Skip to content

Latest commit

 

History

History
123 lines (108 loc) · 4.95 KB

README.md

File metadata and controls

123 lines (108 loc) · 4.95 KB

[Dacon] 유방암의 임파선 전이 예측 AI 경진대회

임효정 (팀명 : lhj) [email protected]


📌 대회 설명

  1. 주제 : 유방암 병리 슬라이드 영상과 임상 항목을 조합하여 유방암의 임파선 전이 여부 이진 분류
  2. 평가 산식 : Macro F1 Score
from sklearn import metrics

score = metrics.f1_score(y_true=true, y_pred=pred, average='macro', sample_weight=sample_weight.values)
  1. 링크 : https://dacon.io/competitions/official/236011/overview/description

📌 개요

  1. EDA & Preprocessing
    1. Image Data Preprocessing : Tissue Segmentation, Tissue 위주로 이미지 crop, Tile Creation
    2. Tabular Data Preprocessing : 결측치 처리, Feature Generation
  2. Modeling
    1. Multiple Instance Learning : swin_tiny_patch4_window7_224
    2. CNN-Tabular Multi-modal Learning : densenetblur121d + DNN
    3. Tree Based Boosting Algorithm : xgboost
  3. Cross Validation : Stratified 5-fold Validation
  4. Ensemble : Stacking Ensemble (meta classifier : linear_regression)

📌 개발 환경

  1. OS : Ubuntu 18.04.6 LTS
  2. Python : 3.8.16
  3. GPU : A100-SXM4-40GB

📌 실행 방법

  1. 라이브러리 설치 pip install -r requirements.txt
  2. Preprocessing python main.py config/preprocessing_config.yaml preprocessing
  3. MIL 모델 training python main.py config/mil_config.yaml train
  4. MIL 모델 inference python main.py config/mil_config.yaml inference
  5. CNN-Tabular Multi-modal 모델 training python main.py config/convnet_tabular_config.yaml train
  6. CNN-Tabular Multi-modal 모델 inference python main.py config/convnet_tabular_config.yaml inference
  7. XGB 모델 training python main.py config/xgb_config.yaml train
  8. XGB 모델 inference python main.py config/xgb_config.yaml inference
  9. Stacking Ensemble (최종 결과물) python main.py config/ensemble_config.yaml ensemble

📌 파일 구조

.
├── ./config
│   ├── ./config/convnet_tabular_config.yaml
│   ├── ./config/ensemble_config.yaml
│   ├── ./config/mil_config.yaml
│   ├── ./config/preprocessing_config.yaml
│   └── ./config/xgb_config.yaml
├── ./data
│   ├── ./data/clinical_info.xlsx
│   ├── ./data/sample_submission.csv
│   ├── ./data/test.csv
│   ├── ./data/test_imgs
│   ├── ./data/test_imgs_crop
│   ├── ./data/test_preprocessed.csv
│   ├── ./data/test_tiles
│   ├── ./data/train.csv
│   ├── ./data/train_imgs
│   ├── ./data/train_imgs_crop
│   ├── ./data/train_preprocessed.csv
│   └── ./data/train_tiles
├── ./ensemble.py
├── ./image_preprocessing.py
├── ./log
├── ./main.py
├── ./metrics.py
├── ./model
│   ├── ./model/densenetblur121d_image1_1024_tabular
│   │   ├── ./model/densenetblur121d_image1_1024_tabular/model_f0_best.pth
│   │   ├── ./model/densenetblur121d_image1_1024_tabular/model_f1_best.pth
│   │   ├── ./model/densenetblur121d_image1_1024_tabular/model_f2_best.pth
│   │   ├── ./model/densenetblur121d_image1_1024_tabular/model_f3_best.pth
│   │   ├── ./model/densenetblur121d_image1_1024_tabular/model_f4_best.pth
│   │   ├── ./model/densenetblur121d_image1_1024_tabular/oof.npy
│   │   └── ./model/densenetblur121d_image1_1024_tabular/preds.npy
│   ├── ./model/swintinypatch4window7_mil16_224
│   │   ├── ./model/swintinypatch4window7_mil16_224/model_f0_best.pth
│   │   ├── ./model/swintinypatch4window7_mil16_224/model_f1_best.pth
│   │   ├── ./model/swintinypatch4window7_mil16_224/model_f2_best.pth
│   │   ├── ./model/swintinypatch4window7_mil16_224/model_f3_best.pth
│   │   ├── ./model/swintinypatch4window7_mil16_224/model_f4_best.pth
│   │   ├── ./model/swintinypatch4window7_mil16_224/oof.npy
│   │   └── ./model/swintinypatch4window7_mil16_224/preds.npy
│   └── ./model/xgboost_tabular
│       ├── ./model/xgboost_tabular/model_f0_best.pkl
│       ├── ./model/xgboost_tabular/model_f1_best.pkl
│       ├── ./model/xgboost_tabular/model_f2_best.pkl
│       ├── ./model/xgboost_tabular/model_f3_best.pkl
│       ├── ./model/xgboost_tabular/model_f4_best.pkl
│       ├── ./model/xgboost_tabular/oof.npy
│       └── ./model/xgboost_tabular/preds.npy
├── ./README.md
├── ./requirements.txt
├── ./settings.py
├── ./submission
├── ./tabular_preprocessing.py
├── ./torch_dataset.py
├── ./torch_model.py
├── ./torch_trainer.py
├── ./transforms.py
├── ./utils.py
└── ./xgb_trainer.py