diff --git a/libs/community/langchain_community/vectorstores/lancedb.py b/libs/community/langchain_community/vectorstores/lancedb.py index bb28165be24be..555ba836aa73b 100644 --- a/libs/community/langchain_community/vectorstores/lancedb.py +++ b/libs/community/langchain_community/vectorstores/lancedb.py @@ -113,7 +113,7 @@ def add_texts( Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. - ids: Optional list of ids to associate w ith the texts. + ids: Optional list of ids to associate with the texts. Returns: List of ids of the added texts. @@ -218,14 +218,42 @@ def similarity_search( Args: query: String to query the vectorstore with. k: Number of documents to return. + filter (Optional[Dict]): Optional filter arguments + sql_filter(Optional[string]): SQL filter to apply to the query. + prefilter(Optional[bool]): Whether to apply the filter prior + to the vector search. + Raises: + ValueError: If the specified table is not found in the database. Returns: List of documents most similar to the query. + + Examples: + + .. code-block:: python + + # Retrieve documents with filtering based on a metadata file_type + vector_store.as_retriever(search_kwargs={"k": 4, "filter":{ + 'sql_filter':"file_type='notice'", + 'prefilter': True + } + }) + + # Retrieve documents with filtering on a specific file name + vector_store.as_retriever(search_kwargs={"k": 4, "filter":{ + 'sql_filter':"source='my-file.txt'", + 'prefilter': True + } + }) """ embedding = self._embedding.embed_query(query) # type: ignore tbl = self.get_table(name) + filters = kwargs.pop("filter", {}) + sql_filter = filters.pop("sql_filter", None) + prefilter = filters.pop("prefilter", False) docs = ( tbl.search(embedding, vector_column_name=self._vector_key) + .where(sql_filter, prefilter=prefilter) .limit(k) .to_arrow() )