diff --git a/libs/vertexai/langchain_google_vertexai/__init__.py b/libs/vertexai/langchain_google_vertexai/__init__.py index 3b6f193d..64625504 100644 --- a/libs/vertexai/langchain_google_vertexai/__init__.py +++ b/libs/vertexai/langchain_google_vertexai/__init__.py @@ -1,7 +1,7 @@ """ ## langchain-google-vertexai -This module contains the LangChain integrations for Google Cloud generative models. +This module contains the LangChain integrations for Vertex AI service - Google foundational models, third-party foundational modela available on Vertex Model Garden and. ## Installation @@ -9,29 +9,18 @@ pip install -U langchain-google-vertexai ``` -## Supported Models (MaaS: Model-as-a-Service) +## Supported foundational models: -1. Llama -2. Mistral -3. Gemma -4. Vision models +1. Gemini family. +2. Other Google's foundational models: Imagen, embeddings, Codey models and others. +3. Third-party foundational models available as a an API (mdel-as-a-service) on Vertex Model Garden (Mistral, Llama, Anthropic) +4. Third-party foundational models deployed on Vertex AI endpoints from Vertex Model Garden or Hugginface. +5. Vector Search on Vertex AI. +6. Vertex AI evaluators for generative AI. -Integration on Google Cloud Vertex AI Model-as-a-Service. +### Setup -For more information, see: - https://cloud.google.com/blog/products/ai-machine-learning/llama-3-1-on-vertex-ai - -#### Setup - -You need to enable a corresponding MaaS model (Google Cloud UI console -> -Vertex AI -> Model Garden -> search for a model you need and click enable) - -You must have the langchain-google-vertexai Python package installed -.. code-block:: bash - - pip install -U langchain-google-vertexai - -And either: +You need to enable needed Google Cloud APIs (depending on the integration you're using) and set up credentials by either: - Have credentials configured for your environment (gcloud, workload identity, etc...) - Store the path to a service account JSON file as the @@ -45,180 +34,18 @@ and https://googleapis.dev/python/google-auth/latest/reference/google.auth.html#module-google.auth. -## Chat Language Model vs Base Language Models - -A "base model" is a large language model trained on a wide variety of text data, -providing a general-purpose foundation for various tasks. - -While a "chat model" is a specialized version of a base model specifically fine-tuned -to excel in conversational interactions, meaning it's optimized to understand and -respond to dialogue within a chat context, often with features like maintaining -conversational context and generating engaging responses. - -## Gemma models - -Gemma is a family of lightweight, state-of-the-art open models built from the same -research and technology used to create the Gemini models. Developed by Google DeepMind -and other teams across Google. - -We currently support the following Gemma models. - -1. GemmaChatLocalHF: Gemma Chat local model from Hugging Face. -2. GemmaChatLocalKaggle - Gemma chat local model from Kaggle. -3. GemmaLocalHF - Gemma Local model from Hugging Face -4. GemmaLocalKaggle - Gemma Local model from Kaggle - -## Vision models - -### Image Captioning - -Generate Captions from Image. Implementation of the Image Captioning model - -The model takes a list of prompts as an input where each prompt must be a -string that represents an image. Currently supported are: - -1. Google Cloud Storage URI -2. B64 encoded string -3. Local file path -4. Remote url - -The model returns Captions generated from every prompt (Image). - -### Image Generation - -Generates images from text prompt. - -The message must be a list of only one element with one part i.e. the user prompt. - -### Visual QnA Chat - -Answers questions about an image. Chat implementation of a visual QnA model. - -The model takes a list of messages. The first message should contain a string -representation of the image. Currently supported are: - -1. Google Cloud Storage URI -2. B64 encoded string -3. Local file path -4. Remote url - -There has to be at least another message with the first question. -The model returns the generated answer for the questions asked. - -### Image Editor - -Given an image and a prompt, edit the image. Currently only supports mask free editing. - -The message must be a list of only one element with two part: - -1. The image as a dictionary: { 'type': 'image_url', 'image_url': {'url': } } -2. The user prompt. - -## Chat Models - -`ChatVertexAI` class exposes models such as `gemini-pro` and `chat-bison`. - -To use, you should have Google Cloud project with APIs enabled, and configured -credentials. Initialize the model as: - -```python -from langchain_google_vertexai import ChatVertexAI - -llm = ChatVertexAI(model_name="gemini-pro") -llm.invoke("Sing a ballad of LangChain.") -``` - -You can use other models, e.g. `chat-bison`: - -```python -from langchain_google_vertexai import ChatVertexAI - -llm = ChatVertexAI(model_name="chat-bison", temperature=0.3) -llm.invoke("Sing a ballad of LangChain.") -``` - -#### Multimodal inputs - -Gemini vision model supports image inputs when providing a single chat message. Example: - -```python -from langchain_core.messages import HumanMessage -from langchain_google_vertexai import ChatVertexAI - -llm = ChatVertexAI(model_name="gemini-pro-vision") -# example -message = HumanMessage( - content=[ - { - "type": "text", - "text": "What's in this image?", - }, # You can optionally provide text parts - {"type": "image_url", "image_url": {"url": "https://picsum.photos/seed/picsum/200/300"}}, - ] -) -llm.invoke([message]) -``` - -The value of `image_url` can be any of the following: - -- A public image URL -- An accessible gcs file (e.g., "gcs://path/to/file.png") -- A base64 encoded image (e.g., ``) - -## Embeddings - -You can use Google Cloud's embeddings models as: - -```python -from langchain_google_vertexai import VertexAIEmbeddings - -embeddings = VertexAIEmbeddings() -embeddings.embed_query("hello, world!") -``` +## List of all integrations -## LLMs +- Gemini: `ChatVertexAI`, `VertexAI`, `VertexAIEmbeddings` +- Gemma on ModelGarden or deployed locally: `GemmaChatLocalHF`, `GemmaChatLocalKaggle`, `GemmaChatVertexAIModelGarden`, `GemmaLocalHF`, `GemmaLocalKaggle`, `GemmaVertexAIModelGarden` +- Imagen models: `VertexAIImageCaptioning`, `VertexAIImageCaptioningChat`, `VertexAIImageEditorChat`, `VertexAIImageGeneratorChat`, `VertexAIVisualQnAChat` +- Partner foundational models: `model_garden.ChatAnthropicVertex`, `model_garden_maas.VertexModelGardenLlama`, `model_garden_maas.VertexModelGardenMistral` +- Third-party Models from Model Garden: `VertexAIModelGarden` +- Vertex AI Evaluation: `VertexPairWiseStringEvaluator`, `VertexStringEvaluator` +- Vertex Vector Search: `VectorSearchVectorStore`, `VectorSearchVectorStoreDatastore`, `VectorSearchVectorStoreGCS` -You can use Google Cloud's generative AI models as Langchain LLMs: +Take a look at detailed documentation for each class for further details. -```python -from langchain_core.prompts import PromptTemplate -from langchain_google_vertexai import ChatVertexAI - -template = \"""Question: {question} - -Answer: Let's think step by step.\""" -prompt = PromptTemplate.from_template(template) - -llm = ChatVertexAI(model_name="gemini-pro") -chain = prompt | llm - -question = "Who was the president of the USA in 1994?" -print(chain.invoke({"question": question})) -``` - -You can use Gemini and Palm models, including code-generations ones: - -```python - -from langchain_google_vertexai import VertexAI - -llm = VertexAI(model_name="code-bison", max_output_tokens=1000, temperature=0.3) - -question = "Write a python function that checks if a string is a valid email address" - -output = llm(question) - -## Vector Stores - -#### Vector Search Vector Store GCS - -VertexAI VectorStore that handles the search and indexing using Vector Search -and stores the documents in Google Cloud Storage. - -#### Vector Search Vector Store Datastore - -VectorSearch with DatasTore document storage. -``` """ from google.cloud.aiplatform_v1beta1.types import (