-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathdataManipulation.R
56 lines (42 loc) · 1.54 KB
/
dataManipulation.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# script to manipulate gene expression data (GSE183947)
# setwd("~/Desktop/demo/data_manipulation_R/scripts")
# load libraries
library(dplyr)
library(tidyverse)
library(GEOquery)
# read in the data ---------
dat <- read.csv(file = "../data/GSE183947_fpkm.csv")
dim(dat)
# get metadata --------
gse <- getGEO(GEO = 'GSE183947', GSEMatrix = TRUE)
# Error: The size of the connection buffer (131072) was not large enough 0s
# to fit a complete line:
# * Increase it by setting `Sys.setenv("VROOM_CONNECTION_SIZE")`
Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 1000)
gse
metadata <- pData(phenoData(gse[[1]]))
head(metadata)
# select, mutate, rename ------------
metadata.modified <- metadata %>%
select(1,10,11,17) %>%
rename(tissue = characteristics_ch1) %>%
rename(metastasis = characteristics_ch1.1) %>%
mutate(tissue = gsub("tissue: ", "", tissue)) %>%
mutate(metastasis = gsub("metastasis: ", "", metastasis))
# looking at gene expression data ---------
head(dat)
# reshaping data - from wide to long--------
dat.long <- dat %>%
rename(gene = X) %>%
gather(key = 'samples', value = 'FPKM', -gene)
# join dataframes = dat.long + metadata.modified
dat.long <- dat.long %>%
left_join(., metadata.modified, by = c("samples" = "description"))
# explore data ------
# filter, group_by, summarize and arrange
dat.long %>%
filter(gene == 'BRCA1' | gene == 'BRCA2') %>%
group_by(gene, tissue) %>%
summarize(mean_FPKM = mean(FPKM),
median_FPKM = median(FPKM)) %>%
arrange(-mean_FPKM)