs;sGjy%nkoi>c*XlLa+$v_&Da+1e)DWqVr|o}Io8`*wk9b2-&6axTYV=B$|r-xdxZ z7U6xm?L&P1%_1aTF2cO`7plTS?HDauJ%;#RRyT|wJV z29b|yfux;LNZcHO9_^=cfMn=Z_`n|7RBD826H)zuO!jA@80(y>sS=>DoPc7 zqi5ef*w1ToqAOi4<7UnYlh*QCq~6ka9&z#eZ<_Fd#f49336eQ{lZGeOtwUkkwuKtb z#N7pMV}~O9$Z2JfEd_Lv;s3Lfwg2XtbjRo-po_rYBLZCf(KTHJbP;%%BG8dQK%COX z_V0`JtAE7HFTJF0&$Hho7O4$@dyi3Ypu3hR5ExT~H2cI!lxEyT%H1P$w~B@hWu`LM ztVSM-(#qUuVcUO*av=MD?azuoJ7H4IQvH7tvrAX5!rZ-vi>W=%%+U+CF0a&nB-J7d zY4PF6yMC6`0vl?n-aqyNGdIKjUHj26upvf{9)V-whjIGUX?*wnHwsM481H?+;;;)B;W&LPEPHlP z*3f4zoQI>cBhH_@fHofufVr!cDrWN@(il#mp31dPc&n1F&7<>YKDr3#BJhw$K$qct$RDuo_8zSW2&j`HAJ3pxDl7XL0mi&}tVVbC zfSL0>Wdr-B?U8%^41qxj3a&?}BA}hSH^ZC`V^^3BeAh$RVQ$`KJ`{cLC}>NcU796WdsqJ`|y%@-X=W3Uad$Gp+= z@c9>?!=;@w0*Cn{a?MRN@8^iCyCX5-iE&uFdL6c~FwSG@=-T0go?$nzJJL6i7NW;< zJKW>fN+*r2p^{<~r3o`D7X9(L(as%;S9iSkxEsUuDTX5ux zvTrWWFT%2wD->^d0eR8QX;=NVC?N1+KU}#Ilm3edlVoWprxVlaw2V0bLW#ay4p?2zi=^~(uz#|s{9pHWB9=Yy@AJz!S zanuAy{l$4T8aO#Gm2M@!MJk9&tF;Wjy z;}WxlgBP+{tR|p#0QGP8?b%D9*o4kl4PazeQ^c8l{eY61N+*x@i_brUPwQdi5$lms zdf(VII*=xIvC~*+XV;E8uYv;EifHXCbOOtGFD85AIXy1&bFG z!2a6g(99DD;6AVhU<#EZYH%IE(T_}x;BlkB$6*g)2 zX0BV zo(&^o1C$fIM=U;xkU3q|ZjmQT*vb3uZmXWBhWquZDqukc2Dc}=t3H;^e3A0)ZoK`^ zxk^qq-@R`)TD1(t2k(8Lo`>*v<$ESgWX^>8 z@JHB{mH7p{K7X2ZxFYY+ z83YFe{L%2b{kjO~BJc=Ap#HytkH8JDBf@HJ$iXZ`5_NSAOqm%Z@C^JzG z%PA@?ZKY#Q*dSvd@Jhe)VFdRA9vdK5d&gVLXcN-qC(kuO%5tN+CcrZ={O1=U{B}Kl}*koA;nNHj&SQ<`>MYN*2?= zjLvlB)ih0r!>Kvj5w+|rPR!U0TOTJyJrQX&H*#gmb24Dxx1}0O`^&n0Lqy)XsXkg; zTO%jF5JAsTANN=Kh=rFue8#p$QA`|)u0$aB)CCk=jzsd(wMhK-M_NT%&L>aUUh-?C>><85=YS#{5<9DOoZXHy5m1 zzpnP!-+ME3*yAt{4TR4-Pr+yIGy?1pnpLbpWqGms{>o&g;93-{S~jGnFhTUt?#SAC zgx1L=c#Aw=UDHKC7Xe)abbwd)9neMKA&Gz#8~rU@<}*% zABeJyR5-C>e-I1o?w;MM`pT~g0`jzo;|jES1~g;Ald;<88PXs5(U+09YZY>?on&#= z*XZ7ZDihRXm7k+jO;}1@;4l_rJ?3D~EN&%S$2|kfz9Zl>X@=4OF3YRACK=Gg&KZWL z7I>HPWZL#ec2Nod06+jqL_t*2tQVnYM0E%PcHt0H7mbD(%tVeGukC_YUU>ypriO@G z^C9~rGvgSE`2DM3VrfV2Z2Q`N_rIAqZX&KOK8M1T0_>fz1v!Z&99y57u{Acx+WyIB z(r|evv&81ssyM4<%a)2_lD=vaZqHpv7raC0^KBT0tnCA@uI@0hGKNdfMlfXYoO72T zgP0{k%W|%c+ z76yFZ8vVa&jj1R4P_e;;yy~%vMx#Cc{!G1NbERt+F50ne+wP=e+qP}nwr$(Coph{@ zZQI;)y?dXk^8@CGSm0R2GIW-c>jOfj~*j%hjt|zd<_6Nrbwe~t@Sa7j(4=_ z(rm0dR&*Wioz*wDj%|}r8ZSk+!8NINwcdg?QiRd=;cAqpC8%(V9a@sC_KvCunUprk zA>Uou*hmvatcvflpi4}p8-+y=ghFVlZZ2h{JiEx#KR*Lw{>Ds1v0N#oqs3+`nCOSG zES^yYDj#Pk*k)i3)>5O&&vH5=ZIrzfv-HFUf4qnqj20fg{)X;Af{1rF=Ro&;?r?mZ zAjzMK<_L@4Fq7BN4BxetYwC}MH<|WfY=6xZ&VQ+SwWZ?dD6fzlwx8(5f2x75(PF!$`83bQNJ7_-+{*o|B-#1T zMnhTpbiN7$8NNnjokJ0y7OGJwYro$oTR(w4>F5LX9Lw!;6-g?MZlu7>Rq?A3d;5kP z>Z2g1;bm=TTy9*g-|goiOg>X9b|FwQn1D;eYhtWC#w)oLA0JMe$=b(m6(S*Pa@oQb z2fb=O$M#ADHLnNeODhC1Gs3>1B;wnFylK-ztd7KEUKUk^oY3jWK$DcBKj7Y0NDQ_B z?cTckW0}w4Xu77HzD{}UXh&LPFchY|zN(a2Q;l;+qv}c!<1UjEDRf!Y9+x@T(JIey zxmsiV)f9$8K1F<|p1{MbNcp&PzMNl0ybS)ZE`Olca>3xjs9-BtV5f~tWdM<{?xVwX zBWOEaW1Fkgm9J?lmj%P)VVZ5}i~QjYhV7#&ZD;Vv=|rNAqZk#N)9nJBOSU?=aWNGI zIbn72|6Y9`iSrL`c|B*f-NyXpApzdG7#}ZJCyEVJ)RmF*)fP_L9iAPjN$+O#USFLp z&f+-YVa*H*(@!p1apbqw>uPi=W4YQ9FMO|vW$MwYU`EE|I)Wk^yx6WeGqgD|n)tEY z&5+B_K=m$=q>SZ)pVN2~!h+2zE$bEd+Rtg^ib@?~GlLaca>=FJCC~$Dw;qnzDFnC{ z7?%MTw46!gUv1W#(Y-9zj4YHYvbusv_I{3_6B&5f_nXe%+}iZo~8b%r_*$UV9WBlG!VZeh+@ z;KU)q`+#tMOshGn1n>7;B5M(SxHRXnjRy&@U{z>Xtylfcv9TcgoHg-E!Z?TaewlQE z8pDXGw-5F}`nS|X9=Me{ueOxqWP_%Yu+bv{Ox1^$sFV^CvjgSgtQB-@I@^jZf|;KC z++i~t9YI6XcasjL?GFSKsCiLg%xhq?!{4HE@4jT}1Q9k^|D`j9)8_bZcFL54CT@A# zjy|;eJi%wO-UOmy7~X!R-s~+;gYESNlTgqjkgJ-qKMf-+O|%G`2v7x%u@Lc-m2tFm zU)zI@9A%4RR^$~95>Ne{8f}v0|D63}Ft|1eldU38Fhz=L4qCauqe%T*7^l^yf(oM} zT9^B%z4djk`{=2Kbes47DCRzsQSNGX1uv!n9R-rHR=45lG+1VHj|Z?qR`6VSU&3rH zq?**=twM}-iE;GqERFJ~2aZz(b;jBjyYRTUerCW1vXdjgUH1cZ4ZViGqj$UHIE{ki%bO#fLs@-v5KF)l zd9Qa-ai#?lPJQo`;9ySyq(+t)XEV5kvH`goy~pa#u1Gaap09X{NT=Csc$b5bLdP3m z>;Fe zIQDO7zD<^df*b*AEV03F*+DmqH*scZPLev3rs3u&ijskLESaLL+~N9%%o&rZDgA3u z8W8ldcl{xi@bV<8K2}Nt|Ms=pdwpjJYbedzl7RO%o>Vs2a`Wr8j}d3ZVy4mIV6;=m z<;DdGFj^sn`_m77Kyn*z(S5g&+>Tz@5eD&-4+9o5a^6uH`wDx8&1#|cXdhU^`S(2N zCn-}YB?kmd3D8KVL<4I}u$@vNOOXAQPY25*kH?CGyYierLO>DA~RJm z^YMq#(k7ae&PC}*OM zU-F^xp4VSkW-TrN7~}o@b^_^s*Rp=WSjZHdF5&L^;-6zBRcyLhtkXoIvvy5PObmMY0-Ni%Blh&~`yTrDKtmJOdK@GSOc06AYHeNg;IvG` zRIe(tQcZ!WEu2kJ>p`8}enrt{uacMu&U}33?eT`)-j`ob7|uM~oV_+<>=Z|2EP?At zONkoNr!oc_j1iX;XHf=;y{6c(Z68pbt?y}LK1OVBduWC^im4k-I#8?Fz#hu!Vh_Zz z&u0T?mb5(VU!UbN$6ywqRk~xI*oP)I{hui#$t1Pvc(RSnVhI#rh5O=+tv_wQ#aGqUHW*d*rN}_S1GK#ci*) zTcC(WV-{>xd;R+lRTm=!?u5M|xs7*edtHg`4}HSfvqDyc>4kla-nH7q6)`!Jl$843 z`=^??3TzBms5dqfwag0-LSi19A zyGA$)gcbqy^qeX`q&igM?d7B-tni}RFSC^@0^h)d1|*51D4(Dv-&J)8Us42NI^`H1DIY=xfKl*^6Z1rpTSNSwHYg% zB3pyEc_aIy#@7@YwdAeFU$0J7ZhM?}P?&G;hL5ifk>7;iP~fGa0I*=xt?;QfqpN2B ze&R$IcV%@Hc_hK1oSrtorcQOWF?+U4*6XKY<8;2KZk^aDGw~ubLms%V&UEPNiDLJ8 zS^0d2vnbH}=p)P9%-cieP1(mDSMJNe3B{YAa}t8U2U1Q=t{Arm=4B?=9@=5A<@XHP zQw4I$o5^_8^uRxcnF2y4g4SYcb8!ZXjTL;JP|T*rdVg6v<&E8kRC1O?Spyx!mRKgm38@t45^a!4V?}GZwZJ5|P z9{8$OxVaiRhR(?th1uP2qw62qO@|Cran(-Ss`2THoaUviTCckQx*38S=p#FGom}O6 z)^^=Ea*b)|(apjkfv$#S@`UGq80H}XPerY(Qtu^#dhEPXQ z^1XSnvOJmpFKPEI!;<%W@}Cb$v@Vb+$7{R9y`++N>hl$BY)s^6nbC^H6MHUt5TJr0 z<(JbaEBWLs;UHiPFn1pAt_5_qSfg#_kCEO#+}f#yPuB$a+fx%{ic0^SF5NZXOi6rh zY;g@*m3~bH)vD!|(Y$q+P79r0qr;DVZzYqcJ{KrKTW7v`EpF;JbIMW6piS6q7bpZ% zWkbY;@aoL|ezp}b@Q$9ymy`wu2~rka4gL^Sm~|Trc0hzLQ)(L>hwT&bR|OfB*3f?% z&Gy?(3W1SVR29%@MXnTG9q_qlZh2A3#*9mjnKH!29?F`$5IsChMVzBZK)K>@1)lOf zqB{{2?T=SZ@{=#w-gWI4UQ$N3dANMLJ~QYjswcj@@rM`njRja_o-(?5yDqfUL|+m|mi~7Vt68|uP zxZXYz4oOP;Y5wa#%vJW$_4SdE^fMb`M;{w37?jvY1Q@sa^@#p^!}Rv3PHXoPV*9&p zdV<;~CMm0G{~jKz{>IUANYY?70z1VA#s87+f4<@4?>G6C=kM!Wb`HU$e!5VC0^N9k z=w*O~T>CBVp9G@T_I&$v9z`xwR{u)vug?bUYmhW&e=F7Q&5Y0E#gi_U&CmY@-qF?y zinI;NJa}=n-f{slP^(?%A537uL8HIY3h)cun&Nd&q(&ZXrf04AkN)K1&S&0k15H+y zsOlG0jHXwpMLCVY4upJ5H@OA{)yzvyz@GQHnL^_yFKb$Q?Mm658?`&oG;e-rWpBBT zWipjNlf#99t!9b(at=abYATg}6!rFLgu2}u(M^Max{4O@n@tl2W;KOe)&?GrODU?I zT#A09T4Dq7wj+z%!idw4toBQSb%=NvV!IA5Y_b@?-TMx?#URMuYJhiS5seY&uI`FO zn6d`UJaK@Y7p;PH=+M1`BI~-QoP0Mp6n=KMWevs>klvRT-APi{#a-cxu6~LbfWW94 zZeoo)=9(sCmF1#NN$o*5=!J&Wc3y3%Z3xbG*N-P*JLI74=HAT>{Ld7m0MJbpESWlc4P7aDUu^XDZJdMG%4a`taco7TR%iahKCp`JT0Gx}n#N9p!AgpYfG zDQT2>6JFb)*0A3fnDnbok2L&^ABZafORsI#|4?%u;@jQk`JIz@7qvCn`YDZam^J@)$g|`ynb0xRyy#vge+RdTHkgrFrKxk!FmlL5`<>N z2AHrIs(xMwi>#P7A=?>tCWdopb6e-?;p#V#SSy1(Rs)2|dR`7M9-ksOZAz@Jk@>iO zv7JAx>AP=Ty7_9ofhEU#%8H&?XfF7dhqSUXYOB4+=eMegCOpRZ+xO>#rpny2S17z@ z2Gt%%TIpf_z^z4hS|*=OYz${1;TtP8M}|EPi*k-&|q0ogqFY`lVNd1ER zBx(@qt+wF{>BhwjTMPEct78V^Oy3y+xn}`!a{20yv`9sqK$K2r|HGHK5X& zoWL(Z@DSfEaa^dT^E_Zrjzf!>qh3ONFo0)O|0IQHV00R8EK$nJtA1-uNc;NoKAM{+ z^b+Bk`gTJIfgIw+`6rN|Q6S$8PVK;8X{)?4U%j2=7IBWEw)`eUDfw{)elwdXxhVRt z^Z9N4M|0JCSv#%0M2hs6cP!qONIeIm{Z4TZ}SO*0#Uw~?54+kux9Uj)HU%}u? zmedh1FM9};Au7&SSPO)`-_Od_<*4Y5U?AB4oELAE{EqVkjS~^+`_mjxn_Z5Y4(_?w zKLC5&JJqin1IU7cacyYS-2hdOno6UEkYdUyXT01~Y-_F2>%-T2z7!Z-;T!yTi?DQ> zIIo#HM%&Lix)5oBcB=>`B!>W`FIo1fU(0&EV}XUzh$A?<791{RET%uirCANsx_S$t zoS*&H(rR0aS51%;W4+MjLE@i?PUq_W8pV0F|Mq_6nLo4ZCc)1BdIwL;P$N(KT z5npRWk`*%dy#;;NmtD{ihEm!zXFDFgNA2~!*YzW)uAa_0 zB3Vfesitu_BpuWP;A%ii5+BU_W1Xk%coBft;*0aS;7$t)I$W)zVRo&Q4X1;(57qk^ zrGvK7C?iTFeu81pMypu;ry3O{^8;v$nPo{?T6DR^G0>}NXdX} z-f7m^TX5vQW^KN< z*(LD5;zH;z6)MVvIljpbQghEEw>QTKP5Ze+a5lM1Uj4M(z{~V|JYPf6osA8vXydwU zCpqeBagUw6*)UhUyUCmbPeeghNdpRk*xRt{3pr6TN*IbzWW%PVeLts}a{u-Kixm+m zST*3i6DZOmCQUx zfs#$oC^I-UrsMyr+1uAI2>H&rciQ|{MgQs7K-|d=NK|(H(#ZMwf9ol>ms%mj`g1E; z_?4Z!?{dA}v`#4gAkq)vSW1_#_5<@)Qi{8(HtMaD?-X?Ie6_c;udZ>f1nQibSsIQJ zcx|?K;xe1fC`uh8L{|KoO_=&!r}xABsNPN1{L2Se(?X6Zt8+K$?Y!qX&A1p&x_Z9; zVbM})sv}S1HC5=P)$nQRu!|=(wcA1CZCp+w*l3b*mF+73ee^~>5-2ECpJbK{jGiWy zVT{t$!RE`{eIVM#_R@ys{H`0g%hBJ7pNll7Cq$`Cc3^&9Az-V2t*)x!FimF#zrDc~ ztTYxUs;LZpLD>+D7Bj3mILnz$E7ZbSAB8&5W>U4%zJl@{y_;N4l$c}0g5{rksD^qQ zM-d>w6sAJYR*|zg)&NA``Xc-gPU=is4d@1gV#r?<%fupMeAV|CibnoQvxU;-{e#HT z62tEA0vzbN;Q~@ltbfHukmjaf`TML^%!`RW1hdw?DwIuSpk3?7oGzrUeJ@XW-?er{ z5hDO!T7#V$5ZD^pajDjj8=A#C1Yqlg=%~VsP#h|JoaOImm|`nPN^NoaDw7?rL}y|= zv&CK*LD)(M{RiG;GSmL0S+tBSx&HWOFok$Vm}h@`KZcv`;TsK3Xd~wN+p|`Hj;AGy zQ#1drI(CjvC3gIu8Ww>NJBwTCKS$a`x#eFEBoB@8Y4YG@qv-5UBHW$M7uC=i_>XwW zeNl$?#Mqs&G1`D9JiF>G+LirwSTxx*t?+`vV3pZ`BGb81WCNZK>h=oB;ZKg|_?E^L z=9FNk-=`i(A8@UUU)xaxcl+NRk_`7K#qdS-FJl7k$nX?Hsi7jBuNXO4NSaACHAIt4<0a4Kun)>=yDDCf_zOqN z3q9~?pleG!6FZq`Z%VYYre^roAkJvFKj7RRXxZ~U6tHu%f;Zy_X_cwY8MX?W1c&50 zkbYuTLRG_FStoehLDKqQ53EkWZ-bQW55LdO6}b_#cXaNGIdX!Pe+gCw{VHHUrwc{; z6Lisf8Qn$gL@Q$SUM#=46A4w1;q$`7oJdYNE*TWz`^Q#ZMIiMVZxdL-n@!8avg!?? z5l;o9v3%rxAdFyNMiJ|?H&Z0uEUXU}MC6~)B%&lr~^ZEH|qfVka;dHyk4TU2JAf*-uXzhc^d$AqD()x|gG1HS) zG%M=D2wLp|L_XxRdA*Qn%8LzbO`tB~M_G=?!z6U!U7T-B3;>EQ2TmgJ&|_~=m6G!4 zUXV6jxIJ|A;3&HvU>_J}%WK`kbAPGsrG? zRR@ncOc?W*?Mx)dTr&T-pFik#Z|>n@2dnO>CgW?m^agCO)!li0(w%oMS&Y5@d{8&z zYJ|*JuzdQGwot=0dOnz)lK1f?{*Tsb_FrXg|1=rQ#{ibQpDsv9HI>NBz^(Ve(M=Gt zqmFR#%|QJF)`@n3@?S3)_E3o1#LtbTwM(Kk!T^z#z7<+<^(GEz@94QHez6-hSMRqc zlj)r6@?3@?Ws!#CRCKYPr|$L)d8Fd3}^0R4m_daofRlhd*EKeo?d3+=c~m^9Jm z3$h-fMAg5dq=l+FqC*k|l2`kiA7bMku7^Em2d^|?^InxW&`!pM`2)u) z8tho};rhyYa5os{{r^G?*!`~8gJjD#{x4*s58y1kAbFp5YJFRY?bfs%4^9@u0Qy>q z>1gY%8`RL&)CFkYNTeOLB}8xEy`|shomk2JZTb)+dd1n$d;t-?v5ko9HeK+0tXjr) zVWV`g3!KnljCjd(RgC|w1lT338$K|K5R7peY2oHXJ^H02ABq$gCMNd3B1Lhal)gNK zeR`WvyC?(8_Cp*9dCl~QuahB_I~`J(&Tc(l_z3N%sLc9>8%e!D~Ct>LX#5=dCQsPUwo z{7c))g;Tn26gcG2J+4p|NFR{myjKyl46;(vfvz+CKc%0YI4R&zx?gpJ^Y0B!?fiAj{ApU6G z7w8e%|1(oXp!GvYt8bfSx`YWvGBJ!SIS{& zVPiFBp+%)lqq4{2IMHF5*n#S+TR3k=w#H&sydW!?)96>I_JZ82A=dq@j@a_GQTW>l zMY%DP*60~eb?0oT+z&;|(7+&%yaQVc&TvN+g-KU8uvd{s7S=7)xfrK4vf_SRL3VOP zdDG;4{!@~DD_lqokN_3)Bv6tb1v|4^Gw_P-P;z4+dtb_7nPu3K;v3!TJ6tu`BP(lf zeG5GQ;DuB?fiGOj8W=R=MHVJt(B)7+g+~wYwan;tt%vAN2xKbA5C{K!jIbvIYV*6% zb(issNVIT>wB7sj47JL$j6Nv9s*k?j*un659NXW=>y9AlV5q;do^ZwGl0O(6N3A_I zH5J;C12GZV^pB%ChXwTA z|F@j3iPd%8^;v?B#t;N?VTmco*l1Y*=i8QED)Lu%ys)>cH;W3z4PbJ+Qz~{O+uGQO z2n9rXwkavd)E4Q&r3iEhg?{WuF{Jd=x@Osn!bmk*0ws4O&}C13IvA~(jTcA?nNE2O zor1h5YZ(%GQ6Kv4bW^fl&#zu5`s-lRo`O9<>I=d3)U)podE!@w638#G%` z1|HQ=Rhr zLtF=AoBiUC(Xu)$)jPTGidOrX&EP#6FJ7hn^N#6wv%ULt$SkBj;#Ct-^{kC<8Y}tI zu2RcH3$;YrRV7xho0wjBRk)wzxDVUi)05H}Y`*3zA_7{F_t{0RZT5nGh1yRqBjdjj zkMz{Zhigh)N;Q&ZU}ozo_lr#mjy4XM>88qWJcA{o`FEc$gmAh(1m zl}anHd<04A_keO=CtS$FnlNIWdh6pr7|@CoonwRedQFL{crBA_;_1wa#&HcaQhmz3 z4v9fM;Xel+7zVzi8(}47#?D$WG1ejoo3{cf`;BhCx+S3iS4nd|)99M=_b=_2#LJ1Afkjp6_DBWl)isrz3A z{m=p*P}cpiSTNQO*9mw`bZSrOP3im?g}lS7@{iF@PpN>pq}?JKF>TWGM7k5fP|(h( zs_m#JhH(hNh}X+hgfW(ye27o>iOtYfTfcd(>S>!vo;qLc05OD#OYF;vD|A#{N*go6 z{f8!fZ%4!y3MLRkF~Dbz3>+v%eOA>;DEGUExPvUw!lfmMY|-j`52|W6wB^K+;CJ>4 z!c^uTm{HpJ&W?8>;OZ@c@5EXog{-}WR=#_qIwFG? zgz*^evd-;}cjj!oYW7a9H4*JrLEm9(hji(oZO zT&`Tkvp!#e@4aMp(JX6Pvl8DIEStGxdx)_Epf9JNB*~U#ZsZ(QL9>p^qsjNGJ`tA(grCFSGQUlBW9ukOKUh`y(Y} z1fe0cjCr169{o7YA^^X|vP^DknU#{!H9FTXeQ>j;_Mo1G!Sd`%pLwxTx6(ChR>oI# zXaBIo0%=*S(Q2KsezJR7ZL#o)6_X}s7t@guH9EDVU}UgYh{fev9h%>^efQ#*&hAh+ zI=rTW!gBJoo(H&TR9+Me1fI(xmYuDY)tLf+kW)~s;0Rt*F)+y4Y&2UWjjm1W7#$y0 zG`K=7v)sI7zB@o&7tXJ+&9%F`n{S3is~Bm$v(2lsnHOxo5HJFw@P6w4zJyOuoz?f;S;E#u$Y>nWntEJ7hu*Omw&3{iF*zejj8Bh4TJCbcSjErYU!PK>~uOO;^PW= zzszEVCHb!z+9igywG}(j|4%djGG@9~B`;r%MiHK@5CpG`c@#Rf)iaFwDu0vr+x@za zR-3KL*H><4(H$&}Gu+As zbNtr}Uvp_%8J1_bD;5%0_~qzrHsynbL5VBohTki%ZuN`ZE)7Y?S5i5D;$j>ZPq9ud z9^uR#3@r<>m`sa98+Fb-51$VICSg;DE$QwM^d#Jrbo8{0+CBf0SsYnpDWJ(y_eUuo{9Ki`%vUIZnOr+=q;Vbk@pD(S=$Pe z$UY9lN>a$Y;!Caw2)^te5vOO7NJNc(zI~>)QyToI@nbe2h&XN7T0EFjlFTPa8*FIU>Z50gfWTUU%;(aCwi_=!gns;|L|?fmPCqc3Gm5sr5?&?Gy#c$*-!W@ zSi6&ynPj$I_rtGk$Xb`4sGpj;?EWylk{}j240t1gOM6briCH-;OgL%+id=`L{6*1Y zGzT{~5JH&P1c2$%9*P*97C=j~34iJ=N;XJoF!Ate${`bxa@c-QtT%l8Kb1))EINo8 z-jRWM-WB!+5x_>M+B53WY;|=KQgLTs56HMhQDR1QbgSKFnJ`ugChCL9RQSQB@hdA5 z9e#6X+qzw;@XgEGN}I98z}0wV?A4AJ=(6iYFf#?vTY!MW_RFKUN)%|>+SY2myIuT- z6;*AOglKQ1Bme}?_dhJ=5s@85d7kwC4B2;X0`7&&l?Kd*+T0>!p-GUhCsXUT7C3H2 zh3&tdhqy@mwiMXUGYH2P(ZQPku)35Cib+&VP$tpBGg~<&8$(YAE}_(dtvg#oB@r?d z*L;Rp!XBBg|Ao{t)8%2Nv1wAllO6ZSHwTsz;$Sz;3e+?ZPa&*mHyAPasL|+4lTH>}h z6u>wImG|e9ncI|E9LW4^XR4Bd9^+EP{|3==gjXPc0k=RIy}b|0U#r`gsxg*8^!dyl zn42fv;}#oIw5G-?b@+x)^mw~*Hv4(3M1)MgG*cA)pZnL-3Kh|DK6{^HJjItH@iP&{ zQ77=8hKh;)2#)p#f?9st?mm_x**=ro^`>VTV((q~yb;thRN{0EWOve%FGHPf^{pE* zqAmo&m@D9}2~XqX=H3-bR7VI^du{V?xG0dnuCuZb-C3$HF^~oQEv3I#31hX@{O^7< z>Qh{|`7!jC5Gf!aD_iPCfcCzUY6>}0=<+fY)fk$oDBAY+htfp8A|qX zH2@YlynlIkLkO(_Hn4^CdFZ{)NV z>z;(<1r{qpD22&VF`8~y#HkzG!1N;C?}`sUI9Ig(g;8?<@2gb-NO{MNjD1q%z?b?mVy&#v)7 zG}xun{-ML>G<#6;6wmlLSMYr$*TgS@&FSxQnT&f<=Fw%q;q-m-Pdb((4iLb*n#+-_ zjn6(E;Qypg+Z3~a%jFt|2h$dLv#H8CSlEA?Pd+ltTCM4mn zH4WUJ4r68R-ydzcXlif16F`krTAy#6HR&%fL9Lz}w<^^4aNQ-Y{Xr+0cpxvCPp7XI z_dMjZ%fbVdDli>CaoLUpbKY%1DPRdc8jV-h zxLVxfuZ#qUB0^f*GwjNe#o%_DNEopUQ>X(=7GSRLG+QsQGm~Jn(faSOpwxyxS2iy! z;z^Gy<}AR`R9_nNc^+egi|jw1rO*e|l_>Lad+RR{4wmUVhh>BDqBH^L1MzQIv(XRO z^@G7OfTgEcKVtp4~M=#{HREG2dky z(2!WA54iSE`d<>6#$Yk({lT0e_oB*Xh&F0#Cr3vm@A%yA@=pjbFiKL5=R*Xa_eAB2 zr64J5^(@V5JyMm>^76UxdX^v<=v(h_yA@oAmYq#c=ks`zs@48~(13YkItxfA&!3SP zUuj!x;_!H6v6#<)kj1Uk<&Qsp8r<-96_j-zjTgOcdK3k377}6?lHsYt1Hlkc>+}0^ z3iHE(sfl|?@C1r6&U(n>bK|$YwtluT+}47B0U;;uc6m?E%yfG^98Z}(&-k3=T5W4@ zO>I?E{btXIg_cUkN?KC2{)PRIKyJqE?xC|Kg)afbkjd&@4D+!rsb*Wl$bdlv-Df>k zrLMuz!oT{Eaua%89Ld4Qvz?M(eM&$*-5qi)_pS@80ffA?_VDqzz#zy_qjkJIsNK^% zH(ax;%ZpfU5?Qp?_T1M)U}qhCB^E!Fi>$`Mm?I09r?wmY;e~uJ{Cp#^TiqL#=NIl6 z1c5hU<*tUaHGGy^Xo2~pFQ`qnn4%3JJHScov!XBG$S{^zQ4O%`A**0b^4~t^HAEOM zHSQDFI~BB&V~W<*URud|{+BcYb6%|(oe~qhN$dbl7ZC}#(ba^@`P1jzzV<9! zi>__8?uw(QS~lhbMLK*x!mpW@%e|$;874X&Y5fBWSyc4Mr6g8H6Z6U!71N__CsF<_ zae8r3Qefl&M?(3}D23S2#t314VtEHh>0E9!U0q)D?P4-*olRkdFi|+1gO>TaB8MdM zTXT-|NLZGTiX4n{z8@eosBsZVZ^A;`D=|mK>UD?ah6aJfQW=Mq-Fi=ZB(N34BxJJU zTz9fG!6RskPimb4nI0u97-6N9HwD%-x=N{YpXci(nz&#F(v(HmyZVGj2AG%Ybo z18hn@l8m^$GSWek$&w4J%5;Z6j+z-yib6d2w%H6++gqV zB7>=r0AKpY{m~DlbJSG76G+Qc72MQ^E6jM#+2BDNg1Q(ft~n`9A8-eLyx4#?TN$rn zO<|V}u__}H%prQLBeVA`jSC01Izlh-EpoVh#1gl}u9I)(gGlAc9JE>2SAVu3ik%N) z@jFPf6Is7AObJTvn<0Ga2Md<@#_}XD){>@1x`T)!2w(k+@O}mn35=sa1dl>GvjYyH z#Wifl6Z{(U5s!u#nx4l-n3uivBG)z&Fyt3ih_uiDnAh6MI?p4ii?f|7f^0aYV0!JU zs7!svx#J;7LtSi?8^OQx{T1KtnbjZnBC*;_aK~m_2vC22Dr5p`gAmD`7SuTSrC~RT zO9~VpKcK_OufK4FhO&VI;<#SGr?~`@Oaz4?M@XLVPCx>FV)!^VXhe*$<%y7P4P|&s zIZ`}>Jk03`J9X@SK&1wRvEX-SDf(#p*Q|}>GQPBy``oF=dxlAm@0SY_yh2Moq~dp^ z3^#dc4aZy5TSZqm$_I*swu8ih!@-VcKCUv5OoCpQs|@M@W6^!@%y-WSBdoNwu<@V$ ziM)2)AByu0bS}<>v$TW+6p$6po_gyw$%Xf;*rBkMp;@o`RR*#@;iV4@g@E-jkVdi+ ze%F}KHJO{6+y3p|#4%N9E(`a&5d2hHDw! zbFiSGps-Jdrj3}4ITQDsRC16yR=RY7X>n0W7zh!>vA6}blu^!&-}}~Mlh`b+n~NQ; zuc*U{A8q4NCI_ken2VZp4=hgM25OAnbcOR&{_LbW*q(Y>K0N#;b>OT9h_O<|`%5Nk zMdbCdgw#TmbLfZjLUM3zs)l}_0Y5MfL#hXj>+TN9%wV|_-ufNQDewu`qMG9kwWAc$ z$&z}s`wqPIW;Gz2S-@NvK}D&8P?VT#4G!lwsE5LxIES0;;|KyOAQB|p^F~c_m_{(x z<8Df5Jz|ovMAG|vI%dwmLd($_?bg~BOm@P^gNrq_jG1<6=*=!R|88mD1t@9;3Olx^ zr^lSx;1iVA`hgR!A8m_~u5R!O;?7!W4f zf6o`;FTBea#ah_XtyoL*ksGUUXpQ3N1glrukevZk7XcaQ;4`S9UTSI zX^bmE3W})gZeENa!Ek`3yc~hsRTdFjKtb8ci%Zd9ZiE2_-T$pA6aMZXx2Ud;q4(<< zXC6)okv-AU);9KFEbib4iQ!=QFN%GuH92+H)Ad#si&5F4Iv?#reZ#PT&6_li@D_Ql zrEYD$E@+MhOkHVENRx@R?5CU#$l+n>p7y3GCxsEJ1(ibEQ8?$sr>WJL(%0X5mKGsxMNsWk|@kGhT=A*ElpJF>hU%dY#aSKq6I!?8+wKi-bnHXj2XqtRM!{kx{J9 zU==X?mP}ZQ4z3-ETP@5OiSu~{xzj9lQxZU>#r2o^atTC?mktZr=#(04?g4Uen+z7F z^d4*8<#tw}<|zz^$JBHISM+Vx!gxxikMC_5F)@m2_15TYQ-*5w9!XSa51U6T;(1w- zs=IGv!szZxu$H}v)3H*#P6)_m=DeBz0+-ec))lOIw^kpJ~6v;aWK z&;X09g$eH(AR;1hkUch=N9qi%o|!l`SOjUAwe|P9LSUw^6JNjcvRG~^qY})S(h%2H(2OL=C*i*B=PQH44;OD6 ze9&XILXAcrGccJ9+solgJ!t6(F8CMJI!Dn9l^saBz7G$n5wjg}4KP>-iteJ6sh^=a z1i*$LE$pj9eO)0D@VO}&_1_p=``7-uRs7(}Je?2| zWf!HaGd9~o(*+3+hvfOUnP`EE;Eo(mXAR7cz5$YjPFjPK=iDMmcYd3fJIjm@;OpM# zJk@J8n+MG3u%e>Tvpi5!aT!IBcV2DwB-Z|LsKO=AefM zP9h}KA4!nhzXB9U^hAy4cE$xck&$X_@q!pp6^CQVhR;3WMYMMnR;_kM)AD47-kjVj z!z*0fUwU5j6{}j~lNZQ(Yb@~mR$Z?{)pUJS{uL{3bG(J;Y`tsZ8I;+F^`t_aTegUp z4>CD$!$g*f3JY(#T%u6O_Rl3&2AGuQXAJ3|TH=JCdGi5KZf;kc1hsHZM2}G9Ely&l zS4fULaLA5!B&HQM!uNLq^&Za_%7~Bis-lRtP2@c9`wH=KBQefc>U1nj?7iowzJz34 z$i>jZ(?pP|Y%{UhR{JV|6+d&`z;q##NYE^FjJE5wB6FdE!5IVyi51g!_h)q%E_><} z_We1(@%jic5NVu=5sZx(+i1wyxtOJpZ{0C$lu|K0u)afwce_n~=6Pd6k*1U-R4IX^{1ZD@9l8`_+v z+!lZ)Og=b0nL==U&E=90lG$t)eWt>bKNAL5W0}Qsd^d6E;{=@Kz@NnT=gO^Gw?VWi z#4`iW<)+#$PTS6_H|O2i^bvvMa1bvT!F{Nw!5ASN4UIv^jjj}V$sp< zx%Bz8H`h0%0KzjOJ90Lc#V27s8HH7Kk%^6L2Zn}mg_OBn2SAiDdcvJknOuSGR;T)W#Dgkw?-HxnT zMX1u_ueE9aXM65?%VI^-Nu=KThBy;`S2Zd>&* zo+0MK%_eO*UD*i%>HMrZ%D?Y^;jyxklG=Pf!4z@5sN4{-+W_`?D)VBHU(%-9PC*OCgEM2|np^#Za!6W2g#($n5Ch{4vfua1JQz9+EKSl5TcBDpJQR7TN zTo93%tSF8}#7hI&D!N@LVQI_Kc(250yUFf+Iv0>Wl{1b-o9q2M5UMocfX{M?lA8Yx ziR>>@PXKXYh_DwW?Re-{zAkB%Nd(_X4Y6$%&}CP*{C<7v^g2-zG{12vl3DuU46zcu zg5E|$_!2%YUY-J1S9emE7MpfQE9CGi-F(ZWYyY3$ zsQ_7^XbuH&2OKsF;)cp!?MmMBr3w&Nd4zaJFu51LkISZg&j(l8W22dKfcp3D{}A;K zjCFNgxM;%$jcwbu&BjT?#T1jbo;LzVYV?_y4UL`F~Zj zOFqENl?LaW8)1<13}il;u&nKRWBwq5ThDAXRjT)+A0<6%C!|BO9z|-;W$H-)kUrk` zosSpP2txF|-b*;QNZhI5yQ6Je_4?lMQ#X`g4k2ved^S56Nz^SH8%!V zj_|O6ZVn0yqbwj;kT4qLM_P2omVs979)eGuJ|Ba6cOpVF3k%4fz=O9`b7QpkxU;+4 zfJuvQ?1(HlrEP67SfnlxF-zrK?&@;#hoETxOBfs~AT=w5tDYP( zWb~_3LBpZYq#ZXpLd^Di1;AM`ChE?=u54RrlbD8Dh4Xa!@q});5GYE27lH3!Lh{6H znHY;UuP1smIcu=#qk%Tx@%uCqk0@$xA|_iRrOYFVfXshW{b@jNwqD99GcgzZzvHD1 z)%CDuc};SZNOvaA*u?A@PXE*Iu~b(4(T49vwz8!^o_2Fpk5t0g<_hXHXQ<(aW>Kca zrXe9ZgD!1CuXHQJU1JKm)i*w*;8O@4v-3{>c-aRmddqG)D*I_mxQ#Pk?} zUlGuU$h^EPcM}=9L#bwoRvMfg;%y7SOt%oRA=wBia((r%aKYJq%g*CBsux)VL`456=mXG*9+tdaC=>8(G4@-l|}%$mlRQQr=DM04moSIVXR{w{N#VnwP^NA z{jbAa#0J6ItzJr%fR`t>;{dIaXSCn*Ov*}@)t=9Bb6$|l;_;0)Lvpz;4YSYX_ujRc z4XFsl(g#eBldfGrV10G-F2f2PLR2Eu=T}aO1?jk~+5;>r+N-OK4V4XzOehLt4)IE_ zo%$go9)1`Aw@6*tI3;ri|Ea^96ZzW7g zAvZTpU1Ey!(q{n}cv~WSw*fSe<2x^cwzjqe!wOPPjzlBAQl& z4T*+vzBU4yC>YPL%^YH&d8b_}SEf`MozC+nZd19EDFBUQbN0ltRI43It5@l(wl}PgLCKvX5y?lx2PbJY zkT+W^o>wUbbj)1n(fHTfOVydP^@bAK(rXZ&A_Rjb+rYR8A5EkqX;iE$5WNN`0rNL- zp-2m=yFQq>Q&%#q!!Iq)Fu=DmkGUU9YL~I~u6UX&VE$$Q``t{_4-{IxhOCMlG@`dB zIjij!Fz3y$y$ajN<%5ZE5nFItj-G=`&|7bu)R4QEK}iC!dGC$cj1C8qH*>iBJU7%R zQ{6iC#DVD5tdU4+6_nwuqG7}-{7s1p@8|0|)(6CL+rsCO`!6ZvC8Qoxm5jI={a zkt;r+Z?g|3f}+Lw`d3`m3tJ6|A{k|twye&7eD%;9O%p~VjWgUrqoSLWy3KYPU-U{N zbW(&TzTFq+p2Q|X)>k$2>n}$KEQt)q$TDK}DYiJ1l%2&6Zr6f6#FXnA7D2kd#x{pw zJf(l2I$K0IJNbWy^!2>EX{;;@sm%C@ekB;PE`YF`g<*Hm{9L*H3Qxc%I@O5emDLGr zn%bI<)7igTf~D)0FVHrZ+0&0Hr3H@|O!PJMk-(43e6mKXH6}B~{Je-l4}lm)k}~T3 zSG>auxRmP<@lz=ms?b!(h`Qm<-%Zi97IVK9zcXUw%F{3cc3!?NDO0x;y9H;!M?mH5 zM+JIGVBLh)4+W6yWBmi6;ls`e zJSt#e>iUPH@u$8ugib*OtND_OX!!G&D-#?)&+sm#97J9jAZfT0?1 zA;X~IW~;5bZhL=4p&qKti!kS23#nM#%Ux@$)Sp*D-kd(pt)&+JuCJ zgcbX$%JAQ;^+fqbx+S6bqAMlPcTW8Y!oHt_OfxBqV(s7GJ2?v&(=FWm6?u#35u3xb zJtD?t60i<2f8PV|BBo}VRI>jkot;QZTWN4-L7f2$FCoKU2h-Ujp05ehY=jRFjqP<` zu_OI(7f+&OcW5H-kYR{FcRieQ4+;T?zR+^O?i>5aHoT;vAjW2Iie(KKR3+*i ztJCv&CQCD%e)B>>L0PELd9C@Xx9E~w0gZ97`=hqD=R*@5_LA)*{GRa{pg3+>Ho9G# z4kdSWbs<|nab~hxQ`cYiJo!7yX{a@DrxmfPgjN!c5F$}hfI6SPpwR8$TIpm&@C7ZX z%?OyST*C@MYqWTUhb47r#UG%X4?vRP_G{U8>zEv}xqRRsiVrquw%Tm=&*Trp=O~JX zJH&*2>j4!3li^%Tgz;}j5C(0@w@F+c#9Rf5`L-%Cp*fRZ?kv~XWZ#zrO>&vgY9OJU zd2cT#tBvIJYRh_!t+s)YyaE@=6Ls~~rax)yYGA&GBZ!kt(1>%;h610x(+ z(bl@ErYBlVeq-n7Fu6{-nmtXN&9GDc+2@Y7iXA=SsShpqV2I=0^i-J{%rIl%IwH;& zL;9&~ig8bhw`&_lG0AMyaZmVDWd!zzKau2yGZal(SM$Hp6ZZOAR(<^~m3yx7JA+MT z^rKp*Q*C3N_gE;2;Bs|tZZ0UKSsFU@M4A>BpepI<4}`$&>E@M7OnLhPeQJT1TQ2_) zb5QYg{6r-JE~kQ-b?Vme+R9|@XD!aY-iv--1!FwCttt^iEDe$yI3Q}$__`!XH!4R| zI)+`JA3FOPj3G9M;yS`zrLFmNH{D$XWk%lZ<6f;Gijhy<^N3 z8Z00i($B6nhA&RnL2wQshjur8?Ul5<(C(-hTjhPlpM{sj@DIA4hvIL=Zv{ixd6^A%8el_DFg}CV8}4UY4-&W0(7@Ez(W!U6 z+J-_{r*o_3KCm*u*cjgSbluOiH4VSRyO~qih}fjT)z;sH`7Z4vT>k%O;KwQ%IEHz;qbBOw~QM;w2>DyW=j6?hyM zNKEHgNC&fX%~`KCl?*nU)ZwjRjh}mIyr9vjl*O2yYQlc}#fHMS(TfgSh%GAjOo^~v ziT1%tsn+U0`vuKt=P-ByM=?~hiWDBk=_2-99i7)SVz2h|f&-T%=Yc%Jr`*R*|SR9PD9vjGB5t@c4Uu@6_`Fxf+||k`P_x`h)S6 z@rfug8Wy$w?swmpWP79ar6u%EmkZ=dP60!r+4i<74uVGDz9ROhwwTuNzV7?_Q_jAm zxBi0*r-z4!C-RkHK4aziDAX$XUHlRBGSeKp%5X|7p3^ia8pS=`V5C@c9&O5Lnc?h zP{t&1(#OmXxE=V+g;pz$6q<98Z9?Uarfp~P{xF}fE}T1>C_hb|z+s?*`;C_rttG3d zxw@o&O8G5`6sKfC?HH*uDR?Tc$e~r5#8BBdaOsNrH=TFV0dC~qqB+8?cipt2DwYG0 zn+D4j#S`_?ngp9Q=@)wiC1)10P2OZ0wJORx++5%8*yDlz(dZ!XsH9=^7-=vO5@REy zq7J^#>YK+fo5@q>dqc_n88xN7^p)+IfgfGAs|{lA2ct-2a((6N73d*wI7Dl1oUDMj zYL!yYOW!Yn7*YCVS9uPB6q*dRJcIw5kCaqYY8IzBrUqW$fPQLvVN$l-(x!%#LCbut zt6OP$OA|MilC(e|!$nndhVvIjm(2PZHQgzz`V#g{{EM-fe&HL?Pe|itQeutgObgUD zT|EM33W<-449n_zN*0;eRDioW`iMrW{yWMmelq4yxL3f|-+jCLQ_Rro$@bzX*H;an z$L0JZn!u1oOzuRtknR%g@TA1&{YAP!AZgX<<^E*v%8xkB)tZ3YsVspK&b3;-nlPtk zMg8uhfBk7o0!i)ge6=xIG+RMQRHJJDRsV-LD-9V})HvY0LdBrlRkqRTTAP6DZd@oH zUB<4EzY=^EzQHg?7U4<4RW4oNP}WHzp(hnn1jOiVO2b4^j$x_KeT%;Zj4%t}?Bj<_ z9fXq)2C1cz#iU}od+n#PxTGVjB46paW=}n#W3yl14^#C9nPTzzDo97vxvbY%XDMd+ zlT@fwHo%@+!=_V5BoSZ@c=nfDZT0G9RXEAG+Q&h_ASuV%)e~fk8h$jINW&aZKJ)(` z9%%sV73nqV1jjDMR?*&72VGCL>W#4LS^q-^@`U{g$u*Nu)#r{`HrEXczY|e?FrRN| z_D}sHYnU@Y^s?t;TPzqg;)$?n+r7PMXC#CXR(=&afTpphd4_T*dkSjV$~I@KT&uP- ze5aj!dovv*`%1*4o@`%@s`#a2EQRy!;X;eb!%O@6`&c+C5@HOch8BiQY_i$g)z_E~ z#;aPF$XQ0l7C;t2Y?JkpJ$~(B@LZAnWcVJ^;6g$ch30mYeItw)Q2a~9IFL*DzHWE{ zBuB}}Foz&lgx#AyZxEw(tWa>OW(ED17mi0F@zAdKtC&FnyqHVi)=Nx5^RKY8SBhjf z`H)~eL!(e#aTjS&)|=;T(_Caaqmn#VN~wXBm35gJthW90QOXEv%fe&nsxT-=)Cd_0 z05)Af1?PsjTTE2D<}X!E}PsNx;Sa%;Kj`Na3S+Qq^^tJSc2dKA!| zJ{p)+i?L|9X}51m!PP*5CNst4DFY?Fi{p|Wzwmk5h2PG7Jee&F)#S;-byuhpyqAh0 zvqd*P=YpAhbY%ZSad)=qx{a2*?el8g7ihxIy8WHALDr{?yMH|-;z~h5uzGolMIX2N zP?BZa_1WwB?FnCf?ax#;%~X8h2`&=3sjg@+SALxP0*N>(1w0FZ7TVay_U8vh8F?zb zP6thbUdQKG?-cl}K*WS~GEig?|6aSjt|^;0x^KLjc~?dZ1E4!joJNr6ALc56P@rmBhGJ8z zyB(VirPfk${pU}~TTA$ACdXmdfJhGaTccUEzXTNdH%$cJckNdVb3%-2uxgJ^n&%#F zD02G;dSdNd+;Mn*)iirTg*RoArxa(VK22t^s15Fz^LF3dA%J{7opaR@ybOlEn%$yC zk^W$lcX@ri>VYV&wp^|;=H96&SNn5(>lVEt<=U*u)9Ljy6zP}!`M{OFwIvvx46GT4 z^_R^;ir~ieVhL9bh4uqlha?<$PmtW%rre5Ygi`My2pWt5*Goxh`FWB4oJc6GHmI7~ zXi<2sPH4}E!oCr{xTe#LGzU8Sgxf&TJV>BNK6~>%8f+Y4i`a;yr_P9-n*WjP&$NFDaHsed_U{(RJ4M_ny^%}W`78X1@$={``u

    C`iB=%2ZmFbYj{|$f|$E_ZA0$hW4f5gi3 zMFd?B^wENg-~5fAFtmtq{CP8q)RaQg{yF@WI|~+)qq()6h8=S=3$q3kUug}@`(*uU z4cJk-4hd|hv}8OHm>lqBx7I&Ny!%dMD~v7HyBRW3qX{J`#8Hnb!hv8o^%Fyrr#(pE z{6amjv!BtDlMeX-KW*TgD}1 z3^LOzD*Ax8eQeBfrA0nc-5dT4ZmINLU?i>cQi{9wB9sNOYCqa{L&%_b)Yl)R+ZN}3 z(RkcK2=yye%ht(!PDC`?m&n4lpU!-%YoJQIbFtwr=@+<#OCUcDnawuZZjTp1uG$*T zF2nM4&a87>W@qFFimpYI*vS5G!jbFBKIZ%0UTlPxG0JQ)eMY2xf9bN9$j4VofmRs-Uk#i2Vg}{=Kh7b&xI(J+Hl`4r##cV$6p-HR`r~=WdXMB6e0i(CAfu-HUydg zz27%H1M<&d;gBpCk{@905mhgyf<8P5I5fR;a?xF!ZpjNH=Jt-{yUYBv9rtO->uqCarc}e?N-L@))#9?0*SV0`sZ_tkKPun!L_{ z;Og7)sh@=48el~{3KR<2`{MpuK0e&%SzZ$nQJgBPK^TdAkf%0kC842(p~h+`QK@4b z&dJ*bvc>K|8*uv{cF`7{0@<17wr;z`s?HpVMM=zUFD5rB)zJ#M@UL|T3# zSUV8JfAGI?x0Ewx)OqszO~@1y@^rk7aHGuK_}VqXS_1*+E_`-v@@;tsVguU zNN=KiasheM9PPws-B==|&(+9qJM(?^8==dp;aABpu+>K!+a9&-d0#a`>wi-vbU%wk zhY6!f9o~w;4 z!M=?QZ(JnrY^0)uiJyLGPc$V_fM4-@pG4rVCd@FOUnL zVBk%KmBKmDFb~RRtAD}P;Yy%T7*`t`l+OZA8m$P_hY}GY8*9m=Iw^IJoXv0YaBCF# zhp#w;O9mW^4V4?+4+*pf+jo^EDS~cEdSBA7bP0e0@u&SURg80cpz0T>Nk&)ax*`>! z2ab8!BNE8B_H(QJRJ&S}C%L>dAcuD$OrDw!Uq$5))ycw2(Xd+=@v1`^7LA|~%S<;7 zS0Cc_sq(vp6xe_|{5+;rVBJyc=6`K6BzS=D4O9Rv(J-rZL2>}8NFC_L zhvIUKL^yCP0UJDo z$@R?!gV;DfI@Yhq^N*cL&FLEUInuWx)!dbfD%momNIaW4#6n?EaFb3%W@^j2R#AaQ zB5~h?^(tt|J|j&>NWGn}uOm*cma9%#uD~&w9kPu;6R`l=wAQ{LPH-5E;P7BfBmo1d z;!s4@yTD9O(mFCrd&u7_R7}rJ_rtW`KuYz2$7m)Wg=gG zmVo8e`5ZM1FMB{~;;*aXJPxKyY2*d4*|KTeyb@IvS^D`?s(1+CC~m|gOTq~<_0~|S z8Q`VkNRCWOkh|9$lP15!U~(tZM9FGoPz@{A-1$4UCcDFdbp~Of{ILX4_xEf~UBd5U zD0P>hkSygZC$dBngENO=keEB30PTp5XWNMX^Qwn#7oPe5$2fh0o&q~*G6tde>%Wy~ zR0gxrtaW|cXtkoXxVZb@Xg~d{tjWp?#>^Sj@KN$pRn?)b6w6N3maQbD&6|f>HM1Y| zi!$52QTb(bJ&{3L&&A4no20bQ#W~TAZv`)F1BkXF`xIQSDBgKa;3UK`jq-o}pZBo$c^NB*Aj;LT+&{Kb110ui%6Z^cNZ?K)KA7%5O*q-spL< z=I`7KDPgz*OodI7i3sE1%-X$4d#|mBkF)jv|`a_;h zXW%$OR2X0zmQ`%ojTwo8$+RYyXU?B8DU{`ke{7lvqaK-%*l=&!myT*R=EcKbN!0Jc z_9KK%34Opb*XyQnQqQ;iMU{hS4e};5K>V>gv`>zE4;Vs(bZ>ZlF^bDu<3#xbWIlC& zA#>zW)S9G0dzn4-x7}T#5}IkF1*rNHrM%6&)f}5nt_}FFjbU$#*EICkrpZy@djTjt zcXg^vFZ{cF*Ek3eeJkRRz7-GAwlQMm5y33`3c_*IbL+U)@t>_Ozs@DygVqCpEfEy> z$+&BhP@6rV!hn(~sdqV`5+Qi9mqrd7;Cc-zTi}CEfBRkX4LB@R<}V-(!J#5K~e(EG$62opL|9VhxS>SMMMr zOaj?T9*16Jl7;9$tpuX~2Ds@u(jMUmnhvZdx3B24)h;b`2$>XM&DeriKa3?vtF>m+ z4RjGODgpNA2b;<+4^Bpk#l}Vn=*=^Et}u09o%00$TRkkR?igz2WCQQl%|L={jTXn2 zUIW#s^$P1w0g{Wv!MaqGT4>i$>u9*|#A?WFwKC|9p46Fp0gxp*#yWLBm&t|HcJq zc<&&3-@m0gyjbz+pC=!X8blf?F@xI{`a8HyX5@o9tcX^Ki?IQ+gV2YJx2jsA!*AEI zCE7MN(8-V+0N9{3i+=9Qp}IFh9jX`0l%fk+{`?#qF*q`KP<6*GOXr#N<{|d}$rtI0 zyv+csL`M=;ve)qOMzdk>cabYKP(?sh5YQ{Cc=0@voL>pd=J$~*g?GeCGv4c6z0sMt zU=#|ekXhcifA{Pe-EBkN3evEX8Tw;%EjQ(ga}PE3(CQljv?4)-LT6`>VeB``Kug&s zOvcdgaJhz7Xt?Ki2pI=DKljQ9Jb!-uU%+z3NXBWmy4dW)AK-_6ruf84(E6@l??n4V zDh1S9)T88%P53YnPp6#Bn;frbHh!&dj?aN|ii>n&xjQa7UomaN^K%!Zk;JMH<sKc)at{GIb(~aJS+Y+s?M0P~nBfvueEuyS+aT8`NoiIAB10c_B`^}oH`x6~FJY+w%uyWWzXP1UVXl>Ga*f6Jq4Z@6cGP4z_KxI2OVg^J=CH}Hqi-ywKi#U@zY73KhZ_JQkeN@~ zI%@Q%^27dAbw)|OH}Z1NA%z*Y#er7yV(lwfn}iP;65`0&C5cyQ-j1ow47aHbIB;@J z+G{T_myLfy0hBJH1*X>z_w~i!qIuvVcy?N4B${gO?tB5D4u?P~-j(_DZ0K|QnQ{p& zze7IaNyGdAD_a`2M7G9^#5ek=CDOVzzeR$c_AdOH)1$`YDH~!rrdqq%cS_qS6dej< zwzJ=Ka|!)v0}v^1Ol@|1*ip;H3po4XO10&ag$Y$c9iWThPWpBSSe++RWBo4y{s3OfAH;B%Bsu=ya^yuIP&xx0PCKKP?|D`-E}j(drIFc&O1QC zbv@Ldp8Rw6BU8LnM)igza{uo$n-=Ryw1yv+Ok~5m$&$T{?)Uy@2eaItcomLNRx*V= z*wsIMdQq!}gfO8qBPr^BLJavWKh}8@xfw56bMu%(ALpC1lPF(*FZk8#>ef@6U=h29 zeL0RLow%VSm#^#Ctj_sf>lE$hkB>CtJ)LMQ2C;+b{1M7Rr50h)MSz-Ibpk1npRiu! z3$P@Hg`m9y{;Jc45TWluf7*JH`v)dv`O z7;oMSIt_!6HA-UbmbOfKpjh`QOs*s* zj$uwz%Adc|z$a~X?JeIBU1RL-Oy4_AHp#OLJkq8fwut^R-+!gMuV{}O|D)nCmFwAiZu4dP6 zoT$K@)-Yf7I6D(=l((@~C}08UQvnnm2?<9X0=l9FIHQ28JWC7%*1D28UcwMebDWxe zuKHI=@-foNgLe;QyW@S-_h*l**DZyJnr!Z3jt@3*3fH^8CWM$^S=2KTI_R*xaT+KM z9ptZF&?)!#?uoW1BVn4n5R!hJzuv)rty6B)T^Up_j}}AH+B6%ZKzhJw!k7Ds^USeV zQc1v^d9ltL67a5=`{T#m-gEuA@xKe*1FgDJvj@Y%nI&JYuo-RZOK|LVDL9S9%b9Cm z0fJXpxsp+D1G}HPKh;ECBQ_~lFe!V(4&76r^3&3W2qIT@KO?&#H$1o~2zUcbyu_GF zMteGjoWs6O2tm_*kBKXZ*b}fF=Tb@!7n0bmmj&r(7CRbleh)}9InyNQZDCKACSJ-R zv9NjO-aHf4&=&h7B6QHW5wGymaJi*Acs9AB0Y4hPiSng!^5EvPK;dhTJusPuFStYk zq5m}Qkgk!v?@@db4gM=)(SkSxkZTs)3cQ>g*}dgwd!!|O^cUu!P$?sqgZ^|Od_(BU+y8$=YEavW2$tU7Z&v5 z)LuXZt6nZwFP@d$*y2KDbBb7-F6s@G4$L$CHF3yz=vr?VkF9pc@~Z*+o15|M2YM}X zxQf5|UiRBGA%i>!$Kdff*`I@0F20O?F8ev2xxQ*OtiH3?erYVo6uxU?CvN^g^vY_ zZ(M#J?yYHKdXxi#^Lan%4);Dy%GzSIjlC>zOVZ)by%f`@TELAhQh+Y5Fv1^W2?*e# z|I&wS&U@lt@lapr)URx9`Ehd^X&pIwti z@u`!`qge3Z5w9dN!N=I?N>;ZchCT7Y-~FAD);4ky02dp>NS8P{+pH#Bqy!Q!qfp&Q z7?)Dp2T(85oq)$?$|e&M2csl(h1M-i4|)$tfVbZBL(GgjW|ET{!Kkw})A}-6M;;9{ zR*#fE179k!Cxe8%6J3pH2dK)Vc8QEOwN zb(tZ<{w0ej5|Unbs1YY+4Vo+fJiu`8rZ@htx%d2{&%`t9$|+qO4*{B zI#u)iLT;R11Kam9(5r`3fq$2^fzKk# ziG}?fol|Ww$qmUO z=o;~zBIm`Kxe{>`d?@uz5ML$rG4WRZ1&N|J@rf^ILRGcE8-a*Nts3ZZ+ayHwOhISx zr+q#M_zRe^76&bHx^l3+{oGCVp0HNPtlMjQ90!fpb`L|X9WJ_UesGbIW4!SwP?^rp&nLAXsy!F~nAFBXX=sxotWi~jqJcVOCc5oOi0Qe$dyVHf ztrewdEp83>BUAC`hep~G$8c0*5;Ce#70P8&n_cVtb|ws38^r!LEPAOY13Oai(+3w? zqxx$eO&__;@o5M}uYZ~lYp_XiOvOxYu1sJO`S7;huylz0ap?0GP#?V0Dwt$9?8i@Z`t%TUQ0KMQ%OvC{K+TSY`v76Md|6|^ckO91H}5=f=3SFU1+6D=xNnZ(s)zZ{y(4W&kb07lQDV<1nC$3sVJK-z9hVZSUH>twp|Q?)v;G88W%FY(xulzd7A z$+Qp)?f~G1q`d7PD~@I=B<;EhS3=IABP(st>M4aakOD`1rT-8+m2}IwiZV;Fk9DOXQ9an&4uiyPI9; zn?rRhRL{%=d2Jzw=0gw)+K7QB5m7}VR8k#sezcgL$5CY9%aq(p;-jAUhD?lU{~a{y z127hV(ZCFhhG}NacE)>gJc6V$sF7`HD}@EM(#S_jG3$6}#gA5$iKB%-+(wZzXc011 z7K6xrnJuG5njCLBKYYQpGlkDbfB?U=r%Z;yc}{l;&q^8S+9x*q$s!uKgAw2kAi3t~ znJ7mTKV}k5y%N*&l!-&@pbO~rHZp2HX>(yA9FJ^$+RxHawp)65y;$1RXKWGboY&L$datj_4zj_+cUlzL#<9^J< zT)t}Lg~v0QGc3hx}wWN zE5o_8)@D+E2SlU!3|{V#Ek4WV7)kJLlNh$fox#C%Er#lc-MO>J6|_{!lqlBXVTrc zV%#0y@_*OK2NgYCsYnkq{rm^VMqy0-=Av!TGB)4unlsE(}xfo`|~p~$?VWd{^5pVi2MY?40)6u9-3KF zo0gJUK{?tkp;UF16c83{vw)CLW<86sgOA7#%&b?+&j#61oBhIn(%a6q7i) zgvs>w^$~PLPX`m8cn(gcB%(#yh$9>PI9C^W3V4Cl)XJ7eX)fr|#s$r%9HGIjAlYP2 z3`-_`_`R|UmDXTGGRQNG)|{gx{aK*4*VicN%M5u1k%j!-{*K(D_HwT(mlyaslC}#H z+qQ!fA8(s@KAp&Sp<;1RtpL^L=g^ZRvFm6rMe*=$_qA&sa{HM_3_E4XBlc@EfqD8!`IJVmUHxF-2=i%vpyaH=TH+|8!=7 zfTzW?MSXVwN0&{qT#sK5S11OGr!D%dPtgQxT@P@{B74IFa3j21N6PJXGiErGnK88 zmJ|WVo-)uC$e#a9k99grTOPD#j8m=8f4%TB`f~S@nw>YycctE42Q-0W0O5C*wR+@Th~gNH-@ieASmxFd7ziSaVKLimPgvD{7<^k!90)2xNwk+XPkN|5V7UJVK#x*yzW~x8ukMvl+f@W$mm@Sy;biXLv7HUg zvc zcjO0f716M$-B&1!?&+}lU0U#A&GZ6narY(dUQt;ZkXalZbm);b`IVn!W3Msi>Z|b< zAQGx?0pw~A80{X3fG|L`uz-Ewv;Ih0x3$IUgi&}2*xK;nik!vH8U;bxzt*rJOJiPh~4b`fSvELqxfE=!Wj2yp@0C4 zcuMh!ggI#Va7y9=WS^fKuv4rXo6;U$E<=}37@~pZ?BNA~g8B5iQMZ&u&J#WsKQTKz zlvjfnR~p!AXWC0XM4Edv9@e^uTp)Pm9R3B;Q$A@yM;#mLNWKC&<@w_JwQpMhEAvlP zJ+;?H+*U;oRnhGBw<_pBK!e*sMUUYA8sOKs@b0`OO*4%LeQK7mL>aIjSQRMR`jayR zQ~@4JquKv##LI~yOLxczq5P0*lJP_j5i8Q!yNCb#>thUzDt_SESCH~p#R6X-^KFYZ zJShKdx%(aNwBlCsx+KvovBM(WUgPg0 zb5ZdcV;Ggkf^$v#%2aBMEr*RZwN-?n=PIh@mFG$T`ZxESH}M%j@2~}+&?wPnzoq(IOnc~%WKYL>_9!F8UQGm?a5^VHFg$-S>v)+Yst_|Za z_ptEC>J9^0J#xOvfi}yC2A3tT?bIJJq78%WZlVJ_jy|7_5_U6OhTgOSs2Tl5OL`t= zD4+#&I+p*#CDm)y`aGakXfE-Y2+B6XhwQCW&TR&5Z=1<;b>a2+aO6O>Z=3k2k;A4Y zZS4)^z;qC5%>@SK^y`>29?~S49bZGA!y2VobLdw}cg}oK2}MahhlRI=vZkZILPpB7 z{BCxSJ{DpN5E{O*^{A*HUlU*8iO)-fM!)Zg?!D}(90(Yi0LG88XPfDDPaQc6b@sZV zj!l~}pc!(N$IFyYGWs5^eyex3Kh3erN&+dHqR`5U!Z`!7+>U72FIL9j7-;ebN-0A6;yS7iJHw0{3Q_q-BDceb~-%i2st|%8mOo3x0q+CQnm)Ki(XW z%{EwRD~yUmIO(mLnFZ0(FFd#UTTu(7kUC!v!~v}kK%NhH6e&U>$JCO43~nwC_xU3p z#uU2t`Zz_uQ5_M=Dc+pKL5(*VKRozcD5BX8s%Ys@tb{55^SeE?tX=l=$-e9Ks~QTZ zd7Yk?mf;q3Dl8-SL* zs?X?Rve{#ZZ|(>L4i8gOPgfe{erQ5OBBB*_RtE*qv!Se;^-zxqlZ~%$=h9K0IRXt? z5zLJ*Y|9_Ul*S59>_#t6GdQ2o;0LII$qZJzfQ~0oQufzdguRmM=D-%?07DNm_VZ33 z2y5O-vt0<$hnqN+PnHr57fa;21TCvnc)etCR3BdPh?i?5`=CEH+ zk`V+Lq4WxV%{$d*&)|8BXmZ<|=ylup5(KoKi>a(-_gZ;ZnEg*-*BuR4`>hk*AR_vN zkO&!F@I@zDFhqzp7^6jtIwVMxqXf|-pBg24B6^DwK}H{45Ta#>ny88B+;{H1zx(^{ zKliS6)~q$}nserq_w4=b{XTm?gz7c9mL^M_8~N~$;+gViqNwML!6=oQ04YZ_L`R|KRARDZ3s+HNRsZ=;VH(W*EyQ@ab#3_En^42#HR* z%)?QH)H^dlK3LsNs_RPj88=1t+jC1sEK8uT{3yngafQd3uw#P(+@fiIApuEgU=dOb zF6dLGJqZ6c-#TK7Xq~=S&ZK0)gn{2Ww(F(Fazam6at7Y@)Jn$a%)aYzFx{JU;F2PQ zYDqK=v0aMNg*l5}AT}DV&d>-jN=t2(ty(!nI-D) zyFJ(OSHY|0Ydt$6tj2H-)Y>s17fOOxrmp%=)mjMG7=MzYv1^XkK)yNC$J%kT;_v7n z=)QH5oJkz%Cf{^S>R_v%n0&+gQ9p4s*Sp1_q|44y8w#l8G}TH_m7d&t-)I@w5ZarE zT^tE!+J2r}oTp~X`h?~9+ir@&eHYnOqp@ufv|su&WIpqE3_olwK`ByQTsM+P3`rWL zm+_?QEl^|barEu@gO$47Q&hX<>IW}@q``E+54Tt-PLnRd5c1ej+< z=l{CQiVpkm}4#9s6zJQ(QZz{4fzW&d>|L;RW|JeQi zIp&MIBt&}(kf&isQ3~cax*?PZ6ej_o z>a`f32MK_Me!CQlrMNoYK$88Vxw8#L%9(2~A%P2qxMIT!>nr{R>nSbA1*WdGV`xk< z!BC(~av&iBKsWi=xA;!%kTPY%z0dd3#5<0EIw%SH1x%BVEv*9QDz0?0dT$}5bP}6o zxn>8)-KYf<*4f12;Hx>RP&f0TuF}aPiAO7XUZ5{QWBJAK!H7C7(bt7b3VVRV!vg8f zcu%?71H!53aV&>Sm51)-SZ(kO7LrRn`AB%FvzZijx_Or9q5aSthElaSz-{;i)E|vK zovNLQE(Kn0Pst;Phyn3jG)JjR%3z@T`$_vG3y#J$fKtQ&f_^Vo)x($0bW-EHvhy-M z-L28d2IkJ&gyiMxTWDB@vLvMD{Huv=7y5wrG-Q5rA6tOkh?Cn8BQgZx`bn`1Txa_c z2LR$vzgdz3m2*{Jx-9fuvp^}69iTrI)mu4xXY7$jIl?`Gl4+v@k+?1yE!yl`jo6!V zSNb((VwnbtL}y#KK;fIS_v~i&PYkdNOMoit{Tc_&0^A3~Z@)hMeZ$9v2qKSN>j~kf zw@z+}1rN|=NZH*bQ_Cg`o;y3;v!AH2wg--<%$iD&iK7j+1NgPCfGSa1?5(feO+aLn zf}DZ;VXttVq;pAS_@{XylOwgkYgsnB7tEGT8~=mFl)GSA7+3{)TVs&r`dsY*4XW50 z2>o;v2ZGras%%OJJ@<3~8I+EWE7=aG;$&_WO#W)7YDk49&B)lagVPUOB6=DX0^CT4 z%Hav!YyX|dhO^V7{t<0a*AVWlh`r4o6{&a^d-+5|Po)%CH(dc!m5_bmr z+)2(fK9*2A9FFg+>J@Q5g}}6JI37N?*?hF2%T8Q&LbGX$G~`bL_D_EZjmS!<;~#S& zcWVrq)=QQQQxs0RP2}`a6hw>Z;jF3wK&|iOxPqWSG-?Y~J`1LaZC+NZ#~x&WCLuIO zZS+c#f+ZCp)h|CaahR{QsnRQa$J5eqL`hvTxi{T2)MB#@z3lAy`^IJbuX5<5*!D_e zhbxO9qi*|lg~J3H*Fh8R5LPD*K~k;SYOJDp)RI7qbeQiciK? z%3E*qegv31iyeSQL1&-p6G~QG(1MwB=_0+ue6EimB4-LYJko^G!6q9WBV_a zssSDI(7nlPDE%I#@gW<#ivhFv#k!HkGtdLS!9M_mjrPQlW|e@+novoLwMwI=PTkZQb%d5b(LCmk6~20nYwdso9n3b3lEPOUh7dVPP>s={U!ksj_|p zlqD|tv>as~fS9!Z_v+_<0Qi^Sm_%jxBltbI8GIFdA14nUV_S@t-T)z4sQO}Ix|`>6 zRM`5$VhTkpK?g3G_?$+hzBS{~h*n`yQ4bm@RqIk;upInzwAr#54y{iXCfIiG0aT8q zAbEoo%bPhaj-`YRgs)r^O~;FC(yt zaC_VyCSvc*s@um@dw=T+X@hFKJmrQ?v#{N?1^vig^VBcADQFw-NjugQR{X;+7Cw*h ztk#^5NA*RnKujFv--mLxa-_Tzbj`8Il zb;bA5WU4D2Tb9J+J;_~A50C-!#{D1xu#weJ4FT0a@-D9i(0(wT7-#c8l#lNq`ysgN zT{q+H#hFQHi;z>Vn5dPn&hMp(;#rLsB!x21gp=lwKTbg&b%_a$%e9ROiJO9PUS`@N zN;`LSGjdupnUuF1biHL2qoMKVFRxJP4QMj=^?stbB0o$x>vs=aSaaGBbd^G!hmNwf z)NYe`-f0zZ4t5nnmzB;lqKYlIK&U*qZXU*8!IIf(Ry5sQYfth1s^^s7&q@uCF(Z=( z*J6KiKq0B0T6*m&O;U_*3@Cm^W?cDr>bM%_Y{lG>Z8$ML&x9hEsYo6V`u(Ib_P$l= zU*}i92Tn<^;oGUYyJ}X#?}Cls zAsaIvD2>kxqaB3jgN?{wM}a&d?pY~DC<{|P3MzuRwz0?2dfkT;BNGegFE)_P0asCb zOfi19fSrD-g7UIUMeql{K7Ntc#>#XhwJjG5ITh)F)aLph?Mk8qH|dW#v-&{+$FkYP zcQ?YK*Y6bh7Nx&mU}$ctuz064zt7}$3jUB*&XWPv>u)8exq)=XKG1AUYN)+MF@Crb zXHds4A!=+YJlaq%4qaI8F(Z)5&0n0*O`yRYrc-#2UaLS_iecx~_H_0u2y4AZp7<7mLRv#cUMs^We>Wu2XTQRvHYjZBsjm?5sqAP>(BZQ)DZ@rd~C=m-Ym& zKVTWLmwOw`spWYT!QrWCb>c;{eB23SjhIj=6fHjj*Qt=-px5*ePM{{Zw)Mzjuh%OO zL?D#!y*73ResxPc)JPzi%5n5A^@jf)1Q=m8Jb5mWxA{p>E^iW-I<^Slb~=nEk$5g^*3s_NDh_`?ia?PCWbye5sizglyWBiVh!} zxD`%L6A#f#9rg}=Oeshe63rYA*=0+Zh}r5SKJ%K`8(f?h*eO{FU?ypdhig^ z9Ags&ZE-fwIq%fNo>U4%RO1aOMm0o7O~ZdgQ;VpBlPQ!7`#^qFpCk4%cvI9yE@7Nh zL!iIeotxc^xX0g2sn-pk!+5uMk8w6_QCJ zjs4}>C;C7uU4>mkDgS$+-7n+=(}sHhiA3kX~c}#0b@kK5sm;=-wid<(PP8*Y~i--4IP=-llN3eqkF?^U&>nA z+pqpj8E&N?*zJSrmdd0K_da=cxr{%#u)gVFOOwW_J>_X-2a8uk9wTi4yXVWCS;wdT zsNuPK|Ce*57o=PJgOrw1ZKt=yMffmLi=kf6SU0xBj&;oNV~kuI;5qAwV<1qrl2S8o ziFv1k-{xngSnPTsWB2W#nu~c&p=|}T^=9{eSxm!)JM~>UsbZhzmL^QK%e*Wr$ER>u z*<`GWEY>8qI^0rWP!`Xv_+2qzAL6N(|CSrFDLZ)c$=e#*`5o{sv;ZQm+#dOBR%88a zFEiwd$G6$}uw{}C7U;O*8$=pEC~y6gmj$wt?L&ZkK=wBt#PFm2BFdMYd|PK__iUH- z8yL?sP%*T&u<#O-!`^rSm>`T4Ne8=uq@kmVr9KTpC}0wDlz-8QBumKEY`|&Z*ZgVM zhddC4$>{~SrH61^zCps?Y5=!Weubv3mLkZ%W&(Lxgjwe$2zqwsf~9(i0?J$eI1l%o zU8p$!d@yx$8-iYkq)nx>#O>H{eaJ~UA^Us;9b<4RTR6QCW4B&aWfV)gsilZJ0*%l? z)oquz&)sZlx-Yq2IvL-4qd5ujt1n!GJ-6A{uE=nIpT&Snk4nE$FPEx#lr&0b|jod8_%QbE0UW39F;;XWm;p|5=g=2f)7=~GgWSA5i_e2b<>{FKO8+u4B0(q zwb6m*275)Ui2bdd$LWn2q;KF8k?q~E4zT>2u?Yd?FarwtJgS3*Of`#k2QF{U z&|xNGpLTD=s)|J2@HrO+B0%yRDpRj{vJ)0pkdnmOEgBVNIUeJhNW&MOW0?1#mCjkz z?JDi$9bRzr1u?0Hp_eIIBq#dH;?1`|%^CE#qZRqR61jKc!&rWBCofdkm7?~))7!=9 z(ip2JGVai&AlImWaCdd|R!G3OSRSJxt)@glM#!RQ&eJ-(UBc<&BDJ$srO_o#Ipobj z5_Fpg71oY6&m$`}Ggmux)n23sfC1Ku)#6WARx2(m`sS?#}n_VH}PhSjZJA39&asEm1XD-Gga2|J|F z;A6#Q8r{&_()z+|f+no-PFuHs2%`>0w2#VZEikTFSvvN2Ex?rq@i|n_Z-v zvVvs}_oKSFb&Nm5Mw_Dg>ok33U}w1bmhrH<^qkt`m*9Ux-@XYJDz zZ2N6pRFl=-p=}UmcctKlKmq>xQ`hOh1~E-m)kTcQb|vF(hS4Zjp6=%&)yWuSrFh&@ zol^)#Wj!Ml=KD~g+! zOC||B&oK*oT9in)N^t`E=J+Y*L&c@2XID4}SRF4TC&PcO!2Rc^BR7dzK~6Bt z!1RBOYJosmn@{$C`&1lJxl4S@9iXM;ZnYi|^q0y=i;{~lD! z<^>lloVN1(Uzrl(>60?_(@f=_J9mykOHJ8upKE(KTvogdX#qygX{qa~m8n>T{0Ao} Bs%iiL delta 57564 zcmYg%WmuG3xHb$!cb9ZGlF}gE3et^$G^n(|kOCqlCDH;)cQ**qARt{sij;(OeQWmF z`<(B(#y>K%-giCg$@{+7NECE23R;;Dh0R1JG;qEZmI}D;$ygG$Hh%ak2ypgi*=Em@q}0@f>L?m^)Q^=)aFFVGexLw&occBXXiT z8Y@glIyi<}bTFLUoZY0s)#c`UC2BddY}fAKN`MSh$sVRXsdl01Icm z9?AOf@4|TmFm^t^nZB~ZLi?oklN|8iA*cU+Rr*|Lt9iw8M;hy2%SAEFFnZZ8Y6up2 z!vFjj39~0VsBb;$UaLu&s8Tj4WCp^l&+y;T6v`koc{r?=$;i9T@q^dGUGFPX{cq*Z z1UWxqAdw}+T0yW7(bY&_r2jooBKqL(;4KzD{`GbK_dneUk=N(ppLuIaM8NwyB@%bp zA*=#ELAsbvw#83}zi4%^`{@2Mtt$9G50ZtPg7-DSw_gnV&-9(*$b$AG8f9(+pO^{g zz)Kyi_QTr#UF)9}XOoanD>Sun(*J+I`|qp&_suW{S%bIymW_`bpzJ=0Z$F_k{=02& zBFiK+?<{YL(@!BYS}#If{<8-<5kHx^prXyVF2_ zf4tZJ{O>n54h}^o5AE|*7V2GuBdV(fW?psvfnt3Dq0zvC{y$F7i#saSut)iy6NUs; zc`ST>=p4p{`Q)(qxVC2U|4s=GqXp-1AU3nd@$c7#IFUuKABuAN(3-OQ_!9o_=`bfD zg}XjJdi9G8}f8>An#7NBlxB;BVE5&k_U?@m4ngoUiDgXVrQ@PX7hr`ELQHTr}<2&Qn z`aekk2BJtEgCf`I3-51{76&GN4i@347{<^pObIX|Hi-U zAmVwSKQnG#cjM)=f<=Eyx;YE~`@?)35dSfUnrUxqa$^x`=cDdG?7w>qlESp_+C7RS zY(H~`v6yVyfQM>Hx9m~>=P^NuhdPF`R$=lofuB|rj~@J&v8pjI!gzUF2ewAnrwDT3 zWma9<|LX{t^f{;%%G(q1NcD>a!eG(qM^$A1t{E>Yg-L2Cml4AvYh5CD( z3GCk-i-f7bkQ2^}UZ$AaGZh6gP`XO&^SxBL|6*3kqp?Sa|aB->1SE zA-1-*#SJ8_yyBbnyPT*M`&yXP3jdz+DC3i2XoW$O&_!59&DHnid^Cia9%(zX{AVT@ zcW||Uu%RZVIfexpkv$H0>lnGrzJFZ^nVj%PikUVQ4_N(|7h?6LQH%xoe^<4u z^KfvVRBbS_;P7$rdOVx)lPT!p!}IU&6ZqOM7*DCj$Po6CCBjHb{&)h}+9yXV%eBl3X~=!n6i^CfY!>Q#C-HJkLF}l9*fu-h zECH;k8W`BVx7ehsUuMkG;{7K@=Ke=;G@!sXOr-S%?;!rN2++vi4aVBI0-CLA0}su=(7coX$}; zFa-M%MQ%?V?vzv%|D2&6YB`vz`6_uf``iPj(xCC4G*dRH97pR>^d1U0?9Uh!(ICX4 z7>93-8Ne%zrU@$Rmzz4+%FJIa6sVJ%iIOEaJNznDfQYbKLMzhd8;hK&5N^es8MN{_ zJ*yyYKU>>R-A7iGIFj9m4tDd>_v-goo+ID&7*U&>i=&jCY9h=>Q9&;q;GtQt#8J-c z$Kd?bzzgEa!)y+Mfzz}wy?$$nT)n_@JA9FeEgc$8%0ZN@2HTtDe$^wm3R6?&}T$d^7S4VmJe#W<7#3Vm~# zLJl7m-M`@`1`?`6=bb915=RKVpnY^O?nGrGDKl)|Mp>oz6b#VP-o96mY2Olx3M*QjSj5=rtGGKR?2rs9Bd9U?ECBleBP&}vf5*vx5aS%ZVG6R!a z$8CM0Hi;t9JFfEhY}lPqv*+%Y?CJ8REvlL?B*Mrr%}jBXrH)FRG5j(pr2SJAqN z=iAPgOTK;B@3_Ciw5Rn}g`Ba0m{Gcz@91@A_{ZZSf>u5_>0ldRo8KRA2!$#$AXjnw z7?hiGtoOyGp6xGS_v{a+2^Od(vcB4{n{j*(qLuO`!a5+KOVWP-?6o=f;wz}2j4;BW z%2OM==w{Wc;(~%`N; zZKR@lK>-1eL6-&56kJ5w4rV6$!HYYkZ}!?yTdAJH0KJC$CkYkGbEfyx7>l;dysGX1eM68W$fV_B~TIlkIsyLC!mCO}OUbMo`^ zQ{ak^$;kev*MGWJ`=r&##WA;VaCEZ0sgA5T?egT;ZohWqU0C50`3SrzJ%lq6vuXY0 zO+Ng+KT!~!;eR~PmHs*l%1Bhn?L!#r+;Mw0DYN&yFE%+Nr$*(Wn?Vg z;?wcI-WpD@2)tChx4JwTlZlI>ebD-+{Ti#r*zv&)pAsYm^$#dd72o1lF^6v&*9~QE z|0cG}^0gj57F&yCvX+!ANtE3oh6TZe_09b4{--}Bkcw|;ZPft1foVGq@$esB&WY!= za9#(j@0eYhMC%N8BcBS0jk_X)#N(u|3Lkj>e0uk$Z0@ZtQKeeWmRfXmFQP)MMe~)j zcvTHlT7CPgcmcvvc@D)OF-QUT*hb_~H+2n*srf+MAgxEN=y(=!u)(AldQllGi`iHzA8jO03~ z(j5{q_OCx4uAGL`V%x5w($z?RB>gNKaDRI)j`b6yJ~k%h*d$Ue{r)gaV*6(pZ+m@* z{wbQU2)nszTfY|=GG{;J@iEtqXy5Eri60!a`krhod9NgcQF>?3DIpe%A*c|q|HpKm zGQQYxKhvqugovp!q(~NN#%uD6rl+pMs%E(0cM;GMGKV5@H}cGTCM{WUx8_3sfE6}o zEMQY3E&KHg9?-&;KkX(h8r_X=3!l8d&W63O`PKSdfuvPi>NH96_U~k!A8yyX4)`$$ zz~4W=bq$S3W{ke9$^u!=Si$1e0L$^TiQA2iao6Ah^qPX`1WV!BUHE*`+hz zKM5#IHW*7vztT2OdU{A+MWt%#48;J73Rkm>v2Pg*Hla> zUURmI4Agy4b-uP|iF?#8(BEIuYZJ{LM4-IcuS@*(;0<)f^mR<49gR2x@Lb!04=mz| zR618QffuWH|liCr`@&_r$NghVK97II2r9<2aMz^Pv1EG-+% zruf;u{(kz~vExcpB^%Ny6;+3PiBK_93h zLCB4Q4@ID#XD}?4y;3s&nQEh<8uM_M=s?`2-q_8P0*4Ywn(qV$mY_|uhdea$Azq?5 z$cE~~AVDjdjHtWRqZNxY73))>Fctb`=zDk>7IA1(aW{GT+|TIqqb86Wz!X8P0ctA& z3bLVxX1x@Kd8Anb8&ecAT?shQM@d11)lFtsoDECOI!q1fbW5*w$8srVd8i2s-;mB1 zz66uWY$g(SD?u~6omvB0OSW)5Xn5$yq3`2eq~Wpy&Qr_Yjel{DV1;4CMwx!9HB#p@ zLmF)g4H4ID!I9Ff6iM~&tB=)_zQ3o;BUU#o9#&(96F|O4kS{$9As?ErciD}nt)~8` zqm)2qvPp0#yKPj@_ZfLyw3y6CIby6nO8e$rL!<1UpFg8-F&0Ch)=Z#9YQNk{KL)MX zX>}fhj5zF0zrwt1rVdQdpv}U^GMC{9bjL<+g+uUGS6RTGqFN<_#={{11($?p+-mkzQuJ@?$#?7-sC-3sG6HSA@H zgGTx2m0bA<*1R@JG=TNU=HOQxZ5F`mrZ}vh!$1>A6&z&I|0P0;hkNii+B)ndlTbp0 z2W4<%h-iFoUYs=N*G#WZT0&MS-uv@@dpP7Z$f4;EZ(xbp497XN7#%JiD4J_*Qlk)lik~L zd^^go%<=RPLi93J+LO|n(GQ!jq14@<-3|^89}*MuvWJZuTzNp((d4oHgP~GfCNXFo zGpX?BM|P!cDmrs4^S*39uXwOkEM$!3!P_ zn8d98dvi6m`}1`I?r>Q#co0f0zMHIGATzQ70R~xXT3XtNtSnx;CN3C#W#T_x6w*1` z{n&Q(6juYg%9yWMV<_pdk^@FW#LzmTeH8B7Uv6uG$Av=|wK@%79o2s$@#p2?5w6Jq zn~Vp2ioHR&hp;`5POiE8i&=o+qCB>ppFx1=BVIq$83FzK5g-O`NR1080z^SCQGA3M%q7t z*ZXYRl1E{&>FB9w@0B`s%Uf)I7Czljg_I*kOnvmSjBSG+r0 za63NlxHp588QCN0V8zi&87n(RDu*`W6RD6wlxEQa*$(G0R-gSwUr>ca(O0^!!XC?c zWLLCbaT2!tl6KMP>|u;^T-6I{C>C$ci)s1xMJz1Hwrio>Od?Ix%{2Q@2>>9oG4tqtPNX&vn) zMO7zJtOS>iIFGK1zGiWhDk_E_ z*yMzhhsGbOz1wJTaAZq=1sZ&Lp{XmLuA0nl?d5j1^)*Z3worMy&wxH1RXD6#|8PU4#NGPVl-7QkFo8n^DJjTz82 zxty(3@xkSCSo@XZ@A13{jZZ?V-(#o^O3s$w{NcI3=#$w1Eoxz1h9EQC29oSpiK+%H zkv;N??L0GpDcBy$uR|9eB1*;atLz+mw)Rtl1;ZPo{RwylT{RK;2U&j%P`)eImVw7! zsjT>)#0a@9n?}%MOM2w0(KXtSGdciV5^f#H3PbKA?!*@l98T~@T}|b8CpN<1@S%b2 z%*kOxhtE4PEU?on-^pW8kcZoonXexMlqsIr?Zg$VemK;NB&_hFQ^mwIDYA*$kYD9j zaY;GR#YJ^|P&x)Y!XK36>Q|d;G4_wC?FLy%Rt2KeL$OK?UR3-8EJ#M^ zISHM)TOI1G#Y%$EEJq6gn1;ty6s%-@FIFQ8biZl|1m5^ajoqts?n4i!QF?LA1tozK zK9_!_1}SF&ll76OHxCB6*CK`?ll?cwLbBE^V@#7cE){w_=w~eR*YAh;Iu`vmK#G!5Lg&}o*IsY8SA8I+q8l(?tJ%we~Y$xR=iR7(Gi#4s=uU-i*2jUVN?hPmC}-EM*u z^h=uUwaC}u ziRAEMl3Q!`Ap{QlRV$NI{w+?z`3lS;POUG}14lny!1i71`SP1;kbL?|G#BwP^P$KX zrZ5HDN1I8y(7+ZRlX?;yn{|ADwG3$yfi9@W7hx73uf2Zl!-U2+ErdZqr%>h%%mrzl zcTyUCv}6PZJ&CeOeHEYNt(e8pN>_z>|96BGr$luGz2OVto{rB z0nL(k7waF=(@U7r8*{Gr7%>%K%#~(}XGJk6%Wh%?!Z^V#=HZ(8L>cyc@ zXL{q#Rw<{Ty7k4<+@_QS-dLW%~o1tw(By69rwJaG?Z{Env&?cw!3h=|g}| zVEcQ$3~s;LDXI3qe06zqGG_ZDM=r{l?OYR5&t$2Cg>DS8CwGHc=o~$f3L`R)kKpU6 z#yC!zKB=gPtz4?KpmsJT>Pox$!X4CQ`4MX^RnXdje3Xx?Bzr6Ir&ag(_;>>Wu+@x; ztNWcFl<^qnDZ}Doy%!o~h$@AVnVeDFrrj@pPnV^aEsT6mko}BFLPDa_B=GLprqE=> ze654-XZ(TNg-BTqGIM-0Drb+K2TLSFq0{h+3xIw^(MIOPYh+0pDaB9~WH0u`P%D?D zq#Bj(?N=^7Ub0K>u-*zXaiqOTw6_$`B|n@6QNA@d_c z#po(iLb zkFnKE%mhrq0PEQ0;Y_caob=qC?rlWZ*R}_T>fbMA%y~tBm{h}hE;VNaK7|40M4fQiKI~?Q0pPY$NnMN@|xaB z!C_p5LNRCUtfGO}?NJ>`g?Ztda6gh(D%5**elSj$hZ$H$7C^I+52S4|H((nZ{hh%m zPM6toht^`)n2l+j0;FwUC0m-5;3F;!Tn0QdM&b$YBy=3cKZlzym1mBTGU}L>*YF|l zPvlIf<&liuirC0o9gXZyYnPqyJDaIIHl=Wb0MriN6>o2ScXJsW?HB-tpl=0WysAri z`4&;M$;^AQc{w?cy=!3k`C+`cfmAneC5TTZF1DMV@(O)jF>6`AvwTr!oOhhmSz+i# z7dl-M=!A_4#+ES56eQ%pcp8ld6SL}uIxH`;9}Kw zEVGB*VPRu?st9oROP@tzeVi+8RqM_`8@gh`7J;`_#*E@s{!&c(WjfJl6hYn z-q75nc`nXx^X=s9SZdMI*77z!8DSTgEHDhNXDNV&2K5Zg3ef8UjtAIsi`^+PAEg8l z*7x>G?}n#QG3?F8);uS~q-Q2KA4haGgu7y%o1Yby+OR(|81dfZL zeKD0!2V(in=$xO>P3a9)=)0iYEkX*8=xFr}z5Ku}qmTlVR;Mk)4!~6Jc|HL64rd2~5gY zitd&Hf%T%nmdFcd{g^tgB*}e2X;UObz%rlGbvuTLuY7XvNfQ4TJZG&)5k*sDxCU z5|)1hG>aVPmEMW)Ory*^W?_F^eD$Z}-u!DZ?4aq_#<1Yn&ki0KMd=wpFUBP1T#XK;Pk-tL-g8dA4*S?uI1f^IqI4@7*4J`I0<}YH%IG(k6i&%$ z%~8NNvzPYuj&0cSFqh6Q}V6@hVi+${G-lMm&{ zg+jdh#+YSc0CN&V0FnvHv@WD>!M|JV;-)*6mBf=?W&*$>so^y%>KbP#Q z>_Uqr9Ld@n+4VFXvCVtdP7AqB3}x&zJl~e>WHmTUDqTx_Gw}YqJ?_WBct?LU4(|#* z&Dq{5&OlI#vTc}#WUZC@mX`AX@SzrP8r2kqEivaQ#T0wXH!@)6GX{f!@&dJju$`o} z$cJ@(#_su?@Z`n*+})cH;pxOouI0U)h6nv$3O==5164d*%M)%h&Kv#s2BVh|* zSlIsdvGFHC7xw{+A(vPSsc@fW zD!yw|Wkr~6M0DjRL;s^kJZWDe`l=<6BTa1LALpuvE{*BGnvYPxWOp5+Ma}K7E>II6 zcO8q*A^cS8v(7kI>yU^TacyW|ydFfzJr$kzmw4uo@lG-J9Fw*vG%9*eXfm$SmQU-wD!u1Wi=&B6HHrXONZce=ld zt93uvHhBlCWXT>?sf8k}uEKw`->|Y{7&Vl_lL%&!=_^6~7_^2+m;`+=2_sS}+IkCi zm-_t@iMTJOBd5SYZlmU5xp|xM`9k`FsdngnNwImm<5V$RFTuS^>6R-= z8@mai)~}!Dz&(3ZwS%<~rXcqnS0o=0o-s{?EWxaaRq4f`?>iO4&~7M^Gcxi{*u9uR zQ~%PX@;No}I4g7fq1{v%6W2nu(%?yhil4dQ!0!nIx@rMI0};2m50T$qXNxfA@U-fi zQ9YCD`TK$)Sb-RHz{-I5QQ;c~1lJS!P7KpXGh-j8#>PwHa+Di5^@?jlrL0f;pohgV zZ1%=z()Rqrib61fn{Sa#?GF8ZpBdxw@B`BCZY?J9jrG~m$WG%0!J*TpZ!(!%)&Yb) zz?RKDCVgFshZoq-5V2h;5FEROfO0`eV{N&Wq{S5C43@>_3)9-2E~BoKlJr?8?(~cY zq*rsHhy*rvZ+Zepi@|X6=kOYTHrVG0(W3qp?(hy6i&2?z|G~}Y?=q^+a*r`DOsTlB z%&!hv|C+l068@)=BsFjLD7urcuY(_dr*?aCh$g??vA{U2^>703~wF8NCRe8OF})&m|K@Off@o^*Q`DVKWb+2D{~ zH?H=leA~@J*O{2^ovv4Pw3OQ#BI2S)FLf>I)I-I`Qr;CS)0wO18x{qF9W0~KMx-YO zF=0{!V|PW%2>$6Gg;ndOU~K&Qg{@QeZS8k`uoKcx4>$vZSlxp_)Ba72#WHusx2)VwL zVcBpi@%5mz5mQi?Nu*wE$QVdAwe?o-W(ND8$gq)`4>-fd_2*-*`R0zh);Sf7-eOs$ zvGU+c%T>>N5E-@Toqr%}BaxYV`iU+&oSY11j{h|1m8U6UwjPr@&*&5-4>`a5m7U6# z<-@oqXYpoV7;CxGqp`aPszGICc=}|xRrh)*P>~hMo6i&*i0yum5*82fgpdagWeIFf z=cwuLYQZKh_Xaq>B9;2n9S+RV}SpSP&6UD~C7M`n)C0Cv~GMK(m*h zI~`=dl#0~!p0160*JWaK;Figz8AY2M2J7bYnxfLSO}lCbv&ms7U_=i6PQS&5-xWnD z82j+JTPLF-=xLPmz|$#%A*MJ-pJ*HU}ip!Lt# z^gth%F6!omi*v#A6&+*w3C;PlBz3?@JT6-kKqvfRHNcH;3`*LMq6SX`7(j1JEjr9y zJ8r#}g5BCLl|G5O@%A^884`rN82_v|0jP@3UN9b%Gaz+E_YkuK9ma?Q{@m028O7gA zEe%?NE?e^YUbByHr1LqjU3+w%a`G(Hy*CW!(#;O4pXD4XONP*yTP&J$)h+3vyG0(- zr|IpZkx2gGrNaH=qJRx^`!$+*8jg_=ZQxm{4}T4(bKN#D^Gts5diWu(8}7L*ghK^v zFHtX=Y?(wd_@(nPKxs~wn>~IrW{P_f3DWh+&w3dE{E6VH(G+8{2gY(rF>Q1n5biil z6?CyYr9$v<06M_B_U<86zNo;2Vr);9q>3c38tuq=z%abjf&4XM?2jm%kA5 zv~J`1dq1TOys!#Dp_2)0&H4oc0I4)2I3$(K+}ncGhikgpR-L8{1r24mr9k$OF{YBX z@C&107-uC?D1LMe<^{B(SI&tyYQhq&79o=m0F_RhTo!KfiuvlX$~Oc(hk)9fPNz+r zMqo2@kG`Vp`nA;KM19CuCZaG$BCfm(gL?~tF_-2X_?7qGIY z^A3|=Fu5trTD(ZPUoapy5C!!MW1>OaI9)eaw*o7Gq6XWHzq5^y(0P%lNUlXFXMNCx z!R9H$06|kO(3mn9yv}`%VOW2tPd(xh@XMn^PKr{*`C}`9L5=|`1#?V&8;pWJ{V7}U zMeOpuuC`PGUHPiSO0%a^nxt=a>}OlN*d9?ZxMblaU>Ll6x&9sV6<6n@8XyMv?Z}ql z9&)ozch8^xDA3X9a1E;QkzcOk^S8KbkQMk)&~V}b+-$(AmBFr_!u?W`8(`;;0X@dU zb%HznFckao)Vcud1#zb^Qnnd}8A)O!I^!%Zs!S_;7C+!vN|H`fbFVXC!WTUCQz0VG zaV0a?yAfsE8KfO|S0x(R(ru&JP1>#32Q312!xX{Vd^?XX&_?CGyZU_wSW+=QzvvRZ z0KF%1SV9}Xsc&*dB~LUi0m@Nl!s#Ex;KvZO>U9pghn>Tkm%-e`aewnm=62!HZK!Q3 znxO|6YxB_y18$D`#2dwlp8nlmFaW>^mmCQ?f|hL{#2{$}fw(YN@%s-DDExFXt+3dp z>T2;jb)55F32@>R|Eml5c4k~m^zLxh5_7Gt-5=QWIVOS8JkYXtdbI5qi;TCY-wZs4 zVV^)NDv?jU{j*4SGvoE>xZCIv4KgwDn1m1QculOt!J`h(vk7&+sbEylw9{T@-(S)p z^gIYk{uq$eL%9*O#dB5<$N+YS`!V7bbAPbsEKhGWym#b*Gz&XHD}|grlsAYHJJqDK zDx297qqEq=`~bUA8@nQRt(_wb#`Eqn!EvTMv)=C0rWPB-JBu^fL!L8WZaU<8x5#`n zIJ3(pL)7AVRg8dp*?jjdYuEKwx|`DJYK(^>9QPUkA$9c9SKE2FdaL5$haW3R?!nRf zUB)xW-|VhF$CrCw?ODRt+W;$2mjf zn1#GwVh)~%(!b)G!k6lGb>VeQH>q<>##@i!?xP}RFCg`<~0gQ z>e)D-PYJ4vAbW9sNJDtPkOGx2?L>Q0tA2jKU&iP%k zt|9dxC{8d{E@^K!SNo~(=?Lv3TxFyXvINU`YGmoAEqs)54Qnh4_NQB;nY$~v)xmgF zLMjL)c87X+RPAQP#vy(RPpi9ytdg*y2g55uG!&-z)ea|rn8Ml!Rz*8w_(J6Qk@Xy1 zmdX(pzIER|>MxE%o>-;GFAi6Jix7R}mq7VJu zqgy@cZl>QvtY{Tj<2eTF^X`-9J%)ToCR=2|!A=&b>}2NJr+$?$hlG!S;ltZxx)rCD*2m6`|*YsXT(- z^3fL|1#&G4Orv&SHY*Uea;is_zr7BpDaX9YVrgD{*+*lAkBp~J`#zx+GDEyvyS^_0 zyLo-|g$89!!x!j&YEQ{O;f59|$IX@0@YJI z3clnMxDD=0@*;%dp0{OBz(wGE<$}?r)AJvmm~C7Wh3~Qrr&g|^c4`x1n+Vp{u4y`#ua!ZpG)dQ0=U$-ZHE~s%5x7a@-C=S$QdEp=O zhM4v}(=BDyH9}+Xnl|UW>*S)W3Gm2u+u^~43FPKJtKr6OJr7gh0Ct(dhx=SZpJMNp za{w@=dYP8t#gY!Au}{J%Ue#iG$DLmjJOq2AFfW$q;w}6Op3|RW*yfNYuieJ;JD^Lk z4S6>i%~47Xz$Y>YU_4iMQvz$Ug`ou4#Jw1%HE09A?g1Yu((Rgvzg~;&io;CQ%t)$QLLF0yT<Z_aQ+Yr~6wdkt}^NAXUTYU@AHHyyhzp``dHB6{Q2|Z$(;j zTDZwIo+xi?tb#}$9KywC&LQ3gpK{bQABtQm?RVjgCKKd(p`e0iX!LxQl*5R8&A&uw zvcRx?2D!N*_>|^HfLGTSDC5|wP8{W@s^RCNoz+r)7%&k<}yC(di7qmq7Wl9nER(lQN1%DpL9x`TSW&$oi3A!KNInPolbGFDU>>?&r@JD{VO*cVd89QFkMZ zB_~Z~D(Z)B?mJA)w>gJeJT-PBI!cmpM6J1Hi(gjse9OS-%q4Sok!RFXgn~)W`)1NB z({oJVQ$qqC+r9imdhL^6=Dp=^lScE|?oIi>EZv`1Zq5Yr&$28KRPKFqN++vfV77z_ zLP(lLBp70TJP4b|B7d}Uar#;75tloYkXU&{#?jP_&Xk7YFHGVO!!Ul9cSFWrDF8__ zH)$OS(!Tc#bcZ6pKbotvZBy~i&Ka?v*HN~`m=SAW-oTiF@oM7*e}wYsOfJFhZ+GlY zGym>PsUI}&^7?M2z1RSbb{6+cTMJg>OF~phhy46^oyE}XX9XhJ2~uXdhm_MHap5_K z>?$g&Js}i(Tq%5s$64RFJu5zI;&aTmYFLsgiLjIXB8=4Q{BA5m8pUwn^7QGxJ?YU7 z`r}?kb!v4Rp!MQ&od!y)4!mcJK%qoqjAkT9??>23!T1r-*+I}nrA`}41(@G68=1$0 z+82f0y~t@X8lUvO+Sz6Rrf85VgO}8$*+l$Qk4O9+TT7Is1eUpazfQSMOi;{Pbq@C( zyYQ)Qc}WWO&0k&Z!M8E(hEpk`)rLp?OmX?}y3WCBc(^UOLm;8kQ7^g0&or6CXAc3# zo@wR+FmZ$k6Fb6&l!zXNOyrJ-oTx+@7#(R6JM)(!=k2p^*LyW_2(GNT=FX#J^mp@U zr`T;?Tz;!(!}bBrmld^*r21VRnVZAVSaU+&=J29XhaE!MpLk})s4f?@p#AO$ym(jC zp`=(!k(I~*bD|O_whEB&F_3cz5cOR0NfK?w_}mz^u@6R6tPt!TD;$k0 zJblcqu{||8`L`Yzni7YHhsDP!ShcfCXTDX8JD~nn^DddG-K05xSL8%WbM?+3Di?q< z5?}TW#e^{~P@PG-qMeX>Eo6k74gTnVDdBlNDf#kNx8-@23IODKRi4`z0%2^_ScaIO zP3I{b)||nH7?(wzu*})AmbL>z?s>7$3RZax-4P(a`9^J}&Gr}<=QZo&7(HQZnp|*t zY3Ic%xSKA1oZgN24|W%vuinLbrdk9xef&FV*Od5mOM*}eD^$B|>Zi8==~-D70{;4% z^vP&FM8&39|Ythdx8%-+NR~u5>j1gU~Y*tm9z6KRw6VOMV zx-n&WNJz3sstR(?^w>pCGGz;!BYSPhmLs_v1y&J2#Pe7&C3>%iD*LeP`a^ zumcXhw!a_f16Tpxoe)%|^+@walq+oT8d@=(ZBO-6x_LS4*Z_H$lm# z%u1(zuv;|R)bvDIW*7vxgB2SXC(1HBr;We_*3o};x?Aw({NU9OIrMPcKH}eE@dAsz2w}+Kf?`*k$UzJOgrXfri0IOQ6q-VAFaKjrknY_wdPpBu1%P-jO&JTz8m^CS~2v}mD9Yw z&DW{8J?{pL_=@mqMYdX|jfrlotVRfV+wRYz#P`&qyqn^KXo)}o52{fb>&~Oa3MtIa z57E}p5ybVp{e^}Z={6P?7HfghG{3XG@Kb$;6!y}V%00#&!@}yLk?VruQiXh-OChdt zeb~h{&To$`85W+rvz!-hT7n#Zekd>NC2(tr|7Px@xBp7I|E(-6y9uxKFGzd`i2x#3 z(ULq;xTl72EzA|f*3T9{@q7xJ@U1pM&Z0(xMo{4Y%5Q5N*WKRay_S8oaGAq1O;p_VaAu%yLhSw z&ZB>(Rqy5>)+6WYC)@(=Io68>tGBBfuGqTt=1-deN_Qs?&W}!V%65a`B0;ydQ~k@8 z``eW#eQN?l?##&Ru|^j4lx1(oO-l zN4#}0rZUm#{GYJlchV~}c^rK~Le*b0&{KF1lwK+)TO;x=t|hjh!7rX7_`XH!SfVBL z`1$CaXO=TJN8%3q_hWdqaJAXxQ1()tuBkCfLUhM?p7P8*-Qo+Fw9Zj&DxU=}LaqP= z*%veG-nc88rX9);UWWbMo73%R>-Hu!MkJ$GfEdGGwhUiDKL|E#0Hdbd-P`q839ShC z9yx*uvMVCq>O)$7UTdJHni_C8+;Rq2QzyV>R#^JZb#A$?-bX218u4c^BSHn53Ok@f zz@IDiZ-m9``@lPcudp#YcyS!BK^ORKFFabc(-%q*LFy3B;gjj@TJ{%Q{?z8D=UL2Q zwkhh7B0SY;(?}CgyruZ6YSeJ}SxBm)sD2ymT$smz2VZwkqDX~oaOONWg6`!r4gH%= z@{K<~au?K+-wdtwM#~e)uCY=i-5sZP*gp*NC4o^S1AL%xC2JY*$sELg%=^B?idc@s zKbeLR56yGGTKDh@%q_(yXt8`!&fPv%K2P6LB2On0hD}=t7YTEE1@4JdJ5F)7Nn9+@ z0hREpJ{oU(O>aODUa!>3V%+b$!6w%m4l5-9MBodc{JMUrUm34GT+uF8)`M9VrQxvY zaPGEQJSAib#WB$92RNHfiZ1))N#FZ?dkv=l-A#g-*)2rJZvng2i$2T_yeeW?nprTe zKa>W-U~wpAQWM9MHH>1sUOaE~!V`IXsb}r?cW+$A`A;9QAhQv7j!?NueUF$N2(Vpw zOe|}>suDtOQV?Rx>+#25{bigojD4{B;JT#LvF=+1s_Tq@$3vZ3g{BU0hQ7aKn3H$$B5YPER$! zMRyR=43J~AqLp#J2;Uvk1zzN~AJ7No{^o7_tK-tE`1zq^Arle#GCw?*mg9ZypUQmz zef;&D&y`2NgoomHAE4mh5HxO$$SBkh);DI$hFN$odA^#nP5u3&fdJmH_$r$0hfk-H z+;=qvbb0okwlOc(GhR(ywDm4(i|4B5K!@a+T{hez@H#80X8Eski{5tPq!4p9^4 zBZ518URBxQ*yKCA==!=zyk^bYLfaRT;Nn%;oMovH>gU&8A*jYZYc2MVIoHH{>1g}o zi5^&!vrI@6w4cF%<)%Z(vXCqJsbeq*@uCIL?AI91KS%RUxT&x528%~R-iACxVGWKm ze=>Ftc&?t0J%#PyvKOXwUfz=fga-Ud4PXrIQDGIEZGAF7xCfK~NOE z;cxaWiBt;m`L`#iA>?Gu&&b>-ziOxIaT%x$nCHni!?>X5)Z-NMv|2>0yo?(!l_F*_?^3Zk?<{oRlOMZQIPQuXbY%l6T^Jg83{)R(qX=`x)wuDSV@_5zCX z>M`lf_qF7gf0o-e#YnGkLo9pWks9;oPqd*zrk%#Sv8^<``B$dgpGAlqU$nm&a4>_3 z_lr5^%$LZcsg1F=v-9Vcla~zf!%Kiz)f?T0O##McZjX_l*0`ms@?SR|2mw{R1Duaia#`E7IvN73qH6S+}|& z_h3HAqj(_dGA|TdLQy)7K-}uoVe*{}yQkyT;pCyO;0D1;&y(n$iBaJ@xh1l;8|ZRwDeQQZF?xHxEyTYu6Lg9&o9Pcce-p} zJn{oFfH?0MWV_vfP94~rZcH}&2Gk3rb@2%5Z{G&Zuz0Z%aChuP2)iZ09KjAjYyZYI zP$3FYMA>#lGp$A;eI^SPJhbh(L4f7d!GwPH%%EY8LE^TwgSH>pdQ+n`oRf!;ohwFW zTBfEvBWtz4-mU0hAa!}8rkAKcAU1-bJ6+X5%N;5jU1SGSkmGc?SWP*jD);v``Dwj1 z;=tJ}g`Xr7n9YID-h~}q&e1;{G1CFAM^?QDa%R4_dU$In(rc^=X+>_o98^_{3_Tr! zSU!e`9=&+o8H7BaN{+AJI1Rx@EA9%%*ws*xtf3uZP+P^bT7K3w8%1D;sCtz${&baY z@1F;~nSlWTL8)l?$8Z_`<&dssr|)u|_E2*4o2+h40*DkX0!U6|TO_sI0)mdR4y!MO z1T7@3Z_&QGG9p>93qrC(W;9>4f2n9pkl$NV&IO7$VXmKSt;=tz4LQjSz14@*3N#9k zwCp(kELv2H@=Q2de(gBqftLT45U$0==h>N$V5x z_JqoARI>N)wd-_DbxQr)$_B72iVZXjD)TefEUTRGaE4qfXN7m^bz)|PhaPJ(?K3UD ztjc!37I~Zhq_22Pz{wzgUNFn}DCrV(r}=+(o33QnM3@Ppkd)#-<;-3TuSr8#A@VR_ z;~}?JZju4!=yr|tv+|^deHInu2Tn)DHpI<^Gas`&hGc}>T_yyRlN++}^1@~=rTqRL z@-+OuKU59tCF_XW%)CL$>^PFB0d5YpU+4 z&TtieAni>&KVstP>VUM97wtu-!1&)SR+WHjSfALQVVQfIV=4W3%#22EN^BQ!C@wL^ zRBz|t5S8RjN$^^5sJ=W=^N%F^u0^}qbcaVtQYmhxJHtdQ;oWdzLXm}wQt`~}ELC?&)W5?eEIYqs))KS+B>v7D-7HH-W+bwYY9^d074Xg z#8typMz}@KKY{_IimKHKBvHB~_W^XrdN>=Hk1Lin3h5@5-~77Tw%s+qJ1leqed`#&z-X1cp`a;7#+48wHybaxyv-QA4o z?(UB1Zl=4xn)|r#$M5HFF0ShwpY!>=;`tW!`x-&0JTMh@&ahi&Esd?eB?Wd+D)&W+ zlc84Lw{mnkd{>Tp52f%CCM<>b2r|ET|AA7@QlV&TjV zRHDU?=RuPWU2r4xuKq=Fm_L33cX9GNbT|)J%@!32pt4-4^Jwumg7HV_3geARPq7T- zFoD7M_%0_$ftjg75n$afk(JK}*CJ7iJ43J|SV-XmO$RzX=Ud!Y+}w9VXt3;|1aPM) zzJ0K2|M$MHFoa*|cSZ#mCkVGU&_|(ao-=ubM6$B{9#se#V=%JO7zPT zO1vaVqi$1YGUL9aHlFw!y5J86JQKot)QnFu=yW{+{x3Y1Ym5WWPNie+ICfvsO1b=a zaZ%V(BTv$qU9*1hqnx)%i;3}Hp>JxYqFonG!0>l$ZDw>%t} zW)0QNYZ*Q!k4c=nEC1wY>YM3tE;1UbpNczD;evoo^f*dYY9Nj0AfJ*+%}Zu-YEhA0 zrtLxXB}K=0hk3nTM+05B-n&I9Wgc_DrG`)}>91dU_RiWM!W)}(p#j3XIs>+{{jD}ZR(gxm-iI?qoJNC~ZwBaFVZ<72 ze`hG~gXYw1g?)@n3fPX4fa2iOUljM<5RVVs@RhMP{MY}I>OlG=jf?Sx-o%Tsk|TSz zl>iqT0oJM5@rrTi)jHLcX}E5o?=VMPSZXpB(DgUh$O0SQbSzv1rOn_n5Ftmc5WgxN z3Qx*{!$@n(Y=9?NvXZxw7H{03qHu-N;%WW8F7a!sf?s~l7hMKI$I@f#B^^?)YlWt# z%aI!!yWCMiiwvyt!QUo%_`13^83|TuL2ujzP}-QX{7Z0uOXUMd)9xxVLmvXyt#<)^L7pz8*xq^x%M&Lqci1N6=Y$bRdLr65ng~g(Z@2&;ZOMFh#tvKnVY#Lx{2t{S7d*@iR_$ZU1ghFQNp-)#|D*4 zB^B+(2nXcYW4}djQ24Ry0!l?-cxa#i=U~k^$8JO&x;(@>2KQy|kzQSEaI>6IudmKX zL(MT?Rgi0)y8ST&K&c`x`4WXGBhI;eie>Ls8$h}P35V9p*Pc8aXeMPPp4V~7Xa%Dq zjOC|LBp3}8FC)8mq})H5+CqjEO@9e_y0VBlvoC*5?OxJc0m9>p*i8`Q0%!Vn3Bzl( zIp+vu%8XHLZZ>#2zRO8axuL4QHEr0wn_;}=_1-`Yzy|j!XzTxfP=hABL=@?Xw9j#^ z2a;YVAv06P$0F6F;?6v1$j8mSv45;Ew4byK6?WAUr7u$KdfJb&j38PWGaZa2U>uu zhS#v3wOQ8qXx6ijk_B8km9{Zj#s6+n3ppT@IHR4aW~S&V3yb2zC(fu&vvl+9;+6&=k}>l!?#$ zbcGZ+N?#{zAgLHHVO)z>KJ=REnqHtJeem=1oVh?vBKQD4tx&I#c zLl#hg(ps^RT;N4PT1e;w6%xnk@QuE2AcLltxxu1kvHT9ZbI`lj09_fg4RY{PsfgHp zP*VMm)*P(acjaHd05xQTQ{0kDqprLIAFQshoN*>zpHdPFqq}p+mh}(c*Q2Stkz77# z13Z$ezNLU+)pAs58Ws)IHJ@e`VahEcvBxDi-9g!5{2QOkBdgL%W6V}b8LOtw(Jurj zPoEbr1IJ1l4_1Se9WikFAg64_+a(j;2{bLa_rDd;PA$hX0l}Lu{A)aK2F=6CC#@eB zBHsT(=pH(BT`lgx@N4l|zv5er8+N&?lK(B7o($XDBXqwV=M)L~s2K0$p` zuQCWAS4Zh*MJ3`XRSC6h>@@hRdV9KBSM{F4T7iARU7Cis z3q%C*fiFT5?e$^4V;jta7u_K6{cjfq{FYe`SBjtCd^h^+ab2(wiCghk92%QNFcAom z{Eil^NK?|{F16Jl7yU$WvO0`{eK@N7mI0W5Y;E|!2s_+lgLTUZPt$of%FUWx)Wh=n z3vF#r{^ZkqvkuyM6I^swM7-NbF^Fu{Un!Q40u-E6@4 zux1>YR3rNI(;{5=te8%vrzNsZks^k3W+^dFOLHzR54HA1Vp88ze%_p%p9#4M#{$;6 zotnj4b6FcC#SmQXB|0tz4Q(LAL1`WNDf+G;;R3r5ij zDUe*k{1S{d{$(?%GW_-E-zfp`Eyu}ylqy&97h_Wr+QX+0?OOjoO-<=X4&Hlw)z|xR zpkHtWTwmC{SM*o&7H0SSUt@eqb=sQ8Ebu&qH%3C7m_a>H)d#c2o5!D(FH# zUCV-ogNfAD?!iZ|RE+zq#*&~=d(0-fdX+<(Rm}AhNJq9`ro48 zxFjb1<_)HhfXDbkhn4`|nmR(19MW)qly{A}#wENocFeXNehcDVkS2W$EDx|XanLod zhQJ$O5uYW1++P4B2aDNGe$Fj_lUO&1P_a-poAtV2STgmYd~n=A#7P34uBXC$pAhCT z)aI+Le5;~3u4pe?uI_-H{%T+QIl|Ey89*<*%ZCRZb!g3d*NnlfGv>22LODtohL7vJ z{!vIpsM?As6tBz5aYQBBY2C#Ik3X^h{IV0Nx7*_>AfRSH_gv&1Ji@|TbADUliK|cI zuVNKQ4>$Zdy`ndBC&zWS^hNf$(>cE5rB2_@!as^%`<|q``DoOFpp~)w3Xb9rhwCiU zA%UHs-1!)$V%cXjqesbmQ=UK~SrCo&!!2Id8WrxQDkDusqDE!v^0(bAV*DAeXWHy- z{Ya4@rUVT5gN%kp28B)x41Cmcjzb36>@Ra@!Y4OH-#K8GPNJ$0Qx+cfE&c!6HV zPWXqhiBmM&q|RroH}cRDJ{Ktckf;(hzw1a?SQp3B-d-p34BM0-0{4*TFQDb}agO!h z$v>0G$et#GmlieLI|P(UO=P*XH;F(V$k%-M>pe&7<7;+q*j=*T>8Co^n6jaa5hj3$ zPl0lq_#IAY&Gp3eFre6Q-Z)9yxybRyyyG0<(cIha+l!L7Qc3z+WxHetSEheA@1KJH zBx}?5*-IA}E^mYy8b%S(%+X5dTwO;47H{#MbVVo`aq$nhwrX_cg6t8-CC4PdlY0Wu zJAR1Ob)zD5vRgB+H)9!&ZA?k$tZV8tIV|sB4MFAu_xG}`Ayp}plK-Rx0=|+s#gl$F z={FJt`CCg%geyKEU`7k%V<4Qg`#h40F)`OvK8&UD%7oFk&@aj` z$nDOj?N6p2ra5Bd9P=ra4;!DfJhvZrW9MOur`xf=m)~vA{S3JtJOiPOwQb4f7Mi~( zqr}<%azh2`GN8M7{_?1p{q&_IwHEnQC*wXG*Xmk?TVaUOJoGDPswQwnC!Q0M&h23I z3JKhwNaB9{c}Mqz|K|tK*~EE<_~I9xiY~?G>{BoDg1z7LnmnFP#vigIKLcANV=Nj+ z&P-hvpCiOeEas?i&rVmf$uPf>G<>UBI-$6;2#0a`B*y03@}hxU6!731Ne zhUGfVt7yHHUcq|nNdM_1ld*!~3)vZNHuc^&uh>Z^LhRHCDo|K??}q~K(mk2gM*?fh zLVjYED;nAuQjoLJN6>orFKj2x#x&IBKC0SdLqW(T0I>iUfXp~Q7wPyj9!0t*9h6is zx0az3km;ACDyuVj$D&55mbX8UaieTqBiZPDGG~|j#91V6p=b;SdeCoht+oQoRVO(x z!GFOuE;AV`4HZkl?|u!9zx;T4epb!uw7OOS{+&lK9s0gS;~eLxIqw78RLVRt8rhFw ziR?C-eVQ?W9^aTyIlfI;K|QoBLYSnj4a_P0yFhl+M$^=2BS};AKMY#*?45WWWg+xn zLjN-fratXAQRX@k0HbE*K`7v&7WPuwaBk4V$#wL;015GKhxIA{bt;6xt%}1$` za8|#mhSKQp6N~K*TDcjO%u0l!y-+aq8)C$J6LR5x+H+`vUy4`!OOv$N`b(m+F)!BY zdf;&`>2hLxd??;a0d!y3xrT%3a3q;fwDuK%sJ8XEuZ%&l5ZOlxd){KwYn_YRRZYZf zu0RHqqh=?jdFii99H$y5cayLy7~nlNfP#hzl0MBwi$1a^tKMic=pX&1RQ)zOjmg}` zd`j&z&*t@TjkM?%2Qzyo8c^CB5J>@rV#C!HcGGCHA(R>lC**QIG@=Mu_*T3w`FvhT z)(xHkl<%o@a=$p-$FhqpeSVfq#FaWN&H{|12^S+2)QMinEqy{9USL)KlJ-GamXe;9ph0^l2Iu5SBK0T#SE=TlmP0fpyF_ z+^wl0-F39rg@Huz#Zb&!2FGbeKxq?3LB~Y!Is^FPP40`2 zIMeC^1Xp7{;a~+)Hj;BqgWSZrmM`ZY3&ys-qQm`B*c>Oq&l)T8GU+e}pA1BD=Q*@< zaOm#}7gMv+#h?yaY~VL`|I#b9&SFedxsSW;C zzD#oM6WK&a?mF#|Ce=jH`SWANu0>N5eV8qObqIfJZo+YVxa_Wqkuv(!)c<)LcpI|5nrruZSB#$#2>^vyQoM;b_ZyxKuX z`1La(bg9xJS{gZ9Cu6>)a39S!rqksh)uO!o*1FU>nA!HD`>$CvLbVFVE#w5N6WJn0 zRVkc!BFVI#@tAa0FTzGui!@aRvNeEJyG65vxIlw;tyuM0D0RwUfkUy{Bs(=g_ycpB zdGVTiEwNo|Q4UKt<}f~DWPH6GvzeLnHlFn)Aa|_Gcs&G)59P+N6g(768)H5w?~8UZ z*+yA7T~%4~)WF`7TmXs?snxHI2;61+aX|2PCde-V z&kkNaT?%Yde^4YSXTGaKk6iOxNThF6B@DA=obKE|d~LdrNV(H}&C@0tcE_l2ap9b2 zo0udkZ+UhG``qGfw}wtVYhM4w%O1sU&1+OSv{*i0FKWmx{|B%!HUwUQmDqm)KQ+Wd zN>xL6V%5Vpl=CfL^*6gGfs5MLL@V7^dgT@rnlI{YnvBA`wSQB){B;r(P~nyZl+W8s z;P2@eue6<=(PV^Oy$j#;mcB$uESF~Yj2lo;Kr|RtXh&?N8w6j z)p&@HM%~k0mm$obec?8}tebXl+YnXs3dBx*M#j`lGZ{d}n_t`qOCD&qICD#4XpXob zO9P14bxho`r8xY8W@h@iW*oOwFf7=CE{f~2!iH98LF__m{lN8`WUXnWo7BvHlb+lIoe&>iVC z#+}lJq-4$%2@os92(iz z);Y2IoVRpK+z&fJ?6ub#7m{CUMHT?^1;|!oDT95&1_5mMKXKoYEsun z0jz0XN27#wU9uQ|5dK6&n~|{bHWgKb7E9i;0ejefz%7^L@S1vnj*-ujf2d{<(ka5)^YrtDK+T2!ZpW@J zJBT3gZq*Z!XSf+#5WkHal9{)Y} z><=L@qa*}Uz(!Evg#LSV`)6k!GyQ97{%_u|o)*fvhF>$N!z~-m(pK{k@2XQ3q|?S` z%pb@YgwzKfNOsk?P;QYc*SG`&K(#<&dc1&Lp6Hq#)*fXuBr3l434rN;s>=?fPfBRL z@fsMhzbWFv6a_yH6n`#snS!;^U>_PJPd{SwWdqop(JbMtd}C?_RXHw&B(3O#&t;1{ zn>K&-e3K|(6$;LG0$$$QMxrwC{qS@?Vro@e_t2`nKC1SYb9q!Pr(i9vZT};_^j}Fu z#n{S5dXx%+vc*3DYqI)Z7#%g7i*M262p-`xVClqrA4E2Uq@Rn(zmrB+V5+y(WHEt0 zb(OzB)@m5bpud?9i2oU_BWn}B#CdnYljTZLm+36HlWEI9V?yWxOxEYE%B{5cP5~+M zBun+#1zGN#Is*&+WoR zyY^w<?d^9{zbINc^Of|CG1|ZI303^pSPKva1dHF@qYcxaWa=mqZDBktL+#KNez& zi*=hzv_n5eq0ak-pQReTS3Ivqufe+kvy|*Si1dR=xTJiz9yh_Yajq599KYi}W>*FT z=BOYJ4)DRlFjTV~McyBx*5mOgEw+(G)2l{EA}zH~!SZ23^t{iY&-l2b`OfrA!?4k_mAUeaTw0e<4Rw|&)mlO^1(L_ zZBdX+Z`PK$;nR&d{0rXq|Dv%A7k@c0xLnetS_7_%N{^BA$I5BakeCS{{m!t~18@yw z$^e-Ilp9brj(3IapptbBcCsEXhrZ@0O1~A!>k-|8w;)>z@aRco(X{ON8)5uHyN1JD5OZKraUY0A1RGVI;={cNuLh8? z^V>e;ibV3_3ULet`DiYOOZqTJ@j8@}9KyIZ#nh|P9ci?d%y4#olTShvc`L1nf85XY zB3kUzC+*{yP0j077B#cL`#zPadjKjB1t1|?0URh`+)NK`p*6~ZQgN(h-a;C`7*}&y zH>*x#2q6?BWs6eC0^jb8h-4xF|B9{ObO_$KB39I@K4oC zI&XDALDuA|(B(t<|g?oYboV3&WWUg5gOj-%U)RA$@I@z5yMle~;s%Ma`WeYE11ZM~&Q9 z2U3O%SQ}7;)^q%ZpX?6gbP^x7gifI5f;TC*c@3g$2 zIPbbW(}^Mcuj(JKJ1kOVa$>G zPWiqVm(VH^G7vekV zh~%2=7(nvEFVyMNH$<+GsT#Cd?q zSuwjBH%zH+ZI`qEw6<52p*Ya({(AgDetP}oKY&-G{fVjAXx&KF!=dC8&5`%-?lWPU ze@57YV)I5DV#9~LI_7;7rvJ*hkZZ^15*^b57j zivfto(%O!)a=(RZEW{47{b8;NN44mp8V>is;-lF75~r};G9Ry%TE|$ic9}~@Zig{l zh7ZvlN0$3xk)J!N2ra%KnNDVxip=4v=&Z;ebExqzYObU9oFj7o_+Vc?#uSg?1&=^y zYJ|v0)@uJ|)#4J7<##&#A-z`R7dsDF@d3$Y2J0#xtGB(NFQJ?%z5=Q8#>;c&%6~dW zRmQhv*O4m)%%-T_fARbGs4Gm^wCYRK=p{hmnsy~y42OE@;Tg}iYS&)Mc-|mF*2E6b zDMn@rrbK>mW4=4@_9d2iFY&Vdjivk9Vq!P?-7Q)A4;WvUxarvaYIZN@qeCMP=NO#P&%-L=2Y1i_Caj_ zRU5bd7=VI*LwzG3Wz?U5(CG(GZ1dY9D-Sa$5u7g5%?C#r-CN}nl|_pUc=s@BaZHyS zxk?+wP)P%$-vlzs&{6+^y$RD8fa1eJr-}5VF-6S0B0=$=zLKQf>0ewRs9b_dmV<4Q`PD_|yeJ>M< zPtuAWZAKovD6L03hCOI)WwgUMEe4@in>ry z2~h&=vknX?iAw5|j&CR%VH%h%hcsU1*oO z@e*mM7e?b*Hbb4i^Z>jFpS51~+6WYF`wUvD(E0oKmwYLS`n{}Yu<*n}L$dk>w0p6i zcX>OIG-g4Fm!cxWm<5!`>py;Igcub9yZ2d%Zl#Z?K3Ee)VrIW7xWT73rHB?nNQE&bK2OffitxXR^+vNmkwp<4T7>F(kY`J`>T=drzukb>S+~33P<6m=d+jh`;L})i5IpTkWB1Ll0IEWsRX zC+>7P=CdSyEU94iKloNaY|R>Fr?=}t45cCCw+eI(`#<;JI0nWYB*eBM_zuhO-gM zl4p%8AEQPPI7#*lqlBbc;w)hKBAA%o8_G_s@D^FMDAtI^iOK(q<*)nn$Zm?pmpQd` zi+QufeX}(ZTDVv|PVcXEef|Z5-A!_&-5o526j=wIuUzA6A0gV3i(@b4Q7!U+$+UQNrYa>M$8bDq)cp~ozD zhfB+nW2v^#*5`(j@y?~4ICNZ&#`>70E0`W&OYmZ97C(bT$})`tuiAAAHRSOWm%j?VYgPcN^Kk ztWi7oEM=l}o4@ku)!<^4+dH-;^h~yFgS7nPEsRywazfHse_I94lSHv~2i5P!{9Li? zwukJmkdgaa^wl37clLVsmsx^4WZuNzbp!$5uL$eRNX)f#WuDL?5$>dVAyoD|qBsmFVR3FrZNS>=M@QFkj3VS-TKyvr04_A^rmw`dem14} z4iyAX%bS-+@R=Ldc9&->W#bPu3&NLwiNx*`woL908w748Zm-KTUH&HSWn%Eza385W z^#fYCYA?fYmv-q+hFe!a;dNgDyxOxQE-l)gqji2BJ$<*qD#c?R3nz!Gx|+g^&VnFPvMciM!?Aa?1H+wk9Vf+4QxDB2 zZx7XP;kk5sIyf#gy&o1kFLk|d;;(FGbj|O0nGf02_QCtB=DpbU}<`O?r68ki=xY2!c`bkkT z%4Sgt=tzv8VzVrAJ?+#dTrbDz+c8o=)8x$UxfPTCaRKiI_%j{AG*Arm@1YK_D8t#&KuJ*A>LOVhd5e5F4Z-MWydrG8kaYkp}TX)6L?YMl3^xg5)4c;?g*RHq5`My5dT)O>O z{i&fTZaJ8V=u}jhfWKDY50ckArz6Gwklf{`H*hbcEPj?q5UrdNcEY0Q@-2N>VtA z=Z-7uzeV45&ZsYmSB^s40<>nw`0F=Hy6FYbI&S|2I(_tt0CevbwODvGY(A;Yv2#$V zK+*ldJW3!{gVgD8HOd=?V5nUnXuIK49%ZCGV0PP6a2Y84nF#N!Jd}OY87m7gF$GT{W}mgfobInof{aG-Gcuz8fJ4 z8Yz-p_wH2zm~=Uw@I{Lt1e`{QZ#B+|PW|-cCs5&{>n^}^J1&sVIu#gW)ZHD=l9xn5 z11t`Lm>%I>-hap4)IVg?bMVQmg=rIggKC|yezoiXcQFQ+Ft0!8BC)*plJE2kURB2& z^Ag@5&5aCZ&(j|4dYXgS&}EWdT{O&{#uA#qB<(U{uejysgU%0w8Hae$)Q{s_nknmT zqI+4q{@%AO>qCmm!0A$5Sov0RbWfl0kEuu4=PCpOV=bCTaN$npjN96`^M>~u?K|ye z>Z(0&+4(Vb_I~|4qq9v8IG!S(aH8gdx~Olaguclw(+1eRygdL1Q5=BKlbZzbEfk=d zoYAfvJ~D;$2%n1dIv5{L5Cw5wzl;c^(fq!K+2@9FKH?MiKbH7Dm_f|l5n-BPN*jRT zJlUihCc^+XsZO}4F)So{6a9fx=_jiHS6Eoex~c@Y#r>(p*j2W?|8n(R?OQ8tPgYyz zd4GW@!{A5QxkoVnF6yIw>(K>U{-9MCp(TD`;L*|-&} z=noO9Kb!@b7-p8N;0UJfJ)St#<0(MBQ)tl_d*e4=9Hee4@mNtz3BFjYc>d1@7Ec@*{x)e4GgqYFOT;-is`{3cCFbjX_6o2s8 zjSir}!$mqa?2s_X($c>D6?j~mQm>z)**_AF_u)p()LFSO%BUs`^0Tq_-yH6*Dlh2i z94Eu15D$KQOi@LZ_fSo6z}4O)JGzR@)MSsOnx|VA)G3={rKd2cn|F_3E*@{p!GuIb z;SC9WM`x;-Q7jAH!~m{sj^}5NFU5V+n5|jh>U`*hb)PxH|!$m{BX{Or6v)aph>N z#4l!$Iq~n>^RBn1Q%+J^dg!Zz*w?k~>=_+CurXvm(T}D&$uFos){biEYgQ)R`MyxC zdlxRVQ0GSf+kNO#lQ$v(mGbYpZ$cW#PRs}AKS-x<>Eug7yKeiSeFV+gfIK`EUBMAm zF9DpQtp;{%-X0lCDOjp*TVY_@b~!6K?TdT#{cXl_z;fm6zfg9Fqn~NjjA z_g;^n#g#9@2LJX0b5-T=p{)1z4WY32r!Lc55D-Rnx91ng5#PCraC2d5>KnBKA`gl_ zZY5)stht)I0t~OakOk>$#-&Qs3p$|bgeR13MP_I@F@RWf>OUMH-qtnAH7YRF3u!S} z+y$nwc~M?R!@+`aAwu-4=Z>-^+U~7COzTH!MRBZI5y?&zK;}+GE`>7yL|MtaVT3Ao zDL1}7nsRyI`^8}{OyFPs{UEPI2pOtbG$wynefbj!$G`d;)!A`qxHyW>1?t${e}Zh! zhWG2zetC}#i#fo0T-ijn=WjauR}6>xJWx~k^!xFAd6(X~OZOw#lEsQ|bh|Ra`U{zd zDv_q|3=`_9Ah{KqQtG&#lJTp?n6nU!=~OrQGgV?Z&-qQyR&e=J5VcCcXIckA%di(F z-L@NPNxQDTiV~^^%8&TyUE|lzcc`iq0w{_sJzk}>HEzJ5{tu5^fzdKibi#S;@n5;C z9qhkv{*cGxfVE?K$iECGapu2LbQ#+X0|dI8r-&htXk)3PnIvBGitv1=U3*-0c~Uy$ zS>Zfi_z9nvv_%if{1Hm(M3EP3wf*y;pwzXj*~CJT^Vd;cnV?Dj9i=gk%8xBDoLvU@I_6)_l(U4X zO1<8YI)#2v?5!JElaV|6YMU{|v&G%l3f;PbKVB=-Ly}f{L$JRnU#YWSzf=14X#!qg z^YX`7;wsF4C;cU|=OatM*CkqlXVGA(B$fyfO6Gw5$v*+2qT^&MKVNgSG0LT)o1rQM zBAV1v%0ACUId>5Kdji=X{7$>Q)MjZNhHGlJfA5eUEAy=$5-*qP|A6qkF`FQV_6Hw} zgn=af5-{n`q%1n+~>DkE`8te^)RD%4JSa*!N`JXbpF)WHXN`p2N zG2KC<`<397FVcNdk4@$W_K%|M`u<_vaClk(x#u{QAT5~u?7&fr5gqvX71}34Mju&% zTJ0P;vF-wIAl?Ov|MT6wO2%nxCpW)|CoL`Q)F|TqqAONcTl2YuTTSaxs@UF+w=>m~qM zC~{JBG1f(}eO-3&*|0P@i&i+Q+_mqW7@wFZk;5-j zSM_UE`I4^?+nOIP#E#OcT**g})?5vkH80#Tow(U_*&sVMD+;st{o#nubul4vt3!*5PzGI zh*pNZ;M(Ru3rYk!7ZF?HikfZR_}6~cLr7HDy*mRIWhoS3a|sA&3lrsJwYKQD-PEW>s&k&{-+&*AMF3QqCx-IG3s&^F@Y z{8vO0bEGY$mC1^ZODi~{WI9^C?`;~6V7_l^+13oa@ilAH4)XK!=7E#pjdh*{!e(|! z@0X@Mu|(omFXxBI{j2W^_vz&tjb?iMPfZa?dokMoM&IHiPx_6q`(lp zI^L<0A}mgI#5h6{0jlHRSbe~GkvZFtv_AGY49lET%X@K=KXGv02g$us zbX~LM|Et1osCA|#CdwJ7Gjheo#$tX&`lzzC)QWZ^VA0gD9HSwP(ZE}&(LOlDzLA9F z3}3?;QP%p%X9wYwUQ~eU)@y@lD9PzfGw8{F#q1Hu3-C*!DBmZSEvBlRMKbS1)>VnK z#P(_M0}O#osc7u}ihez9v}Bl8#GKEVL^+c&gzwY~JI9%H|5G6}(ah973t`_7jC6C2 zvF%!Sj`_R1w=K@IZyuHOz`S%I0lgB*St!8tp|!Ka`gp|Sljif9*CR_c6;9IjI|#JOI1Fvemh3BD$<75D!n82i@a?=K~l2Nv*ms z41mI5QiIZ;gjsB!%>}svwSS5Ohp7jCzCgsJLPiK;bogn z)|Z5n-Eg0Z_DfDQ<0EUK7WO+CN_kj)5OI~DYGM)p7~>;$2@a)X^2gik0g<6m$bs+F zg*CGD+i`rOk7W=(cOWj!e@W^tx(7m0cA2ymDr~LQ}w*vAy%2SV*|JE7-O@Ful zfH!vbo4p_e4jQHO!1XyzP}O002*?`*O&+ANQErPlE=OJ2I$@B_TWr!%g_DqeLF4BK z+7MqcaxuPM7eswU|IKu{EK%tsuQZ~~J>&n}nsdR2P4Gy{3HNxls{D zOZTVyEIQ8(`0Nwl8qcrXi(A@$$B}bgqkdhlEO$E#W(Rd-KY&C#r;n z4e+RtHDlrcFOYvde`yN)^#B~#$$a5=IShkdoPQN~--9`23Ji5659q{7gN^UpBIW>1k9GKYWjr(|7? zgM40*rdi(4EPa2@!1GXDppT(}{^Gk+VkVXHTole&dVyX+dyayUNK;H#gqF`;8liuk z&OIc2kgJjW!U+5v|4zMI=>T3eutPLLtv6tN8WTRXH^+wj1X?DGl;|En{KJ<@^zoDr zL0~D%Bs4;gQ%T*oujl8k^vV67sRp0!Y(ouy^WI%{r-m4N?!$L^n`l9yW_y*u$@uoX8j1y1eV z2iK@c?X`${2~22k6wCBJ5qwNg>tBS)Q>DTyV61bcPhOl+-IPV&lrQ~NJ-JXSJ905S1pH2YA(gN&AS z;}e~U4m*{#jaT^e0j0Xmwt3+6K-k5O{RAO(IVaaf!lSX5UGzf%*MtZmJF2VQ3z1E0 z3^=GuQc?n{9-djypr|@qYVqiUv(JF5PUdT4?~=-zL47nUeFd(NKRI($U}u3nHv$fH zav;oyp{IB96VL*mfM3y^sjGxg`KBKlDoDiI3;ooWpyt>Y{W~c!D*Y28-;jDPuGJa+ zzZ<7cLtn1_Yfqw zyAvQdBm{SNcWnro;53@x!QI{6-CcrfcyRrTckl1&KH>nXt5+@NnsbbMv_R5l4JK3v zdc!Zol3@tY(A6P^TVWm#L>7}R=dGXUsuOv6B?F?qa5J$oZWfqlL z*8t#Lr_Xr>rcIl%972a36|({2D*~-z)#56c3c7<^MQhYv)awUfPhNg7w`6~x{T@ZO zt6APbJ+g!Fj~kNN`BHTk6o3p8sRXF+l(JuF-6gjum`V<801^@q*-o~Ar$7xLqZ?pK zF4q310^3I6M1Q}9b`>ZaItLGJWIl$xA6~GaMP7d8iz$z?^x2o z`XSH$?(f-hbs&y_X`H`l*uFyLg|V|m9buNtp?IAMGdf}Y1=S(kljpOaTbwv5=ANPC zqdL(MaQYLIg(&!4`oopBvf8dm@s{c;SDdfPv)ZkEqGP^K?NnEx;O`dm1=YwZY~?vt z>PvpYV!Gmdv`|t~oUB`axGh3ft!d+11S7z>c768c`48J*oqeL?*V*kCwEW)}a9e;} zc45t-P694(?mE7^hfH_&e})%7V4s0uUB$3}`Y#hgAJ%miwM743OHcx1y@fO5JXxOT zN@+7dMw6|piSaoLyO7APGQz%lA79p>d&o6BnYVNvfH*O?0RVv6`b;Uy z z2;}txTqz}o9*VD5Rjv=R|rMO4_MLao;#Ab>e}ocFa<4BcRjqIqYKXn!;ox!SvUJZ*K+W=_d-bbBB}|LKrWh zAZr+UI8klAO(*ZlVCIkiY?Cxa$;Ns4}ZNx@^9C&@zOC*Q){rnW0)6}q!V`{IF4z}}(dpW#yusa%{L z7;ZVT{K0a278*YpeV={h7+cn2z=0*2D0`>F?%>Fk+t`?b?|iX^qy(SVy)awY8PmXD zV;BHkjEpp6bRbnG0vPunIK!m!SURn8<6&erZ4o;oIyvsk*tN zn0tv${{*t=XUZB@sR&7q1oGJ-H$B2M%Sq}zu7k_Eb@558<)QS2qu~whLhGa1 z#pS|WlRpD(CCHf2f25`5(6qdK{6cJrhE9mkdJ&>mZ7N$P(!~MJ?Z~*gs}GW zBBdh}i{CA;X%quyWVDv39qR=)rNoYA6exJV)6p()EOK)qbNIX}7%zm5EV6nMscx+~ zK3^wg6-iiI=H8)eY`(yIM5POYpI66f=_V+c6zfv!iK|(BSFv#w(lomwd%ccrw3tV0 zvyZfOz$vw|%TgA?|Ji>lVip98^IN3nlb}~h( zZU!yNvxN$ZC{q5faAq&NtPo`R z&zDc`NJnzY6IqSTIB1r2n`N0p6DBm{voMjSXDIpUsC#GK>i!;PO)=f0soE-ks^fvG zS>G|b`x1NvAzK~vr1UtL6mKPcJ%4>+JrZ${PWVZg;Ide^MOS}$R?6Y9E7dt>i!px$ zP3$U1cS`7?{8w*(?`q7b^oKCicf0OP8tOrChE^$!E;r4t7e+Y4qa@RK+jYH5_CLWG@9yz5v141#GQ1t`xh5t zIQiS%QZ#5i^-C0Tr*-0A1s+cS$)fkznDJJFL+Bre0275>KG7GAjEy5kivy;+@f|+& zCL(b^%}}$i2%H1O%{P-Ujqb{4AafcG2qskJC(-5l z;2EcduA4m=YWD5tV$|-onau%=j{C@+=HNE?^FfD>2a%nGsnc;1uJQ)6p7mXd<+osN zd>C3B;227^3D5SM*MlX!%a9;|mv}nLZ%|ntQkebR;*L7LVadD?4mP5)RDYv@uYKA? zwNw9le+q--@|(AWvn#;;2}W>fNwKcadPST#wj2d#(K?Klh}2a0)W5Eb3(M-Qd%(w^ zlm!4e6anmhc9wDVN<1zwU#Yda`eepUW;kgjEw{*kR25;` zv@tgWf{mNQf}t#4qAibNIfqBN5JAFp3Aj5Nb$BHd8_%ML3k?^`^GD^$K(7j{`e%5< z0=1H)7pbF`9xlqjQn>o%ts!SE5G5x9=T+2 z?X3>&{}9GZ4AzPCseC^?OCRZ~cqBf6%v7L$wYQXGC)4XP?{bv*3#fHQA@h2U#GfNl z#Q`stMdGk>KxW8Qv1HrmA-=xpf=|+n?1!a6 z*=v{FF;v^{9{B=;?Er+?I=g)WELV&&7RT!~`J3kx&#es)71=%hqK)Zcik4oLyjtqwLXOVJhUPE+9KioUVmK z3i{H@xvH4-f4U$tK^Eym%S@)T5(wgD!T(8o9(KR#!T630`zZBAR|>gFmGkhRdcx0e zVFrSUB?5?fhtqwlV7ksOb1I?Ei{f;}G1Mta@$s>ZVc-Q<>Wq;YzViN`Ecya#YEl@J z0b6din%c29?^@5(Xegl7Zr5S)p+Ca z^@Fd_>q<-0+~vFL z(d-WdbYjT}Lf`p=R693>rSCNn!c!G3i_jtLen$t$L29bf1R7U6S3|ejryr!aV5LpV z5g)h`el1CpJEApLq>dAzf-jE{4GYLf|Kw=7` zXCGwi%t+dNJdOSgZ>W?~i-oO&bI@8U%i7J-EF1d81@bErmHtX3N%grq zZxfg~EOW7vUP-#TnQTw6o9>Qq*gz0~Vy=#Jw1L@7JeBfk%?c_pJbrOPP?Zfk zaww?%wzhU%MLdG=SS{+nQUN;(U>xwd0U&}o$om@SG+2PYoY@zG9ll&+p$zHfd>6@M z4xWg0Cwceb;(l2?t3utjFPfE~srmPu2a}HDed;i!22z1y7^~*^0jKb9UCabiAXen+ zMB|mL1O(()^Kc8xZaU*t<`)pD&8rYkD)a)-iA+#g^k1>R zleP=C;Eit7FX1w4;9C$7_baO_)l@eWht8|3PbHR)IKpa;W>l0vgtVri521iBwi~O) ze*YBp#nf;-GiZB8YKRIIQiA;kv;Kg9m5pAa>8ar)ril+8x;f!cG2s7D0T10MCB#gD zt$bKCiJ4;2_Zu7;;e;ZTQL=x>^I`AYxLs2Yj_u<^X!Ii3kd+c;rCP`qPKccf{)Lt% zzyQ3FS-Akdg*D%cm=3m1?R>R?)^DNYm()n=bG?Fhi{ zYOhiviu>;^q~oIc9gYgMcYG2Tkz<O1xMn}6=&T65v)>4)ywak8_a z$nvUW#+Kp^`DACp;R{fNa6S@|1o2=#?RmCuYgsq!zK{!hSAtmMwj*v--7sbn;N#%d zF#*=Dax8K2qAYRjgkUa#djXjXIC3BG1@|fu*APdzaYKMJ9m_6m<;4vAU|$3xrYW*- zRoYz2h<}_q-N(6$9IYYzMG)=RlV67e8oO$<^@=1%fM+wchq&F|lufzkmQ&6mmP<9R z@&cA?{VwG~y->k8@`GO4CVXxKgS3YOY4{yhu<=L7)SOIMmGUnnn zrO5!e+U2WmXPq;TZp}Hu(h5)yZQXt*L|^Di+zkF9U5Eda&UtME=nib>!Te-xLD4s_ zr1Trhs(t^LQm4@0h|RCMukk0lQ_)_?sU-?zz!}wwX+xpLBq}##K`y}K?qaJu)7J{_ z?EcTFYYu$NqziWPg2w!R=LiZ6Fqu)zjdUQ9u3wcF%66#k)Q{lg41hNf1K7iCb^Ns* zBL)a+x{M3Jg3OaF)R+TuLW5dHa$OB}bH!g%@zAaqG zftFJ13hxd7opzDVT_<{-=xk6kLR3|J=Nif!qeV|^XW;&zly0HZXZ-*dBB+H2gJ6L%Z5&;OZ)`ClKO;JU7X$1QE}Ab^41^d-p9n( zLrN;&+@=Hr)T3V?1W`Lbb{=E8nd<9QzGCS;?GSrgk0>=mdend2T`PZs=!VhQ&<6ph z)wxRI{j3RZE0|i|*}5{r(!}A;m0~JAtTY7AYzGyzq|2k8CvODXXbTGc!-@#D#%~#7 zJVwU{9o`;g3ubFw9gKJF%A&_7g-zcLhwvhi9eF=8&lPACFHp82b^v@msyUWIoKuF2 z5%>;!i7oxL_k+$tsENIhXoO#Te-B{w&DNsQeL5LFaHDy4$s;!)NMiR`5Oi6;bt!?) ztgOoIVhFWx%C`9T^(dDG$iOC7iY+5^K?{ErLr(t);YUg+uKq!sK=}JZ zBs7~)YYEA1yoC>WsB~TLAm^s+@G{!#s((@>L31K}kiU=o*uIv?u(CR2)YbEbJGfM* zAv#tMeO|Am+?9}smv)lPpBn!Vyngq`C-}8oj?YN)_ju6^RRezu7aVP7xQ7!At1@lk zM|3Wr(*a%|VS%(nN=Fe(0i1dqxF_BXUrs$B|0_6|)>r)Bc5Mr(s1=T#X{S$0S80YX zlZC?GC(CZ}gG`5Npyx8ADw4MYApo z_JtKqCu%y7k-1AXc+eC70Dkx~I((sn&|=}V*Ou$q1Bt<3lYf;r!)qZ_o9au}CB8=f z0&s(RIiAw^U3^Qlo6|9Bu;$lBM-@gcT*CO#oE8n;Jy7=sN}fE9|7bmuN2uZ0)z`u8 z*{FkTZrbwQPn)(HaGrF5=DJ%|ZCKYjkkMA_xFyjo4}*`=GIemE$A-LI68M-jDOW5w8NtqbYnVf#2`4WQ(mxB#G8hGE#Bu6DSaHsa^wIlvDLkbv z{vyx1MX%eU?NZS)vzrxM)Jl!P$xhd%ykMk8&d91PH-hIxWVUX-aes#e|A(HRZdVO; zzYA+IM9qbtvr5C$B}$(*q3`&SHG`u5lskL1&cU!g_yN*GRgT9m9TXr&2R(1LYKRs@ zin|3?ZR)(db(&)$2}lunw@tY2wNLip6Pqq#S9^F!r^_rdY_lNYXPoFWR6?azj}_|6A!BI%@N|d6_Yi77J z6m2(0B~;GBYCAzG-I$ljhy;^b8)bhX&)jg8sF{5cg0)j*JV~bS)zKy6#KE7vn9O&Z zcRMDFw@t)_A~4CbH4v_I+z+kte|0yRi7JpSh9`o)(io!O)?Rut!s;vdjvI^4Y3Tc> zD(%Q>k4V1K>otDBcx{Z~3olpo|ID6^(UCYvj*Jx+jHN94%w@My&rCIIB$J4y>JbV6 z@4o~b4&Lwyl;!2+ebI0SX|>SB#_(oaQka>V$6anjjl2EW(+V+yHzcqsfOal!{@YJP zNVdFDOc$)@0=$LWMsMK^nbKH!kzuax?)6Z@22wJPckd2nzJLpdj}fpK*etjo!5(|E z0cw7Un}WZ4pLgEYz}U<+$R1_U86i6|{}G|0Y5P>_R`R_dAaH|`F~7;<6a>p;nBFuX!mdwNi%VIH~$&wtfSy+`U% z`nFL+h7t8dsY^}in-ufpoT)(%qk~3}igPwy<5H%$+6(QuJkUe3?(*fj-H8pXK&QmZ z+Vw7tQwfUygl1eJE8RJe*vas{1<2eqp34qhV}*Oo=NxE&X52Sr^MwC$zCnTcJ2=C@UP4pc&DIh3-z*~#{z**oCOY7 z%`ipN5+r9syZ_Ydbd7a2jTQE@{(#qyan3Y*gq1P~{=ul@2Yl1Cz$E3va_8+Dhv8)_ zdAJP|W;+jDYj)3rb2ka-O@@$Wn?EsqgBd7EBYcb%I-c%ET|j8{h;`TeF)e0dO=&v$ z3-USE6jp1lGB+&T%yf<(2xkX<&V;=1*KOxH7077#YkqQPvph|~UB7(B;JI)=U0=Io z2y~n4D~Hdb9ht8D8hqq?Jd68F)SHsb=;32-{Me?UNR2ZR$Of&N`WlkFv_n$jPYuIL z8(yhP^>b|)wo^xoI34e|-1*O+a|XdsKJhWg>!X2or6DNYWt=~sb^mCtBt!=;{+>@Q zHrBF_7_&#&*z3L9>0DpYC$*j8Phi;9>b{NL>oxd`vC&Iv;o=>YIvp#@oVTgumPM%P zJ7DTb4^}F7CpG6drc?2#y=N#CJ zR6GZaTG|WYskE}TEfil*o%;G0Nn~it<>jWjV{ZEMS<89wM$v46Ivrq4s|DPfBM?)>1OF?t_A--Ar!i7Mm(fV>(NLIm0omzV1E*h#ZR;8f$dgvE~kfF;vLu zJU#w)IGGJ@+A0}}yZ=Ypntw2u=A9Q6#TWsyfA4ZGv3-sHRyaAXLP|_U|~kvGV3w z*$UUC7Gx|FV-s$a+WQiqN6Y|ZNosXrm3_c|T#%ePp-vJ`tw#)#QO2NIMc-enn9rYi zCKFYV${V$nA?(9MapDC8vrYkL#<=?eP+0bJp4= zx*$*gJ{!e})e88s)QwESv?zgERleyUlyumy6c^M8jNJGz_hgY)HxCA|YkHFCU{sBS z3qedWS4QtEd&@1{df~8GL|(p|odMLSO#9|T+E-(VNxI%)N<{kZ_jZ30JahOVEwirU zGJgOh#7}?CdkUrom{y>IqDdc<6{G~h!T!8O3Hc`9qE2H^{Nj#yi+cYOEhz%{3Fw4J zDhfAaA@SC1*^BQgX#qW#5H}i>c+gy~<4!Nb=Y9LKl;SVbR9kU1K#9|VfQDGMwG}ON zKq+qXT=_E0C7rr}uo(gXy=iO8|HGW`lKx#@fQphV_JD-a-=j|H%X1hF%85RU*n4 zbw|2rjVStB1gyp+m7O6WVuKy$G!oN;sggGJDWG~nE$Jn)NHg*ppOvA9lMbt>K$zh2`&nn5SUec#TG&ooK;iHp z2+)l_hC$&hA*$9k1Jki9e(^h2|IL?C6_&i8c=w}zD+m>$cW3d5%}X*MT3v+&{tTUs z)YK6x1`40mZl%Qev*bzv7Zi}#TaEzZxz)lL?AJo$^6A7{GD?W}ZQ%?=lQCA8O8tRO z@fFm{1lP=BLKb!Nw*sXmFs7^3Yy?iCVjW6f$m@}z2^~zJU(l`&R^+CpG33<}t3x8_ zeTM{&O+>-Sb%%OoJE@Zo)!*k4l1r#!rvjom^1oRc{y1n>Co6)}NySoWDs-+>3Dggz z?qY_Rb8e!2&i8AGm%Af({x^cgJh}o&Stpzh)6V;4;Y--9zQ;RXQ2@lj|0p%zx+-9g z?s|^+iw#sYX)s;kHl1*Vm6JOi43Dt#Y)=nm8JeGN8rm}_#YrFSmH{`_Mpg07CmS)? z)kYNMi}F`C;H%!B2M)&-`p=(_Y( zqN-sh(o`6bJ?QH_TATN^LK50jSU}@mXIIddO3Xc^Q&JUO8}Cf) zuB^wK#5z%)_JD}b(J<&{KrTu?%f^gBgz<1>$S)3t7h~yG^KU(LptRpy_^qMgvNwu- zzq5-~DM^>?+4UK@@|df0<%cR5GAv)Gd8BOd^~tR-FQGdVk68YI2ZG9~Bk1CVJfT#? zl^2u#1=WE)X3AtB$paF!|4t-LIxmHwP0+D()R`aQ|D4J(WRglqwfOpMT$FvK9dFZJ zeeXk>Za5W`>e9e4jrtEGWtUBXWie#kJzbh1XUmbG(%P=jv?>ftBR>aWb8 zUMet6#*eNPEf~)h_tW9vNAg=jVL$#dg=SYvC@#MpB+XjL4Or5;rdmORr_C|nxB&rd z0jQ^<=`FAk&S*0)M)Z!FT*Nm;CE8X?X%sbv0M}H|0xrn329GI_`M35zUemJu=EIX2 zE4q@AV0mpz3I58t>XBmOF+MXSK5HihKGW5r_2nEX2H_Fd=)=C{7W_!o zWpy*mh4Cc?(+0Elqpg}hmhBNgd+i7El>L-aRCSZxcUpTupqY;4q+eR4i+Fq%aKa?;N3nbnJqujo!2nL!N4!RHml5Ol4KSjq zN8Oa#-`X#Qe=|m55GJoqYJbNh7y9U~#g2_!8lPxeq;%aqwO(sqG%5)n+0~P$iP_9%Qz)Os43@ zU^2yjBQ>YgP*E{tRND+m=u=nVglO%SAFpPdu^z~A0vhIs<%aBr(3?D_XeC}M8e5z& zwbf$zCvOuNO~9X-^2&1r2d->Xev*RKCn7!QU|rsDI{k;}9_MK0_k-?I+vn-M;#Z8* z7nPN2QA451=1mc?SccL@Z>kX*w)v8sUXFV~6?}aGi1wGdM1&(? z#W_HCN0Jd$&KvLHk*WOQY64Zr;Et6NUM?mcE$O-#h|b|T8r&xq$c_Y(5eZkE4skYX zEMLjjoZuNrf6WA6Sg7aHEGY#L4Dr`H59>hq0kX;@89BJdkVLG(xUPi4egU&$iFOWIWPKMF!}Q_uHfzqm)@L|O@t zv&4fAfP#*|zm*IsF~d`4Chv%WSPCeEA4`VtH@Z?BUC+;?4nhbYyrt>#o=&s>LWrNhQENFueDG=Hw+_0 zLV`+d;hQQ4gzn%=4i^^s+m03^d_yRFIrstO*Q*%0^a~0UH%WSp+`+J|m7W#m8P(W3 zp(|g>G?Vm7NW5|Hwi(SRx$&XBC1n*N|wwjs6p~&r1-GJ4YYbb>IXipc_*N z@#Yi-5<5=Z+_lR47fp)~+k9^4i5UpxUVs>dX@Do1_sAAD$ErEJr5z=eZMfR#L}mH! z_hn~kpma<8;Ja@4KZw&-q=Sp>%!vr57Sjsh%aB*=Uu|m zqfS=rcN7qD26v>4_f@nhg#80_2QRb`V?_e%R?^kc0A3}S^>29?d4YwNos}UTK->e| z1KA{Jy6d#8@eg-^N9j65lRWu`%5-S`C;bg!l8}z9FJOi-@7|*PrxcBvtnD2+OB{XwGpV*Zbb@Ku~G}X_JYg~#$CZb zZY#@rMC4MLKmJsUC24kL^GUIPZpvekGa-l_g3=wIH5k8FZ|?m30z~m4xMBtnOei>d z5B%zk+6f`ZXqb~zD%JbbPg>!*&e`B@UF>XSsnAy9LN*g%gv$DTn#}~UZyX5LW?m%` z>j?^|d&7*104`CJGJz8k2$QE~g3cFgp{ni)ThQ4?MW)#^*Ksp7&g7}ZkEdQXvu3eWd>Y_u}&hQBStk421ok-CrKaPmMP*Ck6+x=&%v5bN>jH+gklGr)4m znIA)m*h`>SJpd*w?n&lP(m}h!^>)jX&h^_z$i5T}F0o@NRVLT&D>(`Xh^JO?oh<`n zTJwB%HR*6r;R}TG<+_n?4Q76j4kcA|uCHcyDbc%+w>#Ag0@FyhVwFa1`ns~Isi|-X zXf4P%a{&$ukgt$hqaFmK`??j)ZxBG^RTh|FT7TlK-v14+7T;>F_y)}yC;_DmM*thE zPKg$E`eL;iDu23(Ga9RGg&CuLh!RXFTsM%9QIto~g4+q3+RFqMT@T$4s301j^apO;R+cJ|UTKwBF!Los!5YA3{Hy)nw z@A4L6uwb79O=c>XNqSKbCFQsN%VzM){7!ILak;_4f%w9Hqg@Ye1|xtV&@EZdpPzXr zG4hAPB;LY-np_T0c&ahpwmnY?5Ho(+_IcQ*qW1`<#Y0NwgLzMwft?I*3)+2)*_G=zLo zRg&+mJe9k*up~MjyHZE+EK^Y=u<^EoelM9a-A>c-naE5f(Hxlxl-|NPa+H8nd!PsQNGsNN6 zU)w!5{1*+~^xXaF$3DtFqO$^mpA19k2@1fIQeqfc`4?T~bAecX%nx++R?0V4Vy3(9 z7#5kvD^RKxg5VtboqX=T{cjTwuDyW0pn~~R-a+gxiRcmpg-`m8O*+*6v&sD#eu%bM z>+=V%%r*G=I*$6<)54zN$1S`JFx(((7fU~S%S8vTZO=mNcU#wcDEtH^Tz^6CG?acq z9McUw{KWc6=!@38@v~C+I@D`I0Td1GpOD3`v)TWRwY6-b^J6+-I-vH1p|j*H8Xy(OaPR{c0g=&u5Bcd8hSPlSj<$&Ighu}h%XQ;A4`z*2g#Nj{MV%_JFIg;pDC)nW03X6Ur{OhtE zZvT1FH_hTc@P{q zBa%`QRM3GbT9796Y>E$r4yBuBz@E7dLPe?OKsq$-(tZ!G*+2v}o)$*=B_XSupIGys z_B6C;T7alTARvc&GQv$be2�bCWaa9PyJVxmuAp^l6%uBgnNMBkFrrN4TF_oUJh@ zm@n264972Z$p_XJ7kALcp({_%Dt0FR@ z2WJPy;_EXBQXXSd6&M|9OeIRLwRjL%BN&|WAUFag!|m8+&twM;CjV|ik?Y10HyldU zxPoFH-GaxV*aw&DR7gWO$5N)3fX@8|k;1&A4%yN)zahZwP_zBA4tRfz(mUhb^qz`g zgbN)!-Uu2*dH{9^u$QxbnfS{<9IyRYg*^ey_}#L*09Bs-fW(u4Ks}k5i4OIi6@)2P=Brq z1MZ3%zP^txE8R`CQYRxKI&s{_^O;Aj>)}`JHgE3dLuCj~DZ1guPL6A3(lIi|>7?Yn zTkj}ccNrp*ako?+J7POC?IL)y2V7I>6{hXMXNN_|Z7)=*zK*qol$Cs0hDC*7GZAFt z)+9XWetPjE(h1TCdGXFqF3AZ&(;pkuufOaVVMN&JkIti4%}?Q(KpX116O0+Yna=OB7q0MCvpotgQ29TjiV#$L zawXh=-#gKQ(d~wn+U425IXKrt@)Fa+14t9yi7C}#mklA!u>p%#j4((7q}O#>33mTv$DSG{!wbmu_gsDyrw0wnQ@k?0IStd8f*kGWMG+2 zsiukj+wUUr#3@k-5h;~0#5CBU;NJ z_QIG04nqF5VCZ^bL(J)E1u`Rs&lBlq)g-SHtLL-k7QE|UfckyDQ!qjqz<$Vq$7JcGAJ2Hr{eZ$F+c7s7zaY)U_d&SM>Xy_r$E|^noPPUGj6E>1TY0WCpVW$WD4Z}dA(vo z+9BrSPi?3Dg!W;1YNAOqgP|pYZfP#ul*}zC7Xr7$I)0`Arq(IM^sk%tum6%t>W;+l z`Qd2CnJaRv-^JZ;I6g}t2q@K@Nr*bCi4{*826zC<6k}N(Sd%iP^h$J({0--$E#}0z z+V9M5-muB|tGr0xj+bf*^zl9?ZLJ4T7FxP~*4O7Q^tKiQt$Q=5kdfCT;BKOSa&s=? z2svyqhK?<=LUb@TpQyvHUr}$KLn|I>lJ%_%Ms&{GPtPF>#;nCs=0>j|J@*+}Y*Ebe=Vg8%*pL<-3Or4A?seXl3NIly=_nP2My zR?wm!ZF$hYRVO8R*?{d(tM|4`Wqf+C_b=0n$sEKVQG-` z086gesNIZK_h$HO#ueA@=J?j=CAJM!Cg!jP`+RvTvBO97!Hu9NG&PM=)i=ET$4-(^ zbu+e~Q2L=->#h`Ki}GEylK~$}Nk})y@y49vmWc_Xgnw9G>Gyb}-6NU0YG6|UM%^4i zHCU^&oeK%bHlYD;BBwP{<0oJ5qU!kzT*Q~Wr$?T$T;6)3O+gO{P zo@R@#KYw44=8R&Ls@~$u{P|n=mwVCbjlCaqnJ0IVe`rVhAxU`c9ToRSdMbXHSVARUy?w{bR`V7nGMxpc1(<~69o9V$ zGy`L&DkAv+g85hRAVkQFHtP>WrZ$;jSb-Kz++M)9gbFt>Rgs0`unxr9zRuq=q> z!NAHZIuu>={GjL5hi61?x6u>JjQRs^-YVykJ?EV8!1a82u8OF?R)ZOL)9ovR*=gf- zJt7*Rn2(;?w_f!ZbT#hT77vH`_EPWbbX{756E(Gd%crzbR0ucE+giv2l~{^_^h6ZzP0Ud)dk57IzHXfGD; zKjF$KkOM11YZU{|#qfmYTo7@?bU+7i{o?))=c*gPC-?+>0-n$$GFOa7mq=rc=v_7Y zco8kab%-;-<^{4;1ubi{!+;5ptSmAazjLn!b^tFc>qG+?qk(|O8B=I;bkLlx?e6Jt z(u*b@Tn$y5BNKdG|52U#4o?N>^)~eW&m6WKc*_P@(HCw6HJ_u6Mc4nF%)`iMBqW}U zPsY7trc7Z}myC7;S`+Q>fhR_g7Q}imq`e35s)VE3)noOvN%lgin>U%;NrNxZ5rqe;BOeQ_ctv!yV+zT2I$hm zbl@P3RBPVb4!p||VEigM*)b8_SVZS-%O{rqGAZ0md@M*R`IKICt@pxY&U zdDpbg5Z5;_B1Y{T-_eQ|vS(gM1K@1Bpc^?}X9Zz2-F_iM}Z^TCavCf5(dB^c2J*i>Cjp@}7ua>mT)Ay$37D3WzG+01+UW4B6uFfou{Q;yI<`1$h&b)u zoUJj6nBZOP{r!tYN?h%Qll4{uiCJ|TfH|<`namBY7J?qgh2Nfb;kA{AQ4SP{U<>ET z-^DunHJ?Rqp)GgvP5h-f$|?-cn(FFc^63OYNYG>uU>eQha#R4vrvr2KjRc@+`nFo6 zKOJN6Ss-GlNYtLPxLYjt!~v6}dkn(F`}c-KubqM5Z7~=FP1emltcduyxc8xCCCGHf z|9+LQGolmD1;DjRAD4Llk7WYe8aHnlS&R5OhmUq+xK(DJ6skGGM9a$gq}J5~i73^E zX_e_9EvXgcP*KdAP4ox@bb~6yv4D#x2TGxz*@J&lybl6*M2|KDm)Krq$;qa5_#TsL$d;BD4*t5sT2h<#E!$kxl# z#F*{g1#b!il9S4dp`jv@!CIG+gW3v0R!%~Qjm|)o> zQo^Dm39d9x@@8(WvR;DY1W9Up3bKnjm7+{5eFB!{oS;|~FywAT0Ma=>y>6^~1?YT9 zgLr;q_(+8k-e%kz`ZIhj%My30chSUF(}e50X4Ne*?hj&{90-mvwR`E5W>v4Iu?ADs zXWK6V1VbNA~HXo1V38}IisK!4u&4{;yY?E%pVzM9b z)Q&N~qiarNcw&G48GsZHyv6W=Km0r7YvBx+;nb&Qmeo2Xm&qH`8V=CBT?ayiM!*WW zvtMYZvs=6VtOZ7bH8vIq8!J$nnlhvTTb?^l2#;Z2Pp?p3j@_J-Sfp`tVSB8l`}Y{m z*J4RAIN*J$B!=R!ZX-r=xsf*l#oclQfonpxIN{(PH(oEHt-Ex>Z_x+8w4`WZfe-Wl zzhgyViyFCnU!QNy0modv!$v!NcS(73@jWnv9RoVEC<8#GsL2^%riD`OY2yM2vtie> z)g`9dNr@1JX-c4v*Z_^*JA(rVBUaFWeP%eI!!Zo4+Lsl6d9WGS0@8kXNbG9Agnmu3 z|0?o$!Z{G=vFm+YmTdo*=;tYrh1x(Q>|IO5ZJnTH62;AtQ0)r61YmrrP~HP7F(6Yl zlt62J_Xk~uBNX$$QP8U--y4e1tA8`pX6ph#qth*rI+_La0ND$1HW+AnJ@198lRr~7 zwsmcFygoZXQxAOM_I^8{L5U8@;DF4yaj3u{C-#$A)(nyQr3_GypRoZyEr!`>c~BT~UF5Hib-Df(2oWEh0r9ahH- zD~0@bzWWg{t=3!J=gPCT&9*)ql}Kf)dt*^Fyi?-qq95ylIv#O;I@0Li$UOvn78P8m zKXez=F-mLFdo}7bmydzAH`nc&N9Lok7FDW^6y?X#+-z;x@8Flow}5z6OU;3_T~Yw? zwFBKdVgW;5nxF*7?;$`K4c@%M697dS1)d7?v$osy?vW4^AzP;0=PpDFzV==xU?uzp zdT1+vHlwcd3AjY}pVxXGYrALkX_X|p4So1Jjdee&PV5`j+{*{Z+i8dF^kZ{({)ahH zyuI1J7#BQG!PC&4db&*RaK*p<5F<1#1Y8F9qpnjDgkPm0TKGoOLXQ*xD(V!rtN$kl z-Rl%s$-N$;%VZL=m=hwHy$5Ci8*@`M$+{dvpR+7AtsD)xe%vCRXI)sR$+uB>l6$e* zw%_lW??mzP0JI?vKq78AB}DC1iHkU|!XZcf;s27Nfu%D8*}yP zsz4Ot2Km@g7hmeUXj?Oea&KUksJ03>1+0T|b;4DF|C~;xn2*7B|9~U$0U8Am24pye z!6hBBG7m#(iC6BZ6#>UpwcO)|mzXFyfH}oblL^wqw@2aKjMEqLP~?%E+2=fsr)VX^1R$=2|8K zqCl6XbyferNR#JlIftU#9zb^C;CarL5R)?^XxxL&3#YvOH5zQ@y=0b*w{50|!*n6D z>cgQ;QM@Y_M(BYdEl3FR0y={c?u)2DYzup5^_+jEK3c5YMAHc#Jja$ebkkv~fp zZZ+5+MY4};#UxONMLZAm(AWHq65d;EGn${W;CpD3hX0n1ubqZW9W1inzi1}$Po{bU zJXLg7Po~#9caz;6mo!;bC?0Yj?P$C`*q5<_S!Is|6*4p5>~T`og~qR6k@zMK~a(tGPpviHsq`G9ncD2r%hCt96Ht z=TTrSoRHF#f-oNecoVMc9|=Kd09W>oivD=O68|m4`ZvQWzR5O4^5vh zm6v7fXbO9e-6ahBsImi;sA@siCCaC=b^4^j;>&gRr?6jk^-KL^R8N&|9QJjfP+ua3 zs~X#?(0?2Q7R=??S5EbN$wX%#RsW6@gg}N6@5ZF_g!y6-o_;Ee+?(<$Gyooe&(Op{ z|9O7HDIfu27bTsnlw_8sL;DjImMx{$e(X1qkq{^XVn%~fx$F1Sn30U98(Vt0-HI$7D|ewA@bin2w^3q;tW(>GYPs105E&-q3cWo346|z%+P5(riU&>g&+NAmX8}GTnJ1jE$bXFfn)|ij_Bv|Z&B1k}7*;aU z^HM%+C^rmOR5$MIkI!SVfn*3Fi+!lMnY)j;wgn?Ouu>C1gA2QASR+CV@mlL{Vdz&5 zl@6b|H4)a5dCYu50!23|?vg{0O7#T8u5MBgei z$VEM^n7o@BHFu}z^y#Xg{?LbEv7bq0#xY4DV(fCw&56zu%}``TS4)#Kw?l(}KWgq& z?|wPld0{rg45hc+)8{g{UxR2ZUaTGv|7+ZN9cL)NEc5L((-)I@D`CO{H-N5xA8+X6 zusidE^gd9D!4XjXzvD>@fm9iG`=XDT9% z|G%*wt(~|S<|6MviqXGX|BqWj|7!j}?pb9v2j)|iVw2RD8Ym#Kg+~JyADPx!_ek({ zashDNiLF~we4G{oU`R@VY{UlG+opDVy}`Gk-#JfIH@3OqTUGz`W^LD%V~0TBYI^aB zi;*2fjx&$MGpi3IRJ{HJ(&p-AuWJA5_gBj^C*!*{w>E%C(o?Q$A2iruOJY07-$&%L zJ9UBIyW)P+laJal)Xko+i@Jws1W`?EXxpO2(s1|bFVJDvR^;4ov-FR>xH<^%+D$C` zssAW6Zy4)R!rvW6g`8t5=ht7eE?o=3Cq00j3R5a(qL`ViXhj2Gdp7hK!z^ zJ)T(vvgTt{z^^N-7UACj*orIwdXeS|f#FtQNpb!B{+q`Q1`O)sYvjXX{My!s?}O@7 zgesh&=A*ZhcCl&SiM8yQ89`8ZtNLPAHaE?Qa6zq;%AqU$bN`;ZE4e+6({{Yatb z16Vy@F4)VIs}9Ye7xTXos)x)aURI%ikj*y29NIsXIdg;* zL}GpbHLFQzDxlg*U-O{f{a_(25P(Q*8{5U{;ZM&#(Mt|D#BDz#B;R4o6x-<0J$T0| ztUhqG@TjqRV&c8v`k)q7O9l7_SHCk6&IM)hQ%}T-^a2|wSw5+1;}_u3AntKfiC9PY zqMX34Cf9qwoIGWDqy%>alm>xrj9=8RZ;+E;KnmuR)z{nKTYMQm`|9rJE>Bh#7tVK9 zS;D0QS>%X%)h>L_e&W@AGG+B%AlQ0|6Sf!z%ZUBuwzhfj0@OIPH|{urx)&=>+5@5! zupP1jH1o_sGkSX<k$T_I zV3Lg9R+n5s8hBbqf)`W}DgnW#;Qe>X3RzNetxtDAjBxP?GzV7{`mSu%+Q|u<+*kt5di%-5)wtdPTHz6Yt>MTk;UnW(aEenRPq1cLH=3kEQ1YV48mhGU=Gr zNexgsHE?9m)#CvMvhtt(orqf*zF8ZffkQPwbm~o}TB%lge6!sO?i6d*oD6GNud13_E^v1f%de}fTKdzCLqbUt<@*&7Lzo>ZkL;AKRe zP;D6$nq|B3OS;8?LesZ}Ed!^u#?^A`y)%U3G*}-w0gC^O7lH8;>t z$CLX@9mi~DeTVXv<;uXosB0?aaaky2x0#h*1kc~NdIA4ZN?};^fK0}PFq)1S{4PG} zD2d?jDOK}4g4RHaJj`e5hxk(r7suU3t6X$p^-|&?4v$j364v}&@kp9!57hKet3>>Q zKKM4xMJj;Ndpi{PufvQ}7b|l-VoGM$Yo~6O7pnkO&QeCcrYzsAFtk4E>>rf(T*Y=< z$(9Rp1_Hc5e!K-d?4Io~%B9dNf#!gc?OrQ@E|R#nu!4_V5%@{t;~A$&;dSt9xF5mt zR^cr}z7&kwwmTp!ISBmjo*A;O%A=O2wX+w~JG=|-dBtKH3?|p6wX4>e=ZNc~ znEh-3k>@IVPKWN-CNmO@)rjVX!=MnXUFHd9m0+w*OwsfF6x2l-+^%9SlV#~UCLZnI z%e-FynZ2%Uh0@z!X#HYuCG)&g%P@|ZNJ8_yi@pjOnqzmjFjFfe|{ZfIWHNjBQURD@>ge26|A8f{N= zrgd0mk+jZRDqs>-N5r6ay{N6b3pj;9hlgQ_uga`Fcstv}?K`s@0;iN%zDXO1>y!o1 zk7d|-a}Ie$J~|c?>vDDHm6|3of56~l0D~G)!tCbZ14DKu0(5ge?^FF!5sqecWG-T+ z;*>rUSpVj)z%lAXzR0%KSTt~F-uu!XKIA%!K8-e6leY8F;u$P|Z|!yRfrVj0_>D|? zE@|UqxWL7s{M2jk8Si>pxbe7CBA?R@E?--66poIrjz-Sg))OvTcFr(`G0T{s>_!^r zg$RgAxKpQL=X3-xDb~R8XY><=rn-q9^PAAT2_)FKQ#EF1!7KSu2@y3H$ME|q{i=M{ zD)E6LR__nz`J1#<@vfLbwF!-EdW80yps^4fg`;1?0jUV5OV*O1Y+;2>!PYhAEExnh zu?S1YQp=Bxt6T}WqIn*FMQ#MHh?4EF;~VliUpwEc8!L_Wx9`>fZX~2 z$U91sckPAf`Shm|&Hgku&uVkOdKltu31_YBWONi)bf5$~p!@FpUc$iogJYCBO8mgX zgp~%@d5B)*F;U+5V;sOR+~6~p9tM~y;rh=q`t{nkOZsN%Y!=-8S9F%QzKh0BdnTT` zzD+6aGVWgN6fJJuS$W_8z0rLdN}cPKrbippr#0JUeVJg%a-Txol8~mF3uOa<*)8uv zu>`a9oHz9L(oVezCmoM|@^wiS!!6z4@9q!0C@omQen)Z&ruQhSz?|4bO?+Vcxhtx} zttfHJ?;QQ%aC1!RNb2L$=B%-`j2Y%OjltQ(afNEYm}x)@#2|N#Xs8ysk;23*p&;lc zFnf%n31g^GsO%45P-_c>&L3uj;1y4`-9pNNJT znMFg?LT3!H9<%6Pt$jl;pr? zfp8X#1)x~vx!5|lO_E^_v$kM5#XjxQyn%Q!xo}^UFB+QL%$2gN=vv^gOcVrs00&Pr z?YY0$b${xOOwt~-t&UEj?biYDH=y09FgDZJolD5CN+G3??${-el1B_q7ye(j!}Mq-lK z`4j!L%9#O#BC^kTcE2z)KQs4uAXRoVf>p7C$LhBKug_b_LFf9ktLJU8&lTOAWO#L2 z$zu#W2AK+((xjKK3o=tCs#Ck&%Pos0_@@+kA$mT$zI4heXSBO*UQzt@6};Wbo$myc zD?%`F+vpE*UA5eLOU}09`FH71ctoxZHXTb&-%8>xV39n3X55=(#kV$5@wkKG(bn93 zWn;qabTq)agYtFL3os!O*=zK9J14V0jgQ5w&@t;YN6$Pf&puh;USJU&yE&t|+9y{w@1nz#DqA4|dS$p(dwyOGZr%2(ZXuKAepZ*-61tYj$ z7fIPf3C8*?u<}`A9V@>Uat3oKM{amrWbIYTbP*EGq!B`9YRQ?D+{G#@1VEzZYU8#- z=X~r{&@Jqg*!*(dLsaLOlc8K2CvEKrn zzfa^`64k4a3`?SD1USj^>FgN_7LUeXRfT#F&+ST953~ z!Y28hw>Rs%-&Ti6)10vpKklPjJdME=+F>nizi?t{kg9%pE)ryt!Yy5uI^@%0i?jGf zsdW*ZTGgr&QjyY)q{*gpyTmt&eagsW=JCM|P8c(ct$K$c&Fwq1V?kjvPRZSSidQYP zxt?pHf7xJRE4k#JXSDkezMD>Er0+ruT;`P&YIDTiGuL!E+5ClavYT+7y8`P7*`|RX z5&g~Rk}vPip68=sD>mxIc7%Jy=pr{R4o@RYNKq_$B4r6py|bJ*r+C`R|HsFWeUvw6 zOND)`EC}cLc}Ad(Q0`Qz#<%b% z@3{UUKse**&wwOeT(&apaegJ^@Zhpz$Byxu8R^@f`8y8>9(-7j_JE@(AIrZ!aMBB0 OaLmlu+Nj*XBmTd0G@=gx diff --git a/reference/figures/README-unnamed-chunk-32-1.png b/reference/figures/README-unnamed-chunk-32-1.png index d570717a2662eeba2e57296920feb3f03e9d1544..5b3b72036f38ebb807c1f6cf424a4ebaffb377a9 100644 GIT binary patch literal 62129 zcma&OWn5Hk+xAV2gmg%Eio{ToL$^{QA&oTBJ#?3JOQW=ONOumQq;xmZ-S93vuk*d` z`+c7e&j)@WGpw0e>p0fFZ~txE4O3Q>!FW#c91ac+Lrzvw1r83O84eEq3x;l15QBNG`D8xsc$BNZ8OI5@t@NHtw^GBteRw1#SCx?cek z`T22}53dtytW-t=XSW|rs;%c);;m}LV*2+MGAtOl*6wmGn1u1gusaHuow}Gp=DZbvaWpMs_GyTweYtivw5iO>kMLTJc9)X3V zjCEstwYqP!yIa7i!)pY?YlM|KD)Ch!13c+kXWQ)lAyx0<)J5IpquFkmvJ8CaLeO*x z-vG_33Eabro+@2mkk~B@b;|GxwOi0CooW@g>j#_$Q6|<=)o@BIXQ;ju%ggT(58ZR2 z$Xm1*S|DV{qq!)^>%vkdnn9_4p5jzR+VPfvTc28~1+?>bVJ`(h zojV`{y$6zaKREQ$pF4Z2q@!% zz-ne8Fg3!TXZl%;*N!?IuBEriywf`YRe+oP>!dJ-`5fDe(@!;U$i68 zZSMuU0iI+G6_$mkwn0w8bCPZIuiJU%U$1^I?=5vQT|dCpseXEZ?QV~nD`H@rD~+f}Uh!OZx}a?Nnhn=D@J>EY>N%Ynox8$AIp8;$TLY4xn8Nyi;0 zIx~__tWL1mi42F~$4>pNsS5oqUM=(oWN$>D-8uET*Sp+9>d(CzZMC~)PK6YWh4Wa| ztUgxfeA9fbeuF?c2=%i%?7xhoWbj#ATo+#X<(TD=WxwPL(_LnB z(09TdJ(<1rZe3rP@G%Mt#agb1FSEun?rR^8Nfv6wB?k>E= zc#(vjaw5buLDo&~f&1tA zF5Yj2X3PD09gnRb&kQ~FJ-LPPMLO*Qh?l}!-|ZbwIP6pnVy;G5WYqjf{qwo2e|^pH zc{%4R0`!gc?3cTZ+f8Jn`ItYF%{SmGJUIC}ZRH;B3FqAMOdPY2`0f}5FSTm*S`Oh#g!7>nDp1C5!zBd1-vM168cHO?#gx0}+E5$%MYw6t7QM&Ydv~u> z#EB)i`s_!Mr>Y4USt$Wc&`@ZxU(B`YMh3j2|EFRqE|l z>PsGv*ZP8Z)(4Zpt2}*UQ63k2u{sS7J=XV^`*VbKZF5WBw+iZII!tv7F4`;$xHwbK zIu*0J?(uA;ecD_P^*jzoTzk{Rh_J{7@Tc0e^|(13m+npm!5c$d!>XO6wj#c&Ww!IU zi@5Y}WYc)8zxf+YmFXhbGpT)7Rqg8;_|@cknB@Nq?aiVIi!%opC6fyyzst1pE4OtV!hZiXFf*IweNWW@5L573L?Q# z6R@7;CM|LK#lIz~s!h|G<$bdgb9=Ef&e#v6BATok;RLL?z~7<{P-QP4wmrH?%?>|* z@oM@6w!?+z3_V6TeiwADs#Ku2;#Adj}jIWh3}S|ZK%g?$rV_)^s0=*bR2)a zMx9+A7*hgn1EC6_iLNxUDU-A9(UaZswpr0ag*2Z2wP+C=L1hhcSzJlnHF!}o@**6n z3m9$mhfehC^GABMUU1tTjfTG0kD)9PkqXk>Tj0|t=e=z{^>}~juo6T#8xlN6tn%7%bEsXv&HLVXwL8ql zQQqsM!sD>zk|kf#M=29BQ)~G%^>uBg!D>~A)qMTCOrMAA!at9jX|@AOBKHZ)srL8K zkzg)8S)2M5B)8lBI=sEH92qQP4#PmNus`z+j&S4aWu#Nr^Nzzm!2H9!)Ld&u2b#(6f>}QN~jGW-1ZiaH&boj%Ic2&-8MVO&+VCn+9i=af+L{8 z=x)LD?hHNh*)P{PP8k$Z@vm$sUS@{*U&wFmzEe6?K1SC(MqfFjfG)!yR`yYxM!0qx ziAYfGn=LPAKl^2Iz~ym}t#H9?LKL@eJzddpdpaz#FYwEx`McgiqqESOA1WD-)3)+( z%wfB$#DvhAeeF_Y-zZlmWs?C%5%uSWy#okQjasG5I(P1R7*)KBN-`~|JzT7?B z9#Zr@9Ccw`e0cN;-gA>a+)hEx^l@%v3y7vJu4V1b*(HZSN4Rpwxj<7MC;f~<5+}G5 zTQ|Gqm%&(+2Prisna3p_$+|8nLf!}S4SJCKP?d!)^wy2RL{v8^nhtx|ctBm!O;UFg8Z#h3O^erO>Ir$>r@JtZdX+2I&G&THq$?G zSh#o=-Y#V90e9+4=_oSd`rbPN^yBl*pJ`^Ua)0z3Oh7(kZ7Dc7!!c4#{m@V$i9qYN z-sd;eYhphx>vywsh*xfy>N1pkC_7u^+=8*^bgv?T62>!fDCO8TUXVig&|b8S{IgJQ z*+Yxvh!nXT`uYZCjjI3X&$vk1nJ=*(R;g$&O?F%`w|~i2G8o()O1;JN16NOY3~yy&oi7*Ns5c^Z_J<`}CjOAqh{LeZB}!KWj3-8hXq9nu z#bhqDZWJQ9|9~DZ*cI>ANA3z^E^m(e%2WtTd-F^6M1}^@fG>H)>(tIw4a0LxefD>Y zhpV6tnj&?T>7dXhcVfW!i*ujxcob=JL??Qbt;gLV31JnP<@(G7GaMiZy_x+>%7Q0(GLaug!X{ zmdQdrUpN>C^R$W)+GR8+uzrmc*xW=iSK}Q#x00kR|gynb$Kf zR8F>o2F6UN_@{|N9KQAZG@B|fYG}i-%RV)* zU6(rw)4A;IHtL;kihvr&5h2=pvY(J8L;-2OT=Ho%3-u4V#N+DvwU`qv{3-ePC^fw- zlNvp!!0E)*TU$Jz2w3^WsZ_b_ScY+{@%*uxa&ctZWJBU6tg1$l@ z{gK&}Eg>YqhX;ioE2n<_)I>4FG`{Y1el$STY1C4WC3F^J=44;%m2kOJkmcUueqN>b z^}AZJyL6d>(3mOTMD2Kt+b+gyWB!gE47sxiPnwR#h%5gP*qyNu?OH_v@5%FF$Q2@m z9^_buw^=0^-@_CpvfRR3h2W9FH{u3uh*}QS5aRE8|F+>EwLu9&{{g66Ey;TBOz$}K zJ&&ajunyb(5cl~p#4hTE$;|ZV;+k!s@%4Hi4i{TmGKD;5O`7LSJF$mjbZ!@#(LY2B z>DNz6j~O1CH0y5C4;;kLKK4|HB;SU#QmL~}+~=iZP0CZ+IH5rFHgE%Gdyl@$#v&otwp;oBoX}5GELtp-6|0IgM{VTF> zEQaOswS)-JCQzV^d@JQ$@~l3ec+XTu>->xqGVOJHkq8tujrz=vT9-YMWRafyE_B^Hy`5!;_S1%+bHtD*#tkE|wRFtmmwtBPC{Z$jiU!CXFXS_A2MrY4*h9ft<>yT3(iDqbA z{P<7}DJFo%j!GDNB>M+gV^ms?pM*%C@FxhtHN3Y8TvydBI?YpdH`6kqt5?a_{9P7Jf zDYta&BbszmQEM?q^_thv8K4Zxx)$yRJNfNO`;ths+2|*sYSDErKvP+d#X9{VA%p@j z_S|V`ko7Y480n8IajJ=XMKq}W#*O2n7$$X_Y$kk?K0O5PxG9DDBj ze$9H}z$I|hGd+@6vW6x5noGeg8Hx_HBd%eHk-co0Vxun58yh0~Jqk$~6)2{BXMl=t z+a0re0+o-alfT{%`kWdcYMVhAplV_c%@F%ATW1S4h0VAV%-_^JaC1K29S!Qvj_#6B z=nbNg`urjCd$@{pPAD%9m`XC-3d!>ueb9CqwJ3*}f;t|`yUuXA?iwyx?%VN$5A2X? z$b1FRwe)?`qCW2k4hi4K)<=)bd2AG;q7K=%JPwvVsao}!M$Q6{9b&($nbjeTNHEDY z@|VwH#dKbfZ~xY!2i-VcTqz1dSpZIRQi9!m|1`TnJDf)b6;6y>O*#=B$^saS{OLGI z^yvQA;7jn<{HZi9UVU$b`H0eSXM!rF-S<*nTykyDJxw=v+`C9SFO(bivrFT+LcH!WcCOz9%l-N`$HkRPdN@d4ZnlCq~nXrk^>e z;0H|zy@h=Y8lBntQJ&|cevR1s7;csKD?MviU^WVhh>1@SN$8g&U%D8~s%}m!7FhY{ ztR}8fJHBz)J*D^6N77}<7MM@iu|WV)?`P^^ssh%jNPLS2DzTI2g7O^!gd}BXy%G~{ zes|XJ$YTN==&9-U(e)<_1&^(A2hiI0J_uf^ytX#Sj4cUG$(_2qITu1r zaq}56?l9xI0TE$2B`1GPX|F>!>c{GSH+LkxHC8` zO{N^y^yJkU>Z@qK=CY`fb$wwejUD|~WL@PCcC!SW0-f}&xh)Hk^UBQ^R8ic#A~ffP z2(v|``q(JegxJNQ7|JxBfi@u(tGhnQYO-N5OX=@xDV{$@xp{RjF`V0OncELDv%xCG zDWfkR^V=N?J(wyug3!)f3uZ;G0w%@PX!9;T3aiEpGl)Nq))*JTl^~VoA%v!6qhM&g z4I#vX)GP85{M?BnS?qK4)8k24A@3zkOHE3!!56Zuh=pXP#2;a=&M>eNcZET*h~14p zkdxcKOcAxyJP_=|@VcefKF}F!hbBLs!hA!6Axt6EHyr^;{dK*Fkwdvf zas{uabEDCwgncT$6w5edZIgHD3esUev`hJDn$sL7<>$X6EQ{_hi7lK~p27ehOjjC} zQY8CQLnh^s+Ku7o9nJk?H)F~MY#)|oAKi5c#E_#U=_pv{?|*p(hVZ6eALdOo_7Q)5 zWBGRHK2x>jsuaW9FjPK`v_!B6oM_L|P5IjFYHuNN=g{g7|tygK&7 zv8b(nr8j$!K${)NyD?4gVSI$2-cNzug9$>7jpj{g5Y1Db8?($9f8bchct=xSaXdCN zGaY(m%Ev(>(HG*GZM1Q6q8!#)RcuG$wj7b#>`LU)VjNH@p#AY?F zLJ}HJ>mILN8}hB>QjRWduE*tjmt~9R4j%7B@Lpc7R(EZT2X9?z44zu@^j{48Htxj| z3H<&1+iM1MW<8-4XvUEMo;iMWa1^&*b8g2Kph7~Gk7}V;ib)`EpUM+)0u0kLa%mfC zX!y96?O;xg;yqH8!xRqF;$1%I_x%0u;*$wq@3Cr`OVDoots$Kpk3o#VIFvh`tQjtd zgx^4%l2b3C&Dz&^@K|JNE|#@;12(T@JeVK(QD*U5kN>E&^b1{OXieYlLkc21hSnh2 z6vz8If6bm(FThEmdt=*diOjIs0GV9-85JHbNflA~*Th`GlO?I<$rNe>gP!rDz9BjP zP&_6vU!8U4ByhZ;!W^Rj#3x{qbMyBUZt3sNoPUDG~7hHJWNW5ALT^SNGDV%s5g#z#f>gYG0&nX*t7J_ccxsh0>V zII?$x=xyaT??9X&_?o6UO!6d!kSIEV$KBmJ*`MOi)~jFd?subvxg3?&SM>LAI``Qu zrTP#Q*v>JTyh(m@No0ba!lXS*P&0Y{YcT?gnT#bQ0pI|;0Z;|y+Fcl&SW znr>3n;c2o_ZMa6xCot-3%O0Av15W0(9BU;nfJx;G=W7|hqV;t-3j3-wPc zxD3ntev6kdHVG#zN+AX}hmC|zhWAp@dO{}K@4MnymWm?@kIQuPvDFzdm zSON9=BHopEX3ZJ-FTjlx_eBjn+OBIpzYe1=WWRoBYa;`AhvN&_!nRQh1o!D%%)i6Yf!G#`8lQU zqg!h=V^|zI;cF3@LNkS-z@fSk*V=Zq8tyP>T{naJlEwlrUI=pUv~3VA>~#Ygz)+if z3vQv4S6;nbXVYu`(E4y=NxCdO=J-fQl$8c)k^dTwS?;nw8}`}wB$#&*+VxAg*UCaZ z&2vr2(MP zXB2t7tHx*3`M}n&j(fYc1a4>@Y6IW%9%Gz^c;{esz5jWC3lO6>TfZ{y)9_etZ?)-+ z08X6%=!6;0FYKr}Z6)t=f)hPF0rBL*8DDEX7rfU8JlXR0Pb4Yt>a;#wl zva8S{AJRrcXaLAv$(3P`d6}$AERQi?ZKhQG+xb?^X|Be?$n4>3eA}qGf5!RtsDyL` z(MLIf-6gjz^16QS*4u-ou|{W0%}T={Zp+CbMGt<I^eEbhqGsHg*5jy;^0`$*~9o)T=| z1GM-ZB_T61ky4SFKs|a<6m?PN&Iic&M>mG&Gh7)e*%TNg+(-W~I0oM%`BxmnP6>+u zGEQln1!&_Ev1-Y%xxF5F(yw8!Lzg(}3mL9)$jc$@Y=rpkyj6n*Czv*8c|0abt z3>AW`p~~8|03Yx$WrxL@!*oEg{B1H@CiPh64io@$rxCoJHrfF6y6nbN0x6maSRXc@ z{yGJ)_7*Y1;m<6QB`ykd?Sdtr$Az4Epylm2u%(b(1Q;eE-y~GAncr~})M_@-2|T~c z@XI^r&zsGrpU2EyqKmv5`i4+s<$p7!4jeVHgEL3TaJg>B^lcWKXCCy7@>OtDjnDu5 z&ZLgaJa$03d5f7d%uQ=XabL+L!63x--L#EiD!IYPU*uqjvWGrdj3kO15Ihop=`##@oA<$z4;KNt1DLK)^#j1?u;ZE`se#v~`XdKi(w za(lul_lh2btXjrdym!G7W^+x;{%8=q3ah$t4ULiyqg;y?!+eAYCLl06rSQCPfdAC) zWl50l8xq_$#O+jUlrNZa-gn0`X~bW1<*<6S&w&GGiLxzYas`gG#wN3BPr93FK294& z)5kC@qng+_LJ*r*3MS-381uVos)?wTKGfTNb^0^W?~VdE0{Aao%2R$Lm-lFzWzYkl ztTOHy1c^w(7T9V@fRoS?9;AUi(1bZ`tYyMSnx3$S7aW2hwpS-8%M&-$Pa#cIV2 zPc(GD>E$ipGN8>R(>vRo#<2nG8h5Q8n+|lA(c*E5NhZEzrgu|nmgMcz8HlQW6U57- z>O;ym!a~(z;3J{4|4I6KK9rLAh-zFNUDMx9EEcd22Hg{Pasc1R05NgKluX?arCvTu zST{y|WSAy$`HS5cuXe>l0gA6^^N9z*P!1E8uuH9Yh=twbzvxkdr33Hap_}> z{xCsKHgc+k$1108%5;N5r4ct*#LNLZB0Itl5!pSz`ZAT;4Ps5UWi4%mnr)rfBQPjPu|j(H-p#>LRv+AV3(xIcq&O$cWeXVp-7;ta>&kYwTX zR?Hk*Ckm4~tgMHJ$Q8Rq$U1o9a7Ciz+ubY|Kx^WNjW0HvfPopq{W} ziF-uEihlt6xfy&Q=k#;g?nc6*U@_l7NnaMsTpG)JtF6Gs$S&boivhKbED;|H7xh0~ z{mP!v+|v(f&eg87L9N{-{7-`bhs7Z6y9c~wtMf9@xO%ys?ofC=xizgK9QdW5321(7 zIB0h;PJnQZk8*Jepw3E?-l+wyzFFtsShj-jf9NQw0@@*(;6&lYU1s^M8Q$Ktg z`Pq+jXoh4gwZl#u<4cXgS)&3z74~)wH@Y||A-+hZK@!qajN-m<+-B0+^lT?d&gh4< z&g_fuZ%?-I!}c&t6jcDs;H#V_Q5FDsUweDHWp!ru5yh=Sv)`Vm%YlfT!8mb6y!Lmo z1~^8||5svE@<-m_OFlvelr@FQz7xu>PY~l!!_5_=<}Me~48cAFbRk@Mv7=zENhx2C zRlpb+YJ@W%d>`oB)+Qy6bR9sJio>W)aeoL{cNVvlddoZ2z>1(L0^Rdfh2;)KOlqe1 zwLN0hi8yc|1nC|))n$dnR;aMk5y6Ji#lBJ3@+sV@@ZM;LvIpnnxt(shXgy{ z2DiD%v6q~)L`a~_X}pp!4qizN3Xbe5aD_^HpRb}+8dsr2*}DMs8*Qf_mf*X^Efk?h zcF&rrfsRpj%COuZjW#5JZVPgs-!uL5F_c{|0dTB8qfS@gbejL70AR*f^6eSGPcu7r zCL3(^>@(*wo(BDxIlR%Il=LNr|2bkaY1LdS(1Vig(IdZH?zO_h$x>WR&TEq%^SU?k z)mJn6aE$wRDqfnOnGG=k(v+s=#~G0;23P=Q`WNxc;~?faRl|pS=(Pu6#+7bOS-38^ zkdZ<}wz+l$-7-b(+!mK-c;YbTY@~^PCiHfYR`lI_Qc zCxPqR+-_d7k)&-?nLz_j)LgojVJF>pG4Wn$CP4sO>Ex2ZM3&0m`p-lWb-@xS<#Ah*;AXqN|anGXv!E>*eRz z@easJ;3DWzD|WZoCr%1kbUc!llwyDHS5F}aY#fBS2 zcG6Uo0rTQks1&C7QO)}hiL$l__cN-ekA#sc6}=gw9UMYOJyZFp57HQy@rmW_Nd%9X1i)k z;1Mc-rTB-^a}V&mjYHPOe}qSYe^9Fa3MbXU`ZZj;d>(*=f$M*QQq|R^P!Q&gG0d$; zj#?R2~hKa2$dRY>Ndk4T+oE=8`hAwjKH#2C>Pt^qZNT8rQw)l#EMAGw}}6 z67s!vNi1K$4K~&0!k+!Ap=yUB-5kVvo|zy7H3`R<)Tj z&UrMDw-n}V>}DQQ6(aIlib@4ELWz4;n2#d)8SX}ng#>J>V#4+6g>Bb$x7QWdYr5aU z3&3OkfZ~%?9`pL!m&j5hz}z_Bd`{?mwfpgJUc*=bge$#o+_-5G@SjA-f4)@-0EwRJ z8}jUZjemnfz#~-gPe?0X-@rQae+o5Ca(Mb?&3nv|3&86BZvv_RNe}jeD|nOuWX?(8 zXWM!$4XBFP%EXcCzfX+md3r{VEu3{LaJXDn1Y>im0LyB{qRsYAy5XF(@0DiB);pDztM0Es2CdTx0W z<@zF{?sfi-K#$w!Fs19-pmuQ@4sMO1f13mY1Sstf%PCAN?Ph4DCy=OdnA9{w&1?q3 zO3!L5?SQ<{^>$9Q@k(b|i04ZuIWXLxgW zSP?C|1yRU0h$ZW}-+fn z>#)eEkUmgs`Dmr9%BT;MNwqNM+)n+wDpN=1R=Q&pItlm73e2i7*K?pzj|H@nE)Zs* z1u|F9tz6Ln*&GApr``a`rTOnMSx;>}paYoJc|x6c#_~*nFO_mVALlGd9@(6q2N7LO}9g94>+P z=jxIH}2-xxTd0{QoBGio$&XN0U&A z^=C-CZQH$R|DxMghM7ehqi;mz__sdg=Pe zR|(WfncF6wkeRJ3BOHu16H?s8N2r#)a_4E0RrbUl1Bg-e?SOR1e9@{N{hR5@mh~# zc<{MD8e2u~DEv8)BtfGXCFU}PSrlY!s)yV^1#kAf_jVs@ZI>vfDY5o|ol$y0plb_6 zR`z*d=s+R~L*Aq&gO3KW!Gq zC1H5%zq;`WKnU3(CiRp}tDl+IftXd|6Wam0WEP9=E&(7{AUQ4iO3-D`9KeUIp5OMr zs%OWyTyLh~S^4V-b~&b{i+NM`1J}R0JE6U%BLI2MeJ#-&@C7%3h*m6+ z9ho|^2$-y6e*oezPf@`d$;?COJ&FUVfK#Dp?y&$KQNjOdjj*D?^BNC-3blzMi`nAPQ90r9`(XgDsjgp_o92#G$g zJ)D?%+rv#U-&mv$VnBVSeJ`Qjtc^A+tYDS;UZ*B>Z6+{kMBPvQFN9jn`E)3 zhj%bJ$`~GtVW*ZV!?TaVeVh805HtJJ@9#4oeHd)0p3ML;L!9ZvySo0FiK6%M^Yp5X zT$ofj2tM8t$n!uDa;DL_ShYxnz5>;Yb5WnW)jZ(d0X0-;2L|g1PoC2RpyB>%-IBLu z%Z$GFbsj#GO1E`V^{}wE4%=$`8{JS#knCWx&hwUfn{0Kxr=X`FpD3Vi$aHdtl%-Ip zcY42ZpwJofCUBe$@0om!SmyKZQW-BqI|)?Ylx_AQ)zgu+1!5uA54w=a80c8qJJhDvyP8Tken7T!u+-Hl0Zcj-d&lsbSe?z5BE|ll(2jstYQ}ZMSL4@z zYbPfj!a6IXHo65#N?|Z$`R;n(k?T*8=N}+MRySjPH|L*>+DVVi$0z#5Vlk|V@A2+5 z=mR3554LCX?E?^3oC?1tIB&ymKMY4NDTFl2ab0t9!h)hRTh zZt2WZpco9-A8TSB$ok-OJiLv1-(Juz30k8hK7+Njv6<~$^vtaeR})PnT&7BB{UnrcRcq>Wo8j?K~%x=?h*!U zn!;3`M46*Nb(=|H(yd@wT<|z(kU403^rn8Xn!xma9l(EedTJ;%OYxjzw5ulji!DtV zS0P2es0$F0F>5r9o>-v=9}|9m5~8LvmwKE&8JLrQ_&#$A2#yb=*|u76O;ha}YPp39 z*kerKsT`=hJy>X(%6GjR_IWTG9&hvUnR6LaAJa1}rz7we5dW6))p54Q!sV0eh1dR% zsocD<1vtc6Q8xi84;2l_uFd<-H0N?Jow{@ul!eDdHo>>qs>L>Y zWS6zF4I5)jaHz~p_EMd5bz#Q2z`-e;EN@SY=Ft3Qw1Y&h_idO@<~FbraC|w8(#9 z@4(ei*5E1i&fe)ZD$PivxpoBz}MO%Q5ydgq&nhiFKhn!|x6f@3eU+!96 z+jMxgG_IqGpG&yr|E*b~%{0DS_;JYgW0oIztD9m#eC?fD|FC&0Ow_zaj??MAX?Q+Xf3I zpnWD^j(L1LVVv{v#@>+l=+lY6QVhu$0z>D=R7VFdS_>iwv?392x-;%7`gFxhib5G^ zE zzjp4~frPUJzY;_tE-oV)Ka?_`qlR;jNlB_ZOU=n{32kySlx&e(iw^M_gW$%^$I5A! zIQvOZY1!Wb7ltiLxr@%qypH7%T8G~?CpRkt0~=#i!C)Fdgb;xP9b0PhmL60#q?~20 zf1f$6d`kwf+yQi*%^>C5dS~NLRD~?iu}mN}*{L`a1wxeb2eL-p1Q?thR=;96bnH5w zT`*T`@YpWS*CxJ@Wo4IT7js!*psNzx@zErCl6*HOmTQ2i_cUE%hy(9bPIU6D<~u+` zt2l%0*LwS(QuLtYkK3B4FO9TLipv@Y6kQb=KFt6 zZglD%jiQB2U)On;gK<$qnQ_r!tldezf{GCzJA;NM~cyd{!Eq@2l6IX487@Lk45Bn;1J=r8p{nk_vdWr zTImWwWa=d20ma7l5qK59)!nS6zYK%WOv7$O1vn#?UuzUB-^U1mNL2z24mp{oI%m4D zM6855q0w?;1XchSP6SM$xn*vIy`!5GLth)>RZ7pYVF~oy<6ziVABcIF%*__bCbh`oZFYZk)^w-Y-^7s6JUw_;I=^s~fLv&(Pl% zuxU4JIAZSjca6$AgGR~?+1U40l|*Zi9_}tCD$IW>U=$~&t3|mk*J^~ zGYqx)xP#;KI$(aqBMIeY&Ov zq~(r8m2J__33mn+pg%2~V%1=PpUHdpjkcLQnfFk3@&BkBskxJ(gn{%#w|_6mVGyj|b)TPE2xT2P5(rhkxi%m-LxqY6%_5pZsM zk9*!mf9KM_9Rt!8!hOr9UOz0eCWINkvavuZ@5}xXve?=v=~LO6>31I1-`-?E9As-t z^;rQ>;Qr0JQ5+}K_31dbFXY#5vK)W$t8Co`JM`}bIgHVfx$+nQS&bHta)q1y$(@3K zT6WPr+7ZA(G@1H#XtMN8({BI}I+C^WM6X&7oAkM;LCT{+LxF(hV3J>)B5i%WeLB41 z$@SX^O~M^qq9ez%HwR9X2kkHZ<_dJ;{a3Rd2Z#cSe1FJzNIl8xRHgrYVd37RM-F`x zZ5BC&2*zmYD};Ac0Bd?)QT3;cjw9=Fw_N-P<1{gzvP$d6r#M=fsFLSlwc39#Y`t{0 z)l8McIt)k5s1<-M{I`46cthI+Q<38X%m~y#V@ZmDuls@oek}g@uZ)YO^`#g)?f0V* zQMptFjS;|0Z-2SbQow;de_B(|H8kg*hO3B!+lkH6snMy6|05TS$(|?|_HCQOAHsZD z0QBT#aBKoY70JMm)->1CRFz7hGIawWi@PR$*OwDk_Le&WYSW)~yjnORm|%c^x1@Ug zX;2RM+Xh_;Z_X@%(*z?J&KHFOKx_f>{5iY>u65%;tN3w_1hREKnj^CT#New=o4HDQ=XVHoono!y1(TE@#()6LV9~CX zFKapwVA5@@@u_C}uS^7BJpugBF>Hd=_j97F2dBRTmAqfiPNlxKe7;`uE=SrAbe5GS zS^-RJ3HQgd=+rBl{z@ml^4P2FTMxhzuILl}Cz{aZ27KlX;6^H6#lrI|Lr|kPlGMyu z8(=VrGu38u4gE6F6d8M!dvG6HZ~hdUJltLT-CqI_Xe-O7l|{Evb+TL^Z0rmOKN$l- zw5Q<3Q>>i|^%3d9tnn?(0e~5-u|dm^w@Z&n-uE}xu8F{?5X$M`;Zobu>J5a))+N<8|Bsy^FR(NCCl$572Yb0p;of25!B2nnU=An$P^*a;oeEKp%7W z^8&(CC7MPdkS7luu`@Ki=i%`2Vc7eG()b*hBTA%}2%dJnzr9R;njg}twPL!QcZ_yA zT-2qi3_>HsB*Xi(0?>j4u>hoJJU>&oWZ2s792)kj2CaIZHMc%PBdD3fBIo2MuCtCG zR}@qLCR><>A*b@+?jmAL{a7&!d#%`YR9_)rr!phq`uT={8&J#^Bc#;Kx9qAaOq2At|ql@F|f5U zsp1H5QFe?eLs=<|e!+h%0n!80RT7yab+~fRhzawRvTO#2Qn<`~n_B^~UIirT-GE$4 z2|l9uVu2Fn(kKm==}?SfhCqL=Ts+7>!j(YfGquF>Z72?HNywCsK{A^z%U7vZyNyH* zE!-xHafVw?-zg|Cm5RU*q|^KIpvSA~49ANehnfzNt^fh4eOPtU{GT7P0;MpQnuR;o zS~LrdzsnKrdT+j=S_qpagwWyYXeFuStDDzOUUH|j<(kPoV33z`8vw@lNgt&T=#}UU z)Mj+f5UPNN|I&aS4tuQC>sFf10tKI_MtNy{TDR4+fxaN-4Ww{d+qQ-NDJ3)b#3<=A zJ4QESCO&orqvB$qh^)`-L}hthXuj>usGA}%eh{=@4Ltuq8=ZZirl6=_)6-0K)Hwpo z|J~xko5~W(h6ksw0NWAQ)O!xt$f92W83q;gT_PBx`?vN+NQj~yG8rnh6K1MMv~vV+ z5|{N6RfTky>b1<`a>HyZLM9H(9~>zL@2*b=|2oQ5Hgf=DOKq2Uz5`6z6+o`n<1eB` zIU%L%{R&|?EJ$Ca$&I-5y4M$TQw&b?Cr&oykCaDN`x>7+&xLR z4vQK@|NE@RyS@X7&t%PwY*bP1IH4g)#7Z1hIO`bAWZ3n9q5!~qbHevc2t`@K!$(FbM^Q{ zc!i3=GSLxoy%m+bH=0W9C(jtF+CMN{VPJu0KccWXVEEt01c?Sy_W)UqS_&?dhW|Bw z-T&lV@CU}tL|q2^a-zpg=gQ&jCerP~iD{TybD*%!Jil8XvAH_*d72!03k}tkMphT4 z*!^A12>8wShna@w?J&|9GJ_%SV3|obX+%MWN;plOI-3ljq3m*Z?Z5I}a2RA&*YlM} z^m1^J{{9+;bK~o4hBX9=KY$mfDw`8rmnPD@+zc0^;4itAOVpJX!9dK9cr|am>Do6g z&kwajMkg|ui@YSoBAzutpFwQY&)8vYD9(9G=sh*_z}|)fahvbsA0l$TT5budpq3FG z{0xYtpO|g>4*m4%c;SpMXtrfP9a#{vd@yLKd78QgMyqG7koN-m@W5sjvE=amAf|pG zu}8Ds5G2ZA26Sz(C=rL5xQ`zJV_2PWuo7DtVTP)hOk{UOoc`Qm66Fp$YsdX{TH(N z(!l*)Bfl+hafbA!SEESL0K6vI>=_vv95rvsY*&vdarax%d( zMBoN4!ZR5-vQ)#d*w_^WVniR9bozW3c}~{9%P(FOV9mZW3;{`da^Sj-&>Gt_3E zIj8)r_ZpWOaEj=f=%@Qc9Eo#D5r_vy?pLW52B=1iQ$=mxA_bX8l;DgK0n`mlM}QDM z0iJtn?tjH zg~_AG-d~)Njstyj^s&9aL^N-H=rSyAjz`eJ0=BEK|d-f;TeU~0!C9HRT zWwNp%rH=Dw_)r(q6_XBgC?PnXN9e3l-sKqZ$F$rKibh9ncx>iBz#aw1bL~63ih)fo zh|p|x(j@SL7W)5i_Lfmqc3c0jAd*Tq(%k~m-5mnbDIn6NbVx|YrW=$-Qo6gl1VKQ$ zyPN;o-sjxsdB476F!%s$u3FbzbIxDP_?AEnLLW;J8Ka{Q7@ML7aJ* z5$aoD_vX@ykMpBv)0C!qGtx&UE@b2A)hN6py$4gNf?3-p&$5j~@WM%I0co1L@`a7m zBbqO5rrTtmB33xQ!}GQ4KqA|6c6!age@FyN=qhMs;uOy^xAc)R_})_X+F0TnP>~qW zbCL|fMds#!6wXzZ zhR^N2=W|*&KPq;M=MGP7s}K)aD!CVZ9`9?Oub^FJ3rM|lC2+13YZzxlWZH%$&uh=n zTvM1L)^GXa`h)tzbV>e5U$$O~n4kA{Y@fK2pas#QjX--7I>$Rspp)N~-FO);C;GLp z=$}B-4wA$%g4o5XsO6}bWz zzf4X*EJmzvWb32q4U9o9C-xHf@idL}B&0Yv8qZV_f43j|X-JMOy55>DQ>=2THuiDT zN`&NPlr)!?vjjW=m4c~0G~2a-$CY6-Fl|L}2bi66kL*Yo6HGn4Xp3v+@y?2GPk$R1 zO|7xc$39^={H%!AekK{9=^v`{PgfEK^pj+s1OY+?h%lfHD+2$7H=s*YfY?F26?t4@ zMf|%6EbnpO%?nn#WO)eMD@EQeJjw-Qo{B-|roNZ{rm!Ur@eFTsKqtxXV45Hx)eCqA z(8_m^m#O6`{7{2r-*=Oh109}|j550o#SFL2J0DZ|k+jX^n^n#O&>&opKo&=QokQ9W zzcwvf0*S$RIY`Alg(8mm<&xl3UT6>bKZ%Y1XH0|U7k?9+U>LY0y>1MVz}ztQV zN!CY8?bA+SK|kH>3%RtFlBnQiMdjYXkUI8 zjb_og_v_;kE|x-AG0fo}$kCZ$oEw*$C3{5PX8xDYjL1L?-ThC zjSvo0bJ1UOZvXmvK*ZqsykW=XN5EF^rLg0-8N0+jAU6PE`+EGT zlDdL51{rp9?03d@@=vZyz6jPHbSSg1R5f6OImzqaj)*e`@GZ=KDL-k3CC!59_a`vY zyD06{Z^=oveQAVw1BC0-kt4>D~}16M0FbU(LDeHY^L%~%$wZ@kW`H!tE%Ss4hVpsYS z76|=HXy)<>OtN3?oNntsnn>93M@a+37q&29-n%_>t(NN7)6P|YsmLiIS6PZ``~Lak zS8Q+K=Gs*zNjdiB@)T1g)Ua36Dd@hai@8=2zWzW4t;@W|Zg;!N8Iq3MI%CD%sX^nZ zlHzmPQab`^74Jvl*?_e#73LXkH03u@!Vic{rydSc11#@FKAP2^w`T$egCC3Pej7)q zx3uE~LY{TQeM^z#D1ID$jLFn~5l%NRVnVTfMR*1Rf4u`#f#bsjqhtaG*|&Wy9E!*l zM&bzJiAm2f01Rzs#DSkD^}SETw*kuLPlosXNZa&LJtvv`NvB;-+%>2#n0!sNM%Dw) z4r3DrA&jbLdOF{V^)#x!zP#BDke%d^T=X$-8oGK25}{4kBPPp(i`H{l_~hJR>?fO~ z7)~yWNa02uOVLCXbLnz~E{9pg!GX~k4i^roP3*IZnLRD<6vrG%$_*wTOto$37m^{L zf{JoMLM`GJ1X{Njjf3OsKGt_yWbu|@S?#_(52fESI$UkHKlOrom(J=^f|DSjsO$I3qz@zB1 z*DXhQQZYz6URU{kxWaC4&F~|}VD#%X^-BwjCUj0@T*xDTv**`>WW~^aMHHWSV`V{V zv}C$>=B_kkr7YJClph7uW8_v2A~!ko2-e!x&^mwn1-?+GN2AWFCifj_6gL9p zv-hs|lQ*3AKPv|Bi!|bpdc;>~o6ukLnIIBG4+#{LS@csoT;h?GK7SOVvb38jh>jS0 zFUU(jelGf*ywFurZRJHrr-G6~=~GcghzcT4XHZid#2ic6y3X_f+TIw>m2DuWC_m;A zS7(d-W`=Z2lZH)^uul;n*cJVkfVgC2L3psRUmv6ITjnv#5nO zHb~saCcyjT1cGBnNuxLa-z4lJr#*% zm_M$we%N_Sz`4VFdg9?^)U5l&BOkDtR@P%1OwRI~)O)kLPn!>qMz=gNy?_6tCOL#D zaoQn+-rH?Pw#Vl}or z6iK_urFDuy@0BP<=6$vJ4tEPrd;QiO!H!D`cVC(Ox2JC69KBPiG6)dzrQrZFO#NZf zUh22-I3g3i`9J@>--%3kaYzp@D}ndi_qjQX;G0((MxsxMc9WZt-i7G-O$o~&+<{1Q zf>|5M-j5~MhCGAn2Ag6ONI-86N~jLDs__^3m|x+OyD1|!akr7zkAtKVXA`voArAKo z^-0Z06cIDEPMaedH<+a*7WEl;*bftyzj&E;z-jUw+idU@WZI_J~U7q3_I2f^ln>vb-Zm+5P`koL7=iANM~A#tkdHO$vc7PSH}FqEQ=BX6y7MPN^Pt1gqa_n zclhPAO*x2X5ZG?|lB#Vg@D{1S=X)x&)d-8dSm zh%jP(7^}z<_GhYJ?TB9 zPpYl1`2;VjP3b!q=``C&u^9y8Q8m3NllV`!yIMA6DBt?>9@0 zU%p+?h!>(T*d3vhuk)rAEPLA8n6^QJXf``^c>1el41coq_*OB*lVPfU!il)9F)`QG z(|9Gh`yQ+8Qs|!M-cxEu*nk*k`&zdjd2=9RJVN49&O9`KhM;r%fsCP6h*|hIunCarfI$c zx*j*~#20DKm+gK>Y}lhJ$52)diA4p@tFy=%>?lNoF?-qh&UoKMEPa-)F*~^4=y;ez zI#UcJScBQM@KcVoPST7IS!vP4M;rU$A{;R-91#|dJ^r!VBB@05Pb&~}aMLL1{nf?a zSrCbax+WHe#nOw+Bgy$st)4&At!k7Zu7ih|Q`G!~=4)n%M;<<(hU70KYh5c*W6I>1 zkCk2~dYuY!Tj0+OW z(ayUel`2KCdghKi?lf||{azHaAE=Ns#`oN%dUpuQEc(QsV_by4XIbOYkW!U8YEK(| zzVF`Su|qIwezc)>V{5=8kewLu{rQ}2(=i6INg$3O$83OkUxm3qGkFvnjH>~tfCRA8 z@PCc)4nYi-JfxWMD@d@;Wh`#5BM9_8<^I$12 zy)D#P7)<9bOXT)}DeKNnq@L9rpTQsY`94D_h@8{8on;K1o zqd_?t{@XuUIDA9R(9dt-$f89KO#i zw#JaMeJ>Dp93owR4#U?Pwwf!#;Xgx0ogS8&tko>+_8PnY*)jknf{s zBIfWfDe?W*aQNBU>IoAm`cID3q9&VX@gTs|DG#FP>TA{bz-ak zI#V{6Gb}Gn=JJbaED{9|kwi}KuJ`}#?@0K!J!U0j@ycDk{kJRrPakasTERIueyd73 zj(Sob#s6uKE|JrQ!DZo?70{nDS6koA!Tz`5MurLnj}Y)=i|`*2U+t2#i@A9xv1sni zG1RwY8dDQb4o!_&CKLH?(0CcT4+gSxXU+XX>&=oD;cOZ=$&;poeM8`v=cV$cA% z_K<(7`@d~OUv+V^Gc}%{p)-EqE&Ghbg?qq{j~R@#%Wd_r4C&jF`}g9{p&)|0mZfZ{ zhzwkkaq0Ve_=&rqXO2@t)nin#hewX(#fBvwIQq;ex%0N6034Y29VK({`*(qWF_?~%dt0mu|Bo?H>Z zAH-MPr?njK2LKJoY_%uC+0wG9(K4A7X7qGz%}4MyxwU#u?C*!(VS$JG!%e?RBN^Kl zu!)d;{tGlhdokWnpy0lInu8wJ;Y%C9@Xfj^N99uGb^AF>bO%9*duEpl?cwAI!9t12 zLSDCWl?jOhFNkepl!dOT&Xu#M8DO>X!6CG-R;(s*0DDTrdN6^787tFUHO1P1@x{y| zJs?--s~4$iN0JJY9K6ym1LYOH$P&~j5(@qFD5W!oIcY$)QzK>hIp~L1{WE1mE!=~_ zQ3If^EOhE0(yam}G;PDiW?!_p zUzrIk^ z1*mTxa|?mN4Zvg8daTN#n-9ha zncfXOLaegZzcs43+D zbP2G}udEa#N=3xz+U}5xDL_*~rMkM6u}) zINFDIyQqcc?<1kyJl`qNuRzf3X!IMG-t!D%I-1TZ`b|1vG+t`qK%rdezt@CjH((!j zo!xSErdFS?llx@$6OOG~O%67;asrd~ibi+$CJ-c>1rW&jtVK(k0*R>Kfg-`Fz>lzPN|(cV`urgLn7oNEL*=hwWRKtd@wrT|vihx|6VJrZ z-4uH=Hqz_}qyd8f)XFhx_dA{lulsHe_~&MeO>R&>%0h#NxMbw(99Np7ogh+g2qC9s z*IV7H3Sfyyc{DXf9@81#72$s1Mz7M8^K!9ObEMcnG4Jlac5SFIYFn$-Tc`C(M8rq- z*daZubp0AnpDNbpPE;pe&UH&DR@HJbP_g5cj=(Q~6woN9awlr;W>9k?Z`8hRDSSuZ z_MzXheqb#qoy{ZC^s&s8l4K4``I7+PX0CUIU{!zyj&WWcC~6T25T>%kmmuTf*^^Y5 zhKc~&ZG+Il4|YDz7=mUUEg%oXPS7xuZNpq1-2VYtp2;UD!I%n4Hj3$`W4YX#DvTXk z_@V25-y){;;8O9KSUO7fcP4H><^8RElY-UlMICppNjx%4#V$*anz?5DTbc#}_PhjV z#3S}MfGA(6QIZm~fZZVg)niDSkSLS)~PT*Y^f7-9Ewul0d^CZdY zb6#;kgE!qgSWx}_F=K{FizXKZ7t$^VyGyxSY+L~G#!-<*;%Gzz|2 z&sFtfR>Z}X^!{xo{$sB&4dwmPw2V+S8ru3bI}@!mPJVD_eES{S1?i|L{Zk%Orm!aF z`vUCU>Ia8=DeA`LtB0R?|3WQ=P;s^@Nc-Byj|2W|O2Mi{j=>&0c_Q7$GDLC-<$O} zU+5wO(3Hth)`xg#&Us2E@*YEV7tnV8{_-#5g9Ft=uoB!SQy4h!>vg>AC4aOE5&7zn ze?HCv{rKhFhvC21^e+Uj3IleF!Y5g{-~M->pcm5!t~p}CDx33f^Zh@U0#r-Spurh7 zSSR5BK9Eq6JqmzYI+sOELn%z`Ft9)eA744b$B0!Wk^0Yixubw^co&s&{$)#&U0@Ud z1{i?3DK8kmbN+3{l3`H-!wv;chiZ$zXZ-KurU3TPEdQSHKab@9r{^?e9I@E2)c}`8 zFKPVe*y%qANG`@0(~JMo5y?t0v;bicghFMUGlu!jJ|4}r44T~bH4TNqJC*hO}gjJvGlfT_i!q={QW6W zC^iEuP!SDLGK!8yK=pFl`WCbX2rRXA*bM42fV@pZ#BCb~IJQthR1TmzuzwgMqX)DV zjdrEqpr=F+=YF|EAG_$K$wH^0rIeHa96;RNu5%M}!pPCK&19asZnNlA6`Wh*(5q54 zE0t`9sKFhT{_#{ppr1T20RDM(Hj>v3C8j63PuCZ3Z~OYpgMzFHMr)xg9UG`UE_gWu z=2`3GL6^It7uVK48TNFptH2P9f8ko2`1rBE4E(Un~D2xtZM_Bku`b z#d!b?VbG{*PM_VpRe_-qjz8`Cyri2AHSs`d3JpT`KH>Wefwl~9nj63WM+wOfNgQBQMw8SP7Xgk ztoCzXD#0eG)a!gcl0;Ca!d!VM;&iRw#O#F(5mb@~qyZ5Er$ZbkK$P7NAnr>1xH&yZ zGAD{Bv!3o-Dg@5&&HC4O5kl8TsFi2FvruMussf|J%)E%!Vl#Q|`i~)=&h7QSr=I#` zwdzG0ie$}DLZ4AH$PT>WxUA=?>PPFkS_fFnM`M*8*N0hwd?6N4sGildT1m0p+;5W8 zyEqB=XYgn08`e0ZY|mylV$SV6X?c#*NAv!$bSg4EEh*R^ck6zt}XwP>7 z1Ky2IACc;- ze8FuAC{T$bH_s7qLQ>RGl zhu<1+6K%WkU0#hcF(bm|e*7U9af~rmON{&ZPQR61xMI0s0W0Km)uV=X?&HdscYg+R z>e}EXnyhk_f2j&w1rMw&=A!jR?<#lB^QZ97AqhRdC+eNdXIs1)&o|)Fke-olvWh2y z;*6{Xed$uKYwM!+rBF=4$}Sp7LWS7?jZS6?BR(%*>pQo8j44uwNRE?@n4gRZ`5W7+ z&BY)aLnIv2sw``H&>;l&Lb14|v4*I4(GHUv+ELdOr;gFd#a8)^rZdH8YhCSLzVAhO zYMX8Y^n5xaVi+|`+uU($lJM&0sTpasdK2}i2U2ZPF-w$fpJiuCbFm~oW!yk;UU)dy z;=P&SqhF|LjONp0y56aRRP2++jkqk(8>a5Y#0lCP+Rd`rG^GhR(v_!frpJ|F1MT5rM#RlnYNDZ!iqk6fdHLMY+clqSq;SQE{EE0m4G`!}>6Fg(%$*doos3_`(5kkK z*BfuBj%#U1Tw~C<$s}e>r{|T+WEs|}iu>tPTJGDwEFYZ7%nX>miH2@(8=SY9a(7-w zW6{Wq*X&!ZhjQ5f|M^A5DaZ=7T>r5bKecAGDpF1QuUdJzIE6Zvc2wgQpjVN4&^k*^ zbDpz^xj%gCSRsPMdvobd@ALaJob+0srb?*3XLA$Jh8d%sO!@d_u6Ph?g&Uxtw34?_ z@9HsSj2~vqSE$F@DtNwn-Hx3+FOA+&23zwMMKr-2u~ z_IHr-36#6m3#b+8Ea~|i2-De>E>NKyHgS|I;ZcY$LFLGpn|fEm6}NvnPY5PF-koA5 zb6O=p4d$b9a1lHfynmNW6mNH*0GFgWqg@o1IuT$3Pgt=b*x(%fZM2z6QpcsH-DWRf z@#1jQAO;|DUj%6C<8uy7CE^sMO$i7pEs{+KqpyxrD^(mQG2|9Iz5g^{_L(Kt!~u26 z@6D4hcm^MwP-r#LpmE;}4)bxP_&uX@I^W>UF*7>{-Yt2iYaNDA5xK7W0UA}X)rG< zD}r2$LY(YfhkU92qJn>fwt@H6GD1Coo&CADp?vK=Q$(m$eTSht(VNZiS6%@5s+bC= z`T5$dEvUxAgfo9zKXJ%jXhLDbo8N(tx2nX4ImKi`r3FHelDxvzWJhDa^|LwEt3Dg@ zewZXNjHQ9Dd;J=Xs__j-)lG-2SY--#ZgaWAN$7ZKwm)j!fkhz8=T7gjp?!t!AatbhdkcVNc6qr47w zW)^!g-PU+7!e9kjko@-U0k`<&>`?hV((Li|2Med+YAzFzP~;H_1U7wE9}DBr2txYZ zVfEh37D1JPsTPs7D-7N`hj{8=P2mL~M;6(kL}y!WJ{e%#SFp@^X%d4J{y|lsb+tEY zhG1Itaqa^&NroVy8^vT?pKkVIFH>{0cNlKS=1wvU)?5b3{5W}Q`gp-SF|BZb!2n^z z(hE$o>Yyd{qEq;(Xvy=QRZ?x}c^KS)pk-IX6uT---OrS%!s^ zLzVj9Tz>)?MqndV5xJCEx2BIK);4U9pXb%o1e&kRr|xY{O2JqPh#N+5=n?Ew*)jsu ze^hzE8Ojb0!VbBJ00s`wd>rr@F|Z8I8gfWb%s;p$zmb71hyR=02UEjQ&@@R%1J&-X zZ$sv5H>AtMKX$DgvFN6nNOn(1pf&x!ls)k8G2kBhgD^$SG5}LFH8uJ!{Elsvu>PgC zA(&&JE&wl|81c32Vi@vVtrbSJ5D+yOB^ z@_jGpw3+1Y=%D?*uV73~ut*o70ZD~GR~p-K7Z79buVDc!EFRDvdTjnq!jPeayBY?b zL&||azq7mu!>KXnW%e=nEB!QjAJi~EB$P0&tq$S)w)yC?elk(EnCz_TU-mGEFXMLZ z(CL(;b)Z*sz^zWlEa?5HX4|stetmVyI)TW^tntq?BrAfhSF^s4fV7EpM3MW#jR?$% z$Rb>X>)XPUB(p&mK~JhbA` z3LI$|&U?SuW&!VAJ%0nAX>K)(PnPh&a~>W3fsFh3y;45Z#^8CQxzaO^ol#Qv^YALL z*5pqD>L1)H&0`fexG{Df@(%jo>wG5Wpw$qoMj2%5wI&hf-SiD}$n@r`efnhKOen+t zJCULzoqYeHpgJ$X57Z$743tm$>{&wN8CWm4yp*KQ&&Q`{T7~OOOtIg6q*@HW@%L$3 zHD2AnvGP*G^QA&!UCaT+l+?!_;G>7!POxpJ5TTtV5mKPktHLPU_8}^4 zhsvUk!xV&lzmDg!$L}G`N3>(nR(N*sD>~ z>G-BGoy{bW`c%;U3~{zb%MeL>jXM><{90v}SvTW_Sk0JN5P?8?= ztshV#Sht(12a(I}@XQk896?=RH(HRVt&=bDn69u_`sYnG_`QNWj6`CN=V6$st2TBZF0 z852i@1Q_I8F7nHiF-$yrKt}Y-@eLUcPFT}DQR%&gUo z^&rKRyPsy(^tVTbd2Bkri|zIB-rg+7W`>huhE>AGy=c2CzqxZYnw))+KW*+KksVdR zUXMi=D)&+DBgmwGE%y=I^#LwqtzN@NS?DwiP$#RR&=A`tq(w7hUaeG)n)Xc5PyC_{ zTB^UYXO>euJXkR6clnd+UI%VAc242JSIGlk2c*kXgJ$=B!0KP4+;8+d@e_$bJ_KC! z;df?H8q$?CJ#th=CU8P8c~w2Df6Zh@l9Y6Jwy?Zmqg%pqV>%zRg>3MUIqn6soC=x*iXgeU~`i@!}-i4RsOzY%{ZxoCXuvdW~yI>wkCGz++Dr_QK+$w@GbT!#8cYMDC(eo`i4!7N6 z@m!BN$2YDcZ6H*R)obMS8hO|erKN}#ul1ARRLAvc8>9&mH?DD`0=S~+uK}G3Mx6=O6#T(ueDxvROFUd$8jx&ghH?=C_muG0*1uE^ z{zs=|vwj9WT zWN$C_aSE<_?Ni}o$ZQaeFy6RJaJFp%)1zLT|lKp`KK6DsUg#g{Lf*-@EmmbZ~9Rdz3;Z+G9zSEp33|62AhG^l(M zHnqBh-v8U?^h?c zfHK2Se;0JeR2SNVTxUV~m~sp12|7a;d|qSUg;t+dV;Q>-2k)W8d`qCK|2EZQ_w;u; zRn&O#FLb)$F(h&@p-jz~Vc7r%h4rS}WdM}Z&z5b!33n8P3K?mW@YsJ{8;F-Dw%Qhc z&)9^3MuMHx$EMP}jz?o{-5Iy2>%k;T4ufeg01NIAmcW(HcTMNV^c8L#`GG#G%QfI> z!7)Go((WSdjSi-W1b{XwWJ|f8u6~Sd>_o4x+?0kIV*qO&_K}t~TfI7aQBS!PgO_Ja zVP!fhN%LIVnQ$@UWNpGC4{n4sZyzIsONB4yChd=Z7MEL4Yn6vQv$iK_Tj_l>cZ1d} zGTs#>D&XMXf!vG=TkH3$^cg^r)Yn6*#|=>=wWa0h;KE)pwcA^b34imo>QrT3Mvv1v z^Y8v>AL5^iumhyZhSgERW3(702&MQIXB6)uOiAo7c;qX z^4(|aSU8!s2Dl@c@AW>mvHo=18(Fq0H-@J)jJ$5-B+L{T2;E6fTIMToi%gru8AC=g zG)FQ7Q!T&X8D3!?cbSqNV2}@Fj;|@<#(e&Q_QU@qd4CiOnndZiY-cFa=Exq=uL{Q5G)2uwd4wC{}g!&wn@vFkQg`HX5a=v+= zl*fv{ij(cAm?G*d=iLuU5*rHByxmD7q(;}*O2VTD`msUgsM>;Wv{crt=!nk6#uK8d!2Ms5{AVUeQWIGStzs{#NchLm^@Wqw@tBXNrRT zZYz-AueG&RM}5A^LT$Za3?vD>UN=>aUTyfeOj=}yUgz=S_T}iz-?)shMd4L|bBu0> zi_RL7*W%MUMJOy8VGNqce%{7zJ&(X-LPkXe(jY9>Tl}^tp`G3O^%E5AB%5UrUCU}H z?z+p?VyNYj^iz%djUT;xAtK(D(=-#`Ls2c25eN&`EF^wo?De zJBh9|8DFuE5r1OX7k&6Vw$IAEyU56*^V>2vi_F;dD(>-l;GZQ@U2b{cSS5+)s;}pW zH;uj2d$QG~#0&bG#?KnRIkk}cz9xJ1p%2}y{*%=#P<~CM(^y39V?=bR!jkGY8TEfr z4WoPB=ZE5(QS+`F+04uU*j|12&v#UjAlKr7|AHgO{IMD8(-z&U*|<3eJ~!1RjKxfa*!Fzdxg z)i#X*_p2|;Nv}jL9_;x7h2aOjMz5k^e6~N8WAz<dDDe;VHxch(1lfJyY$u8 z4%U!TS4JRO)wWPkz*pMj%J??}S(JL;9z8duiRpDbk>xlH6QTw4MVc#Yi<7HDFe|1< zT$PdlOf5WJHm}@UJiJWL70eqIKczj@qQ*BFgyXaspW}%WSUr{X>&~LEnIOvUA8=pk zP1Z0e2pA_V);rb(4Sh)zcS{Y>QGXFKI+&feknj{ zDUNF)>{#}2T3fSHSFX4BQ#TZk^&kmrqj)0X39g_C%rJM#`u53BE7cq$?d@jEXl!Pk zsVtK=w8(LtJxgRH9uD6CYadFhFR=*tXM(Wc zh)2G@lN{LkboEz~LaOo(?hkivyAc_Ju}_e4h+yb!!Az+y?#7>(y9HqT1OnpwurbMC zz}GIuE8XQUhtIGVKv`FS{jIOS_wyOR>E4KjV&wWlgG3VC&BY$Q-NzleMBI_s(>WC1 z{-6&84s_5XLl2GyH*~QaAxKbs2{pf_F;Wn<9gtsGIDe!0ENr|7cksg6G%l5y$(dosIlLp4VuK#6<3M`3LT zat2e-2WOCb>W88RT>yz~Uc--5t-+b&a8Cs|2AUaNR^lidQ8O;c%&6b7P_8}i{((ql z``*atYv^o9^~;++!AMT|k)D^Zt^*#A4_-)UXqvn3=yRcBur+dRdv=t1eNc@n7#jLL z04;b-#B4@GnXy+AHh~hN9A@awc2@Yt-#jxw_Q4Y-@Z?!aHFv8Q#7 z&0ct*oYED1h})v~txZr8@4+KZk$QXopS5{=(PKG%})mU6^;q$h68b+igCAN7Gsn5OR}0hAKG&*Hj< z%9pr-hDUa);(p=kcx7{wR(o(des4dh5XKzQo6PHvt9X6m3upA)#f#B^bLrqAEg7Ep z5;=~3jni|y8L=g1i<#0APvC3IkY0Q)-H!ng(Sv=j>uN&ke1G!^M-wxO75da76_-kC z7h~vkcq*KO9%2e>Va;ML+*gN$**!KCwn1BPNoY)CaImH7#AkpdIGoNvgb(j1kzg{9 zmy3)xd12E~A%^LhoTZ$SQ)f7b>1DhCanL~0k4$9MAk{Sgwt{gJD)}Fwb5WV@fk+-} z$moBj?fQ?BuP6_bfA`KbZqIT`NkHM|>U%7(2 zI1nZ?pecPu*W5n0;;i*K{kkx6)ez=_SDc~g!flbq5>v(n7Bs{XL78xT#qPWbprLr$ zQ3c)03<*iunwPxqG&eo?sh3L9dy^pcvDrSjgcNnCbR(i<{Ce>j1coSlHlikLm5BXm zyp>L$mzefLMMCumK@ejB$V@^w0ms}=Q(i6bat~sOyoP_gyI%Xf>p;o%HD7teFq$i! zPq#&_Cg}j!?|h(TOGG6&zr9+5k4~b~IScROu@&7!-KX9wKZdQA=J!z_Cw$p%zThyL zaXP{zi3=T@+ZTX@m6k|ot^{6vvZaj;0A1R>VL?so%#=@T;-!|*ox1SRJnWP1{1XdA z`vg0DtEpiBEm{+R8lUMax7z(_Ik`=+sc_t;jj1%&bQn&O&9X~REJu-E1EYWac0aGY zgbTFF+%@#Rf9t%e^Wm(a&fQh+?7R}wd(|(^^Ck`>4YTff`H~L^hy%U#pm+yz;CMJo znle|=?HY(M&Dn65l1&n+U~207&Sg18XE9xzJn$WmM!2;BPpYHD2@MJISq)u;A_Z&@ zvOrpG=7mejt5FxAFilbK`9O_VybLRH=O_)y)Vw1DHsKNKgV+pT#93tiB<>cdp90L( zC1BeDwV$kfH)+NxJb5m2yc<8Bm`m1B7!pX1Eo;9Wso-KEH zg*w&WKOW8wQapj&?SlFX*J3c5i0yYrn9&KC_8JeoVG0AV0QCD7W&;8BB^}7NW1s1y zyy;p0v?l+>iPEH6?AYY|j@ny`@y)WI1vn3a(_JqvrUqE$)Vi4Db1jxr)LIn3e zu0D}6mmZLOukfjtI_W%dIEmSy;Jb)r3*m-@H@nWA0J*K)c$VZk$lb9>NlCYV{m9;m z^&_)*ju}Kwk6y9SaY>S39*`vHdh`{WNlRthRpwPCkmuKXURS7&fLh50{~7ikXgJ7y z_)wq@?973y!nX@!50GZSu722a+>>Z+wN!ov$Xj_g-6@bW+)CyqP`$k+_*8y_>Hi>x zq89MF6I>#C(qt5=aK@sExzB&1H*`0dgv(RPB(K+LGFEYB)523+9-4GW8cOD$$ubFI zp92yGH!z>{?HYDnCUE#PJoklElrurI_ImAhL7V~lkG%M7-!_d&Gi0hQCZ(XIANw|_ z{eCX>G+52BfckyA9!!t@%1Sp3oeg41YD);1+=&nfdOI5s;gm2u0%|}mfK4s`01Rge zAC*+ddfY8_G6`%=A09dbUvTIYXaMsgv+HMYe^cmx_CWCc$nVJnt2y1iRY0ept`gD& zQ$<1o_}7D=+R6nB6bcVo{QMrj1B=X*G1bY81k1=++=xyU?^}U93s?|oJPu-C(j<25 zO+zKJFa*ZYCRB$%JO~Vw9+)TgF}nKnM6nr6H$HZ80EO*mxU`HXB-HF#5tD}Sa7$fq zKRyUjw)Kzo5 zzZu3P9GFs&WqZOUD1#aa>hod5@H?YAx!SbL>gbh?WZCoVu*jI(UGqT&8;7!7>Tl)t zN4s7}OTOP4K^E3q{*~+Eo%q!$Fb&nn4Vl&q?AYDiEh=udk8lM|^`BYY0I+0y)SDvW zcpnb6KOJzvpVqrVHi^KS+g)g^C6DBv^FwoR51U0k1hxx5E$6{_>b{5j+lZc7{lShL zyer?fJ4LYH{!ORAcXOK00fN40{%h&v{?sn@I$0JTm=32gO&n+XCDt+x-+Vnf(|DcW z$l=fB=&+}*U~3WR%3hgv+&__H49@_mZ9Iqh2;#(Wrwg9))$+rWRwKFzXg*eouHWzx zgKkVElstH^8fvxyD1Owb300rltcW^F`Btv$MbJa{~*X{mRB- z;d`!8GZqC|TRd5_nnNcs49XOG2#hV7>kXWt9$nRsXSPUSBxfSur=0=`it?V0t&m_; zN~v%a4ZSOv&i!woOFOWDGi^xMZ|~n1LmgIe12`u#oVTF%M8Pd>H^)C9et38|0ftvy z2kiQbjUV#X;hsvYbQvA>BXPqslVbU2O6edEt(H^KN~6=hmXrS!ie(bzXHQuNIa`+8 zvp~hbz}Uef7BaQ>tL1J-AX--6+$*x zEiw-QWy>63c|Jpyf9H6<^A;xx4G(*s$Nnp?=t zb_-qM>dMbbK87^BhR)(%N=3oqf{id4Csa6khK!A_6^ahI0xN9i%TFJ#n=_0%jZj;fZ62g zEL*@AMiL?mhdKz&^EWB%_vbiqd@#Z=ji~PQTz)a% z3ufZdAl6ENH=x`HR+gdZhQ6a+hqUa4S>1Kc&&1>w?;)Nm-)V&Yt@{epSOPZfT#fqR+D3!b76BAJr7HSat;DOhX|V38NEA7fU!!v=vt(S(;|GxcUq z4LJR(KSQ#ju0YWlSJVNWq@%SR@%F-AAn=eyLx_UshmgLWs*Qs%$c%skz?~#rW9!WK zE3w&o7oGh(&s>idfriJRQi(C$fzR-rM(Wi3@5#EQGmQAY)JiK)t zZ?@`Dh><4R#f!}^__>%shA_*q*($cQ$Uz2W^t}|1e+y0!`TnGt6PHjN>FOI zwIG7f(V^<6)r2UN1~DRica(xP2|8?A(3IW~?rV4)i>^{nS}UgcQdEZY!1Ljt+BYnA z^)GQ*2Fn&>Ms%?8JDti@i>M(~Q=%ND4nyD5NxUyHiBGtMmxPIMllNA;c$q~vgtT4r{QLV}* zwz?TYUwv5t|0*jcB|BwE=sY#<`0`LGt^78)wpct>7q!V$+i-5u76^F7f>RBSB}5*+Ohy7g&@tvxqi4M zU2Di&!)4Z!c0boKQ9F2kQ#hKzD?V3k!JJxa9iP9foNIhhHl={mnujhTkzCUWF2#7%E6G`du1 z`cP`a!SWm+LDiO?Xp z9JZEHw_=IfT&Qm|GGG3Jj+~s_kM2p$N^h!O;J0tzb~vn}9A+F^eL%Vgd^5zGn!@pN zs1qgKXQCn_arJ~j7O=fgEqR0T{JDB5Z9-&s`g}WimO8MXVZN!NuQxIB+QoXM>(qhg z1#HpX+O;0j9N_*}jflYZlR>t!s!gjpzyI@78pO7NTp#xL@3_N2Pz7HTzE5x#KYku! zfo>6rZEVA>ZlFUug7TRI?0PD25L_={*UVsncYu-*vph$!2v`6FoI#Q;!HTv>+F<+{ zz$)7?6}3wuB=iZFE-OHhQVD+vY#8K#aoy1OLAn2(%n}ov(Bqv`?jD6c7w#`H*>0U2 zFo+_D5XKLMEWjF=2f}?rIQPpj))F>C60IP=>iS&?O%XT`f$hxHz}o;id4)ZP|3}z+ z$8-6%f53>!sEi^bd(TkWo3i)bLdqt4?~$@cwnE5AMD`3JDP-@JY_jKbT>9S6@A>a} z-JjR@)h%70>pHLVJjVNYAMb-oe-a9t>J76v!UlY2ydG@q4M60qzIKt4lb77wg;+X& zi*iH~f&CVjnLYkA?J_#qAtv4_mAl-~fao9xg zjsHIOylCYXy_$m)!Zw~LE%`Sf z79;?5ZY5v}AQKp$^}l-sI&~Dw8ld|wHcu3UV*T@Nu-D;2lH=kx;%CF9Z=6;J6)Hma zfRtGjZ&KxBEEsx&Li1SlFM|p;2MN1YNg4=4i%pkpj#_Nk8CQLYJ@X-!!0!c!R+d~KStynK;4HI!`m5{n=LK$Xm zIq0>7Jb7ard7D$5Da~U@jj?01GuTSXI+@quE!NB)$PMK`*4CWy#1Y$@0L$`zUs>Da zV~EMk7lK`X7rOKI{zM_ON=8Gtu#>J|Z5bg4$`Q!)uv|@YpJ~C+h&;P|jU;E%_vlZa ztV{-vUB+k#Ilsrw(_fj)(leQ~w+uf;7~w!Lt32vy-S2{RJa6J6IekvApc?gWVQSK%Ih^c#z17(}0DfW0V)sA`SvJi*1bBs1d35JJ% zY7;2o?xcpC+iQi{&EFk0txQ5b)kNl5HEIo>m@NF%^vr47Nhh}jVc^izb zHBu=zXoJyL6HwwG3T}tqC^XFa(R>Y6sh5rEDZx65htw?_iIHpA*b#Fre!VFLX1tqB zk;VGrDxndmUs_uwPNPn*M9fb2kq{7Md&SITpkRo&D3(K~GwF4II+EjQX4GIKj*rmmDNA@h$d`7AjB*+v?C0Mm3=u@H7itz^%@zto0LTCc6tI()DTb%n7kd+ZHh%qabD;)y#64UFyZ@~&Mkq`O<3sBM`XzlLE zgkx&gfgEj_@41hdUr_b)-z4u_sd0!fwcnSUcfaHHr)bY4;nbUH>uQ8%g?uB%9}TFu zKQ<$zGWT#Vk%;)zNokV3d!i~h$c4Ts$J$US8?@lW|4cR0?inp~j;$-ys?uy?yZIU2xMYtSujtwP4X^Lzuy;dou*X z${x?JZDb&h;mi6dC~P9_cR?vv?mzV#W{JGG(0rWYV-!$D|O65EGLG9|$&L+w0*Uo6x zVt6!r*M1cFZ*DcUJb1eP(OXDWK$_g{4%+VWP?8w-qRhVAgop<@(^!dq(n5t*$5^WZ zVlbtN{Q>XV`nqhhZEVo~ZCkXQRzNeA-i`>A!7ahzBTJLt&({21i6Sti-&wfB=izzHH_Gwe#N~z@m+NVkQ@TM`W|O*+?P7@R)6n${xzl5bc%Kw7u`7c{-fAJvzDtVWX-&|oR6oQ{JU1_GvRw#L;Fr$=6d6thcXWrzP{@*QhC9`fBW? z=&A}W$S-lnSmi%$kQd8@>DT0s2^;HG#zUBEkkdS ztFkYXn8fnAAUeNrW&i#=jE@vNO@4fB*aD+~?RdAfW(JmY^mF^vOMZrt>0t;p>O7 zrxHmSHdkae*Ax0GJa3GAnjw$k*b;dj*yO8)Dv>H7Kq@ z+m9xqc&rpnO3af4Ee@Svt}%4DribJ%b_2e&5!zizq(yI`=F!uyDfcbA$_w*eUB>fS zdpXacEj>QbvuDO_*_w#e(%Oolvl>0}cg&6`!uKpdbv`#XmM!$Nda+@v*%M_w5|Iu- zS)v=zzcu`Y8DCPuCz}!rg~uT8%QO^HT6))iVIL7(M#I3$ahu;?pHO?Y@R;WZ=m>Wv zaTu*qUpOFmeNx6}T1K6o8@`m}4H%M1&1xAhN$8v_@^PY~)^4Upq?$3Q>HYF?IZr`f zJCS){#W}EMKut|OUolkMU1_7&Mx#cE>F#DkZ0z`%m~q5$@s@%7r?k?3N;jrPPrO4dI>HPB=6-C za&2eQ%qBKV2u@5O+_sO$X4f}GLXPz>XQFhDYza9yI1}`4Dpw!>z3J|8m}53{(=h(f zvTLLNl9hRLz=s?d4@bE0y&Vq6Y8;X}623R6_xSbniJ_rk$UFgXh&7HON@7PvMSbYp z!_@R*7NpZB&%QWR@#=k5rDO&iiPWh{)!i zdo2!6P!P`9^TMEvNrwJ+-b_@@&CD+RgF2KJ-X5V3O8Z#yhxpA(>tF?>x%CePf<5IyxqA%>Eo2n7)@;i*t{`!lON*^i2)IkdY z=9=QC69BGaLHnFdabCMKnLE#Eb@=C3smGA6Igl&OBnj&?$I@t*qE5}tlP9GK_m#1? z-)Ow=c{1CQ#Ew1}+M8aFIXq|nVdy#`^T^)=wQYB$wfmJzsdn@IoY}ehigrDIBs88M zreZf5_1M=0oa8n8kMgf3*15m{ZYCvi5&ZLvIh-!`%L(<4+&_gPqQ9=>Er9gIvd;@g zuXR=CgSyApt9)3gpf5*7#oJ!V@69F7iJk<5+Wj!C>Z6ChK2rA5xQe--ZC1LS7H%%T z&5&Cp@07m%FH?TVZz#Jpw$|w zk)=|E5cA3rpXutJ;MvZ}IIt=;Lavk27ZxTFP(O8YOc=*ALdacb2h|M zmq>OVPQdVm#g1xitA4A-G-@1!cDBn%7O&DQQ$}&%C6>rZm3X@smuA^bb{hVkT}oxs zam8cQkH#79Q{0Az8MFB2{8$p-{@OcqZqDkPFh=ba#nN+IyjKyMQF_&9*FMnq=>^oV z=M@J>=Q?hXKYFDYJN|s;+b)5I+r;=d`iFyUD1dhs>6Dv&Pvf&R5j{EWoG=7XV zCcS>p8jwjfm=s&l9yji@C2{F_>CmRqOTop-OrMx+{1 z4T;SilizM9xNNlQUVbj+TR+E?n41Hmykf=nXA5Lb9%PH7hmPh8{SI^LI*)z%t$qeHoGt2YF{`NQ z-=8w8mmIHS?A8# zy?QK$RqI%t*W}agNjW}PwS-#jQ`WoP*@u+9$pT7DbuzE2q4>{bsP<9>Ds^r{z8d4@ zW=UV0NVg9*H~MO91P*_9QRR{~oE=(hgDlwX@w= zI;x~lD|@yrO(J^_2ctWQBgwQwDXh_m?oXLlqG)raRA(v=G~JwtmIGba39p!G**?Ad zHD~rn>qBbVf5kmxcK@49bpYNZ!4L?BmCFgkew%K#Aku1yN8)88e|U|-MQ}d`iDKw5 zy^cmK%6wrAX@0fdHTGDg$Dge0QYA9F3hxMfUE(xl9np9{+H&gHcIHFAiTirbX|qBxdqmlYq9Ek(B_F zh(O~&@GF{hD4C5m0fU`XNgX~O87X}z(J zl!``IpPR#cESXoS$4FcqhjPnsOpt@@7OZX{F0ae#YpCcxgc0%9L)-twQVB=m3Y?d^U1m-MVTl*vsn0y7~u*H;~` zcOTm>_k_T$S*Q3pq>!hQvtN0Hu)l7 zCYkejVguu^^OyuVrdsXscTBY&ord)Zps$wOwtAm~CH0IKDV$KE;%2pUulyG-s-P(k zdt={x6?aeE*UxJ5t>b*}+)=Yg4|;^LJs+2)FKsGsNul9jWA-gQq#qdSXNVO@@_rZc8JGNl1VkC)XzFfi zS0h6&He)&NS777bWPfcW9(h7&(N(j==w4@6yyJFS!Mji}@->Mg^8n;Vs5&a!pFJeH z#T0d;2xwBC_Z9hgE{;4In*OIJ*Xaf?!czu%KQmE1-*W}fLt?9mKAu%6O8FugB(s#M zXTHN=nhWS8VRqmTQ(x-|YUMKL=KU|(PtC(4uO{5J@gF}3&*Ua7Ym+Xg!nbFKTTEZ^ zdR_@@{YO3v5Kz@3?T=3DzqTh1kB+*aTCA@5&HKuY2)mf^KJy*sXA?CQZ2}TEFS8n^ zLboj$ub2Av&2E+tFAX?28c)jFjvpfj;k%e0)`#b57T;sRR>`7I$1TsynB-2fjoE-; z&^$7?#X1}FQ{sIq&BKGaD1zbc#}^Arj(W67A4OyZOCIf~fGb*6o>6}+-4GB=XY_`; zuik>g{b;8^;pMBq3jkD)Mil!)aXMaPD6*wvDRJ@esO&kvYL=zAX{=@aa*1&k@J*oL zvLK{?B8^7wio8cUR9(09?N879kewx;75Zdk_nVq>+2B)_b)Dyy9Cll_eG+8}B}}K2 zUfmga?H`dF5lw;3lS;2W!gz5Y@AyyD?n_4=eYou$U7#;9QtO(j!iRnFhDP9sIq$Lf z{YCOVH8dbcCPFDv_fr%j8+~zAU6nTt;ribuJ>W#Vl?)Y$dAgd7Bu6NiU#LVWCV6?Q z#E=c2NQX;K&JO&b%BR^d4l*g7C@M^A>pgyzb3s*=Iqqk99lF_e_fCRnBPag!s;VmO zPf8CSUYrzpSaYFFp~!Stb0$prOnxa4!eee`aFI^jzDDPn+x{X@k%;DV(yKVU?1$a) z9Q6Ejq>3rX+R5W($ptbov(g|(g_K@7M;h;Nr+;hqkI}cR)yGxrDXD?Jy$)QyXI|CL zE1ESuDBcMA4PBrd;V*OKq-y*v9>JYIA;=0IvQ{sWM((CkV)`UkZdM~F;HRIyz5$(F z#);$Jst)GWt9M83{sh8meuer($rCRhL#yqoLR^ z;-K>1&w;7I4qa^Z4$z=Cven@d2xyteqn^sx(_Gmy&@u7GJHObZzc7EaSnaAcp~7qA z)|`k6$J$aT|H8e<8xh4n|Cj$ zD_d>fU}zV}BolDp^5OgpMpnAX68-5+1&N1?JhGAnG(SE{T;YQWD>zSe)cE7SGMP>; zv%A_(#X|h}uEc~p@}cEiekpF;eP^XWx~AUVd11m>nfqiu>Ky7zM2MJ zMnJ@$Oc;}w8kLqSU!^)WezS}5%$D78`X>RD)IOtMxgrM|IjfdkfaxZ}P+w%)`Ksmk z;&s9;mnmQ0s_I`l7yGD4+%ICVC?Gu@mV{Q4l95pwWN;Yna9PAFZU0U@J8LM*m&bdS zB9I4TKr}K$d^3K$VZHDeu@BLOZ0UbH?aa_HDQEe0db83Z#}FPy~`x!7r6Bu z$?`4Hp-#ipp_q;zRL4(+4A#MMcxIx^YF8^L@sy;I@q4K2 z8`$iB_Jl)|3q2Ko+6jbz1cubn#PAb^M|!dMwq`Ic3{6dmOtd#eUKqkbxbcb#?v^ch zSZRps)xCz0#&pmq%FT_6IysndJoNZUeORH1(K)|JuhNE=^UI$=Rj>SDUC2v&e8OE| z3}ldy%y@R}NTD;0C9@_rBW;of(s@VV_A{xxMgPEl@mR8Gl~#lfUH#26u;fdalnpHL zpP{BD3rrxh{zbO3Vnw>#)whwg5fRn}1~QM=rxIR~@+{wYK6)-~yQTYieYQU*)a|5j z746|**)Hv)1^VsIyt(wmYYadL5CzZZehqnDg8op^lP+w*_@bcZI45U*LyPaNj$66` z+9ePbs`teA+HtL}wX8v3(_!Q6ZMl{B5~I7TS)#IS3Al3Gd(l+ess&uC@5Jen@3~{0 zzDhr(UObVZyoSVM5>?h-9&(-#JH+Iwi-PvFn2k1pi?n3q11`JT`!X5YvVO4|4^9uEw`cBap{uK=u>Q&ezJZS?PSFIe4`Q#9wL)1f}qG)0}Zmg=qV8CaaA&k zZR1(*>YQdM`(v0@=Q#h#>$7!oJcrTb`#HIy=d84PIc$}3awBD@H#&b#-_K?*ODtsQ zr5KNv)p!pxMND7q>19*W(?7gU&P&Nhx_@_BSZ#r@%>L)&e>{|EQA=cz*~G||E+C)x z013f7YJ&Zc9y1$4ifWZNHP-#{(~w2IlRK{*?gTng?pXpOGbRcGtwUyx|b9}oeys&{*1fsNosXVsQiLv)zhQ#Jd-p6d*PKvj` z77GL93vvh^CKTzTbnn2VU$&8rjF?as2Du;anN+pOI|16F0S1C5`JGz0lD#C_r%nD@ zorN^m3)Ueh_)oR@i#f*8Hv9fOM)#@th@sh^WauGteSLzUmUm~kZTvjXk+n} z!CVqDJR7cmwAh=OIa}#YiQKVv1UNpc7>mY>SAm5FmD^Z^s-L=S{$+R5veU~pwQe#e zQSfI`xh=i8Px9C=Fn03}_F*djkv9KU=kEb93ahCo_>LzBr;ZT{XbzEhLR414A+v9CnIf?; zH z74ZO+_rZ0(3n7o9LtNPvDqJ!$R+w=-7(Zs)6)dK}lJ(kck%j7p&#COV-cCZ;^D8+f zzcmRnw~~w$RNl^hSrhAJAEb?g=IZ2bzH@x3U;B9UC_7A4{U?nX6% z?^my4`)jH9fl!t5n2_afX4&zE@_4z2+`GpKbO)Os@I7{mo;cqz-4ZL&uT^xszhOFH zTbZ&p|6@jCn=EdDy5(=uniW(>g4YfWL(Ra)&C(D$z z2Xz+feWnG*2>nXVJKTn^B^k-DQtSb)=Gn)=Cn2%?6oql|^2p$VaS{>Eu)fkwVwmbh z+A7rR`YIp2=ajZaf&+mq#TwB;Fu1Q)`0$#$&s>^M|K|C~sa0%qPeLanj^sfIEMhMD z>R_mr>+bt6UPn6P?p7bk3?9`{e3l>Udp3A!qNsWnkDPs7_iOs=Z|A!BC#PR_eNSJm zSdI8NO`SefXJ6=gVU>6N;X+O8Bgy@-C)tkAl$G>JAKYb*Iy5NsTnbaEju@HMfyY!YwE)H1x|;BNW`EGrKT3QPGoSd~VMY=^r%Nj!8E{BO;QLRI2eF4g6TH zw%nbIU}uzeD*xTaLD)$|S#mmgmwD*f+~Bi0*YKCI@^~}Uy5D+k7g2H;De4Q5bnFb= z;b*Ox`h2@$t}oxeYT$!~I(hjY*BF{dueuCAQ693Jci&Fv@Y)ajDv|_0nOtRH_wjkS zz{&kPOwflF{}$W2uITw~HeTT`=JQu(w>Lab#iXO&lZvP`9!~kLc|7+%pE$2P_s+w{ zxj8Y8@o*tlB(rL7%~ZXl)=kDq($E7P$pUqR5_xo7Q*4NkZ1Ksjo zk-m_tuX(s@>T{|vzr+a-tHmE7_eT}Jzq^5;+VNNZ_(Czb-!}VK9Gu)wBA#k~Ihf_L z462l7l1O`O;Ph!p__#$mQAJJ>H`_oU_I_bi1J8hRiEnnTuaVQ=#zDKY{YGO{hqeBd z#x>umKi`dTCzM!Tb>%wJIoOPi=EEFkzoklB9%k2PquTn*0}q&^Mm7t-W_D<}cXC_M zMkG!WWpXEJ)rQFx#J2AySz`B=oDp3UGio-UPMwVv_zYV|@lfe^=ojR!UZ%9+5$54SyzalQFI#u>v+~#rojUdTqgO-=KRILnJbV2_Xz%7kDb;K& zOOnIsGj2(4D$<17m&A1Jx{gu9Z~OIGoQz&yJ$%RZ{`nn#UKfpBL)YJtOAUtb-lVW1 ztd!=4ztwPCNPS*z%tPg0JMNkr;ST?~?p;!B_`vc}UT}E-+OWC$df(gRs(~UC*jejD zF>$`c3AIiu%&i59!v)bmpgO?Ca+#FqA3WuPpN5c!}fP>mrK#OLru^PX)I`JQghbcT+z;7_vy!?NO-?Eoyw>w3^o=|a8#^1)L8R* zJM*1xuhe;aIm0O8L8)B|WB6qbQiV#2k*q(yyXW=4=Z?bpJij}g`n8<@igM<78UFI# zdkO;l$7Qx=KUE((tKk0q?EtG|Xln)kQi)}5@Z9x8B`_40+(C8x=sZ%yW04I0{%D8C z;CyIGelV(N?5o-7YiuHgpoMekGZM-gk*>LQCjvw5Ab4S9!`As2mq5Y~C5QaqMg zL~+`RC2?BN;O@)-LvwYag1<{NVW?F+y3+_VkjtD3_T+?#(L_Gx=QD2Y?kcpaRI2TM zeDdrY(up!K@;(0>sZ7wG75T~YXM}`i;blC{Z<8%ja_I`6n0$I9mZEJ|E}o+284nD+ z7g3lIu|nU>p|jX=b6PAJ%KJh%TCebu2TLrKex7{FBR3rFC--_1bHr0jr(3?-s>G}B zNure_9iu+QV&B;DRxId#tKh0a)1}`nV`F2JAtmjk`9f{tSgQa6>pGtxJv1-_Ocn^G z#r)S@Yz@#HGQD+NSyus(f-obX38FVMsO;hAR39KcRX~DC&GIb-6@+*u(^W&$Zi2R! zd-aad8QAU7ce6$P(JEhtm;xqMs)pupCw|olpX>n=CFKzLGwF^_f?%Hv(vAh4?_B}6 zvkv<*MSLgcaiK?rp;(vrxGbgU8EL5)zY5JYR#!tWHa%i(MO(5=W6Oym>(F&DUo zvOj}c{-X+%3ZXe{j8^gpM}{E}3IQ%5uE|V3Q)f|drks+mmYQjpQKd=iWrPbA&!{3E z(KVnvSYklhi1iQdVS;ep`9=RX8Hhf#14N5;E6jig@KAvYs~tMDY%Co{fsM%lY8P?P zQ`Zfo)*NU8>MKxVKxni-5B?QoA{7Dt%g!|U9)+G3hSJhuGg+qtu_edKU~zd>n=@26 zx_pVw@wTxX)#RABx>!DZg;q=q&B=p+O~Xe~Bn*$jje29p0H}!p=HpjrZ5f!Y@jBd= z0eY<&B>r5E^U{2--+2p@>5eV*kPye%3cc!S&*1l~9SGD-jiywAqolk{33VAQ6#{;j zRmS}aR_nwU_19c4SFs`8k~&Iw6t`Y%0E58%N0u0Uhd1ylZ-st_Ri)q0lcFO0)m)P* zV3_zIh%_*w6;!Ko)tTm2-Jfw1R?1u;ilXp{u1^+%16g?`(!8M;NYMVF%%vCZ7|;8TRDt#?t1@{0_~%e+!piZ zTAR;5Y6<}$Uf-Q6`LyuumC=Su4B|k@E;Y>n8gem?(`BMp-$K#34^*keJhZN=#qOx|i%-&TCz|hrJU$owaL4GWSU;^qBZt3Rr zGnu=BT+8>6fWH?(^|6NA)>C$%cHlzDskMZ4(#gy$ z$C6+!>iqSu+4NkoK;y`ydP9M#_2vn~j?97I^|A@f%jKNU`e<(ji~3?xUSCtRK^+2C zUhxB0?blGKF6uj9`k8GGs@ee<-hdmbj?Bb*UYjnDSh>RCNpM=;=QTytB*mU55LWAS$5S-nut zCDY2Gk1Kq6^W51YgQMqhBmyT-KZAUA>5gH8mkut+K8R>K&VIq<^V};sI5^N=s|jo& z#lU0y1Mw;nAqNovxc}>(_-(5r4H*4nFcS%3_Hk=$5(nKR?Bw0qO4wvqq!7r zwmg2!ylDP7?!r-Wp`nFa7JvvBEI;^6F?7AC zf6rr$GM=!6)box=NoG!a=$Or#&-G?5)C= z^WB{tbrtH_Jbpz*J(*v@Wq!TZ?JtSr-djFDc4&Nb@7l{d`-+|fX%?Pm-&=m;4ZWlL za2lT`;d%01rc=;eeinUIb4I~ScU%s%Ctjjwp}0W%?wh=`ekGAkga}IhQ{s)EDzq=q znYXztg+F)vFH8LYWG)`~Fcc$Hb*b@anMGpuDyw4PEz*%+(9ad0(Q0CJacX(cZzq1U zRlIdY7QW>h`gHe&@YMO~)H!jy!KNFuR_4M)({0f06W}KQeqp)s=|qEhR0PK_j$r|f zpVV`0euua}?ePGjkY_#BU?5c#Rvt%+{L^VO$Q$`bFn>ECd1)L9^)*EBx%%Fh z%w~a&IvPm59^7or{0xwD-v=WRV&JqM93RU8VdUEJA!JO@i0}%9sF-hz__r5wfmjrL zhLe-Oz05cxP)bQaiwMHUCS+B9mH;a11&hu=IbnioDl#mD-*vsH%XrOZ^izRZccQ|R zZ?8>~{{GHFvNyH zl&6k&T(~=XGsLjXmv>hK*sPuImzimlR#jabew|Z;5n8MR-q5 zKd&Nf-)!P5Fb7xFkjHwMa%N^GpsLQ_-=98jtkKtZ1oXendQvoigv0=_F~WIA2AUv3 z31u)U;}D45X5d7+ruIP#oNMGd_Qh?hT>TL`r1G8iHvnVP_UO}&KZUuw441?`vdQanDVK;x2w=U;#-!~a^( z$wC0t3FS*jy9&@98$PecPJWSoHJ6k`VB4*T0eMWq(&pl3eKB5cGE>=UYJctee-26= z5QICs-y98L*F6xM21(H_-v@MoVoyE=U|@HFbpFfhk6Oa%6;f^|FsP#pg@NNGT{En8 zDITwLR|By<QP}aF7-eUDuxAuO9GRE^@Fb zCNlW11ANz{a~0&+x^o1?WfyN0+B>qgGW`kcxWGG$@v?6GU!@l@EXXE(i&V)N75`N~ z9WV!qbkuNv!*IJzOyrfd+jc>v)bqj+*&>Dr)LB>I=K5ay)z;RU0onDHr^(-c>k*Cz&v^UJ`bA0j zzb7yCge6)#yXlB5*q$s>Ogq~7LxZ4{(7i1Ou6urSrWHvo+SeHcP=hoI%45;mWMFwEOrYi%54TM!t2YnH-G>@(y&c`W{-MRGp;^q87%6EMj z+ycOQu-8Q6peviAOcNKlY8!j} zg5yhWNHZ&ZUMs;aJuK4xS4e$G$IR5yn)lT&}-#rffhXU!6*rOJUXFcj37Uz zZWbCOWI?Z$4m5~V!HOnxnm*hnF}6Y8LMayjx4MVu7jN-5?OlgiNuUX5j@LNL!MNot z!jk(i&YsKct1$`}2*8+Qd@9ddNW0mAcE~g8os1ss2z8fRG2i2UZ)9p4jL;c zuDYom`ViF!28oE8_4Mr5b1m}2vLrZfM%1RE-3P&bsig|IcxLBhG zFcCsLtPC3I9d3(~1XwgOt%nHLC1Q4(FmokQwXC8ep=9LpOzx zH!@7?pR@7y0iX5t7Z)Ze5ap&$724}qXa(v9rQUdfOK-WX$E#EjPNDDVZW5x8326;2 zR7c-kzt7w{%gYFGH2eM4=MD~d@iaRlB?h%P3yTfF=J?>WK0cDQx*R1jf3?aC496p* zFaOHm{fNE!)8E>RoNxhuq*)NeDZiy$e!MxG5G^Ss)d{(0!UB;`W9g(gXGoLH8+fV9 zLT`mnphXS;_U(MadXt$kc)94NG9|_i=}a>DKS=kt;`71e;#)Al%S_2~B75JuL?EUy{A136!&HI@$PWLN?v6r6#TM zdgxx(GcG9pQEWx^@Ya)HI!pe|_K?f5Zh;tf5+OJ-P$_)x)->GUvX%l3P|6VA(g2(w z_ZDNF9x;$(lu+n<@cq)Gi_#P(z8}jad=2Z#IzGia+8zuFDYOXV4=B1aKrW{R`@vMp zdl{{bC}PACB(p~SW>d+UsrgxhB+zgq<3+z*)sB9%b5T%eGDJ#VN!)D?kTmhKp)!7i z(kBsP)fNWU64Dar05hoKZxLyZz+1&6EPi7RsnW7gr5d$z&hhR_QmlkK&c(h#hvPH) z<=HeP>|3$~6!9p!c=eWXzTXhBluFBg7;YC{hduyiCiJeZL^hVjlkJEB5aoVgGYaCe zAU_BZIn(FM@ra_DbQ3YG?8-}v^yl#8(mZHi-7e=kf!Hn6I)N>ww%1^;9MK_Yk6$zS zu9(J4h3GjVQC`KX{rtbng&#;jh{8LEn!71s z27(|*=$`Ai(nO5pxGH!0j~T``$}!VxJ6x9UWe}dU z{6~Owc5YujzVNlFG_ac%6)~?!!re)uBXUcz;yFWU(}e<{K9%5nP3I>->*t*y%$4IX z*KXN72H)Io#khLG2m>6(fW&%H-JTM0SBfZu8rqsMqY%m{=xBh*RO)*F5yY(;Z^Ho1 z!F+rmZftJY=u^M5KB3q4C-_&=MIiBA+>g-Eg0DY~0Ujd-KP)^P&&bGV;lYo03Z#gt zQJ4MV+#HQkrm#YP!yM1`;9BS;xooc0NO4wQx?>Bu&40#Y`X=Jv+nz1bBK|f7qO42m zVWrTjDGS>QRJ@pxsCJi})2Uw#A6sH^X6B7}QtofJVIpMLYNsM)!A#UWC}Trw7tEAk z1@XPRDcEo6R!1wk^99+kEq}ewEvs!_Cetge2ZxqWMeV{jg+wxb*+_7(WbyhhcyehX zG>CR%Sar&7?*?<3Ny{nuJ6FSkFWw*ey-G<0 zvPr)di3lRvVp6VgsGcHWIEK~huRxqYrt)pKliF#U8-lBgk%^<10a+HH#OvrA94hxR zGXx;49qn{@`oc`K>&QOGyV}$eVQ&mmSMas9-W-T`l0gnA=yNh`sTLFqghb84-QLK5 zcJJ!u?}q>2q9&@Vpk%2Y5EzKeL2^9UG~x3-tBYsV>7!a~mqDDopAZ7|W%QDFAW{&| z(e?H95ti8l9`@@Om|j{k1QFl8_V`>8Jdwc<#{zJjTS4g1T^|o74SRMz1%II0{qH*@ z-34M^!GB~r1k_1YaYHg303C7BZ90GYMM{k@2odF^nJ&=rW50nk@qmNF+Veh`2}QIIkV$^J(;?c`xRP%9&?&w;UaiK| z{XW_ku_eI0lWd}AtwSs|!leQ8o=~;|a(7UPR`?m@hI?U1@lk{53YFgk)SaIlgTl}7 z$?2&%=%59Zn!sU50D(0<H$^d}-3QiJd45EQV;82oO_PA&7hs&)yEPhHScfNZT78bU%)HUn9 zG}3B-LCEfT^Bd}x{F=&L7e>ue#?fr!lf9$r;KCNG5A{!igdj#k1RN1jIp8dGLNCS3 z3q|B=cb(_!#&*4#I-*kAypp}8k3RmkqA(5B{(B^KUS+q^5n%J;IeuwP3pU2pE#{g2 zcSJd}FDX9bpV@)C{Gk;C`5_YpkAy$5T^8%?+x_iruI$P+jphR(LBZ9&UzbFzK?ROJ zBO?P1yP;mj$?4NH#@QZY)lA2E+DN}(R{q$^@4>M#J#ley`Pp{w>n}Lg-Sgu>R-Jb@ zI`(!$otutaY18$OUJj?jsm6GeC3n0UhgS}oDfSgSZ()?B;?M1I~1BbIoAGSwk(e zd~iI_0HqRg{SI@l;9q%Z-?qvo2w1-VtdaQB?mB1}f0fCMUATFp-ctu_7MmbL#|;n5 za>|uMj?dsMi-g&6ON%91s@s9WQ2XAd>9SF>38=F04-iSeWxa>&-h-=f;-qAg*o)7q zU;Bk55M`k#rSYmvRBxgQ0M3no51*d?6o*)c9wZFZ&keK}@%~esjTS=VE7^Q|fT%k_ z7V#&V^TY|%?pdL%(QVjs`$B8Z5fk-bRuNzY%@2mfalg8fIQ}=2>=~ws|7i8|JY9Dp z(0B$$UjnEzb_4H7qNt@hhoAN0h@(e}M%Lc*yZwa0^x7nx+xM9Yps|t*j8y-?PBg@* zi{3*65QpGIis0b(<8ZDEl_og1v2v7JjCG|hh`0i11b%qIp57fd_ErAXMZSD-wEL1p zOO)LVE*U@I{-6BpzcU{zL#f47*I9JC{~}Ht7e%Px{`$$ZJf)_@$gfc9fCrHGdjZU%XlYC0R@%-{<)AxT{cY?eU&Ed9VAfTC{Dj)_fY?f>`p z(tbdFLpSEUU~VJE6Ir`Wh$OEWrhfc_Br^Z|U?LoE6xPfCcSET7SIPaG)<0E3mgo-B z76jC15Y2%m#|bqcElP}rwwNcN_$Cd|37zlRbbTH&qo#>s75gS*v|e<(K_qNy%(E9a znebiH#&2%cZZ!0-*(eEaeHm9Ts_I635F}vQ<1^3InxH|X6UtA?n;ROo1+Ab_l`}OG zfDyP~)wFSnaMGUseCt0xNxX0lni~}-)wv?Hs*w<9$TWBzI-b-XcQRy3173*F#NWCo zhSq$Haa@51(;peyUk9b2-yruw1*wrV<+^eFD%e80H&6V~6+n@h9zjC)AoRe}-KuXO zl-%<>1u+S%$|@UhVbjCeO-sjO<~Pi-Io!oo_l-AvECRot1Il|;+h6DY93(xN-xDxm za(Vh0!f?wp`xeYTsQi&FOhQ^ETIm}p-W`~HMRNvXNt>1)P6*ZzC=doBvd>h#gd+q) zNMb>GMW5VbiK+mgl0AIW)gVm4&8ADLz`EHx4eB%(X#w{)U*0QBbG(`@&l`*oNZ|!= z@Ju)n95Tpr9OKc;zoukJcfudBprBKeM)RM3^@`z5pM1do?RIHOZzK!PtbC$?#0397 zlx&#u<-+3Od@Yx6_d^u20Nt*M0M}iqB5Y>mryuth8E(ysh}A`Mt{>qXV!Jd7Y{m17 zmqk>+-Qhjm>5ogjs}>=H5@$Zst_g#TniNl7=yZa#da7N+Pnkgo3wqje&3^U;i|R7f z{prgug2?gT&V&Cp*`Y7>ZIWV>{~vmTf;lgS=5LToRcP}O-e)pMi`eW9tlSQ2P%%B{w+i>aPc(dhW_*S^CwET<+Uu z1}MT|0#EMvig)&+vY0{vbVBZS$FM_mED0JUR*A6d42?di#nC)R^#}B$aNFjzEY64Vh=ycWL4T7~idci?GDG4CmYVe$x<5l@gVFQ??RuFEYT?kR2 z2hLCk*fYHv*NyLM^l^dw63ofFr#SxZGgWv^SKFbuQ@7&_a1s!;gIvE~!vEThe%E2m z&i6Q#LmlFGs~wAip|f(4w5C&U{MLR zKT+Cd-#CbYZuxr0jytYPSl48}Mamprm0Uh<7!#DoL#>Jdk=U_r8}RUs%LREJzXd7% z>ts=E17B0>K}q;N5J$QGedAj2CQ*wej?W>a-)74L1vRRdLUgA)JOQ3Q4&3CGL7!$1 z5MdZLw*jpTkdNx4JgK1^c77$C8>#9jOtX7BpYu%}pUTgCe^dOLk!qcB>#G-XrgY-b zCV{fk%~vSm!6V8-7o?M`nxNg*ovc~X0m2^Ah41B9b~%fPo;LzWl{B7t)L+Yd3(?_2 ztS&1V`n#s>IL&$@@rI3c2eT2X&^B^TM;<4dLFt$Kwe&hu;*$W+OPV3gj$t>EWt>(G z-d(2x$)~;d9#EMF;Fl4vqgt1C@6GbQ@BR z2AtaCj-D5dbxxzC3weYFMf@fAtd}~sR#o?b)?jwuqiePvMi$ltYIJd#Jw$F1*B=&B$S_R@w)dPzaEU$6upf4PbXD?49`;qDbw%kW(1dj?f4&;*l*_FTbN zKGRL88ZIKB*&rkW<;v+%P+|HYuyXjf$zym+w&;jVz(xKqXZx2_vk-d#JBi|XK6fkd zOwj($@GJq`OXoZ9+{i3~Fbpb#7bv#HQszK#mC+ z4{hNCq|d)^3^cszhhQ>@zxgiAncTd2L3aW2`a({eB38IB+_78?wUl^?6u;Qyup|GZ zjWkWdebt(op(Yf8EGdG4&mc|k)3%U~80YWrC}HK0GODPjV-_9E0`ac#Gm3Be5?STgwBOy|?n9LFLl1t>E!$x#OUY1=AI6ne>%l>@q+)6^L*U zAP#Jk>*pP*H@@d*swMh-d{86MNVWkPGAJKUUs>QsIxN@qiE!DTloIKDmqf~6!HjA<8~)&HllE02b{Z{JK~8Qa*$s7R5rjI~l^ zO`DSRn1+-sBHN&BVX};+tYs}8qm*Q9mB_yLgz_LuWgA_nxQU`~H6ayyyI! zIgUSuGh@Er&wbt3ecjhp>8$k|qekl2YBw@vz<$8Pz7lsf>waY3%Wfw^uoIEBQw(tc z^Xq2DFL7r-b-16Z!?A~MCKk7(6>pVJz_oCs=Q5_6bt2vCQ`Fh-L)%-W;eIpurRr@! zb4RZ{?GHvuRoAIa-C8hpoq$|6RiXXolzS|0 zZvD*Mc2r&{!aJ&gn!{e%x|Zd<7aXhpBp8xf=;Wn81~*~x&ysDBdJOW>gJTPUP8pT{x(0O-c zga_E_6Uxx;&>9@#Y3YTQg+KEv0FB6!M6OPr6o?y%EYXUvbOSp-pV%bPq6fhbnUU_) zR|g_FhA!7E&-AvFACZ?`HU!D;@aoyRUW@ER?@V&`E4PE$B2N zwsaTq1G8QJCUufrax(Z? z_|0rzaf4y+g`B@C?ho@s!HeYxxYaNt@riSnDXAd`3W*g7RSr3T;?_=~k80ckk4zMG|v>_;AowodC_n!&)lI^>n(g zv57X}(WX&IohRzPW0?$Q$_AxQ<)fkF&bSx@WWl|7ydEl2YLcZ7g+-(|s0f!DWZQ%~ zxA(pbXt>=8KE>+athO1KgFCrfH4>+Mr6oRnI_5H9cxyy_e<2O6q?o#AG6m!xQ%l#k zoV9*;wSS$4ZPk_js78WcOT9a3T--A?VuN&k# z(RC6qjpf+M7PMRU4ok0xJyg@kt`{L9XyqtA``0~$t7i2$qX{y)5RDJ7J8f4I#h**HVXqfH*rr~05V^t|YIXn++f(`D)+HPjCmtIo zH*g8LHAS6vqFn3QJ2(Cidjt8ZH61%6nXmA}zp)wjR8&yXhH6#(HgrX*`QUG=V~-GG zji{t}C=mY$*_p_)VNM$rug;$bWSKM5WgC(t@J&H>hS%zBEuu5} z?0W~hcUKoh_Zpy&C&s_xCJ^Mn|Ae%?KGYR{b+5>I_8atNFw(W~@iLNj4`*^5!M9{U z6I=dPYvw%SBB!<3?uTEPNJT-(kBvKfKxTRAg;VJuwCW{lPc|3RB``GHpV$g|Or^ef>AaEoozM}Jt%cAPhHv}w zsjs^y(voE5H>EnX=i7DUEjJhAetCF*Q^t2;q?_zQZh?ws3=o3H`@Cya<#H+>r;1p!DrZskiON1Z^U zAX~%A9Q*WN`n?#vdr>yZwrIz5On_2uTzw(0n!t$4@GU*9uD3byF) z*EP%oH8scE;C*QNsksqR!aQyr=ALi?jq0)BTObbBfXOAnJjPVs7J83LDo_o1_mmQ; zK*ag?+Mpgo=en`nb)ge%?FKwPR;Lj?=D0q22^{Fa@r>MPaf1c2%})8_Ju}*2Y?ir7uC>S}JS= zZNCx1jf)4y@&m9?NYQSz&V~uDd~)y6pKWR-3I{lZx0w08!rzE~-~+F|D={grp!}@6 z-Om{2+F{Z#-|l07<>vf3ZFmKA36;MF?=V5;T7%@)9@%tah)?@&-6@!Ny`H;u#PzGX zkGW0+@6P8=p}f=;V12ueh2&b9xP9hsTMP+ZHW`AswDYchFHguh9)AakY|L)r?eRIO z4bUcxgS&O%dz6wGz?=kTuw55l`w`P!+2pGm#!$m{$zh0~56DU8?y)7j>i7htUT4gO zqN+oT9n@cJ+@i}2b~-b1y?l+mh1s>%*+?v^;8Y`fv6%FqRcg&9hkeMnr{2IHj zC2U?nfd+hABJ8ZnX;z+It07Isoh}4AVbDj-RO0kE)U~@hTXeg8bhVZF!SA4WF4-Pk zk4z9>mRTSQ=2~ve`(~@|%^=jM;R1u6qrr2dD+e681tZU}oc#(ntGr1+#LG}cD`7;_ zb3a1S^;EQ&RFPJ_1qWFmghP8oFSu?&Rk#5{E+>!watFbo=LeaTzd#DehCX`0$pl{y zv#odZ22DxD&h-cS96ZrD$t*XJaByGA~z1Cm?$LRkjdtsonW$ske8u$;9}Y7E0WaY;eG(x@w?|K!dce< z+Wra&wU@?lEri;J9z2H(53rrc$~dIixT|W>v9=1|0P##ichAK zHfO9tR4E&i`+NmBQ%-yEPrzq+`D7&enLpTkk1)tHHyqJCkDsOwa}8RfJOX#zJ1m^R z4CH-~m~r@2c?ZMXm!wOOB_1!Ec;q}*P%&qkB6#2-eUQ#p!TaQsaZzYiUhBR%t-UaJ z?0idttEj|vuSZOe6~*O=`^H*3smGgJve;u6jC8YH!(N3fR{a{x3uIHua}!3~o&?Fl z>cz@8BW#EOwbmV*yf_&^rCli>sL4V~**5JC=OKO$Gj2Jg6HYN9`1o+1E6S3s|4S z%+mj+h$5U8?URel!6DVYhd}8q92kqi%&qk3l}0Ct!1-+BYJ}O zMv{VE;Q5t424ZJk>XgbBFIKgYAanIwi^Z>)m5S~=2e|2a@QU214|3jbksOB{J*Y_? zeYBvTORY*f^N4;OCZxt-!c0N3P$vKS$aT0Ep1$9z?f}NX&Z>IZ-}{@Eg^t0<))pmg zlhGb4o(eD*yT0`7GSzTUYqihLf0j`h=%?Jn+i>3@=|mxJ)v%FZRHe7gqPDJ@`#z{3 zZ3W|;dkFtUeRaIeXoxhdQNB)>Fuz|g5lr+BYi2rPKIM_n>LcX6zzkHoVAoZh_l^f2 zZuG$p>E!KlPM=Nm0{*Ny_HSRm(5Uqvk$4>GPDF~z;1E{HKq8x$c^FKNhnvX+6Ogl^ zR*JC;R~qBBsro@P`>3AA)&m|7E0l$~W^mMMdT0}uK}Jv=Ql7`qV%#voS7nS#-a(t6QOAy&#q z?#VZ5@BX|rU4LTzmMDQxTPso^QWReQlD+j$J2v?}E!aZqzp$z`1~?v*{H0Y zQb?DYG+f(kOfRuq>QsB=yy55@FJ%lCsYkhi*FKig0~SyAp^x{-`-trqcH4kWmCa zi%7G{Ow$ea42d|@`8N5`%FkQ9G&S)v6vq+T4`f4TWE|~!8Jl${CY(Wg&PrCdG*RN2 zuZ9C{P_eNT?>?{fRZqIcl3rMk5oxG-u>(1!7Zr1v(zn-@C$0j+u1qF*N$c%Sr<~vT z5mG4y(+x9{C5F$*AnI;EP)*0)@Q^IZtZOBY^<-BQJScxufh`D5)0KO^QG%jnoWlRQGUxQ?*N`hM{01pRmZ5lhmraj5SCcGbvXldWNU>n(XE zc3r#vINL}~oY!&{Sf$ZC?M~^x$zOaDyy_9SPm8y)bl;xof*s^#NN6-2qB(9Jt4yb@ zjrLdh(!>f>=|N3$nEGRjDJpqT;uM1>t|GE7WLI9f&;wfWJ<%*1w>L=(tYJDb621$( zjn^@BUxs8~(TM)L#zyr6!3%-p+GFf8qC)k`0_@c#-WsaXr|1#&o{}P9{p8{Q$9-bKOE`!!J=To@^_N zP?DWy8`2{=l zz&V8Rv5jW&%^c|A^p-zP{~6|KS>f%PVg0>kPUmF6xk|)+SXRhu;vLsJDkN}jETl6s zMKBvh7FcP0$sBYt9)up#uiIf&q<0)5=8QO~e_Mxm8Yo}nQ`%L;&QN@4vh<|MW8AaJp9BMU`z=b7FAGUy@jhTZ_ zd2OV~@`!7KZk3BCZ|`K?snhGY$tE8qZD8U}9gm(r)Dk(5W2joXrfZ(a4lp4_|6$F> z8$fz>$vFCtT6=c9?Ly-`qCfLVQfp253EwXd)-;9wJlr07eoy8mZF@TvUo=zK2`!v- z0*ivSm_&>^@}7vG_2T_8wR<+F3A^_l3@h+8Q5N7ci2EXv$kub^Na9Y#F^GAfqJ>2WEjntI77XH|xg@8FhKfNV#*kVoO-d!P4F$z8_Jg_Ijx z?X%}S@vTX1L)gnlg4mgJ4(n1$BT(JxB7*m^$Y7tc6=jb$aXc&?oZUm+mbIYX4{v_OQC}-Hjp^aoP?H&eHchbReQ?Pe~+?&(6k*^?!XmmMabI zVA7kkf7E^d(+KOfpomG~iTiGZ|EFDsAO6cTVXSi06I|{7_o=_v7tTEP`@fUrZ05Y- d|M@33&{MH%-*PeszOumA8AIa}1^U(@{{lI&j3WR5 literal 62236 zcmZ6zWn7e9_x?=@gEUACjkGijCEZ;H-QC??0@5YjE#2K9jihup(jgtsiPv>M_x=07 z;4>pLoD+NPwT|^&$M&nDyadW?{MS%WP$*K8q9353U|OM|pf5r2z;9O7o>rlt;84v( zL=-JVBt&d1ZR|hV>KPbG7+D+Hn;CqN5Qc){iir5EWlH$@4S#A=4IRbLfa!vQSkx!> z_*%;k6M+kRPewIXOZ0J;wL;N@hs)_^RBW3Md1kcyZ-mghiq_)Ro;A9t$;?ZR!WeRD z6?5PMXl};uB(f)Q5f7T!YFgqNE!u{cZgcy5VdKUu}qH37E-mJnlUM0S>PgoB|&-}c# z^OJ6ai|deaoFZLhH@c)ugdp~MBzsrhK4tNlzc(jX~>QP%uWw~?wnQ9lR+D?+_*^i z;gn3ub!Wl@J}Pz8dFVRzjy_QvO9OI?aYN9V9hvysig6@yN1FV-*hvwCf?a`bhuF-z zSfbISXl9-oy19j~@%K!#_wr4%Z+@*Eu6EPjK0!5nGJhI4*qdM$E_fzC9WU-aG5t*5 zitO!XTH-X0XlzS9%_7Al6&r9v_%?2f8BCT-8cRL+(JhQ7^OYrprhRtaknSI%siaoBgHFu^xx za2!~ePPZR>?$+6zt<>4&R7ZY7@P_p{SX6FcKY)xVzxHaj(dd=9;FCAx&u92-saKPm zqsFd$2SYLp<<;cc0y2Tuc-Xog6o|DLypAQI^4VP3;$Q#ikZGT3x9U5fwZ>?#W3OXJ z;*cp}KJ9h_u{f^Ct$Mv7x%lvp>=7^%(}oQ@dS8k&w|YpHduM<%|LP~0r1-|RxR#Oy=C|o zD*XB!&MbLf>3iyULipbZblV1iSHs$s4$r3T_p66dH^R-*YwJ>ehxQC^ZR)?SV10*! zyxo~abI`okLO4-?T9;_L4OQvE%GGTn_4J6l=$3EfkO|NAK+SWlUeArTRth_QZ#vB3 zYqHsP0#(Xi;Cl7JmAY4d6^83qKu?#70{&PD$-y5DS8K`@s5#Fz?dSVPcdrZB=~bx4 ztY_F~N>`*G1~bDzg5WYzl`@u-gL((t2SGsxn?b<=_n?6veBcMjC0Q{4`3+2K7VLlS zLtnl;_{y1}8VX7fN=j7dlPmOLIzrkTv8leWG`3g_3OptM&>Rp59ytV$xg!S?PDyr; zE>j;~44v5*%tHDWo;iy~=*^oqit#ku#an5~70+dDCxeg5UfOP-ShqJatZeVg^4n>-pAw~w_t3k+g{7>aOjp#O8z`8F$1#Rl#_|NQ%) zU%a>=qK&kU_EFk@FYt0XOzk#=|NiOAb3foiQ?}B2xz#!R?~BpENW1+D zJEyid;eR+4;db0plpS@sz1WeH&rrCJt2+|y*o-SZ+7-`zbUWYrx}PBvKjMDUee$P>Veny5ZpMx+rZ3%Lj88>6kM620oJ82H)v|gfl*ojjjrT5e)s=&;zXe|B5KEl@pwF=>GkaeM>qmj$!JS3?FohdKJS7PCJW)|&$y zc7J}WXup$=F&&3GaE7^2I$K^`3r@h=L!>hx2|DL%) z>P-6SE~hJ`>-~mRZ;Of(qeLw#?026|NoJ1T2tpCeP2@@p1A&;YT&8Y+yPb$+j4%Ii zt+scwcHU@nc%$QaCbmDG9q_3{d6ZIPHPj^2OPR6l@`GBH{uiR$6b>tVF5+ek_l~ht zP6gwUB#acf^5);~QiG<}@}%PO>^A%C@AeA|2XT)cBjp$jD0VG?2vsDR{8Wqx?9*sP zP*D)4e4@eLc=q`)Q-`WV5xd3AfI$?WF@oZ38lzUT>f6DmL>+H41Pd4XTpPk(V)s2V znIy7~Ck1ySpQl@srma{R!<~_2Kg;Ojj|zOBcg8ZA=v2zzNOGczf<$p82t!EVo`&cu zkmC(D(_L0#fM7yIg^lJ1ExN3FQJbXM1$mh^jzkv^#!(~iqw${lhU2pj5y==C*R!)MpAPKYHxDiUXb=0tm zYKYio&7fY3E(sGm;k5Za({WPjiV{H>EoS@6Rza#YW_g4T=^G%N(jq$ThG+{16a*f( z1WFgBBB7W{ADq8J?3V2M5t*dX#jj$Pt>dOj@gYZz~J`DLhU1TOLS`pu5xY_n=GS<8bH>o#)*B|43 z!a&VFr6XM50`9I+tKdyebN_$Kd$Xz7Rt8IX-Vy+i$I^5zP zpYBhr)Sd-Iu6PYj_P{6FKK7B;!7bK7j_yHg?h1T=;!PyA6+OcHh6$K;eNDO(+{9~+ zfhcghYHm3YH;y!NTplnX&RHp`Xdg0GWm(V}a~<^vQgvT@Z!tqZW;$faoy(0D4=gCK zNVS~CBX}OXZ3o7+O&Jr%9^wSX7x?xYWm+vWZ1~I`V|bGX;7N-pI|jKBfid2PBmUjJ zxvJddpTB+1T1ikFm>!-+Eq|^n$60OnET0@31}(YmBjfM9pKfG z@DP)M96m$IT9c5Up3{x<8{`l}TOC(-8BWxMwMD6-uZ>P%1l#nDD% z?P4n&@8ECmKEDq4s9HJ+Hwzj^kpICoSE<+2>FsQJN`O#dh}{RuCH?Ag0nQwiQD0ij zMhRhpF`tZ%s312L3Tcxf6lP-%B?~^^FU(X&G1)VlD9(9g4ygLIrw^kGs{U2m)M|P= z{^<>a`ll7wO_W5!iv~AS5WeBYoxZ>COc3o5x5EyI3e8&&e>@tGC*O>iLU~xi^=)lx zyg}%Fexi1)`=8%xWv`7!p%`42?1FWRedpnKFsRdP{qgLr?&rRLqy|GwqesUeO<0g* z&K1|(*7G4cI}{=8<7Sq&sG#?s_UImeFVvNwwDe6g;oqMum1;=`D=$n_lRAfjG-=8=oFW+LqG_~DY)nVCHN_MKL<1Lu%kI$G>PS2@{~ z$R#3cci`zW{Q9P)_PqM&1;y8g@pg*>T9fST#`tcx;yyH3YpImA6|Q()YY{Z0+SzXO ze!bFWi<0393R*ew^Eb|QIayIgiWr2}8!S-Bv_AQKo)yzq>hB({dhB9c(AkYxfLl(S zSg`uCIXgkUi8dxrhl5$`Vj5>2`Ios|6swh&zlV@ zgoWXBM5OOHmli_xnm9$&Aa_4oPEH{$2zL~I;lnk{)Ji>G%4-qFvK_`+ViB$YNNZ4$ zyK(UXInl`Xsb0rF<3o7e26c@<-RdwY;O0{iNa;OZZqYajt-8G!d6WCAIceX0Q9)#< ztZ#}}HbCA+GRI_u+JADR3hTHzo5dbq8*-+}S^HtfsE_UAQwCX3{rA4oPHk%EC8w61 z6boLFbGBCNc%dGdw&Rp08wjN&5U{OeB0+Oj&mBO$T)MDu6{$#_G6z;`oXV~(nwZbs zwPD#gby>W{3J3WNd9dz&hw`WS;rzNfK^%?;Q|=KflM;u5^0SOF3RA~@%Sk&=3E5!v zUH9^db=n5S17q?n%UQ?KNjjL+r6YL7#M(2Yz;0)I*#Oyex!Fn48Pd8WvlJCVR=yH| z#*Y_Ied+CjFcF0R#W!8rsCd$B~n$9hUWe{4=|uL(^5^CX{>NQu~@Ob5Wuv7^Q+tjRUa^Ir8)6tD}PC zjl`NU{>5@(aj!nvZu3u-%RjnG^nZlb3tUd{ik2l{pinO8Lo&UE49p}G1Zb@nvu8)6 zXF8ok=)^R-;8C2%GWfQC@|@JpvekBJazZ|FIg5ELSH^97dY>TxGBEG!v*O&*_(4$6 zHSi@=axBD@6V%Uh6(;+Qn$M*%aMFFs{^b-I&Q-<2=6l3`4U5VvLF5$A`*7Mbvx2*5 z^leL+6!_XU-ykjP_C%C%I4^DXN8ujo+QIY;(qHmBY{GT~hxbOKA8eUwr%W3D;Os1; z89W(HqRtz{Vua>#?juh-c<6Q&$wcS8?@l5ZemwqdU>tU}PVF}q5DG|s3Iv$nwF#rM zgRR*JKcSR#(Or7ujGU7(`!te;9v?2o8jPX*VA@e~UsbJ)Ccz34=VA=7IkiOjd}%UG zRN=rE?*b1Z{**;0`z^Y}0zwzX!3=~&+`W6eUS+_rH?lK*D?mleyY-+w$16BE7Ql`{ z(RR@HXR{e2#`n8-ZcO!0i}i(3Cj#Syu6Cf{=eAqR-Zoq8v_Behr&!>+FT2j`zUOE= z2-=64MbYn>X1Ye}=8z9_Z6uJZp=?a5T=R9E5W`htMW*FY*JD|DfH1MH+fLN>3X@Jg z{v1vu&s+K^3f%?9#v-A3`KCl5Z3Yh_OAQ^!Oj`1IoGfJ_;v@92?6c>)`Mja8wDDQE z?Kf>ouX&vGiMxiqpPwGfz9&BOHkSdC_iKbN=89!If8e=Zv}mPNz?Kl|qkjUNu-{bz z0=#e$DTV3p&A9V5; zJ;e;rV)kFAcJ7d8OZ;kV5yM4>?*5W#X^8stX4<#LA;$=BiyCp4f%+JM7QBc88SEqM zdP*RjU2*{0iJv^xDppFfHUJ3u>-EW=bk#QF7T>>KO?XOs|M0a z6T8crT?mDRVG#(MvJ=1Mm30-|h<>G}zc@Fib{>X>PeE+LMXbKXdF49O_0{<-TA1{~ z6a`C6xFU6RKD@CT_2a2vK(CXKYsh?5b1n7&^p?NVXDa|i+#=X4j}z18A0 z@G+|!=UQiBUnzd$lVlF`ReE3-w^LxA9Xy;2JJ9VJCXv}Fh5)<5GL8FR6 z+p1lyQ4nk#;&sc`D-|)IZ;plYGh`Q)$0=mT?W1DLRs&URx+s#+cm5Zk^|ApORr0jbIR!}9SL(~=^~Nt#>JZ`QJ)5^7E!I>S z<|)ih>*c8vBO3i&-FsiKF1ojVm8wm#IkyM}=l-B7Qbgt%JghaAb>hXk=L%Zcv7E8J zZs~aSaE!<&At}+`^R;EHn`qb)zoSVq8#}jb>ZBH@T-NyH+SbWPB4wheWJ(UzHK8bO!}vh_#dW`mgkIj?(G ze`NLOD4eCj`XQd-S{)^u1W^l3LXSRVUl_#&sUrAqh|4dI+-$aS|2O}Hz%m|eOy+Q zB~(~Pi0US3GqFmb4iRP9!#-f+6>UpIP zINz(`*sRbQX=oBn*D~m|zf-vO7PLN?VW;8CB{Cp3N*DgR6dUdz8-SZ-%Z5PTE7}|O zZuUBX_x7nUZ@$I)`(gUi*HVp|_ZuS`rK-$}12U}+ucPW(cN9?Irp*}G%MGNj{XhRG zPGpD+I-K19$zD8kuH}(0l}~PI7;@>0XY&^OlCNAjg?`ywIVRco4>xh-J3v}yfehiH zbEN6j8wH0T7MTUE6LA{DG8OF!RD7J&o-D^Qv|i>1q}52oU*65ezTKu<1Q#rYM_ut9 zU?_H{{z)>APz#4zSl92<=1hAtnyBJTz#vKHfS$T^X*heV^cev6s8Hy&Ku3 zqwE(g%rmL)BLqYI(+2`*{R>n#>q^VC)5t?@mN93XmX)Ip`2-@Foq?LiOerfU{X?SR zLfq@Cp#>LWtdliwjl0fBhH7g=o&CoFa;XCgEOO)&J_L-L%zRhWj86*rpx#hH+#2-{ z+?%J)Hc>o=HDt{mS4WA$ug+zpu)gPLTrcLGOg*xeo)3^my&-(YPyWKpm|Q1#p8CB% z6q^oI@;X2? zbz;YRZSYlHDBl0a&U(NsZw&5|xue>YaM?>Kvgd&bJl1%g&2&z)UnieQ|KtHHsVKy%>Rbk&QnBT*Oi( z)f^yWlZ?tS@KACCZ(s^D+>576)!057)kVKW5ADnr3EpbEUWv=}zLSzppr-{mT>azC zg%Kp-_5#=dtDUZUxP8o!UrQYTvHRlqdwS4^YqZ{{^@pM5bdgfE*S)g_0umKjc%sw6 zOx+GKaGCFG(Mtt#sg;{Im-|yks%`Fn%v>ixjW!%%MZLl>v(UGv(@4mLcPDRa(e z`?=1)|Euf#$4e7e_si*)v>8{&vr6kWSm;UG0P8SMqrsZhc1=)bQp)Fg*=3pRo=?9Q zWVYN~N3UKhnZjvfo!FMfx}9khaqC>YG>2f&(?6t}7nkUJ`K}2US~g|K5J?kcvb1NDv#}0MDW#!v zY5$Bs;U@0j#r{tA`@sgAVA2}R$42vN!R~yJ+9OvY3iUAc6)Eq<&T+Eeq(-YNi;RlL z3*t9fndZA#yWSa1HMy81VY_)X^ks1^Eq<3L&6bf((E|X;=dyd$VG6?u41BqNPQ!a7 z$NyMQ7sZ$))YSe;qU31V5Hs&2(oh$>7J7+%q zOlIrnx4A(9kJi7ydbd8kd18~&a^cW5wfs5tm+?@H@TYb`}vb4Doh^X->Z3!8+#ZDedmKTqKFt?O?{QkM!|;+n3E)xiX z>4~;KoXeCXi_82oQUfX~Gh1LXbPa5{8RwF10I-QALRfnmhg`#{8USExzv8w#UlrEe z@p!cuVxZ=}%fYm7-;GEeqNE9;f(uXQbH4<=(K}>gdQ@f`ZWOTJlC-${!ojiRN4P?VE4RnC>n6v?Kg20Yy|QF(XaWzF%i=v2@RDQbdSi3u zY7wO@(3Sn;$abkmOHEVe>f@)80M}-t7$;ye4j+wM5hz?|56Jk1`Y{7-S7N*!KgZ$# zwXA<`9v(nfhweM;>tF(AG?Z=tS`rs+0&wPRME8WKyu#m{q7o4SH~zz67k z;)P1iZZ}s^4U9x6ObfH#k9SRZSvDepN8HI?V&f2k$z!ks^L@DPk{F(XT&ZJ=9M1&i z{r1I}fC@?l3HmZ>n6J63-s3wZGTRq;aIeC;8Gp4NOaecILd-kYZfD?N0dHJ#TlyhC zw9W~|@XiI+>eZRegsdo?j?bf0^abuuRC!xav1U{CBFeqhvA2*$m^hdk?Siz{D4aI% zS6>Q3P@PEM1S(Gzb%v{O<+mO?e=kS}Fb=BZXiDppJ)7sxYGXIX*4Kvf{}~q4jeL$n zeQ_GAVbjLG*LeJQkQ+@5!{tE6HIM;Jre;>KO%~oe{SI-%XsEHeLCkvfqY61#qpwNw zCEzyjc17+NfKY*O>~g)m5VHMkgxpUyDiCIj7W5!;5lX})@0=~%0*;DERwE502y@1Z zd&Tk^hsU`24s5fWG-jE;I?q+By{rQFmMlx&A|`s`5&~ND-RYfE{(8|$8L{srOBC+h z8OsYV#_Q4Zm5p|9xy7ZiM{kOBZ2E}*DJkNK23Zd&Rdk31DNvu?2-PGOn}*3K^24T2 z-a}H@I?bVeVT)&U6{z&fD-TQ?rSjFUvDNp@Q^))~;%BD7>Vm2eAz1=Fju4m{PzIncEZlI zM^upXOU;oiL7WKu39-X#6K5V^uKLygg4#n%&x$m|bsVq%DI$iJiQp94d zjOd}9GsjE}d{(1ovVts@+)5?vqMjs(WQ+6B;jp*36TXQNf%HgbRAL8!kyp*V(~rt| zBJ~4y5e%pdsK>BCjAI0l#XiHHt5mQ!wiu~0+;kq9a<9Fe_sSFa6PbVD9;*^6jA_=O zC^KSbYv-KmaNVr71%enMv#W*#&w8NW5wO?m$(%?tdQapOnEgQC&Nlmlol=lScdrmL zXWG3yWNPiYNeirhgkm4*5sr=Hqdx_i2^nA+PfaXsguD#(7M=t*B1Ws(U6?aEltp9* zh#+l&8$$Q~SP0pJuB0q-riY`NSeF_v<^;bY^fgMtBWfnuo*t z<%e(jGPl7yLQiP7=oX~ueY@@a5M;~dZDQDmo1%LuwO@n?4Vr<3&So>-YLo0pq1s4tEAx4 zV|SZhI#U7Idw;&BFkN4S%`e$sho)yOydWhwvW8((+n_4KRg=!=eu?8ImDy^Bcs!qS z$^~-e|8;=`@|n$e1iip6PATd88t1|Bk>PJxru1k?AKme@AqI|#t~iRrJ6o6f(x{WP2H6pQkhVa66& zYoHvB_h4Lq750mT|MCUcU8H90ti{Rr+X3 zyIoTEBE#O76B5qSjG7&IH`RAS+qI3^M{5s+NOC^FFyvJsZ`$FwEt{!+N02c-1G2oW ztblNqmRdt~+9KL)Lz=wIm4`q~W%%}jA5ZMa5!!W2#H#?;ZKot^jr(OA>>SW{r^nOH z5a&dNMuV-3D5LO?Nw|SnBMswu;^ff>lDje$p0!4JoD-)hAi0K$Y>o$5D zSc_n`+V+VVsg@-h<~EMsRnrorW{6BFHL7*tvfL)(JjpZ-(2xt9A_F@wM+r#m3uOz2Y51-L8|cUk?;xUYs?g6FI`G@OXaWQ(b!}3o_M64>w)00 z!)8wK1$fcmI|&=Ar6*YfSH+pvw339Hi7CjI-l^${s++C1POM`ySP-y-+z2J`jHRVV zsxUst=a3JJ1Vr}HGIyMXbzpfpi<&$=GxF^bb zRQVq(5b2K>%CLc}+EVzBq2sT4NYGjW=qjx{U~8ZMcBy}>Q5GnV3%JC`2N;X%mltXW zc>+TfpsVP-;Se4x|NC|rU;d7<1G@J9r7>&+p=bN47XJf5XkgAnfCnEcXW0Nq@jou5 zEvT0_24%?i<^LFu1Ru~9y9opi|BU?alWAbMeE|Yb2&Ja*;y`J_^=oyzkbZh-E;2f9 zgRR|td07x>k0uSIBDDDOS!lyLn|3qkOfuYzhprTO3jV%LR?;l|6~jj91@Zsufs!Q$ zelIIh_zDfd5AcczQOPFhmgo*Oh)3X0RvXED*KD%SS^)eaQuEbDMn?;EFC$#QhNK14 z&$@ueq8~`F)eMoV2kMj}KD&85)iR~+&nST>RqLj0oJ7M8f#(N@WKNrmTB}9n-@i(5 zx#|J?&+Tas+L!TXqkh?wWC$V}=>+wP*=EbWb9yq{O(Im6!cyw0GuwHH+1gusjN6Zzi z=hALK=Xi8hrqM9;y)fh5#qL<*H#(J}uhbbd1f15$@svk-aq`uHc)~vOMu~%~KFhRcd_s|Y^o53fkor4B`FBBszXAdb4NH)L80^RAait2Qnj?x>vRXjW7Dfy%~fWPB(q7pC`s<)#?4aY8SFdYdWK7lcC0`HMyr_Rn+B*>=gdu@h5ZKD zaioALkJS}$-Jyz(Cv)~+JkE#FS4WG(KrcZ7cub?RbA)-G?f8$SK?(bwvfysSkGIjocYh9s zflkxta&KZLQ1|9^U1&b}SYS8J!SMQcS!loN7-F^XiLw1gzhokv%Pz+?!(^1|xb;FF zXrUFdnt_E;PJx)ceetOPZk_p9%aC`hW|I^$u4Z)VdXR=BBhqvpm-;{)6Uq@9(z9rz z^Q<3Uz&^DiS$?gFekv3I|J`{uCsF;`^{gjN?1crr>}Btlq(XAlv@sHf%T&Mf`lR(D zlK1g)3YzWJ`)9z`qzdyjow2?G7`j#kVvI6yloqBtr%*DGCE`#sKA1ZnEJeUSW2w;H^bRrs89$2$6BT* zFvU6tgr6j^4ax>#jIpK)6&mn2Gx$8D%hc<(0J~DHy1r!$5N4KA?2q@rt_yrH_0n-& ze?_ZSoySw>T?m3{g=Fum{JRVxBtS~p4E8GLVxyShHU*4MBl1UV%Tb!PU9V>Hbi4dt zK^HPYO4s4^7qUeVxSt;`0JGt{_3AvS9(m`5S~DS%fjTTm0~m1&H}>Jrtj_R@P3r4# z7*o4x*m_YA3R3~dG>7b`X%hr?GD6#-dtK`z^=i@$%yPRXx@!z`l7ed)tIIz%W8!7_ z@;(isLWMzE&d6dl;jQ2C-g2%|P;PE(gS2lKNS*Z`AAV{=d8mi58pC*Z&0u>h1rxgu zWD+_P^s}gR+*2{&WIuAnO+-#92xzUiA21x)iW6~VVOS%xz2d(Fgs7;6Z}ethuy{(P zaT2{?5ZRgM6e{43{PX#LcKM;0U{9F?*|(w4@Jea?R1eklG#>!KPd@Z@S&6$1OUIc6G!9?6)C z?k=?~WYzk&cuKt#M~X(t@8hCrKR}!~VY(bp^C;9wf`U{%h|UdMy+--tI3rlyQd}Ck zwT;m$fbV1Orp2_B>@1M8#}eA%Rn8~$YZb~m48fL@x4wDK3Uw}jlQjh+u%WQ77bv`j zL&i_1KPni>2#{t0N%32SY-0tJtZJnd)rJs@!S!M{J)B+3SGQD<@RF83yofF0Sden^ z0D6)zm&UfJX<@z4KN$z`20H<0x!?{v(%^YKBq#;J@UsI@N*UZxiK83jJXbmKiK**C zf5kd^Tn(`s^hqL$crL@Bt2wog%)qixzk?;g{%-*cL3`Qm0WBGSm@!nF?DI8U3=nQ} zq`YX&h11EtA>qbKnQ+7d>|}1PMV9hqUJZx@X%PBzswoS-dXF&sKY;gsK%Xl~0iz*p zk7FOv8^i?@{2o*@!sCtGi{C%nc}pT%Y%vf`<_t|F+X|#_YCybKMh;A`KM?%2M&+9T zMRw+E@_4+}LT#0joAAL8Gq6ttP-+*&zT%B35u%SRF#*WB?l$CFo}^n0`h0ixXerEB z+-#t2mjAm4KTx=v_KL`14QHK#y6U7@L_9~$E&q{DdH68V;>t!8_#;n`_ecJ`WBm7) zS*fC5z+ARjf3O+>`xY#n2s~?`<(i@te+M}e1?Cjp+p#RoHP3y-0t)~MYmmlMP&l1$ z4YE4@{&cUW=B(V_+mwhNb;AhY-+>g5Doje$A$ihE6)mT4OF+Tr5U?UIc<)r{8ncQE zCp?0AHj*c_G+2@Y5)}q&+Y22C6!(2ak1B4uPBxg!Vo9!>JIEc?*%v`@1l#r@Uz*#; zp3mUJTfsb>G#it#46Af)GEY#-#EbnEumZzi*o>d9=sn;Zx8GY6ytV_1vU8n8Z85s& z)f84YdCrTnD$%+LZrq4o2I@+$c*HG$Wi0K4X)qZOs(&k&QnYia8-|qXT!cQukSKqr zm_%(y20X#Vqau4!l1)eqO@Q!`QC<#>2S9tZ7qunjqZZ(aWKbX=o8Y2QNMaTmr--`- zn%y|%J{MTzJ=j0{m`D3sXGI}ZaTiuUxAN07l)Mx z!xI?dntc{-riGvi#gq{~@f=S#70fTk0Rf@G1{*?|cO67v9nJ4`H-{e7%2h?kofk8} zgf5d{BB6Q;->-VrwEJS{m3hr(egb^W)Gwwy$|+M5#C(ZBFg3cR^0&Z4Z$M?S0*Fw? zaiR~?gD`^Ls2kCWGRO@WSsdxrPQ*L-!-L~q!?C>eFaEMryIg3R9p*oOb2Q)Bc7 z9B?q=ra3G|uKW3krTg%=pWpaNf{LU>C=4Nd*%*TNXCuBQ+tuKX!CE;Dql@;(^Tm21 z`;}Uqtq$XN$SrLDY^qpnXh>l+Z^*$~S3sFFb{xYOrIw=8S4&6jBC;a`EN9Ji$ljQ->2+tqhHec z>DPzzALa1<6=%{F;ksAzvzr`sFeC-x-aGBTHIV%j#PUUY;Ar?MUJv17csyGq-{$!V zaZcST_HRO*An$y`FMK0rT$@BINa`K#k%Y8H(-$wmbTfCMuP*pL5WPhml4<=%T7xUy zC#?byypun|OMqRAHnguCM}hG+^6|(S>oqGm7!dR?!mM%%1-rH?iKP-0#WsJlov5=_ zJ0)L(zxBfHve=FDH>~_5mGBv}C<@4~Vr|nR)|%KPi6ze#H;~V}=IO z*l=(Fc`H5FbdDI(qRNn-xu2lFU3CwfC@=vI1}cVak!i|*nlE$-IMOiC4$@q)K0+9{ z2cS_#y&)L>4q$&iI#eTi8E*iV4wkCbSW>`6VzeIuru}eJd%+CTEuhn>RM$FhH_*>) zu$W~W*do&;;wr(&pr3XoazK;?hpeqxx@g_L`&>NmaC?!jlq;SvATmwXSStP1m_XwF zUBo7SFQEz7p%+Gu02fMCi9!c9v;g2q+mR4y_@R?y8~C7{kckI~>}+GN~i5X`M*H zQlzeL1tU^`P1tZJy0(1)*iklG=JVY-?VPk+^qcRJu%%t2h=B*7nl%vW0P(50&|qVO z$SLm#^gH!bmU(*AvJ1eK$R1XJuH6=p&M3j51+;(5iWmrDIu5Kgj$U$VaTk9gUQu@F<{OfQVyVNZto~M2hW(15(DH=Y=%eHQs>J-%nktD~Q&RwELu4{e> zr3}D;ER+7lsk`L`c>HHt176V!ANfCe@hx$f-cE}FAL+ODBK;AVOjp}$8(Xc}*6&lf zcb=w6K^9)fr+-O9H4gN~hW=Q}=MRmx>y=x0qen+nE5|#d8u^1}g$t*;TM>o2vobVw z`7(*>yX@^OySjFWgy+nQib`;-0YDgzWF-s_2|6QwoN6~_=dM@uR^vBFfiPF$Q)4|W zmY(PSd%h{!38dQ*%GF=nQ#SvF>tgo8vEzwVca4-*xg&pzR#Ud!)woit4CNyTmue(a zps)ea2!}CEO};^7Eb%?CSaRtW$qam5j7ZgsxynvvD%&I;tn$;Pj)-P1QUtelJM?u5 zBRE@iAO7l#Y6L%E94-9h;iK@~^C%#;K~TseHb)|z#;w5X?XH$>jBMsr+d_{q+NHV$ zA;x&6p>6Sbp^VZ2-C3-rQNXoBnNgF*vdm~J+EVq| zWzHa_2;dmcq=NL50F$L73>EAqJxx?AqSl$f)LZ;m&%^vSe5C9Tb$e9yi-zlerQ{W zT^1Tc4XNT7Eq^hwO1s8wzW-784UQ%Ac9_Zk0_ETv7D+WQrHf_KX>Y8TQTVr)h~|a^ zQW1s6^)a^P2r$-U1VF#%c&K%9$!8f_n6F{L_tx9SfjGP=j85Xoi)2_a zoevK0VCKW1=t`?D>q6f~69D@!m7u)(N(s=m8$q4G@eBr8vVU}D7N{2uSjPE~$5pCJ zBpC`u?bf++JO`jJk^yA@5xC>-Hyy1~PGFi{9~eVJ(AM_1Z8eZQH57oczSZPXlfxJH zmy=H1*Gmrhf_^ZJ7IP;+t(-6a_)};ELsbr-20vqfsZii338URmJne@fMKbQA+9{ae z2Fv-k0K&>9eD5d;Oo(x7gIb3FIwIPG%H7)khcP*;N7PLL{s`GcYLx^Vh~cXDeHp!K zr66O=A?tU=Z2#v<>;L6-=oruuljs;JJv@SI$G}`$%$udYqMyhmO;8>tcp&LR$t=sl#T+R&F-$9|9!05&6nPyY{gdaXpnVZDUM^|P-?DR--W(Yi(+ z^9goKU_UR8UaedyH;A$t{UO!5S&G34BS;Gb=m!#O>>M*tuAM;=7}Cttn< zYz(?0iVcNfj^t{MNff1vsX5C-g-%EN8`=-O2@inzIUf)P3A)Y2&5rwTftId)ba(Pb zyWSG8`lYd%L^^?b9B^(sp6>kmC^>>_%An2VNK#7a%JjFAQS4_2Op@2JZMB4wLp0@oL**uc2m#b|mk)YrG|JE>tRx88;I5)WcasmX0L46=cEUdJz z#qDCpelvn|2ymR!T*f?A-@IC|4uLEfK?VV$7fQKsMRBL_pN{Nh3gh?^%cxvnBK@ZE zgNhDqpl2{(&qtpG)^=Kc*}&MB$`Mcl_J9VE`u-t*3(!BP8k7`hAJl-ObR`(=$IS;Y zy$LX`lfp1$>05qtIV?Mb=zYL}6tPmCLqxByNuSW|^Z=1s{}Ye^2m=QIQK1=5WJ<)< zcI`^h7aTZg+9lR8i;;?>lIo8ndO>6`LgG9~v|`L6x;|^2e#$)uOmj^RCNichI*owW zmf@>bjd6q*SkQvk`B2p_P2g(I;6uHong!L_ipPnXeS~uhfNP(AJN}(9{d)k`FXTlL zi<;)}_SqTA8({Rc{7+Ut9Ok@l90@!SH3Dc~kyzC10T&WcRK9{OWI z224Hd7VI~K3AtHc(^6bw^fD`xNq2{X*j!PQ+$of_+TSnb=8@~scY|Bc?ZT?kg4S#8+&12C!_fcFV=!n&S9@e>|c~V1MMI!3Ixf=>pG_|0&f*|@y z&;v=YhY(src?&q5ST}X@!awT1ip9OgaHL?rtgSH~tyW(EDDn_6!MCi1J zmFP6|kACr+VQnl4ld@svNURz52dmbLs^STFx7Nkw)5E=y;20&OHw`3vFxBaT z^3Y0~o5Xs{jlRACGzif^tY}!b-x@FC9A=W$tX+S;wws_xguPF2rAy!kS&?wOP!;jo{B8@+qGn|WvN6PEj(fQu*P(*tSk?zZZ2iEnBqQQ!O~G`zFQ>%*4#!?@@?N^8%ki)4 zsx&10~|$20ovAKDmjG(g2Yf&Hce3ppct*Q$%D!b2`)BQ_8|6vQLXgP6P52e)CuR;6gN@uaAS-0S13#`#ab{{VVW__n9;>!=7__muKO_xfwH zhP2I@_31AOxHX}+BpuG&libX9y7>@GbBAvJgddFFH|q!%8G@z|ORrR57}5KjZrRP1 zy$%4gE1W7hIha3UNN8f%sE$+NL}{$k0;@^ z5YrV4+&(H11X>-)%O0xKOL}t;1 zyv8+T6wYhj9YNM625xvR#X?OB^au>=Fr@j}sj4F>W;`ypUhBO$1?ow1X)I9=`bhSF zjAh7Bxs4LrvX{lMMvz(9RIsRIDpHNcI!j){rq+G`%Q~WiIE9rDB7nbu?6rhqU)*L# zT;2@(q+r5E*?A_zp+g&keo*4!x#B_M1*$dKq~c%f1cb5yKb8@UVyo6=;J7j-L!)cL zBv_&)7N2+adWKnVm{*6ArK;9c{&>iVL3ztV=KF$5Mns$Y@n+K+7Ds{wdHUw<1aNBC z(92CRjbOf+?-)!e8c_qjR->+AG~0QM~((&k_1#j z`0?yff4@r+`SObzy)_(`M~(W&`M2I48=MFmK-4kr1>9^T!>vQ4Lf25-RQYc;eyCBT zVv~|Kd4=>r&uyDx;CZK!T=vYG)QWC_$~ztq6$=4oOPEKwSYFW=dK^A%X;|#7k*7l6 zG;7S(QTOWqUT+TscW`REU1t6LE+_~p20pkdI;O%5MZ^{~4>>4^!x}0GxiJtS%xWWO zn;yb{gtxL-CgV)zso+A{V}R}c#$?84&y-VkNil~_I$cb^#3J+h7&PR55=R==L4{ZY zNpOp~!6(C^H=x<~<*2Oqne5xJW4-ThfG6AX0J)P=iIfT@D*0v${V`mKvFXphEhNg8 zPiX%T>re<;t-VFavec`PKBNM&O~ZO%)|{Y;WVib$bMgzl_OKlM)ENk2D$bmU9z~Ii ztcN=i8l6n9$0V5iX5>YcP%yjT577ZG>0IFrU5}%;ma5@jS+;P++0V~_;`h-|9(gbb zP&A*22*T{o6R{%nF}{sC`UcquR`A`7 z-Xk>!kV+?sM(hCgkyoj4+fIr!9v#0FD1sN>jo%cooBsqBJVg4y}%_Sj3*X zsr0LI7o+PIbl5KCN(*gPq%d58@K^=Do3&>=rTlswUxG)e=NK?v9XFrw-4VEkafmRW zZ$tNmn;jt4lTj3ql0Bo~!TA_yH@b;0RQRwy*R}1qOQA#x`y+t%Vz(Fd)rPcxFwaTL zv^R}e+F7iZkM*Z955WLTGk8XhaZ1yl=>oE0-)WP#PS1OtqYBV5{C9~s)`0xmhY(G= zPe3#okMPaCkVFb7e^xNb^0!IExM`#52Ra&+=?C5O!iJCAQBz;VY;HZcuEt2NekPtJ zk@XDL2VM)J z$c!CIsD->$`=*xRA9GevpP!xZ^L z<(}JxPB`h=wsNMfLuX_-tJxa)U%rQkYSg-^b?P?U*B(rH7C3k*SE zh7T|Qrz0ccClHCL6HGE~ZT9*eW?{SgauIZB4+(hAaKH9f@!Pss*Ry^!b`Hahd*b;n zwe~VDEitCp^oi^t!%O3sQ>RBRkx|nmq!_vF7~wTq0_clqjvI^rAa(w+BIx#jS%j)W zyy=&P-5ZD^ON&O?QcLRdaQC~uKScT#)MSh7Y3S>#Ed7M!08qKD(L@rP8FQndksjV_ z5fAu_B@`*-qj$qOQYXLH58)c~3)vID{wlC&FIJ?}+9X}Is^uEYGmI;2lk!f~aEP4} zO-F*Qa|f~9|AEMw9R0m-;`7l)OdaH)M`;#VH+82Tw&LbMlhqTqz$yL9AmX2^s~x*K z(Z|b8QuSr^CRgTY&3t`XpxU306c2wJE*(anM)5^6ZA?B9WR=#Prgny&Y$mRe>b+u(7ar%@)pmWox-aNS{2t6 z8bPyUbAoy35z=gQyL^0iTGBD9R5cm2E;z@h>z}sP46=U$;5qP3gXx6u7DWaAOep`H zU|@SMc_^<^C~O&C&yh+{GY>i!*aO_d(NzYR9G(dD43%W@nlXb^`~0FLlIVJbm+0xIbo8tAGm+4rAQ6AG;R=?DU$cxsJ8?^VuW!yZcjLv z5nbR_CGp#4u+JvYMeB0dEWUDLI{Z!&VP=hp6ZJsXgF~Q{e{NsXvFFcc$O${y9T;+< zS3Pt)UF;{8#n^ZGtVGL$G^j)wjW(BAX0P&l>@-z@d5dJnBeHB|arbt1slW7wey}yO zOK0=}aM!5$Mu^S!UiMhQ+$pQVizJ!%{I=;-b3`4=)K9mmN zCce60?GVPjfU`0rU4~8H@2WQl%<>xr^&KdPg9Ojj#L}i=?Y?IPeU%$~&Qu)wY z=XgreswK>x&9lRt%4X+Vti7~4^6-KdCF&fCi`J9VsNb#Q4S?he|NW(o+Y)_%r7LU) z%jfhDoKQT!_alic<@8oIhiUTjtSd*~z90OuyHnG5fj9QkLGPH~Y`cowI~NoumyeBdI{b2sx)DtokiC-{?5Z!Y}Mb|{%5-q{Nn z(khj`-a-5U%QhC zQriN#uO)rlin`ToUvXdZExbKS|7u-e^Zb5dRox|%js9S_4dG$g#Q0%B9hcep2BE>@ z9nW}z&T@F`9U4(AD~d+`pvp~8^|oIWKTC1ia_r8lBhwe_aaJ&cyDR!j>yPpr*$->u zT&dwO*T>xG-(J%-68JPkLGkvuy*ll7;b=C)nhd_l6ApHS!Posp(nE%h!yd6d zbhXFdQTFUf@xgHG2WGETZRS&>pji2>^jz{DpEus(Ak@|rNxhk){eqrrqQrJ&+C>_CK{o7d*(sJ3SM+W7eLH8nQ;gg9%%QOlV@&@W*=fu7<|rx6OZ z#JD_Omg!T=xuQ7uw`j(hb*NBh21&YJ3 z69m!E12}LP?P`R$Wke?s*q|_2U#xG#oXeO|=uog?N-&6|{lY-7?qb6AMa|xZ9)v$) zzi!hDbHR;xlm7x;cLc}nmHw`@<}b7u#tO}yyf2@v{M;qT^+aEvku=vq1B5N%0Q>4= zSPJf1t2dMUbllhKwnRtGM=U;;Q9)o&1E`w>4n4Rz5ckF8vHsoA%lELDWN?jx=H}Lf z`y^>*hNRkNO5_*}2*e-HWU$c)I2f{Gs5GEIo|ws|hzTQyb}Ms5ZAdt0ZTB$Y8vMdd z-wYo5;_|X87!gKeA>99h?Q1u@EW6HF^6S%`BUo`Z1D&dHbFnVJxNQN=S0A5`kiDs0 zBiuvG#mAIhwNn&nmeEX4f$4c&z%KEg89^`Xh$$ac>)8Ms(ND-e4JiJb*7iSB=y%^V z>u!}5b9WFoUh|UtH1#y;dQ%o3 z!h6j25g12qM`p@QYYH+ZJp+mONbwtB=2XPh!GGgz@_BHxepQu$el%e9bQ^)!d^3U*<-yJN?B#C`qdMpv;|VtX zKdhR(!^3#qFy$tt?{qr50$RI7!`vCi-!m^)hF13dxHom@arh?GH(YBu|H)*BmRc@p zd-qK!O4P1O71DUnWriR3EOYg*Fw=NZZs&LJ<$cMbH}Q48vAn@P!Od@6Wp~No5~?JV zt9q3*JtyJ2Y{@Q1w>OJXbo{~EzQ$*}dp78ZJ^uw)nu0uoZy!x70!Fs8{&i>7H-;X; zd+o!(N_Z1!Tr~rRfQ-=ii3TV?1%Y>r4XoUf$XuSGZ9~Ov*E;heN(OE_mX0! zWo{btFvdslsx_lvIPzi3Q=qi zlg)uDj|x^zJR^Wxhj;H+$JA_uR8sWx$Zn|1(H3sCog~PqGx+|IjT#MxD=0urMKWW~ zQu=S(OacYsxW%7W@QCR^@B}NVgIt6Kbk#wsMzI=(xx#v;@~&1YfW-gaE?9>k&AtPc zS$u3C5?D2pMwzx#{@U0LxI}qWy4-)rfPX4IV+4P1BvbV(jTrE}DmwZOkD9w+SRA%B zBEaH}C#&?IB(@3_+`D>E-drw%zvvh2ok&Zks+t?G#6vdvpQP}p?hbcLln~Nhp9S^* zh`I*&0HJL{T&Gb@hAyBt(qKRJUDT1=c9D6?dJw9bcsZ&aq`dUW719IDKkMm& z>Gp=>cuZZX<}e^jVXgBZuQz%R11zJl9-pq`cS^?+=*yZk0J9fY!XGkMh_Gb?mvKRx~2u_C+g2BZ1N?-S%KRI6 zUOj<8d>4#To;&z{tmkv<(HPJ60UN%APs>xw{0y_QP$ZM0#F+Vt)}vaR77|F~?rhiFCO*()n+q~(d%pcQoZIm4g;pr-b%pq z_NAsRs?_vr$V(t}z((XlZpr(!=uu$mK1V64NN)Pjm6YB7Ahy ztS_rNZf$e0`yDA@tm*xVo@bshDe|=~V(wlbWMmRS&z_nPHTyF)8c$Pk(~ZQlM=ol@-Mq4;gPNHwqJ7-6;ArX7mQoWZax@!h4)Vpa-dPm)Fu za3;RPj(j6cN{l(qrSlmy$3Pt0a_)W@hYE&-6KuxuPx14Vl!i{QA@vR=CcWpW8)R{| z7;b2PO1!_lV)^=OUjAniA;K?aTJExsBc;4oBW%WpXsg5A;;^{OHbPRPYPDj?V$#oV zf&4m8Jq+jE!p|_z=ImSDpsH#y&F^tdI^2|-inx5axR$3>D+*!n*rEuCk)M#)?E|nu z)0Mnbtu~P*-S{G9g>cAmJ@LbQBcvQ6V9XkilOOPVnwM57Q6n`TijP5}Vjx+EuD8Bh zWsuIT`a9w9$g`+W@C@VQx!<`Q(oA#O#2mLX#tJ_%;Z)eKdYNBr61o?vGD{{JTdxv5 z<~tRtzZGy;?0KiY_&>*D)V8SBGc#Nb=5c$0UNzWX_X$I?{#ej`Uz&*KPt za^j_}0MiMzHq`xMKM^^ysa(<;LV`i<9Dj*csS#(uiSE(=NWh|%Aq`R$(v++#J&%z0 zuRcx;32s z9$%IHrkMMPNU~X081W71)Df&$mPiPuVx>VZtW7qD>|Yjr2BN6n*WHZ&MVgxp&;acu z?vco`&{{a#*aU9PlJj6~J-7%EMS*=3M(5?fy1@UgD=-IHWDY83Qvdf3Ap12YI@kyh z-4tph|9j;>-5+&GB=K4R4uwa_?*=EQC``>p$ zk_WMrO(m)F{9j8Mczphm&zz5 zq64l`Mc{LLu{#WCFB)7eJ3*IBsRMaw%>6Cf6M_yfrO0IPszXAiO}{!P5&~PJ`l?x}0)_-BtihjJYp~#f!psuz z2Db$>#ULvDtpx>;gvygj)X;x`qJjMSXj|4blGogm=wt0V@Xu5{zM=7aixS zLs)!?vOMbcAoD@9OM*0$HMJq%BaL`!gUgYIxs!!q4CeOshZw~w%U<4vMt8r%AC5~jjL4pMJW*7BO2_NG*dmA@+$rN67qpq2zS0I$(mRmol#SE|Ek~ZCAld?!Vu&{#t<6_vpK@1{3vK4J5|qSJXIncttg_nOlteQ9Q0tjNh&eo(c>zqCBG=;WcEI3ed?E~cO8 zGkXrzp1mlEDp_t(p0^;L>mLEmgK&>Pjm>dLB(VLIr zhakP5dPmCCMRQRSQH)pYc3GZpJR4r{m*rm;D(W0_WJVEW(r7n1#{tUN*rWXYcwAi{ z#aa~raFb~KG*Qco3$ZIeoM>{_cm+Ec(c#F98Z#xk_)fR6jNF$9^V zqVioi@pE7Me{$HxdY0F}`79Txd{~WsNt>UG#&w+JTq^X#50ue=JYFI&J_;N???&Tq z$SrImKA2V=;;%*G+=MSkvLHhe~m3Mk0RO; z)$x7SGIwp#^e*nuWkpCdS77~HmDj^3i0g6f27xW?ti$^xX=t98#2p!@axY=OHvVUm zbAlqJ^ZMhX}halp*OPuIMmOs^{G^HEOD zao@97Y7n5xk}g^{6HIfu8CX%0UUZ3JgU_!$fjjIliidFF${5+|e8L_0UbX>ajQS6L zq2Po;Um4Y`m%1Vgn0CrlsU)lVG`i2er=IfVVe^pNaSJO);d=NMduY)4ZSf#Iv$5R8 zPB}eKz5NG^sa#2y46ot1pwEZW6xx zJv3IDmgjkUF4#}xxurns-N^`DHQebL5GHwhVT)N)Tqy+ehY79Ev%RX15BT?+lWQhTaQLO&d*s`%NN`W?COL z^y2mEjL!zL`l%r^O`znXAmFg7SX`Q*&7N?0eD_zk6pIY)HJ%r~{Mhu~W18J_yX?JU zkwG5hraML^i)Oz|v_+o&fykYRmukj4rb4)gpJt_Zdesr z%CJD7k#6TlD*GND<(s=k*DIlgMl%zVgTV5@!M1i4i2x4mh@x(F#au7xqM1j&J*VN( z^MppGy}?%3tLO-auKkw+bRr|>qrpNJjr=P?8i8n-I zl~DS%2gBv+`m6qUrPVlJk>bNZML# zJ1W`_`@va;@b$Kd4%>dyzN{iYihz&po^Mx`8wgG)PgbS3K2$nXotz{nZvR;kq&&x_ zWilRX($ewVGqzkocbceo1OZ2bi_YGI%YiqE<=%;IeO|vOntC0!mFEXK5K!IPHkyhM zwlrYBQMLToIbLmF#axESWyGS0ti3xxP*8I^NH`awfRA{VYrXtYU!iKoQb*wL1C?5LoVYW&c2{Bd*jFmIeISRez-R`Of)U*1Mgw zXXZ^9uVDZjX^iJN3xA4P_71~l$^E^y=ni(1m*$|6?UX<%SVmCRE|<#5BMp*S2@b42 zgP0#lAQ9@SYtc*^oBG{Is`%ZR`d~?n>d^Y>(JA=yV4m43B^(oRc`%$NCNh}yd@2<# zmRfhQ-}VvHI3najAO3aoaf|R6Pkn++I@cs$(m2=V3j$599G72U(dQ(OzQ)CcjsQkN zNmVSbLcLC3LGDu>YY^N4v71Y|`9)8@7A2`gce`tinF6U`&+OeiQn*@xbbb6v2$-w6zsfGd^hCJNIzYepx>N9sKKUdb2O*@>H085;Vig+IDwuTl9;VcvjK<2 zy)n_YEa=kpa;e^?h|p2%Yq0YTTDn~qVwX6?R{Kqu#G*^OL>u_Y1C({zK+aR+<&?BA z+Flz#Ho3203ep`yPY2CA57P1Sqxk+v?4&K^Zpsjzwt>E}wVY!UW04(Smkf?4k2M#! zmF80_+o*rGCnw z{a@boCzzD8IR1F&;d_anQ5iU|oB4M}IU$J1x*_s70i*T;rx82Ti*WR1hy=5(vP$OL zKa9sh0Mu}WiR(@Eq1l};9J0~bMy~^iS~d~CO8Fia;7jCnh^T(L4pn5guxzr=7nM@S zPeZ^@K!;o3IwSUCK&h8jDR}$Stx*s!r(1LhyY%ZQ_dARtwG;N3XCB7$`;>`#7p#B7 zmDHmIX8eDH)YKaKA`FLcQ7ZHn$;tb+i!q+2E{!=|0)WcEi6cdGo2^$sHSShq{fq!0DzsN?YyYdq)M{kMVcL)i% z;0G?0G;P@K1cuQt2*GCP>FddlyoqgUF}>CzELDbpSf4{7sEAt)EMH52eyjTYf0F${ zMS78tE=;1)ype7hlOc&Ap$%(5*3uy`VVU3kpYb7<09pnQ;jZuR2mjJXNeq1SVXaKr z{bYz7EhRMnX*B-_HB(^1C}8Qds`H?O!Wp@3ab?jrai&iTJ+`fo7; z>*KwVEi#!5gnDy*CKP<+#41|kiR61AOlY7gno)sWwEAyp5Y3JN!K-$E{&T7VBeVk6 zik&P7CIF?-yml2t_zjMK=r*2Y2e^LVIV_}@KaxE>_~g7V5jHKKq^jdiNigPcqfEp; zjCOH04B)tRPg2J3C31-F`Hg1$5JY^eO+u2uTyYJlz+z#1y2)C~f*?>BV5cVS2MCXA zC9($G=@^M(r5vtxOS<2qwW=I*0J;=yN|XOKP-Q%vn-HR}(dVzZF}+`s?_xgd8ir+p#n%`=(Q-!XzD};a%ye{0Pwq%|5XWI;h#Rw_QB9f69^)*I>g5SV%9s0bv8t34 z$~$rTs=2T;$-5NQzvWNES%_l39`w&^`tK^yAU%b2Udz7G^L}A>!9P`{7z`nR{iAIQHunk$a z<`mz3b ze`-OW5&foEXQC`A5kpc27q2kV;6W zb0!vwo6>{>5Y@@{K&x9549qjS`>)cr>|#?^JsLi3#5~^_2@YsxIx~|m+3k6r#zL)Q z__^fhY8T$sKUioak|J%w>r{Tuqd$W4%%)xQHOE3(dmX1GhD6foH(6kJa#u37T570V zOON^3HI)qV0mJs3WNOc!h1Y7yP!INvME7p=h9T2aP^Jmgbr6e-1H%-e2tY=yE{GFu zb*;w3iBsmqA<!F9e2GCzCxHuFH05y;JmrBXNrRYs$iF(P9eYT1NR?K)>YgEMa#TVH0FC9V8;H4^X?*7De z`qjGqz@=akq&})aH=Z^f8~Nah%c~Qx5g5z>R)~*Cezd<+Lq6ssF}&M75g+dFMGh`7 znbmfBs5_i{x!mgU8vyIsT$Q#rgL|8d@LlA&s=tp}AA*R}zwibnE5O=W3u5$Q^@0sa zDg=|Vj3xZ**(_*CZw;<~PiF2r2sh`$N8kGOb39*+zHckqPV?-OS|zj>Foi z{$MOmrhg_6CEtn;W?5q;MSI;;XnqCGTZ;2e^1+MyyYC@TN48z5#CbBeNDhamq)DHf zqE&QwBVn~-1imBLo+EDBPXJnBw%p*JtRGp|e|J1H3D6l*zz`5e-1VD600vJ4DlFIv zV-_m&f>7hqpLZpLRo*e@LoBnJ&U-gS3)NCGp6eq{MVYk|#IS1G&g9J5cvB=qJr+ua zk`!MdO4S3`m(gpfWSog|vHP|A18vJZ)2$}!pyI^Dz@sGn3QrA9G*c6_wA!c!Ayb)w zX*u?@r!Wkj;2N+=#XHlhS|DR==GtH2Onqe2QZr=v6-4Ys<8ghcARO5K{+ns*%|;lV zK~zzJ9Ucp(soAtufa~tqSIB`Kd0Sok$c1i%{>;KRLeBF<(uxvaV6~z;!0o|uEUAAo z{@qUNrCSvLg4bIcoi?qEaOZ?meF-K?sWM5@D*Z#TN9WpHzrCNRYXqF)Qy>6{ z;*R07ZNCF`z+fA7e1SfXsax?oXNIoEULj^D=DAq`xsJB1Kmb{5 z@zOj1LgfMuA`UPs(X?P#A!Bm69451)3|l*x8f6MI8Q>Htz8oakFBTqH-d<379fi%8mx5@!g(;7RKJh$gLa?nhNGr$m^N?$&~y z(v)tx7**9B^hh;G)$v(pIg4X^MRQ=jzyw^bCHEVXd@nb_QAvfCL4?bEvdp?nndiAF(09i3h02+jhMv#(C1N=d0Iai`^ z>Gf)Yg2yQlrX%-Cyj)` zI(;FSyYysf8{18!!_QnFbyVf?Es?@+gCL2b!tIgww$4B@r!j&_Spp9|!bL3`iod2Z zL+E7xOR#2XjZ8W?9!({1sDM3;O-nJ`sVfh@X$gCD@x{DS!>s@$$iw}(aW_8uqGHD| zQ<0#8PMEpJ{`bjh5)f3-h!R+L=uK7V3pd(t1`={Rhy-M|IPJxrqjtFQ-5s*kmIDhA z#CA^@t8Y*jfEy-TApi#n-0%r|CeZl=dji^4bilDUT;Wrt4{rSq-3@S!+snU#s@6>! z*pa*l zSY!7r>>X!`HY4akU@Vs+Z^SfLC_&TT67ZTTb zoQO*IGI%-AatQ9Ew-(x{>Fev4ahi_}P{Hc0FE{PU=Y{VuXbbcDo`>|e{>1dMi>rFE zJs8(dw@IT^7_HU%Nf}ZpaXbGZrd7)-ae8nMZOSj5f+isKQ9_8P*Hm%QzR}b$TcE;1 zHi*Tg*P^kHQLc}1f|FlcWBme4*7-bOW`Bm>34}3$93Hs}&tB{MhdGSsBec3!!@y@sEjE z@B)%82$VJguz=NKhGzRCoOP?^e3^yJ#E^bfel!$f0~ItwaD&^~w~+~=u&;N!wzRpQ zcb@j=AU(6=RIHs6D>10Hpqujtuf7-Dj>j!8Y1QPKnA7#I?3~@CxYfe6Wl5nmv0jzn zA!nmMzx^XI`V@Pd?vd3?%Wp3x+BOt?*5M3|%&|@oCgV7e0F?y$d5(`JX<#WdAV)1I z4>xx$P+6tiX@66xVD7o6r-vB`&}l37etM)UrmON5TAPAPQf*)Xo1F;Xp^N%ZVuF;Mnt`sVFVq`vCo*?e_kSX7<^jmfCdy{RXoxlBVQ{0uhF2Wt%62Jlu+YP z__W4ngUV~t$iLwlSOm`ehd+R*$b>suoUyLg&`8w#`V2t&rdn2r5EW<$MjsWR3bB59 zd+gCh;uSF?(6&ZRug&S zv5UC})8{RIyD#gMk{ves>_IJAI$(K)_!37e0d5VVC!+ii75G6P&laX*_8A7mBt4G~w8{UTo!c zGhz}yOG%!+=7na7NmRTMQ&KJI>DhALI>R66Qg^o6&^i3p7Ud|fN%VW$N1}YqyC$2G^PbsDwksp7G zwbVf()c|ZwxZqdW?1a@;aqJ6hBvQbqfh;1DSq0ad*9oXc+n1NL4vHS@Y)^G{sfj`` z;6EwWcww{Ds8n58KG78I&@>mODH6PqN>+5S2j~874KWSrFVqH9g|&^im)!wALE`s!>GZ`({`Gf}64lGa`DmZNV;PvWr?Y5CCs9A4Xa4Q>6E>rQ&>wR|Gsv6x zd#M4~k-Ad@OavNU)w>Ph@8YnE{f00UIb2|cZK_`9Vx@?TfL%)I2si&|Y%|OH+!&Xk z<^B6D9>&_!-x~R%0BJ%&zPR2&S2MPN)i>hB%sF58Hf{>%T&ZTkH}(#e6mU;#O|Uj* z#b({1{`j(Q%5|w4y{;`{9ZE)er-}TVecCyQR28(spgfP)(h$A*89404GCk+tkzc2w zWSo=v;YDKv%a%*pWh#ZOXKp^KruTCy^4C`$-x_ValXPGV3gU zmwTXv=eyn?e;&+aF3~Y=7Ard;^w}*P+6hslSfgbXiwiDeE(x2NRTS} zO%HlFf6Sy_YZ0H{-W64`6fjGG^EBZw$f9GXwBf?uvYL(^UQYK%B~46x7*r`M+cNtp zKiW@yo_{&hrPQ^2#E7e~|MgL1K@UbvIm-XzLNOotf@SOFNv+*MRibinZD?cY2c?&o zcI+@Fnr>KVgyx&*!?MI`TxWbXabW$%@d1>caG%#>W6grIT3dssw3ubNYUBfXT-&1t zsPnUqpOw}oM^=C5RdEs26F7sJsuW0;v755fDs#q}=1)_|j7ltllQNf*`zUP4$L&ig zf9GmEP$B=KNCbtaalH!mISLV(dYJN**FCQs^g$YZIc&YB@E>ok4~%B63xkdZa?;@0 zl~0dFKcj}ml;HG1V}E*(({4gAI1|dZY#fVmNAazx5cPAE>>PR0a8X|O_TD!cCmXJR zBxvTe=dS-6)sbKNv!`5%F~`Tl6fO3L%%iXP5@k){>zDJ?70!34XPowo0(%iNB@Y!) z%@-eE&$q**I|eGbeZ6S0pP|rmgaJ*}q$Hg`zt4;}#$v)Z%Mz)k zBu6Z8#T(@`*ma2U=hC6)q_;|+W!na|_m?w|Tq z@1)TNoD45X-p>ydk6rd50L!78?-}BC(uz7Q>5IeQsJq1|TTf&Oo`X!B!V(L$5N@zy z@StXDgHgr>15NP_OrFS@<2mg_W0cs>0n$US7-NSEnftlBP7nE>_b|J{-8!#~pM!LL z>8p|7xpp(Od$)%l>1I763AwfOKc)M@!E#uuF$3}Z?NOVjhkjVd0qicwC z(J0{~QafB;wyb!ryI@S^H3ymo~ z+oq+b9vgAvEzzf(G=;$tjZEN(hB~p2Ov`}_NX#V-A3nt)-+uxO5CkJjwuPNYf3c9g7-#kPB$`Pw4OJ2T=PW2E`wJ^@`uCqp*pwyhChK~ zt<{i8Gdnn{LlPv2QUOIk0w}NPIRn7~0t2=hQVOuisAy<_u)Gz$(kWJ9OmLZ~%C6vm zEaMGCJ|Nai8o*s`TZ42AQ17Y32EKSr$5T@)=iZFMIrE!YNv=y(Hpw2VEisDkzT-p2 z3W|u#Lc4c6`pY>0gz&01eoQGy}cqQ?jD68%kP<)nXDEN=Bjks z_sSiRVh%eactzm+1OOHK->}pC03=^L2q}RGJafU3x)#JM%-}$3Jp@^;vXkGgj8*;J zL1@bD!3Q>$EI+$=K)zcozAHfXtVRRqo!@Ffqk9n8i?#uIo5-YrL-in?88J8)r|wuKaga>p|Bi+wept=Uihxqd* zs|8kUIt)^i>~wJQh3cM@T5-VVV7lq=%JdLL!WMX9Fn$GmFBz9q56n|ItA`@tJXvzfbGAp zH&GqSg%W3%oMU`JYIA5rOPu8x$QIg-4x$hp7Z8plM!x2e3d3QXnf#!KVU3&(M_N(U z)r5?Qf})H>TL-2C6FeG`lKJLmPtPq7VxS~{gpq(Of02z0W(JOOg4IfkI^^tV@km02 zAx9wnOz3*iiwj9bD*XL1Uq;~s#8i~WCY7pJi?!CzW-4Lpn4Lr7l4zEGfJBCb-lV8g zD`%tyw10R1=r1{#G@5nkgbhv_RWIf72kFG5XA}zUFpAL#7MQaSh0e{qx+W)|@_qQ6 zenlhkWu2h=Adq~pqgN>@WKIM}{nD%&{POB)Up2SNvn+&qI9 z?XJGthfXS??a2M_Q?(O>$@F5CA**9fNS5}-Gr=XW7w&qR!EE&8nf+i=8WFF^(_PM4 z`Rx|;OK6@^{*g_81N+zlMrj-v2lzUL$n9Ec9=MDe6cW78b7+<*FGHNyj**DhJAq&m zP|&%6R4(j$N@WyG9DnTYa0ZiBtoKX!L%&! zbZd4#$R`oViHeB8zV`(OR{NFic0NKDj}B5q-U-E015!i?yZ0VZuM@W{Ur<5PFDa&_7(ft z43Ub)Oi&f_sx}3IpYy9G;+N(Pq8-#XATv4+I5Y|3Esb_X+to;duG>ITPu@!c=k!jv zq9*n%Tbe46tf9R4?%Nvy%YOeDu^J%UgS19`$aoXE)vvbZJG-pL7->mQzCD#EJ><;-h#bY%PtI3`9OQR~KaT~W zvbF6|x*4G`(DeiZyh|A2juF(d0wrG9c?iJbH4u?#+8Fp~cHNw9Zi6`ISQt2@!eCSc zEvNuz2m=N}`e^v|Xga_LsQkNrZA}k*0?G#c=CEUm$FT3kEW?XDwT9=J`b)*#U0qus z#8hr6&${mIN2gQ~M|+8B`?+@#)eM?T@z<831*KdyH(cV}0(UXl(_WI?Lv{@KK|8{^ z)1IH57U6roZ4%~Hx#UclquxZa5{C8LA1%K9YGPb-(?I?DbdkRNmxJkenWYjLwrW3Bf7xmtX(V|8ZhQ zu!v-`>~Ye%`=-0gSu5K?SzEx&OIsr4`@2jTuOV3P2G)&p`nS}$dcKz<>+KE;R z&hDW})7!M_l3x$x`3a0IlBtI6+Iv2WS68JiWwunfu5vo7J3ikRl2V=Arc=_oDkv3` z*BLcAsU@a*=V{AbY^K8hwe}c#Pe1G7$IN=0;B6ArG4zd`SFD+eUfjF5{E9S&`Fhuf zKh6&(u}`VlU1h5|@-?SIM|@uQ4WX6DmQeSO>ro0I$*I-?ZEWbKRsd3|GQ()=ev z(n_0~En-;7AR@c<-L5a@G`{D@-A=MFHZCep+L|S@*KYAtSH~(5gl8eGY}lBd63w;w zAUC_!Q6XTS&-e{tiUB95{iX|lxxtE{VxR-_L^mrQmgBSRD4Xk5orB@vykddQvxVBv z#cuBI+&%Y|6Of!f%%zRDXQ+>yCZ=ZFrpBlJeiV)--nXmX$TlT!f7GvdiRa6vFz9Os zg$5{e`Xv*&i+kB_HO=+e-xe2rN_53Ob~iqW$lu+7o9W*%MS@VPZUqbqky zvxJ{1=c!=7J8Z0S2(=6e%oJQ%OI2O1SC=5~I$@B&#Qk$&NH`J0Pk@c>Ucj7A`&QkF zA4xsYH9w&g%bHa<4JL^vYPV8;M%s-tt@#~%WX5=_D4lsL^oZ_P73RWb&bhr^OE=)U zD(A7WpPVuPYwn0rtc4l|q0U7#dsvkMN+#ne1e_D?tnfi39UuLn*c7gp zF@vETbi6K2SU#!5YH?E;p zWJFxcEpqbr#Qdrc)|K6(L6u_tRA&5bKU z(EMO#pbYK}!w#TDye2h*yZ;0!-N9NmB$48 zn3R`;)7z^tRcp$8ds*)2pc=*+t@iGOhbf@e?Act^4W$iF>raGTKa!(J5(LW2Uqj{q zyt5A49e@2nTR)cmAtW&NuwpY!XIVE=6c@~^(TVQ9TVL`InI`Jy z%XAne#0(ibKkryFwy0V%_8BsdigN|ksoDJQ<~ke3W`M6L;g7`E7}mIux8*^Aud%+M zs%0Y2a+00g9wFCpwUruKg@=v0%D&+aCCPfoCKumM3(1rivyc_t-6mg|mzQ2R$2RIL zzbJhtqs7_Is9quzy{z-6_9mf>oT!q;;pv7Wh20&geYHd?Eh6U2X9Unj+t>*f!5oP8 z>F6AU)BQA%TM4wRL7wr+o-Lm8;I`hwsO^O{#8#V*Cko$PO9o#*YRlR;6i})oOd2pA zPx_{tidY@Hu6W3QpZ!irU#oS7;o6m_I;wFVi^I~T@C{il%C4_QDPIN;R81v`AAXrO zX3;i^BJ)!&H!-@W^A|mEkUv zwU0}5P3mO`>1zwI%RvrMFIb6pJQJK6*+cDYw~y;VhB0o4#z|$Uop`xZlQ#Em0Nr43 z-{t7U9=nDdU7ahoFVUsd$B@Cj8I3=k)%Lz7D1~T)38(=A#_w z`fxVlkw%@>MqU~W@}1L^rY{+H@<@=rRnCw30~sxLaaFT>|WVso>i+tV4R&9OohW67T`=g5+*W$ z&Hks>1JgRB1M9OJfX~e2;*l>K7)aRhdLIzNZ|@yxON}d$hGMk8$J5h;|99m_NN4#M zKj->&KxEz^6-L?q|1tK~VO4eA`Y<3Oh$xMOG}0g#bcb|FH_{>@jWh}dC=Jp`2uOD~ zk^+JP64HoBcf)TieBX1<_uqH9FQ3QF-ix{BnsdxC?s1QMv_dZHSiSV8?x3PCJ6?aP z*o%p2=*EakM#cin6<4=w7X9adPI7Ogiw)+P+brb> zX#nj)q*pkGNVZ88>mKNNA-N)E{i>oGs*`o!^GC(icymJa0q7TIy#_v~-yz8Ntp&%puFDT)iit>~zxRO@)sFq)lp-c*){9LZ|DhY*P&eQF!EGh> z1YV9`mu5R~IMZA$)vY^MrON=a8G;2D)p9=t;%a1qPx&8nqIwA#$uU*_Aqar-& zz4Q6&kBOy*^O-A4yWOmI(l5Td5TOADCK7_p+lQNbz<2FI)M^nZvM$R!RG~0c$m|RB zq|25od;D35enSU@4CRc6APypo?4pjE1&MC;!7%W|8D*=`8OW|a&^O4{$hG)`v4BKS zwh+&&Z#@}(K*L&2xRV_mQYVuq> z059(hxdN1hsbA2g!JF$G&d)H>cr0piI&OE1!eNDz9^v-~b6Q1-(2!57`-!Hb*E2Pl zrcq2b2#}}o!}QxjNYjU>G#}-1-u2Us2>@*Hc^eu8Tr@I48ase8LMLbA39a_>uD=D!c-6CX>MB%PPZQxH zOgf2a&{d%Wc!#*ELwp8Q|FTO6>6}b~B^jk=kfX+M_&2vuef&;A+KoK&7a9{&Q%1X& zwYrhA0@B<}`>&ero4F=X1Ms9tMpYMFr{;7<1<{l}+#FMgls;luE{SSSZDP7xX&Tg< z^Bn#u3cbL@hiOrARgEVDWTOnqRu@t)c7zb#Q zB3UEbj`sF$z)YfAu#<2X5C+HbP6r}!T>om8AM#=42H>ZT*18qy*Sac(Z6OJc&lIP- ztK(X>z7RYQ0wNH{ZT|N84Reo;>E_QO8e#1s7Ka;Yt3X;|y<+pB)r9zpA3z*T+9)Aj z3(&DDVT-Q$UGVG)`d{nDtp}6A58^wM9u}9Ztz6D|l=Xf97{>dBfWl$=(d1K&VnNUS>@PD5Lt3@#Cp^U|F_1 zP)tzIbVJJ{fBMs=v0RcW>87ENpe_4%ceQegEXvM1sq6$vmhv?~xcNjJ<;v#fCf>m( z6tan1(+Q}Lc)!jQE;9N-TE10!&|%r9dV^Ye7T?*C{%>;Gl(*z3>&7~9aq&doh(uH{ z)e^X(6Z@W8{lOf zKZ{MfeYLW_lm4Z5P4HtNJ5Ig%!ru`8VWi)en{xNK)n^00xHDJ(_#4Wz*a+EBaq$2- z(eOIe59OOJ88pDtjc$wg-a7JH*GKm`+SMX0IL#(?6;d0!#moGNioO$~-i3F<-ibD} z6zo_(-!uW(obOm#@qNQ~n4P$~Zo}(gHMiSK`ZgiMYRY1l;)zBdRiN8imlhY%;TPRT z6~qaYBA78KR#`3@tXc1&VF=wRctZgd;R} zo*p{+T*k}nVd8!vtN?}%mqx! z^-^mLs2$WODWh<>e!gschq{G`P`T@_IPTR=koO_h_N4h^2}#F6&^e8R20&Zn?Je8~ zUAIXlvY;v{m-rLFFY;tOc6qc+^c6~s!WgO=scjNh+Gg)nX-qF|03VV->+YEJ_)WT5 zd zaNS}0FsPNM9WEz7JbHQmEj(eJA2+>pXJ=>8P2HrM3#qlgC2_sGt7-f~gv0SvYE@wo zMVZ~9w1rd2l926slPN7*goCvIWf~@?PSRH#*u-oqSJ$ha%_TaXXm14cvt1*vz`yxu zBk;|`f`hHStu47nBUMwT-dJgvCgqi-SZq(3+1(w3s+*2p6@Bve_jkRu1{g&&eh{wz z8i%%L;JQg-><{!e?Hkn{`$2pGStly-ES`GoZQ8qVZ@S;LkB%L!+8-Wij_ux3pxzDZxUJ$FagC;wP({`cj<9C_G`tJ@s2Z0 zGocOAhtyysQ|(WjTuw(y`^h>!Ra?7=3m@|5i>6ug9)|3=XJ5xwT*kVjS92(?ks$OU zd2&w!wXUkBPH%@4M`nrHAJZI$b-#!Oi6%rQ8xyMO*VFr{BB8SrpE-qndY9GZfq{Vl?c~?tr>!^cGO+oI zF{`CTne~%W4?X#DFOKwwx&Rv;4EzR~#qowPh<39OQF^(Af4t;VCnI#FhjVa>8%sdXx7e!J5Vp?D!)HoC-ZBmVrrE>5^sK1syb5| zMwCCjrExs-ZX3VhSwr6N<7|Oi>NmZ?oG#&z(RgeBI}hLGIEcFmko<=wSAt%1&=|hY zJ5jp)wS(5?A}j6Z2Wb_SP_p}Ssjs16POCt_nihz!5g0gR83InDASJ&5UDE~uuW(Lp z8$*4yySgQUEV-W%O_0(3@u(Oo@wCgwzXX%WPw`9*PLOa1w=L6i%tk!%9e=;NwHfx2 zd##6)ekMg|c43ayXVP$M+`f^|oBPTERjYR&BU2%Ig|D)pV0|0sQL_HAOP(OFlZ>O) zRnG2!`wRQc?-{_2uNnSfJT{IDQGR!tF(|Hg*HLQUW#IF<|$X%V}5&9q!5>TMspY9DG? z`1aL<_^`zza&d9#H6zyj_jZxb<{F}y*fsgn{u(D;o;4WbzZd@{^((J27~$DW<^!=_ zqx(Phw)$C241zk#rRErHmd0kI7p97AC_UtRYThMeZ;;76dx1WY0Qki^ctG#;anxFN z!IpP}_n$JjrrvXYw9E;3Rwyx}Fsme#hrvf-k{O$guDEs`1B&yP+cNDf>Hyrgt084TVX$wY#ri zSYiA?AAJtYvwLpu%WOv`(?0F0;^ld)>eo2Su1QaX7sb9Jk21K%@-W&`a{rF>V@`@_ zpfKeeGk0%R%jZsSzvY`gDh^5%^3;^tZ5Bcey58o@qxHaclJ;z2nOvhIKyYf}^1{F> z>+E?-OKz|yy^iCPVSB}*Fr0lKOM;NmIFZVmB5Oj!b$j0(ukTKYSo6hnR9*LHWT^vx z>w!(he>rO!7FXIGF&7gXZMwh%)gI6Q@{%@YR`x>BPaz z<(>df)$QNCyV@xSMui)?PA3qo5T1vLkIi|`xpXvCW6OLUZI#2Tut-r(%qAuBIWteb zM#`^HLd?O+-@7{<(_Zy%@6zKj!tDmjlhe~Sx;|&ZpqCE^W@on7t6Nmop6W2YD}U;Q z%XG4&dZa<;dNOCVIG{$jM=9d7QT4L@ruCIM=$s=>?Xm+= zyY}^te8A2INpwR6k(DnH31!*ZAu*$fF9IbQ4RW#%D6HD0B_&@zp@UO1WbD1x<)y@8 z?K?su94q%(CmfnY?%YxF!uMt#wGoWj3#KCb@S-$msx?$jL`3A-Fq@tOdsDe7D`}yW z;6ce#E&x7#wvQ|$xXgpQE63_@*pPlDI^BJrr9B)0se<6pwW+MzUE?9aH4Hso!3-MBTBG%0V}@%yUkcvZb(( z){d##8qL@@e|Sai;yW#IdN{AuMEeUE)Cz43hpv| zau4}6%1Qc1<<~w8&zk4kES3(KG8CCG!c>Zx`s+~kUO7zYdKA@ioWV6xXk;X9^>*_W z)lRJ65$9{SVG4ZD(E588K+gJ&|8}!$z|mzco45W zluJd1TJdV({bI2$L@a)y)=gQ;y6XAv=cl73QVk;~ix)H`U{F+-XNitb39D)TYCARh z-tBm0K~8_CZFOtmekCTWh(^n!WOi~MnF9SW?R&umZq1Hqp12G*lvcvP%|(ZI@Vf&RU)obI-Q>{#f=J2dTN4G4sRPB?xEGh448071l zvu!UTEWc#GUqpu2&>P!|MX&qRzU~^&)#5DwtSusQ20%PDsviEI!Tee;e%rSS?2qVW zD}`<(hK18f(=&SxCKMGFUGt#FVIT_%00^YB;nEcbwz3jI9?LY*W>-lptS-7mTDvEj zqZ#2Gv-d&S$q6DvZqJ`GFJF>eAV*&r!fppvLZ?D*_YLD(>Y#wQk znsRv3;Y5X;OWKi5j43`W;?4B1Z?{l1Aqq?f@+!Bmvb zdINhk%dke=^laf7dlJ7}baDDaf$bl>t}t(m)NpSjSiir}Al{E?4OSTls%)eQ0yT!~ zb<*`qQqW`ZTJSrn5gCu=Uv85TpZf2`;EaW09;^U)OzX2&Ve%~MA7E!c>SjRq<}-a6 zPsrGD3%rL145EP}pQ=Vlk$K_e^cSPL5hFXL5c9QKoc=bqewy8s3YI?`7U`?7C+M%yC-Q1lJD8AA^8;rzz%P1*Ey)e6*AtR5ZOg*4!Y~pk2DTQQ~ zl+YuE?dDUN?dDyQ40oBImC{nFRcTVjm^e7)V<$(x8y`c?x3ICit;5`pj!wr%)}mR6 z?{atQ-2GHMgwY!W9vMZv-?MniSCkxA9wJ^`pVTzmSb%d)ADfKu=ANFn#vmqB?ei|x z@*MQ2Tsne=8!~-k&3+5ES(6jV=Cv zWC59I6vDk}G^t4Xci*U{N!8T%Rzy;L6V}cx`x3*a#lPT$Q{eNwZg5>MH8grN{u@{x zel`TDEz4tzv8CX}9=j=45Kwt52ZW=v$_3o3DQ4c?oi3Q~TS&~A$$$B( z7v?!59EE7|Ucj6Q;=WCDphN7Q;m~}7Uv8-p!Mr>>NB?*nf9Ys2ShoB7_HCmEFMQ$% zy|lf2#la8`4ozBDw#ZmRFB)0CDY#UaA0K*^RWF5Ho&+*2b_yt6e#2+Qa*m6A>^0fs zvwC?o^lcNdp2s8I(;r(iz~9qMfAP(fe7FFQX|$$uc~-CNZCl4gf8m3+wNSq*{h589NWV4RPzy zlFT6i2|^4u!vu&uSAN!OZ4qLJFTP@rM2ZjpdKZhqD&D7t)h5(;*AjvTV@9+M+1=gU z@<;2#s}CRvy#@VmbSei3bpZ)Y@Pdxv%q!*>u&%bWpKx8w=3`sLOLM?P!*tto+^38v zG&bqd%6{$aQJo;@zR^U}-Y#}AA?bLjfg=Nbm>m~0qD+lTKtSif)oJ*-=0M9PYiKVl zliW8prPK`XwuL*I;M#4traW5NM$LltVg}r8Vw|W}Z^?3OR;pR$AnfaNJh@-1-2KPdVU8;92h%E7+j zZ>2A7ZR|wld2IDS`~Z3tb<)TA2H&cedrD^aqa*m-4Bu2c$uD&G z9vD>cyJ{aluqle%TM?DNmx&22<9-4~(~FH|D6x9%m~tPR{JtG6qQUag<<{r?kKYMx z^Ea!KdKhAf=?;#{ZSZg2wCY{^NsJ69BM!xYY%t{g6~wAGMPl81@jo%A{;+zVfvl_nE(` zb=OZzOG7`k$VlXUCcYJwoyu0*bu5e7$#{I7QqJ%zQoBWO%meFm3`a-+c{u(%cve#d zNr-OMbDlzmRXL3AFrJ#uA=X%gDZXU$GbBBHjCai^sw=+cN_Yg%y&v*>31NO~ zvAOYgB@&s>Jjqm0Ar6Sm&jd#TKkSQg0hKo6C@T+_GnE^sIPG3xEJ-7|DbpMVGF?9t zP>2jYQ&9IV?omkwg@Zuv!71~{c!m+WtswUWPF8#;t+eZ>%#F}?4AL4dEjrISVdMpJ zepd@~lXd!n(GwFXdxY_`L8Pq|ju{R7&N{nU_*zTj~VOI+AJ!>pk7x zgoH!^a40Yoh4eRq@GlBPEck}1dT+7Kt~Q+e_&Vj5QeNCiAPPzT=w$%`2B6Nq5p{R3 zn(v8K9y9Nvm)Ks6(P|AammZ}Zq<2dd)Toaae7?h!DWRi;JXm<$hW&j1O<*AW?;dTD z%Jz94LA+jae}X_4E=DX9{p9{yHzYwKqqcF7-vlqgH(>7>@n(Hs%_iXc2}o2ce5%jC zdT1U2l5Jzof-4~xiLa(Z#88|$b&`hp$>aG6v`TGq^JUdnuFHV5hQgXD&3`VJAqiVR z&P*G|V@!euRK%#(ebf0x`H_enk)3&+YC=-*&ov^UFe&HqQ&|??KjbghxAyldm;L~s z35nFvZ1^fJV43MPbOjL}XE&Bah}ZpoVWMMTbT`mFM5ig-`_d-c_0`9b|97|`CT0ZB zm}?lC$w&Op=J*1h0{SdboSe0LYedS*9jB|4*{XDq!;0y3Z@E&lKE5uK*C#P+O4XHq z>=wO6PE2f3$_0=tV!H1kZo+DagCNXY1fwz~(Uc2BG>!}1MAnpq^o?JW=%#u<&@_$| zFvZo^(HCeNS{Kiy{up3u&~sZSwzr?`tFZgU0ys+@5TOl9=DV{BGHM@I%0Rfi0JWuR zC1$dQ2FN3tjzOmwVVjM~dV!d+Zv>)VT1@uq4aWt9teOg%1%`CX$)EG041R3xZG_!- zVUcfnXHx=Abxuv}j;XrX4Ob?l0?6Emrp}`bnmRQLlIQaVwS#=PTWm)iW|7N_2F8vc z`>2(G*L@?kj7eX#?j8eAwfg36lu&%&$gc(POdNrx^Je1smA)RYVM`@j#LHI$SLHti zESN2FbUb#RYsc}}UaicOTq;qkcx+B8WWjd&?$;^p?-N<-ORxxfMXR31gURJbFR|!l z*(XrQTC8WJj4&w0s4Z>#@3zqHN0MnpGy3lIO+^)sy5Red@TcF4Zw za)U}(-Huhn{wH1d7xM1jllx{HMauL}zuE8!2SrJ&1`UBuwej7anC)QW28? zDcfRhWHo<~0K>o+rTyx{O9l!nb1obp=eLB|?{XSON`$+aFYM}Vog}AoyX`$iy2=@J zKnqB1nFkVjPh-PNEKV`HMyI9HIZC1n8AI(1qq;S6yP)%E$liE5H4TlJ>)KBm|93TH zE-BS=cjJUjKmF%OrmhF~=2I+nC`>~UmOmuaIsvF^tDU)9LT?kMpQkM`Y%S*y8*5Y{ zd;b1s7jRWG)yn^F^&4f)5C4sGv{`*R@TG$+=W>c{ha#-QEBl9{ZrQ z=EH=&rR=06fKR6X;;B@= zc9Heu&qmz>%vn-=D(A78k53$DMcl z@PTYFbc>7Hys$OeFTg(AsF+<4tc^|46yt?hAx`zmyZ8K%iE2_nK&$hY1bMXm(;p4@ zOO6H^$U|4UeksNsltWJ4bA~tQvDit)smRc*7u_F7;@!zMqAYe@9IOLPF94{O^p&KRJQNF=ckqPRjvwl zoHyxaush^Ts_CFzT_`#_`cDt%m1KD4L|ETimfu=NJ3*1S!%Z}qRFl=R1_$gW`7C+d zgQeTV+KTc~Of&+OcCz|UHy=DcdVe}AuLFb(bgN(tqdz|lA%}1JOn~{8N|}`^pWAPH zNEZ6X%YRacE33ZQp`*0q9)q}Qehlallg#XV5iW?&?}wf&lM4K5fHYzmhf6ciyc~OC zSQ+=<-()SHSzhccRZP$xOjP}qoy~-Wg%uu`TiLTPebrH$gbmu3MaSfilMN}_ive2x zrN2M4+wQs8mOGrr>acAUiEg-EoUn6vehkhtCm#4N#`ThRdbH2>*JM_bmK}W;)i%GS z-SgseeHwq|U6F}YnR=hjTdnA?8Y$5V9#`M`o~cDt9%GIcc?2sY@!#*Y-Tvq1kifyW zN89g%44?WII;e`$yRA)xYu@jEySOG5vCzivk@L*9I#emEZ8L+<7Ha@0~Gdtb(DQWJKU-;mIVsO;* zPj9Lq=a)M^(oO@ZLrYQbT{||J+1=^4aHL4~iDS@f@vindEHUd({$-Z5L)bzx`kgaa zm4GtYaCTvp4s_%1j&-0R*C=`kJ5=7Pm;>2HRZRYJ(JZoGhe}y0?6;VO1A%xRW4%(LXYR@ofOJm6Fc2SW$k2*BI)02=Mr+Mbq!t%y)V7$F8E7S@bAc77G>?j zSDnfA(hHQjVP2t*=I^=*exI>z^^>MMhK_i?d1#dlLmioVEh+iB?F-!JHxV)H_cu0g z9{9VTROX9dE~&cE34d?&J~67D6r4Jrn%h6OU9$Uy|7+e_dLcq2#eHwZM7`j6x$KWm zoV_|nG|OAd@nPwOnp*-=l@>`X`y*^-larGXe(qWC$lgAzuaVv*@G)X2aZ6FH?%2Nd zC0)Tfee30@lT=^wU6y_KIgQP4kE?FSzQl@@yvO?3ar5RqQN4`$$P8@~D$W{Z5uPaX z!3Y9+tC9C+J-3tB>us1u?ElzJ;QsotzGF{y&Z#Xb=;`cva@NTHtLsr(LSs|5{%3XK z{$cia-7e#9ukBW!!)@Pw*EW~KFTH@(<4ZE?D;gck@2XJpWXXGzZ`*x_Z3$s;2lPr?vSy zPlV3*-+!byt5r<4V+yvo5nEIs(Iz3U5zWyH~o(#5dRD-UD>+~q2+?hZBl6yTYU8Qw1my%HQkk+~|* zLYZWU8ydk7LHuML-=Yt{+F^5Q>j1s$WV*pZXpg|4vGNO@7RTJt-0jyE;tyE%Z*t2B zmd#VXk;xcRAFn{vC1bogvvnSG>7&n;=zh(=X zv@3+m$G+LQ zGbagCM(}Q5;tmnv6Gsj#%f9UAp>^EL8{8CHxyfBeo4F%`1(DgIRRux{BPoJIW~T=; zbc(~F$5Y3jmd|&BmyYtsa*m#?ylGD2$BCE2-b?*URr& ziWRqx)g>Z#=d{jDZhAgGd-lsSu0UjyJaVxSSTyN1OftOB2Axlj-oY@8&T8SyLPk6Wz9%C=M{hcthG zv&nj&9?T`%Jt^@y8JtoW@vSdhIx-63(Gl@k;e~-ux_?(W|CrUt(cY?DA8J(c)%jGq z_uB5RX~+3Xx`!|nb`^N*k5&2+*8X}z9=TrjOH~8HvL^>+O2=eBE?Z&`ns4q6-QViV z2p;^6JCXr6y@^c%b5+nk{%JY%ti|kH!c%PMHaq=UqnwbJ;_#RA z`>w=Q`kcbXb*ti}cYhftsv|QBW@h#-IDL=b*aHz@m51r%R7|gCICKI1-o`*zX+^KjXz`A|)N&YKy$--1hWbV}%|Y z{h2!2VGP})=)o40Phw)8#s?0NUbcQ5-h0*BE=kpHs)1eXHk(}Eome2Ob%M8RK2i0o z?~eX`X)|4cEFmfEq2%WWHp-qGaZ-P$LSo!|OKynFSgl&?1L!>HUD$L=8H|B9d~Ms| z0qTv!U_U<;OY$1Bb@o+eVm0F{7#L$NCs3~sIT|&UF%eX}MSLXxwwzROW*!2$4LL zZY@Rv92c|7kVmXoEKA3Y1HVW25JmTL%Fdf)W3(kmXwnPtsOBTWgbh+ z9^$Q|sA=&pmKFsJFOWx~s6-XcW-WS@{gz%w zlFzmEw-daK7sogcs;>L0H^xsSZvKv|UG12u<~|eqK^scJatIBW>MnQ))TkYFVLJt@ z?sIdmVRSN0CYZ*kc*O7HBiM8g`1FoyP*R_1))k?v{wb&g{yVR60N$}5 z`a}SD3zfXRiS+Pm?qmKaFwlEoKl$_rVVW`Y=kEMSoP{*98vLY4ZVe3DYgEGe@egcS zfJYbx03-Rkl*<><@LvSWJtF;mBGdE^liF(nD0JqCNVfBmTCScx5YF;X+%~Cb3aMku zGVqb`8j2C&Ltxs8?%B%gHkp)5`~2a*bT+Qs4+*D077 zm2O(zFSR&-8jK8^;vIl1d}E|D?(mO6$!Y(X87#S58IYM_c_NPVnhuHy?A0x?F6CNhuCNE2yxDe+k7zJ&owMI8z_r6$|NBs#j@>K&SB|wO;hXSUK zkB++iFI}035-nZVsam->=`o9k`1G>Pyoy-eCRkZ;fiOP-yj1xY0!g-g(dhb7O%TjS z-@jX25}dOKybA`ErgU$cx36Bk(ya?pFnj-L<#94Xgf3y3dnNjKK&|eomuGRx1~(xkXN%JJxm(DPmFn+>-Pg z^@q8Iypih#o(^uqn<7iwhES2VJ9<;-dD&a>)JAmNSFY(5eqdH~ToVM?z8V@Dx-R(w zF_YWs8+CI)17J$ID-JP+mkw5DkD7Z%C4CEZFTZc!oWJzj2gMadz9PtN6VN$y^6c8>v)3#oUO!z<0qr7M8balbv*h?;e@1 zo}SB^zM=xUhRx-e$-9<)n6nE|E}?OqQjn=5lqwdACTb1bRNNtpZ&P{pYz@-z(X-(( z{mEwykuj#L-oO5ItmLH_gpBKSBp*yH_e;!j>)FkbeS)3KQdjih!&{HIG3GDbW+#KC zJ5@i%$`*vRnK!;Hybd-?ZbQ|~{PV}^z7G{u3ZsTw)oGQhagyt>&6SU34!?Mp51yS0 zTCe;JwYj$GHZut&+?V2@tvjMxR4_u&u(CPoJ$S%QN5{XOHTu~SH4c^90<;imHjSHiE;W9GR0>d#~3P`gbX!D zIoK1{`$RYjVG}H+>YX2;@5PD8D?XRJ5r`%?0GmFVXgrg#uL~jDi}J&^P`n~YDThQv z74#cWZpRXM2GpAS^zWNy?`ao@8{~sTbOpurV+g;gQL|{8ip-RpKJy~cj@xY%qdsUs zE{oJJz9_+_M7Xfd%fpJ&@5mPV+OB67SETqhn- zTFG7ycnByr$-vDHmwSv>lQs`_;#bY?0|G^f2C;5hGs>lTHr(s#HR4`lt^N zY~$r}1wo_xej#v9WZ-O@|K&Cn4dua~xwSo!+IUd5i^U?i&AV{IXLWJ=H{cZbE)m*s z5%l9=QIlPo?M6CX5Ci;;qEob(Tn6T4?K{55su@hbqk^9<{CE&7w$!^6Xa zY7nIhm~R?L7}O?O_W>&3#DGaHwb2<)_b9Okim)?HT7#sI!`)F$dT>iCK`vbSSm$C6 z3m_L#$eLo%_YS_ZhR&j%ZT$VIeRFfO7xtJm$0B@oy({>)}bgt zL1}+T%P1NVyM%^3^YH5iD{S@nfa3+|??YNzTEv4Wc{0SZG+tS_wVx#7+tB5zErYC{ z0&z$o7C7GKy8%-jONSEs0$AD7NKppS^J@e5S0v;`hj*5bL*1<-^f9 zKp1X?X43UF8mP06betncp!~iH&UPteiF=VCMSWp@J&;3O=FW;BKyFLW`9J9tsBFfZXzc^o|&d^MO~dHROpkc)gGw4o@mTM0>P3E9t(A_wqe{4d05=vlliYB8XX3hh*8ZD5ZC>EBe#elW~OYX z+4RDt8o>Pa>VLDn@IB;ZtO1EKT_Q&Ei@baWIzs5fJpGR@KoJ#!rh!B(VoUu*K_uhD zw`QEayIHVOrhh`lbNc7vt90a>|9#0Y!Z()CJ6jQNb zAfqVde{)61XyBsR8~l5RGk@UAiHS|06cdp1+i6S3;o#!u6Ufi^59j{C^(hiX;ot@t zGX4W5K0#y*4z_^P8yufFy8h?xkW20%KHVvUD9ZnNZwz^F?{Hz|f5wQ2UVv+KEboW% zf8Hy{x>H_clVa5O9%i-=9Vp>!_n-VI+GhGGbb(4CzU{B$6Q@16HmO3>__!X(dPg|5MS$D}?0ce6R8$b7ska3))&xDHJ9icvbf7-yJ4P-Wph>@NtJ^}?YMj;GcKf8_4*b*6 z3flxAWHJYm#SlRpqXY7A9N=Zdq)D~6pwXeAaG1zSim3;8zr-S7v+?_PD}CsHT5T2y zn%3aPCL)`FfpHs=S%z9Uq|3>VmU1}6--L#SqIN=2Toe&6TsNrX#{){C=k!SMfS|{4 z{Fwpw8ex6#L4A31eB#*Vr@d3qfF5l0^#x7sPj7Fdn%98E3OI-8j>iS_A4^~c@x`ki zwV;A&ue#(9BAeZy&Kfnf27Qi^B9g<+1~8&%T0yJhm8`6*0H}WX4$3}r&iqM88O66X z@Ct~;qwYhoShB}&QmD*G(pjaq@CB7l4>+34Az?VXxR~Wi#G$YK;OS3luqTfS0YzmH zetE%$o(@A#_9AiVG;vZvCVQF!J+-ris3{7uyfK_c1rwyW(I!w6=eWOSzy}peNO2yd z)9B95&OTkg&(b=}%ajTASKKSx8ymP$bUUN4TdytrwnMssK~pCy71!Mk8b@?}Za9L{ zIA?t?cBmDsBmSMGnQ3H$CpAI&7d!N2yk|r9x;a=&4xfaC5vgW~F*-PHd5-<%CR$}6 z6wQ6MmGnLU(HV~9K~8#jHX88^Bs8w-(+5H6Wd+nR8e~$pO0}r@+jHgBIpoT)$;5N{ zo_W0}Nph#EyjbvfNb=>iWuPhI{rQ`rgCH#p6sbf)k1n#kre7#$)re9O1SGPJKBrN7 z=w44}Tv7Z(+4JfRYMjF%b^V#JJqRPY$p5lE90e8k>?ifVTxvgtQhfOoVQ;g}FdDT6 zuS3SNre7CN;wEC{+C8S35K}}gh2~%`n)Vio5*c$Y$*=zzNH>QKj?}I!jg{xVeD#Xe zoTNiE_24m=9vsH%}PL|9o_ELQZI0Axf%4KoT@l1ji4;kgKa^{dtD zfnLV}m87b6I86VEAn}2MbgQ3#5vkk0i`MCmk?9POiuD?S9hSD&-h@+s7w8O{U^=-1 zJ@pVoVi(~4KifV{@5AP-Gyby-ZjQ!ou@$@T*-4Ni0{LGAr7g=!mI+8?=%9<%S%YE2 zl~<00o{|qAV&h9tzZD-XF(0Z+)rWGGajW;d7^*}Ul+ft{RN)R%*&Z!!UO=n${v2_G0RVBIfg{HkT^J3s*(~ahbea`FLQ7$I>CiuHb`d zTE8Y>t^HsH+s=Hf%v##%Y@_vthQ+<~TWlA{B@g1pCL~%ZA#Ut0mgp!BCMLAE5IOoo zM-+!za1Dg(V}Z}pwu|Zzgsh4%G&pP?p|n1}FoqbYW}*@ldU}{gZ{NI8?P4mDu>*_G zvTz4qnwski)I8X7UE32wMtA)o7~a+-{Ohmb_e5j<$kTbm5Lh&nIGrnCJxCwzf}=BF z=(&2Il+Q5(;qEl~u;*)f;(iOlv~ov@LUkMZl`E{3 z{*YOeh0;0opi+oSAs;Cgw3k%(jA;VGS0GItoo=iLW`c;v?h)-jMr6XdZ(ghW;GnC&kYiMX-agJl}Xl=N-kx6*AW5?Hu z5Hl1@T?8U!ad%7t2J~^+O~BcbULe&`sdcrD{)MBt*cPx40rI0atoX4`7hsuw66_l- zk=8`u#QG^>A__9VHhA)bq&tkJHwJCl5o&>lSOo?3UEZBDk@GsFmI#kK3a(rrJYbZ9 zhgbfCf63$ekzew%3~%QtHlEQ2V@g0WYIY2j)9R;C;-~@KC-oE+S8#)!5_bBPF2)^> zoDvzO&Bd^`dD&4jPNhB@+1uNf8{-fFb1oN5n-p|RBC7pr1LdvU&v&ei&Oph%B`*Fn@36vG&mlcS)jxVmkE7wf{dTOhW5dvxw6 zJZFmcet`VEeEE`hqKcRL;>VWAGT0tnoIsXAA_{jRVjXbt5!x-H$R(Dj|0sYzmcsy{ z`n*-jx~marj;wo8G;8YVJ6G3XO`C&mPC)AFff}Nt5$4B=>sO)&EeNf@rTRy480cn_ z_eC*BD#YJo?%ILr%$%UYl>oiznh0oX!RP!(C4&E7fJ`6u0PXtBAc{E&ry0vwokuCC zsVPH{*-P}rS|AJ20%-Eb1Y02wW)h>h{KL(zIMvuV_xf+4Uy>JAS(TMV(O< z8EUPb``qj-65Ao3$0fZyXC#XKk*(UQGMxVK2BOL~;|(Fn0)Rn5`@f(5@t$Q9>PxJ! zRlPD7`sPisl$PeYL_g&kOOXR#y7BebmVZM6iY1BzqyX@qa~tkw*C#Uc+LWSOL8xb- z3yFAFE8~^QM|-O_>RAx4clY)rJ6-X#Jo}2q($YfnJm~J*yGF-11=^BFIFCBK^+bs4 zvZ@$SYgy}5{BR5Lg>9dUvGmP9W1TtI1pbjX5dt)BJ-bWzp%~R1kEFh_v5~a=R^iq5 z_2uQ|r~=9ZlkJTeiOub80_}|?Mc`vy=G=hVNF0&F#jkO{QKf$Ah*U!95k3)-IX=&t zlZw~*)MQ+ffzX2Q$@nLA-7;?7@^E6wV2o8(oI&cVZ{nWFa7BdVOG&n7e7h(2Q4!}V z5j!FK?M$_g^qFPZsyZxv=UxrIi#&~DKT!LZ-Sw?}7capL&+tYOi! zui2imC5lalo1UVAK8Ta^4BEOiU$;3-J4aW%gN5sTr9U<`hU#RqmQ)hevyN@S`LOuA zv5L`Hz|Xbn@~?bn*g>zL7`Ve3qjdZ-=36|A2geLvS!n>`AZq(3Vvi{$O#Ek~t?E8t zWig@n)NLAHo4vskb_nKZV0NbGZf zsh+Q^(H+H{epda#FDRNM6-7Dzp6svc4Kx9$T1V9R%ASs@fg{NQoqE;I4YYsby}yXb z>BEH3_zE`C4%l_e5cGXHjO)a?68Z)s4TcPRZ(f*OM=aEXStT%T0Hmfz4gp|84N3yB zU<7QiOb`ZEtgZ(MU`Jr6BLN}l{3!8CJg=oXgP-k!eu@5G^nL9;znd0}rZ|&e0&-G% z{ZKDuK%Tf6Dfj&n~&dcpQs|%)(<^Go?43u)Z?LVlInE|-qg1o zNj;I{oeF>(UHlyW9*h$$P;oc7Wc=XnKlbr|e-I%{t;Jl|m3Q;|g_}4bijcwm_2cMy zicCq7uT$&5A#^*K{ySh8)c%<0h&KeqKp_sVV*g!T4O;T$4TgR0=Kg0!kPs0*xkD!! z$a6ZDc>jWG{O`RoT6ix%J|X%7|Nj5?Ihp(Z&^fL1s+*UR_;aEWfrb-~?6%r3k{H{ejhF-$0K`)8p4{f&jNyiwRN{&zsA z_?VRbO>1Qpmi?3-3(;Emv}e$yuM_Z57N~GkW-_$HIssWaIj~X;zGu_*Srh`U3Qbfi z*n~`BdSUGb?;%{mK6^{ZjPI5>LAY_e-Z-*qs|<~vC)D$*dK~9F@t8rHaAL;kQ4@H_ zJz7TI(HrX;b~&w(n#r3Q4Y>Sbzp82d6xK!t@VNaaCP^30m$FjIPO39S=+)jM>}znl z9ZzbH;axc(WD_v+xBeDGYd*ewoR4?3zs}kI;blDf4N5Om=-U{fQa6EL1xrYm@Wc;Y zvBG|e0|Zjk_aK(IuDe;^KrFfEcRH+Rk5y4+3$5^`f2KG6ITka&VUEq|A-1w_yzXQ9 zq7!5RUL4ha2aRh`pd|ZDz=Xx^>1PP?AV}vi0O`gl7AB!+vo>4qRR&y?5QLq-M8W4zl+iA>NY>*}Z_6~iMLH2>*$?-)N0 zDu84E-$gA$?TvsKDHRrqaBlzSZEAL``BGu=H+(G^H@`!d!FiCe35MO%`vraJKMOGI3KqI+ zbWmOe#H*}kfTPq^S8iFRqMOY1a3;3SJC5r0I<;b7RZb=@XIoD$7!Qa zw^UdS(CXAU=OC6amZ6m~5Zy6CR9DAc1kh3sX#bia@#;FF&p|5aUgUMS5X;vkV!PFj z_7|$i3E2!o83IxFnNN_*>d1tiF z!|4dE%RheZvgdqfctAyJ#``Ad$U0xYKN$(BEqS=@Owa(W*;M%}*OVwjP3K>x=5AuL zGE$g=IQ8*7_8bsqN5RUn$Y^1eW%P5A$yLuu6Y+z0hFuX6N2TAg&n*=0T=IwgB?)Id zE5x>a4xuDU*Ze`A0PBI^pP$9)$bnK&HG4Hq$aC*aS4fTp^&Qt0?Kprr8=jg~bzw7x zpoEZvC-h_L03>eyc48!#AJk`si7MgCume_{3qvNh?&G}h z(Vuifmyvuu#-G25YgJU01pUFz_W%syjCw%5_Q7Qqi$UZ{UI^&q;c%Kzn0AQCJ;5xq z{w|FOr+N=4DZc-D8GUQ9pA(7kDp{~9KDGaO0=^s8Yjnpb(XqpgfIVPsnuEKoR%j^1 z3~g!NKM>`&xGpjXDT5x66)6yTztl-RCN2Y&=zbNA^<<`kC-4QunjeXzc6CDe zA1X_&jN7DUru~Xg{%&(UDr>7TpX60!8Xa<4p6`c2*`&Kh{X&eM;K+k@+8Z*|f#`#d zHYNvyGq$CW>0_4c%>!FE7~XV4d6aRlGlaHK=f0UuYFhddBGjOXS1o*Y6TJR|lwgd&hCMew5%^kxU_av4ak zZ7+rjs|1zMgj$VTcCZLUxkb^{<%cciS5C43L|dqkA}sWT)Z>EvEi-+NC3&8Cn+E(g zK`CP(v<~L$@o3D-0XrLv?e)wG)UibwVaYf z+v;OtOU+d=N@bDLvfp!;-)W4^x9m%X5ZT5a zaV=RAV(MOueTztq)U{?CYqBO%k)>|8WYkQS?8{&Z#U+MhUs4p4C9;g?J>C0zp8L=5 z^?Lk^VdgvYeV=pQ=W`Bhn#-OL=i$f!#5D9%VJGp|rO1Z|zK?}L_Sr1tL)&u^vX2k3 z3(;4@_f&*)fN7hj2~S}^r;_M67%30WSZY(A`7e(g$^q7R_*7a*Z5i*o<{wtm1v;8p`>Y9t}! zQI01&*;V;cs#-Bj6ii1aCbjrIWO)&3jbtY{<&BIi_M{iC;;;DP_sV}vr=rr<2NMHh zbs@{+VgHYf=Dl)HI9PUxQv&L4qFbNe#tF7MYC z1{G(c;hy+Fp#g1em8;-`m+ep004c+}ymDNZtANBlr@Ipf4=q{^POhhZBT~_*CHSms z>F3y9Z#D>#pMbK;UiQ>@7@hu`Z}{C7<22G60*G#LFCvCqL&IN|KN`faR}=Y` z*G9mdVkfeJ7~UVCbqv7bcNM90C_W0GrzD!bBP>ZqC=1R5jPU!VxM2GcC;%VHVu5S! zXODyhmHg+4ff9N~X`;az5uVZl1=>#yh<7|b3I&|v4+s_rD9?daMwu9HFZ!{~{dT7# zyLoG2t#M3Optbi@GS?wS6@(2Qp$KZpmB&&=cX$Ms+MK}x#2LR*1wgC)aW$YJFXcyZ znr%KH5qc^2O6398_;TO-5flF0D|7&eDbd}DJLXmyefzA^%ozH)r()LU0f>x6 zQO+t*p5F89x3A2VD*lqB*r0N0mU~V;+w`7Jl76w#c1N>{@{tJ7awj=zO2@fh7A0=t zaO^V%8u_n%T}A1|@$Cqvkb^FYF)Ah zf;q3cJGJQVStP=Gx!=kBNW%$4c*Z`Z3=DShe&{%BY5sbdoz+oF8@O2FA~&a!r8dfA z0$sz)4ca7h7$fz#5iyf3Jn0gh1O6CxGfaL%L`kU-PYYQ6(v}oM~Df#or^ANAQHHLbh zt>TS&$H4DEs*fFm?Zffey}affGXV?vdJ4Ba#QvNWQ9;*v602`@(f4+BBaAuUFmY>B zak#gt1Q}s|2fd)v0CI0&&M?`30Ojt9Gvg>9&mQrW#IN=`nGRk-Ns1?-A>#L77Wr@J z$}{GAYAW#p;wT~P?o8O~`JWM?7FLM6^_wejbioMCx+xc4!Uav3S`=G*Ia5!vp}kSd z4bEtyptZMhTHQgMT|#9l)VxkGG8nb8I$e}|1g9yxFUEeeCMj@n8xklN zw<_;=%rWMhwUGRB&x9WRD5pfGYOUM)riye5?V}Ndd$>0slaW=|G_1zEz5Wc-;kI8q zfZCps8%{jOGsPGl_p4^nEX$b&tCY)00wVPTj*0J6m$?WA)Y00jGj1`%9W#G>r=;l) zgW(0d2CJ#$zL(6_ail+4F^3pv&xIFWQ4L4MrUmMo%Ij=B%oy;OjaX%~IC{cZOQAlh z?wm(F`%m#S%jhF)ee-pZN33WR%j(I&5j={`i6ryxkRNyEL&! z+o<%+voO2WDq_$Go2$OD(Sx1&oapZ<+K|I0(N1;&bHn!(Av|AnL1>A>@%IfpSK{6-59_jatB z5=KywHyj!QDk`syAon&;(ns=i&qC4O&f_$(V=7Bjmg{d-2&WD(hD-J0**5X+%?4AS z!1}^dAN7K~INn%)aisF-l;&YG!UshwxS|@Ph{w?W;)1RJs_km7ViL<2$&jDZ06>X# z?n)cyF&1r^&ZnE(WT4kahuhn*H_h z=}1GjrG`}-dKhgbcFZZXb2VAF@6|9?RP2__VTi-Z{enOAWm(MoRmNZ?^ovNIF9)P z7Og<_7`%ajtWQ)KjHc3Qc3Gf{PUFEC5@Zr8!cM3H3XzRNT~@KQkXTN>k6>to$#x4Q zqps!Xje4r&Sx9!a4L8xf2mU+s1-j)k&o$(30aVe6GS9UK&%&$ZiaI18I~+2^y3`Cr zFxxODT3JZqHV=lSWYa{XnMz`R1g4G`kSmKbTYs2okPYS%OwaK}C1v(5hQww75r__L zmvLB_b29tP0a2iQ7>=Bo%X7Dvt$|nJ3iQ^8_fej?D$<>nIVg8G8a3JQ^(ndgvtw78 z(RHAqJ4gwI^t@>q~tFHp|IW-W!@;D^MdfD zVWJ5Ll8-NCUSlx?|I-f$1zrpyv6BJj%+d9t%C^;XerA79p=Ow2BFSA$qx9X+TwIm# z?TeMG;NT9P;ky`^PTRK_1z4l8i6NSf8L>^cmBOn%x{lbZIkHZMsRKx!@lN^_KjazI z-V^$y$ej)V9GfC*i+7~}n`8q6ybu+XK}+pRfSKSoVIFa_#(V(%5s`jQPF3USi$i%e-LmOy$;4^hm42Mv+}=$ z@SG=1%XN#-R;N9!K0wwgn^Go$V(ghPiOUQ_d#E;WbXo$cHbTUiA8@NAWpW$k~N?*^&vy_HglP*&c>%c z>2t62%A zXAfR-z~Fi3-S@WgiaF#Bw^-a5NwR0f6KZEN^m2HoO-d!SF67iiPi={e>~H%hFIN+H z40FO|BK85N*?E8hPi1@_zrBgAj20Y6@=#b^xSutCcdFf9svmsB*d^0+EV>mN|D=NN zi^r#hl}`^dyFkmW`dV~tN%vB|h0DWrA^H4IVllMUqN*{{$&2EzV5@UMtOV~72^JH7 z_tx&GVu?nFAQ!keiXT-ThTAvsX2mEb-s%)+&}%;GWpnLTCEF@9p|hYZ{Y7K*?dzHg zT&Ai|GaW9R5E(kMV=ayN&U_zMC|Tx=_y=BJYzv6o^&C~z+~VHJrH$Y>ZlTk>-sReP z3GbI|-C!-TA*U5L3}wuay09~ zq&_mH+28|WKZBFB(8;V@fBQ>C#18N(v4Fc;_ELja%Lu{&uIl!ESI#urs*b^0sPN&a zH#x1(yG-~lNXEj1N)-Q}rYQ%>3d?T#0jIR>9jQHS-1xz_W!y{elN*WljaeS@^>*h@ zJez8F=elexQqFXy%~7@+cCY7!X>u>`x6_x)9M>A{xHJ zWwW1&d&rSvPT~PRnjtk44M1MW3NCJ%1IQprN*%oBa_vnzcfqr;Kx__NTN?W?oQG;G z9MjIE^k&sG8~XV+?^ZlK@F#S1lba$x3k2Le1~%OqiF$)TcZsy%HtGXM*}k&WC|)(n z*}%UHTi!HTFA$3Ye0MvXE~MLOr$_0o_HQ6{GL{UQPEsC}g-aG3Dp3Pp{(w9PgK89o z1+$kZXL8e+w?Ma7J=^a6}Ke)@XCbn403ivRgqq8a;iBQZ`hN5{8N$AJ!s;z7$ zH|@jwq}(`aNjF5SRDb)@u8?t@KciADXPJ>wWf3Q3U*o3pd7`=5DMYQELs3O3g^&ZO zy}ExCsx(9q7J>;zjn5iZEQz+vRSk8jeFpcL1O-(uCk8O#O9)R}U(91#*{)w9D+*sR z&u<}pVq7{Typ<{QUDgZ*DYs|X_~na#Od}%wJv$(YluI$6kJ_qLQ&@~Aj2{C}nX6b2 z>?ehkrqAmKwG2+E(4rGf`%ZfJB-LmS-O{1?RK1m6uXyvqr067)@mCfX*Cn{+y?Kx@ zT7k;)a=$S!$h3QKN#m1ZbjqOnUw=;S4+jbzJiG59^Y=uv=dC{Ev1BVwb3PXd+V__z z?zmH>n;BmGjJL0DG;Yk7q>RK6oZ31%*2_)1KKD~&wmu*yd^Vz9<6UT*G2Hp1fZ2tNd#o`9$jH zRjbmoj|QG|VL70!fl^{8?-DkA{s_9bVA3T17 zEW@3(#FFS5eC&|WhF^3@h% zZ8J-W4AxT<;-}Eea(;X<^^$=WAQlZGhZ0Rj(1#@<`TDcMy@I1|%)AxcC$lH5+GvZMw7c{nJboeIErGN&%;wYC17Tf*bzOr1e zTQri2+Wz`-FjU8>nG1D3jHVNca??pF<7jdxb|n&Qc6{C}z=%sN3ePk8#CLR=a!U(@ zP8R8XF|K>a$bD0`Da;a)`_G^>jq)FHDf1>AXqFf_v)zmK{QrfEHETwDC)VKlny%*mbBBHp>= zvny~V!`2hBr}+JHcr})$x>F)rLwRmHp5I-WXO?~2vFg5oe7JN6&FpS#-K4iZ@M~_o zvnL6uUE#g?GEQwF;gkg-%mmlS2v_may0an3ues3nsztcS|1DTswvK$aO&K-Zyb@+U?MrQ=r&#|7C@gQtPC8X zTTE?R!qY`?s6(NVK=oi^kWV1g8L7V81`%thQ<)HHu=bZp#34RUDz&01^{McQyKV8^ zD7304Z(ILa;R9r}qEfjdulyXLi=@ufEpD%PT?S1k;h14a_q@W9=QS<3ki@DMhMAE{ zy*qUW&(xYAWX(w0FLZ;hIh2~ThCOLJenTs6%#xd?Um`vP@fvc&Kb~)A@*?@3w|J2f zST6*bgrj>*8To39HK!jj`k(ML-F>0JZLnF~G+Ug3rnU%OMB8ElrurEaHSZLU@>u7z zu`}aw(cLmR4Sqo`KhTuNg%Otc<(CTf!bvX;8kRz;4J!IS-t`e4N4j7xlg^nFAVj*o z^$p4o*`QByWtcd&7t!Tsg0Yyo5u2BgkF7g3X5K>X)pCkywLIL(lXECQcjj8U`gDD2 z6NiJ?JQwd#q&V0cGZLL z_4%01y%=l7;dPJCz#_9P_6Z_6GR;L19c-+GO|un|4pkX^#!dbc4*K$USdvR#ePQcD zES8IPrQepYw}?G4humtnMe^5JEU^+iOpb=GCku#JA5L7KPkFJKOy1ofWtPmgkQO72 z+Lm8k&Co2CoO&c9g0MjsOAj&#)==|gR1@|tYYHV;1fgw|b`K=7-4I|b^YyS8bF^Cb z(%zFDffq(-9J%A!$9yyI>X~m7S6@*-nD51B3#$nCyy{MHpUQ0464{m258Tsjy7g&3 zrDkYzrhdk>+h6V-tMK%kdVi>H*_`Fa<+L&}!+1K~Bz(wxMCYKm7T(zGv_1r;|J!tY zr}O2jIJ3-bH^u@|fJ2SN^BWb_N9DlMF!%cIKj}@{%q^xm7)ByCFeEbTltvBXq%?Q; zm5`8=9N4dpE5Fg@BFm9CKTUT3A?B qe7p3Iw+;Vh=4Wl-Df~YllE%G)3l7RT634O+zD}9hm_9q<5%)jvke`JB diff --git a/reference/figures/README-unnamed-chunk-55-1.png b/reference/figures/README-unnamed-chunk-55-1.png index a69e094145d9de21373ad828cf77066a2be03085..2dfcb8e85d443439e6d984a7f98f0c95353ab5e1 100644 GIT binary patch literal 64907 zcmY&=1yEdF(=_hx8r93C792neE#w74<|2v|D^2vaOwh{V zt681x8hwIIy-3{1>3WtGCEMe>>TKX;6+J?>{-_#JFGpKrj&HPh=PZ%}~I<5e>J`ngj#wBO&)>(b*p zjp#egKo^rln?wnUzuVija&|#HxUqQGbpK{?QmG^b8nzz1RL(t0x?=|NiaAiL7XTsh zGz`0F`~cg}XOl_1gVxsoqJfi*d|5k{_Kh{nK!TpSH0rf~H4OTI>`og3+WB%dhM%LP zf`)WVVuZ6SU4iUpN8poxqs02>{?$Om*g9rkj7{+7yA)cd@li3hmJdPOI%16gA zzZeeh&@%6^&@%5~e(Q9zm*(*mq)FBKb@=3PhFP@ejqGx|wD-bNjjSEP&(pHZbsE;( zfozUNhDjzq@PU9dVUHP?B%e5*YDC2}%5;WT7Kvjhnbg_zre$W%6O>Fjhbyu@^3Yvm z@YTXJb*p}AKsJX9Woc?@>hoyQqMbgkuboC@o1}V9+k*3v3%LcJHG|9W%3PMy)LXB? z!D6++0hczyE3_ZD|H-O)6UPbrxH_C~tG!OY)Qy0GsbC?4nvGFi{&y`7^*>-lV<5gQ z9&IodP&&_h_aj2_pGWTFi75SdH}(X#C!KSgavV1UhV`}>oeZ1|9EqHBq^##WFW5hy zSLN5h?OUaMTFVjDUSi;YX-mKic_A;+8*sGp}X3jZK+|N{e_u7p-$Xn&$(@&OToB4X%SVMr@P&Fd@u+NK3Xr=MU%b7{$ys_;}qWHWHyh~H%bcTZy>O7 z|2>3JDRSw*pX}612SEIL2vZ6Nrw~D)5rh8k@r6`A0M7o~hCXA=yWb0dV-f-<7Y6(9 zA(0M(xk1{|p-b@Y8X%bZeo+5DJOCns9rWgVZEJ`3Jt+$d%VsiJdlL;tgipd7E6l>l z?KNwXtl!k=nV*FR>YfEl69lLqlJgW}K9x`?F1gd&E2%G%Tq5F| z`uMAfi3te?Cq910_s%&V9Rpd}i06Tx-d@uGdvkYZCoVl54jMXCv_myoGVr47EgQ~0 zZ-YXCkq;sws`s;nMd(6>j)lcUi#6HnH;hrnx9$VDoHZJLeu5pB#pPw5dr|%C?5nG* z=h?WSDPdF7g7Wf~*4F(`vtz4z1R#elyna^0eNx1{ym%ucBM$EFQ-O)k7qqW-IRf6C zZ_qn1$+4sJ4hbar_^=mRVmR}QEO|GQ}y?m^4#)v12w z;e9_Sh@RV|Q{cag^4PlkG88lxBvfd36=KzBf7Tp+%|CX0rsT!i>5{uqHM&aEc zaGxcY`)r00RR3)kP&8^yFjWuuWFe{dgTofU;0-SGK*E0;5Cj&39+b8nax5qR{oo$k z7cdPEF;P)wtJ#8~VAd=Vh7-z+*LA#)!0B6+7%4+(^C8YKTo9H%H z)iXigoHJ)qdvi1Qqg;4?KG|prQ_kla2$P|&a2H z&CJY%)DDNKY+^BJ;~cx4ufak?LyIlXrS3QiP+}D&>uLUigoNB)ci#-&wV=qY zG=sipN6xhI2fM*$>aM3Tz$x;**brd1oCe|SSkJRI4@Oj3FnNlxg@H$6t4GDXip}TF zs;{YGDYYPZf{0H@_%#Te<)^Hr*|30z0nyCsh%UO1Eo8)gdg#UNX>SS#3cy*T6BN{c zP3oDPtW*+18Ld>-%3X*JPDiG?-$9{f4!)NOD=#lMRe`)3V&4_2Ehr%O@b<=c1vXvy zC(o&Df$GLa&Qdlrk#VUd^sbNoTfu}4DmqMB%b4`Rwa0(tA#F12L2nMm*|u!w%2`gO zy!uLO@^uet+Gt5b*88XP#I9}^4e(dOg)WU1Z=7=w0x`FvmY}aTVO7py!kDUdx-5X$ zHl+9)4PiiW-89uZWM}Lo@{(u#p)Knvsg?>B0|_kn{Bs6(A!dY``4obYkun+`wKzXyeZvqmMQS^riSY$y)4g-92Q`(NDGF{|*SGaPBls`&W@V^NDKP zRnA9?Y8a=B5a=H;dCSTLZ$ZSIopwx$eA(?ro-O&yh`K1C3$2J zU%X@{ee<~($bT`88U_rq@)FJ-fzR!fS-UMX6nde`Ahx80T5ATAGxDP+6|ur-M#oQt z8Aq1s5X8A=^l%QY}V zpC)O!-A*thqw!xp_Uv$aueZ9^sk*W8BL6W&F(&=K?Y?gi6dbhE*F$8^zr*+MV=<_| zh*n%;QKyk|KEw*W!lV@GS6f}sR(&+0T>qW372dFklR>p-w%q$sG;`_aGdUB+a?1aL zbN3t&Z`0E)Ns_2^+h}Z}nshu2!xsB7XK|gi|I5VWhIn9ucyU&y%CaQn#9-1vZx~?( z&d6kB1N3m>;mQ>7+crED|E8Cj5D3CWCR!yFj}H%9TRnkc*?0lNGfk+kGl+-zDvk$} zgfPy~l>h#Kx)cI#O-}3+qz=xa>!06NOP%`=H;s2nnsj-UrqPM`usE#7)VwZ-N;t*i zJpUkvaQ5GvG1TT&h(F%kM{W_(RGEIj^spY`1@qEZMagpjt@Xfc#|-t0>+ z;ez_MPhN6+O0iqdc}ysohx~6k06c*Q+`NRXR8H-Oyh|i}K>{OzN>Wb~a^<4XzMd(x zP`?+w#$RXqtBCdu)-j$p2LcjsME|bT9Vrn2cL85(;Qw-qtzTt;Ur3kqjWiumQd?WQ z(p=F0j-PX1xO)y6iRPb4pe3 z`1t9}{uDiz^&HGj(zjzSJCIOCU&G}&k;>XNJxoxt3!|}QhQpbBXe|E*oP5dHkQY8X z>AT1wXd<70!$V7M?t-SNxIXuHs}u#{(W^7;MnOUX3LL-QLb((Kw$Fdm*|-%LV8;8Bn;^y>gf}Pm3LMlsEV0Qk5o4ty3+rPbuggZL^4yPIc z2&XCTG)6LCBp41e?y?eXzixf&w=GY<7Wwy8@AXeD)|lkyv8?0l@;OiwO(Z4Cg%Np- zOlcFFHeb#Chd7udQ!*pkl6$JXHWB}nsFGc^4y%Uo>~RhZ3>aPSjd=KP zJ!v-DXxR-^6a71_rja1F9(BPqZ}=~FtM(3`H4#SD6+(J4H4+DyI{bQm-K3bB;gIlB z)BgBYPXRZvVHXlZ$cMMGPoYw0E)M|(_5Gr|6Q=7!xCTDwU`!B^(UT`^0mTt&lK?`E zP*6`%Al>h6ny@SnB07!A@%gwPKYmc_RkCBuGsN9Rz@3Da53L0|J09$3>5iCC{aafP zEYR#r!N_T6uS!+gJSEyFsRX1?3A+hOwWcy*xu_Rvry*G15Nn*yod|dhwG+M?4@7J) z=J*Y?s94O@c`Isq7q0%MrB8HtEG0m@lOnCpC)$yMG}`|Ch{J7|d!<{ag~$I}j5=L& z%xzfx&G~DniwI*ceL7Xg^4^g7e=E;J)s4Q9$u^eq;q7Vj4P}!F%4(CcZ(&jI1DT^0 zwe`Xe$OdhOu4IN6T7yA9Rm(sq#9ZW$BD40NP-K71t{^m?t>c0#uvs2F|Iz-e83#+PTC+e|~A#)*%|5*?A zl#%O$a2?v+{<*gL|HYM$G68T^G*BqwHmtaq zxhp%4SZealaA8#T23k`_#q}H#%YfO)lIWdxhJo2Pi@;36RlXn_&Mlm z+Pa>Z%im{AA^>)1Rv}Ca2j=#3qx8??I3E_INwu}Dg98hUqzR0$_V#v%{XHv{u7naBu%7V45-uLHvQFwfK`;69_3fBRy@D|)vbkJs6@E@}{ zImQNHZo)0!sF&_;gLV&h9R7UADCcV?zE*FZIXeG75UEsU{};1z3p!TDA|@EG<8_AILq zN^wsHr|s9#d9YGtWLuXr@?RRZ8Rvwe_4d>CB!fPJSQ_}yJ3&J{i8LxuLotM7^bwx# zE}8h3`P?)f-g?0#fTAw-%vl}({!#t<5l)??1rdFu_8WLPp3HXGE?Qn&yeYfxtbum_ z=iSRIDlvpx(d7#LHmGD91Ed=~^)Q07*d==+oNOv7@}ALAIA|n-?jQM7+vHgoI_-AQ zC+>P%51ul=PfsEf6EVcR&HtT;TxNjfWyH3jefSWgVNeyKE&n;+<#G1%@;a`AIn`P^ zubS32s!7QrE2L@D2S5En6y;t8LK!>(rHugrwo9_dQ;Wx^=@(z$<+_)fSU?4a;Da2~ z67p@xs(aGjWpB7eg9kBWnn&Ruy34z}L4aUwt!xZYGlvA5p5Ws>3pe6&!kE6x#6XfW zvHgLfa4C@$e;L2EzYpbKEUd{$2X#<^iSi96JVt;w%|?ch*Db*OS|G4}?nx$W;{yVf z1yu>XYS<=j%;EBVoEI5rrGZ9(azuJ^`tM8eyUQ9frCS&F-x@2@pp;&o#BK`2UbpAL zHx^T4Q?em88eLc21sw>PcubHJ_iwh%-|tRppp+cQ?)GRO&u9^-TA>pGNz}CCW-eoyP4*FJN3@uYG5?omgkMoT)}+*4qi>aE z7LHt$cuI(L>KG-UjTS#gko(*X4h$N-y}pFSf6wi>8pJ=Ge-q&TNR8xbhTlw26B%aI zgwmup8^K|9IMV^mS*~Y~pu72?S;lCYRu!D)2Q*GG61e0+F( zeEgQ22QcDxISe{=gzW6>*b(D*hzSX{pe)Sh;j4xqE=Z2*v73;Ehf7A9nrHnAaed`4#JJF(*-1}B~A-U z9$ehM&rJQch+?CuN{55Nc~M;{KDB9VGCZHx^Hq>7i#9`>rzw@w84(?IdYN-C0_Y)K zFBbGVrBg_k@AP?{Ke=%woAueKM+jq{tu}_vV`nSHxCNaoL@?hp2DrI~iG1~>^UiE> zfTB{!?CyRAH=@x?SDAG9@&aT35l;y9W`BaM-t66}x|RjBH+@*a!mij@WO0o8jS8P_ zTMdMb>RLVgdFuD4e{fEDK~%pEQVIqrVyQVPu9tiU73EAM5Uo>xV-w^6Q3k! z^cK$b7oPulM%r-?>bsVgiuxd+%?tX$%5n)ch7Fcw7ylYV=eBVv0b+F>eXVBH{ z?B*9@2(z)|fth@%nP$gbsyie&xZV>)Yq5h$VQU{a(l=NM2M347Go4sMUP|a-7+Bc9 z*iI>5GMXyJ>==5-R3{AxZyCwCQrfb3%FpQEyf~3+y!&cs%*mj9_)+50trumAyW+L# z#^RlvgxbDjYfhVhZrD6iZus8ok!jJtgO3WZmqA>`{Z7;RnbRMhUZ^t*r7hFIIbAN+ zcf&#P`>iT3eeqT3a3jKFlqMVkUGXj0eacXSngUNL^OW4rR&HBp+l=ixJ3FQMF$4S2 zkEmL$!oB(x;U(us)wZ4+&^W~C$cTxB8__>3d4sUSgOhwUUb^%4(2|Fkt;RnMCUQF) zK6hGvC!J2jD3dEor8QaOiF#pm~>8iwv@VS~pz7x+}*!{%-Ca4Y(owpJYd^3t>4M7yI<7 z=p!zU;9F<`YNmX+7K12z< zJ>S#>Aj+jM2D{SmE%|;T_?B=!>{j7+QT#Sebk&2XnV~a!*F~AB-x+~6+8#R8r*d43 zxBzGjkMJT)oBB#RI=Pxx#@voaXbM@p!7^-=eMV+9)Pxg8`v*a-w;SCJbQ%WKSc*D) zIsehbJt5F^_C2=U9KSUxXq%EhQn2hurQz_{jJbB}t+CN~xVW%&P)A>IGAUDpdzn7L zob6L}RBlc1PFxamdv6f3LPVmgJMt)acuIf#I9|edc@Id1&wx18?Dx_-qwC}SXEd7z z5DXl5b51;N=QUXTjv+K-lh!h1Mk}R{X=kk*H8je#>qbkM;QzzkJ zt*&$-KD-z!mWZ;+j6iOj#Qh!yiz*h1kYu2UuF>XZTTq!ATOTv2q)EN~>TA|-j~Kcr zAw{rsGxoDp@Qxl3pDm#1_q*5R&*6K#&wM3L84C`bK-Q%ylnqXU!1Vp z-xJtYkUeb&NcA372KEKf4WYXswJ;SlG#zGgqoXV6t)^Ole)75AvzSAa?~%k#5h6Z0 zSnSQ2Kq2Q3-PoOCDF!H2W@e_tA}vnDRF=_eFrAH8Yrg)^Kax}(z4+n^?SlMP?JYM4 zJ!LK|+|As%dP8m@)gxo-3_~YXT``a;8e5TPb$d)8z5QaFn^61CYukWO_xfj-T`~&y zihSm9egc~%;T-R)oM_w?rugJIN`KtcPf*3Vllgw z<=&_hQ|=p?)?^N!t+lZA(-q5PF1Ve|BX$uyNT_2;6mT@z(}`GRoWqjRuztF`uJ##l zipmfKZIp}X+mHzE7x+Z2@q^%eqw}+A$W{4O@WfRu#n@J7MXk+Ok`*1r-@Qjh7S(p^ zyv>a$sB?2rELc^mqhF{HFyGAL(c&H6UVZ1vwb1YSI`T?wqPvg`f+E}Czg|G^UUW_F zJY4P84gt_er&6~?N}~GXKebbl0-&VDJ0pMc9GV*Z-~5&%g?EdhQM)MTrj>}w#Ksp4 z**`CgE8X+6HXP6O_H5->>lnbD>(KSx`67!eT&9p_9-#_QfTVlR)Q0y|8}%9Ti787` zm}!uYH7Y2n*2E>vWsa*nAT+u*u~E0-`p)aCJE;?;#($#d%Ft*K+3B&&N9mI>2+r4A zb+i2WgW*)@HY5o{eQ8Y&F*18nX}+c>DvfQgGa8RWG!%)j_3%=xDAkNGW3++ z8qkZQMMYFn>f;#$gL@_5>QU~A(ISXPs_Z!A`rk0ZYtVaNtG&GC$NQ}#SQzJ>tz6#D8vP~v4FOkK?*1AsP%YFFX8 z#UABpm@EQPO|^BX6`??8pC^as->XwFx|mS#1{Q}6Kf=d&w#dHQuLigG%bg3Q{2dBg9?R!q;0)w%(1ozGqBIa`{?rnY)!o)M{cD;BzM zXb3uGQeXTB3RBQ+XGlr7yW!7y#JiUc(+hMr1vgDzci7I=%L@JjF6%{!ok{6@qlU4s zN&r^M=f(QRtBAQEFlH-W>(^Z9ZG6QqzXJ7`gVp+e*u&%bGM3$8pAsl;+`*Zl6BMq) z4?D(AZlcyGae?C_2~=imaHyU4FZY{V%{OSILD(TTEB;&D6aqH(&#%&!8c<@HujVl> zlnW%Jt;>n^p=N4)mPnz-S349B4qICU;}9@#aDY0-rMsvRkfze=8KjhrE(uMxHAvXp z+&rvLJgUYJ8wLf7LN!TBVGtvhh@nZw&W>ScXXli~&4Fz|u9{R12!^Ov-ekE^P&@g% zhIW%gB&O1DF9tq7?avedxqJ}kcgEk(0R;M-$l;L6%A=f-;->wdpq059nZ=`A=CZ?~ zY5Sg~{XkE`c=hE!oX2xqBWJ_e7%i|u3c11 zp#IIBhc+vPA$WEt~i#nl=)bgICie-S;-iwkz)OxN($qV)90csP#a zJ1qJ;q?-P>TpXP8H7qPlH_$^}Dv!MLaX$k`z$j|Zcnkr{^)#+XPOLW*8qis#I%60} zi+p)ZVtP)#md3jD@}CKM-CYfEm34A{)XPkVTQu4EEdf!BGJ2ViT5q#FJAENzi-1@= z46|JG%2FNP6gtbhPN_+h6;bUkW@?Xu%NmS!esK}I-sUcrslb^tOJFvd$daxR!3e32 zSz)9#Hp#5qPD$W?vB6<&;qicG(SM*s-V;yb4xy|(%cN@VBk4@_>(@Dj!tg+BU@%R@ zZe%0b&L(|NO|?H#@akw(7atRz$z%!yD>^kRTot!GhEV>223iq_sAt>ndx>S8fUIHx zG!wKLe_{V}&Du57J~#=<{Fz}BvuB%^gB<_f%9PNafmEDvuM#RGM4{hH>A=FQ5A8cW z-Ps}#vLNK4=2`xhBpZKo+Az86{GI^w7e1;$7cdNNiYWHB$iG?BXfGXjW-SD0C+>IxX!=;-I}M8%=ua z5q+z$fq<1sr?K3|-F17jkh*;!$k=C5IWV7{7g z{R1@?6pqJq`#!zf1a=JweeqQ(qE1Cdk{KvYL^kW2U)={6>t|am@_K241f~c$)s}c&wFSzW2-NwNC8Q?^o zzerm`t@r3KY>57)UZ(G>XDuX3rV1X;bq{NIsHmg;Q`bcwNoO?yY_wflKtC?0E$TXj zdB$5mG_p%|IU_}6w6LZ%eG&Op0$%D6EFm||2ie>0)Nco)(QX|suivlXn2y`$6mhJH z@K@tbyw;q!f4%K0mMb~r@2Uj<5vtaK2+Raq3x+2iVITO~Do}Qxx^F(941EgRWq|Pi z8Tx9JHaw@NAChNPQn|iChB2%&B?t-;PdL>wOwJlt#={jQ<%H6g6L$OCwukq|>LIX! z2TeNPk>_j}psa)5nd!PwYX<+y|3bBxGt4>*8SsCxZ^n#xZjcyD&Fs$Z7C zov|kdVk-C?4)zIE{R-iF7xe&OrI@mb()X{1mT}Qh z&GVo26s}=dM&;~m&wqsM?xA_S1>QTJ95ax??y#nGU0ezmibjp>ONGLEotj!Nl*7J!;a<*=kbK(PWT#eX{V4hE z;y+|b9(VCqC*?EV>i>aWjlTsOTwrNVK6XBd@`apL8PK$5UOGO&ob5r=$B6V!3r7)f zp#fAISHAZ4{PYk)Pr5d*;xhX4>Ley3mn~}Dmf*M#{Z?ZhY5e4XXd5rY7&b$~D$?VY z3Aui3l1s-gex7QQ(eN*Y#}_}qE*mzjGyxGFBoz^ z%n+aszUO>IC4Yd*IMlPgw)l??UNG@REvm@Dq>NU4Ju93#myxq7Lp3=&bh;Uw7H4;3jmu)MFOwWgB}+;}x@eU2wR;C~B2 z>J{2yf|$teOvtCnjIl|KS$=r@-ZKP$g*>*!-z8SvV!w1hXz+SW$}4rgwD~6o>JkVz zVsKV187>_gT}w2UFZA;MyU$_dzkZs)V=`8$*bmXca@Zt}a^$KLXK_w+pe%Lg+le_j zr%!IHjkecq%|Ul7pQ}cyq{L0NPPs~i8g16W@a_4;bzuhpg2xCw^Z;^8A6i`1)%9|; zs7|8?r8TH%45Hq+&N&j>%QUU1tn)Sm|{QoRJ?GF&wMZWD1C;p6dC?8-x zK!oIKTY6F#iT63@ASz^XlY}lZsO7N_+GPg)=o(K3*M4q)JFuCs+DrZPu)P;sy{Uxv zxAezefwAFr!m!rrDkr!tFZ)sSD<|k%_7gN&U z&5*{!2b&1s!{M^xZ*@O;{mApUY`A!?SMn(zsxxNkYZX~jE+APhHCQZ~h{0|4*~|L* zoMoPF9qxn)y*}*LaF+k)AM)^oxeU7JIco?@cRRh$519$_4B$SiCsIXFuP9LJQFikC z2}aoF(jQI7rPS`>D7IS8n$ctv;uT-k!>Fk@0Tr{}L97rt6ibw&mQuWMd$x-0pZ$nl z)>{5mO2EEgJ#3(0iYnjt#O?a%vTpxIb(_+I`a7Ddi)#~Ytp^G8l`Fg+Meer`$MXMw?&{Q*n1{N8)rKWBIrN(JlHVQ`&41gp_`E_PX z_vZXe!|skwXWGl)=5I7@#*C%P$$+dmczd!4h|>1MKQlN!W7(W=_x&^+iop zMhgr<8jSX@8gqRX`rqdLk`f6hhH#c$67`(HqT%)8CK)RapIHDs&||;+&;5C5SP$2? zB1H|a1g0U9{m?k7KL@@=-EVlRB}$+G7U$A6AG7OvwmUdJhCA!PDJbOMO9EiqQX$GC z1h2{Sx3k32pN z=D3OGvObL-s3FMscH+e<#R^NUH{Q?Fo_wcXUfs`bc;#Rd)%Oef`ELKT&vyR5WwA^B zsW+z&{d7$-4=0#a2j4ht)&eNXQbdb?8Vv`;vgE!69I%wn;1Kyfp!T0wSv@taR#y!P z!ra?1Ht79@A0nx7|ME|JCh(D+nNQifYOz_&SO$}S&=lC@M)JZ#eeYlyU%X-Eu;@pU z=^at+2UakZbs!~?@JZSf#?*&&Ijz@QIr<~R|Jfoe`*fs*z)7XWiqEr@t{O%y|G2U7 zq-*d0fK!3mZrSoI*xEAGT6SGkhV4E1q8+hi-c(QCssAS5xL<8N4+k)Lgf8x!ZYG7H zPfd1uHf!})o*%PJ{t3Szfc*hR2%O*iFb9F9W6gU+LFUZ>gf z9!nWb83ns2STcV^<4G^ir%l}{barK2Sk9<2z}5;nC@5%{aU22p!w7$zD4sw216gw= zBQjg8%LObg&DYhT90ZXuEQVjMg0sOA|J&c7Xv{P~eLfwd*eWO*hXak%p1a2@03QH$ zy~lb~OZRvEQhh=p9UTIU5)VDbKd@~UlLJ~K5YrnilMCP0_1fHe+7gj%2+x$d9Kp${ zs1B^ZQphF>J9(f1IymBsN?-!27o&6xl10flDLM)Y$o*mjZlc~y|C$QoXCj@oE`OoO z59R;(IOtD+k5^fFri*JUX%dg)ui}ib`VYW0ajt)jZX>j@NMYu8PFI6-mxSt`nnKp7 z(hr6y(*_Sjv-pYGK2 zUb?+cBo(C2)x(YAFsS;LpDvJ>p?h|81bcR7xkSM$Y?Su;B1=@9@O%Iz#&7cP-o89j z0)ovmWhVS%L)l`;YYKOM_SI+6PZif?)zx*(rPz>q5lDKzZARTeA`doi2+NX_l_>G#&AIEVYn%oeT7pu-u%JQ4+(sS9~>MSwuGnCm>-=IZAMu7LaDCmwOfq zJS_W`+GZ{Y$d-S_vA()fbA8WWnDjce2y|WA;eT#VESm5;Q?DUA-(I~{`A>r*q$0Q5 zE;{?7n9NPvgz*2%nsLJVFw+Iwu)md+m2(%1Lu(qUJ)Tu>Vb?z@+nSq)Xv)*?Ph^Dp zSH8jLP;R7p7=E{jFf_4>ENGkTU~hReEjnF6*bevj?|TcZWE}Ecq;c%wEROy z`8|J2US>l2)VJwZjF9eb;iwC4xWajg+-eVU-5QrGdO<3^s$|I8$WYS&{Uh1GXZ*XdDUb{7Gd5xLZv3=r>alm6B!7YOyX zxC_Z!?~X$X3S1yLyyHQP#LD0mzcKm^jOxuQ{|b7(a|j}tq^l^`ZBa64f*|t5Xdj-!Pu=lf|Q~tp(1t$HG@*XE7WhK$4)Wr*P20N zu?9dRLpK@dtye_bPAkhV_xlAkAGX%Jo-F3dG?4G?TS@LNs9_2<3O;jHjuaQ|?;km1 zyLIFKkk8;ueSS3kc#{Pc`$sUW>q8)_iPU%d901~H|6x=}9@F>%B0<41OMrTpabP(p(;?xg^jKaHxNz{ zmQ;Cl|Hp~L{)5$cjsVl{4BKXhZ~M2E1+aax%)H|Rh?JyX%!XSax@~S}X})ZDVLwmp zx%}WWa5td*+tu~-P%aXK01|D%zWdG;nwkm39jUmx!x?Y^??=-5G0eloequ)tX1va2 z7!%28zk))?tECzf6hRBB^UR3tG0C2l73~=Eg#sCL_VRU<<#xY;a@c=en;A5HsQOr2j||pYiqw;@gfgqPbmddg=t#_7gtDd=SF> zX(1oF-{b(4w*&PvBG~ot>J37PRnbEj`@Dt4CD9xEJY^VG>ienkg$8aZdjhmUJ0!2c zzR^%TSp9MoPjZK~AJ-Sce&cM8+?-YDo}a(1`Du{1)}>xdSq~46s2pF_Pj;%5ds;cJ zH1e*!tlvVCwMipLSVs{%MqP4y-y>=(yzIJiK6#9T^j%Xqo`^_K( zs%6-Rdr!=Uw;8f>Q$0~pcK1$_*tp-8CO#c^e0||XUBMyh@e+7pC zh>t)ax(e2CWqDbI3etJlM>jh;J>;RpW4WG$O3boBd)X}Q(s;Vr(S%1S@UZIVQ8hpa zcp|hzv;ySuu?wCVf=`k}?|2oNY;hzZGL)LGdlZFUf?i*q#%?QCx*`*>6+~`Z5lP)3 zzKi~XYyNYgMvW2MOqZYy4FS>J5gZFhLX$wj0`!O0gYc14ns)F$!)vJR%Ehmi@WzF8 zy*(Dz*QxKFgmxFLS)bV3BVp{3Kk#>dBa<>^3)w$OS6SwmHu}#eLEHssP#mCIs3PU{ z&N6G7m>^@IcGtm8K~^M(ONIH{7H_8rWMFbI-bQAQ9PuCe#n4frQ&VwZE)aSZ)EmDv zjF+o}t50%H|41;c3mGph6V$h8Zl_!ehrK{L7m}rFl!fH?;v?M>^Z%H^LYO0;{=75? zRQy7N2*(M*INb3<)>ho z(0Zv@-klMCCa}SkpEr07VbNp?GKz$Pum@$FFeg5cjznvH-RduwefL79-i1JWMTu?; zt1@p{UgjZ08O26*;yAc=qayMP-I`m+<6XwIEGQ+b^7Xuj_}eQ;M}eFhV1gFaML?&~ zPvs?mn92mpTqGd z5b&Cl26ApcY^_>79P-KwT@L%uMN|Obq>UlqHzrSb@64wLs?Z#$o(TbE86rt_|oQ6v+u2eyfLCbO8fHy5PsEf=Le`(*I za|obyj^AHkxgWTDCfD!|$ltnlOf|_Zyr~L;<%+A*l&uZXbP2N9=5Z_*EB-(sp0Ibj z^EGz&OoAp%DfE7>>M&nB>{7mbG4#26#CUdl;A-Y+G2WgCt{sY?$FGb3M>(?pnja~l zvXhY41ibGICk8p@u%OOqyVT}h zWdlxUnpyq8>=Pt8q&lK+7g2%iR)l)%M@snvkLUs z2{Pwk?v9CS&`I4Kwb#h0;vM*p6UV40|7uOS!vEK5^=vTy0H#7I|D|tfC&1;Kt$V(t zW`jAVAkO8NnPI?G9@sDl_RX8rXnsM9Q&Bqg9>ku#92y^g#P6<)Tp<=vc``n+dtq;2 z*UJ7HO9{=%A=0l>!N2-J;&6Z6&3LqD`=ek z{8UD(W72>4?Qkv+U03&m7Z(a8>cJa7^!5m`r+4C>fJk_w?aI#TZH7Fn7^)4adOk-u zJ>dHLA0+&O9S-C$pS6lM_lw>R_5Um33@Dk~(Q10G5K~hROK)RN1!YxU4if9S!=gjy zJ-@U311_TIzrg#-+uGj97{#3rYQgaiW!qn3R-%CTc@!LQo6(PT_L}zm{K+S)M82(YR%-98?^Qh#@`9yp8%iwJZH$)ZK<5q07^U3V_=gi)9JawS=~{bQ=f!?PXCPIE$wdyeI3KV! zm?r-_X%UQn6{q$lfCB^;mT?f6Ck6E?!?Iam+U$Fn+?6k*P}Sp(tW4rb%ZyPMb)A4# z2qKXU#jsbtRgr_K7Yr8h-_Zly>h^fPuO|?i$a@g(f7=Y`FSPzYStDk!zrXt&)5O0` zmX3{j979@GmUY~2E8xrY$2O)=e5@o#Z_+rR9DbMJTYVO48{(G6HeaeHR-y5kbh}Kc z#XvjaL*Dwcq52vaqul6DRx*PFkbKAWQr~&ANu_d?^tI8yU@w$wnLxDJZ+2c@U9ptX z!9f~@mf>Q6X7D8|CDkUTBswtT(ZG&W1I1hVtFbf#W1yDPygY*}OXCqNS`jcd>NGuc zXlP|-W_fS9-<@rsROcrD{PU5hCDzPDY63J09_RM zs%gsA=R0s^O_{l|vJz`i-b)W>$cp0m%0C<)d(BjRnn-}?b($^tH?5qs-5B-zpvG8XEk-9Ge?y$T&EWo$N=7a z_I@;2z7f41q^2fM*a&vU&UHOmKn@llS!|Lbih6K?SaVnZrs#f~u4>r{CwgJ9k>LGT zUoi=zwgPWh3Oi}}`7l$W$iM6L;br*Z;m59`gZ)R zv;B$*c;Naa@!(xDZ~e=2-!AD?0xURGI8W6>OiauyxCwBv{WZY>No>MIL+&@&=h%MI-m;n9NSVYDc*-v&mkuFVsr^L6D?Fc zOTLmNCU8{gwP3v=JVJ|xGpZCJ$R^X%Kv&^B_YnV;tb#-F&S_#aH$4eU)l0wXcXoVi z)I~iz1Ns!1xwxbN-|4Ren*><@aES1!Jn7&0nNRXlhN%f}ZcaklGiNm1*O40M_xBQy z1aS5uxXu$V*2@VHaM=N(e~5*4PD;0^ZVwS8qi{%a#Ni+xWPSiD(o(zUO~QwR7C}x< zb-_;!)z!mwGwVGS^*B0d*%(@11chE00Pv{zdb%(bX`40 zO`%rI3wzi#tKMRjZ+aeA?lnwWcxM+v_G zty7PYWo>QV=MenG`rF&vf3+kmddRx$=B9FPuvWDG&sI zu&TbR3EsCR*99Xm(q~-{3>5tlz$lTD|8pN;$s=$@%_s|Gmm`Fnfgp>= zT!o%2V&>L!h&}H+9LBpkI696jz>TTV#yUt-X}hY1We_6yen!56_Jv38pm+OZR!KXf=O}_f zyTKaLSqF1A{?=iW!c#8JFCA;dJR2G7Ru>{;pRxK@{>^i&Jr(k|Hlgw}njs@iv19%P z84m-bm2#FsEydm0Zlpbz&(oaQL^d0KQ{{Tl(0Qp7AK;OKx$Ur4a+4@*jW0Nq9ktuL z)M36+6+^8UYOdLx`C(FAJUV$UrlX^CxTBosRUq~|OS&)oo-9`L9gayrqfUggPoh<; zb~#dh#A>KUWdnYWzUPEi|39j}GAyfYZCAQQIwhq$6r>xZyHh}r?rwPLZlzngk(N%8 zlI{jUxVXiNhI)5*`I@|;9jL`L2gvYWDLz~h)9 z*JEzK*=DUYKCsl(>m?jaSvSo4D&nNbUB>$k`NWe%$b!%%W+7y>P`(pSr4SiIt1t`w zFk~ZNcA4qbgEs9-mxPAi>!nNiS=gd`BJ?|jwj3vR$qA1=K5ia%8TY2*GW|9l{ZeI^ zo#Y3Y;Z7SrPJPW$%P-31^gZID|KkZAu!TmaB-*@^YKmo{h-wQRs?aR4Goa4RF_mBU z$!^ZYdD3tb#+th&9^i!}rkdWVAayT_*l&&_DJ-+Xgd>Vp6M8dkdrXgvG}UJ zE*$bMV{jKU3S{29CZJ8_X5GHlc`{U7!^Ay#l||4D{Ka4LYQA<35_i^_9bpQqS5D-$ zudyjP-(Q9~Msg8#ODP>YzmPl6zKmnt+wd(HdTca)oMsJ2^5hdRLt zr#*RAr<_5l1U_tYJos*-FI>RLEpm{oXx@$#e0g@q{V?-!_dWq*ZU=t-N|M4MSMc13 z?#rew3E*NNT|eAPv2mq)KCWj<8yy}rjai`zuUF%T3Sl9I)~!W8g#T#2u&Y z-TdNd^z1=6LQ~e`)WVpg^z&;kZAHP!KP%R+=;{`)cX@eUQ6&eaX~|n?38mM zgcmpv#E&B4@_DbLB6w|jxNragy+FM&aF1l(rlbGsb6gb%+>$=lL8hXc+307q-!xEC?YJ>NTf#zjJz>;J zHN4k*U$2qQ{8m#4tYIiL+RhDdw$}+AwrzSx`uyg_w+BZ=bq25O)K%CN)2*@LuXsPQ z1ha_j4@Cc6RmB59ybYFh9wKM;*8b6IYbUCDL_FJiw}SoNVgZdb9!+Dl>+3O@oIs9v zu*8j_bk=-Zj%-eEJz9LAWDIT|S_=^ubR5heZBMlr^Gp)zyQKrD4QGLf2szdDyo8d5pjxz`LIN7Xdy;SHofW4OIUvy8S7DZQd5j)@*;e+)cQn$49H~giQcM(`FF6j zhCY>b0eWd1S2AVu)wuF$Ln3VhSkE^i^7Pw0K!nNY$pP+&4&oZr`eIxyVxv7mz2(fC zffoY4GRX{KA2QO0KVZQi_!_$P{SR)7t@e~f)A@s0za2k0ODbhVb#KAwCYYbN#oY*O zdYe9HL`0wrCDOrw@2POoXT$%Te{vK-XEOV2-kdDxc8 z{;%j1g6(vY{8*Fknv(odnaFpS+gb)cq?E`cQRpC!+!`rMwPd9yo>v9D{lB>c6u$v~ zTS+eCrWf_6?d-Fh-w)Z3e9&|pUDa1bZBN$s!4ETSmagV+;3<0zPF1K2fEp7sB`D7| zW|^8OFyOyqUFyj`O1dmk#efWfrimu*?~TCQLNNo|Ec(TzB{`m2pl~v}i~hYkQH-)^ z;YM*-q5eZ5i)SQ%LlOVqmxlf3seQ+zRV(%R4a_E+jLkqq!a4v)?HnCNw}z6=ocWOd zr=ac<`rCGp9d3l2-Eh4BDK}dgVa>bmY7RJO-u*kmSm?m~3o+cd@ZbkN4X9B}eOjgV zS8uGBRS`e*()~;I3yqTj5>TWnMy*7x_xI{TRhAYe-3gBus{<=^AT*oJ_eK#`Uitrl zzV)rZJjAs6!0WJySn=SA^J9Og8>sZvv>0ZYXro63?odGt4jdov^Z&vzLeMM%e-Vw4 zxVShw+XHJ(l!A=6j0a3PQx;LbwEim(0^bb01%LR~?85{}W!oj;`kyd=X2v-(E&v6; z@2&$oW451c|1*ocisc1O=-5AE()PqmQlX@fd3B)m9EA$4ZzJ}Mp!NYoFGsyp?#*+! zCrgcx5t$uO-d-otqR24lG@(rQ+@Y50zpM((!~g`RuAs+lu7YX;Rfj|I4cC z8sSIx2c=xGFcDUcf7(D+@`>ta(ykNghLTh)HSu2jcKs5##{>PI`MSBgf3hKye&Xo; zB>}4L4J###vp-deaPt1|?{cNHHL{?-ELh^{4s*t(Xy$$(?FqRv>ia%-ZLzn$(_n?s z=e>WmkdxTee6>G=2M|(k8)HYZr}Qdv@Qwo3ekeW7a;pWDFJ9uHSr#cv>^C^k$Ak`; z=QZCmT0I)kSp59r@4fT8YCjSgbfE6FZpl+esUe`Hp@sdY>#t%zb>dZ1vax10l>1t< zDx+c#J!Iy4?ibd}-u;Rxaavz(UTU{5K()8st^+=TV9MPCh@>QEm@~$#cHt5&`EYSQ zdk0I95=*Aow4aA3(9|5rLPN3u0NM3TGM)UXcVi<#pY4qLzd6Tz{@tnjA`r{Y%HG}S zXbu6u#+=#)A<;{$*LiE9RY(3PMmSG8ucyiFi<}LzMuo2Mpmfygs@l@nQh}3kVsOKxayF;TBhAosIlIT@uaHt7JVTpIkiH1UECzuW+DDI< z*wP&C7Pmi5V3(SnX=u!RS1|>FU)iBglRw6SB6G;oYJ4iP3dlrSr4qhhoNh$Gq?CHL z)!G_5Tw|Lh;LQr&KtE8FTmyOVmqoWwps{!EEph31@N~^q-Ts|b7LLP^t26V1yT183 zC;1~8&o1<(*9U+9K!Jdmm>B$UAo0l##TsrYXUZ99Ec5mwobD2cc>ym2RzVZ5Z~RVdMDY{=SrSY|jCP>VB!v{^5fCS~eqE zZspQ%s0%tG#S3C2D)@#l22c_HxsqhI1}PCF=oO()Po}R8J)B%AGUfVVXsE(3yTPT; za;d@ixSz5BYsJ;%47BT;Eru-D6>q#PnI_{IShy}5(m1aRo6d0@XZy{8I6gq~Vr8+L zV%q3`i)2U{Rh}F1>vF}UU4Keb>ETKprhFP12bg2#b*w5x2yJW{3qscWkXzEn!0TPl zYePj-H@C(dr96o_oU{!WnrPCl?^=$>-O*uoRbRUYvHJIl`1-Nuz*Gcs7&4DP6n6dv zrCWPoJuY_xWIRL2l&~08q$c<6U36HmE5~J+b$D?lqvVOIoo)zW3jF+@9n94tJenOb zuI74u=Kg~vjzk3qCoClX3cIBRrRBe04-4T-VNtozn7`V1_dRJO-8=ky4t5+D&kkyN zTSl+k8`ILvT(<9T&PsT!txySPNi|rqdQXfIH0P$^6_Yz*K-4d?RI*LYNQ=efe zVv-3ieVjB~>wvXfoY#FBLai;lG7GOI^IY+bu!ElW_08?zL;XHi7r(3UIY~P<1O-oG z*$Z+kLp!Jo{@oDzB&fr%W3RtIKE?`-lIWeB@2Pwzo+Rl;xata#48b72miw`5 zX7}tzWmzP3)UQ>rO;~S(I{nIn@YRD?$@_q1vDKSYG&uS?q;@Cg)6>VUVHuJxA2-=C zf$wF>1~CBwi_k`|Q4x7XDquV>MajKg;g8P3oM-#kX+DvU1doc3I1`R#XueJMmP#fW zwU_r#$dqM?;o_{)yX2Qy+)p=}@N}bR&BtZ`+;>37PdY51aboxs#%SEfX6NiIE+q8q z{Nf_#dad$JKdG>f6rG5-y%DsmA5sq&blGv=SB9>$e}3eE)~fvg*CvuoEk|hltFD!G zRP}jcCf9BYdPPNL*e8|QW}SXmgJ*rq3HTw)EJj$b$rK^Z|7QG@wS`*0UoNRr;mb0YCw{raV;_}g6 z1Mh2N?`KIU-|UbYm~eEb>LInG8}}*9r5%YmDB;pU~g?*uMv%I1H@X80)NBoDb`|-h^ zvB~!@nY5xX_G@qUmh-sOt!D#Uqpl)0iGmwjYtbxbtRo*hzlJOb6ejum`%gF!t{jQ- z^S5bg+!_zX-*G_6A=+uO%hB2sQFlCzfon6^dDjExiI*we-3c43>K~C8OGiT5mEeDt zObRhLQZQVUeVSCP+jyNXzfWtTLuoMS-RSVZET1J%p2Vh!2>RAzGU!{6$$~LIo<2|N z6qZE5D-~VDrqD#HZKO16^7igGVovryw1Gd0(u``NjW^HQ=r`bL6YHu&$ zoiixVYfqqR*Z-E}iz{e$ovnw*@Rv9q4iMqku;p&U_p z#uD&w*@1Yy^1+A_GIh5+>Bt4p>%dd_O(R+@G+=>*ywtWsp4*tz5D<3KwXmQg=X3HN zVwk@Cl4sCa?IJ(@bI~aMLx@_^_+nLEotT9vKi{_+U8=SH1syjpZ!Vy@D=OKDx)${- zI~@{lJuy?a=fb)*+TGZo#1rV7{&FrFt3OW*mKG79SvuYxIjY;5k0nqe2sDxvxD z`|ntmU0uO+JKaRGn5pnr*0b%Hr4LE}USH0nl&21pF5s^Dx@jyxtvG z>uAFn?nr;puT3fzV^T!=(!Y)ODRyLq3olM&h1fMFx;Ho~&B)joOXXxy5FXZi3HpXN zfyG`7lE^M9+8z3QxN#hNDsXyDOqI3<@kT|mE;KfJ(pyAHq>CZnYmzW2G+Ko;+~DOc zALq$dVKo}+&n$tU%YRp-L9= ztPkG2b@OuJk^eptVZGpLZrw>t^^7=;m)<)3uZS0xy6c%8z!Vq9@983& z_6BXU*$~J8!J@nlpi_&4CXnuTx;?@`8KkMHX?TBq0>UNZCH14$)w5k|6zd#D55=4%ap}U*TxQr%}n^KKZOj@&q}*f}0qA!^!m-<^oACnMo%Y z6Ar+b$5MeRXD()MA>Puv|FMBikIUmt8=F zPLf5p$pP-QrRvNNu|F)3_SU=ey+Du#N+B7&f@@a(yrYYgLTGwo;j67N$S^z&L7=l& z)d1;UAF0%k$svuve?dkHI(3@yShjGZ(_TE^{oxXC@xVBiAE3&lP2(5Iq}Eimi3SB* zEN3d7OiCntZe%#spnccCe5%|B+8z)O)=)Dw?W_h z1plBIt#E{m7L2SVZ@b(Y267h-0p>kHa|y^J3Vmn(I-4bJ`c)?%z(kmj=R)QepGYOJ z`n(f71>!C#xcEN^BDkmCMea)c58Pi2zWEGv$JtD_?uEcUXmb1hY2`z>#o#gO3SxcO z!4(+ zW~ElGgnl=G+=fW8&qaf!-3~VWcmH4%Zi*?vHfr*tpF~KK%l@k7k$8{CEI^CBo<&)m z^`R^?%k3cVMa4(D2cuitae%CeXbw^`bY)-qZkg8c)fL7*Flci6Kgeh^G z{3x`eOK`1CdEn|vSJ6UnjJ zl2GFq#hrD7<`dY1Ox32H_a?;2bzl4xaO~}3pc7@RQoX-g@paIlb)_c|IZ1Q|Gi`!% zR{-Nxad}N>5dw0~0KMy0%V|2KvUIWNtW>2aTAOH1KhJ!jp;p({b)(YLie%P3+>)5BD5W+ zjf%QBA{faFPNd@}#{JQQ-Z|&P4}fYN^xh&p5mh0__H7~};Wcg9Z4Eh!#MJx!>5lF1 zY%i2csaU7^anb!6xdF~&^&yT4h%T|8me1mqeCihiMW@L-IJ0wRT^W>=IkvIzpqKS@ zKzYC3`(cgA26fs*B~wzfIhtkATp8=Es&#a5P{zkt9(q2Y*R&eP*n`a_Sl652Wp%XJ zM9CEPQ|snSM#CUNN?E@2K4U!tP#9`2o{2z^2m7yIWsy82*fKT2(xOlqBR%Y9MK?7z z(xwd*A(*IvoT-XB6O~Qq0#hE7M9iA@U`9{?ryyyFOhZhBY%o+qp_&ly%U{SiBq8oC z=r%ij9AhY1g@o=IDHx7DxRT z6!N>Vw+XgZyW;lb1awX2x6GLnQd9<$mt7?#(}}q8bSMv+vklfnAe9*9w39j|7_?3v z=mhMW*)MBq#&#V*s0FXa?n@(aQpg>-?_^uoY2sN{-$CR$ot+~S78!)rWCHzkupo8V z9-%ilVC zqa{|P%Xh#Tx0TBm|N7&^E5sS7Skr{?iEpV5qRgwg-lvq)=l8`AE64@g)H0S*;>n5A z6yo7hk8`mPd;M@DQHds|IgjA81-Gh=`vVwPH(_L_jn|kd9+Hc*PD6qm7z<1@YB=dD z(c2OXIK?AEqq>l7trSf^{atp&L^>wAh}-qerhfG8T)Z|)3geTF*ADr1;Ph((>#ZeY zfOuhiO@V20&49i$VQ>uoSxTlCV0_7X!*sRG*Hi{Xkg@5M>q5iS?-Sy+sth}0p z7n^ET$AUOi!ULq3zQ4_%9;QmxRIBB z&D2U^8kfr*q#D~zL}NK!ro6mAQ&~{+4v9b_hJ-1Neu>UJ1UFB~1YS9qZU~0SCJ)YK zp1y7%(nstCrN=kVD`xX?eUS0>=aqnek;wdc0C+!dr0%3j?l(;f z8`TpcFXL4Tp8&msLVP)Z3L6eNMfqU1n&W%yMxTOezI2BEQ~3%x#=*rP@)^KcluFhm zZ}-CaT)~4*$xWhRmlzz%63zbJ|2QXUCi9P(v2swFaO4p=Mi;|(euZ%)S__yF6)oD& z35qT_BGu~Z;@9$5LSh)kK_XwW5#iS{z6JC}{}wSGd%Rge&d92Ak(`&+oSe!v4ziLR z*As~mU9s%?MO33zW>pK}QumRlQv5sht&KStj~HwtP9CP&XX+uJ7LAbnl&i1~qXqxGJ!i3@-BNZ@zWxXreBU+`+5Sxc0X zp-xIc1ut@7^Zqw}R8H6tqt@)82a#3|BK8{7VxB+`>p8c{Lw!R-v~0e5bahuLP9$Rx z66@1qCW1w_^1VO?H+%kzQ0f9+l0b7Wk7qc9C*fp!gh{_W zzxPeyu)IbhcD?3~nRfhmPYhq^;_yMBvT|c;WB9b17LsW((TFj0;T}+F%WrR0 z$UuzjA`!cS(Aw03QqZiQGGvo|lBs63H_&l+te9bYGy^Aw z_E998uiLCXmn4eG)s+#^VD1BI$bTWO7B2ltv+MKuR!O*GjlpzWb1Ml zcQV}hk&*h=tU3~Ltl8AK&T5=5w@?>=RzlE}9RjUL2LUHee{T*cOeo@moY1F&(}FWG zqlFOm1LchQ`c1kq<0(>+cNY)W&v4*dMfONsSMUD3X>V;ox^wC%){1VdZNi-RjK4at zN5pM6gS=5x9y`~t8+TQMQwkyKaVkE5zwzAorl!^_@^zDV{amOtnQ83nhxKpL!gV#xE7pM6^4=N()1Q{&~Hw)ppgH@%fvowHojOb0#C zUw;|LknP@?eb-S{EJIX?5{BvS!$#vr$GAlH_P7%3^|#GQkuaanb&Evq$o&Z7iAo3( zwQ@wRHoU=L!h8+U*~?-2R587xhsN$3q}F*`?>I5V5gd&uDM2SuoX+P=(qzG+ zVY#9C0aZRzAYxmNXl;8r)6LF;;`>23g+@6zOi0>W1>3?=-Nc8ma+)Rgr8JJ^?^u937JL3Ff6TjYGPOF_KaZ)MzwT742uY6B(-M{Gc%k@0dC&L@nTbdxoqLvr#izL|Mz7GK) z02u8!%R$}`ZkK;&6Ii)yr9h8?!(WkL{X@>u(c!e_fl2h2)}qaRyt}ehsu01^HF%AH zn~a;?aZ6sSur-=RN;GXN*5*-RM?VVosGuqA#jkFr;x*Ao1xb|-=s ztrMRn9s!u9$#b{=Z$Kd1Lbn+5={-&Ves2&X3HhH-7LNL@d}Xn-ckbSjc^vGxnU8&` zMle@vhR{YqZ{pu}z48elCAT1(&7Zvms1#)jDZmw65=Uvwexz%*I~nC~91A~nA!+~^ zV{JQcX#GW&a^^(J&Fll6sg6k3KX4Ix9dG2p&)}MrvKY+W=wBgmRaF-DLkh>pDz5 zplQVP$FnTvT)hDi5pnE`AlLh+KHu}&UkXQmXe*t|_U~~cKzNGR+1fIoR-IVOXF|Th zz`{})tJXU5bVYy?hjxIfJ&xDa23GTDNJVCtZYqw02RwBH8B7RufyYSmz=9$F!C8H< zk_T6#`lrC3(-2nEA#Ay3n$R~Z-+cQ)m2=&~B&^Gn`3mcr7hHK62w>L%!jNrnW%>j}cUjw^> zJ}P@Xw0Hk($ktZLi!3-fZ2PLMC$iM!aY0X9!=0ykGhbC*E!^EVg88fXxD|}SYr&^W zgUjXt{kc@iq3iaiGOgP6fjG*l+FH>9>7?VWVLbT3f1Vl1&+qX{D0O~Qls#jUcFZY6 z(M@voo*v!p&?*GW@$CJ~VVgx9It4G)6|s$*i%+sP*65Pn>h@>3a_06!*-Umco5LHW zFXjZmm8om}8K4+(3hW%o>ET@&M-;w!)<7_da*h_Mm}{bi(Mc{<&VSVN(mzi!CIHo* zM#19Hk|b%aT&ory$W0=p@oduk5XDN4mCaLu*`OpNy1iWhNExYWS3!{x@^~|~d;I+G zzSalR&UMtk=y4=DfrE80w1m>@)TRdu4H!=wH! zxhTc_3#G(^lNU!mrXhI=X;P6GWfr4E_M+Jzrs&OAs-T#EWJ2PpWO9>3LevrT0Y3@S z1}L-4E!9|2BDi2F)ZF-c(45zMkWfkZ@W~%s=$O~nxo? z^%|NXg{dbnA;Hd6R1cuA#AbM#!WDdQLdg26ltdsC1BIXlTljOG{IQP<;U{Eg{}9D& zpzC5{Dg<)TpKeg;^RJBEch-9&xEp=B_#}KnwE6<7zAMA`wk(T%`va4IM}nrXVm9ck zGWp?ZM*%D;L@UzJ(h|j^ zRp{*i3=9m`7~Prb-)$a2^ zUkWr05Z?a2waJLHi3iFkNJ34q7gv>2Kgdm-`UP$m5}nb~JupjLe12|ZYTdmOVG;Dc zq1N$?`hZpkc`%+TAwW6Q)7oeadba7K%6HhuZ@{P%wb^xVHHR526Rj@KgM@rzNvz+D zu`5oBor9tUH_+q@FhfB4BYCG@{e3!FG7=0{R@M%{eHn97Dx>l`?LI4-=r-Kaed!v5 z+J9)|(KWO{0I*H5lfxJjSj2wmGkf#g*L~4xew~5vJ?65eX15jYr<-BAk`sVWHLdSE z${%a>bs_omAV861q&+v<7`s)FC8)fh9aI*6`G$&kE&duw%wi4A{dNdqNxpB+3+^l%ododCVP`qh1$^e<~x{akMz_#M*H(R3h{YBCTdGU7^U ze2D9|(F705b5#g0rKRq2uuiqnWP|xAxk>-Qq5GKQDt4LR4Hlq%g4;xKa||Dm=Qb-B zfWr)5!0E+hOnpafM8xs+fm6D^rd0Fc_${_+v1)aImq(MsAmjK4c;?FD00f%8wPRRI ze8K|p%0GFq33a=IhE-Osr`H%>H^*WFav^~U2eHNGzO7z&XaERR58u4Pe}T{A!O4^P z&99WyR}$*&`UT+wi(coo7&bf$yjx>wFzg@D7IYy#b1Lb*wPvFfDuuEWI}ml*%flri zI%TnUs#4Yew}fa@#B#X$w4OW498S zr^I>M&}_YDuyM;B=XD>QiDkcXx1EE$OC$j=36N$@3w32t^EbN&J2o(Cw)k);6A>CN z)jz3r?k2%WlqPKjkU8ua*Iz%2-L@{IH9fuKiaM$D9ZO(qE}7H!qgS(6n7t3D@H!UT zXv`kKBhwS&t)o~DZN9ZY4`B(+0^FJ{3MPVLsDls z%)`mrAd>sRa2io#UB&Yfwen{=EsV6<%{;WHqg{|SmTP4!d<(Oc&OF*#s~GKaM@Vtk z#cHT_Mj29!igRRaiSmcjRcopxuc)Fdt!$b5Q+J`MCc93i#Akk zFrSm|5!L*vT=?^6#mMk|(KK_?yARcx`)>*r(qKWJ!L^SUY74YpkY$J0wXb&+hzbqI zK4&sP)#>K^(6uCour;J1^v%axsrilxzrazvV}@&Yd|1oNb#?$z&;mxR#@NUv{Ek#C z^t+X>`nWH~Ap61OXNd`!mXLc$0hjyGich=r;Gj6|oA6(T=9yYrR4bF3+<8__$jY4> zydAu36tV24L--dvKi;MJ_2KGkr%zWKO9r*C(W1zK`O`GDCO;~EH1j|2SQ8O$>}m%zH_2{(aB|C+|9g4%(?LR5j3uGHM5K!0g|BH;JkNsd+Fi*Y)eLvyGUEBVIy zmb{Wu5yr)qhI*>cZz?JQ%NZnW2%wz_Zz`kj$z}vg&ss-7X?pf}|DSUF&rA>5Pl zji|3mRCyrAX{+S5`7$E|`_`AxQQO08ueo^5HV33gIazzVbcpQ2{k$Vn$xKAF3NSAwcVFM#yazB#e3IkUr!U&|CDh%HPsIOvtY06pEfAuyX$QeSaizNT(vEy? z$Jx5hGB-texBi47I|HJB`IUH7|MR`cjm|b5?YApWkt_@}uJT;OFAh<+FMTm(78jS0 z9z0xPbGiolXYM+YO>oAsYmx~3+wx=$;|hqq^!0>R{sclUYCqyPfdihfl>7?2uF}wn z*-bk$7BZ!PH6+z#z9jpC#v{0}>)Ul9_B*4WH5xjhDjdXPZDyoK#rgrVH`*J&ySJWb zCMS2P44(S?3Y4R}3P8TjeA{z~O1_{9Fu@Ey?umNIfr%ncti7V(-rH4Q;pS_}ju?ATs8P;^1wj1*84#72E^X zjK%;^Lc1vlZHQYsQDf&k9g5+0e_f6G&IOz+!>H3BYjXH0It1O9_q6|xV;hP6AKD8a z`e@~wWa0NYR`(No#@SoN=E~pmZCtXvC9IsBuuSI`bJ?ivD;e-8-L`=07-{L>Y`$hEsRZ)r98^3#1ZqQV^2mdEt>kF<+_pp^?6{N%$E?TYze1fYsdwD0U_ zvLVv0uCBZH_u+T_{U!PChllW4=%caaKVJZx$os0Z-rD+j=_)UMcm=ni81@AIsgjHa z)8sPPnrBPJQ8>Uco2HIWO{wt`3>k{D{AV$YtwJ38j5<{KskV<|cE^^1#x|+;B_Stc zw5KbdDdNzW+4nQFv>4h$-m#FA!ik)!hILhcd+F4YaAzO!x?R z!6ARi_a170g)D(Vh*o}2T)m2hhC;!?L}Q=&Tf+@q3~+*_*kqxRw+&rym3OC&9sS*c zh(%f{QuOE#I+3IijN*`%p<<7&ja724xYJ&li_h&?}Ot2Ym$eHBOFC zC9qipln(o+NyDj*c6MlLUE%`d2hpUUvR?Dn>gt;9X+pg%9Zl#?o8J!cSMqTBy-c*w zU=>#(~Jb8g0Lvq@`BgpFnM|=^!8)va!1EA90qk&tgFov@7Y;XNNK;VW&Nq4 zc7M3rZ+D5N;Uh2{Uy(r*-W@9w3Wg88&@ct1-0sRZ!6zPGw5?~Vk?)^EmkrD9?vm+r zXEdZN39q|toIH{A8Vdfy+-l+o+72$BNXJ*#Y%#2zK>AO7DN~3@} zBxHt4eP32iZoJ40ueGUN);irY1fhF`s#IG~)&)??VP0_I>R#Xe=nOWDzYuX~ z&{JmzK|Ej+gab%!C~$%oMqhajkStWyqqVHRj<2TV6B}Y~1E&X)k-okFX*i|o<>B>H z%^31Q=znp4OfX@3UUd~4I_A5Ul=0NAXE3jI;A5Ttno`L}Y{2;FuaYf2^-FVqj|PWL zt@{O0?FU(j-|U zKdtK8K(~?}b%Sxw_E_P9D#(ejzN75JSQ5<_W=ndQWAo5D+wP3je}d-t8cbq6=}+Ab z?Dw8jSvTNwRZ`=M<#mvcK*YFdtAU1w2ElCFdtqhTIv~*uAxL5P&wAqNSXuox z+S`QUk4R7D(0Qd+GRZ1Cz^0x0us_3s;p@X_v$PbE+snxIYxXNEN<)%E-mQS+HskEh z$AB^_gux1lJzd4B8{zZA1qjaam#)oASs|FGy+fUOlzz3Id1nWJZeoFOXi70rJ)Zq4 zNY#z*Yy<$0YSxR3i$G69G$ml$V*u@y@!rQ8^w0Oqufk-cO0LMYa0L1GqByyxJNw!& zu)q1N58V5$bdybI*g_Wj&{D=K(33^4yISF7sy=pqW_2BzpYkQSn}lZd zfH1#`!NgXgt>tq+_0!$#Vn}4>)>(T)Z<;cn?@SxbVDK#z)j@x3auTIdC-E0OGD?lL zf2JMdTd~Vw)hdqX3Zp>)tP8+ogfLq#G^ne^sj2Ja3<`MPqKeA6CRxpoaaBXE`q58* zwM61_OV?Q{6`GtaY`Y3gT2}ak|vs7 zk*uPf(ac19mm|^xD#n&SUkob!Lm|B47h3w2!dR)iTz)bIdzeZes_}m}Dk5JU%uz0Z z1GOlEbGlW6`x69s&+r(-Hznj*rBY-XWq(R8TxPI2pI)<$WMpJO7CNj<9&SW~k@DcP z4D@?kzpW%2OS=1tU5iTqFV`ZI_&X(KNJrwTRkQEbgoQy!7`^BP7~fN z-d>1IO64GD3+OxcZgha+lpa*xGBnpf`yt|fdF76@e;`-wAnfzAMCrAxQxGx^eYVKl zx~8Bi9^B_cv20BtS7QxHKrh1s48@m7I&Wip`{UZ#E&YUPdA7yl+8-Cqq;jIt74nkK zKi`Do$h8}+qNpgNR&{d`+S}Sujro18R$Sg)Ea5eeew)?sv3ZQBc9*5jmV+jg{5V^0 ziKks>POgGHDfp}j8=L^(cW()*`^tJ*%f7xolvdT{&ePes9*HBnOElrPi!1`H#*`7r-ZwqQK2}tq59Wq9Uw~J+WI~hl^iokPW*}CjXZOkP(>IH9?=3 zE8o_K95*f}r!VWW>zml;N?^>gHMku-?}w8_^AC`T2A6B$`Seu*anTxZ!MHi+5>=Gb!b;X^uv3UirBrl@hi{D2 zpkN=JV8bn}_~~pF+l_vbWR^uiaz6H3ma4Gyn^>~>QX=Ej?3Xo&YA34cOG*Ex!9}xe z@0kN9PqeJsbe>jebSlS=>vV0bH|;}JLIPG9GO9=>u9;%PqfV;kj@a+!DA6}63qO(= z@G|+`{ah=vjL-UBYdf1}f5EZA>F;jpdIfN;pwkEauIc*tP&z?z>*uX`Z~gZ;3O70` z9>&tF(K4p{sus5c0z=TjVI94nQNpsRm=a$t6#^NhgYXuh9I8R9uwK~%#|;k@#@K8K z7tr=NbV8TE2ipV&fT2+;OioT>0rhP6`QA4?F7u5=x+31*dz^261-Ydo;`Z~Yq{IKT z;4A1&8zE_{ljz6J?+t$G9v(B=yAx_ZahOo0tBINwH3w2gNkb}oQcX3j&JGb+G0RY#x$>gN0SXajjW4#x$|UpnDtjU)^o)p=c(N6n{ps&L2_7 zLnnDC0&?@uSeoCgVPqv{i*ePcWinBVTXg(?4GQ5Vh$xA=9Ns4!2TsGp8F(sRp2Q%H zUN34Gqg2|N#kMP*cS@lQ-Jb7Ja;$EC|AYnVS!EQ;!g8!aE3UEwiwNq!^=UC?ww>|E z@|rJ+dh3Sf^!KjTXRDx;9`DL6GQ;oVx{x%SjWt=fXDefrvvW7bn&O^ub?I8b<61kc zAW4>)^P9Fd`JtlG#ISM^*~1fU!ei&++@B~OQtfp_L{Ri_9A|8V>#p>r{^*ZE_s>$K z$by#$o;s~L+fvSP5t#nsPKuHu zwvFi%?)pieke@x#2xY!_@svc}+Y8ZenIGexX+0kZ$d1AfJ3&Aj{i{`pjMqZAD z?m12LVM@eCfS@NuQagqdj)6(*MQGQ)Qkh|8OIvL5Iqz=4JDROFAmcb~Y0U+Eu6}upEpwzWX z*!P?5LIfPevFO%fY|ewRH8v0M7;pnP2z@%8^<8fFsMmf)c-s*L(t>eKn!ZVH-o`}S zxE3*>*kyCrl)C0yhGcd6cTMGRCbKNjkg82KCMM5lMj^oE~9@Nir_@@ZT)B!~Gu_ zKa|U6Ld<0WyLAP!6xdY}-tkh|FyD4$zu+WCxlxMS;&LMHkF|D7`wt(&o@X1x=?966(u4qa>nYKCyFCw6dlH;?_B)%IlfXUD9}3IkWAF zFM7ybVNy+PP`d9F?C(~E*k*)xTMx<8^&D1Ps?rHVBTa_ZAMVSJg%4lhSSU9Rz7S2` z_#XX(bud<;S#Rt!)@^2PJ*~acF4FF{+^^)rMtm-|7~#Ix$YIhD-IuT5dE_FY4>j(t zt@$T0Xbh1`oY#FuUK&17E=KAMnxs~S%*<<-g<{9#(ZZlHk>wGQ*LBHoz3gQ{WuY?e z>g@QBe8dM@j*ttwtxl`1Sj=UA8s)>ArZs)Dw)9-<3hKtXl3YbYXW)a@>S0vTdQr(&{#w%FsLGZ-~7z$^8kEuJKmE{MPzs zzEljkMbK=YMgiVh;3LZBCYlV6E*;z@CEs`BHNpy2T`N#Y<1mZn>joP5!A*2>jTPzx zm7TeNTrWai6m}PV){W|!1#hU*yfW-B`UtgVnj9rRI`7XDDQde;I^x6(SWy92(b+Fw}Sqd=ZKl7%4>#u|=p!Fcb!rH^A zRYQg$wI%@A|O1^ zopX*k<`@d`-k8|`Q7)v?psRNV1F6T?vQ!(si^L-JH%Hcq%Uub4dq-}G+uQDOOE%{p zlTC4vLjqK9QZ|Y|Zeh7Pd_{NUHS5ztjpzP6`13U)_Q$^Jz(Ouw9Nr-n607{cc{VoA zq(u5iz}`06x>KXktqlkv$wpjB2r|mZyLt30($a4IdYi`B7J81gU1J0lizX$J5=Cwk zD}>BtF$HZkdw+Ev7D@Z>?rvBuJGM+DD$)Txek7V$a9BJhAuLt)0uEASq9iS^krcP9 zKdqSqMLm-K}Hd>u79ubE%0kS}XE!YQMM?HVL6ut@NS8w-C$m^zcBzz@W&C zk(j0unEthM1&mW!Y_v7$-95e$kNd)#%aHUly-7vxJ^T+1Ao++!vOO}EpRo9Qs5-TO zT1MMs23f39rCj6_LEC!ZnZH1G_xd>CBJw)!FqR^4VhT6dmqbQJ2E_d%f*mju0+>+c zpejOzZE4SK4fS?3?w%NFX%eGe094rra)5H31?Q-wD8b2;dt&q9(dX)!GAz5|!XD?v z@9Pz-mk=h6w74#KQ!CF&La3?JSpmWpZNQqe&vReuE$U}IGc zJAfXAGMedyHhvaI-XZ6Hw(TCidq4b&GHpV>C>VqG&9qp)Ogi#K?}zXCVUqHB&Ng9b zm-U@hn#8-74tL9+tmjEe7qSuf^KmCCh_yMaX|Pt{!)v}#Lzc2pCTPg38viEwU+`rP z_4~2P`6o=8wj$2;+siJ0e}0EgWw7Rx)l|0n;MAAOPu9L$3WCm#=Sx(zg>)|!JT7b~ zIwQ8HOhYyCx4E8@nW)TM0a*&6l&X;t#(EeA&ca;IlPZEc3PYtg=gf+zL|7wGy-x zN*O@Fp!0iDS68aLK3fiuoO3ZeZuhSo{{^Kb`&M$VR%=7C5?yyVQUn_nmF#m0yB#S4 z27_OIi+=YU^9y34K!lGjHn=pkDb)uHb+5;nnS1*310B9-Ag1YPqy2kJ0L2*f%aoO! zyJzkT_l($A!Bto%cJ#Vt-|lK15>H+R#&5)G?2GI6w`}IWe}{bZhb^hwA_Rk9t3cAP zgjXv_nKbx+NL8^yNeo&OpaTr|lW%u|c>cj^6+Fhw&c%T>OZ{NLxc*#TVB?pLY^meB z0R&mL(Sxw9t+sf}%?jNnzw-3=St3u#6WsN}L9OZbCaLJ3mGc6c^jP^iSP+ki(mTIR z2CF`djE-)1SAt+&nmfo5Uow=V7gueduCB`P2q}R^2`W&B2*Vb0;q>G;PHX!YsXVdO zGOk{Kora0E8LhJN_OdrvpjF5djCmxpA#loMr{$pxgWgRJ}9r9LHJ4dLm2?6k_h;0?p59HU92 zhb<>Mi)DiPtgH3e*;xq`X}4`lTYojhl!zx5bE4p2Fl<2?TwF=~Rc*v2AgFvAu}JuN zLLISFJ)mHyS1eaL5*`Q&9w)(IO?zveU_l5_;91FD5)u+7(B_sezrp9liKkZR?t)jh zr{hP1 zq~FD@+`%`$z5l{Ami7+4>@n3P=UWd(l^;Vhx<~s)iIt0D+R{WQCr9D{I7)X#^2w7E|n_v@!QK>N$jrDcjx&XrS%F))ul6b^8}L71U{Q{ z3Je&yzqA`{X@hrx2V7o{QgtHiwQV=;cY0ew0wi){b|AU~1JJF=+O;+0Kg^m06|4Vx zIEH5t#zel5un&b9UNJ}B zJy;IZi(p;cbcWt7ZtsUYKBOsCyP}$mXXsg-|A^83UGtsQj9eA(40o-gRpeT~&!mt^ zK2hD#%JuM4#L8)Jx#|7t9bT@`l8UnF59O^&>j+#r4Z3hVPD^te0<2!>Z=D^~S&t)s z*T#d*p2?A*04?T|pcocgqUvIy$xlu{zgYrfhkLPoryL{IH+M?O~xoGw{8Q?de zA$b0Z`7)Rzsho(Q(N}hpyc5B0v*m|}#PjBeguB1Hl%Nz>dvc24Y_VaXe<);zdb-!=nkWAo z)OLuHTk-fify$uYO3|MS+WvK$D=t9g1N6~K0#`fXBon64Xt1Y4k5kWZp9{^Z&@^;H z%@^uCZrqdtDO>{=P4q&jD1(W#g>9vv?a~r z5z@hVgRfPeG!Gvox^jM%Uy+R$NS4U0H0QAsLTOYJ9V(UDJ>0C9nsEnAKMky+-rby< zz#px)(TfK6b)E191VMAztkA}PrI1aMyULm#eP>nC+t2u(GXce+MlOX-I-Kc25GbK& zi#>b`=5?Mn7Lr{49!)_3hMy|0q|fO&L=cM=I!`)WS9L_ur5_JStbrZA^hDN~qXPt< zVj1OMRFNC!yRX{4PWziVe+r|b)~dzr=bD-Df0ZAKKZh*J`Q>0VcvS9 z$8{K@^6?1B%#2KP5tDcXD~vb>UY|SNob{u-Oa2f(Mf;?fCG=9QrExhc!rX)(iSQpc z(@v+cxSZj|AZcTL9i~7>GXs8`yFCi`^;Ktr^cL9>Mjtt-B?J`|6zJAUEDckWC}H%B zZn3^Zmc@!@MplS?J~>pNTyWXfhaU7;s>X`YF7LY;RIR~PPW&Aof36|`=r`ZD9e2@) ze&pk0#XDU5A`*C(&uVR=0PXPfHzC5OY)G5^I=NSv#Gu`S$6=F4 zCSeek|AC{jQZ5>Z7l8!@U9Mst{m2)Hqh-JMBS<5S8Y5iEiKJcIQcykzj3}z zNaeherOaeGtJ=U9OfS?koc}W^*Zn%fNLZf@a4*)!(%;*=xXe~^bB7;8hhZ}_=_#0J zm_*La%*+fYSZtUA=8FR`Bfagh1}*F?Y-}PRR;VS*4D2O_%w48c7yEzDl-^mc=WZC! zim0!v6KJNP-r0M0jeWZ}V>Ov0&R!Ocogs7v|D(3AN)4!SM|~g*6$>rTVBx46Xn}1DRR+#fNz8GRiiqF|!d!4=c&~&Q36Eu4I;`nL=LG2o-xFrggI@mG%iX{j$@n zu3w+5hJ{!+Fh>T}<5z8x4XS18_@hf#-EsWK6O|v0W2bn+FB;x39s{Heq+J-*rcRRK z>W4z1FCW$a>Z;&b z+UjLSmuvsw0-*vNf;jG9>_jKWzQooYK&uk}du7nRZ`2zyX*o&@|AG+%q0$=ZJA#${ zkr#rdS!H~9$TVKiVv$Ax6;oN!kK#9XN3Q_uT(L#nS&h&RT)Q!~@Ri-)YbyjZ`61bK zf=@~cE(0UO$-ySs4DOwqU_Vf>2(07whdZA}J6z<@AVjp=0*wZsOaC=OeM_iUtkMMR(6s5$W$Q{+&=A?vI;2w>OcUoNS0%B+i(;eiyjC z*y3Iip}PL>3QZX&Z=lWCIEKp~k&k<(JMI&`VxCm2)VSBw^n$VyC(A?I$*K$?Qf1f>eJ|Sy)yeiq&~#O`oZ6fIHT~&Vrwbboh&yc zR6D(5?aRC=L!r8vwFXSZ8efw08+`78AmegD~AJY4w`*EW^Kl3zYFishj3C?v-b>T4uV{vQNSc zm8!?`r#R9wcgTADKv(%-vl4l57>hy_i`;j46Zev!x6#oXcUSdfVSZoF5U&XqPXBiE z@q}aa4sSNK&^I$``GJCw)Tf3;b5`nD?IfAo_VJ0_}HTplvb74eH-;&|pjEy>(dp$6#$0?b2X6!H_~W>Xxm`Qd$ubu7 z&(G>)v7PX!lw>v4p&kbHChe-d4+4UI`6|wQg50minBD~-ibIT!-)f!Ds?)Yi`!b9N zNhCQs^Y?xDuR0hK(n%a#9HMOx*#+Q+yJv?=I31eq{vgn=@gc|j`|$zXbg~ zL-AWc1E$#IY*$u^|iGLNq>1i5yWtAJ46so!GEz`i#aTO z`d6@nNPwkuE88@*WG)UN0n}Ze;e2Q3z)$Bd z69lTO`1Ks6vy!Wk{;s|C{C5$Qot<5Z00$R?icYg_^)spL^e7lT%!QvWdgVPAUXvqs zC;P`4c|g}w7OP!_y*Pe@Z6;Z&TZ3vL_onJ*8TU8nmeQ_nLPb{G6t)ibQe;EVl9*mhAmy;`n>ScI;`~GVz#RNC2L?BkfbJ%wO z3M%2mmn}*u4@%h)lv?K*7p}$U!AsxDYt%3`LWP7*sb*gsUnjQ zwnc*~qu2FzD?T}TM_pATJg9nI*n*!K0sWhWmtemS@TRtZYV>XlT@_ay5fTQPH6Uk$ z__LVzzd}PVCrHq@QhA~WAjm=p=}YZF^#U(+(0@ksM(6T%Ame-QM?RNh{(xm?jiSJ# zVSO7^mqVp-bF7{X^27FzD+qu0VT{%Wr+GR^-nR>CQDc`)8gV?c@c^Xjqlfp1=|+_N z9Gl5QUG8yr2flBonHi9kscdS%hDe`1z(k^+2=k}(G(=y2G$Q!IYB`j7y%qc=tJEHd zTRDEz8&2pDO%gx<+=TzUy!#=okgOtD&ner@`4DK2>i?DYx1F1dQOJ6bLjfc~%;1OJ6ow)#Ysb72M+C1G5K{7n0)2pkf zj2B0g8hhw4-rn9nQ01WjYF2HgyAph1-T?wAn%N_yk;CxL<8yWnyNxh_ef5lT{TQ;~ zwACc8>DS4=!#QoD5Qx`zv+aFwLR7Nd)x+Jt+VB^gHITWhG#)@U8Tp0^6mC*Oo~-cC zNPpyEo7DY57k(`rZhUOwzQ{D(8jFT*Lua>4}+{ z*S7@@p+vqAP?#7ALm>fx!hn4**y{RH@#03QLV?VSkrvM(F{)m&!VAbjB!Q&aLsZ2b zB*{ch*bH&F!-Y)6pZYIo$;wXj4hZ51cCGaS-R7_%&Ru}OKP?uS$?_VVN?us|dz!1` zd6pcyT*@yaZK+90av!!+F)6n^!w&B!eX8P+y(iw4HP9B_ld{aiPxd!NJj(Eo3DJu za!>kUzwyC7Loen~1|4@~`Myos&S42f8~;W%%9!ZhU*ztbWP7?^9i&_!{-|xq_J#(P zIz)e%EAhmS23aL$&^y{|EEajFXMbEILCrdsEv?_?-vuEMC)?>E^QYJ6;|Z4k-jHLP zu8nt1{d$p21wLVSKaj-RE&|U0OW0Q!hb60`pUtR+l=gy%b8q8MBs~kq&xqDHvs*3W zh>gw7VH^YQ5M87B45*(VSSA5*=B)=umcw&B!RH5bDn~Ksuf^MvjLAI6xw%9)OHLAw zmtfW4Jv=EH&Ye~gmf%9W`T1_O#cW>;8I$Q6Bmb*P%N@W0H!k!)T>vVai~j?gT=D8 zq^n)H;(xhg^~&e?0b{@~QPz34daBu`;D1k>3Jr9;+E)U|2#o15cC6njn zc3oKxFc5sa&vNy2V&_@4C(uVC3WFDm1&~}WT*UY18#70=b9D60MOYz-_b>siyt}+Q zUul@P&02k!jL}l#ywks6+~j^WZBBCn%@@T2?C2Np1@G6k02%~1v5~rkMWGS% zwxW+sJ;6Jox9x|9Dft90Z)5|309)7EKUAXh42C$H<>*7&N)IrGInq9it&`9LE6+8S zMGAXBEdO0!r$pOA(NbH7St=G624Vtnt3p6$8Lm_wK(_8ZH+vg+wnV4x$gvB!Ah5Oj z6Iyh>8X6c~Gj-dQ&P&L<#-%`H{#TyEtK~+ASEKaWSyu5LMq|-2OnSWXEdyU$fK^JE zxLdfrc{TrqGIS4z9u}YAJ7~%@fvw$N1HcwL#Np?R|mt27|bD~d5ZAvC$I!Vto+y1LxTB8EA1B? ze^;pCCywb0MTTpzIL@;iU{vY-uZ}qaR~g7{df&(mxd??ypnr^}!GHZvPLt*3Az0lN zSDMunkfROKcl{hfxJrSFldG$etITtt_`mNh0^ITc-wzALQ3}D60|}l;AThTAVB^!I z9-zymRORU0xWg0?6q!m6IyP6w5~+b=gU=OQWp@dG5<@5?0Ek(KR}9;to3SKM%y_As zKQ$1RSn~MwLy1PY7|3@vYHSdhLM}QbBqYer=YMrvh3~@v=tUTa0-eYx!I_Hx={iq; z6CppczO{uur?PPhiB^oE2$C40e9!HlU-m|3J$dlJ)EZ>H2hNIK>#!bAX9(#nSfYxC zC_q*R{irsR&&|)2QF~oGvUrdTLyxXJ2&Pc4j*e-q6`nBt##qB*suq(V{3^is^rd44 z)$BXe-%qHb!I7N@TI?o-PasYpaXRV^P$XU>l|J)|gb!f4BWucmwvN)jca>{pG&VJno_w&+Tv<}cSU>6s-b9NXthT5n#%B5(S>u)KH@daH zIYvV^M+$K-(xrqeOAh9pFITphhovx@A)oqT6*OY*4a2b+Jm7Qeoxj<4|*(w8F+ zv6*xRFFn|cLUn$S>C|3Gv^tqdHXxIZqp;(Oo;}a>zC$i>QRuH19Nt)7EjszG`P$Ws z_!W!?YT5Z_5750nPym1H0rwmpq6d#c4tH~NV>n;=QInO75K8^JtE*|$-fg@B4({Zw z^W%PB*@pHV(%|(q+w{txU?Tta?krMKkwbJsZauwc?cCP29KKdPu8m*URw0*nE}!KB z$AP0vh!GT$cDT{H2LVLLnupCdgI_?jsXD*XbQG_#IjIMhSS}zuT((dp3Y(c|)^;An z5>R4o7ph-_&=hnTVS-h4{l}&yeIS~cm^|oh&C(6QH)yF&R$x@!$Xx3UMPJ&FB}fK3$4Tf}vZ4&$uk3HZOGgPC zf+i~(MyA)dt*sLkU+f0HB@mis@87G3sSp%uAd(|&4^&B9DpI9W3+yisAuDXfK!)lh z3|K9+qd))YRCqx8fR)GN5F)ijz()?2p#M&MCe42H_tS=yG_pZ^SHP z4HTfBZ7Hzx5;7F?so)Nz!c{x1p6J)R^=(X>GFKVkR{K8 z&Jgg#1I4m_puKVmQd|2G3d_`HnUCQr(SFJ2{O(WfjqE(?62XPpT?OD*i($UJJCVS& z5O`MC79q)!v4{(RpY)#7UyenBx@0pGGo$^j$Yz5Ff?&!3qNldJnK53e^|_Zt)-F4% z{L`bmf$7N=S+T!o+L(t;G=N_un}va)j=Q>8jWFTD>A0#@s};N&ECx8Iv_i`)EnKL41RXCsJD|A}sLD1M zs`4WX5IB`MUqfDx1Pi#V;3IOU%Yp~6M}krin=At!LG{x`p&~`gk=egy=&7(z1|aGKJ|U4KsA^4+PVLNpI>vLDJHZ8}L}0YKvl3{W@!> zQu3EEu|uiHGqm(KSs_#1D+4t3jkoKaCLwE1h{SfeQR+J{=d6CKNyeCpk{|Ugu`oEF zN9RP|(-_pz1rhT4eX0J`MRmILa6S*8+eFvmJZsb4`SO*>{+Rpoa-j!W_>q`PBjUi8 zorlaf0IihkN{y7D6H{vFdr?q%C`)y`CgMlYxHtMW{>}fILbGgN z(98Zi+pC2?Ok(>?dMqa;6{UE=k&xxwnF85Ye^#~^!M_MHguw2|*1|$Iz3xsEW5VHd zVK5!dw7YEG3PJ4M@OeRwsns162?W|{mScqKzoT_tQ6}n@ysIXKkMVIrH=IcQKj#?A zD>xJM%oU3oQ*p~5pxzy+>g@uii{zyll@MYD`!Um;#Q$?ypm;&o>VXbM?f-uAZ~_N| z4{dF_&qv7rz6^FCEaZ{@_n8LSPX(*`Oi};uYrq?WdF>Ts#QyjBLEgt=DDA6z6A#41 z0#48u2o@U0{)TdqkA?EQyAro7f{}!{-1vTz^TAsE*6N=2Y>Pert@DMFJrLT6)P=p; z=nC7Gil=&W|L|aQkAeJrP%FuTA1~Y6ZgEQk#uY+^(B>O&FyGpNd5jU7Mr~x=_5rP{#`nwM|L+mq-$?_< zO3@am+mYdNeJ^e^z@whF>un1AWrSZ9;rLdcH9#p`5 z98P`}!{_Fh#^XRX9|DAcMe?WeW0}DDK6CHue5+R zaPLbr`i}$8$U#7%SW;S+2jnZH$j{BIE$E|GnG36IA!v&?se0N(Sr+Ambn6 z2>x0w!8>9p$P9JC69{qyXXRPtf&(V6#Vw32<@#n-B~dL2=FMa%wmr!G!C z#06t8EvDh|O2+;3MmSN={!YlEourJdsZf#+3kX;Y=8q2G1IIiK?)hAg69QZ$rR6zn z!Y>ECHQ3B2x?Zh+n1oVmEjA7xhWB);zB(iEe}-l@Xy*`Yo-M8`)XfdLO@oCzix3nk zy1f+QF)+j1peKIZQ;>LGi}ON;S2^M*j7m^Pzf8M0rO`MFHHf$RzRXgj^E!9eN~6bm z3?m^iXyaH_z>;Ry{(CIQl#{=~>w^X;fZq^070HJ*9`mP3$^PRqnhYpnuwV@-Uk0nX zMiah=0ag@9cpPv?M@Qz92v;(1OiFiwVN0P(oanCZ0=Xq)+^03pTj@{8#(WpdMb72s}i`su+-N>bgJ20 zY~n}3iy_>ilZ?h!Y3t4lT1)dwfm3Y4lrN3tL5+ixwye)Glg%I4)F6 zU7x)U%l|C;P|+^({m%DAB9*I|H(1XZ^*eAIK5zT-&@+vQUfhC-AbZiwHY?K}8; zEb1Apv=Mos6ZDGbg|E4W>nkWI7U6a@wxJMI@`#Q>`JLiH(CzU8bQ${5by5M-L*2@! zfMN{yuU}Jbm+sY`ewFkE7P*l{T{T0m0L=I;t;&yx8OR+|ixyG0NSc$m)|=K$_0?i!Bek+CFJS@{5hdsM4v+V?u>9KDSh z1KuP9_FWA{pj;;TdPuMc;YV0A=U?WpvhcftS$9ecvY)MgMYm;a9Bidt4P5LU?AHz4 z$sG%`Meyi-DlniNFbxuXxFN@4&wbSueN2-gKZkajKOM#?FXMbzc|$a} z@#P$Axz`6xYlsB%^lQjJk!D;c;HXPk+TpsubM)_aXArcvn*^JAgH!K4N{CA!cOIuF zRp>NuK?tvpJ7@($X+dw91;s?j`mDfHjfp^*Gc>eXcxSR<)l6K02jdg5E-WuY74p z45256oKj7GT6$@Rft-Ls*3=rEl94ZGI5pEmf8y-mqck8iWG`SbNna(1#?5iJE}+7M zv8`qsOL~CBrhogidwDW*aU#@1IPFyg*fi=uMz*Y+BRPwGt0Hxr9SYw9oY4IdJ?!SIub zll&IUC+DPi|DTt%rmRrn7;|qy{mAC_yyG@q)LOegnm2Qwv4iu?Mlf+Ho@ssKOQgFy zD}piu*q=X>y0iN)CzWJS?UoxSiyt>^@|q%?!lw!rFy(T>3|FU%vI6}NNaN&?G5PpM zM6H@j_u`-!SXd@J7|CFPn0eoPT;B*TJsY)bm|ZXML)Xl#o1a9yH8%OR?alZ{IGV_~ z{RtIROR34Cjfug~ngbJd?$plnD#)2-NXBB=`9dxQP#wAKM4R&I?Ug(}{0tW?GcC|+ zH1sW6&@p(z_yQ%*{)eo|RIL`S+k8m)z0IcB*7EF=`Q!5Y@yw4kfn=^Cei3u&Z~-uc zOQO{wPlsXW*rTE)^n*`Vhuo!=f5K6D>@n5fX7InAJulZ>iKmc9U_4<{!`S3Cl775B zL6zh4g3>Y@@0sW_AZ;-Dl?8TYF9FokqZ^SEfRG_Uv(GQo37I(Ar$>At^rS`|eaaxtg`&|PJT4;?bzpHqLxAEd# zv)zbSG4N-tKrYBotSV=acK4^iQWJhYWuy+MK#*THM(MTW$TyVFYqh{kfB70|Qi@am zMeqZ&rb&d3ezjI1<}Ehutiv9V{UGLw53MTBh$Epg|oRsxn zRz*!?@!~6&J^8-&mlZ@KjhOu8vtsN(D8mV6g;Mf#QHOidX+q=gWQ|!bOwHdJeW=4R z*-C?c5S*x=&UsP^JAn(C({E00wAySu>Pfno2LYrDBa~pi{~QsT0UzUa6X@kWGu3bk z&0)QFUy>_kMdLtGIwud>X*3bxleQu0)=1L{+WwB3{4u99olMB<>5QDP^~#MNo4XJ- z<-57HHDUl)ikEOtd4C#9!#(dsu(iS^5t!ENopP5Q# zWr!x9nMfUoPZS=={bLA-!?9TOBON4P7#d)Y1pnO3h*jr{hiz3txFL5C{!6nvd-p>w ziYXKw$E#P+>&a72hiOL^-28n26OmxG7kJJ}Rh88C4+7xPQNRb%U?Hn?edMsuxHd%^F8a~!$69UJt6 z^({&krb1_@giERL;oV;wsx|#MWRDFX1pQ%}-A3g!+~PrU?*=y! zJm+>5M-Q@!keARG^mkKzVWeZD_=A+&zXb13L?eY(6qDTsH}o$! zte?!oYqvTLlTy{Z5s5<8At8Sb`91GAT3cHqBH%U%MLolS$NC$f6ER()@fIG9qVj8q z$!3QK)%wTEtDU1YNg4QM_8~wmROHwAkgFKHtG(A78auN>IG1mvTdZ0nmn`a`_GxZz z0CqgzUZP5s_H?%Z_SCJx_GT=Mt&bFWFdVX0f?i;*;?$_6(SS|Qj#8+b4J0lEy9ehM zaPIyL``#<(G=$J}iHBpoxkd|@7935QP{kPer`)*746pu^q)X4>Exu_){Bt9%7 zRyJ)tFybKJ;m%f;U2AaO6w_pIx)P6o$6SV`k*Cyo0$NgL0dF#E8C=h3IC|%Vg5_D zKls#$Rvq!PCeRhZOu!cR3Qc${i#bZ{I2~AW$*M}YU%43<{OHVmWEC5^Mg5_(KnnFU zRzt+JQJor966Pp}Y|n&UyD&2R5&o_Ynu0!`WHez*r4WWw9bE@4$QH#P@HkQadgBy{ z2|w;!;Et55b}ciwbwlHjS*#_6y?>3V&yGbDAy&Al0S|I=94X_;i*L~ z)v*1LEP3?#5 ze^CB%+mq~-F9lc`rKsUD37duIQP{yE0@t|GKjo@VQ^UqdIWotLP36M+ncKGw(6(qr zA?ovtukS+E_IBF73NvQW4N+3gT@FMu26t`;zm4I5F0rVTs8EOtO}v}kuadjYlzLqM z$7U*$5?+=MbZu@#F;*uxi%+>eX?W&8L=*Krg+1+4P4T&NO($U3ssvo0c*0JY9Kvvn zB%socW%{c}s}P$&7M>GiPSXAjt3l?3#`i<|`>h(UhZxT*kGxcYki7TbUcBI$kQNhG z#oyoT?a?Z_$Vbo+6YB^grf>QhE!CMS-Ht}ND65OB9OmdQ!ca$ zIUcba#P${NXD{Nr5%>J;*Zb-Bi?s#ZZx8$J>3@0d64+8og>10B#bnG-GJBw^O-gGH z?Tf=BM3dBI*F~f5{)Nr#$N#8xe}hwNCMYqetI+xj$FuK_zpWIckpf#uXeSU5&;A3{ zXAAo=&+TFmi4lAgI&SxztaJa;itQPFo=1vOy>BjKTj=KMSO3 zy@Q1Vxl-pl2u%CGH%k)&cB&nx@VZa&PX=e-yTK=~=9aG8BOVCX2FH%Hl{;>1&H>_mmGGmAe~k zmV&NVy@_G*W+b_WPVDcm2yceZxvW`Socrd;@#4*#O>f4&@Xb+-pu|7oKC!Cb?X+vMOBQj|nu&UeX|!=$1)Bmm)H6eJ zIkSeN)+j^^q{C*g4uq8>il=VA9`jXpnQA@eiYa%m=ZaNP4MKE6?kGzN)p#ptYGf(e z@RIIrH0$wY^^M}qhuNJUShUh-pxVaQhwOW6dSW`NJfm<`WgsVCpF1oY`-thQ}|_#bX;!>%}({rZF!nWOfZO zohLqR$Ece0@$*-{Cn$fBN>-YV5jXFBz|)SI@AjFA87aQv>RcAG0Se^tA*GU3ZMp68 zM#R|o%7ejebulnIe?zRkotVFW2oM zuZjrPFdg~kyEp@S=pXM-1U%7*hwX-rl+(+<=F4mlh8=MTuoCt1gv^8lz1#6ho0Ll?L z;8Ia8YYG+r+NLV~Gl79tW|)9`t|+v<#pOHWxM0{@M=bd1f8u^K+II61^2rtJf3~P^ z9Iy578DF}^Q*<7)OGlfQ)!MD#9fxAJoaVy*rNufSRZb&ImqlBSjr+M1P0(eO!VO-F z#1swgC=Zi;u2Tz=RnC|8{}Z<@^q{^JhIxg5%PZI#C+XMn113XE=X6cY zjq0)HX{mwOs+Vy?Ua8~b18XRZ`%Ii}TN$@apB%iU%A^q{I%UV9Pb#PUsP)-bAalVH zS8I`!)8*8V$=4^LWGzYbw%1~aXi`U)fg}19xF9HMmCh+pd@C=N)F!Z7gaf$0PjG@V zlR=Z?H-YBwl&|_IPH)>*o8O@g@v60|G;icGE>*SZGpb^9hs7Jo|A3^{a!|D={Ue@R zrC{caNMDvsxt!g*rD0kfTyJU=Bbd8>IxE%s%b+#`6MCt<@~S#4zcJ;e*pf)!$|SW> zfPvo~`877PXwi0wqLLR?I44hDg86L3bv+jltmxEDSz||~ z5ZY^{g&5Q|dq9=s&D!cP$k@L%x+#J?-UtRn&aB3nJhG52R0;13{0fBq*N?E6eVsFQ zS?9R2HiXx8xuoyH^0MAe)_T21LD=q-%WII_g{2k;1KZT#j?>fB>VF&jK$;Nvd1U#Ugn&AmzkRjb&op7RD7On8pR*T-%aVm*bkD=+$))mplxz0?_d zag6OR+&01z4$*(7+F*eIj(;gGyOHuOThO)!>~vfo=B#ZefRQHvQ;{XJ3kICBlaipc z`PX=y8nU{D5>O{Lky4ML8|y zpC|m2f(gSjf3VMH2-%5E~5p2I~s&Ag4J(`ax&LJ0Ys{_(8V`ft$MlF1p0YQoDjlJ4Eml zkme#CRHZer!v_9c8Aj(Rf7dJK*_$bk1c71O<-62NVJE1}xMJ%^YN(C<{eQFdq$`6= zOb8m_;dV_UPd!78G$|iDZ72*JsE1$=HaGnMlqZf}wf9vnGtwEGd1L7nY%HhMY)sH5 zBolxo6H12pzel09yig5c;o6a1JLN>XxC(SgezjbUsU{6=y`=<64aAvNQDzxwuY4_F zO`Oz&LdJrA$mC>bfLQdwketlG^W6*oVC0_9L-!}Dr4v9=x6k#I(TigCuOHhVj3SnT zI9>;%(sCtCMoQOXo86IGJ(Fd+`+B>9x0D_z8f=2!@)QK@RP`E=nN0+O^Vh}kQi6X3 z)3>?4oBHZHk=_LzRzb1e2`bah>!TafU}H&nAp6%%k_`oRG#t{7aNm8Nu_Jq5yP!Weiy$%yw9w*e0OmW8g7(d zMz!0?K-rK-g;-skQ1waBDte`_!)@+x{axVOBJqE_==W;PdD#bhnr?lm{H2;o95&1I zi`feRKq0|{pXkPqJh?T0-rwB5Ek={0$p|+($ba^m%W-e-p-LI+o$Q~HA3wOf4`)iStMAVcgMbm- zjggH$bqanhbalhXWJ2cL#RSFXn!AAvg$g8#$OPBfz#92j45VN|CYRNI)610)H2I)O-QMk+L$M?qCyh{p7`MZd+ek;@c}n0Pjv+!sD|D*S>7W`<(AuzA%The5 z7vJPTQdAs3Vm_1`!=#mq=uR%KKlk$GY9T`yC2&n<{mR+afW4q~iKPBC{JvWcEnp z5Ck5B0)-X|k`G|TQLC$j&0rAE^dtZIve>eQJs8g{*iOWOlF!f2n&YZu+_ooD*{J;P zw?Q?u@MbD1x9xO5x;bZEg=ZMF@#+WVs-o@^Bxb$l0MG`<{$7+tgpc&)0F_YST-9}O z4PfYivlC^)qy8@U?C&JGd2uxcTBqrLT<1smE8pMME2Ou!Gfx^NMJZy8lf_cD#F)!x zX{y7o)|$UCYvOUJ5WBZo)`u?4`A>{)zFg`(Br9(WFt6i$$cEg74B&tvx*8;N$s>ipI0K?a%TPPj4~>u!m??qeZJC7wz0HeiPBj^Q4s|cPhsDlI@hU# zvb!(c6t!_&FAu%2(+=goE`B9b`7XOU%NY?f>36eqp1cW32xfE-S4WaA4rU?Lv-<8~ zRB&b{Y;|9p-;91I5g&AH~9@jTBg2S~r|X)aGi ze^cOzr(?w?yhLC2Bir9D1{!}Yq!Br(>O(NqMcp59A0Nh5tB$N@Q!Wd@MxZ$6mupzZ zwqI&6!xY)SDP-X?lMAh;Wl=Fgf@~|C`@np7ZBa9>yl~ zk&whSxfPk#A563w18I*ejjR!er$@Eq&L*`RQP^F#B@(f8D>;o#&Zvd0ZB3&CfrBV(OhiQ8GoFFFA%LM@8c+%hX{l5hnfZ<+&)okP2=Y@C+n@IH2 zkxid04Ne41%na>kS6g7Jqs3>fmJgqmf6Xr3J23H75hMnbGU*?A%uPJ~891 z#@8frIE{!Pht(DnOY8y@K;ea1K3!w{Y?Q4I%YI__P%D(T_#ibO0~CLaQ|4E~Id{{; zww$U+7vqHL+U4s4$(%M!e9Jb^T4lubUVq0deJb02U&`MaB>L>DR4r_dX+5Esi^~s5 z`k;N9D*!5xRw-oAgKhd1gS`gghY2a;s~ex*P@rWA21#9B>3q>^_YsbhFV^K$@z8Mh zR?C#Pt^mTijsCZK+Dn`kwnVD!ETP z%iq0GEmnn5HhSV@y_z*{n-`xW_PR&Xx9GHPWOdB4?${>#RPb7DjtXdH7~9%>4YY=T z6T05V%Sif@y81-$>w|Zk(4!m?_v64CsfyM^29^+y@5bC|Mo!A7I`E^8Ao)(>iE2Q- z&er5K%M3R8L>b1S`mPL2&LW%X)mrk$jt^5DSnT|-;yNnR*PmmO_te=;aS*aLOcCOZvi zY|6D2k4rs{-+QaosJ{3$Ua;6gx$f>+wR){ziy!tu(X3{N3Bgj@40}^c2+Z_+cwuu_ zf%C-NFTF|qdDbHgsWe{y;8hgGZ8)Oy_mEdnOD&C#%LPoAdGf?O)2ng6zn5y|fpJN+ zBN~Y}`po}}i~*HxdSaM? zKFx#2A4co|uSS5F)H2`T+i%r4ME3ZhtGtsP`_-q}2G!|qA+yh1mbvTSFzex+hLlv3 ztUUeodh%oHpVV`aiABcP7kO5dN7Z%GI8^Yg^I9zGE#fWy2f9I+0t|9{>HYy9L?+ur zlKh@sFMLWOo)zRqC{%GHs{TciD(trvT+Kpu;uR#kz9VCrc5Ot{9kO?CF&NLnV$Nx>!=jS-G-_EH*19XcTqV+{eCrswd zR#4c=Rma@sybqi-rUC`M&!v94Hxe6$P(uWa=e8xmRHHCW1=gf{6nO9Y}Q*y7iDQ2YEI=5Jtb zn|1wB$9qHDqVGs)GZqm_zzEHSw^QWO+i1f1&=^!oM-lHAh-Xj!PU|M@k;YaPs_7L@ zg(1!hg2-3V8&A4ZaC*m$_q-iZ6m!bNZ+?zv(aXlY1(~V@Z8kCMRd;7*7DjYU_vv5$#&rl%Nx~l6V-s>KY^K1-3V&A;z zr00P5<%&n}!;HA9Z60~sruVJ0qW7pHR)`>*Y;FtM-DXDbkTlEnLf^pKD%(|rj|Q@E zepw8O&%g#%od2+NyH3r{&T^2cs@iEbO{#(&$2*hexJ>!%rGY=3=Vj`ugCBE4#VM&R5Z@=Z?gTUw7Yi2>y-{_B{EF zO=0b8$Si&76O1i$vl4w)-heYA-&9*A9R;5bB{1KzExP;m_xe&rd*6iBH)Z&q*-x#9 z?XhJm{5N?&j}H3z&^s_T-b`m8Q3B6z5Ij$=7y%^%5)8`F@btI|ed{l*%n0&Uy~9Sw zy@L&`;%3EC#x;d=$#bnGyeIf;CGveoXYPaMbf2Gp%PIgoVZCUo^PPGo&HT!<5Q&77 zxijfW9#NCOCpRtV_)Aq z(l7O>I211)o}cVRS4iPO#hgodzk7S_Y;I4Xw16wXZ@uC@`wKJ{t>OTjeB~~0bT%E| zKleEFn_iNz=E4%9sJ;B^8e1OzbQYVgIV>KN91rmxtH<%7elk*RmC}C~6*DHgIaz?# z>bsD^MS*Lq+^gZW(zAH{H^lJ;<%CFMSw#S9d`LPYFmYb~Lh!l2gUZ1xkw7Gqd!XCj zm+&4g1U3|zjsP(jGor)csx0BJGp>@;bIN`ga$@Vp5aQ_GV|kJ>)i48XIcKFWKK8Vi z_clZQ?!5W@{u|V#6HR7`;z{Pz#r|r_ie~9!iWQPqZG+6l7n%s|R|Bs%08b9d1m7P| zb)vI-USAb3s19B_?PUsA zS+8Ths?focU11c39Az@^I%+BR_t^ng}-76JqGoDIK@w2XZ(u zM3C)ZRIpn)vfVll8vkxp{q63k`woCA==5hHy8bHgPvKVy40LU|zI=`b_Arw-vRX{xCAWMM4k#_Z%9u(}G5@>Vw67#M|tiO~UCb<8i1gXYn za{mf-c&aAtM^_%g=)_B~K|=}M78(*ih4xf%8T1kWgyy+e;E1AZM^b^F?-3~u{qO{u ziW|%z5pZ)CeQ#bzqzM>H&=VGXSLGE`PF#=aQDEDBQf`3ZvQ^)Dk(b}3 zUm1M(78HpjkOFS(qDOJJZ#^G)y<7I*wI{?nqSLn z?gLg^GMr3-obTxu*x>L^64;V|!B3QdGVbq3gMkO}3^|)&-&33q39s>b>z8s1_KC9= zg1E8&F5?DI{ilqJUm4dCtZLm@h7`X;B*pJKkf3e9$-Ayu?nhqXZC5{45_K78wS4v^ zo~hCiHZIp0p6j@``o0-(MNW0u>p-ROZF{?DlZ;Bl6B3Rb{i*UZ$59$qi(Yf+9-xNl zo4q?(O3*5$HzGg;q8HElaYQ=etP>rSy|Ni8MMEXx3Oe(*HzieJif<$E6F#JJmdpC3 zWo2c>CVfoN4pNgb4<4llqi(gE-JL8I+@gVx6Nehfqmj!se=W9;jM;7VfVb68^<^Z6 zN6JxMW+N0Ol_zf%Zq{(NgfQORKpJ>Ima<72c4`Z1$C1AQn?w5sw+`xxRzbdax@@KA z*46VNx$Mq`+D!FuYN*UPh(0F%-uSxmp#jHD76DbEl$a=2V**sLQHBSWwze>^G{fl{-(Yxpn&#iAP&Rv` zmU0@rwM*ljc3)#*N#+b*X>{y{S*dPk>?h|;OZN)>fp{bRw4lo5a1y|COTl1*jn>MO zP%c&@2X9V1B8y~0=Iw(s$Kjjc2tD`q$h?LOI!JJOk#+6*_5gIaa8hZ+Wl=cBq#baRx;fb#E=JAYKIn*dC>s4Thnw$x#dkF(?Ir#>vvB zucH01gW=;OYpd>RGrskFthkW$?$tvxE{h-PEG;Np*OG`;@ppdj_l1 zJeDao$?;-_r}R>{P$4zo02ZD~H27hr8vaQ_)yH*`ZE*RO2PG+K$k6UC;L4#=D>r1P zIN2>n=NQuc8dwwXT*urE84N5y684G6uhxX1h}$qR47=@l&+-hgf|Ce-GBv)`J=qHP zrROgzRcHJL#}M5S4RMlBdMEqr%7S0NEx@EWi>_j}^o@aoVcWxj2f;HlVJN_fa}S)D z49tqL@kvR;%E{z7~aZ zJ>zlU$gIl}&z?|Gx*&m%pgo!c_DL_O2$2`xsdFXg>u7sDtMbIu!;59j6YN#dBi!p7 zx!D`e3PHO!XUiL^72}~A26gyTQp*}>BPB41=~~Z-`|*;20mp#)jFHU- zU}uSKL-<^m9eynUECh5ZG)xLE#8!_};tD@qNOv&yfJQrzU-6ohAGXWcZ@$1SYaMvF>Af|C;5|jZk?%u z2?=1(1q_s<6B>dAfC=J;!${zQAus&MU&+%ustHUGtA8o~8T6P>Q0B$74vLRU4JiP> z>nW?sV~UBga5uOuF5Vx8M<@PP6V*AqrDY<3HGW=B&m*CWg8k9v1{u}2ra+T+cZN~XT~ zdO9E&-Z%Q(%c5V7D=cI{z4+*ZD)W2PsBp9T;Xd{=wLY8aN?H!R20!Yy3v7hbU6bCJ z955R+Xe{XldSqhSz|RIrg`7fb95Q@MTB1SgsbbT!Urpf!{Kj2xpLK@jt2XgRzVr+! z+MfA@DhV^~X(U!yW-u)wOgiw5>u3TF_ks8M(b+G+L4PcC0f1vYCQuRmVBP5#^tf~FPsUyPQE`2Y&;-PUv-)N>i@Y713dy0)`}AF8&CZIK9uN8RrL zrtXCt{$iUuL4Wiao&JZRGn-9yAow|y6uqJijyfhoW1@mQCSWX*231CtLr ziCs??yyxO0FzaIcuP(YJ+4@3zJoG-w;L%m?ESx)A9A>hiNvMgEDkKt*e(mczP@7iRm=F1# z^4s+eV2~U*g_^|e@pCo#{y_e;!D(M|ibw*SZX$>btDH9)ZJ|I~lE!d%j#Si()OxWY z>WRtNgb5~?5$>9Dj6=bVw9BkY>h5_JeP42tMPp22jhcExFwc5U13p?HhjQ2HueVxVqKO2~a#dvdvC%(l>gCyl5S^r8U{#>+9OG(2pH zZ-&PvJT~y%FiJ7ObyrbFXzuMHe%UH52vOiZ zm+@!Tdb1@{{s04~_@kzhFi_OU$4_je(ZFJLc#Yy7*yDnm1eB=oJIyLwCf=gTpti$oil)x(nK z6}@Ygf)R|GQ>*BK$uuW~^?_i9)Z52dKmg!Dyr3G?e7I6DZks~wjh7 z;vE{FAQXi^Wd>2WN?1A$)KCKioBdyfS-Bu_`Rsj6{y~E&P*|0$Y$Hlvz-j&Ygd+Xh zLaXZqN6=>qSGT5kQSx>S9+Quf?lVnos8x(F5$($fBQ7|b2~S?fFn~`!{N+XybVkT$ zxYcaK*=BcD?f@#-E|Q^{JQmm!d#4Gjc$4bZk6_ACPzUi6_@Ku(R8H@}x~@v`TQC1! zantO3Lgr!j1IbnP%K2>H_~l5(3~kYnehX=FFY@xwz~Im6<5+5d^PbbdQxrg+_7ZIV zW~>SQKo;YnrXIOZ!q7dz4UV2K&8}ktHs+Um+B9`($9y?;u0V%eF=|1IxpmqDa z>ieC}K-5va?xe)Ut|!E^U_}Y=gV!+9+OBsW+QI~c5lB$cJDfa5^=Qz0fY^*YaUg%R z8bssz=Yy6GS`U?ERiK4(yX)OL^8bw&A-@Z`UOtF!3bv#Ogu5u079YZ48VXq=-VrQ< zQ!sea?e_WiUy32((c+ff+xzvc@St%*<M&9x#3U>_$i6}L4p+wjHE+&?Ke9=hyWn}9ZNG5BLj%i!mB=~|6V@0543o( zngW=7Iv@K7#rI*^*)$&w+ZTk!EWTzggDz?(ezeV%6MNu`+@8|$_#fIt%lDtSq+ApL zK>bgPHlvlh!v{t9jEa;L(UhJ+JTHDZ`!eIv8F^4IG&(Vw+^tOhGy9+ohwj?^VJl9p zG7`)L$z)(-8ORSt$a&-G!aQUBR&Yc3-c5mNSlQY4Dhi6)%agjECoskSajbs%#eQp& z{dXf((P8NtlR_@BX<3;qr~CO4bB#`{PC7WxK4>_v;Ghh)Mo!CA)hAzz7vN8+&OQdKU<&}3)))ep2Q?IO#e?_0R1>Lm*FHv>o21v zBI=V56u%!y2MV7u!#{^#q+Er1ah!W^&Q)#E%^!^_b@_@W;Uc|e7c8@Z1g_J+ zRKV5DP_5CP1-(UiN1FhbUoP0py$h_p4i} zR(z=M&*0ZP~aMPHf{ZZKYKkp#M&l?1iwK!T)fXe!pR{;Mn(I92?1y6~) zIg;n#jvfx_aHNUb#d71MgpF1=th;g(MUT?qy{cno7qtIe_9o1^oOd_an(*Y-8XRMk`VP zay}ZA5mNRJfFhB&*rJ_o-79f0rtVKGVXio$Qprh@MkBpb`F5j;)Eki1-R;9ROZY4H8Q}n zMnps$I&}wiPKNA(@@rnZg*m3Vu`*r$Jhy54^_lMjp*od85{M@Z`*mMC0rngYgoA!Av^F2KZ3Fi3fgm&?(o-pP zC0^_!9mu67U%O9mG=Ko}Y^$OjOr}jT!fCT#Mg*Lzp{b)Y5P`2d0qP7px+SyTm1gIm zaA9Je`b>6=Un~0CW5J@eE)AgNfH}Ni|9f5G|2?XJ#YjdFY-hNzR$y z&y`Lail$2dX_*7{;Jjtx=w*S%I>GNN5J1oZ-H5+0^XJ75*iwSNmahkBx?i4gf%wU2 zu-~2yAB_ZIShjpmQhw|=m_n<4E13fd-oR85o?;(_iDe484}G~577~)^jpKW*1Jbka zbL&7A3d(pP*$g9j#1b(`Zo>N4_tVUhUBx62PyCAjtB zte_Yji3ZS@&u9cOA&LBn5{<#Lv5xG~d_aN%N&(2cu;^z@0CPkLaCKN^7<;i|`Dm6g ztKgC6Ac&_SvH)FwWDMeniInZ)S=3kGS z{qB_A$Ze(#$;;b2(yIup{2-tCj{~+~-r)9yauii5y4TT|^v`dFIA9Jn3Kst6SRN`E zIBfEWfJ4LsonA46wAJI7dm(vqd~J6ZTVYJ*FEdOct`k;^BE?1o;`k2(ey|0Gc8$GP zkOlE1FQNgFzS>K#22>+d{7No_t4Z;BvY*X1rj?XYNNmt!_3M=U_a3}KCq`|sF{@S{ z@-H9U0k9+n7^FhC=+wXe+Fk@CbMNhx8Xx@o>lomd>_+>yc(}iPc*h@b8s|3QwXlCX z^?#jv3mtT2kb!;FwgqD8g54Tbr_BSD6Zt3;B_aJB5d5%0p-|H&JrV$P^3(hbCel+v zy{i7gw?Z{Zr~u-J4%BxbDXbWZ1D3x%jy7&~mkmN-FmOwgcy7SC=u#|ziI>l%)Z@3? z71Tq$XRmt0NxEleDb6Dr9R3^}^98ls7S-r+Gw%4BB5ic?fbjPr+FYAA1(*`Ur}OC5 z^eEF{C4nHn(7cR3k8V5aG_W>6Da+F$M_ePo@GL%QYA7eO{w zuKy(EV=pi;KEfIBMflmlN|8=2i#5CxUIHK1ocG+eorAOjEjtrU%q zHkMl!^zPZvi&!BszzBINDk^(dS7{@o?BzbA>ir~UH58!A_6z_khxM}n0tIOQ^p<6-Py$ z+vz}_ajS|0r7EAn8>b-i*ar15BV6UuJ)rJV<-DcYZK$PBKEX0utj5?~V$%h*;U0W5 zuABlAaugfZ2emc#wxpbMATl!a5qk+(vHaXe)5%CC%>G~w1t}|k0rC^KeVQOF3KT;_ zLoa|i0Lz>D{A4E_Kn>Eo-$+WDRbMtWHj??h+Pl64(GhrL+X7`$20bz~}Ut=4HulaxSfv)6H#CxJ-jI>?cfwTzB=rMBv{28x4LGjm$?z zWq>WE8QJ;l@4bAV57A+jRW^ymgW|pc$TiRsJ3w?4Nobs8iwbl^c;;}y_T z%D6s=0LnuD`BWl9TWo;l~-d*APm?%u!Z?%K6$ zRju_r&sr5BFDnKIjRg$^1Oz7`F02Ry1kwQn1bhbx4rtlb_}Byj0)@8_5|XzP5)-ns zwsTanH!w00GqE*sv@lW>69fWckBL#yF~?Cs<;`kspeC6LS|}+=g#TbkZnRdM4PHC? zFln&)MU!ORC=fq-wvl5&_HFmA$bym=RRFQKY%6K&Q>&Mp(6aJ8ingFpz5q0c;%VkZ zEPoCI>a_J+Lwiz-Rp&+jx09}Em|I`{g_ z!1>J3QpcuHrH}z*@Ah@ConI0R{a$`(e*82$t&tZ44&Mk_sbU`^+A#t8KpU*r@dp)n z9f4Xle1aO_vd$*hLGEt?Qp5a?a8*B@k-!wLCqhF}5&bc+9u9Fx{GbU6;dHeg%gs_& zO-VE^GRj(+DN8)x8T9J+Q)I(xU_D4Ku7SY^b@NNhLmHK1>UJ1nuFBpo=kQuOi-tkO zPm@*)sB2;%o%W6pN9b$b0V5T!4xA(B@(Q-u9_rGC3^T;dAa|Eu?y;c@;kPD6y=-U~ zU&ULG3cWR#}gn}cx&kw zmO^74ndcuBo990*Zk=uRQ9geFH7i?wjGP|LG6d`~?J;~MEF?%IA5}7rHlF2_gl8E}C2}&pZJk~4047$j z`YA7 z-VSL7uJyL}ILeo3HTsx{Pv*D#dyjW}$|=_|*J0CtL}!c6QO{A&0pBTC%yPlwlG*B_ zw(tk^fkm3auUtXR6B6Pgk}|lo$-1cJSdkJL5{9Du0Y} zr!(8ChNW#jWzke{a_^Ge%Wq#~ZFhr-CHTG)h1j%v2A|)TxcW-*tknh#IbB6Z z14#%AD7yon>40e~A7k*Kg9nBL!=V$PqpyVHuAH~E4P{y#)>t(I-fEh_UERpZ0s{)d zbHeiq@+dyNazDSCAtrzS+Odp3}IDMUn2P+$T6|32gq5yRAYA^-c`KmQuV0(Njuy5CP3g!(@{{P`xlpE~#d`7fZS z0OJ^c_Kwk)o3Wk$w^u~af$fy(|KAYmMG0ISH8vj3*O9QWDwf9$z*eV`5|XkBm@Ey_2M& ztmb>%9>fHSIcg|*FCif#2VPy-8;>PZ@@|l1IqkRaju$6i#?q^o{nYLD%`xA^ed9U5 zxS)ftg|_x!Q3p+oIW#de41BpiJ-rXvqAzZ=n2!t+Q;W#SIGoNUb~>04&*kmZ)oU(F z$KmP-2nZNSrPWe|Eqycs1q0iDe|=e>S+~@$<|I9bQtn3|(0upQg*Rp>m8IuNN=L+krI4J_=f9y2? z3b3P5U}7WE|Ja;C9bg`o6)AEQjQ?p5hXQmn1WIZ_{Qs;Re**nFfZ?s`(qzf#{-+%g z1<*|ll;oV~e~anw((2JiLJV8hr_Yhr{-1UNGC()jD9J@J|FbgxJS%){uP$ds%m1|V zO9NIW8ySTJ_Wxb1fBFv+;m6Sp>U3su_@DNGbOHi+J8Ahu*8g3~;8B1X1NS;M-T|~D zqJgm4{T^6tFuMkru3S_oDSh{4kjy` zZ&M@w-9#k3AjsP?-q9wYfRT%XfG)MS8yRFMy5BwEX5w-O3YgIoc(pmJH<~LTN7D)Y zYvH4BfRUZtEdmC8iLU)itN{t8qyU9IbOg_EY;4Ua$}-x*7x zb~sj?`q$v%f95<(nyx6HjyM}9xsAn&C@BG{-gLwtcCYd7a(-Aojrewn5agWGnSa%W zYnHW}B@~SwdK~t6c7YS$ls!e@^LM8+`?s%}|C(|c&|l>#^;J-uozSnb{xEn0l|{)F zl}gUD2IHZ*5Ew?w0en7oCaCT=jc=ws`TW3p;|X6ny&lA$fSrHsu0Wy0&vSEWSJ5+ADMwLAHphii6d zPq>LUC`>;vjnyares;G^zR9v6h8p+Zy>i6&XNEsnB!7PMzTN?oo+}cdGcvlzTD71Q zdK*W;=i8Ytl{?w3M{)!G&g&D|3WL7ov7TBto(;uHMz*3=4Gn*>0V5|j-QtE5^lh`# zD=b@8)xF7&zJj|Wj8|A~G>sZVHkY^h?dj!ZC@(FYEkoFQgKZmMzuu7LK&L(SAfF;6_A|Mh095V6j@%rFm&+V4ch+`*za= zBI&A67RCeU9R@C0BhhIqIFl)AKbmdxHNOAS^!c>Zf_&>I+RA}J>p3`IXEZoduV!^v zmB?Tsjh-(Sq2R$a*XjW;#F5Hl<5-uY9LwhQd1-N`Jp6ZOko<8!GGrKY@@b6vGX!U= z4G<8DB}2c+r)P2^A-KIiw96As%B<$nJj8^BDHLw7x!m-!a7UZ4w`u}daH%V;^wBbXKqITUITTX%WkV_+{0`$?r)vPR6io-CBl zHc6>5b9f?ef0p*wp*>I!TWEtQ$fQ%k+JYU*R z=45J31P1#v^UmF`XZ3ak=?zO)SC>MyO1%#rQ^d}x?C6VFf|4-*>`;#HJ{DaU5qPcZqZoa{_V z_K%m!(}NTbR_m?_n-E15X8^2R-{=dl+sfB*i|hbs#$-WF$C1Ro)%^fm9Go5rCv3_< zJ+Dh(ZjV>=I4w3Y%L4p2&l~13Q#PTfLh^WGIlQ;)*UPKhTcv3>I_wFV-*q0}bUQu4 z@K45r5^rc|Xm;jQqNfcm7^rpA6>mtLrn6WrNubggMdh%d{{*CX=09$TnSGohkUx=F zK2M&o%HvAh>X!`yULTX0Y_(BDr;)8~EHSyI|L|5dqqrCg<&|F%-Hal?V^XP zGl>UIk=x$hoRnqu0ny>_yu|*2J7PWKb%Feb#4}A+YM}Fl-l<1x-j8^`k9R|t7~DT> z9xn#)ILAJ0Y;1a&Oe$S3h^U0vE8-moDiQD<+5~X#+$aJKM56TR(eN#n3%~$40oMdy z!siMQRm!w$a3;#!!N|Mbml{f!P^WVF;vP|(x`es+n6sJF$XJ%tsNyD3O?;oO@>R7~ z|8>$cxPKfFyw_I^L~&kazhyUt4Ua)`gr=vM%T+8>*7 zo5>>NnVt~5a=)eTy+FZ$EE=KrTe$rXw1M?{^=&X3j?J&Bq^3%xjLAq|c;ML;zqo&Y zof+n=-HDf@SJUJODQs>p(;o(4r94S_YMnObi!LYyqN565a!;Kh9;ymMBcno25&-J? zYa>okKzzs51Ny3q7!C(wHkI9*NGeqaxXDU(iJDF8(ZGA%P^Pu=NC}hE8FEA^(6Pm>FP={;^$wfNQ8YxlGiRc?SalIuWMjtML2UF2be3a zTo0#kNdsgyBQ+2emes8BM)CD+Dq{6D?M2H4n*cU(S;3u~aCR2Zqcx z?!%{N&V-|)$Szjiul^vLvcHn6c6fMlXe9b>UpW+Wbr_DMi3zS){BvmO`N>(Cd~GmN z%eMvdN^te?Q`AF8z*h2QJ{gZ%x1*&%Six#bzXk3ScUoMG6R=fIoQ#G34d;)L;qbK= zwE+|Sh);AN*`O>L&Mq2r)Wi~clT-?@@LI0=3%P!V6DpTFkL&dz3V*b|2(_WjW$A!==39ZA*xPypWKBh?aSJOZRwfrqiG zj#TjF+IR5Z`MyI5IQr~6I`lSC4eUXP=vj)vW?V0?+BvHLdWu^FTB=q$$NELhm5xTO z3VN&Gy?=Jo#~v}+qz`=m;uEBoKOQmvBrIz~i-FNWFlBALYluQtLdJgc6!B6GU}1$g z7N2yKdhl?!2SdkgO*0JLa6@l=NHNFgIuVKqPUoHzEuL`g zC1odyb8?Jb(7N%W?bpPXZhFCfdCOCH=82@NBj~2trF7&iafJXh3g#Hx-^G=xg}om_ z=|UZAa35}U-`)F(%O~nfnnsgg*lKlE@Ui$zpk0%kwe$z6MrIqo;>maONW?}TBV{Us z-$VU3xV%S5$YOy@`UGhPO2m~eA1>9zNCC+T!KG?BeC29Q7Ru0=Ys@d;aDw@PVB6^| zQHn(ANgbMa9I;Axc#`-jluRB0N5B~32oGO4x^ZK3dayjT@ujmDz@jjQ-En+u(!;2J zz`gGx>=ELOrJMBgLwGqi(H2QJOXY*O3r_Jld8d6o<}M*qsnt{|+hGeW#6=aIYXugJ zdg1elknY@8oayoTp_ZxXHC1*1_AmAu@xOsAo*OY9((a}uwm#CGfWhL;y`{A^f4h=k z0S49|hKES6QD1=D^X;RYUau>dO$Bea4}5kt1O}t00u*m=K~qbsKWdGwc#m$}B}+a{ z89238yL<+?qoczYeUY8rgdW`YZ z-ze&g>;Ls8SlHQ{Iix*Hl>sWpo!zYPwlnKg8U$Mw%h07z*cOM$I(cZdZWHv+ zyYLSTMa{apx}Ic-q%N!yy;@y!!5b|uvgn|OhHsjQ$*G;4JiOjd{%Oi*TSy#kRq8!M zZz^V<9iP)NSx2W1=)^|}?|sm+BWbgk7D`2+)CeRPm0Hbonr>&|qrwU^jZ3KKu4Id$ zBSVAuj`3@O_c`n7saz0e_&oAsaNYDf{!jw7{*F^ySqLS305+v-D;R%o1s{$J-Or$|W-RlAdy#_oO@xV&2I6S?{Ad?@qiojvOsO5K7 zzcCL`XN|c|RS}+-?LgGNNXfFM65WUvt;oCIvfee(M$058n@UhY_4|FkSDHNJ-He?_ z++2|xjHnW6se&RQJkjVpE;-}2DFtGQ`TyrU650OHuiwjRs*kv!>DVW?-24)uiYz{F z542O8onhHU&6zVl&8KiCTrj=_g>3vVWFA4eu(9Jn9d1;CHeNip6RrhGZOkQNa-d1!-(|+HTb;|^-EJJ z;XHn^>7Q=Au6Q5fLEEeZY787pA05$6CrQmYg3-%J3BlXAKZ)HF&QD}C;@JBV$D?9N zf6J&?7yfO&(84G!o^L>(vaj;BlHI!90|p)*zCvj9ASLISH(8rKWbDngn1b$7%)}M- z{bTs@=aSYJ@yseZoyU8U)1|n?O-&@%|Df$CHgG;O$>k|^WfU;TJLT$GMKNhQ=QS%g4jcl`5LV2Q&89%mwlo-`WQIw|7X|8;Jvyr? z$3!jXAspq$NiF$&L9jPjoZr@{=jVP0++=c?ae^Vdm0yM3Y#n)dZFhu?(^+8lgY*jH zYy_%^HR{)EHxZ{>)9cR|V@czWyPL*h!o_1r59I=@WB^gk*BQVH-e>uM>wUojI9*Qs z{gBry)M{fhlo_k_KR?P6`S@xSZ&uBz?A9ACl$s2`U>L46xY1{qSA!iNi^_whQ&*$W zzGQ@9ZQ!(;_u(oMZ5`b?C2p;;xd!fNi!JM_4aebfg(?ha!9#mSh)!y4O)C^4+fYqR z!hHg-%0DQOr z-uD;Eefw7J8d4F@Pok7i>%EmOLTJICRT>VTy zJ&=hM@}a1?sLhbvT6QMvGtX$P~3I?vY|6>PnCSp2hT{$*?c0jt&<5fm7g zuqW<^Q@jz1hCxqqc73{d1S3yRwXcu#L>7$KsDR9&6C7z7yNGwTZq1mf7;}^=>yo9i z<-tUNHp%8-thsk|;nK6?exIl$j*_#llor0TN2&U&@}G6(DYwWOrP9T6wkBCXaiU>dHN z0i5kX5Kg)_Jg%7R&}F~P<;ebxWXMBjs6wkbVcdt9v(Y9Bpp2Bao0@HAMmm~n8aTG( zBGtMBbc?OT@le}*RDiS%&)oi;JebMFfYB(5)CN2@@GYA^+M1UxbHp)&I z#p2qkA4C_!H$A>wBf=QDqvHwCj3R2=a-ntYNm6j9FEuPVyTwx{G$$n$2GXVAh8Js) za_{cjwv;J!>Wu@Bo>Pl_@pwFg`O2x*aNE#7=PsKngzGJ*Sge*s zKR4Rzg33^>allN^e@UzPZ27&Q#%?}@@rVR>TGWJ=RrMtJw1a@jCrk2SFirV?{cxM% zdKcgEi2y=#Va@SfMb`cLnMlE8N;ahCJXVE90%fZ zInmPS3b}{J#-KmnUg?(-p@ogj(&W+w7LQ_iy+OGoX|P?6nIdgBW1RP#+fi(cFy8G8 z*5}*Z7~^e&;bybPk_D`y&eWxlelZT>*f*Ofo%uas4k-)RqI29+?VfTBk8@2eD=o%# z{FNREAb~iet}?T-cDp}6lnNBWB=D6?vU4V&Xuv2y3hLjA)I8HZdQxb$R9zs&;_w!! zpvDeGVo@uxPe+Hs5b#lX@wz{bhKdbV`zR92)?}rnlZ7e90{H;Y1V_Y6G%n#*sW&1! z8CE6Ny-va=8)vAk?RGq^Uk>bsy5BDU$d)T}SHv+mW_0xJ`@7Jr!a>)|97>`hi52Vi zn2PgDYv&EgK!3kb#E9qtgkPncY_e1FCW}}DeZu9#M9zI@L>8M}UuZHY^0<0$z~Kb< zCet3G>w7UV&)6q|pNC#3<7mB0V}l6T&RxZsc2JwWW)t+T_}t{oS!yo+3$ufg92Yej z+_A<2Faq@Yj$DEFFL#tc!whLuvu-ZZ#S|(P$!8t|>%I0bCznx0FBkH96gYz? z^X)T`g3lgX-3O1kIq21EesegO$iNi2XF{xPV&fszxV(sMAiSKhyF#ogEG15Z#}(XK zce^6D?2o}_(?^a#cwIF9@FRc|!L$>5;W6Uu<*B$EifuT!#Mrd2SH@Ixh_VpoY;$<# z%4^m7lCBUG=S=LJiQ{J$39@N5D;(jC!0razeiZ7)q#~xoadla~0ns+Pn62dee!6}w zedptvo2}^u$2nGh2wb+l01VI|2D4Wi9Adi0(eK{iSge+mYZbb<8f%Reeca6BD!RQQ z?%S_2BUb=`zk6B76x|81*{(#{M9^0cDZoDi%h}uCM5Z`$Onxu8RkLI6hWBu4out z$+_wIM^d_83F>cOSh4Zl(wTB0h?S(5pfRk)$|!6Mo^5N3*v*dGJiW``>FC3T7;hZ< zlbb(_6zl2&8<+;v<>;-+O4Dl5xmxDOQ$?>Q*BRbA$jMS2gxP)A8u@%g6HwK3^!+9+CF{2lHPaxjGvi?KV7rdfMK)~`WV*Pz2oe`IarH!(Hfd9v$0bFq zko(gWM+7Js1$t(XX4>T($UK?H^6GaqfM- zO9W(48TP1?fZNe~{b$hbu40}Zl9NYB&TKR5_>8a_VccEiiddqq5@<&B?pGCF6B#VP1d z?JYx$yZm;_Rv0nNfx7wwqMx$h0Y!x0#YAewlEf z#o%_j6e;%%K}o!+GnFuDaX$_s;28u5b>49GCCu;_d^GYn!d6!J9*`h(ZAHiluj`NT z3u+ulXIwL#b*j3>g=Z#YmT`7~fB3}2>=Q3W3o6UH0r4z-MwNZFR&hHY{N@N6rgt5n z@#4H9>)Cl&#)&nL@nqH?3YY%)xaq!B60)-wN3RN+LP^Bq&hIyo&O^@HPwuX@wETXU z>(_JRrcx%{Skh%5i0}{tKc4gwGkL0ZqfPD&gdKW4#e zRI0Ha68c6RsbsvP67z<1-*9lJa#&!}8?<|-;I+!{>;-q)-7a;R$*2Ov-q-5#javZn zcv6xN&ew9|D{RLHc3|3{vy!gJw|i3|Y(*m38QDJy_R?tyR_lqyVkzRbD`z=d#lyzh zoX^6Ec-3ZG?FAMIwTWMZxN51diuYJ`zLG2a=(0_KJvPXl#hj<}*qz?)XY_n~a+jlI z-NcP1*SpPgtwtRSw!BI;n<`viurTLeo{sI&x-)7UGLZ!c;q4tkUI`)8;?m6`Pvt4_2?)jv<{We^rtgpktGB;c|>m zix>NU)-j=LqXvKa=dwFuVzb#Q;vC}?oj67nBzgCn3$jVL5mS0`6C4*sGb$H~n@cOd zr;x7>q#l@JUi(#y+J(UMe$;l$$0Vb(uVpC@VVaU@a2>cdEOo6vv-V(1EfCSH|AgzKpEGn%49X^te`r` zF^hwIEsISVAm-?*IbKDkV*C+Lz-{k{EpdR z$eXrXX>+NZIz&%`vM*xENkC!}l}whB>)3lbp>lFuEN?LT5m1IDN)j=UFm_BLhR$C+ z(#j5gTf5qd!;cDn+k`!n`Ba|8YNtx|ZOHiI+M*wfJyWS(+eJ||o!Oy4RZWA!VJg>L zD$_NaXqj;O(N1M<*GHa124*0i?hSm0?c%K&K^W| zcZXAs84)&8pk0{@Mk>Z0lsLBTmum_|W3Va!5yvEqgIuCY>Uk^MYzltTU)>sU9LzE<-Jb+`c3||$KXl+I<{F@;W>uA zp%e;b3DS(SH$8#aKn5z9gEDfXL92NM9>4MdXWwKo(g&3^SF{ywIsBkNqmxNBN8%sZ zArTnFb8=e-{AmmsG=KsLGM|X#nX*-4o@Rs+u1Hvhl`dpLB8yZi71T;;c!`}*UZt%C zZWdma$Ezm!%%n6;YH?_2ER8M(K`yr^BAMXj?pk!ZMu*XDmZ++@j7khPDq$dtw$tt4 z8l{+(w=xoB2aXdC5IhbwjNATPtcp@p60MhSoGMN-1vY4X7kAs0qYn@gY>7B3xmQ?){tbtUm`-EU2CoU&>3WcJQjV_yAK9UYW`+JBL z>@7bst&4_eCJ(wyqHZ`kkg>px3Ye|C_e)Xd%B)QySOzwl3dK)x9X*XIA(1S~)X%$0 z!W~(#^yW_#nmAHhl{Dr{WUjvxRc5+|;kdZE2KiZ5%aW`sG$C96v{nJIJvwdmhSq2#BDCIH){a`M5^IK>+|iCuFggb$fUg z67fJIjHTuzL+fs(l#wc{(vHBT~wq}9pkxw3U+3E(s#tE8cUodcvG>P6athik8JJMtjOHa26POp!^AmVVBKP~jDQ=f3)R{WLAxV@I(W*G4!qm1{N3teru`_&wK+fVoGLxPd!#nr0r1KpU zZx`CS;?ez8unM2noc`bYBp;?;j^`1Dso;vYwSbUJhldE+&w!J>;IA+Y23F5iG{Z z?*|N1K-~v1jQ)wU=_ooG=0q4ur4jYj2LeWO0~^AMHnOs^M=Dhm(c+_qFQoK1B?W{f z685`!92l#A%S5)s0Hs;K@$bjx+h`>wKA(N4_@v-fBr7Hc(b19phuu1olCjHSX+9|- z-{xAsLB|IMMP80-Hb~WK_Zw3+;A-tsS#w2jot&OV5hjZdNvO=O1~V3xXU+*bli{wq z$bApI_X!fW$sH# z{_vPk_(#GpE*=m;b>k01DV zinPWBBQo$43&w--fD{3XnWD>nWdZhZ&@cV3N{WR9atzG&M9W`a3sFNPMIhe-@4wNucF){GyI5t?vOB;s60^Yxu8oi z&>8`Es(H!V?^VX#`PEci9kZ|8a9(T&CK3vSQDh6CsY>=nZr<*N z`t5>W*(^Z{y*>_uQ?X&EI0R-6j}yGPEJ7IEX|#*3H$C9@B^FB+T7E1tx{hrMW!+rG zx^I(o-K%H?vGb?=!l^f&&9vl5bVq?=q!l+7`}Gnl|Sc4!7*7K{^eJt+a<+t)U-ees&yd=XNiG#oEpxu z!)~020DPPR#ymni~5F+fZzJ5QngAy``uraWEF- zxm3k+eY!aBD0AGDh$Qa&H8^Hso!!v8|FD66`k$&Ogxd95o|gja_Ug!n@%e_v>aae# zZljaNV^8+=X(dBa;MATSP%_31qL~(pZ?L>>z`*(WClRnkkS0D zN~Qt|%7$k7F*W;vh*qn=)|hgFM5FOu`9vL1@cM_#_ShrEL)PNya!pN5C(UYGnTmdO zB4B@tUHXxJR>x}DfPTK^@WS557i{qU0%yKNV~`Wv^$u?I>}RF_y%xuN+HRmnpr65I zEI3`7es(RJ(*+tpO+p#bV2%J;4?wLJvJH*TX^SXaVk$Nd))KK;feMnBwl|)CAF0$% zZN@hgmkJtz)UfR3bSw;A^Sy&mT$YMnIw!J;P6rgQBdDQj3ZltZ@rSDN9NLq^(c%kV zH5ZKZb~|Mp8{$ZP@*+lh4-kog!G(*N>}C1|(A}{&$Jn zk{J8hcd7hdA~>0(pg=ISOKY+&6-{Bk2f&CLctK|6*pS0C0w6E{VkD%Vf@k1 z&u4Og)Ex-k?>EftDLicwbw8OYKj1;HB1bJeyD{l@*-KT8gmVNQvWQ5Om57NU0rSMe zk(Q6DA}f(H?rc$|XdqK>BDY*6IOFMtS`_IDfq*l!pWKC&WuX`bkK0ELrwJpr7Zem! z7*pZ57=iPT5&i!$Vh7ajusn$?&reu6;P%LktE&^$J8TA2fP5LdXl*wAJx2S%MZV}l zZ_J|v{efchm;oHtHbwu&Xk4wW(0jO3JmbYFm{vv;CE2zW%bWY>ZOr0MfyD$?Igi&{ zq^8gXu}{hLEI&%+oW0coptM<=ta>{*22}JLTqpa);8)~!ej#u4G20VzM?;$>JHb*x zF!6apu!rYOff}pju9MU#J=i>w7SgWfdkhe2avAp{Urhs2ER2|^n)e#clw_F z94D>MK?fwXcfJb^FW1n}5Txg)Y9&mpIJVhDo(oO6>rh*Mm{2lE#}LJiS&-w(3!^Qg$V*vwv`H zG38xG7>aWLsO*=yb(tzyljDBy=P8^0$qcYYy{QN-6#>y-+RN`K%-=i>l0;kp)lvc| z1Itq?m344*^#EwBYQvL-DAyl4@t&%_!$XDYKMYUapKM`|)^T;Se23b%rW2I~;<(XX z24{NTch+69r_91Ajz-a{oi@AS1}f9!kh!z;tPoctSU`kCqy0%a>Z#1qxa1>w;^+EJ z9BqlUep;`h%A8cP*=^&I4o#LCGwIBIeS3dTNISSoMm|?>lQyAAbA9;jL)tcuv;-hG zc{J}+i-2=j$}>t$QfF#Qmk$La7iV*^C;6Fs<57JY4S*31qM4;_){y}!u8MEcnLU%+ za;*QB-^Ty?Q0Y9*Q_*?uMaAM-s-KsHi(^RHHvdR7f z$N4NBX0;l6Yc~uLknmF}M@H}dzU%6`SfQd&(Ly^#R|)_60)vS60DY*|YVh_X0XT<% zIAgvc~Je}3Myla*j9H8)S^gHG=)fzqN+Tjx%Oy%(NZ3|ok^qcF?F2C zRXRS%yKN4)2yM(8ob7+L`J#Lw|q=;Al#(aVdLIR}U#;yXy^kzFx zv+NE#pqxuA!Uo6X|zt{|aBzs{XjcV8lAH(v_ca{8W} zY0&6)U>=t@d?^y_We&4-4f#x_w|Ba_pwF*Ne$G~m2WVPq1@oMQ4fTC_9u7JY$68{%$8lNV>^ zizQqxU2tNSa+$lcd58}LJPIVMRM0aC*_x78dBOE+E#EQqV##FjWNfI(>yLs{)pBo- z^eXij!@Y$XSnr7SW;-K-$!~{i_fPi)7?Nkd#e|{#IoqqW$5|s%c8- z#E=6B0rC}e2gbIgixM)Cy1ay?420)!3c#XqSRsc9_yzW}1@1B-c+3`XP#jCmFFS%5 z9FBYZd=Oq|=Ih7^7I-S)2#O2bzJwp%($=7)E7x+yMzp_Y0s68&64(9O&tHVkEIYKh z4wX^A59#`15(iurGWG_TO8jxSJdhEf%!Ymq4T-iM=SXHw*ib4=4i7`*P$ncD%l)JF zl9+*#^jU4Gxh>b|sEcq`X7dBk%>YI~pYkt*klY8eh{~UT3eE@cX8LZ zZ?1Svqp`za_dr9#!iG!N*>l?c3tF41Zw;c2pav-?MJkB7DpdxL_&&mw{4&WMfFrGo zrmfl>;aFcb2XisFXAdVh&Ir%98->}P*2`gS6%|)ooer7hq81+<3$l%gyPPaf=&2nd zH5N&!#xuT^D!ypkLdiizGBlG>GC8;w3QETUs>%2rh4_g&!0ko!x_#kfNyZXMVOoNz zv2Wq1l^q8=$!iS^RS~<+*9;apO#<__Ki_Od3I}{-yhI8*sKowY`k)Ue> zq{1Z)$t4SAd3!L~zZQeN?eGfk9ZqB@@m@I*jpOt29vfw|{u9op&25;_F;4@_=2(Ug zwWRFkyxlG3GP33F--8G7+J7SZcRdaCpVMYam@;d3%0$d8R*OpYYn3g^!wm=?3N_m?}#@8yS5iO0u`Agzx3ia2%AD%y2iTCUE7x`&I{Y{E3L4qkt#<-{W?5Is|@a-?7$A& zn||bLoD($F_E)3C?8t2DCgT(@$Lej_mTUsL87EHHePDyLdqpy;wBgn!r`J*&C*IoC3sjMHV3=Mwe<}% zzv2r986@*Yd4d_#UJ&|tQr~w0g4IiSk8~uzCQ9?Yi8^Mc5@E1k#5eD!UZJxLcE+js zjb=N1Px*mc4izNkXTALn!W+T}Z4---| zebwOZ$up|2o%e^nlkszN*O%+NW0+(*71(bjaw=RvG))73RnN1{U0Cz{tV-8W(aHV` z4Q2?%IMrQK_hQ*y5qg73ro@3QGiW-y~gFT(vp!t3{&F8AC%W>m4M1 z<*?{%r_)laK5z6QN`kg8b}&wqaXZL)X*mOk;_r<%gS%iTcd5IOzyYbHH(W~H4t79t zKW2F;_UQr2K-(hL1n9i^Lb$WTqb_xCYA6nmRKgqzxCS7jLxPOL18-lQT$9=?Rei0& z{T^M~<&~@Q91G=@WPrw}FS+JueD1BOUSHnplyj%Uo4 zSOSaAYIZ9OD%OZ??Sy*MC1t(YbZn(W)oDd#6ZTw-wuH_2R1UkxEQ(ZWZO;iB^_FrC z4qmNB%)JsBb;7hi(D|4iy>5p*QBlJ3>UU_eDsnn26Db&Dl9Qg=pJ1~;^noYxh+wF& zg=H_{Bda*mC}P*psHt)-x;(xC&Ot-jimeau05A>a>P@ipzw0#-@L{&*U- zf{BoB<%G^3wiob3gh=U)xp}eo7A)+K|LU0173-(LIsY05??BP%>HHkb% z4F~A)yi~q*U86`m1DbV;$HBoy>5apYxkUQoCOo}RlSX4e5@9yQX1|rqY8HL)WZGZm zxob>O`$aqCaBT>6cJfO@pUf81R=(rg(sen792Jr-29JDsBsCgLO9Zk^>h?7ZU){%% z!ON~zlch?rjpDo8?SahOQai*f?**aI!LPBpuho);0{sUq+q)^|B5aA4KBF!;^z`(1 zPv>mfc59FvF#t*Wc-H}a!}mDc2=#eCtGeX=ba$>;3X((xuyTU-cTlM!s+WaP>gdd? z!Q>KXGPcn$%XpVEl?f_L*_0wJuX;a75L9c7CA3R|xm~eh!e7VWjSatYeShm;+&@E> z--)r1JzsB*b6l%bs}V+sv|J`z8wmg$z>2OIVN5-yIHCPF^%Uwa?0)|i>6F48@_5(< znMU`$ca9XM$<%ve8ULZFgmS9pBnF3+Yx_n;Z;|fdax;$m8M;7waBV~yXRy0uTDcp; zW4E`Te8hCO!iC+cH`E;)J=QQLtt<|sj2Y67&vc*)fQ}tbFfCzyA#Vd&49*vDvyC5> z!swvy1$+dNt+Pvoy8?@~Dspu2nC!}9-9O$qmYHIHe?LxL!#9N6h_LZLf19($flMsUC0grQVVZ)JVG zP;9vdYSky%$HUXJfR>|g*s|5o;W)8nz6wdwcrp-A*+$`Spa{VKqi@1(ReZawmCj(2 z++)6Rc2dtI+*&dl3p(k9!1xrY!8sVafQ!^$tkOVvkXb79o<1#m6$4TU!3v8hg275z zMW^#0PFptb-1o8vofA&j{y5$x=gwoQcu;vMqn5aisG_)zuD{CAOh^WtAz}sPYpr70 zdu&-`lro z(loXjHMZ@>wr$%^8ry7a+qP}nw)yVf`}@CRoN+#%v-a9+&G~5F5gvT|)*GMGNEW}K z{Q-q9CS^Gr?(%CQ3-{Vn7zVop+4gw`|3f`3i#ZtafO@Xt%VSMG{4dy7kev-`^#;n1 zbnjenYLVGW7rLb>=b#bh7KMR=@zexOubo@@(!?Q)SOnD&t(p{Ms=j}HDk2kqT_8Y# z_M#nUyL*J}V)caK^EkP+a`E9}fDKb@?VyS;;Kk+j`{T|FQt^FvS{d z2Jci?V)Rg;p$;c|?t788n>(m*UM&Wf_nF{dULZn|sR9`&FiTRl2eNIOoOfBx=8Alb zJ6gNn^b)upIV3_Hv&C-GPE_RD$Rj}$zR@h!niqGYPvb%2BzSncwJp>3TN)g8GSXuSx;HsUmHiBd(l*j(Yr!K=pL^5GYB zNtA`9v0=Oo3E1tt>0Cug#63qCwgz#Egdhmpu;r$n6{E!xm0AZ=-#c7Q60B-3gb&`+ z^Pf44Q`mlXW66l@xbT`IrB;?_6>kO727pcEB( z^z1e2>!Sq$xC^G#xN}#20=3I|E0(h;V<$Bm@`PcS?kR5Z)zga78aESo;YWGo?cpSm ztAA3G%~2P%f)k_PVW^l()ur*+n>p4uxF7KIaxe!=7wfH}&ddDS5eALLB~y&#j$A$u z0+_CoQsF-8@^(sJNrz|NAF%hFHh-tMKlH}#^_E1(jj%VviCUS%nl6-BOgn0G;wOL~ z^p>0vUC#!gId?_t!4{=c6xubFxH^Hp@j$j2%@VtScL?}Ut!}&Rffi_VhIGI>iN&Ut zM2+?B?iX3}skzy4_8y4_7X-|3bEJisVzWDRJ-EYF9ef(*Xa}|jt#0q4b9iwoRcb}7 zAerX*Uv>Em@7%^GH;HWmEP+nbcfxZ9=W*Y}0|LSVZ+ zw*2cR07LmV(>Hc?1LY$y=MeF=mmxaATNb>*kTo=tLam2u*}bo?fO%M&(3sU|4E?TP zuM22Ra+EeEMbk@e?GU-~{6h*9Qct*C|4j$@srnN>MxqR8E8IE}#kj+M8q0D?zwBbl z_DqxY&=)%T>zft^cXj=`cbBzUG#N>%d|n2(H_-qkAjB{YY9P2ZCZV1o_$n!Vq1 z7zGqcwK!U4W6xMkpM^Nx?nr%`{5P?0$5UAl;-gWwFE2mW8v<8;r&WIs9TR4I2Lw0* z2DM|j+sqIA0=W`+1{w|Q{K-4m}a->rMls`czZRJ>L^k@Lk!tmv3=`? zsDji>9IZ~Pbb2W~@zLNh3}k3-yY`$S4DEZJPW{$RI?3IuRCoH;k?dZg!8e#bZW zN{6@~-G^o$8M1up{-P}o2zl~Y*Daoy`^E+G%iobwQt?zQIyj(pxgh8Uk2*LIbF9T) zB90a-wfP)~Jimjm3vP)A6RI{{2G$0XNN04#u=r~YNH7nNLMHR{H2E_=MyxJ_8PqD^)a{|P) zq+%)vt3r9*y`!hw&UOWSn9VLRp^AFv*!5(pI(HYHsa=dS#kC#W$Yh`ux;b$*sn1&FG;#f%1Y8+k}+V@NhB8E z#hSy6tkQ|G+g_RV>M9-H?1b&L`79+`#3st~FAI1C;)8rU7ATK0UrqlWp#)I94~KFyn4Cf8S){s(MSs+3A5iPuc;Zr-R?(pj%ee4YUf zwaoMMtxM;xs$_m#hx&^FE{H~!t3?ymZ8(?8Qj`4l02ar*OB?Cn<-lUQ!gBgfE^s1~s^JRtdBn# z_Q1x-m1fl1Ay7nJP^%PA(JuiiRnT#!dA|qILaA>M=E1(V!E&{0m`oN!xWUP4vxqf3 z`%99pg%bK=)Ob(mr_$-#a)eojEVjC!oM?mM3&jL=XQpqCBGb3$-OK(8v!J9>k$h3( z(5Xg+Z_V9UZBQ*iVR{EQN61{nAMh`bFv6h4xWbsm<56*W$lVBhkp(2erHfe* z6IxATDT5VFPHjkQKbU$K#!usR<>Jm$Zshx$Mkg~UAW@72hILvW=)WruBQ(_1h&7xh z2K?((%z^^-?=6LzGaUnTfLqh|T&$e6@V4~E+jBj!RnDY7n_j2y^Wi^OOhXCmLyMz$ z+N&`arQg2-MB{z+5pyzi*ZD%(D#+mt3Q9BmLOv6y`Ai-}1$K(RaU(4G?Ec_~GV^D+ zktAkmp|z=L$QsdVX}YGD9}0BvXI4UgB{v?11z@p)YIU*@3eZ}VEt>Fz4peFf0tE&xA%B0$;43v-@+|YmC zP2#P~6b>Ot;H-ly)3^&Q55{^Q5O|irpP?sw$)M1*(N{K3<37)xLdoIe-Tf)-Vt+Uh zF(ttyG43swL zI+wpRZfEcr&m)Jx$3>E-Y&#bs$qiwo(X!lScxS7 zwzg$7#&JQZ`N~smGF`JD_4Rj|!oM9YA>S`j7*S9Mh2ATIS3rX+e4n^L=SBH>cC25e z$4d*bYyU@gVL3d63ZH7Wtsk?u;l(81btQaxd+wT6D8g3o@uG7e4=TOE*0xy8t@bWC zsl<@3Fec7}v78=-#6+g?n^F`l-=BrkE9xhliVK{)qjF+LQ~hyQqJsvqgkG4e6X%qH z(+R=BerUKa3tta1PZulw_Lh)e5J+PGe-IDWUneLlB~m*Hb@zxjy8g-8jel}$Dqd;B zSX@jsh89?-#NG3N(eHlo55a&DrY*U4999hRSyuNpAVEc&t+j-?ROurOFrT6sRW4+i z7+GtyI!VT8$+cHLkL;U#qFyGl97bx!OcO%Qpy%_)6;Q<&!r7ikNQE+iNX(mVmY|eOT{>HbUetu6 zqq*o3Q0e6l36*gqApOr0U-viA0xEKnLnFX+YAd@)wUN%$;NxX|uZpx~DwY5KWZrLb zd-%Jnt1wp~=4)V3>Tdp${u!-YR`Kp-BaG7YVy?!Z`O++zpRWF$5RVx=RJ zQl%PBx&9b?`IxCz{p~jozEZuLyMD;Yq_|Z*y|ZKhd4Rszqkt|=TR>;_5Ri}(zhc(d zzqs1wXQi)Xe2AP3e+_cmUaHm)m9o|NR@*=pe4pyvZMelh_u~Qj(7H{21a&Z$-LehTA%%l)js@eoYN znJi0WJM?*{kI&l?f-Jz+m0LEZ;^SwewyL(7);r5IgUPhSw)HXvLl1J@ewyZYtHxRY z{W!dQHlZa(UcOb9CmaG^5i!}Nn33Ie|1^V5udgvoNd#hy&V>SvPBz$EK>#sJ>vZ;n z4kKUcnp*p)rcO=-{Lf5F9*RIv|RAe9e%PtWr7~{vqiuA4BT|b|6a-9Kxud6nj zlr;MFnZ_s_u29&{H?gRh)}Kk1OeK(yf=*PHLiPp|88jm$_Sd}Yv!_4KPRFKB@QsTv zST9`#PgN8+#wyo3txP!+bRH0lg(c&HGd?Q zYt^DUo;GhA9yp2UuERvVPy9R^XSgTpj%vRi`jqokUap~?3`O&Lo!`A0Ah`TIim|<$ zA6JNIj+L$Ol@hy#nx~@%jUA?p+VKy^W%;)6&EFhN!*R#n!d`G7#wRGFgg};evSEIh+3nGxo3%HKvGCng9V88 z(p;V1%+%2V=Q-aZEOvae5?o~c;YPS_wE8Vo2>kx`mTfb1dt^abf7v{Wj5(dy_ z+Tmo_D4Y#tF*5T8SO^H-Rp#=9P}2d`8!~H8kI!$dBr09i%XS`+-a+E(EqF{Qt2&B- zE%%suuM3h8J9(2CY%tAsG5jeD$jdj2UHX@bO_%ksw^E(+X?pRig2DV4h%VqX7in*0 zx8mg)FBjdr99ml-AjNX|KC*6>`_Q{(%x<_u`=G_|?hUzwwk_Ih&UuQ0U5ol)RvT^4 z^Yvkf=v*8wS6jSuIeinIqa591gkOI=oCd`SN9wGju8TIcoowqFhUoTVU-@IL{`HpXOyi5CCI&@qLkRBP?vEB42ah`Zdz8{b1GF0E zG5h=Vpv~H~!(cU-VZ1LmxBIu9j6-rt&79Ac`k2I6!d4)FY~Z7vL#Fx>Cf=$Z^m^!VSEU zPWP$>C3Hg5-D_T219orh4^pLer%=Wmj*D#$N2n^7Y|R#1%(;8wpOJPejm~d_pB3LX z{k*##yDnMV%U~mMd0-hB7?5dH1NWxBmA1ORzkRcc-c?C>N_nvY%6*w50>9uJ`Z{x< z3*{8{0Rg-7T+tqnVjKS}LbwL9O?rrNOZKby{$|R=)LFvea=$6Q=CR9E>F`>3JOS29 zgV%R(+JaOV<^oErpM`Hgs9e(r9u|X#Ro8kxq>#H?_a8`E1s(_F$C-TP3_=@qy8p$N zEfD|=xkz&LEfNk+Q4437UL5=Plz!bNBu&-$6*Y*_buO zrYG0?T-QtEnGXnmB>-=xBpH~8B`#Zp@IY?W==az~cHz3fS@bpYZ=CI(TQ{kVGn`;V z-U(KXQ062C-E+gcU55jUDw__24Kz`g`m?y^Ae$|YP{6IPoR*{%W?hh|2?);i>u^7 zpcqvly58cL0O&{SnE!8On*Q?W$W8h9uF6;xuqL zt}U|LDL9HMxqWhylH7Z&x%uXv8j-f%8Nv66NgRzWF$rW{bno zLOJF)X!Pj4i3>n-t80Au`(3$qYit*PB==pl_RxHsruni;ufOxN+;`Q7KiT=5yVhP$Pv%?gk?jXSC-Huo4&X~xOv3|kgs181ker=*=3nq zD#AarD($ty3M8Qj6jPv)!zI7Yma)l9QKGkUQVX+DRUkh;^uv@t@@aDkJq0~3)tXbJ zrBTS~sR%Ybyi=kntyxkJgfsI`V4-de_O=;S(|ott4wuUp%LcT^w6zs^Z85bb_HS$@ z=w^#{g4;a-os3ck>KbM#1Z4z)F#W|_%E{6(O4MSp$OSF1?q-U@U{LmkLj}(_S#QyJ zMPk!V{Ck2VU{>`1Wsr#a00c@L$i7N=_uDpwa@+RQmi4{r^N3S`*Ktkn07Ze7!uUPp0j29ZpA(quKx9dV(I%wmEQ_N1L*8_fjd{$OGTS<+9x3-(?T*b z@buG?fq+R^S9Nr$=9i*I2iCo$FruU+N$=9ql1{=ayG8zHQXU|(%Jx7?ArLnLcFiCq zDM=P5(Ig$0=>PHG&Omcj%5j#9&8EpNCKd9OcmEMo#UiGMu53~wlg)Xyrj#Sl>Zg!R z32ogIKDEE7rFI_Y7KD3fzn37Mv$DMGL*X)SJ_Wi@(X97!_eX7ZTjKWCSgH&EUJ@%+ z^E)@@ss2En?a}&c?GOG13nQ1$2L_s_>-zF0doMaOI8T4_&gU#M8fixB1!N%Rb@7Cu zgG1xD50nV)=fYGt8BMmepQ!X>jN3`s@`?KdS9g8*{MREJzvs0#_blthP$YcqHi+(9 z=WH{FCw7bLW>_gmWTbzckMRGCk9#E*K7ceCSFh`I}XoCNpd1y3OstmWeL9v1`L`;JTS-y}D>SyPG7EceBgRykD(lpmC zjb@xBQ$QP{?9nPQbGy8qPH#vbIY|-u&*$!Uud{%5q%qk73)d@xk39o*5$Q!@XDbCf zNO0}a`BEh^hzP)HH~_Skj%vw1hYYqm0<4!CK@18^<3aeB&qY}RY$@g%;yfgU<|O9- zMdu}b{~n~AbR^91u+w?CefDQ|iJlXT(r%eRa)dS@X-E)+H5Srij-6p=*WKd{y}~iv zxyj|9q$?&SCPDiVRB3XUNqWN(#LT;*7Xr5LnFNCv|dhr;Q7qgrgSVq$sP3l)b9;+E;9i+=yU^pTCQB%-2qm`&PaSNr_7w<{LjG+)!)L79+q!J zzkCBgzw`Qib9N5esi1<*kKf4`grs^4YcL^0CcWriPe*lr+`9Mz!dtVMw!KP(sn5@B zQ2RP@Yw@trY%lC(Z~wSvKbbaLz|`V=?CXIedL{PftKxNYS$!v>4k5XmbG;5-I(_lc za%E;pP|{J}12{AmI*O)lD&a2>;N$bXPo{DW+UFtn+$fG%vThYu9q0GbAv+tJDi+h& zQ>Z4^;wYqps2)jj=P!i4A_gR~nt6fWhz^gFWxqrF>64q~)Y}X&TAa=U>s(K^GbX7y zn=k!JM+OT`zWNcXTHLN)_9kp@+lwSJB6xjTngnm4_+~r;+02$4lojy;`sNa3@`b$h z+GCPmCoGQwmFDGAJlaPLNt_1lw6^Rc9ETd`c+3|p-tOdavHg2QpZD+GJy0-%3jIv( zAW_JXo1RE47b_l#KfI&f(|1gNUg0SHVAlHK2~I5LLHVLT6ADlU_9lzngToG zv;F=3JGeX10|c&vkvMZ-U=WEU{gP-hvJAr#ldl$WiD4=PEM6KsITYSL(ja}KF?L{_ zF2hHTX3m8vwOhK%!ftl)_*_oT=C>4!kRH;KgMdAGR3tSVO9U{0F2;As)hoE=E`~1q zhfuhgaJ=ZieGtZBy!g{~;gK(x7lPW@>CK1Jb0PIW#H;IavlDJwEePefEK1GNd-#yN z;A6-4j%{RjdmJg5+n%{Z;rVCQw+rR1b7wIqN9ZLCqwnG}~)7c?E(dnTLo zn0l()pFEU!a}?NEEkW`DSy z^a;ZsfTNti@;k4|(XROBODdFdrN)fsA1-@(u|&#{w0R+XFGTD8h-_@Jr1D^(5Kf)f zKc0vmMw)6>hQt1*0>VQGWZ{g-3l5!MX)2HXVZijF@ra>xg`8)>eXl~e>q{K}LGf8+ z2xKr~?#odns!=|E4?=6~(aGoiSQBMj0Swy5ls+i{$T!;G5ulRKP9#{;Qq^U=lsg81_bVwEKbvWum=7vFihNfn^KE({=09YbXe zS?U?w!k1*QEB5O%u##$_44gW9~arILkg-jHk00%>q%=f z1aP_JX4YsTlYHuNPb-?n<8H3`>-u>sIn^NC;^T2kP~GdRRrH`WIj}I3KeT{XKXSEK zV2;FB`f`0*!W8(tU9?(XZ(g(~f7)9ZjA&y%QeXBS@eHWu@xqP~=B(l?%vY>_w}z>{ zx{8E*dAnl>g#KX4nNOKOLyF#~P@<5u0J*=KV(3}LjB0zt-%!~UGOGBzHnZ?ABND`=kRR~V zgm4M-6iN!Zl{DR|?O<$fx5Q2grQvTQS}JlGPuDW)?WU{+zCHf;sCYT=ThITUnFu7m zXkZYGpH$6Mvhf)Ks7<|m;1e4Pjf%Gc%k`?0u5{|Dl=)byx-ErI4jlm&cD1NDb<)A|fPF*@{ zl3&XcgL>$;QXa!kB)bhcS6>iRSzCMmSzLAEpqJ93Pi*5U~MeT4pL)T~L!_e=)TWUll+iYfO$bnNGY{X)FnS#|cEWLut5b}V{e%$ZtZe`Rx!u0{5GhG0}?&zt<{IdY}CWVz# zbOYajdS!<2Y@}IGy`nd9{FGpxJZzX5?_W%lFS$*JQI80G#d3C6gzcShS-q!Z?zjFfB(>0 z&A?r69nfy*YJpLYkFYdeV`D>$vcguD9g^yuXTY>8Lj05>^k{oAq+*da9@ZQ`}bz7s; zpJz%B0|R$*<;<1xl@Jf-Jin7hv=$-0ou#UR?YCsi2=;j{9Y?&=Hh)s@lF2?$ajUI! z$(i%A*pTQAIxb$6f*gWvOaNrop1x?Th*pl}gsLI>4)KFfp%hG&!7{nU`kSc{d>o0i z;DTNIJbs^A%kvU-#n9)zUHEe?)e43BnY3i*J2ME+=MBR~n^%At504TK&4zGMSP~=J z$-*aMZyd z{5*k>>BYRahc|*tq}B`#_#6{zzDSB`E<+5pW8r_vNw2Fi=d3n4l~ifg`(vx@9fmr& z`I!JXwO}_3qoxa`rPFD6_N=U|mfXg0tL@+51}j=m-o7!3lkph!M$h(wv&@&Sb~zquE_xXp!$+o%J)^dBCL@sTOP}omP z1+uu3;g%0`aoO0dzg~|#vq)18%+IRJmZ?-;fd#Gi>Mc+i!LQF%%GS- zWr`o-U2NL1Xhn>?XXL1q-jjPca-WY-->LCn70VaGYOQgFkGc;Yk2zbvSDTBuTJp)2 zO7+5l@ysS_%q}20MQBDI?u0vkT9eC)nL4+}M}O`=q`N$g;Ib(Ej;+CL%<;RyLcl&N zkI>&?fr$PGf|dLWWE(U0?dN+VCR+*YV&!3eDV_dc|7unWlehMM#Fl1NOz?oXQe2qv zcm0$3R}#WW1)Szn3B}4>@t@M`WMZvPNEw{>{oWkRI@`X@Vhm|BDjJ>Kk=P`7BhFm9 zBcrnK(tXa7zR4pRThH(IHX*x#u$v9DQ0@`|+_wDw=UB~Yr(Pk1{NGZVYS!OWDZvQj{hlRHZsRLA5el^ix_p7u;6cnE8$DjhGpsn+d`M$JsV(d+=JNUwVcg((;P#uD7GKb%gO2|?i=rN^18Oe+z%s{LpVI&J0+@c`uGo9 zd`QreL?QJR6)Y~do-J2{noXOU{~s1-tEP#Rpfqz9o!wKGE7=TLj|8X3mYUV`TvQYK zn1B9mPyx8VHH1e-%U{ib8Ov_ZgU^+>7aRaY4W=qf$DfuZs=S(mSYRbWYj#+MX1?6j zm=Lnnxb9vIvl$uESbUc9ewCn>GbF1ava(qsSYf ztTtLMbjVBo*U!)i z21h1Ru2~)?O0s)#!v1OYw19PS&F@YEi~`m2{9GFaj^bE6URd7HAE>9wG(9_D2lmJ( zA=y|a*=yzJG7anB@}Fs*@0D0duKFIX!EEi_!71g`-Wtl|7u=_Vz>(=hS?h|}P8Q1% z#3JyF!=_%}wq1iE0_oPd>6GcD_0}R9Hg{HEr>1jP`iyTg+F5f@Uj!9F8%>~Muu1-I zJ50PTL33t$gltEC3sdWjCSUq}a^1_mYms5jfZnr0I(UQ(FM^}2fm z**zQ|X3}j=@5H!pTz`F+PGNthi6@i)CYVB{?6kjZ>!dGTUvvWsI5$x<%q&_gbdYdU zFGx9r|Mr@M@Z?`sqkr<9XXs0hjY2e%ge2qfY~CMY~RSp zgNq9sYF%ZM(BG6+MeL2{{>U_FIcD3SZUOFF@D;qpqorv$%=KK(I{zjJFX z_JmaVm#K$hbYL`&R3E0GSS7T`)=34<7P;Al?)TTbkNCdeTc!BSQ<*Lf+kjZ}m&VSr*KW+WO6ej72hS zfyomUfpe-9$89H_oOE*-dbD#mcN1BtZ5V;DuUt#;@r~bmfw+2Tu_FeK2J1~PP2m=- z1ZXk_WLji0t%WScP9sD7mfSUKj5S0eCWA5c*=T&vFY8)spdm2*s}{`hF9$sBpOUXq zxRyp;zkLGx$Z9an?z{^IQ#-pQG%FDcc-$)7j;7A@hBY^3URJpRDfeGa-T`GpfNRA~ zQt2q!C46AY=PiT6%XLjRldM^9GS3I}ZCepHtKOaozegi-AmsW4ddWk(^^iuD3`6ZL;i!oe?W@6ca}X}Rgr%qrDqFE2a$Y}f zy2Sjt;}jM0Zz=d26hHMJu#F*NETMNGpiZeGE0DZ(iM2pZl>(-_;`4*ye04>r(~D>O zX4|{U-os0SjTU2daDNsmQIBlVkR@_rfI{2e8g54r-{(f#%rrJYy?nJ{@RH!OuX>lH z45#l`PI>;MDn{`wBb{UMRMO|xv)}EN_w}zsHZq1UlXYO%bhn^nB)hO_dIO@!M!%u- zm(?3D@g%pU1~lK#|1^_ZZ9;H}C4;J5iKwrgaVCKdU+pX-)pDw@$Vy)ZpJRdBYQ&{F zQusio-H>%8j*~;w5x_B&$HUltSS-tkE~8MCD`(}d{aYR&+86*AT&~Rn5{Z<5(j(lT z`>w|gQ^U$1vy_vGPJORF{@IoarJ#{i)=`{}#AY=A7sxkTl2OFMrMq86vQShQxx`W8h3Dc>nLq&c--shJ~tv@Je(%&lIaf$?8 zCfGmcYg?Oa42bBBVVCU#uJ?eGR{!#jCcG8UFoRBZ+Q~P3t3xS71Q%(^x=v3I z#ezfdd?JTk0V9c2P?>(UTaQmAWUI!Hr1iu?c zKMcNPF~x!^On>U(i5%OJ(~=MzaKs0pR5 z&5-`B9FNWc2RCrlB7+ba0ub?T-vF7KbtjiRn(|a-=B}lCWhaZZCWM--@gJg~11@y# z+dU1uLkbm{POFYKT9$pm7??>;5#8zb=8Citvm&Y7wW@W^(JL8j@75?v%wL$v7H!Dr z69&d>Q|I`a6peJP`Prp!*qtxJef$FT_GxTovbM1}+dGhw9wfRt3U$rR`myxSmUyl$ zUmb>&3OKZ0wR&$?Uu~BUJ*PsaR>DR+RJ$6?p81COI+fw1@ul#sQ99gc2O?8{1Ji}n z^UZlEGMn-ftha3gpiW+DNbCmHQK~CP8#ncKAI_Cb{SyAJ98e-@|GR@O1Xf+%Q{c!I z%6vV&rRRT?z+f)q0-`wCC5q7$)JcRd)>}gVpAv zI4gu`!mzd;lk87A2QS3qq-cW+h9&gf6~{?BsWg3l znb;d{BDr;cy0|j%pzk*n&&J{PW=Q$53{hwH&NP$%xWK2g?iN9t<;}DAW(Nh?upCs+ zL6fB#*3exNw>a1Ox$ZmKDy%#{3$|cx69>Qk} zz%YY~yHN5+bAgHnPYKV5yf4@9>H9}KA#>(H7Pj*Rx4-cMyU{$Mlssfj6J;LZk9C@o zxfwN65)_1s%g#c71&KpZT)`!()$5;aqj$Uqke%eMhv($Tw@EG!XR1Yq%e_8y-r@a` z=czJpt#Lzne6keIj!j;JXuW~&R`c7ACvyX5(x(K;9e~5;J#ojgS-Uqzyx9g2J~ubU@49G;dSj9KF2EvRnD zZ^KWomz~#!vx!HmkH*+}T`nqh1A2U00hTs57y)>l4~nuI4d`&Gp4Nc(_n6*Du)yNE zZi-yC7e98VrLXJx{Ib4vzzvqlB5?7;Yd~|h(Ii(;h1+`)M$y|VG;}j_@R7@VpfAKb zbp&*SwVZFJU|bFIq8Ku{hKoMl$Nnu3fq5~y3j>%Srz|`F!7y(rj!B_ZE*x_}F}4A} zSH=V}s;s7LPUFK^vDp$Jt3R;y+u10uTpn%FdPD9Ls@f6){FU#&l35VcWCmVvt9<<| z(>qf5(}zH&;M6rZwPdt)@Td5K##OTebF$`9pyXEk~zqN1$*3JXcB)|$SA91x4187fyouUcOM z&9!WYhif?zO80et?&t_10SRX;DOGJK-y<2B)tkSI(c_R4vXmdPK4XAdlU756Ls0`ZjZr{Q&#<=*;^6Rz0M{DLANmAQPNNF-ywV?fml zEkJ&)+e#I9ZlRiT;a*$c1fTw{q2#em{6Jn%yV2$rI!?f_{l|_ZiC&sw-!$jvfHdvm zozZv-3JfN5*F|Sok)83D`(fVA#8%E(;3@&|I{B2s+N+;=1VO*U2!-A-lpVRT9n-|#D9I2=zHYm`66&+eUCda!MEMilfHDPJD$JqyOZaE^}* zM4nch>1L+x2N(;3n7t*8h*Nc8hL-Jn59FG=S2-(5Y5>)+3R8~e#cU(t4Dw}&rS}1U z!3zbXwf!>p)5mKWsbUVP-Qk2KyE7n|CI7KPlg!fDQS<6JP&DnG<=%K@N?=&M zIR5H2q-u|ERd$r6(R5B*?GU;j?r~qByS|Ba1} zCXZ);86pq5J$;Yn_WUN|Uu!TNdprr;Vv^gor|+H!7z{?xN`r+4E^fsAwdSSs#axnw zJRQ|=6V>`D4^+!0FNR+k&E~$7)hsH>ZtR%L`)JCK=++_P^Du>&cBikh$mSTR?t{CM za>ir$y2!#S@y59bqjP((wm7<42X2?w9SNAD5ct}OuZ<&mvuwy*Gn_J*lbz-%4cD6UrN@;jWYVeft;{I!5TZu5BK zZE~Y1?f_Ldz-W?N1Al&3tj}A^zjnFu%n?tiB>*vGcs27#Y~Yhg$JO*!sWzvy)MTD; z2}rpJ+@CiJT594?!#)e*1N;vi#WTcHA=5UN&`uKqGmgLd#GG^+EJb&_lx;v7D8}5v z;&K3B+`xaw!j=js>D9`xhxpF`=gSRU0C0oHoUMs_z!#3hlBH*#h7Vi(2cfG}sod|-$eVC+2T5wjVsS&q(6r1Q`bL;;{dpEdFms7d!>~T_BumF<34ue0|fhZ=wjh-JP z74sUgskGmFxW4#z(js{Gs!K(#*W>52@z}dLr;{>ekN`FH)BX_zvf|3~*AvS?0Vsq2 z7(5#+;8~rUQ~*;q6;`dSmYOhNelQBzUD7w%yV7LvG{f-l@KA-Xw>nFMizl;gOP^Cb z0TO(K8W_}bN0T3ClT795?4E_1+Kwk_ngMc=0gwsgyK~;sc=o#E3Z+U^2H0$<6ff-A zBDMQh?q`0rson#0`PGcvv{PV<;5#25A5V@`KQ+wPenGTeGPQJ~4TX(xIO#6e7@qvF zyvn9+{IAYA%lHROt2J|HlI7QRwtBuDQT+48KZyC%->*-vF8lO`lG#W$K>LJt6rOE9 zx{}c8?4Vnmj-QsEjBx__mGxN4^-_Z?6)H`Nv@T0HTQCv{EMzImKc28S%n9s;5}pSX z(s+P~k!j!7@88b3i|)Hj?J1Vqk74T4&iC(-^L%q3i>Q>B8F6HPTgXDD&avC!(IU z$N34$c|E=guhA0cmutaxmwECbkg-}C?QZquFlkON#M{G(`jkb4)Sxcd*nfMIWZ>7B z^XYD40%IGLzu>6l@&`%1+E47gT=yAAt&?b1R%i{sjM*Bm5s`3GK@kU!yZcb-^ zSU7d^Je%nV<$0-+zozI8J*9PeCmmp9uC=RSuwSsadpY(dUEeQ5jNbfdd~XX>w(dpS zfBY1?pi>F{jztEX6NoTw_kqq~O6;6Yag`l4&0aP9|2?W0>E9sMdkm2`sO-+iJ^*C6 zeRsRFv<;H;hbLV@qUkE}wZ^2+)A&txR=zy59kFH)l3U1!(BcsQ%?;P`{)wE+|`HxXdZsz8gcjdd>25(8H^|< zzwydEz%x$_7ZZQdnC-LQJsOq02xu$>5=J(9)cmg)W9*#La!(EMG> zuC)*&dczV%m9}$gSgxTUX3LcfC4plWtYL&Q@!Y z(mA{^)vjr8)f--Z=o60#M-HUQl)clPu|L2&o_b>(ur08YT0;WQA`h3aOp)Xi?=N)$ zH1J1KT`!llxg0U1N1y#++(WZ(?Z#jAZ;PRv`nvgr%MjTtZv*F#Rx5c>sZ75*vpAQj zH6sJ;0yDGWLppr|+D6~quk1?Z?$3VD`hUvE2O=?ioX%HL62gWifYwc>P>L%4)C1ai zvYhvKTkFO>CajsO-_K`joMOgBs|7KKf(`gthg#Jd(Jg zeucux(2gW&l-8LWA{fBOeYcv)8x|h*SKI>ZD9KFrT_qJYRSlqgSswXj!I?{#kCmBStBaEfNg;zPiR^qRw+8=v;=u=?Mceg05O-H1 zIb*P6mV%dQY2cH2qGb!M-F_cIx5kmWpBvcOkgXI-WnH_2(lQOV5Pj0I2qCk`g2j=- zQ}yc3ZEp7?W}bgIoVo3kaKcZ8jdowA*@~8SeIF813Edg?XjC*(sq#cFe1wx4Q|nz1 z=RoqVpwmNunU91$3sIWt1nzC=CbAq!7tRtWwx{;_h2%{>!jRT+Rpu6pRHj0~5W)ue zz_cQ>)jbD8@Bhc%S4LIYb!*F}OS-!R2?0rIkd#!A?oLVRl#@Hwx(zcuFSbN?sSo5jou znnK94Jo#b|Mo%a2^oiBx_WGmFd3W6v+>8}W9gNKKW2H8ta&cL4cxO8yDV1EWzi+9E zL&`dYEG}oCWGfl9I(9lll@tuW_2PUy!iaiI#H_iFM)aIgmDGh+Mh~ASTCS(c2$kJ5 zS}%Da#uxVP`X1LbrB@)C+eWj~**zcb%I&ECW-;S(?98jy!JX-36GMleY)r^zx)cTo z+eq#RP{`5ue-HkM?!VyltG2az9LpwrGyaeFiV<<55kW6OA53PBfXe*prW1z!9MMEqxg4^gJ(K=;Skvp7T-EzNJ)FCsDc%8N_(QLa>%#~U- zrbGY;2;;EgUzyJnntt(_LA6A~YNM`wkCth#_qJ2SS3^F?x5hPhL!r@>?Jt-k#+L>M zEV-nqUS&$Yg1RuFxNA@n7~^+4(LnFLv*wrnHh8UQN#}BptR&Fh3T3HW+6KtFe$}lY zk1E;<5vW>X<@9jaWf(q8^Dloun^;gtV1PC>5N1$`yK9sMl0UyxOSpHgd9D@WztqFo zbA>9D3@UNTb8aWU{H9Na(|9nTjU}Iu&0^_f@yCyQr@y|*MQPrhSoorWA9))KkA5Wa zaVPVx?dkLG9=?Be2{nkAB?B_ZGUoCxFrW}%Vu?C@O+fJ$?*lfictMqNAjBytq{QzQ)c>^buj9!8N8s35aY$YKYedx{9fe(GF=PFzs0wkGN%uwN(IT;AU&n;G(UxHDW!7m$A(U&@5nWfvAo z`^~|^F}xLWNY8`qhqK=H3*>3F4(ll5j}pH+{!J_bK?wMCUHHsE-$p|Mzt`5<5`-L2 z2nYxYBtCLX5@{@fIqm(;S6Jk_Gl8_*ueMBe1y1}%LeYB@Z8VL!NQ&L*95PshIRmWN znC1TV%&OF_Kbch_eU@VMb~ooXzxwoWEq<818T+9<)+muSiaK|M6^dVTl=s;cSQ<9T-MYWBlgqUn$+}{Np=~hjEAnCKj71E1C zK%yv_x~E5JR&{aEVA$;-x{{d2=B=XXv^_!9>1Zv;p`0g2$nKe3qkHnV z?FQZ}gc&$&nsDY_E*eTvEMjhJ^ZuMxE3r28e_rAz{X~RhQ5s=zCnu;CAa$?vb&XtI z^Tc*IiR^y$#(v#K(xUrk4MH5ihvj&pOv6~=xZa$z%r7k1-@1F^T6;XQV7iM0^j0Il zx1W3$cJ}x41LXi%2&Y8|LVV}5py<{RESlw%X5Nzt4~l~+x@P*YYVB~_=KToNO@*M6 z=ZR1L{ho8+b0W``dtu<{j+R$wT#bt(U2Js?A8xzV?^*(;`74Nl=C{I9i>QHpCiDqs zQ~3e-Odl|V$4WORw@(05HJ0HuH3*i5`S602WTB%Z&ZhK&?S74y8?Rgg(05x;I=92@@$%2!#(W2frV#E1 zNqL7?MpOC`NR0&CPH5kJgyjNPjqqP?3OGJjYBDgu2 zitX_pFx)H%b%MjGK79PTd_e*9&7(Wy{GH*JdO;BUVM=tHP%3gLaQc6FVqtc?^7i&N zK#6wHo(v916u*4DTboYsgBM8K9-piajDG)l_2azfM-QRrp6520iYAF7gNZS~5np)& zo(5am<4~Ps`T)Bah%J&*GTt5X>1`Q*T<(w=Hzt;+5r0o09S=qYPTgNOcQk`k2xjO3 zoyPXBuX8B#P(yL(C4sbu-Pz9D3ZZlXH*9!R{E7PoK#&guJyxk?1cw3=VYs3n;E+%A z!JwB~x8Hf+B0vCpf3-=0%cvqfwX(4h1TyfnsDU76=izwzXdz+m+sl}(&we-dhl_#} z-;|{;UJnDfvf*Gincc`q5aeZ3UbpK>dX$^86tpawl}H-p#-fd`$4<>PH9SE2upqjR zVtXzC8OMo8O-*e9@ddqkDz^{SGb^O$GCZET|Mtb|#Cg^62pVYQeFs1(+pNd_L3r8X561>8O9b z$3-#zFHpY&9hOUT{zZpn0$M@=zQUGA$! z#gpe|!-cz;FneIFzp8x07N=n();VVNS?fj*k>3wOCvmztv6+~CRR`id{k!Y49rQIc z8yt}3y@o<@K%eI)q!#I$#dw|sz<~y@Co9YpBgpvie~j$>EUwelyxGW-9J%sRk^eXk2f z+@Qb8u~aIVk~aZCcK)u?hvaWjpm8THssLWU{&B9xPdCt1`Mfg}r)SUQ6-(of_k$UN zbEROASW{5|zcSgYqY1Z{L1<%culx%yatqm?QY~h|X{;6Bb4O{+)bDr^=>etT!Tv7_ zpJqpkb@(ezZY~aaKED2t^G;S>Jx(&3+$M(aXGg%dT5MPJSJFRks;s8CL1%=xt?UB3 zQ8(wucyzky-SaOaKQOMEbgHdWM7>97pSJzXf-`7hnTjO^4Wb2$YGN&mnLM@`i#+#z zpZIG;k?-AkXq~$qGEd}dj5DvlwEniv5CMI3r{fg@7Tu8~YJ%Ss$4b1co7eUz{~!Xq zFm&1$^53yuf)`c!ydR4S3wrwo)Jh|QtMFgz)`fS!jx!I@(boQ8Az;)M76=@Rm3(#r zN3&&;4Lv=55gnJMS*|uPHK&Kcq)D{480%ck6RaioU9_TdkO&#iW<;+u)*dJ<#0;UE zuqfKOJYIV*xLVixHRZ9j74z&=>vlM6GZMb|Q#M%k@EBUOPVr?U8TGI_NuVz%F9GZb z##I0h9)psI)v^RC>spCs6{E3Wcb=W1~6haC~6E;F3h8k$nwp=k%Fv!0iVDlfbL;%aVeCNQW1`utn7RZI!0 z_`tTYY4PG;l73UPHp*>keae>8dX;EBAjXb$!Xp2wz*3d-NbLDHGeCoyuCgNNM9{*O z2a6~LH1{b@2}I)uqiM0i0!@~2o#sU^V3W{Cs@G}I6^oc<|3ODYAequ4aM?hnW6G&| z`d9x4jxk!zIB`cN?pkW4zIKMIi4r}%8>1S)#O3SEdkd#!gsr7fW-^q-nt30RMGUCv zo5N&Zr!Ko!sl1~}U%X-MkFWQBxN~6`hY2xNjvH%MuZCq^j`J#$sCK%2b8iHKGdax; zQuP?T&sAWS^sG1c5ik~1UZ{KWqSpD5GJ6StX;jFyYzWIdYh>~)dp~hqV9h_Ej3viZ zCp(*XQ>wY^nPy5JVL{bS%@9iCNx*1<8mr9_>4ehkcQ|#TKfDZ(28kqKVYYo!%oJ*a zlfcRnkBO6zD__+M7|fOk*PMXLcUZ#6&#bHhLyu{Tl5K-ql;cWMO8b8MhXkuod?09( z(iunX5DyuMq4LK^kxhD5)FSaUF;I<~IgB8<72+Vh-%HK=O|i&mj93S`m(6ZjL}$WW zfr`JJP+ou|gpFC3+}J*ixwJwxPQvsAlPcoZ4QP6ak?=6-PhcO{l=YCTfS9BeR*mty z90VX8bkmxWJILXG3;h;6K`&+tB(H7hhKNf2IOMU zc2~39Rm=FP1?XJ$79f_f#J)}T%XDWZBOUlRo|@){p`f7HC!#EEVBIc5k~PF(qQIi= z!V%N|?N=&EcV0*>6~guulIJRl$#Ohj=jh)ghEYUrANgc#9!T941CoF$~lgkxvr=8GQpW|@PNUlKE)-XH89X%)LCT| z&Hu+W!ZZA*a~qQ*vD9yZOWu?%#pJWCS-yP1Z`2(zJ60j!Mi}2{sq{`LqT$*?%-YQQ z#W$i#&14}h@_afk9Q-(1>hLj(D!R=XM#9y>mX zJ!_#Z8UNT&j1lRz!D7|8nAnPjB~O(i${5uw_i?lf%lsW1LVkla&6e;?N z%4Y3~IYl*j}l9LZ%0@g%6;gS0i=QWoOA2E-{M2V=wdwo8OhRRj{~SXe7_8EqG-`3r zW-Sg0Vs-JW6iq-;z zYLs)>5LY1gAX@Psc>T|nzE+@=^HaNR#bZ{-^hd<#9?OxUI?kjsJq7%TA--nQA>yy4 zcBXFsmHa|;I4w%dyjD;hR|)BG#N#2t?%M;F2vfLjm3!~{Y`1#U=iKj~y!_8)wbO#v zd+ba+<+Ps0?B<;SWQA@JBE|yHOr=N@4_JHj3J3DP7>ZCt7X0)3`UJd(so9q9=;bo) zm@pWs{jDR5+kEs9wsXusw9UVk(fXrEGQ@T$m8;C_1`Obun;Lw_W53!7#A$GbGlfgI zny}~6|JOTWq3;0MB)iACH8dxpk&Iy5ZAnTZ01?gy;Ku^C>e>p~T>gDb&|fISkUTk$ zI@R>N;IHPJJb2UznwpyIFOLicGleNY#yQpVaDQV9%H{CDSs<%s5dBsDf&M&t3MbwN zoi87Yf`w%2b*+9#uTL(y0B7ys0 z-*@~MO8`t&v8;EIJG^B+!i-!S?s#Q~YY{{GNudST+rpGkjmXnjv z=$Exx8Qq!w=RQb%Ta(9f$~=cOFS#GE*$q2eZR^TuhT3zJ1>BwkA{~JN1kjM66N!|X z+|Q7vx=^f>M3T81tLJRaBmQ}$tyoBf>Xn!SOo^Z)HG(HG9_I-j>jykk0!@=k!|JDP zRpq8bmLIRxLv66LTCLK4x9k3UtQa80$P0Eohq*-IyR5e{lm=oIjfx9>X*{f*0`Yy# z04Ql|-b~8*87d`OA^ z;zyKzA((^$u6E)In|0g@l-jz)Kne1AfVCwH1ckE~p91ji_iL7p&iA#(**HuGL%ztw zr=Hh|{?}m_fxMP!HT1gx?T5WdtQ1ca(nG)ur44PB?6ikQLNe>Ro~ zRFYiSX_zd019eU-p4 z&2IYNpBW>ff>Syz`w}R1DV697LQjDLV^md}{^*ATP%5mnZ4AR>k~~wN7W%JGe}oJN z-J)7Wnp|iqD|goyhtWx_OFfl~pgrNdmkm%TL2u)8_4UEOZNk5n0lbNc3`iMKj1_8d zKxd%>TPHSKX#pDK*lX+RB+hvM*Y^ZSQ))v>YN_XH?P)qGN|HH4ToA6LzrW5w01^qf zhBSl!%l1%%Z}0#j2nh_YApl_pV@0G&c_*p&-YiFcw=iz_?+5T13#<^Cu(tqo&@!Mt zb}TFiR$l)vhrlh-YFJ|oMpH*U{I|ncegwyi@7fbVSnvNO^ii0c12 zRsf~3t(5IwBhrcj2Q_m{YQ?Q{b6QM`g-W@_?L9q+(8(bHVR+r-{+{#QJa6)w5lx%2 zjIZF*Wc-;mQIU|4&c?Gu{lAjHYyFGlm1;rWTB*HknnWKpTYm)IML%~ZO8eC%iUCZ9 zlK$z_d;KC{QL?~JQ~j3qaT*^coU4)Qy_VPf8u1#~e%?_{WIk>++xJD`Y|kLRI7XDt9}_iTVo0Ep*< z7v>7Xzvjm}$hV<@A41;3zN^^U#AE09o?{?YWzekrdQgYd zNc7y84Y?Kof0I6y z5d=o=u8asjh=UVe_=cXTOb~*P+6Z;z07QBXPB1f2rj;x~14E8_CX2M#-A~QuNXR_? z;V#l*?jt8W(;+rgcq)V6517Yuj7IfdH`SASAZfw@AY^-iT8UHBvuDqqq!|=&cD~9^ z_wABo)M;?;@`FW;c_L4|pSlO28mJ(33@9*xu;J}ZSNO?TDeS-J$XP~2JGie$v%Og4 zdM#S`=`vAW6dI1p)!vBs4NNCFn&zH~9f6p5EyXq+BEtzr?#)0A;nbj4)E7 zCp`-P*kepDBmj7!tr~J|(aR<>kC|caeUpH02ar$s0r&hFjIw&-LUzJQTS6p00MbG2 zaAISse?a#?mg+JcuDx=l3G|3T@v$44)CGWRu7Z5h^v>gaFJ8*MfwAed96XQ5Z{PEn|F_^?!;w(A(Cxf@{Zh&8+|`9phf){Laik z|Jo1WfwQxO(-i;XT97_MV~n*FP{Cq-abhwtMn_ z9T~8-ts_MO;B|qN?0$>Fo>$7hn;rT~>m-u8^$$$Vo-Tqz&><(rKj`^CzBuF!1Z(n0 z(&BK2_n)oyr`YKk06K1>AFUev*Q@=uJ|m(D=G0|JU0o-El%nwaT{yJ^%Bmlzf=eoIknd|D6yazBH1#jW`|4#Un6gQ{zdSQ}_rnR~;p>0dvD6et4pghp%K5F=9G z!vRwxF*JMj@+ndC9w6a;22@u*L+gk8JE$c>Bje-r{8;K#Nh#vTqbY~OFZ1^ni;~el z-4ZT!K7+Eg9{=IF`q`G+ubIkakRE5Lsg>wT0B12;q{V{^T4h0HFW5XTWiJ{O^KR0V zqeA|^#l4``b~+}d#xsQY6hGxb^Ot|p$=U9BBWE?FI(d;W2P^TDMA->n1D$=HC z@0@(d7bd^}`D+aKBEN2n_mD@=gHh<9M{r9^%e~$$8*HY}0Ly2l1K|dn$)f>!wOBp_ zNJV4FUPvjE=Au+IxrMx~_|9rwwM^?fINdg@My%N8bGzAVP$Y@mK%cF_U<$2>n`sOLl^~!A@w<80^)U zgT1|9MTH|_F6ml~d0~dIPqABPB*_#z0$Df1I-&&U(`s+@V0O3ya_pg&+m@Ifk3x`h z);5AmYHhEjvlXM>^;rk=Zeo_EzRCrn;I#wAkp#0Ku@IaoJQ=}wBOp!!s_$L_4Rqwh z!1zR4{`|gO4`x|>USj_A!Vv+Ou_(K{!d7Rb>Bv?qe(4#Uf6svxHiJ%mr7DW_r<1%6 z%~`eAVq7+}xcLg7#DG;`x0+<8l}lD?5UMbJ&`_HI1V zdSsNoy`fvEXExNTbD#sb&_(RxksaU|`0>;a5#IcZB!a$5Fg(H6GegJ=1sw8%p95jm z;UW{n8`Jox=RyA*rB*;cpRPI#&2P0@`aLlAZ%7~G+X1cN9wj}3`S&7Xe7(Tm{_l1F zw=Vy;5B~3bK=a7||N9`s!S4cO_Rx_TZ2h3FDF&+QY@U~P0IV9efox$@C1NAIiQQAH&eI;-x)x}p#VukVCq5p%cMI( zz>9n8b4X&%qj=&5djnEPHnMJ_m(mDU$)O<;FQK3MYc5?yMMV%AA_BGAPB1({ZUM@_ zI9O~#1p$h(Zg&KcJ*d)yKwvtd#(qt5zSh2@l66zi=YGD@Hk<^csFSIdSI(!#6Vom3 zXDFcJ?&w77e%szQS+X+1_1bo^aqNNV*KtN|?nM-fR&^`gYtmYD#eBtxmAwF0e`Q1M zar>>SyJ*mTd8e&RXt95^h(&5+3_N|KYa35tTPz1XF?PsvKOVrlB2GeT^oyU~?GD33 z1>t($9+cq(c)@vIGnbp0KBZPu&y;mRP=CBP!!h1m^iFA-E0YMzb-m*>L&T{zNO)5_ zwg+)Gai0HRsU;dtV_qozOSNIAvzXjwa*WY=g6kn$=1}joUTmSJ0QGI-TzP$R_Uw8?ikHLFnKvF@?!L(5w z4RZb!MEjw!qM`!*jM1{5n%K>)*51+4f3Plx-oMQk1SV86akNoUV$lyEk;H^ywfOPn z*JmVk_rtHcO?>rddyh9O>{rscGE6TVc5yC+JpxHzIJCMdMp}M7!B>1!ZrsEM%#ih~LmV>psnx75Y@MPE6hWV;0;G-225})KEty#b$3S|JoVIVM z2vpHbC359PaaEf{2PC_iPe(38!_IBK$*+MW3f7fY_FJ^Z@VZM9}30FCbP zWD|1?ufn9?u+XLJ_V|vo3(wcTXHuc-*feHD-Lae~3B5x+U)$fU(ZnP$(A|sbNQ;nb z_s9@TjF!WvXxP|`rSCD$gcAyH-CbGn`~J2-Q%)&h4dB_?AVcQ`46A24^#K6P)$$ZV zg>veBbFjZE6+=8dJxiVUH9NxzFwT-Dq}l_JZ6H$FouNn1*kg>p*BnGI?cFeF)sdb* zG$=B`T4%?DT@mA}gMG;iYOZ~tfUR(|Y%}pSwiy|e7%%KxTrh08nEznrk7X#mu1{xC zqwJ5$7Y*7ILXSMQgG;n3B|zJ1M6l3Y4blqxDlb)E09qdR8kb_&fUx#h@zbtfAO55$ z)ZrotsEwf-P!;zV_D>3D@IA1o}CI~vM5~{0u zJq?N`j-sf4(6=X>WMBv%T&-`ZVS22c$sBU>`!{NOZjH%)&@Do5w#n5WrlW{Bl6VS* zt}Ndtz&dK)D2KxxfCf7vNN}A()%H2vb~iL+tE$ogwI=hiPVZE2`HU%Pk484-pzM}6 zY8aPMEhd)dGnM?Vp4(IaC$j2~kAy{hOzD+)+MCW3?wreQdCK6WjbGT8ZTbiPL1Oh| zm^uoo>G*4rX!VI;j)P)&a}W*b9+ru^pNh(L4*UuOJU42P&?Uab9e#t&AnloN)}PQ< zc`qjL`?kR?|9lX0(^9TeVHqvj47v31T&78BX1WvP5mh7aYcd-#OF{@%FPkMYhrP<) z->6#8)Z^W=>Qc%4papDy0l`MX&&ME5T+V?eU$|JPe{T1bmJ&5cZ}GSPxIa(G_VHpx z7T1pOI01&>*1I@4NM2`>ikMt?ug^*x}d>%M1DZHaR&_|Zj z9xqV>Qc9*koQ#j67I;_p*W`*Pxxjy|; zewdtQcjXgVQkG4KY$O@JmD+s|&F3jCp)5notBUu3F2M-`iV%LDg|YQ#J5g{=%G7zA z9u4}N>BlSACeLq=Hz{V9O4?Xk3sZc}4r4}tItaIdB(|$`rDL?=t*vXKLZBMpXl1mZ zE;c_;-tqD}fhT`(K{dgbu$F`Ux!M$}OutP@7)ip}K0Rh6Zv*8zwl+hXHA=32ng4kr zZ;(U!{E`Xa6kr&YQV$*VZYOdu`qdbt)rr<9RZ$2UUu*`O;k;X$Qhq?yCM{2X2L{MM z$4FXE6-OF&g{6=kp1ow9DA2(GaMBbO4+r2sz3ge2cX(6XJAAa@jJP{lGVTWISy03b zfJ3SJ=dGq65oW$keHBV%(foc3@pxGW+kR?aar|pHKbgzKG$w8yP(46*!-fls2O(C^ zAH0zk(*my9dK9ktp~2w0@bVSEK$wLU+qc&1TsPbU8w@^V~@+wL6 z(Az79&&CqBSY5@#n%8M7=J=GYB^QHw&;8j@l=@Sh1iOO>S6F4k5!) zyATqd;%}L&QapfyWVgEypJaGAM5^6SCys$9U*Wm!fT`E?nGVo@q58i7DeSttxnMsB zm&;=&fIV~)G>yXl>Ah4Lc2{LXd32ptyf1zzha08j;6-)!k38m}@XUTZ5Tc+Jp$-D! zr;u(akFz_zrx=ROv~E73jAe}`<&7xnr$5Nli*8-q_ZZ#mSu|b1q~Zad)wKNpaQ2pC zwIw{l$zbj8^`<|@8$O9dpK1>+vt1IZ;1jC;z4=8LYZFnCWv|)e5`lF}=tCRF6V1wZ z$QoPts@VHwZ9I?edot3(nuLxa7zzvUFGGu`WW?X+kkWpt6Mu>x9+18AJx}uf((IK=JOZf_v$I2jN{O`p9`>hiBrTQoHnPR&6Yqz!+9-g%38E6;{y6tI9B}WJM zBm!HmFfg`@pI>esVq)qatWXv5wOF3gk-MC=jmPrDWW9f0TP=-{)QG&yF32&D;-(KM zy9S?%ZGua58iE$#>$A-chIw5MNEuZN2{&E{NCQ*k1!WI6JN9HipNU8Uruo%-Sx)Oo zqzc_-Ao7$vxjLjfVR!=glsUU=ghF*Pu(p;0zmlITmeNIpEU7W; zz;rOc2AsMF;$GNE3qPS*f8QupG2ydjU~2+ef(HBA1Q9WtcreRIU}G;C5Xyev#S&sh zgLWat@lUguFw|LeaL+T;HOuuipI}i!#6{+iN{{q;nhsjcgK3yC-b#M4qMmixj$uXH z*x0~y&1E>1cguWap?MyQHN84*B)#*XFj1q(4je4O|EO8lR6ax2l9Z0+;X{ zqG4%@s zp95HBFW}ri(McaGicLWDv~PC}i>cku_xfrK*2=LPl9ZiZG;y-T$qHLPX#<_TW1E{o zY&yF5s!@-n8!pJ9a8w_@umQ9;Cgk&LB$nHy(fKf6P(#}@%J zBsw~HI%weTMk7|N-;DL9kZ(%awCK$J9wG8<7sj!}piU2Cb2$B_ZhHb4XOET_FWX^h zMW=524Q>wh87A*e4oT91+Vc@CcM}OuYNXdB93iPG27psgH(bC*Qp(#hkjVNneo}t4 zNzEl7Fc5F!h!boO$Q7js{-UQy&NFaDn0|3$SpfQF3mKRAqosGY$^vX#4EPdhwB7B zjEjAqnnU}>s(UnPhCj(%BaOj4KEGGzXt&W$q^_mjW>kO(i3SRDPQZnipg@BsA;(Lbs$qAXEsuDEi%teGb6rt zK*?!7{pg|C10_Dt>o1edq5Ir^B8UK`7WIyfANEQHNt_!HyPz3*&;3l9Cd7 z(Fv-gZJw?qJnzu*kObs#?R-Z&Bcxdd+r%@og#Fva5#JW)A zeWH*S0-EaZeyX$(0=gM$x7QDr_44rSZtTVvv5xb47#J7EvWDQYC?Q>;zUs`905u5fN=Rmc|LsA>Zc6)s9RBmr z(PXlK#q*K~jt6y933POHi6)t|%hQ&fRL+4)Zrc@4al0_{sl$fV{7mou_YC-WVi&wg zleJos<6rX2*tnkeeeGTC9T~xpTqwjV-kM?$%DkZu`RV0> z!QVXx8y+eH*nK}g)Sk9KSH&YM3FzAc<+>j~0@obqNN1LOTIx5U>YL*gwYnGRIK5WJ z-(#Sj5JpsCN?AI~nZf6bTOq)F zRbgc@pj*C_{qX1J-RRluE-5Sb=23EL_(9NS+KFG=@{VWp7cY#5xJ5> z#B3=lDA~G+m^Ey{Lk0xtygt}KEUSN>d0=h1RUb4q;H-~m<%lZDm!ew%hdWSSR9FsD zY6h!~fL4W(7&|7EW5kzORs9%K4|Pwh#Qr>nSm1I1O{uH*v~w zRF;&n;iF?XA`{Xd!0d^ET?an(N`0yWy_R4{`jHLdPohsY$C`Y~EYBDxyxtJ)zfV0; z_1w^t4+INyh69ZJU4#YPA1m?(P5|TJ!wj?3)>fVwveB#L?TF{oF4iq??tcH+nn+Rp zy0sIrsC=Cbs=?;-d;DwoQfNJ4OCiRaH-WMrl$`wP30?QZgAv0 z)gD~`B9WF@OKL~f&7V%Gx%p^K&-!(NGfO})6Gidh)YPBajB$U{w?Lve-Oi^Gq~1R$ zs;jF}-hUS&5`HJ}ETaxoJ@*D2e_*^F3H*fxV?!;1Qo_Apqsau_$*GTiZ_0(QbBmiW zdg4D{OXm?cu`Hfg0p-DIxKDeIex(o%p@P|O7O_Da`Ieh;I_KkM*?f2nV283ypRfoGeS!-Wk~_jM>^gjQd= zzEFFvcy#WeK$Nr02Ge7W^kyVR7BaqSHV|JAk+m{i>^IvYMzb6sWu8a5uu6O5ME8yf zm6nykI|?%Fm4iSJN|*u=4b$Fd3jyjZE^sb>rfSKf(m}+tYJph4J+UDV9OXJqO1Pk}Y83vC_-u8?mx;aw^DJf5XGRgnfrbd6}Pt zNr-AtQG>$FqtaQuFjwZ)b3Q2F!rKf=x7Qc@82-8G>&~e}*0q;)n~Iq|IrP!47lE&) z_6(X|`mzg0cJ^E}>z%5(NStZ@WVarcE(_WyNK^qCS z9CeH>1nA&&9_RF6@%=z8^A{4Sr^YrLP8a>ixLv08o8_`1%H7=^^GjZXd@n1VEY)b= zy`q>pT$0d~hT>v68PfhKCJv7Oc8h}A*AdUv!$XW%aX9aTZy?*LgaS=Mmhv^0{{wYB5>TnwSB%g=x%!I-HJN@1AxtrW;E*{(A`esR(k zKJKoKT`MOm&?#^ZSt5g2pqN?S`GgAMLdI&atrzPhRL{B^q-j@IcTt*4A@o6=9iyX1 z;pZA}OK}^YxOa~hB)^MItisZCL~#)xRyCw~Nwf8Zf$`#vLLEUUo=Kna#-<=UI~HgY z=(!ACTRF&R`grR&W5$}X=2gitMRHovdL_Hbp*F@2P7os{I8G>(aY%n`03$LR-B^1& zWbYH5{$;b4RI+BOJxLdu{k><~M=E@=@Vg0$x@iI#BUsGEDUyzQjP5VUI2AgQ0C8Q> z?86gX$e=M*q--~BeA#~kM~G1=@y4?rRZ{hnMx#z%WlsrO04Ix%MwIri@ZK8j@?hNs zeVu-U-*vw*Uf_9od1+tnLgMbDBrRRb8!cAt6F;+TG9U_H+z{E{e2Bf}&N%G3^~F&| zFqr(3;_zaRl8z33Fv%IPc07~W1H)gWf62}LEcZf+`9(Ek&gk5z)fdLD=rva`IZ={z zQ7vJsHtEtJ-MT!akeT^EcOFWw@+eju>`D>12~o@JZjH#y?gY$c{bt8RzdNyu-Q;J$#TwHrOCBeDAVZLGPSDQsRnEnD) z(Bm}WLRMN@$~F>h z1imd$H2@Ii%=@+7q-WY;u=7b6+tHH2DJfcYN?@+Q&-3gTBjdh~KnmR;5`uce4n_r*Jy8XC4sQI_7%>Izv{ydf6zc7wI&ckHa)UR`(8 zTb#W;S(jBQ*49{5a8_#Z_DW#Y%TUu!83-;9yh5!|8PdQz>g7(zi7YyaKVum7RS;G_NE0en2OHFqW#fBy7Cx;w z>Ew`YQ;`9|aw43=!>bGvp6|2}Xdn;s9>*MvN5)o=q+}7Ik$d~2Pg(&>#bzR?vDjZj zW@cW!J*+Viuw`jhY?$Mk#=R_!oDq+OH)Vrf9K{ld7Y$JonMZ%l30{Be)I3L$mO{zG z=g*FlaL&FRF8>}h7qprlJtvC$-w!icC+cd#eXUFSXpM)`0Cdd^g>^N_jbtOwL4U+MK;AVxK=8A)8#dx=BV~Bx`nO$3 zNGM8Ql{fp+Q!23d2QVyNKfPsRpMzi>QwA*gJ|S`WS^x90-d-?bMj-YAu~?_%F@;+; zXb9b!F2XV7zM=7)^!Re^=siXL5wn8p(NK%kv)$sO;dwY_%{i(WCUPuUAxh6;jJS+0 zDxqiO_4TJ61rTNs5;H>Mm@ttz!as(W52;YE>M@kIO1LR{S#`tNcyaQ2*7hyg@7IBY z&Nj1t8nXGGT*NltYs7bE2;s}VB^e#dFWBPlOt?KaxP_A=VTW(?(xa-~MO8s&2?ymo z?-6*C3qXKO=5>akO(j6OQ%_R1Gn(DQUi{uX8lP=&#K>pP|3KF}T3{G*Npx>M`~4}1 zz1_!2l;d(r0;#NjXc10u!OU&pH}z3`oA-gH!Ack~vz2+|#Tu`2<*kU+&BrwnP@Too zCUMHC5Ij0lm<5jeh6V2au0swbRiF7JZ;A8sV_qM_&s?nX6umGhB(evD=%b98P~4;k9|3Vci!9}xcd9z`cZ4LxQFNRW|C z;hqb!=HNv+CZr9`BjGWM}Jriumb{JwbpUitf@$TR^OopIGP}Gu3 zz={}R@;fGsG}vd;rKW<;wTG9D7KxjCQ;$FkXQT5K(ip-s&p8HVT|b{orT1mlJrTr_ z)BbJgnKt#4X~d}!)4BKRO~!8%9s7&op7vmehH8^rjW9QgnhBYb$WZg7IDGeXu~1ry|MA;{=pFoS--iGbn=~U$>_6&c;tBc_Fo=WgwB-#tx8D#v)wTf z_N~dGMiskpo9_6-dk6asNSQ1CrMe|`wGE5v&t2F7vpL>OqY$=&`f#BRG%2_|Lkqpg z#=0K2s@$C>k0jw4PLkUZ2X<^2gwjJP7&;)5770gY^Ld?@Ri<-B*HoH0mU3urXh?nd zEGs@Qr}hi((#mQADnzEMM5z7 zG+_8+m?+uJNeD2i{H>-+`bsKbTb30^ZLABG=nJ28=TrIw)@QokhinzyOJ61QPE}-{ z<4htNnLkjW?3eRjHAj-fod?i_4u}u{fCr1o6N`JDY<||Mw^%k~R|A3qk{`A?U2;jC zI+c-%J%jl^;su|bSTl_jewFVk$obJ3?PuXrY@X9cgGpP-z>MQT)6gyv8B*Xq=`uxB zRB#VviDoHbB(=y494GKLGqpQU^~@4#yUNIJK^TN&iH|to|53lHi)h?zq!l#BW0oDk z#&yF}HkJ?sIgy3*;n1%DTCR5bQd;S}GV=9DbOWUxxWu${cFR46&Ym6`78dmL^KNtPhh17rD!yZP2*{>W|E!!B599*c$I3a|^IQCjD+m$v((H%@z|hQ$C%nqzo)n;W znjo)fFUu(Am|l5)F3!a<2Knx21r{&>O0ZfGdMCvX#YN(gjBl3;WD2sY{zRiFBFmta zywuvVN9%Vop*P|kGr#qG<7^G*Pr7X>gYH&y^=Qd@C52lK+Y#^xVr(t*t*s&WvQjTDK`3Q#X7 zL1OvjBa`*O^kEayVl&7e4a1pYmfhwO#gOn%lG3vDeZSZ#^e=laY>(VF|E&9cRoJtKqrd&Cni#v3hu&0%%gi z1kSRm0D+)-!b>bEDd}0iF!4o2Ivx+NHJJyCjccekxtkhmzR?@@&SxuJwGExEep_i# zY;dQ75ug?3)1_3P2+^x&8cUmA@b*Ja1&;7RoQZ73PB&Ahsmb6~WoJ18goX-@N%k^; zY$%oIrAWT|mtoGfz#}FGy*hzpTW8&VKv~o${2CmvPo<036bb{opV8L~UwoJP0}Nk(RH9DrVJwQf+Ws5uud_U=awmZe*c4A1*}#sTHkn z_us7nWejg=qP-Tv?meKSsceER{^q5NH`wcqS4Gi~n{7Wba?e^zfc4`|DS0`BvnQWV`*| zP_M9H5zi@VYsM_g-evdzN+Go#^&Ru=q*BGC{$r9-gvEBPAJ9?PXJ!%zRkxoE_AeBB z@e>k;Q%;NnP=l+ra19#$^nyg$76Fy-kM}-;BPAnqTj%sl#Q1^lV35;&lM|GMaX!jm1`6(PKlzz3FB$Ak1;Af-ZXQujp`&kM6pC-7nJx4CNh5Wa_G9m_ zOGH${&0?+;ww1+;kd%eT-de{bQQ86s$K5|#RXEi5zXpV^Jy`{e;8!f~0Y9E?Umw-J zz^Mk=Pn;mAg0$4UYnAmnEjd|#Vdp&((JcZ%CSpJ#1|;xnJ>J3)?dOOKC)9yL7Q+xW z7aWstpiYunY2Dt1?d;bqP2nx%?RxWr1So5)OB@wb5G_(Tlr>X$#!^cM&ZIhE+O^=b zO-c^P8XafTH8O=Z8o*#oZ}!e~5&0}MA@ylWsUJ9ZYw-(vp1mLPth2?n~jgEhQqF5t5iKJlH@r$0`%-Y`7w-A2!r+*z)kF-ms0U~x>YHxR~H=N`N| zihY(`nDGCq`^vDYzHe(vy1SGT1ZnAzMv!g}-Q6upw;(00G=g-8boT*{fCz##NJ)dV zcO8EBANR}q{pADCvpJl-*IqH#Tyu^wX8hZz#nt$TCH^oyCx-_|Y%0}-59WSFj# zEz(qv2bhkAW9SVJR1 zLy-e+66=&U>-zfoOfS+2GT*<(NwrQDbh{8#NZTwgH!Lw~<^PL`h1CnvTy%aEXtz%z zZun9!XnRCZ3KddTD?*eoY&HfL#g8#qKdQJM%O zw^?3aiY=HjY091zD*ocQsOWa#vb9Gl>Z^JGg^~ETL4B%^4b}b+PsbRbx+HXVC~qTvjz{mowfvrlDe)QkI;#=>nGhB*DVMU0fq2tnF}8)9gxLs%(G&n=7y zqNg{_Pw#y1R)zk=BDIm|NoF_DjzYaLowmZzZ3z%-5ADB>6%`U9(yIxg%rZ6X>Q?o7 zrUlIp5r;oIYdNH9oZV6+Wsg{)eq%gm^=r@O+R`~^#&ANGT+kce#n2ZV_N(i56PCOF{`-U|B3^DmVcbPf*xv&(c>C+ z$iKSczs^PWb~@@yyp<#VvF=GoPKe&#@&Z%Y)9`eKrkq?cy->;;Lt)%mJlv;hF@F&6 z`SSXDn9-wFeBlwSm)U0WbHs7U6)UDIqqXy2K653!e*%rvgNz`2%?>_(#8%{X`b`b4 z?_w;61`@p(3E{f);)wMD@Q|ET5Q~%2&%bK zvR-`;yW9g#n<;N`jC^UL}k z4MC(FyD@;fHoUN{=x5>pk1^?Ey z#Nv>l&2mZGK`W~Egimr(!da5O)%Y|@s#r3P8>R$6n{R8C4NIT0@gFhu#>!Kqq5Sk_ zf;DHOTOeCNGr2Xl=}L90aL+Y#FZWvyTtVFEbbpE}(S?2`-8QD;yXrCB;xr%AFe4Hp zJhjGnRQWX%?klRJI4`yh%RM*cK%@G8*L|I`gMA)sEX$ow6V~IHS|A$dsQ(J{^z3wf zx7BS8_4VlvVx6p&**XL@;8&0OND1-H;x!9%dxOJF#I>lZYv;nK;;}e)v2hJyV0LnH z-{0iB%Zcq_LnZyZlGU6LVoes1Qn`F*57h-p+6F(Fw=;o_sPoXzj%FRDrKh?nvDZKr zM3Pe>D4n63YbUjXo6S9zh7c)V4U}Net3&FnBZfk?Ex+c=UMwHP*dv#k1BK!Tsb%jF zNWZQEIH#!zsr$*UHQmCE*aZtiDga1SFy>w)Pw8XVyWR(nUIS&b)@Zz8#_it1A{>?8 zs?NJ;PMa?=dB_${Dj>3Vzyn9V0o{nMz;b9f=W8>JKm8M8owVm`rhZ~w5OUc$` zJ8K-ZAY1$-tXb1$&%hhMh;=eBPBm6u@^oL~i;>%!EYIj3&{DDLCEm(n`3ex~NGBo{ zfS=xB#Vvb!oRbEGY>>Y4jH`Z_x3qc4(cMXB?0X(>#evr8a`lkgt!8V!EM9aW-O*i% zzttvO4>gwjoqy!H5p8fT1HTNb4|+sEXfe?S1d= zUr2V(@QJ<^#j*%7RP)>h`N&TTs!8G8hBY+c1gJa`F8uWTgsmLIeI@skVPkC%Wu?U0 z#pUJ8c`tiTc7wvq`hWr#;(dlRcBPTqyaabQ+rq{trN^8}blw^qy&1`)=l$`cEbSUK ziIAr-68YG%cZG)T4=(*6CeL-HOH$r2mh?v-YdoxxcuJwGV81Y-^W(D%jc+Ry&7jdS z@ox6-lWhROEHsosW%2a-WH=*O(%r;#W9V6NRv0RWo#Go`aj-+JdICX;*~aS_4Yx>JB$p2Q;KSl^u+VMI!Fr#kuc zKKNW?UlB>XN_$u5mxFQXjwhgX2Rt&YCA_qGVfYmyY`?JO7^(KFjzLfmA`H~)90!ZA zWO6^@(_&S<@N>$Oh1-%@l>LR~P|$zohs)gwr?ugWep z7Lu76dOl!j@^uvWlVgA;0I1DLogCMZW0CEU44~&gMy`WdRxxhMZCY5Of#T&4h_l|y zP5q;nT3wE9UuFfxtXZ-2bOL?-Q?4_|vjwQINI6ix9K{AUh9|^mUw_vd=k#45FE^-D z;Xf1YJ0e*Ai9K2EruSc`sl@bt_S%CN_6{9{Zp`w9_g0_ zn%wSt@|i+z5le|VdqjB1mX=0}Ylf(h{2-{fY8^8&w28kikX=(OwnP2h_otq)NM3%D z)y7S(J=0*xUer*=C{ytx8|`sJL9F2mjkem+$~qLHO{`4(=2M0$*E-(r+Q|k7-MKu4 zC4eM1VM}ifO0#SK94%^GUYUf*zdswsS2klwHKAKbbg4wH_|#1Qham_?j{3b2Aj3Ft z*3crrWrMQO9$LLveD|L61NK{)_v(^z;GDRgAu*skBrY?cLE5ePWb#j|&E^PhHb1)H zdk85#8cl78`O8WzOpo}u_hDC0-1gS)p__GG(#rZ4ik)xM| zq|fx{mgtaIg8Vt_0!LAX%Q4UQTe03e<$Xi|V}@^s)4xCUgTc#nMry^~kJzq%21iOX zg^;@qN|Qvq(<2LtID57_z1ZST#J)$#;PnFiU7%|BKuV{@!mJynf30wdNvBwmN_NPy zSQY+YIC6~PEdjR(vRT7$hRb;JudQ5Wu{jx?TfLvt7@GL4eE2LKhO~y2pHP|T+-o?; zsfDy{b+n5hI}}?C8KZlt&DG68Q~g3Fo6v6$#5Vm@QWU;Hds^5{YO(2%jTw&AvEk8& zi%7C9SP3#vQvCSY7a$d>G7os;XvDKW2k7xNHZ?{5p>p};6e9(h_}=A`DENAvIfs$6 z>|9F@gbUqKh6*KxRHmcB0Md66aq)4>>T9*Ux1Juubd!_DpZ>-8?)rzs1=oXNL<~r~ zc|#_thpwRaMf!~>C)!CsR%B7^hgBdQ_vQNTk@LV$iAl}zr8Ex*)95{r>++~4=IQ@E zeWbYs%R|O?icKWUdMD0*o9Ai&vkl7E+6Zv8gPGwT_?g7&zHij(Gls-`Kq$y5C#Yk`|4mO>U_JOD-P7y6Ld9pceRfU5 z4D(k&C~|M%0E6c(3)50YdGfa^kh5=lHs}|kr?fCZq~q5irkzvg`= z>IH~mlEGE!&Tw*(hW9>;kWMAG*SA;4KO{5Wiis8eF%o`cniCJD%BW9yU?5=89d4f_ z$HuI}24R~kHPMzX#qzMjr}K8<()Y0qZ5R1d?DWCc*Sq>lt@I1L@SG|dnJfBCagRy~ zZkKP3#eSIMJ9FLU*NvVI58leXmch!{3RBN2hvo+9|9=)39cjFj=% zwcW%O!pVqE!j3$FyEp<+AklD`MmuNI{$3aAul}Rj44LMSUWdFei0CE+4M1Lbd3l-H z+3A(LAYMxkmp`nnmhOLDYoAShjXdu68v-fX^G+}G#q3uQy=EA{t0w+4;c6xs1G31Y z*gDj{ep6cpTV9D>pB!4=Tg-kX)QvRWs57tO(k*3XYo+wCF#Q`?4K?1&$b;5}GS-@U zaAj#xGM#0_hp9$60)Cbeb zf3@z*ca?80p9q=T&cPdgfGF(g7CN!(BXngz7G`H_Tl`~YC|fzBAd=WJdpZrBm=W+HQ|_5b2a$L%mo$QLMOsp+=^1P`|LUhB$J(8F z>IE-mw|>1P`CGpB6CYw|Vl|Sx5^6R%ftx>2Wa?%pdnVL>Lnfk>!7ZDy&)BF8ctEB| z7Ba19L*MZmj)>@&B747m(>DIR6Uvgrbg~^wwEyXPp6U8At@+)XbQNZH8ij=sYAHE? z!&Yx)_=yTc0L2hvYYs`pgegHvA5oe15LCZdl+$@OgDAz}H*;(^TK#6i`J(-A`o{5N zYr;mYM-I%r% z#F9LWZ;D8Fh!RV2n_=h)#9QBdaj7#f9wZv+GYvF<;by^gfGkCP&asxpMg^9aml0~x z@R9uK9L<&8IJZb<`MgLPoA>%p$chb{pRHnh(h~-uQ>Khx&J1|G*c)+##j&ONoa8A-DN9rbavOS-*a|4XM5C-1(jbs*IY8i1I6SBpeAXuMy8zJhLG^fFSTPsj?nf;Z`6efMMGLd z<+T3#6z3fvrGAUOF~!<-h6&2hIw0*_S3KE0Do%xOO={)nTIE^Kl7)m0^y z^VRZhAS`^3x%Od+2W4T%Y*qBUIsni0?(T%pF|JukE}=4NHPF+wyH@A1#UZJLdYyR~ImbD1}nF>sbQvVk^AIyodx73UW zn4%I0HnQwh@qI>SwzKsF>BoA+8+T*ZTeA%emCDWI2H1)s$pbT4^Z31tFVatT9Se)5 zflhJZkBz3UXwGZd$|4-|3x89LnB?M53}RJqWg-uL9%?M(937ud_oqI`;oeFMF4iuv zPIU{-phEJHREj!Gv^4-*uZV2Sy$$XFjVvDlsDax z|8_p^jFvW(VcTEqL=HuypriNteQGu{^$4gtyyw$?1tOIqO1t`!kZ}Y!XyOM$km@GE z-R_&dzYlSl1nl?TKn(Ok`weV1Kv-r=q?*QsM9h6XDx?ki#1X1DWz%!`XA+iSgUA}M zkS-WNe|MAQ@sdTttdeX`7Q9CAduiYzy!WWGEdoXn;GwVQe1GBMWj+r;1>8^VDdv$F zE1e1FpDo>v%6jB}PCeJ;^VB~5x4-Z%J$ptJHB?7kI&VqE{g!Yf#oHu$V&(g?u+{{Q zYc9Ikq8}*wm#ax>benHjYeN*4E)pOzP8WTVnp5noQqXgW#n*dRRYdO^Kjqss3(%9)DgQZjNcR*}!^aJzlxJK`8nx>KoG-}f*yfNlIZo`4EHUVSRC;J^E5GFQcg$t}RBp03 z=jSaeLz%!~Anfj_f6n2)G6Wbh{iEV@$0+F}&DA4-56ErSgChSzNMcB@z1QZdtK>CB zdU`tX46!XW=pjsrAVW$_gm{og0$04TT{m+lu2J*UItOpDK3q%>Tx$N}a_#D(P7|^? zSAyspbT_DIFB0B@Lkji0jhEX-Ey-;C9$vDzL-_Hp@@oG`{s>ABN+A41`+8A&t_$!D!*x_LogKGb#u+hC{mhS?uA5>z zf-@^n>DSsM78qC#Z!eSkcgW){!As@p1OHK*UG@D7I0*&z6p2-*D(F?j!>Ya7aH?tU zV08yYAfP8#AedaGg^2O}8NGJ(MTZ&MZP$WCG1v#yZa{XT>0*iD108%h=gtz!ClyKB z=B5wPjY&jbT)eYI?e{+RO`jEuZ!ZRQ3np)p=scfE^qiaWI{rWhX?WiRDP{POKLyQT ze|pTz0l$p|GWzMxSE5AC#Zle&dr3i2$ah&S2Lh{sKNF~KvRG6LwKg4=s8Fw6jDL||%{;O{TC3^1MOSXgTeEY&cxe`s(0 zaN1D+wlmD|ek>T1B?2bTQelOY_3+mSMj481LRsYf@C^PQ@UYSS{f^;GpKOwbdo-yn zad7*aKRweu#8S_V(hWW^Ff+>+%*e&uv)G0J)`^ut63&bPE0W&zXjS%k)XO2;(iq~p6trR!iBT)1QaQW%1SHd7{V`AR0d1} zZ^OTQ5d?{6Yybjhv_0q525&Ph8ANRCrN)?XZ}H4kazSiBuyLRGG1kZ-k8+H%EOcC= z{<_YHJI8l?Dkd)O#n@E?z7z4_hR}?pYrN{0z`tTU( z6ZnFEe{3|Xf?#hi`*7LY#?6kJrHfi%>Nh!Oc|{UxuqMjWZabhI;icZZQ$9dHGCE;; zb?{p{b&=2=&+dba#6x&LqiMgtp8?F9C^GZ}pEOv!_ZQy6U~1Dj5E{U&_1$E+RR!J{U z6gUkmr(FV~{D>leo{RnZ2Rn7ph0JoGJ2wQ?S>Y1}%pgP*ewW#>i1Rao>EA;10jE-4 zStEXqW_fB5Bx_YoFo7hD;4v*D%a`{{1srCD5rZXyK=PMPOzaVxD8+o=i+dMU0+Z7p z^?r`ZNUWiA{Xsp?2Ph!~0#oqyU@`bH_@BuMw`{9}z*+dTKJ z`rm8%+^?X6LE$^a7=TImuN#D?i6Q^@_5Z&&G*XttfAlC$`6EBc?#5##CMjKAGO4_3 z$V43%Q(9_j#Oy32N``)Gdz)k+q5m~@i54(&ugEDWNq2ooXV%GMrl+;Ysi??iz=zbY zy)73WfnU`L5BvN3OMcIFXHRKG1u@~nR_kK{x#c-hHB~a4^ zWgSaN9LAjz_X1@fKFnJ9VAp>J$XlyGx|{r&Wt2{N8fl4WaB(rS7v_pmmIl$7_rP@y$C{JYJfg{bkf{~Aa>aabu#g?v=&ULj9 z!+51|BEtTa{d;0iO!sb%+q4VewYTkLY$1T%@e$F|81o@B9sQrdl~n}ChWriHg8NDS z&lCgahm4?si^I|kqPM!-h>b^&g@q~2YsjyzuAZiICjt4dXDt z_rW<(!#-&<_gl}urWk^|T`nGcE&cnEz(&B*nQ)$JLewFlsC3WUJUyi}W3Izs`1HhoV> z;dS9SGa2)8^M9fsAtQ4GZDBFPhcWCewqNPlOggARIma1iuKL&62+w)8LM4E!7XU{9 zo48L`b)f*g!&taP4p63ekSdGB8`=fnCUEItP|XLy4TQly~nh?L+XnY z_q$MI+kBD4tdDdGW!Asr6((TbhC}|geX7I8mjF=^pz=%uTETWQ0Lax`KKl!VEtDS` zOVPQ~P|q_GNGvQYWMpK9RJM&`Fkn2=F)m{4S?I+<2+h332=s4;;{0Mk3EE8#z@fkkJ%JI z-u$)Okjc%3w~1MDr-~S{kvmpz7gE#E&<~Ph7rKB;dMPX|Ee#e-FpHp8eHy}bZEwfv z5a!8BLsL^))?_OwQLaq{>5`wmFo7B(qPv|Mq6}f8NHFlA3P5V?rVONyVPC&?zoXz; z9~lE8iKaF-XmWCc3*qWmv5c@bUk?y|d1Pj07WMAkI{Rz5wEpbbWKZ%Fi3#itJ#|HT z36ze<5*afcmQsA-GC@vSA^|so8k(Bjli~1UfwlNn;k*whi_!^9^M(She+w9P_+_Yy zj3xiXAYvk})0^~+js_DTI$AVV5k)}^SVYCU=WIu;=y-UM&CR}VP0-jSyijK2{PNV$ zk&%(VVKBa=ln%RRzj>zRx)egf5|2Pe8|iT z_j)PqDdGIwfB%0jGyE3B({@V#{u8jf!BPwWd6$=06#VbI!oLz70(_JI*Nu}6k=S%< zTU+1M7{M{ckdYlQbx7xhCj0)mPwp1{X`Xv_mh@`o=#jYf~qfHN=iwENEvMsd9w=% z33;SU4uY^oNLd*xJv}`wK5R|N&UHEg{&?l8xV(}QTsZ@BUY%V7U zoqzKKZm+ob`8Q2~g#>EpNhZ3R%Ro+z9BASK9K=h^s%KrrIH27!5{hs;R49<0s*IA% z2m`4^rH}kL0O$1Ta2c`Va+9jupb3|Z!>|j$>bndv;Uer{v9AFTLL0>T%m@f+=1^V$ zGi#a(DN5!rZcFccL{1(Bgk$p^=W1VF9MX-0LS(5NsVwbwc6K8wI6zdr2Q&ou5uZJ2 z;Acqq2K+-#LiajViIoZX8k{KU4`wDO38nJzRa8{`bgfIQ&Sqw2Zup80pEIX1>|N!xKocAuI))340?ycIA4~-PuJEaY z1U#;$F7%hcc@#qek}%ysPFW3{$fnEnl62L8%rvX6F-0OcCb3-H{+OLz29$Ksav(c@ zG_wTw7EimTzJ1#e$Vu!e3kp~H-&q4RPFC1yC3aL$>JugUqe(#BW~@c+U_DDc;z$x! zon=rM%XYqzJ-)B2i`IY_iZ;8r_$Y_9Z7)+Vv;>U){n}7t1dB`iWfG7pz+p-dTK^8x z2fn-Pnrd?~vU+gsH5xSCqQlLwkY*0BMk%1;=}z_*;r)|Fb=Ekb$YHvsZp**+5!wk9 zK*Y&TR7a!Fy+nzl7778jdW6j0(y}k|&YTLCZa!iR3T~|mRMb>kIM#gtBKB3MBO)8F zTtGoQz~cv~g}1!15uTe%i%lbzsp_l_LVeV)C+`z!@WJwZ0v6w5hB_X7?hy*WR1eCT zC$QJc#*p4bGyq{|I86NlRJ40F>I|v_n%de%0cKPlkOB6K;?m2>T+C2JiCJ*Hz4BW8 zp629gkw^s!sv#E{YTo<*pgVFEkc1Z|l9NBkr^vhn7!Fe;wr*q($)U`!Rd8JOqc(0_ zVG|E$X;HGXu6g~R{zC)(_f0YdeyID8u_2~Hy5t!q{Examples#> # A tibble: 1,000 × 1 #> .kmeans_cluster #> <chr> -#> 1 6 -#> 2 7 -#> 3 15 -#> 4 2 -#> 5 20 -#> 6 10 -#> 7 3 -#> 8 19 +#> 1 16 +#> 2 13 +#> 3 9 +#> 4 19 +#> 5 19 +#> 6 9 +#> 7 9 +#> 8 9 #> 9 20 -#> 10 16 +#> 10 7 #> # ℹ 990 more rows tof_cluster_kmeans(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 1,000 × 1 #> .kmeans_cluster #> <chr> -#> 1 12 -#> 2 15 +#> 1 9 +#> 2 6 #> 3 18 -#> 4 8 -#> 5 13 -#> 6 19 -#> 7 15 -#> 8 15 -#> 9 2 -#> 10 8 +#> 4 12 +#> 5 5 +#> 6 6 +#> 7 6 +#> 8 2 +#> 9 14 +#> 10 19 #> # ℹ 990 more rows diff --git a/reference/tof_cluster_phenograph.html b/reference/tof_cluster_phenograph.html index bb056b9..0bde9da 100644 --- a/reference/tof_cluster_phenograph.html +++ b/reference/tof_cluster_phenograph.html @@ -147,31 +147,31 @@

    Examples#> # A tibble: 1,000 × 1 #> .phenograph_cluster #> <chr> -#> 1 2 -#> 2 10 -#> 3 10 -#> 4 4 -#> 5 3 -#> 6 9 -#> 7 1 -#> 8 8 -#> 9 11 -#> 10 4 +#> 1 1 +#> 2 7 +#> 3 3 +#> 4 2 +#> 5 1 +#> 6 8 +#> 7 4 +#> 8 1 +#> 9 2 +#> 10 6 #> # ℹ 990 more rows tof_cluster_phenograph(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 1,000 × 1 #> .phenograph_cluster #> <chr> -#> 1 4 -#> 2 2 -#> 3 7 -#> 4 12 -#> 5 10 -#> 6 5 -#> 7 7 -#> 8 1 -#> 9 13 -#> 10 5 +#> 1 5 +#> 2 6 +#> 3 2 +#> 4 2 +#> 5 3 +#> 6 10 +#> 7 10 +#> 8 9 +#> 9 1 +#> 10 12 #> # ℹ 990 more rows diff --git a/reference/tof_downsample.html b/reference/tof_downsample.html index eddded1..6dbc801 100644 --- a/reference/tof_downsample.html +++ b/reference/tof_downsample.html @@ -146,18 +146,18 @@

    Examples method = "constant" ) #> # A tibble: 200 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 0.124 -0.0156 -2.05 0.0134 g -#> 2 1.65 -1.39 -0.180 -0.710 c -#> 3 0.636 -0.170 0.778 -1.97 a -#> 4 -1.44 0.340 0.241 1.63 n -#> 5 -0.876 -1.04 0.109 0.403 i -#> 6 -2.78 -0.871 -0.725 0.717 d -#> 7 0.809 -0.349 -0.243 -0.735 w -#> 8 -1.10 -0.263 -2.10 -1.32 j -#> 9 1.95 -0.584 -0.993 -0.651 p -#> 10 1.99 -0.220 -1.03 -2.58 a +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 -0.0692 0.285 1.75 -0.343 a +#> 2 0.302 2.12 0.830 0.868 s +#> 3 0.564 -0.337 -0.804 1.05 i +#> 4 -0.732 0.0620 -0.747 0.463 z +#> 5 -0.280 1.33 0.405 -2.20 v +#> 6 0.891 1.15 -0.613 0.358 r +#> 7 -0.285 0.192 -0.505 -0.123 t +#> 8 -1.28 0.837 0.399 0.329 t +#> 9 0.532 1.61 -0.373 0.693 b +#> 10 -0.391 -1.59 1.16 -0.363 y #> # ℹ 190 more rows # sample 10% of all cells from the input data @@ -167,18 +167,18 @@

    Examples method = "prop" ) #> # A tibble: 100 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 0.797 0.755 1.77 0.876 r -#> 2 -0.570 0.751 -1.00 -0.810 n -#> 3 -0.450 -0.998 -0.986 1.78 w -#> 4 -0.311 1.98 -0.719 -1.06 z -#> 5 -0.669 -0.263 0.830 1.43 f -#> 6 0.661 -0.696 -0.728 -0.639 l -#> 7 -0.165 0.176 -0.203 0.0940 f -#> 8 -0.770 0.292 0.309 0.132 t -#> 9 0.490 1.07 -0.408 -0.541 a -#> 10 0.874 0.445 1.02 -0.806 u +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 0.416 -0.0549 -0.695 0.226 t +#> 2 -0.811 0.802 0.674 -0.247 d +#> 3 1.13 -0.218 -1.17 -0.354 l +#> 4 0.514 -0.853 1.11 -0.959 j +#> 5 -0.127 -0.115 0.840 0.696 p +#> 6 0.00882 1.18 0.463 0.0690 l +#> 7 -0.483 0.728 -0.210 -0.456 n +#> 8 1.59 -1.13 0.00641 0.909 y +#> 9 0.315 0.0125 -0.150 0.00140 s +#> 10 0.147 0.00315 -1.83 0.743 j #> # ℹ 90 more rows # sample ~10% of cells from the input data using density dependence @@ -187,20 +187,20 @@

    Examples target_prop_cells = 0.1, method = "density" ) -#> # A tibble: 101 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 2.02 -0.234 1.02 -0.727 i -#> 2 1.52 -0.652 2.83 -0.0350 q -#> 3 0.281 -0.616 -0.00816 -1.07 k -#> 4 1.79 -0.490 0.426 1.61 y -#> 5 1.99 -0.220 -1.03 -2.58 a -#> 6 1.43 1.35 0.391 -0.886 x -#> 7 -0.335 1.80 -0.470 -0.747 r -#> 8 -1.03 -0.145 -1.36 -1.08 c -#> 9 0.630 -0.491 -0.990 -1.11 z -#> 10 -0.110 0.501 0.903 -1.36 n -#> # ℹ 91 more rows +#> # A tibble: 95 × 5 +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 -1.18 -0.355 -2.25 -0.514 g +#> 2 -1.39 -0.266 0.671 -0.916 r +#> 3 -0.0662 -0.249 0.407 -0.0341 s +#> 4 0.324 0.379 0.697 -0.186 a +#> 5 -2.17 -2.24 -0.895 0.114 a +#> 6 -0.532 1.68 0.507 0.445 c +#> 7 -0.848 -0.836 0.340 -0.572 h +#> 8 -0.805 -1.24 0.00874 0.480 r +#> 9 -0.298 -1.97 1.40 -0.383 z +#> 10 -0.921 0.747 1.42 -1.29 w +#> # ℹ 85 more rows diff --git a/reference/tof_downsample_constant.html b/reference/tof_downsample_constant.html index 36ffab4..605efc7 100644 --- a/reference/tof_downsample_constant.html +++ b/reference/tof_downsample_constant.html @@ -128,18 +128,18 @@

    Examples num_cells = 500L ) #> # A tibble: 500 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 -0.0579 -1.72 -1.42 0.289 x -#> 2 2.73 0.172 0.177 1.18 h -#> 3 0.538 -2.43 0.701 -0.222 n -#> 4 -1.16 -0.397 1.38 -0.903 a -#> 5 -0.210 0.404 -1.36 0.656 m -#> 6 1.08 -0.877 0.165 -2.33 t -#> 7 0.216 -1.20 0.776 -1.04 b -#> 8 0.670 2.26 -0.317 0.340 s -#> 9 0.468 0.819 0.0918 0.853 s -#> 10 2.01 0.284 -0.721 -1.49 y +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 -0.299 -1.19 0.223 1.02 m +#> 2 0.726 1.12 0.860 0.970 a +#> 3 -0.361 1.01 0.00652 -0.159 b +#> 4 -0.947 0.396 -0.836 -0.952 k +#> 5 1.51 2.26 0.961 0.164 j +#> 6 -0.209 0.126 -1.25 -1.08 e +#> 7 1.22 1.00 -1.42 -0.400 u +#> 8 0.534 2.94 -0.222 0.675 j +#> 9 0.143 0.236 -1.29 -1.27 r +#> 10 0.238 0.709 -0.00808 1.59 a #> # ℹ 490 more rows # sample 20 cells per cluster from the input data @@ -149,18 +149,18 @@

    Examples num_cells = 20L ) #> # A tibble: 520 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 -1.16 -0.397 1.38 -0.903 a -#> 2 -0.135 -0.177 -0.800 0.947 h -#> 3 0.0699 -1.46 1.82 -0.283 g -#> 4 0.840 1.47 0.305 -0.474 n -#> 5 1.08 -0.877 0.165 -2.33 t -#> 6 1.80 1.07 1.60 0.549 q -#> 7 2.01 0.284 -0.721 -1.49 y -#> 8 0.0317 -0.919 -0.970 0.168 t -#> 9 -0.884 -0.334 0.0589 0.366 l -#> 10 -1.09 -0.656 -1.48 -1.57 v +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 0.392 1.62 -1.94 1.01 c +#> 2 0.726 1.12 0.860 0.970 a +#> 3 -0.920 -1.39 -0.800 -0.920 j +#> 4 0.0644 -0.297 -1.60 0.520 z +#> 5 -0.587 0.152 -1.27 3.11 o +#> 6 -1.23 0.513 -1.32 0.973 d +#> 7 0.615 1.89 -1.57 -0.552 t +#> 8 -0.707 1.13 0.536 1.08 l +#> 9 1.22 1.00 -1.42 -0.400 u +#> 10 0.534 2.94 -0.222 0.675 j #> # ℹ 510 more rows diff --git a/reference/tof_downsample_density.html b/reference/tof_downsample_density.html index 4cbb3d8..9f2f2bd 100644 --- a/reference/tof_downsample_density.html +++ b/reference/tof_downsample_density.html @@ -192,20 +192,20 @@

    Examples target_prop_cells = 0.5, density_estimation_method = "spade" ) -#> # A tibble: 514 × 4 -#> cd45 cd38 cd34 cd19 -#> <dbl> <dbl> <dbl> <dbl> -#> 1 -1.76 -0.130 0.750 0.569 -#> 2 -0.325 0.995 1.42 -1.90 -#> 3 0.139 -0.0432 -0.569 1.27 -#> 4 -0.221 -1.13 1.43 0.595 -#> 5 1.82 0.0462 0.937 -0.0783 -#> 6 1.47 0.909 -1.03 -1.34 -#> 7 -0.287 -1.11 0.295 -0.0843 -#> 8 -0.467 -0.421 -0.487 -1.22 -#> 9 0.311 -0.00684 0.877 -0.194 -#> 10 1.41 0.107 -0.0705 0.292 -#> # ℹ 504 more rows +#> # A tibble: 509 × 4 +#> cd45 cd38 cd34 cd19 +#> <dbl> <dbl> <dbl> <dbl> +#> 1 -1.00 0.353 0.283 -1.57 +#> 2 -0.886 0.199 1.64 -0.417 +#> 3 0.386 1.87 0.0963 -0.325 +#> 4 -1.28 -1.74 1.02 -1.64 +#> 5 -0.428 1.97 -0.960 -0.886 +#> 6 -0.696 -0.0458 0.825 0.594 +#> 7 -0.0576 1.67 0.984 -0.0994 +#> 8 1.39 0.920 1.87 0.798 +#> 9 2.40 0.000711 1.10 -0.262 +#> 10 -2.04 -1.19 -0.184 -1.20 +#> # ℹ 499 more rows tof_downsample_density( tof_tibble = sim_data, @@ -213,20 +213,20 @@

    Examples target_num_cells = 200L, density_estimation_method = "spade" ) -#> # A tibble: 201 × 4 -#> cd45 cd38 cd34 cd19 -#> <dbl> <dbl> <dbl> <dbl> -#> 1 -0.325 0.995 1.42 -1.90 -#> 2 -1.48 -1.45 0.0642 -0.158 -#> 3 1.82 0.0462 0.937 -0.0783 -#> 4 0.311 -0.00684 0.877 -0.194 -#> 5 0.118 0.233 -1.21 -0.548 -#> 6 0.648 -1.34 -0.0295 -0.718 -#> 7 -0.403 -1.06 0.418 -0.470 -#> 8 1.14 -1.03 -0.990 0.589 -#> 9 -0.105 -0.0490 0.514 -0.102 -#> 10 0.0821 0.844 1.40 -0.0105 -#> # ℹ 191 more rows +#> # A tibble: 200 × 4 +#> cd45 cd38 cd34 cd19 +#> <dbl> <dbl> <dbl> <dbl> +#> 1 -1.00 0.353 0.283 -1.57 +#> 2 -0.428 1.97 -0.960 -0.886 +#> 3 -2.04 -1.19 -0.184 -1.20 +#> 4 -1.52 -0.327 -0.195 0.177 +#> 5 -0.398 -0.112 -1.63 0.182 +#> 6 -0.643 0.493 -0.672 0.266 +#> 7 -1.02 1.37 -1.63 -0.311 +#> 8 2.26 -0.788 -1.67 -0.281 +#> 9 0.180 -0.00392 -1.88 0.582 +#> 10 -0.529 0.870 2.02 -0.0415 +#> # ℹ 190 more rows tof_downsample_density( tof_tibble = sim_data, @@ -234,20 +234,20 @@

    Examples target_num_cells = 200L, density_estimation_method = "mean_distance" ) -#> # A tibble: 226 × 4 -#> cd45 cd38 cd34 cd19 -#> <dbl> <dbl> <dbl> <dbl> -#> 1 0.113 -2.21 0.328 0.912 -#> 2 -0.221 -1.13 1.43 0.595 -#> 3 1.28 2.66 1.32 0.302 -#> 4 0.648 -1.34 -0.0295 -0.718 -#> 5 -0.508 0.647 0.783 0.965 -#> 6 -0.382 -0.949 0.423 0.316 -#> 7 1.29 -0.837 -0.445 -0.362 -#> 8 0.118 -0.781 0.707 -1.72 -#> 9 0.368 0.897 -2.19 0.497 -#> 10 1.37 0.563 -0.343 0.968 -#> # ℹ 216 more rows +#> # A tibble: 190 × 4 +#> cd45 cd38 cd34 cd19 +#> <dbl> <dbl> <dbl> <dbl> +#> 1 -0.315 0.160 1.03 0.820 +#> 2 -1.34 0.138 1.64 -0.306 +#> 3 -1.28 -1.74 1.02 -1.64 +#> 4 0.487 -1.20 -0.728 -2.00 +#> 5 1.39 0.920 1.87 0.798 +#> 6 -0.0217 0.359 0.876 -0.866 +#> 7 1.11 0.197 -0.411 0.936 +#> 8 0.145 1.44 -0.984 1.05 +#> 9 0.310 -1.39 0.195 1.41 +#> 10 -0.281 0.265 1.11 -0.438 +#> # ℹ 180 more rows diff --git a/reference/tof_downsample_prop.html b/reference/tof_downsample_prop.html index 6bc05a5..4eee77f 100644 --- a/reference/tof_downsample_prop.html +++ b/reference/tof_downsample_prop.html @@ -129,18 +129,18 @@

    Examples prop_cells = 0.1 ) #> # A tibble: 100 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 -2.68 -0.366 0.00593 -0.150 x -#> 2 -0.0284 0.659 0.234 0.469 g -#> 3 -1.97 -0.272 -1.01 -0.245 h -#> 4 -0.139 0.326 0.497 -1.61 q -#> 5 -0.830 -0.881 -0.198 0.854 u -#> 6 -0.971 1.23 -0.347 -0.173 m -#> 7 1.53 0.522 0.843 2.24 t -#> 8 1.43 1.73 -0.129 0.411 d -#> 9 1.79 -1.61 0.990 1.02 g -#> 10 -0.716 0.200 0.856 -0.306 e +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 0.644 -1.20 -0.232 -1.17 v +#> 2 2.04 1.48 -0.209 -1.32 j +#> 3 0.452 -0.0795 0.0191 1.38 x +#> 4 -0.886 -0.0508 0.359 -0.399 i +#> 5 0.0550 -0.366 0.696 0.765 p +#> 6 -0.747 -1.26 0.764 0.225 k +#> 7 1.18 0.667 0.981 -0.288 j +#> 8 0.870 -0.572 0.431 -0.0517 y +#> 9 1.35 0.408 0.328 0.775 x +#> 10 0.144 1.40 0.0902 -0.249 o #> # ℹ 90 more rows # sample 10% of all cells from each cluster in the input data @@ -150,18 +150,18 @@

    Examples prop_cells = 0.1 ) #> # A tibble: 90 × 5 -#> cd45 cd38 cd34 cd19 cluster_id -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 2.00 0.505 1.01 1.17 a -#> 2 -0.239 -0.817 0.556 -0.381 a -#> 3 -0.148 2.25 0.850 1.25 a -#> 4 0.658 -2.70 -0.985 -1.30 a -#> 5 -1.62 -0.0323 -1.14 1.48 b -#> 6 0.300 -1.15 -1.44 1.39 b -#> 7 1.22 -1.28 0.340 -1.08 b -#> 8 0.128 -0.844 1.38 0.218 b -#> 9 0.561 0.619 0.395 -0.0378 b -#> 10 0.0478 1.47 -0.618 -1.26 c +#> cd45 cd38 cd34 cd19 cluster_id +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 -0.350 -1.94 -0.824 1.21 a +#> 2 -0.302 0.423 -0.871 0.0792 a +#> 3 -1.29 -0.273 -1.44 0.806 a +#> 4 -0.376 -0.750 -0.0136 -1.13 a +#> 5 0.187 -1.31 0.439 -1.15 b +#> 6 0.422 -0.801 0.251 -1.35 b +#> 7 -0.397 -0.394 -2.26 -0.0954 b +#> 8 0.839 0.631 -0.724 2.08 b +#> 9 -0.260 -1.09 1.92 -1.23 c +#> 10 -0.534 -0.521 1.15 1.12 c #> # ℹ 80 more rows diff --git a/reference/tof_estimate_density.html b/reference/tof_estimate_density.html index e9c4209..7b14592 100644 --- a/reference/tof_estimate_density.html +++ b/reference/tof_estimate_density.html @@ -155,18 +155,18 @@

    Examples# perform the density estimation tof_estimate_density(tof_tibble = sim_data, method = "spade") #> # A tibble: 1,000 × 5 -#> cd45 cd38 cd34 cd19 .spade_density -#> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 -0.406 -0.0145 -1.41 -0.484 1 -#> 2 -0.0872 0.00235 -0.843 -0.796 1 -#> 3 0.901 -0.100 -1.44 -1.02 1 -#> 4 -0.793 -2.06 0.599 1.23 1 -#> 5 1.60 -1.71 -0.553 0.595 1 -#> 6 -0.579 0.516 -0.501 -0.0455 1 -#> 7 0.0192 -0.216 0.352 -0.482 1 -#> 8 -0.00891 1.54 -0.209 -0.767 1 -#> 9 0.936 1.95 -0.224 -0.195 1 -#> 10 1.23 0.389 -0.0372 0.565 1 +#> cd45 cd38 cd34 cd19 .spade_density +#> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 -1.36 0.411 0.548 1.12 1 +#> 2 -0.0788 -1.01 2.17 1.62 1 +#> 3 -0.0631 -0.366 0.203 1.89 1 +#> 4 0.225 0.467 -1.29 0.559 1 +#> 5 1.20 1.28 1.03 0.828 1 +#> 6 -0.786 -0.349 -0.575 0.980 1 +#> 7 -0.562 1.67 0.808 -0.668 1 +#> 8 0.0671 -1.00 1.24 -0.923 1 +#> 9 1.45 -1.51 -1.56 -1.52 1 +#> 10 1.48 0.414 1.22 -0.0824 1 #> # ℹ 990 more rows # perform the density estimation with a smaller search radius around @@ -177,18 +177,18 @@

    Examples method = "spade" ) #> # A tibble: 1,000 × 5 -#> cd45 cd38 cd34 cd19 .spade_density -#> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 -0.406 -0.0145 -1.41 -0.484 1 -#> 2 -0.0872 0.00235 -0.843 -0.796 1 -#> 3 0.901 -0.100 -1.44 -1.02 1 -#> 4 -0.793 -2.06 0.599 1.23 0 -#> 5 1.60 -1.71 -0.553 0.595 0.4 -#> 6 -0.579 0.516 -0.501 -0.0455 1 -#> 7 0.0192 -0.216 0.352 -0.482 1 -#> 8 -0.00891 1.54 -0.209 -0.767 1 -#> 9 0.936 1.95 -0.224 -0.195 1 -#> 10 1.23 0.389 -0.0372 0.565 1 +#> cd45 cd38 cd34 cd19 .spade_density +#> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 -1.36 0.411 0.548 1.12 0.6 +#> 2 -0.0788 -1.01 2.17 1.62 0.2 +#> 3 -0.0631 -0.366 0.203 1.89 0.9 +#> 4 0.225 0.467 -1.29 0.559 1 +#> 5 1.20 1.28 1.03 0.828 0.4 +#> 6 -0.786 -0.349 -0.575 0.980 1 +#> 7 -0.562 1.67 0.808 -0.668 0.6 +#> 8 0.0671 -1.00 1.24 -0.923 1 +#> 9 1.45 -1.51 -1.56 -1.52 0 +#> 10 1.48 0.414 1.22 -0.0824 0.4 #> # ℹ 990 more rows diff --git a/reference/tof_extract_central_tendency.html b/reference/tof_extract_central_tendency.html index e7fc160..5606de4 100644 --- a/reference/tof_extract_central_tendency.html +++ b/reference/tof_extract_central_tendency.html @@ -192,8 +192,8 @@

    Examples#> # A tibble: 2 × 105 #> patient `cd45@a_ct` `cd38@a_ct` `cd34@a_ct` `cd19@a_ct` `cd45@b_ct` #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 kirby -0.0756 -0.0766 0.725 0.0444 -0.172 -#> 2 mario 0.144 -0.0654 -0.389 -0.189 0.265 +#> 1 kirby 0.324 0.0821 -0.108 0.0729 0.0187 +#> 2 mario 0.174 0.0791 -0.352 0.162 0.000622 #> # ℹ 99 more variables: `cd38@b_ct` <dbl>, `cd34@b_ct` <dbl>, `cd19@b_ct` <dbl>, #> # `cd45@c_ct` <dbl>, `cd38@c_ct` <dbl>, `cd34@c_ct` <dbl>, `cd19@c_ct` <dbl>, #> # `cd45@d_ct` <dbl>, `cd38@d_ct` <dbl>, `cd34@d_ct` <dbl>, `cd19@d_ct` <dbl>, @@ -212,16 +212,16 @@

    Examples#> # A tibble: 208 × 4 #> patient cluster_id channel values #> <chr> <chr> <chr> <dbl> -#> 1 kirby a cd45 -0.0756 -#> 2 kirby a cd38 -0.0766 -#> 3 kirby a cd34 0.725 -#> 4 kirby a cd19 0.0444 -#> 5 kirby b cd45 -0.172 -#> 6 kirby b cd38 0.238 -#> 7 kirby b cd34 -0.0607 -#> 8 kirby b cd19 0.0159 -#> 9 kirby c cd45 0.247 -#> 10 kirby c cd38 -0.143 +#> 1 kirby a cd45 0.324 +#> 2 kirby a cd38 0.0821 +#> 3 kirby a cd34 -0.108 +#> 4 kirby a cd19 0.0729 +#> 5 kirby b cd45 0.0187 +#> 6 kirby b cd38 -0.102 +#> 7 kirby b cd34 0.0402 +#> 8 kirby b cd19 -0.408 +#> 9 kirby c cd45 -0.389 +#> 10 kirby c cd38 0.410 #> # ℹ 198 more rows diff --git a/reference/tof_extract_emd.html b/reference/tof_extract_emd.html index a8a7504..ca89726 100644 --- a/reference/tof_extract_emd.html +++ b/reference/tof_extract_emd.html @@ -209,17 +209,17 @@

    Examples reference_level = "basal" ) #> # A tibble: 2 × 105 -#> patient `stim_cd45@t_emd` `stim_cd38@t_emd` `stim_cd34@t_emd` +#> patient `stim_cd45@q_emd` `stim_cd38@q_emd` `stim_cd34@q_emd` #> <chr> <dbl> <dbl> <dbl> -#> 1 kirby 9.33 9.77 6.04 -#> 2 mario NA NA NA -#> # ℹ 101 more variables: `stim_cd19@t_emd` <dbl>, `stim_cd45@d_emd` <dbl>, -#> # `stim_cd38@d_emd` <dbl>, `stim_cd34@d_emd` <dbl>, `stim_cd19@d_emd` <dbl>, -#> # `stim_cd45@s_emd` <dbl>, `stim_cd38@s_emd` <dbl>, `stim_cd34@s_emd` <dbl>, -#> # `stim_cd19@s_emd` <dbl>, `stim_cd45@i_emd` <dbl>, `stim_cd38@i_emd` <dbl>, -#> # `stim_cd34@i_emd` <dbl>, `stim_cd19@i_emd` <dbl>, `stim_cd45@l_emd` <dbl>, -#> # `stim_cd38@l_emd` <dbl>, `stim_cd34@l_emd` <dbl>, `stim_cd19@l_emd` <dbl>, -#> # `stim_cd45@j_emd` <dbl>, `stim_cd38@j_emd` <dbl>, … +#> 1 mario NA NA NA +#> 2 kirby NA NA NA +#> # ℹ 101 more variables: `stim_cd19@q_emd` <dbl>, `stim_cd45@z_emd` <dbl>, +#> # `stim_cd38@z_emd` <dbl>, `stim_cd34@z_emd` <dbl>, `stim_cd19@z_emd` <dbl>, +#> # `stim_cd45@n_emd` <dbl>, `stim_cd38@n_emd` <dbl>, `stim_cd34@n_emd` <dbl>, +#> # `stim_cd19@n_emd` <dbl>, `stim_cd45@i_emd` <dbl>, `stim_cd38@i_emd` <dbl>, +#> # `stim_cd34@i_emd` <dbl>, `stim_cd19@i_emd` <dbl>, `stim_cd45@h_emd` <dbl>, +#> # `stim_cd38@h_emd` <dbl>, `stim_cd34@h_emd` <dbl>, `stim_cd19@h_emd` <dbl>, +#> # `stim_cd45@d_emd` <dbl>, `stim_cd38@d_emd` <dbl>, … # extract emd of each cluster (using the "basal" stim # condition as a reference) in long format @@ -233,16 +233,16 @@

    Examples#> # A tibble: 104 × 4 #> cluster_id marker stimulation emd #> <chr> <chr> <chr> <dbl> -#> 1 t cd45 stim 9.18 -#> 2 t cd38 stim 3.88 -#> 3 t cd34 stim 7.49 -#> 4 t cd19 stim 10.4 -#> 5 d cd45 stim 7.16 -#> 6 d cd38 stim 4.41 -#> 7 d cd34 stim 4.79 -#> 8 d cd19 stim 5.43 -#> 9 s cd45 stim 14.1 -#> 10 s cd38 stim 5.16 +#> 1 q cd45 stim 8.56 +#> 2 q cd38 stim 14.1 +#> 3 q cd34 stim 7.86 +#> 4 q cd19 stim 17.9 +#> 5 z cd45 stim 5.38 +#> 6 z cd38 stim 8.33 +#> 7 z cd34 stim 9.05 +#> 8 z cd19 stim 4.89 +#> 9 n cd45 stim 8.50 +#> 10 n cd38 stim 4.99 #> # ℹ 94 more rows diff --git a/reference/tof_extract_features.html b/reference/tof_extract_features.html index 5adc935..05979aa 100644 --- a/reference/tof_extract_features.html +++ b/reference/tof_extract_features.html @@ -232,8 +232,8 @@

    Examples#> # A tibble: 2 × 131 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 kirby 0.0234 0.0331 0.0507 0.0273 0.0409 0.0409 0.0331 -#> 2 mario 0.0370 0.0390 0.0349 0.0513 0.0370 0.0370 0.0287 +#> 1 kirby 0.0365 0.0385 0.0325 0.0385 0.0588 0.0487 0.0264 +#> 2 mario 0.0138 0.0493 0.0335 0.0237 0.0256 0.0434 0.0296 #> # ℹ 123 more variables: `prop@h` <dbl>, `prop@i` <dbl>, `prop@j` <dbl>, #> # `prop@k` <dbl>, `prop@l` <dbl>, `prop@m` <dbl>, `prop@n` <dbl>, #> # `prop@o` <dbl>, `prop@p` <dbl>, `prop@q` <dbl>, `prop@r` <dbl>, @@ -262,8 +262,8 @@

    Examples#> # A tibble: 2 × 131 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 kirby 0.0234 0.0331 0.0507 0.0273 0.0409 0.0409 0.0331 -#> 2 mario 0.0370 0.0390 0.0349 0.0513 0.0370 0.0370 0.0287 +#> 1 kirby 0.0365 0.0385 0.0325 0.0385 0.0588 0.0487 0.0264 +#> 2 mario 0.0138 0.0493 0.0335 0.0237 0.0256 0.0434 0.0296 #> # ℹ 123 more variables: `prop@h` <dbl>, `prop@i` <dbl>, `prop@j` <dbl>, #> # `prop@k` <dbl>, `prop@l` <dbl>, `prop@m` <dbl>, `prop@n` <dbl>, #> # `prop@o` <dbl>, `prop@p` <dbl>, `prop@q` <dbl>, `prop@r` <dbl>, diff --git a/reference/tof_extract_jsd.html b/reference/tof_extract_jsd.html index dd98eb2..dce2f18 100644 --- a/reference/tof_extract_jsd.html +++ b/reference/tof_extract_jsd.html @@ -202,17 +202,17 @@

    Examples reference_level = "basal" ) #> # A tibble: 2 × 105 -#> patient `stim_cd45@y_jsd` `stim_cd38@y_jsd` `stim_cd34@y_jsd` +#> patient `stim_cd45@e_jsd` `stim_cd38@e_jsd` `stim_cd34@e_jsd` #> <chr> <dbl> <dbl> <dbl> #> 1 kirby NA NA NA #> 2 mario NA NA NA -#> # ℹ 101 more variables: `stim_cd19@y_jsd` <dbl>, `stim_cd45@a_jsd` <dbl>, -#> # `stim_cd38@a_jsd` <dbl>, `stim_cd34@a_jsd` <dbl>, `stim_cd19@a_jsd` <dbl>, -#> # `stim_cd45@r_jsd` <dbl>, `stim_cd38@r_jsd` <dbl>, `stim_cd34@r_jsd` <dbl>, -#> # `stim_cd19@r_jsd` <dbl>, `stim_cd45@t_jsd` <dbl>, `stim_cd38@t_jsd` <dbl>, -#> # `stim_cd34@t_jsd` <dbl>, `stim_cd19@t_jsd` <dbl>, `stim_cd45@g_jsd` <dbl>, -#> # `stim_cd38@g_jsd` <dbl>, `stim_cd34@g_jsd` <dbl>, `stim_cd19@g_jsd` <dbl>, -#> # `stim_cd45@m_jsd` <dbl>, `stim_cd38@m_jsd` <dbl>, … +#> # ℹ 101 more variables: `stim_cd19@e_jsd` <dbl>, `stim_cd45@j_jsd` <dbl>, +#> # `stim_cd38@j_jsd` <dbl>, `stim_cd34@j_jsd` <dbl>, `stim_cd19@j_jsd` <dbl>, +#> # `stim_cd45@q_jsd` <dbl>, `stim_cd38@q_jsd` <dbl>, `stim_cd34@q_jsd` <dbl>, +#> # `stim_cd19@q_jsd` <dbl>, `stim_cd45@h_jsd` <dbl>, `stim_cd38@h_jsd` <dbl>, +#> # `stim_cd34@h_jsd` <dbl>, `stim_cd19@h_jsd` <dbl>, `stim_cd45@c_jsd` <dbl>, +#> # `stim_cd38@c_jsd` <dbl>, `stim_cd34@c_jsd` <dbl>, `stim_cd19@c_jsd` <dbl>, +#> # `stim_cd45@i_jsd` <dbl>, `stim_cd38@i_jsd` <dbl>, … # extract jsd of each cluster (using the "basal" stim # condition as a reference) in long format @@ -226,16 +226,16 @@

    Examples#> # A tibble: 104 × 4 #> cluster_id marker stimulation jsd #> <chr> <chr> <chr> <dbl> -#> 1 y cd45 stim 0.788 -#> 2 y cd38 stim 0.937 -#> 3 y cd34 stim 0.812 -#> 4 y cd19 stim 0.915 -#> 5 a cd45 stim 0.813 -#> 6 a cd38 stim 0.690 -#> 7 a cd34 stim 0.923 -#> 8 a cd19 stim 0.741 -#> 9 r cd45 stim 0.737 -#> 10 r cd38 stim 0.769 +#> 1 e cd45 stim 0.763 +#> 2 e cd38 stim 0.764 +#> 3 e cd34 stim 0.730 +#> 4 e cd19 stim 0.764 +#> 5 j cd45 stim 0.680 +#> 6 j cd38 stim 0.893 +#> 7 j cd34 stim 0.840 +#> 8 j cd19 stim 0.924 +#> 9 q cd45 stim 0.862 +#> 10 q cd38 stim 0.862 #> # ℹ 94 more rows diff --git a/reference/tof_extract_proportion.html b/reference/tof_extract_proportion.html index f212832..b5b9a4b 100644 --- a/reference/tof_extract_proportion.html +++ b/reference/tof_extract_proportion.html @@ -160,8 +160,8 @@

    Examples#> # A tibble: 2 × 27 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 kirby 0.0281 0.0281 0.0561 0.0421 0.0341 0.0261 0.0561 -#> 2 mario 0.0419 0.0379 0.0479 0.0379 0.0419 0.0220 0.0559 +#> 1 kirby 0.05 0.042 0.03 0.032 0.028 0.036 0.04 +#> 2 mario 0.054 0.04 0.038 0.034 0.04 0.036 0.042 #> # ℹ 19 more variables: `prop@h` <dbl>, `prop@i` <dbl>, `prop@j` <dbl>, #> # `prop@k` <dbl>, `prop@l` <dbl>, `prop@m` <dbl>, `prop@n` <dbl>, #> # `prop@o` <dbl>, `prop@p` <dbl>, `prop@q` <dbl>, `prop@r` <dbl>, @@ -176,18 +176,18 @@

    Examples format = "long" ) #> # A tibble: 52 × 3 -#> patient cluster_id prop -#> <chr> <chr> <dbl> -#> 1 kirby a 0.0281 -#> 2 kirby b 0.0281 -#> 3 kirby c 0.0561 -#> 4 kirby d 0.0421 -#> 5 kirby e 0.0341 -#> 6 kirby f 0.0261 -#> 7 kirby g 0.0561 -#> 8 kirby h 0.0301 -#> 9 kirby i 0.0321 -#> 10 kirby j 0.0401 +#> patient cluster_id prop +#> <chr> <chr> <dbl> +#> 1 kirby a 0.05 +#> 2 kirby b 0.042 +#> 3 kirby c 0.03 +#> 4 kirby d 0.032 +#> 5 kirby e 0.028 +#> 6 kirby f 0.036 +#> 7 kirby g 0.04 +#> 8 kirby h 0.032 +#> 9 kirby i 0.052 +#> 10 kirby j 0.038 #> # ℹ 42 more rows diff --git a/reference/tof_extract_threshold.html b/reference/tof_extract_threshold.html index ef10ba2..f8c41fe 100644 --- a/reference/tof_extract_threshold.html +++ b/reference/tof_extract_threshold.html @@ -189,8 +189,8 @@

    Examples#> # A tibble: 2 × 105 #> patient `cd45@a_threshold` `cd38@a_threshold` `cd34@a_threshold` #> <chr> <dbl> <dbl> <dbl> -#> 1 kirby 0 0.0769 0.0769 -#> 2 mario 0 0.0667 0 +#> 1 kirby 0 0.0769 0.0769 +#> 2 mario 0.0714 0 0.143 #> # ℹ 101 more variables: `cd19@a_threshold` <dbl>, `cd45@b_threshold` <dbl>, #> # `cd38@b_threshold` <dbl>, `cd34@b_threshold` <dbl>, #> # `cd19@b_threshold` <dbl>, `cd45@c_threshold` <dbl>, @@ -212,13 +212,13 @@

    Examples#> 1 kirby a cd45 0 #> 2 kirby a cd38 0.0769 #> 3 kirby a cd34 0.0769 -#> 4 kirby a cd19 0.0769 -#> 5 kirby b cd45 0.0769 -#> 6 kirby b cd38 0 -#> 7 kirby b cd34 0.0385 -#> 8 kirby b cd19 0.115 +#> 4 kirby a cd19 0 +#> 5 kirby b cd45 0.111 +#> 6 kirby b cd38 0.148 +#> 7 kirby b cd34 0.259 +#> 8 kirby b cd19 0.0741 #> 9 kirby c cd45 0 -#> 10 kirby c cd38 0.0833 +#> 10 kirby c cd38 0.0588 #> # ℹ 198 more rows diff --git a/reference/tof_find_knn.html b/reference/tof_find_knn.html index f4f6406..aef4080 100644 --- a/reference/tof_find_knn.html +++ b/reference/tof_find_knn.html @@ -137,3010 +137,3010 @@

    Examples) #> $neighbor_ids #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] -#> [1,] 992 435 985 238 66 939 919 181 825 995 -#> [2,] 153 154 787 895 289 432 114 784 379 774 -#> [3,] 945 35 553 884 360 7 956 357 86 562 -#> [4,] 556 616 499 964 211 688 89 761 155 805 -#> [5,] 86 553 637 377 7 624 242 751 283 3 -#> [6,] 830 941 940 569 678 256 323 356 199 851 -#> [7,] 956 624 553 86 714 3 945 360 132 232 -#> [8,] 822 604 76 493 740 229 547 514 222 578 -#> [9,] 619 378 531 527 732 975 585 728 549 589 -#> [10,] 266 575 291 863 469 900 268 376 838 638 -#> [11,] 972 153 154 570 157 245 895 121 746 529 -#> [12,] 600 235 911 331 617 468 367 615 134 23 -#> [13,] 464 284 978 495 117 89 706 211 189 702 -#> [14,] 325 555 879 622 812 799 433 672 123 176 -#> [15,] 690 152 420 907 701 492 35 981 657 86 -#> [16,] 140 64 162 164 143 552 230 366 243 167 -#> [17,] 386 502 643 891 413 551 120 567 876 257 -#> [18,] 341 909 533 598 995 340 487 351 724 66 -#> [19,] 488 909 92 340 322 341 18 855 486 183 -#> [20,] 372 856 507 943 72 315 309 22 136 655 -#> [21,] 280 90 689 680 307 778 189 436 702 359 -#> [22,] 72 118 943 309 507 796 856 824 20 470 -#> [23,] 373 327 843 844 676 134 936 12 699 617 -#> [24,] 29 742 122 826 334 847 756 178 382 955 -#> [25,] 921 169 916 344 866 225 991 500 930 700 -#> [26,] 380 93 196 758 452 911 158 78 77 891 -#> [27,] 285 312 69 292 36 223 362 237 661 180 -#> [28,] 440 62 52 226 908 241 677 71 217 878 -#> [29,] 742 122 24 382 331 816 955 847 826 334 -#> [30,] 68 855 461 974 952 735 183 472 614 345 -#> [31,] 893 589 787 531 52 62 595 975 850 908 -#> [32,] 205 835 375 477 79 315 953 151 136 713 -#> [33,] 463 221 179 653 361 479 95 871 938 529 -#> [34,] 971 539 1000 864 870 95 938 685 136 267 -#> [35,] 3 884 562 360 553 690 945 751 86 511 -#> [36,] 69 285 292 98 237 931 912 27 223 661 -#> [37,] 40 756 214 982 178 632 130 334 780 640 -#> [38,] 904 953 437 799 107 622 433 533 669 128 -#> [39,] 719 223 285 777 292 661 795 246 193 362 -#> [40,] 37 214 705 756 982 809 242 780 178 983 -#> [41,] 723 496 661 385 50 36 755 519 98 312 -#> [42,] 204 107 437 290 602 159 460 540 622 401 -#> [43,] 71 878 391 440 62 28 106 914 764 247 -#> [44,] 830 740 493 434 456 941 295 449 766 294 -#> [45,] 793 883 329 780 239 338 442 195 268 384 -#> [46,] 427 458 844 807 794 740 23 373 60 820 -#> [47,] 129 75 245 162 278 918 234 54 972 570 -#> [48,] 221 776 915 361 379 405 168 55 950 359 -#> [49,] 587 438 534 538 168 796 856 545 792 22 -#> [50,] 231 254 524 255 98 280 464 689 397 897 -#> [51,] 818 920 178 990 113 847 982 813 576 91 -#> [52,] 62 908 28 440 217 241 31 589 709 595 -#> [53,] 966 94 335 82 431 454 116 189 469 579 -#> [54,] 408 849 652 554 278 948 230 856 374 572 -#> [55,] 950 776 959 789 801 171 842 582 663 317 -#> [56,] 529 34 95 642 1000 938 354 539 630 245 -#> [57,] 914 347 245 570 642 47 234 56 864 971 -#> [58,] 949 937 601 220 870 462 829 267 862 630 -#> [59,] 434 119 456 528 708 505 949 684 267 277 -#> [60,] 794 218 699 515 373 516 514 763 294 508 -#> [61,] 875 451 579 963 116 865 915 958 335 860 -#> [62,] 52 440 28 908 31 241 217 589 878 709 -#> [63,] 788 797 836 655 546 372 194 518 477 984 -#> [64,] 366 140 552 16 143 243 126 490 85 164 -#> [65,] 628 902 520 763 518 514 836 880 910 186 -#> [66,] 425 181 825 598 533 472 726 182 18 390 -#> [67,] 578 278 938 95 849 141 836 984 880 76 -#> [68,] 952 345 461 735 974 183 156 370 30 567 -#> [69,] 36 237 27 285 170 912 292 180 342 443 -#> [70,] 676 711 820 806 775 78 93 750 843 465 -#> [71,] 391 43 28 677 878 534 587 440 62 792 -#> [72,] 22 309 943 631 20 824 372 507 856 135 -#> [73,] 699 314 877 277 294 917 665 119 508 327 -#> [74,] 519 292 719 755 362 661 557 39 618 285 -#> [75,] 374 641 572 47 948 999 54 960 422 230 -#> [76,] 880 578 141 980 836 858 902 67 822 984 -#> [77,] 932 939 610 452 196 506 891 26 935 158 -#> [78,] 93 617 158 321 777 465 373 26 989 750 -#> [79,] 390 32 954 151 477 833 181 953 643 835 -#> [80,] 498 679 19 488 486 81 416 402 92 712 -#> [81,] 435 561 322 486 612 710 1 238 995 939 -#> [82,] 94 365 933 694 963 431 53 743 363 900 -#> [83,] 263 798 819 796 300 647 526 834 22 206 -#> [84,] 517 281 525 248 378 687 233 549 355 673 -#> [85,] 366 162 64 164 16 490 918 143 302 980 -#> [86,] 553 5 7 714 956 3 35 624 232 360 -#> [87,] 829 566 483 339 862 523 88 182 630 220 -#> [88,] 802 957 924 871 194 463 339 568 630 829 -#> [89,] 443 170 947 211 482 4 706 556 499 603 -#> [90,] 778 280 689 359 21 436 524 399 950 931 -#> [91,] 813 197 818 586 990 535 983 51 674 468 -#> [92,] 488 19 30 855 542 909 183 857 351 487 -#> [93,] 78 617 158 26 321 634 196 380 911 465 -#> [94,] 82 365 53 694 933 963 431 363 61 900 -#> [95,] 938 67 121 245 653 871 278 971 33 129 -#> [96,] 326 680 861 970 922 791 21 654 853 307 -#> [97,] 610 733 841 901 103 932 304 77 723 452 -#> [98,] 254 223 285 36 661 292 931 69 39 795 -#> [99,] 627 618 768 444 109 550 930 237 823 916 -#> [100,] 370 754 183 935 977 345 729 952 68 156 -#> [101,] 284 117 640 453 231 397 611 334 706 332 -#> [102,] 299 450 738 809 945 571 536 831 790 3 -#> [103,] 901 97 733 841 610 913 898 355 723 304 -#> [104,] 287 848 228 236 804 336 960 573 313 374 -#> [105,] 722 190 876 407 257 107 120 602 437 146 -#> [106,] 497 247 471 986 289 532 633 635 874 489 -#> [107,] 437 42 602 290 460 38 204 105 707 190 -#> [108,] 139 714 522 330 212 771 232 377 860 215 -#> [109,] 823 478 627 99 490 973 143 768 444 393 -#> [110,] 946 259 367 12 854 235 191 753 600 844 -#> [111,] 834 693 782 349 633 532 538 819 746 83 -#> [112,] 353 419 629 811 536 563 639 313 667 175 -#> [113,] 920 847 658 178 332 51 146 982 310 762 -#> [114,] 432 436 778 969 774 359 895 784 90 379 -#> [115,] 857 351 176 487 662 879 669 14 485 855 -#> [116,] 875 61 579 189 335 702 451 727 964 668 -#> [117,] 284 640 544 101 445 704 249 978 837 335 -#> [118,] 593 545 22 306 943 961 438 470 72 796 -#> [119,] 456 294 708 434 277 218 699 917 59 73 -#> [120,] 551 190 658 17 876 386 502 105 643 257 -#> [121,] 938 871 129 95 245 856 278 234 534 49 -#> [122,] 29 24 178 334 847 742 756 816 586 813 -#> [123,] 404 672 325 42 205 929 894 540 799 107 -#> [124,] 163 523 506 181 192 829 786 541 954 872 -#> [125,] 369 734 512 674 983 265 40 720 817 632 -#> [126,] 973 143 64 366 552 288 140 671 243 490 -#> [127,] 667 336 520 745 252 573 852 552 515 313 -#> [128,] 559 833 473 217 182 405 350 381 803 38 -#> [129,] 278 162 245 121 938 95 583 67 849 164 -#> [130,] 632 615 756 262 334 753 122 367 596 265 -#> [131,] 500 137 169 659 858 832 736 618 944 296 -#> [132,] 146 297 826 624 227 409 956 7 441 876 -#> [133,] 770 906 594 186 721 508 264 308 457 737 -#> [134,] 844 373 967 617 344 308 264 955 235 331 -#> [135,] 309 631 943 470 72 581 507 810 22 824 -#> [136,] 194 477 655 984 315 20 871 462 797 802 -#> [137,] 131 500 786 659 736 937 944 858 541 169 -#> [138,] 675 821 614 348 645 602 783 574 415 437 -#> [139,] 108 798 216 714 420 152 771 681 701 537 -#> [140,] 552 143 243 64 16 745 520 490 366 252 -#> [141,] 880 980 76 578 490 788 836 910 67 628 -#> [142,] 759 544 730 146 722 297 624 958 956 105 -#> [143,] 140 243 552 973 64 16 823 126 478 109 -#> [144,] 415 411 485 662 138 614 979 675 204 783 -#> [145,] 693 269 647 188 798 253 526 83 263 208 -#> [146,] 722 132 544 142 759 297 876 737 658 826 -#> [147,] 407 737 906 457 696 789 594 713 388 887 -#> [148,] 282 406 491 283 637 705 869 982 576 242 -#> [149,] 503 358 370 381 260 355 951 281 524 324 -#> [150,] 346 762 453 332 977 754 413 371 742 621 -#> [151,] 721 835 713 457 810 594 257 79 205 32 -#> [152,] 681 657 300 216 907 690 15 798 981 389 -#> [153,] 154 11 895 2 379 529 972 33 850 221 -#> [154,] 153 11 895 157 2 391 972 289 570 529 -#> [155,] 616 603 588 4 392 596 185 556 428 396 -#> [156,] 726 345 567 472 935 183 413 598 68 260 -#> [157,] 746 11 972 154 570 224 391 633 934 153 -#> [158,] 321 196 465 93 78 891 251 634 26 380 -#> [159,] 401 792 204 677 42 538 460 290 923 241 -#> [160,] 859 967 994 716 344 867 866 700 428 398 -#> [161,] 692 405 796 460 538 819 168 602 545 105 -#> [162,] 16 129 278 164 85 918 583 849 230 64 -#> [163,] 124 523 506 825 181 992 260 87 192 829 -#> [164,] 16 478 823 162 143 583 490 109 140 141 -#> [165,] 845 986 532 494 247 187 291 782 838 743 -#> [166,] 840 312 392 27 715 170 428 814 69 89 -#> [167,] 606 387 504 521 455 745 961 288 451 243 -#> [168,] 538 796 792 49 405 534 587 241 315 48 -#> [169,] 500 131 25 820 858 244 944 137 921 916 -#> [170,] 443 69 482 89 342 706 912 36 947 556 -#> [171,] 959 950 605 55 317 801 249 702 875 958 -#> [172,] 271 582 568 768 560 399 924 698 926 463 -#> [173,] 960 374 228 903 287 104 997 175 613 804 -#> [174,] 637 200 576 406 305 873 144 148 415 751 -#> [175,] 613 903 804 229 353 515 173 997 667 429 -#> [176,] 857 879 351 433 669 487 585 783 115 799 -#> [177,] 371 193 621 932 453 231 385 254 661 452 -#> [178,] 756 982 122 51 847 113 920 214 334 24 -#> [179,] 653 33 463 479 924 361 221 95 279 938 -#> [180,] 795 237 285 69 706 892 223 27 393 342 -#> [181,] 825 182 66 425 124 163 79 523 260 726 -#> [182,] 181 425 381 128 260 833 825 350 726 324 -#> [183,] 935 567 345 952 754 156 100 413 68 977 -#> [184,] 368 940 419 752 15 356 448 690 475 511 -#> [185,] 396 596 616 761 450 155 293 738 965 603 -#> [186,] 508 133 518 763 546 388 594 890 628 721 -#> [187,] 401 635 986 532 874 471 159 923 204 460 -#> [188,] 572 269 999 263 641 145 234 693 83 274 -#> [189,] 702 482 116 464 861 680 211 280 966 791 -#> [190,] 707 821 120 602 437 105 460 658 107 551 -#> [191,] 367 275 412 636 854 632 600 816 110 262 -#> [192,] 560 557 124 506 541 172 786 271 698 296 -#> [193,] 371 621 452 453 899 611 380 39 223 150 -#> [194,] 802 136 462 797 477 871 829 88 655 63 -#> [195,] 780 705 704 883 282 239 837 769 240 445 -#> [196,] 158 251 891 939 26 77 380 322 93 634 -#> [197,] 813 91 818 983 51 586 636 674 178 990 -#> [198,] 548 272 316 352 987 739 325 896 672 328 -#> [199,] 851 896 684 608 987 417 414 274 941 548 -#> [200,] 576 873 675 415 174 406 637 535 990 409 -#> [201,] 936 416 46 886 23 843 807 295 458 946 -#> [202,] 530 137 250 131 500 296 858 311 169 659 -#> [203,] 747 720 265 327 357 691 571 839 319 536 -#> [204,] 42 401 159 460 107 437 602 540 622 799 -#> [205,] 32 835 375 953 810 151 290 315 656 123 -#> [206,] 773 976 300 438 819 118 681 545 263 306 -#> [207,] 96 179 302 970 509 467 550 279 326 479 -#> [208,] 677 894 656 226 526 587 269 792 290 375 -#> [209,] 806 275 888 412 191 775 561 911 258 70 -#> [210,] 725 418 717 591 649 476 668 213 455 474 -#> [211,] 964 4 791 189 89 482 499 702 556 688 -#> [212,] 330 522 785 730 283 869 645 692 142 297 -#> [213,] 717 476 320 418 556 455 725 892 927 964 -#> [214,] 40 242 809 756 37 982 178 297 624 640 -#> [215,] 701 232 798 420 540 647 929 714 108 86 -#> [216,] 681 564 976 426 860 865 300 714 819 389 -#> [217,] 241 908 803 595 128 52 709 850 28 833 -#> [218,] 294 708 60 699 508 902 119 456 514 794 -#> [219,] 346 611 332 453 977 334 816 150 371 646 -#> [220,] 58 862 601 949 919 87 937 267 988 354 -#> [221,] 361 48 379 359 463 33 583 871 776 915 -#> [222,] 8 613 604 577 175 903 740 225 229 822 -#> [223,] 285 98 39 661 292 795 254 27 36 193 -#> [224,] 746 633 934 157 349 111 648 363 834 782 -#> [225,] 577 697 25 429 671 921 794 916 514 629 -#> [226,] 375 28 677 208 315 792 587 534 217 241 -#> [227,] 580 868 990 535 409 441 132 826 360 945 -#> [228,] 287 104 848 960 374 569 236 256 652 804 -#> [229,] 794 804 515 902 514 65 218 60 628 8 -#> [230,] 824 422 336 16 652 773 374 54 881 745 -#> [231,] 255 50 254 397 101 284 177 464 453 338 -#> [232,] 714 929 215 574 540 7 108 798 86 212 -#> [233,] 566 951 324 248 87 531 549 687 517 523 -#> [234,] 570 587 534 121 972 49 856 188 391 864 -#> [235,] 615 753 331 747 955 600 12 134 265 967 -#> [236,] 256 848 907 104 287 772 573 356 228 678 -#> [237,] 292 69 36 795 285 912 180 27 931 768 -#> [238,] 612 1 995 919 992 905 390 528 465 985 -#> [239,] 883 329 780 588 195 704 117 37 640 978 -#> [240,] 837 704 727 579 445 978 335 431 668 730 -#> [241,] 217 923 792 635 52 908 168 28 538 595 -#> [242,] 297 624 214 785 982 132 809 553 956 283 -#> [243,] 552 140 745 252 143 455 606 973 320 127 -#> [244,] 169 820 500 25 131 766 858 137 427 815 -#> [245,] 129 938 121 95 529 278 642 234 570 11 -#> [246,] 777 750 344 866 719 39 331 991 731 617 -#> [247,] 253 349 106 633 187 934 532 43 71 165 -#> [248,] 281 951 324 517 233 728 355 358 549 260 -#> [249,] 605 544 759 722 146 171 801 310 640 959 -#> [250,] 202 832 131 550 296 748 137 530 500 169 -#> [251,] 322 196 158 634 340 710 486 321 93 911 -#> [252,] 320 243 476 745 261 455 127 649 552 667 -#> [253,] 247 349 145 693 647 633 187 421 401 111 -#> [254,] 98 397 223 899 50 285 621 582 317 706 -#> [255,] 231 338 683 757 50 385 177 464 254 827 -#> [256,] 236 848 356 772 287 907 104 228 960 274 -#> [257,] 713 643 876 457 407 594 721 386 835 105 -#> [258,] 888 682 561 939 610 729 998 77 97 19 -#> [259,] 110 946 458 807 844 629 753 967 46 319 -#> [260,] 825 324 381 728 951 726 182 523 156 472 -#> [261,] 476 320 474 252 927 852 649 388 660 745 -#> [262,] 130 334 632 646 588 219 101 756 623 611 -#> [263,] 83 300 798 999 206 681 819 526 22 824 -#> [264,] 308 955 770 133 580 882 826 571 388 747 -#> [265,] 753 615 747 674 293 235 571 203 130 720 -#> [266,] 10 575 863 291 268 638 376 838 469 808 -#> [267,] 862 462 949 136 620 477 58 803 194 870 -#> [268,] 575 808 484 863 469 298 827 266 838 491 -#> [269,] 145 188 208 417 526 274 677 693 894 647 -#> [270,] 800 917 631 810 749 678 459 581 423 135 -#> [271,] 172 582 842 926 663 899 350 872 741 473 -#> [272,] 352 325 316 14 208 894 548 555 677 540 -#> [273,] 559 774 405 128 503 969 381 549 741 923 -#> [274,] 526 656 417 631 896 199 894 72 269 208 -#> [275,] 623 758 600 816 191 412 611 331 367 911 -#> [276,] 494 614 144 491 783 348 735 662 461 138 -#> [277,] 314 119 528 73 917 321 151 390 721 699 -#> [278,] 129 67 849 162 938 95 245 121 54 578 -#> [279,] 479 529 179 642 394 653 33 56 311 630 -#> [280,] 90 689 21 702 171 189 524 436 778 950 -#> [281,] 248 355 728 673 517 324 84 951 149 260 -#> [282,] 869 148 283 491 846 481 446 195 785 780 -#> [283,] 869 785 212 330 730 481 645 282 297 242 -#> [284,] 464 706 117 101 13 702 171 827 231 397 -#> [285,] 292 223 27 36 98 69 39 661 237 795 -#> [286,] 970 947 50 21 467 443 897 680 170 41 -#> [287,] 228 848 104 960 374 236 569 256 336 652 -#> [288,] 606 167 973 387 143 243 584 654 521 688 -#> [289,] 784 489 774 895 893 471 2 497 106 31 -#> [290,] 507 107 796 42 315 792 656 894 205 375 -#> [291,] 838 900 575 469 10 986 694 845 266 471 -#> [292,] 285 237 36 223 27 39 795 74 69 661 -#> [293,] 753 596 716 615 265 369 235 450 130 747 -#> [294,] 218 119 456 699 708 73 917 508 270 434 -#> [295,] 44 650 664 201 383 449 740 830 46 434 -#> [296,] 192 557 560 339 698 659 618 403 924 736 -#> [297,] 624 242 730 785 146 956 142 132 759 544 -#> [298,] 268 808 735 442 863 952 484 575 68 30 -#> [299,] 102 571 809 811 450 396 261 945 852 418 -#> [300,] 681 263 824 976 206 83 881 216 999 152 -#> [301,] 625 537 648 771 139 599 337 579 925 108 -#> [302,] 85 642 479 918 311 279 179 653 164 162 -#> [303,] 489 694 289 94 900 784 82 365 114 853 -#> [304,] 932 736 719 519 74 557 452 610 97 750 -#> [305,] 174 200 415 979 144 662 411 651 485 410 -#> [306,] 593 118 583 545 438 773 961 22 206 167 -#> [307,] 21 467 90 778 436 114 853 359 432 280 -#> [308,] 264 955 770 388 133 967 571 882 826 134 -#> [309,] 943 72 135 631 372 22 518 749 507 20 -#> [310,] 484 821 658 735 249 190 120 113 952 605 -#> [311,] 653 67 95 938 870 578 642 822 530 76 -#> [312,] 27 362 392 285 731 661 519 496 223 840 -#> [313,] 563 804 573 336 515 127 667 767 104 516 -#> [314,] 277 73 665 917 151 592 119 721 810 400 -#> [315,] 20 136 507 375 833 290 32 797 835 205 -#> [316,] 485 411 555 272 662 325 14 979 352 144 -#> [317,] 842 801 899 696 887 605 663 959 926 171 -#> [318,] 364 619 609 985 9 351 527 425 855 483 -#> [319,] 967 747 852 516 691 811 629 308 60 515 -#> [320,] 476 252 892 261 213 927 439 455 717 418 -#> [321,] 158 465 634 954 528 78 890 891 277 93 -#> [322,] 251 340 486 196 561 939 909 710 341 995 -#> [323,] 104 6 804 563 767 228 287 678 313 997 -#> [324,] 951 260 381 248 728 233 566 182 523 549 -#> [325,] 14 123 272 672 622 894 42 799 812 555 -#> [326,] 680 791 922 96 861 947 970 482 654 443 -#> [327,] 468 886 73 23 699 877 747 203 691 357 -#> [328,] 744 410 979 402 712 672 198 485 679 305 -#> [329,] 239 883 495 13 978 703 45 780 588 195 -#> [330,] 522 212 626 481 692 869 446 283 108 846 -#> [331,] 600 29 235 758 615 742 617 623 246 24 -#> [332,] 847 346 150 334 219 453 977 742 113 762 -#> [333,] 927 887 696 544 737 474 826 146 476 722 -#> [334,] 847 122 332 756 816 742 178 219 632 346 -#> [335,] 966 875 579 116 53 171 727 958 61 827 -#> [336,] 573 881 127 313 824 104 230 591 745 848 -#> [337,] 430 625 301 599 648 424 537 139 389 492 -#> [338,] 683 757 255 827 231 454 464 50 808 284 -#> [339,] 924 630 88 957 698 87 354 829 296 653 -#> [340,] 909 322 341 598 18 251 533 567 939 196 -#> [341,] 909 18 340 724 533 598 995 487 592 402 -#> [342,] 393 439 867 428 556 69 840 170 237 180 -#> [343,] 731 362 496 750 814 519 775 312 715 74 -#> [344,] 866 991 700 246 921 916 777 930 160 867 -#> [345,] 156 68 567 726 952 183 935 370 413 551 -#> [346,] 150 453 332 611 219 762 371 977 742 847 -#> [347,] 685 864 608 971 34 914 1000 539 57 234 -#> [348,] 783 614 799 138 437 707 602 461 622 460 -#> [349,] 633 934 253 111 782 247 693 224 599 532 -#> [350,] 473 741 833 643 568 271 381 872 957 182 -#> [351,] 857 487 176 855 115 18 669 879 598 533 -#> [352,] 272 71 208 269 417 325 440 145 316 548 -#> [353,] 429 671 667 447 175 903 552 64 639 126 -#> [354,] 630 394 339 87 58 220 928 870 88 56 -#> [355,] 281 248 673 149 998 841 728 913 260 324 -#> [356,] 772 459 511 597 256 678 543 236 800 767 -#> [357,] 691 884 882 3 945 35 580 581 571 747 -#> [358,] 969 778 524 149 951 381 436 687 503 399 -#> [359,] 221 361 90 463 778 950 48 568 689 55 -#> [360,] 409 562 3 884 35 7 423 868 574 581 -#> [361,] 221 48 359 379 463 583 33 915 776 950 -#> [362,] 519 312 661 27 719 74 496 39 292 285 -#> [363,] 963 889 895 933 915 834 82 648 94 111 -#> [364,] 318 351 855 857 115 435 619 879 985 609 -#> [365,] 82 743 94 431 828 694 933 537 963 648 -#> [366,] 64 85 140 16 126 552 143 490 164 162 -#> [367,] 615 632 191 130 12 235 753 636 600 275 -#> [368,] 511 543 751 597 562 356 410 873 772 35 -#> [369,] 293 450 265 596 753 125 130 615 185 738 -#> [370,] 100 345 808 68 149 952 754 503 935 183 -#> [371,] 193 453 611 621 346 150 452 177 762 380 -#> [372,] 20 943 309 72 518 856 63 655 22 749 -#> [373,] 844 134 617 989 60 23 78 699 967 921 -#> [374,] 960 287 228 848 75 572 104 569 230 641 -#> [375,] 205 32 953 226 315 290 812 835 136 833 -#> [376,] 525 969 687 10 436 863 784 517 266 358 -#> [377,] 108 5 925 701 869 637 215 283 86 212 -#> [378,] 9 531 619 549 728 233 84 248 687 281 -#> [379,] 221 48 361 850 895 787 168 871 595 153 -#> [380,] 758 26 452 891 742 193 150 196 346 371 -#> [381,] 741 260 951 324 182 350 559 523 726 128 -#> [382,] 634 502 441 742 29 413 762 876 150 17 -#> [383,] 414 505 44 608 851 59 685 941 449 434 -#> [384,] 282 846 793 446 195 942 743 481 780 869 -#> [385,] 177 723 41 255 231 50 646 496 371 661 -#> [386,] 17 643 876 502 257 120 891 663 551 737 -#> [387,] 167 504 521 606 584 288 451 773 455 644 -#> [388,] 763 186 520 147 308 261 508 133 906 696 -#> [389,] 657 426 681 216 976 564 591 422 206 152 -#> [390,] 79 592 995 277 528 151 724 953 66 181 -#> [391,] 534 71 587 677 538 792 570 49 28 878 -#> [392,] 312 27 731 623 840 166 859 646 285 155 -#> [393,] 439 342 892 867 237 556 180 973 700 930 -#> [394,] 354 630 928 339 279 56 781 2 529 233 -#> [395,] 654 670 584 288 521 644 504 387 688 167 -#> [396,] 185 616 299 596 761 450 718 738 418 155 -#> [397,] 254 899 621 317 801 453 762 605 193 98 -#> [398,] 671 885 994 429 439 428 697 160 393 973 -#> [399,] 698 582 524 568 560 172 897 271 689 778 -#> [400,] 996 684 672 592 314 205 917 665 123 277 -#> [401,] 159 204 187 42 460 792 602 540 635 437 -#> [402,] 712 341 679 724 909 486 744 314 410 592 -#> [403,] 897 698 399 560 913 557 524 296 192 358 -#> [404,] 123 672 415 979 574 724 868 423 929 799 -#> [405,] 168 161 559 128 48 923 776 915 707 241 -#> [406,] 576 200 982 148 491 51 442 645 818 174 -#> [407,] 789 147 257 722 737 663 713 470 105 776 -#> [408,] 54 849 554 652 547 760 278 749 372 971 -#> [409,] 360 868 574 227 535 132 990 423 675 873 -#> [410,] 744 651 328 402 679 873 543 979 712 368 -#> [411,] 485 144 316 662 979 415 475 305 421 540 -#> [412,] 636 816 275 911 586 813 219 367 632 334 -#> [413,] 567 502 17 935 150 183 382 762 754 345 -#> [414,] 608 199 941 987 851 896 760 685 417 948 -#> [415,] 675 979 138 404 574 200 144 409 576 614 -#> [416,] 843 936 486 23 710 712 612 886 402 468 -#> [417,] 896 274 269 199 208 987 548 608 526 894 -#> [418,] 725 210 717 476 213 668 320 474 591 649 -#> [419,] 563 536 313 323 15 981 907 236 690 767 -#> [420,] 798 701 215 647 690 139 962 152 15 693 -#> [421,] 475 253 316 411 145 272 352 647 485 693 -#> [422,] 230 387 389 773 206 606 374 504 167 657 -#> [423,] 665 868 800 877 459 581 360 562 884 270 -#> [424,] 240 727 837 301 670 704 579 666 978 625 -#> [425,] 66 182 181 825 620 709 732 726 533 260 -#> [426,] 389 657 216 591 564 681 976 210 881 981 -#> [427,] 46 244 740 222 577 820 807 766 458 794 -#> [428,] 840 814 342 867 885 859 393 398 439 160 -#> [429,] 671 667 398 629 852 225 353 252 697 127 -#> [430,] 337 625 648 301 599 537 224 480 644 828 -#> [431,] 942 846 82 743 365 481 626 579 53 446 -#> [432,] 114 895 379 359 221 361 774 778 436 2 -#> [433,] 622 908 879 176 799 38 904 783 953 348 -#> [434,] 456 59 119 708 766 294 740 493 528 218 -#> [435,] 1 992 985 238 81 939 66 18 995 322 -#> [436,] 778 90 969 524 358 280 454 114 21 273 -#> [437,] 602 107 707 460 42 190 38 204 904 348 -#> [438,] 49 306 545 773 593 118 889 206 796 819 -#> [439,] 393 892 342 556 973 320 213 867 688 180 -#> [440,] 28 62 52 908 555 71 622 433 764 878 -#> [441,] 876 868 382 227 826 457 695 594 502 721 -#> [442,] 491 982 406 113 640 785 310 484 920 282 -#> [443,] 170 482 706 89 69 912 947 702 931 36 -#> [444,] 930 99 910 627 991 916 618 700 768 546 -#> [445,] 704 837 668 790 117 240 725 730 809 418 -#> [446,] 481 626 846 942 330 743 869 431 522 283 -#> [447,] 126 353 398 671 639 429 973 885 288 805 -#> [448,] 886 516 767 691 678 877 327 203 323 458 -#> [449,] 996 400 712 543 744 851 877 830 456 119 -#> [450,] 738 102 299 596 293 369 185 396 265 809 -#> [451,] 865 61 875 504 521 167 958 579 387 860 -#> [452,] 193 932 380 371 26 719 77 39 758 891 -#> [453,] 346 150 762 371 611 621 332 193 977 754 -#> [454,] 827 469 683 436 503 280 966 53 335 484 -#> [455,] 745 961 660 649 717 606 167 243 476 213 -#> [456,] 119 434 294 708 218 59 699 493 830 740 -#> [457,] 721 594 713 810 257 835 151 147 876 906 -#> [458,] 807 886 319 844 516 327 46 60 23 203 -#> [459,] 800 356 423 772 511 597 270 543 562 581 -#> [460,] 602 707 437 107 204 42 190 161 401 159 -#> [461,] 735 68 821 952 974 614 348 345 190 783 -#> [462,] 870 194 829 984 949 937 477 267 136 58 -#> [463,] 924 221 957 33 359 568 361 698 88 179 -#> [464,] 284 13 702 189 706 280 482 443 117 50 -#> [465,] 158 321 528 78 196 944 93 786 710 954 -#> [466,] 395 861 670 424 727 430 644 654 853 584 -#> [467,] 307 897 779 21 403 970 286 524 90 689 -#> [468,] 327 12 91 586 535 990 227 674 955 23 -#> [469,] 454 900 575 291 694 838 827 268 863 484 -#> [470,] 507 135 796 22 407 118 545 309 147 943 -#> [471,] 986 635 532 923 187 497 874 589 774 900 -#> [472,] 156 726 598 345 825 66 567 260 183 935 -#> [473,] 350 741 833 643 128 797 271 776 568 954 -#> [474,] 649 476 261 927 660 333 956 591 210 418 -#> [475,] 752 411 701 421 420 215 368 597 751 511 -#> [476,] 320 261 927 213 474 252 418 649 717 455 -#> [477,] 655 984 136 32 194 462 63 797 79 954 -#> [478,] 823 109 164 143 583 490 788 99 768 140 -#> [479,] 279 529 33 179 653 642 95 938 245 311 -#> [480,] 644 504 521 773 889 206 387 438 972 746 -#> [481,] 446 626 846 942 330 869 283 522 431 212 -#> [482,] 443 702 791 170 706 189 912 556 89 211 -#> [483,] 709 862 87 620 566 803 531 425 595 220 -#> [484,] 808 310 735 827 503 370 952 268 249 821 -#> [485,] 662 411 979 316 144 325 14 415 555 799 -#> [486,] 322 710 251 416 402 712 843 911 612 909 -#> [487,] 669 351 533 341 18 598 176 909 724 857 -#> [488,] 19 92 855 909 351 487 18 30 341 857 -#> [489,] 289 694 784 900 471 774 303 106 895 986 -#> [490,] 980 141 823 109 880 143 478 140 627 164 -#> [491,] 442 282 406 283 869 645 785 148 481 446 -#> [492,] 15 501 152 337 657 962 389 690 419 420 -#> [493,] 941 740 830 547 760 456 434 8 554 708 -#> [494,] 276 838 165 614 348 491 291 986 874 144 -#> [495,] 13 329 464 513 284 89 239 231 338 255 -#> [496,] 362 723 519 661 312 41 74 304 27 719 -#> [497,] 106 874 471 893 986 635 31 289 589 187 -#> [498,] 679 91 197 80 402 651 468 486 813 818 -#> [499,] 4 688 805 791 922 211 89 556 964 947 -#> [500,] 169 131 858 137 944 25 820 921 244 659 -#> [501,] 492 337 430 389 657 641 962 599 15 152 -#> [502,] 17 413 695 386 567 382 120 876 441 643 -#> [503,] 149 370 484 808 358 273 381 454 551 863 -#> [504,] 521 387 167 644 606 773 451 206 306 584 -#> [505,] 685 59 608 760 988 949 267 34 862 864 -#> [506,] 124 872 523 163 560 192 932 77 825 260 -#> [507,] 470 20 22 290 796 72 943 309 835 315 -#> [508,] 186 518 917 810 763 594 721 133 218 457 -#> [509,] 479 853 279 918 529 2 153 207 179 33 -#> [510,] 641 572 188 999 962 145 948 569 269 960 -#> [511,] 562 772 459 356 597 690 884 35 907 360 -#> [512,] 632 37 262 130 588 40 590 125 983 756 -#> [513,] 13 495 211 89 978 922 947 464 189 680 -#> [514,] 902 628 921 65 763 794 218 880 858 910 -#> [515,] 804 516 229 313 127 60 794 667 767 218 -#> [516,] 691 515 767 60 319 313 678 357 563 804 -#> [517,] 248 84 687 281 358 525 969 913 233 951 -#> [518,] 508 186 943 309 520 372 628 65 836 749 -#> [519,] 362 74 661 719 292 496 39 285 312 755 -#> [520,] 65 518 628 763 961 127 388 660 943 745 -#> [521,] 504 387 167 644 584 606 451 288 773 480 -#> [522,] 330 771 692 860 212 108 626 730 481 161 -#> [523,] 124 163 506 260 324 381 350 825 872 182 -#> [524,] 399 778 358 90 897 689 436 50 280 254 -#> [525,] 687 376 969 549 517 84 784 774 378 248 -#> [526,] 894 656 929 274 208 540 631 83 72 290 -#> [527,] 585 619 9 732 975 589 974 176 638 378 -#> [528,] 277 321 465 989 390 119 612 59 79 890 -#> [529,] 479 245 33 938 95 153 56 642 279 121 -#> [530,] 202 311 58 937 870 949 354 630 220 137 -#> [531,] 9 31 566 378 549 787 893 589 233 975 -#> [532,] 986 471 187 635 782 923 111 401 933 159 -#> [533,] 598 669 904 18 724 341 487 909 66 340 -#> [534,] 587 391 49 538 168 792 677 234 226 241 -#> [535,] 990 227 409 873 868 91 360 200 51 818 -#> [536,] 691 357 563 102 811 419 981 35 299 313 -#> [537,] 771 648 301 782 625 365 522 108 139 828 -#> [538,] 792 168 49 587 534 923 796 159 161 677 -#> [539,] 1000 34 864 971 803 226 862 595 267 607 -#> [540,] 929 894 42 204 526 232 123 215 401 290 -#> [541,] 786 829 659 954 462 937 194 192 124 924 -#> [542,] 673 30 100 998 370 472 855 728 68 281 -#> [543,] 597 996 459 356 423 800 511 744 672 877 -#> [544,] 759 142 249 146 730 333 958 722 605 297 -#> [545,] 118 306 593 438 796 819 470 22 865 206 -#> [546,] 910 788 63 186 926 890 518 628 133 663 -#> [547,] 760 554 408 493 822 578 849 984 941 652 -#> [548,] 896 987 851 684 417 199 198 272 325 672 -#> [549,] 687 951 531 324 566 969 525 732 248 728 -#> [550,] 627 832 99 618 768 109 748 444 755 490 -#> [551,] 120 17 386 801 726 741 345 899 643 762 -#> [552,] 140 243 64 143 745 16 252 127 667 606 -#> [553,] 86 3 5 7 956 945 624 35 360 242 -#> [554,] 547 408 760 849 652 54 578 984 67 749 -#> [555,] 14 622 440 433 316 325 783 176 879 799 -#> [556,] 439 688 4 213 342 393 964 180 482 892 -#> [557,] 192 560 74 506 296 304 618 932 736 124 -#> [558,] 509 47 642 918 11 529 57 245 302 479 -#> [559,] 128 273 405 381 707 741 190 551 473 120 -#> [560,] 192 557 698 399 172 271 506 582 523 124 -#> [561,] 939 322 196 26 251 911 77 806 158 258 -#> [562,] 511 360 884 35 459 423 581 772 3 409 -#> [563,] 313 767 573 336 104 804 691 516 236 907 -#> [564,] 216 976 681 865 426 881 860 649 591 660 -#> [565,] 488 115 328 92 80 857 305 19 351 487 -#> [566,] 951 233 324 531 595 787 850 549 182 87 -#> [567,] 413 156 345 726 935 502 183 17 598 551 -#> [568,] 957 741 399 698 172 350 582 473 463 271 -#> [569,] 948 228 960 287 848 374 256 6 274 104 -#> [570,] 234 972 391 11 534 587 245 121 157 49 -#> [571,] 747 580 955 299 264 308 882 945 809 261 -#> [572,] 999 641 188 374 263 75 300 948 274 54 -#> [573,] 336 881 313 824 127 907 981 563 236 104 -#> [574,] 675 409 232 138 360 415 645 132 404 929 -#> [575,] 863 268 10 266 469 291 838 808 484 900 -#> [576,] 200 406 675 637 645 873 174 51 415 409 -#> [577,] 225 697 429 222 671 25 629 175 794 398 -#> [578,] 67 76 880 141 836 822 980 849 984 554 -#> [579,] 61 875 116 860 451 240 771 865 335 958 -#> [580,] 227 826 955 571 882 264 945 770 132 747 -#> [581,] 884 423 135 800 882 459 562 270 907 360 -#> [582,] 271 172 899 741 399 842 872 568 55 801 -#> [583,] 306 593 361 164 438 118 48 478 545 221 -#> [584,] 521 387 606 670 288 504 167 389 426 210 -#> [585,] 527 732 974 176 433 589 619 9 348 783 -#> [586,] 674 813 983 636 91 122 632 178 197 816 -#> [587,] 534 49 677 391 538 792 168 796 208 856 -#> [588,] 155 262 603 130 239 596 37 616 185 756 -#> [589,] 31 908 52 635 732 217 874 62 241 893 -#> [590,] 512 191 262 632 646 588 367 130 636 275 -#> [591,] 649 881 210 745 660 426 606 564 976 474 -#> [592,] 390 724 995 400 151 812 314 953 341 79 -#> [593,] 306 118 545 583 961 438 22 773 943 372 -#> [594,] 721 457 133 906 713 770 257 737 186 876 -#> [595,] 850 787 803 217 566 241 802 31 379 709 -#> [596,] 293 185 396 450 716 753 155 616 130 369 -#> [597,] 543 459 356 772 511 562 929 896 800 526 -#> [598,] 533 18 340 909 472 669 156 341 66 567 -#> [599,] 962 139 625 537 782 301 349 693 648 108 -#> [600,] 331 758 623 12 617 235 731 246 275 29 -#> [601,] 949 937 58 919 220 829 786 462 541 267 -#> [602,] 460 437 707 107 190 42 204 105 138 348 -#> [603,] 155 616 588 761 4 89 392 185 965 428 -#> [604,] 8 822 903 554 547 613 222 578 493 408 -#> [605,] 249 801 171 959 317 722 544 55 759 397 -#> [606,] 167 387 745 455 243 504 591 288 717 649 -#> [607,] 988 539 483 1000 862 709 620 34 505 220 -#> [608,] 685 414 199 347 851 760 417 505 864 684 -#> [609,] 673 619 318 542 728 998 281 378 364 527 -#> [610,] 97 932 77 841 304 939 733 901 452 506 -#> [611,] 346 371 219 453 623 758 742 193 150 380 -#> [612,] 710 238 528 843 995 465 765 322 251 277 -#> [613,] 903 175 997 222 604 173 229 804 8 353 -#> [614,] 783 138 348 461 799 669 821 662 675 735 -#> [615,] 753 235 265 130 331 747 293 955 122 367 -#> [616,] 155 4 603 396 556 185 885 761 596 716 -#> [617,] 93 78 134 373 634 331 600 246 777 158 -#> [618,] 99 768 627 444 550 237 755 292 74 172 -#> [619,] 9 527 728 378 585 732 673 531 425 318 -#> [620,] 862 267 425 709 919 812 483 181 66 390 -#> [621,] 193 899 371 872 397 762 453 150 891 551 -#> [622,] 433 799 38 42 908 14 953 437 204 783 -#> [623,] 758 611 600 731 275 331 392 742 646 312 -#> [624,] 297 956 7 242 730 142 132 553 759 146 -#> [625,] 301 537 648 599 828 430 337 782 771 139 -#> [626,] 481 446 330 942 846 692 522 431 212 869 -#> [627,] 99 550 618 444 109 768 930 237 916 823 -#> [628,] 902 65 763 514 910 518 836 880 520 186 -#> [629,] 319 429 697 994 967 852 225 811 671 160 -#> [630,] 354 339 88 870 653 87 58 924 802 871 -#> [631,] 309 72 749 135 943 656 270 22 824 507 -#> [632,] 130 334 636 262 586 756 674 122 367 983 -#> [633,] 934 349 224 111 247 782 746 532 106 157 -#> [634,] 382 321 891 158 251 441 502 770 133 594 -#> [635,] 923 471 187 241 986 532 159 589 792 538 -#> [636,] 412 586 816 632 813 674 367 983 122 197 -#> [637,] 5 174 576 200 751 377 873 148 86 553 -#> [638,] 838 974 527 291 575 863 266 585 732 874 -#> [639,] 718 885 398 396 994 671 429 447 811 252 -#> [640,] 117 249 544 113 101 759 730 785 704 297 -#> [641,] 999 572 75 188 374 422 263 300 206 960 -#> [642,] 245 479 529 938 95 311 56 279 278 302 -#> [643,] 386 17 257 473 713 663 350 954 502 120 -#> [644,] 480 521 504 451 889 387 773 206 167 61 -#> [645,] 675 785 821 138 212 574 920 658 576 283 -#> [646,] 623 262 219 611 392 312 275 101 371 231 -#> [647,] 693 798 145 83 420 215 540 263 701 526 -#> [648,] 537 625 301 771 834 365 782 363 963 828 -#> [649,] 660 745 591 961 881 455 474 476 210 261 -#> [650,] 765 295 383 44 416 612 905 843 449 81 -#> [651,] 873 679 410 535 91 200 990 734 751 498 -#> [652,] 749 408 849 54 554 372 824 943 72 309 -#> [653,] 179 95 33 311 924 938 630 463 870 88 -#> [654,] 288 395 521 326 504 791 167 387 688 973 -#> [655,] 984 477 836 136 63 372 194 462 20 788 -#> [656,] 526 894 631 208 72 290 507 20 274 205 -#> [657,] 389 426 681 152 981 216 591 300 976 881 -#> [658,] 920 120 821 876 113 146 190 502 310 722 -#> [659,] 541 786 444 137 829 910 858 192 141 937 -#> [660,] 649 961 745 455 881 591 474 476 520 606 -#> [661,] 223 285 519 98 39 292 362 74 36 27 -#> [662,] 485 979 144 614 411 783 316 799 14 669 -#> [663,] 926 842 789 906 737 407 317 271 643 386 -#> [664,] 44 295 997 941 414 493 830 6 383 940 -#> [665,] 423 868 877 917 314 800 810 73 270 151 -#> [666,] 769 925 424 705 195 790 831 301 704 837 -#> [667,] 127 852 252 429 313 552 811 243 336 745 -#> [668,] 725 964 418 717 958 210 445 213 875 451 -#> [669,] 487 799 533 724 904 176 598 783 38 351 -#> [670,] 584 964 395 668 717 688 116 211 521 725 -#> [671,] 429 398 252 667 552 126 243 973 225 994 -#> [672,] 123 404 325 400 979 744 996 592 14 724 -#> [673,] 728 281 355 619 998 542 472 248 609 260 -#> [674,] 586 983 813 734 265 91 632 636 122 615 -#> [675,] 645 138 574 415 576 821 200 409 920 658 -#> [676,] 70 806 843 78 93 820 23 373 617 710 -#> [677,] 792 208 587 159 226 534 538 28 290 894 -#> [678,] 767 270 800 356 236 459 516 581 877 104 -#> [679,] 498 402 651 91 410 535 468 990 712 818 -#> [680,] 861 326 791 189 21 96 922 482 702 947 -#> [681,] 216 976 300 564 426 152 389 881 657 206 -#> [682,] 729 258 100 977 754 888 935 183 998 219 -#> [683,] 757 338 255 454 808 827 863 231 503 484 -#> [684,] 851 400 199 205 996 896 749 32 656 548 -#> [685,] 347 608 505 864 971 34 760 547 414 554 -#> [686,] 448 368 410 651 886 936 449 679 744 328 -#> [687,] 549 969 525 774 358 951 517 248 784 566 -#> [688,] 556 791 439 499 4 973 717 964 213 288 -#> [689,] 931 280 90 21 912 399 524 359 950 702 -#> [690,] 15 511 35 907 562 772 420 152 86 701 -#> [691,] 357 516 767 882 319 884 747 313 563 536 -#> [692,] 522 161 330 212 626 460 105 860 707 933 -#> [693,] 647 145 798 111 83 263 269 188 834 962 -#> [694,] 900 82 94 365 933 489 469 471 291 774 -#> [695,] 502 724 441 151 904 533 658 567 382 17 -#> [696,] 887 333 842 906 926 317 737 927 663 147 -#> [697,] 225 629 398 577 994 429 160 671 25 967 -#> [698,] 399 560 568 957 924 172 463 403 192 339 -#> [699,] 73 294 218 60 119 373 877 277 508 314 -#> [700,] 991 866 930 916 344 892 867 444 921 910 -#> [701,] 215 420 798 377 232 647 108 139 86 690 -#> [702,] 189 482 280 464 171 706 443 116 284 689 -#> [703,] 761 239 185 588 329 603 965 396 155 616 -#> [704,] 837 445 240 195 117 978 640 730 727 705 -#> [705,] 195 769 780 40 790 214 704 148 282 242 -#> [706,] 443 284 180 170 482 702 69 464 254 98 -#> [707,] 602 190 460 437 821 107 348 559 105 120 -#> [708,] 119 456 218 890 294 434 989 514 902 766 -#> [709,] 483 908 803 217 52 620 862 595 425 62 -#> [710,] 612 843 486 251 322 528 158 465 93 995 -#> [711,] 70 815 465 676 820 612 736 775 304 137 -#> [712,] 402 314 744 592 400 486 665 277 996 449 -#> [713,] 257 457 835 721 594 151 643 407 810 147 -#> [714,] 232 7 108 86 216 860 212 564 956 215 -#> [715,] 166 814 840 343 428 312 731 392 362 27 -#> [716,] 994 160 859 293 885 596 967 753 616 428 -#> [717,] 213 210 418 455 725 476 606 668 320 649 -#> [718,] 210 418 725 639 591 717 811 584 396 426 -#> [719,] 39 777 750 519 74 246 362 452 292 661 -#> [720,] 839 734 203 265 3 945 102 357 536 35 -#> [721,] 457 594 713 151 810 835 257 917 133 508 -#> [722,] 737 146 876 105 407 142 605 759 544 789 -#> [723,] 41 496 733 661 519 177 385 304 362 932 -#> [724,] 695 592 533 669 341 904 151 487 799 909 -#> [725,] 418 210 668 717 213 476 591 474 649 964 -#> [726,] 156 567 345 551 472 260 17 182 825 381 -#> [727,] 978 240 837 335 966 116 579 189 211 964 -#> [728,] 324 260 281 951 673 732 248 472 825 619 -#> [729,] 977 682 754 100 219 346 332 935 453 177 -#> [730,] 759 142 297 624 544 212 785 146 283 958 -#> [731,] 312 392 623 246 600 859 362 750 331 27 -#> [732,] 585 589 728 974 9 527 549 433 425 619 -#> [733,] 97 103 723 610 304 932 496 901 841 898 -#> [734,] 674 839 720 983 91 586 265 813 535 873 -#> [735,] 461 68 974 952 821 310 484 345 190 348 -#> [736,] 304 137 557 131 296 74 192 519 901 500 -#> [737,] 906 876 722 147 696 663 826 407 594 887 -#> [738,] 450 102 299 396 185 536 596 811 369 831 -#> [739,] 198 328 548 383 115 14 316 352 272 879 -#> [740,] 766 493 434 456 8 708 794 218 44 229 -#> [741,] 350 473 381 582 568 872 801 899 551 271 -#> [742,] 29 24 346 122 847 382 611 380 758 150 -#> [743,] 365 942 431 446 846 828 82 481 626 845 -#> [744,] 410 672 543 328 996 712 402 979 404 400 -#> [745,] 649 660 243 455 961 606 591 252 881 552 -#> [746,] 157 224 972 111 11 570 363 834 633 188 -#> [747,] 571 955 235 319 264 753 580 308 265 615 -#> [748,] 550 832 627 342 126 109 973 393 99 814 -#> [749,] 631 309 652 943 372 270 72 518 20 135 -#> [750,] 777 246 719 362 758 39 78 731 93 519 -#> [751,] 873 35 360 3 562 553 5 637 839 86 -#> [752,] 475 368 751 411 701 637 421 174 690 420 -#> [753,] 615 235 293 265 747 130 571 596 367 331 -#> [754,] 977 935 150 100 183 413 453 346 567 729 -#> [755,] 74 36 292 618 519 237 931 912 69 661 -#> [756,] 178 214 122 37 982 334 24 847 130 113 -#> [757,] 683 338 255 454 863 231 50 827 808 575 -#> [758,] 380 623 611 600 26 742 331 452 371 346 -#> [759,] 544 142 730 146 958 249 722 297 624 605 -#> [760,] 547 554 408 493 941 984 608 849 864 685 -#> [761,] 4 616 185 603 396 703 155 964 211 805 -#> [762,] 150 453 346 621 413 382 742 371 899 386 -#> [763,] 388 628 65 186 902 520 508 991 910 514 -#> [764,] 440 878 62 52 975 28 43 607 709 908 -#> [765,] 905 612 238 650 919 59 528 710 995 843 -#> [766,] 740 434 708 858 989 456 514 493 8 76 -#> [767,] 678 516 563 691 313 800 270 236 581 884 -#> [768,] 99 618 627 172 444 237 931 912 109 271 -#> [769,] 790 705 925 831 5 553 86 242 283 195 -#> [770,] 264 133 826 308 955 594 906 457 737 441 -#> [771,] 860 522 537 819 834 579 108 963 865 648 -#> [772,] 511 356 459 597 907 256 562 236 690 581 -#> [773,] 206 438 306 504 593 118 387 545 167 976 -#> [774,] 784 273 289 787 687 893 549 969 31 471 -#> [775,] 70 304 750 343 806 820 711 519 676 736 -#> [776,] 55 789 48 950 407 801 663 959 473 797 -#> [777,] 246 719 750 39 866 344 78 991 452 617 -#> [778,] 436 90 524 358 359 969 399 568 280 689 -#> [779,] 467 307 286 897 21 970 403 524 436 96 -#> [780,] 195 883 705 239 37 704 40 282 148 640 -#> [781,] 928 233 339 913 394 517 248 354 403 87 -#> [782,] 537 111 532 349 771 828 648 365 834 633 -#> [783,] 348 614 799 138 622 669 433 437 461 176 -#> [784,] 774 289 893 687 489 525 114 969 787 31 -#> [785,] 283 645 297 212 242 730 869 624 146 920 -#> [786,] 541 829 659 937 954 124 601 192 137 944 -#> [787,] 850 595 31 566 774 379 531 217 549 273 -#> [788,] 63 836 546 910 880 797 141 655 628 518 -#> [789,] 407 776 663 55 926 842 801 147 722 887 -#> [790,] 831 769 445 925 624 553 705 956 809 102 -#> [791,] 326 482 922 680 688 211 499 443 189 947 -#> [792,] 159 538 677 241 168 587 290 534 923 796 -#> [793,] 45 268 883 384 338 827 942 683 575 329 -#> [794,] 60 229 514 218 515 902 763 921 516 740 -#> [795,] 842 237 180 292 223 285 39 926 317 930 -#> [796,] 507 22 168 49 290 545 470 538 161 118 -#> [797,] 63 194 315 788 833 473 136 477 776 546 -#> [798,] 420 647 83 263 215 701 139 693 232 714 -#> [799,] 622 669 38 783 904 433 42 348 437 107 -#> [800,] 270 459 423 877 917 581 678 665 810 631 -#> [801,] 605 317 55 899 959 789 663 741 551 842 -#> [802,] 88 194 871 803 957 833 924 136 473 797 -#> [803,] 217 595 802 850 833 709 128 267 182 315 -#> [804,] 515 313 104 229 127 563 336 667 516 573 -#> [805,] 499 4 885 89 428 688 616 556 603 761 -#> [806,] 676 70 911 93 26 561 78 12 617 710 -#> [807,] 458 46 886 448 259 516 629 319 203 327 -#> [808,] 484 370 863 503 310 268 683 827 575 735 -#> [809,] 214 945 299 624 956 242 571 102 297 756 -#> [810,] 917 457 721 835 508 270 713 151 594 205 -#> [811,] 852 299 667 261 319 313 127 536 252 571 -#> [812,] 953 879 14 375 592 620 622 325 433 205 -#> [813,] 586 197 91 983 674 818 51 178 636 122 -#> [814,] 840 428 867 342 859 27 312 166 393 362 -#> [815,] 711 70 820 676 244 775 736 612 137 765 -#> [816,] 334 122 742 29 332 412 847 636 911 219 -#> [817,] 734 498 983 125 674 91 197 854 651 586 -#> [818,] 51 197 990 91 813 920 200 535 178 576 -#> [819,] 834 545 206 860 83 865 771 438 161 976 -#> [820,] 169 70 500 676 244 25 944 711 775 78 -#> [821,] 190 461 658 138 707 735 645 310 120 602 -#> [822,] 578 8 604 76 547 554 67 311 760 880 -#> [823,] 478 109 143 164 490 99 788 444 627 910 -#> [824,] 72 22 300 309 943 230 881 118 573 135 -#> [825,] 260 181 66 182 163 726 472 523 425 324 -#> [826,] 770 580 737 24 132 441 876 906 146 955 -#> [827,] 454 484 249 335 284 808 683 310 966 605 -#> [828,] 968 365 743 782 537 625 648 845 82 301 -#> [829,] 541 786 462 194 937 58 924 954 124 601 -#> [830,] 941 493 294 456 6 851 678 218 119 44 -#> [831,] 790 769 553 86 956 102 981 925 624 945 -#> [832,] 550 627 131 618 99 748 755 768 916 74 -#> [833,] 473 128 315 350 802 803 797 643 182 194 -#> [834,] 819 111 771 83 889 49 438 538 206 161 -#> [835,] 713 32 205 810 721 457 151 507 257 315 -#> [836,] 655 880 788 63 984 628 141 518 902 372 -#> [837,] 240 704 445 727 978 668 579 117 335 730 -#> [838,] 291 900 986 575 471 469 638 974 626 863 -#> [839,] 720 734 3 751 945 873 35 553 357 203 -#> [840,] 428 814 342 166 27 867 69 312 170 392 -#> [841,] 610 97 901 163 992 355 77 103 932 825 -#> [842,] 926 663 317 795 696 271 899 582 887 789 -#> [843,] 710 612 676 23 416 486 989 78 528 806 -#> [844,] 134 373 967 23 60 617 344 921 25 319 -#> [845,] 165 743 986 968 900 532 828 291 365 782 -#> [846,] 481 942 446 431 626 869 330 743 522 283 -#> [847,] 332 113 334 122 742 346 178 150 920 24 -#> [848,] 287 236 104 228 256 960 374 336 569 824 -#> [849,] 408 54 554 278 652 67 372 856 578 836 -#> [850,] 595 787 803 379 566 217 802 241 88 871 -#> [851,] 199 684 896 987 941 548 996 608 400 414 -#> [852,] 811 667 261 127 252 319 313 320 515 429 -#> [853,] 432 114 307 861 96 21 680 94 509 359 -#> [854,] 946 367 636 12 191 412 110 586 936 674 -#> [855,] 351 598 472 857 487 30 18 176 533 909 -#> [856,] 20 22 372 72 507 943 796 315 49 656 -#> [857,] 115 351 176 487 855 669 879 662 783 585 -#> [858,] 76 500 514 880 980 944 659 921 141 169 -#> [859,] 160 716 867 428 731 344 994 967 814 246 -#> [860,] 865 771 522 819 564 216 958 714 579 142 -#> [861,] 680 189 326 791 116 21 96 702 482 211 -#> [862,] 267 620 220 483 87 949 58 709 919 803 -#> [863,] 575 808 266 503 268 10 683 484 469 370 -#> [864,] 971 34 347 685 1000 539 408 234 856 849 -#> [865,] 860 451 958 564 819 61 545 976 875 216 -#> [866,] 991 344 700 916 930 921 246 867 777 444 -#> [867,] 393 700 916 342 866 814 237 428 930 344 -#> [868,] 665 227 423 409 441 360 535 990 457 877 -#> [869,] 283 481 330 212 785 282 846 446 730 626 -#> [870,] 462 58 949 937 984 194 829 136 630 267 -#> [871,] 802 194 88 136 121 95 797 938 33 924 -#> [872,] 506 899 621 741 582 271 350 193 523 381 -#> [873,] 535 751 200 409 360 651 576 990 415 637 -#> [874,] 497 187 589 986 635 471 975 52 555 62 -#> [875,] 61 116 958 451 865 579 959 668 171 950 -#> [876,] 737 722 257 386 441 120 105 658 906 594 -#> [877,] 665 423 800 73 270 917 868 699 996 314 -#> [878,] 914 71 28 43 62 391 1000 440 52 764 -#> [879,] 176 812 433 14 622 351 669 799 953 908 -#> [880,] 141 836 980 76 578 628 788 910 902 65 -#> [881,] 591 649 573 976 660 336 745 564 824 681 -#> [882,] 580 581 357 264 884 474 571 308 691 945 -#> [883,] 239 780 329 195 640 704 45 442 793 978 -#> [884,] 581 35 562 357 3 360 423 882 511 907 -#> [885,] 994 398 428 716 616 805 160 639 859 4 -#> [886,] 327 448 699 458 23 73 877 516 936 60 -#> [887,] 696 333 317 927 842 737 926 906 147 789 -#> [888,] 258 682 561 610 97 209 998 939 729 733 -#> [889,] 438 963 363 915 644 834 49 545 306 819 -#> [890,] 708 186 546 989 944 508 321 954 477 628 -#> [891,] 17 196 386 380 158 634 413 643 321 502 -#> [892,] 320 439 393 700 696 213 476 180 887 930 -#> [893,] 31 784 774 531 589 497 975 289 549 787 -#> [894,] 526 656 208 540 929 290 677 123 42 205 -#> [895,] 153 379 363 432 289 154 11 889 915 221 -#> [896,] 987 199 851 548 417 274 684 597 996 608 -#> [897,] 403 399 524 931 689 755 467 698 98 36 -#> [898,] 103 913 733 385 723 41 355 403 97 998 -#> [899,] 621 872 582 801 317 397 842 271 741 663 -#> [900,] 694 291 469 838 471 986 82 489 365 933 -#> [901,] 97 841 103 610 736 733 163 992 304 932 -#> [902,] 628 65 514 763 880 836 518 218 910 520 -#> [903,] 613 175 604 173 366 64 804 229 353 997 -#> [904,] 38 953 799 533 669 437 724 107 695 433 -#> [905,] 919 238 985 620 765 995 1 862 220 601 -#> [906,] 737 133 594 663 696 147 926 770 876 457 -#> [907,] 236 772 573 581 981 884 690 511 300 152 -#> [908,] 52 217 433 62 709 589 622 440 28 241 -#> [909,] 341 18 340 598 533 487 322 724 995 251 -#> [910,] 546 444 788 628 930 880 991 141 763 902 -#> [911,] 26 380 93 816 758 12 617 251 29 600 -#> [912,] 931 237 36 69 768 443 170 689 482 292 -#> [913,] 403 517 248 355 781 281 358 103 841 233 -#> [914,] 878 347 1000 570 539 57 43 864 391 234 -#> [915,] 963 48 933 889 61 405 161 545 776 168 -#> [916,] 930 700 991 866 867 444 344 921 627 25 -#> [917,] 810 270 508 800 721 665 457 835 314 277 -#> [918,] 162 129 164 85 245 583 278 654 479 47 -#> [919,] 601 905 238 220 985 620 862 949 181 267 -#> [920,] 113 658 51 132 146 847 178 382 645 675 -#> [921,] 991 866 25 344 514 916 930 700 763 944 -#> [922,] 947 791 326 499 680 482 89 970 443 211 -#> [923,] 635 241 538 792 471 405 159 168 161 217 -#> [924,] 88 957 463 339 698 802 172 194 829 568 -#> [925,] 769 377 869 108 790 5 283 831 86 139 -#> [926,] 663 842 696 906 789 271 546 795 317 887 -#> [927,] 333 476 887 261 320 696 474 213 892 388 -#> [928,] 781 354 394 87 233 220 339 630 483 58 -#> [929,] 540 232 526 894 123 459 656 574 42 290 -#> [930,] 916 700 444 991 866 910 627 99 867 344 -#> [931,] 912 689 36 98 237 768 69 897 292 443 -#> [932,] 77 452 610 304 506 193 371 177 621 872 -#> [933,] 963 915 82 692 363 365 694 94 161 61 -#> [934,] 633 349 224 247 106 157 111 746 253 782 -#> [935,] 754 183 567 413 156 345 100 977 726 150 -#> [936,] 416 23 468 886 327 946 12 201 843 486 -#> [937,] 58 949 601 462 829 786 541 870 659 220 -#> [938,] 95 121 245 67 278 971 871 653 129 33 -#> [939,] 196 77 561 322 992 340 935 251 26 158 -#> [940,] 6 987 356 256 896 323 569 597 543 851 -#> [941,] 830 493 199 851 760 414 547 6 554 456 -#> [942,] 431 846 481 446 626 743 330 522 869 365 -#> [943,] 309 72 372 22 135 20 518 507 631 118 -#> [944,] 989 890 921 786 465 858 78 500 321 659 -#> [945,] 3 956 553 580 7 809 35 624 571 882 -#> [946,] 110 854 12 259 367 936 235 23 753 844 -#> [947,] 922 443 170 970 89 482 791 326 680 286 -#> [948,] 569 54 572 408 274 75 374 417 228 960 -#> [949,] 58 937 601 462 870 267 220 829 862 541 -#> [950,] 55 959 171 776 789 801 359 875 48 842 -#> [951,] 324 381 566 248 233 549 260 728 182 358 -#> [952,] 68 345 183 461 735 567 821 370 413 310 -#> [953,] 38 375 904 812 205 32 622 799 833 79 -#> [954,] 643 79 541 321 350 473 477 546 829 786 -#> [955,] 264 308 770 580 747 571 826 29 235 24 -#> [956,] 624 7 945 297 553 142 474 132 3 86 -#> [957,] 88 568 924 802 698 463 350 473 172 339 -#> [958,] 875 759 865 544 142 668 860 959 451 61 -#> [959,] 171 950 55 605 801 317 789 776 842 887 -#> [960,] 374 287 228 848 569 104 256 236 173 572 -#> [961,] 660 745 455 649 593 118 520 167 306 881 -#> [962,] 420 599 693 647 798 139 701 145 152 15 -#> [963,] 933 915 61 889 363 82 771 579 94 834 -#> [964,] 668 211 213 4 717 556 725 688 418 670 -#> [965,] 185 603 596 588 155 761 616 703 293 396 -#> [966,] 53 335 189 727 978 454 827 464 702 116 -#> [967,] 134 319 160 308 844 344 264 747 235 955 -#> [968,] 828 845 743 365 165 782 625 537 446 82 -#> [969,] 687 358 436 778 525 549 273 774 517 114 -#> [970,] 947 912 286 326 443 931 680 170 922 482 -#> [971,] 864 34 938 95 67 1000 849 278 121 539 -#> [972,] 11 570 746 234 49 157 121 889 153 534 -#> [973,] 143 126 439 109 243 288 393 688 140 552 -#> [974,] 735 68 461 585 348 732 345 783 707 821 -#> [975,] 9 31 589 893 62 52 531 874 908 440 -#> [976,] 564 681 216 881 206 300 118 426 865 649 -#> [977,] 754 150 346 453 729 332 935 100 183 219 -#> [978,] 727 837 13 240 966 117 704 335 211 464 -#> [979,] 662 415 485 404 672 799 669 123 487 144 -#> [980,] 141 490 880 76 578 910 858 788 836 444 -#> [981,] 881 907 657 573 591 426 681 152 564 336 -#> [982,] 178 242 756 214 113 51 406 920 37 785 -#> [983,] 674 813 586 734 197 91 178 632 982 756 -#> [984,] 655 477 136 836 462 194 870 63 372 20 -#> [985,] 1 919 992 435 238 905 66 220 620 181 -#> [986,] 471 532 187 635 874 838 497 900 923 291 -#> [987,] 896 199 548 851 417 414 608 6 274 684 -#> [988,] 607 220 862 505 620 539 483 267 34 1000 -#> [989,] 944 890 708 373 528 78 321 119 921 218 -#> [990,] 535 227 51 409 818 91 868 441 920 873 -#> [991,] 866 700 930 344 916 921 444 910 763 546 -#> [992,] 1 939 163 238 825 181 66 985 435 77 -#> [993,] 769 637 148 705 5 751 839 174 40 925 -#> [994,] 716 885 160 398 859 697 428 629 671 429 -#> [995,] 390 18 592 341 238 909 612 322 251 340 -#> [996,] 400 543 800 449 877 684 665 672 459 270 -#> [997,] 613 173 323 175 903 228 804 104 960 287 -#> [998,] 355 673 841 281 682 542 258 610 100 97 -#> [999,] 572 641 188 263 300 206 773 374 83 824 -#> [1000,] 539 34 864 971 226 803 878 595 850 28 +#> [1,] 442 230 784 689 53 137 330 836 996 69 +#> [2,] 874 179 540 168 223 720 504 824 885 383 +#> [3,] 213 97 262 688 569 583 921 711 455 436 +#> [4,] 691 167 268 281 235 746 958 524 275 449 +#> [5,] 681 33 966 976 295 698 239 740 59 993 +#> [6,] 641 921 467 213 884 514 552 410 711 3 +#> [7,] 735 797 69 294 53 226 238 330 907 129 +#> [8,] 525 884 433 469 305 678 332 833 591 6 +#> [9,] 975 358 333 394 526 199 692 888 828 48 +#> [10,] 159 743 81 440 297 368 985 480 54 456 +#> [11,] 278 476 906 232 995 600 272 172 349 73 +#> [12,] 821 641 554 514 293 467 725 478 780 702 +#> [13,] 88 906 989 349 703 142 11 216 596 147 +#> [14,] 724 993 523 59 376 422 496 123 647 976 +#> [15,] 375 585 893 249 178 301 967 179 978 250 +#> [16,] 636 231 204 175 121 181 377 370 998 960 +#> [17,] 590 928 631 901 620 317 388 770 466 529 +#> [18,] 853 71 936 822 309 959 989 29 227 597 +#> [19,] 807 271 545 727 434 960 679 977 453 302 +#> [20,] 77 468 610 520 144 109 156 167 942 235 +#> [21,] 958 536 443 158 673 240 347 556 355 285 +#> [22,] 648 63 781 176 671 499 725 569 852 436 +#> [23,] 363 282 207 985 413 115 882 454 788 381 +#> [24,] 457 86 802 267 877 681 943 124 548 740 +#> [25,] 623 234 220 279 32 352 662 166 530 185 +#> [26,] 141 346 785 221 404 830 868 786 60 833 +#> [27,] 487 317 780 89 621 918 554 61 58 171 +#> [28,] 353 484 809 587 493 699 49 919 83 156 +#> [29,] 172 272 227 936 216 11 675 476 788 989 +#> [30,] 72 62 459 576 793 600 344 274 995 127 +#> [31,] 712 66 491 494 326 322 51 636 488 472 +#> [32,] 64 621 662 508 946 234 4 443 61 487 +#> [33,] 5 976 59 845 186 698 539 263 873 772 +#> [34,] 42 561 231 181 35 609 16 719 545 977 +#> [35,] 42 571 34 889 561 977 379 945 577 545 +#> [36,] 655 343 427 357 567 521 882 909 741 309 +#> [37,] 907 531 982 762 562 143 318 850 497 135 +#> [38,] 866 320 114 529 857 559 149 348 546 254 +#> [39,] 284 164 969 259 165 230 400 974 112 595 +#> [40,] 666 687 857 611 854 348 559 866 593 669 +#> [41,] 871 849 470 361 890 250 717 485 649 847 +#> [42,] 561 392 545 19 960 34 35 231 577 977 +#> [43,] 524 128 954 846 778 459 148 344 296 127 +#> [44,] 522 899 892 419 705 437 653 576 146 513 +#> [45,] 93 913 299 598 110 409 294 626 408 334 +#> [46,] 402 465 86 976 978 124 350 681 261 848 +#> [47,] 290 722 707 206 753 533 328 512 750 198 +#> [48,] 59 594 394 374 647 248 724 518 526 5 +#> [49,] 156 109 601 116 77 383 587 484 942 504 +#> [50,] 794 158 443 240 558 744 155 748 879 536 +#> [51,] 494 377 693 365 644 745 712 55 972 121 +#> [52,] 318 965 201 137 182 143 907 602 568 37 +#> [53,] 512 69 330 154 7 784 143 707 441 797 +#> [54,] 138 440 203 783 612 67 368 115 10 78 +#> [55,] 181 204 721 365 609 104 377 51 448 121 +#> [56,] 984 842 827 897 564 713 312 415 96 190 +#> [57,] 310 437 419 930 742 705 895 932 44 899 +#> [58,] 694 668 551 918 75 89 751 409 778 652 +#> [59,] 724 976 48 33 523 14 993 5 394 647 +#> [60,] 26 830 989 983 868 141 633 404 386 902 +#> [61,] 275 64 758 825 840 554 471 487 800 27 +#> [62,] 459 778 30 110 102 72 335 817 203 385 +#> [63,] 499 648 852 731 436 22 947 569 129 584 +#> [64,] 61 32 532 534 275 487 846 148 233 443 +#> [65,] 686 334 451 464 735 629 41 373 663 690 +#> [66,] 712 31 491 693 51 494 854 130 326 488 +#> [67,] 203 122 296 247 440 704 335 138 459 102 +#> [68,] 106 861 815 557 816 851 640 398 910 937 +#> [69,] 970 53 7 133 441 784 330 329 710 735 +#> [70,] 628 243 198 458 990 176 388 669 916 570 +#> [71,] 822 959 309 100 18 407 917 788 936 227 +#> [72,] 459 30 706 296 210 335 62 67 502 128 +#> [73,] 643 600 663 516 513 522 576 808 451 717 +#> [74,] 362 315 338 202 679 271 952 482 434 224 +#> [75,] 668 652 58 694 299 110 252 913 93 409 +#> [76,] 961 804 291 635 340 423 420 875 812 930 +#> [77,] 20 610 468 942 520 109 144 156 167 761 +#> [78,] 420 612 517 895 297 961 115 340 860 54 +#> [79,] 676 188 500 579 911 215 878 247 879 706 +#> [80,] 209 630 429 567 521 860 829 1000 654 357 +#> [81,] 385 258 440 578 817 10 207 138 335 159 +#> [82,] 454 391 23 381 282 152 363 763 207 592 +#> [83,] 608 481 587 933 28 103 229 484 424 714 +#> [84,] 166 384 279 968 787 662 825 194 293 554 +#> [85,] 304 345 531 497 738 873 632 37 964 808 +#> [86,] 350 681 465 496 976 873 46 457 887 366 +#> [87,] 417 690 617 723 485 686 161 624 795 978 +#> [88,] 245 13 147 541 703 278 596 11 272 172 +#> [89,] 780 27 918 409 524 58 778 680 268 43 +#> [90,] 492 615 839 801 935 219 782 313 517 480 +#> [91,] 283 319 531 497 483 696 132 304 738 412 +#> [92,] 403 922 775 461 378 169 316 560 657 209 +#> [93,] 299 45 110 598 913 252 460 626 102 409 +#> [94,] 854 130 444 351 559 66 491 462 40 857 +#> [95,] 120 189 965 426 206 599 359 289 842 435 +#> [96,] 118 113 564 709 836 837 354 132 602 189 +#> [97,] 921 3 410 468 266 455 520 144 552 954 +#> [98,] 314 146 832 895 128 180 150 460 274 810 +#> [99,] 622 489 820 411 131 764 756 604 746 164 +#> [100,] 917 407 822 851 71 788 815 839 959 661 +#> [101,] 770 739 466 17 380 928 857 590 631 620 +#> [102,] 368 122 704 110 778 203 299 810 440 62 +#> [103,] 771 933 83 229 872 905 608 714 481 818 +#> [104,] 121 755 365 745 579 676 783 769 55 500 +#> [105,] 366 632 966 873 912 932 423 887 582 219 +#> [106,] 68 815 851 557 839 100 861 788 971 90 +#> [107,] 768 937 475 244 861 398 68 550 971 212 +#> [108,] 428 439 241 645 596 988 13 332 142 305 +#> [109,] 235 401 20 156 77 779 292 49 610 167 +#> [110,] 299 93 102 778 62 598 45 460 75 368 +#> [111,] 667 174 323 886 651 519 777 205 341 843 +#> [112,] 238 893 617 969 178 375 970 259 339 284 +#> [113,] 118 709 354 191 837 96 602 836 132 544 +#> [114,] 660 659 478 149 962 495 126 546 38 702 +#> [115,] 170 78 882 54 592 940 420 138 517 297 +#> [116,] 383 374 625 601 49 518 248 504 760 156 +#> [117,] 986 799 188 236 79 766 490 678 346 981 +#> [118,] 96 113 354 837 836 189 709 132 120 640 +#> [119,] 224 568 263 482 992 135 835 539 182 696 +#> [120,] 189 589 599 177 837 354 640 543 836 325 +#> [121,] 745 104 755 231 783 377 644 170 365 592 +#> [122,] 704 102 203 368 67 296 778 440 810 459 +#> [123,] 376 657 844 378 993 14 637 406 724 461 +#> [124,] 607 46 24 457 86 465 214 978 350 402 +#> [125,] 492 812 615 364 90 917 438 407 839 831 +#> [126,] 478 702 962 551 114 950 944 684 918 660 +#> [127,] 516 626 574 460 600 793 663 373 524 455 +#> [128,] 296 43 98 954 148 72 146 314 122 67 +#> [129,] 947 767 499 731 780 735 226 45 626 63 +#> [130,] 854 351 559 444 693 320 94 578 752 644 +#> [131,] 397 764 356 342 756 446 618 99 411 708 +#> [132,] 319 696 91 412 283 709 965 182 531 354 +#> [133,] 441 69 970 53 916 7 750 176 710 458 +#> [134,] 898 8 986 507 525 833 773 184 811 396 +#> [135,] 201 568 850 224 182 627 119 37 390 205 +#> [136,] 754 541 369 245 624 88 439 670 596 464 +#> [137,] 330 836 474 143 837 52 784 318 797 907 +#> [138,] 54 440 335 203 783 67 183 81 72 612 +#> [139,] 616 399 583 614 432 596 256 904 515 711 +#> [140,] 990 770 737 533 287 190 611 570 193 371 +#> [141,] 26 785 346 221 404 786 270 833 830 183 +#> [142,] 305 173 195 349 232 515 278 433 616 596 +#> [143,] 907 562 797 318 37 137 154 512 474 330 +#> [144,] 468 520 634 20 688 77 97 987 606 3 +#> [145,] 652 605 197 751 553 75 435 222 252 792 +#> [146,] 180 98 899 964 460 449 761 314 44 128 +#> [147,] 776 88 432 989 256 324 13 597 596 139 +#> [148,] 846 443 43 128 954 247 558 883 158 296 +#> [149,] 546 384 114 487 478 233 534 293 659 702 +#> [150,] 423 832 314 961 219 306 98 895 810 297 +#> [151,] 883 677 382 930 273 260 991 865 956 863 +#> [152,] 752 462 444 870 391 258 573 82 763 130 +#> [153,] 632 912 664 304 738 582 992 900 219 105 +#> [154,] 512 562 143 53 907 318 446 7 762 570 +#> [155,] 558 247 500 389 443 846 792 355 50 158 +#> [156,] 218 109 49 20 77 942 249 144 634 760 +#> [157,] 729 214 68 670 936 106 955 557 543 29 +#> [158,] 443 794 536 50 240 21 556 744 958 148 +#> [159,] 10 456 743 321 368 102 81 110 416 440 +#> [160,] 831 802 815 615 438 125 675 90 997 492 +#> [161,] 417 261 474 690 87 191 327 784 617 602 +#> [162,] 651 982 255 667 264 762 341 174 497 642 +#> [163,] 957 880 329 200 710 754 996 298 686 629 +#> [164,] 284 259 99 622 39 165 411 595 967 489 +#> [165,] 164 967 397 848 284 360 845 131 39 969 +#> [166,] 662 758 61 800 825 508 787 728 279 84 +#> [167,] 235 4 520 275 20 401 281 449 691 746 +#> [168,] 874 2 24 383 116 540 457 720 625 124 +#> [169,] 639 775 877 267 92 403 461 831 560 742 +#> [170,] 940 115 592 998 730 882 370 121 231 567 +#> [171,] 746 268 841 680 756 674 826 852 226 524 +#> [172,] 272 29 227 11 476 88 216 989 324 703 +#> [173,] 232 195 349 515 142 995 305 906 591 278 +#> [174,] 651 667 762 982 111 264 162 205 680 409 +#> [175,] 204 747 654 755 181 121 231 104 16 55 +#> [176,] 22 671 458 916 781 725 648 63 441 628 +#> [177,] 599 589 120 927 640 325 910 543 189 856 +#> [178,] 375 250 890 41 301 871 978 470 617 760 +#> [179,] 540 223 874 2 885 15 375 951 249 432 +#> [180,] 146 964 449 761 98 899 869 610 345 295 +#> [181,] 204 55 609 175 721 104 231 121 365 654 +#> [182,] 568 135 257 602 201 627 850 119 318 224 +#> [183,] 138 78 270 592 346 763 188 54 115 335 +#> [184,] 833 542 785 26 141 898 537 8 525 60 +#> [185,] 229 789 672 234 790 430 991 794 924 158 +#> [186,] 772 539 642 217 342 341 869 33 828 952 +#> [187,] 486 926 894 202 843 362 791 953 777 473 +#> [188,] 79 733 346 676 183 981 72 221 296 706 +#> [189,] 120 837 836 589 354 599 177 118 996 543 +#> [190,] 312 435 713 328 533 287 47 842 737 206 +#> [191,] 602 113 709 182 161 261 732 132 257 402 +#> [192,] 465 848 402 350 523 845 976 867 46 165 +#> [193,] 737 777 685 371 446 843 938 287 111 400 +#> [194,] 787 825 236 840 471 384 806 758 6 641 +#> [195,] 232 173 515 142 278 455 516 349 600 793 +#> [196,] 298 399 584 431 464 339 614 541 803 814 +#> [197,] 553 222 145 605 488 751 931 923 208 792 +#> [198,] 458 570 707 750 533 753 916 990 551 388 +#> [199,] 510 333 549 819 526 791 736 953 828 952 +#> [200,] 957 880 589 163 177 416 120 408 856 599 +#> [201,] 135 568 182 224 205 390 627 52 318 119 +#> [202,] 679 843 390 362 473 271 74 338 315 222 +#> [203,] 67 440 122 704 368 138 54 102 335 296 +#> [204,] 181 55 175 121 755 104 16 51 365 494 +#> [205,] 651 341 390 762 174 982 843 642 201 111 +#> [206,] 753 290 652 47 75 145 668 435 252 598 +#> [207,] 985 81 592 23 258 10 381 311 282 115 +#> [208,] 255 619 331 704 463 497 122 306 718 368 +#> [209,] 630 429 829 251 560 80 316 860 211 868 +#> [210,] 706 979 335 502 495 72 67 684 660 247 +#> [211,] 251 429 424 560 714 630 260 868 246 310 +#> [212,] 992 244 900 727 768 453 398 300 807 664 +#> [213,] 3 262 711 225 569 6 583 436 921 97 +#> [214,] 729 607 723 157 795 24 887 457 124 191 +#> [215,] 879 534 532 233 748 500 558 247 495 979 +#> [216,] 476 859 906 413 989 227 11 29 703 788 +#> [217,] 372 956 869 844 347 772 647 186 285 510 +#> [218,] 249 301 606 760 156 987 634 250 280 826 +#> [219,] 423 801 150 615 935 912 480 90 961 738 +#> [220,] 234 352 765 25 530 736 508 790 631 915 +#> [221,] 346 26 141 868 785 404 830 357 427 983 +#> [222,] 553 197 923 777 145 931 323 605 751 111 +#> [223,] 179 432 951 2 885 720 614 874 147 540 +#> [224,] 119 568 263 135 539 201 482 850 835 182 +#> [225,] 213 904 583 591 773 973 262 3 616 711 +#> [226,] 756 680 841 7 129 171 238 735 264 764 +#> [227,] 29 172 272 788 675 936 557 476 216 479 +#> [228,] 560 169 364 757 902 963 868 246 742 775 +#> [229,] 185 789 933 991 672 771 401 575 382 818 +#> [230,] 1 318 627 257 974 154 602 784 52 53 +#> [231,] 940 121 170 392 561 104 586 16 998 745 +#> [232,] 173 515 349 195 278 142 600 793 995 455 +#> [233,] 534 215 532 495 979 706 660 210 702 879 +#> [234,] 220 508 32 185 790 946 240 691 530 4 +#> [235,] 167 281 746 618 109 401 4 449 826 356 +#> [236,] 659 891 194 532 495 715 410 384 986 787 +#> [237,] 646 643 858 782 743 479 480 935 600 73 +#> [238,] 112 7 708 226 735 327 178 764 69 969 +#> [239,] 966 740 267 681 366 5 518 105 295 639 +#> [240,] 946 682 158 536 744 794 443 21 50 958 +#> [241,] 108 855 439 645 650 428 988 603 431 596 +#> [242,] 448 721 50 744 794 748 367 939 813 879 +#> [243,] 669 293 388 725 628 12 554 458 176 198 +#> [244,] 212 300 768 732 992 412 696 338 709 861 +#> [245,] 88 541 464 629 369 624 596 278 451 65 +#> [246,] 963 653 419 942 310 919 57 742 387 902 +#> [247,] 558 500 67 155 846 676 296 210 148 203 +#> [248,] 518 601 774 374 779 698 239 295 818 5 +#> [249,] 218 301 156 760 15 375 178 885 250 824 +#> [250,] 871 301 847 760 470 41 178 824 849 890 +#> [251,] 211 429 714 630 424 560 209 260 677 868 +#> [252,] 598 299 93 913 75 110 45 762 208 409 +#> [253,] 575 549 430 571 790 819 307 771 510 872 +#> [254,] 348 529 866 792 605 389 320 590 857 693 +#> [255,] 208 331 619 497 162 718 651 463 982 306 +#> [256,] 904 506 658 139 225 147 633 776 583 973 +#> [257,] 627 602 182 135 318 568 201 52 261 974 +#> [258,] 81 870 207 385 985 578 817 159 656 10 +#> [259,] 284 164 112 489 969 99 238 622 967 39 +#> [260,] 382 273 980 714 151 481 211 733 991 933 +#> [261,] 161 327 402 850 257 602 474 191 627 182 +#> [262,] 213 3 688 569 225 929 6 711 641 773 +#> [263,] 224 835 119 482 539 350 850 568 135 33 +#> [264,] 982 680 174 762 268 756 162 667 409 651 +#> [265,] 914 576 793 981 274 404 733 522 419 892 +#> [266,] 455 921 97 344 436 520 852 127 793 524 +#> [267,] 639 239 966 461 831 169 775 366 740 105 +#> [268,] 746 4 171 264 691 674 281 680 524 756 +#> [269,] 339 87 369 617 754 624 417 814 689 951 +#> [270,] 502 678 706 817 833 183 210 335 72 141 +#> [271,] 807 434 679 19 453 727 315 718 202 931 +#> [272,] 172 29 227 11 476 646 324 675 665 216 +#> [273,] 382 733 260 954 151 481 999 610 883 77 +#> [274,] 576 895 705 932 404 600 98 522 479 437 +#> [275,] 61 840 520 758 167 64 954 4 524 806 +#> [276,] 638 968 701 388 243 84 901 293 70 716 +#> [277,] 647 772 844 952 217 376 724 510 186 315 +#> [278,] 232 349 515 195 11 451 142 600 173 616 +#> [279,] 662 928 620 631 32 317 384 166 623 487 +#> [280,] 826 292 841 535 987 994 606 218 708 764 +#> [281,] 691 235 618 356 4 268 746 167 401 828 +#> [282,] 363 23 381 370 311 985 207 730 798 418 +#> [283,] 91 696 483 412 965 132 319 453 300 497 +#> [284,] 259 164 969 39 238 764 99 411 112 708 +#> [285,] 865 536 217 347 556 673 21 956 772 953 +#> [286,] 545 367 977 636 16 322 712 19 721 377 +#> [287,] 737 713 193 312 190 400 140 564 473 435 +#> [288,] 501 405 726 613 949 585 604 941 249 893 +#> [289,] 326 95 351 311 435 881 359 985 31 998 +#> [290,] 47 753 707 206 722 750 512 533 143 329 +#> [291,] 875 804 76 302 961 801 340 862 150 900 +#> [292,] 280 994 826 618 109 535 218 356 235 987 +#> [293,] 12 554 243 149 317 546 641 478 669 384 +#> [294,] 797 408 334 735 925 45 7 598 143 330 +#> [295,] 698 964 761 180 966 5 740 869 779 899 +#> [296,] 128 67 72 122 203 612 459 247 98 43 +#> [297,] 480 517 810 935 479 961 612 78 782 423 +#> [298,] 710 339 464 196 584 970 65 686 700 629 +#> [299,] 93 110 45 598 102 252 460 913 778 75 +#> [300,] 338 696 244 119 412 283 568 212 453 483 +#> [301,] 760 250 824 847 218 871 249 178 470 513 +#> [302,] 804 291 392 832 340 463 900 865 863 961 +#> [303,] 799 117 766 986 490 505 452 891 236 905 +#> [304,] 85 497 153 632 531 738 539 619 319 119 +#> [305,] 433 142 884 467 173 711 514 469 525 195 +#> [306,] 463 619 810 832 150 718 208 497 368 331 +#> [307,] 991 956 863 577 865 980 151 382 883 556 +#> [308,] 332 416 385 469 944 817 433 995 142 906 +#> [309,] 71 822 407 917 959 655 100 125 18 36 +#> [310,] 57 419 437 742 930 246 899 705 653 44 +#> [311,] 798 418 985 325 282 207 10 159 910 743 +#> [312,] 713 190 435 842 984 287 564 553 328 737 +#> [313,] 839 801 730 90 398 971 418 492 961 998 +#> [314,] 832 98 150 895 423 146 930 612 128 810 +#> [315,] 434 482 539 74 772 952 271 679 362 807 +#> [316,] 635 421 209 438 586 860 630 76 92 922 +#> [317,] 27 487 621 662 388 393 554 620 716 780 +#> [318,] 52 907 143 37 562 137 201 182 474 627 +#> [319,] 91 531 738 132 304 283 925 85 119 497 +#> [320,] 866 693 559 529 38 348 130 972 254 684 +#> [321,] 456 598 159 743 416 408 110 93 325 299 +#> [322,] 326 488 472 923 712 679 545 271 881 553 +#> [323,] 926 519 111 777 673 667 946 886 953 958 +#> [324,] 665 720 432 528 776 548 386 649 147 451 +#> [325,] 743 418 798 599 782 646 456 311 177 321 +#> [326,] 488 881 322 197 377 553 712 960 289 453 +#> [327,] 708 261 361 41 925 474 238 907 345 37 +#> [328,] 190 722 47 533 206 435 312 290 842 95 +#> [329,] 880 710 750 163 69 330 294 53 707 767 +#> [330,] 784 474 137 797 53 143 7 907 294 69 +#> [331,] 255 619 718 208 931 463 497 306 434 355 +#> [332,] 525 308 469 433 305 906 884 142 173 8 +#> [333,] 526 828 199 342 131 618 281 356 908 510 +#> [334,] 735 294 373 408 65 629 516 663 731 574 +#> [335,] 210 502 138 440 706 979 203 684 67 783 +#> [336,] 593 950 126 396 695 114 687 40 444 669 +#> [337,] 509 911 565 980 920 452 579 683 769 878 +#> [338,] 300 696 74 453 119 244 202 224 568 679 +#> [339,] 298 464 814 196 970 710 112 754 617 369 +#> [340,] 420 961 612 635 804 78 76 392 291 302 +#> [341,] 642 205 651 390 162 843 667 186 174 111 +#> [342,] 828 356 618 526 397 994 186 131 698 845 +#> [343,] 655 357 36 829 427 542 521 221 741 209 +#> [344,] 921 266 459 455 514 702 43 30 552 62 +#> [345,] 85 535 373 361 180 674 808 574 849 663 +#> [346,] 141 221 26 785 404 183 188 868 270 678 +#> [347,] 869 217 956 372 285 883 21 958 865 536 +#> [348,] 254 529 866 857 320 559 792 693 605 854 +#> [349,] 515 232 173 278 142 591 195 386 583 616 +#> [350,] 465 86 835 263 976 402 33 46 732 482 +#> [351,] 130 854 652 578 972 206 94 145 644 75 +#> [352,] 220 765 728 234 915 25 823 185 692 508 +#> [353,] 809 28 493 484 885 919 156 504 699 49 +#> [354,] 640 837 543 120 189 113 118 132 177 836 +#> [355,] 931 673 923 744 21 331 155 488 389 536 +#> [356,] 618 342 281 994 828 131 764 235 397 756 +#> [357,] 427 343 655 521 221 36 829 567 860 785 +#> [358,] 975 9 394 48 625 374 594 848 526 692 +#> [359,] 414 426 816 910 95 927 937 415 640 599 +#> [360,] 791 974 390 845 627 135 850 263 224 201 +#> [361,] 849 871 470 41 847 717 250 808 345 555 +#> [362,] 74 952 315 202 679 791 390 271 772 953 +#> [363,] 282 23 730 370 100 311 381 418 839 798 +#> [364,] 983 812 125 830 227 548 705 742 404 29 +#> [365,] 104 55 500 755 51 745 783 377 121 579 +#> [366,] 105 966 873 740 681 887 943 632 239 964 +#> [367,] 977 721 377 355 55 545 19 448 286 488 +#> [368,] 102 704 122 203 440 810 110 67 54 10 +#> [369,] 624 245 795 951 136 686 464 541 723 87 +#> [370,] 381 998 282 730 940 170 363 207 985 311 +#> [371,] 685 938 588 886 193 446 908 411 901 111 +#> [372,] 956 217 869 779 844 347 818 761 888 526 +#> [373,] 663 574 626 808 516 334 470 345 127 849 +#> [374,] 116 383 518 248 779 698 601 48 625 5 +#> [375,] 178 890 15 978 250 301 249 617 41 871 +#> [376,] 406 123 844 582 14 277 657 647 724 993 +#> [377,] 51 745 488 121 494 365 55 326 644 367 +#> [378,] 657 922 406 862 461 863 775 92 577 677 +#> [379,] 864 862 577 657 863 378 945 922 683 307 +#> [380,] 466 486 588 770 590 926 777 938 472 17 +#> [381,] 370 282 207 985 170 998 23 363 592 311 +#> [382,] 260 151 273 883 991 980 933 714 733 481 +#> [383,] 116 374 760 824 301 504 601 49 156 625 +#> [384,] 546 149 787 64 487 532 194 293 279 534 +#> [385,] 817 81 62 502 258 416 335 459 962 469 +#> [386,] 776 902 349 387 892 515 232 522 591 793 +#> [387,] 919 902 892 776 386 942 653 504 973 633 +#> [388,] 317 901 393 716 243 293 17 27 198 570 +#> [389,] 792 155 751 605 254 355 529 590 323 558 +#> [390,] 843 205 341 642 201 202 135 224 651 568 +#> [391,] 454 258 870 82 308 152 859 656 23 934 +#> [392,] 960 302 561 340 804 745 231 463 420 121 +#> [393,] 716 901 388 317 820 621 916 27 680 411 +#> [394,] 845 848 526 828 48 59 975 358 342 33 +#> [395,] 594 358 975 9 48 625 896 566 888 394 +#> [396,] 425 811 659 336 126 833 469 114 525 962 +#> [397,] 131 764 708 342 356 994 828 974 618 850 +#> [398,] 861 313 768 798 801 212 992 418 839 550 +#> [399,] 614 139 616 196 583 596 464 584 988 711 +#> [400,] 193 230 685 446 287 974 39 371 737 154 +#> [401,] 109 235 167 779 281 20 618 77 4 372 +#> [402,] 261 465 46 350 192 191 848 161 850 263 +#> [403,] 92 922 775 461 169 378 560 316 209 657 +#> [404,] 830 786 983 274 576 221 265 346 26 141 +#> [405,] 501 288 585 726 893 15 249 949 259 967 +#> [406,] 862 378 657 863 577 376 582 804 677 291 +#> [407,] 917 100 309 822 661 71 851 125 959 815 +#> [408,] 294 334 321 598 456 45 416 93 797 629 +#> [409,] 913 45 89 680 264 562 762 93 174 75 +#> [410,] 552 981 921 97 999 678 344 733 914 6 +#> [411,] 820 99 446 685 756 131 886 908 489 680 +#> [412,] 696 283 132 300 244 91 768 861 483 212 +#> [413,] 476 859 786 216 906 785 23 454 995 788 +#> [414,] 359 937 816 910 426 827 640 415 768 897 +#> [415,] 426 842 359 984 95 56 414 827 289 328 +#> [416,] 456 743 321 159 408 385 995 308 10 110 +#> [417,] 87 161 617 690 485 261 723 978 327 686 +#> [418,] 798 311 325 935 782 480 10 313 730 985 +#> [419,] 310 57 437 899 44 653 522 742 610 705 +#> [420,] 340 612 78 961 635 860 895 76 517 804 +#> [421,] 316 864 80 209 403 438 92 586 630 719 +#> [422,] 527 14 376 724 277 511 945 123 647 523 +#> [423,] 150 219 961 801 314 932 517 895 832 297 +#> [424,] 211 251 429 714 260 481 560 1000 868 963 +#> [425,] 396 573 270 833 962 660 502 659 469 495 +#> [426,] 927 359 589 95 599 189 415 910 120 177 +#> [427,] 882 357 521 655 567 785 36 221 860 343 +#> [428,] 108 439 13 749 934 703 596 597 898 241 +#> [429,] 630 209 251 211 829 560 868 424 80 860 +#> [430,] 790 682 575 549 530 536 794 240 185 158 +#> [431,] 803 584 700 988 645 196 855 596 781 541 +#> [432,] 951 324 147 139 665 614 776 528 451 720 +#> [433,] 305 884 469 525 467 8 514 332 142 173 +#> [434,] 271 718 453 315 807 679 539 331 727 900 +#> [435,] 312 145 553 190 713 206 652 197 483 965 +#> [436,] 711 569 63 821 266 499 641 803 852 3 +#> [437,] 57 419 932 705 310 742 44 899 522 895 +#> [438,] 997 125 316 160 831 407 815 661 917 971 +#> [439,] 108 428 136 541 241 596 431 988 645 754 +#> [440,] 203 138 54 335 368 67 783 704 102 122 +#> [441,] 133 69 916 53 970 458 750 7 512 176 +#> [442,] 1 53 512 47 441 707 133 230 69 784 +#> [443,] 158 21 846 50 148 536 794 240 558 155 +#> [444,] 130 462 854 870 559 94 152 752 578 351 +#> [445,] 955 113 729 118 157 544 354 709 96 214 +#> [446,] 685 411 131 886 154 974 174 562 667 111 +#> [447,] 585 759 405 484 501 288 625 15 2 941 +#> [448,] 242 721 55 367 365 51 693 377 977 181 +#> [449,] 674 524 180 146 610 761 535 520 987 268 +#> [450,] 563 903 282 370 363 381 82 730 359 23 +#> [451,] 65 73 663 649 278 513 470 464 41 665 +#> [452,] 490 337 1000 117 683 920 905 565 80 509 +#> [453,] 718 434 271 807 881 679 283 727 619 331 +#> [454,] 859 391 413 23 82 216 934 258 476 363 +#> [455,] 793 921 266 515 195 97 232 344 173 127 +#> [456,] 321 743 159 598 416 408 110 10 325 299 +#> [457,] 24 802 86 267 877 496 831 124 876 681 +#> [458,] 916 750 198 570 707 725 176 129 947 767 +#> [459,] 62 778 72 30 344 67 102 335 203 43 +#> [460,] 299 810 127 93 146 110 98 102 626 122 +#> [461,] 775 922 378 92 403 267 239 639 169 657 +#> [462,] 444 152 94 870 130 752 854 559 336 593 +#> [463,] 306 619 718 331 208 832 255 368 704 122 +#> [464,] 298 65 451 245 541 339 629 686 951 614 +#> [465,] 350 402 976 86 46 192 523 848 835 263 +#> [466,] 380 588 770 590 486 17 938 777 928 926 +#> [467,] 514 821 433 884 305 6 12 711 641 436 +#> [468,] 520 144 20 77 634 97 954 892 610 942 +#> [469,] 525 884 433 332 8 305 817 514 173 678 +#> [470,] 849 513 41 361 871 847 250 663 717 373 +#> [471,] 825 569 852 688 641 554 758 61 800 275 +#> [472,] 322 923 486 712 488 66 31 222 326 197 +#> [473,] 202 390 843 338 201 498 713 679 205 193 +#> [474,] 330 797 907 137 925 784 143 318 327 294 +#> [475,] 876 802 496 550 107 160 637 831 875 992 +#> [476,] 906 216 995 11 413 786 479 646 830 859 +#> [477,] 878 509 579 769 581 813 980 911 676 556 +#> [478,] 702 126 918 962 551 495 114 149 660 233 +#> [479,] 517 480 782 786 297 935 274 643 237 476 +#> [480,] 935 297 782 517 479 810 219 423 801 961 +#> [481,] 273 933 260 714 963 246 382 211 774 83 +#> [482,] 539 315 263 224 119 772 153 434 664 186 +#> [483,] 283 965 696 91 497 201 553 568 453 252 +#> [484,] 587 28 941 49 353 809 156 692 109 493 +#> [485,] 890 649 41 795 723 717 978 871 555 951 +#> [486,] 380 472 466 187 926 923 777 939 588 323 +#> [487,] 27 317 621 534 64 620 149 233 61 546 +#> [488,] 326 931 197 377 923 355 322 553 881 222 +#> [489,] 99 604 820 622 800 411 746 756 171 226 +#> [490,] 452 117 337 799 741 909 838 303 1000 654 +#> [491,] 31 66 712 94 854 289 351 472 984 326 +#> [492,] 90 615 801 839 517 125 935 219 782 961 +#> [493,] 580 809 353 28 699 904 256 658 506 885 +#> [494,] 51 377 693 712 644 204 745 121 130 31 +#> [495,] 660 706 979 210 659 233 702 962 502 534 +#> [496,] 993 86 14 376 637 457 802 267 582 976 +#> [497,] 304 619 255 85 718 531 208 162 982 91 +#> [498,] 473 835 360 74 338 627 257 263 224 568 +#> [499,] 63 731 584 947 129 436 803 767 648 22 +#> [500,] 247 558 676 155 215 879 748 579 365 79 +#> [501,] 405 288 726 949 604 613 585 622 941 489 +#> [502,] 335 270 706 210 817 962 979 72 495 684 +#> [503,] 18 959 542 71 537 309 822 749 343 859 +#> [504,] 919 653 942 387 383 824 156 760 892 963 +#> [505,] 948 766 905 715 608 83 806 672 999 787 +#> [506,] 658 256 633 973 776 904 902 580 147 699 +#> [507,] 773 225 8 6 591 213 552 262 699 973 +#> [508,] 820 621 32 662 234 800 4 746 691 166 +#> [509,] 579 769 337 477 911 609 878 721 676 980 +#> [510,] 549 199 819 217 526 647 952 277 372 333 +#> [511,] 945 123 422 657 637 376 527 379 577 378 +#> [512,] 154 53 562 707 143 570 916 7 907 318 +#> [513,] 470 849 871 847 649 717 250 73 555 41 +#> [514,] 467 821 884 344 12 702 433 305 921 6 +#> [515,] 232 349 173 195 455 583 278 616 591 142 +#> [516,] 127 600 574 663 373 626 73 793 195 334 +#> [517,] 297 479 480 78 935 895 961 423 782 492 +#> [518,] 248 601 774 374 239 698 779 295 5 818 +#> [519,] 946 323 886 111 938 908 667 926 240 777 +#> [520,] 468 144 20 954 524 275 77 97 449 167 +#> [521,] 860 567 427 882 635 357 655 115 78 630 +#> [522,] 44 892 899 705 576 73 419 437 793 513 +#> [523,] 724 59 14 976 993 848 465 33 350 845 +#> [524,] 674 43 449 520 626 127 89 268 954 460 +#> [525,] 8 469 884 433 332 305 833 173 678 467 +#> [526,] 828 342 333 394 845 186 217 618 510 779 +#> [527,] 422 14 724 523 511 896 277 376 123 945 +#> [528,] 665 720 649 555 324 951 795 890 485 943 +#> [529,] 866 254 348 792 320 389 605 38 694 620 +#> [530,] 790 682 430 234 240 575 736 794 185 220 +#> [531,] 37 319 85 497 925 304 91 907 850 982 +#> [532,] 534 215 233 64 879 846 495 148 748 706 +#> [533,] 47 198 753 190 290 206 611 707 328 652 +#> [534,] 233 532 215 64 846 487 558 495 879 247 +#> [535,] 987 841 826 606 280 674 994 345 574 449 +#> [536,] 21 158 556 240 958 443 744 285 794 673 +#> [537,] 542 60 184 898 757 989 503 26 343 506 +#> [538,] 939 734 242 813 920 448 581 477 530 721 +#> [539,] 482 186 772 224 304 315 263 119 434 497 +#> [540,] 874 179 978 15 2 375 223 951 585 890 +#> [541,] 245 596 88 464 629 431 136 196 298 399 +#> [542,] 184 343 537 357 36 785 60 655 26 427 +#> [543,] 354 723 858 837 120 690 177 925 646 670 +#> [544,] 709 113 732 191 96 118 244 132 602 354 +#> [545,] 19 286 977 42 367 807 960 322 727 271 +#> [546,] 149 384 233 487 534 114 478 293 659 532 +#> [547,] 671 613 595 133 259 441 176 701 726 284 +#> [548,] 720 665 324 528 675 943 639 877 705 364 +#> [549,] 510 819 575 430 790 199 217 888 372 253 +#> [550,] 875 900 291 398 727 313 212 801 912 971 +#> [551,] 668 58 694 918 478 126 75 753 780 944 +#> [552,] 410 981 921 678 344 97 591 6 455 914 +#> [553,] 197 222 145 435 605 923 483 488 751 931 +#> [554,] 825 12 471 641 293 852 780 27 61 569 +#> [555,] 943 871 649 717 849 824 890 513 847 740 +#> [556,] 883 865 536 158 285 21 794 443 991 347 +#> [557,] 782 788 106 646 935 325 839 227 675 90 +#> [558,] 155 247 500 846 215 443 534 148 67 50 +#> [559,] 130 320 854 693 857 444 348 866 94 38 +#> [560,] 429 211 251 630 209 775 868 246 742 963 +#> [561,] 42 392 769 231 977 863 804 302 340 911 +#> [562,] 143 154 907 762 37 982 512 318 913 409 +#> [563,] 450 903 370 282 381 363 82 730 940 661 +#> [564,] 842 52 96 965 137 312 56 713 118 602 +#> [565,] 889 683 920 337 980 509 477 911 769 878 +#> [566,] 192 395 848 523 759 358 625 976 465 394 +#> [567,] 521 882 427 860 357 654 170 635 115 36 +#> [568,] 201 135 182 224 119 850 696 627 531 263 +#> [569,] 436 641 471 852 3 688 213 711 63 262 +#> [570,] 916 458 198 707 512 154 750 680 393 990 +#> [571,] 253 35 872 307 889 945 577 511 379 575 +#> [572,] 83 608 587 484 103 818 49 594 933 28 +#> [573,] 962 660 684 979 752 425 502 210 763 578 +#> [574,] 373 663 626 516 127 731 535 470 674 334 +#> [575,] 549 430 790 771 253 819 530 229 888 991 +#> [576,] 274 793 600 522 30 73 705 265 44 404 +#> [577,] 862 863 406 657 378 804 302 865 307 677 +#> [578,] 684 81 644 972 962 258 870 783 440 335 +#> [579,] 769 509 676 911 477 500 104 79 878 721 +#> [580,] 493 904 809 506 256 658 353 699 633 973 +#> [581,] 878 813 924 477 920 748 980 509 879 79 +#> [582,] 912 153 632 406 105 900 376 875 664 366 +#> [583,] 616 139 515 711 349 3 225 213 278 591 +#> [584,] 803 499 700 431 767 298 196 629 63 731 +#> [585,] 15 405 893 249 967 179 375 501 540 178 +#> [586,] 635 719 940 340 316 291 231 860 313 804 +#> [587,] 484 941 49 28 728 83 692 109 156 401 +#> [588,] 938 466 371 519 590 631 380 777 908 685 +#> [589,] 177 599 120 927 189 200 856 640 354 910 +#> [590,] 17 389 792 519 928 605 620 254 323 111 +#> [591,] 515 349 173 552 921 914 973 455 232 225 +#> [592,] 763 755 207 170 783 115 138 183 54 81 +#> [593,] 336 950 126 687 40 669 695 944 444 396 +#> [594,] 48 625 818 374 888 518 248 358 116 59 +#> [595,] 411 164 901 284 716 259 371 685 393 489 +#> [596,] 541 616 142 988 88 245 139 399 431 583 +#> [597,] 703 989 853 147 749 88 13 172 29 18 +#> [598,] 93 252 299 321 45 456 110 408 913 294 +#> [599,] 177 927 589 120 910 325 640 189 354 856 +#> [600,] 516 576 73 793 127 232 195 274 643 30 +#> [601,] 774 248 518 374 818 779 116 383 49 761 +#> [602,] 257 182 191 627 52 318 474 137 261 132 +#> [603,] 988 855 929 645 711 803 436 569 821 431 +#> [604,] 489 823 800 622 820 99 726 613 728 746 +#> [605,] 751 792 145 197 652 389 694 553 58 254 +#> [606,] 987 826 535 634 841 218 280 144 574 674 +#> [607,] 214 124 729 24 457 978 46 795 417 87 +#> [608,] 83 587 28 505 484 948 481 572 103 766 +#> [609,] 181 509 55 579 721 769 204 337 654 104 +#> [610,] 761 20 77 449 899 468 180 419 520 167 +#> [611,] 40 533 666 687 198 857 328 990 47 140 +#> [612,] 420 78 895 340 961 296 54 297 314 517 +#> [613,] 701 726 823 604 489 671 968 501 622 547 +#> [614,] 399 139 885 432 464 196 616 583 596 541 +#> [615,] 90 492 801 219 675 935 839 782 517 423 +#> [616,] 583 139 711 515 349 399 278 142 596 436 +#> [617,] 87 417 978 178 112 375 485 890 161 969 +#> [618,] 356 342 281 828 235 994 779 292 698 691 +#> [619,] 463 306 718 331 255 208 497 304 832 810 +#> [620,] 928 487 279 32 317 662 621 389 590 529 +#> [621,] 27 317 32 487 946 508 662 4 268 393 +#> [622,] 99 489 604 820 164 949 411 823 259 764 +#> [623,] 25 787 279 32 64 672 662 166 185 384 +#> [624,] 369 795 686 723 245 951 87 670 690 464 +#> [625,] 116 374 383 594 358 48 49 518 601 248 +#> [626,] 574 127 373 674 516 663 731 524 93 460 +#> [627,] 257 974 135 182 201 850 318 568 602 261 +#> [628,] 781 243 176 725 855 70 22 458 803 671 +#> [629,] 700 334 65 278 245 584 767 464 451 541 +#> [630,] 429 209 860 829 251 211 812 560 868 221 +#> [631,] 928 662 17 279 621 620 901 590 588 508 +#> [632,] 153 912 664 738 304 105 873 582 366 85 +#> [633,] 973 658 902 506 699 776 386 387 591 225 +#> [634,] 606 987 892 144 468 218 520 20 513 574 +#> [635,] 860 340 420 586 76 521 961 78 804 316 +#> [636,] 16 545 31 326 286 712 494 322 377 960 +#> [637,] 378 657 123 922 876 496 461 267 376 92 +#> [638,] 276 84 701 968 243 388 293 669 628 70 +#> [639,] 267 742 239 169 831 437 966 775 932 105 +#> [640,] 910 354 816 599 177 325 120 861 798 589 +#> [641,] 569 12 6 821 471 554 825 436 467 514 +#> [642,] 341 953 390 651 162 186 205 843 667 952 +#> [643,] 73 237 858 932 600 646 808 479 274 576 +#> [644,] 783 972 745 578 440 81 755 684 54 335 +#> [645,] 988 855 431 305 603 433 803 467 711 142 +#> [646,] 237 858 782 643 743 935 325 479 557 480 +#> [647,] 277 844 217 772 724 510 48 59 376 526 +#> [648,] 63 22 852 499 671 569 436 800 731 176 +#> [649,] 717 485 555 513 41 665 890 849 528 943 +#> [650,] 241 695 134 773 855 811 950 645 603 108 +#> [651,] 174 205 982 162 762 667 341 111 642 264 +#> [652,] 145 75 668 206 694 605 351 58 751 753 +#> [653,] 942 504 419 44 919 899 892 246 522 387 +#> [654,] 567 175 104 231 609 755 80 121 181 719 +#> [655,] 343 36 427 357 521 309 882 860 567 829 +#> [656,] 258 927 856 870 599 985 311 200 589 416 +#> [657,] 378 406 862 922 577 123 863 376 461 637 +#> [658,] 506 633 776 256 973 902 387 147 386 904 +#> [659,] 495 660 114 236 702 478 233 962 811 546 +#> [660,] 495 979 962 659 114 706 210 684 573 233 +#> [661,] 407 917 100 971 851 719 438 815 309 839 +#> [662,] 279 32 166 317 508 621 631 928 487 620 +#> [663,] 373 574 470 516 808 73 626 849 127 513 +#> [664,] 153 992 632 912 738 900 304 119 482 319 +#> [665,] 324 528 649 720 513 548 555 451 73 943 +#> [666,] 40 857 687 611 348 866 669 529 559 38 +#> [667,] 174 111 886 651 162 264 958 519 268 341 +#> [668,] 694 58 551 75 652 753 918 409 751 605 +#> [669,] 243 293 950 687 388 40 593 198 551 126 +#> [670,] 624 543 177 723 369 272 245 172 200 589 +#> [671,] 22 176 648 781 726 63 613 499 489 133 +#> [672,] 789 806 185 924 229 840 787 715 64 273 +#> [673,] 953 926 744 355 21 536 931 323 285 923 +#> [674,] 449 524 626 841 535 268 987 574 826 171 +#> [675,] 615 227 887 858 90 557 219 548 492 643 +#> [676,] 500 579 79 769 247 911 188 104 558 67 +#> [677,] 930 151 804 863 76 340 314 406 57 883 +#> [678,] 552 981 270 410 72 921 884 344 469 706 +#> [679,] 202 271 434 453 315 718 923 931 331 807 +#> [680,] 264 756 226 171 409 268 174 89 913 746 +#> [681,] 740 966 366 5 873 943 239 555 295 105 +#> [682,] 240 790 744 430 530 794 536 946 158 673 +#> [683,] 565 980 337 714 251 911 889 260 1000 509 +#> [684,] 962 979 335 578 210 502 972 660 783 706 +#> [685,] 446 371 886 908 938 411 193 111 131 667 +#> [686,] 65 690 723 624 87 464 334 485 735 294 +#> [687,] 40 666 593 669 611 336 950 198 857 243 +#> [688,] 471 3 144 569 262 852 97 825 758 213 +#> [689,] 784 970 69 330 161 1 53 87 417 690 +#> [690,] 686 723 87 417 485 474 65 543 925 161 +#> [691,] 281 4 268 958 167 235 946 667 746 356 +#> [692,] 941 401 109 49 587 358 949 728 9 622 +#> [693,] 51 320 559 130 494 348 866 66 972 365 +#> [694,] 58 668 551 75 918 652 751 605 792 972 +#> [695,] 950 811 336 593 891 669 293 126 12 396 +#> [696,] 283 300 412 483 132 965 91 568 119 338 +#> [697,] 909 654 741 719 80 567 838 175 36 357 +#> [698,] 295 779 964 761 5 994 342 374 869 248 +#> [699,] 973 633 902 387 658 919 914 225 591 506 +#> [700,] 803 767 629 584 431 499 710 947 334 731 +#> [701,] 613 968 823 726 276 604 915 671 716 489 +#> [702,] 478 495 344 514 962 126 659 660 918 233 +#> [703,] 597 989 88 13 216 749 172 147 29 272 +#> [704,] 368 122 102 203 67 440 208 778 972 110 +#> [705,] 437 932 742 522 44 274 576 983 57 419 +#> [706,] 210 979 495 502 335 72 660 233 459 270 +#> [707,] 750 290 512 753 570 458 47 53 198 916 +#> [708,] 764 994 327 397 280 756 535 238 292 841 +#> [709,] 113 544 132 732 191 354 118 96 602 244 +#> [710,] 298 329 700 584 69 767 970 629 431 163 +#> [711,] 436 616 583 213 305 988 467 515 569 821 +#> [712,] 31 66 51 494 488 326 377 322 693 472 +#> [713,] 312 190 287 435 737 564 984 842 473 56 +#> [714,] 251 211 260 481 933 382 424 151 980 677 +#> [715,] 787 924 806 236 672 194 532 840 581 623 +#> [716,] 393 901 820 968 388 317 621 508 411 662 +#> [717,] 849 649 808 361 470 41 943 555 513 871 +#> [718,] 619 331 453 434 463 497 255 306 208 304 +#> [719,] 586 940 231 567 661 170 635 521 654 730 +#> [720,] 528 665 324 548 555 432 649 824 943 951 +#> [721,] 55 367 977 448 579 365 509 609 181 769 +#> [722,] 47 290 328 996 206 880 753 957 707 533 +#> [723,] 690 795 485 686 543 87 624 649 858 717 +#> [724,] 14 59 523 647 993 48 277 376 33 976 +#> [725,] 947 821 12 803 458 767 22 129 780 781 +#> [726,] 613 501 671 604 288 489 648 405 259 701 +#> [727,] 807 900 271 19 434 212 453 960 302 550 +#> [728,] 758 166 401 789 800 941 587 604 352 692 +#> [729,] 214 157 607 68 936 723 445 106 795 670 +#> [730,] 313 998 940 370 170 839 363 418 282 115 +#> [731,] 499 574 626 63 334 129 373 735 841 663 +#> [732,] 835 992 244 709 119 132 300 191 182 696 +#> [733,] 999 981 273 954 914 265 410 188 552 128 +#> [734,] 739 538 939 242 101 623 25 928 448 813 +#> [735,] 7 334 294 797 65 731 373 129 226 238 +#> [736,] 530 199 682 220 790 549 938 430 234 510 +#> [737,] 287 193 713 777 312 190 473 140 843 371 +#> [738,] 632 319 887 153 858 304 85 219 873 912 +#> [739,] 928 620 279 631 17 101 590 466 623 734 +#> [740,] 681 966 366 943 239 555 295 873 847 105 +#> [741,] 909 838 357 36 343 567 80 697 427 829 +#> [742,] 437 705 57 310 639 419 932 653 44 246 +#> [743,] 456 159 321 10 416 325 646 237 782 480 +#> [744,] 794 240 536 158 673 682 355 50 21 443 +#> [745,] 121 783 644 377 104 54 755 365 440 392 +#> [746,] 171 268 235 826 281 820 841 4 756 674 +#> [747,] 175 204 752 755 654 181 55 121 104 763 +#> [748,] 879 215 500 532 50 534 558 878 924 233 +#> [749,] 703 597 934 989 428 853 18 13 216 88 +#> [750,] 707 458 767 329 129 753 198 916 947 290 +#> [751,] 605 792 145 389 197 694 58 75 652 208 +#> [752,] 573 152 130 755 444 747 644 494 693 559 +#> [753,] 290 206 707 668 75 913 409 47 652 58 +#> [754,] 136 369 339 298 163 541 710 624 245 196 +#> [755,] 121 104 592 783 644 745 365 763 175 573 +#> [756,] 226 680 764 264 841 171 746 268 826 708 +#> [757,] 228 537 60 868 829 343 506 542 633 560 +#> [758,] 840 275 61 825 471 688 728 806 166 800 +#> [759,] 168 447 566 625 874 585 540 2 116 15 +#> [760,] 301 824 847 250 218 871 513 383 470 555 +#> [761,] 610 180 964 295 869 899 449 698 146 779 +#> [762,] 982 651 37 174 562 264 162 205 913 409 +#> [763,] 592 183 270 755 81 502 138 573 882 207 +#> [764,] 708 397 131 756 994 356 280 99 292 618 +#> [765,] 823 220 915 352 622 604 508 820 949 234 +#> [766,] 505 507 999 117 699 715 424 236 410 981 +#> [767,] 947 700 129 803 499 584 750 334 725 629 +#> [768,] 398 861 244 212 937 412 816 992 107 798 +#> [769,] 579 911 509 676 477 104 500 561 980 79 +#> [770,] 466 17 380 140 101 590 588 990 371 901 +#> [771,] 575 888 229 819 818 933 549 991 253 430 +#> [772,] 186 539 952 217 277 482 315 647 434 642 +#> [773,] 225 507 213 262 929 6 603 8 904 988 +#> [774,] 601 248 518 310 818 761 419 610 653 779 +#> [775,] 461 92 922 403 169 639 378 560 267 310 +#> [776,] 386 902 658 633 387 324 147 973 349 432 +#> [777,] 111 323 843 926 222 938 519 193 205 886 +#> [778,] 459 62 102 110 122 299 918 704 43 67 +#> [779,] 698 618 761 372 109 828 295 374 869 248 +#> [780,] 27 89 947 918 129 554 171 852 725 12 +#> [781,] 22 803 584 628 725 431 176 499 671 855 +#> [782,] 935 480 479 646 557 517 297 237 90 418 +#> [783,] 644 440 335 138 54 745 203 972 67 755 +#> [784,] 330 474 53 137 689 69 797 7 836 161 +#> [785,] 141 26 346 221 786 427 830 833 413 404 +#> [786,] 404 830 479 995 476 413 906 785 517 141 +#> [787,] 194 715 384 806 64 623 166 840 758 672 +#> [788,] 557 227 782 100 476 216 413 917 839 479 +#> [789,] 672 185 806 840 229 273 924 167 758 275 +#> [790,] 430 530 682 575 549 240 536 234 794 185 +#> [791,] 360 843 199 390 952 341 642 953 333 362 +#> [792,] 389 605 751 254 529 155 694 145 197 58 +#> [793,] 455 576 600 127 516 232 515 30 522 265 +#> [794,] 158 50 744 240 443 536 556 682 430 21 +#> [795,] 723 485 951 649 624 528 369 890 665 87 +#> [796,] 936 853 877 18 548 364 720 29 227 831 +#> [797,] 294 143 907 474 925 330 7 735 562 137 +#> [798,] 418 311 325 861 910 398 313 640 782 730 +#> [799,] 986 117 833 838 303 134 490 184 425 898 +#> [800,] 852 746 171 604 820 61 508 471 758 489 +#> [801,] 219 90 615 961 492 313 935 423 480 839 +#> [802,] 831 160 457 876 267 675 24 877 496 615 +#> [803,] 584 700 431 767 499 436 781 725 821 988 +#> [804,] 291 677 863 76 340 302 862 875 930 961 +#> [805,] 894 791 187 360 199 362 736 843 473 498 +#> [806,] 840 672 789 999 275 758 787 64 924 532 +#> [807,] 727 271 19 434 453 900 315 212 960 679 +#> [808,] 717 373 663 849 925 470 361 73 858 574 +#> [809,] 353 493 28 919 580 699 885 658 484 387 +#> [810,] 297 368 102 460 306 122 480 98 150 299 +#> [811,] 891 659 695 396 236 986 114 425 134 660 +#> [812,] 983 125 76 860 364 492 895 517 830 705 +#> [813,] 581 878 477 924 920 50 748 794 879 509 +#> [814,] 339 196 298 112 970 893 671 464 710 614 +#> [815,] 851 106 839 971 90 160 100 615 917 492 +#> [816,] 910 640 937 861 414 359 68 412 354 798 +#> [817,] 385 502 81 62 335 469 270 962 459 684 +#> [818,] 888 601 248 774 518 933 372 779 594 956 +#> [819,] 888 549 510 575 199 771 647 372 526 217 +#> [820,] 508 746 411 99 489 171 716 800 268 393 +#> [821,] 467 12 514 641 436 725 711 803 305 569 +#> [822,] 71 959 309 100 407 917 18 788 851 661 +#> [823,] 604 915 765 613 701 968 622 949 489 800 +#> [824,] 760 301 250 555 871 847 513 218 383 890 +#> [825,] 471 554 641 61 852 569 758 688 194 800 +#> [826,] 280 841 987 535 606 292 746 674 994 171 +#> [827,] 897 56 984 412 414 300 244 338 96 564 +#> [828,] 342 526 618 356 333 779 394 186 698 845 +#> [829,] 209 429 630 357 343 868 221 655 560 251 +#> [830,] 983 404 786 221 26 479 785 812 141 364 +#> [831,] 802 160 877 639 267 615 675 125 169 876 +#> [832,] 314 150 98 306 423 463 619 810 612 961 +#> [833,] 184 270 141 785 525 8 26 678 425 469 +#> [834,] 603 929 399 904 262 988 196 614 22 569 +#> [835,] 263 732 119 224 350 482 568 182 992 135 +#> [836,] 837 137 189 120 996 330 118 354 784 474 +#> [837,] 836 189 354 120 137 543 118 113 474 330 +#> [838,] 909 741 542 799 36 357 697 343 490 184 +#> [839,] 90 492 313 815 615 851 971 801 730 935 +#> [840,] 806 758 275 999 97 789 520 61 954 410 +#> [841,] 826 535 987 606 280 674 171 756 746 626 +#> [842,] 564 56 312 95 984 415 713 190 96 328 +#> [843,] 390 777 205 341 202 642 926 111 953 323 +#> [844,] 647 956 217 372 277 376 406 248 123 48 +#> [845,] 394 848 33 342 526 828 397 976 59 186 +#> [846,] 148 443 43 247 558 534 128 64 155 532 +#> [847,] 871 250 760 361 470 849 301 513 41 824 +#> [848,] 845 394 976 59 33 192 523 402 465 46 +#> [849,] 361 470 717 41 871 513 847 808 250 649 +#> [850,] 135 224 182 568 37 531 263 627 974 201 +#> [851,] 815 971 106 839 100 917 407 90 68 313 +#> [852,] 63 471 569 648 554 171 266 800 436 825 +#> [853,] 18 597 936 703 989 29 172 796 272 227 +#> [854,] 94 130 351 559 444 348 857 66 40 320 +#> [855,] 645 603 988 431 803 781 821 467 628 711 +#> [856,] 927 177 589 599 656 200 910 426 120 934 +#> [857,] 666 348 40 559 866 529 254 38 320 854 +#> [858,] 237 646 643 738 808 717 887 543 925 675 +#> [859,] 216 413 454 476 934 788 906 23 786 227 +#> [860,] 521 635 420 78 630 812 567 340 76 427 +#> [861,] 398 798 768 68 816 640 910 412 418 313 +#> [862,] 577 863 406 804 657 378 291 875 922 677 +#> [863,] 862 577 677 804 406 378 657 302 151 865 +#> [864,] 379 421 316 403 92 922 862 657 378 863 +#> [865,] 285 556 883 347 302 956 151 536 863 21 +#> [866,] 529 320 348 254 38 857 694 792 693 559 +#> [867,] 192 498 402 360 257 627 165 465 261 835 +#> [868,] 221 983 346 630 26 829 429 211 560 404 +#> [869,] 347 761 217 372 180 964 295 779 186 698 +#> [870,] 258 578 385 81 444 817 944 656 962 308 +#> [871,] 250 847 41 361 849 555 470 890 513 760 +#> [872,] 307 771 571 253 103 511 575 123 933 991 +#> [873,] 366 632 681 105 887 85 738 361 740 943 +#> [874,] 540 2 179 168 223 720 978 528 15 951 +#> [875,] 291 76 550 804 912 801 582 862 900 406 +#> [876,] 802 475 637 831 160 496 457 997 877 267 +#> [877,] 831 169 548 639 267 802 24 457 160 796 +#> [878,] 581 477 813 924 79 579 748 509 980 920 +#> [879,] 748 215 532 500 534 233 558 50 79 924 +#> [880,] 163 329 957 200 750 722 710 290 996 408 +#> [881,] 960 326 453 463 998 488 718 306 807 727 +#> [882,] 427 567 521 115 170 592 183 23 860 763 +#> [883,] 151 556 382 865 347 991 148 956 273 677 +#> [884,] 433 469 305 525 467 8 514 6 173 921 +#> [885,] 614 249 432 139 179 399 353 218 375 809 +#> [886,] 908 667 519 111 938 174 685 946 446 323 +#> [887,] 943 366 738 873 105 717 858 632 675 555 +#> [888,] 819 818 771 372 549 510 594 48 779 575 +#> [889,] 565 683 920 35 509 337 477 307 980 379 +#> [890,] 485 41 871 649 250 978 178 555 375 849 +#> [891,] 811 236 659 194 986 384 695 546 114 149 +#> [892,] 522 44 634 387 942 468 899 653 793 386 +#> [893,] 15 112 375 585 969 178 967 617 405 259 +#> [894,] 805 187 791 473 193 843 360 737 362 202 +#> [895,] 274 612 517 98 78 932 314 423 150 420 +#> [896,] 819 647 510 724 277 199 527 549 888 395 +#> [897,] 827 56 96 244 300 564 984 412 338 414 +#> [898,] 134 184 537 8 833 525 542 428 332 108 +#> [899,] 44 522 419 146 437 761 964 180 610 892 +#> [900,] 727 912 153 212 664 807 992 434 550 582 +#> [901,] 393 716 388 17 371 990 631 570 317 916 +#> [902,] 387 386 776 633 973 919 658 892 914 246 +#> [903,] 450 563 370 381 282 16 363 82 636 289 +#> [904,] 256 225 139 583 506 616 658 399 973 633 +#> [905,] 505 920 581 424 715 924 878 452 337 672 +#> [906,] 995 476 11 173 216 786 232 13 413 349 +#> [907,] 143 37 318 562 797 474 531 762 925 982 +#> [908,] 886 519 938 667 685 946 111 691 411 820 +#> [909,] 741 838 36 697 357 567 654 343 427 80 +#> [910,] 640 816 599 798 927 325 177 861 311 354 +#> [911,] 769 579 676 509 980 477 79 337 188 104 +#> [912,] 153 632 664 582 219 105 900 423 150 738 +#> [913,] 409 45 93 299 252 598 562 762 75 264 +#> [914,] 265 981 591 733 999 552 97 410 892 386 +#> [915,] 823 968 166 765 352 728 604 662 508 25 +#> [916,] 570 458 441 176 512 707 226 129 750 680 +#> [917,] 407 100 309 822 661 125 71 851 815 839 +#> [918,] 58 551 778 89 694 668 780 478 459 62 +#> [919,] 387 504 942 653 963 902 246 892 973 699 +#> [920,] 581 565 878 813 337 477 509 980 905 683 +#> [921,] 552 455 410 97 344 266 6 591 3 514 +#> [922,] 378 92 775 403 461 657 862 406 677 863 +#> [923,] 222 931 926 197 355 488 673 553 323 679 +#> [924,] 878 672 581 813 806 748 789 715 879 532 +#> [925,] 797 808 294 531 474 907 373 37 327 319 +#> [926,] 323 673 777 953 923 519 843 111 222 744 +#> [927,] 599 589 177 856 910 426 120 640 656 189 +#> [928,] 631 620 279 17 662 739 590 32 621 946 +#> [929,] 603 262 569 641 213 773 834 6 471 711 +#> [930,] 677 57 310 151 314 437 76 895 804 419 +#> [931,] 355 331 923 488 673 197 718 255 222 208 +#> [932,] 437 705 274 895 423 643 105 742 98 522 +#> [933,] 481 229 818 991 382 714 260 774 273 771 +#> [934,] 859 216 749 703 13 454 308 476 906 88 +#> [935,] 782 480 297 517 219 479 801 90 615 418 +#> [936,] 29 227 853 172 18 675 272 796 71 548 +#> [937,] 816 768 414 861 107 244 359 68 910 412 +#> [938,] 588 519 908 886 371 685 777 323 111 926 +#> [939,] 530 682 242 744 486 794 790 240 430 380 +#> [940,] 170 730 998 231 115 370 586 121 719 313 +#> [941,] 587 692 484 728 49 949 604 109 401 156 +#> [942,] 653 504 919 892 77 387 246 20 419 468 +#> [943,] 555 740 717 887 366 649 681 871 849 361 +#> [944,] 126 308 551 753 416 385 668 870 918 767 +#> [945,] 511 422 577 379 657 862 35 42 376 864 +#> [946,] 519 240 621 691 958 323 32 886 667 908 +#> [947,] 129 767 780 725 499 731 63 803 436 626 +#> [948,] 505 715 608 905 766 787 83 672 194 806 +#> [949,] 501 622 941 692 823 604 765 405 613 726 +#> [950,] 593 695 126 336 669 478 243 12 944 293 +#> [951,] 795 432 528 485 890 649 464 369 451 624 +#> [952,] 772 315 953 186 362 277 642 539 510 647 +#> [953,] 673 642 926 952 323 843 341 285 536 958 +#> [954,] 520 43 128 468 733 524 148 97 273 275 +#> [955,] 589 177 670 445 927 157 856 354 426 599 +#> [956,] 372 217 844 347 991 869 865 285 883 151 +#> [957,] 163 880 200 996 589 189 329 120 836 837 +#> [958,] 21 691 536 667 162 443 4 347 946 240 +#> [959,] 822 71 309 100 407 917 18 788 661 851 +#> [960,] 881 392 998 727 302 807 463 19 745 453 +#> [961,] 150 423 340 801 420 517 612 76 297 78 +#> [962,] 684 660 979 502 495 702 573 335 210 706 +#> [963,] 246 919 942 653 387 902 419 481 310 504 +#> [964,] 295 180 761 146 899 698 869 98 105 610 +#> [965,] 52 483 283 696 132 318 91 137 201 143 +#> [966,] 239 740 366 681 105 5 295 267 873 964 +#> [967,] 708 15 292 969 764 994 178 397 280 893 +#> [968,] 716 662 393 166 915 701 823 388 84 279 +#> [969,] 112 284 617 238 967 259 708 893 261 327 +#> [970,] 69 689 133 298 710 339 112 238 441 7 +#> [971,] 851 815 839 313 90 730 398 106 661 550 +#> [972,] 644 684 704 783 578 440 203 979 694 67 +#> [973,] 633 699 902 591 658 387 776 225 386 506 +#> [974,] 627 850 135 446 318 397 257 131 201 360 +#> [975,] 9 358 394 333 526 828 48 199 888 845 +#> [976,] 59 33 5 848 350 993 523 465 845 86 +#> [977,] 367 721 561 19 545 377 392 355 42 55 +#> [978,] 890 375 485 178 617 871 555 41 250 46 +#> [979,] 210 706 684 495 660 335 962 502 233 247 +#> [980,] 260 382 911 477 683 878 769 337 151 991 +#> [981,] 410 552 733 999 678 914 265 921 72 954 +#> [982,] 762 651 37 174 264 162 562 205 497 913 +#> [983,] 830 404 705 364 812 786 868 274 386 221 +#> [984,] 56 312 842 827 713 415 435 190 289 897 +#> [985,] 207 311 10 81 258 159 381 23 282 418 +#> [986,] 117 799 833 236 134 678 659 811 8 425 +#> [987,] 606 826 535 841 634 280 674 218 574 144 +#> [988,] 645 603 711 855 431 596 803 305 616 142 +#> [989,] 703 597 13 216 147 172 60 88 29 272 +#> [990,] 140 570 901 198 388 533 916 17 458 611 +#> [991,] 382 883 956 556 307 151 229 933 260 185 +#> [992,] 664 212 153 119 732 900 244 912 632 482 +#> [993,] 14 59 5 724 976 496 376 123 239 48 +#> [994,] 292 708 280 535 356 618 764 826 847 342 +#> [995,] 906 476 173 232 11 786 600 195 30 404 +#> [996,] 836 189 957 722 837 880 137 47 329 290 +#> [997,] 438 160 831 125 876 815 877 407 917 802 +#> [998,] 730 940 370 170 960 881 313 418 745 115 +#> [999,] 733 981 410 840 806 914 552 97 273 954 +#> [1000,] 429 424 80 251 209 829 683 452 211 630 #> #> $neighbor_distances #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] -#> [1,] 0.37440774 0.5196210 0.6317683 0.6323538 0.8849260 0.8892560 0.9006937 -#> [2,] 0.71849076 0.8712022 0.8970041 0.9249884 0.9328638 0.9559555 0.9912308 -#> [3,] 0.33816647 0.3531914 0.4294108 0.5196530 0.5297383 0.5577980 0.6443834 -#> [4,] 0.54020961 0.6153700 0.6328276 0.6360577 0.6708464 0.6854089 0.7296972 -#> [5,] 0.39339787 0.4755666 0.6066615 0.7330094 0.7611787 0.7646775 0.7696904 -#> [6,] 0.81778517 0.8393568 0.8864097 0.8899425 0.8930137 0.9004203 0.9592937 -#> [7,] 0.31336098 0.4734230 0.4790972 0.5125694 0.5484259 0.5577980 0.5839837 -#> [8,] 0.69429370 0.6999343 0.8040632 0.8374759 0.8581814 0.8620620 0.9037422 -#> [9,] 0.49870522 0.5159316 0.5161472 0.6504423 0.7226073 0.7458232 0.8078439 -#> [10,] 0.43286308 0.6523323 0.8222796 0.8646028 0.9897671 1.0654198 1.0962131 -#> [11,] 0.41437972 0.5560717 0.6561674 0.7609491 0.7669037 0.8590798 0.8752580 -#> [12,] 0.67937879 0.7172980 0.7480645 0.7544614 0.8050573 0.8083640 0.8481635 -#> [13,] 0.52070502 0.6684482 0.7688076 0.7823320 0.8670848 0.9316208 0.9584593 -#> [14,] 0.41137800 0.5708362 0.5865694 0.6090094 0.6456530 0.6700576 0.7213540 -#> [15,] 0.59022782 0.7694994 0.8918625 1.0814758 1.1290545 1.1519124 1.1534854 -#> [16,] 0.45092441 0.4958946 0.5104549 0.5122970 0.5530641 0.6073729 0.6617331 -#> [17,] 0.21549985 0.3255899 0.3544750 0.4664532 0.4715509 0.4860027 0.4879230 -#> [18,] 0.28419387 0.3691577 0.5267358 0.5449690 0.5967973 0.5985593 0.6283001 -#> [19,] 0.60423508 0.9040169 0.9165124 1.0119967 1.0878704 1.1063906 1.1405633 -#> [20,] 0.28229287 0.3660425 0.4033861 0.4280612 0.4487782 0.4534048 0.4866329 -#> [21,] 0.53505778 0.5400066 0.6122105 0.7306741 0.7555545 0.8497530 0.8610543 -#> [22,] 0.21870056 0.3441216 0.3792610 0.4279712 0.4352831 0.4734599 0.4760026 -#> [23,] 0.69971236 0.7776224 0.7876056 0.7994573 0.8586295 0.8605815 0.8819863 -#> [24,] 0.38762218 0.4285535 0.4381970 0.5334751 0.6623435 0.6643578 0.6768378 -#> [25,] 0.53268027 0.6801124 0.6909970 0.7254717 0.7283049 0.7764582 0.7892815 -#> [26,] 0.43329051 0.5178387 0.5360601 0.5642680 0.5666451 0.5944099 0.6307465 -#> [27,] 0.30426516 0.3859418 0.4251838 0.4719293 0.5115982 0.5455742 0.5471404 -#> [28,] 0.42629419 0.4520204 0.4723838 0.5216885 0.5984226 0.6227925 0.6259317 -#> [29,] 0.35403636 0.3840472 0.3876222 0.5544435 0.5753758 0.6441560 0.6696159 -#> [30,] 0.70399445 0.8185857 0.8728922 0.8887481 0.9390512 0.9504278 0.9534198 -#> [31,] 0.54620478 0.5678647 0.5794177 0.5859331 0.6016578 0.6631736 0.6973421 -#> [32,] 0.32203562 0.3870360 0.4510068 0.4565310 0.5181098 0.5219980 0.5803326 -#> [33,] 0.59842366 0.6252209 0.6259422 0.6469902 0.6731264 0.6884798 0.6987678 -#> [34,] 0.42295739 0.4799947 0.4822970 0.5100279 0.7521974 0.7531811 0.7617941 -#> [35,] 0.35319143 0.4240218 0.5113439 0.5796505 0.5815733 0.6434926 0.6531255 -#> [36,] 0.28798006 0.3680010 0.4005744 0.4271074 0.4391532 0.4795506 0.4806273 -#> [37,] 0.46960421 0.5704743 0.5713747 0.7433508 0.8263683 0.9032159 0.9188813 -#> [38,] 0.16379892 0.4343415 0.4634704 0.4812532 0.5262166 0.5456857 0.5900957 -#> [39,] 0.32942541 0.3488723 0.4544843 0.4706264 0.4737524 0.5055472 0.5182899 -#> [40,] 0.46960421 0.5094448 0.8000923 0.8405120 0.8940577 0.9118995 0.9520868 -#> [41,] 0.56070439 0.8039226 0.8458749 0.9259973 0.9706053 1.0019942 1.0221179 -#> [42,] 0.26218164 0.3335003 0.4401235 0.4973035 0.5241576 0.5242244 0.5406525 -#> [43,] 0.63571193 0.7382393 0.9638590 1.0666145 1.0770948 1.0874487 1.0945852 -#> [44,] 0.98042680 0.9936126 1.0111360 1.0134749 1.0909802 1.1755655 1.2292283 -#> [45,] 0.96471043 1.1360815 1.2717714 1.5203067 1.5482659 1.7086648 1.7576296 -#> [46,] 0.92897311 1.0798204 1.2356634 1.2538734 1.2887295 1.3175664 1.3497319 -#> [47,] 0.89238862 0.9257327 0.9620712 0.9739201 0.9943237 1.1340280 1.1505984 -#> [48,] 0.44108247 0.4464113 0.4928736 0.5033910 0.5245417 0.5959135 0.6397210 -#> [49,] 0.39469461 0.3966216 0.4374424 0.4706606 0.4847577 0.4929153 0.6373957 -#> [50,] 0.62219362 0.6576409 0.7388219 0.7729828 0.7943559 0.8368663 0.8794120 -#> [51,] 0.30483279 0.4510571 0.5991109 0.6021361 0.6431851 0.6820095 0.6822274 -#> [52,] 0.16342217 0.3812533 0.4723838 0.4917449 0.5672412 0.6012372 0.6016578 -#> [53,] 0.47146486 0.6398191 0.6982818 0.7187265 0.7796118 0.9114307 0.9247849 -#> [54,] 0.32811395 0.4597374 0.5698973 0.6545683 0.7488184 0.7636551 0.8007657 -#> [55,] 0.26351243 0.2898434 0.3279429 0.3904213 0.4334976 0.4823644 0.5486852 -#> [56,] 0.77615810 0.8922126 0.9410711 0.9435230 0.9454779 0.9498508 0.9649450 -#> [57,] 1.01660350 1.0576989 1.0578482 1.0948736 1.1998130 1.2010383 1.2067120 -#> [58,] 0.31354966 0.3359187 0.4454083 0.5013944 0.5523149 0.5649255 0.6207553 -#> [59,] 0.54093924 0.6735608 0.6915943 0.7171179 0.7925492 0.8258154 0.8404956 -#> [60,] 0.39442631 0.5581936 0.6069573 0.6558298 0.6593543 0.6951015 0.7095590 -#> [61,] 0.42184296 0.4722252 0.4810669 0.5213441 0.5457783 0.5978246 0.6324206 -#> [62,] 0.16342217 0.4269498 0.4520204 0.5193114 0.6631736 0.7057671 0.7128491 -#> [63,] 0.22126147 0.3532780 0.4414033 0.4531874 0.4647006 0.5107906 0.5602252 -#> [64,] 0.33416754 0.4265877 0.4359787 0.4958946 0.5433790 0.6881546 0.7001640 -#> [65,] 0.23679109 0.2815989 0.3487280 0.4295142 0.5025708 0.5573627 0.6129167 -#> [66,] 0.44637144 0.5003019 0.5529245 0.6283844 0.6367535 0.6652489 0.7487575 -#> [67,] 0.33537141 0.5092862 0.5898424 0.5930201 0.6001093 0.6728713 0.6872553 -#> [68,] 0.37747986 0.4014896 0.4185361 0.4482289 0.5682722 0.5703633 0.6131069 -#> [69,] 0.28798006 0.3927377 0.4251838 0.4288953 0.4558640 0.4906690 0.5028235 -#> [70,] 0.54611205 0.6926403 0.7215123 0.7658092 0.8311058 0.9560666 1.0400445 -#> [71,] 0.47206866 0.6357119 0.6360646 0.6926937 0.6989833 0.7644924 0.7893722 -#> [72,] 0.21870056 0.2927399 0.2999043 0.3591081 0.4487782 0.4585332 0.4617932 -#> [73,] 0.30035462 0.5001202 0.5593482 0.5631557 0.6212020 0.6350773 0.6398905 -#> [74,] 0.30645224 0.5000964 0.5348828 0.5447165 0.5564983 0.5910982 0.6571445 -#> [75,] 0.73137409 0.7876294 0.7927559 0.9257327 0.9287029 0.9333650 0.9570342 -#> [76,] 0.40150325 0.4310171 0.4984940 0.5758994 0.5810228 0.5926704 0.7203417 -#> [77,] 0.42677834 0.5655940 0.5780670 0.5869566 0.5955668 0.6814462 0.6902135 -#> [78,] 0.24603251 0.4255550 0.5281018 0.6320025 0.6766829 0.6816221 0.7057718 -#> [79,] 0.44042104 0.5181098 0.5632566 0.5853790 0.5921010 0.6301329 0.6573707 -#> [80,] 1.17838407 1.4621528 1.4891457 1.6146337 1.6568477 1.6983617 1.7513378 -#> [81,] 0.97605309 1.0511801 1.0518557 1.0868473 1.1142342 1.1686700 1.1819750 -#> [82,] 0.30897320 0.4068803 0.5589393 0.5719344 0.6460923 0.6503385 0.7187265 -#> [83,] 0.29770340 0.5268685 0.5810016 0.5937661 0.6260777 0.6646483 0.6767827 -#> [84,] 0.73278181 0.8382064 0.8712902 0.9346618 0.9439012 1.1061611 1.2219257 -#> [85,] 0.63396681 0.7252764 0.8155012 0.8245226 0.8380611 0.9923770 0.9993802 -#> [86,] 0.32458341 0.3933979 0.5125694 0.6410320 0.6680742 0.6691817 0.6752053 -#> [87,] 0.66478616 0.7107108 0.7159460 0.7237704 0.7282900 0.7332213 0.7434692 -#> [88,] 0.30996952 0.3251140 0.3526699 0.5128921 0.5429316 0.6395256 0.6586995 -#> [89,] 0.57281868 0.5758453 0.7006440 0.7207689 0.7258189 0.7296972 0.7965332 -#> [90,] 0.39852216 0.4400132 0.4526669 0.5161778 0.5400066 0.5461164 0.6188844 -#> [91,] 0.48933920 0.6051880 0.6382770 0.6502117 0.6693098 0.7108046 0.7692118 -#> [92,] 0.62260206 0.9165124 1.3085745 1.3806910 1.5870406 1.6285594 1.6554045 -#> [93,] 0.24603251 0.3878538 0.4591714 0.5178387 0.6585143 0.6621358 0.6810870 -#> [94,] 0.30897320 0.6290901 0.6398191 0.6496431 0.7823336 0.7843597 0.8580708 -#> [95,] 0.04497083 0.5930201 0.6119075 0.6270330 0.6429569 0.6600823 0.6656487 -#> [96,] 0.62583943 0.7505155 0.9832066 1.0235993 1.0636559 1.1201775 1.1666406 -#> [97,] 0.35144018 0.6382641 0.7079532 0.7095187 0.7659251 0.8091797 0.8513275 -#> [98,] 0.31801358 0.3401989 0.4208660 0.4271074 0.5054884 0.5429898 0.5665091 -#> [99,] 0.21601832 0.3354368 0.3484150 0.3856758 0.5485465 0.5505203 0.5557009 -#> [100,] 0.41366461 0.5126158 0.5594749 0.5739571 0.6100644 0.6774000 0.7450978 -#> [101,] 0.66441475 0.7549090 0.7557675 0.7765707 0.7936885 0.7990604 0.8064913 -#> [102,] 0.46871727 0.5296746 0.6837906 0.7008518 0.7655323 0.8326505 0.8770413 -#> [103,] 0.76556108 0.7659251 0.7682346 0.9744743 1.0745172 1.1330448 1.1399362 -#> [104,] 0.30557984 0.3708418 0.3794128 0.5570809 0.5645912 0.6157789 0.6886539 -#> [105,] 0.42014793 0.4929323 0.5075120 0.5230954 0.5328842 0.5333565 0.5456871 -#> [106,] 0.60144678 0.9305805 0.9306688 0.9501760 0.9659964 1.0453325 1.0542669 -#> [107,] 0.26191941 0.3335003 0.3864874 0.4739008 0.4901712 0.5262166 0.5277461 -#> [108,] 0.53526753 0.5824204 0.5919049 0.6908379 0.6932066 0.6949184 0.7062489 -#> [109,] 0.32366596 0.3816655 0.5062977 0.5485465 0.6035720 0.6073536 0.6347685 -#> [110,] 0.65787838 0.8523714 1.1802698 1.3560210 1.3630859 1.3759184 1.3968075 -#> [111,] 0.50862957 0.6866783 0.7279623 0.7948560 0.8165282 0.8374849 0.8375440 -#> [112,] 1.55852407 1.5673626 1.6632869 1.6701479 1.7246864 1.7747710 1.7934094 -#> [113,] 0.36644829 0.4296335 0.5638167 0.6098110 0.6319255 0.6431851 0.6599731 -#> [114,] 0.27515565 0.7833691 0.7984154 0.8626899 0.8700936 0.8907433 0.9139923 -#> [115,] 0.38214516 0.6842062 0.7184307 0.8236605 0.8753309 0.9271065 0.9900302 -#> [116,] 0.45027271 0.5457783 0.6602727 0.6741195 0.6863318 0.7091045 0.7172088 -#> [117,] 0.56160326 0.6429118 0.7370743 0.7549090 0.7710974 0.7860382 0.7889454 -#> [118,] 0.23376156 0.3276499 0.3441216 0.3508093 0.5015056 0.5053651 0.5176712 -#> [119,] 0.31583768 0.3737276 0.4558761 0.5437083 0.5458634 0.5974658 0.6560051 -#> [120,] 0.34765690 0.3987382 0.4601763 0.4879230 0.5018809 0.5067646 0.5416199 -#> [121,] 0.58701147 0.5952777 0.6049412 0.6119075 0.6268535 0.6821388 0.7100069 -#> [122,] 0.38404719 0.4381970 0.4623692 0.4922980 0.5168948 0.5305939 0.5628925 -#> [123,] 0.35215632 0.3951595 0.5682765 0.5992893 0.6292636 0.6469049 0.6536885 -#> [124,] 0.37061007 0.3711900 0.3871380 0.5807237 0.5986405 0.6415935 0.6531730 -#> [125,] 1.16275048 1.2245416 1.2926636 1.3602846 1.3698820 1.4084729 1.4638888 -#> [126,] 0.50990188 0.6099109 0.7001640 0.7341859 0.7767447 0.7813376 0.7953612 -#> [127,] 0.38172029 0.5355710 0.5596657 0.5633162 0.5823183 0.5929949 0.6202899 -#> [128,] 0.32678210 0.4734693 0.5506425 0.5621268 0.5665520 0.5690209 0.6215555 -#> [129,] 0.32240302 0.5219120 0.5762402 0.6049412 0.6920584 0.7313320 0.7474944 -#> [130,] 0.49883170 0.6053445 0.7167148 0.7190791 0.7574800 0.7613518 0.7938191 -#> [131,] 0.53564742 0.6130721 0.6764559 0.7958312 0.8108554 0.8286614 0.8786131 -#> [132,] 0.42579509 0.5151876 0.5341619 0.5671062 0.5755747 0.5903237 0.6075006 -#> [133,] 0.35147778 0.3636692 0.3647389 0.4423911 0.5608529 0.5691907 0.5779306 -#> [134,] 0.39681078 0.4251424 0.5178433 0.5361624 0.6805308 0.6867334 0.7135838 -#> [135,] 0.30942474 0.4231522 0.4267138 0.5000046 0.5050926 0.5430369 0.5739390 -#> [136,] 0.41118245 0.4267375 0.4318495 0.4339700 0.4768650 0.5465379 0.5586927 -#> [137,] 0.61307211 0.6772350 0.7043720 0.7118153 0.8149391 0.8453201 0.8556896 -#> [138,] 0.43229124 0.5113181 0.5293639 0.5827702 0.5852424 0.5925780 0.6027970 -#> [139,] 0.53526753 0.6705211 0.7233836 0.7638404 0.7897678 0.7912746 0.8126103 -#> [140,] 0.25761193 0.3248417 0.3820281 0.4265877 0.4509244 0.6123456 0.6371633 -#> [141,] 0.21551060 0.2478560 0.4984940 0.5043320 0.5153898 0.5377246 0.5380901 -#> [142,] 0.23215070 0.3977784 0.4000386 0.4393166 0.4936062 0.5116403 0.5226528 -#> [143,] 0.32484169 0.4430272 0.4500779 0.4606841 0.5433790 0.5530641 0.5891766 -#> [144,] 0.70360030 0.7115000 0.7115202 0.7263464 0.7909070 0.8401681 0.8523100 -#> [145,] 0.53097493 0.5426041 0.5660205 0.8089592 0.9680723 0.9860777 1.0241528 -#> [146,] 0.36684834 0.4257951 0.4369957 0.4393166 0.4547368 0.5026818 0.5330085 -#> [147,] 0.34840672 0.4549819 0.4564327 0.5024490 0.5335413 0.5341757 0.5377761 -#> [148,] 0.68439506 0.7249098 0.8863247 0.9094872 0.9198462 0.9435541 0.9756199 -#> [149,] 0.48461201 0.6281582 0.7102363 0.7320435 0.7869123 0.8343406 0.8597976 -#> [150,] 0.27767287 0.2814221 0.2841270 0.4878354 0.4954478 0.4975521 0.5313888 -#> [151,] 0.37046721 0.4650588 0.4816673 0.4861472 0.5433768 0.5727964 0.5752032 -#> [152,] 0.56256667 0.5770576 0.6789019 0.7157721 0.7351366 0.7589517 0.7694994 -#> [153,] 0.54053002 0.5560717 0.5999067 0.7184908 0.7479200 0.7761110 0.8660131 -#> [154,] 0.54053002 0.6561674 0.8307043 0.8541981 0.8712022 0.9810323 0.9903409 -#> [155,] 0.37489759 0.4336603 0.7790019 0.8323242 0.8554640 0.8577206 0.9099627 -#> [156,] 0.30569236 0.3262743 0.3579049 0.3630452 0.4926383 0.5405824 0.6052169 -#> [157,] 0.64667460 0.7669037 0.8257021 0.8541981 0.9243470 0.9655508 1.0201939 -#> [158,] 0.37740552 0.4020145 0.4190839 0.4591714 0.5281018 0.5550570 0.5788570 -#> [159,] 0.33547237 0.3463819 0.4977218 0.5180707 0.5242244 0.5635180 0.5817520 -#> [160,] 0.35829338 0.5718766 0.5747591 0.5779698 0.6522162 0.7144527 0.7876369 -#> [161,] 0.50669338 0.5422210 0.5631950 0.5689447 0.6092181 0.6320838 0.6627306 -#> [162,] 0.51045490 0.5219120 0.5858995 0.5937850 0.7252764 0.8000330 0.8418996 -#> [163,] 0.37061007 0.4042716 0.5416616 0.6091344 0.6365370 0.7418901 0.7538221 -#> [164,] 0.51229703 0.5239113 0.5903342 0.5937850 0.6369687 0.6395027 0.7197476 -#> [165,] 0.54908168 0.9813251 1.1372137 1.1695009 1.2031595 1.2249379 1.2830620 -#> [166,] 0.61272048 0.7611578 0.7883182 0.8482370 0.8973138 0.8973912 0.9098426 -#> [167,] 0.24308049 0.2554877 0.3695717 0.4638763 0.4841923 0.5672204 0.5678705 -#> [168,] 0.38041963 0.4770930 0.4780638 0.4847577 0.5092416 0.5473634 0.5519264 -#> [169,] 0.26265001 0.6764559 0.6801124 0.7182474 0.8034945 0.8243029 0.9143408 -#> [170,] 0.26578713 0.4558640 0.5643588 0.5758453 0.6031906 0.6038029 0.6317046 -#> [171,] 0.17370456 0.4308061 0.4805783 0.4823644 0.5499564 0.5587297 0.6249264 -#> [172,] 0.26941305 0.4017908 0.5415747 0.5470445 0.5757414 0.5872002 0.6124346 -#> [173,] 0.87618145 0.9526264 0.9565228 0.9713093 1.0146814 1.0413455 1.1054185 -#> [174,] 0.61152392 0.7089670 0.7760067 0.9366138 0.9987533 1.0345146 1.0764891 -#> [175,] 0.55117629 0.6955637 0.8672199 0.9175538 1.0857738 1.0870652 1.1226844 -#> [176,] 0.51603535 0.5265768 0.5388508 0.5712551 0.5801553 0.6707166 0.7064780 -#> [177,] 0.57667920 0.6744389 0.7106979 0.7830243 0.8084727 0.8349234 0.8471915 -#> [178,] 0.35086757 0.4558084 0.4623692 0.5991109 0.5998957 0.6098110 0.6568489 -#> [179,] 0.59394151 0.6259422 0.6412760 0.7072447 0.9181475 0.9528680 0.9805333 -#> [180,] 0.45973796 0.5236926 0.5413020 0.5590320 0.5625617 0.5949277 0.6129280 -#> [181,] 0.48466368 0.4966760 0.5003019 0.5597563 0.5807237 0.6365370 0.6573707 -#> [182,] 0.49667604 0.5257725 0.5446453 0.5665520 0.5922374 0.5939369 0.6009061 -#> [183,] 0.44863069 0.4890375 0.4972940 0.5129245 0.5339640 0.5405824 0.5594749 -#> [184,] 1.54969454 1.6058166 1.7903249 1.8486250 1.9415717 1.9861202 1.9921299 -#> [185,] 0.46840057 0.5643122 0.7830058 0.8577187 0.9074240 0.9099627 0.9585011 -#> [186,] 0.21503155 0.4423911 0.4427498 0.4470150 0.4800804 0.4852145 0.5140889 -#> [187,] 0.54488025 0.5484068 0.6032080 0.6201989 0.6812469 0.6997092 0.7071064 -#> [188,] 0.55211975 0.5650773 0.6230229 0.7717706 0.7985339 0.8089592 0.8240324 -#> [189,] 0.38410060 0.6421988 0.6741195 0.6748141 0.7148040 0.7160836 0.7192255 -#> [190,] 0.29678858 0.3855973 0.3987382 0.4023448 0.4417458 0.4929323 0.5541087 -#> [191,] 0.83653302 0.9011914 1.1703316 1.1948539 1.3102195 1.3296849 1.3600533 -#> [192,] 0.25389733 0.3532200 0.5986405 0.6218608 0.6532183 0.6823172 0.6910984 -#> [193,] 0.22947858 0.3398413 0.4375047 0.5370750 0.5849706 0.5936046 0.5978990 -#> [194,] 0.40798941 0.4111824 0.4547087 0.4821675 0.5014282 0.5111314 0.5392919 -#> [195,] 0.42611375 0.5618296 0.6964333 0.8322004 0.9590741 0.9636064 0.9893164 -#> [196,] 0.40201451 0.4776085 0.5035358 0.5344354 0.5360601 0.5955668 0.6228103 -#> [197,] 0.46147713 0.6051880 0.6178127 0.7489781 0.7982087 0.8318041 0.9819342 -#> [198,] 0.90254645 1.1476636 1.2435210 1.2555075 1.2713360 1.2953993 1.2964965 -#> [199,] 0.35295760 0.4725503 0.6273540 0.6553937 0.6742267 0.7099813 0.7272521 -#> [200,] 0.22003989 0.6339161 0.6577880 0.7028651 0.7089670 0.7099221 0.7364444 -#> [201,] 1.30424483 1.3801370 1.6572063 1.6867596 1.7135375 1.7356769 1.7962741 -#> [202,] 0.96348909 1.1220217 1.2021038 1.2176376 1.3685976 1.4039036 1.4407800 -#> [203,] 0.72611264 0.8111915 0.8342606 0.8372628 0.8585798 0.8709668 1.0290069 -#> [204,] 0.26218164 0.3876053 0.4977218 0.5012997 0.5277461 0.5384173 0.5414872 -#> [205,] 0.32203562 0.4016753 0.4300057 0.5546442 0.5858126 0.5875525 0.6082550 -#> [206,] 0.37711935 0.4536032 0.5418304 0.5571568 0.5603790 0.5993868 0.6085266 -#> [207,] 1.29870348 1.4759336 1.5193207 1.6065617 1.6335442 1.6481263 1.6744164 -#> [208,] 0.41828293 0.4505434 0.5149747 0.5504608 0.5652963 0.6662338 0.6896558 -#> [209,] 1.09602517 1.3455591 1.3968001 1.4076033 1.4311583 1.4532473 1.4562446 -#> [210,] 0.23259817 0.2557204 0.3945140 0.4285865 0.5073673 0.5450982 0.5976732 -#> [211,] 0.57035503 0.6708464 0.6737630 0.7192255 0.7207689 0.7496445 0.7887201 -#> [212,] 0.39122971 0.4981192 0.5229825 0.5269430 0.5292013 0.5795555 0.5996315 -#> [213,] 0.35637992 0.4327384 0.4632784 0.4996657 0.5418139 0.5668559 0.5799450 -#> [214,] 0.50944477 0.5110197 0.5355926 0.5386034 0.5713747 0.5859775 0.6705592 -#> [215,] 0.34791594 0.5351012 0.5943828 0.6316720 0.6639791 0.7338786 0.7368381 -#> [216,] 0.27087776 0.2839025 0.3817311 0.5293472 0.5908624 0.6269716 0.6411617 -#> [217,] 0.39744238 0.4157032 0.4207887 0.5008248 0.5621268 0.5672412 0.6119784 -#> [218,] 0.33093201 0.5025979 0.5581936 0.5705094 0.5770479 0.5935215 0.5974658 -#> [219,] 0.47130002 0.4807848 0.5290914 0.6324410 0.6944847 0.7013259 0.7344657 -#> [220,] 0.50139444 0.6117694 0.6213244 0.6379400 0.6655542 0.7627878 0.7797618 -#> [221,] 0.17049041 0.4410825 0.4612374 0.4953889 0.5724994 0.6252209 0.7118564 -#> [222,] 0.95693748 1.1132546 1.1244440 1.1303904 1.2668734 1.3012856 1.3358036 -#> [223,] 0.28983255 0.3401989 0.3488723 0.4446433 0.4599618 0.4971177 0.5089164 -#> [224,] 0.68358791 0.7398657 0.8153097 0.9655508 1.0165439 1.0306387 1.0955916 -#> [225,] 0.52787810 0.6537160 0.7764582 0.8385543 0.8581661 0.9558473 0.9584774 -#> [226,] 0.47700844 0.5216885 0.5275571 0.5504608 0.6699999 0.6742696 0.6864118 -#> [227,] 0.40229399 0.4330564 0.4653143 0.4910223 0.5192757 0.5500262 0.5755747 -#> [228,] 0.16765161 0.3794128 0.3972535 0.4516268 0.5227325 0.5984751 0.7192160 -#> [229,] 0.56725251 0.5680787 0.5804492 0.6965240 0.7132296 0.7339512 0.7397689 -#> [230,] 0.53481399 0.6018809 0.6580955 0.6617331 0.6902225 0.7393891 0.7903442 -#> [231,] 0.56754181 0.6221936 0.7386678 0.7643205 0.7936885 0.8099410 0.8349234 -#> [232,] 0.33706501 0.5086939 0.5351012 0.5672952 0.6229590 0.6575454 0.7062489 -#> [233,] 0.51643360 0.5335565 0.5571488 0.5878117 0.7780923 0.8003594 0.8174984 -#> [234,] 0.38920400 0.6969675 0.7000426 0.7243613 0.7523700 0.7669118 0.7962175 -#> [235,] 0.37712295 0.3991980 0.5946666 0.6124585 0.6698246 0.7125412 0.7172980 -#> [236,] 0.34385430 0.3561176 0.5080554 0.5570809 0.5827833 0.6707290 0.6944958 -#> [237,] 0.35853973 0.3927377 0.4391532 0.4562070 0.4633042 0.4707987 0.5236926 -#> [238,] 0.59462859 0.6323538 0.6356349 0.6532442 0.7442849 0.7569891 0.8079612 -#> [239,] 0.59284156 0.6264562 0.8839687 0.8899777 0.9636064 0.9918935 1.0633670 -#> [240,] 0.24728549 0.5359625 0.5978341 0.6676988 0.7735319 0.7764392 0.7795528 -#> [241,] 0.39744238 0.4338809 0.4520274 0.5868525 0.6012372 0.6065631 0.6152847 -#> [242,] 0.37716013 0.4836585 0.5110197 0.5421546 0.5715196 0.6801882 0.6905674 -#> [243,] 0.28394795 0.3820281 0.3876899 0.3974501 0.4430272 0.5167141 0.5183246 -#> [244,] 0.82430292 0.9597073 0.9680445 1.3547966 1.3548550 1.3607090 1.3921615 -#> [245,] 0.57624017 0.5876477 0.6268535 0.6270330 0.6747779 0.6848974 0.7931200 -#> [246,] 0.31299205 0.5034560 0.5043867 0.5419253 0.5535397 0.5575974 0.7085888 -#> [247,] 0.64262965 0.8921008 0.9305805 0.9339677 1.0069366 1.0193305 1.1414821 -#> [248,] 0.48782602 0.5189966 0.5340295 0.5627590 0.5878117 0.7211326 0.7482774 -#> [249,] 0.29951135 0.4259536 0.4972859 0.6099927 0.6159928 0.6249264 0.6333368 -#> [250,] 1.20210381 1.5519966 1.7618684 1.9120597 1.9633872 2.0200774 2.0272466 -#> [251,] 0.35031851 0.4776085 0.5788570 0.6083226 0.6146147 0.6818975 0.7005643 -#> [252,] 0.32958296 0.3974501 0.4641185 0.4644079 0.4666262 0.5781133 0.5823183 -#> [253,] 0.64262965 0.7900258 0.9860777 0.9909285 1.0919575 1.1173512 1.1255470 -#> [254,] 0.31801358 0.3946047 0.5089164 0.6378590 0.6576409 0.6856637 0.6870499 -#> [255,] 0.56754181 0.6402904 0.7009357 0.7173158 0.7729828 0.9631997 1.0913812 -#> [256,] 0.34385430 0.5192776 0.6300583 0.6377344 0.7117716 0.7386289 0.7809774 -#> [257,] 0.22952545 0.3700009 0.4237522 0.4269215 0.4446646 0.4706503 0.4720348 -#> [258,] 0.44150652 0.8000399 0.9923017 1.1193029 1.2113795 1.2947642 1.3275814 -#> [259,] 0.85237136 1.0701032 1.2366975 1.4143776 1.5372939 1.5401955 1.6497181 -#> [260,] 0.34800816 0.4439292 0.4792568 0.5645975 0.5678585 0.5823287 0.5922374 -#> [261,] 0.35396396 0.4361154 0.4656768 0.4666262 0.5121672 0.5249327 0.5773453 -#> [262,] 0.71907907 0.7288427 0.7508510 0.7767205 0.7890183 0.9310220 0.9435470 -#> [263,] 0.29770340 0.4141110 0.5676076 0.6408758 0.6567339 0.6658709 0.7265516 -#> [264,] 0.19402179 0.2678304 0.3317761 0.5779306 0.5793657 0.5922482 0.6011110 -#> [265,] 0.52654089 0.5694851 0.7143330 0.7409058 0.7444994 0.7695044 0.8202393 -#> [266,] 0.43286308 0.6539635 0.7156137 1.0338277 1.0880982 1.1014870 1.2061600 -#> [267,] 0.36675682 0.5501011 0.6080251 0.6144638 0.6671930 0.6740908 0.6979966 -#> [268,] 0.59586692 0.7958265 0.8402377 0.8576936 0.9461251 0.9771705 1.0383945 -#> [269,] 0.54260412 0.5650773 0.6896558 0.7013672 0.8024806 0.8243659 0.8619546 -#> [270,] 0.22500973 0.4578056 0.5132158 0.5347966 0.5573906 0.5618274 0.5656646 -#> [271,] 0.26941305 0.2701207 0.4742903 0.5017003 0.5199536 0.5307726 0.5483506 -#> [272,] 0.48405150 0.5934796 0.7977922 0.8339237 0.8528246 0.9053046 0.9145482 -#> [273,] 0.50643364 0.6628639 0.7460642 0.7497779 0.7905453 0.8047521 0.8092070 -#> [274,] 0.56440130 0.6220324 0.6527405 0.7055652 0.7417904 0.7430240 0.7638724 -#> [275,] 0.64111107 0.7362176 0.7411347 0.8071888 0.9011914 0.9139025 0.9205592 -#> [276,] 0.48583868 1.1128216 1.1280921 1.2256428 1.2970298 1.3186694 1.3719151 -#> [277,] 0.27111546 0.5458634 0.5522195 0.5631557 0.6328689 0.6480226 0.6719849 -#> [278,] 0.32240302 0.5092862 0.5285431 0.5858995 0.6302899 0.6656487 0.6848974 -#> [279,] 0.54272310 0.9510885 1.0333731 1.0378200 1.0842766 1.0886630 1.1258774 -#> [280,] 0.44001319 0.4482383 0.5350578 0.5680075 0.7093066 0.7229251 0.7477676 -#> [281,] 0.48782602 0.5382450 0.6441751 0.6856915 0.7746998 0.8234598 0.8382064 -#> [282,] 0.63216176 0.6843951 0.7033122 0.7206454 0.8457100 0.8556248 0.9346566 -#> [283,] 0.20119578 0.4330050 0.5292013 0.6444889 0.6596934 0.6674573 0.7008368 -#> [284,] 0.41791948 0.5500002 0.5616033 0.6644147 0.6684482 0.7115284 0.7714425 -#> [285,] 0.28122955 0.2898325 0.3042652 0.3680010 0.4208660 0.4288953 0.4544843 -#> [286,] 0.83117402 0.9536993 1.0759830 1.0794063 1.0797320 1.1290180 1.2017439 -#> [287,] 0.16765161 0.2524951 0.3055798 0.4410636 0.4944418 0.5827833 0.6699247 -#> [288,] 0.56499395 0.6104109 0.6494149 0.6533586 0.6589826 0.6912301 0.7058457 -#> [289,] 0.56128240 0.6060546 0.6891124 0.7835165 0.8987008 0.9107711 0.9328638 -#> [290,] 0.44254775 0.4739008 0.4938839 0.4973035 0.5154688 0.5364357 0.5900000 -#> [291,] 0.43114166 0.5037232 0.7502026 0.8022048 0.8222796 0.9218647 0.9456269 -#> [292,] 0.28122955 0.3585397 0.4005744 0.4599618 0.4719293 0.4737524 0.4941077 -#> [293,] 0.45982563 0.4627462 0.6790274 0.7352688 0.7444994 0.7550201 0.8146329 -#> [294,] 0.33093201 0.3737276 0.4075892 0.4965954 0.5459429 0.6212020 0.6413108 -#> [295,] 1.22922834 1.6228459 1.7320149 1.8213842 1.9268269 2.0307088 2.0696552 -#> [296,] 0.69835149 0.7256993 0.7417198 0.8211896 0.8380895 0.8780206 0.8932582 -#> [297,] 0.24047378 0.3771601 0.4302289 0.4714800 0.5026818 0.5079815 0.5116403 -#> [298,] 0.97717053 1.0341550 1.1530179 1.1615413 1.1964910 1.2109834 1.2236306 -#> [299,] 0.46871727 0.5940345 0.6718302 0.6963547 0.7474774 0.7541661 0.7727392 -#> [300,] 0.40337394 0.4141110 0.4921739 0.4987909 0.5418304 0.6260777 0.6305279 -#> [301,] 0.38832700 0.5591449 0.7470331 0.8280040 0.9345298 1.0007794 1.0097257 -#> [302,] 1.05544757 1.0864902 1.2096848 1.2278592 1.2559593 1.3363969 1.3384323 -#> [303,] 1.05931979 1.4083979 1.5475604 1.5779953 1.5884435 1.6557957 1.7377046 -#> [304,] 0.61747662 0.6944256 0.7058491 0.7141267 0.7232051 0.7310167 0.7342439 -#> [305,] 0.99875331 1.1196969 1.1629325 1.1712476 1.1934590 1.2020231 1.2147471 -#> [306,] 0.16044299 0.3508093 0.3586839 0.3947949 0.4432703 0.5215421 0.5766561 -#> [307,] 0.75555445 0.7985300 0.9673132 1.0086205 1.0165799 1.0217857 1.0825259 -#> [308,] 0.19402179 0.3555067 0.4337352 0.5723201 0.5901790 0.6238143 0.6588093 -#> [309,] 0.15739874 0.2927399 0.3094247 0.3420135 0.4140120 0.4279712 0.4617395 -#> [310,] 0.42526236 0.5833116 0.6245978 0.6534410 0.6637959 0.6728224 0.7151564 -#> [311,] 0.65948086 0.7622319 0.7696701 0.7931384 0.8242023 0.8477518 0.9194493 -#> [312,] 0.38594183 0.4376983 0.4930348 0.6038293 0.6202930 0.6476761 0.6973202 -#> [313,] 0.29619568 0.5594014 0.5688117 0.5864253 0.5870340 0.6421234 0.6713917 -#> [314,] 0.27111546 0.5001202 0.5686945 0.6167773 0.6353030 0.7064299 0.7158896 -#> [315,] 0.45340478 0.4768650 0.4864367 0.4908308 0.4909328 0.5154688 0.5219980 -#> [316,] 0.62039678 0.7758929 0.7894831 0.7977922 0.8005508 0.8373456 0.8664193 -#> [317,] 0.34725973 0.4317180 0.4657972 0.4728753 0.4784125 0.4947778 0.5146067 -#> [318,] 0.66774590 1.0664273 1.2667554 1.2998875 1.3524285 1.3923727 1.4089270 -#> [319,] 0.53683528 0.6458406 0.6819790 0.6968820 0.7221679 0.7954932 0.8013005 -#> [320,] 0.27692957 0.3295830 0.4315167 0.4361154 0.4632784 0.5194180 0.5731871 -#> [321,] 0.37740552 0.5298873 0.5674285 0.6048902 0.6227255 0.6320025 0.6411027 -#> [322,] 0.35031851 0.5399719 0.6108232 0.6269043 0.6609895 0.7051456 0.7055877 -#> [323,] 0.95372941 0.9592937 0.9818004 0.9823114 1.0534956 1.0553641 1.0968400 -#> [324,] 0.18607074 0.4439292 0.5175486 0.5340295 0.5501744 0.5571488 0.5711820 -#> [325,] 0.41137800 0.5682765 0.5934796 0.6069523 0.7628360 0.7758584 0.7772044 -#> [326,] 0.49029828 0.5084776 0.5933649 0.6258394 0.8065527 0.8477603 0.8576452 -#> [327,] 0.67399602 0.6808892 0.7301544 0.7776224 0.7818618 0.7955500 0.8297262 -#> [328,] 0.83159959 0.9046579 1.3424826 1.3942088 1.3985994 1.4262390 1.4263432 -#> [329,] 0.62645619 0.8139930 1.0637702 1.1379397 1.2330201 1.2445042 1.2717714 -#> [330,] 0.34718697 0.3912297 0.4194307 0.4439014 0.5228171 0.5727556 0.6406330 -#> [331,] 0.26035703 0.5753758 0.5946666 0.6105969 0.6638629 0.6697832 0.6705406 -#> [332,] 0.30855503 0.3710229 0.4878354 0.5026781 0.5290914 0.5319935 0.5828565 -#> [333,] 0.32922558 0.3842350 0.4455320 0.5087297 0.5693583 0.5817674 0.6002576 -#> [334,] 0.43580695 0.4922980 0.5026781 0.5831288 0.5879639 0.6053585 0.6735620 -#> [335,] 0.57875264 0.6839511 0.6853032 0.6863318 0.6982818 0.7301646 0.7401596 -#> [336,] 0.23416207 0.4904582 0.5355710 0.5864253 0.5963909 0.6157789 0.6580955 -#> [337,] 0.56117283 0.9724704 1.0097257 1.2080045 1.3264815 1.4421302 1.4433116 -#> [338,] 0.46558168 0.4841030 0.6402904 0.9160282 0.9315429 0.9379916 1.0990903 -#> [339,] 0.56536588 0.6463297 0.6586995 0.6940481 0.7130196 0.7237704 0.7773880 -#> [340,] 0.40700908 0.5399719 0.5425732 0.5478941 0.5985593 0.6146147 0.6517178 -#> [341,] 0.23253009 0.2841939 0.5425732 0.5526583 0.5707032 0.6098153 0.6189824 -#> [342,] 0.33335252 0.4853275 0.5666667 0.5674679 0.5784783 0.5826087 0.5944991 -#> [343,] 0.91191200 0.9235948 0.9993258 1.0262315 1.0356451 1.0573300 1.0660545 -#> [344,] 0.21286690 0.3670160 0.4329317 0.5043867 0.5509312 0.5822610 0.6361994 -#> [345,] 0.32627428 0.4014896 0.4233858 0.4694141 0.4925961 0.4972940 0.5446308 -#> [346,] 0.27767287 0.2783384 0.3710229 0.3929441 0.4713000 0.4934612 0.4958311 -#> [347,] 0.49907726 0.6222739 0.7091526 0.8132572 0.8963111 0.9075966 1.0341483 -#> [348,] 0.21792988 0.5361539 0.5793089 0.5827702 0.5841615 0.5937395 0.6079173 -#> [349,] 0.49561025 0.7515701 0.7900258 0.7948560 0.8526947 0.8921008 0.9249440 -#> [350,] 0.15272180 0.3451188 0.5312809 0.5427308 0.5455492 0.5483506 0.5682192 -#> [351,] 0.50111140 0.5290405 0.5388508 0.5638882 0.6842062 0.6856766 0.7081862 -#> [352,] 0.48405150 0.9997366 1.0063590 1.0186303 1.0258218 1.0370866 1.0842196 -#> [353,] 0.85506147 0.9796234 0.9997460 1.0331354 1.0857738 1.1596754 1.1766655 -#> [354,] 0.33886686 0.7598023 0.7773880 0.8075970 0.8530453 0.8797843 0.9533309 -#> [355,] 0.53824498 0.7482774 0.8041277 0.8343406 0.8527889 0.8808184 0.9057698 -#> [356,] 0.39460346 0.4735638 0.5339004 0.5406958 0.6300583 0.6759686 0.6760014 -#> [357,] 0.36786814 0.4943045 0.5858722 0.6555239 0.6883619 0.7011929 0.7140176 -#> [358,] 0.54467172 0.6008991 0.6133631 0.6281582 0.7045401 0.7285143 0.7305726 -#> [359,] 0.49538891 0.5077185 0.5161778 0.6036898 0.6470808 0.6509040 0.6822214 -#> [360,] 0.33360306 0.3951510 0.5297383 0.5445057 0.5796505 0.6006658 0.6055141 -#> [361,] 0.17049041 0.5033910 0.5077185 0.6048211 0.6167268 0.6264364 0.6731264 -#> [362,] 0.30195725 0.4376983 0.5229335 0.5471404 0.5548141 0.5564983 0.5812133 -#> [363,] 0.60005117 0.6010209 0.6738717 0.7179053 0.8279851 0.8281021 0.8510822 -#> [364,] 0.66774590 1.3163298 1.4704140 1.4948077 1.4982230 1.5405538 1.5528732 -#> [365,] 0.40688031 0.5753531 0.6290901 0.6897839 0.7227850 0.7229793 0.7529551 -#> [366,] 0.33416754 0.6339668 0.7072508 0.7096127 0.7341859 0.7492985 0.7689684 -#> [367,] 0.77150740 0.8281860 0.8365330 0.8415089 0.8481635 0.8571622 0.8613339 -#> [368,] 0.93525318 0.9501049 1.0214541 1.0440251 1.0497149 1.0786428 1.1421249 -#> [369,] 0.75502011 0.8643716 0.8916613 0.8925923 0.9750515 1.1627505 1.1896890 -#> [370,] 0.41366461 0.5810245 0.6492271 0.6670795 0.7102363 0.7141773 0.7190354 -#> [371,] 0.22947858 0.4005975 0.4329269 0.4377666 0.4958311 0.5414789 0.5570704 -#> [372,] 0.28229287 0.3060863 0.4140120 0.4617932 0.4860057 0.4901277 0.5107906 -#> [373,] 0.42234308 0.4251424 0.6440649 0.6532035 0.6593543 0.6997124 0.7057718 -#> [374,] 0.35705946 0.4944418 0.5227325 0.6337435 0.7313741 0.7448075 0.7467064 -#> [375,] 0.43000568 0.4510068 0.4537805 0.4770084 0.4908308 0.6091098 0.6605649 -#> [376,] 0.70550896 0.8658663 1.0162033 1.1059807 1.1066440 1.1351071 1.1641759 -#> [377,] 0.73231115 0.7330094 0.7646062 0.7711267 0.8413085 0.8651759 0.8653694 -#> [378,] 0.51593162 0.6416642 0.7694242 0.8225500 0.8955663 0.9084808 0.9439012 -#> [379,] 0.46123736 0.5245417 0.6048211 0.6248637 0.6372920 0.7045773 0.7268233 -#> [380,] 0.41684967 0.4332905 0.5386192 0.5518292 0.5708686 0.5978990 0.6011880 -#> [381,] 0.47919111 0.4792568 0.4871539 0.5175486 0.5446453 0.5682192 0.6344623 -#> [382,] 0.48667127 0.5048615 0.5272385 0.5503752 0.5544435 0.5757508 0.6004304 -#> [383,] 1.39237913 1.4389659 1.4775812 1.5511146 1.6401882 1.6666768 1.7071872 -#> [384,] 1.11081929 1.1862048 1.2363080 1.3240156 1.3580938 1.3619310 1.3934562 -#> [385,] 0.84719154 0.9257695 0.9259973 0.9631997 1.0528749 1.1507484 1.2607130 -#> [386,] 0.21549985 0.2927903 0.4528098 0.4554006 0.4847586 0.5067646 0.5147386 -#> [387,] 0.25548771 0.2627143 0.3012077 0.3369672 0.5852312 0.6533586 0.6665172 -#> [388,] 0.38313595 0.4852145 0.5667683 0.5705758 0.5723201 0.5816681 0.5817390 -#> [389,] 0.36776757 0.3820516 0.5654415 0.6478635 0.6581621 0.7580703 0.7614613 -#> [390,] 0.44042104 0.4462403 0.4861098 0.6844823 0.6898711 0.6920427 0.7149602 -#> [391,] 0.37755185 0.4720687 0.4748450 0.6676814 0.6830605 0.7232436 0.7517080 -#> [392,] 0.49303475 0.6282661 0.6352669 0.7280407 0.7822611 0.7883182 0.8423544 -#> [393,] 0.24156076 0.3333525 0.4894152 0.4907465 0.6046438 0.6096974 0.6198758 -#> [394,] 0.75980226 0.9182698 1.0389936 1.0786253 1.0842766 1.1125976 1.1204943 -#> [395,] 0.79131716 0.8450893 0.8701179 0.9600946 0.9620011 1.1613341 1.1650136 -#> [396,] 0.46840057 0.6900040 0.7541661 0.7634109 0.8923103 0.9210998 0.9261443 -#> [397,] 0.39460470 0.4769464 0.4993423 0.5605158 0.5964247 0.6108362 0.6189705 -#> [398,] 0.54175410 0.6101697 0.6214295 0.7347792 0.7857347 0.8037321 0.8482199 -#> [399,] 0.42443846 0.4946278 0.4988318 0.4991808 0.5728891 0.5872002 0.6422448 -#> [400,] 0.40589754 0.5994650 0.6405285 0.6597749 0.7341665 0.7384536 0.7440294 -#> [401,] 0.33547237 0.3876053 0.5448803 0.5742499 0.5754628 0.6805831 0.7048972 -#> [402,] 0.52774869 0.7536813 0.7796129 0.8243505 0.8382165 0.8643576 0.9220884 -#> [403,] 0.61366148 0.6602462 0.7427637 0.7735705 0.8246115 0.8442161 0.8613048 -#> [404,] 0.35215632 0.4564511 0.6322821 0.6395455 0.7042088 0.7094070 0.7266282 -#> [405,] 0.50924156 0.5422210 0.5544217 0.5690209 0.5959135 0.6045659 0.6229129 -#> [406,] 0.57640862 0.7099221 0.7166143 0.7249098 0.7888289 0.8557293 0.8600432 -#> [407,] 0.27916916 0.3484067 0.4446646 0.4531318 0.4875835 0.5116676 0.5139554 -#> [408,] 0.32811395 0.3350727 0.3440006 0.4969256 0.6380791 0.6789776 0.7619706 -#> [409,] 0.33360306 0.4789346 0.4905156 0.5192757 0.5432577 0.5903237 0.6025242 -#> [410,] 0.51734179 0.8135626 0.9046579 0.9546533 0.9682437 1.0339429 1.0568210 -#> [411,] 0.51230855 0.7115000 0.7758929 0.7828679 0.9054288 1.0238655 1.1780441 -#> [412,] 0.56052284 0.6773700 0.9139025 0.9216663 1.0707815 1.0758797 1.1157012 -#> [413,] 0.27429430 0.4174707 0.4715509 0.4769901 0.5313888 0.5681010 0.5757508 -#> [414,] 0.65431994 0.7272521 0.7962587 0.8683901 0.8706834 1.0330764 1.0452828 -#> [415,] 0.52130015 0.5345360 0.6173324 0.6322821 0.6335443 0.7028651 0.7036003 -#> [416,] 0.80280506 0.8307399 0.8473081 0.9751862 0.9957300 1.0787663 1.2395073 -#> [417,] 0.63880966 0.6527405 0.7013672 0.7099813 0.7667526 0.7864823 0.8593760 -#> [418,] 0.17091574 0.2557204 0.4154745 0.4707840 0.4996657 0.5305223 0.6249691 -#> [419,] 0.91355647 0.9407524 1.1901579 1.2092175 1.2215077 1.2843890 1.2951655 -#> [420,] 0.44077352 0.4423909 0.6316720 0.6967569 0.7555210 0.7897678 0.7911129 -#> [421,] 1.18129626 1.1820783 1.2192175 1.2663894 1.4015970 1.4078856 1.5088903 -#> [422,] 0.60188092 0.7306779 0.7614894 0.8201824 0.8507603 0.8563820 0.8624440 -#> [423,] 0.37105317 0.4343819 0.4415877 0.4975265 0.4978055 0.5155221 0.6055141 -#> [424,] 1.03306172 1.0416197 1.0467315 1.1375541 1.2039755 1.2894666 1.2903858 -#> [425,] 0.44637144 0.5257725 0.5597563 0.6685950 0.6792135 0.7737699 0.7910788 -#> [426,] 0.38205163 0.4427894 0.5293472 0.5416102 0.5452154 0.5486471 0.6135617 -#> [427,] 0.92897311 1.4607150 1.7194306 1.7638615 1.8088267 1.8113200 1.8456745 -#> [428,] 0.36893463 0.5189327 0.5674679 0.6249000 0.6716065 0.6980939 0.7404938 -#> [429,] 0.31315190 0.6597764 0.7347792 0.8168133 0.8300385 0.8385543 0.8550615 -#> [430,] 0.56117283 0.9280705 1.0769471 1.0922780 1.2842654 1.3766206 1.4703591 -#> [431,] 0.35991731 0.6071260 0.6503385 0.6590381 0.6897839 0.7125915 0.7392944 -#> [432,] 0.27515565 0.6780247 0.7875097 0.8063710 0.8114488 0.8716991 0.8797149 -#> [433,] 0.32404141 0.4805979 0.5681275 0.5712551 0.5734678 0.5900957 0.6468046 -#> [434,] 0.33579434 0.5409392 0.5437083 0.5716376 0.7179293 0.7368908 0.7704097 -#> [435,] 0.51962096 0.8417451 0.8673370 0.9462979 0.9760531 1.0758839 1.1064294 -#> [436,] 0.35551633 0.5461164 0.6081071 0.7107542 0.7305726 0.7630830 0.7731162 -#> [437,] 0.22473774 0.2619194 0.3630418 0.3737517 0.4401235 0.4417458 0.4634704 -#> [438,] 0.39662159 0.4432703 0.4436377 0.4566741 0.5134027 0.5176712 0.5475328 -#> [439,] 0.24156076 0.4339481 0.4853275 0.5150846 0.5453835 0.5731871 0.6445660 -#> [440,] 0.42629419 0.4269498 0.4917449 0.5967956 0.7033093 0.7925975 0.8220188 -#> [441,] 0.47387022 0.4973497 0.5272385 0.5500262 0.5524280 0.5579955 0.5641639 -#> [442,] 0.69234816 0.8231293 0.8600432 0.8741934 0.8783775 0.9141506 0.9162641 -#> [443,] 0.26578713 0.3455166 0.5271173 0.5728187 0.6090574 0.6193783 0.6266733 -#> [444,] 0.30916496 0.3856758 0.4017785 0.4945967 0.5464797 0.5544855 0.5725951 -#> [445,] 0.50248079 0.5973751 0.6198012 0.7106098 0.7710974 0.7735319 0.7790543 -#> [446,] 0.30696916 0.4064382 0.4439416 0.5047480 0.6406330 0.6714506 0.7422157 -#> [447,] 0.94100371 1.0331354 1.0410825 1.0532556 1.1293918 1.1827213 1.2545704 -#> [448,] 0.85654824 1.1190720 1.1199056 1.1775246 1.1937552 1.2525599 1.2540978 -#> [449,] 0.72588120 0.9358353 0.9492661 1.0811068 1.0912420 1.1134560 1.1234979 -#> [450,] 0.49268324 0.5296746 0.7474774 0.7683373 0.8557396 0.8643716 0.9074240 -#> [451,] 0.40730826 0.4722252 0.4829929 0.5956886 0.6168834 0.6456856 0.6482295 -#> [452,] 0.43750473 0.4411643 0.5386192 0.5570704 0.5666451 0.5785084 0.5869566 -#> [453,] 0.27833841 0.2841270 0.3683553 0.4005975 0.4819972 0.5281680 0.5319935 -#> [454,] 0.55997084 0.6393230 0.7498951 0.7731162 0.8337882 0.8384616 0.8678513 -#> [455,] 0.39223456 0.4003260 0.4009120 0.4256820 0.4335879 0.4368795 0.4841923 -#> [456,] 0.31583768 0.3357943 0.4075892 0.4683504 0.6180513 0.6915943 0.7676689 -#> [457,] 0.19718617 0.2507500 0.2952804 0.4110020 0.4269215 0.4505302 0.4861472 -#> [458,] 0.79403055 0.9079105 0.9744997 1.0245793 1.0396396 1.0684175 1.0798204 -#> [459,] 0.41279177 0.4735638 0.4978055 0.5009526 0.5194236 0.5210512 0.5656646 -#> [460,] 0.18365652 0.3565099 0.3737517 0.4901712 0.5012997 0.5406525 0.5541087 -#> [461,] 0.33777507 0.4185361 0.4500143 0.5213931 0.5732926 0.5733587 0.6311623 -#> [462,] 0.34000005 0.4547087 0.4803415 0.4979181 0.4981605 0.5139271 0.5324105 -#> [463,] 0.50958632 0.5724994 0.5762256 0.5984237 0.6036898 0.6167249 0.6167268 -#> [464,] 0.41791948 0.5207050 0.6310681 0.6748141 0.6753137 0.7997849 0.8257319 -#> [465,] 0.41908392 0.5298873 0.6748081 0.6816221 0.7071701 0.7271169 0.7385645 -#> [466,] 1.34494781 1.5233323 1.5635876 1.6090008 1.7593662 1.7745993 1.8503743 -#> [467,] 0.79853002 0.8112394 0.9556263 1.0278128 1.0292884 1.0529251 1.0797320 -#> [468,] 0.67399602 0.8083640 0.8330092 0.8502555 0.8880128 0.8915497 0.9213053 -#> [469,] 0.63932303 0.6410085 0.7169540 0.8022048 0.8101539 0.8853278 0.8998839 -#> [470,] 0.35517167 0.5000046 0.5068350 0.5085941 0.5143304 0.5251669 0.5482755 -#> [471,] 0.36491652 0.3965035 0.5752258 0.6001995 0.6997092 0.7815906 0.8311178 -#> [472,] 0.36304515 0.5643803 0.5915972 0.6311051 0.6366774 0.6652489 0.6658170 -#> [473,] 0.15272180 0.3878751 0.4335768 0.4719275 0.5506425 0.5845838 0.5928785 -#> [474,] 0.43303048 0.4391350 0.4656768 0.5288773 0.5328568 0.5817674 0.5961361 -#> [475,] 0.53830065 1.1780441 1.1802566 1.1812963 1.3166412 1.3192053 1.3597177 -#> [476,] 0.27692957 0.3539640 0.3934326 0.4327384 0.4391350 0.4641185 0.4707840 -#> [477,] 0.30784366 0.4136345 0.4267375 0.4565310 0.5014282 0.5324105 0.5731336 -#> [478,] 0.14874895 0.3816655 0.5239113 0.6164456 0.6900380 0.6975582 0.7122184 -#> [479,] 0.54272310 0.6060152 0.6884798 0.7072447 0.7911542 0.7989374 0.8566173 -#> [480,] 0.43637557 0.7652942 0.7878777 0.8075332 0.8276442 0.9581094 0.9721621 -#> [481,] 0.30696916 0.3199699 0.3438252 0.4263777 0.4439014 0.5274743 0.6674573 -#> [482,] 0.34551656 0.4346415 0.5532540 0.5643588 0.6144827 0.6421988 0.6648602 -#> [483,] 0.50575352 0.7093871 0.7159460 0.7826749 0.8296502 0.8301152 0.8694828 -#> [484,] 0.39196996 0.4252624 0.6739281 0.7272578 0.7433350 0.7891056 0.8303995 -#> [485,] 0.32267120 0.5123086 0.5447285 0.6203968 0.7115202 0.8486390 0.8656488 -#> [486,] 0.61082321 0.6598523 0.7005643 0.8473081 0.8643576 0.9271097 0.9627590 -#> [487,] 0.37131494 0.5290405 0.6032977 0.6206803 0.6283001 0.6460744 0.6707166 -#> [488,] 0.60423508 0.6226021 1.0455526 1.1612867 1.2450324 1.2661239 1.2846899 -#> [489,] 0.60605455 0.7563084 0.8980437 0.9233367 1.0435580 1.0566689 1.0593198 -#> [490,] 0.38529405 0.5153898 0.5944632 0.6035720 0.6498777 0.6666415 0.6975582 -#> [491,] 0.69234816 0.7206454 0.7888289 0.8132450 0.8274062 0.8489513 0.8564503 -#> [492,] 1.15191239 1.3899942 1.4500010 1.4885976 1.5228824 1.5852860 1.6965329 -#> [493,] 0.56315141 0.6642650 0.6965077 0.6999140 0.7645853 0.7683081 0.7897385 -#> [494,] 0.48583868 1.1109211 1.1695009 1.3133883 1.3257371 1.3295063 1.3357156 -#> [495,] 0.78233201 1.0637702 1.1451020 1.2800477 1.3045123 1.3432057 1.3498040 -#> [496,] 0.58121331 0.5842185 0.5934716 0.7158673 0.7288453 0.8039226 0.8781543 -#> [497,] 0.60144678 0.6523766 0.7815906 0.7855782 0.7883097 0.9350030 0.9439458 -#> [498,] 0.58608188 0.9931059 1.1399638 1.1783841 1.2097972 1.2181288 1.2365478 -#> [499,] 0.63282757 0.6682973 0.6743829 0.7578613 0.7671347 0.7887201 0.8602626 -#> [500,] 0.26265001 0.5356474 0.6421611 0.6772350 0.7457229 0.7951561 0.8453708 -#> [501,] 1.38999419 1.5992446 1.8790500 2.3113869 2.3168782 2.3637341 2.3922669 -#> [502,] 0.32558987 0.4174707 0.4371221 0.4554006 0.4772252 0.5048615 0.5416199 -#> [503,] 0.48461201 0.7215688 0.7433350 0.7617940 0.7680742 0.7905453 0.7961259 -#> [504,] 0.22486970 0.2627143 0.3695717 0.4947433 0.5551474 0.5586764 0.5956886 -#> [505,] 0.68271114 0.8258154 0.8675523 0.9214783 0.9267411 0.9584324 0.9606637 -#> [506,] 0.38713800 0.4160170 0.4167471 0.5416616 0.6201974 0.6218608 0.6513026 -#> [507,] 0.35517167 0.4033861 0.4352831 0.4425477 0.4630983 0.4665478 0.4729722 -#> [508,] 0.21503155 0.4364501 0.5066574 0.5068288 0.5470138 0.5629381 0.5653868 -#> [509,] 1.35540675 1.3651020 1.4498864 1.4697750 1.4866551 1.6000226 1.6029319 -#> [510,] 1.12729374 1.1422187 1.1849896 1.2738890 1.2847577 1.2913047 1.3467737 -#> [511,] 0.33004290 0.3838357 0.5194236 0.5339004 0.5774565 0.6389957 0.6516153 -#> [512,] 0.87751687 1.0572218 1.1211695 1.1232132 1.2340452 1.2617497 1.2899045 -#> [513,] 1.26501290 1.2800477 1.3927728 1.4072841 1.4812533 1.4894414 1.5189249 -#> [514,] 0.32349377 0.4353077 0.5567052 0.5573627 0.5938147 0.5940007 0.6354609 -#> [515,] 0.46681568 0.4981513 0.5804492 0.5870340 0.6382426 0.6558298 0.6613072 -#> [516,] 0.48176089 0.4981513 0.6124427 0.6951015 0.6968820 0.7107325 0.7603987 -#> [517,] 0.56275897 0.7327818 0.7415040 0.7746998 0.7948028 0.8078147 0.8275757 -#> [518,] 0.43645014 0.4427498 0.4582420 0.4617395 0.4696348 0.4860057 0.4869942 -#> [519,] 0.30195725 0.3064522 0.4834773 0.5319833 0.5844000 0.5934716 0.6602826 -#> [520,] 0.34872796 0.4696348 0.5094419 0.5328879 0.5508058 0.5596657 0.5667683 -#> [521,] 0.22486970 0.3012077 0.4638763 0.4827970 0.5581506 0.5857969 0.6168834 -#> [522,] 0.34718697 0.4734484 0.4759376 0.4821902 0.4981192 0.5919049 0.6765002 -#> [523,] 0.37119003 0.4042716 0.4167471 0.6327125 0.6424517 0.6451651 0.6544454 -#> [524,] 0.49883178 0.5564145 0.6133631 0.6188844 0.6548673 0.6671413 0.7107542 -#> [525,] 0.51487828 0.7055090 0.7121909 0.7625581 0.8078147 0.8712902 0.9196127 -#> [526,] 0.26233166 0.3301814 0.5477472 0.5644013 0.5652963 0.6095633 0.6419645 -#> [527,] 0.44657063 0.5469588 0.6504423 0.7273693 0.9348490 0.9960069 1.0127452 -#> [528,] 0.55221954 0.6227255 0.6748081 0.6885028 0.6898711 0.6936241 0.6971507 -#> [529,] 0.60601516 0.6747779 0.7274967 0.7710522 0.7746791 0.7761110 0.7761581 -#> [530,] 0.96348909 1.0005127 1.1531303 1.1819835 1.2705730 1.2881013 1.3097788 -#> [531,] 0.51614723 0.5859331 0.6091953 0.6416642 0.6484656 0.7493636 0.7608141 -#> [532,] 0.52734415 0.5752258 0.6201989 0.6509948 0.7475855 0.7848703 0.8374849 -#> [533,] 0.22768949 0.4755288 0.5001598 0.5267358 0.5417933 0.5707032 0.6032977 -#> [534,] 0.17308916 0.3775519 0.4374424 0.4842991 0.5473634 0.5522140 0.5544129 -#> [535,] 0.27366290 0.4910223 0.5432577 0.5697910 0.6618646 0.7108046 0.7424222 -#> [536,] 0.82986354 0.8525027 0.8694440 0.8770413 0.8785766 0.9407524 0.9698302 -#> [537,] 0.50957678 0.5401574 0.5591449 0.5853550 0.6122867 0.8077789 0.8343363 -#> [538,] 0.36353777 0.3804196 0.4706606 0.4781166 0.4842991 0.5207731 0.5435039 -#> [539,] 0.12432811 0.4799947 0.7927098 0.8045342 0.8104586 0.8335825 0.8565542 -#> [540,] 0.39267342 0.5104084 0.5539836 0.5571402 0.6095633 0.6229590 0.6637908 -#> [541,] 0.28212285 0.2891919 0.4649396 0.5648903 0.5664279 0.5829420 0.6284229 -#> [542,] 0.99208071 1.0640377 1.1408177 1.2567472 1.2610097 1.2973438 1.3444573 -#> [543,] 0.48996733 0.5606936 0.5728755 0.6760014 0.7544363 0.7715961 0.7818113 -#> [544,] 0.22723214 0.3977784 0.4259536 0.4369957 0.5030719 0.5087297 0.5148810 -#> [545,] 0.32764986 0.3947949 0.3989610 0.4436377 0.5049733 0.5212736 0.5482755 -#> [546,] 0.38903127 0.4299702 0.4647006 0.4800804 0.5080255 0.5473492 0.6005693 -#> [547,] 0.22075267 0.3000063 0.6380791 0.6999140 0.7695203 0.7772380 0.7839562 -#> [548,] 0.54444892 0.7026799 0.7865930 0.8482936 0.8593760 0.8771458 0.9025465 -#> [549,] 0.41975680 0.5425809 0.6484656 0.6700281 0.6740985 0.7462301 0.7625581 -#> [550,] 0.44410572 0.4786823 0.5505203 0.6208388 0.7245477 0.7528892 0.8241554 -#> [551,] 0.34765690 0.4860027 0.5374429 0.5498394 0.5611247 0.5674918 0.5913260 -#> [552,] 0.25761193 0.2839479 0.4359787 0.4500779 0.5492644 0.6073729 0.6101469 -#> [553,] 0.32458341 0.4294108 0.4755666 0.4790972 0.5430447 0.5497086 0.5698945 -#> [554,] 0.30000634 0.3440006 0.3895970 0.5069029 0.6480851 0.6545683 0.7117059 -#> [555,] 0.57083623 0.6741173 0.7033093 0.7443693 0.7894831 0.7964902 0.8458878 -#> [556,] 0.51508459 0.5199321 0.5402096 0.5418139 0.5784783 0.6096974 0.6549053 -#> [557,] 0.35322004 0.4095795 0.6571445 0.7186039 0.7256993 0.7310167 0.7931390 -#> [558,] 1.73915157 2.0895044 2.1799612 2.2052621 2.2889129 2.3213603 2.3241489 -#> [559,] 0.32678210 0.5064336 0.5544217 0.6344623 0.6354370 0.6742242 0.6952326 -#> [560,] 0.25389733 0.4095795 0.4867599 0.5728891 0.5757414 0.6128420 0.6201974 -#> [561,] 0.57920643 0.6609895 0.7130723 0.7608231 0.8280994 0.8915774 0.9119757 -#> [562,] 0.33004290 0.3951510 0.4803121 0.5113439 0.5922088 0.6058663 0.6105139 -#> [563,] 0.29619568 0.6414745 0.6818945 0.7300882 0.7494630 0.7524761 0.8068922 -#> [564,] 0.28390248 0.3352527 0.4368724 0.4797075 0.5452154 0.5546065 0.5663818 -#> [565,] 1.70387685 1.8756984 1.9238217 1.9351767 2.0168327 2.0358703 2.0389652 -#> [566,] 0.50368519 0.5164336 0.5711820 0.6091953 0.6135240 0.6179733 0.6527461 -#> [567,] 0.27429430 0.3579049 0.4233858 0.4472829 0.4561306 0.4772252 0.4890375 -#> [568,] 0.36176548 0.4923406 0.4991808 0.5343824 0.5415747 0.5455492 0.5481736 -#> [569,] 0.58372918 0.5984751 0.6508299 0.6699247 0.7298699 0.7735197 0.8480297 -#> [570,] 0.38920400 0.6251328 0.7517080 0.7609491 0.7827158 0.8434251 0.8563041 -#> [571,] 0.44136721 0.5160107 0.5731316 0.5940345 0.6567246 0.6588093 0.6591535 -#> [572,] 0.33373156 0.4814404 0.5521197 0.7448075 0.7741427 0.7927559 0.8362222 -#> [573,] 0.23416207 0.4356454 0.5688117 0.5912199 0.5929949 0.5965354 0.6701969 -#> [574,] 0.46386001 0.4905156 0.5672952 0.6115767 0.6319799 0.6335443 0.6418135 -#> [575,] 0.44102183 0.5958669 0.6523323 0.6539635 0.7169540 0.7502026 0.7989667 -#> [576,] 0.22003989 0.5764086 0.5800283 0.6960439 0.6992767 0.7734542 0.7760067 -#> [577,] 0.52787810 0.8656258 1.0886843 1.1303904 1.1652766 1.1992359 1.2040200 -#> [578,] 0.33537141 0.4310171 0.4855791 0.5043320 0.5506841 0.6286606 0.6449115 -#> [579,] 0.48106688 0.6400865 0.6602727 0.6610452 0.6643364 0.6676988 0.6725714 -#> [580,] 0.40229399 0.4831555 0.5020988 0.5160107 0.5657945 0.5793657 0.5832154 -#> [581,] 0.35648607 0.5155221 0.5430369 0.5512025 0.5672378 0.5931377 0.6105139 -#> [582,] 0.27012072 0.4017908 0.4559433 0.4892858 0.4946278 0.5128846 0.5350863 -#> [583,] 0.35868385 0.4425961 0.6264364 0.6395027 0.6446911 0.6611604 0.6894536 -#> [584,] 0.55815062 0.5852312 0.6701959 0.6814269 0.7058457 0.7367348 0.7549490 -#> [585,] 0.44657063 0.4577985 0.7049280 0.7064780 0.7427919 0.7677238 0.7866158 -#> [586,] 0.33284522 0.3968305 0.5929588 0.6385466 0.6502117 0.6619225 0.7842259 -#> [587,] 0.17308916 0.3946946 0.4523318 0.4748450 0.4781166 0.5063630 0.5519264 -#> [588,] 0.77900189 0.7890183 0.8378151 0.8851613 0.8899777 0.9409221 1.0251435 -#> [589,] 0.56786474 0.5713880 0.6050779 0.6742909 0.6922978 0.7159223 0.7236839 -#> [590,] 1.28990446 1.4368071 1.4372491 1.6684753 1.6883546 1.7540976 1.8215611 -#> [591,] 0.34060381 0.3857767 0.4285865 0.4323910 0.5243204 0.5416102 0.5619075 -#> [592,] 0.44624031 0.4964189 0.6007497 0.6597749 0.6793760 0.7046408 0.7064299 -#> [593,] 0.16044299 0.2337616 0.3989610 0.4425961 0.4827286 0.5134027 0.5305207 -#> [594,] 0.23433208 0.2507500 0.3647389 0.3863603 0.4060251 0.4638805 0.4706503 -#> [595,] 0.17597548 0.4429149 0.4458199 0.5008248 0.6135240 0.6417925 0.6768346 -#> [596,] 0.46274619 0.5643122 0.7634109 0.7683373 0.8060857 0.8275630 0.8577206 -#> [597,] 0.48996733 0.5210512 0.5406958 0.5489483 0.5774565 0.7836787 0.8296072 -#> [598,] 0.22768949 0.5449690 0.5478941 0.5777244 0.5915972 0.6030622 0.6073392 -#> [599,] 0.83371889 0.8694239 0.8819580 0.9786088 0.9887986 1.0007794 1.1333100 -#> [600,] 0.26035703 0.5574171 0.6283340 0.6793788 0.6816118 0.7125412 0.7249124 -#> [601,] 0.37701435 0.3873969 0.4454083 0.5852220 0.6213244 0.6464179 0.6551963 -#> [602,] 0.18365652 0.2247377 0.2577553 0.3864874 0.4023448 0.5241576 0.5414872 -#> [603,] 0.43366031 0.6522712 0.8378151 0.8617993 0.8700834 0.9045392 1.0198042 -#> [604,] 0.69993429 0.7284301 0.9402911 1.1137788 1.1158997 1.1169389 1.1244440 -#> [605,] 0.29951135 0.3365124 0.4805783 0.4852801 0.4947778 0.5059454 0.5593715 -#> [606,] 0.24308049 0.3369672 0.4299477 0.4368795 0.5183246 0.5551474 0.5619075 -#> [607,] 0.44525949 0.8932878 0.9821860 1.0011803 1.0103385 1.0981862 1.1486406 -#> [608,] 0.59405249 0.6543199 0.6553937 0.7091526 0.8328801 0.8486597 0.8609763 -#> [609,] 1.02977260 1.2619621 1.2667554 1.4606998 1.5334449 1.5560651 1.5957530 -#> [610,] 0.35144018 0.5686196 0.5780670 0.6654444 0.8031539 0.8919497 0.8937318 -#> [611,] 0.39294411 0.4329269 0.4807848 0.4819972 0.4849148 0.5227979 0.5640177 -#> [612,] 0.46886255 0.5946286 0.6971507 0.7394289 0.7854985 0.8576131 0.9304374 -#> [613,] 0.51490569 0.5511763 0.9546355 1.1132546 1.1169389 1.1330129 1.2553011 -#> [614,] 0.44559324 0.5293639 0.5361539 0.5733587 0.7285486 0.7346014 0.7350405 -#> [615,] 0.33760424 0.3771229 0.5694851 0.6053445 0.6638629 0.7151035 0.7352688 -#> [616,] 0.37489759 0.6153700 0.6522712 0.6900040 0.7691259 0.7830058 0.8490819 -#> [617,] 0.38785383 0.4255550 0.5361624 0.6440649 0.6580717 0.6705406 0.6816118 -#> [618,] 0.33543684 0.3541546 0.4724177 0.5725951 0.6208388 0.6248876 0.6351238 -#> [619,] 0.49870522 0.5469588 0.7579067 0.7694242 0.7866158 0.8033215 0.9437138 -#> [620,] 0.45415534 0.6671930 0.6792135 0.6862691 0.7155112 0.7678281 0.7826749 -#> [621,] 0.33984133 0.4188059 0.4377666 0.4584733 0.4993423 0.5206577 0.5281680 -#> [622,] 0.32404141 0.4348363 0.5456857 0.5670290 0.5897818 0.6090094 0.6204706 -#> [623,] 0.43463282 0.4849148 0.6283340 0.6380633 0.6411111 0.6772921 0.7280407 -#> [624,] 0.24047378 0.2949672 0.4734230 0.4836585 0.4855279 0.5226528 0.5671062 -#> [625,] 0.38832700 0.6122867 0.6906560 0.8819580 0.9070997 0.9280705 0.9724704 -#> [626,] 0.31996990 0.4064382 0.4194307 0.5095882 0.6187073 0.6682280 0.6765002 -#> [627,] 0.21601832 0.4441057 0.4724177 0.4945967 0.5062977 0.5134793 0.5488952 -#> [628,] 0.17402163 0.2367911 0.4004923 0.4353077 0.4847487 0.4869942 0.4950905 -#> [629,] 0.80130051 0.8168133 0.8360590 0.9012890 0.9719824 0.9892314 1.0326790 -#> [630,] 0.33886686 0.6463297 0.6651778 0.7060388 0.7318452 0.7538065 0.7692197 -#> [631,] 0.34201350 0.3591081 0.4149334 0.4231522 0.4760790 0.4992524 0.5132158 -#> [632,] 0.49883170 0.7197396 0.7218012 0.7508510 0.7842259 0.7848501 0.7930338 -#> [633,] 0.40473610 0.4956102 0.7398657 0.8165282 0.9339677 0.9609719 1.0370421 -#> [634,] 0.48667127 0.5674285 0.5851370 0.6052577 0.6083226 0.6202031 0.6234698 -#> [635,] 0.32803844 0.3965035 0.5484068 0.5868525 0.6253015 0.6509948 0.6716849 -#> [636,] 0.56052284 0.6385466 0.6993452 0.7218012 0.7321719 0.8379912 0.8791882 -#> [637,] 0.60666145 0.6115239 0.6960439 0.7364444 0.7907865 0.8651759 0.9106117 -#> [638,] 0.90824995 0.9976108 1.0257840 1.0490677 1.0991771 1.1008939 1.1014870 -#> [639,] 0.74307655 0.9445222 0.9865465 1.0185952 1.0381068 1.0908697 1.1027061 -#> [640,] 0.64291176 0.6669140 0.7011364 0.7486184 0.7557675 0.8058338 0.8103042 -#> [641,] 0.35605581 0.4814404 0.7876294 0.7985339 0.8573493 0.9576553 0.9659746 -#> [642,] 0.79311997 0.7989374 0.8668125 0.8767005 0.8896757 0.9194493 0.9435230 -#> [643,] 0.29279031 0.3544750 0.3700009 0.4719275 0.5045860 0.5201948 0.5427308 -#> [644,] 0.43637557 0.4827970 0.4947433 0.7024931 0.7082306 0.7102383 0.7503552 -#> [645,] 0.38434723 0.4441885 0.5685905 0.5852424 0.5996315 0.6418135 0.6847756 -#> [646,] 0.75806006 0.7767205 0.7881615 0.8075945 0.8449039 0.9816106 0.9991894 -#> [647,] 0.34015775 0.4648615 0.5660205 0.6646483 0.6967569 0.7338786 0.7546331 -#> [648,] 0.54015739 0.6906560 0.7470331 0.7691937 0.8596595 0.8851544 0.8855184 -#> [649,] 0.21401924 0.3291718 0.3406038 0.4113986 0.4169955 0.4256820 0.4330305 -#> [650,] 1.21571383 1.6228459 1.7779071 1.8151949 1.8291248 1.8450162 1.9125968 -#> [651,] 0.73862833 0.7855138 0.8135626 0.9202073 0.9247456 1.0629530 1.1103865 -#> [652,] 0.48695987 0.4969256 0.5372878 0.5698973 0.6480851 0.6495004 0.6571974 -#> [653,] 0.59394151 0.6429569 0.6469902 0.6594809 0.6669274 0.6801128 0.7318452 -#> [654,] 0.71059489 0.7913172 0.8570968 0.9106875 0.9401968 0.9611286 0.9756189 -#> [655,] 0.19780375 0.3078437 0.3579763 0.4318495 0.4531874 0.5124364 0.5570000 -#> [656,] 0.33018138 0.3567649 0.4992524 0.5149747 0.5353460 0.5900000 0.6121609 -#> [657,] 0.36776757 0.4427894 0.5663868 0.5770576 0.6664361 0.7138950 0.7603336 -#> [658,] 0.39142869 0.4601763 0.4863964 0.5127744 0.5638167 0.5713538 0.5737622 -#> [659,] 0.46493959 0.5561894 0.7030695 0.7118153 0.7135524 0.7341962 0.7462063 -#> [660,] 0.21401924 0.2281317 0.3397789 0.4009120 0.4742309 0.5243204 0.5328568 -#> [661,] 0.44464332 0.4574371 0.4834773 0.5054884 0.5055472 0.5161832 0.5229335 -#> [662,] 0.32267120 0.5252603 0.7263464 0.7772791 0.7828679 0.7894459 0.8005508 -#> [663,] 0.23163085 0.3125665 0.3891389 0.4232646 0.4854022 0.5116676 0.5146067 -#> [664,] 1.68507968 1.7320149 1.8154012 1.8993829 1.9175140 1.9931019 2.0122906 -#> [665,] 0.37105317 0.3822649 0.4080247 0.5637485 0.5686945 0.5851032 0.6203053 -#> [666,] 1.26596347 1.2987503 1.3163879 1.3481555 1.4350144 1.4667450 1.5794637 -#> [667,] 0.38172029 0.5221992 0.6277827 0.6597764 0.6713917 0.6715206 0.7095495 -#> [668,] 0.41705624 0.4903407 0.5305223 0.5740756 0.5962643 0.5976732 0.6198012 -#> [669,] 0.37131494 0.4369859 0.4755288 0.5471576 0.5577912 0.5801553 0.6030622 -#> [670,] 0.68142692 0.7803132 0.8450893 0.9206161 0.9284356 0.9300096 0.9300310 -#> [671,] 0.31315190 0.5417541 0.7687094 0.7741071 0.8012836 0.8145714 0.8155763 -#> [672,] 0.39515951 0.4564511 0.6069523 0.6405285 0.7031803 0.7632962 0.7708018 -#> [673,] 0.66039001 0.6856915 0.8041277 0.9437138 0.9860807 0.9920807 1.0049737 -#> [674,] 0.33284522 0.5010170 0.6251130 0.6716530 0.7409058 0.7854566 0.7930338 -#> [675,] 0.38434723 0.4322912 0.4638600 0.5213002 0.5800283 0.6553089 0.6577880 -#> [676,] 0.54611205 0.6339835 0.7537169 0.7589348 0.8409048 0.8528875 0.8586295 -#> [677,] 0.36503326 0.4182829 0.4523318 0.5180707 0.5275571 0.5544129 0.6218384 -#> [678,] 0.24648209 0.5618274 0.5625347 0.6759686 0.7198735 0.7292775 0.7603987 -#> [679,] 0.58608188 0.7796129 0.7855138 0.8454423 0.9682437 1.0820030 1.0851767 -#> [680,] 0.48666539 0.4902983 0.6471791 0.7160836 0.7306741 0.7505155 0.7845608 -#> [681,] 0.27087776 0.3374291 0.4033739 0.4368724 0.5486471 0.5625667 0.5654415 -#> [682,] 0.57372655 0.8000399 0.9717136 0.9758373 1.0200868 1.0596932 1.1610597 -#> [683,] 0.45429280 0.4655817 0.7009357 0.7498951 0.8086566 0.8632858 0.8719987 -#> [684,] 0.46307271 0.5994650 0.6273540 0.7221424 0.7638539 0.7792963 0.8033483 -#> [685,] 0.49907726 0.5940525 0.6827111 0.7004509 0.8277587 0.8280008 0.8723819 -#> [686,] 1.50596458 1.5657095 1.5754641 1.6338610 1.7295999 1.7931603 1.8113775 -#> [687,] 0.41975680 0.4354461 0.5148783 0.7302572 0.7369999 0.7374324 0.7415040 -#> [688,] 0.51993210 0.6507086 0.6613144 0.6682973 0.6854089 0.6890310 0.7054623 -#> [689,] 0.41315968 0.4482383 0.4526669 0.6122105 0.6367922 0.6531001 0.6671413 -#> [690,] 0.59022782 0.6389957 0.6434926 0.7062934 0.7356794 0.7406443 0.7555210 -#> [691,] 0.36786814 0.4817609 0.6667033 0.6692368 0.7221679 0.7474076 0.7715780 -#> [692,] 0.47593764 0.5066934 0.5228171 0.6133590 0.6682280 0.6710433 0.6933420 -#> [693,] 0.34015775 0.5309749 0.6754314 0.6866783 0.7454285 0.8355015 0.8627002 -#> [694,] 0.44287676 0.5719344 0.6496431 0.7229793 0.7558851 0.7563084 0.8101539 -#> [695,] 0.43712215 0.4553386 0.5641639 0.6392469 0.6439245 0.6870271 0.7060563 -#> [696,] 0.14706566 0.4455320 0.4473325 0.4511470 0.4564653 0.4728753 0.4769149 -#> [697,] 0.65371596 0.8360590 0.8482199 0.8656258 0.8673346 0.9124285 0.9252556 -#> [698,] 0.42443846 0.4867599 0.5343824 0.5512543 0.5709348 0.6297882 0.6391369 -#> [699,] 0.30035462 0.4965954 0.5705094 0.6069573 0.6560051 0.7111043 0.7248677 -#> [700,] 0.23566961 0.2962470 0.3037289 0.3804423 0.4329317 0.4957784 0.5218996 -#> [701,] 0.34791594 0.4423909 0.6339192 0.7711267 0.8043722 0.8176418 0.8193722 -#> [702,] 0.38410060 0.4346415 0.5680075 0.6310681 0.6459038 0.6606776 0.6892405 -#> [703,] 0.89461960 1.1036450 1.1944454 1.2430173 1.2445042 1.3393180 1.3762091 -#> [704,] 0.36525783 0.5024808 0.5359625 0.6964333 0.7860382 0.8233114 0.8387448 -#> [705,] 0.56182959 0.5877482 0.7154758 0.8000923 0.8829692 0.9316102 0.9406988 -#> [706,] 0.52711728 0.5500002 0.5625617 0.6038029 0.6144827 0.6606776 0.6733218 -#> [707,] 0.25775535 0.2967886 0.3565099 0.3630418 0.5500049 0.5858786 0.5937395 -#> [708,] 0.45587612 0.4683504 0.5025979 0.5197292 0.5459429 0.5716376 0.5886034 -#> [709,] 0.50575352 0.5658166 0.5931351 0.6119784 0.6813854 0.6862691 0.7420654 -#> [710,] 0.46886255 0.5376504 0.6598523 0.6818975 0.7356749 0.7961273 0.8070495 -#> [711,] 0.69264027 0.7333815 0.9616452 1.1140323 1.1178551 1.1265248 1.1347521 -#> [712,] 0.52774869 0.7639499 0.8649104 0.8873985 0.8907783 0.9271097 0.9462811 -#> [713,] 0.22952545 0.2952804 0.2981954 0.3316853 0.4060251 0.4816673 0.5045860 -#> [714,] 0.33706501 0.5484259 0.5824204 0.6410320 0.6418896 0.6458494 0.6616116 -#> [715,] 0.89731375 1.0537978 1.0872180 1.1281765 1.2874463 1.3430162 1.4573941 -#> [716,] 0.45879487 0.5779698 0.6209997 0.6790274 0.7966283 0.8060857 0.8867858 -#> [717,] 0.35637992 0.3945140 0.4154745 0.4335879 0.4409417 0.5278541 0.5740247 -#> [718,] 0.66195643 0.6783787 0.7290759 0.7430766 0.8105196 0.8730697 0.9213143 -#> [719,] 0.32942541 0.3510939 0.5217597 0.5319833 0.5348828 0.5535397 0.5548141 -#> [720,] 0.28226619 0.7007640 0.8111915 0.8873127 0.9021124 0.9370842 0.9768958 -#> [721,] 0.19718617 0.2343321 0.3316853 0.3704672 0.4115678 0.4458681 0.4720348 -#> [722,] 0.36214779 0.3668483 0.3811909 0.4201479 0.4531318 0.4936062 0.5059454 -#> [723,] 0.56070439 0.5842185 0.7960508 0.8029320 0.8727750 0.9239359 0.9257695 -#> [724,] 0.45533863 0.4964189 0.5417933 0.5471576 0.5526583 0.6159372 0.6252936 -#> [725,] 0.17091574 0.2325982 0.4170562 0.4409417 0.5799450 0.5900520 0.6431570 -#> [726,] 0.30569236 0.4472829 0.4694141 0.5611247 0.5643803 0.5823287 0.6055500 -#> [727,] 0.49841470 0.5978341 0.6058621 0.7401596 0.7509420 0.7776361 0.8039289 -#> [728,] 0.55017438 0.5645975 0.6441751 0.6565390 0.6603900 0.6950564 0.7211326 -#> [729,] 0.56164157 0.5737265 0.6881103 0.7450978 0.7895455 0.9096213 0.9724750 -#> [730,] 0.34414173 0.4000386 0.4302289 0.4855279 0.5030719 0.5269430 0.5926604 -#> [731,] 0.62029301 0.6352669 0.6380633 0.7147159 0.7249124 0.7291427 0.7433481 -#> [732,] 0.45779847 0.6922978 0.6950564 0.7096315 0.7226073 0.7273693 0.7833891 -#> [733,] 0.63826410 0.7682346 0.7960508 0.8937318 1.0084275 1.1145695 1.1332786 -#> [734,] 0.67165298 0.6951862 0.7007640 0.7114757 0.8941862 0.9199336 0.9738467 -#> [735,] 0.33777507 0.4482289 0.5056059 0.5320780 0.5597726 0.6534410 0.6739281 -#> [736,] 0.69442557 0.8149391 0.8167236 0.8786131 0.9513195 0.9557853 0.9811198 -#> [737,] 0.26835689 0.3334680 0.3621478 0.4549819 0.4769149 0.4854022 0.4865940 -#> [738,] 0.49268324 0.6837906 0.9234186 0.9441428 1.0225519 1.1003096 1.1280842 -#> [739,] 1.29539934 1.8722235 1.9284252 2.0010740 2.0750523 2.1162269 2.1169820 -#> [740,] 0.51734193 0.6642650 0.7704097 0.8122535 0.8581814 0.8711888 0.8950791 -#> [741,] 0.34511877 0.3878751 0.4791911 0.4892858 0.4923406 0.4952032 0.5455918 -#> [742,] 0.35403636 0.4285535 0.5277485 0.5305939 0.5498010 0.5503752 0.5640177 -#> [743,] 0.57535311 0.6563266 0.6590381 0.6714506 0.7532099 0.8052437 0.8501118 -#> [744,] 0.51734179 0.7632962 0.8085228 0.8315996 0.8591507 0.8649104 0.9220884 -#> [745,] 0.32917180 0.3397789 0.3876899 0.3922346 0.4001949 0.4299477 0.4323910 -#> [746,] 0.64667460 0.6835879 0.6979654 0.8804967 0.9374665 0.9778351 0.9948617 -#> [747,] 0.44136721 0.5503266 0.6124585 0.6458406 0.6666177 0.6790456 0.6853860 -#> [748,] 0.82415540 0.8868312 1.0763748 1.1582749 1.1680500 1.2156539 1.2208195 -#> [749,] 0.41493342 0.4700809 0.4869599 0.5400945 0.5436498 0.5573906 0.5594085 -#> [750,] 0.46799293 0.5034560 0.5217597 0.6771774 0.7306261 0.7400928 0.7437343 -#> [751,] 0.58434221 0.6646158 0.6969564 0.7237858 0.7355400 0.7586271 0.7755287 -#> [752,] 0.53830065 1.3152491 1.4967682 1.5136034 1.5573514 1.6377122 1.6517498 -#> [753,] 0.33760424 0.3991980 0.4598256 0.5265409 0.6790456 0.7613518 0.8217289 -#> [754,] 0.23008354 0.3640111 0.4975521 0.5126158 0.5339640 0.5841814 0.6017285 -#> [755,] 0.54471650 0.6192503 0.6313910 0.6351238 0.7059582 0.7568730 0.7921023 -#> [756,] 0.35086757 0.5386034 0.5628925 0.5704743 0.5749911 0.5831288 0.6768378 -#> [757,] 0.45429280 0.4841030 0.7173158 1.0579114 1.1550930 1.1706918 1.2055242 -#> [758,] 0.41684967 0.4346328 0.5227979 0.5574171 0.5642680 0.5748597 0.6105969 -#> [759,] 0.22723214 0.2321507 0.3441417 0.4547368 0.4606442 0.4972859 0.5295162 -#> [760,] 0.22075267 0.3895970 0.6789776 0.7645853 0.7901658 0.8013009 0.8486597 -#> [761,] 0.81532947 0.8531185 0.8577187 0.8617993 0.8923103 0.8946196 0.9825679 -#> [762,] 0.28142206 0.3683553 0.4934612 0.5206577 0.5777682 0.6004304 0.6115999 -#> [763,] 0.38313595 0.4004923 0.4295142 0.4470150 0.4973108 0.5328879 0.5470138 -#> [764,] 0.85570464 0.8876872 0.8948302 1.0199801 1.0230997 1.0844723 1.1143924 -#> [765,] 0.92943659 0.9304374 1.0307765 1.2157138 1.2584467 1.2722371 1.3115574 -#> [766,] 0.51734193 0.7179293 0.7347693 0.8160029 0.8686874 0.8732938 0.9418266 -#> [767,] 0.24648209 0.6124427 0.6414745 0.6667033 0.6792825 0.7024752 0.7242682 -#> [768,] 0.34841500 0.3541546 0.5134793 0.5470445 0.6012403 0.6016000 0.6136057 -#> [769,] 0.52454319 0.5877482 0.6497930 0.6978403 0.8646325 0.9219122 0.9685776 -#> [770,] 0.33177611 0.3514778 0.4325350 0.4337352 0.4599327 0.4638805 0.4926394 -#> [771,] 0.46283211 0.4734484 0.5095768 0.6294922 0.6707089 0.6725714 0.6949184 -#> [772,] 0.38383571 0.3946035 0.5009526 0.5489483 0.5762502 0.6377344 0.6440527 -#> [773,] 0.37711935 0.4566741 0.5215421 0.5586764 0.5766874 0.6164888 0.6767031 -#> [774,] 0.38993683 0.6628639 0.6891124 0.7015497 0.7302572 0.7341874 0.7989318 -#> [775,] 0.83110582 0.9107652 0.9549498 1.0660545 1.0960889 1.1519532 1.1663112 -#> [776,] 0.28984342 0.3565893 0.4464113 0.4694526 0.5826878 0.5859595 0.5972087 -#> [777,] 0.31299205 0.3510939 0.4679929 0.4706264 0.5949997 0.6361994 0.6766829 -#> [778,] 0.35551633 0.3985222 0.5564145 0.6008991 0.6470808 0.6550018 0.6857016 -#> [779,] 0.95562635 1.2624698 1.4753414 1.7136959 1.7248187 1.7823646 1.8136329 -#> [780,] 0.42611375 0.6624952 0.7154758 0.8839687 0.9812302 0.9990435 1.0114281 -#> [781,] 0.79814003 0.9909280 1.0555764 1.0578797 1.1204943 1.1938586 1.1983328 -#> [782,] 0.58535499 0.7279623 0.7475855 0.8526947 0.8637983 0.8680231 0.8855184 -#> [783,] 0.21792988 0.4455932 0.4849461 0.6027970 0.6261556 0.6593693 0.6599585 -#> [784,] 0.38993683 0.5612824 0.7160182 0.8346796 0.8980437 0.9196127 0.9264201 -#> [785,] 0.43300503 0.4441885 0.4714800 0.5229825 0.5421546 0.5926604 0.6107581 -#> [786,] 0.28212285 0.4773151 0.5561894 0.5812558 0.6418716 0.6531730 0.6551963 -#> [787,] 0.38701647 0.4429149 0.5794177 0.6179733 0.7015497 0.7045773 0.7493636 -#> [788,] 0.22126147 0.4290754 0.4299702 0.4498610 0.5164665 0.5368604 0.5377246 -#> [789,] 0.27916916 0.3565893 0.3891389 0.3904213 0.4800280 0.5232374 0.5258567 -#> [790,] 0.36237544 0.5245432 0.7106098 0.8368973 0.8374019 0.8462018 0.8829692 -#> [791,] 0.50847764 0.5532540 0.5913410 0.6471791 0.6507086 0.6737630 0.7578613 -#> [792,] 0.34638187 0.3635378 0.3650333 0.4520274 0.4780638 0.5063630 0.5364357 -#> [793,] 0.96471043 1.1238617 1.1670605 1.2363080 1.3438715 1.4656662 1.5202666 -#> [794,] 0.39442631 0.5672525 0.5940007 0.6562407 0.6613072 0.7771895 0.8676490 -#> [795,] 0.44218243 0.4562070 0.4597380 0.4941077 0.4971177 0.5149583 0.5182899 -#> [796,] 0.46309833 0.4734599 0.4770930 0.4929153 0.4938839 0.5049733 0.5068350 -#> [797,] 0.35327797 0.4821675 0.5343740 0.5368604 0.5838635 0.5845838 0.5888128 -#> [798,] 0.44077352 0.4648615 0.5268685 0.5676076 0.5943828 0.6339192 0.6705211 -#> [799,] 0.43483633 0.4369859 0.4812532 0.4849461 0.4924158 0.5734678 0.5745182 -#> [800,] 0.22500973 0.4127918 0.4415877 0.5176093 0.5338640 0.5512025 0.5625347 -#> [801,] 0.33651243 0.4317180 0.4334976 0.4602431 0.4944497 0.5258567 0.5421749 -#> [802,] 0.30996952 0.4079894 0.4082440 0.5007269 0.5075303 0.5519626 0.5956112 -#> [803,] 0.42078874 0.4458199 0.5007269 0.5594309 0.5710308 0.5931351 0.6654464 -#> [804,] 0.46681568 0.5594014 0.5645912 0.5680787 0.7353619 0.7524761 0.7629788 -#> [805,] 0.67438290 0.8576244 0.8710689 1.0787180 1.0813341 1.1490374 1.1719507 -#> [806,] 0.63398347 0.7658092 0.8245560 0.8568136 0.8746828 0.9278684 0.9469909 -#> [807,] 0.79403055 1.2538734 1.3409049 1.3886341 1.4143776 1.6039930 1.6385793 -#> [808,] 0.39196996 0.6492271 0.7006185 0.7617940 0.7707938 0.7958265 0.8086566 -#> [809,] 0.53559259 0.5987499 0.6718302 0.6761828 0.6896680 0.6905674 0.6947258 -#> [810,] 0.21910513 0.4110020 0.4115678 0.4192902 0.5068288 0.5347966 0.5386177 -#> [811,] 0.31452038 0.6963547 0.7095495 0.7133073 0.7954932 0.8097445 0.8705029 -#> [812,] 0.54548829 0.5467555 0.6456530 0.6605649 0.7046408 0.7678281 0.7826580 -#> [813,] 0.39683053 0.4614771 0.4893392 0.5376430 0.6251130 0.6571221 0.7005399 -#> [814,] 0.42103663 0.5189327 0.5921624 0.7932110 0.7953206 0.8013409 0.8744982 -#> [815,] 0.73338145 1.1091642 1.3315277 1.5215019 1.5316756 1.5636798 1.5704113 -#> [816,] 0.58796392 0.6011233 0.6173346 0.6441560 0.6747761 0.6773700 0.6797189 -#> [817,] 1.36065079 1.5137655 1.5193820 1.5240171 1.5498771 1.5958677 1.6121502 -#> [818,] 0.30483279 0.6178127 0.6380806 0.6382770 0.6571221 0.7243450 0.8326125 -#> [819,] 0.40273042 0.5212736 0.5603790 0.5628116 0.5810016 0.5887656 0.6294922 -#> [820,] 0.71824740 0.7215123 0.8453708 0.8528875 0.9597073 0.9738452 1.1058711 -#> [821,] 0.38559728 0.4500143 0.4863964 0.5113181 0.5500049 0.5597726 0.5685905 -#> [822,] 0.62866059 0.6942937 0.7284301 0.7386602 0.7695203 0.8087480 0.8161729 -#> [823,] 0.14874895 0.3236660 0.5891766 0.5903342 0.5944632 0.6515879 0.6564730 -#> [824,] 0.45853317 0.4877218 0.4921739 0.5230083 0.5250451 0.5348140 0.5552367 -#> [825,] 0.34800816 0.4846637 0.5529245 0.6009061 0.6091344 0.6167648 0.6366774 -#> [826,] 0.43253503 0.4831555 0.4865940 0.5334751 0.5341619 0.5524280 0.5628177 -#> [827,] 0.55997084 0.7272578 0.7378849 0.7621492 0.8044038 0.8407370 0.8632858 -#> [828,] 0.68204381 0.7227850 0.8052437 0.8680231 0.8800067 0.9070997 0.9344276 -#> [829,] 0.28919190 0.4773151 0.4803415 0.5392919 0.5550533 0.6207553 0.6225913 -#> [830,] 0.55774317 0.6965077 0.7545314 0.7733977 0.8177852 0.9057978 0.9184425 -#> [831,] 0.36237544 0.6978403 0.7546528 0.7967500 0.8791270 0.8803966 0.8834623 -#> [832,] 0.47868229 0.7783767 0.8286614 0.8366864 0.8746035 0.8868312 0.9465115 -#> [833,] 0.43357679 0.4734693 0.4909328 0.5312809 0.5519626 0.5710308 0.5838635 -#> [834,] 0.40273042 0.5086296 0.6707089 0.6912846 0.7190484 0.7190719 0.7273207 -#> [835,] 0.29819539 0.3870360 0.4016753 0.4192902 0.4458681 0.4505302 0.4650588 -#> [836,] 0.35797635 0.3874699 0.4290754 0.4414033 0.4415019 0.4950905 0.5380901 -#> [837,] 0.24728549 0.3652578 0.5973751 0.6058621 0.6714878 0.7875077 0.8330189 -#> [838,] 0.43114166 0.7145558 0.7729599 0.7989667 0.8771213 0.8853278 0.9082500 -#> [839,] 0.28226619 0.6951862 0.7774018 0.8110518 0.8782227 0.8891517 0.9318547 -#> [840,] 0.36893463 0.4210366 0.5944991 0.6127205 0.6323531 0.6557683 0.7007896 -#> [841,] 0.66544443 0.7079532 0.7227111 0.8612166 0.8741109 0.8808184 0.9161539 -#> [842,] 0.23240441 0.3125665 0.3472597 0.4421824 0.4473325 0.4742903 0.5013366 -#> [843,] 0.53765037 0.7394289 0.7537169 0.7876056 0.8028051 0.9627590 1.0137468 -#> [844,] 0.39681078 0.4223431 0.6354693 0.7994573 0.8189176 0.8444658 0.8649676 -#> [845,] 0.54908168 0.8796845 0.9251165 0.9912498 1.0151577 1.0183992 1.0188981 -#> [846,] 0.34382525 0.3694933 0.4439416 0.6071260 0.6187073 0.6506722 0.6954510 -#> [847,] 0.30855503 0.4296335 0.4358069 0.5168948 0.5498010 0.5910771 0.5998957 -#> [848,] 0.25249506 0.3561176 0.3708418 0.3972535 0.5192776 0.5754905 0.6337435 -#> [849,] 0.33507272 0.4597374 0.5069029 0.5285431 0.5372878 0.6001093 0.6130547 -#> [850,] 0.17597548 0.3870165 0.5594309 0.6248637 0.6527461 0.6582989 0.6609336 -#> [851,] 0.35295760 0.4630727 0.5233075 0.7415390 0.7522670 0.7865930 0.8056994 -#> [852,] 0.31452038 0.5221992 0.5249327 0.6202899 0.6636930 0.6819790 0.7412960 -#> [853,] 1.06356035 1.0736661 1.0825259 1.0962366 1.2298611 1.2869292 1.2916757 -#> [854,] 0.96573690 1.1756648 1.1910772 1.2641272 1.3102195 1.3528209 1.3630859 -#> [855,] 0.56388819 0.6959618 0.7599807 0.7856879 0.8119880 0.8185857 0.8418481 -#> [856,] 0.36604246 0.4760026 0.4901277 0.4980567 0.6008453 0.6148009 0.6341309 -#> [857,] 0.38214516 0.5011114 0.5160354 0.6922482 0.7856879 0.8467618 0.9077031 -#> [858,] 0.59267044 0.6421611 0.6810884 0.7180966 0.7294620 0.7447693 0.7462063 -#> [859,] 0.35829338 0.6209997 0.6765025 0.6980939 0.7291427 0.7454981 0.7605660 -#> [860,] 0.35107872 0.4628321 0.4821902 0.5628116 0.5663818 0.5908624 0.6366756 -#> [861,] 0.48666539 0.7148040 0.8065527 0.8443996 0.8621241 0.9785859 0.9832066 -#> [862,] 0.36675682 0.4541553 0.6117694 0.7093871 0.7282900 0.7284700 0.7376806 -#> [863,] 0.44102183 0.7006185 0.7156137 0.8526129 0.8576936 0.8646028 0.8719987 -#> [864,] 0.25530869 0.5100279 0.6222739 0.7004509 0.7518164 0.7927098 0.8247377 -#> [865,] 0.35107872 0.4073083 0.4727952 0.4797075 0.5887656 0.5978246 0.6011425 -#> [866,] 0.20711353 0.2128669 0.2962470 0.4271706 0.4383742 0.5015894 0.5419253 -#> [867,] 0.49074646 0.5218996 0.5402898 0.5666667 0.5851182 0.5921624 0.6165753 -#> [868,] 0.38226491 0.4330564 0.4343819 0.4789346 0.4973497 0.6238698 0.6618646 -#> [869,] 0.20119578 0.5274743 0.5727556 0.5795555 0.6107581 0.6321618 0.6506722 -#> [870,] 0.34000005 0.5523149 0.5835526 0.5923980 0.6091881 0.6279973 0.6840545 -#> [871,] 0.40824403 0.5111314 0.5128921 0.5586927 0.5952777 0.6600823 0.6684693 -#> [872,] 0.41601699 0.4297828 0.4584733 0.4952032 0.5350863 0.5674021 0.5813493 -#> [873,] 0.56979095 0.5843422 0.6339161 0.6882297 0.7151055 0.7386283 0.7734542 -#> [874,] 0.65237655 0.6812469 0.7236839 0.7454451 0.8110938 0.8311178 0.9366361 -#> [875,] 0.42184296 0.4502727 0.4504206 0.4829929 0.6192943 0.6400865 0.6467567 -#> [876,] 0.33346801 0.3811909 0.4237522 0.4528098 0.4738702 0.5018809 0.5075120 -#> [877,] 0.40802474 0.4975265 0.5176093 0.5593482 0.6650764 0.6870879 0.6948454 -#> [878,] 0.67952156 0.6989833 0.7085963 0.7382393 0.7438888 0.8188065 0.8575808 -#> [879,] 0.52657678 0.5467555 0.5681275 0.5865694 0.7248411 0.7300095 0.7356286 -#> [880,] 0.21551060 0.3874699 0.3986045 0.4015032 0.4855791 0.5016559 0.5164665 -#> [881,] 0.38577668 0.4169955 0.4356454 0.4523469 0.4742309 0.4904582 0.5262045 -#> [882,] 0.56579449 0.5672378 0.5858722 0.5922482 0.6274278 0.6352016 0.6591535 -#> [883,] 0.59284156 0.6624952 0.8139930 0.8322004 0.9945305 1.0395810 1.1360815 -#> [884,] 0.35648607 0.4240218 0.4803121 0.4943045 0.5196530 0.5445057 0.6082788 -#> [885,] 0.53011276 0.6101697 0.6716065 0.7966283 0.8490819 0.8710689 0.9369868 -#> [886,] 0.68088921 0.8565482 0.8652427 0.9079105 0.9379848 0.9565635 0.9650364 -#> [887,] 0.14706566 0.3842350 0.4784125 0.5095337 0.5187470 0.5218255 0.5586692 -#> [888,] 0.44150652 1.0596932 1.2575503 1.3015299 1.3514940 1.3968001 1.4491465 -#> [889,] 0.54753283 0.5853666 0.6010209 0.6263943 0.7082306 0.7190484 0.7254835 -#> [890,] 0.51972920 0.5291272 0.5473492 0.5569819 0.5688599 0.6242691 0.6411027 -#> [891,] 0.46645317 0.5035358 0.5147386 0.5518292 0.5550570 0.5851370 0.6037221 -#> [892,] 0.43151667 0.4339481 0.4894152 0.4957784 0.5787041 0.5879778 0.5921479 -#> [893,] 0.54620478 0.7160182 0.7341874 0.7608141 0.7634351 0.7855782 0.8240498 -#> [894,] 0.26233166 0.3567649 0.4505434 0.5104084 0.5520312 0.6066468 0.6306655 -#> [895,] 0.59990667 0.6372920 0.6738717 0.6780247 0.7835165 0.8307043 0.8752580 -#> [896,] 0.44276402 0.4725503 0.5233075 0.5444489 0.6388097 0.7417904 0.7792963 -#> [897,] 0.61366148 0.6422448 0.6548673 0.6628541 0.7373350 0.8047808 0.8112394 -#> [898,] 1.13993621 1.2238417 1.2944929 1.4138356 1.4223752 1.5587307 1.5715766 -#> [899,] 0.41880586 0.4297828 0.4559433 0.4602431 0.4657972 0.4769464 0.5013366 -#> [900,] 0.44287676 0.5037232 0.6410085 0.7145558 0.8573915 0.8691765 0.8887671 -#> [901,] 0.70951869 0.7227111 0.7655611 0.9049409 1.1103051 1.1436977 1.1671287 -#> [902,] 0.17402163 0.2815989 0.3234938 0.4973108 0.5245936 0.5454948 0.5846517 -#> [903,] 0.51490569 0.6955637 0.9402911 0.9713093 0.9992002 1.0926981 1.1465395 -#> [904,] 0.16379892 0.4782800 0.4924158 0.5001598 0.5577912 0.5829803 0.6159372 -#> [905,] 0.64480070 0.7569891 0.9153377 0.9287700 0.9294366 1.0306542 1.1035669 -#> [906,] 0.26835689 0.3636692 0.3863603 0.4232646 0.4511470 0.4564327 0.4722120 -#> [907,] 0.50805535 0.5762502 0.5965354 0.6315937 0.6394524 0.6589275 0.7062934 -#> [908,] 0.38125326 0.4157032 0.4805979 0.5193114 0.5658166 0.5713880 0.5897818 -#> [909,] 0.23253009 0.3691577 0.4070091 0.5777244 0.6250401 0.6715531 0.7055877 -#> [910,] 0.38903127 0.4017785 0.4498610 0.4847487 0.4936195 0.5238938 0.5465308 -#> [911,] 0.59440990 0.6989068 0.6995980 0.7242203 0.7455946 0.7480645 0.7795465 -#> [912,] 0.29872606 0.4707987 0.4806273 0.4906690 0.6176954 0.6193783 0.6317046 -#> [913,] 0.82461152 0.8591310 0.8731408 0.9164328 1.0578797 1.0834695 1.1278420 -#> [914,] 0.67952156 0.9075966 0.9496742 0.9526848 1.0082962 1.0166035 1.1136135 -#> [915,] 0.44171162 0.4928736 0.5012118 0.6263943 0.6324206 0.6440154 0.6997098 -#> [916,] 0.29134698 0.3804423 0.4118020 0.4271706 0.5402898 0.5544855 0.5822610 -#> [917,] 0.21910513 0.4578056 0.5066574 0.5338640 0.5411180 0.5637485 0.5884009 -#> [918,] 0.80003296 0.8520190 0.8595147 0.9993802 1.0713708 1.0777662 1.0786178 -#> [919,] 0.58522196 0.6448007 0.6532442 0.6655542 0.7092594 0.7155112 0.7459836 -#> [920,] 0.36644829 0.3914287 0.4510571 0.6330261 0.6349593 0.6370497 0.6568489 -#> [921,] 0.43640664 0.5015894 0.5326803 0.5509312 0.5567052 0.5991453 0.6388802 -#> [922,] 0.50561703 0.5913410 0.5933649 0.7671347 0.7845608 0.9111170 0.9142453 -#> [923,] 0.32803844 0.4338809 0.5207731 0.5649189 0.6001995 0.6045659 0.6381594 -#> [924,] 0.35266986 0.3835013 0.5095863 0.5653659 0.5709348 0.5956112 0.6124346 -#> [925,] 0.64979301 0.7646062 0.8164882 0.8276377 0.8368973 0.8421748 0.8771384 -#> [926,] 0.23163085 0.2324044 0.4564653 0.4722120 0.4800280 0.5017003 0.5080255 -#> [927,] 0.32922558 0.3934326 0.5095337 0.5121672 0.5194180 0.5259880 0.5288773 -#> [928,] 0.79814003 0.9533309 1.0389936 1.1709526 1.1749098 1.1781384 1.2001907 -#> [929,] 0.39267342 0.5086939 0.5477472 0.5520312 0.6469049 0.6839461 0.6940983 -#> [930,] 0.29134698 0.3037289 0.3091650 0.3305156 0.4383742 0.4936195 0.5488952 -#> [931,] 0.29872606 0.4131597 0.4795506 0.5665091 0.5997251 0.6136057 0.6261643 -#> [932,] 0.42677834 0.4411643 0.5686196 0.6174766 0.6513026 0.6731724 0.7777964 -#> [933,] 0.39206430 0.5012118 0.5589393 0.7086554 0.7179053 0.7529551 0.7558851 -#> [934,] 0.40473610 0.7515701 0.8153097 1.0193305 1.1129096 1.1454856 1.2042223 -#> [935,] 0.36401105 0.4486307 0.4561306 0.4769901 0.4926383 0.5446308 0.5739571 -#> [936,] 0.83073988 0.8819863 1.0641047 1.0782516 1.0969681 1.1447650 1.2193489 -#> [937,] 0.33591867 0.3466916 0.3873969 0.5139271 0.5550533 0.5812558 0.5829420 -#> [938,] 0.04497083 0.5870115 0.5876477 0.5898424 0.6302899 0.6714246 0.6754866 -#> [939,] 0.53443537 0.5655940 0.5792064 0.7051456 0.7086461 0.7153976 0.8056811 -#> [940,] 0.88640969 1.1744302 1.2819133 1.3042470 1.3137897 1.4205330 1.4232624 -#> [941,] 0.55774317 0.5631514 0.7511748 0.7522670 0.7901658 0.7962587 0.8298927 -#> [942,] 0.35991731 0.3694933 0.4263777 0.5047480 0.5095882 0.6563266 0.7308714 -#> [943,] 0.15739874 0.2999043 0.3060863 0.3792610 0.4267138 0.4280612 0.4582420 -#> [944,] 0.46932208 0.5688599 0.6562525 0.7224982 0.7271169 0.7447693 0.7451598 -#> [945,] 0.33816647 0.5002608 0.5497086 0.5832154 0.5839837 0.5987499 0.6531255 -#> [946,] 0.65787838 0.9657369 0.9883514 1.0701032 1.1374992 1.1447650 1.2451739 -#> [947,] 0.50561703 0.6266733 0.6672829 0.6746814 0.7006440 0.7663563 0.7955146 -#> [948,] 0.58372918 0.7636551 0.8544198 0.9077602 0.9096541 0.9287029 0.9601853 -#> [949,] 0.31354966 0.3466916 0.3770144 0.4981605 0.5835526 0.6080251 0.6379400 -#> [950,] 0.26351243 0.3076413 0.4308061 0.4694526 0.5942378 0.6482221 0.6509040 -#> [951,] 0.18607074 0.4871539 0.5036852 0.5189966 0.5335565 0.5425809 0.5678585 -#> [952,] 0.37747986 0.4925961 0.5129245 0.5213931 0.5320780 0.6816017 0.7071654 -#> [953,] 0.43434151 0.4537805 0.4782800 0.5454883 0.5546442 0.5803326 0.6204706 -#> [954,] 0.54966756 0.5632566 0.5648903 0.6048902 0.6158045 0.6161821 0.6182972 -#> [955,] 0.26783037 0.3555067 0.4599327 0.5020988 0.5503266 0.5731316 0.5883047 -#> [956,] 0.29496717 0.3133610 0.5002608 0.5079815 0.5430447 0.5891322 0.5961361 -#> [957,] 0.32511397 0.3617655 0.3835013 0.5075303 0.5512543 0.5762256 0.5950332 -#> [958,] 0.45042063 0.4606442 0.4727952 0.5148810 0.5263058 0.5962643 0.6366756 -#> [959,] 0.17370456 0.3076413 0.3279429 0.4852801 0.4944497 0.5166436 0.5732934 -#> [960,] 0.35705946 0.4410636 0.4516268 0.5754905 0.6508299 0.6886539 0.8302582 -#> [961,] 0.22813174 0.4001949 0.4003260 0.4113986 0.4827286 0.5053651 0.5508058 -#> [962,] 0.79111290 0.8337189 0.9096423 0.9653220 0.9693479 1.0392179 1.0942301 -#> [963,] 0.39206430 0.4417116 0.5213441 0.5853666 0.6000512 0.6460923 0.6988536 -#> [964,] 0.49034069 0.5703550 0.6110425 0.6360577 0.6465991 0.6549053 0.6917995 -#> [965,] 1.03453276 1.0574077 1.1989866 1.2401557 1.2488760 1.2885182 1.3480125 -#> [966,] 0.47146486 0.5787526 0.7349696 0.7509420 0.8018245 0.8678513 0.8806975 -#> [967,] 0.51784333 0.5368353 0.5718766 0.6238143 0.6354693 0.6705881 0.7379584 -#> [968,] 0.68204381 0.9912498 1.0265272 1.2226328 1.3495796 1.3968221 1.4309520 -#> [969,] 0.43544614 0.5446717 0.6081071 0.6550018 0.7121909 0.7462301 0.8047521 -#> [970,] 0.67468144 0.8115864 0.8311740 0.8576452 0.8817724 0.8970071 0.9092255 -#> [971,] 0.25530869 0.4229574 0.6714246 0.6844769 0.7469655 0.7584307 0.7610679 -#> [972,] 0.41437972 0.6251328 0.6979654 0.7523700 0.8096269 0.8257021 0.8363396 -#> [973,] 0.46068409 0.5099019 0.5453835 0.6073536 0.6115334 0.6494149 0.6606911 -#> [974,] 0.50560586 0.5682722 0.5732926 0.7049280 0.7061830 0.7096315 0.7706464 -#> [975,] 0.74582316 0.7609546 0.8046738 0.8240498 0.8241563 0.8281400 0.8356967 -#> [976,] 0.33525273 0.3374291 0.3817311 0.4523469 0.4536032 0.4987909 0.6120957 -#> [977,] 0.23008354 0.4954478 0.5046153 0.5614417 0.5616416 0.5828565 0.5882024 -#> [978,] 0.49841470 0.6714878 0.7688076 0.7764392 0.8018245 0.8105688 0.8233114 -#> [979,] 0.52526029 0.5345360 0.5447285 0.6395455 0.7031803 0.7376332 0.7483666 -#> [980,] 0.24785601 0.3852941 0.3986045 0.5758994 0.6449115 0.6810014 0.7294620 -#> [981,] 0.63397320 0.6394524 0.6664361 0.6701969 0.6802607 0.7022022 0.7301337 -#> [982,] 0.45580842 0.5715196 0.5749911 0.5859775 0.6681737 0.6822274 0.7166143 -#> [983,] 0.50101698 0.5376430 0.5929588 0.7114757 0.7489781 0.7692118 0.7773591 -#> [984,] 0.19780375 0.4136345 0.4339700 0.4415019 0.4979181 0.6075412 0.6091881 -#> [985,] 0.63176827 0.7092594 0.8033928 0.8673370 0.9140608 0.9153377 1.0441789 -#> [986,] 0.36491652 0.5273441 0.6032080 0.6253015 0.7454451 0.7729599 0.7883097 -#> [987,] 0.44276402 0.6742267 0.7026799 0.7415390 0.7864823 0.8683901 0.9982356 -#> [988,] 0.44525949 0.8690679 0.8875176 0.9267411 1.0588732 1.0614233 1.0699795 -#> [989,] 0.46932208 0.5569819 0.5886034 0.6532035 0.6885028 0.7242253 0.7372330 -#> [990,] 0.27366290 0.4653143 0.6021361 0.6025242 0.6380806 0.6693098 0.6744915 -#> [991,] 0.20711353 0.2356696 0.3305156 0.3670160 0.4118020 0.4364066 0.5464797 -#> [992,] 0.37440774 0.7086461 0.7418901 0.7442849 0.7787907 0.7836854 0.7855291 -#> [993,] 1.04193676 1.0992335 1.1503974 1.1741563 1.2870854 1.3807208 1.4045472 -#> [994,] 0.45879487 0.5301128 0.5747591 0.6214295 0.7605660 0.8673346 0.8709480 -#> [995,] 0.48610978 0.5967973 0.6007497 0.6189824 0.6356349 0.7741783 0.7854985 -#> [996,] 0.40589754 0.5606936 0.6975627 0.7258812 0.7362571 0.7638539 0.7670559 -#> [997,] 0.95463549 1.1054185 1.1069747 1.1304412 1.2374547 1.4004799 1.4737834 -#> [998,] 0.85278886 0.9860807 1.0845824 1.2091892 1.2122146 1.2567472 1.3275814 -#> [999,] 0.33373156 0.3560558 0.6230229 0.6408758 0.6742086 0.7076926 0.8252286 -#> [1000,] 0.12432811 0.4822970 0.7518164 0.7584307 0.8035997 0.8186917 0.8575808 +#> [1,] 0.75123324 0.7728336 0.8535100 0.9610233 0.9988456 1.0241624 1.0346625 +#> [2,] 0.72794121 0.8192607 1.0118221 1.0396370 1.0447104 1.0736597 1.1356458 +#> [3,] 0.31837803 0.4564968 0.4829120 0.5219559 0.5329834 0.6032451 0.6036069 +#> [4,] 0.31047166 0.3921811 0.4326476 0.4630233 0.5398038 0.5555416 0.6151065 +#> [5,] 0.46734788 0.4760593 0.5466231 0.5606464 0.5640889 0.5726195 0.5783608 +#> [6,] 0.51152215 0.5275568 0.5497865 0.5556941 0.5624806 0.6122315 0.6278000 +#> [7,] 0.29359887 0.5086648 0.5542773 0.5716974 0.5869704 0.5940340 0.5959630 +#> [8,] 0.26143033 0.4718084 0.5603310 0.5707832 0.6882329 0.7308097 0.7341715 +#> [9,] 0.24984831 0.5609735 0.8632232 0.9219492 1.0170726 1.0442705 1.0520745 +#> [10,] 0.28986430 0.4537154 0.5204006 0.5421002 0.5423238 0.5463735 0.5587194 +#> [11,] 0.46652531 0.5084248 0.5263341 0.5266163 0.5446352 0.5495054 0.5850168 +#> [12,] 0.37170190 0.4381048 0.5241100 0.5423993 0.5424052 0.5655038 0.6071722 +#> [13,] 0.57222011 0.6124874 0.6357935 0.6396935 0.6462147 0.6708131 0.7391421 +#> [14,] 0.34717912 0.5838188 0.5962627 0.6141551 0.6745910 0.8141714 0.8167852 +#> [15,] 0.58059369 0.6224053 0.6662234 0.6803393 0.7407235 0.8389967 0.8429282 +#> [16,] 0.63314368 0.8630664 0.8939270 1.0213772 1.0458141 1.0663115 1.1116785 +#> [17,] 0.54835213 0.7198504 0.7467861 0.8400073 0.8529885 0.9064278 0.9411035 +#> [18,] 0.66924590 0.6764030 0.8256855 0.8928497 0.9098371 0.9177645 0.9264857 +#> [19,] 0.47391219 0.5187272 0.6039699 0.6313239 0.7718839 0.8130187 0.8617744 +#> [20,] 0.15081454 0.3758961 0.3943047 0.4202105 0.4597621 0.5058134 0.5526436 +#> [21,] 0.26227964 0.3306440 0.4625359 0.4748135 0.5735866 0.5903636 0.6051760 +#> [22,] 0.43233503 0.5294653 0.5807848 0.6182965 0.6219620 0.6649769 0.6820446 +#> [23,] 0.51569242 0.5551573 0.6019943 0.6874485 0.7129012 0.7578704 0.7810091 +#> [24,] 0.26564505 0.8384672 0.9027206 0.9060224 0.9245897 0.9398366 0.9480771 +#> [25,] 0.58665844 0.8659828 0.8981276 0.9708535 1.0050467 1.0329852 1.0364884 +#> [26,] 0.19951012 0.3092625 0.3686001 0.4240887 0.6186630 0.6479357 0.7211515 +#> [27,] 0.36583627 0.4208790 0.4291136 0.5052316 0.5424372 0.6643204 0.6768602 +#> [28,] 0.63749376 0.6643837 0.7336474 0.8632298 0.9630081 1.0143946 1.0585654 +#> [29,] 0.22773632 0.2810413 0.3024392 0.6371490 0.7398366 0.7736565 0.7775577 +#> [30,] 0.41843597 0.4328745 0.4340449 0.5067279 0.5268015 0.5302476 0.5624027 +#> [31,] 0.44109626 0.5183360 0.6860934 0.9339130 0.9629930 1.0579500 1.0943981 +#> [32,] 0.51867312 0.5645729 0.6016788 0.6357531 0.6454604 0.6971910 0.7115832 +#> [33,] 0.47605929 0.5257607 0.5566021 0.5824304 0.6490195 0.7135536 0.7156801 +#> [34,] 0.97263621 1.1064219 1.1444155 1.1538665 1.1596231 1.2692750 1.3001680 +#> [35,] 0.98260936 1.1123529 1.1596231 1.1717316 1.1850187 1.2225809 1.2601779 +#> [36,] 0.49461149 0.5933300 0.6646068 0.6683092 0.8323921 0.8352585 0.8584428 +#> [37,] 0.33752748 0.3668717 0.3733893 0.3738390 0.4858712 0.5329507 0.5359664 +#> [38,] 0.63792553 0.6805158 0.8052105 0.8253294 0.9434459 0.9543999 0.9622925 +#> [39,] 0.79115486 0.9026125 1.0002906 1.0816304 1.1440999 1.2319974 1.2718061 +#> [40,] 0.43594864 0.7188591 0.7189500 0.8269726 1.0044478 1.0197690 1.0395219 +#> [41,] 0.29776484 0.3110705 0.3169707 0.3448560 0.3540405 0.3739873 0.4252863 +#> [42,] 0.56407060 0.8340099 0.9236600 0.9486578 0.9507656 0.9726362 0.9826094 +#> [43,] 0.35070927 0.4212043 0.4399540 0.5016230 0.5245879 0.5408275 0.5485840 +#> [44,] 0.13879613 0.2449583 0.3716588 0.3857744 0.4513943 0.4539900 0.4953717 +#> [45,] 0.27674962 0.3248874 0.3792540 0.4061885 0.4685934 0.5096766 0.5394649 +#> [46,] 0.70931322 0.7762396 0.7874432 0.8142466 0.8157303 0.8707487 0.8863619 +#> [47,] 0.34194145 0.6358041 0.6792359 0.6991985 0.7115954 0.7373865 0.8197065 +#> [48,] 0.54036550 0.6094105 0.6267325 0.6674362 0.7317710 0.7325700 0.7442621 +#> [49,] 0.53167438 0.6307679 0.7248237 0.7447617 0.7648825 0.7757223 0.7758032 +#> [50,] 0.34302240 0.4088468 0.4949305 0.6649502 0.6736528 0.6801958 0.6810368 +#> [51,] 0.44016974 0.5076383 0.5175767 0.7000366 0.7683283 0.7880880 0.8114595 +#> [52,] 0.34683737 0.4084745 0.5982558 0.5990630 0.6392620 0.6435954 0.6734625 +#> [53,] 0.43617718 0.4965451 0.5327786 0.5778905 0.5869704 0.5978329 0.6719906 +#> [54,] 0.30248329 0.3537647 0.3890210 0.5052213 0.5101134 0.5352680 0.5394586 +#> [55,] 0.52308478 0.5402685 0.5593313 0.5874356 0.7559557 0.7821695 0.7822892 +#> [56,] 0.69637689 0.7825293 0.8849706 0.9317456 0.9860083 1.0912192 1.1467084 +#> [57,] 0.16587260 0.2957155 0.3413110 0.4116207 0.4205946 0.5540923 0.6107552 +#> [58,] 0.21674498 0.2655099 0.3790429 0.3932341 0.4436496 0.5844425 0.6218011 +#> [59,] 0.40454188 0.4800348 0.5403655 0.5566021 0.5771780 0.6141551 0.6305519 +#> [60,] 0.75561149 0.7588936 0.7819681 0.7975871 0.8945171 0.9152283 0.9162163 +#> [61,] 0.30100470 0.4964479 0.5864232 0.5975842 0.6878447 0.6894267 0.6965180 +#> [62,] 0.16282452 0.3341115 0.4328745 0.4532430 0.4765493 0.5213406 0.5403077 +#> [63,] 0.27072483 0.3851949 0.4612409 0.5142720 0.5167208 0.5294653 0.6030569 +#> [64,] 0.49644789 0.5186731 0.5261169 0.5533974 0.5655843 0.6290988 0.6358013 +#> [65,] 0.35509133 0.5000259 0.5016800 0.5273160 0.5482631 0.6101186 0.6657547 +#> [66,] 0.51826095 0.5183360 0.6878115 0.9025787 0.9928195 1.0014826 1.0029237 +#> [67,] 0.20842890 0.3411604 0.3568485 0.4068925 0.4214355 0.4377764 0.4642517 +#> [68,] 0.47750098 0.6644961 0.8175037 0.8371260 0.8424111 0.8428174 0.8493960 +#> [69,] 0.45928747 0.4965451 0.5542773 0.5917991 0.6237566 0.6343305 0.6550373 +#> [70,] 1.00949093 1.1650926 1.2078393 1.2169444 1.2341341 1.2526122 1.3587940 +#> [71,] 0.22038706 0.3698291 0.5063805 0.6682706 0.6764030 0.6803568 0.7025122 +#> [72,] 0.41824000 0.4184360 0.4325937 0.4377125 0.4848735 0.5098943 0.5213406 +#> [73,] 0.36595529 0.4150283 0.4230495 0.4715471 0.4820203 0.4893759 0.5093840 +#> [74,] 0.48657110 0.5810022 0.7735514 0.8210664 0.8910608 0.8927631 0.9176643 +#> [75,] 0.40020124 0.4232959 0.4436496 0.4596097 0.5149030 0.5152366 0.5463399 +#> [76,] 0.48817965 0.4927598 0.5107277 0.5623835 0.5859066 0.5935301 0.5946564 +#> [77,] 0.15081454 0.4335340 0.4363955 0.5182849 0.5205824 0.5418517 0.5425802 +#> [78,] 0.30995948 0.3273770 0.4254990 0.4672448 0.5121810 0.5136565 0.5154224 +#> [79,] 0.47970446 0.4947340 0.6647554 0.7263034 0.7535873 0.7609947 0.7625186 +#> [80,] 0.79618626 0.8698408 0.8936291 0.8975484 0.9456737 0.9510369 0.9690743 +#> [81,] 0.47623620 0.4877438 0.4971451 0.5032684 0.5146468 0.5204006 0.5501698 +#> [82,] 0.93583477 1.0071221 1.0885044 1.1050823 1.1755327 1.1912636 1.2374069 +#> [83,] 0.70018889 0.8879985 0.9946745 1.0809744 1.1726914 1.2589149 1.3267449 +#> [84,] 0.85574145 0.9550328 0.9788586 0.9906871 1.0431189 1.0460363 1.0573611 +#> [85,] 0.32254407 0.4354345 0.4755552 0.4913438 0.5488552 0.5558120 0.6032168 +#> [86,] 0.58625836 0.7660761 0.7706474 0.7710468 0.7778610 0.7782860 0.7874432 +#> [87,] 0.39066227 0.4763041 0.5491078 0.6551946 0.6561217 0.6865512 0.7407140 +#> [88,] 0.40030939 0.5722201 0.6381720 0.6390878 0.6411925 0.6611606 0.6664912 +#> [89,] 0.46587098 0.5052316 0.5139742 0.5400055 0.5485160 0.5844425 0.5922445 +#> [90,] 0.19996637 0.2139283 0.3522130 0.3596801 0.5070188 0.5268149 0.5578403 +#> [91,] 0.34578357 0.3713855 0.5607744 0.5739698 0.5832266 0.5948363 0.6034775 +#> [92,] 0.13118949 0.4307515 0.5089294 0.6219634 0.7261603 0.7798434 0.8711605 +#> [93,] 0.15515797 0.2767496 0.3113777 0.3347892 0.4146456 0.4380970 0.4573444 +#> [94,] 0.40949008 0.7662003 0.8612254 0.8767726 0.8964731 1.1548959 1.1752675 +#> [95,] 0.81376542 0.8750154 0.8946274 0.8990536 0.9284389 0.9383646 0.9488876 +#> [96,] 0.36398921 0.7536512 0.7638342 0.8374410 0.8986590 0.9269765 0.9570827 +#> [97,] 0.40763037 0.4564968 0.4906205 0.4921939 0.4925928 0.5062591 0.5259640 +#> [98,] 0.27744439 0.3237234 0.4171864 0.4533024 0.4574603 0.5073590 0.5079862 +#> [99,] 0.44986007 0.5442689 0.6053123 0.6070115 0.6822141 0.6850527 0.8025247 +#> [100,] 0.36217182 0.4002402 0.5479470 0.6148331 0.6682706 0.6987118 0.7176815 +#> [101,] 1.16034211 1.1830457 1.4589260 1.4813706 1.5482614 1.6614958 1.7219734 +#> [102,] 0.20121330 0.2754540 0.3096327 0.3457012 0.3905825 0.3975459 0.4304232 +#> [103,] 1.20255514 1.2330142 1.2589149 1.3426098 1.3481100 1.5117781 1.6069093 +#> [104,] 0.44558674 0.5320156 0.5873528 0.5957944 0.6836550 0.6969275 0.7006954 +#> [105,] 0.28454807 0.4706502 0.4755460 0.5303708 0.5371465 0.5512903 0.5558524 +#> [106,] 0.47750098 0.4851378 0.4973154 0.5868762 0.7283071 0.8416151 0.8593591 +#> [107,] 0.98216529 1.0064208 1.1040333 1.2141759 1.2774960 1.2957623 1.3022217 +#> [108,] 0.47869309 0.8343755 0.9840538 1.0110834 1.0577510 1.0926077 1.1350025 +#> [109,] 0.49710326 0.5006748 0.5058134 0.5114418 0.5418517 0.5850060 0.5912959 +#> [110,] 0.19702653 0.3113777 0.3457012 0.4007505 0.4532430 0.4683849 0.4685934 +#> [111,] 0.36008810 0.4174495 0.4408895 0.4548463 0.4828149 0.5061000 0.5141196 +#> [112,] 0.57458749 0.6909275 0.7177089 0.7218150 0.7744658 0.8237228 0.8288619 +#> [113,] 0.57147892 0.6049098 0.6478061 0.6816491 0.7262376 0.7536512 0.8159034 +#> [114,] 0.53953399 0.6014050 0.6576091 0.6786399 0.6947844 0.7110033 0.7216347 +#> [115,] 0.48599759 0.5154224 0.5558413 0.5789364 0.6354666 0.6547929 0.6603546 +#> [116,] 0.33628768 0.4650064 0.5263157 0.7069239 0.7447617 0.7891283 0.8259153 +#> [117,] 0.69958193 0.9283156 1.0939061 1.1216403 1.1250323 1.1288179 1.1515432 +#> [118,] 0.36398921 0.5714789 0.6894734 0.7014631 0.7260693 0.7619641 0.8240498 +#> [119,] 0.29785763 0.3904106 0.5147426 0.5658674 0.5798745 0.5887206 0.5896853 +#> [120,] 0.35909924 0.4613995 0.4725982 0.5263326 0.5385190 0.5893542 0.6825840 +#> [121,] 0.35748401 0.4455867 0.5154027 0.6343369 0.6851376 0.7147886 0.7230207 +#> [122,] 0.26383426 0.2754540 0.2988481 0.2991627 0.3411604 0.4419143 0.4423288 +#> [123,] 0.62395483 0.6685404 0.7950016 0.8067952 0.8221489 0.8340085 0.8765175 +#> [124,] 0.82937244 0.8707487 0.9551027 1.0103346 1.0519770 1.0832535 1.2253165 +#> [125,] 0.55221468 0.5857830 0.6497453 0.6719993 0.6832759 0.6859977 0.7828531 +#> [126,] 0.45402224 0.6171313 0.6190679 0.7087893 0.7216347 0.7515560 0.7782790 +#> [127,] 0.27028389 0.3572052 0.3993061 0.4557764 0.4626339 0.4726576 0.4993475 +#> [128,] 0.28309416 0.4212043 0.4574603 0.4870235 0.5599778 0.5800733 0.5826591 +#> [129,] 0.25146438 0.4186988 0.5370477 0.5654464 0.5749203 0.6088727 0.6190746 +#> [130,] 0.49033543 0.5993018 0.6014718 0.6776866 0.7389885 0.7588429 0.7662003 +#> [131,] 0.35233048 0.4090712 0.5369264 0.6189582 0.6317574 0.6684878 0.6798811 +#> [132,] 0.48681494 0.5408715 0.6034775 0.6051837 0.6162894 0.6389791 0.6392017 +#> [133,] 0.20289628 0.5917991 0.7040529 0.8219994 0.8745047 0.9693476 0.9888539 +#> [134,] 0.86087471 0.8734834 0.9566091 1.0393017 1.0486299 1.1115831 1.1149204 +#> [135,] 0.27865399 0.2969847 0.3897075 0.4253274 0.4470561 0.4950304 0.5887206 +#> [136,] 0.73790913 0.7727693 0.7880136 0.8494167 0.9279067 1.0006806 1.0803707 +#> [137,] 0.45981635 0.4838382 0.5119779 0.5679398 0.5857583 0.5990630 0.6031911 +#> [138,] 0.30248329 0.3120646 0.3843879 0.3865320 0.4880859 0.4925018 0.5331744 +#> [139,] 0.36139975 0.3821192 0.3884705 0.4467783 0.6854213 0.6990176 0.7259507 +#> [140,] 0.79370421 1.1505867 1.1890757 1.1910424 1.2222432 1.3167299 1.3355435 +#> [141,] 0.19951012 0.2417104 0.2781614 0.4680106 0.6250949 0.6525452 0.6603980 +#> [142,] 0.37893352 0.4015229 0.4064958 0.4696581 0.4792169 0.4909026 0.5502156 +#> [143,] 0.31849457 0.3427354 0.3941537 0.4860365 0.5329507 0.5679398 0.5687805 +#> [144,] 0.36318027 0.4053421 0.4399584 0.4597621 0.5413375 0.5425802 0.5480974 +#> [145,] 0.38772521 0.4192009 0.4871528 0.5026201 0.5073320 0.6164275 0.6390106 +#> [146,] 0.26642362 0.3237234 0.4394007 0.4495239 0.4681588 0.4948503 0.5472648 +#> [147,] 0.61755802 0.6381720 0.6557861 0.7506527 0.7529128 0.7540028 0.7591031 +#> [148,] 0.18634156 0.5009155 0.5485840 0.5599778 0.5931087 0.5965084 0.6349871 +#> [149,] 0.12046345 0.5411184 0.6786399 0.6798061 0.6833299 0.7009866 0.7406080 +#> [150,] 0.17188245 0.3712625 0.3743934 0.3987000 0.4416277 0.5023142 0.5079862 +#> [151,] 0.37547110 0.4474790 0.4828926 0.5041523 0.6416367 0.6856432 0.7161804 +#> [152,] 0.79937319 0.8241613 0.8907011 1.0241436 1.1297508 1.1573210 1.1658958 +#> [153,] 0.19419128 0.2061225 0.3007250 0.4605015 0.5260537 0.5295352 0.5749598 +#> [154,] 0.30085979 0.3841699 0.5687805 0.5778905 0.6377990 0.6564521 0.6819878 +#> [155,] 0.19513800 0.4827132 0.5439209 0.5786936 0.5950256 0.6442066 0.6687645 +#> [156,] 0.46868378 0.5114418 0.5316744 0.5526436 0.5607080 0.6290993 0.6300735 +#> [157,] 0.59045114 0.9869900 1.1535666 1.1582809 1.1780062 1.2135801 1.2585351 +#> [158,] 0.24545491 0.3333003 0.3969425 0.4088468 0.4721369 0.4748135 0.5520819 +#> [159,] 0.28986430 0.3544125 0.3764880 0.3992212 0.5491586 0.5680241 0.5835483 +#> [160,] 0.43780840 0.4498638 0.7033036 0.7877849 0.8172419 0.8357316 0.8577205 +#> [161,] 0.40582631 0.5054017 0.7030924 0.7243780 0.7407140 0.7705307 0.7930608 +#> [162,] 0.35234103 0.4147042 0.4795022 0.4952720 0.4962613 0.4989207 0.5185135 +#> [163,] 0.54300594 0.5583139 0.6795859 0.8095291 0.8206264 0.9728522 1.1327863 +#> [164,] 0.52367020 0.5885379 0.8717503 0.8939719 0.9026125 0.9614319 1.0410679 +#> [165,] 0.96143186 1.0199945 1.0232013 1.0551349 1.0902843 1.1010699 1.1045643 +#> [166,] 0.61571818 0.7040191 0.7058041 0.7656191 0.7734775 0.7824822 0.8215516 +#> [167,] 0.35229033 0.3921811 0.5471192 0.5639015 0.5672174 0.5735262 0.5753703 +#> [168,] 0.96825642 1.0396370 1.1898986 1.2800371 1.2881848 1.3270543 1.3435666 +#> [169,] 0.66673361 0.6783771 0.6894816 0.7395991 0.7798434 0.8020988 0.8409993 +#> [170,] 0.28743920 0.4859976 0.6151464 0.6426209 0.6501716 0.6633979 0.7000754 +#> [171,] 0.31719653 0.4426525 0.4802058 0.5162458 0.5402894 0.5484489 0.5699656 +#> [172,] 0.08045996 0.2277363 0.4479699 0.6083513 0.7456291 0.7558175 0.7626539 +#> [173,] 0.26393459 0.3593245 0.3717283 0.3820295 0.4015229 0.4740713 0.5161408 +#> [174,] 0.30338965 0.3445281 0.3752012 0.3833929 0.4174495 0.4185740 0.5224324 +#> [175,] 0.60837870 0.6760452 0.7997734 0.8205199 0.8496036 0.8767713 0.8946601 +#> [176,] 0.61829653 0.6366517 0.6997558 0.7136063 0.7383797 0.7610103 0.8476542 +#> [177,] 0.29403821 0.3544237 0.5263326 0.5589544 0.6405376 0.6407043 0.6920594 +#> [178,] 0.30753941 0.4389056 0.4819657 0.5267271 0.5626776 0.5839383 0.6590841 +#> [179,] 0.61451410 0.8065479 0.8074916 0.8192607 0.8541983 0.8731405 0.9437775 +#> [180,] 0.26642362 0.3097676 0.3796937 0.3842518 0.5073590 0.5130520 0.5358143 +#> [181,] 0.47013970 0.5230848 0.5470321 0.8496036 0.8674290 0.9467661 0.9817323 +#> [182,] 0.36021158 0.4470561 0.4515219 0.4767623 0.5241343 0.5364844 0.5865542 +#> [183,] 0.53317440 0.6307292 0.6375269 0.6506767 0.6550839 0.6692890 0.6958393 +#> [184,] 0.59828158 0.7636470 0.8197293 0.8356096 0.8501639 0.8775427 0.9832344 +#> [185,] 0.51230390 0.5204844 0.5648963 0.7084205 0.7865361 0.7996885 0.8246749 +#> [186,] 0.38596645 0.4145507 0.5691145 0.5989056 0.6002112 0.6328652 0.6405012 +#> [187,] 0.96030647 1.0761704 1.0808862 1.0870889 1.1122201 1.1279417 1.1959206 +#> [188,] 0.49473402 0.6299515 0.6832576 0.6942725 0.6958393 0.7062105 0.7064561 +#> [189,] 0.35909924 0.4255819 0.5056986 0.5103887 0.6192480 0.7221886 0.7384616 +#> [190,] 0.48660327 0.7114507 0.7246401 0.7313637 0.8284993 1.0153069 1.0305508 +#> [191,] 0.65050082 0.6816491 0.6842797 0.7600037 0.7705307 0.7733659 0.8202470 +#> [192,] 0.81182782 0.8194373 0.8417935 1.1055276 1.1253849 1.1289979 1.1556449 +#> [193,] 0.66753911 0.7257133 0.7266951 0.7743539 0.8705561 0.9086395 0.9237531 +#> [194,] 0.62045966 0.7111853 0.7449372 0.8068628 0.8219124 0.8335637 0.8411046 +#> [195,] 0.32084307 0.3593245 0.3889879 0.4064958 0.4534542 0.5020450 0.5061745 +#> [196,] 0.59162905 0.6261190 0.6519473 0.6742100 0.7273983 0.7396244 0.7504098 +#> [197,] 0.25774459 0.3922203 0.4871528 0.5731440 0.5860091 0.6188489 0.6274038 +#> [198,] 0.55964953 0.6301278 0.7006146 0.7704925 0.8103618 0.8187889 0.8411695 +#> [199,] 0.56526701 0.5919769 0.7933394 0.8006608 0.8031460 0.8174900 0.9500898 +#> [200,] 0.63850522 0.6481022 0.7466410 0.8095291 0.8236840 0.8689609 0.8885308 +#> [201,] 0.27865399 0.2923046 0.5241343 0.5313052 0.5860547 0.5909128 0.5959543 +#> [202,] 0.42631331 0.5904569 0.5998869 0.7362744 0.7605896 0.8071532 0.8210664 +#> [203,] 0.20842890 0.2428933 0.2988481 0.3402142 0.3697308 0.3865320 0.3890210 +#> [204,] 0.47013970 0.5402685 0.6083787 0.7876943 0.8457159 0.8897081 0.8939270 +#> [205,] 0.34090425 0.4108805 0.4379580 0.5384481 0.5431463 0.5516274 0.5550702 +#> [206,] 0.52132482 0.5291135 0.5549221 0.6991985 0.7043297 0.7597526 0.7809424 +#> [207,] 0.21587317 0.5501698 0.5944061 0.6019943 0.6036912 0.6121399 0.6232368 +#> [208,] 0.19508862 0.3493520 0.4058071 0.5062397 0.5209490 0.5405174 0.5476367 +#> [209,] 0.34835901 0.3519596 0.4355776 0.7052760 0.7261054 0.7961863 0.7980408 +#> [210,] 0.15472873 0.2741477 0.3276143 0.3874743 0.4512306 0.4848735 0.5456915 +#> [211,] 0.30083629 0.5030022 0.5802170 0.6049625 0.6124386 0.6855360 0.7587768 +#> [212,] 0.50905999 0.5763424 0.6077715 0.6494028 0.6571812 0.7116446 0.7209059 +#> [213,] 0.31837803 0.3607279 0.5027575 0.5151727 0.5491726 0.5556941 0.6165135 +#> [214,] 0.58913260 0.8071999 0.9856087 0.9869900 1.0638696 1.1631375 1.1634441 +#> [215,] 0.31003120 0.3585382 0.3890705 0.3975790 0.4177120 0.5668593 0.5714364 +#> [216,] 0.40446900 0.4795265 0.5715888 0.5716924 0.6813370 0.7271226 0.7320339 +#> [217,] 0.41890859 0.4878582 0.5088305 0.5258547 0.5416196 0.5602363 0.5909218 +#> [218,] 0.40846562 0.4148849 0.4390372 0.4579331 0.4686838 0.5092006 0.5149004 +#> [219,] 0.31027223 0.3580854 0.4416277 0.4557797 0.4635054 0.4980985 0.5223489 +#> [220,] 0.67821809 0.7269518 0.7884421 0.8981276 0.9696410 1.0095566 1.0242894 +#> [221,] 0.29113310 0.4240887 0.4680106 0.5413932 0.5551246 0.6033871 0.6445696 +#> [222,] 0.31200656 0.3922203 0.5089802 0.6606336 0.6940500 0.7074970 0.7195269 +#> [223,] 0.80654788 0.8376506 0.9906952 1.0447104 1.0594308 1.1200518 1.1231975 +#> [224,] 0.29785763 0.3634108 0.3946379 0.4253274 0.5136025 0.5313052 0.5568903 +#> [225,] 0.51517267 0.6075172 0.6088218 0.6133793 0.6376472 0.6498677 0.6685887 +#> [226,] 0.41347323 0.4914823 0.5701759 0.5940340 0.6190746 0.6238119 0.6348328 +#> [227,] 0.30243922 0.4479699 0.4755517 0.5638175 0.6171614 0.6514300 0.7090876 +#> [228,] 0.90555460 0.9918885 1.1684544 1.1782701 1.2056914 1.2159078 1.2336533 +#> [229,] 0.51230390 0.6631301 0.6653664 0.7335557 0.7518248 0.8405305 0.9252294 +#> [230,] 0.77283362 0.8079880 0.8467161 0.8528566 0.8555573 0.9325761 0.9362719 +#> [231,] 0.59961280 0.6343369 0.7535997 0.7794280 0.8462224 0.8493717 0.8586241 +#> [232,] 0.26393459 0.2679328 0.2736122 0.3208431 0.3571812 0.4792169 0.4811862 +#> [233,] 0.17875079 0.3975790 0.4053346 0.4628703 0.5497720 0.5765510 0.6245413 +#> [234,] 0.67821809 0.6819256 0.6971910 0.7084205 0.7768582 0.8004708 0.8130695 +#> [235,] 0.35229033 0.4113023 0.4561031 0.4946848 0.4971033 0.5271013 0.5398038 +#> [236,] 0.62906531 0.7234641 0.7449372 0.7810325 0.8642700 0.8649101 0.8839147 +#> [237,] 0.20395837 0.3844797 0.4306182 0.5561102 0.5694909 0.5874698 0.5900798 +#> [238,] 0.57458749 0.5959630 0.6238756 0.6348328 0.6590748 0.6690772 0.7566615 +#> [239,] 0.24032959 0.5017250 0.5050407 0.5692543 0.5727376 0.5783608 0.6350611 +#> [240,] 0.41672649 0.4448618 0.4721369 0.5199025 0.5258675 0.5286509 0.5563468 +#> [241,] 0.98405382 1.1375119 1.1976571 1.2046299 1.2651680 1.3673162 1.3923991 +#> [242,] 0.57243631 0.9198506 1.0032346 1.1074054 1.1169257 1.1289227 1.1497500 +#> [243,] 0.55313581 0.6545472 0.7726849 0.8180935 0.8738729 0.8899513 0.9580921 +#> [244,] 0.57634239 0.6158662 0.6329802 0.6512504 0.6656699 0.6795726 0.7843879 +#> [245,] 0.40030939 0.4047201 0.6347717 0.6518593 0.6594240 0.6682516 0.6796197 +#> [246,] 0.20957563 0.5535769 0.5850788 0.5888863 0.5982422 0.6195995 0.6572079 +#> [247,] 0.32538741 0.3764248 0.4068925 0.4827132 0.5377097 0.5388781 0.5564219 +#> [248,] 0.07991648 0.3969090 0.4554043 0.5958814 0.6328125 0.6462949 0.6542727 +#> [249,] 0.40846562 0.5515295 0.6300735 0.6669118 0.6803393 0.7171484 0.7440268 +#> [250,] 0.24531337 0.2920796 0.3045802 0.3529613 0.3733389 0.3739873 0.4389056 +#> [251,] 0.30083629 0.3895963 0.5889364 0.6204556 0.6560988 0.6840995 0.7052760 +#> [252,] 0.35356658 0.4333924 0.4380970 0.4901973 0.5463399 0.5705713 0.5717453 +#> [253,] 0.71555951 0.8531945 0.9589535 1.0147257 1.0754897 1.0893189 1.0893488 +#> [254,] 0.32560846 0.3436373 0.5602555 0.6310238 0.7119669 0.7121295 0.8242852 +#> [255,] 0.19508862 0.3335111 0.3359325 0.4334802 0.4795022 0.5193626 0.5880298 +#> [256,] 0.33217500 0.5334556 0.5916505 0.7259507 0.7293199 0.7529128 0.7547055 +#> [257,] 0.34844429 0.3698551 0.4515219 0.6835393 0.7039375 0.7097591 0.7388971 +#> [258,] 0.48774381 0.5034437 0.6036912 0.6462597 0.6528830 0.6738408 0.7292561 +#> [259,] 0.50387183 0.5885379 0.8716588 0.9163334 0.9436734 0.9756567 0.9843683 +#> [260,] 0.31083119 0.5392876 0.5584831 0.6788038 0.6856432 0.6939049 0.7587768 +#> [261,] 0.50540167 0.6094466 0.6106162 0.7100869 0.7474043 0.7548418 0.7657958 +#> [262,] 0.36072787 0.4829120 0.6355625 0.6428138 0.6685887 0.7080839 0.7910339 +#> [263,] 0.39463790 0.3948480 0.5147426 0.5186912 0.5888827 0.6300291 0.6367832 +#> [264,] 0.39988625 0.4002021 0.4185740 0.4483313 0.4727237 0.4871645 0.4962613 +#> [265,] 0.23993803 0.5224575 0.5456090 0.5960820 0.6028731 0.6078198 0.6157228 +#> [266,] 0.37926665 0.4468730 0.4925928 0.4942371 0.5473633 0.5825448 0.6047881 +#> [267,] 0.46645854 0.5050407 0.6158712 0.7140490 0.7180839 0.7395991 0.7456979 +#> [268,] 0.38487972 0.4326476 0.4426525 0.4727237 0.4775865 0.4810028 0.5031708 +#> [269,] 1.06380439 1.1005776 1.1676122 1.1770550 1.2246484 1.2639915 1.3374345 +#> [270,] 0.35760660 0.5306228 0.6001879 0.6131775 0.6140907 0.6375269 0.6378469 +#> [271,] 0.37007701 0.3978038 0.4291071 0.5187272 0.5306961 0.5880864 0.6199867 +#> [272,] 0.08045996 0.2810413 0.4755517 0.5850168 0.7445571 0.7490401 0.7683102 +#> [273,] 0.48999353 0.5196985 0.5392876 0.6215960 0.6416367 0.6426553 0.6913845 +#> [274,] 0.24010441 0.3874158 0.4525542 0.4539625 0.4949872 0.5261021 0.5265085 +#> [275,] 0.30100470 0.5029816 0.5127194 0.5510996 0.5639015 0.5655843 0.6384658 +#> [276,] 0.54449025 1.0617308 1.1690400 1.2214387 1.2731221 1.2739128 1.4960939 +#> [277,] 0.29910942 0.5714456 0.5963457 0.6705824 0.6787581 0.7043262 0.7580649 +#> [278,] 0.35718116 0.4193687 0.4433985 0.4534542 0.4665253 0.5451624 0.5502156 +#> [279,] 0.41394639 0.6325459 0.6699654 0.7836029 0.7851510 0.8182959 0.8425422 +#> [280,] 0.22475057 0.3396683 0.4055814 0.4175321 0.4377923 0.4471095 0.4585823 +#> [281,] 0.29444451 0.4113023 0.4141784 0.4404892 0.4630233 0.5031708 0.5333971 +#> [282,] 0.31644694 0.5551573 0.5961214 0.6221072 0.6550789 0.7101610 0.7283993 +#> [283,] 0.34578357 0.3468282 0.3687117 0.4835465 0.5648596 0.6162894 0.6381854 +#> [284,] 0.50387183 0.5236702 0.7701056 0.7911549 0.8739263 0.8836861 0.9411378 +#> [285,] 0.41119252 0.5622579 0.6023753 0.6042996 0.6207918 0.6479959 0.6823808 +#> [286,] 0.85567071 1.0204548 1.0805443 1.1364532 1.3088280 1.3428671 1.3523249 +#> [287,] 0.52439153 0.7499065 0.9440280 0.9675250 1.0153069 1.2163210 1.2222432 +#> [288,] 0.54239075 0.6429094 0.8806943 1.3620115 1.4205182 1.4246796 1.4566494 +#> [289,] 0.94204478 0.9724045 0.9750135 1.0133426 1.1141167 1.1172216 1.1293275 +#> [290,] 0.34194145 0.4542825 0.5073444 0.5291135 0.7688035 0.7853064 0.8207269 +#> [291,] 0.26594121 0.4145992 0.5107277 0.5382576 0.5775870 0.6428034 0.6433268 +#> [292,] 0.33966834 0.3705808 0.4968724 0.5614452 0.5912959 0.6030132 0.6323524 +#> [293,] 0.54240523 0.5685634 0.6545472 0.7480650 0.7893958 0.7894660 0.8047075 +#> [294,] 0.26927678 0.4298212 0.4530965 0.4804884 0.5015095 0.5394649 0.5716974 +#> [295,] 0.26343145 0.2979331 0.4463409 0.5502562 0.5519391 0.5640889 0.5888744 +#> [296,] 0.28309416 0.3568485 0.4377125 0.4419143 0.4674355 0.4870335 0.5484208 +#> [297,] 0.23681564 0.3086668 0.4232261 0.4378483 0.4828435 0.5027134 0.5113881 +#> [298,] 0.44123648 0.4935362 0.5216645 0.5916291 0.6151879 0.7155653 0.7452075 +#> [299,] 0.15515797 0.1970265 0.3792540 0.3921772 0.4304232 0.4333924 0.4406006 +#> [300,] 0.35029758 0.3859824 0.6158662 0.6386173 0.6545420 0.6789222 0.6912502 +#> [301,] 0.17672129 0.2920796 0.3487168 0.4119493 0.4148849 0.4666492 0.5515295 +#> [302,] 0.53302955 0.5382576 0.5505231 0.6596260 0.6688616 0.6746336 0.6863087 +#> [303,] 1.26360735 1.2688591 1.4489720 1.5091963 1.5111890 1.6452195 1.7570417 +#> [304,] 0.32254407 0.3594234 0.4605015 0.4645395 0.5425355 0.5434271 0.5556632 +#> [305,] 0.24866835 0.3789335 0.3792134 0.4561757 0.5161408 0.5266475 0.5673960 +#> [306,] 0.26740534 0.3208248 0.4667387 0.4988816 0.5023142 0.5210939 0.5911413 +#> [307,] 0.68948956 0.8591377 0.8632621 0.8758765 0.9509291 0.9731328 1.0001691 +#> [308,] 0.51152798 0.7055470 0.7202057 0.7660243 0.7819818 0.7912739 0.8258615 +#> [309,] 0.50638053 0.5179364 0.5468375 0.6046618 0.6985545 0.7881233 0.8091576 +#> [310,] 0.16587260 0.3356574 0.3871199 0.4471608 0.4613834 0.5982422 0.6546082 +#> [311,] 0.43717069 0.4465631 0.5035108 0.6308780 0.6550789 0.6917758 0.7570848 +#> [312,] 0.35346968 0.4866033 0.4911228 0.9278780 0.9597156 0.9675250 0.9823241 +#> [313,] 0.46884574 0.4715928 0.4735928 0.5765781 0.5976214 0.6209378 0.6795702 +#> [314,] 0.18842874 0.2774444 0.3743934 0.4975694 0.5050988 0.5495635 0.5568096 +#> [315,] 0.48747026 0.5115595 0.5776815 0.5810022 0.5833092 0.5961116 0.6199867 +#> [316,] 0.71882339 0.7298102 0.7980408 0.8027938 0.8137303 0.8317879 0.8445150 +#> [317,] 0.42087897 0.4312480 0.5634303 0.6422605 0.6566718 0.7048257 0.7623149 +#> [318,] 0.34683737 0.4090368 0.4860365 0.5359664 0.5383853 0.6108532 0.6336967 +#> [319,] 0.37138546 0.4117716 0.4785496 0.4868149 0.5997890 0.6381854 0.6638874 +#> [320,] 0.46517599 0.5368974 0.6422321 0.6776026 0.6805158 0.7277149 0.7588429 +#> [321,] 0.09697109 0.3934919 0.3992212 0.4013733 0.4841724 0.5219711 0.6044576 +#> [322,] 0.61354902 0.7331312 0.8358797 0.8843709 0.9381280 0.9839040 0.9903867 +#> [323,] 0.37300207 0.3944722 0.4408895 0.5156462 0.6216648 0.6234677 0.6260663 +#> [324,] 0.30975111 0.5447037 0.5730397 0.5768426 0.6028126 0.6794550 0.6901274 +#> [325,] 0.49046188 0.5118977 0.5345808 0.5487884 0.6182018 0.6263767 0.6269757 +#> [326,] 0.48914700 0.5917555 0.6135490 0.8236793 0.8388834 0.8661062 0.8718881 +#> [327,] 0.47466248 0.6094466 0.6433676 0.6557585 0.6625708 0.6628817 0.6690772 +#> [328,] 0.73136370 0.8106643 0.8197065 0.9443775 1.0060133 1.0388432 1.0488026 +#> [329,] 0.56057729 0.5963301 0.6683562 0.6795859 0.7329504 0.8120086 0.8243287 +#> [330,] 0.27949333 0.4054250 0.4598163 0.4782392 0.5327786 0.6019534 0.6318225 +#> [331,] 0.33351112 0.3356392 0.3441288 0.4058071 0.4617185 0.4678582 0.5969929 +#> [332,] 0.50641307 0.5115280 0.5247714 0.5806314 0.6723671 0.7161356 0.7278448 +#> [333,] 0.52374859 0.5609209 0.5919769 0.7004560 0.7470308 0.7624804 0.7892986 +#> [334,] 0.42795110 0.4530965 0.4612184 0.4931298 0.5000259 0.5240484 0.5290541 +#> [335,] 0.32761430 0.3475464 0.3843879 0.3949626 0.4205965 0.4415721 0.4535849 +#> [336,] 0.50451422 0.8163552 1.0484713 1.0540369 1.1106780 1.1204779 1.1334821 +#> [337,] 0.56262031 0.7564921 0.8078945 0.8326922 0.8352566 0.8653057 0.8771891 +#> [338,] 0.35029758 0.6987542 0.7735514 0.8113368 0.8188095 0.8228033 0.8238807 +#> [339,] 0.49353624 0.6602226 0.7272707 0.7396244 0.7642973 0.8857255 0.9054262 +#> [340,] 0.26385543 0.4138580 0.4591137 0.4841722 0.4971807 0.5357776 0.5859066 +#> [341,] 0.25334228 0.4108805 0.4143892 0.4465461 0.5185135 0.5862135 0.6011670 +#> [342,] 0.23535424 0.3844714 0.3873494 0.4871865 0.5377632 0.5901825 0.6002112 +#> [343,] 0.49333622 0.5099957 0.5933300 0.6932422 0.7805514 0.7853750 0.9455148 +#> [344,] 0.42777114 0.4942371 0.4996934 0.5374261 0.5378361 0.5491287 0.5572177 +#> [345,] 0.43543452 0.4731234 0.5097656 0.5154537 0.5501798 0.5601731 0.5648554 +#> [346,] 0.27816143 0.2911331 0.3092625 0.4558091 0.6182421 0.6550839 0.6832576 +#> [347,] 0.31133296 0.5416196 0.5924440 0.5951297 0.6042996 0.6043597 0.6051760 +#> [348,] 0.32560846 0.4348900 0.5081217 0.5956861 0.7277149 0.8389705 0.8713819 +#> [349,] 0.27110632 0.2736122 0.3717283 0.4193687 0.4696581 0.5124989 0.5188817 +#> [350,] 0.46804512 0.5862584 0.6132736 0.6300291 0.6931258 0.7347957 0.8070378 +#> [351,] 0.59930178 0.6040936 0.6243774 0.7537008 0.8512212 0.8618755 0.8767726 +#> [352,] 0.72695182 0.8925216 1.0102435 1.0211662 1.0279754 1.0329852 1.2980993 +#> [353,] 0.31170307 0.6374938 0.7231658 0.8318084 0.9315260 0.9454788 1.0235594 +#> [354,] 0.47014037 0.5311183 0.5807093 0.5893542 0.6192480 0.6478061 0.6894734 +#> [355,] 0.31605501 0.5687865 0.6450369 0.6562205 0.6602688 0.6698618 0.6733962 +#> [356,] 0.21566331 0.3844714 0.4404892 0.4961319 0.5078930 0.5369264 0.5770353 +#> [357,] 0.44777486 0.5099957 0.5576428 0.6046208 0.6613447 0.6683092 0.6720861 +#> [358,] 0.44599817 0.5609735 0.7096210 0.8861194 0.8862931 0.8908547 0.9431895 +#> [359,] 0.59854713 0.7551560 0.7975922 0.8340979 0.9488876 0.9678762 1.0104143 +#> [360,] 0.69343238 0.8115715 0.8518886 0.8595648 0.8660315 0.9372885 1.0002448 +#> [361,] 0.18945147 0.3203283 0.3361130 0.3448560 0.3493174 0.3777877 0.4662042 +#> [362,] 0.48657110 0.6705820 0.7001198 0.7362744 0.8745113 0.9834923 0.9946699 +#> [363,] 0.31644694 0.5156924 0.6910260 0.7869916 0.8203473 0.8254108 0.8631331 +#> [364,] 0.57077554 0.6313865 0.6719993 0.6959316 0.7819634 0.8589755 0.8680502 +#> [365,] 0.58735280 0.5874356 0.6407729 0.6911030 0.7000366 0.7373071 0.7389704 +#> [366,] 0.28454807 0.3498404 0.3726540 0.3987329 0.4167784 0.4767417 0.4883674 +#> [367,] 0.24909537 0.6217602 0.8683734 0.9142125 0.9621563 0.9622823 0.9941056 +#> [368,] 0.20121330 0.2632861 0.2991627 0.3697308 0.4134017 0.4259888 0.5201796 +#> [369,] 0.24136134 0.6594240 0.6920199 0.7117756 0.7880136 0.8037376 0.8159284 +#> [370,] 0.49568273 0.6052306 0.6221072 0.6234920 0.6700591 0.7000754 0.7869916 +#> [371,] 0.47399983 0.6625547 0.7281672 0.7694525 0.7743539 0.8051282 0.8220837 +#> [372,] 0.36567019 0.4189086 0.5234874 0.5771078 0.5944776 0.5951297 0.7530624 +#> [373,] 0.18460255 0.2060190 0.3782162 0.3791834 0.4426923 0.4612184 0.4794289 +#> [374,] 0.46500636 0.5511406 0.5911722 0.5958814 0.6242367 0.6417307 0.6562524 +#> [375,] 0.30753941 0.5299665 0.5805937 0.5926426 0.6214401 0.6687676 0.7171484 +#> [376,] 0.58633486 0.6239548 0.6599681 0.6648714 0.6745910 0.7043262 0.7398995 +#> [377,] 0.50763829 0.5663951 0.6228037 0.7147886 0.7307823 0.7430718 0.7822892 +#> [378,] 0.30361897 0.3430907 0.5306958 0.5863829 0.6143961 0.6843397 0.7215748 +#> [379,] 0.62529285 0.9373032 0.9589361 0.9839291 1.0569027 1.1136162 1.1334750 +#> [380,] 0.31004980 0.6990266 0.9175304 1.0122607 1.1262807 1.2133086 1.2242808 +#> [381,] 0.49568273 0.5961214 0.6232368 0.6734077 0.8202901 0.8360364 0.8509438 +#> [382,] 0.31083119 0.4828926 0.4899935 0.5448074 0.5461205 0.5871392 0.7828199 +#> [383,] 0.33628768 0.5511406 0.5918048 0.6436058 0.6527433 0.6718151 0.7163910 +#> [384,] 0.44077776 0.5411184 0.6801610 0.7706525 0.7962910 0.8294079 0.8335637 +#> [385,] 0.15604009 0.4762362 0.5680078 0.5814557 0.6462597 0.6486402 0.6494302 +#> [386,] 0.38532828 0.4359686 0.5209098 0.5689635 0.5757741 0.5904509 0.5991853 +#> [387,] 0.33470661 0.3647560 0.5047202 0.5630189 0.5689635 0.5829721 0.5891104 +#> [388,] 0.65667184 0.6750756 0.6775991 0.7616078 0.7726849 0.9088996 0.9411035 +#> [389,] 0.31575585 0.5786936 0.6070519 0.6149352 0.7121295 0.7450731 0.7560740 +#> [390,] 0.40636897 0.4379580 0.4465461 0.5390755 0.5909128 0.5998869 0.6395035 +#> [391,] 0.71637391 0.9092624 0.9917192 1.0071221 1.0974428 1.1297508 1.1602162 +#> [392,] 0.51834711 0.5505231 0.5846558 0.5926610 0.7513978 0.7774382 0.7794280 +#> [393,] 0.14605421 0.6075121 0.6775991 0.7048257 0.7444487 0.7576389 0.8104532 +#> [394,] 0.46638959 0.5294214 0.5480739 0.6234146 0.6267325 0.6959634 0.7060311 +#> [395,] 1.04920444 1.1822441 1.2197848 1.3257101 1.3857820 1.3957540 1.3989331 +#> [396,] 0.50074816 0.9368811 1.0471965 1.0540369 1.0659909 1.0825885 1.0936585 +#> [397,] 0.35233048 0.3636660 0.4969829 0.5377632 0.5908810 0.6138392 0.7085501 +#> [398,] 0.33018724 0.5976214 0.6068353 0.6865432 0.7154680 0.7209059 0.7564411 +#> [399,] 0.32685154 0.3821192 0.5760403 0.6261190 0.6692866 0.7112562 0.7409202 +#> [400,] 0.99219177 1.0147922 1.1050029 1.1439902 1.2163210 1.2301288 1.2718061 +#> [401,] 0.50067478 0.5271013 0.5735262 0.6820610 0.6876870 0.7728214 0.7903175 +#> [402,] 0.61061623 0.6870153 0.7093132 0.7347957 0.8417935 0.9099727 0.9207612 +#> [403,] 0.13118949 0.5519855 0.5731555 0.6801153 0.8020988 0.8270089 0.9160206 +#> [404,] 0.35945348 0.3929751 0.4128428 0.4949872 0.5282306 0.6033871 0.6078198 +#> [405,] 0.47216259 0.6429094 0.8313961 0.9559077 1.1019036 1.1677363 1.2491498 +#> [406,] 0.52840771 0.5306958 0.5440199 0.5557236 0.5803419 0.5863349 0.5922188 +#> [407,] 0.18051066 0.4002402 0.5468375 0.5576100 0.5873958 0.6803568 0.7861184 +#> [408,] 0.42982120 0.4931298 0.5219711 0.5226653 0.5355817 0.5618288 0.6011145 +#> [409,] 0.23307038 0.5096766 0.5400055 0.5411882 0.5479479 0.5729807 0.5868046 +#> [410,] 0.22690537 0.3102786 0.4061678 0.4906205 0.5086148 0.5583424 0.6063374 +#> [411,] 0.59354400 0.6070115 0.6145340 0.6739434 0.6935096 0.6939493 0.7555520 +#> [412,] 0.45311652 0.4835465 0.6051837 0.6545420 0.6795726 0.6883190 0.7681392 +#> [413,] 0.52874860 0.5485678 0.5557123 0.5716924 0.6452023 0.7073426 0.7129012 +#> [414,] 0.59854713 0.7433678 0.7931495 1.1149152 1.1309300 1.2472189 1.2511145 +#> [415,] 1.00915273 1.0397144 1.0531656 1.0897849 1.1299244 1.2105582 1.2705682 +#> [416,] 0.44685385 0.4802813 0.4841724 0.5951493 0.6011145 0.6486402 0.6837553 +#> [417,] 0.39066227 0.4058263 0.5686761 0.5893919 0.7694337 0.7836191 0.8194804 +#> [418,] 0.30577483 0.4465631 0.5118977 0.5633698 0.5763036 0.6474377 0.6518129 +#> [419,] 0.33565738 0.3413110 0.3634738 0.3796179 0.3857744 0.4868420 0.5030333 +#> [420,] 0.26385543 0.3050787 0.3099595 0.4493096 0.5142780 0.5426927 0.5432273 +#> [421,] 0.72981016 0.8191095 1.0391618 1.0635243 1.1439234 1.1497564 1.1579309 +#> [422,] 0.77901084 0.8141714 0.8880066 0.9686581 0.9776988 0.9981969 1.0372120 +#> [423,] 0.17188245 0.3102722 0.4068494 0.4948228 0.5050988 0.5092787 0.5166929 +#> [424,] 0.58021695 0.6560988 0.8278941 0.8310321 0.8902744 0.9046550 0.9497534 +#> [425,] 0.50074816 0.7472879 0.7886271 0.8055432 0.8072300 0.8322109 0.8544600 +#> [426,] 0.65841128 0.7551560 0.8793542 0.8990536 0.9343049 0.9647801 1.0091527 +#> [427,] 0.40360403 0.4477749 0.4521097 0.5402954 0.5465505 0.6198224 0.6646068 +#> [428,] 0.47869309 0.9571049 1.1259877 1.1363119 1.2431542 1.2535680 1.2883587 +#> [429,] 0.34027172 0.3519596 0.3895963 0.5030022 0.5741917 0.5803987 0.7337276 +#> [430,] 0.21863794 0.5792501 0.5799310 0.6055756 0.6098908 0.6619151 0.7052326 +#> [431,] 0.42262902 0.5161931 0.5211340 0.5809020 0.6295294 0.6742100 0.7002335 +#> [432,] 0.57267127 0.5730397 0.6557861 0.6854213 0.6911311 0.6957793 0.7067249 +#> [433,] 0.24866835 0.2996319 0.4200978 0.4258462 0.4310830 0.5603310 0.5667096 +#> [434,] 0.39780376 0.4386172 0.4797447 0.4874703 0.4933392 0.5682878 0.6303169 +#> [435,] 0.49112284 0.6390106 0.6759421 0.7114507 0.7823791 0.7902742 0.7998991 +#> [436,] 0.36738405 0.4135458 0.5167208 0.5334669 0.5473633 0.5482934 0.5957012 +#> [437,] 0.29571554 0.3634738 0.3637507 0.3814911 0.3871199 0.3876728 0.4539900 +#> [438,] 0.49119061 0.7828531 0.8027938 0.8172419 0.9485036 1.0184482 1.0185377 +#> [439,] 0.83437551 0.9571049 1.0803707 1.1735669 1.1976571 1.2111689 1.3843671 +#> [440,] 0.24289334 0.3120646 0.3537647 0.3949626 0.4134017 0.4214355 0.4319502 +#> [441,] 0.20289628 0.6237566 0.6844604 0.7369896 0.8385844 0.8803578 0.8962578 +#> [442,] 0.75123324 0.9219082 1.0496610 1.1107187 1.1215952 1.1425865 1.1637278 +#> [443,] 0.24545491 0.4625359 0.4660731 0.4949305 0.5009155 0.5330862 0.5507820 +#> [444,] 0.67768660 0.7038044 0.7892187 0.8172974 0.8343469 0.8612254 0.8907011 +#> [445,] 1.22623347 1.2420842 1.3854303 1.3953893 1.4621698 1.5357017 1.5569942 +#> [446,] 0.47289305 0.6145340 0.6684878 0.6760726 0.6819878 0.6879263 0.6969249 +#> [447,] 1.45228667 1.6043613 1.6490182 1.8686264 1.8838568 1.8952957 1.9006795 +#> [448,] 0.57243631 0.7067615 0.8611921 1.0199524 1.0782641 1.1621953 1.1898859 +#> [449,] 0.24863800 0.3598209 0.3796937 0.4948503 0.5142888 0.5173598 0.5306004 +#> [450,] 0.44366791 0.7192560 1.2657779 1.2739660 1.3403521 1.3811454 1.5902023 +#> [451,] 0.50167997 0.5237082 0.5300692 0.5317664 0.5451624 0.5490896 0.5717995 +#> [452,] 0.64144872 0.8653057 1.1236420 1.2908359 1.3073813 1.3171347 1.3352933 +#> [453,] 0.40963634 0.4797447 0.5306961 0.6045138 0.6223325 0.6235444 0.6778300 +#> [454,] 0.57965193 0.7163739 0.7299407 0.7894505 0.9358348 1.0104482 1.0190099 +#> [455,] 0.33731955 0.3678879 0.3792666 0.4171944 0.5020450 0.5062591 0.5226281 +#> [456,] 0.09697109 0.3223750 0.3544125 0.4270109 0.4468538 0.5355817 0.5816812 +#> [457,] 0.26564505 0.7653629 0.8236488 0.9174340 0.9267543 0.9272176 0.9374222 +#> [458,] 0.48470066 0.5052092 0.5596495 0.6027456 0.6594966 0.6607136 0.6997558 +#> [459,] 0.16282452 0.2891480 0.4182400 0.4340449 0.4996934 0.5051723 0.5113368 +#> [460,] 0.44060061 0.4449831 0.4557764 0.4573444 0.4681588 0.5077163 0.5246272 +#> [461,] 0.27996485 0.5602452 0.6143961 0.6219634 0.6801153 0.7140490 0.7973198 +#> [462,] 0.70380443 0.8241613 1.1755510 1.1950636 1.2795708 1.3081447 1.3256072 +#> [463,] 0.26740534 0.3117459 0.4585147 0.4678582 0.5209490 0.5859090 0.5880765 +#> [464,] 0.52166448 0.5273160 0.6314860 0.6347717 0.6591848 0.6602226 0.6829279 +#> [465,] 0.46804512 0.6870153 0.7545626 0.7706474 0.7762396 0.8118278 0.9270370 +#> [466,] 0.31004980 0.7137102 0.8195100 0.8730117 0.9593647 1.0354425 1.1030984 +#> [467,] 0.29292073 0.3314803 0.4310830 0.4425622 0.4561757 0.5497865 0.5655038 +#> [468,] 0.27981317 0.3631803 0.3758961 0.4363955 0.4510979 0.4921939 0.5126823 +#> [469,] 0.34390429 0.3668414 0.4200978 0.5247714 0.5707832 0.5720249 0.6123558 +#> [470,] 0.21164504 0.2930111 0.3169707 0.3361130 0.3613120 0.3687756 0.3733389 +#> [471,] 0.20417561 0.4786287 0.5084755 0.5140385 0.5410413 0.5428946 0.6918404 +#> [472,] 0.83587974 0.8890259 0.9255049 0.9664203 1.0821634 1.0852990 1.1843941 +#> [473,] 0.76058958 0.9090353 0.9256838 0.9697771 1.0202062 1.0394324 1.0615033 +#> [474,] 0.40542497 0.4449027 0.4514099 0.5119779 0.5300852 0.5545604 0.5947904 +#> [475,] 0.87266945 1.0586150 1.0839485 1.0860132 1.1040333 1.1843674 1.3202047 +#> [476,] 0.39915058 0.4044690 0.4656943 0.5084248 0.5287486 0.5500657 0.6266317 +#> [477,] 0.51479463 0.5694424 0.6092113 0.6469373 0.6859729 0.6948786 0.6948917 +#> [478,] 0.33332358 0.4540222 0.6165999 0.6311446 0.6354071 0.6525144 0.6576091 +#> [479,] 0.32348784 0.4167936 0.4622053 0.4756200 0.4828435 0.4856521 0.5458660 +#> [480,] 0.20774666 0.2368156 0.3148796 0.3318808 0.4167936 0.5171208 0.5223489 +#> [481,] 0.64265530 0.6615948 0.6939049 0.7691026 0.7837144 0.8313751 0.8374920 +#> [482,] 0.31191358 0.5115595 0.5186912 0.5568903 0.5658674 0.5805367 0.6526331 +#> [483,] 0.36871174 0.4752569 0.4946232 0.5832266 0.6778089 0.6828681 0.7059491 +#> [484,] 0.61434841 0.6643837 0.7710334 0.8202840 0.8318084 1.0382065 1.1255773 +#> [485,] 0.32282065 0.4160175 0.4522604 0.4870973 0.5622388 0.5837745 0.6021089 +#> [486,] 0.69902660 0.9255049 0.9593647 0.9603065 1.0848989 1.1964572 1.2806124 +#> [487,] 0.36583627 0.4312480 0.5921655 0.6179367 0.6290988 0.6688491 0.6798061 +#> [488,] 0.48914700 0.5809788 0.5860091 0.6228037 0.6670446 0.7151664 0.7331312 +#> [489,] 0.54426886 0.5818935 0.6092135 0.6802616 0.7296064 0.7703605 0.7863003 +#> [490,] 0.64144872 1.1515432 1.2574863 1.3068810 1.3621837 1.4400532 1.5037535 +#> [491,] 0.68609343 0.6878115 1.0190392 1.1752675 1.2500793 1.4017630 1.4175909 +#> [492,] 0.19996637 0.2641698 0.4474902 0.4658086 0.5312450 0.5522147 0.5635916 +#> [493,] 0.55034352 0.6327033 0.7231658 0.9630081 1.1152965 1.1166193 1.2305216 +#> [494,] 0.44016974 0.7307823 0.8092806 0.8182231 0.8593062 0.8993036 0.9097510 +#> [495,] 0.27017635 0.3699957 0.4096830 0.4512306 0.4612165 0.4628703 0.4941352 +#> [496,] 0.73232324 0.7710468 0.8167852 0.8925772 0.9230566 0.9272176 0.9380741 +#> [497,] 0.35942336 0.4049898 0.4334802 0.4913438 0.5031696 0.5197681 0.5405174 +#> [498,] 1.03943243 1.0721897 1.0905577 1.1089035 1.1314227 1.1912541 1.2253874 +#> [499,] 0.27072483 0.3865848 0.4292685 0.5141644 0.5370477 0.5482934 0.5624287 +#> [500,] 0.37642480 0.3978315 0.3998387 0.5439209 0.5668593 0.6262270 0.6268746 +#> [501,] 0.47216259 0.5423907 0.7833552 0.9727131 1.1413017 1.1811073 1.2372009 +#> [502,] 0.34754640 0.3576066 0.3862040 0.3874743 0.4431694 0.4952917 0.5221971 +#> [503,] 1.25593536 1.3176629 1.3585019 1.3851334 1.3869811 1.4232511 1.4684821 +#> [504,] 0.41890633 0.4389962 0.4798121 0.6254812 0.6718151 0.6731796 0.7411969 +#> [505,] 0.78545275 0.8847553 1.0815974 1.1519782 1.3383411 1.4112341 1.5026801 +#> [506,] 0.37644458 0.5334556 0.5487723 0.7187771 0.7560823 0.7745370 0.9103913 +#> [507,] 0.70927902 0.7398905 0.8395667 0.8904261 0.8994460 0.9188252 0.9655937 +#> [508,] 0.51459128 0.6009983 0.6357531 0.6474427 0.6819256 0.7059153 0.7111395 +#> [509,] 0.43697204 0.4958141 0.5626203 0.5694424 0.5959871 0.6326815 0.7707595 +#> [510,] 0.40476741 0.5652670 0.5761168 0.6490482 0.6917122 0.7084974 0.7534034 +#> [511,] 0.82162781 0.9675018 0.9981969 1.0832153 1.2422757 1.2847455 1.2862323 +#> [512,] 0.30085979 0.4361772 0.5251689 0.5338096 0.5823034 0.6650514 0.7381164 +#> [513,] 0.29301114 0.3731118 0.4421991 0.4486907 0.4543662 0.4699835 0.4710620 +#> [514,] 0.29292073 0.4098502 0.4798583 0.5378361 0.5423993 0.5514421 0.5667096 +#> [515,] 0.26793281 0.2711063 0.3820295 0.3889879 0.4171944 0.4261615 0.4433985 +#> [516,] 0.27028389 0.3415438 0.3734846 0.3840070 0.4426923 0.4609179 0.4715471 +#> [517,] 0.30866684 0.3234878 0.3318808 0.4254990 0.4446930 0.4488586 0.4648980 +#> [518,] 0.07991648 0.4038128 0.4762512 0.5911722 0.6350611 0.6912811 0.6981930 +#> [519,] 0.37025403 0.3944722 0.4546167 0.5061000 0.5270976 0.5509830 0.5810267 +#> [520,] 0.27981317 0.4053421 0.4202105 0.4315446 0.5017654 0.5127194 0.5205824 +#> [521,] 0.34512046 0.4042546 0.4521097 0.5453375 0.5888239 0.6046208 0.6074047 +#> [522,] 0.13879613 0.3419732 0.3665608 0.4178758 0.4448724 0.4893759 0.5030333 +#> [523,] 0.54363676 0.5771780 0.5962627 0.7278883 0.8893138 0.9051578 0.9270370 +#> [524,] 0.33184739 0.3507093 0.3598209 0.5017654 0.5346923 0.5475948 0.5485160 +#> [525,] 0.26143033 0.3439043 0.3928074 0.4258462 0.5064131 0.5837491 0.7095298 +#> [526,] 0.28883648 0.4871865 0.5237486 0.5480739 0.6635628 0.6831837 0.6882478 +#> [527,] 0.77901084 1.1327007 1.2185269 1.2789434 1.2862323 1.3177358 1.4660522 +#> [528,] 0.38801771 0.3950953 0.4755505 0.5452861 0.5768426 0.6079400 0.6224556 +#> [529,] 0.27912903 0.3436373 0.4348900 0.6630490 0.6776026 0.7560740 0.8175933 +#> [530,] 0.45669225 0.5905829 0.6098908 0.8362491 0.8714916 0.8802147 0.9061382 +#> [531,] 0.36687170 0.4117716 0.4755552 0.5197681 0.5227071 0.5425355 0.5607744 +#> [532,] 0.33962879 0.3890705 0.4053346 0.5261169 0.6142398 0.6576187 0.6897535 +#> [533,] 0.73738653 0.8103618 0.8189857 0.8284993 0.8510004 0.8795685 0.8951109 +#> [534,] 0.17875079 0.3396288 0.3585382 0.5533974 0.5907733 0.6179367 0.6273748 +#> [535,] 0.32500550 0.3266515 0.3547841 0.3792344 0.4175321 0.4422283 0.4517481 +#> [536,] 0.33064403 0.3969425 0.5079901 0.5199025 0.5263975 0.5330862 0.5579990 +#> [537,] 0.86476367 0.9477399 0.9832344 1.0586136 1.2534981 1.3615438 1.3869811 +#> [538,] 1.51838574 1.6109467 1.7708302 1.8085940 1.9709012 1.9897454 2.1130770 +#> [539,] 0.31191358 0.4145507 0.4342199 0.5136025 0.5556632 0.5776815 0.5888827 +#> [540,] 0.48520405 0.6145141 0.9431510 0.9827255 1.0118221 1.0709103 1.1359482 +#> [541,] 0.40472014 0.4864877 0.6390878 0.6591848 0.7155856 0.7660701 0.7727693 +#> [542,] 0.76364702 0.7853750 0.8647637 1.0036165 1.0303411 1.0931007 1.0985984 +#> [543,] 0.58070930 0.6279492 0.6657246 0.6752513 0.6872129 0.7148179 0.7352546 +#> [544,] 0.61975077 0.9142557 0.9437180 1.0027772 1.0378565 1.1022966 1.2146529 +#> [545,] 0.60396993 0.8556707 0.8925672 0.9236600 0.9622823 0.9663578 0.9743262 +#> [546,] 0.12046345 0.4407778 0.6910868 0.7058085 0.7183874 0.7288252 0.7548969 +#> [547,] 1.17888285 1.2565012 1.3092816 1.3485371 1.3592511 1.3868103 1.3965006 +#> [548,] 0.55249129 0.5894451 0.6794550 0.6825160 0.7403855 0.7499781 0.7685453 +#> [549,] 0.40476741 0.5235680 0.5698808 0.6055756 0.6478767 0.7933394 0.8048888 +#> [550,] 0.59574307 0.6550834 0.7081091 0.8176899 0.8303848 0.8308750 0.8356224 +#> [551,] 0.36883720 0.3790429 0.4196418 0.4813874 0.6354071 0.7087893 0.7210488 +#> [552,] 0.22690537 0.3318503 0.3474324 0.3919076 0.5672823 0.5812286 0.5816418 +#> [553,] 0.25774459 0.3120066 0.5073320 0.6759421 0.6994948 0.7042752 0.7059491 +#> [554,] 0.48465152 0.5241100 0.5428946 0.5505425 0.5685634 0.5802675 0.6282014 +#> [555,] 0.28688126 0.3224021 0.4224186 0.4696288 0.4751730 0.4799773 0.4841708 +#> [556,] 0.42682207 0.4577456 0.5079901 0.5520819 0.6207918 0.6501106 0.6740800 +#> [557,] 0.51817417 0.5442637 0.5868762 0.6314365 0.6477322 0.6781473 0.6986159 +#> [558,] 0.19513800 0.3253874 0.3978315 0.5390598 0.5714364 0.5780151 0.6273748 +#> [559,] 0.60147181 0.6422321 0.6654582 0.7315526 0.7750984 0.8343469 0.8389705 +#> [560,] 0.58039868 0.6049625 0.6840995 0.7140941 0.7261054 0.7437403 0.7692705 +#> [561,] 0.56407060 0.5846558 0.8028055 0.8462224 0.8719151 0.8746693 0.8830011 +#> [562,] 0.34273538 0.3841699 0.4105118 0.4383739 0.4858712 0.5065422 0.5251689 +#> [563,] 0.44366791 0.7238057 1.1969462 1.3358588 1.3543267 1.3886413 1.5250261 +#> [564,] 0.63184141 0.7544464 0.7638342 0.8534673 0.9591824 0.9823241 0.9860083 +#> [565,] 0.53892468 0.6336688 0.8073962 0.8078945 0.9509165 0.9673514 1.0400164 +#> [566,] 1.40517342 1.4799383 1.5337433 1.6619145 1.6645287 1.6742392 1.6770461 +#> [567,] 0.40425462 0.5054819 0.5465505 0.6699691 0.6847809 0.7834679 0.7970432 +#> [568,] 0.29230462 0.2969847 0.3602116 0.3634108 0.3904106 0.5878294 0.6034387 +#> [569,] 0.41354584 0.4359867 0.4786287 0.5156658 0.5329834 0.5480443 0.5491726 +#> [570,] 0.40415075 0.6027456 0.6301278 0.6499022 0.6650514 0.7953267 0.8599447 +#> [571,] 1.01472574 1.1123529 1.1923692 1.3073333 1.3876238 1.5133920 1.5342320 +#> [572,] 1.41605561 1.5498688 1.7465202 1.7507080 1.8019820 1.8112516 1.8627146 +#> [573,] 0.59337182 0.6013404 0.6559592 0.6794917 0.7073037 0.7472879 0.7559327 +#> [574,] 0.20601898 0.2138112 0.2836252 0.3734846 0.3993061 0.4641697 0.5026104 +#> [575,] 0.56988075 0.5799310 0.6264804 0.6338821 0.7155595 0.7585791 0.8802147 +#> [576,] 0.24010441 0.3451244 0.3776825 0.4448724 0.5067279 0.5093840 0.5153017 +#> [577,] 0.44522840 0.4637061 0.5803419 0.6279280 0.7888915 0.8112898 0.8401171 +#> [578,] 0.46177516 0.5032684 0.5560926 0.6384115 0.6558610 0.6738408 0.6795696 +#> [579,] 0.25183425 0.4369720 0.4405283 0.4724317 0.6092113 0.6395914 0.6836550 +#> [580,] 0.55034352 0.8932676 0.9048609 0.9122109 0.9204655 1.0020373 1.0966724 +#> [581,] 0.27957885 0.4029978 0.5986835 0.6859729 0.7006915 0.8743741 0.9495803 +#> [582,] 0.46009541 0.5295352 0.5377479 0.5922188 0.5985136 0.6594093 0.6648714 +#> [583,] 0.16973124 0.3884705 0.4261615 0.4953801 0.5302664 0.6032451 0.6088218 +#> [584,] 0.36096082 0.4292685 0.4315726 0.5161931 0.5861869 0.6151879 0.6519473 +#> [585,] 0.62240532 0.8313961 0.8539695 1.0598134 1.0899057 1.1185382 1.1891441 +#> [586,] 0.53355768 0.6586069 0.7373932 0.8106935 0.8137303 0.8560083 0.8586241 +#> [587,] 0.61434841 0.6742504 0.7758032 0.8632298 0.9866009 0.9946745 1.0171249 +#> [588,] 0.50994700 0.7137102 0.7281672 0.8292282 0.8709165 0.9152130 0.9175304 +#> [589,] 0.35442371 0.4167385 0.4613995 0.4975055 0.5103887 0.7466410 0.7591619 +#> [590,] 0.54835213 0.7573177 0.7731458 0.7745561 0.7955375 0.8407062 0.8494256 +#> [591,] 0.48960202 0.5124989 0.5754902 0.5816418 0.5968568 0.6040564 0.6065801 +#> [592,] 0.40807386 0.5852049 0.5944061 0.6151464 0.6305765 0.6354666 0.6405491 +#> [593,] 0.50451422 0.5435610 0.8748761 0.9055023 1.0413266 1.0492853 1.1193411 +#> [594,] 0.60941048 0.8286666 0.8362473 0.8475980 0.8652686 0.9248949 0.9401446 +#> [595,] 1.02764981 1.0675792 1.1726157 1.1737706 1.2117283 1.2122693 1.2136554 +#> [596,] 0.48648770 0.6071182 0.6077914 0.6451965 0.6664912 0.6796197 0.6990176 +#> [597,] 0.31537054 0.4401888 0.7049388 0.7611104 0.7926868 0.8169729 0.8347674 +#> [598,] 0.33478924 0.3535666 0.3921772 0.3934919 0.4061885 0.4270109 0.4683849 +#> [599,] 0.29403821 0.4011936 0.4167385 0.4725982 0.5336573 0.5487884 0.5762095 +#> [600,] 0.34154377 0.3776825 0.4150283 0.4241536 0.4626339 0.4811862 0.5238636 +#> [601,] 0.29062669 0.3969090 0.4038128 0.6562524 0.6739732 0.6791804 0.7069239 +#> [602,] 0.36985508 0.4767623 0.6505008 0.6659052 0.6908772 0.6949283 0.7074873 +#> [603,] 0.46510675 0.5777555 0.6102530 0.6860259 0.6954669 0.8290772 0.8351042 +#> [604,] 0.58189352 0.6589000 0.6686780 0.6893716 0.8203466 0.8461130 0.8599066 +#> [605,] 0.28459575 0.3376415 0.4192009 0.5731440 0.6105425 0.6149352 0.6214294 +#> [606,] 0.11608719 0.3638735 0.3792344 0.3799525 0.3879428 0.4390372 0.4585823 +#> [607,] 0.80719987 0.8293724 1.0997222 1.2354086 1.3177878 1.3927904 1.4089550 +#> [608,] 0.70018889 1.2503321 1.2780366 1.3383411 1.4643526 1.5313353 1.5387897 +#> [609,] 0.54703206 0.6326815 0.7559557 0.8459306 0.8506859 0.8917204 0.9307966 +#> [610,] 0.27361090 0.3943047 0.4335340 0.5142888 0.5265425 0.5371743 0.5416264 +#> [611,] 0.82697259 0.8951109 0.9285000 0.9448010 1.0888297 1.2039308 1.2067116 +#> [612,] 0.30507871 0.3273770 0.4344419 0.4591137 0.4751239 0.4870335 0.5101134 +#> [613,] 0.54105950 0.7512295 0.8366602 0.9077201 1.0226334 1.0241518 1.1789045 +#> [614,] 0.32685154 0.4467783 0.6437903 0.6957793 0.7111202 0.7504098 0.7703679 +#> [615,] 0.21392826 0.2641698 0.4380816 0.4557797 0.5332089 0.5424867 0.5470235 +#> [616,] 0.16973124 0.3613998 0.4432428 0.4559979 0.5624052 0.5760403 0.6043345 +#> [617,] 0.54910784 0.5686761 0.6911297 0.6945931 0.7177089 0.7198688 0.7597752 +#> [618,] 0.21566331 0.3873494 0.4141784 0.4209737 0.4946848 0.5121898 0.5441918 +#> [619,] 0.31174585 0.3208248 0.3302222 0.3356392 0.3359325 0.3493520 0.4049898 +#> [620,] 0.48416998 0.6688491 0.6699654 0.7330502 0.7655117 0.7961905 0.8147810 +#> [621,] 0.54243723 0.5634303 0.5645729 0.5921655 0.5974787 0.6009983 0.6831728 +#> [622,] 0.44986007 0.6802616 0.6893716 0.8791343 0.8939719 0.9821576 0.9837626 +#> [623,] 0.58665844 0.8052953 0.8582436 0.9003027 0.9672961 0.9803843 1.0155728 +#> [624,] 0.24136134 0.5790625 0.6168309 0.6571811 0.6682516 0.7423945 0.7494334 +#> [625,] 0.52631572 0.6946062 0.8203172 0.8286666 0.8862931 1.0503166 1.0956282 +#> [626,] 0.28362515 0.3572052 0.3782162 0.4301535 0.4609179 0.4736896 0.4951976 +#> [627,] 0.34844429 0.4708596 0.4950304 0.5364844 0.5959543 0.6394717 0.6509156 +#> [628,] 0.70116622 0.8738729 0.9232706 0.9257615 0.9500668 1.0094909 1.0283225 +#> [629,] 0.41787351 0.5240484 0.6101186 0.6395927 0.6518593 0.6559082 0.6670681 +#> [630,] 0.34027172 0.3483590 0.5775658 0.5876252 0.6204556 0.6855360 0.7085435 +#> [631,] 0.48183801 0.7126242 0.7467861 0.7836029 0.8784556 0.8980112 0.8987570 +#> [632,] 0.19419128 0.2839768 0.3802278 0.4279197 0.4645395 0.4706502 0.4918564 +#> [633,] 0.23167235 0.4764203 0.4957492 0.5487723 0.5527083 0.5540839 0.6585077 +#> [634,] 0.37995251 0.4259055 0.4356021 0.4399584 0.4510979 0.5149004 0.6219822 +#> [635,] 0.39363928 0.4841722 0.5142780 0.5335577 0.5623835 0.5888239 0.6495236 +#> [636,] 0.63314368 1.0503016 1.1153360 1.1235266 1.1364532 1.1380188 1.1802990 +#> [637,] 0.85546966 0.8595941 0.8765175 0.8949732 0.9058662 0.9230566 0.9535782 +#> [638,] 0.54449025 1.2893829 1.4274326 1.4313215 1.4664327 1.6344595 1.6742548 +#> [639,] 0.46645854 0.4802830 0.6528180 0.6667336 0.6717098 0.6732536 0.6761374 +#> [640,] 0.35965794 0.4701404 0.5471553 0.5762095 0.6405376 0.6763833 0.6825840 +#> [641,] 0.43598666 0.4381048 0.5115222 0.5120130 0.5410413 0.5505425 0.5846763 +#> [642,] 0.25334228 0.5324512 0.5390755 0.5392326 0.5592968 0.5691145 0.5746819 +#> [643,] 0.36595529 0.3844797 0.4811879 0.5233490 0.5263663 0.5361204 0.5486290 +#> [644,] 0.34235251 0.5245471 0.5290194 0.5560926 0.5857627 0.6764634 0.6833624 +#> [645,] 0.36347243 0.4590754 0.6295294 0.6487658 0.6860259 0.7038720 0.7096475 +#> [646,] 0.20395837 0.4657923 0.4935208 0.5361204 0.5476945 0.5932247 0.6263767 +#> [647,] 0.29910942 0.4783190 0.5909218 0.6377302 0.6388986 0.7084974 0.7317710 +#> [648,] 0.38519494 0.4323350 0.5596796 0.6020497 0.6978972 0.7114342 0.7876461 +#> [649,] 0.35376145 0.4160175 0.4224186 0.4543662 0.4552867 0.4556376 0.4574192 +#> [650,] 1.26516795 1.2810324 1.5369662 1.5829576 1.5865118 1.6985075 1.7013157 +#> [651,] 0.30338965 0.3409042 0.3426225 0.3523410 0.3687144 0.4049237 0.4143892 +#> [652,] 0.38772521 0.4232959 0.5335816 0.5549221 0.5569106 0.6105425 0.6243774 +#> [653,] 0.37150479 0.4389962 0.4868420 0.4953717 0.5373714 0.5376232 0.5427501 +#> [654,] 0.78346792 0.7997734 0.8752845 0.9425318 0.9635824 0.9930162 0.9941969 +#> [655,] 0.49333622 0.4946115 0.5402954 0.5576428 0.6074047 0.7881233 0.8216602 +#> [656,] 0.81634704 0.8325586 0.9138814 0.9159168 0.9335997 0.9660048 1.0039897 +#> [657,] 0.30361897 0.5440199 0.5652880 0.6127630 0.6279280 0.6685404 0.7063750 +#> [658,] 0.37644458 0.4764203 0.5026760 0.5916505 0.6111725 0.6610760 0.7162576 +#> [659,] 0.46121647 0.4937272 0.6014050 0.6290653 0.6328639 0.7201901 0.7545655 +#> [660,] 0.27017635 0.4135228 0.4148534 0.4937272 0.5395340 0.5418916 0.5552143 +#> [661,] 0.58739582 0.6725229 0.7993370 0.9048243 0.9329313 0.9839407 1.0221971 +#> [662,] 0.41394639 0.6016788 0.6157182 0.6422605 0.6474427 0.6831728 0.7126242 +#> [663,] 0.18460255 0.2138112 0.3822591 0.3840070 0.3862574 0.4230495 0.4736896 +#> [664,] 0.30072497 0.3464240 0.3802278 0.3995926 0.6015810 0.6372212 0.6519142 +#> [665,] 0.30975111 0.3880177 0.4556376 0.5139233 0.5483299 0.5894451 0.6325165 +#> [666,] 0.43594864 0.5407081 0.8323526 0.9285000 0.9896595 1.0405765 1.0770914 +#> [667,] 0.34452809 0.3600881 0.3892187 0.4049237 0.4952720 0.5409081 0.5506858 +#> [668,] 0.25073339 0.2655099 0.3688372 0.4002012 0.5335816 0.5430112 0.5562233 +#> [669,] 0.55313581 0.8070900 0.8268404 0.9176893 0.9838827 1.0484415 1.0492853 +#> [670,] 0.77684925 0.7780350 0.8705382 0.8738428 0.9277626 0.9402255 0.9558444 +#> [671,] 0.62196198 0.6366517 0.6978972 0.8322545 0.8497819 0.9580972 1.0241518 +#> [672,] 0.30084255 0.5388117 0.5648963 0.5803478 0.7518248 0.7807733 0.8681542 +#> [673,] 0.43749453 0.5505227 0.5672890 0.5687865 0.5735866 0.5894259 0.5947715 +#> [674,] 0.24863800 0.3318474 0.4301535 0.4310850 0.4422283 0.4810028 0.4870022 +#> [675,] 0.53320894 0.6171614 0.6680559 0.6984509 0.7053176 0.7166298 0.7309727 +#> [676,] 0.39983873 0.4405283 0.4797045 0.5156670 0.5388781 0.5728042 0.6942725 +#> [677,] 0.35368533 0.4474790 0.4496334 0.4678426 0.6593369 0.7176423 0.7300486 +#> [678,] 0.39190757 0.4899965 0.5306228 0.5583424 0.6397865 0.6539415 0.6601470 +#> [679,] 0.42631331 0.4291071 0.5682878 0.6235444 0.6862337 0.7036078 0.7612428 +#> [680,] 0.40020213 0.4387530 0.4914823 0.5162458 0.5411882 0.5538449 0.5839871 +#> [681,] 0.27824019 0.3971149 0.4167784 0.4673479 0.4958828 0.5184400 0.5692543 +#> [682,] 0.44486184 0.5100506 0.5699179 0.5792501 0.5905829 0.6962281 0.6983024 +#> [683,] 0.63366877 0.7138283 0.8833182 0.9951903 0.9986345 1.0016824 1.0486325 +#> [684,] 0.32908268 0.3829368 0.4572627 0.4617752 0.5499103 0.5675280 0.5688572 +#> [685,] 0.47289305 0.4739998 0.6328005 0.6521120 0.6720328 0.6739434 0.7266951 +#> [686,] 0.35509133 0.4265314 0.6051751 0.6168309 0.6865512 0.7016635 0.7183189 +#> [687,] 0.71885913 0.8323526 0.9055023 0.9176893 0.9448010 1.1334821 1.1536165 +#> [688,] 0.51403851 0.5219559 0.5413375 0.5480443 0.6355625 0.6555136 0.6644830 +#> [689,] 0.61265766 0.6874574 0.7786590 0.8613076 0.9503610 0.9610233 1.0182848 +#> [690,] 0.42653138 0.4625601 0.4763041 0.5893919 0.6858187 0.6941150 0.6977133 +#> [691,] 0.29444451 0.3104717 0.4775865 0.5029744 0.5991155 0.6026409 0.6093745 +#> [692,] 0.69054547 0.8296649 0.8948670 0.9504654 1.0171249 1.0282789 1.0300253 +#> [693,] 0.51757671 0.5368974 0.7315526 0.7389885 0.8092806 0.8729183 0.8828692 +#> [694,] 0.21674498 0.2507334 0.4196418 0.4596097 0.5467713 0.5569106 0.6194824 +#> [695,] 0.69062254 0.8392936 1.1106780 1.1193411 1.1366575 1.1374524 1.1464533 +#> [696,] 0.34682822 0.3859824 0.4531165 0.4946232 0.5408715 0.5927076 0.5948363 +#> [697,] 0.95620290 1.1272844 1.1292652 1.3601725 1.4219230 1.4411477 1.4704535 +#> [698,] 0.26343145 0.4435184 0.5219604 0.5413950 0.5726195 0.6162140 0.6336426 +#> [699,] 0.42701073 0.5527083 0.8069478 0.8241123 0.8512284 0.8574372 0.8688199 +#> [700,] 0.36336045 0.4141241 0.4178735 0.4315726 0.5211340 0.6684754 0.6770869 +#> [701,] 0.54105950 0.9021926 0.9023072 1.1646467 1.1690400 1.1740738 1.2017255 +#> [702,] 0.33332358 0.4941352 0.5491287 0.5514421 0.5823703 0.6171313 0.6328639 +#> [703,] 0.31537054 0.4176534 0.6411925 0.6462147 0.7403294 0.7454633 0.7899675 +#> [704,] 0.26328614 0.2638343 0.3096327 0.3402142 0.4377764 0.4409665 0.5062397 +#> [705,] 0.38149111 0.3966306 0.4026726 0.4178758 0.4513943 0.4525542 0.5153017 +#> [706,] 0.15472873 0.3533348 0.3699957 0.3862040 0.4205965 0.4325937 0.5418916 +#> [707,] 0.43000173 0.5073444 0.5338096 0.5381579 0.6499022 0.6594966 0.6792359 +#> [708,] 0.33323683 0.4416356 0.4746625 0.4969829 0.5978585 0.6048488 0.6156391 +#> [709,] 0.60490980 0.6197508 0.6389791 0.6671744 0.6842797 0.8041659 0.8240498 +#> [710,] 0.44123648 0.5963301 0.6770869 0.6782984 0.7436061 0.7591996 0.7596100 +#> [711,] 0.36738405 0.4432428 0.4953801 0.5027575 0.5266475 0.5653288 0.5719470 +#> [712,] 0.44109626 0.5182610 0.8114595 0.8182231 0.8704664 0.8718881 0.8750923 +#> [713,] 0.35346968 0.7246401 0.7499065 0.7823791 0.8305809 0.9931664 1.0404170 +#> [714,] 0.58893642 0.6124386 0.6788038 0.7691026 0.7834769 0.8118543 0.8310321 +#> [715,] 0.66340973 0.8016984 0.8089124 0.8649101 0.8843676 0.9499100 1.0330265 +#> [716,] 0.14605421 0.6347718 0.6725681 0.7590693 0.7616078 0.7722215 0.7821952 +#> [717,] 0.25735799 0.3537615 0.3695420 0.3777877 0.4214002 0.4252863 0.4281232 +#> [718,] 0.33022224 0.3441288 0.4096363 0.4386172 0.4585147 0.5031696 0.5193626 +#> [719,] 0.65860686 0.8196058 0.8914782 0.9086368 0.9839407 1.0014516 1.0230460 +#> [720,] 0.39509527 0.5139233 0.5447037 0.5524913 0.8080131 0.8155186 0.8215988 +#> [721,] 0.55933129 0.6217602 0.6965583 0.7067615 0.7703424 0.8276266 0.8368484 +#> [722,] 0.63580413 0.7688035 0.8106643 0.9246408 0.9380414 0.9439554 1.0680439 +#> [723,] 0.46256011 0.4801519 0.5622388 0.6051751 0.6279492 0.6551946 0.6571811 +#> [724,] 0.34717912 0.4045419 0.5436368 0.6388986 0.7033968 0.7442621 0.7580649 +#> [725,] 0.51181402 0.5664642 0.6071722 0.6465218 0.6607136 0.6631087 0.6820446 +#> [726,] 0.75122951 0.7833552 0.8497819 0.8599066 0.8806943 0.9128641 0.9215414 +#> [727,] 0.22735807 0.5369339 0.5880864 0.6313239 0.6365637 0.6494028 0.6978221 +#> [728,] 0.69858196 0.8308600 0.8988011 0.9483479 0.9529792 0.9557612 0.9866009 +#> [729,] 0.58913260 0.5904511 1.0997222 1.2397709 1.3674834 1.3693199 1.3854303 +#> [730,] 0.47359279 0.5291050 0.5563820 0.6234920 0.6501716 0.6651793 0.6910260 +#> [731,] 0.38658483 0.4641697 0.4951976 0.5142720 0.5381997 0.5654464 0.5733830 +#> [732,] 0.53774224 0.6493739 0.6512504 0.6671744 0.7118943 0.7749027 0.7782724 +#> [733,] 0.40440349 0.4300163 0.5196985 0.5397259 0.6101514 0.6157228 0.6182368 +#> [734,] 1.35351303 1.6109467 1.7051863 1.7236095 1.8262364 1.9428414 2.0175106 +#> [735,] 0.29359887 0.4279511 0.4804884 0.5369971 0.5482631 0.5865848 0.5953025 +#> [736,] 0.90613818 0.9500898 0.9713147 1.0095566 1.0338680 1.1879064 1.2013942 +#> [737,] 0.52439153 0.6675391 0.8305809 1.0501612 1.0567316 1.1273738 1.1840653 +#> [738,] 0.42791970 0.4785496 0.5145920 0.5260537 0.5268112 0.5434271 0.5488552 +#> [739,] 0.77256093 0.8926279 1.0544813 1.1382764 1.1418979 1.1830457 1.2970655 +#> [740,] 0.27824019 0.3109608 0.3987329 0.4258963 0.5017250 0.5105818 0.5888744 +#> [741,] 0.27773200 0.8213555 0.8559930 0.9525178 0.9838940 1.0723668 1.1206739 +#> [742,] 0.38767281 0.4026726 0.4205946 0.4471608 0.4802830 0.5507127 0.5815310 +#> [743,] 0.32237498 0.3764880 0.4013733 0.4537154 0.4802813 0.4904619 0.5476945 +#> [744,] 0.49446897 0.5258675 0.5579990 0.5600066 0.5672890 0.5699179 0.6562205 +#> [745,] 0.35748401 0.5123131 0.5290194 0.5663951 0.5957944 0.6198647 0.6897391 +#> [746,] 0.31719653 0.3848797 0.4561031 0.4979489 0.5333971 0.5371761 0.5391688 +#> [747,] 0.67604518 0.9275340 1.0278988 1.0327197 1.2267464 1.2375629 1.3199692 +#> [748,] 0.12222005 0.4177120 0.6268746 0.7180089 0.7371032 0.7431611 0.7436420 +#> [749,] 0.74546332 0.7926868 0.8942326 1.0656954 1.1363119 1.1613837 1.1821319 +#> [750,] 0.43000173 0.5052092 0.5965068 0.6683562 0.7105456 0.7366041 0.7704925 +#> [751,] 0.28459575 0.3694457 0.5026201 0.6070519 0.6188489 0.6194824 0.6218011 +#> [752,] 0.70730375 0.7993732 0.8869694 0.9236479 0.9618237 1.0278988 1.0328210 +#> [753,] 0.45428253 0.5213248 0.5381579 0.5430112 0.6351318 0.6863909 0.6964509 +#> [754,] 0.73790913 0.9146707 0.9268745 0.9441675 0.9728522 0.9886703 1.0041557 +#> [755,] 0.51540272 0.5320156 0.5852049 0.6104892 0.6833624 0.6897391 0.6911030 +#> [756,] 0.41347323 0.4387530 0.4678809 0.4871645 0.4934944 0.5402894 0.5618440 +#> [757,] 1.17827006 1.2534981 1.2886819 1.3553739 1.3561492 1.4709502 1.4736376 +#> [758,] 0.48695844 0.5510996 0.5864232 0.6654570 0.6918404 0.6931311 0.6985820 +#> [759,] 1.60098152 1.6043613 1.6645287 1.8161045 1.8887888 1.9565765 2.0145514 +#> [760,] 0.17672129 0.2947138 0.3361387 0.3529613 0.4579331 0.4654775 0.5653037 +#> [761,] 0.27361090 0.3842518 0.3946160 0.4463409 0.4822301 0.4970682 0.5173598 +#> [762,] 0.09831649 0.3687144 0.3738390 0.3752012 0.4383739 0.4483313 0.4989207 +#> [763,] 0.40807386 0.6692890 0.7407087 0.7445498 0.7617625 0.7812317 0.8029511 +#> [764,] 0.33323683 0.3636660 0.4090712 0.4678809 0.5384396 0.5770353 0.6342586 +#> [765,] 0.74149780 0.7884421 0.8924413 0.8925216 1.0852243 1.1068269 1.1279884 +#> [766,] 0.88475525 1.0307034 1.1031474 1.1288179 1.1767783 1.2611665 1.3072379 +#> [767,] 0.39276221 0.4141241 0.4186988 0.5460700 0.5804832 0.5861869 0.5965068 +#> [768,] 0.60683531 0.6239664 0.6329802 0.6571812 0.7014294 0.7681392 0.9043524 +#> [769,] 0.25183425 0.3287616 0.4958141 0.5156670 0.6469373 0.7240607 0.7927622 +#> [770,] 0.81951004 1.0033135 1.0122607 1.1505867 1.1603421 1.1781983 1.1982659 +#> [771,] 0.63388207 0.7708441 0.8405305 0.8498749 0.9045846 0.9466005 0.9803991 +#> [772,] 0.38596645 0.4342199 0.4684409 0.5602363 0.5714456 0.5805367 0.5833092 +#> [773,] 0.63764715 0.7092790 0.8200161 0.8512293 0.8517123 0.9066578 0.9243237 +#> [774,] 0.29062669 0.4554043 0.4762512 0.6821908 0.6890077 0.7307151 0.7315235 +#> [775,] 0.27996485 0.5089294 0.5409551 0.5731555 0.6783771 0.7118041 0.7215748 +#> [776,] 0.38532828 0.4681975 0.5026760 0.5540839 0.5630189 0.6028126 0.6175580 +#> [777,] 0.51411964 0.5156462 0.5420390 0.5666462 0.6606336 0.6987629 0.7096344 +#> [778,] 0.28914798 0.3341115 0.3905825 0.4007505 0.4423288 0.4925744 0.5092038 +#> [779,] 0.44351835 0.5441918 0.5751142 0.5771078 0.5850060 0.6032333 0.6109984 +#> [780,] 0.42911358 0.4658710 0.4704423 0.5636624 0.5749203 0.6282014 0.6493615 +#> [781,] 0.58078479 0.6287389 0.6727315 0.7011662 0.7128726 0.7296091 0.7383797 +#> [782,] 0.17515967 0.3148796 0.4622053 0.4935208 0.5181742 0.5225545 0.5405678 +#> [783,] 0.34235251 0.4319502 0.4692709 0.4880859 0.5052213 0.5123131 0.5347047 +#> [784,] 0.27949333 0.5545604 0.5978329 0.6031911 0.6126577 0.6343305 0.7437618 +#> [785,] 0.24171039 0.3686001 0.4558091 0.5551246 0.6074524 0.6198224 0.6720896 +#> [786,] 0.39297509 0.3943971 0.4756200 0.5476847 0.5500657 0.5557123 0.5801731 +#> [787,] 0.62045966 0.6634097 0.6801610 0.7152110 0.7696425 0.8052953 0.8215516 +#> [788,] 0.54426365 0.5638175 0.6749506 0.6987118 0.7195750 0.7425097 0.7472007 +#> [789,] 0.30084255 0.5204844 0.5390357 0.6601272 0.6631301 0.7861197 0.7917998 +#> [790,] 0.21863794 0.4566923 0.5100506 0.6264804 0.6478767 0.7233856 0.7629658 +#> [791,] 0.69343238 0.7916039 0.8174900 0.8209361 0.8597213 0.8956150 0.9191062 +#> [792,] 0.31575585 0.3376415 0.3694457 0.6310238 0.6630490 0.6687645 0.6753017 +#> [793,] 0.33731955 0.3451244 0.4241536 0.4726576 0.4765648 0.4850090 0.5104808 +#> [794,] 0.33330030 0.3430224 0.4944690 0.5286509 0.5507820 0.5691711 0.6740800 +#> [795,] 0.48015193 0.4870973 0.5434333 0.5681859 0.5790625 0.6224556 0.6920199 +#> [796,] 0.91545188 0.9851428 0.9985390 1.2401699 1.2706049 1.4116211 1.4267028 +#> [797,] 0.26927678 0.3941537 0.4221518 0.4449027 0.4632372 0.4782392 0.5086648 +#> [798,] 0.30577483 0.4371707 0.5345808 0.6105168 0.6122402 0.6865432 0.7719839 +#> [799,] 0.85802249 0.9283156 1.2431804 1.2509933 1.2636073 1.2909028 1.3068810 +#> [800,] 0.60499899 0.6353063 0.6588731 0.6686780 0.6783649 0.7031266 0.7059153 +#> [801,] 0.35808541 0.3596801 0.4380816 0.4387298 0.4474902 0.4715928 0.4920686 +#> [802,] 0.42497290 0.4498638 0.7653629 0.8186734 0.8834345 0.8955751 0.9027206 +#> [803,] 0.36096082 0.3633604 0.4226290 0.5460700 0.5624287 0.6155368 0.6287389 +#> [804,] 0.41459923 0.4496334 0.4880470 0.4927598 0.4971807 0.5330295 0.5530242 +#> [805,] 0.87209495 1.2580143 1.5146902 1.5192367 1.6207223 1.7483121 1.7926297 +#> [806,] 0.32580181 0.5388117 0.5390357 0.6096010 0.6983498 0.7022300 0.7152110 +#> [807,] 0.22735807 0.3700770 0.4739122 0.4933392 0.6045138 0.6468782 0.7561484 +#> [808,] 0.36954200 0.3791834 0.3862574 0.4063097 0.4711711 0.4919237 0.4926647 +#> [809,] 0.31170307 0.6327033 0.7336474 0.9043976 0.9048609 0.9850208 1.0023837 +#> [810,] 0.42322607 0.4259888 0.4446164 0.4449831 0.4667387 0.4983489 0.5171208 +#> [811,] 0.47742160 0.7927973 0.8392936 0.9368811 0.9712860 1.0107862 1.0526832 +#> [812,] 0.57426260 0.5857830 0.6128149 0.6252175 0.6313865 0.6448859 0.6608414 +#> [813,] 0.40299783 0.5424989 0.6948786 0.7302712 0.8294974 0.9501195 0.9531711 +#> [814,] 0.72727075 0.8829206 0.9873766 1.0244392 1.0398980 1.2170482 1.2480076 +#> [815,] 0.24949429 0.4851378 0.4852129 0.5202777 0.6531028 0.7033036 0.7176815 +#> [816,] 0.51507672 0.5471553 0.5615487 0.6850255 0.7931495 0.7975922 0.8424111 +#> [817,] 0.15604009 0.4431694 0.5146468 0.5624673 0.5727703 0.6123558 0.6131775 +#> [818,] 0.65828602 0.6739732 0.6864811 0.6890077 0.7181508 0.7231773 0.7530624 +#> [819,] 0.51564803 0.5235680 0.5761168 0.7585791 0.8006608 0.8498749 0.9355411 +#> [820,] 0.51459128 0.5371761 0.5935440 0.6053123 0.6092135 0.6686627 0.6725681 +#> [821,] 0.33148026 0.3717019 0.4098502 0.5120130 0.5334669 0.5664642 0.6158515 +#> [822,] 0.22038706 0.2836823 0.5179364 0.5479470 0.5576100 0.6203619 0.8928497 +#> [823,] 0.65890004 0.6900357 0.7414978 0.8366602 0.9023072 0.9483216 0.9959242 +#> [824,] 0.29471381 0.3487168 0.4474640 0.4799773 0.4854754 0.4999563 0.5302813 +#> [825,] 0.20417561 0.4846515 0.5846763 0.5975842 0.6272176 0.6513768 0.6654570 +#> [826,] 0.22475057 0.2403118 0.3006863 0.3547841 0.3638735 0.4968724 0.4979489 +#> [827,] 0.33702873 0.8849706 1.0227250 1.2455886 1.2472189 1.2625984 1.2728276 +#> [828,] 0.23535424 0.2888365 0.4209737 0.5078930 0.5609209 0.6032333 0.6234146 +#> [829,] 0.43557756 0.5741917 0.5876252 0.6720861 0.6932422 0.7299574 0.8358283 +#> [830,] 0.34242776 0.3594535 0.3943971 0.6445696 0.6479357 0.6531994 0.6720896 +#> [831,] 0.42497290 0.4378084 0.6613781 0.6717098 0.7180839 0.8036945 0.8090444 +#> [832,] 0.18842874 0.3712625 0.4171864 0.4988816 0.5338943 0.5859090 0.6002829 +#> [833,] 0.59828158 0.6140907 0.6609668 0.6916844 0.7095298 0.7533940 0.7615608 +#> [834,] 0.85086686 0.8693708 1.0402638 1.0913809 1.1162744 1.1580728 1.1882179 +#> [835,] 0.39484804 0.5377422 0.5896853 0.5998148 0.6132736 0.7345074 0.7400159 +#> [836,] 0.28200459 0.4838382 0.5056986 0.7097586 0.7118269 0.7154967 0.7260693 +#> [837,] 0.28200459 0.4255819 0.5311183 0.5385190 0.5857583 0.6752513 0.7014631 +#> [838,] 0.72854123 0.8213555 1.2479845 1.2509933 1.3578865 1.3883013 1.4704535 +#> [839,] 0.35221305 0.4658086 0.4688457 0.4852129 0.5470235 0.5481457 0.5696647 +#> [840,] 0.32580181 0.4869584 0.5029816 0.5929361 0.6505765 0.6601272 0.6815772 +#> [841,] 0.24031182 0.3266515 0.3289196 0.3879428 0.4055814 0.4310850 0.4802058 +#> [842,] 0.63184141 0.7825293 0.9278780 0.9812174 0.9830406 1.0397144 1.0555835 +#> [843,] 0.40636897 0.5420390 0.5550702 0.5862135 0.5904569 0.6071488 0.6836963 +#> [844,] 0.47831904 0.4992977 0.5258547 0.5944776 0.5963457 0.6599681 0.7640140 +#> [845,] 0.46638959 0.5044446 0.5824304 0.6530868 0.6635628 0.6810039 0.7583725 +#> [846,] 0.18634156 0.4660731 0.5016230 0.5377097 0.5390598 0.5907733 0.6081748 +#> [847,] 0.29038507 0.3045802 0.3361387 0.3493174 0.3687756 0.3766028 0.4119493 +#> [848,] 0.50444460 0.5294214 0.6075915 0.7424908 0.8023538 0.8194373 0.9051578 +#> [849,] 0.18945147 0.2116450 0.2573580 0.3110705 0.3223047 0.3731118 0.3766028 +#> [850,] 0.38970748 0.5717071 0.5865542 0.5878294 0.5908949 0.6282007 0.6367832 +#> [851,] 0.24949429 0.4835535 0.4973154 0.5481457 0.6148331 0.7302801 0.7861184 +#> [852,] 0.46124088 0.5084755 0.5156658 0.5596796 0.5802675 0.6023530 0.6047881 +#> [853,] 0.66924590 0.7049388 0.8096001 0.8637338 0.8647272 0.8857966 0.9629770 +#> [854,] 0.40949008 0.4903354 0.6040936 0.6654582 0.7892187 0.9190275 0.9911303 +#> [855,] 0.45907545 0.5777555 0.5780089 0.7002335 0.7745468 0.8503036 0.8679628 +#> [856,] 0.60555636 0.7423913 0.7591619 0.7960978 0.9138814 0.9284428 1.1086736 +#> [857,] 0.54070810 0.5956861 0.7189500 0.7750984 0.7991863 0.8518376 0.8815974 +#> [858,] 0.43061825 0.4657923 0.4811879 0.5268112 0.5396213 0.5876804 0.5909889 +#> [859,] 0.47952646 0.5485678 0.5796519 0.7068683 0.7246722 0.7839269 0.8756713 +#> [860,] 0.34512046 0.3936393 0.5426927 0.5617833 0.5775658 0.6252175 0.6699691 +#> [861,] 0.33018724 0.6105168 0.6239664 0.6644961 0.6850255 0.7567525 0.7708239 +#> [862,] 0.44522840 0.4481359 0.5284077 0.5530242 0.5652880 0.5863829 0.6606663 +#> [863,] 0.44813593 0.4637061 0.4678426 0.4880470 0.5557236 0.6843397 0.7063750 +#> [864,] 0.62529285 0.8191095 1.0646795 1.0720833 1.0783879 1.1276875 1.1329767 +#> [865,] 0.41119252 0.4577456 0.5452479 0.6297758 0.6929260 0.7024502 0.7180998 +#> [866,] 0.27912903 0.4651760 0.5081217 0.5602555 0.6379255 0.7991863 0.8322765 +#> [867,] 1.15661048 1.3462438 1.4471441 1.5645124 1.5808967 1.6063300 1.6320500 +#> [868,] 0.54139322 0.6773988 0.7105605 0.7149278 0.7211515 0.7299574 0.7337276 +#> [869,] 0.31133296 0.4822301 0.5088305 0.5234874 0.5358143 0.5401556 0.5946605 +#> [870,] 0.50344372 0.6795696 0.7893724 0.8130988 0.8172974 0.8690556 0.8829630 +#> [871,] 0.24531337 0.2903851 0.2977648 0.3203283 0.3223047 0.3224021 0.3613120 +#> [872,] 1.09268104 1.1382408 1.1923692 1.2465492 1.3481100 1.4001927 1.4189594 +#> [873,] 0.37265397 0.4918564 0.4958828 0.5303708 0.5321874 0.5558120 0.5829550 +#> [874,] 0.48520405 0.7279412 0.8074916 0.9682564 1.1254497 1.1566882 1.1824327 +#> [875,] 0.26594121 0.5953002 0.5957431 0.6172237 0.6716399 0.6896890 0.6984653 +#> [876,] 0.81867341 0.8726695 0.9058662 0.9245956 0.9318064 1.0447502 1.0583478 +#> [877,] 0.66137812 0.6894816 0.8342098 0.8775902 0.9044680 0.9185322 0.9245897 +#> [878,] 0.27957885 0.5147946 0.5424989 0.5528173 0.7625186 0.7667228 0.7693490 +#> [879,] 0.12222005 0.3100312 0.6142398 0.6262270 0.6349211 0.6857133 0.7149717 +#> [880,] 0.55831393 0.5605773 0.6047171 0.6481022 0.9314802 0.9439554 0.9520623 +#> [881,] 0.49736419 0.5917555 0.6223325 0.6957458 0.7322672 0.7716297 0.7745400 +#> [882,] 0.40360403 0.5054819 0.5453375 0.5558413 0.6633979 0.7233839 0.7326161 +#> [883,] 0.37547110 0.4268221 0.5448074 0.5452479 0.6043597 0.6078415 0.6495392 +#> [884,] 0.29963193 0.3668414 0.3792134 0.3928074 0.4425622 0.4718084 0.4798583 +#> [885,] 0.64379029 0.7468705 0.8206195 0.8262232 0.8541983 0.8743703 0.9315260 +#> [886,] 0.30096399 0.3892187 0.4546167 0.4548463 0.5983123 0.6060355 0.6328005 +#> [887,] 0.46703537 0.4767417 0.5145920 0.5321874 0.5712901 0.5777134 0.5909889 +#> [888,] 0.51564803 0.6582860 0.7708441 0.7788900 0.8357769 0.8599289 0.8652686 +#> [889,] 0.53892468 1.0486325 1.1644871 1.1717316 1.2046336 1.2400584 1.2450309 +#> [890,] 0.32282065 0.3540405 0.4008547 0.4574192 0.4597129 0.4749997 0.4819657 +#> [891,] 0.47742160 0.7234641 0.8592318 1.0554974 1.0620862 1.1109065 1.1366575 +#> [892,] 0.34197322 0.3716588 0.4356021 0.5047202 0.5166129 0.5323596 0.5344388 +#> [893,] 0.66622344 0.6909275 0.8534496 0.8539695 0.9764982 0.9863673 0.9984615 +#> [894,] 0.87209495 1.0808862 1.3254115 1.3404295 1.4891477 1.5381128 1.5951257 +#> [895,] 0.38741583 0.4344419 0.4488586 0.4533024 0.4672448 0.4848637 0.4975694 +#> [896,] 1.03245278 1.1925389 1.2063668 1.2165550 1.2345554 1.2772759 1.3177358 +#> [897,] 0.33702873 0.9317456 1.1587109 1.2196853 1.2244513 1.2387571 1.2509943 +#> [898,] 0.86087471 0.8775427 1.0586136 1.2316273 1.2486592 1.3250910 1.3474000 +#> [899,] 0.24495826 0.3665608 0.3796179 0.4394007 0.4699607 0.4970682 0.4973593 +#> [900,] 0.53693393 0.5509196 0.5758092 0.6077715 0.6372212 0.6468782 0.6495503 +#> [901,] 0.60751210 0.6347718 0.6750756 0.8400073 0.8639459 0.8938192 0.8987570 +#> [902,] 0.36475602 0.4359686 0.4681975 0.4957492 0.5509920 0.6065373 0.6610760 +#> [903,] 0.71925597 0.7238057 1.4242708 1.4808959 1.6356863 1.7811930 1.8049915 +#> [904,] 0.33217500 0.6075172 0.7308439 0.7573067 0.7745370 0.8331341 0.8373647 +#> [905,] 1.08159736 1.0956074 1.1598090 1.2341912 1.2433489 1.2582241 1.2708966 +#> [906,] 0.29083287 0.3991506 0.5263341 0.5313566 0.5715888 0.5801731 0.5866417 +#> [907,] 0.31849457 0.3375275 0.4090368 0.4105118 0.4221518 0.4514099 0.5643394 +#> [908,] 0.30096399 0.5509830 0.5541190 0.6393489 0.6521120 0.6928918 0.7301782 +#> [909,] 0.27773200 0.7285412 0.9501224 0.9562029 0.9740056 1.0353836 1.1208545 +#> [910,] 0.35965794 0.5150767 0.5336573 0.6122402 0.6531913 0.6848237 0.6920594 +#> [911,] 0.32876163 0.4724317 0.5728042 0.5959871 0.6017204 0.7424823 0.7535873 +#> [912,] 0.20612255 0.2839768 0.3995926 0.4600954 0.4980985 0.5371465 0.5509196 +#> [913,] 0.23307038 0.3248874 0.4146456 0.4839062 0.4901973 0.5347778 0.5501868 +#> [914,] 0.23993803 0.5254370 0.6040564 0.6101514 0.6314974 0.6320861 0.6400916 +#> [915,] 0.69003570 0.8739171 0.8805306 0.8924413 1.0279754 1.0449738 1.1265626 +#> [916,] 0.40415075 0.4847007 0.6844604 0.7136063 0.7381164 0.7421462 0.7458784 +#> [917,] 0.18051066 0.3621718 0.6046618 0.6203619 0.6725229 0.6859977 0.7025122 +#> [918,] 0.39323414 0.4813874 0.5092038 0.5139742 0.5467713 0.5562233 0.5636624 +#> [919,] 0.33470661 0.4189063 0.4808973 0.5373714 0.5594251 0.6065373 0.6195995 +#> [920,] 0.70069148 0.8073962 0.8207193 0.8294974 0.8352566 0.8714288 0.9656345 +#> [921,] 0.34743241 0.3678879 0.4061678 0.4076304 0.4277711 0.4468730 0.5275568 +#> [922,] 0.34309068 0.4307515 0.5409551 0.5519855 0.5602452 0.6127630 0.7134870 +#> [923,] 0.50898016 0.5401785 0.6252212 0.6393644 0.6450369 0.6670446 0.6746208 +#> [924,] 0.55281735 0.5803478 0.5986835 0.7302712 0.7642574 0.7886514 0.7917998 +#> [925,] 0.46323720 0.4711711 0.5015095 0.5227071 0.5300852 0.6057881 0.6281770 +#> [926,] 0.37300207 0.5505227 0.5666462 0.5839332 0.6252212 0.6690963 0.6836963 +#> [927,] 0.40119359 0.4975055 0.5589544 0.6055564 0.6531913 0.6584113 0.7604565 +#> [928,] 0.48183801 0.4841700 0.6325459 0.7198504 0.7318016 0.7725609 0.7955375 +#> [929,] 0.61025299 0.7080839 0.8064294 0.8291200 0.8344719 0.8517123 0.8693708 +#> [930,] 0.35368533 0.4116207 0.4613834 0.5041523 0.5568096 0.5683251 0.6135434 +#> [931,] 0.31605501 0.4617185 0.5401785 0.5809788 0.5947715 0.6274038 0.6835825 +#> [932,] 0.36375067 0.3966306 0.4539625 0.4848637 0.5092787 0.5233490 0.5512903 +#> [933,] 0.66159483 0.6653664 0.7231773 0.7462066 0.7828199 0.7834769 0.8125567 +#> [934,] 0.72467222 0.8892709 0.8942326 0.9342293 1.0019782 1.0190099 1.0817150 +#> [935,] 0.17515967 0.2077467 0.4378483 0.4446930 0.4635054 0.4856521 0.4920686 +#> [936,] 0.63714896 0.6514300 0.8096001 0.8222615 0.8256855 0.8450948 0.8645342 +#> [937,] 0.56154873 0.7014294 0.7433678 0.8551267 1.0064208 1.0101535 1.0104143 +#> [938,] 0.50994700 0.5270976 0.5541190 0.5983123 0.6625547 0.6720328 0.6987629 +#> [939,] 1.13746210 1.1554039 1.1709452 1.2012700 1.3270357 1.3400856 1.4142670 +#> [940,] 0.28743920 0.5563820 0.5856901 0.5996128 0.6547929 0.6700591 0.7373932 +#> [941,] 0.67425040 0.6905455 0.7710334 0.9557612 0.9796315 1.0197606 1.1882176 +#> [942,] 0.37150479 0.4798121 0.4808973 0.5166129 0.5182849 0.5829721 0.5888863 +#> [943,] 0.28688126 0.4258963 0.4281232 0.4670354 0.4883674 0.5060454 0.5184400 +#> [944,] 0.77827903 0.7819818 0.8017048 0.8162861 0.8181842 0.8197966 0.8473799 +#> [945,] 0.82162781 1.0372120 1.1002160 1.1334750 1.2121846 1.2270154 1.2946210 +#> [946,] 0.37025403 0.4167265 0.5974787 0.6093745 0.6213680 0.6260663 0.6454604 +#> [947,] 0.25146438 0.3927622 0.4704423 0.5118140 0.5141644 0.5981667 0.6030569 +#> [948,] 0.78545275 1.4532707 1.5313353 1.5427409 1.6086276 1.7504291 1.7885411 +#> [949,] 0.97271309 0.9821576 1.0197606 1.0300253 1.0468094 1.0555918 1.2018503 +#> [950,] 0.54356099 0.6906225 0.7515560 0.8163552 0.8268404 1.0246197 1.0835439 +#> [951,] 0.54343326 0.5726713 0.6079400 0.6362282 0.6411489 0.6882258 0.7099575 +#> [952,] 0.46844091 0.5961116 0.6552774 0.6681492 0.6705820 0.6705824 0.6773838 +#> [953,] 0.43749453 0.5324512 0.5839332 0.6552774 0.6928143 0.7366193 0.7452899 +#> [954,] 0.43154461 0.4399540 0.4870235 0.5126823 0.5397259 0.5775316 0.5931087 +#> [955,] 1.02021825 1.1881607 1.1982660 1.2262335 1.2503180 1.2585351 1.2634868 +#> [956,] 0.36567019 0.4878582 0.4992977 0.5924440 0.6344151 0.6589955 0.7024502 +#> [957,] 0.54300594 0.6047171 0.6385052 0.8357751 0.8688679 0.8910615 0.9210669 +#> [958,] 0.26227964 0.5029744 0.5263975 0.5506858 0.5875720 0.5980812 0.6151065 +#> [959,] 0.28368227 0.3698291 0.6985545 0.7824819 0.8126316 0.8950014 0.9177645 +#> [960,] 0.49736419 0.5183471 0.6872977 0.7351015 0.7555208 0.7721703 0.8106311 +#> [961,] 0.39870005 0.4068494 0.4138580 0.4387298 0.4493096 0.4648980 0.4751239 +#> [962,] 0.32908268 0.4148534 0.4663373 0.4952917 0.5148448 0.5823703 0.5933718 +#> [963,] 0.20957563 0.5594251 0.6219183 0.6602812 0.7078393 0.7360118 0.7703560 +#> [964,] 0.29793315 0.3097676 0.3946160 0.4495239 0.4973593 0.5219604 0.5401556 +#> [965,] 0.40847446 0.4752569 0.5648596 0.5927076 0.6392017 0.6626822 0.6950428 +#> [966,] 0.24032959 0.3109608 0.3498404 0.3971149 0.4755460 0.5466231 0.5519391 +#> [967,] 0.83996762 0.8429282 0.8430529 0.8506495 0.8805370 0.9030809 0.9297668 +#> [968,] 0.75906932 0.7979691 0.8549952 0.8591549 0.8739171 0.9021926 0.9483216 +#> [969,] 0.72181504 0.7701056 0.8012313 0.8261697 0.8506495 0.9436734 0.9631076 +#> [970,] 0.45928747 0.6874574 0.7040529 0.7155653 0.7596100 0.7642973 0.8288619 +#> [971,] 0.48355347 0.5202777 0.5696647 0.6209378 0.8020739 0.8293285 0.8423353 +#> [972,] 0.52454708 0.5688572 0.5876460 0.5896110 0.6384115 0.6425840 0.6848581 +#> [973,] 0.23167235 0.4270107 0.5509920 0.6065801 0.6111725 0.6277603 0.6409072 +#> [974,] 0.47085961 0.6588610 0.6596290 0.6879263 0.7065132 0.7088534 0.7781482 +#> [975,] 0.24984831 0.4459982 0.7060311 0.8481894 0.8836024 0.9899705 0.9995362 +#> [976,] 0.48003483 0.5257607 0.5606464 0.6075915 0.6931258 0.7270252 0.7278883 +#> [977,] 0.24909537 0.6965583 0.8719151 0.8899695 0.8925672 0.9524394 0.9771197 +#> [978,] 0.47499973 0.5926426 0.6021089 0.6590841 0.6911297 0.7376685 0.7610334 +#> [979,] 0.27414771 0.3533348 0.3829368 0.4096830 0.4135228 0.4415721 0.4663373 +#> [980,] 0.55848306 0.5871392 0.6017204 0.6948917 0.7138283 0.7796337 0.8115816 +#> [981,] 0.31027863 0.3318503 0.4300163 0.4788421 0.4899965 0.5254370 0.5960820 +#> [982,] 0.09831649 0.3426225 0.3733893 0.3833929 0.3998862 0.4147042 0.5065422 +#> [983,] 0.34242776 0.4128428 0.5373668 0.5707755 0.5742626 0.6556826 0.6773988 +#> [984,] 0.69637689 0.9597156 0.9830406 1.0227250 1.0404170 1.0897849 1.1604625 +#> [985,] 0.21587317 0.5035108 0.5587194 0.6152778 0.6528830 0.6680267 0.6734077 +#> [986,] 0.69958193 0.8580225 0.8754899 0.9156674 0.9566091 0.9670229 0.9763510 +#> [987,] 0.11608719 0.3006863 0.3250055 0.3289196 0.4259055 0.4377923 0.4870022 +#> [988,] 0.36347243 0.4651067 0.5653288 0.5780089 0.5809020 0.6451965 0.6682168 +#> [989,] 0.41765340 0.4401888 0.6357935 0.6813370 0.7506527 0.7766402 0.7819681 +#> [990,] 0.79370421 0.8864215 0.8938192 0.9058586 1.0523116 1.1082587 1.1725493 +#> [991,] 0.54612053 0.6078415 0.6344151 0.6866979 0.6894896 0.7161804 0.7335557 +#> [992,] 0.34642398 0.5090600 0.5749598 0.5798745 0.6493739 0.6495503 0.6656699 +#> [993,] 0.58381883 0.6305519 0.6584598 0.7033968 0.7270252 0.7323232 0.7672032 +#> [994,] 0.37058080 0.4416356 0.4471095 0.4517481 0.4961319 0.5121898 0.5384396 +#> [995,] 0.29083287 0.4656943 0.4740713 0.5162538 0.5446352 0.5476847 0.5501051 +#> [996,] 0.71182690 0.8015365 0.8357751 0.9246408 0.9344621 1.0045098 1.0209222 +#> [997,] 0.49119061 0.8981545 1.0922723 1.0947023 1.1007515 1.1540649 1.1801942 +#> [998,] 0.52910495 0.5856901 0.6052306 0.6426209 0.6872977 0.7322672 0.7591426 +#> [999,] 0.40440349 0.4788421 0.5086148 0.5929361 0.6096010 0.6314974 0.6784615 +#> [1000,] 0.95906486 0.9779007 0.9891183 0.9967242 1.0371942 1.0655567 1.1123559 #> [,8] [,9] [,10] -#> [1,] 1.0220903 1.0506990 1.0647866 -#> [2,] 1.0159804 1.0628464 1.0808911 -#> [3,] 0.6555239 0.6691817 0.6939634 -#> [4,] 0.8153295 0.8323242 0.8576244 -#> [5,] 0.7755287 0.8105826 0.8419308 -#> [6,] 0.9605567 0.9751774 0.9853637 -#> [7,] 0.6006658 0.6082166 0.6575454 -#> [8,] 0.9434125 0.9569375 0.9573127 -#> [9,] 0.8578887 0.8690163 0.9022197 -#> [10,] 1.1059807 1.1271065 1.2717197 -#> [11,] 0.9275638 0.9374665 0.9629951 -#> [12,] 0.8683344 0.8833672 0.8889993 -#> [13,] 0.9806743 0.9860205 1.0262920 -#> [14,] 0.8045830 0.8120747 0.8122041 -#> [15,] 1.1613124 1.1683864 1.1694879 -#> [16,] 0.7096127 0.7521758 0.7795502 -#> [17,] 0.5288156 0.5698295 0.5967761 -#> [18,] 0.6856766 0.7122816 0.7510326 -#> [19,] 1.1743609 1.2663257 1.2730675 -#> [20,] 0.5036007 0.5465379 0.5710962 -#> [21,] 0.8614368 0.8647220 0.9100972 -#> [22,] 0.4877218 0.5036007 0.5085941 -#> [23,] 0.8889993 0.9078457 0.9205416 -#> [24,] 0.6778038 0.6823220 0.6916917 -#> [25,] 0.7951561 0.9031122 0.9116083 -#> [26,] 0.7183941 0.7444101 0.7563863 -#> [27,] 0.5881498 0.6069905 0.6132131 -#> [28,] 0.6360646 0.6735662 0.7085963 -#> [29,] 0.6846481 0.6876163 0.7291948 -#> [30,] 1.0284256 1.0312844 1.0480669 -#> [31,] 0.7609546 0.7702795 0.8113416 -#> [32,] 0.5915577 0.6097883 0.6270160 -#> [33,] 0.7015258 0.7143286 0.7274967 -#> [34,] 0.8280008 0.8410305 0.8838150 -#> [35,] 0.6646158 0.6752053 0.6759780 -#> [36,] 0.5115982 0.5658013 0.6014117 -#> [37,] 0.9767749 0.9812302 0.9813567 -#> [38,] 0.6544361 0.6599681 0.6723698 -#> [39,] 0.5575974 0.5998258 0.6160434 -#> [40,] 1.0114281 1.0269782 1.0689315 -#> [41,] 1.0221192 1.0405471 1.0802871 -#> [42,] 0.5539836 0.5670290 0.5742499 -#> [43,] 1.1136135 1.1143924 1.1565844 -#> [44,] 1.2811282 1.3083940 1.3553939 -#> [45,] 1.7795953 1.7843617 1.8282038 -#> [46,] 1.3636859 1.3862933 1.4477444 -#> [47,] 1.1656563 1.1768936 1.2009966 -#> [48,] 0.6516211 0.6789018 0.6822214 -#> [49,] 0.6571013 0.6922736 0.7112233 -#> [50,] 0.9127270 0.9160051 0.9327613 -#> [51,] 0.7005399 0.7818339 0.7852307 -#> [52,] 0.6050779 0.6813854 0.7484952 -#> [53,] 0.9623091 0.9637074 0.9640488 -#> [54,] 0.9004985 0.9043681 0.9113352 -#> [55,] 0.5764813 0.5861439 0.6036196 -#> [56,] 0.9721654 0.9896678 1.0213423 -#> [57,] 1.2183686 1.2607060 1.2665570 -#> [58,] 0.6979966 0.7376806 0.7692197 -#> [59,] 0.9177779 0.9393185 0.9394270 -#> [60,] 0.7310089 0.7778650 0.8020409 -#> [61,] 0.6713180 0.7570872 0.7576333 -#> [62,] 0.7238832 0.7438888 0.7741449 -#> [63,] 0.5693800 0.5731336 0.6171722 -#> [64,] 0.8134684 0.8155012 0.8486851 -#> [65,] 0.6314431 0.6620528 0.6695307 -#> [66,] 0.7487702 0.7510326 0.7665815 -#> [67,] 0.7037280 0.7139507 0.7341633 -#> [68,] 0.6670795 0.7039944 0.7103590 -#> [69,] 0.5590320 0.5826087 0.6090574 -#> [70,] 1.0705625 1.0839160 1.1077849 -#> [71,] 0.7925975 0.8267848 0.8600750 -#> [72,] 0.4665478 0.4980567 0.5050926 -#> [73,] 0.6832122 0.7127399 0.7301544 -#> [74,] 0.6706489 0.7036290 0.7122281 -#> [75,] 0.9944253 1.0938387 1.1284889 -#> [76,] 0.7341633 0.7386602 0.7543114 -#> [77,] 0.7444101 0.7878845 0.8116886 -#> [78,] 0.7183941 0.7242253 0.7437343 -#> [79,] 0.6669422 0.6838606 0.7015809 -#> [80,] 1.7852066 1.9035128 1.9593996 -#> [81,] 1.2074716 1.2937300 1.3053031 -#> [82,] 0.8501118 0.8510822 0.8887671 -#> [83,] 0.6912846 0.7224415 0.7439148 -#> [84,] 1.2312541 1.2640422 1.2865493 -#> [85,] 1.0518943 1.0554476 1.0708872 -#> [86,] 0.6896308 0.7412201 0.7649269 -#> [87,] 0.7517473 0.7538065 0.7627878 -#> [88,] 0.6607499 0.6651778 0.6755015 -#> [89,] 0.8049486 0.8602626 0.9045392 -#> [90,] 0.7128878 0.7728106 0.8510530 -#> [91,] 0.7852307 0.7854566 0.8330092 -#> [92,] 1.7256766 1.7263170 1.7344674 -#> [93,] 0.6820320 0.6995980 0.7385645 -#> [94,] 0.9136147 1.0265890 1.0361744 -#> [95,] 0.6844769 0.6987678 0.7313320 -#> [96,] 1.1858038 1.2298611 1.2433319 -#> [97,] 0.9149957 1.1553283 1.1715203 -#> [98,] 0.6350549 0.6468977 0.6569167 -#> [99,] 0.6095392 0.6515879 0.7125169 -#> [100,] 0.7548809 0.7640128 0.7852657 -#> [101,] 0.8339963 0.8746430 0.8802706 -#> [102,] 0.8803966 0.9150893 0.9655447 -#> [103,] 1.3828986 1.3844780 1.4077336 -#> [104,] 0.6973268 0.7098145 0.7467064 -#> [105,] 0.5697776 0.6048633 0.6226070 -#> [106,] 1.0555791 1.0815560 1.0834790 -#> [107,] 0.5333565 0.5858786 0.5920383 -#> [108,] 0.7323111 0.7431155 0.7739945 -#> [109,] 0.6553638 0.7204231 0.7339759 -#> [110,] 1.4211427 1.5612817 1.5691502 -#> [111,] 0.8804201 0.8804967 0.9133936 -#> [112,] 1.8300943 1.8462969 1.8554780 -#> [113,] 0.6681737 0.7201891 0.7234314 -#> [114,] 0.9264201 0.9446354 0.9898591 -#> [115,] 1.0305274 1.0873706 1.1108897 -#> [116,] 0.7776361 0.8285550 0.8445627 -#> [117,] 0.8105688 0.8334105 0.8344281 -#> [118,] 0.5251669 0.5258499 0.5761898 -#> [119,] 0.6680991 0.6735608 0.6832122 -#> [120,] 0.5456871 0.5893277 0.5902274 -#> [121,] 0.7243613 0.7391918 0.7430023 -#> [122,] 0.6011233 0.6619225 0.7385597 -#> [123,] 0.6637908 0.6920283 0.7221301 -#> [124,] 0.6622352 0.6793424 0.6797925 -#> [125,] 1.4978961 1.5240171 1.5591992 -#> [126,] 0.8145714 0.8294044 0.8933134 -#> [127,] 0.6213495 0.6382426 0.6421234 -#> [128,] 0.6497090 0.6654464 0.6723698 -#> [129,] 0.7529188 0.7531056 0.8286505 -#> [130,] 0.8415089 0.8776250 0.8833272 -#> [131,] 0.9066364 0.9705027 0.9867259 -#> [132,] 0.6082166 0.6088717 0.6183626 -#> [133,] 0.5901790 0.5906260 0.6049659 -#> [134,] 0.7160267 0.7525095 0.7664416 -#> [135,] 0.5871855 0.5888006 0.5958864 -#> [136,] 0.5596206 0.5888128 0.5969488 -#> [137,] 0.8632859 0.8702170 0.9241328 -#> [138,] 0.6115767 0.6173324 0.6180640 -#> [139,] 0.8219311 0.8441528 0.8611271 -#> [140,] 0.7012192 0.7072508 0.7099819 -#> [141,] 0.5743078 0.6728713 0.6747774 -#> [142,] 0.5263058 0.5891322 0.6317845 -#> [143,] 0.6099109 0.6164456 0.6347685 -#> [144,] 0.8930163 0.9479502 0.9620478 -#> [145,] 1.0256061 1.0524403 1.0587543 -#> [146,] 0.5566784 0.5713538 0.5788591 -#> [147,] 0.5543984 0.5705758 0.5721490 -#> [148,] 0.9795626 1.0067947 1.0458673 -#> [149,] 0.8637182 0.9008321 0.9043360 -#> [150,] 0.5414789 0.5788055 0.5862132 -#> [151,] 0.5853790 0.5875525 0.5915577 -#> [152,] 0.7714320 0.7798431 0.7872667 -#> [153,] 0.9014666 0.9705633 0.9777831 -#> [154,] 1.0157654 1.0779330 1.0913184 -#> [155,] 0.9316542 0.9658182 0.9670866 -#> [156,] 0.6073392 0.6131069 0.6592461 -#> [157,] 1.1114114 1.1454856 1.1555352 -#> [158,] 0.6052577 0.6307465 0.7290489 -#> [159,] 0.6285511 0.6381594 0.6443042 -#> [160,] 0.7880060 0.8260032 0.8534824 -#> [161,] 0.6633763 0.6657410 0.6797596 -#> [162,] 0.8476128 0.8624028 0.8771263 -#> [163,] 0.7845580 0.8266930 0.8318053 -#> [164,] 0.7392637 0.7512895 0.8111425 -#> [165,] 1.2922349 1.3063313 1.3084353 -#> [166,] 0.9128304 0.9454870 1.0354152 -#> [167,] 0.6104109 0.6456856 0.6493743 -#> [168,] 0.6152847 0.6210218 0.6397210 -#> [169,] 0.9241328 0.9419218 1.1478319 -#> [170,] 0.6543718 0.6672829 0.7638711 -#> [171,] 0.6459038 0.6709559 0.6813143 -#> [172,] 0.6297882 0.6436494 0.6455486 -#> [173,] 1.1226844 1.1330129 1.2040133 -#> [174,] 1.0910784 1.1286312 1.1740047 -#> [175,] 1.1304412 1.1901069 1.1943255 -#> [176,] 0.7143797 0.7184307 0.7481196 -#> [177,] 0.8513361 0.8603842 0.8674875 -#> [178,] 0.6705592 0.6735620 0.6778038 -#> [179,] 1.0194385 1.0333731 1.0398635 -#> [180,] 0.6132131 0.6198758 0.6648093 -#> [181,] 0.6900043 0.7318831 0.7641128 -#> [182,] 0.6079576 0.6144660 0.6170095 -#> [183,] 0.5681010 0.5703633 0.6560972 -#> [184,] 2.0221354 2.0532234 2.0724232 -#> [185,] 1.0225519 1.0345328 1.0356459 -#> [186,] 0.5291272 0.5727759 0.5803860 -#> [187,] 0.8187429 0.8696613 0.8934775 -#> [188,] 0.8677932 0.8900682 0.9412017 -#> [189,] 0.7229251 0.7349696 0.7951147 -#> [190,] 0.5737622 0.5920383 0.6537043 -#> [191,] 1.3769688 1.3968075 1.4065190 -#> [192,] 0.6929701 0.6971881 0.6983515 -#> [193,] 0.5998258 0.6034515 0.6136679 -#> [194,] 0.5429316 0.5570000 0.5602252 -#> [195,] 1.0188878 1.0793454 1.0858714 -#> [196,] 0.6269043 0.6810870 0.6868403 -#> [197,] 1.0075614 1.0431346 1.0821745 -#> [198,] 1.3594604 1.4146364 1.4263432 -#> [199,] 0.7430240 0.7511748 0.8771458 -#> [200,] 0.7863389 0.8066169 0.8143462 -#> [201,] 1.8213842 1.8912685 1.9962653 -#> [202,] 1.4548162 1.4980519 1.4988507 -#> [203,] 1.0292585 1.0564403 1.0715925 -#> [204,] 0.5571402 0.6248315 0.6380658 -#> [205,] 0.6196099 0.6290472 0.6292636 -#> [206,] 0.6378416 0.6567339 0.6771992 -#> [207,] 1.6953200 1.7081563 1.7206302 -#> [208,] 0.7497781 0.7546189 0.7557900 -#> [209,] 1.5233936 1.5288099 1.5962986 -#> [210,] 0.6239921 0.6247975 0.6265817 -#> [211,] 0.7915838 0.8227246 0.8271605 -#> [212,] 0.6133590 0.6334791 0.6504994 -#> [213,] 0.5879778 0.5889366 0.6110425 -#> [214,] 0.7508885 0.8324732 0.8941450 -#> [215,] 0.7468176 0.7739945 0.8493845 -#> [216,] 0.6418896 0.6420441 0.6478635 -#> [217,] 0.6582989 0.6735662 0.7013804 -#> [218,] 0.6180513 0.6354609 0.6562407 -#> [219,] 0.7390813 0.7445928 0.7881615 -#> [220,] 0.8158097 0.8690679 0.8797843 -#> [221,] 0.7647663 0.7783410 0.7837751 -#> [222,] 1.3820083 1.3966081 1.4695749 -#> [223,] 0.5455742 0.5658013 0.6034515 -#> [224,] 1.1583985 1.2959913 1.3045000 -#> [225,] 0.9930158 1.0073708 1.0326790 -#> [226,] 0.7177860 0.7245656 0.7300216 -#> [227,] 0.6152128 0.6768162 0.7500130 -#> [228,] 0.8081437 0.8210160 0.8341311 -#> [229,] 0.8173428 0.8390229 0.8620620 -#> [230,] 0.8007657 0.8012049 0.8112083 -#> [231,] 0.9177369 0.9279086 0.9315429 -#> [232,] 0.7094825 0.7412201 0.7487212 -#> [233,] 0.8801390 0.8919684 0.9048960 -#> [234,] 0.8240324 0.8333244 0.8385498 -#> [235,] 0.7525095 0.7695044 0.7708732 -#> [236,] 0.7133467 0.7192160 0.7198735 -#> [237,] 0.5881498 0.5997251 0.6016000 -#> [238,] 0.8105593 0.9042581 0.9140608 -#> [239,] 1.0796850 1.0905094 1.0981334 -#> [240,] 0.8508098 0.8635917 0.8980599 -#> [241,] 0.6227925 0.6280889 0.6417925 -#> [242,] 0.7067708 0.7184563 0.7377581 -#> [243,] 0.6115334 0.6430333 0.6456477 -#> [244,] 1.4331381 1.4607150 1.5316756 -#> [245,] 0.8501881 0.8563041 0.8590798 -#> [246,] 0.7118094 0.7147159 0.7300108 -#> [247,] 1.1565844 1.1967436 1.2031595 -#> [248,] 0.7812252 0.7929947 0.8109086 -#> [249,] 0.6637959 0.6669140 0.6801039 -#> [250,] 2.0397549 2.0483508 2.0556776 -#> [251,] 0.7355141 0.7445453 0.7960024 -#> [252,] 0.6012655 0.6101469 0.6277827 -#> [253,] 1.1820783 1.1844585 1.1852437 -#> [254,] 0.7059918 0.7131183 0.7172770 -#> [255,] 1.1761711 1.1954909 1.2139322 -#> [256,] 0.8081437 0.8302582 0.8359470 -#> [257,] 0.4847586 0.4983993 0.5328842 -#> [258,] 1.3630821 1.3645951 1.4483778 -#> [259,] 1.6683581 1.6846586 1.6916542 -#> [260,] 0.6327125 0.6592461 0.6797594 -#> [261,] 0.5816681 0.6651170 0.6719349 -#> [262,] 1.0199230 1.0306691 1.0465887 -#> [263,] 0.7328701 0.7366519 0.7488794 -#> [264,] 0.6567246 0.6632021 0.6666177 -#> [265,] 0.8342606 0.8833272 0.8873127 -#> [266,] 1.2187290 1.2362250 1.3522488 -#> [267,] 0.7023748 0.7102512 0.7225791 -#> [268,] 1.0880982 1.0941461 1.0960332 -#> [269,] 0.8627002 0.8743276 0.8751708 -#> [270,] 0.6198851 0.6314126 0.6475378 -#> [271,] 0.5674021 0.5693480 0.5928785 -#> [272,] 0.9341928 0.9833019 0.9973478 -#> [273,] 0.8096329 0.8292255 0.8555027 -#> [274,] 0.7891404 0.8243659 0.8278745 -#> [275,] 0.9317763 0.9409960 0.9466711 -#> [276,] 1.3790276 1.3802968 1.4076604 -#> [277,] 0.6844823 0.7143535 0.7407388 -#> [278,] 0.7100069 0.7488184 0.7600098 -#> [279,] 1.1506401 1.1908013 1.2663376 -#> [280,] 0.7630830 0.7659436 0.7761110 -#> [281,] 0.8431615 0.8637182 0.9226522 -#> [282,] 0.9590741 1.0251275 1.0283219 -#> [283,] 0.7033122 0.7052669 0.7377581 -#> [284,] 0.8044038 0.8099410 0.8531779 -#> [285,] 0.4574371 0.4633042 0.5149583 -#> [286,] 1.2142199 1.2325390 1.2486723 -#> [287,] 0.7117716 0.7845475 0.8023944 -#> [288,] 0.7105949 0.7146610 0.7506698 -#> [289,] 0.9633728 0.9659964 1.0147951 -#> [290,] 0.6066468 0.6082550 0.6091098 -#> [291,] 1.0277905 1.0338277 1.0357108 -#> [292,] 0.5000964 0.5028235 0.5161832 -#> [293,] 0.8557396 0.8838206 0.9363732 -#> [294,] 0.7162112 0.7261345 0.7368908 -#> [295,] 2.1098008 2.1263382 2.1662556 -#> [296,] 0.9174849 0.9391519 0.9513195 -#> [297,] 0.5151876 0.5552198 0.6246004 -#> [298,] 1.2236423 1.2574848 1.2584744 -#> [299,] 0.8009335 0.8341694 0.8629700 -#> [300,] 0.6411617 0.6742086 0.6789019 -#> [301,] 1.0222484 1.0651726 1.0824499 -#> [302,] 1.4780679 1.4931978 1.4998941 -#> [303,] 1.7793757 1.8106507 1.8345273 -#> [304,] 0.8031539 0.8513275 0.8791171 -#> [305,] 1.2292597 1.2357294 1.2826214 -#> [306,] 0.6505470 0.6771992 0.6788451 -#> [307,] 1.1818239 1.1945705 1.2083771 -#> [308,] 0.6593763 0.6723912 0.6867334 -#> [309,] 0.4700809 0.4816955 0.4866329 -#> [310,] 0.7201891 0.7371411 0.7627039 -#> [311,] 0.9326344 1.0005127 1.0038540 -#> [312,] 0.7288453 0.7482867 0.7527413 -#> [313,] 0.6792825 0.7098145 0.7107325 -#> [314,] 0.7188043 0.7305566 0.7341665 -#> [315,] 0.5343740 0.5371986 0.6196099 -#> [316,] 1.0993493 1.1180550 1.1213501 -#> [317,] 0.5166436 0.5418754 0.5499564 -#> [318,] 1.4359835 1.4469369 1.4834774 -#> [319,] 0.8046689 0.8057893 0.8264896 -#> [320,] 0.5838682 0.5972898 0.6249691 -#> [321,] 0.6478044 0.6480226 0.6585143 -#> [322,] 0.7356749 0.7797624 0.8027854 -#> [323,] 1.0977021 1.1011990 1.1069747 -#> [324,] 0.6170095 0.6424517 0.6700281 -#> [325,] 0.7829631 0.7942367 0.7964902 -#> [326,] 0.8682310 0.9106875 1.0473610 -#> [327,] 0.8372628 0.8838178 0.9024265 -#> [328,] 1.4275131 1.5188548 1.5214910 -#> [329,] 1.2825670 1.3081612 1.3743889 -#> [330,] 0.6444889 0.6908379 0.6954510 -#> [331,] 0.6772921 0.7085888 0.7115589 -#> [332,] 0.6055590 0.6319255 0.6535943 -#> [333,] 0.6089178 0.6171698 0.6420984 -#> [334,] 0.7013259 0.7197396 0.7201731 -#> [335,] 0.7554972 0.7570872 0.7621492 -#> [336,] 0.6903874 0.7099542 0.7263274 -#> [337,] 1.4731754 1.4770385 1.4885976 -#> [338,] 1.1171090 1.1343383 1.1866288 -#> [339,] 0.7904959 0.8211896 0.8407411 -#> [340,] 0.6571768 0.7153976 0.7344173 -#> [341,] 0.6206803 0.7202563 0.7536813 -#> [342,] 0.6031906 0.6348537 0.6648093 -#> [343,] 1.0684635 1.1281765 1.2701446 -#> [344,] 0.6379043 0.6522162 0.6533374 -#> [345,] 0.5810245 0.5867504 0.5913260 -#> [346,] 0.5046153 0.5277485 0.5910771 -#> [347,] 1.0505311 1.0576989 1.0992925 -#> [348,] 0.6311623 0.6560215 0.6822626 -#> [349,] 1.0165439 1.1333100 1.1340170 -#> [350,] 0.5813493 0.5950332 0.6079576 -#> [351,] 0.7300095 0.7602339 0.7629245 -#> [352,] 1.1053641 1.1180550 1.1312491 -#> [353,] 1.1837643 1.1988522 1.2302067 -#> [354,] 0.9533387 0.9564164 0.9649450 -#> [355,] 0.9164328 0.9176535 1.0082143 -#> [356,] 0.7133467 0.7360781 0.7797316 -#> [357,] 0.7177315 0.7849657 0.7935783 -#> [358,] 0.7369999 0.7680742 0.7718746 -#> [359,] 0.6829276 0.7062740 0.7828293 -#> [360,] 0.6238698 0.6319799 0.6712264 -#> [361,] 0.8012627 0.8229591 0.8455997 -#> [362,] 0.6160434 0.6178926 0.6240917 -#> [363,] 0.9001376 0.9136147 0.9147746 -#> [364,] 1.5932991 1.6157023 1.6168954 -#> [365,] 0.8077789 0.8595672 0.8851544 -#> [366,] 0.8105764 0.9519390 0.9627244 -#> [367,] 0.8791882 0.8820581 0.9409960 -#> [368,] 1.1542080 1.2095336 1.2174031 -#> [369,] 1.2001517 1.2151301 1.2367852 -#> [370,] 0.7215688 0.7504660 0.7612260 -#> [371,] 0.5766792 0.6133128 0.6378261 -#> [372,] 0.5124364 0.5342045 0.5436498 -#> [373,] 0.7111043 0.7964800 0.8074443 -#> [374,] 0.7735197 0.7903442 0.8573493 -#> [375,] 0.6717405 0.6987919 0.7056988 -#> [376,] 1.1960716 1.2061600 1.2549521 -#> [377,] 0.9120929 0.9420186 1.0101190 -#> [378,] 0.9728332 0.9873418 0.9990933 -#> [379,] 0.7385341 0.7460797 0.7479200 -#> [380,] 0.6228103 0.6252471 0.6378261 -#> [381,] 0.6451651 0.6466886 0.6497090 -#> [382,] 0.6164454 0.6313534 0.6431640 -#> [383,] 1.7215563 1.7413460 1.7505421 -#> [384,] 1.4146987 1.4767661 1.5423798 -#> [385,] 1.2790766 1.3318983 1.3342449 -#> [386,] 0.5253829 0.5374429 0.5478135 -#> [387,] 0.6767031 0.6980473 0.7102383 -#> [388,] 0.6058627 0.6468854 0.6582067 -#> [389,] 0.7614894 0.7666488 0.7872667 -#> [390,] 0.7636327 0.7665815 0.7671899 -#> [391,] 0.7542396 0.7742806 0.8188065 -#> [392,] 0.8449039 0.8477306 0.8554640 -#> [393,] 0.6606911 0.6652344 0.7106932 -#> [394,] 1.1621956 1.1644541 1.1986978 -#> [395,] 1.1677274 1.2597720 1.2879303 -#> [396,] 0.9441428 0.9562852 0.9670866 -#> [397,] 0.6461569 0.6517059 0.6642091 -#> [398,] 0.8534824 0.8593124 0.9181514 -#> [399,] 0.6507469 0.6531001 0.6857016 -#> [400,] 0.7627499 0.8010999 0.8162060 -#> [401,] 0.7167615 0.7590209 0.7663757 -#> [402,] 0.9385822 0.9546533 0.9735454 -#> [403,] 0.9174849 0.9597572 0.9760358 -#> [404,] 0.7314190 0.7399096 0.7420626 -#> [405,] 0.6440154 0.6769841 0.6813038 -#> [406,] 0.9042870 0.9199815 0.9366138 -#> [407,] 0.5143304 0.5230954 0.5826878 -#> [408,] 0.7751121 0.8150130 0.8160969 -#> [409,] 0.6680155 0.6764425 0.6882297 -#> [410,] 1.0683585 1.0714703 1.1421249 -#> [411,] 1.2147471 1.2663894 1.2727458 -#> [412,] 1.1390125 1.1560421 1.1667422 -#> [413,] 0.5777682 0.5841814 0.5867504 -#> [414,] 1.0770330 1.1461043 1.1826790 -#> [415,] 0.7190763 0.7826114 0.8346353 -#> [416,] 1.2734965 1.3180883 1.3209671 -#> [417,] 0.8609763 0.8951846 0.9389049 -#> [418,] 0.6299388 0.6377190 0.6472083 -#> [419,] 1.3202222 1.3234820 1.3480002 -#> [420,] 0.7911226 0.8918625 0.9113162 -#> [421,] 1.5099517 1.5879799 1.6275022 -#> [422,] 0.8648793 0.8801506 0.8962246 -#> [423,] 0.6058663 0.6082788 0.6314126 -#> [424,] 1.3163879 1.3328708 1.3662731 -#> [425,] 0.7955620 0.7975097 0.8114964 -#> [426,] 0.6418109 0.6934614 0.7022022 -#> [427,] 1.8529715 1.9275538 1.9412448 -#> [428,] 0.8037321 0.8180881 0.8260032 -#> [429,] 0.8748160 0.9124285 0.9167675 -#> [430,] 1.4781769 1.5195083 1.5757886 -#> [431,] 0.7765806 0.7796118 0.7852608 -#> [432,] 0.9012644 0.9333909 0.9559555 -#> [433,] 0.6599585 0.6928193 0.6981878 -#> [434,] 0.7897385 0.8571447 0.8957822 -#> [435,] 1.1936272 1.2030167 1.2407876 -#> [436,] 0.7833691 0.8614368 0.8945441 -#> [437,] 0.5384173 0.5829803 0.5841615 -#> [438,] 0.5571568 0.6174222 0.6316854 -#> [439,] 0.6609872 0.6613144 0.7115270 -#> [440,] 0.8451830 0.8557046 0.8650737 -#> [441,] 0.5728784 0.5745183 0.5839120 -#> [442,] 1.0467757 1.0550746 1.0574801 -#> [443,] 0.6892405 0.7332718 0.7333728 -#> [444,] 0.5805887 0.6012403 0.6268490 -#> [445,] 0.7912182 0.8435330 0.8641570 -#> [446,] 0.7852608 0.8762724 0.9075501 -#> [447,] 1.3676645 1.3747721 1.4162996 -#> [448,] 1.2725432 1.2803105 1.2833201 -#> [449,] 1.1295200 1.2154808 1.2187803 -#> [450,] 0.9210998 0.9405099 1.0160491 -#> [451,] 0.6643364 0.6665172 0.6964813 -#> [452,] 0.6314404 0.6404495 0.6684119 -#> [453,] 0.5370750 0.5614417 0.6017285 -#> [454,] 0.9114307 0.9131999 0.9218992 -#> [455,] 0.5167141 0.5323207 0.5668559 -#> [456,] 0.7683081 0.7733977 0.8122535 -#> [457,] 0.5024490 0.5412091 0.5569929 -#> [458,] 1.0857416 1.1236817 1.1830759 -#> [459,] 0.5728755 0.5922088 0.5931377 -#> [460,] 0.5689447 0.5754628 0.5817520 -#> [461,] 0.6513352 0.7065268 0.7117218 -#> [462,] 0.5501011 0.5596206 0.5649255 -#> [463,] 0.6391369 0.6395256 0.6412760 -#> [464,] 0.8306194 0.8751047 0.8794120 -#> [465,] 0.7393981 0.8423412 0.8437964 -#> [466,] 1.8836910 1.9095367 1.9135119 -#> [467,] 1.1950243 1.2333716 1.2435436 -#> [468,] 0.9667808 0.9857054 0.9916732 -#> [469,] 0.9461251 0.9463880 0.9540307 -#> [470,] 0.5763679 0.5815961 0.5851288 -#> [471,] 0.8321809 0.8519922 0.8573915 -#> [472,] 0.6797594 0.6974174 0.7011072 -#> [473,] 0.6045314 0.6086948 0.6161821 -#> [474,] 0.6178535 0.6265817 0.6299388 -#> [475,] 1.4563943 1.4668533 1.4956531 -#> [476,] 0.4759897 0.5278541 0.5323207 -#> [477,] 0.5904797 0.5921010 0.6182972 -#> [478,] 0.7475949 0.7595601 0.7750158 -#> [479,] 0.8676342 0.9958579 1.0082914 -#> [480,] 0.9988466 1.0379648 1.0873266 -#> [481,] 0.6811404 0.7125915 0.7438543 -#> [482,] 0.7233252 0.7258189 0.7496445 -#> [483,] 0.8908971 0.9220001 0.9393187 -#> [484,] 0.8402377 0.8782716 0.8924074 -#> [485,] 0.8752551 0.9683506 0.9777102 -#> [486,] 0.9860885 1.0097891 1.0138331 -#> [487,] 0.6715531 0.6862316 0.6922482 -#> [488,] 1.2949801 1.3199758 1.3314084 -#> [489,] 1.0834790 1.1111410 1.1434177 -#> [490,] 0.7012192 0.7035310 0.7197476 -#> [491,] 0.8863247 0.9151983 0.9861853 -#> [492,] 1.7159364 1.7248158 1.7670427 -#> [493,] 0.8374759 0.9264355 0.9493804 -#> [494,] 1.3369391 1.3572066 1.3602157 -#> [495,] 1.3663135 1.3747328 1.3915746 -#> [496,] 0.9388876 0.9787855 0.9818573 -#> [497,] 0.9633728 0.9716273 1.0105809 -#> [498,] 1.2406684 1.2583409 1.3507659 -#> [499,] 0.8820550 1.0146170 1.0150288 -#> [500,] 0.9055686 0.9680445 0.9941518 -#> [501,] 2.4145756 2.4420108 2.4464436 -#> [502,] 0.5520771 0.5745183 0.5826584 -#> [503,] 0.8337882 0.8505912 0.8526129 -#> [504,] 0.6882318 0.6964999 0.7367348 -#> [505,] 0.9813650 0.9874835 1.0472607 -#> [506,] 0.6814462 0.7060224 0.7076732 -#> [507,] 0.4816955 0.4847935 0.4864367 -#> [508,] 0.5691907 0.5770479 0.5780491 -#> [509,] 1.6335442 1.6385179 1.6535956 -#> [510,] 1.3528960 1.3563794 1.3611355 -#> [511,] 0.6759780 0.7094116 0.7247117 -#> [512,] 1.2926636 1.3023587 1.3749284 -#> [513,] 1.5299030 1.5399956 1.6611706 -#> [514,] 0.6710257 0.6810884 0.6950817 -#> [515,] 0.7584446 0.8062355 0.8130625 -#> [516,] 0.8178128 0.8178424 0.8205612 -#> [517,] 0.8591310 0.8919684 0.9240162 -#> [518,] 0.5025708 0.5418103 0.5693054 -#> [519,] 0.6895236 0.6973202 0.7059582 -#> [520,] 0.5773875 0.5787767 0.6029737 -#> [521,] 0.7146610 0.7643505 0.7878777 -#> [522,] 0.6803957 0.6811404 0.7170140 -#> [523,] 0.6578455 0.6659730 0.6749460 -#> [524,] 0.7388219 0.7477676 0.7486448 -#> [525,] 0.9893545 1.0141225 1.0483922 -#> [526,] 0.6767827 0.7060023 0.7315015 -#> [527,] 1.0208764 1.0257840 1.0330603 -#> [528,] 0.7171179 0.7334094 0.7448059 -#> [529,] 0.8668125 0.9510885 0.9550453 -#> [530,] 1.3518969 1.3648092 1.3849989 -#> [531,] 0.7892308 0.8003594 0.8356967 -#> [532,] 0.8611332 0.8613864 0.9164915 -#> [533,] 0.6250401 0.6367535 0.6517178 -#> [534,] 0.7000426 0.7177860 0.7378278 -#> [535,] 0.7863389 0.8349013 0.8376880 -#> [536,] 0.9794036 1.0058872 1.0216113 -#> [537,] 0.8364121 0.8611271 0.8800067 -#> [538,] 0.5635180 0.6092181 0.6218384 -#> [539,] 0.8904440 0.8921551 0.8932878 -#> [540,] 0.6639791 0.7167615 0.7429688 -#> [541,] 0.6532183 0.6622352 0.6784005 -#> [542,] 1.3483684 1.3507839 1.3894962 -#> [543,] 0.8085228 0.8488790 0.8680777 -#> [544,] 0.5340517 0.5593715 0.6246004 -#> [545,] 0.5689344 0.6011425 0.6378416 -#> [546,] 0.6056311 0.6089128 0.6109068 -#> [547,] 0.7942207 0.8298927 0.8602639 -#> [548,] 0.9145482 0.9155776 0.9157779 -#> [549,] 0.7833891 0.7929947 0.7977212 -#> [550,] 0.8923763 0.8936716 0.8943902 -#> [551,] 0.6252989 0.6302890 0.6325989 -#> [552,] 0.6213495 0.6715206 0.6738913 -#> [553,] 0.5815733 0.6928156 0.7067708 -#> [554,] 0.7766909 0.7895843 0.8063112 -#> [555,] 0.8607480 0.8663636 0.8850935 -#> [556,] 0.6819663 0.7233252 0.7428187 -#> [557,] 0.8135751 0.8167236 0.8241794 -#> [558,] 2.3432253 2.3690277 2.3950798 -#> [559,] 0.7093489 0.7243632 0.7538692 -#> [560,] 0.6790146 0.6813491 0.6987252 -#> [561,] 0.9278684 0.9670014 0.9923017 -#> [562,] 0.6440527 0.6939634 0.6946025 -#> [563,] 0.8178424 0.8214247 0.8249273 -#> [564,] 0.5854172 0.6030661 0.6703721 -#> [565,] 2.2018303 2.2170551 2.2715903 -#> [566,] 0.6740985 0.6961154 0.7107108 -#> [567,] 0.5288156 0.6289047 0.6432439 -#> [568,] 0.6086948 0.6167249 0.6182271 -#> [569,] 0.8899425 0.8907170 0.9248265 -#> [570,] 0.8781574 0.9243470 0.9436126 -#> [571,] 0.6611107 0.6947258 0.7779487 -#> [572,] 0.8544198 0.8607628 0.9113352 -#> [573,] 0.6818945 0.6944958 0.6973268 -#> [574,] 0.6450755 0.7042088 0.7045850 -#> [575,] 0.8500746 0.9282655 1.0189408 -#> [576,] 0.7818339 0.7826114 0.8231869 -#> [577,] 1.2586485 1.2649063 1.4049734 -#> [578,] 0.6757237 0.6791727 0.7117059 -#> [579,] 0.6788451 0.6853032 0.7137189 -#> [580,] 0.6333447 0.6695882 0.6853860 -#> [581,] 0.6198851 0.6315937 0.6712264 -#> [582,] 0.5481736 0.5764813 0.6090256 -#> [583,] 0.6900380 0.6917397 0.7118564 -#> [584,] 0.8031552 0.8159384 0.8325545 -#> [585,] 0.8078439 0.8962927 0.9024955 -#> [586,] 0.7863477 0.8318041 0.8382579 -#> [587,] 0.6263667 0.6662338 0.6693745 -#> [588,] 1.0664086 1.0867883 1.1595318 -#> [589,] 0.7238832 0.7291073 0.7634351 -#> [590,] 1.8472453 1.9284869 1.9455458 -#> [591,] 0.6030661 0.6150027 0.6178535 -#> [592,] 0.7067891 0.7202563 0.7385543 -#> [593,] 0.5766874 0.6071901 0.6722267 -#> [594,] 0.5037597 0.5140889 0.5278857 -#> [595,] 0.6973421 0.7460797 0.7484519 -#> [596,] 0.8587832 0.8776250 0.8925923 -#> [597,] 0.8990254 0.8998505 0.9043764 -#> [598,] 0.6098153 0.6283844 0.6289047 -#> [599,] 1.1384414 1.1628123 1.1670567 -#> [600,] 0.7396622 0.7411347 0.7429837 -#> [601,] 0.6981834 0.7385372 0.7571183 -#> [602,] 0.5697776 0.5925780 0.6079173 -#> [603,] 1.0356459 1.0574077 1.0919283 -#> [604,] 1.1836077 1.2198348 1.2271238 -#> [605,] 0.6046276 0.6299998 0.6461569 -#> [606,] 0.5649939 0.5740247 0.5826055 -#> [607,] 1.1519656 1.1540375 1.1572590 -#> [608,] 0.8675523 0.8853132 0.9111472 -#> [609,] 1.6049527 1.6168954 1.6674373 -#> [610,] 0.9049409 0.9094752 1.0089479 -#> [611,] 0.5936046 0.6057138 0.6595870 -#> [612,] 0.9681270 0.9843482 1.0041864 -#> [613,] 1.2830695 1.3338333 1.3386482 -#> [614,] 0.7772791 0.8072681 0.8344979 -#> [615,] 0.7472657 0.7642566 0.7715074 -#> [616,] 0.8531185 0.8587832 0.8961581 -#> [617,] 0.7300108 0.7336099 0.7580219 -#> [618,] 0.6519833 0.7036290 0.7411941 -#> [619,] 0.9758230 1.0551752 1.0664273 -#> [620,] 0.8801867 0.8923898 0.9039039 -#> [621,] 0.5862132 0.6693059 0.6782872 -#> [622,] 0.6219328 0.6248315 0.6261556 -#> [623,] 0.7478602 0.7580601 0.7706583 -#> [624,] 0.5698945 0.6299090 0.6403390 -#> [625,] 1.0167930 1.0453051 1.1333771 -#> [626,] 0.7392944 0.7548943 0.7563227 -#> [627,] 0.6061947 0.6288226 0.6932874 -#> [628,] 0.5016559 0.5094419 0.5727759 -#> [629,] 1.0443008 1.0609972 1.0629319 -#> [630,] 0.7998817 0.8195488 0.8678657 -#> [631,] 0.5547715 0.6030755 0.6154857 -#> [632,] 0.8144859 0.8281860 0.8697099 -#> [633,] 1.0451144 1.0542669 1.1114114 -#> [634,] 0.6419922 0.6432989 0.6447714 -#> [635,] 0.6742909 0.7286320 0.7541595 -#> [636,] 0.9607071 0.9640626 0.9819342 -#> [637,] 0.9198462 0.9676332 0.9754811 -#> [638,] 1.1200604 1.2439004 1.2668609 -#> [639,] 1.1293918 1.1544637 1.1925736 -#> [640,] 0.8213356 0.8387448 0.8433437 -#> [641,] 0.9677572 0.9888431 1.0394407 -#> [642,] 1.0378200 1.0572936 1.0864902 -#> [643,] 0.5496676 0.5826584 0.5893277 -#> [644,] 0.8202058 0.8503474 0.8628839 -#> [645,] 0.6876549 0.6992767 0.7008368 -#> [646,] 1.0006761 1.0891220 1.1000991 -#> [647,] 0.7692970 0.8176418 0.8722259 -#> [648,] 0.9001376 0.9306692 0.9344276 -#> [649,] 0.4759897 0.5073673 0.5773453 -#> [650,] 1.9382943 1.9416419 2.0260886 -#> [651,] 1.1290313 1.2173869 1.2181288 -#> [652,] 0.6658469 0.6770162 0.6778106 -#> [653,] 0.7356093 0.7722727 0.7758287 -#> [654,] 1.0047432 1.0131991 1.0317723 -#> [655,] 0.5662782 0.5710962 0.5811230 -#> [656,] 0.6184569 0.6220324 0.6290472 -#> [657,] 0.7677005 0.7693379 0.7703628 -#> [658,] 0.5899925 0.6245978 0.6298449 -#> [659,] 0.7469655 0.7567931 0.7701006 -#> [660,] 0.5644498 0.5773875 0.6264687 -#> [661,] 0.5910982 0.6014117 0.6069905 -#> [662,] 0.8325475 0.8360327 0.8718518 -#> [663,] 0.5199536 0.5201948 0.5253829 -#> [664,] 2.0411730 2.0795131 2.1723752 -#> [665,] 0.6398905 0.7198262 0.7426566 -#> [666,] 1.6206125 1.6538794 1.6952439 -#> [667,] 0.7155574 0.7265504 0.7561248 -#> [668,] 0.6236368 0.6674390 0.7730710 -#> [669,] 0.6593693 0.6599681 0.7081862 -#> [670,] 0.9392153 0.9818740 0.9936594 -#> [671,] 0.8417960 0.8581661 0.9167841 -#> [672,] 0.8022114 0.8045830 0.8129684 -#> [673,] 1.0238475 1.0297726 1.0514701 -#> [674,] 0.8379912 0.8492909 0.8665540 -#> [675,] 0.6764425 0.7128808 0.7414976 -#> [676,] 0.9237796 0.9572670 0.9769117 -#> [677,] 0.6259317 0.6287526 0.6306655 -#> [678,] 0.7745990 0.7968260 0.8289013 -#> [679,] 1.1319135 1.1391750 1.1587812 -#> [680,] 0.7995431 0.8797833 0.9001406 -#> [681,] 0.5658163 0.5663868 0.6085266 -#> [682,] 1.1814759 1.2122146 1.2527892 -#> [683,] 0.9574515 0.9917246 1.0476483 -#> [684,] 0.8202589 0.8405467 0.8482936 -#> [685,] 1.0408116 1.0770330 1.0790551 -#> [686,] 1.8179036 1.8340617 1.9116460 -#> [687,] 0.8240114 0.8346796 0.8540282 -#> [688,] 0.7111981 0.7168102 0.7506698 -#> [689,] 0.7062740 0.7083143 0.7332891 -#> [690,] 0.7589517 0.7814489 0.8743718 -#> [691,] 0.7887940 0.8068922 0.8298635 -#> [692,] 0.7042882 0.7073357 0.7086554 -#> [693,] 0.8677932 0.9081009 0.9096423 -#> [694,] 0.9426249 0.9456269 0.9996745 -#> [695,] 0.7261435 0.7369679 0.7431326 -#> [696,] 0.5259880 0.5325244 0.5335413 -#> [697,] 0.9357843 1.0164852 1.1235415 -#> [698,] 0.6602462 0.6971881 0.7130196 -#> [699,] 0.7407388 0.7441478 0.7587615 -#> [700,] 0.5805887 0.6411091 0.6493704 -#> [701,] 0.8441528 0.8526117 0.8743718 -#> [702,] 0.7091045 0.7115284 0.7332891 -#> [703,] 1.4329723 1.4998115 1.5321308 -#> [704,] 0.8716388 0.9324892 0.9406988 -#> [705,] 0.9435541 1.0315119 1.0640330 -#> [706,] 0.6753137 0.7172770 0.7210186 -#> [707,] 0.6354370 0.6485246 0.6687828 -#> [708,] 0.7013456 0.7131056 0.7347693 -#> [709,] 0.7484519 0.7737699 0.7741449 -#> [710,] 0.8423412 0.8555198 0.8749579 -#> [711,] 1.1663112 1.2098689 1.2143511 -#> [712,] 0.9481154 0.9482776 0.9492661 -#> [713,] 0.5139554 0.5386177 0.5543984 -#> [714,] 0.6937074 0.7245582 0.7468176 -#> [715,] 1.4709076 1.4824762 1.4912133 -#> [716,] 0.8951693 0.8961581 0.9878208 -#> [717,] 0.5740756 0.5972898 0.6142427 -#> [718,] 0.9250145 0.9261443 0.9285668 -#> [719,] 0.5785084 0.6069989 0.6116374 -#> [720,] 0.9843897 1.0550667 1.0561660 -#> [721,] 0.5411180 0.5608529 0.5653868 -#> [722,] 0.5295162 0.5340517 0.5555209 -#> [723,] 0.9688074 1.0018221 1.0154645 -#> [724,] 0.6862316 0.7080334 0.7092927 -#> [725,] 0.6652081 0.6720352 0.6917995 -#> [726,] 0.6144660 0.6167648 0.6466886 -#> [727,] 0.8975746 0.9026949 0.9269203 -#> [728,] 0.7297279 0.7441841 0.7579067 -#> [729,] 0.9753392 0.9793578 0.9902628 -#> [730,] 0.6466303 0.6596934 0.6713759 -#> [731,] 0.7510750 0.8031048 0.8497506 -#> [732,] 0.7844187 0.7910788 0.8033215 -#> [733,] 1.1436977 1.2593077 1.2944929 -#> [734,] 1.0233959 1.0988194 1.1192609 -#> [735,] 0.6888786 0.7709872 0.8026905 -#> [736,] 1.1020634 1.1103051 1.1116794 -#> [737,] 0.4875835 0.5037597 0.5218255 -#> [738,] 1.2087302 1.2367852 1.2630820 -#> [739,] 2.1226628 2.1489737 2.1847682 -#> [740,] 0.9699873 0.9936126 0.9981753 -#> [741,] 0.5541666 0.5674918 0.5693480 -#> [742,] 0.5708686 0.5748597 0.5788055 -#> [743,] 0.8565868 0.8744701 0.8796845 -#> [744,] 0.9290540 0.9548992 0.9762425 -#> [745,] 0.4644079 0.5262045 0.5492644 -#> [746,] 1.0158253 1.0370421 1.0656568 -#> [747,] 0.7036279 0.7143330 0.7151035 -#> [748,] 1.2295782 1.2701114 1.3213964 -#> [749,] 0.5693054 0.6197711 0.6784878 -#> [750,] 0.7510750 0.7788458 0.7880611 -#> [751,] 0.7907865 0.8110518 0.8268999 -#> [752,] 1.6528810 1.6852090 1.7012686 -#> [753,] 0.8275630 0.8613339 0.8736702 -#> [754,] 0.6022206 0.6873235 0.6881103 -#> [755,] 0.7941230 0.7957952 0.7978296 -#> [756,] 0.7081964 0.7167148 0.7362297 -#> [757,] 1.2384498 1.2410470 1.3512977 -#> [758,] 0.6404495 0.7010819 0.7160734 -#> [759,] 0.5552198 0.6299090 0.6299998 -#> [760,] 0.8529619 0.8699727 0.8723819 -#> [761,] 1.1095331 1.1378732 1.1933431 -#> [762,] 0.6133128 0.6134790 0.6152627 -#> [763,] 0.5848662 0.5881791 0.5938147 -#> [764,] 1.2015164 1.2033767 1.2357261 -#> [765,] 1.3644598 1.3664599 1.3791541 -#> [766,] 0.9682310 0.9753498 0.9834251 -#> [767,] 0.7501720 0.7553391 0.7784621 -#> [768,] 0.6176954 0.6553638 0.7037984 -#> [769,] 0.9799616 0.9971581 1.0188878 -#> [770,] 0.6067608 0.6166483 0.6215483 -#> [771,] 0.6988536 0.7143979 0.7691937 -#> [772,] 0.6707290 0.7406443 0.7925577 -#> [773,] 0.6920620 0.7192525 0.7378939 -#> [774,] 0.8061181 0.8335395 0.8519922 -#> [775,] 1.2012728 1.2145928 1.2264780 -#> [776,] 0.6036117 0.6045314 0.6074887 -#> [777,] 0.7134724 0.7330610 0.7336099 -#> [778,] 0.7357161 0.7659436 0.7765781 -#> [779,] 1.9690753 1.9715492 1.9898267 -#> [780,] 1.0283219 1.0732000 1.1302308 -#> [781,] 1.2927882 1.2994474 1.3193296 -#> [782,] 0.8892492 0.9349566 0.9609719 -#> [783,] 0.7018778 0.7117218 0.7143797 -#> [784,] 0.9308265 0.9329245 0.9864876 -#> [785,] 0.6700494 0.6884271 0.7247373 -#> [786,] 0.6910984 0.7043720 0.7224982 -#> [787,] 0.8368802 0.8438580 0.8626579 -#> [788,] 0.5811230 0.6050018 0.6342684 -#> [789,] 0.5341757 0.5555209 0.5730101 -#> [790,] 0.8837296 0.8878474 0.9150893 -#> [791,] 0.7885298 0.7951147 0.7955146 -#> [792,] 0.5522140 0.5649189 0.5940605 -#> [793,] 1.5337373 1.5347884 1.5472385 -#> [794,] 0.8744181 0.8762210 0.8950791 -#> [795,] 0.5354529 0.6159843 0.6497799 -#> [796,] 0.5435039 0.5631950 0.5761898 -#> [797,] 0.5904797 0.6074887 0.6143992 -#> [798,] 0.6754314 0.7094825 0.7628576 -#> [799,] 0.5793089 0.5914720 0.6272817 -#> [800,] 0.5851032 0.6079851 0.6545558 -#> [801,] 0.5455918 0.5498394 0.5578871 -#> [802,] 0.5969488 0.6414602 0.6594972 -#> [803,] 0.7023748 0.7029518 0.7169213 -#> [804,] 0.8185188 0.8205612 0.8326591 -#> [805,] 1.1750752 1.1903984 1.1933431 -#> [806,] 1.0302284 1.0537445 1.0748683 -#> [807,] 1.6709016 1.7005440 1.7394570 -#> [808,] 0.8407370 0.8500746 0.8637478 -#> [809,] 0.7008518 0.7150811 0.7800171 -#> [810,] 0.5433768 0.5853286 0.5858126 -#> [811,] 0.8785766 0.8927469 0.9212768 -#> [812,] 0.7942367 0.8017567 0.8151381 -#> [813,] 0.7228474 0.7321719 0.7385597 -#> [814,] 0.9128304 0.9264948 0.9299598 -#> [815,] 1.5803471 1.5953455 1.6277466 -#> [816,] 0.6993452 0.7242203 0.7344657 -#> [817,] 1.6124134 1.6636003 1.6760532 -#> [818,] 0.8376880 0.8426910 0.8453352 -#> [819,] 0.6316854 0.6320838 0.6329795 -#> [820,] 1.1178551 1.1519532 1.1632556 -#> [821,] 0.5833116 0.6029864 0.6135050 -#> [822,] 0.9326344 0.9529245 0.9951438 -#> [823,] 0.6772256 0.6932874 0.7187178 -#> [824,] 0.5820719 0.5912199 0.5958864 -#> [825,] 0.6578455 0.6685950 0.6729128 -#> [826,] 0.5650308 0.5788591 0.5883047 -#> [827,] 0.8792121 0.8806975 0.8816077 -#> [828,] 1.0188981 1.0945970 1.1559622 -#> [829,] 0.6354521 0.6415935 0.6464179 -#> [830,] 0.9306057 0.9731270 0.9804268 -#> [831,] 0.8952237 0.9297569 0.9763403 -#> [832,] 1.0843053 1.0897857 1.1173875 -#> [833,] 0.5930187 0.5939369 0.6069079 -#> [834,] 0.7465824 0.7697630 0.7820416 -#> [835,] 0.4847935 0.4983993 0.5371986 -#> [836,] 0.5418103 0.5454948 0.5471028 -#> [837,] 0.8334105 0.8618845 0.9283201 -#> [838,] 0.9496958 1.0138397 1.0735338 -#> [839,] 0.9777460 1.0175556 1.0292585 -#> [840,] 0.7527413 0.7735569 0.7822611 -#> [841,] 0.9744743 1.0102749 1.0125469 -#> [842,] 0.5128846 0.5187470 0.5232374 -#> [843,] 1.0283224 1.0680810 1.0750131 -#> [844,] 0.9416318 0.9482930 0.9629695 -#> [845,] 1.0277905 1.0347361 1.1459346 -#> [846,] 0.7532099 0.8083029 0.8129840 -#> [847,] 0.6244790 0.6370497 0.6643578 -#> [848,] 0.7263274 0.7298699 0.7523639 -#> [849,] 0.6670763 0.6757237 0.7488167 -#> [850,] 0.7400483 0.7407983 0.7678197 -#> [851,] 0.8328801 0.8593535 0.8706834 -#> [852,] 0.8042118 0.8181203 0.8300385 -#> [853,] 1.3269187 1.3651020 1.3995892 -#> [854,] 1.4041430 1.4212342 1.4334688 -#> [855,] 0.8489212 0.8509315 0.9226693 -#> [856,] 0.6371847 0.6373957 0.6489260 -#> [857,] 0.9479864 1.0184980 1.0239902 -#> [858,] 0.7565456 0.7837856 0.8034945 -#> [859,] 0.7948078 0.7953206 0.8008431 -#> [860,] 0.6458494 0.6610452 0.6853779 -#> [861,] 0.9921289 1.0741951 1.0819476 -#> [862,] 0.7420654 0.7459836 0.7656647 -#> [863,] 0.9134277 0.9463880 0.9774547 -#> [864,] 0.8385498 0.8457286 0.8462907 -#> [865,] 0.6143098 0.6192943 0.6269716 -#> [866,] 0.5851182 0.5949997 0.6690769 -#> [867,] 0.6249000 0.6323681 0.6533374 -#> [868,] 0.6744915 0.6873026 0.6948454 -#> [869,] 0.7422157 0.7559815 0.7563227 -#> [870,] 0.6857204 0.7060388 0.7225791 -#> [871,] 0.6754866 0.7015258 0.7165442 -#> [872,] 0.6624938 0.6659730 0.6665198 -#> [873,] 0.7918862 0.8899351 0.9106117 -#> [874,] 0.9897825 0.9967091 0.9998667 -#> [875,] 0.6674390 0.6709559 0.6722478 -#> [876,] 0.5127744 0.5200857 0.5278857 -#> [877,] 0.7248677 0.7362571 0.7574972 -#> [878,] 0.8650737 0.8673128 0.8876872 -#> [879,] 0.8082818 0.8188058 0.8420042 -#> [880,] 0.5238938 0.5245936 0.6314431 -#> [881,] 0.5546065 0.5552367 0.5658163 -#> [882,] 0.6593763 0.6692368 0.6819575 -#> [883,] 1.1362660 1.1670605 1.1814908 -#> [884,] 0.6274278 0.6516153 0.6589275 -#> [885,] 0.9445222 0.9758457 0.9935428 -#> [886,] 1.0196759 1.0782516 1.1500725 -#> [887,] 0.5611785 0.5721490 0.5730101 -#> [888,] 1.4525418 1.5335511 1.5650556 -#> [889,] 0.7290624 0.7626622 0.7701266 -#> [890,] 0.6575866 0.6631294 0.6709890 -#> [891,] 0.6369631 0.6478044 0.6552745 -#> [892,] 0.5949277 0.6268538 0.6411613 -#> [893,] 0.8987008 0.8996465 0.9122463 -#> [894,] 0.6536885 0.7169877 0.7448199 -#> [895,] 0.8754574 0.8961878 0.9137037 -#> [896,] 0.8990254 0.9600782 0.9845505 -#> [897,] 0.8324243 0.8734084 0.8839719 -#> [898,] 1.6232812 1.6329324 1.6843737 -#> [899,] 0.5307726 0.5541666 0.5542382 -#> [900,] 0.9233367 0.9341166 0.9619989 -#> [901,] 1.1674370 1.2091835 1.2888790 -#> [902,] 0.5935215 0.6133391 0.6145858 -#> [903,] 1.1552582 1.1596754 1.2374547 -#> [904,] 0.6360963 0.6439245 0.6468046 -#> [905,] 1.1296944 1.1306698 1.1445650 -#> [906,] 0.4926394 0.5200857 0.5569929 -#> [907,] 0.7094116 0.7272964 0.7351366 -#> [908,] 0.5967956 0.5984226 0.6065631 -#> [909,] 0.7092927 0.7741783 0.8215954 -#> [910,] 0.5743078 0.5881791 0.6133391 -#> [911,] 0.7960024 0.8147715 0.8201958 -#> [912,] 0.6367922 0.6648602 0.7074269 -#> [913,] 1.1330448 1.1393728 1.2083914 -#> [914,] 1.1261638 1.1363303 1.1381319 -#> [915,] 0.7265642 0.7372435 0.7600814 -#> [916,] 0.5991453 0.6288226 0.6909970 -#> [917,] 0.5936259 0.6167773 0.6328689 -#> [918,] 1.0889671 1.1266647 1.1340280 -#> [919,] 0.8134718 0.8773818 0.8794205 -#> [920,] 0.6634449 0.6847756 0.7128808 -#> [921,] 0.6411091 0.6529900 0.6562525 -#> [922,] 0.9428644 0.9479833 0.9766401 -#> [923,] 0.6546695 0.7623191 0.7831897 -#> [924,] 0.6176913 0.6225913 0.6360304 -#> [925,] 0.8952237 0.8954024 0.9522548 -#> [926,] 0.5354529 0.5418754 0.5586692 -#> [927,] 0.5889366 0.6452530 0.6895276 -#> [928,] 1.2360886 1.2645463 1.4156511 -#> [929,] 0.7045850 0.7102461 0.7254271 -#> [930,] 0.5557009 0.6323681 0.6379043 -#> [931,] 0.6628541 0.7176973 0.7332718 -#> [932,] 0.7830243 0.7958926 0.8087172 -#> [933,] 0.7823336 0.7935952 0.8060961 -#> [934,] 1.2170469 1.3016234 1.3293415 -#> [935,] 0.5882024 0.6785070 0.6851937 -#> [936,] 1.3042448 1.3067202 1.3290534 -#> [937,] 0.5923980 0.7701006 0.7797618 -#> [938,] 0.6801128 0.6920584 0.7143286 -#> [939,] 0.8133878 0.8762922 0.8792833 -#> [940,] 1.4887429 1.5084606 1.5273402 -#> [941,] 0.8393568 0.9422893 0.9868203 -#> [942,] 0.8230795 0.8939918 0.9083788 -#> [943,] 0.4729722 0.4760790 0.5015056 -#> [944,] 0.7457229 0.7612536 0.8136419 -#> [945,] 0.6536390 0.6611107 0.6819575 -#> [946,] 1.2655733 1.3786466 1.4154325 -#> [947,] 0.8477603 0.9001406 0.9536993 -#> [948,] 0.9881205 1.0120315 1.0276484 -#> [949,] 0.7025475 0.7284700 0.8108278 -#> [950,] 0.6722478 0.6789018 0.6876039 -#> [951,] 0.6565390 0.6916976 0.7045401 -#> [952,] 0.7141773 0.7169669 0.7371411 -#> [953,] 0.6559141 0.6639398 0.6669422 -#> [954,] 0.6337316 0.6354521 0.6418716 -#> [955,] 0.6696159 0.6698246 0.6916917 -#> [956,] 0.6075006 0.6443834 0.6680742 -#> [957,] 0.6603293 0.6623050 0.6940481 -#> [958,] 0.6436329 0.6482295 0.6713180 -#> [959,] 0.6036117 0.6117387 0.6139310 -#> [960,] 0.8303042 0.8761815 0.9232052 -#> [961,] 0.5678705 0.5766561 0.5903886 -#> [962,] 1.1215965 1.1605183 1.2426790 -#> [963,] 0.7745578 0.7843597 0.8036236 -#> [964,] 0.7111981 0.7140241 0.7803132 -#> [965,] 1.3762091 1.4262877 1.4529862 -#> [966,] 0.9081192 0.9342811 0.9352012 -#> [967,] 0.7595652 0.7708732 0.7737753 -#> [968,] 1.4909861 1.5724724 1.5742275 -#> [969,] 0.8061181 0.8275757 0.8626899 -#> [970,] 0.9417043 0.9428644 0.9652038 -#> [971,] 0.7672127 0.7708118 0.8045342 -#> [972,] 0.8512705 0.8660131 0.8675326 -#> [973,] 0.6890310 0.7102459 0.7356957 -#> [974,] 0.8293702 0.8737719 0.8771729 -#> [975,] 0.9366361 0.9594017 1.0164096 -#> [976,] 0.6135617 0.6143098 0.6145980 -#> [977,] 0.6100644 0.6560972 0.6944847 -#> [978,] 0.8658190 0.9287271 0.9562004 -#> [979,] 0.8026439 0.8061461 0.8523100 -#> [980,] 0.7544792 0.7700905 0.7944546 -#> [981,] 0.7798431 0.7893466 0.7930837 -#> [982,] 0.7172235 0.7433508 0.7481295 -#> [983,] 0.8697099 0.8845862 0.8919917 -#> [984,] 0.6171722 0.6253003 0.6681443 -#> [985,] 1.0713757 1.0957445 1.1245306 -#> [986,] 0.8691765 0.8912487 0.9218647 -#> [987,] 1.0751697 1.0866799 1.0975572 -#> [988,] 1.1608268 1.1729700 1.1819343 -#> [989,] 0.7698354 0.7771256 0.8079784 -#> [990,] 0.6881899 0.7428363 0.7918862 -#> [991,] 0.5465308 0.5848662 0.6901507 -#> [992,] 0.8033928 0.8417451 0.8513532 -#> [993,] 1.4140997 1.4184929 1.4390561 -#> [994,] 0.9012890 0.9167841 0.9214295 -#> [995,] 0.8027854 0.8349415 0.8488035 -#> [996,] 0.7708018 0.7850795 0.8009255 -#> [997,] 1.5251204 1.5339383 1.5403993 -#> [998,] 1.3328246 1.3609737 1.3649186 -#> [999,] 0.8731058 0.8916354 0.9132031 -#> [1000,] 0.8604964 0.8725707 0.9429566 +#> [1,] 1.1277723 1.1816461 1.1990002 +#> [2,] 1.2216679 1.2352019 1.2608456 +#> [3,] 0.6189972 0.6357971 0.6409345 +#> [4,] 0.6563752 0.6593882 0.6812084 +#> [5,] 0.6451487 0.6575858 0.6584598 +#> [6,] 0.6787011 0.7148674 0.7266524 +#> [7,] 0.6318225 0.6663029 0.6779481 +#> [8,] 0.7533940 0.7807431 0.7992978 +#> [9,] 1.0873969 1.0961940 1.1964236 +#> [10,] 0.5822407 0.5883231 0.5917679 +#> [11,] 0.6083513 0.6091392 0.6192702 +#> [12,] 0.7107465 0.7228639 0.7490380 +#> [13,] 0.7498239 0.7559947 0.7591031 +#> [14,] 0.8340085 0.8789927 0.8985272 +#> [15,] 0.8731405 0.8742264 0.9712348 +#> [16,] 1.1797889 1.1845552 1.2039234 +#> [17,] 1.0033135 1.0354425 1.0443826 +#> [18,] 0.9330399 0.9576537 0.9757561 +#> [19,] 0.8899695 0.9015966 0.9232722 +#> [20,] 0.5672174 0.5912759 0.6029007 +#> [21,] 0.6501106 0.6602688 0.6823808 +#> [22,] 0.7445577 0.7545314 0.7877731 +#> [23,] 0.7894505 0.8406640 0.8509438 +#> [24,] 0.9551027 0.9654747 1.0030288 +#> [25,] 1.0730757 1.0733707 1.0883246 +#> [26,] 0.7280532 0.7556115 0.7615608 +#> [27,] 0.7040471 0.7180793 0.7558149 +#> [28,] 1.1124655 1.1726914 1.2164293 +#> [29,] 0.7843067 0.7848351 0.8214750 +#> [30,] 0.5764293 0.6088673 0.6187806 +#> [31,] 1.1153360 1.1448984 1.1843941 +#> [32,] 0.7166056 0.7172308 0.7263161 +#> [33,] 0.7250852 0.7477290 0.7512148 +#> [34,] 1.3742790 1.4484635 1.4505247 +#> [35,] 1.2946210 1.2946745 1.3529488 +#> [36,] 0.9501224 0.9525178 0.9781398 +#> [37,] 0.5908949 0.6201243 0.6238170 +#> [38,] 0.9860467 1.0113623 1.0792367 +#> [39,] 1.3823259 1.4800667 1.4810435 +#> [40,] 1.0405158 1.0413266 1.0484415 +#> [41,] 0.4522604 0.4552867 0.4983990 +#> [42,] 1.0056548 1.0083335 1.0214761 +#> [43,] 0.5572177 0.5785664 0.6033729 +#> [44,] 0.5246025 0.5514685 0.5659403 +#> [45,] 0.5520987 0.5618288 0.5626486 +#> [46,] 0.9168416 0.9505614 0.9540991 +#> [47,] 0.9491927 0.9748667 1.0007042 +#> [48,] 0.7468701 0.7627787 0.7740428 +#> [49,] 0.8202840 0.8203177 0.8369207 +#> [50,] 0.7371032 0.7728698 0.7842856 +#> [51,] 0.8279323 0.8695652 0.8741601 +#> [52,] 0.6908772 0.7031286 0.7333217 +#> [53,] 0.6937080 0.7369896 0.7374129 +#> [54,] 0.5789364 0.5883231 0.5903267 +#> [55,] 0.8279323 0.8611921 0.8671132 +#> [56,] 1.2105582 1.3609712 1.4209254 +#> [57,] 0.6228348 0.6295301 0.6422188 +#> [58,] 0.6590690 0.6728996 0.6740843 +#> [59,] 0.6575858 0.6959634 0.7385297 +#> [60,] 0.9164001 0.9352856 0.9474459 +#> [61,] 0.6986781 0.7031266 0.7040471 +#> [62,] 0.5624673 0.5656930 0.5680078 +#> [63,] 0.6356963 0.6507316 0.6567545 +#> [64,] 0.6932837 0.7119049 0.7338189 +#> [65,] 0.6698017 0.6710056 0.6977133 +#> [66,] 1.0568114 1.0584024 1.0628807 +#> [67,] 0.4925018 0.5051723 0.5192192 +#> [68,] 0.8972152 0.9264264 1.0154784 +#> [69,] 0.7329504 0.7436061 0.7528723 +#> [70,] 1.3642570 1.4449321 1.4667406 +#> [71,] 0.8690166 0.9903226 1.0250856 +#> [72,] 0.5239980 0.5479711 0.5800733 +#> [73,] 0.5115099 0.5237082 0.5635509 +#> [74,] 0.9470885 0.9779822 1.0129587 +#> [75,] 0.5990171 0.6098017 0.6144892 +#> [76,] 0.5953002 0.6128149 0.6135434 +#> [77,] 0.5607080 0.6527787 0.6877265 +#> [78,] 0.5357776 0.5617833 0.5903267 +#> [79,] 0.7854694 0.8062140 0.8121136 +#> [80,] 0.9891183 0.9941969 0.9993140 +#> [81,] 0.5521847 0.5686514 0.5835483 +#> [82,] 1.2409497 1.2821540 1.3338516 +#> [83,] 1.3557836 1.3559887 1.3816546 +#> [84,] 1.1189773 1.1394716 1.2007114 +#> [85,] 0.6464739 0.6472974 0.6520667 +#> [86,] 0.8236488 0.8243628 0.8298920 +#> [87,] 0.7494334 0.7898359 0.8762251 +#> [88,] 0.7067036 0.7517859 0.7558175 +#> [89,] 0.6324472 0.6384841 0.6393787 +#> [90,] 0.5765781 0.6253036 0.6467292 +#> [91,] 0.6217369 0.6738939 0.6883190 +#> [92,] 0.9049822 0.9530349 1.0050902 +#> [93,] 0.5503597 0.5701566 0.5904144 +#> [94,] 1.1755510 1.2042861 1.2316526 +#> [95,] 0.9724045 0.9812174 0.9884258 +#> [96,] 0.9592701 0.9728378 1.0266564 +#> [97,] 0.5480974 0.5812286 0.6118587 +#> [98,] 0.5246272 0.5265085 0.5475677 +#> [99,] 0.8461130 0.8477330 0.8717503 +#> [100,] 0.7628803 0.7824819 0.7993370 +#> [101,] 1.7962282 1.8124344 1.8204522 +#> [102,] 0.4446164 0.4626767 0.4765493 +#> [103,] 1.6171545 1.6189861 1.6381932 +#> [104,] 0.7240607 0.7821695 0.8235358 +#> [105,] 0.5712901 0.5985136 0.6067016 +#> [106,] 0.8766191 0.8782562 0.8872883 +#> [107,] 1.3221504 1.3258106 1.3595579 +#> [108,] 1.2497242 1.2797769 1.2847999 +#> [109,] 0.6307679 0.6548610 0.6825140 +#> [110,] 0.5077163 0.5152366 0.5201796 +#> [111,] 0.5897513 0.6775438 0.7249468 +#> [112,] 0.8716588 0.9054262 0.9855289 +#> [113,] 0.8448758 0.8714976 0.9142557 +#> [114,] 0.7288252 0.8052105 0.8151615 +#> [115,] 0.6718406 0.6722277 0.6948328 +#> [116,] 0.8939690 0.9073273 0.9459113 +#> [117,] 1.1866277 1.2049009 1.2131600 +#> [118,] 0.9652541 0.9756351 0.9942206 +#> [119,] 0.5998649 0.6091943 0.6123165 +#> [120,] 0.6872129 0.7097586 0.7301151 +#> [121,] 0.7390389 0.7604702 0.7630935 +#> [122,] 0.4938862 0.4983489 0.5466885 +#> [123,] 0.9209192 0.9381286 0.9578028 +#> [124,] 1.2576783 1.3457942 1.3543061 +#> [125,] 0.8000203 0.8167809 0.8301323 +#> [126,] 0.8340372 0.8514435 0.8515045 +#> [127,] 0.5103176 0.5475948 0.5882427 +#> [128,] 0.5827694 0.5828899 0.5951991 +#> [129,] 0.6340862 0.6482273 0.6507316 +#> [130,] 0.7738277 0.8869694 0.8988091 +#> [131,] 0.6822141 0.6939493 0.6992247 +#> [132,] 0.6574931 0.7422702 0.7461058 +#> [133,] 0.9973896 1.0184821 1.0237132 +#> [134,] 1.1486590 1.1613028 1.1837634 +#> [135,] 0.6238170 0.6395035 0.6520195 +#> [136,] 1.0973044 1.1709569 1.2332039 +#> [137,] 0.6108532 0.6429611 0.6630001 +#> [138,] 0.5521847 0.5843494 0.6012981 +#> [139,] 0.7308439 0.7434359 0.7581942 +#> [140,] 1.3928817 1.4068608 1.4439310 +#> [141,] 0.6609668 0.6850597 0.7299244 +#> [142,] 0.5915916 0.6050565 0.6077914 +#> [143,] 0.5823034 0.5947904 0.6019534 +#> [144,] 0.5553071 0.5645280 0.6446181 +#> [145,] 0.6940500 0.7282091 0.7310340 +#> [146,] 0.5495635 0.5514685 0.5826591 +#> [147,] 0.7611104 0.8040045 0.8043343 +#> [148,] 0.6495392 0.6776919 0.6854624 +#> [149,] 0.7480650 0.8191044 0.8823637 +#> [150,] 0.5411869 0.5502896 0.5583409 +#> [151,] 0.7180998 0.7336379 0.7341086 +#> [152,] 1.1912636 1.2095629 1.2352239 +#> [153,] 0.5758092 0.6116671 0.6165203 +#> [154,] 0.7524017 0.7819264 0.7953267 +#> [155,] 0.6733962 0.6810368 0.6899465 +#> [156,] 0.6521463 0.6840823 0.7100448 +#> [157,] 1.3620943 1.3688559 1.3708892 +#> [158,] 0.5600066 0.6737385 0.6776919 +#> [159,] 0.5901161 0.5951493 0.6357927 +#> [160,] 0.8658120 0.8981545 0.9256894 +#> [161,] 0.7964822 0.7980622 0.8108124 +#> [162,] 0.5224324 0.5541192 0.5592968 +#> [163,] 1.1540350 1.1687959 1.1734590 +#> [164,] 1.0675792 1.1022426 1.1054776 +#> [165,] 1.1229310 1.1440999 1.1454136 +#> [166,] 0.8308600 0.8457055 0.8557414 +#> [167,] 0.5969554 0.5991155 0.6028723 +#> [168,] 1.3838868 1.3842514 1.3956961 +#> [169,] 0.8712192 0.9154238 0.9272356 +#> [170,] 0.7390389 0.7535997 0.7970432 +#> [171,] 0.6023530 0.6238119 0.6355553 +#> [172,] 0.7766402 0.7777657 0.7899675 +#> [173,] 0.5313566 0.5754902 0.5769897 +#> [174,] 0.5431463 0.5839871 0.6055436 +#> [175,] 0.9994798 1.0213772 1.0685104 +#> [176,] 0.8997026 0.9091246 0.9232706 +#> [177,] 0.7352546 0.7384616 0.7423913 +#> [178,] 0.6937898 0.6945931 0.7143432 +#> [179,] 1.0741032 1.0937999 1.0980578 +#> [180,] 0.5416264 0.5501798 0.5502562 +#> [181,] 0.9843336 1.0336066 1.0590858 +#> [182,] 0.6091943 0.6363898 0.6373057 +#> [183,] 0.7003897 0.7075189 0.7136140 +#> [184,] 0.9884055 1.0074228 1.0174219 +#> [185,] 0.8916240 0.8993724 0.9282640 +#> [186,] 0.6490195 0.6628685 0.6681492 +#> [187,] 1.2156100 1.2544759 1.2724148 +#> [188,] 0.7837702 0.8218098 0.8225141 +#> [189,] 0.7619641 0.8015365 0.8407601 +#> [190,] 1.0560959 1.1273738 1.1434620 +#> [191,] 0.8261643 0.8521884 0.9099727 +#> [192,] 1.1566105 1.1855532 1.1886661 +#> [193,] 0.9440280 0.9661984 0.9921918 +#> [194,] 0.8645134 0.8670063 0.9061379 +#> [195,] 0.5188817 0.5238636 0.5719127 +#> [196,] 0.8252084 0.8782798 0.8829206 +#> [197,] 0.6393644 0.7216211 0.7395698 +#> [198,] 0.9058586 0.9194339 0.9787950 +#> [199,] 0.9836911 1.0023737 1.0260539 +#> [200,] 0.8919486 0.9284428 0.9431832 +#> [201,] 0.5982558 0.6336967 0.6477662 +#> [202,] 0.8238807 0.8295729 0.8532570 +#> [203,] 0.3975459 0.4535849 0.4674355 +#> [204,] 0.8965174 0.8982999 0.8993036 +#> [205,] 0.5746819 0.5860547 0.5897513 +#> [206,] 0.7902742 0.8046735 0.8447648 +#> [207,] 0.6917758 0.7283993 0.7666928 +#> [208,] 0.5911413 0.5921035 0.5962793 +#> [209,] 0.8112749 0.8424908 0.8805676 +#> [210,] 0.5499103 0.5552143 0.5724341 +#> [211,] 0.7664883 0.7766420 0.8158615 +#> [212,] 0.7401987 0.7662884 0.7797529 +#> [213,] 0.6575542 0.6580014 0.6768431 +#> [214,] 1.2166165 1.2253165 1.2261671 +#> [215,] 0.6186600 0.6671991 0.6732922 +#> [216,] 0.7398366 0.7403294 0.7425097 +#> [217,] 0.5989056 0.6023753 0.6490482 +#> [218,] 0.5521809 0.5585820 0.6238076 +#> [219,] 0.5268149 0.5624969 0.5636207 +#> [220,] 1.1284222 1.1794205 1.1963549 +#> [221,] 0.6613447 0.6957399 0.7197768 +#> [222,] 0.7376104 0.7534260 0.7571064 +#> [223,] 1.1254497 1.1310411 1.1359482 +#> [224,] 0.5717071 0.5998148 0.6373057 +#> [225,] 0.7136713 0.7231501 0.7289041 +#> [226,] 0.6541174 0.7063086 0.7362559 +#> [227,] 0.7185699 0.7271226 0.7680247 +#> [228,] 1.2394236 1.2587553 1.3192218 +#> [229,] 0.9253467 0.9658028 0.9916496 +#> [230,] 0.9420330 0.9539283 0.9658795 +#> [231,] 0.8630664 0.8804020 0.8901090 +#> [232,] 0.4850090 0.5162538 0.5226281 +#> [233,] 0.6355172 0.6559131 0.6857133 +#> [234,] 0.8232688 0.8362491 0.8615428 +#> [235,] 0.5794818 0.5823488 0.5878504 +#> [236,] 0.8986594 0.9156674 0.9355886 +#> [237,] 0.6070168 0.6146959 0.6385568 +#> [238,] 0.7800092 0.7919962 0.8261697 +#> [239,] 0.6446008 0.6517779 0.6528180 +#> [240,] 0.5903636 0.6649502 0.6650598 +#> [241,] 1.5181657 1.5191653 1.6806529 +#> [242,] 1.1709452 1.2108411 1.2212352 +#> [243,] 0.9794785 1.0148312 1.0588020 +#> [244,] 0.8228033 0.9406653 0.9412112 +#> [245,] 0.7355959 0.7427091 0.8169518 +#> [246,] 0.6605395 0.7010432 0.7101375 +#> [247,] 0.5724341 0.5965084 0.6013598 +#> [248,] 0.6581380 0.6864811 0.7007856 +#> [249,] 0.7468705 0.7483195 0.7560462 +#> [250,] 0.4474640 0.4590751 0.4597129 +#> [251,] 0.8388607 0.9121455 0.9395272 +#> [252,] 0.6237672 0.6324957 0.6378056 +#> [253,] 1.1115367 1.1695811 1.2465492 +#> [254,] 0.8507018 0.8815974 0.9280725 +#> [255,] 0.5880765 0.6234843 0.6359189 +#> [256,] 0.7837060 0.7840352 0.8021130 +#> [257,] 0.7432229 0.7474043 0.7781482 +#> [258,] 0.8157246 0.8163470 0.8207238 +#> [259,] 1.0071526 1.0514318 1.0816304 +#> [260,] 0.7723188 0.8073125 0.8125567 +#> [261,] 0.7733659 0.7765029 0.7781799 +#> [262,] 0.8045442 0.8443363 0.8512293 +#> [263,] 0.6691929 0.6805346 0.7250852 +#> [264,] 0.5409081 0.5479479 0.5533832 +#> [265,] 0.6240639 0.6376946 0.6383766 +#> [266,] 0.6140820 0.6224795 0.6236054 +#> [267,] 0.7967967 0.8110177 0.8293811 +#> [268,] 0.5538449 0.5592717 0.5692131 +#> [269,] 1.3894109 1.3983734 1.4073322 +#> [270,] 0.6532931 0.6535509 0.6603980 +#> [271,] 0.6954934 0.8071532 0.8544645 +#> [272,] 0.7997930 0.8001390 0.8008286 +#> [273,] 0.7323858 0.7352067 0.7820764 +#> [274,] 0.5457597 0.5458660 0.5603155 +#> [275,] 0.6593882 0.6684101 0.6983498 +#> [276,] 1.5282590 1.5432321 1.5518024 +#> [277,] 0.7831023 0.8821525 0.8906814 +#> [278,] 0.5610538 0.5769897 0.6043345 +#> [279,] 0.8457055 0.8582436 0.9107608 +#> [280,] 0.5585820 0.5978585 0.6342586 +#> [281,] 0.5753703 0.6876870 0.7038946 +#> [282,] 0.7290462 0.8648736 0.8648975 +#> [283,] 0.6778300 0.6789222 0.7318722 +#> [284,] 0.9411683 0.9855289 1.0050375 +#> [285,] 0.7043195 0.7432437 0.7502960 +#> [286,] 1.3651561 1.3892015 1.3943802 +#> [287,] 1.2771909 1.2880192 1.3741400 +#> [288,] 1.5075022 1.5866471 1.6241959 +#> [289,] 1.1508820 1.2054700 1.2060725 +#> [290,] 0.8510004 0.8512387 0.8942729 +#> [291,] 0.6606663 0.6876140 0.7072640 +#> [292,] 0.6391744 0.6506912 0.6697097 +#> [293,] 0.8054279 0.8070900 0.8415829 +#> [294,] 0.6004037 0.6064343 0.6525837 +#> [295,] 0.5946605 0.6109984 0.6217659 +#> [296,] 0.5564219 0.5682669 0.5785664 +#> [297,] 0.5121810 0.5405678 0.5407712 +#> [298,] 0.8108245 0.8151554 0.8167585 +#> [299,] 0.4839062 0.4925744 0.5149030 +#> [300,] 0.7401987 0.7627323 0.7641001 +#> [301,] 0.5626776 0.6190075 0.6316696 +#> [302,] 0.6929260 0.7291426 0.7316196 +#> [303,] 1.9051118 1.9100229 1.9334947 +#> [304,] 0.5817847 0.5997890 0.6207748 +#> [305,] 0.5720249 0.5837491 0.5898708 +#> [306,] 0.5965174 0.6005517 0.6137788 +#> [307,] 1.0034240 1.0314873 1.0320467 +#> [308,] 0.8265704 0.8445410 0.8636050 +#> [309,] 0.8943133 0.9098371 0.9781398 +#> [310,] 0.6571992 0.6586063 0.6722925 +#> [311,] 0.8053866 0.8088441 0.8141323 +#> [312,] 0.9904840 1.0488026 1.0567316 +#> [313,] 0.6881557 0.7582715 0.7591426 +#> [314,] 0.5568581 0.5827694 0.6204041 +#> [315,] 0.6862337 0.7001198 0.7561484 +#> [316,] 0.8492696 0.8711605 0.8899702 +#> [317,] 0.7655117 0.7722215 0.7753759 +#> [318,] 0.6363898 0.6404232 0.6509156 +#> [319,] 0.6670985 0.6672640 0.6962625 +#> [320,] 0.8233239 0.8242852 0.8484660 +#> [321,] 0.6495988 0.6508068 0.6542615 +#> [322,] 1.0180832 1.0250659 1.0266634 +#> [323,] 0.6837625 0.6928143 0.6936870 +#> [324,] 0.7342534 0.7540028 0.7679974 +#> [325,] 0.6308780 0.6407043 0.6508068 +#> [326,] 0.9350917 0.9420448 0.9533092 +#> [327,] 0.6695906 0.6926156 0.7533284 +#> [328,] 1.0668279 1.0853428 1.2035339 +#> [329,] 0.8267822 0.8279529 0.8500662 +#> [330,] 0.6328065 0.6525837 0.6550373 +#> [331,] 0.6137788 0.6349687 0.6698618 +#> [332,] 0.7303193 0.7322579 0.7341715 +#> [333,] 0.8000697 0.8059705 0.8269345 +#> [334,] 0.5379070 0.5381997 0.5402068 +#> [335,] 0.4572627 0.4642517 0.4692709 +#> [336,] 1.1938257 1.2105804 1.2646468 +#> [337,] 0.8833182 0.8913455 0.9097912 +#> [338,] 0.8483925 0.8485289 0.8739361 +#> [339,] 0.9268745 0.9301437 0.9494924 +#> [340,] 0.5926610 0.6433268 0.6688616 +#> [341,] 0.6328652 0.6697167 0.6775438 +#> [342,] 0.6189582 0.6336426 0.6530868 +#> [343,] 0.9829755 0.9838940 1.0288515 +#> [344,] 0.5624027 0.5672823 0.5751450 +#> [345,] 0.5785100 0.5880912 0.6032128 +#> [346,] 0.7105605 0.7254459 0.7285652 +#> [347,] 0.6198076 0.6297758 0.6598254 +#> [348,] 0.8729183 0.8793803 0.9190275 +#> [349,] 0.5209098 0.5302664 0.5624052 +#> [350,] 0.8863619 0.9420280 0.9459780 +#> [351,] 0.8880786 0.9228884 0.9664693 +#> [352,] 1.3276280 1.3284202 1.3549191 +#> [353,] 1.0438588 1.0442103 1.0701039 +#> [354,] 0.7461058 0.7690134 0.7864186 +#> [355,] 0.7151664 0.7450731 0.7689244 +#> [356,] 0.5878504 0.5908810 0.6090971 +#> [357,] 0.6847809 0.8065705 0.8067604 +#> [358,] 1.0136404 1.0154122 1.0282789 +#> [359,] 1.0531656 1.0646987 1.1138957 +#> [360,] 1.0397803 1.0461697 1.0537380 +#> [361,] 0.4926647 0.5154537 0.5237127 +#> [362,] 0.9955914 1.0392933 1.0474345 +#> [363,] 0.8972945 0.8996744 0.9027318 +#> [364,] 0.9159105 0.9435594 0.9511380 +#> [365,] 0.7430718 0.7604702 0.7980560 +#> [366,] 0.5674692 0.5727376 0.6627259 +#> [367,] 1.0199524 1.0204548 1.0471335 +#> [368,] 0.5353742 0.5394586 0.5463735 +#> [369,] 0.8494756 0.8770611 0.8840677 +#> [370,] 0.9045793 0.9141658 0.9328294 +#> [371,] 0.8484185 0.8639459 0.9237728 +#> [372,] 0.7616295 0.7788900 0.8071625 +#> [373,] 0.5097656 0.5103176 0.5450248 +#> [374,] 0.6674362 0.6946062 0.8056381 +#> [375,] 0.7198688 0.7292259 0.7533332 +#> [376,] 0.7404467 0.7665664 0.7672032 +#> [377,] 0.8388834 0.8573182 0.8683734 +#> [378,] 0.7261603 0.7888915 0.8065603 +#> [379,] 1.1768365 1.2174035 1.2453905 +#> [380,] 1.2598092 1.3246854 1.3305341 +#> [381,] 0.8631331 0.8777154 0.8879424 +#> [382,] 0.8118543 0.8243492 0.8374920 +#> [383,] 0.7757223 0.7796205 0.8203172 +#> [384,] 0.8415829 0.8425422 0.8427918 +#> [385,] 0.6887134 0.6924916 0.6935413 +#> [386,] 0.6301571 0.6443765 0.6467538 +#> [387,] 0.6254812 0.6277603 0.6707994 +#> [388,] 0.9504140 0.9787950 0.9788155 +#> [389,] 0.7573177 0.7574468 0.7613383 +#> [390,] 0.6926296 0.7004906 0.7667403 +#> [391,] 1.1676943 1.2179838 1.2325915 +#> [392,] 0.8188247 0.8241835 0.8339341 +#> [393,] 0.8329418 0.8386294 0.8460252 +#> [394,] 0.7096210 0.7292739 0.7584514 +#> [395,] 1.4799383 1.5064008 1.5235157 +#> [396,] 1.1022143 1.1110085 1.1184343 +#> [397,] 0.7088534 0.7127603 0.7214720 +#> [398,] 0.7625693 0.7998142 0.8176899 +#> [399,] 0.7830381 0.8207924 0.8252420 +#> [400,] 1.2736809 1.3238208 1.3259648 +#> [401,] 0.7904562 0.8157185 0.8233814 +#> [402,] 0.9497575 0.9665054 0.9835361 +#> [403,] 0.9377258 1.0256769 1.0350779 +#> [404,] 0.6182421 0.6186630 0.6250949 +#> [405,] 1.3379349 1.3868488 1.4096641 +#> [406,] 0.6810388 0.7326497 0.7436179 +#> [407,] 0.8000203 0.8126316 0.8261912 +#> [408,] 0.6668383 0.6772600 0.7011845 +#> [409,] 0.5904144 0.6055436 0.6144892 +#> [410,] 0.6182368 0.6483972 0.6787011 +#> [411,] 0.7589513 0.7703605 0.7758075 +#> [412,] 0.7763655 0.7924663 0.8046182 +#> [413,] 0.7299407 0.7307987 0.7472007 +#> [414,] 1.2705682 1.3039116 1.3173147 +#> [415,] 1.3978243 1.4099353 1.4368023 +#> [416,] 0.7055470 0.7556795 0.7571401 +#> [417,] 0.8557944 0.9016194 0.9258674 +#> [418,] 0.6795702 0.6936138 0.7203690 +#> [419,] 0.5507127 0.5616786 0.5664522 +#> [420,] 0.5946564 0.6271226 0.6589521 +#> [421,] 1.2660488 1.2935256 1.3210175 +#> [422,] 1.0777358 1.1552969 1.2204435 +#> [423,] 0.5313030 0.5338943 0.5407712 +#> [424,] 0.9779007 1.0178157 1.0591399 +#> [425,] 0.8950220 0.9454731 0.9560139 +#> [426,] 1.0097005 1.0485973 1.1099787 +#> [427,] 0.6957399 0.7095744 0.7805514 +#> [428,] 1.3067943 1.3501308 1.3673162 +#> [429,] 0.8278941 0.8936291 0.9025688 +#> [430,] 0.7547116 0.7996885 0.8211158 +#> [431,] 0.7154578 0.7296091 0.7660701 +#> [432,] 0.7421226 0.7538467 0.8155186 +#> [433,] 0.5806314 0.5915916 0.6548079 +#> [434,] 0.6349687 0.6365637 0.6500784 +#> [435,] 0.8473934 0.8574420 0.9175749 +#> [436,] 0.6155368 0.6198042 0.6409345 +#> [437,] 0.4699607 0.5248791 0.5486645 +#> [438,] 1.0221971 1.0283199 1.0576939 +#> [439,] 1.4077905 1.4078477 1.4427959 +#> [440,] 0.4409665 0.4626767 0.4938862 +#> [441,] 0.9048603 0.9087658 0.9091246 +#> [442,] 1.1669433 1.1732456 1.1790484 +#> [443,] 0.5563468 0.5780151 0.5950256 +#> [444,] 0.9618237 0.9843987 1.0340714 +#> [445,] 1.6385503 1.6417239 1.6554494 +#> [446,] 0.7878675 0.7962567 0.7979834 +#> [447,] 2.0097095 2.0525425 2.0587405 +#> [448,] 1.1924949 1.2178915 1.2492241 +#> [449,] 0.5403095 0.5631900 0.5737795 +#> [450,] 1.6583900 1.7281786 1.7370262 +#> [451,] 0.6314860 0.6396309 0.6518001 +#> [452,] 1.3654383 1.3918685 1.4056749 +#> [453,] 0.6978221 0.7011060 0.7079638 +#> [454,] 1.0720183 1.1228689 1.1266475 +#> [455,] 0.5374261 0.5787567 0.5882427 +#> [456,] 0.5917679 0.6269757 0.6475247 +#> [457,] 1.0103346 1.0583478 1.0754355 +#> [458,] 0.7366074 0.7696810 0.8113648 +#> [459,] 0.5130750 0.5307737 0.5408275 +#> [460,] 0.5350491 0.5520000 0.5657748 +#> [461,] 0.8358193 0.8409993 0.8453590 +#> [462,] 1.3948239 1.4562316 1.4921572 +#> [463,] 0.5976927 0.6159258 0.6270187 +#> [464,] 0.7016635 0.7099575 0.7111202 +#> [465,] 0.9276422 0.9977400 1.0455170 +#> [466,] 1.1230235 1.1773242 1.1921464 +#> [467,] 0.5719470 0.6084708 0.6584985 +#> [468,] 0.5323596 0.5371743 0.6082670 +#> [469,] 0.6305895 0.6475206 0.6699390 +#> [470,] 0.3822591 0.4214002 0.4794289 +#> [471,] 0.6965180 0.7162136 0.7932884 +#> [472,] 1.2037354 1.2412579 1.2781834 +#> [473,] 1.1528347 1.1575442 1.1691273 +#> [474,] 0.6404232 0.6628817 0.6633204 +#> [475,] 1.3680536 1.3806925 1.4502315 +#> [476,] 0.7013151 0.7044657 0.7068683 +#> [477,] 0.7424823 0.8617070 0.8710939 +#> [478,] 0.6833299 0.7013946 0.7057739 +#> [479,] 0.5670320 0.5874698 0.6266317 +#> [480,] 0.5411971 0.5717583 0.5764336 +#> [481,] 0.8700075 0.8761098 0.8879985 +#> [482,] 0.6665749 0.6856635 0.6897393 +#> [483,] 0.7095349 0.7123296 0.7411007 +#> [484,] 1.2568529 1.3388399 1.3498595 +#> [485,] 0.6030901 0.6106986 0.6362282 +#> [486,] 1.3270357 1.3446570 1.3753723 +#> [487,] 0.6944722 0.6986781 0.7058085 +#> [488,] 0.7442717 0.7716297 0.8258617 +#> [489,] 0.8303598 0.8338579 0.8443118 +#> [490,] 1.5111890 1.5445189 1.5564387 +#> [491,] 1.4287770 1.4338115 1.4534610 +#> [492,] 0.6028583 0.6085813 0.6364568 +#> [493,] 1.2444039 1.2724466 1.2782419 +#> [494,] 0.9186961 0.9288731 0.9339130 +#> [495,] 0.5148448 0.5639078 0.6331913 +#> [496,] 0.9704159 0.9718047 0.9869484 +#> [497,] 0.5541192 0.5699598 0.5739698 +#> [498,] 1.2294258 1.2405399 1.2632070 +#> [499,] 0.5804832 0.6020497 0.6649769 +#> [500,] 0.6395914 0.6407729 0.6647554 +#> [501,] 1.2427244 1.2891885 1.3755788 +#> [502,] 0.5479711 0.5639078 0.5675280 +#> [503,] 1.5388021 1.6372228 1.6697375 +#> [504,] 0.7529697 0.7724098 0.7991795 +#> [505,] 1.5642651 1.5753041 1.5896113 +#> [506,] 0.9122109 0.9163889 0.9183538 +#> [507,] 0.9718225 0.9727489 0.9946086 +#> [508,] 0.7348817 0.7541810 0.7824822 +#> [509,] 0.8368484 0.8441140 0.8712227 +#> [510,] 0.7831023 0.8224706 0.8269345 +#> [511,] 1.2972052 1.2995585 1.3610271 +#> [512,] 0.7433959 0.7674406 0.8095525 +#> [513,] 0.4820203 0.4914494 0.5091375 +#> [514,] 0.5673960 0.6052295 0.6122315 +#> [515,] 0.4559979 0.4896020 0.4909026 +#> [516,] 0.4765648 0.5061745 0.5290541 +#> [517,] 0.5166929 0.5225545 0.5312450 +#> [518,] 0.7012764 0.7025821 0.7181508 +#> [519,] 0.6690963 0.6722143 0.7096344 +#> [520,] 0.5259640 0.5403095 0.5471192 +#> [521,] 0.7425617 0.7567662 0.7822832 +#> [522,] 0.5248791 0.5320507 0.5325069 +#> [523,] 0.9687019 0.9696667 1.0605354 +#> [524,] 0.5592717 0.5775316 0.6013149 +#> [525,] 0.7134244 0.7180454 0.7746114 +#> [526,] 0.6894268 0.6917122 0.7388943 +#> [527,] 1.5320355 1.5359497 1.5481314 +#> [528,] 0.6239519 0.6647352 0.6698996 +#> [529,] 0.8253294 0.8426068 0.8512405 +#> [530,] 0.9175670 0.9586984 0.9696410 +#> [531,] 0.5643394 0.6282007 0.6373988 +#> [532,] 0.7024892 0.7180089 0.7402136 +#> [533,] 0.9412042 0.9443775 0.9501321 +#> [534,] 0.6331913 0.6349211 0.6712309 +#> [535,] 0.4731234 0.5026104 0.5306004 +#> [536,] 0.5622579 0.5691711 0.5894259 +#> [537,] 1.3938269 1.4201260 1.4538800 +#> [538,] 2.1562114 2.1712210 2.1791550 +#> [539,] 0.5998649 0.6303169 0.6841752 +#> [540,] 1.2021338 1.2431104 1.2434704 +#> [541,] 0.8252084 0.8266875 0.8453320 +#> [542,] 1.1119488 1.1136882 1.1416424 +#> [543,] 0.7668405 0.7668689 0.7780350 +#> [544,] 1.2257260 1.2418458 1.3271819 +#> [545,] 0.9903867 1.0414513 1.0425481 +#> [546,] 0.7894660 0.7979414 0.8440595 +#> [547,] 1.4748032 1.5288034 1.6200355 +#> [548,] 0.8342098 0.8576379 0.8589755 +#> [549,] 0.8357769 0.8472275 0.8531945 +#> [550,] 0.8899300 0.9027397 0.9051167 +#> [551,] 0.7655653 0.7879630 0.8017048 +#> [552,] 0.6278000 0.6282079 0.6320861 +#> [553,] 0.7442717 0.7569825 0.7942681 +#> [554,] 0.6768602 0.6894267 0.7283503 +#> [555,] 0.4914494 0.5066574 0.5105818 +#> [556,] 0.6791070 0.6866979 0.7237962 +#> [557,] 0.7090876 0.7166298 0.7232070 +#> [558,] 0.6349871 0.6720933 0.6736528 +#> [559,] 0.8838416 0.8964731 0.9543999 +#> [560,] 0.7819956 0.8213843 0.8433024 +#> [561,] 0.8987376 0.9224726 0.9437928 +#> [562,] 0.5383853 0.5501868 0.5729807 +#> [563,] 1.6153224 1.6803922 1.7070157 +#> [564,] 0.9931664 1.0353998 1.0435389 +#> [565,] 1.1575457 1.2387429 1.2800923 +#> [566,] 1.7779091 1.7815292 1.8143845 +#> [567,] 0.8014217 0.8219595 0.8323921 +#> [568,] 0.6558496 0.6684397 0.6691929 +#> [569,] 0.5976967 0.6356963 0.6428138 +#> [570,] 0.8780852 0.8807945 0.8864215 +#> [571,] 1.5694029 1.6226836 1.6559844 +#> [572,] 1.8867064 1.8946499 1.8951040 +#> [573,] 0.7954502 0.8146452 0.8159977 +#> [574,] 0.5106542 0.5251450 0.5402068 +#> [575,] 0.9253467 0.9494333 0.9523070 +#> [576,] 0.5224575 0.5246025 0.5282306 +#> [577,] 0.8574534 0.8758765 0.9156594 +#> [578,] 0.6972932 0.7002176 0.7072410 +#> [579,] 0.7263034 0.7667228 0.7703424 +#> [580,] 1.1658215 1.2123779 1.2285181 +#> [581,] 0.9509007 0.9569566 0.9901120 +#> [582,] 0.6984653 0.7123291 0.7231011 +#> [583,] 0.6165135 0.6549497 0.6617059 +#> [584,] 0.6559082 0.6567545 0.6708039 +#> [585,] 1.2372009 1.2431104 1.3414206 +#> [586,] 0.8837551 0.8870166 0.8986792 +#> [587,] 1.1300497 1.1378241 1.1534381 +#> [588,] 0.9341930 0.9854642 0.9955070 +#> [589,] 0.7817602 0.7950334 0.8359405 +#> [590,] 0.8507018 0.8532815 0.8706052 +#> [591,] 0.6070573 0.6123936 0.6133793 +#> [592,] 0.6506767 0.6857493 0.6886219 +#> [593,] 1.1799360 1.2041982 1.2203544 +#> [594,] 0.9431895 1.0075567 1.0447846 +#> [595,] 1.2599315 1.2657402 1.2736123 +#> [596,] 0.7112562 0.7154578 0.7300252 +#> [597,] 0.9327264 0.9697106 0.9757561 +#> [598,] 0.5226653 0.5347778 0.6004037 +#> [599,] 0.7221886 0.7933000 0.7960978 +#> [600,] 0.5261021 0.5263663 0.5302476 +#> [601,] 0.7163910 0.7248237 0.7679930 +#> [602,] 0.7257560 0.7548418 0.7964255 +#> [603,] 0.8378586 0.8414736 0.8446556 +#> [604,] 0.9077201 0.9923359 1.0106972 +#> [605,] 0.6994948 0.7045753 0.7119669 +#> [606,] 0.5645280 0.5647955 0.5910950 +#> [607,] 1.4204439 1.4740305 1.4971383 +#> [608,] 1.5498688 1.6069093 1.7384498 +#> [609,] 0.9435022 0.9635824 0.9656355 +#> [610,] 0.5616786 0.5708692 0.6117274 +#> [611,] 1.2172076 1.2886264 1.3355435 +#> [612,] 0.5113881 0.5568581 0.5676932 +#> [613,] 1.1811073 1.2101745 1.2565012 +#> [614,] 0.8288751 0.8812426 0.9096677 +#> [615,] 0.5957393 0.6231754 0.6320876 +#> [616,] 0.6050565 0.6071182 0.6480847 +#> [617,] 0.7711614 0.7980622 0.8012313 +#> [618,] 0.5614452 0.6487696 0.6725718 +#> [619,] 0.5817847 0.6002829 0.6276241 +#> [620,] 0.8364844 0.8494256 0.8512405 +#> [621,] 0.7005655 0.7149314 0.7576389 +#> [622,] 0.9959242 1.0071526 1.0788781 +#> [623,] 1.0235715 1.0478058 1.0535272 +#> [624,] 0.7768493 0.7793272 0.8205517 +#> [625,] 1.1115848 1.1248822 1.1475012 +#> [626,] 0.5346923 0.5503597 0.5520000 +#> [627,] 0.6558496 0.6659052 0.7765029 +#> [628,] 1.0708415 1.1446938 1.2266482 +#> [629,] 0.6829279 0.7051407 0.7155856 +#> [630,] 0.7140941 0.7149278 0.7381929 +#> [631,] 0.9039229 0.9152130 0.9270557 +#> [632,] 0.5377479 0.5674692 0.6032168 +#> [633,] 0.6707994 0.6877516 0.7379386 +#> [634,] 0.6339956 0.6650379 0.6674789 +#> [635,] 0.6655739 0.6722275 0.7188234 +#> [636,] 1.2039409 1.2538158 1.3004335 +#> [637,] 0.9567400 0.9805564 1.0181206 +#> [638,] 1.7680531 1.7727131 1.8282199 +#> [639,] 0.7118041 0.7131544 0.7225123 +#> [640,] 0.7567525 0.7756439 0.7817602 +#> [641,] 0.5957012 0.6084708 0.6490912 +#> [642,] 0.6071488 0.6660500 0.6773838 +#> [643,] 0.5670320 0.5772271 0.6008826 +#> [644,] 0.6868794 0.6977937 0.7150017 +#> [645,] 0.7461080 0.7604850 0.7808844 +#> [646,] 0.6266361 0.6314365 0.6341940 +#> [647,] 0.7385297 0.7404467 0.7519838 +#> [648,] 0.8369020 0.8398624 0.8476542 +#> [649,] 0.4740971 0.4755505 0.5060454 +#> [650,] 1.7220624 1.7519612 1.7616198 +#> [651,] 0.4828149 0.5392326 0.5533832 +#> [652,] 0.6740843 0.6871881 0.7243692 +#> [653,] 0.5535769 0.5727801 0.5891104 +#> [654,] 1.0375054 1.0590858 1.0765221 +#> [655,] 0.8332197 0.8422317 0.8527906 +#> [656,] 1.0206574 1.0517808 1.0649530 +#> [657,] 0.7398995 0.8453590 0.8595941 +#> [658,] 0.8261406 0.8307582 0.8373647 +#> [659,] 0.7806629 0.7927973 0.7979414 +#> [660,] 0.5940258 0.6013404 0.6245413 +#> [661,] 1.0329767 1.0371129 1.0452618 +#> [662,] 0.7318016 0.7900017 0.7961905 +#> [663,] 0.4782290 0.4993475 0.5221172 +#> [664,] 0.6718837 0.6856635 0.7067344 +#> [665,] 0.6518001 0.6655306 0.6815493 +#> [666,] 1.1155896 1.1403134 1.1439860 +#> [667,] 0.5810267 0.5871655 0.6011670 +#> [668,] 0.7238108 0.7438533 0.7550931 +#> [669,] 1.0504722 1.0550247 1.0723984 +#> [670,] 0.9731496 0.9735136 0.9877512 +#> [671,] 1.0529481 1.0845242 1.1297322 +#> [672,] 0.8843676 0.8887155 0.9268679 +#> [673,] 0.6216648 0.6479959 0.6746208 +#> [674,] 0.5251450 0.5284033 0.5484489 +#> [675,] 0.7403855 0.7486979 0.7514374 +#> [676,] 0.6969275 0.7127841 0.7689411 +#> [677,] 0.7326497 0.7373563 0.7384600 +#> [678,] 0.6684066 0.6699390 0.6867790 +#> [679,] 0.7660027 0.7884803 0.7889959 +#> [680,] 0.6324472 0.6806701 0.6925097 +#> [681,] 0.6062568 0.6252554 0.6853151 +#> [682,] 0.7331707 0.7955418 0.8179501 +#> [683,] 1.0878071 1.1123559 1.1526806 +#> [684,] 0.5940258 0.6229879 0.6271196 +#> [685,] 0.8574649 0.8976148 0.9387797 +#> [686,] 0.7263605 0.7401842 0.7438612 +#> [687,] 1.3116721 1.3278361 1.3876646 +#> [688,] 0.6817233 0.6931311 0.7211141 +#> [689,] 1.0200061 1.0265487 1.0418415 +#> [690,] 0.7148179 0.7231723 0.7243780 +#> [691,] 0.6315268 0.6431302 0.6574496 +#> [692,] 1.0381903 1.0520745 1.0933699 +#> [693,] 0.9025787 0.9038915 0.9198327 +#> [694,] 0.6214294 0.6753017 0.7139887 +#> [695,] 1.1763199 1.1795062 1.2006747 +#> [696,] 0.6034387 0.6123165 0.6987542 +#> [697,] 1.4813297 1.6121141 1.7260634 +#> [698,] 0.6417307 0.6438171 0.6462949 +#> [699,] 0.8838049 0.9152433 0.9183538 +#> [700,] 0.7079312 0.7122314 0.7785440 +#> [701,] 1.2274216 1.3371795 1.3521911 +#> [702,] 0.6383516 0.6398683 0.6559131 +#> [703,] 0.8225748 0.8324250 0.8455299 +#> [704,] 0.5142809 0.5876460 0.6074908 +#> [705,] 0.5373668 0.5540923 0.5664522 +#> [706,] 0.5765510 0.5853877 0.6001879 +#> [707,] 0.6937080 0.7006146 0.7421462 +#> [708,] 0.6238756 0.6882597 0.6976726 +#> [709,] 0.8374410 0.9248079 0.9406653 +#> [710,] 0.7652198 0.8181279 0.8206264 +#> [711,] 0.5948992 0.5976967 0.6158515 +#> [712,] 0.9381280 0.9597892 0.9664203 +#> [713,] 1.0555835 1.0615033 1.0912192 +#> [714,] 0.8848121 0.9112138 0.9500410 +#> [715,] 1.0850121 1.0871142 1.0940913 +#> [716,] 0.7843407 0.8227103 0.8617159 +#> [717,] 0.4696288 0.4699835 0.4738325 +#> [718,] 0.5210939 0.5921035 0.6556833 +#> [719,] 1.0706496 1.0765221 1.1663353 +#> [720,] 0.8406039 0.8808923 0.8958698 +#> [721,] 0.8506859 0.8674290 0.8749529 +#> [722,] 1.1576949 1.1636063 1.1886189 +#> [723,] 0.7265791 0.7418144 0.7951605 +#> [724,] 0.7665664 0.8252081 0.8266375 +#> [725,] 0.6844479 0.6874830 0.7128726 +#> [726,] 0.9559077 1.1242090 1.1646467 +#> [727,] 0.7351015 0.7832581 0.8303848 +#> [728,] 0.9923359 1.0102435 1.0381903 +#> [729,] 1.4331600 1.4771536 1.4932030 +#> [730,] 0.6936138 0.7290462 0.7386993 +#> [731,] 0.5865848 0.5928012 0.5935847 +#> [732,] 0.8202470 0.8342600 0.8562082 +#> [733,] 0.6299515 0.7325734 0.7354251 +#> [734,] 2.0558621 2.0864969 2.1005553 +#> [735,] 0.6088727 0.6541174 0.6590748 +#> [736,] 1.2058457 1.2621229 1.2702962 +#> [737,] 1.1890757 1.2943075 1.2991210 +#> [738,] 0.5636207 0.5829550 0.6010974 +#> [739,] 1.2999900 1.3123376 1.3535130 +#> [740,] 0.5961094 0.6115983 0.6147504 +#> [741,] 1.1292652 1.1476807 1.1993746 +#> [742,] 0.6389123 0.6490562 0.6605395 +#> [743,] 0.5694909 0.6220328 0.6521282 +#> [744,] 0.6801958 0.6913184 0.7516634 +#> [745,] 0.7373071 0.7444701 0.7774382 +#> [746,] 0.5555416 0.5618440 0.5831496 +#> [747,] 1.3390375 1.3843793 1.4050764 +#> [748,] 0.7693490 0.7886514 0.8007839 +#> [749,] 1.2160325 1.2310418 1.2612687 +#> [750,] 0.7772398 0.7835136 0.7853064 +#> [751,] 0.6469686 0.6871881 0.6893706 +#> [752,] 1.0467176 1.0487921 1.0535688 +#> [753,] 0.7115954 0.7243692 0.7353212 +#> [754,] 1.0067329 1.1439401 1.1663841 +#> [755,] 0.7445498 0.8205199 0.8258803 +#> [756,] 0.5692131 0.5878257 0.6048488 +#> [757,] 1.5059130 1.5141408 1.5370495 +#> [758,] 0.7022300 0.7040191 0.7266179 +#> [759,] 2.0418621 2.1325963 2.2567825 +#> [760,] 0.5918048 0.5966892 0.6095008 +#> [761,] 0.5413950 0.5472648 0.5751142 +#> [762,] 0.5384481 0.5705695 0.5868046 +#> [763,] 0.8146452 0.8153426 0.8235265 +#> [764,] 0.6850527 0.6924807 0.7120703 +#> [765,] 1.1885719 1.2018503 1.2018910 +#> [766,] 1.3260409 1.3341675 1.3347847 +#> [767,] 0.6248858 0.6631087 0.6670681 +#> [768,] 0.9237803 0.9821653 1.0128317 +#> [769,] 0.8028055 0.8115816 0.8469829 +#> [770,] 1.3735787 1.4586779 1.4587643 +#> [771,] 1.0487313 1.1115367 1.1278697 +#> [772,] 0.6377302 0.7069487 0.7291969 +#> [773,] 0.9324725 0.9695837 1.0005072 +#> [774,] 0.7340137 0.7686250 0.7910865 +#> [775,] 0.7437403 0.7456979 0.7878617 +#> [776,] 0.6409072 0.6948549 0.7067249 +#> [777,] 0.7257133 0.7526207 0.8145793 +#> [778,] 0.5142809 0.5245879 0.5252494 +#> [779,] 0.6242367 0.6256287 0.6328125 +#> [780,] 0.6837660 0.6874830 0.7228639 +#> [781,] 0.8125125 0.8322545 0.8503036 +#> [782,] 0.5561102 0.5578403 0.5763036 +#> [783,] 0.5896110 0.5958654 0.6104892 +#> [784,] 0.7866859 0.7935557 0.7964822 +#> [785,] 0.6916844 0.7073426 0.7114112 +#> [786,] 0.6074524 0.6283285 0.6525452 +#> [787,] 0.8485117 0.8661158 0.8681542 +#> [788,] 0.7669146 0.7704553 0.7730321 +#> [789,] 0.7936552 0.8056731 0.8282903 +#> [790,] 0.7768582 0.7846403 0.7865361 +#> [791,] 0.9218025 0.9309645 0.9834923 +#> [792,] 0.7310340 0.7395698 0.7413927 +#> [793,] 0.5268015 0.5320507 0.5456090 +#> [794,] 0.6962281 0.7052326 0.7597433 +#> [795,] 0.7230854 0.7567452 0.7898359 +#> [796,] 1.4279747 1.4767257 1.4891995 +#> [797,] 0.5369971 0.6397847 0.6429611 +#> [798,] 0.7756439 0.7789369 0.7825231 +#> [799,] 1.3097582 1.4824465 1.5489940 +#> [800,] 0.7162136 0.7266179 0.7296064 +#> [801,] 0.4948228 0.5717583 0.5764634 +#> [802,] 0.9185322 0.9380741 0.9420223 +#> [803,] 0.6465218 0.6621150 0.6682168 +#> [804,] 0.6172237 0.6478300 0.6539777 +#> [805,] 1.8593783 1.8708800 1.9053267 +#> [806,] 0.7604921 0.7642574 0.7730720 +#> [807,] 0.7662884 0.7721703 0.7889959 +#> [808,] 0.5115099 0.5396213 0.5483203 +#> [809,] 1.0282668 1.0382065 1.0560935 +#> [810,] 0.5475677 0.5502896 0.5973181 +#> [811,] 1.1429708 1.1613028 1.2231753 +#> [812,] 0.6638050 0.6828485 0.6834797 +#> [813,] 0.9778346 1.0510234 1.1124590 +#> [814,] 1.2542723 1.3124297 1.3212982 +#> [815,] 0.7370478 0.7417071 0.7623365 +#> [816,] 0.8667483 0.8711702 0.8878093 +#> [817,] 0.6253059 0.6553342 0.6873358 +#> [818,] 0.8282982 0.8362473 0.8699008 +#> [819,] 0.9744774 0.9890063 1.0132698 +#> [820,] 0.6783649 0.7362620 0.7444487 +#> [821,] 0.6621150 0.6987482 0.7166870 +#> [822,] 0.9290550 1.0580104 1.0725154 +#> [823,] 1.0468094 1.0712767 1.0978278 +#> [824,] 0.6427528 0.6436058 0.6524632 +#> [825,] 0.6817233 0.7111853 0.7402580 +#> [826,] 0.5284033 0.5541392 0.5699656 +#> [827,] 1.3117818 1.3270609 1.3359374 +#> [828,] 0.6628685 0.6713565 0.6810039 +#> [829,] 0.8527906 0.8812073 0.9528009 +#> [830,] 0.6828485 0.6850597 0.6959316 +#> [831,] 0.8301323 0.8712192 0.9245956 +#> [832,] 0.6132856 0.6421572 0.6431027 +#> [833,] 0.7869176 0.8055432 0.8226591 +#> [834,] 1.2076362 1.2278662 1.2417090 +#> [835,] 0.7902266 0.8018794 0.8600771 +#> [836,] 0.7864186 0.7935557 0.8255778 +#> [837,] 0.7262376 0.7844301 0.7885148 +#> [838,] 1.4799255 1.5037535 1.5076612 +#> [839,] 0.5764634 0.6651793 0.6815833 +#> [840,] 0.6878447 0.6985192 0.7296800 +#> [841,] 0.4934944 0.5391688 0.5655502 +#> [842,] 1.0560959 1.0712848 1.0853428 +#> [843,] 0.7249468 0.7366193 0.7376150 +#> [844,] 0.7874349 0.7950016 0.8099821 +#> [845,] 0.7664371 0.7807477 0.8116326 +#> [846,] 0.6358013 0.6442066 0.6576187 +#> [847,] 0.4486907 0.4983990 0.4999563 +#> [848,] 0.9207612 0.9276422 0.9540991 +#> [849,] 0.4063097 0.4590751 0.4740971 +#> [850,] 0.6394717 0.6588610 0.6600258 +#> [851,] 0.8149142 0.8428174 0.8796094 +#> [852,] 0.6049990 0.6198042 0.6272176 +#> [853,] 0.9851428 1.0335664 1.0680627 +#> [854,] 1.0029237 1.0044478 1.0091058 +#> [855,] 0.9468798 0.9500668 0.9856499 +#> [856,] 1.1343272 1.1434065 1.1500361 +#> [857,] 0.9434459 0.9806701 0.9911303 +#> [858,] 0.6657246 0.6823429 0.6984509 +#> [859,] 0.9392122 1.0334538 1.0380556 +#> [860,] 0.6851883 0.6919852 0.7095744 +#> [861,] 0.7763655 0.7913457 0.8270811 +#> [862,] 0.6989579 0.7134870 0.7771113 +#> [863,] 0.7291426 0.7341086 0.7359247 +#> [864,] 1.2080432 1.2282035 1.3640246 +#> [865,] 0.7292787 0.7359247 0.8104232 +#> [866,] 0.8350270 0.8828692 0.8838416 +#> [867,] 1.6801516 1.7936242 1.8107486 +#> [868,] 0.7664883 0.7692705 0.7853750 +#> [869,] 0.6256287 0.6405012 0.6438171 +#> [870,] 0.9159168 0.9412794 0.9424081 +#> [871,] 0.4008547 0.4421991 0.4654775 +#> [872,] 1.5398663 1.5488528 1.5865198 +#> [873,] 0.5946995 0.5961094 0.5985655 +#> [874,] 1.2174384 1.2866041 1.3608177 +#> [875,] 0.6989579 0.7028270 0.7502891 +#> [876,] 1.1007515 1.1159988 1.1618348 +#> [877,] 0.9267543 0.9303417 0.9985390 +#> [878,] 0.7707595 0.7796337 0.8207193 +#> [879,] 0.7728698 0.8062140 0.8064596 +#> [880,] 0.9699226 1.0045098 1.0449545 +#> [881,] 0.8332732 0.8572955 0.8811205 +#> [882,] 0.7810091 0.7894367 0.8153426 +#> [883,] 0.7170823 0.7352067 0.7384600 +#> [884,] 0.5624806 0.5863302 0.6213767 +#> [885,] 0.9655477 0.9727644 1.0023837 +#> [886,] 0.6547229 0.6760726 0.6837625 +#> [887,] 0.6487290 0.6680559 0.7312532 +#> [888,] 0.8688664 0.9291881 0.9494333 +#> [889,] 1.3239755 1.3330514 1.3419673 +#> [890,] 0.4841708 0.5299665 0.5941560 +#> [891,] 1.1557669 1.2092693 1.2211860 +#> [892,] 0.5427501 0.5509455 0.5757741 +#> [893,] 1.0055165 1.1019036 1.1303557 +#> [894,] 1.5957744 1.6656746 1.6704343 +#> [895,] 0.5313030 0.5411869 0.5432273 +#> [896,] 1.3521568 1.3854506 1.3989331 +#> [897,] 1.2729158 1.2869336 1.3173147 +#> [898,] 1.3501308 1.4088867 1.4431790 +#> [899,] 0.5130520 0.5265425 0.5344388 +#> [900,] 0.6500784 0.6550834 0.6594093 +#> [901,] 0.9341268 0.9882515 1.0482291 +#> [902,] 0.6887986 0.6949705 0.7101375 +#> [903,] 1.8382930 1.8593577 1.8821169 +#> [904,] 0.8450184 0.8584939 0.8900323 +#> [905,] 1.3352933 1.3647099 1.3707155 +#> [906,] 0.6124874 0.6452023 0.6502552 +#> [907,] 0.6015697 0.6057881 0.6303679 +#> [908,] 0.7397444 0.7589513 0.7761755 +#> [909,] 1.1331706 1.1684123 1.2233917 +#> [910,] 0.7708239 0.8088441 0.8090672 +#> [911,] 0.7564921 0.8313556 0.8853633 +#> [912,] 0.5590943 0.5693136 0.6010974 +#> [913,] 0.5705695 0.5990171 0.5997920 +#> [914,] 0.6483972 0.6809148 0.6938318 +#> [915,] 1.1443646 1.1713342 1.1896728 +#> [916,] 0.7747097 0.7772398 0.8024150 +#> [917,] 0.7302801 0.7417071 0.7470587 +#> [918,] 0.6165999 0.6218071 0.6254043 +#> [919,] 0.6983487 0.8245811 0.8574372 +#> [920,] 1.0107482 1.0956074 1.1528632 +#> [921,] 0.5968568 0.6036069 0.6052295 +#> [922,] 0.7816347 0.8317877 0.8353579 +#> [923,] 0.7042752 0.7556773 0.7612428 +#> [924,] 0.8016984 0.8064596 0.8279561 +#> [925,] 0.6581170 0.6625708 0.6638874 +#> [926,] 0.7545084 0.7692472 0.8111023 +#> [927,] 0.8234208 0.8325586 0.8762490 +#> [928,] 0.8036009 0.8617396 0.9095927 +#> [929,] 0.9777802 0.9867707 0.9916101 +#> [930,] 0.6246838 0.6478300 0.6710057 +#> [931,] 0.7047821 0.7074970 0.7094189 +#> [932,] 0.5815310 0.5894735 0.5981939 +#> [933,] 0.8676934 0.8809400 0.9466005 +#> [934,] 1.0968149 1.1379194 1.1401699 +#> [935,] 0.5070188 0.5424867 0.5633698 +#> [936,] 0.9154519 0.9903226 0.9985880 +#> [937,] 1.0154784 1.0198059 1.0558893 +#> [938,] 0.7369948 0.7536130 0.8294904 +#> [939,] 1.4303140 1.4317122 1.4805684 +#> [940,] 0.8062438 0.8196058 0.8569086 +#> [941,] 1.1892653 1.2261792 1.2324396 +#> [942,] 0.5912759 0.5969571 0.6082670 +#> [943,] 0.5314154 0.5326785 0.5801175 +#> [944,] 0.8829630 0.8910723 0.8967822 +#> [945,] 1.3858221 1.4302707 1.4316539 +#> [946,] 0.6547229 0.6886322 0.6928918 +#> [947,] 0.6877890 0.7001301 0.7057125 +#> [948,] 1.8357152 1.9045001 1.9065517 +#> [949,] 1.3379349 1.4021315 1.4079049 +#> [950,] 1.0840138 1.1094766 1.1308136 +#> [951,] 0.7117756 0.7177677 0.7423945 +#> [952,] 0.7438321 0.7534034 0.7842284 +#> [953,] 0.7502960 0.7789664 0.7982690 +#> [954,] 0.6118587 0.6215960 0.6384658 +#> [955,] 1.2871531 1.3225393 1.3418591 +#> [956,] 0.7043195 0.7170823 0.7336379 +#> [957,] 1.0358191 1.0774448 1.1165770 +#> [958,] 0.6198076 0.6213680 0.6650598 +#> [959,] 1.1471868 1.2669688 1.2800816 +#> [960,] 0.8130187 0.8631036 0.8891762 +#> [961,] 0.4881796 0.5027134 0.5136565 +#> [962,] 0.5982893 0.6004924 0.6157327 +#> [963,] 0.7837144 0.7919935 0.7991795 +#> [964,] 0.6104453 0.6329952 0.6364906 +#> [965,] 0.7174851 0.7278104 0.7323772 +#> [966,] 0.6158712 0.6274870 0.6436952 +#> [967,] 0.9331233 0.9648185 0.9984615 +#> [968,] 0.9794996 0.9906871 1.0181875 +#> [969,] 0.9764982 0.9772140 0.9803378 +#> [970,] 0.8332279 0.8385844 0.8746902 +#> [971,] 0.8782562 0.9048243 0.9051167 +#> [972,] 0.7135772 0.7139887 0.7223360 +#> [973,] 0.6498677 0.6716114 0.7187771 +#> [974,] 0.7911595 0.7980903 0.8115715 +#> [975,] 1.0262068 1.0452156 1.0937855 +#> [976,] 0.7545626 0.7664371 0.7778610 +#> [977,] 0.9817203 1.0214761 1.0233572 +#> [978,] 0.7640607 0.7933599 0.8157303 +#> [979,] 0.5221971 0.5497720 0.6275281 +#> [980,] 0.8326922 0.8450174 0.8531720 +#> [981,] 0.6079576 0.6749162 0.6866674 +#> [982,] 0.5516274 0.5699598 0.6100876 +#> [983,] 0.6790706 0.7139076 0.7197768 +#> [984,] 1.2032878 1.2213903 1.2509943 +#> [985,] 0.6874485 0.7101610 0.7203690 +#> [986,] 1.0107862 1.0289652 1.0302160 +#> [987,] 0.5092006 0.5504881 0.5553071 +#> [988,] 0.6925121 0.7282713 0.7690535 +#> [989,] 0.7949332 0.8214750 0.8386153 +#> [990,] 1.1753586 1.2128637 1.2172076 +#> [991,] 0.7462066 0.8073125 0.8246749 +#> [992,] 0.6815427 0.7020037 0.7071514 +#> [993,] 0.8221489 0.8382346 0.8520056 +#> [994,] 0.5541392 0.5859897 0.5901825 +#> [995,] 0.6030581 0.6088673 0.6820477 +#> [996,] 1.0221451 1.0348177 1.0581953 +#> [997,] 1.1938107 1.2440572 1.2494514 +#> [998,] 0.7631284 0.8002346 0.8086030 +#> [999,] 0.6835776 0.6913845 0.6999382 +#> [1000,] 1.1236420 1.1943301 1.2301638 #> # Find the 10 approximate nearest neighbors @@ -3151,3010 +3151,3010 @@

    Examples) #> $neighbor_ids #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] -#> [1,] 992 435 985 238 66 939 919 181 825 995 -#> [2,] 153 154 787 895 289 432 114 784 379 774 -#> [3,] 945 35 553 884 360 7 956 357 86 562 -#> [4,] 556 616 499 964 211 688 89 761 155 805 -#> [5,] 86 553 637 377 7 624 242 751 283 3 -#> [6,] 830 941 940 569 678 256 323 356 199 851 -#> [7,] 956 624 553 86 714 3 945 360 132 232 -#> [8,] 822 604 76 493 740 229 547 514 222 578 -#> [9,] 619 378 531 527 732 975 585 728 549 589 -#> [10,] 266 575 291 863 469 900 268 376 838 638 -#> [11,] 972 153 154 570 157 245 895 121 746 529 -#> [12,] 600 235 911 331 617 468 367 615 134 23 -#> [13,] 464 284 978 495 117 89 706 211 189 702 -#> [14,] 325 555 879 622 812 799 433 672 123 176 -#> [15,] 690 152 420 907 701 492 35 981 657 86 -#> [16,] 140 64 162 164 143 552 230 366 243 167 -#> [17,] 386 502 643 891 413 551 120 567 876 257 -#> [18,] 341 909 533 598 995 340 487 351 724 66 -#> [19,] 488 909 92 340 322 341 18 855 486 183 -#> [20,] 372 856 507 943 72 315 309 22 136 655 -#> [21,] 280 90 689 680 307 778 189 436 702 359 -#> [22,] 72 118 943 309 507 796 856 824 20 470 -#> [23,] 373 327 843 844 676 134 936 12 699 617 -#> [24,] 29 742 122 826 334 847 756 178 382 955 -#> [25,] 921 169 916 344 866 225 991 500 930 700 -#> [26,] 380 93 196 758 452 911 158 78 77 891 -#> [27,] 285 312 69 292 36 223 362 237 661 180 -#> [28,] 440 62 52 226 908 241 677 71 217 878 -#> [29,] 742 122 24 382 331 816 955 847 826 334 -#> [30,] 68 855 461 974 952 735 183 472 614 345 -#> [31,] 893 589 787 531 52 62 595 975 850 908 -#> [32,] 205 835 375 477 79 315 953 151 136 713 -#> [33,] 463 221 179 653 361 479 95 871 938 529 -#> [34,] 971 539 1000 864 870 95 938 685 136 267 -#> [35,] 3 884 562 360 553 690 945 751 86 511 -#> [36,] 69 285 292 98 237 931 912 27 223 661 -#> [37,] 40 756 214 982 178 632 130 334 780 640 -#> [38,] 904 953 437 799 107 622 433 533 669 128 -#> [39,] 719 223 285 777 292 661 795 246 193 362 -#> [40,] 37 214 705 756 982 809 242 780 178 983 -#> [41,] 723 496 661 385 50 36 755 519 98 312 -#> [42,] 204 107 437 290 602 159 460 540 622 401 -#> [43,] 71 878 391 440 62 28 106 914 764 247 -#> [44,] 830 740 493 434 456 941 295 449 766 294 -#> [45,] 793 883 329 780 239 338 442 195 268 384 -#> [46,] 427 458 844 807 794 740 23 373 60 820 -#> [47,] 129 75 245 162 278 918 234 54 972 570 -#> [48,] 221 776 915 361 379 405 168 55 950 359 -#> [49,] 587 438 534 538 168 796 856 545 792 22 -#> [50,] 231 254 524 255 98 280 464 689 397 897 -#> [51,] 818 920 178 990 113 847 982 813 576 91 -#> [52,] 62 908 28 440 217 241 31 589 709 595 -#> [53,] 966 94 335 82 431 454 116 189 469 579 -#> [54,] 408 849 652 554 278 948 230 856 374 572 -#> [55,] 950 776 959 789 801 171 842 582 663 317 -#> [56,] 529 34 95 642 1000 938 354 539 630 245 -#> [57,] 914 347 245 570 642 47 234 56 864 971 -#> [58,] 949 937 601 220 870 462 829 267 862 630 -#> [59,] 434 119 456 528 708 505 949 684 267 277 -#> [60,] 794 218 699 515 373 516 514 763 294 508 -#> [61,] 875 451 579 963 116 865 915 958 335 860 -#> [62,] 52 440 28 908 31 241 217 589 878 709 -#> [63,] 788 797 836 655 546 372 194 518 477 984 -#> [64,] 366 140 552 16 143 243 126 490 85 164 -#> [65,] 628 902 520 763 518 514 836 880 910 186 -#> [66,] 425 181 825 598 533 472 726 182 18 390 -#> [67,] 578 278 938 95 849 141 836 984 880 76 -#> [68,] 952 345 461 735 974 183 156 370 30 567 -#> [69,] 36 237 27 285 170 912 292 180 342 443 -#> [70,] 676 711 820 806 775 78 93 750 843 465 -#> [71,] 391 43 28 677 878 534 587 440 62 792 -#> [72,] 22 309 943 631 20 824 372 507 856 135 -#> [73,] 699 314 877 277 294 917 665 119 508 327 -#> [74,] 519 292 719 755 362 661 557 39 618 285 -#> [75,] 374 641 572 47 948 999 54 960 422 230 -#> [76,] 880 578 141 980 836 858 902 67 822 984 -#> [77,] 932 939 610 452 196 506 891 26 935 158 -#> [78,] 93 617 158 321 777 465 373 26 989 750 -#> [79,] 390 32 954 151 477 833 181 953 643 835 -#> [80,] 498 679 19 488 486 81 416 402 92 712 -#> [81,] 435 561 322 486 612 710 1 238 995 939 -#> [82,] 94 365 933 694 963 431 53 743 363 900 -#> [83,] 263 798 819 796 300 647 526 834 22 206 -#> [84,] 517 281 525 248 378 687 233 549 355 673 -#> [85,] 366 162 64 164 16 490 918 143 302 980 -#> [86,] 553 5 7 714 956 3 35 624 232 360 -#> [87,] 829 566 483 339 862 523 88 182 630 220 -#> [88,] 802 957 924 871 194 463 339 568 630 829 -#> [89,] 443 170 947 211 482 4 706 556 499 603 -#> [90,] 778 280 689 359 21 436 524 399 950 931 -#> [91,] 813 197 818 586 990 535 983 51 674 468 -#> [92,] 488 19 30 855 542 909 183 857 351 487 -#> [93,] 78 617 158 26 321 634 196 380 911 465 -#> [94,] 82 365 53 694 933 963 431 363 61 900 -#> [95,] 938 67 121 245 653 871 278 971 33 129 -#> [96,] 326 680 861 970 922 791 21 654 853 307 -#> [97,] 610 733 841 901 103 932 304 77 723 452 -#> [98,] 254 223 285 36 661 292 931 69 39 795 -#> [99,] 627 618 768 444 109 550 930 237 823 916 -#> [100,] 370 754 183 935 977 345 729 952 68 156 -#> [101,] 284 117 640 453 231 397 611 334 706 332 -#> [102,] 299 450 738 809 945 571 536 831 790 3 -#> [103,] 901 97 733 841 610 913 898 355 723 304 -#> [104,] 287 848 228 236 804 336 960 573 313 374 -#> [105,] 722 190 876 407 257 107 120 602 437 146 -#> [106,] 497 247 471 986 289 532 633 635 874 489 -#> [107,] 437 42 602 290 460 38 204 105 707 190 -#> [108,] 139 714 522 330 212 771 232 377 860 215 -#> [109,] 823 478 627 99 490 973 143 768 444 393 -#> [110,] 946 259 367 12 854 235 191 753 600 844 -#> [111,] 834 693 782 349 633 532 538 819 746 83 -#> [112,] 353 419 629 811 536 563 639 313 667 175 -#> [113,] 920 847 658 178 332 51 146 982 310 762 -#> [114,] 432 436 778 969 774 359 895 784 90 379 -#> [115,] 857 351 176 487 662 879 669 14 485 855 -#> [116,] 875 61 579 189 335 702 451 727 964 668 -#> [117,] 284 640 544 101 445 704 249 978 837 335 -#> [118,] 593 545 22 306 943 961 438 470 72 796 -#> [119,] 456 294 708 434 277 218 699 917 59 73 -#> [120,] 551 190 658 17 876 386 502 105 643 257 -#> [121,] 938 871 129 95 245 856 278 234 534 49 -#> [122,] 29 24 178 334 847 742 756 816 586 813 -#> [123,] 404 672 325 42 205 929 894 540 799 107 -#> [124,] 163 523 506 181 192 829 786 541 954 872 -#> [125,] 369 734 512 674 983 265 40 720 817 632 -#> [126,] 973 143 64 366 552 288 140 671 243 490 -#> [127,] 667 336 520 745 252 573 852 552 515 313 -#> [128,] 559 833 473 217 182 405 350 381 803 38 -#> [129,] 278 162 245 121 938 95 583 67 849 164 -#> [130,] 632 615 756 262 334 753 122 367 596 265 -#> [131,] 500 137 169 659 858 832 736 618 944 296 -#> [132,] 146 297 826 624 227 409 956 7 441 876 -#> [133,] 770 906 594 186 721 508 264 308 457 737 -#> [134,] 844 373 967 617 344 308 264 955 235 331 -#> [135,] 309 631 943 470 72 581 507 810 22 824 -#> [136,] 194 477 655 984 315 20 871 462 797 802 -#> [137,] 131 500 786 659 736 937 944 858 541 169 -#> [138,] 675 821 614 348 645 602 783 574 415 437 -#> [139,] 108 798 216 714 420 152 771 681 701 537 -#> [140,] 552 143 243 64 16 745 520 490 366 252 -#> [141,] 880 980 76 578 490 788 836 910 67 628 -#> [142,] 759 544 730 146 722 297 624 958 956 105 -#> [143,] 140 243 552 973 64 16 823 126 478 109 -#> [144,] 415 411 485 662 138 614 979 675 204 783 -#> [145,] 693 269 647 188 798 253 526 83 263 208 -#> [146,] 722 132 544 142 759 297 876 737 658 826 -#> [147,] 407 737 906 457 696 789 594 713 388 887 -#> [148,] 282 406 491 283 637 705 869 982 576 242 -#> [149,] 503 358 370 381 260 355 951 281 524 324 -#> [150,] 346 762 453 332 977 754 413 371 742 621 -#> [151,] 721 835 713 457 810 594 257 79 205 32 -#> [152,] 681 657 300 216 907 690 15 798 981 389 -#> [153,] 154 11 895 2 379 529 972 33 850 221 -#> [154,] 153 11 895 157 2 391 972 289 570 529 -#> [155,] 616 603 588 4 392 596 185 556 428 396 -#> [156,] 726 345 567 472 935 183 413 598 68 260 -#> [157,] 746 11 972 154 570 224 391 633 934 153 -#> [158,] 321 196 465 93 78 891 251 634 26 380 -#> [159,] 401 792 204 677 42 538 460 290 923 241 -#> [160,] 859 967 994 716 344 867 866 700 428 398 -#> [161,] 692 405 796 460 538 819 168 602 545 105 -#> [162,] 16 129 278 164 85 918 583 849 230 64 -#> [163,] 124 523 506 825 181 992 260 87 192 829 -#> [164,] 16 478 823 162 143 583 490 109 140 141 -#> [165,] 845 986 532 494 247 187 291 782 838 743 -#> [166,] 840 312 392 27 715 170 428 814 69 89 -#> [167,] 606 387 504 521 455 745 961 288 451 243 -#> [168,] 538 796 792 49 405 534 587 241 315 48 -#> [169,] 500 131 25 820 858 244 944 137 921 916 -#> [170,] 443 69 482 89 342 706 912 36 947 556 -#> [171,] 959 950 605 55 317 801 249 702 875 958 -#> [172,] 271 582 568 768 560 399 924 698 926 463 -#> [173,] 960 374 228 903 287 104 997 175 613 804 -#> [174,] 637 200 576 406 305 873 144 148 415 751 -#> [175,] 613 903 804 229 353 515 173 997 667 429 -#> [176,] 857 879 351 433 669 487 585 783 115 799 -#> [177,] 371 193 621 932 453 231 385 254 661 452 -#> [178,] 756 982 122 51 847 113 920 214 334 24 -#> [179,] 653 33 463 479 924 361 221 95 279 938 -#> [180,] 795 237 285 69 706 892 223 27 393 342 -#> [181,] 825 182 66 425 124 163 79 523 260 726 -#> [182,] 181 425 381 128 260 833 825 350 726 324 -#> [183,] 935 567 345 952 754 156 100 413 68 977 -#> [184,] 368 940 419 752 15 356 448 690 475 511 -#> [185,] 396 596 616 761 450 155 293 738 965 603 -#> [186,] 508 133 518 763 546 388 594 890 628 721 -#> [187,] 401 635 986 532 874 471 159 923 204 460 -#> [188,] 572 269 999 263 641 145 234 693 83 274 -#> [189,] 702 482 116 464 861 680 211 280 966 791 -#> [190,] 707 821 120 602 437 105 460 658 107 551 -#> [191,] 367 275 412 636 854 632 600 816 110 262 -#> [192,] 560 557 124 506 541 172 786 271 698 296 -#> [193,] 371 621 452 453 899 611 380 39 223 150 -#> [194,] 802 136 462 797 477 871 829 88 655 63 -#> [195,] 780 705 704 883 282 239 837 769 240 445 -#> [196,] 158 251 891 939 26 77 380 322 93 634 -#> [197,] 813 91 818 983 51 586 636 674 178 990 -#> [198,] 548 272 316 352 987 739 325 896 672 328 -#> [199,] 851 896 684 608 987 417 414 274 941 548 -#> [200,] 576 873 675 415 174 406 637 535 990 409 -#> [201,] 936 416 46 886 23 843 807 295 458 946 -#> [202,] 530 137 250 131 500 296 858 311 169 659 -#> [203,] 747 720 265 327 357 691 571 839 319 536 -#> [204,] 42 401 159 460 107 437 602 540 622 799 -#> [205,] 32 835 375 953 810 151 290 315 656 123 -#> [206,] 773 976 300 438 819 118 681 545 263 306 -#> [207,] 96 179 302 970 509 467 550 279 326 479 -#> [208,] 677 894 656 226 526 587 269 792 290 375 -#> [209,] 806 275 888 412 191 775 561 911 258 70 -#> [210,] 725 418 717 591 649 476 668 213 455 474 -#> [211,] 964 4 791 189 89 482 499 702 556 688 -#> [212,] 330 522 785 730 283 869 645 692 142 297 -#> [213,] 717 476 320 418 556 455 725 892 927 964 -#> [214,] 40 242 809 756 37 982 178 297 624 640 -#> [215,] 701 232 798 420 540 647 929 714 108 86 -#> [216,] 681 564 976 426 860 865 300 714 819 389 -#> [217,] 241 908 803 595 128 52 709 850 28 833 -#> [218,] 294 708 60 699 508 902 119 456 514 794 -#> [219,] 346 611 332 453 977 334 816 150 371 646 -#> [220,] 58 862 601 949 919 87 937 267 988 354 -#> [221,] 361 48 379 359 463 33 583 871 776 915 -#> [222,] 8 613 604 577 175 903 740 225 229 822 -#> [223,] 285 98 39 661 292 795 254 27 36 193 -#> [224,] 746 633 934 157 349 111 648 363 834 782 -#> [225,] 577 697 25 429 671 921 794 916 514 629 -#> [226,] 375 28 677 208 315 792 587 534 217 241 -#> [227,] 580 868 990 535 409 441 132 826 360 945 -#> [228,] 287 104 848 960 374 569 236 256 652 804 -#> [229,] 794 804 515 902 514 65 218 60 628 8 -#> [230,] 824 422 336 16 652 773 374 54 881 745 -#> [231,] 255 50 254 397 101 284 177 464 453 338 -#> [232,] 714 929 215 574 540 7 108 798 86 212 -#> [233,] 566 951 324 248 87 531 549 687 517 523 -#> [234,] 570 587 534 121 972 49 856 188 391 864 -#> [235,] 615 753 331 747 955 600 12 134 265 967 -#> [236,] 256 848 907 104 287 772 573 356 228 678 -#> [237,] 292 69 36 795 285 912 180 27 931 768 -#> [238,] 612 1 995 919 992 905 390 528 465 985 -#> [239,] 883 329 780 588 195 704 117 37 640 978 -#> [240,] 837 704 727 579 445 978 335 431 668 730 -#> [241,] 217 923 792 635 52 908 168 28 538 595 -#> [242,] 297 624 214 785 982 132 809 553 956 283 -#> [243,] 552 140 745 252 143 455 606 973 320 127 -#> [244,] 169 820 500 25 131 766 858 137 427 815 -#> [245,] 129 938 121 95 529 278 642 234 570 11 -#> [246,] 777 750 344 866 719 39 331 991 731 617 -#> [247,] 253 349 106 633 187 934 532 43 71 165 -#> [248,] 281 951 324 517 233 728 355 358 549 260 -#> [249,] 605 544 759 722 146 171 801 310 640 959 -#> [250,] 202 832 131 550 296 748 137 530 500 169 -#> [251,] 322 196 158 634 340 710 486 321 93 911 -#> [252,] 320 243 476 745 261 455 127 649 552 667 -#> [253,] 247 349 145 693 647 633 187 421 401 111 -#> [254,] 98 397 223 899 50 285 621 582 317 706 -#> [255,] 231 338 683 757 50 385 177 464 254 827 -#> [256,] 236 848 356 772 287 907 104 228 960 274 -#> [257,] 713 643 876 457 407 594 721 386 835 105 -#> [258,] 888 682 561 939 610 729 998 77 97 19 -#> [259,] 110 946 458 807 844 629 753 967 46 319 -#> [260,] 825 324 381 728 951 726 182 523 156 472 -#> [261,] 476 320 474 252 927 852 649 388 660 745 -#> [262,] 130 334 632 646 588 219 101 756 623 611 -#> [263,] 83 300 798 999 206 681 819 526 22 824 -#> [264,] 308 955 770 133 580 882 826 571 388 747 -#> [265,] 753 615 747 674 293 235 571 203 130 720 -#> [266,] 10 575 863 291 268 638 376 838 469 808 -#> [267,] 862 462 949 136 620 477 58 803 194 870 -#> [268,] 575 808 484 863 469 298 827 266 838 491 -#> [269,] 145 188 208 417 526 274 677 693 894 647 -#> [270,] 800 917 631 810 749 678 459 581 423 135 -#> [271,] 172 582 842 926 663 899 350 872 741 473 -#> [272,] 352 325 316 14 208 894 548 555 677 540 -#> [273,] 559 774 405 128 503 969 381 549 741 923 -#> [274,] 526 656 417 631 896 199 894 72 269 208 -#> [275,] 623 758 600 816 191 412 611 331 367 911 -#> [276,] 494 614 144 491 783 348 735 662 461 138 -#> [277,] 314 119 528 73 917 321 151 390 721 699 -#> [278,] 129 67 849 162 938 95 245 121 54 578 -#> [279,] 479 529 179 642 394 653 33 56 311 630 -#> [280,] 90 689 21 702 171 189 524 436 778 950 -#> [281,] 248 355 728 673 517 324 84 951 149 260 -#> [282,] 869 148 283 491 846 481 446 195 785 780 -#> [283,] 869 785 212 330 730 481 645 282 297 242 -#> [284,] 464 706 117 101 13 702 171 827 231 397 -#> [285,] 292 223 27 36 98 69 39 661 237 795 -#> [286,] 970 947 50 21 467 443 897 680 170 41 -#> [287,] 228 848 104 960 374 236 569 256 336 652 -#> [288,] 606 167 973 387 143 243 584 654 521 688 -#> [289,] 784 489 774 895 893 471 2 497 106 31 -#> [290,] 507 107 796 42 315 792 656 894 205 375 -#> [291,] 838 900 575 469 10 986 694 845 266 471 -#> [292,] 285 237 36 223 27 39 795 74 69 661 -#> [293,] 753 596 716 615 265 369 235 450 130 747 -#> [294,] 218 119 456 699 708 73 917 508 270 434 -#> [295,] 44 650 664 201 383 449 740 830 46 434 -#> [296,] 192 557 560 339 698 659 618 403 924 736 -#> [297,] 624 242 730 785 146 956 142 132 759 544 -#> [298,] 268 808 735 442 863 952 484 575 68 30 -#> [299,] 102 571 809 811 450 396 261 945 852 418 -#> [300,] 681 263 824 976 206 83 881 216 999 152 -#> [301,] 625 537 648 771 139 599 337 579 925 108 -#> [302,] 85 642 479 918 311 279 179 653 164 162 -#> [303,] 489 694 289 94 900 784 82 365 114 853 -#> [304,] 932 736 719 519 74 557 452 610 97 750 -#> [305,] 174 200 415 979 144 662 411 651 485 410 -#> [306,] 593 118 583 545 438 773 961 22 206 167 -#> [307,] 21 467 90 778 436 114 853 359 432 280 -#> [308,] 264 955 770 388 133 967 571 882 826 134 -#> [309,] 943 72 135 631 372 22 518 749 507 20 -#> [310,] 484 821 658 735 249 190 120 113 952 605 -#> [311,] 653 67 95 938 870 578 642 822 530 76 -#> [312,] 27 362 392 285 731 661 519 496 223 840 -#> [313,] 563 804 573 336 515 127 667 767 104 516 -#> [314,] 277 73 665 917 151 592 119 721 810 400 -#> [315,] 20 136 507 375 833 290 32 797 835 205 -#> [316,] 485 411 555 272 662 325 14 979 352 144 -#> [317,] 842 801 899 696 887 605 663 959 926 171 -#> [318,] 364 619 609 985 9 351 527 425 855 483 -#> [319,] 967 747 852 516 691 811 629 308 60 515 -#> [320,] 476 252 892 261 213 927 439 455 717 418 -#> [321,] 158 465 634 954 528 78 890 891 277 93 -#> [322,] 251 340 486 196 561 939 909 710 341 995 -#> [323,] 104 6 804 563 767 228 287 678 313 997 -#> [324,] 951 260 381 248 728 233 566 182 523 549 -#> [325,] 14 123 272 672 622 894 42 799 812 555 -#> [326,] 680 791 922 96 861 947 970 482 654 443 -#> [327,] 468 886 73 23 699 877 747 203 691 357 -#> [328,] 744 410 979 402 712 672 198 485 679 305 -#> [329,] 239 883 495 13 978 703 45 780 588 195 -#> [330,] 522 212 626 481 692 869 446 283 108 846 -#> [331,] 600 29 235 758 615 742 617 623 246 24 -#> [332,] 847 346 150 334 219 453 977 742 113 762 -#> [333,] 927 887 696 544 737 474 826 146 476 722 -#> [334,] 847 122 332 756 816 742 178 219 632 346 -#> [335,] 966 875 579 116 53 171 727 958 61 827 -#> [336,] 573 881 127 313 824 104 230 591 745 848 -#> [337,] 430 625 301 599 648 424 537 139 389 492 -#> [338,] 683 757 255 827 231 454 464 50 808 284 -#> [339,] 924 630 88 957 698 87 354 829 296 653 -#> [340,] 909 322 341 598 18 251 533 567 939 196 -#> [341,] 909 18 340 724 533 598 995 487 592 402 -#> [342,] 393 439 867 428 556 69 840 170 237 180 -#> [343,] 731 362 496 750 814 519 775 312 715 74 -#> [344,] 866 991 700 246 921 916 777 930 160 867 -#> [345,] 156 68 567 726 952 183 935 370 413 551 -#> [346,] 150 453 332 611 219 762 371 977 742 847 -#> [347,] 685 864 608 971 34 914 1000 539 57 234 -#> [348,] 783 614 799 138 437 707 602 461 622 460 -#> [349,] 633 934 253 111 782 247 693 224 599 532 -#> [350,] 473 741 833 643 568 271 381 872 957 182 -#> [351,] 857 487 176 855 115 18 669 879 598 533 -#> [352,] 272 71 208 269 417 325 440 145 316 548 -#> [353,] 429 671 667 447 175 903 552 64 639 126 -#> [354,] 630 394 339 87 58 220 928 870 88 56 -#> [355,] 281 248 673 149 998 841 728 913 260 324 -#> [356,] 772 459 511 597 256 678 543 236 800 767 -#> [357,] 691 884 882 3 945 35 580 581 571 747 -#> [358,] 969 778 524 149 951 381 436 687 503 399 -#> [359,] 221 361 90 463 778 950 48 568 689 55 -#> [360,] 409 562 3 884 35 7 423 868 574 581 -#> [361,] 221 48 359 379 463 583 33 915 776 950 -#> [362,] 519 312 661 27 719 74 496 39 292 285 -#> [363,] 963 889 895 933 915 834 82 648 94 111 -#> [364,] 318 351 855 857 115 435 619 879 985 609 -#> [365,] 82 743 94 431 828 694 933 537 963 648 -#> [366,] 64 85 140 16 126 552 143 490 164 162 -#> [367,] 615 632 191 130 12 235 753 636 600 275 -#> [368,] 511 543 751 597 562 356 410 873 772 35 -#> [369,] 293 450 265 596 753 125 130 615 185 738 -#> [370,] 100 345 808 68 149 952 754 503 935 183 -#> [371,] 193 453 611 621 346 150 452 177 762 380 -#> [372,] 20 943 309 72 518 856 63 655 22 749 -#> [373,] 844 134 617 989 60 23 78 699 967 921 -#> [374,] 960 287 228 848 75 572 104 569 230 641 -#> [375,] 205 32 953 226 315 290 812 835 136 833 -#> [376,] 525 969 687 10 436 863 784 517 266 358 -#> [377,] 108 5 925 701 869 637 215 283 86 212 -#> [378,] 9 531 619 549 728 233 84 248 687 281 -#> [379,] 221 48 361 850 895 787 168 871 595 153 -#> [380,] 758 26 452 891 742 193 150 196 346 371 -#> [381,] 741 260 951 324 182 350 559 523 726 128 -#> [382,] 634 502 441 742 29 413 762 876 150 17 -#> [383,] 414 505 44 608 851 59 685 941 449 434 -#> [384,] 282 846 793 446 195 942 743 481 780 869 -#> [385,] 177 723 41 255 231 50 646 496 371 661 -#> [386,] 17 643 876 502 257 120 891 663 551 737 -#> [387,] 167 504 521 606 584 288 451 773 455 644 -#> [388,] 763 186 520 147 308 261 508 133 906 696 -#> [389,] 657 426 681 216 976 564 591 422 206 152 -#> [390,] 79 592 995 277 528 151 724 953 66 181 -#> [391,] 534 71 587 677 538 792 570 49 28 878 -#> [392,] 312 27 731 623 840 166 859 646 285 155 -#> [393,] 439 342 892 867 237 556 180 973 700 930 -#> [394,] 354 630 928 339 279 56 781 2 529 233 -#> [395,] 654 670 584 288 521 644 504 387 688 167 -#> [396,] 185 616 299 596 761 450 718 738 418 155 -#> [397,] 254 899 621 317 801 453 762 605 193 98 -#> [398,] 671 885 994 429 439 428 697 160 393 973 -#> [399,] 698 582 524 568 560 172 897 271 689 778 -#> [400,] 996 684 672 592 314 205 917 665 123 277 -#> [401,] 159 204 187 42 460 792 602 540 635 437 -#> [402,] 712 341 679 724 909 486 744 314 410 592 -#> [403,] 897 698 399 560 913 557 524 296 192 358 -#> [404,] 123 672 415 979 574 724 868 423 929 799 -#> [405,] 168 161 559 128 48 923 776 915 707 241 -#> [406,] 576 200 982 148 491 51 442 645 818 174 -#> [407,] 789 147 257 722 737 663 713 470 105 776 -#> [408,] 54 849 554 652 547 760 278 749 372 971 -#> [409,] 360 868 574 227 535 132 990 423 675 873 -#> [410,] 744 651 328 402 679 873 543 979 712 368 -#> [411,] 485 144 316 662 979 415 475 305 421 540 -#> [412,] 636 816 275 911 586 813 219 367 632 334 -#> [413,] 567 502 17 935 150 183 382 762 754 345 -#> [414,] 608 199 941 987 851 896 760 685 417 948 -#> [415,] 675 979 138 404 574 200 144 409 576 614 -#> [416,] 843 936 486 23 710 712 612 886 402 468 -#> [417,] 896 274 269 199 208 987 548 608 526 894 -#> [418,] 725 210 717 476 213 668 320 474 591 649 -#> [419,] 563 536 313 323 15 981 907 236 690 767 -#> [420,] 798 701 215 647 690 139 962 152 15 693 -#> [421,] 475 253 316 411 145 272 352 647 485 693 -#> [422,] 230 387 389 773 206 606 374 504 167 657 -#> [423,] 665 868 800 877 459 581 360 562 884 270 -#> [424,] 240 727 837 301 670 704 579 666 978 625 -#> [425,] 66 182 181 825 620 709 732 726 533 260 -#> [426,] 389 657 216 591 564 681 976 210 881 981 -#> [427,] 46 244 740 222 577 820 807 766 458 794 -#> [428,] 840 814 342 867 885 859 393 398 439 160 -#> [429,] 671 667 398 629 852 225 353 252 697 127 -#> [430,] 337 625 648 301 599 537 224 480 644 828 -#> [431,] 942 846 82 743 365 481 626 579 53 446 -#> [432,] 114 895 379 359 221 361 774 778 436 2 -#> [433,] 622 908 879 176 799 38 904 783 953 348 -#> [434,] 456 59 119 708 766 294 740 493 528 218 -#> [435,] 1 992 985 238 81 939 66 18 995 322 -#> [436,] 778 90 969 524 358 280 454 114 21 273 -#> [437,] 602 107 707 460 42 190 38 204 904 348 -#> [438,] 49 306 545 773 593 118 889 206 796 819 -#> [439,] 393 892 342 556 973 320 213 867 688 180 -#> [440,] 28 62 52 908 555 71 622 433 764 878 -#> [441,] 876 868 382 227 826 457 695 594 502 721 -#> [442,] 491 982 406 113 640 785 310 484 920 282 -#> [443,] 170 482 706 89 69 912 947 702 931 36 -#> [444,] 930 99 910 627 991 916 618 700 768 546 -#> [445,] 704 837 668 790 117 240 725 730 809 418 -#> [446,] 481 626 846 942 330 743 869 431 522 283 -#> [447,] 126 353 398 671 639 429 973 885 288 805 -#> [448,] 886 516 767 691 678 877 327 203 323 458 -#> [449,] 996 400 712 543 744 851 877 830 456 119 -#> [450,] 738 102 299 596 293 369 185 396 265 809 -#> [451,] 865 61 875 504 521 167 958 579 387 860 -#> [452,] 193 932 380 371 26 719 77 39 758 891 -#> [453,] 346 150 762 371 611 621 332 193 977 754 -#> [454,] 827 469 683 436 503 280 966 53 335 484 -#> [455,] 745 961 660 649 717 606 167 243 476 213 -#> [456,] 119 434 294 708 218 59 699 493 830 740 -#> [457,] 721 594 713 810 257 835 151 147 876 906 -#> [458,] 807 886 319 844 516 327 46 60 23 203 -#> [459,] 800 356 423 772 511 597 270 543 562 581 -#> [460,] 602 707 437 107 204 42 190 161 401 159 -#> [461,] 735 68 821 952 974 614 348 345 190 783 -#> [462,] 870 194 829 984 949 937 477 267 136 58 -#> [463,] 924 221 957 33 359 568 361 698 88 179 -#> [464,] 284 13 702 189 706 280 482 443 117 50 -#> [465,] 158 321 528 78 196 944 93 786 710 954 -#> [466,] 395 861 670 424 727 430 644 654 853 584 -#> [467,] 307 897 779 21 403 970 286 524 90 689 -#> [468,] 327 12 91 586 535 990 227 674 955 23 -#> [469,] 454 900 575 291 694 838 827 268 863 484 -#> [470,] 507 135 796 22 407 118 545 309 147 943 -#> [471,] 986 635 532 923 187 497 874 589 774 900 -#> [472,] 156 726 598 345 825 66 567 260 183 935 -#> [473,] 350 741 833 643 128 797 271 776 568 954 -#> [474,] 649 476 261 927 660 333 956 591 210 418 -#> [475,] 752 411 701 421 420 215 368 597 751 511 -#> [476,] 320 261 927 213 474 252 418 649 717 455 -#> [477,] 655 984 136 32 194 462 63 797 79 954 -#> [478,] 823 109 164 143 583 490 788 99 768 140 -#> [479,] 279 529 33 179 653 642 95 938 245 311 -#> [480,] 644 504 521 773 889 206 387 438 972 746 -#> [481,] 446 626 846 942 330 869 283 522 431 212 -#> [482,] 443 702 791 170 706 189 912 556 89 211 -#> [483,] 709 862 87 620 566 803 531 425 595 220 -#> [484,] 808 310 735 827 503 370 952 268 249 821 -#> [485,] 662 411 979 316 144 325 14 415 555 799 -#> [486,] 322 710 251 416 402 712 843 911 612 909 -#> [487,] 669 351 533 341 18 598 176 909 724 857 -#> [488,] 19 92 855 909 351 487 18 30 341 857 -#> [489,] 289 694 784 900 471 774 303 106 895 986 -#> [490,] 980 141 823 109 880 143 478 140 627 164 -#> [491,] 442 282 406 283 869 645 785 148 481 446 -#> [492,] 15 501 152 337 657 962 389 690 419 420 -#> [493,] 941 740 830 547 760 456 434 8 554 708 -#> [494,] 276 838 165 614 348 491 291 986 874 144 -#> [495,] 13 329 464 513 284 89 239 231 338 255 -#> [496,] 362 723 519 661 312 41 74 304 27 719 -#> [497,] 106 874 471 893 986 635 31 289 589 187 -#> [498,] 679 91 197 80 402 651 468 486 813 818 -#> [499,] 4 688 805 791 922 211 89 556 964 947 -#> [500,] 169 131 858 137 944 25 820 921 244 659 -#> [501,] 492 337 430 389 657 641 962 599 15 152 -#> [502,] 17 413 695 386 567 382 120 876 441 643 -#> [503,] 149 370 484 808 358 273 381 454 551 863 -#> [504,] 521 387 167 644 606 773 451 206 306 584 -#> [505,] 685 59 608 760 988 949 267 34 862 864 -#> [506,] 124 872 523 163 560 192 932 77 825 260 -#> [507,] 470 20 22 290 796 72 943 309 835 315 -#> [508,] 186 518 917 810 763 594 721 133 218 457 -#> [509,] 479 853 279 918 529 2 153 207 179 33 -#> [510,] 641 572 188 999 962 145 948 569 269 960 -#> [511,] 562 772 459 356 597 690 884 35 907 360 -#> [512,] 632 37 262 130 588 40 590 125 983 756 -#> [513,] 13 495 211 89 978 922 947 464 189 680 -#> [514,] 902 628 921 65 763 794 218 880 858 910 -#> [515,] 804 516 229 313 127 60 794 667 767 218 -#> [516,] 691 515 767 60 319 313 678 357 563 804 -#> [517,] 248 84 687 281 358 525 969 913 233 951 -#> [518,] 508 186 943 309 520 372 628 65 836 749 -#> [519,] 362 74 661 719 292 496 39 285 312 755 -#> [520,] 65 518 628 763 961 127 388 660 943 745 -#> [521,] 504 387 167 644 584 606 451 288 773 480 -#> [522,] 330 771 692 860 212 108 626 730 481 161 -#> [523,] 124 163 506 260 324 381 350 825 872 182 -#> [524,] 399 778 358 90 897 689 436 50 280 254 -#> [525,] 687 376 969 549 517 84 784 774 378 248 -#> [526,] 894 656 929 274 208 540 631 83 72 290 -#> [527,] 585 619 9 732 975 589 974 176 638 378 -#> [528,] 277 321 465 989 390 119 612 59 79 890 -#> [529,] 479 245 33 938 95 153 56 642 279 121 -#> [530,] 202 311 58 937 870 949 354 630 220 137 -#> [531,] 9 31 566 378 549 787 893 589 233 975 -#> [532,] 986 471 187 635 782 923 111 401 933 159 -#> [533,] 598 669 904 18 724 341 487 909 66 340 -#> [534,] 587 391 49 538 168 792 677 234 226 241 -#> [535,] 990 227 409 873 868 91 360 200 51 818 -#> [536,] 691 357 563 102 811 419 981 35 299 313 -#> [537,] 771 648 301 782 625 365 522 108 139 828 -#> [538,] 792 168 49 587 534 923 796 159 161 677 -#> [539,] 1000 34 864 971 803 226 862 595 267 607 -#> [540,] 929 894 42 204 526 232 123 215 401 290 -#> [541,] 786 829 659 954 462 937 194 192 124 924 -#> [542,] 673 30 100 998 370 472 855 728 68 281 -#> [543,] 597 996 459 356 423 800 511 744 672 877 -#> [544,] 759 142 249 146 730 333 958 722 605 297 -#> [545,] 118 306 593 438 796 819 470 22 865 206 -#> [546,] 910 788 63 186 926 890 518 628 133 663 -#> [547,] 760 554 408 493 822 578 849 984 941 652 -#> [548,] 896 987 851 684 417 199 198 272 325 672 -#> [549,] 687 951 531 324 566 969 525 732 248 728 -#> [550,] 627 832 99 618 768 109 748 444 755 490 -#> [551,] 120 17 386 801 726 741 345 899 643 762 -#> [552,] 140 243 64 143 745 16 252 127 667 606 -#> [553,] 86 3 5 7 956 945 624 35 360 242 -#> [554,] 547 408 760 849 652 54 578 984 67 749 -#> [555,] 14 622 440 433 316 325 783 176 879 799 -#> [556,] 439 688 4 213 342 393 964 180 482 892 -#> [557,] 192 560 74 506 296 304 618 932 736 124 -#> [558,] 509 47 642 918 11 529 57 245 302 479 -#> [559,] 128 273 405 381 707 741 190 551 473 120 -#> [560,] 192 557 698 399 172 271 506 582 523 124 -#> [561,] 939 322 196 26 251 911 77 806 158 258 -#> [562,] 511 360 884 35 459 423 581 772 3 409 -#> [563,] 313 767 573 336 104 804 691 516 236 907 -#> [564,] 216 976 681 865 426 881 860 649 591 660 -#> [565,] 488 115 328 92 80 857 305 19 351 487 -#> [566,] 951 233 324 531 595 787 850 549 182 87 -#> [567,] 413 156 345 726 935 502 183 17 598 551 -#> [568,] 957 741 399 698 172 350 582 473 463 271 -#> [569,] 948 228 960 287 848 374 256 6 274 104 -#> [570,] 234 972 391 11 534 587 245 121 157 49 -#> [571,] 747 580 955 299 264 308 882 945 809 261 -#> [572,] 999 641 188 374 263 75 300 948 274 54 -#> [573,] 336 881 313 824 127 907 981 563 236 104 -#> [574,] 675 409 232 138 360 415 645 132 404 929 -#> [575,] 863 268 10 266 469 291 838 808 484 900 -#> [576,] 200 406 675 637 645 873 174 51 415 409 -#> [577,] 225 697 429 222 671 25 629 175 794 398 -#> [578,] 67 76 880 141 836 822 980 849 984 554 -#> [579,] 61 875 116 860 451 240 771 865 335 958 -#> [580,] 227 826 955 571 882 264 945 770 132 747 -#> [581,] 884 423 135 800 882 459 562 270 907 360 -#> [582,] 271 172 899 741 399 842 872 568 55 801 -#> [583,] 306 593 361 164 438 118 48 478 545 221 -#> [584,] 521 387 606 670 288 504 167 389 426 210 -#> [585,] 527 732 974 176 433 589 619 9 348 783 -#> [586,] 674 813 983 636 91 122 632 178 197 816 -#> [587,] 534 49 677 391 538 792 168 796 208 856 -#> [588,] 155 262 603 130 239 596 37 616 185 756 -#> [589,] 31 908 52 635 732 217 874 62 241 893 -#> [590,] 512 191 262 632 646 588 367 130 636 275 -#> [591,] 649 881 210 745 660 426 606 564 976 474 -#> [592,] 390 724 995 400 151 812 314 953 341 79 -#> [593,] 306 118 545 583 961 438 22 773 943 372 -#> [594,] 721 457 133 906 713 770 257 737 186 876 -#> [595,] 850 787 803 217 566 241 802 31 379 709 -#> [596,] 293 185 396 450 716 753 155 616 130 369 -#> [597,] 543 459 356 772 511 562 929 896 800 526 -#> [598,] 533 18 340 909 472 669 156 341 66 567 -#> [599,] 962 139 625 537 782 301 349 693 648 108 -#> [600,] 331 758 623 12 617 235 731 246 275 29 -#> [601,] 949 937 58 919 220 829 786 462 541 267 -#> [602,] 460 437 707 107 190 42 204 105 138 348 -#> [603,] 155 616 588 761 4 89 392 185 965 428 -#> [604,] 8 822 903 554 547 613 222 578 493 408 -#> [605,] 249 801 171 959 317 722 544 55 759 397 -#> [606,] 167 387 745 455 243 504 591 288 717 649 -#> [607,] 988 539 483 1000 862 709 620 34 505 220 -#> [608,] 685 414 199 347 851 760 417 505 864 684 -#> [609,] 673 619 318 542 728 998 281 378 364 527 -#> [610,] 97 932 77 841 304 939 733 901 452 506 -#> [611,] 346 371 219 453 623 758 742 193 150 380 -#> [612,] 710 238 528 843 995 465 765 322 251 277 -#> [613,] 903 175 997 222 604 173 229 804 8 353 -#> [614,] 783 138 348 461 799 669 821 662 675 735 -#> [615,] 753 235 265 130 331 747 293 955 122 367 -#> [616,] 155 4 603 396 556 185 885 761 596 716 -#> [617,] 93 78 134 373 634 331 600 246 777 158 -#> [618,] 99 768 627 444 550 237 755 292 74 172 -#> [619,] 9 527 728 378 585 732 673 531 425 318 -#> [620,] 862 267 425 709 919 812 483 181 66 390 -#> [621,] 193 899 371 872 397 762 453 150 891 551 -#> [622,] 433 799 38 42 908 14 953 437 204 783 -#> [623,] 758 611 600 731 275 331 392 742 646 312 -#> [624,] 297 956 7 242 730 142 132 553 759 146 -#> [625,] 301 537 648 599 828 430 337 782 771 139 -#> [626,] 481 446 330 942 846 692 522 431 212 869 -#> [627,] 99 550 618 444 109 768 930 237 916 823 -#> [628,] 902 65 763 514 910 518 836 880 520 186 -#> [629,] 319 429 697 994 967 852 225 811 671 160 -#> [630,] 354 339 88 870 653 87 58 924 802 871 -#> [631,] 309 72 749 135 943 656 270 22 824 507 -#> [632,] 130 334 636 262 586 756 674 122 367 983 -#> [633,] 934 349 224 111 247 782 746 532 106 157 -#> [634,] 382 321 891 158 251 441 502 770 133 594 -#> [635,] 923 471 187 241 986 532 159 589 792 538 -#> [636,] 412 586 816 632 813 674 367 983 122 197 -#> [637,] 5 174 576 200 751 377 873 148 86 553 -#> [638,] 838 974 527 291 575 863 266 585 732 874 -#> [639,] 718 885 398 396 994 671 429 447 811 252 -#> [640,] 117 249 544 113 101 759 730 785 704 297 -#> [641,] 999 572 75 188 374 422 263 300 206 960 -#> [642,] 245 479 529 938 95 311 56 279 278 302 -#> [643,] 386 17 257 473 713 663 350 954 502 120 -#> [644,] 480 521 504 451 889 387 773 206 167 61 -#> [645,] 675 785 821 138 212 574 920 658 576 283 -#> [646,] 623 262 219 611 392 312 275 101 371 231 -#> [647,] 693 798 145 83 420 215 540 263 701 526 -#> [648,] 537 625 301 771 834 365 782 363 963 828 -#> [649,] 660 745 591 961 881 455 474 476 210 261 -#> [650,] 765 295 383 44 416 612 905 843 449 81 -#> [651,] 873 679 410 535 91 200 990 734 751 498 -#> [652,] 749 408 849 54 554 372 824 943 72 309 -#> [653,] 179 95 33 311 924 938 630 463 870 88 -#> [654,] 288 395 521 326 504 791 167 387 688 973 -#> [655,] 984 477 836 136 63 372 194 462 20 788 -#> [656,] 526 894 631 208 72 290 507 20 274 205 -#> [657,] 389 426 681 152 981 216 591 300 976 881 -#> [658,] 920 120 821 876 113 146 190 502 310 722 -#> [659,] 541 786 444 137 829 910 858 192 141 937 -#> [660,] 649 961 745 455 881 591 474 476 520 606 -#> [661,] 223 285 519 98 39 292 362 74 36 27 -#> [662,] 485 979 144 614 411 783 316 799 14 669 -#> [663,] 926 842 789 906 737 407 317 271 643 386 -#> [664,] 44 295 997 941 414 493 830 6 383 940 -#> [665,] 423 868 877 917 314 800 810 73 270 151 -#> [666,] 769 925 424 705 195 790 831 301 704 837 -#> [667,] 127 852 252 429 313 552 811 243 336 745 -#> [668,] 725 964 418 717 958 210 445 213 875 451 -#> [669,] 487 799 533 724 904 176 598 783 38 351 -#> [670,] 584 964 395 668 717 688 116 211 521 725 -#> [671,] 429 398 252 667 552 126 243 973 225 994 -#> [672,] 123 404 325 400 979 744 996 592 14 724 -#> [673,] 728 281 355 619 998 542 472 248 609 260 -#> [674,] 586 983 813 734 265 91 632 636 122 615 -#> [675,] 645 138 574 415 576 821 200 409 920 658 -#> [676,] 70 806 843 78 93 820 23 373 617 710 -#> [677,] 792 208 587 159 226 534 538 28 290 894 -#> [678,] 767 270 800 356 236 459 516 581 877 104 -#> [679,] 498 402 651 91 410 535 468 990 712 818 -#> [680,] 861 326 791 189 21 96 922 482 702 947 -#> [681,] 216 976 300 564 426 152 389 881 657 206 -#> [682,] 729 258 100 977 754 888 935 183 998 219 -#> [683,] 757 338 255 454 808 827 863 231 503 484 -#> [684,] 851 400 199 205 996 896 749 32 656 548 -#> [685,] 347 608 505 864 971 34 760 547 414 554 -#> [686,] 448 368 410 651 886 936 449 679 744 328 -#> [687,] 549 969 525 774 358 951 517 248 784 566 -#> [688,] 556 791 439 499 4 973 717 964 213 288 -#> [689,] 931 280 90 21 912 399 524 359 950 702 -#> [690,] 15 511 35 907 562 772 420 152 86 701 -#> [691,] 357 516 767 882 319 884 747 313 563 536 -#> [692,] 522 161 330 212 626 460 105 860 707 933 -#> [693,] 647 145 798 111 83 263 269 188 834 962 -#> [694,] 900 82 94 365 933 489 469 471 291 774 -#> [695,] 502 724 441 151 904 533 658 567 382 17 -#> [696,] 887 333 842 906 926 317 737 927 663 147 -#> [697,] 225 629 398 577 994 429 160 671 25 967 -#> [698,] 399 560 568 957 924 172 463 403 192 339 -#> [699,] 73 294 218 60 119 373 877 277 508 314 -#> [700,] 991 866 930 916 344 892 867 444 921 910 -#> [701,] 215 420 798 377 232 647 108 139 86 690 -#> [702,] 189 482 280 464 171 706 443 116 284 689 -#> [703,] 761 239 185 588 329 603 965 396 155 616 -#> [704,] 837 445 240 195 117 978 640 730 727 705 -#> [705,] 195 769 780 40 790 214 704 148 282 242 -#> [706,] 443 284 180 170 482 702 69 464 254 98 -#> [707,] 602 190 460 437 821 107 348 559 105 120 -#> [708,] 119 456 218 890 294 434 989 514 902 766 -#> [709,] 483 908 803 217 52 620 862 595 425 62 -#> [710,] 612 843 486 251 322 528 158 465 93 995 -#> [711,] 70 815 465 676 820 612 736 775 304 137 -#> [712,] 402 314 744 592 400 486 665 277 996 449 -#> [713,] 257 457 835 721 594 151 643 407 810 147 -#> [714,] 232 7 108 86 216 860 212 564 956 215 -#> [715,] 166 814 840 343 428 312 731 392 362 27 -#> [716,] 994 160 859 293 885 596 967 753 616 428 -#> [717,] 213 210 418 455 725 476 606 668 320 649 -#> [718,] 210 418 725 639 591 717 811 584 396 426 -#> [719,] 39 777 750 519 74 246 362 452 292 661 -#> [720,] 839 734 203 265 3 945 102 357 536 35 -#> [721,] 457 594 713 151 810 835 257 917 133 508 -#> [722,] 737 146 876 105 407 142 605 759 544 789 -#> [723,] 41 496 733 661 519 177 385 304 362 932 -#> [724,] 695 592 533 669 341 904 151 487 799 909 -#> [725,] 418 210 668 717 213 476 591 474 649 964 -#> [726,] 156 567 345 551 472 260 17 182 825 381 -#> [727,] 978 240 837 335 966 116 579 189 211 964 -#> [728,] 324 260 281 951 673 732 248 472 825 619 -#> [729,] 977 682 754 100 219 346 332 935 453 177 -#> [730,] 759 142 297 624 544 212 785 146 283 958 -#> [731,] 312 392 623 246 600 859 362 750 331 27 -#> [732,] 585 589 728 974 9 527 549 433 425 619 -#> [733,] 97 103 723 610 304 932 496 901 841 898 -#> [734,] 674 839 720 983 91 586 265 813 535 873 -#> [735,] 461 68 974 952 821 310 484 345 190 348 -#> [736,] 304 137 557 131 296 74 192 519 901 500 -#> [737,] 906 876 722 147 696 663 826 407 594 887 -#> [738,] 450 102 299 396 185 536 596 811 369 831 -#> [739,] 198 328 548 383 115 14 316 352 272 879 -#> [740,] 766 493 434 456 8 708 794 218 44 229 -#> [741,] 350 473 381 582 568 872 801 899 551 271 -#> [742,] 29 24 346 122 847 382 611 380 758 150 -#> [743,] 365 942 431 446 846 828 82 481 626 845 -#> [744,] 410 672 543 328 996 712 402 979 404 400 -#> [745,] 649 660 243 455 961 606 591 252 881 552 -#> [746,] 157 224 972 111 11 570 363 834 633 188 -#> [747,] 571 955 235 319 264 753 580 308 265 615 -#> [748,] 550 832 627 342 126 109 973 393 99 814 -#> [749,] 631 309 652 943 372 270 72 518 20 135 -#> [750,] 777 246 719 362 758 39 78 731 93 519 -#> [751,] 873 35 360 3 562 553 5 637 839 86 -#> [752,] 475 368 751 411 701 637 421 174 690 420 -#> [753,] 615 235 293 265 747 130 571 596 367 331 -#> [754,] 977 935 150 100 183 413 453 346 567 729 -#> [755,] 74 36 292 618 519 237 931 912 69 661 -#> [756,] 178 214 122 37 982 334 24 847 130 113 -#> [757,] 683 338 255 454 863 231 50 827 808 575 -#> [758,] 380 623 611 600 26 742 331 452 371 346 -#> [759,] 544 142 730 146 958 249 722 297 624 605 -#> [760,] 547 554 408 493 941 984 608 849 864 685 -#> [761,] 4 616 185 603 396 703 155 964 211 805 -#> [762,] 150 453 346 621 413 382 742 371 899 386 -#> [763,] 388 628 65 186 902 520 508 991 910 514 -#> [764,] 440 878 62 52 975 28 43 607 709 908 -#> [765,] 905 612 238 650 919 59 528 710 995 843 -#> [766,] 740 434 708 858 989 456 514 493 8 76 -#> [767,] 678 516 563 691 313 800 270 236 581 884 -#> [768,] 99 618 627 172 444 237 931 912 109 271 -#> [769,] 790 705 925 831 5 553 86 242 283 195 -#> [770,] 264 133 826 308 955 594 906 457 737 441 -#> [771,] 860 522 537 819 834 579 108 963 865 648 -#> [772,] 511 356 459 597 907 256 562 236 690 581 -#> [773,] 206 438 306 504 593 118 387 545 167 976 -#> [774,] 784 273 289 787 687 893 549 969 31 471 -#> [775,] 70 304 750 343 806 820 711 519 676 736 -#> [776,] 55 789 48 950 407 801 663 959 473 797 -#> [777,] 246 719 750 39 866 344 78 991 452 617 -#> [778,] 436 90 524 358 359 969 399 568 280 689 -#> [779,] 467 307 286 897 21 970 403 524 436 96 -#> [780,] 195 883 705 239 37 704 40 282 148 640 -#> [781,] 928 233 339 913 394 517 248 354 403 87 -#> [782,] 537 111 532 349 771 828 648 365 834 633 -#> [783,] 348 614 799 138 622 669 433 437 461 176 -#> [784,] 774 289 893 687 489 525 114 969 787 31 -#> [785,] 283 645 297 212 242 730 869 624 146 920 -#> [786,] 541 829 659 937 954 124 601 192 137 944 -#> [787,] 850 595 31 566 774 379 531 217 549 273 -#> [788,] 63 836 546 910 880 797 141 655 628 518 -#> [789,] 407 776 663 55 926 842 801 147 722 887 -#> [790,] 831 769 445 925 624 553 705 956 809 102 -#> [791,] 326 482 922 680 688 211 499 443 189 947 -#> [792,] 159 538 677 241 168 587 290 534 923 796 -#> [793,] 45 268 883 384 338 827 942 683 575 329 -#> [794,] 60 229 514 218 515 902 763 921 516 740 -#> [795,] 842 237 180 292 223 285 39 926 317 930 -#> [796,] 507 22 168 49 290 545 470 538 161 118 -#> [797,] 63 194 315 788 833 473 136 477 776 546 -#> [798,] 420 647 83 263 215 701 139 693 232 714 -#> [799,] 622 669 38 783 904 433 42 348 437 107 -#> [800,] 270 459 423 877 917 581 678 665 810 631 -#> [801,] 605 317 55 899 959 789 663 741 551 842 -#> [802,] 88 194 871 803 957 833 924 136 473 797 -#> [803,] 217 595 802 850 833 709 128 267 182 315 -#> [804,] 515 313 104 229 127 563 336 667 516 573 -#> [805,] 499 4 885 89 428 688 616 556 603 761 -#> [806,] 676 70 911 93 26 561 78 12 617 710 -#> [807,] 458 46 886 448 259 516 629 319 203 327 -#> [808,] 484 370 863 503 310 268 683 827 575 735 -#> [809,] 214 945 299 624 956 242 571 102 297 756 -#> [810,] 917 457 721 835 508 270 713 151 594 205 -#> [811,] 852 299 667 261 319 313 127 536 252 571 -#> [812,] 953 879 14 375 592 620 622 325 433 205 -#> [813,] 586 197 91 983 674 818 51 178 636 122 -#> [814,] 840 428 867 342 859 27 312 166 393 362 -#> [815,] 711 70 820 676 244 775 736 612 137 765 -#> [816,] 334 122 742 29 332 412 847 636 911 219 -#> [817,] 734 498 983 125 674 91 197 854 651 586 -#> [818,] 51 197 990 91 813 920 200 535 178 576 -#> [819,] 834 545 206 860 83 865 771 438 161 976 -#> [820,] 169 70 500 676 244 25 944 711 775 78 -#> [821,] 190 461 658 138 707 735 645 310 120 602 -#> [822,] 578 8 604 76 547 554 67 311 760 880 -#> [823,] 478 109 143 164 490 99 788 444 627 910 -#> [824,] 72 22 300 309 943 230 881 118 573 135 -#> [825,] 260 181 66 182 163 726 472 523 425 324 -#> [826,] 770 580 737 24 132 441 876 906 146 955 -#> [827,] 454 484 249 335 284 808 683 310 966 605 -#> [828,] 968 365 743 782 537 625 648 845 82 301 -#> [829,] 541 786 462 194 937 58 924 954 124 601 -#> [830,] 941 493 294 456 6 851 678 218 119 44 -#> [831,] 790 769 553 86 956 102 981 925 624 945 -#> [832,] 550 627 131 618 99 748 755 768 916 74 -#> [833,] 473 128 315 350 802 803 797 643 182 194 -#> [834,] 819 111 771 83 889 49 438 538 206 161 -#> [835,] 713 32 205 810 721 457 151 507 257 315 -#> [836,] 655 880 788 63 984 628 141 518 902 372 -#> [837,] 240 704 445 727 978 668 579 117 335 730 -#> [838,] 291 900 986 575 471 469 638 974 626 863 -#> [839,] 720 734 3 751 945 873 35 553 357 203 -#> [840,] 428 814 342 166 27 867 69 312 170 392 -#> [841,] 610 97 901 163 992 355 77 103 932 825 -#> [842,] 926 663 317 795 696 271 899 582 887 789 -#> [843,] 710 612 676 23 416 486 989 78 528 806 -#> [844,] 134 373 967 23 60 617 344 921 25 319 -#> [845,] 165 743 986 968 900 532 828 291 365 782 -#> [846,] 481 942 446 431 626 869 330 743 522 283 -#> [847,] 332 113 334 122 742 346 178 150 920 24 -#> [848,] 287 236 104 228 256 960 374 336 569 824 -#> [849,] 408 54 554 278 652 67 372 856 578 836 -#> [850,] 595 787 803 379 566 217 802 241 88 871 -#> [851,] 199 684 896 987 941 548 996 608 400 414 -#> [852,] 811 667 261 127 252 319 313 320 515 429 -#> [853,] 432 114 307 861 96 21 680 94 509 359 -#> [854,] 946 367 636 12 191 412 110 586 936 674 -#> [855,] 351 598 472 857 487 30 18 176 533 909 -#> [856,] 20 22 372 72 507 943 796 315 49 656 -#> [857,] 115 351 176 487 855 669 879 662 783 585 -#> [858,] 76 500 514 880 980 944 659 921 141 169 -#> [859,] 160 716 867 428 731 344 994 967 814 246 -#> [860,] 865 771 522 819 564 216 958 714 579 142 -#> [861,] 680 189 326 791 116 21 96 702 482 211 -#> [862,] 267 620 220 483 87 949 58 709 919 803 -#> [863,] 575 808 266 503 268 10 683 484 469 370 -#> [864,] 971 34 347 685 1000 539 408 234 856 849 -#> [865,] 860 451 958 564 819 61 545 976 875 216 -#> [866,] 991 344 700 916 930 921 246 867 777 444 -#> [867,] 393 700 916 342 866 814 237 428 930 344 -#> [868,] 665 227 423 409 441 360 535 990 457 877 -#> [869,] 283 481 330 212 785 282 846 446 730 626 -#> [870,] 462 58 949 937 984 194 829 136 630 267 -#> [871,] 802 194 88 136 121 95 797 938 33 924 -#> [872,] 506 899 621 741 582 271 350 193 523 381 -#> [873,] 535 751 200 409 360 651 576 990 415 637 -#> [874,] 497 187 589 986 635 471 975 52 555 62 -#> [875,] 61 116 958 451 865 579 959 668 171 950 -#> [876,] 737 722 257 386 441 120 105 658 906 594 -#> [877,] 665 423 800 73 270 917 868 699 996 314 -#> [878,] 914 71 28 43 62 391 1000 440 52 764 -#> [879,] 176 812 433 14 622 351 669 799 953 908 -#> [880,] 141 836 980 76 578 628 788 910 902 65 -#> [881,] 591 649 573 976 660 336 745 564 824 681 -#> [882,] 580 581 357 264 884 474 571 308 691 945 -#> [883,] 239 780 329 195 640 704 45 442 793 978 -#> [884,] 581 35 562 357 3 360 423 882 511 907 -#> [885,] 994 398 428 716 616 805 160 639 859 4 -#> [886,] 327 448 699 458 23 73 877 516 936 60 -#> [887,] 696 333 317 927 842 737 926 906 147 789 -#> [888,] 258 682 561 610 97 209 998 939 729 733 -#> [889,] 438 963 363 915 644 834 49 545 306 819 -#> [890,] 708 186 546 989 944 508 321 954 477 628 -#> [891,] 17 196 386 380 158 634 413 643 321 502 -#> [892,] 320 439 393 700 696 213 476 180 887 930 -#> [893,] 31 784 774 531 589 497 975 289 549 787 -#> [894,] 526 656 208 540 929 290 677 123 42 205 -#> [895,] 153 379 363 432 289 154 11 889 915 221 -#> [896,] 987 199 851 548 417 274 684 597 996 608 -#> [897,] 403 399 524 931 689 755 467 698 98 36 -#> [898,] 103 913 733 385 723 41 355 403 97 998 -#> [899,] 621 872 582 801 317 397 842 271 741 663 -#> [900,] 694 291 469 838 471 986 82 489 365 933 -#> [901,] 97 841 103 610 736 733 163 992 304 932 -#> [902,] 628 65 514 763 880 836 518 218 910 520 -#> [903,] 613 175 604 173 366 64 804 229 353 997 -#> [904,] 38 953 799 533 669 437 724 107 695 433 -#> [905,] 919 238 985 620 765 995 1 862 220 601 -#> [906,] 737 133 594 663 696 147 926 770 876 457 -#> [907,] 236 772 573 581 981 884 690 511 300 152 -#> [908,] 52 217 433 62 709 589 622 440 28 241 -#> [909,] 341 18 340 598 533 487 322 724 995 251 -#> [910,] 546 444 788 628 930 880 991 141 763 902 -#> [911,] 26 380 93 816 758 12 617 251 29 600 -#> [912,] 931 237 36 69 768 443 170 689 482 292 -#> [913,] 403 517 248 355 781 281 358 103 841 233 -#> [914,] 878 347 1000 570 539 57 43 864 391 234 -#> [915,] 963 48 933 889 61 405 161 545 776 168 -#> [916,] 930 700 991 866 867 444 344 921 627 25 -#> [917,] 810 270 508 800 721 665 457 835 314 277 -#> [918,] 162 129 164 85 245 583 278 654 479 47 -#> [919,] 601 905 238 220 985 620 862 949 181 267 -#> [920,] 113 658 51 132 146 847 178 382 645 675 -#> [921,] 991 866 25 344 514 916 930 700 763 944 -#> [922,] 947 791 326 499 680 482 89 970 443 211 -#> [923,] 635 241 538 792 471 405 159 168 161 217 -#> [924,] 88 957 463 339 698 802 172 194 829 568 -#> [925,] 769 377 869 108 790 5 283 831 86 139 -#> [926,] 663 842 696 906 789 271 546 795 317 887 -#> [927,] 333 476 887 261 320 696 474 213 892 388 -#> [928,] 781 354 394 87 233 220 339 630 483 58 -#> [929,] 540 232 526 894 123 459 656 574 42 290 -#> [930,] 916 700 444 991 866 910 627 99 867 344 -#> [931,] 912 689 36 98 237 768 69 897 292 443 -#> [932,] 77 452 610 304 506 193 371 177 621 872 -#> [933,] 963 915 82 692 363 365 694 94 161 61 -#> [934,] 633 349 224 247 106 157 111 746 253 782 -#> [935,] 754 183 567 413 156 345 100 977 726 150 -#> [936,] 416 23 468 886 327 946 12 201 843 486 -#> [937,] 58 949 601 462 829 786 541 870 659 220 -#> [938,] 95 121 245 67 278 971 871 653 129 33 -#> [939,] 196 77 561 322 992 340 935 251 26 158 -#> [940,] 6 987 356 256 896 323 569 597 543 851 -#> [941,] 830 493 199 851 760 414 547 6 554 456 -#> [942,] 431 846 481 446 626 743 330 522 869 365 -#> [943,] 309 72 372 22 135 20 518 507 631 118 -#> [944,] 989 890 921 786 465 858 78 500 321 659 -#> [945,] 3 956 553 580 7 809 35 624 571 882 -#> [946,] 110 854 12 259 367 936 235 23 753 844 -#> [947,] 922 443 170 970 89 482 791 326 680 286 -#> [948,] 569 54 572 408 274 75 374 417 228 960 -#> [949,] 58 937 601 462 870 267 220 829 862 541 -#> [950,] 55 959 171 776 789 801 359 875 48 842 -#> [951,] 324 381 566 248 233 549 260 728 182 358 -#> [952,] 68 345 183 461 735 567 821 370 413 310 -#> [953,] 38 375 904 812 205 32 622 799 833 79 -#> [954,] 643 79 541 321 350 473 477 546 829 786 -#> [955,] 264 308 770 580 747 571 826 29 235 24 -#> [956,] 624 7 945 297 553 142 474 132 3 86 -#> [957,] 88 568 924 802 698 463 350 473 172 339 -#> [958,] 875 759 865 544 142 668 860 959 451 61 -#> [959,] 171 950 55 605 801 317 789 776 842 887 -#> [960,] 374 287 228 848 569 104 256 236 173 572 -#> [961,] 660 745 455 649 593 118 520 167 306 881 -#> [962,] 420 599 693 647 798 139 701 145 152 15 -#> [963,] 933 915 61 889 363 82 771 579 94 834 -#> [964,] 668 211 213 4 717 556 725 688 418 670 -#> [965,] 185 603 596 588 155 761 616 703 293 396 -#> [966,] 53 335 189 727 978 454 827 464 702 116 -#> [967,] 134 319 160 308 844 344 264 747 235 955 -#> [968,] 828 845 743 365 165 782 625 537 446 82 -#> [969,] 687 358 436 778 525 549 273 774 517 114 -#> [970,] 947 912 286 326 443 931 680 170 922 482 -#> [971,] 864 34 938 95 67 1000 849 278 121 539 -#> [972,] 11 570 746 234 49 157 121 889 153 534 -#> [973,] 143 126 439 109 243 288 393 688 140 552 -#> [974,] 735 68 461 585 348 732 345 783 707 821 -#> [975,] 9 31 589 893 62 52 531 874 908 440 -#> [976,] 564 681 216 881 206 300 118 426 865 649 -#> [977,] 754 150 346 453 729 332 935 100 183 219 -#> [978,] 727 837 13 240 966 117 704 335 211 464 -#> [979,] 662 415 485 404 672 799 669 123 487 144 -#> [980,] 141 490 880 76 578 910 858 788 836 444 -#> [981,] 881 907 657 573 591 426 681 152 564 336 -#> [982,] 178 242 756 214 113 51 406 920 37 785 -#> [983,] 674 813 586 734 197 91 178 632 982 756 -#> [984,] 655 477 136 836 462 194 870 63 372 20 -#> [985,] 1 919 992 435 238 905 66 220 620 181 -#> [986,] 471 532 187 635 874 838 497 900 923 291 -#> [987,] 896 199 548 851 417 414 608 6 274 684 -#> [988,] 607 220 862 505 620 539 483 267 34 1000 -#> [989,] 944 890 708 373 528 78 321 119 921 218 -#> [990,] 535 227 51 409 818 91 868 441 920 873 -#> [991,] 866 700 930 344 916 921 444 910 763 546 -#> [992,] 1 939 163 238 825 181 66 985 435 77 -#> [993,] 769 637 148 705 5 751 839 174 40 925 -#> [994,] 716 885 160 398 859 697 428 629 671 429 -#> [995,] 390 18 592 341 238 909 612 322 251 340 -#> [996,] 400 543 800 449 877 684 665 672 459 270 -#> [997,] 613 173 323 175 903 228 804 104 960 287 -#> [998,] 355 673 841 281 682 542 258 610 100 97 -#> [999,] 572 641 188 263 300 206 773 374 83 824 -#> [1000,] 539 34 864 971 226 803 878 595 850 28 +#> [1,] 442 230 784 689 53 137 330 836 996 69 +#> [2,] 874 179 540 168 223 720 504 824 885 383 +#> [3,] 213 97 262 688 569 583 921 711 455 436 +#> [4,] 691 167 268 281 235 746 958 524 275 449 +#> [5,] 681 33 966 976 295 698 239 740 59 993 +#> [6,] 641 921 467 213 884 514 552 410 711 3 +#> [7,] 735 797 69 294 53 226 238 330 907 129 +#> [8,] 525 884 433 469 305 678 332 833 591 6 +#> [9,] 975 358 333 394 526 199 692 888 828 48 +#> [10,] 159 743 81 440 297 368 985 480 54 456 +#> [11,] 278 476 906 232 995 600 272 172 349 73 +#> [12,] 821 641 554 514 293 467 725 478 780 702 +#> [13,] 88 906 989 349 703 142 11 216 596 147 +#> [14,] 724 993 523 59 376 422 496 123 647 976 +#> [15,] 375 585 893 249 178 301 967 179 978 250 +#> [16,] 636 231 204 175 121 181 377 370 998 960 +#> [17,] 590 928 631 901 620 317 388 770 466 529 +#> [18,] 853 71 936 822 309 959 989 29 227 597 +#> [19,] 807 271 545 727 434 960 679 977 453 302 +#> [20,] 77 468 610 520 144 109 156 167 942 235 +#> [21,] 958 536 443 158 673 240 347 556 355 285 +#> [22,] 648 63 781 176 671 499 725 569 852 436 +#> [23,] 363 282 207 985 413 115 882 454 788 381 +#> [24,] 457 86 802 267 877 681 943 124 548 740 +#> [25,] 623 234 220 279 32 352 662 166 530 185 +#> [26,] 141 346 785 221 404 830 868 786 60 833 +#> [27,] 487 317 780 89 621 918 554 61 58 171 +#> [28,] 353 484 809 587 493 699 49 919 83 156 +#> [29,] 172 272 227 936 216 11 675 476 788 989 +#> [30,] 72 62 459 576 793 600 344 274 995 127 +#> [31,] 712 66 491 494 326 322 51 636 488 472 +#> [32,] 64 621 662 508 946 234 4 443 61 487 +#> [33,] 5 976 59 845 186 698 539 263 873 772 +#> [34,] 42 561 231 181 35 609 16 719 545 977 +#> [35,] 42 571 34 889 561 977 379 945 577 545 +#> [36,] 655 343 427 357 567 521 882 909 741 309 +#> [37,] 907 531 982 762 562 143 318 850 497 135 +#> [38,] 866 320 114 529 857 559 149 348 546 254 +#> [39,] 284 164 969 259 165 230 400 974 112 595 +#> [40,] 666 687 857 611 854 348 559 866 593 669 +#> [41,] 871 849 470 361 890 250 717 485 649 847 +#> [42,] 561 392 545 19 960 34 35 231 577 977 +#> [43,] 524 128 954 846 778 459 148 344 296 127 +#> [44,] 522 899 892 419 705 437 653 576 146 513 +#> [45,] 93 913 299 598 110 409 294 626 408 334 +#> [46,] 402 465 86 976 978 124 350 681 261 848 +#> [47,] 290 722 707 206 753 533 328 512 750 198 +#> [48,] 59 594 394 374 647 248 724 518 526 5 +#> [49,] 156 109 601 116 77 383 587 484 942 504 +#> [50,] 794 158 443 240 558 744 155 748 879 536 +#> [51,] 494 377 693 365 644 745 712 55 972 121 +#> [52,] 318 965 201 137 182 143 907 602 568 37 +#> [53,] 512 69 330 154 7 784 143 707 441 797 +#> [54,] 138 440 203 783 612 67 368 115 10 78 +#> [55,] 181 204 721 365 609 104 377 51 448 121 +#> [56,] 984 842 827 897 564 713 312 415 96 190 +#> [57,] 310 437 419 930 742 705 895 932 44 899 +#> [58,] 694 668 551 918 75 89 751 409 778 652 +#> [59,] 724 976 48 33 523 14 993 5 394 647 +#> [60,] 26 830 989 983 868 141 633 404 386 902 +#> [61,] 275 64 758 825 840 554 471 487 800 27 +#> [62,] 459 778 30 110 102 72 335 817 203 385 +#> [63,] 499 648 852 731 436 22 947 569 129 584 +#> [64,] 61 32 532 534 275 487 846 148 233 443 +#> [65,] 686 334 451 464 735 629 41 373 663 690 +#> [66,] 712 31 491 693 51 494 854 130 326 488 +#> [67,] 203 122 296 247 440 704 335 138 459 102 +#> [68,] 106 861 815 557 816 851 640 398 910 937 +#> [69,] 970 53 7 133 441 784 330 329 710 735 +#> [70,] 628 243 198 458 990 176 388 669 916 570 +#> [71,] 822 959 309 100 18 407 917 788 936 227 +#> [72,] 459 30 706 296 210 335 62 67 502 128 +#> [73,] 643 600 663 516 513 522 576 808 451 717 +#> [74,] 362 315 338 202 679 271 952 482 434 224 +#> [75,] 668 652 58 694 299 110 252 913 93 409 +#> [76,] 961 804 291 635 340 423 420 875 812 930 +#> [77,] 20 610 468 942 520 109 144 156 167 761 +#> [78,] 420 612 517 895 297 961 115 340 860 54 +#> [79,] 676 188 500 579 911 215 878 247 879 706 +#> [80,] 209 630 429 567 521 860 829 1000 654 357 +#> [81,] 385 258 440 578 817 10 207 138 335 159 +#> [82,] 454 391 23 381 282 152 363 763 207 592 +#> [83,] 608 481 587 933 28 103 229 484 424 714 +#> [84,] 166 384 279 968 787 662 825 194 293 554 +#> [85,] 304 345 531 497 738 873 632 37 964 808 +#> [86,] 350 681 465 496 976 873 46 457 887 366 +#> [87,] 417 690 617 723 485 686 161 624 795 978 +#> [88,] 245 13 147 541 703 278 596 11 272 172 +#> [89,] 780 27 918 409 524 58 778 680 268 43 +#> [90,] 492 615 839 801 935 219 782 313 517 480 +#> [91,] 283 319 531 497 483 696 132 304 738 412 +#> [92,] 403 922 775 461 378 169 316 560 657 209 +#> [93,] 299 45 110 598 913 252 460 626 102 409 +#> [94,] 854 130 444 351 559 66 491 462 40 857 +#> [95,] 120 189 965 426 206 599 359 289 842 435 +#> [96,] 118 113 564 709 836 837 354 132 602 189 +#> [97,] 921 3 410 468 266 455 520 144 552 954 +#> [98,] 314 146 832 895 128 180 150 460 274 810 +#> [99,] 622 489 820 411 131 764 756 604 746 164 +#> [100,] 917 407 822 851 71 788 815 839 959 661 +#> [101,] 770 739 466 17 380 928 857 590 631 620 +#> [102,] 368 122 704 110 778 203 299 810 440 62 +#> [103,] 771 933 83 229 872 905 608 714 481 818 +#> [104,] 121 755 365 745 579 676 783 769 55 500 +#> [105,] 366 632 966 873 912 932 423 887 582 219 +#> [106,] 68 815 851 557 839 100 861 788 971 90 +#> [107,] 768 937 475 244 861 398 68 550 971 212 +#> [108,] 428 439 241 645 596 988 13 332 142 305 +#> [109,] 235 401 20 156 77 779 292 49 610 167 +#> [110,] 299 93 102 778 62 598 45 460 75 368 +#> [111,] 667 174 323 886 651 519 777 205 341 843 +#> [112,] 238 893 617 969 178 375 970 259 339 284 +#> [113,] 118 709 354 191 837 96 602 836 132 544 +#> [114,] 660 659 478 149 962 495 126 546 38 702 +#> [115,] 170 78 882 54 592 940 420 138 517 297 +#> [116,] 383 374 625 601 49 518 248 504 760 156 +#> [117,] 986 799 188 236 79 766 490 678 346 981 +#> [118,] 96 113 354 837 836 189 709 132 120 640 +#> [119,] 224 568 263 482 992 135 835 539 182 696 +#> [120,] 189 589 599 177 837 354 640 543 836 325 +#> [121,] 745 104 755 231 783 377 644 170 365 592 +#> [122,] 704 102 203 368 67 296 778 440 810 459 +#> [123,] 376 657 844 378 993 14 637 406 724 461 +#> [124,] 607 46 24 457 86 465 214 978 350 402 +#> [125,] 492 812 615 364 90 917 438 407 839 831 +#> [126,] 478 702 962 551 114 950 944 684 918 660 +#> [127,] 516 626 574 460 600 793 663 373 524 455 +#> [128,] 296 43 98 954 148 72 146 314 122 67 +#> [129,] 947 767 499 731 780 735 226 45 626 63 +#> [130,] 854 351 559 444 693 320 94 578 752 644 +#> [131,] 397 764 356 342 756 446 618 99 411 708 +#> [132,] 319 696 91 412 283 709 965 182 531 354 +#> [133,] 441 69 970 53 916 7 750 176 710 458 +#> [134,] 898 8 986 507 525 833 773 184 811 396 +#> [135,] 201 568 850 224 182 627 119 37 390 205 +#> [136,] 754 541 369 245 624 88 439 670 596 464 +#> [137,] 330 836 474 143 837 52 784 318 797 907 +#> [138,] 54 440 335 203 783 67 183 81 72 612 +#> [139,] 616 399 583 614 432 596 256 904 515 711 +#> [140,] 990 770 737 533 287 190 611 570 193 371 +#> [141,] 26 785 346 221 404 786 270 833 830 183 +#> [142,] 305 173 195 349 232 515 278 433 616 596 +#> [143,] 907 562 797 318 37 137 154 512 474 330 +#> [144,] 468 520 634 20 688 77 97 987 606 3 +#> [145,] 652 605 197 751 553 75 435 222 252 792 +#> [146,] 180 98 899 964 460 449 761 314 44 128 +#> [147,] 776 88 432 989 256 324 13 597 596 139 +#> [148,] 846 443 43 128 954 247 558 883 158 296 +#> [149,] 546 384 114 487 478 233 534 293 659 702 +#> [150,] 423 832 314 961 219 306 98 895 810 297 +#> [151,] 883 677 382 930 273 260 991 865 956 863 +#> [152,] 752 462 444 870 391 258 573 82 763 130 +#> [153,] 632 912 664 304 738 582 992 900 219 105 +#> [154,] 512 562 143 53 907 318 446 7 762 570 +#> [155,] 558 247 500 389 443 846 792 355 50 158 +#> [156,] 218 109 49 20 77 942 249 144 634 760 +#> [157,] 729 214 68 670 936 106 955 557 543 29 +#> [158,] 443 794 536 50 240 21 556 744 958 148 +#> [159,] 10 456 743 321 368 102 81 110 416 440 +#> [160,] 831 802 815 615 438 125 675 90 997 492 +#> [161,] 417 261 474 690 87 191 327 784 617 602 +#> [162,] 651 982 255 667 264 762 341 174 497 642 +#> [163,] 957 880 329 200 710 754 996 298 686 629 +#> [164,] 284 259 99 622 39 165 411 595 967 489 +#> [165,] 164 967 397 848 284 360 845 131 39 969 +#> [166,] 662 758 61 800 825 508 787 728 279 84 +#> [167,] 235 4 520 275 20 401 281 449 691 746 +#> [168,] 874 2 24 383 116 540 457 720 625 124 +#> [169,] 639 775 877 267 92 403 461 831 560 742 +#> [170,] 940 115 592 998 730 882 370 121 231 567 +#> [171,] 746 268 841 680 756 674 826 852 226 524 +#> [172,] 272 29 227 11 476 88 216 989 324 703 +#> [173,] 232 195 349 515 142 995 305 906 591 278 +#> [174,] 651 667 762 982 111 264 162 205 680 409 +#> [175,] 204 747 654 755 181 121 231 104 16 55 +#> [176,] 22 671 458 916 781 725 648 63 441 628 +#> [177,] 599 589 120 927 640 325 910 543 189 856 +#> [178,] 375 250 890 41 301 871 978 470 617 760 +#> [179,] 540 223 874 2 885 15 375 951 249 432 +#> [180,] 146 964 449 761 98 899 869 610 345 295 +#> [181,] 204 55 609 175 721 104 231 121 365 654 +#> [182,] 568 135 257 602 201 627 850 119 318 224 +#> [183,] 138 78 270 592 346 763 188 54 115 335 +#> [184,] 833 542 785 26 141 898 537 8 525 60 +#> [185,] 229 789 672 234 790 430 991 794 924 158 +#> [186,] 772 539 642 217 342 341 869 33 828 952 +#> [187,] 486 926 894 202 843 362 791 953 777 473 +#> [188,] 79 733 346 676 183 981 72 221 296 706 +#> [189,] 120 837 836 589 354 599 177 118 996 543 +#> [190,] 312 435 713 328 533 287 47 842 737 206 +#> [191,] 602 113 709 182 161 261 732 132 257 402 +#> [192,] 465 848 402 350 523 845 976 867 46 165 +#> [193,] 737 777 685 371 446 843 938 287 111 400 +#> [194,] 787 825 236 840 471 384 806 758 6 641 +#> [195,] 232 173 515 142 278 455 516 349 600 793 +#> [196,] 298 399 584 431 464 339 614 541 803 814 +#> [197,] 553 222 145 605 488 751 931 923 208 792 +#> [198,] 458 570 707 750 533 753 916 990 551 388 +#> [199,] 510 333 549 819 526 791 736 953 828 952 +#> [200,] 957 880 589 163 177 416 120 408 856 599 +#> [201,] 135 568 182 224 205 390 627 52 318 119 +#> [202,] 679 843 390 362 473 271 74 338 315 222 +#> [203,] 67 440 122 704 368 138 54 102 335 296 +#> [204,] 181 55 175 121 755 104 16 51 365 494 +#> [205,] 651 341 390 762 174 982 843 642 201 111 +#> [206,] 753 290 652 47 75 145 668 435 252 598 +#> [207,] 985 81 592 23 258 10 381 311 282 115 +#> [208,] 255 619 331 704 463 497 122 306 718 368 +#> [209,] 630 429 829 251 560 80 316 860 211 868 +#> [210,] 706 979 335 502 495 72 67 684 660 247 +#> [211,] 251 429 424 560 714 630 260 868 246 310 +#> [212,] 992 244 900 727 768 453 398 300 807 664 +#> [213,] 3 262 711 225 569 6 583 436 921 97 +#> [214,] 729 607 723 157 795 24 887 457 124 191 +#> [215,] 879 534 532 233 748 500 558 247 495 979 +#> [216,] 476 859 906 413 989 227 11 29 703 788 +#> [217,] 372 956 869 844 347 772 647 186 285 510 +#> [218,] 249 301 606 760 156 987 634 250 280 826 +#> [219,] 423 801 150 615 935 912 480 90 961 738 +#> [220,] 234 352 765 25 530 736 508 790 631 915 +#> [221,] 346 26 141 868 785 404 830 357 427 983 +#> [222,] 553 197 923 777 145 931 323 605 751 111 +#> [223,] 179 432 951 2 885 720 614 874 147 540 +#> [224,] 119 568 263 135 539 201 482 850 835 182 +#> [225,] 213 904 583 591 773 973 262 3 616 711 +#> [226,] 756 680 841 7 129 171 238 735 264 764 +#> [227,] 29 172 272 788 675 936 557 476 216 479 +#> [228,] 560 169 364 757 902 963 868 246 742 775 +#> [229,] 185 789 933 991 672 771 401 575 382 818 +#> [230,] 1 318 627 257 974 154 602 784 52 53 +#> [231,] 940 121 170 392 561 104 586 16 998 745 +#> [232,] 173 515 349 195 278 142 600 793 995 455 +#> [233,] 534 215 532 495 979 706 660 210 702 879 +#> [234,] 220 508 32 185 790 946 240 691 530 4 +#> [235,] 167 281 746 618 109 401 4 449 826 356 +#> [236,] 659 891 194 532 495 715 410 384 986 787 +#> [237,] 646 643 858 782 743 479 480 935 600 73 +#> [238,] 112 7 708 226 735 327 178 764 69 969 +#> [239,] 966 740 267 681 366 5 518 105 295 639 +#> [240,] 946 682 158 536 744 794 443 21 50 958 +#> [241,] 108 855 439 645 650 428 988 603 431 596 +#> [242,] 448 721 50 744 794 748 367 939 813 879 +#> [243,] 669 293 388 725 628 12 554 458 176 198 +#> [244,] 212 300 768 732 992 412 696 338 709 861 +#> [245,] 88 541 464 629 369 624 596 278 451 65 +#> [246,] 963 653 419 942 310 919 57 742 387 902 +#> [247,] 558 500 67 155 846 676 296 210 148 203 +#> [248,] 518 601 774 374 779 698 239 295 818 5 +#> [249,] 218 301 156 760 15 375 178 885 250 824 +#> [250,] 871 301 847 760 470 41 178 824 849 890 +#> [251,] 211 429 714 630 424 560 209 260 677 868 +#> [252,] 598 299 93 913 75 110 45 762 208 409 +#> [253,] 575 549 430 571 790 819 307 771 510 872 +#> [254,] 348 529 866 792 605 389 320 590 857 693 +#> [255,] 208 331 619 497 162 718 651 463 982 306 +#> [256,] 904 506 658 139 225 147 633 776 583 973 +#> [257,] 627 602 182 135 318 568 201 52 261 974 +#> [258,] 81 870 207 385 985 578 817 159 656 10 +#> [259,] 284 164 112 489 969 99 238 622 967 39 +#> [260,] 382 273 980 714 151 481 211 733 991 933 +#> [261,] 161 327 402 850 257 602 474 191 627 182 +#> [262,] 213 3 688 569 225 929 6 711 641 773 +#> [263,] 224 835 119 482 539 350 850 568 135 33 +#> [264,] 982 680 174 762 268 756 162 667 409 651 +#> [265,] 914 576 793 981 274 404 733 522 419 892 +#> [266,] 455 921 97 344 436 520 852 127 793 524 +#> [267,] 639 239 966 461 831 169 775 366 740 105 +#> [268,] 746 4 171 264 691 674 281 680 524 756 +#> [269,] 339 87 369 617 754 624 417 814 689 951 +#> [270,] 502 678 706 817 833 183 210 335 72 141 +#> [271,] 807 434 679 19 453 727 315 718 202 931 +#> [272,] 172 29 227 11 476 646 324 675 665 216 +#> [273,] 382 733 260 954 151 481 999 610 883 77 +#> [274,] 576 895 705 932 404 600 98 522 479 437 +#> [275,] 61 840 520 758 167 64 954 4 524 806 +#> [276,] 638 968 701 388 243 84 901 293 70 716 +#> [277,] 647 772 844 952 217 376 724 510 186 315 +#> [278,] 232 349 515 195 11 451 142 600 173 616 +#> [279,] 662 928 620 631 32 317 384 166 623 487 +#> [280,] 826 292 841 535 987 994 606 218 708 764 +#> [281,] 691 235 618 356 4 268 746 167 401 828 +#> [282,] 363 23 381 370 311 985 207 730 798 418 +#> [283,] 91 696 483 412 965 132 319 453 300 497 +#> [284,] 259 164 969 39 238 764 99 411 112 708 +#> [285,] 865 536 217 347 556 673 21 956 772 953 +#> [286,] 545 367 977 636 16 322 712 19 721 377 +#> [287,] 737 713 193 312 190 400 140 564 473 435 +#> [288,] 501 405 726 613 949 585 604 941 249 893 +#> [289,] 326 95 351 311 435 881 359 985 31 998 +#> [290,] 47 753 707 206 722 750 512 533 143 329 +#> [291,] 875 804 76 302 961 801 340 862 150 900 +#> [292,] 280 994 826 618 109 535 218 356 235 987 +#> [293,] 12 554 243 149 317 546 641 478 669 384 +#> [294,] 797 408 334 735 925 45 7 598 143 330 +#> [295,] 698 964 761 180 966 5 740 869 779 899 +#> [296,] 128 67 72 122 203 612 459 247 98 43 +#> [297,] 480 517 810 935 479 961 612 78 782 423 +#> [298,] 710 339 464 196 584 970 65 686 700 629 +#> [299,] 93 110 45 598 102 252 460 913 778 75 +#> [300,] 338 696 244 119 412 283 568 212 453 483 +#> [301,] 760 250 824 847 218 871 249 178 470 513 +#> [302,] 804 291 392 832 340 463 900 865 863 961 +#> [303,] 799 117 766 986 490 505 452 891 236 905 +#> [304,] 85 497 153 632 531 738 539 619 319 119 +#> [305,] 433 142 884 467 173 711 514 469 525 195 +#> [306,] 463 619 810 832 150 718 208 497 368 331 +#> [307,] 991 956 863 577 865 980 151 382 883 556 +#> [308,] 332 416 385 469 944 817 433 995 142 906 +#> [309,] 71 822 407 917 959 655 100 125 18 36 +#> [310,] 57 419 437 742 930 246 899 705 653 44 +#> [311,] 798 418 985 325 282 207 10 159 910 743 +#> [312,] 713 190 435 842 984 287 564 553 328 737 +#> [313,] 839 801 730 90 398 971 418 492 961 998 +#> [314,] 832 98 150 895 423 146 930 612 128 810 +#> [315,] 434 482 539 74 772 952 271 679 362 807 +#> [316,] 635 421 209 438 586 860 630 76 92 922 +#> [317,] 27 487 621 662 388 393 554 620 716 780 +#> [318,] 52 907 143 37 562 137 201 182 474 627 +#> [319,] 91 531 738 132 304 283 925 85 119 497 +#> [320,] 866 693 559 529 38 348 130 972 254 684 +#> [321,] 456 598 159 743 416 408 110 93 325 299 +#> [322,] 326 488 472 923 712 679 545 271 881 553 +#> [323,] 926 519 111 777 673 667 946 886 953 958 +#> [324,] 665 720 432 528 776 548 386 649 147 451 +#> [325,] 743 418 798 599 782 646 456 311 177 321 +#> [326,] 488 881 322 197 377 553 712 960 289 453 +#> [327,] 708 261 361 41 925 474 238 907 345 37 +#> [328,] 190 722 47 533 206 435 312 290 842 95 +#> [329,] 880 710 750 163 69 330 294 53 707 767 +#> [330,] 784 474 137 797 53 143 7 907 294 69 +#> [331,] 255 619 718 208 931 463 497 306 434 355 +#> [332,] 525 308 469 433 305 906 884 142 173 8 +#> [333,] 526 828 199 342 131 618 281 356 908 510 +#> [334,] 735 294 373 408 65 629 516 663 731 574 +#> [335,] 210 502 138 440 706 979 203 684 67 783 +#> [336,] 593 950 126 396 695 114 687 40 444 669 +#> [337,] 509 911 565 980 920 452 579 683 769 878 +#> [338,] 300 696 74 453 119 244 202 224 568 679 +#> [339,] 298 464 814 196 970 710 112 754 617 369 +#> [340,] 420 961 612 635 804 78 76 392 291 302 +#> [341,] 642 205 651 390 162 843 667 186 174 111 +#> [342,] 828 356 618 526 397 994 186 131 698 845 +#> [343,] 655 357 36 829 427 542 521 221 741 209 +#> [344,] 921 266 459 455 514 702 43 30 552 62 +#> [345,] 85 535 373 361 180 674 808 574 849 663 +#> [346,] 141 221 26 785 404 183 188 868 270 678 +#> [347,] 869 217 956 372 285 883 21 958 865 536 +#> [348,] 254 529 866 857 320 559 792 693 605 854 +#> [349,] 515 232 173 278 142 591 195 386 583 616 +#> [350,] 465 86 835 263 976 402 33 46 732 482 +#> [351,] 130 854 652 578 972 206 94 145 644 75 +#> [352,] 220 765 728 234 915 25 823 185 692 508 +#> [353,] 809 28 493 484 885 919 156 504 699 49 +#> [354,] 640 837 543 120 189 113 118 132 177 836 +#> [355,] 931 673 923 744 21 331 155 488 389 536 +#> [356,] 618 342 281 994 828 131 764 235 397 756 +#> [357,] 427 343 655 521 221 36 829 567 860 785 +#> [358,] 975 9 394 48 625 374 594 848 526 692 +#> [359,] 414 426 816 910 95 927 937 415 640 599 +#> [360,] 791 974 390 845 627 135 850 263 224 201 +#> [361,] 849 871 470 41 847 717 250 808 345 555 +#> [362,] 74 952 315 202 679 791 390 271 772 953 +#> [363,] 282 23 730 370 100 311 381 418 839 798 +#> [364,] 983 812 125 830 227 548 705 742 404 29 +#> [365,] 104 55 500 755 51 745 783 377 121 579 +#> [366,] 105 966 873 740 681 887 943 632 239 964 +#> [367,] 977 721 377 355 55 545 19 448 286 488 +#> [368,] 102 704 122 203 440 810 110 67 54 10 +#> [369,] 624 245 795 951 136 686 464 541 723 87 +#> [370,] 381 998 282 730 940 170 363 207 985 311 +#> [371,] 685 938 588 886 193 446 908 411 901 111 +#> [372,] 956 217 869 779 844 347 818 761 888 526 +#> [373,] 663 574 626 808 516 334 470 345 127 849 +#> [374,] 116 383 518 248 779 698 601 48 625 5 +#> [375,] 178 890 15 978 250 301 249 617 41 871 +#> [376,] 406 123 844 582 14 277 657 647 724 993 +#> [377,] 51 745 488 121 494 365 55 326 644 367 +#> [378,] 657 922 406 862 461 863 775 92 577 677 +#> [379,] 864 862 577 657 863 378 945 922 683 307 +#> [380,] 466 486 588 770 590 926 777 938 472 17 +#> [381,] 370 282 207 985 170 998 23 363 592 311 +#> [382,] 260 151 273 883 991 980 933 714 733 481 +#> [383,] 116 374 760 824 301 504 601 49 156 625 +#> [384,] 546 149 787 64 487 532 194 293 279 534 +#> [385,] 817 81 62 502 258 416 335 459 962 469 +#> [386,] 776 902 349 387 892 515 232 522 591 793 +#> [387,] 919 902 892 776 386 942 653 504 973 633 +#> [388,] 317 901 393 716 243 293 17 27 198 570 +#> [389,] 792 155 751 605 254 355 529 590 323 558 +#> [390,] 843 205 341 642 201 202 135 224 651 568 +#> [391,] 454 258 870 82 308 152 859 656 23 934 +#> [392,] 960 302 561 340 804 745 231 463 420 121 +#> [393,] 716 901 388 317 820 621 916 27 680 411 +#> [394,] 845 848 526 828 48 59 975 358 342 33 +#> [395,] 594 358 975 9 48 625 896 566 888 394 +#> [396,] 425 811 659 336 126 833 469 114 525 962 +#> [397,] 131 764 708 342 356 994 828 974 618 850 +#> [398,] 861 313 768 798 801 212 992 418 839 550 +#> [399,] 614 139 616 196 583 596 464 584 988 711 +#> [400,] 193 230 685 446 287 974 39 371 737 154 +#> [401,] 109 235 167 779 281 20 618 77 4 372 +#> [402,] 261 465 46 350 192 191 848 161 850 263 +#> [403,] 92 922 775 461 169 378 560 316 209 657 +#> [404,] 830 786 983 274 576 221 265 346 26 141 +#> [405,] 501 288 585 726 893 15 249 949 259 967 +#> [406,] 862 378 657 863 577 376 582 804 677 291 +#> [407,] 917 100 309 822 661 71 851 125 959 815 +#> [408,] 294 334 321 598 456 45 416 93 797 629 +#> [409,] 913 45 89 680 264 562 762 93 174 75 +#> [410,] 552 981 921 97 999 678 344 733 914 6 +#> [411,] 820 99 446 685 756 131 886 908 489 680 +#> [412,] 696 283 132 300 244 91 768 861 483 212 +#> [413,] 476 859 786 216 906 785 23 454 995 788 +#> [414,] 359 937 816 910 426 827 640 415 768 897 +#> [415,] 426 842 359 984 95 56 414 827 289 328 +#> [416,] 456 743 321 159 408 385 995 308 10 110 +#> [417,] 87 161 617 690 485 261 723 978 327 686 +#> [418,] 798 311 325 935 782 480 10 313 730 985 +#> [419,] 310 57 437 899 44 653 522 742 610 705 +#> [420,] 340 612 78 961 635 860 895 76 517 804 +#> [421,] 316 864 80 209 403 438 92 586 630 719 +#> [422,] 527 14 376 724 277 511 945 123 647 523 +#> [423,] 150 219 961 801 314 932 517 895 832 297 +#> [424,] 211 251 429 714 260 481 560 1000 868 963 +#> [425,] 396 573 270 833 962 660 502 659 469 495 +#> [426,] 927 359 589 95 599 189 415 910 120 177 +#> [427,] 882 357 521 655 567 785 36 221 860 343 +#> [428,] 108 439 13 749 934 703 596 597 898 241 +#> [429,] 630 209 251 211 829 560 868 424 80 860 +#> [430,] 790 682 575 549 530 536 794 240 185 158 +#> [431,] 803 584 700 988 645 196 855 596 781 541 +#> [432,] 951 324 147 139 665 614 776 528 451 720 +#> [433,] 305 884 469 525 467 8 514 332 142 173 +#> [434,] 271 718 453 315 807 679 539 331 727 900 +#> [435,] 312 145 553 190 713 206 652 197 483 965 +#> [436,] 711 569 63 821 266 499 641 803 852 3 +#> [437,] 57 419 932 705 310 742 44 899 522 895 +#> [438,] 997 125 316 160 831 407 815 661 917 971 +#> [439,] 108 428 136 541 241 596 431 988 645 754 +#> [440,] 203 138 54 335 368 67 783 704 102 122 +#> [441,] 133 69 916 53 970 458 750 7 512 176 +#> [442,] 1 53 512 47 441 707 133 230 69 784 +#> [443,] 158 21 846 50 148 536 794 240 558 155 +#> [444,] 130 462 854 870 559 94 152 752 578 351 +#> [445,] 955 113 729 118 157 544 354 709 96 214 +#> [446,] 685 411 131 886 154 974 174 562 667 111 +#> [447,] 585 759 405 484 501 288 625 15 2 941 +#> [448,] 242 721 55 367 365 51 693 377 977 181 +#> [449,] 674 524 180 146 610 761 535 520 987 268 +#> [450,] 563 903 282 370 363 381 82 730 359 23 +#> [451,] 65 73 663 649 278 513 470 464 41 665 +#> [452,] 490 337 1000 117 683 920 905 565 80 509 +#> [453,] 718 434 271 807 881 679 283 727 619 331 +#> [454,] 859 391 413 23 82 216 934 258 476 363 +#> [455,] 793 921 266 515 195 97 232 344 173 127 +#> [456,] 321 743 159 598 416 408 110 10 325 299 +#> [457,] 24 802 86 267 877 496 831 124 876 681 +#> [458,] 916 750 198 570 707 725 176 129 947 767 +#> [459,] 62 778 72 30 344 67 102 335 203 43 +#> [460,] 299 810 127 93 146 110 98 102 626 122 +#> [461,] 775 922 378 92 403 267 239 639 169 657 +#> [462,] 444 152 94 870 130 752 854 559 336 593 +#> [463,] 306 619 718 331 208 832 255 368 704 122 +#> [464,] 298 65 451 245 541 339 629 686 951 614 +#> [465,] 350 402 976 86 46 192 523 848 835 263 +#> [466,] 380 588 770 590 486 17 938 777 928 926 +#> [467,] 514 821 433 884 305 6 12 711 641 436 +#> [468,] 520 144 20 77 634 97 954 892 610 942 +#> [469,] 525 884 433 332 8 305 817 514 173 678 +#> [470,] 849 513 41 361 871 847 250 663 717 373 +#> [471,] 825 569 852 688 641 554 758 61 800 275 +#> [472,] 322 923 486 712 488 66 31 222 326 197 +#> [473,] 202 390 843 338 201 498 713 679 205 193 +#> [474,] 330 797 907 137 925 784 143 318 327 294 +#> [475,] 876 802 496 550 107 160 637 831 875 992 +#> [476,] 906 216 995 11 413 786 479 646 830 859 +#> [477,] 878 509 579 769 581 813 980 911 676 556 +#> [478,] 702 126 918 962 551 495 114 149 660 233 +#> [479,] 517 480 782 786 297 935 274 643 237 476 +#> [480,] 935 297 782 517 479 810 219 423 801 961 +#> [481,] 273 933 260 714 963 246 382 211 774 83 +#> [482,] 539 315 263 224 119 772 153 434 664 186 +#> [483,] 283 965 696 91 497 201 553 568 453 252 +#> [484,] 587 28 941 49 353 809 156 692 109 493 +#> [485,] 890 649 41 795 723 717 978 871 555 951 +#> [486,] 380 472 466 187 926 923 777 939 588 323 +#> [487,] 27 317 621 534 64 620 149 233 61 546 +#> [488,] 326 931 197 377 923 355 322 553 881 222 +#> [489,] 99 604 820 622 800 411 746 756 171 226 +#> [490,] 452 117 337 799 741 909 838 303 1000 654 +#> [491,] 31 66 712 94 854 289 351 472 984 326 +#> [492,] 90 615 801 839 517 125 935 219 782 961 +#> [493,] 580 809 353 28 699 904 256 658 506 885 +#> [494,] 51 377 693 712 644 204 745 121 130 31 +#> [495,] 660 706 979 210 659 233 702 962 502 534 +#> [496,] 993 86 14 376 637 457 802 267 582 976 +#> [497,] 304 619 255 85 718 531 208 162 982 91 +#> [498,] 473 835 360 74 338 627 257 263 224 568 +#> [499,] 63 731 584 947 129 436 803 767 648 22 +#> [500,] 247 558 676 155 215 879 748 579 365 79 +#> [501,] 405 288 726 949 604 613 585 622 941 489 +#> [502,] 335 270 706 210 817 962 979 72 495 684 +#> [503,] 18 959 542 71 537 309 822 749 343 859 +#> [504,] 919 653 942 387 383 824 156 760 892 963 +#> [505,] 948 766 905 715 608 83 806 672 999 787 +#> [506,] 658 256 633 973 776 904 902 580 147 699 +#> [507,] 773 225 8 6 591 213 552 262 699 973 +#> [508,] 820 621 32 662 234 800 4 746 691 166 +#> [509,] 579 769 337 477 911 609 878 721 676 980 +#> [510,] 549 199 819 217 526 647 952 277 372 333 +#> [511,] 945 123 422 657 637 376 527 379 577 378 +#> [512,] 154 53 562 707 143 570 916 7 907 318 +#> [513,] 470 849 871 847 649 717 250 73 555 41 +#> [514,] 467 821 884 344 12 702 433 305 921 6 +#> [515,] 232 349 173 195 455 583 278 616 591 142 +#> [516,] 127 600 574 663 373 626 73 793 195 334 +#> [517,] 297 479 480 78 935 895 961 423 782 492 +#> [518,] 248 601 774 374 239 698 779 295 5 818 +#> [519,] 946 323 886 111 938 908 667 926 240 777 +#> [520,] 468 144 20 954 524 275 77 97 449 167 +#> [521,] 860 567 427 882 635 357 655 115 78 630 +#> [522,] 44 892 899 705 576 73 419 437 793 513 +#> [523,] 724 59 14 976 993 848 465 33 350 845 +#> [524,] 674 43 449 520 626 127 89 268 954 460 +#> [525,] 8 469 884 433 332 305 833 173 678 467 +#> [526,] 828 342 333 394 845 186 217 618 510 779 +#> [527,] 422 14 724 523 511 896 277 376 123 945 +#> [528,] 665 720 649 555 324 951 795 890 485 943 +#> [529,] 866 254 348 792 320 389 605 38 694 620 +#> [530,] 790 682 430 234 240 575 736 794 185 220 +#> [531,] 37 319 85 497 925 304 91 907 850 982 +#> [532,] 534 215 233 64 879 846 495 148 748 706 +#> [533,] 47 198 753 190 290 206 611 707 328 652 +#> [534,] 233 532 215 64 846 487 558 495 879 247 +#> [535,] 987 841 826 606 280 674 994 345 574 449 +#> [536,] 21 158 556 240 958 443 744 285 794 673 +#> [537,] 542 60 184 898 757 989 503 26 343 506 +#> [538,] 939 734 242 813 920 448 581 477 530 721 +#> [539,] 482 186 772 224 304 315 263 119 434 497 +#> [540,] 874 179 978 15 2 375 223 951 585 890 +#> [541,] 245 596 88 464 629 431 136 196 298 399 +#> [542,] 184 343 537 357 36 785 60 655 26 427 +#> [543,] 354 723 858 837 120 690 177 925 646 670 +#> [544,] 709 113 732 191 96 118 244 132 602 354 +#> [545,] 19 286 977 42 367 807 960 322 727 271 +#> [546,] 149 384 233 487 534 114 478 293 659 532 +#> [547,] 671 613 595 133 259 441 176 701 726 284 +#> [548,] 720 665 324 528 675 943 639 877 705 364 +#> [549,] 510 819 575 430 790 199 217 888 372 253 +#> [550,] 875 900 291 398 727 313 212 801 912 971 +#> [551,] 668 58 694 918 478 126 75 753 780 944 +#> [552,] 410 981 921 678 344 97 591 6 455 914 +#> [553,] 197 222 145 435 605 923 483 488 751 931 +#> [554,] 825 12 471 641 293 852 780 27 61 569 +#> [555,] 943 871 649 717 849 824 890 513 847 740 +#> [556,] 883 865 536 158 285 21 794 443 991 347 +#> [557,] 782 788 106 646 935 325 839 227 675 90 +#> [558,] 155 247 500 846 215 443 534 148 67 50 +#> [559,] 130 320 854 693 857 444 348 866 94 38 +#> [560,] 429 211 251 630 209 775 868 246 742 963 +#> [561,] 42 392 769 231 977 863 804 302 340 911 +#> [562,] 143 154 907 762 37 982 512 318 913 409 +#> [563,] 450 903 370 282 381 363 82 730 940 661 +#> [564,] 842 52 96 965 137 312 56 713 118 602 +#> [565,] 889 683 920 337 980 509 477 911 769 878 +#> [566,] 192 395 848 523 759 358 625 976 465 394 +#> [567,] 521 882 427 860 357 654 170 635 115 36 +#> [568,] 201 135 182 224 119 850 696 627 531 263 +#> [569,] 436 641 471 852 3 688 213 711 63 262 +#> [570,] 916 458 198 707 512 154 750 680 393 990 +#> [571,] 253 35 872 307 889 945 577 511 379 575 +#> [572,] 83 608 587 484 103 818 49 594 933 28 +#> [573,] 962 660 684 979 752 425 502 210 763 578 +#> [574,] 373 663 626 516 127 731 535 470 674 334 +#> [575,] 549 430 790 771 253 819 530 229 888 991 +#> [576,] 274 793 600 522 30 73 705 265 44 404 +#> [577,] 862 863 406 657 378 804 302 865 307 677 +#> [578,] 684 81 644 972 962 258 870 783 440 335 +#> [579,] 769 509 676 911 477 500 104 79 878 721 +#> [580,] 493 904 809 506 256 658 353 699 633 973 +#> [581,] 878 813 924 477 920 748 980 509 879 79 +#> [582,] 912 153 632 406 105 900 376 875 664 366 +#> [583,] 616 139 515 711 349 3 225 213 278 591 +#> [584,] 803 499 700 431 767 298 196 629 63 731 +#> [585,] 15 405 893 249 967 179 375 501 540 178 +#> [586,] 635 719 940 340 316 291 231 860 313 804 +#> [587,] 484 941 49 28 728 83 692 109 156 401 +#> [588,] 938 466 371 519 590 631 380 777 908 685 +#> [589,] 177 599 120 927 189 200 856 640 354 910 +#> [590,] 17 389 792 519 928 605 620 254 323 111 +#> [591,] 515 349 173 552 921 914 973 455 232 225 +#> [592,] 763 755 207 170 783 115 138 183 54 81 +#> [593,] 336 950 126 687 40 669 695 944 444 396 +#> [594,] 48 625 818 374 888 518 248 358 116 59 +#> [595,] 411 164 901 284 716 259 371 685 393 489 +#> [596,] 541 616 142 988 88 245 139 399 431 583 +#> [597,] 703 989 853 147 749 88 13 172 29 18 +#> [598,] 93 252 299 321 45 456 110 408 913 294 +#> [599,] 177 927 589 120 910 325 640 189 354 856 +#> [600,] 516 576 73 793 127 232 195 274 643 30 +#> [601,] 774 248 518 374 818 779 116 383 49 761 +#> [602,] 257 182 191 627 52 318 474 137 261 132 +#> [603,] 988 855 929 645 711 803 436 569 821 431 +#> [604,] 489 823 800 622 820 99 726 613 728 746 +#> [605,] 751 792 145 197 652 389 694 553 58 254 +#> [606,] 987 826 535 634 841 218 280 144 574 674 +#> [607,] 214 124 729 24 457 978 46 795 417 87 +#> [608,] 83 587 28 505 484 948 481 572 103 766 +#> [609,] 181 509 55 579 721 769 204 337 654 104 +#> [610,] 761 20 77 449 899 468 180 419 520 167 +#> [611,] 40 533 666 687 198 857 328 990 47 140 +#> [612,] 420 78 895 340 961 296 54 297 314 517 +#> [613,] 701 726 823 604 489 671 968 501 622 547 +#> [614,] 399 139 885 432 464 196 616 583 596 541 +#> [615,] 90 492 801 219 675 935 839 782 517 423 +#> [616,] 583 139 711 515 349 399 278 142 596 436 +#> [617,] 87 417 978 178 112 375 485 890 161 969 +#> [618,] 356 342 281 828 235 994 779 292 698 691 +#> [619,] 463 306 718 331 255 208 497 304 832 810 +#> [620,] 928 487 279 32 317 662 621 389 590 529 +#> [621,] 27 317 32 487 946 508 662 4 268 393 +#> [622,] 99 489 604 820 164 949 411 823 259 764 +#> [623,] 25 787 279 32 64 672 662 166 185 384 +#> [624,] 369 795 686 723 245 951 87 670 690 464 +#> [625,] 116 374 383 594 358 48 49 518 601 248 +#> [626,] 574 127 373 674 516 663 731 524 93 460 +#> [627,] 257 974 135 182 201 850 318 568 602 261 +#> [628,] 781 243 176 725 855 70 22 458 803 671 +#> [629,] 700 334 65 278 245 584 767 464 451 541 +#> [630,] 429 209 860 829 251 211 812 560 868 221 +#> [631,] 928 662 17 279 621 620 901 590 588 508 +#> [632,] 153 912 664 738 304 105 873 582 366 85 +#> [633,] 973 658 902 506 699 776 386 387 591 225 +#> [634,] 606 987 892 144 468 218 520 20 513 574 +#> [635,] 860 340 420 586 76 521 961 78 804 316 +#> [636,] 16 545 31 326 286 712 494 322 377 960 +#> [637,] 378 657 123 922 876 496 461 267 376 92 +#> [638,] 276 84 701 968 243 388 293 669 628 70 +#> [639,] 267 742 239 169 831 437 966 775 932 105 +#> [640,] 910 354 816 599 177 325 120 861 798 589 +#> [641,] 569 12 6 821 471 554 825 436 467 514 +#> [642,] 341 953 390 651 162 186 205 843 667 952 +#> [643,] 73 237 858 932 600 646 808 479 274 576 +#> [644,] 783 972 745 578 440 81 755 684 54 335 +#> [645,] 988 855 431 305 603 433 803 467 711 142 +#> [646,] 237 858 782 643 743 935 325 479 557 480 +#> [647,] 277 844 217 772 724 510 48 59 376 526 +#> [648,] 63 22 852 499 671 569 436 800 731 176 +#> [649,] 717 485 555 513 41 665 890 849 528 943 +#> [650,] 241 695 134 773 855 811 950 645 603 108 +#> [651,] 174 205 982 162 762 667 341 111 642 264 +#> [652,] 145 75 668 206 694 605 351 58 751 753 +#> [653,] 942 504 419 44 919 899 892 246 522 387 +#> [654,] 567 175 104 231 609 755 80 121 181 719 +#> [655,] 343 36 427 357 521 309 882 860 567 829 +#> [656,] 258 927 856 870 599 985 311 200 589 416 +#> [657,] 378 406 862 922 577 123 863 376 461 637 +#> [658,] 506 633 776 256 973 902 387 147 386 904 +#> [659,] 495 660 114 236 702 478 233 962 811 546 +#> [660,] 495 979 962 659 114 706 210 684 573 233 +#> [661,] 407 917 100 971 851 719 438 815 309 839 +#> [662,] 279 32 166 317 508 621 631 928 487 620 +#> [663,] 373 574 470 516 808 73 626 849 127 513 +#> [664,] 153 992 632 912 738 900 304 119 482 319 +#> [665,] 324 528 649 720 513 548 555 451 73 943 +#> [666,] 40 857 687 611 348 866 669 529 559 38 +#> [667,] 174 111 886 651 162 264 958 519 268 341 +#> [668,] 694 58 551 75 652 753 918 409 751 605 +#> [669,] 243 293 950 687 388 40 593 198 551 126 +#> [670,] 624 543 177 723 369 272 245 172 200 589 +#> [671,] 22 176 648 781 726 63 613 499 489 133 +#> [672,] 789 806 185 924 229 840 787 715 64 273 +#> [673,] 953 926 744 355 21 536 931 323 285 923 +#> [674,] 449 524 626 841 535 268 987 574 826 171 +#> [675,] 615 227 887 858 90 557 219 548 492 643 +#> [676,] 500 579 79 769 247 911 188 104 558 67 +#> [677,] 930 151 804 863 76 340 314 406 57 883 +#> [678,] 552 981 270 410 72 921 884 344 469 706 +#> [679,] 202 271 434 453 315 718 923 931 331 807 +#> [680,] 264 756 226 171 409 268 174 89 913 746 +#> [681,] 740 966 366 5 873 943 239 555 295 105 +#> [682,] 240 790 744 430 530 794 536 946 158 673 +#> [683,] 565 980 337 714 251 911 889 260 1000 509 +#> [684,] 962 979 335 578 210 502 972 660 783 706 +#> [685,] 446 371 886 908 938 411 193 111 131 667 +#> [686,] 65 690 723 624 87 464 334 485 735 294 +#> [687,] 40 666 593 669 611 336 950 198 857 243 +#> [688,] 471 3 144 569 262 852 97 825 758 213 +#> [689,] 784 970 69 330 161 1 53 87 417 690 +#> [690,] 686 723 87 417 485 474 65 543 925 161 +#> [691,] 281 4 268 958 167 235 946 667 746 356 +#> [692,] 941 401 109 49 587 358 949 728 9 622 +#> [693,] 51 320 559 130 494 348 866 66 972 365 +#> [694,] 58 668 551 75 918 652 751 605 792 972 +#> [695,] 950 811 336 593 891 669 293 126 12 396 +#> [696,] 283 300 412 483 132 965 91 568 119 338 +#> [697,] 909 654 741 719 80 567 838 175 36 357 +#> [698,] 295 779 964 761 5 994 342 374 869 248 +#> [699,] 973 633 902 387 658 919 914 225 591 506 +#> [700,] 803 767 629 584 431 499 710 947 334 731 +#> [701,] 613 968 823 726 276 604 915 671 716 489 +#> [702,] 478 495 344 514 962 126 659 660 918 233 +#> [703,] 597 989 88 13 216 749 172 147 29 272 +#> [704,] 368 122 102 203 67 440 208 778 972 110 +#> [705,] 437 932 742 522 44 274 576 983 57 419 +#> [706,] 210 979 495 502 335 72 660 233 459 270 +#> [707,] 750 290 512 753 570 458 47 53 198 916 +#> [708,] 764 994 327 397 280 756 535 238 292 841 +#> [709,] 113 544 132 732 191 354 118 96 602 244 +#> [710,] 298 329 700 584 69 767 970 629 431 163 +#> [711,] 436 616 583 213 305 988 467 515 569 821 +#> [712,] 31 66 51 494 488 326 377 322 693 472 +#> [713,] 312 190 287 435 737 564 984 842 473 56 +#> [714,] 251 211 260 481 933 382 424 151 980 677 +#> [715,] 787 924 806 236 672 194 532 840 581 623 +#> [716,] 393 901 820 968 388 317 621 508 411 662 +#> [717,] 849 649 808 361 470 41 943 555 513 871 +#> [718,] 619 331 453 434 463 497 255 306 208 304 +#> [719,] 586 940 231 567 661 170 635 521 654 730 +#> [720,] 528 665 324 548 555 432 649 824 943 951 +#> [721,] 55 367 977 448 579 365 509 609 181 769 +#> [722,] 47 290 328 996 206 880 753 957 707 533 +#> [723,] 690 795 485 686 543 87 624 649 858 717 +#> [724,] 14 59 523 647 993 48 277 376 33 976 +#> [725,] 947 821 12 803 458 767 22 129 780 781 +#> [726,] 613 501 671 604 288 489 648 405 259 701 +#> [727,] 807 900 271 19 434 212 453 960 302 550 +#> [728,] 758 166 401 789 800 941 587 604 352 692 +#> [729,] 214 157 607 68 936 723 445 106 795 670 +#> [730,] 313 998 940 370 170 839 363 418 282 115 +#> [731,] 499 574 626 63 334 129 373 735 841 663 +#> [732,] 835 992 244 709 119 132 300 191 182 696 +#> [733,] 999 981 273 954 914 265 410 188 552 128 +#> [734,] 739 538 939 242 101 623 25 928 448 813 +#> [735,] 7 334 294 797 65 731 373 129 226 238 +#> [736,] 530 199 682 220 790 549 938 430 234 510 +#> [737,] 287 193 713 777 312 190 473 140 843 371 +#> [738,] 632 319 887 153 858 304 85 219 873 912 +#> [739,] 928 620 279 631 17 101 590 466 623 734 +#> [740,] 681 966 366 943 239 555 295 873 847 105 +#> [741,] 909 838 357 36 343 567 80 697 427 829 +#> [742,] 437 705 57 310 639 419 932 653 44 246 +#> [743,] 456 159 321 10 416 325 646 237 782 480 +#> [744,] 794 240 536 158 673 682 355 50 21 443 +#> [745,] 121 783 644 377 104 54 755 365 440 392 +#> [746,] 171 268 235 826 281 820 841 4 756 674 +#> [747,] 175 204 752 755 654 181 55 121 104 763 +#> [748,] 879 215 500 532 50 534 558 878 924 233 +#> [749,] 703 597 934 989 428 853 18 13 216 88 +#> [750,] 707 458 767 329 129 753 198 916 947 290 +#> [751,] 605 792 145 389 197 694 58 75 652 208 +#> [752,] 573 152 130 755 444 747 644 494 693 559 +#> [753,] 290 206 707 668 75 913 409 47 652 58 +#> [754,] 136 369 339 298 163 541 710 624 245 196 +#> [755,] 121 104 592 783 644 745 365 763 175 573 +#> [756,] 226 680 764 264 841 171 746 268 826 708 +#> [757,] 228 537 60 868 829 343 506 542 633 560 +#> [758,] 840 275 61 825 471 688 728 806 166 800 +#> [759,] 168 447 566 625 874 585 540 2 116 15 +#> [760,] 301 824 847 250 218 871 513 383 470 555 +#> [761,] 610 180 964 295 869 899 449 698 146 779 +#> [762,] 982 651 37 174 562 264 162 205 913 409 +#> [763,] 592 183 270 755 81 502 138 573 882 207 +#> [764,] 708 397 131 756 994 356 280 99 292 618 +#> [765,] 823 220 915 352 622 604 508 820 949 234 +#> [766,] 505 507 999 117 699 715 424 236 410 981 +#> [767,] 947 700 129 803 499 584 750 334 725 629 +#> [768,] 398 861 244 212 937 412 816 992 107 798 +#> [769,] 579 911 509 676 477 104 500 561 980 79 +#> [770,] 466 17 380 140 101 590 588 990 371 901 +#> [771,] 575 888 229 819 818 933 549 991 253 430 +#> [772,] 186 539 952 217 277 482 315 647 434 642 +#> [773,] 225 507 213 262 929 6 603 8 904 988 +#> [774,] 601 248 518 310 818 761 419 610 653 779 +#> [775,] 461 92 922 403 169 639 378 560 267 310 +#> [776,] 386 902 658 633 387 324 147 973 349 432 +#> [777,] 111 323 843 926 222 938 519 193 205 886 +#> [778,] 459 62 102 110 122 299 918 704 43 67 +#> [779,] 698 618 761 372 109 828 295 374 869 248 +#> [780,] 27 89 947 918 129 554 171 852 725 12 +#> [781,] 22 803 584 628 725 431 176 499 671 855 +#> [782,] 935 480 479 646 557 517 297 237 90 418 +#> [783,] 644 440 335 138 54 745 203 972 67 755 +#> [784,] 330 474 53 137 689 69 797 7 836 161 +#> [785,] 141 26 346 221 786 427 830 833 413 404 +#> [786,] 404 830 479 995 476 413 906 785 517 141 +#> [787,] 194 715 384 806 64 623 166 840 758 672 +#> [788,] 557 227 782 100 476 216 413 917 839 479 +#> [789,] 672 185 806 840 229 273 924 167 758 275 +#> [790,] 430 530 682 575 549 240 536 234 794 185 +#> [791,] 360 843 199 390 952 341 642 953 333 362 +#> [792,] 389 605 751 254 529 155 694 145 197 58 +#> [793,] 455 576 600 127 516 232 515 30 522 265 +#> [794,] 158 50 744 240 443 536 556 682 430 21 +#> [795,] 723 485 951 649 624 528 369 890 665 87 +#> [796,] 936 853 877 18 548 364 720 29 227 831 +#> [797,] 294 143 907 474 925 330 7 735 562 137 +#> [798,] 418 311 325 861 910 398 313 640 782 730 +#> [799,] 986 117 833 838 303 134 490 184 425 898 +#> [800,] 852 746 171 604 820 61 508 471 758 489 +#> [801,] 219 90 615 961 492 313 935 423 480 839 +#> [802,] 831 160 457 876 267 675 24 877 496 615 +#> [803,] 584 700 431 767 499 436 781 725 821 988 +#> [804,] 291 677 863 76 340 302 862 875 930 961 +#> [805,] 894 791 187 360 199 362 736 843 473 498 +#> [806,] 840 672 789 999 275 758 787 64 924 532 +#> [807,] 727 271 19 434 453 900 315 212 960 679 +#> [808,] 717 373 663 849 925 470 361 73 858 574 +#> [809,] 353 493 28 919 580 699 885 658 484 387 +#> [810,] 297 368 102 460 306 122 480 98 150 299 +#> [811,] 891 659 695 396 236 986 114 425 134 660 +#> [812,] 983 125 76 860 364 492 895 517 830 705 +#> [813,] 581 878 477 924 920 50 748 794 879 509 +#> [814,] 339 196 298 112 970 893 671 464 710 614 +#> [815,] 851 106 839 971 90 160 100 615 917 492 +#> [816,] 910 640 937 861 414 359 68 412 354 798 +#> [817,] 385 502 81 62 335 469 270 962 459 684 +#> [818,] 888 601 248 774 518 933 372 779 594 956 +#> [819,] 888 549 510 575 199 771 647 372 526 217 +#> [820,] 508 746 411 99 489 171 716 800 268 393 +#> [821,] 467 12 514 641 436 725 711 803 305 569 +#> [822,] 71 959 309 100 407 917 18 788 851 661 +#> [823,] 604 915 765 613 701 968 622 949 489 800 +#> [824,] 760 301 250 555 871 847 513 218 383 890 +#> [825,] 471 554 641 61 852 569 758 688 194 800 +#> [826,] 280 841 987 535 606 292 746 674 994 171 +#> [827,] 897 56 984 412 414 300 244 338 96 564 +#> [828,] 342 526 618 356 333 779 394 186 698 845 +#> [829,] 209 429 630 357 343 868 221 655 560 251 +#> [830,] 983 404 786 221 26 479 785 812 141 364 +#> [831,] 802 160 877 639 267 615 675 125 169 876 +#> [832,] 314 150 98 306 423 463 619 810 612 961 +#> [833,] 184 270 141 785 525 8 26 678 425 469 +#> [834,] 603 929 399 904 262 988 196 614 22 569 +#> [835,] 263 732 119 224 350 482 568 182 992 135 +#> [836,] 837 137 189 120 996 330 118 354 784 474 +#> [837,] 836 189 354 120 137 543 118 113 474 330 +#> [838,] 909 741 542 799 36 357 697 343 490 184 +#> [839,] 90 492 313 815 615 851 971 801 730 935 +#> [840,] 806 758 275 999 97 789 520 61 954 410 +#> [841,] 826 535 987 606 280 674 171 756 746 626 +#> [842,] 564 56 312 95 984 415 713 190 96 328 +#> [843,] 390 777 205 341 202 642 926 111 953 323 +#> [844,] 647 956 217 372 277 376 406 248 123 48 +#> [845,] 394 848 33 342 526 828 397 976 59 186 +#> [846,] 148 443 43 247 558 534 128 64 155 532 +#> [847,] 871 250 760 361 470 849 301 513 41 824 +#> [848,] 845 394 976 59 33 192 523 402 465 46 +#> [849,] 361 470 717 41 871 513 847 808 250 649 +#> [850,] 135 224 182 568 37 531 263 627 974 201 +#> [851,] 815 971 106 839 100 917 407 90 68 313 +#> [852,] 63 471 569 648 554 171 266 800 436 825 +#> [853,] 18 597 936 703 989 29 172 796 272 227 +#> [854,] 94 130 351 559 444 348 857 66 40 320 +#> [855,] 645 603 988 431 803 781 821 467 628 711 +#> [856,] 927 177 589 599 656 200 910 426 120 934 +#> [857,] 666 348 40 559 866 529 254 38 320 854 +#> [858,] 237 646 643 738 808 717 887 543 925 675 +#> [859,] 216 413 454 476 934 788 906 23 786 227 +#> [860,] 521 635 420 78 630 812 567 340 76 427 +#> [861,] 398 798 768 68 816 640 910 412 418 313 +#> [862,] 577 863 406 804 657 378 291 875 922 677 +#> [863,] 862 577 677 804 406 378 657 302 151 865 +#> [864,] 379 421 316 403 92 922 862 657 378 863 +#> [865,] 285 556 883 347 302 956 151 536 863 21 +#> [866,] 529 320 348 254 38 857 694 792 693 559 +#> [867,] 192 498 402 360 257 627 165 465 261 835 +#> [868,] 221 983 346 630 26 829 429 211 560 404 +#> [869,] 347 761 217 372 180 964 295 779 186 698 +#> [870,] 258 578 385 81 444 817 944 656 962 308 +#> [871,] 250 847 41 361 849 555 470 890 513 760 +#> [872,] 307 771 571 253 103 511 575 123 933 991 +#> [873,] 366 632 681 105 887 85 738 361 740 943 +#> [874,] 540 2 179 168 223 720 978 528 15 951 +#> [875,] 291 76 550 804 912 801 582 862 900 406 +#> [876,] 802 475 637 831 160 496 457 997 877 267 +#> [877,] 831 169 548 639 267 802 24 457 160 796 +#> [878,] 581 477 813 924 79 579 748 509 980 920 +#> [879,] 748 215 532 500 534 233 558 50 79 924 +#> [880,] 163 329 957 200 750 722 710 290 996 408 +#> [881,] 960 326 453 463 998 488 718 306 807 727 +#> [882,] 427 567 521 115 170 592 183 23 860 763 +#> [883,] 151 556 382 865 347 991 148 956 273 677 +#> [884,] 433 469 305 525 467 8 514 6 173 921 +#> [885,] 614 249 432 139 179 399 353 218 375 809 +#> [886,] 908 667 519 111 938 174 685 946 446 323 +#> [887,] 943 366 738 873 105 717 858 632 675 555 +#> [888,] 819 818 771 372 549 510 594 48 779 575 +#> [889,] 565 683 920 35 509 337 477 307 980 379 +#> [890,] 485 41 871 649 250 978 178 555 375 849 +#> [891,] 811 236 659 194 986 384 695 546 114 149 +#> [892,] 522 44 634 387 942 468 899 653 793 386 +#> [893,] 15 112 375 585 969 178 967 617 405 259 +#> [894,] 805 187 791 473 193 843 360 737 362 202 +#> [895,] 274 612 517 98 78 932 314 423 150 420 +#> [896,] 819 647 510 724 277 199 527 549 888 395 +#> [897,] 827 56 96 244 300 564 984 412 338 414 +#> [898,] 134 184 537 8 833 525 542 428 332 108 +#> [899,] 44 522 419 146 437 761 964 180 610 892 +#> [900,] 727 912 153 212 664 807 992 434 550 582 +#> [901,] 393 716 388 17 371 990 631 570 317 916 +#> [902,] 387 386 776 633 973 919 658 892 914 246 +#> [903,] 450 563 370 381 282 16 363 82 636 289 +#> [904,] 256 225 139 583 506 616 658 399 973 633 +#> [905,] 505 920 581 424 715 924 878 452 337 672 +#> [906,] 995 476 11 173 216 786 232 13 413 349 +#> [907,] 143 37 318 562 797 474 531 762 925 982 +#> [908,] 886 519 938 667 685 946 111 691 411 820 +#> [909,] 741 838 36 697 357 567 654 343 427 80 +#> [910,] 640 816 599 798 927 325 177 861 311 354 +#> [911,] 769 579 676 509 980 477 79 337 188 104 +#> [912,] 153 632 664 582 219 105 900 423 150 738 +#> [913,] 409 45 93 299 252 598 562 762 75 264 +#> [914,] 265 981 591 733 999 552 97 410 892 386 +#> [915,] 823 968 166 765 352 728 604 662 508 25 +#> [916,] 570 458 441 176 512 707 226 129 750 680 +#> [917,] 407 100 309 822 661 125 71 851 815 839 +#> [918,] 58 551 778 89 694 668 780 478 459 62 +#> [919,] 387 504 942 653 963 902 246 892 973 699 +#> [920,] 581 565 878 813 337 477 509 980 905 683 +#> [921,] 552 455 410 97 344 266 6 591 3 514 +#> [922,] 378 92 775 403 461 657 862 406 677 863 +#> [923,] 222 931 926 197 355 488 673 553 323 679 +#> [924,] 878 672 581 813 806 748 789 715 879 532 +#> [925,] 797 808 294 531 474 907 373 37 327 319 +#> [926,] 323 673 777 953 923 519 843 111 222 744 +#> [927,] 599 589 177 856 910 426 120 640 656 189 +#> [928,] 631 620 279 17 662 739 590 32 621 946 +#> [929,] 603 262 569 641 213 773 834 6 471 711 +#> [930,] 677 57 310 151 314 437 76 895 804 419 +#> [931,] 355 331 923 488 673 197 718 255 222 208 +#> [932,] 437 705 274 895 423 643 105 742 98 522 +#> [933,] 481 229 818 991 382 714 260 774 273 771 +#> [934,] 859 216 749 703 13 454 308 476 906 88 +#> [935,] 782 480 297 517 219 479 801 90 615 418 +#> [936,] 29 227 853 172 18 675 272 796 71 548 +#> [937,] 816 768 414 861 107 244 359 68 910 412 +#> [938,] 588 519 908 886 371 685 777 323 111 926 +#> [939,] 530 682 242 744 486 794 790 240 430 380 +#> [940,] 170 730 998 231 115 370 586 121 719 313 +#> [941,] 587 692 484 728 49 949 604 109 401 156 +#> [942,] 653 504 919 892 77 387 246 20 419 468 +#> [943,] 555 740 717 887 366 649 681 871 849 361 +#> [944,] 126 308 551 753 416 385 668 870 918 767 +#> [945,] 511 422 577 379 657 862 35 42 376 864 +#> [946,] 519 240 621 691 958 323 32 886 667 908 +#> [947,] 129 767 780 725 499 731 63 803 436 626 +#> [948,] 505 715 608 905 766 787 83 672 194 806 +#> [949,] 501 622 941 692 823 604 765 405 613 726 +#> [950,] 593 695 126 336 669 478 243 12 944 293 +#> [951,] 795 432 528 485 890 649 464 369 451 624 +#> [952,] 772 315 953 186 362 277 642 539 510 647 +#> [953,] 673 642 926 952 323 843 341 285 536 958 +#> [954,] 520 43 128 468 733 524 148 97 273 275 +#> [955,] 589 177 670 445 927 157 856 354 426 599 +#> [956,] 372 217 844 347 991 869 865 285 883 151 +#> [957,] 163 880 200 996 589 189 329 120 836 837 +#> [958,] 21 691 536 667 162 443 4 347 946 240 +#> [959,] 822 71 309 100 407 917 18 788 661 851 +#> [960,] 881 392 998 727 302 807 463 19 745 453 +#> [961,] 150 423 340 801 420 517 612 76 297 78 +#> [962,] 684 660 979 502 495 702 573 335 210 706 +#> [963,] 246 919 942 653 387 902 419 481 310 504 +#> [964,] 295 180 761 146 899 698 869 98 105 610 +#> [965,] 52 483 283 696 132 318 91 137 201 143 +#> [966,] 239 740 366 681 105 5 295 267 873 964 +#> [967,] 708 15 292 969 764 994 178 397 280 893 +#> [968,] 716 662 393 166 915 701 823 388 84 279 +#> [969,] 112 284 617 238 967 259 708 893 261 327 +#> [970,] 69 689 133 298 710 339 112 238 441 7 +#> [971,] 851 815 839 313 90 730 398 106 661 550 +#> [972,] 644 684 704 783 578 440 203 979 694 67 +#> [973,] 633 699 902 591 658 387 776 225 386 506 +#> [974,] 627 850 135 446 318 397 257 131 201 360 +#> [975,] 9 358 394 333 526 828 48 199 888 845 +#> [976,] 59 33 5 848 350 993 523 465 845 86 +#> [977,] 367 721 561 19 545 377 392 355 42 55 +#> [978,] 890 375 485 178 617 871 555 41 250 46 +#> [979,] 210 706 684 495 660 335 962 502 233 247 +#> [980,] 260 382 911 477 683 878 769 337 151 991 +#> [981,] 410 552 733 999 678 914 265 921 72 954 +#> [982,] 762 651 37 174 264 162 562 205 497 913 +#> [983,] 830 404 705 364 812 786 868 274 386 221 +#> [984,] 56 312 842 827 713 415 435 190 289 897 +#> [985,] 207 311 10 81 258 159 381 23 282 418 +#> [986,] 117 799 833 236 134 678 659 811 8 425 +#> [987,] 606 826 535 841 634 280 674 218 574 144 +#> [988,] 645 603 711 855 431 596 803 305 616 142 +#> [989,] 703 597 13 216 147 172 60 88 29 272 +#> [990,] 140 570 901 198 388 533 916 17 458 611 +#> [991,] 382 883 956 556 307 151 229 933 260 185 +#> [992,] 664 212 153 119 732 900 244 912 632 482 +#> [993,] 14 59 5 724 976 496 376 123 239 48 +#> [994,] 292 708 280 535 356 618 764 826 847 342 +#> [995,] 906 476 173 232 11 786 600 195 30 404 +#> [996,] 836 189 957 722 837 880 137 47 329 290 +#> [997,] 438 160 831 125 876 815 877 407 917 802 +#> [998,] 730 940 370 170 960 881 313 418 745 115 +#> [999,] 733 981 410 840 806 914 552 97 273 954 +#> [1000,] 429 424 80 251 209 829 683 452 211 630 #> #> $neighbor_distances #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] -#> [1,] 0.37440774 0.5196210 0.6317683 0.6323538 0.8849260 0.8892560 0.9006937 -#> [2,] 0.71849076 0.8712022 0.8970041 0.9249884 0.9328638 0.9559555 0.9912308 -#> [3,] 0.33816647 0.3531914 0.4294108 0.5196530 0.5297383 0.5577980 0.6443834 -#> [4,] 0.54020961 0.6153700 0.6328276 0.6360577 0.6708464 0.6854089 0.7296972 -#> [5,] 0.39339787 0.4755666 0.6066615 0.7330094 0.7611787 0.7646775 0.7696904 -#> [6,] 0.81778517 0.8393568 0.8864097 0.8899425 0.8930137 0.9004203 0.9592937 -#> [7,] 0.31336098 0.4734230 0.4790972 0.5125694 0.5484259 0.5577980 0.5839837 -#> [8,] 0.69429370 0.6999343 0.8040632 0.8374759 0.8581814 0.8620620 0.9037422 -#> [9,] 0.49870522 0.5159316 0.5161472 0.6504423 0.7226073 0.7458232 0.8078439 -#> [10,] 0.43286308 0.6523323 0.8222796 0.8646028 0.9897671 1.0654198 1.0962131 -#> [11,] 0.41437972 0.5560717 0.6561674 0.7609491 0.7669037 0.8590798 0.8752580 -#> [12,] 0.67937879 0.7172980 0.7480645 0.7544614 0.8050573 0.8083640 0.8481635 -#> [13,] 0.52070502 0.6684482 0.7688076 0.7823320 0.8670848 0.9316208 0.9584593 -#> [14,] 0.41137800 0.5708362 0.5865694 0.6090094 0.6456530 0.6700576 0.7213540 -#> [15,] 0.59022782 0.7694994 0.8918625 1.0814758 1.1290545 1.1519124 1.1534854 -#> [16,] 0.45092441 0.4958946 0.5104549 0.5122970 0.5530641 0.6073729 0.6617331 -#> [17,] 0.21549985 0.3255899 0.3544750 0.4664532 0.4715509 0.4860027 0.4879230 -#> [18,] 0.28419387 0.3691577 0.5267358 0.5449690 0.5967973 0.5985593 0.6283001 -#> [19,] 0.60423508 0.9040169 0.9165124 1.0119967 1.0878704 1.1063906 1.1405633 -#> [20,] 0.28229287 0.3660425 0.4033861 0.4280612 0.4487782 0.4534048 0.4866329 -#> [21,] 0.53505778 0.5400066 0.6122105 0.7306741 0.7555545 0.8497530 0.8610543 -#> [22,] 0.21870056 0.3441216 0.3792610 0.4279712 0.4352831 0.4734599 0.4760026 -#> [23,] 0.69971236 0.7776224 0.7876056 0.7994573 0.8586295 0.8605815 0.8819863 -#> [24,] 0.38762218 0.4285535 0.4381970 0.5334751 0.6623435 0.6643578 0.6768378 -#> [25,] 0.53268027 0.6801124 0.6909970 0.7254717 0.7283049 0.7764582 0.7892815 -#> [26,] 0.43329051 0.5178387 0.5360601 0.5642680 0.5666451 0.5944099 0.6307465 -#> [27,] 0.30426516 0.3859418 0.4251838 0.4719293 0.5115982 0.5455742 0.5471404 -#> [28,] 0.42629419 0.4520204 0.4723838 0.5216885 0.5984226 0.6227925 0.6259317 -#> [29,] 0.35403636 0.3840472 0.3876222 0.5544435 0.5753758 0.6441560 0.6696159 -#> [30,] 0.70399445 0.8185857 0.8728922 0.8887481 0.9390512 0.9504278 0.9534198 -#> [31,] 0.54620478 0.5678647 0.5794177 0.5859331 0.6016578 0.6631736 0.6973421 -#> [32,] 0.32203562 0.3870360 0.4510068 0.4565310 0.5181098 0.5219980 0.5803326 -#> [33,] 0.59842366 0.6252209 0.6259422 0.6469902 0.6731264 0.6884798 0.6987678 -#> [34,] 0.42295739 0.4799947 0.4822970 0.5100279 0.7521974 0.7531811 0.7617941 -#> [35,] 0.35319143 0.4240218 0.5113439 0.5796505 0.5815733 0.6434926 0.6531255 -#> [36,] 0.28798006 0.3680010 0.4005744 0.4271074 0.4391532 0.4795506 0.4806273 -#> [37,] 0.46960421 0.5704743 0.5713747 0.7433508 0.8263683 0.9032159 0.9188813 -#> [38,] 0.16379892 0.4343415 0.4634704 0.4812532 0.5262166 0.5456857 0.5900957 -#> [39,] 0.32942541 0.3488723 0.4544843 0.4706264 0.4737524 0.5055472 0.5182899 -#> [40,] 0.46960421 0.5094448 0.8000923 0.8405120 0.8940577 0.9118995 0.9520868 -#> [41,] 0.56070439 0.8039226 0.8458749 0.9259973 0.9706053 1.0019942 1.0221179 -#> [42,] 0.26218164 0.3335003 0.4401235 0.4973035 0.5241576 0.5242244 0.5406525 -#> [43,] 0.63571193 0.7382393 0.9638590 1.0666145 1.0770948 1.0874487 1.0945852 -#> [44,] 0.98042680 0.9936126 1.0111360 1.0134749 1.0909802 1.1755655 1.2292283 -#> [45,] 0.96471043 1.1360815 1.2717714 1.5203067 1.5482659 1.7086648 1.7576296 -#> [46,] 0.92897311 1.0798204 1.2356634 1.2538734 1.2887295 1.3175664 1.3497319 -#> [47,] 0.89238862 0.9257327 0.9620712 0.9739201 0.9943237 1.1340280 1.1505984 -#> [48,] 0.44108247 0.4464113 0.4928736 0.5033910 0.5245417 0.5959135 0.6397210 -#> [49,] 0.39469461 0.3966216 0.4374424 0.4706606 0.4847577 0.4929153 0.6373957 -#> [50,] 0.62219362 0.6576409 0.7388219 0.7729828 0.7943559 0.8368663 0.8794120 -#> [51,] 0.30483279 0.4510571 0.5991109 0.6021361 0.6431851 0.6820095 0.6822274 -#> [52,] 0.16342217 0.3812533 0.4723838 0.4917449 0.5672412 0.6012372 0.6016578 -#> [53,] 0.47146486 0.6398191 0.6982818 0.7187265 0.7796118 0.9114307 0.9247849 -#> [54,] 0.32811395 0.4597374 0.5698973 0.6545683 0.7488184 0.7636551 0.8007657 -#> [55,] 0.26351243 0.2898434 0.3279429 0.3904213 0.4334976 0.4823644 0.5486852 -#> [56,] 0.77615810 0.8922126 0.9410711 0.9435230 0.9454779 0.9498508 0.9649450 -#> [57,] 1.01660350 1.0576989 1.0578482 1.0948736 1.1998130 1.2010383 1.2067120 -#> [58,] 0.31354966 0.3359187 0.4454083 0.5013944 0.5523149 0.5649255 0.6207553 -#> [59,] 0.54093924 0.6735608 0.6915943 0.7171179 0.7925492 0.8258154 0.8404956 -#> [60,] 0.39442631 0.5581936 0.6069573 0.6558298 0.6593543 0.6951015 0.7095590 -#> [61,] 0.42184296 0.4722252 0.4810669 0.5213441 0.5457783 0.5978246 0.6324206 -#> [62,] 0.16342217 0.4269498 0.4520204 0.5193114 0.6631736 0.7057671 0.7128491 -#> [63,] 0.22126147 0.3532780 0.4414033 0.4531874 0.4647006 0.5107906 0.5602252 -#> [64,] 0.33416754 0.4265877 0.4359787 0.4958946 0.5433790 0.6881546 0.7001640 -#> [65,] 0.23679109 0.2815989 0.3487280 0.4295142 0.5025708 0.5573627 0.6129167 -#> [66,] 0.44637144 0.5003019 0.5529245 0.6283844 0.6367535 0.6652489 0.7487575 -#> [67,] 0.33537141 0.5092862 0.5898424 0.5930201 0.6001093 0.6728713 0.6872553 -#> [68,] 0.37747986 0.4014896 0.4185361 0.4482289 0.5682722 0.5703633 0.6131069 -#> [69,] 0.28798006 0.3927377 0.4251838 0.4288953 0.4558640 0.4906690 0.5028235 -#> [70,] 0.54611205 0.6926403 0.7215123 0.7658092 0.8311058 0.9560666 1.0400445 -#> [71,] 0.47206866 0.6357119 0.6360646 0.6926937 0.6989833 0.7644924 0.7893722 -#> [72,] 0.21870056 0.2927399 0.2999043 0.3591081 0.4487782 0.4585332 0.4617932 -#> [73,] 0.30035462 0.5001202 0.5593482 0.5631557 0.6212020 0.6350773 0.6398905 -#> [74,] 0.30645224 0.5000964 0.5348828 0.5447165 0.5564983 0.5910982 0.6571445 -#> [75,] 0.73137409 0.7876294 0.7927559 0.9257327 0.9287029 0.9333650 0.9570342 -#> [76,] 0.40150325 0.4310171 0.4984940 0.5758994 0.5810228 0.5926704 0.7203417 -#> [77,] 0.42677834 0.5655940 0.5780670 0.5869566 0.5955668 0.6814462 0.6902135 -#> [78,] 0.24603251 0.4255550 0.5281018 0.6320025 0.6766829 0.6816221 0.7057718 -#> [79,] 0.44042104 0.5181098 0.5632566 0.5853790 0.5921010 0.6301329 0.6573707 -#> [80,] 1.17838407 1.4621528 1.4891457 1.6146337 1.6568477 1.6983617 1.7513378 -#> [81,] 0.97605309 1.0511801 1.0518557 1.0868473 1.1142342 1.1686700 1.1819750 -#> [82,] 0.30897320 0.4068803 0.5589393 0.5719344 0.6460923 0.6503385 0.7187265 -#> [83,] 0.29770340 0.5268685 0.5810016 0.5937661 0.6260777 0.6646483 0.6767827 -#> [84,] 0.73278181 0.8382064 0.8712902 0.9346618 0.9439012 1.1061611 1.2219257 -#> [85,] 0.63396681 0.7252764 0.8155012 0.8245226 0.8380611 0.9923770 0.9993802 -#> [86,] 0.32458341 0.3933979 0.5125694 0.6410320 0.6680742 0.6691817 0.6752053 -#> [87,] 0.66478616 0.7107108 0.7159460 0.7237704 0.7282900 0.7332213 0.7434692 -#> [88,] 0.30996952 0.3251140 0.3526699 0.5128921 0.5429316 0.6395256 0.6586995 -#> [89,] 0.57281868 0.5758453 0.7006440 0.7207689 0.7258189 0.7296972 0.7965332 -#> [90,] 0.39852216 0.4400132 0.4526669 0.5161778 0.5400066 0.5461164 0.6188844 -#> [91,] 0.48933920 0.6051880 0.6382770 0.6502117 0.6693098 0.7108046 0.7692118 -#> [92,] 0.62260206 0.9165124 1.3085745 1.3806910 1.5870406 1.6285594 1.6554045 -#> [93,] 0.24603251 0.3878538 0.4591714 0.5178387 0.6585143 0.6621358 0.6810870 -#> [94,] 0.30897320 0.6290901 0.6398191 0.6496431 0.7823336 0.7843597 0.8580708 -#> [95,] 0.04497083 0.5930201 0.6119075 0.6270330 0.6429569 0.6600823 0.6656487 -#> [96,] 0.62583943 0.7505155 0.9832066 1.0235993 1.0636559 1.1201775 1.1666406 -#> [97,] 0.35144018 0.6382641 0.7079532 0.7095187 0.7659251 0.8091797 0.8513275 -#> [98,] 0.31801358 0.3401989 0.4208660 0.4271074 0.5054884 0.5429898 0.5665091 -#> [99,] 0.21601832 0.3354368 0.3484150 0.3856758 0.5485465 0.5505203 0.5557009 -#> [100,] 0.41366461 0.5126158 0.5594749 0.5739571 0.6100644 0.6774000 0.7450978 -#> [101,] 0.66441475 0.7549090 0.7557675 0.7765707 0.7936885 0.7990604 0.8064913 -#> [102,] 0.46871727 0.5296746 0.6837906 0.7008518 0.7655323 0.8326505 0.8770413 -#> [103,] 0.76556108 0.7659251 0.7682346 0.9744743 1.0745172 1.1330448 1.1399362 -#> [104,] 0.30557984 0.3708418 0.3794128 0.5570809 0.5645912 0.6157789 0.6886539 -#> [105,] 0.42014793 0.4929323 0.5075120 0.5230954 0.5328842 0.5333565 0.5456871 -#> [106,] 0.60144678 0.9305805 0.9306688 0.9501760 0.9659964 1.0453325 1.0542669 -#> [107,] 0.26191941 0.3335003 0.3864874 0.4739008 0.4901712 0.5262166 0.5277461 -#> [108,] 0.53526753 0.5824204 0.5919049 0.6908379 0.6932066 0.6949184 0.7062489 -#> [109,] 0.32366596 0.3816655 0.5062977 0.5485465 0.6035720 0.6073536 0.6347685 -#> [110,] 0.65787838 0.8523714 1.1802698 1.3560210 1.3630859 1.3759184 1.3968075 -#> [111,] 0.50862957 0.6866783 0.7279623 0.7948560 0.8165282 0.8374849 0.8375440 -#> [112,] 1.55852407 1.5673626 1.6632869 1.6701479 1.7246864 1.7747710 1.7934094 -#> [113,] 0.36644829 0.4296335 0.5638167 0.6098110 0.6319255 0.6431851 0.6599731 -#> [114,] 0.27515565 0.7833691 0.7984154 0.8626899 0.8700936 0.8907433 0.9139923 -#> [115,] 0.38214516 0.6842062 0.7184307 0.8236605 0.8753309 0.9271065 0.9900302 -#> [116,] 0.45027271 0.5457783 0.6602727 0.6741195 0.6863318 0.7091045 0.7172088 -#> [117,] 0.56160326 0.6429118 0.7370743 0.7549090 0.7710974 0.7860382 0.7889454 -#> [118,] 0.23376156 0.3276499 0.3441216 0.3508093 0.5015056 0.5053651 0.5176712 -#> [119,] 0.31583768 0.3737276 0.4558761 0.5437083 0.5458634 0.5974658 0.6560051 -#> [120,] 0.34765690 0.3987382 0.4601763 0.4879230 0.5018809 0.5067646 0.5416199 -#> [121,] 0.58701147 0.5952777 0.6049412 0.6119075 0.6268535 0.6821388 0.7100069 -#> [122,] 0.38404719 0.4381970 0.4623692 0.4922980 0.5168948 0.5305939 0.5628925 -#> [123,] 0.35215632 0.3951595 0.5682765 0.5992893 0.6292636 0.6469049 0.6536885 -#> [124,] 0.37061007 0.3711900 0.3871380 0.5807237 0.5986405 0.6415935 0.6531730 -#> [125,] 1.16275048 1.2245416 1.2926636 1.3602846 1.3698820 1.4084729 1.4638888 -#> [126,] 0.50990188 0.6099109 0.7001640 0.7341859 0.7767447 0.7813376 0.7953612 -#> [127,] 0.38172029 0.5355710 0.5596657 0.5633162 0.5823183 0.5929949 0.6202899 -#> [128,] 0.32678210 0.4734693 0.5506425 0.5621268 0.5665520 0.5690209 0.6215555 -#> [129,] 0.32240302 0.5219120 0.5762402 0.6049412 0.6920584 0.7313320 0.7474944 -#> [130,] 0.49883170 0.6053445 0.7167148 0.7190791 0.7574800 0.7613518 0.7938191 -#> [131,] 0.53564742 0.6130721 0.6764559 0.7958312 0.8108554 0.8286614 0.8786131 -#> [132,] 0.42579509 0.5151876 0.5341619 0.5671062 0.5755747 0.5903237 0.6075006 -#> [133,] 0.35147778 0.3636692 0.3647389 0.4423911 0.5608529 0.5691907 0.5779306 -#> [134,] 0.39681078 0.4251424 0.5178433 0.5361624 0.6805308 0.6867334 0.7135838 -#> [135,] 0.30942474 0.4231522 0.4267138 0.5000046 0.5050926 0.5430369 0.5739390 -#> [136,] 0.41118245 0.4267375 0.4318495 0.4339700 0.4768650 0.5465379 0.5586927 -#> [137,] 0.61307211 0.6772350 0.7043720 0.7118153 0.8149391 0.8453201 0.8556896 -#> [138,] 0.43229124 0.5113181 0.5293639 0.5827702 0.5852424 0.5925780 0.6027970 -#> [139,] 0.53526753 0.6705211 0.7233836 0.7638404 0.7897678 0.7912746 0.8126103 -#> [140,] 0.25761193 0.3248417 0.3820281 0.4265877 0.4509244 0.6123456 0.6371633 -#> [141,] 0.21551060 0.2478560 0.4984940 0.5043320 0.5153898 0.5377246 0.5380901 -#> [142,] 0.23215070 0.3977784 0.4000386 0.4393166 0.4936062 0.5116403 0.5226528 -#> [143,] 0.32484169 0.4430272 0.4500779 0.4606841 0.5433790 0.5530641 0.5891766 -#> [144,] 0.70360030 0.7115000 0.7115202 0.7263464 0.7909070 0.8401681 0.8523100 -#> [145,] 0.53097493 0.5426041 0.5660205 0.8089592 0.9680723 0.9860777 1.0241528 -#> [146,] 0.36684834 0.4257951 0.4369957 0.4393166 0.4547368 0.5026818 0.5330085 -#> [147,] 0.34840672 0.4549819 0.4564327 0.5024490 0.5335413 0.5341757 0.5377761 -#> [148,] 0.68439506 0.7249098 0.8863247 0.9094872 0.9198462 0.9435541 0.9756199 -#> [149,] 0.48461201 0.6281582 0.7102363 0.7320435 0.7869123 0.8343406 0.8597976 -#> [150,] 0.27767287 0.2814221 0.2841270 0.4878354 0.4954478 0.4975521 0.5313888 -#> [151,] 0.37046721 0.4650588 0.4816673 0.4861472 0.5433768 0.5727964 0.5752032 -#> [152,] 0.56256667 0.5770576 0.6789019 0.7157721 0.7351366 0.7589517 0.7694994 -#> [153,] 0.54053002 0.5560717 0.5999067 0.7184908 0.7479200 0.7761110 0.8660131 -#> [154,] 0.54053002 0.6561674 0.8307043 0.8541981 0.8712022 0.9810323 0.9903409 -#> [155,] 0.37489759 0.4336603 0.7790019 0.8323242 0.8554640 0.8577206 0.9099627 -#> [156,] 0.30569236 0.3262743 0.3579049 0.3630452 0.4926383 0.5405824 0.6052169 -#> [157,] 0.64667460 0.7669037 0.8257021 0.8541981 0.9243470 0.9655508 1.0201939 -#> [158,] 0.37740552 0.4020145 0.4190839 0.4591714 0.5281018 0.5550570 0.5788570 -#> [159,] 0.33547237 0.3463819 0.4977218 0.5180707 0.5242244 0.5635180 0.5817520 -#> [160,] 0.35829338 0.5718766 0.5747591 0.5779698 0.6522162 0.7144527 0.7876369 -#> [161,] 0.50669338 0.5422210 0.5631950 0.5689447 0.6092181 0.6320838 0.6627306 -#> [162,] 0.51045490 0.5219120 0.5858995 0.5937850 0.7252764 0.8000330 0.8418996 -#> [163,] 0.37061007 0.4042716 0.5416616 0.6091344 0.6365370 0.7418901 0.7538221 -#> [164,] 0.51229703 0.5239113 0.5903342 0.5937850 0.6369687 0.6395027 0.7197476 -#> [165,] 0.54908168 0.9813251 1.1372137 1.1695009 1.2031595 1.2249379 1.2830620 -#> [166,] 0.61272048 0.7611578 0.7883182 0.8482370 0.8973138 0.8973912 0.9098426 -#> [167,] 0.24308049 0.2554877 0.3695717 0.4638763 0.4841923 0.5672204 0.5678705 -#> [168,] 0.38041963 0.4770930 0.4780638 0.4847577 0.5092416 0.5473634 0.5519264 -#> [169,] 0.26265001 0.6764559 0.6801124 0.7182474 0.8034945 0.8243029 0.9143408 -#> [170,] 0.26578713 0.4558640 0.5643588 0.5758453 0.6031906 0.6038029 0.6317046 -#> [171,] 0.17370456 0.4308061 0.4805783 0.4823644 0.5499564 0.5587297 0.6249264 -#> [172,] 0.26941305 0.4017908 0.5415747 0.5470445 0.5757414 0.5872002 0.6124346 -#> [173,] 0.87618145 0.9526264 0.9565228 0.9713093 1.0146814 1.0413455 1.1054185 -#> [174,] 0.61152392 0.7089670 0.7760067 0.9366138 0.9987533 1.0345146 1.0764891 -#> [175,] 0.55117629 0.6955637 0.8672199 0.9175538 1.0857738 1.0870652 1.1226844 -#> [176,] 0.51603535 0.5265768 0.5388508 0.5712551 0.5801553 0.6707166 0.7064780 -#> [177,] 0.57667920 0.6744389 0.7106979 0.7830243 0.8084727 0.8349234 0.8471915 -#> [178,] 0.35086757 0.4558084 0.4623692 0.5991109 0.5998957 0.6098110 0.6568489 -#> [179,] 0.59394151 0.6259422 0.6412760 0.7072447 0.9181475 0.9528680 0.9805333 -#> [180,] 0.45973796 0.5236926 0.5413020 0.5590320 0.5625617 0.5949277 0.6129280 -#> [181,] 0.48466368 0.4966760 0.5003019 0.5597563 0.5807237 0.6365370 0.6573707 -#> [182,] 0.49667604 0.5257725 0.5446453 0.5665520 0.5922374 0.5939369 0.6009061 -#> [183,] 0.44863069 0.4890375 0.4972940 0.5129245 0.5339640 0.5405824 0.5594749 -#> [184,] 1.54969454 1.6058166 1.7903249 1.8486250 1.9415717 1.9861202 1.9921299 -#> [185,] 0.46840057 0.5643122 0.7830058 0.8577187 0.9074240 0.9099627 0.9585011 -#> [186,] 0.21503155 0.4423911 0.4427498 0.4470150 0.4800804 0.4852145 0.5140889 -#> [187,] 0.54488025 0.5484068 0.6032080 0.6201989 0.6812469 0.6997092 0.7071064 -#> [188,] 0.55211975 0.5650773 0.6230229 0.7717706 0.7985339 0.8089592 0.8240324 -#> [189,] 0.38410060 0.6421988 0.6741195 0.6748141 0.7148040 0.7160836 0.7192255 -#> [190,] 0.29678858 0.3855973 0.3987382 0.4023448 0.4417458 0.4929323 0.5541087 -#> [191,] 0.83653302 0.9011914 1.1703316 1.1948539 1.3102195 1.3296849 1.3600533 -#> [192,] 0.25389733 0.3532200 0.5986405 0.6218608 0.6532183 0.6823172 0.6910984 -#> [193,] 0.22947858 0.3398413 0.4375047 0.5370750 0.5849706 0.5936046 0.5978990 -#> [194,] 0.40798941 0.4111824 0.4547087 0.4821675 0.5014282 0.5111314 0.5392919 -#> [195,] 0.42611375 0.5618296 0.6964333 0.8322004 0.9590741 0.9636064 0.9893164 -#> [196,] 0.40201451 0.4776085 0.5035358 0.5344354 0.5360601 0.5955668 0.6228103 -#> [197,] 0.46147713 0.6051880 0.6178127 0.7489781 0.7982087 0.8318041 0.9819342 -#> [198,] 0.90254645 1.1476636 1.2435210 1.2555075 1.2713360 1.2953993 1.2964965 -#> [199,] 0.35295760 0.4725503 0.6273540 0.6553937 0.6742267 0.7099813 0.7272521 -#> [200,] 0.22003989 0.6339161 0.6577880 0.7028651 0.7089670 0.7099221 0.7364444 -#> [201,] 1.30424483 1.3801370 1.6572063 1.6867596 1.7135375 1.7356769 1.7962741 -#> [202,] 0.96348909 1.1220217 1.2021038 1.2176376 1.3685976 1.4039036 1.4407800 -#> [203,] 0.72611264 0.8111915 0.8342606 0.8372628 0.8585798 0.8709668 1.0290069 -#> [204,] 0.26218164 0.3876053 0.4977218 0.5012997 0.5277461 0.5384173 0.5414872 -#> [205,] 0.32203562 0.4016753 0.4300057 0.5546442 0.5858126 0.5875525 0.6082550 -#> [206,] 0.37711935 0.4536032 0.5418304 0.5571568 0.5603790 0.5993868 0.6085266 -#> [207,] 1.29870348 1.4759336 1.5193207 1.6065617 1.6335442 1.6481263 1.6744164 -#> [208,] 0.41828293 0.4505434 0.5149747 0.5504608 0.5652963 0.6662338 0.6896558 -#> [209,] 1.09602517 1.3455591 1.3968001 1.4076033 1.4311583 1.4532473 1.4562446 -#> [210,] 0.23259817 0.2557204 0.3945140 0.4285865 0.5073673 0.5450982 0.5976732 -#> [211,] 0.57035503 0.6708464 0.6737630 0.7192255 0.7207689 0.7496445 0.7887201 -#> [212,] 0.39122971 0.4981192 0.5229825 0.5269430 0.5292013 0.5795555 0.5996315 -#> [213,] 0.35637992 0.4327384 0.4632784 0.4996657 0.5418139 0.5668559 0.5799450 -#> [214,] 0.50944477 0.5110197 0.5355926 0.5386034 0.5713747 0.5859775 0.6705592 -#> [215,] 0.34791594 0.5351012 0.5943828 0.6316720 0.6639791 0.7338786 0.7368381 -#> [216,] 0.27087776 0.2839025 0.3817311 0.5293472 0.5908624 0.6269716 0.6411617 -#> [217,] 0.39744238 0.4157032 0.4207887 0.5008248 0.5621268 0.5672412 0.6119784 -#> [218,] 0.33093201 0.5025979 0.5581936 0.5705094 0.5770479 0.5935215 0.5974658 -#> [219,] 0.47130002 0.4807848 0.5290914 0.6324410 0.6944847 0.7013259 0.7344657 -#> [220,] 0.50139444 0.6117694 0.6213244 0.6379400 0.6655542 0.7627878 0.7797618 -#> [221,] 0.17049041 0.4410825 0.4612374 0.4953889 0.5724994 0.6252209 0.7118564 -#> [222,] 0.95693748 1.1132546 1.1244440 1.1303904 1.2668734 1.3012856 1.3358036 -#> [223,] 0.28983255 0.3401989 0.3488723 0.4446433 0.4599618 0.4971177 0.5089164 -#> [224,] 0.68358791 0.7398657 0.8153097 0.9655508 1.0165439 1.0306387 1.0955916 -#> [225,] 0.52787810 0.6537160 0.7764582 0.8385543 0.8581661 0.9558473 0.9584774 -#> [226,] 0.47700844 0.5216885 0.5275571 0.5504608 0.6699999 0.6742696 0.6864118 -#> [227,] 0.40229399 0.4330564 0.4653143 0.4910223 0.5192757 0.5500262 0.5755747 -#> [228,] 0.16765161 0.3794128 0.3972535 0.4516268 0.5227325 0.5984751 0.7192160 -#> [229,] 0.56725251 0.5680787 0.5804492 0.6965240 0.7132296 0.7339512 0.7397689 -#> [230,] 0.53481399 0.6018809 0.6580955 0.6617331 0.6902225 0.7393891 0.7903442 -#> [231,] 0.56754181 0.6221936 0.7386678 0.7643205 0.7936885 0.8099410 0.8349234 -#> [232,] 0.33706501 0.5086939 0.5351012 0.5672952 0.6229590 0.6575454 0.7062489 -#> [233,] 0.51643360 0.5335565 0.5571488 0.5878117 0.7780923 0.8003594 0.8174984 -#> [234,] 0.38920400 0.6969675 0.7000426 0.7243613 0.7523700 0.7669118 0.7962175 -#> [235,] 0.37712295 0.3991980 0.5946666 0.6124585 0.6698246 0.7125412 0.7172980 -#> [236,] 0.34385430 0.3561176 0.5080554 0.5570809 0.5827833 0.6707290 0.6944958 -#> [237,] 0.35853973 0.3927377 0.4391532 0.4562070 0.4633042 0.4707987 0.5236926 -#> [238,] 0.59462859 0.6323538 0.6356349 0.6532442 0.7442849 0.7569891 0.8079612 -#> [239,] 0.59284156 0.6264562 0.8839687 0.8899777 0.9636064 0.9918935 1.0633670 -#> [240,] 0.24728549 0.5359625 0.5978341 0.6676988 0.7735319 0.7764392 0.7795528 -#> [241,] 0.39744238 0.4338809 0.4520274 0.5868525 0.6012372 0.6065631 0.6152847 -#> [242,] 0.37716013 0.4836585 0.5110197 0.5421546 0.5715196 0.6801882 0.6905674 -#> [243,] 0.28394795 0.3820281 0.3876899 0.3974501 0.4430272 0.5167141 0.5183246 -#> [244,] 0.82430292 0.9597073 0.9680445 1.3547966 1.3548550 1.3607090 1.3921615 -#> [245,] 0.57624017 0.5876477 0.6268535 0.6270330 0.6747779 0.6848974 0.7931200 -#> [246,] 0.31299205 0.5034560 0.5043867 0.5419253 0.5535397 0.5575974 0.7085888 -#> [247,] 0.64262965 0.8921008 0.9305805 0.9339677 1.0069366 1.0193305 1.1414821 -#> [248,] 0.48782602 0.5189966 0.5340295 0.5627590 0.5878117 0.7211326 0.7482774 -#> [249,] 0.29951135 0.4259536 0.4972859 0.6099927 0.6159928 0.6249264 0.6333368 -#> [250,] 1.20210381 1.5519966 1.7618684 1.9120597 1.9633872 2.0200774 2.0272466 -#> [251,] 0.35031851 0.4776085 0.5788570 0.6083226 0.6146147 0.6818975 0.7005643 -#> [252,] 0.32958296 0.3974501 0.4641185 0.4644079 0.4666262 0.5781133 0.5823183 -#> [253,] 0.64262965 0.7900258 0.9860777 0.9909285 1.0919575 1.1173512 1.1255470 -#> [254,] 0.31801358 0.3946047 0.5089164 0.6378590 0.6576409 0.6856637 0.6870499 -#> [255,] 0.56754181 0.6402904 0.7009357 0.7173158 0.7729828 0.9631997 1.0913812 -#> [256,] 0.34385430 0.5192776 0.6300583 0.6377344 0.7117716 0.7386289 0.7809774 -#> [257,] 0.22952545 0.3700009 0.4237522 0.4269215 0.4446646 0.4706503 0.4720348 -#> [258,] 0.44150652 0.8000399 0.9923017 1.1193029 1.2113795 1.2947642 1.3275814 -#> [259,] 0.85237136 1.0701032 1.2366975 1.4143776 1.5372939 1.5401955 1.6497181 -#> [260,] 0.34800816 0.4439292 0.4792568 0.5645975 0.5678585 0.5823287 0.5922374 -#> [261,] 0.35396396 0.4361154 0.4656768 0.4666262 0.5121672 0.5249327 0.5773453 -#> [262,] 0.71907907 0.7288427 0.7508510 0.7767205 0.7890183 0.9310220 0.9435470 -#> [263,] 0.29770340 0.4141110 0.5676076 0.6408758 0.6567339 0.6658709 0.7265516 -#> [264,] 0.19402179 0.2678304 0.3317761 0.5779306 0.5793657 0.5922482 0.6011110 -#> [265,] 0.52654089 0.5694851 0.7143330 0.7409058 0.7444994 0.7695044 0.8202393 -#> [266,] 0.43286308 0.6539635 0.7156137 1.0338277 1.0880982 1.1014870 1.2061600 -#> [267,] 0.36675682 0.5501011 0.6080251 0.6144638 0.6671930 0.6740908 0.6979966 -#> [268,] 0.59586692 0.7958265 0.8402377 0.8576936 0.9461251 0.9771705 1.0383945 -#> [269,] 0.54260412 0.5650773 0.6896558 0.7013672 0.8024806 0.8243659 0.8619546 -#> [270,] 0.22500973 0.4578056 0.5132158 0.5347966 0.5573906 0.5618274 0.5656646 -#> [271,] 0.26941305 0.2701207 0.4742903 0.5017003 0.5199536 0.5307726 0.5483506 -#> [272,] 0.48405150 0.5934796 0.7977922 0.8339237 0.8528246 0.9053046 0.9145482 -#> [273,] 0.50643364 0.6628639 0.7460642 0.7497779 0.7905453 0.8047521 0.8092070 -#> [274,] 0.56440130 0.6220324 0.6527405 0.7055652 0.7417904 0.7430240 0.7638724 -#> [275,] 0.64111107 0.7362176 0.7411347 0.8071888 0.9011914 0.9139025 0.9205592 -#> [276,] 0.48583868 1.1128216 1.1280921 1.2256428 1.2970298 1.3186694 1.3719151 -#> [277,] 0.27111546 0.5458634 0.5522195 0.5631557 0.6328689 0.6480226 0.6719849 -#> [278,] 0.32240302 0.5092862 0.5285431 0.5858995 0.6302899 0.6656487 0.6848974 -#> [279,] 0.54272310 0.9510885 1.0333731 1.0378200 1.0842766 1.0886630 1.1258774 -#> [280,] 0.44001319 0.4482383 0.5350578 0.5680075 0.7093066 0.7229251 0.7477676 -#> [281,] 0.48782602 0.5382450 0.6441751 0.6856915 0.7746998 0.8234598 0.8382064 -#> [282,] 0.63216176 0.6843951 0.7033122 0.7206454 0.8457100 0.8556248 0.9346566 -#> [283,] 0.20119578 0.4330050 0.5292013 0.6444889 0.6596934 0.6674573 0.7008368 -#> [284,] 0.41791948 0.5500002 0.5616033 0.6644147 0.6684482 0.7115284 0.7714425 -#> [285,] 0.28122955 0.2898325 0.3042652 0.3680010 0.4208660 0.4288953 0.4544843 -#> [286,] 0.83117402 0.9536993 1.0759830 1.0794063 1.0797320 1.1290180 1.2017439 -#> [287,] 0.16765161 0.2524951 0.3055798 0.4410636 0.4944418 0.5827833 0.6699247 -#> [288,] 0.56499395 0.6104109 0.6494149 0.6533586 0.6589826 0.6912301 0.7058457 -#> [289,] 0.56128240 0.6060546 0.6891124 0.7835165 0.8987008 0.9107711 0.9328638 -#> [290,] 0.44254775 0.4739008 0.4938839 0.4973035 0.5154688 0.5364357 0.5900000 -#> [291,] 0.43114166 0.5037232 0.7502026 0.8022048 0.8222796 0.9218647 0.9456269 -#> [292,] 0.28122955 0.3585397 0.4005744 0.4599618 0.4719293 0.4737524 0.4941077 -#> [293,] 0.45982563 0.4627462 0.6790274 0.7352688 0.7444994 0.7550201 0.8146329 -#> [294,] 0.33093201 0.3737276 0.4075892 0.4965954 0.5459429 0.6212020 0.6413108 -#> [295,] 1.22922834 1.6228459 1.7320149 1.8213842 1.9268269 2.0307088 2.0696552 -#> [296,] 0.69835149 0.7256993 0.7417198 0.8211896 0.8380895 0.8780206 0.8932582 -#> [297,] 0.24047378 0.3771601 0.4302289 0.4714800 0.5026818 0.5079815 0.5116403 -#> [298,] 0.97717053 1.0341550 1.1530179 1.1615413 1.1964910 1.2109834 1.2236306 -#> [299,] 0.46871727 0.5940345 0.6718302 0.6963547 0.7474774 0.7541661 0.7727392 -#> [300,] 0.40337394 0.4141110 0.4921739 0.4987909 0.5418304 0.6260777 0.6305279 -#> [301,] 0.38832700 0.5591449 0.7470331 0.8280040 0.9345298 1.0007794 1.0097257 -#> [302,] 1.05544757 1.0864902 1.2096848 1.2278592 1.2559593 1.3363969 1.3384323 -#> [303,] 1.05931979 1.4083979 1.5475604 1.5779953 1.5884435 1.6557957 1.7377046 -#> [304,] 0.61747662 0.6944256 0.7058491 0.7141267 0.7232051 0.7310167 0.7342439 -#> [305,] 0.99875331 1.1196969 1.1629325 1.1712476 1.1934590 1.2020231 1.2147471 -#> [306,] 0.16044299 0.3508093 0.3586839 0.3947949 0.4432703 0.5215421 0.5766561 -#> [307,] 0.75555445 0.7985300 0.9673132 1.0086205 1.0165799 1.0217857 1.0825259 -#> [308,] 0.19402179 0.3555067 0.4337352 0.5723201 0.5901790 0.6238143 0.6588093 -#> [309,] 0.15739874 0.2927399 0.3094247 0.3420135 0.4140120 0.4279712 0.4617395 -#> [310,] 0.42526236 0.5833116 0.6245978 0.6534410 0.6637959 0.6728224 0.7151564 -#> [311,] 0.65948086 0.7622319 0.7696701 0.7931384 0.8242023 0.8477518 0.9194493 -#> [312,] 0.38594183 0.4376983 0.4930348 0.6038293 0.6202930 0.6476761 0.6973202 -#> [313,] 0.29619568 0.5594014 0.5688117 0.5864253 0.5870340 0.6421234 0.6713917 -#> [314,] 0.27111546 0.5001202 0.5686945 0.6167773 0.6353030 0.7064299 0.7158896 -#> [315,] 0.45340478 0.4768650 0.4864367 0.4908308 0.4909328 0.5154688 0.5219980 -#> [316,] 0.62039678 0.7758929 0.7894831 0.7977922 0.8005508 0.8373456 0.8664193 -#> [317,] 0.34725973 0.4317180 0.4657972 0.4728753 0.4784125 0.4947778 0.5146067 -#> [318,] 0.66774590 1.0664273 1.2667554 1.2998875 1.3524285 1.3923727 1.4089270 -#> [319,] 0.53683528 0.6458406 0.6819790 0.6968820 0.7221679 0.7954932 0.8013005 -#> [320,] 0.27692957 0.3295830 0.4315167 0.4361154 0.4632784 0.5194180 0.5731871 -#> [321,] 0.37740552 0.5298873 0.5674285 0.6048902 0.6227255 0.6320025 0.6411027 -#> [322,] 0.35031851 0.5399719 0.6108232 0.6269043 0.6609895 0.7051456 0.7055877 -#> [323,] 0.95372941 0.9592937 0.9818004 0.9823114 1.0534956 1.0553641 1.0968400 -#> [324,] 0.18607074 0.4439292 0.5175486 0.5340295 0.5501744 0.5571488 0.5711820 -#> [325,] 0.41137800 0.5682765 0.5934796 0.6069523 0.7628360 0.7758584 0.7772044 -#> [326,] 0.49029828 0.5084776 0.5933649 0.6258394 0.8065527 0.8477603 0.8576452 -#> [327,] 0.67399602 0.6808892 0.7301544 0.7776224 0.7818618 0.7955500 0.8297262 -#> [328,] 0.83159959 0.9046579 1.3424826 1.3942088 1.3985994 1.4262390 1.4263432 -#> [329,] 0.62645619 0.8139930 1.0637702 1.1379397 1.2330201 1.2445042 1.2717714 -#> [330,] 0.34718697 0.3912297 0.4194307 0.4439014 0.5228171 0.5727556 0.6406330 -#> [331,] 0.26035703 0.5753758 0.5946666 0.6105969 0.6638629 0.6697832 0.6705406 -#> [332,] 0.30855503 0.3710229 0.4878354 0.5026781 0.5290914 0.5319935 0.5828565 -#> [333,] 0.32922558 0.3842350 0.4455320 0.5087297 0.5693583 0.5817674 0.6002576 -#> [334,] 0.43580695 0.4922980 0.5026781 0.5831288 0.5879639 0.6053585 0.6735620 -#> [335,] 0.57875264 0.6839511 0.6853032 0.6863318 0.6982818 0.7301646 0.7401596 -#> [336,] 0.23416207 0.4904582 0.5355710 0.5864253 0.5963909 0.6157789 0.6580955 -#> [337,] 0.56117283 0.9724704 1.0097257 1.2080045 1.3264815 1.4421302 1.4433116 -#> [338,] 0.46558168 0.4841030 0.6402904 0.9160282 0.9315429 0.9379916 1.0990903 -#> [339,] 0.56536588 0.6463297 0.6586995 0.6940481 0.7130196 0.7237704 0.7773880 -#> [340,] 0.40700908 0.5399719 0.5425732 0.5478941 0.5985593 0.6146147 0.6517178 -#> [341,] 0.23253009 0.2841939 0.5425732 0.5526583 0.5707032 0.6098153 0.6189824 -#> [342,] 0.33335252 0.4853275 0.5666667 0.5674679 0.5784783 0.5826087 0.5944991 -#> [343,] 0.91191200 0.9235948 0.9993258 1.0262315 1.0356451 1.0573300 1.0660545 -#> [344,] 0.21286690 0.3670160 0.4329317 0.5043867 0.5509312 0.5822610 0.6361994 -#> [345,] 0.32627428 0.4014896 0.4233858 0.4694141 0.4925961 0.4972940 0.5446308 -#> [346,] 0.27767287 0.2783384 0.3710229 0.3929441 0.4713000 0.4934612 0.4958311 -#> [347,] 0.49907726 0.6222739 0.7091526 0.8132572 0.8963111 0.9075966 1.0341483 -#> [348,] 0.21792988 0.5361539 0.5793089 0.5827702 0.5841615 0.5937395 0.6079173 -#> [349,] 0.49561025 0.7515701 0.7900258 0.7948560 0.8526947 0.8921008 0.9249440 -#> [350,] 0.15272180 0.3451188 0.5312809 0.5427308 0.5455492 0.5483506 0.5682192 -#> [351,] 0.50111140 0.5290405 0.5388508 0.5638882 0.6842062 0.6856766 0.7081862 -#> [352,] 0.48405150 0.9997366 1.0063590 1.0186303 1.0258218 1.0370866 1.0842196 -#> [353,] 0.85506147 0.9796234 0.9997460 1.0331354 1.0857738 1.1596754 1.1766655 -#> [354,] 0.33886686 0.7598023 0.7773880 0.8075970 0.8530453 0.8797843 0.9533309 -#> [355,] 0.53824498 0.7482774 0.8041277 0.8343406 0.8527889 0.8808184 0.9057698 -#> [356,] 0.39460346 0.4735638 0.5339004 0.5406958 0.6300583 0.6759686 0.6760014 -#> [357,] 0.36786814 0.4943045 0.5858722 0.6555239 0.6883619 0.7011929 0.7140176 -#> [358,] 0.54467172 0.6008991 0.6133631 0.6281582 0.7045401 0.7285143 0.7305726 -#> [359,] 0.49538891 0.5077185 0.5161778 0.6036898 0.6470808 0.6509040 0.6822214 -#> [360,] 0.33360306 0.3951510 0.5297383 0.5445057 0.5796505 0.6006658 0.6055141 -#> [361,] 0.17049041 0.5033910 0.5077185 0.6048211 0.6167268 0.6264364 0.6731264 -#> [362,] 0.30195725 0.4376983 0.5229335 0.5471404 0.5548141 0.5564983 0.5812133 -#> [363,] 0.60005117 0.6010209 0.6738717 0.7179053 0.8279851 0.8281021 0.8510822 -#> [364,] 0.66774590 1.3163298 1.4704140 1.4948077 1.4982230 1.5405538 1.5528732 -#> [365,] 0.40688031 0.5753531 0.6290901 0.6897839 0.7227850 0.7229793 0.7529551 -#> [366,] 0.33416754 0.6339668 0.7072508 0.7096127 0.7341859 0.7492985 0.7689684 -#> [367,] 0.77150740 0.8281860 0.8365330 0.8415089 0.8481635 0.8571622 0.8613339 -#> [368,] 0.93525318 0.9501049 1.0214541 1.0440251 1.0497149 1.0786428 1.1421249 -#> [369,] 0.75502011 0.8643716 0.8916613 0.8925923 0.9750515 1.1627505 1.1896890 -#> [370,] 0.41366461 0.5810245 0.6492271 0.6670795 0.7102363 0.7141773 0.7190354 -#> [371,] 0.22947858 0.4005975 0.4329269 0.4377666 0.4958311 0.5414789 0.5570704 -#> [372,] 0.28229287 0.3060863 0.4140120 0.4617932 0.4860057 0.4901277 0.5107906 -#> [373,] 0.42234308 0.4251424 0.6440649 0.6532035 0.6593543 0.6997124 0.7057718 -#> [374,] 0.35705946 0.4944418 0.5227325 0.6337435 0.7313741 0.7448075 0.7467064 -#> [375,] 0.43000568 0.4510068 0.4537805 0.4770084 0.4908308 0.6091098 0.6605649 -#> [376,] 0.70550896 0.8658663 1.0162033 1.1059807 1.1066440 1.1351071 1.1641759 -#> [377,] 0.73231115 0.7330094 0.7646062 0.7711267 0.8413085 0.8651759 0.8653694 -#> [378,] 0.51593162 0.6416642 0.7694242 0.8225500 0.8955663 0.9084808 0.9439012 -#> [379,] 0.46123736 0.5245417 0.6048211 0.6248637 0.6372920 0.7045773 0.7268233 -#> [380,] 0.41684967 0.4332905 0.5386192 0.5518292 0.5708686 0.5978990 0.6011880 -#> [381,] 0.47919111 0.4792568 0.4871539 0.5175486 0.5446453 0.5682192 0.6344623 -#> [382,] 0.48667127 0.5048615 0.5272385 0.5503752 0.5544435 0.5757508 0.6004304 -#> [383,] 1.39237913 1.4389659 1.4775812 1.5511146 1.6401882 1.6666768 1.7071872 -#> [384,] 1.11081929 1.1862048 1.2363080 1.3240156 1.3580938 1.3619310 1.3934562 -#> [385,] 0.84719154 0.9257695 0.9259973 0.9631997 1.0528749 1.1507484 1.2607130 -#> [386,] 0.21549985 0.2927903 0.4528098 0.4554006 0.4847586 0.5067646 0.5147386 -#> [387,] 0.25548771 0.2627143 0.3012077 0.3369672 0.5852312 0.6533586 0.6665172 -#> [388,] 0.38313595 0.4852145 0.5667683 0.5705758 0.5723201 0.5816681 0.5817390 -#> [389,] 0.36776757 0.3820516 0.5654415 0.6478635 0.6581621 0.7580703 0.7614613 -#> [390,] 0.44042104 0.4462403 0.4861098 0.6844823 0.6898711 0.6920427 0.7149602 -#> [391,] 0.37755185 0.4720687 0.4748450 0.6676814 0.6830605 0.7232436 0.7517080 -#> [392,] 0.49303475 0.6282661 0.6352669 0.7280407 0.7822611 0.7883182 0.8423544 -#> [393,] 0.24156076 0.3333525 0.4894152 0.4907465 0.6046438 0.6096974 0.6198758 -#> [394,] 0.75980226 0.9182698 1.0389936 1.0786253 1.0842766 1.1125976 1.1204943 -#> [395,] 0.79131716 0.8450893 0.8701179 0.9600946 0.9620011 1.1613341 1.1650136 -#> [396,] 0.46840057 0.6900040 0.7541661 0.7634109 0.8923103 0.9210998 0.9261443 -#> [397,] 0.39460470 0.4769464 0.4993423 0.5605158 0.5964247 0.6108362 0.6189705 -#> [398,] 0.54175410 0.6101697 0.6214295 0.7347792 0.7857347 0.8037321 0.8482199 -#> [399,] 0.42443846 0.4946278 0.4988318 0.4991808 0.5728891 0.5872002 0.6422448 -#> [400,] 0.40589754 0.5994650 0.6405285 0.6597749 0.7341665 0.7384536 0.7440294 -#> [401,] 0.33547237 0.3876053 0.5448803 0.5742499 0.5754628 0.6805831 0.7048972 -#> [402,] 0.52774869 0.7536813 0.7796129 0.8243505 0.8382165 0.8643576 0.9220884 -#> [403,] 0.61366148 0.6602462 0.7427637 0.7735705 0.8246115 0.8442161 0.8613048 -#> [404,] 0.35215632 0.4564511 0.6322821 0.6395455 0.7042088 0.7094070 0.7266282 -#> [405,] 0.50924156 0.5422210 0.5544217 0.5690209 0.5959135 0.6045659 0.6229129 -#> [406,] 0.57640862 0.7099221 0.7166143 0.7249098 0.7888289 0.8557293 0.8600432 -#> [407,] 0.27916916 0.3484067 0.4446646 0.4531318 0.4875835 0.5116676 0.5139554 -#> [408,] 0.32811395 0.3350727 0.3440006 0.4969256 0.6380791 0.6789776 0.7619706 -#> [409,] 0.33360306 0.4789346 0.4905156 0.5192757 0.5432577 0.5903237 0.6025242 -#> [410,] 0.51734179 0.8135626 0.9046579 0.9546533 0.9682437 1.0339429 1.0568210 -#> [411,] 0.51230855 0.7115000 0.7758929 0.7828679 0.9054288 1.0238655 1.1780441 -#> [412,] 0.56052284 0.6773700 0.9139025 0.9216663 1.0707815 1.0758797 1.1157012 -#> [413,] 0.27429430 0.4174707 0.4715509 0.4769901 0.5313888 0.5681010 0.5757508 -#> [414,] 0.65431994 0.7272521 0.7962587 0.8683901 0.8706834 1.0330764 1.0452828 -#> [415,] 0.52130015 0.5345360 0.6173324 0.6322821 0.6335443 0.7028651 0.7036003 -#> [416,] 0.80280506 0.8307399 0.8473081 0.9751862 0.9957300 1.0787663 1.2395073 -#> [417,] 0.63880966 0.6527405 0.7013672 0.7099813 0.7667526 0.7864823 0.8593760 -#> [418,] 0.17091574 0.2557204 0.4154745 0.4707840 0.4996657 0.5305223 0.6249691 -#> [419,] 0.91355647 0.9407524 1.1901579 1.2092175 1.2215077 1.2843890 1.2951655 -#> [420,] 0.44077352 0.4423909 0.6316720 0.6967569 0.7555210 0.7897678 0.7911129 -#> [421,] 1.18129626 1.1820783 1.2192175 1.2663894 1.4015970 1.4078856 1.5088903 -#> [422,] 0.60188092 0.7306779 0.7614894 0.8201824 0.8507603 0.8563820 0.8624440 -#> [423,] 0.37105317 0.4343819 0.4415877 0.4975265 0.4978055 0.5155221 0.6055141 -#> [424,] 1.03306172 1.0416197 1.0467315 1.1375541 1.2039755 1.2894666 1.2903858 -#> [425,] 0.44637144 0.5257725 0.5597563 0.6685950 0.6792135 0.7737699 0.7910788 -#> [426,] 0.38205163 0.4427894 0.5293472 0.5416102 0.5452154 0.5486471 0.6135617 -#> [427,] 0.92897311 1.4607150 1.7194306 1.7638615 1.8088267 1.8113200 1.8456745 -#> [428,] 0.36893463 0.5189327 0.5674679 0.6249000 0.6716065 0.6980939 0.7404938 -#> [429,] 0.31315190 0.6597764 0.7347792 0.8168133 0.8300385 0.8385543 0.8550615 -#> [430,] 0.56117283 0.9280705 1.0769471 1.0922780 1.2842654 1.3766206 1.4703591 -#> [431,] 0.35991731 0.6071260 0.6503385 0.6590381 0.6897839 0.7125915 0.7392944 -#> [432,] 0.27515565 0.6780247 0.7875097 0.8063710 0.8114488 0.8716991 0.8797149 -#> [433,] 0.32404141 0.4805979 0.5681275 0.5712551 0.5734678 0.5900957 0.6468046 -#> [434,] 0.33579434 0.5409392 0.5437083 0.5716376 0.7179293 0.7368908 0.7704097 -#> [435,] 0.51962096 0.8417451 0.8673370 0.9462979 0.9760531 1.0758839 1.1064294 -#> [436,] 0.35551633 0.5461164 0.6081071 0.7107542 0.7305726 0.7630830 0.7731162 -#> [437,] 0.22473774 0.2619194 0.3630418 0.3737517 0.4401235 0.4417458 0.4634704 -#> [438,] 0.39662159 0.4432703 0.4436377 0.4566741 0.5134027 0.5176712 0.5475328 -#> [439,] 0.24156076 0.4339481 0.4853275 0.5150846 0.5453835 0.5731871 0.6445660 -#> [440,] 0.42629419 0.4269498 0.4917449 0.5967956 0.7033093 0.7925975 0.8220188 -#> [441,] 0.47387022 0.4973497 0.5272385 0.5500262 0.5524280 0.5579955 0.5641639 -#> [442,] 0.69234816 0.8231293 0.8600432 0.8741934 0.8783775 0.9141506 0.9162641 -#> [443,] 0.26578713 0.3455166 0.5271173 0.5728187 0.6090574 0.6193783 0.6266733 -#> [444,] 0.30916496 0.3856758 0.4017785 0.4945967 0.5464797 0.5544855 0.5725951 -#> [445,] 0.50248079 0.5973751 0.6198012 0.7106098 0.7710974 0.7735319 0.7790543 -#> [446,] 0.30696916 0.4064382 0.4439416 0.5047480 0.6406330 0.6714506 0.7422157 -#> [447,] 0.94100371 1.0331354 1.0410825 1.0532556 1.1293918 1.1827213 1.2545704 -#> [448,] 0.85654824 1.1190720 1.1199056 1.1775246 1.1937552 1.2525599 1.2540978 -#> [449,] 0.72588120 0.9358353 0.9492661 1.0811068 1.0912420 1.1134560 1.1234979 -#> [450,] 0.49268324 0.5296746 0.7474774 0.7683373 0.8557396 0.8643716 0.9074240 -#> [451,] 0.40730826 0.4722252 0.4829929 0.5956886 0.6168834 0.6456856 0.6482295 -#> [452,] 0.43750473 0.4411643 0.5386192 0.5570704 0.5666451 0.5785084 0.5869566 -#> [453,] 0.27833841 0.2841270 0.3683553 0.4005975 0.4819972 0.5281680 0.5319935 -#> [454,] 0.55997084 0.6393230 0.7498951 0.7731162 0.8337882 0.8384616 0.8678513 -#> [455,] 0.39223456 0.4003260 0.4009120 0.4256820 0.4335879 0.4368795 0.4841923 -#> [456,] 0.31583768 0.3357943 0.4075892 0.4683504 0.6180513 0.6915943 0.7676689 -#> [457,] 0.19718617 0.2507500 0.2952804 0.4110020 0.4269215 0.4505302 0.4861472 -#> [458,] 0.79403055 0.9079105 0.9744997 1.0245793 1.0396396 1.0684175 1.0798204 -#> [459,] 0.41279177 0.4735638 0.4978055 0.5009526 0.5194236 0.5210512 0.5656646 -#> [460,] 0.18365652 0.3565099 0.3737517 0.4901712 0.5012997 0.5406525 0.5541087 -#> [461,] 0.33777507 0.4185361 0.4500143 0.5213931 0.5732926 0.5733587 0.6311623 -#> [462,] 0.34000005 0.4547087 0.4803415 0.4979181 0.4981605 0.5139271 0.5324105 -#> [463,] 0.50958632 0.5724994 0.5762256 0.5984237 0.6036898 0.6167249 0.6167268 -#> [464,] 0.41791948 0.5207050 0.6310681 0.6748141 0.6753137 0.7997849 0.8257319 -#> [465,] 0.41908392 0.5298873 0.6748081 0.6816221 0.7071701 0.7271169 0.7385645 -#> [466,] 1.34494781 1.5233323 1.5635876 1.6090008 1.7593662 1.7745993 1.8503743 -#> [467,] 0.79853002 0.8112394 0.9556263 1.0278128 1.0292884 1.0529251 1.0797320 -#> [468,] 0.67399602 0.8083640 0.8330092 0.8502555 0.8880128 0.8915497 0.9213053 -#> [469,] 0.63932303 0.6410085 0.7169540 0.8022048 0.8101539 0.8853278 0.8998839 -#> [470,] 0.35517167 0.5000046 0.5068350 0.5085941 0.5143304 0.5251669 0.5482755 -#> [471,] 0.36491652 0.3965035 0.5752258 0.6001995 0.6997092 0.7815906 0.8311178 -#> [472,] 0.36304515 0.5643803 0.5915972 0.6311051 0.6366774 0.6652489 0.6658170 -#> [473,] 0.15272180 0.3878751 0.4335768 0.4719275 0.5506425 0.5845838 0.5928785 -#> [474,] 0.43303048 0.4391350 0.4656768 0.5288773 0.5328568 0.5817674 0.5961361 -#> [475,] 0.53830065 1.1780441 1.1802566 1.1812963 1.3166412 1.3192053 1.3597177 -#> [476,] 0.27692957 0.3539640 0.3934326 0.4327384 0.4391350 0.4641185 0.4707840 -#> [477,] 0.30784366 0.4136345 0.4267375 0.4565310 0.5014282 0.5324105 0.5731336 -#> [478,] 0.14874895 0.3816655 0.5239113 0.6164456 0.6900380 0.6975582 0.7122184 -#> [479,] 0.54272310 0.6060152 0.6884798 0.7072447 0.7911542 0.7989374 0.8566173 -#> [480,] 0.43637557 0.7652942 0.7878777 0.8075332 0.8276442 0.9581094 0.9721621 -#> [481,] 0.30696916 0.3199699 0.3438252 0.4263777 0.4439014 0.5274743 0.6674573 -#> [482,] 0.34551656 0.4346415 0.5532540 0.5643588 0.6144827 0.6421988 0.6648602 -#> [483,] 0.50575352 0.7093871 0.7159460 0.7826749 0.8296502 0.8301152 0.8694828 -#> [484,] 0.39196996 0.4252624 0.6739281 0.7272578 0.7433350 0.7891056 0.8303995 -#> [485,] 0.32267120 0.5123086 0.5447285 0.6203968 0.7115202 0.8486390 0.8656488 -#> [486,] 0.61082321 0.6598523 0.7005643 0.8473081 0.8643576 0.9271097 0.9627590 -#> [487,] 0.37131494 0.5290405 0.6032977 0.6206803 0.6283001 0.6460744 0.6707166 -#> [488,] 0.60423508 0.6226021 1.0455526 1.1612867 1.2450324 1.2661239 1.2846899 -#> [489,] 0.60605455 0.7563084 0.8980437 0.9233367 1.0435580 1.0566689 1.0593198 -#> [490,] 0.38529405 0.5153898 0.5944632 0.6035720 0.6498777 0.6666415 0.6975582 -#> [491,] 0.69234816 0.7206454 0.7888289 0.8132450 0.8274062 0.8489513 0.8564503 -#> [492,] 1.15191239 1.3899942 1.4500010 1.4885976 1.5228824 1.5852860 1.6965329 -#> [493,] 0.56315141 0.6642650 0.6965077 0.6999140 0.7645853 0.7683081 0.7897385 -#> [494,] 0.48583868 1.1109211 1.1695009 1.3133883 1.3257371 1.3295063 1.3357156 -#> [495,] 0.78233201 1.0637702 1.1451020 1.2800477 1.3045123 1.3432057 1.3498040 -#> [496,] 0.58121331 0.5842185 0.5934716 0.7158673 0.7288453 0.8039226 0.8781543 -#> [497,] 0.60144678 0.6523766 0.7815906 0.7855782 0.7883097 0.9350030 0.9439458 -#> [498,] 0.58608188 0.9931059 1.1399638 1.1783841 1.2097972 1.2181288 1.2365478 -#> [499,] 0.63282757 0.6682973 0.6743829 0.7578613 0.7671347 0.7887201 0.8602626 -#> [500,] 0.26265001 0.5356474 0.6421611 0.6772350 0.7457229 0.7951561 0.8453708 -#> [501,] 1.38999419 1.5992446 1.8790500 2.3113869 2.3168782 2.3637341 2.3922669 -#> [502,] 0.32558987 0.4174707 0.4371221 0.4554006 0.4772252 0.5048615 0.5416199 -#> [503,] 0.48461201 0.7215688 0.7433350 0.7617940 0.7680742 0.7905453 0.7961259 -#> [504,] 0.22486970 0.2627143 0.3695717 0.4947433 0.5551474 0.5586764 0.5956886 -#> [505,] 0.68271114 0.8258154 0.8675523 0.9214783 0.9267411 0.9584324 0.9606637 -#> [506,] 0.38713800 0.4160170 0.4167471 0.5416616 0.6201974 0.6218608 0.6513026 -#> [507,] 0.35517167 0.4033861 0.4352831 0.4425477 0.4630983 0.4665478 0.4729722 -#> [508,] 0.21503155 0.4364501 0.5066574 0.5068288 0.5470138 0.5629381 0.5653868 -#> [509,] 1.35540675 1.3651020 1.4498864 1.4697750 1.4866551 1.6000226 1.6029319 -#> [510,] 1.12729374 1.1422187 1.1849896 1.2738890 1.2847577 1.2913047 1.3467737 -#> [511,] 0.33004290 0.3838357 0.5194236 0.5339004 0.5774565 0.6389957 0.6516153 -#> [512,] 0.87751687 1.0572218 1.1211695 1.1232132 1.2340452 1.2617497 1.2899045 -#> [513,] 1.26501290 1.2800477 1.3927728 1.4072841 1.4812533 1.4894414 1.5189249 -#> [514,] 0.32349377 0.4353077 0.5567052 0.5573627 0.5938147 0.5940007 0.6354609 -#> [515,] 0.46681568 0.4981513 0.5804492 0.5870340 0.6382426 0.6558298 0.6613072 -#> [516,] 0.48176089 0.4981513 0.6124427 0.6951015 0.6968820 0.7107325 0.7603987 -#> [517,] 0.56275897 0.7327818 0.7415040 0.7746998 0.7948028 0.8078147 0.8275757 -#> [518,] 0.43645014 0.4427498 0.4582420 0.4617395 0.4696348 0.4860057 0.4869942 -#> [519,] 0.30195725 0.3064522 0.4834773 0.5319833 0.5844000 0.5934716 0.6602826 -#> [520,] 0.34872796 0.4696348 0.5094419 0.5328879 0.5508058 0.5596657 0.5667683 -#> [521,] 0.22486970 0.3012077 0.4638763 0.4827970 0.5581506 0.5857969 0.6168834 -#> [522,] 0.34718697 0.4734484 0.4759376 0.4821902 0.4981192 0.5919049 0.6765002 -#> [523,] 0.37119003 0.4042716 0.4167471 0.6327125 0.6424517 0.6451651 0.6544454 -#> [524,] 0.49883178 0.5564145 0.6133631 0.6188844 0.6548673 0.6671413 0.7107542 -#> [525,] 0.51487828 0.7055090 0.7121909 0.7625581 0.8078147 0.8712902 0.9196127 -#> [526,] 0.26233166 0.3301814 0.5477472 0.5644013 0.5652963 0.6095633 0.6419645 -#> [527,] 0.44657063 0.5469588 0.6504423 0.7273693 0.9348490 0.9960069 1.0127452 -#> [528,] 0.55221954 0.6227255 0.6748081 0.6885028 0.6898711 0.6936241 0.6971507 -#> [529,] 0.60601516 0.6747779 0.7274967 0.7710522 0.7746791 0.7761110 0.7761581 -#> [530,] 0.96348909 1.0005127 1.1531303 1.1819835 1.2705730 1.2881013 1.3097788 -#> [531,] 0.51614723 0.5859331 0.6091953 0.6416642 0.6484656 0.7493636 0.7608141 -#> [532,] 0.52734415 0.5752258 0.6201989 0.6509948 0.7475855 0.7848703 0.8374849 -#> [533,] 0.22768949 0.4755288 0.5001598 0.5267358 0.5417933 0.5707032 0.6032977 -#> [534,] 0.17308916 0.3775519 0.4374424 0.4842991 0.5473634 0.5522140 0.5544129 -#> [535,] 0.27366290 0.4910223 0.5432577 0.5697910 0.6618646 0.7108046 0.7424222 -#> [536,] 0.82986354 0.8525027 0.8694440 0.8770413 0.8785766 0.9407524 0.9698302 -#> [537,] 0.50957678 0.5401574 0.5591449 0.5853550 0.6122867 0.8077789 0.8343363 -#> [538,] 0.36353777 0.3804196 0.4706606 0.4781166 0.4842991 0.5207731 0.5435039 -#> [539,] 0.12432811 0.4799947 0.7927098 0.8045342 0.8104586 0.8335825 0.8565542 -#> [540,] 0.39267342 0.5104084 0.5539836 0.5571402 0.6095633 0.6229590 0.6637908 -#> [541,] 0.28212285 0.2891919 0.4649396 0.5648903 0.5664279 0.5829420 0.6284229 -#> [542,] 0.99208071 1.0640377 1.1408177 1.2567472 1.2610097 1.2973438 1.3444573 -#> [543,] 0.48996733 0.5606936 0.5728755 0.6760014 0.7544363 0.7715961 0.7818113 -#> [544,] 0.22723214 0.3977784 0.4259536 0.4369957 0.5030719 0.5087297 0.5148810 -#> [545,] 0.32764986 0.3947949 0.3989610 0.4436377 0.5049733 0.5212736 0.5482755 -#> [546,] 0.38903127 0.4299702 0.4647006 0.4800804 0.5080255 0.5473492 0.6005693 -#> [547,] 0.22075267 0.3000063 0.6380791 0.6999140 0.7695203 0.7772380 0.7839562 -#> [548,] 0.54444892 0.7026799 0.7865930 0.8482936 0.8593760 0.8771458 0.9025465 -#> [549,] 0.41975680 0.5425809 0.6484656 0.6700281 0.6740985 0.7462301 0.7625581 -#> [550,] 0.44410572 0.4786823 0.5505203 0.6208388 0.7245477 0.7528892 0.8241554 -#> [551,] 0.34765690 0.4860027 0.5374429 0.5498394 0.5611247 0.5674918 0.5913260 -#> [552,] 0.25761193 0.2839479 0.4359787 0.4500779 0.5492644 0.6073729 0.6101469 -#> [553,] 0.32458341 0.4294108 0.4755666 0.4790972 0.5430447 0.5497086 0.5698945 -#> [554,] 0.30000634 0.3440006 0.3895970 0.5069029 0.6480851 0.6545683 0.7117059 -#> [555,] 0.57083623 0.6741173 0.7033093 0.7443693 0.7894831 0.7964902 0.8458878 -#> [556,] 0.51508459 0.5199321 0.5402096 0.5418139 0.5784783 0.6096974 0.6549053 -#> [557,] 0.35322004 0.4095795 0.6571445 0.7186039 0.7256993 0.7310167 0.7931390 -#> [558,] 1.73915157 2.0895044 2.1799612 2.2052621 2.2889129 2.3213603 2.3241489 -#> [559,] 0.32678210 0.5064336 0.5544217 0.6344623 0.6354370 0.6742242 0.6952326 -#> [560,] 0.25389733 0.4095795 0.4867599 0.5728891 0.5757414 0.6128420 0.6201974 -#> [561,] 0.57920643 0.6609895 0.7130723 0.7608231 0.8280994 0.8915774 0.9119757 -#> [562,] 0.33004290 0.3951510 0.4803121 0.5113439 0.5922088 0.6058663 0.6105139 -#> [563,] 0.29619568 0.6414745 0.6818945 0.7300882 0.7494630 0.7524761 0.8068922 -#> [564,] 0.28390248 0.3352527 0.4368724 0.4797075 0.5452154 0.5546065 0.5663818 -#> [565,] 1.70387685 1.8756984 1.9238217 1.9351767 2.0168327 2.0358703 2.0389652 -#> [566,] 0.50368519 0.5164336 0.5711820 0.6091953 0.6135240 0.6179733 0.6527461 -#> [567,] 0.27429430 0.3579049 0.4233858 0.4472829 0.4561306 0.4772252 0.4890375 -#> [568,] 0.36176548 0.4923406 0.4991808 0.5343824 0.5415747 0.5455492 0.5481736 -#> [569,] 0.58372918 0.5984751 0.6508299 0.6699247 0.7298699 0.7735197 0.8480297 -#> [570,] 0.38920400 0.6251328 0.7517080 0.7609491 0.7827158 0.8434251 0.8563041 -#> [571,] 0.44136721 0.5160107 0.5731316 0.5940345 0.6567246 0.6588093 0.6591535 -#> [572,] 0.33373156 0.4814404 0.5521197 0.7448075 0.7741427 0.7927559 0.8362222 -#> [573,] 0.23416207 0.4356454 0.5688117 0.5912199 0.5929949 0.5965354 0.6701969 -#> [574,] 0.46386001 0.4905156 0.5672952 0.6115767 0.6319799 0.6335443 0.6418135 -#> [575,] 0.44102183 0.5958669 0.6523323 0.6539635 0.7169540 0.7502026 0.7989667 -#> [576,] 0.22003989 0.5764086 0.5800283 0.6960439 0.6992767 0.7734542 0.7760067 -#> [577,] 0.52787810 0.8656258 1.0886843 1.1303904 1.1652766 1.1992359 1.2040200 -#> [578,] 0.33537141 0.4310171 0.4855791 0.5043320 0.5506841 0.6286606 0.6449115 -#> [579,] 0.48106688 0.6400865 0.6602727 0.6610452 0.6643364 0.6676988 0.6725714 -#> [580,] 0.40229399 0.4831555 0.5020988 0.5160107 0.5657945 0.5793657 0.5832154 -#> [581,] 0.35648607 0.5155221 0.5430369 0.5512025 0.5672378 0.5931377 0.6105139 -#> [582,] 0.27012072 0.4017908 0.4559433 0.4892858 0.4946278 0.5128846 0.5350863 -#> [583,] 0.35868385 0.4425961 0.6264364 0.6395027 0.6446911 0.6611604 0.6894536 -#> [584,] 0.55815062 0.5852312 0.6701959 0.6814269 0.7058457 0.7367348 0.7549490 -#> [585,] 0.44657063 0.4577985 0.7049280 0.7064780 0.7427919 0.7677238 0.7866158 -#> [586,] 0.33284522 0.3968305 0.5929588 0.6385466 0.6502117 0.6619225 0.7842259 -#> [587,] 0.17308916 0.3946946 0.4523318 0.4748450 0.4781166 0.5063630 0.5519264 -#> [588,] 0.77900189 0.7890183 0.8378151 0.8851613 0.8899777 0.9409221 1.0251435 -#> [589,] 0.56786474 0.5713880 0.6050779 0.6742909 0.6922978 0.7159223 0.7236839 -#> [590,] 1.28990446 1.4368071 1.4372491 1.6684753 1.6883546 1.7540976 1.8215611 -#> [591,] 0.34060381 0.3857767 0.4285865 0.4323910 0.5243204 0.5416102 0.5619075 -#> [592,] 0.44624031 0.4964189 0.6007497 0.6597749 0.6793760 0.7046408 0.7064299 -#> [593,] 0.16044299 0.2337616 0.3989610 0.4425961 0.4827286 0.5134027 0.5305207 -#> [594,] 0.23433208 0.2507500 0.3647389 0.3863603 0.4060251 0.4638805 0.4706503 -#> [595,] 0.17597548 0.4429149 0.4458199 0.5008248 0.6135240 0.6417925 0.6768346 -#> [596,] 0.46274619 0.5643122 0.7634109 0.7683373 0.8060857 0.8275630 0.8577206 -#> [597,] 0.48996733 0.5210512 0.5406958 0.5489483 0.5774565 0.7836787 0.8296072 -#> [598,] 0.22768949 0.5449690 0.5478941 0.5777244 0.5915972 0.6030622 0.6073392 -#> [599,] 0.83371889 0.8694239 0.8819580 0.9786088 0.9887986 1.0007794 1.1333100 -#> [600,] 0.26035703 0.5574171 0.6283340 0.6793788 0.6816118 0.7125412 0.7249124 -#> [601,] 0.37701435 0.3873969 0.4454083 0.5852220 0.6213244 0.6464179 0.6551963 -#> [602,] 0.18365652 0.2247377 0.2577553 0.3864874 0.4023448 0.5241576 0.5414872 -#> [603,] 0.43366031 0.6522712 0.8378151 0.8617993 0.8700834 0.9045392 1.0198042 -#> [604,] 0.69993429 0.7284301 0.9402911 1.1137788 1.1158997 1.1169389 1.1244440 -#> [605,] 0.29951135 0.3365124 0.4805783 0.4852801 0.4947778 0.5059454 0.5593715 -#> [606,] 0.24308049 0.3369672 0.4299477 0.4368795 0.5183246 0.5551474 0.5619075 -#> [607,] 0.44525949 0.8932878 0.9821860 1.0011803 1.0103385 1.0981862 1.1486406 -#> [608,] 0.59405249 0.6543199 0.6553937 0.7091526 0.8328801 0.8486597 0.8609763 -#> [609,] 1.02977260 1.2619621 1.2667554 1.4606998 1.5334449 1.5560651 1.5957530 -#> [610,] 0.35144018 0.5686196 0.5780670 0.6654444 0.8031539 0.8919497 0.8937318 -#> [611,] 0.39294411 0.4329269 0.4807848 0.4819972 0.4849148 0.5227979 0.5640177 -#> [612,] 0.46886255 0.5946286 0.6971507 0.7394289 0.7854985 0.8576131 0.9304374 -#> [613,] 0.51490569 0.5511763 0.9546355 1.1132546 1.1169389 1.1330129 1.2553011 -#> [614,] 0.44559324 0.5293639 0.5361539 0.5733587 0.7285486 0.7346014 0.7350405 -#> [615,] 0.33760424 0.3771229 0.5694851 0.6053445 0.6638629 0.7151035 0.7352688 -#> [616,] 0.37489759 0.6153700 0.6522712 0.6900040 0.7691259 0.7830058 0.8490819 -#> [617,] 0.38785383 0.4255550 0.5361624 0.6440649 0.6580717 0.6705406 0.6816118 -#> [618,] 0.33543684 0.3541546 0.4724177 0.5725951 0.6208388 0.6248876 0.6351238 -#> [619,] 0.49870522 0.5469588 0.7579067 0.7694242 0.7866158 0.8033215 0.9437138 -#> [620,] 0.45415534 0.6671930 0.6792135 0.6862691 0.7155112 0.7678281 0.7826749 -#> [621,] 0.33984133 0.4188059 0.4377666 0.4584733 0.4993423 0.5206577 0.5281680 -#> [622,] 0.32404141 0.4348363 0.5456857 0.5670290 0.5897818 0.6090094 0.6204706 -#> [623,] 0.43463282 0.4849148 0.6283340 0.6380633 0.6411111 0.6772921 0.7280407 -#> [624,] 0.24047378 0.2949672 0.4734230 0.4836585 0.4855279 0.5226528 0.5671062 -#> [625,] 0.38832700 0.6122867 0.6906560 0.8819580 0.9070997 0.9280705 0.9724704 -#> [626,] 0.31996990 0.4064382 0.4194307 0.5095882 0.6187073 0.6682280 0.6765002 -#> [627,] 0.21601832 0.4441057 0.4724177 0.4945967 0.5062977 0.5134793 0.5488952 -#> [628,] 0.17402163 0.2367911 0.4004923 0.4353077 0.4847487 0.4869942 0.4950905 -#> [629,] 0.80130051 0.8168133 0.8360590 0.9012890 0.9719824 0.9892314 1.0326790 -#> [630,] 0.33886686 0.6463297 0.6651778 0.7060388 0.7318452 0.7538065 0.7692197 -#> [631,] 0.34201350 0.3591081 0.4149334 0.4231522 0.4760790 0.4992524 0.5132158 -#> [632,] 0.49883170 0.7197396 0.7218012 0.7508510 0.7842259 0.7848501 0.7930338 -#> [633,] 0.40473610 0.4956102 0.7398657 0.8165282 0.9339677 0.9609719 1.0370421 -#> [634,] 0.48667127 0.5674285 0.5851370 0.6052577 0.6083226 0.6202031 0.6234698 -#> [635,] 0.32803844 0.3965035 0.5484068 0.5868525 0.6253015 0.6509948 0.6716849 -#> [636,] 0.56052284 0.6385466 0.6993452 0.7218012 0.7321719 0.8379912 0.8791882 -#> [637,] 0.60666145 0.6115239 0.6960439 0.7364444 0.7907865 0.8651759 0.9106117 -#> [638,] 0.90824995 0.9976108 1.0257840 1.0490677 1.0991771 1.1008939 1.1014870 -#> [639,] 0.74307655 0.9445222 0.9865465 1.0185952 1.0381068 1.0908697 1.1027061 -#> [640,] 0.64291176 0.6669140 0.7011364 0.7486184 0.7557675 0.8058338 0.8103042 -#> [641,] 0.35605581 0.4814404 0.7876294 0.7985339 0.8573493 0.9576553 0.9659746 -#> [642,] 0.79311997 0.7989374 0.8668125 0.8767005 0.8896757 0.9194493 0.9435230 -#> [643,] 0.29279031 0.3544750 0.3700009 0.4719275 0.5045860 0.5201948 0.5427308 -#> [644,] 0.43637557 0.4827970 0.4947433 0.7024931 0.7082306 0.7102383 0.7503552 -#> [645,] 0.38434723 0.4441885 0.5685905 0.5852424 0.5996315 0.6418135 0.6847756 -#> [646,] 0.75806006 0.7767205 0.7881615 0.8075945 0.8449039 0.9816106 0.9991894 -#> [647,] 0.34015775 0.4648615 0.5660205 0.6646483 0.6967569 0.7338786 0.7546331 -#> [648,] 0.54015739 0.6906560 0.7470331 0.7691937 0.8596595 0.8851544 0.8855184 -#> [649,] 0.21401924 0.3291718 0.3406038 0.4113986 0.4169955 0.4256820 0.4330305 -#> [650,] 1.21571383 1.6228459 1.7779071 1.8151949 1.8291248 1.8450162 1.9125968 -#> [651,] 0.73862833 0.7855138 0.8135626 0.9202073 0.9247456 1.0629530 1.1103865 -#> [652,] 0.48695987 0.4969256 0.5372878 0.5698973 0.6480851 0.6495004 0.6571974 -#> [653,] 0.59394151 0.6429569 0.6469902 0.6594809 0.6669274 0.6801128 0.7318452 -#> [654,] 0.71059489 0.7913172 0.8570968 0.9106875 0.9401968 0.9611286 0.9756189 -#> [655,] 0.19780375 0.3078437 0.3579763 0.4318495 0.4531874 0.5124364 0.5570000 -#> [656,] 0.33018138 0.3567649 0.4992524 0.5149747 0.5353460 0.5900000 0.6121609 -#> [657,] 0.36776757 0.4427894 0.5663868 0.5770576 0.6664361 0.7138950 0.7603336 -#> [658,] 0.39142869 0.4601763 0.4863964 0.5127744 0.5638167 0.5713538 0.5737622 -#> [659,] 0.46493959 0.5561894 0.7030695 0.7118153 0.7135524 0.7341962 0.7462063 -#> [660,] 0.21401924 0.2281317 0.3397789 0.4009120 0.4742309 0.5243204 0.5328568 -#> [661,] 0.44464332 0.4574371 0.4834773 0.5054884 0.5055472 0.5161832 0.5229335 -#> [662,] 0.32267120 0.5252603 0.7263464 0.7772791 0.7828679 0.7894459 0.8005508 -#> [663,] 0.23163085 0.3125665 0.3891389 0.4232646 0.4854022 0.5116676 0.5146067 -#> [664,] 1.68507968 1.7320149 1.8154012 1.8993829 1.9175140 1.9931019 2.0122906 -#> [665,] 0.37105317 0.3822649 0.4080247 0.5637485 0.5686945 0.5851032 0.6203053 -#> [666,] 1.26596347 1.2987503 1.3163879 1.3481555 1.4350144 1.4667450 1.5794637 -#> [667,] 0.38172029 0.5221992 0.6277827 0.6597764 0.6713917 0.6715206 0.7095495 -#> [668,] 0.41705624 0.4903407 0.5305223 0.5740756 0.5962643 0.5976732 0.6198012 -#> [669,] 0.37131494 0.4369859 0.4755288 0.5471576 0.5577912 0.5801553 0.6030622 -#> [670,] 0.68142692 0.7803132 0.8450893 0.9206161 0.9284356 0.9300096 0.9300310 -#> [671,] 0.31315190 0.5417541 0.7687094 0.7741071 0.8012836 0.8145714 0.8155763 -#> [672,] 0.39515951 0.4564511 0.6069523 0.6405285 0.7031803 0.7632962 0.7708018 -#> [673,] 0.66039001 0.6856915 0.8041277 0.9437138 0.9860807 0.9920807 1.0049737 -#> [674,] 0.33284522 0.5010170 0.6251130 0.6716530 0.7409058 0.7854566 0.7930338 -#> [675,] 0.38434723 0.4322912 0.4638600 0.5213002 0.5800283 0.6553089 0.6577880 -#> [676,] 0.54611205 0.6339835 0.7537169 0.7589348 0.8409048 0.8528875 0.8586295 -#> [677,] 0.36503326 0.4182829 0.4523318 0.5180707 0.5275571 0.5544129 0.6218384 -#> [678,] 0.24648209 0.5618274 0.5625347 0.6759686 0.7198735 0.7292775 0.7603987 -#> [679,] 0.58608188 0.7796129 0.7855138 0.8454423 0.9682437 1.0820030 1.0851767 -#> [680,] 0.48666539 0.4902983 0.6471791 0.7160836 0.7306741 0.7505155 0.7845608 -#> [681,] 0.27087776 0.3374291 0.4033739 0.4368724 0.5486471 0.5625667 0.5654415 -#> [682,] 0.57372655 0.8000399 0.9717136 0.9758373 1.0200868 1.0596932 1.1610597 -#> [683,] 0.45429280 0.4655817 0.7009357 0.7498951 0.8086566 0.8632858 0.8719987 -#> [684,] 0.46307271 0.5994650 0.6273540 0.7221424 0.7638539 0.7792963 0.8033483 -#> [685,] 0.49907726 0.5940525 0.6827111 0.7004509 0.8277587 0.8280008 0.8723819 -#> [686,] 1.50596458 1.5657095 1.5754641 1.6338610 1.7295999 1.7931603 1.8113775 -#> [687,] 0.41975680 0.4354461 0.5148783 0.7302572 0.7369999 0.7374324 0.7415040 -#> [688,] 0.51993210 0.6507086 0.6613144 0.6682973 0.6854089 0.6890310 0.7054623 -#> [689,] 0.41315968 0.4482383 0.4526669 0.6122105 0.6367922 0.6531001 0.6671413 -#> [690,] 0.59022782 0.6389957 0.6434926 0.7062934 0.7356794 0.7406443 0.7555210 -#> [691,] 0.36786814 0.4817609 0.6667033 0.6692368 0.7221679 0.7474076 0.7715780 -#> [692,] 0.47593764 0.5066934 0.5228171 0.6133590 0.6682280 0.6710433 0.6933420 -#> [693,] 0.34015775 0.5309749 0.6754314 0.6866783 0.7454285 0.8355015 0.8627002 -#> [694,] 0.44287676 0.5719344 0.6496431 0.7229793 0.7558851 0.7563084 0.8101539 -#> [695,] 0.43712215 0.4553386 0.5641639 0.6392469 0.6439245 0.6870271 0.7060563 -#> [696,] 0.14706566 0.4455320 0.4473325 0.4511470 0.4564653 0.4728753 0.4769149 -#> [697,] 0.65371596 0.8360590 0.8482199 0.8656258 0.8673346 0.9124285 0.9252556 -#> [698,] 0.42443846 0.4867599 0.5343824 0.5512543 0.5709348 0.6297882 0.6391369 -#> [699,] 0.30035462 0.4965954 0.5705094 0.6069573 0.6560051 0.7111043 0.7248677 -#> [700,] 0.23566961 0.2962470 0.3037289 0.3804423 0.4329317 0.4957784 0.5218996 -#> [701,] 0.34791594 0.4423909 0.6339192 0.7711267 0.8043722 0.8176418 0.8193722 -#> [702,] 0.38410060 0.4346415 0.5680075 0.6310681 0.6459038 0.6606776 0.6892405 -#> [703,] 0.89461960 1.1036450 1.1944454 1.2430173 1.2445042 1.3393180 1.3762091 -#> [704,] 0.36525783 0.5024808 0.5359625 0.6964333 0.7860382 0.8233114 0.8387448 -#> [705,] 0.56182959 0.5877482 0.7154758 0.8000923 0.8829692 0.9316102 0.9406988 -#> [706,] 0.52711728 0.5500002 0.5625617 0.6038029 0.6144827 0.6606776 0.6733218 -#> [707,] 0.25775535 0.2967886 0.3565099 0.3630418 0.5500049 0.5858786 0.5937395 -#> [708,] 0.45587612 0.4683504 0.5025979 0.5197292 0.5459429 0.5716376 0.5886034 -#> [709,] 0.50575352 0.5658166 0.5931351 0.6119784 0.6813854 0.6862691 0.7420654 -#> [710,] 0.46886255 0.5376504 0.6598523 0.6818975 0.7356749 0.7961273 0.8070495 -#> [711,] 0.69264027 0.7333815 0.9616452 1.1140323 1.1178551 1.1265248 1.1347521 -#> [712,] 0.52774869 0.7639499 0.8649104 0.8873985 0.8907783 0.9271097 0.9462811 -#> [713,] 0.22952545 0.2952804 0.2981954 0.3316853 0.4060251 0.4816673 0.5045860 -#> [714,] 0.33706501 0.5484259 0.5824204 0.6410320 0.6418896 0.6458494 0.6616116 -#> [715,] 0.89731375 1.0537978 1.0872180 1.1281765 1.2874463 1.3430162 1.4573941 -#> [716,] 0.45879487 0.5779698 0.6209997 0.6790274 0.7966283 0.8060857 0.8867858 -#> [717,] 0.35637992 0.3945140 0.4154745 0.4335879 0.4409417 0.5278541 0.5740247 -#> [718,] 0.66195643 0.6783787 0.7290759 0.7430766 0.8105196 0.8730697 0.9213143 -#> [719,] 0.32942541 0.3510939 0.5217597 0.5319833 0.5348828 0.5535397 0.5548141 -#> [720,] 0.28226619 0.7007640 0.8111915 0.8873127 0.9021124 0.9370842 0.9768958 -#> [721,] 0.19718617 0.2343321 0.3316853 0.3704672 0.4115678 0.4458681 0.4720348 -#> [722,] 0.36214779 0.3668483 0.3811909 0.4201479 0.4531318 0.4936062 0.5059454 -#> [723,] 0.56070439 0.5842185 0.7960508 0.8029320 0.8727750 0.9239359 0.9257695 -#> [724,] 0.45533863 0.4964189 0.5417933 0.5471576 0.5526583 0.6159372 0.6252936 -#> [725,] 0.17091574 0.2325982 0.4170562 0.4409417 0.5799450 0.5900520 0.6431570 -#> [726,] 0.30569236 0.4472829 0.4694141 0.5611247 0.5643803 0.5823287 0.6055500 -#> [727,] 0.49841470 0.5978341 0.6058621 0.7401596 0.7509420 0.7776361 0.8039289 -#> [728,] 0.55017438 0.5645975 0.6441751 0.6565390 0.6603900 0.6950564 0.7211326 -#> [729,] 0.56164157 0.5737265 0.6881103 0.7450978 0.7895455 0.9096213 0.9724750 -#> [730,] 0.34414173 0.4000386 0.4302289 0.4855279 0.5030719 0.5269430 0.5926604 -#> [731,] 0.62029301 0.6352669 0.6380633 0.7147159 0.7249124 0.7291427 0.7433481 -#> [732,] 0.45779847 0.6922978 0.6950564 0.7096315 0.7226073 0.7273693 0.7833891 -#> [733,] 0.63826410 0.7682346 0.7960508 0.8937318 1.0084275 1.1145695 1.1332786 -#> [734,] 0.67165298 0.6951862 0.7007640 0.7114757 0.8941862 0.9199336 0.9738467 -#> [735,] 0.33777507 0.4482289 0.5056059 0.5320780 0.5597726 0.6534410 0.6739281 -#> [736,] 0.69442557 0.8149391 0.8167236 0.8786131 0.9513195 0.9557853 0.9811198 -#> [737,] 0.26835689 0.3334680 0.3621478 0.4549819 0.4769149 0.4854022 0.4865940 -#> [738,] 0.49268324 0.6837906 0.9234186 0.9441428 1.0225519 1.1003096 1.1280842 -#> [739,] 1.29539934 1.8722235 1.9284252 2.0010740 2.0750523 2.1162269 2.1169820 -#> [740,] 0.51734193 0.6642650 0.7704097 0.8122535 0.8581814 0.8711888 0.8950791 -#> [741,] 0.34511877 0.3878751 0.4791911 0.4892858 0.4923406 0.4952032 0.5455918 -#> [742,] 0.35403636 0.4285535 0.5277485 0.5305939 0.5498010 0.5503752 0.5640177 -#> [743,] 0.57535311 0.6563266 0.6590381 0.6714506 0.7532099 0.8052437 0.8501118 -#> [744,] 0.51734179 0.7632962 0.8085228 0.8315996 0.8591507 0.8649104 0.9220884 -#> [745,] 0.32917180 0.3397789 0.3876899 0.3922346 0.4001949 0.4299477 0.4323910 -#> [746,] 0.64667460 0.6835879 0.6979654 0.8804967 0.9374665 0.9778351 0.9948617 -#> [747,] 0.44136721 0.5503266 0.6124585 0.6458406 0.6666177 0.6790456 0.6853860 -#> [748,] 0.82415540 0.8868312 1.0763748 1.1582749 1.1680500 1.2156539 1.2208195 -#> [749,] 0.41493342 0.4700809 0.4869599 0.5400945 0.5436498 0.5573906 0.5594085 -#> [750,] 0.46799293 0.5034560 0.5217597 0.6771774 0.7306261 0.7400928 0.7437343 -#> [751,] 0.58434221 0.6646158 0.6969564 0.7237858 0.7355400 0.7586271 0.7755287 -#> [752,] 0.53830065 1.3152491 1.4967682 1.5136034 1.5573514 1.6377122 1.6517498 -#> [753,] 0.33760424 0.3991980 0.4598256 0.5265409 0.6790456 0.7613518 0.8217289 -#> [754,] 0.23008354 0.3640111 0.4975521 0.5126158 0.5339640 0.5841814 0.6017285 -#> [755,] 0.54471650 0.6192503 0.6313910 0.6351238 0.7059582 0.7568730 0.7921023 -#> [756,] 0.35086757 0.5386034 0.5628925 0.5704743 0.5749911 0.5831288 0.6768378 -#> [757,] 0.45429280 0.4841030 0.7173158 1.0579114 1.1550930 1.1706918 1.2055242 -#> [758,] 0.41684967 0.4346328 0.5227979 0.5574171 0.5642680 0.5748597 0.6105969 -#> [759,] 0.22723214 0.2321507 0.3441417 0.4547368 0.4606442 0.4972859 0.5295162 -#> [760,] 0.22075267 0.3895970 0.6789776 0.7645853 0.7901658 0.8013009 0.8486597 -#> [761,] 0.81532947 0.8531185 0.8577187 0.8617993 0.8923103 0.8946196 0.9825679 -#> [762,] 0.28142206 0.3683553 0.4934612 0.5206577 0.5777682 0.6004304 0.6115999 -#> [763,] 0.38313595 0.4004923 0.4295142 0.4470150 0.4973108 0.5328879 0.5470138 -#> [764,] 0.85570464 0.8876872 0.8948302 1.0199801 1.0230997 1.0844723 1.1143924 -#> [765,] 0.92943659 0.9304374 1.0307765 1.2157138 1.2584467 1.2722371 1.3115574 -#> [766,] 0.51734193 0.7179293 0.7347693 0.8160029 0.8686874 0.8732938 0.9418266 -#> [767,] 0.24648209 0.6124427 0.6414745 0.6667033 0.6792825 0.7024752 0.7242682 -#> [768,] 0.34841500 0.3541546 0.5134793 0.5470445 0.6012403 0.6016000 0.6136057 -#> [769,] 0.52454319 0.5877482 0.6497930 0.6978403 0.8646325 0.9219122 0.9685776 -#> [770,] 0.33177611 0.3514778 0.4325350 0.4337352 0.4599327 0.4638805 0.4926394 -#> [771,] 0.46283211 0.4734484 0.5095768 0.6294922 0.6707089 0.6725714 0.6949184 -#> [772,] 0.38383571 0.3946035 0.5009526 0.5489483 0.5762502 0.6377344 0.6440527 -#> [773,] 0.37711935 0.4566741 0.5215421 0.5586764 0.5766874 0.6164888 0.6767031 -#> [774,] 0.38993683 0.6628639 0.6891124 0.7015497 0.7302572 0.7341874 0.7989318 -#> [775,] 0.83110582 0.9107652 0.9549498 1.0660545 1.0960889 1.1519532 1.1663112 -#> [776,] 0.28984342 0.3565893 0.4464113 0.4694526 0.5826878 0.5859595 0.5972087 -#> [777,] 0.31299205 0.3510939 0.4679929 0.4706264 0.5949997 0.6361994 0.6766829 -#> [778,] 0.35551633 0.3985222 0.5564145 0.6008991 0.6470808 0.6550018 0.6857016 -#> [779,] 0.95562635 1.2624698 1.4753414 1.7136959 1.7248187 1.7823646 1.8136329 -#> [780,] 0.42611375 0.6624952 0.7154758 0.8839687 0.9812302 0.9990435 1.0114281 -#> [781,] 0.79814003 0.9909280 1.0555764 1.0578797 1.1204943 1.1938586 1.1983328 -#> [782,] 0.58535499 0.7279623 0.7475855 0.8526947 0.8637983 0.8680231 0.8855184 -#> [783,] 0.21792988 0.4455932 0.4849461 0.6027970 0.6261556 0.6593693 0.6599585 -#> [784,] 0.38993683 0.5612824 0.7160182 0.8346796 0.8980437 0.9196127 0.9264201 -#> [785,] 0.43300503 0.4441885 0.4714800 0.5229825 0.5421546 0.5926604 0.6107581 -#> [786,] 0.28212285 0.4773151 0.5561894 0.5812558 0.6418716 0.6531730 0.6551963 -#> [787,] 0.38701647 0.4429149 0.5794177 0.6179733 0.7015497 0.7045773 0.7493636 -#> [788,] 0.22126147 0.4290754 0.4299702 0.4498610 0.5164665 0.5368604 0.5377246 -#> [789,] 0.27916916 0.3565893 0.3891389 0.3904213 0.4800280 0.5232374 0.5258567 -#> [790,] 0.36237544 0.5245432 0.7106098 0.8368973 0.8374019 0.8462018 0.8829692 -#> [791,] 0.50847764 0.5532540 0.5913410 0.6471791 0.6507086 0.6737630 0.7578613 -#> [792,] 0.34638187 0.3635378 0.3650333 0.4520274 0.4780638 0.5063630 0.5364357 -#> [793,] 0.96471043 1.1238617 1.1670605 1.2363080 1.3438715 1.4656662 1.5202666 -#> [794,] 0.39442631 0.5672525 0.5940007 0.6562407 0.6613072 0.7771895 0.8676490 -#> [795,] 0.44218243 0.4562070 0.4597380 0.4941077 0.4971177 0.5149583 0.5182899 -#> [796,] 0.46309833 0.4734599 0.4770930 0.4929153 0.4938839 0.5049733 0.5068350 -#> [797,] 0.35327797 0.4821675 0.5343740 0.5368604 0.5838635 0.5845838 0.5888128 -#> [798,] 0.44077352 0.4648615 0.5268685 0.5676076 0.5943828 0.6339192 0.6705211 -#> [799,] 0.43483633 0.4369859 0.4812532 0.4849461 0.4924158 0.5734678 0.5745182 -#> [800,] 0.22500973 0.4127918 0.4415877 0.5176093 0.5338640 0.5512025 0.5625347 -#> [801,] 0.33651243 0.4317180 0.4334976 0.4602431 0.4944497 0.5258567 0.5421749 -#> [802,] 0.30996952 0.4079894 0.4082440 0.5007269 0.5075303 0.5519626 0.5956112 -#> [803,] 0.42078874 0.4458199 0.5007269 0.5594309 0.5710308 0.5931351 0.6654464 -#> [804,] 0.46681568 0.5594014 0.5645912 0.5680787 0.7353619 0.7524761 0.7629788 -#> [805,] 0.67438290 0.8576244 0.8710689 1.0787180 1.0813341 1.1490374 1.1719507 -#> [806,] 0.63398347 0.7658092 0.8245560 0.8568136 0.8746828 0.9278684 0.9469909 -#> [807,] 0.79403055 1.2538734 1.3409049 1.3886341 1.4143776 1.6039930 1.6385793 -#> [808,] 0.39196996 0.6492271 0.7006185 0.7617940 0.7707938 0.7958265 0.8086566 -#> [809,] 0.53559259 0.5987499 0.6718302 0.6761828 0.6896680 0.6905674 0.6947258 -#> [810,] 0.21910513 0.4110020 0.4115678 0.4192902 0.5068288 0.5347966 0.5386177 -#> [811,] 0.31452038 0.6963547 0.7095495 0.7133073 0.7954932 0.8097445 0.8705029 -#> [812,] 0.54548829 0.5467555 0.6456530 0.6605649 0.7046408 0.7678281 0.7826580 -#> [813,] 0.39683053 0.4614771 0.4893392 0.5376430 0.6251130 0.6571221 0.7005399 -#> [814,] 0.42103663 0.5189327 0.5921624 0.7932110 0.7953206 0.8013409 0.8744982 -#> [815,] 0.73338145 1.1091642 1.3315277 1.5215019 1.5316756 1.5636798 1.5704113 -#> [816,] 0.58796392 0.6011233 0.6173346 0.6441560 0.6747761 0.6773700 0.6797189 -#> [817,] 1.36065079 1.5137655 1.5193820 1.5240171 1.5498771 1.5958677 1.6121502 -#> [818,] 0.30483279 0.6178127 0.6380806 0.6382770 0.6571221 0.7243450 0.8326125 -#> [819,] 0.40273042 0.5212736 0.5603790 0.5628116 0.5810016 0.5887656 0.6294922 -#> [820,] 0.71824740 0.7215123 0.8453708 0.8528875 0.9597073 0.9738452 1.1058711 -#> [821,] 0.38559728 0.4500143 0.4863964 0.5113181 0.5500049 0.5597726 0.5685905 -#> [822,] 0.62866059 0.6942937 0.7284301 0.7386602 0.7695203 0.8087480 0.8161729 -#> [823,] 0.14874895 0.3236660 0.5891766 0.5903342 0.5944632 0.6515879 0.6564730 -#> [824,] 0.45853317 0.4877218 0.4921739 0.5230083 0.5250451 0.5348140 0.5552367 -#> [825,] 0.34800816 0.4846637 0.5529245 0.6009061 0.6091344 0.6167648 0.6366774 -#> [826,] 0.43253503 0.4831555 0.4865940 0.5334751 0.5341619 0.5524280 0.5628177 -#> [827,] 0.55997084 0.7272578 0.7378849 0.7621492 0.8044038 0.8407370 0.8632858 -#> [828,] 0.68204381 0.7227850 0.8052437 0.8680231 0.8800067 0.9070997 0.9344276 -#> [829,] 0.28919190 0.4773151 0.4803415 0.5392919 0.5550533 0.6207553 0.6225913 -#> [830,] 0.55774317 0.6965077 0.7545314 0.7733977 0.8177852 0.9057978 0.9184425 -#> [831,] 0.36237544 0.6978403 0.7546528 0.7967500 0.8791270 0.8803966 0.8834623 -#> [832,] 0.47868229 0.7783767 0.8286614 0.8366864 0.8746035 0.8868312 0.9465115 -#> [833,] 0.43357679 0.4734693 0.4909328 0.5312809 0.5519626 0.5710308 0.5838635 -#> [834,] 0.40273042 0.5086296 0.6707089 0.6912846 0.7190484 0.7190719 0.7273207 -#> [835,] 0.29819539 0.3870360 0.4016753 0.4192902 0.4458681 0.4505302 0.4650588 -#> [836,] 0.35797635 0.3874699 0.4290754 0.4414033 0.4415019 0.4950905 0.5380901 -#> [837,] 0.24728549 0.3652578 0.5973751 0.6058621 0.6714878 0.7875077 0.8330189 -#> [838,] 0.43114166 0.7145558 0.7729599 0.7989667 0.8771213 0.8853278 0.9082500 -#> [839,] 0.28226619 0.6951862 0.7774018 0.8110518 0.8782227 0.8891517 0.9318547 -#> [840,] 0.36893463 0.4210366 0.5944991 0.6127205 0.6323531 0.6557683 0.7007896 -#> [841,] 0.66544443 0.7079532 0.7227111 0.8612166 0.8741109 0.8808184 0.9161539 -#> [842,] 0.23240441 0.3125665 0.3472597 0.4421824 0.4473325 0.4742903 0.5013366 -#> [843,] 0.53765037 0.7394289 0.7537169 0.7876056 0.8028051 0.9627590 1.0137468 -#> [844,] 0.39681078 0.4223431 0.6354693 0.7994573 0.8189176 0.8444658 0.8649676 -#> [845,] 0.54908168 0.8796845 0.9251165 0.9912498 1.0151577 1.0183992 1.0188981 -#> [846,] 0.34382525 0.3694933 0.4439416 0.6071260 0.6187073 0.6506722 0.6954510 -#> [847,] 0.30855503 0.4296335 0.4358069 0.5168948 0.5498010 0.5910771 0.5998957 -#> [848,] 0.25249506 0.3561176 0.3708418 0.3972535 0.5192776 0.5754905 0.6337435 -#> [849,] 0.33507272 0.4597374 0.5069029 0.5285431 0.5372878 0.6001093 0.6130547 -#> [850,] 0.17597548 0.3870165 0.5594309 0.6248637 0.6527461 0.6582989 0.6609336 -#> [851,] 0.35295760 0.4630727 0.5233075 0.7415390 0.7522670 0.7865930 0.8056994 -#> [852,] 0.31452038 0.5221992 0.5249327 0.6202899 0.6636930 0.6819790 0.7412960 -#> [853,] 1.06356035 1.0736661 1.0825259 1.0962366 1.2298611 1.2869292 1.2916757 -#> [854,] 0.96573690 1.1756648 1.1910772 1.2641272 1.3102195 1.3528209 1.3630859 -#> [855,] 0.56388819 0.6959618 0.7599807 0.7856879 0.8119880 0.8185857 0.8418481 -#> [856,] 0.36604246 0.4760026 0.4901277 0.4980567 0.6008453 0.6148009 0.6341309 -#> [857,] 0.38214516 0.5011114 0.5160354 0.6922482 0.7856879 0.8467618 0.9077031 -#> [858,] 0.59267044 0.6421611 0.6810884 0.7180966 0.7294620 0.7447693 0.7462063 -#> [859,] 0.35829338 0.6209997 0.6765025 0.6980939 0.7291427 0.7454981 0.7605660 -#> [860,] 0.35107872 0.4628321 0.4821902 0.5628116 0.5663818 0.5908624 0.6366756 -#> [861,] 0.48666539 0.7148040 0.8065527 0.8443996 0.8621241 0.9785859 0.9832066 -#> [862,] 0.36675682 0.4541553 0.6117694 0.7093871 0.7282900 0.7284700 0.7376806 -#> [863,] 0.44102183 0.7006185 0.7156137 0.8526129 0.8576936 0.8646028 0.8719987 -#> [864,] 0.25530869 0.5100279 0.6222739 0.7004509 0.7518164 0.7927098 0.8247377 -#> [865,] 0.35107872 0.4073083 0.4727952 0.4797075 0.5887656 0.5978246 0.6011425 -#> [866,] 0.20711353 0.2128669 0.2962470 0.4271706 0.4383742 0.5015894 0.5419253 -#> [867,] 0.49074646 0.5218996 0.5402898 0.5666667 0.5851182 0.5921624 0.6165753 -#> [868,] 0.38226491 0.4330564 0.4343819 0.4789346 0.4973497 0.6238698 0.6618646 -#> [869,] 0.20119578 0.5274743 0.5727556 0.5795555 0.6107581 0.6321618 0.6506722 -#> [870,] 0.34000005 0.5523149 0.5835526 0.5923980 0.6091881 0.6279973 0.6840545 -#> [871,] 0.40824403 0.5111314 0.5128921 0.5586927 0.5952777 0.6600823 0.6684693 -#> [872,] 0.41601699 0.4297828 0.4584733 0.4952032 0.5350863 0.5674021 0.5813493 -#> [873,] 0.56979095 0.5843422 0.6339161 0.6882297 0.7151055 0.7386283 0.7734542 -#> [874,] 0.65237655 0.6812469 0.7236839 0.7454451 0.8110938 0.8311178 0.9366361 -#> [875,] 0.42184296 0.4502727 0.4504206 0.4829929 0.6192943 0.6400865 0.6467567 -#> [876,] 0.33346801 0.3811909 0.4237522 0.4528098 0.4738702 0.5018809 0.5075120 -#> [877,] 0.40802474 0.4975265 0.5176093 0.5593482 0.6650764 0.6870879 0.6948454 -#> [878,] 0.67952156 0.6989833 0.7085963 0.7382393 0.7438888 0.8188065 0.8575808 -#> [879,] 0.52657678 0.5467555 0.5681275 0.5865694 0.7248411 0.7300095 0.7356286 -#> [880,] 0.21551060 0.3874699 0.3986045 0.4015032 0.4855791 0.5016559 0.5164665 -#> [881,] 0.38577668 0.4169955 0.4356454 0.4523469 0.4742309 0.4904582 0.5262045 -#> [882,] 0.56579449 0.5672378 0.5858722 0.5922482 0.6274278 0.6352016 0.6591535 -#> [883,] 0.59284156 0.6624952 0.8139930 0.8322004 0.9945305 1.0395810 1.1360815 -#> [884,] 0.35648607 0.4240218 0.4803121 0.4943045 0.5196530 0.5445057 0.6082788 -#> [885,] 0.53011276 0.6101697 0.6716065 0.7966283 0.8490819 0.8710689 0.9369868 -#> [886,] 0.68088921 0.8565482 0.8652427 0.9079105 0.9379848 0.9565635 0.9650364 -#> [887,] 0.14706566 0.3842350 0.4784125 0.5095337 0.5187470 0.5218255 0.5586692 -#> [888,] 0.44150652 1.0596932 1.2575503 1.3015299 1.3514940 1.3968001 1.4491465 -#> [889,] 0.54753283 0.5853666 0.6010209 0.6263943 0.7082306 0.7190484 0.7254835 -#> [890,] 0.51972920 0.5291272 0.5473492 0.5569819 0.5688599 0.6242691 0.6411027 -#> [891,] 0.46645317 0.5035358 0.5147386 0.5518292 0.5550570 0.5851370 0.6037221 -#> [892,] 0.43151667 0.4339481 0.4894152 0.4957784 0.5787041 0.5879778 0.5921479 -#> [893,] 0.54620478 0.7160182 0.7341874 0.7608141 0.7634351 0.7855782 0.8240498 -#> [894,] 0.26233166 0.3567649 0.4505434 0.5104084 0.5520312 0.6066468 0.6306655 -#> [895,] 0.59990667 0.6372920 0.6738717 0.6780247 0.7835165 0.8307043 0.8752580 -#> [896,] 0.44276402 0.4725503 0.5233075 0.5444489 0.6388097 0.7417904 0.7792963 -#> [897,] 0.61366148 0.6422448 0.6548673 0.6628541 0.7373350 0.8047808 0.8112394 -#> [898,] 1.13993621 1.2238417 1.2944929 1.4138356 1.4223752 1.5587307 1.5715766 -#> [899,] 0.41880586 0.4297828 0.4559433 0.4602431 0.4657972 0.4769464 0.5013366 -#> [900,] 0.44287676 0.5037232 0.6410085 0.7145558 0.8573915 0.8691765 0.8887671 -#> [901,] 0.70951869 0.7227111 0.7655611 0.9049409 1.1103051 1.1436977 1.1671287 -#> [902,] 0.17402163 0.2815989 0.3234938 0.4973108 0.5245936 0.5454948 0.5846517 -#> [903,] 0.51490569 0.6955637 0.9402911 0.9713093 0.9992002 1.0926981 1.1465395 -#> [904,] 0.16379892 0.4782800 0.4924158 0.5001598 0.5577912 0.5829803 0.6159372 -#> [905,] 0.64480070 0.7569891 0.9153377 0.9287700 0.9294366 1.0306542 1.1035669 -#> [906,] 0.26835689 0.3636692 0.3863603 0.4232646 0.4511470 0.4564327 0.4722120 -#> [907,] 0.50805535 0.5762502 0.5965354 0.6315937 0.6394524 0.6589275 0.7062934 -#> [908,] 0.38125326 0.4157032 0.4805979 0.5193114 0.5658166 0.5713880 0.5897818 -#> [909,] 0.23253009 0.3691577 0.4070091 0.5777244 0.6250401 0.6715531 0.7055877 -#> [910,] 0.38903127 0.4017785 0.4498610 0.4847487 0.4936195 0.5238938 0.5465308 -#> [911,] 0.59440990 0.6989068 0.6995980 0.7242203 0.7455946 0.7480645 0.7795465 -#> [912,] 0.29872606 0.4707987 0.4806273 0.4906690 0.6176954 0.6193783 0.6317046 -#> [913,] 0.82461152 0.8591310 0.8731408 0.9164328 1.0578797 1.0834695 1.1278420 -#> [914,] 0.67952156 0.9075966 0.9496742 0.9526848 1.0082962 1.0166035 1.1136135 -#> [915,] 0.44171162 0.4928736 0.5012118 0.6263943 0.6324206 0.6440154 0.6997098 -#> [916,] 0.29134698 0.3804423 0.4118020 0.4271706 0.5402898 0.5544855 0.5822610 -#> [917,] 0.21910513 0.4578056 0.5066574 0.5338640 0.5411180 0.5637485 0.5884009 -#> [918,] 0.80003296 0.8520190 0.8595147 0.9993802 1.0713708 1.0777662 1.0786178 -#> [919,] 0.58522196 0.6448007 0.6532442 0.6655542 0.7092594 0.7155112 0.7459836 -#> [920,] 0.36644829 0.3914287 0.4510571 0.6330261 0.6349593 0.6370497 0.6568489 -#> [921,] 0.43640664 0.5015894 0.5326803 0.5509312 0.5567052 0.5991453 0.6388802 -#> [922,] 0.50561703 0.5913410 0.5933649 0.7671347 0.7845608 0.9111170 0.9142453 -#> [923,] 0.32803844 0.4338809 0.5207731 0.5649189 0.6001995 0.6045659 0.6381594 -#> [924,] 0.35266986 0.3835013 0.5095863 0.5653659 0.5709348 0.5956112 0.6124346 -#> [925,] 0.64979301 0.7646062 0.8164882 0.8276377 0.8368973 0.8421748 0.8771384 -#> [926,] 0.23163085 0.2324044 0.4564653 0.4722120 0.4800280 0.5017003 0.5080255 -#> [927,] 0.32922558 0.3934326 0.5095337 0.5121672 0.5194180 0.5259880 0.5288773 -#> [928,] 0.79814003 0.9533309 1.0389936 1.1709526 1.1749098 1.1781384 1.2001907 -#> [929,] 0.39267342 0.5086939 0.5477472 0.5520312 0.6469049 0.6839461 0.6940983 -#> [930,] 0.29134698 0.3037289 0.3091650 0.3305156 0.4383742 0.4936195 0.5488952 -#> [931,] 0.29872606 0.4131597 0.4795506 0.5665091 0.5997251 0.6136057 0.6261643 -#> [932,] 0.42677834 0.4411643 0.5686196 0.6174766 0.6513026 0.6731724 0.7777964 -#> [933,] 0.39206430 0.5012118 0.5589393 0.7086554 0.7179053 0.7529551 0.7558851 -#> [934,] 0.40473610 0.7515701 0.8153097 1.0193305 1.1129096 1.1454856 1.2042223 -#> [935,] 0.36401105 0.4486307 0.4561306 0.4769901 0.4926383 0.5446308 0.5739571 -#> [936,] 0.83073988 0.8819863 1.0641047 1.0782516 1.0969681 1.1447650 1.2193489 -#> [937,] 0.33591867 0.3466916 0.3873969 0.5139271 0.5550533 0.5812558 0.5829420 -#> [938,] 0.04497083 0.5870115 0.5876477 0.5898424 0.6302899 0.6714246 0.6754866 -#> [939,] 0.53443537 0.5655940 0.5792064 0.7051456 0.7086461 0.7153976 0.8056811 -#> [940,] 0.88640969 1.1744302 1.2819133 1.3042470 1.3137897 1.4205330 1.4232624 -#> [941,] 0.55774317 0.5631514 0.7511748 0.7522670 0.7901658 0.7962587 0.8298927 -#> [942,] 0.35991731 0.3694933 0.4263777 0.5047480 0.5095882 0.6563266 0.7308714 -#> [943,] 0.15739874 0.2999043 0.3060863 0.3792610 0.4267138 0.4280612 0.4582420 -#> [944,] 0.46932208 0.5688599 0.6562525 0.7224982 0.7271169 0.7447693 0.7451598 -#> [945,] 0.33816647 0.5002608 0.5497086 0.5832154 0.5839837 0.5987499 0.6531255 -#> [946,] 0.65787838 0.9657369 0.9883514 1.0701032 1.1374992 1.1447650 1.2451739 -#> [947,] 0.50561703 0.6266733 0.6672829 0.6746814 0.7006440 0.7663563 0.7955146 -#> [948,] 0.58372918 0.7636551 0.8544198 0.9077602 0.9096541 0.9287029 0.9601853 -#> [949,] 0.31354966 0.3466916 0.3770144 0.4981605 0.5835526 0.6080251 0.6379400 -#> [950,] 0.26351243 0.3076413 0.4308061 0.4694526 0.5942378 0.6482221 0.6509040 -#> [951,] 0.18607074 0.4871539 0.5036852 0.5189966 0.5335565 0.5425809 0.5678585 -#> [952,] 0.37747986 0.4925961 0.5129245 0.5213931 0.5320780 0.6816017 0.7071654 -#> [953,] 0.43434151 0.4537805 0.4782800 0.5454883 0.5546442 0.5803326 0.6204706 -#> [954,] 0.54966756 0.5632566 0.5648903 0.6048902 0.6158045 0.6161821 0.6182972 -#> [955,] 0.26783037 0.3555067 0.4599327 0.5020988 0.5503266 0.5731316 0.5883047 -#> [956,] 0.29496717 0.3133610 0.5002608 0.5079815 0.5430447 0.5891322 0.5961361 -#> [957,] 0.32511397 0.3617655 0.3835013 0.5075303 0.5512543 0.5762256 0.5950332 -#> [958,] 0.45042063 0.4606442 0.4727952 0.5148810 0.5263058 0.5962643 0.6366756 -#> [959,] 0.17370456 0.3076413 0.3279429 0.4852801 0.4944497 0.5166436 0.5732934 -#> [960,] 0.35705946 0.4410636 0.4516268 0.5754905 0.6508299 0.6886539 0.8302582 -#> [961,] 0.22813174 0.4001949 0.4003260 0.4113986 0.4827286 0.5053651 0.5508058 -#> [962,] 0.79111290 0.8337189 0.9096423 0.9653220 0.9693479 1.0392179 1.0942301 -#> [963,] 0.39206430 0.4417116 0.5213441 0.5853666 0.6000512 0.6460923 0.6988536 -#> [964,] 0.49034069 0.5703550 0.6110425 0.6360577 0.6465991 0.6549053 0.6917995 -#> [965,] 1.03453276 1.0574077 1.1989866 1.2401557 1.2488760 1.2885182 1.3480125 -#> [966,] 0.47146486 0.5787526 0.7349696 0.7509420 0.8018245 0.8678513 0.8806975 -#> [967,] 0.51784333 0.5368353 0.5718766 0.6238143 0.6354693 0.6705881 0.7379584 -#> [968,] 0.68204381 0.9912498 1.0265272 1.2226328 1.3495796 1.3968221 1.4309520 -#> [969,] 0.43544614 0.5446717 0.6081071 0.6550018 0.7121909 0.7462301 0.8047521 -#> [970,] 0.67468144 0.8115864 0.8311740 0.8576452 0.8817724 0.8970071 0.9092255 -#> [971,] 0.25530869 0.4229574 0.6714246 0.6844769 0.7469655 0.7584307 0.7610679 -#> [972,] 0.41437972 0.6251328 0.6979654 0.7523700 0.8096269 0.8257021 0.8363396 -#> [973,] 0.46068409 0.5099019 0.5453835 0.6073536 0.6115334 0.6494149 0.6606911 -#> [974,] 0.50560586 0.5682722 0.5732926 0.7049280 0.7061830 0.7096315 0.7706464 -#> [975,] 0.74582316 0.7609546 0.8046738 0.8240498 0.8241563 0.8281400 0.8356967 -#> [976,] 0.33525273 0.3374291 0.3817311 0.4523469 0.4536032 0.4987909 0.6120957 -#> [977,] 0.23008354 0.4954478 0.5046153 0.5614417 0.5616416 0.5828565 0.5882024 -#> [978,] 0.49841470 0.6714878 0.7688076 0.7764392 0.8018245 0.8105688 0.8233114 -#> [979,] 0.52526029 0.5345360 0.5447285 0.6395455 0.7031803 0.7376332 0.7483666 -#> [980,] 0.24785601 0.3852941 0.3986045 0.5758994 0.6449115 0.6810014 0.7294620 -#> [981,] 0.63397320 0.6394524 0.6664361 0.6701969 0.6802607 0.7022022 0.7301337 -#> [982,] 0.45580842 0.5715196 0.5749911 0.5859775 0.6681737 0.6822274 0.7166143 -#> [983,] 0.50101698 0.5376430 0.5929588 0.7114757 0.7489781 0.7692118 0.7773591 -#> [984,] 0.19780375 0.4136345 0.4339700 0.4415019 0.4979181 0.6075412 0.6091881 -#> [985,] 0.63176827 0.7092594 0.8033928 0.8673370 0.9140608 0.9153377 1.0441789 -#> [986,] 0.36491652 0.5273441 0.6032080 0.6253015 0.7454451 0.7729599 0.7883097 -#> [987,] 0.44276402 0.6742267 0.7026799 0.7415390 0.7864823 0.8683901 0.9982356 -#> [988,] 0.44525949 0.8690679 0.8875176 0.9267411 1.0588732 1.0614233 1.0699795 -#> [989,] 0.46932208 0.5569819 0.5886034 0.6532035 0.6885028 0.7242253 0.7372330 -#> [990,] 0.27366290 0.4653143 0.6021361 0.6025242 0.6380806 0.6693098 0.6744915 -#> [991,] 0.20711353 0.2356696 0.3305156 0.3670160 0.4118020 0.4364066 0.5464797 -#> [992,] 0.37440774 0.7086461 0.7418901 0.7442849 0.7787907 0.7836854 0.7855291 -#> [993,] 1.04193676 1.0992335 1.1503974 1.1741563 1.2870854 1.3807208 1.4045472 -#> [994,] 0.45879487 0.5301128 0.5747591 0.6214295 0.7605660 0.8673346 0.8709480 -#> [995,] 0.48610978 0.5967973 0.6007497 0.6189824 0.6356349 0.7741783 0.7854985 -#> [996,] 0.40589754 0.5606936 0.6975627 0.7258812 0.7362571 0.7638539 0.7670559 -#> [997,] 0.95463549 1.1054185 1.1069747 1.1304412 1.2374547 1.4004799 1.4737834 -#> [998,] 0.85278886 0.9860807 1.0845824 1.2091892 1.2122146 1.2567472 1.3275814 -#> [999,] 0.33373156 0.3560558 0.6230229 0.6408758 0.6742086 0.7076926 0.8252286 -#> [1000,] 0.12432811 0.4822970 0.7518164 0.7584307 0.8035997 0.8186917 0.8575808 +#> [1,] 0.75123324 0.7728336 0.8535100 0.9610233 0.9988456 1.0241624 1.0346625 +#> [2,] 0.72794121 0.8192607 1.0118221 1.0396370 1.0447104 1.0736597 1.1356458 +#> [3,] 0.31837803 0.4564968 0.4829120 0.5219559 0.5329834 0.6032451 0.6036069 +#> [4,] 0.31047166 0.3921811 0.4326476 0.4630233 0.5398038 0.5555416 0.6151065 +#> [5,] 0.46734788 0.4760593 0.5466231 0.5606464 0.5640889 0.5726195 0.5783608 +#> [6,] 0.51152215 0.5275568 0.5497865 0.5556941 0.5624806 0.6122315 0.6278000 +#> [7,] 0.29359887 0.5086648 0.5542773 0.5716974 0.5869704 0.5940340 0.5959630 +#> [8,] 0.26143033 0.4718084 0.5603310 0.5707832 0.6882329 0.7308097 0.7341715 +#> [9,] 0.24984831 0.5609735 0.8632232 0.9219492 1.0170726 1.0442705 1.0520745 +#> [10,] 0.28986430 0.4537154 0.5204006 0.5421002 0.5423238 0.5463735 0.5587194 +#> [11,] 0.46652531 0.5084248 0.5263341 0.5266163 0.5446352 0.5495054 0.5850168 +#> [12,] 0.37170190 0.4381048 0.5241100 0.5423993 0.5424052 0.5655038 0.6071722 +#> [13,] 0.57222011 0.6124874 0.6357935 0.6396935 0.6462147 0.6708131 0.7391421 +#> [14,] 0.34717912 0.5838188 0.5962627 0.6141551 0.6745910 0.8141714 0.8167852 +#> [15,] 0.58059369 0.6224053 0.6662234 0.6803393 0.7407235 0.8389967 0.8429282 +#> [16,] 0.63314368 0.8630664 0.8939270 1.0213772 1.0458141 1.0663115 1.1116785 +#> [17,] 0.54835213 0.7198504 0.7467861 0.8400073 0.8529885 0.9064278 0.9411035 +#> [18,] 0.66924590 0.6764030 0.8256855 0.8928497 0.9098371 0.9177645 0.9264857 +#> [19,] 0.47391219 0.5187272 0.6039699 0.6313239 0.7718839 0.8130187 0.8617744 +#> [20,] 0.15081454 0.3758961 0.3943047 0.4202105 0.4597621 0.5058134 0.5526436 +#> [21,] 0.26227964 0.3306440 0.4625359 0.4748135 0.5735866 0.5903636 0.6051760 +#> [22,] 0.43233503 0.5294653 0.5807848 0.6182965 0.6219620 0.6649769 0.6820446 +#> [23,] 0.51569242 0.5551573 0.6019943 0.6874485 0.7129012 0.7578704 0.7810091 +#> [24,] 0.26564505 0.8384672 0.9027206 0.9060224 0.9245897 0.9398366 0.9480771 +#> [25,] 0.58665844 0.8659828 0.8981276 0.9708535 1.0050467 1.0329852 1.0364884 +#> [26,] 0.19951012 0.3092625 0.3686001 0.4240887 0.6186630 0.6479357 0.7211515 +#> [27,] 0.36583627 0.4208790 0.4291136 0.5052316 0.5424372 0.6643204 0.6768602 +#> [28,] 0.63749376 0.6643837 0.7336474 0.8632298 0.9630081 1.0143946 1.0585654 +#> [29,] 0.22773632 0.2810413 0.3024392 0.6371490 0.7398366 0.7736565 0.7775577 +#> [30,] 0.41843597 0.4328745 0.4340449 0.5067279 0.5268015 0.5302476 0.5624027 +#> [31,] 0.44109626 0.5183360 0.6860934 0.9339130 0.9629930 1.0579500 1.0943981 +#> [32,] 0.51867312 0.5645729 0.6016788 0.6357531 0.6454604 0.6971910 0.7115832 +#> [33,] 0.47605929 0.5257607 0.5566021 0.5824304 0.6490195 0.7135536 0.7156801 +#> [34,] 0.97263621 1.1064219 1.1444155 1.1538665 1.1596231 1.2692750 1.3001680 +#> [35,] 0.98260936 1.1123529 1.1596231 1.1717316 1.1850187 1.2225809 1.2601779 +#> [36,] 0.49461149 0.5933300 0.6646068 0.6683092 0.8323921 0.8352585 0.8584428 +#> [37,] 0.33752748 0.3668717 0.3733893 0.3738390 0.4858712 0.5329507 0.5359664 +#> [38,] 0.63792553 0.6805158 0.8052105 0.8253294 0.9434459 0.9543999 0.9622925 +#> [39,] 0.79115486 0.9026125 1.0002906 1.0816304 1.1440999 1.2319974 1.2718061 +#> [40,] 0.43594864 0.7188591 0.7189500 0.8269726 1.0044478 1.0197690 1.0395219 +#> [41,] 0.29776484 0.3110705 0.3169707 0.3448560 0.3540405 0.3739873 0.4252863 +#> [42,] 0.56407060 0.8340099 0.9236600 0.9486578 0.9507656 0.9726362 0.9826094 +#> [43,] 0.35070927 0.4212043 0.4399540 0.5016230 0.5245879 0.5408275 0.5485840 +#> [44,] 0.13879613 0.2449583 0.3716588 0.3857744 0.4513943 0.4539900 0.4953717 +#> [45,] 0.27674962 0.3248874 0.3792540 0.4061885 0.4685934 0.5096766 0.5394649 +#> [46,] 0.70931322 0.7762396 0.7874432 0.8142466 0.8157303 0.8707487 0.8863619 +#> [47,] 0.34194145 0.6358041 0.6792359 0.6991985 0.7115954 0.7373865 0.8197065 +#> [48,] 0.54036550 0.6094105 0.6267325 0.6674362 0.7317710 0.7325700 0.7442621 +#> [49,] 0.53167438 0.6307679 0.7248237 0.7447617 0.7648825 0.7757223 0.7758032 +#> [50,] 0.34302240 0.4088468 0.4949305 0.6649502 0.6736528 0.6801958 0.6810368 +#> [51,] 0.44016974 0.5076383 0.5175767 0.7000366 0.7683283 0.7880880 0.8114595 +#> [52,] 0.34683737 0.4084745 0.5982558 0.5990630 0.6392620 0.6435954 0.6734625 +#> [53,] 0.43617718 0.4965451 0.5327786 0.5778905 0.5869704 0.5978329 0.6719906 +#> [54,] 0.30248329 0.3537647 0.3890210 0.5052213 0.5101134 0.5352680 0.5394586 +#> [55,] 0.52308478 0.5402685 0.5593313 0.5874356 0.7559557 0.7821695 0.7822892 +#> [56,] 0.69637689 0.7825293 0.8849706 0.9317456 0.9860083 1.0912192 1.1467084 +#> [57,] 0.16587260 0.2957155 0.3413110 0.4116207 0.4205946 0.5540923 0.6107552 +#> [58,] 0.21674498 0.2655099 0.3790429 0.3932341 0.4436496 0.5844425 0.6218011 +#> [59,] 0.40454188 0.4800348 0.5403655 0.5566021 0.5771780 0.6141551 0.6305519 +#> [60,] 0.75561149 0.7588936 0.7819681 0.7975871 0.8945171 0.9152283 0.9162163 +#> [61,] 0.30100470 0.4964479 0.5864232 0.5975842 0.6878447 0.6894267 0.6965180 +#> [62,] 0.16282452 0.3341115 0.4328745 0.4532430 0.4765493 0.5213406 0.5403077 +#> [63,] 0.27072483 0.3851949 0.4612409 0.5142720 0.5167208 0.5294653 0.6030569 +#> [64,] 0.49644789 0.5186731 0.5261169 0.5533974 0.5655843 0.6290988 0.6358013 +#> [65,] 0.35509133 0.5000259 0.5016800 0.5273160 0.5482631 0.6101186 0.6657547 +#> [66,] 0.51826095 0.5183360 0.6878115 0.9025787 0.9928195 1.0014826 1.0029237 +#> [67,] 0.20842890 0.3411604 0.3568485 0.4068925 0.4214355 0.4377764 0.4642517 +#> [68,] 0.47750098 0.6644961 0.8175037 0.8371260 0.8424111 0.8428174 0.8493960 +#> [69,] 0.45928747 0.4965451 0.5542773 0.5917991 0.6237566 0.6343305 0.6550373 +#> [70,] 1.00949093 1.1650926 1.2078393 1.2169444 1.2341341 1.2526122 1.3587940 +#> [71,] 0.22038706 0.3698291 0.5063805 0.6682706 0.6764030 0.6803568 0.7025122 +#> [72,] 0.41824000 0.4184360 0.4325937 0.4377125 0.4848735 0.5098943 0.5213406 +#> [73,] 0.36595529 0.4150283 0.4230495 0.4715471 0.4820203 0.4893759 0.5093840 +#> [74,] 0.48657110 0.5810022 0.7735514 0.8210664 0.8910608 0.8927631 0.9176643 +#> [75,] 0.40020124 0.4232959 0.4436496 0.4596097 0.5149030 0.5152366 0.5463399 +#> [76,] 0.48817965 0.4927598 0.5107277 0.5623835 0.5859066 0.5935301 0.5946564 +#> [77,] 0.15081454 0.4335340 0.4363955 0.5182849 0.5205824 0.5418517 0.5425802 +#> [78,] 0.30995948 0.3273770 0.4254990 0.4672448 0.5121810 0.5136565 0.5154224 +#> [79,] 0.47970446 0.4947340 0.6647554 0.7263034 0.7535873 0.7609947 0.7625186 +#> [80,] 0.79618626 0.8698408 0.8936291 0.8975484 0.9456737 0.9510369 0.9690743 +#> [81,] 0.47623620 0.4877438 0.4971451 0.5032684 0.5146468 0.5204006 0.5501698 +#> [82,] 0.93583477 1.0071221 1.0885044 1.1050823 1.1755327 1.1912636 1.2374069 +#> [83,] 0.70018889 0.8879985 0.9946745 1.0809744 1.1726914 1.2589149 1.3267449 +#> [84,] 0.85574145 0.9550328 0.9788586 0.9906871 1.0431189 1.0460363 1.0573611 +#> [85,] 0.32254407 0.4354345 0.4755552 0.4913438 0.5488552 0.5558120 0.6032168 +#> [86,] 0.58625836 0.7660761 0.7706474 0.7710468 0.7778610 0.7782860 0.7874432 +#> [87,] 0.39066227 0.4763041 0.5491078 0.6551946 0.6561217 0.6865512 0.7407140 +#> [88,] 0.40030939 0.5722201 0.6381720 0.6390878 0.6411925 0.6611606 0.6664912 +#> [89,] 0.46587098 0.5052316 0.5139742 0.5400055 0.5485160 0.5844425 0.5922445 +#> [90,] 0.19996637 0.2139283 0.3522130 0.3596801 0.5070188 0.5268149 0.5578403 +#> [91,] 0.34578357 0.3713855 0.5607744 0.5739698 0.5832266 0.5948363 0.6034775 +#> [92,] 0.13118949 0.4307515 0.5089294 0.6219634 0.7261603 0.7798434 0.8711605 +#> [93,] 0.15515797 0.2767496 0.3113777 0.3347892 0.4146456 0.4380970 0.4573444 +#> [94,] 0.40949008 0.7662003 0.8612254 0.8767726 0.8964731 1.1548959 1.1752675 +#> [95,] 0.81376542 0.8750154 0.8946274 0.8990536 0.9284389 0.9383646 0.9488876 +#> [96,] 0.36398921 0.7536512 0.7638342 0.8374410 0.8986590 0.9269765 0.9570827 +#> [97,] 0.40763037 0.4564968 0.4906205 0.4921939 0.4925928 0.5062591 0.5259640 +#> [98,] 0.27744439 0.3237234 0.4171864 0.4533024 0.4574603 0.5073590 0.5079862 +#> [99,] 0.44986007 0.5442689 0.6053123 0.6070115 0.6822141 0.6850527 0.8025247 +#> [100,] 0.36217182 0.4002402 0.5479470 0.6148331 0.6682706 0.6987118 0.7176815 +#> [101,] 1.16034211 1.1830457 1.4589260 1.4813706 1.5482614 1.6614958 1.7219734 +#> [102,] 0.20121330 0.2754540 0.3096327 0.3457012 0.3905825 0.3975459 0.4304232 +#> [103,] 1.20255514 1.2330142 1.2589149 1.3426098 1.3481100 1.5117781 1.6069093 +#> [104,] 0.44558674 0.5320156 0.5873528 0.5957944 0.6836550 0.6969275 0.7006954 +#> [105,] 0.28454807 0.4706502 0.4755460 0.5303708 0.5371465 0.5512903 0.5558524 +#> [106,] 0.47750098 0.4851378 0.4973154 0.5868762 0.7283071 0.8416151 0.8593591 +#> [107,] 0.98216529 1.0064208 1.1040333 1.2141759 1.2774960 1.2957623 1.3022217 +#> [108,] 0.47869309 0.8343755 0.9840538 1.0110834 1.0577510 1.0926077 1.1350025 +#> [109,] 0.49710326 0.5006748 0.5058134 0.5114418 0.5418517 0.5850060 0.5912959 +#> [110,] 0.19702653 0.3113777 0.3457012 0.4007505 0.4532430 0.4683849 0.4685934 +#> [111,] 0.36008810 0.4174495 0.4408895 0.4548463 0.4828149 0.5061000 0.5141196 +#> [112,] 0.57458749 0.6909275 0.7177089 0.7218150 0.7744658 0.8237228 0.8288619 +#> [113,] 0.57147892 0.6049098 0.6478061 0.6816491 0.7262376 0.7536512 0.8159034 +#> [114,] 0.53953399 0.6014050 0.6576091 0.6786399 0.6947844 0.7110033 0.7216347 +#> [115,] 0.48599759 0.5154224 0.5558413 0.5789364 0.6354666 0.6547929 0.6603546 +#> [116,] 0.33628768 0.4650064 0.5263157 0.7069239 0.7447617 0.7891283 0.8259153 +#> [117,] 0.69958193 0.9283156 1.0939061 1.1216403 1.1250323 1.1288179 1.1515432 +#> [118,] 0.36398921 0.5714789 0.6894734 0.7014631 0.7260693 0.7619641 0.8240498 +#> [119,] 0.29785763 0.3904106 0.5147426 0.5658674 0.5798745 0.5887206 0.5896853 +#> [120,] 0.35909924 0.4613995 0.4725982 0.5263326 0.5385190 0.5893542 0.6825840 +#> [121,] 0.35748401 0.4455867 0.5154027 0.6343369 0.6851376 0.7147886 0.7230207 +#> [122,] 0.26383426 0.2754540 0.2988481 0.2991627 0.3411604 0.4419143 0.4423288 +#> [123,] 0.62395483 0.6685404 0.7950016 0.8067952 0.8221489 0.8340085 0.8765175 +#> [124,] 0.82937244 0.8707487 0.9551027 1.0103346 1.0519770 1.0832535 1.2253165 +#> [125,] 0.55221468 0.5857830 0.6497453 0.6719993 0.6832759 0.6859977 0.7828531 +#> [126,] 0.45402224 0.6171313 0.6190679 0.7087893 0.7216347 0.7515560 0.7782790 +#> [127,] 0.27028389 0.3572052 0.3993061 0.4557764 0.4626339 0.4726576 0.4993475 +#> [128,] 0.28309416 0.4212043 0.4574603 0.4870235 0.5599778 0.5800733 0.5826591 +#> [129,] 0.25146438 0.4186988 0.5370477 0.5654464 0.5749203 0.6088727 0.6190746 +#> [130,] 0.49033543 0.5993018 0.6014718 0.6776866 0.7389885 0.7588429 0.7662003 +#> [131,] 0.35233048 0.4090712 0.5369264 0.6189582 0.6317574 0.6684878 0.6798811 +#> [132,] 0.48681494 0.5408715 0.6034775 0.6051837 0.6162894 0.6389791 0.6392017 +#> [133,] 0.20289628 0.5917991 0.7040529 0.8219994 0.8745047 0.9693476 0.9888539 +#> [134,] 0.86087471 0.8734834 0.9566091 1.0393017 1.0486299 1.1115831 1.1149204 +#> [135,] 0.27865399 0.2969847 0.3897075 0.4253274 0.4470561 0.4950304 0.5887206 +#> [136,] 0.73790913 0.7727693 0.7880136 0.8494167 0.9279067 1.0006806 1.0803707 +#> [137,] 0.45981635 0.4838382 0.5119779 0.5679398 0.5857583 0.5990630 0.6031911 +#> [138,] 0.30248329 0.3120646 0.3843879 0.3865320 0.4880859 0.4925018 0.5331744 +#> [139,] 0.36139975 0.3821192 0.3884705 0.4467783 0.6854213 0.6990176 0.7259507 +#> [140,] 0.79370421 1.1505867 1.1890757 1.1910424 1.2222432 1.3167299 1.3355435 +#> [141,] 0.19951012 0.2417104 0.2781614 0.4680106 0.6250949 0.6525452 0.6603980 +#> [142,] 0.37893352 0.4015229 0.4064958 0.4696581 0.4792169 0.4909026 0.5502156 +#> [143,] 0.31849457 0.3427354 0.3941537 0.4860365 0.5329507 0.5679398 0.5687805 +#> [144,] 0.36318027 0.4053421 0.4399584 0.4597621 0.5413375 0.5425802 0.5480974 +#> [145,] 0.38772521 0.4192009 0.4871528 0.5026201 0.5073320 0.6164275 0.6390106 +#> [146,] 0.26642362 0.3237234 0.4394007 0.4495239 0.4681588 0.4948503 0.5472648 +#> [147,] 0.61755802 0.6381720 0.6557861 0.7506527 0.7529128 0.7540028 0.7591031 +#> [148,] 0.18634156 0.5009155 0.5485840 0.5599778 0.5931087 0.5965084 0.6349871 +#> [149,] 0.12046345 0.5411184 0.6786399 0.6798061 0.6833299 0.7009866 0.7406080 +#> [150,] 0.17188245 0.3712625 0.3743934 0.3987000 0.4416277 0.5023142 0.5079862 +#> [151,] 0.37547110 0.4474790 0.4828926 0.5041523 0.6416367 0.6856432 0.7161804 +#> [152,] 0.79937319 0.8241613 0.8907011 1.0241436 1.1297508 1.1573210 1.1658958 +#> [153,] 0.19419128 0.2061225 0.3007250 0.4605015 0.5260537 0.5295352 0.5749598 +#> [154,] 0.30085979 0.3841699 0.5687805 0.5778905 0.6377990 0.6564521 0.6819878 +#> [155,] 0.19513800 0.4827132 0.5439209 0.5786936 0.5950256 0.6442066 0.6687645 +#> [156,] 0.46868378 0.5114418 0.5316744 0.5526436 0.5607080 0.6290993 0.6300735 +#> [157,] 0.59045114 0.9869900 1.1535666 1.1582809 1.1780062 1.2135801 1.2585351 +#> [158,] 0.24545491 0.3333003 0.3969425 0.4088468 0.4721369 0.4748135 0.5520819 +#> [159,] 0.28986430 0.3544125 0.3764880 0.3992212 0.5491586 0.5680241 0.5835483 +#> [160,] 0.43780840 0.4498638 0.7033036 0.7877849 0.8172419 0.8357316 0.8577205 +#> [161,] 0.40582631 0.5054017 0.7030924 0.7243780 0.7407140 0.7705307 0.7930608 +#> [162,] 0.35234103 0.4147042 0.4795022 0.4952720 0.4962613 0.4989207 0.5185135 +#> [163,] 0.54300594 0.5583139 0.6795859 0.8095291 0.8206264 0.9728522 1.1327863 +#> [164,] 0.52367020 0.5885379 0.8717503 0.8939719 0.9026125 0.9614319 1.0410679 +#> [165,] 0.96143186 1.0199945 1.0232013 1.0551349 1.0902843 1.1010699 1.1045643 +#> [166,] 0.61571818 0.7040191 0.7058041 0.7656191 0.7734775 0.7824822 0.8215516 +#> [167,] 0.35229033 0.3921811 0.5471192 0.5639015 0.5672174 0.5735262 0.5753703 +#> [168,] 0.96825642 1.0396370 1.1898986 1.2800371 1.2881848 1.3270543 1.3435666 +#> [169,] 0.66673361 0.6783771 0.6894816 0.7395991 0.7798434 0.8020988 0.8409993 +#> [170,] 0.28743920 0.4859976 0.6151464 0.6426209 0.6501716 0.6633979 0.7000754 +#> [171,] 0.31719653 0.4426525 0.4802058 0.5162458 0.5402894 0.5484489 0.5699656 +#> [172,] 0.08045996 0.2277363 0.4479699 0.6083513 0.7456291 0.7558175 0.7626539 +#> [173,] 0.26393459 0.3593245 0.3717283 0.3820295 0.4015229 0.4740713 0.5161408 +#> [174,] 0.30338965 0.3445281 0.3752012 0.3833929 0.4174495 0.4185740 0.5224324 +#> [175,] 0.60837870 0.6760452 0.7997734 0.8205199 0.8496036 0.8767713 0.8946601 +#> [176,] 0.61829653 0.6366517 0.6997558 0.7136063 0.7383797 0.7610103 0.8476542 +#> [177,] 0.29403821 0.3544237 0.5263326 0.5589544 0.6405376 0.6407043 0.6920594 +#> [178,] 0.30753941 0.4389056 0.4819657 0.5267271 0.5626776 0.5839383 0.6590841 +#> [179,] 0.61451410 0.8065479 0.8074916 0.8192607 0.8541983 0.8731405 0.9437775 +#> [180,] 0.26642362 0.3097676 0.3796937 0.3842518 0.5073590 0.5130520 0.5358143 +#> [181,] 0.47013970 0.5230848 0.5470321 0.8496036 0.8674290 0.9467661 0.9817323 +#> [182,] 0.36021158 0.4470561 0.4515219 0.4767623 0.5241343 0.5364844 0.5865542 +#> [183,] 0.53317440 0.6307292 0.6375269 0.6506767 0.6550839 0.6692890 0.6958393 +#> [184,] 0.59828158 0.7636470 0.8197293 0.8356096 0.8501639 0.8775427 0.9832344 +#> [185,] 0.51230390 0.5204844 0.5648963 0.7084205 0.7865361 0.7996885 0.8246749 +#> [186,] 0.38596645 0.4145507 0.5691145 0.5989056 0.6002112 0.6328652 0.6405012 +#> [187,] 0.96030647 1.0761704 1.0808862 1.0870889 1.1122201 1.1279417 1.1959206 +#> [188,] 0.49473402 0.6299515 0.6832576 0.6942725 0.6958393 0.7062105 0.7064561 +#> [189,] 0.35909924 0.4255819 0.5056986 0.5103887 0.6192480 0.7221886 0.7384616 +#> [190,] 0.48660327 0.7114507 0.7246401 0.7313637 0.8284993 1.0153069 1.0305508 +#> [191,] 0.65050082 0.6816491 0.6842797 0.7600037 0.7705307 0.7733659 0.8202470 +#> [192,] 0.81182782 0.8194373 0.8417935 1.1055276 1.1253849 1.1289979 1.1556449 +#> [193,] 0.66753911 0.7257133 0.7266951 0.7743539 0.8705561 0.9086395 0.9237531 +#> [194,] 0.62045966 0.7111853 0.7449372 0.8068628 0.8219124 0.8335637 0.8411046 +#> [195,] 0.32084307 0.3593245 0.3889879 0.4064958 0.4534542 0.5020450 0.5061745 +#> [196,] 0.59162905 0.6261190 0.6519473 0.6742100 0.7273983 0.7396244 0.7504098 +#> [197,] 0.25774459 0.3922203 0.4871528 0.5731440 0.5860091 0.6188489 0.6274038 +#> [198,] 0.55964953 0.6301278 0.7006146 0.7704925 0.8103618 0.8187889 0.8411695 +#> [199,] 0.56526701 0.5919769 0.7933394 0.8006608 0.8031460 0.8174900 0.9500898 +#> [200,] 0.63850522 0.6481022 0.7466410 0.8095291 0.8236840 0.8689609 0.8885308 +#> [201,] 0.27865399 0.2923046 0.5241343 0.5313052 0.5860547 0.5909128 0.5959543 +#> [202,] 0.42631331 0.5904569 0.5998869 0.7362744 0.7605896 0.8071532 0.8210664 +#> [203,] 0.20842890 0.2428933 0.2988481 0.3402142 0.3697308 0.3865320 0.3890210 +#> [204,] 0.47013970 0.5402685 0.6083787 0.7876943 0.8457159 0.8897081 0.8939270 +#> [205,] 0.34090425 0.4108805 0.4379580 0.5384481 0.5431463 0.5516274 0.5550702 +#> [206,] 0.52132482 0.5291135 0.5549221 0.6991985 0.7043297 0.7597526 0.7809424 +#> [207,] 0.21587317 0.5501698 0.5944061 0.6019943 0.6036912 0.6121399 0.6232368 +#> [208,] 0.19508862 0.3493520 0.4058071 0.5062397 0.5209490 0.5405174 0.5476367 +#> [209,] 0.34835901 0.3519596 0.4355776 0.7052760 0.7261054 0.7961863 0.7980408 +#> [210,] 0.15472873 0.2741477 0.3276143 0.3874743 0.4512306 0.4848735 0.5456915 +#> [211,] 0.30083629 0.5030022 0.5802170 0.6049625 0.6124386 0.6855360 0.7587768 +#> [212,] 0.50905999 0.5763424 0.6077715 0.6494028 0.6571812 0.7116446 0.7209059 +#> [213,] 0.31837803 0.3607279 0.5027575 0.5151727 0.5491726 0.5556941 0.6165135 +#> [214,] 0.58913260 0.8071999 0.9856087 0.9869900 1.0638696 1.1631375 1.1634441 +#> [215,] 0.31003120 0.3585382 0.3890705 0.3975790 0.4177120 0.5668593 0.5714364 +#> [216,] 0.40446900 0.4795265 0.5715888 0.5716924 0.6813370 0.7271226 0.7320339 +#> [217,] 0.41890859 0.4878582 0.5088305 0.5258547 0.5416196 0.5602363 0.5909218 +#> [218,] 0.40846562 0.4148849 0.4390372 0.4579331 0.4686838 0.5092006 0.5149004 +#> [219,] 0.31027223 0.3580854 0.4416277 0.4557797 0.4635054 0.4980985 0.5223489 +#> [220,] 0.67821809 0.7269518 0.7884421 0.8981276 0.9696410 1.0095566 1.0242894 +#> [221,] 0.29113310 0.4240887 0.4680106 0.5413932 0.5551246 0.6033871 0.6445696 +#> [222,] 0.31200656 0.3922203 0.5089802 0.6606336 0.6940500 0.7074970 0.7195269 +#> [223,] 0.80654788 0.8376506 0.9906952 1.0447104 1.0594308 1.1200518 1.1231975 +#> [224,] 0.29785763 0.3634108 0.3946379 0.4253274 0.5136025 0.5313052 0.5568903 +#> [225,] 0.51517267 0.6075172 0.6088218 0.6133793 0.6376472 0.6498677 0.6685887 +#> [226,] 0.41347323 0.4914823 0.5701759 0.5940340 0.6190746 0.6238119 0.6348328 +#> [227,] 0.30243922 0.4479699 0.4755517 0.5638175 0.6171614 0.6514300 0.7090876 +#> [228,] 0.90555460 0.9918885 1.1684544 1.1782701 1.2056914 1.2159078 1.2336533 +#> [229,] 0.51230390 0.6631301 0.6653664 0.7335557 0.7518248 0.8405305 0.9252294 +#> [230,] 0.77283362 0.8079880 0.8467161 0.8528566 0.8555573 0.9325761 0.9362719 +#> [231,] 0.59961280 0.6343369 0.7535997 0.7794280 0.8462224 0.8493717 0.8586241 +#> [232,] 0.26393459 0.2679328 0.2736122 0.3208431 0.3571812 0.4792169 0.4811862 +#> [233,] 0.17875079 0.3975790 0.4053346 0.4628703 0.5497720 0.5765510 0.6245413 +#> [234,] 0.67821809 0.6819256 0.6971910 0.7084205 0.7768582 0.8004708 0.8130695 +#> [235,] 0.35229033 0.4113023 0.4561031 0.4946848 0.4971033 0.5271013 0.5398038 +#> [236,] 0.62906531 0.7234641 0.7449372 0.7810325 0.8642700 0.8649101 0.8839147 +#> [237,] 0.20395837 0.3844797 0.4306182 0.5561102 0.5694909 0.5874698 0.5900798 +#> [238,] 0.57458749 0.5959630 0.6238756 0.6348328 0.6590748 0.6690772 0.7566615 +#> [239,] 0.24032959 0.5017250 0.5050407 0.5692543 0.5727376 0.5783608 0.6350611 +#> [240,] 0.41672649 0.4448618 0.4721369 0.5199025 0.5258675 0.5286509 0.5563468 +#> [241,] 0.98405382 1.1375119 1.1976571 1.2046299 1.2651680 1.3673162 1.3923991 +#> [242,] 0.57243631 0.9198506 1.0032346 1.1074054 1.1169257 1.1289227 1.1497500 +#> [243,] 0.55313581 0.6545472 0.7726849 0.8180935 0.8738729 0.8899513 0.9580921 +#> [244,] 0.57634239 0.6158662 0.6329802 0.6512504 0.6656699 0.6795726 0.7843879 +#> [245,] 0.40030939 0.4047201 0.6347717 0.6518593 0.6594240 0.6682516 0.6796197 +#> [246,] 0.20957563 0.5535769 0.5850788 0.5888863 0.5982422 0.6195995 0.6572079 +#> [247,] 0.32538741 0.3764248 0.4068925 0.4827132 0.5377097 0.5388781 0.5564219 +#> [248,] 0.07991648 0.3969090 0.4554043 0.5958814 0.6328125 0.6462949 0.6542727 +#> [249,] 0.40846562 0.5515295 0.6300735 0.6669118 0.6803393 0.7171484 0.7440268 +#> [250,] 0.24531337 0.2920796 0.3045802 0.3529613 0.3733389 0.3739873 0.4389056 +#> [251,] 0.30083629 0.3895963 0.5889364 0.6204556 0.6560988 0.6840995 0.7052760 +#> [252,] 0.35356658 0.4333924 0.4380970 0.4901973 0.5463399 0.5705713 0.5717453 +#> [253,] 0.71555951 0.8531945 0.9589535 1.0147257 1.0754897 1.0893189 1.0893488 +#> [254,] 0.32560846 0.3436373 0.5602555 0.6310238 0.7119669 0.7121295 0.8242852 +#> [255,] 0.19508862 0.3335111 0.3359325 0.4334802 0.4795022 0.5193626 0.5880298 +#> [256,] 0.33217500 0.5334556 0.5916505 0.7259507 0.7293199 0.7529128 0.7547055 +#> [257,] 0.34844429 0.3698551 0.4515219 0.6835393 0.7039375 0.7097591 0.7388971 +#> [258,] 0.48774381 0.5034437 0.6036912 0.6462597 0.6528830 0.6738408 0.7292561 +#> [259,] 0.50387183 0.5885379 0.8716588 0.9163334 0.9436734 0.9756567 0.9843683 +#> [260,] 0.31083119 0.5392876 0.5584831 0.6788038 0.6856432 0.6939049 0.7587768 +#> [261,] 0.50540167 0.6094466 0.6106162 0.7100869 0.7474043 0.7548418 0.7657958 +#> [262,] 0.36072787 0.4829120 0.6355625 0.6428138 0.6685887 0.7080839 0.7910339 +#> [263,] 0.39463790 0.3948480 0.5147426 0.5186912 0.5888827 0.6300291 0.6367832 +#> [264,] 0.39988625 0.4002021 0.4185740 0.4483313 0.4727237 0.4871645 0.4962613 +#> [265,] 0.23993803 0.5224575 0.5456090 0.5960820 0.6028731 0.6078198 0.6157228 +#> [266,] 0.37926665 0.4468730 0.4925928 0.4942371 0.5473633 0.5825448 0.6047881 +#> [267,] 0.46645854 0.5050407 0.6158712 0.7140490 0.7180839 0.7395991 0.7456979 +#> [268,] 0.38487972 0.4326476 0.4426525 0.4727237 0.4775865 0.4810028 0.5031708 +#> [269,] 1.06380439 1.1005776 1.1676122 1.1770550 1.2246484 1.2639915 1.3374345 +#> [270,] 0.35760660 0.5306228 0.6001879 0.6131775 0.6140907 0.6375269 0.6378469 +#> [271,] 0.37007701 0.3978038 0.4291071 0.5187272 0.5306961 0.5880864 0.6199867 +#> [272,] 0.08045996 0.2810413 0.4755517 0.5850168 0.7445571 0.7490401 0.7683102 +#> [273,] 0.48999353 0.5196985 0.5392876 0.6215960 0.6416367 0.6426553 0.6913845 +#> [274,] 0.24010441 0.3874158 0.4525542 0.4539625 0.4949872 0.5261021 0.5265085 +#> [275,] 0.30100470 0.5029816 0.5127194 0.5510996 0.5639015 0.5655843 0.6384658 +#> [276,] 0.54449025 1.0617308 1.1690400 1.2214387 1.2731221 1.2739128 1.4960939 +#> [277,] 0.29910942 0.5714456 0.5963457 0.6705824 0.6787581 0.7043262 0.7580649 +#> [278,] 0.35718116 0.4193687 0.4433985 0.4534542 0.4665253 0.5451624 0.5502156 +#> [279,] 0.41394639 0.6325459 0.6699654 0.7836029 0.7851510 0.8182959 0.8425422 +#> [280,] 0.22475057 0.3396683 0.4055814 0.4175321 0.4377923 0.4471095 0.4585823 +#> [281,] 0.29444451 0.4113023 0.4141784 0.4404892 0.4630233 0.5031708 0.5333971 +#> [282,] 0.31644694 0.5551573 0.5961214 0.6221072 0.6550789 0.7101610 0.7283993 +#> [283,] 0.34578357 0.3468282 0.3687117 0.4835465 0.5648596 0.6162894 0.6381854 +#> [284,] 0.50387183 0.5236702 0.7701056 0.7911549 0.8739263 0.8836861 0.9411378 +#> [285,] 0.41119252 0.5622579 0.6023753 0.6042996 0.6207918 0.6479959 0.6823808 +#> [286,] 0.85567071 1.0204548 1.0805443 1.1364532 1.3088280 1.3428671 1.3523249 +#> [287,] 0.52439153 0.7499065 0.9440280 0.9675250 1.0153069 1.2163210 1.2222432 +#> [288,] 0.54239075 0.6429094 0.8806943 1.3620115 1.4205182 1.4246796 1.4566494 +#> [289,] 0.94204478 0.9724045 0.9750135 1.0133426 1.1141167 1.1172216 1.1293275 +#> [290,] 0.34194145 0.4542825 0.5073444 0.5291135 0.7688035 0.7853064 0.8207269 +#> [291,] 0.26594121 0.4145992 0.5107277 0.5382576 0.5775870 0.6428034 0.6433268 +#> [292,] 0.33966834 0.3705808 0.4968724 0.5614452 0.5912959 0.6030132 0.6323524 +#> [293,] 0.54240523 0.5685634 0.6545472 0.7480650 0.7893958 0.7894660 0.8047075 +#> [294,] 0.26927678 0.4298212 0.4530965 0.4804884 0.5015095 0.5394649 0.5716974 +#> [295,] 0.26343145 0.2979331 0.4463409 0.5502562 0.5519391 0.5640889 0.5888744 +#> [296,] 0.28309416 0.3568485 0.4377125 0.4419143 0.4674355 0.4870335 0.5484208 +#> [297,] 0.23681564 0.3086668 0.4232261 0.4378483 0.4828435 0.5027134 0.5113881 +#> [298,] 0.44123648 0.4935362 0.5216645 0.5916291 0.6151879 0.7155653 0.7452075 +#> [299,] 0.15515797 0.1970265 0.3792540 0.3921772 0.4304232 0.4333924 0.4406006 +#> [300,] 0.35029758 0.3859824 0.6158662 0.6386173 0.6545420 0.6789222 0.6912502 +#> [301,] 0.17672129 0.2920796 0.3487168 0.4119493 0.4148849 0.4666492 0.5515295 +#> [302,] 0.53302955 0.5382576 0.5505231 0.6596260 0.6688616 0.6746336 0.6863087 +#> [303,] 1.26360735 1.2688591 1.4489720 1.5091963 1.5111890 1.6452195 1.7570417 +#> [304,] 0.32254407 0.3594234 0.4605015 0.4645395 0.5425355 0.5434271 0.5556632 +#> [305,] 0.24866835 0.3789335 0.3792134 0.4561757 0.5161408 0.5266475 0.5673960 +#> [306,] 0.26740534 0.3208248 0.4667387 0.4988816 0.5023142 0.5210939 0.5911413 +#> [307,] 0.68948956 0.8591377 0.8632621 0.8758765 0.9509291 0.9731328 1.0001691 +#> [308,] 0.51152798 0.7055470 0.7202057 0.7660243 0.7819818 0.7912739 0.8258615 +#> [309,] 0.50638053 0.5179364 0.5468375 0.6046618 0.6985545 0.7881233 0.8091576 +#> [310,] 0.16587260 0.3356574 0.3871199 0.4471608 0.4613834 0.5982422 0.6546082 +#> [311,] 0.43717069 0.4465631 0.5035108 0.6308780 0.6550789 0.6917758 0.7570848 +#> [312,] 0.35346968 0.4866033 0.4911228 0.9278780 0.9597156 0.9675250 0.9823241 +#> [313,] 0.46884574 0.4715928 0.4735928 0.5765781 0.5976214 0.6209378 0.6795702 +#> [314,] 0.18842874 0.2774444 0.3743934 0.4975694 0.5050988 0.5495635 0.5568096 +#> [315,] 0.48747026 0.5115595 0.5776815 0.5810022 0.5833092 0.5961116 0.6199867 +#> [316,] 0.71882339 0.7298102 0.7980408 0.8027938 0.8137303 0.8317879 0.8445150 +#> [317,] 0.42087897 0.4312480 0.5634303 0.6422605 0.6566718 0.7048257 0.7623149 +#> [318,] 0.34683737 0.4090368 0.4860365 0.5359664 0.5383853 0.6108532 0.6336967 +#> [319,] 0.37138546 0.4117716 0.4785496 0.4868149 0.5997890 0.6381854 0.6638874 +#> [320,] 0.46517599 0.5368974 0.6422321 0.6776026 0.6805158 0.7277149 0.7588429 +#> [321,] 0.09697109 0.3934919 0.3992212 0.4013733 0.4841724 0.5219711 0.6044576 +#> [322,] 0.61354902 0.7331312 0.8358797 0.8843709 0.9381280 0.9839040 0.9903867 +#> [323,] 0.37300207 0.3944722 0.4408895 0.5156462 0.6216648 0.6234677 0.6260663 +#> [324,] 0.30975111 0.5447037 0.5730397 0.5768426 0.6028126 0.6794550 0.6901274 +#> [325,] 0.49046188 0.5118977 0.5345808 0.5487884 0.6182018 0.6263767 0.6269757 +#> [326,] 0.48914700 0.5917555 0.6135490 0.8236793 0.8388834 0.8661062 0.8718881 +#> [327,] 0.47466248 0.6094466 0.6433676 0.6557585 0.6625708 0.6628817 0.6690772 +#> [328,] 0.73136370 0.8106643 0.8197065 0.9443775 1.0060133 1.0388432 1.0488026 +#> [329,] 0.56057729 0.5963301 0.6683562 0.6795859 0.7329504 0.8120086 0.8243287 +#> [330,] 0.27949333 0.4054250 0.4598163 0.4782392 0.5327786 0.6019534 0.6318225 +#> [331,] 0.33351112 0.3356392 0.3441288 0.4058071 0.4617185 0.4678582 0.5969929 +#> [332,] 0.50641307 0.5115280 0.5247714 0.5806314 0.6723671 0.7161356 0.7278448 +#> [333,] 0.52374859 0.5609209 0.5919769 0.7004560 0.7470308 0.7624804 0.7892986 +#> [334,] 0.42795110 0.4530965 0.4612184 0.4931298 0.5000259 0.5240484 0.5290541 +#> [335,] 0.32761430 0.3475464 0.3843879 0.3949626 0.4205965 0.4415721 0.4535849 +#> [336,] 0.50451422 0.8163552 1.0484713 1.0540369 1.1106780 1.1204779 1.1334821 +#> [337,] 0.56262031 0.7564921 0.8078945 0.8326922 0.8352566 0.8653057 0.8771891 +#> [338,] 0.35029758 0.6987542 0.7735514 0.8113368 0.8188095 0.8228033 0.8238807 +#> [339,] 0.49353624 0.6602226 0.7272707 0.7396244 0.7642973 0.8857255 0.9054262 +#> [340,] 0.26385543 0.4138580 0.4591137 0.4841722 0.4971807 0.5357776 0.5859066 +#> [341,] 0.25334228 0.4108805 0.4143892 0.4465461 0.5185135 0.5862135 0.6011670 +#> [342,] 0.23535424 0.3844714 0.3873494 0.4871865 0.5377632 0.5901825 0.6002112 +#> [343,] 0.49333622 0.5099957 0.5933300 0.6932422 0.7805514 0.7853750 0.9455148 +#> [344,] 0.42777114 0.4942371 0.4996934 0.5374261 0.5378361 0.5491287 0.5572177 +#> [345,] 0.43543452 0.4731234 0.5097656 0.5154537 0.5501798 0.5601731 0.5648554 +#> [346,] 0.27816143 0.2911331 0.3092625 0.4558091 0.6182421 0.6550839 0.6832576 +#> [347,] 0.31133296 0.5416196 0.5924440 0.5951297 0.6042996 0.6043597 0.6051760 +#> [348,] 0.32560846 0.4348900 0.5081217 0.5956861 0.7277149 0.8389705 0.8713819 +#> [349,] 0.27110632 0.2736122 0.3717283 0.4193687 0.4696581 0.5124989 0.5188817 +#> [350,] 0.46804512 0.5862584 0.6132736 0.6300291 0.6931258 0.7347957 0.8070378 +#> [351,] 0.59930178 0.6040936 0.6243774 0.7537008 0.8512212 0.8618755 0.8767726 +#> [352,] 0.72695182 0.8925216 1.0102435 1.0211662 1.0279754 1.0329852 1.2980993 +#> [353,] 0.31170307 0.6374938 0.7231658 0.8318084 0.9315260 0.9454788 1.0235594 +#> [354,] 0.47014037 0.5311183 0.5807093 0.5893542 0.6192480 0.6478061 0.6894734 +#> [355,] 0.31605501 0.5687865 0.6450369 0.6562205 0.6602688 0.6698618 0.6733962 +#> [356,] 0.21566331 0.3844714 0.4404892 0.4961319 0.5078930 0.5369264 0.5770353 +#> [357,] 0.44777486 0.5099957 0.5576428 0.6046208 0.6613447 0.6683092 0.6720861 +#> [358,] 0.44599817 0.5609735 0.7096210 0.8861194 0.8862931 0.8908547 0.9431895 +#> [359,] 0.59854713 0.7551560 0.7975922 0.8340979 0.9488876 0.9678762 1.0104143 +#> [360,] 0.69343238 0.8115715 0.8518886 0.8595648 0.8660315 0.9372885 1.0002448 +#> [361,] 0.18945147 0.3203283 0.3361130 0.3448560 0.3493174 0.3777877 0.4662042 +#> [362,] 0.48657110 0.6705820 0.7001198 0.7362744 0.8745113 0.9834923 0.9946699 +#> [363,] 0.31644694 0.5156924 0.6910260 0.7869916 0.8203473 0.8254108 0.8631331 +#> [364,] 0.57077554 0.6313865 0.6719993 0.6959316 0.7819634 0.8589755 0.8680502 +#> [365,] 0.58735280 0.5874356 0.6407729 0.6911030 0.7000366 0.7373071 0.7389704 +#> [366,] 0.28454807 0.3498404 0.3726540 0.3987329 0.4167784 0.4767417 0.4883674 +#> [367,] 0.24909537 0.6217602 0.8683734 0.9142125 0.9621563 0.9622823 0.9941056 +#> [368,] 0.20121330 0.2632861 0.2991627 0.3697308 0.4134017 0.4259888 0.5201796 +#> [369,] 0.24136134 0.6594240 0.6920199 0.7117756 0.7880136 0.8037376 0.8159284 +#> [370,] 0.49568273 0.6052306 0.6221072 0.6234920 0.6700591 0.7000754 0.7869916 +#> [371,] 0.47399983 0.6625547 0.7281672 0.7694525 0.7743539 0.8051282 0.8220837 +#> [372,] 0.36567019 0.4189086 0.5234874 0.5771078 0.5944776 0.5951297 0.7530624 +#> [373,] 0.18460255 0.2060190 0.3782162 0.3791834 0.4426923 0.4612184 0.4794289 +#> [374,] 0.46500636 0.5511406 0.5911722 0.5958814 0.6242367 0.6417307 0.6562524 +#> [375,] 0.30753941 0.5299665 0.5805937 0.5926426 0.6214401 0.6687676 0.7171484 +#> [376,] 0.58633486 0.6239548 0.6599681 0.6648714 0.6745910 0.7043262 0.7398995 +#> [377,] 0.50763829 0.5663951 0.6228037 0.7147886 0.7307823 0.7430718 0.7822892 +#> [378,] 0.30361897 0.3430907 0.5306958 0.5863829 0.6143961 0.6843397 0.7215748 +#> [379,] 0.62529285 0.9373032 0.9589361 0.9839291 1.0569027 1.1136162 1.1334750 +#> [380,] 0.31004980 0.6990266 0.9175304 1.0122607 1.1262807 1.2133086 1.2242808 +#> [381,] 0.49568273 0.5961214 0.6232368 0.6734077 0.8202901 0.8360364 0.8509438 +#> [382,] 0.31083119 0.4828926 0.4899935 0.5448074 0.5461205 0.5871392 0.7828199 +#> [383,] 0.33628768 0.5511406 0.5918048 0.6436058 0.6527433 0.6718151 0.7163910 +#> [384,] 0.44077776 0.5411184 0.6801610 0.7706525 0.7962910 0.8294079 0.8335637 +#> [385,] 0.15604009 0.4762362 0.5680078 0.5814557 0.6462597 0.6486402 0.6494302 +#> [386,] 0.38532828 0.4359686 0.5209098 0.5689635 0.5757741 0.5904509 0.5991853 +#> [387,] 0.33470661 0.3647560 0.5047202 0.5630189 0.5689635 0.5829721 0.5891104 +#> [388,] 0.65667184 0.6750756 0.6775991 0.7616078 0.7726849 0.9088996 0.9411035 +#> [389,] 0.31575585 0.5786936 0.6070519 0.6149352 0.7121295 0.7450731 0.7560740 +#> [390,] 0.40636897 0.4379580 0.4465461 0.5390755 0.5909128 0.5998869 0.6395035 +#> [391,] 0.71637391 0.9092624 0.9917192 1.0071221 1.0974428 1.1297508 1.1602162 +#> [392,] 0.51834711 0.5505231 0.5846558 0.5926610 0.7513978 0.7774382 0.7794280 +#> [393,] 0.14605421 0.6075121 0.6775991 0.7048257 0.7444487 0.7576389 0.8104532 +#> [394,] 0.46638959 0.5294214 0.5480739 0.6234146 0.6267325 0.6959634 0.7060311 +#> [395,] 1.04920444 1.1822441 1.2197848 1.3257101 1.3857820 1.3957540 1.3989331 +#> [396,] 0.50074816 0.9368811 1.0471965 1.0540369 1.0659909 1.0825885 1.0936585 +#> [397,] 0.35233048 0.3636660 0.4969829 0.5377632 0.5908810 0.6138392 0.7085501 +#> [398,] 0.33018724 0.5976214 0.6068353 0.6865432 0.7154680 0.7209059 0.7564411 +#> [399,] 0.32685154 0.3821192 0.5760403 0.6261190 0.6692866 0.7112562 0.7409202 +#> [400,] 0.99219177 1.0147922 1.1050029 1.1439902 1.2163210 1.2301288 1.2718061 +#> [401,] 0.50067478 0.5271013 0.5735262 0.6820610 0.6876870 0.7728214 0.7903175 +#> [402,] 0.61061623 0.6870153 0.7093132 0.7347957 0.8417935 0.9099727 0.9207612 +#> [403,] 0.13118949 0.5519855 0.5731555 0.6801153 0.8020988 0.8270089 0.9160206 +#> [404,] 0.35945348 0.3929751 0.4128428 0.4949872 0.5282306 0.6033871 0.6078198 +#> [405,] 0.47216259 0.6429094 0.8313961 0.9559077 1.1019036 1.1677363 1.2491498 +#> [406,] 0.52840771 0.5306958 0.5440199 0.5557236 0.5803419 0.5863349 0.5922188 +#> [407,] 0.18051066 0.4002402 0.5468375 0.5576100 0.5873958 0.6803568 0.7861184 +#> [408,] 0.42982120 0.4931298 0.5219711 0.5226653 0.5355817 0.5618288 0.6011145 +#> [409,] 0.23307038 0.5096766 0.5400055 0.5411882 0.5479479 0.5729807 0.5868046 +#> [410,] 0.22690537 0.3102786 0.4061678 0.4906205 0.5086148 0.5583424 0.6063374 +#> [411,] 0.59354400 0.6070115 0.6145340 0.6739434 0.6935096 0.6939493 0.7555520 +#> [412,] 0.45311652 0.4835465 0.6051837 0.6545420 0.6795726 0.6883190 0.7681392 +#> [413,] 0.52874860 0.5485678 0.5557123 0.5716924 0.6452023 0.7073426 0.7129012 +#> [414,] 0.59854713 0.7433678 0.7931495 1.1149152 1.1309300 1.2472189 1.2511145 +#> [415,] 1.00915273 1.0397144 1.0531656 1.0897849 1.1299244 1.2105582 1.2705682 +#> [416,] 0.44685385 0.4802813 0.4841724 0.5951493 0.6011145 0.6486402 0.6837553 +#> [417,] 0.39066227 0.4058263 0.5686761 0.5893919 0.7694337 0.7836191 0.8194804 +#> [418,] 0.30577483 0.4465631 0.5118977 0.5633698 0.5763036 0.6474377 0.6518129 +#> [419,] 0.33565738 0.3413110 0.3634738 0.3796179 0.3857744 0.4868420 0.5030333 +#> [420,] 0.26385543 0.3050787 0.3099595 0.4493096 0.5142780 0.5426927 0.5432273 +#> [421,] 0.72981016 0.8191095 1.0391618 1.0635243 1.1439234 1.1497564 1.1579309 +#> [422,] 0.77901084 0.8141714 0.8880066 0.9686581 0.9776988 0.9981969 1.0372120 +#> [423,] 0.17188245 0.3102722 0.4068494 0.4948228 0.5050988 0.5092787 0.5166929 +#> [424,] 0.58021695 0.6560988 0.8278941 0.8310321 0.8902744 0.9046550 0.9497534 +#> [425,] 0.50074816 0.7472879 0.7886271 0.8055432 0.8072300 0.8322109 0.8544600 +#> [426,] 0.65841128 0.7551560 0.8793542 0.8990536 0.9343049 0.9647801 1.0091527 +#> [427,] 0.40360403 0.4477749 0.4521097 0.5402954 0.5465505 0.6198224 0.6646068 +#> [428,] 0.47869309 0.9571049 1.1259877 1.1363119 1.2431542 1.2535680 1.2883587 +#> [429,] 0.34027172 0.3519596 0.3895963 0.5030022 0.5741917 0.5803987 0.7337276 +#> [430,] 0.21863794 0.5792501 0.5799310 0.6055756 0.6098908 0.6619151 0.7052326 +#> [431,] 0.42262902 0.5161931 0.5211340 0.5809020 0.6295294 0.6742100 0.7002335 +#> [432,] 0.57267127 0.5730397 0.6557861 0.6854213 0.6911311 0.6957793 0.7067249 +#> [433,] 0.24866835 0.2996319 0.4200978 0.4258462 0.4310830 0.5603310 0.5667096 +#> [434,] 0.39780376 0.4386172 0.4797447 0.4874703 0.4933392 0.5682878 0.6303169 +#> [435,] 0.49112284 0.6390106 0.6759421 0.7114507 0.7823791 0.7902742 0.7998991 +#> [436,] 0.36738405 0.4135458 0.5167208 0.5334669 0.5473633 0.5482934 0.5957012 +#> [437,] 0.29571554 0.3634738 0.3637507 0.3814911 0.3871199 0.3876728 0.4539900 +#> [438,] 0.49119061 0.7828531 0.8027938 0.8172419 0.9485036 1.0184482 1.0185377 +#> [439,] 0.83437551 0.9571049 1.0803707 1.1735669 1.1976571 1.2111689 1.3843671 +#> [440,] 0.24289334 0.3120646 0.3537647 0.3949626 0.4134017 0.4214355 0.4319502 +#> [441,] 0.20289628 0.6237566 0.6844604 0.7369896 0.8385844 0.8803578 0.8962578 +#> [442,] 0.75123324 0.9219082 1.0496610 1.1107187 1.1215952 1.1425865 1.1637278 +#> [443,] 0.24545491 0.4625359 0.4660731 0.4949305 0.5009155 0.5330862 0.5507820 +#> [444,] 0.67768660 0.7038044 0.7892187 0.8172974 0.8343469 0.8612254 0.8907011 +#> [445,] 1.22623347 1.2420842 1.3854303 1.3953893 1.4621698 1.5357017 1.5569942 +#> [446,] 0.47289305 0.6145340 0.6684878 0.6760726 0.6819878 0.6879263 0.6969249 +#> [447,] 1.45228667 1.6043613 1.6490182 1.8686264 1.8838568 1.8952957 1.9006795 +#> [448,] 0.57243631 0.7067615 0.8611921 1.0199524 1.0782641 1.1621953 1.1898859 +#> [449,] 0.24863800 0.3598209 0.3796937 0.4948503 0.5142888 0.5173598 0.5306004 +#> [450,] 0.44366791 0.7192560 1.2657779 1.2739660 1.3403521 1.3811454 1.5902023 +#> [451,] 0.50167997 0.5237082 0.5300692 0.5317664 0.5451624 0.5490896 0.5717995 +#> [452,] 0.64144872 0.8653057 1.1236420 1.2908359 1.3073813 1.3171347 1.3352933 +#> [453,] 0.40963634 0.4797447 0.5306961 0.6045138 0.6223325 0.6235444 0.6778300 +#> [454,] 0.57965193 0.7163739 0.7299407 0.7894505 0.9358348 1.0104482 1.0190099 +#> [455,] 0.33731955 0.3678879 0.3792666 0.4171944 0.5020450 0.5062591 0.5226281 +#> [456,] 0.09697109 0.3223750 0.3544125 0.4270109 0.4468538 0.5355817 0.5816812 +#> [457,] 0.26564505 0.7653629 0.8236488 0.9174340 0.9267543 0.9272176 0.9374222 +#> [458,] 0.48470066 0.5052092 0.5596495 0.6027456 0.6594966 0.6607136 0.6997558 +#> [459,] 0.16282452 0.2891480 0.4182400 0.4340449 0.4996934 0.5051723 0.5113368 +#> [460,] 0.44060061 0.4449831 0.4557764 0.4573444 0.4681588 0.5077163 0.5246272 +#> [461,] 0.27996485 0.5602452 0.6143961 0.6219634 0.6801153 0.7140490 0.7973198 +#> [462,] 0.70380443 0.8241613 1.1755510 1.1950636 1.2795708 1.3081447 1.3256072 +#> [463,] 0.26740534 0.3117459 0.4585147 0.4678582 0.5209490 0.5859090 0.5880765 +#> [464,] 0.52166448 0.5273160 0.6314860 0.6347717 0.6591848 0.6602226 0.6829279 +#> [465,] 0.46804512 0.6870153 0.7545626 0.7706474 0.7762396 0.8118278 0.9270370 +#> [466,] 0.31004980 0.7137102 0.8195100 0.8730117 0.9593647 1.0354425 1.1030984 +#> [467,] 0.29292073 0.3314803 0.4310830 0.4425622 0.4561757 0.5497865 0.5655038 +#> [468,] 0.27981317 0.3631803 0.3758961 0.4363955 0.4510979 0.4921939 0.5126823 +#> [469,] 0.34390429 0.3668414 0.4200978 0.5247714 0.5707832 0.5720249 0.6123558 +#> [470,] 0.21164504 0.2930111 0.3169707 0.3361130 0.3613120 0.3687756 0.3733389 +#> [471,] 0.20417561 0.4786287 0.5084755 0.5140385 0.5410413 0.5428946 0.6918404 +#> [472,] 0.83587974 0.8890259 0.9255049 0.9664203 1.0821634 1.0852990 1.1843941 +#> [473,] 0.76058958 0.9090353 0.9256838 0.9697771 1.0202062 1.0394324 1.0615033 +#> [474,] 0.40542497 0.4449027 0.4514099 0.5119779 0.5300852 0.5545604 0.5947904 +#> [475,] 0.87266945 1.0586150 1.0839485 1.0860132 1.1040333 1.1843674 1.3202047 +#> [476,] 0.39915058 0.4044690 0.4656943 0.5084248 0.5287486 0.5500657 0.6266317 +#> [477,] 0.51479463 0.5694424 0.6092113 0.6469373 0.6859729 0.6948786 0.6948917 +#> [478,] 0.33332358 0.4540222 0.6165999 0.6311446 0.6354071 0.6525144 0.6576091 +#> [479,] 0.32348784 0.4167936 0.4622053 0.4756200 0.4828435 0.4856521 0.5458660 +#> [480,] 0.20774666 0.2368156 0.3148796 0.3318808 0.4167936 0.5171208 0.5223489 +#> [481,] 0.64265530 0.6615948 0.6939049 0.7691026 0.7837144 0.8313751 0.8374920 +#> [482,] 0.31191358 0.5115595 0.5186912 0.5568903 0.5658674 0.5805367 0.6526331 +#> [483,] 0.36871174 0.4752569 0.4946232 0.5832266 0.6778089 0.6828681 0.7059491 +#> [484,] 0.61434841 0.6643837 0.7710334 0.8202840 0.8318084 1.0382065 1.1255773 +#> [485,] 0.32282065 0.4160175 0.4522604 0.4870973 0.5622388 0.5837745 0.6021089 +#> [486,] 0.69902660 0.9255049 0.9593647 0.9603065 1.0848989 1.1964572 1.2806124 +#> [487,] 0.36583627 0.4312480 0.5921655 0.6179367 0.6290988 0.6688491 0.6798061 +#> [488,] 0.48914700 0.5809788 0.5860091 0.6228037 0.6670446 0.7151664 0.7331312 +#> [489,] 0.54426886 0.5818935 0.6092135 0.6802616 0.7296064 0.7703605 0.7863003 +#> [490,] 0.64144872 1.1515432 1.2574863 1.3068810 1.3621837 1.4400532 1.5037535 +#> [491,] 0.68609343 0.6878115 1.0190392 1.1752675 1.2500793 1.4017630 1.4175909 +#> [492,] 0.19996637 0.2641698 0.4474902 0.4658086 0.5312450 0.5522147 0.5635916 +#> [493,] 0.55034352 0.6327033 0.7231658 0.9630081 1.1152965 1.1166193 1.2305216 +#> [494,] 0.44016974 0.7307823 0.8092806 0.8182231 0.8593062 0.8993036 0.9097510 +#> [495,] 0.27017635 0.3699957 0.4096830 0.4512306 0.4612165 0.4628703 0.4941352 +#> [496,] 0.73232324 0.7710468 0.8167852 0.8925772 0.9230566 0.9272176 0.9380741 +#> [497,] 0.35942336 0.4049898 0.4334802 0.4913438 0.5031696 0.5197681 0.5405174 +#> [498,] 1.03943243 1.0721897 1.0905577 1.1089035 1.1314227 1.1912541 1.2253874 +#> [499,] 0.27072483 0.3865848 0.4292685 0.5141644 0.5370477 0.5482934 0.5624287 +#> [500,] 0.37642480 0.3978315 0.3998387 0.5439209 0.5668593 0.6262270 0.6268746 +#> [501,] 0.47216259 0.5423907 0.7833552 0.9727131 1.1413017 1.1811073 1.2372009 +#> [502,] 0.34754640 0.3576066 0.3862040 0.3874743 0.4431694 0.4952917 0.5221971 +#> [503,] 1.25593536 1.3176629 1.3585019 1.3851334 1.3869811 1.4232511 1.4684821 +#> [504,] 0.41890633 0.4389962 0.4798121 0.6254812 0.6718151 0.6731796 0.7411969 +#> [505,] 0.78545275 0.8847553 1.0815974 1.1519782 1.3383411 1.4112341 1.5026801 +#> [506,] 0.37644458 0.5334556 0.5487723 0.7187771 0.7560823 0.7745370 0.9103913 +#> [507,] 0.70927902 0.7398905 0.8395667 0.8904261 0.8994460 0.9188252 0.9655937 +#> [508,] 0.51459128 0.6009983 0.6357531 0.6474427 0.6819256 0.7059153 0.7111395 +#> [509,] 0.43697204 0.4958141 0.5626203 0.5694424 0.5959871 0.6326815 0.7707595 +#> [510,] 0.40476741 0.5652670 0.5761168 0.6490482 0.6917122 0.7084974 0.7534034 +#> [511,] 0.82162781 0.9675018 0.9981969 1.0832153 1.2422757 1.2847455 1.2862323 +#> [512,] 0.30085979 0.4361772 0.5251689 0.5338096 0.5823034 0.6650514 0.7381164 +#> [513,] 0.29301114 0.3731118 0.4421991 0.4486907 0.4543662 0.4699835 0.4710620 +#> [514,] 0.29292073 0.4098502 0.4798583 0.5378361 0.5423993 0.5514421 0.5667096 +#> [515,] 0.26793281 0.2711063 0.3820295 0.3889879 0.4171944 0.4261615 0.4433985 +#> [516,] 0.27028389 0.3415438 0.3734846 0.3840070 0.4426923 0.4609179 0.4715471 +#> [517,] 0.30866684 0.3234878 0.3318808 0.4254990 0.4446930 0.4488586 0.4648980 +#> [518,] 0.07991648 0.4038128 0.4762512 0.5911722 0.6350611 0.6912811 0.6981930 +#> [519,] 0.37025403 0.3944722 0.4546167 0.5061000 0.5270976 0.5509830 0.5810267 +#> [520,] 0.27981317 0.4053421 0.4202105 0.4315446 0.5017654 0.5127194 0.5205824 +#> [521,] 0.34512046 0.4042546 0.4521097 0.5453375 0.5888239 0.6046208 0.6074047 +#> [522,] 0.13879613 0.3419732 0.3665608 0.4178758 0.4448724 0.4893759 0.5030333 +#> [523,] 0.54363676 0.5771780 0.5962627 0.7278883 0.8893138 0.9051578 0.9270370 +#> [524,] 0.33184739 0.3507093 0.3598209 0.5017654 0.5346923 0.5475948 0.5485160 +#> [525,] 0.26143033 0.3439043 0.3928074 0.4258462 0.5064131 0.5837491 0.7095298 +#> [526,] 0.28883648 0.4871865 0.5237486 0.5480739 0.6635628 0.6831837 0.6882478 +#> [527,] 0.77901084 1.1327007 1.2185269 1.2789434 1.2862323 1.3177358 1.4660522 +#> [528,] 0.38801771 0.3950953 0.4755505 0.5452861 0.5768426 0.6079400 0.6224556 +#> [529,] 0.27912903 0.3436373 0.4348900 0.6630490 0.6776026 0.7560740 0.8175933 +#> [530,] 0.45669225 0.5905829 0.6098908 0.8362491 0.8714916 0.8802147 0.9061382 +#> [531,] 0.36687170 0.4117716 0.4755552 0.5197681 0.5227071 0.5425355 0.5607744 +#> [532,] 0.33962879 0.3890705 0.4053346 0.5261169 0.6142398 0.6576187 0.6897535 +#> [533,] 0.73738653 0.8103618 0.8189857 0.8284993 0.8510004 0.8795685 0.8951109 +#> [534,] 0.17875079 0.3396288 0.3585382 0.5533974 0.5907733 0.6179367 0.6273748 +#> [535,] 0.32500550 0.3266515 0.3547841 0.3792344 0.4175321 0.4422283 0.4517481 +#> [536,] 0.33064403 0.3969425 0.5079901 0.5199025 0.5263975 0.5330862 0.5579990 +#> [537,] 0.86476367 0.9477399 0.9832344 1.0586136 1.2534981 1.3615438 1.3869811 +#> [538,] 1.51838574 1.6109467 1.7708302 1.8085940 1.9709012 1.9897454 2.1130770 +#> [539,] 0.31191358 0.4145507 0.4342199 0.5136025 0.5556632 0.5776815 0.5888827 +#> [540,] 0.48520405 0.6145141 0.9431510 0.9827255 1.0118221 1.0709103 1.1359482 +#> [541,] 0.40472014 0.4864877 0.6390878 0.6591848 0.7155856 0.7660701 0.7727693 +#> [542,] 0.76364702 0.7853750 0.8647637 1.0036165 1.0303411 1.0931007 1.0985984 +#> [543,] 0.58070930 0.6279492 0.6657246 0.6752513 0.6872129 0.7148179 0.7352546 +#> [544,] 0.61975077 0.9142557 0.9437180 1.0027772 1.0378565 1.1022966 1.2146529 +#> [545,] 0.60396993 0.8556707 0.8925672 0.9236600 0.9622823 0.9663578 0.9743262 +#> [546,] 0.12046345 0.4407778 0.6910868 0.7058085 0.7183874 0.7288252 0.7548969 +#> [547,] 1.17888285 1.2565012 1.3092816 1.3485371 1.3592511 1.3868103 1.3965006 +#> [548,] 0.55249129 0.5894451 0.6794550 0.6825160 0.7403855 0.7499781 0.7685453 +#> [549,] 0.40476741 0.5235680 0.5698808 0.6055756 0.6478767 0.7933394 0.8048888 +#> [550,] 0.59574307 0.6550834 0.7081091 0.8176899 0.8303848 0.8308750 0.8356224 +#> [551,] 0.36883720 0.3790429 0.4196418 0.4813874 0.6354071 0.7087893 0.7210488 +#> [552,] 0.22690537 0.3318503 0.3474324 0.3919076 0.5672823 0.5812286 0.5816418 +#> [553,] 0.25774459 0.3120066 0.5073320 0.6759421 0.6994948 0.7042752 0.7059491 +#> [554,] 0.48465152 0.5241100 0.5428946 0.5505425 0.5685634 0.5802675 0.6282014 +#> [555,] 0.28688126 0.3224021 0.4224186 0.4696288 0.4751730 0.4799773 0.4841708 +#> [556,] 0.42682207 0.4577456 0.5079901 0.5520819 0.6207918 0.6501106 0.6740800 +#> [557,] 0.51817417 0.5442637 0.5868762 0.6314365 0.6477322 0.6781473 0.6986159 +#> [558,] 0.19513800 0.3253874 0.3978315 0.5390598 0.5714364 0.5780151 0.6273748 +#> [559,] 0.60147181 0.6422321 0.6654582 0.7315526 0.7750984 0.8343469 0.8389705 +#> [560,] 0.58039868 0.6049625 0.6840995 0.7140941 0.7261054 0.7437403 0.7692705 +#> [561,] 0.56407060 0.5846558 0.8028055 0.8462224 0.8719151 0.8746693 0.8830011 +#> [562,] 0.34273538 0.3841699 0.4105118 0.4383739 0.4858712 0.5065422 0.5251689 +#> [563,] 0.44366791 0.7238057 1.1969462 1.3358588 1.3543267 1.3886413 1.5250261 +#> [564,] 0.63184141 0.7544464 0.7638342 0.8534673 0.9591824 0.9823241 0.9860083 +#> [565,] 0.53892468 0.6336688 0.8073962 0.8078945 0.9509165 0.9673514 1.0400164 +#> [566,] 1.40517342 1.4799383 1.5337433 1.6619145 1.6645287 1.6742392 1.6770461 +#> [567,] 0.40425462 0.5054819 0.5465505 0.6699691 0.6847809 0.7834679 0.7970432 +#> [568,] 0.29230462 0.2969847 0.3602116 0.3634108 0.3904106 0.5878294 0.6034387 +#> [569,] 0.41354584 0.4359867 0.4786287 0.5156658 0.5329834 0.5480443 0.5491726 +#> [570,] 0.40415075 0.6027456 0.6301278 0.6499022 0.6650514 0.7953267 0.8599447 +#> [571,] 1.01472574 1.1123529 1.1923692 1.3073333 1.3876238 1.5133920 1.5342320 +#> [572,] 1.41605561 1.5498688 1.7465202 1.7507080 1.8019820 1.8112516 1.8627146 +#> [573,] 0.59337182 0.6013404 0.6559592 0.6794917 0.7073037 0.7472879 0.7559327 +#> [574,] 0.20601898 0.2138112 0.2836252 0.3734846 0.3993061 0.4641697 0.5026104 +#> [575,] 0.56988075 0.5799310 0.6264804 0.6338821 0.7155595 0.7585791 0.8802147 +#> [576,] 0.24010441 0.3451244 0.3776825 0.4448724 0.5067279 0.5093840 0.5153017 +#> [577,] 0.44522840 0.4637061 0.5803419 0.6279280 0.7888915 0.8112898 0.8401171 +#> [578,] 0.46177516 0.5032684 0.5560926 0.6384115 0.6558610 0.6738408 0.6795696 +#> [579,] 0.25183425 0.4369720 0.4405283 0.4724317 0.6092113 0.6395914 0.6836550 +#> [580,] 0.55034352 0.8932676 0.9048609 0.9122109 0.9204655 1.0020373 1.0966724 +#> [581,] 0.27957885 0.4029978 0.5986835 0.6859729 0.7006915 0.8743741 0.9495803 +#> [582,] 0.46009541 0.5295352 0.5377479 0.5922188 0.5985136 0.6594093 0.6648714 +#> [583,] 0.16973124 0.3884705 0.4261615 0.4953801 0.5302664 0.6032451 0.6088218 +#> [584,] 0.36096082 0.4292685 0.4315726 0.5161931 0.5861869 0.6151879 0.6519473 +#> [585,] 0.62240532 0.8313961 0.8539695 1.0598134 1.0899057 1.1185382 1.1891441 +#> [586,] 0.53355768 0.6586069 0.7373932 0.8106935 0.8137303 0.8560083 0.8586241 +#> [587,] 0.61434841 0.6742504 0.7758032 0.8632298 0.9866009 0.9946745 1.0171249 +#> [588,] 0.50994700 0.7137102 0.7281672 0.8292282 0.8709165 0.9152130 0.9175304 +#> [589,] 0.35442371 0.4167385 0.4613995 0.4975055 0.5103887 0.7466410 0.7591619 +#> [590,] 0.54835213 0.7573177 0.7731458 0.7745561 0.7955375 0.8407062 0.8494256 +#> [591,] 0.48960202 0.5124989 0.5754902 0.5816418 0.5968568 0.6040564 0.6065801 +#> [592,] 0.40807386 0.5852049 0.5944061 0.6151464 0.6305765 0.6354666 0.6405491 +#> [593,] 0.50451422 0.5435610 0.8748761 0.9055023 1.0413266 1.0492853 1.1193411 +#> [594,] 0.60941048 0.8286666 0.8362473 0.8475980 0.8652686 0.9248949 0.9401446 +#> [595,] 1.02764981 1.0675792 1.1726157 1.1737706 1.2117283 1.2122693 1.2136554 +#> [596,] 0.48648770 0.6071182 0.6077914 0.6451965 0.6664912 0.6796197 0.6990176 +#> [597,] 0.31537054 0.4401888 0.7049388 0.7611104 0.7926868 0.8169729 0.8347674 +#> [598,] 0.33478924 0.3535666 0.3921772 0.3934919 0.4061885 0.4270109 0.4683849 +#> [599,] 0.29403821 0.4011936 0.4167385 0.4725982 0.5336573 0.5487884 0.5762095 +#> [600,] 0.34154377 0.3776825 0.4150283 0.4241536 0.4626339 0.4811862 0.5238636 +#> [601,] 0.29062669 0.3969090 0.4038128 0.6562524 0.6739732 0.6791804 0.7069239 +#> [602,] 0.36985508 0.4767623 0.6505008 0.6659052 0.6908772 0.6949283 0.7074873 +#> [603,] 0.46510675 0.5777555 0.6102530 0.6860259 0.6954669 0.8290772 0.8351042 +#> [604,] 0.58189352 0.6589000 0.6686780 0.6893716 0.8203466 0.8461130 0.8599066 +#> [605,] 0.28459575 0.3376415 0.4192009 0.5731440 0.6105425 0.6149352 0.6214294 +#> [606,] 0.11608719 0.3638735 0.3792344 0.3799525 0.3879428 0.4390372 0.4585823 +#> [607,] 0.80719987 0.8293724 1.0997222 1.2354086 1.3177878 1.3927904 1.4089550 +#> [608,] 0.70018889 1.2503321 1.2780366 1.3383411 1.4643526 1.5313353 1.5387897 +#> [609,] 0.54703206 0.6326815 0.7559557 0.8459306 0.8506859 0.8917204 0.9307966 +#> [610,] 0.27361090 0.3943047 0.4335340 0.5142888 0.5265425 0.5371743 0.5416264 +#> [611,] 0.82697259 0.8951109 0.9285000 0.9448010 1.0888297 1.2039308 1.2067116 +#> [612,] 0.30507871 0.3273770 0.4344419 0.4591137 0.4751239 0.4870335 0.5101134 +#> [613,] 0.54105950 0.7512295 0.8366602 0.9077201 1.0226334 1.0241518 1.1789045 +#> [614,] 0.32685154 0.4467783 0.6437903 0.6957793 0.7111202 0.7504098 0.7703679 +#> [615,] 0.21392826 0.2641698 0.4380816 0.4557797 0.5332089 0.5424867 0.5470235 +#> [616,] 0.16973124 0.3613998 0.4432428 0.4559979 0.5624052 0.5760403 0.6043345 +#> [617,] 0.54910784 0.5686761 0.6911297 0.6945931 0.7177089 0.7198688 0.7597752 +#> [618,] 0.21566331 0.3873494 0.4141784 0.4209737 0.4946848 0.5121898 0.5441918 +#> [619,] 0.31174585 0.3208248 0.3302222 0.3356392 0.3359325 0.3493520 0.4049898 +#> [620,] 0.48416998 0.6688491 0.6699654 0.7330502 0.7655117 0.7961905 0.8147810 +#> [621,] 0.54243723 0.5634303 0.5645729 0.5921655 0.5974787 0.6009983 0.6831728 +#> [622,] 0.44986007 0.6802616 0.6893716 0.8791343 0.8939719 0.9821576 0.9837626 +#> [623,] 0.58665844 0.8052953 0.8582436 0.9003027 0.9672961 0.9803843 1.0155728 +#> [624,] 0.24136134 0.5790625 0.6168309 0.6571811 0.6682516 0.7423945 0.7494334 +#> [625,] 0.52631572 0.6946062 0.8203172 0.8286666 0.8862931 1.0503166 1.0956282 +#> [626,] 0.28362515 0.3572052 0.3782162 0.4301535 0.4609179 0.4736896 0.4951976 +#> [627,] 0.34844429 0.4708596 0.4950304 0.5364844 0.5959543 0.6394717 0.6509156 +#> [628,] 0.70116622 0.8738729 0.9232706 0.9257615 0.9500668 1.0094909 1.0283225 +#> [629,] 0.41787351 0.5240484 0.6101186 0.6395927 0.6518593 0.6559082 0.6670681 +#> [630,] 0.34027172 0.3483590 0.5775658 0.5876252 0.6204556 0.6855360 0.7085435 +#> [631,] 0.48183801 0.7126242 0.7467861 0.7836029 0.8784556 0.8980112 0.8987570 +#> [632,] 0.19419128 0.2839768 0.3802278 0.4279197 0.4645395 0.4706502 0.4918564 +#> [633,] 0.23167235 0.4764203 0.4957492 0.5487723 0.5527083 0.5540839 0.6585077 +#> [634,] 0.37995251 0.4259055 0.4356021 0.4399584 0.4510979 0.5149004 0.6219822 +#> [635,] 0.39363928 0.4841722 0.5142780 0.5335577 0.5623835 0.5888239 0.6495236 +#> [636,] 0.63314368 1.0503016 1.1153360 1.1235266 1.1364532 1.1380188 1.1802990 +#> [637,] 0.85546966 0.8595941 0.8765175 0.8949732 0.9058662 0.9230566 0.9535782 +#> [638,] 0.54449025 1.2893829 1.4274326 1.4313215 1.4664327 1.6344595 1.6742548 +#> [639,] 0.46645854 0.4802830 0.6528180 0.6667336 0.6717098 0.6732536 0.6761374 +#> [640,] 0.35965794 0.4701404 0.5471553 0.5762095 0.6405376 0.6763833 0.6825840 +#> [641,] 0.43598666 0.4381048 0.5115222 0.5120130 0.5410413 0.5505425 0.5846763 +#> [642,] 0.25334228 0.5324512 0.5390755 0.5392326 0.5592968 0.5691145 0.5746819 +#> [643,] 0.36595529 0.3844797 0.4811879 0.5233490 0.5263663 0.5361204 0.5486290 +#> [644,] 0.34235251 0.5245471 0.5290194 0.5560926 0.5857627 0.6764634 0.6833624 +#> [645,] 0.36347243 0.4590754 0.6295294 0.6487658 0.6860259 0.7038720 0.7096475 +#> [646,] 0.20395837 0.4657923 0.4935208 0.5361204 0.5476945 0.5932247 0.6263767 +#> [647,] 0.29910942 0.4783190 0.5909218 0.6377302 0.6388986 0.7084974 0.7317710 +#> [648,] 0.38519494 0.4323350 0.5596796 0.6020497 0.6978972 0.7114342 0.7876461 +#> [649,] 0.35376145 0.4160175 0.4224186 0.4543662 0.4552867 0.4556376 0.4574192 +#> [650,] 1.26516795 1.2810324 1.5369662 1.5829576 1.5865118 1.6985075 1.7013157 +#> [651,] 0.30338965 0.3409042 0.3426225 0.3523410 0.3687144 0.4049237 0.4143892 +#> [652,] 0.38772521 0.4232959 0.5335816 0.5549221 0.5569106 0.6105425 0.6243774 +#> [653,] 0.37150479 0.4389962 0.4868420 0.4953717 0.5373714 0.5376232 0.5427501 +#> [654,] 0.78346792 0.7997734 0.8752845 0.9425318 0.9635824 0.9930162 0.9941969 +#> [655,] 0.49333622 0.4946115 0.5402954 0.5576428 0.6074047 0.7881233 0.8216602 +#> [656,] 0.81634704 0.8325586 0.9138814 0.9159168 0.9335997 0.9660048 1.0039897 +#> [657,] 0.30361897 0.5440199 0.5652880 0.6127630 0.6279280 0.6685404 0.7063750 +#> [658,] 0.37644458 0.4764203 0.5026760 0.5916505 0.6111725 0.6610760 0.7162576 +#> [659,] 0.46121647 0.4937272 0.6014050 0.6290653 0.6328639 0.7201901 0.7545655 +#> [660,] 0.27017635 0.4135228 0.4148534 0.4937272 0.5395340 0.5418916 0.5552143 +#> [661,] 0.58739582 0.6725229 0.7993370 0.9048243 0.9329313 0.9839407 1.0221971 +#> [662,] 0.41394639 0.6016788 0.6157182 0.6422605 0.6474427 0.6831728 0.7126242 +#> [663,] 0.18460255 0.2138112 0.3822591 0.3840070 0.3862574 0.4230495 0.4736896 +#> [664,] 0.30072497 0.3464240 0.3802278 0.3995926 0.6015810 0.6372212 0.6519142 +#> [665,] 0.30975111 0.3880177 0.4556376 0.5139233 0.5483299 0.5894451 0.6325165 +#> [666,] 0.43594864 0.5407081 0.8323526 0.9285000 0.9896595 1.0405765 1.0770914 +#> [667,] 0.34452809 0.3600881 0.3892187 0.4049237 0.4952720 0.5409081 0.5506858 +#> [668,] 0.25073339 0.2655099 0.3688372 0.4002012 0.5335816 0.5430112 0.5562233 +#> [669,] 0.55313581 0.8070900 0.8268404 0.9176893 0.9838827 1.0484415 1.0492853 +#> [670,] 0.77684925 0.7780350 0.8705382 0.8738428 0.9277626 0.9402255 0.9558444 +#> [671,] 0.62196198 0.6366517 0.6978972 0.8322545 0.8497819 0.9580972 1.0241518 +#> [672,] 0.30084255 0.5388117 0.5648963 0.5803478 0.7518248 0.7807733 0.8681542 +#> [673,] 0.43749453 0.5505227 0.5672890 0.5687865 0.5735866 0.5894259 0.5947715 +#> [674,] 0.24863800 0.3318474 0.4301535 0.4310850 0.4422283 0.4810028 0.4870022 +#> [675,] 0.53320894 0.6171614 0.6680559 0.6984509 0.7053176 0.7166298 0.7309727 +#> [676,] 0.39983873 0.4405283 0.4797045 0.5156670 0.5388781 0.5728042 0.6942725 +#> [677,] 0.35368533 0.4474790 0.4496334 0.4678426 0.6593369 0.7176423 0.7300486 +#> [678,] 0.39190757 0.4899965 0.5306228 0.5583424 0.6397865 0.6539415 0.6601470 +#> [679,] 0.42631331 0.4291071 0.5682878 0.6235444 0.6862337 0.7036078 0.7612428 +#> [680,] 0.40020213 0.4387530 0.4914823 0.5162458 0.5411882 0.5538449 0.5839871 +#> [681,] 0.27824019 0.3971149 0.4167784 0.4673479 0.4958828 0.5184400 0.5692543 +#> [682,] 0.44486184 0.5100506 0.5699179 0.5792501 0.5905829 0.6962281 0.6983024 +#> [683,] 0.63366877 0.7138283 0.8833182 0.9951903 0.9986345 1.0016824 1.0486325 +#> [684,] 0.32908268 0.3829368 0.4572627 0.4617752 0.5499103 0.5675280 0.5688572 +#> [685,] 0.47289305 0.4739998 0.6328005 0.6521120 0.6720328 0.6739434 0.7266951 +#> [686,] 0.35509133 0.4265314 0.6051751 0.6168309 0.6865512 0.7016635 0.7183189 +#> [687,] 0.71885913 0.8323526 0.9055023 0.9176893 0.9448010 1.1334821 1.1536165 +#> [688,] 0.51403851 0.5219559 0.5413375 0.5480443 0.6355625 0.6555136 0.6644830 +#> [689,] 0.61265766 0.6874574 0.7786590 0.8613076 0.9503610 0.9610233 1.0182848 +#> [690,] 0.42653138 0.4625601 0.4763041 0.5893919 0.6858187 0.6941150 0.6977133 +#> [691,] 0.29444451 0.3104717 0.4775865 0.5029744 0.5991155 0.6026409 0.6093745 +#> [692,] 0.69054547 0.8296649 0.8948670 0.9504654 1.0171249 1.0282789 1.0300253 +#> [693,] 0.51757671 0.5368974 0.7315526 0.7389885 0.8092806 0.8729183 0.8828692 +#> [694,] 0.21674498 0.2507334 0.4196418 0.4596097 0.5467713 0.5569106 0.6194824 +#> [695,] 0.69062254 0.8392936 1.1106780 1.1193411 1.1366575 1.1374524 1.1464533 +#> [696,] 0.34682822 0.3859824 0.4531165 0.4946232 0.5408715 0.5927076 0.5948363 +#> [697,] 0.95620290 1.1272844 1.1292652 1.3601725 1.4219230 1.4411477 1.4704535 +#> [698,] 0.26343145 0.4435184 0.5219604 0.5413950 0.5726195 0.6162140 0.6336426 +#> [699,] 0.42701073 0.5527083 0.8069478 0.8241123 0.8512284 0.8574372 0.8688199 +#> [700,] 0.36336045 0.4141241 0.4178735 0.4315726 0.5211340 0.6684754 0.6770869 +#> [701,] 0.54105950 0.9021926 0.9023072 1.1646467 1.1690400 1.1740738 1.2017255 +#> [702,] 0.33332358 0.4941352 0.5491287 0.5514421 0.5823703 0.6171313 0.6328639 +#> [703,] 0.31537054 0.4176534 0.6411925 0.6462147 0.7403294 0.7454633 0.7899675 +#> [704,] 0.26328614 0.2638343 0.3096327 0.3402142 0.4377764 0.4409665 0.5062397 +#> [705,] 0.38149111 0.3966306 0.4026726 0.4178758 0.4513943 0.4525542 0.5153017 +#> [706,] 0.15472873 0.3533348 0.3699957 0.3862040 0.4205965 0.4325937 0.5418916 +#> [707,] 0.43000173 0.5073444 0.5338096 0.5381579 0.6499022 0.6594966 0.6792359 +#> [708,] 0.33323683 0.4416356 0.4746625 0.4969829 0.5978585 0.6048488 0.6156391 +#> [709,] 0.60490980 0.6197508 0.6389791 0.6671744 0.6842797 0.8041659 0.8240498 +#> [710,] 0.44123648 0.5963301 0.6770869 0.6782984 0.7436061 0.7591996 0.7596100 +#> [711,] 0.36738405 0.4432428 0.4953801 0.5027575 0.5266475 0.5653288 0.5719470 +#> [712,] 0.44109626 0.5182610 0.8114595 0.8182231 0.8704664 0.8718881 0.8750923 +#> [713,] 0.35346968 0.7246401 0.7499065 0.7823791 0.8305809 0.9931664 1.0404170 +#> [714,] 0.58893642 0.6124386 0.6788038 0.7691026 0.7834769 0.8118543 0.8310321 +#> [715,] 0.66340973 0.8016984 0.8089124 0.8649101 0.8843676 0.9499100 1.0330265 +#> [716,] 0.14605421 0.6347718 0.6725681 0.7590693 0.7616078 0.7722215 0.7821952 +#> [717,] 0.25735799 0.3537615 0.3695420 0.3777877 0.4214002 0.4252863 0.4281232 +#> [718,] 0.33022224 0.3441288 0.4096363 0.4386172 0.4585147 0.5031696 0.5193626 +#> [719,] 0.65860686 0.8196058 0.8914782 0.9086368 0.9839407 1.0014516 1.0230460 +#> [720,] 0.39509527 0.5139233 0.5447037 0.5524913 0.8080131 0.8155186 0.8215988 +#> [721,] 0.55933129 0.6217602 0.6965583 0.7067615 0.7703424 0.8276266 0.8368484 +#> [722,] 0.63580413 0.7688035 0.8106643 0.9246408 0.9380414 0.9439554 1.0680439 +#> [723,] 0.46256011 0.4801519 0.5622388 0.6051751 0.6279492 0.6551946 0.6571811 +#> [724,] 0.34717912 0.4045419 0.5436368 0.6388986 0.7033968 0.7442621 0.7580649 +#> [725,] 0.51181402 0.5664642 0.6071722 0.6465218 0.6607136 0.6631087 0.6820446 +#> [726,] 0.75122951 0.7833552 0.8497819 0.8599066 0.8806943 0.9128641 0.9215414 +#> [727,] 0.22735807 0.5369339 0.5880864 0.6313239 0.6365637 0.6494028 0.6978221 +#> [728,] 0.69858196 0.8308600 0.8988011 0.9483479 0.9529792 0.9557612 0.9866009 +#> [729,] 0.58913260 0.5904511 1.0997222 1.2397709 1.3674834 1.3693199 1.3854303 +#> [730,] 0.47359279 0.5291050 0.5563820 0.6234920 0.6501716 0.6651793 0.6910260 +#> [731,] 0.38658483 0.4641697 0.4951976 0.5142720 0.5381997 0.5654464 0.5733830 +#> [732,] 0.53774224 0.6493739 0.6512504 0.6671744 0.7118943 0.7749027 0.7782724 +#> [733,] 0.40440349 0.4300163 0.5196985 0.5397259 0.6101514 0.6157228 0.6182368 +#> [734,] 1.35351303 1.6109467 1.7051863 1.7236095 1.8262364 1.9428414 2.0175106 +#> [735,] 0.29359887 0.4279511 0.4804884 0.5369971 0.5482631 0.5865848 0.5953025 +#> [736,] 0.90613818 0.9500898 0.9713147 1.0095566 1.0338680 1.1879064 1.2013942 +#> [737,] 0.52439153 0.6675391 0.8305809 1.0501612 1.0567316 1.1273738 1.1840653 +#> [738,] 0.42791970 0.4785496 0.5145920 0.5260537 0.5268112 0.5434271 0.5488552 +#> [739,] 0.77256093 0.8926279 1.0544813 1.1382764 1.1418979 1.1830457 1.2970655 +#> [740,] 0.27824019 0.3109608 0.3987329 0.4258963 0.5017250 0.5105818 0.5888744 +#> [741,] 0.27773200 0.8213555 0.8559930 0.9525178 0.9838940 1.0723668 1.1206739 +#> [742,] 0.38767281 0.4026726 0.4205946 0.4471608 0.4802830 0.5507127 0.5815310 +#> [743,] 0.32237498 0.3764880 0.4013733 0.4537154 0.4802813 0.4904619 0.5476945 +#> [744,] 0.49446897 0.5258675 0.5579990 0.5600066 0.5672890 0.5699179 0.6562205 +#> [745,] 0.35748401 0.5123131 0.5290194 0.5663951 0.5957944 0.6198647 0.6897391 +#> [746,] 0.31719653 0.3848797 0.4561031 0.4979489 0.5333971 0.5371761 0.5391688 +#> [747,] 0.67604518 0.9275340 1.0278988 1.0327197 1.2267464 1.2375629 1.3199692 +#> [748,] 0.12222005 0.4177120 0.6268746 0.7180089 0.7371032 0.7431611 0.7436420 +#> [749,] 0.74546332 0.7926868 0.8942326 1.0656954 1.1363119 1.1613837 1.1821319 +#> [750,] 0.43000173 0.5052092 0.5965068 0.6683562 0.7105456 0.7366041 0.7704925 +#> [751,] 0.28459575 0.3694457 0.5026201 0.6070519 0.6188489 0.6194824 0.6218011 +#> [752,] 0.70730375 0.7993732 0.8869694 0.9236479 0.9618237 1.0278988 1.0328210 +#> [753,] 0.45428253 0.5213248 0.5381579 0.5430112 0.6351318 0.6863909 0.6964509 +#> [754,] 0.73790913 0.9146707 0.9268745 0.9441675 0.9728522 0.9886703 1.0041557 +#> [755,] 0.51540272 0.5320156 0.5852049 0.6104892 0.6833624 0.6897391 0.6911030 +#> [756,] 0.41347323 0.4387530 0.4678809 0.4871645 0.4934944 0.5402894 0.5618440 +#> [757,] 1.17827006 1.2534981 1.2886819 1.3553739 1.3561492 1.4709502 1.4736376 +#> [758,] 0.48695844 0.5510996 0.5864232 0.6654570 0.6918404 0.6931311 0.6985820 +#> [759,] 1.60098152 1.6043613 1.6645287 1.8161045 1.8887888 1.9565765 2.0145514 +#> [760,] 0.17672129 0.2947138 0.3361387 0.3529613 0.4579331 0.4654775 0.5653037 +#> [761,] 0.27361090 0.3842518 0.3946160 0.4463409 0.4822301 0.4970682 0.5173598 +#> [762,] 0.09831649 0.3687144 0.3738390 0.3752012 0.4383739 0.4483313 0.4989207 +#> [763,] 0.40807386 0.6692890 0.7407087 0.7445498 0.7617625 0.7812317 0.8029511 +#> [764,] 0.33323683 0.3636660 0.4090712 0.4678809 0.5384396 0.5770353 0.6342586 +#> [765,] 0.74149780 0.7884421 0.8924413 0.8925216 1.0852243 1.1068269 1.1279884 +#> [766,] 0.88475525 1.0307034 1.1031474 1.1288179 1.1767783 1.2611665 1.3072379 +#> [767,] 0.39276221 0.4141241 0.4186988 0.5460700 0.5804832 0.5861869 0.5965068 +#> [768,] 0.60683531 0.6239664 0.6329802 0.6571812 0.7014294 0.7681392 0.9043524 +#> [769,] 0.25183425 0.3287616 0.4958141 0.5156670 0.6469373 0.7240607 0.7927622 +#> [770,] 0.81951004 1.0033135 1.0122607 1.1505867 1.1603421 1.1781983 1.1982659 +#> [771,] 0.63388207 0.7708441 0.8405305 0.8498749 0.9045846 0.9466005 0.9803991 +#> [772,] 0.38596645 0.4342199 0.4684409 0.5602363 0.5714456 0.5805367 0.5833092 +#> [773,] 0.63764715 0.7092790 0.8200161 0.8512293 0.8517123 0.9066578 0.9243237 +#> [774,] 0.29062669 0.4554043 0.4762512 0.6821908 0.6890077 0.7307151 0.7315235 +#> [775,] 0.27996485 0.5089294 0.5409551 0.5731555 0.6783771 0.7118041 0.7215748 +#> [776,] 0.38532828 0.4681975 0.5026760 0.5540839 0.5630189 0.6028126 0.6175580 +#> [777,] 0.51411964 0.5156462 0.5420390 0.5666462 0.6606336 0.6987629 0.7096344 +#> [778,] 0.28914798 0.3341115 0.3905825 0.4007505 0.4423288 0.4925744 0.5092038 +#> [779,] 0.44351835 0.5441918 0.5751142 0.5771078 0.5850060 0.6032333 0.6109984 +#> [780,] 0.42911358 0.4658710 0.4704423 0.5636624 0.5749203 0.6282014 0.6493615 +#> [781,] 0.58078479 0.6287389 0.6727315 0.7011662 0.7128726 0.7296091 0.7383797 +#> [782,] 0.17515967 0.3148796 0.4622053 0.4935208 0.5181742 0.5225545 0.5405678 +#> [783,] 0.34235251 0.4319502 0.4692709 0.4880859 0.5052213 0.5123131 0.5347047 +#> [784,] 0.27949333 0.5545604 0.5978329 0.6031911 0.6126577 0.6343305 0.7437618 +#> [785,] 0.24171039 0.3686001 0.4558091 0.5551246 0.6074524 0.6198224 0.6720896 +#> [786,] 0.39297509 0.3943971 0.4756200 0.5476847 0.5500657 0.5557123 0.5801731 +#> [787,] 0.62045966 0.6634097 0.6801610 0.7152110 0.7696425 0.8052953 0.8215516 +#> [788,] 0.54426365 0.5638175 0.6749506 0.6987118 0.7195750 0.7425097 0.7472007 +#> [789,] 0.30084255 0.5204844 0.5390357 0.6601272 0.6631301 0.7861197 0.7917998 +#> [790,] 0.21863794 0.4566923 0.5100506 0.6264804 0.6478767 0.7233856 0.7629658 +#> [791,] 0.69343238 0.7916039 0.8174900 0.8209361 0.8597213 0.8956150 0.9191062 +#> [792,] 0.31575585 0.3376415 0.3694457 0.6310238 0.6630490 0.6687645 0.6753017 +#> [793,] 0.33731955 0.3451244 0.4241536 0.4726576 0.4765648 0.4850090 0.5104808 +#> [794,] 0.33330030 0.3430224 0.4944690 0.5286509 0.5507820 0.5691711 0.6740800 +#> [795,] 0.48015193 0.4870973 0.5434333 0.5681859 0.5790625 0.6224556 0.6920199 +#> [796,] 0.91545188 0.9851428 0.9985390 1.2401699 1.2706049 1.4116211 1.4267028 +#> [797,] 0.26927678 0.3941537 0.4221518 0.4449027 0.4632372 0.4782392 0.5086648 +#> [798,] 0.30577483 0.4371707 0.5345808 0.6105168 0.6122402 0.6865432 0.7719839 +#> [799,] 0.85802249 0.9283156 1.2431804 1.2509933 1.2636073 1.2909028 1.3068810 +#> [800,] 0.60499899 0.6353063 0.6588731 0.6686780 0.6783649 0.7031266 0.7059153 +#> [801,] 0.35808541 0.3596801 0.4380816 0.4387298 0.4474902 0.4715928 0.4920686 +#> [802,] 0.42497290 0.4498638 0.7653629 0.8186734 0.8834345 0.8955751 0.9027206 +#> [803,] 0.36096082 0.3633604 0.4226290 0.5460700 0.5624287 0.6155368 0.6287389 +#> [804,] 0.41459923 0.4496334 0.4880470 0.4927598 0.4971807 0.5330295 0.5530242 +#> [805,] 0.87209495 1.2580143 1.5146902 1.5192367 1.6207223 1.7483121 1.7926297 +#> [806,] 0.32580181 0.5388117 0.5390357 0.6096010 0.6983498 0.7022300 0.7152110 +#> [807,] 0.22735807 0.3700770 0.4739122 0.4933392 0.6045138 0.6468782 0.7561484 +#> [808,] 0.36954200 0.3791834 0.3862574 0.4063097 0.4711711 0.4919237 0.4926647 +#> [809,] 0.31170307 0.6327033 0.7336474 0.9043976 0.9048609 0.9850208 1.0023837 +#> [810,] 0.42322607 0.4259888 0.4446164 0.4449831 0.4667387 0.4983489 0.5171208 +#> [811,] 0.47742160 0.7927973 0.8392936 0.9368811 0.9712860 1.0107862 1.0526832 +#> [812,] 0.57426260 0.5857830 0.6128149 0.6252175 0.6313865 0.6448859 0.6608414 +#> [813,] 0.40299783 0.5424989 0.6948786 0.7302712 0.8294974 0.9501195 0.9531711 +#> [814,] 0.72727075 0.8829206 0.9873766 1.0244392 1.0398980 1.2170482 1.2480076 +#> [815,] 0.24949429 0.4851378 0.4852129 0.5202777 0.6531028 0.7033036 0.7176815 +#> [816,] 0.51507672 0.5471553 0.5615487 0.6850255 0.7931495 0.7975922 0.8424111 +#> [817,] 0.15604009 0.4431694 0.5146468 0.5624673 0.5727703 0.6123558 0.6131775 +#> [818,] 0.65828602 0.6739732 0.6864811 0.6890077 0.7181508 0.7231773 0.7530624 +#> [819,] 0.51564803 0.5235680 0.5761168 0.7585791 0.8006608 0.8498749 0.9355411 +#> [820,] 0.51459128 0.5371761 0.5935440 0.6053123 0.6092135 0.6686627 0.6725681 +#> [821,] 0.33148026 0.3717019 0.4098502 0.5120130 0.5334669 0.5664642 0.6158515 +#> [822,] 0.22038706 0.2836823 0.5179364 0.5479470 0.5576100 0.6203619 0.8928497 +#> [823,] 0.65890004 0.6900357 0.7414978 0.8366602 0.9023072 0.9483216 0.9959242 +#> [824,] 0.29471381 0.3487168 0.4474640 0.4799773 0.4854754 0.4999563 0.5302813 +#> [825,] 0.20417561 0.4846515 0.5846763 0.5975842 0.6272176 0.6513768 0.6654570 +#> [826,] 0.22475057 0.2403118 0.3006863 0.3547841 0.3638735 0.4968724 0.4979489 +#> [827,] 0.33702873 0.8849706 1.0227250 1.2455886 1.2472189 1.2625984 1.2728276 +#> [828,] 0.23535424 0.2888365 0.4209737 0.5078930 0.5609209 0.6032333 0.6234146 +#> [829,] 0.43557756 0.5741917 0.5876252 0.6720861 0.6932422 0.7299574 0.8358283 +#> [830,] 0.34242776 0.3594535 0.3943971 0.6445696 0.6479357 0.6531994 0.6720896 +#> [831,] 0.42497290 0.4378084 0.6613781 0.6717098 0.7180839 0.8036945 0.8090444 +#> [832,] 0.18842874 0.3712625 0.4171864 0.4988816 0.5338943 0.5859090 0.6002829 +#> [833,] 0.59828158 0.6140907 0.6609668 0.6916844 0.7095298 0.7533940 0.7615608 +#> [834,] 0.85086686 0.8693708 1.0402638 1.0913809 1.1162744 1.1580728 1.1882179 +#> [835,] 0.39484804 0.5377422 0.5896853 0.5998148 0.6132736 0.7345074 0.7400159 +#> [836,] 0.28200459 0.4838382 0.5056986 0.7097586 0.7118269 0.7154967 0.7260693 +#> [837,] 0.28200459 0.4255819 0.5311183 0.5385190 0.5857583 0.6752513 0.7014631 +#> [838,] 0.72854123 0.8213555 1.2479845 1.2509933 1.3578865 1.3883013 1.4704535 +#> [839,] 0.35221305 0.4658086 0.4688457 0.4852129 0.5470235 0.5481457 0.5696647 +#> [840,] 0.32580181 0.4869584 0.5029816 0.5929361 0.6505765 0.6601272 0.6815772 +#> [841,] 0.24031182 0.3266515 0.3289196 0.3879428 0.4055814 0.4310850 0.4802058 +#> [842,] 0.63184141 0.7825293 0.9278780 0.9812174 0.9830406 1.0397144 1.0555835 +#> [843,] 0.40636897 0.5420390 0.5550702 0.5862135 0.5904569 0.6071488 0.6836963 +#> [844,] 0.47831904 0.4992977 0.5258547 0.5944776 0.5963457 0.6599681 0.7640140 +#> [845,] 0.46638959 0.5044446 0.5824304 0.6530868 0.6635628 0.6810039 0.7583725 +#> [846,] 0.18634156 0.4660731 0.5016230 0.5377097 0.5390598 0.5907733 0.6081748 +#> [847,] 0.29038507 0.3045802 0.3361387 0.3493174 0.3687756 0.3766028 0.4119493 +#> [848,] 0.50444460 0.5294214 0.6075915 0.7424908 0.8023538 0.8194373 0.9051578 +#> [849,] 0.18945147 0.2116450 0.2573580 0.3110705 0.3223047 0.3731118 0.3766028 +#> [850,] 0.38970748 0.5717071 0.5865542 0.5878294 0.5908949 0.6282007 0.6367832 +#> [851,] 0.24949429 0.4835535 0.4973154 0.5481457 0.6148331 0.7302801 0.7861184 +#> [852,] 0.46124088 0.5084755 0.5156658 0.5596796 0.5802675 0.6023530 0.6047881 +#> [853,] 0.66924590 0.7049388 0.8096001 0.8637338 0.8647272 0.8857966 0.9629770 +#> [854,] 0.40949008 0.4903354 0.6040936 0.6654582 0.7892187 0.9190275 0.9911303 +#> [855,] 0.45907545 0.5777555 0.5780089 0.7002335 0.7745468 0.8503036 0.8679628 +#> [856,] 0.60555636 0.7423913 0.7591619 0.7960978 0.9138814 0.9284428 1.1086736 +#> [857,] 0.54070810 0.5956861 0.7189500 0.7750984 0.7991863 0.8518376 0.8815974 +#> [858,] 0.43061825 0.4657923 0.4811879 0.5268112 0.5396213 0.5876804 0.5909889 +#> [859,] 0.47952646 0.5485678 0.5796519 0.7068683 0.7246722 0.7839269 0.8756713 +#> [860,] 0.34512046 0.3936393 0.5426927 0.5617833 0.5775658 0.6252175 0.6699691 +#> [861,] 0.33018724 0.6105168 0.6239664 0.6644961 0.6850255 0.7567525 0.7708239 +#> [862,] 0.44522840 0.4481359 0.5284077 0.5530242 0.5652880 0.5863829 0.6606663 +#> [863,] 0.44813593 0.4637061 0.4678426 0.4880470 0.5557236 0.6843397 0.7063750 +#> [864,] 0.62529285 0.8191095 1.0646795 1.0720833 1.0783879 1.1276875 1.1329767 +#> [865,] 0.41119252 0.4577456 0.5452479 0.6297758 0.6929260 0.7024502 0.7180998 +#> [866,] 0.27912903 0.4651760 0.5081217 0.5602555 0.6379255 0.7991863 0.8322765 +#> [867,] 1.15661048 1.3462438 1.4471441 1.5645124 1.5808967 1.6063300 1.6320500 +#> [868,] 0.54139322 0.6773988 0.7105605 0.7149278 0.7211515 0.7299574 0.7337276 +#> [869,] 0.31133296 0.4822301 0.5088305 0.5234874 0.5358143 0.5401556 0.5946605 +#> [870,] 0.50344372 0.6795696 0.7893724 0.8130988 0.8172974 0.8690556 0.8829630 +#> [871,] 0.24531337 0.2903851 0.2977648 0.3203283 0.3223047 0.3224021 0.3613120 +#> [872,] 1.09268104 1.1382408 1.1923692 1.2465492 1.3481100 1.4001927 1.4189594 +#> [873,] 0.37265397 0.4918564 0.4958828 0.5303708 0.5321874 0.5558120 0.5829550 +#> [874,] 0.48520405 0.7279412 0.8074916 0.9682564 1.1254497 1.1566882 1.1824327 +#> [875,] 0.26594121 0.5953002 0.5957431 0.6172237 0.6716399 0.6896890 0.6984653 +#> [876,] 0.81867341 0.8726695 0.9058662 0.9245956 0.9318064 1.0447502 1.0583478 +#> [877,] 0.66137812 0.6894816 0.8342098 0.8775902 0.9044680 0.9185322 0.9245897 +#> [878,] 0.27957885 0.5147946 0.5424989 0.5528173 0.7625186 0.7667228 0.7693490 +#> [879,] 0.12222005 0.3100312 0.6142398 0.6262270 0.6349211 0.6857133 0.7149717 +#> [880,] 0.55831393 0.5605773 0.6047171 0.6481022 0.9314802 0.9439554 0.9520623 +#> [881,] 0.49736419 0.5917555 0.6223325 0.6957458 0.7322672 0.7716297 0.7745400 +#> [882,] 0.40360403 0.5054819 0.5453375 0.5558413 0.6633979 0.7233839 0.7326161 +#> [883,] 0.37547110 0.4268221 0.5448074 0.5452479 0.6043597 0.6078415 0.6495392 +#> [884,] 0.29963193 0.3668414 0.3792134 0.3928074 0.4425622 0.4718084 0.4798583 +#> [885,] 0.64379029 0.7468705 0.8206195 0.8262232 0.8541983 0.8743703 0.9315260 +#> [886,] 0.30096399 0.3892187 0.4546167 0.4548463 0.5983123 0.6060355 0.6328005 +#> [887,] 0.46703537 0.4767417 0.5145920 0.5321874 0.5712901 0.5777134 0.5909889 +#> [888,] 0.51564803 0.6582860 0.7708441 0.7788900 0.8357769 0.8599289 0.8652686 +#> [889,] 0.53892468 1.0486325 1.1644871 1.1717316 1.2046336 1.2400584 1.2450309 +#> [890,] 0.32282065 0.3540405 0.4008547 0.4574192 0.4597129 0.4749997 0.4819657 +#> [891,] 0.47742160 0.7234641 0.8592318 1.0554974 1.0620862 1.1109065 1.1366575 +#> [892,] 0.34197322 0.3716588 0.4356021 0.5047202 0.5166129 0.5323596 0.5344388 +#> [893,] 0.66622344 0.6909275 0.8534496 0.8539695 0.9764982 0.9863673 0.9984615 +#> [894,] 0.87209495 1.0808862 1.3254115 1.3404295 1.4891477 1.5381128 1.5951257 +#> [895,] 0.38741583 0.4344419 0.4488586 0.4533024 0.4672448 0.4848637 0.4975694 +#> [896,] 1.03245278 1.1925389 1.2063668 1.2165550 1.2345554 1.2772759 1.3177358 +#> [897,] 0.33702873 0.9317456 1.1587109 1.2196853 1.2244513 1.2387571 1.2509943 +#> [898,] 0.86087471 0.8775427 1.0586136 1.2316273 1.2486592 1.3250910 1.3474000 +#> [899,] 0.24495826 0.3665608 0.3796179 0.4394007 0.4699607 0.4970682 0.4973593 +#> [900,] 0.53693393 0.5509196 0.5758092 0.6077715 0.6372212 0.6468782 0.6495503 +#> [901,] 0.60751210 0.6347718 0.6750756 0.8400073 0.8639459 0.8938192 0.8987570 +#> [902,] 0.36475602 0.4359686 0.4681975 0.4957492 0.5509920 0.6065373 0.6610760 +#> [903,] 0.71925597 0.7238057 1.4242708 1.4808959 1.6356863 1.7811930 1.8049915 +#> [904,] 0.33217500 0.6075172 0.7308439 0.7573067 0.7745370 0.8331341 0.8373647 +#> [905,] 1.08159736 1.0956074 1.1598090 1.2341912 1.2433489 1.2582241 1.2708966 +#> [906,] 0.29083287 0.3991506 0.5263341 0.5313566 0.5715888 0.5801731 0.5866417 +#> [907,] 0.31849457 0.3375275 0.4090368 0.4105118 0.4221518 0.4514099 0.5643394 +#> [908,] 0.30096399 0.5509830 0.5541190 0.6393489 0.6521120 0.6928918 0.7301782 +#> [909,] 0.27773200 0.7285412 0.9501224 0.9562029 0.9740056 1.0353836 1.1208545 +#> [910,] 0.35965794 0.5150767 0.5336573 0.6122402 0.6531913 0.6848237 0.6920594 +#> [911,] 0.32876163 0.4724317 0.5728042 0.5959871 0.6017204 0.7424823 0.7535873 +#> [912,] 0.20612255 0.2839768 0.3995926 0.4600954 0.4980985 0.5371465 0.5509196 +#> [913,] 0.23307038 0.3248874 0.4146456 0.4839062 0.4901973 0.5347778 0.5501868 +#> [914,] 0.23993803 0.5254370 0.6040564 0.6101514 0.6314974 0.6320861 0.6400916 +#> [915,] 0.69003570 0.8739171 0.8805306 0.8924413 1.0279754 1.0449738 1.1265626 +#> [916,] 0.40415075 0.4847007 0.6844604 0.7136063 0.7381164 0.7421462 0.7458784 +#> [917,] 0.18051066 0.3621718 0.6046618 0.6203619 0.6725229 0.6859977 0.7025122 +#> [918,] 0.39323414 0.4813874 0.5092038 0.5139742 0.5467713 0.5562233 0.5636624 +#> [919,] 0.33470661 0.4189063 0.4808973 0.5373714 0.5594251 0.6065373 0.6195995 +#> [920,] 0.70069148 0.8073962 0.8207193 0.8294974 0.8352566 0.8714288 0.9656345 +#> [921,] 0.34743241 0.3678879 0.4061678 0.4076304 0.4277711 0.4468730 0.5275568 +#> [922,] 0.34309068 0.4307515 0.5409551 0.5519855 0.5602452 0.6127630 0.7134870 +#> [923,] 0.50898016 0.5401785 0.6252212 0.6393644 0.6450369 0.6670446 0.6746208 +#> [924,] 0.55281735 0.5803478 0.5986835 0.7302712 0.7642574 0.7886514 0.7917998 +#> [925,] 0.46323720 0.4711711 0.5015095 0.5227071 0.5300852 0.6057881 0.6281770 +#> [926,] 0.37300207 0.5505227 0.5666462 0.5839332 0.6252212 0.6690963 0.6836963 +#> [927,] 0.40119359 0.4975055 0.5589544 0.6055564 0.6531913 0.6584113 0.7604565 +#> [928,] 0.48183801 0.4841700 0.6325459 0.7198504 0.7318016 0.7725609 0.7955375 +#> [929,] 0.61025299 0.7080839 0.8064294 0.8291200 0.8344719 0.8517123 0.8693708 +#> [930,] 0.35368533 0.4116207 0.4613834 0.5041523 0.5568096 0.5683251 0.6135434 +#> [931,] 0.31605501 0.4617185 0.5401785 0.5809788 0.5947715 0.6274038 0.6835825 +#> [932,] 0.36375067 0.3966306 0.4539625 0.4848637 0.5092787 0.5233490 0.5512903 +#> [933,] 0.66159483 0.6653664 0.7231773 0.7462066 0.7828199 0.7834769 0.8125567 +#> [934,] 0.72467222 0.8892709 0.8942326 0.9342293 1.0019782 1.0190099 1.0817150 +#> [935,] 0.17515967 0.2077467 0.4378483 0.4446930 0.4635054 0.4856521 0.4920686 +#> [936,] 0.63714896 0.6514300 0.8096001 0.8222615 0.8256855 0.8450948 0.8645342 +#> [937,] 0.56154873 0.7014294 0.7433678 0.8551267 1.0064208 1.0101535 1.0104143 +#> [938,] 0.50994700 0.5270976 0.5541190 0.5983123 0.6625547 0.6720328 0.6987629 +#> [939,] 1.13746210 1.1554039 1.1709452 1.2012700 1.3270357 1.3400856 1.4142670 +#> [940,] 0.28743920 0.5563820 0.5856901 0.5996128 0.6547929 0.6700591 0.7373932 +#> [941,] 0.67425040 0.6905455 0.7710334 0.9557612 0.9796315 1.0197606 1.1882176 +#> [942,] 0.37150479 0.4798121 0.4808973 0.5166129 0.5182849 0.5829721 0.5888863 +#> [943,] 0.28688126 0.4258963 0.4281232 0.4670354 0.4883674 0.5060454 0.5184400 +#> [944,] 0.77827903 0.7819818 0.8017048 0.8162861 0.8181842 0.8197966 0.8473799 +#> [945,] 0.82162781 1.0372120 1.1002160 1.1334750 1.2121846 1.2270154 1.2946210 +#> [946,] 0.37025403 0.4167265 0.5974787 0.6093745 0.6213680 0.6260663 0.6454604 +#> [947,] 0.25146438 0.3927622 0.4704423 0.5118140 0.5141644 0.5981667 0.6030569 +#> [948,] 0.78545275 1.4532707 1.5313353 1.5427409 1.6086276 1.7504291 1.7885411 +#> [949,] 0.97271309 0.9821576 1.0197606 1.0300253 1.0468094 1.0555918 1.2018503 +#> [950,] 0.54356099 0.6906225 0.7515560 0.8163552 0.8268404 1.0246197 1.0835439 +#> [951,] 0.54343326 0.5726713 0.6079400 0.6362282 0.6411489 0.6882258 0.7099575 +#> [952,] 0.46844091 0.5961116 0.6552774 0.6681492 0.6705820 0.6705824 0.6773838 +#> [953,] 0.43749453 0.5324512 0.5839332 0.6552774 0.6928143 0.7366193 0.7452899 +#> [954,] 0.43154461 0.4399540 0.4870235 0.5126823 0.5397259 0.5775316 0.5931087 +#> [955,] 1.02021825 1.1881607 1.1982660 1.2262335 1.2503180 1.2585351 1.2634868 +#> [956,] 0.36567019 0.4878582 0.4992977 0.5924440 0.6344151 0.6589955 0.7024502 +#> [957,] 0.54300594 0.6047171 0.6385052 0.8357751 0.8688679 0.8910615 0.9210669 +#> [958,] 0.26227964 0.5029744 0.5263975 0.5506858 0.5875720 0.5980812 0.6151065 +#> [959,] 0.28368227 0.3698291 0.6985545 0.7824819 0.8126316 0.8950014 0.9177645 +#> [960,] 0.49736419 0.5183471 0.6872977 0.7351015 0.7555208 0.7721703 0.8106311 +#> [961,] 0.39870005 0.4068494 0.4138580 0.4387298 0.4493096 0.4648980 0.4751239 +#> [962,] 0.32908268 0.4148534 0.4663373 0.4952917 0.5148448 0.5823703 0.5933718 +#> [963,] 0.20957563 0.5594251 0.6219183 0.6602812 0.7078393 0.7360118 0.7703560 +#> [964,] 0.29793315 0.3097676 0.3946160 0.4495239 0.4973593 0.5219604 0.5401556 +#> [965,] 0.40847446 0.4752569 0.5648596 0.5927076 0.6392017 0.6626822 0.6950428 +#> [966,] 0.24032959 0.3109608 0.3498404 0.3971149 0.4755460 0.5466231 0.5519391 +#> [967,] 0.83996762 0.8429282 0.8430529 0.8506495 0.8805370 0.9030809 0.9297668 +#> [968,] 0.75906932 0.7979691 0.8549952 0.8591549 0.8739171 0.9021926 0.9483216 +#> [969,] 0.72181504 0.7701056 0.8012313 0.8261697 0.8506495 0.9436734 0.9631076 +#> [970,] 0.45928747 0.6874574 0.7040529 0.7155653 0.7596100 0.7642973 0.8288619 +#> [971,] 0.48355347 0.5202777 0.5696647 0.6209378 0.8020739 0.8293285 0.8423353 +#> [972,] 0.52454708 0.5688572 0.5876460 0.5896110 0.6384115 0.6425840 0.6848581 +#> [973,] 0.23167235 0.4270107 0.5509920 0.6065801 0.6111725 0.6277603 0.6409072 +#> [974,] 0.47085961 0.6588610 0.6596290 0.6879263 0.7065132 0.7088534 0.7781482 +#> [975,] 0.24984831 0.4459982 0.7060311 0.8481894 0.8836024 0.9899705 0.9995362 +#> [976,] 0.48003483 0.5257607 0.5606464 0.6075915 0.6931258 0.7270252 0.7278883 +#> [977,] 0.24909537 0.6965583 0.8719151 0.8899695 0.8925672 0.9524394 0.9771197 +#> [978,] 0.47499973 0.5926426 0.6021089 0.6590841 0.6911297 0.7376685 0.7610334 +#> [979,] 0.27414771 0.3533348 0.3829368 0.4096830 0.4135228 0.4415721 0.4663373 +#> [980,] 0.55848306 0.5871392 0.6017204 0.6948917 0.7138283 0.7796337 0.8115816 +#> [981,] 0.31027863 0.3318503 0.4300163 0.4788421 0.4899965 0.5254370 0.5960820 +#> [982,] 0.09831649 0.3426225 0.3733893 0.3833929 0.3998862 0.4147042 0.5065422 +#> [983,] 0.34242776 0.4128428 0.5373668 0.5707755 0.5742626 0.6556826 0.6773988 +#> [984,] 0.69637689 0.9597156 0.9830406 1.0227250 1.0404170 1.0897849 1.1604625 +#> [985,] 0.21587317 0.5035108 0.5587194 0.6152778 0.6528830 0.6680267 0.6734077 +#> [986,] 0.69958193 0.8580225 0.8754899 0.9156674 0.9566091 0.9670229 0.9763510 +#> [987,] 0.11608719 0.3006863 0.3250055 0.3289196 0.4259055 0.4377923 0.4870022 +#> [988,] 0.36347243 0.4651067 0.5653288 0.5780089 0.5809020 0.6451965 0.6682168 +#> [989,] 0.41765340 0.4401888 0.6357935 0.6813370 0.7506527 0.7766402 0.7819681 +#> [990,] 0.79370421 0.8864215 0.8938192 0.9058586 1.0523116 1.1082587 1.1725493 +#> [991,] 0.54612053 0.6078415 0.6344151 0.6866979 0.6894896 0.7161804 0.7335557 +#> [992,] 0.34642398 0.5090600 0.5749598 0.5798745 0.6493739 0.6495503 0.6656699 +#> [993,] 0.58381883 0.6305519 0.6584598 0.7033968 0.7270252 0.7323232 0.7672032 +#> [994,] 0.37058080 0.4416356 0.4471095 0.4517481 0.4961319 0.5121898 0.5384396 +#> [995,] 0.29083287 0.4656943 0.4740713 0.5162538 0.5446352 0.5476847 0.5501051 +#> [996,] 0.71182690 0.8015365 0.8357751 0.9246408 0.9344621 1.0045098 1.0209222 +#> [997,] 0.49119061 0.8981545 1.0922723 1.0947023 1.1007515 1.1540649 1.1801942 +#> [998,] 0.52910495 0.5856901 0.6052306 0.6426209 0.6872977 0.7322672 0.7591426 +#> [999,] 0.40440349 0.4788421 0.5086148 0.5929361 0.6096010 0.6314974 0.6784615 +#> [1000,] 0.95906486 0.9779007 0.9891183 0.9967242 1.0371942 1.0655567 1.1123559 #> [,8] [,9] [,10] -#> [1,] 1.0220903 1.0506990 1.0647866 -#> [2,] 1.0159804 1.0628464 1.0808911 -#> [3,] 0.6555239 0.6691817 0.6939634 -#> [4,] 0.8153295 0.8323242 0.8576244 -#> [5,] 0.7755287 0.8105826 0.8419308 -#> [6,] 0.9605567 0.9751774 0.9853637 -#> [7,] 0.6006658 0.6082166 0.6575454 -#> [8,] 0.9434125 0.9569375 0.9573127 -#> [9,] 0.8578887 0.8690163 0.9022197 -#> [10,] 1.1059807 1.1271065 1.2717197 -#> [11,] 0.9275638 0.9374665 0.9629951 -#> [12,] 0.8683344 0.8833672 0.8889993 -#> [13,] 0.9806743 0.9860205 1.0262920 -#> [14,] 0.8045830 0.8120747 0.8122041 -#> [15,] 1.1613124 1.1683864 1.1694879 -#> [16,] 0.7096127 0.7521758 0.7795502 -#> [17,] 0.5288156 0.5698295 0.5967761 -#> [18,] 0.6856766 0.7122816 0.7510326 -#> [19,] 1.1743609 1.2663257 1.2730675 -#> [20,] 0.5036007 0.5465379 0.5710962 -#> [21,] 0.8614368 0.8647220 0.9100972 -#> [22,] 0.4877218 0.5036007 0.5085941 -#> [23,] 0.8889993 0.9078457 0.9205416 -#> [24,] 0.6778038 0.6823220 0.6916917 -#> [25,] 0.7951561 0.9031122 0.9116083 -#> [26,] 0.7183941 0.7444101 0.7563863 -#> [27,] 0.5881498 0.6069905 0.6132131 -#> [28,] 0.6360646 0.6735662 0.7085963 -#> [29,] 0.6846481 0.6876163 0.7291948 -#> [30,] 1.0284256 1.0312844 1.0480669 -#> [31,] 0.7609546 0.7702795 0.8113416 -#> [32,] 0.5915577 0.6097883 0.6270160 -#> [33,] 0.7015258 0.7143286 0.7274967 -#> [34,] 0.8280008 0.8410305 0.8838150 -#> [35,] 0.6646158 0.6752053 0.6759780 -#> [36,] 0.5115982 0.5658013 0.6014117 -#> [37,] 0.9767749 0.9812302 0.9813567 -#> [38,] 0.6544361 0.6599681 0.6723698 -#> [39,] 0.5575974 0.5998258 0.6160434 -#> [40,] 1.0114281 1.0269782 1.0689315 -#> [41,] 1.0221192 1.0405471 1.0802871 -#> [42,] 0.5539836 0.5670290 0.5742499 -#> [43,] 1.1136135 1.1143924 1.1565844 -#> [44,] 1.2811282 1.3083940 1.3553939 -#> [45,] 1.7795953 1.7843617 1.8282038 -#> [46,] 1.3636859 1.3862933 1.4477444 -#> [47,] 1.1656563 1.1768936 1.2009966 -#> [48,] 0.6516211 0.6789018 0.6822214 -#> [49,] 0.6571013 0.6922736 0.7112233 -#> [50,] 0.9127270 0.9160051 0.9327613 -#> [51,] 0.7005399 0.7818339 0.7852307 -#> [52,] 0.6050779 0.6813854 0.7484952 -#> [53,] 0.9623091 0.9637074 0.9640488 -#> [54,] 0.9004985 0.9043681 0.9113352 -#> [55,] 0.5764813 0.5861439 0.6036196 -#> [56,] 0.9721654 0.9896678 1.0213423 -#> [57,] 1.2183686 1.2607060 1.2665570 -#> [58,] 0.6979966 0.7376806 0.7692197 -#> [59,] 0.9177779 0.9393185 0.9394270 -#> [60,] 0.7310089 0.7778650 0.8020409 -#> [61,] 0.6713180 0.7570872 0.7576333 -#> [62,] 0.7238832 0.7438888 0.7741449 -#> [63,] 0.5693800 0.5731336 0.6171722 -#> [64,] 0.8134684 0.8155012 0.8486851 -#> [65,] 0.6314431 0.6620528 0.6695307 -#> [66,] 0.7487702 0.7510326 0.7665815 -#> [67,] 0.7037280 0.7139507 0.7341633 -#> [68,] 0.6670795 0.7039944 0.7103590 -#> [69,] 0.5590320 0.5826087 0.6090574 -#> [70,] 1.0705625 1.0839160 1.1077849 -#> [71,] 0.7925975 0.8267848 0.8600750 -#> [72,] 0.4665478 0.4980567 0.5050926 -#> [73,] 0.6832122 0.7127399 0.7301544 -#> [74,] 0.6706489 0.7036290 0.7122281 -#> [75,] 0.9944253 1.0938387 1.1284889 -#> [76,] 0.7341633 0.7386602 0.7543114 -#> [77,] 0.7444101 0.7878845 0.8116886 -#> [78,] 0.7183941 0.7242253 0.7437343 -#> [79,] 0.6669422 0.6838606 0.7015809 -#> [80,] 1.7852066 1.9035128 1.9593996 -#> [81,] 1.2074716 1.2937300 1.3053031 -#> [82,] 0.8501118 0.8510822 0.8887671 -#> [83,] 0.6912846 0.7224415 0.7439148 -#> [84,] 1.2312541 1.2640422 1.2865493 -#> [85,] 1.0518943 1.0554476 1.0708872 -#> [86,] 0.6896308 0.7412201 0.7649269 -#> [87,] 0.7517473 0.7538065 0.7627878 -#> [88,] 0.6607499 0.6651778 0.6755015 -#> [89,] 0.8049486 0.8602626 0.9045392 -#> [90,] 0.7128878 0.7728106 0.8510530 -#> [91,] 0.7852307 0.7854566 0.8330092 -#> [92,] 1.7256766 1.7263170 1.7344674 -#> [93,] 0.6820320 0.6995980 0.7385645 -#> [94,] 0.9136147 1.0265890 1.0361744 -#> [95,] 0.6844769 0.6987678 0.7313320 -#> [96,] 1.1858038 1.2298611 1.2433319 -#> [97,] 0.9149957 1.1553283 1.1715203 -#> [98,] 0.6350549 0.6468977 0.6569167 -#> [99,] 0.6095392 0.6515879 0.7125169 -#> [100,] 0.7548809 0.7640128 0.7852657 -#> [101,] 0.8339963 0.8746430 0.8802706 -#> [102,] 0.8803966 0.9150893 0.9655447 -#> [103,] 1.3828986 1.3844780 1.4077336 -#> [104,] 0.6973268 0.7098145 0.7467064 -#> [105,] 0.5697776 0.6048633 0.6226070 -#> [106,] 1.0555791 1.0815560 1.0834790 -#> [107,] 0.5333565 0.5858786 0.5920383 -#> [108,] 0.7323111 0.7431155 0.7739945 -#> [109,] 0.6553638 0.7204231 0.7339759 -#> [110,] 1.4211427 1.5612817 1.5691502 -#> [111,] 0.8804201 0.8804967 0.9133936 -#> [112,] 1.8300943 1.8462969 1.8554780 -#> [113,] 0.6681737 0.7201891 0.7234314 -#> [114,] 0.9264201 0.9446354 0.9898591 -#> [115,] 1.0305274 1.0873706 1.1108897 -#> [116,] 0.7776361 0.8285550 0.8445627 -#> [117,] 0.8105688 0.8334105 0.8344281 -#> [118,] 0.5251669 0.5258499 0.5761898 -#> [119,] 0.6680991 0.6735608 0.6832122 -#> [120,] 0.5456871 0.5893277 0.5902274 -#> [121,] 0.7243613 0.7391918 0.7430023 -#> [122,] 0.6011233 0.6619225 0.7385597 -#> [123,] 0.6637908 0.6920283 0.7221301 -#> [124,] 0.6622352 0.6793424 0.6797925 -#> [125,] 1.4978961 1.5240171 1.5591992 -#> [126,] 0.8145714 0.8294044 0.8933134 -#> [127,] 0.6213495 0.6382426 0.6421234 -#> [128,] 0.6497090 0.6654464 0.6723698 -#> [129,] 0.7529188 0.7531056 0.8286505 -#> [130,] 0.8415089 0.8776250 0.8833272 -#> [131,] 0.9066364 0.9705027 0.9867259 -#> [132,] 0.6082166 0.6088717 0.6183626 -#> [133,] 0.5901790 0.5906260 0.6049659 -#> [134,] 0.7160267 0.7525095 0.7664416 -#> [135,] 0.5871855 0.5888006 0.5958864 -#> [136,] 0.5596206 0.5888128 0.5969488 -#> [137,] 0.8632859 0.8702170 0.9241328 -#> [138,] 0.6115767 0.6173324 0.6180640 -#> [139,] 0.8219311 0.8441528 0.8611271 -#> [140,] 0.7012192 0.7072508 0.7099819 -#> [141,] 0.5743078 0.6728713 0.6747774 -#> [142,] 0.5263058 0.5891322 0.6317845 -#> [143,] 0.6099109 0.6164456 0.6347685 -#> [144,] 0.8930163 0.9479502 0.9620478 -#> [145,] 1.0256061 1.0524403 1.0587543 -#> [146,] 0.5566784 0.5713538 0.5788591 -#> [147,] 0.5543984 0.5705758 0.5721490 -#> [148,] 0.9795626 1.0067947 1.0458673 -#> [149,] 0.8637182 0.9008321 0.9043360 -#> [150,] 0.5414789 0.5788055 0.5862132 -#> [151,] 0.5853790 0.5875525 0.5915577 -#> [152,] 0.7714320 0.7798431 0.7872667 -#> [153,] 0.9014666 0.9705633 0.9777831 -#> [154,] 1.0157654 1.0779330 1.0913184 -#> [155,] 0.9316542 0.9658182 0.9670866 -#> [156,] 0.6073392 0.6131069 0.6592461 -#> [157,] 1.1114114 1.1454856 1.1555352 -#> [158,] 0.6052577 0.6307465 0.7290489 -#> [159,] 0.6285511 0.6381594 0.6443042 -#> [160,] 0.7880060 0.8260032 0.8534824 -#> [161,] 0.6633763 0.6657410 0.6797596 -#> [162,] 0.8476128 0.8624028 0.8771263 -#> [163,] 0.7845580 0.8266930 0.8318053 -#> [164,] 0.7392637 0.7512895 0.8111425 -#> [165,] 1.2922349 1.3063313 1.3084353 -#> [166,] 0.9128304 0.9454870 1.0354152 -#> [167,] 0.6104109 0.6456856 0.6493743 -#> [168,] 0.6152847 0.6210218 0.6397210 -#> [169,] 0.9241328 0.9419218 1.1478319 -#> [170,] 0.6543718 0.6672829 0.7638711 -#> [171,] 0.6459038 0.6709559 0.6813143 -#> [172,] 0.6297882 0.6436494 0.6455486 -#> [173,] 1.1226844 1.1330129 1.2040133 -#> [174,] 1.0910784 1.1286312 1.1740047 -#> [175,] 1.1304412 1.1901069 1.1943255 -#> [176,] 0.7143797 0.7184307 0.7481196 -#> [177,] 0.8513361 0.8603842 0.8674875 -#> [178,] 0.6705592 0.6735620 0.6778038 -#> [179,] 1.0194385 1.0333731 1.0398635 -#> [180,] 0.6132131 0.6198758 0.6648093 -#> [181,] 0.6900043 0.7318831 0.7641128 -#> [182,] 0.6079576 0.6144660 0.6170095 -#> [183,] 0.5681010 0.5703633 0.6560972 -#> [184,] 2.0221354 2.0532234 2.0724232 -#> [185,] 1.0225519 1.0345328 1.0356459 -#> [186,] 0.5291272 0.5727759 0.5803860 -#> [187,] 0.8187429 0.8696613 0.8934775 -#> [188,] 0.8677932 0.8900682 0.9412017 -#> [189,] 0.7229251 0.7349696 0.7951147 -#> [190,] 0.5737622 0.5920383 0.6537043 -#> [191,] 1.3769688 1.3968075 1.4065190 -#> [192,] 0.6929701 0.6971881 0.6983515 -#> [193,] 0.5998258 0.6034515 0.6136679 -#> [194,] 0.5429316 0.5570000 0.5602252 -#> [195,] 1.0188878 1.0793454 1.0858714 -#> [196,] 0.6269043 0.6810870 0.6868403 -#> [197,] 1.0075614 1.0431346 1.0821745 -#> [198,] 1.3594604 1.4146364 1.4263432 -#> [199,] 0.7430240 0.7511748 0.8771458 -#> [200,] 0.7863389 0.8066169 0.8143462 -#> [201,] 1.8213842 1.8912685 1.9962653 -#> [202,] 1.4548162 1.4980519 1.4988507 -#> [203,] 1.0292585 1.0564403 1.0715925 -#> [204,] 0.5571402 0.6248315 0.6380658 -#> [205,] 0.6196099 0.6290472 0.6292636 -#> [206,] 0.6378416 0.6567339 0.6771992 -#> [207,] 1.6953200 1.7081563 1.7206302 -#> [208,] 0.7497781 0.7546189 0.7557900 -#> [209,] 1.5233936 1.5288099 1.5962986 -#> [210,] 0.6239921 0.6247975 0.6265817 -#> [211,] 0.7915838 0.8227246 0.8271605 -#> [212,] 0.6133590 0.6334791 0.6504994 -#> [213,] 0.5879778 0.5889366 0.6110425 -#> [214,] 0.7508885 0.8324732 0.8941450 -#> [215,] 0.7468176 0.7739945 0.8493845 -#> [216,] 0.6418896 0.6420441 0.6478635 -#> [217,] 0.6582989 0.6735662 0.7013804 -#> [218,] 0.6180513 0.6354609 0.6562407 -#> [219,] 0.7390813 0.7445928 0.7881615 -#> [220,] 0.8158097 0.8690679 0.8797843 -#> [221,] 0.7647663 0.7783410 0.7837751 -#> [222,] 1.3820083 1.3966081 1.4695749 -#> [223,] 0.5455742 0.5658013 0.6034515 -#> [224,] 1.1583985 1.2959913 1.3045000 -#> [225,] 0.9930158 1.0073708 1.0326790 -#> [226,] 0.7177860 0.7245656 0.7300216 -#> [227,] 0.6152128 0.6768162 0.7500130 -#> [228,] 0.8081437 0.8210160 0.8341311 -#> [229,] 0.8173428 0.8390229 0.8620620 -#> [230,] 0.8007657 0.8012049 0.8112083 -#> [231,] 0.9177369 0.9279086 0.9315429 -#> [232,] 0.7094825 0.7412201 0.7487212 -#> [233,] 0.8801390 0.8919684 0.9048960 -#> [234,] 0.8240324 0.8333244 0.8385498 -#> [235,] 0.7525095 0.7695044 0.7708732 -#> [236,] 0.7133467 0.7192160 0.7198735 -#> [237,] 0.5881498 0.5997251 0.6016000 -#> [238,] 0.8105593 0.9042581 0.9140608 -#> [239,] 1.0796850 1.0905094 1.0981334 -#> [240,] 0.8508098 0.8635917 0.8980599 -#> [241,] 0.6227925 0.6280889 0.6417925 -#> [242,] 0.7067708 0.7184563 0.7377581 -#> [243,] 0.6115334 0.6430333 0.6456477 -#> [244,] 1.4331381 1.4607150 1.5316756 -#> [245,] 0.8501881 0.8563041 0.8590798 -#> [246,] 0.7118094 0.7147159 0.7300108 -#> [247,] 1.1565844 1.1967436 1.2031595 -#> [248,] 0.7812252 0.7929947 0.8109086 -#> [249,] 0.6637959 0.6669140 0.6801039 -#> [250,] 2.0397549 2.0483508 2.0556776 -#> [251,] 0.7355141 0.7445453 0.7960024 -#> [252,] 0.6012655 0.6101469 0.6277827 -#> [253,] 1.1820783 1.1844585 1.1852437 -#> [254,] 0.7059918 0.7131183 0.7172770 -#> [255,] 1.1761711 1.1954909 1.2139322 -#> [256,] 0.8081437 0.8302582 0.8359470 -#> [257,] 0.4847586 0.4983993 0.5328842 -#> [258,] 1.3630821 1.3645951 1.4483778 -#> [259,] 1.6683581 1.6846586 1.6916542 -#> [260,] 0.6327125 0.6592461 0.6797594 -#> [261,] 0.5816681 0.6651170 0.6719349 -#> [262,] 1.0199230 1.0306691 1.0465887 -#> [263,] 0.7328701 0.7366519 0.7488794 -#> [264,] 0.6567246 0.6632021 0.6666177 -#> [265,] 0.8342606 0.8833272 0.8873127 -#> [266,] 1.2187290 1.2362250 1.3522488 -#> [267,] 0.7023748 0.7102512 0.7225791 -#> [268,] 1.0880982 1.0941461 1.0960332 -#> [269,] 0.8627002 0.8743276 0.8751708 -#> [270,] 0.6198851 0.6314126 0.6475378 -#> [271,] 0.5674021 0.5693480 0.5928785 -#> [272,] 0.9341928 0.9833019 0.9973478 -#> [273,] 0.8096329 0.8292255 0.8555027 -#> [274,] 0.7891404 0.8243659 0.8278745 -#> [275,] 0.9317763 0.9409960 0.9466711 -#> [276,] 1.3790276 1.3802968 1.4076604 -#> [277,] 0.6844823 0.7143535 0.7407388 -#> [278,] 0.7100069 0.7488184 0.7600098 -#> [279,] 1.1506401 1.1908013 1.2663376 -#> [280,] 0.7630830 0.7659436 0.7761110 -#> [281,] 0.8431615 0.8637182 0.9226522 -#> [282,] 0.9590741 1.0251275 1.0283219 -#> [283,] 0.7033122 0.7052669 0.7377581 -#> [284,] 0.8044038 0.8099410 0.8531779 -#> [285,] 0.4574371 0.4633042 0.5149583 -#> [286,] 1.2142199 1.2325390 1.2486723 -#> [287,] 0.7117716 0.7845475 0.8023944 -#> [288,] 0.7105949 0.7146610 0.7506698 -#> [289,] 0.9633728 0.9659964 1.0147951 -#> [290,] 0.6066468 0.6082550 0.6091098 -#> [291,] 1.0277905 1.0338277 1.0357108 -#> [292,] 0.5000964 0.5028235 0.5161832 -#> [293,] 0.8557396 0.8838206 0.9363732 -#> [294,] 0.7162112 0.7261345 0.7368908 -#> [295,] 2.1098008 2.1263382 2.1662556 -#> [296,] 0.9174849 0.9391519 0.9513195 -#> [297,] 0.5151876 0.5552198 0.6246004 -#> [298,] 1.2236423 1.2574848 1.2584744 -#> [299,] 0.8009335 0.8341694 0.8629700 -#> [300,] 0.6411617 0.6742086 0.6789019 -#> [301,] 1.0222484 1.0651726 1.0824499 -#> [302,] 1.4780679 1.4931978 1.4998941 -#> [303,] 1.7793757 1.8106507 1.8345273 -#> [304,] 0.8031539 0.8513275 0.8791171 -#> [305,] 1.2292597 1.2357294 1.2826214 -#> [306,] 0.6505470 0.6771992 0.6788451 -#> [307,] 1.1818239 1.1945705 1.2083771 -#> [308,] 0.6593763 0.6723912 0.6867334 -#> [309,] 0.4700809 0.4816955 0.4866329 -#> [310,] 0.7201891 0.7371411 0.7627039 -#> [311,] 0.9326344 1.0005127 1.0038540 -#> [312,] 0.7288453 0.7482867 0.7527413 -#> [313,] 0.6792825 0.7098145 0.7107325 -#> [314,] 0.7188043 0.7305566 0.7341665 -#> [315,] 0.5343740 0.5371986 0.6196099 -#> [316,] 1.0993493 1.1180550 1.1213501 -#> [317,] 0.5166436 0.5418754 0.5499564 -#> [318,] 1.4359835 1.4469369 1.4834774 -#> [319,] 0.8046689 0.8057893 0.8264896 -#> [320,] 0.5838682 0.5972898 0.6249691 -#> [321,] 0.6478044 0.6480226 0.6585143 -#> [322,] 0.7356749 0.7797624 0.8027854 -#> [323,] 1.0977021 1.1011990 1.1069747 -#> [324,] 0.6170095 0.6424517 0.6700281 -#> [325,] 0.7829631 0.7942367 0.7964902 -#> [326,] 0.8682310 0.9106875 1.0473610 -#> [327,] 0.8372628 0.8838178 0.9024265 -#> [328,] 1.4275131 1.5188548 1.5214910 -#> [329,] 1.2825670 1.3081612 1.3743889 -#> [330,] 0.6444889 0.6908379 0.6954510 -#> [331,] 0.6772921 0.7085888 0.7115589 -#> [332,] 0.6055590 0.6319255 0.6535943 -#> [333,] 0.6089178 0.6171698 0.6420984 -#> [334,] 0.7013259 0.7197396 0.7201731 -#> [335,] 0.7554972 0.7570872 0.7621492 -#> [336,] 0.6903874 0.7099542 0.7263274 -#> [337,] 1.4731754 1.4770385 1.4885976 -#> [338,] 1.1171090 1.1343383 1.1866288 -#> [339,] 0.7904959 0.8211896 0.8407411 -#> [340,] 0.6571768 0.7153976 0.7344173 -#> [341,] 0.6206803 0.7202563 0.7536813 -#> [342,] 0.6031906 0.6348537 0.6648093 -#> [343,] 1.0684635 1.1281765 1.2701446 -#> [344,] 0.6379043 0.6522162 0.6533374 -#> [345,] 0.5810245 0.5867504 0.5913260 -#> [346,] 0.5046153 0.5277485 0.5910771 -#> [347,] 1.0505311 1.0576989 1.0992925 -#> [348,] 0.6311623 0.6560215 0.6822626 -#> [349,] 1.0165439 1.1333100 1.1340170 -#> [350,] 0.5813493 0.5950332 0.6079576 -#> [351,] 0.7300095 0.7602339 0.7629245 -#> [352,] 1.1053641 1.1180550 1.1312491 -#> [353,] 1.1837643 1.1988522 1.2302067 -#> [354,] 0.9533387 0.9564164 0.9649450 -#> [355,] 0.9164328 0.9176535 1.0082143 -#> [356,] 0.7133467 0.7360781 0.7797316 -#> [357,] 0.7177315 0.7849657 0.7935783 -#> [358,] 0.7369999 0.7680742 0.7718746 -#> [359,] 0.6829276 0.7062740 0.7828293 -#> [360,] 0.6238698 0.6319799 0.6712264 -#> [361,] 0.8012627 0.8229591 0.8455997 -#> [362,] 0.6160434 0.6178926 0.6240917 -#> [363,] 0.9001376 0.9136147 0.9147746 -#> [364,] 1.5932991 1.6157023 1.6168954 -#> [365,] 0.8077789 0.8595672 0.8851544 -#> [366,] 0.8105764 0.9519390 0.9627244 -#> [367,] 0.8791882 0.8820581 0.9409960 -#> [368,] 1.1542080 1.2095336 1.2174031 -#> [369,] 1.2001517 1.2151301 1.2367852 -#> [370,] 0.7215688 0.7504660 0.7612260 -#> [371,] 0.5766792 0.6133128 0.6378261 -#> [372,] 0.5124364 0.5342045 0.5436498 -#> [373,] 0.7111043 0.7964800 0.8074443 -#> [374,] 0.7735197 0.7903442 0.8573493 -#> [375,] 0.6717405 0.6987919 0.7056988 -#> [376,] 1.1960716 1.2061600 1.2549521 -#> [377,] 0.9120929 0.9420186 1.0101190 -#> [378,] 0.9728332 0.9873418 0.9990933 -#> [379,] 0.7385341 0.7460797 0.7479200 -#> [380,] 0.6228103 0.6252471 0.6378261 -#> [381,] 0.6451651 0.6466886 0.6497090 -#> [382,] 0.6164454 0.6313534 0.6431640 -#> [383,] 1.7215563 1.7413460 1.7505421 -#> [384,] 1.4146987 1.4767661 1.5423798 -#> [385,] 1.2790766 1.3318983 1.3342449 -#> [386,] 0.5253829 0.5374429 0.5478135 -#> [387,] 0.6767031 0.6980473 0.7102383 -#> [388,] 0.6058627 0.6468854 0.6582067 -#> [389,] 0.7614894 0.7666488 0.7872667 -#> [390,] 0.7636327 0.7665815 0.7671899 -#> [391,] 0.7542396 0.7742806 0.8188065 -#> [392,] 0.8449039 0.8477306 0.8554640 -#> [393,] 0.6606911 0.6652344 0.7106932 -#> [394,] 1.1621956 1.1644541 1.1986978 -#> [395,] 1.1677274 1.2597720 1.2879303 -#> [396,] 0.9441428 0.9562852 0.9670866 -#> [397,] 0.6461569 0.6517059 0.6642091 -#> [398,] 0.8534824 0.8593124 0.9181514 -#> [399,] 0.6507469 0.6531001 0.6857016 -#> [400,] 0.7627499 0.8010999 0.8162060 -#> [401,] 0.7167615 0.7590209 0.7663757 -#> [402,] 0.9385822 0.9546533 0.9735454 -#> [403,] 0.9174849 0.9597572 0.9760358 -#> [404,] 0.7314190 0.7399096 0.7420626 -#> [405,] 0.6440154 0.6769841 0.6813038 -#> [406,] 0.9042870 0.9199815 0.9366138 -#> [407,] 0.5143304 0.5230954 0.5826878 -#> [408,] 0.7751121 0.8150130 0.8160969 -#> [409,] 0.6680155 0.6764425 0.6882297 -#> [410,] 1.0683585 1.0714703 1.1421249 -#> [411,] 1.2147471 1.2663894 1.2727458 -#> [412,] 1.1390125 1.1560421 1.1667422 -#> [413,] 0.5777682 0.5841814 0.5867504 -#> [414,] 1.0770330 1.1461043 1.1826790 -#> [415,] 0.7190763 0.7826114 0.8346353 -#> [416,] 1.2734965 1.3180883 1.3209671 -#> [417,] 0.8609763 0.8951846 0.9389049 -#> [418,] 0.6299388 0.6377190 0.6472083 -#> [419,] 1.3202222 1.3234820 1.3480002 -#> [420,] 0.7911226 0.8918625 0.9113162 -#> [421,] 1.5099517 1.5879799 1.6275022 -#> [422,] 0.8648793 0.8801506 0.8962246 -#> [423,] 0.6058663 0.6082788 0.6314126 -#> [424,] 1.3163879 1.3328708 1.3662731 -#> [425,] 0.7955620 0.7975097 0.8114964 -#> [426,] 0.6418109 0.6934614 0.7022022 -#> [427,] 1.8529715 1.9275538 1.9412448 -#> [428,] 0.8037321 0.8180881 0.8260032 -#> [429,] 0.8748160 0.9124285 0.9167675 -#> [430,] 1.4781769 1.5195083 1.5757886 -#> [431,] 0.7765806 0.7796118 0.7852608 -#> [432,] 0.9012644 0.9333909 0.9559555 -#> [433,] 0.6599585 0.6928193 0.6981878 -#> [434,] 0.7897385 0.8571447 0.8957822 -#> [435,] 1.1936272 1.2030167 1.2407876 -#> [436,] 0.7833691 0.8614368 0.8945441 -#> [437,] 0.5384173 0.5829803 0.5841615 -#> [438,] 0.5571568 0.6174222 0.6316854 -#> [439,] 0.6609872 0.6613144 0.7115270 -#> [440,] 0.8451830 0.8557046 0.8650737 -#> [441,] 0.5728784 0.5745183 0.5839120 -#> [442,] 1.0467757 1.0550746 1.0574801 -#> [443,] 0.6892405 0.7332718 0.7333728 -#> [444,] 0.5805887 0.6012403 0.6268490 -#> [445,] 0.7912182 0.8435330 0.8641570 -#> [446,] 0.7852608 0.8762724 0.9075501 -#> [447,] 1.3676645 1.3747721 1.4162996 -#> [448,] 1.2725432 1.2803105 1.2833201 -#> [449,] 1.1295200 1.2154808 1.2187803 -#> [450,] 0.9210998 0.9405099 1.0160491 -#> [451,] 0.6643364 0.6665172 0.6964813 -#> [452,] 0.6314404 0.6404495 0.6684119 -#> [453,] 0.5370750 0.5614417 0.6017285 -#> [454,] 0.9114307 0.9131999 0.9218992 -#> [455,] 0.5167141 0.5323207 0.5668559 -#> [456,] 0.7683081 0.7733977 0.8122535 -#> [457,] 0.5024490 0.5412091 0.5569929 -#> [458,] 1.0857416 1.1236817 1.1830759 -#> [459,] 0.5728755 0.5922088 0.5931377 -#> [460,] 0.5689447 0.5754628 0.5817520 -#> [461,] 0.6513352 0.7065268 0.7117218 -#> [462,] 0.5501011 0.5596206 0.5649255 -#> [463,] 0.6391369 0.6395256 0.6412760 -#> [464,] 0.8306194 0.8751047 0.8794120 -#> [465,] 0.7393981 0.8423412 0.8437964 -#> [466,] 1.8836910 1.9095367 1.9135119 -#> [467,] 1.1950243 1.2333716 1.2435436 -#> [468,] 0.9667808 0.9857054 0.9916732 -#> [469,] 0.9461251 0.9463880 0.9540307 -#> [470,] 0.5763679 0.5815961 0.5851288 -#> [471,] 0.8321809 0.8519922 0.8573915 -#> [472,] 0.6797594 0.6974174 0.7011072 -#> [473,] 0.6045314 0.6086948 0.6161821 -#> [474,] 0.6178535 0.6265817 0.6299388 -#> [475,] 1.4563943 1.4668533 1.4956531 -#> [476,] 0.4759897 0.5278541 0.5323207 -#> [477,] 0.5904797 0.5921010 0.6182972 -#> [478,] 0.7475949 0.7595601 0.7750158 -#> [479,] 0.8676342 0.9958579 1.0082914 -#> [480,] 0.9988466 1.0379648 1.0873266 -#> [481,] 0.6811404 0.7125915 0.7438543 -#> [482,] 0.7233252 0.7258189 0.7496445 -#> [483,] 0.8908971 0.9220001 0.9393187 -#> [484,] 0.8402377 0.8782716 0.8924074 -#> [485,] 0.8752551 0.9683506 0.9777102 -#> [486,] 0.9860885 1.0097891 1.0138331 -#> [487,] 0.6715531 0.6862316 0.6922482 -#> [488,] 1.2949801 1.3199758 1.3314084 -#> [489,] 1.0834790 1.1111410 1.1434177 -#> [490,] 0.7012192 0.7035310 0.7197476 -#> [491,] 0.8863247 0.9151983 0.9861853 -#> [492,] 1.7159364 1.7248158 1.7670427 -#> [493,] 0.8374759 0.9264355 0.9493804 -#> [494,] 1.3369391 1.3572066 1.3602157 -#> [495,] 1.3663135 1.3747328 1.3915746 -#> [496,] 0.9388876 0.9787855 0.9818573 -#> [497,] 0.9633728 0.9716273 1.0105809 -#> [498,] 1.2406684 1.2583409 1.3507659 -#> [499,] 0.8820550 1.0146170 1.0150288 -#> [500,] 0.9055686 0.9680445 0.9941518 -#> [501,] 2.4145756 2.4420108 2.4464436 -#> [502,] 0.5520771 0.5745183 0.5826584 -#> [503,] 0.8337882 0.8505912 0.8526129 -#> [504,] 0.6882318 0.6964999 0.7367348 -#> [505,] 0.9813650 0.9874835 1.0472607 -#> [506,] 0.6814462 0.7060224 0.7076732 -#> [507,] 0.4816955 0.4847935 0.4864367 -#> [508,] 0.5691907 0.5770479 0.5780491 -#> [509,] 1.6335442 1.6385179 1.6535956 -#> [510,] 1.3528960 1.3563794 1.3611355 -#> [511,] 0.6759780 0.7094116 0.7247117 -#> [512,] 1.2926636 1.3023587 1.3749284 -#> [513,] 1.5299030 1.5399956 1.6611706 -#> [514,] 0.6710257 0.6810884 0.6950817 -#> [515,] 0.7584446 0.8062355 0.8130625 -#> [516,] 0.8178128 0.8178424 0.8205612 -#> [517,] 0.8591310 0.8919684 0.9240162 -#> [518,] 0.5025708 0.5418103 0.5693054 -#> [519,] 0.6895236 0.6973202 0.7059582 -#> [520,] 0.5773875 0.5787767 0.6029737 -#> [521,] 0.7146610 0.7643505 0.7878777 -#> [522,] 0.6803957 0.6811404 0.7170140 -#> [523,] 0.6578455 0.6659730 0.6749460 -#> [524,] 0.7388219 0.7477676 0.7486448 -#> [525,] 0.9893545 1.0141225 1.0483922 -#> [526,] 0.6767827 0.7060023 0.7315015 -#> [527,] 1.0208764 1.0257840 1.0330603 -#> [528,] 0.7171179 0.7334094 0.7448059 -#> [529,] 0.8668125 0.9510885 0.9550453 -#> [530,] 1.3518969 1.3648092 1.3849989 -#> [531,] 0.7892308 0.8003594 0.8356967 -#> [532,] 0.8611332 0.8613864 0.9164915 -#> [533,] 0.6250401 0.6367535 0.6517178 -#> [534,] 0.7000426 0.7177860 0.7378278 -#> [535,] 0.7863389 0.8349013 0.8376880 -#> [536,] 0.9794036 1.0058872 1.0216113 -#> [537,] 0.8364121 0.8611271 0.8800067 -#> [538,] 0.5635180 0.6092181 0.6218384 -#> [539,] 0.8904440 0.8921551 0.8932878 -#> [540,] 0.6639791 0.7167615 0.7429688 -#> [541,] 0.6532183 0.6622352 0.6784005 -#> [542,] 1.3483684 1.3507839 1.3894962 -#> [543,] 0.8085228 0.8488790 0.8680777 -#> [544,] 0.5340517 0.5593715 0.6246004 -#> [545,] 0.5689344 0.6011425 0.6378416 -#> [546,] 0.6056311 0.6089128 0.6109068 -#> [547,] 0.7942207 0.8298927 0.8602639 -#> [548,] 0.9145482 0.9155776 0.9157779 -#> [549,] 0.7833891 0.7929947 0.7977212 -#> [550,] 0.8923763 0.8936716 0.8943902 -#> [551,] 0.6252989 0.6302890 0.6325989 -#> [552,] 0.6213495 0.6715206 0.6738913 -#> [553,] 0.5815733 0.6928156 0.7067708 -#> [554,] 0.7766909 0.7895843 0.8063112 -#> [555,] 0.8607480 0.8663636 0.8850935 -#> [556,] 0.6819663 0.7233252 0.7428187 -#> [557,] 0.8135751 0.8167236 0.8241794 -#> [558,] 2.3432253 2.3690277 2.3950798 -#> [559,] 0.7093489 0.7243632 0.7538692 -#> [560,] 0.6790146 0.6813491 0.6987252 -#> [561,] 0.9278684 0.9670014 0.9923017 -#> [562,] 0.6440527 0.6939634 0.6946025 -#> [563,] 0.8178424 0.8214247 0.8249273 -#> [564,] 0.5854172 0.6030661 0.6703721 -#> [565,] 2.2018303 2.2170551 2.2715903 -#> [566,] 0.6740985 0.6961154 0.7107108 -#> [567,] 0.5288156 0.6289047 0.6432439 -#> [568,] 0.6086948 0.6167249 0.6182271 -#> [569,] 0.8899425 0.8907170 0.9248265 -#> [570,] 0.8781574 0.9243470 0.9436126 -#> [571,] 0.6611107 0.6947258 0.7779487 -#> [572,] 0.8544198 0.8607628 0.9113352 -#> [573,] 0.6818945 0.6944958 0.6973268 -#> [574,] 0.6450755 0.7042088 0.7045850 -#> [575,] 0.8500746 0.9282655 1.0189408 -#> [576,] 0.7818339 0.7826114 0.8231869 -#> [577,] 1.2586485 1.2649063 1.4049734 -#> [578,] 0.6757237 0.6791727 0.7117059 -#> [579,] 0.6788451 0.6853032 0.7137189 -#> [580,] 0.6333447 0.6695882 0.6853860 -#> [581,] 0.6198851 0.6315937 0.6712264 -#> [582,] 0.5481736 0.5764813 0.6090256 -#> [583,] 0.6900380 0.6917397 0.7118564 -#> [584,] 0.8031552 0.8159384 0.8325545 -#> [585,] 0.8078439 0.8962927 0.9024955 -#> [586,] 0.7863477 0.8318041 0.8382579 -#> [587,] 0.6263667 0.6662338 0.6693745 -#> [588,] 1.0664086 1.0867883 1.1595318 -#> [589,] 0.7238832 0.7291073 0.7634351 -#> [590,] 1.8472453 1.9284869 1.9455458 -#> [591,] 0.6030661 0.6150027 0.6178535 -#> [592,] 0.7067891 0.7202563 0.7385543 -#> [593,] 0.5766874 0.6071901 0.6722267 -#> [594,] 0.5037597 0.5140889 0.5278857 -#> [595,] 0.6973421 0.7460797 0.7484519 -#> [596,] 0.8587832 0.8776250 0.8925923 -#> [597,] 0.8990254 0.8998505 0.9043764 -#> [598,] 0.6098153 0.6283844 0.6289047 -#> [599,] 1.1384414 1.1628123 1.1670567 -#> [600,] 0.7396622 0.7411347 0.7429837 -#> [601,] 0.6981834 0.7385372 0.7571183 -#> [602,] 0.5697776 0.5925780 0.6079173 -#> [603,] 1.0356459 1.0574077 1.0919283 -#> [604,] 1.1836077 1.2198348 1.2271238 -#> [605,] 0.6046276 0.6299998 0.6461569 -#> [606,] 0.5649939 0.5740247 0.5826055 -#> [607,] 1.1519656 1.1540375 1.1572590 -#> [608,] 0.8675523 0.8853132 0.9111472 -#> [609,] 1.6049527 1.6168954 1.6674373 -#> [610,] 0.9049409 0.9094752 1.0089479 -#> [611,] 0.5936046 0.6057138 0.6595870 -#> [612,] 0.9681270 0.9843482 1.0041864 -#> [613,] 1.2830695 1.3338333 1.3386482 -#> [614,] 0.7772791 0.8072681 0.8344979 -#> [615,] 0.7472657 0.7642566 0.7715074 -#> [616,] 0.8531185 0.8587832 0.8961581 -#> [617,] 0.7300108 0.7336099 0.7580219 -#> [618,] 0.6519833 0.7036290 0.7411941 -#> [619,] 0.9758230 1.0551752 1.0664273 -#> [620,] 0.8801867 0.8923898 0.9039039 -#> [621,] 0.5862132 0.6693059 0.6782872 -#> [622,] 0.6219328 0.6248315 0.6261556 -#> [623,] 0.7478602 0.7580601 0.7706583 -#> [624,] 0.5698945 0.6299090 0.6403390 -#> [625,] 1.0167930 1.0453051 1.1333771 -#> [626,] 0.7392944 0.7548943 0.7563227 -#> [627,] 0.6061947 0.6288226 0.6932874 -#> [628,] 0.5016559 0.5094419 0.5727759 -#> [629,] 1.0443008 1.0609972 1.0629319 -#> [630,] 0.7998817 0.8195488 0.8678657 -#> [631,] 0.5547715 0.6030755 0.6154857 -#> [632,] 0.8144859 0.8281860 0.8697099 -#> [633,] 1.0451144 1.0542669 1.1114114 -#> [634,] 0.6419922 0.6432989 0.6447714 -#> [635,] 0.6742909 0.7286320 0.7541595 -#> [636,] 0.9607071 0.9640626 0.9819342 -#> [637,] 0.9198462 0.9676332 0.9754811 -#> [638,] 1.1200604 1.2439004 1.2668609 -#> [639,] 1.1293918 1.1544637 1.1925736 -#> [640,] 0.8213356 0.8387448 0.8433437 -#> [641,] 0.9677572 0.9888431 1.0394407 -#> [642,] 1.0378200 1.0572936 1.0864902 -#> [643,] 0.5496676 0.5826584 0.5893277 -#> [644,] 0.8202058 0.8503474 0.8628839 -#> [645,] 0.6876549 0.6992767 0.7008368 -#> [646,] 1.0006761 1.0891220 1.1000991 -#> [647,] 0.7692970 0.8176418 0.8722259 -#> [648,] 0.9001376 0.9306692 0.9344276 -#> [649,] 0.4759897 0.5073673 0.5773453 -#> [650,] 1.9382943 1.9416419 2.0260886 -#> [651,] 1.1290313 1.2173869 1.2181288 -#> [652,] 0.6658469 0.6770162 0.6778106 -#> [653,] 0.7356093 0.7722727 0.7758287 -#> [654,] 1.0047432 1.0131991 1.0317723 -#> [655,] 0.5662782 0.5710962 0.5811230 -#> [656,] 0.6184569 0.6220324 0.6290472 -#> [657,] 0.7677005 0.7693379 0.7703628 -#> [658,] 0.5899925 0.6245978 0.6298449 -#> [659,] 0.7469655 0.7567931 0.7701006 -#> [660,] 0.5644498 0.5773875 0.6264687 -#> [661,] 0.5910982 0.6014117 0.6069905 -#> [662,] 0.8325475 0.8360327 0.8718518 -#> [663,] 0.5199536 0.5201948 0.5253829 -#> [664,] 2.0411730 2.0795131 2.1723752 -#> [665,] 0.6398905 0.7198262 0.7426566 -#> [666,] 1.6206125 1.6538794 1.6952439 -#> [667,] 0.7155574 0.7265504 0.7561248 -#> [668,] 0.6236368 0.6674390 0.7730710 -#> [669,] 0.6593693 0.6599681 0.7081862 -#> [670,] 0.9392153 0.9818740 0.9936594 -#> [671,] 0.8417960 0.8581661 0.9167841 -#> [672,] 0.8022114 0.8045830 0.8129684 -#> [673,] 1.0238475 1.0297726 1.0514701 -#> [674,] 0.8379912 0.8492909 0.8665540 -#> [675,] 0.6764425 0.7128808 0.7414976 -#> [676,] 0.9237796 0.9572670 0.9769117 -#> [677,] 0.6259317 0.6287526 0.6306655 -#> [678,] 0.7745990 0.7968260 0.8289013 -#> [679,] 1.1319135 1.1391750 1.1587812 -#> [680,] 0.7995431 0.8797833 0.9001406 -#> [681,] 0.5658163 0.5663868 0.6085266 -#> [682,] 1.1814759 1.2122146 1.2527892 -#> [683,] 0.9574515 0.9917246 1.0476483 -#> [684,] 0.8202589 0.8405467 0.8482936 -#> [685,] 1.0408116 1.0770330 1.0790551 -#> [686,] 1.8179036 1.8340617 1.9116460 -#> [687,] 0.8240114 0.8346796 0.8540282 -#> [688,] 0.7111981 0.7168102 0.7506698 -#> [689,] 0.7062740 0.7083143 0.7332891 -#> [690,] 0.7589517 0.7814489 0.8743718 -#> [691,] 0.7887940 0.8068922 0.8298635 -#> [692,] 0.7042882 0.7073357 0.7086554 -#> [693,] 0.8677932 0.9081009 0.9096423 -#> [694,] 0.9426249 0.9456269 0.9996745 -#> [695,] 0.7261435 0.7369679 0.7431326 -#> [696,] 0.5259880 0.5325244 0.5335413 -#> [697,] 0.9357843 1.0164852 1.1235415 -#> [698,] 0.6602462 0.6971881 0.7130196 -#> [699,] 0.7407388 0.7441478 0.7587615 -#> [700,] 0.5805887 0.6411091 0.6493704 -#> [701,] 0.8441528 0.8526117 0.8743718 -#> [702,] 0.7091045 0.7115284 0.7332891 -#> [703,] 1.4329723 1.4998115 1.5321308 -#> [704,] 0.8716388 0.9324892 0.9406988 -#> [705,] 0.9435541 1.0315119 1.0640330 -#> [706,] 0.6753137 0.7172770 0.7210186 -#> [707,] 0.6354370 0.6485246 0.6687828 -#> [708,] 0.7013456 0.7131056 0.7347693 -#> [709,] 0.7484519 0.7737699 0.7741449 -#> [710,] 0.8423412 0.8555198 0.8749579 -#> [711,] 1.1663112 1.2098689 1.2143511 -#> [712,] 0.9481154 0.9482776 0.9492661 -#> [713,] 0.5139554 0.5386177 0.5543984 -#> [714,] 0.6937074 0.7245582 0.7468176 -#> [715,] 1.4709076 1.4824762 1.4912133 -#> [716,] 0.8951693 0.8961581 0.9878208 -#> [717,] 0.5740756 0.5972898 0.6142427 -#> [718,] 0.9250145 0.9261443 0.9285668 -#> [719,] 0.5785084 0.6069989 0.6116374 -#> [720,] 0.9843897 1.0550667 1.0561660 -#> [721,] 0.5411180 0.5608529 0.5653868 -#> [722,] 0.5295162 0.5340517 0.5555209 -#> [723,] 0.9688074 1.0018221 1.0154645 -#> [724,] 0.6862316 0.7080334 0.7092927 -#> [725,] 0.6652081 0.6720352 0.6917995 -#> [726,] 0.6144660 0.6167648 0.6466886 -#> [727,] 0.8975746 0.9026949 0.9269203 -#> [728,] 0.7297279 0.7441841 0.7579067 -#> [729,] 0.9753392 0.9793578 0.9902628 -#> [730,] 0.6466303 0.6596934 0.6713759 -#> [731,] 0.7510750 0.8031048 0.8497506 -#> [732,] 0.7844187 0.7910788 0.8033215 -#> [733,] 1.1436977 1.2593077 1.2944929 -#> [734,] 1.0233959 1.0988194 1.1192609 -#> [735,] 0.6888786 0.7709872 0.8026905 -#> [736,] 1.1020634 1.1103051 1.1116794 -#> [737,] 0.4875835 0.5037597 0.5218255 -#> [738,] 1.2087302 1.2367852 1.2630820 -#> [739,] 2.1226628 2.1489737 2.1847682 -#> [740,] 0.9699873 0.9936126 0.9981753 -#> [741,] 0.5541666 0.5674918 0.5693480 -#> [742,] 0.5708686 0.5748597 0.5788055 -#> [743,] 0.8565868 0.8744701 0.8796845 -#> [744,] 0.9290540 0.9548992 0.9762425 -#> [745,] 0.4644079 0.5262045 0.5492644 -#> [746,] 1.0158253 1.0370421 1.0656568 -#> [747,] 0.7036279 0.7143330 0.7151035 -#> [748,] 1.2295782 1.2701114 1.3213964 -#> [749,] 0.5693054 0.6197711 0.6784878 -#> [750,] 0.7510750 0.7788458 0.7880611 -#> [751,] 0.7907865 0.8110518 0.8268999 -#> [752,] 1.6528810 1.6852090 1.7012686 -#> [753,] 0.8275630 0.8613339 0.8736702 -#> [754,] 0.6022206 0.6873235 0.6881103 -#> [755,] 0.7941230 0.7957952 0.7978296 -#> [756,] 0.7081964 0.7167148 0.7362297 -#> [757,] 1.2384498 1.2410470 1.3512977 -#> [758,] 0.6404495 0.7010819 0.7160734 -#> [759,] 0.5552198 0.6299090 0.6299998 -#> [760,] 0.8529619 0.8699727 0.8723819 -#> [761,] 1.1095331 1.1378732 1.1933431 -#> [762,] 0.6133128 0.6134790 0.6152627 -#> [763,] 0.5848662 0.5881791 0.5938147 -#> [764,] 1.2015164 1.2033767 1.2357261 -#> [765,] 1.3644598 1.3664599 1.3791541 -#> [766,] 0.9682310 0.9753498 0.9834251 -#> [767,] 0.7501720 0.7553391 0.7784621 -#> [768,] 0.6176954 0.6553638 0.7037984 -#> [769,] 0.9799616 0.9971581 1.0188878 -#> [770,] 0.6067608 0.6166483 0.6215483 -#> [771,] 0.6988536 0.7143979 0.7691937 -#> [772,] 0.6707290 0.7406443 0.7925577 -#> [773,] 0.6920620 0.7192525 0.7378939 -#> [774,] 0.8061181 0.8335395 0.8519922 -#> [775,] 1.2012728 1.2145928 1.2264780 -#> [776,] 0.6036117 0.6045314 0.6074887 -#> [777,] 0.7134724 0.7330610 0.7336099 -#> [778,] 0.7357161 0.7659436 0.7765781 -#> [779,] 1.9690753 1.9715492 1.9898267 -#> [780,] 1.0283219 1.0732000 1.1302308 -#> [781,] 1.2927882 1.2994474 1.3193296 -#> [782,] 0.8892492 0.9349566 0.9609719 -#> [783,] 0.7018778 0.7117218 0.7143797 -#> [784,] 0.9308265 0.9329245 0.9864876 -#> [785,] 0.6700494 0.6884271 0.7247373 -#> [786,] 0.6910984 0.7043720 0.7224982 -#> [787,] 0.8368802 0.8438580 0.8626579 -#> [788,] 0.5811230 0.6050018 0.6342684 -#> [789,] 0.5341757 0.5555209 0.5730101 -#> [790,] 0.8837296 0.8878474 0.9150893 -#> [791,] 0.7885298 0.7951147 0.7955146 -#> [792,] 0.5522140 0.5649189 0.5940605 -#> [793,] 1.5337373 1.5347884 1.5472385 -#> [794,] 0.8744181 0.8762210 0.8950791 -#> [795,] 0.5354529 0.6159843 0.6497799 -#> [796,] 0.5435039 0.5631950 0.5761898 -#> [797,] 0.5904797 0.6074887 0.6143992 -#> [798,] 0.6754314 0.7094825 0.7628576 -#> [799,] 0.5793089 0.5914720 0.6272817 -#> [800,] 0.5851032 0.6079851 0.6545558 -#> [801,] 0.5455918 0.5498394 0.5578871 -#> [802,] 0.5969488 0.6414602 0.6594972 -#> [803,] 0.7023748 0.7029518 0.7169213 -#> [804,] 0.8185188 0.8205612 0.8326591 -#> [805,] 1.1750752 1.1903984 1.1933431 -#> [806,] 1.0302284 1.0537445 1.0748683 -#> [807,] 1.6709016 1.7005440 1.7394570 -#> [808,] 0.8407370 0.8500746 0.8637478 -#> [809,] 0.7008518 0.7150811 0.7800171 -#> [810,] 0.5433768 0.5853286 0.5858126 -#> [811,] 0.8785766 0.8927469 0.9212768 -#> [812,] 0.7942367 0.8017567 0.8151381 -#> [813,] 0.7228474 0.7321719 0.7385597 -#> [814,] 0.9128304 0.9264948 0.9299598 -#> [815,] 1.5803471 1.5953455 1.6277466 -#> [816,] 0.6993452 0.7242203 0.7344657 -#> [817,] 1.6124134 1.6636003 1.6760532 -#> [818,] 0.8376880 0.8426910 0.8453352 -#> [819,] 0.6316854 0.6320838 0.6329795 -#> [820,] 1.1178551 1.1519532 1.1632556 -#> [821,] 0.5833116 0.6029864 0.6135050 -#> [822,] 0.9326344 0.9529245 0.9951438 -#> [823,] 0.6772256 0.6932874 0.7187178 -#> [824,] 0.5820719 0.5912199 0.5958864 -#> [825,] 0.6578455 0.6685950 0.6729128 -#> [826,] 0.5650308 0.5788591 0.5883047 -#> [827,] 0.8792121 0.8806975 0.8816077 -#> [828,] 1.0188981 1.0945970 1.1559622 -#> [829,] 0.6354521 0.6415935 0.6464179 -#> [830,] 0.9306057 0.9731270 0.9804268 -#> [831,] 0.8952237 0.9297569 0.9763403 -#> [832,] 1.0843053 1.0897857 1.1173875 -#> [833,] 0.5930187 0.5939369 0.6069079 -#> [834,] 0.7465824 0.7697630 0.7820416 -#> [835,] 0.4847935 0.4983993 0.5371986 -#> [836,] 0.5418103 0.5454948 0.5471028 -#> [837,] 0.8334105 0.8618845 0.9283201 -#> [838,] 0.9496958 1.0138397 1.0735338 -#> [839,] 0.9777460 1.0175556 1.0292585 -#> [840,] 0.7527413 0.7735569 0.7822611 -#> [841,] 0.9744743 1.0102749 1.0125469 -#> [842,] 0.5128846 0.5187470 0.5232374 -#> [843,] 1.0283224 1.0680810 1.0750131 -#> [844,] 0.9416318 0.9482930 0.9629695 -#> [845,] 1.0277905 1.0347361 1.1459346 -#> [846,] 0.7532099 0.8083029 0.8129840 -#> [847,] 0.6244790 0.6370497 0.6643578 -#> [848,] 0.7263274 0.7298699 0.7523639 -#> [849,] 0.6670763 0.6757237 0.7488167 -#> [850,] 0.7400483 0.7407983 0.7678197 -#> [851,] 0.8328801 0.8593535 0.8706834 -#> [852,] 0.8042118 0.8181203 0.8300385 -#> [853,] 1.3269187 1.3651020 1.3995892 -#> [854,] 1.4041430 1.4212342 1.4334688 -#> [855,] 0.8489212 0.8509315 0.9226693 -#> [856,] 0.6371847 0.6373957 0.6489260 -#> [857,] 0.9479864 1.0184980 1.0239902 -#> [858,] 0.7565456 0.7837856 0.8034945 -#> [859,] 0.7948078 0.7953206 0.8008431 -#> [860,] 0.6458494 0.6610452 0.6853779 -#> [861,] 0.9921289 1.0741951 1.0819476 -#> [862,] 0.7420654 0.7459836 0.7656647 -#> [863,] 0.9134277 0.9463880 0.9774547 -#> [864,] 0.8385498 0.8457286 0.8462907 -#> [865,] 0.6143098 0.6192943 0.6269716 -#> [866,] 0.5851182 0.5949997 0.6690769 -#> [867,] 0.6249000 0.6323681 0.6533374 -#> [868,] 0.6744915 0.6873026 0.6948454 -#> [869,] 0.7422157 0.7559815 0.7563227 -#> [870,] 0.6857204 0.7060388 0.7225791 -#> [871,] 0.6754866 0.7015258 0.7165442 -#> [872,] 0.6624938 0.6659730 0.6665198 -#> [873,] 0.7918862 0.8899351 0.9106117 -#> [874,] 0.9897825 0.9967091 0.9998667 -#> [875,] 0.6674390 0.6709559 0.6722478 -#> [876,] 0.5127744 0.5200857 0.5278857 -#> [877,] 0.7248677 0.7362571 0.7574972 -#> [878,] 0.8650737 0.8673128 0.8876872 -#> [879,] 0.8082818 0.8188058 0.8420042 -#> [880,] 0.5238938 0.5245936 0.6314431 -#> [881,] 0.5546065 0.5552367 0.5658163 -#> [882,] 0.6593763 0.6692368 0.6819575 -#> [883,] 1.1362660 1.1670605 1.1814908 -#> [884,] 0.6274278 0.6516153 0.6589275 -#> [885,] 0.9445222 0.9758457 0.9935428 -#> [886,] 1.0196759 1.0782516 1.1500725 -#> [887,] 0.5611785 0.5721490 0.5730101 -#> [888,] 1.4525418 1.5335511 1.5650556 -#> [889,] 0.7290624 0.7626622 0.7701266 -#> [890,] 0.6575866 0.6631294 0.6709890 -#> [891,] 0.6369631 0.6478044 0.6552745 -#> [892,] 0.5949277 0.6268538 0.6411613 -#> [893,] 0.8987008 0.8996465 0.9122463 -#> [894,] 0.6536885 0.7169877 0.7448199 -#> [895,] 0.8754574 0.8961878 0.9137037 -#> [896,] 0.8990254 0.9600782 0.9845505 -#> [897,] 0.8324243 0.8734084 0.8839719 -#> [898,] 1.6232812 1.6329324 1.6843737 -#> [899,] 0.5307726 0.5541666 0.5542382 -#> [900,] 0.9233367 0.9341166 0.9619989 -#> [901,] 1.1674370 1.2091835 1.2888790 -#> [902,] 0.5935215 0.6133391 0.6145858 -#> [903,] 1.1552582 1.1596754 1.2374547 -#> [904,] 0.6360963 0.6439245 0.6468046 -#> [905,] 1.1296944 1.1306698 1.1445650 -#> [906,] 0.4926394 0.5200857 0.5569929 -#> [907,] 0.7094116 0.7272964 0.7351366 -#> [908,] 0.5967956 0.5984226 0.6065631 -#> [909,] 0.7092927 0.7741783 0.8215954 -#> [910,] 0.5743078 0.5881791 0.6133391 -#> [911,] 0.7960024 0.8147715 0.8201958 -#> [912,] 0.6367922 0.6648602 0.7074269 -#> [913,] 1.1330448 1.1393728 1.2083914 -#> [914,] 1.1261638 1.1363303 1.1381319 -#> [915,] 0.7265642 0.7372435 0.7600814 -#> [916,] 0.5991453 0.6288226 0.6909970 -#> [917,] 0.5936259 0.6167773 0.6328689 -#> [918,] 1.0889671 1.1266647 1.1340280 -#> [919,] 0.8134718 0.8773818 0.8794205 -#> [920,] 0.6634449 0.6847756 0.7128808 -#> [921,] 0.6411091 0.6529900 0.6562525 -#> [922,] 0.9428644 0.9479833 0.9766401 -#> [923,] 0.6546695 0.7623191 0.7831897 -#> [924,] 0.6176913 0.6225913 0.6360304 -#> [925,] 0.8952237 0.8954024 0.9522548 -#> [926,] 0.5354529 0.5418754 0.5586692 -#> [927,] 0.5889366 0.6452530 0.6895276 -#> [928,] 1.2360886 1.2645463 1.4156511 -#> [929,] 0.7045850 0.7102461 0.7254271 -#> [930,] 0.5557009 0.6323681 0.6379043 -#> [931,] 0.6628541 0.7176973 0.7332718 -#> [932,] 0.7830243 0.7958926 0.8087172 -#> [933,] 0.7823336 0.7935952 0.8060961 -#> [934,] 1.2170469 1.3016234 1.3293415 -#> [935,] 0.5882024 0.6785070 0.6851937 -#> [936,] 1.3042448 1.3067202 1.3290534 -#> [937,] 0.5923980 0.7701006 0.7797618 -#> [938,] 0.6801128 0.6920584 0.7143286 -#> [939,] 0.8133878 0.8762922 0.8792833 -#> [940,] 1.4887429 1.5084606 1.5273402 -#> [941,] 0.8393568 0.9422893 0.9868203 -#> [942,] 0.8230795 0.8939918 0.9083788 -#> [943,] 0.4729722 0.4760790 0.5015056 -#> [944,] 0.7457229 0.7612536 0.8136419 -#> [945,] 0.6536390 0.6611107 0.6819575 -#> [946,] 1.2655733 1.3786466 1.4154325 -#> [947,] 0.8477603 0.9001406 0.9536993 -#> [948,] 0.9881205 1.0120315 1.0276484 -#> [949,] 0.7025475 0.7284700 0.8108278 -#> [950,] 0.6722478 0.6789018 0.6876039 -#> [951,] 0.6565390 0.6916976 0.7045401 -#> [952,] 0.7141773 0.7169669 0.7371411 -#> [953,] 0.6559141 0.6639398 0.6669422 -#> [954,] 0.6337316 0.6354521 0.6418716 -#> [955,] 0.6696159 0.6698246 0.6916917 -#> [956,] 0.6075006 0.6443834 0.6680742 -#> [957,] 0.6603293 0.6623050 0.6940481 -#> [958,] 0.6436329 0.6482295 0.6713180 -#> [959,] 0.6036117 0.6117387 0.6139310 -#> [960,] 0.8303042 0.8761815 0.9232052 -#> [961,] 0.5678705 0.5766561 0.5903886 -#> [962,] 1.1215965 1.1605183 1.2426790 -#> [963,] 0.7745578 0.7843597 0.8036236 -#> [964,] 0.7111981 0.7140241 0.7803132 -#> [965,] 1.3762091 1.4262877 1.4529862 -#> [966,] 0.9081192 0.9342811 0.9352012 -#> [967,] 0.7595652 0.7708732 0.7737753 -#> [968,] 1.4909861 1.5724724 1.5742275 -#> [969,] 0.8061181 0.8275757 0.8626899 -#> [970,] 0.9417043 0.9428644 0.9652038 -#> [971,] 0.7672127 0.7708118 0.8045342 -#> [972,] 0.8512705 0.8660131 0.8675326 -#> [973,] 0.6890310 0.7102459 0.7356957 -#> [974,] 0.8293702 0.8737719 0.8771729 -#> [975,] 0.9366361 0.9594017 1.0164096 -#> [976,] 0.6135617 0.6143098 0.6145980 -#> [977,] 0.6100644 0.6560972 0.6944847 -#> [978,] 0.8658190 0.9287271 0.9562004 -#> [979,] 0.8026439 0.8061461 0.8523100 -#> [980,] 0.7544792 0.7700905 0.7944546 -#> [981,] 0.7798431 0.7893466 0.7930837 -#> [982,] 0.7172235 0.7433508 0.7481295 -#> [983,] 0.8697099 0.8845862 0.8919917 -#> [984,] 0.6171722 0.6253003 0.6681443 -#> [985,] 1.0713757 1.0957445 1.1245306 -#> [986,] 0.8691765 0.8912487 0.9218647 -#> [987,] 1.0751697 1.0866799 1.0975572 -#> [988,] 1.1608268 1.1729700 1.1819343 -#> [989,] 0.7698354 0.7771256 0.8079784 -#> [990,] 0.6881899 0.7428363 0.7918862 -#> [991,] 0.5465308 0.5848662 0.6901507 -#> [992,] 0.8033928 0.8417451 0.8513532 -#> [993,] 1.4140997 1.4184929 1.4390561 -#> [994,] 0.9012890 0.9167841 0.9214295 -#> [995,] 0.8027854 0.8349415 0.8488035 -#> [996,] 0.7708018 0.7850795 0.8009255 -#> [997,] 1.5251204 1.5339383 1.5403993 -#> [998,] 1.3328246 1.3609737 1.3649186 -#> [999,] 0.8731058 0.8916354 0.9132031 -#> [1000,] 0.8604964 0.8725707 0.9429566 +#> [1,] 1.1277723 1.1816461 1.1990002 +#> [2,] 1.2216679 1.2352019 1.2608456 +#> [3,] 0.6189972 0.6357971 0.6409345 +#> [4,] 0.6563752 0.6593882 0.6812084 +#> [5,] 0.6451487 0.6575858 0.6584598 +#> [6,] 0.6787011 0.7148674 0.7266524 +#> [7,] 0.6318225 0.6663029 0.6779481 +#> [8,] 0.7533940 0.7807431 0.7992978 +#> [9,] 1.0873969 1.0961940 1.1964236 +#> [10,] 0.5822407 0.5883231 0.5917679 +#> [11,] 0.6083513 0.6091392 0.6192702 +#> [12,] 0.7107465 0.7228639 0.7490380 +#> [13,] 0.7498239 0.7559947 0.7591031 +#> [14,] 0.8340085 0.8789927 0.8985272 +#> [15,] 0.8731405 0.8742264 0.9712348 +#> [16,] 1.1797889 1.1845552 1.2039234 +#> [17,] 1.0033135 1.0354425 1.0443826 +#> [18,] 0.9330399 0.9576537 0.9757561 +#> [19,] 0.8899695 0.9015966 0.9232722 +#> [20,] 0.5672174 0.5912759 0.6029007 +#> [21,] 0.6501106 0.6602688 0.6823808 +#> [22,] 0.7445577 0.7545314 0.7877731 +#> [23,] 0.7894505 0.8406640 0.8509438 +#> [24,] 0.9551027 0.9654747 1.0030288 +#> [25,] 1.0730757 1.0733707 1.0883246 +#> [26,] 0.7280532 0.7556115 0.7615608 +#> [27,] 0.7040471 0.7180793 0.7558149 +#> [28,] 1.1124655 1.1726914 1.2164293 +#> [29,] 0.7843067 0.7848351 0.8214750 +#> [30,] 0.5764293 0.6088673 0.6187806 +#> [31,] 1.1153360 1.1448984 1.1843941 +#> [32,] 0.7166056 0.7172308 0.7263161 +#> [33,] 0.7250852 0.7477290 0.7512148 +#> [34,] 1.3742790 1.4484635 1.4505247 +#> [35,] 1.2946210 1.2946745 1.3529488 +#> [36,] 0.9501224 0.9525178 0.9781398 +#> [37,] 0.5908949 0.6201243 0.6238170 +#> [38,] 0.9860467 1.0113623 1.0792367 +#> [39,] 1.3823259 1.4800667 1.4810435 +#> [40,] 1.0405158 1.0413266 1.0484415 +#> [41,] 0.4522604 0.4552867 0.4983990 +#> [42,] 1.0056548 1.0083335 1.0214761 +#> [43,] 0.5572177 0.5785664 0.6033729 +#> [44,] 0.5246025 0.5514685 0.5659403 +#> [45,] 0.5520987 0.5618288 0.5626486 +#> [46,] 0.9168416 0.9505614 0.9540991 +#> [47,] 0.9491927 0.9748667 1.0007042 +#> [48,] 0.7468701 0.7627787 0.7740428 +#> [49,] 0.8202840 0.8203177 0.8369207 +#> [50,] 0.7371032 0.7728698 0.7842856 +#> [51,] 0.8279323 0.8695652 0.8741601 +#> [52,] 0.6908772 0.7031286 0.7333217 +#> [53,] 0.6937080 0.7369896 0.7374129 +#> [54,] 0.5789364 0.5883231 0.5903267 +#> [55,] 0.8279323 0.8611921 0.8671132 +#> [56,] 1.2105582 1.3609712 1.4209254 +#> [57,] 0.6228348 0.6295301 0.6422188 +#> [58,] 0.6590690 0.6728996 0.6740843 +#> [59,] 0.6575858 0.6959634 0.7385297 +#> [60,] 0.9164001 0.9352856 0.9474459 +#> [61,] 0.6986781 0.7031266 0.7040471 +#> [62,] 0.5624673 0.5656930 0.5680078 +#> [63,] 0.6356963 0.6507316 0.6567545 +#> [64,] 0.6932837 0.7119049 0.7338189 +#> [65,] 0.6698017 0.6710056 0.6977133 +#> [66,] 1.0568114 1.0584024 1.0628807 +#> [67,] 0.4925018 0.5051723 0.5192192 +#> [68,] 0.8972152 0.9264264 1.0154784 +#> [69,] 0.7329504 0.7436061 0.7528723 +#> [70,] 1.3642570 1.4449321 1.4667406 +#> [71,] 0.8690166 0.9903226 1.0250856 +#> [72,] 0.5239980 0.5479711 0.5800733 +#> [73,] 0.5115099 0.5237082 0.5635509 +#> [74,] 0.9470885 0.9779822 1.0129587 +#> [75,] 0.5990171 0.6098017 0.6144892 +#> [76,] 0.5953002 0.6128149 0.6135434 +#> [77,] 0.5607080 0.6527787 0.6877265 +#> [78,] 0.5357776 0.5617833 0.5903267 +#> [79,] 0.7854694 0.8062140 0.8121136 +#> [80,] 0.9891183 0.9941969 0.9993140 +#> [81,] 0.5521847 0.5686514 0.5835483 +#> [82,] 1.2409497 1.2821540 1.3338516 +#> [83,] 1.3557836 1.3559887 1.3816546 +#> [84,] 1.1189773 1.1394716 1.2007114 +#> [85,] 0.6464739 0.6472974 0.6520667 +#> [86,] 0.8236488 0.8243628 0.8298920 +#> [87,] 0.7494334 0.7898359 0.8762251 +#> [88,] 0.7067036 0.7517859 0.7558175 +#> [89,] 0.6324472 0.6384841 0.6393787 +#> [90,] 0.5765781 0.6253036 0.6467292 +#> [91,] 0.6217369 0.6738939 0.6883190 +#> [92,] 0.9049822 0.9530349 1.0050902 +#> [93,] 0.5503597 0.5701566 0.5904144 +#> [94,] 1.1755510 1.2042861 1.2316526 +#> [95,] 0.9724045 0.9812174 0.9884258 +#> [96,] 0.9592701 0.9728378 1.0266564 +#> [97,] 0.5480974 0.5812286 0.6118587 +#> [98,] 0.5246272 0.5265085 0.5475677 +#> [99,] 0.8461130 0.8477330 0.8717503 +#> [100,] 0.7628803 0.7824819 0.7993370 +#> [101,] 1.7962282 1.8124344 1.8204522 +#> [102,] 0.4446164 0.4626767 0.4765493 +#> [103,] 1.6171545 1.6189861 1.6381932 +#> [104,] 0.7240607 0.7821695 0.8235358 +#> [105,] 0.5712901 0.5985136 0.6067016 +#> [106,] 0.8766191 0.8782562 0.8872883 +#> [107,] 1.3221504 1.3258106 1.3595579 +#> [108,] 1.2497242 1.2797769 1.2847999 +#> [109,] 0.6307679 0.6548610 0.6825140 +#> [110,] 0.5077163 0.5152366 0.5201796 +#> [111,] 0.5897513 0.6775438 0.7249468 +#> [112,] 0.8716588 0.9054262 0.9855289 +#> [113,] 0.8448758 0.8714976 0.9142557 +#> [114,] 0.7288252 0.8052105 0.8151615 +#> [115,] 0.6718406 0.6722277 0.6948328 +#> [116,] 0.8939690 0.9073273 0.9459113 +#> [117,] 1.1866277 1.2049009 1.2131600 +#> [118,] 0.9652541 0.9756351 0.9942206 +#> [119,] 0.5998649 0.6091943 0.6123165 +#> [120,] 0.6872129 0.7097586 0.7301151 +#> [121,] 0.7390389 0.7604702 0.7630935 +#> [122,] 0.4938862 0.4983489 0.5466885 +#> [123,] 0.9209192 0.9381286 0.9578028 +#> [124,] 1.2576783 1.3457942 1.3543061 +#> [125,] 0.8000203 0.8167809 0.8301323 +#> [126,] 0.8340372 0.8514435 0.8515045 +#> [127,] 0.5103176 0.5475948 0.5882427 +#> [128,] 0.5827694 0.5828899 0.5951991 +#> [129,] 0.6340862 0.6482273 0.6507316 +#> [130,] 0.7738277 0.8869694 0.8988091 +#> [131,] 0.6822141 0.6939493 0.6992247 +#> [132,] 0.6574931 0.7422702 0.7461058 +#> [133,] 0.9973896 1.0184821 1.0237132 +#> [134,] 1.1486590 1.1613028 1.1837634 +#> [135,] 0.6238170 0.6395035 0.6520195 +#> [136,] 1.0973044 1.1709569 1.2332039 +#> [137,] 0.6108532 0.6429611 0.6630001 +#> [138,] 0.5521847 0.5843494 0.6012981 +#> [139,] 0.7308439 0.7434359 0.7581942 +#> [140,] 1.3928817 1.4068608 1.4439310 +#> [141,] 0.6609668 0.6850597 0.7299244 +#> [142,] 0.5915916 0.6050565 0.6077914 +#> [143,] 0.5823034 0.5947904 0.6019534 +#> [144,] 0.5553071 0.5645280 0.6446181 +#> [145,] 0.6940500 0.7282091 0.7310340 +#> [146,] 0.5495635 0.5514685 0.5826591 +#> [147,] 0.7611104 0.8040045 0.8043343 +#> [148,] 0.6495392 0.6776919 0.6854624 +#> [149,] 0.7480650 0.8191044 0.8823637 +#> [150,] 0.5411869 0.5502896 0.5583409 +#> [151,] 0.7180998 0.7336379 0.7341086 +#> [152,] 1.1912636 1.2095629 1.2352239 +#> [153,] 0.5758092 0.6116671 0.6165203 +#> [154,] 0.7524017 0.7819264 0.7953267 +#> [155,] 0.6733962 0.6810368 0.6899465 +#> [156,] 0.6521463 0.6840823 0.7100448 +#> [157,] 1.3620943 1.3688559 1.3708892 +#> [158,] 0.5600066 0.6737385 0.6776919 +#> [159,] 0.5901161 0.5951493 0.6357927 +#> [160,] 0.8658120 0.8981545 0.9256894 +#> [161,] 0.7964822 0.7980622 0.8108124 +#> [162,] 0.5224324 0.5541192 0.5592968 +#> [163,] 1.1540350 1.1687959 1.1734590 +#> [164,] 1.0675792 1.1022426 1.1054776 +#> [165,] 1.1229310 1.1440999 1.1454136 +#> [166,] 0.8308600 0.8457055 0.8557414 +#> [167,] 0.5969554 0.5991155 0.6028723 +#> [168,] 1.3838868 1.3842514 1.3956961 +#> [169,] 0.8712192 0.9154238 0.9272356 +#> [170,] 0.7390389 0.7535997 0.7970432 +#> [171,] 0.6023530 0.6238119 0.6355553 +#> [172,] 0.7766402 0.7777657 0.7899675 +#> [173,] 0.5313566 0.5754902 0.5769897 +#> [174,] 0.5431463 0.5839871 0.6055436 +#> [175,] 0.9994798 1.0213772 1.0685104 +#> [176,] 0.8997026 0.9091246 0.9232706 +#> [177,] 0.7352546 0.7384616 0.7423913 +#> [178,] 0.6937898 0.6945931 0.7143432 +#> [179,] 1.0741032 1.0937999 1.0980578 +#> [180,] 0.5416264 0.5501798 0.5502562 +#> [181,] 0.9843336 1.0336066 1.0590858 +#> [182,] 0.6091943 0.6363898 0.6373057 +#> [183,] 0.7003897 0.7075189 0.7136140 +#> [184,] 0.9884055 1.0074228 1.0174219 +#> [185,] 0.8916240 0.8993724 0.9282640 +#> [186,] 0.6490195 0.6628685 0.6681492 +#> [187,] 1.2156100 1.2544759 1.2724148 +#> [188,] 0.7837702 0.8218098 0.8225141 +#> [189,] 0.7619641 0.8015365 0.8407601 +#> [190,] 1.0560959 1.1273738 1.1434620 +#> [191,] 0.8261643 0.8521884 0.9099727 +#> [192,] 1.1566105 1.1855532 1.1886661 +#> [193,] 0.9440280 0.9661984 0.9921918 +#> [194,] 0.8645134 0.8670063 0.9061379 +#> [195,] 0.5188817 0.5238636 0.5719127 +#> [196,] 0.8252084 0.8782798 0.8829206 +#> [197,] 0.6393644 0.7216211 0.7395698 +#> [198,] 0.9058586 0.9194339 0.9787950 +#> [199,] 0.9836911 1.0023737 1.0260539 +#> [200,] 0.8919486 0.9284428 0.9431832 +#> [201,] 0.5982558 0.6336967 0.6477662 +#> [202,] 0.8238807 0.8295729 0.8532570 +#> [203,] 0.3975459 0.4535849 0.4674355 +#> [204,] 0.8965174 0.8982999 0.8993036 +#> [205,] 0.5746819 0.5860547 0.5897513 +#> [206,] 0.7902742 0.8046735 0.8447648 +#> [207,] 0.6917758 0.7283993 0.7666928 +#> [208,] 0.5911413 0.5921035 0.5962793 +#> [209,] 0.8112749 0.8424908 0.8805676 +#> [210,] 0.5499103 0.5552143 0.5724341 +#> [211,] 0.7664883 0.7766420 0.8158615 +#> [212,] 0.7401987 0.7662884 0.7797529 +#> [213,] 0.6575542 0.6580014 0.6768431 +#> [214,] 1.2166165 1.2253165 1.2261671 +#> [215,] 0.6186600 0.6671991 0.6732922 +#> [216,] 0.7398366 0.7403294 0.7425097 +#> [217,] 0.5989056 0.6023753 0.6490482 +#> [218,] 0.5521809 0.5585820 0.6238076 +#> [219,] 0.5268149 0.5624969 0.5636207 +#> [220,] 1.1284222 1.1794205 1.1963549 +#> [221,] 0.6613447 0.6957399 0.7197768 +#> [222,] 0.7376104 0.7534260 0.7571064 +#> [223,] 1.1254497 1.1310411 1.1359482 +#> [224,] 0.5717071 0.5998148 0.6373057 +#> [225,] 0.7136713 0.7231501 0.7289041 +#> [226,] 0.6541174 0.7063086 0.7362559 +#> [227,] 0.7185699 0.7271226 0.7680247 +#> [228,] 1.2394236 1.2587553 1.3192218 +#> [229,] 0.9253467 0.9658028 0.9916496 +#> [230,] 0.9420330 0.9539283 0.9658795 +#> [231,] 0.8630664 0.8804020 0.8901090 +#> [232,] 0.4850090 0.5162538 0.5226281 +#> [233,] 0.6355172 0.6559131 0.6857133 +#> [234,] 0.8232688 0.8362491 0.8615428 +#> [235,] 0.5794818 0.5823488 0.5878504 +#> [236,] 0.8986594 0.9156674 0.9355886 +#> [237,] 0.6070168 0.6146959 0.6385568 +#> [238,] 0.7800092 0.7919962 0.8261697 +#> [239,] 0.6446008 0.6517779 0.6528180 +#> [240,] 0.5903636 0.6649502 0.6650598 +#> [241,] 1.5181657 1.5191653 1.6806529 +#> [242,] 1.1709452 1.2108411 1.2212352 +#> [243,] 0.9794785 1.0148312 1.0588020 +#> [244,] 0.8228033 0.9406653 0.9412112 +#> [245,] 0.7355959 0.7427091 0.8169518 +#> [246,] 0.6605395 0.7010432 0.7101375 +#> [247,] 0.5724341 0.5965084 0.6013598 +#> [248,] 0.6581380 0.6864811 0.7007856 +#> [249,] 0.7468705 0.7483195 0.7560462 +#> [250,] 0.4474640 0.4590751 0.4597129 +#> [251,] 0.8388607 0.9121455 0.9395272 +#> [252,] 0.6237672 0.6324957 0.6378056 +#> [253,] 1.1115367 1.1695811 1.2465492 +#> [254,] 0.8507018 0.8815974 0.9280725 +#> [255,] 0.5880765 0.6234843 0.6359189 +#> [256,] 0.7837060 0.7840352 0.8021130 +#> [257,] 0.7432229 0.7474043 0.7781482 +#> [258,] 0.8157246 0.8163470 0.8207238 +#> [259,] 1.0071526 1.0514318 1.0816304 +#> [260,] 0.7723188 0.8073125 0.8125567 +#> [261,] 0.7733659 0.7765029 0.7781799 +#> [262,] 0.8045442 0.8443363 0.8512293 +#> [263,] 0.6691929 0.6805346 0.7250852 +#> [264,] 0.5409081 0.5479479 0.5533832 +#> [265,] 0.6240639 0.6376946 0.6383766 +#> [266,] 0.6140820 0.6224795 0.6236054 +#> [267,] 0.7967967 0.8110177 0.8293811 +#> [268,] 0.5538449 0.5592717 0.5692131 +#> [269,] 1.3894109 1.3983734 1.4073322 +#> [270,] 0.6532931 0.6535509 0.6603980 +#> [271,] 0.6954934 0.8071532 0.8544645 +#> [272,] 0.7997930 0.8001390 0.8008286 +#> [273,] 0.7323858 0.7352067 0.7820764 +#> [274,] 0.5457597 0.5458660 0.5603155 +#> [275,] 0.6593882 0.6684101 0.6983498 +#> [276,] 1.5282590 1.5432321 1.5518024 +#> [277,] 0.7831023 0.8821525 0.8906814 +#> [278,] 0.5610538 0.5769897 0.6043345 +#> [279,] 0.8457055 0.8582436 0.9107608 +#> [280,] 0.5585820 0.5978585 0.6342586 +#> [281,] 0.5753703 0.6876870 0.7038946 +#> [282,] 0.7290462 0.8648736 0.8648975 +#> [283,] 0.6778300 0.6789222 0.7318722 +#> [284,] 0.9411683 0.9855289 1.0050375 +#> [285,] 0.7043195 0.7432437 0.7502960 +#> [286,] 1.3651561 1.3892015 1.3943802 +#> [287,] 1.2771909 1.2880192 1.3741400 +#> [288,] 1.5075022 1.5866471 1.6241959 +#> [289,] 1.1508820 1.2054700 1.2060725 +#> [290,] 0.8510004 0.8512387 0.8942729 +#> [291,] 0.6606663 0.6876140 0.7072640 +#> [292,] 0.6391744 0.6506912 0.6697097 +#> [293,] 0.8054279 0.8070900 0.8415829 +#> [294,] 0.6004037 0.6064343 0.6525837 +#> [295,] 0.5946605 0.6109984 0.6217659 +#> [296,] 0.5564219 0.5682669 0.5785664 +#> [297,] 0.5121810 0.5405678 0.5407712 +#> [298,] 0.8108245 0.8151554 0.8167585 +#> [299,] 0.4839062 0.4925744 0.5149030 +#> [300,] 0.7401987 0.7627323 0.7641001 +#> [301,] 0.5626776 0.6190075 0.6316696 +#> [302,] 0.6929260 0.7291426 0.7316196 +#> [303,] 1.9051118 1.9100229 1.9334947 +#> [304,] 0.5817847 0.5997890 0.6207748 +#> [305,] 0.5720249 0.5837491 0.5898708 +#> [306,] 0.5965174 0.6005517 0.6137788 +#> [307,] 1.0034240 1.0314873 1.0320467 +#> [308,] 0.8265704 0.8445410 0.8636050 +#> [309,] 0.8943133 0.9098371 0.9781398 +#> [310,] 0.6571992 0.6586063 0.6722925 +#> [311,] 0.8053866 0.8088441 0.8141323 +#> [312,] 0.9904840 1.0488026 1.0567316 +#> [313,] 0.6881557 0.7582715 0.7591426 +#> [314,] 0.5568581 0.5827694 0.6204041 +#> [315,] 0.6862337 0.7001198 0.7561484 +#> [316,] 0.8492696 0.8711605 0.8899702 +#> [317,] 0.7655117 0.7722215 0.7753759 +#> [318,] 0.6363898 0.6404232 0.6509156 +#> [319,] 0.6670985 0.6672640 0.6962625 +#> [320,] 0.8233239 0.8242852 0.8484660 +#> [321,] 0.6495988 0.6508068 0.6542615 +#> [322,] 1.0180832 1.0250659 1.0266634 +#> [323,] 0.6837625 0.6928143 0.6936870 +#> [324,] 0.7342534 0.7540028 0.7679974 +#> [325,] 0.6308780 0.6407043 0.6508068 +#> [326,] 0.9350917 0.9420448 0.9533092 +#> [327,] 0.6695906 0.6926156 0.7533284 +#> [328,] 1.0668279 1.0853428 1.2035339 +#> [329,] 0.8267822 0.8279529 0.8500662 +#> [330,] 0.6328065 0.6525837 0.6550373 +#> [331,] 0.6137788 0.6349687 0.6698618 +#> [332,] 0.7303193 0.7322579 0.7341715 +#> [333,] 0.8000697 0.8059705 0.8269345 +#> [334,] 0.5379070 0.5381997 0.5402068 +#> [335,] 0.4572627 0.4642517 0.4692709 +#> [336,] 1.1938257 1.2105804 1.2646468 +#> [337,] 0.8833182 0.8913455 0.9097912 +#> [338,] 0.8483925 0.8485289 0.8739361 +#> [339,] 0.9268745 0.9301437 0.9494924 +#> [340,] 0.5926610 0.6433268 0.6688616 +#> [341,] 0.6328652 0.6697167 0.6775438 +#> [342,] 0.6189582 0.6336426 0.6530868 +#> [343,] 0.9829755 0.9838940 1.0288515 +#> [344,] 0.5624027 0.5672823 0.5751450 +#> [345,] 0.5785100 0.5880912 0.6032128 +#> [346,] 0.7105605 0.7254459 0.7285652 +#> [347,] 0.6198076 0.6297758 0.6598254 +#> [348,] 0.8729183 0.8793803 0.9190275 +#> [349,] 0.5209098 0.5302664 0.5624052 +#> [350,] 0.8863619 0.9420280 0.9459780 +#> [351,] 0.8880786 0.9228884 0.9664693 +#> [352,] 1.3276280 1.3284202 1.3549191 +#> [353,] 1.0438588 1.0442103 1.0701039 +#> [354,] 0.7461058 0.7690134 0.7864186 +#> [355,] 0.7151664 0.7450731 0.7689244 +#> [356,] 0.5878504 0.5908810 0.6090971 +#> [357,] 0.6847809 0.8065705 0.8067604 +#> [358,] 1.0136404 1.0154122 1.0282789 +#> [359,] 1.0531656 1.0646987 1.1138957 +#> [360,] 1.0397803 1.0461697 1.0537380 +#> [361,] 0.4926647 0.5154537 0.5237127 +#> [362,] 0.9955914 1.0392933 1.0474345 +#> [363,] 0.8972945 0.8996744 0.9027318 +#> [364,] 0.9159105 0.9435594 0.9511380 +#> [365,] 0.7430718 0.7604702 0.7980560 +#> [366,] 0.5674692 0.5727376 0.6627259 +#> [367,] 1.0199524 1.0204548 1.0471335 +#> [368,] 0.5353742 0.5394586 0.5463735 +#> [369,] 0.8494756 0.8770611 0.8840677 +#> [370,] 0.9045793 0.9141658 0.9328294 +#> [371,] 0.8484185 0.8639459 0.9237728 +#> [372,] 0.7616295 0.7788900 0.8071625 +#> [373,] 0.5097656 0.5103176 0.5450248 +#> [374,] 0.6674362 0.6946062 0.8056381 +#> [375,] 0.7198688 0.7292259 0.7533332 +#> [376,] 0.7404467 0.7665664 0.7672032 +#> [377,] 0.8388834 0.8573182 0.8683734 +#> [378,] 0.7261603 0.7888915 0.8065603 +#> [379,] 1.1768365 1.2174035 1.2453905 +#> [380,] 1.2598092 1.3246854 1.3305341 +#> [381,] 0.8631331 0.8777154 0.8879424 +#> [382,] 0.8118543 0.8243492 0.8374920 +#> [383,] 0.7757223 0.7796205 0.8203172 +#> [384,] 0.8415829 0.8425422 0.8427918 +#> [385,] 0.6887134 0.6924916 0.6935413 +#> [386,] 0.6301571 0.6443765 0.6467538 +#> [387,] 0.6254812 0.6277603 0.6707994 +#> [388,] 0.9504140 0.9787950 0.9788155 +#> [389,] 0.7573177 0.7574468 0.7613383 +#> [390,] 0.6926296 0.7004906 0.7667403 +#> [391,] 1.1676943 1.2179838 1.2325915 +#> [392,] 0.8188247 0.8241835 0.8339341 +#> [393,] 0.8329418 0.8386294 0.8460252 +#> [394,] 0.7096210 0.7292739 0.7584514 +#> [395,] 1.4799383 1.5064008 1.5235157 +#> [396,] 1.1022143 1.1110085 1.1184343 +#> [397,] 0.7088534 0.7127603 0.7214720 +#> [398,] 0.7625693 0.7998142 0.8176899 +#> [399,] 0.7830381 0.8207924 0.8252420 +#> [400,] 1.2736809 1.3238208 1.3259648 +#> [401,] 0.7904562 0.8157185 0.8233814 +#> [402,] 0.9497575 0.9665054 0.9835361 +#> [403,] 0.9377258 1.0256769 1.0350779 +#> [404,] 0.6182421 0.6186630 0.6250949 +#> [405,] 1.3379349 1.3868488 1.4096641 +#> [406,] 0.6810388 0.7326497 0.7436179 +#> [407,] 0.8000203 0.8126316 0.8261912 +#> [408,] 0.6668383 0.6772600 0.7011845 +#> [409,] 0.5904144 0.6055436 0.6144892 +#> [410,] 0.6182368 0.6483972 0.6787011 +#> [411,] 0.7589513 0.7703605 0.7758075 +#> [412,] 0.7763655 0.7924663 0.8046182 +#> [413,] 0.7299407 0.7307987 0.7472007 +#> [414,] 1.2705682 1.3039116 1.3173147 +#> [415,] 1.3978243 1.4099353 1.4368023 +#> [416,] 0.7055470 0.7556795 0.7571401 +#> [417,] 0.8557944 0.9016194 0.9258674 +#> [418,] 0.6795702 0.6936138 0.7203690 +#> [419,] 0.5507127 0.5616786 0.5664522 +#> [420,] 0.5946564 0.6271226 0.6589521 +#> [421,] 1.2660488 1.2935256 1.3210175 +#> [422,] 1.0777358 1.1552969 1.2204435 +#> [423,] 0.5313030 0.5338943 0.5407712 +#> [424,] 0.9779007 1.0178157 1.0591399 +#> [425,] 0.8950220 0.9454731 0.9560139 +#> [426,] 1.0097005 1.0485973 1.1099787 +#> [427,] 0.6957399 0.7095744 0.7805514 +#> [428,] 1.3067943 1.3501308 1.3673162 +#> [429,] 0.8278941 0.8936291 0.9025688 +#> [430,] 0.7547116 0.7996885 0.8211158 +#> [431,] 0.7154578 0.7296091 0.7660701 +#> [432,] 0.7421226 0.7538467 0.8155186 +#> [433,] 0.5806314 0.5915916 0.6548079 +#> [434,] 0.6349687 0.6365637 0.6500784 +#> [435,] 0.8473934 0.8574420 0.9175749 +#> [436,] 0.6155368 0.6198042 0.6409345 +#> [437,] 0.4699607 0.5248791 0.5486645 +#> [438,] 1.0221971 1.0283199 1.0576939 +#> [439,] 1.4077905 1.4078477 1.4427959 +#> [440,] 0.4409665 0.4626767 0.4938862 +#> [441,] 0.9048603 0.9087658 0.9091246 +#> [442,] 1.1669433 1.1732456 1.1790484 +#> [443,] 0.5563468 0.5780151 0.5950256 +#> [444,] 0.9618237 0.9843987 1.0340714 +#> [445,] 1.6385503 1.6417239 1.6554494 +#> [446,] 0.7878675 0.7962567 0.7979834 +#> [447,] 2.0097095 2.0525425 2.0587405 +#> [448,] 1.1924949 1.2178915 1.2492241 +#> [449,] 0.5403095 0.5631900 0.5737795 +#> [450,] 1.6583900 1.7281786 1.7370262 +#> [451,] 0.6314860 0.6396309 0.6518001 +#> [452,] 1.3654383 1.3918685 1.4056749 +#> [453,] 0.6978221 0.7011060 0.7079638 +#> [454,] 1.0720183 1.1228689 1.1266475 +#> [455,] 0.5374261 0.5787567 0.5882427 +#> [456,] 0.5917679 0.6269757 0.6475247 +#> [457,] 1.0103346 1.0583478 1.0754355 +#> [458,] 0.7366074 0.7696810 0.8113648 +#> [459,] 0.5130750 0.5307737 0.5408275 +#> [460,] 0.5350491 0.5520000 0.5657748 +#> [461,] 0.8358193 0.8409993 0.8453590 +#> [462,] 1.3948239 1.4562316 1.4921572 +#> [463,] 0.5976927 0.6159258 0.6270187 +#> [464,] 0.7016635 0.7099575 0.7111202 +#> [465,] 0.9276422 0.9977400 1.0455170 +#> [466,] 1.1230235 1.1773242 1.1921464 +#> [467,] 0.5719470 0.6084708 0.6584985 +#> [468,] 0.5323596 0.5371743 0.6082670 +#> [469,] 0.6305895 0.6475206 0.6699390 +#> [470,] 0.3822591 0.4214002 0.4794289 +#> [471,] 0.6965180 0.7162136 0.7932884 +#> [472,] 1.2037354 1.2412579 1.2781834 +#> [473,] 1.1528347 1.1575442 1.1691273 +#> [474,] 0.6404232 0.6628817 0.6633204 +#> [475,] 1.3680536 1.3806925 1.4502315 +#> [476,] 0.7013151 0.7044657 0.7068683 +#> [477,] 0.7424823 0.8617070 0.8710939 +#> [478,] 0.6833299 0.7013946 0.7057739 +#> [479,] 0.5670320 0.5874698 0.6266317 +#> [480,] 0.5411971 0.5717583 0.5764336 +#> [481,] 0.8700075 0.8761098 0.8879985 +#> [482,] 0.6665749 0.6856635 0.6897393 +#> [483,] 0.7095349 0.7123296 0.7411007 +#> [484,] 1.2568529 1.3388399 1.3498595 +#> [485,] 0.6030901 0.6106986 0.6362282 +#> [486,] 1.3270357 1.3446570 1.3753723 +#> [487,] 0.6944722 0.6986781 0.7058085 +#> [488,] 0.7442717 0.7716297 0.8258617 +#> [489,] 0.8303598 0.8338579 0.8443118 +#> [490,] 1.5111890 1.5445189 1.5564387 +#> [491,] 1.4287770 1.4338115 1.4534610 +#> [492,] 0.6028583 0.6085813 0.6364568 +#> [493,] 1.2444039 1.2724466 1.2782419 +#> [494,] 0.9186961 0.9288731 0.9339130 +#> [495,] 0.5148448 0.5639078 0.6331913 +#> [496,] 0.9704159 0.9718047 0.9869484 +#> [497,] 0.5541192 0.5699598 0.5739698 +#> [498,] 1.2294258 1.2405399 1.2632070 +#> [499,] 0.5804832 0.6020497 0.6649769 +#> [500,] 0.6395914 0.6407729 0.6647554 +#> [501,] 1.2427244 1.2891885 1.3755788 +#> [502,] 0.5479711 0.5639078 0.5675280 +#> [503,] 1.5388021 1.6372228 1.6697375 +#> [504,] 0.7529697 0.7724098 0.7991795 +#> [505,] 1.5642651 1.5753041 1.5896113 +#> [506,] 0.9122109 0.9163889 0.9183538 +#> [507,] 0.9718225 0.9727489 0.9946086 +#> [508,] 0.7348817 0.7541810 0.7824822 +#> [509,] 0.8368484 0.8441140 0.8712227 +#> [510,] 0.7831023 0.8224706 0.8269345 +#> [511,] 1.2972052 1.2995585 1.3610271 +#> [512,] 0.7433959 0.7674406 0.8095525 +#> [513,] 0.4820203 0.4914494 0.5091375 +#> [514,] 0.5673960 0.6052295 0.6122315 +#> [515,] 0.4559979 0.4896020 0.4909026 +#> [516,] 0.4765648 0.5061745 0.5290541 +#> [517,] 0.5166929 0.5225545 0.5312450 +#> [518,] 0.7012764 0.7025821 0.7181508 +#> [519,] 0.6690963 0.6722143 0.7096344 +#> [520,] 0.5259640 0.5403095 0.5471192 +#> [521,] 0.7425617 0.7567662 0.7822832 +#> [522,] 0.5248791 0.5320507 0.5325069 +#> [523,] 0.9687019 0.9696667 1.0605354 +#> [524,] 0.5592717 0.5775316 0.6013149 +#> [525,] 0.7134244 0.7180454 0.7746114 +#> [526,] 0.6894268 0.6917122 0.7388943 +#> [527,] 1.5320355 1.5359497 1.5481314 +#> [528,] 0.6239519 0.6647352 0.6698996 +#> [529,] 0.8253294 0.8426068 0.8512405 +#> [530,] 0.9175670 0.9586984 0.9696410 +#> [531,] 0.5643394 0.6282007 0.6373988 +#> [532,] 0.7024892 0.7180089 0.7402136 +#> [533,] 0.9412042 0.9443775 0.9501321 +#> [534,] 0.6331913 0.6349211 0.6712309 +#> [535,] 0.4731234 0.5026104 0.5306004 +#> [536,] 0.5622579 0.5691711 0.5894259 +#> [537,] 1.3938269 1.4201260 1.4538800 +#> [538,] 2.1562114 2.1712210 2.1791550 +#> [539,] 0.5998649 0.6303169 0.6841752 +#> [540,] 1.2021338 1.2431104 1.2434704 +#> [541,] 0.8252084 0.8266875 0.8453320 +#> [542,] 1.1119488 1.1136882 1.1416424 +#> [543,] 0.7668405 0.7668689 0.7780350 +#> [544,] 1.2257260 1.2418458 1.3271819 +#> [545,] 0.9903867 1.0414513 1.0425481 +#> [546,] 0.7894660 0.7979414 0.8440595 +#> [547,] 1.4748032 1.5288034 1.6200355 +#> [548,] 0.8342098 0.8576379 0.8589755 +#> [549,] 0.8357769 0.8472275 0.8531945 +#> [550,] 0.8899300 0.9027397 0.9051167 +#> [551,] 0.7655653 0.7879630 0.8017048 +#> [552,] 0.6278000 0.6282079 0.6320861 +#> [553,] 0.7442717 0.7569825 0.7942681 +#> [554,] 0.6768602 0.6894267 0.7283503 +#> [555,] 0.4914494 0.5066574 0.5105818 +#> [556,] 0.6791070 0.6866979 0.7237962 +#> [557,] 0.7090876 0.7166298 0.7232070 +#> [558,] 0.6349871 0.6720933 0.6736528 +#> [559,] 0.8838416 0.8964731 0.9543999 +#> [560,] 0.7819956 0.8213843 0.8433024 +#> [561,] 0.8987376 0.9224726 0.9437928 +#> [562,] 0.5383853 0.5501868 0.5729807 +#> [563,] 1.6153224 1.6803922 1.7070157 +#> [564,] 0.9931664 1.0353998 1.0435389 +#> [565,] 1.1575457 1.2387429 1.2800923 +#> [566,] 1.7779091 1.7815292 1.8143845 +#> [567,] 0.8014217 0.8219595 0.8323921 +#> [568,] 0.6558496 0.6684397 0.6691929 +#> [569,] 0.5976967 0.6356963 0.6428138 +#> [570,] 0.8780852 0.8807945 0.8864215 +#> [571,] 1.5694029 1.6226836 1.6559844 +#> [572,] 1.8867064 1.8946499 1.8951040 +#> [573,] 0.7954502 0.8146452 0.8159977 +#> [574,] 0.5106542 0.5251450 0.5402068 +#> [575,] 0.9253467 0.9494333 0.9523070 +#> [576,] 0.5224575 0.5246025 0.5282306 +#> [577,] 0.8574534 0.8758765 0.9156594 +#> [578,] 0.6972932 0.7002176 0.7072410 +#> [579,] 0.7263034 0.7667228 0.7703424 +#> [580,] 1.1658215 1.2123779 1.2285181 +#> [581,] 0.9509007 0.9569566 0.9901120 +#> [582,] 0.6984653 0.7123291 0.7231011 +#> [583,] 0.6165135 0.6549497 0.6617059 +#> [584,] 0.6559082 0.6567545 0.6708039 +#> [585,] 1.2372009 1.2431104 1.3414206 +#> [586,] 0.8837551 0.8870166 0.8986792 +#> [587,] 1.1300497 1.1378241 1.1534381 +#> [588,] 0.9341930 0.9854642 0.9955070 +#> [589,] 0.7817602 0.7950334 0.8359405 +#> [590,] 0.8507018 0.8532815 0.8706052 +#> [591,] 0.6070573 0.6123936 0.6133793 +#> [592,] 0.6506767 0.6857493 0.6886219 +#> [593,] 1.1799360 1.2041982 1.2203544 +#> [594,] 0.9431895 1.0075567 1.0447846 +#> [595,] 1.2599315 1.2657402 1.2736123 +#> [596,] 0.7112562 0.7154578 0.7300252 +#> [597,] 0.9327264 0.9697106 0.9757561 +#> [598,] 0.5226653 0.5347778 0.6004037 +#> [599,] 0.7221886 0.7933000 0.7960978 +#> [600,] 0.5261021 0.5263663 0.5302476 +#> [601,] 0.7163910 0.7248237 0.7679930 +#> [602,] 0.7257560 0.7548418 0.7964255 +#> [603,] 0.8378586 0.8414736 0.8446556 +#> [604,] 0.9077201 0.9923359 1.0106972 +#> [605,] 0.6994948 0.7045753 0.7119669 +#> [606,] 0.5645280 0.5647955 0.5910950 +#> [607,] 1.4204439 1.4740305 1.4971383 +#> [608,] 1.5498688 1.6069093 1.7384498 +#> [609,] 0.9435022 0.9635824 0.9656355 +#> [610,] 0.5616786 0.5708692 0.6117274 +#> [611,] 1.2172076 1.2886264 1.3355435 +#> [612,] 0.5113881 0.5568581 0.5676932 +#> [613,] 1.1811073 1.2101745 1.2565012 +#> [614,] 0.8288751 0.8812426 0.9096677 +#> [615,] 0.5957393 0.6231754 0.6320876 +#> [616,] 0.6050565 0.6071182 0.6480847 +#> [617,] 0.7711614 0.7980622 0.8012313 +#> [618,] 0.5614452 0.6487696 0.6725718 +#> [619,] 0.5817847 0.6002829 0.6276241 +#> [620,] 0.8364844 0.8494256 0.8512405 +#> [621,] 0.7005655 0.7149314 0.7576389 +#> [622,] 0.9959242 1.0071526 1.0788781 +#> [623,] 1.0235715 1.0478058 1.0535272 +#> [624,] 0.7768493 0.7793272 0.8205517 +#> [625,] 1.1115848 1.1248822 1.1475012 +#> [626,] 0.5346923 0.5503597 0.5520000 +#> [627,] 0.6558496 0.6659052 0.7765029 +#> [628,] 1.0708415 1.1446938 1.2266482 +#> [629,] 0.6829279 0.7051407 0.7155856 +#> [630,] 0.7140941 0.7149278 0.7381929 +#> [631,] 0.9039229 0.9152130 0.9270557 +#> [632,] 0.5377479 0.5674692 0.6032168 +#> [633,] 0.6707994 0.6877516 0.7379386 +#> [634,] 0.6339956 0.6650379 0.6674789 +#> [635,] 0.6655739 0.6722275 0.7188234 +#> [636,] 1.2039409 1.2538158 1.3004335 +#> [637,] 0.9567400 0.9805564 1.0181206 +#> [638,] 1.7680531 1.7727131 1.8282199 +#> [639,] 0.7118041 0.7131544 0.7225123 +#> [640,] 0.7567525 0.7756439 0.7817602 +#> [641,] 0.5957012 0.6084708 0.6490912 +#> [642,] 0.6071488 0.6660500 0.6773838 +#> [643,] 0.5670320 0.5772271 0.6008826 +#> [644,] 0.6868794 0.6977937 0.7150017 +#> [645,] 0.7461080 0.7604850 0.7808844 +#> [646,] 0.6266361 0.6314365 0.6341940 +#> [647,] 0.7385297 0.7404467 0.7519838 +#> [648,] 0.8369020 0.8398624 0.8476542 +#> [649,] 0.4740971 0.4755505 0.5060454 +#> [650,] 1.7220624 1.7519612 1.7616198 +#> [651,] 0.4828149 0.5392326 0.5533832 +#> [652,] 0.6740843 0.6871881 0.7243692 +#> [653,] 0.5535769 0.5727801 0.5891104 +#> [654,] 1.0375054 1.0590858 1.0765221 +#> [655,] 0.8332197 0.8422317 0.8527906 +#> [656,] 1.0206574 1.0517808 1.0649530 +#> [657,] 0.7398995 0.8453590 0.8595941 +#> [658,] 0.8261406 0.8307582 0.8373647 +#> [659,] 0.7806629 0.7927973 0.7979414 +#> [660,] 0.5940258 0.6013404 0.6245413 +#> [661,] 1.0329767 1.0371129 1.0452618 +#> [662,] 0.7318016 0.7900017 0.7961905 +#> [663,] 0.4782290 0.4993475 0.5221172 +#> [664,] 0.6718837 0.6856635 0.7067344 +#> [665,] 0.6518001 0.6655306 0.6815493 +#> [666,] 1.1155896 1.1403134 1.1439860 +#> [667,] 0.5810267 0.5871655 0.6011670 +#> [668,] 0.7238108 0.7438533 0.7550931 +#> [669,] 1.0504722 1.0550247 1.0723984 +#> [670,] 0.9731496 0.9735136 0.9877512 +#> [671,] 1.0529481 1.0845242 1.1297322 +#> [672,] 0.8843676 0.8887155 0.9268679 +#> [673,] 0.6216648 0.6479959 0.6746208 +#> [674,] 0.5251450 0.5284033 0.5484489 +#> [675,] 0.7403855 0.7486979 0.7514374 +#> [676,] 0.6969275 0.7127841 0.7689411 +#> [677,] 0.7326497 0.7373563 0.7384600 +#> [678,] 0.6684066 0.6699390 0.6867790 +#> [679,] 0.7660027 0.7884803 0.7889959 +#> [680,] 0.6324472 0.6806701 0.6925097 +#> [681,] 0.6062568 0.6252554 0.6853151 +#> [682,] 0.7331707 0.7955418 0.8179501 +#> [683,] 1.0878071 1.1123559 1.1526806 +#> [684,] 0.5940258 0.6229879 0.6271196 +#> [685,] 0.8574649 0.8976148 0.9387797 +#> [686,] 0.7263605 0.7401842 0.7438612 +#> [687,] 1.3116721 1.3278361 1.3876646 +#> [688,] 0.6817233 0.6931311 0.7211141 +#> [689,] 1.0200061 1.0265487 1.0418415 +#> [690,] 0.7148179 0.7231723 0.7243780 +#> [691,] 0.6315268 0.6431302 0.6574496 +#> [692,] 1.0381903 1.0520745 1.0933699 +#> [693,] 0.9025787 0.9038915 0.9198327 +#> [694,] 0.6214294 0.6753017 0.7139887 +#> [695,] 1.1763199 1.1795062 1.2006747 +#> [696,] 0.6034387 0.6123165 0.6987542 +#> [697,] 1.4813297 1.6121141 1.7260634 +#> [698,] 0.6417307 0.6438171 0.6462949 +#> [699,] 0.8838049 0.9152433 0.9183538 +#> [700,] 0.7079312 0.7122314 0.7785440 +#> [701,] 1.2274216 1.3371795 1.3521911 +#> [702,] 0.6383516 0.6398683 0.6559131 +#> [703,] 0.8225748 0.8324250 0.8455299 +#> [704,] 0.5142809 0.5876460 0.6074908 +#> [705,] 0.5373668 0.5540923 0.5664522 +#> [706,] 0.5765510 0.5853877 0.6001879 +#> [707,] 0.6937080 0.7006146 0.7421462 +#> [708,] 0.6238756 0.6882597 0.6976726 +#> [709,] 0.8374410 0.9248079 0.9406653 +#> [710,] 0.7652198 0.8181279 0.8206264 +#> [711,] 0.5948992 0.5976967 0.6158515 +#> [712,] 0.9381280 0.9597892 0.9664203 +#> [713,] 1.0555835 1.0615033 1.0912192 +#> [714,] 0.8848121 0.9112138 0.9500410 +#> [715,] 1.0850121 1.0871142 1.0940913 +#> [716,] 0.7843407 0.8227103 0.8617159 +#> [717,] 0.4696288 0.4699835 0.4738325 +#> [718,] 0.5210939 0.5921035 0.6556833 +#> [719,] 1.0706496 1.0765221 1.1663353 +#> [720,] 0.8406039 0.8808923 0.8958698 +#> [721,] 0.8506859 0.8674290 0.8749529 +#> [722,] 1.1576949 1.1636063 1.1886189 +#> [723,] 0.7265791 0.7418144 0.7951605 +#> [724,] 0.7665664 0.8252081 0.8266375 +#> [725,] 0.6844479 0.6874830 0.7128726 +#> [726,] 0.9559077 1.1242090 1.1646467 +#> [727,] 0.7351015 0.7832581 0.8303848 +#> [728,] 0.9923359 1.0102435 1.0381903 +#> [729,] 1.4331600 1.4771536 1.4932030 +#> [730,] 0.6936138 0.7290462 0.7386993 +#> [731,] 0.5865848 0.5928012 0.5935847 +#> [732,] 0.8202470 0.8342600 0.8562082 +#> [733,] 0.6299515 0.7325734 0.7354251 +#> [734,] 2.0558621 2.0864969 2.1005553 +#> [735,] 0.6088727 0.6541174 0.6590748 +#> [736,] 1.2058457 1.2621229 1.2702962 +#> [737,] 1.1890757 1.2943075 1.2991210 +#> [738,] 0.5636207 0.5829550 0.6010974 +#> [739,] 1.2999900 1.3123376 1.3535130 +#> [740,] 0.5961094 0.6115983 0.6147504 +#> [741,] 1.1292652 1.1476807 1.1993746 +#> [742,] 0.6389123 0.6490562 0.6605395 +#> [743,] 0.5694909 0.6220328 0.6521282 +#> [744,] 0.6801958 0.6913184 0.7516634 +#> [745,] 0.7373071 0.7444701 0.7774382 +#> [746,] 0.5555416 0.5618440 0.5831496 +#> [747,] 1.3390375 1.3843793 1.4050764 +#> [748,] 0.7693490 0.7886514 0.8007839 +#> [749,] 1.2160325 1.2310418 1.2612687 +#> [750,] 0.7772398 0.7835136 0.7853064 +#> [751,] 0.6469686 0.6871881 0.6893706 +#> [752,] 1.0467176 1.0487921 1.0535688 +#> [753,] 0.7115954 0.7243692 0.7353212 +#> [754,] 1.0067329 1.1439401 1.1663841 +#> [755,] 0.7445498 0.8205199 0.8258803 +#> [756,] 0.5692131 0.5878257 0.6048488 +#> [757,] 1.5059130 1.5141408 1.5370495 +#> [758,] 0.7022300 0.7040191 0.7266179 +#> [759,] 2.0418621 2.1325963 2.2567825 +#> [760,] 0.5918048 0.5966892 0.6095008 +#> [761,] 0.5413950 0.5472648 0.5751142 +#> [762,] 0.5384481 0.5705695 0.5868046 +#> [763,] 0.8146452 0.8153426 0.8235265 +#> [764,] 0.6850527 0.6924807 0.7120703 +#> [765,] 1.1885719 1.2018503 1.2018910 +#> [766,] 1.3260409 1.3341675 1.3347847 +#> [767,] 0.6248858 0.6631087 0.6670681 +#> [768,] 0.9237803 0.9821653 1.0128317 +#> [769,] 0.8028055 0.8115816 0.8469829 +#> [770,] 1.3735787 1.4586779 1.4587643 +#> [771,] 1.0487313 1.1115367 1.1278697 +#> [772,] 0.6377302 0.7069487 0.7291969 +#> [773,] 0.9324725 0.9695837 1.0005072 +#> [774,] 0.7340137 0.7686250 0.7910865 +#> [775,] 0.7437403 0.7456979 0.7878617 +#> [776,] 0.6409072 0.6948549 0.7067249 +#> [777,] 0.7257133 0.7526207 0.8145793 +#> [778,] 0.5142809 0.5245879 0.5252494 +#> [779,] 0.6242367 0.6256287 0.6328125 +#> [780,] 0.6837660 0.6874830 0.7228639 +#> [781,] 0.8125125 0.8322545 0.8503036 +#> [782,] 0.5561102 0.5578403 0.5763036 +#> [783,] 0.5896110 0.5958654 0.6104892 +#> [784,] 0.7866859 0.7935557 0.7964822 +#> [785,] 0.6916844 0.7073426 0.7114112 +#> [786,] 0.6074524 0.6283285 0.6525452 +#> [787,] 0.8485117 0.8661158 0.8681542 +#> [788,] 0.7669146 0.7704553 0.7730321 +#> [789,] 0.7936552 0.8056731 0.8282903 +#> [790,] 0.7768582 0.7846403 0.7865361 +#> [791,] 0.9218025 0.9309645 0.9834923 +#> [792,] 0.7310340 0.7395698 0.7413927 +#> [793,] 0.5268015 0.5320507 0.5456090 +#> [794,] 0.6962281 0.7052326 0.7597433 +#> [795,] 0.7230854 0.7567452 0.7898359 +#> [796,] 1.4279747 1.4767257 1.4891995 +#> [797,] 0.5369971 0.6397847 0.6429611 +#> [798,] 0.7756439 0.7789369 0.7825231 +#> [799,] 1.3097582 1.4824465 1.5489940 +#> [800,] 0.7162136 0.7266179 0.7296064 +#> [801,] 0.4948228 0.5717583 0.5764634 +#> [802,] 0.9185322 0.9380741 0.9420223 +#> [803,] 0.6465218 0.6621150 0.6682168 +#> [804,] 0.6172237 0.6478300 0.6539777 +#> [805,] 1.8593783 1.8708800 1.9053267 +#> [806,] 0.7604921 0.7642574 0.7730720 +#> [807,] 0.7662884 0.7721703 0.7889959 +#> [808,] 0.5115099 0.5396213 0.5483203 +#> [809,] 1.0282668 1.0382065 1.0560935 +#> [810,] 0.5475677 0.5502896 0.5973181 +#> [811,] 1.1429708 1.1613028 1.2231753 +#> [812,] 0.6638050 0.6828485 0.6834797 +#> [813,] 0.9778346 1.0510234 1.1124590 +#> [814,] 1.2542723 1.3124297 1.3212982 +#> [815,] 0.7370478 0.7417071 0.7623365 +#> [816,] 0.8667483 0.8711702 0.8878093 +#> [817,] 0.6253059 0.6553342 0.6873358 +#> [818,] 0.8282982 0.8362473 0.8699008 +#> [819,] 0.9744774 0.9890063 1.0132698 +#> [820,] 0.6783649 0.7362620 0.7444487 +#> [821,] 0.6621150 0.6987482 0.7166870 +#> [822,] 0.9290550 1.0580104 1.0725154 +#> [823,] 1.0468094 1.0712767 1.0978278 +#> [824,] 0.6427528 0.6436058 0.6524632 +#> [825,] 0.6817233 0.7111853 0.7402580 +#> [826,] 0.5284033 0.5541392 0.5699656 +#> [827,] 1.3117818 1.3270609 1.3359374 +#> [828,] 0.6628685 0.6713565 0.6810039 +#> [829,] 0.8527906 0.8812073 0.9528009 +#> [830,] 0.6828485 0.6850597 0.6959316 +#> [831,] 0.8301323 0.8712192 0.9245956 +#> [832,] 0.6132856 0.6421572 0.6431027 +#> [833,] 0.7869176 0.8055432 0.8226591 +#> [834,] 1.2076362 1.2278662 1.2417090 +#> [835,] 0.7902266 0.8018794 0.8600771 +#> [836,] 0.7864186 0.7935557 0.8255778 +#> [837,] 0.7262376 0.7844301 0.7885148 +#> [838,] 1.4799255 1.5037535 1.5076612 +#> [839,] 0.5764634 0.6651793 0.6815833 +#> [840,] 0.6878447 0.6985192 0.7296800 +#> [841,] 0.4934944 0.5391688 0.5655502 +#> [842,] 1.0560959 1.0712848 1.0853428 +#> [843,] 0.7249468 0.7366193 0.7376150 +#> [844,] 0.7874349 0.7950016 0.8099821 +#> [845,] 0.7664371 0.7807477 0.8116326 +#> [846,] 0.6358013 0.6442066 0.6576187 +#> [847,] 0.4486907 0.4983990 0.4999563 +#> [848,] 0.9207612 0.9276422 0.9540991 +#> [849,] 0.4063097 0.4590751 0.4740971 +#> [850,] 0.6394717 0.6588610 0.6600258 +#> [851,] 0.8149142 0.8428174 0.8796094 +#> [852,] 0.6049990 0.6198042 0.6272176 +#> [853,] 0.9851428 1.0335664 1.0680627 +#> [854,] 1.0029237 1.0044478 1.0091058 +#> [855,] 0.9468798 0.9500668 0.9856499 +#> [856,] 1.1343272 1.1434065 1.1500361 +#> [857,] 0.9434459 0.9806701 0.9911303 +#> [858,] 0.6657246 0.6823429 0.6984509 +#> [859,] 0.9392122 1.0334538 1.0380556 +#> [860,] 0.6851883 0.6919852 0.7095744 +#> [861,] 0.7763655 0.7913457 0.8270811 +#> [862,] 0.6989579 0.7134870 0.7771113 +#> [863,] 0.7291426 0.7341086 0.7359247 +#> [864,] 1.2080432 1.2282035 1.3640246 +#> [865,] 0.7292787 0.7359247 0.8104232 +#> [866,] 0.8350270 0.8828692 0.8838416 +#> [867,] 1.6801516 1.7936242 1.8107486 +#> [868,] 0.7664883 0.7692705 0.7853750 +#> [869,] 0.6256287 0.6405012 0.6438171 +#> [870,] 0.9159168 0.9412794 0.9424081 +#> [871,] 0.4008547 0.4421991 0.4654775 +#> [872,] 1.5398663 1.5488528 1.5865198 +#> [873,] 0.5946995 0.5961094 0.5985655 +#> [874,] 1.2174384 1.2866041 1.3608177 +#> [875,] 0.6989579 0.7028270 0.7502891 +#> [876,] 1.1007515 1.1159988 1.1618348 +#> [877,] 0.9267543 0.9303417 0.9985390 +#> [878,] 0.7707595 0.7796337 0.8207193 +#> [879,] 0.7728698 0.8062140 0.8064596 +#> [880,] 0.9699226 1.0045098 1.0449545 +#> [881,] 0.8332732 0.8572955 0.8811205 +#> [882,] 0.7810091 0.7894367 0.8153426 +#> [883,] 0.7170823 0.7352067 0.7384600 +#> [884,] 0.5624806 0.5863302 0.6213767 +#> [885,] 0.9655477 0.9727644 1.0023837 +#> [886,] 0.6547229 0.6760726 0.6837625 +#> [887,] 0.6487290 0.6680559 0.7312532 +#> [888,] 0.8688664 0.9291881 0.9494333 +#> [889,] 1.3239755 1.3330514 1.3419673 +#> [890,] 0.4841708 0.5299665 0.5941560 +#> [891,] 1.1557669 1.2092693 1.2211860 +#> [892,] 0.5427501 0.5509455 0.5757741 +#> [893,] 1.0055165 1.1019036 1.1303557 +#> [894,] 1.5957744 1.6656746 1.6704343 +#> [895,] 0.5313030 0.5411869 0.5432273 +#> [896,] 1.3521568 1.3854506 1.3989331 +#> [897,] 1.2729158 1.2869336 1.3173147 +#> [898,] 1.3501308 1.4088867 1.4431790 +#> [899,] 0.5130520 0.5265425 0.5344388 +#> [900,] 0.6500784 0.6550834 0.6594093 +#> [901,] 0.9341268 0.9882515 1.0482291 +#> [902,] 0.6887986 0.6949705 0.7101375 +#> [903,] 1.8382930 1.8593577 1.8821169 +#> [904,] 0.8450184 0.8584939 0.8900323 +#> [905,] 1.3352933 1.3647099 1.3707155 +#> [906,] 0.6124874 0.6452023 0.6502552 +#> [907,] 0.6015697 0.6057881 0.6303679 +#> [908,] 0.7397444 0.7589513 0.7761755 +#> [909,] 1.1331706 1.1684123 1.2233917 +#> [910,] 0.7708239 0.8088441 0.8090672 +#> [911,] 0.7564921 0.8313556 0.8853633 +#> [912,] 0.5590943 0.5693136 0.6010974 +#> [913,] 0.5705695 0.5990171 0.5997920 +#> [914,] 0.6483972 0.6809148 0.6938318 +#> [915,] 1.1443646 1.1713342 1.1896728 +#> [916,] 0.7747097 0.7772398 0.8024150 +#> [917,] 0.7302801 0.7417071 0.7470587 +#> [918,] 0.6165999 0.6218071 0.6254043 +#> [919,] 0.6983487 0.8245811 0.8574372 +#> [920,] 1.0107482 1.0956074 1.1528632 +#> [921,] 0.5968568 0.6036069 0.6052295 +#> [922,] 0.7816347 0.8317877 0.8353579 +#> [923,] 0.7042752 0.7556773 0.7612428 +#> [924,] 0.8016984 0.8064596 0.8279561 +#> [925,] 0.6581170 0.6625708 0.6638874 +#> [926,] 0.7545084 0.7692472 0.8111023 +#> [927,] 0.8234208 0.8325586 0.8762490 +#> [928,] 0.8036009 0.8617396 0.9095927 +#> [929,] 0.9777802 0.9867707 0.9916101 +#> [930,] 0.6246838 0.6478300 0.6710057 +#> [931,] 0.7047821 0.7074970 0.7094189 +#> [932,] 0.5815310 0.5894735 0.5981939 +#> [933,] 0.8676934 0.8809400 0.9466005 +#> [934,] 1.0968149 1.1379194 1.1401699 +#> [935,] 0.5070188 0.5424867 0.5633698 +#> [936,] 0.9154519 0.9903226 0.9985880 +#> [937,] 1.0154784 1.0198059 1.0558893 +#> [938,] 0.7369948 0.7536130 0.8294904 +#> [939,] 1.4303140 1.4317122 1.4805684 +#> [940,] 0.8062438 0.8196058 0.8569086 +#> [941,] 1.1892653 1.2261792 1.2324396 +#> [942,] 0.5912759 0.5969571 0.6082670 +#> [943,] 0.5314154 0.5326785 0.5801175 +#> [944,] 0.8829630 0.8910723 0.8967822 +#> [945,] 1.3858221 1.4302707 1.4316539 +#> [946,] 0.6547229 0.6886322 0.6928918 +#> [947,] 0.6877890 0.7001301 0.7057125 +#> [948,] 1.8357152 1.9045001 1.9065517 +#> [949,] 1.3379349 1.4021315 1.4079049 +#> [950,] 1.0840138 1.1094766 1.1308136 +#> [951,] 0.7117756 0.7177677 0.7423945 +#> [952,] 0.7438321 0.7534034 0.7842284 +#> [953,] 0.7502960 0.7789664 0.7982690 +#> [954,] 0.6118587 0.6215960 0.6384658 +#> [955,] 1.2871531 1.3225393 1.3418591 +#> [956,] 0.7043195 0.7170823 0.7336379 +#> [957,] 1.0358191 1.0774448 1.1165770 +#> [958,] 0.6198076 0.6213680 0.6650598 +#> [959,] 1.1471868 1.2669688 1.2800816 +#> [960,] 0.8130187 0.8631036 0.8891762 +#> [961,] 0.4881796 0.5027134 0.5136565 +#> [962,] 0.5982893 0.6004924 0.6157327 +#> [963,] 0.7837144 0.7919935 0.7991795 +#> [964,] 0.6104453 0.6329952 0.6364906 +#> [965,] 0.7174851 0.7278104 0.7323772 +#> [966,] 0.6158712 0.6274870 0.6436952 +#> [967,] 0.9331233 0.9648185 0.9984615 +#> [968,] 0.9794996 0.9906871 1.0181875 +#> [969,] 0.9764982 0.9772140 0.9803378 +#> [970,] 0.8332279 0.8385844 0.8746902 +#> [971,] 0.8782562 0.9048243 0.9051167 +#> [972,] 0.7135772 0.7139887 0.7223360 +#> [973,] 0.6498677 0.6716114 0.7187771 +#> [974,] 0.7911595 0.7980903 0.8115715 +#> [975,] 1.0262068 1.0452156 1.0937855 +#> [976,] 0.7545626 0.7664371 0.7778610 +#> [977,] 0.9817203 1.0214761 1.0233572 +#> [978,] 0.7640607 0.7933599 0.8157303 +#> [979,] 0.5221971 0.5497720 0.6275281 +#> [980,] 0.8326922 0.8450174 0.8531720 +#> [981,] 0.6079576 0.6749162 0.6866674 +#> [982,] 0.5516274 0.5699598 0.6100876 +#> [983,] 0.6790706 0.7139076 0.7197768 +#> [984,] 1.2032878 1.2213903 1.2509943 +#> [985,] 0.6874485 0.7101610 0.7203690 +#> [986,] 1.0107862 1.0289652 1.0302160 +#> [987,] 0.5092006 0.5504881 0.5553071 +#> [988,] 0.6925121 0.7282713 0.7690535 +#> [989,] 0.7949332 0.8214750 0.8386153 +#> [990,] 1.1753586 1.2128637 1.2172076 +#> [991,] 0.7462066 0.8073125 0.8246749 +#> [992,] 0.6815427 0.7020037 0.7071514 +#> [993,] 0.8221489 0.8382346 0.8520056 +#> [994,] 0.5541392 0.5859897 0.5901825 +#> [995,] 0.6030581 0.6088673 0.6820477 +#> [996,] 1.0221451 1.0348177 1.0581953 +#> [997,] 1.1938107 1.2440572 1.2494514 +#> [998,] 0.7631284 0.8002346 0.8086030 +#> [999,] 0.6835776 0.6913845 0.6999382 +#> [1000,] 1.1236420 1.1943301 1.2301638 #> diff --git a/reference/tof_get_model_penalty.html b/reference/tof_get_model_penalty.html index 9b22833..78fa3b3 100644 --- a/reference/tof_get_model_penalty.html +++ b/reference/tof_get_model_penalty.html @@ -119,7 +119,7 @@

    Examples ) tof_get_model_penalty(regression_model) -#> [1] 0.003162278 +#> [1] 1 diff --git a/reference/tof_get_model_training_data.html b/reference/tof_get_model_training_data.html index 7e33f7c..c72d86a 100644 --- a/reference/tof_get_model_training_data.html +++ b/reference/tof_get_model_training_data.html @@ -120,18 +120,18 @@

    Examples tof_get_model_training_data(regression_model) #> # A tibble: 100 × 9 -#> sample cd45 pstat5 cd34 outcome class multiclass event time_to_event -#> <chr> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl> -#> 1 16 0.00502 0.101 0.832 0.852 class2 class1 0 8.29 -#> 2 67 0.0231 0.704 0.515 3.33 class2 class3 1 13.1 -#> 3 56 0.0133 0.0196 0.197 -0.208 class2 class2 1 13.7 -#> 4 21 0.247 0.111 0.172 1.92 class2 class1 0 10.0 -#> 5 6 0.0996 0.337 0.679 1.65 class2 class1 0 11.3 -#> 6 37 0.953 0.381 0.484 7.73 class1 class2 1 12.9 -#> 7 43 0.853 0.423 0.128 2.52 class2 class2 1 12.0 -#> 8 76 0.592 0.126 0.640 1.87 class2 class3 1 9.05 -#> 9 10 0.616 0.478 0.199 1.71 class2 class1 0 11.3 -#> 10 73 0.712 0.215 0.367 2.07 class2 class3 1 10.5 +#> sample cd45 pstat5 cd34 outcome class multiclass event time_to_event +#> <chr> <dbl> <dbl> <dbl> <dbl> <fct> <fct> <dbl> <dbl> +#> 1 85 0.788 0.914 0.440 6.14 class1 class3 1 6.43 +#> 2 31 0.806 0.240 0.782 3.61 class2 class2 1 9.90 +#> 3 48 0.375 0.825 0.0230 4.55 class1 class2 1 12.2 +#> 4 61 0.0185 0.946 0.314 3.68 class2 class3 1 8.11 +#> 5 22 0.196 0.691 0.347 2.99 class2 class1 0 8.27 +#> 6 79 0.535 0.249 0.523 2.49 class2 class3 1 10.2 +#> 7 74 0.689 0.856 0.907 6.98 class1 class3 1 10.9 +#> 8 9 0.239 0.408 0.344 3.82 class1 class1 0 10.9 +#> 9 53 0.134 0.906 0.919 5.34 class1 class2 1 8.89 +#> 10 81 0.169 0.947 0.178 4.31 class1 class3 1 6.35 #> # ℹ 90 more rows diff --git a/reference/tof_get_model_x.html b/reference/tof_get_model_x.html index 727c5ee..d0982a3 100644 --- a/reference/tof_get_model_x.html +++ b/reference/tof_get_model_x.html @@ -119,107 +119,107 @@

    Examples ) tof_get_model_x(regression_model) -#> cd45 pstat5 cd34 -#> [1,] 0.557496857 0.55254884 -1.38428152 -#> [2,] 0.143171407 -0.77158277 -0.96941346 -#> [3,] -1.502965899 1.57749290 0.43071065 -#> [4,] -1.487689698 -1.05402386 0.26670370 -#> [5,] 0.301986654 -1.41109437 0.62034936 -#> [6,] -1.056499901 0.16076292 1.21403260 -#> [7,] 1.182601035 1.16135604 -1.25154531 -#> [8,] 0.175161417 0.26428063 1.46442058 -#> [9,] -0.176386967 1.20998237 -0.73032910 -#> [10,] 1.361071950 -1.39595395 -0.06137393 -#> [11,] -0.705411677 -0.57942208 0.24049595 -#> [12,] -1.115293290 -0.76255463 -1.04310500 -#> [13,] 1.175452272 -1.22436156 -1.38640227 -#> [14,] 1.163323464 0.93595248 -0.35468719 -#> [15,] 0.740115180 -0.67577632 0.01731844 -#> [16,] 1.601440012 -1.49938411 0.92018807 -#> [17,] 0.240059379 -0.23790043 -0.96933282 -#> [18,] -0.916705090 0.94753440 1.36072730 -#> [19,] 1.618689241 -0.90362707 -0.04163005 -#> [20,] 0.562887422 -0.80338410 -1.07272806 -#> [21,] 0.020818643 0.07529508 0.56738816 -#> [22,] -1.593153944 -0.36883048 -0.23429092 -#> [23,] 1.406199371 -0.02143408 1.26338516 -#> [24,] -1.429128536 0.46864660 -1.58328718 -#> [25,] -0.934904314 -0.63212679 0.49228289 -#> [26,] 1.433305360 0.42283996 1.39473103 -#> [27,] 0.019767484 -1.28450984 -1.55476772 -#> [28,] 0.508009412 0.38076053 1.20257860 -#> [29,] -1.004761203 -0.13291545 1.32921921 -#> [30,] 1.399130241 -1.31633977 0.26874764 -#> [31,] 0.482602659 -1.02751941 -0.50095342 -#> [32,] -0.543356713 1.28087863 1.23478788 -#> [33,] -0.507422484 -1.35009733 1.22676601 -#> [34,] 0.368655653 -0.52200992 -0.15475605 -#> [35,] -0.081804366 -0.31056493 -0.85835736 -#> [36,] 0.037561521 0.60339003 0.28293992 -#> [37,] -1.491887476 1.21099572 -1.12477401 -#> [38,] 0.005129352 -0.33981920 1.34288859 -#> [39,] -1.302914735 -1.67374465 1.06058374 -#> [40,] 1.305653373 0.61042250 -1.49525241 -#> [41,] 0.482143429 0.06664269 0.45823394 -#> [42,] -1.492688729 1.50206999 0.76974567 -#> [43,] 0.617022851 0.40265098 1.36800527 -#> [44,] -0.617457478 0.95260935 0.66416594 -#> [45,] -1.606625323 -1.44734923 -0.88052376 -#> [46,] -0.638064343 -1.31229252 -0.57006223 -#> [47,] 1.090721278 1.66480604 -1.44087462 -#> [48,] 1.486976621 1.31668060 -0.21521681 -#> [49,] -1.468830013 0.77331120 -1.56317205 -#> [50,] 1.455674529 1.44060148 1.11282839 -#> [51,] -0.290803815 -0.05969706 -1.45511364 -#> [52,] 0.733134872 -1.52929026 -0.97373036 -#> [53,] 0.344436164 -1.32132534 -1.09050376 -#> [54,] 0.025103475 -0.87335631 -0.37249570 -#> [55,] 0.005565627 0.47061529 -0.90081899 -#> [56,] 0.088159041 1.36984081 0.30931130 -#> [57,] 1.479750148 1.66158548 0.57718636 -#> [58,] 0.043417799 -1.24565767 -0.64769623 -#> [59,] 0.822253646 0.76005166 -0.69140429 -#> [60,] 0.329282537 -0.65838399 -1.01716064 -#> [61,] 0.071329812 1.25781906 1.31319492 -#> [62,] -0.855197996 0.70530147 -1.31843757 -#> [63,] 0.658248655 0.73338389 1.49260712 -#> [64,] 1.452178644 -0.85450389 0.61899811 -#> [65,] -0.835366335 0.75340630 -0.44970310 -#> [66,] 1.326492491 -1.51463056 1.40166921 -#> [67,] 0.036750337 -0.50928817 1.52348777 -#> [68,] -1.504910611 1.42806769 0.14878131 -#> [69,] -0.821539840 -0.49322190 -0.22241568 -#> [70,] -0.589478093 0.76056918 0.06020416 -#> [71,] -1.500470526 0.84789696 1.18340728 -#> [72,] -1.287270835 0.47255714 -0.38925795 -#> [73,] 0.930305547 1.75773170 1.23534137 -#> [74,] 0.884229017 -0.61870832 0.58878309 -#> [75,] -0.671317579 -1.51476542 0.93921205 -#> [76,] -1.457536947 -0.44484394 1.11904540 -#> [77,] -1.217264634 -0.23667642 -1.27240224 -#> [78,] -1.547997709 0.88847735 -0.47816578 -#> [79,] 0.373987416 -1.68670147 -1.40146429 -#> [80,] 1.594535000 -0.38942638 1.34122937 -#> [81,] 0.707546080 0.76234299 1.44107612 -#> [82,] -0.937221893 -1.28057014 -0.79493906 -#> [83,] 0.359529230 1.48544158 0.54443627 -#> [84,] 1.408014465 0.64311365 -1.48655835 -#> [85,] 0.271926331 0.18442901 0.13738623 -#> [86,] 0.581231249 -0.93864001 -0.66737277 -#> [87,] -0.757940402 -0.38858262 -1.18463333 -#> [88,] 0.642676960 -1.46812212 -0.99615908 -#> [89,] -1.289230186 0.50206737 0.67252825 -#> [90,] 0.361422796 0.33176833 0.49695858 -#> [91,] -0.124556298 1.45847359 -0.42208603 -#> [92,] -1.643635969 1.12659784 0.99615075 -#> [93,] -0.401240219 -0.81190439 -1.56386233 -#> [94,] 1.325629029 -1.58461564 -0.67454196 -#> [95,] -1.609741631 -0.45822804 0.86180774 -#> [96,] -0.299746586 0.51120513 0.79680852 -#> [97,] -0.495243445 0.63245996 -1.05074541 -#> [98,] 1.606864285 0.67175963 0.46781733 -#> [99,] 0.812649785 1.18037103 1.46240172 -#> [100,] -0.407814777 0.59991283 -1.34126926 +#> cd45 pstat5 cd34 +#> [1,] -1.78317206 -1.0787379605 1.333560457 +#> [2,] 1.10354848 1.0628629638 -0.007971152 +#> [3,] 0.28101225 -0.9863854712 0.943167367 +#> [4,] 0.15853500 0.9648649256 1.478340692 +#> [5,] -0.19131391 -0.5968674218 -1.511126613 +#> [6,] 0.46303565 0.9286830086 -0.295172477 +#> [7,] -1.70231141 1.5557823494 1.379459045 +#> [8,] 1.49148700 -1.4755548574 1.159147834 +#> [9,] 1.72386496 0.5710371564 0.330228937 +#> [10,] -0.39782305 0.2049274774 0.357080999 +#> [11,] 0.44302282 1.3419463533 0.167546255 +#> [12,] -1.76651518 0.8491942626 0.976864801 +#> [13,] -0.63356464 -1.4433745349 0.332350031 +#> [14,] -0.77306937 -1.1757549265 -0.945803345 +#> [15,] -0.63717571 -0.8130631050 -1.004776766 +#> [16,] -1.45990328 -1.6729066815 -1.581385700 +#> [17,] 0.10951455 0.0323062376 0.230590132 +#> [18,] 0.70539364 0.6626321482 0.559850122 +#> [19,] 0.33545021 -0.0490838722 -0.260766820 +#> [20,] -0.76876632 -1.3719608221 0.685592057 +#> [21,] 1.18076987 0.9757881406 0.409331098 +#> [22,] 0.29693186 -1.5711703850 -0.593965239 +#> [23,] 1.06160014 1.9560886989 -0.359778415 +#> [24,] 0.83531440 0.2409114010 -1.332756134 +#> [25,] 0.66249487 -1.2375144652 -1.575283965 +#> [26,] -0.98960673 -0.6669653896 -1.340737940 +#> [27,] 1.41488135 -0.9242453876 0.725438340 +#> [28,] -0.59096372 1.0250240427 -1.545310478 +#> [29,] 1.75503156 -0.2734310127 0.267503896 +#> [30,] -0.44195731 -0.0417721597 0.552188957 +#> [31,] 0.63496759 -1.3558765673 -0.836229703 +#> [32,] -1.40325154 -0.4987362393 1.478943176 +#> [33,] -0.41326441 -0.7409474669 1.386029524 +#> [34,] -0.11448838 -1.0214624007 -1.602191748 +#> [35,] -0.16017563 -0.8513593263 1.137506946 +#> [36,] 0.58728012 1.5438732777 -0.832493326 +#> [37,] -1.08957913 -0.5714635307 -0.817002991 +#> [38,] 0.56855878 1.6475160444 1.245318999 +#> [39,] -0.17115678 0.5475570558 -0.644908178 +#> [40,] 0.02686691 0.9672587787 -1.026616390 +#> [41,] 0.33192934 0.0145352092 -0.173320975 +#> [42,] -1.05596792 -1.0748526758 -0.191256247 +#> [43,] 0.25905544 -0.7499622282 -0.087657555 +#> [44,] 0.15440636 1.3524495620 0.168353586 +#> [45,] -1.16808454 -0.7985231102 -0.803837572 +#> [46,] -1.45180107 -1.3360255127 -1.439330467 +#> [47,] -1.69432680 1.6889785690 1.329175952 +#> [48,] 0.28276938 -0.0993963932 0.013122238 +#> [49,] 0.12893504 -0.4431576358 -0.229954891 +#> [50,] 0.98692593 1.0557804701 1.190741254 +#> [51,] 0.92667438 0.1577735525 -1.669680934 +#> [52,] -1.27372723 0.5730161197 0.053478552 +#> [53,] 1.06871379 -1.2095639195 -0.451003047 +#> [54,] 0.77182004 0.3530487708 -1.059214355 +#> [55,] 1.29626841 0.8187685274 -0.478643532 +#> [56,] 1.74791062 0.9897908331 -0.425375490 +#> [57,] -0.16235393 -0.0910664797 1.705414173 +#> [58,] -0.15738729 1.8711936081 -0.126729294 +#> [59,] -0.29535792 -0.1358952865 1.397848103 +#> [60,] 1.79191607 0.6458904947 -1.638537173 +#> [61,] -0.66798290 -1.5840545159 -0.419631398 +#> [62,] -0.32974182 1.1886707737 -0.173524097 +#> [63,] -0.83681468 0.6331643597 0.082403326 +#> [64,] -0.73922866 -0.2322845260 0.101457935 +#> [65,] -0.57623004 -1.3937666103 1.443584669 +#> [66,] -0.42359729 1.5135844751 0.072547217 +#> [67,] -0.32929042 -0.0006291011 -1.692261786 +#> [68,] -0.24088988 1.8261944212 0.224511135 +#> [69,] -0.95149649 -1.1081043364 -0.378855087 +#> [70,] 1.91723194 -0.3502579310 -1.844824658 +#> [71,] 1.25176008 1.2581136351 1.233394505 +#> [72,] 0.07080782 -0.8866318099 0.638288680 +#> [73,] -1.54302889 1.6857596143 -0.287625849 +#> [74,] 1.18695821 -0.5113548744 0.394427408 +#> [75,] -0.82486995 -1.6204020019 -0.588203677 +#> [76,] -1.79645181 -0.6864040144 -1.311847684 +#> [77,] -1.55872438 -1.0220035939 1.789038093 +#> [78,] -0.77897578 0.3692559643 0.428812512 +#> [79,] 1.57042159 -1.4346590275 0.833725974 +#> [80,] -0.06382824 0.2857970510 1.481791590 +#> [81,] -1.61397628 -0.8465167432 -1.648507113 +#> [82,] 0.20313852 0.0542426137 -0.118507950 +#> [83,] 0.62050888 0.3346826055 1.023535635 +#> [84,] -1.14703558 -1.5574576712 1.355170017 +#> [85,] 0.42846179 -0.1753167314 1.112048926 +#> [86,] 0.41997232 0.4549634910 -0.711286973 +#> [87,] -0.19044873 0.8933333770 -0.474693737 +#> [88,] -0.81555060 1.0777003059 -0.877067329 +#> [89,] 1.17350911 -0.4341643860 0.698854727 +#> [90,] 1.71932353 1.0695474903 0.804058565 +#> [91,] -0.20881194 0.9738611349 1.699522445 +#> [92,] 0.81303834 -0.4329034118 -1.108390019 +#> [93,] 0.81484298 -0.3213290673 -0.321048497 +#> [94,] 1.65329116 0.6674428429 -0.108223498 +#> [95,] 1.26883535 0.1571099065 -1.479695708 +#> [96,] -1.37947623 0.1786102124 0.793738394 +#> [97,] 0.03251312 0.3384958529 1.722195881 +#> [98,] -1.52463054 -1.2938448569 0.866870876 +#> [99,] 0.72690694 1.0860309387 -0.340135386 +#> [100,] -0.17026210 -0.3968786695 -1.021002674 diff --git a/reference/tof_get_model_y.html b/reference/tof_get_model_y.html index c463624..03641b5 100644 --- a/reference/tof_get_model_y.html +++ b/reference/tof_get_model_y.html @@ -119,23 +119,23 @@

    Examples ) tof_get_model_y(regression_model) -#> [1] 5.07911944 1.05678953 2.23934946 4.90880410 3.94374665 6.53658525 -#> [7] 2.57238069 2.92755504 1.93907094 3.77123417 3.82940916 3.26356318 -#> [13] 3.84825760 2.40057374 4.40478254 6.02535041 5.44352997 2.95309313 -#> [19] 3.00570147 5.14461239 4.39227241 2.98797491 6.23613147 2.86382843 -#> [25] 1.65266879 -0.44598386 1.02615166 2.74603837 3.73981858 6.94316675 -#> [31] 2.93417951 3.35549657 2.73999449 1.10539803 1.70830250 3.58635098 -#> [37] 1.28806087 2.81915418 3.13872282 6.20266732 4.37399516 4.97421467 -#> [43] 3.70563582 5.22433880 1.34701982 0.51430319 2.67376327 3.59549867 -#> [49] 5.04825709 3.26804763 2.83442489 2.81225459 3.24932848 4.93538219 -#> [55] 4.16472611 2.76181792 3.88390283 3.39162937 8.17669511 3.63533456 -#> [61] 3.06576604 4.44669588 4.64586848 6.06715629 2.05589047 2.77448895 -#> [67] 3.56069761 3.18679927 1.49435688 4.63091489 2.80400707 -0.08882069 -#> [73] 1.69272079 3.83614544 3.20063962 2.38496150 4.77629459 2.06289074 -#> [79] 3.67755742 4.86142919 -0.03458803 5.14039305 5.25721799 -0.11626374 -#> [85] 0.38867651 4.09989691 3.99624665 2.11558569 2.90413662 4.74220971 -#> [91] 2.43009103 2.66588818 2.77099636 6.15168702 2.77969727 2.99476337 -#> [97] 4.04757098 2.87846362 2.71481505 4.03923739 +#> [1] 3.52157326 4.18706346 4.99297032 4.17405690 6.40545747 2.50865483 +#> [7] 2.33612014 5.33430165 2.56476097 3.01796819 2.89283573 3.66406721 +#> [13] 5.22714046 4.35298919 2.58000727 2.15550594 3.60309971 4.89536032 +#> [19] 3.81554420 6.30328847 3.53770881 1.86969723 4.09551566 7.24970111 +#> [25] 2.86504606 3.55623919 3.95237545 4.11631444 5.47602150 0.28915723 +#> [31] 3.07282122 5.27719683 3.72704122 6.58541327 5.98730966 3.61953499 +#> [37] 3.87629426 2.33057302 5.04979749 3.18911819 3.49611601 3.47001035 +#> [43] 7.14360147 3.63460106 4.13321827 5.18586447 2.17984783 3.86569248 +#> [49] 5.01891594 0.53959254 6.47362294 4.17886077 4.79635337 3.38241659 +#> [55] 3.88628723 1.25895231 3.16017574 4.52602869 1.12086352 4.14951568 +#> [61] 3.76323375 4.80787027 7.01629099 3.03324953 3.10142062 4.20861853 +#> [67] 2.47186593 4.27612420 4.45194221 7.21234030 3.62721676 4.33038331 +#> [73] 3.34296498 3.24989602 3.46735076 0.29506689 0.03436764 1.68920782 +#> [79] 5.35307405 5.71910412 2.83330794 0.24626349 2.92575949 0.42468688 +#> [85] 1.52052028 3.57405227 8.28915490 7.86521083 4.00969324 4.79126650 +#> [91] 1.25838678 2.55059481 2.77286430 1.54709918 1.48236052 0.40922086 +#> [97] 3.08609250 3.17320626 3.97903992 2.75743110 diff --git a/reference/tof_metacluster.html b/reference/tof_metacluster.html index bec286c..070d228 100644 --- a/reference/tof_metacluster.html +++ b/reference/tof_metacluster.html @@ -169,18 +169,18 @@

    Examples method = "flowsom" ) #> # A tibble: 1,000 × 6 -#> cd45 cd38 cd34 cd19 cluster_id .flowsom_metacluster -#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> -#> 1 -0.252 -0.602 -0.501 0.324 h 1 -#> 2 -0.752 -0.0650 0.604 -0.268 e 5 -#> 3 -0.0158 0.846 1.19 -1.40 i 2 -#> 4 -0.618 0.0271 0.255 0.415 o 2 -#> 5 -1.18 0.184 0.734 0.456 h 1 -#> 6 0.264 1.36 -0.490 0.274 o 2 -#> 7 -1.55 0.855 2.99 0.997 e 5 -#> 8 0.204 1.64 0.0465 0.939 n 1 -#> 9 0.644 0.201 -0.208 0.853 u 1 -#> 10 -0.218 1.30 0.435 -1.42 n 1 +#> cd45 cd38 cd34 cd19 cluster_id .flowsom_metacluster +#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> +#> 1 1.85 -1.32 -1.84 -0.719 y 2 +#> 2 1.32 -0.265 0.545 -1.95 i 4 +#> 3 1.12 1.42 0.995 0.844 h 2 +#> 4 -1.07 -0.107 0.620 0.0522 r 4 +#> 5 0.474 -0.470 0.874 -0.0629 b 2 +#> 6 0.985 0.559 0.408 -0.162 w 2 +#> 7 -0.321 0.307 1.96 1.64 p 2 +#> 8 0.145 -1.28 -0.451 -1.04 s 2 +#> 9 -0.378 -0.390 0.0341 -0.130 a 1 +#> 10 0.387 -0.367 0.873 -0.678 m 2 #> # ℹ 990 more rows tof_metacluster( @@ -189,18 +189,18 @@

    Examples method = "phenograph" ) #> # A tibble: 1,000 × 6 -#> cd45 cd38 cd34 cd19 cluster_id .phenograph_metacluster -#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> -#> 1 -0.252 -0.602 -0.501 0.324 h 2 -#> 2 -0.752 -0.0650 0.604 -0.268 e 1 -#> 3 -0.0158 0.846 1.19 -1.40 i 2 -#> 4 -0.618 0.0271 0.255 0.415 o 2 -#> 5 -1.18 0.184 0.734 0.456 h 2 -#> 6 0.264 1.36 -0.490 0.274 o 2 -#> 7 -1.55 0.855 2.99 0.997 e 1 -#> 8 0.204 1.64 0.0465 0.939 n 3 -#> 9 0.644 0.201 -0.208 0.853 u 1 -#> 10 -0.218 1.30 0.435 -1.42 n 3 +#> cd45 cd38 cd34 cd19 cluster_id .phenograph_metacluster +#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> +#> 1 1.85 -1.32 -1.84 -0.719 y 1 +#> 2 1.32 -0.265 0.545 -1.95 i 4 +#> 3 1.12 1.42 0.995 0.844 h 2 +#> 4 -1.07 -0.107 0.620 0.0522 r 4 +#> 5 0.474 -0.470 0.874 -0.0629 b 3 +#> 6 0.985 0.559 0.408 -0.162 w 3 +#> 7 -0.321 0.307 1.96 1.64 p 1 +#> 8 0.145 -1.28 -0.451 -1.04 s 2 +#> 9 -0.378 -0.390 0.0341 -0.130 a 2 +#> 10 0.387 -0.367 0.873 -0.678 m 2 #> # ℹ 990 more rows diff --git a/reference/tof_metacluster_consensus.html b/reference/tof_metacluster_consensus.html index 851db93..b5ff945 100644 --- a/reference/tof_metacluster_consensus.html +++ b/reference/tof_metacluster_consensus.html @@ -204,16 +204,16 @@

    Examples#> # A tibble: 1,000 × 1 #> .consensus_metacluster #> <chr> -#> 1 9 +#> 1 8 #> 2 7 -#> 3 10 -#> 4 5 -#> 5 7 -#> 6 5 -#> 7 5 -#> 8 5 -#> 9 2 -#> 10 7 +#> 3 8 +#> 4 1 +#> 5 1 +#> 6 6 +#> 7 1 +#> 8 6 +#> 9 8 +#> 10 3 #> # ℹ 990 more rows diff --git a/reference/tof_metacluster_flowsom.html b/reference/tof_metacluster_flowsom.html index ab75db1..d3a5351 100644 --- a/reference/tof_metacluster_flowsom.html +++ b/reference/tof_metacluster_flowsom.html @@ -191,16 +191,16 @@

    Examples#> # A tibble: 1,000 × 1 #> .flowsom_metacluster #> <chr> -#> 1 5 -#> 2 1 -#> 3 2 +#> 1 2 +#> 2 3 +#> 3 4 #> 4 4 -#> 5 1 -#> 6 1 -#> 7 2 -#> 8 2 -#> 9 7 -#> 10 1 +#> 5 3 +#> 6 5 +#> 7 1 +#> 8 3 +#> 9 4 +#> 10 4 #> # ℹ 990 more rows tof_metacluster_flowsom( @@ -211,14 +211,14 @@

    Examples#> # A tibble: 1,000 × 1 #> .flowsom_metacluster #> <chr> -#> 1 2 -#> 2 3 -#> 3 1 -#> 4 2 -#> 5 3 -#> 6 3 +#> 1 1 +#> 2 2 +#> 3 3 +#> 4 3 +#> 5 1 +#> 6 4 #> 7 1 -#> 8 1 +#> 8 3 #> 9 3 #> 10 3 #> # ℹ 990 more rows diff --git a/reference/tof_metacluster_hierarchical.html b/reference/tof_metacluster_hierarchical.html index 902b4ad..4bcbe58 100644 --- a/reference/tof_metacluster_hierarchical.html +++ b/reference/tof_metacluster_hierarchical.html @@ -174,16 +174,16 @@

    Examples#> # A tibble: 1,000 × 1 #> .hierarchical_metacluster #> <chr> -#> 1 6 -#> 2 4 -#> 3 4 +#> 1 1 +#> 2 2 +#> 3 9 #> 4 5 -#> 5 10 -#> 6 4 -#> 7 6 -#> 8 6 -#> 9 4 -#> 10 3 +#> 5 2 +#> 6 1 +#> 7 7 +#> 8 3 +#> 9 3 +#> 10 8 #> # ℹ 990 more rows diff --git a/reference/tof_metacluster_kmeans.html b/reference/tof_metacluster_kmeans.html index 4f1e5cf..ebfc504 100644 --- a/reference/tof_metacluster_kmeans.html +++ b/reference/tof_metacluster_kmeans.html @@ -158,16 +158,16 @@

    Examples#> # A tibble: 1,000 × 1 #> .kmeans_metacluster #> <chr> -#> 1 8 -#> 2 2 -#> 3 8 -#> 4 7 -#> 5 7 -#> 6 5 -#> 7 4 -#> 8 1 -#> 9 5 -#> 10 8 +#> 1 6 +#> 2 3 +#> 3 4 +#> 4 6 +#> 5 9 +#> 6 6 +#> 7 6 +#> 8 4 +#> 9 9 +#> 10 9 #> # ℹ 990 more rows diff --git a/reference/tof_metacluster_phenograph.html b/reference/tof_metacluster_phenograph.html index a9e4139..6456c91 100644 --- a/reference/tof_metacluster_phenograph.html +++ b/reference/tof_metacluster_phenograph.html @@ -164,15 +164,15 @@

    Examples#> .phenograph_metacluster #> <chr> #> 1 1 -#> 2 4 -#> 3 1 -#> 4 3 +#> 2 3 +#> 3 3 +#> 4 2 #> 5 3 -#> 6 2 -#> 7 4 -#> 8 4 -#> 9 3 -#> 10 1 +#> 6 3 +#> 7 5 +#> 8 1 +#> 9 1 +#> 10 2 #> # ℹ 990 more rows diff --git a/reference/tof_predict.html b/reference/tof_predict.html index b4fa33e..e793278 100644 --- a/reference/tof_predict.html +++ b/reference/tof_predict.html @@ -173,26 +173,26 @@

    Examples#> # A tibble: 20 × 1 #> .pred #> <dbl> -#> 1 0.597 -#> 2 2.21 -#> 3 6.20 -#> 4 2.57 -#> 5 0.414 -#> 6 1.23 -#> 7 4.79 -#> 8 3.31 -#> 9 1.82 -#> 10 3.87 -#> 11 3.24 -#> 12 2.99 -#> 13 3.13 -#> 14 4.74 -#> 15 2.12 -#> 16 1.71 -#> 17 3.21 -#> 18 0.993 -#> 19 4.12 -#> 20 5.84 +#> 1 4.06 +#> 2 1.01 +#> 3 5.13 +#> 4 4.07 +#> 5 4.76 +#> 6 4.54 +#> 7 2.65 +#> 8 2.13 +#> 9 2.95 +#> 10 5.19 +#> 11 4.63 +#> 12 1.27 +#> 13 3.74 +#> 14 3.48 +#> 15 2.03 +#> 16 3.08 +#> 17 1.20 +#> 18 5.99 +#> 19 0.665 +#> 20 0.118 diff --git a/reference/tof_reduce_dimensions.html b/reference/tof_reduce_dimensions.html index aea2eb0..b039a67 100644 --- a/reference/tof_reduce_dimensions.html +++ b/reference/tof_reduce_dimensions.html @@ -138,35 +138,35 @@

    Examples# calculate pca tof_reduce_dimensions(tof_tibble = sim_data, method = "pca") #> # A tibble: 100 × 8 -#> cd45 cd38 cd34 cd19 .pc1 .pc2 .pc3 .pc4 -#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 2.13 0.705 -1.16 -1.37 -2.52 1.08 1.42 -0.377 -#> 2 -2.16 0.719 0.784 -1.65 1.22 1.68 -0.397 1.87 -#> 3 1.30 0.463 0.284 0.665 -0.973 -0.110 -0.212 -1.36 -#> 4 0.266 -0.303 -0.681 -1.05 -0.475 0.600 1.34 0.277 -#> 5 0.986 1.27 0.810 0.459 -0.971 0.420 -1.03 -1.05 -#> 6 -0.0816 2.04 -0.00146 -0.362 -1.17 0.675 -1.04 0.700 -#> 7 -0.0698 0.612 1.75 -0.132 0.510 1.16 -1.02 -0.737 -#> 8 -0.390 1.50 -0.156 0.269 -0.693 -0.0874 -0.915 0.577 -#> 9 -1.32 0.986 0.0330 -0.910 0.206 0.815 -0.341 1.44 -#> 10 0.117 0.275 -1.00 -0.487 -0.819 0.0165 0.819 0.519 +#> cd45 cd38 cd34 cd19 .pc1 .pc2 .pc3 .pc4 +#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 1.39 -0.189 -0.202 -0.956 -0.752 0.370 -1.34 -0.395 +#> 2 1.39 -1.25 -2.00 -0.963 0.656 -0.729 -2.61 -0.274 +#> 3 -0.688 -0.896 0.0756 0.610 0.743 -0.189 0.720 -0.455 +#> 4 -1.18 -0.0477 -1.78 -0.249 1.17 -0.839 -0.456 1.45 +#> 5 0.925 0.198 -0.208 -0.0243 -0.801 -0.288 -0.504 -0.217 +#> 6 0.388 -0.689 0.252 1.34 -0.118 -0.791 0.672 -1.17 +#> 7 -0.207 -1.14 1.05 0.931 0.259 0.189 1.18 -1.39 +#> 8 0.947 2.46 0.174 1.87 -2.63 -1.68 1.15 0.439 +#> 9 -0.258 -2.54 -0.769 -1.52 2.07 0.916 -1.49 -0.655 +#> 10 1.77 0.659 0.726 -0.134 -1.95 0.245 -0.390 -0.724 #> # ℹ 90 more rows # calculate tsne tof_reduce_dimensions(tof_tibble = sim_data, method = "tsne") #> # A tibble: 100 × 6 -#> cd45 cd38 cd34 cd19 .tsne1 .tsne2 -#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 2.13 0.705 -1.16 -1.37 4.34 1.87 -#> 2 -2.16 0.719 0.784 -1.65 -0.889 -4.03 -#> 3 1.30 0.463 0.284 0.665 0.463 3.67 -#> 4 0.266 -0.303 -0.681 -1.05 2.77 1.60 -#> 5 0.986 1.27 0.810 0.459 0.562 4.25 -#> 6 -0.0816 2.04 -0.00146 -0.362 2.41 -3.16 -#> 7 -0.0698 0.612 1.75 -0.132 -3.58 -2.75 -#> 8 -0.390 1.50 -0.156 0.269 2.36 -2.21 -#> 9 -1.32 0.986 0.0330 -0.910 -0.201 -3.36 -#> 10 0.117 0.275 -1.00 -0.487 2.87 0.441 +#> cd45 cd38 cd34 cd19 .tsne1 .tsne2 +#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 1.39 -0.189 -0.202 -0.956 1.44 -0.343 +#> 2 1.39 -1.25 -2.00 -0.963 -2.51 2.47 +#> 3 -0.688 -0.896 0.0756 0.610 -2.30 -1.68 +#> 4 -1.18 -0.0477 -1.78 -0.249 -2.58 0.667 +#> 5 0.925 0.198 -0.208 -0.0243 1.65 1.49 +#> 6 0.388 -0.689 0.252 1.34 -2.63 -3.18 +#> 7 -0.207 -1.14 1.05 0.931 -1.81 -3.71 +#> 8 0.947 2.46 0.174 1.87 2.89 4.60 +#> 9 -0.258 -2.54 -0.769 -1.52 0.474 -3.26 +#> 10 1.77 0.659 0.726 -0.134 3.42 2.05 #> # ℹ 90 more rows # calculate umap @@ -176,18 +176,18 @@

    Examples#> Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> # A tibble: 100 × 6 -#> cd45 cd38 cd34 cd19 .umap1 .umap2 -#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> -#> 1 2.13 0.705 -1.16 -1.37 -2.29 -0.706 -#> 2 -2.16 0.719 0.784 -1.65 -0.666 3.13 -#> 3 1.30 0.463 0.284 0.665 0.858 -3.05 -#> 4 0.266 -0.303 -0.681 -1.05 -1.79 -2.01 -#> 5 0.986 1.27 0.810 0.459 1.45 -3.23 -#> 6 -0.0816 2.04 -0.00146 -0.362 -1.91 2.35 -#> 7 -0.0698 0.612 1.75 -0.132 2.53 -0.873 -#> 8 -0.390 1.50 -0.156 0.269 -1.56 2.07 -#> 9 -1.32 0.986 0.0330 -0.910 -0.667 2.86 -#> 10 0.117 0.275 -1.00 -0.487 -2.09 0.537 +#> cd45 cd38 cd34 cd19 .umap1 .umap2 +#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> +#> 1 1.39 -0.189 -0.202 -0.956 -3.80 -2.20 +#> 2 1.39 -1.25 -2.00 -0.963 1.54 -1.89 +#> 3 -0.688 -0.896 0.0756 0.610 1.52 0.938 +#> 4 -1.18 -0.0477 -1.78 -0.249 0.418 -0.149 +#> 5 0.925 0.198 -0.208 -0.0243 -3.80 -1.13 +#> 6 0.388 -0.689 0.252 1.34 3.91 -2.45 +#> 7 -0.207 -1.14 1.05 0.931 4.12 -3.12 +#> 8 0.947 2.46 0.174 1.87 -2.15 1.50 +#> 9 -0.258 -2.54 -0.769 -1.52 -1.83 -2.71 +#> 10 1.77 0.659 0.726 -0.134 -4.28 0.887 #> # ℹ 90 more rows diff --git a/reference/tof_reduce_pca.html b/reference/tof_reduce_pca.html index dfc43a1..9bf7218 100644 --- a/reference/tof_reduce_pca.html +++ b/reference/tof_reduce_pca.html @@ -160,18 +160,18 @@

    Examples# calculate pca tof_reduce_pca(tof_tibble = sim_data, num_comp = 2) #> # A tibble: 200 × 2 -#> .pc1 .pc2 -#> <dbl> <dbl> -#> 1 -1.18 -0.437 -#> 2 0.230 -0.548 -#> 3 2.73 -0.128 -#> 4 0.772 0.965 -#> 5 0.122 1.24 -#> 6 -0.878 1.50 -#> 7 0.104 -0.543 -#> 8 0.295 2.14 -#> 9 0.712 -0.784 -#> 10 0.723 0.0671 +#> .pc1 .pc2 +#> <dbl> <dbl> +#> 1 -0.324 -2.56 +#> 2 -1.03 0.829 +#> 3 0.657 -0.668 +#> 4 0.511 -0.681 +#> 5 0.250 0.361 +#> 6 -0.448 -0.371 +#> 7 -1.13 1.54 +#> 8 -0.259 -1.95 +#> 9 -0.0261 0.277 +#> 10 0.0256 0.445 #> # ℹ 190 more rows # return recipe instead of embeddings @@ -180,18 +180,18 @@

    Examples# apply recipe to new data recipes::bake(pca_recipe, new_data = new_data) #> # A tibble: 50 × 4 -#> PC1 PC2 PC3 PC4 -#> <dbl> <dbl> <dbl> <dbl> -#> 1 -0.735 1.24 1.48 -0.128 -#> 2 -1.05 -1.17 0.753 0.296 -#> 3 1.32 -1.42 1.41 -1.47 -#> 4 -0.454 -0.144 -0.479 -0.0116 -#> 5 1.91 -0.175 1.27 -0.345 -#> 6 1.01 -0.480 0.184 0.309 -#> 7 -0.134 -0.107 0.0852 0.968 -#> 8 -0.203 0.748 -0.966 0.658 -#> 9 -1.95 -1.78 -1.25 -0.0726 -#> 10 1.14 0.0262 -0.00742 -0.297 +#> PC1 PC2 PC3 PC4 +#> <dbl> <dbl> <dbl> <dbl> +#> 1 1.06 1.68 -0.145 0.324 +#> 2 -0.295 0.281 -0.912 1.73 +#> 3 0.459 -0.686 -2.27 0.921 +#> 4 2.57 -0.607 -0.349 -0.0860 +#> 5 -0.637 -1.86 1.13 0.370 +#> 6 -0.265 -0.281 0.562 -0.349 +#> 7 -0.806 -0.395 -0.558 1.36 +#> 8 -0.421 1.33 -0.410 -1.35 +#> 9 0.667 -0.798 1.59 -0.0229 +#> 10 -0.329 -0.494 0.0244 -0.315 #> # ℹ 40 more rows diff --git a/reference/tof_reduce_tsne.html b/reference/tof_reduce_tsne.html index 02e9bdb..35e76c6 100644 --- a/reference/tof_reduce_tsne.html +++ b/reference/tof_reduce_tsne.html @@ -158,16 +158,16 @@

    Examples#> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> <dbl> <dbl> -#> 1 8.08 -7.66 -#> 2 2.37 -4.12 -#> 3 6.81 -4.01 -#> 4 -3.07 4.23 -#> 5 3.07 3.35 -#> 6 -6.88 -6.09 -#> 7 10.3 1.02 -#> 8 2.62 4.12 -#> 9 -0.307 -2.68 -#> 10 0.692 -6.27 +#> 1 5.71 -1.94 +#> 2 6.79 -3.89 +#> 3 4.59 1.47 +#> 4 -5.97 3.60 +#> 5 1.44 -6.66 +#> 6 6.40 -4.35 +#> 7 0.858 6.37 +#> 8 3.04 0.757 +#> 9 -4.07 -1.17 +#> 10 2.57 -7.17 #> # ℹ 190 more rows # calculate tsne with only 2 columns @@ -175,16 +175,16 @@

    Examples#> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> <dbl> <dbl> -#> 1 -6.38 -3.76 -#> 2 1.55 0.251 -#> 3 -6.33 2.92 -#> 4 -0.516 -0.728 -#> 5 0.278 5.36 -#> 6 5.36 2.85 -#> 7 -8.58 -2.40 -#> 8 -1.77 4.14 -#> 9 3.73 -1.01 -#> 10 5.09 1.20 +#> 1 -6.78 4.69 +#> 2 -3.11 6.73 +#> 3 -1.96 4.62 +#> 4 8.84 -2.51 +#> 5 6.52 2.62 +#> 6 -3.57 2.33 +#> 7 8.31 1.91 +#> 8 1.10 6.10 +#> 9 -0.347 -5.74 +#> 10 4.42 6.23 #> # ℹ 190 more rows diff --git a/reference/tof_reduce_umap.html b/reference/tof_reduce_umap.html index 5e4afb6..7104b79 100644 --- a/reference/tof_reduce_umap.html +++ b/reference/tof_reduce_umap.html @@ -184,18 +184,18 @@

    Examples#> Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> # A tibble: 200 × 2 -#> .umap1 .umap2 -#> <dbl> <dbl> -#> 1 -2.96 1.60 -#> 2 -0.206 -2.37 -#> 3 -0.635 -0.560 -#> 4 -3.37 1.09 -#> 5 4.26 0.397 -#> 6 3.30 1.62 -#> 7 -3.49 0.106 -#> 8 -0.0529 1.23 -#> 9 -3.13 1.31 -#> 10 4.73 -0.264 +#> .umap1 .umap2 +#> <dbl> <dbl> +#> 1 -0.107 -2.62 +#> 2 1.28 0.775 +#> 3 -3.33 1.56 +#> 4 1.09 0.991 +#> 5 -2.92 -3.27 +#> 6 -3.02 -3.33 +#> 7 1.37 2.20 +#> 8 0.917 2.54 +#> 9 -0.459 -1.25 +#> 10 2.54 2.57 #> # ℹ 190 more rows # calculate umap with only 2 columns @@ -203,16 +203,16 @@

    Examples#> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> <dbl> <dbl> -#> 1 2.75 6.43 -#> 2 -2.40 -6.28 -#> 3 5.86 -2.11 -#> 4 4.77 5.55 -#> 5 -6.98 -1.11 -#> 6 -7.44 -2.29 -#> 7 2.70 -7.05 -#> 8 5.13 -6.46 -#> 9 2.85 6.16 -#> 10 -9.17 0.0725 +#> 1 1.89 -6.18 +#> 2 -7.23 -0.302 +#> 3 2.95 1.72 +#> 4 -7.82 -0.0960 +#> 5 -0.989 -5.83 +#> 6 -0.605 -5.28 +#> 7 -3.50 3.27 +#> 8 -4.11 4.16 +#> 9 6.96 -3.82 +#> 10 -4.94 8.10 #> # ℹ 190 more rows # return recipe @@ -225,18 +225,18 @@

    Examples# apply recipe to new data recipes::bake(umap_recipe, new_data = new_data) #> # A tibble: 50 × 2 -#> UMAP1 UMAP2 -#> <dbl> <dbl> -#> 1 0.184 -2.79 -#> 2 1.51 1.19 -#> 3 -0.476 -0.746 -#> 4 1.90 -2.91 -#> 5 -0.0406 2.33 -#> 6 1.92 -2.74 -#> 7 -0.471 2.95 -#> 8 1.71 2.39 -#> 9 -3.73 0.00121 -#> 10 -2.18 -2.45 +#> UMAP1 UMAP2 +#> <dbl> <dbl> +#> 1 -0.411 1.91 +#> 2 -0.689 -1.06 +#> 3 -5.01 -0.0412 +#> 4 5.71 -0.340 +#> 5 -4.68 0.0799 +#> 6 -4.96 -0.0157 +#> 7 4.94 3.30 +#> 8 -5.05 -0.222 +#> 9 4.13 0.650 +#> 10 3.40 2.58 #> # ℹ 40 more rows diff --git a/reference/tof_spade_density.html b/reference/tof_spade_density.html index b22fb67..183899c 100644 --- a/reference/tof_spade_density.html +++ b/reference/tof_spade_density.html @@ -199,16 +199,16 @@

    Examples#> # A tibble: 1,000 × 1 #> .spade_density #> <dbl> -#> 1 0.5 -#> 2 0 -#> 3 0.167 +#> 1 0.375 +#> 2 0.25 +#> 3 0.25 #> 4 0 -#> 5 0.167 -#> 6 0.333 -#> 7 0.333 -#> 8 0 -#> 9 0.333 -#> 10 0.5 +#> 5 0.625 +#> 6 0.125 +#> 7 0.375 +#> 8 0.125 +#> 9 0.25 +#> 10 0.375 #> # ℹ 990 more rows # perform the density estimation with a smaller search radius around @@ -222,14 +222,14 @@

    Examples#> <dbl> #> 1 1 #> 2 1 -#> 3 1 -#> 4 0.5 -#> 5 1 -#> 6 0.3 +#> 3 0.7 +#> 4 0.1 +#> 5 0.3 +#> 6 0.9 #> 7 1 -#> 8 1 +#> 8 0.5 #> 9 1 -#> 10 0.5 +#> 10 0.1 #> # ℹ 990 more rows diff --git a/reference/tof_split_data.html b/reference/tof_split_data.html index 08ab7f8..90ec905 100644 --- a/reference/tof_split_data.html +++ b/reference/tof_split_data.html @@ -206,16 +206,16 @@

    Examples#> # A tibble: 10 × 2 #> splits id #> <list> <chr> -#> 1 <split [100/35]> Bootstrap01 -#> 2 <split [100/35]> Bootstrap02 -#> 3 <split [100/33]> Bootstrap03 -#> 4 <split [100/41]> Bootstrap04 -#> 5 <split [100/40]> Bootstrap05 -#> 6 <split [100/40]> Bootstrap06 -#> 7 <split [100/36]> Bootstrap07 -#> 8 <split [100/34]> Bootstrap08 -#> 9 <split [100/41]> Bootstrap09 -#> 10 <split [100/34]> Bootstrap10 +#> 1 <split [100/37]> Bootstrap01 +#> 2 <split [100/41]> Bootstrap02 +#> 3 <split [100/37]> Bootstrap03 +#> 4 <split [100/34]> Bootstrap04 +#> 5 <split [100/37]> Bootstrap05 +#> 6 <split [100/33]> Bootstrap06 +#> 7 <split [100/34]> Bootstrap07 +#> 8 <split [100/37]> Bootstrap08 +#> 9 <split [100/34]> Bootstrap09 +#> 10 <split [100/38]> Bootstrap10 # split the dataset into a single training/test set # stratified by the "class" column diff --git a/reference/tof_train_model.html b/reference/tof_train_model.html index c2db922..5191000 100644 --- a/reference/tof_train_model.html +++ b/reference/tof_train_model.html @@ -299,14 +299,14 @@

    Examples response_col = outcome, model_type = "linear" ) -#> A linear `tof_model` with a mixture parameter (alpha) of 0 and a penalty parameter (lambda) of 1e-10 +#> A linear `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-08 #> # A tibble: 4 × 2 #> feature coefficient #> <chr> <dbl> -#> 1 (Intercept) 3.35 -#> 2 pstat5 1.09 -#> 3 cd45 0.710 -#> 4 cd34 -0.0956 +#> 1 (Intercept) 3.44 +#> 2 pstat5 1.18 +#> 3 cd45 0.958 +#> 4 cd34 0.133 # train a logistic regression classifier tof_train_model( @@ -315,12 +315,14 @@

    Examples response_col = class, model_type = "two-class" ) -#> A two-class `tof_model` with a mixture parameter (alpha) of 0.25 and a penalty parameter (lambda) of 1e+00 -#> # A tibble: 2 × 2 +#> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-03 +#> # A tibble: 4 × 2 #> feature coefficient #> <chr> <dbl> -#> 1 pstat5 -0.0588 -#> 2 (Intercept) 0.00000102 +#> 1 pstat5 -1.53 +#> 2 cd45 -1.21 +#> 3 cd34 -0.233 +#> 4 (Intercept) -0.0361 # train a cox regression survival model tof_train_model( @@ -330,9 +332,13 @@

    Examples event_col = event, model_type = "survival" ) -#> A survival `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e+00 -#> # A tibble: 0 × 2 -#> # ℹ 2 variables: feature <chr>, coefficient <dbl> +#> A survival `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-03 +#> # A tibble: 3 × 2 +#> feature coefficient +#> <chr> <dbl> +#> 1 cd45 -0.175 +#> 2 pstat5 0.0684 +#> 3 cd34 -0.0448 diff --git a/reference/tof_upsample.html b/reference/tof_upsample.html index 08343d9..f9943b9 100644 --- a/reference/tof_upsample.html +++ b/reference/tof_upsample.html @@ -178,18 +178,18 @@

    Examples method = "distance" ) #> # A tibble: 1,000 × 5 -#> cd45 cd38 cd34 cd19 .upsample_cluster -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 0.391 0.908 -0.584 -0.281 b -#> 2 0.805 -1.23 0.799 -0.472 b -#> 3 0.943 0.371 -0.575 0.928 b -#> 4 -0.631 -1.17 -0.0679 -0.0230 a -#> 5 -0.189 -0.638 2.32 -0.734 b -#> 6 -0.701 0.263 -0.179 0.972 a -#> 7 -0.422 0.707 1.03 -2.52 a -#> 8 -0.453 0.614 0.806 2.03 a -#> 9 -1.67 1.09 -0.390 -0.473 a -#> 10 -1.17 -1.38 0.599 0.635 b +#> cd45 cd38 cd34 cd19 .upsample_cluster +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 -1.24 0.373 -0.937 -0.704 b +#> 2 0.269 1.52 1.81 0.506 a +#> 3 -0.736 -0.0917 -0.830 0.821 b +#> 4 0.638 0.608 0.564 -0.428 a +#> 5 1.29 -0.926 -0.153 0.324 b +#> 6 -0.634 -0.00913 -0.996 0.145 b +#> 7 -0.481 -0.782 -0.704 -0.812 b +#> 8 0.924 1.21 -1.44 -1.48 a +#> 9 -1.24 0.128 0.107 -0.509 a +#> 10 0.255 -0.885 1.41 1.78 b #> # ℹ 990 more rows # upsample using distance to nearest neighbor @@ -200,18 +200,18 @@

    Examples method = "neighbor" ) #> # A tibble: 1,000 × 5 -#> cd45 cd38 cd34 cd19 .upsample_cluster -#> <dbl> <dbl> <dbl> <dbl> <chr> -#> 1 0.391 0.908 -0.584 -0.281 a -#> 2 0.805 -1.23 0.799 -0.472 a -#> 3 0.943 0.371 -0.575 0.928 a -#> 4 -0.631 -1.17 -0.0679 -0.0230 a -#> 5 -0.189 -0.638 2.32 -0.734 b -#> 6 -0.701 0.263 -0.179 0.972 b -#> 7 -0.422 0.707 1.03 -2.52 a -#> 8 -0.453 0.614 0.806 2.03 b -#> 9 -1.67 1.09 -0.390 -0.473 a -#> 10 -1.17 -1.38 0.599 0.635 a +#> cd45 cd38 cd34 cd19 .upsample_cluster +#> <dbl> <dbl> <dbl> <dbl> <chr> +#> 1 -1.24 0.373 -0.937 -0.704 b +#> 2 0.269 1.52 1.81 0.506 a +#> 3 -0.736 -0.0917 -0.830 0.821 a +#> 4 0.638 0.608 0.564 -0.428 a +#> 5 1.29 -0.926 -0.153 0.324 a +#> 6 -0.634 -0.00913 -0.996 0.145 a +#> 7 -0.481 -0.782 -0.704 -0.812 a +#> 8 0.924 1.21 -1.44 -1.48 b +#> 9 -1.24 0.128 0.107 -0.509 a +#> 10 0.255 -0.885 1.41 1.78 b #> # ℹ 990 more rows diff --git a/reference/tof_upsample_distance.html b/reference/tof_upsample_distance.html index e8c3c24..503f557 100644 --- a/reference/tof_upsample_distance.html +++ b/reference/tof_upsample_distance.html @@ -201,15 +201,15 @@

    Examples#> .upsample_cluster #> <chr> #> 1 a -#> 2 b -#> 3 a -#> 4 b -#> 5 a +#> 2 a +#> 3 b +#> 4 a +#> 5 b #> 6 a -#> 7 a -#> 8 a -#> 9 a -#> 10 a +#> 7 b +#> 8 b +#> 9 b +#> 10 b #> # ℹ 990 more rows # upsample using cosine distance @@ -222,15 +222,15 @@

    Examples#> # A tibble: 1,000 × 1 #> .upsample_cluster #> <chr> -#> 1 b +#> 1 a #> 2 b -#> 3 b -#> 4 b +#> 3 a +#> 4 a #> 5 a #> 6 a -#> 7 b -#> 8 a -#> 9 a +#> 7 a +#> 8 b +#> 9 b #> 10 a #> # ℹ 990 more rows diff --git a/reference/tof_upsample_neighbor.html b/reference/tof_upsample_neighbor.html index 803f905..bae3945 100644 --- a/reference/tof_upsample_neighbor.html +++ b/reference/tof_upsample_neighbor.html @@ -176,15 +176,15 @@

    Examples#> .upsample_cluster #> <chr> #> 1 a -#> 2 b +#> 2 a #> 3 b -#> 4 a -#> 5 b -#> 6 a +#> 4 b +#> 5 a +#> 6 b #> 7 a #> 8 b #> 9 b -#> 10 b +#> 10 a #> # ℹ 990 more rows # upsample using cosine distance @@ -197,14 +197,14 @@

    Examples#> # A tibble: 1,000 × 1 #> .upsample_cluster #> <chr> -#> 1 b +#> 1 a #> 2 a #> 3 a #> 4 a -#> 5 b +#> 5 a #> 6 a #> 7 a -#> 8 a +#> 8 b #> 9 b #> 10 b #> # ℹ 990 more rows diff --git a/search.json b/search.json index 470b164..5746c46 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to tidytof","title":"Contributing to tidytof","text":"outlines propose change tidytof. detailed info contributing , tidyverse packages, please see development contributing guide.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to tidytof","text":"can fix typos, spelling mistakes, grammatical errors documentation directly using GitHub web interface, long changes made source file. generally means ’ll need edit roxygen2 comments .R, .Rd file. can find .R file generates .Rd reading comment first line.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"bigger-changes","dir":"","previous_headings":"","what":"Bigger changes","title":"Contributing to tidytof","text":"want make bigger change, ’s good idea first file issue make sure someone team agrees ’s needed. ’ve found bug, please file issue illustrates bug minimal reprex (also help write unit test, needed).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"Bigger changes","what":"Pull request process","title":"Contributing to tidytof","text":"Fork package clone onto computer. haven’t done , recommend using usethis::create_from_github(\"keyes-timothy/tidytof\", fork = TRUE). Install development dependencies devtools::install_dev_deps(), make sure package passes R CMD check running devtools::check(). R CMD check doesn’t pass cleanly, ’s good idea ask help continuing. Create Git branch pull request (PR). recommend using usethis::pr_init(\"brief-description--change\"). Make changes, commit git, create PR running usethis::pr_push(), following prompts browser. title PR briefly describe change. body PR contain Fixes #issue-number. user-facing changes, add bullet top NEWS.md (.e. just first header). Follow style described https://style.tidyverse.org/news.html.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"code-style","dir":"","previous_headings":"Bigger changes","what":"Code style","title":"Contributing to tidytof","text":"New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat unit tests. Contributions test cases included easier accept.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to tidytof","text":"Please note tidytof project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2020 Timothy Keyes Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/clustering.html","id":"clustering-with-tof_cluster","dir":"Articles","previous_headings":"","what":"Clustering with tof_cluster()","title":"Clustering and metaclustering","text":"demonstrate, can apply PhenoGraph clustering algorithm tidytof’s built-phenograph_data. Note phenograph_data contains 3000 total cells (1000 3 clusters identified original PhenoGraph publication). demonstration purposes, also metacluster PhenoGraph clusters using k-means clustering. outputs tof_cluster() tof_metacluster() tof_tbl identical input tibble, now addition additional column (case, “.phenograph_cluster” “.kmeans_metacluster”) encodes cluster id cell input tof_tbl. Note output columns added tibble tof_tbl tidytof begin full-stop (“.”) reduce likelihood collisions existing column names. output tof_cluster tof_tbl, can use dplyr’s count method assess accuracy clustering procedure compared original clustering PhenoGraph paper. , can see clustering procedure groups cells PhenoGraph cluster one another (small number mistakes). change clustering algorithm tof_cluster uses, alter method flag. change columns used compute clusters, change cluster_cols flag. finally, want return one-column tibble includes cluster labels (opposed cluster labels added new column input tof_tbl), set augment FALSE.","code":"data(phenograph_data) set.seed(203L) phenograph_clusters <- phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = starts_with(\"cd\"), num_neighbors = 50L, distance_function = \"cosine\", method = \"phenograph\" ) |> tof_metacluster( cluster_col = .phenograph_cluster, metacluster_cols = starts_with(\"cd\"), num_metaclusters = 3L, method = \"kmeans\" ) phenograph_clusters |> dplyr::select(sample_name, .phenograph_cluster, .kmeans_metacluster) |> head() #> # A tibble: 6 × 3 #> sample_name .phenograph_cluster .kmeans_metacluster #> #> 1 H1_PhenoGraph_cluster1 6 2 #> 2 H1_PhenoGraph_cluster1 1 2 #> 3 H1_PhenoGraph_cluster1 6 2 #> 4 H1_PhenoGraph_cluster1 6 2 #> 5 H1_PhenoGraph_cluster1 6 2 #> 6 H1_PhenoGraph_cluster1 6 2 phenograph_clusters |> dplyr::count(phenograph_cluster, .kmeans_metacluster, sort = TRUE) #> # A tibble: 4 × 3 #> phenograph_cluster .kmeans_metacluster n #> #> 1 cluster2 3 1000 #> 2 cluster3 1 1000 #> 3 cluster1 2 995 #> 4 cluster1 1 5 # use the kmeans algorithm phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = contains(\"cd\"), method = \"kmeans\" ) # use the flowsom algorithm phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = contains(\"cd\"), method = \"flowsom\" ) # will result in a tibble with only 1 column (the cluster labels) phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = contains(\"cd\"), method = \"kmeans\", augment = FALSE ) |> head() #> # A tibble: 6 × 1 #> .kmeans_cluster #> #> 1 2 #> 2 1 #> 3 19 #> 4 9 #> 5 2 #> 6 9"},{"path":"https://keyes-timothy.github.io/tidytof/articles/clustering.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Clustering and metaclustering","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] tidyselect_1.2.0 viridisLite_0.4.2 timeDate_4032.109 #> [4] farver_2.1.1 viridis_0.6.5 ggraph_2.2.1 #> [7] fastmap_1.1.1 tweenr_2.0.3 rpart_4.1.23 #> [10] digest_0.6.34 timechange_0.3.0 lifecycle_1.0.4 #> [13] yardstick_1.3.0 survival_3.5-8 magrittr_2.0.3 #> [16] compiler_4.3.3 rlang_1.1.3 sass_0.4.8 #> [19] tools_4.3.3 igraph_2.0.2 utf8_1.2.4 #> [22] yaml_2.3.8 data.table_1.15.2 knitr_1.45 #> [25] graphlayouts_1.1.1 withr_3.0.0 purrr_1.0.2 #> [28] RProtoBufLib_2.14.0 BiocGenerics_0.48.1 desc_1.4.3 #> [31] nnet_7.3-19 grid_4.3.3 polyclip_1.10-6 #> [34] stats4_4.3.3 fansi_1.0.6 RcppHNSW_0.6.0 #> [37] future_1.33.1 colorspace_2.1-0 ggplot2_3.5.0 #> [40] globals_0.16.3 scales_1.3.0 iterators_1.0.14 #> [43] MASS_7.3-60.0.1 cli_3.6.2 rmarkdown_2.26 #> [46] ragg_1.2.7 generics_0.1.3 future.apply_1.11.1 #> [49] tzdb_0.4.0 cachem_1.0.8 flowCore_2.14.1 #> [52] ggforce_0.4.2 stringr_1.5.1 splines_4.3.3 #> [55] parallel_4.3.3 matrixStats_1.2.0 vctrs_0.6.5 #> [58] hardhat_1.3.1 glmnet_4.1-8 Matrix_1.6-5 #> [61] jsonlite_1.8.8 cytolib_2.14.1 hms_1.1.3 #> [64] S4Vectors_0.40.2 ggrepel_0.9.5 listenv_0.9.1 #> [67] systemfonts_1.0.6 foreach_1.5.2 gower_1.0.1 #> [70] tidyr_1.3.1 jquerylib_0.1.4 recipes_1.0.10 #> [73] parallelly_1.37.1 glue_1.7.0 pkgdown_2.0.7 #> [76] codetools_0.2-19 stringi_1.8.3 lubridate_1.9.3 #> [79] gtable_0.3.4 shape_1.4.6.1 munsell_0.5.0 #> [82] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.7 #> [85] ipred_0.9-14 lava_1.8.0 R6_2.5.1 #> [88] textshaping_0.3.7 doParallel_1.0.17 tidygraph_1.3.1 #> [91] evaluate_0.23 Biobase_2.62.0 lattice_0.22-5 #> [94] readr_2.1.5 memoise_2.0.1 bslib_0.6.1 #> [97] class_7.3-22 Rcpp_1.0.12 prodlim_2023.08.28 #> [100] gridExtra_2.3 xfun_0.42 fs_1.6.3 #> [103] pkgconfig_2.0.3"},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"general-guidelines","dir":"Articles","previous_headings":"","what":"General Guidelines","title":"How to contribute code","text":"extend tidytof include new algorithm - example, one ’ve just developed - can take 1 2 general strategies (cases, may take !). first write tidytof-style verb algorithm can included standalone package. case, benefit writing tidytof-style verb algorithm taking advantage tidytof’s design schema make algorithm easy users access without learning much () new syntax still allowing maintain code base independently team. second approach write tidytof-style function ’d like team add tidytof next release. case, code review process take bit time, also allow teams collaborate provide greater degree critical feedback one another well share burden code maintenance future. either case, ’re welcome contact tidytof team review code via pull request /issue tidytof GitHub page. tutorial may helpful don’t lot experience collaborating programmers via GitHub. open request, can submit code team reviewed. Whether want method incorporated tidytof ’re simply looking external code review/feedback team, please mention request.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"code-style","dir":"Articles","previous_headings":"","what":"Code style","title":"How to contribute code","text":"tidytof uses tidyverse style guide. Adhering tidyverse style something team expect code incorporated tidytof, ’s also something encourage functions write analysis packages. experience, best code written just executed, also read humans! also many tools can use lint automatically style R code, {lintr} {styler} packages.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"testing","dir":"Articles","previous_headings":"","what":"Testing","title":"How to contribute code","text":"addition written well-styled code, encourage write unit tests every function write. common practice software engineering world, common probably (!) bioinformatics community. tidytof team uses {testthat} package unit tests, ’s great tutorial .","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"general-principles","dir":"Articles","previous_headings":"How to contribute","what":"General principles","title":"How to contribute code","text":"important part writing function extends tidytof adhere tidytof verb syntax. exceptions, tidytof functions follow specific, shared syntax involves 3 types arguments always occur order. argument types follows: almost tidytof functions, first argument data frame (tibble). enables use pipe (|>) multi-step calculations, means first argument functions implicit (passed previous function using pipe). second group arguments called column specifications, end suffix _col _cols. Column specifications unquoted column names tell tidytof verb columns compute particular operation. example, cluster_cols argument tof_cluster allows user specify column input data frames used perform clustering. Regardless verb requires , column specifications support tidyselect helpers follow rules tidyselection tidyverse verbs like dplyr::select() tidyr::pivot_longer(). Finally, third group arguments tidytof verb called method specifications, ’re comprised every argument isn’t input data frame column specification. Whereas column specifications represent columns used perform operation, method specifications represent details operation performed. example, tof_cluster_phenograph() function requires method specification num_neighbors, specifies many nearest neighbors used construct PhenoGraph algorithm’s k-nearest-neighbor graph. exceptions, tidytof extension include 3 argument types (order). addition, functions extend tidytof name starts prefix tof_. make easier users find tidytof functions using text completion functionality included development environments.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"contributing-a-new-method-to-an-existing-tidytof-verb","dir":"Articles","previous_headings":"How to contribute","what":"Contributing a new method to an existing {tidytof} verb","title":"How to contribute code","text":"tidytof currently includes multiple verbs perform fundamental single-cell data manipulation tasks. Currently, tidytof’s extensible verbs following: tof_analyze_abundance: Perform differential cluster abundance analysis tof_analyze_expression: Perform differential marker expression analysis tof_annotate_clusters: Annotate clusters manual IDs tof_batch_correct: Perform batch correction tof_cluster: Cluster cells subpopulations tof_downsample: Subsample dataset smaller number cells tof_extract: Calculate sample-level summary statistics tof_metacluster: Metacluster clusters smaller number subpopulations tof_plot_cells: Plot cell-level data tof_plot_clusters: Plot cluster-level data tof_plot_model: Plot results sample-level model tof_read_data: Read data memory disk tof_reduce_dimensions: Perform dimensionality reduction tof_transform: Transform marker expression values vectorized fashion tof_upsample: Assign new cells existing clusters (defined downsample dataset) tof_write_data: Write data memory disk tidytof verb wraps family related functions perform basic task. example, tof_cluster verb wrapper following functions: tof_cluster_ddpr, tof_cluster_flowsom, tof_cluster_kmeans, tof_cluster_phenograph. functions implement different clustering algorithm, share underlying logic standardized tof_cluster abstraction. practice, means users can apply DDPR, FlowSOM, K-means, PhenoGraph clustering algorithms datasets either calling one tof_cluster_* functions directly, calling tof_cluster method argument set appropriate value (“ddpr”, “flowsom”, “kmeans”, “phenograph”, respectively). extend existing tidytof verb, write function whose name fits pattern tof_{verb name}_*, “*” represents name algorithm used perform computation. function definition, try share many arguments possible tidytof verb ’re extending, return output object described “Value” heading help file verb extended. example, suppose wanted write tidytof-style interface new clustering algorithm “supercluster”, performs k-means clustering dataset twice outputs final cluster assignment equal two k-means cluster assignments spliced together. add supercluster algorithm tidytof, might write function like : example , note tof_cluster_supercluster named using tof_{verb name}_* style, function definition uses tof_tibble cluster_cols arguments tof_cluster, returned output object tof_tbl single column encoding cluster ids cells tof_tibble.","code":"#' Perform superclustering on high-dimensional cytometry data. #' #' This function applies the silly, hypothetical clustering algorithm #' \"supercluster\" to high-dimensional cytometry data using user-specified #' input variables/cytometry measurements. #' #' @param tof_tibble A `tof_tbl` or `tibble`. #' #' @param cluster_cols Unquoted column names indicating which columns in #' `tof_tibble` to use in computing the supercluster clusters. #' Supports tidyselect helpers. #' #' @param num_kmeans_clusters An integer indicating how many clusters should be #' used for the two k-means clustering steps. #' #' @param sep A string to use when splicing the 2 k-means clustering assignments #' to one another. #' #' @param ... Optional additional parameters to pass to #' \\code{\\link[tidytof]{tof_cluster_kmeans}} #' #' @return A tibble with one column named `.supercluster_cluster` containing #' a character vector of length `nrow(tof_tibble)` indicating the id of the #' supercluster cluster to which each cell (i.e. each row) in `tof_tibble` was #' assigned. #' #' @importFrom dplyr tibble #' tof_cluster_supercluster <- function(tof_tibble, cluster_cols, num_kmeans_clusters = 10L, sep = \"_\", ...) { kmeans_1 <- tof_tibble |> tof_cluster_kmeans( cluster_cols = {{ cluster_cols }}, num_clusters = num_kmeans_clusters, ... ) kmeans_2 <- tof_tibble |> tof_cluster_kmeans( cluster_cols = {{ cluster_cols }}, num_clusters = num_kmeans_clusters, ... ) final_result <- dplyr::tibble( .supercluster_cluster = paste(kmeans_1$.kmeans_cluster, kmeans_2$.kmeans_cluster, sep = sep) ) return(final_result) }"},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"creating-a-new-tidytof-verb","dir":"Articles","previous_headings":"How to contribute","what":"Creating a new {tidytof} verb","title":"How to contribute code","text":"want contribute function tidytof represents new operation encompassed existing verbs , include suggestion create new verb pull request tidytof team. case, ’ll considerably flexibility define interface tidytof use implement new verb, tidytof team happy work figure makes sense (least brainstorm together).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"a-note-about-modeling-functions","dir":"Articles","previous_headings":"How to contribute","what":"A note about modeling functions","title":"How to contribute code","text":"point development, don’t recommend extending tidytof’s modeling functionality, likely abstracted standalone package (emphasis interoperability tidymodels ecosystem) point future.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"contact-us","dir":"Articles","previous_headings":"","what":"Contact us","title":"How to contribute code","text":"general questions/comments/concerns tidytof, feel free reach team GitHub .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"How to contribute code","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> loaded via a namespace (and not attached): #> [1] digest_0.6.34 desc_1.4.3 R6_2.5.1 fastmap_1.1.1 #> [5] xfun_0.42 magrittr_2.0.3 cachem_1.0.8 knitr_1.45 #> [9] memoise_2.0.1 htmltools_0.5.7 rmarkdown_2.26 lifecycle_1.0.4 #> [13] cli_3.6.2 vctrs_0.6.5 sass_0.4.8 pkgdown_2.0.7 #> [17] textshaping_0.3.7 jquerylib_0.1.4 systemfonts_1.0.6 compiler_4.3.3 #> [21] purrr_1.0.2 tools_4.3.3 ragg_1.2.7 bslib_0.6.1 #> [25] evaluate_0.23 yaml_2.3.8 jsonlite_1.8.8 rlang_1.1.3 #> [29] fs_1.6.3"},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Differential discovery analysis","text":"demonstrate use verbs, ’ll first download dataset originally collected development CITRUS algorithm. data available HDCytoData package, available Bioconductor can downloaded following command: load CITRUS data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s . Thus, can see citrus_data tof_tbl 172791 cells (one row) 39 pieces information cell (one column). can also extract metadata raw data join single-cell data using functions tidyverse: Thus, now sample-level information patient sample collected stimulation condition (“Basal” “BCR-XL”) sample exposed data acquisition. Finally, can join metadata single-cell tof_tbl obtain cleaned dataset. data cleaning steps, now citrus_data, tof_tbl containing cells collected 8 patients. Specifically, 2 samples taken patient: one cells’ B-cell receptors stimulated (BCR-XL) one (Basal). citrus_data, cell’s patient origin stored patient column, cell’s stimulation condition stored stimulation column. addition, population_id column stores information cluster labels applied cell using combination FlowSOM clustering manual merging (details, run ?HDCytoData::Bodenmiller_BCR_XL R console).","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = \"_\") citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = 1:length(file_name), patient = stringr::str_extract(file_name, \"patient[:digit:]\"), stimulation = stringr::str_extract(file_name, \"(BCR-XL)|Reference\") ) |> mutate( stimulation = if_else(stimulation == \"Reference\", \"Basal\", stimulation) ) citrus_metadata |> head() #> # A tibble: 6 × 4 #> file_name sample_id patient stimulation #> #> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 patient1 BCR-XL #> 2 PBMC8_30min_patient1_Reference.fcs 2 patient1 Basal #> 3 PBMC8_30min_patient2_BCR-XL.fcs 3 patient2 BCR-XL #> 4 PBMC8_30min_patient2_Reference.fcs 4 patient2 Basal #> 5 PBMC8_30min_patient3_BCR-XL.fcs 5 patient3 BCR-XL #> 6 PBMC8_30min_patient3_Reference.fcs 6 patient3 Basal citrus_data <- citrus_data |> left_join(citrus_metadata, by = \"sample_id\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"differential-abundance-analysis-using-tof_analyze_abundance","dir":"Articles","previous_headings":"","what":"Differential abundance analysis using tof_analyze_abundance()","title":"Differential discovery analysis","text":"might wonder certain clusters expand deplete within patients two stimulation conditions described - question requires differential abundance analysis (DAA). tidytof’s tof_analyze_abundance() verb supports use 3 statistical approaches performing DAA: diffcyt, generalized-linear mixed modeling (GLMMs), simple t-tests. setup described uses paired design 2 experimental conditions interest (Basal vs. BCR-XL), can use paired t-test method: Based output, can see 6 8 clusters statistically different abundance two stimulation conditions. Using tidytof easy integration tidyverse packages, can use result visualize fold-changes cluster (within patient) BCR-XL condition compared Basal condition using ggplot2: Importantly, output tof_analyze_abundance depends slightly underlying statistical method used, details can found documentation tof_analyze_abundance_* function family member: tof_analyze_abundance_diffcyt tof_analyze_abundance_glmm tof_analyze_abundance_ttest","code":"daa_result <- citrus_data |> tof_analyze_abundance( cluster_col = population_id, effect_col = stimulation, group_cols = patient, test_type = \"paired\", method = \"ttest\" ) daa_result #> # A tibble: 8 × 8 #> population_id p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 0.000924 0.00535 \"*\" -5.48 7 -0.00743 0.644 #> 2 2 0.00623 0.0166 \"*\" -3.86 7 -0.0156 0.674 #> 3 3 0.0235 0.0314 \"*\" -2.88 7 -0.0638 0.849 #> 4 4 0.0235 0.0314 \"*\" 2.88 7 0.0832 1.38 #> 5 5 0.0116 0.0232 \"*\" 3.39 7 0.00246 1.08 #> 6 6 0.371 0.371 \"\" -0.955 7 -0.0168 0.919 #> 7 7 0.00134 0.00535 \"*\" 5.14 7 0.0202 1.14 #> 8 8 0.236 0.270 \"\" -1.30 7 -0.00228 0.901 plot_data <- citrus_data |> mutate(population_id = as.character(population_id)) |> left_join( select(daa_result, population_id, significant, mean_fc), by = \"population_id\" ) |> dplyr::count(patient, stimulation, population_id, significant, mean_fc, name = \"n\") |> group_by(patient, stimulation) |> mutate(prop = n / sum(n)) |> ungroup() |> pivot_wider( names_from = stimulation, values_from = c(prop, n), ) |> mutate( diff = `prop_BCR-XL` - prop_Basal, fc = `prop_BCR-XL` / prop_Basal, population_id = fct_reorder(population_id, diff), direction = case_when( mean_fc > 1 & significant == \"*\" ~ \"increase\", mean_fc < 1 & significant == \"*\" ~ \"decrease\", TRUE ~ NA_character_ ) ) significance_data <- plot_data |> group_by(population_id, significant, direction) |> summarize(diff = max(diff), fc = max(fc)) |> ungroup() plot_data |> ggplot(aes(x = population_id, y = fc, fill = direction)) + geom_violin(trim = FALSE) + geom_hline(yintercept = 1, color = \"red\", linetype = \"dotted\", size = 0.5) + geom_point() + geom_text( aes(x = population_id, y = fc, label = significant), data = significance_data, size = 8, nudge_x = 0.2, nudge_y = 0.06 ) + scale_x_discrete(labels = function(x) str_c(\"cluster \", x)) + scale_fill_manual( values = c(\"decrease\" = \"#cd5241\", \"increase\" = \"#207394\"), na.translate = FALSE ) + labs( x = NULL, y = \"Abundance fold-change (stimulated / basal)\", fill = \"Effect\", caption = \"Asterisks indicate significance at an adjusted p-value of 0.05\" ) #> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. #> ℹ Please use `linewidth` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"differential-expression-analysis-with-tof_analyze_expression","dir":"Articles","previous_headings":"","what":"Differential expression analysis with tof_analyze_expression()","title":"Differential discovery analysis","text":"Similarly, suppose ’re interested intracellular signaling proteins change expression levels two stimulation conditions clusters. Differential Expression Analysis (DEA) can performed using tidytof’s tof_analyze_expression verb. , can use paired t-tests multiple-hypothesis correction test significant differences cluster’s expression signaling markers stimulation conditions. output tof_analyze_expression() also depends underlying test used, can see result looks relatively similar output tof_analyze_abundance(). , output tibble row represents differential expression results single cluster-marker pair - example, first row represents difference expression pS6 cluster 1 BCR-XL Basal conditions. row includes raw p-value multiple-hypothesis-corrected p-value cluster-marker pair. result can used make volcano plot visualize results cluster-marker pairs: , details can found documentation tof_analyze_expression_* function family member: tof_analyze_expression_diffcyt tof_analyze_expression_lmm tof_analyze_expression_ttest","code":"signaling_markers <- c( \"pNFkB_Nd142\", \"pStat5_Nd150\", \"pAkt_Sm152\", \"pStat1_Eu153\", \"pStat3_Gd158\", \"pSlp76_Dy164\", \"pBtk_Er166\", \"pErk_Er168\", \"pS6_Yb172\", \"pZap70_Gd156\" ) dea_result <- citrus_data |> tof_preprocess(channel_cols = any_of(signaling_markers)) |> tof_analyze_expression( method = \"ttest\", cluster_col = population_id, marker_cols = any_of(signaling_markers), effect_col = stimulation, group_cols = patient, test_type = \"paired\" ) dea_result |> head() #> # A tibble: 6 × 9 #> population_id marker p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 pS6_Y… 7.58e-8 2.12e-6 * 22.9 7 2.56 4.31 #> 2 2 pS6_Y… 1.16e-7 2.12e-6 * 21.6 7 2.13 2.49 #> 3 3 pBtk_… 1.32e-7 2.12e-6 * -21.2 7 -0.475 0.289 #> 4 7 pBtk_… 1.18e-7 2.12e-6 * -21.5 7 -0.518 0.286 #> 5 8 pBtk_… 1.30e-7 2.12e-6 * -21.2 7 -0.516 0.324 #> 6 4 pBtk_… 7.85e-7 1.05e-5 * -16.3 7 -0.462 0.296 volcano_data <- dea_result |> mutate( log2_fc = log(mean_fc, base = 2), log_p = -log(p_adj), significance = case_when( p_adj < 0.05 & mean_fc > 1 ~ \"increased\", p_adj < 0.05 & mean_fc < 1 ~ \"decreased\", TRUE ~ NA_character_ ), marker = str_extract(marker, \".+_\") |> str_remove(\"_\"), pair = str_c(marker, str_c(\"cluster \", population_id), sep = \"@\") ) volcano_data |> ggplot(aes(x = log2_fc, y = log_p, fill = significance)) + geom_vline(xintercept = 0, linetype = \"dashed\", color = \"gray50\") + geom_hline(yintercept = -log(0.05), linetype = \"dashed\", color = \"red\") + geom_point(shape = 21, size = 2) + ggrepel::geom_text_repel( aes(label = pair), data = slice_head(volcano_data, n = 10L), size = 2 ) + scale_fill_manual( values = c(\"decreased\" = \"#cd5241\", \"increased\" = \"#207394\"), na.value = \"#cdcdcd\" ) + labs( x = \"log2(Fold-change)\", y = \"-log10(p-value)\", fill = NULL, caption = \"Labels indicate the 10 most significant marker-cluster pairs\" )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Differential discovery analysis","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods #> [8] base #> #> other attached packages: #> [1] HDCytoData_1.22.0 flowCore_2.14.1 #> [3] SummarizedExperiment_1.32.0 Biobase_2.62.0 #> [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.7 #> [7] IRanges_2.36.0 S4Vectors_0.40.2 #> [9] MatrixGenerics_1.14.0 matrixStats_1.2.0 #> [11] ExperimentHub_2.10.0 AnnotationHub_3.10.0 #> [13] BiocFileCache_2.10.1 dbplyr_2.4.0 #> [15] BiocGenerics_0.48.1 forcats_1.0.0 #> [17] tidyr_1.3.1 ggplot2_3.5.0 #> [19] stringr_1.5.1 dplyr_1.1.4 #> [21] tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] jsonlite_1.8.8 shape_1.4.6.1 #> [3] magrittr_2.0.3 farver_2.1.1 #> [5] rmarkdown_2.26 fs_1.6.3 #> [7] zlibbioc_1.48.0 ragg_1.2.7 #> [9] vctrs_0.6.5 memoise_2.0.1 #> [11] htmltools_0.5.7 S4Arrays_1.2.1 #> [13] curl_5.2.1 SparseArray_1.2.4 #> [15] sass_0.4.8 parallelly_1.37.1 #> [17] bslib_0.6.1 desc_1.4.3 #> [19] lubridate_1.9.3 cachem_1.0.8 #> [21] igraph_2.0.2 mime_0.12 #> [23] lifecycle_1.0.4 iterators_1.0.14 #> [25] pkgconfig_2.0.3 Matrix_1.6-5 #> [27] R6_2.5.1 fastmap_1.1.1 #> [29] shiny_1.8.0 GenomeInfoDbData_1.2.11 #> [31] future_1.33.1 digest_0.6.34 #> [33] colorspace_2.1-0 AnnotationDbi_1.64.1 #> [35] textshaping_0.3.7 RSQLite_2.3.5 #> [37] labeling_0.4.3 filelock_1.0.3 #> [39] cytolib_2.14.1 fansi_1.0.6 #> [41] yardstick_1.3.0 timechange_0.3.0 #> [43] httr_1.4.7 polyclip_1.10-6 #> [45] abind_1.4-5 compiler_4.3.3 #> [47] bit64_4.0.5 withr_3.0.0 #> [49] doParallel_1.0.17 viridis_0.6.5 #> [51] DBI_1.2.2 highr_0.10 #> [53] ggforce_0.4.2 MASS_7.3-60.0.1 #> [55] lava_1.8.0 rappdirs_0.3.3 #> [57] DelayedArray_0.28.0 tools_4.3.3 #> [59] interactiveDisplayBase_1.40.0 httpuv_1.6.14 #> [61] future.apply_1.11.1 nnet_7.3-19 #> [63] glue_1.7.0 promises_1.2.1 #> [65] grid_4.3.3 generics_0.1.3 #> [67] recipes_1.0.10 gtable_0.3.4 #> [69] tzdb_0.4.0 class_7.3-22 #> [71] data.table_1.15.2 hms_1.1.3 #> [73] tidygraph_1.3.1 utf8_1.2.4 #> [75] XVector_0.42.0 ggrepel_0.9.5 #> [77] BiocVersion_3.18.1 foreach_1.5.2 #> [79] pillar_1.9.0 RcppHNSW_0.6.0 #> [81] later_1.3.2 splines_4.3.3 #> [83] tweenr_2.0.3 lattice_0.22-5 #> [85] survival_3.5-8 bit_4.0.5 #> [87] RProtoBufLib_2.14.0 tidyselect_1.2.0 #> [89] Biostrings_2.70.2 knitr_1.45 #> [91] gridExtra_2.3 xfun_0.42 #> [93] graphlayouts_1.1.1 hardhat_1.3.1 #> [95] timeDate_4032.109 stringi_1.8.3 #> [97] yaml_2.3.8 evaluate_0.23 #> [99] codetools_0.2-19 ggraph_2.2.1 #> [101] tibble_3.2.1 BiocManager_1.30.22 #> [103] cli_3.6.2 rpart_4.1.23 #> [105] xtable_1.8-4 systemfonts_1.0.6 #> [107] munsell_0.5.0 jquerylib_0.1.4 #> [109] Rcpp_1.0.12 globals_0.16.3 #> [111] png_0.1-8 parallel_4.3.3 #> [113] ellipsis_0.3.2 pkgdown_2.0.7 #> [115] gower_1.0.1 readr_2.1.5 #> [117] blob_1.2.4 listenv_0.9.1 #> [119] glmnet_4.1-8 viridisLite_0.4.2 #> [121] ipred_0.9-14 scales_1.3.0 #> [123] prodlim_2023.08.28 purrr_1.0.2 #> [125] crayon_1.5.2 rlang_1.1.3 #> [127] KEGGREST_1.42.0"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"dimensionality-reduction-with-tof_reduce_dimensions-","dir":"Articles","previous_headings":"","what":"Dimensionality reduction with tof_reduce_dimensions().","title":"Dimensionality reduction","text":"example call tof_reduce_dimensions() use tSNE visualize data tidytof’s built-phenograph_data dataset. default, tof_reduce_dimensions add reduced-dimension feature embeddings input tof_tbl return augmented tof_tbl (, tof_tbl new columns embedding dimension) result. return features embeddings , set augment FALSE (tof_cluster). Changing method argument results different low-dimensional embeddings:","code":"data(phenograph_data) # perform the dimensionality reduction phenograph_tsne <- phenograph_data |> tof_preprocess() |> tof_reduce_dimensions(method = \"tsne\") #> Loading required namespace: Rtsne # select only the tsne embedding columns phenograph_tsne |> select(contains(\"tsne\")) |> head() #> # A tibble: 6 × 2 #> .tsne1 .tsne2 #> #> 1 1.10 17.2 #> 2 -4.99 14.2 #> 3 -28.9 16.0 #> 4 -15.2 12.0 #> 5 -1.45 19.8 #> 6 -13.3 21.6 phenograph_data |> tof_preprocess() |> tof_reduce_dimensions(method = \"tsne\", augment = FALSE) #> # A tibble: 3,000 × 2 #> .tsne1 .tsne2 #> #> 1 8.65 13.2 #> 2 1.61 16.2 #> 3 -9.86 38.4 #> 4 -8.74 17.2 #> 5 6.72 15.9 #> 6 -4.57 24.6 #> 7 0.840 17.9 #> 8 -0.335 30.1 #> 9 -3.15 24.4 #> 10 4.96 8.83 #> # ℹ 2,990 more rows phenograph_data |> tof_reduce_dimensions(method = \"umap\", augment = FALSE) #> # A tibble: 3,000 × 2 #> .umap1 .umap2 #> #> 1 9.72 2.09 #> 2 8.54 2.11 #> 3 6.34 0.991 #> 4 4.00 -2.02 #> 5 9.69 1.81 #> 6 1.18 -3.16 #> 7 9.50 1.33 #> 8 4.95 -1.21 #> 9 4.90 1.34 #> 10 9.49 4.33 #> # ℹ 2,990 more rows phenograph_data |> tof_reduce_dimensions(method = \"pca\", augment = FALSE) #> # A tibble: 3,000 × 5 #> .pc1 .pc2 .pc3 .pc4 .pc5 #> #> 1 -2.77 1.23 -0.868 0.978 3.49 #> 2 -0.969 -1.02 -0.787 1.22 0.329 #> 3 -2.36 2.54 -1.95 -0.882 -1.30 #> 4 -3.68 -0.00565 0.962 0.410 0.788 #> 5 -4.03 2.07 -0.829 1.59 5.39 #> 6 -2.59 -0.108 1.32 -1.41 -1.24 #> 7 -1.55 -0.651 -0.233 1.08 0.129 #> 8 -1.18 -0.446 0.134 -0.771 -0.932 #> 9 -2.00 -0.485 0.593 -0.0416 -0.658 #> 10 -0.0356 -0.924 -0.692 1.45 0.270 #> # ℹ 2,990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"method-specifications-for-tof_reduce_-functions","dir":"Articles","previous_headings":"","what":"Method specifications for tof_reduce_*() functions","title":"Dimensionality reduction","text":"tof_reduce_dimensions() provides high-level API three lower-level functions: tof_reduce_pca(), tof_reduce_umap(), tof_reduce_tsne(). help files functions provide details algorithm-specific method specifications associated dimensionality reduction approaches. example, tof_reduce_pca takes num_comp argument determine many principal components returned: see ?tof_reduce_pca, ?tof_reduce_umap, ?tof_reduce_tsne additional details.","code":"# 2 principal components phenograph_data |> tof_reduce_pca(num_comp = 2) #> # A tibble: 3,000 × 2 #> .pc1 .pc2 #> #> 1 -2.77 1.23 #> 2 -0.969 -1.02 #> 3 -2.36 2.54 #> 4 -3.68 -0.00565 #> 5 -4.03 2.07 #> 6 -2.59 -0.108 #> 7 -1.55 -0.651 #> 8 -1.18 -0.446 #> 9 -2.00 -0.485 #> 10 -0.0356 -0.924 #> # ℹ 2,990 more rows # 3 principal components phenograph_data |> tof_reduce_pca(num_comp = 3) #> # A tibble: 3,000 × 3 #> .pc1 .pc2 .pc3 #> #> 1 -2.77 1.23 -0.868 #> 2 -0.969 -1.02 -0.787 #> 3 -2.36 2.54 -1.95 #> 4 -3.68 -0.00565 0.962 #> 5 -4.03 2.07 -0.829 #> 6 -2.59 -0.108 1.32 #> 7 -1.55 -0.651 -0.233 #> 8 -1.18 -0.446 0.134 #> 9 -2.00 -0.485 0.593 #> 10 -0.0356 -0.924 -0.692 #> # ℹ 2,990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"visualization-using-tof_plot_cells_embedding","dir":"Articles","previous_headings":"","what":"Visualization using tof_plot_cells_embedding()","title":"Dimensionality reduction","text":"Regardless method used, reduced-dimension feature embeddings can visualized using ggplot2 (graphics package). tidytof also provides helper functions easily generating dimensionality reduction plots tof_tbl tibble columns representing embedding dimensions: visualizations can helpful qualitatively describing phenotypic differences clusters dataset. example, example , can see one clusters high CD11b expression, whereas others lower CD11b expression.","code":"# plot the tsne embeddings using color to distinguish between clusters phenograph_tsne |> tof_plot_cells_embedding( embedding_cols = contains(\".tsne\"), color_col = phenograph_cluster ) # plot the tsne embeddings using color to represent CD11b expression phenograph_tsne |> tof_plot_cells_embedding( embedding_cols = contains(\".tsne\"), color_col = cd11b ) + ggplot2::scale_fill_viridis_c()"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Dimensionality reduction","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] ggplot2_3.5.0 dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] RcppAnnoy_0.0.22 matrixStats_1.2.0 compiler_4.3.3 #> [7] png_0.1-8 systemfonts_1.0.6 vctrs_0.6.5 #> [10] stringr_1.5.1 pkgconfig_2.0.3 shape_1.4.6.1 #> [13] fastmap_1.1.1 ellipsis_0.3.2 labeling_0.4.3 #> [16] ggraph_2.2.1 utf8_1.2.4 rmarkdown_2.26 #> [19] prodlim_2023.08.28 tzdb_0.4.0 ragg_1.2.7 #> [22] purrr_1.0.2 xfun_0.42 glmnet_4.1-8 #> [25] cachem_1.0.8 jsonlite_1.8.8 recipes_1.0.10 #> [28] highr_0.10 keras_2.13.0 tweenr_2.0.3 #> [31] irlba_2.3.5.1 tensorflow_2.15.0 parallel_4.3.3 #> [34] R6_2.5.1 bslib_0.6.1 stringi_1.8.3 #> [37] reticulate_1.35.0 parallelly_1.37.1 rpart_4.1.23 #> [40] lubridate_1.9.3 jquerylib_0.1.4 Rcpp_1.0.12 #> [43] iterators_1.0.14 knitr_1.45 future.apply_1.11.1 #> [46] base64enc_0.1-3 readr_2.1.5 flowCore_2.14.1 #> [49] Matrix_1.6-5 splines_4.3.3 nnet_7.3-19 #> [52] igraph_2.0.2 timechange_0.3.0 tidyselect_1.2.0 #> [55] yaml_2.3.8 viridis_0.6.5 timeDate_4032.109 #> [58] doParallel_1.0.17 codetools_0.2-19 listenv_0.9.1 #> [61] lattice_0.22-5 tibble_3.2.1 Biobase_2.62.0 #> [64] withr_3.0.0 evaluate_0.23 Rtsne_0.17 #> [67] future_1.33.1 desc_1.4.3 survival_3.5-8 #> [70] polyclip_1.10-6 embed_1.1.3 pillar_1.9.0 #> [73] whisker_0.4.1 foreach_1.5.2 stats4_4.3.3 #> [76] generics_0.1.3 RcppHNSW_0.6.0 S4Vectors_0.40.2 #> [79] hms_1.1.3 munsell_0.5.0 scales_1.3.0 #> [82] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [85] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [88] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [91] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [94] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [97] ggforce_0.4.2 cli_3.6.2 tfruns_1.5.2 #> [100] textshaping_0.3.7 fansi_1.0.6 cytolib_2.14.1 #> [103] viridisLite_0.4.2 lava_1.8.0 uwot_0.1.16 #> [106] gtable_0.3.4 zeallot_0.1.0 sass_0.4.8 #> [109] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [112] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [115] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [118] MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/downsampling.html","id":"downsampling-with-tof_downsample","dir":"Articles","previous_headings":"","what":"Downsampling with tof_downsample()","title":"Downsampling","text":"Using tidytof’s built-dataset phenograph_data, can see original size dataset 1000 cells per cluster, 3000 cells total: randomly sample 200 cells per cluster, can use tof_downsample() using “constant” method: Alternatively, wanted sample 50% cells cluster, use “prop” method: finally, might also interested taking slightly different approach downsampling reduces number cells fixed constant proportion, fixed density phenotypic space. example, following scatterplot demonstrates certain areas phenotypic density phenograph_data contain cells others along cd34/cd38 axes: reduce number cells dataset local density around cell dataset relatively constant, can use “density” method tof_downsample: Thus, can see density downsampling uniform (though exactly uniform) across range cd34/cd38 values phenograph_data.","code":"data(phenograph_data) phenograph_data |> dplyr::count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 1000 #> 2 cluster2 1000 #> 3 cluster3 1000 phenograph_data |> # downsample tof_downsample( group_cols = phenograph_cluster, method = \"constant\", num_cells = 200 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 200 #> 2 cluster2 200 #> 3 cluster3 200 phenograph_data |> # downsample tof_downsample( group_cols = phenograph_cluster, method = \"prop\", prop_cells = 0.5 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 500 #> 2 cluster2 500 #> 3 cluster3 500 rescale_max <- function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) { x / from[2] * to[2] } phenograph_data |> # preprocess all numeric columns in the dataset tof_preprocess(undo_noise = FALSE) |> # plot ggplot(aes(x = cd34, y = cd38)) + geom_hex() + coord_fixed(ratio = 0.4) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + scale_fill_viridis_c( labels = function(x) round(rescale_max(x), 2) ) + labs( fill = \"relative density\" ) phenograph_data |> tof_preprocess(undo_noise = FALSE) |> tof_downsample(method = \"density\", density_cols = c(cd34, cd38)) |> # plot ggplot(aes(x = cd34, y = cd38)) + geom_hex() + coord_fixed(ratio = 0.4) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + scale_fill_viridis_c( labels = function(x) round(rescale_max(x), 2) ) + labs( fill = \"relative density\" )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/downsampling.html","id":"additional-documentation","dir":"Articles","previous_headings":"","what":"Additional documentation","title":"Downsampling","text":"details, check documentation 3 underlying members tof_downsample_* function family (wrapped tof_downsample): tof_downsample_constant tof_downsample_prop tof_downsample_density","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/downsampling.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Downsampling","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] ggplot2_3.5.0 dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] matrixStats_1.2.0 compiler_4.3.3 systemfonts_1.0.6 #> [7] vctrs_0.6.5 stringr_1.5.1 pkgconfig_2.0.3 #> [10] shape_1.4.6.1 fastmap_1.1.1 ggraph_2.2.1 #> [13] utf8_1.2.4 rmarkdown_2.26 prodlim_2023.08.28 #> [16] tzdb_0.4.0 ragg_1.2.7 purrr_1.0.2 #> [19] xfun_0.42 glmnet_4.1-8 cachem_1.0.8 #> [22] jsonlite_1.8.8 recipes_1.0.10 highr_0.10 #> [25] tweenr_2.0.3 parallel_4.3.3 R6_2.5.1 #> [28] bslib_0.6.1 stringi_1.8.3 parallelly_1.37.1 #> [31] rpart_4.1.23 lubridate_1.9.3 jquerylib_0.1.4 #> [34] Rcpp_1.0.12 iterators_1.0.14 knitr_1.45 #> [37] future.apply_1.11.1 readr_2.1.5 flowCore_2.14.1 #> [40] Matrix_1.6-5 splines_4.3.3 nnet_7.3-19 #> [43] igraph_2.0.2 timechange_0.3.0 tidyselect_1.2.0 #> [46] yaml_2.3.8 viridis_0.6.5 timeDate_4032.109 #> [49] doParallel_1.0.17 codetools_0.2-19 listenv_0.9.1 #> [52] lattice_0.22-5 tibble_3.2.1 Biobase_2.62.0 #> [55] withr_3.0.0 evaluate_0.23 future_1.33.1 #> [58] desc_1.4.3 survival_3.5-8 polyclip_1.10-6 #> [61] pillar_1.9.0 foreach_1.5.2 stats4_4.3.3 #> [64] generics_0.1.3 RcppHNSW_0.6.0 S4Vectors_0.40.2 #> [67] hms_1.1.3 munsell_0.5.0 scales_1.3.0 #> [70] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [73] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [76] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [79] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [82] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [85] ggforce_0.4.2 cli_3.6.2 textshaping_0.3.7 #> [88] fansi_1.0.6 cytolib_2.14.1 viridisLite_0.4.2 #> [91] lava_1.8.0 gtable_0.3.4 sass_0.4.8 #> [94] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [97] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [100] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [103] MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Feature extraction","text":"demonstrate use verbs, ’ll first download dataset originally collected development CITRUS algorithm. data available HDCytoData package, available Bioconductor can downloaded following command: load CITRUS data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s . Thus, can see citrus_data tof_tbl 172791 cells (one row) 39 pieces information cell (one column). can also extract metadata raw data join single-cell data using functions tidyverse: Thus, now sample-level information patient sample collected stimulation condition (“Basal” “BCR-XL”) sample exposed data acquisition. Finally, can join metadata single-cell tof_tbl obtain cleaned dataset. data cleaning steps, now citrus_data, tof_tbl containing cells collected 8 patients. Specifically, 2 samples taken patient: one cells’ B-cell receptors stimulated (BCR-XL) one (Basal). citrus_data, cell’s patient origin stored patient column, cell’s stimulation condition stored stimulation column. addition, population_id column stores information cluster labels applied cell using combination FlowSOM clustering manual merging (details, run ?HDCytoData::Bodenmiller_BCR_XL R console).","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = \"_\") citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = 1:length(file_name), patient = stringr::str_extract(file_name, \"patient[:digit:]\"), stimulation = stringr::str_extract(file_name, \"(BCR-XL)|Reference\") ) |> mutate( stimulation = if_else(stimulation == \"Reference\", \"Basal\", stimulation) ) citrus_metadata |> head() #> # A tibble: 6 × 4 #> file_name sample_id patient stimulation #> #> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 patient1 BCR-XL #> 2 PBMC8_30min_patient1_Reference.fcs 2 patient1 Basal #> 3 PBMC8_30min_patient2_BCR-XL.fcs 3 patient2 BCR-XL #> 4 PBMC8_30min_patient2_Reference.fcs 4 patient2 Basal #> 5 PBMC8_30min_patient3_BCR-XL.fcs 5 patient3 BCR-XL #> 6 PBMC8_30min_patient3_Reference.fcs 6 patient3 Basal citrus_data <- citrus_data |> left_join(citrus_metadata, by = \"sample_id\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-cluster-proportions-using-tof_extract_proportion","dir":"Articles","previous_headings":"","what":"Calculating cluster proportions using tof_extract_proportion()","title":"Feature extraction","text":"First, tof_extract_proportion(), extracts proportion cells cluster within sample (samples defined using group_cols argument): Like members tof_extract_* function family, tof_extract_proportion() returns one row sample (defined unique combination values columns specified group_cols) one column extracted feature (, one column proportion 8 clusters citrus_data). values can also returned “long” format changing format argument:","code":"# preprocess the numeric columns in the citrus dataset citrus_data <- citrus_data |> mutate(cluster = str_c(\"cluster\", population_id)) |> tof_preprocess() citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation) ) |> head() #> # A tibble: 6 × 10 #> patient stimulation `prop@cluster1` `prop@cluster2` `prop@cluster3` #> #> 1 patient1 Basal 0.0190 0.0482 0.447 #> 2 patient1 BCR-XL 0.0109 0.0395 0.268 #> 3 patient2 Basal 0.0130 0.0280 0.491 #> 4 patient2 BCR-XL 0.0101 0.0143 0.358 #> 5 patient3 Basal 0.0326 0.0830 0.397 #> 6 patient3 BCR-XL 0.0200 0.0412 0.323 #> # ℹ 5 more variables: `prop@cluster4` , `prop@cluster5` , #> # `prop@cluster6` , `prop@cluster7` , `prop@cluster8` citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation), format = \"long\" ) |> head() #> # A tibble: 6 × 4 #> patient stimulation cluster prop #> #> 1 patient1 Basal cluster1 0.0190 #> 2 patient1 Basal cluster2 0.0482 #> 3 patient1 Basal cluster3 0.447 #> 4 patient1 Basal cluster4 0.237 #> 5 patient1 Basal cluster5 0.00219 #> 6 patient1 Basal cluster6 0.0759"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-cluster-marker-expression-measures-using-tof_extract_central_tendency","dir":"Articles","previous_headings":"","what":"Calculating cluster marker expression measures using tof_extract_central_tendency()","title":"Feature extraction","text":"Another member tof_extract_*() function family, tof_extract_central_tendency(), computes central tendency (e.g. mean median) user-specified markers cluster. argument central_tendency_function can used compute summary statistic. example, following choice central_tendency_function compute 75th percentile marker-cluster pair citrus_data:","code":"citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), central_tendency_function = mean ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct` #> #> 1 patient1 BCR-XL 4.80 0.0967 #> 2 patient1 Basal 4.68 0.765 #> 3 patient2 BCR-XL 5.00 -0.0579 #> 4 patient2 Basal 4.88 0.808 #> 5 patient3 BCR-XL 5.04 -0.0432 #> 6 patient3 Basal 4.98 0.745 #> # ℹ 22 more variables: `CD20_Sm147@cluster1_ct` , #> # `CD45_In115@cluster2_ct` , `CD4_Nd145@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD45_In115@cluster3_ct` , #> # `CD4_Nd145@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD45_In115@cluster4_ct` , `CD4_Nd145@cluster4_ct` , #> # `CD20_Sm147@cluster4_ct` , `CD45_In115@cluster5_ct` , #> # `CD4_Nd145@cluster5_ct` , `CD20_Sm147@cluster5_ct` , … citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), central_tendency_function = function(x) quantile(x = x, probs = 0.75) ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct` #> #> 1 patient1 BCR-XL 5.30 -0.0186 #> 2 patient1 Basal 5.18 1.32 #> 3 patient2 BCR-XL 5.41 -0.0201 #> 4 patient2 Basal 5.28 1.39 #> 5 patient3 BCR-XL 5.42 -0.0362 #> 6 patient3 Basal 5.41 1.27 #> # ℹ 22 more variables: `CD20_Sm147@cluster1_ct` , #> # `CD45_In115@cluster2_ct` , `CD4_Nd145@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD45_In115@cluster3_ct` , #> # `CD4_Nd145@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD45_In115@cluster4_ct` , `CD4_Nd145@cluster4_ct` , #> # `CD20_Sm147@cluster4_ct` , `CD45_In115@cluster5_ct` , #> # `CD4_Nd145@cluster5_ct` , `CD20_Sm147@cluster5_ct` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-the-proportion-of-cells-with-marker-expression-above-a-threshold-using-tof_extract_proportion","dir":"Articles","previous_headings":"","what":"Calculating the proportion of cells with marker expression above a threshold using tof_extract_proportion()","title":"Feature extraction","text":"tof_extract_threshold() similar tof_extract_central_tendency(), calculates proportion cells user-specified expression value marker instead measure central tendency:","code":"citrus_data |> tof_extract_threshold( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), threshold = 5 ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_threshold` CD4_Nd145@cluster1_thre…¹ #> #> 1 patient1 BCR-XL 0.516 0 #> 2 patient1 Basal 0.365 0 #> 3 patient2 BCR-XL 0.554 0 #> 4 patient2 Basal 0.452 0 #> 5 patient3 BCR-XL 0.547 0 #> 6 patient3 Basal 0.549 0 #> # ℹ abbreviated name: ¹​`CD4_Nd145@cluster1_threshold` #> # ℹ 22 more variables: `CD20_Sm147@cluster1_threshold` , #> # `CD45_In115@cluster2_threshold` , #> # `CD4_Nd145@cluster2_threshold` , #> # `CD20_Sm147@cluster2_threshold` , #> # `CD45_In115@cluster3_threshold` , #> # `CD4_Nd145@cluster3_threshold` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-differences-in-marker-distributions-using-tof_extract_emd-and-tof_extract_jsd","dir":"Articles","previous_headings":"","what":"Calculating differences in marker distributions using tof_extract_emd() and tof_extract_jsd()","title":"Feature extraction","text":"two final members tof_extract_* function family – tof_extract_emd tof_extract_jsd – designed specifically comparing distributions marker expression stimulation conditions. , must given stimulation column (using emd_col jsd_col argument) identifies stimulation condition cell , reference_level specifies reference (.e. unstimulated) condition within emd_col jsd_col. additional arguments, tof_extract_emd computes Earth-mover’s distance marker’s distribution stimulation conditions (within cluster) basal condition; similarly, tof_extract_jsd computes Jensen-Shannon divergence index distributions. values ways compare different 2 distributions one another computationally expensive (also higher-resolution) simply comparing measures central tendency.","code":"# Earth-mover's distance citrus_data |> tof_extract_emd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), emd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.864 2.47 13.0 #> 2 patient2 1.11 7.05 10.8 #> 3 patient3 0.670 6.23 10.5 #> 4 patient4 2.64 5.86 9.90 #> 5 patient5 0.594 7.56 8.13 #> 6 patient6 0.661 4.77 7.97 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_emd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_emd`, ³​`BCR-XL_CD20_Sm147@cluster3_emd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_emd` , #> # `BCR-XL_CD4_Nd145@cluster7_emd` , #> # `BCR-XL_CD20_Sm147@cluster7_emd` , #> # `BCR-XL_CD45_In115@cluster4_emd` , #> # `BCR-XL_CD4_Nd145@cluster4_emd` , … # Jensen-Shannon Divergence citrus_data |> tof_extract_jsd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), jsd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.0367 0.0513 0.347 #> 2 patient2 0.00831 0.168 0.401 #> 3 patient3 0.0104 0.115 0.357 #> 4 patient4 0.0301 0.135 0.205 #> 5 patient5 0.00911 0.0789 0.274 #> 6 patient6 0.00972 0.0346 0.214 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_jsd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_jsd`, ³​`BCR-XL_CD20_Sm147@cluster3_jsd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_jsd` , #> # `BCR-XL_CD4_Nd145@cluster7_jsd` , #> # `BCR-XL_CD20_Sm147@cluster7_jsd` , #> # `BCR-XL_CD45_In115@cluster4_jsd` , #> # `BCR-XL_CD4_Nd145@cluster4_jsd` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"putting-it-all-together-with-tof_extract_features","dir":"Articles","previous_headings":"","what":"Putting it all together with tof_extract_features()","title":"Feature extraction","text":"Finally, tof_extract_features() verb provides wrapper members function family, allowing users extract multiple features types . example, following code extracts proportion cluster, median several markers cluster, EMD basal condition stimulated condition cluster patients citrus_data.","code":"signaling_markers <- c( \"pNFkB_Nd142\", \"pStat5_Nd150\", \"pAkt_Sm152\", \"pStat1_Eu153\", \"pStat3_Gd158\", \"pSlp76_Dy164\", \"pBtk_Er166\", \"pErk_Er168\", \"pS6_Yb172\", \"pZap70_Gd156\" ) citrus_data |> tof_extract_features( cluster_col = cluster, group_cols = patient, stimulation_col = stimulation, lineage_cols = any_of(c(\"CD45_In115\", \"CD20_Sm147\", \"CD33_Nd148\")), signaling_cols = any_of(signaling_markers), signaling_method = \"emd\", basal_level = \"Basal\" ) |> head() #> # A tibble: 6 × 193 #> patient `prop@cluster1` `prop@cluster2` `prop@cluster3` `prop@cluster4` #> #> 1 patient1 0.0149 0.0438 0.356 0.351 #> 2 patient2 0.0115 0.0212 0.425 0.323 #> 3 patient3 0.0255 0.0594 0.355 0.217 #> 4 patient4 0.0127 0.0418 0.320 0.223 #> 5 patient5 0.0207 0.0423 0.377 0.269 #> 6 patient6 0.0183 0.0493 0.459 0.250 #> # ℹ 188 more variables: `prop@cluster5` , `prop@cluster6` , #> # `prop@cluster7` , `prop@cluster8` , #> # `CD45_In115@cluster1_ct` , `CD20_Sm147@cluster1_ct` , #> # `CD33_Nd148@cluster1_ct` , `CD45_In115@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD33_Nd148@cluster2_ct` , #> # `CD45_In115@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD33_Nd148@cluster3_ct` , `CD45_In115@cluster4_ct` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Feature extraction","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods #> [8] base #> #> other attached packages: #> [1] HDCytoData_1.22.0 flowCore_2.14.1 #> [3] SummarizedExperiment_1.32.0 Biobase_2.62.0 #> [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.7 #> [7] IRanges_2.36.0 S4Vectors_0.40.2 #> [9] MatrixGenerics_1.14.0 matrixStats_1.2.0 #> [11] ExperimentHub_2.10.0 AnnotationHub_3.10.0 #> [13] BiocFileCache_2.10.1 dbplyr_2.4.0 #> [15] BiocGenerics_0.48.1 stringr_1.5.1 #> [17] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] jsonlite_1.8.8 shape_1.4.6.1 #> [3] magrittr_2.0.3 farver_2.1.1 #> [5] rmarkdown_2.26 fs_1.6.3 #> [7] zlibbioc_1.48.0 ragg_1.2.7 #> [9] vctrs_0.6.5 memoise_2.0.1 #> [11] htmltools_0.5.7 S4Arrays_1.2.1 #> [13] curl_5.2.1 SparseArray_1.2.4 #> [15] sass_0.4.8 parallelly_1.37.1 #> [17] bslib_0.6.1 desc_1.4.3 #> [19] lubridate_1.9.3 cachem_1.0.8 #> [21] igraph_2.0.2 mime_0.12 #> [23] lifecycle_1.0.4 iterators_1.0.14 #> [25] pkgconfig_2.0.3 Matrix_1.6-5 #> [27] R6_2.5.1 fastmap_1.1.1 #> [29] shiny_1.8.0 GenomeInfoDbData_1.2.11 #> [31] future_1.33.1 digest_0.6.34 #> [33] colorspace_2.1-0 AnnotationDbi_1.64.1 #> [35] textshaping_0.3.7 RSQLite_2.3.5 #> [37] philentropy_0.8.0 filelock_1.0.3 #> [39] cytolib_2.14.1 fansi_1.0.6 #> [41] yardstick_1.3.0 timechange_0.3.0 #> [43] httr_1.4.7 polyclip_1.10-6 #> [45] abind_1.4-5 compiler_4.3.3 #> [47] bit64_4.0.5 withr_3.0.0 #> [49] doParallel_1.0.17 viridis_0.6.5 #> [51] DBI_1.2.2 ggforce_0.4.2 #> [53] MASS_7.3-60.0.1 lava_1.8.0 #> [55] rappdirs_0.3.3 DelayedArray_0.28.0 #> [57] tools_4.3.3 interactiveDisplayBase_1.40.0 #> [59] httpuv_1.6.14 future.apply_1.11.1 #> [61] nnet_7.3-19 glue_1.7.0 #> [63] promises_1.2.1 grid_4.3.3 #> [65] generics_0.1.3 recipes_1.0.10 #> [67] gtable_0.3.4 tzdb_0.4.0 #> [69] class_7.3-22 tidyr_1.3.1 #> [71] data.table_1.15.2 hms_1.1.3 #> [73] tidygraph_1.3.1 utf8_1.2.4 #> [75] XVector_0.42.0 ggrepel_0.9.5 #> [77] BiocVersion_3.18.1 foreach_1.5.2 #> [79] pillar_1.9.0 RcppHNSW_0.6.0 #> [81] later_1.3.2 splines_4.3.3 #> [83] tweenr_2.0.3 lattice_0.22-5 #> [85] survival_3.5-8 bit_4.0.5 #> [87] emdist_0.3-3 RProtoBufLib_2.14.0 #> [89] tidyselect_1.2.0 Biostrings_2.70.2 #> [91] knitr_1.45 gridExtra_2.3 #> [93] xfun_0.42 graphlayouts_1.1.1 #> [95] hardhat_1.3.1 timeDate_4032.109 #> [97] stringi_1.8.3 yaml_2.3.8 #> [99] evaluate_0.23 codetools_0.2-19 #> [101] ggraph_2.2.1 tibble_3.2.1 #> [103] BiocManager_1.30.22 cli_3.6.2 #> [105] rpart_4.1.23 xtable_1.8-4 #> [107] systemfonts_1.0.6 munsell_0.5.0 #> [109] jquerylib_0.1.4 Rcpp_1.0.12 #> [111] globals_0.16.3 png_0.1-8 #> [113] parallel_4.3.3 ellipsis_0.3.2 #> [115] pkgdown_2.0.7 gower_1.0.1 #> [117] ggplot2_3.5.0 readr_2.1.5 #> [119] blob_1.2.4 listenv_0.9.1 #> [121] glmnet_4.1-8 viridisLite_0.4.2 #> [123] ipred_0.9-14 scales_1.3.0 #> [125] prodlim_2023.08.28 purrr_1.0.2 #> [127] crayon_1.5.2 rlang_1.1.3 #> [129] KEGGREST_1.42.0"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Building predictive models","text":"illustrate work, first download patient-level data paper combine sample-level clinical annotations one tidytof’s built-datasets (ddpr_metadata). data processing steps result tibble called ddpr_patients. numeric columns ddpr_patients represent aggregated cell population features sample (see Supplementary Table 5 paper details). non-numeric columns represent clinical metadata sample (run ?ddpr_metadata information). metadata columns, important ones indicate patient develop refractory disease (“relapse”), /happen. information stored relapse_status time_to_relapse columns, respectively. also preprocessing steps might want perform now save us headaches ’re fitting models later. next part vignette, ’ll use patient-level data build predictive models using resampling procedures like k-fold cross-validation bootstrapping.","code":"data(ddpr_metadata) # link for downloading the sample-level data from the Nature Medicine website data_link <- \"https://static-content.springer.com/esm/art%3A10.1038%2Fnm.4505/MediaObjects/41591_2018_BFnm4505_MOESM3_ESM.csv\" # download the data and combine it with clinical annotations ddpr_patients <- readr::read_csv(data_link, skip = 2L, n_max = 78L, show_col_types = FALSE) |> dplyr::rename(patient_id = Patient_ID) |> dplyr::left_join(ddpr_metadata, by = \"patient_id\") |> dplyr::filter(!str_detect(patient_id, \"Healthy\")) # preview only the metadata (i.e. non-numeric) columns ddpr_patients |> dplyr::select(where(~ !is.numeric(.x))) |> head() #> # A tibble: 6 × 8 #> patient_id gender mrd_risk nci_rome_risk relapse_status type_of_relapse cohort #> #> 1 UPN1 Male Interme… Standard Yes Early Train… #> 2 UPN1-Rx Male Interme… Standard Yes Early Train… #> 3 UPN2 Male Interme… Standard No NA Train… #> 4 UPN3 Female Standard Standard No NA Train… #> 5 UPN4 Male Standard Standard No NA Valid… #> 6 UPN5 Female Standard High No NA Valid… #> # ℹ 1 more variable: ddpr_risk ddpr_patients <- ddpr_patients |> # convert the relapse_status variable to a factor # and create the time_to_event and event columns for survival modeling dplyr::mutate( relapse_status = as.factor(relapse_status), time_to_event = dplyr::if_else(relapse_status == \"Yes\", time_to_relapse, ccr), event = dplyr::if_else(relapse_status == \"Yes\", 1, 0) )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"building-a-classifier-using-elastic-net-regularized-logistic-regression","dir":"Articles","previous_headings":"","what":"Building a classifier using elastic net-regularized logistic regression","title":"Building predictive models","text":"First, can build elastic net classifier predict patients relapse patients won’t (ignoring time--event data now). , can use relapse_status column ddpr_patients outcome variable: can see samples annotated, can throw away samples don’t clinical outcome associated . original DDPR paper, 10-fold cross-validation used tune glmnet model estimate error model new datasets. , can use tof_split_data() function split cohort training test set either 10 times using k-fold cross-validation bootstrapping. Reading documentation tof_split_data() demonstrates use resampling methods (like bootstrapping). output tof_split_data() varies depending split_method used. cross-validation, result rset object rsample package. rset objects type tibble two columns: splits - column entry rsplit object (contains single resample full dataset) id - character column entry represents name fold entry splits belongs . can inspect one resamples splits column see contain: Note can use rsample::training rsample::testing return training test observations resampling: , can feed training_split tof_train_model function tune logistic regression model predicts relapse_status leukemia patient. sure check tof_create_grid documentation learn make hyperparameter search grid model tuning (case, limit mixture parameter value 1, fits sparse lasso model). Also note , case, illustrative purposes ’re incorporating features one populations interest (population 2) model, whereas original model incorporated features 12 populations (likely required quite bit computational power result). output tof_train_model tof_model, object containing information trained model (can passed tof_predict tof_assess_model verbs). tof_model printed, information optimal hyperparamters printed, table nonzero model coefficients model. training model, might interested seeing performs. One way assess classification model see well works applied directly back data trained (model’s “training data”). , can use tof_assess_model() function arguments: tof_assess_model() returns list several model assessment metrics differ depending kind tof_model trained. two-class classifier models, among useful confusion_matrix, shows classifier classified observation relative true class assignment. case, can see model performed perfectly training data (expected, model optimized using data !). can also visualize model’s performance using tof_plot_model() verb, case two-class model give us Receiver-Operating Characteristic (ROC) curve: shown , tof_plot_model() return receiver-operating curve two-class model. ’s unusual get AUC 1 machine learning world, can note case, classification problem wasn’t particularly difficult (lot input features work ). training model, generally isn’t sufficient evaluate model performs training data alone, provide overly-optimistic representation model perform data ’s never seen (problem often called “overfitting” model training data). get fairer estimate model’s performance new datasets, can also evaluate cross-validation error calling tof_assess_model() tof_plot_model() new_data argument set “tuning”. case, plot ROC Curve using predictions observation excluded model training cross-validation, approach gives accurate estimate model’s performance new data simple evaluation training dataset.","code":"# find how many of each outcome we have in our cohort ddpr_patients |> dplyr::count(relapse_status) #> # A tibble: 3 × 2 #> relapse_status n #> #> 1 No 37 #> 2 Yes 24 #> 3 NA 12 ddpr_patients_unannotated <- ddpr_patients |> dplyr::filter(is.na(relapse_status)) ddpr_patients <- ddpr_patients |> dplyr::filter(!is.na(relapse_status)) set.seed(3000L) training_split <- ddpr_patients |> tof_split_data( split_method = \"k-fold\", num_cv_folds = 10, strata = relapse_status ) training_split #> # 10-fold cross-validation using stratification #> # A tibble: 10 × 2 #> splits id #> #> 1 Fold01 #> 2 Fold02 #> 3 Fold03 #> 4 Fold04 #> 5 Fold05 #> 6 Fold06 #> 7 Fold07 #> 8 Fold08 #> 9 Fold09 #> 10 Fold10 my_resample <- training_split$splits[[1]] print(my_resample) #> #> <54/7/61> my_resample |> rsample::training() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN1 3.06 0.583 0.00449 0.164 1.94 0.416 #> 2 UPN1-Rx 0.0395 0.618 0.0634 0.572 2.93 0.944 #> 3 UPN2 0.139 0.0662 0.0221 0.0825 2.25 0.454 #> 4 UPN3 0.633 0.0234 0.0165 0.0327 2.25 0.226 #> 5 UPN4 0.0443 0.129 0.0447 0.232 2.47 0.336 #> 6 UPN5 0.0647 0.0577 0.0163 0.162 2.89 0.406 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … my_resample |> rsample::testing() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN6 5.62 0.550 0.00374 0.622 2.86 0.342 #> 2 UPN10-Rx 0.00240 0.167 0.203 0.802 2.57 0.822 #> 3 UPN13 0.0634 0.0300 0.0219 0.109 2.34 0.314 #> 4 UPN22-Rx 0.0643 1.68 0.0804 1.56 3.06 0.529 #> 5 UPN58 0.00546 0.00918 0.0168 0.480 2.70 0.112 #> 6 UPN95 0.300 0.389 0.00454 0.697 2.45 0.247 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … hyperparams <- tof_create_grid(mixture_values = 1) class_mod <- training_split |> tof_train_model( predictor_cols = c(contains(\"Pop2\")), response_col = relapse_status, model_type = \"two-class\", hyperparameter_grid = hyperparams, impute_missing_predictors = TRUE, remove_zv_predictors = TRUE # often a smart decision ) print(class_mod) #> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e-10 #> # A tibble: 28 × 2 #> feature coefficient #> #> 1 p4EBP1_dP_IL7_Pop2 -3.10 #> 2 pCreb_dP_PVO4_Pop2 -2.66 #> 3 TSLPr_Pop2 2.07 #> 4 CD43_Pop2 2.00 #> 5 pSTAT5_FC_PVO4_Pop2 -1.80 #> 6 pS6_dP_IL7_Pop2 1.56 #> 7 pPLCg1_2_dP_PVO4_Pop2 1.44 #> 8 (Intercept) -1.43 #> 9 pSTAT5_FC_BCR_Pop2 1.24 #> 10 pErk_dP_IL7_Pop2 -1.23 #> # ℹ 18 more rows training_classifier_metrics <- class_mod |> tof_assess_model() training_classifier_metrics$confusion_matrix #> # A tibble: 4 × 3 #> true_outcome predicted_outcome num_observations #> #> 1 No No 37 #> 2 No Yes 0 #> 3 Yes No 0 #> 4 Yes Yes 24 class_mod |> tof_plot_model() cv_classifier_metrics <- class_mod |> tof_assess_model(new_data = \"tuning\") class_mod |> tof_plot_model(new_data = \"tuning\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"building-a-survival-model-using-elastic-net-regularized-cox-regression","dir":"Articles","previous_headings":"","what":"Building a survival model using elastic net-regularized cox regression","title":"Building predictive models","text":"Building ideas , sophisticated way model data simply predict relapse won’t, build time--event model estimates patients’ probabilities relapse function time since diagnosis. approach called “survival modeling” (specifically, case use Cox-proportional hazards modeling) takes account patients adverse events different times course disease (.e. everyone relapses time). build survival model using tidytof, use tof_train_model() verb setting model_type flag “survival”. addition, need provide two outcome columns. first columns (event_col) indicates patient relapsed (.e. experienced event--interest) censored certain amount follow-time. second (time_col) indicates much time took patient relapse censored analysis. survival model trained, can used predict patient’s probability event--interest different times post-diagnosis. However, common way survival models applied practice use patient’s predicted relative risk event--interest divide patients low- high-risk subgroups. tidytof can automatically according optimal split obtained using log-rank test possible split points dataset tof_assess_model(). addition, return predicted survival curve patient time: survival models, tof_plot_model() plots average survival curves low- high-risk groups:","code":"hyperparams <- tof_create_grid(mixture_values = 1) survival_mod <- training_split |> tof_train_model( predictor_cols = c(contains(\"Pop2\")), time_col = time_to_event, event_col = event, model_type = \"survival\", hyperparameter_grid = hyperparams, impute_missing_predictors = TRUE, remove_zv_predictors = TRUE # often a smart decision ) print(survival_mod) #> A survival `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-03 #> # A tibble: 40 × 2 #> feature coefficient #> #> 1 pErk_dP_TSLP_Pop2 -7.03 #> 2 pCreb_dP_PVO4_Pop2 -5.47 #> 3 CD19_Pop2 -3.73 #> 4 CD34_Pop2 3.63 #> 5 pSTAT5_FC_BCR_Pop2 3.40 #> 6 HLADR_Pop2 -3.38 #> 7 pPLCg1_2_dP_IL7_Pop2 3.33 #> 8 pPLCg1_2_dP_PVO4_Pop2 3.14 #> 9 pSyk_dP_TSLP_Pop2 2.88 #> 10 CD123_Pop2 2.77 #> # ℹ 30 more rows survival_metrics <- survival_mod |> tof_assess_model() survival_metrics #> $model_metrics #> # A tibble: 3 × 2 #> metric value #> #> 1 neg_log_partial_likelihood 1.76e+ 1 #> 2 concordance_index 1 e+ 0 #> 3 log_rank_p_value 1.47e-22 #> #> $survival_curves #> # A tibble: 61 × 6 #> row_index survival_curve relative_risk time_to_event event risk_group #> #> 1 1 2.83e+3 1043 1 low #> 2 2 2.61e+3 1043 1 low #> 3 3 1.58e-8 5406 0 low #> 4 4 2.09e-4 4917 0 low #> 5 5 9.98e-3 4538 0 low #> 6 6 6.62e-1 4490 0 low #> 7 7 4.09e+9 136 1 high #> 8 8 2.57e+8 364 1 high #> 9 9 1.27e+9 237 1 high #> 10 10 2.31e+4 886 1 low #> # ℹ 51 more rows survival_mod |> tof_plot_model() cv_survival_metrics <- survival_mod |> tof_assess_model(new_data = \"tuning\") survival_mod |> tof_plot_model(new_data = \"tuning\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Building predictive models","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] stringr_1.5.1 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] furrr_0.3.1 matrixStats_1.2.0 compiler_4.3.3 #> [7] systemfonts_1.0.6 vctrs_0.6.5 crayon_1.5.2 #> [10] pkgconfig_2.0.3 shape_1.4.6.1 fastmap_1.1.1 #> [13] ellipsis_0.3.2 labeling_0.4.3 ggraph_2.2.1 #> [16] utf8_1.2.4 rmarkdown_2.26 prodlim_2023.08.28 #> [19] tzdb_0.4.0 ragg_1.2.7 bit_4.0.5 #> [22] purrr_1.0.2 xfun_0.42 glmnet_4.1-8 #> [25] cachem_1.0.8 jsonlite_1.8.8 recipes_1.0.10 #> [28] highr_0.10 tweenr_2.0.3 parallel_4.3.3 #> [31] R6_2.5.1 rsample_1.2.0 bslib_0.6.1 #> [34] stringi_1.8.3 parallelly_1.37.1 rpart_4.1.23 #> [37] lubridate_1.9.3 jquerylib_0.1.4 Rcpp_1.0.12 #> [40] iterators_1.0.14 knitr_1.45 future.apply_1.11.1 #> [43] readr_2.1.5 flowCore_2.14.1 Matrix_1.6-5 #> [46] splines_4.3.3 nnet_7.3-19 igraph_2.0.2 #> [49] timechange_0.3.0 tidyselect_1.2.0 yaml_2.3.8 #> [52] viridis_0.6.5 timeDate_4032.109 doParallel_1.0.17 #> [55] codetools_0.2-19 curl_5.2.1 listenv_0.9.1 #> [58] lattice_0.22-5 tibble_3.2.1 Biobase_2.62.0 #> [61] withr_3.0.0 evaluate_0.23 future_1.33.1 #> [64] desc_1.4.3 survival_3.5-8 polyclip_1.10-6 #> [67] pillar_1.9.0 foreach_1.5.2 stats4_4.3.3 #> [70] generics_0.1.3 vroom_1.6.5 RcppHNSW_0.6.0 #> [73] S4Vectors_0.40.2 hms_1.1.3 ggplot2_3.5.0 #> [76] munsell_0.5.0 scales_1.3.0 globals_0.16.3 #> [79] class_7.3-22 glue_1.7.0 tools_4.3.3 #> [82] data.table_1.15.2 gower_1.0.1 fs_1.6.3 #> [85] graphlayouts_1.1.1 tidygraph_1.3.1 grid_4.3.3 #> [88] yardstick_1.3.0 tidyr_1.3.1 RProtoBufLib_2.14.0 #> [91] ipred_0.9-14 colorspace_2.1-0 ggforce_0.4.2 #> [94] cli_3.6.2 textshaping_0.3.7 fansi_1.0.6 #> [97] cytolib_2.14.1 viridisLite_0.4.2 lava_1.8.0 #> [100] dplyr_1.1.4 gtable_0.3.4 sass_0.4.8 #> [103] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [106] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [109] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [112] bit64_4.0.5 MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/preprocessing.html","id":"preprocessing-with-tof_preprocess","dir":"Articles","previous_headings":"","what":"Preprocessing with tof_preprocess","title":"Preprocessing","text":"Generally speaking, raw ion counts measured analyte mass cytometer (content raw FCS files obtained directly mass cytometer) need transformed CyTOF data analysis. Common preprocessing steps may include variance-stabilizing transformations - hyperbolic arcsine (arcsinh) transformation log transformation - scaling/centering, /denoising. perform standard preprocessing tasks tidytof, use tof_preprocess. tof_preprocess’s default behavior apply arcsinh transformation (cofactor 5) numeric column input tof_tibble well remove gaussian noise Fluidigm software adds ion count (noise added visualization purposes, analyses, removing recommended). example, can preprocess tidytof’s built-phenograph_data tof_tibble see first measurements change . alter tof_preprocess’s default behavior, change channel_cols argument specify columns tof_tibble transformed. Alter transform_fun argument specify vector-valued function used transform channel_cols. example, suppose want center scale numeric columns instead arcsinh-transforming : keep gaussian noise added Fluidigm software (working dataset noise), set undo_noise argument FALSE.","code":"data(phenograph_data) # before preprocessing phenograph_data %>% select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 131. 3.23 1.51 #> 2 230. -0.582 11.4 #> 3 293. 5.20 1.84 #> 4 431. 0.363 13.3 #> # ℹ 2 more rows phenograph_data %>% # perform preprocessing tof_preprocess() %>% # inspect new values select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 3.96 0.608 0.298 #> 2 4.52 -0.116 1.56 #> 3 4.76 0.909 0.360 #> 4 5.15 0.0725 1.70 #> # ℹ 2 more rows phenograph_data %>% # preprocess tof_preprocess(transform_fun = scale) %>% # inspect new values select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45[,1] cd34[,1] cd38[,1] #> #> 1 -1.40 1.01 -0.437 #> 2 -1.15 -0.911 0.0316 #> 3 -0.999 2.00 -0.422 #> 4 -0.661 -0.436 0.120 #> # ℹ 2 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/preprocessing.html","id":"postprocessing-with-tof_postprocess","dir":"Articles","previous_headings":"","what":"Postprocessing with tof_postprocess","title":"Preprocessing","text":"final note, note built-function tof_postprocess works nearly identically tof_preprocess, provides different default behavior (namely, applying reverse arcsinh transformation cofactor 5 numeric columns. See ?tof_postprocess details).","code":"print(phenograph_data) %>% select(cd45, cd34, cd38) %>% head() #> # A tibble: 3,000 × 25 #> sample_name phenograph_cluster cd19 cd11b cd34 cd45 cd123 cd33 cd47 #> #> 1 H1_PhenoGra… cluster1 -0.168 29.0 3.23 131. -0.609 1.21 13.0 #> 2 H1_PhenoGra… cluster1 1.65 4.83 -0.582 230. 2.53 -0.507 12.9 #> 3 H1_PhenoGra… cluster1 2.79 36.1 5.20 293. -0.265 3.67 27.1 #> 4 H1_PhenoGra… cluster1 0.0816 48.8 0.363 431. 2.04 9.40 41.0 #> # ℹ 2,996 more rows #> # ℹ 16 more variables: cd7 , cd44 , cd38 , cd3 , #> # cd117 , cd64 , cd41 , pstat3 , pstat5 , #> # pampk , p4ebp1 , ps6 , pcreb , `pzap70-syk` , #> # prb , `perk1-2` #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 131. 3.23 1.51 #> 2 230. -0.582 11.4 #> 3 293. 5.20 1.84 #> 4 431. 0.363 13.3 #> # ℹ 2 more rows # after preprocessing and post-processing, the data are the same # except that the re-added noise component is different for each value phenograph_data %>% tof_preprocess() %>% tof_postprocess(redo_noise = TRUE) %>% select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 130. 2.81 1.17 #> 2 229. -0.800 10.6 #> 3 292. 4.68 1.42 #> 4 431. -0.406 13.2 #> # ℹ 2 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/preprocessing.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Preprocessing","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] tidyselect_1.2.0 viridisLite_0.4.2 timeDate_4032.109 #> [4] farver_2.1.1 viridis_0.6.5 ggraph_2.2.1 #> [7] fastmap_1.1.1 tweenr_2.0.3 rpart_4.1.23 #> [10] digest_0.6.34 timechange_0.3.0 lifecycle_1.0.4 #> [13] yardstick_1.3.0 survival_3.5-8 magrittr_2.0.3 #> [16] compiler_4.3.3 rlang_1.1.3 sass_0.4.8 #> [19] tools_4.3.3 igraph_2.0.2 utf8_1.2.4 #> [22] yaml_2.3.8 data.table_1.15.2 knitr_1.45 #> [25] graphlayouts_1.1.1 withr_3.0.0 purrr_1.0.2 #> [28] RProtoBufLib_2.14.0 BiocGenerics_0.48.1 desc_1.4.3 #> [31] nnet_7.3-19 grid_4.3.3 polyclip_1.10-6 #> [34] stats4_4.3.3 fansi_1.0.6 RcppHNSW_0.6.0 #> [37] future_1.33.1 colorspace_2.1-0 ggplot2_3.5.0 #> [40] globals_0.16.3 scales_1.3.0 iterators_1.0.14 #> [43] MASS_7.3-60.0.1 cli_3.6.2 rmarkdown_2.26 #> [46] ragg_1.2.7 generics_0.1.3 future.apply_1.11.1 #> [49] tzdb_0.4.0 cachem_1.0.8 flowCore_2.14.1 #> [52] ggforce_0.4.2 stringr_1.5.1 splines_4.3.3 #> [55] parallel_4.3.3 matrixStats_1.2.0 vctrs_0.6.5 #> [58] hardhat_1.3.1 glmnet_4.1-8 Matrix_1.6-5 #> [61] jsonlite_1.8.8 cytolib_2.14.1 hms_1.1.3 #> [64] S4Vectors_0.40.2 ggrepel_0.9.5 listenv_0.9.1 #> [67] systemfonts_1.0.6 foreach_1.5.2 gower_1.0.1 #> [70] tidyr_1.3.1 jquerylib_0.1.4 recipes_1.0.10 #> [73] parallelly_1.37.1 glue_1.7.0 pkgdown_2.0.7 #> [76] codetools_0.2-19 stringi_1.8.3 lubridate_1.9.3 #> [79] gtable_0.3.4 shape_1.4.6.1 munsell_0.5.0 #> [82] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.7 #> [85] ipred_0.9-14 lava_1.8.0 R6_2.5.1 #> [88] textshaping_0.3.7 doParallel_1.0.17 tidygraph_1.3.1 #> [91] evaluate_0.23 Biobase_2.62.0 lattice_0.22-5 #> [94] readr_2.1.5 memoise_2.0.1 bslib_0.6.1 #> [97] class_7.3-22 Rcpp_1.0.12 prodlim_2023.08.28 #> [100] gridExtra_2.3 xfun_0.42 fs_1.6.3 #> [103] pkgconfig_2.0.3"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Quality control","text":"demonstrate use {tidytof}’s quality control verbs, use combination simulated real data vignette. Simulated data generated --fly sections , walk download real dataset section. want download dataset originally collected development PhenoGraph algorithm. data built HDCytoData package, available Bioconductor can downloaded following command: load PhenoGraph data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s. also add lines dplyr code clean column names perform standard arcsinh transformation. Thus, can see levine tof_tbl 265627 cells (one row) 40 pieces information cell (one column).","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") levine <- HDCytoData::Levine_32dim_flowSet() |> as_tof_tbl() |> # a bit of data cleaning dplyr::mutate(population_id = as.character(population_id)) |> dplyr::rename_with( .fn = \\(x) stringr::str_to_lower(stringr::str_remove(x, \"\\\\|.+\")) ) |> dplyr::mutate(dplyr::across(c(file_number, population_id), as.character)) |> # arcsinh transformation tof_preprocess( channel_cols = c(-time, -cell_length, -event_number, -file_number, -population_id) )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"detect-low-expression-i-e--potentially-failed-channels-with-tof_assess_channels","dir":"Articles","previous_headings":"","what":"Detect low-expression (i.e. potentially failed) channels with tof_assess_channels()","title":"Quality control","text":"data collection, might wonder channels include downstream analyses. particular, might want exclude channels positive values, situation indicates antibody may failed, signal particular channel may weak detected. , can use tof_assess_channels(), verb calculates many cells negative (.e. use-specified threshold, negative_threshold) channel flags channels user-specified proportion negative cells (negative_proportion_flag). levine dataset, look markers 97.5% cells threshold 5 ion counts: can see two channels 97.5% cells dataset 5 counts. given experiment, might expected (.e. marker expressed rare cell population) unexpected (marker expressed many cells). case, can visualize marker negative cells manually inspect (recommend flagged channels). case, looks like small population cells slightly positive cd14, simply measurement noise/nonspecific binding antibody. user whether include cd14 downstream analyses.","code":"# convert 5 counts to asinh value with a cofactor of 5 threshold <- asinh(5 / 5) levine |> tof_assess_channels( negative_threshold = threshold, negative_proportion_flag = 0.975 ) #> # A tibble: 38 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd14 0.988 TRUE #> 2 cd133 0.975 TRUE #> 3 cd117 0.969 FALSE #> 4 cd16 0.967 FALSE #> 5 flt3 0.960 FALSE #> 6 cd15 0.940 FALSE #> 7 cd41 0.923 FALSE #> 8 cd34 0.909 FALSE #> 9 cd61 0.890 FALSE #> 10 cd33 0.885 FALSE #> # ℹ 28 more rows levine |> tof_plot_cells_density(marker_col = cd14)"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"identify-time-periods-of-abnormally-low-or-high-flow-rate-during-data-acquisition-using-tof_assess_flow_rate","dir":"Articles","previous_headings":"","what":"Identify time periods of abnormally low or high flow rate during data acquisition using tof_assess_flow_rate()","title":"Quality control","text":"Large changes flow rate cytometer can impact quality signal acquired data collection: example, abnormally low flow rates can caused partial occlusions cytometer’s flow cell, leading debris air infiltration cytometer’s microfluidics system. Thus, can useful perform quality control step explicitly interrogates flow rate course cytometry experiment order flag cells collected unusually high low rates acquisition. , {tidytof} provides tof_assess_flow_rate(), function implements simplified version FlowAI’s flow rate analysis. short, relative flow rates timestep cytometry experiment calculated, outlier timepoints particularly high low flow rates (.e. beyond extreme values t-distribution across timesteps) flagged. size timesteps user-defined parameter calculation, significance level (0 1) within t-distribution determines anomalous time step’s flow rate must cells flagged. can apply tof_assess_flow_rate() levine dataset , using result , can see last several timesteps flagged potentially low flow rates. decision include exclude cells analyses left user. group_cols argument can also used analyze flow rates samples, patients, mass cytometry barcode plates, etc. separately.","code":"levine |> tof_assess_flow_rate( time_col = time, num_timesteps = 200, # flag timepoints in which flow rates are high or low at a signicance level # of p = 0.01 alpha_threshold = 0.01, # plot the number of cells in each timestep, and whether or not the # rates were flagged as too high or too low visualize = TRUE ) levine |> tof_assess_flow_rate( time_col = time, # analyze two files in the levine dataset separately group_cols = file_number, alpha_threshold = 0.01, visualize = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"flag-cells-that-are-unusually-far-from-the-centroid-of-a-cluster-to-which-they-have-been-assigned-with-tof_assess_clusters_distance","dir":"Articles","previous_headings":"","what":"Flag cells that are unusually far from the centroid of a cluster to which they have been assigned with tof_assess_clusters_distance()","title":"Quality control","text":"using favorite clustering algorithm define cell subpopulations (example, using tof_cluster()), may wonder well clustering procedure worked. example, may clusters contain outliers - , cells less similar cells cluster typical. detect cells, tidytof provides tof_assess_clusters_distance() verb, computes Mahalanobis distance cell centroid cluster assigned. , computes z-score mahalanobis distances cells cluster flags cells z-score user-specified threshold. Altogether, procedure flags cells unusually far cluster centroid - .e. candidate outliers. demonstrate use tof_assess_clusters_distance() simulated data. simulate data 3 clusters, large population cells “truly” belong cluster well small population outliers cells erroneously assigned cluster. following plots visualize simulated data described : Using dataset, see tof_assess_clusters_distance() can successfully flag majority outlier cells cluster.","code":"set.seed(2020L) # simulate large population of cells that truly belong in their assigned cluster sim_data_base <- dplyr::tibble( cd45 = c(rnorm(n = 600), rnorm(n = 500, mean = -4)), cd38 = c( rnorm(n = 100, sd = 0.5), rnorm(n = 500, mean = -3), rnorm(n = 500, mean = 8) ), cd34 = c( rnorm(n = 100, sd = 0.2, mean = -10), rnorm(n = 500, mean = 4), rnorm(n = 500, mean = 60) ), cd19 = c(rnorm(n = 100, sd = 0.3, mean = 10), rnorm(n = 1000)), cluster_id = c(rep(\"a\", 100), rep(\"b\", 500), rep(\"c\", 500)), dataset = \"non-outlier\" ) # simulate outlier cells that do not belong in their assigned cluster sim_data_outlier <- dplyr::tibble( cd45 = c(rnorm(n = 10), rnorm(50, mean = 3), rnorm(n = 50, mean = -12)), cd38 = c( rnorm(n = 10, sd = 0.5), rnorm(n = 50, mean = -10), rnorm(n = 50, mean = 10) ), cd34 = c( rnorm(n = 10, sd = 0.2, mean = -15), rnorm(n = 50, mean = 15), rnorm(n = 50, mean = 70) ), cd19 = c(rnorm(n = 10, sd = 0.3, mean = 19), rnorm(n = 100)), cluster_id = c(rep(\"a\", 10), rep(\"b\", 50), rep(\"c\", 50)), dataset = \"outlier\" ) # bind simulated data together sim_data <- bind_rows(sim_data_base, sim_data_outlier) sim_data |> tof_plot_cells_embedding(color_col = cluster_id) sim_data |> tof_plot_cells_embedding(color_col = dataset) sim_data |> tof_assess_clusters_distance( cluster_col = cluster_id, # flag cells with a mahalanobis distance z-score over 3 z_threshold = 3, augment = TRUE ) |> # visualize result as above dplyr::select(-dplyr::starts_with(\".mahala\"), -z_score) |> dplyr::mutate(flagged_cell = as.character(flagged_cell)) |> tof_plot_cells_embedding(color_col = flagged_cell) + scale_fill_manual(values = tof_generate_palette(num_colors = 2))"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"flag-cells-whose-cluster-assignment-is-ambiguous-with-tof_assess_clusters_entropy","dir":"Articles","previous_headings":"","what":"Flag cells whose cluster assignment is ambiguous with tof_assess_clusters_entropy()","title":"Quality control","text":"may also wish evaluate clustering result based cell’s absolute distance centroid cluster assigned, based relative distances cell cluster centroids. , order confident cell’s cluster assignment, ideally want cell close centroid cluster assigned, relatively distant clusters. contrasts scenario cell might similarly close centroids 2-3 clusters, case might think cell “ambiguous” phenotype, phenotype intermediate clusters clustering algorithm identified. flag “ambiguous” clusters, {tidytof} provides tof_assess_clusters_entropy() verb. tof_assess_clusters_entropy() computes entropy L1-scaled mahalanobis distance vector (.e. mahalanobis distance cell centroids clusters dataset) - entropy low (close 0) confident cell’s cluster assignment, high (near 1) equally close multiple cluster centroids. demonstrate use function simulated data levine dataset .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"simulated-data","dir":"Articles","previous_headings":"Flag cells whose cluster assignment is ambiguous with tof_assess_clusters_entropy()","what":"Simulated data","title":"Quality control","text":"First, simulate fake dataset 3000 cells 4 channels. simulated dataset, two well-defined clusters (“b” “c”) dispersed cluster intermediate others (“”). data visualized : dataset, can imagine first analysis approach might involve clustering cells 2 distinct clusters. data simulated, already know number clusters small - can calculating entropy cells resulting clusters help us realize without prior knowledge? check, can use tof_assess_clusters_entropy(): plots , can see cells middle 2 k-means clusters (correspond well ground-truth clusters “b” “c” ) high entropy values, whereas cells closer one centroids low entropy values. can also see tof_assess_clusters_entropy() flags cells potentially anomalous (.e. intermediate phenotype two clusters identified) entropy values 75th percentile (user-specified parameter) entropy values dataset. user wish recluster dataset, filter anomalous cells, processing steps. can see , expected, intermediate cluster (“”) higher entropies either distinct clusters (“b” “c”).","code":"sim_data <- dplyr::tibble( cd45 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cd38 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cd34 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cd19 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cluster_id = c(rep(\"a\", 1000), rep(\"b\", 1000), rep(\"c\", 1000)) ) sim_data |> tof_reduce_dimensions(method = \"pca\") |> tof_plot_cells_embedding( embedding_cols = c(.pc1, .pc2), color_col = cluster_id ) set.seed(17L) entropy_result <- sim_data |> # cluster into 2 clusters tof_cluster( num_clusters = 2, method = \"kmeans\" ) |> # calculate the entropy of all cells tof_assess_clusters_entropy( cluster_col = .kmeans_cluster, marker_cols = starts_with(\"cd\"), entropy_quantile = 0.8, augment = TRUE ) # plot the clusters in PCA space entropy_result |> select(-starts_with(\".mahala\"), -flagged_cell) |> tof_reduce_dimensions(pca_cols = starts_with(\"cd\"), method = \"pca\") |> tof_plot_cells_embedding(embedding_cols = c(.pc1, .pc2), color_col = .kmeans_cluster) # show the entropy values for each cell entropy_result |> select(-starts_with(\".mahala\"), -flagged_cell) |> tof_reduce_dimensions(pca_cols = starts_with(\"cd\"), method = \"pca\") |> tof_plot_cells_embedding(embedding_cols = c(.pc1, .pc2), color_col = entropy) + scale_fill_viridis_c() entropy_result |> select(-starts_with(\".mahala\")) |> tof_reduce_dimensions(pca_cols = starts_with(\"cd\"), method = \"pca\") |> tof_plot_cells_embedding(embedding_cols = c(.pc1, .pc2), color_col = flagged_cell) + scale_fill_viridis_d() entropy_result |> ggplot(aes(x = entropy, fill = cluster_id)) + geom_density(alpha = 0.4) + theme_bw()"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"real-data","dir":"Articles","previous_headings":"Flag cells whose cluster assignment is ambiguous with tof_assess_clusters_entropy()","what":"Real data","title":"Quality control","text":"can also apply tof_assess_clusters_entropy() dataset derived levine data. Suppose take 5 largest clusters levine save result small_levine tof_tbl. , can perturb dataset replacing labels cells smallest cluster (cluster 9) random labels. effectively creates population cells dataset whose “true” cluster label absent. scenario, expect cells perturbed cluster relatively distant remaining clusters, whereas unperturbed cells relatively close cluster centroid (correct centroid). Thus, can test tof_assess_clusters_entropy() successfully flags cells perturbed cluster relative others: plot , can see cells cluster 9 larger entropy values cells clusters, expected. Similarly, can see majority cells 9 successfully flagged tof_assess_clusters_entropy() using entropy quantile threshold 0.9. Conversely, cells cluster (cluster 15) flagged.","code":"clusters_to_keep <- levine |> dplyr::count(population_id) |> dplyr::slice_max(order_by = n, n = 5L) |> dplyr::arrange(n) |> pull(population_id) smallest_cluster <- clusters_to_keep[1] largest_cluster <- clusters_to_keep[[length(clusters_to_keep)]] small_levine <- levine |> dplyr::filter(population_id %in% clusters_to_keep) # perform the perturbation small_levine <- small_levine |> dplyr::mutate( new_population_id = dplyr::if_else( population_id %in% smallest_cluster, sample( clusters_to_keep[-which(clusters_to_keep %in% smallest_cluster)], size = nrow(small_levine), replace = TRUE ), population_id ) ) # perform the entropy assessment entropy_levine <- small_levine |> tof_assess_clusters_entropy( cluster_col = new_population_id, marker_cols = starts_with(\"cd\"), augment = TRUE ) entropy_levine |> mutate(population_id = fct_reorder(population_id, entropy)) |> tof_plot_cells_density( marker_col = entropy, group_col = population_id, use_ggridges = TRUE, scale = 0.1 ) + ggplot2::theme(legend.position = \"none\") + ggplot2::labs(x = \"Entropy\", y = \"Cluster ID\") entropy_levine |> mutate(flagged_cell = entropy > quantile(entropy, prob = 0.9)) |> dplyr::count(population_id, flagged_cell) |> group_by(population_id) |> mutate(prop = n / sum(n)) |> ungroup() |> dplyr::filter(flagged_cell) #> # A tibble: 2 × 4 #> population_id flagged_cell n prop #> #> 1 15 TRUE 12888 0.0798 #> 2 9 TRUE 11666 0.706"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Quality control","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods #> [8] base #> #> other attached packages: #> [1] HDCytoData_1.22.0 flowCore_2.14.1 #> [3] SummarizedExperiment_1.32.0 Biobase_2.62.0 #> [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.7 #> [7] IRanges_2.36.0 S4Vectors_0.40.2 #> [9] MatrixGenerics_1.14.0 matrixStats_1.2.0 #> [11] ExperimentHub_2.10.0 AnnotationHub_3.10.0 #> [13] BiocFileCache_2.10.1 dbplyr_2.4.0 #> [15] BiocGenerics_0.48.1 forcats_1.0.0 #> [17] ggplot2_3.5.0 dplyr_1.1.4 #> [19] tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] jsonlite_1.8.8 shape_1.4.6.1 #> [3] magrittr_2.0.3 farver_2.1.1 #> [5] rmarkdown_2.26 fs_1.6.3 #> [7] zlibbioc_1.48.0 ragg_1.2.7 #> [9] vctrs_0.6.5 memoise_2.0.1 #> [11] htmltools_0.5.7 S4Arrays_1.2.1 #> [13] curl_5.2.1 SparseArray_1.2.4 #> [15] sass_0.4.8 parallelly_1.37.1 #> [17] bslib_0.6.1 desc_1.4.3 #> [19] lubridate_1.9.3 cachem_1.0.8 #> [21] igraph_2.0.2 mime_0.12 #> [23] lifecycle_1.0.4 iterators_1.0.14 #> [25] pkgconfig_2.0.3 Matrix_1.6-5 #> [27] R6_2.5.1 fastmap_1.1.1 #> [29] shiny_1.8.0 GenomeInfoDbData_1.2.11 #> [31] future_1.33.1 digest_0.6.34 #> [33] colorspace_2.1-0 AnnotationDbi_1.64.1 #> [35] textshaping_0.3.7 RSQLite_2.3.5 #> [37] labeling_0.4.3 filelock_1.0.3 #> [39] cytolib_2.14.1 fansi_1.0.6 #> [41] yardstick_1.3.0 timechange_0.3.0 #> [43] httr_1.4.7 polyclip_1.10-6 #> [45] abind_1.4-5 compiler_4.3.3 #> [47] bit64_4.0.5 withr_3.0.0 #> [49] doParallel_1.0.17 viridis_0.6.5 #> [51] DBI_1.2.2 highr_0.10 #> [53] ggforce_0.4.2 MASS_7.3-60.0.1 #> [55] lava_1.8.0 rappdirs_0.3.3 #> [57] DelayedArray_0.28.0 tools_4.3.3 #> [59] interactiveDisplayBase_1.40.0 httpuv_1.6.14 #> [61] future.apply_1.11.1 nnet_7.3-19 #> [63] glue_1.7.0 promises_1.2.1 #> [65] grid_4.3.3 generics_0.1.3 #> [67] recipes_1.0.10 gtable_0.3.4 #> [69] tzdb_0.4.0 class_7.3-22 #> [71] tidyr_1.3.1 data.table_1.15.2 #> [73] hms_1.1.3 tidygraph_1.3.1 #> [75] utf8_1.2.4 XVector_0.42.0 #> [77] ggrepel_0.9.5 BiocVersion_3.18.1 #> [79] foreach_1.5.2 pillar_1.9.0 #> [81] stringr_1.5.1 RcppHNSW_0.6.0 #> [83] later_1.3.2 splines_4.3.3 #> [85] tweenr_2.0.3 lattice_0.22-5 #> [87] survival_3.5-8 bit_4.0.5 #> [89] RProtoBufLib_2.14.0 tidyselect_1.2.0 #> [91] Biostrings_2.70.2 knitr_1.45 #> [93] gridExtra_2.3 xfun_0.42 #> [95] graphlayouts_1.1.1 hardhat_1.3.1 #> [97] timeDate_4032.109 stringi_1.8.3 #> [99] yaml_2.3.8 evaluate_0.23 #> [101] codetools_0.2-19 ggraph_2.2.1 #> [103] tibble_3.2.1 BiocManager_1.30.22 #> [105] cli_3.6.2 rpart_4.1.23 #> [107] xtable_1.8-4 systemfonts_1.0.6 #> [109] munsell_0.5.0 jquerylib_0.1.4 #> [111] Rcpp_1.0.12 globals_0.16.3 #> [113] png_0.1-8 parallel_4.3.3 #> [115] ellipsis_0.3.2 pkgdown_2.0.7 #> [117] gower_1.0.1 readr_2.1.5 #> [119] blob_1.2.4 listenv_0.9.1 #> [121] glmnet_4.1-8 viridisLite_0.4.2 #> [123] ipred_0.9-14 ggridges_0.5.6 #> [125] scales_1.3.0 prodlim_2023.08.28 #> [127] purrr_1.0.2 crayon_1.5.2 #> [129] rlang_1.1.3 KEGGREST_1.42.0"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Reading and writing data","text":"tidytof comes bundled several example mass cytometry datasets. access raw FCS CSV files containing data, use tidytof_example_data function. called arguments, tidytof_example_data return character vector naming datasets contained tidytof: details datasets contained directories isn’t particularly important, basic information follows: aml - one FCS file containing myeloid cells healthy bone marrow one FCS file containing myeloid cells AML patient bone marrow ddpr - two FCS files containing B-cell lineage cells paper mix - two FCS files different CyTOF antigen panels (one FCS file “aml” directory one “phenograph” directory) mix2 - three files different CyTOF antigen panels different file extensions (one FCS file “aml” directory two CSV files “phenograph_csv directory) phenograph - three FCS files containing AML cells paper phenograph_csv - cells “phenograph” directory, stored CSV files scaffold - three FCS files paper statistical_scaffold - three FCS files paper surgery - three FCS files paper obtain file path directory containing dataset, call tidytof_example_data one dataset names argument. example, obtain directory phenograph data, use following command:","code":"tidytof_example_data() #> [1] \"aml\" \"ddpr\" \"ddpr_metadata.csv\" #> [4] \"mix\" \"mix2\" \"phenograph\" #> [7] \"phenograph_csv\" \"surgery\" tidytof_example_data(\"phenograph\") #> [1] \"/home/runner/work/_temp/Library/tidytof/extdata/phenograph\""},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"reading-data-with-tof_read_data","dir":"Articles","previous_headings":"","what":"Reading Data with tof_read_data","title":"Reading and writing data","text":"Using one directories (directory containing CyTOF data local machine), can use tof_read_data read CyTOF data raw files. Acceptable formats include FCS files CSV files. Importantly, tof_read_data smart enough read single FCS/CSV files multiple FCS/CSV files depending whether first argument (path) leads single file directory files. , can use tof_read_data read FCS files “phenograph” example dataset bundled tidytof store phenograph variable. Regardless input data file type, tidytof reads data extended tibble class called tof_tbl (pronounced “tof tibble”). tof tibbles S3 class identical tbl_df, one additional attribute (“panel”). tidytof stores additional attribute tof_tbls , addition analyzing CyTOF data individual experiments, CyTOF users often want compare panels experiments find common markers compare metals associated particular markers across panels. retrieve panel information tof_tbl, use tof_get_panel: additional notes tof_tbls: tof_tbls contains one cell per row one CyTOF channel per column (provide data “tidy” format). tof_read_data adds additional column output tof_tbl encoding name file cell read (“file_name” column). tof_tbls inherit tbl_df class, methods available tibbles also available tof_tbls.","code":"phenograph <- tidytof_example_data(\"phenograph\") %>% tof_read_data() phenograph %>% class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" phenograph %>% tof_get_panel() #> # A tibble: 44 × 2 #> metals antigens #> #> 1 Time Time #> 2 Cell_length Cell_length #> 3 Ir191 DNA1 #> 4 Ir193 DNA2 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"using-tibble-methods-with-tidytof-tibbles","dir":"Articles","previous_headings":"","what":"Using tibble methods with {tidytof} tibbles","title":"Reading and writing data","text":"extension tbl_df class, tof_tbls get access dplyr tidyr free. can useful performing variety common operations. example, phenograph object two columns - PhenoGraph Condition - encode categorical variables numeric codes. might interested converting types columns strings make sure don’t accidentally perform quantitative operations later. Thus, dplyr’s useful mutate method can applied phenograph convert two columns character vectors. note tof_tbl class preserved even transformations. Importantly, tof_read_data uses opinionated heuristic mine different keyword slots input FCS file(s) guess metals antigens used data acquisition. Thus, CSV files read using tof_read_data, recommended use panel_info argument provide panel manually (CSV files, unlike FCS files, provide built-metadata columns contain).","code":"phenograph <- phenograph %>% # mutate the input tof_tbl mutate( PhenoGraph = as.character(PhenoGraph), Condition = as.character(Condition) ) phenograph %>% # use dplyr's select method to show # that the columns have been changed select(where(is.character)) #> # A tibble: 300 × 3 #> file_name PhenoGraph Condition #> #> 1 H1_PhenoGraph_cluster1.fcs 7 7 #> 2 H1_PhenoGraph_cluster1.fcs 6 6 #> 3 H1_PhenoGraph_cluster1.fcs 9 9 #> 4 H1_PhenoGraph_cluster1.fcs 2 2 #> # ℹ 296 more rows phenograph %>% class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" # when csv files are read, the tof_tibble's \"panel\" # attribute will be empty by default tidytof_example_data(\"phenograph_csv\") %>% tof_read_data() %>% tof_get_panel() #> # A tibble: 0 × 0 # to add a panel manually, provide it as a tibble # to tof_read_data phenograph_panel <- phenograph %>% tof_get_panel() tidytof_example_data(\"phenograph_csv\") %>% tof_read_data(panel_info = phenograph_panel) %>% tof_get_panel() #> # A tibble: 44 × 2 #> antigens metals #> #> 1 Time Time #> 2 Cell_length Cell_length #> 3 DNA1 Ir191 #> 4 DNA2 Ir193 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"writing-data-from-a-tof_tbl-to-disk","dir":"Articles","previous_headings":"","what":"Writing data from a tof_tbl to disk","title":"Reading and writing data","text":"Users may wish store CyTOF data FCS CSV files transformation, concatenation, filtering, data processing. write single-cell data tof_tbl FCS CSV files, use tof_write_data. illustrate use verb, use tidytof’s built-phenograph_data dataset. tof_write_data’s trickiest argument group_cols, argument used specify columns tof_tibble used group cells (rows tof_tibble) separate FCS CSV files. Simply put, argument allows tof_write_data create single FCS CSV file unique combination values group_cols columns specified user. example , cells grouped 3 output FCS files - one 3 clusters encoded phenograph_cluster column phenograph_data. files following names (derived values phenograph_cluster column): cluster1.fcs cluster2.fcs cluster3.fcs Note file names match distinct values group_cols column (phenograph_cluster): However, suppose wanted write multiple files cluster breaking cells two groups: express high levels pstat5 express low levels pstat5. can use dplyr::mutate create new column phenograph_data breaks cells high- low-pstat5 expression groups, add column group_cols specification: write 6 files following names (derived values phenograph_cluster expression_group). cluster1_low.fcs cluster1_high.fcs cluster2_low.fcs cluster2_high.fcs cluster3_low.fcs cluster3_high.fcs , note file names match distinct values group_cols columns (phenograph_cluster expression_group): useful feature tof_write_data automatically concatenate cells single FCS CSV files based specified group_cols regardless many unique files cells came . allows easy concatenation FCS CSV files containing data single sample acquired multiple CyTOF runs, example.","code":"data(phenograph_data) print(phenograph_data) #> # A tibble: 3,000 × 25 #> sample_name phenograph_cluster cd19 cd11b cd34 cd45 cd123 cd33 cd47 #> #> 1 H1_PhenoGra… cluster1 -0.168 29.0 3.23 131. -0.609 1.21 13.0 #> 2 H1_PhenoGra… cluster1 1.65 4.83 -0.582 230. 2.53 -0.507 12.9 #> 3 H1_PhenoGra… cluster1 2.79 36.1 5.20 293. -0.265 3.67 27.1 #> 4 H1_PhenoGra… cluster1 0.0816 48.8 0.363 431. 2.04 9.40 41.0 #> # ℹ 2,996 more rows #> # ℹ 16 more variables: cd7 , cd44 , cd38 , cd3 , #> # cd117 , cd64 , cd41 , pstat3 , pstat5 , #> # pampk , p4ebp1 , ps6 , pcreb , `pzap70-syk` , #> # prb , `perk1-2` # when copying and pasting this code, feel free to change this path # to wherever you'd like to save your output files my_path <- file.path(\"~\", \"Desktop\", \"tidytof_vignette_files\") phenograph_data %>% tof_write_data( group_cols = phenograph_cluster, out_path = my_path, format = \"fcs\" ) phenograph_data %>% distinct(phenograph_cluster) #> # A tibble: 3 × 1 #> phenograph_cluster #> #> 1 cluster1 #> 2 cluster2 #> 3 cluster3 phenograph_data %>% # create a variable representing if a cell is above or below # the median expression level of pstat5 mutate( expression_group = if_else(pstat5 > median(pstat5), \"high\", \"low\") ) %>% tof_write_data( group_cols = c(phenograph_cluster, expression_group), out_path = my_path, format = \"fcs\" ) phenograph_data %>% mutate( expression_group = if_else(pstat5 > median(pstat5), \"high\", \"low\") ) %>% distinct(phenograph_cluster, expression_group) #> # A tibble: 6 × 2 #> phenograph_cluster expression_group #> #> 1 cluster1 low #> 2 cluster1 high #> 3 cluster2 low #> 4 cluster2 high #> # ℹ 2 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Reading and writing data","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] matrixStats_1.2.0 compiler_4.3.3 systemfonts_1.0.6 #> [7] vctrs_0.6.5 stringr_1.5.1 crayon_1.5.2 #> [10] pkgconfig_2.0.3 shape_1.4.6.1 fastmap_1.1.1 #> [13] ggraph_2.2.1 utf8_1.2.4 rmarkdown_2.26 #> [16] prodlim_2023.08.28 tzdb_0.4.0 ragg_1.2.7 #> [19] bit_4.0.5 purrr_1.0.2 xfun_0.42 #> [22] glmnet_4.1-8 cachem_1.0.8 jsonlite_1.8.8 #> [25] recipes_1.0.10 tweenr_2.0.3 parallel_4.3.3 #> [28] R6_2.5.1 bslib_0.6.1 stringi_1.8.3 #> [31] parallelly_1.37.1 rpart_4.1.23 lubridate_1.9.3 #> [34] jquerylib_0.1.4 Rcpp_1.0.12 iterators_1.0.14 #> [37] knitr_1.45 future.apply_1.11.1 readr_2.1.5 #> [40] flowCore_2.14.1 Matrix_1.6-5 splines_4.3.3 #> [43] nnet_7.3-19 igraph_2.0.2 timechange_0.3.0 #> [46] tidyselect_1.2.0 yaml_2.3.8 viridis_0.6.5 #> [49] timeDate_4032.109 doParallel_1.0.17 codetools_0.2-19 #> [52] listenv_0.9.1 lattice_0.22-5 tibble_3.2.1 #> [55] Biobase_2.62.0 withr_3.0.0 evaluate_0.23 #> [58] future_1.33.1 desc_1.4.3 survival_3.5-8 #> [61] polyclip_1.10-6 pillar_1.9.0 foreach_1.5.2 #> [64] stats4_4.3.3 generics_0.1.3 vroom_1.6.5 #> [67] RcppHNSW_0.6.0 S4Vectors_0.40.2 hms_1.1.3 #> [70] ggplot2_3.5.0 munsell_0.5.0 scales_1.3.0 #> [73] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [76] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [79] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [82] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [85] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [88] ggforce_0.4.2 cli_3.6.2 textshaping_0.3.7 #> [91] fansi_1.0.6 cytolib_2.14.1 viridisLite_0.4.2 #> [94] lava_1.8.0 gtable_0.3.4 sass_0.4.8 #> [97] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [100] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [103] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [106] bit64_4.0.5 MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"prerequisites","dir":"Articles","previous_headings":"","what":"Prerequisites","title":"Getting started with tidytof","text":"tidytof makes heavy use two concepts may unfamiliar R beginners. first pipe (|>), can read . second “grouping” data data.frame tibble using dplyr::group_by, can read . tidytof users also benefit relatively -depth understanding dplyr package, wonderful introductory vignette : Everything else self-explanatory beginner advanced R users, though zero background running R code, read chapter R Data Science Hadley Wickham.","code":"vignette(\"dplyr\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"workflow-basics","dir":"Articles","previous_headings":"","what":"Workflow basics","title":"Getting started with tidytof","text":"Broadly speaking, tidytof’s functionality organized support 3 levels analysis inherent single-cell data described : Reading, writing, preprocessing, visualizing data level individual cells Identifying describing cell subpopulations clusters Building models (inference prediction) level patients samples tidytof provides functions (“verbs”) operate levels analysis: Cell-level data: tof_read_data() reads single-cell data FCS CSV files disk tidy data frame called tof_tbl. tof_tbls represent cell row protein measurement (piece information associated given cell) column. tof_preprocess() transforms protein expression values using user-provided function (.e. log-transformation, centering, scaling) tof_downsample() reduces number cells tof_tibble via subsampling. tof_reduce_dimensions() performs dimensionality reduction (across columns) tof_write_data writes single-cell data tof_tibble back disk form FCS CSV file. Cluster-level data: tof_cluster() clusters cells using one several algorithms commonly applied high-dimensional cytometry data tof_metacluster() agglomerates clusters smaller number metaclusters tof_analyze_abundance() performs differential abundance analysis (DAA) clusters metaclusters across experimental groups tof_analyze_expression() performs differential expression analysis (DEA) clusters’ metaclusters’ marker expression levels across experimental groups tof_extract_features() computes summary statistics (mean marker expression) cluster. Also (optionally) pivots summary statistics sample-level tidy data frame row represents sample column represents cluster-level summary statistic. Sample-level data: tof_split_data() splits sample-level data training test set predictive modeling tof_create_grid() creates elastic net hyperparameter search grid model tuning tof_train_model() trains sample-level elastic net model saves tof_model object tof_predict() Applies trained tof_model new data predict sample-level outcomes tof_assess_model() calculates performance metrics trained tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"tidytof-verb-syntax","dir":"Articles","previous_headings":"","what":"{tidytof} verb syntax","title":"Getting started with tidytof","text":"exceptions, tidytof functions follow specific, shared syntax involves 3 types arguments always occur order. argument types follows: almost tidytof functions, first argument data frame (tibble). enables use pipe (|>) multi-step calculations, means first argument functions implicit (passed previous function using pipe). also means tidytof functions -called “single-table verbs,” exception tof_cluster_ddpr, “two-table verb” (details use tof_cluster_ddpr, see “clustering--metaclustering” vignette). second group arguments called column specifications, end suffix _col _cols. Column specifications unquoted column names tell tidytof verb columns compute particular operation. example, cluster_cols argument tof_cluster allows user specify column input data frames used perform clustering. Regardless verb requires , column specifications support tidyselect helpers follow rules tidyselection tidyverse verbs like dplyr::select() tidyr::pivot_longer(). Finally, third group arguments tidytof verb called method specifications, ’re comprised every argument isn’t input data frame column specification. Whereas column specifications represent columns used perform operation, method specifications represent details operation performed. example, tof_cluster_phenograph() function requires method specification num_neighbors, specifies many nearest neighbors used construct PhenoGraph algorithm’s k-nearest-neighbor graph. cases, tidytof sets reasonable defaults verb’s particular method specifications, workflows can also customized experimenting non-default values. following code demonstrates tidytof verb syntax looks practice, column method specifications explicitly pointed :","code":"data(ddpr_data) set.seed(777L) ddpr_data |> tof_preprocess() |> tof_cluster( cluster_cols = starts_with(\"cd\"), # column specification method = \"phenograph\", # method specification, ) |> tof_metacluster( cluster_col = .phenograph_cluster, # column specification num_metaclusters = 4, # method specification method = \"kmeans\" # method specification ) |> tof_downsample( group_cols = .kmeans_metacluster, # column specification num_cells = 200, # method specification method = \"constant\" # method specification ) |> tof_plot_cells_layout( knn_cols = starts_with(\"cd\"), # column specification color_col = .kmeans_metacluster, # column specification num_neighbors = 7L, # method specification node_size = 2L # method specification )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"pipelines","dir":"Articles","previous_headings":"","what":"Pipelines","title":"Getting started with tidytof","text":"tidytof verbs can used combination one another using pipe (|>) operator. example, multistep “pipeline” takes built-tidytof dataset performs following analytical steps: Arcsinh-transform column protein measurements (default behavior tof_preprocess verb Cluster cells based surface markers panel Downsample dataset 100 random cells picked cluster Perform dimensionality reduction downsampled dataset using tSNE Visualize clusters using low-dimensional tSNE embedding","code":"ddpr_data |> # step 1 tof_preprocess() |> # step 2 tof_cluster( cluster_cols = starts_with(\"cd\"), method = \"phenograph\", # num_metaclusters = 4L, seed = 2020L ) |> # step 3 tof_downsample( group_cols = .phenograph_cluster, method = \"constant\", num_cells = 400 ) |> # step 4 tof_reduce_dimensions(method = \"tsne\") |> # step 5 tof_plot_cells_embedding( embedding_cols = contains(\"tsne\"), color_col = .phenograph_cluster ) + ggplot2::theme(legend.position = \"none\") #> Loading required namespace: Rtsne"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"other-tips","dir":"Articles","previous_headings":"","what":"Other tips","title":"Getting started with tidytof","text":"tidytof designed multidisciplinary team wet-lab biologists, bioinformaticians, physician-scientists analyze high-dimensional cytometry kinds single-cell data solve variety problems. result, tidytof’s high-level API designed great care mirror tidyverse - , human-centered, consistent, composable, inclusive wide userbase. Practically speaking, means things using tidytof. First, means tidytof designed quality--life features mind. example, may notice tidytof functions begin prefix tof_. intentional, allow use development environment’s code-completing software search tidytof functions easily (even can’t remember specific function name). reason, recommend using tidytof within RStudio development environment; however, many code editors predictive text functionality serves similar function. general, tidytof verbs organized way IDE’s code-completion tools also allow search (compare) related functions relative ease. (instance, tof_cluster_ prefix used clustering functions, tof_downsample_ prefix used downsampling functions). Second, means tidytof functions relatively intuitive use due shared logic - words, understand use one tidytof function, understand use others. example shared logic across tidytof functions argument group_cols, shows multiple verbs (tof_downsample, tof_cluster, tof_daa, tof_dea, tof_extract_features, tof_write_data). case, group_cols works way: accepts unquoted vector column names (specified manually using tidyselection) used group cells operation performed. idea generalizes throughout tidytof: see argument one place, behave identically (least similarly) wherever else encounter . Finally, means tidytof optimized first ease--use, performance. humans computers interact data differently, always trade-choosing data representation intuitive human user vs. choosing data representation optimized computational speed memory efficiency. design choices conflict one another, team tends err side choosing representation easy--understand users even expense small performance costs. Ultimately, means tidytof may optimal tool every high-dimensional cytometry analysis, though hopefully general framework provide users useful functionality.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Getting started with tidytof","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] matrixStats_1.2.0 compiler_4.3.3 systemfonts_1.0.6 #> [7] vctrs_0.6.5 stringr_1.5.1 pkgconfig_2.0.3 #> [10] shape_1.4.6.1 fastmap_1.1.1 labeling_0.4.3 #> [13] ggraph_2.2.1 utf8_1.2.4 rmarkdown_2.26 #> [16] prodlim_2023.08.28 tzdb_0.4.0 ragg_1.2.7 #> [19] purrr_1.0.2 xfun_0.42 glmnet_4.1-8 #> [22] cachem_1.0.8 jsonlite_1.8.8 recipes_1.0.10 #> [25] highr_0.10 tweenr_2.0.3 parallel_4.3.3 #> [28] R6_2.5.1 bslib_0.6.1 stringi_1.8.3 #> [31] parallelly_1.37.1 rpart_4.1.23 lubridate_1.9.3 #> [34] jquerylib_0.1.4 Rcpp_1.0.12 iterators_1.0.14 #> [37] knitr_1.45 future.apply_1.11.1 readr_2.1.5 #> [40] flowCore_2.14.1 Matrix_1.6-5 splines_4.3.3 #> [43] nnet_7.3-19 igraph_2.0.2 timechange_0.3.0 #> [46] tidyselect_1.2.0 yaml_2.3.8 viridis_0.6.5 #> [49] timeDate_4032.109 doParallel_1.0.17 codetools_0.2-19 #> [52] listenv_0.9.1 lattice_0.22-5 tibble_3.2.1 #> [55] Biobase_2.62.0 withr_3.0.0 Rtsne_0.17 #> [58] evaluate_0.23 future_1.33.1 desc_1.4.3 #> [61] survival_3.5-8 polyclip_1.10-6 pillar_1.9.0 #> [64] foreach_1.5.2 stats4_4.3.3 generics_0.1.3 #> [67] RcppHNSW_0.6.0 S4Vectors_0.40.2 hms_1.1.3 #> [70] ggplot2_3.5.0 munsell_0.5.0 scales_1.3.0 #> [73] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [76] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [79] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [82] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [85] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [88] ggforce_0.4.2 cli_3.6.2 textshaping_0.3.7 #> [91] fansi_1.0.6 cytolib_2.14.1 viridisLite_0.4.2 #> [94] lava_1.8.0 dplyr_1.1.4 gtable_0.3.4 #> [97] sass_0.4.8 digest_0.6.34 BiocGenerics_0.48.1 #> [100] ggrepel_0.9.5 farver_2.1.1 memoise_2.0.1 #> [103] htmltools_0.5.7 pkgdown_2.0.7 lifecycle_1.0.4 #> [106] hardhat_1.3.1 MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Timothy Keyes. Maintainer. Kara Davis. Research team head, owner. Garry Nolan. Research team head, owner.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Keyes T (2024). tidytof: Analyze High-dimensional Cytometry Data Using Tidy Data Principles. R package version 0.99.0, https://keyes-timothy.github.io/tidytof/, https://keyes-timothy.github.io/tidytof.","code":"@Manual{, title = {tidytof: Analyze High-dimensional Cytometry Data Using Tidy Data Principles}, author = {Timothy Keyes}, year = {2024}, note = {R package version 0.99.0, https://keyes-timothy.github.io/tidytof/}, url = {https://keyes-timothy.github.io/tidytof}, }"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"tidytof-a-user-friendly-framework-for-interactive-and-highly-reproducible-cytometry-data-analysis-","dir":"","previous_headings":"","what":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof R package implements open-source, integrated “grammar” single-cell data analysis high-dimensional cytometry data (.e. mass cytometry, full-spectrum flow cytometry, sequence-based cytometry). Specifically, tidytof provides easy--use pipeline handling high-dimensional cytometry data multiple levels observation - single-cell level, cell subpopulation (cluster) level, whole-sample level - automating many common data-processing tasks common “tidy data” interface. extension tidyverse ecosystem data manipulation tools R, tidytof’s functions developed internally consistent, human-centered set design principles. means using tidytof equally intuitive among scientists wide range coding experience (including beginners).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"prerequisites","dir":"","previous_headings":"Getting started","what":"Prerequisites","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof makes heavy use two concepts R beginners may unfamiliar . first pipe (|>), can read . second “grouping” data data.frame tibble using dplyr::group_by, can read . Everything else self-explanatory beginner advanced R users, though zero background running R code, read chapter R Data Science Hadley Wickham.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"package-structure","dir":"","previous_headings":"Getting started","what":"Package structure","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Broadly speaking, tidytof’s functionality organized support 3 levels analysis inherent single-cell data: Reading, writing, preprocessing, visualizing data level single cells Identifying describing cell subpopulations clusters Building models (inference prediction) level patients samples use tidytof levels cytometry data analysis detailed “Usage” section .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"can install development version tidytof GitHub following command: tidytof installed, can attach current R session using following code: addition, can install load packages need vignette:","code":"if(!require(devtools)) install.packages(\"devtools\") devtools::install_github(\"keyes-timothy/tidytof\") library(tidytof) if(!require(FlowSOM)) BiocManager::install(\"FlowSOM\") library(FlowSOM) if(!require(tidyverse)) install.packages(\"tidyverse\") library(tidyverse)"},{"path":[]},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"reading-data-with-tof_read_data","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Reading data with tof_read_data","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof comes bundled several example mass cytometry datasets. access raw .fcs .csv files containing data, use tidytof_example_data function. called arguments, tidytof_example_data return character vector naming datasets contained tidytof: obtain file path directory containing dataset, call tidytof_example_data one dataset names argument. example, obtain directory phenograph data, use following command: Using one directories (directory containing cytometry data local machine), can use tof_read_data read cytometry data raw files. Acceptable formats include .fcs files .csv files. Importantly, tof_read_data smart enough read single .fcs/.csv files multiple .fcs/.csv files depending whether first argument (path) leads single file directory files. , can use tof_read_data read .fcs files “phenograph” example dataset bundled tidytof store phenograph variable. Regardless input format, tidytof reads data extended tibble called tof_tbl (pronounced “tof tibble”), S3 class identical tbl_df, one additional attribute (“panel”). tidytof stores additional attribute tof_tbls , addition analyzing cytometry data individual experiments, cytometry users often want compare panels experiments find common markers compare metals associated particular markers across panels. notes tof_tbls: tof_tbls contains one cell per row one cytometry channel per column (provide data “tidy” format). tof_read_data adds additional column output tof_tbl encoding name file cell read (“file_name” column). tof_tbls inherit tbl_df class, methods available tibbles also available tof_tbls. example, dplyr’s useful mutate method can applied tof_tbl named phenograph convert columns encoding phenograph cluster ID stimulation condition cell belongs character vectors (instead original numeric codes uncleaned dataset). tof_tbl class preserved even transformations. Finally, retrieve panel information tof_tbl, use tof_get_panel: Importantly, tof_read_data uses opinionated heuristic mine different keyword slots input .fcs file(s) guess metals antigens used data collection. Thus, .csv files read using tof_read_data, recommended use panel_info argument provide panel manually (.csv files, unlike .fcs files, provide built-metadata columns contain).","code":"tidytof_example_data() #> [1] \"aml\" \"ddpr\" \"ddpr_metadata.csv\" #> [4] \"mix\" \"mix2\" \"phenograph\" #> [7] \"phenograph_csv\" \"scaffold\" \"statistical_scaffold\" #> [10] \"surgery\" tidytof_example_data(\"phenograph\") #> [1] \"/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library/tidytof/extdata/phenograph\" phenograph <- tidytof_example_data(\"phenograph\") |> tof_read_data() phenograph |> class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" phenograph <- phenograph |> # mutate the input tof_tbl mutate( PhenoGraph = as.character(PhenoGraph), Condition = as.character(Condition) ) phenograph |> # use dplyr's select method to show that the columns have been changed select(where(is.character)) |> head() #> # A tibble: 6 × 3 #> file_name PhenoGraph Condition #> #> 1 H1_PhenoGraph_cluster1.fcs 7 7 #> 2 H1_PhenoGraph_cluster1.fcs 6 6 #> 3 H1_PhenoGraph_cluster1.fcs 9 9 #> 4 H1_PhenoGraph_cluster1.fcs 2 2 #> 5 H1_PhenoGraph_cluster1.fcs 15 15 #> 6 H1_PhenoGraph_cluster1.fcs 12 12 phenograph |> class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" phenograph |> tof_get_panel() |> head() #> # A tibble: 6 × 2 #> metals antigens #> #> 1 Time Time #> 2 Cell_length Cell_length #> 3 Ir191 DNA1 #> 4 Ir193 DNA2 #> 5 Pd104 BC1 #> 6 Pd106 BC2"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"pre-processing-with-tof_preprocess","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Pre-processing with tof_preprocess","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Generally, raw ion counts analyte measured mass cytometer need transformed cytometry data analysis. Common preprocessing steps may include variance-stabilizing transformations - hyperbolic arcsine (arcsinh) transformation log transformation - scaling/centering, /denoising. perform standard preprocessing tasks tidytof, use tof_preprocess. tof_preprocess’s default behavior apply arcsinh transformation (cofactor 5) numeric column input tof_tibble well remove gaussian noise Fluidigm software adds ion count (noise added visualization purposes, analyses, removing recommended). example, can preprocess phenograph tof_tibble see first measurements change . alter tof_preprocess’s default behavior, change channel_cols argument (specify columns tof_tibble transformed) transform_fun argument (specify vector-valued function used transform channel_cols). keep gaussian noise added Fluidigm software (working dataset noise), set undo_noise argument FALSE. Finally, note built-function tof_postprocess works nearly identically tof_preprocess, provides different default behavior (namely, applying reverse arcsinh transformation cofactor 5 numeric columns. See ?tof_postprocess details).","code":"# before preprocessing phenograph |> select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |> head() #> # A tibble: 6 × 3 #> `CD45|Sm154` `CD34|Nd148` `CD38|Er167` #> #> 1 440. 0.256 18.7 #> 2 705. 1.96 41.2 #> 3 383. -0.302 6.51 #> 4 44.4 2.74 27.2 #> 5 892. 4.08 24.5 #> 6 448. 2.69 11.1 # perform preprocessing phenograph <- phenograph |> tof_preprocess() # inspect new values phenograph |> select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |> head() #> # A tibble: 6 × 3 #> `CD45|Sm154` `CD34|Nd148` `CD38|Er167` #> #> 1 5.17 0.0512 2.03 #> 2 5.64 0.382 2.81 #> 3 5.03 -0.0603 1.08 #> 4 2.88 0.524 2.40 #> 5 5.88 0.746 2.29 #> 6 5.19 0.515 1.54"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"downsampling-with-tof_downsample","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Downsampling with tof_downsample","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Often, cytometry experiments collect tens hundreds millions cells total, can useful downsample smaller, computationally tractable number cells - either final analysis developing code. , tidytof implements tof_downsample verb, allows downsampling using 3 methods. Using tidytof’s built-dataset phenograph_data (smaller version dataset read ), can see original size dataset 1000 cells per cluster, 3000 cells total: randomly sample 200 cells per cluster, can use tof_downsample using “constant” method: Alternatively, wanted sample 50% cells cluster, use “prop” method: finally, might also interested taking slightly different approach downsampling downsamples number cells fixed constant proportion, fixed density phenotypic space. example, following scatterplot demonstrates certain areas phenotypic density phenograph_data contain cells others along cd34/cd38 axes: reduce number cells dataset local density around cell dataset relatively constant, can use “density” method tof_downsample: details, check documentation 3 underlying members tof_downsample_* function family (wrapped tof_downsample): tof_downsample_constant tof_downsample_prop tof_downsample_density","code":"data(phenograph_data) phenograph_data |> count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 1000 #> 2 cluster2 1000 #> 3 cluster3 1000 phenograph_data |> # downsample tof_downsample( method = \"constant\", group_cols = phenograph_cluster, num_cells = 200 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 200 #> 2 cluster2 200 #> 3 cluster3 200 phenograph_data |> # downsample tof_downsample( method = \"prop\", group_cols = phenograph_cluster, prop_cells = 0.5 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 500 #> 2 cluster2 500 #> 3 cluster3 500 phenograph_data |> # preprocess all numeric columns in the dataset tof_preprocess(undo_noise = FALSE) |> # make a scatterplot ggplot(aes(x = cd34, y = cd38)) + geom_point(alpha = 0.5) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + theme_bw() phenograph_data |> tof_preprocess(undo_noise = FALSE) |> tof_downsample( density_cols = c(cd34, cd38), target_prop_cells = 0.25, method = \"density\", ) |> ggplot(aes(x = cd34, y = cd38)) + geom_point(alpha = 0.5) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + theme_bw()"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"writing-data-with-tof_write_data","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Writing data with tof_write_data","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Finally, users may wish store single-cell data .fcs .csv files transformation, concatenation, filtering, data processing steps dimensionality reduction /clustering (see ). write single-cell data tof_tbl .fcs .csv files, use tof_write_data. tof_write_data’s trickiest argument group_cols, argument used specify columns tof_tibble used group cells (.e. rows tof_tibble) separate .fcs .csv files. Simply put, argument allows tof_write_data create single .fcs .csv file unique combination values columns specified user. example , cells grouped 3 output .fcs files - one 3 clusters encoded phenograph_cluster column phenograph_data. files following names (derived values phenograph_cluster column): cluster1.fcs cluster2.fcs cluster3.fcs However, suppose wanted write multiple files cluster breaking cells two groups: express high levels pstat5 express low levels pstat5. can use dplyr::mutate create new column phenograph_data breaks cells high- low-pstat5 expression groups, add column group_cols specification: write 6 files following names (derived values phenograph_cluster expression_group). cluster1_low.fcs cluster1_high.fcs cluster2_low.fcs cluster2_high.fcs cluster3_low.fcs cluster3_high.fcs useful feature tof_write_data automatically concatenate cells single .fcs .csv files based specified group_cols regardless many unique files cells came , allowing easy concatenation .fcs .csv files containing data single sample acquired multiple cytometry runs.","code":"# when copying and pasting this code, feel free to change this path # to wherever you'd like to save your output files my_path <- file.path(\"~\", \"Desktop\", \"tidytof_vignette_files\") phenograph_data |> tof_write_data( group_cols = phenograph_cluster, out_path = my_path, format = \"fcs\" ) phenograph_data |> # create a variable representing if a cell is above or below the median # expression level of pstat5 mutate(expression_group = if_else(pstat5 > median(pstat5), \"high\", \"low\")) |> tof_write_data( group_cols = c(phenograph_cluster, expression_group), out_path = my_path, format = \"fcs\" )"},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"identifying-clusters-with-tof_cluster","dir":"","previous_headings":"Usage > Analyzing data at the cluster-level","what":"Identifying clusters with tof_cluster","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"input files read tabular format preprocessed/downsampled, might interested clustering data define communities cells shared characteristics. , can use tof_cluster verb. Several clustering methods implemented tidytof, including FlowSOM, PhenoGraph, k-means, others. demonstrate, can apply FlowSOM clustering algorithm phenograph_data . Note phenograph_data contains 6000 total cells (2000 3 clusters identified original PhenoGraph publication). output tof_cluster tof_tbl identical input tibble, now addition additional column (“.flowsom_metacluster”) encodes cluster id cell input tof_tbl. Note output columns added tibble tof_tbl tidytof begin full-stop (“.”) reduce likelihood collisions existing column names. output tof_cluster tof_tbl, can use dplyr’s count method assess accuracy FlowSOM clustering compared original clustering PhenoGraph paper. , can see FlowSOM algorithm groups cells PhenoGraph cluster one another (small number mistakes per PhenoGraph cluster). change clustering algorithm tof_cluster uses, alter method flag; change columns used compute clusters, change cluster_cols flag. finally, want return tibble includes cluster labels (cluster labels added new column input tof_tbl), set augment FALSE.","code":"phenograph_clusters <- phenograph_data |> tof_preprocess() |> tof_cluster(method = \"flowsom\", cluster_cols = contains(\"cd\")) phenograph_clusters |> select(sample_name, .flowsom_metacluster, everything()) |> head() #> # A tibble: 6 × 26 #> sample_name .flowsom_metacluster phenograph_cluster cd19 cd11b cd34 #> #> 1 H1_PhenoGraph_c… 3 cluster1 -0.0336 2.46 0.608 #> 2 H1_PhenoGraph_c… 7 cluster1 0.324 0.856 -0.116 #> 3 H1_PhenoGraph_c… 3 cluster1 0.532 2.67 0.909 #> 4 H1_PhenoGraph_c… 2 cluster1 0.0163 2.97 0.0725 #> 5 H1_PhenoGraph_c… 4 cluster1 0.144 2.98 0.128 #> 6 H1_PhenoGraph_c… 2 cluster1 0.742 3.41 0.336 #> # ℹ 20 more variables: cd45 , cd123 , cd33 , cd47 , #> # cd7 , cd44 , cd38 , cd3 , cd117 , cd64 , #> # cd41 , pstat3 , pstat5 , pampk , p4ebp1 , #> # ps6 , pcreb , `pzap70-syk` , prb , `perk1-2` phenograph_clusters |> count(phenograph_cluster, .flowsom_metacluster, sort = TRUE) #> # A tibble: 24 × 3 #> phenograph_cluster .flowsom_metacluster n #> #> 1 cluster2 13 483 #> 2 cluster3 18 418 #> 3 cluster3 11 300 #> 4 cluster2 20 215 #> 5 cluster1 3 213 #> 6 cluster3 12 182 #> 7 cluster1 4 177 #> 8 cluster1 1 167 #> 9 cluster1 2 165 #> 10 cluster2 19 124 #> # ℹ 14 more rows # will result in a tibble with only 1 column (the cluster labels) phenograph_data |> tof_preprocess() |> tof_cluster(method = \"flowsom\", cluster_cols = contains(\"cd\"), augment = FALSE) |> head() #> # A tibble: 6 × 1 #> .flowsom_metacluster #> #> 1 11 #> 2 7 #> 3 11 #> 4 16 #> 5 4 #> 6 16"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"dimensionality-reduction-with-tof_reduce_dimensions","dir":"","previous_headings":"Usage > Analyzing data at the cluster-level","what":"Dimensionality reduction with tof_reduce_dimensions()","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"clusters identified, useful tool visualizing dimensionality reduction, form unsupervised machine learning used represent high-dimensional datasets smaller, easier--visualize number dimensions. tidytof includes several algorithms commonly used biologists dimensionality reduction: Principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), uniform manifold approximation projection (UMAP). apply dataset, use tof_reduce_dimensions: default, tof_reduce_dimensions add reduced-dimension feature embeddings input tof_tbl return augmented tof_tbl (, tof_tbl new columns embedding dimension) result. return features embeddings , set augment FALSE (tof_cluster). Regardless method used, reduced-dimension feature embeddings can visualized using ggplot2 (graphics package): visualizations can helpful qualitatively describing phenotypic differences clusters dataset. example, example , can see one clusters high CD11b expression, whereas others lower CD11b expression.","code":"# perform the dimensionality reduction phenograph_tsne <- phenograph_clusters |> tof_reduce_dimensions(method = \"tsne\") # select only the tsne embedding columns using a tidyselect helper (contains) phenograph_tsne |> select(contains(\"tsne\")) |> head() #> # A tibble: 6 × 2 #> .tsne_1 .tsne_2 #> #> 1 7.44 -5.16 #> 2 5.64 -9.25 #> 3 -10.9 -25.6 #> 4 0.781 -17.2 #> 5 3.50 -7.82 #> 6 2.82 -24.9 # plot the tsne embeddings using color to distinguish between clusters phenograph_tsne |> ggplot(aes(x = .tsne_1, y = .tsne_2, fill = phenograph_cluster)) + geom_point(shape = 21) + theme_bw() + labs(fill = NULL) # plot the tsne embeddings using color to represent CD11b expression phenograph_tsne |> ggplot(aes(x = .tsne_1, y = .tsne_2, fill = cd11b)) + geom_point(shape = 21) + scale_fill_viridis_c() + theme_bw() + labs(fill = \"CD11b expression\")"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"differential-discovery-analysis-with-tof_analyze_abundance-and-tof_analyze_expression","dir":"","previous_headings":"Usage > Analyzing data at the cluster-level","what":"Differential discovery analysis with tof_analyze_abundance and tof_analyze_expression","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"dimensionality reduction can used visualize clustering result, many cytometry users also want use statistical tools rigorously quantify clusters(s) dataset associate particular experimental clinical variable. analyses often grouped umbrella term differential discovery analysis include comparing relative size clusters experimental conditions (differential abundance analysis; DAA) well comparing marker expression patterns clusters experimental conditions (differential expression analysis; DEA). tidytof provides tof_analyze_abundance tof_analyze_expression verbs differential abundance differential expression analyses, respectively. demonstrate use verbs, ’ll first download dataset originally collected development CITRUS algorithm. data available HDCytoData package, available Bioconductor can downloaded following command: load CITRUS data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s . Thus, can see citrus_data tof_tbl 172791 cells (one row) 39 pieces information cell (one column). can also extract metadata raw data join single-cell data using functions tidyverse: Thus, now sample-level information patient sample collected stimulation condition (“Basal” “BCR-XL”) sample exposed data acquisition. Finally, can join metadata single-cell tof_tbl obtain cleaned dataset. data cleaning steps, now citrus_data, tof_tbl containing cells collected 8 patients. Specifically, 2 samples taken patient: one cells’ B-cell receptors stimulated (BCR-XL) one (Basal). citrus_data, cell’s patient origin stored patient column, cell’s stimulation condition stored stimulation column. addition, population_id column stores information cluster labels applied cell using combination FlowSOM clustering manual merging (details, run ?HDCytoData::Bodenmiller_BCR_XL R console). might wonder certain clusters expand deplete within patients two stimulation conditions described - question requires differential abundance analysis (DAA). tidytof’s tof_analyze_abundance verb supports use 3 statistical approaches performing DAA: diffcyt, generalized-linear mixed modeling (GLMMs), simple t-tests. setup described uses paired design 2 experimental conditions interest (Basal vs. BCR-XL), can use paired t-test method: Based output, can see 6 8 clusters statistically different abundance two stimulation conditions. Using tidytof easy integration tidyverse packages, can use result visualize fold-changes cluster (within patient) BCR-XL condition compared Basal condition using ggplot2: Importantly, output tof_analyze_abundance depends slightly underlying statistical method used, details can found documentation tof_analyze_abundance_* function family member: tof_analyze_abundance_diffcyt tof_analyze_abundance_glmm tof_analyze_abundance_ttest Similarly, suppose ’re interested intracellular signaling proteins change expression levels two stimulation conditions clusters. Differential Expression Analysis (DEA) can performed using tidytof’s tof_analyze_expression verb. , can use paired t-tests multiple-hypothesis correction test significant differences cluster’s expression signaling markers stimulation conditions. output tof_analyze_expression() also depends underlying test used, can see result looks relatively similar output tof_analyze_abundance(). , output tibble row represents differential expression results single cluster-marker pair - example, first row represents difference expression pS6 cluster 1 BCR-XL Basal conditions. row includes raw p-value multiple-hypothesis-corrected p-value cluster-marker pair. result can used make volcano plot visualize results cluster-marker pairs:","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) install.packages(\"BiocManager\") BiocManager::install(\"HDCytoData\") citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = \"_\") citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = 1:length(file_name), patient = str_extract(file_name, \"patient[:digit:]\"), stimulation = str_extract(file_name, \"(BCR-XL)|Reference\") ) |> mutate( stimulation = if_else(stimulation == \"Reference\", \"Basal\", stimulation) ) citrus_metadata |> head() #> # A tibble: 6 × 4 #> file_name sample_id patient stimulation #> #> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 patient1 BCR-XL #> 2 PBMC8_30min_patient1_Reference.fcs 2 patient1 Basal #> 3 PBMC8_30min_patient2_BCR-XL.fcs 3 patient2 BCR-XL #> 4 PBMC8_30min_patient2_Reference.fcs 4 patient2 Basal #> 5 PBMC8_30min_patient3_BCR-XL.fcs 5 patient3 BCR-XL #> 6 PBMC8_30min_patient3_Reference.fcs 6 patient3 Basal citrus_data <- citrus_data |> left_join(citrus_metadata, by = \"sample_id\") daa_result <- citrus_data |> tof_analyze_abundance( cluster_col = population_id, effect_col = stimulation, group_cols = patient, test_type = \"paired\", method = \"ttest\" ) daa_result #> # A tibble: 8 × 8 #> population_id p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 0.000924 0.00535 \"*\" -5.48 7 -0.00743 0.644 #> 2 2 0.00623 0.0166 \"*\" -3.86 7 -0.0156 0.674 #> 3 3 0.0235 0.0314 \"*\" -2.88 7 -0.0638 0.849 #> 4 4 0.0235 0.0314 \"*\" 2.88 7 0.0832 1.38 #> 5 5 0.0116 0.0232 \"*\" 3.39 7 0.00246 1.08 #> 6 6 0.371 0.371 \"\" -0.955 7 -0.0168 0.919 #> 7 7 0.00134 0.00535 \"*\" 5.14 7 0.0202 1.14 #> 8 8 0.236 0.270 \"\" -1.30 7 -0.00228 0.901 plot_data <- citrus_data |> mutate(population_id = as.character(population_id)) |> left_join( select(daa_result, population_id, significant, mean_fc), by = \"population_id\" ) |> dplyr::count(patient, stimulation, population_id, significant, mean_fc, name = \"n\") |> group_by(patient, stimulation) |> mutate(prop = n / sum(n)) |> ungroup() |> pivot_wider( names_from = stimulation, values_from = c(prop, n), ) |> mutate( diff = `prop_BCR-XL` - prop_Basal, fc = `prop_BCR-XL` / prop_Basal, population_id = fct_reorder(population_id, diff), direction = case_when( mean_fc > 1 & significant == \"*\" ~ \"increase\", mean_fc < 1 & significant == \"*\" ~ \"decrease\", TRUE ~ NA_character_ ) ) significance_data <- plot_data |> group_by(population_id, significant, direction) |> summarize(diff = max(diff), fc = max(fc)) |> ungroup() plot_data |> ggplot(aes(x = population_id, y = fc, fill = direction)) + geom_violin(trim = FALSE) + geom_hline(yintercept = 1, color = \"red\", linetype = \"dotted\", size = 0.5) + geom_point() + geom_text( aes(x = population_id, y = fc, label = significant), data = significance_data, size = 8, nudge_x = 0.2, nudge_y = 0.06 ) + scale_x_discrete(labels = function(x) str_c(\"cluster \", x)) + scale_fill_manual( values = c(\"decrease\" = \"#cd5241\", \"increase\" = \"#207394\"), na.translate = FALSE ) + labs( x = NULL, y = \"Abundance fold-change (stimulated / basal)\", fill = \"Effect\", caption = \"Asterisks indicate significance at an adjusted p-value of 0.05\" ) signaling_markers <- c( \"pNFkB_Nd142\", \"pStat5_Nd150\", \"pAkt_Sm152\", \"pStat1_Eu153\", \"pStat3_Gd158\", \"pSlp76_Dy164\", \"pBtk_Er166\", \"pErk_Er168\", \"pS6_Yb172\", \"pZap70_Gd156\" ) dea_result <- citrus_data |> tof_preprocess(channel_cols = any_of(signaling_markers)) |> tof_analyze_expression( cluster_col = population_id, marker_cols = any_of(signaling_markers), effect_col = stimulation, group_cols = patient, test_type = \"paired\", method = \"ttest\" ) dea_result |> head() #> # A tibble: 6 × 9 #> population_id marker p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 pS6_Y… 7.58e-8 2.12e-6 * 22.9 7 2.56 4.31 #> 2 2 pS6_Y… 1.16e-7 2.12e-6 * 21.6 7 2.13 2.49 #> 3 3 pBtk_… 1.32e-7 2.12e-6 * -21.2 7 -0.475 0.289 #> 4 7 pBtk_… 1.18e-7 2.12e-6 * -21.5 7 -0.518 0.286 #> 5 8 pBtk_… 1.30e-7 2.12e-6 * -21.2 7 -0.516 0.324 #> 6 4 pBtk_… 7.85e-7 1.05e-5 * -16.3 7 -0.462 0.296 volcano_plot <- dea_result |> tof_plot_clusters_volcano( use_ggrepel = TRUE ) volcano_plot"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"analyzing-data-at-the-patient--and-sample-level","dir":"","previous_headings":"Usage","what":"Analyzing data at the patient- and sample-level","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"addition verbs operate single-cell data directly, tidytof implements functions aggregating single-cell measurements cluster- sample-level summary statistics can analyzed using variety statistical models.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"feature-extraction-with-tof_extract_features","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level","what":"Feature extraction with tof_extract_features","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"addition functions analyzing visualizing cytometry data single-cell cluster levels, tidytof’s tof_extract_features verb allows users aggregate single-cell cluster-level information order summarize whole-samples (whole-patients) cells collected. features can useful visualizing differences patients samples different experimental conditions building machine learning models. understand tof_extract_features verb works, ’s easiest look subroutines (members tof_extract_* function family) independently. First, tof_extract_proportion, extracts proportion cells cluster within sample (samples defined using group_cols argument): Like members tof_extract_* function family, tof_extract_proportion() returns one row sample (defined unique combination values group_cols) one column extracted feature (, one column proportion 8 clusters citrus_data). values can also returned “long” format changing format argument: Another member function family, tof_extract_central_tendency, computes central tendency (e.g. mean median) user-specified markers cluster. tof_extract_threshold similar tof_extract_central_tendency, calculates proportion cells user-specified expression value marker instead measure central tendency: two final members tof_extract_* function family – tof_extract_emd tof_extract_jsd designed specifically comparing distributions marker expression stimulation conditions. , must given stimulation_col identifies stimulation condition cell , basal_level specifies reference (.e. unstimulated) condition within stimulation_col. additional arguments, tof_extract_emd computes Earth-mover’s distance marker’s distribution stimulation conditions (within cluster) basal condition; similarly, tof_extract_jsd computes Jensen-Shannon divergence index distributions. values ways compare different 2 distributions one another computationally expensive (also higher-resolution) simply comparing measures central tendency. Finally, tof_extract_features verb provides wrapper members function family, allowing users extract multiple features types . example, following code extracts proportion cluster, median several markers cluster, EMD basal condition stimulated condition cluster patients citrus_data.","code":"# preprocess the numeric columns in the citrus dataset citrus_data <- citrus_data |> mutate(cluster = str_c(\"cluster\", population_id)) |> tof_preprocess() citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation) ) |> head() #> # A tibble: 6 × 10 #> patient stimulation `prop@cluster1` `prop@cluster2` `prop@cluster3` #> #> 1 patient1 Basal 0.0190 0.0482 0.447 #> 2 patient1 BCR-XL 0.0109 0.0395 0.268 #> 3 patient2 Basal 0.0130 0.0280 0.491 #> 4 patient2 BCR-XL 0.0101 0.0143 0.358 #> 5 patient3 Basal 0.0326 0.0830 0.397 #> 6 patient3 BCR-XL 0.0200 0.0412 0.323 #> # ℹ 5 more variables: `prop@cluster4` , `prop@cluster5` , #> # `prop@cluster6` , `prop@cluster7` , `prop@cluster8` citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation), format = \"long\" ) |> head() #> # A tibble: 6 × 4 #> patient stimulation cluster prop #> #> 1 patient1 Basal cluster1 0.0190 #> 2 patient1 Basal cluster2 0.0482 #> 3 patient1 Basal cluster3 0.447 #> 4 patient1 Basal cluster4 0.237 #> 5 patient1 Basal cluster5 0.00219 #> 6 patient1 Basal cluster6 0.0759 citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), central_tendency_function = mean ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct` #> #> 1 patient1 BCR-XL 4.80 0.0967 #> 2 patient1 Basal 4.68 0.765 #> 3 patient2 BCR-XL 5.00 -0.0579 #> 4 patient2 Basal 4.88 0.808 #> 5 patient3 BCR-XL 5.04 -0.0432 #> 6 patient3 Basal 4.98 0.745 #> # ℹ 22 more variables: `CD20_Sm147@cluster1_ct` , #> # `CD45_In115@cluster2_ct` , `CD4_Nd145@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD45_In115@cluster3_ct` , #> # `CD4_Nd145@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD45_In115@cluster4_ct` , `CD4_Nd145@cluster4_ct` , #> # `CD20_Sm147@cluster4_ct` , `CD45_In115@cluster5_ct` , #> # `CD4_Nd145@cluster5_ct` , `CD20_Sm147@cluster5_ct` , … citrus_data |> tof_extract_threshold( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), threshold = 5 ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_threshold` CD4_Nd145@cluster1_thre…¹ #> #> 1 patient1 BCR-XL 0.516 0 #> 2 patient1 Basal 0.365 0 #> 3 patient2 BCR-XL 0.554 0 #> 4 patient2 Basal 0.452 0 #> 5 patient3 BCR-XL 0.547 0 #> 6 patient3 Basal 0.549 0 #> # ℹ abbreviated name: ¹​`CD4_Nd145@cluster1_threshold` #> # ℹ 22 more variables: `CD20_Sm147@cluster1_threshold` , #> # `CD45_In115@cluster2_threshold` , #> # `CD4_Nd145@cluster2_threshold` , #> # `CD20_Sm147@cluster2_threshold` , #> # `CD45_In115@cluster3_threshold` , #> # `CD4_Nd145@cluster3_threshold` , … # Earth-mover's distance citrus_data |> tof_extract_emd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), emd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.864 2.47 13.0 #> 2 patient2 1.11 7.05 10.8 #> 3 patient3 0.670 6.23 10.5 #> 4 patient4 2.64 5.86 9.90 #> 5 patient5 0.594 7.56 8.13 #> 6 patient6 0.661 4.77 7.97 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_emd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_emd`, ³​`BCR-XL_CD20_Sm147@cluster3_emd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_emd` , #> # `BCR-XL_CD4_Nd145@cluster7_emd` , #> # `BCR-XL_CD20_Sm147@cluster7_emd` , #> # `BCR-XL_CD45_In115@cluster4_emd` , #> # `BCR-XL_CD4_Nd145@cluster4_emd` , … # Jensen-Shannon Divergence citrus_data |> tof_extract_jsd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), jsd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.0367 0.0513 0.347 #> 2 patient2 0.00831 0.168 0.401 #> 3 patient3 0.0104 0.115 0.357 #> 4 patient4 0.0301 0.135 0.205 #> 5 patient5 0.00911 0.0789 0.274 #> 6 patient6 0.00972 0.0346 0.214 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_jsd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_jsd`, ³​`BCR-XL_CD20_Sm147@cluster3_jsd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_jsd` , #> # `BCR-XL_CD4_Nd145@cluster7_jsd` , #> # `BCR-XL_CD20_Sm147@cluster7_jsd` , #> # `BCR-XL_CD45_In115@cluster4_jsd` , #> # `BCR-XL_CD4_Nd145@cluster4_jsd` , … citrus_data |> tof_extract_features( cluster_col = cluster, group_cols = patient, stimulation_col = stimulation, lineage_cols = any_of(c(\"CD45_In115\", \"CD20_Sm147\", \"CD33_Nd148\")), signaling_cols = any_of(signaling_markers), signaling_method = \"emd\", basal_level = \"Basal\" ) |> head()"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"outcomes-modeling-with-tof_model","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level","what":"Outcomes modeling with tof_model","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"[brief intro building predictive models might motivated .] tidytof implements several functions building predictive models using sample- patient-level data. illustrate work, first download patient-level data paper combining sample-level clinical annotations one tidytof’s built-data objects (ddpr_metadata). data processing steps result ddpr_patients tibble. numeric columns ddpr_patients represent aggregated cell population features sample (see Supplementary Table 5 paper details). non-numeric columns represent clinical metadata sample (run ?ddpr_metadata information). also preprocessing steps might want perform now save us headaches ’re fitting models later.","code":"data(ddpr_metadata) # link for downloading the sample-level data from the Nature Medicine website data_link <- \"https://static-content.springer.com/esm/art%3A10.1038%2Fnm.4505/MediaObjects/41591_2018_BFnm4505_MOESM3_ESM.csv\" # downloading the data and combining it with clinical annotations ddpr_patients <- readr::read_csv(data_link, skip = 2L, n_max = 78L, show_col_types = FALSE) |> dplyr::rename(patient_id = Patient_ID) |> left_join(ddpr_metadata, by = \"patient_id\") |> dplyr::filter(!str_detect(patient_id, \"Healthy\")) ddpr_patients |> select(where(~ !is.numeric(.x))) |> head() #> # A tibble: 6 × 8 #> patient_id gender mrd_risk nci_rome_risk relapse_status type_of_relapse cohort #> #> 1 UPN1 Male Interme… Standard Yes Early Train… #> 2 UPN1-Rx Male Interme… Standard Yes Early Train… #> 3 UPN2 Male Interme… Standard No Train… #> 4 UPN3 Female Standard Standard No Train… #> 5 UPN4 Male Standard Standard No Valid… #> 6 UPN5 Female Standard High No Valid… #> # ℹ 1 more variable: ddpr_risk ddpr_patients <- ddpr_patients |> # convert the relapse_status variable to a factor first, # which is something we'll want for fitting the model later # and create the time_to_event and event columns for survival modeling mutate( relapse_status = as.factor(relapse_status), time_to_event = if_else(relapse_status == \"Yes\", time_to_relapse, ccr), event = if_else(relapse_status == \"Yes\", 1, 0) )"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"separating-the-training-and-validation-cohorts","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level > Outcomes modeling with tof_model","what":"Separating the training and validation cohorts","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"original DDPR paper, patients used fit model rest used assess model tuned. can separate training validation cohorts using cohort variable ddpr_patients","code":"ddpr_training <- ddpr_patients |> dplyr::filter(cohort == \"Training\") ddpr_validation <- ddpr_patients |> dplyr::filter(cohort == \"Validation\") nrow(ddpr_training) #> [1] 49 nrow(ddpr_validation) #> [1] 12"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"building-a-classifier-using-logistic-regression","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level > Outcomes modeling with tof_model","what":"Building a classifier using logistic regression","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"First, can build elastic net classifier predict patients relapse patients won’t (ignoring time--event data now). , can use relapse_status column ddpr_training outcome variable: Specifically, can use tof_split_data function split cohort training test set either (“simple” split) multiple times (using either k-fold cross-validation bootstrapping). case, use 5-fold cross-validation, reading documentation tof_split_data demonstrates use methods. output tof_split_data varies depending split_method used. cross-validation, result rset object rsample package. rset objects type tibble two columns: splits - column entry rsplit object (contains single resample full dataset) id - character column entry represents name fold entry splits belongs . can inspect one resamples splits column see contain: Note can use rsample::training rsample::testing return training test obeservations resampling: , can feed training_split tof_train_model function tune logistic regression model predicts relapse_status leukemia patient. sure check tof_create_grid documentation learn make hyperparameter search grid model tuning (case, limit mixture parameter value 1, fits sparse lasso model). Also note demonstration purposes, include features come one cell population (“Population 2”) original dataset, means probably shouldn’t expect model perform well one original paper (select many features). output tof_train_model tof_model, object containing information trained model (can passed tof_predict tof_assess_model verbs). tof_model printed, information optimal hyperparamters printed, table nonzero model coefficients model. can use trained model make predictions validation data set aside earlier: can see model gets (!) predictions correct validation set set aside. can also assess model directly using tof_assess_model can make ROC curve using metrics: can assess model validation data…","code":"# find how many of each outcome we have in our cohort ddpr_training |> dplyr::count(relapse_status) #> # A tibble: 2 × 2 #> relapse_status n #> #> 1 No 31 #> 2 Yes 18 training_split <- ddpr_training |> tof_split_data( split_method = \"k-fold\", num_cv_folds = 5, strata = relapse_status ) training_split #> # 5-fold cross-validation using stratification #> # A tibble: 5 × 2 #> splits id #> #> 1 Fold1 #> 2 Fold2 #> 3 Fold3 #> 4 Fold4 #> 5 Fold5 my_resample <- training_split$splits[[1]] print(my_resample) #> #> <38/11/49> class(my_resample) #> [1] \"vfold_split\" \"rsplit\" my_resample |> rsample::training() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN1-Rx 0.0395 0.618 0.0634 0.572 2.93 0.944 #> 2 UPN2 0.139 0.0662 0.0221 0.0825 2.25 0.454 #> 3 UPN3 0.633 0.0234 0.0165 0.0327 2.25 0.226 #> 4 UPN7 0.474 0.966 0.124 1.24 2.59 0.243 #> 5 UPN8 0.951 0.958 0.161 0.556 3.18 0.556 #> 6 UPN9 15.6 0.446 0.0445 0.163 2.86 0.434 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … my_resample |> rsample::testing() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN1 3.06 0.583 0.00449 0.164 1.94 0.416 #> 2 UPN6 5.62 0.550 0.00374 0.622 2.86 0.342 #> 3 UPN10 0.00374 0.761 0.000696 0.829 3.19 0.886 #> 4 UPN13 0.0634 0.0300 0.0219 0.109 2.34 0.314 #> 5 UPN22 3.29 1.63 0.128 0.525 3.38 0.688 #> 6 UPN22-Rx 0.0643 1.68 0.0804 1.56 3.06 0.529 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … class_mod <- training_split |> tof_train_model( predictor_cols = contains(\"Pop2\"), response_col = relapse_status, model_type = \"two-class\", hyperparameter_grid = tof_create_grid(mixture_values = 1), impute_missing_predictors = TRUE, remove_zv_predictors = TRUE # often a smart decision ) print(class_mod) #> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e-10 #> # A tibble: 25 × 2 #> feature coefficient #> #> 1 p4EBP1_dP_IL7_Pop2 -2.59 #> 2 CD58_Pop2 2.23 #> 3 (Intercept) -1.83 #> 4 pSTAT5_dP_TSLP_Pop2 1.69 #> 5 p4EBP1_FC_IL7_Pop2 1.46 #> 6 CD43_Pop2 1.37 #> 7 HLADR_Pop2 -1.32 #> 8 pSyk_dP_TSLP_Pop2 1.08 #> 9 pErk_dP_IL7_Pop2 -1.05 #> 10 Ki67_Pop2 -1.05 #> # ℹ 15 more rows class_predictions <- class_mod |> tof_predict(new_data = ddpr_validation, prediction_type = \"class\") class_predictions |> dplyr::mutate( truth = ddpr_validation$relapse_status ) #> # A tibble: 12 × 2 #> .pred truth #> #> 1 Yes No #> 2 No No #> 3 No Yes #> 4 No No #> 5 No No #> 6 Yes Yes #> 7 Yes Yes #> 8 No No #> 9 No No #> 10 No Yes #> 11 No Yes #> 12 No Yes # calling the function with no new_data evaluates the # the nodel using its training data training_assessment <- class_mod |> tof_assess_model() training_assessment #> $model_metrics #> # A tibble: 6 × 2 #> metric value #> #> 1 binomial_deviance 0.0291 #> 2 misclassification_error 0 #> 3 roc_auc 1 #> 4 mse 0.00119 #> 5 mae 0.0285 #> 6 accuracy 1 #> #> $roc_curve #> # A tibble: 51 × 5 #> .threshold specificity sensitivity tpr fpr #> #> 1 -Inf 0 1 1 1 #> 2 0.00000114 0 1 1 1 #> 3 0.0000955 0.0323 1 1 0.968 #> 4 0.000160 0.0645 1 1 0.935 #> 5 0.000190 0.0968 1 1 0.903 #> 6 0.000612 0.129 1 1 0.871 #> 7 0.000896 0.161 1 1 0.839 #> 8 0.00135 0.194 1 1 0.806 #> 9 0.00142 0.226 1 1 0.774 #> 10 0.00194 0.258 1 1 0.742 #> # ℹ 41 more rows #> #> $confusion_matrix #> # A tibble: 4 × 3 #> true_outcome predicted_outcome num_observations #> #> 1 No No 31 #> 2 No Yes 0 #> 3 Yes No 0 #> 4 Yes Yes 18 class_mod |> tof_plot_model() + labs(subtitle = \"ROC Curve (Training data)\") validation_assessment <- class_mod |> tof_assess_model(new_data = ddpr_validation) validation_assessment #> $model_metrics #> # A tibble: 6 × 2 #> metric value #> #> 1 binomial_deviance 4.75 #> 2 misclassification_error 0.417 #> 3 roc_auc 0.639 #> 4 mse 0.759 #> 5 mae 0.879 #> 6 accuracy 0.583 #> #> $roc_curve #> # A tibble: 14 × 5 #> .threshold specificity sensitivity tpr fpr #> #> 1 -Inf 0 1 1 1 #> 2 0.000240 0 1 1 1 #> 3 0.00105 0.167 1 1 0.833 #> 4 0.00195 0.167 0.833 0.833 0.833 #> 5 0.00230 0.333 0.833 0.833 0.667 #> 6 0.00472 0.5 0.833 0.833 0.5 #> 7 0.00618 0.667 0.833 0.833 0.333 #> 8 0.0464 0.667 0.667 0.667 0.333 #> 9 0.273 0.667 0.5 0.5 0.333 #> 10 0.286 0.667 0.333 0.333 0.333 #> 11 0.844 0.833 0.333 0.333 0.167 #> 12 0.852 0.833 0.167 0.167 0.167 #> 13 1.00 0.833 0 0 0.167 #> 14 Inf 1 0 0 0 #> #> $confusion_matrix #> # A tibble: 4 × 3 #> true_outcome predicted_outcome num_observations #> #> 1 No No 5 #> 2 No Yes 1 #> 3 Yes No 4 #> 4 Yes Yes 2 class_mod |> tof_plot_model(new_data = ddpr_validation) + labs(subtitle = \"ROC Curve (Validation data)\")"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"tidytofs-design-principles-and-some-tips","dir":"","previous_headings":"","what":"{tidytof}’s Design Principles (and some tips)","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"{tidytof} designed multidisciplinary team wet-lab biologists, bioinformaticians, physician-scientists analyze cytometry kinds single-cell data solve variety problems. result, tidytof’s high-level API designed great care mirror tidyverse - , human-centered, consistent, composable, inclusive wide userbase. section, describe miscellaneous design decisions tips using tidytof may help enthusiastic user.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_1-use-the-tof_-prefix-to-your-advantage","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"1. Use the tof_ prefix to your advantage.","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"may notice tidytof functions begin prefix tof_. intentional, allow use development environment’s code-completing software search functions easily (even don’t remember function name). reason, recommend using tidytof within RStudio development environment; however, many code editors predictive text functionality serves similar function. general, tidytof verbs organized way IDE’s code-completion tools also allow search (compare) related functions relative ease. (instance, tof_cluster_ prefix used clustering functions, tof_downsample_ prefix used downsampling functions).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_2-tidytof-functions-use-2-kinds-of-arguments","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"2. {tidytof} functions use 2 kinds of arguments","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof functions optimized working “tidy” data form tibbles data.frames. means tidytof functions share basic design principles terms arguments work. details design principles, check Getting Started tidytof vignette","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_3-use-tidytof-to-write-human-readable-pipelines","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"3. Use {tidytof} to write human-readable pipelines","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"real “magic” tidytof derives ability simplify multistep data-processing tasks simple readable chunk code. example, suppose just acquired .fcs files mass cytometer want perform following analysis: Read .fcs files R session Arcsinh-transform column protein measurements Cluster cells based surface markers panel Downsample dataset 100 random cells picked cluster Perform dimensionality reduction downsampled dataset using tSNE Visualize clusters using low-dimensional tSNE embedding using appropriate tidytof verbs step analysis, can easily write code function call corresponds exactly one step pipeline: shown , stringing together tidytof verbs creates pipeline can read easily left--right top--bottom – means relatively easy return code later (modify , write methods section next high-impact manuscript!) , perhaps importantly, one colleagues return later want recreate analysis.","code":"input_path <- tidytof_example_data(\"phenograph\") set.seed(0012) input_path |> # step 1 tof_read_data() |> # step 2 tof_preprocess() |> # step 3 tof_cluster(method = \"phenograph\") |> # step 4 tof_downsample( group_cols = .phenograph_cluster, num_cells = 100, method = \"constant\" ) |> # step 5 tof_reduce_dimensions(perplexity = 50, method = \"tsne\") |> # step 6 tof_plot_cells_embedding( embedding_cols = starts_with(\".tsne\"), color_col = .phenograph_cluster )"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_4-additional-resources","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"4. Additional resources","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof built top tidyverse family R packages. result, users tidytof benefit substantially spending hours dplyr, ggplot2, tidyr package vignettes learn many useful functions packages provide. access recommended list package vignettes, run following lines R code console:","code":"# dplyr vignette(topic = \"dplyr\", package = \"dplyr\") vignette(topic = \"grouping\", package = \"dplyr\") vignette(topic = \"colwise\", package = \"dplyr\") # ggplot2 vignette(topic = \"ggplot2-specs\", package = \"ggplot2\") # tidyr vignette(topic = \"tidy-data\", package = \"tidyr\") vignette(topic = \"nest\", package = \"tidyr\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"Coerce object SingleCellExperiment Coerce tof_tbl SingleCellExperiment","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"","code":"as_SingleCellExperiment(x, ...) # S3 method for tof_tbl as_SingleCellExperiment( x, channel_cols = where(tof_is_numeric), reduced_dimensions_cols, metadata_cols = where(function(.x) !tof_is_numeric(.x)), split_reduced_dimensions = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"x tof_tbl ... Unused. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default numeric columns. reduced_dimensions_cols Unquoted column names representing columns contain dimensionality reduction embeddings, tSNE UMAP embeddings. Supports tidyselect helpers. metadata_cols Unquoted column names representing columns contain metadata samples cell collected. nothing specified, default non-numeric columns. split_reduced_dimensions boolean value indicating whether dimensionality results x split separate slots resulting SingleCellExperiment. FALSE (default), split performed reducedDims slot result single entry (\"tidytof_reduced_dimensions\"). TRUE, split performed reducedDims slot result 1-4 entries depending dimensionality reduction results present x (\"tidytof_pca\", \"tidytof_tsne\", \"tidytof_umap\", \"tidytof_reduced_dimensions\"). Note \"tidytof_reduced_dimensions\" include dimensionality reduction results named according tidytof's pca, umap, tsne conventions.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"SingleCellExperiment SingleCellExperiment.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a flowFrame — as_flowFrame","title":"Coerce an object into a flowFrame — as_flowFrame","text":"Coerce object flowFrame Coerce tof_tbl flowFrame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a flowFrame — as_flowFrame","text":"","code":"as_flowFrame(x, ...) # S3 method for tof_tbl as_flowFrame(x, ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a flowFrame — as_flowFrame","text":"x tof_tbl. ... Unused.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a flowFrame — as_flowFrame","text":"flowFrame flowFrame. Note non-numeric columns `x` removed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a flowFrame — as_flowFrame","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a flowSet — as_flowSet","title":"Coerce an object into a flowSet — as_flowSet","text":"Coerce object flowSet Coerce tof_tbl flowSet","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a flowSet — as_flowSet","text":"","code":"as_flowSet(x, ...) # S3 method for tof_tbl as_flowSet(x, group_cols, ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a flowSet — as_flowSet","text":"x tof_tbl. ... Unused. group_cols Unquoted names columns `x` used group cells separate flowFrames. Supports tidyselect helpers. Defaults NULL (cells written single flowFrame).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a flowSet — as_flowSet","text":"flowSet flowSet. Note non-numeric columns `x` removed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a flowSet — as_flowSet","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a SeuratObject — as_seurat","title":"Coerce an object into a SeuratObject — as_seurat","text":"Coerce object SeuratObject Coerce tof_tbl SeuratObject","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a SeuratObject — as_seurat","text":"","code":"as_seurat(x, ...) # S3 method for tof_tbl as_seurat( x, channel_cols = where(tof_is_numeric), reduced_dimensions_cols, metadata_cols = where(function(.x) !tof_is_numeric(.x)), split_reduced_dimensions = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a SeuratObject — as_seurat","text":"x tof_tbl ... Unused. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default numeric columns. reduced_dimensions_cols Unquoted column names representing columns contain dimensionality reduction embeddings, tSNE UMAP embeddings. Supports tidyselect helpers. metadata_cols Unquoted column names representing columns contain metadata samples cell collected. nothing specified, default non-numeric columns. split_reduced_dimensions boolean value indicating whether dimensionality results x split separate slots resulting SingleCellExperiment. FALSE (default), split performed reducedDims slot result single entry (\"tidytof_reduced_dimensions\"). TRUE, split performed reducedDims slot result 1-4 entries depending dimensionality reduction results present x (\"tidytof_pca\", \"tidytof_tsne\", \"tidytof_umap\", \"tidytof_reduced_dimensions\"). Note \"tidytof_reduced_dimensions\" include dimensionality reduction results named according tidytof's pca, umap, tsne conventions.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a SeuratObject — as_seurat","text":"SeuratObject SeuratObject.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a SeuratObject — as_seurat","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"Convert object tof_tbl","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"","code":"# S3 method for flowSet as_tof_tbl(flow_data, sep = \"|\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"flow_data FlowSet sep string use separate antigen name associated metal column names output tibble. Defaults \"|\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"`tof_tbl`","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"Coerce flowFrames flowSets tof_tbl's.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"","code":"as_tof_tbl(flow_data, sep = \"|\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"flow_data flowFrame flowSet sep string indicating symbol used separate antigen names metal names columns output tof_tbl.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"tof_tbl.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"","code":"input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] input_flowframe <- flowCore::read.FCS(input_file) tof_tibble <- as_tof_tbl(input_flowframe)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the cosine similarity between two vectors — cosine_similarity","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"Find cosine similarity two vectors","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"","code":"cosine_similarity(x, y)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"x numeric vector y numeric vector","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"scalar value representing cosine similarity x y","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":null,"dir":"Reference","previous_headings":"","what":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"dataset containing CyTOF measurements immune cells originally studied following paper: Good Z, Sarno J, et al. Single-cell developmental classification B cell precursor acute lymphoblastic leukemia diagnosis reveals predictors relapse. Nat Med. 2018 May;24(4):474-483. doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"","code":"data(ddpr_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"data frame 10000 rows 24 variables: sample_name name sample data read cd45 CyTOF measurement raw ion counts cd19 CyTOF measurement raw ion counts cd22 CyTOF measurement raw ion counts cd79b CyTOF measurement raw ion counts cd20 CyTOF measurement raw ion counts cd34 CyTOF measurement raw ion counts cd123 CyTOF measurement raw ion counts cd10 CyTOF measurement raw ion counts cd24 CyTOF measurement raw ion counts cd127 CyTOF measurement raw ion counts cd43 CyTOF measurement raw ion counts cd38 CyTOF measurement raw ion counts cd58 CyTOF measurement raw ion counts psyk CyTOF measurement raw ion counts p4ebp1 CyTOF measurement raw ion counts pstat5 CyTOF measurement raw ion counts pakt CyTOF measurement raw ion counts ps6 CyTOF measurement raw ion counts perk CyTOF measurement raw ion counts pcreb CyTOF measurement raw ion counts","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"https://github.com/kara-davis-lab/DDPR","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"data.frame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":null,"dir":"Reference","previous_headings":"","what":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"dataset containing patient-level clinical metadata samples originally studied following paper: Good Z, Sarno J, et al. Single-cell developmental classification B cell precursor acute lymphoblastic leukemia diagnosis reveals predictors relapse. Nat Med. 2018 May;24(4):474-483. doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"","code":"data(ddpr_metadata)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"data frame 10000 rows 12 variables: patient_id Name sample data read gender Gender patient sample collected age_at_diagnosis Age (years) patient sample collected wbc_count diagnostic White Blood Cell (WBC) count patient sample collected mrd_risk Risk stratification category patient using minimal residual disease (MRD) criteria nci_rome_risk Risk stratification category patient using National Cancer Institute (NCI) criteria relapse_status string representing whether patient relapsed time_to_relapse time (days) took patient relapse. Patients relapse value NA type_of_relapse string representing timing relapse patient. \"early\" relapses occurred less 18 months diagnosis; \"Early\" relapses occurred 18 months 32 months diagnosis; \"Late\" relapses occurred later 32 months diagnosis. ccr number documented days continuous complete remission (CCR) patients relapse. patients relapsed value NA. cohort string representing sample used \"Training\" \"Validation\" cohort original study ddpr_risk risk category (\"Low\" \"High\") assigned sample using original paper's risk-stratification algorithm","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"Good Z, Sarno J, et al. Single-cell developmental classification B cell precursor acute lymphoblastic leukemia diagnosis reveals predictors relapse. Nat Med. 2018 May;24(4):474-483. doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207. Supplementary Table 1.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"data.frame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the dot product between two vectors. — dot","title":"Find the dot product between two vectors. — dot","text":"Find dot product two vectors.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the dot product between two vectors. — dot","text":"","code":"dot(x, y)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the dot product between two vectors. — dot","text":"x numeric vector. y numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the dot product between two vectors. — dot","text":"dot product x y.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the extension for a file — get_extension","title":"Find the extension for a file — get_extension","text":"Find extension file","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the extension for a file — get_extension","text":"","code":"get_extension(filename)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the extension for a file — get_extension","text":"filename string representing name file local directory","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the extension for a file — get_extension","text":"file extension `filename`","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":null,"dir":"Reference","previous_headings":"","what":"L2 normalize an input vector x to a length of 1 — l2_normalize","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"L2 normalize input vector x length 1","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"","code":"l2_normalize(x)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"x numeric vector","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"vector length length(x) magnitude 1","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the magnitude of a vector. — magnitude","title":"Find the magnitude of a vector. — magnitude","text":"Find magnitude vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the magnitude of a vector. — magnitude","text":"","code":"magnitude(x)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the magnitude of a vector. — magnitude","text":"x numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the magnitude of a vector. — magnitude","text":"scalar value (magnitude x).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":null,"dir":"Reference","previous_headings":"","what":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"Make AnnotatedDataFrame needed flowFrame class","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"","code":"make_flowcore_annotated_data_frame(maxes_and_mins)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"maxes_and_mins data.frame containing information max min values channel saved flowFrame.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"AnnotatedDataFrame.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":null,"dir":"Reference","previous_headings":"","what":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"character vector used `tof_read_fcs` `tof_read_data` detect parse CyTOF metals correspond channel input .fcs file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"","code":"data(metal_masterlist)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"character vector entry pattern tidytof searches every CyTOF channel input .fcs files. patterns amalgamate example .fcs files sampled studies linked .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"https://github.com/kara-davis-lab/DDPR https://cytobank.org/nolanlab/reports/Levine2015.html https://cytobank.org/nolanlab/reports/Spitzer2015.html https://cytobank.org/nolanlab/reports/Spitzer2017.html https://community.cytobank.org/cytobank/projects/609","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"named character vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Constructor for a tof_model. — new_tof_model","title":"Constructor for a tof_model. — new_tof_model","text":"Constructor tof_model.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Constructor for a tof_model. — new_tof_model","text":"","code":"new_tof_model( model, recipe, penalty, mixture, model_type = c(\"linear\", \"two-class\", \"multiclass\", \"survival\"), outcome_colnames, training_data )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Constructor for a tof_model. — new_tof_model","text":"model glmnet model. recipe prepped recipe object. penalty double indicating lambda value used within glmnet path. mixture double indicating alpha value used fit glmnet model. model_type string indicating type glmnet model fit. outcome_colnames training_data ","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Constructor for a tof_model. — new_tof_model","text":"`tof_model`, S3 class includes trained glmnet model recipe used perform associated preprocessing.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Constructor for a tof_tibble. — new_tof_tibble","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"Constructor tof_tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"","code":"new_tof_tibble(x = dplyr::tibble(), panel = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"x data.frame tibble containing single-cell mass cytometry data rows cells columns CyTOF measurements. panel data.frame tibble containing information panel mass cytometry data x.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"`tof_tbl`, tibble extension tracks attributes useful CyTOF data analysis.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":null,"dir":"Reference","previous_headings":"","what":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"dataset containing CyTOF measurements healthy control cells originally studied following paper: Levine JH, Simonds EF, et al. Data-Driven Phenotypic Dissection AML Reveals Progenitor-like Cells Correlate Prognosis. Cell. 2015 Jul 2;162(1):184-97. doi: 10.1016/j.cell.2015.05.047. Epub 2015 Jun 18. PMID: 26095251; PMCID: PMC4508757.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"","code":"data(phenograph_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"data frame 6000 rows 26 variables: sample_name Name sample data read phenograph_cluster Numeric ID cluster assignment row cd19 CyTOF measurement raw ion counts cd11b CyTOF measurement raw ion counts cd34 CyTOF measurement raw ion counts cd45 CyTOF measurement raw ion counts cd123 CyTOF measurement raw ion counts cd33 CyTOF measurement raw ion counts cd47 CyTOF measurement raw ion counts cd7 CyTOF measurement raw ion counts cd44 CyTOF measurement raw ion counts cd38 CyTOF measurement raw ion counts cd3 CyTOF measurement raw ion counts cd117 CyTOF measurement raw ion counts cd64 CyTOF measurement raw ion counts cd41 CyTOF measurement raw ion counts pstat3 CyTOF measurement raw ion counts pstat5 CyTOF measurement raw ion counts pampk CyTOF measurement raw ion counts p4ebp1 CyTOF measurement raw ion counts ps6 CyTOF measurement raw ion counts pcreb CyTOF measurement raw ion counts pzap70-syk CyTOF measurement raw ion counts prb CyTOF measurement raw ion counts perk1-2 CyTOF measurement raw ion counts","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"https://cytobank.org/nolanlab/reports/Levine2015.html","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"data.frame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"2000 cells 3 clusters identified original paper sampled.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. dplyr %>% rlang :=, .data tidyselect all_of, any_of, contains, ends_with, everything, last_col, matches, num_range, starts_with","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":null,"dir":"Reference","previous_headings":"","what":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"Reverses arcsinh transformation cofactor `scale_factor` shift `shift_factor`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"","code":"rev_asinh(x, shift_factor, scale_factor)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"x numeric vector. shift_factor scalar value `` following equation used transform high-dimensional cytometry raw data ion counts using hyperbolic arcsinh function: `new_x <- asinh(+ b * x)`. scale_factor scalar value `b` following equation used transform high-dimensional cytometry raw data ion counts using hyperbolic arcsinh function: `new_x <- asinh(+ b * x)`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"numeric vector undergoing reverse arcsinh transformation","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"","code":"shift_factor <- 0 scale_factor <- 1 / 5 input_value <- 20 asinh_value <- asinh(shift_factor + input_value * scale_factor) restored_value <- rev_asinh(asinh_value, shift_factor, scale_factor)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Get paths to tidytof example data — tidytof_example_data","title":"Get paths to tidytof example data — tidytof_example_data","text":"tidytof comes bundled number sample .fcs files inst/extdata directory. function makes easy access.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get paths to tidytof example data — tidytof_example_data","text":"","code":"tidytof_example_data(dataset_name = NULL)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get paths to tidytof example data — tidytof_example_data","text":"dataset_name Name dataset want access. NULL, names datasets (different study) listed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get paths to tidytof example data — tidytof_example_data","text":"character vector file paths requested .fcs files located. `dataset_name` NULL, character vector dataset names (can used values `dataset_name`) returned instead.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get paths to tidytof example data — tidytof_example_data","text":"","code":"tidytof_example_data() #> [1] \"aml\" \"ddpr\" \"ddpr_metadata.csv\" #> [4] \"mix\" \"mix2\" \"phenograph\" #> [7] \"phenograph_csv\" \"surgery\" tidytof_example_data(dataset_name = \"phenograph\") #> [1] \"/home/runner/work/_temp/Library/tidytof/extdata/phenograph\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using one three methods (\"diffcyt\", \"glmm\", \"ttest\"). wraps members `tof_analyze_abundance_*` function family: tof_analyze_abundance_diffcyt, tof_analyze_abundance_glmm, tof_analyze_abundance_ttest.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"","code":"tof_analyze_abundance(tof_tibble, method = c(\"diffcyt\", \"glmm\", \"ttest\"), ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"tof_tibble `tof_tbl` `tibble`. method string indicating statistical method used. Valid values include \"diffcyt\", \"glmm\", \"ttest\". ... Additional arguments pass onto `tof_analyze_abundance_*` function family member corresponding chosen method.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"tibble nested tibble containing differential abundance results chosen method. See tof_analyze_abundance_diffcyt, tof_analyze_abundance_glmm, tof_analyze_abundance_ttest details.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using one three methods implemented diffcyt package differential discovery analysis high-dimensional cytometry data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"","code":"tof_analyze_abundance_diffcyt( tof_tibble, sample_col, cluster_col, fixed_effect_cols, random_effect_cols, diffcyt_method = c(\"glmm\", \"edgeR\", \"voom\"), include_observation_level_random_effects = FALSE, min_cells = 3, min_samples = 5, alpha = 0.05, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential abundance analysis. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Optional. Unquoted column names representing columns `tof_tibble` used model random effects differential abundance analysis. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. Note without multiple samples level random effect variables, can easy overfit mixed models. high-dimensional cytometry experiments, 2 fewer (often 0) random effect variables appropriate. diffcyt_method string indicating diffcyt method used differential abundance analysis. Valid methods include \"glmm\" (default), \"edgeR\", \"voom\". include_observation_level_random_effects boolean value indicating \"observation-level random effects\" (OLREs) included random effect terms \"glmm\" differential abundance model. details OLREs , see diffcyt paper. \"glmm\" method can model observation-level random effects, values ignore argument (throw warning set TRUE). Defaults FALSE. min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. ... Optional additional arguments pass --hood diffcyt function used perform differential abundance analysis. See testDA_GLMM, testDA_edgeR, testDA_voom details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"nested tibble two columns: `tested_effect` `daa_results`. first column, `tested_effect` character vector indicating term differential abundance model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named `fixed_effect` levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential abundance model represent difference cluster abundances samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `daa_results` list tibbles entry gives differential abundance results tested_effect. Within entry `daa_results`, find several columns including following: * `p_val`, p-value associated tested effect input cluster * `p_adj`, multiple-comparison adjusted p-value (using p.adjust function) * values associated underlying method used perform differential abundance analysis (log-fold change cluster abundance levels compared). details, see glmFit, voom, topTable, testDA_GLMM.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"three methods based generalized linear mixed models (\"glmm\"), edgeR (\"edgeR\"), voom (\"voom\"). \"glmm\" \"voom\" methods can model fixed effects random effects, \"edgeR\" method can model fixed effects.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using generalized linear mixed-models. Users specify columns represent sample, cluster, fixed effect, random effect information, (mixed) binomial regression model fit using either glmer glm.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"","code":"tof_analyze_abundance_glmm( tof_tibble, sample_col, cluster_col, fixed_effect_cols, random_effect_cols, min_cells = 3, min_samples = 5, alpha = 0.05 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential abundance analysis. Supports tidyselect helpers. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Unquoted column names representing columns `tof_tibble` used model random effects differential abundance analysis. Supports tidyselection. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. Note without many samples level random effect variables, can easy overfit mixed models. high-dimensional cytometry experiments, 2 fewer (often 0) random effect variables appropriate. min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"nested tibble two columns: `tested_effect` `daa_results`. first column, `tested_effect`, character vector indicating term differential abundance model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named fixed_effect levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential abundance model represent difference cluster abundances samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, note first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `daa_results`, list tibbles entry gives differential abundance results tested_effect. Within entry `daa_results`, find `p_value`, p-value associated tested effect input cluster; `p_adj`, multiple-comparison adjusted p-value (using p.adjust function), values associated underlying method used perform differential abundance analysis (log-fold change cluster abundance levels compared).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using simple t-tests. Users specify columns represent sample, cluster, effect information, either paired unpaired t-test (one per cluster) used detect significant differences sample types.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"","code":"tof_analyze_abundance_ttest( tof_tibble, cluster_col, effect_col, group_cols, test_type = c(\"unpaired\", \"paired\"), min_cells = 3, min_samples = 5, alpha = 0.05, quiet = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. effect_col Unquoted column name representing column `tof_tibble` used break samples groups t-test. 2 unique values. group_cols Unquoted names columns `effect_col` used group cells independent observations. Fills similar role `sample_col` `tof_analyze_abundance_*` functions. example, experiment involves analyzing samples taken multiple patients two timepoints (`effect_col = timepoint`), group_cols name column representing patient IDs. test_type string indicating whether t-test \"unpaired\" (default) \"paired\". min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. quiet boolean value indicating whether warnings printed. Defaults `TRUE`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"tibble 7 columns: {cluster_col} name/ID cluster tested. entry column match unique value input {cluster_col}. t t-statistic computed cluster. df degrees freedom used t-test cluster. p_val (unadjusted) p-value t-test cluster. p_adj p.adjust-adjusted p-value t-test cluster. significant character vector \"*\" clusters p_adj < alpha \"\" otherwise. mean_diff unpaired t-test, difference average proportions cluster two levels `effect_col`. paired t-test, average difference proportions cluster two levels `effect_col` within given patient. mean_fc unpaired t-test, ratio average proportions cluster two levels `effect_col`. paired t-test, average ratio proportions cluster two levels `effect_col` within given patient. 0.001 added denominator ratio avoid divide--zero errors. \"levels\" attribute result indicates order different levels `effect_col` considered. `mean_diff` value row output computed subtracting second level first level, `mean_fc` value row computed dividing first level second level.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using one three methods (\"diffcyt\", \"glmm\", \"ttest\"). wraps members `tof_analyze_expression_*` function family: tof_analyze_expression_diffcyt, tof_analyze_expression_lmm, tof_analyze_expression_ttest.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"","code":"tof_analyze_expression(tof_tibble, method = c(\"diffcyt\", \"glmm\", \"ttest\"), ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"tof_tibble `tof_tbl` `tibble`. method string indicating statistical method used. Valid values include \"diffcyt\", \"lmm\", \"ttest\". ... Additional arguments pass onto `tof_analyze_expression_*` function family member corresponding chosen method.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"tibble nested tibble containing differential abundance results chosen method. See tof_analyze_expression_diffcyt, tof_analyze_expression_lmm, tof_analyze_expression_ttest details.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using one two methods implemented diffcyt package differential discovery analysis high-dimensional cytometry data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"","code":"tof_analyze_expression_diffcyt( tof_tibble, sample_col, cluster_col, marker_cols = where(tof_is_numeric), fixed_effect_cols, random_effect_cols, diffcyt_method = c(\"lmm\", \"limma\"), include_observation_level_random_effects = FALSE, min_cells = 3, min_samples = 5, alpha = 0.05, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names representing columns `tof_tibble` (.e. high-dimensional cytometry protein measurements) tested differential expression levels `fixed_effect_cols`. Defaults numeric (integer double) columns. Supports tidyselect helpers. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential expression analysis. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Unquoted column names representing columns `tof_tibble` used model random effects differential expression analysis. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. Note without many samples level random effect variables, can easy overfit mixed models. high-dimensional cytometry experiments, 2 fewer (often 0) random effect variables appropriate. diffcyt_method string indicating diffcyt method used differential expression analysis. Valid methods include \"lmm\" (default) \"limma\". include_observation_level_random_effects boolean value indicating \"observation-level random effects\" (OLREs) included random effect terms \"lmm\" differential expression model. details OLREs , see diffcyt paper. Defaults FALSE. min_cells integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. ... Optional additional arguments pass --hood diffcyt function used perform differential expression analysis. See testDS_LMM testDS_limma details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"nested tibble two columns: `tested_effect` `dea_results`. first column, `tested_effect` character vector indicating term differential expression model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named fixed_effect levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential expression model represent difference cluster median expression values marker samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, note first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `dea_results` list tibbles entry gives differential expression results tested_effect. Within entry `dea_results`, find `p_val`, p-value associated tested effect input cluster/marker pair; `p_adj`, multiple-comparison adjusted p-value (using p.adjust function), values associated underlying method used perform differential expression analysis (log-fold change clusters' median marker expression values conditions compared). tibble `dea_results` also two columns representing cluster marker corresponding p-value row.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"two methods based linear mixed models (\"lmm\") limma (\"limma\"). \"lmm\" \"limma\" methods can model fixed effects random effects.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using linear mixed-models. Users specify columns represent sample, cluster, marker, fixed effect, random effect information, (mixed) linear regression model fit using either lmer glm.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"","code":"tof_analyze_expression_lmm( tof_tibble, sample_col, cluster_col, marker_cols = where(tof_is_numeric), fixed_effect_cols, random_effect_cols, central_tendency_function = median, min_cells = 3, min_samples = 5, alpha = 0.05 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names representing columns `tof_tibble` (.e. high-dimensional cytometry protein measurements) included differential discovery analysis. Defaults numeric (integer double) columns. Supports tidyselection. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential expression analysis. Supports tidyselection. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Optional. Unquoted column names representing columns `tof_tibble` used model random effects differential expression analysis. Supports tidyselection. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. analyses include random effects. central_tendency_function function used calculate measurement central tendency cluster/marker pair (used dependent variable linear model). Defaults median. min_cells integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"nested tibble two columns: `tested_effect` `dea_results`. first column, `tested_effect` character vector indicating term differential expression model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named fixed_effect levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential expression model represent difference cluster median expression values marker samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, note first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `dea_results` list tibbles entry gives differential expression results tested_effect. Within entry `daa_results`, find `p_val`, p-value associated tested effect input cluster/marker pair; `p_adj`, multiple-comparison adjusted p-value (using p.adjust function), values associated underlying method used perform differential expression analysis (log-fold change clusters' median marker expression values levels compared).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"Specifically, one linear model fit cluster/marker pair. cluster/marker pair, user-supplied measurement central tendency (`central_tendency_function`), mean median, calculated across cells cluster sample--sample basis. , central tendency value used dependent variable linear model `fixed_effect_cols` fixed effects predictors `random_effect_cols` random effects predictors. models (one per cluster/marker pair) fit, p-values coefficient model multiple-comparisons adjusted using p.adjust function.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using simple t-tests. Specifically, either unpaired paired t-test compare samples' marker expression distributions (two conditions) within cluster using user-specified summary function (.e. mean median). One t-test conducted per cluster/marker pair significant differences sample types detected multiple-hypothesis correction.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"","code":"tof_analyze_expression_ttest( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), effect_col, group_cols, test_type = c(\"unpaired\", \"paired\"), summary_function = mean, min_cells = 3, min_samples = 5, alpha = 0.05, quiet = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names representing columns `tof_tibble` (.e. high-dimensional cytometry protein measurements) tested differential expression levels `effect_col`. Defaults numeric (integer double) columns. Supports tidyselect helpers. effect_col Unquoted column name representing column `tof_tibble` used break samples groups t-test. 2 unique values. group_cols Unquoted names columns `effect_col` used group cells independent observations. Fills similar role `sample_col` `tof_analyze_abundance_*` functions. example, experiment involves analyzing samples taken multiple patients two timepoints (`effect_col = timepoint`), group_cols name column representing patient IDs. test_type string indicating whether t-test \"unpaired\" (default) \"paired\". summary_function vector-valued function used summarize distribution marker cluster (within sample, grouped `group_cols`). Defaults `mean`. min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. quiet boolean value indicating whether warnings printed. Defaults `TRUE`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"tibble 7 columns: {cluster_col} name/ID cluster cluster/marker pair tested. entry column match unique value input {cluster_col}. marker name marker cluster/marker pair tested. t t-statistic computed cluster. df degrees freedom used t-test cluster. p_val (unadjusted) p-value t-test cluster. p_adj p.adjust-adjusted p-value t-test cluster. significant character vector \"*\" clusters p_adj < alpha \"\" otherwise. mean_diff unpaired t-test, difference average proportions cluster two levels `effect_col`. paired t-test, average difference proportions cluster two levels `effect_col` within given patient. mean_fc unpaired t-test, ratio average proportions cluster two levels `effect_col`. paired t-test, average ratio proportions cluster two levels `effect_col` within given patient. 0.001 added denominator ratio avoid divide--zero errors. \"levels\" attribute result indicates order different levels `effect_col` considered. `mean_diff` value row output computed subtracting second level first level, `mean_fc` value row computed dividing first level second level.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":null,"dir":"Reference","previous_headings":"","what":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"function adds additional column `tibble` `tof_tbl` allow users incorporate manual cell type labels clusters identified using unsupervised algorithms.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"","code":"tof_annotate_clusters(tof_tibble, cluster_col, annotations)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` contains ids unsupervised cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. annotations data structure indicating annotate cluster id `cluster_col`. `annotations` can provided data.frame two columns (first name `cluster_col` contain unique cluster id; second can name contain character vector indicating manual annotation matched cluster id first column). `annotations` can also provided named character vector; case, entry `annotations` unique cluster id, names entry corresponding manual cluster annotation. See examples.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"`tof_tbl` number rows `tof_tibble` one additional column containing manual cluster annotations cell (character vector). `annotations` provided data.frame, new column name column containing cluster annotations `annotations`. `annotations` provided named character vector, new column named `cluster_col_annotation`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) ) # using named character vector sim_data |> tof_annotate_clusters( cluster_col = cluster_id, annotations = c(\"macrophage\" = \"a\", \"dendritic cell\" = \"b\") ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id cluster_id_annotation #> #> 1 -1.40 -0.337 -0.166 1.12 a macrophage #> 2 0.255 -0.216 0.120 0.400 a macrophage #> 3 -2.44 0.621 -0.662 -0.985 a macrophage #> 4 -0.00557 -1.28 -0.531 -0.503 a macrophage #> 5 0.622 -1.30 -0.301 0.987 a macrophage #> 6 1.15 -0.377 -0.602 2.19 a macrophage #> 7 -1.82 0.104 -0.318 -0.165 a macrophage #> 8 -0.247 -0.704 0.308 -0.686 a macrophage #> 9 -0.244 1.50 0.799 0.941 a macrophage #> 10 -0.283 -0.303 1.75 -0.164 a macrophage #> # ℹ 990 more rows # using two-column data.frame annotation_data_frame <- data.frame( cluster_id = c(\"a\", \"b\"), cluster_annotation = c(\"macrophage\", \"dendritic cell\") ) sim_data |> tof_annotate_clusters( cluster_col = cluster_id, annotations = annotation_data_frame ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id cluster_annotation #> #> 1 -1.40 -0.337 -0.166 1.12 a macrophage #> 2 0.255 -0.216 0.120 0.400 a macrophage #> 3 -2.44 0.621 -0.662 -0.985 a macrophage #> 4 -0.00557 -1.28 -0.531 -0.503 a macrophage #> 5 0.622 -1.30 -0.301 0.987 a macrophage #> 6 1.15 -0.377 -0.602 2.19 a macrophage #> 7 -1.82 0.104 -0.318 -0.165 a macrophage #> 8 -0.247 -0.704 0.308 -0.686 a macrophage #> 9 -0.244 1.50 0.799 0.941 a macrophage #> 10 -0.283 -0.303 1.75 -0.164 a macrophage #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"Perform developmental clustering CyTOF data using pre-fit classifier","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"","code":"tof_apply_classifier( cancer_tibble = NULL, classifier_fit = NULL, distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\"), num_cores = 1, parallel_vars )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"cancer_tibble `tibble` `tof_tibble` containing cells classified nearest healthy subpopulation (generally cancer cells). classifier_fit nested `tibble` produced `tof_build_classifier` row represents healthy cell subpopulation cells `cancer_tibble` classified using minimum distance. distance_function string indicating distance function used perform classification. Options \"mahalanobis\" (default), \"cosine\", \"pearson\". num_cores integer indicating number CPU cores used parallelize classification. Defaults 1 (single core). parallel_vars Unquoted column names indicating columns `cancer_tibble` use breaking data order parallelize classification. Defaults NULL. Supports tidyselect helpers.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"tibble `nrow(cancer_tibble)` rows `nrow(classifier_fit) + 1` columns. row represents cell `cancer_tibble`, `nrow(classifier_fit)` columns represent distance cell healthy subpopulations' cluster centroids. final column represents cluster id healthy subpopulation minimum distance cell represented row.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"Detect low-expression (.e. potentially failed) channels high-dimensional cytometry data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"","code":"tof_assess_channels( tof_tibble, channel_cols = where(tof_is_numeric), negative_threshold = asinh(10/5), negative_proportion_flag = 0.95 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"tof_tibble `tof_tbl` `tibble`. channel_cols vector unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default analyze numeric columns. negative_threshold scalar indicating threshold measurement considered negative. Defaults hyperbolic arcsine transformation 10 counts. negative_proportion_flag scalar 0 1 indicating proportion cells tof_tibble need `negative_threshold` given marker order marker flagged. Defaults 0.95.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"tibble 3 columns number rows equal number columns `tof_tibble` chosen `channel_cols`. three columns \"channel\", character vector channel names, \"negative_proportion\", numeric vector values 0 1 indicating many cells `tof_tibble` `negative_threshold` channel, `flagged_channel`, boolean vector indicating whether channel flagged potentially failed (TRUE means channel large number cells `negative_threshold`).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"","code":"# simulate some data sim_data <- data.frame( cd4 = rnorm(n = 100, mean = 5, sd = 0.5), cd8 = rnorm(n = 100, mean = 0, sd = 0.1), cd33 = rnorm(n = 100, mean = 10, sd = 0.1) ) tof_assess_channels(tof_tibble = sim_data) #> # A tibble: 3 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd8 1 TRUE #> 2 cd4 0 FALSE #> 3 cd33 0 FALSE tof_assess_channels(tof_tibble = sim_data, channel_cols = c(cd4, cd8)) #> # A tibble: 2 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd8 1 TRUE #> 2 cd4 0 FALSE tof_assess_channels(tof_tibble = sim_data, negative_threshold = 2) #> # A tibble: 3 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd8 1 TRUE #> 2 cd4 0 FALSE #> 3 cd33 0 FALSE"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"function evaluates result clustering procedure comparing mahalanobis distance cell centroid cluster assigned among cells given cluster. cells mahalanobis-distance z-score user-specified threshold flagged potentially anomalous. Note z-score calculated using modified formula minimize effect outliers (Z = x - median(x) / mad(x)).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"","code":"tof_assess_clusters_distance( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), z_threshold = 3, augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers used mahalanobis distance calculation. Defaults numeric columns. Supports tidyselection. z_threshold scalar indicating distance z-score threshold cell considered anomalous. Defaults 3. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"augment = FALSE (default), tibble 3 columns: \".mahalanobis_distance\" (mahalanobis distance cell centroid tits assigned cluster), \"z_score\" (modified z-score cell's mahalanobis distance relative cells dataset), \"flagged_cell\" (boolean indicating whether cell flagged z-score z_threshold). augment = TRUE, 3 columns column-bound tof_tibble, resulting tibble returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"","code":"# simulate data sim_data_inner <- dplyr::tibble( cd45 = c(rnorm(n = 600), rnorm(n = 500, mean = -4)), cd38 = c( rnorm(n = 100, sd = 0.5), rnorm(n = 500, mean = -3), rnorm(n = 500, mean = 8) ), cd34 = c( rnorm(n = 100, sd = 0.2, mean = -10), rnorm(n = 500, mean = 4), rnorm(n = 500, mean = 60) ), cd19 = c(rnorm(n = 100, sd = 0.3, mean = 10), rnorm(n = 1000)), cluster_id = c(rep(\"a\", 100), rep(\"b\", 500), rep(\"c\", 500)), dataset = \"inner\" ) sim_data_outer <- dplyr::tibble( cd45 = c(rnorm(n = 10), rnorm(50, mean = 3), rnorm(n = 50, mean = -12)), cd38 = c( rnorm(n = 10, sd = 0.5), rnorm(n = 50, mean = -10), rnorm(n = 50, mean = 10) ), cd34 = c( rnorm(n = 10, sd = 0.2, mean = -15), rnorm(n = 50, mean = 15), rnorm(n = 50, mean = 70) ), cd19 = c(rnorm(n = 10, sd = 0.3, mean = 19), rnorm(n = 100)), cluster_id = c(rep(\"a\", 10), rep(\"b\", 50), rep(\"c\", 50)), dataset = \"outer\" ) sim_data <- rbind(sim_data_inner, sim_data_outer) # detect anomalous cells (in this case, the \"outer\" dataset contains small # clusters that get lumped into the larger clusters in the \"inner\" dataset) z_result <- sim_data |> tof_assess_clusters_distance(cluster_col = cluster_id, z_threshold = 2.5)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"function evaluates result clustering procedure calculating mahalanobis distance cell centroids clusters dataset finding shannon entropy resulting vector distances. cells entropy threshold user-specified threshold flagged potentially anomalous. Entropy minimized (0) cell close one (small number) clusters, far rest . cell close multiple cluster centroids (.e. ambiguous phenotype), entropy large.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"","code":"tof_assess_clusters_entropy( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), entropy_threshold, entropy_quantile = 0.9, num_closest_clusters, augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers used mahalanobis distance calculation. Defaults numeric columns. Supports tidyselection. entropy_threshold scalar indicating entropy threshold cell considered anomalous. unspecified, threshold computed using `entropy_quantile` (see ). (Note: Entropy often 0 1, can larger many classes/clusters). entropy_quantile scalar 0 1 indicating entropy quantile cell considered anomalous. Defaults 0.9, means cells entropy 90th percentile flagged. Ignored entropy_threshold specified directly. num_closest_clusters integer indicating many cell's closest cluster centroids mahalanobis distance included entropy calculation. Playing argument allow ignore distances clusters far away cell (thus may distort result, many distant centroids large distances can artificially inflate cells' entropy value; said, rarely issue empirically). Defaults clusters tof_tibble. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"augment = FALSE (default), tibble 2 + NUM_CLUSTERS columns. NUM_CLUSTERS number unique clusters cluster_col. Two columns \"entropy\" (entropy value cell) \"flagged_cell\" (boolean value indicating cell entropy value entropy_threshold). NUM_CLUSTERS columns contain mahalanobis distances cell clusters cluster_col (named \".mahalanobis_cluster_name\"). augment = TRUE, 2 + NUM_CLUSTERS columns column-bound tof_tibble, resulting tibble returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"","code":"# simulate data sim_data <- dplyr::tibble( cd45 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd38 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd34 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd19 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cluster_id = c(rep(\"a\", 1000), rep(\"b\", 1000), rep(\"c\", 1000)) ) # imagine a \"reference\" dataset in which \"cluster a\" isn't present sim_data_reference <- sim_data |> dplyr::filter(cluster_id %in% c(\"b\", \"c\")) # if we cluster into the reference dataset, we will force all cells in # cluster a into a population where they don't fit very well sim_data <- sim_data |> tof_cluster( healthy_tibble = sim_data_reference, healthy_label_col = cluster_id, method = \"ddpr\" ) # we can evaluate the clustering quality by calculating by the entropy of the # mahalanobis distance vector for each cell to all cluster centroids entropy_result <- sim_data |> tof_assess_clusters_entropy( cluster_col = .mahalanobis_cluster, marker_cols = starts_with(\"cd\"), entropy_quantile = 0.8, augment = TRUE ) # most cells in \"cluster a\" are flagged, and few cells in the other clusters are flagged_cluster_proportions <- entropy_result |> dplyr::group_by(cluster_id) |> dplyr::summarize( prop_flagged = mean(flagged_cell) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"function evaluates result clustering procedure finding cell's K nearest neighbors, determining cluster majority assigned , checking matches cell's cluster assignment. cluster assignment majority cell's nearest neighbors match cell's cluster assignment, cell flagged potentially anomalous.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"","code":"tof_assess_clusters_knn( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), num_neighbors = min(10, nrow(tof_tibble)), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers used mahalanobis distance calculation. Defaults numeric columns. Supports tidyselection. num_neighbors integer indicating many neighbors found nearest neighbor calculation. distance_function string indicating distance function used perform k nearest neighbor calculation. Options \"euclidean\" (default) \"cosine\". augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"augment = FALSE (default), tibble 2 columns: \".knn_cluster\" (character vector indicating cluster received majority vote cell's k nearest neighbors) \"flagged_cell\" (boolean value indicating cell's cluster assignment matched majority vote (TRUE) (FALSE)). augment = TRUE, 2 columns column-bound tof_tibble, resulting tibble returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"","code":"sim_data <- dplyr::tibble( cd45 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd38 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd34 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd19 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cluster_id = c(rep(\"a\", 1000), rep(\"b\", 1000), rep(\"c\", 1000)) ) knn_result <- sim_data |> tof_assess_clusters_knn( cluster_col = cluster_id, num_neighbors = 10 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"function performs simplified version flowAI's statistical test detect time periods abnormal flow rates course flow cytometry experiment. Briefly, relative flow rates timestep throughout data acquisition calculated (see tof_calculate_flow_rate), outlier timepoints particularly high low flow rates (.e. beyond extreme values t-distribution across timesteps) flagged.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"","code":"tof_assess_flow_rate( tof_tibble, time_col, group_cols, num_timesteps = nrow(tof_tibble)/1000, alpha_threshold = 0.01, visualize = FALSE, ..., augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"tof_tibble `tof_tbl` `tibble`. time_col unquoted column name indicating column `tof_tibble` contains time cell collected. group_cols Optional. Unquoted column names indicating columns used group cells analysis. Flow rate calculation performed independently within group. Supports tidyselect helpers. num_timesteps number bins `time_col` split. define \"timesteps\" data collection process. number cells analyzed cytometer counted bin separately represent relative average flow rate timestep data collection. alpha_threshold scalar 0 1 indicating two-tailed significance level draw outlier thresholds t-distribution `num_timesteps` - 1 degrees freedom. Defaults 0.01. visualize boolean value indicating plot generated visualize timestep's relative flow rate (group) instead returning tibble directly. Defaults FALSE. ... Optional additional arguments pass facet_wrap. Ignored visualize = FALSE. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"tibble number rows `tof_tibble`. augment = FALSE (default), 3 columns: \"time_col\" (column `time_col`), \"timestep\" (numeric timestep cell assigned based value `time_col`), \"flagged_window\" (boolean vector indicating cell collecting timestep flagged high low flow rate). augment = TRUE, 3 columns column-bound `tof_tibble` return augmented version input dataset. (Note case, time_col duplicated). visualize = TRUE, ggplot object returned instead tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"","code":"set.seed(1000L) sim_data <- data.frame( cd4 = rnorm(n = 1000, mean = 5, sd = 0.5), cd8 = rnorm(n = 1000, mean = 0, sd = 0.1), cd33 = rnorm(n = 1000, mean = 10, sd = 0.1), file_name = c(rep(\"a\", times = 500), rep(\"b\", times = 500)), time = c( sample(1:100, size = 200, replace = TRUE), sample(100:400, size = 300, replace = TRUE), sample(1:150, size = 400, replace = TRUE), sample(1:500, size = 100, replace = TRUE) ) ) sim_data |> tof_assess_flow_rate( time_col = time, num_timesteps = 20, visualize = TRUE ) sim_data |> tof_assess_flow_rate( time_col = time, group_cols = file_name, num_timesteps = 20, visualize = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"function performs simplified version flowAI's statistical test detect time periods abnormal flow rates course flow cytometry experiment. Briefly, relative flow rates timestep throughout data acquisition calculated (see tof_calculate_flow_rate), outlier timepoints particularly high low flow rates (.e. beyond extreme values t-distribution across timesteps) flagged.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"","code":"tof_assess_flow_rate_tibble( tof_tibble, time_col, num_timesteps = nrow(tof_tibble)/1000, alpha_threshold = 0.01, augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"tof_tibble `tof_tbl` `tibble`. time_col unquoted column name indicating column `tof_tibble` contains time cell collected. num_timesteps number bins `time_col` split. define \"timesteps\" data collection process. number cells analyzed cytometer counted bin separately represent relative average flow rate timestep data collection. alpha_threshold scalar 0 1 indicating two-tailed significance level draw outlier thresholds t-distribution `num_timesteps` - 1 degrees freedom. Defaults 0.01. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"tibble number rows `tof_tibble`. augment = FALSE (default), 3 columns: \"time_col\" (column `time_col`), \"timestep\" (numeric timestep cell assigned based value `time_col`), \"flagged_window\" (boolean vector indicating cell collecting timestep flagged high low flow rate). augment = TRUE, 3 columns column-bound `tof_tibble` return augmented version input dataset. (Note case, time_col duplicated).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"","code":"set.seed(1000L) sim_data <- data.frame( cd4 = rnorm(n = 1000, mean = 5, sd = 0.5), cd8 = rnorm(n = 1000, mean = 0, sd = 0.1), cd33 = rnorm(n = 1000, mean = 10, sd = 0.1), time = c( sample(1:100, size = 200, replace = TRUE), sample(100:400, size = 300, replace = TRUE), sample(1:150, size = 400, replace = TRUE), sample(1:500, size = 100, replace = TRUE) ) ) sim_data |> tof_assess_flow_rate( time_col = time, num_timesteps = 20, visualize = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a trained elastic net model — tof_assess_model","title":"Assess a trained elastic net model — tof_assess_model","text":"function assesses trained `tof_model`'s performance new data computing model type-specific performance measurements. new data provided, performance metrics training data provided.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a trained elastic net model — tof_assess_model","text":"","code":"tof_assess_model(tof_model, new_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a trained elastic net model — tof_assess_model","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations used evaluate `tof_model`'s performance. new_data provided, model evaluation performed using training data used fit model. Alternatively, string \"tuning\" can provided access model's performance metrics (resampled) model tuning process.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a trained elastic net model — tof_assess_model","text":"list performance metrics whose components depend model type: \"model_metrics\" tibble two columns (\"metric\" \"value\") containing standard performance metrics model type. linear models, \"mse\" (mean squared error predictions) \"mae\" (mean absolute error predictions). two-class models, \"roc_auc\" (area Receiver-Operating Curve classification), \"misclassification error\" (proportion misclassified observations), \"binomial_deviance\" (see deviance.glmnet), \"mse\" (mean squared error logit function), \"mae\" (mean absolute error logit function). multiclass models, \"roc_auc\" (area Receiver-Operating Curve classification using Hand-Till generalization ROC AUC multiclass models roc_auc), \"misclassification error\" (proportion misclassified observations), \"multinomial_deviance\" (see deviance.glmnet), \"mse\" \"mae\" . survival models, \"concordance_index\" (Harrel's C index; see deviance.glmnet) \"partial_likelihood_deviance\" (see deviance.glmnet). \"roc_curve\" Reported \"two-class\" \"multiclass\" models. , tibble provided reporting true-positive rate (tpr) false-positive rate (fpr) threshold classification use plotting receiver-operating curve. \"multiclass\" models, \".level\" column allows separating values roc_curve one ROC can plotted class. \"confusion_matrix\" Reported \"two-class\" \"multiclass\" models. , tibble provided reporting \"confusion matrix\" classification long-format. \"survival_curves\" Reported \"survival\" models. tibble indicating patient's probability survival (1 - probability(event)) timepoint dataset whether sample placed \"high\" \"low\" risk group according predicted relative risk (tof_model's optimal relative_risk cutoff training dataset).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a trained elastic net model — tof_assess_model","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100) ) new_tibble <- dplyr::tibble( sample = as.character(1:20), cd45 = runif(n = 20), pstat5 = runif(n = 20), cd34 = runif(n = 20), outcome = (3 * cd45) + (4 * pstat5) + rnorm(20) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) # assess the model on new data tof_assess_model(tof_model = regression_model, new_data = new_tibble) #> $model_metrics #> # A tibble: 2 × 2 #> metric value #> #> 1 mse 0.795 #> 2 mae 0.788 #>"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"Compute trained elastic net model's performance metrics using new_data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"","code":"tof_assess_model_new_data(tof_model, new_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations used evaluate `tof_model`'s performance.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"list performance metrics whose components depend model type.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":null,"dir":"Reference","previous_headings":"","what":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"Access trained elastic net model's performance metrics using tuning data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"","code":"tof_assess_model_tuning(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"tof_model `tof_model` trained using tof_train_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"list performance metrics whose components depend model type.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"function performs quantile normalization high-dimensional cytometry data tidy format using either linear rescaling quantile normalization. channel specified `channel_cols` batch corrected, `group_cols` can used break cells groups batch correction performed separately.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"","code":"tof_batch_correct( tof_tibble, channel_cols, group_cols, augment = TRUE, method = c(\"rescale\", \"quantile\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells batch correction. Batch correction performed independently within group. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted. method string indicating batch correction method used. Valid options \"rescale\" linear scaling (default) \"quantile\" quantile normalization using normalize.quantiles.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":null,"dir":"Reference","previous_headings":"","what":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"function performs quantile normalization high-dimensional cytometry data tidy format using normalize.quantiles. Optionally, groups can specified normalized separately.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"","code":"tof_batch_correct_quantile( tof_tibble, channel_cols, group_cols, augment = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells batch correction. Batch correction performed independently within group. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"function performs quantile normalization high-dimensional cytometry data tidy format using normalize.quantiles.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"","code":"tof_batch_correct_quantile_tibble(tof_tibble, channel_cols, augment = TRUE)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"function performs quantile normalization high-dimensional cytometry data tidy format using linear rescaling. channel specified `channel_cols` rescaled maximum value 1 minimum value 0. `group_cols` specifies columns used break cells groups rescaling performed separately.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"","code":"tof_batch_correct_rescale(tof_tibble, channel_cols, group_cols, augment = TRUE)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells batch correction. Batch correction performed independently within group. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"function takes `tibble` `tof_tibble` storing healthy cell measurements rows vector (`healthy_cell_labels`) representing cell subpopulation cell belongs. uses values calculate several values required perform \"developmental classification\" described paper.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"","code":"tof_build_classifier( healthy_tibble = NULL, healthy_cell_labels = NULL, classifier_markers = where(tof_is_numeric), verbose = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"healthy_tibble `tibble` `tof_tibble` containing cells healthy control samples (.e. disease samples). healthy_cell_labels character integer vector length `nrow(healthy_tibble)`. entry vector represent cell subpopulation label (cluster id) corresponding row `healthy_tibble`. classifier_markers Unquoted column names indicating columns `healthy_tibble` use developmental classification. Defaults numeric columns `healthy_tibble`. Supports tidyselect helpers. verbose boolean value indicating updates printed console classification. Defaults FALSE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"tibble three columns: population (id healthy cell population), centroid (centroid vector cell population), covariance_matrix (covariance matrix cell population)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"Calculate relative flow rates different timepoints throughout flow mass cytometry run.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"","code":"tof_calculate_flow_rate( tof_tibble, time_col, num_timesteps = nrow(tof_tibble)/1000 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"tof_tibble `tof_tbl` `tibble`. time_col unquoted column name indicating column `tof_tibble` contains time cell collected. num_timesteps number bins `time_col` split. define \"timesteps\" data collection process. number cells analyzed cytometer counted bin separately represent relative average flow rate timestep data collection.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"tibble 3 columns num_timesteps rows. row represent single timestep (error thrown `num_timesteps` larger number rows `tof_tibble`). three columns follows: \"timestep\", numeric vector indicating timestep represented given row; \"time_window\", factor showing interval `time_col` \"timestep\" defined; \"num_cells\", number cells collected timestep.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"","code":"# simulate some data sim_data <- data.frame( cd4 = rnorm(n = 100, mean = 5, sd = 0.5), cd8 = rnorm(n = 100, mean = 0, sd = 0.1), cd33 = rnorm(n = 100, mean = 10, sd = 0.1), time = sample(1:300, size = 100) ) tof_calculate_flow_rate(tof_tibble = sim_data, time_col = time, num_timesteps = 20L) #> timestep time_window num_cells #> 1 1 (6.71,21.6] 4 #> 2 2 (21.6,36.2] 6 #> 3 3 (36.2,50.8] 7 #> 4 4 (50.8,65.4] 7 #> 5 5 (65.4,80] 5 #> 6 6 (80,94.6] 4 #> 7 7 (94.6,109] 5 #> 8 8 (109,124] 4 #> 9 9 (124,138] 1 #> 10 10 (138,153] 7 #> 11 11 (153,168] 5 #> 12 12 (168,182] 2 #> 13 13 (182,197] 7 #> 14 14 (197,211] 7 #> 15 15 (211,226] 5 #> 16 16 (226,241] 2 #> 17 17 (241,255] 4 #> 18 18 (255,270] 5 #> 19 19 (270,284] 7 #> 20 20 (284,299] 6"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":null,"dir":"Reference","previous_headings":"","what":"Check argument specifications for a glmnet model. — tof_check_model_args","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"Check argument specifications glmnet model.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"","code":"tof_check_model_args( split_data, model_type = c(\"linear\", \"two-class\", \"multiclass\", \"survival\"), best_model_type = c(\"best\", \"best with sparsity\"), response_col, time_col, event_col )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"split_data `rsplit` `rset` object rsample package containing sample-level data use modeling. Alternatively, unsplit tbl_df can provided, though recommended. model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. best_model_type Currently unused. response_col Unquoted column name indicating column data contained `split_data` used outcome \"two-class\", \"multiclass\", \"linear\" elastic net model. Must factor \"two-class\" \"multiclass\" models must numeric \"linear\" models. Ignored `model_type` \"survival\". time_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must numeric. Ignored `model_type` \"two-class\", \"multiclass\", \"linear\". event_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must binary column - values either 0 1 (1 indicating adverse event) FALSE TRUE (TRUE indicating adverse event). Ignored `model_type` \"two-class\", \"multiclass\", \"linear\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"tibble. arguments specified correctly, tibble can used create recipe preprocessing.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":null,"dir":"Reference","previous_headings":"","what":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"function uses specified distance metric classify cell data.frame matrix (`cancer_data`) one `nrow(classifier_fit)` subpopulations based minimum distance, described paper.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"","code":"tof_classify_cells( classifier_fit, cancer_data, distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"classifier_fit tibble produced tof_build_classifier. cancer_data matrix row corresponds cell column corresponds measured CyTOF antigen. distance_function string indicating three distance functions used calculate distances row `cancer_data` healthy developmental subpopulations corresponding row `classifier_fit`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"data.frame column represents distance cell input data healthy subpopulation cells classified .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"Rename glmnet's default model evaluation metrics make interpretable","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"","code":"tof_clean_metric_names(metric_tibble, model_type)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"metric_tibble tibble column represents glmnet model evaluation metric default name. model_type string indicating type glmnet model trained.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"tibble column represents glmnet model evaluation metric \"cleaned\" name.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster high-dimensional cytometry data. — tof_cluster","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"function wrapper around tidytof's tof_cluster_* function family. performs clustering high-dimensional cytometry data using user-specified method (5 choices) method's corresponding input parameters.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"","code":"tof_cluster( tof_tibble, cluster_cols = where(tof_is_numeric), group_cols = NULL, ..., augment = TRUE, method )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"tof_tibble `tof_tbl` `tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells clustering. Clustering performed group independently. Supports tidyselect helpers. ... Additional arguments pass `tof_cluster_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"flowsom\", \"phenograph\", \"kmeans\", \"ddpr\", \"xshift\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 500), cd38 = rnorm(n = 500), cd34 = rnorm(n = 500), cd19 = rnorm(n = 500) ) tof_cluster(tof_tibble = sim_data, method = \"kmeans\") #> # A tibble: 500 × 5 #> cd45 cd38 cd34 cd19 .kmeans_cluster #> #> 1 1.33 -0.447 1.50 0.436 11 #> 2 -1.20 -0.481 -0.391 -1.54 9 #> 3 -0.541 0.666 -1.68 -0.986 16 #> 4 -1.22 1.32 0.689 -0.791 10 #> 5 0.639 0.519 -1.32 -0.204 18 #> 6 -0.239 0.397 -0.780 0.372 1 #> 7 0.651 0.997 -0.665 0.805 18 #> 8 0.788 1.26 0.584 -0.953 19 #> 9 -0.344 0.388 -0.407 -0.442 13 #> 10 0.120 0.885 -2.26 0.583 17 #> # ℹ 490 more rows tof_cluster(tof_tibble = sim_data, method = \"phenograph\") #> # A tibble: 500 × 5 #> cd45 cd38 cd34 cd19 .phenograph_cluster #> #> 1 1.33 -0.447 1.50 0.436 2 #> 2 -1.20 -0.481 -0.391 -1.54 1 #> 3 -0.541 0.666 -1.68 -0.986 1 #> 4 -1.22 1.32 0.689 -0.791 3 #> 5 0.639 0.519 -1.32 -0.204 5 #> 6 -0.239 0.397 -0.780 0.372 5 #> 7 0.651 0.997 -0.665 0.805 4 #> 8 0.788 1.26 0.584 -0.953 8 #> 9 -0.344 0.388 -0.407 -0.442 1 #> 10 0.120 0.885 -2.26 0.583 5 #> # ℹ 490 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"function performs distance-based clustering high-dimensional cytometry data sorting cancer cells (passed function `tof_tibble`) phenotypically similar healthy cell subpopulation (passed function using `healthy_tibble`). details algorithm used perform clustering, see paper.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"","code":"tof_cluster_ddpr( tof_tibble, healthy_tibble, healthy_label_col, cluster_cols = where(tof_is_numeric), distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\"), num_cores = 1L, parallel_cols, return_distances = FALSE, verbose = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"tof_tibble `tibble` `tof_tbl` containing cells classified nearest healthy subpopulation (generally cancer cells). healthy_tibble `tibble` `tof_tibble` containing cells healthy control samples (.e. disease samples). healthy_label_col unquoted column name indicating column `healthy_tibble` contains subpopulation label (cluster id) cell `healthy_tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing DDPR clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. distance_function string indicating distance function used perform classification. Options \"mahalanobis\" (default), \"cosine\", \"pearson\". num_cores integer indicating number CPU cores used parallelize classification. Defaults 1 (single core). parallel_cols Optional. Unquoted column names indicating columns `tof_tibble` use breaking data order parallelize classification using `foreach` `doParallel` backend. Supports tidyselect helpers. return_distances boolean value indicating whether returned result include one column, cluster ids corresponding row `tof_tibble` (return_distances = FALSE, default), returned result include additional columns representing distance row `tof_tibble` healthy subpopulation centroids (return_distances = TRUE). verbose boolean value indicating whether progress updates printed developmental classification. Default FALSE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"`return_distances = FALSE`, tibble one column named `.distance_function_cluster`, character vector length `nrow(tof_tibble)` indicating id developmental cluster cell (.e. row) `tof_tibble` assigned. `return_distances = TRUE`, tibble `nrow(tof_tibble)` rows `nrow(classifier_fit) + 1` columns. row represents cell `tof_tibble`, `nrow(classifier_fit)` columns represent distance cell healthy subpopulations' cluster centroids. final column represents cluster id healthy subpopulation minimum distance cell represented row. `return_distances = FALSE`, tibble one column named `.distance_function_cluster`. column contain integer vector length `nrow(tof_tibble)` indicating id developmental cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) healthy_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) tof_cluster_ddpr( tof_tibble = sim_data, healthy_tibble = healthy_data, healthy_label_col = cluster_id ) #> # A tibble: 1,000 × 1 #> .mahalanobis_cluster #> #> 1 b #> 2 b #> 3 b #> 4 a #> 5 b #> 6 b #> 7 b #> 8 a #> 9 a #> 10 b #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"function performs FlowSOM clustering high-dimensional cytometry data using user-specified selection input variables/high-dimensional cytometry measurements. mostly convenient wrapper around SOM MetaClustering.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"","code":"tof_cluster_flowsom( tof_tibble = NULL, cluster_cols = where(tof_is_numeric), som_xdim = 10, som_ydim = 10, som_distance_function = c(\"euclidean\", \"manhattan\", \"chebyshev\", \"cosine\"), perform_metaclustering = TRUE, num_metaclusters = 20, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"tof_tibble `tof_tbl` `tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing flowSOM clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. som_xdim width grid used self-organizing map. total number clusters returned FlowSOM som_xdim * som_ydim, adjust value affect final number clusters. Defaults 10. som_ydim height grid used self-organizing map. total number clusters returned FlowSOM som_xdim * som_ydim, adjust value affect final number clusters. Defaults 10. som_distance_function distance function used self-organizing map calculations. Options \"euclidean\" (default), \"manhattan\", \"chebyshev\", \"cosine\". perform_metaclustering boolean value indicating metaclustering performed initial clustering result returned FlowSOM. Defaults TRUE. num_metaclusters integer indicating maximum number metaclusters returned metaclustering. Defaults 20. ... Optional additional parameters can passed BuildSOM function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"tibble one column named `.flowsom_cluster` `.flowsom_metacluster` depending value `perform_metaclustering`. column contain integer vector length `nrow(tof_tibble)` indicating id flowSOM cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"additional details FlowSOM algorithm, see paper.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) tof_cluster_flowsom(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 200 × 1 #> .flowsom_metacluster #> #> 1 10 #> 2 10 #> 3 8 #> 4 5 #> 5 10 #> 6 15 #> 7 6 #> 8 8 #> 9 15 #> 10 2 #> # ℹ 190 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"function wrapper around tidytof's tof_cluster_* function family provides low-level API clustering grouped data frames. subroutine tof_cluster called directly users.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"","code":"tof_cluster_grouped(tof_tibble, group_cols, ..., augment = TRUE, method)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"tof_tibble `tof_tbl` `tibble`. group_cols unquoted column name indicating columns used group cells clustering. Clustering performed group independently. ... Additional arguments pass `tof_cluster_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"flowsom\", \"phenograph\", \"kmeans\", \"ddpr\", \"xshift\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"function performs k-means clustering high-dimensional cytometry data using user-specified selection input variables/high-dimensional cytometry measurements. mostly convenient wrapper around kmeans.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"","code":"tof_cluster_kmeans( tof_tibble, cluster_cols = where(tof_is_numeric), num_clusters = 20, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"tof_tibble `tof_tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing k-means clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_clusters integer indicating maximum number clusters returned. Defaults 20. ... Optional additional arguments can passed kmeans.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"tibble one column named `.kmeans_cluster`. column contain integer vector length `nrow(tof_tibble)` indicating id k-means cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) tof_cluster_kmeans(tof_tibble = sim_data) #> # A tibble: 1,000 × 1 #> .kmeans_cluster #> #> 1 6 #> 2 7 #> 3 15 #> 4 2 #> 5 20 #> 6 10 #> 7 3 #> 8 19 #> 9 20 #> 10 16 #> # ℹ 990 more rows tof_cluster_kmeans(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 1,000 × 1 #> .kmeans_cluster #> #> 1 12 #> 2 15 #> 3 18 #> 4 8 #> 5 13 #> 6 19 #> 7 15 #> 8 15 #> 9 2 #> 10 8 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"function performs PhenoGraph clustering high-dimensional cytometry data using user-specified selection input variables/high-dimensional cytometry measurements.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"","code":"tof_cluster_phenograph( tof_tibble, cluster_cols = where(tof_is_numeric), num_neighbors = 30, distance_function = c(\"euclidean\", \"cosine\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"tof_tibble `tof_tbl` `tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing PhenoGraph clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_neighbors integer indicating number neighbors use constructing PhenoGraph's k-nearest-neighbor graph. Smaller values emphasize local graph structure; larger values emphasize global graph structure (add time computation). Defaults 30. distance_function string indicating distance function use nearest-neighbor calculation. Options include \"euclidean\" (default) \"cosine\" distances. ... Optional additional parameters can passed tof_find_knn.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"tibble one column named `.phenograph_cluster`. column contain integer vector length `nrow(tof_tibble)` indicating id PhenoGraph cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"additional details Phenograph algorithm, see paper.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) tof_cluster_phenograph(tof_tibble = sim_data) #> # A tibble: 1,000 × 1 #> .phenograph_cluster #> #> 1 2 #> 2 10 #> 3 10 #> 4 4 #> 5 3 #> 6 9 #> 7 1 #> 8 8 #> 9 11 #> 10 4 #> # ℹ 990 more rows tof_cluster_phenograph(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 1,000 × 1 #> .phenograph_cluster #> #> 1 4 #> 2 2 #> 3 7 #> 4 12 #> 5 10 #> 6 5 #> 7 7 #> 8 1 #> 9 13 #> 10 5 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"function wrapper around tidytof's tof_cluster_* function family provides low-level API clustering ungrouped data frames. subroutine tof_cluster called directly users.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"","code":"tof_cluster_tibble(tof_tibble, ..., augment = TRUE, method)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"tof_tibble `tof_tbl` `tibble`. ... Additional arguments pass `tof_cluster_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"flowsom\", \"phenograph\", \"kmeans\", \"ddpr\", \"xshift\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"Compute Kaplan-Meier curve sample-level survival data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"","code":"tof_compute_km_curve(survival_curves)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"survival_curves tibble Kaplan-Meier curve computed. row must represent observation must two columns named \"time_to_event\" \"event\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"tibble 3 columns: time_to_event, survival_probability, is_censored (whether event censored timepoint).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":null,"dir":"Reference","previous_headings":"","what":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"function finding cosine distance rows numeric matrix numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"","code":"tof_cosine_dist(matrix, vector)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"matrix numeric matrix. vector numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"numeric vector distances length `nrow(matrix)` ith entry represents cosine distance ith row `matrix` `vector`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":null,"dir":"Reference","previous_headings":"","what":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"function creates regular hyperparameter search grid (form tibble) specifying search space two hyperparameters generalized linear model using glmnet package: regularization penalty term lasso/ridge regression mixture term.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"","code":"tof_create_grid( penalty_values, mixture_values, num_penalty_values = 5, num_mixture_values = 5 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"penalty_values numeric vector unique elastic net penalty values (\"lambda\") include hyperparameter grid. unspecified, regular grid `num_penalty_values` 10^(-10) 10^(0) used. mixture_values numeric vector elastic net mixture values (\"alpha\") include hyperparameter grid. unspecified, regular grid `num_mixture_values` 0 1 used. num_penalty_values Optional. `penalty_values` supplied, `num_penalty_values` (integer) can given specify many equally-spaced penalty values 10^(-10) 1 included hyperparameter grid. method used, regular grid always returned. Defaults 5. num_mixture_values Optional. `mixture_values` supplied, `num_mixture_values` (integer) can given specify many equally-spaced penalty values 0 (ridge regression) 1 (lasso) included hyperparameter grid. method used, regular grid always returned. Defaults 5.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"tibble two numeric columns: `penalty` `mixture`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"","code":"tof_create_grid() #> # A tibble: 25 × 2 #> penalty mixture #> #> 1 0.0000000001 0 #> 2 0.0000000001 0.25 #> 3 0.0000000001 0.5 #> 4 0.0000000001 0.75 #> 5 0.0000000001 1 #> 6 0.0000000316 0 #> 7 0.0000000316 0.25 #> 8 0.0000000316 0.5 #> 9 0.0000000316 0.75 #> 10 0.0000000316 1 #> # ℹ 15 more rows tof_create_grid(num_penalty_values = 10, num_mixture_values = 5) #> # A tibble: 50 × 2 #> penalty mixture #> #> 1 0.0000000001 0 #> 2 0.0000000001 0.25 #> 3 0.0000000001 0.5 #> 4 0.0000000001 0.75 #> 5 0.0000000001 1 #> 6 0.00000000129 0 #> 7 0.00000000129 0.25 #> 8 0.00000000129 0.5 #> 9 0.00000000129 0.75 #> 10 0.00000000129 1 #> # ℹ 40 more rows tof_create_grid(penalty_values = c(0.01, 0.1, 0.5)) #> # A tibble: 15 × 2 #> penalty mixture #> #> 1 0.01 0 #> 2 0.01 0.25 #> 3 0.01 0.5 #> 4 0.01 0.75 #> 5 0.01 1 #> 6 0.1 0 #> 7 0.1 0.25 #> 8 0.1 0.5 #> 9 0.1 0.75 #> 10 0.1 1 #> 11 0.5 0 #> 12 0.5 0.25 #> 13 0.5 0.5 #> 14 0.5 0.75 #> 15 0.5 1"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"Create recipe preprocessing sample-level cytometry data elastic net model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"","code":"tof_create_recipe( feature_tibble, predictor_cols, outcome_cols, standardize_predictors = TRUE, remove_zv_predictors = FALSE, impute_missing_predictors = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"feature_tibble tibble row represents sample- patient- level observation, produced tof_extract_features. predictor_cols Unquoted column names indicating columns data contained `feature_tibble` used predictors elastic net model. Supports tidyselect helpers. outcome_cols Unquoted column names indicating columns `feature_tibble` used outcome variables elastic net model. Supports tidyselect helpers. standardize_predictors logical value indicating numeric predictor columns standardized (centered scaled) model fitting. Defaults TRUE. remove_zv_predictors logical value indicating predictor columns near-zero variance removed model fitting using step_nzv. Defaults FALSE. impute_missing_predictors logical value indicating predictor columns missing values imputed using k-nearest neighbors model fitting (see step_impute_knn). Imputation performed using observation's 5 nearest-neighbors. Defaults FALSE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"recipe object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data. — tof_downsample","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"function downsamples number cells `tof_tbl` using one three methods (randomly sampling constant number cells, randomly sampling proportion cells, performing density-dependent downsampling per algorithm Qiu et al., (2011)).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"","code":"tof_downsample( tof_tibble, group_cols = NULL, ..., method = c(\"constant\", \"prop\", \"density\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups within downsampling performed. Supports tidyselect helpers. Defaults `NULL` (grouping). ... Additional arguments pass `tof_downsample_*` function family member corresponding chosen method. method string indicating downsampling method use: \"constant\" (default), \"prop\", \"density\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"downsampled `tof_tbl` number columns input `tof_tibble`, fewer rows. number rows result depend chosen downsampling method.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # sample 200 cells from the input data tof_downsample( tof_tibble = sim_data, num_cells = 200L, method = \"constant\" ) #> # A tibble: 200 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 0.124 -0.0156 -2.05 0.0134 g #> 2 1.65 -1.39 -0.180 -0.710 c #> 3 0.636 -0.170 0.778 -1.97 a #> 4 -1.44 0.340 0.241 1.63 n #> 5 -0.876 -1.04 0.109 0.403 i #> 6 -2.78 -0.871 -0.725 0.717 d #> 7 0.809 -0.349 -0.243 -0.735 w #> 8 -1.10 -0.263 -2.10 -1.32 j #> 9 1.95 -0.584 -0.993 -0.651 p #> 10 1.99 -0.220 -1.03 -2.58 a #> # ℹ 190 more rows # sample 10% of all cells from the input data tof_downsample( tof_tibble = sim_data, prop_cells = 0.1, method = \"prop\" ) #> # A tibble: 100 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 0.797 0.755 1.77 0.876 r #> 2 -0.570 0.751 -1.00 -0.810 n #> 3 -0.450 -0.998 -0.986 1.78 w #> 4 -0.311 1.98 -0.719 -1.06 z #> 5 -0.669 -0.263 0.830 1.43 f #> 6 0.661 -0.696 -0.728 -0.639 l #> 7 -0.165 0.176 -0.203 0.0940 f #> 8 -0.770 0.292 0.309 0.132 t #> 9 0.490 1.07 -0.408 -0.541 a #> 10 0.874 0.445 1.02 -0.806 u #> # ℹ 90 more rows # sample ~10% of cells from the input data using density dependence tof_downsample( tof_tibble = sim_data, target_prop_cells = 0.1, method = \"density\" ) #> # A tibble: 101 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 2.02 -0.234 1.02 -0.727 i #> 2 1.52 -0.652 2.83 -0.0350 q #> 3 0.281 -0.616 -0.00816 -1.07 k #> 4 1.79 -0.490 0.426 1.61 y #> 5 1.99 -0.220 -1.03 -2.58 a #> 6 1.43 1.35 0.391 -0.886 x #> 7 -0.335 1.80 -0.470 -0.747 r #> 8 -1.03 -0.145 -1.36 -1.08 c #> 9 0.630 -0.491 -0.990 -1.11 z #> 10 -0.110 0.501 0.903 -1.36 n #> # ℹ 91 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"function downsamples number cells `tof_tbl` randomly selecting `num_cells` cells unique combination values `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"","code":"tof_downsample_constant(tof_tibble, group_cols = NULL, num_cells)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups `num_cells` downsampled. Supports tidyselect helpers. Defaults `NULL` (grouping). num_cells integer number cells sampled group defined `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"`tof_tbl` number columns input `tof_tibble`, fewer rows. Specifically, number rows `num_cells` multiplied number unique combinations values `group_cols`. group fewer `num_cells` number cells, cells group kept.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # sample 500 cells from the input data tof_downsample_constant( tof_tibble = sim_data, num_cells = 500L ) #> # A tibble: 500 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -0.0579 -1.72 -1.42 0.289 x #> 2 2.73 0.172 0.177 1.18 h #> 3 0.538 -2.43 0.701 -0.222 n #> 4 -1.16 -0.397 1.38 -0.903 a #> 5 -0.210 0.404 -1.36 0.656 m #> 6 1.08 -0.877 0.165 -2.33 t #> 7 0.216 -1.20 0.776 -1.04 b #> 8 0.670 2.26 -0.317 0.340 s #> 9 0.468 0.819 0.0918 0.853 s #> 10 2.01 0.284 -0.721 -1.49 y #> # ℹ 490 more rows # sample 20 cells per cluster from the input data tof_downsample_constant( tof_tibble = sim_data, group_cols = cluster_id, num_cells = 20L ) #> # A tibble: 520 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -1.16 -0.397 1.38 -0.903 a #> 2 -0.135 -0.177 -0.800 0.947 h #> 3 0.0699 -1.46 1.82 -0.283 g #> 4 0.840 1.47 0.305 -0.474 n #> 5 1.08 -0.877 0.165 -2.33 t #> 6 1.80 1.07 1.60 0.549 q #> 7 2.01 0.284 -0.721 -1.49 y #> 8 0.0317 -0.919 -0.970 0.168 t #> 9 -0.884 -0.334 0.0589 0.366 l #> 10 -1.09 -0.656 -1.48 -1.57 v #> # ℹ 510 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"function downsamples number cells `tof_tbl` using density-dependent downsampling algorithm described Qiu et al., (2011).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"","code":"tof_downsample_density( tof_tibble, group_cols = NULL, density_cols = where(tof_is_numeric), target_num_cells, target_prop_cells, target_percentile = 0.03, outlier_percentile = 0.01, distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), density_estimation_method = c(\"mean_distance\", \"sum_distance\", \"spade\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups within downsampling performed. Supports tidyselect helpers. Defaults `NULL` (grouping). density_cols Unquoted names columns `tof_tibble` use density estimation cell. Defaults numeric columns `tof_tibble`. target_num_cells approximate constant number cells (0 1) sampled group defined `group_cols`. Slightly fewer cells may returned due density calculation performed. target_prop_cells approximate proportion cells (0 1) sampled group defined `group_cols`. Slightly fewer cells may returned due density calculation performed. Ignored `target_num_cells` specified. target_percentile local density percentile (.e. value 0 1) downsampling procedure adjust cells. short, algorithm continue remove cells input `tof_tibble` local densities remaining cells equal `target_percentile`. Lower values result cells removed. See Qiu et al., (2011) details. Defaults 0.1 (10th percentile local densities). Ignored either `target_num_cells` `target_prop_cells` specified. outlier_percentile local density percentile (.e. value 0 1) cells considered outliers (discarded). Cells local density `outlier_percentile` never selected downsampling procedure. Defaults 0.01 (cells 1st local density percentile removed). distance_function string indicating distance function use cell--cell distance calculations. Options include \"euclidean\" (default) \"cosine\" distances. density_estimation_method string indicating algorithm used calculate local density estimate cell. Options include k-nearest neighbor density estimation using mean distance cell's k-nearest neighbors (\"mean_distance\"; default), k-nearest neighbor density estimation using summed distance cell's k nearest neighbors (\"sum_distance\") counting number neighboring cells within spherical radius around cell described Qiu et al., 2011 (\"spade\"). \"spade\" often produces best results, slower knn-density estimation methods. ... Optional additional arguments pass tof_knn_density tof_spade_density.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"`tof_tbl` number columns input `tof_tibble`, fewer rows. number rows depend chosen value `target_percentile`, fewer cells selected lower values `target_percentile`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) tof_downsample_density( tof_tibble = sim_data, density_cols = c(cd45, cd34, cd38), target_prop_cells = 0.5, density_estimation_method = \"spade\" ) #> # A tibble: 514 × 4 #> cd45 cd38 cd34 cd19 #> #> 1 -1.76 -0.130 0.750 0.569 #> 2 -0.325 0.995 1.42 -1.90 #> 3 0.139 -0.0432 -0.569 1.27 #> 4 -0.221 -1.13 1.43 0.595 #> 5 1.82 0.0462 0.937 -0.0783 #> 6 1.47 0.909 -1.03 -1.34 #> 7 -0.287 -1.11 0.295 -0.0843 #> 8 -0.467 -0.421 -0.487 -1.22 #> 9 0.311 -0.00684 0.877 -0.194 #> 10 1.41 0.107 -0.0705 0.292 #> # ℹ 504 more rows tof_downsample_density( tof_tibble = sim_data, density_cols = c(cd45, cd34, cd38), target_num_cells = 200L, density_estimation_method = \"spade\" ) #> # A tibble: 201 × 4 #> cd45 cd38 cd34 cd19 #> #> 1 -0.325 0.995 1.42 -1.90 #> 2 -1.48 -1.45 0.0642 -0.158 #> 3 1.82 0.0462 0.937 -0.0783 #> 4 0.311 -0.00684 0.877 -0.194 #> 5 0.118 0.233 -1.21 -0.548 #> 6 0.648 -1.34 -0.0295 -0.718 #> 7 -0.403 -1.06 0.418 -0.470 #> 8 1.14 -1.03 -0.990 0.589 #> 9 -0.105 -0.0490 0.514 -0.102 #> 10 0.0821 0.844 1.40 -0.0105 #> # ℹ 191 more rows tof_downsample_density( tof_tibble = sim_data, density_cols = c(cd45, cd34, cd38), target_num_cells = 200L, density_estimation_method = \"mean_distance\" ) #> # A tibble: 226 × 4 #> cd45 cd38 cd34 cd19 #> #> 1 0.113 -2.21 0.328 0.912 #> 2 -0.221 -1.13 1.43 0.595 #> 3 1.28 2.66 1.32 0.302 #> 4 0.648 -1.34 -0.0295 -0.718 #> 5 -0.508 0.647 0.783 0.965 #> 6 -0.382 -0.949 0.423 0.316 #> 7 1.29 -0.837 -0.445 -0.362 #> 8 0.118 -0.781 0.707 -1.72 #> 9 0.368 0.897 -2.19 0.497 #> 10 1.37 0.563 -0.343 0.968 #> # ℹ 216 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"function downsamples number cells `tof_tbl` randomly selecting `prop_cells` proportion total number cells unique combination values `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"","code":"tof_downsample_prop(tof_tibble, group_cols = NULL, prop_cells)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups `prop_cells` downsampled. Supports tidyselect helpers. Defaults `NULL` (grouping). prop_cells proportion cells (0 1) sampled group defined `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"`tof_tbl` number columns input `tof_tibble`, fewer rows. Specifically, number rows `prop_cells` times number rows input `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # sample 10% of all cells from the input data tof_downsample_prop( tof_tibble = sim_data, prop_cells = 0.1 ) #> # A tibble: 100 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -2.68 -0.366 0.00593 -0.150 x #> 2 -0.0284 0.659 0.234 0.469 g #> 3 -1.97 -0.272 -1.01 -0.245 h #> 4 -0.139 0.326 0.497 -1.61 q #> 5 -0.830 -0.881 -0.198 0.854 u #> 6 -0.971 1.23 -0.347 -0.173 m #> 7 1.53 0.522 0.843 2.24 t #> 8 1.43 1.73 -0.129 0.411 d #> 9 1.79 -1.61 0.990 1.02 g #> 10 -0.716 0.200 0.856 -0.306 e #> # ℹ 90 more rows # sample 10% of all cells from each cluster in the input data tof_downsample_prop( tof_tibble = sim_data, group_cols = cluster_id, prop_cells = 0.1 ) #> # A tibble: 90 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 2.00 0.505 1.01 1.17 a #> 2 -0.239 -0.817 0.556 -0.381 a #> 3 -0.148 2.25 0.850 1.25 a #> 4 0.658 -2.70 -0.985 -1.30 a #> 5 -1.62 -0.0323 -1.14 1.48 b #> 6 0.300 -1.15 -1.44 1.39 b #> 7 1.22 -1.28 0.340 -1.08 b #> 8 0.128 -0.844 1.38 0.218 b #> 9 0.561 0.619 0.395 -0.0378 b #> 10 0.0478 1.47 -0.618 -1.26 c #> # ℹ 80 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"function wrapper around tidytof's tof_*_density() function family. performs local density estimation high-dimensional cytometry data using user-specified method (3 choices) method's corresponding input parameters.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"","code":"tof_estimate_density( tof_tibble, distance_cols = where(tof_is_numeric), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), normalize = TRUE, ..., augment = TRUE, method = c(\"mean_distance\", \"sum_distance\", \"spade\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"tof_tibble `tof_tbl` `tibble`. distance_cols Unquoted names columns `tof_tibble` use calculating cell--cell distances local density estimation cell. Defaults numeric columns `tof_tibble`. distance_function string indicating distance function use calculating cell--cell distances local density estimation. Options include \"euclidean\" (default) \"cosine\". normalize boolean value indicating vector local density estimates normalized values 0 1. Defaults TRUE. ... Additional arguments pass `tof_*_density()` function family member corresponding chosen `method`. augment boolean value indicating output column-bind local density estimates cell new column `tof_tibble` (TRUE; default) single-column tibble including local density estimates returned (FALSE). method string indicating local density estimation method used. Valid values include \"mean_distance\", \"sum_distance\", \"spade\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding local density estimates cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding local density estimates.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) # perform the density estimation tof_estimate_density(tof_tibble = sim_data, method = \"spade\") #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .spade_density #> #> 1 -0.406 -0.0145 -1.41 -0.484 1 #> 2 -0.0872 0.00235 -0.843 -0.796 1 #> 3 0.901 -0.100 -1.44 -1.02 1 #> 4 -0.793 -2.06 0.599 1.23 1 #> 5 1.60 -1.71 -0.553 0.595 1 #> 6 -0.579 0.516 -0.501 -0.0455 1 #> 7 0.0192 -0.216 0.352 -0.482 1 #> 8 -0.00891 1.54 -0.209 -0.767 1 #> 9 0.936 1.95 -0.224 -0.195 1 #> 10 1.23 0.389 -0.0372 0.565 1 #> # ℹ 990 more rows # perform the density estimation with a smaller search radius around # each cell tof_estimate_density( tof_tibble = sim_data, alpha_multiplier = 2, method = \"spade\" ) #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .spade_density #> #> 1 -0.406 -0.0145 -1.41 -0.484 1 #> 2 -0.0872 0.00235 -0.843 -0.796 1 #> 3 0.901 -0.100 -1.44 -1.02 1 #> 4 -0.793 -2.06 0.599 1.23 0 #> 5 1.60 -1.71 -0.553 0.595 0.4 #> 6 -0.579 0.516 -0.501 -0.0455 1 #> 7 0.0192 -0.216 0.352 -0.482 1 #> 8 -0.00891 1.54 -0.209 -0.767 1 #> 9 0.936 1.95 -0.224 -0.195 1 #> 10 1.23 0.389 -0.0372 0.565 1 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"feature extraction function calculates user-specified measurement central tendency (.e. median mode) cells cluster `tof_tibble` across user-specified selection CyTOF markers. calculations can done either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"","code":"tof_extract_central_tendency( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), stimulation_col = NULL, central_tendency_function = stats::median, format = c(\"wide\", \"long\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"tof_tibble `tof_tibble` `tibble` row represents single cell column represents CyTOF measurement piece metadata (.e. cluster id, patient id, etc.) cell. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included feature extraction calculation. Defaults numeric (integer double) columns. Supports tidyselection. stimulation_col Optional. unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). central_tendency_function function used calculate measurement central tendency cluster (used dependent variable linear model). Defaults median. format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (central tendency given marker given cluster). names column containing cluster features obtained using following pattern: \"{marker_id}@{cluster_id}_ct\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract proportion of each cluster in each patient in wide format tof_extract_central_tendency( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient ) #> # A tibble: 2 × 105 #> patient `cd45@a_ct` `cd38@a_ct` `cd34@a_ct` `cd19@a_ct` `cd45@b_ct` #> #> 1 kirby -0.0756 -0.0766 0.725 0.0444 -0.172 #> 2 mario 0.144 -0.0654 -0.389 -0.189 0.265 #> # ℹ 99 more variables: `cd38@b_ct` , `cd34@b_ct` , `cd19@b_ct` , #> # `cd45@c_ct` , `cd38@c_ct` , `cd34@c_ct` , `cd19@c_ct` , #> # `cd45@d_ct` , `cd38@d_ct` , `cd34@d_ct` , `cd19@d_ct` , #> # `cd45@e_ct` , `cd38@e_ct` , `cd34@e_ct` , `cd19@e_ct` , #> # `cd45@f_ct` , `cd38@f_ct` , `cd34@f_ct` , `cd19@f_ct` , #> # `cd45@g_ct` , `cd38@g_ct` , `cd34@g_ct` , `cd19@g_ct` , #> # `cd45@h_ct` , `cd38@h_ct` , `cd34@h_ct` , … # extract proportion of each cluster in each patient in long format tof_extract_central_tendency( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, format = \"long\" ) #> # A tibble: 208 × 4 #> patient cluster_id channel values #> #> 1 kirby a cd45 -0.0756 #> 2 kirby a cd38 -0.0766 #> 3 kirby a cd34 0.725 #> 4 kirby a cd19 0.0444 #> 5 kirby b cd45 -0.172 #> 6 kirby b cd38 0.238 #> 7 kirby b cd34 -0.0607 #> 8 kirby b cd19 0.0159 #> 9 kirby c cd45 0.247 #> 10 kirby c cd38 -0.143 #> # ℹ 198 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"feature extraction function calculates earth-mover's distance (EMD) stimulated unstimulated (\"basal\") experimental conditions samples CyTOF experiment. calculation performed across user-specified selection CyTOF antigens can performed either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"","code":"tof_extract_emd( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), emd_col, reference_level, format = c(\"wide\", \"long\"), num_bins = 100 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included earth-mover's distance calculation. Defaults numeric (integer double) columns. Supports tidyselect helpers. emd_col unquoted column name indicates column `tof_tibble` used group cells different distributions compared one another EMD calculation. example, want compare marker expression distributions across stimulation conditions, `emd_col` column `tof_tibble` containing information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). reference_level string indicating value `emd_col` corresponds \"reference\" value values `emd_col` compared. example, `emd_col` represents stimulation condition cell, reference_level might take value \"basal\" \"unstimulated\" want compare stimulation basal state. format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row). num_bins Optional. number bins use dividing one-dimensional marker distributions discrete segments EMD calculation. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (EMD distribution given marker given cluster basal condition distribution marker given cluster stimulated condition). names column containing cluster features obtained using following pattern: \"{stimulation_id}_{marker_id}@{cluster_id}_emd\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract emd of each cluster in each patient (using the \"basal\" stim # condition as a reference) in wide format tof_extract_emd( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, emd_col = stim, reference_level = \"basal\" ) #> # A tibble: 2 × 105 #> patient `stim_cd45@t_emd` `stim_cd38@t_emd` `stim_cd34@t_emd` #> #> 1 kirby 9.33 9.77 6.04 #> 2 mario NA NA NA #> # ℹ 101 more variables: `stim_cd19@t_emd` , `stim_cd45@d_emd` , #> # `stim_cd38@d_emd` , `stim_cd34@d_emd` , `stim_cd19@d_emd` , #> # `stim_cd45@s_emd` , `stim_cd38@s_emd` , `stim_cd34@s_emd` , #> # `stim_cd19@s_emd` , `stim_cd45@i_emd` , `stim_cd38@i_emd` , #> # `stim_cd34@i_emd` , `stim_cd19@i_emd` , `stim_cd45@l_emd` , #> # `stim_cd38@l_emd` , `stim_cd34@l_emd` , `stim_cd19@l_emd` , #> # `stim_cd45@j_emd` , `stim_cd38@j_emd` , … # extract emd of each cluster (using the \"basal\" stim # condition as a reference) in long format tof_extract_emd( tof_tibble = sim_data, cluster_col = cluster_id, emd_col = stim, reference_level = \"basal\", format = \"long\" ) #> # A tibble: 104 × 4 #> cluster_id marker stimulation emd #> #> 1 t cd45 stim 9.18 #> 2 t cd38 stim 3.88 #> 3 t cd34 stim 7.49 #> 4 t cd19 stim 10.4 #> 5 d cd45 stim 7.16 #> 6 d cd38 stim 4.41 #> 7 d cd34 stim 4.79 #> 8 d cd19 stim 5.43 #> 9 s cd45 stim 14.1 #> 10 s cd38 stim 5.16 #> # ℹ 94 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"function wraps members `tof_extract_*` function family extract sample-level features lineage (.e. cell surface antigen) CyTOF channels assumed stable across stimulation conditions signaling CyTOF channels assumed change across stimulation conditions. Features extracted cluster within independent sample (defined `group_cols` argument).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"","code":"tof_extract_features( tof_tibble, cluster_col, group_cols = NULL, stimulation_col = NULL, lineage_cols, signaling_cols, central_tendency_function = stats::median, signaling_method = c(\"threshold\", \"emd\", \"jsd\", \"central tendency\"), basal_level = NULL, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). stimulation_col Optional. unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). lineage_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) considered lineage markers feature extraction calculation. Supports tidyselect helpers. signaling_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) considered signaling markers feature extraction calculation. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster (used dependent variable linear model). Defaults median. signaling_method string indicating feature extraction method use signaling markers (identified `signaling_cols` argument). Options \"threshold\" (default), \"emd\", \"jsd\", \"central tendency\". basal_level string indicating value `stimulation_col` corresponds basal stimulation condition (.e. \"basal\" \"unstimulated\"). ... Optional additional arguments passed tof_extract_threshold, tof_extract_emd, tof_extract_jsd.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"tibble. output tibble 1 row combination grouping variables provided `group_cols` (thus, row represent considered single \"sample\" based grouping provided). one column grouping variable one column extracted feature (\"wide\" format).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"Lineage channels specified using `lineage_cols` argument, extracted features measurements central tendency (computed user-supplied `central_tendency_function`). Signaling channels specified using `signaling_cols` argument, extracted features depend user's chosen `signaling_method`. `signaling method` == \"threshold\" (default), tof_extract_threshold used calculate proportion cells cluster signaling marker expression `threshold` stimulation condition. `signaling_method` == \"emd\" `signaling_method` == \"jsd\", tof_extract_emd tof_extract_jsd used calculate earth-mover's distance (EMD) Jensen-Shannon Distance (JSD), respectively, basal condition stimulated conditions cluster sample. Finally, none options chosen, tof_extract_central_tendency used calculate measurements central tendency. addition, tof_extract_proportion used extract proportion cells cluster computed sample. calculations can performed either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract the following features from each cluster in each # patient/stimulation: # - proportion of each cluster # - central tendency (median) of cd45 and cd38 in each cluster # - the proportion of cells in each cluster with cd34 expression over # the default threshold (asinh(10 / 5)) tof_extract_features( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, lineage_cols = c(cd45, cd38), signaling_cols = cd34, stimulation_col = stim ) #> # A tibble: 2 × 131 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> #> 1 kirby 0.0234 0.0331 0.0507 0.0273 0.0409 0.0409 0.0331 #> 2 mario 0.0370 0.0390 0.0349 0.0513 0.0370 0.0370 0.0287 #> # ℹ 123 more variables: `prop@h` , `prop@i` , `prop@j` , #> # `prop@k` , `prop@l` , `prop@m` , `prop@n` , #> # `prop@o` , `prop@p` , `prop@q` , `prop@r` , #> # `prop@s` , `prop@t` , `prop@u` , `prop@v` , #> # `prop@w` , `prop@x` , `prop@y` , `prop@z` , #> # `cd45@a_ct` , `cd38@a_ct` , `cd45@b_ct` , `cd38@b_ct` , #> # `cd45@c_ct` , `cd38@c_ct` , `cd45@d_ct` , … # extract the following features from each cluster in each # patient/stimulation: # - proportion of each cluster # - central tendency (mean) of cd45 and cd38 in each cluster # - the earth mover's distance between each cluster's cd34 histogram in # the \"basal\" and \"stim\" conditions tof_extract_features( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, lineage_cols = c(cd45, cd38), signaling_cols = cd34, central_tendency_function = mean, stimulation_col = stim, signaling_method = \"emd\", basal_level = \"basal\" ) #> # A tibble: 2 × 131 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> #> 1 kirby 0.0234 0.0331 0.0507 0.0273 0.0409 0.0409 0.0331 #> 2 mario 0.0370 0.0390 0.0349 0.0513 0.0370 0.0370 0.0287 #> # ℹ 123 more variables: `prop@h` , `prop@i` , `prop@j` , #> # `prop@k` , `prop@l` , `prop@m` , `prop@n` , #> # `prop@o` , `prop@p` , `prop@q` , `prop@r` , #> # `prop@s` , `prop@t` , `prop@u` , `prop@v` , #> # `prop@w` , `prop@x` , `prop@y` , `prop@z` , #> # `cd45@a_ct` , `cd38@a_ct` , `cd45@b_ct` , `cd38@b_ct` , #> # `cd45@c_ct` , `cd38@c_ct` , `cd45@d_ct` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"feature extraction function calculates Jensen-Shannon Distance (JSD) stimulated unstimulated (\"basal\") experimental conditions samples CyTOF experiment. calculation performed across user-specified selection CyTOF antigens can performed either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"","code":"tof_extract_jsd( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), jsd_col, reference_level, format = c(\"wide\", \"long\"), num_bins = 100 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included feature extraction calculation. Defaults numeric (integer double) columns. Supports tidyselect helpers. jsd_col unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). reference_level string indicating value `jsd_col` corresponds basal stimulation condition (.e. \"basal\" \"unstimulated\"). format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row). num_bins Optional. number bins use dividing one-dimensional marker distributions discrete segments JSD calculation. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (JSD distribution given marker given cluster basal condition distribution marker cluster stimulated condition). names column containing cluster features obtained using following pattern: \"{stimulation_id}_{marker_id}@{cluster_id}_jsd\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract jsd of each cluster in each patient (using the \"basal\" stim # condition as a reference) in wide format tof_extract_jsd( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, jsd_col = stim, reference_level = \"basal\" ) #> # A tibble: 2 × 105 #> patient `stim_cd45@y_jsd` `stim_cd38@y_jsd` `stim_cd34@y_jsd` #> #> 1 kirby NA NA NA #> 2 mario NA NA NA #> # ℹ 101 more variables: `stim_cd19@y_jsd` , `stim_cd45@a_jsd` , #> # `stim_cd38@a_jsd` , `stim_cd34@a_jsd` , `stim_cd19@a_jsd` , #> # `stim_cd45@r_jsd` , `stim_cd38@r_jsd` , `stim_cd34@r_jsd` , #> # `stim_cd19@r_jsd` , `stim_cd45@t_jsd` , `stim_cd38@t_jsd` , #> # `stim_cd34@t_jsd` , `stim_cd19@t_jsd` , `stim_cd45@g_jsd` , #> # `stim_cd38@g_jsd` , `stim_cd34@g_jsd` , `stim_cd19@g_jsd` , #> # `stim_cd45@m_jsd` , `stim_cd38@m_jsd` , … # extract jsd of each cluster (using the \"basal\" stim # condition as a reference) in long format tof_extract_jsd( tof_tibble = sim_data, cluster_col = cluster_id, jsd_col = stim, reference_level = \"basal\", format = \"long\" ) #> # A tibble: 104 × 4 #> cluster_id marker stimulation jsd #> #> 1 y cd45 stim 0.788 #> 2 y cd38 stim 0.937 #> 3 y cd34 stim 0.812 #> 4 y cd19 stim 0.915 #> 5 a cd45 stim 0.813 #> 6 a cd38 stim 0.690 #> 7 a cd34 stim 0.923 #> 8 a cd19 stim 0.741 #> 9 r cd45 stim 0.737 #> 10 r cd38 stim 0.769 #> # ℹ 94 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"feature extraction function allows calculate proportion cells cluster `tof_tibble` - either overall broken subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"","code":"tof_extract_proportion( tof_tibble, cluster_col, group_cols = NULL, format = c(\"wide\", \"long\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). format string indicating data returned \"wide\" format (default; cluster proportion given column) \"long\" format (cluster proportion provided row).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable well one column proportion cells cluster. names column containing cluster proportions obtained using following pattern: \"prop@{cluster_id}\". format == \"long\", tibble 1 row combination grouping variables `group_cols` cluster id (.e. level) `cluster_col`. one column grouping variable, one column cluster ids, one column (`prop`) containing cluster proportions.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract proportion of each cluster in each patient in wide format tof_extract_proportion( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient ) #> # A tibble: 2 × 27 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> #> 1 kirby 0.0281 0.0281 0.0561 0.0421 0.0341 0.0261 0.0561 #> 2 mario 0.0419 0.0379 0.0479 0.0379 0.0419 0.0220 0.0559 #> # ℹ 19 more variables: `prop@h` , `prop@i` , `prop@j` , #> # `prop@k` , `prop@l` , `prop@m` , `prop@n` , #> # `prop@o` , `prop@p` , `prop@q` , `prop@r` , #> # `prop@s` , `prop@t` , `prop@u` , `prop@v` , #> # `prop@w` , `prop@x` , `prop@y` , `prop@z` # extract proportion of each cluster in each patient in long format tof_extract_proportion( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, format = \"long\" ) #> # A tibble: 52 × 3 #> patient cluster_id prop #> #> 1 kirby a 0.0281 #> 2 kirby b 0.0281 #> 3 kirby c 0.0561 #> 4 kirby d 0.0421 #> 5 kirby e 0.0341 #> 6 kirby f 0.0261 #> 7 kirby g 0.0561 #> 8 kirby h 0.0301 #> 9 kirby i 0.0321 #> 10 kirby j 0.0401 #> # ℹ 42 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"feature extraction function calculates proportion cells given cluster CyTOF antigen expression user-specified threshold across user-specified selection CyTOF markers. calculations can done either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"","code":"tof_extract_threshold( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), stimulation_col = NULL, threshold = asinh(10/5), format = c(\"wide\", \"long\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included feature extraction calculation. Defaults numeric (integer double) columns. Supports tidyselect helpers. stimulation_col Optional. unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). threshold double integer length 1 indicating threshold used. format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (proportion cells given cluster marker expression values `threshold`). names column containing cluster features obtained using following pattern: \"{marker_id}@{cluster_id}_threshold\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract proportion of each cluster in each patient in wide format tof_extract_threshold( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient ) #> # A tibble: 2 × 105 #> patient `cd45@a_threshold` `cd38@a_threshold` `cd34@a_threshold` #> #> 1 kirby 0 0.0769 0.0769 #> 2 mario 0 0.0667 0 #> # ℹ 101 more variables: `cd19@a_threshold` , `cd45@b_threshold` , #> # `cd38@b_threshold` , `cd34@b_threshold` , #> # `cd19@b_threshold` , `cd45@c_threshold` , #> # `cd38@c_threshold` , `cd34@c_threshold` , #> # `cd19@c_threshold` , `cd45@d_threshold` , #> # `cd38@d_threshold` , `cd34@d_threshold` , #> # `cd19@d_threshold` , `cd45@e_threshold` , … # extract proportion of each cluster in each patient in long format tof_extract_threshold( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, format = \"long\" ) #> # A tibble: 208 × 4 #> patient cluster_id channel values #> #> 1 kirby a cd45 0 #> 2 kirby a cd38 0.0769 #> 3 kirby a cd34 0.0769 #> 4 kirby a cd19 0.0769 #> 5 kirby b cd45 0.0769 #> 6 kirby b cd38 0 #> 7 kirby b cd34 0.0385 #> 8 kirby b cd19 0.115 #> 9 kirby c cd45 0 #> 10 kirby c cd38 0.0833 #> # ℹ 198 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"Find optimal hyperparameters elastic net model candidate performance metrics","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"","code":"tof_find_best(performance_metrics, model_type, optimization_metric)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"performance_metrics tibble performance metrics elastic net model (wide format) model_type string indicating type glmnet model trained. optimization_metric string indicating performance metric used select optimal model.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"tibble 3 columns: \"mixture\", \"penalty\", column containing chosen optimization metric. returned tibble 1 column, means 1 mixture/penalty combination yielded optimal result (.e. tuning procedure resulted tie).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"Calculate store predicted outcomes validation set observation model tuning","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"","code":"tof_find_cv_predictions( split_data, prepped_recipe, lambda, alpha, model_type, outcome_colnames )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"split_data `rsplit` object rsample package. Alternatively, unsplit tbl_df can provided, though recommended. prepped_recipe trained recipe lambda single numeric value indicating penalty (lambda) value used make predictions alpha single numeric value indicating mixture (alpha) value used make predictions model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. outcome_colnames Quoted column names indicating columns data fit represent outcome variables (others assumed predictors).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"tibble containing predicted true values outcome validation observations `split_data`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"Find earth-mover's distance two numeric vectors","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"","code":"tof_find_emd(vec_1, vec_2, num_bins = 100)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"vec_1 numeric vector. vec_2 numeric vector. num_bins integer number bins use performing kernel density estimation two vectors. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"double (length 1) representing EMD two vectors.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"Find Jensen-Shannon Divergence (JSD) two numeric vectors","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"","code":"tof_find_jsd(vec_1, vec_2, num_bins = 100)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"vec_1 numeric vector. vec_2 numeric vector. num_bins integer number bins use binning across two vectors' combined range. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"double (length 1) representing JSD two vectors.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"Find k-nearest neighbors cell high-dimensional cytometry dataset.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"","code":"tof_find_knn( .data, k = min(10, nrow(.data)), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), .query, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":".data `tof_tibble` `tibble` row represents cell column represents high-dimensional cytometry measurement. k integer indicating number nearest neighbors return cell. distance_function string indicating distance function use nearest-neighbor calculation. Options include \"euclidean\" (default) \"cosine\" distances. .query set cells queried .data (.e. set cells find nearest neighbors within .data). Defaults .data , .e. finding nearest neighbors cells .data. ... Optional additional arguments pass hnsw_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"list two elements: \"neighbor_ids\" \"neighbor_distances,\" n k matrices (n number cells input `.data`. [,j]-th entry \"neighbor_ids\" represents row index j-th nearest neighbor cell -th row `.data`. [,j]-th entry \"neighbor_distances\" represents distance two cells according `distance_function`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) # Find the 10 nearest neighbors of each cell in the dataset tof_find_knn( .data = sim_data, k = 10, distance_function = \"euclidean\" ) #> $neighbor_ids #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] #> [1,] 992 435 985 238 66 939 919 181 825 995 #> [2,] 153 154 787 895 289 432 114 784 379 774 #> [3,] 945 35 553 884 360 7 956 357 86 562 #> [4,] 556 616 499 964 211 688 89 761 155 805 #> [5,] 86 553 637 377 7 624 242 751 283 3 #> [6,] 830 941 940 569 678 256 323 356 199 851 #> [7,] 956 624 553 86 714 3 945 360 132 232 #> [8,] 822 604 76 493 740 229 547 514 222 578 #> [9,] 619 378 531 527 732 975 585 728 549 589 #> [10,] 266 575 291 863 469 900 268 376 838 638 #> [11,] 972 153 154 570 157 245 895 121 746 529 #> [12,] 600 235 911 331 617 468 367 615 134 23 #> [13,] 464 284 978 495 117 89 706 211 189 702 #> [14,] 325 555 879 622 812 799 433 672 123 176 #> [15,] 690 152 420 907 701 492 35 981 657 86 #> [16,] 140 64 162 164 143 552 230 366 243 167 #> [17,] 386 502 643 891 413 551 120 567 876 257 #> [18,] 341 909 533 598 995 340 487 351 724 66 #> [19,] 488 909 92 340 322 341 18 855 486 183 #> [20,] 372 856 507 943 72 315 309 22 136 655 #> [21,] 280 90 689 680 307 778 189 436 702 359 #> [22,] 72 118 943 309 507 796 856 824 20 470 #> [23,] 373 327 843 844 676 134 936 12 699 617 #> [24,] 29 742 122 826 334 847 756 178 382 955 #> [25,] 921 169 916 344 866 225 991 500 930 700 #> [26,] 380 93 196 758 452 911 158 78 77 891 #> [27,] 285 312 69 292 36 223 362 237 661 180 #> [28,] 440 62 52 226 908 241 677 71 217 878 #> [29,] 742 122 24 382 331 816 955 847 826 334 #> [30,] 68 855 461 974 952 735 183 472 614 345 #> [31,] 893 589 787 531 52 62 595 975 850 908 #> [32,] 205 835 375 477 79 315 953 151 136 713 #> [33,] 463 221 179 653 361 479 95 871 938 529 #> [34,] 971 539 1000 864 870 95 938 685 136 267 #> [35,] 3 884 562 360 553 690 945 751 86 511 #> [36,] 69 285 292 98 237 931 912 27 223 661 #> [37,] 40 756 214 982 178 632 130 334 780 640 #> [38,] 904 953 437 799 107 622 433 533 669 128 #> [39,] 719 223 285 777 292 661 795 246 193 362 #> [40,] 37 214 705 756 982 809 242 780 178 983 #> [41,] 723 496 661 385 50 36 755 519 98 312 #> [42,] 204 107 437 290 602 159 460 540 622 401 #> [43,] 71 878 391 440 62 28 106 914 764 247 #> [44,] 830 740 493 434 456 941 295 449 766 294 #> [45,] 793 883 329 780 239 338 442 195 268 384 #> [46,] 427 458 844 807 794 740 23 373 60 820 #> [47,] 129 75 245 162 278 918 234 54 972 570 #> [48,] 221 776 915 361 379 405 168 55 950 359 #> [49,] 587 438 534 538 168 796 856 545 792 22 #> [50,] 231 254 524 255 98 280 464 689 397 897 #> [51,] 818 920 178 990 113 847 982 813 576 91 #> [52,] 62 908 28 440 217 241 31 589 709 595 #> [53,] 966 94 335 82 431 454 116 189 469 579 #> [54,] 408 849 652 554 278 948 230 856 374 572 #> [55,] 950 776 959 789 801 171 842 582 663 317 #> [56,] 529 34 95 642 1000 938 354 539 630 245 #> [57,] 914 347 245 570 642 47 234 56 864 971 #> [58,] 949 937 601 220 870 462 829 267 862 630 #> [59,] 434 119 456 528 708 505 949 684 267 277 #> [60,] 794 218 699 515 373 516 514 763 294 508 #> [61,] 875 451 579 963 116 865 915 958 335 860 #> [62,] 52 440 28 908 31 241 217 589 878 709 #> [63,] 788 797 836 655 546 372 194 518 477 984 #> [64,] 366 140 552 16 143 243 126 490 85 164 #> [65,] 628 902 520 763 518 514 836 880 910 186 #> [66,] 425 181 825 598 533 472 726 182 18 390 #> [67,] 578 278 938 95 849 141 836 984 880 76 #> [68,] 952 345 461 735 974 183 156 370 30 567 #> [69,] 36 237 27 285 170 912 292 180 342 443 #> [70,] 676 711 820 806 775 78 93 750 843 465 #> [71,] 391 43 28 677 878 534 587 440 62 792 #> [72,] 22 309 943 631 20 824 372 507 856 135 #> [73,] 699 314 877 277 294 917 665 119 508 327 #> [74,] 519 292 719 755 362 661 557 39 618 285 #> [75,] 374 641 572 47 948 999 54 960 422 230 #> [76,] 880 578 141 980 836 858 902 67 822 984 #> [77,] 932 939 610 452 196 506 891 26 935 158 #> [78,] 93 617 158 321 777 465 373 26 989 750 #> [79,] 390 32 954 151 477 833 181 953 643 835 #> [80,] 498 679 19 488 486 81 416 402 92 712 #> [81,] 435 561 322 486 612 710 1 238 995 939 #> [82,] 94 365 933 694 963 431 53 743 363 900 #> [83,] 263 798 819 796 300 647 526 834 22 206 #> [84,] 517 281 525 248 378 687 233 549 355 673 #> [85,] 366 162 64 164 16 490 918 143 302 980 #> [86,] 553 5 7 714 956 3 35 624 232 360 #> [87,] 829 566 483 339 862 523 88 182 630 220 #> [88,] 802 957 924 871 194 463 339 568 630 829 #> [89,] 443 170 947 211 482 4 706 556 499 603 #> [90,] 778 280 689 359 21 436 524 399 950 931 #> [91,] 813 197 818 586 990 535 983 51 674 468 #> [92,] 488 19 30 855 542 909 183 857 351 487 #> [93,] 78 617 158 26 321 634 196 380 911 465 #> [94,] 82 365 53 694 933 963 431 363 61 900 #> [95,] 938 67 121 245 653 871 278 971 33 129 #> [96,] 326 680 861 970 922 791 21 654 853 307 #> [97,] 610 733 841 901 103 932 304 77 723 452 #> [98,] 254 223 285 36 661 292 931 69 39 795 #> [99,] 627 618 768 444 109 550 930 237 823 916 #> [100,] 370 754 183 935 977 345 729 952 68 156 #> [101,] 284 117 640 453 231 397 611 334 706 332 #> [102,] 299 450 738 809 945 571 536 831 790 3 #> [103,] 901 97 733 841 610 913 898 355 723 304 #> [104,] 287 848 228 236 804 336 960 573 313 374 #> [105,] 722 190 876 407 257 107 120 602 437 146 #> [106,] 497 247 471 986 289 532 633 635 874 489 #> [107,] 437 42 602 290 460 38 204 105 707 190 #> [108,] 139 714 522 330 212 771 232 377 860 215 #> [109,] 823 478 627 99 490 973 143 768 444 393 #> [110,] 946 259 367 12 854 235 191 753 600 844 #> [111,] 834 693 782 349 633 532 538 819 746 83 #> [112,] 353 419 629 811 536 563 639 313 667 175 #> [113,] 920 847 658 178 332 51 146 982 310 762 #> [114,] 432 436 778 969 774 359 895 784 90 379 #> [115,] 857 351 176 487 662 879 669 14 485 855 #> [116,] 875 61 579 189 335 702 451 727 964 668 #> [117,] 284 640 544 101 445 704 249 978 837 335 #> [118,] 593 545 22 306 943 961 438 470 72 796 #> [119,] 456 294 708 434 277 218 699 917 59 73 #> [120,] 551 190 658 17 876 386 502 105 643 257 #> [121,] 938 871 129 95 245 856 278 234 534 49 #> [122,] 29 24 178 334 847 742 756 816 586 813 #> [123,] 404 672 325 42 205 929 894 540 799 107 #> [124,] 163 523 506 181 192 829 786 541 954 872 #> [125,] 369 734 512 674 983 265 40 720 817 632 #> [126,] 973 143 64 366 552 288 140 671 243 490 #> [127,] 667 336 520 745 252 573 852 552 515 313 #> [128,] 559 833 473 217 182 405 350 381 803 38 #> [129,] 278 162 245 121 938 95 583 67 849 164 #> [130,] 632 615 756 262 334 753 122 367 596 265 #> [131,] 500 137 169 659 858 832 736 618 944 296 #> [132,] 146 297 826 624 227 409 956 7 441 876 #> [133,] 770 906 594 186 721 508 264 308 457 737 #> [134,] 844 373 967 617 344 308 264 955 235 331 #> [135,] 309 631 943 470 72 581 507 810 22 824 #> [136,] 194 477 655 984 315 20 871 462 797 802 #> [137,] 131 500 786 659 736 937 944 858 541 169 #> [138,] 675 821 614 348 645 602 783 574 415 437 #> [139,] 108 798 216 714 420 152 771 681 701 537 #> [140,] 552 143 243 64 16 745 520 490 366 252 #> [141,] 880 980 76 578 490 788 836 910 67 628 #> [142,] 759 544 730 146 722 297 624 958 956 105 #> [143,] 140 243 552 973 64 16 823 126 478 109 #> [144,] 415 411 485 662 138 614 979 675 204 783 #> [145,] 693 269 647 188 798 253 526 83 263 208 #> [146,] 722 132 544 142 759 297 876 737 658 826 #> [147,] 407 737 906 457 696 789 594 713 388 887 #> [148,] 282 406 491 283 637 705 869 982 576 242 #> [149,] 503 358 370 381 260 355 951 281 524 324 #> [150,] 346 762 453 332 977 754 413 371 742 621 #> [151,] 721 835 713 457 810 594 257 79 205 32 #> [152,] 681 657 300 216 907 690 15 798 981 389 #> [153,] 154 11 895 2 379 529 972 33 850 221 #> [154,] 153 11 895 157 2 391 972 289 570 529 #> [155,] 616 603 588 4 392 596 185 556 428 396 #> [156,] 726 345 567 472 935 183 413 598 68 260 #> [157,] 746 11 972 154 570 224 391 633 934 153 #> [158,] 321 196 465 93 78 891 251 634 26 380 #> [159,] 401 792 204 677 42 538 460 290 923 241 #> [160,] 859 967 994 716 344 867 866 700 428 398 #> [161,] 692 405 796 460 538 819 168 602 545 105 #> [162,] 16 129 278 164 85 918 583 849 230 64 #> [163,] 124 523 506 825 181 992 260 87 192 829 #> [164,] 16 478 823 162 143 583 490 109 140 141 #> [165,] 845 986 532 494 247 187 291 782 838 743 #> [166,] 840 312 392 27 715 170 428 814 69 89 #> [167,] 606 387 504 521 455 745 961 288 451 243 #> [168,] 538 796 792 49 405 534 587 241 315 48 #> [169,] 500 131 25 820 858 244 944 137 921 916 #> [170,] 443 69 482 89 342 706 912 36 947 556 #> [171,] 959 950 605 55 317 801 249 702 875 958 #> [172,] 271 582 568 768 560 399 924 698 926 463 #> [173,] 960 374 228 903 287 104 997 175 613 804 #> [174,] 637 200 576 406 305 873 144 148 415 751 #> [175,] 613 903 804 229 353 515 173 997 667 429 #> [176,] 857 879 351 433 669 487 585 783 115 799 #> [177,] 371 193 621 932 453 231 385 254 661 452 #> [178,] 756 982 122 51 847 113 920 214 334 24 #> [179,] 653 33 463 479 924 361 221 95 279 938 #> [180,] 795 237 285 69 706 892 223 27 393 342 #> [181,] 825 182 66 425 124 163 79 523 260 726 #> [182,] 181 425 381 128 260 833 825 350 726 324 #> [183,] 935 567 345 952 754 156 100 413 68 977 #> [184,] 368 940 419 752 15 356 448 690 475 511 #> [185,] 396 596 616 761 450 155 293 738 965 603 #> [186,] 508 133 518 763 546 388 594 890 628 721 #> [187,] 401 635 986 532 874 471 159 923 204 460 #> [188,] 572 269 999 263 641 145 234 693 83 274 #> [189,] 702 482 116 464 861 680 211 280 966 791 #> [190,] 707 821 120 602 437 105 460 658 107 551 #> [191,] 367 275 412 636 854 632 600 816 110 262 #> [192,] 560 557 124 506 541 172 786 271 698 296 #> [193,] 371 621 452 453 899 611 380 39 223 150 #> [194,] 802 136 462 797 477 871 829 88 655 63 #> [195,] 780 705 704 883 282 239 837 769 240 445 #> [196,] 158 251 891 939 26 77 380 322 93 634 #> [197,] 813 91 818 983 51 586 636 674 178 990 #> [198,] 548 272 316 352 987 739 325 896 672 328 #> [199,] 851 896 684 608 987 417 414 274 941 548 #> [200,] 576 873 675 415 174 406 637 535 990 409 #> [201,] 936 416 46 886 23 843 807 295 458 946 #> [202,] 530 137 250 131 500 296 858 311 169 659 #> [203,] 747 720 265 327 357 691 571 839 319 536 #> [204,] 42 401 159 460 107 437 602 540 622 799 #> [205,] 32 835 375 953 810 151 290 315 656 123 #> [206,] 773 976 300 438 819 118 681 545 263 306 #> [207,] 96 179 302 970 509 467 550 279 326 479 #> [208,] 677 894 656 226 526 587 269 792 290 375 #> [209,] 806 275 888 412 191 775 561 911 258 70 #> [210,] 725 418 717 591 649 476 668 213 455 474 #> [211,] 964 4 791 189 89 482 499 702 556 688 #> [212,] 330 522 785 730 283 869 645 692 142 297 #> [213,] 717 476 320 418 556 455 725 892 927 964 #> [214,] 40 242 809 756 37 982 178 297 624 640 #> [215,] 701 232 798 420 540 647 929 714 108 86 #> [216,] 681 564 976 426 860 865 300 714 819 389 #> [217,] 241 908 803 595 128 52 709 850 28 833 #> [218,] 294 708 60 699 508 902 119 456 514 794 #> [219,] 346 611 332 453 977 334 816 150 371 646 #> [220,] 58 862 601 949 919 87 937 267 988 354 #> [221,] 361 48 379 359 463 33 583 871 776 915 #> [222,] 8 613 604 577 175 903 740 225 229 822 #> [223,] 285 98 39 661 292 795 254 27 36 193 #> [224,] 746 633 934 157 349 111 648 363 834 782 #> [225,] 577 697 25 429 671 921 794 916 514 629 #> [226,] 375 28 677 208 315 792 587 534 217 241 #> [227,] 580 868 990 535 409 441 132 826 360 945 #> [228,] 287 104 848 960 374 569 236 256 652 804 #> [229,] 794 804 515 902 514 65 218 60 628 8 #> [230,] 824 422 336 16 652 773 374 54 881 745 #> [231,] 255 50 254 397 101 284 177 464 453 338 #> [232,] 714 929 215 574 540 7 108 798 86 212 #> [233,] 566 951 324 248 87 531 549 687 517 523 #> [234,] 570 587 534 121 972 49 856 188 391 864 #> [235,] 615 753 331 747 955 600 12 134 265 967 #> [236,] 256 848 907 104 287 772 573 356 228 678 #> [237,] 292 69 36 795 285 912 180 27 931 768 #> [238,] 612 1 995 919 992 905 390 528 465 985 #> [239,] 883 329 780 588 195 704 117 37 640 978 #> [240,] 837 704 727 579 445 978 335 431 668 730 #> [241,] 217 923 792 635 52 908 168 28 538 595 #> [242,] 297 624 214 785 982 132 809 553 956 283 #> [243,] 552 140 745 252 143 455 606 973 320 127 #> [244,] 169 820 500 25 131 766 858 137 427 815 #> [245,] 129 938 121 95 529 278 642 234 570 11 #> [246,] 777 750 344 866 719 39 331 991 731 617 #> [247,] 253 349 106 633 187 934 532 43 71 165 #> [248,] 281 951 324 517 233 728 355 358 549 260 #> [249,] 605 544 759 722 146 171 801 310 640 959 #> [250,] 202 832 131 550 296 748 137 530 500 169 #> [251,] 322 196 158 634 340 710 486 321 93 911 #> [252,] 320 243 476 745 261 455 127 649 552 667 #> [253,] 247 349 145 693 647 633 187 421 401 111 #> [254,] 98 397 223 899 50 285 621 582 317 706 #> [255,] 231 338 683 757 50 385 177 464 254 827 #> [256,] 236 848 356 772 287 907 104 228 960 274 #> [257,] 713 643 876 457 407 594 721 386 835 105 #> [258,] 888 682 561 939 610 729 998 77 97 19 #> [259,] 110 946 458 807 844 629 753 967 46 319 #> [260,] 825 324 381 728 951 726 182 523 156 472 #> [261,] 476 320 474 252 927 852 649 388 660 745 #> [262,] 130 334 632 646 588 219 101 756 623 611 #> [263,] 83 300 798 999 206 681 819 526 22 824 #> [264,] 308 955 770 133 580 882 826 571 388 747 #> [265,] 753 615 747 674 293 235 571 203 130 720 #> [266,] 10 575 863 291 268 638 376 838 469 808 #> [267,] 862 462 949 136 620 477 58 803 194 870 #> [268,] 575 808 484 863 469 298 827 266 838 491 #> [269,] 145 188 208 417 526 274 677 693 894 647 #> [270,] 800 917 631 810 749 678 459 581 423 135 #> [271,] 172 582 842 926 663 899 350 872 741 473 #> [272,] 352 325 316 14 208 894 548 555 677 540 #> [273,] 559 774 405 128 503 969 381 549 741 923 #> [274,] 526 656 417 631 896 199 894 72 269 208 #> [275,] 623 758 600 816 191 412 611 331 367 911 #> [276,] 494 614 144 491 783 348 735 662 461 138 #> [277,] 314 119 528 73 917 321 151 390 721 699 #> [278,] 129 67 849 162 938 95 245 121 54 578 #> [279,] 479 529 179 642 394 653 33 56 311 630 #> [280,] 90 689 21 702 171 189 524 436 778 950 #> [281,] 248 355 728 673 517 324 84 951 149 260 #> [282,] 869 148 283 491 846 481 446 195 785 780 #> [283,] 869 785 212 330 730 481 645 282 297 242 #> [284,] 464 706 117 101 13 702 171 827 231 397 #> [285,] 292 223 27 36 98 69 39 661 237 795 #> [286,] 970 947 50 21 467 443 897 680 170 41 #> [287,] 228 848 104 960 374 236 569 256 336 652 #> [288,] 606 167 973 387 143 243 584 654 521 688 #> [289,] 784 489 774 895 893 471 2 497 106 31 #> [290,] 507 107 796 42 315 792 656 894 205 375 #> [291,] 838 900 575 469 10 986 694 845 266 471 #> [292,] 285 237 36 223 27 39 795 74 69 661 #> [293,] 753 596 716 615 265 369 235 450 130 747 #> [294,] 218 119 456 699 708 73 917 508 270 434 #> [295,] 44 650 664 201 383 449 740 830 46 434 #> [296,] 192 557 560 339 698 659 618 403 924 736 #> [297,] 624 242 730 785 146 956 142 132 759 544 #> [298,] 268 808 735 442 863 952 484 575 68 30 #> [299,] 102 571 809 811 450 396 261 945 852 418 #> [300,] 681 263 824 976 206 83 881 216 999 152 #> [301,] 625 537 648 771 139 599 337 579 925 108 #> [302,] 85 642 479 918 311 279 179 653 164 162 #> [303,] 489 694 289 94 900 784 82 365 114 853 #> [304,] 932 736 719 519 74 557 452 610 97 750 #> [305,] 174 200 415 979 144 662 411 651 485 410 #> [306,] 593 118 583 545 438 773 961 22 206 167 #> [307,] 21 467 90 778 436 114 853 359 432 280 #> [308,] 264 955 770 388 133 967 571 882 826 134 #> [309,] 943 72 135 631 372 22 518 749 507 20 #> [310,] 484 821 658 735 249 190 120 113 952 605 #> [311,] 653 67 95 938 870 578 642 822 530 76 #> [312,] 27 362 392 285 731 661 519 496 223 840 #> [313,] 563 804 573 336 515 127 667 767 104 516 #> [314,] 277 73 665 917 151 592 119 721 810 400 #> [315,] 20 136 507 375 833 290 32 797 835 205 #> [316,] 485 411 555 272 662 325 14 979 352 144 #> [317,] 842 801 899 696 887 605 663 959 926 171 #> [318,] 364 619 609 985 9 351 527 425 855 483 #> [319,] 967 747 852 516 691 811 629 308 60 515 #> [320,] 476 252 892 261 213 927 439 455 717 418 #> [321,] 158 465 634 954 528 78 890 891 277 93 #> [322,] 251 340 486 196 561 939 909 710 341 995 #> [323,] 104 6 804 563 767 228 287 678 313 997 #> [324,] 951 260 381 248 728 233 566 182 523 549 #> [325,] 14 123 272 672 622 894 42 799 812 555 #> [326,] 680 791 922 96 861 947 970 482 654 443 #> [327,] 468 886 73 23 699 877 747 203 691 357 #> [328,] 744 410 979 402 712 672 198 485 679 305 #> [329,] 239 883 495 13 978 703 45 780 588 195 #> [330,] 522 212 626 481 692 869 446 283 108 846 #> [331,] 600 29 235 758 615 742 617 623 246 24 #> [332,] 847 346 150 334 219 453 977 742 113 762 #> [333,] 927 887 696 544 737 474 826 146 476 722 #> [334,] 847 122 332 756 816 742 178 219 632 346 #> [335,] 966 875 579 116 53 171 727 958 61 827 #> [336,] 573 881 127 313 824 104 230 591 745 848 #> [337,] 430 625 301 599 648 424 537 139 389 492 #> [338,] 683 757 255 827 231 454 464 50 808 284 #> [339,] 924 630 88 957 698 87 354 829 296 653 #> [340,] 909 322 341 598 18 251 533 567 939 196 #> [341,] 909 18 340 724 533 598 995 487 592 402 #> [342,] 393 439 867 428 556 69 840 170 237 180 #> [343,] 731 362 496 750 814 519 775 312 715 74 #> [344,] 866 991 700 246 921 916 777 930 160 867 #> [345,] 156 68 567 726 952 183 935 370 413 551 #> [346,] 150 453 332 611 219 762 371 977 742 847 #> [347,] 685 864 608 971 34 914 1000 539 57 234 #> [348,] 783 614 799 138 437 707 602 461 622 460 #> [349,] 633 934 253 111 782 247 693 224 599 532 #> [350,] 473 741 833 643 568 271 381 872 957 182 #> [351,] 857 487 176 855 115 18 669 879 598 533 #> [352,] 272 71 208 269 417 325 440 145 316 548 #> [353,] 429 671 667 447 175 903 552 64 639 126 #> [354,] 630 394 339 87 58 220 928 870 88 56 #> [355,] 281 248 673 149 998 841 728 913 260 324 #> [356,] 772 459 511 597 256 678 543 236 800 767 #> [357,] 691 884 882 3 945 35 580 581 571 747 #> [358,] 969 778 524 149 951 381 436 687 503 399 #> [359,] 221 361 90 463 778 950 48 568 689 55 #> [360,] 409 562 3 884 35 7 423 868 574 581 #> [361,] 221 48 359 379 463 583 33 915 776 950 #> [362,] 519 312 661 27 719 74 496 39 292 285 #> [363,] 963 889 895 933 915 834 82 648 94 111 #> [364,] 318 351 855 857 115 435 619 879 985 609 #> [365,] 82 743 94 431 828 694 933 537 963 648 #> [366,] 64 85 140 16 126 552 143 490 164 162 #> [367,] 615 632 191 130 12 235 753 636 600 275 #> [368,] 511 543 751 597 562 356 410 873 772 35 #> [369,] 293 450 265 596 753 125 130 615 185 738 #> [370,] 100 345 808 68 149 952 754 503 935 183 #> [371,] 193 453 611 621 346 150 452 177 762 380 #> [372,] 20 943 309 72 518 856 63 655 22 749 #> [373,] 844 134 617 989 60 23 78 699 967 921 #> [374,] 960 287 228 848 75 572 104 569 230 641 #> [375,] 205 32 953 226 315 290 812 835 136 833 #> [376,] 525 969 687 10 436 863 784 517 266 358 #> [377,] 108 5 925 701 869 637 215 283 86 212 #> [378,] 9 531 619 549 728 233 84 248 687 281 #> [379,] 221 48 361 850 895 787 168 871 595 153 #> [380,] 758 26 452 891 742 193 150 196 346 371 #> [381,] 741 260 951 324 182 350 559 523 726 128 #> [382,] 634 502 441 742 29 413 762 876 150 17 #> [383,] 414 505 44 608 851 59 685 941 449 434 #> [384,] 282 846 793 446 195 942 743 481 780 869 #> [385,] 177 723 41 255 231 50 646 496 371 661 #> [386,] 17 643 876 502 257 120 891 663 551 737 #> [387,] 167 504 521 606 584 288 451 773 455 644 #> [388,] 763 186 520 147 308 261 508 133 906 696 #> [389,] 657 426 681 216 976 564 591 422 206 152 #> [390,] 79 592 995 277 528 151 724 953 66 181 #> [391,] 534 71 587 677 538 792 570 49 28 878 #> [392,] 312 27 731 623 840 166 859 646 285 155 #> [393,] 439 342 892 867 237 556 180 973 700 930 #> [394,] 354 630 928 339 279 56 781 2 529 233 #> [395,] 654 670 584 288 521 644 504 387 688 167 #> [396,] 185 616 299 596 761 450 718 738 418 155 #> [397,] 254 899 621 317 801 453 762 605 193 98 #> [398,] 671 885 994 429 439 428 697 160 393 973 #> [399,] 698 582 524 568 560 172 897 271 689 778 #> [400,] 996 684 672 592 314 205 917 665 123 277 #> [401,] 159 204 187 42 460 792 602 540 635 437 #> [402,] 712 341 679 724 909 486 744 314 410 592 #> [403,] 897 698 399 560 913 557 524 296 192 358 #> [404,] 123 672 415 979 574 724 868 423 929 799 #> [405,] 168 161 559 128 48 923 776 915 707 241 #> [406,] 576 200 982 148 491 51 442 645 818 174 #> [407,] 789 147 257 722 737 663 713 470 105 776 #> [408,] 54 849 554 652 547 760 278 749 372 971 #> [409,] 360 868 574 227 535 132 990 423 675 873 #> [410,] 744 651 328 402 679 873 543 979 712 368 #> [411,] 485 144 316 662 979 415 475 305 421 540 #> [412,] 636 816 275 911 586 813 219 367 632 334 #> [413,] 567 502 17 935 150 183 382 762 754 345 #> [414,] 608 199 941 987 851 896 760 685 417 948 #> [415,] 675 979 138 404 574 200 144 409 576 614 #> [416,] 843 936 486 23 710 712 612 886 402 468 #> [417,] 896 274 269 199 208 987 548 608 526 894 #> [418,] 725 210 717 476 213 668 320 474 591 649 #> [419,] 563 536 313 323 15 981 907 236 690 767 #> [420,] 798 701 215 647 690 139 962 152 15 693 #> [421,] 475 253 316 411 145 272 352 647 485 693 #> [422,] 230 387 389 773 206 606 374 504 167 657 #> [423,] 665 868 800 877 459 581 360 562 884 270 #> [424,] 240 727 837 301 670 704 579 666 978 625 #> [425,] 66 182 181 825 620 709 732 726 533 260 #> [426,] 389 657 216 591 564 681 976 210 881 981 #> [427,] 46 244 740 222 577 820 807 766 458 794 #> [428,] 840 814 342 867 885 859 393 398 439 160 #> [429,] 671 667 398 629 852 225 353 252 697 127 #> [430,] 337 625 648 301 599 537 224 480 644 828 #> [431,] 942 846 82 743 365 481 626 579 53 446 #> [432,] 114 895 379 359 221 361 774 778 436 2 #> [433,] 622 908 879 176 799 38 904 783 953 348 #> [434,] 456 59 119 708 766 294 740 493 528 218 #> [435,] 1 992 985 238 81 939 66 18 995 322 #> [436,] 778 90 969 524 358 280 454 114 21 273 #> [437,] 602 107 707 460 42 190 38 204 904 348 #> [438,] 49 306 545 773 593 118 889 206 796 819 #> [439,] 393 892 342 556 973 320 213 867 688 180 #> [440,] 28 62 52 908 555 71 622 433 764 878 #> [441,] 876 868 382 227 826 457 695 594 502 721 #> [442,] 491 982 406 113 640 785 310 484 920 282 #> [443,] 170 482 706 89 69 912 947 702 931 36 #> [444,] 930 99 910 627 991 916 618 700 768 546 #> [445,] 704 837 668 790 117 240 725 730 809 418 #> [446,] 481 626 846 942 330 743 869 431 522 283 #> [447,] 126 353 398 671 639 429 973 885 288 805 #> [448,] 886 516 767 691 678 877 327 203 323 458 #> [449,] 996 400 712 543 744 851 877 830 456 119 #> [450,] 738 102 299 596 293 369 185 396 265 809 #> [451,] 865 61 875 504 521 167 958 579 387 860 #> [452,] 193 932 380 371 26 719 77 39 758 891 #> [453,] 346 150 762 371 611 621 332 193 977 754 #> [454,] 827 469 683 436 503 280 966 53 335 484 #> [455,] 745 961 660 649 717 606 167 243 476 213 #> [456,] 119 434 294 708 218 59 699 493 830 740 #> [457,] 721 594 713 810 257 835 151 147 876 906 #> [458,] 807 886 319 844 516 327 46 60 23 203 #> [459,] 800 356 423 772 511 597 270 543 562 581 #> [460,] 602 707 437 107 204 42 190 161 401 159 #> [461,] 735 68 821 952 974 614 348 345 190 783 #> [462,] 870 194 829 984 949 937 477 267 136 58 #> [463,] 924 221 957 33 359 568 361 698 88 179 #> [464,] 284 13 702 189 706 280 482 443 117 50 #> [465,] 158 321 528 78 196 944 93 786 710 954 #> [466,] 395 861 670 424 727 430 644 654 853 584 #> [467,] 307 897 779 21 403 970 286 524 90 689 #> [468,] 327 12 91 586 535 990 227 674 955 23 #> [469,] 454 900 575 291 694 838 827 268 863 484 #> [470,] 507 135 796 22 407 118 545 309 147 943 #> [471,] 986 635 532 923 187 497 874 589 774 900 #> [472,] 156 726 598 345 825 66 567 260 183 935 #> [473,] 350 741 833 643 128 797 271 776 568 954 #> [474,] 649 476 261 927 660 333 956 591 210 418 #> [475,] 752 411 701 421 420 215 368 597 751 511 #> [476,] 320 261 927 213 474 252 418 649 717 455 #> [477,] 655 984 136 32 194 462 63 797 79 954 #> [478,] 823 109 164 143 583 490 788 99 768 140 #> [479,] 279 529 33 179 653 642 95 938 245 311 #> [480,] 644 504 521 773 889 206 387 438 972 746 #> [481,] 446 626 846 942 330 869 283 522 431 212 #> [482,] 443 702 791 170 706 189 912 556 89 211 #> [483,] 709 862 87 620 566 803 531 425 595 220 #> [484,] 808 310 735 827 503 370 952 268 249 821 #> [485,] 662 411 979 316 144 325 14 415 555 799 #> [486,] 322 710 251 416 402 712 843 911 612 909 #> [487,] 669 351 533 341 18 598 176 909 724 857 #> [488,] 19 92 855 909 351 487 18 30 341 857 #> [489,] 289 694 784 900 471 774 303 106 895 986 #> [490,] 980 141 823 109 880 143 478 140 627 164 #> [491,] 442 282 406 283 869 645 785 148 481 446 #> [492,] 15 501 152 337 657 962 389 690 419 420 #> [493,] 941 740 830 547 760 456 434 8 554 708 #> [494,] 276 838 165 614 348 491 291 986 874 144 #> [495,] 13 329 464 513 284 89 239 231 338 255 #> [496,] 362 723 519 661 312 41 74 304 27 719 #> [497,] 106 874 471 893 986 635 31 289 589 187 #> [498,] 679 91 197 80 402 651 468 486 813 818 #> [499,] 4 688 805 791 922 211 89 556 964 947 #> [500,] 169 131 858 137 944 25 820 921 244 659 #> [501,] 492 337 430 389 657 641 962 599 15 152 #> [502,] 17 413 695 386 567 382 120 876 441 643 #> [503,] 149 370 484 808 358 273 381 454 551 863 #> [504,] 521 387 167 644 606 773 451 206 306 584 #> [505,] 685 59 608 760 988 949 267 34 862 864 #> [506,] 124 872 523 163 560 192 932 77 825 260 #> [507,] 470 20 22 290 796 72 943 309 835 315 #> [508,] 186 518 917 810 763 594 721 133 218 457 #> [509,] 479 853 279 918 529 2 153 207 179 33 #> [510,] 641 572 188 999 962 145 948 569 269 960 #> [511,] 562 772 459 356 597 690 884 35 907 360 #> [512,] 632 37 262 130 588 40 590 125 983 756 #> [513,] 13 495 211 89 978 922 947 464 189 680 #> [514,] 902 628 921 65 763 794 218 880 858 910 #> [515,] 804 516 229 313 127 60 794 667 767 218 #> [516,] 691 515 767 60 319 313 678 357 563 804 #> [517,] 248 84 687 281 358 525 969 913 233 951 #> [518,] 508 186 943 309 520 372 628 65 836 749 #> [519,] 362 74 661 719 292 496 39 285 312 755 #> [520,] 65 518 628 763 961 127 388 660 943 745 #> [521,] 504 387 167 644 584 606 451 288 773 480 #> [522,] 330 771 692 860 212 108 626 730 481 161 #> [523,] 124 163 506 260 324 381 350 825 872 182 #> [524,] 399 778 358 90 897 689 436 50 280 254 #> [525,] 687 376 969 549 517 84 784 774 378 248 #> [526,] 894 656 929 274 208 540 631 83 72 290 #> [527,] 585 619 9 732 975 589 974 176 638 378 #> [528,] 277 321 465 989 390 119 612 59 79 890 #> [529,] 479 245 33 938 95 153 56 642 279 121 #> [530,] 202 311 58 937 870 949 354 630 220 137 #> [531,] 9 31 566 378 549 787 893 589 233 975 #> [532,] 986 471 187 635 782 923 111 401 933 159 #> [533,] 598 669 904 18 724 341 487 909 66 340 #> [534,] 587 391 49 538 168 792 677 234 226 241 #> [535,] 990 227 409 873 868 91 360 200 51 818 #> [536,] 691 357 563 102 811 419 981 35 299 313 #> [537,] 771 648 301 782 625 365 522 108 139 828 #> [538,] 792 168 49 587 534 923 796 159 161 677 #> [539,] 1000 34 864 971 803 226 862 595 267 607 #> [540,] 929 894 42 204 526 232 123 215 401 290 #> [541,] 786 829 659 954 462 937 194 192 124 924 #> [542,] 673 30 100 998 370 472 855 728 68 281 #> [543,] 597 996 459 356 423 800 511 744 672 877 #> [544,] 759 142 249 146 730 333 958 722 605 297 #> [545,] 118 306 593 438 796 819 470 22 865 206 #> [546,] 910 788 63 186 926 890 518 628 133 663 #> [547,] 760 554 408 493 822 578 849 984 941 652 #> [548,] 896 987 851 684 417 199 198 272 325 672 #> [549,] 687 951 531 324 566 969 525 732 248 728 #> [550,] 627 832 99 618 768 109 748 444 755 490 #> [551,] 120 17 386 801 726 741 345 899 643 762 #> [552,] 140 243 64 143 745 16 252 127 667 606 #> [553,] 86 3 5 7 956 945 624 35 360 242 #> [554,] 547 408 760 849 652 54 578 984 67 749 #> [555,] 14 622 440 433 316 325 783 176 879 799 #> [556,] 439 688 4 213 342 393 964 180 482 892 #> [557,] 192 560 74 506 296 304 618 932 736 124 #> [558,] 509 47 642 918 11 529 57 245 302 479 #> [559,] 128 273 405 381 707 741 190 551 473 120 #> [560,] 192 557 698 399 172 271 506 582 523 124 #> [561,] 939 322 196 26 251 911 77 806 158 258 #> [562,] 511 360 884 35 459 423 581 772 3 409 #> [563,] 313 767 573 336 104 804 691 516 236 907 #> [564,] 216 976 681 865 426 881 860 649 591 660 #> [565,] 488 115 328 92 80 857 305 19 351 487 #> [566,] 951 233 324 531 595 787 850 549 182 87 #> [567,] 413 156 345 726 935 502 183 17 598 551 #> [568,] 957 741 399 698 172 350 582 473 463 271 #> [569,] 948 228 960 287 848 374 256 6 274 104 #> [570,] 234 972 391 11 534 587 245 121 157 49 #> [571,] 747 580 955 299 264 308 882 945 809 261 #> [572,] 999 641 188 374 263 75 300 948 274 54 #> [573,] 336 881 313 824 127 907 981 563 236 104 #> [574,] 675 409 232 138 360 415 645 132 404 929 #> [575,] 863 268 10 266 469 291 838 808 484 900 #> [576,] 200 406 675 637 645 873 174 51 415 409 #> [577,] 225 697 429 222 671 25 629 175 794 398 #> [578,] 67 76 880 141 836 822 980 849 984 554 #> [579,] 61 875 116 860 451 240 771 865 335 958 #> [580,] 227 826 955 571 882 264 945 770 132 747 #> [581,] 884 423 135 800 882 459 562 270 907 360 #> [582,] 271 172 899 741 399 842 872 568 55 801 #> [583,] 306 593 361 164 438 118 48 478 545 221 #> [584,] 521 387 606 670 288 504 167 389 426 210 #> [585,] 527 732 974 176 433 589 619 9 348 783 #> [586,] 674 813 983 636 91 122 632 178 197 816 #> [587,] 534 49 677 391 538 792 168 796 208 856 #> [588,] 155 262 603 130 239 596 37 616 185 756 #> [589,] 31 908 52 635 732 217 874 62 241 893 #> [590,] 512 191 262 632 646 588 367 130 636 275 #> [591,] 649 881 210 745 660 426 606 564 976 474 #> [592,] 390 724 995 400 151 812 314 953 341 79 #> [593,] 306 118 545 583 961 438 22 773 943 372 #> [594,] 721 457 133 906 713 770 257 737 186 876 #> [595,] 850 787 803 217 566 241 802 31 379 709 #> [596,] 293 185 396 450 716 753 155 616 130 369 #> [597,] 543 459 356 772 511 562 929 896 800 526 #> [598,] 533 18 340 909 472 669 156 341 66 567 #> [599,] 962 139 625 537 782 301 349 693 648 108 #> [600,] 331 758 623 12 617 235 731 246 275 29 #> [601,] 949 937 58 919 220 829 786 462 541 267 #> [602,] 460 437 707 107 190 42 204 105 138 348 #> [603,] 155 616 588 761 4 89 392 185 965 428 #> [604,] 8 822 903 554 547 613 222 578 493 408 #> [605,] 249 801 171 959 317 722 544 55 759 397 #> [606,] 167 387 745 455 243 504 591 288 717 649 #> [607,] 988 539 483 1000 862 709 620 34 505 220 #> [608,] 685 414 199 347 851 760 417 505 864 684 #> [609,] 673 619 318 542 728 998 281 378 364 527 #> [610,] 97 932 77 841 304 939 733 901 452 506 #> [611,] 346 371 219 453 623 758 742 193 150 380 #> [612,] 710 238 528 843 995 465 765 322 251 277 #> [613,] 903 175 997 222 604 173 229 804 8 353 #> [614,] 783 138 348 461 799 669 821 662 675 735 #> [615,] 753 235 265 130 331 747 293 955 122 367 #> [616,] 155 4 603 396 556 185 885 761 596 716 #> [617,] 93 78 134 373 634 331 600 246 777 158 #> [618,] 99 768 627 444 550 237 755 292 74 172 #> [619,] 9 527 728 378 585 732 673 531 425 318 #> [620,] 862 267 425 709 919 812 483 181 66 390 #> [621,] 193 899 371 872 397 762 453 150 891 551 #> [622,] 433 799 38 42 908 14 953 437 204 783 #> [623,] 758 611 600 731 275 331 392 742 646 312 #> [624,] 297 956 7 242 730 142 132 553 759 146 #> [625,] 301 537 648 599 828 430 337 782 771 139 #> [626,] 481 446 330 942 846 692 522 431 212 869 #> [627,] 99 550 618 444 109 768 930 237 916 823 #> [628,] 902 65 763 514 910 518 836 880 520 186 #> [629,] 319 429 697 994 967 852 225 811 671 160 #> [630,] 354 339 88 870 653 87 58 924 802 871 #> [631,] 309 72 749 135 943 656 270 22 824 507 #> [632,] 130 334 636 262 586 756 674 122 367 983 #> [633,] 934 349 224 111 247 782 746 532 106 157 #> [634,] 382 321 891 158 251 441 502 770 133 594 #> [635,] 923 471 187 241 986 532 159 589 792 538 #> [636,] 412 586 816 632 813 674 367 983 122 197 #> [637,] 5 174 576 200 751 377 873 148 86 553 #> [638,] 838 974 527 291 575 863 266 585 732 874 #> [639,] 718 885 398 396 994 671 429 447 811 252 #> [640,] 117 249 544 113 101 759 730 785 704 297 #> [641,] 999 572 75 188 374 422 263 300 206 960 #> [642,] 245 479 529 938 95 311 56 279 278 302 #> [643,] 386 17 257 473 713 663 350 954 502 120 #> [644,] 480 521 504 451 889 387 773 206 167 61 #> [645,] 675 785 821 138 212 574 920 658 576 283 #> [646,] 623 262 219 611 392 312 275 101 371 231 #> [647,] 693 798 145 83 420 215 540 263 701 526 #> [648,] 537 625 301 771 834 365 782 363 963 828 #> [649,] 660 745 591 961 881 455 474 476 210 261 #> [650,] 765 295 383 44 416 612 905 843 449 81 #> [651,] 873 679 410 535 91 200 990 734 751 498 #> [652,] 749 408 849 54 554 372 824 943 72 309 #> [653,] 179 95 33 311 924 938 630 463 870 88 #> [654,] 288 395 521 326 504 791 167 387 688 973 #> [655,] 984 477 836 136 63 372 194 462 20 788 #> [656,] 526 894 631 208 72 290 507 20 274 205 #> [657,] 389 426 681 152 981 216 591 300 976 881 #> [658,] 920 120 821 876 113 146 190 502 310 722 #> [659,] 541 786 444 137 829 910 858 192 141 937 #> [660,] 649 961 745 455 881 591 474 476 520 606 #> [661,] 223 285 519 98 39 292 362 74 36 27 #> [662,] 485 979 144 614 411 783 316 799 14 669 #> [663,] 926 842 789 906 737 407 317 271 643 386 #> [664,] 44 295 997 941 414 493 830 6 383 940 #> [665,] 423 868 877 917 314 800 810 73 270 151 #> [666,] 769 925 424 705 195 790 831 301 704 837 #> [667,] 127 852 252 429 313 552 811 243 336 745 #> [668,] 725 964 418 717 958 210 445 213 875 451 #> [669,] 487 799 533 724 904 176 598 783 38 351 #> [670,] 584 964 395 668 717 688 116 211 521 725 #> [671,] 429 398 252 667 552 126 243 973 225 994 #> [672,] 123 404 325 400 979 744 996 592 14 724 #> [673,] 728 281 355 619 998 542 472 248 609 260 #> [674,] 586 983 813 734 265 91 632 636 122 615 #> [675,] 645 138 574 415 576 821 200 409 920 658 #> [676,] 70 806 843 78 93 820 23 373 617 710 #> [677,] 792 208 587 159 226 534 538 28 290 894 #> [678,] 767 270 800 356 236 459 516 581 877 104 #> [679,] 498 402 651 91 410 535 468 990 712 818 #> [680,] 861 326 791 189 21 96 922 482 702 947 #> [681,] 216 976 300 564 426 152 389 881 657 206 #> [682,] 729 258 100 977 754 888 935 183 998 219 #> [683,] 757 338 255 454 808 827 863 231 503 484 #> [684,] 851 400 199 205 996 896 749 32 656 548 #> [685,] 347 608 505 864 971 34 760 547 414 554 #> [686,] 448 368 410 651 886 936 449 679 744 328 #> [687,] 549 969 525 774 358 951 517 248 784 566 #> [688,] 556 791 439 499 4 973 717 964 213 288 #> [689,] 931 280 90 21 912 399 524 359 950 702 #> [690,] 15 511 35 907 562 772 420 152 86 701 #> [691,] 357 516 767 882 319 884 747 313 563 536 #> [692,] 522 161 330 212 626 460 105 860 707 933 #> [693,] 647 145 798 111 83 263 269 188 834 962 #> [694,] 900 82 94 365 933 489 469 471 291 774 #> [695,] 502 724 441 151 904 533 658 567 382 17 #> [696,] 887 333 842 906 926 317 737 927 663 147 #> [697,] 225 629 398 577 994 429 160 671 25 967 #> [698,] 399 560 568 957 924 172 463 403 192 339 #> [699,] 73 294 218 60 119 373 877 277 508 314 #> [700,] 991 866 930 916 344 892 867 444 921 910 #> [701,] 215 420 798 377 232 647 108 139 86 690 #> [702,] 189 482 280 464 171 706 443 116 284 689 #> [703,] 761 239 185 588 329 603 965 396 155 616 #> [704,] 837 445 240 195 117 978 640 730 727 705 #> [705,] 195 769 780 40 790 214 704 148 282 242 #> [706,] 443 284 180 170 482 702 69 464 254 98 #> [707,] 602 190 460 437 821 107 348 559 105 120 #> [708,] 119 456 218 890 294 434 989 514 902 766 #> [709,] 483 908 803 217 52 620 862 595 425 62 #> [710,] 612 843 486 251 322 528 158 465 93 995 #> [711,] 70 815 465 676 820 612 736 775 304 137 #> [712,] 402 314 744 592 400 486 665 277 996 449 #> [713,] 257 457 835 721 594 151 643 407 810 147 #> [714,] 232 7 108 86 216 860 212 564 956 215 #> [715,] 166 814 840 343 428 312 731 392 362 27 #> [716,] 994 160 859 293 885 596 967 753 616 428 #> [717,] 213 210 418 455 725 476 606 668 320 649 #> [718,] 210 418 725 639 591 717 811 584 396 426 #> [719,] 39 777 750 519 74 246 362 452 292 661 #> [720,] 839 734 203 265 3 945 102 357 536 35 #> [721,] 457 594 713 151 810 835 257 917 133 508 #> [722,] 737 146 876 105 407 142 605 759 544 789 #> [723,] 41 496 733 661 519 177 385 304 362 932 #> [724,] 695 592 533 669 341 904 151 487 799 909 #> [725,] 418 210 668 717 213 476 591 474 649 964 #> [726,] 156 567 345 551 472 260 17 182 825 381 #> [727,] 978 240 837 335 966 116 579 189 211 964 #> [728,] 324 260 281 951 673 732 248 472 825 619 #> [729,] 977 682 754 100 219 346 332 935 453 177 #> [730,] 759 142 297 624 544 212 785 146 283 958 #> [731,] 312 392 623 246 600 859 362 750 331 27 #> [732,] 585 589 728 974 9 527 549 433 425 619 #> [733,] 97 103 723 610 304 932 496 901 841 898 #> [734,] 674 839 720 983 91 586 265 813 535 873 #> [735,] 461 68 974 952 821 310 484 345 190 348 #> [736,] 304 137 557 131 296 74 192 519 901 500 #> [737,] 906 876 722 147 696 663 826 407 594 887 #> [738,] 450 102 299 396 185 536 596 811 369 831 #> [739,] 198 328 548 383 115 14 316 352 272 879 #> [740,] 766 493 434 456 8 708 794 218 44 229 #> [741,] 350 473 381 582 568 872 801 899 551 271 #> [742,] 29 24 346 122 847 382 611 380 758 150 #> [743,] 365 942 431 446 846 828 82 481 626 845 #> [744,] 410 672 543 328 996 712 402 979 404 400 #> [745,] 649 660 243 455 961 606 591 252 881 552 #> [746,] 157 224 972 111 11 570 363 834 633 188 #> [747,] 571 955 235 319 264 753 580 308 265 615 #> [748,] 550 832 627 342 126 109 973 393 99 814 #> [749,] 631 309 652 943 372 270 72 518 20 135 #> [750,] 777 246 719 362 758 39 78 731 93 519 #> [751,] 873 35 360 3 562 553 5 637 839 86 #> [752,] 475 368 751 411 701 637 421 174 690 420 #> [753,] 615 235 293 265 747 130 571 596 367 331 #> [754,] 977 935 150 100 183 413 453 346 567 729 #> [755,] 74 36 292 618 519 237 931 912 69 661 #> [756,] 178 214 122 37 982 334 24 847 130 113 #> [757,] 683 338 255 454 863 231 50 827 808 575 #> [758,] 380 623 611 600 26 742 331 452 371 346 #> [759,] 544 142 730 146 958 249 722 297 624 605 #> [760,] 547 554 408 493 941 984 608 849 864 685 #> [761,] 4 616 185 603 396 703 155 964 211 805 #> [762,] 150 453 346 621 413 382 742 371 899 386 #> [763,] 388 628 65 186 902 520 508 991 910 514 #> [764,] 440 878 62 52 975 28 43 607 709 908 #> [765,] 905 612 238 650 919 59 528 710 995 843 #> [766,] 740 434 708 858 989 456 514 493 8 76 #> [767,] 678 516 563 691 313 800 270 236 581 884 #> [768,] 99 618 627 172 444 237 931 912 109 271 #> [769,] 790 705 925 831 5 553 86 242 283 195 #> [770,] 264 133 826 308 955 594 906 457 737 441 #> [771,] 860 522 537 819 834 579 108 963 865 648 #> [772,] 511 356 459 597 907 256 562 236 690 581 #> [773,] 206 438 306 504 593 118 387 545 167 976 #> [774,] 784 273 289 787 687 893 549 969 31 471 #> [775,] 70 304 750 343 806 820 711 519 676 736 #> [776,] 55 789 48 950 407 801 663 959 473 797 #> [777,] 246 719 750 39 866 344 78 991 452 617 #> [778,] 436 90 524 358 359 969 399 568 280 689 #> [779,] 467 307 286 897 21 970 403 524 436 96 #> [780,] 195 883 705 239 37 704 40 282 148 640 #> [781,] 928 233 339 913 394 517 248 354 403 87 #> [782,] 537 111 532 349 771 828 648 365 834 633 #> [783,] 348 614 799 138 622 669 433 437 461 176 #> [784,] 774 289 893 687 489 525 114 969 787 31 #> [785,] 283 645 297 212 242 730 869 624 146 920 #> [786,] 541 829 659 937 954 124 601 192 137 944 #> [787,] 850 595 31 566 774 379 531 217 549 273 #> [788,] 63 836 546 910 880 797 141 655 628 518 #> [789,] 407 776 663 55 926 842 801 147 722 887 #> [790,] 831 769 445 925 624 553 705 956 809 102 #> [791,] 326 482 922 680 688 211 499 443 189 947 #> [792,] 159 538 677 241 168 587 290 534 923 796 #> [793,] 45 268 883 384 338 827 942 683 575 329 #> [794,] 60 229 514 218 515 902 763 921 516 740 #> [795,] 842 237 180 292 223 285 39 926 317 930 #> [796,] 507 22 168 49 290 545 470 538 161 118 #> [797,] 63 194 315 788 833 473 136 477 776 546 #> [798,] 420 647 83 263 215 701 139 693 232 714 #> [799,] 622 669 38 783 904 433 42 348 437 107 #> [800,] 270 459 423 877 917 581 678 665 810 631 #> [801,] 605 317 55 899 959 789 663 741 551 842 #> [802,] 88 194 871 803 957 833 924 136 473 797 #> [803,] 217 595 802 850 833 709 128 267 182 315 #> [804,] 515 313 104 229 127 563 336 667 516 573 #> [805,] 499 4 885 89 428 688 616 556 603 761 #> [806,] 676 70 911 93 26 561 78 12 617 710 #> [807,] 458 46 886 448 259 516 629 319 203 327 #> [808,] 484 370 863 503 310 268 683 827 575 735 #> [809,] 214 945 299 624 956 242 571 102 297 756 #> [810,] 917 457 721 835 508 270 713 151 594 205 #> [811,] 852 299 667 261 319 313 127 536 252 571 #> [812,] 953 879 14 375 592 620 622 325 433 205 #> [813,] 586 197 91 983 674 818 51 178 636 122 #> [814,] 840 428 867 342 859 27 312 166 393 362 #> [815,] 711 70 820 676 244 775 736 612 137 765 #> [816,] 334 122 742 29 332 412 847 636 911 219 #> [817,] 734 498 983 125 674 91 197 854 651 586 #> [818,] 51 197 990 91 813 920 200 535 178 576 #> [819,] 834 545 206 860 83 865 771 438 161 976 #> [820,] 169 70 500 676 244 25 944 711 775 78 #> [821,] 190 461 658 138 707 735 645 310 120 602 #> [822,] 578 8 604 76 547 554 67 311 760 880 #> [823,] 478 109 143 164 490 99 788 444 627 910 #> [824,] 72 22 300 309 943 230 881 118 573 135 #> [825,] 260 181 66 182 163 726 472 523 425 324 #> [826,] 770 580 737 24 132 441 876 906 146 955 #> [827,] 454 484 249 335 284 808 683 310 966 605 #> [828,] 968 365 743 782 537 625 648 845 82 301 #> [829,] 541 786 462 194 937 58 924 954 124 601 #> [830,] 941 493 294 456 6 851 678 218 119 44 #> [831,] 790 769 553 86 956 102 981 925 624 945 #> [832,] 550 627 131 618 99 748 755 768 916 74 #> [833,] 473 128 315 350 802 803 797 643 182 194 #> [834,] 819 111 771 83 889 49 438 538 206 161 #> [835,] 713 32 205 810 721 457 151 507 257 315 #> [836,] 655 880 788 63 984 628 141 518 902 372 #> [837,] 240 704 445 727 978 668 579 117 335 730 #> [838,] 291 900 986 575 471 469 638 974 626 863 #> [839,] 720 734 3 751 945 873 35 553 357 203 #> [840,] 428 814 342 166 27 867 69 312 170 392 #> [841,] 610 97 901 163 992 355 77 103 932 825 #> [842,] 926 663 317 795 696 271 899 582 887 789 #> [843,] 710 612 676 23 416 486 989 78 528 806 #> [844,] 134 373 967 23 60 617 344 921 25 319 #> [845,] 165 743 986 968 900 532 828 291 365 782 #> [846,] 481 942 446 431 626 869 330 743 522 283 #> [847,] 332 113 334 122 742 346 178 150 920 24 #> [848,] 287 236 104 228 256 960 374 336 569 824 #> [849,] 408 54 554 278 652 67 372 856 578 836 #> [850,] 595 787 803 379 566 217 802 241 88 871 #> [851,] 199 684 896 987 941 548 996 608 400 414 #> [852,] 811 667 261 127 252 319 313 320 515 429 #> [853,] 432 114 307 861 96 21 680 94 509 359 #> [854,] 946 367 636 12 191 412 110 586 936 674 #> [855,] 351 598 472 857 487 30 18 176 533 909 #> [856,] 20 22 372 72 507 943 796 315 49 656 #> [857,] 115 351 176 487 855 669 879 662 783 585 #> [858,] 76 500 514 880 980 944 659 921 141 169 #> [859,] 160 716 867 428 731 344 994 967 814 246 #> [860,] 865 771 522 819 564 216 958 714 579 142 #> [861,] 680 189 326 791 116 21 96 702 482 211 #> [862,] 267 620 220 483 87 949 58 709 919 803 #> [863,] 575 808 266 503 268 10 683 484 469 370 #> [864,] 971 34 347 685 1000 539 408 234 856 849 #> [865,] 860 451 958 564 819 61 545 976 875 216 #> [866,] 991 344 700 916 930 921 246 867 777 444 #> [867,] 393 700 916 342 866 814 237 428 930 344 #> [868,] 665 227 423 409 441 360 535 990 457 877 #> [869,] 283 481 330 212 785 282 846 446 730 626 #> [870,] 462 58 949 937 984 194 829 136 630 267 #> [871,] 802 194 88 136 121 95 797 938 33 924 #> [872,] 506 899 621 741 582 271 350 193 523 381 #> [873,] 535 751 200 409 360 651 576 990 415 637 #> [874,] 497 187 589 986 635 471 975 52 555 62 #> [875,] 61 116 958 451 865 579 959 668 171 950 #> [876,] 737 722 257 386 441 120 105 658 906 594 #> [877,] 665 423 800 73 270 917 868 699 996 314 #> [878,] 914 71 28 43 62 391 1000 440 52 764 #> [879,] 176 812 433 14 622 351 669 799 953 908 #> [880,] 141 836 980 76 578 628 788 910 902 65 #> [881,] 591 649 573 976 660 336 745 564 824 681 #> [882,] 580 581 357 264 884 474 571 308 691 945 #> [883,] 239 780 329 195 640 704 45 442 793 978 #> [884,] 581 35 562 357 3 360 423 882 511 907 #> [885,] 994 398 428 716 616 805 160 639 859 4 #> [886,] 327 448 699 458 23 73 877 516 936 60 #> [887,] 696 333 317 927 842 737 926 906 147 789 #> [888,] 258 682 561 610 97 209 998 939 729 733 #> [889,] 438 963 363 915 644 834 49 545 306 819 #> [890,] 708 186 546 989 944 508 321 954 477 628 #> [891,] 17 196 386 380 158 634 413 643 321 502 #> [892,] 320 439 393 700 696 213 476 180 887 930 #> [893,] 31 784 774 531 589 497 975 289 549 787 #> [894,] 526 656 208 540 929 290 677 123 42 205 #> [895,] 153 379 363 432 289 154 11 889 915 221 #> [896,] 987 199 851 548 417 274 684 597 996 608 #> [897,] 403 399 524 931 689 755 467 698 98 36 #> [898,] 103 913 733 385 723 41 355 403 97 998 #> [899,] 621 872 582 801 317 397 842 271 741 663 #> [900,] 694 291 469 838 471 986 82 489 365 933 #> [901,] 97 841 103 610 736 733 163 992 304 932 #> [902,] 628 65 514 763 880 836 518 218 910 520 #> [903,] 613 175 604 173 366 64 804 229 353 997 #> [904,] 38 953 799 533 669 437 724 107 695 433 #> [905,] 919 238 985 620 765 995 1 862 220 601 #> [906,] 737 133 594 663 696 147 926 770 876 457 #> [907,] 236 772 573 581 981 884 690 511 300 152 #> [908,] 52 217 433 62 709 589 622 440 28 241 #> [909,] 341 18 340 598 533 487 322 724 995 251 #> [910,] 546 444 788 628 930 880 991 141 763 902 #> [911,] 26 380 93 816 758 12 617 251 29 600 #> [912,] 931 237 36 69 768 443 170 689 482 292 #> [913,] 403 517 248 355 781 281 358 103 841 233 #> [914,] 878 347 1000 570 539 57 43 864 391 234 #> [915,] 963 48 933 889 61 405 161 545 776 168 #> [916,] 930 700 991 866 867 444 344 921 627 25 #> [917,] 810 270 508 800 721 665 457 835 314 277 #> [918,] 162 129 164 85 245 583 278 654 479 47 #> [919,] 601 905 238 220 985 620 862 949 181 267 #> [920,] 113 658 51 132 146 847 178 382 645 675 #> [921,] 991 866 25 344 514 916 930 700 763 944 #> [922,] 947 791 326 499 680 482 89 970 443 211 #> [923,] 635 241 538 792 471 405 159 168 161 217 #> [924,] 88 957 463 339 698 802 172 194 829 568 #> [925,] 769 377 869 108 790 5 283 831 86 139 #> [926,] 663 842 696 906 789 271 546 795 317 887 #> [927,] 333 476 887 261 320 696 474 213 892 388 #> [928,] 781 354 394 87 233 220 339 630 483 58 #> [929,] 540 232 526 894 123 459 656 574 42 290 #> [930,] 916 700 444 991 866 910 627 99 867 344 #> [931,] 912 689 36 98 237 768 69 897 292 443 #> [932,] 77 452 610 304 506 193 371 177 621 872 #> [933,] 963 915 82 692 363 365 694 94 161 61 #> [934,] 633 349 224 247 106 157 111 746 253 782 #> [935,] 754 183 567 413 156 345 100 977 726 150 #> [936,] 416 23 468 886 327 946 12 201 843 486 #> [937,] 58 949 601 462 829 786 541 870 659 220 #> [938,] 95 121 245 67 278 971 871 653 129 33 #> [939,] 196 77 561 322 992 340 935 251 26 158 #> [940,] 6 987 356 256 896 323 569 597 543 851 #> [941,] 830 493 199 851 760 414 547 6 554 456 #> [942,] 431 846 481 446 626 743 330 522 869 365 #> [943,] 309 72 372 22 135 20 518 507 631 118 #> [944,] 989 890 921 786 465 858 78 500 321 659 #> [945,] 3 956 553 580 7 809 35 624 571 882 #> [946,] 110 854 12 259 367 936 235 23 753 844 #> [947,] 922 443 170 970 89 482 791 326 680 286 #> [948,] 569 54 572 408 274 75 374 417 228 960 #> [949,] 58 937 601 462 870 267 220 829 862 541 #> [950,] 55 959 171 776 789 801 359 875 48 842 #> [951,] 324 381 566 248 233 549 260 728 182 358 #> [952,] 68 345 183 461 735 567 821 370 413 310 #> [953,] 38 375 904 812 205 32 622 799 833 79 #> [954,] 643 79 541 321 350 473 477 546 829 786 #> [955,] 264 308 770 580 747 571 826 29 235 24 #> [956,] 624 7 945 297 553 142 474 132 3 86 #> [957,] 88 568 924 802 698 463 350 473 172 339 #> [958,] 875 759 865 544 142 668 860 959 451 61 #> [959,] 171 950 55 605 801 317 789 776 842 887 #> [960,] 374 287 228 848 569 104 256 236 173 572 #> [961,] 660 745 455 649 593 118 520 167 306 881 #> [962,] 420 599 693 647 798 139 701 145 152 15 #> [963,] 933 915 61 889 363 82 771 579 94 834 #> [964,] 668 211 213 4 717 556 725 688 418 670 #> [965,] 185 603 596 588 155 761 616 703 293 396 #> [966,] 53 335 189 727 978 454 827 464 702 116 #> [967,] 134 319 160 308 844 344 264 747 235 955 #> [968,] 828 845 743 365 165 782 625 537 446 82 #> [969,] 687 358 436 778 525 549 273 774 517 114 #> [970,] 947 912 286 326 443 931 680 170 922 482 #> [971,] 864 34 938 95 67 1000 849 278 121 539 #> [972,] 11 570 746 234 49 157 121 889 153 534 #> [973,] 143 126 439 109 243 288 393 688 140 552 #> [974,] 735 68 461 585 348 732 345 783 707 821 #> [975,] 9 31 589 893 62 52 531 874 908 440 #> [976,] 564 681 216 881 206 300 118 426 865 649 #> [977,] 754 150 346 453 729 332 935 100 183 219 #> [978,] 727 837 13 240 966 117 704 335 211 464 #> [979,] 662 415 485 404 672 799 669 123 487 144 #> [980,] 141 490 880 76 578 910 858 788 836 444 #> [981,] 881 907 657 573 591 426 681 152 564 336 #> [982,] 178 242 756 214 113 51 406 920 37 785 #> [983,] 674 813 586 734 197 91 178 632 982 756 #> [984,] 655 477 136 836 462 194 870 63 372 20 #> [985,] 1 919 992 435 238 905 66 220 620 181 #> [986,] 471 532 187 635 874 838 497 900 923 291 #> [987,] 896 199 548 851 417 414 608 6 274 684 #> [988,] 607 220 862 505 620 539 483 267 34 1000 #> [989,] 944 890 708 373 528 78 321 119 921 218 #> [990,] 535 227 51 409 818 91 868 441 920 873 #> [991,] 866 700 930 344 916 921 444 910 763 546 #> [992,] 1 939 163 238 825 181 66 985 435 77 #> [993,] 769 637 148 705 5 751 839 174 40 925 #> [994,] 716 885 160 398 859 697 428 629 671 429 #> [995,] 390 18 592 341 238 909 612 322 251 340 #> [996,] 400 543 800 449 877 684 665 672 459 270 #> [997,] 613 173 323 175 903 228 804 104 960 287 #> [998,] 355 673 841 281 682 542 258 610 100 97 #> [999,] 572 641 188 263 300 206 773 374 83 824 #> [1000,] 539 34 864 971 226 803 878 595 850 28 #> #> $neighbor_distances #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 0.37440774 0.5196210 0.6317683 0.6323538 0.8849260 0.8892560 0.9006937 #> [2,] 0.71849076 0.8712022 0.8970041 0.9249884 0.9328638 0.9559555 0.9912308 #> [3,] 0.33816647 0.3531914 0.4294108 0.5196530 0.5297383 0.5577980 0.6443834 #> [4,] 0.54020961 0.6153700 0.6328276 0.6360577 0.6708464 0.6854089 0.7296972 #> [5,] 0.39339787 0.4755666 0.6066615 0.7330094 0.7611787 0.7646775 0.7696904 #> [6,] 0.81778517 0.8393568 0.8864097 0.8899425 0.8930137 0.9004203 0.9592937 #> [7,] 0.31336098 0.4734230 0.4790972 0.5125694 0.5484259 0.5577980 0.5839837 #> [8,] 0.69429370 0.6999343 0.8040632 0.8374759 0.8581814 0.8620620 0.9037422 #> [9,] 0.49870522 0.5159316 0.5161472 0.6504423 0.7226073 0.7458232 0.8078439 #> [10,] 0.43286308 0.6523323 0.8222796 0.8646028 0.9897671 1.0654198 1.0962131 #> [11,] 0.41437972 0.5560717 0.6561674 0.7609491 0.7669037 0.8590798 0.8752580 #> [12,] 0.67937879 0.7172980 0.7480645 0.7544614 0.8050573 0.8083640 0.8481635 #> [13,] 0.52070502 0.6684482 0.7688076 0.7823320 0.8670848 0.9316208 0.9584593 #> [14,] 0.41137800 0.5708362 0.5865694 0.6090094 0.6456530 0.6700576 0.7213540 #> [15,] 0.59022782 0.7694994 0.8918625 1.0814758 1.1290545 1.1519124 1.1534854 #> [16,] 0.45092441 0.4958946 0.5104549 0.5122970 0.5530641 0.6073729 0.6617331 #> [17,] 0.21549985 0.3255899 0.3544750 0.4664532 0.4715509 0.4860027 0.4879230 #> [18,] 0.28419387 0.3691577 0.5267358 0.5449690 0.5967973 0.5985593 0.6283001 #> [19,] 0.60423508 0.9040169 0.9165124 1.0119967 1.0878704 1.1063906 1.1405633 #> [20,] 0.28229287 0.3660425 0.4033861 0.4280612 0.4487782 0.4534048 0.4866329 #> [21,] 0.53505778 0.5400066 0.6122105 0.7306741 0.7555545 0.8497530 0.8610543 #> [22,] 0.21870056 0.3441216 0.3792610 0.4279712 0.4352831 0.4734599 0.4760026 #> [23,] 0.69971236 0.7776224 0.7876056 0.7994573 0.8586295 0.8605815 0.8819863 #> [24,] 0.38762218 0.4285535 0.4381970 0.5334751 0.6623435 0.6643578 0.6768378 #> [25,] 0.53268027 0.6801124 0.6909970 0.7254717 0.7283049 0.7764582 0.7892815 #> [26,] 0.43329051 0.5178387 0.5360601 0.5642680 0.5666451 0.5944099 0.6307465 #> [27,] 0.30426516 0.3859418 0.4251838 0.4719293 0.5115982 0.5455742 0.5471404 #> [28,] 0.42629419 0.4520204 0.4723838 0.5216885 0.5984226 0.6227925 0.6259317 #> [29,] 0.35403636 0.3840472 0.3876222 0.5544435 0.5753758 0.6441560 0.6696159 #> [30,] 0.70399445 0.8185857 0.8728922 0.8887481 0.9390512 0.9504278 0.9534198 #> [31,] 0.54620478 0.5678647 0.5794177 0.5859331 0.6016578 0.6631736 0.6973421 #> [32,] 0.32203562 0.3870360 0.4510068 0.4565310 0.5181098 0.5219980 0.5803326 #> [33,] 0.59842366 0.6252209 0.6259422 0.6469902 0.6731264 0.6884798 0.6987678 #> [34,] 0.42295739 0.4799947 0.4822970 0.5100279 0.7521974 0.7531811 0.7617941 #> [35,] 0.35319143 0.4240218 0.5113439 0.5796505 0.5815733 0.6434926 0.6531255 #> [36,] 0.28798006 0.3680010 0.4005744 0.4271074 0.4391532 0.4795506 0.4806273 #> [37,] 0.46960421 0.5704743 0.5713747 0.7433508 0.8263683 0.9032159 0.9188813 #> [38,] 0.16379892 0.4343415 0.4634704 0.4812532 0.5262166 0.5456857 0.5900957 #> [39,] 0.32942541 0.3488723 0.4544843 0.4706264 0.4737524 0.5055472 0.5182899 #> [40,] 0.46960421 0.5094448 0.8000923 0.8405120 0.8940577 0.9118995 0.9520868 #> [41,] 0.56070439 0.8039226 0.8458749 0.9259973 0.9706053 1.0019942 1.0221179 #> [42,] 0.26218164 0.3335003 0.4401235 0.4973035 0.5241576 0.5242244 0.5406525 #> [43,] 0.63571193 0.7382393 0.9638590 1.0666145 1.0770948 1.0874487 1.0945852 #> [44,] 0.98042680 0.9936126 1.0111360 1.0134749 1.0909802 1.1755655 1.2292283 #> [45,] 0.96471043 1.1360815 1.2717714 1.5203067 1.5482659 1.7086648 1.7576296 #> [46,] 0.92897311 1.0798204 1.2356634 1.2538734 1.2887295 1.3175664 1.3497319 #> [47,] 0.89238862 0.9257327 0.9620712 0.9739201 0.9943237 1.1340280 1.1505984 #> [48,] 0.44108247 0.4464113 0.4928736 0.5033910 0.5245417 0.5959135 0.6397210 #> [49,] 0.39469461 0.3966216 0.4374424 0.4706606 0.4847577 0.4929153 0.6373957 #> [50,] 0.62219362 0.6576409 0.7388219 0.7729828 0.7943559 0.8368663 0.8794120 #> [51,] 0.30483279 0.4510571 0.5991109 0.6021361 0.6431851 0.6820095 0.6822274 #> [52,] 0.16342217 0.3812533 0.4723838 0.4917449 0.5672412 0.6012372 0.6016578 #> [53,] 0.47146486 0.6398191 0.6982818 0.7187265 0.7796118 0.9114307 0.9247849 #> [54,] 0.32811395 0.4597374 0.5698973 0.6545683 0.7488184 0.7636551 0.8007657 #> [55,] 0.26351243 0.2898434 0.3279429 0.3904213 0.4334976 0.4823644 0.5486852 #> [56,] 0.77615810 0.8922126 0.9410711 0.9435230 0.9454779 0.9498508 0.9649450 #> [57,] 1.01660350 1.0576989 1.0578482 1.0948736 1.1998130 1.2010383 1.2067120 #> [58,] 0.31354966 0.3359187 0.4454083 0.5013944 0.5523149 0.5649255 0.6207553 #> [59,] 0.54093924 0.6735608 0.6915943 0.7171179 0.7925492 0.8258154 0.8404956 #> [60,] 0.39442631 0.5581936 0.6069573 0.6558298 0.6593543 0.6951015 0.7095590 #> [61,] 0.42184296 0.4722252 0.4810669 0.5213441 0.5457783 0.5978246 0.6324206 #> [62,] 0.16342217 0.4269498 0.4520204 0.5193114 0.6631736 0.7057671 0.7128491 #> [63,] 0.22126147 0.3532780 0.4414033 0.4531874 0.4647006 0.5107906 0.5602252 #> [64,] 0.33416754 0.4265877 0.4359787 0.4958946 0.5433790 0.6881546 0.7001640 #> [65,] 0.23679109 0.2815989 0.3487280 0.4295142 0.5025708 0.5573627 0.6129167 #> [66,] 0.44637144 0.5003019 0.5529245 0.6283844 0.6367535 0.6652489 0.7487575 #> [67,] 0.33537141 0.5092862 0.5898424 0.5930201 0.6001093 0.6728713 0.6872553 #> [68,] 0.37747986 0.4014896 0.4185361 0.4482289 0.5682722 0.5703633 0.6131069 #> [69,] 0.28798006 0.3927377 0.4251838 0.4288953 0.4558640 0.4906690 0.5028235 #> [70,] 0.54611205 0.6926403 0.7215123 0.7658092 0.8311058 0.9560666 1.0400445 #> [71,] 0.47206866 0.6357119 0.6360646 0.6926937 0.6989833 0.7644924 0.7893722 #> [72,] 0.21870056 0.2927399 0.2999043 0.3591081 0.4487782 0.4585332 0.4617932 #> [73,] 0.30035462 0.5001202 0.5593482 0.5631557 0.6212020 0.6350773 0.6398905 #> [74,] 0.30645224 0.5000964 0.5348828 0.5447165 0.5564983 0.5910982 0.6571445 #> [75,] 0.73137409 0.7876294 0.7927559 0.9257327 0.9287029 0.9333650 0.9570342 #> [76,] 0.40150325 0.4310171 0.4984940 0.5758994 0.5810228 0.5926704 0.7203417 #> [77,] 0.42677834 0.5655940 0.5780670 0.5869566 0.5955668 0.6814462 0.6902135 #> [78,] 0.24603251 0.4255550 0.5281018 0.6320025 0.6766829 0.6816221 0.7057718 #> [79,] 0.44042104 0.5181098 0.5632566 0.5853790 0.5921010 0.6301329 0.6573707 #> [80,] 1.17838407 1.4621528 1.4891457 1.6146337 1.6568477 1.6983617 1.7513378 #> [81,] 0.97605309 1.0511801 1.0518557 1.0868473 1.1142342 1.1686700 1.1819750 #> [82,] 0.30897320 0.4068803 0.5589393 0.5719344 0.6460923 0.6503385 0.7187265 #> [83,] 0.29770340 0.5268685 0.5810016 0.5937661 0.6260777 0.6646483 0.6767827 #> [84,] 0.73278181 0.8382064 0.8712902 0.9346618 0.9439012 1.1061611 1.2219257 #> [85,] 0.63396681 0.7252764 0.8155012 0.8245226 0.8380611 0.9923770 0.9993802 #> [86,] 0.32458341 0.3933979 0.5125694 0.6410320 0.6680742 0.6691817 0.6752053 #> [87,] 0.66478616 0.7107108 0.7159460 0.7237704 0.7282900 0.7332213 0.7434692 #> [88,] 0.30996952 0.3251140 0.3526699 0.5128921 0.5429316 0.6395256 0.6586995 #> [89,] 0.57281868 0.5758453 0.7006440 0.7207689 0.7258189 0.7296972 0.7965332 #> [90,] 0.39852216 0.4400132 0.4526669 0.5161778 0.5400066 0.5461164 0.6188844 #> [91,] 0.48933920 0.6051880 0.6382770 0.6502117 0.6693098 0.7108046 0.7692118 #> [92,] 0.62260206 0.9165124 1.3085745 1.3806910 1.5870406 1.6285594 1.6554045 #> [93,] 0.24603251 0.3878538 0.4591714 0.5178387 0.6585143 0.6621358 0.6810870 #> [94,] 0.30897320 0.6290901 0.6398191 0.6496431 0.7823336 0.7843597 0.8580708 #> [95,] 0.04497083 0.5930201 0.6119075 0.6270330 0.6429569 0.6600823 0.6656487 #> [96,] 0.62583943 0.7505155 0.9832066 1.0235993 1.0636559 1.1201775 1.1666406 #> [97,] 0.35144018 0.6382641 0.7079532 0.7095187 0.7659251 0.8091797 0.8513275 #> [98,] 0.31801358 0.3401989 0.4208660 0.4271074 0.5054884 0.5429898 0.5665091 #> [99,] 0.21601832 0.3354368 0.3484150 0.3856758 0.5485465 0.5505203 0.5557009 #> [100,] 0.41366461 0.5126158 0.5594749 0.5739571 0.6100644 0.6774000 0.7450978 #> [101,] 0.66441475 0.7549090 0.7557675 0.7765707 0.7936885 0.7990604 0.8064913 #> [102,] 0.46871727 0.5296746 0.6837906 0.7008518 0.7655323 0.8326505 0.8770413 #> [103,] 0.76556108 0.7659251 0.7682346 0.9744743 1.0745172 1.1330448 1.1399362 #> [104,] 0.30557984 0.3708418 0.3794128 0.5570809 0.5645912 0.6157789 0.6886539 #> [105,] 0.42014793 0.4929323 0.5075120 0.5230954 0.5328842 0.5333565 0.5456871 #> [106,] 0.60144678 0.9305805 0.9306688 0.9501760 0.9659964 1.0453325 1.0542669 #> [107,] 0.26191941 0.3335003 0.3864874 0.4739008 0.4901712 0.5262166 0.5277461 #> [108,] 0.53526753 0.5824204 0.5919049 0.6908379 0.6932066 0.6949184 0.7062489 #> [109,] 0.32366596 0.3816655 0.5062977 0.5485465 0.6035720 0.6073536 0.6347685 #> [110,] 0.65787838 0.8523714 1.1802698 1.3560210 1.3630859 1.3759184 1.3968075 #> [111,] 0.50862957 0.6866783 0.7279623 0.7948560 0.8165282 0.8374849 0.8375440 #> [112,] 1.55852407 1.5673626 1.6632869 1.6701479 1.7246864 1.7747710 1.7934094 #> [113,] 0.36644829 0.4296335 0.5638167 0.6098110 0.6319255 0.6431851 0.6599731 #> [114,] 0.27515565 0.7833691 0.7984154 0.8626899 0.8700936 0.8907433 0.9139923 #> [115,] 0.38214516 0.6842062 0.7184307 0.8236605 0.8753309 0.9271065 0.9900302 #> [116,] 0.45027271 0.5457783 0.6602727 0.6741195 0.6863318 0.7091045 0.7172088 #> [117,] 0.56160326 0.6429118 0.7370743 0.7549090 0.7710974 0.7860382 0.7889454 #> [118,] 0.23376156 0.3276499 0.3441216 0.3508093 0.5015056 0.5053651 0.5176712 #> [119,] 0.31583768 0.3737276 0.4558761 0.5437083 0.5458634 0.5974658 0.6560051 #> [120,] 0.34765690 0.3987382 0.4601763 0.4879230 0.5018809 0.5067646 0.5416199 #> [121,] 0.58701147 0.5952777 0.6049412 0.6119075 0.6268535 0.6821388 0.7100069 #> [122,] 0.38404719 0.4381970 0.4623692 0.4922980 0.5168948 0.5305939 0.5628925 #> [123,] 0.35215632 0.3951595 0.5682765 0.5992893 0.6292636 0.6469049 0.6536885 #> [124,] 0.37061007 0.3711900 0.3871380 0.5807237 0.5986405 0.6415935 0.6531730 #> [125,] 1.16275048 1.2245416 1.2926636 1.3602846 1.3698820 1.4084729 1.4638888 #> [126,] 0.50990188 0.6099109 0.7001640 0.7341859 0.7767447 0.7813376 0.7953612 #> [127,] 0.38172029 0.5355710 0.5596657 0.5633162 0.5823183 0.5929949 0.6202899 #> [128,] 0.32678210 0.4734693 0.5506425 0.5621268 0.5665520 0.5690209 0.6215555 #> [129,] 0.32240302 0.5219120 0.5762402 0.6049412 0.6920584 0.7313320 0.7474944 #> [130,] 0.49883170 0.6053445 0.7167148 0.7190791 0.7574800 0.7613518 0.7938191 #> [131,] 0.53564742 0.6130721 0.6764559 0.7958312 0.8108554 0.8286614 0.8786131 #> [132,] 0.42579509 0.5151876 0.5341619 0.5671062 0.5755747 0.5903237 0.6075006 #> [133,] 0.35147778 0.3636692 0.3647389 0.4423911 0.5608529 0.5691907 0.5779306 #> [134,] 0.39681078 0.4251424 0.5178433 0.5361624 0.6805308 0.6867334 0.7135838 #> [135,] 0.30942474 0.4231522 0.4267138 0.5000046 0.5050926 0.5430369 0.5739390 #> [136,] 0.41118245 0.4267375 0.4318495 0.4339700 0.4768650 0.5465379 0.5586927 #> [137,] 0.61307211 0.6772350 0.7043720 0.7118153 0.8149391 0.8453201 0.8556896 #> [138,] 0.43229124 0.5113181 0.5293639 0.5827702 0.5852424 0.5925780 0.6027970 #> [139,] 0.53526753 0.6705211 0.7233836 0.7638404 0.7897678 0.7912746 0.8126103 #> [140,] 0.25761193 0.3248417 0.3820281 0.4265877 0.4509244 0.6123456 0.6371633 #> [141,] 0.21551060 0.2478560 0.4984940 0.5043320 0.5153898 0.5377246 0.5380901 #> [142,] 0.23215070 0.3977784 0.4000386 0.4393166 0.4936062 0.5116403 0.5226528 #> [143,] 0.32484169 0.4430272 0.4500779 0.4606841 0.5433790 0.5530641 0.5891766 #> [144,] 0.70360030 0.7115000 0.7115202 0.7263464 0.7909070 0.8401681 0.8523100 #> [145,] 0.53097493 0.5426041 0.5660205 0.8089592 0.9680723 0.9860777 1.0241528 #> [146,] 0.36684834 0.4257951 0.4369957 0.4393166 0.4547368 0.5026818 0.5330085 #> [147,] 0.34840672 0.4549819 0.4564327 0.5024490 0.5335413 0.5341757 0.5377761 #> [148,] 0.68439506 0.7249098 0.8863247 0.9094872 0.9198462 0.9435541 0.9756199 #> [149,] 0.48461201 0.6281582 0.7102363 0.7320435 0.7869123 0.8343406 0.8597976 #> [150,] 0.27767287 0.2814221 0.2841270 0.4878354 0.4954478 0.4975521 0.5313888 #> [151,] 0.37046721 0.4650588 0.4816673 0.4861472 0.5433768 0.5727964 0.5752032 #> [152,] 0.56256667 0.5770576 0.6789019 0.7157721 0.7351366 0.7589517 0.7694994 #> [153,] 0.54053002 0.5560717 0.5999067 0.7184908 0.7479200 0.7761110 0.8660131 #> [154,] 0.54053002 0.6561674 0.8307043 0.8541981 0.8712022 0.9810323 0.9903409 #> [155,] 0.37489759 0.4336603 0.7790019 0.8323242 0.8554640 0.8577206 0.9099627 #> [156,] 0.30569236 0.3262743 0.3579049 0.3630452 0.4926383 0.5405824 0.6052169 #> [157,] 0.64667460 0.7669037 0.8257021 0.8541981 0.9243470 0.9655508 1.0201939 #> [158,] 0.37740552 0.4020145 0.4190839 0.4591714 0.5281018 0.5550570 0.5788570 #> [159,] 0.33547237 0.3463819 0.4977218 0.5180707 0.5242244 0.5635180 0.5817520 #> [160,] 0.35829338 0.5718766 0.5747591 0.5779698 0.6522162 0.7144527 0.7876369 #> [161,] 0.50669338 0.5422210 0.5631950 0.5689447 0.6092181 0.6320838 0.6627306 #> [162,] 0.51045490 0.5219120 0.5858995 0.5937850 0.7252764 0.8000330 0.8418996 #> [163,] 0.37061007 0.4042716 0.5416616 0.6091344 0.6365370 0.7418901 0.7538221 #> [164,] 0.51229703 0.5239113 0.5903342 0.5937850 0.6369687 0.6395027 0.7197476 #> [165,] 0.54908168 0.9813251 1.1372137 1.1695009 1.2031595 1.2249379 1.2830620 #> [166,] 0.61272048 0.7611578 0.7883182 0.8482370 0.8973138 0.8973912 0.9098426 #> [167,] 0.24308049 0.2554877 0.3695717 0.4638763 0.4841923 0.5672204 0.5678705 #> [168,] 0.38041963 0.4770930 0.4780638 0.4847577 0.5092416 0.5473634 0.5519264 #> [169,] 0.26265001 0.6764559 0.6801124 0.7182474 0.8034945 0.8243029 0.9143408 #> [170,] 0.26578713 0.4558640 0.5643588 0.5758453 0.6031906 0.6038029 0.6317046 #> [171,] 0.17370456 0.4308061 0.4805783 0.4823644 0.5499564 0.5587297 0.6249264 #> [172,] 0.26941305 0.4017908 0.5415747 0.5470445 0.5757414 0.5872002 0.6124346 #> [173,] 0.87618145 0.9526264 0.9565228 0.9713093 1.0146814 1.0413455 1.1054185 #> [174,] 0.61152392 0.7089670 0.7760067 0.9366138 0.9987533 1.0345146 1.0764891 #> [175,] 0.55117629 0.6955637 0.8672199 0.9175538 1.0857738 1.0870652 1.1226844 #> [176,] 0.51603535 0.5265768 0.5388508 0.5712551 0.5801553 0.6707166 0.7064780 #> [177,] 0.57667920 0.6744389 0.7106979 0.7830243 0.8084727 0.8349234 0.8471915 #> [178,] 0.35086757 0.4558084 0.4623692 0.5991109 0.5998957 0.6098110 0.6568489 #> [179,] 0.59394151 0.6259422 0.6412760 0.7072447 0.9181475 0.9528680 0.9805333 #> [180,] 0.45973796 0.5236926 0.5413020 0.5590320 0.5625617 0.5949277 0.6129280 #> [181,] 0.48466368 0.4966760 0.5003019 0.5597563 0.5807237 0.6365370 0.6573707 #> [182,] 0.49667604 0.5257725 0.5446453 0.5665520 0.5922374 0.5939369 0.6009061 #> [183,] 0.44863069 0.4890375 0.4972940 0.5129245 0.5339640 0.5405824 0.5594749 #> [184,] 1.54969454 1.6058166 1.7903249 1.8486250 1.9415717 1.9861202 1.9921299 #> [185,] 0.46840057 0.5643122 0.7830058 0.8577187 0.9074240 0.9099627 0.9585011 #> [186,] 0.21503155 0.4423911 0.4427498 0.4470150 0.4800804 0.4852145 0.5140889 #> [187,] 0.54488025 0.5484068 0.6032080 0.6201989 0.6812469 0.6997092 0.7071064 #> [188,] 0.55211975 0.5650773 0.6230229 0.7717706 0.7985339 0.8089592 0.8240324 #> [189,] 0.38410060 0.6421988 0.6741195 0.6748141 0.7148040 0.7160836 0.7192255 #> [190,] 0.29678858 0.3855973 0.3987382 0.4023448 0.4417458 0.4929323 0.5541087 #> [191,] 0.83653302 0.9011914 1.1703316 1.1948539 1.3102195 1.3296849 1.3600533 #> [192,] 0.25389733 0.3532200 0.5986405 0.6218608 0.6532183 0.6823172 0.6910984 #> [193,] 0.22947858 0.3398413 0.4375047 0.5370750 0.5849706 0.5936046 0.5978990 #> [194,] 0.40798941 0.4111824 0.4547087 0.4821675 0.5014282 0.5111314 0.5392919 #> [195,] 0.42611375 0.5618296 0.6964333 0.8322004 0.9590741 0.9636064 0.9893164 #> [196,] 0.40201451 0.4776085 0.5035358 0.5344354 0.5360601 0.5955668 0.6228103 #> [197,] 0.46147713 0.6051880 0.6178127 0.7489781 0.7982087 0.8318041 0.9819342 #> [198,] 0.90254645 1.1476636 1.2435210 1.2555075 1.2713360 1.2953993 1.2964965 #> [199,] 0.35295760 0.4725503 0.6273540 0.6553937 0.6742267 0.7099813 0.7272521 #> [200,] 0.22003989 0.6339161 0.6577880 0.7028651 0.7089670 0.7099221 0.7364444 #> [201,] 1.30424483 1.3801370 1.6572063 1.6867596 1.7135375 1.7356769 1.7962741 #> [202,] 0.96348909 1.1220217 1.2021038 1.2176376 1.3685976 1.4039036 1.4407800 #> [203,] 0.72611264 0.8111915 0.8342606 0.8372628 0.8585798 0.8709668 1.0290069 #> [204,] 0.26218164 0.3876053 0.4977218 0.5012997 0.5277461 0.5384173 0.5414872 #> [205,] 0.32203562 0.4016753 0.4300057 0.5546442 0.5858126 0.5875525 0.6082550 #> [206,] 0.37711935 0.4536032 0.5418304 0.5571568 0.5603790 0.5993868 0.6085266 #> [207,] 1.29870348 1.4759336 1.5193207 1.6065617 1.6335442 1.6481263 1.6744164 #> [208,] 0.41828293 0.4505434 0.5149747 0.5504608 0.5652963 0.6662338 0.6896558 #> [209,] 1.09602517 1.3455591 1.3968001 1.4076033 1.4311583 1.4532473 1.4562446 #> [210,] 0.23259817 0.2557204 0.3945140 0.4285865 0.5073673 0.5450982 0.5976732 #> [211,] 0.57035503 0.6708464 0.6737630 0.7192255 0.7207689 0.7496445 0.7887201 #> [212,] 0.39122971 0.4981192 0.5229825 0.5269430 0.5292013 0.5795555 0.5996315 #> [213,] 0.35637992 0.4327384 0.4632784 0.4996657 0.5418139 0.5668559 0.5799450 #> [214,] 0.50944477 0.5110197 0.5355926 0.5386034 0.5713747 0.5859775 0.6705592 #> [215,] 0.34791594 0.5351012 0.5943828 0.6316720 0.6639791 0.7338786 0.7368381 #> [216,] 0.27087776 0.2839025 0.3817311 0.5293472 0.5908624 0.6269716 0.6411617 #> [217,] 0.39744238 0.4157032 0.4207887 0.5008248 0.5621268 0.5672412 0.6119784 #> [218,] 0.33093201 0.5025979 0.5581936 0.5705094 0.5770479 0.5935215 0.5974658 #> [219,] 0.47130002 0.4807848 0.5290914 0.6324410 0.6944847 0.7013259 0.7344657 #> [220,] 0.50139444 0.6117694 0.6213244 0.6379400 0.6655542 0.7627878 0.7797618 #> [221,] 0.17049041 0.4410825 0.4612374 0.4953889 0.5724994 0.6252209 0.7118564 #> [222,] 0.95693748 1.1132546 1.1244440 1.1303904 1.2668734 1.3012856 1.3358036 #> [223,] 0.28983255 0.3401989 0.3488723 0.4446433 0.4599618 0.4971177 0.5089164 #> [224,] 0.68358791 0.7398657 0.8153097 0.9655508 1.0165439 1.0306387 1.0955916 #> [225,] 0.52787810 0.6537160 0.7764582 0.8385543 0.8581661 0.9558473 0.9584774 #> [226,] 0.47700844 0.5216885 0.5275571 0.5504608 0.6699999 0.6742696 0.6864118 #> [227,] 0.40229399 0.4330564 0.4653143 0.4910223 0.5192757 0.5500262 0.5755747 #> [228,] 0.16765161 0.3794128 0.3972535 0.4516268 0.5227325 0.5984751 0.7192160 #> [229,] 0.56725251 0.5680787 0.5804492 0.6965240 0.7132296 0.7339512 0.7397689 #> [230,] 0.53481399 0.6018809 0.6580955 0.6617331 0.6902225 0.7393891 0.7903442 #> [231,] 0.56754181 0.6221936 0.7386678 0.7643205 0.7936885 0.8099410 0.8349234 #> [232,] 0.33706501 0.5086939 0.5351012 0.5672952 0.6229590 0.6575454 0.7062489 #> [233,] 0.51643360 0.5335565 0.5571488 0.5878117 0.7780923 0.8003594 0.8174984 #> [234,] 0.38920400 0.6969675 0.7000426 0.7243613 0.7523700 0.7669118 0.7962175 #> [235,] 0.37712295 0.3991980 0.5946666 0.6124585 0.6698246 0.7125412 0.7172980 #> [236,] 0.34385430 0.3561176 0.5080554 0.5570809 0.5827833 0.6707290 0.6944958 #> [237,] 0.35853973 0.3927377 0.4391532 0.4562070 0.4633042 0.4707987 0.5236926 #> [238,] 0.59462859 0.6323538 0.6356349 0.6532442 0.7442849 0.7569891 0.8079612 #> [239,] 0.59284156 0.6264562 0.8839687 0.8899777 0.9636064 0.9918935 1.0633670 #> [240,] 0.24728549 0.5359625 0.5978341 0.6676988 0.7735319 0.7764392 0.7795528 #> [241,] 0.39744238 0.4338809 0.4520274 0.5868525 0.6012372 0.6065631 0.6152847 #> [242,] 0.37716013 0.4836585 0.5110197 0.5421546 0.5715196 0.6801882 0.6905674 #> [243,] 0.28394795 0.3820281 0.3876899 0.3974501 0.4430272 0.5167141 0.5183246 #> [244,] 0.82430292 0.9597073 0.9680445 1.3547966 1.3548550 1.3607090 1.3921615 #> [245,] 0.57624017 0.5876477 0.6268535 0.6270330 0.6747779 0.6848974 0.7931200 #> [246,] 0.31299205 0.5034560 0.5043867 0.5419253 0.5535397 0.5575974 0.7085888 #> [247,] 0.64262965 0.8921008 0.9305805 0.9339677 1.0069366 1.0193305 1.1414821 #> [248,] 0.48782602 0.5189966 0.5340295 0.5627590 0.5878117 0.7211326 0.7482774 #> [249,] 0.29951135 0.4259536 0.4972859 0.6099927 0.6159928 0.6249264 0.6333368 #> [250,] 1.20210381 1.5519966 1.7618684 1.9120597 1.9633872 2.0200774 2.0272466 #> [251,] 0.35031851 0.4776085 0.5788570 0.6083226 0.6146147 0.6818975 0.7005643 #> [252,] 0.32958296 0.3974501 0.4641185 0.4644079 0.4666262 0.5781133 0.5823183 #> [253,] 0.64262965 0.7900258 0.9860777 0.9909285 1.0919575 1.1173512 1.1255470 #> [254,] 0.31801358 0.3946047 0.5089164 0.6378590 0.6576409 0.6856637 0.6870499 #> [255,] 0.56754181 0.6402904 0.7009357 0.7173158 0.7729828 0.9631997 1.0913812 #> [256,] 0.34385430 0.5192776 0.6300583 0.6377344 0.7117716 0.7386289 0.7809774 #> [257,] 0.22952545 0.3700009 0.4237522 0.4269215 0.4446646 0.4706503 0.4720348 #> [258,] 0.44150652 0.8000399 0.9923017 1.1193029 1.2113795 1.2947642 1.3275814 #> [259,] 0.85237136 1.0701032 1.2366975 1.4143776 1.5372939 1.5401955 1.6497181 #> [260,] 0.34800816 0.4439292 0.4792568 0.5645975 0.5678585 0.5823287 0.5922374 #> [261,] 0.35396396 0.4361154 0.4656768 0.4666262 0.5121672 0.5249327 0.5773453 #> [262,] 0.71907907 0.7288427 0.7508510 0.7767205 0.7890183 0.9310220 0.9435470 #> [263,] 0.29770340 0.4141110 0.5676076 0.6408758 0.6567339 0.6658709 0.7265516 #> [264,] 0.19402179 0.2678304 0.3317761 0.5779306 0.5793657 0.5922482 0.6011110 #> [265,] 0.52654089 0.5694851 0.7143330 0.7409058 0.7444994 0.7695044 0.8202393 #> [266,] 0.43286308 0.6539635 0.7156137 1.0338277 1.0880982 1.1014870 1.2061600 #> [267,] 0.36675682 0.5501011 0.6080251 0.6144638 0.6671930 0.6740908 0.6979966 #> [268,] 0.59586692 0.7958265 0.8402377 0.8576936 0.9461251 0.9771705 1.0383945 #> [269,] 0.54260412 0.5650773 0.6896558 0.7013672 0.8024806 0.8243659 0.8619546 #> [270,] 0.22500973 0.4578056 0.5132158 0.5347966 0.5573906 0.5618274 0.5656646 #> [271,] 0.26941305 0.2701207 0.4742903 0.5017003 0.5199536 0.5307726 0.5483506 #> [272,] 0.48405150 0.5934796 0.7977922 0.8339237 0.8528246 0.9053046 0.9145482 #> [273,] 0.50643364 0.6628639 0.7460642 0.7497779 0.7905453 0.8047521 0.8092070 #> [274,] 0.56440130 0.6220324 0.6527405 0.7055652 0.7417904 0.7430240 0.7638724 #> [275,] 0.64111107 0.7362176 0.7411347 0.8071888 0.9011914 0.9139025 0.9205592 #> [276,] 0.48583868 1.1128216 1.1280921 1.2256428 1.2970298 1.3186694 1.3719151 #> [277,] 0.27111546 0.5458634 0.5522195 0.5631557 0.6328689 0.6480226 0.6719849 #> [278,] 0.32240302 0.5092862 0.5285431 0.5858995 0.6302899 0.6656487 0.6848974 #> [279,] 0.54272310 0.9510885 1.0333731 1.0378200 1.0842766 1.0886630 1.1258774 #> [280,] 0.44001319 0.4482383 0.5350578 0.5680075 0.7093066 0.7229251 0.7477676 #> [281,] 0.48782602 0.5382450 0.6441751 0.6856915 0.7746998 0.8234598 0.8382064 #> [282,] 0.63216176 0.6843951 0.7033122 0.7206454 0.8457100 0.8556248 0.9346566 #> [283,] 0.20119578 0.4330050 0.5292013 0.6444889 0.6596934 0.6674573 0.7008368 #> [284,] 0.41791948 0.5500002 0.5616033 0.6644147 0.6684482 0.7115284 0.7714425 #> [285,] 0.28122955 0.2898325 0.3042652 0.3680010 0.4208660 0.4288953 0.4544843 #> [286,] 0.83117402 0.9536993 1.0759830 1.0794063 1.0797320 1.1290180 1.2017439 #> [287,] 0.16765161 0.2524951 0.3055798 0.4410636 0.4944418 0.5827833 0.6699247 #> [288,] 0.56499395 0.6104109 0.6494149 0.6533586 0.6589826 0.6912301 0.7058457 #> [289,] 0.56128240 0.6060546 0.6891124 0.7835165 0.8987008 0.9107711 0.9328638 #> [290,] 0.44254775 0.4739008 0.4938839 0.4973035 0.5154688 0.5364357 0.5900000 #> [291,] 0.43114166 0.5037232 0.7502026 0.8022048 0.8222796 0.9218647 0.9456269 #> [292,] 0.28122955 0.3585397 0.4005744 0.4599618 0.4719293 0.4737524 0.4941077 #> [293,] 0.45982563 0.4627462 0.6790274 0.7352688 0.7444994 0.7550201 0.8146329 #> [294,] 0.33093201 0.3737276 0.4075892 0.4965954 0.5459429 0.6212020 0.6413108 #> [295,] 1.22922834 1.6228459 1.7320149 1.8213842 1.9268269 2.0307088 2.0696552 #> [296,] 0.69835149 0.7256993 0.7417198 0.8211896 0.8380895 0.8780206 0.8932582 #> [297,] 0.24047378 0.3771601 0.4302289 0.4714800 0.5026818 0.5079815 0.5116403 #> [298,] 0.97717053 1.0341550 1.1530179 1.1615413 1.1964910 1.2109834 1.2236306 #> [299,] 0.46871727 0.5940345 0.6718302 0.6963547 0.7474774 0.7541661 0.7727392 #> [300,] 0.40337394 0.4141110 0.4921739 0.4987909 0.5418304 0.6260777 0.6305279 #> [301,] 0.38832700 0.5591449 0.7470331 0.8280040 0.9345298 1.0007794 1.0097257 #> [302,] 1.05544757 1.0864902 1.2096848 1.2278592 1.2559593 1.3363969 1.3384323 #> [303,] 1.05931979 1.4083979 1.5475604 1.5779953 1.5884435 1.6557957 1.7377046 #> [304,] 0.61747662 0.6944256 0.7058491 0.7141267 0.7232051 0.7310167 0.7342439 #> [305,] 0.99875331 1.1196969 1.1629325 1.1712476 1.1934590 1.2020231 1.2147471 #> [306,] 0.16044299 0.3508093 0.3586839 0.3947949 0.4432703 0.5215421 0.5766561 #> [307,] 0.75555445 0.7985300 0.9673132 1.0086205 1.0165799 1.0217857 1.0825259 #> [308,] 0.19402179 0.3555067 0.4337352 0.5723201 0.5901790 0.6238143 0.6588093 #> [309,] 0.15739874 0.2927399 0.3094247 0.3420135 0.4140120 0.4279712 0.4617395 #> [310,] 0.42526236 0.5833116 0.6245978 0.6534410 0.6637959 0.6728224 0.7151564 #> [311,] 0.65948086 0.7622319 0.7696701 0.7931384 0.8242023 0.8477518 0.9194493 #> [312,] 0.38594183 0.4376983 0.4930348 0.6038293 0.6202930 0.6476761 0.6973202 #> [313,] 0.29619568 0.5594014 0.5688117 0.5864253 0.5870340 0.6421234 0.6713917 #> [314,] 0.27111546 0.5001202 0.5686945 0.6167773 0.6353030 0.7064299 0.7158896 #> [315,] 0.45340478 0.4768650 0.4864367 0.4908308 0.4909328 0.5154688 0.5219980 #> [316,] 0.62039678 0.7758929 0.7894831 0.7977922 0.8005508 0.8373456 0.8664193 #> [317,] 0.34725973 0.4317180 0.4657972 0.4728753 0.4784125 0.4947778 0.5146067 #> [318,] 0.66774590 1.0664273 1.2667554 1.2998875 1.3524285 1.3923727 1.4089270 #> [319,] 0.53683528 0.6458406 0.6819790 0.6968820 0.7221679 0.7954932 0.8013005 #> [320,] 0.27692957 0.3295830 0.4315167 0.4361154 0.4632784 0.5194180 0.5731871 #> [321,] 0.37740552 0.5298873 0.5674285 0.6048902 0.6227255 0.6320025 0.6411027 #> [322,] 0.35031851 0.5399719 0.6108232 0.6269043 0.6609895 0.7051456 0.7055877 #> [323,] 0.95372941 0.9592937 0.9818004 0.9823114 1.0534956 1.0553641 1.0968400 #> [324,] 0.18607074 0.4439292 0.5175486 0.5340295 0.5501744 0.5571488 0.5711820 #> [325,] 0.41137800 0.5682765 0.5934796 0.6069523 0.7628360 0.7758584 0.7772044 #> [326,] 0.49029828 0.5084776 0.5933649 0.6258394 0.8065527 0.8477603 0.8576452 #> [327,] 0.67399602 0.6808892 0.7301544 0.7776224 0.7818618 0.7955500 0.8297262 #> [328,] 0.83159959 0.9046579 1.3424826 1.3942088 1.3985994 1.4262390 1.4263432 #> [329,] 0.62645619 0.8139930 1.0637702 1.1379397 1.2330201 1.2445042 1.2717714 #> [330,] 0.34718697 0.3912297 0.4194307 0.4439014 0.5228171 0.5727556 0.6406330 #> [331,] 0.26035703 0.5753758 0.5946666 0.6105969 0.6638629 0.6697832 0.6705406 #> [332,] 0.30855503 0.3710229 0.4878354 0.5026781 0.5290914 0.5319935 0.5828565 #> [333,] 0.32922558 0.3842350 0.4455320 0.5087297 0.5693583 0.5817674 0.6002576 #> [334,] 0.43580695 0.4922980 0.5026781 0.5831288 0.5879639 0.6053585 0.6735620 #> [335,] 0.57875264 0.6839511 0.6853032 0.6863318 0.6982818 0.7301646 0.7401596 #> [336,] 0.23416207 0.4904582 0.5355710 0.5864253 0.5963909 0.6157789 0.6580955 #> [337,] 0.56117283 0.9724704 1.0097257 1.2080045 1.3264815 1.4421302 1.4433116 #> [338,] 0.46558168 0.4841030 0.6402904 0.9160282 0.9315429 0.9379916 1.0990903 #> [339,] 0.56536588 0.6463297 0.6586995 0.6940481 0.7130196 0.7237704 0.7773880 #> [340,] 0.40700908 0.5399719 0.5425732 0.5478941 0.5985593 0.6146147 0.6517178 #> [341,] 0.23253009 0.2841939 0.5425732 0.5526583 0.5707032 0.6098153 0.6189824 #> [342,] 0.33335252 0.4853275 0.5666667 0.5674679 0.5784783 0.5826087 0.5944991 #> [343,] 0.91191200 0.9235948 0.9993258 1.0262315 1.0356451 1.0573300 1.0660545 #> [344,] 0.21286690 0.3670160 0.4329317 0.5043867 0.5509312 0.5822610 0.6361994 #> [345,] 0.32627428 0.4014896 0.4233858 0.4694141 0.4925961 0.4972940 0.5446308 #> [346,] 0.27767287 0.2783384 0.3710229 0.3929441 0.4713000 0.4934612 0.4958311 #> [347,] 0.49907726 0.6222739 0.7091526 0.8132572 0.8963111 0.9075966 1.0341483 #> [348,] 0.21792988 0.5361539 0.5793089 0.5827702 0.5841615 0.5937395 0.6079173 #> [349,] 0.49561025 0.7515701 0.7900258 0.7948560 0.8526947 0.8921008 0.9249440 #> [350,] 0.15272180 0.3451188 0.5312809 0.5427308 0.5455492 0.5483506 0.5682192 #> [351,] 0.50111140 0.5290405 0.5388508 0.5638882 0.6842062 0.6856766 0.7081862 #> [352,] 0.48405150 0.9997366 1.0063590 1.0186303 1.0258218 1.0370866 1.0842196 #> [353,] 0.85506147 0.9796234 0.9997460 1.0331354 1.0857738 1.1596754 1.1766655 #> [354,] 0.33886686 0.7598023 0.7773880 0.8075970 0.8530453 0.8797843 0.9533309 #> [355,] 0.53824498 0.7482774 0.8041277 0.8343406 0.8527889 0.8808184 0.9057698 #> [356,] 0.39460346 0.4735638 0.5339004 0.5406958 0.6300583 0.6759686 0.6760014 #> [357,] 0.36786814 0.4943045 0.5858722 0.6555239 0.6883619 0.7011929 0.7140176 #> [358,] 0.54467172 0.6008991 0.6133631 0.6281582 0.7045401 0.7285143 0.7305726 #> [359,] 0.49538891 0.5077185 0.5161778 0.6036898 0.6470808 0.6509040 0.6822214 #> [360,] 0.33360306 0.3951510 0.5297383 0.5445057 0.5796505 0.6006658 0.6055141 #> [361,] 0.17049041 0.5033910 0.5077185 0.6048211 0.6167268 0.6264364 0.6731264 #> [362,] 0.30195725 0.4376983 0.5229335 0.5471404 0.5548141 0.5564983 0.5812133 #> [363,] 0.60005117 0.6010209 0.6738717 0.7179053 0.8279851 0.8281021 0.8510822 #> [364,] 0.66774590 1.3163298 1.4704140 1.4948077 1.4982230 1.5405538 1.5528732 #> [365,] 0.40688031 0.5753531 0.6290901 0.6897839 0.7227850 0.7229793 0.7529551 #> [366,] 0.33416754 0.6339668 0.7072508 0.7096127 0.7341859 0.7492985 0.7689684 #> [367,] 0.77150740 0.8281860 0.8365330 0.8415089 0.8481635 0.8571622 0.8613339 #> [368,] 0.93525318 0.9501049 1.0214541 1.0440251 1.0497149 1.0786428 1.1421249 #> [369,] 0.75502011 0.8643716 0.8916613 0.8925923 0.9750515 1.1627505 1.1896890 #> [370,] 0.41366461 0.5810245 0.6492271 0.6670795 0.7102363 0.7141773 0.7190354 #> [371,] 0.22947858 0.4005975 0.4329269 0.4377666 0.4958311 0.5414789 0.5570704 #> [372,] 0.28229287 0.3060863 0.4140120 0.4617932 0.4860057 0.4901277 0.5107906 #> [373,] 0.42234308 0.4251424 0.6440649 0.6532035 0.6593543 0.6997124 0.7057718 #> [374,] 0.35705946 0.4944418 0.5227325 0.6337435 0.7313741 0.7448075 0.7467064 #> [375,] 0.43000568 0.4510068 0.4537805 0.4770084 0.4908308 0.6091098 0.6605649 #> [376,] 0.70550896 0.8658663 1.0162033 1.1059807 1.1066440 1.1351071 1.1641759 #> [377,] 0.73231115 0.7330094 0.7646062 0.7711267 0.8413085 0.8651759 0.8653694 #> [378,] 0.51593162 0.6416642 0.7694242 0.8225500 0.8955663 0.9084808 0.9439012 #> [379,] 0.46123736 0.5245417 0.6048211 0.6248637 0.6372920 0.7045773 0.7268233 #> [380,] 0.41684967 0.4332905 0.5386192 0.5518292 0.5708686 0.5978990 0.6011880 #> [381,] 0.47919111 0.4792568 0.4871539 0.5175486 0.5446453 0.5682192 0.6344623 #> [382,] 0.48667127 0.5048615 0.5272385 0.5503752 0.5544435 0.5757508 0.6004304 #> [383,] 1.39237913 1.4389659 1.4775812 1.5511146 1.6401882 1.6666768 1.7071872 #> [384,] 1.11081929 1.1862048 1.2363080 1.3240156 1.3580938 1.3619310 1.3934562 #> [385,] 0.84719154 0.9257695 0.9259973 0.9631997 1.0528749 1.1507484 1.2607130 #> [386,] 0.21549985 0.2927903 0.4528098 0.4554006 0.4847586 0.5067646 0.5147386 #> [387,] 0.25548771 0.2627143 0.3012077 0.3369672 0.5852312 0.6533586 0.6665172 #> [388,] 0.38313595 0.4852145 0.5667683 0.5705758 0.5723201 0.5816681 0.5817390 #> [389,] 0.36776757 0.3820516 0.5654415 0.6478635 0.6581621 0.7580703 0.7614613 #> [390,] 0.44042104 0.4462403 0.4861098 0.6844823 0.6898711 0.6920427 0.7149602 #> [391,] 0.37755185 0.4720687 0.4748450 0.6676814 0.6830605 0.7232436 0.7517080 #> [392,] 0.49303475 0.6282661 0.6352669 0.7280407 0.7822611 0.7883182 0.8423544 #> [393,] 0.24156076 0.3333525 0.4894152 0.4907465 0.6046438 0.6096974 0.6198758 #> [394,] 0.75980226 0.9182698 1.0389936 1.0786253 1.0842766 1.1125976 1.1204943 #> [395,] 0.79131716 0.8450893 0.8701179 0.9600946 0.9620011 1.1613341 1.1650136 #> [396,] 0.46840057 0.6900040 0.7541661 0.7634109 0.8923103 0.9210998 0.9261443 #> [397,] 0.39460470 0.4769464 0.4993423 0.5605158 0.5964247 0.6108362 0.6189705 #> [398,] 0.54175410 0.6101697 0.6214295 0.7347792 0.7857347 0.8037321 0.8482199 #> [399,] 0.42443846 0.4946278 0.4988318 0.4991808 0.5728891 0.5872002 0.6422448 #> [400,] 0.40589754 0.5994650 0.6405285 0.6597749 0.7341665 0.7384536 0.7440294 #> [401,] 0.33547237 0.3876053 0.5448803 0.5742499 0.5754628 0.6805831 0.7048972 #> [402,] 0.52774869 0.7536813 0.7796129 0.8243505 0.8382165 0.8643576 0.9220884 #> [403,] 0.61366148 0.6602462 0.7427637 0.7735705 0.8246115 0.8442161 0.8613048 #> [404,] 0.35215632 0.4564511 0.6322821 0.6395455 0.7042088 0.7094070 0.7266282 #> [405,] 0.50924156 0.5422210 0.5544217 0.5690209 0.5959135 0.6045659 0.6229129 #> [406,] 0.57640862 0.7099221 0.7166143 0.7249098 0.7888289 0.8557293 0.8600432 #> [407,] 0.27916916 0.3484067 0.4446646 0.4531318 0.4875835 0.5116676 0.5139554 #> [408,] 0.32811395 0.3350727 0.3440006 0.4969256 0.6380791 0.6789776 0.7619706 #> [409,] 0.33360306 0.4789346 0.4905156 0.5192757 0.5432577 0.5903237 0.6025242 #> [410,] 0.51734179 0.8135626 0.9046579 0.9546533 0.9682437 1.0339429 1.0568210 #> [411,] 0.51230855 0.7115000 0.7758929 0.7828679 0.9054288 1.0238655 1.1780441 #> [412,] 0.56052284 0.6773700 0.9139025 0.9216663 1.0707815 1.0758797 1.1157012 #> [413,] 0.27429430 0.4174707 0.4715509 0.4769901 0.5313888 0.5681010 0.5757508 #> [414,] 0.65431994 0.7272521 0.7962587 0.8683901 0.8706834 1.0330764 1.0452828 #> [415,] 0.52130015 0.5345360 0.6173324 0.6322821 0.6335443 0.7028651 0.7036003 #> [416,] 0.80280506 0.8307399 0.8473081 0.9751862 0.9957300 1.0787663 1.2395073 #> [417,] 0.63880966 0.6527405 0.7013672 0.7099813 0.7667526 0.7864823 0.8593760 #> [418,] 0.17091574 0.2557204 0.4154745 0.4707840 0.4996657 0.5305223 0.6249691 #> [419,] 0.91355647 0.9407524 1.1901579 1.2092175 1.2215077 1.2843890 1.2951655 #> [420,] 0.44077352 0.4423909 0.6316720 0.6967569 0.7555210 0.7897678 0.7911129 #> [421,] 1.18129626 1.1820783 1.2192175 1.2663894 1.4015970 1.4078856 1.5088903 #> [422,] 0.60188092 0.7306779 0.7614894 0.8201824 0.8507603 0.8563820 0.8624440 #> [423,] 0.37105317 0.4343819 0.4415877 0.4975265 0.4978055 0.5155221 0.6055141 #> [424,] 1.03306172 1.0416197 1.0467315 1.1375541 1.2039755 1.2894666 1.2903858 #> [425,] 0.44637144 0.5257725 0.5597563 0.6685950 0.6792135 0.7737699 0.7910788 #> [426,] 0.38205163 0.4427894 0.5293472 0.5416102 0.5452154 0.5486471 0.6135617 #> [427,] 0.92897311 1.4607150 1.7194306 1.7638615 1.8088267 1.8113200 1.8456745 #> [428,] 0.36893463 0.5189327 0.5674679 0.6249000 0.6716065 0.6980939 0.7404938 #> [429,] 0.31315190 0.6597764 0.7347792 0.8168133 0.8300385 0.8385543 0.8550615 #> [430,] 0.56117283 0.9280705 1.0769471 1.0922780 1.2842654 1.3766206 1.4703591 #> [431,] 0.35991731 0.6071260 0.6503385 0.6590381 0.6897839 0.7125915 0.7392944 #> [432,] 0.27515565 0.6780247 0.7875097 0.8063710 0.8114488 0.8716991 0.8797149 #> [433,] 0.32404141 0.4805979 0.5681275 0.5712551 0.5734678 0.5900957 0.6468046 #> [434,] 0.33579434 0.5409392 0.5437083 0.5716376 0.7179293 0.7368908 0.7704097 #> [435,] 0.51962096 0.8417451 0.8673370 0.9462979 0.9760531 1.0758839 1.1064294 #> [436,] 0.35551633 0.5461164 0.6081071 0.7107542 0.7305726 0.7630830 0.7731162 #> [437,] 0.22473774 0.2619194 0.3630418 0.3737517 0.4401235 0.4417458 0.4634704 #> [438,] 0.39662159 0.4432703 0.4436377 0.4566741 0.5134027 0.5176712 0.5475328 #> [439,] 0.24156076 0.4339481 0.4853275 0.5150846 0.5453835 0.5731871 0.6445660 #> [440,] 0.42629419 0.4269498 0.4917449 0.5967956 0.7033093 0.7925975 0.8220188 #> [441,] 0.47387022 0.4973497 0.5272385 0.5500262 0.5524280 0.5579955 0.5641639 #> [442,] 0.69234816 0.8231293 0.8600432 0.8741934 0.8783775 0.9141506 0.9162641 #> [443,] 0.26578713 0.3455166 0.5271173 0.5728187 0.6090574 0.6193783 0.6266733 #> [444,] 0.30916496 0.3856758 0.4017785 0.4945967 0.5464797 0.5544855 0.5725951 #> [445,] 0.50248079 0.5973751 0.6198012 0.7106098 0.7710974 0.7735319 0.7790543 #> [446,] 0.30696916 0.4064382 0.4439416 0.5047480 0.6406330 0.6714506 0.7422157 #> [447,] 0.94100371 1.0331354 1.0410825 1.0532556 1.1293918 1.1827213 1.2545704 #> [448,] 0.85654824 1.1190720 1.1199056 1.1775246 1.1937552 1.2525599 1.2540978 #> [449,] 0.72588120 0.9358353 0.9492661 1.0811068 1.0912420 1.1134560 1.1234979 #> [450,] 0.49268324 0.5296746 0.7474774 0.7683373 0.8557396 0.8643716 0.9074240 #> [451,] 0.40730826 0.4722252 0.4829929 0.5956886 0.6168834 0.6456856 0.6482295 #> [452,] 0.43750473 0.4411643 0.5386192 0.5570704 0.5666451 0.5785084 0.5869566 #> [453,] 0.27833841 0.2841270 0.3683553 0.4005975 0.4819972 0.5281680 0.5319935 #> [454,] 0.55997084 0.6393230 0.7498951 0.7731162 0.8337882 0.8384616 0.8678513 #> [455,] 0.39223456 0.4003260 0.4009120 0.4256820 0.4335879 0.4368795 0.4841923 #> [456,] 0.31583768 0.3357943 0.4075892 0.4683504 0.6180513 0.6915943 0.7676689 #> [457,] 0.19718617 0.2507500 0.2952804 0.4110020 0.4269215 0.4505302 0.4861472 #> [458,] 0.79403055 0.9079105 0.9744997 1.0245793 1.0396396 1.0684175 1.0798204 #> [459,] 0.41279177 0.4735638 0.4978055 0.5009526 0.5194236 0.5210512 0.5656646 #> [460,] 0.18365652 0.3565099 0.3737517 0.4901712 0.5012997 0.5406525 0.5541087 #> [461,] 0.33777507 0.4185361 0.4500143 0.5213931 0.5732926 0.5733587 0.6311623 #> [462,] 0.34000005 0.4547087 0.4803415 0.4979181 0.4981605 0.5139271 0.5324105 #> [463,] 0.50958632 0.5724994 0.5762256 0.5984237 0.6036898 0.6167249 0.6167268 #> [464,] 0.41791948 0.5207050 0.6310681 0.6748141 0.6753137 0.7997849 0.8257319 #> [465,] 0.41908392 0.5298873 0.6748081 0.6816221 0.7071701 0.7271169 0.7385645 #> [466,] 1.34494781 1.5233323 1.5635876 1.6090008 1.7593662 1.7745993 1.8503743 #> [467,] 0.79853002 0.8112394 0.9556263 1.0278128 1.0292884 1.0529251 1.0797320 #> [468,] 0.67399602 0.8083640 0.8330092 0.8502555 0.8880128 0.8915497 0.9213053 #> [469,] 0.63932303 0.6410085 0.7169540 0.8022048 0.8101539 0.8853278 0.8998839 #> [470,] 0.35517167 0.5000046 0.5068350 0.5085941 0.5143304 0.5251669 0.5482755 #> [471,] 0.36491652 0.3965035 0.5752258 0.6001995 0.6997092 0.7815906 0.8311178 #> [472,] 0.36304515 0.5643803 0.5915972 0.6311051 0.6366774 0.6652489 0.6658170 #> [473,] 0.15272180 0.3878751 0.4335768 0.4719275 0.5506425 0.5845838 0.5928785 #> [474,] 0.43303048 0.4391350 0.4656768 0.5288773 0.5328568 0.5817674 0.5961361 #> [475,] 0.53830065 1.1780441 1.1802566 1.1812963 1.3166412 1.3192053 1.3597177 #> [476,] 0.27692957 0.3539640 0.3934326 0.4327384 0.4391350 0.4641185 0.4707840 #> [477,] 0.30784366 0.4136345 0.4267375 0.4565310 0.5014282 0.5324105 0.5731336 #> [478,] 0.14874895 0.3816655 0.5239113 0.6164456 0.6900380 0.6975582 0.7122184 #> [479,] 0.54272310 0.6060152 0.6884798 0.7072447 0.7911542 0.7989374 0.8566173 #> [480,] 0.43637557 0.7652942 0.7878777 0.8075332 0.8276442 0.9581094 0.9721621 #> [481,] 0.30696916 0.3199699 0.3438252 0.4263777 0.4439014 0.5274743 0.6674573 #> [482,] 0.34551656 0.4346415 0.5532540 0.5643588 0.6144827 0.6421988 0.6648602 #> [483,] 0.50575352 0.7093871 0.7159460 0.7826749 0.8296502 0.8301152 0.8694828 #> [484,] 0.39196996 0.4252624 0.6739281 0.7272578 0.7433350 0.7891056 0.8303995 #> [485,] 0.32267120 0.5123086 0.5447285 0.6203968 0.7115202 0.8486390 0.8656488 #> [486,] 0.61082321 0.6598523 0.7005643 0.8473081 0.8643576 0.9271097 0.9627590 #> [487,] 0.37131494 0.5290405 0.6032977 0.6206803 0.6283001 0.6460744 0.6707166 #> [488,] 0.60423508 0.6226021 1.0455526 1.1612867 1.2450324 1.2661239 1.2846899 #> [489,] 0.60605455 0.7563084 0.8980437 0.9233367 1.0435580 1.0566689 1.0593198 #> [490,] 0.38529405 0.5153898 0.5944632 0.6035720 0.6498777 0.6666415 0.6975582 #> [491,] 0.69234816 0.7206454 0.7888289 0.8132450 0.8274062 0.8489513 0.8564503 #> [492,] 1.15191239 1.3899942 1.4500010 1.4885976 1.5228824 1.5852860 1.6965329 #> [493,] 0.56315141 0.6642650 0.6965077 0.6999140 0.7645853 0.7683081 0.7897385 #> [494,] 0.48583868 1.1109211 1.1695009 1.3133883 1.3257371 1.3295063 1.3357156 #> [495,] 0.78233201 1.0637702 1.1451020 1.2800477 1.3045123 1.3432057 1.3498040 #> [496,] 0.58121331 0.5842185 0.5934716 0.7158673 0.7288453 0.8039226 0.8781543 #> [497,] 0.60144678 0.6523766 0.7815906 0.7855782 0.7883097 0.9350030 0.9439458 #> [498,] 0.58608188 0.9931059 1.1399638 1.1783841 1.2097972 1.2181288 1.2365478 #> [499,] 0.63282757 0.6682973 0.6743829 0.7578613 0.7671347 0.7887201 0.8602626 #> [500,] 0.26265001 0.5356474 0.6421611 0.6772350 0.7457229 0.7951561 0.8453708 #> [501,] 1.38999419 1.5992446 1.8790500 2.3113869 2.3168782 2.3637341 2.3922669 #> [502,] 0.32558987 0.4174707 0.4371221 0.4554006 0.4772252 0.5048615 0.5416199 #> [503,] 0.48461201 0.7215688 0.7433350 0.7617940 0.7680742 0.7905453 0.7961259 #> [504,] 0.22486970 0.2627143 0.3695717 0.4947433 0.5551474 0.5586764 0.5956886 #> [505,] 0.68271114 0.8258154 0.8675523 0.9214783 0.9267411 0.9584324 0.9606637 #> [506,] 0.38713800 0.4160170 0.4167471 0.5416616 0.6201974 0.6218608 0.6513026 #> [507,] 0.35517167 0.4033861 0.4352831 0.4425477 0.4630983 0.4665478 0.4729722 #> [508,] 0.21503155 0.4364501 0.5066574 0.5068288 0.5470138 0.5629381 0.5653868 #> [509,] 1.35540675 1.3651020 1.4498864 1.4697750 1.4866551 1.6000226 1.6029319 #> [510,] 1.12729374 1.1422187 1.1849896 1.2738890 1.2847577 1.2913047 1.3467737 #> [511,] 0.33004290 0.3838357 0.5194236 0.5339004 0.5774565 0.6389957 0.6516153 #> [512,] 0.87751687 1.0572218 1.1211695 1.1232132 1.2340452 1.2617497 1.2899045 #> [513,] 1.26501290 1.2800477 1.3927728 1.4072841 1.4812533 1.4894414 1.5189249 #> [514,] 0.32349377 0.4353077 0.5567052 0.5573627 0.5938147 0.5940007 0.6354609 #> [515,] 0.46681568 0.4981513 0.5804492 0.5870340 0.6382426 0.6558298 0.6613072 #> [516,] 0.48176089 0.4981513 0.6124427 0.6951015 0.6968820 0.7107325 0.7603987 #> [517,] 0.56275897 0.7327818 0.7415040 0.7746998 0.7948028 0.8078147 0.8275757 #> [518,] 0.43645014 0.4427498 0.4582420 0.4617395 0.4696348 0.4860057 0.4869942 #> [519,] 0.30195725 0.3064522 0.4834773 0.5319833 0.5844000 0.5934716 0.6602826 #> [520,] 0.34872796 0.4696348 0.5094419 0.5328879 0.5508058 0.5596657 0.5667683 #> [521,] 0.22486970 0.3012077 0.4638763 0.4827970 0.5581506 0.5857969 0.6168834 #> [522,] 0.34718697 0.4734484 0.4759376 0.4821902 0.4981192 0.5919049 0.6765002 #> [523,] 0.37119003 0.4042716 0.4167471 0.6327125 0.6424517 0.6451651 0.6544454 #> [524,] 0.49883178 0.5564145 0.6133631 0.6188844 0.6548673 0.6671413 0.7107542 #> [525,] 0.51487828 0.7055090 0.7121909 0.7625581 0.8078147 0.8712902 0.9196127 #> [526,] 0.26233166 0.3301814 0.5477472 0.5644013 0.5652963 0.6095633 0.6419645 #> [527,] 0.44657063 0.5469588 0.6504423 0.7273693 0.9348490 0.9960069 1.0127452 #> [528,] 0.55221954 0.6227255 0.6748081 0.6885028 0.6898711 0.6936241 0.6971507 #> [529,] 0.60601516 0.6747779 0.7274967 0.7710522 0.7746791 0.7761110 0.7761581 #> [530,] 0.96348909 1.0005127 1.1531303 1.1819835 1.2705730 1.2881013 1.3097788 #> [531,] 0.51614723 0.5859331 0.6091953 0.6416642 0.6484656 0.7493636 0.7608141 #> [532,] 0.52734415 0.5752258 0.6201989 0.6509948 0.7475855 0.7848703 0.8374849 #> [533,] 0.22768949 0.4755288 0.5001598 0.5267358 0.5417933 0.5707032 0.6032977 #> [534,] 0.17308916 0.3775519 0.4374424 0.4842991 0.5473634 0.5522140 0.5544129 #> [535,] 0.27366290 0.4910223 0.5432577 0.5697910 0.6618646 0.7108046 0.7424222 #> [536,] 0.82986354 0.8525027 0.8694440 0.8770413 0.8785766 0.9407524 0.9698302 #> [537,] 0.50957678 0.5401574 0.5591449 0.5853550 0.6122867 0.8077789 0.8343363 #> [538,] 0.36353777 0.3804196 0.4706606 0.4781166 0.4842991 0.5207731 0.5435039 #> [539,] 0.12432811 0.4799947 0.7927098 0.8045342 0.8104586 0.8335825 0.8565542 #> [540,] 0.39267342 0.5104084 0.5539836 0.5571402 0.6095633 0.6229590 0.6637908 #> [541,] 0.28212285 0.2891919 0.4649396 0.5648903 0.5664279 0.5829420 0.6284229 #> [542,] 0.99208071 1.0640377 1.1408177 1.2567472 1.2610097 1.2973438 1.3444573 #> [543,] 0.48996733 0.5606936 0.5728755 0.6760014 0.7544363 0.7715961 0.7818113 #> [544,] 0.22723214 0.3977784 0.4259536 0.4369957 0.5030719 0.5087297 0.5148810 #> [545,] 0.32764986 0.3947949 0.3989610 0.4436377 0.5049733 0.5212736 0.5482755 #> [546,] 0.38903127 0.4299702 0.4647006 0.4800804 0.5080255 0.5473492 0.6005693 #> [547,] 0.22075267 0.3000063 0.6380791 0.6999140 0.7695203 0.7772380 0.7839562 #> [548,] 0.54444892 0.7026799 0.7865930 0.8482936 0.8593760 0.8771458 0.9025465 #> [549,] 0.41975680 0.5425809 0.6484656 0.6700281 0.6740985 0.7462301 0.7625581 #> [550,] 0.44410572 0.4786823 0.5505203 0.6208388 0.7245477 0.7528892 0.8241554 #> [551,] 0.34765690 0.4860027 0.5374429 0.5498394 0.5611247 0.5674918 0.5913260 #> [552,] 0.25761193 0.2839479 0.4359787 0.4500779 0.5492644 0.6073729 0.6101469 #> [553,] 0.32458341 0.4294108 0.4755666 0.4790972 0.5430447 0.5497086 0.5698945 #> [554,] 0.30000634 0.3440006 0.3895970 0.5069029 0.6480851 0.6545683 0.7117059 #> [555,] 0.57083623 0.6741173 0.7033093 0.7443693 0.7894831 0.7964902 0.8458878 #> [556,] 0.51508459 0.5199321 0.5402096 0.5418139 0.5784783 0.6096974 0.6549053 #> [557,] 0.35322004 0.4095795 0.6571445 0.7186039 0.7256993 0.7310167 0.7931390 #> [558,] 1.73915157 2.0895044 2.1799612 2.2052621 2.2889129 2.3213603 2.3241489 #> [559,] 0.32678210 0.5064336 0.5544217 0.6344623 0.6354370 0.6742242 0.6952326 #> [560,] 0.25389733 0.4095795 0.4867599 0.5728891 0.5757414 0.6128420 0.6201974 #> [561,] 0.57920643 0.6609895 0.7130723 0.7608231 0.8280994 0.8915774 0.9119757 #> [562,] 0.33004290 0.3951510 0.4803121 0.5113439 0.5922088 0.6058663 0.6105139 #> [563,] 0.29619568 0.6414745 0.6818945 0.7300882 0.7494630 0.7524761 0.8068922 #> [564,] 0.28390248 0.3352527 0.4368724 0.4797075 0.5452154 0.5546065 0.5663818 #> [565,] 1.70387685 1.8756984 1.9238217 1.9351767 2.0168327 2.0358703 2.0389652 #> [566,] 0.50368519 0.5164336 0.5711820 0.6091953 0.6135240 0.6179733 0.6527461 #> [567,] 0.27429430 0.3579049 0.4233858 0.4472829 0.4561306 0.4772252 0.4890375 #> [568,] 0.36176548 0.4923406 0.4991808 0.5343824 0.5415747 0.5455492 0.5481736 #> [569,] 0.58372918 0.5984751 0.6508299 0.6699247 0.7298699 0.7735197 0.8480297 #> [570,] 0.38920400 0.6251328 0.7517080 0.7609491 0.7827158 0.8434251 0.8563041 #> [571,] 0.44136721 0.5160107 0.5731316 0.5940345 0.6567246 0.6588093 0.6591535 #> [572,] 0.33373156 0.4814404 0.5521197 0.7448075 0.7741427 0.7927559 0.8362222 #> [573,] 0.23416207 0.4356454 0.5688117 0.5912199 0.5929949 0.5965354 0.6701969 #> [574,] 0.46386001 0.4905156 0.5672952 0.6115767 0.6319799 0.6335443 0.6418135 #> [575,] 0.44102183 0.5958669 0.6523323 0.6539635 0.7169540 0.7502026 0.7989667 #> [576,] 0.22003989 0.5764086 0.5800283 0.6960439 0.6992767 0.7734542 0.7760067 #> [577,] 0.52787810 0.8656258 1.0886843 1.1303904 1.1652766 1.1992359 1.2040200 #> [578,] 0.33537141 0.4310171 0.4855791 0.5043320 0.5506841 0.6286606 0.6449115 #> [579,] 0.48106688 0.6400865 0.6602727 0.6610452 0.6643364 0.6676988 0.6725714 #> [580,] 0.40229399 0.4831555 0.5020988 0.5160107 0.5657945 0.5793657 0.5832154 #> [581,] 0.35648607 0.5155221 0.5430369 0.5512025 0.5672378 0.5931377 0.6105139 #> [582,] 0.27012072 0.4017908 0.4559433 0.4892858 0.4946278 0.5128846 0.5350863 #> [583,] 0.35868385 0.4425961 0.6264364 0.6395027 0.6446911 0.6611604 0.6894536 #> [584,] 0.55815062 0.5852312 0.6701959 0.6814269 0.7058457 0.7367348 0.7549490 #> [585,] 0.44657063 0.4577985 0.7049280 0.7064780 0.7427919 0.7677238 0.7866158 #> [586,] 0.33284522 0.3968305 0.5929588 0.6385466 0.6502117 0.6619225 0.7842259 #> [587,] 0.17308916 0.3946946 0.4523318 0.4748450 0.4781166 0.5063630 0.5519264 #> [588,] 0.77900189 0.7890183 0.8378151 0.8851613 0.8899777 0.9409221 1.0251435 #> [589,] 0.56786474 0.5713880 0.6050779 0.6742909 0.6922978 0.7159223 0.7236839 #> [590,] 1.28990446 1.4368071 1.4372491 1.6684753 1.6883546 1.7540976 1.8215611 #> [591,] 0.34060381 0.3857767 0.4285865 0.4323910 0.5243204 0.5416102 0.5619075 #> [592,] 0.44624031 0.4964189 0.6007497 0.6597749 0.6793760 0.7046408 0.7064299 #> [593,] 0.16044299 0.2337616 0.3989610 0.4425961 0.4827286 0.5134027 0.5305207 #> [594,] 0.23433208 0.2507500 0.3647389 0.3863603 0.4060251 0.4638805 0.4706503 #> [595,] 0.17597548 0.4429149 0.4458199 0.5008248 0.6135240 0.6417925 0.6768346 #> [596,] 0.46274619 0.5643122 0.7634109 0.7683373 0.8060857 0.8275630 0.8577206 #> [597,] 0.48996733 0.5210512 0.5406958 0.5489483 0.5774565 0.7836787 0.8296072 #> [598,] 0.22768949 0.5449690 0.5478941 0.5777244 0.5915972 0.6030622 0.6073392 #> [599,] 0.83371889 0.8694239 0.8819580 0.9786088 0.9887986 1.0007794 1.1333100 #> [600,] 0.26035703 0.5574171 0.6283340 0.6793788 0.6816118 0.7125412 0.7249124 #> [601,] 0.37701435 0.3873969 0.4454083 0.5852220 0.6213244 0.6464179 0.6551963 #> [602,] 0.18365652 0.2247377 0.2577553 0.3864874 0.4023448 0.5241576 0.5414872 #> [603,] 0.43366031 0.6522712 0.8378151 0.8617993 0.8700834 0.9045392 1.0198042 #> [604,] 0.69993429 0.7284301 0.9402911 1.1137788 1.1158997 1.1169389 1.1244440 #> [605,] 0.29951135 0.3365124 0.4805783 0.4852801 0.4947778 0.5059454 0.5593715 #> [606,] 0.24308049 0.3369672 0.4299477 0.4368795 0.5183246 0.5551474 0.5619075 #> [607,] 0.44525949 0.8932878 0.9821860 1.0011803 1.0103385 1.0981862 1.1486406 #> [608,] 0.59405249 0.6543199 0.6553937 0.7091526 0.8328801 0.8486597 0.8609763 #> [609,] 1.02977260 1.2619621 1.2667554 1.4606998 1.5334449 1.5560651 1.5957530 #> [610,] 0.35144018 0.5686196 0.5780670 0.6654444 0.8031539 0.8919497 0.8937318 #> [611,] 0.39294411 0.4329269 0.4807848 0.4819972 0.4849148 0.5227979 0.5640177 #> [612,] 0.46886255 0.5946286 0.6971507 0.7394289 0.7854985 0.8576131 0.9304374 #> [613,] 0.51490569 0.5511763 0.9546355 1.1132546 1.1169389 1.1330129 1.2553011 #> [614,] 0.44559324 0.5293639 0.5361539 0.5733587 0.7285486 0.7346014 0.7350405 #> [615,] 0.33760424 0.3771229 0.5694851 0.6053445 0.6638629 0.7151035 0.7352688 #> [616,] 0.37489759 0.6153700 0.6522712 0.6900040 0.7691259 0.7830058 0.8490819 #> [617,] 0.38785383 0.4255550 0.5361624 0.6440649 0.6580717 0.6705406 0.6816118 #> [618,] 0.33543684 0.3541546 0.4724177 0.5725951 0.6208388 0.6248876 0.6351238 #> [619,] 0.49870522 0.5469588 0.7579067 0.7694242 0.7866158 0.8033215 0.9437138 #> [620,] 0.45415534 0.6671930 0.6792135 0.6862691 0.7155112 0.7678281 0.7826749 #> [621,] 0.33984133 0.4188059 0.4377666 0.4584733 0.4993423 0.5206577 0.5281680 #> [622,] 0.32404141 0.4348363 0.5456857 0.5670290 0.5897818 0.6090094 0.6204706 #> [623,] 0.43463282 0.4849148 0.6283340 0.6380633 0.6411111 0.6772921 0.7280407 #> [624,] 0.24047378 0.2949672 0.4734230 0.4836585 0.4855279 0.5226528 0.5671062 #> [625,] 0.38832700 0.6122867 0.6906560 0.8819580 0.9070997 0.9280705 0.9724704 #> [626,] 0.31996990 0.4064382 0.4194307 0.5095882 0.6187073 0.6682280 0.6765002 #> [627,] 0.21601832 0.4441057 0.4724177 0.4945967 0.5062977 0.5134793 0.5488952 #> [628,] 0.17402163 0.2367911 0.4004923 0.4353077 0.4847487 0.4869942 0.4950905 #> [629,] 0.80130051 0.8168133 0.8360590 0.9012890 0.9719824 0.9892314 1.0326790 #> [630,] 0.33886686 0.6463297 0.6651778 0.7060388 0.7318452 0.7538065 0.7692197 #> [631,] 0.34201350 0.3591081 0.4149334 0.4231522 0.4760790 0.4992524 0.5132158 #> [632,] 0.49883170 0.7197396 0.7218012 0.7508510 0.7842259 0.7848501 0.7930338 #> [633,] 0.40473610 0.4956102 0.7398657 0.8165282 0.9339677 0.9609719 1.0370421 #> [634,] 0.48667127 0.5674285 0.5851370 0.6052577 0.6083226 0.6202031 0.6234698 #> [635,] 0.32803844 0.3965035 0.5484068 0.5868525 0.6253015 0.6509948 0.6716849 #> [636,] 0.56052284 0.6385466 0.6993452 0.7218012 0.7321719 0.8379912 0.8791882 #> [637,] 0.60666145 0.6115239 0.6960439 0.7364444 0.7907865 0.8651759 0.9106117 #> [638,] 0.90824995 0.9976108 1.0257840 1.0490677 1.0991771 1.1008939 1.1014870 #> [639,] 0.74307655 0.9445222 0.9865465 1.0185952 1.0381068 1.0908697 1.1027061 #> [640,] 0.64291176 0.6669140 0.7011364 0.7486184 0.7557675 0.8058338 0.8103042 #> [641,] 0.35605581 0.4814404 0.7876294 0.7985339 0.8573493 0.9576553 0.9659746 #> [642,] 0.79311997 0.7989374 0.8668125 0.8767005 0.8896757 0.9194493 0.9435230 #> [643,] 0.29279031 0.3544750 0.3700009 0.4719275 0.5045860 0.5201948 0.5427308 #> [644,] 0.43637557 0.4827970 0.4947433 0.7024931 0.7082306 0.7102383 0.7503552 #> [645,] 0.38434723 0.4441885 0.5685905 0.5852424 0.5996315 0.6418135 0.6847756 #> [646,] 0.75806006 0.7767205 0.7881615 0.8075945 0.8449039 0.9816106 0.9991894 #> [647,] 0.34015775 0.4648615 0.5660205 0.6646483 0.6967569 0.7338786 0.7546331 #> [648,] 0.54015739 0.6906560 0.7470331 0.7691937 0.8596595 0.8851544 0.8855184 #> [649,] 0.21401924 0.3291718 0.3406038 0.4113986 0.4169955 0.4256820 0.4330305 #> [650,] 1.21571383 1.6228459 1.7779071 1.8151949 1.8291248 1.8450162 1.9125968 #> [651,] 0.73862833 0.7855138 0.8135626 0.9202073 0.9247456 1.0629530 1.1103865 #> [652,] 0.48695987 0.4969256 0.5372878 0.5698973 0.6480851 0.6495004 0.6571974 #> [653,] 0.59394151 0.6429569 0.6469902 0.6594809 0.6669274 0.6801128 0.7318452 #> [654,] 0.71059489 0.7913172 0.8570968 0.9106875 0.9401968 0.9611286 0.9756189 #> [655,] 0.19780375 0.3078437 0.3579763 0.4318495 0.4531874 0.5124364 0.5570000 #> [656,] 0.33018138 0.3567649 0.4992524 0.5149747 0.5353460 0.5900000 0.6121609 #> [657,] 0.36776757 0.4427894 0.5663868 0.5770576 0.6664361 0.7138950 0.7603336 #> [658,] 0.39142869 0.4601763 0.4863964 0.5127744 0.5638167 0.5713538 0.5737622 #> [659,] 0.46493959 0.5561894 0.7030695 0.7118153 0.7135524 0.7341962 0.7462063 #> [660,] 0.21401924 0.2281317 0.3397789 0.4009120 0.4742309 0.5243204 0.5328568 #> [661,] 0.44464332 0.4574371 0.4834773 0.5054884 0.5055472 0.5161832 0.5229335 #> [662,] 0.32267120 0.5252603 0.7263464 0.7772791 0.7828679 0.7894459 0.8005508 #> [663,] 0.23163085 0.3125665 0.3891389 0.4232646 0.4854022 0.5116676 0.5146067 #> [664,] 1.68507968 1.7320149 1.8154012 1.8993829 1.9175140 1.9931019 2.0122906 #> [665,] 0.37105317 0.3822649 0.4080247 0.5637485 0.5686945 0.5851032 0.6203053 #> [666,] 1.26596347 1.2987503 1.3163879 1.3481555 1.4350144 1.4667450 1.5794637 #> [667,] 0.38172029 0.5221992 0.6277827 0.6597764 0.6713917 0.6715206 0.7095495 #> [668,] 0.41705624 0.4903407 0.5305223 0.5740756 0.5962643 0.5976732 0.6198012 #> [669,] 0.37131494 0.4369859 0.4755288 0.5471576 0.5577912 0.5801553 0.6030622 #> [670,] 0.68142692 0.7803132 0.8450893 0.9206161 0.9284356 0.9300096 0.9300310 #> [671,] 0.31315190 0.5417541 0.7687094 0.7741071 0.8012836 0.8145714 0.8155763 #> [672,] 0.39515951 0.4564511 0.6069523 0.6405285 0.7031803 0.7632962 0.7708018 #> [673,] 0.66039001 0.6856915 0.8041277 0.9437138 0.9860807 0.9920807 1.0049737 #> [674,] 0.33284522 0.5010170 0.6251130 0.6716530 0.7409058 0.7854566 0.7930338 #> [675,] 0.38434723 0.4322912 0.4638600 0.5213002 0.5800283 0.6553089 0.6577880 #> [676,] 0.54611205 0.6339835 0.7537169 0.7589348 0.8409048 0.8528875 0.8586295 #> [677,] 0.36503326 0.4182829 0.4523318 0.5180707 0.5275571 0.5544129 0.6218384 #> [678,] 0.24648209 0.5618274 0.5625347 0.6759686 0.7198735 0.7292775 0.7603987 #> [679,] 0.58608188 0.7796129 0.7855138 0.8454423 0.9682437 1.0820030 1.0851767 #> [680,] 0.48666539 0.4902983 0.6471791 0.7160836 0.7306741 0.7505155 0.7845608 #> [681,] 0.27087776 0.3374291 0.4033739 0.4368724 0.5486471 0.5625667 0.5654415 #> [682,] 0.57372655 0.8000399 0.9717136 0.9758373 1.0200868 1.0596932 1.1610597 #> [683,] 0.45429280 0.4655817 0.7009357 0.7498951 0.8086566 0.8632858 0.8719987 #> [684,] 0.46307271 0.5994650 0.6273540 0.7221424 0.7638539 0.7792963 0.8033483 #> [685,] 0.49907726 0.5940525 0.6827111 0.7004509 0.8277587 0.8280008 0.8723819 #> [686,] 1.50596458 1.5657095 1.5754641 1.6338610 1.7295999 1.7931603 1.8113775 #> [687,] 0.41975680 0.4354461 0.5148783 0.7302572 0.7369999 0.7374324 0.7415040 #> [688,] 0.51993210 0.6507086 0.6613144 0.6682973 0.6854089 0.6890310 0.7054623 #> [689,] 0.41315968 0.4482383 0.4526669 0.6122105 0.6367922 0.6531001 0.6671413 #> [690,] 0.59022782 0.6389957 0.6434926 0.7062934 0.7356794 0.7406443 0.7555210 #> [691,] 0.36786814 0.4817609 0.6667033 0.6692368 0.7221679 0.7474076 0.7715780 #> [692,] 0.47593764 0.5066934 0.5228171 0.6133590 0.6682280 0.6710433 0.6933420 #> [693,] 0.34015775 0.5309749 0.6754314 0.6866783 0.7454285 0.8355015 0.8627002 #> [694,] 0.44287676 0.5719344 0.6496431 0.7229793 0.7558851 0.7563084 0.8101539 #> [695,] 0.43712215 0.4553386 0.5641639 0.6392469 0.6439245 0.6870271 0.7060563 #> [696,] 0.14706566 0.4455320 0.4473325 0.4511470 0.4564653 0.4728753 0.4769149 #> [697,] 0.65371596 0.8360590 0.8482199 0.8656258 0.8673346 0.9124285 0.9252556 #> [698,] 0.42443846 0.4867599 0.5343824 0.5512543 0.5709348 0.6297882 0.6391369 #> [699,] 0.30035462 0.4965954 0.5705094 0.6069573 0.6560051 0.7111043 0.7248677 #> [700,] 0.23566961 0.2962470 0.3037289 0.3804423 0.4329317 0.4957784 0.5218996 #> [701,] 0.34791594 0.4423909 0.6339192 0.7711267 0.8043722 0.8176418 0.8193722 #> [702,] 0.38410060 0.4346415 0.5680075 0.6310681 0.6459038 0.6606776 0.6892405 #> [703,] 0.89461960 1.1036450 1.1944454 1.2430173 1.2445042 1.3393180 1.3762091 #> [704,] 0.36525783 0.5024808 0.5359625 0.6964333 0.7860382 0.8233114 0.8387448 #> [705,] 0.56182959 0.5877482 0.7154758 0.8000923 0.8829692 0.9316102 0.9406988 #> [706,] 0.52711728 0.5500002 0.5625617 0.6038029 0.6144827 0.6606776 0.6733218 #> [707,] 0.25775535 0.2967886 0.3565099 0.3630418 0.5500049 0.5858786 0.5937395 #> [708,] 0.45587612 0.4683504 0.5025979 0.5197292 0.5459429 0.5716376 0.5886034 #> [709,] 0.50575352 0.5658166 0.5931351 0.6119784 0.6813854 0.6862691 0.7420654 #> [710,] 0.46886255 0.5376504 0.6598523 0.6818975 0.7356749 0.7961273 0.8070495 #> [711,] 0.69264027 0.7333815 0.9616452 1.1140323 1.1178551 1.1265248 1.1347521 #> [712,] 0.52774869 0.7639499 0.8649104 0.8873985 0.8907783 0.9271097 0.9462811 #> [713,] 0.22952545 0.2952804 0.2981954 0.3316853 0.4060251 0.4816673 0.5045860 #> [714,] 0.33706501 0.5484259 0.5824204 0.6410320 0.6418896 0.6458494 0.6616116 #> [715,] 0.89731375 1.0537978 1.0872180 1.1281765 1.2874463 1.3430162 1.4573941 #> [716,] 0.45879487 0.5779698 0.6209997 0.6790274 0.7966283 0.8060857 0.8867858 #> [717,] 0.35637992 0.3945140 0.4154745 0.4335879 0.4409417 0.5278541 0.5740247 #> [718,] 0.66195643 0.6783787 0.7290759 0.7430766 0.8105196 0.8730697 0.9213143 #> [719,] 0.32942541 0.3510939 0.5217597 0.5319833 0.5348828 0.5535397 0.5548141 #> [720,] 0.28226619 0.7007640 0.8111915 0.8873127 0.9021124 0.9370842 0.9768958 #> [721,] 0.19718617 0.2343321 0.3316853 0.3704672 0.4115678 0.4458681 0.4720348 #> [722,] 0.36214779 0.3668483 0.3811909 0.4201479 0.4531318 0.4936062 0.5059454 #> [723,] 0.56070439 0.5842185 0.7960508 0.8029320 0.8727750 0.9239359 0.9257695 #> [724,] 0.45533863 0.4964189 0.5417933 0.5471576 0.5526583 0.6159372 0.6252936 #> [725,] 0.17091574 0.2325982 0.4170562 0.4409417 0.5799450 0.5900520 0.6431570 #> [726,] 0.30569236 0.4472829 0.4694141 0.5611247 0.5643803 0.5823287 0.6055500 #> [727,] 0.49841470 0.5978341 0.6058621 0.7401596 0.7509420 0.7776361 0.8039289 #> [728,] 0.55017438 0.5645975 0.6441751 0.6565390 0.6603900 0.6950564 0.7211326 #> [729,] 0.56164157 0.5737265 0.6881103 0.7450978 0.7895455 0.9096213 0.9724750 #> [730,] 0.34414173 0.4000386 0.4302289 0.4855279 0.5030719 0.5269430 0.5926604 #> [731,] 0.62029301 0.6352669 0.6380633 0.7147159 0.7249124 0.7291427 0.7433481 #> [732,] 0.45779847 0.6922978 0.6950564 0.7096315 0.7226073 0.7273693 0.7833891 #> [733,] 0.63826410 0.7682346 0.7960508 0.8937318 1.0084275 1.1145695 1.1332786 #> [734,] 0.67165298 0.6951862 0.7007640 0.7114757 0.8941862 0.9199336 0.9738467 #> [735,] 0.33777507 0.4482289 0.5056059 0.5320780 0.5597726 0.6534410 0.6739281 #> [736,] 0.69442557 0.8149391 0.8167236 0.8786131 0.9513195 0.9557853 0.9811198 #> [737,] 0.26835689 0.3334680 0.3621478 0.4549819 0.4769149 0.4854022 0.4865940 #> [738,] 0.49268324 0.6837906 0.9234186 0.9441428 1.0225519 1.1003096 1.1280842 #> [739,] 1.29539934 1.8722235 1.9284252 2.0010740 2.0750523 2.1162269 2.1169820 #> [740,] 0.51734193 0.6642650 0.7704097 0.8122535 0.8581814 0.8711888 0.8950791 #> [741,] 0.34511877 0.3878751 0.4791911 0.4892858 0.4923406 0.4952032 0.5455918 #> [742,] 0.35403636 0.4285535 0.5277485 0.5305939 0.5498010 0.5503752 0.5640177 #> [743,] 0.57535311 0.6563266 0.6590381 0.6714506 0.7532099 0.8052437 0.8501118 #> [744,] 0.51734179 0.7632962 0.8085228 0.8315996 0.8591507 0.8649104 0.9220884 #> [745,] 0.32917180 0.3397789 0.3876899 0.3922346 0.4001949 0.4299477 0.4323910 #> [746,] 0.64667460 0.6835879 0.6979654 0.8804967 0.9374665 0.9778351 0.9948617 #> [747,] 0.44136721 0.5503266 0.6124585 0.6458406 0.6666177 0.6790456 0.6853860 #> [748,] 0.82415540 0.8868312 1.0763748 1.1582749 1.1680500 1.2156539 1.2208195 #> [749,] 0.41493342 0.4700809 0.4869599 0.5400945 0.5436498 0.5573906 0.5594085 #> [750,] 0.46799293 0.5034560 0.5217597 0.6771774 0.7306261 0.7400928 0.7437343 #> [751,] 0.58434221 0.6646158 0.6969564 0.7237858 0.7355400 0.7586271 0.7755287 #> [752,] 0.53830065 1.3152491 1.4967682 1.5136034 1.5573514 1.6377122 1.6517498 #> [753,] 0.33760424 0.3991980 0.4598256 0.5265409 0.6790456 0.7613518 0.8217289 #> [754,] 0.23008354 0.3640111 0.4975521 0.5126158 0.5339640 0.5841814 0.6017285 #> [755,] 0.54471650 0.6192503 0.6313910 0.6351238 0.7059582 0.7568730 0.7921023 #> [756,] 0.35086757 0.5386034 0.5628925 0.5704743 0.5749911 0.5831288 0.6768378 #> [757,] 0.45429280 0.4841030 0.7173158 1.0579114 1.1550930 1.1706918 1.2055242 #> [758,] 0.41684967 0.4346328 0.5227979 0.5574171 0.5642680 0.5748597 0.6105969 #> [759,] 0.22723214 0.2321507 0.3441417 0.4547368 0.4606442 0.4972859 0.5295162 #> [760,] 0.22075267 0.3895970 0.6789776 0.7645853 0.7901658 0.8013009 0.8486597 #> [761,] 0.81532947 0.8531185 0.8577187 0.8617993 0.8923103 0.8946196 0.9825679 #> [762,] 0.28142206 0.3683553 0.4934612 0.5206577 0.5777682 0.6004304 0.6115999 #> [763,] 0.38313595 0.4004923 0.4295142 0.4470150 0.4973108 0.5328879 0.5470138 #> [764,] 0.85570464 0.8876872 0.8948302 1.0199801 1.0230997 1.0844723 1.1143924 #> [765,] 0.92943659 0.9304374 1.0307765 1.2157138 1.2584467 1.2722371 1.3115574 #> [766,] 0.51734193 0.7179293 0.7347693 0.8160029 0.8686874 0.8732938 0.9418266 #> [767,] 0.24648209 0.6124427 0.6414745 0.6667033 0.6792825 0.7024752 0.7242682 #> [768,] 0.34841500 0.3541546 0.5134793 0.5470445 0.6012403 0.6016000 0.6136057 #> [769,] 0.52454319 0.5877482 0.6497930 0.6978403 0.8646325 0.9219122 0.9685776 #> [770,] 0.33177611 0.3514778 0.4325350 0.4337352 0.4599327 0.4638805 0.4926394 #> [771,] 0.46283211 0.4734484 0.5095768 0.6294922 0.6707089 0.6725714 0.6949184 #> [772,] 0.38383571 0.3946035 0.5009526 0.5489483 0.5762502 0.6377344 0.6440527 #> [773,] 0.37711935 0.4566741 0.5215421 0.5586764 0.5766874 0.6164888 0.6767031 #> [774,] 0.38993683 0.6628639 0.6891124 0.7015497 0.7302572 0.7341874 0.7989318 #> [775,] 0.83110582 0.9107652 0.9549498 1.0660545 1.0960889 1.1519532 1.1663112 #> [776,] 0.28984342 0.3565893 0.4464113 0.4694526 0.5826878 0.5859595 0.5972087 #> [777,] 0.31299205 0.3510939 0.4679929 0.4706264 0.5949997 0.6361994 0.6766829 #> [778,] 0.35551633 0.3985222 0.5564145 0.6008991 0.6470808 0.6550018 0.6857016 #> [779,] 0.95562635 1.2624698 1.4753414 1.7136959 1.7248187 1.7823646 1.8136329 #> [780,] 0.42611375 0.6624952 0.7154758 0.8839687 0.9812302 0.9990435 1.0114281 #> [781,] 0.79814003 0.9909280 1.0555764 1.0578797 1.1204943 1.1938586 1.1983328 #> [782,] 0.58535499 0.7279623 0.7475855 0.8526947 0.8637983 0.8680231 0.8855184 #> [783,] 0.21792988 0.4455932 0.4849461 0.6027970 0.6261556 0.6593693 0.6599585 #> [784,] 0.38993683 0.5612824 0.7160182 0.8346796 0.8980437 0.9196127 0.9264201 #> [785,] 0.43300503 0.4441885 0.4714800 0.5229825 0.5421546 0.5926604 0.6107581 #> [786,] 0.28212285 0.4773151 0.5561894 0.5812558 0.6418716 0.6531730 0.6551963 #> [787,] 0.38701647 0.4429149 0.5794177 0.6179733 0.7015497 0.7045773 0.7493636 #> [788,] 0.22126147 0.4290754 0.4299702 0.4498610 0.5164665 0.5368604 0.5377246 #> [789,] 0.27916916 0.3565893 0.3891389 0.3904213 0.4800280 0.5232374 0.5258567 #> [790,] 0.36237544 0.5245432 0.7106098 0.8368973 0.8374019 0.8462018 0.8829692 #> [791,] 0.50847764 0.5532540 0.5913410 0.6471791 0.6507086 0.6737630 0.7578613 #> [792,] 0.34638187 0.3635378 0.3650333 0.4520274 0.4780638 0.5063630 0.5364357 #> [793,] 0.96471043 1.1238617 1.1670605 1.2363080 1.3438715 1.4656662 1.5202666 #> [794,] 0.39442631 0.5672525 0.5940007 0.6562407 0.6613072 0.7771895 0.8676490 #> [795,] 0.44218243 0.4562070 0.4597380 0.4941077 0.4971177 0.5149583 0.5182899 #> [796,] 0.46309833 0.4734599 0.4770930 0.4929153 0.4938839 0.5049733 0.5068350 #> [797,] 0.35327797 0.4821675 0.5343740 0.5368604 0.5838635 0.5845838 0.5888128 #> [798,] 0.44077352 0.4648615 0.5268685 0.5676076 0.5943828 0.6339192 0.6705211 #> [799,] 0.43483633 0.4369859 0.4812532 0.4849461 0.4924158 0.5734678 0.5745182 #> [800,] 0.22500973 0.4127918 0.4415877 0.5176093 0.5338640 0.5512025 0.5625347 #> [801,] 0.33651243 0.4317180 0.4334976 0.4602431 0.4944497 0.5258567 0.5421749 #> [802,] 0.30996952 0.4079894 0.4082440 0.5007269 0.5075303 0.5519626 0.5956112 #> [803,] 0.42078874 0.4458199 0.5007269 0.5594309 0.5710308 0.5931351 0.6654464 #> [804,] 0.46681568 0.5594014 0.5645912 0.5680787 0.7353619 0.7524761 0.7629788 #> [805,] 0.67438290 0.8576244 0.8710689 1.0787180 1.0813341 1.1490374 1.1719507 #> [806,] 0.63398347 0.7658092 0.8245560 0.8568136 0.8746828 0.9278684 0.9469909 #> [807,] 0.79403055 1.2538734 1.3409049 1.3886341 1.4143776 1.6039930 1.6385793 #> [808,] 0.39196996 0.6492271 0.7006185 0.7617940 0.7707938 0.7958265 0.8086566 #> [809,] 0.53559259 0.5987499 0.6718302 0.6761828 0.6896680 0.6905674 0.6947258 #> [810,] 0.21910513 0.4110020 0.4115678 0.4192902 0.5068288 0.5347966 0.5386177 #> [811,] 0.31452038 0.6963547 0.7095495 0.7133073 0.7954932 0.8097445 0.8705029 #> [812,] 0.54548829 0.5467555 0.6456530 0.6605649 0.7046408 0.7678281 0.7826580 #> [813,] 0.39683053 0.4614771 0.4893392 0.5376430 0.6251130 0.6571221 0.7005399 #> [814,] 0.42103663 0.5189327 0.5921624 0.7932110 0.7953206 0.8013409 0.8744982 #> [815,] 0.73338145 1.1091642 1.3315277 1.5215019 1.5316756 1.5636798 1.5704113 #> [816,] 0.58796392 0.6011233 0.6173346 0.6441560 0.6747761 0.6773700 0.6797189 #> [817,] 1.36065079 1.5137655 1.5193820 1.5240171 1.5498771 1.5958677 1.6121502 #> [818,] 0.30483279 0.6178127 0.6380806 0.6382770 0.6571221 0.7243450 0.8326125 #> [819,] 0.40273042 0.5212736 0.5603790 0.5628116 0.5810016 0.5887656 0.6294922 #> [820,] 0.71824740 0.7215123 0.8453708 0.8528875 0.9597073 0.9738452 1.1058711 #> [821,] 0.38559728 0.4500143 0.4863964 0.5113181 0.5500049 0.5597726 0.5685905 #> [822,] 0.62866059 0.6942937 0.7284301 0.7386602 0.7695203 0.8087480 0.8161729 #> [823,] 0.14874895 0.3236660 0.5891766 0.5903342 0.5944632 0.6515879 0.6564730 #> [824,] 0.45853317 0.4877218 0.4921739 0.5230083 0.5250451 0.5348140 0.5552367 #> [825,] 0.34800816 0.4846637 0.5529245 0.6009061 0.6091344 0.6167648 0.6366774 #> [826,] 0.43253503 0.4831555 0.4865940 0.5334751 0.5341619 0.5524280 0.5628177 #> [827,] 0.55997084 0.7272578 0.7378849 0.7621492 0.8044038 0.8407370 0.8632858 #> [828,] 0.68204381 0.7227850 0.8052437 0.8680231 0.8800067 0.9070997 0.9344276 #> [829,] 0.28919190 0.4773151 0.4803415 0.5392919 0.5550533 0.6207553 0.6225913 #> [830,] 0.55774317 0.6965077 0.7545314 0.7733977 0.8177852 0.9057978 0.9184425 #> [831,] 0.36237544 0.6978403 0.7546528 0.7967500 0.8791270 0.8803966 0.8834623 #> [832,] 0.47868229 0.7783767 0.8286614 0.8366864 0.8746035 0.8868312 0.9465115 #> [833,] 0.43357679 0.4734693 0.4909328 0.5312809 0.5519626 0.5710308 0.5838635 #> [834,] 0.40273042 0.5086296 0.6707089 0.6912846 0.7190484 0.7190719 0.7273207 #> [835,] 0.29819539 0.3870360 0.4016753 0.4192902 0.4458681 0.4505302 0.4650588 #> [836,] 0.35797635 0.3874699 0.4290754 0.4414033 0.4415019 0.4950905 0.5380901 #> [837,] 0.24728549 0.3652578 0.5973751 0.6058621 0.6714878 0.7875077 0.8330189 #> [838,] 0.43114166 0.7145558 0.7729599 0.7989667 0.8771213 0.8853278 0.9082500 #> [839,] 0.28226619 0.6951862 0.7774018 0.8110518 0.8782227 0.8891517 0.9318547 #> [840,] 0.36893463 0.4210366 0.5944991 0.6127205 0.6323531 0.6557683 0.7007896 #> [841,] 0.66544443 0.7079532 0.7227111 0.8612166 0.8741109 0.8808184 0.9161539 #> [842,] 0.23240441 0.3125665 0.3472597 0.4421824 0.4473325 0.4742903 0.5013366 #> [843,] 0.53765037 0.7394289 0.7537169 0.7876056 0.8028051 0.9627590 1.0137468 #> [844,] 0.39681078 0.4223431 0.6354693 0.7994573 0.8189176 0.8444658 0.8649676 #> [845,] 0.54908168 0.8796845 0.9251165 0.9912498 1.0151577 1.0183992 1.0188981 #> [846,] 0.34382525 0.3694933 0.4439416 0.6071260 0.6187073 0.6506722 0.6954510 #> [847,] 0.30855503 0.4296335 0.4358069 0.5168948 0.5498010 0.5910771 0.5998957 #> [848,] 0.25249506 0.3561176 0.3708418 0.3972535 0.5192776 0.5754905 0.6337435 #> [849,] 0.33507272 0.4597374 0.5069029 0.5285431 0.5372878 0.6001093 0.6130547 #> [850,] 0.17597548 0.3870165 0.5594309 0.6248637 0.6527461 0.6582989 0.6609336 #> [851,] 0.35295760 0.4630727 0.5233075 0.7415390 0.7522670 0.7865930 0.8056994 #> [852,] 0.31452038 0.5221992 0.5249327 0.6202899 0.6636930 0.6819790 0.7412960 #> [853,] 1.06356035 1.0736661 1.0825259 1.0962366 1.2298611 1.2869292 1.2916757 #> [854,] 0.96573690 1.1756648 1.1910772 1.2641272 1.3102195 1.3528209 1.3630859 #> [855,] 0.56388819 0.6959618 0.7599807 0.7856879 0.8119880 0.8185857 0.8418481 #> [856,] 0.36604246 0.4760026 0.4901277 0.4980567 0.6008453 0.6148009 0.6341309 #> [857,] 0.38214516 0.5011114 0.5160354 0.6922482 0.7856879 0.8467618 0.9077031 #> [858,] 0.59267044 0.6421611 0.6810884 0.7180966 0.7294620 0.7447693 0.7462063 #> [859,] 0.35829338 0.6209997 0.6765025 0.6980939 0.7291427 0.7454981 0.7605660 #> [860,] 0.35107872 0.4628321 0.4821902 0.5628116 0.5663818 0.5908624 0.6366756 #> [861,] 0.48666539 0.7148040 0.8065527 0.8443996 0.8621241 0.9785859 0.9832066 #> [862,] 0.36675682 0.4541553 0.6117694 0.7093871 0.7282900 0.7284700 0.7376806 #> [863,] 0.44102183 0.7006185 0.7156137 0.8526129 0.8576936 0.8646028 0.8719987 #> [864,] 0.25530869 0.5100279 0.6222739 0.7004509 0.7518164 0.7927098 0.8247377 #> [865,] 0.35107872 0.4073083 0.4727952 0.4797075 0.5887656 0.5978246 0.6011425 #> [866,] 0.20711353 0.2128669 0.2962470 0.4271706 0.4383742 0.5015894 0.5419253 #> [867,] 0.49074646 0.5218996 0.5402898 0.5666667 0.5851182 0.5921624 0.6165753 #> [868,] 0.38226491 0.4330564 0.4343819 0.4789346 0.4973497 0.6238698 0.6618646 #> [869,] 0.20119578 0.5274743 0.5727556 0.5795555 0.6107581 0.6321618 0.6506722 #> [870,] 0.34000005 0.5523149 0.5835526 0.5923980 0.6091881 0.6279973 0.6840545 #> [871,] 0.40824403 0.5111314 0.5128921 0.5586927 0.5952777 0.6600823 0.6684693 #> [872,] 0.41601699 0.4297828 0.4584733 0.4952032 0.5350863 0.5674021 0.5813493 #> [873,] 0.56979095 0.5843422 0.6339161 0.6882297 0.7151055 0.7386283 0.7734542 #> [874,] 0.65237655 0.6812469 0.7236839 0.7454451 0.8110938 0.8311178 0.9366361 #> [875,] 0.42184296 0.4502727 0.4504206 0.4829929 0.6192943 0.6400865 0.6467567 #> [876,] 0.33346801 0.3811909 0.4237522 0.4528098 0.4738702 0.5018809 0.5075120 #> [877,] 0.40802474 0.4975265 0.5176093 0.5593482 0.6650764 0.6870879 0.6948454 #> [878,] 0.67952156 0.6989833 0.7085963 0.7382393 0.7438888 0.8188065 0.8575808 #> [879,] 0.52657678 0.5467555 0.5681275 0.5865694 0.7248411 0.7300095 0.7356286 #> [880,] 0.21551060 0.3874699 0.3986045 0.4015032 0.4855791 0.5016559 0.5164665 #> [881,] 0.38577668 0.4169955 0.4356454 0.4523469 0.4742309 0.4904582 0.5262045 #> [882,] 0.56579449 0.5672378 0.5858722 0.5922482 0.6274278 0.6352016 0.6591535 #> [883,] 0.59284156 0.6624952 0.8139930 0.8322004 0.9945305 1.0395810 1.1360815 #> [884,] 0.35648607 0.4240218 0.4803121 0.4943045 0.5196530 0.5445057 0.6082788 #> [885,] 0.53011276 0.6101697 0.6716065 0.7966283 0.8490819 0.8710689 0.9369868 #> [886,] 0.68088921 0.8565482 0.8652427 0.9079105 0.9379848 0.9565635 0.9650364 #> [887,] 0.14706566 0.3842350 0.4784125 0.5095337 0.5187470 0.5218255 0.5586692 #> [888,] 0.44150652 1.0596932 1.2575503 1.3015299 1.3514940 1.3968001 1.4491465 #> [889,] 0.54753283 0.5853666 0.6010209 0.6263943 0.7082306 0.7190484 0.7254835 #> [890,] 0.51972920 0.5291272 0.5473492 0.5569819 0.5688599 0.6242691 0.6411027 #> [891,] 0.46645317 0.5035358 0.5147386 0.5518292 0.5550570 0.5851370 0.6037221 #> [892,] 0.43151667 0.4339481 0.4894152 0.4957784 0.5787041 0.5879778 0.5921479 #> [893,] 0.54620478 0.7160182 0.7341874 0.7608141 0.7634351 0.7855782 0.8240498 #> [894,] 0.26233166 0.3567649 0.4505434 0.5104084 0.5520312 0.6066468 0.6306655 #> [895,] 0.59990667 0.6372920 0.6738717 0.6780247 0.7835165 0.8307043 0.8752580 #> [896,] 0.44276402 0.4725503 0.5233075 0.5444489 0.6388097 0.7417904 0.7792963 #> [897,] 0.61366148 0.6422448 0.6548673 0.6628541 0.7373350 0.8047808 0.8112394 #> [898,] 1.13993621 1.2238417 1.2944929 1.4138356 1.4223752 1.5587307 1.5715766 #> [899,] 0.41880586 0.4297828 0.4559433 0.4602431 0.4657972 0.4769464 0.5013366 #> [900,] 0.44287676 0.5037232 0.6410085 0.7145558 0.8573915 0.8691765 0.8887671 #> [901,] 0.70951869 0.7227111 0.7655611 0.9049409 1.1103051 1.1436977 1.1671287 #> [902,] 0.17402163 0.2815989 0.3234938 0.4973108 0.5245936 0.5454948 0.5846517 #> [903,] 0.51490569 0.6955637 0.9402911 0.9713093 0.9992002 1.0926981 1.1465395 #> [904,] 0.16379892 0.4782800 0.4924158 0.5001598 0.5577912 0.5829803 0.6159372 #> [905,] 0.64480070 0.7569891 0.9153377 0.9287700 0.9294366 1.0306542 1.1035669 #> [906,] 0.26835689 0.3636692 0.3863603 0.4232646 0.4511470 0.4564327 0.4722120 #> [907,] 0.50805535 0.5762502 0.5965354 0.6315937 0.6394524 0.6589275 0.7062934 #> [908,] 0.38125326 0.4157032 0.4805979 0.5193114 0.5658166 0.5713880 0.5897818 #> [909,] 0.23253009 0.3691577 0.4070091 0.5777244 0.6250401 0.6715531 0.7055877 #> [910,] 0.38903127 0.4017785 0.4498610 0.4847487 0.4936195 0.5238938 0.5465308 #> [911,] 0.59440990 0.6989068 0.6995980 0.7242203 0.7455946 0.7480645 0.7795465 #> [912,] 0.29872606 0.4707987 0.4806273 0.4906690 0.6176954 0.6193783 0.6317046 #> [913,] 0.82461152 0.8591310 0.8731408 0.9164328 1.0578797 1.0834695 1.1278420 #> [914,] 0.67952156 0.9075966 0.9496742 0.9526848 1.0082962 1.0166035 1.1136135 #> [915,] 0.44171162 0.4928736 0.5012118 0.6263943 0.6324206 0.6440154 0.6997098 #> [916,] 0.29134698 0.3804423 0.4118020 0.4271706 0.5402898 0.5544855 0.5822610 #> [917,] 0.21910513 0.4578056 0.5066574 0.5338640 0.5411180 0.5637485 0.5884009 #> [918,] 0.80003296 0.8520190 0.8595147 0.9993802 1.0713708 1.0777662 1.0786178 #> [919,] 0.58522196 0.6448007 0.6532442 0.6655542 0.7092594 0.7155112 0.7459836 #> [920,] 0.36644829 0.3914287 0.4510571 0.6330261 0.6349593 0.6370497 0.6568489 #> [921,] 0.43640664 0.5015894 0.5326803 0.5509312 0.5567052 0.5991453 0.6388802 #> [922,] 0.50561703 0.5913410 0.5933649 0.7671347 0.7845608 0.9111170 0.9142453 #> [923,] 0.32803844 0.4338809 0.5207731 0.5649189 0.6001995 0.6045659 0.6381594 #> [924,] 0.35266986 0.3835013 0.5095863 0.5653659 0.5709348 0.5956112 0.6124346 #> [925,] 0.64979301 0.7646062 0.8164882 0.8276377 0.8368973 0.8421748 0.8771384 #> [926,] 0.23163085 0.2324044 0.4564653 0.4722120 0.4800280 0.5017003 0.5080255 #> [927,] 0.32922558 0.3934326 0.5095337 0.5121672 0.5194180 0.5259880 0.5288773 #> [928,] 0.79814003 0.9533309 1.0389936 1.1709526 1.1749098 1.1781384 1.2001907 #> [929,] 0.39267342 0.5086939 0.5477472 0.5520312 0.6469049 0.6839461 0.6940983 #> [930,] 0.29134698 0.3037289 0.3091650 0.3305156 0.4383742 0.4936195 0.5488952 #> [931,] 0.29872606 0.4131597 0.4795506 0.5665091 0.5997251 0.6136057 0.6261643 #> [932,] 0.42677834 0.4411643 0.5686196 0.6174766 0.6513026 0.6731724 0.7777964 #> [933,] 0.39206430 0.5012118 0.5589393 0.7086554 0.7179053 0.7529551 0.7558851 #> [934,] 0.40473610 0.7515701 0.8153097 1.0193305 1.1129096 1.1454856 1.2042223 #> [935,] 0.36401105 0.4486307 0.4561306 0.4769901 0.4926383 0.5446308 0.5739571 #> [936,] 0.83073988 0.8819863 1.0641047 1.0782516 1.0969681 1.1447650 1.2193489 #> [937,] 0.33591867 0.3466916 0.3873969 0.5139271 0.5550533 0.5812558 0.5829420 #> [938,] 0.04497083 0.5870115 0.5876477 0.5898424 0.6302899 0.6714246 0.6754866 #> [939,] 0.53443537 0.5655940 0.5792064 0.7051456 0.7086461 0.7153976 0.8056811 #> [940,] 0.88640969 1.1744302 1.2819133 1.3042470 1.3137897 1.4205330 1.4232624 #> [941,] 0.55774317 0.5631514 0.7511748 0.7522670 0.7901658 0.7962587 0.8298927 #> [942,] 0.35991731 0.3694933 0.4263777 0.5047480 0.5095882 0.6563266 0.7308714 #> [943,] 0.15739874 0.2999043 0.3060863 0.3792610 0.4267138 0.4280612 0.4582420 #> [944,] 0.46932208 0.5688599 0.6562525 0.7224982 0.7271169 0.7447693 0.7451598 #> [945,] 0.33816647 0.5002608 0.5497086 0.5832154 0.5839837 0.5987499 0.6531255 #> [946,] 0.65787838 0.9657369 0.9883514 1.0701032 1.1374992 1.1447650 1.2451739 #> [947,] 0.50561703 0.6266733 0.6672829 0.6746814 0.7006440 0.7663563 0.7955146 #> [948,] 0.58372918 0.7636551 0.8544198 0.9077602 0.9096541 0.9287029 0.9601853 #> [949,] 0.31354966 0.3466916 0.3770144 0.4981605 0.5835526 0.6080251 0.6379400 #> [950,] 0.26351243 0.3076413 0.4308061 0.4694526 0.5942378 0.6482221 0.6509040 #> [951,] 0.18607074 0.4871539 0.5036852 0.5189966 0.5335565 0.5425809 0.5678585 #> [952,] 0.37747986 0.4925961 0.5129245 0.5213931 0.5320780 0.6816017 0.7071654 #> [953,] 0.43434151 0.4537805 0.4782800 0.5454883 0.5546442 0.5803326 0.6204706 #> [954,] 0.54966756 0.5632566 0.5648903 0.6048902 0.6158045 0.6161821 0.6182972 #> [955,] 0.26783037 0.3555067 0.4599327 0.5020988 0.5503266 0.5731316 0.5883047 #> [956,] 0.29496717 0.3133610 0.5002608 0.5079815 0.5430447 0.5891322 0.5961361 #> [957,] 0.32511397 0.3617655 0.3835013 0.5075303 0.5512543 0.5762256 0.5950332 #> [958,] 0.45042063 0.4606442 0.4727952 0.5148810 0.5263058 0.5962643 0.6366756 #> [959,] 0.17370456 0.3076413 0.3279429 0.4852801 0.4944497 0.5166436 0.5732934 #> [960,] 0.35705946 0.4410636 0.4516268 0.5754905 0.6508299 0.6886539 0.8302582 #> [961,] 0.22813174 0.4001949 0.4003260 0.4113986 0.4827286 0.5053651 0.5508058 #> [962,] 0.79111290 0.8337189 0.9096423 0.9653220 0.9693479 1.0392179 1.0942301 #> [963,] 0.39206430 0.4417116 0.5213441 0.5853666 0.6000512 0.6460923 0.6988536 #> [964,] 0.49034069 0.5703550 0.6110425 0.6360577 0.6465991 0.6549053 0.6917995 #> [965,] 1.03453276 1.0574077 1.1989866 1.2401557 1.2488760 1.2885182 1.3480125 #> [966,] 0.47146486 0.5787526 0.7349696 0.7509420 0.8018245 0.8678513 0.8806975 #> [967,] 0.51784333 0.5368353 0.5718766 0.6238143 0.6354693 0.6705881 0.7379584 #> [968,] 0.68204381 0.9912498 1.0265272 1.2226328 1.3495796 1.3968221 1.4309520 #> [969,] 0.43544614 0.5446717 0.6081071 0.6550018 0.7121909 0.7462301 0.8047521 #> [970,] 0.67468144 0.8115864 0.8311740 0.8576452 0.8817724 0.8970071 0.9092255 #> [971,] 0.25530869 0.4229574 0.6714246 0.6844769 0.7469655 0.7584307 0.7610679 #> [972,] 0.41437972 0.6251328 0.6979654 0.7523700 0.8096269 0.8257021 0.8363396 #> [973,] 0.46068409 0.5099019 0.5453835 0.6073536 0.6115334 0.6494149 0.6606911 #> [974,] 0.50560586 0.5682722 0.5732926 0.7049280 0.7061830 0.7096315 0.7706464 #> [975,] 0.74582316 0.7609546 0.8046738 0.8240498 0.8241563 0.8281400 0.8356967 #> [976,] 0.33525273 0.3374291 0.3817311 0.4523469 0.4536032 0.4987909 0.6120957 #> [977,] 0.23008354 0.4954478 0.5046153 0.5614417 0.5616416 0.5828565 0.5882024 #> [978,] 0.49841470 0.6714878 0.7688076 0.7764392 0.8018245 0.8105688 0.8233114 #> [979,] 0.52526029 0.5345360 0.5447285 0.6395455 0.7031803 0.7376332 0.7483666 #> [980,] 0.24785601 0.3852941 0.3986045 0.5758994 0.6449115 0.6810014 0.7294620 #> [981,] 0.63397320 0.6394524 0.6664361 0.6701969 0.6802607 0.7022022 0.7301337 #> [982,] 0.45580842 0.5715196 0.5749911 0.5859775 0.6681737 0.6822274 0.7166143 #> [983,] 0.50101698 0.5376430 0.5929588 0.7114757 0.7489781 0.7692118 0.7773591 #> [984,] 0.19780375 0.4136345 0.4339700 0.4415019 0.4979181 0.6075412 0.6091881 #> [985,] 0.63176827 0.7092594 0.8033928 0.8673370 0.9140608 0.9153377 1.0441789 #> [986,] 0.36491652 0.5273441 0.6032080 0.6253015 0.7454451 0.7729599 0.7883097 #> [987,] 0.44276402 0.6742267 0.7026799 0.7415390 0.7864823 0.8683901 0.9982356 #> [988,] 0.44525949 0.8690679 0.8875176 0.9267411 1.0588732 1.0614233 1.0699795 #> [989,] 0.46932208 0.5569819 0.5886034 0.6532035 0.6885028 0.7242253 0.7372330 #> [990,] 0.27366290 0.4653143 0.6021361 0.6025242 0.6380806 0.6693098 0.6744915 #> [991,] 0.20711353 0.2356696 0.3305156 0.3670160 0.4118020 0.4364066 0.5464797 #> [992,] 0.37440774 0.7086461 0.7418901 0.7442849 0.7787907 0.7836854 0.7855291 #> [993,] 1.04193676 1.0992335 1.1503974 1.1741563 1.2870854 1.3807208 1.4045472 #> [994,] 0.45879487 0.5301128 0.5747591 0.6214295 0.7605660 0.8673346 0.8709480 #> [995,] 0.48610978 0.5967973 0.6007497 0.6189824 0.6356349 0.7741783 0.7854985 #> [996,] 0.40589754 0.5606936 0.6975627 0.7258812 0.7362571 0.7638539 0.7670559 #> [997,] 0.95463549 1.1054185 1.1069747 1.1304412 1.2374547 1.4004799 1.4737834 #> [998,] 0.85278886 0.9860807 1.0845824 1.2091892 1.2122146 1.2567472 1.3275814 #> [999,] 0.33373156 0.3560558 0.6230229 0.6408758 0.6742086 0.7076926 0.8252286 #> [1000,] 0.12432811 0.4822970 0.7518164 0.7584307 0.8035997 0.8186917 0.8575808 #> [,8] [,9] [,10] #> [1,] 1.0220903 1.0506990 1.0647866 #> [2,] 1.0159804 1.0628464 1.0808911 #> [3,] 0.6555239 0.6691817 0.6939634 #> [4,] 0.8153295 0.8323242 0.8576244 #> [5,] 0.7755287 0.8105826 0.8419308 #> [6,] 0.9605567 0.9751774 0.9853637 #> [7,] 0.6006658 0.6082166 0.6575454 #> [8,] 0.9434125 0.9569375 0.9573127 #> [9,] 0.8578887 0.8690163 0.9022197 #> [10,] 1.1059807 1.1271065 1.2717197 #> [11,] 0.9275638 0.9374665 0.9629951 #> [12,] 0.8683344 0.8833672 0.8889993 #> [13,] 0.9806743 0.9860205 1.0262920 #> [14,] 0.8045830 0.8120747 0.8122041 #> [15,] 1.1613124 1.1683864 1.1694879 #> [16,] 0.7096127 0.7521758 0.7795502 #> [17,] 0.5288156 0.5698295 0.5967761 #> [18,] 0.6856766 0.7122816 0.7510326 #> [19,] 1.1743609 1.2663257 1.2730675 #> [20,] 0.5036007 0.5465379 0.5710962 #> [21,] 0.8614368 0.8647220 0.9100972 #> [22,] 0.4877218 0.5036007 0.5085941 #> [23,] 0.8889993 0.9078457 0.9205416 #> [24,] 0.6778038 0.6823220 0.6916917 #> [25,] 0.7951561 0.9031122 0.9116083 #> [26,] 0.7183941 0.7444101 0.7563863 #> [27,] 0.5881498 0.6069905 0.6132131 #> [28,] 0.6360646 0.6735662 0.7085963 #> [29,] 0.6846481 0.6876163 0.7291948 #> [30,] 1.0284256 1.0312844 1.0480669 #> [31,] 0.7609546 0.7702795 0.8113416 #> [32,] 0.5915577 0.6097883 0.6270160 #> [33,] 0.7015258 0.7143286 0.7274967 #> [34,] 0.8280008 0.8410305 0.8838150 #> [35,] 0.6646158 0.6752053 0.6759780 #> [36,] 0.5115982 0.5658013 0.6014117 #> [37,] 0.9767749 0.9812302 0.9813567 #> [38,] 0.6544361 0.6599681 0.6723698 #> [39,] 0.5575974 0.5998258 0.6160434 #> [40,] 1.0114281 1.0269782 1.0689315 #> [41,] 1.0221192 1.0405471 1.0802871 #> [42,] 0.5539836 0.5670290 0.5742499 #> [43,] 1.1136135 1.1143924 1.1565844 #> [44,] 1.2811282 1.3083940 1.3553939 #> [45,] 1.7795953 1.7843617 1.8282038 #> [46,] 1.3636859 1.3862933 1.4477444 #> [47,] 1.1656563 1.1768936 1.2009966 #> [48,] 0.6516211 0.6789018 0.6822214 #> [49,] 0.6571013 0.6922736 0.7112233 #> [50,] 0.9127270 0.9160051 0.9327613 #> [51,] 0.7005399 0.7818339 0.7852307 #> [52,] 0.6050779 0.6813854 0.7484952 #> [53,] 0.9623091 0.9637074 0.9640488 #> [54,] 0.9004985 0.9043681 0.9113352 #> [55,] 0.5764813 0.5861439 0.6036196 #> [56,] 0.9721654 0.9896678 1.0213423 #> [57,] 1.2183686 1.2607060 1.2665570 #> [58,] 0.6979966 0.7376806 0.7692197 #> [59,] 0.9177779 0.9393185 0.9394270 #> [60,] 0.7310089 0.7778650 0.8020409 #> [61,] 0.6713180 0.7570872 0.7576333 #> [62,] 0.7238832 0.7438888 0.7741449 #> [63,] 0.5693800 0.5731336 0.6171722 #> [64,] 0.8134684 0.8155012 0.8486851 #> [65,] 0.6314431 0.6620528 0.6695307 #> [66,] 0.7487702 0.7510326 0.7665815 #> [67,] 0.7037280 0.7139507 0.7341633 #> [68,] 0.6670795 0.7039944 0.7103590 #> [69,] 0.5590320 0.5826087 0.6090574 #> [70,] 1.0705625 1.0839160 1.1077849 #> [71,] 0.7925975 0.8267848 0.8600750 #> [72,] 0.4665478 0.4980567 0.5050926 #> [73,] 0.6832122 0.7127399 0.7301544 #> [74,] 0.6706489 0.7036290 0.7122281 #> [75,] 0.9944253 1.0938387 1.1284889 #> [76,] 0.7341633 0.7386602 0.7543114 #> [77,] 0.7444101 0.7878845 0.8116886 #> [78,] 0.7183941 0.7242253 0.7437343 #> [79,] 0.6669422 0.6838606 0.7015809 #> [80,] 1.7852066 1.9035128 1.9593996 #> [81,] 1.2074716 1.2937300 1.3053031 #> [82,] 0.8501118 0.8510822 0.8887671 #> [83,] 0.6912846 0.7224415 0.7439148 #> [84,] 1.2312541 1.2640422 1.2865493 #> [85,] 1.0518943 1.0554476 1.0708872 #> [86,] 0.6896308 0.7412201 0.7649269 #> [87,] 0.7517473 0.7538065 0.7627878 #> [88,] 0.6607499 0.6651778 0.6755015 #> [89,] 0.8049486 0.8602626 0.9045392 #> [90,] 0.7128878 0.7728106 0.8510530 #> [91,] 0.7852307 0.7854566 0.8330092 #> [92,] 1.7256766 1.7263170 1.7344674 #> [93,] 0.6820320 0.6995980 0.7385645 #> [94,] 0.9136147 1.0265890 1.0361744 #> [95,] 0.6844769 0.6987678 0.7313320 #> [96,] 1.1858038 1.2298611 1.2433319 #> [97,] 0.9149957 1.1553283 1.1715203 #> [98,] 0.6350549 0.6468977 0.6569167 #> [99,] 0.6095392 0.6515879 0.7125169 #> [100,] 0.7548809 0.7640128 0.7852657 #> [101,] 0.8339963 0.8746430 0.8802706 #> [102,] 0.8803966 0.9150893 0.9655447 #> [103,] 1.3828986 1.3844780 1.4077336 #> [104,] 0.6973268 0.7098145 0.7467064 #> [105,] 0.5697776 0.6048633 0.6226070 #> [106,] 1.0555791 1.0815560 1.0834790 #> [107,] 0.5333565 0.5858786 0.5920383 #> [108,] 0.7323111 0.7431155 0.7739945 #> [109,] 0.6553638 0.7204231 0.7339759 #> [110,] 1.4211427 1.5612817 1.5691502 #> [111,] 0.8804201 0.8804967 0.9133936 #> [112,] 1.8300943 1.8462969 1.8554780 #> [113,] 0.6681737 0.7201891 0.7234314 #> [114,] 0.9264201 0.9446354 0.9898591 #> [115,] 1.0305274 1.0873706 1.1108897 #> [116,] 0.7776361 0.8285550 0.8445627 #> [117,] 0.8105688 0.8334105 0.8344281 #> [118,] 0.5251669 0.5258499 0.5761898 #> [119,] 0.6680991 0.6735608 0.6832122 #> [120,] 0.5456871 0.5893277 0.5902274 #> [121,] 0.7243613 0.7391918 0.7430023 #> [122,] 0.6011233 0.6619225 0.7385597 #> [123,] 0.6637908 0.6920283 0.7221301 #> [124,] 0.6622352 0.6793424 0.6797925 #> [125,] 1.4978961 1.5240171 1.5591992 #> [126,] 0.8145714 0.8294044 0.8933134 #> [127,] 0.6213495 0.6382426 0.6421234 #> [128,] 0.6497090 0.6654464 0.6723698 #> [129,] 0.7529188 0.7531056 0.8286505 #> [130,] 0.8415089 0.8776250 0.8833272 #> [131,] 0.9066364 0.9705027 0.9867259 #> [132,] 0.6082166 0.6088717 0.6183626 #> [133,] 0.5901790 0.5906260 0.6049659 #> [134,] 0.7160267 0.7525095 0.7664416 #> [135,] 0.5871855 0.5888006 0.5958864 #> [136,] 0.5596206 0.5888128 0.5969488 #> [137,] 0.8632859 0.8702170 0.9241328 #> [138,] 0.6115767 0.6173324 0.6180640 #> [139,] 0.8219311 0.8441528 0.8611271 #> [140,] 0.7012192 0.7072508 0.7099819 #> [141,] 0.5743078 0.6728713 0.6747774 #> [142,] 0.5263058 0.5891322 0.6317845 #> [143,] 0.6099109 0.6164456 0.6347685 #> [144,] 0.8930163 0.9479502 0.9620478 #> [145,] 1.0256061 1.0524403 1.0587543 #> [146,] 0.5566784 0.5713538 0.5788591 #> [147,] 0.5543984 0.5705758 0.5721490 #> [148,] 0.9795626 1.0067947 1.0458673 #> [149,] 0.8637182 0.9008321 0.9043360 #> [150,] 0.5414789 0.5788055 0.5862132 #> [151,] 0.5853790 0.5875525 0.5915577 #> [152,] 0.7714320 0.7798431 0.7872667 #> [153,] 0.9014666 0.9705633 0.9777831 #> [154,] 1.0157654 1.0779330 1.0913184 #> [155,] 0.9316542 0.9658182 0.9670866 #> [156,] 0.6073392 0.6131069 0.6592461 #> [157,] 1.1114114 1.1454856 1.1555352 #> [158,] 0.6052577 0.6307465 0.7290489 #> [159,] 0.6285511 0.6381594 0.6443042 #> [160,] 0.7880060 0.8260032 0.8534824 #> [161,] 0.6633763 0.6657410 0.6797596 #> [162,] 0.8476128 0.8624028 0.8771263 #> [163,] 0.7845580 0.8266930 0.8318053 #> [164,] 0.7392637 0.7512895 0.8111425 #> [165,] 1.2922349 1.3063313 1.3084353 #> [166,] 0.9128304 0.9454870 1.0354152 #> [167,] 0.6104109 0.6456856 0.6493743 #> [168,] 0.6152847 0.6210218 0.6397210 #> [169,] 0.9241328 0.9419218 1.1478319 #> [170,] 0.6543718 0.6672829 0.7638711 #> [171,] 0.6459038 0.6709559 0.6813143 #> [172,] 0.6297882 0.6436494 0.6455486 #> [173,] 1.1226844 1.1330129 1.2040133 #> [174,] 1.0910784 1.1286312 1.1740047 #> [175,] 1.1304412 1.1901069 1.1943255 #> [176,] 0.7143797 0.7184307 0.7481196 #> [177,] 0.8513361 0.8603842 0.8674875 #> [178,] 0.6705592 0.6735620 0.6778038 #> [179,] 1.0194385 1.0333731 1.0398635 #> [180,] 0.6132131 0.6198758 0.6648093 #> [181,] 0.6900043 0.7318831 0.7641128 #> [182,] 0.6079576 0.6144660 0.6170095 #> [183,] 0.5681010 0.5703633 0.6560972 #> [184,] 2.0221354 2.0532234 2.0724232 #> [185,] 1.0225519 1.0345328 1.0356459 #> [186,] 0.5291272 0.5727759 0.5803860 #> [187,] 0.8187429 0.8696613 0.8934775 #> [188,] 0.8677932 0.8900682 0.9412017 #> [189,] 0.7229251 0.7349696 0.7951147 #> [190,] 0.5737622 0.5920383 0.6537043 #> [191,] 1.3769688 1.3968075 1.4065190 #> [192,] 0.6929701 0.6971881 0.6983515 #> [193,] 0.5998258 0.6034515 0.6136679 #> [194,] 0.5429316 0.5570000 0.5602252 #> [195,] 1.0188878 1.0793454 1.0858714 #> [196,] 0.6269043 0.6810870 0.6868403 #> [197,] 1.0075614 1.0431346 1.0821745 #> [198,] 1.3594604 1.4146364 1.4263432 #> [199,] 0.7430240 0.7511748 0.8771458 #> [200,] 0.7863389 0.8066169 0.8143462 #> [201,] 1.8213842 1.8912685 1.9962653 #> [202,] 1.4548162 1.4980519 1.4988507 #> [203,] 1.0292585 1.0564403 1.0715925 #> [204,] 0.5571402 0.6248315 0.6380658 #> [205,] 0.6196099 0.6290472 0.6292636 #> [206,] 0.6378416 0.6567339 0.6771992 #> [207,] 1.6953200 1.7081563 1.7206302 #> [208,] 0.7497781 0.7546189 0.7557900 #> [209,] 1.5233936 1.5288099 1.5962986 #> [210,] 0.6239921 0.6247975 0.6265817 #> [211,] 0.7915838 0.8227246 0.8271605 #> [212,] 0.6133590 0.6334791 0.6504994 #> [213,] 0.5879778 0.5889366 0.6110425 #> [214,] 0.7508885 0.8324732 0.8941450 #> [215,] 0.7468176 0.7739945 0.8493845 #> [216,] 0.6418896 0.6420441 0.6478635 #> [217,] 0.6582989 0.6735662 0.7013804 #> [218,] 0.6180513 0.6354609 0.6562407 #> [219,] 0.7390813 0.7445928 0.7881615 #> [220,] 0.8158097 0.8690679 0.8797843 #> [221,] 0.7647663 0.7783410 0.7837751 #> [222,] 1.3820083 1.3966081 1.4695749 #> [223,] 0.5455742 0.5658013 0.6034515 #> [224,] 1.1583985 1.2959913 1.3045000 #> [225,] 0.9930158 1.0073708 1.0326790 #> [226,] 0.7177860 0.7245656 0.7300216 #> [227,] 0.6152128 0.6768162 0.7500130 #> [228,] 0.8081437 0.8210160 0.8341311 #> [229,] 0.8173428 0.8390229 0.8620620 #> [230,] 0.8007657 0.8012049 0.8112083 #> [231,] 0.9177369 0.9279086 0.9315429 #> [232,] 0.7094825 0.7412201 0.7487212 #> [233,] 0.8801390 0.8919684 0.9048960 #> [234,] 0.8240324 0.8333244 0.8385498 #> [235,] 0.7525095 0.7695044 0.7708732 #> [236,] 0.7133467 0.7192160 0.7198735 #> [237,] 0.5881498 0.5997251 0.6016000 #> [238,] 0.8105593 0.9042581 0.9140608 #> [239,] 1.0796850 1.0905094 1.0981334 #> [240,] 0.8508098 0.8635917 0.8980599 #> [241,] 0.6227925 0.6280889 0.6417925 #> [242,] 0.7067708 0.7184563 0.7377581 #> [243,] 0.6115334 0.6430333 0.6456477 #> [244,] 1.4331381 1.4607150 1.5316756 #> [245,] 0.8501881 0.8563041 0.8590798 #> [246,] 0.7118094 0.7147159 0.7300108 #> [247,] 1.1565844 1.1967436 1.2031595 #> [248,] 0.7812252 0.7929947 0.8109086 #> [249,] 0.6637959 0.6669140 0.6801039 #> [250,] 2.0397549 2.0483508 2.0556776 #> [251,] 0.7355141 0.7445453 0.7960024 #> [252,] 0.6012655 0.6101469 0.6277827 #> [253,] 1.1820783 1.1844585 1.1852437 #> [254,] 0.7059918 0.7131183 0.7172770 #> [255,] 1.1761711 1.1954909 1.2139322 #> [256,] 0.8081437 0.8302582 0.8359470 #> [257,] 0.4847586 0.4983993 0.5328842 #> [258,] 1.3630821 1.3645951 1.4483778 #> [259,] 1.6683581 1.6846586 1.6916542 #> [260,] 0.6327125 0.6592461 0.6797594 #> [261,] 0.5816681 0.6651170 0.6719349 #> [262,] 1.0199230 1.0306691 1.0465887 #> [263,] 0.7328701 0.7366519 0.7488794 #> [264,] 0.6567246 0.6632021 0.6666177 #> [265,] 0.8342606 0.8833272 0.8873127 #> [266,] 1.2187290 1.2362250 1.3522488 #> [267,] 0.7023748 0.7102512 0.7225791 #> [268,] 1.0880982 1.0941461 1.0960332 #> [269,] 0.8627002 0.8743276 0.8751708 #> [270,] 0.6198851 0.6314126 0.6475378 #> [271,] 0.5674021 0.5693480 0.5928785 #> [272,] 0.9341928 0.9833019 0.9973478 #> [273,] 0.8096329 0.8292255 0.8555027 #> [274,] 0.7891404 0.8243659 0.8278745 #> [275,] 0.9317763 0.9409960 0.9466711 #> [276,] 1.3790276 1.3802968 1.4076604 #> [277,] 0.6844823 0.7143535 0.7407388 #> [278,] 0.7100069 0.7488184 0.7600098 #> [279,] 1.1506401 1.1908013 1.2663376 #> [280,] 0.7630830 0.7659436 0.7761110 #> [281,] 0.8431615 0.8637182 0.9226522 #> [282,] 0.9590741 1.0251275 1.0283219 #> [283,] 0.7033122 0.7052669 0.7377581 #> [284,] 0.8044038 0.8099410 0.8531779 #> [285,] 0.4574371 0.4633042 0.5149583 #> [286,] 1.2142199 1.2325390 1.2486723 #> [287,] 0.7117716 0.7845475 0.8023944 #> [288,] 0.7105949 0.7146610 0.7506698 #> [289,] 0.9633728 0.9659964 1.0147951 #> [290,] 0.6066468 0.6082550 0.6091098 #> [291,] 1.0277905 1.0338277 1.0357108 #> [292,] 0.5000964 0.5028235 0.5161832 #> [293,] 0.8557396 0.8838206 0.9363732 #> [294,] 0.7162112 0.7261345 0.7368908 #> [295,] 2.1098008 2.1263382 2.1662556 #> [296,] 0.9174849 0.9391519 0.9513195 #> [297,] 0.5151876 0.5552198 0.6246004 #> [298,] 1.2236423 1.2574848 1.2584744 #> [299,] 0.8009335 0.8341694 0.8629700 #> [300,] 0.6411617 0.6742086 0.6789019 #> [301,] 1.0222484 1.0651726 1.0824499 #> [302,] 1.4780679 1.4931978 1.4998941 #> [303,] 1.7793757 1.8106507 1.8345273 #> [304,] 0.8031539 0.8513275 0.8791171 #> [305,] 1.2292597 1.2357294 1.2826214 #> [306,] 0.6505470 0.6771992 0.6788451 #> [307,] 1.1818239 1.1945705 1.2083771 #> [308,] 0.6593763 0.6723912 0.6867334 #> [309,] 0.4700809 0.4816955 0.4866329 #> [310,] 0.7201891 0.7371411 0.7627039 #> [311,] 0.9326344 1.0005127 1.0038540 #> [312,] 0.7288453 0.7482867 0.7527413 #> [313,] 0.6792825 0.7098145 0.7107325 #> [314,] 0.7188043 0.7305566 0.7341665 #> [315,] 0.5343740 0.5371986 0.6196099 #> [316,] 1.0993493 1.1180550 1.1213501 #> [317,] 0.5166436 0.5418754 0.5499564 #> [318,] 1.4359835 1.4469369 1.4834774 #> [319,] 0.8046689 0.8057893 0.8264896 #> [320,] 0.5838682 0.5972898 0.6249691 #> [321,] 0.6478044 0.6480226 0.6585143 #> [322,] 0.7356749 0.7797624 0.8027854 #> [323,] 1.0977021 1.1011990 1.1069747 #> [324,] 0.6170095 0.6424517 0.6700281 #> [325,] 0.7829631 0.7942367 0.7964902 #> [326,] 0.8682310 0.9106875 1.0473610 #> [327,] 0.8372628 0.8838178 0.9024265 #> [328,] 1.4275131 1.5188548 1.5214910 #> [329,] 1.2825670 1.3081612 1.3743889 #> [330,] 0.6444889 0.6908379 0.6954510 #> [331,] 0.6772921 0.7085888 0.7115589 #> [332,] 0.6055590 0.6319255 0.6535943 #> [333,] 0.6089178 0.6171698 0.6420984 #> [334,] 0.7013259 0.7197396 0.7201731 #> [335,] 0.7554972 0.7570872 0.7621492 #> [336,] 0.6903874 0.7099542 0.7263274 #> [337,] 1.4731754 1.4770385 1.4885976 #> [338,] 1.1171090 1.1343383 1.1866288 #> [339,] 0.7904959 0.8211896 0.8407411 #> [340,] 0.6571768 0.7153976 0.7344173 #> [341,] 0.6206803 0.7202563 0.7536813 #> [342,] 0.6031906 0.6348537 0.6648093 #> [343,] 1.0684635 1.1281765 1.2701446 #> [344,] 0.6379043 0.6522162 0.6533374 #> [345,] 0.5810245 0.5867504 0.5913260 #> [346,] 0.5046153 0.5277485 0.5910771 #> [347,] 1.0505311 1.0576989 1.0992925 #> [348,] 0.6311623 0.6560215 0.6822626 #> [349,] 1.0165439 1.1333100 1.1340170 #> [350,] 0.5813493 0.5950332 0.6079576 #> [351,] 0.7300095 0.7602339 0.7629245 #> [352,] 1.1053641 1.1180550 1.1312491 #> [353,] 1.1837643 1.1988522 1.2302067 #> [354,] 0.9533387 0.9564164 0.9649450 #> [355,] 0.9164328 0.9176535 1.0082143 #> [356,] 0.7133467 0.7360781 0.7797316 #> [357,] 0.7177315 0.7849657 0.7935783 #> [358,] 0.7369999 0.7680742 0.7718746 #> [359,] 0.6829276 0.7062740 0.7828293 #> [360,] 0.6238698 0.6319799 0.6712264 #> [361,] 0.8012627 0.8229591 0.8455997 #> [362,] 0.6160434 0.6178926 0.6240917 #> [363,] 0.9001376 0.9136147 0.9147746 #> [364,] 1.5932991 1.6157023 1.6168954 #> [365,] 0.8077789 0.8595672 0.8851544 #> [366,] 0.8105764 0.9519390 0.9627244 #> [367,] 0.8791882 0.8820581 0.9409960 #> [368,] 1.1542080 1.2095336 1.2174031 #> [369,] 1.2001517 1.2151301 1.2367852 #> [370,] 0.7215688 0.7504660 0.7612260 #> [371,] 0.5766792 0.6133128 0.6378261 #> [372,] 0.5124364 0.5342045 0.5436498 #> [373,] 0.7111043 0.7964800 0.8074443 #> [374,] 0.7735197 0.7903442 0.8573493 #> [375,] 0.6717405 0.6987919 0.7056988 #> [376,] 1.1960716 1.2061600 1.2549521 #> [377,] 0.9120929 0.9420186 1.0101190 #> [378,] 0.9728332 0.9873418 0.9990933 #> [379,] 0.7385341 0.7460797 0.7479200 #> [380,] 0.6228103 0.6252471 0.6378261 #> [381,] 0.6451651 0.6466886 0.6497090 #> [382,] 0.6164454 0.6313534 0.6431640 #> [383,] 1.7215563 1.7413460 1.7505421 #> [384,] 1.4146987 1.4767661 1.5423798 #> [385,] 1.2790766 1.3318983 1.3342449 #> [386,] 0.5253829 0.5374429 0.5478135 #> [387,] 0.6767031 0.6980473 0.7102383 #> [388,] 0.6058627 0.6468854 0.6582067 #> [389,] 0.7614894 0.7666488 0.7872667 #> [390,] 0.7636327 0.7665815 0.7671899 #> [391,] 0.7542396 0.7742806 0.8188065 #> [392,] 0.8449039 0.8477306 0.8554640 #> [393,] 0.6606911 0.6652344 0.7106932 #> [394,] 1.1621956 1.1644541 1.1986978 #> [395,] 1.1677274 1.2597720 1.2879303 #> [396,] 0.9441428 0.9562852 0.9670866 #> [397,] 0.6461569 0.6517059 0.6642091 #> [398,] 0.8534824 0.8593124 0.9181514 #> [399,] 0.6507469 0.6531001 0.6857016 #> [400,] 0.7627499 0.8010999 0.8162060 #> [401,] 0.7167615 0.7590209 0.7663757 #> [402,] 0.9385822 0.9546533 0.9735454 #> [403,] 0.9174849 0.9597572 0.9760358 #> [404,] 0.7314190 0.7399096 0.7420626 #> [405,] 0.6440154 0.6769841 0.6813038 #> [406,] 0.9042870 0.9199815 0.9366138 #> [407,] 0.5143304 0.5230954 0.5826878 #> [408,] 0.7751121 0.8150130 0.8160969 #> [409,] 0.6680155 0.6764425 0.6882297 #> [410,] 1.0683585 1.0714703 1.1421249 #> [411,] 1.2147471 1.2663894 1.2727458 #> [412,] 1.1390125 1.1560421 1.1667422 #> [413,] 0.5777682 0.5841814 0.5867504 #> [414,] 1.0770330 1.1461043 1.1826790 #> [415,] 0.7190763 0.7826114 0.8346353 #> [416,] 1.2734965 1.3180883 1.3209671 #> [417,] 0.8609763 0.8951846 0.9389049 #> [418,] 0.6299388 0.6377190 0.6472083 #> [419,] 1.3202222 1.3234820 1.3480002 #> [420,] 0.7911226 0.8918625 0.9113162 #> [421,] 1.5099517 1.5879799 1.6275022 #> [422,] 0.8648793 0.8801506 0.8962246 #> [423,] 0.6058663 0.6082788 0.6314126 #> [424,] 1.3163879 1.3328708 1.3662731 #> [425,] 0.7955620 0.7975097 0.8114964 #> [426,] 0.6418109 0.6934614 0.7022022 #> [427,] 1.8529715 1.9275538 1.9412448 #> [428,] 0.8037321 0.8180881 0.8260032 #> [429,] 0.8748160 0.9124285 0.9167675 #> [430,] 1.4781769 1.5195083 1.5757886 #> [431,] 0.7765806 0.7796118 0.7852608 #> [432,] 0.9012644 0.9333909 0.9559555 #> [433,] 0.6599585 0.6928193 0.6981878 #> [434,] 0.7897385 0.8571447 0.8957822 #> [435,] 1.1936272 1.2030167 1.2407876 #> [436,] 0.7833691 0.8614368 0.8945441 #> [437,] 0.5384173 0.5829803 0.5841615 #> [438,] 0.5571568 0.6174222 0.6316854 #> [439,] 0.6609872 0.6613144 0.7115270 #> [440,] 0.8451830 0.8557046 0.8650737 #> [441,] 0.5728784 0.5745183 0.5839120 #> [442,] 1.0467757 1.0550746 1.0574801 #> [443,] 0.6892405 0.7332718 0.7333728 #> [444,] 0.5805887 0.6012403 0.6268490 #> [445,] 0.7912182 0.8435330 0.8641570 #> [446,] 0.7852608 0.8762724 0.9075501 #> [447,] 1.3676645 1.3747721 1.4162996 #> [448,] 1.2725432 1.2803105 1.2833201 #> [449,] 1.1295200 1.2154808 1.2187803 #> [450,] 0.9210998 0.9405099 1.0160491 #> [451,] 0.6643364 0.6665172 0.6964813 #> [452,] 0.6314404 0.6404495 0.6684119 #> [453,] 0.5370750 0.5614417 0.6017285 #> [454,] 0.9114307 0.9131999 0.9218992 #> [455,] 0.5167141 0.5323207 0.5668559 #> [456,] 0.7683081 0.7733977 0.8122535 #> [457,] 0.5024490 0.5412091 0.5569929 #> [458,] 1.0857416 1.1236817 1.1830759 #> [459,] 0.5728755 0.5922088 0.5931377 #> [460,] 0.5689447 0.5754628 0.5817520 #> [461,] 0.6513352 0.7065268 0.7117218 #> [462,] 0.5501011 0.5596206 0.5649255 #> [463,] 0.6391369 0.6395256 0.6412760 #> [464,] 0.8306194 0.8751047 0.8794120 #> [465,] 0.7393981 0.8423412 0.8437964 #> [466,] 1.8836910 1.9095367 1.9135119 #> [467,] 1.1950243 1.2333716 1.2435436 #> [468,] 0.9667808 0.9857054 0.9916732 #> [469,] 0.9461251 0.9463880 0.9540307 #> [470,] 0.5763679 0.5815961 0.5851288 #> [471,] 0.8321809 0.8519922 0.8573915 #> [472,] 0.6797594 0.6974174 0.7011072 #> [473,] 0.6045314 0.6086948 0.6161821 #> [474,] 0.6178535 0.6265817 0.6299388 #> [475,] 1.4563943 1.4668533 1.4956531 #> [476,] 0.4759897 0.5278541 0.5323207 #> [477,] 0.5904797 0.5921010 0.6182972 #> [478,] 0.7475949 0.7595601 0.7750158 #> [479,] 0.8676342 0.9958579 1.0082914 #> [480,] 0.9988466 1.0379648 1.0873266 #> [481,] 0.6811404 0.7125915 0.7438543 #> [482,] 0.7233252 0.7258189 0.7496445 #> [483,] 0.8908971 0.9220001 0.9393187 #> [484,] 0.8402377 0.8782716 0.8924074 #> [485,] 0.8752551 0.9683506 0.9777102 #> [486,] 0.9860885 1.0097891 1.0138331 #> [487,] 0.6715531 0.6862316 0.6922482 #> [488,] 1.2949801 1.3199758 1.3314084 #> [489,] 1.0834790 1.1111410 1.1434177 #> [490,] 0.7012192 0.7035310 0.7197476 #> [491,] 0.8863247 0.9151983 0.9861853 #> [492,] 1.7159364 1.7248158 1.7670427 #> [493,] 0.8374759 0.9264355 0.9493804 #> [494,] 1.3369391 1.3572066 1.3602157 #> [495,] 1.3663135 1.3747328 1.3915746 #> [496,] 0.9388876 0.9787855 0.9818573 #> [497,] 0.9633728 0.9716273 1.0105809 #> [498,] 1.2406684 1.2583409 1.3507659 #> [499,] 0.8820550 1.0146170 1.0150288 #> [500,] 0.9055686 0.9680445 0.9941518 #> [501,] 2.4145756 2.4420108 2.4464436 #> [502,] 0.5520771 0.5745183 0.5826584 #> [503,] 0.8337882 0.8505912 0.8526129 #> [504,] 0.6882318 0.6964999 0.7367348 #> [505,] 0.9813650 0.9874835 1.0472607 #> [506,] 0.6814462 0.7060224 0.7076732 #> [507,] 0.4816955 0.4847935 0.4864367 #> [508,] 0.5691907 0.5770479 0.5780491 #> [509,] 1.6335442 1.6385179 1.6535956 #> [510,] 1.3528960 1.3563794 1.3611355 #> [511,] 0.6759780 0.7094116 0.7247117 #> [512,] 1.2926636 1.3023587 1.3749284 #> [513,] 1.5299030 1.5399956 1.6611706 #> [514,] 0.6710257 0.6810884 0.6950817 #> [515,] 0.7584446 0.8062355 0.8130625 #> [516,] 0.8178128 0.8178424 0.8205612 #> [517,] 0.8591310 0.8919684 0.9240162 #> [518,] 0.5025708 0.5418103 0.5693054 #> [519,] 0.6895236 0.6973202 0.7059582 #> [520,] 0.5773875 0.5787767 0.6029737 #> [521,] 0.7146610 0.7643505 0.7878777 #> [522,] 0.6803957 0.6811404 0.7170140 #> [523,] 0.6578455 0.6659730 0.6749460 #> [524,] 0.7388219 0.7477676 0.7486448 #> [525,] 0.9893545 1.0141225 1.0483922 #> [526,] 0.6767827 0.7060023 0.7315015 #> [527,] 1.0208764 1.0257840 1.0330603 #> [528,] 0.7171179 0.7334094 0.7448059 #> [529,] 0.8668125 0.9510885 0.9550453 #> [530,] 1.3518969 1.3648092 1.3849989 #> [531,] 0.7892308 0.8003594 0.8356967 #> [532,] 0.8611332 0.8613864 0.9164915 #> [533,] 0.6250401 0.6367535 0.6517178 #> [534,] 0.7000426 0.7177860 0.7378278 #> [535,] 0.7863389 0.8349013 0.8376880 #> [536,] 0.9794036 1.0058872 1.0216113 #> [537,] 0.8364121 0.8611271 0.8800067 #> [538,] 0.5635180 0.6092181 0.6218384 #> [539,] 0.8904440 0.8921551 0.8932878 #> [540,] 0.6639791 0.7167615 0.7429688 #> [541,] 0.6532183 0.6622352 0.6784005 #> [542,] 1.3483684 1.3507839 1.3894962 #> [543,] 0.8085228 0.8488790 0.8680777 #> [544,] 0.5340517 0.5593715 0.6246004 #> [545,] 0.5689344 0.6011425 0.6378416 #> [546,] 0.6056311 0.6089128 0.6109068 #> [547,] 0.7942207 0.8298927 0.8602639 #> [548,] 0.9145482 0.9155776 0.9157779 #> [549,] 0.7833891 0.7929947 0.7977212 #> [550,] 0.8923763 0.8936716 0.8943902 #> [551,] 0.6252989 0.6302890 0.6325989 #> [552,] 0.6213495 0.6715206 0.6738913 #> [553,] 0.5815733 0.6928156 0.7067708 #> [554,] 0.7766909 0.7895843 0.8063112 #> [555,] 0.8607480 0.8663636 0.8850935 #> [556,] 0.6819663 0.7233252 0.7428187 #> [557,] 0.8135751 0.8167236 0.8241794 #> [558,] 2.3432253 2.3690277 2.3950798 #> [559,] 0.7093489 0.7243632 0.7538692 #> [560,] 0.6790146 0.6813491 0.6987252 #> [561,] 0.9278684 0.9670014 0.9923017 #> [562,] 0.6440527 0.6939634 0.6946025 #> [563,] 0.8178424 0.8214247 0.8249273 #> [564,] 0.5854172 0.6030661 0.6703721 #> [565,] 2.2018303 2.2170551 2.2715903 #> [566,] 0.6740985 0.6961154 0.7107108 #> [567,] 0.5288156 0.6289047 0.6432439 #> [568,] 0.6086948 0.6167249 0.6182271 #> [569,] 0.8899425 0.8907170 0.9248265 #> [570,] 0.8781574 0.9243470 0.9436126 #> [571,] 0.6611107 0.6947258 0.7779487 #> [572,] 0.8544198 0.8607628 0.9113352 #> [573,] 0.6818945 0.6944958 0.6973268 #> [574,] 0.6450755 0.7042088 0.7045850 #> [575,] 0.8500746 0.9282655 1.0189408 #> [576,] 0.7818339 0.7826114 0.8231869 #> [577,] 1.2586485 1.2649063 1.4049734 #> [578,] 0.6757237 0.6791727 0.7117059 #> [579,] 0.6788451 0.6853032 0.7137189 #> [580,] 0.6333447 0.6695882 0.6853860 #> [581,] 0.6198851 0.6315937 0.6712264 #> [582,] 0.5481736 0.5764813 0.6090256 #> [583,] 0.6900380 0.6917397 0.7118564 #> [584,] 0.8031552 0.8159384 0.8325545 #> [585,] 0.8078439 0.8962927 0.9024955 #> [586,] 0.7863477 0.8318041 0.8382579 #> [587,] 0.6263667 0.6662338 0.6693745 #> [588,] 1.0664086 1.0867883 1.1595318 #> [589,] 0.7238832 0.7291073 0.7634351 #> [590,] 1.8472453 1.9284869 1.9455458 #> [591,] 0.6030661 0.6150027 0.6178535 #> [592,] 0.7067891 0.7202563 0.7385543 #> [593,] 0.5766874 0.6071901 0.6722267 #> [594,] 0.5037597 0.5140889 0.5278857 #> [595,] 0.6973421 0.7460797 0.7484519 #> [596,] 0.8587832 0.8776250 0.8925923 #> [597,] 0.8990254 0.8998505 0.9043764 #> [598,] 0.6098153 0.6283844 0.6289047 #> [599,] 1.1384414 1.1628123 1.1670567 #> [600,] 0.7396622 0.7411347 0.7429837 #> [601,] 0.6981834 0.7385372 0.7571183 #> [602,] 0.5697776 0.5925780 0.6079173 #> [603,] 1.0356459 1.0574077 1.0919283 #> [604,] 1.1836077 1.2198348 1.2271238 #> [605,] 0.6046276 0.6299998 0.6461569 #> [606,] 0.5649939 0.5740247 0.5826055 #> [607,] 1.1519656 1.1540375 1.1572590 #> [608,] 0.8675523 0.8853132 0.9111472 #> [609,] 1.6049527 1.6168954 1.6674373 #> [610,] 0.9049409 0.9094752 1.0089479 #> [611,] 0.5936046 0.6057138 0.6595870 #> [612,] 0.9681270 0.9843482 1.0041864 #> [613,] 1.2830695 1.3338333 1.3386482 #> [614,] 0.7772791 0.8072681 0.8344979 #> [615,] 0.7472657 0.7642566 0.7715074 #> [616,] 0.8531185 0.8587832 0.8961581 #> [617,] 0.7300108 0.7336099 0.7580219 #> [618,] 0.6519833 0.7036290 0.7411941 #> [619,] 0.9758230 1.0551752 1.0664273 #> [620,] 0.8801867 0.8923898 0.9039039 #> [621,] 0.5862132 0.6693059 0.6782872 #> [622,] 0.6219328 0.6248315 0.6261556 #> [623,] 0.7478602 0.7580601 0.7706583 #> [624,] 0.5698945 0.6299090 0.6403390 #> [625,] 1.0167930 1.0453051 1.1333771 #> [626,] 0.7392944 0.7548943 0.7563227 #> [627,] 0.6061947 0.6288226 0.6932874 #> [628,] 0.5016559 0.5094419 0.5727759 #> [629,] 1.0443008 1.0609972 1.0629319 #> [630,] 0.7998817 0.8195488 0.8678657 #> [631,] 0.5547715 0.6030755 0.6154857 #> [632,] 0.8144859 0.8281860 0.8697099 #> [633,] 1.0451144 1.0542669 1.1114114 #> [634,] 0.6419922 0.6432989 0.6447714 #> [635,] 0.6742909 0.7286320 0.7541595 #> [636,] 0.9607071 0.9640626 0.9819342 #> [637,] 0.9198462 0.9676332 0.9754811 #> [638,] 1.1200604 1.2439004 1.2668609 #> [639,] 1.1293918 1.1544637 1.1925736 #> [640,] 0.8213356 0.8387448 0.8433437 #> [641,] 0.9677572 0.9888431 1.0394407 #> [642,] 1.0378200 1.0572936 1.0864902 #> [643,] 0.5496676 0.5826584 0.5893277 #> [644,] 0.8202058 0.8503474 0.8628839 #> [645,] 0.6876549 0.6992767 0.7008368 #> [646,] 1.0006761 1.0891220 1.1000991 #> [647,] 0.7692970 0.8176418 0.8722259 #> [648,] 0.9001376 0.9306692 0.9344276 #> [649,] 0.4759897 0.5073673 0.5773453 #> [650,] 1.9382943 1.9416419 2.0260886 #> [651,] 1.1290313 1.2173869 1.2181288 #> [652,] 0.6658469 0.6770162 0.6778106 #> [653,] 0.7356093 0.7722727 0.7758287 #> [654,] 1.0047432 1.0131991 1.0317723 #> [655,] 0.5662782 0.5710962 0.5811230 #> [656,] 0.6184569 0.6220324 0.6290472 #> [657,] 0.7677005 0.7693379 0.7703628 #> [658,] 0.5899925 0.6245978 0.6298449 #> [659,] 0.7469655 0.7567931 0.7701006 #> [660,] 0.5644498 0.5773875 0.6264687 #> [661,] 0.5910982 0.6014117 0.6069905 #> [662,] 0.8325475 0.8360327 0.8718518 #> [663,] 0.5199536 0.5201948 0.5253829 #> [664,] 2.0411730 2.0795131 2.1723752 #> [665,] 0.6398905 0.7198262 0.7426566 #> [666,] 1.6206125 1.6538794 1.6952439 #> [667,] 0.7155574 0.7265504 0.7561248 #> [668,] 0.6236368 0.6674390 0.7730710 #> [669,] 0.6593693 0.6599681 0.7081862 #> [670,] 0.9392153 0.9818740 0.9936594 #> [671,] 0.8417960 0.8581661 0.9167841 #> [672,] 0.8022114 0.8045830 0.8129684 #> [673,] 1.0238475 1.0297726 1.0514701 #> [674,] 0.8379912 0.8492909 0.8665540 #> [675,] 0.6764425 0.7128808 0.7414976 #> [676,] 0.9237796 0.9572670 0.9769117 #> [677,] 0.6259317 0.6287526 0.6306655 #> [678,] 0.7745990 0.7968260 0.8289013 #> [679,] 1.1319135 1.1391750 1.1587812 #> [680,] 0.7995431 0.8797833 0.9001406 #> [681,] 0.5658163 0.5663868 0.6085266 #> [682,] 1.1814759 1.2122146 1.2527892 #> [683,] 0.9574515 0.9917246 1.0476483 #> [684,] 0.8202589 0.8405467 0.8482936 #> [685,] 1.0408116 1.0770330 1.0790551 #> [686,] 1.8179036 1.8340617 1.9116460 #> [687,] 0.8240114 0.8346796 0.8540282 #> [688,] 0.7111981 0.7168102 0.7506698 #> [689,] 0.7062740 0.7083143 0.7332891 #> [690,] 0.7589517 0.7814489 0.8743718 #> [691,] 0.7887940 0.8068922 0.8298635 #> [692,] 0.7042882 0.7073357 0.7086554 #> [693,] 0.8677932 0.9081009 0.9096423 #> [694,] 0.9426249 0.9456269 0.9996745 #> [695,] 0.7261435 0.7369679 0.7431326 #> [696,] 0.5259880 0.5325244 0.5335413 #> [697,] 0.9357843 1.0164852 1.1235415 #> [698,] 0.6602462 0.6971881 0.7130196 #> [699,] 0.7407388 0.7441478 0.7587615 #> [700,] 0.5805887 0.6411091 0.6493704 #> [701,] 0.8441528 0.8526117 0.8743718 #> [702,] 0.7091045 0.7115284 0.7332891 #> [703,] 1.4329723 1.4998115 1.5321308 #> [704,] 0.8716388 0.9324892 0.9406988 #> [705,] 0.9435541 1.0315119 1.0640330 #> [706,] 0.6753137 0.7172770 0.7210186 #> [707,] 0.6354370 0.6485246 0.6687828 #> [708,] 0.7013456 0.7131056 0.7347693 #> [709,] 0.7484519 0.7737699 0.7741449 #> [710,] 0.8423412 0.8555198 0.8749579 #> [711,] 1.1663112 1.2098689 1.2143511 #> [712,] 0.9481154 0.9482776 0.9492661 #> [713,] 0.5139554 0.5386177 0.5543984 #> [714,] 0.6937074 0.7245582 0.7468176 #> [715,] 1.4709076 1.4824762 1.4912133 #> [716,] 0.8951693 0.8961581 0.9878208 #> [717,] 0.5740756 0.5972898 0.6142427 #> [718,] 0.9250145 0.9261443 0.9285668 #> [719,] 0.5785084 0.6069989 0.6116374 #> [720,] 0.9843897 1.0550667 1.0561660 #> [721,] 0.5411180 0.5608529 0.5653868 #> [722,] 0.5295162 0.5340517 0.5555209 #> [723,] 0.9688074 1.0018221 1.0154645 #> [724,] 0.6862316 0.7080334 0.7092927 #> [725,] 0.6652081 0.6720352 0.6917995 #> [726,] 0.6144660 0.6167648 0.6466886 #> [727,] 0.8975746 0.9026949 0.9269203 #> [728,] 0.7297279 0.7441841 0.7579067 #> [729,] 0.9753392 0.9793578 0.9902628 #> [730,] 0.6466303 0.6596934 0.6713759 #> [731,] 0.7510750 0.8031048 0.8497506 #> [732,] 0.7844187 0.7910788 0.8033215 #> [733,] 1.1436977 1.2593077 1.2944929 #> [734,] 1.0233959 1.0988194 1.1192609 #> [735,] 0.6888786 0.7709872 0.8026905 #> [736,] 1.1020634 1.1103051 1.1116794 #> [737,] 0.4875835 0.5037597 0.5218255 #> [738,] 1.2087302 1.2367852 1.2630820 #> [739,] 2.1226628 2.1489737 2.1847682 #> [740,] 0.9699873 0.9936126 0.9981753 #> [741,] 0.5541666 0.5674918 0.5693480 #> [742,] 0.5708686 0.5748597 0.5788055 #> [743,] 0.8565868 0.8744701 0.8796845 #> [744,] 0.9290540 0.9548992 0.9762425 #> [745,] 0.4644079 0.5262045 0.5492644 #> [746,] 1.0158253 1.0370421 1.0656568 #> [747,] 0.7036279 0.7143330 0.7151035 #> [748,] 1.2295782 1.2701114 1.3213964 #> [749,] 0.5693054 0.6197711 0.6784878 #> [750,] 0.7510750 0.7788458 0.7880611 #> [751,] 0.7907865 0.8110518 0.8268999 #> [752,] 1.6528810 1.6852090 1.7012686 #> [753,] 0.8275630 0.8613339 0.8736702 #> [754,] 0.6022206 0.6873235 0.6881103 #> [755,] 0.7941230 0.7957952 0.7978296 #> [756,] 0.7081964 0.7167148 0.7362297 #> [757,] 1.2384498 1.2410470 1.3512977 #> [758,] 0.6404495 0.7010819 0.7160734 #> [759,] 0.5552198 0.6299090 0.6299998 #> [760,] 0.8529619 0.8699727 0.8723819 #> [761,] 1.1095331 1.1378732 1.1933431 #> [762,] 0.6133128 0.6134790 0.6152627 #> [763,] 0.5848662 0.5881791 0.5938147 #> [764,] 1.2015164 1.2033767 1.2357261 #> [765,] 1.3644598 1.3664599 1.3791541 #> [766,] 0.9682310 0.9753498 0.9834251 #> [767,] 0.7501720 0.7553391 0.7784621 #> [768,] 0.6176954 0.6553638 0.7037984 #> [769,] 0.9799616 0.9971581 1.0188878 #> [770,] 0.6067608 0.6166483 0.6215483 #> [771,] 0.6988536 0.7143979 0.7691937 #> [772,] 0.6707290 0.7406443 0.7925577 #> [773,] 0.6920620 0.7192525 0.7378939 #> [774,] 0.8061181 0.8335395 0.8519922 #> [775,] 1.2012728 1.2145928 1.2264780 #> [776,] 0.6036117 0.6045314 0.6074887 #> [777,] 0.7134724 0.7330610 0.7336099 #> [778,] 0.7357161 0.7659436 0.7765781 #> [779,] 1.9690753 1.9715492 1.9898267 #> [780,] 1.0283219 1.0732000 1.1302308 #> [781,] 1.2927882 1.2994474 1.3193296 #> [782,] 0.8892492 0.9349566 0.9609719 #> [783,] 0.7018778 0.7117218 0.7143797 #> [784,] 0.9308265 0.9329245 0.9864876 #> [785,] 0.6700494 0.6884271 0.7247373 #> [786,] 0.6910984 0.7043720 0.7224982 #> [787,] 0.8368802 0.8438580 0.8626579 #> [788,] 0.5811230 0.6050018 0.6342684 #> [789,] 0.5341757 0.5555209 0.5730101 #> [790,] 0.8837296 0.8878474 0.9150893 #> [791,] 0.7885298 0.7951147 0.7955146 #> [792,] 0.5522140 0.5649189 0.5940605 #> [793,] 1.5337373 1.5347884 1.5472385 #> [794,] 0.8744181 0.8762210 0.8950791 #> [795,] 0.5354529 0.6159843 0.6497799 #> [796,] 0.5435039 0.5631950 0.5761898 #> [797,] 0.5904797 0.6074887 0.6143992 #> [798,] 0.6754314 0.7094825 0.7628576 #> [799,] 0.5793089 0.5914720 0.6272817 #> [800,] 0.5851032 0.6079851 0.6545558 #> [801,] 0.5455918 0.5498394 0.5578871 #> [802,] 0.5969488 0.6414602 0.6594972 #> [803,] 0.7023748 0.7029518 0.7169213 #> [804,] 0.8185188 0.8205612 0.8326591 #> [805,] 1.1750752 1.1903984 1.1933431 #> [806,] 1.0302284 1.0537445 1.0748683 #> [807,] 1.6709016 1.7005440 1.7394570 #> [808,] 0.8407370 0.8500746 0.8637478 #> [809,] 0.7008518 0.7150811 0.7800171 #> [810,] 0.5433768 0.5853286 0.5858126 #> [811,] 0.8785766 0.8927469 0.9212768 #> [812,] 0.7942367 0.8017567 0.8151381 #> [813,] 0.7228474 0.7321719 0.7385597 #> [814,] 0.9128304 0.9264948 0.9299598 #> [815,] 1.5803471 1.5953455 1.6277466 #> [816,] 0.6993452 0.7242203 0.7344657 #> [817,] 1.6124134 1.6636003 1.6760532 #> [818,] 0.8376880 0.8426910 0.8453352 #> [819,] 0.6316854 0.6320838 0.6329795 #> [820,] 1.1178551 1.1519532 1.1632556 #> [821,] 0.5833116 0.6029864 0.6135050 #> [822,] 0.9326344 0.9529245 0.9951438 #> [823,] 0.6772256 0.6932874 0.7187178 #> [824,] 0.5820719 0.5912199 0.5958864 #> [825,] 0.6578455 0.6685950 0.6729128 #> [826,] 0.5650308 0.5788591 0.5883047 #> [827,] 0.8792121 0.8806975 0.8816077 #> [828,] 1.0188981 1.0945970 1.1559622 #> [829,] 0.6354521 0.6415935 0.6464179 #> [830,] 0.9306057 0.9731270 0.9804268 #> [831,] 0.8952237 0.9297569 0.9763403 #> [832,] 1.0843053 1.0897857 1.1173875 #> [833,] 0.5930187 0.5939369 0.6069079 #> [834,] 0.7465824 0.7697630 0.7820416 #> [835,] 0.4847935 0.4983993 0.5371986 #> [836,] 0.5418103 0.5454948 0.5471028 #> [837,] 0.8334105 0.8618845 0.9283201 #> [838,] 0.9496958 1.0138397 1.0735338 #> [839,] 0.9777460 1.0175556 1.0292585 #> [840,] 0.7527413 0.7735569 0.7822611 #> [841,] 0.9744743 1.0102749 1.0125469 #> [842,] 0.5128846 0.5187470 0.5232374 #> [843,] 1.0283224 1.0680810 1.0750131 #> [844,] 0.9416318 0.9482930 0.9629695 #> [845,] 1.0277905 1.0347361 1.1459346 #> [846,] 0.7532099 0.8083029 0.8129840 #> [847,] 0.6244790 0.6370497 0.6643578 #> [848,] 0.7263274 0.7298699 0.7523639 #> [849,] 0.6670763 0.6757237 0.7488167 #> [850,] 0.7400483 0.7407983 0.7678197 #> [851,] 0.8328801 0.8593535 0.8706834 #> [852,] 0.8042118 0.8181203 0.8300385 #> [853,] 1.3269187 1.3651020 1.3995892 #> [854,] 1.4041430 1.4212342 1.4334688 #> [855,] 0.8489212 0.8509315 0.9226693 #> [856,] 0.6371847 0.6373957 0.6489260 #> [857,] 0.9479864 1.0184980 1.0239902 #> [858,] 0.7565456 0.7837856 0.8034945 #> [859,] 0.7948078 0.7953206 0.8008431 #> [860,] 0.6458494 0.6610452 0.6853779 #> [861,] 0.9921289 1.0741951 1.0819476 #> [862,] 0.7420654 0.7459836 0.7656647 #> [863,] 0.9134277 0.9463880 0.9774547 #> [864,] 0.8385498 0.8457286 0.8462907 #> [865,] 0.6143098 0.6192943 0.6269716 #> [866,] 0.5851182 0.5949997 0.6690769 #> [867,] 0.6249000 0.6323681 0.6533374 #> [868,] 0.6744915 0.6873026 0.6948454 #> [869,] 0.7422157 0.7559815 0.7563227 #> [870,] 0.6857204 0.7060388 0.7225791 #> [871,] 0.6754866 0.7015258 0.7165442 #> [872,] 0.6624938 0.6659730 0.6665198 #> [873,] 0.7918862 0.8899351 0.9106117 #> [874,] 0.9897825 0.9967091 0.9998667 #> [875,] 0.6674390 0.6709559 0.6722478 #> [876,] 0.5127744 0.5200857 0.5278857 #> [877,] 0.7248677 0.7362571 0.7574972 #> [878,] 0.8650737 0.8673128 0.8876872 #> [879,] 0.8082818 0.8188058 0.8420042 #> [880,] 0.5238938 0.5245936 0.6314431 #> [881,] 0.5546065 0.5552367 0.5658163 #> [882,] 0.6593763 0.6692368 0.6819575 #> [883,] 1.1362660 1.1670605 1.1814908 #> [884,] 0.6274278 0.6516153 0.6589275 #> [885,] 0.9445222 0.9758457 0.9935428 #> [886,] 1.0196759 1.0782516 1.1500725 #> [887,] 0.5611785 0.5721490 0.5730101 #> [888,] 1.4525418 1.5335511 1.5650556 #> [889,] 0.7290624 0.7626622 0.7701266 #> [890,] 0.6575866 0.6631294 0.6709890 #> [891,] 0.6369631 0.6478044 0.6552745 #> [892,] 0.5949277 0.6268538 0.6411613 #> [893,] 0.8987008 0.8996465 0.9122463 #> [894,] 0.6536885 0.7169877 0.7448199 #> [895,] 0.8754574 0.8961878 0.9137037 #> [896,] 0.8990254 0.9600782 0.9845505 #> [897,] 0.8324243 0.8734084 0.8839719 #> [898,] 1.6232812 1.6329324 1.6843737 #> [899,] 0.5307726 0.5541666 0.5542382 #> [900,] 0.9233367 0.9341166 0.9619989 #> [901,] 1.1674370 1.2091835 1.2888790 #> [902,] 0.5935215 0.6133391 0.6145858 #> [903,] 1.1552582 1.1596754 1.2374547 #> [904,] 0.6360963 0.6439245 0.6468046 #> [905,] 1.1296944 1.1306698 1.1445650 #> [906,] 0.4926394 0.5200857 0.5569929 #> [907,] 0.7094116 0.7272964 0.7351366 #> [908,] 0.5967956 0.5984226 0.6065631 #> [909,] 0.7092927 0.7741783 0.8215954 #> [910,] 0.5743078 0.5881791 0.6133391 #> [911,] 0.7960024 0.8147715 0.8201958 #> [912,] 0.6367922 0.6648602 0.7074269 #> [913,] 1.1330448 1.1393728 1.2083914 #> [914,] 1.1261638 1.1363303 1.1381319 #> [915,] 0.7265642 0.7372435 0.7600814 #> [916,] 0.5991453 0.6288226 0.6909970 #> [917,] 0.5936259 0.6167773 0.6328689 #> [918,] 1.0889671 1.1266647 1.1340280 #> [919,] 0.8134718 0.8773818 0.8794205 #> [920,] 0.6634449 0.6847756 0.7128808 #> [921,] 0.6411091 0.6529900 0.6562525 #> [922,] 0.9428644 0.9479833 0.9766401 #> [923,] 0.6546695 0.7623191 0.7831897 #> [924,] 0.6176913 0.6225913 0.6360304 #> [925,] 0.8952237 0.8954024 0.9522548 #> [926,] 0.5354529 0.5418754 0.5586692 #> [927,] 0.5889366 0.6452530 0.6895276 #> [928,] 1.2360886 1.2645463 1.4156511 #> [929,] 0.7045850 0.7102461 0.7254271 #> [930,] 0.5557009 0.6323681 0.6379043 #> [931,] 0.6628541 0.7176973 0.7332718 #> [932,] 0.7830243 0.7958926 0.8087172 #> [933,] 0.7823336 0.7935952 0.8060961 #> [934,] 1.2170469 1.3016234 1.3293415 #> [935,] 0.5882024 0.6785070 0.6851937 #> [936,] 1.3042448 1.3067202 1.3290534 #> [937,] 0.5923980 0.7701006 0.7797618 #> [938,] 0.6801128 0.6920584 0.7143286 #> [939,] 0.8133878 0.8762922 0.8792833 #> [940,] 1.4887429 1.5084606 1.5273402 #> [941,] 0.8393568 0.9422893 0.9868203 #> [942,] 0.8230795 0.8939918 0.9083788 #> [943,] 0.4729722 0.4760790 0.5015056 #> [944,] 0.7457229 0.7612536 0.8136419 #> [945,] 0.6536390 0.6611107 0.6819575 #> [946,] 1.2655733 1.3786466 1.4154325 #> [947,] 0.8477603 0.9001406 0.9536993 #> [948,] 0.9881205 1.0120315 1.0276484 #> [949,] 0.7025475 0.7284700 0.8108278 #> [950,] 0.6722478 0.6789018 0.6876039 #> [951,] 0.6565390 0.6916976 0.7045401 #> [952,] 0.7141773 0.7169669 0.7371411 #> [953,] 0.6559141 0.6639398 0.6669422 #> [954,] 0.6337316 0.6354521 0.6418716 #> [955,] 0.6696159 0.6698246 0.6916917 #> [956,] 0.6075006 0.6443834 0.6680742 #> [957,] 0.6603293 0.6623050 0.6940481 #> [958,] 0.6436329 0.6482295 0.6713180 #> [959,] 0.6036117 0.6117387 0.6139310 #> [960,] 0.8303042 0.8761815 0.9232052 #> [961,] 0.5678705 0.5766561 0.5903886 #> [962,] 1.1215965 1.1605183 1.2426790 #> [963,] 0.7745578 0.7843597 0.8036236 #> [964,] 0.7111981 0.7140241 0.7803132 #> [965,] 1.3762091 1.4262877 1.4529862 #> [966,] 0.9081192 0.9342811 0.9352012 #> [967,] 0.7595652 0.7708732 0.7737753 #> [968,] 1.4909861 1.5724724 1.5742275 #> [969,] 0.8061181 0.8275757 0.8626899 #> [970,] 0.9417043 0.9428644 0.9652038 #> [971,] 0.7672127 0.7708118 0.8045342 #> [972,] 0.8512705 0.8660131 0.8675326 #> [973,] 0.6890310 0.7102459 0.7356957 #> [974,] 0.8293702 0.8737719 0.8771729 #> [975,] 0.9366361 0.9594017 1.0164096 #> [976,] 0.6135617 0.6143098 0.6145980 #> [977,] 0.6100644 0.6560972 0.6944847 #> [978,] 0.8658190 0.9287271 0.9562004 #> [979,] 0.8026439 0.8061461 0.8523100 #> [980,] 0.7544792 0.7700905 0.7944546 #> [981,] 0.7798431 0.7893466 0.7930837 #> [982,] 0.7172235 0.7433508 0.7481295 #> [983,] 0.8697099 0.8845862 0.8919917 #> [984,] 0.6171722 0.6253003 0.6681443 #> [985,] 1.0713757 1.0957445 1.1245306 #> [986,] 0.8691765 0.8912487 0.9218647 #> [987,] 1.0751697 1.0866799 1.0975572 #> [988,] 1.1608268 1.1729700 1.1819343 #> [989,] 0.7698354 0.7771256 0.8079784 #> [990,] 0.6881899 0.7428363 0.7918862 #> [991,] 0.5465308 0.5848662 0.6901507 #> [992,] 0.8033928 0.8417451 0.8513532 #> [993,] 1.4140997 1.4184929 1.4390561 #> [994,] 0.9012890 0.9167841 0.9214295 #> [995,] 0.8027854 0.8349415 0.8488035 #> [996,] 0.7708018 0.7850795 0.8009255 #> [997,] 1.5251204 1.5339383 1.5403993 #> [998,] 1.3328246 1.3609737 1.3649186 #> [999,] 0.8731058 0.8916354 0.9132031 #> [1000,] 0.8604964 0.8725707 0.9429566 #> # Find the 10 approximate nearest neighbors tof_find_knn( .data = sim_data, k = 10, distance_function = \"euclidean\", ) #> $neighbor_ids #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] #> [1,] 992 435 985 238 66 939 919 181 825 995 #> [2,] 153 154 787 895 289 432 114 784 379 774 #> [3,] 945 35 553 884 360 7 956 357 86 562 #> [4,] 556 616 499 964 211 688 89 761 155 805 #> [5,] 86 553 637 377 7 624 242 751 283 3 #> [6,] 830 941 940 569 678 256 323 356 199 851 #> [7,] 956 624 553 86 714 3 945 360 132 232 #> [8,] 822 604 76 493 740 229 547 514 222 578 #> [9,] 619 378 531 527 732 975 585 728 549 589 #> [10,] 266 575 291 863 469 900 268 376 838 638 #> [11,] 972 153 154 570 157 245 895 121 746 529 #> [12,] 600 235 911 331 617 468 367 615 134 23 #> [13,] 464 284 978 495 117 89 706 211 189 702 #> [14,] 325 555 879 622 812 799 433 672 123 176 #> [15,] 690 152 420 907 701 492 35 981 657 86 #> [16,] 140 64 162 164 143 552 230 366 243 167 #> [17,] 386 502 643 891 413 551 120 567 876 257 #> [18,] 341 909 533 598 995 340 487 351 724 66 #> [19,] 488 909 92 340 322 341 18 855 486 183 #> [20,] 372 856 507 943 72 315 309 22 136 655 #> [21,] 280 90 689 680 307 778 189 436 702 359 #> [22,] 72 118 943 309 507 796 856 824 20 470 #> [23,] 373 327 843 844 676 134 936 12 699 617 #> [24,] 29 742 122 826 334 847 756 178 382 955 #> [25,] 921 169 916 344 866 225 991 500 930 700 #> [26,] 380 93 196 758 452 911 158 78 77 891 #> [27,] 285 312 69 292 36 223 362 237 661 180 #> [28,] 440 62 52 226 908 241 677 71 217 878 #> [29,] 742 122 24 382 331 816 955 847 826 334 #> [30,] 68 855 461 974 952 735 183 472 614 345 #> [31,] 893 589 787 531 52 62 595 975 850 908 #> [32,] 205 835 375 477 79 315 953 151 136 713 #> [33,] 463 221 179 653 361 479 95 871 938 529 #> [34,] 971 539 1000 864 870 95 938 685 136 267 #> [35,] 3 884 562 360 553 690 945 751 86 511 #> [36,] 69 285 292 98 237 931 912 27 223 661 #> [37,] 40 756 214 982 178 632 130 334 780 640 #> [38,] 904 953 437 799 107 622 433 533 669 128 #> [39,] 719 223 285 777 292 661 795 246 193 362 #> [40,] 37 214 705 756 982 809 242 780 178 983 #> [41,] 723 496 661 385 50 36 755 519 98 312 #> [42,] 204 107 437 290 602 159 460 540 622 401 #> [43,] 71 878 391 440 62 28 106 914 764 247 #> [44,] 830 740 493 434 456 941 295 449 766 294 #> [45,] 793 883 329 780 239 338 442 195 268 384 #> [46,] 427 458 844 807 794 740 23 373 60 820 #> [47,] 129 75 245 162 278 918 234 54 972 570 #> [48,] 221 776 915 361 379 405 168 55 950 359 #> [49,] 587 438 534 538 168 796 856 545 792 22 #> [50,] 231 254 524 255 98 280 464 689 397 897 #> [51,] 818 920 178 990 113 847 982 813 576 91 #> [52,] 62 908 28 440 217 241 31 589 709 595 #> [53,] 966 94 335 82 431 454 116 189 469 579 #> [54,] 408 849 652 554 278 948 230 856 374 572 #> [55,] 950 776 959 789 801 171 842 582 663 317 #> [56,] 529 34 95 642 1000 938 354 539 630 245 #> [57,] 914 347 245 570 642 47 234 56 864 971 #> [58,] 949 937 601 220 870 462 829 267 862 630 #> [59,] 434 119 456 528 708 505 949 684 267 277 #> [60,] 794 218 699 515 373 516 514 763 294 508 #> [61,] 875 451 579 963 116 865 915 958 335 860 #> [62,] 52 440 28 908 31 241 217 589 878 709 #> [63,] 788 797 836 655 546 372 194 518 477 984 #> [64,] 366 140 552 16 143 243 126 490 85 164 #> [65,] 628 902 520 763 518 514 836 880 910 186 #> [66,] 425 181 825 598 533 472 726 182 18 390 #> [67,] 578 278 938 95 849 141 836 984 880 76 #> [68,] 952 345 461 735 974 183 156 370 30 567 #> [69,] 36 237 27 285 170 912 292 180 342 443 #> [70,] 676 711 820 806 775 78 93 750 843 465 #> [71,] 391 43 28 677 878 534 587 440 62 792 #> [72,] 22 309 943 631 20 824 372 507 856 135 #> [73,] 699 314 877 277 294 917 665 119 508 327 #> [74,] 519 292 719 755 362 661 557 39 618 285 #> [75,] 374 641 572 47 948 999 54 960 422 230 #> [76,] 880 578 141 980 836 858 902 67 822 984 #> [77,] 932 939 610 452 196 506 891 26 935 158 #> [78,] 93 617 158 321 777 465 373 26 989 750 #> [79,] 390 32 954 151 477 833 181 953 643 835 #> [80,] 498 679 19 488 486 81 416 402 92 712 #> [81,] 435 561 322 486 612 710 1 238 995 939 #> [82,] 94 365 933 694 963 431 53 743 363 900 #> [83,] 263 798 819 796 300 647 526 834 22 206 #> [84,] 517 281 525 248 378 687 233 549 355 673 #> [85,] 366 162 64 164 16 490 918 143 302 980 #> [86,] 553 5 7 714 956 3 35 624 232 360 #> [87,] 829 566 483 339 862 523 88 182 630 220 #> [88,] 802 957 924 871 194 463 339 568 630 829 #> [89,] 443 170 947 211 482 4 706 556 499 603 #> [90,] 778 280 689 359 21 436 524 399 950 931 #> [91,] 813 197 818 586 990 535 983 51 674 468 #> [92,] 488 19 30 855 542 909 183 857 351 487 #> [93,] 78 617 158 26 321 634 196 380 911 465 #> [94,] 82 365 53 694 933 963 431 363 61 900 #> [95,] 938 67 121 245 653 871 278 971 33 129 #> [96,] 326 680 861 970 922 791 21 654 853 307 #> [97,] 610 733 841 901 103 932 304 77 723 452 #> [98,] 254 223 285 36 661 292 931 69 39 795 #> [99,] 627 618 768 444 109 550 930 237 823 916 #> [100,] 370 754 183 935 977 345 729 952 68 156 #> [101,] 284 117 640 453 231 397 611 334 706 332 #> [102,] 299 450 738 809 945 571 536 831 790 3 #> [103,] 901 97 733 841 610 913 898 355 723 304 #> [104,] 287 848 228 236 804 336 960 573 313 374 #> [105,] 722 190 876 407 257 107 120 602 437 146 #> [106,] 497 247 471 986 289 532 633 635 874 489 #> [107,] 437 42 602 290 460 38 204 105 707 190 #> [108,] 139 714 522 330 212 771 232 377 860 215 #> [109,] 823 478 627 99 490 973 143 768 444 393 #> [110,] 946 259 367 12 854 235 191 753 600 844 #> [111,] 834 693 782 349 633 532 538 819 746 83 #> [112,] 353 419 629 811 536 563 639 313 667 175 #> [113,] 920 847 658 178 332 51 146 982 310 762 #> [114,] 432 436 778 969 774 359 895 784 90 379 #> [115,] 857 351 176 487 662 879 669 14 485 855 #> [116,] 875 61 579 189 335 702 451 727 964 668 #> [117,] 284 640 544 101 445 704 249 978 837 335 #> [118,] 593 545 22 306 943 961 438 470 72 796 #> [119,] 456 294 708 434 277 218 699 917 59 73 #> [120,] 551 190 658 17 876 386 502 105 643 257 #> [121,] 938 871 129 95 245 856 278 234 534 49 #> [122,] 29 24 178 334 847 742 756 816 586 813 #> [123,] 404 672 325 42 205 929 894 540 799 107 #> [124,] 163 523 506 181 192 829 786 541 954 872 #> [125,] 369 734 512 674 983 265 40 720 817 632 #> [126,] 973 143 64 366 552 288 140 671 243 490 #> [127,] 667 336 520 745 252 573 852 552 515 313 #> [128,] 559 833 473 217 182 405 350 381 803 38 #> [129,] 278 162 245 121 938 95 583 67 849 164 #> [130,] 632 615 756 262 334 753 122 367 596 265 #> [131,] 500 137 169 659 858 832 736 618 944 296 #> [132,] 146 297 826 624 227 409 956 7 441 876 #> [133,] 770 906 594 186 721 508 264 308 457 737 #> [134,] 844 373 967 617 344 308 264 955 235 331 #> [135,] 309 631 943 470 72 581 507 810 22 824 #> [136,] 194 477 655 984 315 20 871 462 797 802 #> [137,] 131 500 786 659 736 937 944 858 541 169 #> [138,] 675 821 614 348 645 602 783 574 415 437 #> [139,] 108 798 216 714 420 152 771 681 701 537 #> [140,] 552 143 243 64 16 745 520 490 366 252 #> [141,] 880 980 76 578 490 788 836 910 67 628 #> [142,] 759 544 730 146 722 297 624 958 956 105 #> [143,] 140 243 552 973 64 16 823 126 478 109 #> [144,] 415 411 485 662 138 614 979 675 204 783 #> [145,] 693 269 647 188 798 253 526 83 263 208 #> [146,] 722 132 544 142 759 297 876 737 658 826 #> [147,] 407 737 906 457 696 789 594 713 388 887 #> [148,] 282 406 491 283 637 705 869 982 576 242 #> [149,] 503 358 370 381 260 355 951 281 524 324 #> [150,] 346 762 453 332 977 754 413 371 742 621 #> [151,] 721 835 713 457 810 594 257 79 205 32 #> [152,] 681 657 300 216 907 690 15 798 981 389 #> [153,] 154 11 895 2 379 529 972 33 850 221 #> [154,] 153 11 895 157 2 391 972 289 570 529 #> [155,] 616 603 588 4 392 596 185 556 428 396 #> [156,] 726 345 567 472 935 183 413 598 68 260 #> [157,] 746 11 972 154 570 224 391 633 934 153 #> [158,] 321 196 465 93 78 891 251 634 26 380 #> [159,] 401 792 204 677 42 538 460 290 923 241 #> [160,] 859 967 994 716 344 867 866 700 428 398 #> [161,] 692 405 796 460 538 819 168 602 545 105 #> [162,] 16 129 278 164 85 918 583 849 230 64 #> [163,] 124 523 506 825 181 992 260 87 192 829 #> [164,] 16 478 823 162 143 583 490 109 140 141 #> [165,] 845 986 532 494 247 187 291 782 838 743 #> [166,] 840 312 392 27 715 170 428 814 69 89 #> [167,] 606 387 504 521 455 745 961 288 451 243 #> [168,] 538 796 792 49 405 534 587 241 315 48 #> [169,] 500 131 25 820 858 244 944 137 921 916 #> [170,] 443 69 482 89 342 706 912 36 947 556 #> [171,] 959 950 605 55 317 801 249 702 875 958 #> [172,] 271 582 568 768 560 399 924 698 926 463 #> [173,] 960 374 228 903 287 104 997 175 613 804 #> [174,] 637 200 576 406 305 873 144 148 415 751 #> [175,] 613 903 804 229 353 515 173 997 667 429 #> [176,] 857 879 351 433 669 487 585 783 115 799 #> [177,] 371 193 621 932 453 231 385 254 661 452 #> [178,] 756 982 122 51 847 113 920 214 334 24 #> [179,] 653 33 463 479 924 361 221 95 279 938 #> [180,] 795 237 285 69 706 892 223 27 393 342 #> [181,] 825 182 66 425 124 163 79 523 260 726 #> [182,] 181 425 381 128 260 833 825 350 726 324 #> [183,] 935 567 345 952 754 156 100 413 68 977 #> [184,] 368 940 419 752 15 356 448 690 475 511 #> [185,] 396 596 616 761 450 155 293 738 965 603 #> [186,] 508 133 518 763 546 388 594 890 628 721 #> [187,] 401 635 986 532 874 471 159 923 204 460 #> [188,] 572 269 999 263 641 145 234 693 83 274 #> [189,] 702 482 116 464 861 680 211 280 966 791 #> [190,] 707 821 120 602 437 105 460 658 107 551 #> [191,] 367 275 412 636 854 632 600 816 110 262 #> [192,] 560 557 124 506 541 172 786 271 698 296 #> [193,] 371 621 452 453 899 611 380 39 223 150 #> [194,] 802 136 462 797 477 871 829 88 655 63 #> [195,] 780 705 704 883 282 239 837 769 240 445 #> [196,] 158 251 891 939 26 77 380 322 93 634 #> [197,] 813 91 818 983 51 586 636 674 178 990 #> [198,] 548 272 316 352 987 739 325 896 672 328 #> [199,] 851 896 684 608 987 417 414 274 941 548 #> [200,] 576 873 675 415 174 406 637 535 990 409 #> [201,] 936 416 46 886 23 843 807 295 458 946 #> [202,] 530 137 250 131 500 296 858 311 169 659 #> [203,] 747 720 265 327 357 691 571 839 319 536 #> [204,] 42 401 159 460 107 437 602 540 622 799 #> [205,] 32 835 375 953 810 151 290 315 656 123 #> [206,] 773 976 300 438 819 118 681 545 263 306 #> [207,] 96 179 302 970 509 467 550 279 326 479 #> [208,] 677 894 656 226 526 587 269 792 290 375 #> [209,] 806 275 888 412 191 775 561 911 258 70 #> [210,] 725 418 717 591 649 476 668 213 455 474 #> [211,] 964 4 791 189 89 482 499 702 556 688 #> [212,] 330 522 785 730 283 869 645 692 142 297 #> [213,] 717 476 320 418 556 455 725 892 927 964 #> [214,] 40 242 809 756 37 982 178 297 624 640 #> [215,] 701 232 798 420 540 647 929 714 108 86 #> [216,] 681 564 976 426 860 865 300 714 819 389 #> [217,] 241 908 803 595 128 52 709 850 28 833 #> [218,] 294 708 60 699 508 902 119 456 514 794 #> [219,] 346 611 332 453 977 334 816 150 371 646 #> [220,] 58 862 601 949 919 87 937 267 988 354 #> [221,] 361 48 379 359 463 33 583 871 776 915 #> [222,] 8 613 604 577 175 903 740 225 229 822 #> [223,] 285 98 39 661 292 795 254 27 36 193 #> [224,] 746 633 934 157 349 111 648 363 834 782 #> [225,] 577 697 25 429 671 921 794 916 514 629 #> [226,] 375 28 677 208 315 792 587 534 217 241 #> [227,] 580 868 990 535 409 441 132 826 360 945 #> [228,] 287 104 848 960 374 569 236 256 652 804 #> [229,] 794 804 515 902 514 65 218 60 628 8 #> [230,] 824 422 336 16 652 773 374 54 881 745 #> [231,] 255 50 254 397 101 284 177 464 453 338 #> [232,] 714 929 215 574 540 7 108 798 86 212 #> [233,] 566 951 324 248 87 531 549 687 517 523 #> [234,] 570 587 534 121 972 49 856 188 391 864 #> [235,] 615 753 331 747 955 600 12 134 265 967 #> [236,] 256 848 907 104 287 772 573 356 228 678 #> [237,] 292 69 36 795 285 912 180 27 931 768 #> [238,] 612 1 995 919 992 905 390 528 465 985 #> [239,] 883 329 780 588 195 704 117 37 640 978 #> [240,] 837 704 727 579 445 978 335 431 668 730 #> [241,] 217 923 792 635 52 908 168 28 538 595 #> [242,] 297 624 214 785 982 132 809 553 956 283 #> [243,] 552 140 745 252 143 455 606 973 320 127 #> [244,] 169 820 500 25 131 766 858 137 427 815 #> [245,] 129 938 121 95 529 278 642 234 570 11 #> [246,] 777 750 344 866 719 39 331 991 731 617 #> [247,] 253 349 106 633 187 934 532 43 71 165 #> [248,] 281 951 324 517 233 728 355 358 549 260 #> [249,] 605 544 759 722 146 171 801 310 640 959 #> [250,] 202 832 131 550 296 748 137 530 500 169 #> [251,] 322 196 158 634 340 710 486 321 93 911 #> [252,] 320 243 476 745 261 455 127 649 552 667 #> [253,] 247 349 145 693 647 633 187 421 401 111 #> [254,] 98 397 223 899 50 285 621 582 317 706 #> [255,] 231 338 683 757 50 385 177 464 254 827 #> [256,] 236 848 356 772 287 907 104 228 960 274 #> [257,] 713 643 876 457 407 594 721 386 835 105 #> [258,] 888 682 561 939 610 729 998 77 97 19 #> [259,] 110 946 458 807 844 629 753 967 46 319 #> [260,] 825 324 381 728 951 726 182 523 156 472 #> [261,] 476 320 474 252 927 852 649 388 660 745 #> [262,] 130 334 632 646 588 219 101 756 623 611 #> [263,] 83 300 798 999 206 681 819 526 22 824 #> [264,] 308 955 770 133 580 882 826 571 388 747 #> [265,] 753 615 747 674 293 235 571 203 130 720 #> [266,] 10 575 863 291 268 638 376 838 469 808 #> [267,] 862 462 949 136 620 477 58 803 194 870 #> [268,] 575 808 484 863 469 298 827 266 838 491 #> [269,] 145 188 208 417 526 274 677 693 894 647 #> [270,] 800 917 631 810 749 678 459 581 423 135 #> [271,] 172 582 842 926 663 899 350 872 741 473 #> [272,] 352 325 316 14 208 894 548 555 677 540 #> [273,] 559 774 405 128 503 969 381 549 741 923 #> [274,] 526 656 417 631 896 199 894 72 269 208 #> [275,] 623 758 600 816 191 412 611 331 367 911 #> [276,] 494 614 144 491 783 348 735 662 461 138 #> [277,] 314 119 528 73 917 321 151 390 721 699 #> [278,] 129 67 849 162 938 95 245 121 54 578 #> [279,] 479 529 179 642 394 653 33 56 311 630 #> [280,] 90 689 21 702 171 189 524 436 778 950 #> [281,] 248 355 728 673 517 324 84 951 149 260 #> [282,] 869 148 283 491 846 481 446 195 785 780 #> [283,] 869 785 212 330 730 481 645 282 297 242 #> [284,] 464 706 117 101 13 702 171 827 231 397 #> [285,] 292 223 27 36 98 69 39 661 237 795 #> [286,] 970 947 50 21 467 443 897 680 170 41 #> [287,] 228 848 104 960 374 236 569 256 336 652 #> [288,] 606 167 973 387 143 243 584 654 521 688 #> [289,] 784 489 774 895 893 471 2 497 106 31 #> [290,] 507 107 796 42 315 792 656 894 205 375 #> [291,] 838 900 575 469 10 986 694 845 266 471 #> [292,] 285 237 36 223 27 39 795 74 69 661 #> [293,] 753 596 716 615 265 369 235 450 130 747 #> [294,] 218 119 456 699 708 73 917 508 270 434 #> [295,] 44 650 664 201 383 449 740 830 46 434 #> [296,] 192 557 560 339 698 659 618 403 924 736 #> [297,] 624 242 730 785 146 956 142 132 759 544 #> [298,] 268 808 735 442 863 952 484 575 68 30 #> [299,] 102 571 809 811 450 396 261 945 852 418 #> [300,] 681 263 824 976 206 83 881 216 999 152 #> [301,] 625 537 648 771 139 599 337 579 925 108 #> [302,] 85 642 479 918 311 279 179 653 164 162 #> [303,] 489 694 289 94 900 784 82 365 114 853 #> [304,] 932 736 719 519 74 557 452 610 97 750 #> [305,] 174 200 415 979 144 662 411 651 485 410 #> [306,] 593 118 583 545 438 773 961 22 206 167 #> [307,] 21 467 90 778 436 114 853 359 432 280 #> [308,] 264 955 770 388 133 967 571 882 826 134 #> [309,] 943 72 135 631 372 22 518 749 507 20 #> [310,] 484 821 658 735 249 190 120 113 952 605 #> [311,] 653 67 95 938 870 578 642 822 530 76 #> [312,] 27 362 392 285 731 661 519 496 223 840 #> [313,] 563 804 573 336 515 127 667 767 104 516 #> [314,] 277 73 665 917 151 592 119 721 810 400 #> [315,] 20 136 507 375 833 290 32 797 835 205 #> [316,] 485 411 555 272 662 325 14 979 352 144 #> [317,] 842 801 899 696 887 605 663 959 926 171 #> [318,] 364 619 609 985 9 351 527 425 855 483 #> [319,] 967 747 852 516 691 811 629 308 60 515 #> [320,] 476 252 892 261 213 927 439 455 717 418 #> [321,] 158 465 634 954 528 78 890 891 277 93 #> [322,] 251 340 486 196 561 939 909 710 341 995 #> [323,] 104 6 804 563 767 228 287 678 313 997 #> [324,] 951 260 381 248 728 233 566 182 523 549 #> [325,] 14 123 272 672 622 894 42 799 812 555 #> [326,] 680 791 922 96 861 947 970 482 654 443 #> [327,] 468 886 73 23 699 877 747 203 691 357 #> [328,] 744 410 979 402 712 672 198 485 679 305 #> [329,] 239 883 495 13 978 703 45 780 588 195 #> [330,] 522 212 626 481 692 869 446 283 108 846 #> [331,] 600 29 235 758 615 742 617 623 246 24 #> [332,] 847 346 150 334 219 453 977 742 113 762 #> [333,] 927 887 696 544 737 474 826 146 476 722 #> [334,] 847 122 332 756 816 742 178 219 632 346 #> [335,] 966 875 579 116 53 171 727 958 61 827 #> [336,] 573 881 127 313 824 104 230 591 745 848 #> [337,] 430 625 301 599 648 424 537 139 389 492 #> [338,] 683 757 255 827 231 454 464 50 808 284 #> [339,] 924 630 88 957 698 87 354 829 296 653 #> [340,] 909 322 341 598 18 251 533 567 939 196 #> [341,] 909 18 340 724 533 598 995 487 592 402 #> [342,] 393 439 867 428 556 69 840 170 237 180 #> [343,] 731 362 496 750 814 519 775 312 715 74 #> [344,] 866 991 700 246 921 916 777 930 160 867 #> [345,] 156 68 567 726 952 183 935 370 413 551 #> [346,] 150 453 332 611 219 762 371 977 742 847 #> [347,] 685 864 608 971 34 914 1000 539 57 234 #> [348,] 783 614 799 138 437 707 602 461 622 460 #> [349,] 633 934 253 111 782 247 693 224 599 532 #> [350,] 473 741 833 643 568 271 381 872 957 182 #> [351,] 857 487 176 855 115 18 669 879 598 533 #> [352,] 272 71 208 269 417 325 440 145 316 548 #> [353,] 429 671 667 447 175 903 552 64 639 126 #> [354,] 630 394 339 87 58 220 928 870 88 56 #> [355,] 281 248 673 149 998 841 728 913 260 324 #> [356,] 772 459 511 597 256 678 543 236 800 767 #> [357,] 691 884 882 3 945 35 580 581 571 747 #> [358,] 969 778 524 149 951 381 436 687 503 399 #> [359,] 221 361 90 463 778 950 48 568 689 55 #> [360,] 409 562 3 884 35 7 423 868 574 581 #> [361,] 221 48 359 379 463 583 33 915 776 950 #> [362,] 519 312 661 27 719 74 496 39 292 285 #> [363,] 963 889 895 933 915 834 82 648 94 111 #> [364,] 318 351 855 857 115 435 619 879 985 609 #> [365,] 82 743 94 431 828 694 933 537 963 648 #> [366,] 64 85 140 16 126 552 143 490 164 162 #> [367,] 615 632 191 130 12 235 753 636 600 275 #> [368,] 511 543 751 597 562 356 410 873 772 35 #> [369,] 293 450 265 596 753 125 130 615 185 738 #> [370,] 100 345 808 68 149 952 754 503 935 183 #> [371,] 193 453 611 621 346 150 452 177 762 380 #> [372,] 20 943 309 72 518 856 63 655 22 749 #> [373,] 844 134 617 989 60 23 78 699 967 921 #> [374,] 960 287 228 848 75 572 104 569 230 641 #> [375,] 205 32 953 226 315 290 812 835 136 833 #> [376,] 525 969 687 10 436 863 784 517 266 358 #> [377,] 108 5 925 701 869 637 215 283 86 212 #> [378,] 9 531 619 549 728 233 84 248 687 281 #> [379,] 221 48 361 850 895 787 168 871 595 153 #> [380,] 758 26 452 891 742 193 150 196 346 371 #> [381,] 741 260 951 324 182 350 559 523 726 128 #> [382,] 634 502 441 742 29 413 762 876 150 17 #> [383,] 414 505 44 608 851 59 685 941 449 434 #> [384,] 282 846 793 446 195 942 743 481 780 869 #> [385,] 177 723 41 255 231 50 646 496 371 661 #> [386,] 17 643 876 502 257 120 891 663 551 737 #> [387,] 167 504 521 606 584 288 451 773 455 644 #> [388,] 763 186 520 147 308 261 508 133 906 696 #> [389,] 657 426 681 216 976 564 591 422 206 152 #> [390,] 79 592 995 277 528 151 724 953 66 181 #> [391,] 534 71 587 677 538 792 570 49 28 878 #> [392,] 312 27 731 623 840 166 859 646 285 155 #> [393,] 439 342 892 867 237 556 180 973 700 930 #> [394,] 354 630 928 339 279 56 781 2 529 233 #> [395,] 654 670 584 288 521 644 504 387 688 167 #> [396,] 185 616 299 596 761 450 718 738 418 155 #> [397,] 254 899 621 317 801 453 762 605 193 98 #> [398,] 671 885 994 429 439 428 697 160 393 973 #> [399,] 698 582 524 568 560 172 897 271 689 778 #> [400,] 996 684 672 592 314 205 917 665 123 277 #> [401,] 159 204 187 42 460 792 602 540 635 437 #> [402,] 712 341 679 724 909 486 744 314 410 592 #> [403,] 897 698 399 560 913 557 524 296 192 358 #> [404,] 123 672 415 979 574 724 868 423 929 799 #> [405,] 168 161 559 128 48 923 776 915 707 241 #> [406,] 576 200 982 148 491 51 442 645 818 174 #> [407,] 789 147 257 722 737 663 713 470 105 776 #> [408,] 54 849 554 652 547 760 278 749 372 971 #> [409,] 360 868 574 227 535 132 990 423 675 873 #> [410,] 744 651 328 402 679 873 543 979 712 368 #> [411,] 485 144 316 662 979 415 475 305 421 540 #> [412,] 636 816 275 911 586 813 219 367 632 334 #> [413,] 567 502 17 935 150 183 382 762 754 345 #> [414,] 608 199 941 987 851 896 760 685 417 948 #> [415,] 675 979 138 404 574 200 144 409 576 614 #> [416,] 843 936 486 23 710 712 612 886 402 468 #> [417,] 896 274 269 199 208 987 548 608 526 894 #> [418,] 725 210 717 476 213 668 320 474 591 649 #> [419,] 563 536 313 323 15 981 907 236 690 767 #> [420,] 798 701 215 647 690 139 962 152 15 693 #> [421,] 475 253 316 411 145 272 352 647 485 693 #> [422,] 230 387 389 773 206 606 374 504 167 657 #> [423,] 665 868 800 877 459 581 360 562 884 270 #> [424,] 240 727 837 301 670 704 579 666 978 625 #> [425,] 66 182 181 825 620 709 732 726 533 260 #> [426,] 389 657 216 591 564 681 976 210 881 981 #> [427,] 46 244 740 222 577 820 807 766 458 794 #> [428,] 840 814 342 867 885 859 393 398 439 160 #> [429,] 671 667 398 629 852 225 353 252 697 127 #> [430,] 337 625 648 301 599 537 224 480 644 828 #> [431,] 942 846 82 743 365 481 626 579 53 446 #> [432,] 114 895 379 359 221 361 774 778 436 2 #> [433,] 622 908 879 176 799 38 904 783 953 348 #> [434,] 456 59 119 708 766 294 740 493 528 218 #> [435,] 1 992 985 238 81 939 66 18 995 322 #> [436,] 778 90 969 524 358 280 454 114 21 273 #> [437,] 602 107 707 460 42 190 38 204 904 348 #> [438,] 49 306 545 773 593 118 889 206 796 819 #> [439,] 393 892 342 556 973 320 213 867 688 180 #> [440,] 28 62 52 908 555 71 622 433 764 878 #> [441,] 876 868 382 227 826 457 695 594 502 721 #> [442,] 491 982 406 113 640 785 310 484 920 282 #> [443,] 170 482 706 89 69 912 947 702 931 36 #> [444,] 930 99 910 627 991 916 618 700 768 546 #> [445,] 704 837 668 790 117 240 725 730 809 418 #> [446,] 481 626 846 942 330 743 869 431 522 283 #> [447,] 126 353 398 671 639 429 973 885 288 805 #> [448,] 886 516 767 691 678 877 327 203 323 458 #> [449,] 996 400 712 543 744 851 877 830 456 119 #> [450,] 738 102 299 596 293 369 185 396 265 809 #> [451,] 865 61 875 504 521 167 958 579 387 860 #> [452,] 193 932 380 371 26 719 77 39 758 891 #> [453,] 346 150 762 371 611 621 332 193 977 754 #> [454,] 827 469 683 436 503 280 966 53 335 484 #> [455,] 745 961 660 649 717 606 167 243 476 213 #> [456,] 119 434 294 708 218 59 699 493 830 740 #> [457,] 721 594 713 810 257 835 151 147 876 906 #> [458,] 807 886 319 844 516 327 46 60 23 203 #> [459,] 800 356 423 772 511 597 270 543 562 581 #> [460,] 602 707 437 107 204 42 190 161 401 159 #> [461,] 735 68 821 952 974 614 348 345 190 783 #> [462,] 870 194 829 984 949 937 477 267 136 58 #> [463,] 924 221 957 33 359 568 361 698 88 179 #> [464,] 284 13 702 189 706 280 482 443 117 50 #> [465,] 158 321 528 78 196 944 93 786 710 954 #> [466,] 395 861 670 424 727 430 644 654 853 584 #> [467,] 307 897 779 21 403 970 286 524 90 689 #> [468,] 327 12 91 586 535 990 227 674 955 23 #> [469,] 454 900 575 291 694 838 827 268 863 484 #> [470,] 507 135 796 22 407 118 545 309 147 943 #> [471,] 986 635 532 923 187 497 874 589 774 900 #> [472,] 156 726 598 345 825 66 567 260 183 935 #> [473,] 350 741 833 643 128 797 271 776 568 954 #> [474,] 649 476 261 927 660 333 956 591 210 418 #> [475,] 752 411 701 421 420 215 368 597 751 511 #> [476,] 320 261 927 213 474 252 418 649 717 455 #> [477,] 655 984 136 32 194 462 63 797 79 954 #> [478,] 823 109 164 143 583 490 788 99 768 140 #> [479,] 279 529 33 179 653 642 95 938 245 311 #> [480,] 644 504 521 773 889 206 387 438 972 746 #> [481,] 446 626 846 942 330 869 283 522 431 212 #> [482,] 443 702 791 170 706 189 912 556 89 211 #> [483,] 709 862 87 620 566 803 531 425 595 220 #> [484,] 808 310 735 827 503 370 952 268 249 821 #> [485,] 662 411 979 316 144 325 14 415 555 799 #> [486,] 322 710 251 416 402 712 843 911 612 909 #> [487,] 669 351 533 341 18 598 176 909 724 857 #> [488,] 19 92 855 909 351 487 18 30 341 857 #> [489,] 289 694 784 900 471 774 303 106 895 986 #> [490,] 980 141 823 109 880 143 478 140 627 164 #> [491,] 442 282 406 283 869 645 785 148 481 446 #> [492,] 15 501 152 337 657 962 389 690 419 420 #> [493,] 941 740 830 547 760 456 434 8 554 708 #> [494,] 276 838 165 614 348 491 291 986 874 144 #> [495,] 13 329 464 513 284 89 239 231 338 255 #> [496,] 362 723 519 661 312 41 74 304 27 719 #> [497,] 106 874 471 893 986 635 31 289 589 187 #> [498,] 679 91 197 80 402 651 468 486 813 818 #> [499,] 4 688 805 791 922 211 89 556 964 947 #> [500,] 169 131 858 137 944 25 820 921 244 659 #> [501,] 492 337 430 389 657 641 962 599 15 152 #> [502,] 17 413 695 386 567 382 120 876 441 643 #> [503,] 149 370 484 808 358 273 381 454 551 863 #> [504,] 521 387 167 644 606 773 451 206 306 584 #> [505,] 685 59 608 760 988 949 267 34 862 864 #> [506,] 124 872 523 163 560 192 932 77 825 260 #> [507,] 470 20 22 290 796 72 943 309 835 315 #> [508,] 186 518 917 810 763 594 721 133 218 457 #> [509,] 479 853 279 918 529 2 153 207 179 33 #> [510,] 641 572 188 999 962 145 948 569 269 960 #> [511,] 562 772 459 356 597 690 884 35 907 360 #> [512,] 632 37 262 130 588 40 590 125 983 756 #> [513,] 13 495 211 89 978 922 947 464 189 680 #> [514,] 902 628 921 65 763 794 218 880 858 910 #> [515,] 804 516 229 313 127 60 794 667 767 218 #> [516,] 691 515 767 60 319 313 678 357 563 804 #> [517,] 248 84 687 281 358 525 969 913 233 951 #> [518,] 508 186 943 309 520 372 628 65 836 749 #> [519,] 362 74 661 719 292 496 39 285 312 755 #> [520,] 65 518 628 763 961 127 388 660 943 745 #> [521,] 504 387 167 644 584 606 451 288 773 480 #> [522,] 330 771 692 860 212 108 626 730 481 161 #> [523,] 124 163 506 260 324 381 350 825 872 182 #> [524,] 399 778 358 90 897 689 436 50 280 254 #> [525,] 687 376 969 549 517 84 784 774 378 248 #> [526,] 894 656 929 274 208 540 631 83 72 290 #> [527,] 585 619 9 732 975 589 974 176 638 378 #> [528,] 277 321 465 989 390 119 612 59 79 890 #> [529,] 479 245 33 938 95 153 56 642 279 121 #> [530,] 202 311 58 937 870 949 354 630 220 137 #> [531,] 9 31 566 378 549 787 893 589 233 975 #> [532,] 986 471 187 635 782 923 111 401 933 159 #> [533,] 598 669 904 18 724 341 487 909 66 340 #> [534,] 587 391 49 538 168 792 677 234 226 241 #> [535,] 990 227 409 873 868 91 360 200 51 818 #> [536,] 691 357 563 102 811 419 981 35 299 313 #> [537,] 771 648 301 782 625 365 522 108 139 828 #> [538,] 792 168 49 587 534 923 796 159 161 677 #> [539,] 1000 34 864 971 803 226 862 595 267 607 #> [540,] 929 894 42 204 526 232 123 215 401 290 #> [541,] 786 829 659 954 462 937 194 192 124 924 #> [542,] 673 30 100 998 370 472 855 728 68 281 #> [543,] 597 996 459 356 423 800 511 744 672 877 #> [544,] 759 142 249 146 730 333 958 722 605 297 #> [545,] 118 306 593 438 796 819 470 22 865 206 #> [546,] 910 788 63 186 926 890 518 628 133 663 #> [547,] 760 554 408 493 822 578 849 984 941 652 #> [548,] 896 987 851 684 417 199 198 272 325 672 #> [549,] 687 951 531 324 566 969 525 732 248 728 #> [550,] 627 832 99 618 768 109 748 444 755 490 #> [551,] 120 17 386 801 726 741 345 899 643 762 #> [552,] 140 243 64 143 745 16 252 127 667 606 #> [553,] 86 3 5 7 956 945 624 35 360 242 #> [554,] 547 408 760 849 652 54 578 984 67 749 #> [555,] 14 622 440 433 316 325 783 176 879 799 #> [556,] 439 688 4 213 342 393 964 180 482 892 #> [557,] 192 560 74 506 296 304 618 932 736 124 #> [558,] 509 47 642 918 11 529 57 245 302 479 #> [559,] 128 273 405 381 707 741 190 551 473 120 #> [560,] 192 557 698 399 172 271 506 582 523 124 #> [561,] 939 322 196 26 251 911 77 806 158 258 #> [562,] 511 360 884 35 459 423 581 772 3 409 #> [563,] 313 767 573 336 104 804 691 516 236 907 #> [564,] 216 976 681 865 426 881 860 649 591 660 #> [565,] 488 115 328 92 80 857 305 19 351 487 #> [566,] 951 233 324 531 595 787 850 549 182 87 #> [567,] 413 156 345 726 935 502 183 17 598 551 #> [568,] 957 741 399 698 172 350 582 473 463 271 #> [569,] 948 228 960 287 848 374 256 6 274 104 #> [570,] 234 972 391 11 534 587 245 121 157 49 #> [571,] 747 580 955 299 264 308 882 945 809 261 #> [572,] 999 641 188 374 263 75 300 948 274 54 #> [573,] 336 881 313 824 127 907 981 563 236 104 #> [574,] 675 409 232 138 360 415 645 132 404 929 #> [575,] 863 268 10 266 469 291 838 808 484 900 #> [576,] 200 406 675 637 645 873 174 51 415 409 #> [577,] 225 697 429 222 671 25 629 175 794 398 #> [578,] 67 76 880 141 836 822 980 849 984 554 #> [579,] 61 875 116 860 451 240 771 865 335 958 #> [580,] 227 826 955 571 882 264 945 770 132 747 #> [581,] 884 423 135 800 882 459 562 270 907 360 #> [582,] 271 172 899 741 399 842 872 568 55 801 #> [583,] 306 593 361 164 438 118 48 478 545 221 #> [584,] 521 387 606 670 288 504 167 389 426 210 #> [585,] 527 732 974 176 433 589 619 9 348 783 #> [586,] 674 813 983 636 91 122 632 178 197 816 #> [587,] 534 49 677 391 538 792 168 796 208 856 #> [588,] 155 262 603 130 239 596 37 616 185 756 #> [589,] 31 908 52 635 732 217 874 62 241 893 #> [590,] 512 191 262 632 646 588 367 130 636 275 #> [591,] 649 881 210 745 660 426 606 564 976 474 #> [592,] 390 724 995 400 151 812 314 953 341 79 #> [593,] 306 118 545 583 961 438 22 773 943 372 #> [594,] 721 457 133 906 713 770 257 737 186 876 #> [595,] 850 787 803 217 566 241 802 31 379 709 #> [596,] 293 185 396 450 716 753 155 616 130 369 #> [597,] 543 459 356 772 511 562 929 896 800 526 #> [598,] 533 18 340 909 472 669 156 341 66 567 #> [599,] 962 139 625 537 782 301 349 693 648 108 #> [600,] 331 758 623 12 617 235 731 246 275 29 #> [601,] 949 937 58 919 220 829 786 462 541 267 #> [602,] 460 437 707 107 190 42 204 105 138 348 #> [603,] 155 616 588 761 4 89 392 185 965 428 #> [604,] 8 822 903 554 547 613 222 578 493 408 #> [605,] 249 801 171 959 317 722 544 55 759 397 #> [606,] 167 387 745 455 243 504 591 288 717 649 #> [607,] 988 539 483 1000 862 709 620 34 505 220 #> [608,] 685 414 199 347 851 760 417 505 864 684 #> [609,] 673 619 318 542 728 998 281 378 364 527 #> [610,] 97 932 77 841 304 939 733 901 452 506 #> [611,] 346 371 219 453 623 758 742 193 150 380 #> [612,] 710 238 528 843 995 465 765 322 251 277 #> [613,] 903 175 997 222 604 173 229 804 8 353 #> [614,] 783 138 348 461 799 669 821 662 675 735 #> [615,] 753 235 265 130 331 747 293 955 122 367 #> [616,] 155 4 603 396 556 185 885 761 596 716 #> [617,] 93 78 134 373 634 331 600 246 777 158 #> [618,] 99 768 627 444 550 237 755 292 74 172 #> [619,] 9 527 728 378 585 732 673 531 425 318 #> [620,] 862 267 425 709 919 812 483 181 66 390 #> [621,] 193 899 371 872 397 762 453 150 891 551 #> [622,] 433 799 38 42 908 14 953 437 204 783 #> [623,] 758 611 600 731 275 331 392 742 646 312 #> [624,] 297 956 7 242 730 142 132 553 759 146 #> [625,] 301 537 648 599 828 430 337 782 771 139 #> [626,] 481 446 330 942 846 692 522 431 212 869 #> [627,] 99 550 618 444 109 768 930 237 916 823 #> [628,] 902 65 763 514 910 518 836 880 520 186 #> [629,] 319 429 697 994 967 852 225 811 671 160 #> [630,] 354 339 88 870 653 87 58 924 802 871 #> [631,] 309 72 749 135 943 656 270 22 824 507 #> [632,] 130 334 636 262 586 756 674 122 367 983 #> [633,] 934 349 224 111 247 782 746 532 106 157 #> [634,] 382 321 891 158 251 441 502 770 133 594 #> [635,] 923 471 187 241 986 532 159 589 792 538 #> [636,] 412 586 816 632 813 674 367 983 122 197 #> [637,] 5 174 576 200 751 377 873 148 86 553 #> [638,] 838 974 527 291 575 863 266 585 732 874 #> [639,] 718 885 398 396 994 671 429 447 811 252 #> [640,] 117 249 544 113 101 759 730 785 704 297 #> [641,] 999 572 75 188 374 422 263 300 206 960 #> [642,] 245 479 529 938 95 311 56 279 278 302 #> [643,] 386 17 257 473 713 663 350 954 502 120 #> [644,] 480 521 504 451 889 387 773 206 167 61 #> [645,] 675 785 821 138 212 574 920 658 576 283 #> [646,] 623 262 219 611 392 312 275 101 371 231 #> [647,] 693 798 145 83 420 215 540 263 701 526 #> [648,] 537 625 301 771 834 365 782 363 963 828 #> [649,] 660 745 591 961 881 455 474 476 210 261 #> [650,] 765 295 383 44 416 612 905 843 449 81 #> [651,] 873 679 410 535 91 200 990 734 751 498 #> [652,] 749 408 849 54 554 372 824 943 72 309 #> [653,] 179 95 33 311 924 938 630 463 870 88 #> [654,] 288 395 521 326 504 791 167 387 688 973 #> [655,] 984 477 836 136 63 372 194 462 20 788 #> [656,] 526 894 631 208 72 290 507 20 274 205 #> [657,] 389 426 681 152 981 216 591 300 976 881 #> [658,] 920 120 821 876 113 146 190 502 310 722 #> [659,] 541 786 444 137 829 910 858 192 141 937 #> [660,] 649 961 745 455 881 591 474 476 520 606 #> [661,] 223 285 519 98 39 292 362 74 36 27 #> [662,] 485 979 144 614 411 783 316 799 14 669 #> [663,] 926 842 789 906 737 407 317 271 643 386 #> [664,] 44 295 997 941 414 493 830 6 383 940 #> [665,] 423 868 877 917 314 800 810 73 270 151 #> [666,] 769 925 424 705 195 790 831 301 704 837 #> [667,] 127 852 252 429 313 552 811 243 336 745 #> [668,] 725 964 418 717 958 210 445 213 875 451 #> [669,] 487 799 533 724 904 176 598 783 38 351 #> [670,] 584 964 395 668 717 688 116 211 521 725 #> [671,] 429 398 252 667 552 126 243 973 225 994 #> [672,] 123 404 325 400 979 744 996 592 14 724 #> [673,] 728 281 355 619 998 542 472 248 609 260 #> [674,] 586 983 813 734 265 91 632 636 122 615 #> [675,] 645 138 574 415 576 821 200 409 920 658 #> [676,] 70 806 843 78 93 820 23 373 617 710 #> [677,] 792 208 587 159 226 534 538 28 290 894 #> [678,] 767 270 800 356 236 459 516 581 877 104 #> [679,] 498 402 651 91 410 535 468 990 712 818 #> [680,] 861 326 791 189 21 96 922 482 702 947 #> [681,] 216 976 300 564 426 152 389 881 657 206 #> [682,] 729 258 100 977 754 888 935 183 998 219 #> [683,] 757 338 255 454 808 827 863 231 503 484 #> [684,] 851 400 199 205 996 896 749 32 656 548 #> [685,] 347 608 505 864 971 34 760 547 414 554 #> [686,] 448 368 410 651 886 936 449 679 744 328 #> [687,] 549 969 525 774 358 951 517 248 784 566 #> [688,] 556 791 439 499 4 973 717 964 213 288 #> [689,] 931 280 90 21 912 399 524 359 950 702 #> [690,] 15 511 35 907 562 772 420 152 86 701 #> [691,] 357 516 767 882 319 884 747 313 563 536 #> [692,] 522 161 330 212 626 460 105 860 707 933 #> [693,] 647 145 798 111 83 263 269 188 834 962 #> [694,] 900 82 94 365 933 489 469 471 291 774 #> [695,] 502 724 441 151 904 533 658 567 382 17 #> [696,] 887 333 842 906 926 317 737 927 663 147 #> [697,] 225 629 398 577 994 429 160 671 25 967 #> [698,] 399 560 568 957 924 172 463 403 192 339 #> [699,] 73 294 218 60 119 373 877 277 508 314 #> [700,] 991 866 930 916 344 892 867 444 921 910 #> [701,] 215 420 798 377 232 647 108 139 86 690 #> [702,] 189 482 280 464 171 706 443 116 284 689 #> [703,] 761 239 185 588 329 603 965 396 155 616 #> [704,] 837 445 240 195 117 978 640 730 727 705 #> [705,] 195 769 780 40 790 214 704 148 282 242 #> [706,] 443 284 180 170 482 702 69 464 254 98 #> [707,] 602 190 460 437 821 107 348 559 105 120 #> [708,] 119 456 218 890 294 434 989 514 902 766 #> [709,] 483 908 803 217 52 620 862 595 425 62 #> [710,] 612 843 486 251 322 528 158 465 93 995 #> [711,] 70 815 465 676 820 612 736 775 304 137 #> [712,] 402 314 744 592 400 486 665 277 996 449 #> [713,] 257 457 835 721 594 151 643 407 810 147 #> [714,] 232 7 108 86 216 860 212 564 956 215 #> [715,] 166 814 840 343 428 312 731 392 362 27 #> [716,] 994 160 859 293 885 596 967 753 616 428 #> [717,] 213 210 418 455 725 476 606 668 320 649 #> [718,] 210 418 725 639 591 717 811 584 396 426 #> [719,] 39 777 750 519 74 246 362 452 292 661 #> [720,] 839 734 203 265 3 945 102 357 536 35 #> [721,] 457 594 713 151 810 835 257 917 133 508 #> [722,] 737 146 876 105 407 142 605 759 544 789 #> [723,] 41 496 733 661 519 177 385 304 362 932 #> [724,] 695 592 533 669 341 904 151 487 799 909 #> [725,] 418 210 668 717 213 476 591 474 649 964 #> [726,] 156 567 345 551 472 260 17 182 825 381 #> [727,] 978 240 837 335 966 116 579 189 211 964 #> [728,] 324 260 281 951 673 732 248 472 825 619 #> [729,] 977 682 754 100 219 346 332 935 453 177 #> [730,] 759 142 297 624 544 212 785 146 283 958 #> [731,] 312 392 623 246 600 859 362 750 331 27 #> [732,] 585 589 728 974 9 527 549 433 425 619 #> [733,] 97 103 723 610 304 932 496 901 841 898 #> [734,] 674 839 720 983 91 586 265 813 535 873 #> [735,] 461 68 974 952 821 310 484 345 190 348 #> [736,] 304 137 557 131 296 74 192 519 901 500 #> [737,] 906 876 722 147 696 663 826 407 594 887 #> [738,] 450 102 299 396 185 536 596 811 369 831 #> [739,] 198 328 548 383 115 14 316 352 272 879 #> [740,] 766 493 434 456 8 708 794 218 44 229 #> [741,] 350 473 381 582 568 872 801 899 551 271 #> [742,] 29 24 346 122 847 382 611 380 758 150 #> [743,] 365 942 431 446 846 828 82 481 626 845 #> [744,] 410 672 543 328 996 712 402 979 404 400 #> [745,] 649 660 243 455 961 606 591 252 881 552 #> [746,] 157 224 972 111 11 570 363 834 633 188 #> [747,] 571 955 235 319 264 753 580 308 265 615 #> [748,] 550 832 627 342 126 109 973 393 99 814 #> [749,] 631 309 652 943 372 270 72 518 20 135 #> [750,] 777 246 719 362 758 39 78 731 93 519 #> [751,] 873 35 360 3 562 553 5 637 839 86 #> [752,] 475 368 751 411 701 637 421 174 690 420 #> [753,] 615 235 293 265 747 130 571 596 367 331 #> [754,] 977 935 150 100 183 413 453 346 567 729 #> [755,] 74 36 292 618 519 237 931 912 69 661 #> [756,] 178 214 122 37 982 334 24 847 130 113 #> [757,] 683 338 255 454 863 231 50 827 808 575 #> [758,] 380 623 611 600 26 742 331 452 371 346 #> [759,] 544 142 730 146 958 249 722 297 624 605 #> [760,] 547 554 408 493 941 984 608 849 864 685 #> [761,] 4 616 185 603 396 703 155 964 211 805 #> [762,] 150 453 346 621 413 382 742 371 899 386 #> [763,] 388 628 65 186 902 520 508 991 910 514 #> [764,] 440 878 62 52 975 28 43 607 709 908 #> [765,] 905 612 238 650 919 59 528 710 995 843 #> [766,] 740 434 708 858 989 456 514 493 8 76 #> [767,] 678 516 563 691 313 800 270 236 581 884 #> [768,] 99 618 627 172 444 237 931 912 109 271 #> [769,] 790 705 925 831 5 553 86 242 283 195 #> [770,] 264 133 826 308 955 594 906 457 737 441 #> [771,] 860 522 537 819 834 579 108 963 865 648 #> [772,] 511 356 459 597 907 256 562 236 690 581 #> [773,] 206 438 306 504 593 118 387 545 167 976 #> [774,] 784 273 289 787 687 893 549 969 31 471 #> [775,] 70 304 750 343 806 820 711 519 676 736 #> [776,] 55 789 48 950 407 801 663 959 473 797 #> [777,] 246 719 750 39 866 344 78 991 452 617 #> [778,] 436 90 524 358 359 969 399 568 280 689 #> [779,] 467 307 286 897 21 970 403 524 436 96 #> [780,] 195 883 705 239 37 704 40 282 148 640 #> [781,] 928 233 339 913 394 517 248 354 403 87 #> [782,] 537 111 532 349 771 828 648 365 834 633 #> [783,] 348 614 799 138 622 669 433 437 461 176 #> [784,] 774 289 893 687 489 525 114 969 787 31 #> [785,] 283 645 297 212 242 730 869 624 146 920 #> [786,] 541 829 659 937 954 124 601 192 137 944 #> [787,] 850 595 31 566 774 379 531 217 549 273 #> [788,] 63 836 546 910 880 797 141 655 628 518 #> [789,] 407 776 663 55 926 842 801 147 722 887 #> [790,] 831 769 445 925 624 553 705 956 809 102 #> [791,] 326 482 922 680 688 211 499 443 189 947 #> [792,] 159 538 677 241 168 587 290 534 923 796 #> [793,] 45 268 883 384 338 827 942 683 575 329 #> [794,] 60 229 514 218 515 902 763 921 516 740 #> [795,] 842 237 180 292 223 285 39 926 317 930 #> [796,] 507 22 168 49 290 545 470 538 161 118 #> [797,] 63 194 315 788 833 473 136 477 776 546 #> [798,] 420 647 83 263 215 701 139 693 232 714 #> [799,] 622 669 38 783 904 433 42 348 437 107 #> [800,] 270 459 423 877 917 581 678 665 810 631 #> [801,] 605 317 55 899 959 789 663 741 551 842 #> [802,] 88 194 871 803 957 833 924 136 473 797 #> [803,] 217 595 802 850 833 709 128 267 182 315 #> [804,] 515 313 104 229 127 563 336 667 516 573 #> [805,] 499 4 885 89 428 688 616 556 603 761 #> [806,] 676 70 911 93 26 561 78 12 617 710 #> [807,] 458 46 886 448 259 516 629 319 203 327 #> [808,] 484 370 863 503 310 268 683 827 575 735 #> [809,] 214 945 299 624 956 242 571 102 297 756 #> [810,] 917 457 721 835 508 270 713 151 594 205 #> [811,] 852 299 667 261 319 313 127 536 252 571 #> [812,] 953 879 14 375 592 620 622 325 433 205 #> [813,] 586 197 91 983 674 818 51 178 636 122 #> [814,] 840 428 867 342 859 27 312 166 393 362 #> [815,] 711 70 820 676 244 775 736 612 137 765 #> [816,] 334 122 742 29 332 412 847 636 911 219 #> [817,] 734 498 983 125 674 91 197 854 651 586 #> [818,] 51 197 990 91 813 920 200 535 178 576 #> [819,] 834 545 206 860 83 865 771 438 161 976 #> [820,] 169 70 500 676 244 25 944 711 775 78 #> [821,] 190 461 658 138 707 735 645 310 120 602 #> [822,] 578 8 604 76 547 554 67 311 760 880 #> [823,] 478 109 143 164 490 99 788 444 627 910 #> [824,] 72 22 300 309 943 230 881 118 573 135 #> [825,] 260 181 66 182 163 726 472 523 425 324 #> [826,] 770 580 737 24 132 441 876 906 146 955 #> [827,] 454 484 249 335 284 808 683 310 966 605 #> [828,] 968 365 743 782 537 625 648 845 82 301 #> [829,] 541 786 462 194 937 58 924 954 124 601 #> [830,] 941 493 294 456 6 851 678 218 119 44 #> [831,] 790 769 553 86 956 102 981 925 624 945 #> [832,] 550 627 131 618 99 748 755 768 916 74 #> [833,] 473 128 315 350 802 803 797 643 182 194 #> [834,] 819 111 771 83 889 49 438 538 206 161 #> [835,] 713 32 205 810 721 457 151 507 257 315 #> [836,] 655 880 788 63 984 628 141 518 902 372 #> [837,] 240 704 445 727 978 668 579 117 335 730 #> [838,] 291 900 986 575 471 469 638 974 626 863 #> [839,] 720 734 3 751 945 873 35 553 357 203 #> [840,] 428 814 342 166 27 867 69 312 170 392 #> [841,] 610 97 901 163 992 355 77 103 932 825 #> [842,] 926 663 317 795 696 271 899 582 887 789 #> [843,] 710 612 676 23 416 486 989 78 528 806 #> [844,] 134 373 967 23 60 617 344 921 25 319 #> [845,] 165 743 986 968 900 532 828 291 365 782 #> [846,] 481 942 446 431 626 869 330 743 522 283 #> [847,] 332 113 334 122 742 346 178 150 920 24 #> [848,] 287 236 104 228 256 960 374 336 569 824 #> [849,] 408 54 554 278 652 67 372 856 578 836 #> [850,] 595 787 803 379 566 217 802 241 88 871 #> [851,] 199 684 896 987 941 548 996 608 400 414 #> [852,] 811 667 261 127 252 319 313 320 515 429 #> [853,] 432 114 307 861 96 21 680 94 509 359 #> [854,] 946 367 636 12 191 412 110 586 936 674 #> [855,] 351 598 472 857 487 30 18 176 533 909 #> [856,] 20 22 372 72 507 943 796 315 49 656 #> [857,] 115 351 176 487 855 669 879 662 783 585 #> [858,] 76 500 514 880 980 944 659 921 141 169 #> [859,] 160 716 867 428 731 344 994 967 814 246 #> [860,] 865 771 522 819 564 216 958 714 579 142 #> [861,] 680 189 326 791 116 21 96 702 482 211 #> [862,] 267 620 220 483 87 949 58 709 919 803 #> [863,] 575 808 266 503 268 10 683 484 469 370 #> [864,] 971 34 347 685 1000 539 408 234 856 849 #> [865,] 860 451 958 564 819 61 545 976 875 216 #> [866,] 991 344 700 916 930 921 246 867 777 444 #> [867,] 393 700 916 342 866 814 237 428 930 344 #> [868,] 665 227 423 409 441 360 535 990 457 877 #> [869,] 283 481 330 212 785 282 846 446 730 626 #> [870,] 462 58 949 937 984 194 829 136 630 267 #> [871,] 802 194 88 136 121 95 797 938 33 924 #> [872,] 506 899 621 741 582 271 350 193 523 381 #> [873,] 535 751 200 409 360 651 576 990 415 637 #> [874,] 497 187 589 986 635 471 975 52 555 62 #> [875,] 61 116 958 451 865 579 959 668 171 950 #> [876,] 737 722 257 386 441 120 105 658 906 594 #> [877,] 665 423 800 73 270 917 868 699 996 314 #> [878,] 914 71 28 43 62 391 1000 440 52 764 #> [879,] 176 812 433 14 622 351 669 799 953 908 #> [880,] 141 836 980 76 578 628 788 910 902 65 #> [881,] 591 649 573 976 660 336 745 564 824 681 #> [882,] 580 581 357 264 884 474 571 308 691 945 #> [883,] 239 780 329 195 640 704 45 442 793 978 #> [884,] 581 35 562 357 3 360 423 882 511 907 #> [885,] 994 398 428 716 616 805 160 639 859 4 #> [886,] 327 448 699 458 23 73 877 516 936 60 #> [887,] 696 333 317 927 842 737 926 906 147 789 #> [888,] 258 682 561 610 97 209 998 939 729 733 #> [889,] 438 963 363 915 644 834 49 545 306 819 #> [890,] 708 186 546 989 944 508 321 954 477 628 #> [891,] 17 196 386 380 158 634 413 643 321 502 #> [892,] 320 439 393 700 696 213 476 180 887 930 #> [893,] 31 784 774 531 589 497 975 289 549 787 #> [894,] 526 656 208 540 929 290 677 123 42 205 #> [895,] 153 379 363 432 289 154 11 889 915 221 #> [896,] 987 199 851 548 417 274 684 597 996 608 #> [897,] 403 399 524 931 689 755 467 698 98 36 #> [898,] 103 913 733 385 723 41 355 403 97 998 #> [899,] 621 872 582 801 317 397 842 271 741 663 #> [900,] 694 291 469 838 471 986 82 489 365 933 #> [901,] 97 841 103 610 736 733 163 992 304 932 #> [902,] 628 65 514 763 880 836 518 218 910 520 #> [903,] 613 175 604 173 366 64 804 229 353 997 #> [904,] 38 953 799 533 669 437 724 107 695 433 #> [905,] 919 238 985 620 765 995 1 862 220 601 #> [906,] 737 133 594 663 696 147 926 770 876 457 #> [907,] 236 772 573 581 981 884 690 511 300 152 #> [908,] 52 217 433 62 709 589 622 440 28 241 #> [909,] 341 18 340 598 533 487 322 724 995 251 #> [910,] 546 444 788 628 930 880 991 141 763 902 #> [911,] 26 380 93 816 758 12 617 251 29 600 #> [912,] 931 237 36 69 768 443 170 689 482 292 #> [913,] 403 517 248 355 781 281 358 103 841 233 #> [914,] 878 347 1000 570 539 57 43 864 391 234 #> [915,] 963 48 933 889 61 405 161 545 776 168 #> [916,] 930 700 991 866 867 444 344 921 627 25 #> [917,] 810 270 508 800 721 665 457 835 314 277 #> [918,] 162 129 164 85 245 583 278 654 479 47 #> [919,] 601 905 238 220 985 620 862 949 181 267 #> [920,] 113 658 51 132 146 847 178 382 645 675 #> [921,] 991 866 25 344 514 916 930 700 763 944 #> [922,] 947 791 326 499 680 482 89 970 443 211 #> [923,] 635 241 538 792 471 405 159 168 161 217 #> [924,] 88 957 463 339 698 802 172 194 829 568 #> [925,] 769 377 869 108 790 5 283 831 86 139 #> [926,] 663 842 696 906 789 271 546 795 317 887 #> [927,] 333 476 887 261 320 696 474 213 892 388 #> [928,] 781 354 394 87 233 220 339 630 483 58 #> [929,] 540 232 526 894 123 459 656 574 42 290 #> [930,] 916 700 444 991 866 910 627 99 867 344 #> [931,] 912 689 36 98 237 768 69 897 292 443 #> [932,] 77 452 610 304 506 193 371 177 621 872 #> [933,] 963 915 82 692 363 365 694 94 161 61 #> [934,] 633 349 224 247 106 157 111 746 253 782 #> [935,] 754 183 567 413 156 345 100 977 726 150 #> [936,] 416 23 468 886 327 946 12 201 843 486 #> [937,] 58 949 601 462 829 786 541 870 659 220 #> [938,] 95 121 245 67 278 971 871 653 129 33 #> [939,] 196 77 561 322 992 340 935 251 26 158 #> [940,] 6 987 356 256 896 323 569 597 543 851 #> [941,] 830 493 199 851 760 414 547 6 554 456 #> [942,] 431 846 481 446 626 743 330 522 869 365 #> [943,] 309 72 372 22 135 20 518 507 631 118 #> [944,] 989 890 921 786 465 858 78 500 321 659 #> [945,] 3 956 553 580 7 809 35 624 571 882 #> [946,] 110 854 12 259 367 936 235 23 753 844 #> [947,] 922 443 170 970 89 482 791 326 680 286 #> [948,] 569 54 572 408 274 75 374 417 228 960 #> [949,] 58 937 601 462 870 267 220 829 862 541 #> [950,] 55 959 171 776 789 801 359 875 48 842 #> [951,] 324 381 566 248 233 549 260 728 182 358 #> [952,] 68 345 183 461 735 567 821 370 413 310 #> [953,] 38 375 904 812 205 32 622 799 833 79 #> [954,] 643 79 541 321 350 473 477 546 829 786 #> [955,] 264 308 770 580 747 571 826 29 235 24 #> [956,] 624 7 945 297 553 142 474 132 3 86 #> [957,] 88 568 924 802 698 463 350 473 172 339 #> [958,] 875 759 865 544 142 668 860 959 451 61 #> [959,] 171 950 55 605 801 317 789 776 842 887 #> [960,] 374 287 228 848 569 104 256 236 173 572 #> [961,] 660 745 455 649 593 118 520 167 306 881 #> [962,] 420 599 693 647 798 139 701 145 152 15 #> [963,] 933 915 61 889 363 82 771 579 94 834 #> [964,] 668 211 213 4 717 556 725 688 418 670 #> [965,] 185 603 596 588 155 761 616 703 293 396 #> [966,] 53 335 189 727 978 454 827 464 702 116 #> [967,] 134 319 160 308 844 344 264 747 235 955 #> [968,] 828 845 743 365 165 782 625 537 446 82 #> [969,] 687 358 436 778 525 549 273 774 517 114 #> [970,] 947 912 286 326 443 931 680 170 922 482 #> [971,] 864 34 938 95 67 1000 849 278 121 539 #> [972,] 11 570 746 234 49 157 121 889 153 534 #> [973,] 143 126 439 109 243 288 393 688 140 552 #> [974,] 735 68 461 585 348 732 345 783 707 821 #> [975,] 9 31 589 893 62 52 531 874 908 440 #> [976,] 564 681 216 881 206 300 118 426 865 649 #> [977,] 754 150 346 453 729 332 935 100 183 219 #> [978,] 727 837 13 240 966 117 704 335 211 464 #> [979,] 662 415 485 404 672 799 669 123 487 144 #> [980,] 141 490 880 76 578 910 858 788 836 444 #> [981,] 881 907 657 573 591 426 681 152 564 336 #> [982,] 178 242 756 214 113 51 406 920 37 785 #> [983,] 674 813 586 734 197 91 178 632 982 756 #> [984,] 655 477 136 836 462 194 870 63 372 20 #> [985,] 1 919 992 435 238 905 66 220 620 181 #> [986,] 471 532 187 635 874 838 497 900 923 291 #> [987,] 896 199 548 851 417 414 608 6 274 684 #> [988,] 607 220 862 505 620 539 483 267 34 1000 #> [989,] 944 890 708 373 528 78 321 119 921 218 #> [990,] 535 227 51 409 818 91 868 441 920 873 #> [991,] 866 700 930 344 916 921 444 910 763 546 #> [992,] 1 939 163 238 825 181 66 985 435 77 #> [993,] 769 637 148 705 5 751 839 174 40 925 #> [994,] 716 885 160 398 859 697 428 629 671 429 #> [995,] 390 18 592 341 238 909 612 322 251 340 #> [996,] 400 543 800 449 877 684 665 672 459 270 #> [997,] 613 173 323 175 903 228 804 104 960 287 #> [998,] 355 673 841 281 682 542 258 610 100 97 #> [999,] 572 641 188 263 300 206 773 374 83 824 #> [1000,] 539 34 864 971 226 803 878 595 850 28 #> #> $neighbor_distances #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 0.37440774 0.5196210 0.6317683 0.6323538 0.8849260 0.8892560 0.9006937 #> [2,] 0.71849076 0.8712022 0.8970041 0.9249884 0.9328638 0.9559555 0.9912308 #> [3,] 0.33816647 0.3531914 0.4294108 0.5196530 0.5297383 0.5577980 0.6443834 #> [4,] 0.54020961 0.6153700 0.6328276 0.6360577 0.6708464 0.6854089 0.7296972 #> [5,] 0.39339787 0.4755666 0.6066615 0.7330094 0.7611787 0.7646775 0.7696904 #> [6,] 0.81778517 0.8393568 0.8864097 0.8899425 0.8930137 0.9004203 0.9592937 #> [7,] 0.31336098 0.4734230 0.4790972 0.5125694 0.5484259 0.5577980 0.5839837 #> [8,] 0.69429370 0.6999343 0.8040632 0.8374759 0.8581814 0.8620620 0.9037422 #> [9,] 0.49870522 0.5159316 0.5161472 0.6504423 0.7226073 0.7458232 0.8078439 #> [10,] 0.43286308 0.6523323 0.8222796 0.8646028 0.9897671 1.0654198 1.0962131 #> [11,] 0.41437972 0.5560717 0.6561674 0.7609491 0.7669037 0.8590798 0.8752580 #> [12,] 0.67937879 0.7172980 0.7480645 0.7544614 0.8050573 0.8083640 0.8481635 #> [13,] 0.52070502 0.6684482 0.7688076 0.7823320 0.8670848 0.9316208 0.9584593 #> [14,] 0.41137800 0.5708362 0.5865694 0.6090094 0.6456530 0.6700576 0.7213540 #> [15,] 0.59022782 0.7694994 0.8918625 1.0814758 1.1290545 1.1519124 1.1534854 #> [16,] 0.45092441 0.4958946 0.5104549 0.5122970 0.5530641 0.6073729 0.6617331 #> [17,] 0.21549985 0.3255899 0.3544750 0.4664532 0.4715509 0.4860027 0.4879230 #> [18,] 0.28419387 0.3691577 0.5267358 0.5449690 0.5967973 0.5985593 0.6283001 #> [19,] 0.60423508 0.9040169 0.9165124 1.0119967 1.0878704 1.1063906 1.1405633 #> [20,] 0.28229287 0.3660425 0.4033861 0.4280612 0.4487782 0.4534048 0.4866329 #> [21,] 0.53505778 0.5400066 0.6122105 0.7306741 0.7555545 0.8497530 0.8610543 #> [22,] 0.21870056 0.3441216 0.3792610 0.4279712 0.4352831 0.4734599 0.4760026 #> [23,] 0.69971236 0.7776224 0.7876056 0.7994573 0.8586295 0.8605815 0.8819863 #> [24,] 0.38762218 0.4285535 0.4381970 0.5334751 0.6623435 0.6643578 0.6768378 #> [25,] 0.53268027 0.6801124 0.6909970 0.7254717 0.7283049 0.7764582 0.7892815 #> [26,] 0.43329051 0.5178387 0.5360601 0.5642680 0.5666451 0.5944099 0.6307465 #> [27,] 0.30426516 0.3859418 0.4251838 0.4719293 0.5115982 0.5455742 0.5471404 #> [28,] 0.42629419 0.4520204 0.4723838 0.5216885 0.5984226 0.6227925 0.6259317 #> [29,] 0.35403636 0.3840472 0.3876222 0.5544435 0.5753758 0.6441560 0.6696159 #> [30,] 0.70399445 0.8185857 0.8728922 0.8887481 0.9390512 0.9504278 0.9534198 #> [31,] 0.54620478 0.5678647 0.5794177 0.5859331 0.6016578 0.6631736 0.6973421 #> [32,] 0.32203562 0.3870360 0.4510068 0.4565310 0.5181098 0.5219980 0.5803326 #> [33,] 0.59842366 0.6252209 0.6259422 0.6469902 0.6731264 0.6884798 0.6987678 #> [34,] 0.42295739 0.4799947 0.4822970 0.5100279 0.7521974 0.7531811 0.7617941 #> [35,] 0.35319143 0.4240218 0.5113439 0.5796505 0.5815733 0.6434926 0.6531255 #> [36,] 0.28798006 0.3680010 0.4005744 0.4271074 0.4391532 0.4795506 0.4806273 #> [37,] 0.46960421 0.5704743 0.5713747 0.7433508 0.8263683 0.9032159 0.9188813 #> [38,] 0.16379892 0.4343415 0.4634704 0.4812532 0.5262166 0.5456857 0.5900957 #> [39,] 0.32942541 0.3488723 0.4544843 0.4706264 0.4737524 0.5055472 0.5182899 #> [40,] 0.46960421 0.5094448 0.8000923 0.8405120 0.8940577 0.9118995 0.9520868 #> [41,] 0.56070439 0.8039226 0.8458749 0.9259973 0.9706053 1.0019942 1.0221179 #> [42,] 0.26218164 0.3335003 0.4401235 0.4973035 0.5241576 0.5242244 0.5406525 #> [43,] 0.63571193 0.7382393 0.9638590 1.0666145 1.0770948 1.0874487 1.0945852 #> [44,] 0.98042680 0.9936126 1.0111360 1.0134749 1.0909802 1.1755655 1.2292283 #> [45,] 0.96471043 1.1360815 1.2717714 1.5203067 1.5482659 1.7086648 1.7576296 #> [46,] 0.92897311 1.0798204 1.2356634 1.2538734 1.2887295 1.3175664 1.3497319 #> [47,] 0.89238862 0.9257327 0.9620712 0.9739201 0.9943237 1.1340280 1.1505984 #> [48,] 0.44108247 0.4464113 0.4928736 0.5033910 0.5245417 0.5959135 0.6397210 #> [49,] 0.39469461 0.3966216 0.4374424 0.4706606 0.4847577 0.4929153 0.6373957 #> [50,] 0.62219362 0.6576409 0.7388219 0.7729828 0.7943559 0.8368663 0.8794120 #> [51,] 0.30483279 0.4510571 0.5991109 0.6021361 0.6431851 0.6820095 0.6822274 #> [52,] 0.16342217 0.3812533 0.4723838 0.4917449 0.5672412 0.6012372 0.6016578 #> [53,] 0.47146486 0.6398191 0.6982818 0.7187265 0.7796118 0.9114307 0.9247849 #> [54,] 0.32811395 0.4597374 0.5698973 0.6545683 0.7488184 0.7636551 0.8007657 #> [55,] 0.26351243 0.2898434 0.3279429 0.3904213 0.4334976 0.4823644 0.5486852 #> [56,] 0.77615810 0.8922126 0.9410711 0.9435230 0.9454779 0.9498508 0.9649450 #> [57,] 1.01660350 1.0576989 1.0578482 1.0948736 1.1998130 1.2010383 1.2067120 #> [58,] 0.31354966 0.3359187 0.4454083 0.5013944 0.5523149 0.5649255 0.6207553 #> [59,] 0.54093924 0.6735608 0.6915943 0.7171179 0.7925492 0.8258154 0.8404956 #> [60,] 0.39442631 0.5581936 0.6069573 0.6558298 0.6593543 0.6951015 0.7095590 #> [61,] 0.42184296 0.4722252 0.4810669 0.5213441 0.5457783 0.5978246 0.6324206 #> [62,] 0.16342217 0.4269498 0.4520204 0.5193114 0.6631736 0.7057671 0.7128491 #> [63,] 0.22126147 0.3532780 0.4414033 0.4531874 0.4647006 0.5107906 0.5602252 #> [64,] 0.33416754 0.4265877 0.4359787 0.4958946 0.5433790 0.6881546 0.7001640 #> [65,] 0.23679109 0.2815989 0.3487280 0.4295142 0.5025708 0.5573627 0.6129167 #> [66,] 0.44637144 0.5003019 0.5529245 0.6283844 0.6367535 0.6652489 0.7487575 #> [67,] 0.33537141 0.5092862 0.5898424 0.5930201 0.6001093 0.6728713 0.6872553 #> [68,] 0.37747986 0.4014896 0.4185361 0.4482289 0.5682722 0.5703633 0.6131069 #> [69,] 0.28798006 0.3927377 0.4251838 0.4288953 0.4558640 0.4906690 0.5028235 #> [70,] 0.54611205 0.6926403 0.7215123 0.7658092 0.8311058 0.9560666 1.0400445 #> [71,] 0.47206866 0.6357119 0.6360646 0.6926937 0.6989833 0.7644924 0.7893722 #> [72,] 0.21870056 0.2927399 0.2999043 0.3591081 0.4487782 0.4585332 0.4617932 #> [73,] 0.30035462 0.5001202 0.5593482 0.5631557 0.6212020 0.6350773 0.6398905 #> [74,] 0.30645224 0.5000964 0.5348828 0.5447165 0.5564983 0.5910982 0.6571445 #> [75,] 0.73137409 0.7876294 0.7927559 0.9257327 0.9287029 0.9333650 0.9570342 #> [76,] 0.40150325 0.4310171 0.4984940 0.5758994 0.5810228 0.5926704 0.7203417 #> [77,] 0.42677834 0.5655940 0.5780670 0.5869566 0.5955668 0.6814462 0.6902135 #> [78,] 0.24603251 0.4255550 0.5281018 0.6320025 0.6766829 0.6816221 0.7057718 #> [79,] 0.44042104 0.5181098 0.5632566 0.5853790 0.5921010 0.6301329 0.6573707 #> [80,] 1.17838407 1.4621528 1.4891457 1.6146337 1.6568477 1.6983617 1.7513378 #> [81,] 0.97605309 1.0511801 1.0518557 1.0868473 1.1142342 1.1686700 1.1819750 #> [82,] 0.30897320 0.4068803 0.5589393 0.5719344 0.6460923 0.6503385 0.7187265 #> [83,] 0.29770340 0.5268685 0.5810016 0.5937661 0.6260777 0.6646483 0.6767827 #> [84,] 0.73278181 0.8382064 0.8712902 0.9346618 0.9439012 1.1061611 1.2219257 #> [85,] 0.63396681 0.7252764 0.8155012 0.8245226 0.8380611 0.9923770 0.9993802 #> [86,] 0.32458341 0.3933979 0.5125694 0.6410320 0.6680742 0.6691817 0.6752053 #> [87,] 0.66478616 0.7107108 0.7159460 0.7237704 0.7282900 0.7332213 0.7434692 #> [88,] 0.30996952 0.3251140 0.3526699 0.5128921 0.5429316 0.6395256 0.6586995 #> [89,] 0.57281868 0.5758453 0.7006440 0.7207689 0.7258189 0.7296972 0.7965332 #> [90,] 0.39852216 0.4400132 0.4526669 0.5161778 0.5400066 0.5461164 0.6188844 #> [91,] 0.48933920 0.6051880 0.6382770 0.6502117 0.6693098 0.7108046 0.7692118 #> [92,] 0.62260206 0.9165124 1.3085745 1.3806910 1.5870406 1.6285594 1.6554045 #> [93,] 0.24603251 0.3878538 0.4591714 0.5178387 0.6585143 0.6621358 0.6810870 #> [94,] 0.30897320 0.6290901 0.6398191 0.6496431 0.7823336 0.7843597 0.8580708 #> [95,] 0.04497083 0.5930201 0.6119075 0.6270330 0.6429569 0.6600823 0.6656487 #> [96,] 0.62583943 0.7505155 0.9832066 1.0235993 1.0636559 1.1201775 1.1666406 #> [97,] 0.35144018 0.6382641 0.7079532 0.7095187 0.7659251 0.8091797 0.8513275 #> [98,] 0.31801358 0.3401989 0.4208660 0.4271074 0.5054884 0.5429898 0.5665091 #> [99,] 0.21601832 0.3354368 0.3484150 0.3856758 0.5485465 0.5505203 0.5557009 #> [100,] 0.41366461 0.5126158 0.5594749 0.5739571 0.6100644 0.6774000 0.7450978 #> [101,] 0.66441475 0.7549090 0.7557675 0.7765707 0.7936885 0.7990604 0.8064913 #> [102,] 0.46871727 0.5296746 0.6837906 0.7008518 0.7655323 0.8326505 0.8770413 #> [103,] 0.76556108 0.7659251 0.7682346 0.9744743 1.0745172 1.1330448 1.1399362 #> [104,] 0.30557984 0.3708418 0.3794128 0.5570809 0.5645912 0.6157789 0.6886539 #> [105,] 0.42014793 0.4929323 0.5075120 0.5230954 0.5328842 0.5333565 0.5456871 #> [106,] 0.60144678 0.9305805 0.9306688 0.9501760 0.9659964 1.0453325 1.0542669 #> [107,] 0.26191941 0.3335003 0.3864874 0.4739008 0.4901712 0.5262166 0.5277461 #> [108,] 0.53526753 0.5824204 0.5919049 0.6908379 0.6932066 0.6949184 0.7062489 #> [109,] 0.32366596 0.3816655 0.5062977 0.5485465 0.6035720 0.6073536 0.6347685 #> [110,] 0.65787838 0.8523714 1.1802698 1.3560210 1.3630859 1.3759184 1.3968075 #> [111,] 0.50862957 0.6866783 0.7279623 0.7948560 0.8165282 0.8374849 0.8375440 #> [112,] 1.55852407 1.5673626 1.6632869 1.6701479 1.7246864 1.7747710 1.7934094 #> [113,] 0.36644829 0.4296335 0.5638167 0.6098110 0.6319255 0.6431851 0.6599731 #> [114,] 0.27515565 0.7833691 0.7984154 0.8626899 0.8700936 0.8907433 0.9139923 #> [115,] 0.38214516 0.6842062 0.7184307 0.8236605 0.8753309 0.9271065 0.9900302 #> [116,] 0.45027271 0.5457783 0.6602727 0.6741195 0.6863318 0.7091045 0.7172088 #> [117,] 0.56160326 0.6429118 0.7370743 0.7549090 0.7710974 0.7860382 0.7889454 #> [118,] 0.23376156 0.3276499 0.3441216 0.3508093 0.5015056 0.5053651 0.5176712 #> [119,] 0.31583768 0.3737276 0.4558761 0.5437083 0.5458634 0.5974658 0.6560051 #> [120,] 0.34765690 0.3987382 0.4601763 0.4879230 0.5018809 0.5067646 0.5416199 #> [121,] 0.58701147 0.5952777 0.6049412 0.6119075 0.6268535 0.6821388 0.7100069 #> [122,] 0.38404719 0.4381970 0.4623692 0.4922980 0.5168948 0.5305939 0.5628925 #> [123,] 0.35215632 0.3951595 0.5682765 0.5992893 0.6292636 0.6469049 0.6536885 #> [124,] 0.37061007 0.3711900 0.3871380 0.5807237 0.5986405 0.6415935 0.6531730 #> [125,] 1.16275048 1.2245416 1.2926636 1.3602846 1.3698820 1.4084729 1.4638888 #> [126,] 0.50990188 0.6099109 0.7001640 0.7341859 0.7767447 0.7813376 0.7953612 #> [127,] 0.38172029 0.5355710 0.5596657 0.5633162 0.5823183 0.5929949 0.6202899 #> [128,] 0.32678210 0.4734693 0.5506425 0.5621268 0.5665520 0.5690209 0.6215555 #> [129,] 0.32240302 0.5219120 0.5762402 0.6049412 0.6920584 0.7313320 0.7474944 #> [130,] 0.49883170 0.6053445 0.7167148 0.7190791 0.7574800 0.7613518 0.7938191 #> [131,] 0.53564742 0.6130721 0.6764559 0.7958312 0.8108554 0.8286614 0.8786131 #> [132,] 0.42579509 0.5151876 0.5341619 0.5671062 0.5755747 0.5903237 0.6075006 #> [133,] 0.35147778 0.3636692 0.3647389 0.4423911 0.5608529 0.5691907 0.5779306 #> [134,] 0.39681078 0.4251424 0.5178433 0.5361624 0.6805308 0.6867334 0.7135838 #> [135,] 0.30942474 0.4231522 0.4267138 0.5000046 0.5050926 0.5430369 0.5739390 #> [136,] 0.41118245 0.4267375 0.4318495 0.4339700 0.4768650 0.5465379 0.5586927 #> [137,] 0.61307211 0.6772350 0.7043720 0.7118153 0.8149391 0.8453201 0.8556896 #> [138,] 0.43229124 0.5113181 0.5293639 0.5827702 0.5852424 0.5925780 0.6027970 #> [139,] 0.53526753 0.6705211 0.7233836 0.7638404 0.7897678 0.7912746 0.8126103 #> [140,] 0.25761193 0.3248417 0.3820281 0.4265877 0.4509244 0.6123456 0.6371633 #> [141,] 0.21551060 0.2478560 0.4984940 0.5043320 0.5153898 0.5377246 0.5380901 #> [142,] 0.23215070 0.3977784 0.4000386 0.4393166 0.4936062 0.5116403 0.5226528 #> [143,] 0.32484169 0.4430272 0.4500779 0.4606841 0.5433790 0.5530641 0.5891766 #> [144,] 0.70360030 0.7115000 0.7115202 0.7263464 0.7909070 0.8401681 0.8523100 #> [145,] 0.53097493 0.5426041 0.5660205 0.8089592 0.9680723 0.9860777 1.0241528 #> [146,] 0.36684834 0.4257951 0.4369957 0.4393166 0.4547368 0.5026818 0.5330085 #> [147,] 0.34840672 0.4549819 0.4564327 0.5024490 0.5335413 0.5341757 0.5377761 #> [148,] 0.68439506 0.7249098 0.8863247 0.9094872 0.9198462 0.9435541 0.9756199 #> [149,] 0.48461201 0.6281582 0.7102363 0.7320435 0.7869123 0.8343406 0.8597976 #> [150,] 0.27767287 0.2814221 0.2841270 0.4878354 0.4954478 0.4975521 0.5313888 #> [151,] 0.37046721 0.4650588 0.4816673 0.4861472 0.5433768 0.5727964 0.5752032 #> [152,] 0.56256667 0.5770576 0.6789019 0.7157721 0.7351366 0.7589517 0.7694994 #> [153,] 0.54053002 0.5560717 0.5999067 0.7184908 0.7479200 0.7761110 0.8660131 #> [154,] 0.54053002 0.6561674 0.8307043 0.8541981 0.8712022 0.9810323 0.9903409 #> [155,] 0.37489759 0.4336603 0.7790019 0.8323242 0.8554640 0.8577206 0.9099627 #> [156,] 0.30569236 0.3262743 0.3579049 0.3630452 0.4926383 0.5405824 0.6052169 #> [157,] 0.64667460 0.7669037 0.8257021 0.8541981 0.9243470 0.9655508 1.0201939 #> [158,] 0.37740552 0.4020145 0.4190839 0.4591714 0.5281018 0.5550570 0.5788570 #> [159,] 0.33547237 0.3463819 0.4977218 0.5180707 0.5242244 0.5635180 0.5817520 #> [160,] 0.35829338 0.5718766 0.5747591 0.5779698 0.6522162 0.7144527 0.7876369 #> [161,] 0.50669338 0.5422210 0.5631950 0.5689447 0.6092181 0.6320838 0.6627306 #> [162,] 0.51045490 0.5219120 0.5858995 0.5937850 0.7252764 0.8000330 0.8418996 #> [163,] 0.37061007 0.4042716 0.5416616 0.6091344 0.6365370 0.7418901 0.7538221 #> [164,] 0.51229703 0.5239113 0.5903342 0.5937850 0.6369687 0.6395027 0.7197476 #> [165,] 0.54908168 0.9813251 1.1372137 1.1695009 1.2031595 1.2249379 1.2830620 #> [166,] 0.61272048 0.7611578 0.7883182 0.8482370 0.8973138 0.8973912 0.9098426 #> [167,] 0.24308049 0.2554877 0.3695717 0.4638763 0.4841923 0.5672204 0.5678705 #> [168,] 0.38041963 0.4770930 0.4780638 0.4847577 0.5092416 0.5473634 0.5519264 #> [169,] 0.26265001 0.6764559 0.6801124 0.7182474 0.8034945 0.8243029 0.9143408 #> [170,] 0.26578713 0.4558640 0.5643588 0.5758453 0.6031906 0.6038029 0.6317046 #> [171,] 0.17370456 0.4308061 0.4805783 0.4823644 0.5499564 0.5587297 0.6249264 #> [172,] 0.26941305 0.4017908 0.5415747 0.5470445 0.5757414 0.5872002 0.6124346 #> [173,] 0.87618145 0.9526264 0.9565228 0.9713093 1.0146814 1.0413455 1.1054185 #> [174,] 0.61152392 0.7089670 0.7760067 0.9366138 0.9987533 1.0345146 1.0764891 #> [175,] 0.55117629 0.6955637 0.8672199 0.9175538 1.0857738 1.0870652 1.1226844 #> [176,] 0.51603535 0.5265768 0.5388508 0.5712551 0.5801553 0.6707166 0.7064780 #> [177,] 0.57667920 0.6744389 0.7106979 0.7830243 0.8084727 0.8349234 0.8471915 #> [178,] 0.35086757 0.4558084 0.4623692 0.5991109 0.5998957 0.6098110 0.6568489 #> [179,] 0.59394151 0.6259422 0.6412760 0.7072447 0.9181475 0.9528680 0.9805333 #> [180,] 0.45973796 0.5236926 0.5413020 0.5590320 0.5625617 0.5949277 0.6129280 #> [181,] 0.48466368 0.4966760 0.5003019 0.5597563 0.5807237 0.6365370 0.6573707 #> [182,] 0.49667604 0.5257725 0.5446453 0.5665520 0.5922374 0.5939369 0.6009061 #> [183,] 0.44863069 0.4890375 0.4972940 0.5129245 0.5339640 0.5405824 0.5594749 #> [184,] 1.54969454 1.6058166 1.7903249 1.8486250 1.9415717 1.9861202 1.9921299 #> [185,] 0.46840057 0.5643122 0.7830058 0.8577187 0.9074240 0.9099627 0.9585011 #> [186,] 0.21503155 0.4423911 0.4427498 0.4470150 0.4800804 0.4852145 0.5140889 #> [187,] 0.54488025 0.5484068 0.6032080 0.6201989 0.6812469 0.6997092 0.7071064 #> [188,] 0.55211975 0.5650773 0.6230229 0.7717706 0.7985339 0.8089592 0.8240324 #> [189,] 0.38410060 0.6421988 0.6741195 0.6748141 0.7148040 0.7160836 0.7192255 #> [190,] 0.29678858 0.3855973 0.3987382 0.4023448 0.4417458 0.4929323 0.5541087 #> [191,] 0.83653302 0.9011914 1.1703316 1.1948539 1.3102195 1.3296849 1.3600533 #> [192,] 0.25389733 0.3532200 0.5986405 0.6218608 0.6532183 0.6823172 0.6910984 #> [193,] 0.22947858 0.3398413 0.4375047 0.5370750 0.5849706 0.5936046 0.5978990 #> [194,] 0.40798941 0.4111824 0.4547087 0.4821675 0.5014282 0.5111314 0.5392919 #> [195,] 0.42611375 0.5618296 0.6964333 0.8322004 0.9590741 0.9636064 0.9893164 #> [196,] 0.40201451 0.4776085 0.5035358 0.5344354 0.5360601 0.5955668 0.6228103 #> [197,] 0.46147713 0.6051880 0.6178127 0.7489781 0.7982087 0.8318041 0.9819342 #> [198,] 0.90254645 1.1476636 1.2435210 1.2555075 1.2713360 1.2953993 1.2964965 #> [199,] 0.35295760 0.4725503 0.6273540 0.6553937 0.6742267 0.7099813 0.7272521 #> [200,] 0.22003989 0.6339161 0.6577880 0.7028651 0.7089670 0.7099221 0.7364444 #> [201,] 1.30424483 1.3801370 1.6572063 1.6867596 1.7135375 1.7356769 1.7962741 #> [202,] 0.96348909 1.1220217 1.2021038 1.2176376 1.3685976 1.4039036 1.4407800 #> [203,] 0.72611264 0.8111915 0.8342606 0.8372628 0.8585798 0.8709668 1.0290069 #> [204,] 0.26218164 0.3876053 0.4977218 0.5012997 0.5277461 0.5384173 0.5414872 #> [205,] 0.32203562 0.4016753 0.4300057 0.5546442 0.5858126 0.5875525 0.6082550 #> [206,] 0.37711935 0.4536032 0.5418304 0.5571568 0.5603790 0.5993868 0.6085266 #> [207,] 1.29870348 1.4759336 1.5193207 1.6065617 1.6335442 1.6481263 1.6744164 #> [208,] 0.41828293 0.4505434 0.5149747 0.5504608 0.5652963 0.6662338 0.6896558 #> [209,] 1.09602517 1.3455591 1.3968001 1.4076033 1.4311583 1.4532473 1.4562446 #> [210,] 0.23259817 0.2557204 0.3945140 0.4285865 0.5073673 0.5450982 0.5976732 #> [211,] 0.57035503 0.6708464 0.6737630 0.7192255 0.7207689 0.7496445 0.7887201 #> [212,] 0.39122971 0.4981192 0.5229825 0.5269430 0.5292013 0.5795555 0.5996315 #> [213,] 0.35637992 0.4327384 0.4632784 0.4996657 0.5418139 0.5668559 0.5799450 #> [214,] 0.50944477 0.5110197 0.5355926 0.5386034 0.5713747 0.5859775 0.6705592 #> [215,] 0.34791594 0.5351012 0.5943828 0.6316720 0.6639791 0.7338786 0.7368381 #> [216,] 0.27087776 0.2839025 0.3817311 0.5293472 0.5908624 0.6269716 0.6411617 #> [217,] 0.39744238 0.4157032 0.4207887 0.5008248 0.5621268 0.5672412 0.6119784 #> [218,] 0.33093201 0.5025979 0.5581936 0.5705094 0.5770479 0.5935215 0.5974658 #> [219,] 0.47130002 0.4807848 0.5290914 0.6324410 0.6944847 0.7013259 0.7344657 #> [220,] 0.50139444 0.6117694 0.6213244 0.6379400 0.6655542 0.7627878 0.7797618 #> [221,] 0.17049041 0.4410825 0.4612374 0.4953889 0.5724994 0.6252209 0.7118564 #> [222,] 0.95693748 1.1132546 1.1244440 1.1303904 1.2668734 1.3012856 1.3358036 #> [223,] 0.28983255 0.3401989 0.3488723 0.4446433 0.4599618 0.4971177 0.5089164 #> [224,] 0.68358791 0.7398657 0.8153097 0.9655508 1.0165439 1.0306387 1.0955916 #> [225,] 0.52787810 0.6537160 0.7764582 0.8385543 0.8581661 0.9558473 0.9584774 #> [226,] 0.47700844 0.5216885 0.5275571 0.5504608 0.6699999 0.6742696 0.6864118 #> [227,] 0.40229399 0.4330564 0.4653143 0.4910223 0.5192757 0.5500262 0.5755747 #> [228,] 0.16765161 0.3794128 0.3972535 0.4516268 0.5227325 0.5984751 0.7192160 #> [229,] 0.56725251 0.5680787 0.5804492 0.6965240 0.7132296 0.7339512 0.7397689 #> [230,] 0.53481399 0.6018809 0.6580955 0.6617331 0.6902225 0.7393891 0.7903442 #> [231,] 0.56754181 0.6221936 0.7386678 0.7643205 0.7936885 0.8099410 0.8349234 #> [232,] 0.33706501 0.5086939 0.5351012 0.5672952 0.6229590 0.6575454 0.7062489 #> [233,] 0.51643360 0.5335565 0.5571488 0.5878117 0.7780923 0.8003594 0.8174984 #> [234,] 0.38920400 0.6969675 0.7000426 0.7243613 0.7523700 0.7669118 0.7962175 #> [235,] 0.37712295 0.3991980 0.5946666 0.6124585 0.6698246 0.7125412 0.7172980 #> [236,] 0.34385430 0.3561176 0.5080554 0.5570809 0.5827833 0.6707290 0.6944958 #> [237,] 0.35853973 0.3927377 0.4391532 0.4562070 0.4633042 0.4707987 0.5236926 #> [238,] 0.59462859 0.6323538 0.6356349 0.6532442 0.7442849 0.7569891 0.8079612 #> [239,] 0.59284156 0.6264562 0.8839687 0.8899777 0.9636064 0.9918935 1.0633670 #> [240,] 0.24728549 0.5359625 0.5978341 0.6676988 0.7735319 0.7764392 0.7795528 #> [241,] 0.39744238 0.4338809 0.4520274 0.5868525 0.6012372 0.6065631 0.6152847 #> [242,] 0.37716013 0.4836585 0.5110197 0.5421546 0.5715196 0.6801882 0.6905674 #> [243,] 0.28394795 0.3820281 0.3876899 0.3974501 0.4430272 0.5167141 0.5183246 #> [244,] 0.82430292 0.9597073 0.9680445 1.3547966 1.3548550 1.3607090 1.3921615 #> [245,] 0.57624017 0.5876477 0.6268535 0.6270330 0.6747779 0.6848974 0.7931200 #> [246,] 0.31299205 0.5034560 0.5043867 0.5419253 0.5535397 0.5575974 0.7085888 #> [247,] 0.64262965 0.8921008 0.9305805 0.9339677 1.0069366 1.0193305 1.1414821 #> [248,] 0.48782602 0.5189966 0.5340295 0.5627590 0.5878117 0.7211326 0.7482774 #> [249,] 0.29951135 0.4259536 0.4972859 0.6099927 0.6159928 0.6249264 0.6333368 #> [250,] 1.20210381 1.5519966 1.7618684 1.9120597 1.9633872 2.0200774 2.0272466 #> [251,] 0.35031851 0.4776085 0.5788570 0.6083226 0.6146147 0.6818975 0.7005643 #> [252,] 0.32958296 0.3974501 0.4641185 0.4644079 0.4666262 0.5781133 0.5823183 #> [253,] 0.64262965 0.7900258 0.9860777 0.9909285 1.0919575 1.1173512 1.1255470 #> [254,] 0.31801358 0.3946047 0.5089164 0.6378590 0.6576409 0.6856637 0.6870499 #> [255,] 0.56754181 0.6402904 0.7009357 0.7173158 0.7729828 0.9631997 1.0913812 #> [256,] 0.34385430 0.5192776 0.6300583 0.6377344 0.7117716 0.7386289 0.7809774 #> [257,] 0.22952545 0.3700009 0.4237522 0.4269215 0.4446646 0.4706503 0.4720348 #> [258,] 0.44150652 0.8000399 0.9923017 1.1193029 1.2113795 1.2947642 1.3275814 #> [259,] 0.85237136 1.0701032 1.2366975 1.4143776 1.5372939 1.5401955 1.6497181 #> [260,] 0.34800816 0.4439292 0.4792568 0.5645975 0.5678585 0.5823287 0.5922374 #> [261,] 0.35396396 0.4361154 0.4656768 0.4666262 0.5121672 0.5249327 0.5773453 #> [262,] 0.71907907 0.7288427 0.7508510 0.7767205 0.7890183 0.9310220 0.9435470 #> [263,] 0.29770340 0.4141110 0.5676076 0.6408758 0.6567339 0.6658709 0.7265516 #> [264,] 0.19402179 0.2678304 0.3317761 0.5779306 0.5793657 0.5922482 0.6011110 #> [265,] 0.52654089 0.5694851 0.7143330 0.7409058 0.7444994 0.7695044 0.8202393 #> [266,] 0.43286308 0.6539635 0.7156137 1.0338277 1.0880982 1.1014870 1.2061600 #> [267,] 0.36675682 0.5501011 0.6080251 0.6144638 0.6671930 0.6740908 0.6979966 #> [268,] 0.59586692 0.7958265 0.8402377 0.8576936 0.9461251 0.9771705 1.0383945 #> [269,] 0.54260412 0.5650773 0.6896558 0.7013672 0.8024806 0.8243659 0.8619546 #> [270,] 0.22500973 0.4578056 0.5132158 0.5347966 0.5573906 0.5618274 0.5656646 #> [271,] 0.26941305 0.2701207 0.4742903 0.5017003 0.5199536 0.5307726 0.5483506 #> [272,] 0.48405150 0.5934796 0.7977922 0.8339237 0.8528246 0.9053046 0.9145482 #> [273,] 0.50643364 0.6628639 0.7460642 0.7497779 0.7905453 0.8047521 0.8092070 #> [274,] 0.56440130 0.6220324 0.6527405 0.7055652 0.7417904 0.7430240 0.7638724 #> [275,] 0.64111107 0.7362176 0.7411347 0.8071888 0.9011914 0.9139025 0.9205592 #> [276,] 0.48583868 1.1128216 1.1280921 1.2256428 1.2970298 1.3186694 1.3719151 #> [277,] 0.27111546 0.5458634 0.5522195 0.5631557 0.6328689 0.6480226 0.6719849 #> [278,] 0.32240302 0.5092862 0.5285431 0.5858995 0.6302899 0.6656487 0.6848974 #> [279,] 0.54272310 0.9510885 1.0333731 1.0378200 1.0842766 1.0886630 1.1258774 #> [280,] 0.44001319 0.4482383 0.5350578 0.5680075 0.7093066 0.7229251 0.7477676 #> [281,] 0.48782602 0.5382450 0.6441751 0.6856915 0.7746998 0.8234598 0.8382064 #> [282,] 0.63216176 0.6843951 0.7033122 0.7206454 0.8457100 0.8556248 0.9346566 #> [283,] 0.20119578 0.4330050 0.5292013 0.6444889 0.6596934 0.6674573 0.7008368 #> [284,] 0.41791948 0.5500002 0.5616033 0.6644147 0.6684482 0.7115284 0.7714425 #> [285,] 0.28122955 0.2898325 0.3042652 0.3680010 0.4208660 0.4288953 0.4544843 #> [286,] 0.83117402 0.9536993 1.0759830 1.0794063 1.0797320 1.1290180 1.2017439 #> [287,] 0.16765161 0.2524951 0.3055798 0.4410636 0.4944418 0.5827833 0.6699247 #> [288,] 0.56499395 0.6104109 0.6494149 0.6533586 0.6589826 0.6912301 0.7058457 #> [289,] 0.56128240 0.6060546 0.6891124 0.7835165 0.8987008 0.9107711 0.9328638 #> [290,] 0.44254775 0.4739008 0.4938839 0.4973035 0.5154688 0.5364357 0.5900000 #> [291,] 0.43114166 0.5037232 0.7502026 0.8022048 0.8222796 0.9218647 0.9456269 #> [292,] 0.28122955 0.3585397 0.4005744 0.4599618 0.4719293 0.4737524 0.4941077 #> [293,] 0.45982563 0.4627462 0.6790274 0.7352688 0.7444994 0.7550201 0.8146329 #> [294,] 0.33093201 0.3737276 0.4075892 0.4965954 0.5459429 0.6212020 0.6413108 #> [295,] 1.22922834 1.6228459 1.7320149 1.8213842 1.9268269 2.0307088 2.0696552 #> [296,] 0.69835149 0.7256993 0.7417198 0.8211896 0.8380895 0.8780206 0.8932582 #> [297,] 0.24047378 0.3771601 0.4302289 0.4714800 0.5026818 0.5079815 0.5116403 #> [298,] 0.97717053 1.0341550 1.1530179 1.1615413 1.1964910 1.2109834 1.2236306 #> [299,] 0.46871727 0.5940345 0.6718302 0.6963547 0.7474774 0.7541661 0.7727392 #> [300,] 0.40337394 0.4141110 0.4921739 0.4987909 0.5418304 0.6260777 0.6305279 #> [301,] 0.38832700 0.5591449 0.7470331 0.8280040 0.9345298 1.0007794 1.0097257 #> [302,] 1.05544757 1.0864902 1.2096848 1.2278592 1.2559593 1.3363969 1.3384323 #> [303,] 1.05931979 1.4083979 1.5475604 1.5779953 1.5884435 1.6557957 1.7377046 #> [304,] 0.61747662 0.6944256 0.7058491 0.7141267 0.7232051 0.7310167 0.7342439 #> [305,] 0.99875331 1.1196969 1.1629325 1.1712476 1.1934590 1.2020231 1.2147471 #> [306,] 0.16044299 0.3508093 0.3586839 0.3947949 0.4432703 0.5215421 0.5766561 #> [307,] 0.75555445 0.7985300 0.9673132 1.0086205 1.0165799 1.0217857 1.0825259 #> [308,] 0.19402179 0.3555067 0.4337352 0.5723201 0.5901790 0.6238143 0.6588093 #> [309,] 0.15739874 0.2927399 0.3094247 0.3420135 0.4140120 0.4279712 0.4617395 #> [310,] 0.42526236 0.5833116 0.6245978 0.6534410 0.6637959 0.6728224 0.7151564 #> [311,] 0.65948086 0.7622319 0.7696701 0.7931384 0.8242023 0.8477518 0.9194493 #> [312,] 0.38594183 0.4376983 0.4930348 0.6038293 0.6202930 0.6476761 0.6973202 #> [313,] 0.29619568 0.5594014 0.5688117 0.5864253 0.5870340 0.6421234 0.6713917 #> [314,] 0.27111546 0.5001202 0.5686945 0.6167773 0.6353030 0.7064299 0.7158896 #> [315,] 0.45340478 0.4768650 0.4864367 0.4908308 0.4909328 0.5154688 0.5219980 #> [316,] 0.62039678 0.7758929 0.7894831 0.7977922 0.8005508 0.8373456 0.8664193 #> [317,] 0.34725973 0.4317180 0.4657972 0.4728753 0.4784125 0.4947778 0.5146067 #> [318,] 0.66774590 1.0664273 1.2667554 1.2998875 1.3524285 1.3923727 1.4089270 #> [319,] 0.53683528 0.6458406 0.6819790 0.6968820 0.7221679 0.7954932 0.8013005 #> [320,] 0.27692957 0.3295830 0.4315167 0.4361154 0.4632784 0.5194180 0.5731871 #> [321,] 0.37740552 0.5298873 0.5674285 0.6048902 0.6227255 0.6320025 0.6411027 #> [322,] 0.35031851 0.5399719 0.6108232 0.6269043 0.6609895 0.7051456 0.7055877 #> [323,] 0.95372941 0.9592937 0.9818004 0.9823114 1.0534956 1.0553641 1.0968400 #> [324,] 0.18607074 0.4439292 0.5175486 0.5340295 0.5501744 0.5571488 0.5711820 #> [325,] 0.41137800 0.5682765 0.5934796 0.6069523 0.7628360 0.7758584 0.7772044 #> [326,] 0.49029828 0.5084776 0.5933649 0.6258394 0.8065527 0.8477603 0.8576452 #> [327,] 0.67399602 0.6808892 0.7301544 0.7776224 0.7818618 0.7955500 0.8297262 #> [328,] 0.83159959 0.9046579 1.3424826 1.3942088 1.3985994 1.4262390 1.4263432 #> [329,] 0.62645619 0.8139930 1.0637702 1.1379397 1.2330201 1.2445042 1.2717714 #> [330,] 0.34718697 0.3912297 0.4194307 0.4439014 0.5228171 0.5727556 0.6406330 #> [331,] 0.26035703 0.5753758 0.5946666 0.6105969 0.6638629 0.6697832 0.6705406 #> [332,] 0.30855503 0.3710229 0.4878354 0.5026781 0.5290914 0.5319935 0.5828565 #> [333,] 0.32922558 0.3842350 0.4455320 0.5087297 0.5693583 0.5817674 0.6002576 #> [334,] 0.43580695 0.4922980 0.5026781 0.5831288 0.5879639 0.6053585 0.6735620 #> [335,] 0.57875264 0.6839511 0.6853032 0.6863318 0.6982818 0.7301646 0.7401596 #> [336,] 0.23416207 0.4904582 0.5355710 0.5864253 0.5963909 0.6157789 0.6580955 #> [337,] 0.56117283 0.9724704 1.0097257 1.2080045 1.3264815 1.4421302 1.4433116 #> [338,] 0.46558168 0.4841030 0.6402904 0.9160282 0.9315429 0.9379916 1.0990903 #> [339,] 0.56536588 0.6463297 0.6586995 0.6940481 0.7130196 0.7237704 0.7773880 #> [340,] 0.40700908 0.5399719 0.5425732 0.5478941 0.5985593 0.6146147 0.6517178 #> [341,] 0.23253009 0.2841939 0.5425732 0.5526583 0.5707032 0.6098153 0.6189824 #> [342,] 0.33335252 0.4853275 0.5666667 0.5674679 0.5784783 0.5826087 0.5944991 #> [343,] 0.91191200 0.9235948 0.9993258 1.0262315 1.0356451 1.0573300 1.0660545 #> [344,] 0.21286690 0.3670160 0.4329317 0.5043867 0.5509312 0.5822610 0.6361994 #> [345,] 0.32627428 0.4014896 0.4233858 0.4694141 0.4925961 0.4972940 0.5446308 #> [346,] 0.27767287 0.2783384 0.3710229 0.3929441 0.4713000 0.4934612 0.4958311 #> [347,] 0.49907726 0.6222739 0.7091526 0.8132572 0.8963111 0.9075966 1.0341483 #> [348,] 0.21792988 0.5361539 0.5793089 0.5827702 0.5841615 0.5937395 0.6079173 #> [349,] 0.49561025 0.7515701 0.7900258 0.7948560 0.8526947 0.8921008 0.9249440 #> [350,] 0.15272180 0.3451188 0.5312809 0.5427308 0.5455492 0.5483506 0.5682192 #> [351,] 0.50111140 0.5290405 0.5388508 0.5638882 0.6842062 0.6856766 0.7081862 #> [352,] 0.48405150 0.9997366 1.0063590 1.0186303 1.0258218 1.0370866 1.0842196 #> [353,] 0.85506147 0.9796234 0.9997460 1.0331354 1.0857738 1.1596754 1.1766655 #> [354,] 0.33886686 0.7598023 0.7773880 0.8075970 0.8530453 0.8797843 0.9533309 #> [355,] 0.53824498 0.7482774 0.8041277 0.8343406 0.8527889 0.8808184 0.9057698 #> [356,] 0.39460346 0.4735638 0.5339004 0.5406958 0.6300583 0.6759686 0.6760014 #> [357,] 0.36786814 0.4943045 0.5858722 0.6555239 0.6883619 0.7011929 0.7140176 #> [358,] 0.54467172 0.6008991 0.6133631 0.6281582 0.7045401 0.7285143 0.7305726 #> [359,] 0.49538891 0.5077185 0.5161778 0.6036898 0.6470808 0.6509040 0.6822214 #> [360,] 0.33360306 0.3951510 0.5297383 0.5445057 0.5796505 0.6006658 0.6055141 #> [361,] 0.17049041 0.5033910 0.5077185 0.6048211 0.6167268 0.6264364 0.6731264 #> [362,] 0.30195725 0.4376983 0.5229335 0.5471404 0.5548141 0.5564983 0.5812133 #> [363,] 0.60005117 0.6010209 0.6738717 0.7179053 0.8279851 0.8281021 0.8510822 #> [364,] 0.66774590 1.3163298 1.4704140 1.4948077 1.4982230 1.5405538 1.5528732 #> [365,] 0.40688031 0.5753531 0.6290901 0.6897839 0.7227850 0.7229793 0.7529551 #> [366,] 0.33416754 0.6339668 0.7072508 0.7096127 0.7341859 0.7492985 0.7689684 #> [367,] 0.77150740 0.8281860 0.8365330 0.8415089 0.8481635 0.8571622 0.8613339 #> [368,] 0.93525318 0.9501049 1.0214541 1.0440251 1.0497149 1.0786428 1.1421249 #> [369,] 0.75502011 0.8643716 0.8916613 0.8925923 0.9750515 1.1627505 1.1896890 #> [370,] 0.41366461 0.5810245 0.6492271 0.6670795 0.7102363 0.7141773 0.7190354 #> [371,] 0.22947858 0.4005975 0.4329269 0.4377666 0.4958311 0.5414789 0.5570704 #> [372,] 0.28229287 0.3060863 0.4140120 0.4617932 0.4860057 0.4901277 0.5107906 #> [373,] 0.42234308 0.4251424 0.6440649 0.6532035 0.6593543 0.6997124 0.7057718 #> [374,] 0.35705946 0.4944418 0.5227325 0.6337435 0.7313741 0.7448075 0.7467064 #> [375,] 0.43000568 0.4510068 0.4537805 0.4770084 0.4908308 0.6091098 0.6605649 #> [376,] 0.70550896 0.8658663 1.0162033 1.1059807 1.1066440 1.1351071 1.1641759 #> [377,] 0.73231115 0.7330094 0.7646062 0.7711267 0.8413085 0.8651759 0.8653694 #> [378,] 0.51593162 0.6416642 0.7694242 0.8225500 0.8955663 0.9084808 0.9439012 #> [379,] 0.46123736 0.5245417 0.6048211 0.6248637 0.6372920 0.7045773 0.7268233 #> [380,] 0.41684967 0.4332905 0.5386192 0.5518292 0.5708686 0.5978990 0.6011880 #> [381,] 0.47919111 0.4792568 0.4871539 0.5175486 0.5446453 0.5682192 0.6344623 #> [382,] 0.48667127 0.5048615 0.5272385 0.5503752 0.5544435 0.5757508 0.6004304 #> [383,] 1.39237913 1.4389659 1.4775812 1.5511146 1.6401882 1.6666768 1.7071872 #> [384,] 1.11081929 1.1862048 1.2363080 1.3240156 1.3580938 1.3619310 1.3934562 #> [385,] 0.84719154 0.9257695 0.9259973 0.9631997 1.0528749 1.1507484 1.2607130 #> [386,] 0.21549985 0.2927903 0.4528098 0.4554006 0.4847586 0.5067646 0.5147386 #> [387,] 0.25548771 0.2627143 0.3012077 0.3369672 0.5852312 0.6533586 0.6665172 #> [388,] 0.38313595 0.4852145 0.5667683 0.5705758 0.5723201 0.5816681 0.5817390 #> [389,] 0.36776757 0.3820516 0.5654415 0.6478635 0.6581621 0.7580703 0.7614613 #> [390,] 0.44042104 0.4462403 0.4861098 0.6844823 0.6898711 0.6920427 0.7149602 #> [391,] 0.37755185 0.4720687 0.4748450 0.6676814 0.6830605 0.7232436 0.7517080 #> [392,] 0.49303475 0.6282661 0.6352669 0.7280407 0.7822611 0.7883182 0.8423544 #> [393,] 0.24156076 0.3333525 0.4894152 0.4907465 0.6046438 0.6096974 0.6198758 #> [394,] 0.75980226 0.9182698 1.0389936 1.0786253 1.0842766 1.1125976 1.1204943 #> [395,] 0.79131716 0.8450893 0.8701179 0.9600946 0.9620011 1.1613341 1.1650136 #> [396,] 0.46840057 0.6900040 0.7541661 0.7634109 0.8923103 0.9210998 0.9261443 #> [397,] 0.39460470 0.4769464 0.4993423 0.5605158 0.5964247 0.6108362 0.6189705 #> [398,] 0.54175410 0.6101697 0.6214295 0.7347792 0.7857347 0.8037321 0.8482199 #> [399,] 0.42443846 0.4946278 0.4988318 0.4991808 0.5728891 0.5872002 0.6422448 #> [400,] 0.40589754 0.5994650 0.6405285 0.6597749 0.7341665 0.7384536 0.7440294 #> [401,] 0.33547237 0.3876053 0.5448803 0.5742499 0.5754628 0.6805831 0.7048972 #> [402,] 0.52774869 0.7536813 0.7796129 0.8243505 0.8382165 0.8643576 0.9220884 #> [403,] 0.61366148 0.6602462 0.7427637 0.7735705 0.8246115 0.8442161 0.8613048 #> [404,] 0.35215632 0.4564511 0.6322821 0.6395455 0.7042088 0.7094070 0.7266282 #> [405,] 0.50924156 0.5422210 0.5544217 0.5690209 0.5959135 0.6045659 0.6229129 #> [406,] 0.57640862 0.7099221 0.7166143 0.7249098 0.7888289 0.8557293 0.8600432 #> [407,] 0.27916916 0.3484067 0.4446646 0.4531318 0.4875835 0.5116676 0.5139554 #> [408,] 0.32811395 0.3350727 0.3440006 0.4969256 0.6380791 0.6789776 0.7619706 #> [409,] 0.33360306 0.4789346 0.4905156 0.5192757 0.5432577 0.5903237 0.6025242 #> [410,] 0.51734179 0.8135626 0.9046579 0.9546533 0.9682437 1.0339429 1.0568210 #> [411,] 0.51230855 0.7115000 0.7758929 0.7828679 0.9054288 1.0238655 1.1780441 #> [412,] 0.56052284 0.6773700 0.9139025 0.9216663 1.0707815 1.0758797 1.1157012 #> [413,] 0.27429430 0.4174707 0.4715509 0.4769901 0.5313888 0.5681010 0.5757508 #> [414,] 0.65431994 0.7272521 0.7962587 0.8683901 0.8706834 1.0330764 1.0452828 #> [415,] 0.52130015 0.5345360 0.6173324 0.6322821 0.6335443 0.7028651 0.7036003 #> [416,] 0.80280506 0.8307399 0.8473081 0.9751862 0.9957300 1.0787663 1.2395073 #> [417,] 0.63880966 0.6527405 0.7013672 0.7099813 0.7667526 0.7864823 0.8593760 #> [418,] 0.17091574 0.2557204 0.4154745 0.4707840 0.4996657 0.5305223 0.6249691 #> [419,] 0.91355647 0.9407524 1.1901579 1.2092175 1.2215077 1.2843890 1.2951655 #> [420,] 0.44077352 0.4423909 0.6316720 0.6967569 0.7555210 0.7897678 0.7911129 #> [421,] 1.18129626 1.1820783 1.2192175 1.2663894 1.4015970 1.4078856 1.5088903 #> [422,] 0.60188092 0.7306779 0.7614894 0.8201824 0.8507603 0.8563820 0.8624440 #> [423,] 0.37105317 0.4343819 0.4415877 0.4975265 0.4978055 0.5155221 0.6055141 #> [424,] 1.03306172 1.0416197 1.0467315 1.1375541 1.2039755 1.2894666 1.2903858 #> [425,] 0.44637144 0.5257725 0.5597563 0.6685950 0.6792135 0.7737699 0.7910788 #> [426,] 0.38205163 0.4427894 0.5293472 0.5416102 0.5452154 0.5486471 0.6135617 #> [427,] 0.92897311 1.4607150 1.7194306 1.7638615 1.8088267 1.8113200 1.8456745 #> [428,] 0.36893463 0.5189327 0.5674679 0.6249000 0.6716065 0.6980939 0.7404938 #> [429,] 0.31315190 0.6597764 0.7347792 0.8168133 0.8300385 0.8385543 0.8550615 #> [430,] 0.56117283 0.9280705 1.0769471 1.0922780 1.2842654 1.3766206 1.4703591 #> [431,] 0.35991731 0.6071260 0.6503385 0.6590381 0.6897839 0.7125915 0.7392944 #> [432,] 0.27515565 0.6780247 0.7875097 0.8063710 0.8114488 0.8716991 0.8797149 #> [433,] 0.32404141 0.4805979 0.5681275 0.5712551 0.5734678 0.5900957 0.6468046 #> [434,] 0.33579434 0.5409392 0.5437083 0.5716376 0.7179293 0.7368908 0.7704097 #> [435,] 0.51962096 0.8417451 0.8673370 0.9462979 0.9760531 1.0758839 1.1064294 #> [436,] 0.35551633 0.5461164 0.6081071 0.7107542 0.7305726 0.7630830 0.7731162 #> [437,] 0.22473774 0.2619194 0.3630418 0.3737517 0.4401235 0.4417458 0.4634704 #> [438,] 0.39662159 0.4432703 0.4436377 0.4566741 0.5134027 0.5176712 0.5475328 #> [439,] 0.24156076 0.4339481 0.4853275 0.5150846 0.5453835 0.5731871 0.6445660 #> [440,] 0.42629419 0.4269498 0.4917449 0.5967956 0.7033093 0.7925975 0.8220188 #> [441,] 0.47387022 0.4973497 0.5272385 0.5500262 0.5524280 0.5579955 0.5641639 #> [442,] 0.69234816 0.8231293 0.8600432 0.8741934 0.8783775 0.9141506 0.9162641 #> [443,] 0.26578713 0.3455166 0.5271173 0.5728187 0.6090574 0.6193783 0.6266733 #> [444,] 0.30916496 0.3856758 0.4017785 0.4945967 0.5464797 0.5544855 0.5725951 #> [445,] 0.50248079 0.5973751 0.6198012 0.7106098 0.7710974 0.7735319 0.7790543 #> [446,] 0.30696916 0.4064382 0.4439416 0.5047480 0.6406330 0.6714506 0.7422157 #> [447,] 0.94100371 1.0331354 1.0410825 1.0532556 1.1293918 1.1827213 1.2545704 #> [448,] 0.85654824 1.1190720 1.1199056 1.1775246 1.1937552 1.2525599 1.2540978 #> [449,] 0.72588120 0.9358353 0.9492661 1.0811068 1.0912420 1.1134560 1.1234979 #> [450,] 0.49268324 0.5296746 0.7474774 0.7683373 0.8557396 0.8643716 0.9074240 #> [451,] 0.40730826 0.4722252 0.4829929 0.5956886 0.6168834 0.6456856 0.6482295 #> [452,] 0.43750473 0.4411643 0.5386192 0.5570704 0.5666451 0.5785084 0.5869566 #> [453,] 0.27833841 0.2841270 0.3683553 0.4005975 0.4819972 0.5281680 0.5319935 #> [454,] 0.55997084 0.6393230 0.7498951 0.7731162 0.8337882 0.8384616 0.8678513 #> [455,] 0.39223456 0.4003260 0.4009120 0.4256820 0.4335879 0.4368795 0.4841923 #> [456,] 0.31583768 0.3357943 0.4075892 0.4683504 0.6180513 0.6915943 0.7676689 #> [457,] 0.19718617 0.2507500 0.2952804 0.4110020 0.4269215 0.4505302 0.4861472 #> [458,] 0.79403055 0.9079105 0.9744997 1.0245793 1.0396396 1.0684175 1.0798204 #> [459,] 0.41279177 0.4735638 0.4978055 0.5009526 0.5194236 0.5210512 0.5656646 #> [460,] 0.18365652 0.3565099 0.3737517 0.4901712 0.5012997 0.5406525 0.5541087 #> [461,] 0.33777507 0.4185361 0.4500143 0.5213931 0.5732926 0.5733587 0.6311623 #> [462,] 0.34000005 0.4547087 0.4803415 0.4979181 0.4981605 0.5139271 0.5324105 #> [463,] 0.50958632 0.5724994 0.5762256 0.5984237 0.6036898 0.6167249 0.6167268 #> [464,] 0.41791948 0.5207050 0.6310681 0.6748141 0.6753137 0.7997849 0.8257319 #> [465,] 0.41908392 0.5298873 0.6748081 0.6816221 0.7071701 0.7271169 0.7385645 #> [466,] 1.34494781 1.5233323 1.5635876 1.6090008 1.7593662 1.7745993 1.8503743 #> [467,] 0.79853002 0.8112394 0.9556263 1.0278128 1.0292884 1.0529251 1.0797320 #> [468,] 0.67399602 0.8083640 0.8330092 0.8502555 0.8880128 0.8915497 0.9213053 #> [469,] 0.63932303 0.6410085 0.7169540 0.8022048 0.8101539 0.8853278 0.8998839 #> [470,] 0.35517167 0.5000046 0.5068350 0.5085941 0.5143304 0.5251669 0.5482755 #> [471,] 0.36491652 0.3965035 0.5752258 0.6001995 0.6997092 0.7815906 0.8311178 #> [472,] 0.36304515 0.5643803 0.5915972 0.6311051 0.6366774 0.6652489 0.6658170 #> [473,] 0.15272180 0.3878751 0.4335768 0.4719275 0.5506425 0.5845838 0.5928785 #> [474,] 0.43303048 0.4391350 0.4656768 0.5288773 0.5328568 0.5817674 0.5961361 #> [475,] 0.53830065 1.1780441 1.1802566 1.1812963 1.3166412 1.3192053 1.3597177 #> [476,] 0.27692957 0.3539640 0.3934326 0.4327384 0.4391350 0.4641185 0.4707840 #> [477,] 0.30784366 0.4136345 0.4267375 0.4565310 0.5014282 0.5324105 0.5731336 #> [478,] 0.14874895 0.3816655 0.5239113 0.6164456 0.6900380 0.6975582 0.7122184 #> [479,] 0.54272310 0.6060152 0.6884798 0.7072447 0.7911542 0.7989374 0.8566173 #> [480,] 0.43637557 0.7652942 0.7878777 0.8075332 0.8276442 0.9581094 0.9721621 #> [481,] 0.30696916 0.3199699 0.3438252 0.4263777 0.4439014 0.5274743 0.6674573 #> [482,] 0.34551656 0.4346415 0.5532540 0.5643588 0.6144827 0.6421988 0.6648602 #> [483,] 0.50575352 0.7093871 0.7159460 0.7826749 0.8296502 0.8301152 0.8694828 #> [484,] 0.39196996 0.4252624 0.6739281 0.7272578 0.7433350 0.7891056 0.8303995 #> [485,] 0.32267120 0.5123086 0.5447285 0.6203968 0.7115202 0.8486390 0.8656488 #> [486,] 0.61082321 0.6598523 0.7005643 0.8473081 0.8643576 0.9271097 0.9627590 #> [487,] 0.37131494 0.5290405 0.6032977 0.6206803 0.6283001 0.6460744 0.6707166 #> [488,] 0.60423508 0.6226021 1.0455526 1.1612867 1.2450324 1.2661239 1.2846899 #> [489,] 0.60605455 0.7563084 0.8980437 0.9233367 1.0435580 1.0566689 1.0593198 #> [490,] 0.38529405 0.5153898 0.5944632 0.6035720 0.6498777 0.6666415 0.6975582 #> [491,] 0.69234816 0.7206454 0.7888289 0.8132450 0.8274062 0.8489513 0.8564503 #> [492,] 1.15191239 1.3899942 1.4500010 1.4885976 1.5228824 1.5852860 1.6965329 #> [493,] 0.56315141 0.6642650 0.6965077 0.6999140 0.7645853 0.7683081 0.7897385 #> [494,] 0.48583868 1.1109211 1.1695009 1.3133883 1.3257371 1.3295063 1.3357156 #> [495,] 0.78233201 1.0637702 1.1451020 1.2800477 1.3045123 1.3432057 1.3498040 #> [496,] 0.58121331 0.5842185 0.5934716 0.7158673 0.7288453 0.8039226 0.8781543 #> [497,] 0.60144678 0.6523766 0.7815906 0.7855782 0.7883097 0.9350030 0.9439458 #> [498,] 0.58608188 0.9931059 1.1399638 1.1783841 1.2097972 1.2181288 1.2365478 #> [499,] 0.63282757 0.6682973 0.6743829 0.7578613 0.7671347 0.7887201 0.8602626 #> [500,] 0.26265001 0.5356474 0.6421611 0.6772350 0.7457229 0.7951561 0.8453708 #> [501,] 1.38999419 1.5992446 1.8790500 2.3113869 2.3168782 2.3637341 2.3922669 #> [502,] 0.32558987 0.4174707 0.4371221 0.4554006 0.4772252 0.5048615 0.5416199 #> [503,] 0.48461201 0.7215688 0.7433350 0.7617940 0.7680742 0.7905453 0.7961259 #> [504,] 0.22486970 0.2627143 0.3695717 0.4947433 0.5551474 0.5586764 0.5956886 #> [505,] 0.68271114 0.8258154 0.8675523 0.9214783 0.9267411 0.9584324 0.9606637 #> [506,] 0.38713800 0.4160170 0.4167471 0.5416616 0.6201974 0.6218608 0.6513026 #> [507,] 0.35517167 0.4033861 0.4352831 0.4425477 0.4630983 0.4665478 0.4729722 #> [508,] 0.21503155 0.4364501 0.5066574 0.5068288 0.5470138 0.5629381 0.5653868 #> [509,] 1.35540675 1.3651020 1.4498864 1.4697750 1.4866551 1.6000226 1.6029319 #> [510,] 1.12729374 1.1422187 1.1849896 1.2738890 1.2847577 1.2913047 1.3467737 #> [511,] 0.33004290 0.3838357 0.5194236 0.5339004 0.5774565 0.6389957 0.6516153 #> [512,] 0.87751687 1.0572218 1.1211695 1.1232132 1.2340452 1.2617497 1.2899045 #> [513,] 1.26501290 1.2800477 1.3927728 1.4072841 1.4812533 1.4894414 1.5189249 #> [514,] 0.32349377 0.4353077 0.5567052 0.5573627 0.5938147 0.5940007 0.6354609 #> [515,] 0.46681568 0.4981513 0.5804492 0.5870340 0.6382426 0.6558298 0.6613072 #> [516,] 0.48176089 0.4981513 0.6124427 0.6951015 0.6968820 0.7107325 0.7603987 #> [517,] 0.56275897 0.7327818 0.7415040 0.7746998 0.7948028 0.8078147 0.8275757 #> [518,] 0.43645014 0.4427498 0.4582420 0.4617395 0.4696348 0.4860057 0.4869942 #> [519,] 0.30195725 0.3064522 0.4834773 0.5319833 0.5844000 0.5934716 0.6602826 #> [520,] 0.34872796 0.4696348 0.5094419 0.5328879 0.5508058 0.5596657 0.5667683 #> [521,] 0.22486970 0.3012077 0.4638763 0.4827970 0.5581506 0.5857969 0.6168834 #> [522,] 0.34718697 0.4734484 0.4759376 0.4821902 0.4981192 0.5919049 0.6765002 #> [523,] 0.37119003 0.4042716 0.4167471 0.6327125 0.6424517 0.6451651 0.6544454 #> [524,] 0.49883178 0.5564145 0.6133631 0.6188844 0.6548673 0.6671413 0.7107542 #> [525,] 0.51487828 0.7055090 0.7121909 0.7625581 0.8078147 0.8712902 0.9196127 #> [526,] 0.26233166 0.3301814 0.5477472 0.5644013 0.5652963 0.6095633 0.6419645 #> [527,] 0.44657063 0.5469588 0.6504423 0.7273693 0.9348490 0.9960069 1.0127452 #> [528,] 0.55221954 0.6227255 0.6748081 0.6885028 0.6898711 0.6936241 0.6971507 #> [529,] 0.60601516 0.6747779 0.7274967 0.7710522 0.7746791 0.7761110 0.7761581 #> [530,] 0.96348909 1.0005127 1.1531303 1.1819835 1.2705730 1.2881013 1.3097788 #> [531,] 0.51614723 0.5859331 0.6091953 0.6416642 0.6484656 0.7493636 0.7608141 #> [532,] 0.52734415 0.5752258 0.6201989 0.6509948 0.7475855 0.7848703 0.8374849 #> [533,] 0.22768949 0.4755288 0.5001598 0.5267358 0.5417933 0.5707032 0.6032977 #> [534,] 0.17308916 0.3775519 0.4374424 0.4842991 0.5473634 0.5522140 0.5544129 #> [535,] 0.27366290 0.4910223 0.5432577 0.5697910 0.6618646 0.7108046 0.7424222 #> [536,] 0.82986354 0.8525027 0.8694440 0.8770413 0.8785766 0.9407524 0.9698302 #> [537,] 0.50957678 0.5401574 0.5591449 0.5853550 0.6122867 0.8077789 0.8343363 #> [538,] 0.36353777 0.3804196 0.4706606 0.4781166 0.4842991 0.5207731 0.5435039 #> [539,] 0.12432811 0.4799947 0.7927098 0.8045342 0.8104586 0.8335825 0.8565542 #> [540,] 0.39267342 0.5104084 0.5539836 0.5571402 0.6095633 0.6229590 0.6637908 #> [541,] 0.28212285 0.2891919 0.4649396 0.5648903 0.5664279 0.5829420 0.6284229 #> [542,] 0.99208071 1.0640377 1.1408177 1.2567472 1.2610097 1.2973438 1.3444573 #> [543,] 0.48996733 0.5606936 0.5728755 0.6760014 0.7544363 0.7715961 0.7818113 #> [544,] 0.22723214 0.3977784 0.4259536 0.4369957 0.5030719 0.5087297 0.5148810 #> [545,] 0.32764986 0.3947949 0.3989610 0.4436377 0.5049733 0.5212736 0.5482755 #> [546,] 0.38903127 0.4299702 0.4647006 0.4800804 0.5080255 0.5473492 0.6005693 #> [547,] 0.22075267 0.3000063 0.6380791 0.6999140 0.7695203 0.7772380 0.7839562 #> [548,] 0.54444892 0.7026799 0.7865930 0.8482936 0.8593760 0.8771458 0.9025465 #> [549,] 0.41975680 0.5425809 0.6484656 0.6700281 0.6740985 0.7462301 0.7625581 #> [550,] 0.44410572 0.4786823 0.5505203 0.6208388 0.7245477 0.7528892 0.8241554 #> [551,] 0.34765690 0.4860027 0.5374429 0.5498394 0.5611247 0.5674918 0.5913260 #> [552,] 0.25761193 0.2839479 0.4359787 0.4500779 0.5492644 0.6073729 0.6101469 #> [553,] 0.32458341 0.4294108 0.4755666 0.4790972 0.5430447 0.5497086 0.5698945 #> [554,] 0.30000634 0.3440006 0.3895970 0.5069029 0.6480851 0.6545683 0.7117059 #> [555,] 0.57083623 0.6741173 0.7033093 0.7443693 0.7894831 0.7964902 0.8458878 #> [556,] 0.51508459 0.5199321 0.5402096 0.5418139 0.5784783 0.6096974 0.6549053 #> [557,] 0.35322004 0.4095795 0.6571445 0.7186039 0.7256993 0.7310167 0.7931390 #> [558,] 1.73915157 2.0895044 2.1799612 2.2052621 2.2889129 2.3213603 2.3241489 #> [559,] 0.32678210 0.5064336 0.5544217 0.6344623 0.6354370 0.6742242 0.6952326 #> [560,] 0.25389733 0.4095795 0.4867599 0.5728891 0.5757414 0.6128420 0.6201974 #> [561,] 0.57920643 0.6609895 0.7130723 0.7608231 0.8280994 0.8915774 0.9119757 #> [562,] 0.33004290 0.3951510 0.4803121 0.5113439 0.5922088 0.6058663 0.6105139 #> [563,] 0.29619568 0.6414745 0.6818945 0.7300882 0.7494630 0.7524761 0.8068922 #> [564,] 0.28390248 0.3352527 0.4368724 0.4797075 0.5452154 0.5546065 0.5663818 #> [565,] 1.70387685 1.8756984 1.9238217 1.9351767 2.0168327 2.0358703 2.0389652 #> [566,] 0.50368519 0.5164336 0.5711820 0.6091953 0.6135240 0.6179733 0.6527461 #> [567,] 0.27429430 0.3579049 0.4233858 0.4472829 0.4561306 0.4772252 0.4890375 #> [568,] 0.36176548 0.4923406 0.4991808 0.5343824 0.5415747 0.5455492 0.5481736 #> [569,] 0.58372918 0.5984751 0.6508299 0.6699247 0.7298699 0.7735197 0.8480297 #> [570,] 0.38920400 0.6251328 0.7517080 0.7609491 0.7827158 0.8434251 0.8563041 #> [571,] 0.44136721 0.5160107 0.5731316 0.5940345 0.6567246 0.6588093 0.6591535 #> [572,] 0.33373156 0.4814404 0.5521197 0.7448075 0.7741427 0.7927559 0.8362222 #> [573,] 0.23416207 0.4356454 0.5688117 0.5912199 0.5929949 0.5965354 0.6701969 #> [574,] 0.46386001 0.4905156 0.5672952 0.6115767 0.6319799 0.6335443 0.6418135 #> [575,] 0.44102183 0.5958669 0.6523323 0.6539635 0.7169540 0.7502026 0.7989667 #> [576,] 0.22003989 0.5764086 0.5800283 0.6960439 0.6992767 0.7734542 0.7760067 #> [577,] 0.52787810 0.8656258 1.0886843 1.1303904 1.1652766 1.1992359 1.2040200 #> [578,] 0.33537141 0.4310171 0.4855791 0.5043320 0.5506841 0.6286606 0.6449115 #> [579,] 0.48106688 0.6400865 0.6602727 0.6610452 0.6643364 0.6676988 0.6725714 #> [580,] 0.40229399 0.4831555 0.5020988 0.5160107 0.5657945 0.5793657 0.5832154 #> [581,] 0.35648607 0.5155221 0.5430369 0.5512025 0.5672378 0.5931377 0.6105139 #> [582,] 0.27012072 0.4017908 0.4559433 0.4892858 0.4946278 0.5128846 0.5350863 #> [583,] 0.35868385 0.4425961 0.6264364 0.6395027 0.6446911 0.6611604 0.6894536 #> [584,] 0.55815062 0.5852312 0.6701959 0.6814269 0.7058457 0.7367348 0.7549490 #> [585,] 0.44657063 0.4577985 0.7049280 0.7064780 0.7427919 0.7677238 0.7866158 #> [586,] 0.33284522 0.3968305 0.5929588 0.6385466 0.6502117 0.6619225 0.7842259 #> [587,] 0.17308916 0.3946946 0.4523318 0.4748450 0.4781166 0.5063630 0.5519264 #> [588,] 0.77900189 0.7890183 0.8378151 0.8851613 0.8899777 0.9409221 1.0251435 #> [589,] 0.56786474 0.5713880 0.6050779 0.6742909 0.6922978 0.7159223 0.7236839 #> [590,] 1.28990446 1.4368071 1.4372491 1.6684753 1.6883546 1.7540976 1.8215611 #> [591,] 0.34060381 0.3857767 0.4285865 0.4323910 0.5243204 0.5416102 0.5619075 #> [592,] 0.44624031 0.4964189 0.6007497 0.6597749 0.6793760 0.7046408 0.7064299 #> [593,] 0.16044299 0.2337616 0.3989610 0.4425961 0.4827286 0.5134027 0.5305207 #> [594,] 0.23433208 0.2507500 0.3647389 0.3863603 0.4060251 0.4638805 0.4706503 #> [595,] 0.17597548 0.4429149 0.4458199 0.5008248 0.6135240 0.6417925 0.6768346 #> [596,] 0.46274619 0.5643122 0.7634109 0.7683373 0.8060857 0.8275630 0.8577206 #> [597,] 0.48996733 0.5210512 0.5406958 0.5489483 0.5774565 0.7836787 0.8296072 #> [598,] 0.22768949 0.5449690 0.5478941 0.5777244 0.5915972 0.6030622 0.6073392 #> [599,] 0.83371889 0.8694239 0.8819580 0.9786088 0.9887986 1.0007794 1.1333100 #> [600,] 0.26035703 0.5574171 0.6283340 0.6793788 0.6816118 0.7125412 0.7249124 #> [601,] 0.37701435 0.3873969 0.4454083 0.5852220 0.6213244 0.6464179 0.6551963 #> [602,] 0.18365652 0.2247377 0.2577553 0.3864874 0.4023448 0.5241576 0.5414872 #> [603,] 0.43366031 0.6522712 0.8378151 0.8617993 0.8700834 0.9045392 1.0198042 #> [604,] 0.69993429 0.7284301 0.9402911 1.1137788 1.1158997 1.1169389 1.1244440 #> [605,] 0.29951135 0.3365124 0.4805783 0.4852801 0.4947778 0.5059454 0.5593715 #> [606,] 0.24308049 0.3369672 0.4299477 0.4368795 0.5183246 0.5551474 0.5619075 #> [607,] 0.44525949 0.8932878 0.9821860 1.0011803 1.0103385 1.0981862 1.1486406 #> [608,] 0.59405249 0.6543199 0.6553937 0.7091526 0.8328801 0.8486597 0.8609763 #> [609,] 1.02977260 1.2619621 1.2667554 1.4606998 1.5334449 1.5560651 1.5957530 #> [610,] 0.35144018 0.5686196 0.5780670 0.6654444 0.8031539 0.8919497 0.8937318 #> [611,] 0.39294411 0.4329269 0.4807848 0.4819972 0.4849148 0.5227979 0.5640177 #> [612,] 0.46886255 0.5946286 0.6971507 0.7394289 0.7854985 0.8576131 0.9304374 #> [613,] 0.51490569 0.5511763 0.9546355 1.1132546 1.1169389 1.1330129 1.2553011 #> [614,] 0.44559324 0.5293639 0.5361539 0.5733587 0.7285486 0.7346014 0.7350405 #> [615,] 0.33760424 0.3771229 0.5694851 0.6053445 0.6638629 0.7151035 0.7352688 #> [616,] 0.37489759 0.6153700 0.6522712 0.6900040 0.7691259 0.7830058 0.8490819 #> [617,] 0.38785383 0.4255550 0.5361624 0.6440649 0.6580717 0.6705406 0.6816118 #> [618,] 0.33543684 0.3541546 0.4724177 0.5725951 0.6208388 0.6248876 0.6351238 #> [619,] 0.49870522 0.5469588 0.7579067 0.7694242 0.7866158 0.8033215 0.9437138 #> [620,] 0.45415534 0.6671930 0.6792135 0.6862691 0.7155112 0.7678281 0.7826749 #> [621,] 0.33984133 0.4188059 0.4377666 0.4584733 0.4993423 0.5206577 0.5281680 #> [622,] 0.32404141 0.4348363 0.5456857 0.5670290 0.5897818 0.6090094 0.6204706 #> [623,] 0.43463282 0.4849148 0.6283340 0.6380633 0.6411111 0.6772921 0.7280407 #> [624,] 0.24047378 0.2949672 0.4734230 0.4836585 0.4855279 0.5226528 0.5671062 #> [625,] 0.38832700 0.6122867 0.6906560 0.8819580 0.9070997 0.9280705 0.9724704 #> [626,] 0.31996990 0.4064382 0.4194307 0.5095882 0.6187073 0.6682280 0.6765002 #> [627,] 0.21601832 0.4441057 0.4724177 0.4945967 0.5062977 0.5134793 0.5488952 #> [628,] 0.17402163 0.2367911 0.4004923 0.4353077 0.4847487 0.4869942 0.4950905 #> [629,] 0.80130051 0.8168133 0.8360590 0.9012890 0.9719824 0.9892314 1.0326790 #> [630,] 0.33886686 0.6463297 0.6651778 0.7060388 0.7318452 0.7538065 0.7692197 #> [631,] 0.34201350 0.3591081 0.4149334 0.4231522 0.4760790 0.4992524 0.5132158 #> [632,] 0.49883170 0.7197396 0.7218012 0.7508510 0.7842259 0.7848501 0.7930338 #> [633,] 0.40473610 0.4956102 0.7398657 0.8165282 0.9339677 0.9609719 1.0370421 #> [634,] 0.48667127 0.5674285 0.5851370 0.6052577 0.6083226 0.6202031 0.6234698 #> [635,] 0.32803844 0.3965035 0.5484068 0.5868525 0.6253015 0.6509948 0.6716849 #> [636,] 0.56052284 0.6385466 0.6993452 0.7218012 0.7321719 0.8379912 0.8791882 #> [637,] 0.60666145 0.6115239 0.6960439 0.7364444 0.7907865 0.8651759 0.9106117 #> [638,] 0.90824995 0.9976108 1.0257840 1.0490677 1.0991771 1.1008939 1.1014870 #> [639,] 0.74307655 0.9445222 0.9865465 1.0185952 1.0381068 1.0908697 1.1027061 #> [640,] 0.64291176 0.6669140 0.7011364 0.7486184 0.7557675 0.8058338 0.8103042 #> [641,] 0.35605581 0.4814404 0.7876294 0.7985339 0.8573493 0.9576553 0.9659746 #> [642,] 0.79311997 0.7989374 0.8668125 0.8767005 0.8896757 0.9194493 0.9435230 #> [643,] 0.29279031 0.3544750 0.3700009 0.4719275 0.5045860 0.5201948 0.5427308 #> [644,] 0.43637557 0.4827970 0.4947433 0.7024931 0.7082306 0.7102383 0.7503552 #> [645,] 0.38434723 0.4441885 0.5685905 0.5852424 0.5996315 0.6418135 0.6847756 #> [646,] 0.75806006 0.7767205 0.7881615 0.8075945 0.8449039 0.9816106 0.9991894 #> [647,] 0.34015775 0.4648615 0.5660205 0.6646483 0.6967569 0.7338786 0.7546331 #> [648,] 0.54015739 0.6906560 0.7470331 0.7691937 0.8596595 0.8851544 0.8855184 #> [649,] 0.21401924 0.3291718 0.3406038 0.4113986 0.4169955 0.4256820 0.4330305 #> [650,] 1.21571383 1.6228459 1.7779071 1.8151949 1.8291248 1.8450162 1.9125968 #> [651,] 0.73862833 0.7855138 0.8135626 0.9202073 0.9247456 1.0629530 1.1103865 #> [652,] 0.48695987 0.4969256 0.5372878 0.5698973 0.6480851 0.6495004 0.6571974 #> [653,] 0.59394151 0.6429569 0.6469902 0.6594809 0.6669274 0.6801128 0.7318452 #> [654,] 0.71059489 0.7913172 0.8570968 0.9106875 0.9401968 0.9611286 0.9756189 #> [655,] 0.19780375 0.3078437 0.3579763 0.4318495 0.4531874 0.5124364 0.5570000 #> [656,] 0.33018138 0.3567649 0.4992524 0.5149747 0.5353460 0.5900000 0.6121609 #> [657,] 0.36776757 0.4427894 0.5663868 0.5770576 0.6664361 0.7138950 0.7603336 #> [658,] 0.39142869 0.4601763 0.4863964 0.5127744 0.5638167 0.5713538 0.5737622 #> [659,] 0.46493959 0.5561894 0.7030695 0.7118153 0.7135524 0.7341962 0.7462063 #> [660,] 0.21401924 0.2281317 0.3397789 0.4009120 0.4742309 0.5243204 0.5328568 #> [661,] 0.44464332 0.4574371 0.4834773 0.5054884 0.5055472 0.5161832 0.5229335 #> [662,] 0.32267120 0.5252603 0.7263464 0.7772791 0.7828679 0.7894459 0.8005508 #> [663,] 0.23163085 0.3125665 0.3891389 0.4232646 0.4854022 0.5116676 0.5146067 #> [664,] 1.68507968 1.7320149 1.8154012 1.8993829 1.9175140 1.9931019 2.0122906 #> [665,] 0.37105317 0.3822649 0.4080247 0.5637485 0.5686945 0.5851032 0.6203053 #> [666,] 1.26596347 1.2987503 1.3163879 1.3481555 1.4350144 1.4667450 1.5794637 #> [667,] 0.38172029 0.5221992 0.6277827 0.6597764 0.6713917 0.6715206 0.7095495 #> [668,] 0.41705624 0.4903407 0.5305223 0.5740756 0.5962643 0.5976732 0.6198012 #> [669,] 0.37131494 0.4369859 0.4755288 0.5471576 0.5577912 0.5801553 0.6030622 #> [670,] 0.68142692 0.7803132 0.8450893 0.9206161 0.9284356 0.9300096 0.9300310 #> [671,] 0.31315190 0.5417541 0.7687094 0.7741071 0.8012836 0.8145714 0.8155763 #> [672,] 0.39515951 0.4564511 0.6069523 0.6405285 0.7031803 0.7632962 0.7708018 #> [673,] 0.66039001 0.6856915 0.8041277 0.9437138 0.9860807 0.9920807 1.0049737 #> [674,] 0.33284522 0.5010170 0.6251130 0.6716530 0.7409058 0.7854566 0.7930338 #> [675,] 0.38434723 0.4322912 0.4638600 0.5213002 0.5800283 0.6553089 0.6577880 #> [676,] 0.54611205 0.6339835 0.7537169 0.7589348 0.8409048 0.8528875 0.8586295 #> [677,] 0.36503326 0.4182829 0.4523318 0.5180707 0.5275571 0.5544129 0.6218384 #> [678,] 0.24648209 0.5618274 0.5625347 0.6759686 0.7198735 0.7292775 0.7603987 #> [679,] 0.58608188 0.7796129 0.7855138 0.8454423 0.9682437 1.0820030 1.0851767 #> [680,] 0.48666539 0.4902983 0.6471791 0.7160836 0.7306741 0.7505155 0.7845608 #> [681,] 0.27087776 0.3374291 0.4033739 0.4368724 0.5486471 0.5625667 0.5654415 #> [682,] 0.57372655 0.8000399 0.9717136 0.9758373 1.0200868 1.0596932 1.1610597 #> [683,] 0.45429280 0.4655817 0.7009357 0.7498951 0.8086566 0.8632858 0.8719987 #> [684,] 0.46307271 0.5994650 0.6273540 0.7221424 0.7638539 0.7792963 0.8033483 #> [685,] 0.49907726 0.5940525 0.6827111 0.7004509 0.8277587 0.8280008 0.8723819 #> [686,] 1.50596458 1.5657095 1.5754641 1.6338610 1.7295999 1.7931603 1.8113775 #> [687,] 0.41975680 0.4354461 0.5148783 0.7302572 0.7369999 0.7374324 0.7415040 #> [688,] 0.51993210 0.6507086 0.6613144 0.6682973 0.6854089 0.6890310 0.7054623 #> [689,] 0.41315968 0.4482383 0.4526669 0.6122105 0.6367922 0.6531001 0.6671413 #> [690,] 0.59022782 0.6389957 0.6434926 0.7062934 0.7356794 0.7406443 0.7555210 #> [691,] 0.36786814 0.4817609 0.6667033 0.6692368 0.7221679 0.7474076 0.7715780 #> [692,] 0.47593764 0.5066934 0.5228171 0.6133590 0.6682280 0.6710433 0.6933420 #> [693,] 0.34015775 0.5309749 0.6754314 0.6866783 0.7454285 0.8355015 0.8627002 #> [694,] 0.44287676 0.5719344 0.6496431 0.7229793 0.7558851 0.7563084 0.8101539 #> [695,] 0.43712215 0.4553386 0.5641639 0.6392469 0.6439245 0.6870271 0.7060563 #> [696,] 0.14706566 0.4455320 0.4473325 0.4511470 0.4564653 0.4728753 0.4769149 #> [697,] 0.65371596 0.8360590 0.8482199 0.8656258 0.8673346 0.9124285 0.9252556 #> [698,] 0.42443846 0.4867599 0.5343824 0.5512543 0.5709348 0.6297882 0.6391369 #> [699,] 0.30035462 0.4965954 0.5705094 0.6069573 0.6560051 0.7111043 0.7248677 #> [700,] 0.23566961 0.2962470 0.3037289 0.3804423 0.4329317 0.4957784 0.5218996 #> [701,] 0.34791594 0.4423909 0.6339192 0.7711267 0.8043722 0.8176418 0.8193722 #> [702,] 0.38410060 0.4346415 0.5680075 0.6310681 0.6459038 0.6606776 0.6892405 #> [703,] 0.89461960 1.1036450 1.1944454 1.2430173 1.2445042 1.3393180 1.3762091 #> [704,] 0.36525783 0.5024808 0.5359625 0.6964333 0.7860382 0.8233114 0.8387448 #> [705,] 0.56182959 0.5877482 0.7154758 0.8000923 0.8829692 0.9316102 0.9406988 #> [706,] 0.52711728 0.5500002 0.5625617 0.6038029 0.6144827 0.6606776 0.6733218 #> [707,] 0.25775535 0.2967886 0.3565099 0.3630418 0.5500049 0.5858786 0.5937395 #> [708,] 0.45587612 0.4683504 0.5025979 0.5197292 0.5459429 0.5716376 0.5886034 #> [709,] 0.50575352 0.5658166 0.5931351 0.6119784 0.6813854 0.6862691 0.7420654 #> [710,] 0.46886255 0.5376504 0.6598523 0.6818975 0.7356749 0.7961273 0.8070495 #> [711,] 0.69264027 0.7333815 0.9616452 1.1140323 1.1178551 1.1265248 1.1347521 #> [712,] 0.52774869 0.7639499 0.8649104 0.8873985 0.8907783 0.9271097 0.9462811 #> [713,] 0.22952545 0.2952804 0.2981954 0.3316853 0.4060251 0.4816673 0.5045860 #> [714,] 0.33706501 0.5484259 0.5824204 0.6410320 0.6418896 0.6458494 0.6616116 #> [715,] 0.89731375 1.0537978 1.0872180 1.1281765 1.2874463 1.3430162 1.4573941 #> [716,] 0.45879487 0.5779698 0.6209997 0.6790274 0.7966283 0.8060857 0.8867858 #> [717,] 0.35637992 0.3945140 0.4154745 0.4335879 0.4409417 0.5278541 0.5740247 #> [718,] 0.66195643 0.6783787 0.7290759 0.7430766 0.8105196 0.8730697 0.9213143 #> [719,] 0.32942541 0.3510939 0.5217597 0.5319833 0.5348828 0.5535397 0.5548141 #> [720,] 0.28226619 0.7007640 0.8111915 0.8873127 0.9021124 0.9370842 0.9768958 #> [721,] 0.19718617 0.2343321 0.3316853 0.3704672 0.4115678 0.4458681 0.4720348 #> [722,] 0.36214779 0.3668483 0.3811909 0.4201479 0.4531318 0.4936062 0.5059454 #> [723,] 0.56070439 0.5842185 0.7960508 0.8029320 0.8727750 0.9239359 0.9257695 #> [724,] 0.45533863 0.4964189 0.5417933 0.5471576 0.5526583 0.6159372 0.6252936 #> [725,] 0.17091574 0.2325982 0.4170562 0.4409417 0.5799450 0.5900520 0.6431570 #> [726,] 0.30569236 0.4472829 0.4694141 0.5611247 0.5643803 0.5823287 0.6055500 #> [727,] 0.49841470 0.5978341 0.6058621 0.7401596 0.7509420 0.7776361 0.8039289 #> [728,] 0.55017438 0.5645975 0.6441751 0.6565390 0.6603900 0.6950564 0.7211326 #> [729,] 0.56164157 0.5737265 0.6881103 0.7450978 0.7895455 0.9096213 0.9724750 #> [730,] 0.34414173 0.4000386 0.4302289 0.4855279 0.5030719 0.5269430 0.5926604 #> [731,] 0.62029301 0.6352669 0.6380633 0.7147159 0.7249124 0.7291427 0.7433481 #> [732,] 0.45779847 0.6922978 0.6950564 0.7096315 0.7226073 0.7273693 0.7833891 #> [733,] 0.63826410 0.7682346 0.7960508 0.8937318 1.0084275 1.1145695 1.1332786 #> [734,] 0.67165298 0.6951862 0.7007640 0.7114757 0.8941862 0.9199336 0.9738467 #> [735,] 0.33777507 0.4482289 0.5056059 0.5320780 0.5597726 0.6534410 0.6739281 #> [736,] 0.69442557 0.8149391 0.8167236 0.8786131 0.9513195 0.9557853 0.9811198 #> [737,] 0.26835689 0.3334680 0.3621478 0.4549819 0.4769149 0.4854022 0.4865940 #> [738,] 0.49268324 0.6837906 0.9234186 0.9441428 1.0225519 1.1003096 1.1280842 #> [739,] 1.29539934 1.8722235 1.9284252 2.0010740 2.0750523 2.1162269 2.1169820 #> [740,] 0.51734193 0.6642650 0.7704097 0.8122535 0.8581814 0.8711888 0.8950791 #> [741,] 0.34511877 0.3878751 0.4791911 0.4892858 0.4923406 0.4952032 0.5455918 #> [742,] 0.35403636 0.4285535 0.5277485 0.5305939 0.5498010 0.5503752 0.5640177 #> [743,] 0.57535311 0.6563266 0.6590381 0.6714506 0.7532099 0.8052437 0.8501118 #> [744,] 0.51734179 0.7632962 0.8085228 0.8315996 0.8591507 0.8649104 0.9220884 #> [745,] 0.32917180 0.3397789 0.3876899 0.3922346 0.4001949 0.4299477 0.4323910 #> [746,] 0.64667460 0.6835879 0.6979654 0.8804967 0.9374665 0.9778351 0.9948617 #> [747,] 0.44136721 0.5503266 0.6124585 0.6458406 0.6666177 0.6790456 0.6853860 #> [748,] 0.82415540 0.8868312 1.0763748 1.1582749 1.1680500 1.2156539 1.2208195 #> [749,] 0.41493342 0.4700809 0.4869599 0.5400945 0.5436498 0.5573906 0.5594085 #> [750,] 0.46799293 0.5034560 0.5217597 0.6771774 0.7306261 0.7400928 0.7437343 #> [751,] 0.58434221 0.6646158 0.6969564 0.7237858 0.7355400 0.7586271 0.7755287 #> [752,] 0.53830065 1.3152491 1.4967682 1.5136034 1.5573514 1.6377122 1.6517498 #> [753,] 0.33760424 0.3991980 0.4598256 0.5265409 0.6790456 0.7613518 0.8217289 #> [754,] 0.23008354 0.3640111 0.4975521 0.5126158 0.5339640 0.5841814 0.6017285 #> [755,] 0.54471650 0.6192503 0.6313910 0.6351238 0.7059582 0.7568730 0.7921023 #> [756,] 0.35086757 0.5386034 0.5628925 0.5704743 0.5749911 0.5831288 0.6768378 #> [757,] 0.45429280 0.4841030 0.7173158 1.0579114 1.1550930 1.1706918 1.2055242 #> [758,] 0.41684967 0.4346328 0.5227979 0.5574171 0.5642680 0.5748597 0.6105969 #> [759,] 0.22723214 0.2321507 0.3441417 0.4547368 0.4606442 0.4972859 0.5295162 #> [760,] 0.22075267 0.3895970 0.6789776 0.7645853 0.7901658 0.8013009 0.8486597 #> [761,] 0.81532947 0.8531185 0.8577187 0.8617993 0.8923103 0.8946196 0.9825679 #> [762,] 0.28142206 0.3683553 0.4934612 0.5206577 0.5777682 0.6004304 0.6115999 #> [763,] 0.38313595 0.4004923 0.4295142 0.4470150 0.4973108 0.5328879 0.5470138 #> [764,] 0.85570464 0.8876872 0.8948302 1.0199801 1.0230997 1.0844723 1.1143924 #> [765,] 0.92943659 0.9304374 1.0307765 1.2157138 1.2584467 1.2722371 1.3115574 #> [766,] 0.51734193 0.7179293 0.7347693 0.8160029 0.8686874 0.8732938 0.9418266 #> [767,] 0.24648209 0.6124427 0.6414745 0.6667033 0.6792825 0.7024752 0.7242682 #> [768,] 0.34841500 0.3541546 0.5134793 0.5470445 0.6012403 0.6016000 0.6136057 #> [769,] 0.52454319 0.5877482 0.6497930 0.6978403 0.8646325 0.9219122 0.9685776 #> [770,] 0.33177611 0.3514778 0.4325350 0.4337352 0.4599327 0.4638805 0.4926394 #> [771,] 0.46283211 0.4734484 0.5095768 0.6294922 0.6707089 0.6725714 0.6949184 #> [772,] 0.38383571 0.3946035 0.5009526 0.5489483 0.5762502 0.6377344 0.6440527 #> [773,] 0.37711935 0.4566741 0.5215421 0.5586764 0.5766874 0.6164888 0.6767031 #> [774,] 0.38993683 0.6628639 0.6891124 0.7015497 0.7302572 0.7341874 0.7989318 #> [775,] 0.83110582 0.9107652 0.9549498 1.0660545 1.0960889 1.1519532 1.1663112 #> [776,] 0.28984342 0.3565893 0.4464113 0.4694526 0.5826878 0.5859595 0.5972087 #> [777,] 0.31299205 0.3510939 0.4679929 0.4706264 0.5949997 0.6361994 0.6766829 #> [778,] 0.35551633 0.3985222 0.5564145 0.6008991 0.6470808 0.6550018 0.6857016 #> [779,] 0.95562635 1.2624698 1.4753414 1.7136959 1.7248187 1.7823646 1.8136329 #> [780,] 0.42611375 0.6624952 0.7154758 0.8839687 0.9812302 0.9990435 1.0114281 #> [781,] 0.79814003 0.9909280 1.0555764 1.0578797 1.1204943 1.1938586 1.1983328 #> [782,] 0.58535499 0.7279623 0.7475855 0.8526947 0.8637983 0.8680231 0.8855184 #> [783,] 0.21792988 0.4455932 0.4849461 0.6027970 0.6261556 0.6593693 0.6599585 #> [784,] 0.38993683 0.5612824 0.7160182 0.8346796 0.8980437 0.9196127 0.9264201 #> [785,] 0.43300503 0.4441885 0.4714800 0.5229825 0.5421546 0.5926604 0.6107581 #> [786,] 0.28212285 0.4773151 0.5561894 0.5812558 0.6418716 0.6531730 0.6551963 #> [787,] 0.38701647 0.4429149 0.5794177 0.6179733 0.7015497 0.7045773 0.7493636 #> [788,] 0.22126147 0.4290754 0.4299702 0.4498610 0.5164665 0.5368604 0.5377246 #> [789,] 0.27916916 0.3565893 0.3891389 0.3904213 0.4800280 0.5232374 0.5258567 #> [790,] 0.36237544 0.5245432 0.7106098 0.8368973 0.8374019 0.8462018 0.8829692 #> [791,] 0.50847764 0.5532540 0.5913410 0.6471791 0.6507086 0.6737630 0.7578613 #> [792,] 0.34638187 0.3635378 0.3650333 0.4520274 0.4780638 0.5063630 0.5364357 #> [793,] 0.96471043 1.1238617 1.1670605 1.2363080 1.3438715 1.4656662 1.5202666 #> [794,] 0.39442631 0.5672525 0.5940007 0.6562407 0.6613072 0.7771895 0.8676490 #> [795,] 0.44218243 0.4562070 0.4597380 0.4941077 0.4971177 0.5149583 0.5182899 #> [796,] 0.46309833 0.4734599 0.4770930 0.4929153 0.4938839 0.5049733 0.5068350 #> [797,] 0.35327797 0.4821675 0.5343740 0.5368604 0.5838635 0.5845838 0.5888128 #> [798,] 0.44077352 0.4648615 0.5268685 0.5676076 0.5943828 0.6339192 0.6705211 #> [799,] 0.43483633 0.4369859 0.4812532 0.4849461 0.4924158 0.5734678 0.5745182 #> [800,] 0.22500973 0.4127918 0.4415877 0.5176093 0.5338640 0.5512025 0.5625347 #> [801,] 0.33651243 0.4317180 0.4334976 0.4602431 0.4944497 0.5258567 0.5421749 #> [802,] 0.30996952 0.4079894 0.4082440 0.5007269 0.5075303 0.5519626 0.5956112 #> [803,] 0.42078874 0.4458199 0.5007269 0.5594309 0.5710308 0.5931351 0.6654464 #> [804,] 0.46681568 0.5594014 0.5645912 0.5680787 0.7353619 0.7524761 0.7629788 #> [805,] 0.67438290 0.8576244 0.8710689 1.0787180 1.0813341 1.1490374 1.1719507 #> [806,] 0.63398347 0.7658092 0.8245560 0.8568136 0.8746828 0.9278684 0.9469909 #> [807,] 0.79403055 1.2538734 1.3409049 1.3886341 1.4143776 1.6039930 1.6385793 #> [808,] 0.39196996 0.6492271 0.7006185 0.7617940 0.7707938 0.7958265 0.8086566 #> [809,] 0.53559259 0.5987499 0.6718302 0.6761828 0.6896680 0.6905674 0.6947258 #> [810,] 0.21910513 0.4110020 0.4115678 0.4192902 0.5068288 0.5347966 0.5386177 #> [811,] 0.31452038 0.6963547 0.7095495 0.7133073 0.7954932 0.8097445 0.8705029 #> [812,] 0.54548829 0.5467555 0.6456530 0.6605649 0.7046408 0.7678281 0.7826580 #> [813,] 0.39683053 0.4614771 0.4893392 0.5376430 0.6251130 0.6571221 0.7005399 #> [814,] 0.42103663 0.5189327 0.5921624 0.7932110 0.7953206 0.8013409 0.8744982 #> [815,] 0.73338145 1.1091642 1.3315277 1.5215019 1.5316756 1.5636798 1.5704113 #> [816,] 0.58796392 0.6011233 0.6173346 0.6441560 0.6747761 0.6773700 0.6797189 #> [817,] 1.36065079 1.5137655 1.5193820 1.5240171 1.5498771 1.5958677 1.6121502 #> [818,] 0.30483279 0.6178127 0.6380806 0.6382770 0.6571221 0.7243450 0.8326125 #> [819,] 0.40273042 0.5212736 0.5603790 0.5628116 0.5810016 0.5887656 0.6294922 #> [820,] 0.71824740 0.7215123 0.8453708 0.8528875 0.9597073 0.9738452 1.1058711 #> [821,] 0.38559728 0.4500143 0.4863964 0.5113181 0.5500049 0.5597726 0.5685905 #> [822,] 0.62866059 0.6942937 0.7284301 0.7386602 0.7695203 0.8087480 0.8161729 #> [823,] 0.14874895 0.3236660 0.5891766 0.5903342 0.5944632 0.6515879 0.6564730 #> [824,] 0.45853317 0.4877218 0.4921739 0.5230083 0.5250451 0.5348140 0.5552367 #> [825,] 0.34800816 0.4846637 0.5529245 0.6009061 0.6091344 0.6167648 0.6366774 #> [826,] 0.43253503 0.4831555 0.4865940 0.5334751 0.5341619 0.5524280 0.5628177 #> [827,] 0.55997084 0.7272578 0.7378849 0.7621492 0.8044038 0.8407370 0.8632858 #> [828,] 0.68204381 0.7227850 0.8052437 0.8680231 0.8800067 0.9070997 0.9344276 #> [829,] 0.28919190 0.4773151 0.4803415 0.5392919 0.5550533 0.6207553 0.6225913 #> [830,] 0.55774317 0.6965077 0.7545314 0.7733977 0.8177852 0.9057978 0.9184425 #> [831,] 0.36237544 0.6978403 0.7546528 0.7967500 0.8791270 0.8803966 0.8834623 #> [832,] 0.47868229 0.7783767 0.8286614 0.8366864 0.8746035 0.8868312 0.9465115 #> [833,] 0.43357679 0.4734693 0.4909328 0.5312809 0.5519626 0.5710308 0.5838635 #> [834,] 0.40273042 0.5086296 0.6707089 0.6912846 0.7190484 0.7190719 0.7273207 #> [835,] 0.29819539 0.3870360 0.4016753 0.4192902 0.4458681 0.4505302 0.4650588 #> [836,] 0.35797635 0.3874699 0.4290754 0.4414033 0.4415019 0.4950905 0.5380901 #> [837,] 0.24728549 0.3652578 0.5973751 0.6058621 0.6714878 0.7875077 0.8330189 #> [838,] 0.43114166 0.7145558 0.7729599 0.7989667 0.8771213 0.8853278 0.9082500 #> [839,] 0.28226619 0.6951862 0.7774018 0.8110518 0.8782227 0.8891517 0.9318547 #> [840,] 0.36893463 0.4210366 0.5944991 0.6127205 0.6323531 0.6557683 0.7007896 #> [841,] 0.66544443 0.7079532 0.7227111 0.8612166 0.8741109 0.8808184 0.9161539 #> [842,] 0.23240441 0.3125665 0.3472597 0.4421824 0.4473325 0.4742903 0.5013366 #> [843,] 0.53765037 0.7394289 0.7537169 0.7876056 0.8028051 0.9627590 1.0137468 #> [844,] 0.39681078 0.4223431 0.6354693 0.7994573 0.8189176 0.8444658 0.8649676 #> [845,] 0.54908168 0.8796845 0.9251165 0.9912498 1.0151577 1.0183992 1.0188981 #> [846,] 0.34382525 0.3694933 0.4439416 0.6071260 0.6187073 0.6506722 0.6954510 #> [847,] 0.30855503 0.4296335 0.4358069 0.5168948 0.5498010 0.5910771 0.5998957 #> [848,] 0.25249506 0.3561176 0.3708418 0.3972535 0.5192776 0.5754905 0.6337435 #> [849,] 0.33507272 0.4597374 0.5069029 0.5285431 0.5372878 0.6001093 0.6130547 #> [850,] 0.17597548 0.3870165 0.5594309 0.6248637 0.6527461 0.6582989 0.6609336 #> [851,] 0.35295760 0.4630727 0.5233075 0.7415390 0.7522670 0.7865930 0.8056994 #> [852,] 0.31452038 0.5221992 0.5249327 0.6202899 0.6636930 0.6819790 0.7412960 #> [853,] 1.06356035 1.0736661 1.0825259 1.0962366 1.2298611 1.2869292 1.2916757 #> [854,] 0.96573690 1.1756648 1.1910772 1.2641272 1.3102195 1.3528209 1.3630859 #> [855,] 0.56388819 0.6959618 0.7599807 0.7856879 0.8119880 0.8185857 0.8418481 #> [856,] 0.36604246 0.4760026 0.4901277 0.4980567 0.6008453 0.6148009 0.6341309 #> [857,] 0.38214516 0.5011114 0.5160354 0.6922482 0.7856879 0.8467618 0.9077031 #> [858,] 0.59267044 0.6421611 0.6810884 0.7180966 0.7294620 0.7447693 0.7462063 #> [859,] 0.35829338 0.6209997 0.6765025 0.6980939 0.7291427 0.7454981 0.7605660 #> [860,] 0.35107872 0.4628321 0.4821902 0.5628116 0.5663818 0.5908624 0.6366756 #> [861,] 0.48666539 0.7148040 0.8065527 0.8443996 0.8621241 0.9785859 0.9832066 #> [862,] 0.36675682 0.4541553 0.6117694 0.7093871 0.7282900 0.7284700 0.7376806 #> [863,] 0.44102183 0.7006185 0.7156137 0.8526129 0.8576936 0.8646028 0.8719987 #> [864,] 0.25530869 0.5100279 0.6222739 0.7004509 0.7518164 0.7927098 0.8247377 #> [865,] 0.35107872 0.4073083 0.4727952 0.4797075 0.5887656 0.5978246 0.6011425 #> [866,] 0.20711353 0.2128669 0.2962470 0.4271706 0.4383742 0.5015894 0.5419253 #> [867,] 0.49074646 0.5218996 0.5402898 0.5666667 0.5851182 0.5921624 0.6165753 #> [868,] 0.38226491 0.4330564 0.4343819 0.4789346 0.4973497 0.6238698 0.6618646 #> [869,] 0.20119578 0.5274743 0.5727556 0.5795555 0.6107581 0.6321618 0.6506722 #> [870,] 0.34000005 0.5523149 0.5835526 0.5923980 0.6091881 0.6279973 0.6840545 #> [871,] 0.40824403 0.5111314 0.5128921 0.5586927 0.5952777 0.6600823 0.6684693 #> [872,] 0.41601699 0.4297828 0.4584733 0.4952032 0.5350863 0.5674021 0.5813493 #> [873,] 0.56979095 0.5843422 0.6339161 0.6882297 0.7151055 0.7386283 0.7734542 #> [874,] 0.65237655 0.6812469 0.7236839 0.7454451 0.8110938 0.8311178 0.9366361 #> [875,] 0.42184296 0.4502727 0.4504206 0.4829929 0.6192943 0.6400865 0.6467567 #> [876,] 0.33346801 0.3811909 0.4237522 0.4528098 0.4738702 0.5018809 0.5075120 #> [877,] 0.40802474 0.4975265 0.5176093 0.5593482 0.6650764 0.6870879 0.6948454 #> [878,] 0.67952156 0.6989833 0.7085963 0.7382393 0.7438888 0.8188065 0.8575808 #> [879,] 0.52657678 0.5467555 0.5681275 0.5865694 0.7248411 0.7300095 0.7356286 #> [880,] 0.21551060 0.3874699 0.3986045 0.4015032 0.4855791 0.5016559 0.5164665 #> [881,] 0.38577668 0.4169955 0.4356454 0.4523469 0.4742309 0.4904582 0.5262045 #> [882,] 0.56579449 0.5672378 0.5858722 0.5922482 0.6274278 0.6352016 0.6591535 #> [883,] 0.59284156 0.6624952 0.8139930 0.8322004 0.9945305 1.0395810 1.1360815 #> [884,] 0.35648607 0.4240218 0.4803121 0.4943045 0.5196530 0.5445057 0.6082788 #> [885,] 0.53011276 0.6101697 0.6716065 0.7966283 0.8490819 0.8710689 0.9369868 #> [886,] 0.68088921 0.8565482 0.8652427 0.9079105 0.9379848 0.9565635 0.9650364 #> [887,] 0.14706566 0.3842350 0.4784125 0.5095337 0.5187470 0.5218255 0.5586692 #> [888,] 0.44150652 1.0596932 1.2575503 1.3015299 1.3514940 1.3968001 1.4491465 #> [889,] 0.54753283 0.5853666 0.6010209 0.6263943 0.7082306 0.7190484 0.7254835 #> [890,] 0.51972920 0.5291272 0.5473492 0.5569819 0.5688599 0.6242691 0.6411027 #> [891,] 0.46645317 0.5035358 0.5147386 0.5518292 0.5550570 0.5851370 0.6037221 #> [892,] 0.43151667 0.4339481 0.4894152 0.4957784 0.5787041 0.5879778 0.5921479 #> [893,] 0.54620478 0.7160182 0.7341874 0.7608141 0.7634351 0.7855782 0.8240498 #> [894,] 0.26233166 0.3567649 0.4505434 0.5104084 0.5520312 0.6066468 0.6306655 #> [895,] 0.59990667 0.6372920 0.6738717 0.6780247 0.7835165 0.8307043 0.8752580 #> [896,] 0.44276402 0.4725503 0.5233075 0.5444489 0.6388097 0.7417904 0.7792963 #> [897,] 0.61366148 0.6422448 0.6548673 0.6628541 0.7373350 0.8047808 0.8112394 #> [898,] 1.13993621 1.2238417 1.2944929 1.4138356 1.4223752 1.5587307 1.5715766 #> [899,] 0.41880586 0.4297828 0.4559433 0.4602431 0.4657972 0.4769464 0.5013366 #> [900,] 0.44287676 0.5037232 0.6410085 0.7145558 0.8573915 0.8691765 0.8887671 #> [901,] 0.70951869 0.7227111 0.7655611 0.9049409 1.1103051 1.1436977 1.1671287 #> [902,] 0.17402163 0.2815989 0.3234938 0.4973108 0.5245936 0.5454948 0.5846517 #> [903,] 0.51490569 0.6955637 0.9402911 0.9713093 0.9992002 1.0926981 1.1465395 #> [904,] 0.16379892 0.4782800 0.4924158 0.5001598 0.5577912 0.5829803 0.6159372 #> [905,] 0.64480070 0.7569891 0.9153377 0.9287700 0.9294366 1.0306542 1.1035669 #> [906,] 0.26835689 0.3636692 0.3863603 0.4232646 0.4511470 0.4564327 0.4722120 #> [907,] 0.50805535 0.5762502 0.5965354 0.6315937 0.6394524 0.6589275 0.7062934 #> [908,] 0.38125326 0.4157032 0.4805979 0.5193114 0.5658166 0.5713880 0.5897818 #> [909,] 0.23253009 0.3691577 0.4070091 0.5777244 0.6250401 0.6715531 0.7055877 #> [910,] 0.38903127 0.4017785 0.4498610 0.4847487 0.4936195 0.5238938 0.5465308 #> [911,] 0.59440990 0.6989068 0.6995980 0.7242203 0.7455946 0.7480645 0.7795465 #> [912,] 0.29872606 0.4707987 0.4806273 0.4906690 0.6176954 0.6193783 0.6317046 #> [913,] 0.82461152 0.8591310 0.8731408 0.9164328 1.0578797 1.0834695 1.1278420 #> [914,] 0.67952156 0.9075966 0.9496742 0.9526848 1.0082962 1.0166035 1.1136135 #> [915,] 0.44171162 0.4928736 0.5012118 0.6263943 0.6324206 0.6440154 0.6997098 #> [916,] 0.29134698 0.3804423 0.4118020 0.4271706 0.5402898 0.5544855 0.5822610 #> [917,] 0.21910513 0.4578056 0.5066574 0.5338640 0.5411180 0.5637485 0.5884009 #> [918,] 0.80003296 0.8520190 0.8595147 0.9993802 1.0713708 1.0777662 1.0786178 #> [919,] 0.58522196 0.6448007 0.6532442 0.6655542 0.7092594 0.7155112 0.7459836 #> [920,] 0.36644829 0.3914287 0.4510571 0.6330261 0.6349593 0.6370497 0.6568489 #> [921,] 0.43640664 0.5015894 0.5326803 0.5509312 0.5567052 0.5991453 0.6388802 #> [922,] 0.50561703 0.5913410 0.5933649 0.7671347 0.7845608 0.9111170 0.9142453 #> [923,] 0.32803844 0.4338809 0.5207731 0.5649189 0.6001995 0.6045659 0.6381594 #> [924,] 0.35266986 0.3835013 0.5095863 0.5653659 0.5709348 0.5956112 0.6124346 #> [925,] 0.64979301 0.7646062 0.8164882 0.8276377 0.8368973 0.8421748 0.8771384 #> [926,] 0.23163085 0.2324044 0.4564653 0.4722120 0.4800280 0.5017003 0.5080255 #> [927,] 0.32922558 0.3934326 0.5095337 0.5121672 0.5194180 0.5259880 0.5288773 #> [928,] 0.79814003 0.9533309 1.0389936 1.1709526 1.1749098 1.1781384 1.2001907 #> [929,] 0.39267342 0.5086939 0.5477472 0.5520312 0.6469049 0.6839461 0.6940983 #> [930,] 0.29134698 0.3037289 0.3091650 0.3305156 0.4383742 0.4936195 0.5488952 #> [931,] 0.29872606 0.4131597 0.4795506 0.5665091 0.5997251 0.6136057 0.6261643 #> [932,] 0.42677834 0.4411643 0.5686196 0.6174766 0.6513026 0.6731724 0.7777964 #> [933,] 0.39206430 0.5012118 0.5589393 0.7086554 0.7179053 0.7529551 0.7558851 #> [934,] 0.40473610 0.7515701 0.8153097 1.0193305 1.1129096 1.1454856 1.2042223 #> [935,] 0.36401105 0.4486307 0.4561306 0.4769901 0.4926383 0.5446308 0.5739571 #> [936,] 0.83073988 0.8819863 1.0641047 1.0782516 1.0969681 1.1447650 1.2193489 #> [937,] 0.33591867 0.3466916 0.3873969 0.5139271 0.5550533 0.5812558 0.5829420 #> [938,] 0.04497083 0.5870115 0.5876477 0.5898424 0.6302899 0.6714246 0.6754866 #> [939,] 0.53443537 0.5655940 0.5792064 0.7051456 0.7086461 0.7153976 0.8056811 #> [940,] 0.88640969 1.1744302 1.2819133 1.3042470 1.3137897 1.4205330 1.4232624 #> [941,] 0.55774317 0.5631514 0.7511748 0.7522670 0.7901658 0.7962587 0.8298927 #> [942,] 0.35991731 0.3694933 0.4263777 0.5047480 0.5095882 0.6563266 0.7308714 #> [943,] 0.15739874 0.2999043 0.3060863 0.3792610 0.4267138 0.4280612 0.4582420 #> [944,] 0.46932208 0.5688599 0.6562525 0.7224982 0.7271169 0.7447693 0.7451598 #> [945,] 0.33816647 0.5002608 0.5497086 0.5832154 0.5839837 0.5987499 0.6531255 #> [946,] 0.65787838 0.9657369 0.9883514 1.0701032 1.1374992 1.1447650 1.2451739 #> [947,] 0.50561703 0.6266733 0.6672829 0.6746814 0.7006440 0.7663563 0.7955146 #> [948,] 0.58372918 0.7636551 0.8544198 0.9077602 0.9096541 0.9287029 0.9601853 #> [949,] 0.31354966 0.3466916 0.3770144 0.4981605 0.5835526 0.6080251 0.6379400 #> [950,] 0.26351243 0.3076413 0.4308061 0.4694526 0.5942378 0.6482221 0.6509040 #> [951,] 0.18607074 0.4871539 0.5036852 0.5189966 0.5335565 0.5425809 0.5678585 #> [952,] 0.37747986 0.4925961 0.5129245 0.5213931 0.5320780 0.6816017 0.7071654 #> [953,] 0.43434151 0.4537805 0.4782800 0.5454883 0.5546442 0.5803326 0.6204706 #> [954,] 0.54966756 0.5632566 0.5648903 0.6048902 0.6158045 0.6161821 0.6182972 #> [955,] 0.26783037 0.3555067 0.4599327 0.5020988 0.5503266 0.5731316 0.5883047 #> [956,] 0.29496717 0.3133610 0.5002608 0.5079815 0.5430447 0.5891322 0.5961361 #> [957,] 0.32511397 0.3617655 0.3835013 0.5075303 0.5512543 0.5762256 0.5950332 #> [958,] 0.45042063 0.4606442 0.4727952 0.5148810 0.5263058 0.5962643 0.6366756 #> [959,] 0.17370456 0.3076413 0.3279429 0.4852801 0.4944497 0.5166436 0.5732934 #> [960,] 0.35705946 0.4410636 0.4516268 0.5754905 0.6508299 0.6886539 0.8302582 #> [961,] 0.22813174 0.4001949 0.4003260 0.4113986 0.4827286 0.5053651 0.5508058 #> [962,] 0.79111290 0.8337189 0.9096423 0.9653220 0.9693479 1.0392179 1.0942301 #> [963,] 0.39206430 0.4417116 0.5213441 0.5853666 0.6000512 0.6460923 0.6988536 #> [964,] 0.49034069 0.5703550 0.6110425 0.6360577 0.6465991 0.6549053 0.6917995 #> [965,] 1.03453276 1.0574077 1.1989866 1.2401557 1.2488760 1.2885182 1.3480125 #> [966,] 0.47146486 0.5787526 0.7349696 0.7509420 0.8018245 0.8678513 0.8806975 #> [967,] 0.51784333 0.5368353 0.5718766 0.6238143 0.6354693 0.6705881 0.7379584 #> [968,] 0.68204381 0.9912498 1.0265272 1.2226328 1.3495796 1.3968221 1.4309520 #> [969,] 0.43544614 0.5446717 0.6081071 0.6550018 0.7121909 0.7462301 0.8047521 #> [970,] 0.67468144 0.8115864 0.8311740 0.8576452 0.8817724 0.8970071 0.9092255 #> [971,] 0.25530869 0.4229574 0.6714246 0.6844769 0.7469655 0.7584307 0.7610679 #> [972,] 0.41437972 0.6251328 0.6979654 0.7523700 0.8096269 0.8257021 0.8363396 #> [973,] 0.46068409 0.5099019 0.5453835 0.6073536 0.6115334 0.6494149 0.6606911 #> [974,] 0.50560586 0.5682722 0.5732926 0.7049280 0.7061830 0.7096315 0.7706464 #> [975,] 0.74582316 0.7609546 0.8046738 0.8240498 0.8241563 0.8281400 0.8356967 #> [976,] 0.33525273 0.3374291 0.3817311 0.4523469 0.4536032 0.4987909 0.6120957 #> [977,] 0.23008354 0.4954478 0.5046153 0.5614417 0.5616416 0.5828565 0.5882024 #> [978,] 0.49841470 0.6714878 0.7688076 0.7764392 0.8018245 0.8105688 0.8233114 #> [979,] 0.52526029 0.5345360 0.5447285 0.6395455 0.7031803 0.7376332 0.7483666 #> [980,] 0.24785601 0.3852941 0.3986045 0.5758994 0.6449115 0.6810014 0.7294620 #> [981,] 0.63397320 0.6394524 0.6664361 0.6701969 0.6802607 0.7022022 0.7301337 #> [982,] 0.45580842 0.5715196 0.5749911 0.5859775 0.6681737 0.6822274 0.7166143 #> [983,] 0.50101698 0.5376430 0.5929588 0.7114757 0.7489781 0.7692118 0.7773591 #> [984,] 0.19780375 0.4136345 0.4339700 0.4415019 0.4979181 0.6075412 0.6091881 #> [985,] 0.63176827 0.7092594 0.8033928 0.8673370 0.9140608 0.9153377 1.0441789 #> [986,] 0.36491652 0.5273441 0.6032080 0.6253015 0.7454451 0.7729599 0.7883097 #> [987,] 0.44276402 0.6742267 0.7026799 0.7415390 0.7864823 0.8683901 0.9982356 #> [988,] 0.44525949 0.8690679 0.8875176 0.9267411 1.0588732 1.0614233 1.0699795 #> [989,] 0.46932208 0.5569819 0.5886034 0.6532035 0.6885028 0.7242253 0.7372330 #> [990,] 0.27366290 0.4653143 0.6021361 0.6025242 0.6380806 0.6693098 0.6744915 #> [991,] 0.20711353 0.2356696 0.3305156 0.3670160 0.4118020 0.4364066 0.5464797 #> [992,] 0.37440774 0.7086461 0.7418901 0.7442849 0.7787907 0.7836854 0.7855291 #> [993,] 1.04193676 1.0992335 1.1503974 1.1741563 1.2870854 1.3807208 1.4045472 #> [994,] 0.45879487 0.5301128 0.5747591 0.6214295 0.7605660 0.8673346 0.8709480 #> [995,] 0.48610978 0.5967973 0.6007497 0.6189824 0.6356349 0.7741783 0.7854985 #> [996,] 0.40589754 0.5606936 0.6975627 0.7258812 0.7362571 0.7638539 0.7670559 #> [997,] 0.95463549 1.1054185 1.1069747 1.1304412 1.2374547 1.4004799 1.4737834 #> [998,] 0.85278886 0.9860807 1.0845824 1.2091892 1.2122146 1.2567472 1.3275814 #> [999,] 0.33373156 0.3560558 0.6230229 0.6408758 0.6742086 0.7076926 0.8252286 #> [1000,] 0.12432811 0.4822970 0.7518164 0.7584307 0.8035997 0.8186917 0.8575808 #> [,8] [,9] [,10] #> [1,] 1.0220903 1.0506990 1.0647866 #> [2,] 1.0159804 1.0628464 1.0808911 #> [3,] 0.6555239 0.6691817 0.6939634 #> [4,] 0.8153295 0.8323242 0.8576244 #> [5,] 0.7755287 0.8105826 0.8419308 #> [6,] 0.9605567 0.9751774 0.9853637 #> [7,] 0.6006658 0.6082166 0.6575454 #> [8,] 0.9434125 0.9569375 0.9573127 #> [9,] 0.8578887 0.8690163 0.9022197 #> [10,] 1.1059807 1.1271065 1.2717197 #> [11,] 0.9275638 0.9374665 0.9629951 #> [12,] 0.8683344 0.8833672 0.8889993 #> [13,] 0.9806743 0.9860205 1.0262920 #> [14,] 0.8045830 0.8120747 0.8122041 #> [15,] 1.1613124 1.1683864 1.1694879 #> [16,] 0.7096127 0.7521758 0.7795502 #> [17,] 0.5288156 0.5698295 0.5967761 #> [18,] 0.6856766 0.7122816 0.7510326 #> [19,] 1.1743609 1.2663257 1.2730675 #> [20,] 0.5036007 0.5465379 0.5710962 #> [21,] 0.8614368 0.8647220 0.9100972 #> [22,] 0.4877218 0.5036007 0.5085941 #> [23,] 0.8889993 0.9078457 0.9205416 #> [24,] 0.6778038 0.6823220 0.6916917 #> [25,] 0.7951561 0.9031122 0.9116083 #> [26,] 0.7183941 0.7444101 0.7563863 #> [27,] 0.5881498 0.6069905 0.6132131 #> [28,] 0.6360646 0.6735662 0.7085963 #> [29,] 0.6846481 0.6876163 0.7291948 #> [30,] 1.0284256 1.0312844 1.0480669 #> [31,] 0.7609546 0.7702795 0.8113416 #> [32,] 0.5915577 0.6097883 0.6270160 #> [33,] 0.7015258 0.7143286 0.7274967 #> [34,] 0.8280008 0.8410305 0.8838150 #> [35,] 0.6646158 0.6752053 0.6759780 #> [36,] 0.5115982 0.5658013 0.6014117 #> [37,] 0.9767749 0.9812302 0.9813567 #> [38,] 0.6544361 0.6599681 0.6723698 #> [39,] 0.5575974 0.5998258 0.6160434 #> [40,] 1.0114281 1.0269782 1.0689315 #> [41,] 1.0221192 1.0405471 1.0802871 #> [42,] 0.5539836 0.5670290 0.5742499 #> [43,] 1.1136135 1.1143924 1.1565844 #> [44,] 1.2811282 1.3083940 1.3553939 #> [45,] 1.7795953 1.7843617 1.8282038 #> [46,] 1.3636859 1.3862933 1.4477444 #> [47,] 1.1656563 1.1768936 1.2009966 #> [48,] 0.6516211 0.6789018 0.6822214 #> [49,] 0.6571013 0.6922736 0.7112233 #> [50,] 0.9127270 0.9160051 0.9327613 #> [51,] 0.7005399 0.7818339 0.7852307 #> [52,] 0.6050779 0.6813854 0.7484952 #> [53,] 0.9623091 0.9637074 0.9640488 #> [54,] 0.9004985 0.9043681 0.9113352 #> [55,] 0.5764813 0.5861439 0.6036196 #> [56,] 0.9721654 0.9896678 1.0213423 #> [57,] 1.2183686 1.2607060 1.2665570 #> [58,] 0.6979966 0.7376806 0.7692197 #> [59,] 0.9177779 0.9393185 0.9394270 #> [60,] 0.7310089 0.7778650 0.8020409 #> [61,] 0.6713180 0.7570872 0.7576333 #> [62,] 0.7238832 0.7438888 0.7741449 #> [63,] 0.5693800 0.5731336 0.6171722 #> [64,] 0.8134684 0.8155012 0.8486851 #> [65,] 0.6314431 0.6620528 0.6695307 #> [66,] 0.7487702 0.7510326 0.7665815 #> [67,] 0.7037280 0.7139507 0.7341633 #> [68,] 0.6670795 0.7039944 0.7103590 #> [69,] 0.5590320 0.5826087 0.6090574 #> [70,] 1.0705625 1.0839160 1.1077849 #> [71,] 0.7925975 0.8267848 0.8600750 #> [72,] 0.4665478 0.4980567 0.5050926 #> [73,] 0.6832122 0.7127399 0.7301544 #> [74,] 0.6706489 0.7036290 0.7122281 #> [75,] 0.9944253 1.0938387 1.1284889 #> [76,] 0.7341633 0.7386602 0.7543114 #> [77,] 0.7444101 0.7878845 0.8116886 #> [78,] 0.7183941 0.7242253 0.7437343 #> [79,] 0.6669422 0.6838606 0.7015809 #> [80,] 1.7852066 1.9035128 1.9593996 #> [81,] 1.2074716 1.2937300 1.3053031 #> [82,] 0.8501118 0.8510822 0.8887671 #> [83,] 0.6912846 0.7224415 0.7439148 #> [84,] 1.2312541 1.2640422 1.2865493 #> [85,] 1.0518943 1.0554476 1.0708872 #> [86,] 0.6896308 0.7412201 0.7649269 #> [87,] 0.7517473 0.7538065 0.7627878 #> [88,] 0.6607499 0.6651778 0.6755015 #> [89,] 0.8049486 0.8602626 0.9045392 #> [90,] 0.7128878 0.7728106 0.8510530 #> [91,] 0.7852307 0.7854566 0.8330092 #> [92,] 1.7256766 1.7263170 1.7344674 #> [93,] 0.6820320 0.6995980 0.7385645 #> [94,] 0.9136147 1.0265890 1.0361744 #> [95,] 0.6844769 0.6987678 0.7313320 #> [96,] 1.1858038 1.2298611 1.2433319 #> [97,] 0.9149957 1.1553283 1.1715203 #> [98,] 0.6350549 0.6468977 0.6569167 #> [99,] 0.6095392 0.6515879 0.7125169 #> [100,] 0.7548809 0.7640128 0.7852657 #> [101,] 0.8339963 0.8746430 0.8802706 #> [102,] 0.8803966 0.9150893 0.9655447 #> [103,] 1.3828986 1.3844780 1.4077336 #> [104,] 0.6973268 0.7098145 0.7467064 #> [105,] 0.5697776 0.6048633 0.6226070 #> [106,] 1.0555791 1.0815560 1.0834790 #> [107,] 0.5333565 0.5858786 0.5920383 #> [108,] 0.7323111 0.7431155 0.7739945 #> [109,] 0.6553638 0.7204231 0.7339759 #> [110,] 1.4211427 1.5612817 1.5691502 #> [111,] 0.8804201 0.8804967 0.9133936 #> [112,] 1.8300943 1.8462969 1.8554780 #> [113,] 0.6681737 0.7201891 0.7234314 #> [114,] 0.9264201 0.9446354 0.9898591 #> [115,] 1.0305274 1.0873706 1.1108897 #> [116,] 0.7776361 0.8285550 0.8445627 #> [117,] 0.8105688 0.8334105 0.8344281 #> [118,] 0.5251669 0.5258499 0.5761898 #> [119,] 0.6680991 0.6735608 0.6832122 #> [120,] 0.5456871 0.5893277 0.5902274 #> [121,] 0.7243613 0.7391918 0.7430023 #> [122,] 0.6011233 0.6619225 0.7385597 #> [123,] 0.6637908 0.6920283 0.7221301 #> [124,] 0.6622352 0.6793424 0.6797925 #> [125,] 1.4978961 1.5240171 1.5591992 #> [126,] 0.8145714 0.8294044 0.8933134 #> [127,] 0.6213495 0.6382426 0.6421234 #> [128,] 0.6497090 0.6654464 0.6723698 #> [129,] 0.7529188 0.7531056 0.8286505 #> [130,] 0.8415089 0.8776250 0.8833272 #> [131,] 0.9066364 0.9705027 0.9867259 #> [132,] 0.6082166 0.6088717 0.6183626 #> [133,] 0.5901790 0.5906260 0.6049659 #> [134,] 0.7160267 0.7525095 0.7664416 #> [135,] 0.5871855 0.5888006 0.5958864 #> [136,] 0.5596206 0.5888128 0.5969488 #> [137,] 0.8632859 0.8702170 0.9241328 #> [138,] 0.6115767 0.6173324 0.6180640 #> [139,] 0.8219311 0.8441528 0.8611271 #> [140,] 0.7012192 0.7072508 0.7099819 #> [141,] 0.5743078 0.6728713 0.6747774 #> [142,] 0.5263058 0.5891322 0.6317845 #> [143,] 0.6099109 0.6164456 0.6347685 #> [144,] 0.8930163 0.9479502 0.9620478 #> [145,] 1.0256061 1.0524403 1.0587543 #> [146,] 0.5566784 0.5713538 0.5788591 #> [147,] 0.5543984 0.5705758 0.5721490 #> [148,] 0.9795626 1.0067947 1.0458673 #> [149,] 0.8637182 0.9008321 0.9043360 #> [150,] 0.5414789 0.5788055 0.5862132 #> [151,] 0.5853790 0.5875525 0.5915577 #> [152,] 0.7714320 0.7798431 0.7872667 #> [153,] 0.9014666 0.9705633 0.9777831 #> [154,] 1.0157654 1.0779330 1.0913184 #> [155,] 0.9316542 0.9658182 0.9670866 #> [156,] 0.6073392 0.6131069 0.6592461 #> [157,] 1.1114114 1.1454856 1.1555352 #> [158,] 0.6052577 0.6307465 0.7290489 #> [159,] 0.6285511 0.6381594 0.6443042 #> [160,] 0.7880060 0.8260032 0.8534824 #> [161,] 0.6633763 0.6657410 0.6797596 #> [162,] 0.8476128 0.8624028 0.8771263 #> [163,] 0.7845580 0.8266930 0.8318053 #> [164,] 0.7392637 0.7512895 0.8111425 #> [165,] 1.2922349 1.3063313 1.3084353 #> [166,] 0.9128304 0.9454870 1.0354152 #> [167,] 0.6104109 0.6456856 0.6493743 #> [168,] 0.6152847 0.6210218 0.6397210 #> [169,] 0.9241328 0.9419218 1.1478319 #> [170,] 0.6543718 0.6672829 0.7638711 #> [171,] 0.6459038 0.6709559 0.6813143 #> [172,] 0.6297882 0.6436494 0.6455486 #> [173,] 1.1226844 1.1330129 1.2040133 #> [174,] 1.0910784 1.1286312 1.1740047 #> [175,] 1.1304412 1.1901069 1.1943255 #> [176,] 0.7143797 0.7184307 0.7481196 #> [177,] 0.8513361 0.8603842 0.8674875 #> [178,] 0.6705592 0.6735620 0.6778038 #> [179,] 1.0194385 1.0333731 1.0398635 #> [180,] 0.6132131 0.6198758 0.6648093 #> [181,] 0.6900043 0.7318831 0.7641128 #> [182,] 0.6079576 0.6144660 0.6170095 #> [183,] 0.5681010 0.5703633 0.6560972 #> [184,] 2.0221354 2.0532234 2.0724232 #> [185,] 1.0225519 1.0345328 1.0356459 #> [186,] 0.5291272 0.5727759 0.5803860 #> [187,] 0.8187429 0.8696613 0.8934775 #> [188,] 0.8677932 0.8900682 0.9412017 #> [189,] 0.7229251 0.7349696 0.7951147 #> [190,] 0.5737622 0.5920383 0.6537043 #> [191,] 1.3769688 1.3968075 1.4065190 #> [192,] 0.6929701 0.6971881 0.6983515 #> [193,] 0.5998258 0.6034515 0.6136679 #> [194,] 0.5429316 0.5570000 0.5602252 #> [195,] 1.0188878 1.0793454 1.0858714 #> [196,] 0.6269043 0.6810870 0.6868403 #> [197,] 1.0075614 1.0431346 1.0821745 #> [198,] 1.3594604 1.4146364 1.4263432 #> [199,] 0.7430240 0.7511748 0.8771458 #> [200,] 0.7863389 0.8066169 0.8143462 #> [201,] 1.8213842 1.8912685 1.9962653 #> [202,] 1.4548162 1.4980519 1.4988507 #> [203,] 1.0292585 1.0564403 1.0715925 #> [204,] 0.5571402 0.6248315 0.6380658 #> [205,] 0.6196099 0.6290472 0.6292636 #> [206,] 0.6378416 0.6567339 0.6771992 #> [207,] 1.6953200 1.7081563 1.7206302 #> [208,] 0.7497781 0.7546189 0.7557900 #> [209,] 1.5233936 1.5288099 1.5962986 #> [210,] 0.6239921 0.6247975 0.6265817 #> [211,] 0.7915838 0.8227246 0.8271605 #> [212,] 0.6133590 0.6334791 0.6504994 #> [213,] 0.5879778 0.5889366 0.6110425 #> [214,] 0.7508885 0.8324732 0.8941450 #> [215,] 0.7468176 0.7739945 0.8493845 #> [216,] 0.6418896 0.6420441 0.6478635 #> [217,] 0.6582989 0.6735662 0.7013804 #> [218,] 0.6180513 0.6354609 0.6562407 #> [219,] 0.7390813 0.7445928 0.7881615 #> [220,] 0.8158097 0.8690679 0.8797843 #> [221,] 0.7647663 0.7783410 0.7837751 #> [222,] 1.3820083 1.3966081 1.4695749 #> [223,] 0.5455742 0.5658013 0.6034515 #> [224,] 1.1583985 1.2959913 1.3045000 #> [225,] 0.9930158 1.0073708 1.0326790 #> [226,] 0.7177860 0.7245656 0.7300216 #> [227,] 0.6152128 0.6768162 0.7500130 #> [228,] 0.8081437 0.8210160 0.8341311 #> [229,] 0.8173428 0.8390229 0.8620620 #> [230,] 0.8007657 0.8012049 0.8112083 #> [231,] 0.9177369 0.9279086 0.9315429 #> [232,] 0.7094825 0.7412201 0.7487212 #> [233,] 0.8801390 0.8919684 0.9048960 #> [234,] 0.8240324 0.8333244 0.8385498 #> [235,] 0.7525095 0.7695044 0.7708732 #> [236,] 0.7133467 0.7192160 0.7198735 #> [237,] 0.5881498 0.5997251 0.6016000 #> [238,] 0.8105593 0.9042581 0.9140608 #> [239,] 1.0796850 1.0905094 1.0981334 #> [240,] 0.8508098 0.8635917 0.8980599 #> [241,] 0.6227925 0.6280889 0.6417925 #> [242,] 0.7067708 0.7184563 0.7377581 #> [243,] 0.6115334 0.6430333 0.6456477 #> [244,] 1.4331381 1.4607150 1.5316756 #> [245,] 0.8501881 0.8563041 0.8590798 #> [246,] 0.7118094 0.7147159 0.7300108 #> [247,] 1.1565844 1.1967436 1.2031595 #> [248,] 0.7812252 0.7929947 0.8109086 #> [249,] 0.6637959 0.6669140 0.6801039 #> [250,] 2.0397549 2.0483508 2.0556776 #> [251,] 0.7355141 0.7445453 0.7960024 #> [252,] 0.6012655 0.6101469 0.6277827 #> [253,] 1.1820783 1.1844585 1.1852437 #> [254,] 0.7059918 0.7131183 0.7172770 #> [255,] 1.1761711 1.1954909 1.2139322 #> [256,] 0.8081437 0.8302582 0.8359470 #> [257,] 0.4847586 0.4983993 0.5328842 #> [258,] 1.3630821 1.3645951 1.4483778 #> [259,] 1.6683581 1.6846586 1.6916542 #> [260,] 0.6327125 0.6592461 0.6797594 #> [261,] 0.5816681 0.6651170 0.6719349 #> [262,] 1.0199230 1.0306691 1.0465887 #> [263,] 0.7328701 0.7366519 0.7488794 #> [264,] 0.6567246 0.6632021 0.6666177 #> [265,] 0.8342606 0.8833272 0.8873127 #> [266,] 1.2187290 1.2362250 1.3522488 #> [267,] 0.7023748 0.7102512 0.7225791 #> [268,] 1.0880982 1.0941461 1.0960332 #> [269,] 0.8627002 0.8743276 0.8751708 #> [270,] 0.6198851 0.6314126 0.6475378 #> [271,] 0.5674021 0.5693480 0.5928785 #> [272,] 0.9341928 0.9833019 0.9973478 #> [273,] 0.8096329 0.8292255 0.8555027 #> [274,] 0.7891404 0.8243659 0.8278745 #> [275,] 0.9317763 0.9409960 0.9466711 #> [276,] 1.3790276 1.3802968 1.4076604 #> [277,] 0.6844823 0.7143535 0.7407388 #> [278,] 0.7100069 0.7488184 0.7600098 #> [279,] 1.1506401 1.1908013 1.2663376 #> [280,] 0.7630830 0.7659436 0.7761110 #> [281,] 0.8431615 0.8637182 0.9226522 #> [282,] 0.9590741 1.0251275 1.0283219 #> [283,] 0.7033122 0.7052669 0.7377581 #> [284,] 0.8044038 0.8099410 0.8531779 #> [285,] 0.4574371 0.4633042 0.5149583 #> [286,] 1.2142199 1.2325390 1.2486723 #> [287,] 0.7117716 0.7845475 0.8023944 #> [288,] 0.7105949 0.7146610 0.7506698 #> [289,] 0.9633728 0.9659964 1.0147951 #> [290,] 0.6066468 0.6082550 0.6091098 #> [291,] 1.0277905 1.0338277 1.0357108 #> [292,] 0.5000964 0.5028235 0.5161832 #> [293,] 0.8557396 0.8838206 0.9363732 #> [294,] 0.7162112 0.7261345 0.7368908 #> [295,] 2.1098008 2.1263382 2.1662556 #> [296,] 0.9174849 0.9391519 0.9513195 #> [297,] 0.5151876 0.5552198 0.6246004 #> [298,] 1.2236423 1.2574848 1.2584744 #> [299,] 0.8009335 0.8341694 0.8629700 #> [300,] 0.6411617 0.6742086 0.6789019 #> [301,] 1.0222484 1.0651726 1.0824499 #> [302,] 1.4780679 1.4931978 1.4998941 #> [303,] 1.7793757 1.8106507 1.8345273 #> [304,] 0.8031539 0.8513275 0.8791171 #> [305,] 1.2292597 1.2357294 1.2826214 #> [306,] 0.6505470 0.6771992 0.6788451 #> [307,] 1.1818239 1.1945705 1.2083771 #> [308,] 0.6593763 0.6723912 0.6867334 #> [309,] 0.4700809 0.4816955 0.4866329 #> [310,] 0.7201891 0.7371411 0.7627039 #> [311,] 0.9326344 1.0005127 1.0038540 #> [312,] 0.7288453 0.7482867 0.7527413 #> [313,] 0.6792825 0.7098145 0.7107325 #> [314,] 0.7188043 0.7305566 0.7341665 #> [315,] 0.5343740 0.5371986 0.6196099 #> [316,] 1.0993493 1.1180550 1.1213501 #> [317,] 0.5166436 0.5418754 0.5499564 #> [318,] 1.4359835 1.4469369 1.4834774 #> [319,] 0.8046689 0.8057893 0.8264896 #> [320,] 0.5838682 0.5972898 0.6249691 #> [321,] 0.6478044 0.6480226 0.6585143 #> [322,] 0.7356749 0.7797624 0.8027854 #> [323,] 1.0977021 1.1011990 1.1069747 #> [324,] 0.6170095 0.6424517 0.6700281 #> [325,] 0.7829631 0.7942367 0.7964902 #> [326,] 0.8682310 0.9106875 1.0473610 #> [327,] 0.8372628 0.8838178 0.9024265 #> [328,] 1.4275131 1.5188548 1.5214910 #> [329,] 1.2825670 1.3081612 1.3743889 #> [330,] 0.6444889 0.6908379 0.6954510 #> [331,] 0.6772921 0.7085888 0.7115589 #> [332,] 0.6055590 0.6319255 0.6535943 #> [333,] 0.6089178 0.6171698 0.6420984 #> [334,] 0.7013259 0.7197396 0.7201731 #> [335,] 0.7554972 0.7570872 0.7621492 #> [336,] 0.6903874 0.7099542 0.7263274 #> [337,] 1.4731754 1.4770385 1.4885976 #> [338,] 1.1171090 1.1343383 1.1866288 #> [339,] 0.7904959 0.8211896 0.8407411 #> [340,] 0.6571768 0.7153976 0.7344173 #> [341,] 0.6206803 0.7202563 0.7536813 #> [342,] 0.6031906 0.6348537 0.6648093 #> [343,] 1.0684635 1.1281765 1.2701446 #> [344,] 0.6379043 0.6522162 0.6533374 #> [345,] 0.5810245 0.5867504 0.5913260 #> [346,] 0.5046153 0.5277485 0.5910771 #> [347,] 1.0505311 1.0576989 1.0992925 #> [348,] 0.6311623 0.6560215 0.6822626 #> [349,] 1.0165439 1.1333100 1.1340170 #> [350,] 0.5813493 0.5950332 0.6079576 #> [351,] 0.7300095 0.7602339 0.7629245 #> [352,] 1.1053641 1.1180550 1.1312491 #> [353,] 1.1837643 1.1988522 1.2302067 #> [354,] 0.9533387 0.9564164 0.9649450 #> [355,] 0.9164328 0.9176535 1.0082143 #> [356,] 0.7133467 0.7360781 0.7797316 #> [357,] 0.7177315 0.7849657 0.7935783 #> [358,] 0.7369999 0.7680742 0.7718746 #> [359,] 0.6829276 0.7062740 0.7828293 #> [360,] 0.6238698 0.6319799 0.6712264 #> [361,] 0.8012627 0.8229591 0.8455997 #> [362,] 0.6160434 0.6178926 0.6240917 #> [363,] 0.9001376 0.9136147 0.9147746 #> [364,] 1.5932991 1.6157023 1.6168954 #> [365,] 0.8077789 0.8595672 0.8851544 #> [366,] 0.8105764 0.9519390 0.9627244 #> [367,] 0.8791882 0.8820581 0.9409960 #> [368,] 1.1542080 1.2095336 1.2174031 #> [369,] 1.2001517 1.2151301 1.2367852 #> [370,] 0.7215688 0.7504660 0.7612260 #> [371,] 0.5766792 0.6133128 0.6378261 #> [372,] 0.5124364 0.5342045 0.5436498 #> [373,] 0.7111043 0.7964800 0.8074443 #> [374,] 0.7735197 0.7903442 0.8573493 #> [375,] 0.6717405 0.6987919 0.7056988 #> [376,] 1.1960716 1.2061600 1.2549521 #> [377,] 0.9120929 0.9420186 1.0101190 #> [378,] 0.9728332 0.9873418 0.9990933 #> [379,] 0.7385341 0.7460797 0.7479200 #> [380,] 0.6228103 0.6252471 0.6378261 #> [381,] 0.6451651 0.6466886 0.6497090 #> [382,] 0.6164454 0.6313534 0.6431640 #> [383,] 1.7215563 1.7413460 1.7505421 #> [384,] 1.4146987 1.4767661 1.5423798 #> [385,] 1.2790766 1.3318983 1.3342449 #> [386,] 0.5253829 0.5374429 0.5478135 #> [387,] 0.6767031 0.6980473 0.7102383 #> [388,] 0.6058627 0.6468854 0.6582067 #> [389,] 0.7614894 0.7666488 0.7872667 #> [390,] 0.7636327 0.7665815 0.7671899 #> [391,] 0.7542396 0.7742806 0.8188065 #> [392,] 0.8449039 0.8477306 0.8554640 #> [393,] 0.6606911 0.6652344 0.7106932 #> [394,] 1.1621956 1.1644541 1.1986978 #> [395,] 1.1677274 1.2597720 1.2879303 #> [396,] 0.9441428 0.9562852 0.9670866 #> [397,] 0.6461569 0.6517059 0.6642091 #> [398,] 0.8534824 0.8593124 0.9181514 #> [399,] 0.6507469 0.6531001 0.6857016 #> [400,] 0.7627499 0.8010999 0.8162060 #> [401,] 0.7167615 0.7590209 0.7663757 #> [402,] 0.9385822 0.9546533 0.9735454 #> [403,] 0.9174849 0.9597572 0.9760358 #> [404,] 0.7314190 0.7399096 0.7420626 #> [405,] 0.6440154 0.6769841 0.6813038 #> [406,] 0.9042870 0.9199815 0.9366138 #> [407,] 0.5143304 0.5230954 0.5826878 #> [408,] 0.7751121 0.8150130 0.8160969 #> [409,] 0.6680155 0.6764425 0.6882297 #> [410,] 1.0683585 1.0714703 1.1421249 #> [411,] 1.2147471 1.2663894 1.2727458 #> [412,] 1.1390125 1.1560421 1.1667422 #> [413,] 0.5777682 0.5841814 0.5867504 #> [414,] 1.0770330 1.1461043 1.1826790 #> [415,] 0.7190763 0.7826114 0.8346353 #> [416,] 1.2734965 1.3180883 1.3209671 #> [417,] 0.8609763 0.8951846 0.9389049 #> [418,] 0.6299388 0.6377190 0.6472083 #> [419,] 1.3202222 1.3234820 1.3480002 #> [420,] 0.7911226 0.8918625 0.9113162 #> [421,] 1.5099517 1.5879799 1.6275022 #> [422,] 0.8648793 0.8801506 0.8962246 #> [423,] 0.6058663 0.6082788 0.6314126 #> [424,] 1.3163879 1.3328708 1.3662731 #> [425,] 0.7955620 0.7975097 0.8114964 #> [426,] 0.6418109 0.6934614 0.7022022 #> [427,] 1.8529715 1.9275538 1.9412448 #> [428,] 0.8037321 0.8180881 0.8260032 #> [429,] 0.8748160 0.9124285 0.9167675 #> [430,] 1.4781769 1.5195083 1.5757886 #> [431,] 0.7765806 0.7796118 0.7852608 #> [432,] 0.9012644 0.9333909 0.9559555 #> [433,] 0.6599585 0.6928193 0.6981878 #> [434,] 0.7897385 0.8571447 0.8957822 #> [435,] 1.1936272 1.2030167 1.2407876 #> [436,] 0.7833691 0.8614368 0.8945441 #> [437,] 0.5384173 0.5829803 0.5841615 #> [438,] 0.5571568 0.6174222 0.6316854 #> [439,] 0.6609872 0.6613144 0.7115270 #> [440,] 0.8451830 0.8557046 0.8650737 #> [441,] 0.5728784 0.5745183 0.5839120 #> [442,] 1.0467757 1.0550746 1.0574801 #> [443,] 0.6892405 0.7332718 0.7333728 #> [444,] 0.5805887 0.6012403 0.6268490 #> [445,] 0.7912182 0.8435330 0.8641570 #> [446,] 0.7852608 0.8762724 0.9075501 #> [447,] 1.3676645 1.3747721 1.4162996 #> [448,] 1.2725432 1.2803105 1.2833201 #> [449,] 1.1295200 1.2154808 1.2187803 #> [450,] 0.9210998 0.9405099 1.0160491 #> [451,] 0.6643364 0.6665172 0.6964813 #> [452,] 0.6314404 0.6404495 0.6684119 #> [453,] 0.5370750 0.5614417 0.6017285 #> [454,] 0.9114307 0.9131999 0.9218992 #> [455,] 0.5167141 0.5323207 0.5668559 #> [456,] 0.7683081 0.7733977 0.8122535 #> [457,] 0.5024490 0.5412091 0.5569929 #> [458,] 1.0857416 1.1236817 1.1830759 #> [459,] 0.5728755 0.5922088 0.5931377 #> [460,] 0.5689447 0.5754628 0.5817520 #> [461,] 0.6513352 0.7065268 0.7117218 #> [462,] 0.5501011 0.5596206 0.5649255 #> [463,] 0.6391369 0.6395256 0.6412760 #> [464,] 0.8306194 0.8751047 0.8794120 #> [465,] 0.7393981 0.8423412 0.8437964 #> [466,] 1.8836910 1.9095367 1.9135119 #> [467,] 1.1950243 1.2333716 1.2435436 #> [468,] 0.9667808 0.9857054 0.9916732 #> [469,] 0.9461251 0.9463880 0.9540307 #> [470,] 0.5763679 0.5815961 0.5851288 #> [471,] 0.8321809 0.8519922 0.8573915 #> [472,] 0.6797594 0.6974174 0.7011072 #> [473,] 0.6045314 0.6086948 0.6161821 #> [474,] 0.6178535 0.6265817 0.6299388 #> [475,] 1.4563943 1.4668533 1.4956531 #> [476,] 0.4759897 0.5278541 0.5323207 #> [477,] 0.5904797 0.5921010 0.6182972 #> [478,] 0.7475949 0.7595601 0.7750158 #> [479,] 0.8676342 0.9958579 1.0082914 #> [480,] 0.9988466 1.0379648 1.0873266 #> [481,] 0.6811404 0.7125915 0.7438543 #> [482,] 0.7233252 0.7258189 0.7496445 #> [483,] 0.8908971 0.9220001 0.9393187 #> [484,] 0.8402377 0.8782716 0.8924074 #> [485,] 0.8752551 0.9683506 0.9777102 #> [486,] 0.9860885 1.0097891 1.0138331 #> [487,] 0.6715531 0.6862316 0.6922482 #> [488,] 1.2949801 1.3199758 1.3314084 #> [489,] 1.0834790 1.1111410 1.1434177 #> [490,] 0.7012192 0.7035310 0.7197476 #> [491,] 0.8863247 0.9151983 0.9861853 #> [492,] 1.7159364 1.7248158 1.7670427 #> [493,] 0.8374759 0.9264355 0.9493804 #> [494,] 1.3369391 1.3572066 1.3602157 #> [495,] 1.3663135 1.3747328 1.3915746 #> [496,] 0.9388876 0.9787855 0.9818573 #> [497,] 0.9633728 0.9716273 1.0105809 #> [498,] 1.2406684 1.2583409 1.3507659 #> [499,] 0.8820550 1.0146170 1.0150288 #> [500,] 0.9055686 0.9680445 0.9941518 #> [501,] 2.4145756 2.4420108 2.4464436 #> [502,] 0.5520771 0.5745183 0.5826584 #> [503,] 0.8337882 0.8505912 0.8526129 #> [504,] 0.6882318 0.6964999 0.7367348 #> [505,] 0.9813650 0.9874835 1.0472607 #> [506,] 0.6814462 0.7060224 0.7076732 #> [507,] 0.4816955 0.4847935 0.4864367 #> [508,] 0.5691907 0.5770479 0.5780491 #> [509,] 1.6335442 1.6385179 1.6535956 #> [510,] 1.3528960 1.3563794 1.3611355 #> [511,] 0.6759780 0.7094116 0.7247117 #> [512,] 1.2926636 1.3023587 1.3749284 #> [513,] 1.5299030 1.5399956 1.6611706 #> [514,] 0.6710257 0.6810884 0.6950817 #> [515,] 0.7584446 0.8062355 0.8130625 #> [516,] 0.8178128 0.8178424 0.8205612 #> [517,] 0.8591310 0.8919684 0.9240162 #> [518,] 0.5025708 0.5418103 0.5693054 #> [519,] 0.6895236 0.6973202 0.7059582 #> [520,] 0.5773875 0.5787767 0.6029737 #> [521,] 0.7146610 0.7643505 0.7878777 #> [522,] 0.6803957 0.6811404 0.7170140 #> [523,] 0.6578455 0.6659730 0.6749460 #> [524,] 0.7388219 0.7477676 0.7486448 #> [525,] 0.9893545 1.0141225 1.0483922 #> [526,] 0.6767827 0.7060023 0.7315015 #> [527,] 1.0208764 1.0257840 1.0330603 #> [528,] 0.7171179 0.7334094 0.7448059 #> [529,] 0.8668125 0.9510885 0.9550453 #> [530,] 1.3518969 1.3648092 1.3849989 #> [531,] 0.7892308 0.8003594 0.8356967 #> [532,] 0.8611332 0.8613864 0.9164915 #> [533,] 0.6250401 0.6367535 0.6517178 #> [534,] 0.7000426 0.7177860 0.7378278 #> [535,] 0.7863389 0.8349013 0.8376880 #> [536,] 0.9794036 1.0058872 1.0216113 #> [537,] 0.8364121 0.8611271 0.8800067 #> [538,] 0.5635180 0.6092181 0.6218384 #> [539,] 0.8904440 0.8921551 0.8932878 #> [540,] 0.6639791 0.7167615 0.7429688 #> [541,] 0.6532183 0.6622352 0.6784005 #> [542,] 1.3483684 1.3507839 1.3894962 #> [543,] 0.8085228 0.8488790 0.8680777 #> [544,] 0.5340517 0.5593715 0.6246004 #> [545,] 0.5689344 0.6011425 0.6378416 #> [546,] 0.6056311 0.6089128 0.6109068 #> [547,] 0.7942207 0.8298927 0.8602639 #> [548,] 0.9145482 0.9155776 0.9157779 #> [549,] 0.7833891 0.7929947 0.7977212 #> [550,] 0.8923763 0.8936716 0.8943902 #> [551,] 0.6252989 0.6302890 0.6325989 #> [552,] 0.6213495 0.6715206 0.6738913 #> [553,] 0.5815733 0.6928156 0.7067708 #> [554,] 0.7766909 0.7895843 0.8063112 #> [555,] 0.8607480 0.8663636 0.8850935 #> [556,] 0.6819663 0.7233252 0.7428187 #> [557,] 0.8135751 0.8167236 0.8241794 #> [558,] 2.3432253 2.3690277 2.3950798 #> [559,] 0.7093489 0.7243632 0.7538692 #> [560,] 0.6790146 0.6813491 0.6987252 #> [561,] 0.9278684 0.9670014 0.9923017 #> [562,] 0.6440527 0.6939634 0.6946025 #> [563,] 0.8178424 0.8214247 0.8249273 #> [564,] 0.5854172 0.6030661 0.6703721 #> [565,] 2.2018303 2.2170551 2.2715903 #> [566,] 0.6740985 0.6961154 0.7107108 #> [567,] 0.5288156 0.6289047 0.6432439 #> [568,] 0.6086948 0.6167249 0.6182271 #> [569,] 0.8899425 0.8907170 0.9248265 #> [570,] 0.8781574 0.9243470 0.9436126 #> [571,] 0.6611107 0.6947258 0.7779487 #> [572,] 0.8544198 0.8607628 0.9113352 #> [573,] 0.6818945 0.6944958 0.6973268 #> [574,] 0.6450755 0.7042088 0.7045850 #> [575,] 0.8500746 0.9282655 1.0189408 #> [576,] 0.7818339 0.7826114 0.8231869 #> [577,] 1.2586485 1.2649063 1.4049734 #> [578,] 0.6757237 0.6791727 0.7117059 #> [579,] 0.6788451 0.6853032 0.7137189 #> [580,] 0.6333447 0.6695882 0.6853860 #> [581,] 0.6198851 0.6315937 0.6712264 #> [582,] 0.5481736 0.5764813 0.6090256 #> [583,] 0.6900380 0.6917397 0.7118564 #> [584,] 0.8031552 0.8159384 0.8325545 #> [585,] 0.8078439 0.8962927 0.9024955 #> [586,] 0.7863477 0.8318041 0.8382579 #> [587,] 0.6263667 0.6662338 0.6693745 #> [588,] 1.0664086 1.0867883 1.1595318 #> [589,] 0.7238832 0.7291073 0.7634351 #> [590,] 1.8472453 1.9284869 1.9455458 #> [591,] 0.6030661 0.6150027 0.6178535 #> [592,] 0.7067891 0.7202563 0.7385543 #> [593,] 0.5766874 0.6071901 0.6722267 #> [594,] 0.5037597 0.5140889 0.5278857 #> [595,] 0.6973421 0.7460797 0.7484519 #> [596,] 0.8587832 0.8776250 0.8925923 #> [597,] 0.8990254 0.8998505 0.9043764 #> [598,] 0.6098153 0.6283844 0.6289047 #> [599,] 1.1384414 1.1628123 1.1670567 #> [600,] 0.7396622 0.7411347 0.7429837 #> [601,] 0.6981834 0.7385372 0.7571183 #> [602,] 0.5697776 0.5925780 0.6079173 #> [603,] 1.0356459 1.0574077 1.0919283 #> [604,] 1.1836077 1.2198348 1.2271238 #> [605,] 0.6046276 0.6299998 0.6461569 #> [606,] 0.5649939 0.5740247 0.5826055 #> [607,] 1.1519656 1.1540375 1.1572590 #> [608,] 0.8675523 0.8853132 0.9111472 #> [609,] 1.6049527 1.6168954 1.6674373 #> [610,] 0.9049409 0.9094752 1.0089479 #> [611,] 0.5936046 0.6057138 0.6595870 #> [612,] 0.9681270 0.9843482 1.0041864 #> [613,] 1.2830695 1.3338333 1.3386482 #> [614,] 0.7772791 0.8072681 0.8344979 #> [615,] 0.7472657 0.7642566 0.7715074 #> [616,] 0.8531185 0.8587832 0.8961581 #> [617,] 0.7300108 0.7336099 0.7580219 #> [618,] 0.6519833 0.7036290 0.7411941 #> [619,] 0.9758230 1.0551752 1.0664273 #> [620,] 0.8801867 0.8923898 0.9039039 #> [621,] 0.5862132 0.6693059 0.6782872 #> [622,] 0.6219328 0.6248315 0.6261556 #> [623,] 0.7478602 0.7580601 0.7706583 #> [624,] 0.5698945 0.6299090 0.6403390 #> [625,] 1.0167930 1.0453051 1.1333771 #> [626,] 0.7392944 0.7548943 0.7563227 #> [627,] 0.6061947 0.6288226 0.6932874 #> [628,] 0.5016559 0.5094419 0.5727759 #> [629,] 1.0443008 1.0609972 1.0629319 #> [630,] 0.7998817 0.8195488 0.8678657 #> [631,] 0.5547715 0.6030755 0.6154857 #> [632,] 0.8144859 0.8281860 0.8697099 #> [633,] 1.0451144 1.0542669 1.1114114 #> [634,] 0.6419922 0.6432989 0.6447714 #> [635,] 0.6742909 0.7286320 0.7541595 #> [636,] 0.9607071 0.9640626 0.9819342 #> [637,] 0.9198462 0.9676332 0.9754811 #> [638,] 1.1200604 1.2439004 1.2668609 #> [639,] 1.1293918 1.1544637 1.1925736 #> [640,] 0.8213356 0.8387448 0.8433437 #> [641,] 0.9677572 0.9888431 1.0394407 #> [642,] 1.0378200 1.0572936 1.0864902 #> [643,] 0.5496676 0.5826584 0.5893277 #> [644,] 0.8202058 0.8503474 0.8628839 #> [645,] 0.6876549 0.6992767 0.7008368 #> [646,] 1.0006761 1.0891220 1.1000991 #> [647,] 0.7692970 0.8176418 0.8722259 #> [648,] 0.9001376 0.9306692 0.9344276 #> [649,] 0.4759897 0.5073673 0.5773453 #> [650,] 1.9382943 1.9416419 2.0260886 #> [651,] 1.1290313 1.2173869 1.2181288 #> [652,] 0.6658469 0.6770162 0.6778106 #> [653,] 0.7356093 0.7722727 0.7758287 #> [654,] 1.0047432 1.0131991 1.0317723 #> [655,] 0.5662782 0.5710962 0.5811230 #> [656,] 0.6184569 0.6220324 0.6290472 #> [657,] 0.7677005 0.7693379 0.7703628 #> [658,] 0.5899925 0.6245978 0.6298449 #> [659,] 0.7469655 0.7567931 0.7701006 #> [660,] 0.5644498 0.5773875 0.6264687 #> [661,] 0.5910982 0.6014117 0.6069905 #> [662,] 0.8325475 0.8360327 0.8718518 #> [663,] 0.5199536 0.5201948 0.5253829 #> [664,] 2.0411730 2.0795131 2.1723752 #> [665,] 0.6398905 0.7198262 0.7426566 #> [666,] 1.6206125 1.6538794 1.6952439 #> [667,] 0.7155574 0.7265504 0.7561248 #> [668,] 0.6236368 0.6674390 0.7730710 #> [669,] 0.6593693 0.6599681 0.7081862 #> [670,] 0.9392153 0.9818740 0.9936594 #> [671,] 0.8417960 0.8581661 0.9167841 #> [672,] 0.8022114 0.8045830 0.8129684 #> [673,] 1.0238475 1.0297726 1.0514701 #> [674,] 0.8379912 0.8492909 0.8665540 #> [675,] 0.6764425 0.7128808 0.7414976 #> [676,] 0.9237796 0.9572670 0.9769117 #> [677,] 0.6259317 0.6287526 0.6306655 #> [678,] 0.7745990 0.7968260 0.8289013 #> [679,] 1.1319135 1.1391750 1.1587812 #> [680,] 0.7995431 0.8797833 0.9001406 #> [681,] 0.5658163 0.5663868 0.6085266 #> [682,] 1.1814759 1.2122146 1.2527892 #> [683,] 0.9574515 0.9917246 1.0476483 #> [684,] 0.8202589 0.8405467 0.8482936 #> [685,] 1.0408116 1.0770330 1.0790551 #> [686,] 1.8179036 1.8340617 1.9116460 #> [687,] 0.8240114 0.8346796 0.8540282 #> [688,] 0.7111981 0.7168102 0.7506698 #> [689,] 0.7062740 0.7083143 0.7332891 #> [690,] 0.7589517 0.7814489 0.8743718 #> [691,] 0.7887940 0.8068922 0.8298635 #> [692,] 0.7042882 0.7073357 0.7086554 #> [693,] 0.8677932 0.9081009 0.9096423 #> [694,] 0.9426249 0.9456269 0.9996745 #> [695,] 0.7261435 0.7369679 0.7431326 #> [696,] 0.5259880 0.5325244 0.5335413 #> [697,] 0.9357843 1.0164852 1.1235415 #> [698,] 0.6602462 0.6971881 0.7130196 #> [699,] 0.7407388 0.7441478 0.7587615 #> [700,] 0.5805887 0.6411091 0.6493704 #> [701,] 0.8441528 0.8526117 0.8743718 #> [702,] 0.7091045 0.7115284 0.7332891 #> [703,] 1.4329723 1.4998115 1.5321308 #> [704,] 0.8716388 0.9324892 0.9406988 #> [705,] 0.9435541 1.0315119 1.0640330 #> [706,] 0.6753137 0.7172770 0.7210186 #> [707,] 0.6354370 0.6485246 0.6687828 #> [708,] 0.7013456 0.7131056 0.7347693 #> [709,] 0.7484519 0.7737699 0.7741449 #> [710,] 0.8423412 0.8555198 0.8749579 #> [711,] 1.1663112 1.2098689 1.2143511 #> [712,] 0.9481154 0.9482776 0.9492661 #> [713,] 0.5139554 0.5386177 0.5543984 #> [714,] 0.6937074 0.7245582 0.7468176 #> [715,] 1.4709076 1.4824762 1.4912133 #> [716,] 0.8951693 0.8961581 0.9878208 #> [717,] 0.5740756 0.5972898 0.6142427 #> [718,] 0.9250145 0.9261443 0.9285668 #> [719,] 0.5785084 0.6069989 0.6116374 #> [720,] 0.9843897 1.0550667 1.0561660 #> [721,] 0.5411180 0.5608529 0.5653868 #> [722,] 0.5295162 0.5340517 0.5555209 #> [723,] 0.9688074 1.0018221 1.0154645 #> [724,] 0.6862316 0.7080334 0.7092927 #> [725,] 0.6652081 0.6720352 0.6917995 #> [726,] 0.6144660 0.6167648 0.6466886 #> [727,] 0.8975746 0.9026949 0.9269203 #> [728,] 0.7297279 0.7441841 0.7579067 #> [729,] 0.9753392 0.9793578 0.9902628 #> [730,] 0.6466303 0.6596934 0.6713759 #> [731,] 0.7510750 0.8031048 0.8497506 #> [732,] 0.7844187 0.7910788 0.8033215 #> [733,] 1.1436977 1.2593077 1.2944929 #> [734,] 1.0233959 1.0988194 1.1192609 #> [735,] 0.6888786 0.7709872 0.8026905 #> [736,] 1.1020634 1.1103051 1.1116794 #> [737,] 0.4875835 0.5037597 0.5218255 #> [738,] 1.2087302 1.2367852 1.2630820 #> [739,] 2.1226628 2.1489737 2.1847682 #> [740,] 0.9699873 0.9936126 0.9981753 #> [741,] 0.5541666 0.5674918 0.5693480 #> [742,] 0.5708686 0.5748597 0.5788055 #> [743,] 0.8565868 0.8744701 0.8796845 #> [744,] 0.9290540 0.9548992 0.9762425 #> [745,] 0.4644079 0.5262045 0.5492644 #> [746,] 1.0158253 1.0370421 1.0656568 #> [747,] 0.7036279 0.7143330 0.7151035 #> [748,] 1.2295782 1.2701114 1.3213964 #> [749,] 0.5693054 0.6197711 0.6784878 #> [750,] 0.7510750 0.7788458 0.7880611 #> [751,] 0.7907865 0.8110518 0.8268999 #> [752,] 1.6528810 1.6852090 1.7012686 #> [753,] 0.8275630 0.8613339 0.8736702 #> [754,] 0.6022206 0.6873235 0.6881103 #> [755,] 0.7941230 0.7957952 0.7978296 #> [756,] 0.7081964 0.7167148 0.7362297 #> [757,] 1.2384498 1.2410470 1.3512977 #> [758,] 0.6404495 0.7010819 0.7160734 #> [759,] 0.5552198 0.6299090 0.6299998 #> [760,] 0.8529619 0.8699727 0.8723819 #> [761,] 1.1095331 1.1378732 1.1933431 #> [762,] 0.6133128 0.6134790 0.6152627 #> [763,] 0.5848662 0.5881791 0.5938147 #> [764,] 1.2015164 1.2033767 1.2357261 #> [765,] 1.3644598 1.3664599 1.3791541 #> [766,] 0.9682310 0.9753498 0.9834251 #> [767,] 0.7501720 0.7553391 0.7784621 #> [768,] 0.6176954 0.6553638 0.7037984 #> [769,] 0.9799616 0.9971581 1.0188878 #> [770,] 0.6067608 0.6166483 0.6215483 #> [771,] 0.6988536 0.7143979 0.7691937 #> [772,] 0.6707290 0.7406443 0.7925577 #> [773,] 0.6920620 0.7192525 0.7378939 #> [774,] 0.8061181 0.8335395 0.8519922 #> [775,] 1.2012728 1.2145928 1.2264780 #> [776,] 0.6036117 0.6045314 0.6074887 #> [777,] 0.7134724 0.7330610 0.7336099 #> [778,] 0.7357161 0.7659436 0.7765781 #> [779,] 1.9690753 1.9715492 1.9898267 #> [780,] 1.0283219 1.0732000 1.1302308 #> [781,] 1.2927882 1.2994474 1.3193296 #> [782,] 0.8892492 0.9349566 0.9609719 #> [783,] 0.7018778 0.7117218 0.7143797 #> [784,] 0.9308265 0.9329245 0.9864876 #> [785,] 0.6700494 0.6884271 0.7247373 #> [786,] 0.6910984 0.7043720 0.7224982 #> [787,] 0.8368802 0.8438580 0.8626579 #> [788,] 0.5811230 0.6050018 0.6342684 #> [789,] 0.5341757 0.5555209 0.5730101 #> [790,] 0.8837296 0.8878474 0.9150893 #> [791,] 0.7885298 0.7951147 0.7955146 #> [792,] 0.5522140 0.5649189 0.5940605 #> [793,] 1.5337373 1.5347884 1.5472385 #> [794,] 0.8744181 0.8762210 0.8950791 #> [795,] 0.5354529 0.6159843 0.6497799 #> [796,] 0.5435039 0.5631950 0.5761898 #> [797,] 0.5904797 0.6074887 0.6143992 #> [798,] 0.6754314 0.7094825 0.7628576 #> [799,] 0.5793089 0.5914720 0.6272817 #> [800,] 0.5851032 0.6079851 0.6545558 #> [801,] 0.5455918 0.5498394 0.5578871 #> [802,] 0.5969488 0.6414602 0.6594972 #> [803,] 0.7023748 0.7029518 0.7169213 #> [804,] 0.8185188 0.8205612 0.8326591 #> [805,] 1.1750752 1.1903984 1.1933431 #> [806,] 1.0302284 1.0537445 1.0748683 #> [807,] 1.6709016 1.7005440 1.7394570 #> [808,] 0.8407370 0.8500746 0.8637478 #> [809,] 0.7008518 0.7150811 0.7800171 #> [810,] 0.5433768 0.5853286 0.5858126 #> [811,] 0.8785766 0.8927469 0.9212768 #> [812,] 0.7942367 0.8017567 0.8151381 #> [813,] 0.7228474 0.7321719 0.7385597 #> [814,] 0.9128304 0.9264948 0.9299598 #> [815,] 1.5803471 1.5953455 1.6277466 #> [816,] 0.6993452 0.7242203 0.7344657 #> [817,] 1.6124134 1.6636003 1.6760532 #> [818,] 0.8376880 0.8426910 0.8453352 #> [819,] 0.6316854 0.6320838 0.6329795 #> [820,] 1.1178551 1.1519532 1.1632556 #> [821,] 0.5833116 0.6029864 0.6135050 #> [822,] 0.9326344 0.9529245 0.9951438 #> [823,] 0.6772256 0.6932874 0.7187178 #> [824,] 0.5820719 0.5912199 0.5958864 #> [825,] 0.6578455 0.6685950 0.6729128 #> [826,] 0.5650308 0.5788591 0.5883047 #> [827,] 0.8792121 0.8806975 0.8816077 #> [828,] 1.0188981 1.0945970 1.1559622 #> [829,] 0.6354521 0.6415935 0.6464179 #> [830,] 0.9306057 0.9731270 0.9804268 #> [831,] 0.8952237 0.9297569 0.9763403 #> [832,] 1.0843053 1.0897857 1.1173875 #> [833,] 0.5930187 0.5939369 0.6069079 #> [834,] 0.7465824 0.7697630 0.7820416 #> [835,] 0.4847935 0.4983993 0.5371986 #> [836,] 0.5418103 0.5454948 0.5471028 #> [837,] 0.8334105 0.8618845 0.9283201 #> [838,] 0.9496958 1.0138397 1.0735338 #> [839,] 0.9777460 1.0175556 1.0292585 #> [840,] 0.7527413 0.7735569 0.7822611 #> [841,] 0.9744743 1.0102749 1.0125469 #> [842,] 0.5128846 0.5187470 0.5232374 #> [843,] 1.0283224 1.0680810 1.0750131 #> [844,] 0.9416318 0.9482930 0.9629695 #> [845,] 1.0277905 1.0347361 1.1459346 #> [846,] 0.7532099 0.8083029 0.8129840 #> [847,] 0.6244790 0.6370497 0.6643578 #> [848,] 0.7263274 0.7298699 0.7523639 #> [849,] 0.6670763 0.6757237 0.7488167 #> [850,] 0.7400483 0.7407983 0.7678197 #> [851,] 0.8328801 0.8593535 0.8706834 #> [852,] 0.8042118 0.8181203 0.8300385 #> [853,] 1.3269187 1.3651020 1.3995892 #> [854,] 1.4041430 1.4212342 1.4334688 #> [855,] 0.8489212 0.8509315 0.9226693 #> [856,] 0.6371847 0.6373957 0.6489260 #> [857,] 0.9479864 1.0184980 1.0239902 #> [858,] 0.7565456 0.7837856 0.8034945 #> [859,] 0.7948078 0.7953206 0.8008431 #> [860,] 0.6458494 0.6610452 0.6853779 #> [861,] 0.9921289 1.0741951 1.0819476 #> [862,] 0.7420654 0.7459836 0.7656647 #> [863,] 0.9134277 0.9463880 0.9774547 #> [864,] 0.8385498 0.8457286 0.8462907 #> [865,] 0.6143098 0.6192943 0.6269716 #> [866,] 0.5851182 0.5949997 0.6690769 #> [867,] 0.6249000 0.6323681 0.6533374 #> [868,] 0.6744915 0.6873026 0.6948454 #> [869,] 0.7422157 0.7559815 0.7563227 #> [870,] 0.6857204 0.7060388 0.7225791 #> [871,] 0.6754866 0.7015258 0.7165442 #> [872,] 0.6624938 0.6659730 0.6665198 #> [873,] 0.7918862 0.8899351 0.9106117 #> [874,] 0.9897825 0.9967091 0.9998667 #> [875,] 0.6674390 0.6709559 0.6722478 #> [876,] 0.5127744 0.5200857 0.5278857 #> [877,] 0.7248677 0.7362571 0.7574972 #> [878,] 0.8650737 0.8673128 0.8876872 #> [879,] 0.8082818 0.8188058 0.8420042 #> [880,] 0.5238938 0.5245936 0.6314431 #> [881,] 0.5546065 0.5552367 0.5658163 #> [882,] 0.6593763 0.6692368 0.6819575 #> [883,] 1.1362660 1.1670605 1.1814908 #> [884,] 0.6274278 0.6516153 0.6589275 #> [885,] 0.9445222 0.9758457 0.9935428 #> [886,] 1.0196759 1.0782516 1.1500725 #> [887,] 0.5611785 0.5721490 0.5730101 #> [888,] 1.4525418 1.5335511 1.5650556 #> [889,] 0.7290624 0.7626622 0.7701266 #> [890,] 0.6575866 0.6631294 0.6709890 #> [891,] 0.6369631 0.6478044 0.6552745 #> [892,] 0.5949277 0.6268538 0.6411613 #> [893,] 0.8987008 0.8996465 0.9122463 #> [894,] 0.6536885 0.7169877 0.7448199 #> [895,] 0.8754574 0.8961878 0.9137037 #> [896,] 0.8990254 0.9600782 0.9845505 #> [897,] 0.8324243 0.8734084 0.8839719 #> [898,] 1.6232812 1.6329324 1.6843737 #> [899,] 0.5307726 0.5541666 0.5542382 #> [900,] 0.9233367 0.9341166 0.9619989 #> [901,] 1.1674370 1.2091835 1.2888790 #> [902,] 0.5935215 0.6133391 0.6145858 #> [903,] 1.1552582 1.1596754 1.2374547 #> [904,] 0.6360963 0.6439245 0.6468046 #> [905,] 1.1296944 1.1306698 1.1445650 #> [906,] 0.4926394 0.5200857 0.5569929 #> [907,] 0.7094116 0.7272964 0.7351366 #> [908,] 0.5967956 0.5984226 0.6065631 #> [909,] 0.7092927 0.7741783 0.8215954 #> [910,] 0.5743078 0.5881791 0.6133391 #> [911,] 0.7960024 0.8147715 0.8201958 #> [912,] 0.6367922 0.6648602 0.7074269 #> [913,] 1.1330448 1.1393728 1.2083914 #> [914,] 1.1261638 1.1363303 1.1381319 #> [915,] 0.7265642 0.7372435 0.7600814 #> [916,] 0.5991453 0.6288226 0.6909970 #> [917,] 0.5936259 0.6167773 0.6328689 #> [918,] 1.0889671 1.1266647 1.1340280 #> [919,] 0.8134718 0.8773818 0.8794205 #> [920,] 0.6634449 0.6847756 0.7128808 #> [921,] 0.6411091 0.6529900 0.6562525 #> [922,] 0.9428644 0.9479833 0.9766401 #> [923,] 0.6546695 0.7623191 0.7831897 #> [924,] 0.6176913 0.6225913 0.6360304 #> [925,] 0.8952237 0.8954024 0.9522548 #> [926,] 0.5354529 0.5418754 0.5586692 #> [927,] 0.5889366 0.6452530 0.6895276 #> [928,] 1.2360886 1.2645463 1.4156511 #> [929,] 0.7045850 0.7102461 0.7254271 #> [930,] 0.5557009 0.6323681 0.6379043 #> [931,] 0.6628541 0.7176973 0.7332718 #> [932,] 0.7830243 0.7958926 0.8087172 #> [933,] 0.7823336 0.7935952 0.8060961 #> [934,] 1.2170469 1.3016234 1.3293415 #> [935,] 0.5882024 0.6785070 0.6851937 #> [936,] 1.3042448 1.3067202 1.3290534 #> [937,] 0.5923980 0.7701006 0.7797618 #> [938,] 0.6801128 0.6920584 0.7143286 #> [939,] 0.8133878 0.8762922 0.8792833 #> [940,] 1.4887429 1.5084606 1.5273402 #> [941,] 0.8393568 0.9422893 0.9868203 #> [942,] 0.8230795 0.8939918 0.9083788 #> [943,] 0.4729722 0.4760790 0.5015056 #> [944,] 0.7457229 0.7612536 0.8136419 #> [945,] 0.6536390 0.6611107 0.6819575 #> [946,] 1.2655733 1.3786466 1.4154325 #> [947,] 0.8477603 0.9001406 0.9536993 #> [948,] 0.9881205 1.0120315 1.0276484 #> [949,] 0.7025475 0.7284700 0.8108278 #> [950,] 0.6722478 0.6789018 0.6876039 #> [951,] 0.6565390 0.6916976 0.7045401 #> [952,] 0.7141773 0.7169669 0.7371411 #> [953,] 0.6559141 0.6639398 0.6669422 #> [954,] 0.6337316 0.6354521 0.6418716 #> [955,] 0.6696159 0.6698246 0.6916917 #> [956,] 0.6075006 0.6443834 0.6680742 #> [957,] 0.6603293 0.6623050 0.6940481 #> [958,] 0.6436329 0.6482295 0.6713180 #> [959,] 0.6036117 0.6117387 0.6139310 #> [960,] 0.8303042 0.8761815 0.9232052 #> [961,] 0.5678705 0.5766561 0.5903886 #> [962,] 1.1215965 1.1605183 1.2426790 #> [963,] 0.7745578 0.7843597 0.8036236 #> [964,] 0.7111981 0.7140241 0.7803132 #> [965,] 1.3762091 1.4262877 1.4529862 #> [966,] 0.9081192 0.9342811 0.9352012 #> [967,] 0.7595652 0.7708732 0.7737753 #> [968,] 1.4909861 1.5724724 1.5742275 #> [969,] 0.8061181 0.8275757 0.8626899 #> [970,] 0.9417043 0.9428644 0.9652038 #> [971,] 0.7672127 0.7708118 0.8045342 #> [972,] 0.8512705 0.8660131 0.8675326 #> [973,] 0.6890310 0.7102459 0.7356957 #> [974,] 0.8293702 0.8737719 0.8771729 #> [975,] 0.9366361 0.9594017 1.0164096 #> [976,] 0.6135617 0.6143098 0.6145980 #> [977,] 0.6100644 0.6560972 0.6944847 #> [978,] 0.8658190 0.9287271 0.9562004 #> [979,] 0.8026439 0.8061461 0.8523100 #> [980,] 0.7544792 0.7700905 0.7944546 #> [981,] 0.7798431 0.7893466 0.7930837 #> [982,] 0.7172235 0.7433508 0.7481295 #> [983,] 0.8697099 0.8845862 0.8919917 #> [984,] 0.6171722 0.6253003 0.6681443 #> [985,] 1.0713757 1.0957445 1.1245306 #> [986,] 0.8691765 0.8912487 0.9218647 #> [987,] 1.0751697 1.0866799 1.0975572 #> [988,] 1.1608268 1.1729700 1.1819343 #> [989,] 0.7698354 0.7771256 0.8079784 #> [990,] 0.6881899 0.7428363 0.7918862 #> [991,] 0.5465308 0.5848662 0.6901507 #> [992,] 0.8033928 0.8417451 0.8513532 #> [993,] 1.4140997 1.4184929 1.4390561 #> [994,] 0.9012890 0.9167841 0.9214295 #> [995,] 0.8027854 0.8349415 0.8488035 #> [996,] 0.7708018 0.7850795 0.8009255 #> [997,] 1.5251204 1.5339383 1.5403993 #> [998,] 1.3328246 1.3609737 1.3649186 #> [999,] 0.8731058 0.8916354 0.9132031 #> [1000,] 0.8604964 0.8725707 0.9429566 #>"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"Compute log-rank test p-value difference two survival curves obtained splitting dataset \"low\" \"high\" risk group using possible relative-risk thresholds.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"","code":"tof_find_log_rank_threshold(input_data, relative_risk_col, time_col, event_col)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"input_data tbl_df data.frame observation row. relative_risk_col unquote column name indicating column contains relative-risk estimates observation. time_col unquoted column name indicating column contains true time--event information observation. event_col unquoted column name indicating column contains outcome (event censorship). Must binary column - values either 0 1 (1 indicating adverse event 0 indicating censorship) FALSE TRUE (TRUE indicating adverse event FALSE indicating censorship).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"tibble 3 columns: \"candidate_thresholds\" (relative-risk threshold used log-rank test), \"log_rank_p_val\" (p-values log-rank tests) \"is_best\" (logical value indicating candidate threshold gave optimal, .e. smallest, p-value).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":null,"dir":"Reference","previous_headings":"","what":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"Using character vectors obtained `name` `desc` columns parameters data flowFrame, figure high-dimensional cytometry panel used collect data return tidy tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"","code":"tof_find_panel_info(input_flowFrame)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"input_flowFrame raw flowFrame (just read .fcs file) high-dimensional cytometry panel extracted","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"tibble 2 columns (`metals` `antigens`) correspond metals antigens high-dimensional cytometry panel used data acquisition.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"function trains glmnet model training set rsplit object, calculates performance metrics model validation/holdout set combinations mixture penalty hyperparameters provided hyperparameter grid.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"","code":"tof_fit_split( split_data, prepped_recipe, hyperparameter_grid, model_type, outcome_colnames )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"split_data `rsplit` object rsample package. Alternatively, unsplit tbl_df can provided, though recommended. prepped_recipe trained recipe hyperparameter_grid tibble containing hyperparameter values tune. Can created using tof_create_grid model_type string representing type glmnet model fit. outcome_colnames Quoted column names indicating columns data fit represent outcome variables (others assumed predictors).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"tibble number rows input hyperparameter grid. row represents combination mixture penalty, column contains performance metric fitted glmnet model `split_data`'s holdout set. specific performance metrics depend type model fit: \"linear\" mean-squared error (`mse`) mean absolute error (`mae`) \"two-class\" binomial deviance (`binomial_deviance`); misclassification error rate `misclassification_error`; area receiver-operating curve (`roc_auc`); `mse` `mse` \"multiclass\" multinomial deviance (`multinomial_deviance`); misclassification error rate `misclassification_error`; area receiver-operating curve (`roc_auc`) computed using Hand-Till method roc_auc; `mse` `mse` \"survival\" negative log2-transformed partial likelihood (`neg_log_partial_likelihood`) Harrel's concordance index (often simply called \"C\"; `concordance_index`)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"Harrel Jr, F. E. Lee, K. L. Mark, D. B. (1996) Tutorial biostatistics: multivariable prognostic models: issues developing models, evaluating assumptions adequacy, measuring reducing error, Statistics Medicine, 15, pages 361–387.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a color palette using tidytof. — tof_generate_palette","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"function generates color palette based color palette author's favorite pokemon.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"","code":"tof_generate_palette(num_colors)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"num_colors integer specifying number colors like generate.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"character vector hex codes specifying colors palette.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"","code":"tof_generate_palette(num_colors = 5L) #> [1] \"#D86020\" \"#28A8B8\" \"#F89040\" \"#D0D0D0\" \"#903000\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"Get `tof_model`'s optimal mixture (alpha) value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"","code":"tof_get_model_mixture(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"numeric value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_mixture(regression_model) #> [1] 0"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"Get `tof_model`'s outcome variable name(s)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"","code":"tof_get_model_outcomes(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"character vector","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_outcomes(regression_model) #> [1] \"outcome\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"Get `tof_model`'s optimal penalty (lambda) value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"","code":"tof_get_model_penalty(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"numeric value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_penalty(regression_model) #> [1] 0.003162278"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s training data — tof_get_model_training_data","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"Get `tof_model`'s training data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"","code":"tof_get_model_training_data(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"tibble (non-preprocessed) training data used fit model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_training_data(regression_model) #> # A tibble: 100 × 9 #> sample cd45 pstat5 cd34 outcome class multiclass event time_to_event #> #> 1 16 0.00502 0.101 0.832 0.852 class2 class1 0 8.29 #> 2 67 0.0231 0.704 0.515 3.33 class2 class3 1 13.1 #> 3 56 0.0133 0.0196 0.197 -0.208 class2 class2 1 13.7 #> 4 21 0.247 0.111 0.172 1.92 class2 class1 0 10.0 #> 5 6 0.0996 0.337 0.679 1.65 class2 class1 0 11.3 #> 6 37 0.953 0.381 0.484 7.73 class1 class2 1 12.9 #> 7 43 0.853 0.423 0.128 2.52 class2 class2 1 12.0 #> 8 76 0.592 0.126 0.640 1.87 class2 class3 1 9.05 #> 9 10 0.616 0.478 0.199 1.71 class2 class1 0 11.3 #> 10 73 0.712 0.215 0.367 2.07 class2 class3 1 10.5 #> # ℹ 90 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s model type — tof_get_model_type","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"Get `tof_model`'s model type","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"","code":"tof_get_model_type(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"string","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_type(regression_model) #> [1] \"linear\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"Get `tof_model`'s processed predictor matrix (glmnet)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"","code":"tof_get_model_x(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"x value formatted glmnet","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_x(regression_model) #> cd45 pstat5 cd34 #> [1,] 0.557496857 0.55254884 -1.38428152 #> [2,] 0.143171407 -0.77158277 -0.96941346 #> [3,] -1.502965899 1.57749290 0.43071065 #> [4,] -1.487689698 -1.05402386 0.26670370 #> [5,] 0.301986654 -1.41109437 0.62034936 #> [6,] -1.056499901 0.16076292 1.21403260 #> [7,] 1.182601035 1.16135604 -1.25154531 #> [8,] 0.175161417 0.26428063 1.46442058 #> [9,] -0.176386967 1.20998237 -0.73032910 #> [10,] 1.361071950 -1.39595395 -0.06137393 #> [11,] -0.705411677 -0.57942208 0.24049595 #> [12,] -1.115293290 -0.76255463 -1.04310500 #> [13,] 1.175452272 -1.22436156 -1.38640227 #> [14,] 1.163323464 0.93595248 -0.35468719 #> [15,] 0.740115180 -0.67577632 0.01731844 #> [16,] 1.601440012 -1.49938411 0.92018807 #> [17,] 0.240059379 -0.23790043 -0.96933282 #> [18,] -0.916705090 0.94753440 1.36072730 #> [19,] 1.618689241 -0.90362707 -0.04163005 #> [20,] 0.562887422 -0.80338410 -1.07272806 #> [21,] 0.020818643 0.07529508 0.56738816 #> [22,] -1.593153944 -0.36883048 -0.23429092 #> [23,] 1.406199371 -0.02143408 1.26338516 #> [24,] -1.429128536 0.46864660 -1.58328718 #> [25,] -0.934904314 -0.63212679 0.49228289 #> [26,] 1.433305360 0.42283996 1.39473103 #> [27,] 0.019767484 -1.28450984 -1.55476772 #> [28,] 0.508009412 0.38076053 1.20257860 #> [29,] -1.004761203 -0.13291545 1.32921921 #> [30,] 1.399130241 -1.31633977 0.26874764 #> [31,] 0.482602659 -1.02751941 -0.50095342 #> [32,] -0.543356713 1.28087863 1.23478788 #> [33,] -0.507422484 -1.35009733 1.22676601 #> [34,] 0.368655653 -0.52200992 -0.15475605 #> [35,] -0.081804366 -0.31056493 -0.85835736 #> [36,] 0.037561521 0.60339003 0.28293992 #> [37,] -1.491887476 1.21099572 -1.12477401 #> [38,] 0.005129352 -0.33981920 1.34288859 #> [39,] -1.302914735 -1.67374465 1.06058374 #> [40,] 1.305653373 0.61042250 -1.49525241 #> [41,] 0.482143429 0.06664269 0.45823394 #> [42,] -1.492688729 1.50206999 0.76974567 #> [43,] 0.617022851 0.40265098 1.36800527 #> [44,] -0.617457478 0.95260935 0.66416594 #> [45,] -1.606625323 -1.44734923 -0.88052376 #> [46,] -0.638064343 -1.31229252 -0.57006223 #> [47,] 1.090721278 1.66480604 -1.44087462 #> [48,] 1.486976621 1.31668060 -0.21521681 #> [49,] -1.468830013 0.77331120 -1.56317205 #> [50,] 1.455674529 1.44060148 1.11282839 #> [51,] -0.290803815 -0.05969706 -1.45511364 #> [52,] 0.733134872 -1.52929026 -0.97373036 #> [53,] 0.344436164 -1.32132534 -1.09050376 #> [54,] 0.025103475 -0.87335631 -0.37249570 #> [55,] 0.005565627 0.47061529 -0.90081899 #> [56,] 0.088159041 1.36984081 0.30931130 #> [57,] 1.479750148 1.66158548 0.57718636 #> [58,] 0.043417799 -1.24565767 -0.64769623 #> [59,] 0.822253646 0.76005166 -0.69140429 #> [60,] 0.329282537 -0.65838399 -1.01716064 #> [61,] 0.071329812 1.25781906 1.31319492 #> [62,] -0.855197996 0.70530147 -1.31843757 #> [63,] 0.658248655 0.73338389 1.49260712 #> [64,] 1.452178644 -0.85450389 0.61899811 #> [65,] -0.835366335 0.75340630 -0.44970310 #> [66,] 1.326492491 -1.51463056 1.40166921 #> [67,] 0.036750337 -0.50928817 1.52348777 #> [68,] -1.504910611 1.42806769 0.14878131 #> [69,] -0.821539840 -0.49322190 -0.22241568 #> [70,] -0.589478093 0.76056918 0.06020416 #> [71,] -1.500470526 0.84789696 1.18340728 #> [72,] -1.287270835 0.47255714 -0.38925795 #> [73,] 0.930305547 1.75773170 1.23534137 #> [74,] 0.884229017 -0.61870832 0.58878309 #> [75,] -0.671317579 -1.51476542 0.93921205 #> [76,] -1.457536947 -0.44484394 1.11904540 #> [77,] -1.217264634 -0.23667642 -1.27240224 #> [78,] -1.547997709 0.88847735 -0.47816578 #> [79,] 0.373987416 -1.68670147 -1.40146429 #> [80,] 1.594535000 -0.38942638 1.34122937 #> [81,] 0.707546080 0.76234299 1.44107612 #> [82,] -0.937221893 -1.28057014 -0.79493906 #> [83,] 0.359529230 1.48544158 0.54443627 #> [84,] 1.408014465 0.64311365 -1.48655835 #> [85,] 0.271926331 0.18442901 0.13738623 #> [86,] 0.581231249 -0.93864001 -0.66737277 #> [87,] -0.757940402 -0.38858262 -1.18463333 #> [88,] 0.642676960 -1.46812212 -0.99615908 #> [89,] -1.289230186 0.50206737 0.67252825 #> [90,] 0.361422796 0.33176833 0.49695858 #> [91,] -0.124556298 1.45847359 -0.42208603 #> [92,] -1.643635969 1.12659784 0.99615075 #> [93,] -0.401240219 -0.81190439 -1.56386233 #> [94,] 1.325629029 -1.58461564 -0.67454196 #> [95,] -1.609741631 -0.45822804 0.86180774 #> [96,] -0.299746586 0.51120513 0.79680852 #> [97,] -0.495243445 0.63245996 -1.05074541 #> [98,] 1.606864285 0.67175963 0.46781733 #> [99,] 0.812649785 1.18037103 1.46240172 #> [100,] -0.407814777 0.59991283 -1.34126926"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"Get `tof_model`'s processed outcome variable matrix (glmnet)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"","code":"tof_get_model_y(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"y value formatted glmnet","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_y(regression_model) #> [1] 5.07911944 1.05678953 2.23934946 4.90880410 3.94374665 6.53658525 #> [7] 2.57238069 2.92755504 1.93907094 3.77123417 3.82940916 3.26356318 #> [13] 3.84825760 2.40057374 4.40478254 6.02535041 5.44352997 2.95309313 #> [19] 3.00570147 5.14461239 4.39227241 2.98797491 6.23613147 2.86382843 #> [25] 1.65266879 -0.44598386 1.02615166 2.74603837 3.73981858 6.94316675 #> [31] 2.93417951 3.35549657 2.73999449 1.10539803 1.70830250 3.58635098 #> [37] 1.28806087 2.81915418 3.13872282 6.20266732 4.37399516 4.97421467 #> [43] 3.70563582 5.22433880 1.34701982 0.51430319 2.67376327 3.59549867 #> [49] 5.04825709 3.26804763 2.83442489 2.81225459 3.24932848 4.93538219 #> [55] 4.16472611 2.76181792 3.88390283 3.39162937 8.17669511 3.63533456 #> [61] 3.06576604 4.44669588 4.64586848 6.06715629 2.05589047 2.77448895 #> [67] 3.56069761 3.18679927 1.49435688 4.63091489 2.80400707 -0.08882069 #> [73] 1.69272079 3.83614544 3.20063962 2.38496150 4.77629459 2.06289074 #> [79] 3.67755742 4.86142919 -0.03458803 5.14039305 5.25721799 -0.11626374 #> [85] 0.38867651 4.09989691 3.99624665 2.11558569 2.90413662 4.74220971 #> [91] 2.43009103 2.66588818 2.77099636 6.15168702 2.77969727 2.99476337 #> [97] 4.04757098 2.87846362 2.71481505 4.03923739"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":null,"dir":"Reference","previous_headings":"","what":"Get panel information from a tof_tibble — tof_get_panel","title":"Get panel information from a tof_tibble — tof_get_panel","text":"Get panel information tof_tibble","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get panel information from a tof_tibble — tof_get_panel","text":"","code":"tof_get_panel(tof_tibble)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get panel information from a tof_tibble — tof_get_panel","text":"tof_tibble `tof_tbl`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get panel information from a tof_tibble — tof_get_panel","text":"tibble containing information CyTOF panel used data acquisition data contained `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get panel information from a tof_tibble — tof_get_panel","text":"","code":"input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) tof_get_panel(tof_tibble) #> # A tibble: 59 × 2 #> metals antigens #> #> 1 Time Time #> 2 Event_length Event_length #> 3 Y89 CD45 #> 4 Pd102 empty #> 5 Pd104 empty #> 6 Pd105 empty #> 7 Pd106 empty #> 8 Pd108 empty #> 9 Pd110 empty #> 10 In113 CD61 #> # ℹ 49 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":null,"dir":"Reference","previous_headings":"","what":"Find if a vector is numeric — tof_is_numeric","title":"Find if a vector is numeric — tof_is_numeric","text":"function takes input vector `.vec` checks either integer double (.e. type vector might encode high-dimensional cytometry measurements).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find if a vector is numeric — tof_is_numeric","text":"","code":"tof_is_numeric(.vec)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find if a vector is numeric — tof_is_numeric","text":".vec vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find if a vector is numeric — tof_is_numeric","text":"boolean value indicating .vec type integer double.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"function uses distances cell K nearest neighbors estimate local density cell `tof_tbl` `tibble` containing high-dimensional cytometry data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"","code":"tof_knn_density( tof_tibble, distance_cols = where(tof_is_numeric), num_neighbors = min(15L, nrow(tof_tibble)), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), estimation_method = c(\"mean_distance\", \"sum_distance\"), normalize = TRUE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"tof_tibble `tof_tbl` `tibble`. distance_cols Unquoted names columns `tof_tibble` use calculating cell--cell distances local density estimation cell. Defaults numeric columns `tof_tibble`. num_neighbors integer indicating number nearest neighbors use estimating local density cell. Defaults minimum 15 number rows `tof_tibble`. distance_function string indicating distance function use calculating cell--cell distances local density estimation. Options include \"euclidean\" (default) \"cosine\". estimation_method string indicating relative density cell calculated distances k nearest neighbors. Options \"mean_distance\" (default; estimates relative density cell's neighborhood taking negative average distances nearest neighbors) \"sum_distance\" (estimates relative density cell's neighborhood taking negative sum distances nearest neighbors). normalize boolean value indicating vector local density estimates normalized values 0 1. Defaults TRUE. ... Additional optional arguments pass tof_find_knn.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"tibble single column named \".knn_density\" containing local density estimates input cell `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"Compute log-rank test p-value difference two survival curves obtained splitting dataset \"low\" \"high\" risk group using given relative-risk threshold.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"","code":"tof_log_rank_test( input_data, relative_risk_col, time_col, event_col, threshold )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"input_data tbl_df data.frame observation row. relative_risk_col unquote column name indicating column contains relative-risk estimates observation. time_col unquoted column name indicating column contains true time--event information observation. event_col unquoted column name indicating column contains outcome (event censorship). Must binary column - values either 0 1 (1 indicating adverse event 0 indicating censorship) FALSE TRUE (TRUE indicating adverse event FALSE indicating censorship). threshold numeric value indicating relative-risk threshold used split observations low- high-risk groups.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"numeric value <1, p-value log-rank test.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":null,"dir":"Reference","previous_headings":"","what":"Title — tof_make_knn_graph","title":"Title — tof_make_knn_graph","text":"Title","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Title — tof_make_knn_graph","text":"","code":"tof_make_knn_graph( tof_tibble, knn_cols, num_neighbors, distance_function = c(\"euclidean\", \"cosine\"), graph_type = c(\"weighted\", \"unweighted\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Title — tof_make_knn_graph","text":"tof_tibble tibble tof_tbl. knn_cols Unquoted column names indicating columns tof_tibble used KNN calculation. num_neighbors integer number neighbors find cell ( including ). distance_function string indicating distance function use nearest-neighbor calculation. Options include \"euclidean\" (default) \"cosine\" distances. graph_type string indicating graph's edges weights (\"weighted\"; default) (\"unweighted\"). ... Optional additional arguments pass tof_find_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Title — tof_make_knn_graph","text":"tbl_graph.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Title — tof_make_knn_graph","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"Compute receiver-operating curve (ROC) two-class multiclass dataset","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"","code":"tof_make_roc_curve(input_data, truth_col, prob_cols)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"input_data tof_tbl, tbl_df, data.frame row observation. truth_col unquoted column name indicating column `input_data` contains true class labels observation. Must factor. prob_cols Unquoted column names indicating columns `input_data` contain probability estimates class `truth_col`. columns must specified order factor levels `truth_col`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"tibble can used plot ROC classification task. candidate probability threshold, following reported: specificity, sensitivity, true-positive rate (tpr), false-positive rate (fpr).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a logistic regression classifier log_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = class, model_type = \"two-class\" ) # make predictions predictions <- tof_predict( log_model, new_data = feature_tibble, prediction_type = \"response\" ) prediction_tibble <- dplyr::tibble( truth = feature_tibble$class, prediction = predictions$.pred ) # make ROC curve tof_make_roc_curve( input_data = prediction_tibble, truth_col = truth, prob_cols = prediction )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data. — tof_metacluster","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"function wrapper around tidytof's tof_metacluster_* function family. performs metaclustering CyTOF data using user-specified method (5 choices) method's corresponding input parameters.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"","code":"tof_metacluster( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, ..., augment = TRUE, method = c(\"consensus\", \"hierarchical\", \"kmeans\", \"phenograph\", \"flowsom\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. ... Additional arguments pass `tof_metacluster_*` function family member corresponding chosen `method`. augment boolean value indicating output column-bind metacluster ids cell new column `tof_tibble` (TRUE; default) single-column tibble including metacluster ids returned (FALSE). method string indicating clustering method used. Valid values include \"consensus\", \"hierarchical\", \"kmeans\", \"phenograph\", \"flowsom\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding metacluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding metacluster ids.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster( tof_tibble = sim_data, cluster_col = cluster_id, clustering_algorithm = \"consensus\", method = \"flowsom\" ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id .flowsom_metacluster #> #> 1 -0.252 -0.602 -0.501 0.324 h 1 #> 2 -0.752 -0.0650 0.604 -0.268 e 5 #> 3 -0.0158 0.846 1.19 -1.40 i 2 #> 4 -0.618 0.0271 0.255 0.415 o 2 #> 5 -1.18 0.184 0.734 0.456 h 1 #> 6 0.264 1.36 -0.490 0.274 o 2 #> 7 -1.55 0.855 2.99 0.997 e 5 #> 8 0.204 1.64 0.0465 0.939 n 1 #> 9 0.644 0.201 -0.208 0.853 u 1 #> 10 -0.218 1.30 0.435 -1.42 n 1 #> # ℹ 990 more rows tof_metacluster( tof_tibble = sim_data, cluster_col = cluster_id, method = \"phenograph\" ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id .phenograph_metacluster #> #> 1 -0.252 -0.602 -0.501 0.324 h 2 #> 2 -0.752 -0.0650 0.604 -0.268 e 1 #> 3 -0.0158 0.846 1.19 -1.40 i 2 #> 4 -0.618 0.0271 0.255 0.415 o 2 #> 5 -1.18 0.184 0.734 0.456 h 2 #> 6 0.264 1.36 -0.490 0.274 o 2 #> 7 -1.55 0.855 2.99 0.997 e 1 #> 8 0.204 1.64 0.0465 0.939 n 3 #> 9 0.644 0.201 -0.208 0.853 u 1 #> 10 -0.218 1.30 0.435 -1.42 n 3 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"function performs consensus metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. See ConsensusClusterPlus additional details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"","code":"tof_metacluster_consensus( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, proportion_clusters = 0.9, proportion_features = 1, num_reps = 20L, clustering_algorithm = c(\"hierarchical\", \"pam\", \"kmeans\"), distance_function = c(\"euclidean\", \"minkowski\", \"pearson\", \"spearman\", \"maximum\", \"binary\", \"canberra\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating number clusters returned. Defaults 10. proportion_clusters numeric value 0 1 indicating proportion clusters subsample (total number clusters `cluster_col`) iteration consensus clustering. Defaults 0.9 proportion_features numeric value 0 1 indicating proportion features (.e. proportion columns specified `metacluster_cols`) subsample iteration consensus clustering. Defaults 1 (features included). num_reps integer indicating many subsampled replicates run consensus clustering. Defaults 20. clustering_algorithm string indicating clustering algorithm ConsensusClusterPlus use metacluster subsampled clusters resampling. Options \"hierarchical\" (default), \"pam\" (partitioning around medoids), \"kmeans\". distance_function string indicating distance function used compute distances clusters consensus clustering. Options \"euclidean\" (default), \"manhattan\", \"minkowski\", \"pearson\", \"spearman\", \"maximum\", \"binary\", \"canberra\". See ConsensusClusterPlus. ... Optional additional arguments pass ConsensusClusterPlus.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"tibble single column (`.consensus_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_consensus(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .consensus_metacluster #> #> 1 9 #> 2 7 #> 3 10 #> 4 5 #> 5 7 #> 6 5 #> 7 5 #> 8 5 #> 9 2 #> 10 7 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"function performs metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. takes advantage FlowSOM package's built-functionality automatically detecting number metaclusters can use several strategies adapted FlowSOM team: consensus metaclustering, hierarchical metaclustering, k-means metaclustering, metaclustering using FlowSOM algorithm . See MetaClustering additional details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"","code":"tof_metacluster_flowsom( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, clustering_algorithm = c(\"consensus\", \"hierarchical\", \"kmeans\", \"som\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating maximum number clusters returned. Defaults 10. Note function, output may provide small number metaclusters requested. MetaClustering uses \"Elbow method\" automatically detect optimal number metaclusters. clustering_algorithm string indicating clustering algorithm MetaClustering use perform metaclustering. Options \"consensus\" (default), \"hierarchical\", \"kmeans\", \"som\" (.e. self-organizing map; FlowSOM algorithm ). ... Optional additional arguments pass MetaClustering.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"tibble single column (`.flowsom_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_flowsom( tof_tibble = sim_data, cluster_col = cluster_id, clustering_algorithm = \"consensus\" ) #> # A tibble: 1,000 × 1 #> .flowsom_metacluster #> #> 1 5 #> 2 1 #> 3 2 #> 4 4 #> 5 1 #> 6 1 #> 7 2 #> 8 2 #> 9 7 #> 10 1 #> # ℹ 990 more rows tof_metacluster_flowsom( tof_tibble = sim_data, cluster_col = cluster_id, clustering_algorithm = \"som\" ) #> # A tibble: 1,000 × 1 #> .flowsom_metacluster #> #> 1 2 #> 2 3 #> 3 1 #> 4 2 #> 5 3 #> 6 3 #> 7 1 #> 8 1 #> 9 3 #> 10 3 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"function performs hierarchical metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. See hclust.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"","code":"tof_metacluster_hierarchical( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, distance_function = c(\"euclidean\", \"manhattan\", \"minkowski\", \"maximum\", \"canberra\", \"binary\"), agglomeration_method = c(\"complete\", \"single\", \"average\", \"median\", \"centroid\", \"ward.D\", \"ward.D2\", \"mcquitty\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating number clusters returned. Defaults 10. distance_function string indicating distance function used compute distances clusters hierarchical metaclustering. Options \"euclidean\" (default), \"manhattan\", \"minkowski\", \"maximum\", \"canberra\", \"binary\". See dist additional details. agglomeration_method string indicating agglomeration algorithm used hierarchical cluster combination. Options \"complete\" (default), \"single\", \"average\", \"median\", \"centroid\", \"ward.D\", \"ward.D2\", \"mcquitty\". See hclust details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"tibble single column (`.hierarchical_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_hierarchical(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .hierarchical_metacluster #> #> 1 6 #> 2 4 #> 3 4 #> 4 5 #> 5 10 #> 6 4 #> 7 6 #> 8 6 #> 9 4 #> 10 3 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"function performs k-means metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. See hclust.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"","code":"tof_metacluster_kmeans( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating number clusters returned. Defaults 10. ... Optional additional method specifications pass tof_cluster_kmeans.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"tibble single column (`.kmeans_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_kmeans(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .kmeans_metacluster #> #> 1 8 #> 2 2 #> 3 8 #> 4 7 #> 5 7 #> 6 5 #> 7 4 #> 8 1 #> 9 5 #> 10 8 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"function performs PhenoGraph metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements. number metaclusters automatically detected PhenoGraph algorithm. See tof_cluster_phenograph.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"","code":"tof_metacluster_phenograph( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_neighbors = 5L, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_neighbors integer indicating number neighbors use constructing PhenoGraph's k-nearest-neighbor graph. Smaller values emphasize local graph structure; larger values emphasize global graph structure (add time computation). Defaults 5. ... Optional additional method specifications pass tof_cluster_phenograph.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"tibble single column (`.phenograph_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_phenograph(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .phenograph_metacluster #> #> 1 1 #> 2 4 #> 3 1 #> 4 3 #> 5 3 #> 6 2 #> 7 4 #> 8 4 #> 9 3 #> 10 1 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot marker expression density plots — tof_plot_cells_density","title":"Plot marker expression density plots — tof_plot_cells_density","text":"function plots marker expression density plots user-specified column tof_tbl. Optionally, cells can grouped plot multiple vertically-arranged density plots","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot marker expression density plots — tof_plot_cells_density","text":"","code":"tof_plot_cells_density( tof_tibble, marker_col, group_col, num_points = 512, theme = ggplot2::theme_bw(), use_ggridges = FALSE, scale = 1, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot marker expression density plots — tof_plot_cells_density","text":"tof_tibble `tof_tbl` `tibble`. marker_col unquoted column name representing column `tof_tibble` (.e. CyTOF protein measurement) included feature extraction calculation. group_col Unquoted column names representing column `tof_tibble` used break rows `tof_tibble` subgroups plotted separate histograms. Defaults plotting without subgroups. num_points number points along full range `marker_col` density calculated theme ggplot2 theme plot. Defaults theme_bw use_ggridges boolean value indicting geom_ridgeline used plot overlain histograms. Defaults FALSE. TRUE, ggridges package must installed. scale Use set `scale` argument geom_ridgeline, controls far apart (vertically) density plots arranged along y-axis. Defaults 1. ... Additional optional arguments send geom_ridgeline.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot marker expression density plots — tof_plot_cells_density","text":"ggplot object","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot marker expression density plots — tof_plot_cells_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(c(\"a\", \"b\"), size = 1000, replace = TRUE) ) density_plot <- tof_plot_cells_density( tof_tibble = sim_data, marker_col = cd45, group_col = cluster_id )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"function makes scatterplots using single-cell data embedded low-dimensional space (generated tof_reduce_dimensions, point colored using user-specified variable.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"","code":"tof_plot_cells_embedding( tof_tibble, embedding_cols, color_col, facet_cols, compute_embedding_cols = where(tof_is_numeric), embedding_method = c(\"pca\", \"tsne\", \"umap\"), embedding_args = list(), theme = ggplot2::theme_bw(), ..., method = c(\"ggplot2\", \"scattermore\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"tof_tibble `tof_tbl` `tibble`. embedding_cols Unquoted column names indicating columns `tof_tibble` used x y axes scatterplot. Supports tidyselect helpers. Must select exactly 2 columns. provided, feature embedding can computed scratch using method provided using `embedding_method` argument tof_reduce_dimensions arguments passed `embedding_args`. color_col unquoted column name specifying column `tof_tibble` used color point scatterplot. facet_cols unquoted column name specifying column `tof_tibble` used break scatterplot facets using facet_wrap. compute_embedding_cols Unquoted column names indicating columns 'tof_tibble' use computing embeddings method specified `embedding_method`. Defaults numeric columns 'tof_tibble'. Supports tidyselect helpers. embedding_method string indicating method used feature embedding (`embedding_cols` provided). Options (passed tof_reduce_dimensions) \"pca\" (default), \"tsne\", \"umap\". embedding_args Optional additional arguments pass tof_reduce_dimensions. example, `method = \"tsne\"`, might include `num_comp`, `perplexity`, `theta`. theme ggplot2 theme apply scatterplot. Defaults theme_bw. ... Optional additional arguments pass tof_plot_cells_scatter. method string indicating plotting engine used. Valid values include \"ggplot2\" (default) \"scattermore\" (recommended 100K cells plotted). Note method = \"scattermore\" requires scattermore package installed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"ggplot object.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) ) # embed with pca pca_plot <- tof_plot_cells_embedding( tof_tibble = sim_data, color_col = cd38, embedding_method = \"pca\", compute_embedding_cols = starts_with(\"cd\") ) # embed with tsne tsne_plot <- tof_plot_cells_embedding( tof_tibble = sim_data, color_col = cluster_id, embedding_method = \"tsne\", compute_embedding_cols = starts_with(\"cd\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"function makes force-directed layouts using single-cell data embedded 2-dimensional space representing k-nearest-neighbor graph constructed using cell--cell similarities. node force-directed layout represents single cell colored using user-specified variable.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"","code":"tof_plot_cells_layout( tof_tibble, knn_cols = where(tof_is_numeric), color_col, facet_cols, num_neighbors = 5, graph_type = c(\"weighted\", \"unweighted\"), graph_layout = \"fr\", distance_function = c(\"euclidean\", \"cosine\"), edge_alpha = 0.25, node_size = 2, theme = ggplot2::theme_void(), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"tof_tibble `tof_tbl` `tibble`. knn_cols Unquoted column names indicating columns `tof_tibble` used compute cell--cell distances used construct k-nearest-neighbor graph. Supports tidyselect helpers. Defaults numeric columns. color_col Unquoted column name indicating column `tof_tibble` used color nodes force-directed layout. facet_cols Unquoted column names indicating columns `tof_tibble` used separate nodes different force-directed layouts. num_neighbors integer specifying many neighbors used construct k-nearest neighbor graph. graph_type string specifying k-nearest neighbor graph \"weighted\" (default) \"unweighted\". graph_layout string specifying algorithm used compute force-directed layout. Passed ggraph. Defaults \"fr\", Fruchterman-Reingold algorithm. examples include \"nicely\", \"gem\", \"kk\", many others. See layout_tbl_graph_igraph examples. distance_function string indicating distance function use computing cell--cell distances. Valid options include \"euclidean\" (default) \"cosine\". edge_alpha numeric value 0 1 specifying transparency edges drawn force-directed layout. Defaults 0.25. node_size numeric value specifying size nodes force-directed layout. Defaults 2. theme ggplot2 theme apply force-directed layout. Defaults theme_void ... hnsw_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"ggraph/ggplot object.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) ) # make a layout colored by a marker layout_cd38 <- tof_plot_cells_layout( tof_tibble = sim_data, color_col = cd38 ) # make a layout colored by cluster id layout_cluster <- tof_plot_cells_layout( tof_tibble = sim_data, color_col = cluster_id, )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"function makes scatterplots single-cell data using user-specified x- y-axes. Additionally, point scatterplot can colored using user-specified variable.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"","code":"tof_plot_cells_scatter( tof_tibble, x_col, y_col, color_col, facet_cols, theme = ggplot2::theme_bw(), ..., method = c(\"ggplot2\", \"scattermore\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"tof_tibble `tof_tbl` `tibble`. x_col unquoted column name specifying column `tof_tibble` used x-axis. y_col unquoted column name specifying column `tof_tibble` used y-axis. color_col unquoted column name specifying column `tof_tibble` used color point scatterplot. facet_cols unquoted column name specifying column `tof_tibble` used break scatterplot facets using facet_wrap. theme ggplot2 theme apply scatterplot. Defaults theme_bw. ... Optional additional arguments pass geom_point method = \"ggplot2\" geom_scattermore method = \"scattermore\". method string indicating plotting engine used. Valid values include \"ggplot2\" (default) \"scattermore\" (recommended 100K cells plotted). Note method = \"scattermore\" requires scattermore package installed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"ggplot object.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"function makes heatmap cluster--cluster marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap cluster IDs plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"","code":"tof_plot_clusters_heatmap( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), central_tendency_function = stats::median, scale_markerwise = FALSE, scale_clusterwise = FALSE, cluster_markers = TRUE, cluster_clusters = TRUE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers plotted along x-axis heatmap. Supports tidyselect helpers. central_tendency_function function use computing measure central tendency aggregated cluster cluster_col. Defaults median. scale_markerwise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_clusterwise boolean value indicating heatmap rescale rows heatmap maximum value cluster 1 minimum value 0. Defaults FALSE. cluster_markers boolean value indicating heatmap order columns (.e. markers) using hierarchical clustering. Defaults TRUE. cluster_clusters boolean value indicating heatmap order rows (.e. clusters) using hierarchical clustering. Defaults TRUE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) heatmap <- tof_plot_clusters_heatmap( tof_tibble = sim_data, cluster_col = cluster_id )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":null,"dir":"Reference","previous_headings":"","what":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"function plots minimum-spanning tree using clustered single-cell data order summarize cluster-level characteristics. node MST represents single cluster colored using user-specified variable (either continuous discrete).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"","code":"tof_plot_clusters_mst( tof_tibble, cluster_col, knn_cols = where(tof_is_numeric), color_col, num_neighbors = 5L, graph_type = c(\"unweighted\", \"weighted\"), graph_layout = \"nicely\", central_tendency_function = stats::median, distance_function = c(\"euclidean\", \"cosine\"), edge_alpha = 0.4, node_size = \"cluster_size\", theme = ggplot2::theme_void(), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. knn_cols Unquoted column names indicating columns `tof_tibble` used compute cluster--cluster distances used construct k-nearest-neighbor graph. Supports tidyselect helpers. Defaults numeric columns. color_col Unquoted column name indicating column `tof_tibble` used color nodes MST. num_neighbors integer specifying many neighbors used construct k-nearest neighbor graph. graph_type string specifying k-nearest neighbor graph \"weighted\" (default) \"unweighted\". graph_layout argument specifies layout MST one two ways. Option 1: Provide string specifying algorithm used compute force-directed layout. Passed ggraph. Defaults \"nicely\", tries automatically select visually-appealing layout. examples include \"fr\", \"gem\", \"kk\", many others. See layout_tbl_graph_igraph examples. Option 2: Provide ggraph object previously generated function. layout used plot ggraph object used template new plot. Using option, number clusters (labels) must identical template. option useful want make multiple plots tof_tibble colored different protein markers, example. central_tendency_function function use computing measure central tendency aggregated cluster cluster_col. Defaults median. distance_function string indicating distance function use computing cluster--clusters distances constructing MST. Valid options include \"euclidean\" (default) \"cosine\". edge_alpha numeric value 0 1 specifying transparency edges drawn force-directed layout. Defaults 0.25. node_size Either numeric value specifying size nodes MST string \"cluster_size\", case size node representing cluster scaled according number cells cluster (default). theme ggplot2 theme apply force-directed layout. Defaults theme_void ... Optional additional arguments hnsw_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"ggraph/ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # make a layout colored by a marker layout_cd38 <- tof_plot_clusters_mst( tof_tibble = sim_data, cluster_col = cluster_id, color_col = cd38 ) # use the same layout as the plot above to color the same # tree using a different marker layout_cd45 <- tof_plot_clusters_mst( tof_tibble = sim_data, cluster_col = cluster_id, color_col = cd45, graph_layout = layout_cd38 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"function makes volcano plot using results differential expression analysis (DEA) produced one `tof_dea_*` verbs. point volcano plot represents single cluster-marker pair, colored significance level direction marker expression difference.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"","code":"tof_plot_clusters_volcano( dea_result, num_top_pairs = 10L, alpha = 0.05, point_size = 2, label_size = 3, nudge_x = 0, nudge_y = 0.25, increase_color = \"#207394\", decrease_color = \"#cd5241\", insignificant_color = \"#cdcdcd\", use_ggrepel = FALSE, theme = ggplot2::theme_bw() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"dea_result tibble containing differential expression analysis (DEA) results produced one members `tof_dea_*` function family. num_top_pairs integer representing number significant cluster-marker pairs labeled volcano plot. alpha numeric value 0 1 representing significance level p-value considered statistically significant. Defaults 0.05. point_size numeric value specifying size points volcano plot. label_size numeric value specifying size text labeling cluster-marker pairs. nudge_x numeric value specifying far cluster-marker pair labels adjusted left (`nudge_x` negative) right (`nudge_x` positive) avoid overlap plotted points. Passed geom_text, ignored `use_ggrepel` = TRUE. Defaults 0. nudge_y numeric value specifying far cluster-marker pair labels adjusted downwards (`nudge_y` negative) upwards (`nudge_y` positive) avoid overlap plotted points. Passed geom_text, ignored `use_ggrepel` = TRUE. Defaults 0.25. increase_color hex code specifying fill color used points corresponding cluster-marker pairs significant increases detected. decrease_color hex code specifying fill color used points corresponding cluster-marker pairs significant decreases detected. insignificant_color hex code specifying fill color used points corresponding cluster-marker pairs significant differences detected. use_ggrepel boolean value indicting geom_text_repel used plot labels cluster-marker pairs. Defaults FALSE. TRUE, ggrepel package must installed. theme ggplot2 theme apply volcano plot. Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"","code":"# create a mock differential expression analysis result sim_dea_result <- dplyr::tibble( cluster_id = rep(letters, 2), marker = rep(c(\"cd45\", \"cd34\"), times = length(letters)), p_adj = runif(n = 2 * length(letters), min = 0, max = 0.5), mean_fc = runif(n = 2 * length(letters), min = 0.01, max = 10), significant = dplyr::if_else(p_adj < 0.05, \"*\", \"\") ) attr(sim_dea_result, which = \"dea_method\") <- \"t_unpaired\" # create the volcano plot volcano <- tof_plot_clusters_volcano(dea_result = sim_dea_result)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"function makes heatmap group--group marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap groups plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"","code":"tof_plot_heatmap( tof_tibble, y_col, marker_cols = where(tof_is_numeric), central_tendency_function = stats::median, scale_markerwise = FALSE, scale_ywise = FALSE, cluster_markers = TRUE, cluster_groups = TRUE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"tof_tibble `tof_tbl` `tibble`. y_col unquoted column name indicating column `tof_tibble` stores ids group cell belongs. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers plotted along x-axis heatmap. Supports tidyselect helpers. central_tendency_function function use computing measure central tendency aggregated cluster cluster_col. Defaults median. scale_markerwise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_ywise boolean value indicating heatmap rescale rows heatmap maximum value group 1 minimum value 0. Defaults FALSE. cluster_markers boolean value indicating heatmap order columns (.e. markers) using hierarchical clustering. Defaults TRUE. cluster_groups boolean value indicating heatmap order rows (.e. groups) using hierarchical clustering. Defaults TRUE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"Plot results glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"","code":"tof_plot_model(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"ggplot object. `tof_model` linear model, scatterplot predicted outcome vs. true outcome returned. `tof_model` two-class model, ROC curve returned. `tof_model` multiclass model, one-versus-ROC curve returned class. `tof_model` survival model, Kaplan-Meier curve returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ) ) new_tibble <- dplyr::tibble( sample = as.character(1:20), cd45 = runif(n = 20), pstat5 = runif(n = 20), cd34 = runif(n = 20), outcome = (3 * cd45) + (4 * pstat5) + rnorm(20), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) # make the plot plot_1 <- tof_plot_model(tof_model = regression_model, new_data = new_tibble) # train a logistic regression classifier logistic_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = class, model_type = \"two-class\" ) # make the plot plot_2 <- tof_plot_model(tof_model = logistic_model, new_data = new_tibble)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"Plot results linear glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"","code":"tof_plot_model_linear(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"ggplot object. Specifically, scatterplot predicted outcome vs. true outcome returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"Plot results two-class glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"","code":"tof_plot_model_logistic(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot. Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"ggplot object. Specifically, ROC curve..","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"Plot results multiclass glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"","code":"tof_plot_model_multinomial(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot. Defaults theme_bw.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"ggplot object. Specifically, one-versus-ROC curve (one class).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"Plot results survival glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"","code":"tof_plot_model_survival( tof_model, new_data, censor_size = 2.5, theme = ggplot2::theme_bw() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. censor_size numeric value indicating large plot tick marks representing censored values Kaplan-Meier curve. theme ggplot2 theme apply plot. Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"ggplot object. Specifically, Kaplan-Meier curve.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"function makes heatmap sample--sample marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap sample IDs plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"","code":"tof_plot_sample_features( feature_tibble, sample_col, feature_cols = where(tof_is_numeric), scale_featurewise = FALSE, scale_samplewise = FALSE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"feature_tibble tbl_df data.frame aggregated sample-level features, generated tof_extract_features. sample_col unquoted column name indicating column `tof_tibble` stores IDs sample. sample IDs present, numeric ID assigned row `feature_tibble` based row index. feature_cols Unquoted column names indicating column `feature_tibble` interpreted features plotted along x-axis heatmap. Supports tidyselect helpers. scale_featurewise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_samplewise boolean value indicating heatmap rescale rows heatmap maximum value sample 1 minimum value 0. Defaults FALSE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), sample_id = sample(paste0(\"sample\", 1:5), size = 1000, replace = TRUE) ) # extract cluster proportions in each simulated patient feature_data <- tof_extract_proportion( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = sample_id ) # plot the heatmap heatmap <- tof_plot_sample_features(feature_tibble = feature_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"function makes heatmap sample--sample marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap sample IDs plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"","code":"tof_plot_sample_heatmap( tof_tibble, sample_col, marker_cols = where(tof_is_numeric), central_tendency_function = stats::median, scale_markerwise = FALSE, scale_samplewise = FALSE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` stores ids sample cell belongs. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers plotted along x-axis heatmap. Supports tidyselect helpers. central_tendency_function function use computing measure central tendency aggregated sample cluster_col. Defaults median. scale_markerwise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_samplewise boolean value indicating heatmap rescale rows heatmap maximum value sample 1 minimum value 0. Defaults FALSE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), sample_id = sample(paste0(\"sample\", 1:5), size = 1000, replace = TRUE) ) heatmap <- tof_plot_sample_heatmap( tof_tibble = sim_data, sample_col = sample_id )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":null,"dir":"Reference","previous_headings":"","what":"Post-process transformed CyTOF data. — tof_postprocess","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"function transforms `tof_tibble` transformed ion counts mass cytometer back something looks like .fcs file Fluidigm software generates.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"","code":"tof_postprocess( tof_tibble = NULL, channel_cols = where(tof_is_numeric), redo_noise = FALSE, transform_fun = function(x) rev_asinh(x, shift_factor = 0, scale_factor = 0.2) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"tof_tibble `tof_tibble` `tibble`. channel_cols vector non-quoted column names indicating columns `tof_tibble` contain protein measurements. Supports tidyselect helpers. nothing specified, default transform numeric columns. redo_noise boolean value indicating whether add uniform noise CyTOF measurement aesthetic visualization purposes. See paper. Defaults FALSE transform_fun vectorized function apply column specified `channel_cols` post-processing. Defaults rev_asinh transformation (cofactor 5).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"`tof_tbl` identical dimensions input `tof_tibble`, columns specified channel_cols transformed using `transform_fun` (noise added removed depending `redo_noise`).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"","code":"# read in an example .fcs file from tidytof's internal datasets input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) # preprocess all numeric columns with default behavior # arcsinh transformation with a cofactor of 5 preprocessed_tof_tibble <- tof_preprocess(tof_tibble) # postprocess all numeric columns to reverse the preprocessing tof_postprocess(tof_tibble) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 Inf 22215276. 6.00e224 8.82 1411688. Inf #> 2 Inf 446205752. Inf 135. 859679. Inf #> 3 Inf 22215276. Inf 2634. 321. 8.51e277 #> 4 Inf 22215276. 2.24e254 3.47 1383. 8.29e254 #> 5 Inf 164149923. Inf 127. 38726. 3.70e280 #> 6 Inf 446205752. 1.14e211 163. 116. 3.29e272 #> 7 Inf 22215276. 2.62e219 79.1 175. 1.82e246 #> 8 Inf 164149923. 5.35e246 1876. 291228. 5.64e305 #> 9 Inf 446205752. Inf 55.3 24727. Inf #> 10 Inf 22215276. 2.38e236 5.05 2010273. Inf #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":null,"dir":"Reference","previous_headings":"","what":"Use a trained elastic net model to predict fitted values from new data — tof_predict","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"function uses trained `tof_model` make predictions new data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"","code":"tof_predict( tof_model, new_data, prediction_type = c(\"response\", \"class\", \"link\", \"survival curve\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations predictions made. new_data provided, predictions made training data used fit model. prediction_type string indicating type prediction provided model: \"response\" (default) \"linear\" models, predicted response observation. \"two-class\" \"multiclass\" models, fitted probabilities class observation. \"survival\" models, fitted relative-risk observation. \"class\" applies \"two-class\" \"multiclass\" models. , class label corresponding class maximum fitted probability. \"link\" linear predictions model (output link function model family.) \"survival curve\" applies \"survival\" models. Returns tibble indicating patient's probability survival (1 - probability(event)) timepoint dataset. Obtained using survfit function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"tibble single column (`.pred`) containing predictions , multiclass models `prediction_type` == \"response\", tibble one column class. row output corresponds row `new_data` ( , `new_data` provided, row `tof_model`'s training data). latter case, sure check `tof_model$training_data` confirm order observations, resampling procedure can change ordering relative original input data.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100) ) new_tibble <- dplyr::tibble( sample = as.character(1:20), cd45 = runif(n = 20), pstat5 = runif(n = 20), cd34 = runif(n = 20), outcome = (3 * cd45) + (4 * pstat5) + rnorm(20) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) # apply the model to new data tof_predict(tof_model = regression_model, new_data = new_tibble) #> # A tibble: 20 × 1 #> .pred #> #> 1 0.597 #> 2 2.21 #> 3 6.20 #> 4 2.57 #> 5 0.414 #> 6 1.23 #> 7 4.79 #> 8 3.31 #> 9 1.82 #> 10 3.87 #> 11 3.24 #> 12 2.99 #> 13 3.13 #> 14 4.74 #> 15 2.12 #> 16 1.71 #> 17 3.21 #> 18 0.993 #> 19 4.12 #> 20 5.84"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"Train recipe list recipes preprocessing sample-level cytometry data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"","code":"tof_prep_recipe(split_data, unprepped_recipe)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"split_data `rsplit` `rset` object rsample package containing sample-level data use modeling. easiest way generate use tof_split_data. Alternatively, unsplit tbl_df, though recommended. unprepped_recipe recipe object (`split_data` `rsplit` object `tbl_df`) list recipes (`split_data` `rset` object).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"split_data \"rsplit\" \"tbl_df\" object, return single prepped recipe. split_data \"rset\" object, return list prepped recipes specific fold resampling procedure.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":null,"dir":"Reference","previous_headings":"","what":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"function transforms `tof_tbl` raw ion counts, reads, fluorescence intensity units directly measured cytometer using user-provided function. can used perform standard pre-processing steps (.e. arcsinh transformation) cytometry data analysis.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"","code":"tof_preprocess( tof_tibble = NULL, channel_cols = where(tof_is_numeric), undo_noise = FALSE, transform_fun = function(x) asinh(x/5) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default transform numeric columns. undo_noise boolean value indicating whether remove uniform noise Fluidigm software adds CyTOF measurements aesthetic visualization purposes. See paper. Defaults FALSE. transform_fun vectorized function apply protein value variance stabilization. Defaults asinh transformation (co-factor 5).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"`tof_tbl` identical dimensions input `tof_tibble`, columns specified channel_cols transformed using `transform_fun` (noise removed removed depending `undo_noise`).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"","code":"# read in an example .fcs file from tidytof's internal datasets input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) # preprocess all numeric columns with default behavior # arcsinh transformation with a cofactor of 5 tof_preprocess(tof_tibble) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 15.3 1.88 5.33 0.263 1.70 5.85 #> 2 14.9 2.05 5.83 0.731 1.67 5.71 #> 3 15.2 1.88 5.70 1.13 0.861 5.54 #> 4 13.7 1.88 5.45 0.129 1.06 5.46 #> 5 15.2 1.99 5.73 0.721 1.41 5.55 #> 6 14.4 2.05 5.27 0.760 0.708 5.52 #> 7 13.9 1.88 5.31 0.645 0.771 5.42 #> 8 14.2 1.99 5.42 1.09 1.58 5.64 #> 9 15.6 2.05 6.03 0.586 1.37 5.83 #> 10 9.75 1.88 5.38 0.177 1.73 5.78 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , … # preprocess all numeric columns using the log base 10 tranformation tof_preprocess(tof_tibble, transform_fun = log10) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 7.04 1.20 2.71 0.125 1.12 2.94 #> 2 6.85 1.28 2.93 0.601 1.11 2.88 #> 3 6.99 1.20 2.87 0.843 0.686 2.81 #> 4 6.36 1.20 2.77 -0.189 0.800 2.77 #> 5 6.98 1.26 2.89 0.594 0.984 2.81 #> 6 6.65 1.28 2.69 0.621 0.584 2.80 #> 7 6.44 1.20 2.70 0.539 0.628 2.75 #> 8 6.57 1.26 2.75 0.821 1.07 2.85 #> 9 7.18 1.28 3.02 0.491 0.964 2.93 #> 10 4.63 1.20 2.74 -0.0515 1.13 2.91 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":null,"dir":"Reference","previous_headings":"","what":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"Read high-dimensional cytometry data .csv file tidy tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"","code":"tof_read_csv(file_path = NULL, panel_info = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"file_path file path single .csv file. panel_info Optional. tibble data.frame containing information panel used high-dimensional cytometry data acquisition. Two columns required: \"metals\" \"antigens\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"`tof_tbl` row represents single cell column represents high-dimensional cytometry antigen channel. `tof_tbl` S3 class extends \"tibble\" class storing one additional attribute: \"panel\" (tibble storing information panel used data acquisition). panel information obvious data read .csv file, information must provided manually user (unlike `tof_read_fcs`).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"Read data .fcs/.csv file directory .fcs/.csv files.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"","code":"tof_read_data(path = NULL, sep = \"|\", panel_info = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"path file path single file directory files. valid file types .fcs files .csv files containing high-dimensional cytometry data. sep Optional. string use separate antigen name associated metal column names output tibble. Defaults \"|\". used input file .fcs file. panel_info Optional. tibble data.frame containing information panel used high-dimensional cytometry data acquisition. Two columns required: \"metals\" \"antigens\". used input file .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"[c m+1] tibble row represents single cell (c total dataset) column represents high-dimensional cytometry measurement (m total dataset). one .fcs read , last column tibble (`file_name`) represent file name .fcs file cell read.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"","code":"input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_read_data(input_file) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 11021370 16 517. 1.33 13.2 865. #> 2 7112446. 19 850. 3.99 12.7 756. #> 3 9722098 16 747. 6.96 4.85 639. #> 4 2267279. 16 585. 0.648 6.32 586. #> 5 9624729 18 773. 3.93 9.65 645. #> 6 4439897 19 485. 4.18 3.84 627. #> 7 2762526. 16 504. 3.46 4.25 566. #> 8 3746682. 18 567. 6.62 11.7 703. #> 9 15214280 19 1043. 3.10 9.20 853. #> 10 42699. 16 543. 0.888 13.6 813. #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":null,"dir":"Reference","previous_headings":"","what":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"function reads high-dimensional cytometry data single .fcs file tidy data structure called `tof_tbl` (\"tof_tibble\"). tof_tibbles identical normal tibbles except additional attribute (\"panel\") stores information high-dimensional cytometry panel used data acquisition.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"","code":"tof_read_fcs(file_path = NULL, sep = \"|\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"file_path file path single .fcs file. sep string use separate antigen name associated metal column names output tibble. Defaults \"|\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"`tof_tbl` row represents single cell column represents high-dimensional cytometry antigen channel. `tof_tbl` S3 class extends \"tibble\" class storing one additional attribute: \"panel\" (tibble storing information panel used data acquisition).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":null,"dir":"Reference","previous_headings":"","what":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"Read high-dimensional cytometry data single .fcs .csv file tidy tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"","code":"tof_read_file(file_path = NULL, sep = \"|\", panel_info = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"file_path file path single .fcs .csv file. sep string use separate antigen name associated metal column names output tibble. Defaults \"|\". used input file .fcs file. panel_info Optional. tibble data.frame containing information panel used high-dimensional cytometry data acquisition. Two columns required: \"metals\" \"antigens\". used input file .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"`tof_tbl` row represents single cell column represents high-dimensional cytometry antigen channel. `tof_tbl` S3 class extends \"tibble\" class storing one additional attribute: \"panel\" (tibble storing information panel used data acquisition). panel information obvious data read .csv file, information must provided manually user.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":null,"dir":"Reference","previous_headings":"","what":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"function wrapper around tidytof's tof_reduce_* function family. performs dimensionality reduction single-cell data using user-specified method (3 choices) method's corresponding input parameters","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"","code":"tof_reduce_dimensions( tof_tibble, ..., augment = TRUE, method = c(\"pca\", \"tsne\", \"umap\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"tof_tibble `tof_tbl` `tibble`. ... Arguments passed tof_reduce_* function corresponding embedding method. See tof_reduce_pca, tof_reduce_tsne, tof_reduce_umap. augment boolean value indicating output column-bind dimensionality-reduced embedding vectors cell new column `tof_tibble` (TRUE, default) tibble including low-dimensionality embeddings returned (FALSE). method method dimensionality reduction. Currently, PCA, tSNE, UMAP embedding supported.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated embedding space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 100), cd38 = rnorm(n = 100), cd34 = rnorm(n = 100), cd19 = rnorm(n = 100) ) # calculate pca tof_reduce_dimensions(tof_tibble = sim_data, method = \"pca\") #> # A tibble: 100 × 8 #> cd45 cd38 cd34 cd19 .pc1 .pc2 .pc3 .pc4 #> #> 1 2.13 0.705 -1.16 -1.37 -2.52 1.08 1.42 -0.377 #> 2 -2.16 0.719 0.784 -1.65 1.22 1.68 -0.397 1.87 #> 3 1.30 0.463 0.284 0.665 -0.973 -0.110 -0.212 -1.36 #> 4 0.266 -0.303 -0.681 -1.05 -0.475 0.600 1.34 0.277 #> 5 0.986 1.27 0.810 0.459 -0.971 0.420 -1.03 -1.05 #> 6 -0.0816 2.04 -0.00146 -0.362 -1.17 0.675 -1.04 0.700 #> 7 -0.0698 0.612 1.75 -0.132 0.510 1.16 -1.02 -0.737 #> 8 -0.390 1.50 -0.156 0.269 -0.693 -0.0874 -0.915 0.577 #> 9 -1.32 0.986 0.0330 -0.910 0.206 0.815 -0.341 1.44 #> 10 0.117 0.275 -1.00 -0.487 -0.819 0.0165 0.819 0.519 #> # ℹ 90 more rows # calculate tsne tof_reduce_dimensions(tof_tibble = sim_data, method = \"tsne\") #> # A tibble: 100 × 6 #> cd45 cd38 cd34 cd19 .tsne1 .tsne2 #> #> 1 2.13 0.705 -1.16 -1.37 4.34 1.87 #> 2 -2.16 0.719 0.784 -1.65 -0.889 -4.03 #> 3 1.30 0.463 0.284 0.665 0.463 3.67 #> 4 0.266 -0.303 -0.681 -1.05 2.77 1.60 #> 5 0.986 1.27 0.810 0.459 0.562 4.25 #> 6 -0.0816 2.04 -0.00146 -0.362 2.41 -3.16 #> 7 -0.0698 0.612 1.75 -0.132 -3.58 -2.75 #> 8 -0.390 1.50 -0.156 0.269 2.36 -2.21 #> 9 -1.32 0.986 0.0330 -0.910 -0.201 -3.36 #> 10 0.117 0.275 -1.00 -0.487 2.87 0.441 #> # ℹ 90 more rows # calculate umap tof_reduce_dimensions(tof_tibble = sim_data, method = \"umap\") #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> # A tibble: 100 × 6 #> cd45 cd38 cd34 cd19 .umap1 .umap2 #> #> 1 2.13 0.705 -1.16 -1.37 -2.29 -0.706 #> 2 -2.16 0.719 0.784 -1.65 -0.666 3.13 #> 3 1.30 0.463 0.284 0.665 0.858 -3.05 #> 4 0.266 -0.303 -0.681 -1.05 -1.79 -2.01 #> 5 0.986 1.27 0.810 0.459 1.45 -3.23 #> 6 -0.0816 2.04 -0.00146 -0.362 -1.91 2.35 #> 7 -0.0698 0.612 1.75 -0.132 2.53 -0.873 #> 8 -0.390 1.50 -0.156 0.269 -1.56 2.07 #> 9 -1.32 0.986 0.0330 -0.910 -0.667 2.86 #> 10 0.117 0.275 -1.00 -0.487 -2.09 0.537 #> # ℹ 90 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform principal component analysis on single-cell data — tof_reduce_pca","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"function calculates principal components using single-cell data `tof_tibble`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"","code":"tof_reduce_pca( tof_tibble, pca_cols = where(tof_is_numeric), num_comp = 5, threshold = NA, center = TRUE, scale = TRUE, return_recipe = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"tof_tibble `tof_tbl` `tibble`. pca_cols Unquoted column names indicating columns `tof_tibble` use computing principal components. Defaults numeric columns. Supports tidyselect helpers. num_comp number PCA components calculate. Defaults 5. See step_pca. threshold double 0 1 representing fraction total variance covered components returned output. See step_pca. center boolean value indicating column centered mean 0 PCA analysis. Defaults TRUE. scale boolean value indicating column scaled standard deviation = 1 PCA analysis. Defaults TRUE. return_recipe boolean value indicating instead UMAP result, prepped recipe object containing PCA embedding returned. Set option TRUE want create PCA embedding using one dataset also want project new observations onto embedding space later.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated principal component space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) new_data <- dplyr::tibble( cd45 = rnorm(n = 50), cd38 = rnorm(n = 50), cd34 = rnorm(n = 50), cd19 = rnorm(n = 50) ) # calculate pca tof_reduce_pca(tof_tibble = sim_data, num_comp = 2) #> # A tibble: 200 × 2 #> .pc1 .pc2 #> #> 1 -1.18 -0.437 #> 2 0.230 -0.548 #> 3 2.73 -0.128 #> 4 0.772 0.965 #> 5 0.122 1.24 #> 6 -0.878 1.50 #> 7 0.104 -0.543 #> 8 0.295 2.14 #> 9 0.712 -0.784 #> 10 0.723 0.0671 #> # ℹ 190 more rows # return recipe instead of embeddings pca_recipe <- tof_reduce_pca(tof_tibble = sim_data, return_recipe = TRUE) # apply recipe to new data recipes::bake(pca_recipe, new_data = new_data) #> # A tibble: 50 × 4 #> PC1 PC2 PC3 PC4 #> #> 1 -0.735 1.24 1.48 -0.128 #> 2 -1.05 -1.17 0.753 0.296 #> 3 1.32 -1.42 1.41 -1.47 #> 4 -0.454 -0.144 -0.479 -0.0116 #> 5 1.91 -0.175 1.27 -0.345 #> 6 1.01 -0.480 0.184 0.309 #> 7 -0.134 -0.107 0.0852 0.968 #> 8 -0.203 0.748 -0.966 0.658 #> 9 -1.95 -1.78 -1.25 -0.0726 #> 10 1.14 0.0262 -0.00742 -0.297 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"function calculates tSNE embedding using single-cell data `tof_tibble`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"","code":"tof_reduce_tsne( tof_tibble, tsne_cols = where(tof_is_numeric), num_comp = 2, perplexity = 30, theta = 0.5, max_iterations = 1000, verbose = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"tof_tibble `tof_tbl` `tibble`. tsne_cols Unquoted column names indicating columns `tof_tibble` use computing tSNE embedding. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_comp number tSNE components calculate embedding. Defaults 2. perplexity positive numeric value represents represents rough balance input data’s local global structure emphasized embedding. Smaller values emphasize local structure; larger values emphasize global structure. recommended range generally 5-50. Defaults 30. theta numeric value representing speed/accuracy tradeoff embedding. Set 0 exact tSNE; increase faster approximation. Defaults 0.5 max_iterations integer number iterations use embedding calculation. Defaults 1000. verbose boolean value indicating whether progress updates printed embedding calculation. Default FALSE. ... Additional arguments pass Rtsne.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated tSNE space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) # calculate tsne tof_reduce_tsne(tof_tibble = sim_data) #> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> #> 1 8.08 -7.66 #> 2 2.37 -4.12 #> 3 6.81 -4.01 #> 4 -3.07 4.23 #> 5 3.07 3.35 #> 6 -6.88 -6.09 #> 7 10.3 1.02 #> 8 2.62 4.12 #> 9 -0.307 -2.68 #> 10 0.692 -6.27 #> # ℹ 190 more rows # calculate tsne with only 2 columns tof_reduce_tsne(tof_tibble = sim_data, tsne_cols = c(cd34, cd38)) #> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> #> 1 -6.38 -3.76 #> 2 1.55 0.251 #> 3 -6.33 2.92 #> 4 -0.516 -0.728 #> 5 0.278 5.36 #> 6 5.36 2.85 #> 7 -8.58 -2.40 #> 8 -1.77 4.14 #> 9 3.73 -1.01 #> 10 5.09 1.20 #> # ℹ 190 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":null,"dir":"Reference","previous_headings":"","what":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"function calculates UMAP embedding single-cell data `tof_tibble`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"","code":"tof_reduce_umap( tof_tibble, umap_cols = where(tof_is_numeric), num_comp = 2, neighbors = 5, min_dist = 0.01, learn_rate = 1, epochs = NULL, verbose = FALSE, n_threads = 1, return_recipe = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"tof_tibble `tof_tbl` `tibble`. umap_cols Unquoted column names indicating columns `tof_tibble` use computing UMAP embedding. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_comp integer number UMAP components. neighbors integer number nearest neighbors used construct target simplicial set. min_dist effective minimum distance embedded points. learn_rate Positive number learning rate optimization process. epochs Number iterations neighbor optimization. See umap details. verbose boolean indicating run details logged console. Defaults FALSE. n_threads Number threads use UMAP calculation. Defaults 1. return_recipe boolean value indicating instead UMAP result, prepped recipe object containing UMAP embedding returned. Set option TRUE want create UMAP embedding using one dataset also want project new observations onto embedding space later. ... Optional. options passed arguments umap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated UMAP space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) new_data <- dplyr::tibble( cd45 = rnorm(n = 50), cd38 = rnorm(n = 50), cd34 = rnorm(n = 50), cd19 = rnorm(n = 50) ) # calculate umap tof_reduce_umap(tof_tibble = sim_data) #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> # A tibble: 200 × 2 #> .umap1 .umap2 #> #> 1 -2.96 1.60 #> 2 -0.206 -2.37 #> 3 -0.635 -0.560 #> 4 -3.37 1.09 #> 5 4.26 0.397 #> 6 3.30 1.62 #> 7 -3.49 0.106 #> 8 -0.0529 1.23 #> 9 -3.13 1.31 #> 10 4.73 -0.264 #> # ℹ 190 more rows # calculate umap with only 2 columns tof_reduce_tsne(tof_tibble = sim_data, umap_cols = c(cd34, cd38)) #> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> #> 1 2.75 6.43 #> 2 -2.40 -6.28 #> 3 5.86 -2.11 #> 4 4.77 5.55 #> 5 -6.98 -1.11 #> 6 -7.44 -2.29 #> 7 2.70 -7.05 #> 8 5.13 -6.46 #> 9 2.85 6.16 #> 10 -9.17 0.0725 #> # ℹ 190 more rows # return recipe umap_recipe <- tof_reduce_umap(tof_tibble = sim_data, return_recipe = TRUE) #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ # apply recipe to new data recipes::bake(umap_recipe, new_data = new_data) #> # A tibble: 50 × 2 #> UMAP1 UMAP2 #> #> 1 0.184 -2.79 #> 2 1.51 1.19 #> 3 -0.476 -0.746 #> 4 1.90 -2.91 #> 5 -0.0406 2.33 #> 6 1.92 -2.74 #> 7 -0.471 2.95 #> 8 1.71 2.39 #> 9 -3.73 0.00121 #> 10 -2.18 -2.45 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":null,"dir":"Reference","previous_headings":"","what":"Set panel information from a tof_tibble — tof_set_panel","title":"Set panel information from a tof_tibble — tof_set_panel","text":"Set panel information tof_tibble","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Set panel information from a tof_tibble — tof_set_panel","text":"","code":"tof_set_panel(tof_tibble, panel)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Set panel information from a tof_tibble — tof_set_panel","text":"tof_tibble `tof_tbl`. panel tibble containing two columns (`metals` `antigens`) representing information panel","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Set panel information from a tof_tibble — tof_set_panel","text":"`tof_tibble` containing information CyTOF panel used data acquisition data contained input `tof_tibble`. Two columns required: \"metals\" \"antigens\".","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Set panel information from a tof_tibble — tof_set_panel","text":"","code":"# get current panel from an .fcs file input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) current_panel <- tof_get_panel(tof_tibble) # create a new panel (remove empty channels) new_panel <- dplyr::filter(current_panel, antigens != \"empty\") tof_set_panel(tof_tibble = tof_tibble, panel = new_panel) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 11021370 16 517. 1.33 13.2 865. #> 2 7112446. 19 850. 3.99 12.7 756. #> 3 9722098 16 747. 6.96 4.85 639. #> 4 2267279. 16 585. 0.648 6.32 586. #> 5 9624729 18 773. 3.93 9.65 645. #> 6 4439897 19 485. 4.18 3.84 627. #> 7 2762526. 16 504. 3.46 4.25 566. #> 8 3746682. 18 567. 6.62 11.7 703. #> 9 15214280 19 1043. 3.10 9.20 853. #> 10 42699. 16 543. 0.888 13.6 813. #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"function uses algorithm described Qiu et al., (2011) estimate local density cell `tof_tbl` `tibble` containing high-dimensional cytometry data. Briefly, algorithm involves counting number neighboring cells within sphere radius alpha surrounding cell. , using nn2 function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"","code":"tof_spade_density( tof_tibble, distance_cols = where(tof_is_numeric), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), num_alpha_cells = 2000L, alpha_multiplier = 5, max_neighbors = round(0.01 * nrow(tof_tibble)), normalize = TRUE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"tof_tibble `tof_tbl` `tibble`. distance_cols Unquoted names columns `tof_tibble` use calculating cell--cell distances local density estimation cell. Defaults numeric columns `tof_tibble`. distance_function string indicating distance function use calculating cell--cell distances local density estimation. Options include \"euclidean\" (default) \"cosine\". num_alpha_cells integer indicating many cells `tof_tibble` randomly sampled `tof_tibble` order estimate `alpha`, radius sphere constructed around cell local density estimation. Alpha calculated taking median nearest-neighbor distance `num_alpha_cells` randomly-sampled cells multiplying `alpha_multiplier`. Defaults 2000. alpha_multiplier numeric value indicating multiplier used calculating `alpha`, radius sphere constructed around cell local density estimation. Alpha calculated taking median nearest-neighbor distance `num_alpha_cells` cells randomly-sampled `tof_tibble` multiplying `alpha_multiplier`. Defaults 5. max_neighbors integer indicating maximum number neighbors can counted within sphere surrounding given cell. Implemented reduce density estimation procedure's speed memory requirements. Defaults 1% number rows `tof_tibble`. normalize boolean value indicating vector local density estimates normalized values 0 1. Defaults TRUE. ... Additional optional arguments pass tof_find_knn.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"tibble single column named \".spade_density\" containing local density estimates input cell `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) # perform the density estimation tof_spade_density(tof_tibble = sim_data) #> # A tibble: 1,000 × 1 #> .spade_density #> #> 1 1 #> 2 1 #> 3 1 #> 4 1 #> 5 1 #> 6 1 #> 7 1 #> 8 1 #> 9 1 #> 10 1 #> # ℹ 990 more rows # perform the density estimation using cosine distance tof_spade_density( tof_tibble = sim_data, distance_function = \"cosine\", alpha_multiplier = 2 ) #> # A tibble: 1,000 × 1 #> .spade_density #> #> 1 0.5 #> 2 0 #> 3 0.167 #> 4 0 #> 5 0.167 #> 6 0.333 #> 7 0.333 #> 8 0 #> 9 0.333 #> 10 0.5 #> # ℹ 990 more rows # perform the density estimation with a smaller search radius around # each cell tof_spade_density( tof_tibble = sim_data, alpha_multiplier = 2 ) #> # A tibble: 1,000 × 1 #> .spade_density #> #> 1 1 #> 2 1 #> 3 1 #> 4 0.5 #> 5 1 #> 6 0.3 #> 7 1 #> 8 1 #> 9 1 #> 10 0.5 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Split high-dimensional cytometry data into a training and test set — tof_split_data","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"Split high-dimensional cytometry data training test set","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"","code":"tof_split_data( feature_tibble, split_method = c(\"k-fold\", \"bootstrap\", \"simple\"), split_col, simple_prop = 3/4, num_cv_folds = 10, num_cv_repeats = 1L, num_bootstraps = 10, strata = NULL, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"feature_tibble tibble row represents sample- patient- level observation, produced tof_extract_features. split_method Either string logical vector specifying perform split. string, valid options include k-fold cross validation (\"k-fold\"; default), bootstrapping (\"bootstrap\"), single binary split (\"simple\"). logical vector, contain one entry row `feature_tibble` indicating row included training set (TRUE) excluded validation/test set (FALSE). Ignored entirely `split_col` specified. split_col unquoted column name logical column `feature_tibble` indicating row included training set (TRUE) excluded validation/test set (FALSE). simple_prop numeric value 0 1 indicating proportion data used training. Defaults 3/4. Ignored split_method \"simple\". num_cv_folds integer indicating many cross-validation folds used. Defaults 10. Ignored split_method \"k-fold\". num_cv_repeats integer indicating many independent cross-validation replicates used (.e. many num_cv_fold splits performed). Defaults 1. Ignored split_method \"k-fold\". num_bootstraps integer indicating many independent bootstrap replicates used. Defaults 25. Ignored split_method \"bootstrap\". strata unquoted column name representing column feature_tibble used stratify data splitting. Defaults NULL (stratification). ... Optional additional arguments pass vfold_cv k-fold cross validation, bootstraps bootstrapping, initial_split simple splitting.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"k-fold cross validation bootstrapping, \"rset\" object; simple splitting, \"rsplit\" object. details, see rsample.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 50), rep(1, times = 50)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) # split the dataset into 10 CV folds tof_split_data( feature_tibble = feature_tibble, split_method = \"k-fold\" ) #> # 10-fold cross-validation #> # A tibble: 10 × 2 #> splits id #> #> 1 Fold01 #> 2 Fold02 #> 3 Fold03 #> 4 Fold04 #> 5 Fold05 #> 6 Fold06 #> 7 Fold07 #> 8 Fold08 #> 9 Fold09 #> 10 Fold10 # split the dataset into 10 bootstrap resamplings tof_split_data( feature_tibble = feature_tibble, split_method = \"bootstrap\" ) #> # Bootstrap sampling #> # A tibble: 10 × 2 #> splits id #> #> 1 Bootstrap01 #> 2 Bootstrap02 #> 3 Bootstrap03 #> 4 Bootstrap04 #> 5 Bootstrap05 #> 6 Bootstrap06 #> 7 Bootstrap07 #> 8 Bootstrap08 #> 9 Bootstrap09 #> 10 Bootstrap10 # split the dataset into a single training/test set # stratified by the \"class\" column tof_split_data( feature_tibble = feature_tibble, split_method = \"simple\", strata = class ) #> #> <74/26/100>"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":null,"dir":"Reference","previous_headings":"","what":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"Split dimensionality reduction data tidytof combines SingleCellExperiment conversion","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"","code":"tof_split_tidytof_reduced_dimensions(sce)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"sce SingleCellExperiment entry named \"tidytof_reduced_dimensions\" reducedDims slot.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"SingleCellExperiment separate entries named \"tidytof_pca\", \"tidytof_umap\", \"tidytof_tsne\" reducedDims slots (one dimensionality reduction methods tidytof native support).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"function uses training set/test set paradigm tune fit elastic net model using variety user-specified details. Tuning can performed using either simple training vs. test set split, k-fold cross-validation, bootstrapping, multiple preprocessing options available.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"","code":"tof_train_model( split_data, unsplit_data, predictor_cols, response_col = NULL, time_col = NULL, event_col = NULL, model_type = c(\"linear\", \"two-class\", \"multiclass\", \"survival\"), hyperparameter_grid = tof_create_grid(), standardize_predictors = TRUE, remove_zv_predictors = FALSE, impute_missing_predictors = FALSE, optimization_metric = \"tidytof_default\", best_model_type = c(\"best\", \"best with sparsity\"), num_cores = 1 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"split_data `rsplit` `rset` object rsample package containing sample-level data use modeling. easiest way generate use tof_split_data. unsplit_data tibble containing sample-level data use modeling without resampling. using resampling method advised, argument provides interface fit model without using cross-validation bootstrap resampling. Ignored split_data provided. predictor_cols Unquoted column names indicating columns data contained `split_data` used predictors elastic net model. Supports tidyselect helpers. response_col Unquoted column name indicating column data contained `split_data` used outcome \"two-class\", \"multiclass\", \"linear\" elastic net model. Must factor \"two-class\" \"multiclass\" models must numeric \"linear\" models. Ignored `model_type` \"survival\". time_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must numeric. Ignored `model_type` \"two-class\", \"multiclass\", \"linear\". event_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must binary column - values either 0 1 (1 indicating adverse event) FALSE TRUE (TRUE indicating adverse event). Ignored `model_type` \"two-class\", \"multiclass\", \"linear\". model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. hyperparameter_grid hyperparameter grid indicating values elastic net penalty (lambda) elastic net mixture (alpha) hyperparamters used model tuning. Generate grid using tof_create_grid. standardize_predictors logical value indicating numeric predictor columns standardized (centered scaled) model fitting, standard practice elastic net regularization. Defaults TRUE. remove_zv_predictors logical value indicating predictor columns near-zero variance removed model fitting using step_nzv. Defaults FALSE. impute_missing_predictors logical value indicating predictor columns missing values imputed using k-nearest neighbors model fitting (see step_impute_knn). Imputation performed using observation's 5 nearest-neighbors. Defaults FALSE. optimization_metric string indicating optimization metric used hyperparameter selection model tuning. Valid values depend model_type. \"linear\" models, choices \"mse\" (mean squared error predictions; default) \"mae\" (mean absolute error predictions). \"two-class\" models, choices \"roc_auc\" (area Receiver-Operating Curve classification; default), \"misclassification error\" (proportion misclassified observations), \"binomial_deviance\" (see deviance.glmnet), \"mse\" (mean squared error logit function), \"mae\" (mean absolute error logit function). \"multiclass\" models, choices \"roc_auc\" (area Receiver-Operating Curve classification using Hand-Till generalization ROC AUC multiclass models roc_auc; default), \"misclassification error\" (proportion misclassified observations), \"multinomial_deviance\" (see deviance.glmnet), \"mse\" \"mae\" . \"survival\" models, choices \"concordance_index\" (Harrel's C index; see deviance.glmnet) \"partial_likelihood_deviance\" (see deviance.glmnet). best_model_type Currently unused. num_cores Integer indicating many cores used parallel processing fitting multiple models. Defaults 1. Overhead separate models across multiple cores can high, significant speedup unlikely observed unless many large models fit.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"`tof_model`, S3 class includes elastic net model best performance (assessed via cross-validation, bootstrapping, simple splitting depending `split_data`) across tested hyperparameter value combinations. `tof_models` store following information: model final elastic net (\"glmnet\") model, chosen selecting elastic net hyperparameters best `optimization_metric` performance validation sets resample used train model (average) recipe recipe used data preprocessing mixture optimal mixture hyperparameter (alpha) glmnet model penalty optimal penalty hyperparameter (lambda) glmnet model model_type string indicating type glmnet model fit outcome_colnames character vector representing names columns training data modeled outcome variables training_data tibble containing (preprocessed) data used train model tuning_metrics tibble containing validation set performance metrics (model predictions) resample fold model tuning. log_rank_thresholds survival models , tibble containing information relative-risk thresholds can used split training data 2 risk groups (low- high-risk) based final model's predictions. relative-risk threshold, log-rank test p-value indicator threshold gives significant separation provided. best_log_rank_threshold survival models , numeric value representing relative-risk threshold yields significant log-rank test separating training data low- high-risk groups.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) #> A linear `tof_model` with a mixture parameter (alpha) of 0 and a penalty parameter (lambda) of 1e-10 #> # A tibble: 4 × 2 #> feature coefficient #> #> 1 (Intercept) 3.35 #> 2 pstat5 1.09 #> 3 cd45 0.710 #> 4 cd34 -0.0956 # train a logistic regression classifier tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = class, model_type = \"two-class\" ) #> A two-class `tof_model` with a mixture parameter (alpha) of 0.25 and a penalty parameter (lambda) of 1e+00 #> # A tibble: 2 × 2 #> feature coefficient #> #> 1 pstat5 -0.0588 #> 2 (Intercept) 0.00000102 # train a cox regression survival model tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), time_col = time_to_event, event_col = event, model_type = \"survival\" ) #> A survival `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e+00 #> # A tibble: 0 × 2 #> # ℹ 2 variables: feature , coefficient "},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":null,"dir":"Reference","previous_headings":"","what":"Transform raw high-dimensional cytometry data. — tof_transform","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"function transforms `tof_tbl` raw ion counts, reads, fluorescence intensity units directly measured cytometer using user-provided function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"","code":"tof_transform( tof_tibble = NULL, channel_cols = where(tof_is_numeric), transform_fun )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default transform numeric columns. transform_fun vectorized function apply protein value variance stabilization.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"`tof_tbl` identical dimensions input `tof_tibble`, columns specified channel_cols transformed using `transform_fun`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"","code":"# read in an example .fcs file from tidytof's internal datasets input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) # preprocess all numeric columns with default behavior # arcsinh transformation with a cofactor of 5 tof_preprocess(tof_tibble) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 15.3 1.88 5.33 0.263 1.70 5.85 #> 2 14.9 2.05 5.83 0.731 1.67 5.71 #> 3 15.2 1.88 5.70 1.13 0.861 5.54 #> 4 13.7 1.88 5.45 0.129 1.06 5.46 #> 5 15.2 1.99 5.73 0.721 1.41 5.55 #> 6 14.4 2.05 5.27 0.760 0.708 5.52 #> 7 13.9 1.88 5.31 0.645 0.771 5.42 #> 8 14.2 1.99 5.42 1.09 1.58 5.64 #> 9 15.6 2.05 6.03 0.586 1.37 5.83 #> 10 9.75 1.88 5.38 0.177 1.73 5.78 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , … # preprocess all numeric columns using the log base 10 tranformation tof_preprocess(tof_tibble, transform_fun = log10) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 7.04 1.20 2.71 0.125 1.12 2.94 #> 2 6.85 1.28 2.93 0.601 1.11 2.88 #> 3 6.99 1.20 2.87 0.843 0.686 2.81 #> 4 6.36 1.20 2.77 -0.189 0.800 2.77 #> 5 6.98 1.26 2.89 0.594 0.984 2.81 #> 6 6.65 1.28 2.69 0.621 0.584 2.80 #> 7 6.44 1.20 2.70 0.539 0.628 2.75 #> 8 6.57 1.26 2.75 0.821 1.07 2.85 #> 9 7.18 1.28 3.02 0.491 0.964 2.93 #> 10 4.63 1.20 2.74 -0.0515 1.13 2.91 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":null,"dir":"Reference","previous_headings":"","what":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"Tune elastic net model's hyperparameters multiple resamples","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"","code":"tof_tune_glmnet( split_data, prepped_recipe, hyperparameter_grid, model_type, outcome_cols, optimization_metric = \"tidytof_default\", num_cores = 1 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"split_data `rsplit` `rset` object rsample package. easiest way generate use tof_split_data. Alternatively, unsplit tbl_df can provided, though recommended. prepped_recipe Either single recipe object (`split_data` `rsplit` object `tbl_df`) list recipes (`split_data` `rset` object) entry list corresponds resample `split_data`. hyperparameter_grid hyperparameter grid indicating values elastic net penalty (lambda) elastic net mixture (alpha) hyperparameters used model tuning. Generate grid using tof_create_grid. model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. outcome_cols Unquoted column name(s) indicating column(s) data contained `split_data` used outcome elastic net model. survival models, two columns selected; others, one column selected. optimization_metric string indicating optimization metric used hyperparameter selection model tuning. Valid values depend model_type. num_cores Integer indicating many cores used parallel processing fitting multiple models. Defaults 1. Overhead separate models across multiple cores can high, significant speedup unlikely observed unless many large models fit.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"tibble containing summary model's performance resampling iteration across hyperparameter combinations. contain 3 columns: \"splits\" (list-col containing resampling iteration's `rsplit` object), \"id\" (name resampling iteration), \"performance_metrics\" (list-col containing performance metrics resampling iteration. row \"performance_metrics\" tibble columns \"mixture\" \"penalty\" several additional columns containing performance metrics model mixture/penalty combination). See tof_fit_split additional details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":null,"dir":"Reference","previous_headings":"","what":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"function performs distance-based upsampling CyTOF data sorting single cells (passed function `tof_tibble`) phenotypically similar cell subpopulation reference dataset (passed function `reference_tibble`). calculating distance (either mahalanobis, cosine, pearson) cell `tof_tibble` centroid cluster `reference_tibble`, sorting cells cluster corresponding closest centroid.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"","code":"tof_upsample( tof_tibble, reference_tibble, reference_cluster_col, upsample_cols = where(tof_is_numeric), ..., augment = TRUE, method = c(\"distance\", \"neighbor\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"tof_tibble `tibble` `tof_tbl` containing cells upsampled nearest reference subpopulation. reference_tibble `tibble` `tof_tibble` containing cells already clustered manually gated subpopulations. reference_cluster_col unquoted column name indicating column `reference_tibble` contains subpopulation label (cluster id) cell `reference_tibble`. upsample_cols Unquoted column names indicating columns `tof_tibble` use computing distances used upsampling. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. ... Additional arguments pass `tof_upsample_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"distance\" (default) \"neighbor\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding upsampled cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"","code":"# simulate single-cell data (and reference data with clusters to upsample # into sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) reference_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) # upsample using distance to cluster centroids tof_upsample( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, method = \"distance\" ) #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .upsample_cluster #> #> 1 0.391 0.908 -0.584 -0.281 b #> 2 0.805 -1.23 0.799 -0.472 b #> 3 0.943 0.371 -0.575 0.928 b #> 4 -0.631 -1.17 -0.0679 -0.0230 a #> 5 -0.189 -0.638 2.32 -0.734 b #> 6 -0.701 0.263 -0.179 0.972 a #> 7 -0.422 0.707 1.03 -2.52 a #> 8 -0.453 0.614 0.806 2.03 a #> 9 -1.67 1.09 -0.390 -0.473 a #> 10 -1.17 -1.38 0.599 0.635 b #> # ℹ 990 more rows # upsample using distance to nearest neighbor tof_upsample( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, method = \"neighbor\" ) #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .upsample_cluster #> #> 1 0.391 0.908 -0.584 -0.281 a #> 2 0.805 -1.23 0.799 -0.472 a #> 3 0.943 0.371 -0.575 0.928 a #> 4 -0.631 -1.17 -0.0679 -0.0230 a #> 5 -0.189 -0.638 2.32 -0.734 b #> 6 -0.701 0.263 -0.179 0.972 b #> 7 -0.422 0.707 1.03 -2.52 a #> 8 -0.453 0.614 0.806 2.03 b #> 9 -1.67 1.09 -0.390 -0.473 a #> 10 -1.17 -1.38 0.599 0.635 a #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":null,"dir":"Reference","previous_headings":"","what":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"function performs distance-based upsampling CyTOF data sorting single cells (passed function `tof_tibble`) phenotypically similar cell subpopulation reference dataset (passed function `reference_tibble`). calculating distance (either mahalanobis, cosine, pearson) cell `tof_tibble` centroid cluster `reference_tibble`, sorting cells cluster corresponding closest centroid.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"","code":"tof_upsample_distance( tof_tibble, reference_tibble, reference_cluster_col, upsample_cols = where(tof_is_numeric), parallel_cols, distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\"), num_cores = 1L, return_distances = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"tof_tibble `tibble` `tof_tbl` containing cells upsampled nearest reference subpopulation. reference_tibble `tibble` `tof_tibble` containing cells already clustered manually gated subpopulations. reference_cluster_col unquoted column name indicating column `reference_tibble` contains subpopulation label (cluster id) cell `reference_tibble`. upsample_cols Unquoted column names indicating columns `tof_tibble` use computing distances used upsampling. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. parallel_cols Optional. Unquoted column names indicating columns `tof_tibble` use breaking data order parallelize upsampling using `foreach` `doParallel` backend. Supports tidyselect helpers. distance_function string indicating distance function used perform upsampling. Options \"mahalanobis\" (default), \"cosine\", \"pearson\". num_cores integer indicating number CPU cores used parallelize classification. Defaults 1 (single core). return_distances boolean value indicating whether returned result include one column, cluster ids corresponding row `tof_tibble` (return_distances = FALSE, default), returned result include additional columns representing distance row `tof_tibble` reference subpopulation centroids (return_distances = TRUE).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"`return_distances = FALSE`, tibble one column named `.upsample_cluster`, character vector length `nrow(tof_tibble)` indicating id reference cluster cell (.e. row) `tof_tibble` assigned. `return_distances = TRUE`, tibble `nrow(tof_tibble)` rows num_clusters + 1 columns, num_clusters number clusters `reference_tibble`. row represents cell `tof_tibble`, num_clusters columns represent distance cell reference subpopulations' cluster centroids. final column represents cluster id reference subpopulation minimum distance cell represented row.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"","code":"# simulate single-cell data (and reference data with clusters to upsample # into sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) reference_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) # upsample using mahalanobis distance tof_upsample_distance( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 a #> 2 b #> 3 a #> 4 b #> 5 a #> 6 a #> 7 a #> 8 a #> 9 a #> 10 a #> # ℹ 990 more rows # upsample using cosine distance tof_upsample_distance( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, distance_function = \"cosine\" ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 b #> 2 b #> 3 b #> 4 b #> 5 a #> 6 a #> 7 b #> 8 a #> 9 a #> 10 a #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":null,"dir":"Reference","previous_headings":"","what":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"function performs upsampling CyTOF data sorting single cells (passed function `tof_tibble`) phenotypically similar cell subpopulation reference dataset (passed function `reference_tibble`). finding cell `tof_tibble`'s nearest neighbor `reference_tibble` assigning cluster nearest neighbor belongs. nearest neighbor calculation can performed either euclidean cosine distance.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"","code":"tof_upsample_neighbor( tof_tibble, reference_tibble, reference_cluster_col, upsample_cols = where(tof_is_numeric), num_neighbors = 1L, distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"tof_tibble `tibble` `tof_tbl` containing cells upsampled nearest reference subpopulation. reference_tibble `tibble` `tof_tibble` containing cells already clustered manually gated subpopulations. reference_cluster_col unquoted column name indicating column `reference_tibble` contains subpopulation label (cluster id) cell `reference_tibble`. upsample_cols Unquoted column names indicating columns `tof_tibble` use computing distances used upsampling. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_neighbors integer indicating many neighbors used nearest neighbor calculation. Clusters assigned based majority vote. distance_function string indicating distance function used perform upsampling. Options \"euclidean\" (default) \"cosine\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"tibble one column named `.upsample_cluster`, character vector length `nrow(tof_tibble)` indicating id reference cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"","code":"# simulate single-cell data (and reference data with clusters to upsample # into sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) reference_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) # upsample using euclidean distance tof_upsample_neighbor( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 a #> 2 b #> 3 b #> 4 a #> 5 b #> 6 a #> 7 a #> 8 b #> 9 b #> 10 b #> # ℹ 990 more rows # upsample using cosine distance tof_upsample_neighbor( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, distance_function = \"cosine\" ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 b #> 2 a #> 3 a #> 4 a #> 5 b #> 6 a #> 7 a #> 8 a #> 9 b #> 10 b #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":null,"dir":"Reference","previous_headings":"","what":"Write a series of .csv files from a tof_tbl — tof_write_csv","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"function takes given `tof_tbl` writes single-cell data contains .csv files within directory located `out_path`. `group_cols` argument specifies rows `tof_tbl` (cell) broken separate .csv files","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"","code":"tof_write_csv(tof_tibble, group_cols, out_path, sep = \"_\", file_name)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"tof_tibble `tof_tbl` `tibble`. group_cols Optional. Unquoted names columns `tof_tibble` used group cells separate files. Supports tidyselect helpers. Defaults NULL (cells written single file). out_path system path indicating directory output .csv files saved. directory exist, created. sep Delimiter used values `group_cols` create output .csv file names. Defaults \"_\". file_name `group_cols` specified, name (without extension) used saved .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"function return anything. Instead, side-effect saving .csv files `out_path`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"Write data (form `tof_tbl`) either .csv .fcs file storage.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"","code":"tof_write_data( tof_tibble = NULL, group_cols, out_path = NULL, format = c(\"fcs\", \"csv\"), sep = \"_\", file_name )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"tof_tibble `tof_tbl` `tibble`. group_cols Optional. Unquoted names columns `tof_tibble` used group cells separate files. Supports tidyselect helpers. Defaults grouping (cells written single file). out_path Path directory output files saved. format format files written. Currently supports .csv .fcs files sep Delimiter used values `group_cols` create output .csv/.fcs file names. Defaults \"_\". file_name `group_cols` specified, name (without extension) used saved file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"function explicitly return values. Instead, writes .csv /.fcs files specified `out_path`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":null,"dir":"Reference","previous_headings":"","what":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"function takes given `tof_tbl` writes single-cell data contains .fcs files within directory located `out_path`. `group_cols` argument specifies rows `tof_tbl` (cell) broken separate .fcs files","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"","code":"tof_write_fcs(tof_tibble, group_cols, out_path, sep = \"_\", file_name)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used group cells separate files. Supports tidyselect helpers. Defaults NULL (cells written single file). out_path system path indicating directory output .csv files saved. directory exist, created. sep Delimiter used values `group_cols` create output .fcs file names. Defaults \"_\". file_name `group_cols` specified, name (without extension) used saved .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"function return anything. Instead, side-effect saving .fcs files `out_path`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":null,"dir":"Reference","previous_headings":"","what":"Select variables with a function — where","title":"Select variables with a function — where","text":"copy , selection helper selects variables predicate function returns TRUE. See language details tidyselection.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Select variables with a function — where","text":"","code":"where(fn)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Select variables with a function — where","text":"fn function returns TRUE FALSE (technically, predicate function). Can also purrr-like formula.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Select variables with a function — where","text":"predicate can used select columns data.frame.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Select variables with a function — where","text":"help file replicated verbatim tidyselect-package.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Select variables with a function — where","text":"Lionel Henry Hadley Wickham (2021). tidyselect: Select Set Strings. R package version 1.1.1. https://CRAN.R-project.org/package=tidyselect","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Select variables with a function — where","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/news/index.html","id":"tidytof-0990","dir":"Changelog","previous_headings":"","what":"tidytof 0.99.0","title":"tidytof 0.99.0","text":"NEW FEATURES Added NEWS.md file track changes package. SIGNIFICANT USER-VISIBLE CHANGES Submitted Bioconductor BUG FIXES None","code":""}] +[{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":null,"dir":"","previous_headings":"","what":"Contributing to tidytof","title":"Contributing to tidytof","text":"outlines propose change tidytof. detailed info contributing , tidyverse packages, please see development contributing guide.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"fixing-typos","dir":"","previous_headings":"","what":"Fixing typos","title":"Contributing to tidytof","text":"can fix typos, spelling mistakes, grammatical errors documentation directly using GitHub web interface, long changes made source file. generally means ’ll need edit roxygen2 comments .R, .Rd file. can find .R file generates .Rd reading comment first line.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"bigger-changes","dir":"","previous_headings":"","what":"Bigger changes","title":"Contributing to tidytof","text":"want make bigger change, ’s good idea first file issue make sure someone team agrees ’s needed. ’ve found bug, please file issue illustrates bug minimal reprex (also help write unit test, needed).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"pull-request-process","dir":"","previous_headings":"Bigger changes","what":"Pull request process","title":"Contributing to tidytof","text":"Fork package clone onto computer. haven’t done , recommend using usethis::create_from_github(\"keyes-timothy/tidytof\", fork = TRUE). Install development dependencies devtools::install_dev_deps(), make sure package passes R CMD check running devtools::check(). R CMD check doesn’t pass cleanly, ’s good idea ask help continuing. Create Git branch pull request (PR). recommend using usethis::pr_init(\"brief-description--change\"). Make changes, commit git, create PR running usethis::pr_push(), following prompts browser. title PR briefly describe change. body PR contain Fixes #issue-number. user-facing changes, add bullet top NEWS.md (.e. just first header). Follow style described https://style.tidyverse.org/news.html.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"code-style","dir":"","previous_headings":"Bigger changes","what":"Code style","title":"Contributing to tidytof","text":"New code follow tidyverse style guide. can use styler package apply styles, please don’t restyle code nothing PR. use roxygen2, Markdown syntax, documentation. use testthat unit tests. Contributions test cases included easier accept.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/CONTRIBUTING.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Contributing to tidytof","text":"Please note tidytof project released Contributor Code Conduct. contributing project agree abide terms.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2020 Timothy Keyes Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/clustering.html","id":"clustering-with-tof_cluster","dir":"Articles","previous_headings":"","what":"Clustering with tof_cluster()","title":"Clustering and metaclustering","text":"demonstrate, can apply PhenoGraph clustering algorithm tidytof’s built-phenograph_data. Note phenograph_data contains 3000 total cells (1000 3 clusters identified original PhenoGraph publication). demonstration purposes, also metacluster PhenoGraph clusters using k-means clustering. outputs tof_cluster() tof_metacluster() tof_tbl identical input tibble, now addition additional column (case, “.phenograph_cluster” “.kmeans_metacluster”) encodes cluster id cell input tof_tbl. Note output columns added tibble tof_tbl tidytof begin full-stop (“.”) reduce likelihood collisions existing column names. output tof_cluster tof_tbl, can use dplyr’s count method assess accuracy clustering procedure compared original clustering PhenoGraph paper. , can see clustering procedure groups cells PhenoGraph cluster one another (small number mistakes). change clustering algorithm tof_cluster uses, alter method flag. change columns used compute clusters, change cluster_cols flag. finally, want return one-column tibble includes cluster labels (opposed cluster labels added new column input tof_tbl), set augment FALSE.","code":"data(phenograph_data) set.seed(203L) phenograph_clusters <- phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = starts_with(\"cd\"), num_neighbors = 50L, distance_function = \"cosine\", method = \"phenograph\" ) |> tof_metacluster( cluster_col = .phenograph_cluster, metacluster_cols = starts_with(\"cd\"), num_metaclusters = 3L, method = \"kmeans\" ) phenograph_clusters |> dplyr::select(sample_name, .phenograph_cluster, .kmeans_metacluster) |> head() #> # A tibble: 6 × 3 #> sample_name .phenograph_cluster .kmeans_metacluster #> #> 1 H1_PhenoGraph_cluster1 6 2 #> 2 H1_PhenoGraph_cluster1 1 2 #> 3 H1_PhenoGraph_cluster1 6 2 #> 4 H1_PhenoGraph_cluster1 6 2 #> 5 H1_PhenoGraph_cluster1 6 2 #> 6 H1_PhenoGraph_cluster1 6 2 phenograph_clusters |> dplyr::count(phenograph_cluster, .kmeans_metacluster, sort = TRUE) #> # A tibble: 4 × 3 #> phenograph_cluster .kmeans_metacluster n #> #> 1 cluster2 3 1000 #> 2 cluster3 1 1000 #> 3 cluster1 2 995 #> 4 cluster1 1 5 # use the kmeans algorithm phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = contains(\"cd\"), method = \"kmeans\" ) # use the flowsom algorithm phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = contains(\"cd\"), method = \"flowsom\" ) # will result in a tibble with only 1 column (the cluster labels) phenograph_data |> tof_preprocess() |> tof_cluster( cluster_cols = contains(\"cd\"), method = \"kmeans\", augment = FALSE ) |> head() #> # A tibble: 6 × 1 #> .kmeans_cluster #> #> 1 2 #> 2 1 #> 3 19 #> 4 9 #> 5 2 #> 6 9"},{"path":"https://keyes-timothy.github.io/tidytof/articles/clustering.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Clustering and metaclustering","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] tidyselect_1.2.0 viridisLite_0.4.2 timeDate_4032.109 #> [4] farver_2.1.1 viridis_0.6.5 ggraph_2.2.1 #> [7] fastmap_1.1.1 tweenr_2.0.3 rpart_4.1.23 #> [10] digest_0.6.34 timechange_0.3.0 lifecycle_1.0.4 #> [13] yardstick_1.3.0 survival_3.5-8 magrittr_2.0.3 #> [16] compiler_4.3.3 rlang_1.1.3 sass_0.4.8 #> [19] tools_4.3.3 igraph_2.0.2 utf8_1.2.4 #> [22] yaml_2.3.8 data.table_1.15.2 knitr_1.45 #> [25] graphlayouts_1.1.1 withr_3.0.0 purrr_1.0.2 #> [28] RProtoBufLib_2.14.0 BiocGenerics_0.48.1 desc_1.4.3 #> [31] nnet_7.3-19 grid_4.3.3 polyclip_1.10-6 #> [34] stats4_4.3.3 fansi_1.0.6 RcppHNSW_0.6.0 #> [37] future_1.33.1 colorspace_2.1-0 ggplot2_3.5.0 #> [40] globals_0.16.3 scales_1.3.0 iterators_1.0.14 #> [43] MASS_7.3-60.0.1 cli_3.6.2 rmarkdown_2.26 #> [46] ragg_1.2.7 generics_0.1.3 future.apply_1.11.1 #> [49] tzdb_0.4.0 cachem_1.0.8 flowCore_2.14.1 #> [52] ggforce_0.4.2 stringr_1.5.1 splines_4.3.3 #> [55] parallel_4.3.3 matrixStats_1.2.0 vctrs_0.6.5 #> [58] hardhat_1.3.1 glmnet_4.1-8 Matrix_1.6-5 #> [61] jsonlite_1.8.8 cytolib_2.14.1 hms_1.1.3 #> [64] S4Vectors_0.40.2 ggrepel_0.9.5 listenv_0.9.1 #> [67] systemfonts_1.0.6 foreach_1.5.2 gower_1.0.1 #> [70] tidyr_1.3.1 jquerylib_0.1.4 recipes_1.0.10 #> [73] parallelly_1.37.1 glue_1.7.0 pkgdown_2.0.7 #> [76] codetools_0.2-19 stringi_1.8.3 lubridate_1.9.3 #> [79] gtable_0.3.4 shape_1.4.6.1 munsell_0.5.0 #> [82] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.7 #> [85] ipred_0.9-14 lava_1.8.0 R6_2.5.1 #> [88] textshaping_0.3.7 doParallel_1.0.17 tidygraph_1.3.1 #> [91] evaluate_0.23 Biobase_2.62.0 lattice_0.22-5 #> [94] readr_2.1.5 memoise_2.0.1 bslib_0.6.1 #> [97] class_7.3-22 Rcpp_1.0.12 prodlim_2023.08.28 #> [100] gridExtra_2.3 xfun_0.42 fs_1.6.3 #> [103] pkgconfig_2.0.3"},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"general-guidelines","dir":"Articles","previous_headings":"","what":"General Guidelines","title":"How to contribute code","text":"extend tidytof include new algorithm - example, one ’ve just developed - can take 1 2 general strategies (cases, may take !). first write tidytof-style verb algorithm can included standalone package. case, benefit writing tidytof-style verb algorithm taking advantage tidytof’s design schema make algorithm easy users access without learning much () new syntax still allowing maintain code base independently team. second approach write tidytof-style function ’d like team add tidytof next release. case, code review process take bit time, also allow teams collaborate provide greater degree critical feedback one another well share burden code maintenance future. either case, ’re welcome contact tidytof team review code via pull request /issue tidytof GitHub page. tutorial may helpful don’t lot experience collaborating programmers via GitHub. open request, can submit code team reviewed. Whether want method incorporated tidytof ’re simply looking external code review/feedback team, please mention request.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"code-style","dir":"Articles","previous_headings":"","what":"Code style","title":"How to contribute code","text":"tidytof uses tidyverse style guide. Adhering tidyverse style something team expect code incorporated tidytof, ’s also something encourage functions write analysis packages. experience, best code written just executed, also read humans! also many tools can use lint automatically style R code, {lintr} {styler} packages.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"testing","dir":"Articles","previous_headings":"","what":"Testing","title":"How to contribute code","text":"addition written well-styled code, encourage write unit tests every function write. common practice software engineering world, common probably (!) bioinformatics community. tidytof team uses {testthat} package unit tests, ’s great tutorial .","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"general-principles","dir":"Articles","previous_headings":"How to contribute","what":"General principles","title":"How to contribute code","text":"important part writing function extends tidytof adhere tidytof verb syntax. exceptions, tidytof functions follow specific, shared syntax involves 3 types arguments always occur order. argument types follows: almost tidytof functions, first argument data frame (tibble). enables use pipe (|>) multi-step calculations, means first argument functions implicit (passed previous function using pipe). second group arguments called column specifications, end suffix _col _cols. Column specifications unquoted column names tell tidytof verb columns compute particular operation. example, cluster_cols argument tof_cluster allows user specify column input data frames used perform clustering. Regardless verb requires , column specifications support tidyselect helpers follow rules tidyselection tidyverse verbs like dplyr::select() tidyr::pivot_longer(). Finally, third group arguments tidytof verb called method specifications, ’re comprised every argument isn’t input data frame column specification. Whereas column specifications represent columns used perform operation, method specifications represent details operation performed. example, tof_cluster_phenograph() function requires method specification num_neighbors, specifies many nearest neighbors used construct PhenoGraph algorithm’s k-nearest-neighbor graph. exceptions, tidytof extension include 3 argument types (order). addition, functions extend tidytof name starts prefix tof_. make easier users find tidytof functions using text completion functionality included development environments.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"contributing-a-new-method-to-an-existing-tidytof-verb","dir":"Articles","previous_headings":"How to contribute","what":"Contributing a new method to an existing {tidytof} verb","title":"How to contribute code","text":"tidytof currently includes multiple verbs perform fundamental single-cell data manipulation tasks. Currently, tidytof’s extensible verbs following: tof_analyze_abundance: Perform differential cluster abundance analysis tof_analyze_expression: Perform differential marker expression analysis tof_annotate_clusters: Annotate clusters manual IDs tof_batch_correct: Perform batch correction tof_cluster: Cluster cells subpopulations tof_downsample: Subsample dataset smaller number cells tof_extract: Calculate sample-level summary statistics tof_metacluster: Metacluster clusters smaller number subpopulations tof_plot_cells: Plot cell-level data tof_plot_clusters: Plot cluster-level data tof_plot_model: Plot results sample-level model tof_read_data: Read data memory disk tof_reduce_dimensions: Perform dimensionality reduction tof_transform: Transform marker expression values vectorized fashion tof_upsample: Assign new cells existing clusters (defined downsample dataset) tof_write_data: Write data memory disk tidytof verb wraps family related functions perform basic task. example, tof_cluster verb wrapper following functions: tof_cluster_ddpr, tof_cluster_flowsom, tof_cluster_kmeans, tof_cluster_phenograph. functions implement different clustering algorithm, share underlying logic standardized tof_cluster abstraction. practice, means users can apply DDPR, FlowSOM, K-means, PhenoGraph clustering algorithms datasets either calling one tof_cluster_* functions directly, calling tof_cluster method argument set appropriate value (“ddpr”, “flowsom”, “kmeans”, “phenograph”, respectively). extend existing tidytof verb, write function whose name fits pattern tof_{verb name}_*, “*” represents name algorithm used perform computation. function definition, try share many arguments possible tidytof verb ’re extending, return output object described “Value” heading help file verb extended. example, suppose wanted write tidytof-style interface new clustering algorithm “supercluster”, performs k-means clustering dataset twice outputs final cluster assignment equal two k-means cluster assignments spliced together. add supercluster algorithm tidytof, might write function like : example , note tof_cluster_supercluster named using tof_{verb name}_* style, function definition uses tof_tibble cluster_cols arguments tof_cluster, returned output object tof_tbl single column encoding cluster ids cells tof_tibble.","code":"#' Perform superclustering on high-dimensional cytometry data. #' #' This function applies the silly, hypothetical clustering algorithm #' \"supercluster\" to high-dimensional cytometry data using user-specified #' input variables/cytometry measurements. #' #' @param tof_tibble A `tof_tbl` or `tibble`. #' #' @param cluster_cols Unquoted column names indicating which columns in #' `tof_tibble` to use in computing the supercluster clusters. #' Supports tidyselect helpers. #' #' @param num_kmeans_clusters An integer indicating how many clusters should be #' used for the two k-means clustering steps. #' #' @param sep A string to use when splicing the 2 k-means clustering assignments #' to one another. #' #' @param ... Optional additional parameters to pass to #' \\code{\\link[tidytof]{tof_cluster_kmeans}} #' #' @return A tibble with one column named `.supercluster_cluster` containing #' a character vector of length `nrow(tof_tibble)` indicating the id of the #' supercluster cluster to which each cell (i.e. each row) in `tof_tibble` was #' assigned. #' #' @importFrom dplyr tibble #' tof_cluster_supercluster <- function(tof_tibble, cluster_cols, num_kmeans_clusters = 10L, sep = \"_\", ...) { kmeans_1 <- tof_tibble |> tof_cluster_kmeans( cluster_cols = {{ cluster_cols }}, num_clusters = num_kmeans_clusters, ... ) kmeans_2 <- tof_tibble |> tof_cluster_kmeans( cluster_cols = {{ cluster_cols }}, num_clusters = num_kmeans_clusters, ... ) final_result <- dplyr::tibble( .supercluster_cluster = paste(kmeans_1$.kmeans_cluster, kmeans_2$.kmeans_cluster, sep = sep) ) return(final_result) }"},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"creating-a-new-tidytof-verb","dir":"Articles","previous_headings":"How to contribute","what":"Creating a new {tidytof} verb","title":"How to contribute code","text":"want contribute function tidytof represents new operation encompassed existing verbs , include suggestion create new verb pull request tidytof team. case, ’ll considerably flexibility define interface tidytof use implement new verb, tidytof team happy work figure makes sense (least brainstorm together).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"a-note-about-modeling-functions","dir":"Articles","previous_headings":"How to contribute","what":"A note about modeling functions","title":"How to contribute code","text":"point development, don’t recommend extending tidytof’s modeling functionality, likely abstracted standalone package (emphasis interoperability tidymodels ecosystem) point future.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"contact-us","dir":"Articles","previous_headings":"","what":"Contact us","title":"How to contribute code","text":"general questions/comments/concerns tidytof, feel free reach team GitHub .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/contributing-to-tidytof.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"How to contribute code","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> loaded via a namespace (and not attached): #> [1] digest_0.6.34 desc_1.4.3 R6_2.5.1 fastmap_1.1.1 #> [5] xfun_0.42 magrittr_2.0.3 cachem_1.0.8 knitr_1.45 #> [9] memoise_2.0.1 htmltools_0.5.7 rmarkdown_2.26 lifecycle_1.0.4 #> [13] cli_3.6.2 vctrs_0.6.5 sass_0.4.8 pkgdown_2.0.7 #> [17] textshaping_0.3.7 jquerylib_0.1.4 systemfonts_1.0.6 compiler_4.3.3 #> [21] purrr_1.0.2 tools_4.3.3 ragg_1.2.7 bslib_0.6.1 #> [25] evaluate_0.23 yaml_2.3.8 jsonlite_1.8.8 rlang_1.1.3 #> [29] fs_1.6.3"},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Differential discovery analysis","text":"demonstrate use verbs, ’ll first download dataset originally collected development CITRUS algorithm. data available HDCytoData package, available Bioconductor can downloaded following command: load CITRUS data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s . Thus, can see citrus_data tof_tbl 172791 cells (one row) 39 pieces information cell (one column). can also extract metadata raw data join single-cell data using functions tidyverse: Thus, now sample-level information patient sample collected stimulation condition (“Basal” “BCR-XL”) sample exposed data acquisition. Finally, can join metadata single-cell tof_tbl obtain cleaned dataset. data cleaning steps, now citrus_data, tof_tbl containing cells collected 8 patients. Specifically, 2 samples taken patient: one cells’ B-cell receptors stimulated (BCR-XL) one (Basal). citrus_data, cell’s patient origin stored patient column, cell’s stimulation condition stored stimulation column. addition, population_id column stores information cluster labels applied cell using combination FlowSOM clustering manual merging (details, run ?HDCytoData::Bodenmiller_BCR_XL R console).","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = \"_\") citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = 1:length(file_name), patient = stringr::str_extract(file_name, \"patient[:digit:]\"), stimulation = stringr::str_extract(file_name, \"(BCR-XL)|Reference\") ) |> mutate( stimulation = if_else(stimulation == \"Reference\", \"Basal\", stimulation) ) citrus_metadata |> head() #> # A tibble: 6 × 4 #> file_name sample_id patient stimulation #> #> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 patient1 BCR-XL #> 2 PBMC8_30min_patient1_Reference.fcs 2 patient1 Basal #> 3 PBMC8_30min_patient2_BCR-XL.fcs 3 patient2 BCR-XL #> 4 PBMC8_30min_patient2_Reference.fcs 4 patient2 Basal #> 5 PBMC8_30min_patient3_BCR-XL.fcs 5 patient3 BCR-XL #> 6 PBMC8_30min_patient3_Reference.fcs 6 patient3 Basal citrus_data <- citrus_data |> left_join(citrus_metadata, by = \"sample_id\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"differential-abundance-analysis-using-tof_analyze_abundance","dir":"Articles","previous_headings":"","what":"Differential abundance analysis using tof_analyze_abundance()","title":"Differential discovery analysis","text":"might wonder certain clusters expand deplete within patients two stimulation conditions described - question requires differential abundance analysis (DAA). tidytof’s tof_analyze_abundance() verb supports use 3 statistical approaches performing DAA: diffcyt, generalized-linear mixed modeling (GLMMs), simple t-tests. setup described uses paired design 2 experimental conditions interest (Basal vs. BCR-XL), can use paired t-test method: Based output, can see 6 8 clusters statistically different abundance two stimulation conditions. Using tidytof easy integration tidyverse packages, can use result visualize fold-changes cluster (within patient) BCR-XL condition compared Basal condition using ggplot2: Importantly, output tof_analyze_abundance depends slightly underlying statistical method used, details can found documentation tof_analyze_abundance_* function family member: tof_analyze_abundance_diffcyt tof_analyze_abundance_glmm tof_analyze_abundance_ttest","code":"daa_result <- citrus_data |> tof_analyze_abundance( cluster_col = population_id, effect_col = stimulation, group_cols = patient, test_type = \"paired\", method = \"ttest\" ) daa_result #> # A tibble: 8 × 8 #> population_id p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 0.000924 0.00535 \"*\" -5.48 7 -0.00743 0.644 #> 2 2 0.00623 0.0166 \"*\" -3.86 7 -0.0156 0.674 #> 3 3 0.0235 0.0314 \"*\" -2.88 7 -0.0638 0.849 #> 4 4 0.0235 0.0314 \"*\" 2.88 7 0.0832 1.38 #> 5 5 0.0116 0.0232 \"*\" 3.39 7 0.00246 1.08 #> 6 6 0.371 0.371 \"\" -0.955 7 -0.0168 0.919 #> 7 7 0.00134 0.00535 \"*\" 5.14 7 0.0202 1.14 #> 8 8 0.236 0.270 \"\" -1.30 7 -0.00228 0.901 plot_data <- citrus_data |> mutate(population_id = as.character(population_id)) |> left_join( select(daa_result, population_id, significant, mean_fc), by = \"population_id\" ) |> dplyr::count(patient, stimulation, population_id, significant, mean_fc, name = \"n\") |> group_by(patient, stimulation) |> mutate(prop = n / sum(n)) |> ungroup() |> pivot_wider( names_from = stimulation, values_from = c(prop, n), ) |> mutate( diff = `prop_BCR-XL` - prop_Basal, fc = `prop_BCR-XL` / prop_Basal, population_id = fct_reorder(population_id, diff), direction = case_when( mean_fc > 1 & significant == \"*\" ~ \"increase\", mean_fc < 1 & significant == \"*\" ~ \"decrease\", TRUE ~ NA_character_ ) ) significance_data <- plot_data |> group_by(population_id, significant, direction) |> summarize(diff = max(diff), fc = max(fc)) |> ungroup() plot_data |> ggplot(aes(x = population_id, y = fc, fill = direction)) + geom_violin(trim = FALSE) + geom_hline(yintercept = 1, color = \"red\", linetype = \"dotted\", size = 0.5) + geom_point() + geom_text( aes(x = population_id, y = fc, label = significant), data = significance_data, size = 8, nudge_x = 0.2, nudge_y = 0.06 ) + scale_x_discrete(labels = function(x) str_c(\"cluster \", x)) + scale_fill_manual( values = c(\"decrease\" = \"#cd5241\", \"increase\" = \"#207394\"), na.translate = FALSE ) + labs( x = NULL, y = \"Abundance fold-change (stimulated / basal)\", fill = \"Effect\", caption = \"Asterisks indicate significance at an adjusted p-value of 0.05\" ) #> Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0. #> ℹ Please use `linewidth` instead. #> This warning is displayed once every 8 hours. #> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was #> generated."},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"differential-expression-analysis-with-tof_analyze_expression","dir":"Articles","previous_headings":"","what":"Differential expression analysis with tof_analyze_expression()","title":"Differential discovery analysis","text":"Similarly, suppose ’re interested intracellular signaling proteins change expression levels two stimulation conditions clusters. Differential Expression Analysis (DEA) can performed using tidytof’s tof_analyze_expression verb. , can use paired t-tests multiple-hypothesis correction test significant differences cluster’s expression signaling markers stimulation conditions. output tof_analyze_expression() also depends underlying test used, can see result looks relatively similar output tof_analyze_abundance(). , output tibble row represents differential expression results single cluster-marker pair - example, first row represents difference expression pS6 cluster 1 BCR-XL Basal conditions. row includes raw p-value multiple-hypothesis-corrected p-value cluster-marker pair. result can used make volcano plot visualize results cluster-marker pairs: , details can found documentation tof_analyze_expression_* function family member: tof_analyze_expression_diffcyt tof_analyze_expression_lmm tof_analyze_expression_ttest","code":"signaling_markers <- c( \"pNFkB_Nd142\", \"pStat5_Nd150\", \"pAkt_Sm152\", \"pStat1_Eu153\", \"pStat3_Gd158\", \"pSlp76_Dy164\", \"pBtk_Er166\", \"pErk_Er168\", \"pS6_Yb172\", \"pZap70_Gd156\" ) dea_result <- citrus_data |> tof_preprocess(channel_cols = any_of(signaling_markers)) |> tof_analyze_expression( method = \"ttest\", cluster_col = population_id, marker_cols = any_of(signaling_markers), effect_col = stimulation, group_cols = patient, test_type = \"paired\" ) dea_result |> head() #> # A tibble: 6 × 9 #> population_id marker p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 pS6_Y… 7.58e-8 2.12e-6 * 22.9 7 2.56 4.31 #> 2 2 pS6_Y… 1.16e-7 2.12e-6 * 21.6 7 2.13 2.49 #> 3 3 pBtk_… 1.32e-7 2.12e-6 * -21.2 7 -0.475 0.289 #> 4 7 pBtk_… 1.18e-7 2.12e-6 * -21.5 7 -0.518 0.286 #> 5 8 pBtk_… 1.30e-7 2.12e-6 * -21.2 7 -0.516 0.324 #> 6 4 pBtk_… 7.85e-7 1.05e-5 * -16.3 7 -0.462 0.296 volcano_data <- dea_result |> mutate( log2_fc = log(mean_fc, base = 2), log_p = -log(p_adj), significance = case_when( p_adj < 0.05 & mean_fc > 1 ~ \"increased\", p_adj < 0.05 & mean_fc < 1 ~ \"decreased\", TRUE ~ NA_character_ ), marker = str_extract(marker, \".+_\") |> str_remove(\"_\"), pair = str_c(marker, str_c(\"cluster \", population_id), sep = \"@\") ) volcano_data |> ggplot(aes(x = log2_fc, y = log_p, fill = significance)) + geom_vline(xintercept = 0, linetype = \"dashed\", color = \"gray50\") + geom_hline(yintercept = -log(0.05), linetype = \"dashed\", color = \"red\") + geom_point(shape = 21, size = 2) + ggrepel::geom_text_repel( aes(label = pair), data = slice_head(volcano_data, n = 10L), size = 2 ) + scale_fill_manual( values = c(\"decreased\" = \"#cd5241\", \"increased\" = \"#207394\"), na.value = \"#cdcdcd\" ) + labs( x = \"log2(Fold-change)\", y = \"-log10(p-value)\", fill = NULL, caption = \"Labels indicate the 10 most significant marker-cluster pairs\" )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/differential-discovery-analysis.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Differential discovery analysis","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods #> [8] base #> #> other attached packages: #> [1] HDCytoData_1.22.0 flowCore_2.14.1 #> [3] SummarizedExperiment_1.32.0 Biobase_2.62.0 #> [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.7 #> [7] IRanges_2.36.0 S4Vectors_0.40.2 #> [9] MatrixGenerics_1.14.0 matrixStats_1.2.0 #> [11] ExperimentHub_2.10.0 AnnotationHub_3.10.0 #> [13] BiocFileCache_2.10.1 dbplyr_2.4.0 #> [15] BiocGenerics_0.48.1 forcats_1.0.0 #> [17] tidyr_1.3.1 ggplot2_3.5.0 #> [19] stringr_1.5.1 dplyr_1.1.4 #> [21] tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] jsonlite_1.8.8 shape_1.4.6.1 #> [3] magrittr_2.0.3 farver_2.1.1 #> [5] rmarkdown_2.26 fs_1.6.3 #> [7] zlibbioc_1.48.0 ragg_1.2.7 #> [9] vctrs_0.6.5 memoise_2.0.1 #> [11] htmltools_0.5.7 S4Arrays_1.2.1 #> [13] curl_5.2.1 SparseArray_1.2.4 #> [15] sass_0.4.8 parallelly_1.37.1 #> [17] bslib_0.6.1 desc_1.4.3 #> [19] lubridate_1.9.3 cachem_1.0.8 #> [21] igraph_2.0.2 mime_0.12 #> [23] lifecycle_1.0.4 iterators_1.0.14 #> [25] pkgconfig_2.0.3 Matrix_1.6-5 #> [27] R6_2.5.1 fastmap_1.1.1 #> [29] shiny_1.8.0 GenomeInfoDbData_1.2.11 #> [31] future_1.33.1 digest_0.6.34 #> [33] colorspace_2.1-0 AnnotationDbi_1.64.1 #> [35] textshaping_0.3.7 RSQLite_2.3.5 #> [37] labeling_0.4.3 filelock_1.0.3 #> [39] cytolib_2.14.1 fansi_1.0.6 #> [41] yardstick_1.3.0 timechange_0.3.0 #> [43] httr_1.4.7 polyclip_1.10-6 #> [45] abind_1.4-5 compiler_4.3.3 #> [47] bit64_4.0.5 withr_3.0.0 #> [49] doParallel_1.0.17 viridis_0.6.5 #> [51] DBI_1.2.2 highr_0.10 #> [53] ggforce_0.4.2 MASS_7.3-60.0.1 #> [55] lava_1.8.0 rappdirs_0.3.3 #> [57] DelayedArray_0.28.0 tools_4.3.3 #> [59] interactiveDisplayBase_1.40.0 httpuv_1.6.14 #> [61] future.apply_1.11.1 nnet_7.3-19 #> [63] glue_1.7.0 promises_1.2.1 #> [65] grid_4.3.3 generics_0.1.3 #> [67] recipes_1.0.10 gtable_0.3.4 #> [69] tzdb_0.4.0 class_7.3-22 #> [71] data.table_1.15.2 hms_1.1.3 #> [73] tidygraph_1.3.1 utf8_1.2.4 #> [75] XVector_0.42.0 ggrepel_0.9.5 #> [77] BiocVersion_3.18.1 foreach_1.5.2 #> [79] pillar_1.9.0 RcppHNSW_0.6.0 #> [81] later_1.3.2 splines_4.3.3 #> [83] tweenr_2.0.3 lattice_0.22-5 #> [85] survival_3.5-8 bit_4.0.5 #> [87] RProtoBufLib_2.14.0 tidyselect_1.2.0 #> [89] Biostrings_2.70.2 knitr_1.45 #> [91] gridExtra_2.3 xfun_0.42 #> [93] graphlayouts_1.1.1 hardhat_1.3.1 #> [95] timeDate_4032.109 stringi_1.8.3 #> [97] yaml_2.3.8 evaluate_0.23 #> [99] codetools_0.2-19 ggraph_2.2.1 #> [101] tibble_3.2.1 BiocManager_1.30.22 #> [103] cli_3.6.2 rpart_4.1.23 #> [105] xtable_1.8-4 systemfonts_1.0.6 #> [107] munsell_0.5.0 jquerylib_0.1.4 #> [109] Rcpp_1.0.12 globals_0.16.3 #> [111] png_0.1-8 parallel_4.3.3 #> [113] ellipsis_0.3.2 pkgdown_2.0.7 #> [115] gower_1.0.1 readr_2.1.5 #> [117] blob_1.2.4 listenv_0.9.1 #> [119] glmnet_4.1-8 viridisLite_0.4.2 #> [121] ipred_0.9-14 scales_1.3.0 #> [123] prodlim_2023.08.28 purrr_1.0.2 #> [125] crayon_1.5.2 rlang_1.1.3 #> [127] KEGGREST_1.42.0"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"dimensionality-reduction-with-tof_reduce_dimensions-","dir":"Articles","previous_headings":"","what":"Dimensionality reduction with tof_reduce_dimensions().","title":"Dimensionality reduction","text":"example call tof_reduce_dimensions() use tSNE visualize data tidytof’s built-phenograph_data dataset. default, tof_reduce_dimensions add reduced-dimension feature embeddings input tof_tbl return augmented tof_tbl (, tof_tbl new columns embedding dimension) result. return features embeddings , set augment FALSE (tof_cluster). Changing method argument results different low-dimensional embeddings:","code":"data(phenograph_data) # perform the dimensionality reduction phenograph_tsne <- phenograph_data |> tof_preprocess() |> tof_reduce_dimensions(method = \"tsne\") #> Loading required namespace: Rtsne # select only the tsne embedding columns phenograph_tsne |> select(contains(\"tsne\")) |> head() #> # A tibble: 6 × 2 #> .tsne1 .tsne2 #> #> 1 5.30 6.71 #> 2 8.98 7.55 #> 3 35.3 4.97 #> 4 13.0 15.5 #> 5 7.03 10.4 #> 6 22.2 8.18 phenograph_data |> tof_preprocess() |> tof_reduce_dimensions(method = \"tsne\", augment = FALSE) #> # A tibble: 3,000 × 2 #> .tsne1 .tsne2 #> #> 1 9.10 10.6 #> 2 -0.610 12.8 #> 3 4.70 35.3 #> 4 0.467 22.0 #> 5 8.97 17.7 #> 6 -5.29 23.7 #> 7 -3.58 13.8 #> 8 -11.6 23.4 #> 9 -4.22 21.2 #> 10 1.12 7.05 #> # ℹ 2,990 more rows phenograph_data |> tof_reduce_dimensions(method = \"umap\", augment = FALSE) #> # A tibble: 3,000 × 2 #> .umap1 .umap2 #> #> 1 9.68 4.59 #> 2 8.90 3.55 #> 3 3.06 -0.0897 #> 4 2.76 -1.80 #> 5 9.87 4.21 #> 6 0.317 -2.52 #> 7 9.92 3.76 #> 8 2.23 -0.769 #> 9 5.43 -0.381 #> 10 8.30 5.75 #> # ℹ 2,990 more rows phenograph_data |> tof_reduce_dimensions(method = \"pca\", augment = FALSE) #> # A tibble: 3,000 × 5 #> .pc1 .pc2 .pc3 .pc4 .pc5 #> #> 1 -2.77 1.23 -0.868 0.978 3.49 #> 2 -0.969 -1.02 -0.787 1.22 0.329 #> 3 -2.36 2.54 -1.95 -0.882 -1.30 #> 4 -3.68 -0.00565 0.962 0.410 0.788 #> 5 -4.03 2.07 -0.829 1.59 5.39 #> 6 -2.59 -0.108 1.32 -1.41 -1.24 #> 7 -1.55 -0.651 -0.233 1.08 0.129 #> 8 -1.18 -0.446 0.134 -0.771 -0.932 #> 9 -2.00 -0.485 0.593 -0.0416 -0.658 #> 10 -0.0356 -0.924 -0.692 1.45 0.270 #> # ℹ 2,990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"method-specifications-for-tof_reduce_-functions","dir":"Articles","previous_headings":"","what":"Method specifications for tof_reduce_*() functions","title":"Dimensionality reduction","text":"tof_reduce_dimensions() provides high-level API three lower-level functions: tof_reduce_pca(), tof_reduce_umap(), tof_reduce_tsne(). help files functions provide details algorithm-specific method specifications associated dimensionality reduction approaches. example, tof_reduce_pca takes num_comp argument determine many principal components returned: see ?tof_reduce_pca, ?tof_reduce_umap, ?tof_reduce_tsne additional details.","code":"# 2 principal components phenograph_data |> tof_reduce_pca(num_comp = 2) #> # A tibble: 3,000 × 2 #> .pc1 .pc2 #> #> 1 -2.77 1.23 #> 2 -0.969 -1.02 #> 3 -2.36 2.54 #> 4 -3.68 -0.00565 #> 5 -4.03 2.07 #> 6 -2.59 -0.108 #> 7 -1.55 -0.651 #> 8 -1.18 -0.446 #> 9 -2.00 -0.485 #> 10 -0.0356 -0.924 #> # ℹ 2,990 more rows # 3 principal components phenograph_data |> tof_reduce_pca(num_comp = 3) #> # A tibble: 3,000 × 3 #> .pc1 .pc2 .pc3 #> #> 1 -2.77 1.23 -0.868 #> 2 -0.969 -1.02 -0.787 #> 3 -2.36 2.54 -1.95 #> 4 -3.68 -0.00565 0.962 #> 5 -4.03 2.07 -0.829 #> 6 -2.59 -0.108 1.32 #> 7 -1.55 -0.651 -0.233 #> 8 -1.18 -0.446 0.134 #> 9 -2.00 -0.485 0.593 #> 10 -0.0356 -0.924 -0.692 #> # ℹ 2,990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"visualization-using-tof_plot_cells_embedding","dir":"Articles","previous_headings":"","what":"Visualization using tof_plot_cells_embedding()","title":"Dimensionality reduction","text":"Regardless method used, reduced-dimension feature embeddings can visualized using ggplot2 (graphics package). tidytof also provides helper functions easily generating dimensionality reduction plots tof_tbl tibble columns representing embedding dimensions: visualizations can helpful qualitatively describing phenotypic differences clusters dataset. example, example , can see one clusters high CD11b expression, whereas others lower CD11b expression.","code":"# plot the tsne embeddings using color to distinguish between clusters phenograph_tsne |> tof_plot_cells_embedding( embedding_cols = contains(\".tsne\"), color_col = phenograph_cluster ) # plot the tsne embeddings using color to represent CD11b expression phenograph_tsne |> tof_plot_cells_embedding( embedding_cols = contains(\".tsne\"), color_col = cd11b ) + ggplot2::scale_fill_viridis_c()"},{"path":"https://keyes-timothy.github.io/tidytof/articles/dimensionality-reduction.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Dimensionality reduction","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] ggplot2_3.5.0 dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] RcppAnnoy_0.0.22 matrixStats_1.2.0 compiler_4.3.3 #> [7] png_0.1-8 systemfonts_1.0.6 vctrs_0.6.5 #> [10] stringr_1.5.1 pkgconfig_2.0.3 shape_1.4.6.1 #> [13] fastmap_1.1.1 ellipsis_0.3.2 labeling_0.4.3 #> [16] ggraph_2.2.1 utf8_1.2.4 rmarkdown_2.26 #> [19] prodlim_2023.08.28 tzdb_0.4.0 ragg_1.2.7 #> [22] purrr_1.0.2 xfun_0.42 glmnet_4.1-8 #> [25] cachem_1.0.8 jsonlite_1.8.8 recipes_1.0.10 #> [28] highr_0.10 keras_2.13.0 tweenr_2.0.3 #> [31] irlba_2.3.5.1 tensorflow_2.15.0 parallel_4.3.3 #> [34] R6_2.5.1 bslib_0.6.1 stringi_1.8.3 #> [37] reticulate_1.35.0 parallelly_1.37.1 rpart_4.1.23 #> [40] lubridate_1.9.3 jquerylib_0.1.4 Rcpp_1.0.12 #> [43] iterators_1.0.14 knitr_1.45 future.apply_1.11.1 #> [46] base64enc_0.1-3 readr_2.1.5 flowCore_2.14.1 #> [49] Matrix_1.6-5 splines_4.3.3 nnet_7.3-19 #> [52] igraph_2.0.2 timechange_0.3.0 tidyselect_1.2.0 #> [55] yaml_2.3.8 viridis_0.6.5 timeDate_4032.109 #> [58] doParallel_1.0.17 codetools_0.2-19 listenv_0.9.1 #> [61] lattice_0.22-5 tibble_3.2.1 Biobase_2.62.0 #> [64] withr_3.0.0 evaluate_0.23 Rtsne_0.17 #> [67] future_1.33.1 desc_1.4.3 survival_3.5-8 #> [70] polyclip_1.10-6 embed_1.1.3 pillar_1.9.0 #> [73] whisker_0.4.1 foreach_1.5.2 stats4_4.3.3 #> [76] generics_0.1.3 RcppHNSW_0.6.0 S4Vectors_0.40.2 #> [79] hms_1.1.3 munsell_0.5.0 scales_1.3.0 #> [82] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [85] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [88] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [91] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [94] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [97] ggforce_0.4.2 cli_3.6.2 tfruns_1.5.2 #> [100] textshaping_0.3.7 fansi_1.0.6 cytolib_2.14.1 #> [103] viridisLite_0.4.2 lava_1.8.0 uwot_0.1.16 #> [106] gtable_0.3.4 zeallot_0.1.0 sass_0.4.8 #> [109] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [112] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [115] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [118] MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/downsampling.html","id":"downsampling-with-tof_downsample","dir":"Articles","previous_headings":"","what":"Downsampling with tof_downsample()","title":"Downsampling","text":"Using tidytof’s built-dataset phenograph_data, can see original size dataset 1000 cells per cluster, 3000 cells total: randomly sample 200 cells per cluster, can use tof_downsample() using “constant” method: Alternatively, wanted sample 50% cells cluster, use “prop” method: finally, might also interested taking slightly different approach downsampling reduces number cells fixed constant proportion, fixed density phenotypic space. example, following scatterplot demonstrates certain areas phenotypic density phenograph_data contain cells others along cd34/cd38 axes: reduce number cells dataset local density around cell dataset relatively constant, can use “density” method tof_downsample: Thus, can see density downsampling uniform (though exactly uniform) across range cd34/cd38 values phenograph_data.","code":"data(phenograph_data) phenograph_data |> dplyr::count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 1000 #> 2 cluster2 1000 #> 3 cluster3 1000 phenograph_data |> # downsample tof_downsample( group_cols = phenograph_cluster, method = \"constant\", num_cells = 200 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 200 #> 2 cluster2 200 #> 3 cluster3 200 phenograph_data |> # downsample tof_downsample( group_cols = phenograph_cluster, method = \"prop\", prop_cells = 0.5 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 500 #> 2 cluster2 500 #> 3 cluster3 500 rescale_max <- function(x, to = c(0, 1), from = range(x, na.rm = TRUE)) { x / from[2] * to[2] } phenograph_data |> # preprocess all numeric columns in the dataset tof_preprocess(undo_noise = FALSE) |> # plot ggplot(aes(x = cd34, y = cd38)) + geom_hex() + coord_fixed(ratio = 0.4) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + scale_fill_viridis_c( labels = function(x) round(rescale_max(x), 2) ) + labs( fill = \"relative density\" ) phenograph_data |> tof_preprocess(undo_noise = FALSE) |> tof_downsample(method = \"density\", density_cols = c(cd34, cd38)) |> # plot ggplot(aes(x = cd34, y = cd38)) + geom_hex() + coord_fixed(ratio = 0.4) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + scale_fill_viridis_c( labels = function(x) round(rescale_max(x), 2) ) + labs( fill = \"relative density\" )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/downsampling.html","id":"additional-documentation","dir":"Articles","previous_headings":"","what":"Additional documentation","title":"Downsampling","text":"details, check documentation 3 underlying members tof_downsample_* function family (wrapped tof_downsample): tof_downsample_constant tof_downsample_prop tof_downsample_density","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/downsampling.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Downsampling","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] ggplot2_3.5.0 dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] matrixStats_1.2.0 compiler_4.3.3 systemfonts_1.0.6 #> [7] vctrs_0.6.5 stringr_1.5.1 pkgconfig_2.0.3 #> [10] shape_1.4.6.1 fastmap_1.1.1 ggraph_2.2.1 #> [13] utf8_1.2.4 rmarkdown_2.26 prodlim_2023.08.28 #> [16] tzdb_0.4.0 ragg_1.2.7 purrr_1.0.2 #> [19] xfun_0.42 glmnet_4.1-8 cachem_1.0.8 #> [22] jsonlite_1.8.8 recipes_1.0.10 highr_0.10 #> [25] tweenr_2.0.3 parallel_4.3.3 R6_2.5.1 #> [28] bslib_0.6.1 stringi_1.8.3 parallelly_1.37.1 #> [31] rpart_4.1.23 lubridate_1.9.3 jquerylib_0.1.4 #> [34] Rcpp_1.0.12 iterators_1.0.14 knitr_1.45 #> [37] future.apply_1.11.1 readr_2.1.5 flowCore_2.14.1 #> [40] Matrix_1.6-5 splines_4.3.3 nnet_7.3-19 #> [43] igraph_2.0.2 timechange_0.3.0 tidyselect_1.2.0 #> [46] yaml_2.3.8 viridis_0.6.5 timeDate_4032.109 #> [49] doParallel_1.0.17 codetools_0.2-19 listenv_0.9.1 #> [52] lattice_0.22-5 tibble_3.2.1 Biobase_2.62.0 #> [55] withr_3.0.0 evaluate_0.23 future_1.33.1 #> [58] desc_1.4.3 survival_3.5-8 polyclip_1.10-6 #> [61] pillar_1.9.0 foreach_1.5.2 stats4_4.3.3 #> [64] generics_0.1.3 RcppHNSW_0.6.0 S4Vectors_0.40.2 #> [67] hms_1.1.3 munsell_0.5.0 scales_1.3.0 #> [70] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [73] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [76] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [79] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [82] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [85] ggforce_0.4.2 cli_3.6.2 textshaping_0.3.7 #> [88] fansi_1.0.6 cytolib_2.14.1 viridisLite_0.4.2 #> [91] lava_1.8.0 gtable_0.3.4 sass_0.4.8 #> [94] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [97] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [100] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [103] MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Feature extraction","text":"demonstrate use verbs, ’ll first download dataset originally collected development CITRUS algorithm. data available HDCytoData package, available Bioconductor can downloaded following command: load CITRUS data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s . Thus, can see citrus_data tof_tbl 172791 cells (one row) 39 pieces information cell (one column). can also extract metadata raw data join single-cell data using functions tidyverse: Thus, now sample-level information patient sample collected stimulation condition (“Basal” “BCR-XL”) sample exposed data acquisition. Finally, can join metadata single-cell tof_tbl obtain cleaned dataset. data cleaning steps, now citrus_data, tof_tbl containing cells collected 8 patients. Specifically, 2 samples taken patient: one cells’ B-cell receptors stimulated (BCR-XL) one (Basal). citrus_data, cell’s patient origin stored patient column, cell’s stimulation condition stored stimulation column. addition, population_id column stores information cluster labels applied cell using combination FlowSOM clustering manual merging (details, run ?HDCytoData::Bodenmiller_BCR_XL R console).","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = \"_\") citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = 1:length(file_name), patient = stringr::str_extract(file_name, \"patient[:digit:]\"), stimulation = stringr::str_extract(file_name, \"(BCR-XL)|Reference\") ) |> mutate( stimulation = if_else(stimulation == \"Reference\", \"Basal\", stimulation) ) citrus_metadata |> head() #> # A tibble: 6 × 4 #> file_name sample_id patient stimulation #> #> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 patient1 BCR-XL #> 2 PBMC8_30min_patient1_Reference.fcs 2 patient1 Basal #> 3 PBMC8_30min_patient2_BCR-XL.fcs 3 patient2 BCR-XL #> 4 PBMC8_30min_patient2_Reference.fcs 4 patient2 Basal #> 5 PBMC8_30min_patient3_BCR-XL.fcs 5 patient3 BCR-XL #> 6 PBMC8_30min_patient3_Reference.fcs 6 patient3 Basal citrus_data <- citrus_data |> left_join(citrus_metadata, by = \"sample_id\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-cluster-proportions-using-tof_extract_proportion","dir":"Articles","previous_headings":"","what":"Calculating cluster proportions using tof_extract_proportion()","title":"Feature extraction","text":"First, tof_extract_proportion(), extracts proportion cells cluster within sample (samples defined using group_cols argument): Like members tof_extract_* function family, tof_extract_proportion() returns one row sample (defined unique combination values columns specified group_cols) one column extracted feature (, one column proportion 8 clusters citrus_data). values can also returned “long” format changing format argument:","code":"# preprocess the numeric columns in the citrus dataset citrus_data <- citrus_data |> mutate(cluster = str_c(\"cluster\", population_id)) |> tof_preprocess() citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation) ) |> head() #> # A tibble: 6 × 10 #> patient stimulation `prop@cluster1` `prop@cluster2` `prop@cluster3` #> #> 1 patient1 Basal 0.0190 0.0482 0.447 #> 2 patient1 BCR-XL 0.0109 0.0395 0.268 #> 3 patient2 Basal 0.0130 0.0280 0.491 #> 4 patient2 BCR-XL 0.0101 0.0143 0.358 #> 5 patient3 Basal 0.0326 0.0830 0.397 #> 6 patient3 BCR-XL 0.0200 0.0412 0.323 #> # ℹ 5 more variables: `prop@cluster4` , `prop@cluster5` , #> # `prop@cluster6` , `prop@cluster7` , `prop@cluster8` citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation), format = \"long\" ) |> head() #> # A tibble: 6 × 4 #> patient stimulation cluster prop #> #> 1 patient1 Basal cluster1 0.0190 #> 2 patient1 Basal cluster2 0.0482 #> 3 patient1 Basal cluster3 0.447 #> 4 patient1 Basal cluster4 0.237 #> 5 patient1 Basal cluster5 0.00219 #> 6 patient1 Basal cluster6 0.0759"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-cluster-marker-expression-measures-using-tof_extract_central_tendency","dir":"Articles","previous_headings":"","what":"Calculating cluster marker expression measures using tof_extract_central_tendency()","title":"Feature extraction","text":"Another member tof_extract_*() function family, tof_extract_central_tendency(), computes central tendency (e.g. mean median) user-specified markers cluster. argument central_tendency_function can used compute summary statistic. example, following choice central_tendency_function compute 75th percentile marker-cluster pair citrus_data:","code":"citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), central_tendency_function = mean ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct` #> #> 1 patient1 BCR-XL 4.80 0.0967 #> 2 patient1 Basal 4.68 0.765 #> 3 patient2 BCR-XL 5.00 -0.0579 #> 4 patient2 Basal 4.88 0.808 #> 5 patient3 BCR-XL 5.04 -0.0432 #> 6 patient3 Basal 4.98 0.745 #> # ℹ 22 more variables: `CD20_Sm147@cluster1_ct` , #> # `CD45_In115@cluster2_ct` , `CD4_Nd145@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD45_In115@cluster3_ct` , #> # `CD4_Nd145@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD45_In115@cluster4_ct` , `CD4_Nd145@cluster4_ct` , #> # `CD20_Sm147@cluster4_ct` , `CD45_In115@cluster5_ct` , #> # `CD4_Nd145@cluster5_ct` , `CD20_Sm147@cluster5_ct` , … citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), central_tendency_function = function(x) quantile(x = x, probs = 0.75) ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct` #> #> 1 patient1 BCR-XL 5.30 -0.0186 #> 2 patient1 Basal 5.18 1.32 #> 3 patient2 BCR-XL 5.41 -0.0201 #> 4 patient2 Basal 5.28 1.39 #> 5 patient3 BCR-XL 5.42 -0.0362 #> 6 patient3 Basal 5.41 1.27 #> # ℹ 22 more variables: `CD20_Sm147@cluster1_ct` , #> # `CD45_In115@cluster2_ct` , `CD4_Nd145@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD45_In115@cluster3_ct` , #> # `CD4_Nd145@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD45_In115@cluster4_ct` , `CD4_Nd145@cluster4_ct` , #> # `CD20_Sm147@cluster4_ct` , `CD45_In115@cluster5_ct` , #> # `CD4_Nd145@cluster5_ct` , `CD20_Sm147@cluster5_ct` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-the-proportion-of-cells-with-marker-expression-above-a-threshold-using-tof_extract_proportion","dir":"Articles","previous_headings":"","what":"Calculating the proportion of cells with marker expression above a threshold using tof_extract_proportion()","title":"Feature extraction","text":"tof_extract_threshold() similar tof_extract_central_tendency(), calculates proportion cells user-specified expression value marker instead measure central tendency:","code":"citrus_data |> tof_extract_threshold( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), threshold = 5 ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_threshold` CD4_Nd145@cluster1_thre…¹ #> #> 1 patient1 BCR-XL 0.516 0 #> 2 patient1 Basal 0.365 0 #> 3 patient2 BCR-XL 0.554 0 #> 4 patient2 Basal 0.452 0 #> 5 patient3 BCR-XL 0.547 0 #> 6 patient3 Basal 0.549 0 #> # ℹ abbreviated name: ¹​`CD4_Nd145@cluster1_threshold` #> # ℹ 22 more variables: `CD20_Sm147@cluster1_threshold` , #> # `CD45_In115@cluster2_threshold` , #> # `CD4_Nd145@cluster2_threshold` , #> # `CD20_Sm147@cluster2_threshold` , #> # `CD45_In115@cluster3_threshold` , #> # `CD4_Nd145@cluster3_threshold` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"calculating-differences-in-marker-distributions-using-tof_extract_emd-and-tof_extract_jsd","dir":"Articles","previous_headings":"","what":"Calculating differences in marker distributions using tof_extract_emd() and tof_extract_jsd()","title":"Feature extraction","text":"two final members tof_extract_* function family – tof_extract_emd tof_extract_jsd – designed specifically comparing distributions marker expression stimulation conditions. , must given stimulation column (using emd_col jsd_col argument) identifies stimulation condition cell , reference_level specifies reference (.e. unstimulated) condition within emd_col jsd_col. additional arguments, tof_extract_emd computes Earth-mover’s distance marker’s distribution stimulation conditions (within cluster) basal condition; similarly, tof_extract_jsd computes Jensen-Shannon divergence index distributions. values ways compare different 2 distributions one another computationally expensive (also higher-resolution) simply comparing measures central tendency.","code":"# Earth-mover's distance citrus_data |> tof_extract_emd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), emd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.864 2.47 13.0 #> 2 patient2 1.11 7.05 10.8 #> 3 patient3 0.670 6.23 10.5 #> 4 patient4 2.64 5.86 9.90 #> 5 patient5 0.594 7.56 8.13 #> 6 patient6 0.661 4.77 7.97 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_emd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_emd`, ³​`BCR-XL_CD20_Sm147@cluster3_emd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_emd` , #> # `BCR-XL_CD4_Nd145@cluster7_emd` , #> # `BCR-XL_CD20_Sm147@cluster7_emd` , #> # `BCR-XL_CD45_In115@cluster4_emd` , #> # `BCR-XL_CD4_Nd145@cluster4_emd` , … # Jensen-Shannon Divergence citrus_data |> tof_extract_jsd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), jsd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.0367 0.0513 0.347 #> 2 patient2 0.00831 0.168 0.401 #> 3 patient3 0.0104 0.115 0.357 #> 4 patient4 0.0301 0.135 0.205 #> 5 patient5 0.00911 0.0789 0.274 #> 6 patient6 0.00972 0.0346 0.214 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_jsd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_jsd`, ³​`BCR-XL_CD20_Sm147@cluster3_jsd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_jsd` , #> # `BCR-XL_CD4_Nd145@cluster7_jsd` , #> # `BCR-XL_CD20_Sm147@cluster7_jsd` , #> # `BCR-XL_CD45_In115@cluster4_jsd` , #> # `BCR-XL_CD4_Nd145@cluster4_jsd` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"putting-it-all-together-with-tof_extract_features","dir":"Articles","previous_headings":"","what":"Putting it all together with tof_extract_features()","title":"Feature extraction","text":"Finally, tof_extract_features() verb provides wrapper members function family, allowing users extract multiple features types . example, following code extracts proportion cluster, median several markers cluster, EMD basal condition stimulated condition cluster patients citrus_data.","code":"signaling_markers <- c( \"pNFkB_Nd142\", \"pStat5_Nd150\", \"pAkt_Sm152\", \"pStat1_Eu153\", \"pStat3_Gd158\", \"pSlp76_Dy164\", \"pBtk_Er166\", \"pErk_Er168\", \"pS6_Yb172\", \"pZap70_Gd156\" ) citrus_data |> tof_extract_features( cluster_col = cluster, group_cols = patient, stimulation_col = stimulation, lineage_cols = any_of(c(\"CD45_In115\", \"CD20_Sm147\", \"CD33_Nd148\")), signaling_cols = any_of(signaling_markers), signaling_method = \"emd\", basal_level = \"Basal\" ) |> head() #> # A tibble: 6 × 193 #> patient `prop@cluster1` `prop@cluster2` `prop@cluster3` `prop@cluster4` #> #> 1 patient1 0.0149 0.0438 0.356 0.351 #> 2 patient2 0.0115 0.0212 0.425 0.323 #> 3 patient3 0.0255 0.0594 0.355 0.217 #> 4 patient4 0.0127 0.0418 0.320 0.223 #> 5 patient5 0.0207 0.0423 0.377 0.269 #> 6 patient6 0.0183 0.0493 0.459 0.250 #> # ℹ 188 more variables: `prop@cluster5` , `prop@cluster6` , #> # `prop@cluster7` , `prop@cluster8` , #> # `CD45_In115@cluster1_ct` , `CD20_Sm147@cluster1_ct` , #> # `CD33_Nd148@cluster1_ct` , `CD45_In115@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD33_Nd148@cluster2_ct` , #> # `CD45_In115@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD33_Nd148@cluster3_ct` , `CD45_In115@cluster4_ct` , …"},{"path":"https://keyes-timothy.github.io/tidytof/articles/feature-extraction.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Feature extraction","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods #> [8] base #> #> other attached packages: #> [1] HDCytoData_1.22.0 flowCore_2.14.1 #> [3] SummarizedExperiment_1.32.0 Biobase_2.62.0 #> [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.7 #> [7] IRanges_2.36.0 S4Vectors_0.40.2 #> [9] MatrixGenerics_1.14.0 matrixStats_1.2.0 #> [11] ExperimentHub_2.10.0 AnnotationHub_3.10.0 #> [13] BiocFileCache_2.10.1 dbplyr_2.4.0 #> [15] BiocGenerics_0.48.1 stringr_1.5.1 #> [17] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] jsonlite_1.8.8 shape_1.4.6.1 #> [3] magrittr_2.0.3 farver_2.1.1 #> [5] rmarkdown_2.26 fs_1.6.3 #> [7] zlibbioc_1.48.0 ragg_1.2.7 #> [9] vctrs_0.6.5 memoise_2.0.1 #> [11] htmltools_0.5.7 S4Arrays_1.2.1 #> [13] curl_5.2.1 SparseArray_1.2.4 #> [15] sass_0.4.8 parallelly_1.37.1 #> [17] bslib_0.6.1 desc_1.4.3 #> [19] lubridate_1.9.3 cachem_1.0.8 #> [21] igraph_2.0.2 mime_0.12 #> [23] lifecycle_1.0.4 iterators_1.0.14 #> [25] pkgconfig_2.0.3 Matrix_1.6-5 #> [27] R6_2.5.1 fastmap_1.1.1 #> [29] shiny_1.8.0 GenomeInfoDbData_1.2.11 #> [31] future_1.33.1 digest_0.6.34 #> [33] colorspace_2.1-0 AnnotationDbi_1.64.1 #> [35] textshaping_0.3.7 RSQLite_2.3.5 #> [37] philentropy_0.8.0 filelock_1.0.3 #> [39] cytolib_2.14.1 fansi_1.0.6 #> [41] yardstick_1.3.0 timechange_0.3.0 #> [43] httr_1.4.7 polyclip_1.10-6 #> [45] abind_1.4-5 compiler_4.3.3 #> [47] bit64_4.0.5 withr_3.0.0 #> [49] doParallel_1.0.17 viridis_0.6.5 #> [51] DBI_1.2.2 ggforce_0.4.2 #> [53] MASS_7.3-60.0.1 lava_1.8.0 #> [55] rappdirs_0.3.3 DelayedArray_0.28.0 #> [57] tools_4.3.3 interactiveDisplayBase_1.40.0 #> [59] httpuv_1.6.14 future.apply_1.11.1 #> [61] nnet_7.3-19 glue_1.7.0 #> [63] promises_1.2.1 grid_4.3.3 #> [65] generics_0.1.3 recipes_1.0.10 #> [67] gtable_0.3.4 tzdb_0.4.0 #> [69] class_7.3-22 tidyr_1.3.1 #> [71] data.table_1.15.2 hms_1.1.3 #> [73] tidygraph_1.3.1 utf8_1.2.4 #> [75] XVector_0.42.0 ggrepel_0.9.5 #> [77] BiocVersion_3.18.1 foreach_1.5.2 #> [79] pillar_1.9.0 RcppHNSW_0.6.0 #> [81] later_1.3.2 splines_4.3.3 #> [83] tweenr_2.0.3 lattice_0.22-5 #> [85] survival_3.5-8 bit_4.0.5 #> [87] emdist_0.3-3 RProtoBufLib_2.14.0 #> [89] tidyselect_1.2.0 Biostrings_2.70.2 #> [91] knitr_1.45 gridExtra_2.3 #> [93] xfun_0.42 graphlayouts_1.1.1 #> [95] hardhat_1.3.1 timeDate_4032.109 #> [97] stringi_1.8.3 yaml_2.3.8 #> [99] evaluate_0.23 codetools_0.2-19 #> [101] ggraph_2.2.1 tibble_3.2.1 #> [103] BiocManager_1.30.22 cli_3.6.2 #> [105] rpart_4.1.23 xtable_1.8-4 #> [107] systemfonts_1.0.6 munsell_0.5.0 #> [109] jquerylib_0.1.4 Rcpp_1.0.12 #> [111] globals_0.16.3 png_0.1-8 #> [113] parallel_4.3.3 ellipsis_0.3.2 #> [115] pkgdown_2.0.7 gower_1.0.1 #> [117] ggplot2_3.5.0 readr_2.1.5 #> [119] blob_1.2.4 listenv_0.9.1 #> [121] glmnet_4.1-8 viridisLite_0.4.2 #> [123] ipred_0.9-14 scales_1.3.0 #> [125] prodlim_2023.08.28 purrr_1.0.2 #> [127] crayon_1.5.2 rlang_1.1.3 #> [129] KEGGREST_1.42.0"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Building predictive models","text":"illustrate work, first download patient-level data paper combine sample-level clinical annotations one tidytof’s built-datasets (ddpr_metadata). data processing steps result tibble called ddpr_patients. numeric columns ddpr_patients represent aggregated cell population features sample (see Supplementary Table 5 paper details). non-numeric columns represent clinical metadata sample (run ?ddpr_metadata information). metadata columns, important ones indicate patient develop refractory disease (“relapse”), /happen. information stored relapse_status time_to_relapse columns, respectively. also preprocessing steps might want perform now save us headaches ’re fitting models later. next part vignette, ’ll use patient-level data build predictive models using resampling procedures like k-fold cross-validation bootstrapping.","code":"data(ddpr_metadata) # link for downloading the sample-level data from the Nature Medicine website data_link <- \"https://static-content.springer.com/esm/art%3A10.1038%2Fnm.4505/MediaObjects/41591_2018_BFnm4505_MOESM3_ESM.csv\" # download the data and combine it with clinical annotations ddpr_patients <- readr::read_csv(data_link, skip = 2L, n_max = 78L, show_col_types = FALSE) |> dplyr::rename(patient_id = Patient_ID) |> dplyr::left_join(ddpr_metadata, by = \"patient_id\") |> dplyr::filter(!str_detect(patient_id, \"Healthy\")) # preview only the metadata (i.e. non-numeric) columns ddpr_patients |> dplyr::select(where(~ !is.numeric(.x))) |> head() #> # A tibble: 6 × 8 #> patient_id gender mrd_risk nci_rome_risk relapse_status type_of_relapse cohort #> #> 1 UPN1 Male Interme… Standard Yes Early Train… #> 2 UPN1-Rx Male Interme… Standard Yes Early Train… #> 3 UPN2 Male Interme… Standard No NA Train… #> 4 UPN3 Female Standard Standard No NA Train… #> 5 UPN4 Male Standard Standard No NA Valid… #> 6 UPN5 Female Standard High No NA Valid… #> # ℹ 1 more variable: ddpr_risk ddpr_patients <- ddpr_patients |> # convert the relapse_status variable to a factor # and create the time_to_event and event columns for survival modeling dplyr::mutate( relapse_status = as.factor(relapse_status), time_to_event = dplyr::if_else(relapse_status == \"Yes\", time_to_relapse, ccr), event = dplyr::if_else(relapse_status == \"Yes\", 1, 0) )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"building-a-classifier-using-elastic-net-regularized-logistic-regression","dir":"Articles","previous_headings":"","what":"Building a classifier using elastic net-regularized logistic regression","title":"Building predictive models","text":"First, can build elastic net classifier predict patients relapse patients won’t (ignoring time--event data now). , can use relapse_status column ddpr_patients outcome variable: can see samples annotated, can throw away samples don’t clinical outcome associated . original DDPR paper, 10-fold cross-validation used tune glmnet model estimate error model new datasets. , can use tof_split_data() function split cohort training test set either 10 times using k-fold cross-validation bootstrapping. Reading documentation tof_split_data() demonstrates use resampling methods (like bootstrapping). output tof_split_data() varies depending split_method used. cross-validation, result rset object rsample package. rset objects type tibble two columns: splits - column entry rsplit object (contains single resample full dataset) id - character column entry represents name fold entry splits belongs . can inspect one resamples splits column see contain: Note can use rsample::training rsample::testing return training test observations resampling: , can feed training_split tof_train_model function tune logistic regression model predicts relapse_status leukemia patient. sure check tof_create_grid documentation learn make hyperparameter search grid model tuning (case, limit mixture parameter value 1, fits sparse lasso model). Also note , case, illustrative purposes ’re incorporating features one populations interest (population 2) model, whereas original model incorporated features 12 populations (likely required quite bit computational power result). output tof_train_model tof_model, object containing information trained model (can passed tof_predict tof_assess_model verbs). tof_model printed, information optimal hyperparamters printed, table nonzero model coefficients model. training model, might interested seeing performs. One way assess classification model see well works applied directly back data trained (model’s “training data”). , can use tof_assess_model() function arguments: tof_assess_model() returns list several model assessment metrics differ depending kind tof_model trained. two-class classifier models, among useful confusion_matrix, shows classifier classified observation relative true class assignment. case, can see model performed perfectly training data (expected, model optimized using data !). can also visualize model’s performance using tof_plot_model() verb, case two-class model give us Receiver-Operating Characteristic (ROC) curve: shown , tof_plot_model() return receiver-operating curve two-class model. ’s unusual get AUC 1 machine learning world, can note case, classification problem wasn’t particularly difficult (lot input features work ). training model, generally isn’t sufficient evaluate model performs training data alone, provide overly-optimistic representation model perform data ’s never seen (problem often called “overfitting” model training data). get fairer estimate model’s performance new datasets, can also evaluate cross-validation error calling tof_assess_model() tof_plot_model() new_data argument set “tuning”. case, plot ROC Curve using predictions observation excluded model training cross-validation, approach gives accurate estimate model’s performance new data simple evaluation training dataset.","code":"# find how many of each outcome we have in our cohort ddpr_patients |> dplyr::count(relapse_status) #> # A tibble: 3 × 2 #> relapse_status n #> #> 1 No 37 #> 2 Yes 24 #> 3 NA 12 ddpr_patients_unannotated <- ddpr_patients |> dplyr::filter(is.na(relapse_status)) ddpr_patients <- ddpr_patients |> dplyr::filter(!is.na(relapse_status)) set.seed(3000L) training_split <- ddpr_patients |> tof_split_data( split_method = \"k-fold\", num_cv_folds = 10, strata = relapse_status ) training_split #> # 10-fold cross-validation using stratification #> # A tibble: 10 × 2 #> splits id #> #> 1 Fold01 #> 2 Fold02 #> 3 Fold03 #> 4 Fold04 #> 5 Fold05 #> 6 Fold06 #> 7 Fold07 #> 8 Fold08 #> 9 Fold09 #> 10 Fold10 my_resample <- training_split$splits[[1]] print(my_resample) #> #> <54/7/61> my_resample |> rsample::training() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN1 3.06 0.583 0.00449 0.164 1.94 0.416 #> 2 UPN1-Rx 0.0395 0.618 0.0634 0.572 2.93 0.944 #> 3 UPN2 0.139 0.0662 0.0221 0.0825 2.25 0.454 #> 4 UPN3 0.633 0.0234 0.0165 0.0327 2.25 0.226 #> 5 UPN4 0.0443 0.129 0.0447 0.232 2.47 0.336 #> 6 UPN5 0.0647 0.0577 0.0163 0.162 2.89 0.406 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … my_resample |> rsample::testing() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN6 5.62 0.550 0.00374 0.622 2.86 0.342 #> 2 UPN10-Rx 0.00240 0.167 0.203 0.802 2.57 0.822 #> 3 UPN13 0.0634 0.0300 0.0219 0.109 2.34 0.314 #> 4 UPN22-Rx 0.0643 1.68 0.0804 1.56 3.06 0.529 #> 5 UPN58 0.00546 0.00918 0.0168 0.480 2.70 0.112 #> 6 UPN95 0.300 0.389 0.00454 0.697 2.45 0.247 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … hyperparams <- tof_create_grid(mixture_values = 1) class_mod <- training_split |> tof_train_model( predictor_cols = c(contains(\"Pop2\")), response_col = relapse_status, model_type = \"two-class\", hyperparameter_grid = hyperparams, impute_missing_predictors = TRUE, remove_zv_predictors = TRUE # often a smart decision ) print(class_mod) #> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e-10 #> # A tibble: 28 × 2 #> feature coefficient #> #> 1 p4EBP1_dP_IL7_Pop2 -3.10 #> 2 pCreb_dP_PVO4_Pop2 -2.66 #> 3 TSLPr_Pop2 2.07 #> 4 CD43_Pop2 2.00 #> 5 pSTAT5_FC_PVO4_Pop2 -1.80 #> 6 pS6_dP_IL7_Pop2 1.56 #> 7 pPLCg1_2_dP_PVO4_Pop2 1.44 #> 8 (Intercept) -1.43 #> 9 pSTAT5_FC_BCR_Pop2 1.24 #> 10 pErk_dP_IL7_Pop2 -1.23 #> # ℹ 18 more rows training_classifier_metrics <- class_mod |> tof_assess_model() training_classifier_metrics$confusion_matrix #> # A tibble: 4 × 3 #> true_outcome predicted_outcome num_observations #> #> 1 No No 37 #> 2 No Yes 0 #> 3 Yes No 0 #> 4 Yes Yes 24 class_mod |> tof_plot_model() cv_classifier_metrics <- class_mod |> tof_assess_model(new_data = \"tuning\") class_mod |> tof_plot_model(new_data = \"tuning\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"building-a-survival-model-using-elastic-net-regularized-cox-regression","dir":"Articles","previous_headings":"","what":"Building a survival model using elastic net-regularized cox regression","title":"Building predictive models","text":"Building ideas , sophisticated way model data simply predict relapse won’t, build time--event model estimates patients’ probabilities relapse function time since diagnosis. approach called “survival modeling” (specifically, case use Cox-proportional hazards modeling) takes account patients adverse events different times course disease (.e. everyone relapses time). build survival model using tidytof, use tof_train_model() verb setting model_type flag “survival”. addition, need provide two outcome columns. first columns (event_col) indicates patient relapsed (.e. experienced event--interest) censored certain amount follow-time. second (time_col) indicates much time took patient relapse censored analysis. survival model trained, can used predict patient’s probability event--interest different times post-diagnosis. However, common way survival models applied practice use patient’s predicted relative risk event--interest divide patients low- high-risk subgroups. tidytof can automatically according optimal split obtained using log-rank test possible split points dataset tof_assess_model(). addition, return predicted survival curve patient time: survival models, tof_plot_model() plots average survival curves low- high-risk groups:","code":"hyperparams <- tof_create_grid(mixture_values = 1) survival_mod <- training_split |> tof_train_model( predictor_cols = c(contains(\"Pop2\")), time_col = time_to_event, event_col = event, model_type = \"survival\", hyperparameter_grid = hyperparams, impute_missing_predictors = TRUE, remove_zv_predictors = TRUE # often a smart decision ) print(survival_mod) #> A survival `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-03 #> # A tibble: 40 × 2 #> feature coefficient #> #> 1 pErk_dP_TSLP_Pop2 -7.03 #> 2 pCreb_dP_PVO4_Pop2 -5.47 #> 3 CD19_Pop2 -3.73 #> 4 CD34_Pop2 3.63 #> 5 pSTAT5_FC_BCR_Pop2 3.40 #> 6 HLADR_Pop2 -3.38 #> 7 pPLCg1_2_dP_IL7_Pop2 3.33 #> 8 pPLCg1_2_dP_PVO4_Pop2 3.14 #> 9 pSyk_dP_TSLP_Pop2 2.88 #> 10 CD123_Pop2 2.77 #> # ℹ 30 more rows survival_metrics <- survival_mod |> tof_assess_model() survival_metrics #> $model_metrics #> # A tibble: 3 × 2 #> metric value #> #> 1 neg_log_partial_likelihood 1.76e+ 1 #> 2 concordance_index 1 e+ 0 #> 3 log_rank_p_value 1.47e-22 #> #> $survival_curves #> # A tibble: 61 × 6 #> row_index survival_curve relative_risk time_to_event event risk_group #> #> 1 1 2.83e+3 1043 1 low #> 2 2 2.61e+3 1043 1 low #> 3 3 1.58e-8 5406 0 low #> 4 4 2.09e-4 4917 0 low #> 5 5 9.98e-3 4538 0 low #> 6 6 6.62e-1 4490 0 low #> 7 7 4.09e+9 136 1 high #> 8 8 2.57e+8 364 1 high #> 9 9 1.27e+9 237 1 high #> 10 10 2.31e+4 886 1 low #> # ℹ 51 more rows survival_mod |> tof_plot_model() cv_survival_metrics <- survival_mod |> tof_assess_model(new_data = \"tuning\") survival_mod |> tof_plot_model(new_data = \"tuning\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/modeling.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Building predictive models","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] stringr_1.5.1 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] furrr_0.3.1 matrixStats_1.2.0 compiler_4.3.3 #> [7] systemfonts_1.0.6 vctrs_0.6.5 crayon_1.5.2 #> [10] pkgconfig_2.0.3 shape_1.4.6.1 fastmap_1.1.1 #> [13] ellipsis_0.3.2 labeling_0.4.3 ggraph_2.2.1 #> [16] utf8_1.2.4 rmarkdown_2.26 prodlim_2023.08.28 #> [19] tzdb_0.4.0 ragg_1.2.7 bit_4.0.5 #> [22] purrr_1.0.2 xfun_0.42 glmnet_4.1-8 #> [25] cachem_1.0.8 jsonlite_1.8.8 recipes_1.0.10 #> [28] highr_0.10 tweenr_2.0.3 parallel_4.3.3 #> [31] R6_2.5.1 rsample_1.2.0 bslib_0.6.1 #> [34] stringi_1.8.3 parallelly_1.37.1 rpart_4.1.23 #> [37] lubridate_1.9.3 jquerylib_0.1.4 Rcpp_1.0.12 #> [40] iterators_1.0.14 knitr_1.45 future.apply_1.11.1 #> [43] readr_2.1.5 flowCore_2.14.1 Matrix_1.6-5 #> [46] splines_4.3.3 nnet_7.3-19 igraph_2.0.2 #> [49] timechange_0.3.0 tidyselect_1.2.0 yaml_2.3.8 #> [52] viridis_0.6.5 timeDate_4032.109 doParallel_1.0.17 #> [55] codetools_0.2-19 curl_5.2.1 listenv_0.9.1 #> [58] lattice_0.22-5 tibble_3.2.1 Biobase_2.62.0 #> [61] withr_3.0.0 evaluate_0.23 future_1.33.1 #> [64] desc_1.4.3 survival_3.5-8 polyclip_1.10-6 #> [67] pillar_1.9.0 foreach_1.5.2 stats4_4.3.3 #> [70] generics_0.1.3 vroom_1.6.5 RcppHNSW_0.6.0 #> [73] S4Vectors_0.40.2 hms_1.1.3 ggplot2_3.5.0 #> [76] munsell_0.5.0 scales_1.3.0 globals_0.16.3 #> [79] class_7.3-22 glue_1.7.0 tools_4.3.3 #> [82] data.table_1.15.2 gower_1.0.1 fs_1.6.3 #> [85] graphlayouts_1.1.1 tidygraph_1.3.1 grid_4.3.3 #> [88] yardstick_1.3.0 tidyr_1.3.1 RProtoBufLib_2.14.0 #> [91] ipred_0.9-14 colorspace_2.1-0 ggforce_0.4.2 #> [94] cli_3.6.2 textshaping_0.3.7 fansi_1.0.6 #> [97] cytolib_2.14.1 viridisLite_0.4.2 lava_1.8.0 #> [100] dplyr_1.1.4 gtable_0.3.4 sass_0.4.8 #> [103] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [106] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [109] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [112] bit64_4.0.5 MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/preprocessing.html","id":"preprocessing-with-tof_preprocess","dir":"Articles","previous_headings":"","what":"Preprocessing with tof_preprocess","title":"Preprocessing","text":"Generally speaking, raw ion counts measured analyte mass cytometer (content raw FCS files obtained directly mass cytometer) need transformed CyTOF data analysis. Common preprocessing steps may include variance-stabilizing transformations - hyperbolic arcsine (arcsinh) transformation log transformation - scaling/centering, /denoising. perform standard preprocessing tasks tidytof, use tof_preprocess. tof_preprocess’s default behavior apply arcsinh transformation (cofactor 5) numeric column input tof_tibble well remove gaussian noise Fluidigm software adds ion count (noise added visualization purposes, analyses, removing recommended). example, can preprocess tidytof’s built-phenograph_data tof_tibble see first measurements change . alter tof_preprocess’s default behavior, change channel_cols argument specify columns tof_tibble transformed. Alter transform_fun argument specify vector-valued function used transform channel_cols. example, suppose want center scale numeric columns instead arcsinh-transforming : keep gaussian noise added Fluidigm software (working dataset noise), set undo_noise argument FALSE.","code":"data(phenograph_data) # before preprocessing phenograph_data %>% select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 131. 3.23 1.51 #> 2 230. -0.582 11.4 #> 3 293. 5.20 1.84 #> 4 431. 0.363 13.3 #> # ℹ 2 more rows phenograph_data %>% # perform preprocessing tof_preprocess() %>% # inspect new values select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 3.96 0.608 0.298 #> 2 4.52 -0.116 1.56 #> 3 4.76 0.909 0.360 #> 4 5.15 0.0725 1.70 #> # ℹ 2 more rows phenograph_data %>% # preprocess tof_preprocess(transform_fun = scale) %>% # inspect new values select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45[,1] cd34[,1] cd38[,1] #> #> 1 -1.40 1.01 -0.437 #> 2 -1.15 -0.911 0.0316 #> 3 -0.999 2.00 -0.422 #> 4 -0.661 -0.436 0.120 #> # ℹ 2 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/preprocessing.html","id":"postprocessing-with-tof_postprocess","dir":"Articles","previous_headings":"","what":"Postprocessing with tof_postprocess","title":"Preprocessing","text":"final note, note built-function tof_postprocess works nearly identically tof_preprocess, provides different default behavior (namely, applying reverse arcsinh transformation cofactor 5 numeric columns. See ?tof_postprocess details).","code":"print(phenograph_data) %>% select(cd45, cd34, cd38) %>% head() #> # A tibble: 3,000 × 25 #> sample_name phenograph_cluster cd19 cd11b cd34 cd45 cd123 cd33 cd47 #> #> 1 H1_PhenoGra… cluster1 -0.168 29.0 3.23 131. -0.609 1.21 13.0 #> 2 H1_PhenoGra… cluster1 1.65 4.83 -0.582 230. 2.53 -0.507 12.9 #> 3 H1_PhenoGra… cluster1 2.79 36.1 5.20 293. -0.265 3.67 27.1 #> 4 H1_PhenoGra… cluster1 0.0816 48.8 0.363 431. 2.04 9.40 41.0 #> # ℹ 2,996 more rows #> # ℹ 16 more variables: cd7 , cd44 , cd38 , cd3 , #> # cd117 , cd64 , cd41 , pstat3 , pstat5 , #> # pampk , p4ebp1 , ps6 , pcreb , `pzap70-syk` , #> # prb , `perk1-2` #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 131. 3.23 1.51 #> 2 230. -0.582 11.4 #> 3 293. 5.20 1.84 #> 4 431. 0.363 13.3 #> # ℹ 2 more rows # after preprocessing and post-processing, the data are the same # except that the re-added noise component is different for each value phenograph_data %>% tof_preprocess() %>% tof_postprocess(redo_noise = TRUE) %>% select(cd45, cd34, cd38) %>% head() #> # A tibble: 6 × 3 #> cd45 cd34 cd38 #> #> 1 130. 3.18 0.862 #> 2 229. -0.949 10.6 #> 3 293. 4.93 1.35 #> 4 431. 0.0843 13.0 #> # ℹ 2 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/preprocessing.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Preprocessing","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] tidyselect_1.2.0 viridisLite_0.4.2 timeDate_4032.109 #> [4] farver_2.1.1 viridis_0.6.5 ggraph_2.2.1 #> [7] fastmap_1.1.1 tweenr_2.0.3 rpart_4.1.23 #> [10] digest_0.6.34 timechange_0.3.0 lifecycle_1.0.4 #> [13] yardstick_1.3.0 survival_3.5-8 magrittr_2.0.3 #> [16] compiler_4.3.3 rlang_1.1.3 sass_0.4.8 #> [19] tools_4.3.3 igraph_2.0.2 utf8_1.2.4 #> [22] yaml_2.3.8 data.table_1.15.2 knitr_1.45 #> [25] graphlayouts_1.1.1 withr_3.0.0 purrr_1.0.2 #> [28] RProtoBufLib_2.14.0 BiocGenerics_0.48.1 desc_1.4.3 #> [31] nnet_7.3-19 grid_4.3.3 polyclip_1.10-6 #> [34] stats4_4.3.3 fansi_1.0.6 RcppHNSW_0.6.0 #> [37] future_1.33.1 colorspace_2.1-0 ggplot2_3.5.0 #> [40] globals_0.16.3 scales_1.3.0 iterators_1.0.14 #> [43] MASS_7.3-60.0.1 cli_3.6.2 rmarkdown_2.26 #> [46] ragg_1.2.7 generics_0.1.3 future.apply_1.11.1 #> [49] tzdb_0.4.0 cachem_1.0.8 flowCore_2.14.1 #> [52] ggforce_0.4.2 stringr_1.5.1 splines_4.3.3 #> [55] parallel_4.3.3 matrixStats_1.2.0 vctrs_0.6.5 #> [58] hardhat_1.3.1 glmnet_4.1-8 Matrix_1.6-5 #> [61] jsonlite_1.8.8 cytolib_2.14.1 hms_1.1.3 #> [64] S4Vectors_0.40.2 ggrepel_0.9.5 listenv_0.9.1 #> [67] systemfonts_1.0.6 foreach_1.5.2 gower_1.0.1 #> [70] tidyr_1.3.1 jquerylib_0.1.4 recipes_1.0.10 #> [73] parallelly_1.37.1 glue_1.7.0 pkgdown_2.0.7 #> [76] codetools_0.2-19 stringi_1.8.3 lubridate_1.9.3 #> [79] gtable_0.3.4 shape_1.4.6.1 munsell_0.5.0 #> [82] tibble_3.2.1 pillar_1.9.0 htmltools_0.5.7 #> [85] ipred_0.9-14 lava_1.8.0 R6_2.5.1 #> [88] textshaping_0.3.7 doParallel_1.0.17 tidygraph_1.3.1 #> [91] evaluate_0.23 Biobase_2.62.0 lattice_0.22-5 #> [94] readr_2.1.5 memoise_2.0.1 bslib_0.6.1 #> [97] class_7.3-22 Rcpp_1.0.12 prodlim_2023.08.28 #> [100] gridExtra_2.3 xfun_0.42 fs_1.6.3 #> [103] pkgconfig_2.0.3"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Quality control","text":"demonstrate use {tidytof}’s quality control verbs, use combination simulated real data vignette. Simulated data generated --fly sections , walk download real dataset section. want download dataset originally collected development PhenoGraph algorithm. data built HDCytoData package, available Bioconductor can downloaded following command: load PhenoGraph data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s. also add lines dplyr code clean column names perform standard arcsinh transformation. Thus, can see levine tof_tbl 265627 cells (one row) 40 pieces information cell (one column).","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") levine <- HDCytoData::Levine_32dim_flowSet() |> as_tof_tbl() |> # a bit of data cleaning dplyr::mutate(population_id = as.character(population_id)) |> dplyr::rename_with( .fn = \\(x) stringr::str_to_lower(stringr::str_remove(x, \"\\\\|.+\")) ) |> dplyr::mutate(dplyr::across(c(file_number, population_id), as.character)) |> # arcsinh transformation tof_preprocess( channel_cols = c(-time, -cell_length, -event_number, -file_number, -population_id) )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"detect-low-expression-i-e--potentially-failed-channels-with-tof_assess_channels","dir":"Articles","previous_headings":"","what":"Detect low-expression (i.e. potentially failed) channels with tof_assess_channels()","title":"Quality control","text":"data collection, might wonder channels include downstream analyses. particular, might want exclude channels positive values, situation indicates antibody may failed, signal particular channel may weak detected. , can use tof_assess_channels(), verb calculates many cells negative (.e. use-specified threshold, negative_threshold) channel flags channels user-specified proportion negative cells (negative_proportion_flag). levine dataset, look markers 97.5% cells threshold 5 ion counts: can see two channels 97.5% cells dataset 5 counts. given experiment, might expected (.e. marker expressed rare cell population) unexpected (marker expressed many cells). case, can visualize marker negative cells manually inspect (recommend flagged channels). case, looks like small population cells slightly positive cd14, simply measurement noise/nonspecific binding antibody. user whether include cd14 downstream analyses.","code":"# convert 5 counts to asinh value with a cofactor of 5 threshold <- asinh(5 / 5) levine |> tof_assess_channels( negative_threshold = threshold, negative_proportion_flag = 0.975 ) #> # A tibble: 38 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd14 0.988 TRUE #> 2 cd133 0.975 TRUE #> 3 cd117 0.969 FALSE #> 4 cd16 0.967 FALSE #> 5 flt3 0.960 FALSE #> 6 cd15 0.940 FALSE #> 7 cd41 0.923 FALSE #> 8 cd34 0.909 FALSE #> 9 cd61 0.890 FALSE #> 10 cd33 0.885 FALSE #> # ℹ 28 more rows levine |> tof_plot_cells_density(marker_col = cd14)"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"identify-time-periods-of-abnormally-low-or-high-flow-rate-during-data-acquisition-using-tof_assess_flow_rate","dir":"Articles","previous_headings":"","what":"Identify time periods of abnormally low or high flow rate during data acquisition using tof_assess_flow_rate()","title":"Quality control","text":"Large changes flow rate cytometer can impact quality signal acquired data collection: example, abnormally low flow rates can caused partial occlusions cytometer’s flow cell, leading debris air infiltration cytometer’s microfluidics system. Thus, can useful perform quality control step explicitly interrogates flow rate course cytometry experiment order flag cells collected unusually high low rates acquisition. , {tidytof} provides tof_assess_flow_rate(), function implements simplified version FlowAI’s flow rate analysis. short, relative flow rates timestep cytometry experiment calculated, outlier timepoints particularly high low flow rates (.e. beyond extreme values t-distribution across timesteps) flagged. size timesteps user-defined parameter calculation, significance level (0 1) within t-distribution determines anomalous time step’s flow rate must cells flagged. can apply tof_assess_flow_rate() levine dataset , using result , can see last several timesteps flagged potentially low flow rates. decision include exclude cells analyses left user. group_cols argument can also used analyze flow rates samples, patients, mass cytometry barcode plates, etc. separately.","code":"levine |> tof_assess_flow_rate( time_col = time, num_timesteps = 200, # flag timepoints in which flow rates are high or low at a signicance level # of p = 0.01 alpha_threshold = 0.01, # plot the number of cells in each timestep, and whether or not the # rates were flagged as too high or too low visualize = TRUE ) levine |> tof_assess_flow_rate( time_col = time, # analyze two files in the levine dataset separately group_cols = file_number, alpha_threshold = 0.01, visualize = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"flag-cells-that-are-unusually-far-from-the-centroid-of-a-cluster-to-which-they-have-been-assigned-with-tof_assess_clusters_distance","dir":"Articles","previous_headings":"","what":"Flag cells that are unusually far from the centroid of a cluster to which they have been assigned with tof_assess_clusters_distance()","title":"Quality control","text":"using favorite clustering algorithm define cell subpopulations (example, using tof_cluster()), may wonder well clustering procedure worked. example, may clusters contain outliers - , cells less similar cells cluster typical. detect cells, tidytof provides tof_assess_clusters_distance() verb, computes Mahalanobis distance cell centroid cluster assigned. , computes z-score mahalanobis distances cells cluster flags cells z-score user-specified threshold. Altogether, procedure flags cells unusually far cluster centroid - .e. candidate outliers. demonstrate use tof_assess_clusters_distance() simulated data. simulate data 3 clusters, large population cells “truly” belong cluster well small population outliers cells erroneously assigned cluster. following plots visualize simulated data described : Using dataset, see tof_assess_clusters_distance() can successfully flag majority outlier cells cluster.","code":"set.seed(2020L) # simulate large population of cells that truly belong in their assigned cluster sim_data_base <- dplyr::tibble( cd45 = c(rnorm(n = 600), rnorm(n = 500, mean = -4)), cd38 = c( rnorm(n = 100, sd = 0.5), rnorm(n = 500, mean = -3), rnorm(n = 500, mean = 8) ), cd34 = c( rnorm(n = 100, sd = 0.2, mean = -10), rnorm(n = 500, mean = 4), rnorm(n = 500, mean = 60) ), cd19 = c(rnorm(n = 100, sd = 0.3, mean = 10), rnorm(n = 1000)), cluster_id = c(rep(\"a\", 100), rep(\"b\", 500), rep(\"c\", 500)), dataset = \"non-outlier\" ) # simulate outlier cells that do not belong in their assigned cluster sim_data_outlier <- dplyr::tibble( cd45 = c(rnorm(n = 10), rnorm(50, mean = 3), rnorm(n = 50, mean = -12)), cd38 = c( rnorm(n = 10, sd = 0.5), rnorm(n = 50, mean = -10), rnorm(n = 50, mean = 10) ), cd34 = c( rnorm(n = 10, sd = 0.2, mean = -15), rnorm(n = 50, mean = 15), rnorm(n = 50, mean = 70) ), cd19 = c(rnorm(n = 10, sd = 0.3, mean = 19), rnorm(n = 100)), cluster_id = c(rep(\"a\", 10), rep(\"b\", 50), rep(\"c\", 50)), dataset = \"outlier\" ) # bind simulated data together sim_data <- bind_rows(sim_data_base, sim_data_outlier) sim_data |> tof_plot_cells_embedding(color_col = cluster_id) sim_data |> tof_plot_cells_embedding(color_col = dataset) sim_data |> tof_assess_clusters_distance( cluster_col = cluster_id, # flag cells with a mahalanobis distance z-score over 3 z_threshold = 3, augment = TRUE ) |> # visualize result as above dplyr::select(-dplyr::starts_with(\".mahala\"), -z_score) |> dplyr::mutate(flagged_cell = as.character(flagged_cell)) |> tof_plot_cells_embedding(color_col = flagged_cell) + scale_fill_manual(values = tof_generate_palette(num_colors = 2))"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"flag-cells-whose-cluster-assignment-is-ambiguous-with-tof_assess_clusters_entropy","dir":"Articles","previous_headings":"","what":"Flag cells whose cluster assignment is ambiguous with tof_assess_clusters_entropy()","title":"Quality control","text":"may also wish evaluate clustering result based cell’s absolute distance centroid cluster assigned, based relative distances cell cluster centroids. , order confident cell’s cluster assignment, ideally want cell close centroid cluster assigned, relatively distant clusters. contrasts scenario cell might similarly close centroids 2-3 clusters, case might think cell “ambiguous” phenotype, phenotype intermediate clusters clustering algorithm identified. flag “ambiguous” clusters, {tidytof} provides tof_assess_clusters_entropy() verb. tof_assess_clusters_entropy() computes entropy L1-scaled mahalanobis distance vector (.e. mahalanobis distance cell centroids clusters dataset) - entropy low (close 0) confident cell’s cluster assignment, high (near 1) equally close multiple cluster centroids. demonstrate use function simulated data levine dataset .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"simulated-data","dir":"Articles","previous_headings":"Flag cells whose cluster assignment is ambiguous with tof_assess_clusters_entropy()","what":"Simulated data","title":"Quality control","text":"First, simulate fake dataset 3000 cells 4 channels. simulated dataset, two well-defined clusters (“b” “c”) dispersed cluster intermediate others (“”). data visualized : dataset, can imagine first analysis approach might involve clustering cells 2 distinct clusters. data simulated, already know number clusters small - can calculating entropy cells resulting clusters help us realize without prior knowledge? check, can use tof_assess_clusters_entropy(): plots , can see cells middle 2 k-means clusters (correspond well ground-truth clusters “b” “c” ) high entropy values, whereas cells closer one centroids low entropy values. can also see tof_assess_clusters_entropy() flags cells potentially anomalous (.e. intermediate phenotype two clusters identified) entropy values 75th percentile (user-specified parameter) entropy values dataset. user wish recluster dataset, filter anomalous cells, processing steps. can see , expected, intermediate cluster (“”) higher entropies either distinct clusters (“b” “c”).","code":"sim_data <- dplyr::tibble( cd45 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cd38 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cd34 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cd19 = c( rnorm(n = 1000, sd = 2), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2) ), cluster_id = c(rep(\"a\", 1000), rep(\"b\", 1000), rep(\"c\", 1000)) ) sim_data |> tof_reduce_dimensions(method = \"pca\") |> tof_plot_cells_embedding( embedding_cols = c(.pc1, .pc2), color_col = cluster_id ) set.seed(17L) entropy_result <- sim_data |> # cluster into 2 clusters tof_cluster( num_clusters = 2, method = \"kmeans\" ) |> # calculate the entropy of all cells tof_assess_clusters_entropy( cluster_col = .kmeans_cluster, marker_cols = starts_with(\"cd\"), entropy_quantile = 0.8, augment = TRUE ) # plot the clusters in PCA space entropy_result |> select(-starts_with(\".mahala\"), -flagged_cell) |> tof_reduce_dimensions(pca_cols = starts_with(\"cd\"), method = \"pca\") |> tof_plot_cells_embedding(embedding_cols = c(.pc1, .pc2), color_col = .kmeans_cluster) # show the entropy values for each cell entropy_result |> select(-starts_with(\".mahala\"), -flagged_cell) |> tof_reduce_dimensions(pca_cols = starts_with(\"cd\"), method = \"pca\") |> tof_plot_cells_embedding(embedding_cols = c(.pc1, .pc2), color_col = entropy) + scale_fill_viridis_c() entropy_result |> select(-starts_with(\".mahala\")) |> tof_reduce_dimensions(pca_cols = starts_with(\"cd\"), method = \"pca\") |> tof_plot_cells_embedding(embedding_cols = c(.pc1, .pc2), color_col = flagged_cell) + scale_fill_viridis_d() entropy_result |> ggplot(aes(x = entropy, fill = cluster_id)) + geom_density(alpha = 0.4) + theme_bw()"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"real-data","dir":"Articles","previous_headings":"Flag cells whose cluster assignment is ambiguous with tof_assess_clusters_entropy()","what":"Real data","title":"Quality control","text":"can also apply tof_assess_clusters_entropy() dataset derived levine data. Suppose take 5 largest clusters levine save result small_levine tof_tbl. , can perturb dataset replacing labels cells smallest cluster (cluster 9) random labels. effectively creates population cells dataset whose “true” cluster label absent. scenario, expect cells perturbed cluster relatively distant remaining clusters, whereas unperturbed cells relatively close cluster centroid (correct centroid). Thus, can test tof_assess_clusters_entropy() successfully flags cells perturbed cluster relative others: plot , can see cells cluster 9 larger entropy values cells clusters, expected. Similarly, can see majority cells 9 successfully flagged tof_assess_clusters_entropy() using entropy quantile threshold 0.9. Conversely, cells cluster (cluster 15) flagged.","code":"clusters_to_keep <- levine |> dplyr::count(population_id) |> dplyr::slice_max(order_by = n, n = 5L) |> dplyr::arrange(n) |> pull(population_id) smallest_cluster <- clusters_to_keep[1] largest_cluster <- clusters_to_keep[[length(clusters_to_keep)]] small_levine <- levine |> dplyr::filter(population_id %in% clusters_to_keep) # perform the perturbation small_levine <- small_levine |> dplyr::mutate( new_population_id = dplyr::if_else( population_id %in% smallest_cluster, sample( clusters_to_keep[-which(clusters_to_keep %in% smallest_cluster)], size = nrow(small_levine), replace = TRUE ), population_id ) ) # perform the entropy assessment entropy_levine <- small_levine |> tof_assess_clusters_entropy( cluster_col = new_population_id, marker_cols = starts_with(\"cd\"), augment = TRUE ) entropy_levine |> mutate(population_id = fct_reorder(population_id, entropy)) |> tof_plot_cells_density( marker_col = entropy, group_col = population_id, use_ggridges = TRUE, scale = 0.1 ) + ggplot2::theme(legend.position = \"none\") + ggplot2::labs(x = \"Entropy\", y = \"Cluster ID\") entropy_levine |> mutate(flagged_cell = entropy > quantile(entropy, prob = 0.9)) |> dplyr::count(population_id, flagged_cell) |> group_by(population_id) |> mutate(prop = n / sum(n)) |> ungroup() |> dplyr::filter(flagged_cell) #> # A tibble: 2 × 4 #> population_id flagged_cell n prop #> #> 1 15 TRUE 12888 0.0798 #> 2 9 TRUE 11666 0.706"},{"path":"https://keyes-timothy.github.io/tidytof/articles/quality-control.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Quality control","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats4 stats graphics grDevices utils datasets methods #> [8] base #> #> other attached packages: #> [1] HDCytoData_1.22.0 flowCore_2.14.1 #> [3] SummarizedExperiment_1.32.0 Biobase_2.62.0 #> [5] GenomicRanges_1.54.1 GenomeInfoDb_1.38.7 #> [7] IRanges_2.36.0 S4Vectors_0.40.2 #> [9] MatrixGenerics_1.14.0 matrixStats_1.2.0 #> [11] ExperimentHub_2.10.0 AnnotationHub_3.10.0 #> [13] BiocFileCache_2.10.1 dbplyr_2.4.0 #> [15] BiocGenerics_0.48.1 forcats_1.0.0 #> [17] ggplot2_3.5.0 dplyr_1.1.4 #> [19] tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] jsonlite_1.8.8 shape_1.4.6.1 #> [3] magrittr_2.0.3 farver_2.1.1 #> [5] rmarkdown_2.26 fs_1.6.3 #> [7] zlibbioc_1.48.0 ragg_1.2.7 #> [9] vctrs_0.6.5 memoise_2.0.1 #> [11] htmltools_0.5.7 S4Arrays_1.2.1 #> [13] curl_5.2.1 SparseArray_1.2.4 #> [15] sass_0.4.8 parallelly_1.37.1 #> [17] bslib_0.6.1 desc_1.4.3 #> [19] lubridate_1.9.3 cachem_1.0.8 #> [21] igraph_2.0.2 mime_0.12 #> [23] lifecycle_1.0.4 iterators_1.0.14 #> [25] pkgconfig_2.0.3 Matrix_1.6-5 #> [27] R6_2.5.1 fastmap_1.1.1 #> [29] shiny_1.8.0 GenomeInfoDbData_1.2.11 #> [31] future_1.33.1 digest_0.6.34 #> [33] colorspace_2.1-0 AnnotationDbi_1.64.1 #> [35] textshaping_0.3.7 RSQLite_2.3.5 #> [37] labeling_0.4.3 filelock_1.0.3 #> [39] cytolib_2.14.1 fansi_1.0.6 #> [41] yardstick_1.3.0 timechange_0.3.0 #> [43] httr_1.4.7 polyclip_1.10-6 #> [45] abind_1.4-5 compiler_4.3.3 #> [47] bit64_4.0.5 withr_3.0.0 #> [49] doParallel_1.0.17 viridis_0.6.5 #> [51] DBI_1.2.2 highr_0.10 #> [53] ggforce_0.4.2 MASS_7.3-60.0.1 #> [55] lava_1.8.0 rappdirs_0.3.3 #> [57] DelayedArray_0.28.0 tools_4.3.3 #> [59] interactiveDisplayBase_1.40.0 httpuv_1.6.14 #> [61] future.apply_1.11.1 nnet_7.3-19 #> [63] glue_1.7.0 promises_1.2.1 #> [65] grid_4.3.3 generics_0.1.3 #> [67] recipes_1.0.10 gtable_0.3.4 #> [69] tzdb_0.4.0 class_7.3-22 #> [71] tidyr_1.3.1 data.table_1.15.2 #> [73] hms_1.1.3 tidygraph_1.3.1 #> [75] utf8_1.2.4 XVector_0.42.0 #> [77] ggrepel_0.9.5 BiocVersion_3.18.1 #> [79] foreach_1.5.2 pillar_1.9.0 #> [81] stringr_1.5.1 RcppHNSW_0.6.0 #> [83] later_1.3.2 splines_4.3.3 #> [85] tweenr_2.0.3 lattice_0.22-5 #> [87] survival_3.5-8 bit_4.0.5 #> [89] RProtoBufLib_2.14.0 tidyselect_1.2.0 #> [91] Biostrings_2.70.2 knitr_1.45 #> [93] gridExtra_2.3 xfun_0.42 #> [95] graphlayouts_1.1.1 hardhat_1.3.1 #> [97] timeDate_4032.109 stringi_1.8.3 #> [99] yaml_2.3.8 evaluate_0.23 #> [101] codetools_0.2-19 ggraph_2.2.1 #> [103] tibble_3.2.1 BiocManager_1.30.22 #> [105] cli_3.6.2 rpart_4.1.23 #> [107] xtable_1.8-4 systemfonts_1.0.6 #> [109] munsell_0.5.0 jquerylib_0.1.4 #> [111] Rcpp_1.0.12 globals_0.16.3 #> [113] png_0.1-8 parallel_4.3.3 #> [115] ellipsis_0.3.2 pkgdown_2.0.7 #> [117] gower_1.0.1 readr_2.1.5 #> [119] blob_1.2.4 listenv_0.9.1 #> [121] glmnet_4.1-8 viridisLite_0.4.2 #> [123] ipred_0.9-14 ggridges_0.5.6 #> [125] scales_1.3.0 prodlim_2023.08.28 #> [127] purrr_1.0.2 crayon_1.5.2 #> [129] rlang_1.1.3 KEGGREST_1.42.0"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"accessing-the-data-for-this-vignette","dir":"Articles","previous_headings":"","what":"Accessing the data for this vignette","title":"Reading and writing data","text":"tidytof comes bundled several example mass cytometry datasets. access raw FCS CSV files containing data, use tidytof_example_data function. called arguments, tidytof_example_data return character vector naming datasets contained tidytof: details datasets contained directories isn’t particularly important, basic information follows: aml - one FCS file containing myeloid cells healthy bone marrow one FCS file containing myeloid cells AML patient bone marrow ddpr - two FCS files containing B-cell lineage cells paper mix - two FCS files different CyTOF antigen panels (one FCS file “aml” directory one “phenograph” directory) mix2 - three files different CyTOF antigen panels different file extensions (one FCS file “aml” directory two CSV files “phenograph_csv directory) phenograph - three FCS files containing AML cells paper phenograph_csv - cells “phenograph” directory, stored CSV files scaffold - three FCS files paper statistical_scaffold - three FCS files paper surgery - three FCS files paper obtain file path directory containing dataset, call tidytof_example_data one dataset names argument. example, obtain directory phenograph data, use following command:","code":"tidytof_example_data() #> [1] \"aml\" \"ddpr\" \"ddpr_metadata.csv\" #> [4] \"mix\" \"mix2\" \"phenograph\" #> [7] \"phenograph_csv\" \"surgery\" tidytof_example_data(\"phenograph\") #> [1] \"/home/runner/work/_temp/Library/tidytof/extdata/phenograph\""},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"reading-data-with-tof_read_data","dir":"Articles","previous_headings":"","what":"Reading Data with tof_read_data","title":"Reading and writing data","text":"Using one directories (directory containing CyTOF data local machine), can use tof_read_data read CyTOF data raw files. Acceptable formats include FCS files CSV files. Importantly, tof_read_data smart enough read single FCS/CSV files multiple FCS/CSV files depending whether first argument (path) leads single file directory files. , can use tof_read_data read FCS files “phenograph” example dataset bundled tidytof store phenograph variable. Regardless input data file type, tidytof reads data extended tibble class called tof_tbl (pronounced “tof tibble”). tof tibbles S3 class identical tbl_df, one additional attribute (“panel”). tidytof stores additional attribute tof_tbls , addition analyzing CyTOF data individual experiments, CyTOF users often want compare panels experiments find common markers compare metals associated particular markers across panels. retrieve panel information tof_tbl, use tof_get_panel: additional notes tof_tbls: tof_tbls contains one cell per row one CyTOF channel per column (provide data “tidy” format). tof_read_data adds additional column output tof_tbl encoding name file cell read (“file_name” column). tof_tbls inherit tbl_df class, methods available tibbles also available tof_tbls.","code":"phenograph <- tidytof_example_data(\"phenograph\") %>% tof_read_data() phenograph %>% class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" phenograph %>% tof_get_panel() #> # A tibble: 44 × 2 #> metals antigens #> #> 1 Time Time #> 2 Cell_length Cell_length #> 3 Ir191 DNA1 #> 4 Ir193 DNA2 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"using-tibble-methods-with-tidytof-tibbles","dir":"Articles","previous_headings":"","what":"Using tibble methods with {tidytof} tibbles","title":"Reading and writing data","text":"extension tbl_df class, tof_tbls get access dplyr tidyr free. can useful performing variety common operations. example, phenograph object two columns - PhenoGraph Condition - encode categorical variables numeric codes. might interested converting types columns strings make sure don’t accidentally perform quantitative operations later. Thus, dplyr’s useful mutate method can applied phenograph convert two columns character vectors. note tof_tbl class preserved even transformations. Importantly, tof_read_data uses opinionated heuristic mine different keyword slots input FCS file(s) guess metals antigens used data acquisition. Thus, CSV files read using tof_read_data, recommended use panel_info argument provide panel manually (CSV files, unlike FCS files, provide built-metadata columns contain).","code":"phenograph <- phenograph %>% # mutate the input tof_tbl mutate( PhenoGraph = as.character(PhenoGraph), Condition = as.character(Condition) ) phenograph %>% # use dplyr's select method to show # that the columns have been changed select(where(is.character)) #> # A tibble: 300 × 3 #> file_name PhenoGraph Condition #> #> 1 H1_PhenoGraph_cluster1.fcs 7 7 #> 2 H1_PhenoGraph_cluster1.fcs 6 6 #> 3 H1_PhenoGraph_cluster1.fcs 9 9 #> 4 H1_PhenoGraph_cluster1.fcs 2 2 #> # ℹ 296 more rows phenograph %>% class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" # when csv files are read, the tof_tibble's \"panel\" # attribute will be empty by default tidytof_example_data(\"phenograph_csv\") %>% tof_read_data() %>% tof_get_panel() #> # A tibble: 0 × 0 # to add a panel manually, provide it as a tibble # to tof_read_data phenograph_panel <- phenograph %>% tof_get_panel() tidytof_example_data(\"phenograph_csv\") %>% tof_read_data(panel_info = phenograph_panel) %>% tof_get_panel() #> # A tibble: 44 × 2 #> antigens metals #> #> 1 Time Time #> 2 Cell_length Cell_length #> 3 DNA1 Ir191 #> 4 DNA2 Ir193 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"writing-data-from-a-tof_tbl-to-disk","dir":"Articles","previous_headings":"","what":"Writing data from a tof_tbl to disk","title":"Reading and writing data","text":"Users may wish store CyTOF data FCS CSV files transformation, concatenation, filtering, data processing. write single-cell data tof_tbl FCS CSV files, use tof_write_data. illustrate use verb, use tidytof’s built-phenograph_data dataset. tof_write_data’s trickiest argument group_cols, argument used specify columns tof_tibble used group cells (rows tof_tibble) separate FCS CSV files. Simply put, argument allows tof_write_data create single FCS CSV file unique combination values group_cols columns specified user. example , cells grouped 3 output FCS files - one 3 clusters encoded phenograph_cluster column phenograph_data. files following names (derived values phenograph_cluster column): cluster1.fcs cluster2.fcs cluster3.fcs Note file names match distinct values group_cols column (phenograph_cluster): However, suppose wanted write multiple files cluster breaking cells two groups: express high levels pstat5 express low levels pstat5. can use dplyr::mutate create new column phenograph_data breaks cells high- low-pstat5 expression groups, add column group_cols specification: write 6 files following names (derived values phenograph_cluster expression_group). cluster1_low.fcs cluster1_high.fcs cluster2_low.fcs cluster2_high.fcs cluster3_low.fcs cluster3_high.fcs , note file names match distinct values group_cols columns (phenograph_cluster expression_group): useful feature tof_write_data automatically concatenate cells single FCS CSV files based specified group_cols regardless many unique files cells came . allows easy concatenation FCS CSV files containing data single sample acquired multiple CyTOF runs, example.","code":"data(phenograph_data) print(phenograph_data) #> # A tibble: 3,000 × 25 #> sample_name phenograph_cluster cd19 cd11b cd34 cd45 cd123 cd33 cd47 #> #> 1 H1_PhenoGra… cluster1 -0.168 29.0 3.23 131. -0.609 1.21 13.0 #> 2 H1_PhenoGra… cluster1 1.65 4.83 -0.582 230. 2.53 -0.507 12.9 #> 3 H1_PhenoGra… cluster1 2.79 36.1 5.20 293. -0.265 3.67 27.1 #> 4 H1_PhenoGra… cluster1 0.0816 48.8 0.363 431. 2.04 9.40 41.0 #> # ℹ 2,996 more rows #> # ℹ 16 more variables: cd7 , cd44 , cd38 , cd3 , #> # cd117 , cd64 , cd41 , pstat3 , pstat5 , #> # pampk , p4ebp1 , ps6 , pcreb , `pzap70-syk` , #> # prb , `perk1-2` # when copying and pasting this code, feel free to change this path # to wherever you'd like to save your output files my_path <- file.path(\"~\", \"Desktop\", \"tidytof_vignette_files\") phenograph_data %>% tof_write_data( group_cols = phenograph_cluster, out_path = my_path, format = \"fcs\" ) phenograph_data %>% distinct(phenograph_cluster) #> # A tibble: 3 × 1 #> phenograph_cluster #> #> 1 cluster1 #> 2 cluster2 #> 3 cluster3 phenograph_data %>% # create a variable representing if a cell is above or below # the median expression level of pstat5 mutate( expression_group = if_else(pstat5 > median(pstat5), \"high\", \"low\") ) %>% tof_write_data( group_cols = c(phenograph_cluster, expression_group), out_path = my_path, format = \"fcs\" ) phenograph_data %>% mutate( expression_group = if_else(pstat5 > median(pstat5), \"high\", \"low\") ) %>% distinct(phenograph_cluster, expression_group) #> # A tibble: 6 × 2 #> phenograph_cluster expression_group #> #> 1 cluster1 low #> 2 cluster1 high #> 3 cluster2 low #> 4 cluster2 high #> # ℹ 2 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/articles/reading-and-writing-data.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Reading and writing data","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] dplyr_1.1.4 tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] matrixStats_1.2.0 compiler_4.3.3 systemfonts_1.0.6 #> [7] vctrs_0.6.5 stringr_1.5.1 crayon_1.5.2 #> [10] pkgconfig_2.0.3 shape_1.4.6.1 fastmap_1.1.1 #> [13] ggraph_2.2.1 utf8_1.2.4 rmarkdown_2.26 #> [16] prodlim_2023.08.28 tzdb_0.4.0 ragg_1.2.7 #> [19] bit_4.0.5 purrr_1.0.2 xfun_0.42 #> [22] glmnet_4.1-8 cachem_1.0.8 jsonlite_1.8.8 #> [25] recipes_1.0.10 tweenr_2.0.3 parallel_4.3.3 #> [28] R6_2.5.1 bslib_0.6.1 stringi_1.8.3 #> [31] parallelly_1.37.1 rpart_4.1.23 lubridate_1.9.3 #> [34] jquerylib_0.1.4 Rcpp_1.0.12 iterators_1.0.14 #> [37] knitr_1.45 future.apply_1.11.1 readr_2.1.5 #> [40] flowCore_2.14.1 Matrix_1.6-5 splines_4.3.3 #> [43] nnet_7.3-19 igraph_2.0.2 timechange_0.3.0 #> [46] tidyselect_1.2.0 yaml_2.3.8 viridis_0.6.5 #> [49] timeDate_4032.109 doParallel_1.0.17 codetools_0.2-19 #> [52] listenv_0.9.1 lattice_0.22-5 tibble_3.2.1 #> [55] Biobase_2.62.0 withr_3.0.0 evaluate_0.23 #> [58] future_1.33.1 desc_1.4.3 survival_3.5-8 #> [61] polyclip_1.10-6 pillar_1.9.0 foreach_1.5.2 #> [64] stats4_4.3.3 generics_0.1.3 vroom_1.6.5 #> [67] RcppHNSW_0.6.0 S4Vectors_0.40.2 hms_1.1.3 #> [70] ggplot2_3.5.0 munsell_0.5.0 scales_1.3.0 #> [73] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [76] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [79] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [82] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [85] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [88] ggforce_0.4.2 cli_3.6.2 textshaping_0.3.7 #> [91] fansi_1.0.6 cytolib_2.14.1 viridisLite_0.4.2 #> [94] lava_1.8.0 gtable_0.3.4 sass_0.4.8 #> [97] digest_0.6.34 BiocGenerics_0.48.1 ggrepel_0.9.5 #> [100] farver_2.1.1 memoise_2.0.1 htmltools_0.5.7 #> [103] pkgdown_2.0.7 lifecycle_1.0.4 hardhat_1.3.1 #> [106] bit64_4.0.5 MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"prerequisites","dir":"Articles","previous_headings":"","what":"Prerequisites","title":"Getting started with tidytof","text":"tidytof makes heavy use two concepts may unfamiliar R beginners. first pipe (|>), can read . second “grouping” data data.frame tibble using dplyr::group_by, can read . tidytof users also benefit relatively -depth understanding dplyr package, wonderful introductory vignette : Everything else self-explanatory beginner advanced R users, though zero background running R code, read chapter R Data Science Hadley Wickham.","code":"vignette(\"dplyr\")"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"workflow-basics","dir":"Articles","previous_headings":"","what":"Workflow basics","title":"Getting started with tidytof","text":"Broadly speaking, tidytof’s functionality organized support 3 levels analysis inherent single-cell data described : Reading, writing, preprocessing, visualizing data level individual cells Identifying describing cell subpopulations clusters Building models (inference prediction) level patients samples tidytof provides functions (“verbs”) operate levels analysis: Cell-level data: tof_read_data() reads single-cell data FCS CSV files disk tidy data frame called tof_tbl. tof_tbls represent cell row protein measurement (piece information associated given cell) column. tof_preprocess() transforms protein expression values using user-provided function (.e. log-transformation, centering, scaling) tof_downsample() reduces number cells tof_tibble via subsampling. tof_reduce_dimensions() performs dimensionality reduction (across columns) tof_write_data writes single-cell data tof_tibble back disk form FCS CSV file. Cluster-level data: tof_cluster() clusters cells using one several algorithms commonly applied high-dimensional cytometry data tof_metacluster() agglomerates clusters smaller number metaclusters tof_analyze_abundance() performs differential abundance analysis (DAA) clusters metaclusters across experimental groups tof_analyze_expression() performs differential expression analysis (DEA) clusters’ metaclusters’ marker expression levels across experimental groups tof_extract_features() computes summary statistics (mean marker expression) cluster. Also (optionally) pivots summary statistics sample-level tidy data frame row represents sample column represents cluster-level summary statistic. Sample-level data: tof_split_data() splits sample-level data training test set predictive modeling tof_create_grid() creates elastic net hyperparameter search grid model tuning tof_train_model() trains sample-level elastic net model saves tof_model object tof_predict() Applies trained tof_model new data predict sample-level outcomes tof_assess_model() calculates performance metrics trained tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"tidytof-verb-syntax","dir":"Articles","previous_headings":"","what":"{tidytof} verb syntax","title":"Getting started with tidytof","text":"exceptions, tidytof functions follow specific, shared syntax involves 3 types arguments always occur order. argument types follows: almost tidytof functions, first argument data frame (tibble). enables use pipe (|>) multi-step calculations, means first argument functions implicit (passed previous function using pipe). also means tidytof functions -called “single-table verbs,” exception tof_cluster_ddpr, “two-table verb” (details use tof_cluster_ddpr, see “clustering--metaclustering” vignette). second group arguments called column specifications, end suffix _col _cols. Column specifications unquoted column names tell tidytof verb columns compute particular operation. example, cluster_cols argument tof_cluster allows user specify column input data frames used perform clustering. Regardless verb requires , column specifications support tidyselect helpers follow rules tidyselection tidyverse verbs like dplyr::select() tidyr::pivot_longer(). Finally, third group arguments tidytof verb called method specifications, ’re comprised every argument isn’t input data frame column specification. Whereas column specifications represent columns used perform operation, method specifications represent details operation performed. example, tof_cluster_phenograph() function requires method specification num_neighbors, specifies many nearest neighbors used construct PhenoGraph algorithm’s k-nearest-neighbor graph. cases, tidytof sets reasonable defaults verb’s particular method specifications, workflows can also customized experimenting non-default values. following code demonstrates tidytof verb syntax looks practice, column method specifications explicitly pointed :","code":"data(ddpr_data) set.seed(777L) ddpr_data |> tof_preprocess() |> tof_cluster( cluster_cols = starts_with(\"cd\"), # column specification method = \"phenograph\", # method specification, ) |> tof_metacluster( cluster_col = .phenograph_cluster, # column specification num_metaclusters = 4, # method specification method = \"kmeans\" # method specification ) |> tof_downsample( group_cols = .kmeans_metacluster, # column specification num_cells = 200, # method specification method = \"constant\" # method specification ) |> tof_plot_cells_layout( knn_cols = starts_with(\"cd\"), # column specification color_col = .kmeans_metacluster, # column specification num_neighbors = 7L, # method specification node_size = 2L # method specification )"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"pipelines","dir":"Articles","previous_headings":"","what":"Pipelines","title":"Getting started with tidytof","text":"tidytof verbs can used combination one another using pipe (|>) operator. example, multistep “pipeline” takes built-tidytof dataset performs following analytical steps: Arcsinh-transform column protein measurements (default behavior tof_preprocess verb Cluster cells based surface markers panel Downsample dataset 100 random cells picked cluster Perform dimensionality reduction downsampled dataset using tSNE Visualize clusters using low-dimensional tSNE embedding","code":"ddpr_data |> # step 1 tof_preprocess() |> # step 2 tof_cluster( cluster_cols = starts_with(\"cd\"), method = \"phenograph\", # num_metaclusters = 4L, seed = 2020L ) |> # step 3 tof_downsample( group_cols = .phenograph_cluster, method = \"constant\", num_cells = 400 ) |> # step 4 tof_reduce_dimensions(method = \"tsne\") |> # step 5 tof_plot_cells_embedding( embedding_cols = contains(\"tsne\"), color_col = .phenograph_cluster ) + ggplot2::theme(legend.position = \"none\") #> Loading required namespace: Rtsne"},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"other-tips","dir":"Articles","previous_headings":"","what":"Other tips","title":"Getting started with tidytof","text":"tidytof designed multidisciplinary team wet-lab biologists, bioinformaticians, physician-scientists analyze high-dimensional cytometry kinds single-cell data solve variety problems. result, tidytof’s high-level API designed great care mirror tidyverse - , human-centered, consistent, composable, inclusive wide userbase. Practically speaking, means things using tidytof. First, means tidytof designed quality--life features mind. example, may notice tidytof functions begin prefix tof_. intentional, allow use development environment’s code-completing software search tidytof functions easily (even can’t remember specific function name). reason, recommend using tidytof within RStudio development environment; however, many code editors predictive text functionality serves similar function. general, tidytof verbs organized way IDE’s code-completion tools also allow search (compare) related functions relative ease. (instance, tof_cluster_ prefix used clustering functions, tof_downsample_ prefix used downsampling functions). Second, means tidytof functions relatively intuitive use due shared logic - words, understand use one tidytof function, understand use others. example shared logic across tidytof functions argument group_cols, shows multiple verbs (tof_downsample, tof_cluster, tof_daa, tof_dea, tof_extract_features, tof_write_data). case, group_cols works way: accepts unquoted vector column names (specified manually using tidyselection) used group cells operation performed. idea generalizes throughout tidytof: see argument one place, behave identically (least similarly) wherever else encounter . Finally, means tidytof optimized first ease--use, performance. humans computers interact data differently, always trade-choosing data representation intuitive human user vs. choosing data representation optimized computational speed memory efficiency. design choices conflict one another, team tends err side choosing representation easy--understand users even expense small performance costs. Ultimately, means tidytof may optimal tool every high-dimensional cytometry analysis, though hopefully general framework provide users useful functionality.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/articles/tidytof.html","id":"session-info","dir":"Articles","previous_headings":"","what":"Session info","title":"Getting started with tidytof","text":"","code":"sessionInfo() #> R version 4.3.3 (2024-02-29) #> Platform: x86_64-pc-linux-gnu (64-bit) #> Running under: Ubuntu 22.04.4 LTS #> #> Matrix products: default #> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 #> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0 #> #> locale: #> [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8 #> [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8 #> [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C #> [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C #> #> time zone: UTC #> tzcode source: system (glibc) #> #> attached base packages: #> [1] stats graphics grDevices utils datasets methods base #> #> other attached packages: #> [1] tidytof_0.99.0 #> #> loaded via a namespace (and not attached): #> [1] gridExtra_2.3 rlang_1.1.3 magrittr_2.0.3 #> [4] matrixStats_1.2.0 compiler_4.3.3 systemfonts_1.0.6 #> [7] vctrs_0.6.5 stringr_1.5.1 pkgconfig_2.0.3 #> [10] shape_1.4.6.1 fastmap_1.1.1 labeling_0.4.3 #> [13] ggraph_2.2.1 utf8_1.2.4 rmarkdown_2.26 #> [16] prodlim_2023.08.28 tzdb_0.4.0 ragg_1.2.7 #> [19] purrr_1.0.2 xfun_0.42 glmnet_4.1-8 #> [22] cachem_1.0.8 jsonlite_1.8.8 recipes_1.0.10 #> [25] highr_0.10 tweenr_2.0.3 parallel_4.3.3 #> [28] R6_2.5.1 bslib_0.6.1 stringi_1.8.3 #> [31] parallelly_1.37.1 rpart_4.1.23 lubridate_1.9.3 #> [34] jquerylib_0.1.4 Rcpp_1.0.12 iterators_1.0.14 #> [37] knitr_1.45 future.apply_1.11.1 readr_2.1.5 #> [40] flowCore_2.14.1 Matrix_1.6-5 splines_4.3.3 #> [43] nnet_7.3-19 igraph_2.0.2 timechange_0.3.0 #> [46] tidyselect_1.2.0 yaml_2.3.8 viridis_0.6.5 #> [49] timeDate_4032.109 doParallel_1.0.17 codetools_0.2-19 #> [52] listenv_0.9.1 lattice_0.22-5 tibble_3.2.1 #> [55] Biobase_2.62.0 withr_3.0.0 Rtsne_0.17 #> [58] evaluate_0.23 future_1.33.1 desc_1.4.3 #> [61] survival_3.5-8 polyclip_1.10-6 pillar_1.9.0 #> [64] foreach_1.5.2 stats4_4.3.3 generics_0.1.3 #> [67] RcppHNSW_0.6.0 S4Vectors_0.40.2 hms_1.1.3 #> [70] ggplot2_3.5.0 munsell_0.5.0 scales_1.3.0 #> [73] globals_0.16.3 class_7.3-22 glue_1.7.0 #> [76] tools_4.3.3 data.table_1.15.2 gower_1.0.1 #> [79] fs_1.6.3 graphlayouts_1.1.1 tidygraph_1.3.1 #> [82] grid_4.3.3 yardstick_1.3.0 tidyr_1.3.1 #> [85] RProtoBufLib_2.14.0 ipred_0.9-14 colorspace_2.1-0 #> [88] ggforce_0.4.2 cli_3.6.2 textshaping_0.3.7 #> [91] fansi_1.0.6 cytolib_2.14.1 viridisLite_0.4.2 #> [94] lava_1.8.0 dplyr_1.1.4 gtable_0.3.4 #> [97] sass_0.4.8 digest_0.6.34 BiocGenerics_0.48.1 #> [100] ggrepel_0.9.5 farver_2.1.1 memoise_2.0.1 #> [103] htmltools_0.5.7 pkgdown_2.0.7 lifecycle_1.0.4 #> [106] hardhat_1.3.1 MASS_7.3-60.0.1"},{"path":"https://keyes-timothy.github.io/tidytof/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Timothy Keyes. Maintainer. Kara Davis. Research team head, owner. Garry Nolan. Research team head, owner.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Keyes T (2024). tidytof: Analyze High-dimensional Cytometry Data Using Tidy Data Principles. R package version 0.99.0, https://keyes-timothy.github.io/tidytof/, https://keyes-timothy.github.io/tidytof.","code":"@Manual{, title = {tidytof: Analyze High-dimensional Cytometry Data Using Tidy Data Principles}, author = {Timothy Keyes}, year = {2024}, note = {R package version 0.99.0, https://keyes-timothy.github.io/tidytof/}, url = {https://keyes-timothy.github.io/tidytof}, }"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"tidytof-a-user-friendly-framework-for-interactive-and-reproducible-cytometry-data-analysis-","dir":"","previous_headings":"","what":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof R package implements open-source, integrated “grammar” single-cell data analysis high-dimensional cytometry data (.e. mass cytometry, full-spectrum flow cytometry, sequence-based cytometry). Specifically, tidytof provides easy--use pipeline handling high-dimensional cytometry data multiple levels observation - single-cell level, cell subpopulation (cluster) level, whole-sample level - automating many common data-processing tasks common “tidy data” interface. extension tidyverse ecosystem data manipulation tools R, tidytof’s functions developed internally consistent, human-centered set design principles. means using tidytof equally intuitive among scientists wide range coding experience (including beginners).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"prerequisites","dir":"","previous_headings":"Getting started","what":"Prerequisites","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof makes heavy use two concepts R beginners may unfamiliar . first pipe (|>), can read . second “grouping” data data.frame tibble using dplyr::group_by, can read . Everything else self-explanatory beginner advanced R users, though zero background running R code, read chapter R Data Science Hadley Wickham.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"package-structure","dir":"","previous_headings":"Getting started","what":"Package structure","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Broadly speaking, tidytof’s functionality organized support 3 levels analysis inherent single-cell data: Reading, writing, preprocessing, visualizing data level single cells Identifying describing cell subpopulations clusters Building models (inference prediction) level patients samples use tidytof levels cytometry data analysis detailed “Usage” section .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"can install development version tidytof GitHub following command: tidytof installed, can attach current R session using following code: addition, can install load packages need vignette:","code":"if (!require(devtools)) install.packages(\"devtools\") devtools::install_github(\"keyes-timothy/tidytof\") library(tidytof) if (!require(FlowSOM)) BiocManager::install(\"FlowSOM\") library(FlowSOM) if (!require(tidyverse)) install.packages(\"tidyverse\") library(tidyverse)"},{"path":[]},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"reading-data-with-tof_read_data","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Reading data with tof_read_data","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof comes bundled several example mass cytometry datasets. access raw .fcs .csv files containing data, use tidytof_example_data function. called arguments, tidytof_example_data return character vector naming datasets contained tidytof: obtain file path directory containing dataset, call tidytof_example_data one dataset names argument. example, obtain directory phenograph data, use following command: Using one directories (directory containing cytometry data local machine), can use tof_read_data read cytometry data raw files. Acceptable formats include .fcs files .csv files. Importantly, tof_read_data smart enough read single .fcs/.csv files multiple .fcs/.csv files depending whether first argument (path) leads single file directory files. , can use tof_read_data read .fcs files “phenograph” example dataset bundled tidytof store phenograph variable. Regardless input format, tidytof reads data extended tibble called tof_tbl (pronounced “tof tibble”), S3 class identical tbl_df, one additional attribute (“panel”). tidytof stores additional attribute tof_tbls , addition analyzing cytometry data individual experiments, cytometry users often want compare panels experiments find common markers compare metals associated particular markers across panels. notes tof_tbls: tof_tbls contains one cell per row one cytometry channel per column (provide data “tidy” format). tof_read_data adds additional column output tof_tbl encoding name file cell read (“file_name” column). tof_tbls inherit tbl_df class, methods available tibbles also available tof_tbls. example, dplyr’s useful mutate method can applied tof_tbl named phenograph convert columns encoding phenograph cluster ID stimulation condition cell belongs character vectors (instead original numeric codes uncleaned dataset). tof_tbl class preserved even transformations. Finally, retrieve panel information tof_tbl, use tof_get_panel: Importantly, tof_read_data uses opinionated heuristic mine different keyword slots input .fcs file(s) guess metals antigens used data collection. Thus, .csv files read using tof_read_data, recommended use panel_info argument provide panel manually (.csv files, unlike .fcs files, provide built-metadata columns contain).","code":"tidytof_example_data() #> [1] \"aml\" \"ddpr\" \"ddpr_metadata.csv\" #> [4] \"mix\" \"mix2\" \"phenograph\" #> [7] \"phenograph_csv\" \"scaffold\" \"statistical_scaffold\" #> [10] \"surgery\" tidytof_example_data(\"phenograph\") #> [1] \"/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library/tidytof/extdata/phenograph\" phenograph <- tidytof_example_data(\"phenograph\") |> tof_read_data() phenograph |> class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" phenograph <- phenograph |> # mutate the input tof_tbl mutate( PhenoGraph = as.character(PhenoGraph), Condition = as.character(Condition) ) phenograph |> # use dplyr's select method to show that the columns have been changed select(where(is.character)) |> head() #> # A tibble: 6 × 3 #> file_name PhenoGraph Condition #> #> 1 H1_PhenoGraph_cluster1.fcs 7 7 #> 2 H1_PhenoGraph_cluster1.fcs 6 6 #> 3 H1_PhenoGraph_cluster1.fcs 9 9 #> 4 H1_PhenoGraph_cluster1.fcs 2 2 #> 5 H1_PhenoGraph_cluster1.fcs 15 15 #> 6 H1_PhenoGraph_cluster1.fcs 12 12 phenograph |> class() #> [1] \"tof_tbl\" \"tbl_df\" \"tbl\" \"data.frame\" phenograph |> tof_get_panel() |> head() #> # A tibble: 6 × 2 #> metals antigens #> #> 1 Time Time #> 2 Cell_length Cell_length #> 3 Ir191 DNA1 #> 4 Ir193 DNA2 #> 5 Pd104 BC1 #> 6 Pd106 BC2"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"pre-processing-with-tof_preprocess","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Pre-processing with tof_preprocess","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Generally, raw ion counts analyte measured mass cytometer need transformed cytometry data analysis. Common preprocessing steps may include variance-stabilizing transformations - hyperbolic arcsine (arcsinh) transformation log transformation - scaling/centering, /denoising. perform standard preprocessing tasks tidytof, use tof_preprocess. tof_preprocess’s default behavior apply arcsinh transformation (cofactor 5) numeric column input tof_tibble well remove gaussian noise Fluidigm software adds ion count (noise added visualization purposes, analyses, removing recommended). example, can preprocess phenograph tof_tibble see first measurements change . alter tof_preprocess’s default behavior, change channel_cols argument (specify columns tof_tibble transformed) transform_fun argument (specify vector-valued function used transform channel_cols). keep gaussian noise added Fluidigm software (working dataset noise), set undo_noise argument FALSE. Finally, note built-function tof_postprocess works nearly identically tof_preprocess, provides different default behavior (namely, applying reverse arcsinh transformation cofactor 5 numeric columns. See ?tof_postprocess details).","code":"# before preprocessing phenograph |> select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |> head() #> # A tibble: 6 × 3 #> `CD45|Sm154` `CD34|Nd148` `CD38|Er167` #> #> 1 440. 0.256 18.7 #> 2 705. 1.96 41.2 #> 3 383. -0.302 6.51 #> 4 44.4 2.74 27.2 #> 5 892. 4.08 24.5 #> 6 448. 2.69 11.1 # perform preprocessing phenograph <- phenograph |> tof_preprocess() # inspect new values phenograph |> select(`CD45|Sm154`, `CD34|Nd148`, `CD38|Er167`) |> head() #> # A tibble: 6 × 3 #> `CD45|Sm154` `CD34|Nd148` `CD38|Er167` #> #> 1 5.17 0.0512 2.03 #> 2 5.64 0.382 2.81 #> 3 5.03 -0.0603 1.08 #> 4 2.88 0.524 2.40 #> 5 5.88 0.746 2.29 #> 6 5.19 0.515 1.54"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"downsampling-with-tof_downsample","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Downsampling with tof_downsample","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Often, cytometry experiments collect tens hundreds millions cells total, can useful downsample smaller, computationally tractable number cells - either final analysis developing code. , tidytof implements tof_downsample verb, allows downsampling using 3 methods. Using tidytof’s built-dataset phenograph_data (smaller version dataset read ), can see original size dataset 1000 cells per cluster, 3000 cells total: randomly sample 200 cells per cluster, can use tof_downsample using “constant” method: Alternatively, wanted sample 50% cells cluster, use “prop” method: finally, might also interested taking slightly different approach downsampling downsamples number cells fixed constant proportion, fixed density phenotypic space. example, following scatterplot demonstrates certain areas phenotypic density phenograph_data contain cells others along cd34/cd38 axes: reduce number cells dataset local density around cell dataset relatively constant, can use “density” method tof_downsample: details, check documentation 3 underlying members tof_downsample_* function family (wrapped tof_downsample): tof_downsample_constant tof_downsample_prop tof_downsample_density","code":"data(phenograph_data) phenograph_data |> count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 1000 #> 2 cluster2 1000 #> 3 cluster3 1000 phenograph_data |> # downsample tof_downsample( method = \"constant\", group_cols = phenograph_cluster, num_cells = 200 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 200 #> 2 cluster2 200 #> 3 cluster3 200 phenograph_data |> # downsample tof_downsample( method = \"prop\", group_cols = phenograph_cluster, prop_cells = 0.5 ) |> # count the number of downsampled cells in each cluster count(phenograph_cluster) #> # A tibble: 3 × 2 #> phenograph_cluster n #> #> 1 cluster1 500 #> 2 cluster2 500 #> 3 cluster3 500 phenograph_data |> # preprocess all numeric columns in the dataset tof_preprocess(undo_noise = FALSE) |> # make a scatterplot ggplot(aes(x = cd34, y = cd38)) + geom_point(alpha = 0.5) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + theme_bw() phenograph_data |> tof_preprocess(undo_noise = FALSE) |> tof_downsample( density_cols = c(cd34, cd38), target_prop_cells = 0.25, method = \"density\", ) |> ggplot(aes(x = cd34, y = cd38)) + geom_point(alpha = 0.5) + scale_x_continuous(limits = c(NA, 1.5)) + scale_y_continuous(limits = c(NA, 4)) + theme_bw()"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"writing-data-with-tof_write_data","dir":"","previous_headings":"Usage > Analyzing data at the single-cell level","what":"Writing data with tof_write_data","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"Finally, users may wish store single-cell data .fcs .csv files transformation, concatenation, filtering, data processing steps dimensionality reduction /clustering (see ). write single-cell data tof_tbl .fcs .csv files, use tof_write_data. tof_write_data’s trickiest argument group_cols, argument used specify columns tof_tibble used group cells (.e. rows tof_tibble) separate .fcs .csv files. Simply put, argument allows tof_write_data create single .fcs .csv file unique combination values columns specified user. example , cells grouped 3 output .fcs files - one 3 clusters encoded phenograph_cluster column phenograph_data. files following names (derived values phenograph_cluster column): cluster1.fcs cluster2.fcs cluster3.fcs However, suppose wanted write multiple files cluster breaking cells two groups: express high levels pstat5 express low levels pstat5. can use dplyr::mutate create new column phenograph_data breaks cells high- low-pstat5 expression groups, add column group_cols specification: write 6 files following names (derived values phenograph_cluster expression_group). cluster1_low.fcs cluster1_high.fcs cluster2_low.fcs cluster2_high.fcs cluster3_low.fcs cluster3_high.fcs useful feature tof_write_data automatically concatenate cells single .fcs .csv files based specified group_cols regardless many unique files cells came , allowing easy concatenation .fcs .csv files containing data single sample acquired multiple cytometry runs.","code":"# when copying and pasting this code, feel free to change this path # to wherever you'd like to save your output files my_path <- file.path(\"~\", \"Desktop\", \"tidytof_vignette_files\") phenograph_data |> tof_write_data( group_cols = phenograph_cluster, out_path = my_path, format = \"fcs\" ) phenograph_data |> # create a variable representing if a cell is above or below the median # expression level of pstat5 mutate(expression_group = if_else(pstat5 > median(pstat5), \"high\", \"low\")) |> tof_write_data( group_cols = c(phenograph_cluster, expression_group), out_path = my_path, format = \"fcs\" )"},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"identifying-clusters-with-tof_cluster","dir":"","previous_headings":"Usage > Analyzing data at the cluster-level","what":"Identifying clusters with tof_cluster","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"input files read tabular format preprocessed/downsampled, might interested clustering data define communities cells shared characteristics. , can use tof_cluster verb. Several clustering methods implemented tidytof, including FlowSOM, PhenoGraph, k-means, others. demonstrate, can apply FlowSOM clustering algorithm phenograph_data . Note phenograph_data contains 6000 total cells (2000 3 clusters identified original PhenoGraph publication). output tof_cluster tof_tbl identical input tibble, now addition additional column (“.flowsom_metacluster”) encodes cluster id cell input tof_tbl. Note output columns added tibble tof_tbl tidytof begin full-stop (“.”) reduce likelihood collisions existing column names. output tof_cluster tof_tbl, can use dplyr’s count method assess accuracy FlowSOM clustering compared original clustering PhenoGraph paper. , can see FlowSOM algorithm groups cells PhenoGraph cluster one another (small number mistakes per PhenoGraph cluster). change clustering algorithm tof_cluster uses, alter method flag; change columns used compute clusters, change cluster_cols flag. finally, want return tibble includes cluster labels (cluster labels added new column input tof_tbl), set augment FALSE.","code":"phenograph_clusters <- phenograph_data |> tof_preprocess() |> tof_cluster(method = \"flowsom\", cluster_cols = contains(\"cd\")) phenograph_clusters |> select(sample_name, .flowsom_metacluster, everything()) |> head() #> # A tibble: 6 × 26 #> sample_name .flowsom_metacluster phenograph_cluster cd19 cd11b cd34 #> #> 1 H1_PhenoGraph_c… 13 cluster1 -0.0336 2.46 0.608 #> 2 H1_PhenoGraph_c… 18 cluster1 0.324 0.856 -0.116 #> 3 H1_PhenoGraph_c… 10 cluster1 0.532 2.67 0.909 #> 4 H1_PhenoGraph_c… 8 cluster1 0.0163 2.97 0.0725 #> 5 H1_PhenoGraph_c… 13 cluster1 0.144 2.98 0.128 #> 6 H1_PhenoGraph_c… 8 cluster1 0.742 3.41 0.336 #> # ℹ 20 more variables: cd45 , cd123 , cd33 , cd47 , #> # cd7 , cd44 , cd38 , cd3 , cd117 , cd64 , #> # cd41 , pstat3 , pstat5 , pampk , p4ebp1 , #> # ps6 , pcreb , `pzap70-syk` , prb , `perk1-2` phenograph_clusters |> count(phenograph_cluster, .flowsom_metacluster, sort = TRUE) #> # A tibble: 23 × 3 #> phenograph_cluster .flowsom_metacluster n #> #> 1 cluster3 12 323 #> 2 cluster3 15 318 #> 3 cluster2 3 309 #> 4 cluster1 17 234 #> 5 cluster2 2 218 #> 6 cluster2 4 206 #> 7 cluster1 8 182 #> 8 cluster1 18 167 #> 9 cluster1 9 162 #> 10 cluster3 20 162 #> # ℹ 13 more rows # will result in a tibble with only 1 column (the cluster labels) phenograph_data |> tof_preprocess() |> tof_cluster(method = \"flowsom\", cluster_cols = contains(\"cd\"), augment = FALSE) |> head() #> # A tibble: 6 × 1 #> .flowsom_metacluster #> #> 1 13 #> 2 3 #> 3 10 #> 4 11 #> 5 10 #> 6 11"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"dimensionality-reduction-with-tof_reduce_dimensions","dir":"","previous_headings":"Usage > Analyzing data at the cluster-level","what":"Dimensionality reduction with tof_reduce_dimensions()","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"clusters identified, useful tool visualizing dimensionality reduction, form unsupervised machine learning used represent high-dimensional datasets smaller, easier--visualize number dimensions. tidytof includes several algorithms commonly used biologists dimensionality reduction: Principal component analysis (PCA), t-distributed stochastic neighbor embedding (tSNE), uniform manifold approximation projection (UMAP). apply dataset, use tof_reduce_dimensions: default, tof_reduce_dimensions add reduced-dimension feature embeddings input tof_tbl return augmented tof_tbl (, tof_tbl new columns embedding dimension) result. return features embeddings , set augment FALSE (tof_cluster). Regardless method used, reduced-dimension feature embeddings can visualized using ggplot2 (graphics package): visualizations can helpful qualitatively describing phenotypic differences clusters dataset. example, example , can see one clusters high CD11b expression, whereas others lower CD11b expression.","code":"# perform the dimensionality reduction phenograph_tsne <- phenograph_clusters |> tof_reduce_dimensions(method = \"tsne\") # select only the tsne embedding columns using a tidyselect helper (contains) phenograph_tsne |> select(contains(\"tsne\")) |> head() #> # A tibble: 6 × 2 #> .tsne1 .tsne2 #> #> 1 -8.41 17.2 #> 2 1.91 13.6 #> 3 23.9 20.1 #> 4 4.79 22.3 #> 5 -4.99 22.4 #> 6 11.0 20.2 # plot the tsne embeddings using color to distinguish between clusters phenograph_tsne |> ggplot(aes(x = .tsne1, y = .tsne2, fill = phenograph_cluster)) + geom_point(shape = 21) + theme_bw() + labs(fill = NULL) # plot the tsne embeddings using color to represent CD11b expression phenograph_tsne |> ggplot(aes(x = .tsne1, y = .tsne2, fill = cd11b)) + geom_point(shape = 21) + scale_fill_viridis_c() + theme_bw() + labs(fill = \"CD11b expression\")"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"differential-discovery-analysis-with-tof_analyze_abundance-and-tof_analyze_expression","dir":"","previous_headings":"Usage > Analyzing data at the cluster-level","what":"Differential discovery analysis with tof_analyze_abundance and tof_analyze_expression","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"dimensionality reduction can used visualize clustering result, many cytometry users also want use statistical tools rigorously quantify clusters(s) dataset associate particular experimental clinical variable. analyses often grouped umbrella term differential discovery analysis include comparing relative size clusters experimental conditions (differential abundance analysis; DAA) well comparing marker expression patterns clusters experimental conditions (differential expression analysis; DEA). tidytof provides tof_analyze_abundance tof_analyze_expression verbs differential abundance differential expression analyses, respectively. demonstrate use verbs, ’ll first download dataset originally collected development CITRUS algorithm. data available HDCytoData package, available Bioconductor can downloaded following command: load CITRUS data current R session, can call function HDCytoData, provide us format {flowCore} package (called “flowSet”). convert tidy tibble, can use tidytof built-method converting flowCore objects tof_tbl’s . Thus, can see citrus_data tof_tbl 172791 cells (one row) 39 pieces information cell (one column). can also extract metadata raw data join single-cell data using functions tidyverse: Thus, now sample-level information patient sample collected stimulation condition (“Basal” “BCR-XL”) sample exposed data acquisition. Finally, can join metadata single-cell tof_tbl obtain cleaned dataset. data cleaning steps, now citrus_data, tof_tbl containing cells collected 8 patients. Specifically, 2 samples taken patient: one cells’ B-cell receptors stimulated (BCR-XL) one (Basal). citrus_data, cell’s patient origin stored patient column, cell’s stimulation condition stored stimulation column. addition, population_id column stores information cluster labels applied cell using combination FlowSOM clustering manual merging (details, run ?HDCytoData::Bodenmiller_BCR_XL R console). might wonder certain clusters expand deplete within patients two stimulation conditions described - question requires differential abundance analysis (DAA). tidytof’s tof_analyze_abundance verb supports use 3 statistical approaches performing DAA: diffcyt, generalized-linear mixed modeling (GLMMs), simple t-tests. setup described uses paired design 2 experimental conditions interest (Basal vs. BCR-XL), can use paired t-test method: Based output, can see 6 8 clusters statistically different abundance two stimulation conditions. Using tidytof easy integration tidyverse packages, can use result visualize fold-changes cluster (within patient) BCR-XL condition compared Basal condition using ggplot2: Importantly, output tof_analyze_abundance depends slightly underlying statistical method used, details can found documentation tof_analyze_abundance_* function family member: tof_analyze_abundance_diffcyt tof_analyze_abundance_glmm tof_analyze_abundance_ttest Similarly, suppose ’re interested intracellular signaling proteins change expression levels two stimulation conditions clusters. Differential Expression Analysis (DEA) can performed using tidytof’s tof_analyze_expression verb. , can use paired t-tests multiple-hypothesis correction test significant differences cluster’s expression signaling markers stimulation conditions. output tof_analyze_expression() also depends underlying test used, can see result looks relatively similar output tof_analyze_abundance(). , output tibble row represents differential expression results single cluster-marker pair - example, first row represents difference expression pS6 cluster 1 BCR-XL Basal conditions. row includes raw p-value multiple-hypothesis-corrected p-value cluster-marker pair. result can used make volcano plot visualize results cluster-marker pairs:","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HDCytoData\") citrus_raw <- HDCytoData::Bodenmiller_BCR_XL_flowSet() citrus_data <- citrus_raw |> as_tof_tbl(sep = \"_\") citrus_metadata <- tibble( file_name = as.character(flowCore::pData(citrus_raw)[[1]]), sample_id = seq_along(file_name), patient = str_extract(file_name, \"patient[:digit:]\"), stimulation = str_extract(file_name, \"(BCR-XL)|Reference\") ) |> mutate( stimulation = if_else(stimulation == \"Reference\", \"Basal\", stimulation) ) citrus_metadata |> head() #> # A tibble: 6 × 4 #> file_name sample_id patient stimulation #> #> 1 PBMC8_30min_patient1_BCR-XL.fcs 1 patient1 BCR-XL #> 2 PBMC8_30min_patient1_Reference.fcs 2 patient1 Basal #> 3 PBMC8_30min_patient2_BCR-XL.fcs 3 patient2 BCR-XL #> 4 PBMC8_30min_patient2_Reference.fcs 4 patient2 Basal #> 5 PBMC8_30min_patient3_BCR-XL.fcs 5 patient3 BCR-XL #> 6 PBMC8_30min_patient3_Reference.fcs 6 patient3 Basal citrus_data <- citrus_data |> left_join(citrus_metadata, by = \"sample_id\") daa_result <- citrus_data |> tof_analyze_abundance( cluster_col = population_id, effect_col = stimulation, group_cols = patient, test_type = \"paired\", method = \"ttest\" ) daa_result #> # A tibble: 8 × 8 #> population_id p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 0.000924 0.00535 \"*\" -5.48 7 -0.00743 0.644 #> 2 2 0.00623 0.0166 \"*\" -3.86 7 -0.0156 0.674 #> 3 3 0.0235 0.0314 \"*\" -2.88 7 -0.0638 0.849 #> 4 4 0.0235 0.0314 \"*\" 2.88 7 0.0832 1.38 #> 5 5 0.0116 0.0232 \"*\" 3.39 7 0.00246 1.08 #> 6 6 0.371 0.371 \"\" -0.955 7 -0.0168 0.919 #> 7 7 0.00134 0.00535 \"*\" 5.14 7 0.0202 1.14 #> 8 8 0.236 0.270 \"\" -1.30 7 -0.00228 0.901 plot_data <- citrus_data |> mutate(population_id = as.character(population_id)) |> left_join( select(daa_result, population_id, significant, mean_fc), by = \"population_id\" ) |> dplyr::count(patient, stimulation, population_id, significant, mean_fc, name = \"n\") |> group_by(patient, stimulation) |> mutate(prop = n / sum(n)) |> ungroup() |> pivot_wider( names_from = stimulation, values_from = c(prop, n), ) |> mutate( diff = `prop_BCR-XL` - prop_Basal, fc = `prop_BCR-XL` / prop_Basal, population_id = fct_reorder(population_id, diff), direction = case_when( mean_fc > 1 & significant == \"*\" ~ \"increase\", mean_fc < 1 & significant == \"*\" ~ \"decrease\", TRUE ~ NA_character_ ) ) significance_data <- plot_data |> group_by(population_id, significant, direction) |> summarize(diff = max(diff), fc = max(fc)) |> ungroup() plot_data |> ggplot(aes(x = population_id, y = fc, fill = direction)) + geom_violin(trim = FALSE) + geom_hline(yintercept = 1, color = \"red\", linetype = \"dotted\", size = 0.5) + geom_point() + geom_text( aes(x = population_id, y = fc, label = significant), data = significance_data, size = 8, nudge_x = 0.2, nudge_y = 0.06 ) + scale_x_discrete(labels = function(x) str_c(\"cluster \", x)) + scale_fill_manual( values = c(\"decrease\" = \"#cd5241\", \"increase\" = \"#207394\"), na.translate = FALSE ) + labs( x = NULL, y = \"Abundance fold-change (stimulated / basal)\", fill = \"Effect\", caption = \"Asterisks indicate significance at an adjusted p-value of 0.05\" ) signaling_markers <- c( \"pNFkB_Nd142\", \"pStat5_Nd150\", \"pAkt_Sm152\", \"pStat1_Eu153\", \"pStat3_Gd158\", \"pSlp76_Dy164\", \"pBtk_Er166\", \"pErk_Er168\", \"pS6_Yb172\", \"pZap70_Gd156\" ) dea_result <- citrus_data |> tof_preprocess(channel_cols = any_of(signaling_markers)) |> tof_analyze_expression( cluster_col = population_id, marker_cols = any_of(signaling_markers), effect_col = stimulation, group_cols = patient, test_type = \"paired\", method = \"ttest\" ) dea_result |> head() #> # A tibble: 6 × 9 #> population_id marker p_val p_adj significant t df mean_diff mean_fc #> #> 1 1 pS6_Y… 7.58e-8 2.12e-6 * 22.9 7 2.56 4.31 #> 2 2 pS6_Y… 1.16e-7 2.12e-6 * 21.6 7 2.13 2.49 #> 3 3 pBtk_… 1.32e-7 2.12e-6 * -21.2 7 -0.475 0.289 #> 4 7 pBtk_… 1.18e-7 2.12e-6 * -21.5 7 -0.518 0.286 #> 5 8 pBtk_… 1.30e-7 2.12e-6 * -21.2 7 -0.516 0.324 #> 6 4 pBtk_… 7.85e-7 1.05e-5 * -16.3 7 -0.462 0.296 volcano_plot <- dea_result |> tof_plot_clusters_volcano( use_ggrepel = TRUE ) volcano_plot"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"analyzing-data-at-the-patient--and-sample-level","dir":"","previous_headings":"Usage","what":"Analyzing data at the patient- and sample-level","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"addition verbs operate single-cell data directly, tidytof implements functions aggregating single-cell measurements cluster- sample-level summary statistics can analyzed using variety statistical models.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"feature-extraction-with-tof_extract_features","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level","what":"Feature extraction with tof_extract_features","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"addition functions analyzing visualizing cytometry data single-cell cluster levels, tidytof’s tof_extract_features verb allows users aggregate single-cell cluster-level information order summarize whole-samples (whole-patients) cells collected. features can useful visualizing differences patients samples different experimental conditions building machine learning models. understand tof_extract_features verb works, ’s easiest look subroutines (members tof_extract_* function family) independently. First, tof_extract_proportion, extracts proportion cells cluster within sample (samples defined using group_cols argument): Like members tof_extract_* function family, tof_extract_proportion() returns one row sample (defined unique combination values group_cols) one column extracted feature (, one column proportion 8 clusters citrus_data). values can also returned “long” format changing format argument: Another member function family, tof_extract_central_tendency, computes central tendency (e.g. mean median) user-specified markers cluster. tof_extract_threshold similar tof_extract_central_tendency, calculates proportion cells user-specified expression value marker instead measure central tendency: two final members tof_extract_* function family – tof_extract_emd tof_extract_jsd designed specifically comparing distributions marker expression stimulation conditions. , must given stimulation_col identifies stimulation condition cell , basal_level specifies reference (.e. unstimulated) condition within stimulation_col. additional arguments, tof_extract_emd computes Earth-mover’s distance marker’s distribution stimulation conditions (within cluster) basal condition; similarly, tof_extract_jsd computes Jensen-Shannon divergence index distributions. values ways compare different 2 distributions one another computationally expensive (also higher-resolution) simply comparing measures central tendency. Finally, tof_extract_features verb provides wrapper members function family, allowing users extract multiple features types . example, following code extracts proportion cluster, median several markers cluster, EMD basal condition stimulated condition cluster patients citrus_data.","code":"# preprocess the numeric columns in the citrus dataset citrus_data <- citrus_data |> mutate(cluster = str_c(\"cluster\", population_id)) |> tof_preprocess() citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation) ) |> head() #> # A tibble: 6 × 10 #> patient stimulation `prop@cluster1` `prop@cluster2` `prop@cluster3` #> #> 1 patient1 Basal 0.0190 0.0482 0.447 #> 2 patient1 BCR-XL 0.0109 0.0395 0.268 #> 3 patient2 Basal 0.0130 0.0280 0.491 #> 4 patient2 BCR-XL 0.0101 0.0143 0.358 #> 5 patient3 Basal 0.0326 0.0830 0.397 #> 6 patient3 BCR-XL 0.0200 0.0412 0.323 #> # ℹ 5 more variables: `prop@cluster4` , `prop@cluster5` , #> # `prop@cluster6` , `prop@cluster7` , `prop@cluster8` citrus_data |> tof_extract_proportion( cluster_col = cluster, group_cols = c(patient, stimulation), format = \"long\" ) |> head() #> # A tibble: 6 × 4 #> patient stimulation cluster prop #> #> 1 patient1 Basal cluster1 0.0190 #> 2 patient1 Basal cluster2 0.0482 #> 3 patient1 Basal cluster3 0.447 #> 4 patient1 Basal cluster4 0.237 #> 5 patient1 Basal cluster5 0.00219 #> 6 patient1 Basal cluster6 0.0759 citrus_data |> tof_extract_central_tendency( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), central_tendency_function = mean ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_ct` `CD4_Nd145@cluster1_ct` #> #> 1 patient1 BCR-XL 4.80 0.0967 #> 2 patient1 Basal 4.68 0.765 #> 3 patient2 BCR-XL 5.00 -0.0579 #> 4 patient2 Basal 4.88 0.808 #> 5 patient3 BCR-XL 5.04 -0.0432 #> 6 patient3 Basal 4.98 0.745 #> # ℹ 22 more variables: `CD20_Sm147@cluster1_ct` , #> # `CD45_In115@cluster2_ct` , `CD4_Nd145@cluster2_ct` , #> # `CD20_Sm147@cluster2_ct` , `CD45_In115@cluster3_ct` , #> # `CD4_Nd145@cluster3_ct` , `CD20_Sm147@cluster3_ct` , #> # `CD45_In115@cluster4_ct` , `CD4_Nd145@cluster4_ct` , #> # `CD20_Sm147@cluster4_ct` , `CD45_In115@cluster5_ct` , #> # `CD4_Nd145@cluster5_ct` , `CD20_Sm147@cluster5_ct` , … citrus_data |> tof_extract_threshold( cluster_col = cluster, group_cols = c(patient, stimulation), marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), threshold = 5 ) |> head() #> # A tibble: 6 × 26 #> patient stimulation `CD45_In115@cluster1_threshold` CD4_Nd145@cluster1_thre…¹ #> #> 1 patient1 BCR-XL 0.516 0 #> 2 patient1 Basal 0.365 0 #> 3 patient2 BCR-XL 0.554 0 #> 4 patient2 Basal 0.452 0 #> 5 patient3 BCR-XL 0.547 0 #> 6 patient3 Basal 0.549 0 #> # ℹ abbreviated name: ¹​`CD4_Nd145@cluster1_threshold` #> # ℹ 22 more variables: `CD20_Sm147@cluster1_threshold` , #> # `CD45_In115@cluster2_threshold` , #> # `CD4_Nd145@cluster2_threshold` , #> # `CD20_Sm147@cluster2_threshold` , #> # `CD45_In115@cluster3_threshold` , #> # `CD4_Nd145@cluster3_threshold` , … # Earth-mover's distance citrus_data |> tof_extract_emd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), emd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.864 2.47 13.0 #> 2 patient2 1.11 7.05 10.8 #> 3 patient3 0.670 6.23 10.5 #> 4 patient4 2.64 5.86 9.90 #> 5 patient5 0.594 7.56 8.13 #> 6 patient6 0.661 4.77 7.97 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_emd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_emd`, ³​`BCR-XL_CD20_Sm147@cluster3_emd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_emd` , #> # `BCR-XL_CD4_Nd145@cluster7_emd` , #> # `BCR-XL_CD20_Sm147@cluster7_emd` , #> # `BCR-XL_CD45_In115@cluster4_emd` , #> # `BCR-XL_CD4_Nd145@cluster4_emd` , … # Jensen-Shannon Divergence citrus_data |> tof_extract_jsd( cluster_col = cluster, group_cols = patient, marker_cols = any_of(c(\"CD45_In115\", \"CD4_Nd145\", \"CD20_Sm147\")), jsd_col = stimulation, reference_level = \"Basal\" ) |> head() #> # A tibble: 6 × 25 #> patient BCR-XL_CD45_In115@clu…¹ BCR-XL_CD4_Nd145@clu…² BCR-XL_CD20_Sm147@cl…³ #> #> 1 patient1 0.0367 0.0513 0.347 #> 2 patient2 0.00831 0.168 0.401 #> 3 patient3 0.0104 0.115 0.357 #> 4 patient4 0.0301 0.135 0.205 #> 5 patient5 0.00911 0.0789 0.274 #> 6 patient6 0.00972 0.0346 0.214 #> # ℹ abbreviated names: ¹​`BCR-XL_CD45_In115@cluster3_jsd`, #> # ²​`BCR-XL_CD4_Nd145@cluster3_jsd`, ³​`BCR-XL_CD20_Sm147@cluster3_jsd` #> # ℹ 21 more variables: `BCR-XL_CD45_In115@cluster7_jsd` , #> # `BCR-XL_CD4_Nd145@cluster7_jsd` , #> # `BCR-XL_CD20_Sm147@cluster7_jsd` , #> # `BCR-XL_CD45_In115@cluster4_jsd` , #> # `BCR-XL_CD4_Nd145@cluster4_jsd` , … citrus_data |> tof_extract_features( cluster_col = cluster, group_cols = patient, stimulation_col = stimulation, lineage_cols = any_of(c(\"CD45_In115\", \"CD20_Sm147\", \"CD33_Nd148\")), signaling_cols = any_of(signaling_markers), signaling_method = \"emd\", basal_level = \"Basal\" ) |> head()"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"outcomes-modeling-with-tof_model","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level","what":"Outcomes modeling with tof_model","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"[brief intro building predictive models might motivated .] tidytof implements several functions building predictive models using sample- patient-level data. illustrate work, first download patient-level data paper combining sample-level clinical annotations one tidytof’s built-data objects (ddpr_metadata). data processing steps result ddpr_patients tibble. numeric columns ddpr_patients represent aggregated cell population features sample (see Supplementary Table 5 paper details). non-numeric columns represent clinical metadata sample (run ?ddpr_metadata information). also preprocessing steps might want perform now save us headaches ’re fitting models later.","code":"data(ddpr_metadata) # link for downloading the sample-level data from the Nature Medicine website data_link <- \"https://static-content.springer.com/esm/art%3A10.1038%2Fnm.4505/MediaObjects/41591_2018_BFnm4505_MOESM3_ESM.csv\" # downloading the data and combining it with clinical annotations ddpr_patients <- readr::read_csv(data_link, skip = 2L, n_max = 78L, show_col_types = FALSE) |> dplyr::rename(patient_id = Patient_ID) |> left_join(ddpr_metadata, by = \"patient_id\") |> dplyr::filter(!str_detect(patient_id, \"Healthy\")) ddpr_patients |> select(where(~ !is.numeric(.x))) |> head() #> # A tibble: 6 × 8 #> patient_id gender mrd_risk nci_rome_risk relapse_status type_of_relapse cohort #> #> 1 UPN1 Male Interme… Standard Yes Early Train… #> 2 UPN1-Rx Male Interme… Standard Yes Early Train… #> 3 UPN2 Male Interme… Standard No Train… #> 4 UPN3 Female Standard Standard No Train… #> 5 UPN4 Male Standard Standard No Valid… #> 6 UPN5 Female Standard High No Valid… #> # ℹ 1 more variable: ddpr_risk ddpr_patients <- ddpr_patients |> # convert the relapse_status variable to a factor first, # which is something we'll want for fitting the model later # and create the time_to_event and event columns for survival modeling mutate( relapse_status = as.factor(relapse_status), time_to_event = if_else(relapse_status == \"Yes\", time_to_relapse, ccr), event = if_else(relapse_status == \"Yes\", 1, 0) )"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"separating-the-training-and-validation-cohorts","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level > Outcomes modeling with tof_model","what":"Separating the training and validation cohorts","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"original DDPR paper, patients used fit model rest used assess model tuned. can separate training validation cohorts using cohort variable ddpr_patients","code":"ddpr_training <- ddpr_patients |> dplyr::filter(cohort == \"Training\") ddpr_validation <- ddpr_patients |> dplyr::filter(cohort == \"Validation\") nrow(ddpr_training) #> [1] 49 nrow(ddpr_validation) #> [1] 12"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"building-a-classifier-using-logistic-regression","dir":"","previous_headings":"Usage > Analyzing data at the patient- and sample-level > Outcomes modeling with tof_model","what":"Building a classifier using logistic regression","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"First, can build elastic net classifier predict patients relapse patients won’t (ignoring time--event data now). , can use relapse_status column ddpr_training outcome variable: Specifically, can use tof_split_data function split cohort training test set either (“simple” split) multiple times (using either k-fold cross-validation bootstrapping). case, use 5-fold cross-validation, reading documentation tof_split_data demonstrates use methods. output tof_split_data varies depending split_method used. cross-validation, result rset object rsample package. rset objects type tibble two columns: splits - column entry rsplit object (contains single resample full dataset) id - character column entry represents name fold entry splits belongs . can inspect one resamples splits column see contain: Note can use rsample::training rsample::testing return training test obeservations resampling: , can feed training_split tof_train_model function tune logistic regression model predicts relapse_status leukemia patient. sure check tof_create_grid documentation learn make hyperparameter search grid model tuning (case, limit mixture parameter value 1, fits sparse lasso model). Also note demonstration purposes, include features come one cell population (“Population 2”) original dataset, means probably shouldn’t expect model perform well one original paper (select many features). output tof_train_model tof_model, object containing information trained model (can passed tof_predict tof_assess_model verbs). tof_model printed, information optimal hyperparamters printed, table nonzero model coefficients model. can use trained model make predictions validation data set aside earlier: can see model gets (!) predictions correct validation set set aside. can also assess model directly using tof_assess_model can make ROC curve using metrics: can assess model validation data…","code":"# find how many of each outcome we have in our cohort ddpr_training |> dplyr::count(relapse_status) #> # A tibble: 2 × 2 #> relapse_status n #> #> 1 No 31 #> 2 Yes 18 training_split <- ddpr_training |> tof_split_data( split_method = \"k-fold\", num_cv_folds = 5, strata = relapse_status ) training_split #> # 5-fold cross-validation using stratification #> # A tibble: 5 × 2 #> splits id #> #> 1 Fold1 #> 2 Fold2 #> 3 Fold3 #> 4 Fold4 #> 5 Fold5 my_resample <- training_split$splits[[1]] print(my_resample) #> #> <38/11/49> class(my_resample) #> [1] \"vfold_split\" \"rsplit\" my_resample |> rsample::training() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN1 3.06 0.583 0.00449 0.164 1.94 0.416 #> 2 UPN1-Rx 0.0395 0.618 0.0634 0.572 2.93 0.944 #> 3 UPN3 0.633 0.0234 0.0165 0.0327 2.25 0.226 #> 4 UPN8 0.951 0.958 0.161 0.556 3.18 0.556 #> 5 UPN10 0.00374 0.761 0.000696 0.829 3.19 0.886 #> 6 UPN10-Rx 0.00240 0.167 0.203 0.802 2.57 0.822 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … my_resample |> rsample::testing() |> head() #> # A tibble: 6 × 1,854 #> patient_id Pop_P_Pop1 CD19_Pop1 CD20_Pop1 CD24_Pop1 CD34_Pop1 CD38_Pop1 #> #> 1 UPN2 0.139 0.0662 0.0221 0.0825 2.25 0.454 #> 2 UPN6 5.62 0.550 0.00374 0.622 2.86 0.342 #> 3 UPN7 0.474 0.966 0.124 1.24 2.59 0.243 #> 4 UPN9 15.6 0.446 0.0445 0.163 2.86 0.434 #> 5 UPN12 0.0565 0.185 0.0115 0.142 2.49 0.254 #> 6 UPN17 1.40 1.52 0.0128 0.284 3.46 0.656 #> # ℹ 1,847 more variables: CD127_Pop1 , CD179a_Pop1 , #> # CD179b_Pop1 , IgMi_Pop1 , IgMs_Pop1 , TdT_Pop1 , #> # CD22_Pop1 , tIkaros_Pop1 , CD79b_Pop1 , Ki67_Pop1 , #> # TSLPr_Pop1 , RAG1_Pop1 , CD123_Pop1 , CD45_Pop1 , #> # CD10_Pop1 , Pax5_Pop1 , CD43_Pop1 , CD58_Pop1 , #> # HLADR_Pop1 , p4EBP1_FC_Basal_Pop1 , pSTAT5_FC_Basal_Pop1 , #> # pPLCg1_2_FC_Basal_Pop1 , pAkt_FC_Basal_Pop1 , … class_mod <- training_split |> tof_train_model( predictor_cols = contains(\"Pop2\"), response_col = relapse_status, model_type = \"two-class\", hyperparameter_grid = tof_create_grid(mixture_values = 1), impute_missing_predictors = TRUE, remove_zv_predictors = TRUE # often a smart decision ) print(class_mod) #> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 1e-05 #> # A tibble: 25 × 2 #> feature coefficient #> #> 1 p4EBP1_dP_IL7_Pop2 -2.59 #> 2 CD58_Pop2 2.23 #> 3 (Intercept) -1.83 #> 4 pSTAT5_dP_TSLP_Pop2 1.69 #> 5 p4EBP1_FC_IL7_Pop2 1.46 #> 6 CD43_Pop2 1.37 #> 7 HLADR_Pop2 -1.32 #> 8 pSyk_dP_TSLP_Pop2 1.08 #> 9 pErk_dP_IL7_Pop2 -1.05 #> 10 Ki67_Pop2 -1.05 #> # ℹ 15 more rows class_predictions <- class_mod |> tof_predict(new_data = ddpr_validation, prediction_type = \"class\") class_predictions |> dplyr::mutate( truth = ddpr_validation$relapse_status ) #> # A tibble: 12 × 2 #> .pred truth #> #> 1 Yes No #> 2 No No #> 3 No Yes #> 4 No No #> 5 No No #> 6 Yes Yes #> 7 Yes Yes #> 8 No No #> 9 No No #> 10 No Yes #> 11 No Yes #> 12 No Yes # calling the function with no new_data evaluates the # the nodel using its training data training_assessment <- class_mod |> tof_assess_model() training_assessment #> $model_metrics #> # A tibble: 6 × 2 #> metric value #> #> 1 binomial_deviance 0.0291 #> 2 misclassification_error 0 #> 3 roc_auc 1 #> 4 mse 0.00119 #> 5 mae 0.0285 #> 6 accuracy 1 #> #> $roc_curve #> # A tibble: 51 × 5 #> .threshold specificity sensitivity tpr fpr #> #> 1 -Inf 0 1 1 1 #> 2 0.00000114 0 1 1 1 #> 3 0.0000955 0.0323 1 1 0.968 #> 4 0.000160 0.0645 1 1 0.935 #> 5 0.000190 0.0968 1 1 0.903 #> 6 0.000612 0.129 1 1 0.871 #> 7 0.000896 0.161 1 1 0.839 #> 8 0.00135 0.194 1 1 0.806 #> 9 0.00142 0.226 1 1 0.774 #> 10 0.00194 0.258 1 1 0.742 #> # ℹ 41 more rows #> #> $confusion_matrix #> # A tibble: 4 × 3 #> true_outcome predicted_outcome num_observations #> #> 1 No No 31 #> 2 No Yes 0 #> 3 Yes No 0 #> 4 Yes Yes 18 class_mod |> tof_plot_model() + labs(subtitle = \"ROC Curve (Training data)\") validation_assessment <- class_mod |> tof_assess_model(new_data = ddpr_validation) validation_assessment #> $model_metrics #> # A tibble: 6 × 2 #> metric value #> #> 1 binomial_deviance 4.75 #> 2 misclassification_error 0.417 #> 3 roc_auc 0.639 #> 4 mse 0.759 #> 5 mae 0.879 #> 6 accuracy 0.583 #> #> $roc_curve #> # A tibble: 14 × 5 #> .threshold specificity sensitivity tpr fpr #> #> 1 -Inf 0 1 1 1 #> 2 0.000240 0 1 1 1 #> 3 0.00105 0.167 1 1 0.833 #> 4 0.00195 0.167 0.833 0.833 0.833 #> 5 0.00230 0.333 0.833 0.833 0.667 #> 6 0.00472 0.5 0.833 0.833 0.5 #> 7 0.00618 0.667 0.833 0.833 0.333 #> 8 0.0464 0.667 0.667 0.667 0.333 #> 9 0.273 0.667 0.5 0.5 0.333 #> 10 0.286 0.667 0.333 0.333 0.333 #> 11 0.844 0.833 0.333 0.333 0.167 #> 12 0.852 0.833 0.167 0.167 0.167 #> 13 1.00 0.833 0 0 0.167 #> 14 Inf 1 0 0 0 #> #> $confusion_matrix #> # A tibble: 4 × 3 #> true_outcome predicted_outcome num_observations #> #> 1 No No 5 #> 2 No Yes 1 #> 3 Yes No 4 #> 4 Yes Yes 2 class_mod |> tof_plot_model(new_data = ddpr_validation) + labs(subtitle = \"ROC Curve (Validation data)\")"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"tidytofs-design-principles-and-some-tips","dir":"","previous_headings":"","what":"{tidytof}’s Design Principles (and some tips)","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"{tidytof} designed multidisciplinary team wet-lab biologists, bioinformaticians, physician-scientists analyze cytometry kinds single-cell data solve variety problems. result, tidytof’s high-level API designed great care mirror tidyverse - , human-centered, consistent, composable, inclusive wide userbase. section, describe miscellaneous design decisions tips using tidytof may help enthusiastic user.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_1-use-the-tof_-prefix-to-your-advantage","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"1. Use the tof_ prefix to your advantage.","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"may notice tidytof functions begin prefix tof_. intentional, allow use development environment’s code-completing software search functions easily (even don’t remember function name). reason, recommend using tidytof within RStudio development environment; however, many code editors predictive text functionality serves similar function. general, tidytof verbs organized way IDE’s code-completion tools also allow search (compare) related functions relative ease. (instance, tof_cluster_ prefix used clustering functions, tof_downsample_ prefix used downsampling functions).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_2-tidytof-functions-use-2-kinds-of-arguments","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"2. {tidytof} functions use 2 kinds of arguments","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof functions optimized working “tidy” data form tibbles data.frames. means tidytof functions share basic design principles terms arguments work. details design principles, check Getting Started tidytof vignette","code":""},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_3-use-tidytof-to-write-human-readable-pipelines","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"3. Use {tidytof} to write human-readable pipelines","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"real “magic” tidytof derives ability simplify multistep data-processing tasks simple readable chunk code. example, suppose just acquired .fcs files mass cytometer want perform following analysis: Read .fcs files R session Arcsinh-transform column protein measurements Cluster cells based surface markers panel Downsample dataset 100 random cells picked cluster Perform dimensionality reduction downsampled dataset using tSNE Visualize clusters using low-dimensional tSNE embedding using appropriate tidytof verbs step analysis, can easily write code function call corresponds exactly one step pipeline: shown , stringing together tidytof verbs creates pipeline can read easily left--right top--bottom – means relatively easy return code later (modify , write methods section next high-impact manuscript!) , perhaps importantly, one colleagues return later want recreate analysis.","code":"input_path <- tidytof_example_data(\"phenograph\") set.seed(0012) input_path |> # step 1 tof_read_data() |> # step 2 tof_preprocess() |> # step 3 tof_cluster(method = \"phenograph\") |> # step 4 tof_downsample( group_cols = .phenograph_cluster, num_cells = 100, method = \"constant\" ) |> # step 5 tof_reduce_dimensions(perplexity = 50, method = \"tsne\") |> # step 6 tof_plot_cells_embedding( embedding_cols = starts_with(\".tsne\"), color_col = .phenograph_cluster )"},{"path":"https://keyes-timothy.github.io/tidytof/index.html","id":"id_4-additional-resources","dir":"","previous_headings":"{tidytof}’s Design Principles (and some tips)","what":"4. Additional resources","title":"Analyze High-dimensional Cytometry Data Using Tidy Data Principles","text":"tidytof built top tidyverse family R packages. result, users tidytof benefit substantially spending hours dplyr, ggplot2, tidyr package vignettes learn many useful functions packages provide. access recommended list package vignettes, run following lines R code console:","code":"# dplyr vignette(topic = \"dplyr\", package = \"dplyr\") vignette(topic = \"grouping\", package = \"dplyr\") vignette(topic = \"colwise\", package = \"dplyr\") # ggplot2 vignette(topic = \"ggplot2-specs\", package = \"ggplot2\") # tidyr vignette(topic = \"tidy-data\", package = \"tidyr\") vignette(topic = \"nest\", package = \"tidyr\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"Coerce object SingleCellExperiment Coerce tof_tbl SingleCellExperiment","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"","code":"as_SingleCellExperiment(x, ...) # S3 method for tof_tbl as_SingleCellExperiment( x, channel_cols = where(tof_is_numeric), reduced_dimensions_cols, metadata_cols = where(function(.x) !tof_is_numeric(.x)), split_reduced_dimensions = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"x tof_tbl ... Unused. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default numeric columns. reduced_dimensions_cols Unquoted column names representing columns contain dimensionality reduction embeddings, tSNE UMAP embeddings. Supports tidyselect helpers. metadata_cols Unquoted column names representing columns contain metadata samples cell collected. nothing specified, default non-numeric columns. split_reduced_dimensions boolean value indicating whether dimensionality results x split separate slots resulting SingleCellExperiment. FALSE (default), split performed reducedDims slot result single entry (\"tidytof_reduced_dimensions\"). TRUE, split performed reducedDims slot result 1-4 entries depending dimensionality reduction results present x (\"tidytof_pca\", \"tidytof_tsne\", \"tidytof_umap\", \"tidytof_reduced_dimensions\"). Note \"tidytof_reduced_dimensions\" include dimensionality reduction results named according tidytof's pca, umap, tsne conventions.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"SingleCellExperiment SingleCellExperiment.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_SingleCellExperiment.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a SingleCellExperiment — as_SingleCellExperiment","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a flowFrame — as_flowFrame","title":"Coerce an object into a flowFrame — as_flowFrame","text":"Coerce object flowFrame Coerce tof_tbl flowFrame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a flowFrame — as_flowFrame","text":"","code":"as_flowFrame(x, ...) # S3 method for tof_tbl as_flowFrame(x, ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a flowFrame — as_flowFrame","text":"x tof_tbl. ... Unused.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a flowFrame — as_flowFrame","text":"flowFrame flowFrame. Note non-numeric columns `x` removed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowFrame.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a flowFrame — as_flowFrame","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a flowSet — as_flowSet","title":"Coerce an object into a flowSet — as_flowSet","text":"Coerce object flowSet Coerce tof_tbl flowSet","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a flowSet — as_flowSet","text":"","code":"as_flowSet(x, ...) # S3 method for tof_tbl as_flowSet(x, group_cols, ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a flowSet — as_flowSet","text":"x tof_tbl. ... Unused. group_cols Unquoted names columns `x` used group cells separate flowFrames. Supports tidyselect helpers. Defaults NULL (cells written single flowFrame).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a flowSet — as_flowSet","text":"flowSet flowSet. Note non-numeric columns `x` removed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_flowSet.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a flowSet — as_flowSet","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce an object into a SeuratObject — as_seurat","title":"Coerce an object into a SeuratObject — as_seurat","text":"Coerce object SeuratObject Coerce tof_tbl SeuratObject","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce an object into a SeuratObject — as_seurat","text":"","code":"as_seurat(x, ...) # S3 method for tof_tbl as_seurat( x, channel_cols = where(tof_is_numeric), reduced_dimensions_cols, metadata_cols = where(function(.x) !tof_is_numeric(.x)), split_reduced_dimensions = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce an object into a SeuratObject — as_seurat","text":"x tof_tbl ... Unused. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default numeric columns. reduced_dimensions_cols Unquoted column names representing columns contain dimensionality reduction embeddings, tSNE UMAP embeddings. Supports tidyselect helpers. metadata_cols Unquoted column names representing columns contain metadata samples cell collected. nothing specified, default non-numeric columns. split_reduced_dimensions boolean value indicating whether dimensionality results x split separate slots resulting SingleCellExperiment. FALSE (default), split performed reducedDims slot result single entry (\"tidytof_reduced_dimensions\"). TRUE, split performed reducedDims slot result 1-4 entries depending dimensionality reduction results present x (\"tidytof_pca\", \"tidytof_tsne\", \"tidytof_umap\", \"tidytof_reduced_dimensions\"). Note \"tidytof_reduced_dimensions\" include dimensionality reduction results named according tidytof's pca, umap, tsne conventions.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce an object into a SeuratObject — as_seurat","text":"SeuratObject SeuratObject.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_seurat.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce an object into a SeuratObject — as_seurat","text":"","code":"NULL #> NULL NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":null,"dir":"Reference","previous_headings":"","what":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"Convert object tof_tbl","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"","code":"# S3 method for flowSet as_tof_tbl(flow_data, sep = \"|\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"flow_data FlowSet sep string use separate antigen name associated metal column names output tibble. Defaults \"|\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.flowSet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Convert an object into a tof_tbl — as_tof_tbl.flowSet","text":"`tof_tbl`","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":null,"dir":"Reference","previous_headings":"","what":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"Coerce flowFrames flowSets tof_tbl's.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"","code":"as_tof_tbl(flow_data, sep = \"|\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"flow_data flowFrame flowSet sep string indicating symbol used separate antigen names metal names columns output tof_tbl.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"tof_tbl.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/as_tof_tbl.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Coerce flowFrames or flowSets into tof_tbl's. — as_tof_tbl","text":"","code":"input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] input_flowframe <- flowCore::read.FCS(input_file) tof_tibble <- as_tof_tbl(input_flowframe)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the cosine similarity between two vectors — cosine_similarity","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"Find cosine similarity two vectors","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"","code":"cosine_similarity(x, y)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"x numeric vector y numeric vector","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/cosine_similarity.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the cosine similarity between two vectors — cosine_similarity","text":"scalar value representing cosine similarity x y","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":null,"dir":"Reference","previous_headings":"","what":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"dataset containing CyTOF measurements immune cells originally studied following paper: Good Z, Sarno J, et al. Single-cell developmental classification B cell precursor acute lymphoblastic leukemia diagnosis reveals predictors relapse. Nat Med. 2018 May;24(4):474-483. doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"","code":"data(ddpr_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"data frame 10000 rows 24 variables: sample_name name sample data read cd45 CyTOF measurement raw ion counts cd19 CyTOF measurement raw ion counts cd22 CyTOF measurement raw ion counts cd79b CyTOF measurement raw ion counts cd20 CyTOF measurement raw ion counts cd34 CyTOF measurement raw ion counts cd123 CyTOF measurement raw ion counts cd10 CyTOF measurement raw ion counts cd24 CyTOF measurement raw ion counts cd127 CyTOF measurement raw ion counts cd43 CyTOF measurement raw ion counts cd38 CyTOF measurement raw ion counts cd58 CyTOF measurement raw ion counts psyk CyTOF measurement raw ion counts p4ebp1 CyTOF measurement raw ion counts pstat5 CyTOF measurement raw ion counts pakt CyTOF measurement raw ion counts ps6 CyTOF measurement raw ion counts perk CyTOF measurement raw ion counts pcreb CyTOF measurement raw ion counts","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"https://github.com/kara-davis-lab/DDPR","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CyTOF data from two samples: 5,000 B-cell lineage cells from a healthy\npatient and 5,000 B-cell lineage cells from a B-cell precursor Acute\nLymphoblastic Leukemia (BCP-ALL) patient. — ddpr_data","text":"data.frame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":null,"dir":"Reference","previous_headings":"","what":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"dataset containing patient-level clinical metadata samples originally studied following paper: Good Z, Sarno J, et al. Single-cell developmental classification B cell precursor acute lymphoblastic leukemia diagnosis reveals predictors relapse. Nat Med. 2018 May;24(4):474-483. doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"","code":"data(ddpr_metadata)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"data frame 10000 rows 12 variables: patient_id Name sample data read gender Gender patient sample collected age_at_diagnosis Age (years) patient sample collected wbc_count diagnostic White Blood Cell (WBC) count patient sample collected mrd_risk Risk stratification category patient using minimal residual disease (MRD) criteria nci_rome_risk Risk stratification category patient using National Cancer Institute (NCI) criteria relapse_status string representing whether patient relapsed time_to_relapse time (days) took patient relapse. Patients relapse value NA type_of_relapse string representing timing relapse patient. \"early\" relapses occurred less 18 months diagnosis; \"Early\" relapses occurred 18 months 32 months diagnosis; \"Late\" relapses occurred later 32 months diagnosis. ccr number documented days continuous complete remission (CCR) patients relapse. patients relapsed value NA. cohort string representing sample used \"Training\" \"Validation\" cohort original study ddpr_risk risk category (\"Low\" \"High\") assigned sample using original paper's risk-stratification algorithm","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"Good Z, Sarno J, et al. Single-cell developmental classification B cell precursor acute lymphoblastic leukemia diagnosis reveals predictors relapse. Nat Med. 2018 May;24(4):474-483. doi: 10.1038/nm.4505. Epub 2018 Mar 5. PMID: 29505032; PMCID: PMC5953207. Supplementary Table 1.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/ddpr_metadata.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Clinical metadata for each patient sample in Good & Sarno et al. (2018). — ddpr_metadata","text":"data.frame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the dot product between two vectors. — dot","title":"Find the dot product between two vectors. — dot","text":"Find dot product two vectors.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the dot product between two vectors. — dot","text":"","code":"dot(x, y)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the dot product between two vectors. — dot","text":"x numeric vector. y numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/dot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the dot product between two vectors. — dot","text":"dot product x y.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the extension for a file — get_extension","title":"Find the extension for a file — get_extension","text":"Find extension file","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the extension for a file — get_extension","text":"","code":"get_extension(filename)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the extension for a file — get_extension","text":"filename string representing name file local directory","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/get_extension.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the extension for a file — get_extension","text":"file extension `filename`","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":null,"dir":"Reference","previous_headings":"","what":"L2 normalize an input vector x to a length of 1 — l2_normalize","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"L2 normalize input vector x length 1","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"","code":"l2_normalize(x)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"x numeric vector","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/l2_normalize.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"L2 normalize an input vector x to a length of 1 — l2_normalize","text":"vector length length(x) magnitude 1","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the magnitude of a vector. — magnitude","title":"Find the magnitude of a vector. — magnitude","text":"Find magnitude vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the magnitude of a vector. — magnitude","text":"","code":"magnitude(x)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the magnitude of a vector. — magnitude","text":"x numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/magnitude.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the magnitude of a vector. — magnitude","text":"scalar value (magnitude x).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":null,"dir":"Reference","previous_headings":"","what":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"Make AnnotatedDataFrame needed flowFrame class","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"","code":"make_flowcore_annotated_data_frame(maxes_and_mins)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"maxes_and_mins data.frame containing information max min values channel saved flowFrame.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"AnnotatedDataFrame.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/make_flowcore_annotated_data_frame.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make the AnnotatedDataFrame needed for the flowFrame class — make_flowcore_annotated_data_frame","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":null,"dir":"Reference","previous_headings":"","what":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"character vector used `tof_read_fcs` `tof_read_data` detect parse CyTOF metals correspond channel input .fcs file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"","code":"data(metal_masterlist)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"character vector entry pattern tidytof searches every CyTOF channel input .fcs files. patterns amalgamate example .fcs files sampled studies linked .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"https://github.com/kara-davis-lab/DDPR https://cytobank.org/nolanlab/reports/Levine2015.html https://cytobank.org/nolanlab/reports/Spitzer2015.html https://cytobank.org/nolanlab/reports/Spitzer2017.html https://community.cytobank.org/cytobank/projects/609","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/metal_masterlist.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A character vector of metal name patterns supported by tidytof. — metal_masterlist","text":"named character vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Constructor for a tof_model. — new_tof_model","title":"Constructor for a tof_model. — new_tof_model","text":"Constructor tof_model.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Constructor for a tof_model. — new_tof_model","text":"","code":"new_tof_model( model, recipe, penalty, mixture, model_type = c(\"linear\", \"two-class\", \"multiclass\", \"survival\"), outcome_colnames, training_data )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Constructor for a tof_model. — new_tof_model","text":"model glmnet model. recipe prepped recipe object. penalty double indicating lambda value used within glmnet path. mixture double indicating alpha value used fit glmnet model. model_type string indicating type glmnet model fit. outcome_colnames training_data ","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Constructor for a tof_model. — new_tof_model","text":"`tof_model`, S3 class includes trained glmnet model recipe used perform associated preprocessing.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Constructor for a tof_tibble. — new_tof_tibble","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"Constructor tof_tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"","code":"new_tof_tibble(x = dplyr::tibble(), panel = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"x data.frame tibble containing single-cell mass cytometry data rows cells columns CyTOF measurements. panel data.frame tibble containing information panel mass cytometry data x.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/new_tof_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Constructor for a tof_tibble. — new_tof_tibble","text":"`tof_tbl`, tibble extension tracks attributes useful CyTOF data analysis.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":null,"dir":"Reference","previous_headings":"","what":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"dataset containing CyTOF measurements healthy control cells originally studied following paper: Levine JH, Simonds EF, et al. Data-Driven Phenotypic Dissection AML Reveals Progenitor-like Cells Correlate Prognosis. Cell. 2015 Jul 2;162(1):184-97. doi: 10.1016/j.cell.2015.05.047. Epub 2015 Jun 18. PMID: 26095251; PMCID: PMC4508757.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"","code":"data(phenograph_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"data frame 6000 rows 26 variables: sample_name Name sample data read phenograph_cluster Numeric ID cluster assignment row cd19 CyTOF measurement raw ion counts cd11b CyTOF measurement raw ion counts cd34 CyTOF measurement raw ion counts cd45 CyTOF measurement raw ion counts cd123 CyTOF measurement raw ion counts cd33 CyTOF measurement raw ion counts cd47 CyTOF measurement raw ion counts cd7 CyTOF measurement raw ion counts cd44 CyTOF measurement raw ion counts cd38 CyTOF measurement raw ion counts cd3 CyTOF measurement raw ion counts cd117 CyTOF measurement raw ion counts cd64 CyTOF measurement raw ion counts cd41 CyTOF measurement raw ion counts pstat3 CyTOF measurement raw ion counts pstat5 CyTOF measurement raw ion counts pampk CyTOF measurement raw ion counts p4ebp1 CyTOF measurement raw ion counts ps6 CyTOF measurement raw ion counts pcreb CyTOF measurement raw ion counts pzap70-syk CyTOF measurement raw ion counts prb CyTOF measurement raw ion counts perk1-2 CyTOF measurement raw ion counts","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"source","dir":"Reference","previous_headings":"","what":"Source","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"https://cytobank.org/nolanlab/reports/Levine2015.html","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"data.frame","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/phenograph_data.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"CyTOF data from 6,000 healthy immune cells from a single patient. — phenograph_data","text":"2000 cells 3 clusters identified original paper sampled.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/reexports.html","id":null,"dir":"Reference","previous_headings":"","what":"Objects exported from other packages — reexports","title":"Objects exported from other packages — reexports","text":"objects imported packages. Follow links see documentation. dplyr %>% rlang :=, .data tidyselect all_of, any_of, contains, ends_with, everything, last_col, matches, num_range, starts_with","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":null,"dir":"Reference","previous_headings":"","what":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"Reverses arcsinh transformation cofactor `scale_factor` shift `shift_factor`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"","code":"rev_asinh(x, shift_factor, scale_factor)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"x numeric vector. shift_factor scalar value `` following equation used transform high-dimensional cytometry raw data ion counts using hyperbolic arcsinh function: `new_x <- asinh(+ b * x)`. scale_factor scalar value `b` following equation used transform high-dimensional cytometry raw data ion counts using hyperbolic arcsinh function: `new_x <- asinh(+ b * x)`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"numeric vector undergoing reverse arcsinh transformation","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/rev_asinh.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Reverses arcsinh transformation with cofactor `scale_factor` and a\nshift of `shift_factor`. — rev_asinh","text":"","code":"shift_factor <- 0 scale_factor <- 1 / 5 input_value <- 20 asinh_value <- asinh(shift_factor + input_value * scale_factor) restored_value <- rev_asinh(asinh_value, shift_factor, scale_factor)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Get paths to tidytof example data — tidytof_example_data","title":"Get paths to tidytof example data — tidytof_example_data","text":"tidytof comes bundled number sample .fcs files inst/extdata directory. function makes easy access.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get paths to tidytof example data — tidytof_example_data","text":"","code":"tidytof_example_data(dataset_name = NULL)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get paths to tidytof example data — tidytof_example_data","text":"dataset_name Name dataset want access. NULL, names datasets (different study) listed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get paths to tidytof example data — tidytof_example_data","text":"character vector file paths requested .fcs files located. `dataset_name` NULL, character vector dataset names (can used values `dataset_name`) returned instead.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tidytof_example_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get paths to tidytof example data — tidytof_example_data","text":"","code":"tidytof_example_data() #> [1] \"aml\" \"ddpr\" \"ddpr_metadata.csv\" #> [4] \"mix\" \"mix2\" \"phenograph\" #> [7] \"phenograph_csv\" \"surgery\" tidytof_example_data(dataset_name = \"phenograph\") #> [1] \"/home/runner/work/_temp/Library/tidytof/extdata/phenograph\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using one three methods (\"diffcyt\", \"glmm\", \"ttest\"). wraps members `tof_analyze_abundance_*` function family: tof_analyze_abundance_diffcyt, tof_analyze_abundance_glmm, tof_analyze_abundance_ttest.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"","code":"tof_analyze_abundance(tof_tibble, method = c(\"diffcyt\", \"glmm\", \"ttest\"), ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"tof_tibble `tof_tbl` `tibble`. method string indicating statistical method used. Valid values include \"diffcyt\", \"glmm\", \"ttest\". ... Additional arguments pass onto `tof_analyze_abundance_*` function family member corresponding chosen method.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"tibble nested tibble containing differential abundance results chosen method. See tof_analyze_abundance_diffcyt, tof_analyze_abundance_glmm, tof_analyze_abundance_ttest details.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform Differential Abundance Analysis (DAA) on high-dimensional cytometry data — tof_analyze_abundance","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using one three methods implemented diffcyt package differential discovery analysis high-dimensional cytometry data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"","code":"tof_analyze_abundance_diffcyt( tof_tibble, sample_col, cluster_col, fixed_effect_cols, random_effect_cols, diffcyt_method = c(\"glmm\", \"edgeR\", \"voom\"), include_observation_level_random_effects = FALSE, min_cells = 3, min_samples = 5, alpha = 0.05, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential abundance analysis. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Optional. Unquoted column names representing columns `tof_tibble` used model random effects differential abundance analysis. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. Note without multiple samples level random effect variables, can easy overfit mixed models. high-dimensional cytometry experiments, 2 fewer (often 0) random effect variables appropriate. diffcyt_method string indicating diffcyt method used differential abundance analysis. Valid methods include \"glmm\" (default), \"edgeR\", \"voom\". include_observation_level_random_effects boolean value indicating \"observation-level random effects\" (OLREs) included random effect terms \"glmm\" differential abundance model. details OLREs , see diffcyt paper. \"glmm\" method can model observation-level random effects, values ignore argument (throw warning set TRUE). Defaults FALSE. min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. ... Optional additional arguments pass --hood diffcyt function used perform differential abundance analysis. See testDA_GLMM, testDA_edgeR, testDA_voom details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"nested tibble two columns: `tested_effect` `daa_results`. first column, `tested_effect` character vector indicating term differential abundance model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named `fixed_effect` levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential abundance model represent difference cluster abundances samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `daa_results` list tibbles entry gives differential abundance results tested_effect. Within entry `daa_results`, find several columns including following: * `p_val`, p-value associated tested effect input cluster * `p_adj`, multiple-comparison adjusted p-value (using p.adjust function) * values associated underlying method used perform differential abundance analysis (log-fold change cluster abundance levels compared). details, see glmFit, voom, topTable, testDA_GLMM.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"three methods based generalized linear mixed models (\"glmm\"), edgeR (\"edgeR\"), voom (\"voom\"). \"glmm\" \"voom\" methods can model fixed effects random effects, \"edgeR\" method can model fixed effects.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_diffcyt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Abundance Analysis (DAA) with diffcyt — tof_analyze_abundance_diffcyt","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using generalized linear mixed-models. Users specify columns represent sample, cluster, fixed effect, random effect information, (mixed) binomial regression model fit using either glmer glm.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"","code":"tof_analyze_abundance_glmm( tof_tibble, sample_col, cluster_col, fixed_effect_cols, random_effect_cols, min_cells = 3, min_samples = 5, alpha = 0.05 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential abundance analysis. Supports tidyselect helpers. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Unquoted column names representing columns `tof_tibble` used model random effects differential abundance analysis. Supports tidyselection. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. Note without many samples level random effect variables, can easy overfit mixed models. high-dimensional cytometry experiments, 2 fewer (often 0) random effect variables appropriate. min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"nested tibble two columns: `tested_effect` `daa_results`. first column, `tested_effect`, character vector indicating term differential abundance model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named fixed_effect levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential abundance model represent difference cluster abundances samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, note first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `daa_results`, list tibbles entry gives differential abundance results tested_effect. Within entry `daa_results`, find `p_value`, p-value associated tested effect input cluster; `p_adj`, multiple-comparison adjusted p-value (using p.adjust function), values associated underlying method used perform differential abundance analysis (log-fold change cluster abundance levels compared).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_glmm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Abundance Analysis (DAA) with generalized linear mixed-models (GLMMs) — tof_analyze_abundance_glmm","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"function performs differential abundance analysis cell clusters contained within `tof_tbl` using simple t-tests. Users specify columns represent sample, cluster, effect information, either paired unpaired t-test (one per cluster) used detect significant differences sample types.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"","code":"tof_analyze_abundance_ttest( tof_tibble, cluster_col, effect_col, group_cols, test_type = c(\"unpaired\", \"paired\"), min_cells = 3, min_samples = 5, alpha = 0.05, quiet = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. effect_col Unquoted column name representing column `tof_tibble` used break samples groups t-test. 2 unique values. group_cols Unquoted names columns `effect_col` used group cells independent observations. Fills similar role `sample_col` `tof_analyze_abundance_*` functions. example, experiment involves analyzing samples taken multiple patients two timepoints (`effect_col = timepoint`), group_cols name column representing patient IDs. test_type string indicating whether t-test \"unpaired\" (default) \"paired\". min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. quiet boolean value indicating whether warnings printed. Defaults `TRUE`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"tibble 7 columns: {cluster_col} name/ID cluster tested. entry column match unique value input {cluster_col}. t t-statistic computed cluster. df degrees freedom used t-test cluster. p_val (unadjusted) p-value t-test cluster. p_adj p.adjust-adjusted p-value t-test cluster. significant character vector \"*\" clusters p_adj < alpha \"\" otherwise. mean_diff unpaired t-test, difference average proportions cluster two levels `effect_col`. paired t-test, average difference proportions cluster two levels `effect_col` within given patient. mean_fc unpaired t-test, ratio average proportions cluster two levels `effect_col`. paired t-test, average ratio proportions cluster two levels `effect_col` within given patient. 0.001 added denominator ratio avoid divide--zero errors. \"levels\" attribute result indicates order different levels `effect_col` considered. `mean_diff` value row output computed subtracting second level first level, `mean_fc` value row computed dividing first level second level.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_abundance_ttest.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Abundance Analysis (DAA) with t-tests — tof_analyze_abundance_ttest","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using one three methods (\"diffcyt\", \"glmm\", \"ttest\"). wraps members `tof_analyze_expression_*` function family: tof_analyze_expression_diffcyt, tof_analyze_expression_lmm, tof_analyze_expression_ttest.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"","code":"tof_analyze_expression(tof_tibble, method = c(\"diffcyt\", \"glmm\", \"ttest\"), ...)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"tof_tibble `tof_tbl` `tibble`. method string indicating statistical method used. Valid values include \"diffcyt\", \"lmm\", \"ttest\". ... Additional arguments pass onto `tof_analyze_expression_*` function family member corresponding chosen method.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"tibble nested tibble containing differential abundance results chosen method. See tof_analyze_expression_diffcyt, tof_analyze_expression_lmm, tof_analyze_expression_ttest details.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform Differential Expression Analysis (DEA) on high-dimensional cytometry data — tof_analyze_expression","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using one two methods implemented diffcyt package differential discovery analysis high-dimensional cytometry data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"","code":"tof_analyze_expression_diffcyt( tof_tibble, sample_col, cluster_col, marker_cols = where(tof_is_numeric), fixed_effect_cols, random_effect_cols, diffcyt_method = c(\"lmm\", \"limma\"), include_observation_level_random_effects = FALSE, min_cells = 3, min_samples = 5, alpha = 0.05, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names representing columns `tof_tibble` (.e. high-dimensional cytometry protein measurements) tested differential expression levels `fixed_effect_cols`. Defaults numeric (integer double) columns. Supports tidyselect helpers. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential expression analysis. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Unquoted column names representing columns `tof_tibble` used model random effects differential expression analysis. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. Note without many samples level random effect variables, can easy overfit mixed models. high-dimensional cytometry experiments, 2 fewer (often 0) random effect variables appropriate. diffcyt_method string indicating diffcyt method used differential expression analysis. Valid methods include \"lmm\" (default) \"limma\". include_observation_level_random_effects boolean value indicating \"observation-level random effects\" (OLREs) included random effect terms \"lmm\" differential expression model. details OLREs , see diffcyt paper. Defaults FALSE. min_cells integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. ... Optional additional arguments pass --hood diffcyt function used perform differential expression analysis. See testDS_LMM testDS_limma details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"nested tibble two columns: `tested_effect` `dea_results`. first column, `tested_effect` character vector indicating term differential expression model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named fixed_effect levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential expression model represent difference cluster median expression values marker samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, note first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `dea_results` list tibbles entry gives differential expression results tested_effect. Within entry `dea_results`, find `p_val`, p-value associated tested effect input cluster/marker pair; `p_adj`, multiple-comparison adjusted p-value (using p.adjust function), values associated underlying method used perform differential expression analysis (log-fold change clusters' median marker expression values conditions compared). tibble `dea_results` also two columns representing cluster marker corresponding p-value row.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"two methods based linear mixed models (\"lmm\") limma (\"limma\"). \"lmm\" \"limma\" methods can model fixed effects random effects.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_diffcyt.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Expression Analysis (DEA) with diffcyt — tof_analyze_expression_diffcyt","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using linear mixed-models. Users specify columns represent sample, cluster, marker, fixed effect, random effect information, (mixed) linear regression model fit using either lmer glm.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"","code":"tof_analyze_expression_lmm( tof_tibble, sample_col, cluster_col, marker_cols = where(tof_is_numeric), fixed_effect_cols, random_effect_cols, central_tendency_function = median, min_cells = 3, min_samples = 5, alpha = 0.05 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` represents id sample cell collected. `sample_col` serve unique identifier sample collected data acquisition - cells value `sample_col` treated part observational unit. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names representing columns `tof_tibble` (.e. high-dimensional cytometry protein measurements) included differential discovery analysis. Defaults numeric (integer double) columns. Supports tidyselection. fixed_effect_cols Unquoted column names representing columns `tof_tibble` used model fixed effects differential expression analysis. Supports tidyselection. Generally speaking, fixed effects represent comparisons biological interest (often variables manipulated experiments), treated vs. non-treated, -treatment vs. -treatment, healthy vs. non-healthy. random_effect_cols Optional. Unquoted column names representing columns `tof_tibble` used model random effects differential expression analysis. Supports tidyselection. Generally speaking, random effects represent variables researcher wants control/account , necessarily biological interest. Example random effect variables might include batch id, patient id (paired design), patient age. analyses include random effects. central_tendency_function function used calculate measurement central tendency cluster/marker pair (used dependent variable linear model). Defaults median. min_cells integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential expression analysis. Clusters included differential expression testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"nested tibble two columns: `tested_effect` `dea_results`. first column, `tested_effect` character vector indicating term differential expression model used significance testing. values row obtained pasting together column names fixed effect variable values. example, fixed effect column named fixed_effect levels \"\", \"b\", \"c\" two terms `tested_effect`: \"fixed_effectb\" \"fixed_effectc\" (note level \"\" fixed_effect set reference level dummy coding). values correspond terms differential expression model represent difference cluster median expression values marker samples fixed_effect = \"b\" fixed_effect = \"\" samples fixed_effect = \"c\" fixed_effect = \"\", respectively. addition, note first row `tested_effect` always represent \"omnibus\" test, test significant differences levels fixed effect variable model. second column, `dea_results` list tibbles entry gives differential expression results tested_effect. Within entry `daa_results`, find `p_val`, p-value associated tested effect input cluster/marker pair; `p_adj`, multiple-comparison adjusted p-value (using p.adjust function), values associated underlying method used perform differential expression analysis (log-fold change clusters' median marker expression values levels compared).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"Specifically, one linear model fit cluster/marker pair. cluster/marker pair, user-supplied measurement central tendency (`central_tendency_function`), mean median, calculated across cells cluster sample--sample basis. , central tendency value used dependent variable linear model `fixed_effect_cols` fixed effects predictors `random_effect_cols` random effects predictors. models (one per cluster/marker pair) fit, p-values coefficient model multiple-comparisons adjusted using p.adjust function.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_lmm.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Expression Analysis (DEA) with linear mixed-models (LMMs) — tof_analyze_expression_lmm","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":null,"dir":"Reference","previous_headings":"","what":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"function performs differential expression analysis cell clusters contained within `tof_tbl` using simple t-tests. Specifically, either unpaired paired t-test compare samples' marker expression distributions (two conditions) within cluster using user-specified summary function (.e. mean median). One t-test conducted per cluster/marker pair significant differences sample types detected multiple-hypothesis correction.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"","code":"tof_analyze_expression_ttest( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), effect_col, group_cols, test_type = c(\"unpaired\", \"paired\"), summary_function = mean, min_cells = 3, min_samples = 5, alpha = 0.05, quiet = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names representing columns `tof_tibble` (.e. high-dimensional cytometry protein measurements) tested differential expression levels `effect_col`. Defaults numeric (integer double) columns. Supports tidyselect helpers. effect_col Unquoted column name representing column `tof_tibble` used break samples groups t-test. 2 unique values. group_cols Unquoted names columns `effect_col` used group cells independent observations. Fills similar role `sample_col` `tof_analyze_abundance_*` functions. example, experiment involves analyzing samples taken multiple patients two timepoints (`effect_col = timepoint`), group_cols name column representing patient IDs. test_type string indicating whether t-test \"unpaired\" (default) \"paired\". summary_function vector-valued function used summarize distribution marker cluster (within sample, grouped `group_cols`). Defaults `mean`. min_cells integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 3. min_samples integer value used filter clusters differential abundance analysis. Clusters included differential abundance testing least `min_cells` least `min_samples` samples. Defaults 5. alpha numeric value 0 1 indicating significance level applied multiple-comparison adjusted p-values differential abundance analysis. Defaults 0.05. quiet boolean value indicating whether warnings printed. Defaults `TRUE`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"tibble 7 columns: {cluster_col} name/ID cluster cluster/marker pair tested. entry column match unique value input {cluster_col}. marker name marker cluster/marker pair tested. t t-statistic computed cluster. df degrees freedom used t-test cluster. p_val (unadjusted) p-value t-test cluster. p_adj p.adjust-adjusted p-value t-test cluster. significant character vector \"*\" clusters p_adj < alpha \"\" otherwise. mean_diff unpaired t-test, difference average proportions cluster two levels `effect_col`. paired t-test, average difference proportions cluster two levels `effect_col` within given patient. mean_fc unpaired t-test, ratio average proportions cluster two levels `effect_col`. paired t-test, average ratio proportions cluster two levels `effect_col` within given patient. 0.001 added denominator ratio avoid divide--zero errors. \"levels\" attribute result indicates order different levels `effect_col` considered. `mean_diff` value row output computed subtracting second level first level, `mean_fc` value row computed dividing first level second level.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_analyze_expression_ttest.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Differential Expression Analysis (DEA) with t-tests — tof_analyze_expression_ttest","text":"","code":"# For differential discovery examples, please see the package vignettes NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":null,"dir":"Reference","previous_headings":"","what":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"function adds additional column `tibble` `tof_tbl` allow users incorporate manual cell type labels clusters identified using unsupervised algorithms.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"","code":"tof_annotate_clusters(tof_tibble, cluster_col, annotations)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` contains ids unsupervised cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. annotations data structure indicating annotate cluster id `cluster_col`. `annotations` can provided data.frame two columns (first name `cluster_col` contain unique cluster id; second can name contain character vector indicating manual annotation matched cluster id first column). `annotations` can also provided named character vector; case, entry `annotations` unique cluster id, names entry corresponding manual cluster annotation. See examples.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"`tof_tbl` number rows `tof_tibble` one additional column containing manual cluster annotations cell (character vector). `annotations` provided data.frame, new column name column containing cluster annotations `annotations`. `annotations` provided named character vector, new column named `cluster_col_annotation`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_annotate_clusters.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Manually annotate tidytof-computed clusters using user-specified labels — tof_annotate_clusters","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) ) # using named character vector sim_data |> tof_annotate_clusters( cluster_col = cluster_id, annotations = c(\"macrophage\" = \"a\", \"dendritic cell\" = \"b\") ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id cluster_id_annotation #> #> 1 -1.40 -0.337 -0.166 1.12 a macrophage #> 2 0.255 -0.216 0.120 0.400 a macrophage #> 3 -2.44 0.621 -0.662 -0.985 a macrophage #> 4 -0.00557 -1.28 -0.531 -0.503 a macrophage #> 5 0.622 -1.30 -0.301 0.987 a macrophage #> 6 1.15 -0.377 -0.602 2.19 a macrophage #> 7 -1.82 0.104 -0.318 -0.165 a macrophage #> 8 -0.247 -0.704 0.308 -0.686 a macrophage #> 9 -0.244 1.50 0.799 0.941 a macrophage #> 10 -0.283 -0.303 1.75 -0.164 a macrophage #> # ℹ 990 more rows # using two-column data.frame annotation_data_frame <- data.frame( cluster_id = c(\"a\", \"b\"), cluster_annotation = c(\"macrophage\", \"dendritic cell\") ) sim_data |> tof_annotate_clusters( cluster_col = cluster_id, annotations = annotation_data_frame ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id cluster_annotation #> #> 1 -1.40 -0.337 -0.166 1.12 a macrophage #> 2 0.255 -0.216 0.120 0.400 a macrophage #> 3 -2.44 0.621 -0.662 -0.985 a macrophage #> 4 -0.00557 -1.28 -0.531 -0.503 a macrophage #> 5 0.622 -1.30 -0.301 0.987 a macrophage #> 6 1.15 -0.377 -0.602 2.19 a macrophage #> 7 -1.82 0.104 -0.318 -0.165 a macrophage #> 8 -0.247 -0.704 0.308 -0.686 a macrophage #> 9 -0.244 1.50 0.799 0.941 a macrophage #> 10 -0.283 -0.303 1.75 -0.164 a macrophage #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"Perform developmental clustering CyTOF data using pre-fit classifier","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"","code":"tof_apply_classifier( cancer_tibble = NULL, classifier_fit = NULL, distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\"), num_cores = 1, parallel_vars )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"cancer_tibble `tibble` `tof_tibble` containing cells classified nearest healthy subpopulation (generally cancer cells). classifier_fit nested `tibble` produced `tof_build_classifier` row represents healthy cell subpopulation cells `cancer_tibble` classified using minimum distance. distance_function string indicating distance function used perform classification. Options \"mahalanobis\" (default), \"cosine\", \"pearson\". num_cores integer indicating number CPU cores used parallelize classification. Defaults 1 (single core). parallel_vars Unquoted column names indicating columns `cancer_tibble` use breaking data order parallelize classification. Defaults NULL. Supports tidyselect helpers.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"tibble `nrow(cancer_tibble)` rows `nrow(classifier_fit) + 1` columns. row represents cell `cancer_tibble`, `nrow(classifier_fit)` columns represent distance cell healthy subpopulations' cluster centroids. final column represents cluster id healthy subpopulation minimum distance cell represented row.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_apply_classifier.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform developmental clustering on CyTOF data using a pre-fit classifier — tof_apply_classifier","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"Detect low-expression (.e. potentially failed) channels high-dimensional cytometry data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"","code":"tof_assess_channels( tof_tibble, channel_cols = where(tof_is_numeric), negative_threshold = asinh(10/5), negative_proportion_flag = 0.95 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"tof_tibble `tof_tbl` `tibble`. channel_cols vector unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default analyze numeric columns. negative_threshold scalar indicating threshold measurement considered negative. Defaults hyperbolic arcsine transformation 10 counts. negative_proportion_flag scalar 0 1 indicating proportion cells tof_tibble need `negative_threshold` given marker order marker flagged. Defaults 0.95.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"tibble 3 columns number rows equal number columns `tof_tibble` chosen `channel_cols`. three columns \"channel\", character vector channel names, \"negative_proportion\", numeric vector values 0 1 indicating many cells `tof_tibble` `negative_threshold` channel, `flagged_channel`, boolean vector indicating whether channel flagged potentially failed (TRUE means channel large number cells `negative_threshold`).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_channels.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect low-expression (i.e. potentially failed) channels in high-dimensional cytometry data — tof_assess_channels","text":"","code":"# simulate some data sim_data <- data.frame( cd4 = rnorm(n = 100, mean = 5, sd = 0.5), cd8 = rnorm(n = 100, mean = 0, sd = 0.1), cd33 = rnorm(n = 100, mean = 10, sd = 0.1) ) tof_assess_channels(tof_tibble = sim_data) #> # A tibble: 3 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd8 1 TRUE #> 2 cd4 0 FALSE #> 3 cd33 0 FALSE tof_assess_channels(tof_tibble = sim_data, channel_cols = c(cd4, cd8)) #> # A tibble: 2 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd8 1 TRUE #> 2 cd4 0 FALSE tof_assess_channels(tof_tibble = sim_data, negative_threshold = 2) #> # A tibble: 3 × 3 #> channel negative_proportion flagged_channel #> #> 1 cd8 1 TRUE #> 2 cd4 0 FALSE #> 3 cd33 0 FALSE"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"function evaluates result clustering procedure comparing mahalanobis distance cell centroid cluster assigned among cells given cluster. cells mahalanobis-distance z-score user-specified threshold flagged potentially anomalous. Note z-score calculated using modified formula minimize effect outliers (Z = x - median(x) / mad(x)).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"","code":"tof_assess_clusters_distance( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), z_threshold = 3, augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers used mahalanobis distance calculation. Defaults numeric columns. Supports tidyselection. z_threshold scalar indicating distance z-score threshold cell considered anomalous. Defaults 3. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"augment = FALSE (default), tibble 3 columns: \".mahalanobis_distance\" (mahalanobis distance cell centroid tits assigned cluster), \"z_score\" (modified z-score cell's mahalanobis distance relative cells dataset), \"flagged_cell\" (boolean indicating whether cell flagged z-score z_threshold). augment = TRUE, 3 columns column-bound tof_tibble, resulting tibble returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_distance.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a clustering result by calculating the z-score of each cell's\nmahalanobis distance to its cluster centroid and flagging outliers. — tof_assess_clusters_distance","text":"","code":"# simulate data sim_data_inner <- dplyr::tibble( cd45 = c(rnorm(n = 600), rnorm(n = 500, mean = -4)), cd38 = c( rnorm(n = 100, sd = 0.5), rnorm(n = 500, mean = -3), rnorm(n = 500, mean = 8) ), cd34 = c( rnorm(n = 100, sd = 0.2, mean = -10), rnorm(n = 500, mean = 4), rnorm(n = 500, mean = 60) ), cd19 = c(rnorm(n = 100, sd = 0.3, mean = 10), rnorm(n = 1000)), cluster_id = c(rep(\"a\", 100), rep(\"b\", 500), rep(\"c\", 500)), dataset = \"inner\" ) sim_data_outer <- dplyr::tibble( cd45 = c(rnorm(n = 10), rnorm(50, mean = 3), rnorm(n = 50, mean = -12)), cd38 = c( rnorm(n = 10, sd = 0.5), rnorm(n = 50, mean = -10), rnorm(n = 50, mean = 10) ), cd34 = c( rnorm(n = 10, sd = 0.2, mean = -15), rnorm(n = 50, mean = 15), rnorm(n = 50, mean = 70) ), cd19 = c(rnorm(n = 10, sd = 0.3, mean = 19), rnorm(n = 100)), cluster_id = c(rep(\"a\", 10), rep(\"b\", 50), rep(\"c\", 50)), dataset = \"outer\" ) sim_data <- rbind(sim_data_inner, sim_data_outer) # detect anomalous cells (in this case, the \"outer\" dataset contains small # clusters that get lumped into the larger clusters in the \"inner\" dataset) z_result <- sim_data |> tof_assess_clusters_distance(cluster_col = cluster_id, z_threshold = 2.5)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"function evaluates result clustering procedure calculating mahalanobis distance cell centroids clusters dataset finding shannon entropy resulting vector distances. cells entropy threshold user-specified threshold flagged potentially anomalous. Entropy minimized (0) cell close one (small number) clusters, far rest . cell close multiple cluster centroids (.e. ambiguous phenotype), entropy large.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"","code":"tof_assess_clusters_entropy( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), entropy_threshold, entropy_quantile = 0.9, num_closest_clusters, augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers used mahalanobis distance calculation. Defaults numeric columns. Supports tidyselection. entropy_threshold scalar indicating entropy threshold cell considered anomalous. unspecified, threshold computed using `entropy_quantile` (see ). (Note: Entropy often 0 1, can larger many classes/clusters). entropy_quantile scalar 0 1 indicating entropy quantile cell considered anomalous. Defaults 0.9, means cells entropy 90th percentile flagged. Ignored entropy_threshold specified directly. num_closest_clusters integer indicating many cell's closest cluster centroids mahalanobis distance included entropy calculation. Playing argument allow ignore distances clusters far away cell (thus may distort result, many distant centroids large distances can artificially inflate cells' entropy value; said, rarely issue empirically). Defaults clusters tof_tibble. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"augment = FALSE (default), tibble 2 + NUM_CLUSTERS columns. NUM_CLUSTERS number unique clusters cluster_col. Two columns \"entropy\" (entropy value cell) \"flagged_cell\" (boolean value indicating cell entropy value entropy_threshold). NUM_CLUSTERS columns contain mahalanobis distances cell clusters cluster_col (named \".mahalanobis_cluster_name\"). augment = TRUE, 2 + NUM_CLUSTERS columns column-bound tof_tibble, resulting tibble returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_entropy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a clustering result by calculating the shannon entropy of each cell's\nmahalanobis distance to all cluster centroids and flagging outliers. — tof_assess_clusters_entropy","text":"","code":"# simulate data sim_data <- dplyr::tibble( cd45 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd38 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd34 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd19 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cluster_id = c(rep(\"a\", 1000), rep(\"b\", 1000), rep(\"c\", 1000)) ) # imagine a \"reference\" dataset in which \"cluster a\" isn't present sim_data_reference <- sim_data |> dplyr::filter(cluster_id %in% c(\"b\", \"c\")) # if we cluster into the reference dataset, we will force all cells in # cluster a into a population where they don't fit very well sim_data <- sim_data |> tof_cluster( healthy_tibble = sim_data_reference, healthy_label_col = cluster_id, method = \"ddpr\" ) # we can evaluate the clustering quality by calculating by the entropy of the # mahalanobis distance vector for each cell to all cluster centroids entropy_result <- sim_data |> tof_assess_clusters_entropy( cluster_col = .mahalanobis_cluster, marker_cols = starts_with(\"cd\"), entropy_quantile = 0.8, augment = TRUE ) # most cells in \"cluster a\" are flagged, and few cells in the other clusters are flagged_cluster_proportions <- entropy_result |> dplyr::group_by(cluster_id) |> dplyr::summarize( prop_flagged = mean(flagged_cell) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"function evaluates result clustering procedure finding cell's K nearest neighbors, determining cluster majority assigned , checking matches cell's cluster assignment. cluster assignment majority cell's nearest neighbors match cell's cluster assignment, cell flagged potentially anomalous.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"","code":"tof_assess_clusters_knn( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), num_neighbors = min(10, nrow(tof_tibble)), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers used mahalanobis distance calculation. Defaults numeric columns. Supports tidyselection. num_neighbors integer indicating many neighbors found nearest neighbor calculation. distance_function string indicating distance function used perform k nearest neighbor calculation. Options \"euclidean\" (default) \"cosine\". augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"augment = FALSE (default), tibble 2 columns: \".knn_cluster\" (character vector indicating cluster received majority vote cell's k nearest neighbors) \"flagged_cell\" (boolean value indicating cell's cluster assignment matched majority vote (TRUE) (FALSE)). augment = TRUE, 2 columns column-bound tof_tibble, resulting tibble returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_clusters_knn.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a clustering result by calculating a cell's cluster assignment to that\nof its K nearest neighbors. — tof_assess_clusters_knn","text":"","code":"sim_data <- dplyr::tibble( cd45 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd38 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd34 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cd19 = c(rnorm(n = 1000, sd = 1.5), rnorm(n = 1000, mean = 2), rnorm(n = 1000, mean = -2)), cluster_id = c(rep(\"a\", 1000), rep(\"b\", 1000), rep(\"c\", 1000)) ) knn_result <- sim_data |> tof_assess_clusters_knn( cluster_col = cluster_id, num_neighbors = 10 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"function performs simplified version flowAI's statistical test detect time periods abnormal flow rates course flow cytometry experiment. Briefly, relative flow rates timestep throughout data acquisition calculated (see tof_calculate_flow_rate), outlier timepoints particularly high low flow rates (.e. beyond extreme values t-distribution across timesteps) flagged.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"","code":"tof_assess_flow_rate( tof_tibble, time_col, group_cols, num_timesteps = nrow(tof_tibble)/1000, alpha_threshold = 0.01, visualize = FALSE, ..., augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"tof_tibble `tof_tbl` `tibble`. time_col unquoted column name indicating column `tof_tibble` contains time cell collected. group_cols Optional. Unquoted column names indicating columns used group cells analysis. Flow rate calculation performed independently within group. Supports tidyselect helpers. num_timesteps number bins `time_col` split. define \"timesteps\" data collection process. number cells analyzed cytometer counted bin separately represent relative average flow rate timestep data collection. alpha_threshold scalar 0 1 indicating two-tailed significance level draw outlier thresholds t-distribution `num_timesteps` - 1 degrees freedom. Defaults 0.01. visualize boolean value indicating plot generated visualize timestep's relative flow rate (group) instead returning tibble directly. Defaults FALSE. ... Optional additional arguments pass facet_wrap. Ignored visualize = FALSE. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"tibble number rows `tof_tibble`. augment = FALSE (default), 3 columns: \"time_col\" (column `time_col`), \"timestep\" (numeric timestep cell assigned based value `time_col`), \"flagged_window\" (boolean vector indicating cell collecting timestep flagged high low flow rate). augment = TRUE, 3 columns column-bound `tof_tibble` return augmented version input dataset. (Note case, time_col duplicated). visualize = TRUE, ggplot object returned instead tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect flow rate abnormalities in high-dimensional cytometry data — tof_assess_flow_rate","text":"","code":"set.seed(1000L) sim_data <- data.frame( cd4 = rnorm(n = 1000, mean = 5, sd = 0.5), cd8 = rnorm(n = 1000, mean = 0, sd = 0.1), cd33 = rnorm(n = 1000, mean = 10, sd = 0.1), file_name = c(rep(\"a\", times = 500), rep(\"b\", times = 500)), time = c( sample(1:100, size = 200, replace = TRUE), sample(100:400, size = 300, replace = TRUE), sample(1:150, size = 400, replace = TRUE), sample(1:500, size = 100, replace = TRUE) ) ) sim_data |> tof_assess_flow_rate( time_col = time, num_timesteps = 20, visualize = TRUE ) sim_data |> tof_assess_flow_rate( time_col = time, group_cols = file_name, num_timesteps = 20, visualize = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"function performs simplified version flowAI's statistical test detect time periods abnormal flow rates course flow cytometry experiment. Briefly, relative flow rates timestep throughout data acquisition calculated (see tof_calculate_flow_rate), outlier timepoints particularly high low flow rates (.e. beyond extreme values t-distribution across timesteps) flagged.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"","code":"tof_assess_flow_rate_tibble( tof_tibble, time_col, num_timesteps = nrow(tof_tibble)/1000, alpha_threshold = 0.01, augment = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"tof_tibble `tof_tbl` `tibble`. time_col unquoted column name indicating column `tof_tibble` contains time cell collected. num_timesteps number bins `time_col` split. define \"timesteps\" data collection process. number cells analyzed cytometer counted bin separately represent relative average flow rate timestep data collection. alpha_threshold scalar 0 1 indicating two-tailed significance level draw outlier thresholds t-distribution `num_timesteps` - 1 degrees freedom. Defaults 0.01. augment boolean value indicating output column-bind computed flags cell (see ) new columns `tof_tibble` (TRUE) tibble including computed flags returned (FALSE, default).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"tibble number rows `tof_tibble`. augment = FALSE (default), 3 columns: \"time_col\" (column `time_col`), \"timestep\" (numeric timestep cell assigned based value `time_col`), \"flagged_window\" (boolean vector indicating cell collecting timestep flagged high low flow rate). augment = TRUE, 3 columns column-bound `tof_tibble` return augmented version input dataset. (Note case, time_col duplicated).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_flow_rate_tibble.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Detect flow rate abnormalities in high-dimensional cytometry data (stored in a\nsingle data.frame) — tof_assess_flow_rate_tibble","text":"","code":"set.seed(1000L) sim_data <- data.frame( cd4 = rnorm(n = 1000, mean = 5, sd = 0.5), cd8 = rnorm(n = 1000, mean = 0, sd = 0.1), cd33 = rnorm(n = 1000, mean = 10, sd = 0.1), time = c( sample(1:100, size = 200, replace = TRUE), sample(100:400, size = 300, replace = TRUE), sample(1:150, size = 400, replace = TRUE), sample(1:500, size = 100, replace = TRUE) ) ) sim_data |> tof_assess_flow_rate( time_col = time, num_timesteps = 20, visualize = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Assess a trained elastic net model — tof_assess_model","title":"Assess a trained elastic net model — tof_assess_model","text":"function assesses trained `tof_model`'s performance new data computing model type-specific performance measurements. new data provided, performance metrics training data provided.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Assess a trained elastic net model — tof_assess_model","text":"","code":"tof_assess_model(tof_model, new_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Assess a trained elastic net model — tof_assess_model","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations used evaluate `tof_model`'s performance. new_data provided, model evaluation performed using training data used fit model. Alternatively, string \"tuning\" can provided access model's performance metrics (resampled) model tuning process.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Assess a trained elastic net model — tof_assess_model","text":"list performance metrics whose components depend model type: \"model_metrics\" tibble two columns (\"metric\" \"value\") containing standard performance metrics model type. linear models, \"mse\" (mean squared error predictions) \"mae\" (mean absolute error predictions). two-class models, \"roc_auc\" (area Receiver-Operating Curve classification), \"misclassification error\" (proportion misclassified observations), \"binomial_deviance\" (see deviance.glmnet), \"mse\" (mean squared error logit function), \"mae\" (mean absolute error logit function). multiclass models, \"roc_auc\" (area Receiver-Operating Curve classification using Hand-Till generalization ROC AUC multiclass models roc_auc), \"misclassification error\" (proportion misclassified observations), \"multinomial_deviance\" (see deviance.glmnet), \"mse\" \"mae\" . survival models, \"concordance_index\" (Harrel's C index; see deviance.glmnet) \"partial_likelihood_deviance\" (see deviance.glmnet). \"roc_curve\" Reported \"two-class\" \"multiclass\" models. , tibble provided reporting true-positive rate (tpr) false-positive rate (fpr) threshold classification use plotting receiver-operating curve. \"multiclass\" models, \".level\" column allows separating values roc_curve one ROC can plotted class. \"confusion_matrix\" Reported \"two-class\" \"multiclass\" models. , tibble provided reporting \"confusion matrix\" classification long-format. \"survival_curves\" Reported \"survival\" models. tibble indicating patient's probability survival (1 - probability(event)) timepoint dataset whether sample placed \"high\" \"low\" risk group according predicted relative risk (tof_model's optimal relative_risk cutoff training dataset).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Assess a trained elastic net model — tof_assess_model","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100) ) new_tibble <- dplyr::tibble( sample = as.character(1:20), cd45 = runif(n = 20), pstat5 = runif(n = 20), cd34 = runif(n = 20), outcome = (3 * cd45) + (4 * pstat5) + rnorm(20) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) # assess the model on new data tof_assess_model(tof_model = regression_model, new_data = new_tibble) #> $model_metrics #> # A tibble: 2 × 2 #> metric value #> #> 1 mse 0.795 #> 2 mae 0.788 #>"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"Compute trained elastic net model's performance metrics using new_data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"","code":"tof_assess_model_new_data(tof_model, new_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations used evaluate `tof_model`'s performance.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_new_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute a trained elastic net model's performance metrics using new_data. — tof_assess_model_new_data","text":"list performance metrics whose components depend model type.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":null,"dir":"Reference","previous_headings":"","what":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"Access trained elastic net model's performance metrics using tuning data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"","code":"tof_assess_model_tuning(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"tof_model `tof_model` trained using tof_train_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_assess_model_tuning.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Access a trained elastic net model's performance metrics using its tuning data. — tof_assess_model_tuning","text":"list performance metrics whose components depend model type.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"function performs quantile normalization high-dimensional cytometry data tidy format using either linear rescaling quantile normalization. channel specified `channel_cols` batch corrected, `group_cols` can used break cells groups batch correction performed separately.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"","code":"tof_batch_correct( tof_tibble, channel_cols, group_cols, augment = TRUE, method = c(\"rescale\", \"quantile\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells batch correction. Batch correction performed independently within group. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted. method string indicating batch correction method used. Valid options \"rescale\" linear scaling (default) \"quantile\" quantile normalization using normalize.quantiles.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":null,"dir":"Reference","previous_headings":"","what":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"function performs quantile normalization high-dimensional cytometry data tidy format using normalize.quantiles. Optionally, groups can specified normalized separately.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"","code":"tof_batch_correct_quantile( tof_tibble, channel_cols, group_cols, augment = TRUE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells batch correction. Batch correction performed independently within group. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"function performs quantile normalization high-dimensional cytometry data tidy format using normalize.quantiles.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"","code":"tof_batch_correct_quantile_tibble(tof_tibble, channel_cols, augment = TRUE)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_quantile_tibble.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Batch-correct a tibble of high-dimensional cytometry data using quantile\nnormalization. — tof_batch_correct_quantile_tibble","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"function performs quantile normalization high-dimensional cytometry data tidy format using linear rescaling. channel specified `channel_cols` rescaled maximum value 1 minimum value 0. `group_cols` specifies columns used break cells groups rescaling performed separately.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"","code":"tof_batch_correct_rescale(tof_tibble, channel_cols, group_cols, augment = TRUE)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells batch correction. Batch correction performed independently within group. Supports tidyselect helpers. augment boolean value indicating output replace `channel_cols` `tof_tibble` new, batch corrected columns (TRUE, default) return batch-corrected columns (FALSE) columns omitted.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"augment = TRUE, tibble number rows columns tof_tibble, columns specified `channel_cols` batch-corrected. augment = FALSE, tibble containing batch-corrected `channel_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_batch_correct_rescale.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform groupwise linear rescaling of high-dimensional cytometry measurements — tof_batch_correct_rescale","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"function takes `tibble` `tof_tibble` storing healthy cell measurements rows vector (`healthy_cell_labels`) representing cell subpopulation cell belongs. uses values calculate several values required perform \"developmental classification\" described paper.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"","code":"tof_build_classifier( healthy_tibble = NULL, healthy_cell_labels = NULL, classifier_markers = where(tof_is_numeric), verbose = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"healthy_tibble `tibble` `tof_tibble` containing cells healthy control samples (.e. disease samples). healthy_cell_labels character integer vector length `nrow(healthy_tibble)`. entry vector represent cell subpopulation label (cluster id) corresponding row `healthy_tibble`. classifier_markers Unquoted column names indicating columns `healthy_tibble` use developmental classification. Defaults numeric columns `healthy_tibble`. Supports tidyselect helpers. verbose boolean value indicating updates printed console classification. Defaults FALSE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_build_classifier.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate centroids and covariance matrices for each cell subpopulation in\nhealthy CyTOF data. — tof_build_classifier","text":"tibble three columns: population (id healthy cell population), centroid (centroid vector cell population), covariance_matrix (covariance matrix cell population)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"Calculate relative flow rates different timepoints throughout flow mass cytometry run.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"","code":"tof_calculate_flow_rate( tof_tibble, time_col, num_timesteps = nrow(tof_tibble)/1000 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"tof_tibble `tof_tbl` `tibble`. time_col unquoted column name indicating column `tof_tibble` contains time cell collected. num_timesteps number bins `time_col` split. define \"timesteps\" data collection process. number cells analyzed cytometer counted bin separately represent relative average flow rate timestep data collection.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"tibble 3 columns num_timesteps rows. row represent single timestep (error thrown `num_timesteps` larger number rows `tof_tibble`). three columns follows: \"timestep\", numeric vector indicating timestep represented given row; \"time_window\", factor showing interval `time_col` \"timestep\" defined; \"num_cells\", number cells collected timestep.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_calculate_flow_rate.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Calculate the relative flow rates of different timepoints throughout a flow\nor mass cytometry run. — tof_calculate_flow_rate","text":"","code":"# simulate some data sim_data <- data.frame( cd4 = rnorm(n = 100, mean = 5, sd = 0.5), cd8 = rnorm(n = 100, mean = 0, sd = 0.1), cd33 = rnorm(n = 100, mean = 10, sd = 0.1), time = sample(1:300, size = 100) ) tof_calculate_flow_rate(tof_tibble = sim_data, time_col = time, num_timesteps = 20L) #> timestep time_window num_cells #> 1 1 (6.71,21.6] 4 #> 2 2 (21.6,36.2] 6 #> 3 3 (36.2,50.8] 7 #> 4 4 (50.8,65.4] 7 #> 5 5 (65.4,80] 5 #> 6 6 (80,94.6] 4 #> 7 7 (94.6,109] 5 #> 8 8 (109,124] 4 #> 9 9 (124,138] 1 #> 10 10 (138,153] 7 #> 11 11 (153,168] 5 #> 12 12 (168,182] 2 #> 13 13 (182,197] 7 #> 14 14 (197,211] 7 #> 15 15 (211,226] 5 #> 16 16 (226,241] 2 #> 17 17 (241,255] 4 #> 18 18 (255,270] 5 #> 19 19 (270,284] 7 #> 20 20 (284,299] 6"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":null,"dir":"Reference","previous_headings":"","what":"Check argument specifications for a glmnet model. — tof_check_model_args","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"Check argument specifications glmnet model.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"","code":"tof_check_model_args( split_data, model_type = c(\"linear\", \"two-class\", \"multiclass\", \"survival\"), best_model_type = c(\"best\", \"best with sparsity\"), response_col, time_col, event_col )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"split_data `rsplit` `rset` object rsample package containing sample-level data use modeling. Alternatively, unsplit tbl_df can provided, though recommended. model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. best_model_type Currently unused. response_col Unquoted column name indicating column data contained `split_data` used outcome \"two-class\", \"multiclass\", \"linear\" elastic net model. Must factor \"two-class\" \"multiclass\" models must numeric \"linear\" models. Ignored `model_type` \"survival\". time_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must numeric. Ignored `model_type` \"two-class\", \"multiclass\", \"linear\". event_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must binary column - values either 0 1 (1 indicating adverse event) FALSE TRUE (TRUE indicating adverse event). Ignored `model_type` \"two-class\", \"multiclass\", \"linear\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_check_model_args.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Check argument specifications for a glmnet model. — tof_check_model_args","text":"tibble. arguments specified correctly, tibble can used create recipe preprocessing.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":null,"dir":"Reference","previous_headings":"","what":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"function uses specified distance metric classify cell data.frame matrix (`cancer_data`) one `nrow(classifier_fit)` subpopulations based minimum distance, described paper.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"","code":"tof_classify_cells( classifier_fit, cancer_data, distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"classifier_fit tibble produced tof_build_classifier. cancer_data matrix row corresponds cell column corresponds measured CyTOF antigen. distance_function string indicating three distance functions used calculate distances row `cancer_data` healthy developmental subpopulations corresponding row `classifier_fit`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_classify_cells.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Classify each cell (i.e. each row) in a matrix of cancer cells into its most\nsimilar healthy developmental subpopulation. — tof_classify_cells","text":"data.frame column represents distance cell input data healthy subpopulation cells classified .","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":null,"dir":"Reference","previous_headings":"","what":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"Rename glmnet's default model evaluation metrics make interpretable","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"","code":"tof_clean_metric_names(metric_tibble, model_type)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"metric_tibble tibble column represents glmnet model evaluation metric default name. model_type string indicating type glmnet model trained.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_clean_metric_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Rename glmnet's default model evaluation metrics to make them more interpretable — tof_clean_metric_names","text":"tibble column represents glmnet model evaluation metric \"cleaned\" name.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster high-dimensional cytometry data. — tof_cluster","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"function wrapper around tidytof's tof_cluster_* function family. performs clustering high-dimensional cytometry data using user-specified method (5 choices) method's corresponding input parameters.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"","code":"tof_cluster( tof_tibble, cluster_cols = where(tof_is_numeric), group_cols = NULL, ..., augment = TRUE, method )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"tof_tibble `tof_tbl` `tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. group_cols Optional. Unquoted column names indicating columns used group cells clustering. Clustering performed group independently. Supports tidyselect helpers. ... Additional arguments pass `tof_cluster_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"flowsom\", \"phenograph\", \"kmeans\", \"ddpr\", \"xshift\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Cluster high-dimensional cytometry data. — tof_cluster","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 500), cd38 = rnorm(n = 500), cd34 = rnorm(n = 500), cd19 = rnorm(n = 500) ) tof_cluster(tof_tibble = sim_data, method = \"kmeans\") #> # A tibble: 500 × 5 #> cd45 cd38 cd34 cd19 .kmeans_cluster #> #> 1 1.33 -0.447 1.50 0.436 11 #> 2 -1.20 -0.481 -0.391 -1.54 9 #> 3 -0.541 0.666 -1.68 -0.986 16 #> 4 -1.22 1.32 0.689 -0.791 10 #> 5 0.639 0.519 -1.32 -0.204 18 #> 6 -0.239 0.397 -0.780 0.372 1 #> 7 0.651 0.997 -0.665 0.805 18 #> 8 0.788 1.26 0.584 -0.953 19 #> 9 -0.344 0.388 -0.407 -0.442 13 #> 10 0.120 0.885 -2.26 0.583 17 #> # ℹ 490 more rows tof_cluster(tof_tibble = sim_data, method = \"phenograph\") #> # A tibble: 500 × 5 #> cd45 cd38 cd34 cd19 .phenograph_cluster #> #> 1 1.33 -0.447 1.50 0.436 2 #> 2 -1.20 -0.481 -0.391 -1.54 1 #> 3 -0.541 0.666 -1.68 -0.986 1 #> 4 -1.22 1.32 0.689 -0.791 3 #> 5 0.639 0.519 -1.32 -0.204 5 #> 6 -0.239 0.397 -0.780 0.372 5 #> 7 0.651 0.997 -0.665 0.805 4 #> 8 0.788 1.26 0.584 -0.953 8 #> 9 -0.344 0.388 -0.407 -0.442 1 #> 10 0.120 0.885 -2.26 0.583 5 #> # ℹ 490 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"function performs distance-based clustering high-dimensional cytometry data sorting cancer cells (passed function `tof_tibble`) phenotypically similar healthy cell subpopulation (passed function using `healthy_tibble`). details algorithm used perform clustering, see paper.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"","code":"tof_cluster_ddpr( tof_tibble, healthy_tibble, healthy_label_col, cluster_cols = where(tof_is_numeric), distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\"), num_cores = 1L, parallel_cols, return_distances = FALSE, verbose = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"tof_tibble `tibble` `tof_tbl` containing cells classified nearest healthy subpopulation (generally cancer cells). healthy_tibble `tibble` `tof_tibble` containing cells healthy control samples (.e. disease samples). healthy_label_col unquoted column name indicating column `healthy_tibble` contains subpopulation label (cluster id) cell `healthy_tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing DDPR clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. distance_function string indicating distance function used perform classification. Options \"mahalanobis\" (default), \"cosine\", \"pearson\". num_cores integer indicating number CPU cores used parallelize classification. Defaults 1 (single core). parallel_cols Optional. Unquoted column names indicating columns `tof_tibble` use breaking data order parallelize classification using `foreach` `doParallel` backend. Supports tidyselect helpers. return_distances boolean value indicating whether returned result include one column, cluster ids corresponding row `tof_tibble` (return_distances = FALSE, default), returned result include additional columns representing distance row `tof_tibble` healthy subpopulation centroids (return_distances = TRUE). verbose boolean value indicating whether progress updates printed developmental classification. Default FALSE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"`return_distances = FALSE`, tibble one column named `.distance_function_cluster`, character vector length `nrow(tof_tibble)` indicating id developmental cluster cell (.e. row) `tof_tibble` assigned. `return_distances = TRUE`, tibble `nrow(tof_tibble)` rows `nrow(classifier_fit) + 1` columns. row represents cell `tof_tibble`, `nrow(classifier_fit)` columns represent distance cell healthy subpopulations' cluster centroids. final column represents cluster id healthy subpopulation minimum distance cell represented row. `return_distances = FALSE`, tibble one column named `.distance_function_cluster`. column contain integer vector length `nrow(tof_tibble)` indicating id developmental cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_ddpr.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform developmental clustering on high-dimensional cytometry data. — tof_cluster_ddpr","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) healthy_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) tof_cluster_ddpr( tof_tibble = sim_data, healthy_tibble = healthy_data, healthy_label_col = cluster_id ) #> # A tibble: 1,000 × 1 #> .mahalanobis_cluster #> #> 1 b #> 2 b #> 3 b #> 4 a #> 5 b #> 6 b #> 7 b #> 8 a #> 9 a #> 10 b #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"function performs FlowSOM clustering high-dimensional cytometry data using user-specified selection input variables/high-dimensional cytometry measurements. mostly convenient wrapper around SOM MetaClustering.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"","code":"tof_cluster_flowsom( tof_tibble = NULL, cluster_cols = where(tof_is_numeric), som_xdim = 10, som_ydim = 10, som_distance_function = c(\"euclidean\", \"manhattan\", \"chebyshev\", \"cosine\"), perform_metaclustering = TRUE, num_metaclusters = 20, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"tof_tibble `tof_tbl` `tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing flowSOM clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. som_xdim width grid used self-organizing map. total number clusters returned FlowSOM som_xdim * som_ydim, adjust value affect final number clusters. Defaults 10. som_ydim height grid used self-organizing map. total number clusters returned FlowSOM som_xdim * som_ydim, adjust value affect final number clusters. Defaults 10. som_distance_function distance function used self-organizing map calculations. Options \"euclidean\" (default), \"manhattan\", \"chebyshev\", \"cosine\". perform_metaclustering boolean value indicating metaclustering performed initial clustering result returned FlowSOM. Defaults TRUE. num_metaclusters integer indicating maximum number metaclusters returned metaclustering. Defaults 20. ... Optional additional parameters can passed BuildSOM function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"tibble one column named `.flowsom_cluster` `.flowsom_metacluster` depending value `perform_metaclustering`. column contain integer vector length `nrow(tof_tibble)` indicating id flowSOM cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"additional details FlowSOM algorithm, see paper.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_flowsom.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform FlowSOM clustering on high-dimensional cytometry data — tof_cluster_flowsom","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) tof_cluster_flowsom(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 200 × 1 #> .flowsom_metacluster #> #> 1 10 #> 2 10 #> 3 8 #> 4 5 #> 5 10 #> 6 15 #> 7 6 #> 8 8 #> 9 15 #> 10 2 #> # ℹ 190 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"function wrapper around tidytof's tof_cluster_* function family provides low-level API clustering grouped data frames. subroutine tof_cluster called directly users.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"","code":"tof_cluster_grouped(tof_tibble, group_cols, ..., augment = TRUE, method)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"tof_tibble `tof_tbl` `tibble`. group_cols unquoted column name indicating columns used group cells clustering. Clustering performed group independently. ... Additional arguments pass `tof_cluster_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"flowsom\", \"phenograph\", \"kmeans\", \"ddpr\", \"xshift\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_grouped.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cluster (grouped) high-dimensional cytometry data. — tof_cluster_grouped","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"function performs k-means clustering high-dimensional cytometry data using user-specified selection input variables/high-dimensional cytometry measurements. mostly convenient wrapper around kmeans.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"","code":"tof_cluster_kmeans( tof_tibble, cluster_cols = where(tof_is_numeric), num_clusters = 20, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"tof_tibble `tof_tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing k-means clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_clusters integer indicating maximum number clusters returned. Defaults 20. ... Optional additional arguments can passed kmeans.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"tibble one column named `.kmeans_cluster`. column contain integer vector length `nrow(tof_tibble)` indicating id k-means cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform k-means clustering on high-dimensional cytometry data. — tof_cluster_kmeans","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) tof_cluster_kmeans(tof_tibble = sim_data) #> # A tibble: 1,000 × 1 #> .kmeans_cluster #> #> 1 16 #> 2 13 #> 3 9 #> 4 19 #> 5 19 #> 6 9 #> 7 9 #> 8 9 #> 9 20 #> 10 7 #> # ℹ 990 more rows tof_cluster_kmeans(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 1,000 × 1 #> .kmeans_cluster #> #> 1 9 #> 2 6 #> 3 18 #> 4 12 #> 5 5 #> 6 6 #> 7 6 #> 8 2 #> 9 14 #> 10 19 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"function performs PhenoGraph clustering high-dimensional cytometry data using user-specified selection input variables/high-dimensional cytometry measurements.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"","code":"tof_cluster_phenograph( tof_tibble, cluster_cols = where(tof_is_numeric), num_neighbors = 30, distance_function = c(\"euclidean\", \"cosine\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"tof_tibble `tof_tbl` `tibble`. cluster_cols Unquoted column names indicating columns `tof_tibble` use computing PhenoGraph clusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_neighbors integer indicating number neighbors use constructing PhenoGraph's k-nearest-neighbor graph. Smaller values emphasize local graph structure; larger values emphasize global graph structure (add time computation). Defaults 30. distance_function string indicating distance function use nearest-neighbor calculation. Options include \"euclidean\" (default) \"cosine\" distances. ... Optional additional parameters can passed tof_find_knn.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"tibble one column named `.phenograph_cluster`. column contain integer vector length `nrow(tof_tibble)` indicating id PhenoGraph cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"additional details Phenograph algorithm, see paper.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_phenograph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform PhenoGraph clustering on high-dimensional cytometry data. — tof_cluster_phenograph","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) tof_cluster_phenograph(tof_tibble = sim_data) #> # A tibble: 1,000 × 1 #> .phenograph_cluster #> #> 1 1 #> 2 7 #> 3 3 #> 4 2 #> 5 1 #> 6 8 #> 7 4 #> 8 1 #> 9 2 #> 10 6 #> # ℹ 990 more rows tof_cluster_phenograph(tof_tibble = sim_data, cluster_cols = c(cd45, cd19)) #> # A tibble: 1,000 × 1 #> .phenograph_cluster #> #> 1 5 #> 2 6 #> 3 2 #> 4 2 #> 5 3 #> 6 10 #> 7 10 #> 8 9 #> 9 1 #> 10 12 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":null,"dir":"Reference","previous_headings":"","what":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"function wrapper around tidytof's tof_cluster_* function family provides low-level API clustering ungrouped data frames. subroutine tof_cluster called directly users.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"","code":"tof_cluster_tibble(tof_tibble, ..., augment = TRUE, method)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"tof_tibble `tof_tbl` `tibble`. ... Additional arguments pass `tof_cluster_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"flowsom\", \"phenograph\", \"kmeans\", \"ddpr\", \"xshift\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cluster_tibble.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Cluster (ungrouped) high-dimensional cytometry data. — tof_cluster_tibble","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"Compute Kaplan-Meier curve sample-level survival data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"","code":"tof_compute_km_curve(survival_curves)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"survival_curves tibble Kaplan-Meier curve computed. row must represent observation must two columns named \"time_to_event\" \"event\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_compute_km_curve.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute a Kaplan-Meier curve from sample-level survival data — tof_compute_km_curve","text":"tibble 3 columns: time_to_event, survival_probability, is_censored (whether event censored timepoint).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":null,"dir":"Reference","previous_headings":"","what":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"function finding cosine distance rows numeric matrix numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"","code":"tof_cosine_dist(matrix, vector)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"matrix numeric matrix. vector numeric vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"numeric vector distances length `nrow(matrix)` ith entry represents cosine distance ith row `matrix` `vector`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_cosine_dist.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"A function for finding the cosine distance between each of the rows of a numeric\nmatrix and a numeric vector. — tof_cosine_dist","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":null,"dir":"Reference","previous_headings":"","what":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"function creates regular hyperparameter search grid (form tibble) specifying search space two hyperparameters generalized linear model using glmnet package: regularization penalty term lasso/ridge regression mixture term.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"","code":"tof_create_grid( penalty_values, mixture_values, num_penalty_values = 5, num_mixture_values = 5 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"penalty_values numeric vector unique elastic net penalty values (\"lambda\") include hyperparameter grid. unspecified, regular grid `num_penalty_values` 10^(-10) 10^(0) used. mixture_values numeric vector elastic net mixture values (\"alpha\") include hyperparameter grid. unspecified, regular grid `num_mixture_values` 0 1 used. num_penalty_values Optional. `penalty_values` supplied, `num_penalty_values` (integer) can given specify many equally-spaced penalty values 10^(-10) 1 included hyperparameter grid. method used, regular grid always returned. Defaults 5. num_mixture_values Optional. `mixture_values` supplied, `num_mixture_values` (integer) can given specify many equally-spaced penalty values 0 (ridge regression) 1 (lasso) included hyperparameter grid. method used, regular grid always returned. Defaults 5.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"tibble two numeric columns: `penalty` `mixture`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_grid.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create an elastic net hyperparameter search grid of a specified size — tof_create_grid","text":"","code":"tof_create_grid() #> # A tibble: 25 × 2 #> penalty mixture #> #> 1 0.0000000001 0 #> 2 0.0000000001 0.25 #> 3 0.0000000001 0.5 #> 4 0.0000000001 0.75 #> 5 0.0000000001 1 #> 6 0.0000000316 0 #> 7 0.0000000316 0.25 #> 8 0.0000000316 0.5 #> 9 0.0000000316 0.75 #> 10 0.0000000316 1 #> # ℹ 15 more rows tof_create_grid(num_penalty_values = 10, num_mixture_values = 5) #> # A tibble: 50 × 2 #> penalty mixture #> #> 1 0.0000000001 0 #> 2 0.0000000001 0.25 #> 3 0.0000000001 0.5 #> 4 0.0000000001 0.75 #> 5 0.0000000001 1 #> 6 0.00000000129 0 #> 7 0.00000000129 0.25 #> 8 0.00000000129 0.5 #> 9 0.00000000129 0.75 #> 10 0.00000000129 1 #> # ℹ 40 more rows tof_create_grid(penalty_values = c(0.01, 0.1, 0.5)) #> # A tibble: 15 × 2 #> penalty mixture #> #> 1 0.01 0 #> 2 0.01 0.25 #> 3 0.01 0.5 #> 4 0.01 0.75 #> 5 0.01 1 #> 6 0.1 0 #> 7 0.1 0.25 #> 8 0.1 0.5 #> 9 0.1 0.75 #> 10 0.1 1 #> 11 0.5 0 #> 12 0.5 0.25 #> 13 0.5 0.5 #> 14 0.5 0.75 #> 15 0.5 1"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"Create recipe preprocessing sample-level cytometry data elastic net model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"","code":"tof_create_recipe( feature_tibble, predictor_cols, outcome_cols, standardize_predictors = TRUE, remove_zv_predictors = FALSE, impute_missing_predictors = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"feature_tibble tibble row represents sample- patient- level observation, produced tof_extract_features. predictor_cols Unquoted column names indicating columns data contained `feature_tibble` used predictors elastic net model. Supports tidyselect helpers. outcome_cols Unquoted column names indicating columns `feature_tibble` used outcome variables elastic net model. Supports tidyselect helpers. standardize_predictors logical value indicating numeric predictor columns standardized (centered scaled) model fitting. Defaults TRUE. remove_zv_predictors logical value indicating predictor columns near-zero variance removed model fitting using step_nzv. Defaults FALSE. impute_missing_predictors logical value indicating predictor columns missing values imputed using k-nearest neighbors model fitting (see step_impute_knn). Imputation performed using observation's 5 nearest-neighbors. Defaults FALSE.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_create_recipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a recipe for preprocessing sample-level cytometry data for an elastic net model — tof_create_recipe","text":"recipe object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data. — tof_downsample","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"function downsamples number cells `tof_tbl` using one three methods (randomly sampling constant number cells, randomly sampling proportion cells, performing density-dependent downsampling per algorithm Qiu et al., (2011)).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"","code":"tof_downsample( tof_tibble, group_cols = NULL, ..., method = c(\"constant\", \"prop\", \"density\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups within downsampling performed. Supports tidyselect helpers. Defaults `NULL` (grouping). ... Additional arguments pass `tof_downsample_*` function family member corresponding chosen method. method string indicating downsampling method use: \"constant\" (default), \"prop\", \"density\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"downsampled `tof_tbl` number columns input `tof_tibble`, fewer rows. number rows result depend chosen downsampling method.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data. — tof_downsample","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # sample 200 cells from the input data tof_downsample( tof_tibble = sim_data, num_cells = 200L, method = \"constant\" ) #> # A tibble: 200 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -0.0692 0.285 1.75 -0.343 a #> 2 0.302 2.12 0.830 0.868 s #> 3 0.564 -0.337 -0.804 1.05 i #> 4 -0.732 0.0620 -0.747 0.463 z #> 5 -0.280 1.33 0.405 -2.20 v #> 6 0.891 1.15 -0.613 0.358 r #> 7 -0.285 0.192 -0.505 -0.123 t #> 8 -1.28 0.837 0.399 0.329 t #> 9 0.532 1.61 -0.373 0.693 b #> 10 -0.391 -1.59 1.16 -0.363 y #> # ℹ 190 more rows # sample 10% of all cells from the input data tof_downsample( tof_tibble = sim_data, prop_cells = 0.1, method = \"prop\" ) #> # A tibble: 100 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 0.416 -0.0549 -0.695 0.226 t #> 2 -0.811 0.802 0.674 -0.247 d #> 3 1.13 -0.218 -1.17 -0.354 l #> 4 0.514 -0.853 1.11 -0.959 j #> 5 -0.127 -0.115 0.840 0.696 p #> 6 0.00882 1.18 0.463 0.0690 l #> 7 -0.483 0.728 -0.210 -0.456 n #> 8 1.59 -1.13 0.00641 0.909 y #> 9 0.315 0.0125 -0.150 0.00140 s #> 10 0.147 0.00315 -1.83 0.743 j #> # ℹ 90 more rows # sample ~10% of cells from the input data using density dependence tof_downsample( tof_tibble = sim_data, target_prop_cells = 0.1, method = \"density\" ) #> # A tibble: 95 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -1.18 -0.355 -2.25 -0.514 g #> 2 -1.39 -0.266 0.671 -0.916 r #> 3 -0.0662 -0.249 0.407 -0.0341 s #> 4 0.324 0.379 0.697 -0.186 a #> 5 -2.17 -2.24 -0.895 0.114 a #> 6 -0.532 1.68 0.507 0.445 c #> 7 -0.848 -0.836 0.340 -0.572 h #> 8 -0.805 -1.24 0.00874 0.480 r #> 9 -0.298 -1.97 1.40 -0.383 z #> 10 -0.921 0.747 1.42 -1.29 w #> # ℹ 85 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"function downsamples number cells `tof_tbl` randomly selecting `num_cells` cells unique combination values `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"","code":"tof_downsample_constant(tof_tibble, group_cols = NULL, num_cells)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups `num_cells` downsampled. Supports tidyselect helpers. Defaults `NULL` (grouping). num_cells integer number cells sampled group defined `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"`tof_tbl` number columns input `tof_tibble`, fewer rows. Specifically, number rows `num_cells` multiplied number unique combinations values `group_cols`. group fewer `num_cells` number cells, cells group kept.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_constant.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data by randomly selecting a constant number of cells per group. — tof_downsample_constant","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # sample 500 cells from the input data tof_downsample_constant( tof_tibble = sim_data, num_cells = 500L ) #> # A tibble: 500 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -0.299 -1.19 0.223 1.02 m #> 2 0.726 1.12 0.860 0.970 a #> 3 -0.361 1.01 0.00652 -0.159 b #> 4 -0.947 0.396 -0.836 -0.952 k #> 5 1.51 2.26 0.961 0.164 j #> 6 -0.209 0.126 -1.25 -1.08 e #> 7 1.22 1.00 -1.42 -0.400 u #> 8 0.534 2.94 -0.222 0.675 j #> 9 0.143 0.236 -1.29 -1.27 r #> 10 0.238 0.709 -0.00808 1.59 a #> # ℹ 490 more rows # sample 20 cells per cluster from the input data tof_downsample_constant( tof_tibble = sim_data, group_cols = cluster_id, num_cells = 20L ) #> # A tibble: 520 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 0.392 1.62 -1.94 1.01 c #> 2 0.726 1.12 0.860 0.970 a #> 3 -0.920 -1.39 -0.800 -0.920 j #> 4 0.0644 -0.297 -1.60 0.520 z #> 5 -0.587 0.152 -1.27 3.11 o #> 6 -1.23 0.513 -1.32 0.973 d #> 7 0.615 1.89 -1.57 -0.552 t #> 8 -0.707 1.13 0.536 1.08 l #> 9 1.22 1.00 -1.42 -0.400 u #> 10 0.534 2.94 -0.222 0.675 j #> # ℹ 510 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"function downsamples number cells `tof_tbl` using density-dependent downsampling algorithm described Qiu et al., (2011).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"","code":"tof_downsample_density( tof_tibble, group_cols = NULL, density_cols = where(tof_is_numeric), target_num_cells, target_prop_cells, target_percentile = 0.03, outlier_percentile = 0.01, distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), density_estimation_method = c(\"mean_distance\", \"sum_distance\", \"spade\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups within downsampling performed. Supports tidyselect helpers. Defaults `NULL` (grouping). density_cols Unquoted names columns `tof_tibble` use density estimation cell. Defaults numeric columns `tof_tibble`. target_num_cells approximate constant number cells (0 1) sampled group defined `group_cols`. Slightly fewer cells may returned due density calculation performed. target_prop_cells approximate proportion cells (0 1) sampled group defined `group_cols`. Slightly fewer cells may returned due density calculation performed. Ignored `target_num_cells` specified. target_percentile local density percentile (.e. value 0 1) downsampling procedure adjust cells. short, algorithm continue remove cells input `tof_tibble` local densities remaining cells equal `target_percentile`. Lower values result cells removed. See Qiu et al., (2011) details. Defaults 0.1 (10th percentile local densities). Ignored either `target_num_cells` `target_prop_cells` specified. outlier_percentile local density percentile (.e. value 0 1) cells considered outliers (discarded). Cells local density `outlier_percentile` never selected downsampling procedure. Defaults 0.01 (cells 1st local density percentile removed). distance_function string indicating distance function use cell--cell distance calculations. Options include \"euclidean\" (default) \"cosine\" distances. density_estimation_method string indicating algorithm used calculate local density estimate cell. Options include k-nearest neighbor density estimation using mean distance cell's k-nearest neighbors (\"mean_distance\"; default), k-nearest neighbor density estimation using summed distance cell's k nearest neighbors (\"sum_distance\") counting number neighboring cells within spherical radius around cell described Qiu et al., 2011 (\"spade\"). \"spade\" often produces best results, slower knn-density estimation methods. ... Optional additional arguments pass tof_knn_density tof_spade_density.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"`tof_tbl` number columns input `tof_tibble`, fewer rows. number rows depend chosen value `target_percentile`, fewer cells selected lower values `target_percentile`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) tof_downsample_density( tof_tibble = sim_data, density_cols = c(cd45, cd34, cd38), target_prop_cells = 0.5, density_estimation_method = \"spade\" ) #> # A tibble: 509 × 4 #> cd45 cd38 cd34 cd19 #> #> 1 -1.00 0.353 0.283 -1.57 #> 2 -0.886 0.199 1.64 -0.417 #> 3 0.386 1.87 0.0963 -0.325 #> 4 -1.28 -1.74 1.02 -1.64 #> 5 -0.428 1.97 -0.960 -0.886 #> 6 -0.696 -0.0458 0.825 0.594 #> 7 -0.0576 1.67 0.984 -0.0994 #> 8 1.39 0.920 1.87 0.798 #> 9 2.40 0.000711 1.10 -0.262 #> 10 -2.04 -1.19 -0.184 -1.20 #> # ℹ 499 more rows tof_downsample_density( tof_tibble = sim_data, density_cols = c(cd45, cd34, cd38), target_num_cells = 200L, density_estimation_method = \"spade\" ) #> # A tibble: 200 × 4 #> cd45 cd38 cd34 cd19 #> #> 1 -1.00 0.353 0.283 -1.57 #> 2 -0.428 1.97 -0.960 -0.886 #> 3 -2.04 -1.19 -0.184 -1.20 #> 4 -1.52 -0.327 -0.195 0.177 #> 5 -0.398 -0.112 -1.63 0.182 #> 6 -0.643 0.493 -0.672 0.266 #> 7 -1.02 1.37 -1.63 -0.311 #> 8 2.26 -0.788 -1.67 -0.281 #> 9 0.180 -0.00392 -1.88 0.582 #> 10 -0.529 0.870 2.02 -0.0415 #> # ℹ 190 more rows tof_downsample_density( tof_tibble = sim_data, density_cols = c(cd45, cd34, cd38), target_num_cells = 200L, density_estimation_method = \"mean_distance\" ) #> # A tibble: 190 × 4 #> cd45 cd38 cd34 cd19 #> #> 1 -0.315 0.160 1.03 0.820 #> 2 -1.34 0.138 1.64 -0.306 #> 3 -1.28 -1.74 1.02 -1.64 #> 4 0.487 -1.20 -0.728 -2.00 #> 5 1.39 0.920 1.87 0.798 #> 6 -0.0217 0.359 0.876 -0.866 #> 7 1.11 0.197 -0.411 0.936 #> 8 0.145 1.44 -0.984 1.05 #> 9 0.310 -1.39 0.195 1.41 #> 10 -0.281 0.265 1.11 -0.438 #> # ℹ 180 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":null,"dir":"Reference","previous_headings":"","what":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"function downsamples number cells `tof_tbl` randomly selecting `prop_cells` proportion total number cells unique combination values `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"","code":"tof_downsample_prop(tof_tibble, group_cols = NULL, prop_cells)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used define groups `prop_cells` downsampled. Supports tidyselect helpers. Defaults `NULL` (grouping). prop_cells proportion cells (0 1) sampled group defined `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"`tof_tbl` number columns input `tof_tibble`, fewer rows. Specifically, number rows `prop_cells` times number rows input `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_downsample_prop.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Downsample high-dimensional cytometry data by randomly selecting a proportion of the cells in each group. — tof_downsample_prop","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # sample 10% of all cells from the input data tof_downsample_prop( tof_tibble = sim_data, prop_cells = 0.1 ) #> # A tibble: 100 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 0.644 -1.20 -0.232 -1.17 v #> 2 2.04 1.48 -0.209 -1.32 j #> 3 0.452 -0.0795 0.0191 1.38 x #> 4 -0.886 -0.0508 0.359 -0.399 i #> 5 0.0550 -0.366 0.696 0.765 p #> 6 -0.747 -1.26 0.764 0.225 k #> 7 1.18 0.667 0.981 -0.288 j #> 8 0.870 -0.572 0.431 -0.0517 y #> 9 1.35 0.408 0.328 0.775 x #> 10 0.144 1.40 0.0902 -0.249 o #> # ℹ 90 more rows # sample 10% of all cells from each cluster in the input data tof_downsample_prop( tof_tibble = sim_data, group_cols = cluster_id, prop_cells = 0.1 ) #> # A tibble: 90 × 5 #> cd45 cd38 cd34 cd19 cluster_id #> #> 1 -0.350 -1.94 -0.824 1.21 a #> 2 -0.302 0.423 -0.871 0.0792 a #> 3 -1.29 -0.273 -1.44 0.806 a #> 4 -0.376 -0.750 -0.0136 -1.13 a #> 5 0.187 -1.31 0.439 -1.15 b #> 6 0.422 -0.801 0.251 -1.35 b #> 7 -0.397 -0.394 -2.26 -0.0954 b #> 8 0.839 0.631 -0.724 2.08 b #> 9 -0.260 -1.09 1.92 -1.23 c #> 10 -0.534 -0.521 1.15 1.12 c #> # ℹ 80 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"function wrapper around tidytof's tof_*_density() function family. performs local density estimation high-dimensional cytometry data using user-specified method (3 choices) method's corresponding input parameters.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"","code":"tof_estimate_density( tof_tibble, distance_cols = where(tof_is_numeric), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), normalize = TRUE, ..., augment = TRUE, method = c(\"mean_distance\", \"sum_distance\", \"spade\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"tof_tibble `tof_tbl` `tibble`. distance_cols Unquoted names columns `tof_tibble` use calculating cell--cell distances local density estimation cell. Defaults numeric columns `tof_tibble`. distance_function string indicating distance function use calculating cell--cell distances local density estimation. Options include \"euclidean\" (default) \"cosine\". normalize boolean value indicating vector local density estimates normalized values 0 1. Defaults TRUE. ... Additional arguments pass `tof_*_density()` function family member corresponding chosen `method`. augment boolean value indicating output column-bind local density estimates cell new column `tof_tibble` (TRUE; default) single-column tibble including local density estimates returned (FALSE). method string indicating local density estimation method used. Valid values include \"mean_distance\", \"sum_distance\", \"spade\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding local density estimates cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding local density estimates.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_estimate_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Estimate the local densities for all cells in a high-dimensional cytometry dataset. — tof_estimate_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) # perform the density estimation tof_estimate_density(tof_tibble = sim_data, method = \"spade\") #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .spade_density #> #> 1 -1.36 0.411 0.548 1.12 1 #> 2 -0.0788 -1.01 2.17 1.62 1 #> 3 -0.0631 -0.366 0.203 1.89 1 #> 4 0.225 0.467 -1.29 0.559 1 #> 5 1.20 1.28 1.03 0.828 1 #> 6 -0.786 -0.349 -0.575 0.980 1 #> 7 -0.562 1.67 0.808 -0.668 1 #> 8 0.0671 -1.00 1.24 -0.923 1 #> 9 1.45 -1.51 -1.56 -1.52 1 #> 10 1.48 0.414 1.22 -0.0824 1 #> # ℹ 990 more rows # perform the density estimation with a smaller search radius around # each cell tof_estimate_density( tof_tibble = sim_data, alpha_multiplier = 2, method = \"spade\" ) #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .spade_density #> #> 1 -1.36 0.411 0.548 1.12 0.6 #> 2 -0.0788 -1.01 2.17 1.62 0.2 #> 3 -0.0631 -0.366 0.203 1.89 0.9 #> 4 0.225 0.467 -1.29 0.559 1 #> 5 1.20 1.28 1.03 0.828 0.4 #> 6 -0.786 -0.349 -0.575 0.980 1 #> 7 -0.562 1.67 0.808 -0.668 0.6 #> 8 0.0671 -1.00 1.24 -0.923 1 #> 9 1.45 -1.51 -1.56 -1.52 0 #> 10 1.48 0.414 1.22 -0.0824 0.4 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"feature extraction function calculates user-specified measurement central tendency (.e. median mode) cells cluster `tof_tibble` across user-specified selection CyTOF markers. calculations can done either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"","code":"tof_extract_central_tendency( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), stimulation_col = NULL, central_tendency_function = stats::median, format = c(\"wide\", \"long\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"tof_tibble `tof_tibble` `tibble` row represents single cell column represents CyTOF measurement piece metadata (.e. cluster id, patient id, etc.) cell. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included feature extraction calculation. Defaults numeric (integer double) columns. Supports tidyselection. stimulation_col Optional. unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). central_tendency_function function used calculate measurement central tendency cluster (used dependent variable linear model). Defaults median. format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (central tendency given marker given cluster). names column containing cluster features obtained using following pattern: \"{marker_id}@{cluster_id}_ct\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_central_tendency.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract the central tendencies of CyTOF markers in each cluster in a `tof_tibble`. — tof_extract_central_tendency","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract proportion of each cluster in each patient in wide format tof_extract_central_tendency( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient ) #> # A tibble: 2 × 105 #> patient `cd45@a_ct` `cd38@a_ct` `cd34@a_ct` `cd19@a_ct` `cd45@b_ct` #> #> 1 kirby 0.324 0.0821 -0.108 0.0729 0.0187 #> 2 mario 0.174 0.0791 -0.352 0.162 0.000622 #> # ℹ 99 more variables: `cd38@b_ct` , `cd34@b_ct` , `cd19@b_ct` , #> # `cd45@c_ct` , `cd38@c_ct` , `cd34@c_ct` , `cd19@c_ct` , #> # `cd45@d_ct` , `cd38@d_ct` , `cd34@d_ct` , `cd19@d_ct` , #> # `cd45@e_ct` , `cd38@e_ct` , `cd34@e_ct` , `cd19@e_ct` , #> # `cd45@f_ct` , `cd38@f_ct` , `cd34@f_ct` , `cd19@f_ct` , #> # `cd45@g_ct` , `cd38@g_ct` , `cd34@g_ct` , `cd19@g_ct` , #> # `cd45@h_ct` , `cd38@h_ct` , `cd34@h_ct` , … # extract proportion of each cluster in each patient in long format tof_extract_central_tendency( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, format = \"long\" ) #> # A tibble: 208 × 4 #> patient cluster_id channel values #> #> 1 kirby a cd45 0.324 #> 2 kirby a cd38 0.0821 #> 3 kirby a cd34 -0.108 #> 4 kirby a cd19 0.0729 #> 5 kirby b cd45 0.0187 #> 6 kirby b cd38 -0.102 #> 7 kirby b cd34 0.0402 #> 8 kirby b cd19 -0.408 #> 9 kirby c cd45 -0.389 #> 10 kirby c cd38 0.410 #> # ℹ 198 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"feature extraction function calculates earth-mover's distance (EMD) stimulated unstimulated (\"basal\") experimental conditions samples CyTOF experiment. calculation performed across user-specified selection CyTOF antigens can performed either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"","code":"tof_extract_emd( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), emd_col, reference_level, format = c(\"wide\", \"long\"), num_bins = 100 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included earth-mover's distance calculation. Defaults numeric (integer double) columns. Supports tidyselect helpers. emd_col unquoted column name indicates column `tof_tibble` used group cells different distributions compared one another EMD calculation. example, want compare marker expression distributions across stimulation conditions, `emd_col` column `tof_tibble` containing information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). reference_level string indicating value `emd_col` corresponds \"reference\" value values `emd_col` compared. example, `emd_col` represents stimulation condition cell, reference_level might take value \"basal\" \"unstimulated\" want compare stimulation basal state. format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row). num_bins Optional. number bins use dividing one-dimensional marker distributions discrete segments EMD calculation. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (EMD distribution given marker given cluster basal condition distribution marker given cluster stimulated condition). names column containing cluster features obtained using following pattern: \"{stimulation_id}_{marker_id}@{cluster_id}_emd\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_emd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated features from CyTOF data using earth-mover's distance (EMD) — tof_extract_emd","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract emd of each cluster in each patient (using the \"basal\" stim # condition as a reference) in wide format tof_extract_emd( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, emd_col = stim, reference_level = \"basal\" ) #> # A tibble: 2 × 105 #> patient `stim_cd45@q_emd` `stim_cd38@q_emd` `stim_cd34@q_emd` #> #> 1 mario NA NA NA #> 2 kirby NA NA NA #> # ℹ 101 more variables: `stim_cd19@q_emd` , `stim_cd45@z_emd` , #> # `stim_cd38@z_emd` , `stim_cd34@z_emd` , `stim_cd19@z_emd` , #> # `stim_cd45@n_emd` , `stim_cd38@n_emd` , `stim_cd34@n_emd` , #> # `stim_cd19@n_emd` , `stim_cd45@i_emd` , `stim_cd38@i_emd` , #> # `stim_cd34@i_emd` , `stim_cd19@i_emd` , `stim_cd45@h_emd` , #> # `stim_cd38@h_emd` , `stim_cd34@h_emd` , `stim_cd19@h_emd` , #> # `stim_cd45@d_emd` , `stim_cd38@d_emd` , … # extract emd of each cluster (using the \"basal\" stim # condition as a reference) in long format tof_extract_emd( tof_tibble = sim_data, cluster_col = cluster_id, emd_col = stim, reference_level = \"basal\", format = \"long\" ) #> # A tibble: 104 × 4 #> cluster_id marker stimulation emd #> #> 1 q cd45 stim 8.56 #> 2 q cd38 stim 14.1 #> 3 q cd34 stim 7.86 #> 4 q cd19 stim 17.9 #> 5 z cd45 stim 5.38 #> 6 z cd38 stim 8.33 #> 7 z cd34 stim 9.05 #> 8 z cd19 stim 4.89 #> 9 n cd45 stim 8.50 #> 10 n cd38 stim 4.99 #> # ℹ 94 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"function wraps members `tof_extract_*` function family extract sample-level features lineage (.e. cell surface antigen) CyTOF channels assumed stable across stimulation conditions signaling CyTOF channels assumed change across stimulation conditions. Features extracted cluster within independent sample (defined `group_cols` argument).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"","code":"tof_extract_features( tof_tibble, cluster_col, group_cols = NULL, stimulation_col = NULL, lineage_cols, signaling_cols, central_tendency_function = stats::median, signaling_method = c(\"threshold\", \"emd\", \"jsd\", \"central tendency\"), basal_level = NULL, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). stimulation_col Optional. unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). lineage_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) considered lineage markers feature extraction calculation. Supports tidyselect helpers. signaling_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) considered signaling markers feature extraction calculation. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster (used dependent variable linear model). Defaults median. signaling_method string indicating feature extraction method use signaling markers (identified `signaling_cols` argument). Options \"threshold\" (default), \"emd\", \"jsd\", \"central tendency\". basal_level string indicating value `stimulation_col` corresponds basal stimulation condition (.e. \"basal\" \"unstimulated\"). ... Optional additional arguments passed tof_extract_threshold, tof_extract_emd, tof_extract_jsd.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"tibble. output tibble 1 row combination grouping variables provided `group_cols` (thus, row represent considered single \"sample\" based grouping provided). one column grouping variable one column extracted feature (\"wide\" format).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"Lineage channels specified using `lineage_cols` argument, extracted features measurements central tendency (computed user-supplied `central_tendency_function`). Signaling channels specified using `signaling_cols` argument, extracted features depend user's chosen `signaling_method`. `signaling method` == \"threshold\" (default), tof_extract_threshold used calculate proportion cells cluster signaling marker expression `threshold` stimulation condition. `signaling_method` == \"emd\" `signaling_method` == \"jsd\", tof_extract_emd tof_extract_jsd used calculate earth-mover's distance (EMD) Jensen-Shannon Distance (JSD), respectively, basal condition stimulated conditions cluster sample. Finally, none options chosen, tof_extract_central_tendency used calculate measurements central tendency. addition, tof_extract_proportion used extract proportion cells cluster computed sample. calculations can performed either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_features.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated, sample-level features from CyTOF data. — tof_extract_features","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract the following features from each cluster in each # patient/stimulation: # - proportion of each cluster # - central tendency (median) of cd45 and cd38 in each cluster # - the proportion of cells in each cluster with cd34 expression over # the default threshold (asinh(10 / 5)) tof_extract_features( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, lineage_cols = c(cd45, cd38), signaling_cols = cd34, stimulation_col = stim ) #> # A tibble: 2 × 131 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> #> 1 kirby 0.0365 0.0385 0.0325 0.0385 0.0588 0.0487 0.0264 #> 2 mario 0.0138 0.0493 0.0335 0.0237 0.0256 0.0434 0.0296 #> # ℹ 123 more variables: `prop@h` , `prop@i` , `prop@j` , #> # `prop@k` , `prop@l` , `prop@m` , `prop@n` , #> # `prop@o` , `prop@p` , `prop@q` , `prop@r` , #> # `prop@s` , `prop@t` , `prop@u` , `prop@v` , #> # `prop@w` , `prop@x` , `prop@y` , `prop@z` , #> # `cd45@a_ct` , `cd38@a_ct` , `cd45@b_ct` , `cd38@b_ct` , #> # `cd45@c_ct` , `cd38@c_ct` , `cd45@d_ct` , … # extract the following features from each cluster in each # patient/stimulation: # - proportion of each cluster # - central tendency (mean) of cd45 and cd38 in each cluster # - the earth mover's distance between each cluster's cd34 histogram in # the \"basal\" and \"stim\" conditions tof_extract_features( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, lineage_cols = c(cd45, cd38), signaling_cols = cd34, central_tendency_function = mean, stimulation_col = stim, signaling_method = \"emd\", basal_level = \"basal\" ) #> # A tibble: 2 × 131 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> #> 1 kirby 0.0365 0.0385 0.0325 0.0385 0.0588 0.0487 0.0264 #> 2 mario 0.0138 0.0493 0.0335 0.0237 0.0256 0.0434 0.0296 #> # ℹ 123 more variables: `prop@h` , `prop@i` , `prop@j` , #> # `prop@k` , `prop@l` , `prop@m` , `prop@n` , #> # `prop@o` , `prop@p` , `prop@q` , `prop@r` , #> # `prop@s` , `prop@t` , `prop@u` , `prop@v` , #> # `prop@w` , `prop@x` , `prop@y` , `prop@z` , #> # `cd45@a_ct` , `cd38@a_ct` , `cd45@b_ct` , `cd38@b_ct` , #> # `cd45@c_ct` , `cd38@c_ct` , `cd45@d_ct` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"feature extraction function calculates Jensen-Shannon Distance (JSD) stimulated unstimulated (\"basal\") experimental conditions samples CyTOF experiment. calculation performed across user-specified selection CyTOF antigens can performed either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"","code":"tof_extract_jsd( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), jsd_col, reference_level, format = c(\"wide\", \"long\"), num_bins = 100 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included feature extraction calculation. Defaults numeric (integer double) columns. Supports tidyselect helpers. jsd_col unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). reference_level string indicating value `jsd_col` corresponds basal stimulation condition (.e. \"basal\" \"unstimulated\"). format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row). num_bins Optional. number bins use dividing one-dimensional marker distributions discrete segments JSD calculation. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (JSD distribution given marker given cluster basal condition distribution marker cluster stimulated condition). names column containing cluster features obtained using following pattern: \"{stimulation_id}_{marker_id}@{cluster_id}_jsd\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_jsd.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated features from CyTOF data using the Jensen-Shannon Distance (JSD) — tof_extract_jsd","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract jsd of each cluster in each patient (using the \"basal\" stim # condition as a reference) in wide format tof_extract_jsd( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, jsd_col = stim, reference_level = \"basal\" ) #> # A tibble: 2 × 105 #> patient `stim_cd45@e_jsd` `stim_cd38@e_jsd` `stim_cd34@e_jsd` #> #> 1 kirby NA NA NA #> 2 mario NA NA NA #> # ℹ 101 more variables: `stim_cd19@e_jsd` , `stim_cd45@j_jsd` , #> # `stim_cd38@j_jsd` , `stim_cd34@j_jsd` , `stim_cd19@j_jsd` , #> # `stim_cd45@q_jsd` , `stim_cd38@q_jsd` , `stim_cd34@q_jsd` , #> # `stim_cd19@q_jsd` , `stim_cd45@h_jsd` , `stim_cd38@h_jsd` , #> # `stim_cd34@h_jsd` , `stim_cd19@h_jsd` , `stim_cd45@c_jsd` , #> # `stim_cd38@c_jsd` , `stim_cd34@c_jsd` , `stim_cd19@c_jsd` , #> # `stim_cd45@i_jsd` , `stim_cd38@i_jsd` , … # extract jsd of each cluster (using the \"basal\" stim # condition as a reference) in long format tof_extract_jsd( tof_tibble = sim_data, cluster_col = cluster_id, jsd_col = stim, reference_level = \"basal\", format = \"long\" ) #> # A tibble: 104 × 4 #> cluster_id marker stimulation jsd #> #> 1 e cd45 stim 0.763 #> 2 e cd38 stim 0.764 #> 3 e cd34 stim 0.730 #> 4 e cd19 stim 0.764 #> 5 j cd45 stim 0.680 #> 6 j cd38 stim 0.893 #> 7 j cd34 stim 0.840 #> 8 j cd19 stim 0.924 #> 9 q cd45 stim 0.862 #> 10 q cd38 stim 0.862 #> # ℹ 94 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"feature extraction function allows calculate proportion cells cluster `tof_tibble` - either overall broken subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"","code":"tof_extract_proportion( tof_tibble, cluster_col, group_cols = NULL, format = c(\"wide\", \"long\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). format string indicating data returned \"wide\" format (default; cluster proportion given column) \"long\" format (cluster proportion provided row).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable well one column proportion cells cluster. names column containing cluster proportions obtained using following pattern: \"prop@{cluster_id}\". format == \"long\", tibble 1 row combination grouping variables `group_cols` cluster id (.e. level) `cluster_col`. one column grouping variable, one column cluster ids, one column (`prop`) containing cluster proportions.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_proportion.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract the proportion of cells in each cluster in a `tof_tibble`. — tof_extract_proportion","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract proportion of each cluster in each patient in wide format tof_extract_proportion( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient ) #> # A tibble: 2 × 27 #> patient `prop@a` `prop@b` `prop@c` `prop@d` `prop@e` `prop@f` `prop@g` #> #> 1 kirby 0.05 0.042 0.03 0.032 0.028 0.036 0.04 #> 2 mario 0.054 0.04 0.038 0.034 0.04 0.036 0.042 #> # ℹ 19 more variables: `prop@h` , `prop@i` , `prop@j` , #> # `prop@k` , `prop@l` , `prop@m` , `prop@n` , #> # `prop@o` , `prop@p` , `prop@q` , `prop@r` , #> # `prop@s` , `prop@t` , `prop@u` , `prop@v` , #> # `prop@w` , `prop@x` , `prop@y` , `prop@z` # extract proportion of each cluster in each patient in long format tof_extract_proportion( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, format = \"long\" ) #> # A tibble: 52 × 3 #> patient cluster_id prop #> #> 1 kirby a 0.05 #> 2 kirby b 0.042 #> 3 kirby c 0.03 #> 4 kirby d 0.032 #> 5 kirby e 0.028 #> 6 kirby f 0.036 #> 7 kirby g 0.04 #> 8 kirby h 0.032 #> 9 kirby i 0.052 #> 10 kirby j 0.038 #> # ℹ 42 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":null,"dir":"Reference","previous_headings":"","what":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"feature extraction function calculates proportion cells given cluster CyTOF antigen expression user-specified threshold across user-specified selection CyTOF markers. calculations can done either overall (across cells dataset) breaking cells subgroups using `group_cols`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"","code":"tof_extract_threshold( tof_tibble, cluster_col, group_cols = NULL, marker_cols = where(tof_is_numeric), stimulation_col = NULL, threshold = asinh(10/5), format = c(\"wide\", \"long\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. group_cols Unquoted column names representing columns `tof_tibble` used break rows `tof_tibble` subgroups feature extraction calculation. Defaults NULL (.e. performing extraction without subgroups). marker_cols Unquoted column names representing columns `tof_tibble` (.e. CyTOF protein measurements) included feature extraction calculation. Defaults numeric (integer double) columns. Supports tidyselect helpers. stimulation_col Optional. unquoted column name indicates column `tof_tibble` contains information stimulation condition cell exposed data acquisition. provided, feature extraction broken subgroups stimulation condition (features stimulation condition included features wide format). threshold double integer length 1 indicating threshold used. format string indicating data returned \"wide\" format (default; cluster feature given column) \"long\" format (cluster feature provided row).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"tibble. format == \"wide\", tibble 1 row combination grouping variables provided `group_cols` one column grouping variable, one column extracted feature (proportion cells given cluster marker expression values `threshold`). names column containing cluster features obtained using following pattern: \"{marker_id}@{cluster_id}_threshold\". format == \"long\", tibble 1 row combination grouping variables `group_cols`, cluster id (.e. level) `cluster_col`, marker `marker_cols`. one column grouping variable, one column cluster ids, one column CyTOF channel names, one column (`value`) containing features.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_extract_threshold.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extract aggregated features from CyTOF data using a binary threshold — tof_extract_threshold","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), patient = sample(c(\"kirby\", \"mario\"), size = 1000, replace = TRUE), stim = sample(c(\"basal\", \"stim\"), size = 1000, replace = TRUE) ) # extract proportion of each cluster in each patient in wide format tof_extract_threshold( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient ) #> # A tibble: 2 × 105 #> patient `cd45@a_threshold` `cd38@a_threshold` `cd34@a_threshold` #> #> 1 kirby 0 0.0769 0.0769 #> 2 mario 0.0714 0 0.143 #> # ℹ 101 more variables: `cd19@a_threshold` , `cd45@b_threshold` , #> # `cd38@b_threshold` , `cd34@b_threshold` , #> # `cd19@b_threshold` , `cd45@c_threshold` , #> # `cd38@c_threshold` , `cd34@c_threshold` , #> # `cd19@c_threshold` , `cd45@d_threshold` , #> # `cd38@d_threshold` , `cd34@d_threshold` , #> # `cd19@d_threshold` , `cd45@e_threshold` , … # extract proportion of each cluster in each patient in long format tof_extract_threshold( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = patient, format = \"long\" ) #> # A tibble: 208 × 4 #> patient cluster_id channel values #> #> 1 kirby a cd45 0 #> 2 kirby a cd38 0.0769 #> 3 kirby a cd34 0.0769 #> 4 kirby a cd19 0 #> 5 kirby b cd45 0.111 #> 6 kirby b cd38 0.148 #> 7 kirby b cd34 0.259 #> 8 kirby b cd19 0.0741 #> 9 kirby c cd45 0 #> 10 kirby c cd38 0.0588 #> # ℹ 198 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"Find optimal hyperparameters elastic net model candidate performance metrics","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"","code":"tof_find_best(performance_metrics, model_type, optimization_metric)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"performance_metrics tibble performance metrics elastic net model (wide format) model_type string indicating type glmnet model trained. optimization_metric string indicating performance metric used select optimal model.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_best.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the optimal hyperparameters for an elastic net model from candidate performance metrics — tof_find_best","text":"tibble 3 columns: \"mixture\", \"penalty\", column containing chosen optimization metric. returned tibble 1 column, means 1 mixture/penalty combination yielded optimal result (.e. tuning procedure resulted tie).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":null,"dir":"Reference","previous_headings":"","what":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"Calculate store predicted outcomes validation set observation model tuning","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"","code":"tof_find_cv_predictions( split_data, prepped_recipe, lambda, alpha, model_type, outcome_colnames )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"split_data `rsplit` object rsample package. Alternatively, unsplit tbl_df can provided, though recommended. prepped_recipe trained recipe lambda single numeric value indicating penalty (lambda) value used make predictions alpha single numeric value indicating mixture (alpha) value used make predictions model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. outcome_colnames Quoted column names indicating columns data fit represent outcome variables (others assumed predictors).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_cv_predictions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Calculate and store the predicted outcomes for each validation set observation during model tuning — tof_find_cv_predictions","text":"tibble containing predicted true values outcome validation observations `split_data`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"Find earth-mover's distance two numeric vectors","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"","code":"tof_find_emd(vec_1, vec_2, num_bins = 100)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"vec_1 numeric vector. vec_2 numeric vector. num_bins integer number bins use performing kernel density estimation two vectors. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_emd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the earth-mover's distance between two numeric vectors — tof_find_emd","text":"double (length 1) representing EMD two vectors.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"Find Jensen-Shannon Divergence (JSD) two numeric vectors","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"","code":"tof_find_jsd(vec_1, vec_2, num_bins = 100)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"vec_1 numeric vector. vec_2 numeric vector. num_bins integer number bins use binning across two vectors' combined range. Defaults 100.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_jsd.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the Jensen-Shannon Divergence (JSD) between two numeric vectors — tof_find_jsd","text":"double (length 1) representing JSD two vectors.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":null,"dir":"Reference","previous_headings":"","what":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"Find k-nearest neighbors cell high-dimensional cytometry dataset.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"","code":"tof_find_knn( .data, k = min(10, nrow(.data)), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), .query, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":".data `tof_tibble` `tibble` row represents cell column represents high-dimensional cytometry measurement. k integer indicating number nearest neighbors return cell. distance_function string indicating distance function use nearest-neighbor calculation. Options include \"euclidean\" (default) \"cosine\" distances. .query set cells queried .data (.e. set cells find nearest neighbors within .data). Defaults .data , .e. finding nearest neighbors cells .data. ... Optional additional arguments pass hnsw_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"list two elements: \"neighbor_ids\" \"neighbor_distances,\" n k matrices (n number cells input `.data`. [,j]-th entry \"neighbor_ids\" represents row index j-th nearest neighbor cell -th row `.data`. [,j]-th entry \"neighbor_distances\" represents distance two cells according `distance_function`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_knn.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Find the k-nearest neighbors of each cell in a high-dimensional cytometry dataset. — tof_find_knn","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) # Find the 10 nearest neighbors of each cell in the dataset tof_find_knn( .data = sim_data, k = 10, distance_function = \"euclidean\" ) #> $neighbor_ids #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] #> [1,] 442 230 784 689 53 137 330 836 996 69 #> [2,] 874 179 540 168 223 720 504 824 885 383 #> [3,] 213 97 262 688 569 583 921 711 455 436 #> [4,] 691 167 268 281 235 746 958 524 275 449 #> [5,] 681 33 966 976 295 698 239 740 59 993 #> [6,] 641 921 467 213 884 514 552 410 711 3 #> [7,] 735 797 69 294 53 226 238 330 907 129 #> [8,] 525 884 433 469 305 678 332 833 591 6 #> [9,] 975 358 333 394 526 199 692 888 828 48 #> [10,] 159 743 81 440 297 368 985 480 54 456 #> [11,] 278 476 906 232 995 600 272 172 349 73 #> [12,] 821 641 554 514 293 467 725 478 780 702 #> [13,] 88 906 989 349 703 142 11 216 596 147 #> [14,] 724 993 523 59 376 422 496 123 647 976 #> [15,] 375 585 893 249 178 301 967 179 978 250 #> [16,] 636 231 204 175 121 181 377 370 998 960 #> [17,] 590 928 631 901 620 317 388 770 466 529 #> [18,] 853 71 936 822 309 959 989 29 227 597 #> [19,] 807 271 545 727 434 960 679 977 453 302 #> [20,] 77 468 610 520 144 109 156 167 942 235 #> [21,] 958 536 443 158 673 240 347 556 355 285 #> [22,] 648 63 781 176 671 499 725 569 852 436 #> [23,] 363 282 207 985 413 115 882 454 788 381 #> [24,] 457 86 802 267 877 681 943 124 548 740 #> [25,] 623 234 220 279 32 352 662 166 530 185 #> [26,] 141 346 785 221 404 830 868 786 60 833 #> [27,] 487 317 780 89 621 918 554 61 58 171 #> [28,] 353 484 809 587 493 699 49 919 83 156 #> [29,] 172 272 227 936 216 11 675 476 788 989 #> [30,] 72 62 459 576 793 600 344 274 995 127 #> [31,] 712 66 491 494 326 322 51 636 488 472 #> [32,] 64 621 662 508 946 234 4 443 61 487 #> [33,] 5 976 59 845 186 698 539 263 873 772 #> [34,] 42 561 231 181 35 609 16 719 545 977 #> [35,] 42 571 34 889 561 977 379 945 577 545 #> [36,] 655 343 427 357 567 521 882 909 741 309 #> [37,] 907 531 982 762 562 143 318 850 497 135 #> [38,] 866 320 114 529 857 559 149 348 546 254 #> [39,] 284 164 969 259 165 230 400 974 112 595 #> [40,] 666 687 857 611 854 348 559 866 593 669 #> [41,] 871 849 470 361 890 250 717 485 649 847 #> [42,] 561 392 545 19 960 34 35 231 577 977 #> [43,] 524 128 954 846 778 459 148 344 296 127 #> [44,] 522 899 892 419 705 437 653 576 146 513 #> [45,] 93 913 299 598 110 409 294 626 408 334 #> [46,] 402 465 86 976 978 124 350 681 261 848 #> [47,] 290 722 707 206 753 533 328 512 750 198 #> [48,] 59 594 394 374 647 248 724 518 526 5 #> [49,] 156 109 601 116 77 383 587 484 942 504 #> [50,] 794 158 443 240 558 744 155 748 879 536 #> [51,] 494 377 693 365 644 745 712 55 972 121 #> [52,] 318 965 201 137 182 143 907 602 568 37 #> [53,] 512 69 330 154 7 784 143 707 441 797 #> [54,] 138 440 203 783 612 67 368 115 10 78 #> [55,] 181 204 721 365 609 104 377 51 448 121 #> [56,] 984 842 827 897 564 713 312 415 96 190 #> [57,] 310 437 419 930 742 705 895 932 44 899 #> [58,] 694 668 551 918 75 89 751 409 778 652 #> [59,] 724 976 48 33 523 14 993 5 394 647 #> [60,] 26 830 989 983 868 141 633 404 386 902 #> [61,] 275 64 758 825 840 554 471 487 800 27 #> [62,] 459 778 30 110 102 72 335 817 203 385 #> [63,] 499 648 852 731 436 22 947 569 129 584 #> [64,] 61 32 532 534 275 487 846 148 233 443 #> [65,] 686 334 451 464 735 629 41 373 663 690 #> [66,] 712 31 491 693 51 494 854 130 326 488 #> [67,] 203 122 296 247 440 704 335 138 459 102 #> [68,] 106 861 815 557 816 851 640 398 910 937 #> [69,] 970 53 7 133 441 784 330 329 710 735 #> [70,] 628 243 198 458 990 176 388 669 916 570 #> [71,] 822 959 309 100 18 407 917 788 936 227 #> [72,] 459 30 706 296 210 335 62 67 502 128 #> [73,] 643 600 663 516 513 522 576 808 451 717 #> [74,] 362 315 338 202 679 271 952 482 434 224 #> [75,] 668 652 58 694 299 110 252 913 93 409 #> [76,] 961 804 291 635 340 423 420 875 812 930 #> [77,] 20 610 468 942 520 109 144 156 167 761 #> [78,] 420 612 517 895 297 961 115 340 860 54 #> [79,] 676 188 500 579 911 215 878 247 879 706 #> [80,] 209 630 429 567 521 860 829 1000 654 357 #> [81,] 385 258 440 578 817 10 207 138 335 159 #> [82,] 454 391 23 381 282 152 363 763 207 592 #> [83,] 608 481 587 933 28 103 229 484 424 714 #> [84,] 166 384 279 968 787 662 825 194 293 554 #> [85,] 304 345 531 497 738 873 632 37 964 808 #> [86,] 350 681 465 496 976 873 46 457 887 366 #> [87,] 417 690 617 723 485 686 161 624 795 978 #> [88,] 245 13 147 541 703 278 596 11 272 172 #> [89,] 780 27 918 409 524 58 778 680 268 43 #> [90,] 492 615 839 801 935 219 782 313 517 480 #> [91,] 283 319 531 497 483 696 132 304 738 412 #> [92,] 403 922 775 461 378 169 316 560 657 209 #> [93,] 299 45 110 598 913 252 460 626 102 409 #> [94,] 854 130 444 351 559 66 491 462 40 857 #> [95,] 120 189 965 426 206 599 359 289 842 435 #> [96,] 118 113 564 709 836 837 354 132 602 189 #> [97,] 921 3 410 468 266 455 520 144 552 954 #> [98,] 314 146 832 895 128 180 150 460 274 810 #> [99,] 622 489 820 411 131 764 756 604 746 164 #> [100,] 917 407 822 851 71 788 815 839 959 661 #> [101,] 770 739 466 17 380 928 857 590 631 620 #> [102,] 368 122 704 110 778 203 299 810 440 62 #> [103,] 771 933 83 229 872 905 608 714 481 818 #> [104,] 121 755 365 745 579 676 783 769 55 500 #> [105,] 366 632 966 873 912 932 423 887 582 219 #> [106,] 68 815 851 557 839 100 861 788 971 90 #> [107,] 768 937 475 244 861 398 68 550 971 212 #> [108,] 428 439 241 645 596 988 13 332 142 305 #> [109,] 235 401 20 156 77 779 292 49 610 167 #> [110,] 299 93 102 778 62 598 45 460 75 368 #> [111,] 667 174 323 886 651 519 777 205 341 843 #> [112,] 238 893 617 969 178 375 970 259 339 284 #> [113,] 118 709 354 191 837 96 602 836 132 544 #> [114,] 660 659 478 149 962 495 126 546 38 702 #> [115,] 170 78 882 54 592 940 420 138 517 297 #> [116,] 383 374 625 601 49 518 248 504 760 156 #> [117,] 986 799 188 236 79 766 490 678 346 981 #> [118,] 96 113 354 837 836 189 709 132 120 640 #> [119,] 224 568 263 482 992 135 835 539 182 696 #> [120,] 189 589 599 177 837 354 640 543 836 325 #> [121,] 745 104 755 231 783 377 644 170 365 592 #> [122,] 704 102 203 368 67 296 778 440 810 459 #> [123,] 376 657 844 378 993 14 637 406 724 461 #> [124,] 607 46 24 457 86 465 214 978 350 402 #> [125,] 492 812 615 364 90 917 438 407 839 831 #> [126,] 478 702 962 551 114 950 944 684 918 660 #> [127,] 516 626 574 460 600 793 663 373 524 455 #> [128,] 296 43 98 954 148 72 146 314 122 67 #> [129,] 947 767 499 731 780 735 226 45 626 63 #> [130,] 854 351 559 444 693 320 94 578 752 644 #> [131,] 397 764 356 342 756 446 618 99 411 708 #> [132,] 319 696 91 412 283 709 965 182 531 354 #> [133,] 441 69 970 53 916 7 750 176 710 458 #> [134,] 898 8 986 507 525 833 773 184 811 396 #> [135,] 201 568 850 224 182 627 119 37 390 205 #> [136,] 754 541 369 245 624 88 439 670 596 464 #> [137,] 330 836 474 143 837 52 784 318 797 907 #> [138,] 54 440 335 203 783 67 183 81 72 612 #> [139,] 616 399 583 614 432 596 256 904 515 711 #> [140,] 990 770 737 533 287 190 611 570 193 371 #> [141,] 26 785 346 221 404 786 270 833 830 183 #> [142,] 305 173 195 349 232 515 278 433 616 596 #> [143,] 907 562 797 318 37 137 154 512 474 330 #> [144,] 468 520 634 20 688 77 97 987 606 3 #> [145,] 652 605 197 751 553 75 435 222 252 792 #> [146,] 180 98 899 964 460 449 761 314 44 128 #> [147,] 776 88 432 989 256 324 13 597 596 139 #> [148,] 846 443 43 128 954 247 558 883 158 296 #> [149,] 546 384 114 487 478 233 534 293 659 702 #> [150,] 423 832 314 961 219 306 98 895 810 297 #> [151,] 883 677 382 930 273 260 991 865 956 863 #> [152,] 752 462 444 870 391 258 573 82 763 130 #> [153,] 632 912 664 304 738 582 992 900 219 105 #> [154,] 512 562 143 53 907 318 446 7 762 570 #> [155,] 558 247 500 389 443 846 792 355 50 158 #> [156,] 218 109 49 20 77 942 249 144 634 760 #> [157,] 729 214 68 670 936 106 955 557 543 29 #> [158,] 443 794 536 50 240 21 556 744 958 148 #> [159,] 10 456 743 321 368 102 81 110 416 440 #> [160,] 831 802 815 615 438 125 675 90 997 492 #> [161,] 417 261 474 690 87 191 327 784 617 602 #> [162,] 651 982 255 667 264 762 341 174 497 642 #> [163,] 957 880 329 200 710 754 996 298 686 629 #> [164,] 284 259 99 622 39 165 411 595 967 489 #> [165,] 164 967 397 848 284 360 845 131 39 969 #> [166,] 662 758 61 800 825 508 787 728 279 84 #> [167,] 235 4 520 275 20 401 281 449 691 746 #> [168,] 874 2 24 383 116 540 457 720 625 124 #> [169,] 639 775 877 267 92 403 461 831 560 742 #> [170,] 940 115 592 998 730 882 370 121 231 567 #> [171,] 746 268 841 680 756 674 826 852 226 524 #> [172,] 272 29 227 11 476 88 216 989 324 703 #> [173,] 232 195 349 515 142 995 305 906 591 278 #> [174,] 651 667 762 982 111 264 162 205 680 409 #> [175,] 204 747 654 755 181 121 231 104 16 55 #> [176,] 22 671 458 916 781 725 648 63 441 628 #> [177,] 599 589 120 927 640 325 910 543 189 856 #> [178,] 375 250 890 41 301 871 978 470 617 760 #> [179,] 540 223 874 2 885 15 375 951 249 432 #> [180,] 146 964 449 761 98 899 869 610 345 295 #> [181,] 204 55 609 175 721 104 231 121 365 654 #> [182,] 568 135 257 602 201 627 850 119 318 224 #> [183,] 138 78 270 592 346 763 188 54 115 335 #> [184,] 833 542 785 26 141 898 537 8 525 60 #> [185,] 229 789 672 234 790 430 991 794 924 158 #> [186,] 772 539 642 217 342 341 869 33 828 952 #> [187,] 486 926 894 202 843 362 791 953 777 473 #> [188,] 79 733 346 676 183 981 72 221 296 706 #> [189,] 120 837 836 589 354 599 177 118 996 543 #> [190,] 312 435 713 328 533 287 47 842 737 206 #> [191,] 602 113 709 182 161 261 732 132 257 402 #> [192,] 465 848 402 350 523 845 976 867 46 165 #> [193,] 737 777 685 371 446 843 938 287 111 400 #> [194,] 787 825 236 840 471 384 806 758 6 641 #> [195,] 232 173 515 142 278 455 516 349 600 793 #> [196,] 298 399 584 431 464 339 614 541 803 814 #> [197,] 553 222 145 605 488 751 931 923 208 792 #> [198,] 458 570 707 750 533 753 916 990 551 388 #> [199,] 510 333 549 819 526 791 736 953 828 952 #> [200,] 957 880 589 163 177 416 120 408 856 599 #> [201,] 135 568 182 224 205 390 627 52 318 119 #> [202,] 679 843 390 362 473 271 74 338 315 222 #> [203,] 67 440 122 704 368 138 54 102 335 296 #> [204,] 181 55 175 121 755 104 16 51 365 494 #> [205,] 651 341 390 762 174 982 843 642 201 111 #> [206,] 753 290 652 47 75 145 668 435 252 598 #> [207,] 985 81 592 23 258 10 381 311 282 115 #> [208,] 255 619 331 704 463 497 122 306 718 368 #> [209,] 630 429 829 251 560 80 316 860 211 868 #> [210,] 706 979 335 502 495 72 67 684 660 247 #> [211,] 251 429 424 560 714 630 260 868 246 310 #> [212,] 992 244 900 727 768 453 398 300 807 664 #> [213,] 3 262 711 225 569 6 583 436 921 97 #> [214,] 729 607 723 157 795 24 887 457 124 191 #> [215,] 879 534 532 233 748 500 558 247 495 979 #> [216,] 476 859 906 413 989 227 11 29 703 788 #> [217,] 372 956 869 844 347 772 647 186 285 510 #> [218,] 249 301 606 760 156 987 634 250 280 826 #> [219,] 423 801 150 615 935 912 480 90 961 738 #> [220,] 234 352 765 25 530 736 508 790 631 915 #> [221,] 346 26 141 868 785 404 830 357 427 983 #> [222,] 553 197 923 777 145 931 323 605 751 111 #> [223,] 179 432 951 2 885 720 614 874 147 540 #> [224,] 119 568 263 135 539 201 482 850 835 182 #> [225,] 213 904 583 591 773 973 262 3 616 711 #> [226,] 756 680 841 7 129 171 238 735 264 764 #> [227,] 29 172 272 788 675 936 557 476 216 479 #> [228,] 560 169 364 757 902 963 868 246 742 775 #> [229,] 185 789 933 991 672 771 401 575 382 818 #> [230,] 1 318 627 257 974 154 602 784 52 53 #> [231,] 940 121 170 392 561 104 586 16 998 745 #> [232,] 173 515 349 195 278 142 600 793 995 455 #> [233,] 534 215 532 495 979 706 660 210 702 879 #> [234,] 220 508 32 185 790 946 240 691 530 4 #> [235,] 167 281 746 618 109 401 4 449 826 356 #> [236,] 659 891 194 532 495 715 410 384 986 787 #> [237,] 646 643 858 782 743 479 480 935 600 73 #> [238,] 112 7 708 226 735 327 178 764 69 969 #> [239,] 966 740 267 681 366 5 518 105 295 639 #> [240,] 946 682 158 536 744 794 443 21 50 958 #> [241,] 108 855 439 645 650 428 988 603 431 596 #> [242,] 448 721 50 744 794 748 367 939 813 879 #> [243,] 669 293 388 725 628 12 554 458 176 198 #> [244,] 212 300 768 732 992 412 696 338 709 861 #> [245,] 88 541 464 629 369 624 596 278 451 65 #> [246,] 963 653 419 942 310 919 57 742 387 902 #> [247,] 558 500 67 155 846 676 296 210 148 203 #> [248,] 518 601 774 374 779 698 239 295 818 5 #> [249,] 218 301 156 760 15 375 178 885 250 824 #> [250,] 871 301 847 760 470 41 178 824 849 890 #> [251,] 211 429 714 630 424 560 209 260 677 868 #> [252,] 598 299 93 913 75 110 45 762 208 409 #> [253,] 575 549 430 571 790 819 307 771 510 872 #> [254,] 348 529 866 792 605 389 320 590 857 693 #> [255,] 208 331 619 497 162 718 651 463 982 306 #> [256,] 904 506 658 139 225 147 633 776 583 973 #> [257,] 627 602 182 135 318 568 201 52 261 974 #> [258,] 81 870 207 385 985 578 817 159 656 10 #> [259,] 284 164 112 489 969 99 238 622 967 39 #> [260,] 382 273 980 714 151 481 211 733 991 933 #> [261,] 161 327 402 850 257 602 474 191 627 182 #> [262,] 213 3 688 569 225 929 6 711 641 773 #> [263,] 224 835 119 482 539 350 850 568 135 33 #> [264,] 982 680 174 762 268 756 162 667 409 651 #> [265,] 914 576 793 981 274 404 733 522 419 892 #> [266,] 455 921 97 344 436 520 852 127 793 524 #> [267,] 639 239 966 461 831 169 775 366 740 105 #> [268,] 746 4 171 264 691 674 281 680 524 756 #> [269,] 339 87 369 617 754 624 417 814 689 951 #> [270,] 502 678 706 817 833 183 210 335 72 141 #> [271,] 807 434 679 19 453 727 315 718 202 931 #> [272,] 172 29 227 11 476 646 324 675 665 216 #> [273,] 382 733 260 954 151 481 999 610 883 77 #> [274,] 576 895 705 932 404 600 98 522 479 437 #> [275,] 61 840 520 758 167 64 954 4 524 806 #> [276,] 638 968 701 388 243 84 901 293 70 716 #> [277,] 647 772 844 952 217 376 724 510 186 315 #> [278,] 232 349 515 195 11 451 142 600 173 616 #> [279,] 662 928 620 631 32 317 384 166 623 487 #> [280,] 826 292 841 535 987 994 606 218 708 764 #> [281,] 691 235 618 356 4 268 746 167 401 828 #> [282,] 363 23 381 370 311 985 207 730 798 418 #> [283,] 91 696 483 412 965 132 319 453 300 497 #> [284,] 259 164 969 39 238 764 99 411 112 708 #> [285,] 865 536 217 347 556 673 21 956 772 953 #> [286,] 545 367 977 636 16 322 712 19 721 377 #> [287,] 737 713 193 312 190 400 140 564 473 435 #> [288,] 501 405 726 613 949 585 604 941 249 893 #> [289,] 326 95 351 311 435 881 359 985 31 998 #> [290,] 47 753 707 206 722 750 512 533 143 329 #> [291,] 875 804 76 302 961 801 340 862 150 900 #> [292,] 280 994 826 618 109 535 218 356 235 987 #> [293,] 12 554 243 149 317 546 641 478 669 384 #> [294,] 797 408 334 735 925 45 7 598 143 330 #> [295,] 698 964 761 180 966 5 740 869 779 899 #> [296,] 128 67 72 122 203 612 459 247 98 43 #> [297,] 480 517 810 935 479 961 612 78 782 423 #> [298,] 710 339 464 196 584 970 65 686 700 629 #> [299,] 93 110 45 598 102 252 460 913 778 75 #> [300,] 338 696 244 119 412 283 568 212 453 483 #> [301,] 760 250 824 847 218 871 249 178 470 513 #> [302,] 804 291 392 832 340 463 900 865 863 961 #> [303,] 799 117 766 986 490 505 452 891 236 905 #> [304,] 85 497 153 632 531 738 539 619 319 119 #> [305,] 433 142 884 467 173 711 514 469 525 195 #> [306,] 463 619 810 832 150 718 208 497 368 331 #> [307,] 991 956 863 577 865 980 151 382 883 556 #> [308,] 332 416 385 469 944 817 433 995 142 906 #> [309,] 71 822 407 917 959 655 100 125 18 36 #> [310,] 57 419 437 742 930 246 899 705 653 44 #> [311,] 798 418 985 325 282 207 10 159 910 743 #> [312,] 713 190 435 842 984 287 564 553 328 737 #> [313,] 839 801 730 90 398 971 418 492 961 998 #> [314,] 832 98 150 895 423 146 930 612 128 810 #> [315,] 434 482 539 74 772 952 271 679 362 807 #> [316,] 635 421 209 438 586 860 630 76 92 922 #> [317,] 27 487 621 662 388 393 554 620 716 780 #> [318,] 52 907 143 37 562 137 201 182 474 627 #> [319,] 91 531 738 132 304 283 925 85 119 497 #> [320,] 866 693 559 529 38 348 130 972 254 684 #> [321,] 456 598 159 743 416 408 110 93 325 299 #> [322,] 326 488 472 923 712 679 545 271 881 553 #> [323,] 926 519 111 777 673 667 946 886 953 958 #> [324,] 665 720 432 528 776 548 386 649 147 451 #> [325,] 743 418 798 599 782 646 456 311 177 321 #> [326,] 488 881 322 197 377 553 712 960 289 453 #> [327,] 708 261 361 41 925 474 238 907 345 37 #> [328,] 190 722 47 533 206 435 312 290 842 95 #> [329,] 880 710 750 163 69 330 294 53 707 767 #> [330,] 784 474 137 797 53 143 7 907 294 69 #> [331,] 255 619 718 208 931 463 497 306 434 355 #> [332,] 525 308 469 433 305 906 884 142 173 8 #> [333,] 526 828 199 342 131 618 281 356 908 510 #> [334,] 735 294 373 408 65 629 516 663 731 574 #> [335,] 210 502 138 440 706 979 203 684 67 783 #> [336,] 593 950 126 396 695 114 687 40 444 669 #> [337,] 509 911 565 980 920 452 579 683 769 878 #> [338,] 300 696 74 453 119 244 202 224 568 679 #> [339,] 298 464 814 196 970 710 112 754 617 369 #> [340,] 420 961 612 635 804 78 76 392 291 302 #> [341,] 642 205 651 390 162 843 667 186 174 111 #> [342,] 828 356 618 526 397 994 186 131 698 845 #> [343,] 655 357 36 829 427 542 521 221 741 209 #> [344,] 921 266 459 455 514 702 43 30 552 62 #> [345,] 85 535 373 361 180 674 808 574 849 663 #> [346,] 141 221 26 785 404 183 188 868 270 678 #> [347,] 869 217 956 372 285 883 21 958 865 536 #> [348,] 254 529 866 857 320 559 792 693 605 854 #> [349,] 515 232 173 278 142 591 195 386 583 616 #> [350,] 465 86 835 263 976 402 33 46 732 482 #> [351,] 130 854 652 578 972 206 94 145 644 75 #> [352,] 220 765 728 234 915 25 823 185 692 508 #> [353,] 809 28 493 484 885 919 156 504 699 49 #> [354,] 640 837 543 120 189 113 118 132 177 836 #> [355,] 931 673 923 744 21 331 155 488 389 536 #> [356,] 618 342 281 994 828 131 764 235 397 756 #> [357,] 427 343 655 521 221 36 829 567 860 785 #> [358,] 975 9 394 48 625 374 594 848 526 692 #> [359,] 414 426 816 910 95 927 937 415 640 599 #> [360,] 791 974 390 845 627 135 850 263 224 201 #> [361,] 849 871 470 41 847 717 250 808 345 555 #> [362,] 74 952 315 202 679 791 390 271 772 953 #> [363,] 282 23 730 370 100 311 381 418 839 798 #> [364,] 983 812 125 830 227 548 705 742 404 29 #> [365,] 104 55 500 755 51 745 783 377 121 579 #> [366,] 105 966 873 740 681 887 943 632 239 964 #> [367,] 977 721 377 355 55 545 19 448 286 488 #> [368,] 102 704 122 203 440 810 110 67 54 10 #> [369,] 624 245 795 951 136 686 464 541 723 87 #> [370,] 381 998 282 730 940 170 363 207 985 311 #> [371,] 685 938 588 886 193 446 908 411 901 111 #> [372,] 956 217 869 779 844 347 818 761 888 526 #> [373,] 663 574 626 808 516 334 470 345 127 849 #> [374,] 116 383 518 248 779 698 601 48 625 5 #> [375,] 178 890 15 978 250 301 249 617 41 871 #> [376,] 406 123 844 582 14 277 657 647 724 993 #> [377,] 51 745 488 121 494 365 55 326 644 367 #> [378,] 657 922 406 862 461 863 775 92 577 677 #> [379,] 864 862 577 657 863 378 945 922 683 307 #> [380,] 466 486 588 770 590 926 777 938 472 17 #> [381,] 370 282 207 985 170 998 23 363 592 311 #> [382,] 260 151 273 883 991 980 933 714 733 481 #> [383,] 116 374 760 824 301 504 601 49 156 625 #> [384,] 546 149 787 64 487 532 194 293 279 534 #> [385,] 817 81 62 502 258 416 335 459 962 469 #> [386,] 776 902 349 387 892 515 232 522 591 793 #> [387,] 919 902 892 776 386 942 653 504 973 633 #> [388,] 317 901 393 716 243 293 17 27 198 570 #> [389,] 792 155 751 605 254 355 529 590 323 558 #> [390,] 843 205 341 642 201 202 135 224 651 568 #> [391,] 454 258 870 82 308 152 859 656 23 934 #> [392,] 960 302 561 340 804 745 231 463 420 121 #> [393,] 716 901 388 317 820 621 916 27 680 411 #> [394,] 845 848 526 828 48 59 975 358 342 33 #> [395,] 594 358 975 9 48 625 896 566 888 394 #> [396,] 425 811 659 336 126 833 469 114 525 962 #> [397,] 131 764 708 342 356 994 828 974 618 850 #> [398,] 861 313 768 798 801 212 992 418 839 550 #> [399,] 614 139 616 196 583 596 464 584 988 711 #> [400,] 193 230 685 446 287 974 39 371 737 154 #> [401,] 109 235 167 779 281 20 618 77 4 372 #> [402,] 261 465 46 350 192 191 848 161 850 263 #> [403,] 92 922 775 461 169 378 560 316 209 657 #> [404,] 830 786 983 274 576 221 265 346 26 141 #> [405,] 501 288 585 726 893 15 249 949 259 967 #> [406,] 862 378 657 863 577 376 582 804 677 291 #> [407,] 917 100 309 822 661 71 851 125 959 815 #> [408,] 294 334 321 598 456 45 416 93 797 629 #> [409,] 913 45 89 680 264 562 762 93 174 75 #> [410,] 552 981 921 97 999 678 344 733 914 6 #> [411,] 820 99 446 685 756 131 886 908 489 680 #> [412,] 696 283 132 300 244 91 768 861 483 212 #> [413,] 476 859 786 216 906 785 23 454 995 788 #> [414,] 359 937 816 910 426 827 640 415 768 897 #> [415,] 426 842 359 984 95 56 414 827 289 328 #> [416,] 456 743 321 159 408 385 995 308 10 110 #> [417,] 87 161 617 690 485 261 723 978 327 686 #> [418,] 798 311 325 935 782 480 10 313 730 985 #> [419,] 310 57 437 899 44 653 522 742 610 705 #> [420,] 340 612 78 961 635 860 895 76 517 804 #> [421,] 316 864 80 209 403 438 92 586 630 719 #> [422,] 527 14 376 724 277 511 945 123 647 523 #> [423,] 150 219 961 801 314 932 517 895 832 297 #> [424,] 211 251 429 714 260 481 560 1000 868 963 #> [425,] 396 573 270 833 962 660 502 659 469 495 #> [426,] 927 359 589 95 599 189 415 910 120 177 #> [427,] 882 357 521 655 567 785 36 221 860 343 #> [428,] 108 439 13 749 934 703 596 597 898 241 #> [429,] 630 209 251 211 829 560 868 424 80 860 #> [430,] 790 682 575 549 530 536 794 240 185 158 #> [431,] 803 584 700 988 645 196 855 596 781 541 #> [432,] 951 324 147 139 665 614 776 528 451 720 #> [433,] 305 884 469 525 467 8 514 332 142 173 #> [434,] 271 718 453 315 807 679 539 331 727 900 #> [435,] 312 145 553 190 713 206 652 197 483 965 #> [436,] 711 569 63 821 266 499 641 803 852 3 #> [437,] 57 419 932 705 310 742 44 899 522 895 #> [438,] 997 125 316 160 831 407 815 661 917 971 #> [439,] 108 428 136 541 241 596 431 988 645 754 #> [440,] 203 138 54 335 368 67 783 704 102 122 #> [441,] 133 69 916 53 970 458 750 7 512 176 #> [442,] 1 53 512 47 441 707 133 230 69 784 #> [443,] 158 21 846 50 148 536 794 240 558 155 #> [444,] 130 462 854 870 559 94 152 752 578 351 #> [445,] 955 113 729 118 157 544 354 709 96 214 #> [446,] 685 411 131 886 154 974 174 562 667 111 #> [447,] 585 759 405 484 501 288 625 15 2 941 #> [448,] 242 721 55 367 365 51 693 377 977 181 #> [449,] 674 524 180 146 610 761 535 520 987 268 #> [450,] 563 903 282 370 363 381 82 730 359 23 #> [451,] 65 73 663 649 278 513 470 464 41 665 #> [452,] 490 337 1000 117 683 920 905 565 80 509 #> [453,] 718 434 271 807 881 679 283 727 619 331 #> [454,] 859 391 413 23 82 216 934 258 476 363 #> [455,] 793 921 266 515 195 97 232 344 173 127 #> [456,] 321 743 159 598 416 408 110 10 325 299 #> [457,] 24 802 86 267 877 496 831 124 876 681 #> [458,] 916 750 198 570 707 725 176 129 947 767 #> [459,] 62 778 72 30 344 67 102 335 203 43 #> [460,] 299 810 127 93 146 110 98 102 626 122 #> [461,] 775 922 378 92 403 267 239 639 169 657 #> [462,] 444 152 94 870 130 752 854 559 336 593 #> [463,] 306 619 718 331 208 832 255 368 704 122 #> [464,] 298 65 451 245 541 339 629 686 951 614 #> [465,] 350 402 976 86 46 192 523 848 835 263 #> [466,] 380 588 770 590 486 17 938 777 928 926 #> [467,] 514 821 433 884 305 6 12 711 641 436 #> [468,] 520 144 20 77 634 97 954 892 610 942 #> [469,] 525 884 433 332 8 305 817 514 173 678 #> [470,] 849 513 41 361 871 847 250 663 717 373 #> [471,] 825 569 852 688 641 554 758 61 800 275 #> [472,] 322 923 486 712 488 66 31 222 326 197 #> [473,] 202 390 843 338 201 498 713 679 205 193 #> [474,] 330 797 907 137 925 784 143 318 327 294 #> [475,] 876 802 496 550 107 160 637 831 875 992 #> [476,] 906 216 995 11 413 786 479 646 830 859 #> [477,] 878 509 579 769 581 813 980 911 676 556 #> [478,] 702 126 918 962 551 495 114 149 660 233 #> [479,] 517 480 782 786 297 935 274 643 237 476 #> [480,] 935 297 782 517 479 810 219 423 801 961 #> [481,] 273 933 260 714 963 246 382 211 774 83 #> [482,] 539 315 263 224 119 772 153 434 664 186 #> [483,] 283 965 696 91 497 201 553 568 453 252 #> [484,] 587 28 941 49 353 809 156 692 109 493 #> [485,] 890 649 41 795 723 717 978 871 555 951 #> [486,] 380 472 466 187 926 923 777 939 588 323 #> [487,] 27 317 621 534 64 620 149 233 61 546 #> [488,] 326 931 197 377 923 355 322 553 881 222 #> [489,] 99 604 820 622 800 411 746 756 171 226 #> [490,] 452 117 337 799 741 909 838 303 1000 654 #> [491,] 31 66 712 94 854 289 351 472 984 326 #> [492,] 90 615 801 839 517 125 935 219 782 961 #> [493,] 580 809 353 28 699 904 256 658 506 885 #> [494,] 51 377 693 712 644 204 745 121 130 31 #> [495,] 660 706 979 210 659 233 702 962 502 534 #> [496,] 993 86 14 376 637 457 802 267 582 976 #> [497,] 304 619 255 85 718 531 208 162 982 91 #> [498,] 473 835 360 74 338 627 257 263 224 568 #> [499,] 63 731 584 947 129 436 803 767 648 22 #> [500,] 247 558 676 155 215 879 748 579 365 79 #> [501,] 405 288 726 949 604 613 585 622 941 489 #> [502,] 335 270 706 210 817 962 979 72 495 684 #> [503,] 18 959 542 71 537 309 822 749 343 859 #> [504,] 919 653 942 387 383 824 156 760 892 963 #> [505,] 948 766 905 715 608 83 806 672 999 787 #> [506,] 658 256 633 973 776 904 902 580 147 699 #> [507,] 773 225 8 6 591 213 552 262 699 973 #> [508,] 820 621 32 662 234 800 4 746 691 166 #> [509,] 579 769 337 477 911 609 878 721 676 980 #> [510,] 549 199 819 217 526 647 952 277 372 333 #> [511,] 945 123 422 657 637 376 527 379 577 378 #> [512,] 154 53 562 707 143 570 916 7 907 318 #> [513,] 470 849 871 847 649 717 250 73 555 41 #> [514,] 467 821 884 344 12 702 433 305 921 6 #> [515,] 232 349 173 195 455 583 278 616 591 142 #> [516,] 127 600 574 663 373 626 73 793 195 334 #> [517,] 297 479 480 78 935 895 961 423 782 492 #> [518,] 248 601 774 374 239 698 779 295 5 818 #> [519,] 946 323 886 111 938 908 667 926 240 777 #> [520,] 468 144 20 954 524 275 77 97 449 167 #> [521,] 860 567 427 882 635 357 655 115 78 630 #> [522,] 44 892 899 705 576 73 419 437 793 513 #> [523,] 724 59 14 976 993 848 465 33 350 845 #> [524,] 674 43 449 520 626 127 89 268 954 460 #> [525,] 8 469 884 433 332 305 833 173 678 467 #> [526,] 828 342 333 394 845 186 217 618 510 779 #> [527,] 422 14 724 523 511 896 277 376 123 945 #> [528,] 665 720 649 555 324 951 795 890 485 943 #> [529,] 866 254 348 792 320 389 605 38 694 620 #> [530,] 790 682 430 234 240 575 736 794 185 220 #> [531,] 37 319 85 497 925 304 91 907 850 982 #> [532,] 534 215 233 64 879 846 495 148 748 706 #> [533,] 47 198 753 190 290 206 611 707 328 652 #> [534,] 233 532 215 64 846 487 558 495 879 247 #> [535,] 987 841 826 606 280 674 994 345 574 449 #> [536,] 21 158 556 240 958 443 744 285 794 673 #> [537,] 542 60 184 898 757 989 503 26 343 506 #> [538,] 939 734 242 813 920 448 581 477 530 721 #> [539,] 482 186 772 224 304 315 263 119 434 497 #> [540,] 874 179 978 15 2 375 223 951 585 890 #> [541,] 245 596 88 464 629 431 136 196 298 399 #> [542,] 184 343 537 357 36 785 60 655 26 427 #> [543,] 354 723 858 837 120 690 177 925 646 670 #> [544,] 709 113 732 191 96 118 244 132 602 354 #> [545,] 19 286 977 42 367 807 960 322 727 271 #> [546,] 149 384 233 487 534 114 478 293 659 532 #> [547,] 671 613 595 133 259 441 176 701 726 284 #> [548,] 720 665 324 528 675 943 639 877 705 364 #> [549,] 510 819 575 430 790 199 217 888 372 253 #> [550,] 875 900 291 398 727 313 212 801 912 971 #> [551,] 668 58 694 918 478 126 75 753 780 944 #> [552,] 410 981 921 678 344 97 591 6 455 914 #> [553,] 197 222 145 435 605 923 483 488 751 931 #> [554,] 825 12 471 641 293 852 780 27 61 569 #> [555,] 943 871 649 717 849 824 890 513 847 740 #> [556,] 883 865 536 158 285 21 794 443 991 347 #> [557,] 782 788 106 646 935 325 839 227 675 90 #> [558,] 155 247 500 846 215 443 534 148 67 50 #> [559,] 130 320 854 693 857 444 348 866 94 38 #> [560,] 429 211 251 630 209 775 868 246 742 963 #> [561,] 42 392 769 231 977 863 804 302 340 911 #> [562,] 143 154 907 762 37 982 512 318 913 409 #> [563,] 450 903 370 282 381 363 82 730 940 661 #> [564,] 842 52 96 965 137 312 56 713 118 602 #> [565,] 889 683 920 337 980 509 477 911 769 878 #> [566,] 192 395 848 523 759 358 625 976 465 394 #> [567,] 521 882 427 860 357 654 170 635 115 36 #> [568,] 201 135 182 224 119 850 696 627 531 263 #> [569,] 436 641 471 852 3 688 213 711 63 262 #> [570,] 916 458 198 707 512 154 750 680 393 990 #> [571,] 253 35 872 307 889 945 577 511 379 575 #> [572,] 83 608 587 484 103 818 49 594 933 28 #> [573,] 962 660 684 979 752 425 502 210 763 578 #> [574,] 373 663 626 516 127 731 535 470 674 334 #> [575,] 549 430 790 771 253 819 530 229 888 991 #> [576,] 274 793 600 522 30 73 705 265 44 404 #> [577,] 862 863 406 657 378 804 302 865 307 677 #> [578,] 684 81 644 972 962 258 870 783 440 335 #> [579,] 769 509 676 911 477 500 104 79 878 721 #> [580,] 493 904 809 506 256 658 353 699 633 973 #> [581,] 878 813 924 477 920 748 980 509 879 79 #> [582,] 912 153 632 406 105 900 376 875 664 366 #> [583,] 616 139 515 711 349 3 225 213 278 591 #> [584,] 803 499 700 431 767 298 196 629 63 731 #> [585,] 15 405 893 249 967 179 375 501 540 178 #> [586,] 635 719 940 340 316 291 231 860 313 804 #> [587,] 484 941 49 28 728 83 692 109 156 401 #> [588,] 938 466 371 519 590 631 380 777 908 685 #> [589,] 177 599 120 927 189 200 856 640 354 910 #> [590,] 17 389 792 519 928 605 620 254 323 111 #> [591,] 515 349 173 552 921 914 973 455 232 225 #> [592,] 763 755 207 170 783 115 138 183 54 81 #> [593,] 336 950 126 687 40 669 695 944 444 396 #> [594,] 48 625 818 374 888 518 248 358 116 59 #> [595,] 411 164 901 284 716 259 371 685 393 489 #> [596,] 541 616 142 988 88 245 139 399 431 583 #> [597,] 703 989 853 147 749 88 13 172 29 18 #> [598,] 93 252 299 321 45 456 110 408 913 294 #> [599,] 177 927 589 120 910 325 640 189 354 856 #> [600,] 516 576 73 793 127 232 195 274 643 30 #> [601,] 774 248 518 374 818 779 116 383 49 761 #> [602,] 257 182 191 627 52 318 474 137 261 132 #> [603,] 988 855 929 645 711 803 436 569 821 431 #> [604,] 489 823 800 622 820 99 726 613 728 746 #> [605,] 751 792 145 197 652 389 694 553 58 254 #> [606,] 987 826 535 634 841 218 280 144 574 674 #> [607,] 214 124 729 24 457 978 46 795 417 87 #> [608,] 83 587 28 505 484 948 481 572 103 766 #> [609,] 181 509 55 579 721 769 204 337 654 104 #> [610,] 761 20 77 449 899 468 180 419 520 167 #> [611,] 40 533 666 687 198 857 328 990 47 140 #> [612,] 420 78 895 340 961 296 54 297 314 517 #> [613,] 701 726 823 604 489 671 968 501 622 547 #> [614,] 399 139 885 432 464 196 616 583 596 541 #> [615,] 90 492 801 219 675 935 839 782 517 423 #> [616,] 583 139 711 515 349 399 278 142 596 436 #> [617,] 87 417 978 178 112 375 485 890 161 969 #> [618,] 356 342 281 828 235 994 779 292 698 691 #> [619,] 463 306 718 331 255 208 497 304 832 810 #> [620,] 928 487 279 32 317 662 621 389 590 529 #> [621,] 27 317 32 487 946 508 662 4 268 393 #> [622,] 99 489 604 820 164 949 411 823 259 764 #> [623,] 25 787 279 32 64 672 662 166 185 384 #> [624,] 369 795 686 723 245 951 87 670 690 464 #> [625,] 116 374 383 594 358 48 49 518 601 248 #> [626,] 574 127 373 674 516 663 731 524 93 460 #> [627,] 257 974 135 182 201 850 318 568 602 261 #> [628,] 781 243 176 725 855 70 22 458 803 671 #> [629,] 700 334 65 278 245 584 767 464 451 541 #> [630,] 429 209 860 829 251 211 812 560 868 221 #> [631,] 928 662 17 279 621 620 901 590 588 508 #> [632,] 153 912 664 738 304 105 873 582 366 85 #> [633,] 973 658 902 506 699 776 386 387 591 225 #> [634,] 606 987 892 144 468 218 520 20 513 574 #> [635,] 860 340 420 586 76 521 961 78 804 316 #> [636,] 16 545 31 326 286 712 494 322 377 960 #> [637,] 378 657 123 922 876 496 461 267 376 92 #> [638,] 276 84 701 968 243 388 293 669 628 70 #> [639,] 267 742 239 169 831 437 966 775 932 105 #> [640,] 910 354 816 599 177 325 120 861 798 589 #> [641,] 569 12 6 821 471 554 825 436 467 514 #> [642,] 341 953 390 651 162 186 205 843 667 952 #> [643,] 73 237 858 932 600 646 808 479 274 576 #> [644,] 783 972 745 578 440 81 755 684 54 335 #> [645,] 988 855 431 305 603 433 803 467 711 142 #> [646,] 237 858 782 643 743 935 325 479 557 480 #> [647,] 277 844 217 772 724 510 48 59 376 526 #> [648,] 63 22 852 499 671 569 436 800 731 176 #> [649,] 717 485 555 513 41 665 890 849 528 943 #> [650,] 241 695 134 773 855 811 950 645 603 108 #> [651,] 174 205 982 162 762 667 341 111 642 264 #> [652,] 145 75 668 206 694 605 351 58 751 753 #> [653,] 942 504 419 44 919 899 892 246 522 387 #> [654,] 567 175 104 231 609 755 80 121 181 719 #> [655,] 343 36 427 357 521 309 882 860 567 829 #> [656,] 258 927 856 870 599 985 311 200 589 416 #> [657,] 378 406 862 922 577 123 863 376 461 637 #> [658,] 506 633 776 256 973 902 387 147 386 904 #> [659,] 495 660 114 236 702 478 233 962 811 546 #> [660,] 495 979 962 659 114 706 210 684 573 233 #> [661,] 407 917 100 971 851 719 438 815 309 839 #> [662,] 279 32 166 317 508 621 631 928 487 620 #> [663,] 373 574 470 516 808 73 626 849 127 513 #> [664,] 153 992 632 912 738 900 304 119 482 319 #> [665,] 324 528 649 720 513 548 555 451 73 943 #> [666,] 40 857 687 611 348 866 669 529 559 38 #> [667,] 174 111 886 651 162 264 958 519 268 341 #> [668,] 694 58 551 75 652 753 918 409 751 605 #> [669,] 243 293 950 687 388 40 593 198 551 126 #> [670,] 624 543 177 723 369 272 245 172 200 589 #> [671,] 22 176 648 781 726 63 613 499 489 133 #> [672,] 789 806 185 924 229 840 787 715 64 273 #> [673,] 953 926 744 355 21 536 931 323 285 923 #> [674,] 449 524 626 841 535 268 987 574 826 171 #> [675,] 615 227 887 858 90 557 219 548 492 643 #> [676,] 500 579 79 769 247 911 188 104 558 67 #> [677,] 930 151 804 863 76 340 314 406 57 883 #> [678,] 552 981 270 410 72 921 884 344 469 706 #> [679,] 202 271 434 453 315 718 923 931 331 807 #> [680,] 264 756 226 171 409 268 174 89 913 746 #> [681,] 740 966 366 5 873 943 239 555 295 105 #> [682,] 240 790 744 430 530 794 536 946 158 673 #> [683,] 565 980 337 714 251 911 889 260 1000 509 #> [684,] 962 979 335 578 210 502 972 660 783 706 #> [685,] 446 371 886 908 938 411 193 111 131 667 #> [686,] 65 690 723 624 87 464 334 485 735 294 #> [687,] 40 666 593 669 611 336 950 198 857 243 #> [688,] 471 3 144 569 262 852 97 825 758 213 #> [689,] 784 970 69 330 161 1 53 87 417 690 #> [690,] 686 723 87 417 485 474 65 543 925 161 #> [691,] 281 4 268 958 167 235 946 667 746 356 #> [692,] 941 401 109 49 587 358 949 728 9 622 #> [693,] 51 320 559 130 494 348 866 66 972 365 #> [694,] 58 668 551 75 918 652 751 605 792 972 #> [695,] 950 811 336 593 891 669 293 126 12 396 #> [696,] 283 300 412 483 132 965 91 568 119 338 #> [697,] 909 654 741 719 80 567 838 175 36 357 #> [698,] 295 779 964 761 5 994 342 374 869 248 #> [699,] 973 633 902 387 658 919 914 225 591 506 #> [700,] 803 767 629 584 431 499 710 947 334 731 #> [701,] 613 968 823 726 276 604 915 671 716 489 #> [702,] 478 495 344 514 962 126 659 660 918 233 #> [703,] 597 989 88 13 216 749 172 147 29 272 #> [704,] 368 122 102 203 67 440 208 778 972 110 #> [705,] 437 932 742 522 44 274 576 983 57 419 #> [706,] 210 979 495 502 335 72 660 233 459 270 #> [707,] 750 290 512 753 570 458 47 53 198 916 #> [708,] 764 994 327 397 280 756 535 238 292 841 #> [709,] 113 544 132 732 191 354 118 96 602 244 #> [710,] 298 329 700 584 69 767 970 629 431 163 #> [711,] 436 616 583 213 305 988 467 515 569 821 #> [712,] 31 66 51 494 488 326 377 322 693 472 #> [713,] 312 190 287 435 737 564 984 842 473 56 #> [714,] 251 211 260 481 933 382 424 151 980 677 #> [715,] 787 924 806 236 672 194 532 840 581 623 #> [716,] 393 901 820 968 388 317 621 508 411 662 #> [717,] 849 649 808 361 470 41 943 555 513 871 #> [718,] 619 331 453 434 463 497 255 306 208 304 #> [719,] 586 940 231 567 661 170 635 521 654 730 #> [720,] 528 665 324 548 555 432 649 824 943 951 #> [721,] 55 367 977 448 579 365 509 609 181 769 #> [722,] 47 290 328 996 206 880 753 957 707 533 #> [723,] 690 795 485 686 543 87 624 649 858 717 #> [724,] 14 59 523 647 993 48 277 376 33 976 #> [725,] 947 821 12 803 458 767 22 129 780 781 #> [726,] 613 501 671 604 288 489 648 405 259 701 #> [727,] 807 900 271 19 434 212 453 960 302 550 #> [728,] 758 166 401 789 800 941 587 604 352 692 #> [729,] 214 157 607 68 936 723 445 106 795 670 #> [730,] 313 998 940 370 170 839 363 418 282 115 #> [731,] 499 574 626 63 334 129 373 735 841 663 #> [732,] 835 992 244 709 119 132 300 191 182 696 #> [733,] 999 981 273 954 914 265 410 188 552 128 #> [734,] 739 538 939 242 101 623 25 928 448 813 #> [735,] 7 334 294 797 65 731 373 129 226 238 #> [736,] 530 199 682 220 790 549 938 430 234 510 #> [737,] 287 193 713 777 312 190 473 140 843 371 #> [738,] 632 319 887 153 858 304 85 219 873 912 #> [739,] 928 620 279 631 17 101 590 466 623 734 #> [740,] 681 966 366 943 239 555 295 873 847 105 #> [741,] 909 838 357 36 343 567 80 697 427 829 #> [742,] 437 705 57 310 639 419 932 653 44 246 #> [743,] 456 159 321 10 416 325 646 237 782 480 #> [744,] 794 240 536 158 673 682 355 50 21 443 #> [745,] 121 783 644 377 104 54 755 365 440 392 #> [746,] 171 268 235 826 281 820 841 4 756 674 #> [747,] 175 204 752 755 654 181 55 121 104 763 #> [748,] 879 215 500 532 50 534 558 878 924 233 #> [749,] 703 597 934 989 428 853 18 13 216 88 #> [750,] 707 458 767 329 129 753 198 916 947 290 #> [751,] 605 792 145 389 197 694 58 75 652 208 #> [752,] 573 152 130 755 444 747 644 494 693 559 #> [753,] 290 206 707 668 75 913 409 47 652 58 #> [754,] 136 369 339 298 163 541 710 624 245 196 #> [755,] 121 104 592 783 644 745 365 763 175 573 #> [756,] 226 680 764 264 841 171 746 268 826 708 #> [757,] 228 537 60 868 829 343 506 542 633 560 #> [758,] 840 275 61 825 471 688 728 806 166 800 #> [759,] 168 447 566 625 874 585 540 2 116 15 #> [760,] 301 824 847 250 218 871 513 383 470 555 #> [761,] 610 180 964 295 869 899 449 698 146 779 #> [762,] 982 651 37 174 562 264 162 205 913 409 #> [763,] 592 183 270 755 81 502 138 573 882 207 #> [764,] 708 397 131 756 994 356 280 99 292 618 #> [765,] 823 220 915 352 622 604 508 820 949 234 #> [766,] 505 507 999 117 699 715 424 236 410 981 #> [767,] 947 700 129 803 499 584 750 334 725 629 #> [768,] 398 861 244 212 937 412 816 992 107 798 #> [769,] 579 911 509 676 477 104 500 561 980 79 #> [770,] 466 17 380 140 101 590 588 990 371 901 #> [771,] 575 888 229 819 818 933 549 991 253 430 #> [772,] 186 539 952 217 277 482 315 647 434 642 #> [773,] 225 507 213 262 929 6 603 8 904 988 #> [774,] 601 248 518 310 818 761 419 610 653 779 #> [775,] 461 92 922 403 169 639 378 560 267 310 #> [776,] 386 902 658 633 387 324 147 973 349 432 #> [777,] 111 323 843 926 222 938 519 193 205 886 #> [778,] 459 62 102 110 122 299 918 704 43 67 #> [779,] 698 618 761 372 109 828 295 374 869 248 #> [780,] 27 89 947 918 129 554 171 852 725 12 #> [781,] 22 803 584 628 725 431 176 499 671 855 #> [782,] 935 480 479 646 557 517 297 237 90 418 #> [783,] 644 440 335 138 54 745 203 972 67 755 #> [784,] 330 474 53 137 689 69 797 7 836 161 #> [785,] 141 26 346 221 786 427 830 833 413 404 #> [786,] 404 830 479 995 476 413 906 785 517 141 #> [787,] 194 715 384 806 64 623 166 840 758 672 #> [788,] 557 227 782 100 476 216 413 917 839 479 #> [789,] 672 185 806 840 229 273 924 167 758 275 #> [790,] 430 530 682 575 549 240 536 234 794 185 #> [791,] 360 843 199 390 952 341 642 953 333 362 #> [792,] 389 605 751 254 529 155 694 145 197 58 #> [793,] 455 576 600 127 516 232 515 30 522 265 #> [794,] 158 50 744 240 443 536 556 682 430 21 #> [795,] 723 485 951 649 624 528 369 890 665 87 #> [796,] 936 853 877 18 548 364 720 29 227 831 #> [797,] 294 143 907 474 925 330 7 735 562 137 #> [798,] 418 311 325 861 910 398 313 640 782 730 #> [799,] 986 117 833 838 303 134 490 184 425 898 #> [800,] 852 746 171 604 820 61 508 471 758 489 #> [801,] 219 90 615 961 492 313 935 423 480 839 #> [802,] 831 160 457 876 267 675 24 877 496 615 #> [803,] 584 700 431 767 499 436 781 725 821 988 #> [804,] 291 677 863 76 340 302 862 875 930 961 #> [805,] 894 791 187 360 199 362 736 843 473 498 #> [806,] 840 672 789 999 275 758 787 64 924 532 #> [807,] 727 271 19 434 453 900 315 212 960 679 #> [808,] 717 373 663 849 925 470 361 73 858 574 #> [809,] 353 493 28 919 580 699 885 658 484 387 #> [810,] 297 368 102 460 306 122 480 98 150 299 #> [811,] 891 659 695 396 236 986 114 425 134 660 #> [812,] 983 125 76 860 364 492 895 517 830 705 #> [813,] 581 878 477 924 920 50 748 794 879 509 #> [814,] 339 196 298 112 970 893 671 464 710 614 #> [815,] 851 106 839 971 90 160 100 615 917 492 #> [816,] 910 640 937 861 414 359 68 412 354 798 #> [817,] 385 502 81 62 335 469 270 962 459 684 #> [818,] 888 601 248 774 518 933 372 779 594 956 #> [819,] 888 549 510 575 199 771 647 372 526 217 #> [820,] 508 746 411 99 489 171 716 800 268 393 #> [821,] 467 12 514 641 436 725 711 803 305 569 #> [822,] 71 959 309 100 407 917 18 788 851 661 #> [823,] 604 915 765 613 701 968 622 949 489 800 #> [824,] 760 301 250 555 871 847 513 218 383 890 #> [825,] 471 554 641 61 852 569 758 688 194 800 #> [826,] 280 841 987 535 606 292 746 674 994 171 #> [827,] 897 56 984 412 414 300 244 338 96 564 #> [828,] 342 526 618 356 333 779 394 186 698 845 #> [829,] 209 429 630 357 343 868 221 655 560 251 #> [830,] 983 404 786 221 26 479 785 812 141 364 #> [831,] 802 160 877 639 267 615 675 125 169 876 #> [832,] 314 150 98 306 423 463 619 810 612 961 #> [833,] 184 270 141 785 525 8 26 678 425 469 #> [834,] 603 929 399 904 262 988 196 614 22 569 #> [835,] 263 732 119 224 350 482 568 182 992 135 #> [836,] 837 137 189 120 996 330 118 354 784 474 #> [837,] 836 189 354 120 137 543 118 113 474 330 #> [838,] 909 741 542 799 36 357 697 343 490 184 #> [839,] 90 492 313 815 615 851 971 801 730 935 #> [840,] 806 758 275 999 97 789 520 61 954 410 #> [841,] 826 535 987 606 280 674 171 756 746 626 #> [842,] 564 56 312 95 984 415 713 190 96 328 #> [843,] 390 777 205 341 202 642 926 111 953 323 #> [844,] 647 956 217 372 277 376 406 248 123 48 #> [845,] 394 848 33 342 526 828 397 976 59 186 #> [846,] 148 443 43 247 558 534 128 64 155 532 #> [847,] 871 250 760 361 470 849 301 513 41 824 #> [848,] 845 394 976 59 33 192 523 402 465 46 #> [849,] 361 470 717 41 871 513 847 808 250 649 #> [850,] 135 224 182 568 37 531 263 627 974 201 #> [851,] 815 971 106 839 100 917 407 90 68 313 #> [852,] 63 471 569 648 554 171 266 800 436 825 #> [853,] 18 597 936 703 989 29 172 796 272 227 #> [854,] 94 130 351 559 444 348 857 66 40 320 #> [855,] 645 603 988 431 803 781 821 467 628 711 #> [856,] 927 177 589 599 656 200 910 426 120 934 #> [857,] 666 348 40 559 866 529 254 38 320 854 #> [858,] 237 646 643 738 808 717 887 543 925 675 #> [859,] 216 413 454 476 934 788 906 23 786 227 #> [860,] 521 635 420 78 630 812 567 340 76 427 #> [861,] 398 798 768 68 816 640 910 412 418 313 #> [862,] 577 863 406 804 657 378 291 875 922 677 #> [863,] 862 577 677 804 406 378 657 302 151 865 #> [864,] 379 421 316 403 92 922 862 657 378 863 #> [865,] 285 556 883 347 302 956 151 536 863 21 #> [866,] 529 320 348 254 38 857 694 792 693 559 #> [867,] 192 498 402 360 257 627 165 465 261 835 #> [868,] 221 983 346 630 26 829 429 211 560 404 #> [869,] 347 761 217 372 180 964 295 779 186 698 #> [870,] 258 578 385 81 444 817 944 656 962 308 #> [871,] 250 847 41 361 849 555 470 890 513 760 #> [872,] 307 771 571 253 103 511 575 123 933 991 #> [873,] 366 632 681 105 887 85 738 361 740 943 #> [874,] 540 2 179 168 223 720 978 528 15 951 #> [875,] 291 76 550 804 912 801 582 862 900 406 #> [876,] 802 475 637 831 160 496 457 997 877 267 #> [877,] 831 169 548 639 267 802 24 457 160 796 #> [878,] 581 477 813 924 79 579 748 509 980 920 #> [879,] 748 215 532 500 534 233 558 50 79 924 #> [880,] 163 329 957 200 750 722 710 290 996 408 #> [881,] 960 326 453 463 998 488 718 306 807 727 #> [882,] 427 567 521 115 170 592 183 23 860 763 #> [883,] 151 556 382 865 347 991 148 956 273 677 #> [884,] 433 469 305 525 467 8 514 6 173 921 #> [885,] 614 249 432 139 179 399 353 218 375 809 #> [886,] 908 667 519 111 938 174 685 946 446 323 #> [887,] 943 366 738 873 105 717 858 632 675 555 #> [888,] 819 818 771 372 549 510 594 48 779 575 #> [889,] 565 683 920 35 509 337 477 307 980 379 #> [890,] 485 41 871 649 250 978 178 555 375 849 #> [891,] 811 236 659 194 986 384 695 546 114 149 #> [892,] 522 44 634 387 942 468 899 653 793 386 #> [893,] 15 112 375 585 969 178 967 617 405 259 #> [894,] 805 187 791 473 193 843 360 737 362 202 #> [895,] 274 612 517 98 78 932 314 423 150 420 #> [896,] 819 647 510 724 277 199 527 549 888 395 #> [897,] 827 56 96 244 300 564 984 412 338 414 #> [898,] 134 184 537 8 833 525 542 428 332 108 #> [899,] 44 522 419 146 437 761 964 180 610 892 #> [900,] 727 912 153 212 664 807 992 434 550 582 #> [901,] 393 716 388 17 371 990 631 570 317 916 #> [902,] 387 386 776 633 973 919 658 892 914 246 #> [903,] 450 563 370 381 282 16 363 82 636 289 #> [904,] 256 225 139 583 506 616 658 399 973 633 #> [905,] 505 920 581 424 715 924 878 452 337 672 #> [906,] 995 476 11 173 216 786 232 13 413 349 #> [907,] 143 37 318 562 797 474 531 762 925 982 #> [908,] 886 519 938 667 685 946 111 691 411 820 #> [909,] 741 838 36 697 357 567 654 343 427 80 #> [910,] 640 816 599 798 927 325 177 861 311 354 #> [911,] 769 579 676 509 980 477 79 337 188 104 #> [912,] 153 632 664 582 219 105 900 423 150 738 #> [913,] 409 45 93 299 252 598 562 762 75 264 #> [914,] 265 981 591 733 999 552 97 410 892 386 #> [915,] 823 968 166 765 352 728 604 662 508 25 #> [916,] 570 458 441 176 512 707 226 129 750 680 #> [917,] 407 100 309 822 661 125 71 851 815 839 #> [918,] 58 551 778 89 694 668 780 478 459 62 #> [919,] 387 504 942 653 963 902 246 892 973 699 #> [920,] 581 565 878 813 337 477 509 980 905 683 #> [921,] 552 455 410 97 344 266 6 591 3 514 #> [922,] 378 92 775 403 461 657 862 406 677 863 #> [923,] 222 931 926 197 355 488 673 553 323 679 #> [924,] 878 672 581 813 806 748 789 715 879 532 #> [925,] 797 808 294 531 474 907 373 37 327 319 #> [926,] 323 673 777 953 923 519 843 111 222 744 #> [927,] 599 589 177 856 910 426 120 640 656 189 #> [928,] 631 620 279 17 662 739 590 32 621 946 #> [929,] 603 262 569 641 213 773 834 6 471 711 #> [930,] 677 57 310 151 314 437 76 895 804 419 #> [931,] 355 331 923 488 673 197 718 255 222 208 #> [932,] 437 705 274 895 423 643 105 742 98 522 #> [933,] 481 229 818 991 382 714 260 774 273 771 #> [934,] 859 216 749 703 13 454 308 476 906 88 #> [935,] 782 480 297 517 219 479 801 90 615 418 #> [936,] 29 227 853 172 18 675 272 796 71 548 #> [937,] 816 768 414 861 107 244 359 68 910 412 #> [938,] 588 519 908 886 371 685 777 323 111 926 #> [939,] 530 682 242 744 486 794 790 240 430 380 #> [940,] 170 730 998 231 115 370 586 121 719 313 #> [941,] 587 692 484 728 49 949 604 109 401 156 #> [942,] 653 504 919 892 77 387 246 20 419 468 #> [943,] 555 740 717 887 366 649 681 871 849 361 #> [944,] 126 308 551 753 416 385 668 870 918 767 #> [945,] 511 422 577 379 657 862 35 42 376 864 #> [946,] 519 240 621 691 958 323 32 886 667 908 #> [947,] 129 767 780 725 499 731 63 803 436 626 #> [948,] 505 715 608 905 766 787 83 672 194 806 #> [949,] 501 622 941 692 823 604 765 405 613 726 #> [950,] 593 695 126 336 669 478 243 12 944 293 #> [951,] 795 432 528 485 890 649 464 369 451 624 #> [952,] 772 315 953 186 362 277 642 539 510 647 #> [953,] 673 642 926 952 323 843 341 285 536 958 #> [954,] 520 43 128 468 733 524 148 97 273 275 #> [955,] 589 177 670 445 927 157 856 354 426 599 #> [956,] 372 217 844 347 991 869 865 285 883 151 #> [957,] 163 880 200 996 589 189 329 120 836 837 #> [958,] 21 691 536 667 162 443 4 347 946 240 #> [959,] 822 71 309 100 407 917 18 788 661 851 #> [960,] 881 392 998 727 302 807 463 19 745 453 #> [961,] 150 423 340 801 420 517 612 76 297 78 #> [962,] 684 660 979 502 495 702 573 335 210 706 #> [963,] 246 919 942 653 387 902 419 481 310 504 #> [964,] 295 180 761 146 899 698 869 98 105 610 #> [965,] 52 483 283 696 132 318 91 137 201 143 #> [966,] 239 740 366 681 105 5 295 267 873 964 #> [967,] 708 15 292 969 764 994 178 397 280 893 #> [968,] 716 662 393 166 915 701 823 388 84 279 #> [969,] 112 284 617 238 967 259 708 893 261 327 #> [970,] 69 689 133 298 710 339 112 238 441 7 #> [971,] 851 815 839 313 90 730 398 106 661 550 #> [972,] 644 684 704 783 578 440 203 979 694 67 #> [973,] 633 699 902 591 658 387 776 225 386 506 #> [974,] 627 850 135 446 318 397 257 131 201 360 #> [975,] 9 358 394 333 526 828 48 199 888 845 #> [976,] 59 33 5 848 350 993 523 465 845 86 #> [977,] 367 721 561 19 545 377 392 355 42 55 #> [978,] 890 375 485 178 617 871 555 41 250 46 #> [979,] 210 706 684 495 660 335 962 502 233 247 #> [980,] 260 382 911 477 683 878 769 337 151 991 #> [981,] 410 552 733 999 678 914 265 921 72 954 #> [982,] 762 651 37 174 264 162 562 205 497 913 #> [983,] 830 404 705 364 812 786 868 274 386 221 #> [984,] 56 312 842 827 713 415 435 190 289 897 #> [985,] 207 311 10 81 258 159 381 23 282 418 #> [986,] 117 799 833 236 134 678 659 811 8 425 #> [987,] 606 826 535 841 634 280 674 218 574 144 #> [988,] 645 603 711 855 431 596 803 305 616 142 #> [989,] 703 597 13 216 147 172 60 88 29 272 #> [990,] 140 570 901 198 388 533 916 17 458 611 #> [991,] 382 883 956 556 307 151 229 933 260 185 #> [992,] 664 212 153 119 732 900 244 912 632 482 #> [993,] 14 59 5 724 976 496 376 123 239 48 #> [994,] 292 708 280 535 356 618 764 826 847 342 #> [995,] 906 476 173 232 11 786 600 195 30 404 #> [996,] 836 189 957 722 837 880 137 47 329 290 #> [997,] 438 160 831 125 876 815 877 407 917 802 #> [998,] 730 940 370 170 960 881 313 418 745 115 #> [999,] 733 981 410 840 806 914 552 97 273 954 #> [1000,] 429 424 80 251 209 829 683 452 211 630 #> #> $neighbor_distances #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 0.75123324 0.7728336 0.8535100 0.9610233 0.9988456 1.0241624 1.0346625 #> [2,] 0.72794121 0.8192607 1.0118221 1.0396370 1.0447104 1.0736597 1.1356458 #> [3,] 0.31837803 0.4564968 0.4829120 0.5219559 0.5329834 0.6032451 0.6036069 #> [4,] 0.31047166 0.3921811 0.4326476 0.4630233 0.5398038 0.5555416 0.6151065 #> [5,] 0.46734788 0.4760593 0.5466231 0.5606464 0.5640889 0.5726195 0.5783608 #> [6,] 0.51152215 0.5275568 0.5497865 0.5556941 0.5624806 0.6122315 0.6278000 #> [7,] 0.29359887 0.5086648 0.5542773 0.5716974 0.5869704 0.5940340 0.5959630 #> [8,] 0.26143033 0.4718084 0.5603310 0.5707832 0.6882329 0.7308097 0.7341715 #> [9,] 0.24984831 0.5609735 0.8632232 0.9219492 1.0170726 1.0442705 1.0520745 #> [10,] 0.28986430 0.4537154 0.5204006 0.5421002 0.5423238 0.5463735 0.5587194 #> [11,] 0.46652531 0.5084248 0.5263341 0.5266163 0.5446352 0.5495054 0.5850168 #> [12,] 0.37170190 0.4381048 0.5241100 0.5423993 0.5424052 0.5655038 0.6071722 #> [13,] 0.57222011 0.6124874 0.6357935 0.6396935 0.6462147 0.6708131 0.7391421 #> [14,] 0.34717912 0.5838188 0.5962627 0.6141551 0.6745910 0.8141714 0.8167852 #> [15,] 0.58059369 0.6224053 0.6662234 0.6803393 0.7407235 0.8389967 0.8429282 #> [16,] 0.63314368 0.8630664 0.8939270 1.0213772 1.0458141 1.0663115 1.1116785 #> [17,] 0.54835213 0.7198504 0.7467861 0.8400073 0.8529885 0.9064278 0.9411035 #> [18,] 0.66924590 0.6764030 0.8256855 0.8928497 0.9098371 0.9177645 0.9264857 #> [19,] 0.47391219 0.5187272 0.6039699 0.6313239 0.7718839 0.8130187 0.8617744 #> [20,] 0.15081454 0.3758961 0.3943047 0.4202105 0.4597621 0.5058134 0.5526436 #> [21,] 0.26227964 0.3306440 0.4625359 0.4748135 0.5735866 0.5903636 0.6051760 #> [22,] 0.43233503 0.5294653 0.5807848 0.6182965 0.6219620 0.6649769 0.6820446 #> [23,] 0.51569242 0.5551573 0.6019943 0.6874485 0.7129012 0.7578704 0.7810091 #> [24,] 0.26564505 0.8384672 0.9027206 0.9060224 0.9245897 0.9398366 0.9480771 #> [25,] 0.58665844 0.8659828 0.8981276 0.9708535 1.0050467 1.0329852 1.0364884 #> [26,] 0.19951012 0.3092625 0.3686001 0.4240887 0.6186630 0.6479357 0.7211515 #> [27,] 0.36583627 0.4208790 0.4291136 0.5052316 0.5424372 0.6643204 0.6768602 #> [28,] 0.63749376 0.6643837 0.7336474 0.8632298 0.9630081 1.0143946 1.0585654 #> [29,] 0.22773632 0.2810413 0.3024392 0.6371490 0.7398366 0.7736565 0.7775577 #> [30,] 0.41843597 0.4328745 0.4340449 0.5067279 0.5268015 0.5302476 0.5624027 #> [31,] 0.44109626 0.5183360 0.6860934 0.9339130 0.9629930 1.0579500 1.0943981 #> [32,] 0.51867312 0.5645729 0.6016788 0.6357531 0.6454604 0.6971910 0.7115832 #> [33,] 0.47605929 0.5257607 0.5566021 0.5824304 0.6490195 0.7135536 0.7156801 #> [34,] 0.97263621 1.1064219 1.1444155 1.1538665 1.1596231 1.2692750 1.3001680 #> [35,] 0.98260936 1.1123529 1.1596231 1.1717316 1.1850187 1.2225809 1.2601779 #> [36,] 0.49461149 0.5933300 0.6646068 0.6683092 0.8323921 0.8352585 0.8584428 #> [37,] 0.33752748 0.3668717 0.3733893 0.3738390 0.4858712 0.5329507 0.5359664 #> [38,] 0.63792553 0.6805158 0.8052105 0.8253294 0.9434459 0.9543999 0.9622925 #> [39,] 0.79115486 0.9026125 1.0002906 1.0816304 1.1440999 1.2319974 1.2718061 #> [40,] 0.43594864 0.7188591 0.7189500 0.8269726 1.0044478 1.0197690 1.0395219 #> [41,] 0.29776484 0.3110705 0.3169707 0.3448560 0.3540405 0.3739873 0.4252863 #> [42,] 0.56407060 0.8340099 0.9236600 0.9486578 0.9507656 0.9726362 0.9826094 #> [43,] 0.35070927 0.4212043 0.4399540 0.5016230 0.5245879 0.5408275 0.5485840 #> [44,] 0.13879613 0.2449583 0.3716588 0.3857744 0.4513943 0.4539900 0.4953717 #> [45,] 0.27674962 0.3248874 0.3792540 0.4061885 0.4685934 0.5096766 0.5394649 #> [46,] 0.70931322 0.7762396 0.7874432 0.8142466 0.8157303 0.8707487 0.8863619 #> [47,] 0.34194145 0.6358041 0.6792359 0.6991985 0.7115954 0.7373865 0.8197065 #> [48,] 0.54036550 0.6094105 0.6267325 0.6674362 0.7317710 0.7325700 0.7442621 #> [49,] 0.53167438 0.6307679 0.7248237 0.7447617 0.7648825 0.7757223 0.7758032 #> [50,] 0.34302240 0.4088468 0.4949305 0.6649502 0.6736528 0.6801958 0.6810368 #> [51,] 0.44016974 0.5076383 0.5175767 0.7000366 0.7683283 0.7880880 0.8114595 #> [52,] 0.34683737 0.4084745 0.5982558 0.5990630 0.6392620 0.6435954 0.6734625 #> [53,] 0.43617718 0.4965451 0.5327786 0.5778905 0.5869704 0.5978329 0.6719906 #> [54,] 0.30248329 0.3537647 0.3890210 0.5052213 0.5101134 0.5352680 0.5394586 #> [55,] 0.52308478 0.5402685 0.5593313 0.5874356 0.7559557 0.7821695 0.7822892 #> [56,] 0.69637689 0.7825293 0.8849706 0.9317456 0.9860083 1.0912192 1.1467084 #> [57,] 0.16587260 0.2957155 0.3413110 0.4116207 0.4205946 0.5540923 0.6107552 #> [58,] 0.21674498 0.2655099 0.3790429 0.3932341 0.4436496 0.5844425 0.6218011 #> [59,] 0.40454188 0.4800348 0.5403655 0.5566021 0.5771780 0.6141551 0.6305519 #> [60,] 0.75561149 0.7588936 0.7819681 0.7975871 0.8945171 0.9152283 0.9162163 #> [61,] 0.30100470 0.4964479 0.5864232 0.5975842 0.6878447 0.6894267 0.6965180 #> [62,] 0.16282452 0.3341115 0.4328745 0.4532430 0.4765493 0.5213406 0.5403077 #> [63,] 0.27072483 0.3851949 0.4612409 0.5142720 0.5167208 0.5294653 0.6030569 #> [64,] 0.49644789 0.5186731 0.5261169 0.5533974 0.5655843 0.6290988 0.6358013 #> [65,] 0.35509133 0.5000259 0.5016800 0.5273160 0.5482631 0.6101186 0.6657547 #> [66,] 0.51826095 0.5183360 0.6878115 0.9025787 0.9928195 1.0014826 1.0029237 #> [67,] 0.20842890 0.3411604 0.3568485 0.4068925 0.4214355 0.4377764 0.4642517 #> [68,] 0.47750098 0.6644961 0.8175037 0.8371260 0.8424111 0.8428174 0.8493960 #> [69,] 0.45928747 0.4965451 0.5542773 0.5917991 0.6237566 0.6343305 0.6550373 #> [70,] 1.00949093 1.1650926 1.2078393 1.2169444 1.2341341 1.2526122 1.3587940 #> [71,] 0.22038706 0.3698291 0.5063805 0.6682706 0.6764030 0.6803568 0.7025122 #> [72,] 0.41824000 0.4184360 0.4325937 0.4377125 0.4848735 0.5098943 0.5213406 #> [73,] 0.36595529 0.4150283 0.4230495 0.4715471 0.4820203 0.4893759 0.5093840 #> [74,] 0.48657110 0.5810022 0.7735514 0.8210664 0.8910608 0.8927631 0.9176643 #> [75,] 0.40020124 0.4232959 0.4436496 0.4596097 0.5149030 0.5152366 0.5463399 #> [76,] 0.48817965 0.4927598 0.5107277 0.5623835 0.5859066 0.5935301 0.5946564 #> [77,] 0.15081454 0.4335340 0.4363955 0.5182849 0.5205824 0.5418517 0.5425802 #> [78,] 0.30995948 0.3273770 0.4254990 0.4672448 0.5121810 0.5136565 0.5154224 #> [79,] 0.47970446 0.4947340 0.6647554 0.7263034 0.7535873 0.7609947 0.7625186 #> [80,] 0.79618626 0.8698408 0.8936291 0.8975484 0.9456737 0.9510369 0.9690743 #> [81,] 0.47623620 0.4877438 0.4971451 0.5032684 0.5146468 0.5204006 0.5501698 #> [82,] 0.93583477 1.0071221 1.0885044 1.1050823 1.1755327 1.1912636 1.2374069 #> [83,] 0.70018889 0.8879985 0.9946745 1.0809744 1.1726914 1.2589149 1.3267449 #> [84,] 0.85574145 0.9550328 0.9788586 0.9906871 1.0431189 1.0460363 1.0573611 #> [85,] 0.32254407 0.4354345 0.4755552 0.4913438 0.5488552 0.5558120 0.6032168 #> [86,] 0.58625836 0.7660761 0.7706474 0.7710468 0.7778610 0.7782860 0.7874432 #> [87,] 0.39066227 0.4763041 0.5491078 0.6551946 0.6561217 0.6865512 0.7407140 #> [88,] 0.40030939 0.5722201 0.6381720 0.6390878 0.6411925 0.6611606 0.6664912 #> [89,] 0.46587098 0.5052316 0.5139742 0.5400055 0.5485160 0.5844425 0.5922445 #> [90,] 0.19996637 0.2139283 0.3522130 0.3596801 0.5070188 0.5268149 0.5578403 #> [91,] 0.34578357 0.3713855 0.5607744 0.5739698 0.5832266 0.5948363 0.6034775 #> [92,] 0.13118949 0.4307515 0.5089294 0.6219634 0.7261603 0.7798434 0.8711605 #> [93,] 0.15515797 0.2767496 0.3113777 0.3347892 0.4146456 0.4380970 0.4573444 #> [94,] 0.40949008 0.7662003 0.8612254 0.8767726 0.8964731 1.1548959 1.1752675 #> [95,] 0.81376542 0.8750154 0.8946274 0.8990536 0.9284389 0.9383646 0.9488876 #> [96,] 0.36398921 0.7536512 0.7638342 0.8374410 0.8986590 0.9269765 0.9570827 #> [97,] 0.40763037 0.4564968 0.4906205 0.4921939 0.4925928 0.5062591 0.5259640 #> [98,] 0.27744439 0.3237234 0.4171864 0.4533024 0.4574603 0.5073590 0.5079862 #> [99,] 0.44986007 0.5442689 0.6053123 0.6070115 0.6822141 0.6850527 0.8025247 #> [100,] 0.36217182 0.4002402 0.5479470 0.6148331 0.6682706 0.6987118 0.7176815 #> [101,] 1.16034211 1.1830457 1.4589260 1.4813706 1.5482614 1.6614958 1.7219734 #> [102,] 0.20121330 0.2754540 0.3096327 0.3457012 0.3905825 0.3975459 0.4304232 #> [103,] 1.20255514 1.2330142 1.2589149 1.3426098 1.3481100 1.5117781 1.6069093 #> [104,] 0.44558674 0.5320156 0.5873528 0.5957944 0.6836550 0.6969275 0.7006954 #> [105,] 0.28454807 0.4706502 0.4755460 0.5303708 0.5371465 0.5512903 0.5558524 #> [106,] 0.47750098 0.4851378 0.4973154 0.5868762 0.7283071 0.8416151 0.8593591 #> [107,] 0.98216529 1.0064208 1.1040333 1.2141759 1.2774960 1.2957623 1.3022217 #> [108,] 0.47869309 0.8343755 0.9840538 1.0110834 1.0577510 1.0926077 1.1350025 #> [109,] 0.49710326 0.5006748 0.5058134 0.5114418 0.5418517 0.5850060 0.5912959 #> [110,] 0.19702653 0.3113777 0.3457012 0.4007505 0.4532430 0.4683849 0.4685934 #> [111,] 0.36008810 0.4174495 0.4408895 0.4548463 0.4828149 0.5061000 0.5141196 #> [112,] 0.57458749 0.6909275 0.7177089 0.7218150 0.7744658 0.8237228 0.8288619 #> [113,] 0.57147892 0.6049098 0.6478061 0.6816491 0.7262376 0.7536512 0.8159034 #> [114,] 0.53953399 0.6014050 0.6576091 0.6786399 0.6947844 0.7110033 0.7216347 #> [115,] 0.48599759 0.5154224 0.5558413 0.5789364 0.6354666 0.6547929 0.6603546 #> [116,] 0.33628768 0.4650064 0.5263157 0.7069239 0.7447617 0.7891283 0.8259153 #> [117,] 0.69958193 0.9283156 1.0939061 1.1216403 1.1250323 1.1288179 1.1515432 #> [118,] 0.36398921 0.5714789 0.6894734 0.7014631 0.7260693 0.7619641 0.8240498 #> [119,] 0.29785763 0.3904106 0.5147426 0.5658674 0.5798745 0.5887206 0.5896853 #> [120,] 0.35909924 0.4613995 0.4725982 0.5263326 0.5385190 0.5893542 0.6825840 #> [121,] 0.35748401 0.4455867 0.5154027 0.6343369 0.6851376 0.7147886 0.7230207 #> [122,] 0.26383426 0.2754540 0.2988481 0.2991627 0.3411604 0.4419143 0.4423288 #> [123,] 0.62395483 0.6685404 0.7950016 0.8067952 0.8221489 0.8340085 0.8765175 #> [124,] 0.82937244 0.8707487 0.9551027 1.0103346 1.0519770 1.0832535 1.2253165 #> [125,] 0.55221468 0.5857830 0.6497453 0.6719993 0.6832759 0.6859977 0.7828531 #> [126,] 0.45402224 0.6171313 0.6190679 0.7087893 0.7216347 0.7515560 0.7782790 #> [127,] 0.27028389 0.3572052 0.3993061 0.4557764 0.4626339 0.4726576 0.4993475 #> [128,] 0.28309416 0.4212043 0.4574603 0.4870235 0.5599778 0.5800733 0.5826591 #> [129,] 0.25146438 0.4186988 0.5370477 0.5654464 0.5749203 0.6088727 0.6190746 #> [130,] 0.49033543 0.5993018 0.6014718 0.6776866 0.7389885 0.7588429 0.7662003 #> [131,] 0.35233048 0.4090712 0.5369264 0.6189582 0.6317574 0.6684878 0.6798811 #> [132,] 0.48681494 0.5408715 0.6034775 0.6051837 0.6162894 0.6389791 0.6392017 #> [133,] 0.20289628 0.5917991 0.7040529 0.8219994 0.8745047 0.9693476 0.9888539 #> [134,] 0.86087471 0.8734834 0.9566091 1.0393017 1.0486299 1.1115831 1.1149204 #> [135,] 0.27865399 0.2969847 0.3897075 0.4253274 0.4470561 0.4950304 0.5887206 #> [136,] 0.73790913 0.7727693 0.7880136 0.8494167 0.9279067 1.0006806 1.0803707 #> [137,] 0.45981635 0.4838382 0.5119779 0.5679398 0.5857583 0.5990630 0.6031911 #> [138,] 0.30248329 0.3120646 0.3843879 0.3865320 0.4880859 0.4925018 0.5331744 #> [139,] 0.36139975 0.3821192 0.3884705 0.4467783 0.6854213 0.6990176 0.7259507 #> [140,] 0.79370421 1.1505867 1.1890757 1.1910424 1.2222432 1.3167299 1.3355435 #> [141,] 0.19951012 0.2417104 0.2781614 0.4680106 0.6250949 0.6525452 0.6603980 #> [142,] 0.37893352 0.4015229 0.4064958 0.4696581 0.4792169 0.4909026 0.5502156 #> [143,] 0.31849457 0.3427354 0.3941537 0.4860365 0.5329507 0.5679398 0.5687805 #> [144,] 0.36318027 0.4053421 0.4399584 0.4597621 0.5413375 0.5425802 0.5480974 #> [145,] 0.38772521 0.4192009 0.4871528 0.5026201 0.5073320 0.6164275 0.6390106 #> [146,] 0.26642362 0.3237234 0.4394007 0.4495239 0.4681588 0.4948503 0.5472648 #> [147,] 0.61755802 0.6381720 0.6557861 0.7506527 0.7529128 0.7540028 0.7591031 #> [148,] 0.18634156 0.5009155 0.5485840 0.5599778 0.5931087 0.5965084 0.6349871 #> [149,] 0.12046345 0.5411184 0.6786399 0.6798061 0.6833299 0.7009866 0.7406080 #> [150,] 0.17188245 0.3712625 0.3743934 0.3987000 0.4416277 0.5023142 0.5079862 #> [151,] 0.37547110 0.4474790 0.4828926 0.5041523 0.6416367 0.6856432 0.7161804 #> [152,] 0.79937319 0.8241613 0.8907011 1.0241436 1.1297508 1.1573210 1.1658958 #> [153,] 0.19419128 0.2061225 0.3007250 0.4605015 0.5260537 0.5295352 0.5749598 #> [154,] 0.30085979 0.3841699 0.5687805 0.5778905 0.6377990 0.6564521 0.6819878 #> [155,] 0.19513800 0.4827132 0.5439209 0.5786936 0.5950256 0.6442066 0.6687645 #> [156,] 0.46868378 0.5114418 0.5316744 0.5526436 0.5607080 0.6290993 0.6300735 #> [157,] 0.59045114 0.9869900 1.1535666 1.1582809 1.1780062 1.2135801 1.2585351 #> [158,] 0.24545491 0.3333003 0.3969425 0.4088468 0.4721369 0.4748135 0.5520819 #> [159,] 0.28986430 0.3544125 0.3764880 0.3992212 0.5491586 0.5680241 0.5835483 #> [160,] 0.43780840 0.4498638 0.7033036 0.7877849 0.8172419 0.8357316 0.8577205 #> [161,] 0.40582631 0.5054017 0.7030924 0.7243780 0.7407140 0.7705307 0.7930608 #> [162,] 0.35234103 0.4147042 0.4795022 0.4952720 0.4962613 0.4989207 0.5185135 #> [163,] 0.54300594 0.5583139 0.6795859 0.8095291 0.8206264 0.9728522 1.1327863 #> [164,] 0.52367020 0.5885379 0.8717503 0.8939719 0.9026125 0.9614319 1.0410679 #> [165,] 0.96143186 1.0199945 1.0232013 1.0551349 1.0902843 1.1010699 1.1045643 #> [166,] 0.61571818 0.7040191 0.7058041 0.7656191 0.7734775 0.7824822 0.8215516 #> [167,] 0.35229033 0.3921811 0.5471192 0.5639015 0.5672174 0.5735262 0.5753703 #> [168,] 0.96825642 1.0396370 1.1898986 1.2800371 1.2881848 1.3270543 1.3435666 #> [169,] 0.66673361 0.6783771 0.6894816 0.7395991 0.7798434 0.8020988 0.8409993 #> [170,] 0.28743920 0.4859976 0.6151464 0.6426209 0.6501716 0.6633979 0.7000754 #> [171,] 0.31719653 0.4426525 0.4802058 0.5162458 0.5402894 0.5484489 0.5699656 #> [172,] 0.08045996 0.2277363 0.4479699 0.6083513 0.7456291 0.7558175 0.7626539 #> [173,] 0.26393459 0.3593245 0.3717283 0.3820295 0.4015229 0.4740713 0.5161408 #> [174,] 0.30338965 0.3445281 0.3752012 0.3833929 0.4174495 0.4185740 0.5224324 #> [175,] 0.60837870 0.6760452 0.7997734 0.8205199 0.8496036 0.8767713 0.8946601 #> [176,] 0.61829653 0.6366517 0.6997558 0.7136063 0.7383797 0.7610103 0.8476542 #> [177,] 0.29403821 0.3544237 0.5263326 0.5589544 0.6405376 0.6407043 0.6920594 #> [178,] 0.30753941 0.4389056 0.4819657 0.5267271 0.5626776 0.5839383 0.6590841 #> [179,] 0.61451410 0.8065479 0.8074916 0.8192607 0.8541983 0.8731405 0.9437775 #> [180,] 0.26642362 0.3097676 0.3796937 0.3842518 0.5073590 0.5130520 0.5358143 #> [181,] 0.47013970 0.5230848 0.5470321 0.8496036 0.8674290 0.9467661 0.9817323 #> [182,] 0.36021158 0.4470561 0.4515219 0.4767623 0.5241343 0.5364844 0.5865542 #> [183,] 0.53317440 0.6307292 0.6375269 0.6506767 0.6550839 0.6692890 0.6958393 #> [184,] 0.59828158 0.7636470 0.8197293 0.8356096 0.8501639 0.8775427 0.9832344 #> [185,] 0.51230390 0.5204844 0.5648963 0.7084205 0.7865361 0.7996885 0.8246749 #> [186,] 0.38596645 0.4145507 0.5691145 0.5989056 0.6002112 0.6328652 0.6405012 #> [187,] 0.96030647 1.0761704 1.0808862 1.0870889 1.1122201 1.1279417 1.1959206 #> [188,] 0.49473402 0.6299515 0.6832576 0.6942725 0.6958393 0.7062105 0.7064561 #> [189,] 0.35909924 0.4255819 0.5056986 0.5103887 0.6192480 0.7221886 0.7384616 #> [190,] 0.48660327 0.7114507 0.7246401 0.7313637 0.8284993 1.0153069 1.0305508 #> [191,] 0.65050082 0.6816491 0.6842797 0.7600037 0.7705307 0.7733659 0.8202470 #> [192,] 0.81182782 0.8194373 0.8417935 1.1055276 1.1253849 1.1289979 1.1556449 #> [193,] 0.66753911 0.7257133 0.7266951 0.7743539 0.8705561 0.9086395 0.9237531 #> [194,] 0.62045966 0.7111853 0.7449372 0.8068628 0.8219124 0.8335637 0.8411046 #> [195,] 0.32084307 0.3593245 0.3889879 0.4064958 0.4534542 0.5020450 0.5061745 #> [196,] 0.59162905 0.6261190 0.6519473 0.6742100 0.7273983 0.7396244 0.7504098 #> [197,] 0.25774459 0.3922203 0.4871528 0.5731440 0.5860091 0.6188489 0.6274038 #> [198,] 0.55964953 0.6301278 0.7006146 0.7704925 0.8103618 0.8187889 0.8411695 #> [199,] 0.56526701 0.5919769 0.7933394 0.8006608 0.8031460 0.8174900 0.9500898 #> [200,] 0.63850522 0.6481022 0.7466410 0.8095291 0.8236840 0.8689609 0.8885308 #> [201,] 0.27865399 0.2923046 0.5241343 0.5313052 0.5860547 0.5909128 0.5959543 #> [202,] 0.42631331 0.5904569 0.5998869 0.7362744 0.7605896 0.8071532 0.8210664 #> [203,] 0.20842890 0.2428933 0.2988481 0.3402142 0.3697308 0.3865320 0.3890210 #> [204,] 0.47013970 0.5402685 0.6083787 0.7876943 0.8457159 0.8897081 0.8939270 #> [205,] 0.34090425 0.4108805 0.4379580 0.5384481 0.5431463 0.5516274 0.5550702 #> [206,] 0.52132482 0.5291135 0.5549221 0.6991985 0.7043297 0.7597526 0.7809424 #> [207,] 0.21587317 0.5501698 0.5944061 0.6019943 0.6036912 0.6121399 0.6232368 #> [208,] 0.19508862 0.3493520 0.4058071 0.5062397 0.5209490 0.5405174 0.5476367 #> [209,] 0.34835901 0.3519596 0.4355776 0.7052760 0.7261054 0.7961863 0.7980408 #> [210,] 0.15472873 0.2741477 0.3276143 0.3874743 0.4512306 0.4848735 0.5456915 #> [211,] 0.30083629 0.5030022 0.5802170 0.6049625 0.6124386 0.6855360 0.7587768 #> [212,] 0.50905999 0.5763424 0.6077715 0.6494028 0.6571812 0.7116446 0.7209059 #> [213,] 0.31837803 0.3607279 0.5027575 0.5151727 0.5491726 0.5556941 0.6165135 #> [214,] 0.58913260 0.8071999 0.9856087 0.9869900 1.0638696 1.1631375 1.1634441 #> [215,] 0.31003120 0.3585382 0.3890705 0.3975790 0.4177120 0.5668593 0.5714364 #> [216,] 0.40446900 0.4795265 0.5715888 0.5716924 0.6813370 0.7271226 0.7320339 #> [217,] 0.41890859 0.4878582 0.5088305 0.5258547 0.5416196 0.5602363 0.5909218 #> [218,] 0.40846562 0.4148849 0.4390372 0.4579331 0.4686838 0.5092006 0.5149004 #> [219,] 0.31027223 0.3580854 0.4416277 0.4557797 0.4635054 0.4980985 0.5223489 #> [220,] 0.67821809 0.7269518 0.7884421 0.8981276 0.9696410 1.0095566 1.0242894 #> [221,] 0.29113310 0.4240887 0.4680106 0.5413932 0.5551246 0.6033871 0.6445696 #> [222,] 0.31200656 0.3922203 0.5089802 0.6606336 0.6940500 0.7074970 0.7195269 #> [223,] 0.80654788 0.8376506 0.9906952 1.0447104 1.0594308 1.1200518 1.1231975 #> [224,] 0.29785763 0.3634108 0.3946379 0.4253274 0.5136025 0.5313052 0.5568903 #> [225,] 0.51517267 0.6075172 0.6088218 0.6133793 0.6376472 0.6498677 0.6685887 #> [226,] 0.41347323 0.4914823 0.5701759 0.5940340 0.6190746 0.6238119 0.6348328 #> [227,] 0.30243922 0.4479699 0.4755517 0.5638175 0.6171614 0.6514300 0.7090876 #> [228,] 0.90555460 0.9918885 1.1684544 1.1782701 1.2056914 1.2159078 1.2336533 #> [229,] 0.51230390 0.6631301 0.6653664 0.7335557 0.7518248 0.8405305 0.9252294 #> [230,] 0.77283362 0.8079880 0.8467161 0.8528566 0.8555573 0.9325761 0.9362719 #> [231,] 0.59961280 0.6343369 0.7535997 0.7794280 0.8462224 0.8493717 0.8586241 #> [232,] 0.26393459 0.2679328 0.2736122 0.3208431 0.3571812 0.4792169 0.4811862 #> [233,] 0.17875079 0.3975790 0.4053346 0.4628703 0.5497720 0.5765510 0.6245413 #> [234,] 0.67821809 0.6819256 0.6971910 0.7084205 0.7768582 0.8004708 0.8130695 #> [235,] 0.35229033 0.4113023 0.4561031 0.4946848 0.4971033 0.5271013 0.5398038 #> [236,] 0.62906531 0.7234641 0.7449372 0.7810325 0.8642700 0.8649101 0.8839147 #> [237,] 0.20395837 0.3844797 0.4306182 0.5561102 0.5694909 0.5874698 0.5900798 #> [238,] 0.57458749 0.5959630 0.6238756 0.6348328 0.6590748 0.6690772 0.7566615 #> [239,] 0.24032959 0.5017250 0.5050407 0.5692543 0.5727376 0.5783608 0.6350611 #> [240,] 0.41672649 0.4448618 0.4721369 0.5199025 0.5258675 0.5286509 0.5563468 #> [241,] 0.98405382 1.1375119 1.1976571 1.2046299 1.2651680 1.3673162 1.3923991 #> [242,] 0.57243631 0.9198506 1.0032346 1.1074054 1.1169257 1.1289227 1.1497500 #> [243,] 0.55313581 0.6545472 0.7726849 0.8180935 0.8738729 0.8899513 0.9580921 #> [244,] 0.57634239 0.6158662 0.6329802 0.6512504 0.6656699 0.6795726 0.7843879 #> [245,] 0.40030939 0.4047201 0.6347717 0.6518593 0.6594240 0.6682516 0.6796197 #> [246,] 0.20957563 0.5535769 0.5850788 0.5888863 0.5982422 0.6195995 0.6572079 #> [247,] 0.32538741 0.3764248 0.4068925 0.4827132 0.5377097 0.5388781 0.5564219 #> [248,] 0.07991648 0.3969090 0.4554043 0.5958814 0.6328125 0.6462949 0.6542727 #> [249,] 0.40846562 0.5515295 0.6300735 0.6669118 0.6803393 0.7171484 0.7440268 #> [250,] 0.24531337 0.2920796 0.3045802 0.3529613 0.3733389 0.3739873 0.4389056 #> [251,] 0.30083629 0.3895963 0.5889364 0.6204556 0.6560988 0.6840995 0.7052760 #> [252,] 0.35356658 0.4333924 0.4380970 0.4901973 0.5463399 0.5705713 0.5717453 #> [253,] 0.71555951 0.8531945 0.9589535 1.0147257 1.0754897 1.0893189 1.0893488 #> [254,] 0.32560846 0.3436373 0.5602555 0.6310238 0.7119669 0.7121295 0.8242852 #> [255,] 0.19508862 0.3335111 0.3359325 0.4334802 0.4795022 0.5193626 0.5880298 #> [256,] 0.33217500 0.5334556 0.5916505 0.7259507 0.7293199 0.7529128 0.7547055 #> [257,] 0.34844429 0.3698551 0.4515219 0.6835393 0.7039375 0.7097591 0.7388971 #> [258,] 0.48774381 0.5034437 0.6036912 0.6462597 0.6528830 0.6738408 0.7292561 #> [259,] 0.50387183 0.5885379 0.8716588 0.9163334 0.9436734 0.9756567 0.9843683 #> [260,] 0.31083119 0.5392876 0.5584831 0.6788038 0.6856432 0.6939049 0.7587768 #> [261,] 0.50540167 0.6094466 0.6106162 0.7100869 0.7474043 0.7548418 0.7657958 #> [262,] 0.36072787 0.4829120 0.6355625 0.6428138 0.6685887 0.7080839 0.7910339 #> [263,] 0.39463790 0.3948480 0.5147426 0.5186912 0.5888827 0.6300291 0.6367832 #> [264,] 0.39988625 0.4002021 0.4185740 0.4483313 0.4727237 0.4871645 0.4962613 #> [265,] 0.23993803 0.5224575 0.5456090 0.5960820 0.6028731 0.6078198 0.6157228 #> [266,] 0.37926665 0.4468730 0.4925928 0.4942371 0.5473633 0.5825448 0.6047881 #> [267,] 0.46645854 0.5050407 0.6158712 0.7140490 0.7180839 0.7395991 0.7456979 #> [268,] 0.38487972 0.4326476 0.4426525 0.4727237 0.4775865 0.4810028 0.5031708 #> [269,] 1.06380439 1.1005776 1.1676122 1.1770550 1.2246484 1.2639915 1.3374345 #> [270,] 0.35760660 0.5306228 0.6001879 0.6131775 0.6140907 0.6375269 0.6378469 #> [271,] 0.37007701 0.3978038 0.4291071 0.5187272 0.5306961 0.5880864 0.6199867 #> [272,] 0.08045996 0.2810413 0.4755517 0.5850168 0.7445571 0.7490401 0.7683102 #> [273,] 0.48999353 0.5196985 0.5392876 0.6215960 0.6416367 0.6426553 0.6913845 #> [274,] 0.24010441 0.3874158 0.4525542 0.4539625 0.4949872 0.5261021 0.5265085 #> [275,] 0.30100470 0.5029816 0.5127194 0.5510996 0.5639015 0.5655843 0.6384658 #> [276,] 0.54449025 1.0617308 1.1690400 1.2214387 1.2731221 1.2739128 1.4960939 #> [277,] 0.29910942 0.5714456 0.5963457 0.6705824 0.6787581 0.7043262 0.7580649 #> [278,] 0.35718116 0.4193687 0.4433985 0.4534542 0.4665253 0.5451624 0.5502156 #> [279,] 0.41394639 0.6325459 0.6699654 0.7836029 0.7851510 0.8182959 0.8425422 #> [280,] 0.22475057 0.3396683 0.4055814 0.4175321 0.4377923 0.4471095 0.4585823 #> [281,] 0.29444451 0.4113023 0.4141784 0.4404892 0.4630233 0.5031708 0.5333971 #> [282,] 0.31644694 0.5551573 0.5961214 0.6221072 0.6550789 0.7101610 0.7283993 #> [283,] 0.34578357 0.3468282 0.3687117 0.4835465 0.5648596 0.6162894 0.6381854 #> [284,] 0.50387183 0.5236702 0.7701056 0.7911549 0.8739263 0.8836861 0.9411378 #> [285,] 0.41119252 0.5622579 0.6023753 0.6042996 0.6207918 0.6479959 0.6823808 #> [286,] 0.85567071 1.0204548 1.0805443 1.1364532 1.3088280 1.3428671 1.3523249 #> [287,] 0.52439153 0.7499065 0.9440280 0.9675250 1.0153069 1.2163210 1.2222432 #> [288,] 0.54239075 0.6429094 0.8806943 1.3620115 1.4205182 1.4246796 1.4566494 #> [289,] 0.94204478 0.9724045 0.9750135 1.0133426 1.1141167 1.1172216 1.1293275 #> [290,] 0.34194145 0.4542825 0.5073444 0.5291135 0.7688035 0.7853064 0.8207269 #> [291,] 0.26594121 0.4145992 0.5107277 0.5382576 0.5775870 0.6428034 0.6433268 #> [292,] 0.33966834 0.3705808 0.4968724 0.5614452 0.5912959 0.6030132 0.6323524 #> [293,] 0.54240523 0.5685634 0.6545472 0.7480650 0.7893958 0.7894660 0.8047075 #> [294,] 0.26927678 0.4298212 0.4530965 0.4804884 0.5015095 0.5394649 0.5716974 #> [295,] 0.26343145 0.2979331 0.4463409 0.5502562 0.5519391 0.5640889 0.5888744 #> [296,] 0.28309416 0.3568485 0.4377125 0.4419143 0.4674355 0.4870335 0.5484208 #> [297,] 0.23681564 0.3086668 0.4232261 0.4378483 0.4828435 0.5027134 0.5113881 #> [298,] 0.44123648 0.4935362 0.5216645 0.5916291 0.6151879 0.7155653 0.7452075 #> [299,] 0.15515797 0.1970265 0.3792540 0.3921772 0.4304232 0.4333924 0.4406006 #> [300,] 0.35029758 0.3859824 0.6158662 0.6386173 0.6545420 0.6789222 0.6912502 #> [301,] 0.17672129 0.2920796 0.3487168 0.4119493 0.4148849 0.4666492 0.5515295 #> [302,] 0.53302955 0.5382576 0.5505231 0.6596260 0.6688616 0.6746336 0.6863087 #> [303,] 1.26360735 1.2688591 1.4489720 1.5091963 1.5111890 1.6452195 1.7570417 #> [304,] 0.32254407 0.3594234 0.4605015 0.4645395 0.5425355 0.5434271 0.5556632 #> [305,] 0.24866835 0.3789335 0.3792134 0.4561757 0.5161408 0.5266475 0.5673960 #> [306,] 0.26740534 0.3208248 0.4667387 0.4988816 0.5023142 0.5210939 0.5911413 #> [307,] 0.68948956 0.8591377 0.8632621 0.8758765 0.9509291 0.9731328 1.0001691 #> [308,] 0.51152798 0.7055470 0.7202057 0.7660243 0.7819818 0.7912739 0.8258615 #> [309,] 0.50638053 0.5179364 0.5468375 0.6046618 0.6985545 0.7881233 0.8091576 #> [310,] 0.16587260 0.3356574 0.3871199 0.4471608 0.4613834 0.5982422 0.6546082 #> [311,] 0.43717069 0.4465631 0.5035108 0.6308780 0.6550789 0.6917758 0.7570848 #> [312,] 0.35346968 0.4866033 0.4911228 0.9278780 0.9597156 0.9675250 0.9823241 #> [313,] 0.46884574 0.4715928 0.4735928 0.5765781 0.5976214 0.6209378 0.6795702 #> [314,] 0.18842874 0.2774444 0.3743934 0.4975694 0.5050988 0.5495635 0.5568096 #> [315,] 0.48747026 0.5115595 0.5776815 0.5810022 0.5833092 0.5961116 0.6199867 #> [316,] 0.71882339 0.7298102 0.7980408 0.8027938 0.8137303 0.8317879 0.8445150 #> [317,] 0.42087897 0.4312480 0.5634303 0.6422605 0.6566718 0.7048257 0.7623149 #> [318,] 0.34683737 0.4090368 0.4860365 0.5359664 0.5383853 0.6108532 0.6336967 #> [319,] 0.37138546 0.4117716 0.4785496 0.4868149 0.5997890 0.6381854 0.6638874 #> [320,] 0.46517599 0.5368974 0.6422321 0.6776026 0.6805158 0.7277149 0.7588429 #> [321,] 0.09697109 0.3934919 0.3992212 0.4013733 0.4841724 0.5219711 0.6044576 #> [322,] 0.61354902 0.7331312 0.8358797 0.8843709 0.9381280 0.9839040 0.9903867 #> [323,] 0.37300207 0.3944722 0.4408895 0.5156462 0.6216648 0.6234677 0.6260663 #> [324,] 0.30975111 0.5447037 0.5730397 0.5768426 0.6028126 0.6794550 0.6901274 #> [325,] 0.49046188 0.5118977 0.5345808 0.5487884 0.6182018 0.6263767 0.6269757 #> [326,] 0.48914700 0.5917555 0.6135490 0.8236793 0.8388834 0.8661062 0.8718881 #> [327,] 0.47466248 0.6094466 0.6433676 0.6557585 0.6625708 0.6628817 0.6690772 #> [328,] 0.73136370 0.8106643 0.8197065 0.9443775 1.0060133 1.0388432 1.0488026 #> [329,] 0.56057729 0.5963301 0.6683562 0.6795859 0.7329504 0.8120086 0.8243287 #> [330,] 0.27949333 0.4054250 0.4598163 0.4782392 0.5327786 0.6019534 0.6318225 #> [331,] 0.33351112 0.3356392 0.3441288 0.4058071 0.4617185 0.4678582 0.5969929 #> [332,] 0.50641307 0.5115280 0.5247714 0.5806314 0.6723671 0.7161356 0.7278448 #> [333,] 0.52374859 0.5609209 0.5919769 0.7004560 0.7470308 0.7624804 0.7892986 #> [334,] 0.42795110 0.4530965 0.4612184 0.4931298 0.5000259 0.5240484 0.5290541 #> [335,] 0.32761430 0.3475464 0.3843879 0.3949626 0.4205965 0.4415721 0.4535849 #> [336,] 0.50451422 0.8163552 1.0484713 1.0540369 1.1106780 1.1204779 1.1334821 #> [337,] 0.56262031 0.7564921 0.8078945 0.8326922 0.8352566 0.8653057 0.8771891 #> [338,] 0.35029758 0.6987542 0.7735514 0.8113368 0.8188095 0.8228033 0.8238807 #> [339,] 0.49353624 0.6602226 0.7272707 0.7396244 0.7642973 0.8857255 0.9054262 #> [340,] 0.26385543 0.4138580 0.4591137 0.4841722 0.4971807 0.5357776 0.5859066 #> [341,] 0.25334228 0.4108805 0.4143892 0.4465461 0.5185135 0.5862135 0.6011670 #> [342,] 0.23535424 0.3844714 0.3873494 0.4871865 0.5377632 0.5901825 0.6002112 #> [343,] 0.49333622 0.5099957 0.5933300 0.6932422 0.7805514 0.7853750 0.9455148 #> [344,] 0.42777114 0.4942371 0.4996934 0.5374261 0.5378361 0.5491287 0.5572177 #> [345,] 0.43543452 0.4731234 0.5097656 0.5154537 0.5501798 0.5601731 0.5648554 #> [346,] 0.27816143 0.2911331 0.3092625 0.4558091 0.6182421 0.6550839 0.6832576 #> [347,] 0.31133296 0.5416196 0.5924440 0.5951297 0.6042996 0.6043597 0.6051760 #> [348,] 0.32560846 0.4348900 0.5081217 0.5956861 0.7277149 0.8389705 0.8713819 #> [349,] 0.27110632 0.2736122 0.3717283 0.4193687 0.4696581 0.5124989 0.5188817 #> [350,] 0.46804512 0.5862584 0.6132736 0.6300291 0.6931258 0.7347957 0.8070378 #> [351,] 0.59930178 0.6040936 0.6243774 0.7537008 0.8512212 0.8618755 0.8767726 #> [352,] 0.72695182 0.8925216 1.0102435 1.0211662 1.0279754 1.0329852 1.2980993 #> [353,] 0.31170307 0.6374938 0.7231658 0.8318084 0.9315260 0.9454788 1.0235594 #> [354,] 0.47014037 0.5311183 0.5807093 0.5893542 0.6192480 0.6478061 0.6894734 #> [355,] 0.31605501 0.5687865 0.6450369 0.6562205 0.6602688 0.6698618 0.6733962 #> [356,] 0.21566331 0.3844714 0.4404892 0.4961319 0.5078930 0.5369264 0.5770353 #> [357,] 0.44777486 0.5099957 0.5576428 0.6046208 0.6613447 0.6683092 0.6720861 #> [358,] 0.44599817 0.5609735 0.7096210 0.8861194 0.8862931 0.8908547 0.9431895 #> [359,] 0.59854713 0.7551560 0.7975922 0.8340979 0.9488876 0.9678762 1.0104143 #> [360,] 0.69343238 0.8115715 0.8518886 0.8595648 0.8660315 0.9372885 1.0002448 #> [361,] 0.18945147 0.3203283 0.3361130 0.3448560 0.3493174 0.3777877 0.4662042 #> [362,] 0.48657110 0.6705820 0.7001198 0.7362744 0.8745113 0.9834923 0.9946699 #> [363,] 0.31644694 0.5156924 0.6910260 0.7869916 0.8203473 0.8254108 0.8631331 #> [364,] 0.57077554 0.6313865 0.6719993 0.6959316 0.7819634 0.8589755 0.8680502 #> [365,] 0.58735280 0.5874356 0.6407729 0.6911030 0.7000366 0.7373071 0.7389704 #> [366,] 0.28454807 0.3498404 0.3726540 0.3987329 0.4167784 0.4767417 0.4883674 #> [367,] 0.24909537 0.6217602 0.8683734 0.9142125 0.9621563 0.9622823 0.9941056 #> [368,] 0.20121330 0.2632861 0.2991627 0.3697308 0.4134017 0.4259888 0.5201796 #> [369,] 0.24136134 0.6594240 0.6920199 0.7117756 0.7880136 0.8037376 0.8159284 #> [370,] 0.49568273 0.6052306 0.6221072 0.6234920 0.6700591 0.7000754 0.7869916 #> [371,] 0.47399983 0.6625547 0.7281672 0.7694525 0.7743539 0.8051282 0.8220837 #> [372,] 0.36567019 0.4189086 0.5234874 0.5771078 0.5944776 0.5951297 0.7530624 #> [373,] 0.18460255 0.2060190 0.3782162 0.3791834 0.4426923 0.4612184 0.4794289 #> [374,] 0.46500636 0.5511406 0.5911722 0.5958814 0.6242367 0.6417307 0.6562524 #> [375,] 0.30753941 0.5299665 0.5805937 0.5926426 0.6214401 0.6687676 0.7171484 #> [376,] 0.58633486 0.6239548 0.6599681 0.6648714 0.6745910 0.7043262 0.7398995 #> [377,] 0.50763829 0.5663951 0.6228037 0.7147886 0.7307823 0.7430718 0.7822892 #> [378,] 0.30361897 0.3430907 0.5306958 0.5863829 0.6143961 0.6843397 0.7215748 #> [379,] 0.62529285 0.9373032 0.9589361 0.9839291 1.0569027 1.1136162 1.1334750 #> [380,] 0.31004980 0.6990266 0.9175304 1.0122607 1.1262807 1.2133086 1.2242808 #> [381,] 0.49568273 0.5961214 0.6232368 0.6734077 0.8202901 0.8360364 0.8509438 #> [382,] 0.31083119 0.4828926 0.4899935 0.5448074 0.5461205 0.5871392 0.7828199 #> [383,] 0.33628768 0.5511406 0.5918048 0.6436058 0.6527433 0.6718151 0.7163910 #> [384,] 0.44077776 0.5411184 0.6801610 0.7706525 0.7962910 0.8294079 0.8335637 #> [385,] 0.15604009 0.4762362 0.5680078 0.5814557 0.6462597 0.6486402 0.6494302 #> [386,] 0.38532828 0.4359686 0.5209098 0.5689635 0.5757741 0.5904509 0.5991853 #> [387,] 0.33470661 0.3647560 0.5047202 0.5630189 0.5689635 0.5829721 0.5891104 #> [388,] 0.65667184 0.6750756 0.6775991 0.7616078 0.7726849 0.9088996 0.9411035 #> [389,] 0.31575585 0.5786936 0.6070519 0.6149352 0.7121295 0.7450731 0.7560740 #> [390,] 0.40636897 0.4379580 0.4465461 0.5390755 0.5909128 0.5998869 0.6395035 #> [391,] 0.71637391 0.9092624 0.9917192 1.0071221 1.0974428 1.1297508 1.1602162 #> [392,] 0.51834711 0.5505231 0.5846558 0.5926610 0.7513978 0.7774382 0.7794280 #> [393,] 0.14605421 0.6075121 0.6775991 0.7048257 0.7444487 0.7576389 0.8104532 #> [394,] 0.46638959 0.5294214 0.5480739 0.6234146 0.6267325 0.6959634 0.7060311 #> [395,] 1.04920444 1.1822441 1.2197848 1.3257101 1.3857820 1.3957540 1.3989331 #> [396,] 0.50074816 0.9368811 1.0471965 1.0540369 1.0659909 1.0825885 1.0936585 #> [397,] 0.35233048 0.3636660 0.4969829 0.5377632 0.5908810 0.6138392 0.7085501 #> [398,] 0.33018724 0.5976214 0.6068353 0.6865432 0.7154680 0.7209059 0.7564411 #> [399,] 0.32685154 0.3821192 0.5760403 0.6261190 0.6692866 0.7112562 0.7409202 #> [400,] 0.99219177 1.0147922 1.1050029 1.1439902 1.2163210 1.2301288 1.2718061 #> [401,] 0.50067478 0.5271013 0.5735262 0.6820610 0.6876870 0.7728214 0.7903175 #> [402,] 0.61061623 0.6870153 0.7093132 0.7347957 0.8417935 0.9099727 0.9207612 #> [403,] 0.13118949 0.5519855 0.5731555 0.6801153 0.8020988 0.8270089 0.9160206 #> [404,] 0.35945348 0.3929751 0.4128428 0.4949872 0.5282306 0.6033871 0.6078198 #> [405,] 0.47216259 0.6429094 0.8313961 0.9559077 1.1019036 1.1677363 1.2491498 #> [406,] 0.52840771 0.5306958 0.5440199 0.5557236 0.5803419 0.5863349 0.5922188 #> [407,] 0.18051066 0.4002402 0.5468375 0.5576100 0.5873958 0.6803568 0.7861184 #> [408,] 0.42982120 0.4931298 0.5219711 0.5226653 0.5355817 0.5618288 0.6011145 #> [409,] 0.23307038 0.5096766 0.5400055 0.5411882 0.5479479 0.5729807 0.5868046 #> [410,] 0.22690537 0.3102786 0.4061678 0.4906205 0.5086148 0.5583424 0.6063374 #> [411,] 0.59354400 0.6070115 0.6145340 0.6739434 0.6935096 0.6939493 0.7555520 #> [412,] 0.45311652 0.4835465 0.6051837 0.6545420 0.6795726 0.6883190 0.7681392 #> [413,] 0.52874860 0.5485678 0.5557123 0.5716924 0.6452023 0.7073426 0.7129012 #> [414,] 0.59854713 0.7433678 0.7931495 1.1149152 1.1309300 1.2472189 1.2511145 #> [415,] 1.00915273 1.0397144 1.0531656 1.0897849 1.1299244 1.2105582 1.2705682 #> [416,] 0.44685385 0.4802813 0.4841724 0.5951493 0.6011145 0.6486402 0.6837553 #> [417,] 0.39066227 0.4058263 0.5686761 0.5893919 0.7694337 0.7836191 0.8194804 #> [418,] 0.30577483 0.4465631 0.5118977 0.5633698 0.5763036 0.6474377 0.6518129 #> [419,] 0.33565738 0.3413110 0.3634738 0.3796179 0.3857744 0.4868420 0.5030333 #> [420,] 0.26385543 0.3050787 0.3099595 0.4493096 0.5142780 0.5426927 0.5432273 #> [421,] 0.72981016 0.8191095 1.0391618 1.0635243 1.1439234 1.1497564 1.1579309 #> [422,] 0.77901084 0.8141714 0.8880066 0.9686581 0.9776988 0.9981969 1.0372120 #> [423,] 0.17188245 0.3102722 0.4068494 0.4948228 0.5050988 0.5092787 0.5166929 #> [424,] 0.58021695 0.6560988 0.8278941 0.8310321 0.8902744 0.9046550 0.9497534 #> [425,] 0.50074816 0.7472879 0.7886271 0.8055432 0.8072300 0.8322109 0.8544600 #> [426,] 0.65841128 0.7551560 0.8793542 0.8990536 0.9343049 0.9647801 1.0091527 #> [427,] 0.40360403 0.4477749 0.4521097 0.5402954 0.5465505 0.6198224 0.6646068 #> [428,] 0.47869309 0.9571049 1.1259877 1.1363119 1.2431542 1.2535680 1.2883587 #> [429,] 0.34027172 0.3519596 0.3895963 0.5030022 0.5741917 0.5803987 0.7337276 #> [430,] 0.21863794 0.5792501 0.5799310 0.6055756 0.6098908 0.6619151 0.7052326 #> [431,] 0.42262902 0.5161931 0.5211340 0.5809020 0.6295294 0.6742100 0.7002335 #> [432,] 0.57267127 0.5730397 0.6557861 0.6854213 0.6911311 0.6957793 0.7067249 #> [433,] 0.24866835 0.2996319 0.4200978 0.4258462 0.4310830 0.5603310 0.5667096 #> [434,] 0.39780376 0.4386172 0.4797447 0.4874703 0.4933392 0.5682878 0.6303169 #> [435,] 0.49112284 0.6390106 0.6759421 0.7114507 0.7823791 0.7902742 0.7998991 #> [436,] 0.36738405 0.4135458 0.5167208 0.5334669 0.5473633 0.5482934 0.5957012 #> [437,] 0.29571554 0.3634738 0.3637507 0.3814911 0.3871199 0.3876728 0.4539900 #> [438,] 0.49119061 0.7828531 0.8027938 0.8172419 0.9485036 1.0184482 1.0185377 #> [439,] 0.83437551 0.9571049 1.0803707 1.1735669 1.1976571 1.2111689 1.3843671 #> [440,] 0.24289334 0.3120646 0.3537647 0.3949626 0.4134017 0.4214355 0.4319502 #> [441,] 0.20289628 0.6237566 0.6844604 0.7369896 0.8385844 0.8803578 0.8962578 #> [442,] 0.75123324 0.9219082 1.0496610 1.1107187 1.1215952 1.1425865 1.1637278 #> [443,] 0.24545491 0.4625359 0.4660731 0.4949305 0.5009155 0.5330862 0.5507820 #> [444,] 0.67768660 0.7038044 0.7892187 0.8172974 0.8343469 0.8612254 0.8907011 #> [445,] 1.22623347 1.2420842 1.3854303 1.3953893 1.4621698 1.5357017 1.5569942 #> [446,] 0.47289305 0.6145340 0.6684878 0.6760726 0.6819878 0.6879263 0.6969249 #> [447,] 1.45228667 1.6043613 1.6490182 1.8686264 1.8838568 1.8952957 1.9006795 #> [448,] 0.57243631 0.7067615 0.8611921 1.0199524 1.0782641 1.1621953 1.1898859 #> [449,] 0.24863800 0.3598209 0.3796937 0.4948503 0.5142888 0.5173598 0.5306004 #> [450,] 0.44366791 0.7192560 1.2657779 1.2739660 1.3403521 1.3811454 1.5902023 #> [451,] 0.50167997 0.5237082 0.5300692 0.5317664 0.5451624 0.5490896 0.5717995 #> [452,] 0.64144872 0.8653057 1.1236420 1.2908359 1.3073813 1.3171347 1.3352933 #> [453,] 0.40963634 0.4797447 0.5306961 0.6045138 0.6223325 0.6235444 0.6778300 #> [454,] 0.57965193 0.7163739 0.7299407 0.7894505 0.9358348 1.0104482 1.0190099 #> [455,] 0.33731955 0.3678879 0.3792666 0.4171944 0.5020450 0.5062591 0.5226281 #> [456,] 0.09697109 0.3223750 0.3544125 0.4270109 0.4468538 0.5355817 0.5816812 #> [457,] 0.26564505 0.7653629 0.8236488 0.9174340 0.9267543 0.9272176 0.9374222 #> [458,] 0.48470066 0.5052092 0.5596495 0.6027456 0.6594966 0.6607136 0.6997558 #> [459,] 0.16282452 0.2891480 0.4182400 0.4340449 0.4996934 0.5051723 0.5113368 #> [460,] 0.44060061 0.4449831 0.4557764 0.4573444 0.4681588 0.5077163 0.5246272 #> [461,] 0.27996485 0.5602452 0.6143961 0.6219634 0.6801153 0.7140490 0.7973198 #> [462,] 0.70380443 0.8241613 1.1755510 1.1950636 1.2795708 1.3081447 1.3256072 #> [463,] 0.26740534 0.3117459 0.4585147 0.4678582 0.5209490 0.5859090 0.5880765 #> [464,] 0.52166448 0.5273160 0.6314860 0.6347717 0.6591848 0.6602226 0.6829279 #> [465,] 0.46804512 0.6870153 0.7545626 0.7706474 0.7762396 0.8118278 0.9270370 #> [466,] 0.31004980 0.7137102 0.8195100 0.8730117 0.9593647 1.0354425 1.1030984 #> [467,] 0.29292073 0.3314803 0.4310830 0.4425622 0.4561757 0.5497865 0.5655038 #> [468,] 0.27981317 0.3631803 0.3758961 0.4363955 0.4510979 0.4921939 0.5126823 #> [469,] 0.34390429 0.3668414 0.4200978 0.5247714 0.5707832 0.5720249 0.6123558 #> [470,] 0.21164504 0.2930111 0.3169707 0.3361130 0.3613120 0.3687756 0.3733389 #> [471,] 0.20417561 0.4786287 0.5084755 0.5140385 0.5410413 0.5428946 0.6918404 #> [472,] 0.83587974 0.8890259 0.9255049 0.9664203 1.0821634 1.0852990 1.1843941 #> [473,] 0.76058958 0.9090353 0.9256838 0.9697771 1.0202062 1.0394324 1.0615033 #> [474,] 0.40542497 0.4449027 0.4514099 0.5119779 0.5300852 0.5545604 0.5947904 #> [475,] 0.87266945 1.0586150 1.0839485 1.0860132 1.1040333 1.1843674 1.3202047 #> [476,] 0.39915058 0.4044690 0.4656943 0.5084248 0.5287486 0.5500657 0.6266317 #> [477,] 0.51479463 0.5694424 0.6092113 0.6469373 0.6859729 0.6948786 0.6948917 #> [478,] 0.33332358 0.4540222 0.6165999 0.6311446 0.6354071 0.6525144 0.6576091 #> [479,] 0.32348784 0.4167936 0.4622053 0.4756200 0.4828435 0.4856521 0.5458660 #> [480,] 0.20774666 0.2368156 0.3148796 0.3318808 0.4167936 0.5171208 0.5223489 #> [481,] 0.64265530 0.6615948 0.6939049 0.7691026 0.7837144 0.8313751 0.8374920 #> [482,] 0.31191358 0.5115595 0.5186912 0.5568903 0.5658674 0.5805367 0.6526331 #> [483,] 0.36871174 0.4752569 0.4946232 0.5832266 0.6778089 0.6828681 0.7059491 #> [484,] 0.61434841 0.6643837 0.7710334 0.8202840 0.8318084 1.0382065 1.1255773 #> [485,] 0.32282065 0.4160175 0.4522604 0.4870973 0.5622388 0.5837745 0.6021089 #> [486,] 0.69902660 0.9255049 0.9593647 0.9603065 1.0848989 1.1964572 1.2806124 #> [487,] 0.36583627 0.4312480 0.5921655 0.6179367 0.6290988 0.6688491 0.6798061 #> [488,] 0.48914700 0.5809788 0.5860091 0.6228037 0.6670446 0.7151664 0.7331312 #> [489,] 0.54426886 0.5818935 0.6092135 0.6802616 0.7296064 0.7703605 0.7863003 #> [490,] 0.64144872 1.1515432 1.2574863 1.3068810 1.3621837 1.4400532 1.5037535 #> [491,] 0.68609343 0.6878115 1.0190392 1.1752675 1.2500793 1.4017630 1.4175909 #> [492,] 0.19996637 0.2641698 0.4474902 0.4658086 0.5312450 0.5522147 0.5635916 #> [493,] 0.55034352 0.6327033 0.7231658 0.9630081 1.1152965 1.1166193 1.2305216 #> [494,] 0.44016974 0.7307823 0.8092806 0.8182231 0.8593062 0.8993036 0.9097510 #> [495,] 0.27017635 0.3699957 0.4096830 0.4512306 0.4612165 0.4628703 0.4941352 #> [496,] 0.73232324 0.7710468 0.8167852 0.8925772 0.9230566 0.9272176 0.9380741 #> [497,] 0.35942336 0.4049898 0.4334802 0.4913438 0.5031696 0.5197681 0.5405174 #> [498,] 1.03943243 1.0721897 1.0905577 1.1089035 1.1314227 1.1912541 1.2253874 #> [499,] 0.27072483 0.3865848 0.4292685 0.5141644 0.5370477 0.5482934 0.5624287 #> [500,] 0.37642480 0.3978315 0.3998387 0.5439209 0.5668593 0.6262270 0.6268746 #> [501,] 0.47216259 0.5423907 0.7833552 0.9727131 1.1413017 1.1811073 1.2372009 #> [502,] 0.34754640 0.3576066 0.3862040 0.3874743 0.4431694 0.4952917 0.5221971 #> [503,] 1.25593536 1.3176629 1.3585019 1.3851334 1.3869811 1.4232511 1.4684821 #> [504,] 0.41890633 0.4389962 0.4798121 0.6254812 0.6718151 0.6731796 0.7411969 #> [505,] 0.78545275 0.8847553 1.0815974 1.1519782 1.3383411 1.4112341 1.5026801 #> [506,] 0.37644458 0.5334556 0.5487723 0.7187771 0.7560823 0.7745370 0.9103913 #> [507,] 0.70927902 0.7398905 0.8395667 0.8904261 0.8994460 0.9188252 0.9655937 #> [508,] 0.51459128 0.6009983 0.6357531 0.6474427 0.6819256 0.7059153 0.7111395 #> [509,] 0.43697204 0.4958141 0.5626203 0.5694424 0.5959871 0.6326815 0.7707595 #> [510,] 0.40476741 0.5652670 0.5761168 0.6490482 0.6917122 0.7084974 0.7534034 #> [511,] 0.82162781 0.9675018 0.9981969 1.0832153 1.2422757 1.2847455 1.2862323 #> [512,] 0.30085979 0.4361772 0.5251689 0.5338096 0.5823034 0.6650514 0.7381164 #> [513,] 0.29301114 0.3731118 0.4421991 0.4486907 0.4543662 0.4699835 0.4710620 #> [514,] 0.29292073 0.4098502 0.4798583 0.5378361 0.5423993 0.5514421 0.5667096 #> [515,] 0.26793281 0.2711063 0.3820295 0.3889879 0.4171944 0.4261615 0.4433985 #> [516,] 0.27028389 0.3415438 0.3734846 0.3840070 0.4426923 0.4609179 0.4715471 #> [517,] 0.30866684 0.3234878 0.3318808 0.4254990 0.4446930 0.4488586 0.4648980 #> [518,] 0.07991648 0.4038128 0.4762512 0.5911722 0.6350611 0.6912811 0.6981930 #> [519,] 0.37025403 0.3944722 0.4546167 0.5061000 0.5270976 0.5509830 0.5810267 #> [520,] 0.27981317 0.4053421 0.4202105 0.4315446 0.5017654 0.5127194 0.5205824 #> [521,] 0.34512046 0.4042546 0.4521097 0.5453375 0.5888239 0.6046208 0.6074047 #> [522,] 0.13879613 0.3419732 0.3665608 0.4178758 0.4448724 0.4893759 0.5030333 #> [523,] 0.54363676 0.5771780 0.5962627 0.7278883 0.8893138 0.9051578 0.9270370 #> [524,] 0.33184739 0.3507093 0.3598209 0.5017654 0.5346923 0.5475948 0.5485160 #> [525,] 0.26143033 0.3439043 0.3928074 0.4258462 0.5064131 0.5837491 0.7095298 #> [526,] 0.28883648 0.4871865 0.5237486 0.5480739 0.6635628 0.6831837 0.6882478 #> [527,] 0.77901084 1.1327007 1.2185269 1.2789434 1.2862323 1.3177358 1.4660522 #> [528,] 0.38801771 0.3950953 0.4755505 0.5452861 0.5768426 0.6079400 0.6224556 #> [529,] 0.27912903 0.3436373 0.4348900 0.6630490 0.6776026 0.7560740 0.8175933 #> [530,] 0.45669225 0.5905829 0.6098908 0.8362491 0.8714916 0.8802147 0.9061382 #> [531,] 0.36687170 0.4117716 0.4755552 0.5197681 0.5227071 0.5425355 0.5607744 #> [532,] 0.33962879 0.3890705 0.4053346 0.5261169 0.6142398 0.6576187 0.6897535 #> [533,] 0.73738653 0.8103618 0.8189857 0.8284993 0.8510004 0.8795685 0.8951109 #> [534,] 0.17875079 0.3396288 0.3585382 0.5533974 0.5907733 0.6179367 0.6273748 #> [535,] 0.32500550 0.3266515 0.3547841 0.3792344 0.4175321 0.4422283 0.4517481 #> [536,] 0.33064403 0.3969425 0.5079901 0.5199025 0.5263975 0.5330862 0.5579990 #> [537,] 0.86476367 0.9477399 0.9832344 1.0586136 1.2534981 1.3615438 1.3869811 #> [538,] 1.51838574 1.6109467 1.7708302 1.8085940 1.9709012 1.9897454 2.1130770 #> [539,] 0.31191358 0.4145507 0.4342199 0.5136025 0.5556632 0.5776815 0.5888827 #> [540,] 0.48520405 0.6145141 0.9431510 0.9827255 1.0118221 1.0709103 1.1359482 #> [541,] 0.40472014 0.4864877 0.6390878 0.6591848 0.7155856 0.7660701 0.7727693 #> [542,] 0.76364702 0.7853750 0.8647637 1.0036165 1.0303411 1.0931007 1.0985984 #> [543,] 0.58070930 0.6279492 0.6657246 0.6752513 0.6872129 0.7148179 0.7352546 #> [544,] 0.61975077 0.9142557 0.9437180 1.0027772 1.0378565 1.1022966 1.2146529 #> [545,] 0.60396993 0.8556707 0.8925672 0.9236600 0.9622823 0.9663578 0.9743262 #> [546,] 0.12046345 0.4407778 0.6910868 0.7058085 0.7183874 0.7288252 0.7548969 #> [547,] 1.17888285 1.2565012 1.3092816 1.3485371 1.3592511 1.3868103 1.3965006 #> [548,] 0.55249129 0.5894451 0.6794550 0.6825160 0.7403855 0.7499781 0.7685453 #> [549,] 0.40476741 0.5235680 0.5698808 0.6055756 0.6478767 0.7933394 0.8048888 #> [550,] 0.59574307 0.6550834 0.7081091 0.8176899 0.8303848 0.8308750 0.8356224 #> [551,] 0.36883720 0.3790429 0.4196418 0.4813874 0.6354071 0.7087893 0.7210488 #> [552,] 0.22690537 0.3318503 0.3474324 0.3919076 0.5672823 0.5812286 0.5816418 #> [553,] 0.25774459 0.3120066 0.5073320 0.6759421 0.6994948 0.7042752 0.7059491 #> [554,] 0.48465152 0.5241100 0.5428946 0.5505425 0.5685634 0.5802675 0.6282014 #> [555,] 0.28688126 0.3224021 0.4224186 0.4696288 0.4751730 0.4799773 0.4841708 #> [556,] 0.42682207 0.4577456 0.5079901 0.5520819 0.6207918 0.6501106 0.6740800 #> [557,] 0.51817417 0.5442637 0.5868762 0.6314365 0.6477322 0.6781473 0.6986159 #> [558,] 0.19513800 0.3253874 0.3978315 0.5390598 0.5714364 0.5780151 0.6273748 #> [559,] 0.60147181 0.6422321 0.6654582 0.7315526 0.7750984 0.8343469 0.8389705 #> [560,] 0.58039868 0.6049625 0.6840995 0.7140941 0.7261054 0.7437403 0.7692705 #> [561,] 0.56407060 0.5846558 0.8028055 0.8462224 0.8719151 0.8746693 0.8830011 #> [562,] 0.34273538 0.3841699 0.4105118 0.4383739 0.4858712 0.5065422 0.5251689 #> [563,] 0.44366791 0.7238057 1.1969462 1.3358588 1.3543267 1.3886413 1.5250261 #> [564,] 0.63184141 0.7544464 0.7638342 0.8534673 0.9591824 0.9823241 0.9860083 #> [565,] 0.53892468 0.6336688 0.8073962 0.8078945 0.9509165 0.9673514 1.0400164 #> [566,] 1.40517342 1.4799383 1.5337433 1.6619145 1.6645287 1.6742392 1.6770461 #> [567,] 0.40425462 0.5054819 0.5465505 0.6699691 0.6847809 0.7834679 0.7970432 #> [568,] 0.29230462 0.2969847 0.3602116 0.3634108 0.3904106 0.5878294 0.6034387 #> [569,] 0.41354584 0.4359867 0.4786287 0.5156658 0.5329834 0.5480443 0.5491726 #> [570,] 0.40415075 0.6027456 0.6301278 0.6499022 0.6650514 0.7953267 0.8599447 #> [571,] 1.01472574 1.1123529 1.1923692 1.3073333 1.3876238 1.5133920 1.5342320 #> [572,] 1.41605561 1.5498688 1.7465202 1.7507080 1.8019820 1.8112516 1.8627146 #> [573,] 0.59337182 0.6013404 0.6559592 0.6794917 0.7073037 0.7472879 0.7559327 #> [574,] 0.20601898 0.2138112 0.2836252 0.3734846 0.3993061 0.4641697 0.5026104 #> [575,] 0.56988075 0.5799310 0.6264804 0.6338821 0.7155595 0.7585791 0.8802147 #> [576,] 0.24010441 0.3451244 0.3776825 0.4448724 0.5067279 0.5093840 0.5153017 #> [577,] 0.44522840 0.4637061 0.5803419 0.6279280 0.7888915 0.8112898 0.8401171 #> [578,] 0.46177516 0.5032684 0.5560926 0.6384115 0.6558610 0.6738408 0.6795696 #> [579,] 0.25183425 0.4369720 0.4405283 0.4724317 0.6092113 0.6395914 0.6836550 #> [580,] 0.55034352 0.8932676 0.9048609 0.9122109 0.9204655 1.0020373 1.0966724 #> [581,] 0.27957885 0.4029978 0.5986835 0.6859729 0.7006915 0.8743741 0.9495803 #> [582,] 0.46009541 0.5295352 0.5377479 0.5922188 0.5985136 0.6594093 0.6648714 #> [583,] 0.16973124 0.3884705 0.4261615 0.4953801 0.5302664 0.6032451 0.6088218 #> [584,] 0.36096082 0.4292685 0.4315726 0.5161931 0.5861869 0.6151879 0.6519473 #> [585,] 0.62240532 0.8313961 0.8539695 1.0598134 1.0899057 1.1185382 1.1891441 #> [586,] 0.53355768 0.6586069 0.7373932 0.8106935 0.8137303 0.8560083 0.8586241 #> [587,] 0.61434841 0.6742504 0.7758032 0.8632298 0.9866009 0.9946745 1.0171249 #> [588,] 0.50994700 0.7137102 0.7281672 0.8292282 0.8709165 0.9152130 0.9175304 #> [589,] 0.35442371 0.4167385 0.4613995 0.4975055 0.5103887 0.7466410 0.7591619 #> [590,] 0.54835213 0.7573177 0.7731458 0.7745561 0.7955375 0.8407062 0.8494256 #> [591,] 0.48960202 0.5124989 0.5754902 0.5816418 0.5968568 0.6040564 0.6065801 #> [592,] 0.40807386 0.5852049 0.5944061 0.6151464 0.6305765 0.6354666 0.6405491 #> [593,] 0.50451422 0.5435610 0.8748761 0.9055023 1.0413266 1.0492853 1.1193411 #> [594,] 0.60941048 0.8286666 0.8362473 0.8475980 0.8652686 0.9248949 0.9401446 #> [595,] 1.02764981 1.0675792 1.1726157 1.1737706 1.2117283 1.2122693 1.2136554 #> [596,] 0.48648770 0.6071182 0.6077914 0.6451965 0.6664912 0.6796197 0.6990176 #> [597,] 0.31537054 0.4401888 0.7049388 0.7611104 0.7926868 0.8169729 0.8347674 #> [598,] 0.33478924 0.3535666 0.3921772 0.3934919 0.4061885 0.4270109 0.4683849 #> [599,] 0.29403821 0.4011936 0.4167385 0.4725982 0.5336573 0.5487884 0.5762095 #> [600,] 0.34154377 0.3776825 0.4150283 0.4241536 0.4626339 0.4811862 0.5238636 #> [601,] 0.29062669 0.3969090 0.4038128 0.6562524 0.6739732 0.6791804 0.7069239 #> [602,] 0.36985508 0.4767623 0.6505008 0.6659052 0.6908772 0.6949283 0.7074873 #> [603,] 0.46510675 0.5777555 0.6102530 0.6860259 0.6954669 0.8290772 0.8351042 #> [604,] 0.58189352 0.6589000 0.6686780 0.6893716 0.8203466 0.8461130 0.8599066 #> [605,] 0.28459575 0.3376415 0.4192009 0.5731440 0.6105425 0.6149352 0.6214294 #> [606,] 0.11608719 0.3638735 0.3792344 0.3799525 0.3879428 0.4390372 0.4585823 #> [607,] 0.80719987 0.8293724 1.0997222 1.2354086 1.3177878 1.3927904 1.4089550 #> [608,] 0.70018889 1.2503321 1.2780366 1.3383411 1.4643526 1.5313353 1.5387897 #> [609,] 0.54703206 0.6326815 0.7559557 0.8459306 0.8506859 0.8917204 0.9307966 #> [610,] 0.27361090 0.3943047 0.4335340 0.5142888 0.5265425 0.5371743 0.5416264 #> [611,] 0.82697259 0.8951109 0.9285000 0.9448010 1.0888297 1.2039308 1.2067116 #> [612,] 0.30507871 0.3273770 0.4344419 0.4591137 0.4751239 0.4870335 0.5101134 #> [613,] 0.54105950 0.7512295 0.8366602 0.9077201 1.0226334 1.0241518 1.1789045 #> [614,] 0.32685154 0.4467783 0.6437903 0.6957793 0.7111202 0.7504098 0.7703679 #> [615,] 0.21392826 0.2641698 0.4380816 0.4557797 0.5332089 0.5424867 0.5470235 #> [616,] 0.16973124 0.3613998 0.4432428 0.4559979 0.5624052 0.5760403 0.6043345 #> [617,] 0.54910784 0.5686761 0.6911297 0.6945931 0.7177089 0.7198688 0.7597752 #> [618,] 0.21566331 0.3873494 0.4141784 0.4209737 0.4946848 0.5121898 0.5441918 #> [619,] 0.31174585 0.3208248 0.3302222 0.3356392 0.3359325 0.3493520 0.4049898 #> [620,] 0.48416998 0.6688491 0.6699654 0.7330502 0.7655117 0.7961905 0.8147810 #> [621,] 0.54243723 0.5634303 0.5645729 0.5921655 0.5974787 0.6009983 0.6831728 #> [622,] 0.44986007 0.6802616 0.6893716 0.8791343 0.8939719 0.9821576 0.9837626 #> [623,] 0.58665844 0.8052953 0.8582436 0.9003027 0.9672961 0.9803843 1.0155728 #> [624,] 0.24136134 0.5790625 0.6168309 0.6571811 0.6682516 0.7423945 0.7494334 #> [625,] 0.52631572 0.6946062 0.8203172 0.8286666 0.8862931 1.0503166 1.0956282 #> [626,] 0.28362515 0.3572052 0.3782162 0.4301535 0.4609179 0.4736896 0.4951976 #> [627,] 0.34844429 0.4708596 0.4950304 0.5364844 0.5959543 0.6394717 0.6509156 #> [628,] 0.70116622 0.8738729 0.9232706 0.9257615 0.9500668 1.0094909 1.0283225 #> [629,] 0.41787351 0.5240484 0.6101186 0.6395927 0.6518593 0.6559082 0.6670681 #> [630,] 0.34027172 0.3483590 0.5775658 0.5876252 0.6204556 0.6855360 0.7085435 #> [631,] 0.48183801 0.7126242 0.7467861 0.7836029 0.8784556 0.8980112 0.8987570 #> [632,] 0.19419128 0.2839768 0.3802278 0.4279197 0.4645395 0.4706502 0.4918564 #> [633,] 0.23167235 0.4764203 0.4957492 0.5487723 0.5527083 0.5540839 0.6585077 #> [634,] 0.37995251 0.4259055 0.4356021 0.4399584 0.4510979 0.5149004 0.6219822 #> [635,] 0.39363928 0.4841722 0.5142780 0.5335577 0.5623835 0.5888239 0.6495236 #> [636,] 0.63314368 1.0503016 1.1153360 1.1235266 1.1364532 1.1380188 1.1802990 #> [637,] 0.85546966 0.8595941 0.8765175 0.8949732 0.9058662 0.9230566 0.9535782 #> [638,] 0.54449025 1.2893829 1.4274326 1.4313215 1.4664327 1.6344595 1.6742548 #> [639,] 0.46645854 0.4802830 0.6528180 0.6667336 0.6717098 0.6732536 0.6761374 #> [640,] 0.35965794 0.4701404 0.5471553 0.5762095 0.6405376 0.6763833 0.6825840 #> [641,] 0.43598666 0.4381048 0.5115222 0.5120130 0.5410413 0.5505425 0.5846763 #> [642,] 0.25334228 0.5324512 0.5390755 0.5392326 0.5592968 0.5691145 0.5746819 #> [643,] 0.36595529 0.3844797 0.4811879 0.5233490 0.5263663 0.5361204 0.5486290 #> [644,] 0.34235251 0.5245471 0.5290194 0.5560926 0.5857627 0.6764634 0.6833624 #> [645,] 0.36347243 0.4590754 0.6295294 0.6487658 0.6860259 0.7038720 0.7096475 #> [646,] 0.20395837 0.4657923 0.4935208 0.5361204 0.5476945 0.5932247 0.6263767 #> [647,] 0.29910942 0.4783190 0.5909218 0.6377302 0.6388986 0.7084974 0.7317710 #> [648,] 0.38519494 0.4323350 0.5596796 0.6020497 0.6978972 0.7114342 0.7876461 #> [649,] 0.35376145 0.4160175 0.4224186 0.4543662 0.4552867 0.4556376 0.4574192 #> [650,] 1.26516795 1.2810324 1.5369662 1.5829576 1.5865118 1.6985075 1.7013157 #> [651,] 0.30338965 0.3409042 0.3426225 0.3523410 0.3687144 0.4049237 0.4143892 #> [652,] 0.38772521 0.4232959 0.5335816 0.5549221 0.5569106 0.6105425 0.6243774 #> [653,] 0.37150479 0.4389962 0.4868420 0.4953717 0.5373714 0.5376232 0.5427501 #> [654,] 0.78346792 0.7997734 0.8752845 0.9425318 0.9635824 0.9930162 0.9941969 #> [655,] 0.49333622 0.4946115 0.5402954 0.5576428 0.6074047 0.7881233 0.8216602 #> [656,] 0.81634704 0.8325586 0.9138814 0.9159168 0.9335997 0.9660048 1.0039897 #> [657,] 0.30361897 0.5440199 0.5652880 0.6127630 0.6279280 0.6685404 0.7063750 #> [658,] 0.37644458 0.4764203 0.5026760 0.5916505 0.6111725 0.6610760 0.7162576 #> [659,] 0.46121647 0.4937272 0.6014050 0.6290653 0.6328639 0.7201901 0.7545655 #> [660,] 0.27017635 0.4135228 0.4148534 0.4937272 0.5395340 0.5418916 0.5552143 #> [661,] 0.58739582 0.6725229 0.7993370 0.9048243 0.9329313 0.9839407 1.0221971 #> [662,] 0.41394639 0.6016788 0.6157182 0.6422605 0.6474427 0.6831728 0.7126242 #> [663,] 0.18460255 0.2138112 0.3822591 0.3840070 0.3862574 0.4230495 0.4736896 #> [664,] 0.30072497 0.3464240 0.3802278 0.3995926 0.6015810 0.6372212 0.6519142 #> [665,] 0.30975111 0.3880177 0.4556376 0.5139233 0.5483299 0.5894451 0.6325165 #> [666,] 0.43594864 0.5407081 0.8323526 0.9285000 0.9896595 1.0405765 1.0770914 #> [667,] 0.34452809 0.3600881 0.3892187 0.4049237 0.4952720 0.5409081 0.5506858 #> [668,] 0.25073339 0.2655099 0.3688372 0.4002012 0.5335816 0.5430112 0.5562233 #> [669,] 0.55313581 0.8070900 0.8268404 0.9176893 0.9838827 1.0484415 1.0492853 #> [670,] 0.77684925 0.7780350 0.8705382 0.8738428 0.9277626 0.9402255 0.9558444 #> [671,] 0.62196198 0.6366517 0.6978972 0.8322545 0.8497819 0.9580972 1.0241518 #> [672,] 0.30084255 0.5388117 0.5648963 0.5803478 0.7518248 0.7807733 0.8681542 #> [673,] 0.43749453 0.5505227 0.5672890 0.5687865 0.5735866 0.5894259 0.5947715 #> [674,] 0.24863800 0.3318474 0.4301535 0.4310850 0.4422283 0.4810028 0.4870022 #> [675,] 0.53320894 0.6171614 0.6680559 0.6984509 0.7053176 0.7166298 0.7309727 #> [676,] 0.39983873 0.4405283 0.4797045 0.5156670 0.5388781 0.5728042 0.6942725 #> [677,] 0.35368533 0.4474790 0.4496334 0.4678426 0.6593369 0.7176423 0.7300486 #> [678,] 0.39190757 0.4899965 0.5306228 0.5583424 0.6397865 0.6539415 0.6601470 #> [679,] 0.42631331 0.4291071 0.5682878 0.6235444 0.6862337 0.7036078 0.7612428 #> [680,] 0.40020213 0.4387530 0.4914823 0.5162458 0.5411882 0.5538449 0.5839871 #> [681,] 0.27824019 0.3971149 0.4167784 0.4673479 0.4958828 0.5184400 0.5692543 #> [682,] 0.44486184 0.5100506 0.5699179 0.5792501 0.5905829 0.6962281 0.6983024 #> [683,] 0.63366877 0.7138283 0.8833182 0.9951903 0.9986345 1.0016824 1.0486325 #> [684,] 0.32908268 0.3829368 0.4572627 0.4617752 0.5499103 0.5675280 0.5688572 #> [685,] 0.47289305 0.4739998 0.6328005 0.6521120 0.6720328 0.6739434 0.7266951 #> [686,] 0.35509133 0.4265314 0.6051751 0.6168309 0.6865512 0.7016635 0.7183189 #> [687,] 0.71885913 0.8323526 0.9055023 0.9176893 0.9448010 1.1334821 1.1536165 #> [688,] 0.51403851 0.5219559 0.5413375 0.5480443 0.6355625 0.6555136 0.6644830 #> [689,] 0.61265766 0.6874574 0.7786590 0.8613076 0.9503610 0.9610233 1.0182848 #> [690,] 0.42653138 0.4625601 0.4763041 0.5893919 0.6858187 0.6941150 0.6977133 #> [691,] 0.29444451 0.3104717 0.4775865 0.5029744 0.5991155 0.6026409 0.6093745 #> [692,] 0.69054547 0.8296649 0.8948670 0.9504654 1.0171249 1.0282789 1.0300253 #> [693,] 0.51757671 0.5368974 0.7315526 0.7389885 0.8092806 0.8729183 0.8828692 #> [694,] 0.21674498 0.2507334 0.4196418 0.4596097 0.5467713 0.5569106 0.6194824 #> [695,] 0.69062254 0.8392936 1.1106780 1.1193411 1.1366575 1.1374524 1.1464533 #> [696,] 0.34682822 0.3859824 0.4531165 0.4946232 0.5408715 0.5927076 0.5948363 #> [697,] 0.95620290 1.1272844 1.1292652 1.3601725 1.4219230 1.4411477 1.4704535 #> [698,] 0.26343145 0.4435184 0.5219604 0.5413950 0.5726195 0.6162140 0.6336426 #> [699,] 0.42701073 0.5527083 0.8069478 0.8241123 0.8512284 0.8574372 0.8688199 #> [700,] 0.36336045 0.4141241 0.4178735 0.4315726 0.5211340 0.6684754 0.6770869 #> [701,] 0.54105950 0.9021926 0.9023072 1.1646467 1.1690400 1.1740738 1.2017255 #> [702,] 0.33332358 0.4941352 0.5491287 0.5514421 0.5823703 0.6171313 0.6328639 #> [703,] 0.31537054 0.4176534 0.6411925 0.6462147 0.7403294 0.7454633 0.7899675 #> [704,] 0.26328614 0.2638343 0.3096327 0.3402142 0.4377764 0.4409665 0.5062397 #> [705,] 0.38149111 0.3966306 0.4026726 0.4178758 0.4513943 0.4525542 0.5153017 #> [706,] 0.15472873 0.3533348 0.3699957 0.3862040 0.4205965 0.4325937 0.5418916 #> [707,] 0.43000173 0.5073444 0.5338096 0.5381579 0.6499022 0.6594966 0.6792359 #> [708,] 0.33323683 0.4416356 0.4746625 0.4969829 0.5978585 0.6048488 0.6156391 #> [709,] 0.60490980 0.6197508 0.6389791 0.6671744 0.6842797 0.8041659 0.8240498 #> [710,] 0.44123648 0.5963301 0.6770869 0.6782984 0.7436061 0.7591996 0.7596100 #> [711,] 0.36738405 0.4432428 0.4953801 0.5027575 0.5266475 0.5653288 0.5719470 #> [712,] 0.44109626 0.5182610 0.8114595 0.8182231 0.8704664 0.8718881 0.8750923 #> [713,] 0.35346968 0.7246401 0.7499065 0.7823791 0.8305809 0.9931664 1.0404170 #> [714,] 0.58893642 0.6124386 0.6788038 0.7691026 0.7834769 0.8118543 0.8310321 #> [715,] 0.66340973 0.8016984 0.8089124 0.8649101 0.8843676 0.9499100 1.0330265 #> [716,] 0.14605421 0.6347718 0.6725681 0.7590693 0.7616078 0.7722215 0.7821952 #> [717,] 0.25735799 0.3537615 0.3695420 0.3777877 0.4214002 0.4252863 0.4281232 #> [718,] 0.33022224 0.3441288 0.4096363 0.4386172 0.4585147 0.5031696 0.5193626 #> [719,] 0.65860686 0.8196058 0.8914782 0.9086368 0.9839407 1.0014516 1.0230460 #> [720,] 0.39509527 0.5139233 0.5447037 0.5524913 0.8080131 0.8155186 0.8215988 #> [721,] 0.55933129 0.6217602 0.6965583 0.7067615 0.7703424 0.8276266 0.8368484 #> [722,] 0.63580413 0.7688035 0.8106643 0.9246408 0.9380414 0.9439554 1.0680439 #> [723,] 0.46256011 0.4801519 0.5622388 0.6051751 0.6279492 0.6551946 0.6571811 #> [724,] 0.34717912 0.4045419 0.5436368 0.6388986 0.7033968 0.7442621 0.7580649 #> [725,] 0.51181402 0.5664642 0.6071722 0.6465218 0.6607136 0.6631087 0.6820446 #> [726,] 0.75122951 0.7833552 0.8497819 0.8599066 0.8806943 0.9128641 0.9215414 #> [727,] 0.22735807 0.5369339 0.5880864 0.6313239 0.6365637 0.6494028 0.6978221 #> [728,] 0.69858196 0.8308600 0.8988011 0.9483479 0.9529792 0.9557612 0.9866009 #> [729,] 0.58913260 0.5904511 1.0997222 1.2397709 1.3674834 1.3693199 1.3854303 #> [730,] 0.47359279 0.5291050 0.5563820 0.6234920 0.6501716 0.6651793 0.6910260 #> [731,] 0.38658483 0.4641697 0.4951976 0.5142720 0.5381997 0.5654464 0.5733830 #> [732,] 0.53774224 0.6493739 0.6512504 0.6671744 0.7118943 0.7749027 0.7782724 #> [733,] 0.40440349 0.4300163 0.5196985 0.5397259 0.6101514 0.6157228 0.6182368 #> [734,] 1.35351303 1.6109467 1.7051863 1.7236095 1.8262364 1.9428414 2.0175106 #> [735,] 0.29359887 0.4279511 0.4804884 0.5369971 0.5482631 0.5865848 0.5953025 #> [736,] 0.90613818 0.9500898 0.9713147 1.0095566 1.0338680 1.1879064 1.2013942 #> [737,] 0.52439153 0.6675391 0.8305809 1.0501612 1.0567316 1.1273738 1.1840653 #> [738,] 0.42791970 0.4785496 0.5145920 0.5260537 0.5268112 0.5434271 0.5488552 #> [739,] 0.77256093 0.8926279 1.0544813 1.1382764 1.1418979 1.1830457 1.2970655 #> [740,] 0.27824019 0.3109608 0.3987329 0.4258963 0.5017250 0.5105818 0.5888744 #> [741,] 0.27773200 0.8213555 0.8559930 0.9525178 0.9838940 1.0723668 1.1206739 #> [742,] 0.38767281 0.4026726 0.4205946 0.4471608 0.4802830 0.5507127 0.5815310 #> [743,] 0.32237498 0.3764880 0.4013733 0.4537154 0.4802813 0.4904619 0.5476945 #> [744,] 0.49446897 0.5258675 0.5579990 0.5600066 0.5672890 0.5699179 0.6562205 #> [745,] 0.35748401 0.5123131 0.5290194 0.5663951 0.5957944 0.6198647 0.6897391 #> [746,] 0.31719653 0.3848797 0.4561031 0.4979489 0.5333971 0.5371761 0.5391688 #> [747,] 0.67604518 0.9275340 1.0278988 1.0327197 1.2267464 1.2375629 1.3199692 #> [748,] 0.12222005 0.4177120 0.6268746 0.7180089 0.7371032 0.7431611 0.7436420 #> [749,] 0.74546332 0.7926868 0.8942326 1.0656954 1.1363119 1.1613837 1.1821319 #> [750,] 0.43000173 0.5052092 0.5965068 0.6683562 0.7105456 0.7366041 0.7704925 #> [751,] 0.28459575 0.3694457 0.5026201 0.6070519 0.6188489 0.6194824 0.6218011 #> [752,] 0.70730375 0.7993732 0.8869694 0.9236479 0.9618237 1.0278988 1.0328210 #> [753,] 0.45428253 0.5213248 0.5381579 0.5430112 0.6351318 0.6863909 0.6964509 #> [754,] 0.73790913 0.9146707 0.9268745 0.9441675 0.9728522 0.9886703 1.0041557 #> [755,] 0.51540272 0.5320156 0.5852049 0.6104892 0.6833624 0.6897391 0.6911030 #> [756,] 0.41347323 0.4387530 0.4678809 0.4871645 0.4934944 0.5402894 0.5618440 #> [757,] 1.17827006 1.2534981 1.2886819 1.3553739 1.3561492 1.4709502 1.4736376 #> [758,] 0.48695844 0.5510996 0.5864232 0.6654570 0.6918404 0.6931311 0.6985820 #> [759,] 1.60098152 1.6043613 1.6645287 1.8161045 1.8887888 1.9565765 2.0145514 #> [760,] 0.17672129 0.2947138 0.3361387 0.3529613 0.4579331 0.4654775 0.5653037 #> [761,] 0.27361090 0.3842518 0.3946160 0.4463409 0.4822301 0.4970682 0.5173598 #> [762,] 0.09831649 0.3687144 0.3738390 0.3752012 0.4383739 0.4483313 0.4989207 #> [763,] 0.40807386 0.6692890 0.7407087 0.7445498 0.7617625 0.7812317 0.8029511 #> [764,] 0.33323683 0.3636660 0.4090712 0.4678809 0.5384396 0.5770353 0.6342586 #> [765,] 0.74149780 0.7884421 0.8924413 0.8925216 1.0852243 1.1068269 1.1279884 #> [766,] 0.88475525 1.0307034 1.1031474 1.1288179 1.1767783 1.2611665 1.3072379 #> [767,] 0.39276221 0.4141241 0.4186988 0.5460700 0.5804832 0.5861869 0.5965068 #> [768,] 0.60683531 0.6239664 0.6329802 0.6571812 0.7014294 0.7681392 0.9043524 #> [769,] 0.25183425 0.3287616 0.4958141 0.5156670 0.6469373 0.7240607 0.7927622 #> [770,] 0.81951004 1.0033135 1.0122607 1.1505867 1.1603421 1.1781983 1.1982659 #> [771,] 0.63388207 0.7708441 0.8405305 0.8498749 0.9045846 0.9466005 0.9803991 #> [772,] 0.38596645 0.4342199 0.4684409 0.5602363 0.5714456 0.5805367 0.5833092 #> [773,] 0.63764715 0.7092790 0.8200161 0.8512293 0.8517123 0.9066578 0.9243237 #> [774,] 0.29062669 0.4554043 0.4762512 0.6821908 0.6890077 0.7307151 0.7315235 #> [775,] 0.27996485 0.5089294 0.5409551 0.5731555 0.6783771 0.7118041 0.7215748 #> [776,] 0.38532828 0.4681975 0.5026760 0.5540839 0.5630189 0.6028126 0.6175580 #> [777,] 0.51411964 0.5156462 0.5420390 0.5666462 0.6606336 0.6987629 0.7096344 #> [778,] 0.28914798 0.3341115 0.3905825 0.4007505 0.4423288 0.4925744 0.5092038 #> [779,] 0.44351835 0.5441918 0.5751142 0.5771078 0.5850060 0.6032333 0.6109984 #> [780,] 0.42911358 0.4658710 0.4704423 0.5636624 0.5749203 0.6282014 0.6493615 #> [781,] 0.58078479 0.6287389 0.6727315 0.7011662 0.7128726 0.7296091 0.7383797 #> [782,] 0.17515967 0.3148796 0.4622053 0.4935208 0.5181742 0.5225545 0.5405678 #> [783,] 0.34235251 0.4319502 0.4692709 0.4880859 0.5052213 0.5123131 0.5347047 #> [784,] 0.27949333 0.5545604 0.5978329 0.6031911 0.6126577 0.6343305 0.7437618 #> [785,] 0.24171039 0.3686001 0.4558091 0.5551246 0.6074524 0.6198224 0.6720896 #> [786,] 0.39297509 0.3943971 0.4756200 0.5476847 0.5500657 0.5557123 0.5801731 #> [787,] 0.62045966 0.6634097 0.6801610 0.7152110 0.7696425 0.8052953 0.8215516 #> [788,] 0.54426365 0.5638175 0.6749506 0.6987118 0.7195750 0.7425097 0.7472007 #> [789,] 0.30084255 0.5204844 0.5390357 0.6601272 0.6631301 0.7861197 0.7917998 #> [790,] 0.21863794 0.4566923 0.5100506 0.6264804 0.6478767 0.7233856 0.7629658 #> [791,] 0.69343238 0.7916039 0.8174900 0.8209361 0.8597213 0.8956150 0.9191062 #> [792,] 0.31575585 0.3376415 0.3694457 0.6310238 0.6630490 0.6687645 0.6753017 #> [793,] 0.33731955 0.3451244 0.4241536 0.4726576 0.4765648 0.4850090 0.5104808 #> [794,] 0.33330030 0.3430224 0.4944690 0.5286509 0.5507820 0.5691711 0.6740800 #> [795,] 0.48015193 0.4870973 0.5434333 0.5681859 0.5790625 0.6224556 0.6920199 #> [796,] 0.91545188 0.9851428 0.9985390 1.2401699 1.2706049 1.4116211 1.4267028 #> [797,] 0.26927678 0.3941537 0.4221518 0.4449027 0.4632372 0.4782392 0.5086648 #> [798,] 0.30577483 0.4371707 0.5345808 0.6105168 0.6122402 0.6865432 0.7719839 #> [799,] 0.85802249 0.9283156 1.2431804 1.2509933 1.2636073 1.2909028 1.3068810 #> [800,] 0.60499899 0.6353063 0.6588731 0.6686780 0.6783649 0.7031266 0.7059153 #> [801,] 0.35808541 0.3596801 0.4380816 0.4387298 0.4474902 0.4715928 0.4920686 #> [802,] 0.42497290 0.4498638 0.7653629 0.8186734 0.8834345 0.8955751 0.9027206 #> [803,] 0.36096082 0.3633604 0.4226290 0.5460700 0.5624287 0.6155368 0.6287389 #> [804,] 0.41459923 0.4496334 0.4880470 0.4927598 0.4971807 0.5330295 0.5530242 #> [805,] 0.87209495 1.2580143 1.5146902 1.5192367 1.6207223 1.7483121 1.7926297 #> [806,] 0.32580181 0.5388117 0.5390357 0.6096010 0.6983498 0.7022300 0.7152110 #> [807,] 0.22735807 0.3700770 0.4739122 0.4933392 0.6045138 0.6468782 0.7561484 #> [808,] 0.36954200 0.3791834 0.3862574 0.4063097 0.4711711 0.4919237 0.4926647 #> [809,] 0.31170307 0.6327033 0.7336474 0.9043976 0.9048609 0.9850208 1.0023837 #> [810,] 0.42322607 0.4259888 0.4446164 0.4449831 0.4667387 0.4983489 0.5171208 #> [811,] 0.47742160 0.7927973 0.8392936 0.9368811 0.9712860 1.0107862 1.0526832 #> [812,] 0.57426260 0.5857830 0.6128149 0.6252175 0.6313865 0.6448859 0.6608414 #> [813,] 0.40299783 0.5424989 0.6948786 0.7302712 0.8294974 0.9501195 0.9531711 #> [814,] 0.72727075 0.8829206 0.9873766 1.0244392 1.0398980 1.2170482 1.2480076 #> [815,] 0.24949429 0.4851378 0.4852129 0.5202777 0.6531028 0.7033036 0.7176815 #> [816,] 0.51507672 0.5471553 0.5615487 0.6850255 0.7931495 0.7975922 0.8424111 #> [817,] 0.15604009 0.4431694 0.5146468 0.5624673 0.5727703 0.6123558 0.6131775 #> [818,] 0.65828602 0.6739732 0.6864811 0.6890077 0.7181508 0.7231773 0.7530624 #> [819,] 0.51564803 0.5235680 0.5761168 0.7585791 0.8006608 0.8498749 0.9355411 #> [820,] 0.51459128 0.5371761 0.5935440 0.6053123 0.6092135 0.6686627 0.6725681 #> [821,] 0.33148026 0.3717019 0.4098502 0.5120130 0.5334669 0.5664642 0.6158515 #> [822,] 0.22038706 0.2836823 0.5179364 0.5479470 0.5576100 0.6203619 0.8928497 #> [823,] 0.65890004 0.6900357 0.7414978 0.8366602 0.9023072 0.9483216 0.9959242 #> [824,] 0.29471381 0.3487168 0.4474640 0.4799773 0.4854754 0.4999563 0.5302813 #> [825,] 0.20417561 0.4846515 0.5846763 0.5975842 0.6272176 0.6513768 0.6654570 #> [826,] 0.22475057 0.2403118 0.3006863 0.3547841 0.3638735 0.4968724 0.4979489 #> [827,] 0.33702873 0.8849706 1.0227250 1.2455886 1.2472189 1.2625984 1.2728276 #> [828,] 0.23535424 0.2888365 0.4209737 0.5078930 0.5609209 0.6032333 0.6234146 #> [829,] 0.43557756 0.5741917 0.5876252 0.6720861 0.6932422 0.7299574 0.8358283 #> [830,] 0.34242776 0.3594535 0.3943971 0.6445696 0.6479357 0.6531994 0.6720896 #> [831,] 0.42497290 0.4378084 0.6613781 0.6717098 0.7180839 0.8036945 0.8090444 #> [832,] 0.18842874 0.3712625 0.4171864 0.4988816 0.5338943 0.5859090 0.6002829 #> [833,] 0.59828158 0.6140907 0.6609668 0.6916844 0.7095298 0.7533940 0.7615608 #> [834,] 0.85086686 0.8693708 1.0402638 1.0913809 1.1162744 1.1580728 1.1882179 #> [835,] 0.39484804 0.5377422 0.5896853 0.5998148 0.6132736 0.7345074 0.7400159 #> [836,] 0.28200459 0.4838382 0.5056986 0.7097586 0.7118269 0.7154967 0.7260693 #> [837,] 0.28200459 0.4255819 0.5311183 0.5385190 0.5857583 0.6752513 0.7014631 #> [838,] 0.72854123 0.8213555 1.2479845 1.2509933 1.3578865 1.3883013 1.4704535 #> [839,] 0.35221305 0.4658086 0.4688457 0.4852129 0.5470235 0.5481457 0.5696647 #> [840,] 0.32580181 0.4869584 0.5029816 0.5929361 0.6505765 0.6601272 0.6815772 #> [841,] 0.24031182 0.3266515 0.3289196 0.3879428 0.4055814 0.4310850 0.4802058 #> [842,] 0.63184141 0.7825293 0.9278780 0.9812174 0.9830406 1.0397144 1.0555835 #> [843,] 0.40636897 0.5420390 0.5550702 0.5862135 0.5904569 0.6071488 0.6836963 #> [844,] 0.47831904 0.4992977 0.5258547 0.5944776 0.5963457 0.6599681 0.7640140 #> [845,] 0.46638959 0.5044446 0.5824304 0.6530868 0.6635628 0.6810039 0.7583725 #> [846,] 0.18634156 0.4660731 0.5016230 0.5377097 0.5390598 0.5907733 0.6081748 #> [847,] 0.29038507 0.3045802 0.3361387 0.3493174 0.3687756 0.3766028 0.4119493 #> [848,] 0.50444460 0.5294214 0.6075915 0.7424908 0.8023538 0.8194373 0.9051578 #> [849,] 0.18945147 0.2116450 0.2573580 0.3110705 0.3223047 0.3731118 0.3766028 #> [850,] 0.38970748 0.5717071 0.5865542 0.5878294 0.5908949 0.6282007 0.6367832 #> [851,] 0.24949429 0.4835535 0.4973154 0.5481457 0.6148331 0.7302801 0.7861184 #> [852,] 0.46124088 0.5084755 0.5156658 0.5596796 0.5802675 0.6023530 0.6047881 #> [853,] 0.66924590 0.7049388 0.8096001 0.8637338 0.8647272 0.8857966 0.9629770 #> [854,] 0.40949008 0.4903354 0.6040936 0.6654582 0.7892187 0.9190275 0.9911303 #> [855,] 0.45907545 0.5777555 0.5780089 0.7002335 0.7745468 0.8503036 0.8679628 #> [856,] 0.60555636 0.7423913 0.7591619 0.7960978 0.9138814 0.9284428 1.1086736 #> [857,] 0.54070810 0.5956861 0.7189500 0.7750984 0.7991863 0.8518376 0.8815974 #> [858,] 0.43061825 0.4657923 0.4811879 0.5268112 0.5396213 0.5876804 0.5909889 #> [859,] 0.47952646 0.5485678 0.5796519 0.7068683 0.7246722 0.7839269 0.8756713 #> [860,] 0.34512046 0.3936393 0.5426927 0.5617833 0.5775658 0.6252175 0.6699691 #> [861,] 0.33018724 0.6105168 0.6239664 0.6644961 0.6850255 0.7567525 0.7708239 #> [862,] 0.44522840 0.4481359 0.5284077 0.5530242 0.5652880 0.5863829 0.6606663 #> [863,] 0.44813593 0.4637061 0.4678426 0.4880470 0.5557236 0.6843397 0.7063750 #> [864,] 0.62529285 0.8191095 1.0646795 1.0720833 1.0783879 1.1276875 1.1329767 #> [865,] 0.41119252 0.4577456 0.5452479 0.6297758 0.6929260 0.7024502 0.7180998 #> [866,] 0.27912903 0.4651760 0.5081217 0.5602555 0.6379255 0.7991863 0.8322765 #> [867,] 1.15661048 1.3462438 1.4471441 1.5645124 1.5808967 1.6063300 1.6320500 #> [868,] 0.54139322 0.6773988 0.7105605 0.7149278 0.7211515 0.7299574 0.7337276 #> [869,] 0.31133296 0.4822301 0.5088305 0.5234874 0.5358143 0.5401556 0.5946605 #> [870,] 0.50344372 0.6795696 0.7893724 0.8130988 0.8172974 0.8690556 0.8829630 #> [871,] 0.24531337 0.2903851 0.2977648 0.3203283 0.3223047 0.3224021 0.3613120 #> [872,] 1.09268104 1.1382408 1.1923692 1.2465492 1.3481100 1.4001927 1.4189594 #> [873,] 0.37265397 0.4918564 0.4958828 0.5303708 0.5321874 0.5558120 0.5829550 #> [874,] 0.48520405 0.7279412 0.8074916 0.9682564 1.1254497 1.1566882 1.1824327 #> [875,] 0.26594121 0.5953002 0.5957431 0.6172237 0.6716399 0.6896890 0.6984653 #> [876,] 0.81867341 0.8726695 0.9058662 0.9245956 0.9318064 1.0447502 1.0583478 #> [877,] 0.66137812 0.6894816 0.8342098 0.8775902 0.9044680 0.9185322 0.9245897 #> [878,] 0.27957885 0.5147946 0.5424989 0.5528173 0.7625186 0.7667228 0.7693490 #> [879,] 0.12222005 0.3100312 0.6142398 0.6262270 0.6349211 0.6857133 0.7149717 #> [880,] 0.55831393 0.5605773 0.6047171 0.6481022 0.9314802 0.9439554 0.9520623 #> [881,] 0.49736419 0.5917555 0.6223325 0.6957458 0.7322672 0.7716297 0.7745400 #> [882,] 0.40360403 0.5054819 0.5453375 0.5558413 0.6633979 0.7233839 0.7326161 #> [883,] 0.37547110 0.4268221 0.5448074 0.5452479 0.6043597 0.6078415 0.6495392 #> [884,] 0.29963193 0.3668414 0.3792134 0.3928074 0.4425622 0.4718084 0.4798583 #> [885,] 0.64379029 0.7468705 0.8206195 0.8262232 0.8541983 0.8743703 0.9315260 #> [886,] 0.30096399 0.3892187 0.4546167 0.4548463 0.5983123 0.6060355 0.6328005 #> [887,] 0.46703537 0.4767417 0.5145920 0.5321874 0.5712901 0.5777134 0.5909889 #> [888,] 0.51564803 0.6582860 0.7708441 0.7788900 0.8357769 0.8599289 0.8652686 #> [889,] 0.53892468 1.0486325 1.1644871 1.1717316 1.2046336 1.2400584 1.2450309 #> [890,] 0.32282065 0.3540405 0.4008547 0.4574192 0.4597129 0.4749997 0.4819657 #> [891,] 0.47742160 0.7234641 0.8592318 1.0554974 1.0620862 1.1109065 1.1366575 #> [892,] 0.34197322 0.3716588 0.4356021 0.5047202 0.5166129 0.5323596 0.5344388 #> [893,] 0.66622344 0.6909275 0.8534496 0.8539695 0.9764982 0.9863673 0.9984615 #> [894,] 0.87209495 1.0808862 1.3254115 1.3404295 1.4891477 1.5381128 1.5951257 #> [895,] 0.38741583 0.4344419 0.4488586 0.4533024 0.4672448 0.4848637 0.4975694 #> [896,] 1.03245278 1.1925389 1.2063668 1.2165550 1.2345554 1.2772759 1.3177358 #> [897,] 0.33702873 0.9317456 1.1587109 1.2196853 1.2244513 1.2387571 1.2509943 #> [898,] 0.86087471 0.8775427 1.0586136 1.2316273 1.2486592 1.3250910 1.3474000 #> [899,] 0.24495826 0.3665608 0.3796179 0.4394007 0.4699607 0.4970682 0.4973593 #> [900,] 0.53693393 0.5509196 0.5758092 0.6077715 0.6372212 0.6468782 0.6495503 #> [901,] 0.60751210 0.6347718 0.6750756 0.8400073 0.8639459 0.8938192 0.8987570 #> [902,] 0.36475602 0.4359686 0.4681975 0.4957492 0.5509920 0.6065373 0.6610760 #> [903,] 0.71925597 0.7238057 1.4242708 1.4808959 1.6356863 1.7811930 1.8049915 #> [904,] 0.33217500 0.6075172 0.7308439 0.7573067 0.7745370 0.8331341 0.8373647 #> [905,] 1.08159736 1.0956074 1.1598090 1.2341912 1.2433489 1.2582241 1.2708966 #> [906,] 0.29083287 0.3991506 0.5263341 0.5313566 0.5715888 0.5801731 0.5866417 #> [907,] 0.31849457 0.3375275 0.4090368 0.4105118 0.4221518 0.4514099 0.5643394 #> [908,] 0.30096399 0.5509830 0.5541190 0.6393489 0.6521120 0.6928918 0.7301782 #> [909,] 0.27773200 0.7285412 0.9501224 0.9562029 0.9740056 1.0353836 1.1208545 #> [910,] 0.35965794 0.5150767 0.5336573 0.6122402 0.6531913 0.6848237 0.6920594 #> [911,] 0.32876163 0.4724317 0.5728042 0.5959871 0.6017204 0.7424823 0.7535873 #> [912,] 0.20612255 0.2839768 0.3995926 0.4600954 0.4980985 0.5371465 0.5509196 #> [913,] 0.23307038 0.3248874 0.4146456 0.4839062 0.4901973 0.5347778 0.5501868 #> [914,] 0.23993803 0.5254370 0.6040564 0.6101514 0.6314974 0.6320861 0.6400916 #> [915,] 0.69003570 0.8739171 0.8805306 0.8924413 1.0279754 1.0449738 1.1265626 #> [916,] 0.40415075 0.4847007 0.6844604 0.7136063 0.7381164 0.7421462 0.7458784 #> [917,] 0.18051066 0.3621718 0.6046618 0.6203619 0.6725229 0.6859977 0.7025122 #> [918,] 0.39323414 0.4813874 0.5092038 0.5139742 0.5467713 0.5562233 0.5636624 #> [919,] 0.33470661 0.4189063 0.4808973 0.5373714 0.5594251 0.6065373 0.6195995 #> [920,] 0.70069148 0.8073962 0.8207193 0.8294974 0.8352566 0.8714288 0.9656345 #> [921,] 0.34743241 0.3678879 0.4061678 0.4076304 0.4277711 0.4468730 0.5275568 #> [922,] 0.34309068 0.4307515 0.5409551 0.5519855 0.5602452 0.6127630 0.7134870 #> [923,] 0.50898016 0.5401785 0.6252212 0.6393644 0.6450369 0.6670446 0.6746208 #> [924,] 0.55281735 0.5803478 0.5986835 0.7302712 0.7642574 0.7886514 0.7917998 #> [925,] 0.46323720 0.4711711 0.5015095 0.5227071 0.5300852 0.6057881 0.6281770 #> [926,] 0.37300207 0.5505227 0.5666462 0.5839332 0.6252212 0.6690963 0.6836963 #> [927,] 0.40119359 0.4975055 0.5589544 0.6055564 0.6531913 0.6584113 0.7604565 #> [928,] 0.48183801 0.4841700 0.6325459 0.7198504 0.7318016 0.7725609 0.7955375 #> [929,] 0.61025299 0.7080839 0.8064294 0.8291200 0.8344719 0.8517123 0.8693708 #> [930,] 0.35368533 0.4116207 0.4613834 0.5041523 0.5568096 0.5683251 0.6135434 #> [931,] 0.31605501 0.4617185 0.5401785 0.5809788 0.5947715 0.6274038 0.6835825 #> [932,] 0.36375067 0.3966306 0.4539625 0.4848637 0.5092787 0.5233490 0.5512903 #> [933,] 0.66159483 0.6653664 0.7231773 0.7462066 0.7828199 0.7834769 0.8125567 #> [934,] 0.72467222 0.8892709 0.8942326 0.9342293 1.0019782 1.0190099 1.0817150 #> [935,] 0.17515967 0.2077467 0.4378483 0.4446930 0.4635054 0.4856521 0.4920686 #> [936,] 0.63714896 0.6514300 0.8096001 0.8222615 0.8256855 0.8450948 0.8645342 #> [937,] 0.56154873 0.7014294 0.7433678 0.8551267 1.0064208 1.0101535 1.0104143 #> [938,] 0.50994700 0.5270976 0.5541190 0.5983123 0.6625547 0.6720328 0.6987629 #> [939,] 1.13746210 1.1554039 1.1709452 1.2012700 1.3270357 1.3400856 1.4142670 #> [940,] 0.28743920 0.5563820 0.5856901 0.5996128 0.6547929 0.6700591 0.7373932 #> [941,] 0.67425040 0.6905455 0.7710334 0.9557612 0.9796315 1.0197606 1.1882176 #> [942,] 0.37150479 0.4798121 0.4808973 0.5166129 0.5182849 0.5829721 0.5888863 #> [943,] 0.28688126 0.4258963 0.4281232 0.4670354 0.4883674 0.5060454 0.5184400 #> [944,] 0.77827903 0.7819818 0.8017048 0.8162861 0.8181842 0.8197966 0.8473799 #> [945,] 0.82162781 1.0372120 1.1002160 1.1334750 1.2121846 1.2270154 1.2946210 #> [946,] 0.37025403 0.4167265 0.5974787 0.6093745 0.6213680 0.6260663 0.6454604 #> [947,] 0.25146438 0.3927622 0.4704423 0.5118140 0.5141644 0.5981667 0.6030569 #> [948,] 0.78545275 1.4532707 1.5313353 1.5427409 1.6086276 1.7504291 1.7885411 #> [949,] 0.97271309 0.9821576 1.0197606 1.0300253 1.0468094 1.0555918 1.2018503 #> [950,] 0.54356099 0.6906225 0.7515560 0.8163552 0.8268404 1.0246197 1.0835439 #> [951,] 0.54343326 0.5726713 0.6079400 0.6362282 0.6411489 0.6882258 0.7099575 #> [952,] 0.46844091 0.5961116 0.6552774 0.6681492 0.6705820 0.6705824 0.6773838 #> [953,] 0.43749453 0.5324512 0.5839332 0.6552774 0.6928143 0.7366193 0.7452899 #> [954,] 0.43154461 0.4399540 0.4870235 0.5126823 0.5397259 0.5775316 0.5931087 #> [955,] 1.02021825 1.1881607 1.1982660 1.2262335 1.2503180 1.2585351 1.2634868 #> [956,] 0.36567019 0.4878582 0.4992977 0.5924440 0.6344151 0.6589955 0.7024502 #> [957,] 0.54300594 0.6047171 0.6385052 0.8357751 0.8688679 0.8910615 0.9210669 #> [958,] 0.26227964 0.5029744 0.5263975 0.5506858 0.5875720 0.5980812 0.6151065 #> [959,] 0.28368227 0.3698291 0.6985545 0.7824819 0.8126316 0.8950014 0.9177645 #> [960,] 0.49736419 0.5183471 0.6872977 0.7351015 0.7555208 0.7721703 0.8106311 #> [961,] 0.39870005 0.4068494 0.4138580 0.4387298 0.4493096 0.4648980 0.4751239 #> [962,] 0.32908268 0.4148534 0.4663373 0.4952917 0.5148448 0.5823703 0.5933718 #> [963,] 0.20957563 0.5594251 0.6219183 0.6602812 0.7078393 0.7360118 0.7703560 #> [964,] 0.29793315 0.3097676 0.3946160 0.4495239 0.4973593 0.5219604 0.5401556 #> [965,] 0.40847446 0.4752569 0.5648596 0.5927076 0.6392017 0.6626822 0.6950428 #> [966,] 0.24032959 0.3109608 0.3498404 0.3971149 0.4755460 0.5466231 0.5519391 #> [967,] 0.83996762 0.8429282 0.8430529 0.8506495 0.8805370 0.9030809 0.9297668 #> [968,] 0.75906932 0.7979691 0.8549952 0.8591549 0.8739171 0.9021926 0.9483216 #> [969,] 0.72181504 0.7701056 0.8012313 0.8261697 0.8506495 0.9436734 0.9631076 #> [970,] 0.45928747 0.6874574 0.7040529 0.7155653 0.7596100 0.7642973 0.8288619 #> [971,] 0.48355347 0.5202777 0.5696647 0.6209378 0.8020739 0.8293285 0.8423353 #> [972,] 0.52454708 0.5688572 0.5876460 0.5896110 0.6384115 0.6425840 0.6848581 #> [973,] 0.23167235 0.4270107 0.5509920 0.6065801 0.6111725 0.6277603 0.6409072 #> [974,] 0.47085961 0.6588610 0.6596290 0.6879263 0.7065132 0.7088534 0.7781482 #> [975,] 0.24984831 0.4459982 0.7060311 0.8481894 0.8836024 0.9899705 0.9995362 #> [976,] 0.48003483 0.5257607 0.5606464 0.6075915 0.6931258 0.7270252 0.7278883 #> [977,] 0.24909537 0.6965583 0.8719151 0.8899695 0.8925672 0.9524394 0.9771197 #> [978,] 0.47499973 0.5926426 0.6021089 0.6590841 0.6911297 0.7376685 0.7610334 #> [979,] 0.27414771 0.3533348 0.3829368 0.4096830 0.4135228 0.4415721 0.4663373 #> [980,] 0.55848306 0.5871392 0.6017204 0.6948917 0.7138283 0.7796337 0.8115816 #> [981,] 0.31027863 0.3318503 0.4300163 0.4788421 0.4899965 0.5254370 0.5960820 #> [982,] 0.09831649 0.3426225 0.3733893 0.3833929 0.3998862 0.4147042 0.5065422 #> [983,] 0.34242776 0.4128428 0.5373668 0.5707755 0.5742626 0.6556826 0.6773988 #> [984,] 0.69637689 0.9597156 0.9830406 1.0227250 1.0404170 1.0897849 1.1604625 #> [985,] 0.21587317 0.5035108 0.5587194 0.6152778 0.6528830 0.6680267 0.6734077 #> [986,] 0.69958193 0.8580225 0.8754899 0.9156674 0.9566091 0.9670229 0.9763510 #> [987,] 0.11608719 0.3006863 0.3250055 0.3289196 0.4259055 0.4377923 0.4870022 #> [988,] 0.36347243 0.4651067 0.5653288 0.5780089 0.5809020 0.6451965 0.6682168 #> [989,] 0.41765340 0.4401888 0.6357935 0.6813370 0.7506527 0.7766402 0.7819681 #> [990,] 0.79370421 0.8864215 0.8938192 0.9058586 1.0523116 1.1082587 1.1725493 #> [991,] 0.54612053 0.6078415 0.6344151 0.6866979 0.6894896 0.7161804 0.7335557 #> [992,] 0.34642398 0.5090600 0.5749598 0.5798745 0.6493739 0.6495503 0.6656699 #> [993,] 0.58381883 0.6305519 0.6584598 0.7033968 0.7270252 0.7323232 0.7672032 #> [994,] 0.37058080 0.4416356 0.4471095 0.4517481 0.4961319 0.5121898 0.5384396 #> [995,] 0.29083287 0.4656943 0.4740713 0.5162538 0.5446352 0.5476847 0.5501051 #> [996,] 0.71182690 0.8015365 0.8357751 0.9246408 0.9344621 1.0045098 1.0209222 #> [997,] 0.49119061 0.8981545 1.0922723 1.0947023 1.1007515 1.1540649 1.1801942 #> [998,] 0.52910495 0.5856901 0.6052306 0.6426209 0.6872977 0.7322672 0.7591426 #> [999,] 0.40440349 0.4788421 0.5086148 0.5929361 0.6096010 0.6314974 0.6784615 #> [1000,] 0.95906486 0.9779007 0.9891183 0.9967242 1.0371942 1.0655567 1.1123559 #> [,8] [,9] [,10] #> [1,] 1.1277723 1.1816461 1.1990002 #> [2,] 1.2216679 1.2352019 1.2608456 #> [3,] 0.6189972 0.6357971 0.6409345 #> [4,] 0.6563752 0.6593882 0.6812084 #> [5,] 0.6451487 0.6575858 0.6584598 #> [6,] 0.6787011 0.7148674 0.7266524 #> [7,] 0.6318225 0.6663029 0.6779481 #> [8,] 0.7533940 0.7807431 0.7992978 #> [9,] 1.0873969 1.0961940 1.1964236 #> [10,] 0.5822407 0.5883231 0.5917679 #> [11,] 0.6083513 0.6091392 0.6192702 #> [12,] 0.7107465 0.7228639 0.7490380 #> [13,] 0.7498239 0.7559947 0.7591031 #> [14,] 0.8340085 0.8789927 0.8985272 #> [15,] 0.8731405 0.8742264 0.9712348 #> [16,] 1.1797889 1.1845552 1.2039234 #> [17,] 1.0033135 1.0354425 1.0443826 #> [18,] 0.9330399 0.9576537 0.9757561 #> [19,] 0.8899695 0.9015966 0.9232722 #> [20,] 0.5672174 0.5912759 0.6029007 #> [21,] 0.6501106 0.6602688 0.6823808 #> [22,] 0.7445577 0.7545314 0.7877731 #> [23,] 0.7894505 0.8406640 0.8509438 #> [24,] 0.9551027 0.9654747 1.0030288 #> [25,] 1.0730757 1.0733707 1.0883246 #> [26,] 0.7280532 0.7556115 0.7615608 #> [27,] 0.7040471 0.7180793 0.7558149 #> [28,] 1.1124655 1.1726914 1.2164293 #> [29,] 0.7843067 0.7848351 0.8214750 #> [30,] 0.5764293 0.6088673 0.6187806 #> [31,] 1.1153360 1.1448984 1.1843941 #> [32,] 0.7166056 0.7172308 0.7263161 #> [33,] 0.7250852 0.7477290 0.7512148 #> [34,] 1.3742790 1.4484635 1.4505247 #> [35,] 1.2946210 1.2946745 1.3529488 #> [36,] 0.9501224 0.9525178 0.9781398 #> [37,] 0.5908949 0.6201243 0.6238170 #> [38,] 0.9860467 1.0113623 1.0792367 #> [39,] 1.3823259 1.4800667 1.4810435 #> [40,] 1.0405158 1.0413266 1.0484415 #> [41,] 0.4522604 0.4552867 0.4983990 #> [42,] 1.0056548 1.0083335 1.0214761 #> [43,] 0.5572177 0.5785664 0.6033729 #> [44,] 0.5246025 0.5514685 0.5659403 #> [45,] 0.5520987 0.5618288 0.5626486 #> [46,] 0.9168416 0.9505614 0.9540991 #> [47,] 0.9491927 0.9748667 1.0007042 #> [48,] 0.7468701 0.7627787 0.7740428 #> [49,] 0.8202840 0.8203177 0.8369207 #> [50,] 0.7371032 0.7728698 0.7842856 #> [51,] 0.8279323 0.8695652 0.8741601 #> [52,] 0.6908772 0.7031286 0.7333217 #> [53,] 0.6937080 0.7369896 0.7374129 #> [54,] 0.5789364 0.5883231 0.5903267 #> [55,] 0.8279323 0.8611921 0.8671132 #> [56,] 1.2105582 1.3609712 1.4209254 #> [57,] 0.6228348 0.6295301 0.6422188 #> [58,] 0.6590690 0.6728996 0.6740843 #> [59,] 0.6575858 0.6959634 0.7385297 #> [60,] 0.9164001 0.9352856 0.9474459 #> [61,] 0.6986781 0.7031266 0.7040471 #> [62,] 0.5624673 0.5656930 0.5680078 #> [63,] 0.6356963 0.6507316 0.6567545 #> [64,] 0.6932837 0.7119049 0.7338189 #> [65,] 0.6698017 0.6710056 0.6977133 #> [66,] 1.0568114 1.0584024 1.0628807 #> [67,] 0.4925018 0.5051723 0.5192192 #> [68,] 0.8972152 0.9264264 1.0154784 #> [69,] 0.7329504 0.7436061 0.7528723 #> [70,] 1.3642570 1.4449321 1.4667406 #> [71,] 0.8690166 0.9903226 1.0250856 #> [72,] 0.5239980 0.5479711 0.5800733 #> [73,] 0.5115099 0.5237082 0.5635509 #> [74,] 0.9470885 0.9779822 1.0129587 #> [75,] 0.5990171 0.6098017 0.6144892 #> [76,] 0.5953002 0.6128149 0.6135434 #> [77,] 0.5607080 0.6527787 0.6877265 #> [78,] 0.5357776 0.5617833 0.5903267 #> [79,] 0.7854694 0.8062140 0.8121136 #> [80,] 0.9891183 0.9941969 0.9993140 #> [81,] 0.5521847 0.5686514 0.5835483 #> [82,] 1.2409497 1.2821540 1.3338516 #> [83,] 1.3557836 1.3559887 1.3816546 #> [84,] 1.1189773 1.1394716 1.2007114 #> [85,] 0.6464739 0.6472974 0.6520667 #> [86,] 0.8236488 0.8243628 0.8298920 #> [87,] 0.7494334 0.7898359 0.8762251 #> [88,] 0.7067036 0.7517859 0.7558175 #> [89,] 0.6324472 0.6384841 0.6393787 #> [90,] 0.5765781 0.6253036 0.6467292 #> [91,] 0.6217369 0.6738939 0.6883190 #> [92,] 0.9049822 0.9530349 1.0050902 #> [93,] 0.5503597 0.5701566 0.5904144 #> [94,] 1.1755510 1.2042861 1.2316526 #> [95,] 0.9724045 0.9812174 0.9884258 #> [96,] 0.9592701 0.9728378 1.0266564 #> [97,] 0.5480974 0.5812286 0.6118587 #> [98,] 0.5246272 0.5265085 0.5475677 #> [99,] 0.8461130 0.8477330 0.8717503 #> [100,] 0.7628803 0.7824819 0.7993370 #> [101,] 1.7962282 1.8124344 1.8204522 #> [102,] 0.4446164 0.4626767 0.4765493 #> [103,] 1.6171545 1.6189861 1.6381932 #> [104,] 0.7240607 0.7821695 0.8235358 #> [105,] 0.5712901 0.5985136 0.6067016 #> [106,] 0.8766191 0.8782562 0.8872883 #> [107,] 1.3221504 1.3258106 1.3595579 #> [108,] 1.2497242 1.2797769 1.2847999 #> [109,] 0.6307679 0.6548610 0.6825140 #> [110,] 0.5077163 0.5152366 0.5201796 #> [111,] 0.5897513 0.6775438 0.7249468 #> [112,] 0.8716588 0.9054262 0.9855289 #> [113,] 0.8448758 0.8714976 0.9142557 #> [114,] 0.7288252 0.8052105 0.8151615 #> [115,] 0.6718406 0.6722277 0.6948328 #> [116,] 0.8939690 0.9073273 0.9459113 #> [117,] 1.1866277 1.2049009 1.2131600 #> [118,] 0.9652541 0.9756351 0.9942206 #> [119,] 0.5998649 0.6091943 0.6123165 #> [120,] 0.6872129 0.7097586 0.7301151 #> [121,] 0.7390389 0.7604702 0.7630935 #> [122,] 0.4938862 0.4983489 0.5466885 #> [123,] 0.9209192 0.9381286 0.9578028 #> [124,] 1.2576783 1.3457942 1.3543061 #> [125,] 0.8000203 0.8167809 0.8301323 #> [126,] 0.8340372 0.8514435 0.8515045 #> [127,] 0.5103176 0.5475948 0.5882427 #> [128,] 0.5827694 0.5828899 0.5951991 #> [129,] 0.6340862 0.6482273 0.6507316 #> [130,] 0.7738277 0.8869694 0.8988091 #> [131,] 0.6822141 0.6939493 0.6992247 #> [132,] 0.6574931 0.7422702 0.7461058 #> [133,] 0.9973896 1.0184821 1.0237132 #> [134,] 1.1486590 1.1613028 1.1837634 #> [135,] 0.6238170 0.6395035 0.6520195 #> [136,] 1.0973044 1.1709569 1.2332039 #> [137,] 0.6108532 0.6429611 0.6630001 #> [138,] 0.5521847 0.5843494 0.6012981 #> [139,] 0.7308439 0.7434359 0.7581942 #> [140,] 1.3928817 1.4068608 1.4439310 #> [141,] 0.6609668 0.6850597 0.7299244 #> [142,] 0.5915916 0.6050565 0.6077914 #> [143,] 0.5823034 0.5947904 0.6019534 #> [144,] 0.5553071 0.5645280 0.6446181 #> [145,] 0.6940500 0.7282091 0.7310340 #> [146,] 0.5495635 0.5514685 0.5826591 #> [147,] 0.7611104 0.8040045 0.8043343 #> [148,] 0.6495392 0.6776919 0.6854624 #> [149,] 0.7480650 0.8191044 0.8823637 #> [150,] 0.5411869 0.5502896 0.5583409 #> [151,] 0.7180998 0.7336379 0.7341086 #> [152,] 1.1912636 1.2095629 1.2352239 #> [153,] 0.5758092 0.6116671 0.6165203 #> [154,] 0.7524017 0.7819264 0.7953267 #> [155,] 0.6733962 0.6810368 0.6899465 #> [156,] 0.6521463 0.6840823 0.7100448 #> [157,] 1.3620943 1.3688559 1.3708892 #> [158,] 0.5600066 0.6737385 0.6776919 #> [159,] 0.5901161 0.5951493 0.6357927 #> [160,] 0.8658120 0.8981545 0.9256894 #> [161,] 0.7964822 0.7980622 0.8108124 #> [162,] 0.5224324 0.5541192 0.5592968 #> [163,] 1.1540350 1.1687959 1.1734590 #> [164,] 1.0675792 1.1022426 1.1054776 #> [165,] 1.1229310 1.1440999 1.1454136 #> [166,] 0.8308600 0.8457055 0.8557414 #> [167,] 0.5969554 0.5991155 0.6028723 #> [168,] 1.3838868 1.3842514 1.3956961 #> [169,] 0.8712192 0.9154238 0.9272356 #> [170,] 0.7390389 0.7535997 0.7970432 #> [171,] 0.6023530 0.6238119 0.6355553 #> [172,] 0.7766402 0.7777657 0.7899675 #> [173,] 0.5313566 0.5754902 0.5769897 #> [174,] 0.5431463 0.5839871 0.6055436 #> [175,] 0.9994798 1.0213772 1.0685104 #> [176,] 0.8997026 0.9091246 0.9232706 #> [177,] 0.7352546 0.7384616 0.7423913 #> [178,] 0.6937898 0.6945931 0.7143432 #> [179,] 1.0741032 1.0937999 1.0980578 #> [180,] 0.5416264 0.5501798 0.5502562 #> [181,] 0.9843336 1.0336066 1.0590858 #> [182,] 0.6091943 0.6363898 0.6373057 #> [183,] 0.7003897 0.7075189 0.7136140 #> [184,] 0.9884055 1.0074228 1.0174219 #> [185,] 0.8916240 0.8993724 0.9282640 #> [186,] 0.6490195 0.6628685 0.6681492 #> [187,] 1.2156100 1.2544759 1.2724148 #> [188,] 0.7837702 0.8218098 0.8225141 #> [189,] 0.7619641 0.8015365 0.8407601 #> [190,] 1.0560959 1.1273738 1.1434620 #> [191,] 0.8261643 0.8521884 0.9099727 #> [192,] 1.1566105 1.1855532 1.1886661 #> [193,] 0.9440280 0.9661984 0.9921918 #> [194,] 0.8645134 0.8670063 0.9061379 #> [195,] 0.5188817 0.5238636 0.5719127 #> [196,] 0.8252084 0.8782798 0.8829206 #> [197,] 0.6393644 0.7216211 0.7395698 #> [198,] 0.9058586 0.9194339 0.9787950 #> [199,] 0.9836911 1.0023737 1.0260539 #> [200,] 0.8919486 0.9284428 0.9431832 #> [201,] 0.5982558 0.6336967 0.6477662 #> [202,] 0.8238807 0.8295729 0.8532570 #> [203,] 0.3975459 0.4535849 0.4674355 #> [204,] 0.8965174 0.8982999 0.8993036 #> [205,] 0.5746819 0.5860547 0.5897513 #> [206,] 0.7902742 0.8046735 0.8447648 #> [207,] 0.6917758 0.7283993 0.7666928 #> [208,] 0.5911413 0.5921035 0.5962793 #> [209,] 0.8112749 0.8424908 0.8805676 #> [210,] 0.5499103 0.5552143 0.5724341 #> [211,] 0.7664883 0.7766420 0.8158615 #> [212,] 0.7401987 0.7662884 0.7797529 #> [213,] 0.6575542 0.6580014 0.6768431 #> [214,] 1.2166165 1.2253165 1.2261671 #> [215,] 0.6186600 0.6671991 0.6732922 #> [216,] 0.7398366 0.7403294 0.7425097 #> [217,] 0.5989056 0.6023753 0.6490482 #> [218,] 0.5521809 0.5585820 0.6238076 #> [219,] 0.5268149 0.5624969 0.5636207 #> [220,] 1.1284222 1.1794205 1.1963549 #> [221,] 0.6613447 0.6957399 0.7197768 #> [222,] 0.7376104 0.7534260 0.7571064 #> [223,] 1.1254497 1.1310411 1.1359482 #> [224,] 0.5717071 0.5998148 0.6373057 #> [225,] 0.7136713 0.7231501 0.7289041 #> [226,] 0.6541174 0.7063086 0.7362559 #> [227,] 0.7185699 0.7271226 0.7680247 #> [228,] 1.2394236 1.2587553 1.3192218 #> [229,] 0.9253467 0.9658028 0.9916496 #> [230,] 0.9420330 0.9539283 0.9658795 #> [231,] 0.8630664 0.8804020 0.8901090 #> [232,] 0.4850090 0.5162538 0.5226281 #> [233,] 0.6355172 0.6559131 0.6857133 #> [234,] 0.8232688 0.8362491 0.8615428 #> [235,] 0.5794818 0.5823488 0.5878504 #> [236,] 0.8986594 0.9156674 0.9355886 #> [237,] 0.6070168 0.6146959 0.6385568 #> [238,] 0.7800092 0.7919962 0.8261697 #> [239,] 0.6446008 0.6517779 0.6528180 #> [240,] 0.5903636 0.6649502 0.6650598 #> [241,] 1.5181657 1.5191653 1.6806529 #> [242,] 1.1709452 1.2108411 1.2212352 #> [243,] 0.9794785 1.0148312 1.0588020 #> [244,] 0.8228033 0.9406653 0.9412112 #> [245,] 0.7355959 0.7427091 0.8169518 #> [246,] 0.6605395 0.7010432 0.7101375 #> [247,] 0.5724341 0.5965084 0.6013598 #> [248,] 0.6581380 0.6864811 0.7007856 #> [249,] 0.7468705 0.7483195 0.7560462 #> [250,] 0.4474640 0.4590751 0.4597129 #> [251,] 0.8388607 0.9121455 0.9395272 #> [252,] 0.6237672 0.6324957 0.6378056 #> [253,] 1.1115367 1.1695811 1.2465492 #> [254,] 0.8507018 0.8815974 0.9280725 #> [255,] 0.5880765 0.6234843 0.6359189 #> [256,] 0.7837060 0.7840352 0.8021130 #> [257,] 0.7432229 0.7474043 0.7781482 #> [258,] 0.8157246 0.8163470 0.8207238 #> [259,] 1.0071526 1.0514318 1.0816304 #> [260,] 0.7723188 0.8073125 0.8125567 #> [261,] 0.7733659 0.7765029 0.7781799 #> [262,] 0.8045442 0.8443363 0.8512293 #> [263,] 0.6691929 0.6805346 0.7250852 #> [264,] 0.5409081 0.5479479 0.5533832 #> [265,] 0.6240639 0.6376946 0.6383766 #> [266,] 0.6140820 0.6224795 0.6236054 #> [267,] 0.7967967 0.8110177 0.8293811 #> [268,] 0.5538449 0.5592717 0.5692131 #> [269,] 1.3894109 1.3983734 1.4073322 #> [270,] 0.6532931 0.6535509 0.6603980 #> [271,] 0.6954934 0.8071532 0.8544645 #> [272,] 0.7997930 0.8001390 0.8008286 #> [273,] 0.7323858 0.7352067 0.7820764 #> [274,] 0.5457597 0.5458660 0.5603155 #> [275,] 0.6593882 0.6684101 0.6983498 #> [276,] 1.5282590 1.5432321 1.5518024 #> [277,] 0.7831023 0.8821525 0.8906814 #> [278,] 0.5610538 0.5769897 0.6043345 #> [279,] 0.8457055 0.8582436 0.9107608 #> [280,] 0.5585820 0.5978585 0.6342586 #> [281,] 0.5753703 0.6876870 0.7038946 #> [282,] 0.7290462 0.8648736 0.8648975 #> [283,] 0.6778300 0.6789222 0.7318722 #> [284,] 0.9411683 0.9855289 1.0050375 #> [285,] 0.7043195 0.7432437 0.7502960 #> [286,] 1.3651561 1.3892015 1.3943802 #> [287,] 1.2771909 1.2880192 1.3741400 #> [288,] 1.5075022 1.5866471 1.6241959 #> [289,] 1.1508820 1.2054700 1.2060725 #> [290,] 0.8510004 0.8512387 0.8942729 #> [291,] 0.6606663 0.6876140 0.7072640 #> [292,] 0.6391744 0.6506912 0.6697097 #> [293,] 0.8054279 0.8070900 0.8415829 #> [294,] 0.6004037 0.6064343 0.6525837 #> [295,] 0.5946605 0.6109984 0.6217659 #> [296,] 0.5564219 0.5682669 0.5785664 #> [297,] 0.5121810 0.5405678 0.5407712 #> [298,] 0.8108245 0.8151554 0.8167585 #> [299,] 0.4839062 0.4925744 0.5149030 #> [300,] 0.7401987 0.7627323 0.7641001 #> [301,] 0.5626776 0.6190075 0.6316696 #> [302,] 0.6929260 0.7291426 0.7316196 #> [303,] 1.9051118 1.9100229 1.9334947 #> [304,] 0.5817847 0.5997890 0.6207748 #> [305,] 0.5720249 0.5837491 0.5898708 #> [306,] 0.5965174 0.6005517 0.6137788 #> [307,] 1.0034240 1.0314873 1.0320467 #> [308,] 0.8265704 0.8445410 0.8636050 #> [309,] 0.8943133 0.9098371 0.9781398 #> [310,] 0.6571992 0.6586063 0.6722925 #> [311,] 0.8053866 0.8088441 0.8141323 #> [312,] 0.9904840 1.0488026 1.0567316 #> [313,] 0.6881557 0.7582715 0.7591426 #> [314,] 0.5568581 0.5827694 0.6204041 #> [315,] 0.6862337 0.7001198 0.7561484 #> [316,] 0.8492696 0.8711605 0.8899702 #> [317,] 0.7655117 0.7722215 0.7753759 #> [318,] 0.6363898 0.6404232 0.6509156 #> [319,] 0.6670985 0.6672640 0.6962625 #> [320,] 0.8233239 0.8242852 0.8484660 #> [321,] 0.6495988 0.6508068 0.6542615 #> [322,] 1.0180832 1.0250659 1.0266634 #> [323,] 0.6837625 0.6928143 0.6936870 #> [324,] 0.7342534 0.7540028 0.7679974 #> [325,] 0.6308780 0.6407043 0.6508068 #> [326,] 0.9350917 0.9420448 0.9533092 #> [327,] 0.6695906 0.6926156 0.7533284 #> [328,] 1.0668279 1.0853428 1.2035339 #> [329,] 0.8267822 0.8279529 0.8500662 #> [330,] 0.6328065 0.6525837 0.6550373 #> [331,] 0.6137788 0.6349687 0.6698618 #> [332,] 0.7303193 0.7322579 0.7341715 #> [333,] 0.8000697 0.8059705 0.8269345 #> [334,] 0.5379070 0.5381997 0.5402068 #> [335,] 0.4572627 0.4642517 0.4692709 #> [336,] 1.1938257 1.2105804 1.2646468 #> [337,] 0.8833182 0.8913455 0.9097912 #> [338,] 0.8483925 0.8485289 0.8739361 #> [339,] 0.9268745 0.9301437 0.9494924 #> [340,] 0.5926610 0.6433268 0.6688616 #> [341,] 0.6328652 0.6697167 0.6775438 #> [342,] 0.6189582 0.6336426 0.6530868 #> [343,] 0.9829755 0.9838940 1.0288515 #> [344,] 0.5624027 0.5672823 0.5751450 #> [345,] 0.5785100 0.5880912 0.6032128 #> [346,] 0.7105605 0.7254459 0.7285652 #> [347,] 0.6198076 0.6297758 0.6598254 #> [348,] 0.8729183 0.8793803 0.9190275 #> [349,] 0.5209098 0.5302664 0.5624052 #> [350,] 0.8863619 0.9420280 0.9459780 #> [351,] 0.8880786 0.9228884 0.9664693 #> [352,] 1.3276280 1.3284202 1.3549191 #> [353,] 1.0438588 1.0442103 1.0701039 #> [354,] 0.7461058 0.7690134 0.7864186 #> [355,] 0.7151664 0.7450731 0.7689244 #> [356,] 0.5878504 0.5908810 0.6090971 #> [357,] 0.6847809 0.8065705 0.8067604 #> [358,] 1.0136404 1.0154122 1.0282789 #> [359,] 1.0531656 1.0646987 1.1138957 #> [360,] 1.0397803 1.0461697 1.0537380 #> [361,] 0.4926647 0.5154537 0.5237127 #> [362,] 0.9955914 1.0392933 1.0474345 #> [363,] 0.8972945 0.8996744 0.9027318 #> [364,] 0.9159105 0.9435594 0.9511380 #> [365,] 0.7430718 0.7604702 0.7980560 #> [366,] 0.5674692 0.5727376 0.6627259 #> [367,] 1.0199524 1.0204548 1.0471335 #> [368,] 0.5353742 0.5394586 0.5463735 #> [369,] 0.8494756 0.8770611 0.8840677 #> [370,] 0.9045793 0.9141658 0.9328294 #> [371,] 0.8484185 0.8639459 0.9237728 #> [372,] 0.7616295 0.7788900 0.8071625 #> [373,] 0.5097656 0.5103176 0.5450248 #> [374,] 0.6674362 0.6946062 0.8056381 #> [375,] 0.7198688 0.7292259 0.7533332 #> [376,] 0.7404467 0.7665664 0.7672032 #> [377,] 0.8388834 0.8573182 0.8683734 #> [378,] 0.7261603 0.7888915 0.8065603 #> [379,] 1.1768365 1.2174035 1.2453905 #> [380,] 1.2598092 1.3246854 1.3305341 #> [381,] 0.8631331 0.8777154 0.8879424 #> [382,] 0.8118543 0.8243492 0.8374920 #> [383,] 0.7757223 0.7796205 0.8203172 #> [384,] 0.8415829 0.8425422 0.8427918 #> [385,] 0.6887134 0.6924916 0.6935413 #> [386,] 0.6301571 0.6443765 0.6467538 #> [387,] 0.6254812 0.6277603 0.6707994 #> [388,] 0.9504140 0.9787950 0.9788155 #> [389,] 0.7573177 0.7574468 0.7613383 #> [390,] 0.6926296 0.7004906 0.7667403 #> [391,] 1.1676943 1.2179838 1.2325915 #> [392,] 0.8188247 0.8241835 0.8339341 #> [393,] 0.8329418 0.8386294 0.8460252 #> [394,] 0.7096210 0.7292739 0.7584514 #> [395,] 1.4799383 1.5064008 1.5235157 #> [396,] 1.1022143 1.1110085 1.1184343 #> [397,] 0.7088534 0.7127603 0.7214720 #> [398,] 0.7625693 0.7998142 0.8176899 #> [399,] 0.7830381 0.8207924 0.8252420 #> [400,] 1.2736809 1.3238208 1.3259648 #> [401,] 0.7904562 0.8157185 0.8233814 #> [402,] 0.9497575 0.9665054 0.9835361 #> [403,] 0.9377258 1.0256769 1.0350779 #> [404,] 0.6182421 0.6186630 0.6250949 #> [405,] 1.3379349 1.3868488 1.4096641 #> [406,] 0.6810388 0.7326497 0.7436179 #> [407,] 0.8000203 0.8126316 0.8261912 #> [408,] 0.6668383 0.6772600 0.7011845 #> [409,] 0.5904144 0.6055436 0.6144892 #> [410,] 0.6182368 0.6483972 0.6787011 #> [411,] 0.7589513 0.7703605 0.7758075 #> [412,] 0.7763655 0.7924663 0.8046182 #> [413,] 0.7299407 0.7307987 0.7472007 #> [414,] 1.2705682 1.3039116 1.3173147 #> [415,] 1.3978243 1.4099353 1.4368023 #> [416,] 0.7055470 0.7556795 0.7571401 #> [417,] 0.8557944 0.9016194 0.9258674 #> [418,] 0.6795702 0.6936138 0.7203690 #> [419,] 0.5507127 0.5616786 0.5664522 #> [420,] 0.5946564 0.6271226 0.6589521 #> [421,] 1.2660488 1.2935256 1.3210175 #> [422,] 1.0777358 1.1552969 1.2204435 #> [423,] 0.5313030 0.5338943 0.5407712 #> [424,] 0.9779007 1.0178157 1.0591399 #> [425,] 0.8950220 0.9454731 0.9560139 #> [426,] 1.0097005 1.0485973 1.1099787 #> [427,] 0.6957399 0.7095744 0.7805514 #> [428,] 1.3067943 1.3501308 1.3673162 #> [429,] 0.8278941 0.8936291 0.9025688 #> [430,] 0.7547116 0.7996885 0.8211158 #> [431,] 0.7154578 0.7296091 0.7660701 #> [432,] 0.7421226 0.7538467 0.8155186 #> [433,] 0.5806314 0.5915916 0.6548079 #> [434,] 0.6349687 0.6365637 0.6500784 #> [435,] 0.8473934 0.8574420 0.9175749 #> [436,] 0.6155368 0.6198042 0.6409345 #> [437,] 0.4699607 0.5248791 0.5486645 #> [438,] 1.0221971 1.0283199 1.0576939 #> [439,] 1.4077905 1.4078477 1.4427959 #> [440,] 0.4409665 0.4626767 0.4938862 #> [441,] 0.9048603 0.9087658 0.9091246 #> [442,] 1.1669433 1.1732456 1.1790484 #> [443,] 0.5563468 0.5780151 0.5950256 #> [444,] 0.9618237 0.9843987 1.0340714 #> [445,] 1.6385503 1.6417239 1.6554494 #> [446,] 0.7878675 0.7962567 0.7979834 #> [447,] 2.0097095 2.0525425 2.0587405 #> [448,] 1.1924949 1.2178915 1.2492241 #> [449,] 0.5403095 0.5631900 0.5737795 #> [450,] 1.6583900 1.7281786 1.7370262 #> [451,] 0.6314860 0.6396309 0.6518001 #> [452,] 1.3654383 1.3918685 1.4056749 #> [453,] 0.6978221 0.7011060 0.7079638 #> [454,] 1.0720183 1.1228689 1.1266475 #> [455,] 0.5374261 0.5787567 0.5882427 #> [456,] 0.5917679 0.6269757 0.6475247 #> [457,] 1.0103346 1.0583478 1.0754355 #> [458,] 0.7366074 0.7696810 0.8113648 #> [459,] 0.5130750 0.5307737 0.5408275 #> [460,] 0.5350491 0.5520000 0.5657748 #> [461,] 0.8358193 0.8409993 0.8453590 #> [462,] 1.3948239 1.4562316 1.4921572 #> [463,] 0.5976927 0.6159258 0.6270187 #> [464,] 0.7016635 0.7099575 0.7111202 #> [465,] 0.9276422 0.9977400 1.0455170 #> [466,] 1.1230235 1.1773242 1.1921464 #> [467,] 0.5719470 0.6084708 0.6584985 #> [468,] 0.5323596 0.5371743 0.6082670 #> [469,] 0.6305895 0.6475206 0.6699390 #> [470,] 0.3822591 0.4214002 0.4794289 #> [471,] 0.6965180 0.7162136 0.7932884 #> [472,] 1.2037354 1.2412579 1.2781834 #> [473,] 1.1528347 1.1575442 1.1691273 #> [474,] 0.6404232 0.6628817 0.6633204 #> [475,] 1.3680536 1.3806925 1.4502315 #> [476,] 0.7013151 0.7044657 0.7068683 #> [477,] 0.7424823 0.8617070 0.8710939 #> [478,] 0.6833299 0.7013946 0.7057739 #> [479,] 0.5670320 0.5874698 0.6266317 #> [480,] 0.5411971 0.5717583 0.5764336 #> [481,] 0.8700075 0.8761098 0.8879985 #> [482,] 0.6665749 0.6856635 0.6897393 #> [483,] 0.7095349 0.7123296 0.7411007 #> [484,] 1.2568529 1.3388399 1.3498595 #> [485,] 0.6030901 0.6106986 0.6362282 #> [486,] 1.3270357 1.3446570 1.3753723 #> [487,] 0.6944722 0.6986781 0.7058085 #> [488,] 0.7442717 0.7716297 0.8258617 #> [489,] 0.8303598 0.8338579 0.8443118 #> [490,] 1.5111890 1.5445189 1.5564387 #> [491,] 1.4287770 1.4338115 1.4534610 #> [492,] 0.6028583 0.6085813 0.6364568 #> [493,] 1.2444039 1.2724466 1.2782419 #> [494,] 0.9186961 0.9288731 0.9339130 #> [495,] 0.5148448 0.5639078 0.6331913 #> [496,] 0.9704159 0.9718047 0.9869484 #> [497,] 0.5541192 0.5699598 0.5739698 #> [498,] 1.2294258 1.2405399 1.2632070 #> [499,] 0.5804832 0.6020497 0.6649769 #> [500,] 0.6395914 0.6407729 0.6647554 #> [501,] 1.2427244 1.2891885 1.3755788 #> [502,] 0.5479711 0.5639078 0.5675280 #> [503,] 1.5388021 1.6372228 1.6697375 #> [504,] 0.7529697 0.7724098 0.7991795 #> [505,] 1.5642651 1.5753041 1.5896113 #> [506,] 0.9122109 0.9163889 0.9183538 #> [507,] 0.9718225 0.9727489 0.9946086 #> [508,] 0.7348817 0.7541810 0.7824822 #> [509,] 0.8368484 0.8441140 0.8712227 #> [510,] 0.7831023 0.8224706 0.8269345 #> [511,] 1.2972052 1.2995585 1.3610271 #> [512,] 0.7433959 0.7674406 0.8095525 #> [513,] 0.4820203 0.4914494 0.5091375 #> [514,] 0.5673960 0.6052295 0.6122315 #> [515,] 0.4559979 0.4896020 0.4909026 #> [516,] 0.4765648 0.5061745 0.5290541 #> [517,] 0.5166929 0.5225545 0.5312450 #> [518,] 0.7012764 0.7025821 0.7181508 #> [519,] 0.6690963 0.6722143 0.7096344 #> [520,] 0.5259640 0.5403095 0.5471192 #> [521,] 0.7425617 0.7567662 0.7822832 #> [522,] 0.5248791 0.5320507 0.5325069 #> [523,] 0.9687019 0.9696667 1.0605354 #> [524,] 0.5592717 0.5775316 0.6013149 #> [525,] 0.7134244 0.7180454 0.7746114 #> [526,] 0.6894268 0.6917122 0.7388943 #> [527,] 1.5320355 1.5359497 1.5481314 #> [528,] 0.6239519 0.6647352 0.6698996 #> [529,] 0.8253294 0.8426068 0.8512405 #> [530,] 0.9175670 0.9586984 0.9696410 #> [531,] 0.5643394 0.6282007 0.6373988 #> [532,] 0.7024892 0.7180089 0.7402136 #> [533,] 0.9412042 0.9443775 0.9501321 #> [534,] 0.6331913 0.6349211 0.6712309 #> [535,] 0.4731234 0.5026104 0.5306004 #> [536,] 0.5622579 0.5691711 0.5894259 #> [537,] 1.3938269 1.4201260 1.4538800 #> [538,] 2.1562114 2.1712210 2.1791550 #> [539,] 0.5998649 0.6303169 0.6841752 #> [540,] 1.2021338 1.2431104 1.2434704 #> [541,] 0.8252084 0.8266875 0.8453320 #> [542,] 1.1119488 1.1136882 1.1416424 #> [543,] 0.7668405 0.7668689 0.7780350 #> [544,] 1.2257260 1.2418458 1.3271819 #> [545,] 0.9903867 1.0414513 1.0425481 #> [546,] 0.7894660 0.7979414 0.8440595 #> [547,] 1.4748032 1.5288034 1.6200355 #> [548,] 0.8342098 0.8576379 0.8589755 #> [549,] 0.8357769 0.8472275 0.8531945 #> [550,] 0.8899300 0.9027397 0.9051167 #> [551,] 0.7655653 0.7879630 0.8017048 #> [552,] 0.6278000 0.6282079 0.6320861 #> [553,] 0.7442717 0.7569825 0.7942681 #> [554,] 0.6768602 0.6894267 0.7283503 #> [555,] 0.4914494 0.5066574 0.5105818 #> [556,] 0.6791070 0.6866979 0.7237962 #> [557,] 0.7090876 0.7166298 0.7232070 #> [558,] 0.6349871 0.6720933 0.6736528 #> [559,] 0.8838416 0.8964731 0.9543999 #> [560,] 0.7819956 0.8213843 0.8433024 #> [561,] 0.8987376 0.9224726 0.9437928 #> [562,] 0.5383853 0.5501868 0.5729807 #> [563,] 1.6153224 1.6803922 1.7070157 #> [564,] 0.9931664 1.0353998 1.0435389 #> [565,] 1.1575457 1.2387429 1.2800923 #> [566,] 1.7779091 1.7815292 1.8143845 #> [567,] 0.8014217 0.8219595 0.8323921 #> [568,] 0.6558496 0.6684397 0.6691929 #> [569,] 0.5976967 0.6356963 0.6428138 #> [570,] 0.8780852 0.8807945 0.8864215 #> [571,] 1.5694029 1.6226836 1.6559844 #> [572,] 1.8867064 1.8946499 1.8951040 #> [573,] 0.7954502 0.8146452 0.8159977 #> [574,] 0.5106542 0.5251450 0.5402068 #> [575,] 0.9253467 0.9494333 0.9523070 #> [576,] 0.5224575 0.5246025 0.5282306 #> [577,] 0.8574534 0.8758765 0.9156594 #> [578,] 0.6972932 0.7002176 0.7072410 #> [579,] 0.7263034 0.7667228 0.7703424 #> [580,] 1.1658215 1.2123779 1.2285181 #> [581,] 0.9509007 0.9569566 0.9901120 #> [582,] 0.6984653 0.7123291 0.7231011 #> [583,] 0.6165135 0.6549497 0.6617059 #> [584,] 0.6559082 0.6567545 0.6708039 #> [585,] 1.2372009 1.2431104 1.3414206 #> [586,] 0.8837551 0.8870166 0.8986792 #> [587,] 1.1300497 1.1378241 1.1534381 #> [588,] 0.9341930 0.9854642 0.9955070 #> [589,] 0.7817602 0.7950334 0.8359405 #> [590,] 0.8507018 0.8532815 0.8706052 #> [591,] 0.6070573 0.6123936 0.6133793 #> [592,] 0.6506767 0.6857493 0.6886219 #> [593,] 1.1799360 1.2041982 1.2203544 #> [594,] 0.9431895 1.0075567 1.0447846 #> [595,] 1.2599315 1.2657402 1.2736123 #> [596,] 0.7112562 0.7154578 0.7300252 #> [597,] 0.9327264 0.9697106 0.9757561 #> [598,] 0.5226653 0.5347778 0.6004037 #> [599,] 0.7221886 0.7933000 0.7960978 #> [600,] 0.5261021 0.5263663 0.5302476 #> [601,] 0.7163910 0.7248237 0.7679930 #> [602,] 0.7257560 0.7548418 0.7964255 #> [603,] 0.8378586 0.8414736 0.8446556 #> [604,] 0.9077201 0.9923359 1.0106972 #> [605,] 0.6994948 0.7045753 0.7119669 #> [606,] 0.5645280 0.5647955 0.5910950 #> [607,] 1.4204439 1.4740305 1.4971383 #> [608,] 1.5498688 1.6069093 1.7384498 #> [609,] 0.9435022 0.9635824 0.9656355 #> [610,] 0.5616786 0.5708692 0.6117274 #> [611,] 1.2172076 1.2886264 1.3355435 #> [612,] 0.5113881 0.5568581 0.5676932 #> [613,] 1.1811073 1.2101745 1.2565012 #> [614,] 0.8288751 0.8812426 0.9096677 #> [615,] 0.5957393 0.6231754 0.6320876 #> [616,] 0.6050565 0.6071182 0.6480847 #> [617,] 0.7711614 0.7980622 0.8012313 #> [618,] 0.5614452 0.6487696 0.6725718 #> [619,] 0.5817847 0.6002829 0.6276241 #> [620,] 0.8364844 0.8494256 0.8512405 #> [621,] 0.7005655 0.7149314 0.7576389 #> [622,] 0.9959242 1.0071526 1.0788781 #> [623,] 1.0235715 1.0478058 1.0535272 #> [624,] 0.7768493 0.7793272 0.8205517 #> [625,] 1.1115848 1.1248822 1.1475012 #> [626,] 0.5346923 0.5503597 0.5520000 #> [627,] 0.6558496 0.6659052 0.7765029 #> [628,] 1.0708415 1.1446938 1.2266482 #> [629,] 0.6829279 0.7051407 0.7155856 #> [630,] 0.7140941 0.7149278 0.7381929 #> [631,] 0.9039229 0.9152130 0.9270557 #> [632,] 0.5377479 0.5674692 0.6032168 #> [633,] 0.6707994 0.6877516 0.7379386 #> [634,] 0.6339956 0.6650379 0.6674789 #> [635,] 0.6655739 0.6722275 0.7188234 #> [636,] 1.2039409 1.2538158 1.3004335 #> [637,] 0.9567400 0.9805564 1.0181206 #> [638,] 1.7680531 1.7727131 1.8282199 #> [639,] 0.7118041 0.7131544 0.7225123 #> [640,] 0.7567525 0.7756439 0.7817602 #> [641,] 0.5957012 0.6084708 0.6490912 #> [642,] 0.6071488 0.6660500 0.6773838 #> [643,] 0.5670320 0.5772271 0.6008826 #> [644,] 0.6868794 0.6977937 0.7150017 #> [645,] 0.7461080 0.7604850 0.7808844 #> [646,] 0.6266361 0.6314365 0.6341940 #> [647,] 0.7385297 0.7404467 0.7519838 #> [648,] 0.8369020 0.8398624 0.8476542 #> [649,] 0.4740971 0.4755505 0.5060454 #> [650,] 1.7220624 1.7519612 1.7616198 #> [651,] 0.4828149 0.5392326 0.5533832 #> [652,] 0.6740843 0.6871881 0.7243692 #> [653,] 0.5535769 0.5727801 0.5891104 #> [654,] 1.0375054 1.0590858 1.0765221 #> [655,] 0.8332197 0.8422317 0.8527906 #> [656,] 1.0206574 1.0517808 1.0649530 #> [657,] 0.7398995 0.8453590 0.8595941 #> [658,] 0.8261406 0.8307582 0.8373647 #> [659,] 0.7806629 0.7927973 0.7979414 #> [660,] 0.5940258 0.6013404 0.6245413 #> [661,] 1.0329767 1.0371129 1.0452618 #> [662,] 0.7318016 0.7900017 0.7961905 #> [663,] 0.4782290 0.4993475 0.5221172 #> [664,] 0.6718837 0.6856635 0.7067344 #> [665,] 0.6518001 0.6655306 0.6815493 #> [666,] 1.1155896 1.1403134 1.1439860 #> [667,] 0.5810267 0.5871655 0.6011670 #> [668,] 0.7238108 0.7438533 0.7550931 #> [669,] 1.0504722 1.0550247 1.0723984 #> [670,] 0.9731496 0.9735136 0.9877512 #> [671,] 1.0529481 1.0845242 1.1297322 #> [672,] 0.8843676 0.8887155 0.9268679 #> [673,] 0.6216648 0.6479959 0.6746208 #> [674,] 0.5251450 0.5284033 0.5484489 #> [675,] 0.7403855 0.7486979 0.7514374 #> [676,] 0.6969275 0.7127841 0.7689411 #> [677,] 0.7326497 0.7373563 0.7384600 #> [678,] 0.6684066 0.6699390 0.6867790 #> [679,] 0.7660027 0.7884803 0.7889959 #> [680,] 0.6324472 0.6806701 0.6925097 #> [681,] 0.6062568 0.6252554 0.6853151 #> [682,] 0.7331707 0.7955418 0.8179501 #> [683,] 1.0878071 1.1123559 1.1526806 #> [684,] 0.5940258 0.6229879 0.6271196 #> [685,] 0.8574649 0.8976148 0.9387797 #> [686,] 0.7263605 0.7401842 0.7438612 #> [687,] 1.3116721 1.3278361 1.3876646 #> [688,] 0.6817233 0.6931311 0.7211141 #> [689,] 1.0200061 1.0265487 1.0418415 #> [690,] 0.7148179 0.7231723 0.7243780 #> [691,] 0.6315268 0.6431302 0.6574496 #> [692,] 1.0381903 1.0520745 1.0933699 #> [693,] 0.9025787 0.9038915 0.9198327 #> [694,] 0.6214294 0.6753017 0.7139887 #> [695,] 1.1763199 1.1795062 1.2006747 #> [696,] 0.6034387 0.6123165 0.6987542 #> [697,] 1.4813297 1.6121141 1.7260634 #> [698,] 0.6417307 0.6438171 0.6462949 #> [699,] 0.8838049 0.9152433 0.9183538 #> [700,] 0.7079312 0.7122314 0.7785440 #> [701,] 1.2274216 1.3371795 1.3521911 #> [702,] 0.6383516 0.6398683 0.6559131 #> [703,] 0.8225748 0.8324250 0.8455299 #> [704,] 0.5142809 0.5876460 0.6074908 #> [705,] 0.5373668 0.5540923 0.5664522 #> [706,] 0.5765510 0.5853877 0.6001879 #> [707,] 0.6937080 0.7006146 0.7421462 #> [708,] 0.6238756 0.6882597 0.6976726 #> [709,] 0.8374410 0.9248079 0.9406653 #> [710,] 0.7652198 0.8181279 0.8206264 #> [711,] 0.5948992 0.5976967 0.6158515 #> [712,] 0.9381280 0.9597892 0.9664203 #> [713,] 1.0555835 1.0615033 1.0912192 #> [714,] 0.8848121 0.9112138 0.9500410 #> [715,] 1.0850121 1.0871142 1.0940913 #> [716,] 0.7843407 0.8227103 0.8617159 #> [717,] 0.4696288 0.4699835 0.4738325 #> [718,] 0.5210939 0.5921035 0.6556833 #> [719,] 1.0706496 1.0765221 1.1663353 #> [720,] 0.8406039 0.8808923 0.8958698 #> [721,] 0.8506859 0.8674290 0.8749529 #> [722,] 1.1576949 1.1636063 1.1886189 #> [723,] 0.7265791 0.7418144 0.7951605 #> [724,] 0.7665664 0.8252081 0.8266375 #> [725,] 0.6844479 0.6874830 0.7128726 #> [726,] 0.9559077 1.1242090 1.1646467 #> [727,] 0.7351015 0.7832581 0.8303848 #> [728,] 0.9923359 1.0102435 1.0381903 #> [729,] 1.4331600 1.4771536 1.4932030 #> [730,] 0.6936138 0.7290462 0.7386993 #> [731,] 0.5865848 0.5928012 0.5935847 #> [732,] 0.8202470 0.8342600 0.8562082 #> [733,] 0.6299515 0.7325734 0.7354251 #> [734,] 2.0558621 2.0864969 2.1005553 #> [735,] 0.6088727 0.6541174 0.6590748 #> [736,] 1.2058457 1.2621229 1.2702962 #> [737,] 1.1890757 1.2943075 1.2991210 #> [738,] 0.5636207 0.5829550 0.6010974 #> [739,] 1.2999900 1.3123376 1.3535130 #> [740,] 0.5961094 0.6115983 0.6147504 #> [741,] 1.1292652 1.1476807 1.1993746 #> [742,] 0.6389123 0.6490562 0.6605395 #> [743,] 0.5694909 0.6220328 0.6521282 #> [744,] 0.6801958 0.6913184 0.7516634 #> [745,] 0.7373071 0.7444701 0.7774382 #> [746,] 0.5555416 0.5618440 0.5831496 #> [747,] 1.3390375 1.3843793 1.4050764 #> [748,] 0.7693490 0.7886514 0.8007839 #> [749,] 1.2160325 1.2310418 1.2612687 #> [750,] 0.7772398 0.7835136 0.7853064 #> [751,] 0.6469686 0.6871881 0.6893706 #> [752,] 1.0467176 1.0487921 1.0535688 #> [753,] 0.7115954 0.7243692 0.7353212 #> [754,] 1.0067329 1.1439401 1.1663841 #> [755,] 0.7445498 0.8205199 0.8258803 #> [756,] 0.5692131 0.5878257 0.6048488 #> [757,] 1.5059130 1.5141408 1.5370495 #> [758,] 0.7022300 0.7040191 0.7266179 #> [759,] 2.0418621 2.1325963 2.2567825 #> [760,] 0.5918048 0.5966892 0.6095008 #> [761,] 0.5413950 0.5472648 0.5751142 #> [762,] 0.5384481 0.5705695 0.5868046 #> [763,] 0.8146452 0.8153426 0.8235265 #> [764,] 0.6850527 0.6924807 0.7120703 #> [765,] 1.1885719 1.2018503 1.2018910 #> [766,] 1.3260409 1.3341675 1.3347847 #> [767,] 0.6248858 0.6631087 0.6670681 #> [768,] 0.9237803 0.9821653 1.0128317 #> [769,] 0.8028055 0.8115816 0.8469829 #> [770,] 1.3735787 1.4586779 1.4587643 #> [771,] 1.0487313 1.1115367 1.1278697 #> [772,] 0.6377302 0.7069487 0.7291969 #> [773,] 0.9324725 0.9695837 1.0005072 #> [774,] 0.7340137 0.7686250 0.7910865 #> [775,] 0.7437403 0.7456979 0.7878617 #> [776,] 0.6409072 0.6948549 0.7067249 #> [777,] 0.7257133 0.7526207 0.8145793 #> [778,] 0.5142809 0.5245879 0.5252494 #> [779,] 0.6242367 0.6256287 0.6328125 #> [780,] 0.6837660 0.6874830 0.7228639 #> [781,] 0.8125125 0.8322545 0.8503036 #> [782,] 0.5561102 0.5578403 0.5763036 #> [783,] 0.5896110 0.5958654 0.6104892 #> [784,] 0.7866859 0.7935557 0.7964822 #> [785,] 0.6916844 0.7073426 0.7114112 #> [786,] 0.6074524 0.6283285 0.6525452 #> [787,] 0.8485117 0.8661158 0.8681542 #> [788,] 0.7669146 0.7704553 0.7730321 #> [789,] 0.7936552 0.8056731 0.8282903 #> [790,] 0.7768582 0.7846403 0.7865361 #> [791,] 0.9218025 0.9309645 0.9834923 #> [792,] 0.7310340 0.7395698 0.7413927 #> [793,] 0.5268015 0.5320507 0.5456090 #> [794,] 0.6962281 0.7052326 0.7597433 #> [795,] 0.7230854 0.7567452 0.7898359 #> [796,] 1.4279747 1.4767257 1.4891995 #> [797,] 0.5369971 0.6397847 0.6429611 #> [798,] 0.7756439 0.7789369 0.7825231 #> [799,] 1.3097582 1.4824465 1.5489940 #> [800,] 0.7162136 0.7266179 0.7296064 #> [801,] 0.4948228 0.5717583 0.5764634 #> [802,] 0.9185322 0.9380741 0.9420223 #> [803,] 0.6465218 0.6621150 0.6682168 #> [804,] 0.6172237 0.6478300 0.6539777 #> [805,] 1.8593783 1.8708800 1.9053267 #> [806,] 0.7604921 0.7642574 0.7730720 #> [807,] 0.7662884 0.7721703 0.7889959 #> [808,] 0.5115099 0.5396213 0.5483203 #> [809,] 1.0282668 1.0382065 1.0560935 #> [810,] 0.5475677 0.5502896 0.5973181 #> [811,] 1.1429708 1.1613028 1.2231753 #> [812,] 0.6638050 0.6828485 0.6834797 #> [813,] 0.9778346 1.0510234 1.1124590 #> [814,] 1.2542723 1.3124297 1.3212982 #> [815,] 0.7370478 0.7417071 0.7623365 #> [816,] 0.8667483 0.8711702 0.8878093 #> [817,] 0.6253059 0.6553342 0.6873358 #> [818,] 0.8282982 0.8362473 0.8699008 #> [819,] 0.9744774 0.9890063 1.0132698 #> [820,] 0.6783649 0.7362620 0.7444487 #> [821,] 0.6621150 0.6987482 0.7166870 #> [822,] 0.9290550 1.0580104 1.0725154 #> [823,] 1.0468094 1.0712767 1.0978278 #> [824,] 0.6427528 0.6436058 0.6524632 #> [825,] 0.6817233 0.7111853 0.7402580 #> [826,] 0.5284033 0.5541392 0.5699656 #> [827,] 1.3117818 1.3270609 1.3359374 #> [828,] 0.6628685 0.6713565 0.6810039 #> [829,] 0.8527906 0.8812073 0.9528009 #> [830,] 0.6828485 0.6850597 0.6959316 #> [831,] 0.8301323 0.8712192 0.9245956 #> [832,] 0.6132856 0.6421572 0.6431027 #> [833,] 0.7869176 0.8055432 0.8226591 #> [834,] 1.2076362 1.2278662 1.2417090 #> [835,] 0.7902266 0.8018794 0.8600771 #> [836,] 0.7864186 0.7935557 0.8255778 #> [837,] 0.7262376 0.7844301 0.7885148 #> [838,] 1.4799255 1.5037535 1.5076612 #> [839,] 0.5764634 0.6651793 0.6815833 #> [840,] 0.6878447 0.6985192 0.7296800 #> [841,] 0.4934944 0.5391688 0.5655502 #> [842,] 1.0560959 1.0712848 1.0853428 #> [843,] 0.7249468 0.7366193 0.7376150 #> [844,] 0.7874349 0.7950016 0.8099821 #> [845,] 0.7664371 0.7807477 0.8116326 #> [846,] 0.6358013 0.6442066 0.6576187 #> [847,] 0.4486907 0.4983990 0.4999563 #> [848,] 0.9207612 0.9276422 0.9540991 #> [849,] 0.4063097 0.4590751 0.4740971 #> [850,] 0.6394717 0.6588610 0.6600258 #> [851,] 0.8149142 0.8428174 0.8796094 #> [852,] 0.6049990 0.6198042 0.6272176 #> [853,] 0.9851428 1.0335664 1.0680627 #> [854,] 1.0029237 1.0044478 1.0091058 #> [855,] 0.9468798 0.9500668 0.9856499 #> [856,] 1.1343272 1.1434065 1.1500361 #> [857,] 0.9434459 0.9806701 0.9911303 #> [858,] 0.6657246 0.6823429 0.6984509 #> [859,] 0.9392122 1.0334538 1.0380556 #> [860,] 0.6851883 0.6919852 0.7095744 #> [861,] 0.7763655 0.7913457 0.8270811 #> [862,] 0.6989579 0.7134870 0.7771113 #> [863,] 0.7291426 0.7341086 0.7359247 #> [864,] 1.2080432 1.2282035 1.3640246 #> [865,] 0.7292787 0.7359247 0.8104232 #> [866,] 0.8350270 0.8828692 0.8838416 #> [867,] 1.6801516 1.7936242 1.8107486 #> [868,] 0.7664883 0.7692705 0.7853750 #> [869,] 0.6256287 0.6405012 0.6438171 #> [870,] 0.9159168 0.9412794 0.9424081 #> [871,] 0.4008547 0.4421991 0.4654775 #> [872,] 1.5398663 1.5488528 1.5865198 #> [873,] 0.5946995 0.5961094 0.5985655 #> [874,] 1.2174384 1.2866041 1.3608177 #> [875,] 0.6989579 0.7028270 0.7502891 #> [876,] 1.1007515 1.1159988 1.1618348 #> [877,] 0.9267543 0.9303417 0.9985390 #> [878,] 0.7707595 0.7796337 0.8207193 #> [879,] 0.7728698 0.8062140 0.8064596 #> [880,] 0.9699226 1.0045098 1.0449545 #> [881,] 0.8332732 0.8572955 0.8811205 #> [882,] 0.7810091 0.7894367 0.8153426 #> [883,] 0.7170823 0.7352067 0.7384600 #> [884,] 0.5624806 0.5863302 0.6213767 #> [885,] 0.9655477 0.9727644 1.0023837 #> [886,] 0.6547229 0.6760726 0.6837625 #> [887,] 0.6487290 0.6680559 0.7312532 #> [888,] 0.8688664 0.9291881 0.9494333 #> [889,] 1.3239755 1.3330514 1.3419673 #> [890,] 0.4841708 0.5299665 0.5941560 #> [891,] 1.1557669 1.2092693 1.2211860 #> [892,] 0.5427501 0.5509455 0.5757741 #> [893,] 1.0055165 1.1019036 1.1303557 #> [894,] 1.5957744 1.6656746 1.6704343 #> [895,] 0.5313030 0.5411869 0.5432273 #> [896,] 1.3521568 1.3854506 1.3989331 #> [897,] 1.2729158 1.2869336 1.3173147 #> [898,] 1.3501308 1.4088867 1.4431790 #> [899,] 0.5130520 0.5265425 0.5344388 #> [900,] 0.6500784 0.6550834 0.6594093 #> [901,] 0.9341268 0.9882515 1.0482291 #> [902,] 0.6887986 0.6949705 0.7101375 #> [903,] 1.8382930 1.8593577 1.8821169 #> [904,] 0.8450184 0.8584939 0.8900323 #> [905,] 1.3352933 1.3647099 1.3707155 #> [906,] 0.6124874 0.6452023 0.6502552 #> [907,] 0.6015697 0.6057881 0.6303679 #> [908,] 0.7397444 0.7589513 0.7761755 #> [909,] 1.1331706 1.1684123 1.2233917 #> [910,] 0.7708239 0.8088441 0.8090672 #> [911,] 0.7564921 0.8313556 0.8853633 #> [912,] 0.5590943 0.5693136 0.6010974 #> [913,] 0.5705695 0.5990171 0.5997920 #> [914,] 0.6483972 0.6809148 0.6938318 #> [915,] 1.1443646 1.1713342 1.1896728 #> [916,] 0.7747097 0.7772398 0.8024150 #> [917,] 0.7302801 0.7417071 0.7470587 #> [918,] 0.6165999 0.6218071 0.6254043 #> [919,] 0.6983487 0.8245811 0.8574372 #> [920,] 1.0107482 1.0956074 1.1528632 #> [921,] 0.5968568 0.6036069 0.6052295 #> [922,] 0.7816347 0.8317877 0.8353579 #> [923,] 0.7042752 0.7556773 0.7612428 #> [924,] 0.8016984 0.8064596 0.8279561 #> [925,] 0.6581170 0.6625708 0.6638874 #> [926,] 0.7545084 0.7692472 0.8111023 #> [927,] 0.8234208 0.8325586 0.8762490 #> [928,] 0.8036009 0.8617396 0.9095927 #> [929,] 0.9777802 0.9867707 0.9916101 #> [930,] 0.6246838 0.6478300 0.6710057 #> [931,] 0.7047821 0.7074970 0.7094189 #> [932,] 0.5815310 0.5894735 0.5981939 #> [933,] 0.8676934 0.8809400 0.9466005 #> [934,] 1.0968149 1.1379194 1.1401699 #> [935,] 0.5070188 0.5424867 0.5633698 #> [936,] 0.9154519 0.9903226 0.9985880 #> [937,] 1.0154784 1.0198059 1.0558893 #> [938,] 0.7369948 0.7536130 0.8294904 #> [939,] 1.4303140 1.4317122 1.4805684 #> [940,] 0.8062438 0.8196058 0.8569086 #> [941,] 1.1892653 1.2261792 1.2324396 #> [942,] 0.5912759 0.5969571 0.6082670 #> [943,] 0.5314154 0.5326785 0.5801175 #> [944,] 0.8829630 0.8910723 0.8967822 #> [945,] 1.3858221 1.4302707 1.4316539 #> [946,] 0.6547229 0.6886322 0.6928918 #> [947,] 0.6877890 0.7001301 0.7057125 #> [948,] 1.8357152 1.9045001 1.9065517 #> [949,] 1.3379349 1.4021315 1.4079049 #> [950,] 1.0840138 1.1094766 1.1308136 #> [951,] 0.7117756 0.7177677 0.7423945 #> [952,] 0.7438321 0.7534034 0.7842284 #> [953,] 0.7502960 0.7789664 0.7982690 #> [954,] 0.6118587 0.6215960 0.6384658 #> [955,] 1.2871531 1.3225393 1.3418591 #> [956,] 0.7043195 0.7170823 0.7336379 #> [957,] 1.0358191 1.0774448 1.1165770 #> [958,] 0.6198076 0.6213680 0.6650598 #> [959,] 1.1471868 1.2669688 1.2800816 #> [960,] 0.8130187 0.8631036 0.8891762 #> [961,] 0.4881796 0.5027134 0.5136565 #> [962,] 0.5982893 0.6004924 0.6157327 #> [963,] 0.7837144 0.7919935 0.7991795 #> [964,] 0.6104453 0.6329952 0.6364906 #> [965,] 0.7174851 0.7278104 0.7323772 #> [966,] 0.6158712 0.6274870 0.6436952 #> [967,] 0.9331233 0.9648185 0.9984615 #> [968,] 0.9794996 0.9906871 1.0181875 #> [969,] 0.9764982 0.9772140 0.9803378 #> [970,] 0.8332279 0.8385844 0.8746902 #> [971,] 0.8782562 0.9048243 0.9051167 #> [972,] 0.7135772 0.7139887 0.7223360 #> [973,] 0.6498677 0.6716114 0.7187771 #> [974,] 0.7911595 0.7980903 0.8115715 #> [975,] 1.0262068 1.0452156 1.0937855 #> [976,] 0.7545626 0.7664371 0.7778610 #> [977,] 0.9817203 1.0214761 1.0233572 #> [978,] 0.7640607 0.7933599 0.8157303 #> [979,] 0.5221971 0.5497720 0.6275281 #> [980,] 0.8326922 0.8450174 0.8531720 #> [981,] 0.6079576 0.6749162 0.6866674 #> [982,] 0.5516274 0.5699598 0.6100876 #> [983,] 0.6790706 0.7139076 0.7197768 #> [984,] 1.2032878 1.2213903 1.2509943 #> [985,] 0.6874485 0.7101610 0.7203690 #> [986,] 1.0107862 1.0289652 1.0302160 #> [987,] 0.5092006 0.5504881 0.5553071 #> [988,] 0.6925121 0.7282713 0.7690535 #> [989,] 0.7949332 0.8214750 0.8386153 #> [990,] 1.1753586 1.2128637 1.2172076 #> [991,] 0.7462066 0.8073125 0.8246749 #> [992,] 0.6815427 0.7020037 0.7071514 #> [993,] 0.8221489 0.8382346 0.8520056 #> [994,] 0.5541392 0.5859897 0.5901825 #> [995,] 0.6030581 0.6088673 0.6820477 #> [996,] 1.0221451 1.0348177 1.0581953 #> [997,] 1.1938107 1.2440572 1.2494514 #> [998,] 0.7631284 0.8002346 0.8086030 #> [999,] 0.6835776 0.6913845 0.6999382 #> [1000,] 1.1236420 1.1943301 1.2301638 #> # Find the 10 approximate nearest neighbors tof_find_knn( .data = sim_data, k = 10, distance_function = \"euclidean\", ) #> $neighbor_ids #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] #> [1,] 442 230 784 689 53 137 330 836 996 69 #> [2,] 874 179 540 168 223 720 504 824 885 383 #> [3,] 213 97 262 688 569 583 921 711 455 436 #> [4,] 691 167 268 281 235 746 958 524 275 449 #> [5,] 681 33 966 976 295 698 239 740 59 993 #> [6,] 641 921 467 213 884 514 552 410 711 3 #> [7,] 735 797 69 294 53 226 238 330 907 129 #> [8,] 525 884 433 469 305 678 332 833 591 6 #> [9,] 975 358 333 394 526 199 692 888 828 48 #> [10,] 159 743 81 440 297 368 985 480 54 456 #> [11,] 278 476 906 232 995 600 272 172 349 73 #> [12,] 821 641 554 514 293 467 725 478 780 702 #> [13,] 88 906 989 349 703 142 11 216 596 147 #> [14,] 724 993 523 59 376 422 496 123 647 976 #> [15,] 375 585 893 249 178 301 967 179 978 250 #> [16,] 636 231 204 175 121 181 377 370 998 960 #> [17,] 590 928 631 901 620 317 388 770 466 529 #> [18,] 853 71 936 822 309 959 989 29 227 597 #> [19,] 807 271 545 727 434 960 679 977 453 302 #> [20,] 77 468 610 520 144 109 156 167 942 235 #> [21,] 958 536 443 158 673 240 347 556 355 285 #> [22,] 648 63 781 176 671 499 725 569 852 436 #> [23,] 363 282 207 985 413 115 882 454 788 381 #> [24,] 457 86 802 267 877 681 943 124 548 740 #> [25,] 623 234 220 279 32 352 662 166 530 185 #> [26,] 141 346 785 221 404 830 868 786 60 833 #> [27,] 487 317 780 89 621 918 554 61 58 171 #> [28,] 353 484 809 587 493 699 49 919 83 156 #> [29,] 172 272 227 936 216 11 675 476 788 989 #> [30,] 72 62 459 576 793 600 344 274 995 127 #> [31,] 712 66 491 494 326 322 51 636 488 472 #> [32,] 64 621 662 508 946 234 4 443 61 487 #> [33,] 5 976 59 845 186 698 539 263 873 772 #> [34,] 42 561 231 181 35 609 16 719 545 977 #> [35,] 42 571 34 889 561 977 379 945 577 545 #> [36,] 655 343 427 357 567 521 882 909 741 309 #> [37,] 907 531 982 762 562 143 318 850 497 135 #> [38,] 866 320 114 529 857 559 149 348 546 254 #> [39,] 284 164 969 259 165 230 400 974 112 595 #> [40,] 666 687 857 611 854 348 559 866 593 669 #> [41,] 871 849 470 361 890 250 717 485 649 847 #> [42,] 561 392 545 19 960 34 35 231 577 977 #> [43,] 524 128 954 846 778 459 148 344 296 127 #> [44,] 522 899 892 419 705 437 653 576 146 513 #> [45,] 93 913 299 598 110 409 294 626 408 334 #> [46,] 402 465 86 976 978 124 350 681 261 848 #> [47,] 290 722 707 206 753 533 328 512 750 198 #> [48,] 59 594 394 374 647 248 724 518 526 5 #> [49,] 156 109 601 116 77 383 587 484 942 504 #> [50,] 794 158 443 240 558 744 155 748 879 536 #> [51,] 494 377 693 365 644 745 712 55 972 121 #> [52,] 318 965 201 137 182 143 907 602 568 37 #> [53,] 512 69 330 154 7 784 143 707 441 797 #> [54,] 138 440 203 783 612 67 368 115 10 78 #> [55,] 181 204 721 365 609 104 377 51 448 121 #> [56,] 984 842 827 897 564 713 312 415 96 190 #> [57,] 310 437 419 930 742 705 895 932 44 899 #> [58,] 694 668 551 918 75 89 751 409 778 652 #> [59,] 724 976 48 33 523 14 993 5 394 647 #> [60,] 26 830 989 983 868 141 633 404 386 902 #> [61,] 275 64 758 825 840 554 471 487 800 27 #> [62,] 459 778 30 110 102 72 335 817 203 385 #> [63,] 499 648 852 731 436 22 947 569 129 584 #> [64,] 61 32 532 534 275 487 846 148 233 443 #> [65,] 686 334 451 464 735 629 41 373 663 690 #> [66,] 712 31 491 693 51 494 854 130 326 488 #> [67,] 203 122 296 247 440 704 335 138 459 102 #> [68,] 106 861 815 557 816 851 640 398 910 937 #> [69,] 970 53 7 133 441 784 330 329 710 735 #> [70,] 628 243 198 458 990 176 388 669 916 570 #> [71,] 822 959 309 100 18 407 917 788 936 227 #> [72,] 459 30 706 296 210 335 62 67 502 128 #> [73,] 643 600 663 516 513 522 576 808 451 717 #> [74,] 362 315 338 202 679 271 952 482 434 224 #> [75,] 668 652 58 694 299 110 252 913 93 409 #> [76,] 961 804 291 635 340 423 420 875 812 930 #> [77,] 20 610 468 942 520 109 144 156 167 761 #> [78,] 420 612 517 895 297 961 115 340 860 54 #> [79,] 676 188 500 579 911 215 878 247 879 706 #> [80,] 209 630 429 567 521 860 829 1000 654 357 #> [81,] 385 258 440 578 817 10 207 138 335 159 #> [82,] 454 391 23 381 282 152 363 763 207 592 #> [83,] 608 481 587 933 28 103 229 484 424 714 #> [84,] 166 384 279 968 787 662 825 194 293 554 #> [85,] 304 345 531 497 738 873 632 37 964 808 #> [86,] 350 681 465 496 976 873 46 457 887 366 #> [87,] 417 690 617 723 485 686 161 624 795 978 #> [88,] 245 13 147 541 703 278 596 11 272 172 #> [89,] 780 27 918 409 524 58 778 680 268 43 #> [90,] 492 615 839 801 935 219 782 313 517 480 #> [91,] 283 319 531 497 483 696 132 304 738 412 #> [92,] 403 922 775 461 378 169 316 560 657 209 #> [93,] 299 45 110 598 913 252 460 626 102 409 #> [94,] 854 130 444 351 559 66 491 462 40 857 #> [95,] 120 189 965 426 206 599 359 289 842 435 #> [96,] 118 113 564 709 836 837 354 132 602 189 #> [97,] 921 3 410 468 266 455 520 144 552 954 #> [98,] 314 146 832 895 128 180 150 460 274 810 #> [99,] 622 489 820 411 131 764 756 604 746 164 #> [100,] 917 407 822 851 71 788 815 839 959 661 #> [101,] 770 739 466 17 380 928 857 590 631 620 #> [102,] 368 122 704 110 778 203 299 810 440 62 #> [103,] 771 933 83 229 872 905 608 714 481 818 #> [104,] 121 755 365 745 579 676 783 769 55 500 #> [105,] 366 632 966 873 912 932 423 887 582 219 #> [106,] 68 815 851 557 839 100 861 788 971 90 #> [107,] 768 937 475 244 861 398 68 550 971 212 #> [108,] 428 439 241 645 596 988 13 332 142 305 #> [109,] 235 401 20 156 77 779 292 49 610 167 #> [110,] 299 93 102 778 62 598 45 460 75 368 #> [111,] 667 174 323 886 651 519 777 205 341 843 #> [112,] 238 893 617 969 178 375 970 259 339 284 #> [113,] 118 709 354 191 837 96 602 836 132 544 #> [114,] 660 659 478 149 962 495 126 546 38 702 #> [115,] 170 78 882 54 592 940 420 138 517 297 #> [116,] 383 374 625 601 49 518 248 504 760 156 #> [117,] 986 799 188 236 79 766 490 678 346 981 #> [118,] 96 113 354 837 836 189 709 132 120 640 #> [119,] 224 568 263 482 992 135 835 539 182 696 #> [120,] 189 589 599 177 837 354 640 543 836 325 #> [121,] 745 104 755 231 783 377 644 170 365 592 #> [122,] 704 102 203 368 67 296 778 440 810 459 #> [123,] 376 657 844 378 993 14 637 406 724 461 #> [124,] 607 46 24 457 86 465 214 978 350 402 #> [125,] 492 812 615 364 90 917 438 407 839 831 #> [126,] 478 702 962 551 114 950 944 684 918 660 #> [127,] 516 626 574 460 600 793 663 373 524 455 #> [128,] 296 43 98 954 148 72 146 314 122 67 #> [129,] 947 767 499 731 780 735 226 45 626 63 #> [130,] 854 351 559 444 693 320 94 578 752 644 #> [131,] 397 764 356 342 756 446 618 99 411 708 #> [132,] 319 696 91 412 283 709 965 182 531 354 #> [133,] 441 69 970 53 916 7 750 176 710 458 #> [134,] 898 8 986 507 525 833 773 184 811 396 #> [135,] 201 568 850 224 182 627 119 37 390 205 #> [136,] 754 541 369 245 624 88 439 670 596 464 #> [137,] 330 836 474 143 837 52 784 318 797 907 #> [138,] 54 440 335 203 783 67 183 81 72 612 #> [139,] 616 399 583 614 432 596 256 904 515 711 #> [140,] 990 770 737 533 287 190 611 570 193 371 #> [141,] 26 785 346 221 404 786 270 833 830 183 #> [142,] 305 173 195 349 232 515 278 433 616 596 #> [143,] 907 562 797 318 37 137 154 512 474 330 #> [144,] 468 520 634 20 688 77 97 987 606 3 #> [145,] 652 605 197 751 553 75 435 222 252 792 #> [146,] 180 98 899 964 460 449 761 314 44 128 #> [147,] 776 88 432 989 256 324 13 597 596 139 #> [148,] 846 443 43 128 954 247 558 883 158 296 #> [149,] 546 384 114 487 478 233 534 293 659 702 #> [150,] 423 832 314 961 219 306 98 895 810 297 #> [151,] 883 677 382 930 273 260 991 865 956 863 #> [152,] 752 462 444 870 391 258 573 82 763 130 #> [153,] 632 912 664 304 738 582 992 900 219 105 #> [154,] 512 562 143 53 907 318 446 7 762 570 #> [155,] 558 247 500 389 443 846 792 355 50 158 #> [156,] 218 109 49 20 77 942 249 144 634 760 #> [157,] 729 214 68 670 936 106 955 557 543 29 #> [158,] 443 794 536 50 240 21 556 744 958 148 #> [159,] 10 456 743 321 368 102 81 110 416 440 #> [160,] 831 802 815 615 438 125 675 90 997 492 #> [161,] 417 261 474 690 87 191 327 784 617 602 #> [162,] 651 982 255 667 264 762 341 174 497 642 #> [163,] 957 880 329 200 710 754 996 298 686 629 #> [164,] 284 259 99 622 39 165 411 595 967 489 #> [165,] 164 967 397 848 284 360 845 131 39 969 #> [166,] 662 758 61 800 825 508 787 728 279 84 #> [167,] 235 4 520 275 20 401 281 449 691 746 #> [168,] 874 2 24 383 116 540 457 720 625 124 #> [169,] 639 775 877 267 92 403 461 831 560 742 #> [170,] 940 115 592 998 730 882 370 121 231 567 #> [171,] 746 268 841 680 756 674 826 852 226 524 #> [172,] 272 29 227 11 476 88 216 989 324 703 #> [173,] 232 195 349 515 142 995 305 906 591 278 #> [174,] 651 667 762 982 111 264 162 205 680 409 #> [175,] 204 747 654 755 181 121 231 104 16 55 #> [176,] 22 671 458 916 781 725 648 63 441 628 #> [177,] 599 589 120 927 640 325 910 543 189 856 #> [178,] 375 250 890 41 301 871 978 470 617 760 #> [179,] 540 223 874 2 885 15 375 951 249 432 #> [180,] 146 964 449 761 98 899 869 610 345 295 #> [181,] 204 55 609 175 721 104 231 121 365 654 #> [182,] 568 135 257 602 201 627 850 119 318 224 #> [183,] 138 78 270 592 346 763 188 54 115 335 #> [184,] 833 542 785 26 141 898 537 8 525 60 #> [185,] 229 789 672 234 790 430 991 794 924 158 #> [186,] 772 539 642 217 342 341 869 33 828 952 #> [187,] 486 926 894 202 843 362 791 953 777 473 #> [188,] 79 733 346 676 183 981 72 221 296 706 #> [189,] 120 837 836 589 354 599 177 118 996 543 #> [190,] 312 435 713 328 533 287 47 842 737 206 #> [191,] 602 113 709 182 161 261 732 132 257 402 #> [192,] 465 848 402 350 523 845 976 867 46 165 #> [193,] 737 777 685 371 446 843 938 287 111 400 #> [194,] 787 825 236 840 471 384 806 758 6 641 #> [195,] 232 173 515 142 278 455 516 349 600 793 #> [196,] 298 399 584 431 464 339 614 541 803 814 #> [197,] 553 222 145 605 488 751 931 923 208 792 #> [198,] 458 570 707 750 533 753 916 990 551 388 #> [199,] 510 333 549 819 526 791 736 953 828 952 #> [200,] 957 880 589 163 177 416 120 408 856 599 #> [201,] 135 568 182 224 205 390 627 52 318 119 #> [202,] 679 843 390 362 473 271 74 338 315 222 #> [203,] 67 440 122 704 368 138 54 102 335 296 #> [204,] 181 55 175 121 755 104 16 51 365 494 #> [205,] 651 341 390 762 174 982 843 642 201 111 #> [206,] 753 290 652 47 75 145 668 435 252 598 #> [207,] 985 81 592 23 258 10 381 311 282 115 #> [208,] 255 619 331 704 463 497 122 306 718 368 #> [209,] 630 429 829 251 560 80 316 860 211 868 #> [210,] 706 979 335 502 495 72 67 684 660 247 #> [211,] 251 429 424 560 714 630 260 868 246 310 #> [212,] 992 244 900 727 768 453 398 300 807 664 #> [213,] 3 262 711 225 569 6 583 436 921 97 #> [214,] 729 607 723 157 795 24 887 457 124 191 #> [215,] 879 534 532 233 748 500 558 247 495 979 #> [216,] 476 859 906 413 989 227 11 29 703 788 #> [217,] 372 956 869 844 347 772 647 186 285 510 #> [218,] 249 301 606 760 156 987 634 250 280 826 #> [219,] 423 801 150 615 935 912 480 90 961 738 #> [220,] 234 352 765 25 530 736 508 790 631 915 #> [221,] 346 26 141 868 785 404 830 357 427 983 #> [222,] 553 197 923 777 145 931 323 605 751 111 #> [223,] 179 432 951 2 885 720 614 874 147 540 #> [224,] 119 568 263 135 539 201 482 850 835 182 #> [225,] 213 904 583 591 773 973 262 3 616 711 #> [226,] 756 680 841 7 129 171 238 735 264 764 #> [227,] 29 172 272 788 675 936 557 476 216 479 #> [228,] 560 169 364 757 902 963 868 246 742 775 #> [229,] 185 789 933 991 672 771 401 575 382 818 #> [230,] 1 318 627 257 974 154 602 784 52 53 #> [231,] 940 121 170 392 561 104 586 16 998 745 #> [232,] 173 515 349 195 278 142 600 793 995 455 #> [233,] 534 215 532 495 979 706 660 210 702 879 #> [234,] 220 508 32 185 790 946 240 691 530 4 #> [235,] 167 281 746 618 109 401 4 449 826 356 #> [236,] 659 891 194 532 495 715 410 384 986 787 #> [237,] 646 643 858 782 743 479 480 935 600 73 #> [238,] 112 7 708 226 735 327 178 764 69 969 #> [239,] 966 740 267 681 366 5 518 105 295 639 #> [240,] 946 682 158 536 744 794 443 21 50 958 #> [241,] 108 855 439 645 650 428 988 603 431 596 #> [242,] 448 721 50 744 794 748 367 939 813 879 #> [243,] 669 293 388 725 628 12 554 458 176 198 #> [244,] 212 300 768 732 992 412 696 338 709 861 #> [245,] 88 541 464 629 369 624 596 278 451 65 #> [246,] 963 653 419 942 310 919 57 742 387 902 #> [247,] 558 500 67 155 846 676 296 210 148 203 #> [248,] 518 601 774 374 779 698 239 295 818 5 #> [249,] 218 301 156 760 15 375 178 885 250 824 #> [250,] 871 301 847 760 470 41 178 824 849 890 #> [251,] 211 429 714 630 424 560 209 260 677 868 #> [252,] 598 299 93 913 75 110 45 762 208 409 #> [253,] 575 549 430 571 790 819 307 771 510 872 #> [254,] 348 529 866 792 605 389 320 590 857 693 #> [255,] 208 331 619 497 162 718 651 463 982 306 #> [256,] 904 506 658 139 225 147 633 776 583 973 #> [257,] 627 602 182 135 318 568 201 52 261 974 #> [258,] 81 870 207 385 985 578 817 159 656 10 #> [259,] 284 164 112 489 969 99 238 622 967 39 #> [260,] 382 273 980 714 151 481 211 733 991 933 #> [261,] 161 327 402 850 257 602 474 191 627 182 #> [262,] 213 3 688 569 225 929 6 711 641 773 #> [263,] 224 835 119 482 539 350 850 568 135 33 #> [264,] 982 680 174 762 268 756 162 667 409 651 #> [265,] 914 576 793 981 274 404 733 522 419 892 #> [266,] 455 921 97 344 436 520 852 127 793 524 #> [267,] 639 239 966 461 831 169 775 366 740 105 #> [268,] 746 4 171 264 691 674 281 680 524 756 #> [269,] 339 87 369 617 754 624 417 814 689 951 #> [270,] 502 678 706 817 833 183 210 335 72 141 #> [271,] 807 434 679 19 453 727 315 718 202 931 #> [272,] 172 29 227 11 476 646 324 675 665 216 #> [273,] 382 733 260 954 151 481 999 610 883 77 #> [274,] 576 895 705 932 404 600 98 522 479 437 #> [275,] 61 840 520 758 167 64 954 4 524 806 #> [276,] 638 968 701 388 243 84 901 293 70 716 #> [277,] 647 772 844 952 217 376 724 510 186 315 #> [278,] 232 349 515 195 11 451 142 600 173 616 #> [279,] 662 928 620 631 32 317 384 166 623 487 #> [280,] 826 292 841 535 987 994 606 218 708 764 #> [281,] 691 235 618 356 4 268 746 167 401 828 #> [282,] 363 23 381 370 311 985 207 730 798 418 #> [283,] 91 696 483 412 965 132 319 453 300 497 #> [284,] 259 164 969 39 238 764 99 411 112 708 #> [285,] 865 536 217 347 556 673 21 956 772 953 #> [286,] 545 367 977 636 16 322 712 19 721 377 #> [287,] 737 713 193 312 190 400 140 564 473 435 #> [288,] 501 405 726 613 949 585 604 941 249 893 #> [289,] 326 95 351 311 435 881 359 985 31 998 #> [290,] 47 753 707 206 722 750 512 533 143 329 #> [291,] 875 804 76 302 961 801 340 862 150 900 #> [292,] 280 994 826 618 109 535 218 356 235 987 #> [293,] 12 554 243 149 317 546 641 478 669 384 #> [294,] 797 408 334 735 925 45 7 598 143 330 #> [295,] 698 964 761 180 966 5 740 869 779 899 #> [296,] 128 67 72 122 203 612 459 247 98 43 #> [297,] 480 517 810 935 479 961 612 78 782 423 #> [298,] 710 339 464 196 584 970 65 686 700 629 #> [299,] 93 110 45 598 102 252 460 913 778 75 #> [300,] 338 696 244 119 412 283 568 212 453 483 #> [301,] 760 250 824 847 218 871 249 178 470 513 #> [302,] 804 291 392 832 340 463 900 865 863 961 #> [303,] 799 117 766 986 490 505 452 891 236 905 #> [304,] 85 497 153 632 531 738 539 619 319 119 #> [305,] 433 142 884 467 173 711 514 469 525 195 #> [306,] 463 619 810 832 150 718 208 497 368 331 #> [307,] 991 956 863 577 865 980 151 382 883 556 #> [308,] 332 416 385 469 944 817 433 995 142 906 #> [309,] 71 822 407 917 959 655 100 125 18 36 #> [310,] 57 419 437 742 930 246 899 705 653 44 #> [311,] 798 418 985 325 282 207 10 159 910 743 #> [312,] 713 190 435 842 984 287 564 553 328 737 #> [313,] 839 801 730 90 398 971 418 492 961 998 #> [314,] 832 98 150 895 423 146 930 612 128 810 #> [315,] 434 482 539 74 772 952 271 679 362 807 #> [316,] 635 421 209 438 586 860 630 76 92 922 #> [317,] 27 487 621 662 388 393 554 620 716 780 #> [318,] 52 907 143 37 562 137 201 182 474 627 #> [319,] 91 531 738 132 304 283 925 85 119 497 #> [320,] 866 693 559 529 38 348 130 972 254 684 #> [321,] 456 598 159 743 416 408 110 93 325 299 #> [322,] 326 488 472 923 712 679 545 271 881 553 #> [323,] 926 519 111 777 673 667 946 886 953 958 #> [324,] 665 720 432 528 776 548 386 649 147 451 #> [325,] 743 418 798 599 782 646 456 311 177 321 #> [326,] 488 881 322 197 377 553 712 960 289 453 #> [327,] 708 261 361 41 925 474 238 907 345 37 #> [328,] 190 722 47 533 206 435 312 290 842 95 #> [329,] 880 710 750 163 69 330 294 53 707 767 #> [330,] 784 474 137 797 53 143 7 907 294 69 #> [331,] 255 619 718 208 931 463 497 306 434 355 #> [332,] 525 308 469 433 305 906 884 142 173 8 #> [333,] 526 828 199 342 131 618 281 356 908 510 #> [334,] 735 294 373 408 65 629 516 663 731 574 #> [335,] 210 502 138 440 706 979 203 684 67 783 #> [336,] 593 950 126 396 695 114 687 40 444 669 #> [337,] 509 911 565 980 920 452 579 683 769 878 #> [338,] 300 696 74 453 119 244 202 224 568 679 #> [339,] 298 464 814 196 970 710 112 754 617 369 #> [340,] 420 961 612 635 804 78 76 392 291 302 #> [341,] 642 205 651 390 162 843 667 186 174 111 #> [342,] 828 356 618 526 397 994 186 131 698 845 #> [343,] 655 357 36 829 427 542 521 221 741 209 #> [344,] 921 266 459 455 514 702 43 30 552 62 #> [345,] 85 535 373 361 180 674 808 574 849 663 #> [346,] 141 221 26 785 404 183 188 868 270 678 #> [347,] 869 217 956 372 285 883 21 958 865 536 #> [348,] 254 529 866 857 320 559 792 693 605 854 #> [349,] 515 232 173 278 142 591 195 386 583 616 #> [350,] 465 86 835 263 976 402 33 46 732 482 #> [351,] 130 854 652 578 972 206 94 145 644 75 #> [352,] 220 765 728 234 915 25 823 185 692 508 #> [353,] 809 28 493 484 885 919 156 504 699 49 #> [354,] 640 837 543 120 189 113 118 132 177 836 #> [355,] 931 673 923 744 21 331 155 488 389 536 #> [356,] 618 342 281 994 828 131 764 235 397 756 #> [357,] 427 343 655 521 221 36 829 567 860 785 #> [358,] 975 9 394 48 625 374 594 848 526 692 #> [359,] 414 426 816 910 95 927 937 415 640 599 #> [360,] 791 974 390 845 627 135 850 263 224 201 #> [361,] 849 871 470 41 847 717 250 808 345 555 #> [362,] 74 952 315 202 679 791 390 271 772 953 #> [363,] 282 23 730 370 100 311 381 418 839 798 #> [364,] 983 812 125 830 227 548 705 742 404 29 #> [365,] 104 55 500 755 51 745 783 377 121 579 #> [366,] 105 966 873 740 681 887 943 632 239 964 #> [367,] 977 721 377 355 55 545 19 448 286 488 #> [368,] 102 704 122 203 440 810 110 67 54 10 #> [369,] 624 245 795 951 136 686 464 541 723 87 #> [370,] 381 998 282 730 940 170 363 207 985 311 #> [371,] 685 938 588 886 193 446 908 411 901 111 #> [372,] 956 217 869 779 844 347 818 761 888 526 #> [373,] 663 574 626 808 516 334 470 345 127 849 #> [374,] 116 383 518 248 779 698 601 48 625 5 #> [375,] 178 890 15 978 250 301 249 617 41 871 #> [376,] 406 123 844 582 14 277 657 647 724 993 #> [377,] 51 745 488 121 494 365 55 326 644 367 #> [378,] 657 922 406 862 461 863 775 92 577 677 #> [379,] 864 862 577 657 863 378 945 922 683 307 #> [380,] 466 486 588 770 590 926 777 938 472 17 #> [381,] 370 282 207 985 170 998 23 363 592 311 #> [382,] 260 151 273 883 991 980 933 714 733 481 #> [383,] 116 374 760 824 301 504 601 49 156 625 #> [384,] 546 149 787 64 487 532 194 293 279 534 #> [385,] 817 81 62 502 258 416 335 459 962 469 #> [386,] 776 902 349 387 892 515 232 522 591 793 #> [387,] 919 902 892 776 386 942 653 504 973 633 #> [388,] 317 901 393 716 243 293 17 27 198 570 #> [389,] 792 155 751 605 254 355 529 590 323 558 #> [390,] 843 205 341 642 201 202 135 224 651 568 #> [391,] 454 258 870 82 308 152 859 656 23 934 #> [392,] 960 302 561 340 804 745 231 463 420 121 #> [393,] 716 901 388 317 820 621 916 27 680 411 #> [394,] 845 848 526 828 48 59 975 358 342 33 #> [395,] 594 358 975 9 48 625 896 566 888 394 #> [396,] 425 811 659 336 126 833 469 114 525 962 #> [397,] 131 764 708 342 356 994 828 974 618 850 #> [398,] 861 313 768 798 801 212 992 418 839 550 #> [399,] 614 139 616 196 583 596 464 584 988 711 #> [400,] 193 230 685 446 287 974 39 371 737 154 #> [401,] 109 235 167 779 281 20 618 77 4 372 #> [402,] 261 465 46 350 192 191 848 161 850 263 #> [403,] 92 922 775 461 169 378 560 316 209 657 #> [404,] 830 786 983 274 576 221 265 346 26 141 #> [405,] 501 288 585 726 893 15 249 949 259 967 #> [406,] 862 378 657 863 577 376 582 804 677 291 #> [407,] 917 100 309 822 661 71 851 125 959 815 #> [408,] 294 334 321 598 456 45 416 93 797 629 #> [409,] 913 45 89 680 264 562 762 93 174 75 #> [410,] 552 981 921 97 999 678 344 733 914 6 #> [411,] 820 99 446 685 756 131 886 908 489 680 #> [412,] 696 283 132 300 244 91 768 861 483 212 #> [413,] 476 859 786 216 906 785 23 454 995 788 #> [414,] 359 937 816 910 426 827 640 415 768 897 #> [415,] 426 842 359 984 95 56 414 827 289 328 #> [416,] 456 743 321 159 408 385 995 308 10 110 #> [417,] 87 161 617 690 485 261 723 978 327 686 #> [418,] 798 311 325 935 782 480 10 313 730 985 #> [419,] 310 57 437 899 44 653 522 742 610 705 #> [420,] 340 612 78 961 635 860 895 76 517 804 #> [421,] 316 864 80 209 403 438 92 586 630 719 #> [422,] 527 14 376 724 277 511 945 123 647 523 #> [423,] 150 219 961 801 314 932 517 895 832 297 #> [424,] 211 251 429 714 260 481 560 1000 868 963 #> [425,] 396 573 270 833 962 660 502 659 469 495 #> [426,] 927 359 589 95 599 189 415 910 120 177 #> [427,] 882 357 521 655 567 785 36 221 860 343 #> [428,] 108 439 13 749 934 703 596 597 898 241 #> [429,] 630 209 251 211 829 560 868 424 80 860 #> [430,] 790 682 575 549 530 536 794 240 185 158 #> [431,] 803 584 700 988 645 196 855 596 781 541 #> [432,] 951 324 147 139 665 614 776 528 451 720 #> [433,] 305 884 469 525 467 8 514 332 142 173 #> [434,] 271 718 453 315 807 679 539 331 727 900 #> [435,] 312 145 553 190 713 206 652 197 483 965 #> [436,] 711 569 63 821 266 499 641 803 852 3 #> [437,] 57 419 932 705 310 742 44 899 522 895 #> [438,] 997 125 316 160 831 407 815 661 917 971 #> [439,] 108 428 136 541 241 596 431 988 645 754 #> [440,] 203 138 54 335 368 67 783 704 102 122 #> [441,] 133 69 916 53 970 458 750 7 512 176 #> [442,] 1 53 512 47 441 707 133 230 69 784 #> [443,] 158 21 846 50 148 536 794 240 558 155 #> [444,] 130 462 854 870 559 94 152 752 578 351 #> [445,] 955 113 729 118 157 544 354 709 96 214 #> [446,] 685 411 131 886 154 974 174 562 667 111 #> [447,] 585 759 405 484 501 288 625 15 2 941 #> [448,] 242 721 55 367 365 51 693 377 977 181 #> [449,] 674 524 180 146 610 761 535 520 987 268 #> [450,] 563 903 282 370 363 381 82 730 359 23 #> [451,] 65 73 663 649 278 513 470 464 41 665 #> [452,] 490 337 1000 117 683 920 905 565 80 509 #> [453,] 718 434 271 807 881 679 283 727 619 331 #> [454,] 859 391 413 23 82 216 934 258 476 363 #> [455,] 793 921 266 515 195 97 232 344 173 127 #> [456,] 321 743 159 598 416 408 110 10 325 299 #> [457,] 24 802 86 267 877 496 831 124 876 681 #> [458,] 916 750 198 570 707 725 176 129 947 767 #> [459,] 62 778 72 30 344 67 102 335 203 43 #> [460,] 299 810 127 93 146 110 98 102 626 122 #> [461,] 775 922 378 92 403 267 239 639 169 657 #> [462,] 444 152 94 870 130 752 854 559 336 593 #> [463,] 306 619 718 331 208 832 255 368 704 122 #> [464,] 298 65 451 245 541 339 629 686 951 614 #> [465,] 350 402 976 86 46 192 523 848 835 263 #> [466,] 380 588 770 590 486 17 938 777 928 926 #> [467,] 514 821 433 884 305 6 12 711 641 436 #> [468,] 520 144 20 77 634 97 954 892 610 942 #> [469,] 525 884 433 332 8 305 817 514 173 678 #> [470,] 849 513 41 361 871 847 250 663 717 373 #> [471,] 825 569 852 688 641 554 758 61 800 275 #> [472,] 322 923 486 712 488 66 31 222 326 197 #> [473,] 202 390 843 338 201 498 713 679 205 193 #> [474,] 330 797 907 137 925 784 143 318 327 294 #> [475,] 876 802 496 550 107 160 637 831 875 992 #> [476,] 906 216 995 11 413 786 479 646 830 859 #> [477,] 878 509 579 769 581 813 980 911 676 556 #> [478,] 702 126 918 962 551 495 114 149 660 233 #> [479,] 517 480 782 786 297 935 274 643 237 476 #> [480,] 935 297 782 517 479 810 219 423 801 961 #> [481,] 273 933 260 714 963 246 382 211 774 83 #> [482,] 539 315 263 224 119 772 153 434 664 186 #> [483,] 283 965 696 91 497 201 553 568 453 252 #> [484,] 587 28 941 49 353 809 156 692 109 493 #> [485,] 890 649 41 795 723 717 978 871 555 951 #> [486,] 380 472 466 187 926 923 777 939 588 323 #> [487,] 27 317 621 534 64 620 149 233 61 546 #> [488,] 326 931 197 377 923 355 322 553 881 222 #> [489,] 99 604 820 622 800 411 746 756 171 226 #> [490,] 452 117 337 799 741 909 838 303 1000 654 #> [491,] 31 66 712 94 854 289 351 472 984 326 #> [492,] 90 615 801 839 517 125 935 219 782 961 #> [493,] 580 809 353 28 699 904 256 658 506 885 #> [494,] 51 377 693 712 644 204 745 121 130 31 #> [495,] 660 706 979 210 659 233 702 962 502 534 #> [496,] 993 86 14 376 637 457 802 267 582 976 #> [497,] 304 619 255 85 718 531 208 162 982 91 #> [498,] 473 835 360 74 338 627 257 263 224 568 #> [499,] 63 731 584 947 129 436 803 767 648 22 #> [500,] 247 558 676 155 215 879 748 579 365 79 #> [501,] 405 288 726 949 604 613 585 622 941 489 #> [502,] 335 270 706 210 817 962 979 72 495 684 #> [503,] 18 959 542 71 537 309 822 749 343 859 #> [504,] 919 653 942 387 383 824 156 760 892 963 #> [505,] 948 766 905 715 608 83 806 672 999 787 #> [506,] 658 256 633 973 776 904 902 580 147 699 #> [507,] 773 225 8 6 591 213 552 262 699 973 #> [508,] 820 621 32 662 234 800 4 746 691 166 #> [509,] 579 769 337 477 911 609 878 721 676 980 #> [510,] 549 199 819 217 526 647 952 277 372 333 #> [511,] 945 123 422 657 637 376 527 379 577 378 #> [512,] 154 53 562 707 143 570 916 7 907 318 #> [513,] 470 849 871 847 649 717 250 73 555 41 #> [514,] 467 821 884 344 12 702 433 305 921 6 #> [515,] 232 349 173 195 455 583 278 616 591 142 #> [516,] 127 600 574 663 373 626 73 793 195 334 #> [517,] 297 479 480 78 935 895 961 423 782 492 #> [518,] 248 601 774 374 239 698 779 295 5 818 #> [519,] 946 323 886 111 938 908 667 926 240 777 #> [520,] 468 144 20 954 524 275 77 97 449 167 #> [521,] 860 567 427 882 635 357 655 115 78 630 #> [522,] 44 892 899 705 576 73 419 437 793 513 #> [523,] 724 59 14 976 993 848 465 33 350 845 #> [524,] 674 43 449 520 626 127 89 268 954 460 #> [525,] 8 469 884 433 332 305 833 173 678 467 #> [526,] 828 342 333 394 845 186 217 618 510 779 #> [527,] 422 14 724 523 511 896 277 376 123 945 #> [528,] 665 720 649 555 324 951 795 890 485 943 #> [529,] 866 254 348 792 320 389 605 38 694 620 #> [530,] 790 682 430 234 240 575 736 794 185 220 #> [531,] 37 319 85 497 925 304 91 907 850 982 #> [532,] 534 215 233 64 879 846 495 148 748 706 #> [533,] 47 198 753 190 290 206 611 707 328 652 #> [534,] 233 532 215 64 846 487 558 495 879 247 #> [535,] 987 841 826 606 280 674 994 345 574 449 #> [536,] 21 158 556 240 958 443 744 285 794 673 #> [537,] 542 60 184 898 757 989 503 26 343 506 #> [538,] 939 734 242 813 920 448 581 477 530 721 #> [539,] 482 186 772 224 304 315 263 119 434 497 #> [540,] 874 179 978 15 2 375 223 951 585 890 #> [541,] 245 596 88 464 629 431 136 196 298 399 #> [542,] 184 343 537 357 36 785 60 655 26 427 #> [543,] 354 723 858 837 120 690 177 925 646 670 #> [544,] 709 113 732 191 96 118 244 132 602 354 #> [545,] 19 286 977 42 367 807 960 322 727 271 #> [546,] 149 384 233 487 534 114 478 293 659 532 #> [547,] 671 613 595 133 259 441 176 701 726 284 #> [548,] 720 665 324 528 675 943 639 877 705 364 #> [549,] 510 819 575 430 790 199 217 888 372 253 #> [550,] 875 900 291 398 727 313 212 801 912 971 #> [551,] 668 58 694 918 478 126 75 753 780 944 #> [552,] 410 981 921 678 344 97 591 6 455 914 #> [553,] 197 222 145 435 605 923 483 488 751 931 #> [554,] 825 12 471 641 293 852 780 27 61 569 #> [555,] 943 871 649 717 849 824 890 513 847 740 #> [556,] 883 865 536 158 285 21 794 443 991 347 #> [557,] 782 788 106 646 935 325 839 227 675 90 #> [558,] 155 247 500 846 215 443 534 148 67 50 #> [559,] 130 320 854 693 857 444 348 866 94 38 #> [560,] 429 211 251 630 209 775 868 246 742 963 #> [561,] 42 392 769 231 977 863 804 302 340 911 #> [562,] 143 154 907 762 37 982 512 318 913 409 #> [563,] 450 903 370 282 381 363 82 730 940 661 #> [564,] 842 52 96 965 137 312 56 713 118 602 #> [565,] 889 683 920 337 980 509 477 911 769 878 #> [566,] 192 395 848 523 759 358 625 976 465 394 #> [567,] 521 882 427 860 357 654 170 635 115 36 #> [568,] 201 135 182 224 119 850 696 627 531 263 #> [569,] 436 641 471 852 3 688 213 711 63 262 #> [570,] 916 458 198 707 512 154 750 680 393 990 #> [571,] 253 35 872 307 889 945 577 511 379 575 #> [572,] 83 608 587 484 103 818 49 594 933 28 #> [573,] 962 660 684 979 752 425 502 210 763 578 #> [574,] 373 663 626 516 127 731 535 470 674 334 #> [575,] 549 430 790 771 253 819 530 229 888 991 #> [576,] 274 793 600 522 30 73 705 265 44 404 #> [577,] 862 863 406 657 378 804 302 865 307 677 #> [578,] 684 81 644 972 962 258 870 783 440 335 #> [579,] 769 509 676 911 477 500 104 79 878 721 #> [580,] 493 904 809 506 256 658 353 699 633 973 #> [581,] 878 813 924 477 920 748 980 509 879 79 #> [582,] 912 153 632 406 105 900 376 875 664 366 #> [583,] 616 139 515 711 349 3 225 213 278 591 #> [584,] 803 499 700 431 767 298 196 629 63 731 #> [585,] 15 405 893 249 967 179 375 501 540 178 #> [586,] 635 719 940 340 316 291 231 860 313 804 #> [587,] 484 941 49 28 728 83 692 109 156 401 #> [588,] 938 466 371 519 590 631 380 777 908 685 #> [589,] 177 599 120 927 189 200 856 640 354 910 #> [590,] 17 389 792 519 928 605 620 254 323 111 #> [591,] 515 349 173 552 921 914 973 455 232 225 #> [592,] 763 755 207 170 783 115 138 183 54 81 #> [593,] 336 950 126 687 40 669 695 944 444 396 #> [594,] 48 625 818 374 888 518 248 358 116 59 #> [595,] 411 164 901 284 716 259 371 685 393 489 #> [596,] 541 616 142 988 88 245 139 399 431 583 #> [597,] 703 989 853 147 749 88 13 172 29 18 #> [598,] 93 252 299 321 45 456 110 408 913 294 #> [599,] 177 927 589 120 910 325 640 189 354 856 #> [600,] 516 576 73 793 127 232 195 274 643 30 #> [601,] 774 248 518 374 818 779 116 383 49 761 #> [602,] 257 182 191 627 52 318 474 137 261 132 #> [603,] 988 855 929 645 711 803 436 569 821 431 #> [604,] 489 823 800 622 820 99 726 613 728 746 #> [605,] 751 792 145 197 652 389 694 553 58 254 #> [606,] 987 826 535 634 841 218 280 144 574 674 #> [607,] 214 124 729 24 457 978 46 795 417 87 #> [608,] 83 587 28 505 484 948 481 572 103 766 #> [609,] 181 509 55 579 721 769 204 337 654 104 #> [610,] 761 20 77 449 899 468 180 419 520 167 #> [611,] 40 533 666 687 198 857 328 990 47 140 #> [612,] 420 78 895 340 961 296 54 297 314 517 #> [613,] 701 726 823 604 489 671 968 501 622 547 #> [614,] 399 139 885 432 464 196 616 583 596 541 #> [615,] 90 492 801 219 675 935 839 782 517 423 #> [616,] 583 139 711 515 349 399 278 142 596 436 #> [617,] 87 417 978 178 112 375 485 890 161 969 #> [618,] 356 342 281 828 235 994 779 292 698 691 #> [619,] 463 306 718 331 255 208 497 304 832 810 #> [620,] 928 487 279 32 317 662 621 389 590 529 #> [621,] 27 317 32 487 946 508 662 4 268 393 #> [622,] 99 489 604 820 164 949 411 823 259 764 #> [623,] 25 787 279 32 64 672 662 166 185 384 #> [624,] 369 795 686 723 245 951 87 670 690 464 #> [625,] 116 374 383 594 358 48 49 518 601 248 #> [626,] 574 127 373 674 516 663 731 524 93 460 #> [627,] 257 974 135 182 201 850 318 568 602 261 #> [628,] 781 243 176 725 855 70 22 458 803 671 #> [629,] 700 334 65 278 245 584 767 464 451 541 #> [630,] 429 209 860 829 251 211 812 560 868 221 #> [631,] 928 662 17 279 621 620 901 590 588 508 #> [632,] 153 912 664 738 304 105 873 582 366 85 #> [633,] 973 658 902 506 699 776 386 387 591 225 #> [634,] 606 987 892 144 468 218 520 20 513 574 #> [635,] 860 340 420 586 76 521 961 78 804 316 #> [636,] 16 545 31 326 286 712 494 322 377 960 #> [637,] 378 657 123 922 876 496 461 267 376 92 #> [638,] 276 84 701 968 243 388 293 669 628 70 #> [639,] 267 742 239 169 831 437 966 775 932 105 #> [640,] 910 354 816 599 177 325 120 861 798 589 #> [641,] 569 12 6 821 471 554 825 436 467 514 #> [642,] 341 953 390 651 162 186 205 843 667 952 #> [643,] 73 237 858 932 600 646 808 479 274 576 #> [644,] 783 972 745 578 440 81 755 684 54 335 #> [645,] 988 855 431 305 603 433 803 467 711 142 #> [646,] 237 858 782 643 743 935 325 479 557 480 #> [647,] 277 844 217 772 724 510 48 59 376 526 #> [648,] 63 22 852 499 671 569 436 800 731 176 #> [649,] 717 485 555 513 41 665 890 849 528 943 #> [650,] 241 695 134 773 855 811 950 645 603 108 #> [651,] 174 205 982 162 762 667 341 111 642 264 #> [652,] 145 75 668 206 694 605 351 58 751 753 #> [653,] 942 504 419 44 919 899 892 246 522 387 #> [654,] 567 175 104 231 609 755 80 121 181 719 #> [655,] 343 36 427 357 521 309 882 860 567 829 #> [656,] 258 927 856 870 599 985 311 200 589 416 #> [657,] 378 406 862 922 577 123 863 376 461 637 #> [658,] 506 633 776 256 973 902 387 147 386 904 #> [659,] 495 660 114 236 702 478 233 962 811 546 #> [660,] 495 979 962 659 114 706 210 684 573 233 #> [661,] 407 917 100 971 851 719 438 815 309 839 #> [662,] 279 32 166 317 508 621 631 928 487 620 #> [663,] 373 574 470 516 808 73 626 849 127 513 #> [664,] 153 992 632 912 738 900 304 119 482 319 #> [665,] 324 528 649 720 513 548 555 451 73 943 #> [666,] 40 857 687 611 348 866 669 529 559 38 #> [667,] 174 111 886 651 162 264 958 519 268 341 #> [668,] 694 58 551 75 652 753 918 409 751 605 #> [669,] 243 293 950 687 388 40 593 198 551 126 #> [670,] 624 543 177 723 369 272 245 172 200 589 #> [671,] 22 176 648 781 726 63 613 499 489 133 #> [672,] 789 806 185 924 229 840 787 715 64 273 #> [673,] 953 926 744 355 21 536 931 323 285 923 #> [674,] 449 524 626 841 535 268 987 574 826 171 #> [675,] 615 227 887 858 90 557 219 548 492 643 #> [676,] 500 579 79 769 247 911 188 104 558 67 #> [677,] 930 151 804 863 76 340 314 406 57 883 #> [678,] 552 981 270 410 72 921 884 344 469 706 #> [679,] 202 271 434 453 315 718 923 931 331 807 #> [680,] 264 756 226 171 409 268 174 89 913 746 #> [681,] 740 966 366 5 873 943 239 555 295 105 #> [682,] 240 790 744 430 530 794 536 946 158 673 #> [683,] 565 980 337 714 251 911 889 260 1000 509 #> [684,] 962 979 335 578 210 502 972 660 783 706 #> [685,] 446 371 886 908 938 411 193 111 131 667 #> [686,] 65 690 723 624 87 464 334 485 735 294 #> [687,] 40 666 593 669 611 336 950 198 857 243 #> [688,] 471 3 144 569 262 852 97 825 758 213 #> [689,] 784 970 69 330 161 1 53 87 417 690 #> [690,] 686 723 87 417 485 474 65 543 925 161 #> [691,] 281 4 268 958 167 235 946 667 746 356 #> [692,] 941 401 109 49 587 358 949 728 9 622 #> [693,] 51 320 559 130 494 348 866 66 972 365 #> [694,] 58 668 551 75 918 652 751 605 792 972 #> [695,] 950 811 336 593 891 669 293 126 12 396 #> [696,] 283 300 412 483 132 965 91 568 119 338 #> [697,] 909 654 741 719 80 567 838 175 36 357 #> [698,] 295 779 964 761 5 994 342 374 869 248 #> [699,] 973 633 902 387 658 919 914 225 591 506 #> [700,] 803 767 629 584 431 499 710 947 334 731 #> [701,] 613 968 823 726 276 604 915 671 716 489 #> [702,] 478 495 344 514 962 126 659 660 918 233 #> [703,] 597 989 88 13 216 749 172 147 29 272 #> [704,] 368 122 102 203 67 440 208 778 972 110 #> [705,] 437 932 742 522 44 274 576 983 57 419 #> [706,] 210 979 495 502 335 72 660 233 459 270 #> [707,] 750 290 512 753 570 458 47 53 198 916 #> [708,] 764 994 327 397 280 756 535 238 292 841 #> [709,] 113 544 132 732 191 354 118 96 602 244 #> [710,] 298 329 700 584 69 767 970 629 431 163 #> [711,] 436 616 583 213 305 988 467 515 569 821 #> [712,] 31 66 51 494 488 326 377 322 693 472 #> [713,] 312 190 287 435 737 564 984 842 473 56 #> [714,] 251 211 260 481 933 382 424 151 980 677 #> [715,] 787 924 806 236 672 194 532 840 581 623 #> [716,] 393 901 820 968 388 317 621 508 411 662 #> [717,] 849 649 808 361 470 41 943 555 513 871 #> [718,] 619 331 453 434 463 497 255 306 208 304 #> [719,] 586 940 231 567 661 170 635 521 654 730 #> [720,] 528 665 324 548 555 432 649 824 943 951 #> [721,] 55 367 977 448 579 365 509 609 181 769 #> [722,] 47 290 328 996 206 880 753 957 707 533 #> [723,] 690 795 485 686 543 87 624 649 858 717 #> [724,] 14 59 523 647 993 48 277 376 33 976 #> [725,] 947 821 12 803 458 767 22 129 780 781 #> [726,] 613 501 671 604 288 489 648 405 259 701 #> [727,] 807 900 271 19 434 212 453 960 302 550 #> [728,] 758 166 401 789 800 941 587 604 352 692 #> [729,] 214 157 607 68 936 723 445 106 795 670 #> [730,] 313 998 940 370 170 839 363 418 282 115 #> [731,] 499 574 626 63 334 129 373 735 841 663 #> [732,] 835 992 244 709 119 132 300 191 182 696 #> [733,] 999 981 273 954 914 265 410 188 552 128 #> [734,] 739 538 939 242 101 623 25 928 448 813 #> [735,] 7 334 294 797 65 731 373 129 226 238 #> [736,] 530 199 682 220 790 549 938 430 234 510 #> [737,] 287 193 713 777 312 190 473 140 843 371 #> [738,] 632 319 887 153 858 304 85 219 873 912 #> [739,] 928 620 279 631 17 101 590 466 623 734 #> [740,] 681 966 366 943 239 555 295 873 847 105 #> [741,] 909 838 357 36 343 567 80 697 427 829 #> [742,] 437 705 57 310 639 419 932 653 44 246 #> [743,] 456 159 321 10 416 325 646 237 782 480 #> [744,] 794 240 536 158 673 682 355 50 21 443 #> [745,] 121 783 644 377 104 54 755 365 440 392 #> [746,] 171 268 235 826 281 820 841 4 756 674 #> [747,] 175 204 752 755 654 181 55 121 104 763 #> [748,] 879 215 500 532 50 534 558 878 924 233 #> [749,] 703 597 934 989 428 853 18 13 216 88 #> [750,] 707 458 767 329 129 753 198 916 947 290 #> [751,] 605 792 145 389 197 694 58 75 652 208 #> [752,] 573 152 130 755 444 747 644 494 693 559 #> [753,] 290 206 707 668 75 913 409 47 652 58 #> [754,] 136 369 339 298 163 541 710 624 245 196 #> [755,] 121 104 592 783 644 745 365 763 175 573 #> [756,] 226 680 764 264 841 171 746 268 826 708 #> [757,] 228 537 60 868 829 343 506 542 633 560 #> [758,] 840 275 61 825 471 688 728 806 166 800 #> [759,] 168 447 566 625 874 585 540 2 116 15 #> [760,] 301 824 847 250 218 871 513 383 470 555 #> [761,] 610 180 964 295 869 899 449 698 146 779 #> [762,] 982 651 37 174 562 264 162 205 913 409 #> [763,] 592 183 270 755 81 502 138 573 882 207 #> [764,] 708 397 131 756 994 356 280 99 292 618 #> [765,] 823 220 915 352 622 604 508 820 949 234 #> [766,] 505 507 999 117 699 715 424 236 410 981 #> [767,] 947 700 129 803 499 584 750 334 725 629 #> [768,] 398 861 244 212 937 412 816 992 107 798 #> [769,] 579 911 509 676 477 104 500 561 980 79 #> [770,] 466 17 380 140 101 590 588 990 371 901 #> [771,] 575 888 229 819 818 933 549 991 253 430 #> [772,] 186 539 952 217 277 482 315 647 434 642 #> [773,] 225 507 213 262 929 6 603 8 904 988 #> [774,] 601 248 518 310 818 761 419 610 653 779 #> [775,] 461 92 922 403 169 639 378 560 267 310 #> [776,] 386 902 658 633 387 324 147 973 349 432 #> [777,] 111 323 843 926 222 938 519 193 205 886 #> [778,] 459 62 102 110 122 299 918 704 43 67 #> [779,] 698 618 761 372 109 828 295 374 869 248 #> [780,] 27 89 947 918 129 554 171 852 725 12 #> [781,] 22 803 584 628 725 431 176 499 671 855 #> [782,] 935 480 479 646 557 517 297 237 90 418 #> [783,] 644 440 335 138 54 745 203 972 67 755 #> [784,] 330 474 53 137 689 69 797 7 836 161 #> [785,] 141 26 346 221 786 427 830 833 413 404 #> [786,] 404 830 479 995 476 413 906 785 517 141 #> [787,] 194 715 384 806 64 623 166 840 758 672 #> [788,] 557 227 782 100 476 216 413 917 839 479 #> [789,] 672 185 806 840 229 273 924 167 758 275 #> [790,] 430 530 682 575 549 240 536 234 794 185 #> [791,] 360 843 199 390 952 341 642 953 333 362 #> [792,] 389 605 751 254 529 155 694 145 197 58 #> [793,] 455 576 600 127 516 232 515 30 522 265 #> [794,] 158 50 744 240 443 536 556 682 430 21 #> [795,] 723 485 951 649 624 528 369 890 665 87 #> [796,] 936 853 877 18 548 364 720 29 227 831 #> [797,] 294 143 907 474 925 330 7 735 562 137 #> [798,] 418 311 325 861 910 398 313 640 782 730 #> [799,] 986 117 833 838 303 134 490 184 425 898 #> [800,] 852 746 171 604 820 61 508 471 758 489 #> [801,] 219 90 615 961 492 313 935 423 480 839 #> [802,] 831 160 457 876 267 675 24 877 496 615 #> [803,] 584 700 431 767 499 436 781 725 821 988 #> [804,] 291 677 863 76 340 302 862 875 930 961 #> [805,] 894 791 187 360 199 362 736 843 473 498 #> [806,] 840 672 789 999 275 758 787 64 924 532 #> [807,] 727 271 19 434 453 900 315 212 960 679 #> [808,] 717 373 663 849 925 470 361 73 858 574 #> [809,] 353 493 28 919 580 699 885 658 484 387 #> [810,] 297 368 102 460 306 122 480 98 150 299 #> [811,] 891 659 695 396 236 986 114 425 134 660 #> [812,] 983 125 76 860 364 492 895 517 830 705 #> [813,] 581 878 477 924 920 50 748 794 879 509 #> [814,] 339 196 298 112 970 893 671 464 710 614 #> [815,] 851 106 839 971 90 160 100 615 917 492 #> [816,] 910 640 937 861 414 359 68 412 354 798 #> [817,] 385 502 81 62 335 469 270 962 459 684 #> [818,] 888 601 248 774 518 933 372 779 594 956 #> [819,] 888 549 510 575 199 771 647 372 526 217 #> [820,] 508 746 411 99 489 171 716 800 268 393 #> [821,] 467 12 514 641 436 725 711 803 305 569 #> [822,] 71 959 309 100 407 917 18 788 851 661 #> [823,] 604 915 765 613 701 968 622 949 489 800 #> [824,] 760 301 250 555 871 847 513 218 383 890 #> [825,] 471 554 641 61 852 569 758 688 194 800 #> [826,] 280 841 987 535 606 292 746 674 994 171 #> [827,] 897 56 984 412 414 300 244 338 96 564 #> [828,] 342 526 618 356 333 779 394 186 698 845 #> [829,] 209 429 630 357 343 868 221 655 560 251 #> [830,] 983 404 786 221 26 479 785 812 141 364 #> [831,] 802 160 877 639 267 615 675 125 169 876 #> [832,] 314 150 98 306 423 463 619 810 612 961 #> [833,] 184 270 141 785 525 8 26 678 425 469 #> [834,] 603 929 399 904 262 988 196 614 22 569 #> [835,] 263 732 119 224 350 482 568 182 992 135 #> [836,] 837 137 189 120 996 330 118 354 784 474 #> [837,] 836 189 354 120 137 543 118 113 474 330 #> [838,] 909 741 542 799 36 357 697 343 490 184 #> [839,] 90 492 313 815 615 851 971 801 730 935 #> [840,] 806 758 275 999 97 789 520 61 954 410 #> [841,] 826 535 987 606 280 674 171 756 746 626 #> [842,] 564 56 312 95 984 415 713 190 96 328 #> [843,] 390 777 205 341 202 642 926 111 953 323 #> [844,] 647 956 217 372 277 376 406 248 123 48 #> [845,] 394 848 33 342 526 828 397 976 59 186 #> [846,] 148 443 43 247 558 534 128 64 155 532 #> [847,] 871 250 760 361 470 849 301 513 41 824 #> [848,] 845 394 976 59 33 192 523 402 465 46 #> [849,] 361 470 717 41 871 513 847 808 250 649 #> [850,] 135 224 182 568 37 531 263 627 974 201 #> [851,] 815 971 106 839 100 917 407 90 68 313 #> [852,] 63 471 569 648 554 171 266 800 436 825 #> [853,] 18 597 936 703 989 29 172 796 272 227 #> [854,] 94 130 351 559 444 348 857 66 40 320 #> [855,] 645 603 988 431 803 781 821 467 628 711 #> [856,] 927 177 589 599 656 200 910 426 120 934 #> [857,] 666 348 40 559 866 529 254 38 320 854 #> [858,] 237 646 643 738 808 717 887 543 925 675 #> [859,] 216 413 454 476 934 788 906 23 786 227 #> [860,] 521 635 420 78 630 812 567 340 76 427 #> [861,] 398 798 768 68 816 640 910 412 418 313 #> [862,] 577 863 406 804 657 378 291 875 922 677 #> [863,] 862 577 677 804 406 378 657 302 151 865 #> [864,] 379 421 316 403 92 922 862 657 378 863 #> [865,] 285 556 883 347 302 956 151 536 863 21 #> [866,] 529 320 348 254 38 857 694 792 693 559 #> [867,] 192 498 402 360 257 627 165 465 261 835 #> [868,] 221 983 346 630 26 829 429 211 560 404 #> [869,] 347 761 217 372 180 964 295 779 186 698 #> [870,] 258 578 385 81 444 817 944 656 962 308 #> [871,] 250 847 41 361 849 555 470 890 513 760 #> [872,] 307 771 571 253 103 511 575 123 933 991 #> [873,] 366 632 681 105 887 85 738 361 740 943 #> [874,] 540 2 179 168 223 720 978 528 15 951 #> [875,] 291 76 550 804 912 801 582 862 900 406 #> [876,] 802 475 637 831 160 496 457 997 877 267 #> [877,] 831 169 548 639 267 802 24 457 160 796 #> [878,] 581 477 813 924 79 579 748 509 980 920 #> [879,] 748 215 532 500 534 233 558 50 79 924 #> [880,] 163 329 957 200 750 722 710 290 996 408 #> [881,] 960 326 453 463 998 488 718 306 807 727 #> [882,] 427 567 521 115 170 592 183 23 860 763 #> [883,] 151 556 382 865 347 991 148 956 273 677 #> [884,] 433 469 305 525 467 8 514 6 173 921 #> [885,] 614 249 432 139 179 399 353 218 375 809 #> [886,] 908 667 519 111 938 174 685 946 446 323 #> [887,] 943 366 738 873 105 717 858 632 675 555 #> [888,] 819 818 771 372 549 510 594 48 779 575 #> [889,] 565 683 920 35 509 337 477 307 980 379 #> [890,] 485 41 871 649 250 978 178 555 375 849 #> [891,] 811 236 659 194 986 384 695 546 114 149 #> [892,] 522 44 634 387 942 468 899 653 793 386 #> [893,] 15 112 375 585 969 178 967 617 405 259 #> [894,] 805 187 791 473 193 843 360 737 362 202 #> [895,] 274 612 517 98 78 932 314 423 150 420 #> [896,] 819 647 510 724 277 199 527 549 888 395 #> [897,] 827 56 96 244 300 564 984 412 338 414 #> [898,] 134 184 537 8 833 525 542 428 332 108 #> [899,] 44 522 419 146 437 761 964 180 610 892 #> [900,] 727 912 153 212 664 807 992 434 550 582 #> [901,] 393 716 388 17 371 990 631 570 317 916 #> [902,] 387 386 776 633 973 919 658 892 914 246 #> [903,] 450 563 370 381 282 16 363 82 636 289 #> [904,] 256 225 139 583 506 616 658 399 973 633 #> [905,] 505 920 581 424 715 924 878 452 337 672 #> [906,] 995 476 11 173 216 786 232 13 413 349 #> [907,] 143 37 318 562 797 474 531 762 925 982 #> [908,] 886 519 938 667 685 946 111 691 411 820 #> [909,] 741 838 36 697 357 567 654 343 427 80 #> [910,] 640 816 599 798 927 325 177 861 311 354 #> [911,] 769 579 676 509 980 477 79 337 188 104 #> [912,] 153 632 664 582 219 105 900 423 150 738 #> [913,] 409 45 93 299 252 598 562 762 75 264 #> [914,] 265 981 591 733 999 552 97 410 892 386 #> [915,] 823 968 166 765 352 728 604 662 508 25 #> [916,] 570 458 441 176 512 707 226 129 750 680 #> [917,] 407 100 309 822 661 125 71 851 815 839 #> [918,] 58 551 778 89 694 668 780 478 459 62 #> [919,] 387 504 942 653 963 902 246 892 973 699 #> [920,] 581 565 878 813 337 477 509 980 905 683 #> [921,] 552 455 410 97 344 266 6 591 3 514 #> [922,] 378 92 775 403 461 657 862 406 677 863 #> [923,] 222 931 926 197 355 488 673 553 323 679 #> [924,] 878 672 581 813 806 748 789 715 879 532 #> [925,] 797 808 294 531 474 907 373 37 327 319 #> [926,] 323 673 777 953 923 519 843 111 222 744 #> [927,] 599 589 177 856 910 426 120 640 656 189 #> [928,] 631 620 279 17 662 739 590 32 621 946 #> [929,] 603 262 569 641 213 773 834 6 471 711 #> [930,] 677 57 310 151 314 437 76 895 804 419 #> [931,] 355 331 923 488 673 197 718 255 222 208 #> [932,] 437 705 274 895 423 643 105 742 98 522 #> [933,] 481 229 818 991 382 714 260 774 273 771 #> [934,] 859 216 749 703 13 454 308 476 906 88 #> [935,] 782 480 297 517 219 479 801 90 615 418 #> [936,] 29 227 853 172 18 675 272 796 71 548 #> [937,] 816 768 414 861 107 244 359 68 910 412 #> [938,] 588 519 908 886 371 685 777 323 111 926 #> [939,] 530 682 242 744 486 794 790 240 430 380 #> [940,] 170 730 998 231 115 370 586 121 719 313 #> [941,] 587 692 484 728 49 949 604 109 401 156 #> [942,] 653 504 919 892 77 387 246 20 419 468 #> [943,] 555 740 717 887 366 649 681 871 849 361 #> [944,] 126 308 551 753 416 385 668 870 918 767 #> [945,] 511 422 577 379 657 862 35 42 376 864 #> [946,] 519 240 621 691 958 323 32 886 667 908 #> [947,] 129 767 780 725 499 731 63 803 436 626 #> [948,] 505 715 608 905 766 787 83 672 194 806 #> [949,] 501 622 941 692 823 604 765 405 613 726 #> [950,] 593 695 126 336 669 478 243 12 944 293 #> [951,] 795 432 528 485 890 649 464 369 451 624 #> [952,] 772 315 953 186 362 277 642 539 510 647 #> [953,] 673 642 926 952 323 843 341 285 536 958 #> [954,] 520 43 128 468 733 524 148 97 273 275 #> [955,] 589 177 670 445 927 157 856 354 426 599 #> [956,] 372 217 844 347 991 869 865 285 883 151 #> [957,] 163 880 200 996 589 189 329 120 836 837 #> [958,] 21 691 536 667 162 443 4 347 946 240 #> [959,] 822 71 309 100 407 917 18 788 661 851 #> [960,] 881 392 998 727 302 807 463 19 745 453 #> [961,] 150 423 340 801 420 517 612 76 297 78 #> [962,] 684 660 979 502 495 702 573 335 210 706 #> [963,] 246 919 942 653 387 902 419 481 310 504 #> [964,] 295 180 761 146 899 698 869 98 105 610 #> [965,] 52 483 283 696 132 318 91 137 201 143 #> [966,] 239 740 366 681 105 5 295 267 873 964 #> [967,] 708 15 292 969 764 994 178 397 280 893 #> [968,] 716 662 393 166 915 701 823 388 84 279 #> [969,] 112 284 617 238 967 259 708 893 261 327 #> [970,] 69 689 133 298 710 339 112 238 441 7 #> [971,] 851 815 839 313 90 730 398 106 661 550 #> [972,] 644 684 704 783 578 440 203 979 694 67 #> [973,] 633 699 902 591 658 387 776 225 386 506 #> [974,] 627 850 135 446 318 397 257 131 201 360 #> [975,] 9 358 394 333 526 828 48 199 888 845 #> [976,] 59 33 5 848 350 993 523 465 845 86 #> [977,] 367 721 561 19 545 377 392 355 42 55 #> [978,] 890 375 485 178 617 871 555 41 250 46 #> [979,] 210 706 684 495 660 335 962 502 233 247 #> [980,] 260 382 911 477 683 878 769 337 151 991 #> [981,] 410 552 733 999 678 914 265 921 72 954 #> [982,] 762 651 37 174 264 162 562 205 497 913 #> [983,] 830 404 705 364 812 786 868 274 386 221 #> [984,] 56 312 842 827 713 415 435 190 289 897 #> [985,] 207 311 10 81 258 159 381 23 282 418 #> [986,] 117 799 833 236 134 678 659 811 8 425 #> [987,] 606 826 535 841 634 280 674 218 574 144 #> [988,] 645 603 711 855 431 596 803 305 616 142 #> [989,] 703 597 13 216 147 172 60 88 29 272 #> [990,] 140 570 901 198 388 533 916 17 458 611 #> [991,] 382 883 956 556 307 151 229 933 260 185 #> [992,] 664 212 153 119 732 900 244 912 632 482 #> [993,] 14 59 5 724 976 496 376 123 239 48 #> [994,] 292 708 280 535 356 618 764 826 847 342 #> [995,] 906 476 173 232 11 786 600 195 30 404 #> [996,] 836 189 957 722 837 880 137 47 329 290 #> [997,] 438 160 831 125 876 815 877 407 917 802 #> [998,] 730 940 370 170 960 881 313 418 745 115 #> [999,] 733 981 410 840 806 914 552 97 273 954 #> [1000,] 429 424 80 251 209 829 683 452 211 630 #> #> $neighbor_distances #> [,1] [,2] [,3] [,4] [,5] [,6] [,7] #> [1,] 0.75123324 0.7728336 0.8535100 0.9610233 0.9988456 1.0241624 1.0346625 #> [2,] 0.72794121 0.8192607 1.0118221 1.0396370 1.0447104 1.0736597 1.1356458 #> [3,] 0.31837803 0.4564968 0.4829120 0.5219559 0.5329834 0.6032451 0.6036069 #> [4,] 0.31047166 0.3921811 0.4326476 0.4630233 0.5398038 0.5555416 0.6151065 #> [5,] 0.46734788 0.4760593 0.5466231 0.5606464 0.5640889 0.5726195 0.5783608 #> [6,] 0.51152215 0.5275568 0.5497865 0.5556941 0.5624806 0.6122315 0.6278000 #> [7,] 0.29359887 0.5086648 0.5542773 0.5716974 0.5869704 0.5940340 0.5959630 #> [8,] 0.26143033 0.4718084 0.5603310 0.5707832 0.6882329 0.7308097 0.7341715 #> [9,] 0.24984831 0.5609735 0.8632232 0.9219492 1.0170726 1.0442705 1.0520745 #> [10,] 0.28986430 0.4537154 0.5204006 0.5421002 0.5423238 0.5463735 0.5587194 #> [11,] 0.46652531 0.5084248 0.5263341 0.5266163 0.5446352 0.5495054 0.5850168 #> [12,] 0.37170190 0.4381048 0.5241100 0.5423993 0.5424052 0.5655038 0.6071722 #> [13,] 0.57222011 0.6124874 0.6357935 0.6396935 0.6462147 0.6708131 0.7391421 #> [14,] 0.34717912 0.5838188 0.5962627 0.6141551 0.6745910 0.8141714 0.8167852 #> [15,] 0.58059369 0.6224053 0.6662234 0.6803393 0.7407235 0.8389967 0.8429282 #> [16,] 0.63314368 0.8630664 0.8939270 1.0213772 1.0458141 1.0663115 1.1116785 #> [17,] 0.54835213 0.7198504 0.7467861 0.8400073 0.8529885 0.9064278 0.9411035 #> [18,] 0.66924590 0.6764030 0.8256855 0.8928497 0.9098371 0.9177645 0.9264857 #> [19,] 0.47391219 0.5187272 0.6039699 0.6313239 0.7718839 0.8130187 0.8617744 #> [20,] 0.15081454 0.3758961 0.3943047 0.4202105 0.4597621 0.5058134 0.5526436 #> [21,] 0.26227964 0.3306440 0.4625359 0.4748135 0.5735866 0.5903636 0.6051760 #> [22,] 0.43233503 0.5294653 0.5807848 0.6182965 0.6219620 0.6649769 0.6820446 #> [23,] 0.51569242 0.5551573 0.6019943 0.6874485 0.7129012 0.7578704 0.7810091 #> [24,] 0.26564505 0.8384672 0.9027206 0.9060224 0.9245897 0.9398366 0.9480771 #> [25,] 0.58665844 0.8659828 0.8981276 0.9708535 1.0050467 1.0329852 1.0364884 #> [26,] 0.19951012 0.3092625 0.3686001 0.4240887 0.6186630 0.6479357 0.7211515 #> [27,] 0.36583627 0.4208790 0.4291136 0.5052316 0.5424372 0.6643204 0.6768602 #> [28,] 0.63749376 0.6643837 0.7336474 0.8632298 0.9630081 1.0143946 1.0585654 #> [29,] 0.22773632 0.2810413 0.3024392 0.6371490 0.7398366 0.7736565 0.7775577 #> [30,] 0.41843597 0.4328745 0.4340449 0.5067279 0.5268015 0.5302476 0.5624027 #> [31,] 0.44109626 0.5183360 0.6860934 0.9339130 0.9629930 1.0579500 1.0943981 #> [32,] 0.51867312 0.5645729 0.6016788 0.6357531 0.6454604 0.6971910 0.7115832 #> [33,] 0.47605929 0.5257607 0.5566021 0.5824304 0.6490195 0.7135536 0.7156801 #> [34,] 0.97263621 1.1064219 1.1444155 1.1538665 1.1596231 1.2692750 1.3001680 #> [35,] 0.98260936 1.1123529 1.1596231 1.1717316 1.1850187 1.2225809 1.2601779 #> [36,] 0.49461149 0.5933300 0.6646068 0.6683092 0.8323921 0.8352585 0.8584428 #> [37,] 0.33752748 0.3668717 0.3733893 0.3738390 0.4858712 0.5329507 0.5359664 #> [38,] 0.63792553 0.6805158 0.8052105 0.8253294 0.9434459 0.9543999 0.9622925 #> [39,] 0.79115486 0.9026125 1.0002906 1.0816304 1.1440999 1.2319974 1.2718061 #> [40,] 0.43594864 0.7188591 0.7189500 0.8269726 1.0044478 1.0197690 1.0395219 #> [41,] 0.29776484 0.3110705 0.3169707 0.3448560 0.3540405 0.3739873 0.4252863 #> [42,] 0.56407060 0.8340099 0.9236600 0.9486578 0.9507656 0.9726362 0.9826094 #> [43,] 0.35070927 0.4212043 0.4399540 0.5016230 0.5245879 0.5408275 0.5485840 #> [44,] 0.13879613 0.2449583 0.3716588 0.3857744 0.4513943 0.4539900 0.4953717 #> [45,] 0.27674962 0.3248874 0.3792540 0.4061885 0.4685934 0.5096766 0.5394649 #> [46,] 0.70931322 0.7762396 0.7874432 0.8142466 0.8157303 0.8707487 0.8863619 #> [47,] 0.34194145 0.6358041 0.6792359 0.6991985 0.7115954 0.7373865 0.8197065 #> [48,] 0.54036550 0.6094105 0.6267325 0.6674362 0.7317710 0.7325700 0.7442621 #> [49,] 0.53167438 0.6307679 0.7248237 0.7447617 0.7648825 0.7757223 0.7758032 #> [50,] 0.34302240 0.4088468 0.4949305 0.6649502 0.6736528 0.6801958 0.6810368 #> [51,] 0.44016974 0.5076383 0.5175767 0.7000366 0.7683283 0.7880880 0.8114595 #> [52,] 0.34683737 0.4084745 0.5982558 0.5990630 0.6392620 0.6435954 0.6734625 #> [53,] 0.43617718 0.4965451 0.5327786 0.5778905 0.5869704 0.5978329 0.6719906 #> [54,] 0.30248329 0.3537647 0.3890210 0.5052213 0.5101134 0.5352680 0.5394586 #> [55,] 0.52308478 0.5402685 0.5593313 0.5874356 0.7559557 0.7821695 0.7822892 #> [56,] 0.69637689 0.7825293 0.8849706 0.9317456 0.9860083 1.0912192 1.1467084 #> [57,] 0.16587260 0.2957155 0.3413110 0.4116207 0.4205946 0.5540923 0.6107552 #> [58,] 0.21674498 0.2655099 0.3790429 0.3932341 0.4436496 0.5844425 0.6218011 #> [59,] 0.40454188 0.4800348 0.5403655 0.5566021 0.5771780 0.6141551 0.6305519 #> [60,] 0.75561149 0.7588936 0.7819681 0.7975871 0.8945171 0.9152283 0.9162163 #> [61,] 0.30100470 0.4964479 0.5864232 0.5975842 0.6878447 0.6894267 0.6965180 #> [62,] 0.16282452 0.3341115 0.4328745 0.4532430 0.4765493 0.5213406 0.5403077 #> [63,] 0.27072483 0.3851949 0.4612409 0.5142720 0.5167208 0.5294653 0.6030569 #> [64,] 0.49644789 0.5186731 0.5261169 0.5533974 0.5655843 0.6290988 0.6358013 #> [65,] 0.35509133 0.5000259 0.5016800 0.5273160 0.5482631 0.6101186 0.6657547 #> [66,] 0.51826095 0.5183360 0.6878115 0.9025787 0.9928195 1.0014826 1.0029237 #> [67,] 0.20842890 0.3411604 0.3568485 0.4068925 0.4214355 0.4377764 0.4642517 #> [68,] 0.47750098 0.6644961 0.8175037 0.8371260 0.8424111 0.8428174 0.8493960 #> [69,] 0.45928747 0.4965451 0.5542773 0.5917991 0.6237566 0.6343305 0.6550373 #> [70,] 1.00949093 1.1650926 1.2078393 1.2169444 1.2341341 1.2526122 1.3587940 #> [71,] 0.22038706 0.3698291 0.5063805 0.6682706 0.6764030 0.6803568 0.7025122 #> [72,] 0.41824000 0.4184360 0.4325937 0.4377125 0.4848735 0.5098943 0.5213406 #> [73,] 0.36595529 0.4150283 0.4230495 0.4715471 0.4820203 0.4893759 0.5093840 #> [74,] 0.48657110 0.5810022 0.7735514 0.8210664 0.8910608 0.8927631 0.9176643 #> [75,] 0.40020124 0.4232959 0.4436496 0.4596097 0.5149030 0.5152366 0.5463399 #> [76,] 0.48817965 0.4927598 0.5107277 0.5623835 0.5859066 0.5935301 0.5946564 #> [77,] 0.15081454 0.4335340 0.4363955 0.5182849 0.5205824 0.5418517 0.5425802 #> [78,] 0.30995948 0.3273770 0.4254990 0.4672448 0.5121810 0.5136565 0.5154224 #> [79,] 0.47970446 0.4947340 0.6647554 0.7263034 0.7535873 0.7609947 0.7625186 #> [80,] 0.79618626 0.8698408 0.8936291 0.8975484 0.9456737 0.9510369 0.9690743 #> [81,] 0.47623620 0.4877438 0.4971451 0.5032684 0.5146468 0.5204006 0.5501698 #> [82,] 0.93583477 1.0071221 1.0885044 1.1050823 1.1755327 1.1912636 1.2374069 #> [83,] 0.70018889 0.8879985 0.9946745 1.0809744 1.1726914 1.2589149 1.3267449 #> [84,] 0.85574145 0.9550328 0.9788586 0.9906871 1.0431189 1.0460363 1.0573611 #> [85,] 0.32254407 0.4354345 0.4755552 0.4913438 0.5488552 0.5558120 0.6032168 #> [86,] 0.58625836 0.7660761 0.7706474 0.7710468 0.7778610 0.7782860 0.7874432 #> [87,] 0.39066227 0.4763041 0.5491078 0.6551946 0.6561217 0.6865512 0.7407140 #> [88,] 0.40030939 0.5722201 0.6381720 0.6390878 0.6411925 0.6611606 0.6664912 #> [89,] 0.46587098 0.5052316 0.5139742 0.5400055 0.5485160 0.5844425 0.5922445 #> [90,] 0.19996637 0.2139283 0.3522130 0.3596801 0.5070188 0.5268149 0.5578403 #> [91,] 0.34578357 0.3713855 0.5607744 0.5739698 0.5832266 0.5948363 0.6034775 #> [92,] 0.13118949 0.4307515 0.5089294 0.6219634 0.7261603 0.7798434 0.8711605 #> [93,] 0.15515797 0.2767496 0.3113777 0.3347892 0.4146456 0.4380970 0.4573444 #> [94,] 0.40949008 0.7662003 0.8612254 0.8767726 0.8964731 1.1548959 1.1752675 #> [95,] 0.81376542 0.8750154 0.8946274 0.8990536 0.9284389 0.9383646 0.9488876 #> [96,] 0.36398921 0.7536512 0.7638342 0.8374410 0.8986590 0.9269765 0.9570827 #> [97,] 0.40763037 0.4564968 0.4906205 0.4921939 0.4925928 0.5062591 0.5259640 #> [98,] 0.27744439 0.3237234 0.4171864 0.4533024 0.4574603 0.5073590 0.5079862 #> [99,] 0.44986007 0.5442689 0.6053123 0.6070115 0.6822141 0.6850527 0.8025247 #> [100,] 0.36217182 0.4002402 0.5479470 0.6148331 0.6682706 0.6987118 0.7176815 #> [101,] 1.16034211 1.1830457 1.4589260 1.4813706 1.5482614 1.6614958 1.7219734 #> [102,] 0.20121330 0.2754540 0.3096327 0.3457012 0.3905825 0.3975459 0.4304232 #> [103,] 1.20255514 1.2330142 1.2589149 1.3426098 1.3481100 1.5117781 1.6069093 #> [104,] 0.44558674 0.5320156 0.5873528 0.5957944 0.6836550 0.6969275 0.7006954 #> [105,] 0.28454807 0.4706502 0.4755460 0.5303708 0.5371465 0.5512903 0.5558524 #> [106,] 0.47750098 0.4851378 0.4973154 0.5868762 0.7283071 0.8416151 0.8593591 #> [107,] 0.98216529 1.0064208 1.1040333 1.2141759 1.2774960 1.2957623 1.3022217 #> [108,] 0.47869309 0.8343755 0.9840538 1.0110834 1.0577510 1.0926077 1.1350025 #> [109,] 0.49710326 0.5006748 0.5058134 0.5114418 0.5418517 0.5850060 0.5912959 #> [110,] 0.19702653 0.3113777 0.3457012 0.4007505 0.4532430 0.4683849 0.4685934 #> [111,] 0.36008810 0.4174495 0.4408895 0.4548463 0.4828149 0.5061000 0.5141196 #> [112,] 0.57458749 0.6909275 0.7177089 0.7218150 0.7744658 0.8237228 0.8288619 #> [113,] 0.57147892 0.6049098 0.6478061 0.6816491 0.7262376 0.7536512 0.8159034 #> [114,] 0.53953399 0.6014050 0.6576091 0.6786399 0.6947844 0.7110033 0.7216347 #> [115,] 0.48599759 0.5154224 0.5558413 0.5789364 0.6354666 0.6547929 0.6603546 #> [116,] 0.33628768 0.4650064 0.5263157 0.7069239 0.7447617 0.7891283 0.8259153 #> [117,] 0.69958193 0.9283156 1.0939061 1.1216403 1.1250323 1.1288179 1.1515432 #> [118,] 0.36398921 0.5714789 0.6894734 0.7014631 0.7260693 0.7619641 0.8240498 #> [119,] 0.29785763 0.3904106 0.5147426 0.5658674 0.5798745 0.5887206 0.5896853 #> [120,] 0.35909924 0.4613995 0.4725982 0.5263326 0.5385190 0.5893542 0.6825840 #> [121,] 0.35748401 0.4455867 0.5154027 0.6343369 0.6851376 0.7147886 0.7230207 #> [122,] 0.26383426 0.2754540 0.2988481 0.2991627 0.3411604 0.4419143 0.4423288 #> [123,] 0.62395483 0.6685404 0.7950016 0.8067952 0.8221489 0.8340085 0.8765175 #> [124,] 0.82937244 0.8707487 0.9551027 1.0103346 1.0519770 1.0832535 1.2253165 #> [125,] 0.55221468 0.5857830 0.6497453 0.6719993 0.6832759 0.6859977 0.7828531 #> [126,] 0.45402224 0.6171313 0.6190679 0.7087893 0.7216347 0.7515560 0.7782790 #> [127,] 0.27028389 0.3572052 0.3993061 0.4557764 0.4626339 0.4726576 0.4993475 #> [128,] 0.28309416 0.4212043 0.4574603 0.4870235 0.5599778 0.5800733 0.5826591 #> [129,] 0.25146438 0.4186988 0.5370477 0.5654464 0.5749203 0.6088727 0.6190746 #> [130,] 0.49033543 0.5993018 0.6014718 0.6776866 0.7389885 0.7588429 0.7662003 #> [131,] 0.35233048 0.4090712 0.5369264 0.6189582 0.6317574 0.6684878 0.6798811 #> [132,] 0.48681494 0.5408715 0.6034775 0.6051837 0.6162894 0.6389791 0.6392017 #> [133,] 0.20289628 0.5917991 0.7040529 0.8219994 0.8745047 0.9693476 0.9888539 #> [134,] 0.86087471 0.8734834 0.9566091 1.0393017 1.0486299 1.1115831 1.1149204 #> [135,] 0.27865399 0.2969847 0.3897075 0.4253274 0.4470561 0.4950304 0.5887206 #> [136,] 0.73790913 0.7727693 0.7880136 0.8494167 0.9279067 1.0006806 1.0803707 #> [137,] 0.45981635 0.4838382 0.5119779 0.5679398 0.5857583 0.5990630 0.6031911 #> [138,] 0.30248329 0.3120646 0.3843879 0.3865320 0.4880859 0.4925018 0.5331744 #> [139,] 0.36139975 0.3821192 0.3884705 0.4467783 0.6854213 0.6990176 0.7259507 #> [140,] 0.79370421 1.1505867 1.1890757 1.1910424 1.2222432 1.3167299 1.3355435 #> [141,] 0.19951012 0.2417104 0.2781614 0.4680106 0.6250949 0.6525452 0.6603980 #> [142,] 0.37893352 0.4015229 0.4064958 0.4696581 0.4792169 0.4909026 0.5502156 #> [143,] 0.31849457 0.3427354 0.3941537 0.4860365 0.5329507 0.5679398 0.5687805 #> [144,] 0.36318027 0.4053421 0.4399584 0.4597621 0.5413375 0.5425802 0.5480974 #> [145,] 0.38772521 0.4192009 0.4871528 0.5026201 0.5073320 0.6164275 0.6390106 #> [146,] 0.26642362 0.3237234 0.4394007 0.4495239 0.4681588 0.4948503 0.5472648 #> [147,] 0.61755802 0.6381720 0.6557861 0.7506527 0.7529128 0.7540028 0.7591031 #> [148,] 0.18634156 0.5009155 0.5485840 0.5599778 0.5931087 0.5965084 0.6349871 #> [149,] 0.12046345 0.5411184 0.6786399 0.6798061 0.6833299 0.7009866 0.7406080 #> [150,] 0.17188245 0.3712625 0.3743934 0.3987000 0.4416277 0.5023142 0.5079862 #> [151,] 0.37547110 0.4474790 0.4828926 0.5041523 0.6416367 0.6856432 0.7161804 #> [152,] 0.79937319 0.8241613 0.8907011 1.0241436 1.1297508 1.1573210 1.1658958 #> [153,] 0.19419128 0.2061225 0.3007250 0.4605015 0.5260537 0.5295352 0.5749598 #> [154,] 0.30085979 0.3841699 0.5687805 0.5778905 0.6377990 0.6564521 0.6819878 #> [155,] 0.19513800 0.4827132 0.5439209 0.5786936 0.5950256 0.6442066 0.6687645 #> [156,] 0.46868378 0.5114418 0.5316744 0.5526436 0.5607080 0.6290993 0.6300735 #> [157,] 0.59045114 0.9869900 1.1535666 1.1582809 1.1780062 1.2135801 1.2585351 #> [158,] 0.24545491 0.3333003 0.3969425 0.4088468 0.4721369 0.4748135 0.5520819 #> [159,] 0.28986430 0.3544125 0.3764880 0.3992212 0.5491586 0.5680241 0.5835483 #> [160,] 0.43780840 0.4498638 0.7033036 0.7877849 0.8172419 0.8357316 0.8577205 #> [161,] 0.40582631 0.5054017 0.7030924 0.7243780 0.7407140 0.7705307 0.7930608 #> [162,] 0.35234103 0.4147042 0.4795022 0.4952720 0.4962613 0.4989207 0.5185135 #> [163,] 0.54300594 0.5583139 0.6795859 0.8095291 0.8206264 0.9728522 1.1327863 #> [164,] 0.52367020 0.5885379 0.8717503 0.8939719 0.9026125 0.9614319 1.0410679 #> [165,] 0.96143186 1.0199945 1.0232013 1.0551349 1.0902843 1.1010699 1.1045643 #> [166,] 0.61571818 0.7040191 0.7058041 0.7656191 0.7734775 0.7824822 0.8215516 #> [167,] 0.35229033 0.3921811 0.5471192 0.5639015 0.5672174 0.5735262 0.5753703 #> [168,] 0.96825642 1.0396370 1.1898986 1.2800371 1.2881848 1.3270543 1.3435666 #> [169,] 0.66673361 0.6783771 0.6894816 0.7395991 0.7798434 0.8020988 0.8409993 #> [170,] 0.28743920 0.4859976 0.6151464 0.6426209 0.6501716 0.6633979 0.7000754 #> [171,] 0.31719653 0.4426525 0.4802058 0.5162458 0.5402894 0.5484489 0.5699656 #> [172,] 0.08045996 0.2277363 0.4479699 0.6083513 0.7456291 0.7558175 0.7626539 #> [173,] 0.26393459 0.3593245 0.3717283 0.3820295 0.4015229 0.4740713 0.5161408 #> [174,] 0.30338965 0.3445281 0.3752012 0.3833929 0.4174495 0.4185740 0.5224324 #> [175,] 0.60837870 0.6760452 0.7997734 0.8205199 0.8496036 0.8767713 0.8946601 #> [176,] 0.61829653 0.6366517 0.6997558 0.7136063 0.7383797 0.7610103 0.8476542 #> [177,] 0.29403821 0.3544237 0.5263326 0.5589544 0.6405376 0.6407043 0.6920594 #> [178,] 0.30753941 0.4389056 0.4819657 0.5267271 0.5626776 0.5839383 0.6590841 #> [179,] 0.61451410 0.8065479 0.8074916 0.8192607 0.8541983 0.8731405 0.9437775 #> [180,] 0.26642362 0.3097676 0.3796937 0.3842518 0.5073590 0.5130520 0.5358143 #> [181,] 0.47013970 0.5230848 0.5470321 0.8496036 0.8674290 0.9467661 0.9817323 #> [182,] 0.36021158 0.4470561 0.4515219 0.4767623 0.5241343 0.5364844 0.5865542 #> [183,] 0.53317440 0.6307292 0.6375269 0.6506767 0.6550839 0.6692890 0.6958393 #> [184,] 0.59828158 0.7636470 0.8197293 0.8356096 0.8501639 0.8775427 0.9832344 #> [185,] 0.51230390 0.5204844 0.5648963 0.7084205 0.7865361 0.7996885 0.8246749 #> [186,] 0.38596645 0.4145507 0.5691145 0.5989056 0.6002112 0.6328652 0.6405012 #> [187,] 0.96030647 1.0761704 1.0808862 1.0870889 1.1122201 1.1279417 1.1959206 #> [188,] 0.49473402 0.6299515 0.6832576 0.6942725 0.6958393 0.7062105 0.7064561 #> [189,] 0.35909924 0.4255819 0.5056986 0.5103887 0.6192480 0.7221886 0.7384616 #> [190,] 0.48660327 0.7114507 0.7246401 0.7313637 0.8284993 1.0153069 1.0305508 #> [191,] 0.65050082 0.6816491 0.6842797 0.7600037 0.7705307 0.7733659 0.8202470 #> [192,] 0.81182782 0.8194373 0.8417935 1.1055276 1.1253849 1.1289979 1.1556449 #> [193,] 0.66753911 0.7257133 0.7266951 0.7743539 0.8705561 0.9086395 0.9237531 #> [194,] 0.62045966 0.7111853 0.7449372 0.8068628 0.8219124 0.8335637 0.8411046 #> [195,] 0.32084307 0.3593245 0.3889879 0.4064958 0.4534542 0.5020450 0.5061745 #> [196,] 0.59162905 0.6261190 0.6519473 0.6742100 0.7273983 0.7396244 0.7504098 #> [197,] 0.25774459 0.3922203 0.4871528 0.5731440 0.5860091 0.6188489 0.6274038 #> [198,] 0.55964953 0.6301278 0.7006146 0.7704925 0.8103618 0.8187889 0.8411695 #> [199,] 0.56526701 0.5919769 0.7933394 0.8006608 0.8031460 0.8174900 0.9500898 #> [200,] 0.63850522 0.6481022 0.7466410 0.8095291 0.8236840 0.8689609 0.8885308 #> [201,] 0.27865399 0.2923046 0.5241343 0.5313052 0.5860547 0.5909128 0.5959543 #> [202,] 0.42631331 0.5904569 0.5998869 0.7362744 0.7605896 0.8071532 0.8210664 #> [203,] 0.20842890 0.2428933 0.2988481 0.3402142 0.3697308 0.3865320 0.3890210 #> [204,] 0.47013970 0.5402685 0.6083787 0.7876943 0.8457159 0.8897081 0.8939270 #> [205,] 0.34090425 0.4108805 0.4379580 0.5384481 0.5431463 0.5516274 0.5550702 #> [206,] 0.52132482 0.5291135 0.5549221 0.6991985 0.7043297 0.7597526 0.7809424 #> [207,] 0.21587317 0.5501698 0.5944061 0.6019943 0.6036912 0.6121399 0.6232368 #> [208,] 0.19508862 0.3493520 0.4058071 0.5062397 0.5209490 0.5405174 0.5476367 #> [209,] 0.34835901 0.3519596 0.4355776 0.7052760 0.7261054 0.7961863 0.7980408 #> [210,] 0.15472873 0.2741477 0.3276143 0.3874743 0.4512306 0.4848735 0.5456915 #> [211,] 0.30083629 0.5030022 0.5802170 0.6049625 0.6124386 0.6855360 0.7587768 #> [212,] 0.50905999 0.5763424 0.6077715 0.6494028 0.6571812 0.7116446 0.7209059 #> [213,] 0.31837803 0.3607279 0.5027575 0.5151727 0.5491726 0.5556941 0.6165135 #> [214,] 0.58913260 0.8071999 0.9856087 0.9869900 1.0638696 1.1631375 1.1634441 #> [215,] 0.31003120 0.3585382 0.3890705 0.3975790 0.4177120 0.5668593 0.5714364 #> [216,] 0.40446900 0.4795265 0.5715888 0.5716924 0.6813370 0.7271226 0.7320339 #> [217,] 0.41890859 0.4878582 0.5088305 0.5258547 0.5416196 0.5602363 0.5909218 #> [218,] 0.40846562 0.4148849 0.4390372 0.4579331 0.4686838 0.5092006 0.5149004 #> [219,] 0.31027223 0.3580854 0.4416277 0.4557797 0.4635054 0.4980985 0.5223489 #> [220,] 0.67821809 0.7269518 0.7884421 0.8981276 0.9696410 1.0095566 1.0242894 #> [221,] 0.29113310 0.4240887 0.4680106 0.5413932 0.5551246 0.6033871 0.6445696 #> [222,] 0.31200656 0.3922203 0.5089802 0.6606336 0.6940500 0.7074970 0.7195269 #> [223,] 0.80654788 0.8376506 0.9906952 1.0447104 1.0594308 1.1200518 1.1231975 #> [224,] 0.29785763 0.3634108 0.3946379 0.4253274 0.5136025 0.5313052 0.5568903 #> [225,] 0.51517267 0.6075172 0.6088218 0.6133793 0.6376472 0.6498677 0.6685887 #> [226,] 0.41347323 0.4914823 0.5701759 0.5940340 0.6190746 0.6238119 0.6348328 #> [227,] 0.30243922 0.4479699 0.4755517 0.5638175 0.6171614 0.6514300 0.7090876 #> [228,] 0.90555460 0.9918885 1.1684544 1.1782701 1.2056914 1.2159078 1.2336533 #> [229,] 0.51230390 0.6631301 0.6653664 0.7335557 0.7518248 0.8405305 0.9252294 #> [230,] 0.77283362 0.8079880 0.8467161 0.8528566 0.8555573 0.9325761 0.9362719 #> [231,] 0.59961280 0.6343369 0.7535997 0.7794280 0.8462224 0.8493717 0.8586241 #> [232,] 0.26393459 0.2679328 0.2736122 0.3208431 0.3571812 0.4792169 0.4811862 #> [233,] 0.17875079 0.3975790 0.4053346 0.4628703 0.5497720 0.5765510 0.6245413 #> [234,] 0.67821809 0.6819256 0.6971910 0.7084205 0.7768582 0.8004708 0.8130695 #> [235,] 0.35229033 0.4113023 0.4561031 0.4946848 0.4971033 0.5271013 0.5398038 #> [236,] 0.62906531 0.7234641 0.7449372 0.7810325 0.8642700 0.8649101 0.8839147 #> [237,] 0.20395837 0.3844797 0.4306182 0.5561102 0.5694909 0.5874698 0.5900798 #> [238,] 0.57458749 0.5959630 0.6238756 0.6348328 0.6590748 0.6690772 0.7566615 #> [239,] 0.24032959 0.5017250 0.5050407 0.5692543 0.5727376 0.5783608 0.6350611 #> [240,] 0.41672649 0.4448618 0.4721369 0.5199025 0.5258675 0.5286509 0.5563468 #> [241,] 0.98405382 1.1375119 1.1976571 1.2046299 1.2651680 1.3673162 1.3923991 #> [242,] 0.57243631 0.9198506 1.0032346 1.1074054 1.1169257 1.1289227 1.1497500 #> [243,] 0.55313581 0.6545472 0.7726849 0.8180935 0.8738729 0.8899513 0.9580921 #> [244,] 0.57634239 0.6158662 0.6329802 0.6512504 0.6656699 0.6795726 0.7843879 #> [245,] 0.40030939 0.4047201 0.6347717 0.6518593 0.6594240 0.6682516 0.6796197 #> [246,] 0.20957563 0.5535769 0.5850788 0.5888863 0.5982422 0.6195995 0.6572079 #> [247,] 0.32538741 0.3764248 0.4068925 0.4827132 0.5377097 0.5388781 0.5564219 #> [248,] 0.07991648 0.3969090 0.4554043 0.5958814 0.6328125 0.6462949 0.6542727 #> [249,] 0.40846562 0.5515295 0.6300735 0.6669118 0.6803393 0.7171484 0.7440268 #> [250,] 0.24531337 0.2920796 0.3045802 0.3529613 0.3733389 0.3739873 0.4389056 #> [251,] 0.30083629 0.3895963 0.5889364 0.6204556 0.6560988 0.6840995 0.7052760 #> [252,] 0.35356658 0.4333924 0.4380970 0.4901973 0.5463399 0.5705713 0.5717453 #> [253,] 0.71555951 0.8531945 0.9589535 1.0147257 1.0754897 1.0893189 1.0893488 #> [254,] 0.32560846 0.3436373 0.5602555 0.6310238 0.7119669 0.7121295 0.8242852 #> [255,] 0.19508862 0.3335111 0.3359325 0.4334802 0.4795022 0.5193626 0.5880298 #> [256,] 0.33217500 0.5334556 0.5916505 0.7259507 0.7293199 0.7529128 0.7547055 #> [257,] 0.34844429 0.3698551 0.4515219 0.6835393 0.7039375 0.7097591 0.7388971 #> [258,] 0.48774381 0.5034437 0.6036912 0.6462597 0.6528830 0.6738408 0.7292561 #> [259,] 0.50387183 0.5885379 0.8716588 0.9163334 0.9436734 0.9756567 0.9843683 #> [260,] 0.31083119 0.5392876 0.5584831 0.6788038 0.6856432 0.6939049 0.7587768 #> [261,] 0.50540167 0.6094466 0.6106162 0.7100869 0.7474043 0.7548418 0.7657958 #> [262,] 0.36072787 0.4829120 0.6355625 0.6428138 0.6685887 0.7080839 0.7910339 #> [263,] 0.39463790 0.3948480 0.5147426 0.5186912 0.5888827 0.6300291 0.6367832 #> [264,] 0.39988625 0.4002021 0.4185740 0.4483313 0.4727237 0.4871645 0.4962613 #> [265,] 0.23993803 0.5224575 0.5456090 0.5960820 0.6028731 0.6078198 0.6157228 #> [266,] 0.37926665 0.4468730 0.4925928 0.4942371 0.5473633 0.5825448 0.6047881 #> [267,] 0.46645854 0.5050407 0.6158712 0.7140490 0.7180839 0.7395991 0.7456979 #> [268,] 0.38487972 0.4326476 0.4426525 0.4727237 0.4775865 0.4810028 0.5031708 #> [269,] 1.06380439 1.1005776 1.1676122 1.1770550 1.2246484 1.2639915 1.3374345 #> [270,] 0.35760660 0.5306228 0.6001879 0.6131775 0.6140907 0.6375269 0.6378469 #> [271,] 0.37007701 0.3978038 0.4291071 0.5187272 0.5306961 0.5880864 0.6199867 #> [272,] 0.08045996 0.2810413 0.4755517 0.5850168 0.7445571 0.7490401 0.7683102 #> [273,] 0.48999353 0.5196985 0.5392876 0.6215960 0.6416367 0.6426553 0.6913845 #> [274,] 0.24010441 0.3874158 0.4525542 0.4539625 0.4949872 0.5261021 0.5265085 #> [275,] 0.30100470 0.5029816 0.5127194 0.5510996 0.5639015 0.5655843 0.6384658 #> [276,] 0.54449025 1.0617308 1.1690400 1.2214387 1.2731221 1.2739128 1.4960939 #> [277,] 0.29910942 0.5714456 0.5963457 0.6705824 0.6787581 0.7043262 0.7580649 #> [278,] 0.35718116 0.4193687 0.4433985 0.4534542 0.4665253 0.5451624 0.5502156 #> [279,] 0.41394639 0.6325459 0.6699654 0.7836029 0.7851510 0.8182959 0.8425422 #> [280,] 0.22475057 0.3396683 0.4055814 0.4175321 0.4377923 0.4471095 0.4585823 #> [281,] 0.29444451 0.4113023 0.4141784 0.4404892 0.4630233 0.5031708 0.5333971 #> [282,] 0.31644694 0.5551573 0.5961214 0.6221072 0.6550789 0.7101610 0.7283993 #> [283,] 0.34578357 0.3468282 0.3687117 0.4835465 0.5648596 0.6162894 0.6381854 #> [284,] 0.50387183 0.5236702 0.7701056 0.7911549 0.8739263 0.8836861 0.9411378 #> [285,] 0.41119252 0.5622579 0.6023753 0.6042996 0.6207918 0.6479959 0.6823808 #> [286,] 0.85567071 1.0204548 1.0805443 1.1364532 1.3088280 1.3428671 1.3523249 #> [287,] 0.52439153 0.7499065 0.9440280 0.9675250 1.0153069 1.2163210 1.2222432 #> [288,] 0.54239075 0.6429094 0.8806943 1.3620115 1.4205182 1.4246796 1.4566494 #> [289,] 0.94204478 0.9724045 0.9750135 1.0133426 1.1141167 1.1172216 1.1293275 #> [290,] 0.34194145 0.4542825 0.5073444 0.5291135 0.7688035 0.7853064 0.8207269 #> [291,] 0.26594121 0.4145992 0.5107277 0.5382576 0.5775870 0.6428034 0.6433268 #> [292,] 0.33966834 0.3705808 0.4968724 0.5614452 0.5912959 0.6030132 0.6323524 #> [293,] 0.54240523 0.5685634 0.6545472 0.7480650 0.7893958 0.7894660 0.8047075 #> [294,] 0.26927678 0.4298212 0.4530965 0.4804884 0.5015095 0.5394649 0.5716974 #> [295,] 0.26343145 0.2979331 0.4463409 0.5502562 0.5519391 0.5640889 0.5888744 #> [296,] 0.28309416 0.3568485 0.4377125 0.4419143 0.4674355 0.4870335 0.5484208 #> [297,] 0.23681564 0.3086668 0.4232261 0.4378483 0.4828435 0.5027134 0.5113881 #> [298,] 0.44123648 0.4935362 0.5216645 0.5916291 0.6151879 0.7155653 0.7452075 #> [299,] 0.15515797 0.1970265 0.3792540 0.3921772 0.4304232 0.4333924 0.4406006 #> [300,] 0.35029758 0.3859824 0.6158662 0.6386173 0.6545420 0.6789222 0.6912502 #> [301,] 0.17672129 0.2920796 0.3487168 0.4119493 0.4148849 0.4666492 0.5515295 #> [302,] 0.53302955 0.5382576 0.5505231 0.6596260 0.6688616 0.6746336 0.6863087 #> [303,] 1.26360735 1.2688591 1.4489720 1.5091963 1.5111890 1.6452195 1.7570417 #> [304,] 0.32254407 0.3594234 0.4605015 0.4645395 0.5425355 0.5434271 0.5556632 #> [305,] 0.24866835 0.3789335 0.3792134 0.4561757 0.5161408 0.5266475 0.5673960 #> [306,] 0.26740534 0.3208248 0.4667387 0.4988816 0.5023142 0.5210939 0.5911413 #> [307,] 0.68948956 0.8591377 0.8632621 0.8758765 0.9509291 0.9731328 1.0001691 #> [308,] 0.51152798 0.7055470 0.7202057 0.7660243 0.7819818 0.7912739 0.8258615 #> [309,] 0.50638053 0.5179364 0.5468375 0.6046618 0.6985545 0.7881233 0.8091576 #> [310,] 0.16587260 0.3356574 0.3871199 0.4471608 0.4613834 0.5982422 0.6546082 #> [311,] 0.43717069 0.4465631 0.5035108 0.6308780 0.6550789 0.6917758 0.7570848 #> [312,] 0.35346968 0.4866033 0.4911228 0.9278780 0.9597156 0.9675250 0.9823241 #> [313,] 0.46884574 0.4715928 0.4735928 0.5765781 0.5976214 0.6209378 0.6795702 #> [314,] 0.18842874 0.2774444 0.3743934 0.4975694 0.5050988 0.5495635 0.5568096 #> [315,] 0.48747026 0.5115595 0.5776815 0.5810022 0.5833092 0.5961116 0.6199867 #> [316,] 0.71882339 0.7298102 0.7980408 0.8027938 0.8137303 0.8317879 0.8445150 #> [317,] 0.42087897 0.4312480 0.5634303 0.6422605 0.6566718 0.7048257 0.7623149 #> [318,] 0.34683737 0.4090368 0.4860365 0.5359664 0.5383853 0.6108532 0.6336967 #> [319,] 0.37138546 0.4117716 0.4785496 0.4868149 0.5997890 0.6381854 0.6638874 #> [320,] 0.46517599 0.5368974 0.6422321 0.6776026 0.6805158 0.7277149 0.7588429 #> [321,] 0.09697109 0.3934919 0.3992212 0.4013733 0.4841724 0.5219711 0.6044576 #> [322,] 0.61354902 0.7331312 0.8358797 0.8843709 0.9381280 0.9839040 0.9903867 #> [323,] 0.37300207 0.3944722 0.4408895 0.5156462 0.6216648 0.6234677 0.6260663 #> [324,] 0.30975111 0.5447037 0.5730397 0.5768426 0.6028126 0.6794550 0.6901274 #> [325,] 0.49046188 0.5118977 0.5345808 0.5487884 0.6182018 0.6263767 0.6269757 #> [326,] 0.48914700 0.5917555 0.6135490 0.8236793 0.8388834 0.8661062 0.8718881 #> [327,] 0.47466248 0.6094466 0.6433676 0.6557585 0.6625708 0.6628817 0.6690772 #> [328,] 0.73136370 0.8106643 0.8197065 0.9443775 1.0060133 1.0388432 1.0488026 #> [329,] 0.56057729 0.5963301 0.6683562 0.6795859 0.7329504 0.8120086 0.8243287 #> [330,] 0.27949333 0.4054250 0.4598163 0.4782392 0.5327786 0.6019534 0.6318225 #> [331,] 0.33351112 0.3356392 0.3441288 0.4058071 0.4617185 0.4678582 0.5969929 #> [332,] 0.50641307 0.5115280 0.5247714 0.5806314 0.6723671 0.7161356 0.7278448 #> [333,] 0.52374859 0.5609209 0.5919769 0.7004560 0.7470308 0.7624804 0.7892986 #> [334,] 0.42795110 0.4530965 0.4612184 0.4931298 0.5000259 0.5240484 0.5290541 #> [335,] 0.32761430 0.3475464 0.3843879 0.3949626 0.4205965 0.4415721 0.4535849 #> [336,] 0.50451422 0.8163552 1.0484713 1.0540369 1.1106780 1.1204779 1.1334821 #> [337,] 0.56262031 0.7564921 0.8078945 0.8326922 0.8352566 0.8653057 0.8771891 #> [338,] 0.35029758 0.6987542 0.7735514 0.8113368 0.8188095 0.8228033 0.8238807 #> [339,] 0.49353624 0.6602226 0.7272707 0.7396244 0.7642973 0.8857255 0.9054262 #> [340,] 0.26385543 0.4138580 0.4591137 0.4841722 0.4971807 0.5357776 0.5859066 #> [341,] 0.25334228 0.4108805 0.4143892 0.4465461 0.5185135 0.5862135 0.6011670 #> [342,] 0.23535424 0.3844714 0.3873494 0.4871865 0.5377632 0.5901825 0.6002112 #> [343,] 0.49333622 0.5099957 0.5933300 0.6932422 0.7805514 0.7853750 0.9455148 #> [344,] 0.42777114 0.4942371 0.4996934 0.5374261 0.5378361 0.5491287 0.5572177 #> [345,] 0.43543452 0.4731234 0.5097656 0.5154537 0.5501798 0.5601731 0.5648554 #> [346,] 0.27816143 0.2911331 0.3092625 0.4558091 0.6182421 0.6550839 0.6832576 #> [347,] 0.31133296 0.5416196 0.5924440 0.5951297 0.6042996 0.6043597 0.6051760 #> [348,] 0.32560846 0.4348900 0.5081217 0.5956861 0.7277149 0.8389705 0.8713819 #> [349,] 0.27110632 0.2736122 0.3717283 0.4193687 0.4696581 0.5124989 0.5188817 #> [350,] 0.46804512 0.5862584 0.6132736 0.6300291 0.6931258 0.7347957 0.8070378 #> [351,] 0.59930178 0.6040936 0.6243774 0.7537008 0.8512212 0.8618755 0.8767726 #> [352,] 0.72695182 0.8925216 1.0102435 1.0211662 1.0279754 1.0329852 1.2980993 #> [353,] 0.31170307 0.6374938 0.7231658 0.8318084 0.9315260 0.9454788 1.0235594 #> [354,] 0.47014037 0.5311183 0.5807093 0.5893542 0.6192480 0.6478061 0.6894734 #> [355,] 0.31605501 0.5687865 0.6450369 0.6562205 0.6602688 0.6698618 0.6733962 #> [356,] 0.21566331 0.3844714 0.4404892 0.4961319 0.5078930 0.5369264 0.5770353 #> [357,] 0.44777486 0.5099957 0.5576428 0.6046208 0.6613447 0.6683092 0.6720861 #> [358,] 0.44599817 0.5609735 0.7096210 0.8861194 0.8862931 0.8908547 0.9431895 #> [359,] 0.59854713 0.7551560 0.7975922 0.8340979 0.9488876 0.9678762 1.0104143 #> [360,] 0.69343238 0.8115715 0.8518886 0.8595648 0.8660315 0.9372885 1.0002448 #> [361,] 0.18945147 0.3203283 0.3361130 0.3448560 0.3493174 0.3777877 0.4662042 #> [362,] 0.48657110 0.6705820 0.7001198 0.7362744 0.8745113 0.9834923 0.9946699 #> [363,] 0.31644694 0.5156924 0.6910260 0.7869916 0.8203473 0.8254108 0.8631331 #> [364,] 0.57077554 0.6313865 0.6719993 0.6959316 0.7819634 0.8589755 0.8680502 #> [365,] 0.58735280 0.5874356 0.6407729 0.6911030 0.7000366 0.7373071 0.7389704 #> [366,] 0.28454807 0.3498404 0.3726540 0.3987329 0.4167784 0.4767417 0.4883674 #> [367,] 0.24909537 0.6217602 0.8683734 0.9142125 0.9621563 0.9622823 0.9941056 #> [368,] 0.20121330 0.2632861 0.2991627 0.3697308 0.4134017 0.4259888 0.5201796 #> [369,] 0.24136134 0.6594240 0.6920199 0.7117756 0.7880136 0.8037376 0.8159284 #> [370,] 0.49568273 0.6052306 0.6221072 0.6234920 0.6700591 0.7000754 0.7869916 #> [371,] 0.47399983 0.6625547 0.7281672 0.7694525 0.7743539 0.8051282 0.8220837 #> [372,] 0.36567019 0.4189086 0.5234874 0.5771078 0.5944776 0.5951297 0.7530624 #> [373,] 0.18460255 0.2060190 0.3782162 0.3791834 0.4426923 0.4612184 0.4794289 #> [374,] 0.46500636 0.5511406 0.5911722 0.5958814 0.6242367 0.6417307 0.6562524 #> [375,] 0.30753941 0.5299665 0.5805937 0.5926426 0.6214401 0.6687676 0.7171484 #> [376,] 0.58633486 0.6239548 0.6599681 0.6648714 0.6745910 0.7043262 0.7398995 #> [377,] 0.50763829 0.5663951 0.6228037 0.7147886 0.7307823 0.7430718 0.7822892 #> [378,] 0.30361897 0.3430907 0.5306958 0.5863829 0.6143961 0.6843397 0.7215748 #> [379,] 0.62529285 0.9373032 0.9589361 0.9839291 1.0569027 1.1136162 1.1334750 #> [380,] 0.31004980 0.6990266 0.9175304 1.0122607 1.1262807 1.2133086 1.2242808 #> [381,] 0.49568273 0.5961214 0.6232368 0.6734077 0.8202901 0.8360364 0.8509438 #> [382,] 0.31083119 0.4828926 0.4899935 0.5448074 0.5461205 0.5871392 0.7828199 #> [383,] 0.33628768 0.5511406 0.5918048 0.6436058 0.6527433 0.6718151 0.7163910 #> [384,] 0.44077776 0.5411184 0.6801610 0.7706525 0.7962910 0.8294079 0.8335637 #> [385,] 0.15604009 0.4762362 0.5680078 0.5814557 0.6462597 0.6486402 0.6494302 #> [386,] 0.38532828 0.4359686 0.5209098 0.5689635 0.5757741 0.5904509 0.5991853 #> [387,] 0.33470661 0.3647560 0.5047202 0.5630189 0.5689635 0.5829721 0.5891104 #> [388,] 0.65667184 0.6750756 0.6775991 0.7616078 0.7726849 0.9088996 0.9411035 #> [389,] 0.31575585 0.5786936 0.6070519 0.6149352 0.7121295 0.7450731 0.7560740 #> [390,] 0.40636897 0.4379580 0.4465461 0.5390755 0.5909128 0.5998869 0.6395035 #> [391,] 0.71637391 0.9092624 0.9917192 1.0071221 1.0974428 1.1297508 1.1602162 #> [392,] 0.51834711 0.5505231 0.5846558 0.5926610 0.7513978 0.7774382 0.7794280 #> [393,] 0.14605421 0.6075121 0.6775991 0.7048257 0.7444487 0.7576389 0.8104532 #> [394,] 0.46638959 0.5294214 0.5480739 0.6234146 0.6267325 0.6959634 0.7060311 #> [395,] 1.04920444 1.1822441 1.2197848 1.3257101 1.3857820 1.3957540 1.3989331 #> [396,] 0.50074816 0.9368811 1.0471965 1.0540369 1.0659909 1.0825885 1.0936585 #> [397,] 0.35233048 0.3636660 0.4969829 0.5377632 0.5908810 0.6138392 0.7085501 #> [398,] 0.33018724 0.5976214 0.6068353 0.6865432 0.7154680 0.7209059 0.7564411 #> [399,] 0.32685154 0.3821192 0.5760403 0.6261190 0.6692866 0.7112562 0.7409202 #> [400,] 0.99219177 1.0147922 1.1050029 1.1439902 1.2163210 1.2301288 1.2718061 #> [401,] 0.50067478 0.5271013 0.5735262 0.6820610 0.6876870 0.7728214 0.7903175 #> [402,] 0.61061623 0.6870153 0.7093132 0.7347957 0.8417935 0.9099727 0.9207612 #> [403,] 0.13118949 0.5519855 0.5731555 0.6801153 0.8020988 0.8270089 0.9160206 #> [404,] 0.35945348 0.3929751 0.4128428 0.4949872 0.5282306 0.6033871 0.6078198 #> [405,] 0.47216259 0.6429094 0.8313961 0.9559077 1.1019036 1.1677363 1.2491498 #> [406,] 0.52840771 0.5306958 0.5440199 0.5557236 0.5803419 0.5863349 0.5922188 #> [407,] 0.18051066 0.4002402 0.5468375 0.5576100 0.5873958 0.6803568 0.7861184 #> [408,] 0.42982120 0.4931298 0.5219711 0.5226653 0.5355817 0.5618288 0.6011145 #> [409,] 0.23307038 0.5096766 0.5400055 0.5411882 0.5479479 0.5729807 0.5868046 #> [410,] 0.22690537 0.3102786 0.4061678 0.4906205 0.5086148 0.5583424 0.6063374 #> [411,] 0.59354400 0.6070115 0.6145340 0.6739434 0.6935096 0.6939493 0.7555520 #> [412,] 0.45311652 0.4835465 0.6051837 0.6545420 0.6795726 0.6883190 0.7681392 #> [413,] 0.52874860 0.5485678 0.5557123 0.5716924 0.6452023 0.7073426 0.7129012 #> [414,] 0.59854713 0.7433678 0.7931495 1.1149152 1.1309300 1.2472189 1.2511145 #> [415,] 1.00915273 1.0397144 1.0531656 1.0897849 1.1299244 1.2105582 1.2705682 #> [416,] 0.44685385 0.4802813 0.4841724 0.5951493 0.6011145 0.6486402 0.6837553 #> [417,] 0.39066227 0.4058263 0.5686761 0.5893919 0.7694337 0.7836191 0.8194804 #> [418,] 0.30577483 0.4465631 0.5118977 0.5633698 0.5763036 0.6474377 0.6518129 #> [419,] 0.33565738 0.3413110 0.3634738 0.3796179 0.3857744 0.4868420 0.5030333 #> [420,] 0.26385543 0.3050787 0.3099595 0.4493096 0.5142780 0.5426927 0.5432273 #> [421,] 0.72981016 0.8191095 1.0391618 1.0635243 1.1439234 1.1497564 1.1579309 #> [422,] 0.77901084 0.8141714 0.8880066 0.9686581 0.9776988 0.9981969 1.0372120 #> [423,] 0.17188245 0.3102722 0.4068494 0.4948228 0.5050988 0.5092787 0.5166929 #> [424,] 0.58021695 0.6560988 0.8278941 0.8310321 0.8902744 0.9046550 0.9497534 #> [425,] 0.50074816 0.7472879 0.7886271 0.8055432 0.8072300 0.8322109 0.8544600 #> [426,] 0.65841128 0.7551560 0.8793542 0.8990536 0.9343049 0.9647801 1.0091527 #> [427,] 0.40360403 0.4477749 0.4521097 0.5402954 0.5465505 0.6198224 0.6646068 #> [428,] 0.47869309 0.9571049 1.1259877 1.1363119 1.2431542 1.2535680 1.2883587 #> [429,] 0.34027172 0.3519596 0.3895963 0.5030022 0.5741917 0.5803987 0.7337276 #> [430,] 0.21863794 0.5792501 0.5799310 0.6055756 0.6098908 0.6619151 0.7052326 #> [431,] 0.42262902 0.5161931 0.5211340 0.5809020 0.6295294 0.6742100 0.7002335 #> [432,] 0.57267127 0.5730397 0.6557861 0.6854213 0.6911311 0.6957793 0.7067249 #> [433,] 0.24866835 0.2996319 0.4200978 0.4258462 0.4310830 0.5603310 0.5667096 #> [434,] 0.39780376 0.4386172 0.4797447 0.4874703 0.4933392 0.5682878 0.6303169 #> [435,] 0.49112284 0.6390106 0.6759421 0.7114507 0.7823791 0.7902742 0.7998991 #> [436,] 0.36738405 0.4135458 0.5167208 0.5334669 0.5473633 0.5482934 0.5957012 #> [437,] 0.29571554 0.3634738 0.3637507 0.3814911 0.3871199 0.3876728 0.4539900 #> [438,] 0.49119061 0.7828531 0.8027938 0.8172419 0.9485036 1.0184482 1.0185377 #> [439,] 0.83437551 0.9571049 1.0803707 1.1735669 1.1976571 1.2111689 1.3843671 #> [440,] 0.24289334 0.3120646 0.3537647 0.3949626 0.4134017 0.4214355 0.4319502 #> [441,] 0.20289628 0.6237566 0.6844604 0.7369896 0.8385844 0.8803578 0.8962578 #> [442,] 0.75123324 0.9219082 1.0496610 1.1107187 1.1215952 1.1425865 1.1637278 #> [443,] 0.24545491 0.4625359 0.4660731 0.4949305 0.5009155 0.5330862 0.5507820 #> [444,] 0.67768660 0.7038044 0.7892187 0.8172974 0.8343469 0.8612254 0.8907011 #> [445,] 1.22623347 1.2420842 1.3854303 1.3953893 1.4621698 1.5357017 1.5569942 #> [446,] 0.47289305 0.6145340 0.6684878 0.6760726 0.6819878 0.6879263 0.6969249 #> [447,] 1.45228667 1.6043613 1.6490182 1.8686264 1.8838568 1.8952957 1.9006795 #> [448,] 0.57243631 0.7067615 0.8611921 1.0199524 1.0782641 1.1621953 1.1898859 #> [449,] 0.24863800 0.3598209 0.3796937 0.4948503 0.5142888 0.5173598 0.5306004 #> [450,] 0.44366791 0.7192560 1.2657779 1.2739660 1.3403521 1.3811454 1.5902023 #> [451,] 0.50167997 0.5237082 0.5300692 0.5317664 0.5451624 0.5490896 0.5717995 #> [452,] 0.64144872 0.8653057 1.1236420 1.2908359 1.3073813 1.3171347 1.3352933 #> [453,] 0.40963634 0.4797447 0.5306961 0.6045138 0.6223325 0.6235444 0.6778300 #> [454,] 0.57965193 0.7163739 0.7299407 0.7894505 0.9358348 1.0104482 1.0190099 #> [455,] 0.33731955 0.3678879 0.3792666 0.4171944 0.5020450 0.5062591 0.5226281 #> [456,] 0.09697109 0.3223750 0.3544125 0.4270109 0.4468538 0.5355817 0.5816812 #> [457,] 0.26564505 0.7653629 0.8236488 0.9174340 0.9267543 0.9272176 0.9374222 #> [458,] 0.48470066 0.5052092 0.5596495 0.6027456 0.6594966 0.6607136 0.6997558 #> [459,] 0.16282452 0.2891480 0.4182400 0.4340449 0.4996934 0.5051723 0.5113368 #> [460,] 0.44060061 0.4449831 0.4557764 0.4573444 0.4681588 0.5077163 0.5246272 #> [461,] 0.27996485 0.5602452 0.6143961 0.6219634 0.6801153 0.7140490 0.7973198 #> [462,] 0.70380443 0.8241613 1.1755510 1.1950636 1.2795708 1.3081447 1.3256072 #> [463,] 0.26740534 0.3117459 0.4585147 0.4678582 0.5209490 0.5859090 0.5880765 #> [464,] 0.52166448 0.5273160 0.6314860 0.6347717 0.6591848 0.6602226 0.6829279 #> [465,] 0.46804512 0.6870153 0.7545626 0.7706474 0.7762396 0.8118278 0.9270370 #> [466,] 0.31004980 0.7137102 0.8195100 0.8730117 0.9593647 1.0354425 1.1030984 #> [467,] 0.29292073 0.3314803 0.4310830 0.4425622 0.4561757 0.5497865 0.5655038 #> [468,] 0.27981317 0.3631803 0.3758961 0.4363955 0.4510979 0.4921939 0.5126823 #> [469,] 0.34390429 0.3668414 0.4200978 0.5247714 0.5707832 0.5720249 0.6123558 #> [470,] 0.21164504 0.2930111 0.3169707 0.3361130 0.3613120 0.3687756 0.3733389 #> [471,] 0.20417561 0.4786287 0.5084755 0.5140385 0.5410413 0.5428946 0.6918404 #> [472,] 0.83587974 0.8890259 0.9255049 0.9664203 1.0821634 1.0852990 1.1843941 #> [473,] 0.76058958 0.9090353 0.9256838 0.9697771 1.0202062 1.0394324 1.0615033 #> [474,] 0.40542497 0.4449027 0.4514099 0.5119779 0.5300852 0.5545604 0.5947904 #> [475,] 0.87266945 1.0586150 1.0839485 1.0860132 1.1040333 1.1843674 1.3202047 #> [476,] 0.39915058 0.4044690 0.4656943 0.5084248 0.5287486 0.5500657 0.6266317 #> [477,] 0.51479463 0.5694424 0.6092113 0.6469373 0.6859729 0.6948786 0.6948917 #> [478,] 0.33332358 0.4540222 0.6165999 0.6311446 0.6354071 0.6525144 0.6576091 #> [479,] 0.32348784 0.4167936 0.4622053 0.4756200 0.4828435 0.4856521 0.5458660 #> [480,] 0.20774666 0.2368156 0.3148796 0.3318808 0.4167936 0.5171208 0.5223489 #> [481,] 0.64265530 0.6615948 0.6939049 0.7691026 0.7837144 0.8313751 0.8374920 #> [482,] 0.31191358 0.5115595 0.5186912 0.5568903 0.5658674 0.5805367 0.6526331 #> [483,] 0.36871174 0.4752569 0.4946232 0.5832266 0.6778089 0.6828681 0.7059491 #> [484,] 0.61434841 0.6643837 0.7710334 0.8202840 0.8318084 1.0382065 1.1255773 #> [485,] 0.32282065 0.4160175 0.4522604 0.4870973 0.5622388 0.5837745 0.6021089 #> [486,] 0.69902660 0.9255049 0.9593647 0.9603065 1.0848989 1.1964572 1.2806124 #> [487,] 0.36583627 0.4312480 0.5921655 0.6179367 0.6290988 0.6688491 0.6798061 #> [488,] 0.48914700 0.5809788 0.5860091 0.6228037 0.6670446 0.7151664 0.7331312 #> [489,] 0.54426886 0.5818935 0.6092135 0.6802616 0.7296064 0.7703605 0.7863003 #> [490,] 0.64144872 1.1515432 1.2574863 1.3068810 1.3621837 1.4400532 1.5037535 #> [491,] 0.68609343 0.6878115 1.0190392 1.1752675 1.2500793 1.4017630 1.4175909 #> [492,] 0.19996637 0.2641698 0.4474902 0.4658086 0.5312450 0.5522147 0.5635916 #> [493,] 0.55034352 0.6327033 0.7231658 0.9630081 1.1152965 1.1166193 1.2305216 #> [494,] 0.44016974 0.7307823 0.8092806 0.8182231 0.8593062 0.8993036 0.9097510 #> [495,] 0.27017635 0.3699957 0.4096830 0.4512306 0.4612165 0.4628703 0.4941352 #> [496,] 0.73232324 0.7710468 0.8167852 0.8925772 0.9230566 0.9272176 0.9380741 #> [497,] 0.35942336 0.4049898 0.4334802 0.4913438 0.5031696 0.5197681 0.5405174 #> [498,] 1.03943243 1.0721897 1.0905577 1.1089035 1.1314227 1.1912541 1.2253874 #> [499,] 0.27072483 0.3865848 0.4292685 0.5141644 0.5370477 0.5482934 0.5624287 #> [500,] 0.37642480 0.3978315 0.3998387 0.5439209 0.5668593 0.6262270 0.6268746 #> [501,] 0.47216259 0.5423907 0.7833552 0.9727131 1.1413017 1.1811073 1.2372009 #> [502,] 0.34754640 0.3576066 0.3862040 0.3874743 0.4431694 0.4952917 0.5221971 #> [503,] 1.25593536 1.3176629 1.3585019 1.3851334 1.3869811 1.4232511 1.4684821 #> [504,] 0.41890633 0.4389962 0.4798121 0.6254812 0.6718151 0.6731796 0.7411969 #> [505,] 0.78545275 0.8847553 1.0815974 1.1519782 1.3383411 1.4112341 1.5026801 #> [506,] 0.37644458 0.5334556 0.5487723 0.7187771 0.7560823 0.7745370 0.9103913 #> [507,] 0.70927902 0.7398905 0.8395667 0.8904261 0.8994460 0.9188252 0.9655937 #> [508,] 0.51459128 0.6009983 0.6357531 0.6474427 0.6819256 0.7059153 0.7111395 #> [509,] 0.43697204 0.4958141 0.5626203 0.5694424 0.5959871 0.6326815 0.7707595 #> [510,] 0.40476741 0.5652670 0.5761168 0.6490482 0.6917122 0.7084974 0.7534034 #> [511,] 0.82162781 0.9675018 0.9981969 1.0832153 1.2422757 1.2847455 1.2862323 #> [512,] 0.30085979 0.4361772 0.5251689 0.5338096 0.5823034 0.6650514 0.7381164 #> [513,] 0.29301114 0.3731118 0.4421991 0.4486907 0.4543662 0.4699835 0.4710620 #> [514,] 0.29292073 0.4098502 0.4798583 0.5378361 0.5423993 0.5514421 0.5667096 #> [515,] 0.26793281 0.2711063 0.3820295 0.3889879 0.4171944 0.4261615 0.4433985 #> [516,] 0.27028389 0.3415438 0.3734846 0.3840070 0.4426923 0.4609179 0.4715471 #> [517,] 0.30866684 0.3234878 0.3318808 0.4254990 0.4446930 0.4488586 0.4648980 #> [518,] 0.07991648 0.4038128 0.4762512 0.5911722 0.6350611 0.6912811 0.6981930 #> [519,] 0.37025403 0.3944722 0.4546167 0.5061000 0.5270976 0.5509830 0.5810267 #> [520,] 0.27981317 0.4053421 0.4202105 0.4315446 0.5017654 0.5127194 0.5205824 #> [521,] 0.34512046 0.4042546 0.4521097 0.5453375 0.5888239 0.6046208 0.6074047 #> [522,] 0.13879613 0.3419732 0.3665608 0.4178758 0.4448724 0.4893759 0.5030333 #> [523,] 0.54363676 0.5771780 0.5962627 0.7278883 0.8893138 0.9051578 0.9270370 #> [524,] 0.33184739 0.3507093 0.3598209 0.5017654 0.5346923 0.5475948 0.5485160 #> [525,] 0.26143033 0.3439043 0.3928074 0.4258462 0.5064131 0.5837491 0.7095298 #> [526,] 0.28883648 0.4871865 0.5237486 0.5480739 0.6635628 0.6831837 0.6882478 #> [527,] 0.77901084 1.1327007 1.2185269 1.2789434 1.2862323 1.3177358 1.4660522 #> [528,] 0.38801771 0.3950953 0.4755505 0.5452861 0.5768426 0.6079400 0.6224556 #> [529,] 0.27912903 0.3436373 0.4348900 0.6630490 0.6776026 0.7560740 0.8175933 #> [530,] 0.45669225 0.5905829 0.6098908 0.8362491 0.8714916 0.8802147 0.9061382 #> [531,] 0.36687170 0.4117716 0.4755552 0.5197681 0.5227071 0.5425355 0.5607744 #> [532,] 0.33962879 0.3890705 0.4053346 0.5261169 0.6142398 0.6576187 0.6897535 #> [533,] 0.73738653 0.8103618 0.8189857 0.8284993 0.8510004 0.8795685 0.8951109 #> [534,] 0.17875079 0.3396288 0.3585382 0.5533974 0.5907733 0.6179367 0.6273748 #> [535,] 0.32500550 0.3266515 0.3547841 0.3792344 0.4175321 0.4422283 0.4517481 #> [536,] 0.33064403 0.3969425 0.5079901 0.5199025 0.5263975 0.5330862 0.5579990 #> [537,] 0.86476367 0.9477399 0.9832344 1.0586136 1.2534981 1.3615438 1.3869811 #> [538,] 1.51838574 1.6109467 1.7708302 1.8085940 1.9709012 1.9897454 2.1130770 #> [539,] 0.31191358 0.4145507 0.4342199 0.5136025 0.5556632 0.5776815 0.5888827 #> [540,] 0.48520405 0.6145141 0.9431510 0.9827255 1.0118221 1.0709103 1.1359482 #> [541,] 0.40472014 0.4864877 0.6390878 0.6591848 0.7155856 0.7660701 0.7727693 #> [542,] 0.76364702 0.7853750 0.8647637 1.0036165 1.0303411 1.0931007 1.0985984 #> [543,] 0.58070930 0.6279492 0.6657246 0.6752513 0.6872129 0.7148179 0.7352546 #> [544,] 0.61975077 0.9142557 0.9437180 1.0027772 1.0378565 1.1022966 1.2146529 #> [545,] 0.60396993 0.8556707 0.8925672 0.9236600 0.9622823 0.9663578 0.9743262 #> [546,] 0.12046345 0.4407778 0.6910868 0.7058085 0.7183874 0.7288252 0.7548969 #> [547,] 1.17888285 1.2565012 1.3092816 1.3485371 1.3592511 1.3868103 1.3965006 #> [548,] 0.55249129 0.5894451 0.6794550 0.6825160 0.7403855 0.7499781 0.7685453 #> [549,] 0.40476741 0.5235680 0.5698808 0.6055756 0.6478767 0.7933394 0.8048888 #> [550,] 0.59574307 0.6550834 0.7081091 0.8176899 0.8303848 0.8308750 0.8356224 #> [551,] 0.36883720 0.3790429 0.4196418 0.4813874 0.6354071 0.7087893 0.7210488 #> [552,] 0.22690537 0.3318503 0.3474324 0.3919076 0.5672823 0.5812286 0.5816418 #> [553,] 0.25774459 0.3120066 0.5073320 0.6759421 0.6994948 0.7042752 0.7059491 #> [554,] 0.48465152 0.5241100 0.5428946 0.5505425 0.5685634 0.5802675 0.6282014 #> [555,] 0.28688126 0.3224021 0.4224186 0.4696288 0.4751730 0.4799773 0.4841708 #> [556,] 0.42682207 0.4577456 0.5079901 0.5520819 0.6207918 0.6501106 0.6740800 #> [557,] 0.51817417 0.5442637 0.5868762 0.6314365 0.6477322 0.6781473 0.6986159 #> [558,] 0.19513800 0.3253874 0.3978315 0.5390598 0.5714364 0.5780151 0.6273748 #> [559,] 0.60147181 0.6422321 0.6654582 0.7315526 0.7750984 0.8343469 0.8389705 #> [560,] 0.58039868 0.6049625 0.6840995 0.7140941 0.7261054 0.7437403 0.7692705 #> [561,] 0.56407060 0.5846558 0.8028055 0.8462224 0.8719151 0.8746693 0.8830011 #> [562,] 0.34273538 0.3841699 0.4105118 0.4383739 0.4858712 0.5065422 0.5251689 #> [563,] 0.44366791 0.7238057 1.1969462 1.3358588 1.3543267 1.3886413 1.5250261 #> [564,] 0.63184141 0.7544464 0.7638342 0.8534673 0.9591824 0.9823241 0.9860083 #> [565,] 0.53892468 0.6336688 0.8073962 0.8078945 0.9509165 0.9673514 1.0400164 #> [566,] 1.40517342 1.4799383 1.5337433 1.6619145 1.6645287 1.6742392 1.6770461 #> [567,] 0.40425462 0.5054819 0.5465505 0.6699691 0.6847809 0.7834679 0.7970432 #> [568,] 0.29230462 0.2969847 0.3602116 0.3634108 0.3904106 0.5878294 0.6034387 #> [569,] 0.41354584 0.4359867 0.4786287 0.5156658 0.5329834 0.5480443 0.5491726 #> [570,] 0.40415075 0.6027456 0.6301278 0.6499022 0.6650514 0.7953267 0.8599447 #> [571,] 1.01472574 1.1123529 1.1923692 1.3073333 1.3876238 1.5133920 1.5342320 #> [572,] 1.41605561 1.5498688 1.7465202 1.7507080 1.8019820 1.8112516 1.8627146 #> [573,] 0.59337182 0.6013404 0.6559592 0.6794917 0.7073037 0.7472879 0.7559327 #> [574,] 0.20601898 0.2138112 0.2836252 0.3734846 0.3993061 0.4641697 0.5026104 #> [575,] 0.56988075 0.5799310 0.6264804 0.6338821 0.7155595 0.7585791 0.8802147 #> [576,] 0.24010441 0.3451244 0.3776825 0.4448724 0.5067279 0.5093840 0.5153017 #> [577,] 0.44522840 0.4637061 0.5803419 0.6279280 0.7888915 0.8112898 0.8401171 #> [578,] 0.46177516 0.5032684 0.5560926 0.6384115 0.6558610 0.6738408 0.6795696 #> [579,] 0.25183425 0.4369720 0.4405283 0.4724317 0.6092113 0.6395914 0.6836550 #> [580,] 0.55034352 0.8932676 0.9048609 0.9122109 0.9204655 1.0020373 1.0966724 #> [581,] 0.27957885 0.4029978 0.5986835 0.6859729 0.7006915 0.8743741 0.9495803 #> [582,] 0.46009541 0.5295352 0.5377479 0.5922188 0.5985136 0.6594093 0.6648714 #> [583,] 0.16973124 0.3884705 0.4261615 0.4953801 0.5302664 0.6032451 0.6088218 #> [584,] 0.36096082 0.4292685 0.4315726 0.5161931 0.5861869 0.6151879 0.6519473 #> [585,] 0.62240532 0.8313961 0.8539695 1.0598134 1.0899057 1.1185382 1.1891441 #> [586,] 0.53355768 0.6586069 0.7373932 0.8106935 0.8137303 0.8560083 0.8586241 #> [587,] 0.61434841 0.6742504 0.7758032 0.8632298 0.9866009 0.9946745 1.0171249 #> [588,] 0.50994700 0.7137102 0.7281672 0.8292282 0.8709165 0.9152130 0.9175304 #> [589,] 0.35442371 0.4167385 0.4613995 0.4975055 0.5103887 0.7466410 0.7591619 #> [590,] 0.54835213 0.7573177 0.7731458 0.7745561 0.7955375 0.8407062 0.8494256 #> [591,] 0.48960202 0.5124989 0.5754902 0.5816418 0.5968568 0.6040564 0.6065801 #> [592,] 0.40807386 0.5852049 0.5944061 0.6151464 0.6305765 0.6354666 0.6405491 #> [593,] 0.50451422 0.5435610 0.8748761 0.9055023 1.0413266 1.0492853 1.1193411 #> [594,] 0.60941048 0.8286666 0.8362473 0.8475980 0.8652686 0.9248949 0.9401446 #> [595,] 1.02764981 1.0675792 1.1726157 1.1737706 1.2117283 1.2122693 1.2136554 #> [596,] 0.48648770 0.6071182 0.6077914 0.6451965 0.6664912 0.6796197 0.6990176 #> [597,] 0.31537054 0.4401888 0.7049388 0.7611104 0.7926868 0.8169729 0.8347674 #> [598,] 0.33478924 0.3535666 0.3921772 0.3934919 0.4061885 0.4270109 0.4683849 #> [599,] 0.29403821 0.4011936 0.4167385 0.4725982 0.5336573 0.5487884 0.5762095 #> [600,] 0.34154377 0.3776825 0.4150283 0.4241536 0.4626339 0.4811862 0.5238636 #> [601,] 0.29062669 0.3969090 0.4038128 0.6562524 0.6739732 0.6791804 0.7069239 #> [602,] 0.36985508 0.4767623 0.6505008 0.6659052 0.6908772 0.6949283 0.7074873 #> [603,] 0.46510675 0.5777555 0.6102530 0.6860259 0.6954669 0.8290772 0.8351042 #> [604,] 0.58189352 0.6589000 0.6686780 0.6893716 0.8203466 0.8461130 0.8599066 #> [605,] 0.28459575 0.3376415 0.4192009 0.5731440 0.6105425 0.6149352 0.6214294 #> [606,] 0.11608719 0.3638735 0.3792344 0.3799525 0.3879428 0.4390372 0.4585823 #> [607,] 0.80719987 0.8293724 1.0997222 1.2354086 1.3177878 1.3927904 1.4089550 #> [608,] 0.70018889 1.2503321 1.2780366 1.3383411 1.4643526 1.5313353 1.5387897 #> [609,] 0.54703206 0.6326815 0.7559557 0.8459306 0.8506859 0.8917204 0.9307966 #> [610,] 0.27361090 0.3943047 0.4335340 0.5142888 0.5265425 0.5371743 0.5416264 #> [611,] 0.82697259 0.8951109 0.9285000 0.9448010 1.0888297 1.2039308 1.2067116 #> [612,] 0.30507871 0.3273770 0.4344419 0.4591137 0.4751239 0.4870335 0.5101134 #> [613,] 0.54105950 0.7512295 0.8366602 0.9077201 1.0226334 1.0241518 1.1789045 #> [614,] 0.32685154 0.4467783 0.6437903 0.6957793 0.7111202 0.7504098 0.7703679 #> [615,] 0.21392826 0.2641698 0.4380816 0.4557797 0.5332089 0.5424867 0.5470235 #> [616,] 0.16973124 0.3613998 0.4432428 0.4559979 0.5624052 0.5760403 0.6043345 #> [617,] 0.54910784 0.5686761 0.6911297 0.6945931 0.7177089 0.7198688 0.7597752 #> [618,] 0.21566331 0.3873494 0.4141784 0.4209737 0.4946848 0.5121898 0.5441918 #> [619,] 0.31174585 0.3208248 0.3302222 0.3356392 0.3359325 0.3493520 0.4049898 #> [620,] 0.48416998 0.6688491 0.6699654 0.7330502 0.7655117 0.7961905 0.8147810 #> [621,] 0.54243723 0.5634303 0.5645729 0.5921655 0.5974787 0.6009983 0.6831728 #> [622,] 0.44986007 0.6802616 0.6893716 0.8791343 0.8939719 0.9821576 0.9837626 #> [623,] 0.58665844 0.8052953 0.8582436 0.9003027 0.9672961 0.9803843 1.0155728 #> [624,] 0.24136134 0.5790625 0.6168309 0.6571811 0.6682516 0.7423945 0.7494334 #> [625,] 0.52631572 0.6946062 0.8203172 0.8286666 0.8862931 1.0503166 1.0956282 #> [626,] 0.28362515 0.3572052 0.3782162 0.4301535 0.4609179 0.4736896 0.4951976 #> [627,] 0.34844429 0.4708596 0.4950304 0.5364844 0.5959543 0.6394717 0.6509156 #> [628,] 0.70116622 0.8738729 0.9232706 0.9257615 0.9500668 1.0094909 1.0283225 #> [629,] 0.41787351 0.5240484 0.6101186 0.6395927 0.6518593 0.6559082 0.6670681 #> [630,] 0.34027172 0.3483590 0.5775658 0.5876252 0.6204556 0.6855360 0.7085435 #> [631,] 0.48183801 0.7126242 0.7467861 0.7836029 0.8784556 0.8980112 0.8987570 #> [632,] 0.19419128 0.2839768 0.3802278 0.4279197 0.4645395 0.4706502 0.4918564 #> [633,] 0.23167235 0.4764203 0.4957492 0.5487723 0.5527083 0.5540839 0.6585077 #> [634,] 0.37995251 0.4259055 0.4356021 0.4399584 0.4510979 0.5149004 0.6219822 #> [635,] 0.39363928 0.4841722 0.5142780 0.5335577 0.5623835 0.5888239 0.6495236 #> [636,] 0.63314368 1.0503016 1.1153360 1.1235266 1.1364532 1.1380188 1.1802990 #> [637,] 0.85546966 0.8595941 0.8765175 0.8949732 0.9058662 0.9230566 0.9535782 #> [638,] 0.54449025 1.2893829 1.4274326 1.4313215 1.4664327 1.6344595 1.6742548 #> [639,] 0.46645854 0.4802830 0.6528180 0.6667336 0.6717098 0.6732536 0.6761374 #> [640,] 0.35965794 0.4701404 0.5471553 0.5762095 0.6405376 0.6763833 0.6825840 #> [641,] 0.43598666 0.4381048 0.5115222 0.5120130 0.5410413 0.5505425 0.5846763 #> [642,] 0.25334228 0.5324512 0.5390755 0.5392326 0.5592968 0.5691145 0.5746819 #> [643,] 0.36595529 0.3844797 0.4811879 0.5233490 0.5263663 0.5361204 0.5486290 #> [644,] 0.34235251 0.5245471 0.5290194 0.5560926 0.5857627 0.6764634 0.6833624 #> [645,] 0.36347243 0.4590754 0.6295294 0.6487658 0.6860259 0.7038720 0.7096475 #> [646,] 0.20395837 0.4657923 0.4935208 0.5361204 0.5476945 0.5932247 0.6263767 #> [647,] 0.29910942 0.4783190 0.5909218 0.6377302 0.6388986 0.7084974 0.7317710 #> [648,] 0.38519494 0.4323350 0.5596796 0.6020497 0.6978972 0.7114342 0.7876461 #> [649,] 0.35376145 0.4160175 0.4224186 0.4543662 0.4552867 0.4556376 0.4574192 #> [650,] 1.26516795 1.2810324 1.5369662 1.5829576 1.5865118 1.6985075 1.7013157 #> [651,] 0.30338965 0.3409042 0.3426225 0.3523410 0.3687144 0.4049237 0.4143892 #> [652,] 0.38772521 0.4232959 0.5335816 0.5549221 0.5569106 0.6105425 0.6243774 #> [653,] 0.37150479 0.4389962 0.4868420 0.4953717 0.5373714 0.5376232 0.5427501 #> [654,] 0.78346792 0.7997734 0.8752845 0.9425318 0.9635824 0.9930162 0.9941969 #> [655,] 0.49333622 0.4946115 0.5402954 0.5576428 0.6074047 0.7881233 0.8216602 #> [656,] 0.81634704 0.8325586 0.9138814 0.9159168 0.9335997 0.9660048 1.0039897 #> [657,] 0.30361897 0.5440199 0.5652880 0.6127630 0.6279280 0.6685404 0.7063750 #> [658,] 0.37644458 0.4764203 0.5026760 0.5916505 0.6111725 0.6610760 0.7162576 #> [659,] 0.46121647 0.4937272 0.6014050 0.6290653 0.6328639 0.7201901 0.7545655 #> [660,] 0.27017635 0.4135228 0.4148534 0.4937272 0.5395340 0.5418916 0.5552143 #> [661,] 0.58739582 0.6725229 0.7993370 0.9048243 0.9329313 0.9839407 1.0221971 #> [662,] 0.41394639 0.6016788 0.6157182 0.6422605 0.6474427 0.6831728 0.7126242 #> [663,] 0.18460255 0.2138112 0.3822591 0.3840070 0.3862574 0.4230495 0.4736896 #> [664,] 0.30072497 0.3464240 0.3802278 0.3995926 0.6015810 0.6372212 0.6519142 #> [665,] 0.30975111 0.3880177 0.4556376 0.5139233 0.5483299 0.5894451 0.6325165 #> [666,] 0.43594864 0.5407081 0.8323526 0.9285000 0.9896595 1.0405765 1.0770914 #> [667,] 0.34452809 0.3600881 0.3892187 0.4049237 0.4952720 0.5409081 0.5506858 #> [668,] 0.25073339 0.2655099 0.3688372 0.4002012 0.5335816 0.5430112 0.5562233 #> [669,] 0.55313581 0.8070900 0.8268404 0.9176893 0.9838827 1.0484415 1.0492853 #> [670,] 0.77684925 0.7780350 0.8705382 0.8738428 0.9277626 0.9402255 0.9558444 #> [671,] 0.62196198 0.6366517 0.6978972 0.8322545 0.8497819 0.9580972 1.0241518 #> [672,] 0.30084255 0.5388117 0.5648963 0.5803478 0.7518248 0.7807733 0.8681542 #> [673,] 0.43749453 0.5505227 0.5672890 0.5687865 0.5735866 0.5894259 0.5947715 #> [674,] 0.24863800 0.3318474 0.4301535 0.4310850 0.4422283 0.4810028 0.4870022 #> [675,] 0.53320894 0.6171614 0.6680559 0.6984509 0.7053176 0.7166298 0.7309727 #> [676,] 0.39983873 0.4405283 0.4797045 0.5156670 0.5388781 0.5728042 0.6942725 #> [677,] 0.35368533 0.4474790 0.4496334 0.4678426 0.6593369 0.7176423 0.7300486 #> [678,] 0.39190757 0.4899965 0.5306228 0.5583424 0.6397865 0.6539415 0.6601470 #> [679,] 0.42631331 0.4291071 0.5682878 0.6235444 0.6862337 0.7036078 0.7612428 #> [680,] 0.40020213 0.4387530 0.4914823 0.5162458 0.5411882 0.5538449 0.5839871 #> [681,] 0.27824019 0.3971149 0.4167784 0.4673479 0.4958828 0.5184400 0.5692543 #> [682,] 0.44486184 0.5100506 0.5699179 0.5792501 0.5905829 0.6962281 0.6983024 #> [683,] 0.63366877 0.7138283 0.8833182 0.9951903 0.9986345 1.0016824 1.0486325 #> [684,] 0.32908268 0.3829368 0.4572627 0.4617752 0.5499103 0.5675280 0.5688572 #> [685,] 0.47289305 0.4739998 0.6328005 0.6521120 0.6720328 0.6739434 0.7266951 #> [686,] 0.35509133 0.4265314 0.6051751 0.6168309 0.6865512 0.7016635 0.7183189 #> [687,] 0.71885913 0.8323526 0.9055023 0.9176893 0.9448010 1.1334821 1.1536165 #> [688,] 0.51403851 0.5219559 0.5413375 0.5480443 0.6355625 0.6555136 0.6644830 #> [689,] 0.61265766 0.6874574 0.7786590 0.8613076 0.9503610 0.9610233 1.0182848 #> [690,] 0.42653138 0.4625601 0.4763041 0.5893919 0.6858187 0.6941150 0.6977133 #> [691,] 0.29444451 0.3104717 0.4775865 0.5029744 0.5991155 0.6026409 0.6093745 #> [692,] 0.69054547 0.8296649 0.8948670 0.9504654 1.0171249 1.0282789 1.0300253 #> [693,] 0.51757671 0.5368974 0.7315526 0.7389885 0.8092806 0.8729183 0.8828692 #> [694,] 0.21674498 0.2507334 0.4196418 0.4596097 0.5467713 0.5569106 0.6194824 #> [695,] 0.69062254 0.8392936 1.1106780 1.1193411 1.1366575 1.1374524 1.1464533 #> [696,] 0.34682822 0.3859824 0.4531165 0.4946232 0.5408715 0.5927076 0.5948363 #> [697,] 0.95620290 1.1272844 1.1292652 1.3601725 1.4219230 1.4411477 1.4704535 #> [698,] 0.26343145 0.4435184 0.5219604 0.5413950 0.5726195 0.6162140 0.6336426 #> [699,] 0.42701073 0.5527083 0.8069478 0.8241123 0.8512284 0.8574372 0.8688199 #> [700,] 0.36336045 0.4141241 0.4178735 0.4315726 0.5211340 0.6684754 0.6770869 #> [701,] 0.54105950 0.9021926 0.9023072 1.1646467 1.1690400 1.1740738 1.2017255 #> [702,] 0.33332358 0.4941352 0.5491287 0.5514421 0.5823703 0.6171313 0.6328639 #> [703,] 0.31537054 0.4176534 0.6411925 0.6462147 0.7403294 0.7454633 0.7899675 #> [704,] 0.26328614 0.2638343 0.3096327 0.3402142 0.4377764 0.4409665 0.5062397 #> [705,] 0.38149111 0.3966306 0.4026726 0.4178758 0.4513943 0.4525542 0.5153017 #> [706,] 0.15472873 0.3533348 0.3699957 0.3862040 0.4205965 0.4325937 0.5418916 #> [707,] 0.43000173 0.5073444 0.5338096 0.5381579 0.6499022 0.6594966 0.6792359 #> [708,] 0.33323683 0.4416356 0.4746625 0.4969829 0.5978585 0.6048488 0.6156391 #> [709,] 0.60490980 0.6197508 0.6389791 0.6671744 0.6842797 0.8041659 0.8240498 #> [710,] 0.44123648 0.5963301 0.6770869 0.6782984 0.7436061 0.7591996 0.7596100 #> [711,] 0.36738405 0.4432428 0.4953801 0.5027575 0.5266475 0.5653288 0.5719470 #> [712,] 0.44109626 0.5182610 0.8114595 0.8182231 0.8704664 0.8718881 0.8750923 #> [713,] 0.35346968 0.7246401 0.7499065 0.7823791 0.8305809 0.9931664 1.0404170 #> [714,] 0.58893642 0.6124386 0.6788038 0.7691026 0.7834769 0.8118543 0.8310321 #> [715,] 0.66340973 0.8016984 0.8089124 0.8649101 0.8843676 0.9499100 1.0330265 #> [716,] 0.14605421 0.6347718 0.6725681 0.7590693 0.7616078 0.7722215 0.7821952 #> [717,] 0.25735799 0.3537615 0.3695420 0.3777877 0.4214002 0.4252863 0.4281232 #> [718,] 0.33022224 0.3441288 0.4096363 0.4386172 0.4585147 0.5031696 0.5193626 #> [719,] 0.65860686 0.8196058 0.8914782 0.9086368 0.9839407 1.0014516 1.0230460 #> [720,] 0.39509527 0.5139233 0.5447037 0.5524913 0.8080131 0.8155186 0.8215988 #> [721,] 0.55933129 0.6217602 0.6965583 0.7067615 0.7703424 0.8276266 0.8368484 #> [722,] 0.63580413 0.7688035 0.8106643 0.9246408 0.9380414 0.9439554 1.0680439 #> [723,] 0.46256011 0.4801519 0.5622388 0.6051751 0.6279492 0.6551946 0.6571811 #> [724,] 0.34717912 0.4045419 0.5436368 0.6388986 0.7033968 0.7442621 0.7580649 #> [725,] 0.51181402 0.5664642 0.6071722 0.6465218 0.6607136 0.6631087 0.6820446 #> [726,] 0.75122951 0.7833552 0.8497819 0.8599066 0.8806943 0.9128641 0.9215414 #> [727,] 0.22735807 0.5369339 0.5880864 0.6313239 0.6365637 0.6494028 0.6978221 #> [728,] 0.69858196 0.8308600 0.8988011 0.9483479 0.9529792 0.9557612 0.9866009 #> [729,] 0.58913260 0.5904511 1.0997222 1.2397709 1.3674834 1.3693199 1.3854303 #> [730,] 0.47359279 0.5291050 0.5563820 0.6234920 0.6501716 0.6651793 0.6910260 #> [731,] 0.38658483 0.4641697 0.4951976 0.5142720 0.5381997 0.5654464 0.5733830 #> [732,] 0.53774224 0.6493739 0.6512504 0.6671744 0.7118943 0.7749027 0.7782724 #> [733,] 0.40440349 0.4300163 0.5196985 0.5397259 0.6101514 0.6157228 0.6182368 #> [734,] 1.35351303 1.6109467 1.7051863 1.7236095 1.8262364 1.9428414 2.0175106 #> [735,] 0.29359887 0.4279511 0.4804884 0.5369971 0.5482631 0.5865848 0.5953025 #> [736,] 0.90613818 0.9500898 0.9713147 1.0095566 1.0338680 1.1879064 1.2013942 #> [737,] 0.52439153 0.6675391 0.8305809 1.0501612 1.0567316 1.1273738 1.1840653 #> [738,] 0.42791970 0.4785496 0.5145920 0.5260537 0.5268112 0.5434271 0.5488552 #> [739,] 0.77256093 0.8926279 1.0544813 1.1382764 1.1418979 1.1830457 1.2970655 #> [740,] 0.27824019 0.3109608 0.3987329 0.4258963 0.5017250 0.5105818 0.5888744 #> [741,] 0.27773200 0.8213555 0.8559930 0.9525178 0.9838940 1.0723668 1.1206739 #> [742,] 0.38767281 0.4026726 0.4205946 0.4471608 0.4802830 0.5507127 0.5815310 #> [743,] 0.32237498 0.3764880 0.4013733 0.4537154 0.4802813 0.4904619 0.5476945 #> [744,] 0.49446897 0.5258675 0.5579990 0.5600066 0.5672890 0.5699179 0.6562205 #> [745,] 0.35748401 0.5123131 0.5290194 0.5663951 0.5957944 0.6198647 0.6897391 #> [746,] 0.31719653 0.3848797 0.4561031 0.4979489 0.5333971 0.5371761 0.5391688 #> [747,] 0.67604518 0.9275340 1.0278988 1.0327197 1.2267464 1.2375629 1.3199692 #> [748,] 0.12222005 0.4177120 0.6268746 0.7180089 0.7371032 0.7431611 0.7436420 #> [749,] 0.74546332 0.7926868 0.8942326 1.0656954 1.1363119 1.1613837 1.1821319 #> [750,] 0.43000173 0.5052092 0.5965068 0.6683562 0.7105456 0.7366041 0.7704925 #> [751,] 0.28459575 0.3694457 0.5026201 0.6070519 0.6188489 0.6194824 0.6218011 #> [752,] 0.70730375 0.7993732 0.8869694 0.9236479 0.9618237 1.0278988 1.0328210 #> [753,] 0.45428253 0.5213248 0.5381579 0.5430112 0.6351318 0.6863909 0.6964509 #> [754,] 0.73790913 0.9146707 0.9268745 0.9441675 0.9728522 0.9886703 1.0041557 #> [755,] 0.51540272 0.5320156 0.5852049 0.6104892 0.6833624 0.6897391 0.6911030 #> [756,] 0.41347323 0.4387530 0.4678809 0.4871645 0.4934944 0.5402894 0.5618440 #> [757,] 1.17827006 1.2534981 1.2886819 1.3553739 1.3561492 1.4709502 1.4736376 #> [758,] 0.48695844 0.5510996 0.5864232 0.6654570 0.6918404 0.6931311 0.6985820 #> [759,] 1.60098152 1.6043613 1.6645287 1.8161045 1.8887888 1.9565765 2.0145514 #> [760,] 0.17672129 0.2947138 0.3361387 0.3529613 0.4579331 0.4654775 0.5653037 #> [761,] 0.27361090 0.3842518 0.3946160 0.4463409 0.4822301 0.4970682 0.5173598 #> [762,] 0.09831649 0.3687144 0.3738390 0.3752012 0.4383739 0.4483313 0.4989207 #> [763,] 0.40807386 0.6692890 0.7407087 0.7445498 0.7617625 0.7812317 0.8029511 #> [764,] 0.33323683 0.3636660 0.4090712 0.4678809 0.5384396 0.5770353 0.6342586 #> [765,] 0.74149780 0.7884421 0.8924413 0.8925216 1.0852243 1.1068269 1.1279884 #> [766,] 0.88475525 1.0307034 1.1031474 1.1288179 1.1767783 1.2611665 1.3072379 #> [767,] 0.39276221 0.4141241 0.4186988 0.5460700 0.5804832 0.5861869 0.5965068 #> [768,] 0.60683531 0.6239664 0.6329802 0.6571812 0.7014294 0.7681392 0.9043524 #> [769,] 0.25183425 0.3287616 0.4958141 0.5156670 0.6469373 0.7240607 0.7927622 #> [770,] 0.81951004 1.0033135 1.0122607 1.1505867 1.1603421 1.1781983 1.1982659 #> [771,] 0.63388207 0.7708441 0.8405305 0.8498749 0.9045846 0.9466005 0.9803991 #> [772,] 0.38596645 0.4342199 0.4684409 0.5602363 0.5714456 0.5805367 0.5833092 #> [773,] 0.63764715 0.7092790 0.8200161 0.8512293 0.8517123 0.9066578 0.9243237 #> [774,] 0.29062669 0.4554043 0.4762512 0.6821908 0.6890077 0.7307151 0.7315235 #> [775,] 0.27996485 0.5089294 0.5409551 0.5731555 0.6783771 0.7118041 0.7215748 #> [776,] 0.38532828 0.4681975 0.5026760 0.5540839 0.5630189 0.6028126 0.6175580 #> [777,] 0.51411964 0.5156462 0.5420390 0.5666462 0.6606336 0.6987629 0.7096344 #> [778,] 0.28914798 0.3341115 0.3905825 0.4007505 0.4423288 0.4925744 0.5092038 #> [779,] 0.44351835 0.5441918 0.5751142 0.5771078 0.5850060 0.6032333 0.6109984 #> [780,] 0.42911358 0.4658710 0.4704423 0.5636624 0.5749203 0.6282014 0.6493615 #> [781,] 0.58078479 0.6287389 0.6727315 0.7011662 0.7128726 0.7296091 0.7383797 #> [782,] 0.17515967 0.3148796 0.4622053 0.4935208 0.5181742 0.5225545 0.5405678 #> [783,] 0.34235251 0.4319502 0.4692709 0.4880859 0.5052213 0.5123131 0.5347047 #> [784,] 0.27949333 0.5545604 0.5978329 0.6031911 0.6126577 0.6343305 0.7437618 #> [785,] 0.24171039 0.3686001 0.4558091 0.5551246 0.6074524 0.6198224 0.6720896 #> [786,] 0.39297509 0.3943971 0.4756200 0.5476847 0.5500657 0.5557123 0.5801731 #> [787,] 0.62045966 0.6634097 0.6801610 0.7152110 0.7696425 0.8052953 0.8215516 #> [788,] 0.54426365 0.5638175 0.6749506 0.6987118 0.7195750 0.7425097 0.7472007 #> [789,] 0.30084255 0.5204844 0.5390357 0.6601272 0.6631301 0.7861197 0.7917998 #> [790,] 0.21863794 0.4566923 0.5100506 0.6264804 0.6478767 0.7233856 0.7629658 #> [791,] 0.69343238 0.7916039 0.8174900 0.8209361 0.8597213 0.8956150 0.9191062 #> [792,] 0.31575585 0.3376415 0.3694457 0.6310238 0.6630490 0.6687645 0.6753017 #> [793,] 0.33731955 0.3451244 0.4241536 0.4726576 0.4765648 0.4850090 0.5104808 #> [794,] 0.33330030 0.3430224 0.4944690 0.5286509 0.5507820 0.5691711 0.6740800 #> [795,] 0.48015193 0.4870973 0.5434333 0.5681859 0.5790625 0.6224556 0.6920199 #> [796,] 0.91545188 0.9851428 0.9985390 1.2401699 1.2706049 1.4116211 1.4267028 #> [797,] 0.26927678 0.3941537 0.4221518 0.4449027 0.4632372 0.4782392 0.5086648 #> [798,] 0.30577483 0.4371707 0.5345808 0.6105168 0.6122402 0.6865432 0.7719839 #> [799,] 0.85802249 0.9283156 1.2431804 1.2509933 1.2636073 1.2909028 1.3068810 #> [800,] 0.60499899 0.6353063 0.6588731 0.6686780 0.6783649 0.7031266 0.7059153 #> [801,] 0.35808541 0.3596801 0.4380816 0.4387298 0.4474902 0.4715928 0.4920686 #> [802,] 0.42497290 0.4498638 0.7653629 0.8186734 0.8834345 0.8955751 0.9027206 #> [803,] 0.36096082 0.3633604 0.4226290 0.5460700 0.5624287 0.6155368 0.6287389 #> [804,] 0.41459923 0.4496334 0.4880470 0.4927598 0.4971807 0.5330295 0.5530242 #> [805,] 0.87209495 1.2580143 1.5146902 1.5192367 1.6207223 1.7483121 1.7926297 #> [806,] 0.32580181 0.5388117 0.5390357 0.6096010 0.6983498 0.7022300 0.7152110 #> [807,] 0.22735807 0.3700770 0.4739122 0.4933392 0.6045138 0.6468782 0.7561484 #> [808,] 0.36954200 0.3791834 0.3862574 0.4063097 0.4711711 0.4919237 0.4926647 #> [809,] 0.31170307 0.6327033 0.7336474 0.9043976 0.9048609 0.9850208 1.0023837 #> [810,] 0.42322607 0.4259888 0.4446164 0.4449831 0.4667387 0.4983489 0.5171208 #> [811,] 0.47742160 0.7927973 0.8392936 0.9368811 0.9712860 1.0107862 1.0526832 #> [812,] 0.57426260 0.5857830 0.6128149 0.6252175 0.6313865 0.6448859 0.6608414 #> [813,] 0.40299783 0.5424989 0.6948786 0.7302712 0.8294974 0.9501195 0.9531711 #> [814,] 0.72727075 0.8829206 0.9873766 1.0244392 1.0398980 1.2170482 1.2480076 #> [815,] 0.24949429 0.4851378 0.4852129 0.5202777 0.6531028 0.7033036 0.7176815 #> [816,] 0.51507672 0.5471553 0.5615487 0.6850255 0.7931495 0.7975922 0.8424111 #> [817,] 0.15604009 0.4431694 0.5146468 0.5624673 0.5727703 0.6123558 0.6131775 #> [818,] 0.65828602 0.6739732 0.6864811 0.6890077 0.7181508 0.7231773 0.7530624 #> [819,] 0.51564803 0.5235680 0.5761168 0.7585791 0.8006608 0.8498749 0.9355411 #> [820,] 0.51459128 0.5371761 0.5935440 0.6053123 0.6092135 0.6686627 0.6725681 #> [821,] 0.33148026 0.3717019 0.4098502 0.5120130 0.5334669 0.5664642 0.6158515 #> [822,] 0.22038706 0.2836823 0.5179364 0.5479470 0.5576100 0.6203619 0.8928497 #> [823,] 0.65890004 0.6900357 0.7414978 0.8366602 0.9023072 0.9483216 0.9959242 #> [824,] 0.29471381 0.3487168 0.4474640 0.4799773 0.4854754 0.4999563 0.5302813 #> [825,] 0.20417561 0.4846515 0.5846763 0.5975842 0.6272176 0.6513768 0.6654570 #> [826,] 0.22475057 0.2403118 0.3006863 0.3547841 0.3638735 0.4968724 0.4979489 #> [827,] 0.33702873 0.8849706 1.0227250 1.2455886 1.2472189 1.2625984 1.2728276 #> [828,] 0.23535424 0.2888365 0.4209737 0.5078930 0.5609209 0.6032333 0.6234146 #> [829,] 0.43557756 0.5741917 0.5876252 0.6720861 0.6932422 0.7299574 0.8358283 #> [830,] 0.34242776 0.3594535 0.3943971 0.6445696 0.6479357 0.6531994 0.6720896 #> [831,] 0.42497290 0.4378084 0.6613781 0.6717098 0.7180839 0.8036945 0.8090444 #> [832,] 0.18842874 0.3712625 0.4171864 0.4988816 0.5338943 0.5859090 0.6002829 #> [833,] 0.59828158 0.6140907 0.6609668 0.6916844 0.7095298 0.7533940 0.7615608 #> [834,] 0.85086686 0.8693708 1.0402638 1.0913809 1.1162744 1.1580728 1.1882179 #> [835,] 0.39484804 0.5377422 0.5896853 0.5998148 0.6132736 0.7345074 0.7400159 #> [836,] 0.28200459 0.4838382 0.5056986 0.7097586 0.7118269 0.7154967 0.7260693 #> [837,] 0.28200459 0.4255819 0.5311183 0.5385190 0.5857583 0.6752513 0.7014631 #> [838,] 0.72854123 0.8213555 1.2479845 1.2509933 1.3578865 1.3883013 1.4704535 #> [839,] 0.35221305 0.4658086 0.4688457 0.4852129 0.5470235 0.5481457 0.5696647 #> [840,] 0.32580181 0.4869584 0.5029816 0.5929361 0.6505765 0.6601272 0.6815772 #> [841,] 0.24031182 0.3266515 0.3289196 0.3879428 0.4055814 0.4310850 0.4802058 #> [842,] 0.63184141 0.7825293 0.9278780 0.9812174 0.9830406 1.0397144 1.0555835 #> [843,] 0.40636897 0.5420390 0.5550702 0.5862135 0.5904569 0.6071488 0.6836963 #> [844,] 0.47831904 0.4992977 0.5258547 0.5944776 0.5963457 0.6599681 0.7640140 #> [845,] 0.46638959 0.5044446 0.5824304 0.6530868 0.6635628 0.6810039 0.7583725 #> [846,] 0.18634156 0.4660731 0.5016230 0.5377097 0.5390598 0.5907733 0.6081748 #> [847,] 0.29038507 0.3045802 0.3361387 0.3493174 0.3687756 0.3766028 0.4119493 #> [848,] 0.50444460 0.5294214 0.6075915 0.7424908 0.8023538 0.8194373 0.9051578 #> [849,] 0.18945147 0.2116450 0.2573580 0.3110705 0.3223047 0.3731118 0.3766028 #> [850,] 0.38970748 0.5717071 0.5865542 0.5878294 0.5908949 0.6282007 0.6367832 #> [851,] 0.24949429 0.4835535 0.4973154 0.5481457 0.6148331 0.7302801 0.7861184 #> [852,] 0.46124088 0.5084755 0.5156658 0.5596796 0.5802675 0.6023530 0.6047881 #> [853,] 0.66924590 0.7049388 0.8096001 0.8637338 0.8647272 0.8857966 0.9629770 #> [854,] 0.40949008 0.4903354 0.6040936 0.6654582 0.7892187 0.9190275 0.9911303 #> [855,] 0.45907545 0.5777555 0.5780089 0.7002335 0.7745468 0.8503036 0.8679628 #> [856,] 0.60555636 0.7423913 0.7591619 0.7960978 0.9138814 0.9284428 1.1086736 #> [857,] 0.54070810 0.5956861 0.7189500 0.7750984 0.7991863 0.8518376 0.8815974 #> [858,] 0.43061825 0.4657923 0.4811879 0.5268112 0.5396213 0.5876804 0.5909889 #> [859,] 0.47952646 0.5485678 0.5796519 0.7068683 0.7246722 0.7839269 0.8756713 #> [860,] 0.34512046 0.3936393 0.5426927 0.5617833 0.5775658 0.6252175 0.6699691 #> [861,] 0.33018724 0.6105168 0.6239664 0.6644961 0.6850255 0.7567525 0.7708239 #> [862,] 0.44522840 0.4481359 0.5284077 0.5530242 0.5652880 0.5863829 0.6606663 #> [863,] 0.44813593 0.4637061 0.4678426 0.4880470 0.5557236 0.6843397 0.7063750 #> [864,] 0.62529285 0.8191095 1.0646795 1.0720833 1.0783879 1.1276875 1.1329767 #> [865,] 0.41119252 0.4577456 0.5452479 0.6297758 0.6929260 0.7024502 0.7180998 #> [866,] 0.27912903 0.4651760 0.5081217 0.5602555 0.6379255 0.7991863 0.8322765 #> [867,] 1.15661048 1.3462438 1.4471441 1.5645124 1.5808967 1.6063300 1.6320500 #> [868,] 0.54139322 0.6773988 0.7105605 0.7149278 0.7211515 0.7299574 0.7337276 #> [869,] 0.31133296 0.4822301 0.5088305 0.5234874 0.5358143 0.5401556 0.5946605 #> [870,] 0.50344372 0.6795696 0.7893724 0.8130988 0.8172974 0.8690556 0.8829630 #> [871,] 0.24531337 0.2903851 0.2977648 0.3203283 0.3223047 0.3224021 0.3613120 #> [872,] 1.09268104 1.1382408 1.1923692 1.2465492 1.3481100 1.4001927 1.4189594 #> [873,] 0.37265397 0.4918564 0.4958828 0.5303708 0.5321874 0.5558120 0.5829550 #> [874,] 0.48520405 0.7279412 0.8074916 0.9682564 1.1254497 1.1566882 1.1824327 #> [875,] 0.26594121 0.5953002 0.5957431 0.6172237 0.6716399 0.6896890 0.6984653 #> [876,] 0.81867341 0.8726695 0.9058662 0.9245956 0.9318064 1.0447502 1.0583478 #> [877,] 0.66137812 0.6894816 0.8342098 0.8775902 0.9044680 0.9185322 0.9245897 #> [878,] 0.27957885 0.5147946 0.5424989 0.5528173 0.7625186 0.7667228 0.7693490 #> [879,] 0.12222005 0.3100312 0.6142398 0.6262270 0.6349211 0.6857133 0.7149717 #> [880,] 0.55831393 0.5605773 0.6047171 0.6481022 0.9314802 0.9439554 0.9520623 #> [881,] 0.49736419 0.5917555 0.6223325 0.6957458 0.7322672 0.7716297 0.7745400 #> [882,] 0.40360403 0.5054819 0.5453375 0.5558413 0.6633979 0.7233839 0.7326161 #> [883,] 0.37547110 0.4268221 0.5448074 0.5452479 0.6043597 0.6078415 0.6495392 #> [884,] 0.29963193 0.3668414 0.3792134 0.3928074 0.4425622 0.4718084 0.4798583 #> [885,] 0.64379029 0.7468705 0.8206195 0.8262232 0.8541983 0.8743703 0.9315260 #> [886,] 0.30096399 0.3892187 0.4546167 0.4548463 0.5983123 0.6060355 0.6328005 #> [887,] 0.46703537 0.4767417 0.5145920 0.5321874 0.5712901 0.5777134 0.5909889 #> [888,] 0.51564803 0.6582860 0.7708441 0.7788900 0.8357769 0.8599289 0.8652686 #> [889,] 0.53892468 1.0486325 1.1644871 1.1717316 1.2046336 1.2400584 1.2450309 #> [890,] 0.32282065 0.3540405 0.4008547 0.4574192 0.4597129 0.4749997 0.4819657 #> [891,] 0.47742160 0.7234641 0.8592318 1.0554974 1.0620862 1.1109065 1.1366575 #> [892,] 0.34197322 0.3716588 0.4356021 0.5047202 0.5166129 0.5323596 0.5344388 #> [893,] 0.66622344 0.6909275 0.8534496 0.8539695 0.9764982 0.9863673 0.9984615 #> [894,] 0.87209495 1.0808862 1.3254115 1.3404295 1.4891477 1.5381128 1.5951257 #> [895,] 0.38741583 0.4344419 0.4488586 0.4533024 0.4672448 0.4848637 0.4975694 #> [896,] 1.03245278 1.1925389 1.2063668 1.2165550 1.2345554 1.2772759 1.3177358 #> [897,] 0.33702873 0.9317456 1.1587109 1.2196853 1.2244513 1.2387571 1.2509943 #> [898,] 0.86087471 0.8775427 1.0586136 1.2316273 1.2486592 1.3250910 1.3474000 #> [899,] 0.24495826 0.3665608 0.3796179 0.4394007 0.4699607 0.4970682 0.4973593 #> [900,] 0.53693393 0.5509196 0.5758092 0.6077715 0.6372212 0.6468782 0.6495503 #> [901,] 0.60751210 0.6347718 0.6750756 0.8400073 0.8639459 0.8938192 0.8987570 #> [902,] 0.36475602 0.4359686 0.4681975 0.4957492 0.5509920 0.6065373 0.6610760 #> [903,] 0.71925597 0.7238057 1.4242708 1.4808959 1.6356863 1.7811930 1.8049915 #> [904,] 0.33217500 0.6075172 0.7308439 0.7573067 0.7745370 0.8331341 0.8373647 #> [905,] 1.08159736 1.0956074 1.1598090 1.2341912 1.2433489 1.2582241 1.2708966 #> [906,] 0.29083287 0.3991506 0.5263341 0.5313566 0.5715888 0.5801731 0.5866417 #> [907,] 0.31849457 0.3375275 0.4090368 0.4105118 0.4221518 0.4514099 0.5643394 #> [908,] 0.30096399 0.5509830 0.5541190 0.6393489 0.6521120 0.6928918 0.7301782 #> [909,] 0.27773200 0.7285412 0.9501224 0.9562029 0.9740056 1.0353836 1.1208545 #> [910,] 0.35965794 0.5150767 0.5336573 0.6122402 0.6531913 0.6848237 0.6920594 #> [911,] 0.32876163 0.4724317 0.5728042 0.5959871 0.6017204 0.7424823 0.7535873 #> [912,] 0.20612255 0.2839768 0.3995926 0.4600954 0.4980985 0.5371465 0.5509196 #> [913,] 0.23307038 0.3248874 0.4146456 0.4839062 0.4901973 0.5347778 0.5501868 #> [914,] 0.23993803 0.5254370 0.6040564 0.6101514 0.6314974 0.6320861 0.6400916 #> [915,] 0.69003570 0.8739171 0.8805306 0.8924413 1.0279754 1.0449738 1.1265626 #> [916,] 0.40415075 0.4847007 0.6844604 0.7136063 0.7381164 0.7421462 0.7458784 #> [917,] 0.18051066 0.3621718 0.6046618 0.6203619 0.6725229 0.6859977 0.7025122 #> [918,] 0.39323414 0.4813874 0.5092038 0.5139742 0.5467713 0.5562233 0.5636624 #> [919,] 0.33470661 0.4189063 0.4808973 0.5373714 0.5594251 0.6065373 0.6195995 #> [920,] 0.70069148 0.8073962 0.8207193 0.8294974 0.8352566 0.8714288 0.9656345 #> [921,] 0.34743241 0.3678879 0.4061678 0.4076304 0.4277711 0.4468730 0.5275568 #> [922,] 0.34309068 0.4307515 0.5409551 0.5519855 0.5602452 0.6127630 0.7134870 #> [923,] 0.50898016 0.5401785 0.6252212 0.6393644 0.6450369 0.6670446 0.6746208 #> [924,] 0.55281735 0.5803478 0.5986835 0.7302712 0.7642574 0.7886514 0.7917998 #> [925,] 0.46323720 0.4711711 0.5015095 0.5227071 0.5300852 0.6057881 0.6281770 #> [926,] 0.37300207 0.5505227 0.5666462 0.5839332 0.6252212 0.6690963 0.6836963 #> [927,] 0.40119359 0.4975055 0.5589544 0.6055564 0.6531913 0.6584113 0.7604565 #> [928,] 0.48183801 0.4841700 0.6325459 0.7198504 0.7318016 0.7725609 0.7955375 #> [929,] 0.61025299 0.7080839 0.8064294 0.8291200 0.8344719 0.8517123 0.8693708 #> [930,] 0.35368533 0.4116207 0.4613834 0.5041523 0.5568096 0.5683251 0.6135434 #> [931,] 0.31605501 0.4617185 0.5401785 0.5809788 0.5947715 0.6274038 0.6835825 #> [932,] 0.36375067 0.3966306 0.4539625 0.4848637 0.5092787 0.5233490 0.5512903 #> [933,] 0.66159483 0.6653664 0.7231773 0.7462066 0.7828199 0.7834769 0.8125567 #> [934,] 0.72467222 0.8892709 0.8942326 0.9342293 1.0019782 1.0190099 1.0817150 #> [935,] 0.17515967 0.2077467 0.4378483 0.4446930 0.4635054 0.4856521 0.4920686 #> [936,] 0.63714896 0.6514300 0.8096001 0.8222615 0.8256855 0.8450948 0.8645342 #> [937,] 0.56154873 0.7014294 0.7433678 0.8551267 1.0064208 1.0101535 1.0104143 #> [938,] 0.50994700 0.5270976 0.5541190 0.5983123 0.6625547 0.6720328 0.6987629 #> [939,] 1.13746210 1.1554039 1.1709452 1.2012700 1.3270357 1.3400856 1.4142670 #> [940,] 0.28743920 0.5563820 0.5856901 0.5996128 0.6547929 0.6700591 0.7373932 #> [941,] 0.67425040 0.6905455 0.7710334 0.9557612 0.9796315 1.0197606 1.1882176 #> [942,] 0.37150479 0.4798121 0.4808973 0.5166129 0.5182849 0.5829721 0.5888863 #> [943,] 0.28688126 0.4258963 0.4281232 0.4670354 0.4883674 0.5060454 0.5184400 #> [944,] 0.77827903 0.7819818 0.8017048 0.8162861 0.8181842 0.8197966 0.8473799 #> [945,] 0.82162781 1.0372120 1.1002160 1.1334750 1.2121846 1.2270154 1.2946210 #> [946,] 0.37025403 0.4167265 0.5974787 0.6093745 0.6213680 0.6260663 0.6454604 #> [947,] 0.25146438 0.3927622 0.4704423 0.5118140 0.5141644 0.5981667 0.6030569 #> [948,] 0.78545275 1.4532707 1.5313353 1.5427409 1.6086276 1.7504291 1.7885411 #> [949,] 0.97271309 0.9821576 1.0197606 1.0300253 1.0468094 1.0555918 1.2018503 #> [950,] 0.54356099 0.6906225 0.7515560 0.8163552 0.8268404 1.0246197 1.0835439 #> [951,] 0.54343326 0.5726713 0.6079400 0.6362282 0.6411489 0.6882258 0.7099575 #> [952,] 0.46844091 0.5961116 0.6552774 0.6681492 0.6705820 0.6705824 0.6773838 #> [953,] 0.43749453 0.5324512 0.5839332 0.6552774 0.6928143 0.7366193 0.7452899 #> [954,] 0.43154461 0.4399540 0.4870235 0.5126823 0.5397259 0.5775316 0.5931087 #> [955,] 1.02021825 1.1881607 1.1982660 1.2262335 1.2503180 1.2585351 1.2634868 #> [956,] 0.36567019 0.4878582 0.4992977 0.5924440 0.6344151 0.6589955 0.7024502 #> [957,] 0.54300594 0.6047171 0.6385052 0.8357751 0.8688679 0.8910615 0.9210669 #> [958,] 0.26227964 0.5029744 0.5263975 0.5506858 0.5875720 0.5980812 0.6151065 #> [959,] 0.28368227 0.3698291 0.6985545 0.7824819 0.8126316 0.8950014 0.9177645 #> [960,] 0.49736419 0.5183471 0.6872977 0.7351015 0.7555208 0.7721703 0.8106311 #> [961,] 0.39870005 0.4068494 0.4138580 0.4387298 0.4493096 0.4648980 0.4751239 #> [962,] 0.32908268 0.4148534 0.4663373 0.4952917 0.5148448 0.5823703 0.5933718 #> [963,] 0.20957563 0.5594251 0.6219183 0.6602812 0.7078393 0.7360118 0.7703560 #> [964,] 0.29793315 0.3097676 0.3946160 0.4495239 0.4973593 0.5219604 0.5401556 #> [965,] 0.40847446 0.4752569 0.5648596 0.5927076 0.6392017 0.6626822 0.6950428 #> [966,] 0.24032959 0.3109608 0.3498404 0.3971149 0.4755460 0.5466231 0.5519391 #> [967,] 0.83996762 0.8429282 0.8430529 0.8506495 0.8805370 0.9030809 0.9297668 #> [968,] 0.75906932 0.7979691 0.8549952 0.8591549 0.8739171 0.9021926 0.9483216 #> [969,] 0.72181504 0.7701056 0.8012313 0.8261697 0.8506495 0.9436734 0.9631076 #> [970,] 0.45928747 0.6874574 0.7040529 0.7155653 0.7596100 0.7642973 0.8288619 #> [971,] 0.48355347 0.5202777 0.5696647 0.6209378 0.8020739 0.8293285 0.8423353 #> [972,] 0.52454708 0.5688572 0.5876460 0.5896110 0.6384115 0.6425840 0.6848581 #> [973,] 0.23167235 0.4270107 0.5509920 0.6065801 0.6111725 0.6277603 0.6409072 #> [974,] 0.47085961 0.6588610 0.6596290 0.6879263 0.7065132 0.7088534 0.7781482 #> [975,] 0.24984831 0.4459982 0.7060311 0.8481894 0.8836024 0.9899705 0.9995362 #> [976,] 0.48003483 0.5257607 0.5606464 0.6075915 0.6931258 0.7270252 0.7278883 #> [977,] 0.24909537 0.6965583 0.8719151 0.8899695 0.8925672 0.9524394 0.9771197 #> [978,] 0.47499973 0.5926426 0.6021089 0.6590841 0.6911297 0.7376685 0.7610334 #> [979,] 0.27414771 0.3533348 0.3829368 0.4096830 0.4135228 0.4415721 0.4663373 #> [980,] 0.55848306 0.5871392 0.6017204 0.6948917 0.7138283 0.7796337 0.8115816 #> [981,] 0.31027863 0.3318503 0.4300163 0.4788421 0.4899965 0.5254370 0.5960820 #> [982,] 0.09831649 0.3426225 0.3733893 0.3833929 0.3998862 0.4147042 0.5065422 #> [983,] 0.34242776 0.4128428 0.5373668 0.5707755 0.5742626 0.6556826 0.6773988 #> [984,] 0.69637689 0.9597156 0.9830406 1.0227250 1.0404170 1.0897849 1.1604625 #> [985,] 0.21587317 0.5035108 0.5587194 0.6152778 0.6528830 0.6680267 0.6734077 #> [986,] 0.69958193 0.8580225 0.8754899 0.9156674 0.9566091 0.9670229 0.9763510 #> [987,] 0.11608719 0.3006863 0.3250055 0.3289196 0.4259055 0.4377923 0.4870022 #> [988,] 0.36347243 0.4651067 0.5653288 0.5780089 0.5809020 0.6451965 0.6682168 #> [989,] 0.41765340 0.4401888 0.6357935 0.6813370 0.7506527 0.7766402 0.7819681 #> [990,] 0.79370421 0.8864215 0.8938192 0.9058586 1.0523116 1.1082587 1.1725493 #> [991,] 0.54612053 0.6078415 0.6344151 0.6866979 0.6894896 0.7161804 0.7335557 #> [992,] 0.34642398 0.5090600 0.5749598 0.5798745 0.6493739 0.6495503 0.6656699 #> [993,] 0.58381883 0.6305519 0.6584598 0.7033968 0.7270252 0.7323232 0.7672032 #> [994,] 0.37058080 0.4416356 0.4471095 0.4517481 0.4961319 0.5121898 0.5384396 #> [995,] 0.29083287 0.4656943 0.4740713 0.5162538 0.5446352 0.5476847 0.5501051 #> [996,] 0.71182690 0.8015365 0.8357751 0.9246408 0.9344621 1.0045098 1.0209222 #> [997,] 0.49119061 0.8981545 1.0922723 1.0947023 1.1007515 1.1540649 1.1801942 #> [998,] 0.52910495 0.5856901 0.6052306 0.6426209 0.6872977 0.7322672 0.7591426 #> [999,] 0.40440349 0.4788421 0.5086148 0.5929361 0.6096010 0.6314974 0.6784615 #> [1000,] 0.95906486 0.9779007 0.9891183 0.9967242 1.0371942 1.0655567 1.1123559 #> [,8] [,9] [,10] #> [1,] 1.1277723 1.1816461 1.1990002 #> [2,] 1.2216679 1.2352019 1.2608456 #> [3,] 0.6189972 0.6357971 0.6409345 #> [4,] 0.6563752 0.6593882 0.6812084 #> [5,] 0.6451487 0.6575858 0.6584598 #> [6,] 0.6787011 0.7148674 0.7266524 #> [7,] 0.6318225 0.6663029 0.6779481 #> [8,] 0.7533940 0.7807431 0.7992978 #> [9,] 1.0873969 1.0961940 1.1964236 #> [10,] 0.5822407 0.5883231 0.5917679 #> [11,] 0.6083513 0.6091392 0.6192702 #> [12,] 0.7107465 0.7228639 0.7490380 #> [13,] 0.7498239 0.7559947 0.7591031 #> [14,] 0.8340085 0.8789927 0.8985272 #> [15,] 0.8731405 0.8742264 0.9712348 #> [16,] 1.1797889 1.1845552 1.2039234 #> [17,] 1.0033135 1.0354425 1.0443826 #> [18,] 0.9330399 0.9576537 0.9757561 #> [19,] 0.8899695 0.9015966 0.9232722 #> [20,] 0.5672174 0.5912759 0.6029007 #> [21,] 0.6501106 0.6602688 0.6823808 #> [22,] 0.7445577 0.7545314 0.7877731 #> [23,] 0.7894505 0.8406640 0.8509438 #> [24,] 0.9551027 0.9654747 1.0030288 #> [25,] 1.0730757 1.0733707 1.0883246 #> [26,] 0.7280532 0.7556115 0.7615608 #> [27,] 0.7040471 0.7180793 0.7558149 #> [28,] 1.1124655 1.1726914 1.2164293 #> [29,] 0.7843067 0.7848351 0.8214750 #> [30,] 0.5764293 0.6088673 0.6187806 #> [31,] 1.1153360 1.1448984 1.1843941 #> [32,] 0.7166056 0.7172308 0.7263161 #> [33,] 0.7250852 0.7477290 0.7512148 #> [34,] 1.3742790 1.4484635 1.4505247 #> [35,] 1.2946210 1.2946745 1.3529488 #> [36,] 0.9501224 0.9525178 0.9781398 #> [37,] 0.5908949 0.6201243 0.6238170 #> [38,] 0.9860467 1.0113623 1.0792367 #> [39,] 1.3823259 1.4800667 1.4810435 #> [40,] 1.0405158 1.0413266 1.0484415 #> [41,] 0.4522604 0.4552867 0.4983990 #> [42,] 1.0056548 1.0083335 1.0214761 #> [43,] 0.5572177 0.5785664 0.6033729 #> [44,] 0.5246025 0.5514685 0.5659403 #> [45,] 0.5520987 0.5618288 0.5626486 #> [46,] 0.9168416 0.9505614 0.9540991 #> [47,] 0.9491927 0.9748667 1.0007042 #> [48,] 0.7468701 0.7627787 0.7740428 #> [49,] 0.8202840 0.8203177 0.8369207 #> [50,] 0.7371032 0.7728698 0.7842856 #> [51,] 0.8279323 0.8695652 0.8741601 #> [52,] 0.6908772 0.7031286 0.7333217 #> [53,] 0.6937080 0.7369896 0.7374129 #> [54,] 0.5789364 0.5883231 0.5903267 #> [55,] 0.8279323 0.8611921 0.8671132 #> [56,] 1.2105582 1.3609712 1.4209254 #> [57,] 0.6228348 0.6295301 0.6422188 #> [58,] 0.6590690 0.6728996 0.6740843 #> [59,] 0.6575858 0.6959634 0.7385297 #> [60,] 0.9164001 0.9352856 0.9474459 #> [61,] 0.6986781 0.7031266 0.7040471 #> [62,] 0.5624673 0.5656930 0.5680078 #> [63,] 0.6356963 0.6507316 0.6567545 #> [64,] 0.6932837 0.7119049 0.7338189 #> [65,] 0.6698017 0.6710056 0.6977133 #> [66,] 1.0568114 1.0584024 1.0628807 #> [67,] 0.4925018 0.5051723 0.5192192 #> [68,] 0.8972152 0.9264264 1.0154784 #> [69,] 0.7329504 0.7436061 0.7528723 #> [70,] 1.3642570 1.4449321 1.4667406 #> [71,] 0.8690166 0.9903226 1.0250856 #> [72,] 0.5239980 0.5479711 0.5800733 #> [73,] 0.5115099 0.5237082 0.5635509 #> [74,] 0.9470885 0.9779822 1.0129587 #> [75,] 0.5990171 0.6098017 0.6144892 #> [76,] 0.5953002 0.6128149 0.6135434 #> [77,] 0.5607080 0.6527787 0.6877265 #> [78,] 0.5357776 0.5617833 0.5903267 #> [79,] 0.7854694 0.8062140 0.8121136 #> [80,] 0.9891183 0.9941969 0.9993140 #> [81,] 0.5521847 0.5686514 0.5835483 #> [82,] 1.2409497 1.2821540 1.3338516 #> [83,] 1.3557836 1.3559887 1.3816546 #> [84,] 1.1189773 1.1394716 1.2007114 #> [85,] 0.6464739 0.6472974 0.6520667 #> [86,] 0.8236488 0.8243628 0.8298920 #> [87,] 0.7494334 0.7898359 0.8762251 #> [88,] 0.7067036 0.7517859 0.7558175 #> [89,] 0.6324472 0.6384841 0.6393787 #> [90,] 0.5765781 0.6253036 0.6467292 #> [91,] 0.6217369 0.6738939 0.6883190 #> [92,] 0.9049822 0.9530349 1.0050902 #> [93,] 0.5503597 0.5701566 0.5904144 #> [94,] 1.1755510 1.2042861 1.2316526 #> [95,] 0.9724045 0.9812174 0.9884258 #> [96,] 0.9592701 0.9728378 1.0266564 #> [97,] 0.5480974 0.5812286 0.6118587 #> [98,] 0.5246272 0.5265085 0.5475677 #> [99,] 0.8461130 0.8477330 0.8717503 #> [100,] 0.7628803 0.7824819 0.7993370 #> [101,] 1.7962282 1.8124344 1.8204522 #> [102,] 0.4446164 0.4626767 0.4765493 #> [103,] 1.6171545 1.6189861 1.6381932 #> [104,] 0.7240607 0.7821695 0.8235358 #> [105,] 0.5712901 0.5985136 0.6067016 #> [106,] 0.8766191 0.8782562 0.8872883 #> [107,] 1.3221504 1.3258106 1.3595579 #> [108,] 1.2497242 1.2797769 1.2847999 #> [109,] 0.6307679 0.6548610 0.6825140 #> [110,] 0.5077163 0.5152366 0.5201796 #> [111,] 0.5897513 0.6775438 0.7249468 #> [112,] 0.8716588 0.9054262 0.9855289 #> [113,] 0.8448758 0.8714976 0.9142557 #> [114,] 0.7288252 0.8052105 0.8151615 #> [115,] 0.6718406 0.6722277 0.6948328 #> [116,] 0.8939690 0.9073273 0.9459113 #> [117,] 1.1866277 1.2049009 1.2131600 #> [118,] 0.9652541 0.9756351 0.9942206 #> [119,] 0.5998649 0.6091943 0.6123165 #> [120,] 0.6872129 0.7097586 0.7301151 #> [121,] 0.7390389 0.7604702 0.7630935 #> [122,] 0.4938862 0.4983489 0.5466885 #> [123,] 0.9209192 0.9381286 0.9578028 #> [124,] 1.2576783 1.3457942 1.3543061 #> [125,] 0.8000203 0.8167809 0.8301323 #> [126,] 0.8340372 0.8514435 0.8515045 #> [127,] 0.5103176 0.5475948 0.5882427 #> [128,] 0.5827694 0.5828899 0.5951991 #> [129,] 0.6340862 0.6482273 0.6507316 #> [130,] 0.7738277 0.8869694 0.8988091 #> [131,] 0.6822141 0.6939493 0.6992247 #> [132,] 0.6574931 0.7422702 0.7461058 #> [133,] 0.9973896 1.0184821 1.0237132 #> [134,] 1.1486590 1.1613028 1.1837634 #> [135,] 0.6238170 0.6395035 0.6520195 #> [136,] 1.0973044 1.1709569 1.2332039 #> [137,] 0.6108532 0.6429611 0.6630001 #> [138,] 0.5521847 0.5843494 0.6012981 #> [139,] 0.7308439 0.7434359 0.7581942 #> [140,] 1.3928817 1.4068608 1.4439310 #> [141,] 0.6609668 0.6850597 0.7299244 #> [142,] 0.5915916 0.6050565 0.6077914 #> [143,] 0.5823034 0.5947904 0.6019534 #> [144,] 0.5553071 0.5645280 0.6446181 #> [145,] 0.6940500 0.7282091 0.7310340 #> [146,] 0.5495635 0.5514685 0.5826591 #> [147,] 0.7611104 0.8040045 0.8043343 #> [148,] 0.6495392 0.6776919 0.6854624 #> [149,] 0.7480650 0.8191044 0.8823637 #> [150,] 0.5411869 0.5502896 0.5583409 #> [151,] 0.7180998 0.7336379 0.7341086 #> [152,] 1.1912636 1.2095629 1.2352239 #> [153,] 0.5758092 0.6116671 0.6165203 #> [154,] 0.7524017 0.7819264 0.7953267 #> [155,] 0.6733962 0.6810368 0.6899465 #> [156,] 0.6521463 0.6840823 0.7100448 #> [157,] 1.3620943 1.3688559 1.3708892 #> [158,] 0.5600066 0.6737385 0.6776919 #> [159,] 0.5901161 0.5951493 0.6357927 #> [160,] 0.8658120 0.8981545 0.9256894 #> [161,] 0.7964822 0.7980622 0.8108124 #> [162,] 0.5224324 0.5541192 0.5592968 #> [163,] 1.1540350 1.1687959 1.1734590 #> [164,] 1.0675792 1.1022426 1.1054776 #> [165,] 1.1229310 1.1440999 1.1454136 #> [166,] 0.8308600 0.8457055 0.8557414 #> [167,] 0.5969554 0.5991155 0.6028723 #> [168,] 1.3838868 1.3842514 1.3956961 #> [169,] 0.8712192 0.9154238 0.9272356 #> [170,] 0.7390389 0.7535997 0.7970432 #> [171,] 0.6023530 0.6238119 0.6355553 #> [172,] 0.7766402 0.7777657 0.7899675 #> [173,] 0.5313566 0.5754902 0.5769897 #> [174,] 0.5431463 0.5839871 0.6055436 #> [175,] 0.9994798 1.0213772 1.0685104 #> [176,] 0.8997026 0.9091246 0.9232706 #> [177,] 0.7352546 0.7384616 0.7423913 #> [178,] 0.6937898 0.6945931 0.7143432 #> [179,] 1.0741032 1.0937999 1.0980578 #> [180,] 0.5416264 0.5501798 0.5502562 #> [181,] 0.9843336 1.0336066 1.0590858 #> [182,] 0.6091943 0.6363898 0.6373057 #> [183,] 0.7003897 0.7075189 0.7136140 #> [184,] 0.9884055 1.0074228 1.0174219 #> [185,] 0.8916240 0.8993724 0.9282640 #> [186,] 0.6490195 0.6628685 0.6681492 #> [187,] 1.2156100 1.2544759 1.2724148 #> [188,] 0.7837702 0.8218098 0.8225141 #> [189,] 0.7619641 0.8015365 0.8407601 #> [190,] 1.0560959 1.1273738 1.1434620 #> [191,] 0.8261643 0.8521884 0.9099727 #> [192,] 1.1566105 1.1855532 1.1886661 #> [193,] 0.9440280 0.9661984 0.9921918 #> [194,] 0.8645134 0.8670063 0.9061379 #> [195,] 0.5188817 0.5238636 0.5719127 #> [196,] 0.8252084 0.8782798 0.8829206 #> [197,] 0.6393644 0.7216211 0.7395698 #> [198,] 0.9058586 0.9194339 0.9787950 #> [199,] 0.9836911 1.0023737 1.0260539 #> [200,] 0.8919486 0.9284428 0.9431832 #> [201,] 0.5982558 0.6336967 0.6477662 #> [202,] 0.8238807 0.8295729 0.8532570 #> [203,] 0.3975459 0.4535849 0.4674355 #> [204,] 0.8965174 0.8982999 0.8993036 #> [205,] 0.5746819 0.5860547 0.5897513 #> [206,] 0.7902742 0.8046735 0.8447648 #> [207,] 0.6917758 0.7283993 0.7666928 #> [208,] 0.5911413 0.5921035 0.5962793 #> [209,] 0.8112749 0.8424908 0.8805676 #> [210,] 0.5499103 0.5552143 0.5724341 #> [211,] 0.7664883 0.7766420 0.8158615 #> [212,] 0.7401987 0.7662884 0.7797529 #> [213,] 0.6575542 0.6580014 0.6768431 #> [214,] 1.2166165 1.2253165 1.2261671 #> [215,] 0.6186600 0.6671991 0.6732922 #> [216,] 0.7398366 0.7403294 0.7425097 #> [217,] 0.5989056 0.6023753 0.6490482 #> [218,] 0.5521809 0.5585820 0.6238076 #> [219,] 0.5268149 0.5624969 0.5636207 #> [220,] 1.1284222 1.1794205 1.1963549 #> [221,] 0.6613447 0.6957399 0.7197768 #> [222,] 0.7376104 0.7534260 0.7571064 #> [223,] 1.1254497 1.1310411 1.1359482 #> [224,] 0.5717071 0.5998148 0.6373057 #> [225,] 0.7136713 0.7231501 0.7289041 #> [226,] 0.6541174 0.7063086 0.7362559 #> [227,] 0.7185699 0.7271226 0.7680247 #> [228,] 1.2394236 1.2587553 1.3192218 #> [229,] 0.9253467 0.9658028 0.9916496 #> [230,] 0.9420330 0.9539283 0.9658795 #> [231,] 0.8630664 0.8804020 0.8901090 #> [232,] 0.4850090 0.5162538 0.5226281 #> [233,] 0.6355172 0.6559131 0.6857133 #> [234,] 0.8232688 0.8362491 0.8615428 #> [235,] 0.5794818 0.5823488 0.5878504 #> [236,] 0.8986594 0.9156674 0.9355886 #> [237,] 0.6070168 0.6146959 0.6385568 #> [238,] 0.7800092 0.7919962 0.8261697 #> [239,] 0.6446008 0.6517779 0.6528180 #> [240,] 0.5903636 0.6649502 0.6650598 #> [241,] 1.5181657 1.5191653 1.6806529 #> [242,] 1.1709452 1.2108411 1.2212352 #> [243,] 0.9794785 1.0148312 1.0588020 #> [244,] 0.8228033 0.9406653 0.9412112 #> [245,] 0.7355959 0.7427091 0.8169518 #> [246,] 0.6605395 0.7010432 0.7101375 #> [247,] 0.5724341 0.5965084 0.6013598 #> [248,] 0.6581380 0.6864811 0.7007856 #> [249,] 0.7468705 0.7483195 0.7560462 #> [250,] 0.4474640 0.4590751 0.4597129 #> [251,] 0.8388607 0.9121455 0.9395272 #> [252,] 0.6237672 0.6324957 0.6378056 #> [253,] 1.1115367 1.1695811 1.2465492 #> [254,] 0.8507018 0.8815974 0.9280725 #> [255,] 0.5880765 0.6234843 0.6359189 #> [256,] 0.7837060 0.7840352 0.8021130 #> [257,] 0.7432229 0.7474043 0.7781482 #> [258,] 0.8157246 0.8163470 0.8207238 #> [259,] 1.0071526 1.0514318 1.0816304 #> [260,] 0.7723188 0.8073125 0.8125567 #> [261,] 0.7733659 0.7765029 0.7781799 #> [262,] 0.8045442 0.8443363 0.8512293 #> [263,] 0.6691929 0.6805346 0.7250852 #> [264,] 0.5409081 0.5479479 0.5533832 #> [265,] 0.6240639 0.6376946 0.6383766 #> [266,] 0.6140820 0.6224795 0.6236054 #> [267,] 0.7967967 0.8110177 0.8293811 #> [268,] 0.5538449 0.5592717 0.5692131 #> [269,] 1.3894109 1.3983734 1.4073322 #> [270,] 0.6532931 0.6535509 0.6603980 #> [271,] 0.6954934 0.8071532 0.8544645 #> [272,] 0.7997930 0.8001390 0.8008286 #> [273,] 0.7323858 0.7352067 0.7820764 #> [274,] 0.5457597 0.5458660 0.5603155 #> [275,] 0.6593882 0.6684101 0.6983498 #> [276,] 1.5282590 1.5432321 1.5518024 #> [277,] 0.7831023 0.8821525 0.8906814 #> [278,] 0.5610538 0.5769897 0.6043345 #> [279,] 0.8457055 0.8582436 0.9107608 #> [280,] 0.5585820 0.5978585 0.6342586 #> [281,] 0.5753703 0.6876870 0.7038946 #> [282,] 0.7290462 0.8648736 0.8648975 #> [283,] 0.6778300 0.6789222 0.7318722 #> [284,] 0.9411683 0.9855289 1.0050375 #> [285,] 0.7043195 0.7432437 0.7502960 #> [286,] 1.3651561 1.3892015 1.3943802 #> [287,] 1.2771909 1.2880192 1.3741400 #> [288,] 1.5075022 1.5866471 1.6241959 #> [289,] 1.1508820 1.2054700 1.2060725 #> [290,] 0.8510004 0.8512387 0.8942729 #> [291,] 0.6606663 0.6876140 0.7072640 #> [292,] 0.6391744 0.6506912 0.6697097 #> [293,] 0.8054279 0.8070900 0.8415829 #> [294,] 0.6004037 0.6064343 0.6525837 #> [295,] 0.5946605 0.6109984 0.6217659 #> [296,] 0.5564219 0.5682669 0.5785664 #> [297,] 0.5121810 0.5405678 0.5407712 #> [298,] 0.8108245 0.8151554 0.8167585 #> [299,] 0.4839062 0.4925744 0.5149030 #> [300,] 0.7401987 0.7627323 0.7641001 #> [301,] 0.5626776 0.6190075 0.6316696 #> [302,] 0.6929260 0.7291426 0.7316196 #> [303,] 1.9051118 1.9100229 1.9334947 #> [304,] 0.5817847 0.5997890 0.6207748 #> [305,] 0.5720249 0.5837491 0.5898708 #> [306,] 0.5965174 0.6005517 0.6137788 #> [307,] 1.0034240 1.0314873 1.0320467 #> [308,] 0.8265704 0.8445410 0.8636050 #> [309,] 0.8943133 0.9098371 0.9781398 #> [310,] 0.6571992 0.6586063 0.6722925 #> [311,] 0.8053866 0.8088441 0.8141323 #> [312,] 0.9904840 1.0488026 1.0567316 #> [313,] 0.6881557 0.7582715 0.7591426 #> [314,] 0.5568581 0.5827694 0.6204041 #> [315,] 0.6862337 0.7001198 0.7561484 #> [316,] 0.8492696 0.8711605 0.8899702 #> [317,] 0.7655117 0.7722215 0.7753759 #> [318,] 0.6363898 0.6404232 0.6509156 #> [319,] 0.6670985 0.6672640 0.6962625 #> [320,] 0.8233239 0.8242852 0.8484660 #> [321,] 0.6495988 0.6508068 0.6542615 #> [322,] 1.0180832 1.0250659 1.0266634 #> [323,] 0.6837625 0.6928143 0.6936870 #> [324,] 0.7342534 0.7540028 0.7679974 #> [325,] 0.6308780 0.6407043 0.6508068 #> [326,] 0.9350917 0.9420448 0.9533092 #> [327,] 0.6695906 0.6926156 0.7533284 #> [328,] 1.0668279 1.0853428 1.2035339 #> [329,] 0.8267822 0.8279529 0.8500662 #> [330,] 0.6328065 0.6525837 0.6550373 #> [331,] 0.6137788 0.6349687 0.6698618 #> [332,] 0.7303193 0.7322579 0.7341715 #> [333,] 0.8000697 0.8059705 0.8269345 #> [334,] 0.5379070 0.5381997 0.5402068 #> [335,] 0.4572627 0.4642517 0.4692709 #> [336,] 1.1938257 1.2105804 1.2646468 #> [337,] 0.8833182 0.8913455 0.9097912 #> [338,] 0.8483925 0.8485289 0.8739361 #> [339,] 0.9268745 0.9301437 0.9494924 #> [340,] 0.5926610 0.6433268 0.6688616 #> [341,] 0.6328652 0.6697167 0.6775438 #> [342,] 0.6189582 0.6336426 0.6530868 #> [343,] 0.9829755 0.9838940 1.0288515 #> [344,] 0.5624027 0.5672823 0.5751450 #> [345,] 0.5785100 0.5880912 0.6032128 #> [346,] 0.7105605 0.7254459 0.7285652 #> [347,] 0.6198076 0.6297758 0.6598254 #> [348,] 0.8729183 0.8793803 0.9190275 #> [349,] 0.5209098 0.5302664 0.5624052 #> [350,] 0.8863619 0.9420280 0.9459780 #> [351,] 0.8880786 0.9228884 0.9664693 #> [352,] 1.3276280 1.3284202 1.3549191 #> [353,] 1.0438588 1.0442103 1.0701039 #> [354,] 0.7461058 0.7690134 0.7864186 #> [355,] 0.7151664 0.7450731 0.7689244 #> [356,] 0.5878504 0.5908810 0.6090971 #> [357,] 0.6847809 0.8065705 0.8067604 #> [358,] 1.0136404 1.0154122 1.0282789 #> [359,] 1.0531656 1.0646987 1.1138957 #> [360,] 1.0397803 1.0461697 1.0537380 #> [361,] 0.4926647 0.5154537 0.5237127 #> [362,] 0.9955914 1.0392933 1.0474345 #> [363,] 0.8972945 0.8996744 0.9027318 #> [364,] 0.9159105 0.9435594 0.9511380 #> [365,] 0.7430718 0.7604702 0.7980560 #> [366,] 0.5674692 0.5727376 0.6627259 #> [367,] 1.0199524 1.0204548 1.0471335 #> [368,] 0.5353742 0.5394586 0.5463735 #> [369,] 0.8494756 0.8770611 0.8840677 #> [370,] 0.9045793 0.9141658 0.9328294 #> [371,] 0.8484185 0.8639459 0.9237728 #> [372,] 0.7616295 0.7788900 0.8071625 #> [373,] 0.5097656 0.5103176 0.5450248 #> [374,] 0.6674362 0.6946062 0.8056381 #> [375,] 0.7198688 0.7292259 0.7533332 #> [376,] 0.7404467 0.7665664 0.7672032 #> [377,] 0.8388834 0.8573182 0.8683734 #> [378,] 0.7261603 0.7888915 0.8065603 #> [379,] 1.1768365 1.2174035 1.2453905 #> [380,] 1.2598092 1.3246854 1.3305341 #> [381,] 0.8631331 0.8777154 0.8879424 #> [382,] 0.8118543 0.8243492 0.8374920 #> [383,] 0.7757223 0.7796205 0.8203172 #> [384,] 0.8415829 0.8425422 0.8427918 #> [385,] 0.6887134 0.6924916 0.6935413 #> [386,] 0.6301571 0.6443765 0.6467538 #> [387,] 0.6254812 0.6277603 0.6707994 #> [388,] 0.9504140 0.9787950 0.9788155 #> [389,] 0.7573177 0.7574468 0.7613383 #> [390,] 0.6926296 0.7004906 0.7667403 #> [391,] 1.1676943 1.2179838 1.2325915 #> [392,] 0.8188247 0.8241835 0.8339341 #> [393,] 0.8329418 0.8386294 0.8460252 #> [394,] 0.7096210 0.7292739 0.7584514 #> [395,] 1.4799383 1.5064008 1.5235157 #> [396,] 1.1022143 1.1110085 1.1184343 #> [397,] 0.7088534 0.7127603 0.7214720 #> [398,] 0.7625693 0.7998142 0.8176899 #> [399,] 0.7830381 0.8207924 0.8252420 #> [400,] 1.2736809 1.3238208 1.3259648 #> [401,] 0.7904562 0.8157185 0.8233814 #> [402,] 0.9497575 0.9665054 0.9835361 #> [403,] 0.9377258 1.0256769 1.0350779 #> [404,] 0.6182421 0.6186630 0.6250949 #> [405,] 1.3379349 1.3868488 1.4096641 #> [406,] 0.6810388 0.7326497 0.7436179 #> [407,] 0.8000203 0.8126316 0.8261912 #> [408,] 0.6668383 0.6772600 0.7011845 #> [409,] 0.5904144 0.6055436 0.6144892 #> [410,] 0.6182368 0.6483972 0.6787011 #> [411,] 0.7589513 0.7703605 0.7758075 #> [412,] 0.7763655 0.7924663 0.8046182 #> [413,] 0.7299407 0.7307987 0.7472007 #> [414,] 1.2705682 1.3039116 1.3173147 #> [415,] 1.3978243 1.4099353 1.4368023 #> [416,] 0.7055470 0.7556795 0.7571401 #> [417,] 0.8557944 0.9016194 0.9258674 #> [418,] 0.6795702 0.6936138 0.7203690 #> [419,] 0.5507127 0.5616786 0.5664522 #> [420,] 0.5946564 0.6271226 0.6589521 #> [421,] 1.2660488 1.2935256 1.3210175 #> [422,] 1.0777358 1.1552969 1.2204435 #> [423,] 0.5313030 0.5338943 0.5407712 #> [424,] 0.9779007 1.0178157 1.0591399 #> [425,] 0.8950220 0.9454731 0.9560139 #> [426,] 1.0097005 1.0485973 1.1099787 #> [427,] 0.6957399 0.7095744 0.7805514 #> [428,] 1.3067943 1.3501308 1.3673162 #> [429,] 0.8278941 0.8936291 0.9025688 #> [430,] 0.7547116 0.7996885 0.8211158 #> [431,] 0.7154578 0.7296091 0.7660701 #> [432,] 0.7421226 0.7538467 0.8155186 #> [433,] 0.5806314 0.5915916 0.6548079 #> [434,] 0.6349687 0.6365637 0.6500784 #> [435,] 0.8473934 0.8574420 0.9175749 #> [436,] 0.6155368 0.6198042 0.6409345 #> [437,] 0.4699607 0.5248791 0.5486645 #> [438,] 1.0221971 1.0283199 1.0576939 #> [439,] 1.4077905 1.4078477 1.4427959 #> [440,] 0.4409665 0.4626767 0.4938862 #> [441,] 0.9048603 0.9087658 0.9091246 #> [442,] 1.1669433 1.1732456 1.1790484 #> [443,] 0.5563468 0.5780151 0.5950256 #> [444,] 0.9618237 0.9843987 1.0340714 #> [445,] 1.6385503 1.6417239 1.6554494 #> [446,] 0.7878675 0.7962567 0.7979834 #> [447,] 2.0097095 2.0525425 2.0587405 #> [448,] 1.1924949 1.2178915 1.2492241 #> [449,] 0.5403095 0.5631900 0.5737795 #> [450,] 1.6583900 1.7281786 1.7370262 #> [451,] 0.6314860 0.6396309 0.6518001 #> [452,] 1.3654383 1.3918685 1.4056749 #> [453,] 0.6978221 0.7011060 0.7079638 #> [454,] 1.0720183 1.1228689 1.1266475 #> [455,] 0.5374261 0.5787567 0.5882427 #> [456,] 0.5917679 0.6269757 0.6475247 #> [457,] 1.0103346 1.0583478 1.0754355 #> [458,] 0.7366074 0.7696810 0.8113648 #> [459,] 0.5130750 0.5307737 0.5408275 #> [460,] 0.5350491 0.5520000 0.5657748 #> [461,] 0.8358193 0.8409993 0.8453590 #> [462,] 1.3948239 1.4562316 1.4921572 #> [463,] 0.5976927 0.6159258 0.6270187 #> [464,] 0.7016635 0.7099575 0.7111202 #> [465,] 0.9276422 0.9977400 1.0455170 #> [466,] 1.1230235 1.1773242 1.1921464 #> [467,] 0.5719470 0.6084708 0.6584985 #> [468,] 0.5323596 0.5371743 0.6082670 #> [469,] 0.6305895 0.6475206 0.6699390 #> [470,] 0.3822591 0.4214002 0.4794289 #> [471,] 0.6965180 0.7162136 0.7932884 #> [472,] 1.2037354 1.2412579 1.2781834 #> [473,] 1.1528347 1.1575442 1.1691273 #> [474,] 0.6404232 0.6628817 0.6633204 #> [475,] 1.3680536 1.3806925 1.4502315 #> [476,] 0.7013151 0.7044657 0.7068683 #> [477,] 0.7424823 0.8617070 0.8710939 #> [478,] 0.6833299 0.7013946 0.7057739 #> [479,] 0.5670320 0.5874698 0.6266317 #> [480,] 0.5411971 0.5717583 0.5764336 #> [481,] 0.8700075 0.8761098 0.8879985 #> [482,] 0.6665749 0.6856635 0.6897393 #> [483,] 0.7095349 0.7123296 0.7411007 #> [484,] 1.2568529 1.3388399 1.3498595 #> [485,] 0.6030901 0.6106986 0.6362282 #> [486,] 1.3270357 1.3446570 1.3753723 #> [487,] 0.6944722 0.6986781 0.7058085 #> [488,] 0.7442717 0.7716297 0.8258617 #> [489,] 0.8303598 0.8338579 0.8443118 #> [490,] 1.5111890 1.5445189 1.5564387 #> [491,] 1.4287770 1.4338115 1.4534610 #> [492,] 0.6028583 0.6085813 0.6364568 #> [493,] 1.2444039 1.2724466 1.2782419 #> [494,] 0.9186961 0.9288731 0.9339130 #> [495,] 0.5148448 0.5639078 0.6331913 #> [496,] 0.9704159 0.9718047 0.9869484 #> [497,] 0.5541192 0.5699598 0.5739698 #> [498,] 1.2294258 1.2405399 1.2632070 #> [499,] 0.5804832 0.6020497 0.6649769 #> [500,] 0.6395914 0.6407729 0.6647554 #> [501,] 1.2427244 1.2891885 1.3755788 #> [502,] 0.5479711 0.5639078 0.5675280 #> [503,] 1.5388021 1.6372228 1.6697375 #> [504,] 0.7529697 0.7724098 0.7991795 #> [505,] 1.5642651 1.5753041 1.5896113 #> [506,] 0.9122109 0.9163889 0.9183538 #> [507,] 0.9718225 0.9727489 0.9946086 #> [508,] 0.7348817 0.7541810 0.7824822 #> [509,] 0.8368484 0.8441140 0.8712227 #> [510,] 0.7831023 0.8224706 0.8269345 #> [511,] 1.2972052 1.2995585 1.3610271 #> [512,] 0.7433959 0.7674406 0.8095525 #> [513,] 0.4820203 0.4914494 0.5091375 #> [514,] 0.5673960 0.6052295 0.6122315 #> [515,] 0.4559979 0.4896020 0.4909026 #> [516,] 0.4765648 0.5061745 0.5290541 #> [517,] 0.5166929 0.5225545 0.5312450 #> [518,] 0.7012764 0.7025821 0.7181508 #> [519,] 0.6690963 0.6722143 0.7096344 #> [520,] 0.5259640 0.5403095 0.5471192 #> [521,] 0.7425617 0.7567662 0.7822832 #> [522,] 0.5248791 0.5320507 0.5325069 #> [523,] 0.9687019 0.9696667 1.0605354 #> [524,] 0.5592717 0.5775316 0.6013149 #> [525,] 0.7134244 0.7180454 0.7746114 #> [526,] 0.6894268 0.6917122 0.7388943 #> [527,] 1.5320355 1.5359497 1.5481314 #> [528,] 0.6239519 0.6647352 0.6698996 #> [529,] 0.8253294 0.8426068 0.8512405 #> [530,] 0.9175670 0.9586984 0.9696410 #> [531,] 0.5643394 0.6282007 0.6373988 #> [532,] 0.7024892 0.7180089 0.7402136 #> [533,] 0.9412042 0.9443775 0.9501321 #> [534,] 0.6331913 0.6349211 0.6712309 #> [535,] 0.4731234 0.5026104 0.5306004 #> [536,] 0.5622579 0.5691711 0.5894259 #> [537,] 1.3938269 1.4201260 1.4538800 #> [538,] 2.1562114 2.1712210 2.1791550 #> [539,] 0.5998649 0.6303169 0.6841752 #> [540,] 1.2021338 1.2431104 1.2434704 #> [541,] 0.8252084 0.8266875 0.8453320 #> [542,] 1.1119488 1.1136882 1.1416424 #> [543,] 0.7668405 0.7668689 0.7780350 #> [544,] 1.2257260 1.2418458 1.3271819 #> [545,] 0.9903867 1.0414513 1.0425481 #> [546,] 0.7894660 0.7979414 0.8440595 #> [547,] 1.4748032 1.5288034 1.6200355 #> [548,] 0.8342098 0.8576379 0.8589755 #> [549,] 0.8357769 0.8472275 0.8531945 #> [550,] 0.8899300 0.9027397 0.9051167 #> [551,] 0.7655653 0.7879630 0.8017048 #> [552,] 0.6278000 0.6282079 0.6320861 #> [553,] 0.7442717 0.7569825 0.7942681 #> [554,] 0.6768602 0.6894267 0.7283503 #> [555,] 0.4914494 0.5066574 0.5105818 #> [556,] 0.6791070 0.6866979 0.7237962 #> [557,] 0.7090876 0.7166298 0.7232070 #> [558,] 0.6349871 0.6720933 0.6736528 #> [559,] 0.8838416 0.8964731 0.9543999 #> [560,] 0.7819956 0.8213843 0.8433024 #> [561,] 0.8987376 0.9224726 0.9437928 #> [562,] 0.5383853 0.5501868 0.5729807 #> [563,] 1.6153224 1.6803922 1.7070157 #> [564,] 0.9931664 1.0353998 1.0435389 #> [565,] 1.1575457 1.2387429 1.2800923 #> [566,] 1.7779091 1.7815292 1.8143845 #> [567,] 0.8014217 0.8219595 0.8323921 #> [568,] 0.6558496 0.6684397 0.6691929 #> [569,] 0.5976967 0.6356963 0.6428138 #> [570,] 0.8780852 0.8807945 0.8864215 #> [571,] 1.5694029 1.6226836 1.6559844 #> [572,] 1.8867064 1.8946499 1.8951040 #> [573,] 0.7954502 0.8146452 0.8159977 #> [574,] 0.5106542 0.5251450 0.5402068 #> [575,] 0.9253467 0.9494333 0.9523070 #> [576,] 0.5224575 0.5246025 0.5282306 #> [577,] 0.8574534 0.8758765 0.9156594 #> [578,] 0.6972932 0.7002176 0.7072410 #> [579,] 0.7263034 0.7667228 0.7703424 #> [580,] 1.1658215 1.2123779 1.2285181 #> [581,] 0.9509007 0.9569566 0.9901120 #> [582,] 0.6984653 0.7123291 0.7231011 #> [583,] 0.6165135 0.6549497 0.6617059 #> [584,] 0.6559082 0.6567545 0.6708039 #> [585,] 1.2372009 1.2431104 1.3414206 #> [586,] 0.8837551 0.8870166 0.8986792 #> [587,] 1.1300497 1.1378241 1.1534381 #> [588,] 0.9341930 0.9854642 0.9955070 #> [589,] 0.7817602 0.7950334 0.8359405 #> [590,] 0.8507018 0.8532815 0.8706052 #> [591,] 0.6070573 0.6123936 0.6133793 #> [592,] 0.6506767 0.6857493 0.6886219 #> [593,] 1.1799360 1.2041982 1.2203544 #> [594,] 0.9431895 1.0075567 1.0447846 #> [595,] 1.2599315 1.2657402 1.2736123 #> [596,] 0.7112562 0.7154578 0.7300252 #> [597,] 0.9327264 0.9697106 0.9757561 #> [598,] 0.5226653 0.5347778 0.6004037 #> [599,] 0.7221886 0.7933000 0.7960978 #> [600,] 0.5261021 0.5263663 0.5302476 #> [601,] 0.7163910 0.7248237 0.7679930 #> [602,] 0.7257560 0.7548418 0.7964255 #> [603,] 0.8378586 0.8414736 0.8446556 #> [604,] 0.9077201 0.9923359 1.0106972 #> [605,] 0.6994948 0.7045753 0.7119669 #> [606,] 0.5645280 0.5647955 0.5910950 #> [607,] 1.4204439 1.4740305 1.4971383 #> [608,] 1.5498688 1.6069093 1.7384498 #> [609,] 0.9435022 0.9635824 0.9656355 #> [610,] 0.5616786 0.5708692 0.6117274 #> [611,] 1.2172076 1.2886264 1.3355435 #> [612,] 0.5113881 0.5568581 0.5676932 #> [613,] 1.1811073 1.2101745 1.2565012 #> [614,] 0.8288751 0.8812426 0.9096677 #> [615,] 0.5957393 0.6231754 0.6320876 #> [616,] 0.6050565 0.6071182 0.6480847 #> [617,] 0.7711614 0.7980622 0.8012313 #> [618,] 0.5614452 0.6487696 0.6725718 #> [619,] 0.5817847 0.6002829 0.6276241 #> [620,] 0.8364844 0.8494256 0.8512405 #> [621,] 0.7005655 0.7149314 0.7576389 #> [622,] 0.9959242 1.0071526 1.0788781 #> [623,] 1.0235715 1.0478058 1.0535272 #> [624,] 0.7768493 0.7793272 0.8205517 #> [625,] 1.1115848 1.1248822 1.1475012 #> [626,] 0.5346923 0.5503597 0.5520000 #> [627,] 0.6558496 0.6659052 0.7765029 #> [628,] 1.0708415 1.1446938 1.2266482 #> [629,] 0.6829279 0.7051407 0.7155856 #> [630,] 0.7140941 0.7149278 0.7381929 #> [631,] 0.9039229 0.9152130 0.9270557 #> [632,] 0.5377479 0.5674692 0.6032168 #> [633,] 0.6707994 0.6877516 0.7379386 #> [634,] 0.6339956 0.6650379 0.6674789 #> [635,] 0.6655739 0.6722275 0.7188234 #> [636,] 1.2039409 1.2538158 1.3004335 #> [637,] 0.9567400 0.9805564 1.0181206 #> [638,] 1.7680531 1.7727131 1.8282199 #> [639,] 0.7118041 0.7131544 0.7225123 #> [640,] 0.7567525 0.7756439 0.7817602 #> [641,] 0.5957012 0.6084708 0.6490912 #> [642,] 0.6071488 0.6660500 0.6773838 #> [643,] 0.5670320 0.5772271 0.6008826 #> [644,] 0.6868794 0.6977937 0.7150017 #> [645,] 0.7461080 0.7604850 0.7808844 #> [646,] 0.6266361 0.6314365 0.6341940 #> [647,] 0.7385297 0.7404467 0.7519838 #> [648,] 0.8369020 0.8398624 0.8476542 #> [649,] 0.4740971 0.4755505 0.5060454 #> [650,] 1.7220624 1.7519612 1.7616198 #> [651,] 0.4828149 0.5392326 0.5533832 #> [652,] 0.6740843 0.6871881 0.7243692 #> [653,] 0.5535769 0.5727801 0.5891104 #> [654,] 1.0375054 1.0590858 1.0765221 #> [655,] 0.8332197 0.8422317 0.8527906 #> [656,] 1.0206574 1.0517808 1.0649530 #> [657,] 0.7398995 0.8453590 0.8595941 #> [658,] 0.8261406 0.8307582 0.8373647 #> [659,] 0.7806629 0.7927973 0.7979414 #> [660,] 0.5940258 0.6013404 0.6245413 #> [661,] 1.0329767 1.0371129 1.0452618 #> [662,] 0.7318016 0.7900017 0.7961905 #> [663,] 0.4782290 0.4993475 0.5221172 #> [664,] 0.6718837 0.6856635 0.7067344 #> [665,] 0.6518001 0.6655306 0.6815493 #> [666,] 1.1155896 1.1403134 1.1439860 #> [667,] 0.5810267 0.5871655 0.6011670 #> [668,] 0.7238108 0.7438533 0.7550931 #> [669,] 1.0504722 1.0550247 1.0723984 #> [670,] 0.9731496 0.9735136 0.9877512 #> [671,] 1.0529481 1.0845242 1.1297322 #> [672,] 0.8843676 0.8887155 0.9268679 #> [673,] 0.6216648 0.6479959 0.6746208 #> [674,] 0.5251450 0.5284033 0.5484489 #> [675,] 0.7403855 0.7486979 0.7514374 #> [676,] 0.6969275 0.7127841 0.7689411 #> [677,] 0.7326497 0.7373563 0.7384600 #> [678,] 0.6684066 0.6699390 0.6867790 #> [679,] 0.7660027 0.7884803 0.7889959 #> [680,] 0.6324472 0.6806701 0.6925097 #> [681,] 0.6062568 0.6252554 0.6853151 #> [682,] 0.7331707 0.7955418 0.8179501 #> [683,] 1.0878071 1.1123559 1.1526806 #> [684,] 0.5940258 0.6229879 0.6271196 #> [685,] 0.8574649 0.8976148 0.9387797 #> [686,] 0.7263605 0.7401842 0.7438612 #> [687,] 1.3116721 1.3278361 1.3876646 #> [688,] 0.6817233 0.6931311 0.7211141 #> [689,] 1.0200061 1.0265487 1.0418415 #> [690,] 0.7148179 0.7231723 0.7243780 #> [691,] 0.6315268 0.6431302 0.6574496 #> [692,] 1.0381903 1.0520745 1.0933699 #> [693,] 0.9025787 0.9038915 0.9198327 #> [694,] 0.6214294 0.6753017 0.7139887 #> [695,] 1.1763199 1.1795062 1.2006747 #> [696,] 0.6034387 0.6123165 0.6987542 #> [697,] 1.4813297 1.6121141 1.7260634 #> [698,] 0.6417307 0.6438171 0.6462949 #> [699,] 0.8838049 0.9152433 0.9183538 #> [700,] 0.7079312 0.7122314 0.7785440 #> [701,] 1.2274216 1.3371795 1.3521911 #> [702,] 0.6383516 0.6398683 0.6559131 #> [703,] 0.8225748 0.8324250 0.8455299 #> [704,] 0.5142809 0.5876460 0.6074908 #> [705,] 0.5373668 0.5540923 0.5664522 #> [706,] 0.5765510 0.5853877 0.6001879 #> [707,] 0.6937080 0.7006146 0.7421462 #> [708,] 0.6238756 0.6882597 0.6976726 #> [709,] 0.8374410 0.9248079 0.9406653 #> [710,] 0.7652198 0.8181279 0.8206264 #> [711,] 0.5948992 0.5976967 0.6158515 #> [712,] 0.9381280 0.9597892 0.9664203 #> [713,] 1.0555835 1.0615033 1.0912192 #> [714,] 0.8848121 0.9112138 0.9500410 #> [715,] 1.0850121 1.0871142 1.0940913 #> [716,] 0.7843407 0.8227103 0.8617159 #> [717,] 0.4696288 0.4699835 0.4738325 #> [718,] 0.5210939 0.5921035 0.6556833 #> [719,] 1.0706496 1.0765221 1.1663353 #> [720,] 0.8406039 0.8808923 0.8958698 #> [721,] 0.8506859 0.8674290 0.8749529 #> [722,] 1.1576949 1.1636063 1.1886189 #> [723,] 0.7265791 0.7418144 0.7951605 #> [724,] 0.7665664 0.8252081 0.8266375 #> [725,] 0.6844479 0.6874830 0.7128726 #> [726,] 0.9559077 1.1242090 1.1646467 #> [727,] 0.7351015 0.7832581 0.8303848 #> [728,] 0.9923359 1.0102435 1.0381903 #> [729,] 1.4331600 1.4771536 1.4932030 #> [730,] 0.6936138 0.7290462 0.7386993 #> [731,] 0.5865848 0.5928012 0.5935847 #> [732,] 0.8202470 0.8342600 0.8562082 #> [733,] 0.6299515 0.7325734 0.7354251 #> [734,] 2.0558621 2.0864969 2.1005553 #> [735,] 0.6088727 0.6541174 0.6590748 #> [736,] 1.2058457 1.2621229 1.2702962 #> [737,] 1.1890757 1.2943075 1.2991210 #> [738,] 0.5636207 0.5829550 0.6010974 #> [739,] 1.2999900 1.3123376 1.3535130 #> [740,] 0.5961094 0.6115983 0.6147504 #> [741,] 1.1292652 1.1476807 1.1993746 #> [742,] 0.6389123 0.6490562 0.6605395 #> [743,] 0.5694909 0.6220328 0.6521282 #> [744,] 0.6801958 0.6913184 0.7516634 #> [745,] 0.7373071 0.7444701 0.7774382 #> [746,] 0.5555416 0.5618440 0.5831496 #> [747,] 1.3390375 1.3843793 1.4050764 #> [748,] 0.7693490 0.7886514 0.8007839 #> [749,] 1.2160325 1.2310418 1.2612687 #> [750,] 0.7772398 0.7835136 0.7853064 #> [751,] 0.6469686 0.6871881 0.6893706 #> [752,] 1.0467176 1.0487921 1.0535688 #> [753,] 0.7115954 0.7243692 0.7353212 #> [754,] 1.0067329 1.1439401 1.1663841 #> [755,] 0.7445498 0.8205199 0.8258803 #> [756,] 0.5692131 0.5878257 0.6048488 #> [757,] 1.5059130 1.5141408 1.5370495 #> [758,] 0.7022300 0.7040191 0.7266179 #> [759,] 2.0418621 2.1325963 2.2567825 #> [760,] 0.5918048 0.5966892 0.6095008 #> [761,] 0.5413950 0.5472648 0.5751142 #> [762,] 0.5384481 0.5705695 0.5868046 #> [763,] 0.8146452 0.8153426 0.8235265 #> [764,] 0.6850527 0.6924807 0.7120703 #> [765,] 1.1885719 1.2018503 1.2018910 #> [766,] 1.3260409 1.3341675 1.3347847 #> [767,] 0.6248858 0.6631087 0.6670681 #> [768,] 0.9237803 0.9821653 1.0128317 #> [769,] 0.8028055 0.8115816 0.8469829 #> [770,] 1.3735787 1.4586779 1.4587643 #> [771,] 1.0487313 1.1115367 1.1278697 #> [772,] 0.6377302 0.7069487 0.7291969 #> [773,] 0.9324725 0.9695837 1.0005072 #> [774,] 0.7340137 0.7686250 0.7910865 #> [775,] 0.7437403 0.7456979 0.7878617 #> [776,] 0.6409072 0.6948549 0.7067249 #> [777,] 0.7257133 0.7526207 0.8145793 #> [778,] 0.5142809 0.5245879 0.5252494 #> [779,] 0.6242367 0.6256287 0.6328125 #> [780,] 0.6837660 0.6874830 0.7228639 #> [781,] 0.8125125 0.8322545 0.8503036 #> [782,] 0.5561102 0.5578403 0.5763036 #> [783,] 0.5896110 0.5958654 0.6104892 #> [784,] 0.7866859 0.7935557 0.7964822 #> [785,] 0.6916844 0.7073426 0.7114112 #> [786,] 0.6074524 0.6283285 0.6525452 #> [787,] 0.8485117 0.8661158 0.8681542 #> [788,] 0.7669146 0.7704553 0.7730321 #> [789,] 0.7936552 0.8056731 0.8282903 #> [790,] 0.7768582 0.7846403 0.7865361 #> [791,] 0.9218025 0.9309645 0.9834923 #> [792,] 0.7310340 0.7395698 0.7413927 #> [793,] 0.5268015 0.5320507 0.5456090 #> [794,] 0.6962281 0.7052326 0.7597433 #> [795,] 0.7230854 0.7567452 0.7898359 #> [796,] 1.4279747 1.4767257 1.4891995 #> [797,] 0.5369971 0.6397847 0.6429611 #> [798,] 0.7756439 0.7789369 0.7825231 #> [799,] 1.3097582 1.4824465 1.5489940 #> [800,] 0.7162136 0.7266179 0.7296064 #> [801,] 0.4948228 0.5717583 0.5764634 #> [802,] 0.9185322 0.9380741 0.9420223 #> [803,] 0.6465218 0.6621150 0.6682168 #> [804,] 0.6172237 0.6478300 0.6539777 #> [805,] 1.8593783 1.8708800 1.9053267 #> [806,] 0.7604921 0.7642574 0.7730720 #> [807,] 0.7662884 0.7721703 0.7889959 #> [808,] 0.5115099 0.5396213 0.5483203 #> [809,] 1.0282668 1.0382065 1.0560935 #> [810,] 0.5475677 0.5502896 0.5973181 #> [811,] 1.1429708 1.1613028 1.2231753 #> [812,] 0.6638050 0.6828485 0.6834797 #> [813,] 0.9778346 1.0510234 1.1124590 #> [814,] 1.2542723 1.3124297 1.3212982 #> [815,] 0.7370478 0.7417071 0.7623365 #> [816,] 0.8667483 0.8711702 0.8878093 #> [817,] 0.6253059 0.6553342 0.6873358 #> [818,] 0.8282982 0.8362473 0.8699008 #> [819,] 0.9744774 0.9890063 1.0132698 #> [820,] 0.6783649 0.7362620 0.7444487 #> [821,] 0.6621150 0.6987482 0.7166870 #> [822,] 0.9290550 1.0580104 1.0725154 #> [823,] 1.0468094 1.0712767 1.0978278 #> [824,] 0.6427528 0.6436058 0.6524632 #> [825,] 0.6817233 0.7111853 0.7402580 #> [826,] 0.5284033 0.5541392 0.5699656 #> [827,] 1.3117818 1.3270609 1.3359374 #> [828,] 0.6628685 0.6713565 0.6810039 #> [829,] 0.8527906 0.8812073 0.9528009 #> [830,] 0.6828485 0.6850597 0.6959316 #> [831,] 0.8301323 0.8712192 0.9245956 #> [832,] 0.6132856 0.6421572 0.6431027 #> [833,] 0.7869176 0.8055432 0.8226591 #> [834,] 1.2076362 1.2278662 1.2417090 #> [835,] 0.7902266 0.8018794 0.8600771 #> [836,] 0.7864186 0.7935557 0.8255778 #> [837,] 0.7262376 0.7844301 0.7885148 #> [838,] 1.4799255 1.5037535 1.5076612 #> [839,] 0.5764634 0.6651793 0.6815833 #> [840,] 0.6878447 0.6985192 0.7296800 #> [841,] 0.4934944 0.5391688 0.5655502 #> [842,] 1.0560959 1.0712848 1.0853428 #> [843,] 0.7249468 0.7366193 0.7376150 #> [844,] 0.7874349 0.7950016 0.8099821 #> [845,] 0.7664371 0.7807477 0.8116326 #> [846,] 0.6358013 0.6442066 0.6576187 #> [847,] 0.4486907 0.4983990 0.4999563 #> [848,] 0.9207612 0.9276422 0.9540991 #> [849,] 0.4063097 0.4590751 0.4740971 #> [850,] 0.6394717 0.6588610 0.6600258 #> [851,] 0.8149142 0.8428174 0.8796094 #> [852,] 0.6049990 0.6198042 0.6272176 #> [853,] 0.9851428 1.0335664 1.0680627 #> [854,] 1.0029237 1.0044478 1.0091058 #> [855,] 0.9468798 0.9500668 0.9856499 #> [856,] 1.1343272 1.1434065 1.1500361 #> [857,] 0.9434459 0.9806701 0.9911303 #> [858,] 0.6657246 0.6823429 0.6984509 #> [859,] 0.9392122 1.0334538 1.0380556 #> [860,] 0.6851883 0.6919852 0.7095744 #> [861,] 0.7763655 0.7913457 0.8270811 #> [862,] 0.6989579 0.7134870 0.7771113 #> [863,] 0.7291426 0.7341086 0.7359247 #> [864,] 1.2080432 1.2282035 1.3640246 #> [865,] 0.7292787 0.7359247 0.8104232 #> [866,] 0.8350270 0.8828692 0.8838416 #> [867,] 1.6801516 1.7936242 1.8107486 #> [868,] 0.7664883 0.7692705 0.7853750 #> [869,] 0.6256287 0.6405012 0.6438171 #> [870,] 0.9159168 0.9412794 0.9424081 #> [871,] 0.4008547 0.4421991 0.4654775 #> [872,] 1.5398663 1.5488528 1.5865198 #> [873,] 0.5946995 0.5961094 0.5985655 #> [874,] 1.2174384 1.2866041 1.3608177 #> [875,] 0.6989579 0.7028270 0.7502891 #> [876,] 1.1007515 1.1159988 1.1618348 #> [877,] 0.9267543 0.9303417 0.9985390 #> [878,] 0.7707595 0.7796337 0.8207193 #> [879,] 0.7728698 0.8062140 0.8064596 #> [880,] 0.9699226 1.0045098 1.0449545 #> [881,] 0.8332732 0.8572955 0.8811205 #> [882,] 0.7810091 0.7894367 0.8153426 #> [883,] 0.7170823 0.7352067 0.7384600 #> [884,] 0.5624806 0.5863302 0.6213767 #> [885,] 0.9655477 0.9727644 1.0023837 #> [886,] 0.6547229 0.6760726 0.6837625 #> [887,] 0.6487290 0.6680559 0.7312532 #> [888,] 0.8688664 0.9291881 0.9494333 #> [889,] 1.3239755 1.3330514 1.3419673 #> [890,] 0.4841708 0.5299665 0.5941560 #> [891,] 1.1557669 1.2092693 1.2211860 #> [892,] 0.5427501 0.5509455 0.5757741 #> [893,] 1.0055165 1.1019036 1.1303557 #> [894,] 1.5957744 1.6656746 1.6704343 #> [895,] 0.5313030 0.5411869 0.5432273 #> [896,] 1.3521568 1.3854506 1.3989331 #> [897,] 1.2729158 1.2869336 1.3173147 #> [898,] 1.3501308 1.4088867 1.4431790 #> [899,] 0.5130520 0.5265425 0.5344388 #> [900,] 0.6500784 0.6550834 0.6594093 #> [901,] 0.9341268 0.9882515 1.0482291 #> [902,] 0.6887986 0.6949705 0.7101375 #> [903,] 1.8382930 1.8593577 1.8821169 #> [904,] 0.8450184 0.8584939 0.8900323 #> [905,] 1.3352933 1.3647099 1.3707155 #> [906,] 0.6124874 0.6452023 0.6502552 #> [907,] 0.6015697 0.6057881 0.6303679 #> [908,] 0.7397444 0.7589513 0.7761755 #> [909,] 1.1331706 1.1684123 1.2233917 #> [910,] 0.7708239 0.8088441 0.8090672 #> [911,] 0.7564921 0.8313556 0.8853633 #> [912,] 0.5590943 0.5693136 0.6010974 #> [913,] 0.5705695 0.5990171 0.5997920 #> [914,] 0.6483972 0.6809148 0.6938318 #> [915,] 1.1443646 1.1713342 1.1896728 #> [916,] 0.7747097 0.7772398 0.8024150 #> [917,] 0.7302801 0.7417071 0.7470587 #> [918,] 0.6165999 0.6218071 0.6254043 #> [919,] 0.6983487 0.8245811 0.8574372 #> [920,] 1.0107482 1.0956074 1.1528632 #> [921,] 0.5968568 0.6036069 0.6052295 #> [922,] 0.7816347 0.8317877 0.8353579 #> [923,] 0.7042752 0.7556773 0.7612428 #> [924,] 0.8016984 0.8064596 0.8279561 #> [925,] 0.6581170 0.6625708 0.6638874 #> [926,] 0.7545084 0.7692472 0.8111023 #> [927,] 0.8234208 0.8325586 0.8762490 #> [928,] 0.8036009 0.8617396 0.9095927 #> [929,] 0.9777802 0.9867707 0.9916101 #> [930,] 0.6246838 0.6478300 0.6710057 #> [931,] 0.7047821 0.7074970 0.7094189 #> [932,] 0.5815310 0.5894735 0.5981939 #> [933,] 0.8676934 0.8809400 0.9466005 #> [934,] 1.0968149 1.1379194 1.1401699 #> [935,] 0.5070188 0.5424867 0.5633698 #> [936,] 0.9154519 0.9903226 0.9985880 #> [937,] 1.0154784 1.0198059 1.0558893 #> [938,] 0.7369948 0.7536130 0.8294904 #> [939,] 1.4303140 1.4317122 1.4805684 #> [940,] 0.8062438 0.8196058 0.8569086 #> [941,] 1.1892653 1.2261792 1.2324396 #> [942,] 0.5912759 0.5969571 0.6082670 #> [943,] 0.5314154 0.5326785 0.5801175 #> [944,] 0.8829630 0.8910723 0.8967822 #> [945,] 1.3858221 1.4302707 1.4316539 #> [946,] 0.6547229 0.6886322 0.6928918 #> [947,] 0.6877890 0.7001301 0.7057125 #> [948,] 1.8357152 1.9045001 1.9065517 #> [949,] 1.3379349 1.4021315 1.4079049 #> [950,] 1.0840138 1.1094766 1.1308136 #> [951,] 0.7117756 0.7177677 0.7423945 #> [952,] 0.7438321 0.7534034 0.7842284 #> [953,] 0.7502960 0.7789664 0.7982690 #> [954,] 0.6118587 0.6215960 0.6384658 #> [955,] 1.2871531 1.3225393 1.3418591 #> [956,] 0.7043195 0.7170823 0.7336379 #> [957,] 1.0358191 1.0774448 1.1165770 #> [958,] 0.6198076 0.6213680 0.6650598 #> [959,] 1.1471868 1.2669688 1.2800816 #> [960,] 0.8130187 0.8631036 0.8891762 #> [961,] 0.4881796 0.5027134 0.5136565 #> [962,] 0.5982893 0.6004924 0.6157327 #> [963,] 0.7837144 0.7919935 0.7991795 #> [964,] 0.6104453 0.6329952 0.6364906 #> [965,] 0.7174851 0.7278104 0.7323772 #> [966,] 0.6158712 0.6274870 0.6436952 #> [967,] 0.9331233 0.9648185 0.9984615 #> [968,] 0.9794996 0.9906871 1.0181875 #> [969,] 0.9764982 0.9772140 0.9803378 #> [970,] 0.8332279 0.8385844 0.8746902 #> [971,] 0.8782562 0.9048243 0.9051167 #> [972,] 0.7135772 0.7139887 0.7223360 #> [973,] 0.6498677 0.6716114 0.7187771 #> [974,] 0.7911595 0.7980903 0.8115715 #> [975,] 1.0262068 1.0452156 1.0937855 #> [976,] 0.7545626 0.7664371 0.7778610 #> [977,] 0.9817203 1.0214761 1.0233572 #> [978,] 0.7640607 0.7933599 0.8157303 #> [979,] 0.5221971 0.5497720 0.6275281 #> [980,] 0.8326922 0.8450174 0.8531720 #> [981,] 0.6079576 0.6749162 0.6866674 #> [982,] 0.5516274 0.5699598 0.6100876 #> [983,] 0.6790706 0.7139076 0.7197768 #> [984,] 1.2032878 1.2213903 1.2509943 #> [985,] 0.6874485 0.7101610 0.7203690 #> [986,] 1.0107862 1.0289652 1.0302160 #> [987,] 0.5092006 0.5504881 0.5553071 #> [988,] 0.6925121 0.7282713 0.7690535 #> [989,] 0.7949332 0.8214750 0.8386153 #> [990,] 1.1753586 1.2128637 1.2172076 #> [991,] 0.7462066 0.8073125 0.8246749 #> [992,] 0.6815427 0.7020037 0.7071514 #> [993,] 0.8221489 0.8382346 0.8520056 #> [994,] 0.5541392 0.5859897 0.5901825 #> [995,] 0.6030581 0.6088673 0.6820477 #> [996,] 1.0221451 1.0348177 1.0581953 #> [997,] 1.1938107 1.2440572 1.2494514 #> [998,] 0.7631284 0.8002346 0.8086030 #> [999,] 0.6835776 0.6913845 0.6999382 #> [1000,] 1.1236420 1.1943301 1.2301638 #>"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"Compute log-rank test p-value difference two survival curves obtained splitting dataset \"low\" \"high\" risk group using possible relative-risk thresholds.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"","code":"tof_find_log_rank_threshold(input_data, relative_risk_col, time_col, event_col)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"input_data tbl_df data.frame observation row. relative_risk_col unquote column name indicating column contains relative-risk estimates observation. time_col unquoted column name indicating column contains true time--event information observation. event_col unquoted column name indicating column contains outcome (event censorship). Must binary column - values either 0 1 (1 indicating adverse event 0 indicating censorship) FALSE TRUE (TRUE indicating adverse event FALSE indicating censorship).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_log_rank_threshold.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"tibble 3 columns: \"candidate_thresholds\" (relative-risk threshold used log-rank test), \"log_rank_p_val\" (p-values log-rank tests) \"is_best\" (logical value indicating candidate threshold gave optimal, .e. smallest, p-value).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":null,"dir":"Reference","previous_headings":"","what":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"Using character vectors obtained `name` `desc` columns parameters data flowFrame, figure high-dimensional cytometry panel used collect data return tidy tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"","code":"tof_find_panel_info(input_flowFrame)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"input_flowFrame raw flowFrame (just read .fcs file) high-dimensional cytometry panel extracted","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_find_panel_info.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Use tidytof's opinionated heuristic for extracted a high-dimensional cytometry panel's metal-antigen pairs\nfrom a flowFrame (read from a .fcs file.) — tof_find_panel_info","text":"tibble 2 columns (`metals` `antigens`) correspond metals antigens high-dimensional cytometry panel used data acquisition.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":null,"dir":"Reference","previous_headings":"","what":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"function trains glmnet model training set rsplit object, calculates performance metrics model validation/holdout set combinations mixture penalty hyperparameters provided hyperparameter grid.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"","code":"tof_fit_split( split_data, prepped_recipe, hyperparameter_grid, model_type, outcome_colnames )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"split_data `rsplit` object rsample package. Alternatively, unsplit tbl_df can provided, though recommended. prepped_recipe trained recipe hyperparameter_grid tibble containing hyperparameter values tune. Can created using tof_create_grid model_type string representing type glmnet model fit. outcome_colnames Quoted column names indicating columns data fit represent outcome variables (others assumed predictors).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"tibble number rows input hyperparameter grid. row represents combination mixture penalty, column contains performance metric fitted glmnet model `split_data`'s holdout set. specific performance metrics depend type model fit: \"linear\" mean-squared error (`mse`) mean absolute error (`mae`) \"two-class\" binomial deviance (`binomial_deviance`); misclassification error rate `misclassification_error`; area receiver-operating curve (`roc_auc`); `mse` `mse` \"multiclass\" multinomial deviance (`multinomial_deviance`); misclassification error rate `misclassification_error`; area receiver-operating curve (`roc_auc`) computed using Hand-Till method roc_auc; `mse` `mse` \"survival\" negative log2-transformed partial likelihood (`neg_log_partial_likelihood`) Harrel's concordance index (often simply called \"C\"; `concordance_index`)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_fit_split.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fit a glmnet model and calculate performance metrics using a single rsplit object — tof_fit_split","text":"Harrel Jr, F. E. Lee, K. L. Mark, D. B. (1996) Tutorial biostatistics: multivariable prognostic models: issues developing models, evaluating assumptions adequacy, measuring reducing error, Statistics Medicine, 15, pages 361–387.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":null,"dir":"Reference","previous_headings":"","what":"Generate a color palette using tidytof. — tof_generate_palette","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"function generates color palette based color palette author's favorite pokemon.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"","code":"tof_generate_palette(num_colors)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"num_colors integer specifying number colors like generate.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"character vector hex codes specifying colors palette.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_generate_palette.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Generate a color palette using tidytof. — tof_generate_palette","text":"","code":"tof_generate_palette(num_colors = 5L) #> [1] \"#D86020\" \"#28A8B8\" \"#F89040\" \"#D0D0D0\" \"#903000\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"Get `tof_model`'s optimal mixture (alpha) value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"","code":"tof_get_model_mixture(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"numeric value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_mixture.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s optimal mixture (alpha) value — tof_get_model_mixture","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_mixture(regression_model) #> [1] 0"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"Get `tof_model`'s outcome variable name(s)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"","code":"tof_get_model_outcomes(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"character vector","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_outcomes.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s outcome variable name(s) — tof_get_model_outcomes","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_outcomes(regression_model) #> [1] \"outcome\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"Get `tof_model`'s optimal penalty (lambda) value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"","code":"tof_get_model_penalty(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"numeric value","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_penalty.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s optimal penalty (lambda) value — tof_get_model_penalty","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_penalty(regression_model) #> [1] 1"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s training data — tof_get_model_training_data","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"Get `tof_model`'s training data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"","code":"tof_get_model_training_data(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"tibble (non-preprocessed) training data used fit model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_training_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s training data — tof_get_model_training_data","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_training_data(regression_model) #> # A tibble: 100 × 9 #> sample cd45 pstat5 cd34 outcome class multiclass event time_to_event #> #> 1 85 0.788 0.914 0.440 6.14 class1 class3 1 6.43 #> 2 31 0.806 0.240 0.782 3.61 class2 class2 1 9.90 #> 3 48 0.375 0.825 0.0230 4.55 class1 class2 1 12.2 #> 4 61 0.0185 0.946 0.314 3.68 class2 class3 1 8.11 #> 5 22 0.196 0.691 0.347 2.99 class2 class1 0 8.27 #> 6 79 0.535 0.249 0.523 2.49 class2 class3 1 10.2 #> 7 74 0.689 0.856 0.907 6.98 class1 class3 1 10.9 #> 8 9 0.239 0.408 0.344 3.82 class1 class1 0 10.9 #> 9 53 0.134 0.906 0.919 5.34 class1 class2 1 8.89 #> 10 81 0.169 0.947 0.178 4.31 class1 class3 1 6.35 #> # ℹ 90 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s model type — tof_get_model_type","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"Get `tof_model`'s model type","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"","code":"tof_get_model_type(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"string","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_type.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s model type — tof_get_model_type","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_type(regression_model) #> [1] \"linear\""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"Get `tof_model`'s processed predictor matrix (glmnet)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"","code":"tof_get_model_x(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"x value formatted glmnet","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_x.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s processed predictor matrix (for glmnet) — tof_get_model_x","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_x(regression_model) #> cd45 pstat5 cd34 #> [1,] -1.78317206 -1.0787379605 1.333560457 #> [2,] 1.10354848 1.0628629638 -0.007971152 #> [3,] 0.28101225 -0.9863854712 0.943167367 #> [4,] 0.15853500 0.9648649256 1.478340692 #> [5,] -0.19131391 -0.5968674218 -1.511126613 #> [6,] 0.46303565 0.9286830086 -0.295172477 #> [7,] -1.70231141 1.5557823494 1.379459045 #> [8,] 1.49148700 -1.4755548574 1.159147834 #> [9,] 1.72386496 0.5710371564 0.330228937 #> [10,] -0.39782305 0.2049274774 0.357080999 #> [11,] 0.44302282 1.3419463533 0.167546255 #> [12,] -1.76651518 0.8491942626 0.976864801 #> [13,] -0.63356464 -1.4433745349 0.332350031 #> [14,] -0.77306937 -1.1757549265 -0.945803345 #> [15,] -0.63717571 -0.8130631050 -1.004776766 #> [16,] -1.45990328 -1.6729066815 -1.581385700 #> [17,] 0.10951455 0.0323062376 0.230590132 #> [18,] 0.70539364 0.6626321482 0.559850122 #> [19,] 0.33545021 -0.0490838722 -0.260766820 #> [20,] -0.76876632 -1.3719608221 0.685592057 #> [21,] 1.18076987 0.9757881406 0.409331098 #> [22,] 0.29693186 -1.5711703850 -0.593965239 #> [23,] 1.06160014 1.9560886989 -0.359778415 #> [24,] 0.83531440 0.2409114010 -1.332756134 #> [25,] 0.66249487 -1.2375144652 -1.575283965 #> [26,] -0.98960673 -0.6669653896 -1.340737940 #> [27,] 1.41488135 -0.9242453876 0.725438340 #> [28,] -0.59096372 1.0250240427 -1.545310478 #> [29,] 1.75503156 -0.2734310127 0.267503896 #> [30,] -0.44195731 -0.0417721597 0.552188957 #> [31,] 0.63496759 -1.3558765673 -0.836229703 #> [32,] -1.40325154 -0.4987362393 1.478943176 #> [33,] -0.41326441 -0.7409474669 1.386029524 #> [34,] -0.11448838 -1.0214624007 -1.602191748 #> [35,] -0.16017563 -0.8513593263 1.137506946 #> [36,] 0.58728012 1.5438732777 -0.832493326 #> [37,] -1.08957913 -0.5714635307 -0.817002991 #> [38,] 0.56855878 1.6475160444 1.245318999 #> [39,] -0.17115678 0.5475570558 -0.644908178 #> [40,] 0.02686691 0.9672587787 -1.026616390 #> [41,] 0.33192934 0.0145352092 -0.173320975 #> [42,] -1.05596792 -1.0748526758 -0.191256247 #> [43,] 0.25905544 -0.7499622282 -0.087657555 #> [44,] 0.15440636 1.3524495620 0.168353586 #> [45,] -1.16808454 -0.7985231102 -0.803837572 #> [46,] -1.45180107 -1.3360255127 -1.439330467 #> [47,] -1.69432680 1.6889785690 1.329175952 #> [48,] 0.28276938 -0.0993963932 0.013122238 #> [49,] 0.12893504 -0.4431576358 -0.229954891 #> [50,] 0.98692593 1.0557804701 1.190741254 #> [51,] 0.92667438 0.1577735525 -1.669680934 #> [52,] -1.27372723 0.5730161197 0.053478552 #> [53,] 1.06871379 -1.2095639195 -0.451003047 #> [54,] 0.77182004 0.3530487708 -1.059214355 #> [55,] 1.29626841 0.8187685274 -0.478643532 #> [56,] 1.74791062 0.9897908331 -0.425375490 #> [57,] -0.16235393 -0.0910664797 1.705414173 #> [58,] -0.15738729 1.8711936081 -0.126729294 #> [59,] -0.29535792 -0.1358952865 1.397848103 #> [60,] 1.79191607 0.6458904947 -1.638537173 #> [61,] -0.66798290 -1.5840545159 -0.419631398 #> [62,] -0.32974182 1.1886707737 -0.173524097 #> [63,] -0.83681468 0.6331643597 0.082403326 #> [64,] -0.73922866 -0.2322845260 0.101457935 #> [65,] -0.57623004 -1.3937666103 1.443584669 #> [66,] -0.42359729 1.5135844751 0.072547217 #> [67,] -0.32929042 -0.0006291011 -1.692261786 #> [68,] -0.24088988 1.8261944212 0.224511135 #> [69,] -0.95149649 -1.1081043364 -0.378855087 #> [70,] 1.91723194 -0.3502579310 -1.844824658 #> [71,] 1.25176008 1.2581136351 1.233394505 #> [72,] 0.07080782 -0.8866318099 0.638288680 #> [73,] -1.54302889 1.6857596143 -0.287625849 #> [74,] 1.18695821 -0.5113548744 0.394427408 #> [75,] -0.82486995 -1.6204020019 -0.588203677 #> [76,] -1.79645181 -0.6864040144 -1.311847684 #> [77,] -1.55872438 -1.0220035939 1.789038093 #> [78,] -0.77897578 0.3692559643 0.428812512 #> [79,] 1.57042159 -1.4346590275 0.833725974 #> [80,] -0.06382824 0.2857970510 1.481791590 #> [81,] -1.61397628 -0.8465167432 -1.648507113 #> [82,] 0.20313852 0.0542426137 -0.118507950 #> [83,] 0.62050888 0.3346826055 1.023535635 #> [84,] -1.14703558 -1.5574576712 1.355170017 #> [85,] 0.42846179 -0.1753167314 1.112048926 #> [86,] 0.41997232 0.4549634910 -0.711286973 #> [87,] -0.19044873 0.8933333770 -0.474693737 #> [88,] -0.81555060 1.0777003059 -0.877067329 #> [89,] 1.17350911 -0.4341643860 0.698854727 #> [90,] 1.71932353 1.0695474903 0.804058565 #> [91,] -0.20881194 0.9738611349 1.699522445 #> [92,] 0.81303834 -0.4329034118 -1.108390019 #> [93,] 0.81484298 -0.3213290673 -0.321048497 #> [94,] 1.65329116 0.6674428429 -0.108223498 #> [95,] 1.26883535 0.1571099065 -1.479695708 #> [96,] -1.37947623 0.1786102124 0.793738394 #> [97,] 0.03251312 0.3384958529 1.722195881 #> [98,] -1.52463054 -1.2938448569 0.866870876 #> [99,] 0.72690694 1.0860309387 -0.340135386 #> [100,] -0.17026210 -0.3968786695 -1.021002674"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"Get `tof_model`'s processed outcome variable matrix (glmnet)","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"","code":"tof_get_model_y(tof_model)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"tof_model tof_model","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"y value formatted glmnet","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_model_y.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a `tof_model`'s processed outcome variable matrix (for glmnet) — tof_get_model_y","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) tof_get_model_y(regression_model) #> [1] 3.52157326 4.18706346 4.99297032 4.17405690 6.40545747 2.50865483 #> [7] 2.33612014 5.33430165 2.56476097 3.01796819 2.89283573 3.66406721 #> [13] 5.22714046 4.35298919 2.58000727 2.15550594 3.60309971 4.89536032 #> [19] 3.81554420 6.30328847 3.53770881 1.86969723 4.09551566 7.24970111 #> [25] 2.86504606 3.55623919 3.95237545 4.11631444 5.47602150 0.28915723 #> [31] 3.07282122 5.27719683 3.72704122 6.58541327 5.98730966 3.61953499 #> [37] 3.87629426 2.33057302 5.04979749 3.18911819 3.49611601 3.47001035 #> [43] 7.14360147 3.63460106 4.13321827 5.18586447 2.17984783 3.86569248 #> [49] 5.01891594 0.53959254 6.47362294 4.17886077 4.79635337 3.38241659 #> [55] 3.88628723 1.25895231 3.16017574 4.52602869 1.12086352 4.14951568 #> [61] 3.76323375 4.80787027 7.01629099 3.03324953 3.10142062 4.20861853 #> [67] 2.47186593 4.27612420 4.45194221 7.21234030 3.62721676 4.33038331 #> [73] 3.34296498 3.24989602 3.46735076 0.29506689 0.03436764 1.68920782 #> [79] 5.35307405 5.71910412 2.83330794 0.24626349 2.92575949 0.42468688 #> [85] 1.52052028 3.57405227 8.28915490 7.86521083 4.00969324 4.79126650 #> [91] 1.25838678 2.55059481 2.77286430 1.54709918 1.48236052 0.40922086 #> [97] 3.08609250 3.17320626 3.97903992 2.75743110"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":null,"dir":"Reference","previous_headings":"","what":"Get panel information from a tof_tibble — tof_get_panel","title":"Get panel information from a tof_tibble — tof_get_panel","text":"Get panel information tof_tibble","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get panel information from a tof_tibble — tof_get_panel","text":"","code":"tof_get_panel(tof_tibble)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get panel information from a tof_tibble — tof_get_panel","text":"tof_tibble `tof_tbl`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get panel information from a tof_tibble — tof_get_panel","text":"tibble containing information CyTOF panel used data acquisition data contained `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_get_panel.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get panel information from a tof_tibble — tof_get_panel","text":"","code":"input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) tof_get_panel(tof_tibble) #> # A tibble: 59 × 2 #> metals antigens #> #> 1 Time Time #> 2 Event_length Event_length #> 3 Y89 CD45 #> 4 Pd102 empty #> 5 Pd104 empty #> 6 Pd105 empty #> 7 Pd106 empty #> 8 Pd108 empty #> 9 Pd110 empty #> 10 In113 CD61 #> # ℹ 49 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":null,"dir":"Reference","previous_headings":"","what":"Find if a vector is numeric — tof_is_numeric","title":"Find if a vector is numeric — tof_is_numeric","text":"function takes input vector `.vec` checks either integer double (.e. type vector might encode high-dimensional cytometry measurements).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Find if a vector is numeric — tof_is_numeric","text":"","code":"tof_is_numeric(.vec)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Find if a vector is numeric — tof_is_numeric","text":".vec vector.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_is_numeric.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Find if a vector is numeric — tof_is_numeric","text":"boolean value indicating .vec type integer double.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"function uses distances cell K nearest neighbors estimate local density cell `tof_tbl` `tibble` containing high-dimensional cytometry data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"","code":"tof_knn_density( tof_tibble, distance_cols = where(tof_is_numeric), num_neighbors = min(15L, nrow(tof_tibble)), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), estimation_method = c(\"mean_distance\", \"sum_distance\"), normalize = TRUE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"tof_tibble `tof_tbl` `tibble`. distance_cols Unquoted names columns `tof_tibble` use calculating cell--cell distances local density estimation cell. Defaults numeric columns `tof_tibble`. num_neighbors integer indicating number nearest neighbors use estimating local density cell. Defaults minimum 15 number rows `tof_tibble`. distance_function string indicating distance function use calculating cell--cell distances local density estimation. Options include \"euclidean\" (default) \"cosine\". estimation_method string indicating relative density cell calculated distances k nearest neighbors. Options \"mean_distance\" (default; estimates relative density cell's neighborhood taking negative average distances nearest neighbors) \"sum_distance\" (estimates relative density cell's neighborhood taking negative sum distances nearest neighbors). normalize boolean value indicating vector local density estimates normalized values 0 1. Defaults TRUE. ... Additional optional arguments pass tof_find_knn.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_knn_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Estimate cells' local densities using K-nearest-neighbor density estimation — tof_knn_density","text":"tibble single column named \".knn_density\" containing local density estimates input cell `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"Compute log-rank test p-value difference two survival curves obtained splitting dataset \"low\" \"high\" risk group using given relative-risk threshold.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"","code":"tof_log_rank_test( input_data, relative_risk_col, time_col, event_col, threshold )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"input_data tbl_df data.frame observation row. relative_risk_col unquote column name indicating column contains relative-risk estimates observation. time_col unquoted column name indicating column contains true time--event information observation. event_col unquoted column name indicating column contains outcome (event censorship). Must binary column - values either 0 1 (1 indicating adverse event 0 indicating censorship) FALSE TRUE (TRUE indicating adverse event FALSE indicating censorship). threshold numeric value indicating relative-risk threshold used split observations low- high-risk groups.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"numeric value <1, p-value log-rank test.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_log_rank_test.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute the log-rank test p-value for the difference between the two survival\ncurves obtained by splitting a dataset into a ","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":null,"dir":"Reference","previous_headings":"","what":"Title — tof_make_knn_graph","title":"Title — tof_make_knn_graph","text":"Title","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Title — tof_make_knn_graph","text":"","code":"tof_make_knn_graph( tof_tibble, knn_cols, num_neighbors, distance_function = c(\"euclidean\", \"cosine\"), graph_type = c(\"weighted\", \"unweighted\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Title — tof_make_knn_graph","text":"tof_tibble tibble tof_tbl. knn_cols Unquoted column names indicating columns tof_tibble used KNN calculation. num_neighbors integer number neighbors find cell ( including ). distance_function string indicating distance function use nearest-neighbor calculation. Options include \"euclidean\" (default) \"cosine\" distances. graph_type string indicating graph's edges weights (\"weighted\"; default) (\"unweighted\"). ... Optional additional arguments pass tof_find_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Title — tof_make_knn_graph","text":"tbl_graph.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_knn_graph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Title — tof_make_knn_graph","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":null,"dir":"Reference","previous_headings":"","what":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"Compute receiver-operating curve (ROC) two-class multiclass dataset","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"","code":"tof_make_roc_curve(input_data, truth_col, prob_cols)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"input_data tof_tbl, tbl_df, data.frame row observation. truth_col unquoted column name indicating column `input_data` contains true class labels observation. Must factor. prob_cols Unquoted column names indicating columns `input_data` contain probability estimates class `truth_col`. columns must specified order factor levels `truth_col`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"tibble can used plot ROC classification task. candidate probability threshold, following reported: specificity, sensitivity, true-positive rate (tpr), false-positive rate (fpr).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_make_roc_curve.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Compute a receiver-operating curve (ROC) for a two-class or multiclass dataset — tof_make_roc_curve","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a logistic regression classifier log_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = class, model_type = \"two-class\" ) # make predictions predictions <- tof_predict( log_model, new_data = feature_tibble, prediction_type = \"response\" ) prediction_tibble <- dplyr::tibble( truth = feature_tibble$class, prediction = predictions$.pred ) # make ROC curve tof_make_roc_curve( input_data = prediction_tibble, truth_col = truth, prob_cols = prediction )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data. — tof_metacluster","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"function wrapper around tidytof's tof_metacluster_* function family. performs metaclustering CyTOF data using user-specified method (5 choices) method's corresponding input parameters.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"","code":"tof_metacluster( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, ..., augment = TRUE, method = c(\"consensus\", \"hierarchical\", \"kmeans\", \"phenograph\", \"flowsom\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. ... Additional arguments pass `tof_metacluster_*` function family member corresponding chosen `method`. augment boolean value indicating output column-bind metacluster ids cell new column `tof_tibble` (TRUE; default) single-column tibble including metacluster ids returned (FALSE). method string indicating clustering method used. Valid values include \"consensus\", \"hierarchical\", \"kmeans\", \"phenograph\", \"flowsom\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding metacluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding metacluster ids.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data. — tof_metacluster","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster( tof_tibble = sim_data, cluster_col = cluster_id, clustering_algorithm = \"consensus\", method = \"flowsom\" ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id .flowsom_metacluster #> #> 1 1.85 -1.32 -1.84 -0.719 y 2 #> 2 1.32 -0.265 0.545 -1.95 i 4 #> 3 1.12 1.42 0.995 0.844 h 2 #> 4 -1.07 -0.107 0.620 0.0522 r 4 #> 5 0.474 -0.470 0.874 -0.0629 b 2 #> 6 0.985 0.559 0.408 -0.162 w 2 #> 7 -0.321 0.307 1.96 1.64 p 2 #> 8 0.145 -1.28 -0.451 -1.04 s 2 #> 9 -0.378 -0.390 0.0341 -0.130 a 1 #> 10 0.387 -0.367 0.873 -0.678 m 2 #> # ℹ 990 more rows tof_metacluster( tof_tibble = sim_data, cluster_col = cluster_id, method = \"phenograph\" ) #> # A tibble: 1,000 × 6 #> cd45 cd38 cd34 cd19 cluster_id .phenograph_metacluster #> #> 1 1.85 -1.32 -1.84 -0.719 y 1 #> 2 1.32 -0.265 0.545 -1.95 i 4 #> 3 1.12 1.42 0.995 0.844 h 2 #> 4 -1.07 -0.107 0.620 0.0522 r 4 #> 5 0.474 -0.470 0.874 -0.0629 b 3 #> 6 0.985 0.559 0.408 -0.162 w 3 #> 7 -0.321 0.307 1.96 1.64 p 1 #> 8 0.145 -1.28 -0.451 -1.04 s 2 #> 9 -0.378 -0.390 0.0341 -0.130 a 2 #> 10 0.387 -0.367 0.873 -0.678 m 2 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"function performs consensus metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. See ConsensusClusterPlus additional details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"","code":"tof_metacluster_consensus( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, proportion_clusters = 0.9, proportion_features = 1, num_reps = 20L, clustering_algorithm = c(\"hierarchical\", \"pam\", \"kmeans\"), distance_function = c(\"euclidean\", \"minkowski\", \"pearson\", \"spearman\", \"maximum\", \"binary\", \"canberra\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating number clusters returned. Defaults 10. proportion_clusters numeric value 0 1 indicating proportion clusters subsample (total number clusters `cluster_col`) iteration consensus clustering. Defaults 0.9 proportion_features numeric value 0 1 indicating proportion features (.e. proportion columns specified `metacluster_cols`) subsample iteration consensus clustering. Defaults 1 (features included). num_reps integer indicating many subsampled replicates run consensus clustering. Defaults 20. clustering_algorithm string indicating clustering algorithm ConsensusClusterPlus use metacluster subsampled clusters resampling. Options \"hierarchical\" (default), \"pam\" (partitioning around medoids), \"kmeans\". distance_function string indicating distance function used compute distances clusters consensus clustering. Options \"euclidean\" (default), \"manhattan\", \"minkowski\", \"pearson\", \"spearman\", \"maximum\", \"binary\", \"canberra\". See ConsensusClusterPlus. ... Optional additional arguments pass ConsensusClusterPlus.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"tibble single column (`.consensus_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_consensus.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using consensus clustering — tof_metacluster_consensus","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_consensus(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .consensus_metacluster #> #> 1 8 #> 2 7 #> 3 8 #> 4 1 #> 5 1 #> 6 6 #> 7 1 #> 8 6 #> 9 8 #> 10 3 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"function performs metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. takes advantage FlowSOM package's built-functionality automatically detecting number metaclusters can use several strategies adapted FlowSOM team: consensus metaclustering, hierarchical metaclustering, k-means metaclustering, metaclustering using FlowSOM algorithm . See MetaClustering additional details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"","code":"tof_metacluster_flowsom( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, clustering_algorithm = c(\"consensus\", \"hierarchical\", \"kmeans\", \"som\"), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating maximum number clusters returned. Defaults 10. Note function, output may provide small number metaclusters requested. MetaClustering uses \"Elbow method\" automatically detect optimal number metaclusters. clustering_algorithm string indicating clustering algorithm MetaClustering use perform metaclustering. Options \"consensus\" (default), \"hierarchical\", \"kmeans\", \"som\" (.e. self-organizing map; FlowSOM algorithm ). ... Optional additional arguments pass MetaClustering.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"tibble single column (`.flowsom_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_flowsom.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using FlowSOM's built-in metaclustering algorithm — tof_metacluster_flowsom","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_flowsom( tof_tibble = sim_data, cluster_col = cluster_id, clustering_algorithm = \"consensus\" ) #> # A tibble: 1,000 × 1 #> .flowsom_metacluster #> #> 1 2 #> 2 3 #> 3 4 #> 4 4 #> 5 3 #> 6 5 #> 7 1 #> 8 3 #> 9 4 #> 10 4 #> # ℹ 990 more rows tof_metacluster_flowsom( tof_tibble = sim_data, cluster_col = cluster_id, clustering_algorithm = \"som\" ) #> # A tibble: 1,000 × 1 #> .flowsom_metacluster #> #> 1 1 #> 2 2 #> 3 3 #> 4 3 #> 5 1 #> 6 4 #> 7 1 #> 8 3 #> 9 3 #> 10 3 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"function performs hierarchical metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. See hclust.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"","code":"tof_metacluster_hierarchical( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, distance_function = c(\"euclidean\", \"manhattan\", \"minkowski\", \"maximum\", \"canberra\", \"binary\"), agglomeration_method = c(\"complete\", \"single\", \"average\", \"median\", \"centroid\", \"ward.D\", \"ward.D2\", \"mcquitty\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating number clusters returned. Defaults 10. distance_function string indicating distance function used compute distances clusters hierarchical metaclustering. Options \"euclidean\" (default), \"manhattan\", \"minkowski\", \"maximum\", \"canberra\", \"binary\". See dist additional details. agglomeration_method string indicating agglomeration algorithm used hierarchical cluster combination. Options \"complete\" (default), \"single\", \"average\", \"median\", \"centroid\", \"ward.D\", \"ward.D2\", \"mcquitty\". See hclust details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"tibble single column (`.hierarchical_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_hierarchical.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using hierarchical agglomerative clustering — tof_metacluster_hierarchical","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_hierarchical(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .hierarchical_metacluster #> #> 1 1 #> 2 2 #> 3 9 #> 4 5 #> 5 2 #> 6 1 #> 7 7 #> 8 3 #> 9 3 #> 10 8 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"function performs k-means metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements number desired metaclusters. See hclust.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"","code":"tof_metacluster_kmeans( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_metaclusters = 10L, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_metaclusters integer indicating number clusters returned. Defaults 10. ... Optional additional method specifications pass tof_cluster_kmeans.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"tibble single column (`.kmeans_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_kmeans.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using k-means clustering — tof_metacluster_kmeans","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_kmeans(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .kmeans_metacluster #> #> 1 6 #> 2 3 #> 3 4 #> 4 6 #> 5 9 #> 6 6 #> 7 6 #> 8 4 #> 9 9 #> 10 9 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":null,"dir":"Reference","previous_headings":"","what":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"function performs PhenoGraph metaclustering `tof_tbl` containing CyTOF data using user-specified selection input variables/CyTOF measurements. number metaclusters automatically detected PhenoGraph algorithm. See tof_cluster_phenograph.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"","code":"tof_metacluster_phenograph( tof_tibble, cluster_col, metacluster_cols = where(tof_is_numeric), central_tendency_function = stats::median, num_neighbors = 5L, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. metacluster_cols Unquoted column names indicating columns `tof_tibble` use computing metaclusters. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. central_tendency_function function used calculate measurement central tendency cluster metaclustering. function used compute summary statistic input cluster `cluster_col` across columns specified `metacluster_cols`, resulting vector (one cluster) used input metaclustering. Defaults median. num_neighbors integer indicating number neighbors use constructing PhenoGraph's k-nearest-neighbor graph. Smaller values emphasize local graph structure; larger values emphasize global graph structure (add time computation). Defaults 5. ... Optional additional method specifications pass tof_cluster_phenograph.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"tibble single column (`.phenograph_metacluster`) number rows input `tof_tibble`. entry column indicates metacluster label assigned row `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_metacluster_phenograph.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Metacluster clustered CyTOF data using PhenoGraph clustering — tof_metacluster_phenograph","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) tof_metacluster_phenograph(tof_tibble = sim_data, cluster_col = cluster_id) #> # A tibble: 1,000 × 1 #> .phenograph_metacluster #> #> 1 1 #> 2 3 #> 3 3 #> 4 2 #> 5 3 #> 6 3 #> 7 5 #> 8 1 #> 9 1 #> 10 2 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot marker expression density plots — tof_plot_cells_density","title":"Plot marker expression density plots — tof_plot_cells_density","text":"function plots marker expression density plots user-specified column tof_tbl. Optionally, cells can grouped plot multiple vertically-arranged density plots","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot marker expression density plots — tof_plot_cells_density","text":"","code":"tof_plot_cells_density( tof_tibble, marker_col, group_col, num_points = 512, theme = ggplot2::theme_bw(), use_ggridges = FALSE, scale = 1, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot marker expression density plots — tof_plot_cells_density","text":"tof_tibble `tof_tbl` `tibble`. marker_col unquoted column name representing column `tof_tibble` (.e. CyTOF protein measurement) included feature extraction calculation. group_col Unquoted column names representing column `tof_tibble` used break rows `tof_tibble` subgroups plotted separate histograms. Defaults plotting without subgroups. num_points number points along full range `marker_col` density calculated theme ggplot2 theme plot. Defaults theme_bw use_ggridges boolean value indicting geom_ridgeline used plot overlain histograms. Defaults FALSE. TRUE, ggridges package must installed. scale Use set `scale` argument geom_ridgeline, controls far apart (vertically) density plots arranged along y-axis. Defaults 1. ... Additional optional arguments send geom_ridgeline.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot marker expression density plots — tof_plot_cells_density","text":"ggplot object","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot marker expression density plots — tof_plot_cells_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(c(\"a\", \"b\"), size = 1000, replace = TRUE) ) density_plot <- tof_plot_cells_density( tof_tibble = sim_data, marker_col = cd45, group_col = cluster_id )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"function makes scatterplots using single-cell data embedded low-dimensional space (generated tof_reduce_dimensions, point colored using user-specified variable.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"","code":"tof_plot_cells_embedding( tof_tibble, embedding_cols, color_col, facet_cols, compute_embedding_cols = where(tof_is_numeric), embedding_method = c(\"pca\", \"tsne\", \"umap\"), embedding_args = list(), theme = ggplot2::theme_bw(), ..., method = c(\"ggplot2\", \"scattermore\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"tof_tibble `tof_tbl` `tibble`. embedding_cols Unquoted column names indicating columns `tof_tibble` used x y axes scatterplot. Supports tidyselect helpers. Must select exactly 2 columns. provided, feature embedding can computed scratch using method provided using `embedding_method` argument tof_reduce_dimensions arguments passed `embedding_args`. color_col unquoted column name specifying column `tof_tibble` used color point scatterplot. facet_cols unquoted column name specifying column `tof_tibble` used break scatterplot facets using facet_wrap. compute_embedding_cols Unquoted column names indicating columns 'tof_tibble' use computing embeddings method specified `embedding_method`. Defaults numeric columns 'tof_tibble'. Supports tidyselect helpers. embedding_method string indicating method used feature embedding (`embedding_cols` provided). Options (passed tof_reduce_dimensions) \"pca\" (default), \"tsne\", \"umap\". embedding_args Optional additional arguments pass tof_reduce_dimensions. example, `method = \"tsne\"`, might include `num_comp`, `perplexity`, `theta`. theme ggplot2 theme apply scatterplot. Defaults theme_bw. ... Optional additional arguments pass tof_plot_cells_scatter. method string indicating plotting engine used. Valid values include \"ggplot2\" (default) \"scattermore\" (recommended 100K cells plotted). Note method = \"scattermore\" requires scattermore package installed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"ggplot object.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_embedding.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot scatterplots of single-cell data using low-dimensional feature embeddings — tof_plot_cells_embedding","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) ) # embed with pca pca_plot <- tof_plot_cells_embedding( tof_tibble = sim_data, color_col = cd38, embedding_method = \"pca\", compute_embedding_cols = starts_with(\"cd\") ) # embed with tsne tsne_plot <- tof_plot_cells_embedding( tof_tibble = sim_data, color_col = cluster_id, embedding_method = \"tsne\", compute_embedding_cols = starts_with(\"cd\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"function makes force-directed layouts using single-cell data embedded 2-dimensional space representing k-nearest-neighbor graph constructed using cell--cell similarities. node force-directed layout represents single cell colored using user-specified variable.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"","code":"tof_plot_cells_layout( tof_tibble, knn_cols = where(tof_is_numeric), color_col, facet_cols, num_neighbors = 5, graph_type = c(\"weighted\", \"unweighted\"), graph_layout = \"fr\", distance_function = c(\"euclidean\", \"cosine\"), edge_alpha = 0.25, node_size = 2, theme = ggplot2::theme_void(), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"tof_tibble `tof_tbl` `tibble`. knn_cols Unquoted column names indicating columns `tof_tibble` used compute cell--cell distances used construct k-nearest-neighbor graph. Supports tidyselect helpers. Defaults numeric columns. color_col Unquoted column name indicating column `tof_tibble` used color nodes force-directed layout. facet_cols Unquoted column names indicating columns `tof_tibble` used separate nodes different force-directed layouts. num_neighbors integer specifying many neighbors used construct k-nearest neighbor graph. graph_type string specifying k-nearest neighbor graph \"weighted\" (default) \"unweighted\". graph_layout string specifying algorithm used compute force-directed layout. Passed ggraph. Defaults \"fr\", Fruchterman-Reingold algorithm. examples include \"nicely\", \"gem\", \"kk\", many others. See layout_tbl_graph_igraph examples. distance_function string indicating distance function use computing cell--cell distances. Valid options include \"euclidean\" (default) \"cosine\". edge_alpha numeric value 0 1 specifying transparency edges drawn force-directed layout. Defaults 0.25. node_size numeric value specifying size nodes force-directed layout. Defaults 2. theme ggplot2 theme apply force-directed layout. Defaults theme_void ... hnsw_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"ggraph/ggplot object.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_layout.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot force-directed layouts of single-cell data — tof_plot_cells_layout","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) ) # make a layout colored by a marker layout_cd38 <- tof_plot_cells_layout( tof_tibble = sim_data, color_col = cd38 ) # make a layout colored by cluster id layout_cluster <- tof_plot_cells_layout( tof_tibble = sim_data, color_col = cluster_id, )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"function makes scatterplots single-cell data using user-specified x- y-axes. Additionally, point scatterplot can colored using user-specified variable.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"","code":"tof_plot_cells_scatter( tof_tibble, x_col, y_col, color_col, facet_cols, theme = ggplot2::theme_bw(), ..., method = c(\"ggplot2\", \"scattermore\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"tof_tibble `tof_tbl` `tibble`. x_col unquoted column name specifying column `tof_tibble` used x-axis. y_col unquoted column name specifying column `tof_tibble` used y-axis. color_col unquoted column name specifying column `tof_tibble` used color point scatterplot. facet_cols unquoted column name specifying column `tof_tibble` used break scatterplot facets using facet_wrap. theme ggplot2 theme apply scatterplot. Defaults theme_bw. ... Optional additional arguments pass geom_point method = \"ggplot2\" geom_scattermore method = \"scattermore\". method string indicating plotting engine used. Valid values include \"ggplot2\" (default) \"scattermore\" (recommended 100K cells plotted). Note method = \"scattermore\" requires scattermore package installed.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"ggplot object.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_cells_scatter.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot scatterplots of single-cell data. — tof_plot_cells_scatter","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = c(rnorm(n = 500), rnorm(n = 500, mean = 2)), cd34 = c(rnorm(n = 500), rnorm(n = 500, mean = 4)), cd19 = rnorm(n = 1000), cluster_id = c(rep(\"a\", 500), rep(\"b\", 500)) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"function makes heatmap cluster--cluster marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap cluster IDs plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"","code":"tof_plot_clusters_heatmap( tof_tibble, cluster_col, marker_cols = where(tof_is_numeric), central_tendency_function = stats::median, scale_markerwise = FALSE, scale_clusterwise = FALSE, cluster_markers = TRUE, cluster_clusters = TRUE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers plotted along x-axis heatmap. Supports tidyselect helpers. central_tendency_function function use computing measure central tendency aggregated cluster cluster_col. Defaults median. scale_markerwise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_clusterwise boolean value indicating heatmap rescale rows heatmap maximum value cluster 1 minimum value 0. Defaults FALSE. cluster_markers boolean value indicating heatmap order columns (.e. markers) using hierarchical clustering. Defaults TRUE. cluster_clusters boolean value indicating heatmap order rows (.e. clusters) using hierarchical clustering. Defaults TRUE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_heatmap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make a heatmap summarizing cluster marker expression patterns in CyTOF data — tof_plot_clusters_heatmap","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) heatmap <- tof_plot_clusters_heatmap( tof_tibble = sim_data, cluster_col = cluster_id )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":null,"dir":"Reference","previous_headings":"","what":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"function plots minimum-spanning tree using clustered single-cell data order summarize cluster-level characteristics. node MST represents single cluster colored using user-specified variable (either continuous discrete).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"","code":"tof_plot_clusters_mst( tof_tibble, cluster_col, knn_cols = where(tof_is_numeric), color_col, num_neighbors = 5L, graph_type = c(\"unweighted\", \"weighted\"), graph_layout = \"nicely\", central_tendency_function = stats::median, distance_function = c(\"euclidean\", \"cosine\"), edge_alpha = 0.4, node_size = \"cluster_size\", theme = ggplot2::theme_void(), ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"tof_tibble `tof_tbl` `tibble`. cluster_col unquoted column name indicating column `tof_tibble` stores cluster ids cluster cell belongs. Cluster labels can produced via method user chooses - including manual gating, functions `tof_cluster_*` function family, method. knn_cols Unquoted column names indicating columns `tof_tibble` used compute cluster--cluster distances used construct k-nearest-neighbor graph. Supports tidyselect helpers. Defaults numeric columns. color_col Unquoted column name indicating column `tof_tibble` used color nodes MST. num_neighbors integer specifying many neighbors used construct k-nearest neighbor graph. graph_type string specifying k-nearest neighbor graph \"weighted\" (default) \"unweighted\". graph_layout argument specifies layout MST one two ways. Option 1: Provide string specifying algorithm used compute force-directed layout. Passed ggraph. Defaults \"nicely\", tries automatically select visually-appealing layout. examples include \"fr\", \"gem\", \"kk\", many others. See layout_tbl_graph_igraph examples. Option 2: Provide ggraph object previously generated function. layout used plot ggraph object used template new plot. Using option, number clusters (labels) must identical template. option useful want make multiple plots tof_tibble colored different protein markers, example. central_tendency_function function use computing measure central tendency aggregated cluster cluster_col. Defaults median. distance_function string indicating distance function use computing cluster--clusters distances constructing MST. Valid options include \"euclidean\" (default) \"cosine\". edge_alpha numeric value 0 1 specifying transparency edges drawn force-directed layout. Defaults 0.25. node_size Either numeric value specifying size nodes MST string \"cluster_size\", case size node representing cluster scaled according number cells cluster (default). theme ggplot2 theme apply force-directed layout. Defaults theme_void ... Optional additional arguments hnsw_knn","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"ggraph/ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_mst.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Visualize clusters in CyTOF data using a minimum spanning tree (MST). — tof_plot_clusters_mst","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE) ) # make a layout colored by a marker layout_cd38 <- tof_plot_clusters_mst( tof_tibble = sim_data, cluster_col = cluster_id, color_col = cd38 ) # use the same layout as the plot above to color the same # tree using a different marker layout_cd45 <- tof_plot_clusters_mst( tof_tibble = sim_data, cluster_col = cluster_id, color_col = cd45, graph_layout = layout_cd38 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":null,"dir":"Reference","previous_headings":"","what":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"function makes volcano plot using results differential expression analysis (DEA) produced one `tof_dea_*` verbs. point volcano plot represents single cluster-marker pair, colored significance level direction marker expression difference.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"","code":"tof_plot_clusters_volcano( dea_result, num_top_pairs = 10L, alpha = 0.05, point_size = 2, label_size = 3, nudge_x = 0, nudge_y = 0.25, increase_color = \"#207394\", decrease_color = \"#cd5241\", insignificant_color = \"#cdcdcd\", use_ggrepel = FALSE, theme = ggplot2::theme_bw() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"dea_result tibble containing differential expression analysis (DEA) results produced one members `tof_dea_*` function family. num_top_pairs integer representing number significant cluster-marker pairs labeled volcano plot. alpha numeric value 0 1 representing significance level p-value considered statistically significant. Defaults 0.05. point_size numeric value specifying size points volcano plot. label_size numeric value specifying size text labeling cluster-marker pairs. nudge_x numeric value specifying far cluster-marker pair labels adjusted left (`nudge_x` negative) right (`nudge_x` positive) avoid overlap plotted points. Passed geom_text, ignored `use_ggrepel` = TRUE. Defaults 0. nudge_y numeric value specifying far cluster-marker pair labels adjusted downwards (`nudge_y` negative) upwards (`nudge_y` positive) avoid overlap plotted points. Passed geom_text, ignored `use_ggrepel` = TRUE. Defaults 0.25. increase_color hex code specifying fill color used points corresponding cluster-marker pairs significant increases detected. decrease_color hex code specifying fill color used points corresponding cluster-marker pairs significant decreases detected. insignificant_color hex code specifying fill color used points corresponding cluster-marker pairs significant differences detected. use_ggrepel boolean value indicting geom_text_repel used plot labels cluster-marker pairs. Defaults FALSE. TRUE, ggrepel package must installed. theme ggplot2 theme apply volcano plot. Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_clusters_volcano.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Create a volcano plot from differential expression analysis results — tof_plot_clusters_volcano","text":"","code":"# create a mock differential expression analysis result sim_dea_result <- dplyr::tibble( cluster_id = rep(letters, 2), marker = rep(c(\"cd45\", \"cd34\"), times = length(letters)), p_adj = runif(n = 2 * length(letters), min = 0, max = 0.5), mean_fc = runif(n = 2 * length(letters), min = 0.01, max = 10), significant = dplyr::if_else(p_adj < 0.05, \"*\", \"\") ) attr(sim_dea_result, which = \"dea_method\") <- \"t_unpaired\" # create the volcano plot volcano <- tof_plot_clusters_volcano(dea_result = sim_dea_result)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"function makes heatmap group--group marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap groups plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"","code":"tof_plot_heatmap( tof_tibble, y_col, marker_cols = where(tof_is_numeric), central_tendency_function = stats::median, scale_markerwise = FALSE, scale_ywise = FALSE, cluster_markers = TRUE, cluster_groups = TRUE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"tof_tibble `tof_tbl` `tibble`. y_col unquoted column name indicating column `tof_tibble` stores ids group cell belongs. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers plotted along x-axis heatmap. Supports tidyselect helpers. central_tendency_function function use computing measure central tendency aggregated cluster cluster_col. Defaults median. scale_markerwise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_ywise boolean value indicating heatmap rescale rows heatmap maximum value group 1 minimum value 0. Defaults FALSE. cluster_markers boolean value indicating heatmap order columns (.e. markers) using hierarchical clustering. Defaults TRUE. cluster_groups boolean value indicating heatmap order rows (.e. groups) using hierarchical clustering. Defaults TRUE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing group marker expression patterns in high-dimensional cytometry data — tof_plot_heatmap","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"Plot results glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"","code":"tof_plot_model(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"ggplot object. `tof_model` linear model, scatterplot predicted outcome vs. true outcome returned. `tof_model` two-class model, ROC curve returned. `tof_model` multiclass model, one-versus-ROC curve returned class. `tof_model` survival model, Kaplan-Meier curve returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot the results of a glmnet model fit on sample-level data. — tof_plot_model","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ) ) new_tibble <- dplyr::tibble( sample = as.character(1:20), cd45 = runif(n = 20), pstat5 = runif(n = 20), cd34 = runif(n = 20), outcome = (3 * cd45) + (4 * pstat5) + rnorm(20), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) # make the plot plot_1 <- tof_plot_model(tof_model = regression_model, new_data = new_tibble) # train a logistic regression classifier logistic_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = class, model_type = \"two-class\" ) # make the plot plot_2 <- tof_plot_model(tof_model = logistic_model, new_data = new_tibble)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"Plot results linear glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"","code":"tof_plot_model_linear(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_linear.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a linear glmnet model fit on sample-level data. — tof_plot_model_linear","text":"ggplot object. Specifically, scatterplot predicted outcome vs. true outcome returned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"Plot results two-class glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"","code":"tof_plot_model_logistic(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot. Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_logistic.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a two-class glmnet model fit on sample-level data. — tof_plot_model_logistic","text":"ggplot object. Specifically, ROC curve..","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"Plot results multiclass glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"","code":"tof_plot_model_multinomial(tof_model, new_data, theme = ggplot2::theme_bw())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. theme ggplot2 theme apply plot. Defaults theme_bw.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_multinomial.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a multiclass glmnet model fit on sample-level data. — tof_plot_model_multinomial","text":"ggplot object. Specifically, one-versus-ROC curve (one class).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"Plot results survival glmnet model fit sample-level data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"","code":"tof_plot_model_survival( tof_model, new_data, censor_size = 2.5, theme = ggplot2::theme_bw() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations plot made. new_data provided, plot made using training data used fit model. Alternatively, string \"tuning_data\" can provided, plot generated using predictions generated model tuning. censor_size numeric value indicating large plot tick marks representing censored values Kaplan-Meier curve. theme ggplot2 theme apply plot. Defaults theme_bw","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_model_survival.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot the results of a survival glmnet model fit on sample-level data. — tof_plot_model_survival","text":"ggplot object. Specifically, Kaplan-Meier curve.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"function makes heatmap sample--sample marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap sample IDs plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"","code":"tof_plot_sample_features( feature_tibble, sample_col, feature_cols = where(tof_is_numeric), scale_featurewise = FALSE, scale_samplewise = FALSE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"feature_tibble tbl_df data.frame aggregated sample-level features, generated tof_extract_features. sample_col unquoted column name indicating column `tof_tibble` stores IDs sample. sample IDs present, numeric ID assigned row `feature_tibble` based row index. feature_cols Unquoted column names indicating column `feature_tibble` interpreted features plotted along x-axis heatmap. Supports tidyselect helpers. scale_featurewise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_samplewise boolean value indicating heatmap rescale rows heatmap maximum value sample 1 minimum value 0. Defaults FALSE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_features.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_features","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), cluster_id = sample(letters, size = 1000, replace = TRUE), sample_id = sample(paste0(\"sample\", 1:5), size = 1000, replace = TRUE) ) # extract cluster proportions in each simulated patient feature_data <- tof_extract_proportion( tof_tibble = sim_data, cluster_col = cluster_id, group_cols = sample_id ) # plot the heatmap heatmap <- tof_plot_sample_features(feature_tibble = feature_data)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":null,"dir":"Reference","previous_headings":"","what":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"function makes heatmap sample--sample marker expression patterns single-cell data. Markers plotted along horizontal (x-) axis heatmap sample IDs plotted along vertical (y-) axis heatmap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"","code":"tof_plot_sample_heatmap( tof_tibble, sample_col, marker_cols = where(tof_is_numeric), central_tendency_function = stats::median, scale_markerwise = FALSE, scale_samplewise = FALSE, line_width = 0.25, theme = ggplot2::theme_minimal() )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"tof_tibble `tof_tbl` `tibble`. sample_col unquoted column name indicating column `tof_tibble` stores ids sample cell belongs. marker_cols Unquoted column names indicating column `tof_tibble` interpreted markers plotted along x-axis heatmap. Supports tidyselect helpers. central_tendency_function function use computing measure central tendency aggregated sample cluster_col. Defaults median. scale_markerwise boolean value indicating heatmap rescale columns heatmap maximum value marker 1 minimum value 0. Defaults FALSE. scale_samplewise boolean value indicating heatmap rescale rows heatmap maximum value sample 1 minimum value 0. Defaults FALSE. line_width numeric value indicating thick lines separating tiles heatmap . Defaults 0.25. theme ggplot2 theme apply heatmap. Defaults theme_minimal","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"ggplot object.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_plot_sample_heatmap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Make a heatmap summarizing sample marker expression patterns in CyTOF data — tof_plot_sample_heatmap","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000), sample_id = sample(paste0(\"sample\", 1:5), size = 1000, replace = TRUE) ) heatmap <- tof_plot_sample_heatmap( tof_tibble = sim_data, sample_col = sample_id )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":null,"dir":"Reference","previous_headings":"","what":"Post-process transformed CyTOF data. — tof_postprocess","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"function transforms `tof_tibble` transformed ion counts mass cytometer back something looks like .fcs file Fluidigm software generates.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"","code":"tof_postprocess( tof_tibble = NULL, channel_cols = where(tof_is_numeric), redo_noise = FALSE, transform_fun = function(x) rev_asinh(x, shift_factor = 0, scale_factor = 0.2) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"tof_tibble `tof_tibble` `tibble`. channel_cols vector non-quoted column names indicating columns `tof_tibble` contain protein measurements. Supports tidyselect helpers. nothing specified, default transform numeric columns. redo_noise boolean value indicating whether add uniform noise CyTOF measurement aesthetic visualization purposes. See paper. Defaults FALSE transform_fun vectorized function apply column specified `channel_cols` post-processing. Defaults rev_asinh transformation (cofactor 5).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"`tof_tbl` identical dimensions input `tof_tibble`, columns specified channel_cols transformed using `transform_fun` (noise added removed depending `redo_noise`).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_postprocess.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Post-process transformed CyTOF data. — tof_postprocess","text":"","code":"# read in an example .fcs file from tidytof's internal datasets input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) # preprocess all numeric columns with default behavior # arcsinh transformation with a cofactor of 5 preprocessed_tof_tibble <- tof_preprocess(tof_tibble) # postprocess all numeric columns to reverse the preprocessing tof_postprocess(tof_tibble) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 Inf 22215276. 6.00e224 8.82 1411688. Inf #> 2 Inf 446205752. Inf 135. 859679. Inf #> 3 Inf 22215276. Inf 2634. 321. 8.51e277 #> 4 Inf 22215276. 2.24e254 3.47 1383. 8.29e254 #> 5 Inf 164149923. Inf 127. 38726. 3.70e280 #> 6 Inf 446205752. 1.14e211 163. 116. 3.29e272 #> 7 Inf 22215276. 2.62e219 79.1 175. 1.82e246 #> 8 Inf 164149923. 5.35e246 1876. 291228. 5.64e305 #> 9 Inf 446205752. Inf 55.3 24727. Inf #> 10 Inf 22215276. 2.38e236 5.05 2010273. Inf #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":null,"dir":"Reference","previous_headings":"","what":"Use a trained elastic net model to predict fitted values from new data — tof_predict","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"function uses trained `tof_model` make predictions new data.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"","code":"tof_predict( tof_model, new_data, prediction_type = c(\"response\", \"class\", \"link\", \"survival curve\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"tof_model `tof_model` trained using tof_train_model new_data tibble new observations predictions made. new_data provided, predictions made training data used fit model. prediction_type string indicating type prediction provided model: \"response\" (default) \"linear\" models, predicted response observation. \"two-class\" \"multiclass\" models, fitted probabilities class observation. \"survival\" models, fitted relative-risk observation. \"class\" applies \"two-class\" \"multiclass\" models. , class label corresponding class maximum fitted probability. \"link\" linear predictions model (output link function model family.) \"survival curve\" applies \"survival\" models. Returns tibble indicating patient's probability survival (1 - probability(event)) timepoint dataset. Obtained using survfit function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"tibble single column (`.pred`) containing predictions , multiclass models `prediction_type` == \"response\", tibble one column class. row output corresponds row `new_data` ( , `new_data` provided, row `tof_model`'s training data). latter case, sure check `tof_model$training_data` confirm order observations, resampling procedure can change ordering relative original input data.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_predict.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Use a trained elastic net model to predict fitted values from new data — tof_predict","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100) ) new_tibble <- dplyr::tibble( sample = as.character(1:20), cd45 = runif(n = 20), pstat5 = runif(n = 20), cd34 = runif(n = 20), outcome = (3 * cd45) + (4 * pstat5) + rnorm(20) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model regression_model <- tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) # apply the model to new data tof_predict(tof_model = regression_model, new_data = new_tibble) #> # A tibble: 20 × 1 #> .pred #> #> 1 4.06 #> 2 1.01 #> 3 5.13 #> 4 4.07 #> 5 4.76 #> 6 4.54 #> 7 2.65 #> 8 2.13 #> 9 2.95 #> 10 5.19 #> 11 4.63 #> 12 1.27 #> 13 3.74 #> 14 3.48 #> 15 2.03 #> 16 3.08 #> 17 1.20 #> 18 5.99 #> 19 0.665 #> 20 0.118"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":null,"dir":"Reference","previous_headings":"","what":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"Train recipe list recipes preprocessing sample-level cytometry data","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"","code":"tof_prep_recipe(split_data, unprepped_recipe)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"split_data `rsplit` `rset` object rsample package containing sample-level data use modeling. easiest way generate use tof_split_data. Alternatively, unsplit tbl_df, though recommended. unprepped_recipe recipe object (`split_data` `rsplit` object `tbl_df`) list recipes (`split_data` `rset` object).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_prep_recipe.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Train a recipe or list of recipes for preprocessing sample-level cytometry data — tof_prep_recipe","text":"split_data \"rsplit\" \"tbl_df\" object, return single prepped recipe. split_data \"rset\" object, return list prepped recipes specific fold resampling procedure.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":null,"dir":"Reference","previous_headings":"","what":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"function transforms `tof_tbl` raw ion counts, reads, fluorescence intensity units directly measured cytometer using user-provided function. can used perform standard pre-processing steps (.e. arcsinh transformation) cytometry data analysis.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"","code":"tof_preprocess( tof_tibble = NULL, channel_cols = where(tof_is_numeric), undo_noise = FALSE, transform_fun = function(x) asinh(x/5) )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default transform numeric columns. undo_noise boolean value indicating whether remove uniform noise Fluidigm software adds CyTOF measurements aesthetic visualization purposes. See paper. Defaults FALSE. transform_fun vectorized function apply protein value variance stabilization. Defaults asinh transformation (co-factor 5).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"`tof_tbl` identical dimensions input `tof_tibble`, columns specified channel_cols transformed using `transform_fun` (noise removed removed depending `undo_noise`).","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_preprocess.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Preprocess raw high-dimensional cytometry data. — tof_preprocess","text":"","code":"# read in an example .fcs file from tidytof's internal datasets input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) # preprocess all numeric columns with default behavior # arcsinh transformation with a cofactor of 5 tof_preprocess(tof_tibble) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 15.3 1.88 5.33 0.263 1.70 5.85 #> 2 14.9 2.05 5.83 0.731 1.67 5.71 #> 3 15.2 1.88 5.70 1.13 0.861 5.54 #> 4 13.7 1.88 5.45 0.129 1.06 5.46 #> 5 15.2 1.99 5.73 0.721 1.41 5.55 #> 6 14.4 2.05 5.27 0.760 0.708 5.52 #> 7 13.9 1.88 5.31 0.645 0.771 5.42 #> 8 14.2 1.99 5.42 1.09 1.58 5.64 #> 9 15.6 2.05 6.03 0.586 1.37 5.83 #> 10 9.75 1.88 5.38 0.177 1.73 5.78 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , … # preprocess all numeric columns using the log base 10 tranformation tof_preprocess(tof_tibble, transform_fun = log10) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 7.04 1.20 2.71 0.125 1.12 2.94 #> 2 6.85 1.28 2.93 0.601 1.11 2.88 #> 3 6.99 1.20 2.87 0.843 0.686 2.81 #> 4 6.36 1.20 2.77 -0.189 0.800 2.77 #> 5 6.98 1.26 2.89 0.594 0.984 2.81 #> 6 6.65 1.28 2.69 0.621 0.584 2.80 #> 7 6.44 1.20 2.70 0.539 0.628 2.75 #> 8 6.57 1.26 2.75 0.821 1.07 2.85 #> 9 7.18 1.28 3.02 0.491 0.964 2.93 #> 10 4.63 1.20 2.74 -0.0515 1.13 2.91 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":null,"dir":"Reference","previous_headings":"","what":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"Read high-dimensional cytometry data .csv file tidy tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"","code":"tof_read_csv(file_path = NULL, panel_info = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"file_path file path single .csv file. panel_info Optional. tibble data.frame containing information panel used high-dimensional cytometry data acquisition. Two columns required: \"metals\" \"antigens\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_csv.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read high-dimensional cytometry data from a .csv file into a tidy tibble. — tof_read_csv","text":"`tof_tbl` row represents single cell column represents high-dimensional cytometry antigen channel. `tof_tbl` S3 class extends \"tibble\" class storing one additional attribute: \"panel\" (tibble storing information panel used data acquisition). panel information obvious data read .csv file, information must provided manually user (unlike `tof_read_fcs`).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"Read data .fcs/.csv file directory .fcs/.csv files.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"","code":"tof_read_data(path = NULL, sep = \"|\", panel_info = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"path file path single file directory files. valid file types .fcs files .csv files containing high-dimensional cytometry data. sep Optional. string use separate antigen name associated metal column names output tibble. Defaults \"|\". used input file .fcs file. panel_info Optional. tibble data.frame containing information panel used high-dimensional cytometry data acquisition. Two columns required: \"metals\" \"antigens\". used input file .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"[c m+1] tibble row represents single cell (c total dataset) column represents high-dimensional cytometry measurement (m total dataset). one .fcs read , last column tibble (`file_name`) represent file name .fcs file cell read.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Read data from an .fcs/.csv file or a directory of .fcs/.csv files. — tof_read_data","text":"","code":"input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_read_data(input_file) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 11021370 16 517. 1.33 13.2 865. #> 2 7112446. 19 850. 3.99 12.7 756. #> 3 9722098 16 747. 6.96 4.85 639. #> 4 2267279. 16 585. 0.648 6.32 586. #> 5 9624729 18 773. 3.93 9.65 645. #> 6 4439897 19 485. 4.18 3.84 627. #> 7 2762526. 16 504. 3.46 4.25 566. #> 8 3746682. 18 567. 6.62 11.7 703. #> 9 15214280 19 1043. 3.10 9.20 853. #> 10 42699. 16 543. 0.888 13.6 813. #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":null,"dir":"Reference","previous_headings":"","what":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"function reads high-dimensional cytometry data single .fcs file tidy data structure called `tof_tbl` (\"tof_tibble\"). tof_tibbles identical normal tibbles except additional attribute (\"panel\") stores information high-dimensional cytometry panel used data acquisition.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"","code":"tof_read_fcs(file_path = NULL, sep = \"|\")"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"file_path file path single .fcs file. sep string use separate antigen name associated metal column names output tibble. Defaults \"|\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_fcs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read high-dimensional cytometry data from an .fcs file into a tidy tibble. — tof_read_fcs","text":"`tof_tbl` row represents single cell column represents high-dimensional cytometry antigen channel. `tof_tbl` S3 class extends \"tibble\" class storing one additional attribute: \"panel\" (tibble storing information panel used data acquisition).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":null,"dir":"Reference","previous_headings":"","what":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"Read high-dimensional cytometry data single .fcs .csv file tidy tibble.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"","code":"tof_read_file(file_path = NULL, sep = \"|\", panel_info = dplyr::tibble())"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"file_path file path single .fcs .csv file. sep string use separate antigen name associated metal column names output tibble. Defaults \"|\". used input file .fcs file. panel_info Optional. tibble data.frame containing information panel used high-dimensional cytometry data acquisition. Two columns required: \"metals\" \"antigens\". used input file .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_read_file.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Read high-dimensional cytometry data from a single .fcs or .csv file into a tidy tibble. — tof_read_file","text":"`tof_tbl` row represents single cell column represents high-dimensional cytometry antigen channel. `tof_tbl` S3 class extends \"tibble\" class storing one additional attribute: \"panel\" (tibble storing information panel used data acquisition). panel information obvious data read .csv file, information must provided manually user.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":null,"dir":"Reference","previous_headings":"","what":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"function wrapper around tidytof's tof_reduce_* function family. performs dimensionality reduction single-cell data using user-specified method (3 choices) method's corresponding input parameters","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"","code":"tof_reduce_dimensions( tof_tibble, ..., augment = TRUE, method = c(\"pca\", \"tsne\", \"umap\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"tof_tibble `tof_tbl` `tibble`. ... Arguments passed tof_reduce_* function corresponding embedding method. See tof_reduce_pca, tof_reduce_tsne, tof_reduce_umap. augment boolean value indicating output column-bind dimensionality-reduced embedding vectors cell new column `tof_tibble` (TRUE, default) tibble including low-dimensionality embeddings returned (FALSE). method method dimensionality reduction. Currently, PCA, tSNE, UMAP embedding supported.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated embedding space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_dimensions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Apply dimensionality reduction to a single-cell dataset. — tof_reduce_dimensions","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 100), cd38 = rnorm(n = 100), cd34 = rnorm(n = 100), cd19 = rnorm(n = 100) ) # calculate pca tof_reduce_dimensions(tof_tibble = sim_data, method = \"pca\") #> # A tibble: 100 × 8 #> cd45 cd38 cd34 cd19 .pc1 .pc2 .pc3 .pc4 #> #> 1 1.39 -0.189 -0.202 -0.956 -0.752 0.370 -1.34 -0.395 #> 2 1.39 -1.25 -2.00 -0.963 0.656 -0.729 -2.61 -0.274 #> 3 -0.688 -0.896 0.0756 0.610 0.743 -0.189 0.720 -0.455 #> 4 -1.18 -0.0477 -1.78 -0.249 1.17 -0.839 -0.456 1.45 #> 5 0.925 0.198 -0.208 -0.0243 -0.801 -0.288 -0.504 -0.217 #> 6 0.388 -0.689 0.252 1.34 -0.118 -0.791 0.672 -1.17 #> 7 -0.207 -1.14 1.05 0.931 0.259 0.189 1.18 -1.39 #> 8 0.947 2.46 0.174 1.87 -2.63 -1.68 1.15 0.439 #> 9 -0.258 -2.54 -0.769 -1.52 2.07 0.916 -1.49 -0.655 #> 10 1.77 0.659 0.726 -0.134 -1.95 0.245 -0.390 -0.724 #> # ℹ 90 more rows # calculate tsne tof_reduce_dimensions(tof_tibble = sim_data, method = \"tsne\") #> # A tibble: 100 × 6 #> cd45 cd38 cd34 cd19 .tsne1 .tsne2 #> #> 1 1.39 -0.189 -0.202 -0.956 1.44 -0.343 #> 2 1.39 -1.25 -2.00 -0.963 -2.51 2.47 #> 3 -0.688 -0.896 0.0756 0.610 -2.30 -1.68 #> 4 -1.18 -0.0477 -1.78 -0.249 -2.58 0.667 #> 5 0.925 0.198 -0.208 -0.0243 1.65 1.49 #> 6 0.388 -0.689 0.252 1.34 -2.63 -3.18 #> 7 -0.207 -1.14 1.05 0.931 -1.81 -3.71 #> 8 0.947 2.46 0.174 1.87 2.89 4.60 #> 9 -0.258 -2.54 -0.769 -1.52 0.474 -3.26 #> 10 1.77 0.659 0.726 -0.134 3.42 2.05 #> # ℹ 90 more rows # calculate umap tof_reduce_dimensions(tof_tibble = sim_data, method = \"umap\") #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> # A tibble: 100 × 6 #> cd45 cd38 cd34 cd19 .umap1 .umap2 #> #> 1 1.39 -0.189 -0.202 -0.956 -3.80 -2.20 #> 2 1.39 -1.25 -2.00 -0.963 1.54 -1.89 #> 3 -0.688 -0.896 0.0756 0.610 1.52 0.938 #> 4 -1.18 -0.0477 -1.78 -0.249 0.418 -0.149 #> 5 0.925 0.198 -0.208 -0.0243 -3.80 -1.13 #> 6 0.388 -0.689 0.252 1.34 3.91 -2.45 #> 7 -0.207 -1.14 1.05 0.931 4.12 -3.12 #> 8 0.947 2.46 0.174 1.87 -2.15 1.50 #> 9 -0.258 -2.54 -0.769 -1.52 -1.83 -2.71 #> 10 1.77 0.659 0.726 -0.134 -4.28 0.887 #> # ℹ 90 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform principal component analysis on single-cell data — tof_reduce_pca","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"function calculates principal components using single-cell data `tof_tibble`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"","code":"tof_reduce_pca( tof_tibble, pca_cols = where(tof_is_numeric), num_comp = 5, threshold = NA, center = TRUE, scale = TRUE, return_recipe = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"tof_tibble `tof_tbl` `tibble`. pca_cols Unquoted column names indicating columns `tof_tibble` use computing principal components. Defaults numeric columns. Supports tidyselect helpers. num_comp number PCA components calculate. Defaults 5. See step_pca. threshold double 0 1 representing fraction total variance covered components returned output. See step_pca. center boolean value indicating column centered mean 0 PCA analysis. Defaults TRUE. scale boolean value indicating column scaled standard deviation = 1 PCA analysis. Defaults TRUE. return_recipe boolean value indicating instead UMAP result, prepped recipe object containing PCA embedding returned. Set option TRUE want create PCA embedding using one dataset also want project new observations onto embedding space later.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated principal component space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_pca.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform principal component analysis on single-cell data — tof_reduce_pca","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) new_data <- dplyr::tibble( cd45 = rnorm(n = 50), cd38 = rnorm(n = 50), cd34 = rnorm(n = 50), cd19 = rnorm(n = 50) ) # calculate pca tof_reduce_pca(tof_tibble = sim_data, num_comp = 2) #> # A tibble: 200 × 2 #> .pc1 .pc2 #> #> 1 -0.324 -2.56 #> 2 -1.03 0.829 #> 3 0.657 -0.668 #> 4 0.511 -0.681 #> 5 0.250 0.361 #> 6 -0.448 -0.371 #> 7 -1.13 1.54 #> 8 -0.259 -1.95 #> 9 -0.0261 0.277 #> 10 0.0256 0.445 #> # ℹ 190 more rows # return recipe instead of embeddings pca_recipe <- tof_reduce_pca(tof_tibble = sim_data, return_recipe = TRUE) # apply recipe to new data recipes::bake(pca_recipe, new_data = new_data) #> # A tibble: 50 × 4 #> PC1 PC2 PC3 PC4 #> #> 1 1.06 1.68 -0.145 0.324 #> 2 -0.295 0.281 -0.912 1.73 #> 3 0.459 -0.686 -2.27 0.921 #> 4 2.57 -0.607 -0.349 -0.0860 #> 5 -0.637 -1.86 1.13 0.370 #> 6 -0.265 -0.281 0.562 -0.349 #> 7 -0.806 -0.395 -0.558 1.36 #> 8 -0.421 1.33 -0.410 -1.35 #> 9 0.667 -0.798 1.59 -0.0229 #> 10 -0.329 -0.494 0.0244 -0.315 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"function calculates tSNE embedding using single-cell data `tof_tibble`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"","code":"tof_reduce_tsne( tof_tibble, tsne_cols = where(tof_is_numeric), num_comp = 2, perplexity = 30, theta = 0.5, max_iterations = 1000, verbose = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"tof_tibble `tof_tbl` `tibble`. tsne_cols Unquoted column names indicating columns `tof_tibble` use computing tSNE embedding. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_comp number tSNE components calculate embedding. Defaults 2. perplexity positive numeric value represents represents rough balance input data’s local global structure emphasized embedding. Smaller values emphasize local structure; larger values emphasize global structure. recommended range generally 5-50. Defaults 30. theta numeric value representing speed/accuracy tradeoff embedding. Set 0 exact tSNE; increase faster approximation. Defaults 0.5 max_iterations integer number iterations use embedding calculation. Defaults 1000. verbose boolean value indicating whether progress updates printed embedding calculation. Default FALSE. ... Additional arguments pass Rtsne.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated tSNE space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_tsne.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform t-distributed stochastic neighborhood embedding on single-cell data — tof_reduce_tsne","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) # calculate tsne tof_reduce_tsne(tof_tibble = sim_data) #> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> #> 1 5.71 -1.94 #> 2 6.79 -3.89 #> 3 4.59 1.47 #> 4 -5.97 3.60 #> 5 1.44 -6.66 #> 6 6.40 -4.35 #> 7 0.858 6.37 #> 8 3.04 0.757 #> 9 -4.07 -1.17 #> 10 2.57 -7.17 #> # ℹ 190 more rows # calculate tsne with only 2 columns tof_reduce_tsne(tof_tibble = sim_data, tsne_cols = c(cd34, cd38)) #> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> #> 1 -6.78 4.69 #> 2 -3.11 6.73 #> 3 -1.96 4.62 #> 4 8.84 -2.51 #> 5 6.52 2.62 #> 6 -3.57 2.33 #> 7 8.31 1.91 #> 8 1.10 6.10 #> 9 -0.347 -5.74 #> 10 4.42 6.23 #> # ℹ 190 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":null,"dir":"Reference","previous_headings":"","what":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"function calculates UMAP embedding single-cell data `tof_tibble`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"","code":"tof_reduce_umap( tof_tibble, umap_cols = where(tof_is_numeric), num_comp = 2, neighbors = 5, min_dist = 0.01, learn_rate = 1, epochs = NULL, verbose = FALSE, n_threads = 1, return_recipe = FALSE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"tof_tibble `tof_tbl` `tibble`. umap_cols Unquoted column names indicating columns `tof_tibble` use computing UMAP embedding. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_comp integer number UMAP components. neighbors integer number nearest neighbors used construct target simplicial set. min_dist effective minimum distance embedded points. learn_rate Positive number learning rate optimization process. epochs Number iterations neighbor optimization. See umap details. verbose boolean indicating run details logged console. Defaults FALSE. n_threads Number threads use UMAP calculation. Defaults 1. return_recipe boolean value indicating instead UMAP result, prepped recipe object containing UMAP embedding returned. Set option TRUE want create UMAP embedding using one dataset also want project new observations onto embedding space later. ... Optional. options passed arguments umap.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"tibble number rows `tof_tibble`, representing single cell. `num_comp` columns represents cell's embedding calculated UMAP space.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_reduce_umap.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Apply uniform manifold approximation and projection (UMAP) to single-cell data — tof_reduce_umap","text":"","code":"# simulate single-cell data sim_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200) ) new_data <- dplyr::tibble( cd45 = rnorm(n = 50), cd38 = rnorm(n = 50), cd34 = rnorm(n = 50), cd19 = rnorm(n = 50) ) # calculate umap tof_reduce_umap(tof_tibble = sim_data) #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> # A tibble: 200 × 2 #> .umap1 .umap2 #> #> 1 -0.107 -2.62 #> 2 1.28 0.775 #> 3 -3.33 1.56 #> 4 1.09 0.991 #> 5 -2.92 -3.27 #> 6 -3.02 -3.33 #> 7 1.37 2.20 #> 8 0.917 2.54 #> 9 -0.459 -1.25 #> 10 2.54 2.57 #> # ℹ 190 more rows # calculate umap with only 2 columns tof_reduce_tsne(tof_tibble = sim_data, umap_cols = c(cd34, cd38)) #> # A tibble: 200 × 2 #> .tsne1 .tsne2 #> #> 1 1.89 -6.18 #> 2 -7.23 -0.302 #> 3 2.95 1.72 #> 4 -7.82 -0.0960 #> 5 -0.989 -5.83 #> 6 -0.605 -5.28 #> 7 -3.50 3.27 #> 8 -4.11 4.16 #> 9 6.96 -3.82 #> 10 -4.94 8.10 #> # ℹ 190 more rows # return recipe umap_recipe <- tof_reduce_umap(tof_tibble = sim_data, return_recipe = TRUE) #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ #> Found more than one class \"dist\" in cache; using the first, from namespace 'BiocGenerics' #> Also defined by ‘spam’ # apply recipe to new data recipes::bake(umap_recipe, new_data = new_data) #> # A tibble: 50 × 2 #> UMAP1 UMAP2 #> #> 1 -0.411 1.91 #> 2 -0.689 -1.06 #> 3 -5.01 -0.0412 #> 4 5.71 -0.340 #> 5 -4.68 0.0799 #> 6 -4.96 -0.0157 #> 7 4.94 3.30 #> 8 -5.05 -0.222 #> 9 4.13 0.650 #> 10 3.40 2.58 #> # ℹ 40 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":null,"dir":"Reference","previous_headings":"","what":"Set panel information from a tof_tibble — tof_set_panel","title":"Set panel information from a tof_tibble — tof_set_panel","text":"Set panel information tof_tibble","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Set panel information from a tof_tibble — tof_set_panel","text":"","code":"tof_set_panel(tof_tibble, panel)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Set panel information from a tof_tibble — tof_set_panel","text":"tof_tibble `tof_tbl`. panel tibble containing two columns (`metals` `antigens`) representing information panel","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Set panel information from a tof_tibble — tof_set_panel","text":"`tof_tibble` containing information CyTOF panel used data acquisition data contained input `tof_tibble`. Two columns required: \"metals\" \"antigens\".","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_set_panel.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Set panel information from a tof_tibble — tof_set_panel","text":"","code":"# get current panel from an .fcs file input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) current_panel <- tof_get_panel(tof_tibble) # create a new panel (remove empty channels) new_panel <- dplyr::filter(current_panel, antigens != \"empty\") tof_set_panel(tof_tibble = tof_tibble, panel = new_panel) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 11021370 16 517. 1.33 13.2 865. #> 2 7112446. 19 850. 3.99 12.7 756. #> 3 9722098 16 747. 6.96 4.85 639. #> 4 2267279. 16 585. 0.648 6.32 586. #> 5 9624729 18 773. 3.93 9.65 645. #> 6 4439897 19 485. 4.18 3.84 627. #> 7 2762526. 16 504. 3.46 4.25 566. #> 8 3746682. 18 567. 6.62 11.7 703. #> 9 15214280 19 1043. 3.10 9.20 853. #> 10 42699. 16 543. 0.888 13.6 813. #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":null,"dir":"Reference","previous_headings":"","what":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"function uses algorithm described Qiu et al., (2011) estimate local density cell `tof_tbl` `tibble` containing high-dimensional cytometry data. Briefly, algorithm involves counting number neighboring cells within sphere radius alpha surrounding cell. , using nn2 function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"","code":"tof_spade_density( tof_tibble, distance_cols = where(tof_is_numeric), distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\"), num_alpha_cells = 2000L, alpha_multiplier = 5, max_neighbors = round(0.01 * nrow(tof_tibble)), normalize = TRUE, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"tof_tibble `tof_tbl` `tibble`. distance_cols Unquoted names columns `tof_tibble` use calculating cell--cell distances local density estimation cell. Defaults numeric columns `tof_tibble`. distance_function string indicating distance function use calculating cell--cell distances local density estimation. Options include \"euclidean\" (default) \"cosine\". num_alpha_cells integer indicating many cells `tof_tibble` randomly sampled `tof_tibble` order estimate `alpha`, radius sphere constructed around cell local density estimation. Alpha calculated taking median nearest-neighbor distance `num_alpha_cells` randomly-sampled cells multiplying `alpha_multiplier`. Defaults 2000. alpha_multiplier numeric value indicating multiplier used calculating `alpha`, radius sphere constructed around cell local density estimation. Alpha calculated taking median nearest-neighbor distance `num_alpha_cells` cells randomly-sampled `tof_tibble` multiplying `alpha_multiplier`. Defaults 5. max_neighbors integer indicating maximum number neighbors can counted within sphere surrounding given cell. Implemented reduce density estimation procedure's speed memory requirements. Defaults 1% number rows `tof_tibble`. normalize boolean value indicating vector local density estimates normalized values 0 1. Defaults TRUE. ... Additional optional arguments pass tof_find_knn.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"tibble single column named \".spade_density\" containing local density estimates input cell `tof_tibble`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_spade_density.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Estimate cells' local densities as done in Spanning-tree Progression Analysis of Density-normalized Events (SPADE) — tof_spade_density","text":"","code":"sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) # perform the density estimation tof_spade_density(tof_tibble = sim_data) #> # A tibble: 1,000 × 1 #> .spade_density #> #> 1 1 #> 2 1 #> 3 1 #> 4 1 #> 5 1 #> 6 1 #> 7 1 #> 8 1 #> 9 1 #> 10 1 #> # ℹ 990 more rows # perform the density estimation using cosine distance tof_spade_density( tof_tibble = sim_data, distance_function = \"cosine\", alpha_multiplier = 2 ) #> # A tibble: 1,000 × 1 #> .spade_density #> #> 1 0.375 #> 2 0.25 #> 3 0.25 #> 4 0 #> 5 0.625 #> 6 0.125 #> 7 0.375 #> 8 0.125 #> 9 0.25 #> 10 0.375 #> # ℹ 990 more rows # perform the density estimation with a smaller search radius around # each cell tof_spade_density( tof_tibble = sim_data, alpha_multiplier = 2 ) #> # A tibble: 1,000 × 1 #> .spade_density #> #> 1 1 #> 2 1 #> 3 0.7 #> 4 0.1 #> 5 0.3 #> 6 0.9 #> 7 1 #> 8 0.5 #> 9 1 #> 10 0.1 #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Split high-dimensional cytometry data into a training and test set — tof_split_data","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"Split high-dimensional cytometry data training test set","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"","code":"tof_split_data( feature_tibble, split_method = c(\"k-fold\", \"bootstrap\", \"simple\"), split_col, simple_prop = 3/4, num_cv_folds = 10, num_cv_repeats = 1L, num_bootstraps = 10, strata = NULL, ... )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"feature_tibble tibble row represents sample- patient- level observation, produced tof_extract_features. split_method Either string logical vector specifying perform split. string, valid options include k-fold cross validation (\"k-fold\"; default), bootstrapping (\"bootstrap\"), single binary split (\"simple\"). logical vector, contain one entry row `feature_tibble` indicating row included training set (TRUE) excluded validation/test set (FALSE). Ignored entirely `split_col` specified. split_col unquoted column name logical column `feature_tibble` indicating row included training set (TRUE) excluded validation/test set (FALSE). simple_prop numeric value 0 1 indicating proportion data used training. Defaults 3/4. Ignored split_method \"simple\". num_cv_folds integer indicating many cross-validation folds used. Defaults 10. Ignored split_method \"k-fold\". num_cv_repeats integer indicating many independent cross-validation replicates used (.e. many num_cv_fold splits performed). Defaults 1. Ignored split_method \"k-fold\". num_bootstraps integer indicating many independent bootstrap replicates used. Defaults 25. Ignored split_method \"bootstrap\". strata unquoted column name representing column feature_tibble used stratify data splitting. Defaults NULL (stratification). ... Optional additional arguments pass vfold_cv k-fold cross validation, bootstraps bootstrapping, initial_split simple splitting.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"k-fold cross validation bootstrapping, \"rset\" object; simple splitting, \"rsplit\" object. details, see rsample.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split high-dimensional cytometry data into a training and test set — tof_split_data","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 50), rep(1, times = 50)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) # split the dataset into 10 CV folds tof_split_data( feature_tibble = feature_tibble, split_method = \"k-fold\" ) #> # 10-fold cross-validation #> # A tibble: 10 × 2 #> splits id #> #> 1 Fold01 #> 2 Fold02 #> 3 Fold03 #> 4 Fold04 #> 5 Fold05 #> 6 Fold06 #> 7 Fold07 #> 8 Fold08 #> 9 Fold09 #> 10 Fold10 # split the dataset into 10 bootstrap resamplings tof_split_data( feature_tibble = feature_tibble, split_method = \"bootstrap\" ) #> # Bootstrap sampling #> # A tibble: 10 × 2 #> splits id #> #> 1 Bootstrap01 #> 2 Bootstrap02 #> 3 Bootstrap03 #> 4 Bootstrap04 #> 5 Bootstrap05 #> 6 Bootstrap06 #> 7 Bootstrap07 #> 8 Bootstrap08 #> 9 Bootstrap09 #> 10 Bootstrap10 # split the dataset into a single training/test set # stratified by the \"class\" column tof_split_data( feature_tibble = feature_tibble, split_method = \"simple\", strata = class ) #> #> <74/26/100>"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":null,"dir":"Reference","previous_headings":"","what":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"Split dimensionality reduction data tidytof combines SingleCellExperiment conversion","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"","code":"tof_split_tidytof_reduced_dimensions(sce)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"sce SingleCellExperiment entry named \"tidytof_reduced_dimensions\" reducedDims slot.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"SingleCellExperiment separate entries named \"tidytof_pca\", \"tidytof_umap\", \"tidytof_tsne\" reducedDims slots (one dimensionality reduction methods tidytof native support).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_split_tidytof_reduced_dimensions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Split the dimensionality reduction data that tidytof combines during SingleCellExperiment conversion — tof_split_tidytof_reduced_dimensions","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":null,"dir":"Reference","previous_headings":"","what":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"function uses training set/test set paradigm tune fit elastic net model using variety user-specified details. Tuning can performed using either simple training vs. test set split, k-fold cross-validation, bootstrapping, multiple preprocessing options available.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"","code":"tof_train_model( split_data, unsplit_data, predictor_cols, response_col = NULL, time_col = NULL, event_col = NULL, model_type = c(\"linear\", \"two-class\", \"multiclass\", \"survival\"), hyperparameter_grid = tof_create_grid(), standardize_predictors = TRUE, remove_zv_predictors = FALSE, impute_missing_predictors = FALSE, optimization_metric = \"tidytof_default\", best_model_type = c(\"best\", \"best with sparsity\"), num_cores = 1 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"split_data `rsplit` `rset` object rsample package containing sample-level data use modeling. easiest way generate use tof_split_data. unsplit_data tibble containing sample-level data use modeling without resampling. using resampling method advised, argument provides interface fit model without using cross-validation bootstrap resampling. Ignored split_data provided. predictor_cols Unquoted column names indicating columns data contained `split_data` used predictors elastic net model. Supports tidyselect helpers. response_col Unquoted column name indicating column data contained `split_data` used outcome \"two-class\", \"multiclass\", \"linear\" elastic net model. Must factor \"two-class\" \"multiclass\" models must numeric \"linear\" models. Ignored `model_type` \"survival\". time_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must numeric. Ignored `model_type` \"two-class\", \"multiclass\", \"linear\". event_col Unquoted column name indicating column data contained `split_data` represents time--event outcome \"survival\" elastic net model. Must binary column - values either 0 1 (1 indicating adverse event) FALSE TRUE (TRUE indicating adverse event). Ignored `model_type` \"two-class\", \"multiclass\", \"linear\". model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. hyperparameter_grid hyperparameter grid indicating values elastic net penalty (lambda) elastic net mixture (alpha) hyperparamters used model tuning. Generate grid using tof_create_grid. standardize_predictors logical value indicating numeric predictor columns standardized (centered scaled) model fitting, standard practice elastic net regularization. Defaults TRUE. remove_zv_predictors logical value indicating predictor columns near-zero variance removed model fitting using step_nzv. Defaults FALSE. impute_missing_predictors logical value indicating predictor columns missing values imputed using k-nearest neighbors model fitting (see step_impute_knn). Imputation performed using observation's 5 nearest-neighbors. Defaults FALSE. optimization_metric string indicating optimization metric used hyperparameter selection model tuning. Valid values depend model_type. \"linear\" models, choices \"mse\" (mean squared error predictions; default) \"mae\" (mean absolute error predictions). \"two-class\" models, choices \"roc_auc\" (area Receiver-Operating Curve classification; default), \"misclassification error\" (proportion misclassified observations), \"binomial_deviance\" (see deviance.glmnet), \"mse\" (mean squared error logit function), \"mae\" (mean absolute error logit function). \"multiclass\" models, choices \"roc_auc\" (area Receiver-Operating Curve classification using Hand-Till generalization ROC AUC multiclass models roc_auc; default), \"misclassification error\" (proportion misclassified observations), \"multinomial_deviance\" (see deviance.glmnet), \"mse\" \"mae\" . \"survival\" models, choices \"concordance_index\" (Harrel's C index; see deviance.glmnet) \"partial_likelihood_deviance\" (see deviance.glmnet). best_model_type Currently unused. num_cores Integer indicating many cores used parallel processing fitting multiple models. Defaults 1. Overhead separate models across multiple cores can high, significant speedup unlikely observed unless many large models fit.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"`tof_model`, S3 class includes elastic net model best performance (assessed via cross-validation, bootstrapping, simple splitting depending `split_data`) across tested hyperparameter value combinations. `tof_models` store following information: model final elastic net (\"glmnet\") model, chosen selecting elastic net hyperparameters best `optimization_metric` performance validation sets resample used train model (average) recipe recipe used data preprocessing mixture optimal mixture hyperparameter (alpha) glmnet model penalty optimal penalty hyperparameter (lambda) glmnet model model_type string indicating type glmnet model fit outcome_colnames character vector representing names columns training data modeled outcome variables training_data tibble containing (preprocessed) data used train model tuning_metrics tibble containing validation set performance metrics (model predictions) resample fold model tuning. log_rank_thresholds survival models , tibble containing information relative-risk thresholds can used split training data 2 risk groups (low- high-risk) based final model's predictions. relative-risk threshold, log-rank test p-value indicator threshold gives significant separation provided. best_log_rank_threshold survival models , numeric value representing relative-risk threshold yields significant log-rank test separating training data low- high-risk groups.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_train_model.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Train an elastic net model to predict sample-level phenomena using high-dimensional cytometry data. — tof_train_model","text":"","code":"feature_tibble <- dplyr::tibble( sample = as.character(1:100), cd45 = runif(n = 100), pstat5 = runif(n = 100), cd34 = runif(n = 100), outcome = (3 * cd45) + (4 * pstat5) + rnorm(100), class = as.factor( dplyr::if_else(outcome > median(outcome), \"class1\", \"class2\") ), multiclass = as.factor( c(rep(\"class1\", 30), rep(\"class2\", 30), rep(\"class3\", 40)) ), event = c(rep(0, times = 30), rep(1, times = 70)), time_to_event = rnorm(n = 100, mean = 10, sd = 2) ) split_data <- tof_split_data(feature_tibble, split_method = \"simple\") # train a regression model tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = outcome, model_type = \"linear\" ) #> A linear `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-08 #> # A tibble: 4 × 2 #> feature coefficient #> #> 1 (Intercept) 3.44 #> 2 pstat5 1.18 #> 3 cd45 0.958 #> 4 cd34 0.133 # train a logistic regression classifier tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), response_col = class, model_type = \"two-class\" ) #> A two-class `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-03 #> # A tibble: 4 × 2 #> feature coefficient #> #> 1 pstat5 -1.53 #> 2 cd45 -1.21 #> 3 cd34 -0.233 #> 4 (Intercept) -0.0361 # train a cox regression survival model tof_train_model( split_data = split_data, predictor_cols = c(cd45, pstat5, cd34), time_col = time_to_event, event_col = event, model_type = \"survival\" ) #> A survival `tof_model` with a mixture parameter (alpha) of 1 and a penalty parameter (lambda) of 3.162e-03 #> # A tibble: 3 × 2 #> feature coefficient #> #> 1 cd45 -0.175 #> 2 pstat5 0.0684 #> 3 cd34 -0.0448"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":null,"dir":"Reference","previous_headings":"","what":"Transform raw high-dimensional cytometry data. — tof_transform","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"function transforms `tof_tbl` raw ion counts, reads, fluorescence intensity units directly measured cytometer using user-provided function.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"","code":"tof_transform( tof_tibble = NULL, channel_cols = where(tof_is_numeric), transform_fun )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"tof_tibble `tof_tbl` `tibble`. channel_cols Unquoted column names representing columns contain single-cell protein measurements. Supports tidyselect helpers. nothing specified, default transform numeric columns. transform_fun vectorized function apply protein value variance stabilization.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"`tof_tbl` identical dimensions input `tof_tibble`, columns specified channel_cols transformed using `transform_fun`.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_transform.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Transform raw high-dimensional cytometry data. — tof_transform","text":"","code":"# read in an example .fcs file from tidytof's internal datasets input_file <- dir(tidytof_example_data(\"aml\"), full.names = TRUE)[[1]] tof_tibble <- tof_read_data(input_file) # preprocess all numeric columns with default behavior # arcsinh transformation with a cofactor of 5 tof_preprocess(tof_tibble) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 15.3 1.88 5.33 0.263 1.70 5.85 #> 2 14.9 2.05 5.83 0.731 1.67 5.71 #> 3 15.2 1.88 5.70 1.13 0.861 5.54 #> 4 13.7 1.88 5.45 0.129 1.06 5.46 #> 5 15.2 1.99 5.73 0.721 1.41 5.55 #> 6 14.4 2.05 5.27 0.760 0.708 5.52 #> 7 13.9 1.88 5.31 0.645 0.771 5.42 #> 8 14.2 1.99 5.42 1.09 1.58 5.64 #> 9 15.6 2.05 6.03 0.586 1.37 5.83 #> 10 9.75 1.88 5.38 0.177 1.73 5.78 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , … # preprocess all numeric columns using the log base 10 tranformation tof_preprocess(tof_tibble, transform_fun = log10) #> # A tibble: 100 × 59 #> Time Event_length `CD45|Y89` `empty|Pd102` `empty|Pd104` `empty|Pd105` #> #> 1 7.04 1.20 2.71 0.125 1.12 2.94 #> 2 6.85 1.28 2.93 0.601 1.11 2.88 #> 3 6.99 1.20 2.87 0.843 0.686 2.81 #> 4 6.36 1.20 2.77 -0.189 0.800 2.77 #> 5 6.98 1.26 2.89 0.594 0.984 2.81 #> 6 6.65 1.28 2.69 0.621 0.584 2.80 #> 7 6.44 1.20 2.70 0.539 0.628 2.75 #> 8 6.57 1.26 2.75 0.821 1.07 2.85 #> 9 7.18 1.28 3.02 0.491 0.964 2.93 #> 10 4.63 1.20 2.74 -0.0515 1.13 2.91 #> # ℹ 90 more rows #> # ℹ 53 more variables: `empty|Pd106` , `empty|Pd108` , #> # `empty|Pd110` , `CD61|In113` , `CD99|In115` , #> # `empty|I127` , `CD45RA|La139` , `CD93|Ce140` , #> # `CD3_CD19|Pr141` , `CCR2|Nd142` , `CD117|Nd143` , #> # `CD123|Nd144` , `CD64|Nd145` , `CD90|Nd146` , #> # `CD38|Sm147` , `CD34|Nd148` , `CEBPa|Sm149` , …"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":null,"dir":"Reference","previous_headings":"","what":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"Tune elastic net model's hyperparameters multiple resamples","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"","code":"tof_tune_glmnet( split_data, prepped_recipe, hyperparameter_grid, model_type, outcome_cols, optimization_metric = \"tidytof_default\", num_cores = 1 )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"split_data `rsplit` `rset` object rsample package. easiest way generate use tof_split_data. Alternatively, unsplit tbl_df can provided, though recommended. prepped_recipe Either single recipe object (`split_data` `rsplit` object `tbl_df`) list recipes (`split_data` `rset` object) entry list corresponds resample `split_data`. hyperparameter_grid hyperparameter grid indicating values elastic net penalty (lambda) elastic net mixture (alpha) hyperparameters used model tuning. Generate grid using tof_create_grid. model_type string indicating kind elastic net model build. continuous response predicted, use \"linear\" linear regression; categorical response 2 classes predicted, use \"two-class\" logistic regression; categorical response 2 levels predicted, use \"multiclass\" multinomial regression; time--event outcome predicted, use \"survival\" Cox regression. outcome_cols Unquoted column name(s) indicating column(s) data contained `split_data` used outcome elastic net model. survival models, two columns selected; others, one column selected. optimization_metric string indicating optimization metric used hyperparameter selection model tuning. Valid values depend model_type. num_cores Integer indicating many cores used parallel processing fitting multiple models. Defaults 1. Overhead separate models across multiple cores can high, significant speedup unlikely observed unless many large models fit.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_tune_glmnet.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Tune an elastic net model's hyperparameters over multiple resamples — tof_tune_glmnet","text":"tibble containing summary model's performance resampling iteration across hyperparameter combinations. contain 3 columns: \"splits\" (list-col containing resampling iteration's `rsplit` object), \"id\" (name resampling iteration), \"performance_metrics\" (list-col containing performance metrics resampling iteration. row \"performance_metrics\" tibble columns \"mixture\" \"penalty\" several additional columns containing performance metrics model mixture/penalty combination). See tof_fit_split additional details.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":null,"dir":"Reference","previous_headings":"","what":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"function performs distance-based upsampling CyTOF data sorting single cells (passed function `tof_tibble`) phenotypically similar cell subpopulation reference dataset (passed function `reference_tibble`). calculating distance (either mahalanobis, cosine, pearson) cell `tof_tibble` centroid cluster `reference_tibble`, sorting cells cluster corresponding closest centroid.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"","code":"tof_upsample( tof_tibble, reference_tibble, reference_cluster_col, upsample_cols = where(tof_is_numeric), ..., augment = TRUE, method = c(\"distance\", \"neighbor\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"tof_tibble `tibble` `tof_tbl` containing cells upsampled nearest reference subpopulation. reference_tibble `tibble` `tof_tibble` containing cells already clustered manually gated subpopulations. reference_cluster_col unquoted column name indicating column `reference_tibble` contains subpopulation label (cluster id) cell `reference_tibble`. upsample_cols Unquoted column names indicating columns `tof_tibble` use computing distances used upsampling. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. ... Additional arguments pass `tof_upsample_*` function family member corresponding chosen method. augment boolean value indicating output column-bind cluster ids cell new column `tof_tibble` (TRUE, default) single-column tibble including cluster ids returned (FALSE). method string indicating clustering methods used. Valid values include \"distance\" (default) \"neighbor\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"`tof_tbl` `tibble` augment = FALSE, single column encoding upsampled cluster ids cell `tof_tibble`. augment = TRUE, ncol(tof_tibble) + 1 columns: (unaltered) columns `tof_tibble` plus additional column encoding cluster ids.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample","text":"","code":"# simulate single-cell data (and reference data with clusters to upsample # into sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) reference_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) # upsample using distance to cluster centroids tof_upsample( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, method = \"distance\" ) #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .upsample_cluster #> #> 1 -1.24 0.373 -0.937 -0.704 b #> 2 0.269 1.52 1.81 0.506 a #> 3 -0.736 -0.0917 -0.830 0.821 b #> 4 0.638 0.608 0.564 -0.428 a #> 5 1.29 -0.926 -0.153 0.324 b #> 6 -0.634 -0.00913 -0.996 0.145 b #> 7 -0.481 -0.782 -0.704 -0.812 b #> 8 0.924 1.21 -1.44 -1.48 a #> 9 -1.24 0.128 0.107 -0.509 a #> 10 0.255 -0.885 1.41 1.78 b #> # ℹ 990 more rows # upsample using distance to nearest neighbor tof_upsample( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, method = \"neighbor\" ) #> # A tibble: 1,000 × 5 #> cd45 cd38 cd34 cd19 .upsample_cluster #> #> 1 -1.24 0.373 -0.937 -0.704 b #> 2 0.269 1.52 1.81 0.506 a #> 3 -0.736 -0.0917 -0.830 0.821 a #> 4 0.638 0.608 0.564 -0.428 a #> 5 1.29 -0.926 -0.153 0.324 a #> 6 -0.634 -0.00913 -0.996 0.145 a #> 7 -0.481 -0.782 -0.704 -0.812 a #> 8 0.924 1.21 -1.44 -1.48 b #> 9 -1.24 0.128 0.107 -0.509 a #> 10 0.255 -0.885 1.41 1.78 b #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":null,"dir":"Reference","previous_headings":"","what":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"function performs distance-based upsampling CyTOF data sorting single cells (passed function `tof_tibble`) phenotypically similar cell subpopulation reference dataset (passed function `reference_tibble`). calculating distance (either mahalanobis, cosine, pearson) cell `tof_tibble` centroid cluster `reference_tibble`, sorting cells cluster corresponding closest centroid.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"","code":"tof_upsample_distance( tof_tibble, reference_tibble, reference_cluster_col, upsample_cols = where(tof_is_numeric), parallel_cols, distance_function = c(\"mahalanobis\", \"cosine\", \"pearson\"), num_cores = 1L, return_distances = FALSE )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"tof_tibble `tibble` `tof_tbl` containing cells upsampled nearest reference subpopulation. reference_tibble `tibble` `tof_tibble` containing cells already clustered manually gated subpopulations. reference_cluster_col unquoted column name indicating column `reference_tibble` contains subpopulation label (cluster id) cell `reference_tibble`. upsample_cols Unquoted column names indicating columns `tof_tibble` use computing distances used upsampling. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. parallel_cols Optional. Unquoted column names indicating columns `tof_tibble` use breaking data order parallelize upsampling using `foreach` `doParallel` backend. Supports tidyselect helpers. distance_function string indicating distance function used perform upsampling. Options \"mahalanobis\" (default), \"cosine\", \"pearson\". num_cores integer indicating number CPU cores used parallelize classification. Defaults 1 (single core). return_distances boolean value indicating whether returned result include one column, cluster ids corresponding row `tof_tibble` (return_distances = FALSE, default), returned result include additional columns representing distance row `tof_tibble` reference subpopulation centroids (return_distances = TRUE).","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"`return_distances = FALSE`, tibble one column named `.upsample_cluster`, character vector length `nrow(tof_tibble)` indicating id reference cluster cell (.e. row) `tof_tibble` assigned. `return_distances = TRUE`, tibble `nrow(tof_tibble)` rows num_clusters + 1 columns, num_clusters number clusters `reference_tibble`. row represents cell `tof_tibble`, num_clusters columns represent distance cell reference subpopulations' cluster centroids. final column represents cluster id reference subpopulation minimum distance cell represented row.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_distance.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Upsample cells into the closest cluster in a reference dataset — tof_upsample_distance","text":"","code":"# simulate single-cell data (and reference data with clusters to upsample # into sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) reference_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) # upsample using mahalanobis distance tof_upsample_distance( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 a #> 2 a #> 3 b #> 4 a #> 5 b #> 6 a #> 7 b #> 8 b #> 9 b #> 10 b #> # ℹ 990 more rows # upsample using cosine distance tof_upsample_distance( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, distance_function = \"cosine\" ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 a #> 2 b #> 3 a #> 4 a #> 5 a #> 6 a #> 7 a #> 8 b #> 9 b #> 10 a #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":null,"dir":"Reference","previous_headings":"","what":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"function performs upsampling CyTOF data sorting single cells (passed function `tof_tibble`) phenotypically similar cell subpopulation reference dataset (passed function `reference_tibble`). finding cell `tof_tibble`'s nearest neighbor `reference_tibble` assigning cluster nearest neighbor belongs. nearest neighbor calculation can performed either euclidean cosine distance.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"","code":"tof_upsample_neighbor( tof_tibble, reference_tibble, reference_cluster_col, upsample_cols = where(tof_is_numeric), num_neighbors = 1L, distance_function = c(\"euclidean\", \"cosine\", \"l2\", \"ip\") )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"tof_tibble `tibble` `tof_tbl` containing cells upsampled nearest reference subpopulation. reference_tibble `tibble` `tof_tibble` containing cells already clustered manually gated subpopulations. reference_cluster_col unquoted column name indicating column `reference_tibble` contains subpopulation label (cluster id) cell `reference_tibble`. upsample_cols Unquoted column names indicating columns `tof_tibble` use computing distances used upsampling. Defaults numeric columns `tof_tibble`. Supports tidyselect helpers. num_neighbors integer indicating many neighbors used nearest neighbor calculation. Clusters assigned based majority vote. distance_function string indicating distance function used perform upsampling. Options \"euclidean\" (default) \"cosine\".","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"tibble one column named `.upsample_cluster`, character vector length `nrow(tof_tibble)` indicating id reference cluster cell (.e. row) `tof_tibble` assigned.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_upsample_neighbor.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Upsample cells into the cluster of their nearest neighbor a reference dataset — tof_upsample_neighbor","text":"","code":"# simulate single-cell data (and reference data with clusters to upsample # into sim_data <- dplyr::tibble( cd45 = rnorm(n = 1000), cd38 = rnorm(n = 1000), cd34 = rnorm(n = 1000), cd19 = rnorm(n = 1000) ) reference_data <- dplyr::tibble( cd45 = rnorm(n = 200), cd38 = rnorm(n = 200), cd34 = rnorm(n = 200), cd19 = rnorm(n = 200), cluster_id = c(rep(\"a\", times = 100), rep(\"b\", times = 100)) ) # upsample using euclidean distance tof_upsample_neighbor( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 a #> 2 a #> 3 b #> 4 b #> 5 a #> 6 b #> 7 a #> 8 b #> 9 b #> 10 a #> # ℹ 990 more rows # upsample using cosine distance tof_upsample_neighbor( tof_tibble = sim_data, reference_tibble = reference_data, reference_cluster_col = cluster_id, distance_function = \"cosine\" ) #> # A tibble: 1,000 × 1 #> .upsample_cluster #> #> 1 a #> 2 a #> 3 a #> 4 a #> 5 a #> 6 a #> 7 a #> 8 b #> 9 b #> 10 b #> # ℹ 990 more rows"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":null,"dir":"Reference","previous_headings":"","what":"Write a series of .csv files from a tof_tbl — tof_write_csv","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"function takes given `tof_tbl` writes single-cell data contains .csv files within directory located `out_path`. `group_cols` argument specifies rows `tof_tbl` (cell) broken separate .csv files","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"","code":"tof_write_csv(tof_tibble, group_cols, out_path, sep = \"_\", file_name)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"tof_tibble `tof_tbl` `tibble`. group_cols Optional. Unquoted names columns `tof_tibble` used group cells separate files. Supports tidyselect helpers. Defaults NULL (cells written single file). out_path system path indicating directory output .csv files saved. directory exist, created. sep Delimiter used values `group_cols` create output .csv file names. Defaults \"_\". file_name `group_cols` specified, name (without extension) used saved .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_csv.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write a series of .csv files from a tof_tbl — tof_write_csv","text":"function return anything. Instead, side-effect saving .csv files `out_path`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":null,"dir":"Reference","previous_headings":"","what":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"Write data (form `tof_tbl`) either .csv .fcs file storage.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"","code":"tof_write_data( tof_tibble = NULL, group_cols, out_path = NULL, format = c(\"fcs\", \"csv\"), sep = \"_\", file_name )"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"tof_tibble `tof_tbl` `tibble`. group_cols Optional. Unquoted names columns `tof_tibble` used group cells separate files. Supports tidyselect helpers. Defaults grouping (cells written single file). out_path Path directory output files saved. format format files written. Currently supports .csv .fcs files sep Delimiter used values `group_cols` create output .csv/.fcs file names. Defaults \"_\". file_name `group_cols` specified, name (without extension) used saved file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"function explicitly return values. Instead, writes .csv /.fcs files specified `out_path`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_data.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Write high-dimensional cytometry data to a file or to a directory of files — tof_write_data","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":null,"dir":"Reference","previous_headings":"","what":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"function takes given `tof_tbl` writes single-cell data contains .fcs files within directory located `out_path`. `group_cols` argument specifies rows `tof_tbl` (cell) broken separate .fcs files","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"","code":"tof_write_fcs(tof_tibble, group_cols, out_path, sep = \"_\", file_name)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"tof_tibble `tof_tbl` `tibble`. group_cols Unquoted names columns `tof_tibble` used group cells separate files. Supports tidyselect helpers. Defaults NULL (cells written single file). out_path system path indicating directory output .csv files saved. directory exist, created. sep Delimiter used values `group_cols` create output .fcs file names. Defaults \"_\". file_name `group_cols` specified, name (without extension) used saved .csv file.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"function return anything. Instead, side-effect saving .fcs files `out_path`.","code":""},{"path":[]},{"path":"https://keyes-timothy.github.io/tidytof/reference/tof_write_fcs.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Write a series of .fcs files from a tof_tbl — tof_write_fcs","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":null,"dir":"Reference","previous_headings":"","what":"Select variables with a function — where","title":"Select variables with a function — where","text":"copy , selection helper selects variables predicate function returns TRUE. See language details tidyselection.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Select variables with a function — where","text":"","code":"where(fn)"},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Select variables with a function — where","text":"fn function returns TRUE FALSE (technically, predicate function). Can also purrr-like formula.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Select variables with a function — where","text":"predicate can used select columns data.frame.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Select variables with a function — where","text":"help file replicated verbatim tidyselect-package.","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Select variables with a function — where","text":"Lionel Henry Hadley Wickham (2021). tidyselect: Select Set Strings. R package version 1.1.1. https://CRAN.R-project.org/package=tidyselect","code":""},{"path":"https://keyes-timothy.github.io/tidytof/reference/where.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Select variables with a function — where","text":"","code":"NULL #> NULL"},{"path":"https://keyes-timothy.github.io/tidytof/news/index.html","id":"tidytof-0990","dir":"Changelog","previous_headings":"","what":"tidytof 0.99.0","title":"tidytof 0.99.0","text":"NEW FEATURES Added NEWS.md file track changes package. SIGNIFICANT USER-VISIBLE CHANGES Submitted Bioconductor BUG FIXES None","code":""}]