-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtabular_preprocessing.py
176 lines (137 loc) · 6.81 KB
/
tabular_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import pandas as pd
import numpy as np
from sklearn.model_selection import StratifiedKFold
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import MinMaxScaler
import settings
def create_folds(df, n_folds, seed):
df['fold'] = -1
N_HG = df['N_category'].apply(str) + '_' + df['HG'].apply(str)
skf = StratifiedKFold(
n_splits=n_folds, random_state=seed, shuffle=True)
for fold, (_, valid_idx) in enumerate(skf.split(df.index, N_HG)):
df.loc[valid_idx, 'fold'] = fold
df['fold'] = df['fold'].astype('int')
return df
def encode(df, df_test, encode_cols):
encoder = LabelEncoder()
for col in encode_cols:
df[col] = encoder.fit_transform(df[col])
df_test[col] = encoder.transform(df_test[col])
return df, df_test
def scaling(df, df_test, scaling_cols):
scaler = MinMaxScaler()
df[scaling_cols] = scaler.fit_transform(df[scaling_cols])
df_test[scaling_cols] = scaler.transform(df_test[scaling_cols])
return df, df_test
def replace_missing_values(df, df_test):
# T_category
df.loc[(df['암의 장경'] == 0) & (df['DCIS_or_LCIS_여부'] == 1), 'T_category'] = 0
df['T_category'] = df['T_category'].fillna(
df['암의 장경'].apply(lambda x: 1 if x <= 20 else 2 if x <= 50 else 3))
df_test.loc[(df_test['암의 장경'] == 0) & (
df_test['DCIS_or_LCIS_여부'] == 1), 'T_category'] = 0
df_test['T_category'] = df_test['T_category'].fillna(
df_test['암의 장경'].apply(lambda x: 1 if x <= 20 else 2 if x <= 50 else 3))
# 암의 장경
df['암의 장경'] = df['암의 장경'].fillna(df['T_category'].apply(
lambda x: 0 if x == 0 else 13 if x == 1 else 25 if x == 2 else 60 if x == 3 else 68))
df_test['암의 장경'] = df_test['암의 장경'].fillna(
df_test['T_category'].apply(lambda x: 0 if x == 0 else 13 if x == 1 else 25 if x == 2 else 60 if x == 3 else 68))
# ER
df['ER'] = df['ER'].fillna(df['NG'].apply(
lambda x: 1 if x in [1, 2] else 0))
df_test['ER'] = df_test['ER'].fillna(
df_test['NG'].apply(lambda x: 1 if x in [1, 2] else 0))
# PR
df['PR'] = df['PR'].fillna(df['NG'].apply(
lambda x: 1 if x in [1, 2] else 0))
df_test['PR'] = df['PR'].fillna(
df_test['NG'].apply(lambda x: 1 if x in [1, 2] else 0))
# ER_Allred_score
df['ER_Allred_score'] = df['ER_Allred_score'].fillna(
df['ER'].apply(lambda x: 2 if x == 0 else 7))
df_test['ER_Allred_score'] = df_test['ER_Allred_score'].fillna(
df_test['ER'].apply(lambda x: 2 if x == 0 else 7))
# PR_Allred_score
df.loc[df['PR_Allred_score'] > 8, 'PR_Allred_score'] = 8 # outlier
df['PR_Allred_score'] = df['PR_Allred_score'].fillna(
df['PR'].apply(lambda x: 2 if x == 0 else 6))
df_test['PR_Allred_score'] = df_test['PR_Allred_score'].fillna(
df_test['PR'].apply(lambda x: 2 if x == 0 else 6))
# HER2
df['HER2'] = df['HER2'].fillna(df['HER2_SISH'])
df['HER2'] = df['HER2'].fillna(df['HER2_IHC'].apply(
lambda x: 0 if x in [0, 1] else 1 if x in [2, 3] else np.NaN))
df['HER2'] = df['HER2'].fillna(0)
df_test['HER2'] = df_test['HER2'].fillna(df_test['HER2_SISH'])
df_test['HER2'] = df_test['HER2'].fillna(df_test['HER2_IHC'].apply(
lambda x: 0 if x in [0, 1] else 1 if x in [2, 3] else np.NaN))
df_test['HER2'] = df_test['HER2'].fillna(0)
# NG
df['NG'] = df['NG'].fillna(df['HG_score_2'])
df['NG'] = df['NG'].fillna(df['HG'])
ki67_bin = df['KI-67_LI_percent'].apply(
lambda x: 1 if x < 10 else 2 if x < 20 else 3)
df['NG'] = df['NG'].fillna(ki67_bin.apply(
lambda x: 2 if x in [1, 2] else 3))
df['NG'] = df['NG'].fillna(df['HG_score_3'].apply(
lambda x: 1 if x == 4 else 2 if x == 1 else 3))
df['NG'] = df['NG'].fillna(df['T_category'].apply(
lambda x: 1 if x == 0 else 2 if x in [1, 2, 3] else 3))
df_test['NG'] = df_test['NG'].fillna(df_test['HG_score_2'])
df_test['NG'] = df_test['NG'].fillna(df_test['HG'])
ki67_bin = df_test['KI-67_LI_percent'].apply(
lambda x: 1 if x < 10 else 2 if x < 20 else 3)
df_test['NG'] = df_test['NG'].fillna(
ki67_bin.apply(lambda x: 2 if x in [1, 2] else 3))
df_test['NG'] = df_test['NG'].fillna(
df_test['HG_score_3'].apply(lambda x: 1 if x == 4 else 2 if x == 1 else 3))
df_test['NG'] = df_test['NG'].fillna(
df_test['T_category'].apply(
lambda x: 1 if x == 0 else 2 if x in [1, 2, 3] else 3))
# HG, HG_score_1~3
df['HG'] = df['HG'].fillna(df['NG'])
df['HG_score_1'] = df['HG_score_1'].fillna(df['HG'])
df['HG_score_2'] = df['HG_score_2'].fillna(df['NG'])
df['HG_score_3'] = df['HG_score_3'].fillna(df['HG'])
df_test['HG'] = df_test['HG'].fillna(df_test['NG'])
df_test['HG_score_1'] = df_test['HG_score_1'].fillna(df_test['HG'])
df_test['HG_score_2'] = df_test['HG_score_2'].fillna(df_test['NG'])
df_test['HG_score_3'] = df_test['HG_score_3'].fillna(df_test['HG'])
# KI-67_LI_percent
df['KI-67_LI_percent'] = df['KI-67_LI_percent'].fillna(
df['NG'].apply(lambda x: 5 if x == 1 else 10 if x == 2 else 30))
df_test['KI-67_LI_percent'] = df_test['KI-67_LI_percent'].fillna(
df_test['NG'].apply(lambda x: 5 if x == 1 else 10 if x == 2 else 30))
# BRCA_mutation
df['BRCA_mutation'] = df['BRCA_mutation'].fillna(-1)
df_test['BRCA_mutation'] = df_test['BRCA_mutation'].fillna(-1)
# Etc
df = df.fillna(0)
df_test = df_test.fillna(0)
return df, df_test
def generate_new_features(df, df_test):
df['수술연월일'] = pd.to_datetime(df['수술연월일'])
df_test['수술연월일'] = pd.to_datetime(df_test['수술연월일'])
df['수술연도'] = df['수술연월일'].dt.year
df_test['수술연도'] = df_test['수술연월일'].dt.year
hr = (df['ER'] == 1) | (df['PR'] == 1)
hr_test = (df_test['ER'] == 1) | (df_test['PR'] == 1)
df['Subtype'] = hr.astype(str) + '_' + df['HER2'].astype(str)
df_test['Subtype'] = hr_test.astype(
str) + '_' + df_test['HER2'].astype(str)
return df, df_test
def preprocess_and_save(df, df_test, tabular_params, logger):
df, df_test = replace_missing_values(df, df_test)
df, df_test = generate_new_features(df, df_test)
df = create_folds(df, tabular_params['n_folds'], tabular_params['seed'])
df, df_test = encode(df, df_test, tabular_params['encode_cols'])
df, df_test = scaling(df, df_test, tabular_params['scaling_cols'])
df.to_csv(settings.DATA / 'train_preprocessed.csv', index=False)
df_test.to_csv(settings.DATA / 'test_preprocessed.csv', index=False)
logger.info(
f"Saved preprocessed train data to {settings.DATA / 'train_preprocessed.csv'}")
logger.info(
f"Saved preprocessed test data to {settings.DATA / 'test_preprocessed.csv'}")
return df, df_test