diff --git a/docs/docs/integrations/providers/ascend.mdx b/docs/docs/integrations/providers/ascend.mdx new file mode 100644 index 0000000000000..b8c1769a48965 --- /dev/null +++ b/docs/docs/integrations/providers/ascend.mdx @@ -0,0 +1,24 @@ +# Ascend + +>[Ascend](https://https://www.hiascend.com/) is Natural Process Unit provide by Huawei + +This page covers how to use ascend NPU with LangChain. + +### Installation + +Install using torch-npu using: + +```bash +pip install torch-npu +``` + +Please follow the installation instructions as specified below: +* Install CANN as shown [here](https://www.hiascend.com/document/detail/zh/canncommercial/700/quickstart/quickstart/quickstart_18_0002.html). + +### Embedding Models + +See a [usage example](/docs/integrations/text_embedding/ascend). + +```python +from langchain_community.embeddings import AscendEmbeddings +``` diff --git a/docs/docs/integrations/text_embedding/ascend.ipynb b/docs/docs/integrations/text_embedding/ascend.ipynb new file mode 100644 index 0000000000000..4d3559f837ce3 --- /dev/null +++ b/docs/docs/integrations/text_embedding/ascend.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "id": "a636f6f3-00d7-4248-8c36-3da51190e882", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-0.04053403 -0.05560051 -0.04385472 ... 0.09371872 0.02846981\n", + " -0.00576814]\n" + ] + } + ], + "source": [ + "from langchain_community.embeddings import AscendEmbeddings\n", + "\n", + "model = AscendEmbeddings(\n", + " model_path=\"/root/.cache/modelscope/hub/yangjhchs/acge_text_embedding\",\n", + " device_id=0,\n", + " query_instruction=\"Represend this sentence for searching relevant passages: \",\n", + ")\n", + "emb = model.embed_query(\"hellow\")\n", + "print(emb)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8d29ddaa-eef3-4a4e-93d8-0f1c13525fb4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "We strongly recommend passing in an `attention_mask` since your input_ids may be padded. See https://huggingface.co/docs/transformers/troubleshooting#incorrect-output-when-padding-tokens-arent-masked.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[-0.00348254 0.03098977 -0.00203087 ... 0.08492374 0.03970494\n", + " -0.03372753]\n", + " [-0.02198593 -0.01601127 0.00215684 ... 0.06065163 0.00126425\n", + " -0.03634358]]\n" + ] + } + ], + "source": [ + "doc_embs = model.embed_documents(\n", + " [\"This is a content of the document\", \"This is another document\"]\n", + ")\n", + "print(doc_embs)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "797a720d-c478-4254-be2c-975bc4529f57", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.aembed_query(\"hellow\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "57e62e53-4d2c-4532-9b77-a46bc3da1130", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.04053403, -0.05560051, -0.04385472, ..., 0.09371872,\n", + " 0.02846981, -0.00576814], dtype=float32)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "await model.aembed_query(\"hellow\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "7e260457-8b50-4ca3-8f76-8a76d8bba8c8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.aembed_documents(\n", + " [\"This is a content of the document\", \"This is another document\"]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "ce954b94-aaac-4d2c-80be-b2988c16af6d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.00348254, 0.03098977, -0.00203087, ..., 0.08492374,\n", + " 0.03970494, -0.03372753],\n", + " [-0.02198593, -0.01601127, 0.00215684, ..., 0.06065163,\n", + " 0.00126425, -0.03634358]], dtype=float32)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "await model.aembed_documents(\n", + " [\"This is a content of the document\", \"This is another document\"]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "7823d69d-de79-4f95-90dd-38f4bdeb9bcc", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/libs/community/langchain_community/embeddings/__init__.py b/libs/community/langchain_community/embeddings/__init__.py index 5b49744a49475..0b4c9c35639a0 100644 --- a/libs/community/langchain_community/embeddings/__init__.py +++ b/libs/community/langchain_community/embeddings/__init__.py @@ -22,6 +22,9 @@ from langchain_community.embeddings.anyscale import ( AnyscaleEmbeddings, ) + from langchain_community.embeddings.ascend import ( + AscendEmbeddings, + ) from langchain_community.embeddings.awa import ( AwaEmbeddings, ) @@ -236,6 +239,7 @@ "AlephAlphaAsymmetricSemanticEmbedding", "AlephAlphaSymmetricSemanticEmbedding", "AnyscaleEmbeddings", + "AscendEmbeddings", "AwaEmbeddings", "AzureOpenAIEmbeddings", "BaichuanTextEmbeddings", @@ -391,6 +395,7 @@ "TitanTakeoffEmbed": "langchain_community.embeddings.titan_takeoff", "PremAIEmbeddings": "langchain_community.embeddings.premai", "YandexGPTEmbeddings": "langchain_community.embeddings.yandex", + "AscendEmbeddings": "langchain_community.embeddings.ascend", "ZhipuAIEmbeddings": "langchain_community.embeddings.zhipuai", } diff --git a/libs/community/langchain_community/embeddings/ascend.py b/libs/community/langchain_community/embeddings/ascend.py new file mode 100644 index 0000000000000..4e71635663fa5 --- /dev/null +++ b/libs/community/langchain_community/embeddings/ascend.py @@ -0,0 +1,120 @@ +import os +from typing import Any, Dict, List, Optional + +from langchain_core.embeddings import Embeddings +from langchain_core.pydantic_v1 import BaseModel, root_validator + + +class AscendEmbeddings(Embeddings, BaseModel): + """ + Ascend NPU accelerate Embedding model + + Please ensure that you have installed CANN and torch_npu. + + Example: + + from langchain_community.embeddings import AscendEmbeddings + model = AscendEmbeddings(model_path=, + device_id=0, + query_instruction="Represent this sentence for searching relevant passages: " + ) + """ + + """model path""" + model_path: str + """Ascend NPU device id.""" + device_id: int = 0 + """Unstruntion to used for embedding query.""" + query_instruction: str = "" + """Unstruntion to used for embedding document.""" + document_instruction: str = "" + use_fp16: bool = True + pooling_method: Optional[str] = "cls" + model: Any + tokenizer: Any + + def __init__(self, *args: Any, **kwargs: Any) -> None: + super().__init__(*args, **kwargs) + try: + from transformers import AutoModel, AutoTokenizer + except ImportError as e: + raise ImportError( + "Unable to import transformers, please install with " + "`pip install -U transformers`." + ) from e + try: + self.model = AutoModel.from_pretrained(self.model_path).npu().eval() + self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) + except Exception as e: + raise Exception( + f"Failed to load model [self.model_path], due to following error:{e}" + ) + + if self.use_fp16: + self.model.half() + self.encode([f"warmup {i} times" for i in range(10)]) + + @root_validator + def validate_environment(cls, values: Dict) -> Dict: + if not os.access(values["model_path"], os.F_OK): + raise FileNotFoundError( + f"Unabled to find valid model path in [{values['model_path']}]" + ) + try: + import torch_npu + except ImportError: + raise ModuleNotFoundError("torch_npu not found, please install torch_npu") + except Exception as e: + raise e + try: + torch_npu.npu.set_device(values["device_id"]) + except Exception as e: + raise Exception(f"set device failed due to {e}") + return values + + def encode(self, sentences: Any) -> Any: + inputs = self.tokenizer( + sentences, + padding=True, + truncation=True, + return_tensors="pt", + max_length=512, + ) + try: + import torch + except ImportError as e: + raise ImportError( + "Unable to import torch, please install with " "`pip install -U torch`." + ) from e + last_hidden_state = self.model( + inputs.input_ids.npu(), inputs.attention_mask.npu(), return_dict=True + ).last_hidden_state + tmp = self.pooling(last_hidden_state, inputs["attention_mask"].npu()) + embeddings = torch.nn.functional.normalize(tmp, dim=-1) + return embeddings.cpu().detach().numpy() + + def pooling(self, last_hidden_state: Any, attention_mask: Any = None) -> Any: + try: + import torch + except ImportError as e: + raise ImportError( + "Unable to import torch, please install with " "`pip install -U torch`." + ) from e + if self.pooling_method == "cls": + return last_hidden_state[:, 0] + elif self.pooling_method == "mean": + s = torch.sum( + last_hidden_state * attention_mask.unsqueeze(-1).float(), dim=-1 + ) + d = attention_mask.sum(dim=1, keepdim=True).float() + return s / d + else: + raise NotImplementedError( + f"Pooling method [{self.pooling_method}] not implemented" + ) + + def embed_documents(self, texts: List[str]) -> List[List[float]]: + return self.encode([self.document_instruction + text for text in texts]) + + def embed_query(self, text: str) -> List[float]: + return self.encode([self.query_instruction + text])[0] diff --git a/libs/community/pyproject.toml b/libs/community/pyproject.toml index 53c279ce51b14..e160a3339c9ef 100644 --- a/libs/community/pyproject.toml +++ b/libs/community/pyproject.toml @@ -156,4 +156,4 @@ ignore-regex = '.*(Stati Uniti|Tense=Pres).*' # whats is a typo but used frequently in queries so kept as is # aapply - async apply # unsecure - typo but part of API, decided to not bother for now -ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate,aadd,symbl,precesses,accademia,nin' +ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate,aadd,symbl,precesses,accademia,nin,cann' diff --git a/libs/community/tests/unit_tests/embeddings/test_imports.py b/libs/community/tests/unit_tests/embeddings/test_imports.py index 7f991488f3b6f..7cbc1f6a331f5 100644 --- a/libs/community/tests/unit_tests/embeddings/test_imports.py +++ b/libs/community/tests/unit_tests/embeddings/test_imports.py @@ -78,6 +78,7 @@ "OpenVINOEmbeddings", "OpenVINOBgeEmbeddings", "SolarEmbeddings", + "AscendEmbeddings", "ZhipuAIEmbeddings", ] diff --git a/pyproject.toml b/pyproject.toml index 41a4f9edc8604..971c5b55a169b 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -71,7 +71,7 @@ ignore-regex = '.*(Stati Uniti|Tense=Pres).*' # whats is a typo but used frequently in queries so kept as is # aapply - async apply # unsecure - typo but part of API, decided to not bother for now -ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate,aadd,symbl,precesses,accademia,nin' +ignore-words-list = 'momento,collison,ned,foor,reworkd,parth,whats,aapply,mysogyny,unsecure,damon,crate,aadd,symbl,precesses,accademia,nin,cann' [tool.ruff] extend-include = ["*.ipynb"]