-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvertCkpt.py
48 lines (42 loc) · 1.54 KB
/
convertCkpt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
from collections import OrderedDict
from torchvision.models import resnet18, ResNet18_Weights
from utils.dataloaders import checkDictEq
CONTEST_WEIGHT = False
model = resnet18(weights=ResNet18_Weights.DEFAULT)
source_state_dict = model.state_dict()
#! downloaded resnet18-5c106cde.pth does not include num_batches_tracked, we initialize it with 0
# =================================================
# CONTEST_WEIGHT = True
# model = resnet18()
# source_state_dict = torch.load('resnet18-5c106cde.pth')
# model.load_state_dict(source_state_dict)
# source_state_dict = model.state_dict()
# =================================================
target_checkpoint = {
'epoch': -1,
'best_fitness': None,
'ema': None,
'updates': None,
'optimizer': None,
'data': None,
'date': None
}
target_state_dict = OrderedDict()
for k, v in source_state_dict.items():
if k.startswith('conv1'):
target_state_dict['model.0.conv.' + k.split('.')[-1]] = v
elif k.startswith('bn1'):
target_state_dict['model.0.bn.' + k.split('.')[-1]] = v
elif k.startswith('layer'):
idx = int(k[5])
target_state_dict[f'model.{idx + 1}.layer' + k[6:]] = v
else:
print(f'skip {k}')
if CONTEST_WEIGHT and k.find('num_batches_tracked') != -1:
assert v == 0
target_checkpoint['model'] = target_state_dict
torch.save(target_checkpoint, 'resnet18_converted.pt') # dump checkpoint file
if CONTEST_WEIGHT:
target = torch.load('resnet18.pt', map_location='cpu')
print(checkDictEq(target, target_checkpoint))