-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathexample_019_DP_find_min_abs_diff_two_partitions.py
125 lines (70 loc) · 3.77 KB
/
example_019_DP_find_min_abs_diff_two_partitions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Given a set of positive integers 'numbers_list',
# partition the set of 'numbers_list' into two subsets, S1 and S2,
# such that the difference between
# the sum of elements in S1 and S2 is minimized.
#
# The solution should return the minimum absolute difference between
# the sum of elements of two partitions.
def find_min_abs_difference(numbers_list, n, sum1=0, sum2=0):
if n < 0:
return abs(sum1 - sum2)
option_1 = find_min_abs_difference(numbers_list, n - 1, sum1 + numbers_list[n], sum2)
option_2 = find_min_abs_difference(numbers_list, n - 1, sum1, sum2 + numbers_list[n])
# print(option_1, option_2)
return min(option_1, option_2)
###########################################################################
###########################################################################
###########################################################################
###########################################################################
def find_min_abs_difference_memoized(numbers_list, n, sum1, sum2, lookup):
'''Using Memization Technique'''
# Base case: if the list becomes empty, return the absolute difference between both sets
if n < 0:
return abs(sum1 - sum2)
# Construct a unique key from dynamic elements of the input.
# Note that we can uniquely identify the subproblem with `n` and `sum1` only
key = (n, sum1)
# If the subproblem is seen for the first time, solve it and
# store its result in a dictionary
if key not in lookup:
option_1 = find_min_abs_difference_memoized(numbers_list, n - 1, sum1 + numbers_list[n], sum2, lookup)
option_2 = find_min_abs_difference_memoized(numbers_list, n - 1, sum1, sum2 + numbers_list[n], lookup)
lookup[key] = min(option_1, option_2)
# print(key, min(option_1, option_2))
return lookup[key]
###########################################################################
###########################################################################
###########################################################################
###########################################################################
def find_min_abs_difference_bottom_up_iterative(numbers_list):
# Find the sum of all elements
total = sum(numbers_list)
# Create a boolean table to store solutions to subproblems
dp = [[False] * (total + 1) for _ in range(len(numbers_list) + 1)]
# Fill the lookup table in a bottom-up manner
for i in range(len(numbers_list) + 1):
# elements with zero-sum are always true
dp[i][0] = True
j = 1
while i > 0 and j <= total:
# exclude the i'th element
dp[i][j] = dp[i - 1][j]
# include the i'th element
if numbers_list[i - 1] <= j:
dp[i][j] |= dp[i - 1][j - numbers_list[i - 1]]
j = j + 1
# Find the maximum value of `j` between 0 and `sum/2` for which the last row is true
j = total // 2
while j >= 0 and not dp[len(numbers_list)][j]:
j = j - 1
return total - 2*j
if __name__ == '__main__':
# Input: a set of items
list_of_numbers = [7, 11, 9, 2]
print('The minimum difference is', find_min_abs_difference(list_of_numbers, len(list_of_numbers) - 1))
# Here we create a dictionary to store solutions to subproblems
# This is our memoization table
lookup = {}
print('The minimum difference is', find_min_abs_difference_memoized(list_of_numbers, len(list_of_numbers) - 1, 0, 0, lookup))
print('The minimum difference is', find_min_abs_difference_bottom_up_iterative(list_of_numbers))
# Reference: https://www.techiedelight.com/minimum-sum-partition-problem/#:~:text=Given%20a%20set%20of%20positive,of%20elements%20of%20two%20partitions.